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Abstract 

 

 

 

The lack of generality is a structural weakness of knowledge representation formalisms. 

Here by lack of generality we mean the inability of any given representation to describe 

the infinite richness and diversity of the world and also its potentially infinite descriptions 

which are enabled by language. This lack of generality is the main cause of many of the 

difficulties encountered so far, just think of the problems which have arisen in the effort of 

creating reusable ontologies. In this thesis we propose a solution to the problem of 

generality which is based on the key idea that knowledge should not be modeled a priori, 

at design time, but it should continuously generated, adapted and evolved, from generation 

to usage. The thesis provides four main contributions: (i) a shared terminology for the 

characterization of concepts and for their computational representation; (ii) a 

formalization of the distinction between substance concepts and classification concepts; 

(iii) the integration of these two notions of concept into a general representation language 

that organizes them into a hierarchy of increasing abstraction of what is perceived, and 

(iv) a two-layered knowledge representation formalism, where the first layer allows to 

represent concepts, as the main devices for achieving generality, and where the second 

layer allows to represent concepts as the result of “adapting” a description to the current 

knowledge representation needs and requirements. 
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Chapter 1 

 

1. Introduction 

1.1. The Context 

The key intuition underlying the work in knowledge representation (KR) is that the mind 

of an Artificial Intelligence (AI) can be modeled as a representational system that can be 

exploited for processing information. Such a system is usually seen as a set of beliefs which 

construct a mental model of the world [100]. Many KR formalisms have been devised 

under this assumption. This work has gone a long way with many success stories. Still, it 

has soon turned out that all of these formalisms suffer from a lack of generality [66], [13]. 

The lack of generality is made evident by (i) the failure in reducing diverse representations 

of the world to a single “universal” theory, and (ii) the difficulties faced in the creation of 

representations of the world that can address a changing world. 

1.2. The Problem 

The problem of (non-)generality is unavoidable and it is entangled with two fundamental 

issues that must be handled by any representation, namely world diversity and 

representation use [44]. It is simply impossible to construct a finite representation capable 

of capturing the infinite richness and diversity of the world and also the infinitely many 

possible descriptions of the world which are enabled by language. On the one hand, any 

fixed representation cannot manage the diverse and multiple inputs coming from the 

external environment. Any new encounter with the world may hide some details and 

highlight others; for any chosen representation, there will always be some aspect of the 

world that is not captured. On the other hand, any fixed representation depends always on 

a certain perspective and any change in the goals to be addressed may cause a revision of 

the current description. For any chosen representation there will always be an alternative 

way, not yet considered, to represent the same aspect of the world.  
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The problem of lack of generality has had a huge (negative) impact on AI. So far, the KR 

problem has been dealt with in isolation, as if knowledge could be modeled “from first 

principles” independently of the world generating it and of its intended use. The main 

consequence is that all the attempts to deal with semantic heterogeneity, for instance all 

the work on (reusable) ontologies and data integration (see, e.g. [41], [12]) have obtained 

only partial successes.  

1.3. The Solution 

In this thesis we propose a new approach to KR which allows to address the problem of 

generality and which is based on the key idea that knowledge should not be modeled a 

priori, at design time, but, rather, that it should continuously be generated, adapted and 

evolved, from generation to usage. The life cycle of the management of knowledge should 

be constructed as the result of the following two steps: 

 

1. knowledge acquisition, where the world input is acquired and stored into an adaptable 

and extensible KR formalism. This step allows to deal with the diversity of the world; 

2. knowledge (re)use, where the acquired knowledge is used to generate a fixed world 

representation which is adapted as a function of the requirements and goals. This step 

allows to deal with the many possible representations of the world. 

 

Thus, for instance, I can store information about cats as a function of my encounters with 

them and, in output, I can generate any desired representation of cats which is within the 

scope of what I know about cats. This thesis provides four main contributions: 

 

1. a shared terminology for the characterization of concepts and for their computational 

representation; 

2. a formalization of the distinction between substance concepts and classification 

concepts; 

3. the integration of the two above mentioned notions of concept into a general 

representation language that organizes them into a hierarchy of increasing abstraction 

of what is perceived; 
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4. a two-layered KR formalism where the first layer allows to represent concepts, as the 

main devices for achieving generality and where the second layer allows to represent 

concepts as the result of “adapting” descriptions to the current KR needs and 

requirements. 

 

Our approach, and in particular our proposed architecture is strongly influenced by the 

work on biosemantics (also known as teleosemantics) [62]. Many of the examples and 

terminology metaphors used in the following are derived from this field. Biosemantics 

provides an account of how representations carry meaning by appealing to the teleological 

notion of function. Here the notion of function maps into the one used in the context of 

neurobiology when attributing functions to components of the brain (as in “the function of 

processing visual information”). Most relevant to us is Millikan’s account of biosemantics 

and her explanation of how representations are generated in terms of consumer’s and 

producer’s abilities [74], [76], [73], [69], [93].  

1.4. Structure of the Thesis 

The rest of the thesis is structured as follows: 

 

• Chapter 2 introduces a survey of computational approaches to concepts 

representations, with the main goal to classify the heterogeneous computational 

approaches according the provided terminology, and to provide a reader who may 

not be very familiar with theories of concepts with introduction to major themes in 

this research and with pointers to different research projects. 

• Chapter 3 presents the central distinction between classification and substance 

concepts, providing a model of concepts as abilities, with a focus on recognition 

abilities, and an early version of an Ontology of (Recognition) Abilities (called 

RAO). 

• Chapter 4, starting from the distinction between substance and classification 

concepts, provides an early proposal for an integrated architecture enabling 

perception and reasoning. The goal here is to go a step further and to integrate these 
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two notions into a general theory of concepts which organizes them into a hierarchy 

of increasing abstraction of what is perceived. 

• Chapter 5 describes how the proposed integrated architecture can be used for 

addressing the problem of generality and the puzzle of sameness. The main goal 

here is to show how our new approach is a promising solution in supporting the 

current existing knowledge integration methodologies.  

• Finally, Chapter 6 presents the conclusions and future work, respectively. 
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Chapter 2 

 

2. A Survey of Computational Approaches to Concepts 

Representation 

 

The key assumption underlying the work in conceptual modeling is that different kinds of 

conceptual representations are needed in order to account for certain classes of cognitive 

phenomena [1]. Within the field of Artificial Intelligence (AI), many cognitive 

architectures have been realized adopting different approaches for the organization and the 

representation of their conceptual system [107]. A huge work for formalizing, analyzing 

and depicting the cognitive and ontological principles that ground conceptual modeling 

processes have been addressed in [50] and [47]. The formalization of new tools, such as 

the perceptual symbol system approach [4] and the proxytype theory [86], gathered from 

different theories of concepts, has been put forward in [60] and [85]. Statistical approaches, 

such as neural nets, implementing dynamic and situated conceptual representations have 

been exploited (e.g., [67]). Computational accounts of approaches (e.g., 

simulation/embodied approaches) that ground conceptual information in modality-specific 

systems have been provided (e.g., [92]). 

 

It can be generally observed that, so far, all these different representations of concepts have 

gone a long way with many success stories. Anyhow, none of them can account for all 

aspects of cognition. Some models, for instance, are used for enabling systems to reason 

on enormous amounts of data, but fail in accounting for trivial common-sense reasoning 

[28]. Similarly, some conceptual representations are impressively successful when used in 

well-defined domains, but they are completely inefficient in cross-domains settings [97]. 

Based on this evidence, the main consideration is that artificial systems can take advantage 

of all these different conceptual representations for addressing different tasks. The key 

issue becomes then their combination into a unified view. So far, some hybrid approaches 

have been proposed [105]. Here the main goal is to take (some of) the existing 

representations, to adapt them and to integrate them in a hybrid conceptual model. 
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However, these approaches are only, partially satisfying, ad hoc solutions, and cannot 

overcome some serious integration problems. The different conceptual representations are, 

indeed, in many cases, incompatible: (they start from different modelling assumptions and 

theories of concepts, which more often are left implicit, they adopt different modeling 

constructs, and so forth) [101], [34]. 

 

The focus of modern AI on concepts and their representations makes the understanding of 

the notion of ‘concept’, and the knowledge of the core of conceptual theories, a key factor 

in this area of research. Making explicit the modelling assumptions behind the different 

approaches is, indeed, an important issue to be addressed whenever, for instance, a 

conceptual representation has to be devised and compared, or integrated, to other 

conceptual representations. This chapter provides a brief survey of the computational 

approaches to the representation of concepts. The main goals are:  

 

1. to provide a shared terminology for the characterization of concepts and their 

computational representation;  

2. to classify the heterogeneous computational approaches according the provided 

terminology, and  

3. to provide a reader who may not be very familiar with theories of concepts with 

introduction to major themes in this research and with pointers to different research 

projects.  

 

Note that this chapter does not attempt to provide a comprehensive review of the state of 

the art in the representation of concepts. We refer the reader to excellent and thorough 

reviews, such as [77] or [18], for that purpose. Our central aim is, indeed, to examine, in 

the light of the existing theories of concepts, just some of the most relevant approaches, in 

order to make explicit their modelling assumptions and linking them to a common 

terminological (and theoretical) ground. The final outcome of this survey could be then 

used in order to discuss: a) criteria for finding similarities/dissimilarities between different 

ways of modelling concepts and b) criteria for devising new other possible integrated 

conceptual representations. 
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The chapter is organized as follows: Section 2.1 groups the current approaches to concepts 

representation into three main classes. Section 2.2 provides a list of dimensions, through 

which concept representations can be compared and divided. In Section 2.3, 2.4 and 2.5 

we provide a brief description of some remarkable computational implementations. Section 

2.6 provides a brief overview and comparison of the described approaches.  

2.1. Three Broad Classes of Theories 

Different theories about the nature of concepts have been proposed in cognitive science, 

neuroscience and philosophy of mind. Most of these theories are grouped according to the 

literature into two main classes: Good Old Fashioned Artificial Intelligence (GOFAI) 

theories and New Fangled Artificial Intelligence (NFAI), or post-classical, theories [6]. 

Along with the GOFAI and NFAI theories, there are theories combining assumptions that 

ground both GOFAI and NFAI theories. We call these theories Complementary Fangled 

Artificial Intelligence (CFAI) theories. 

GOFAI. These theories are also known as classical-symbolic theories and provide perhaps 

one of the best known and most widely accepted view of concepts. According to this view, 

concepts are explicit representations codified in a language, similar to the first-order 

predicate calculus. The main features of these type of representations, also called 

propositional [83], are arbitrariness and discreteness. Concepts can be seen indeed as 

symbols of the language of thought (LOT) [32]. They are arbitrary in the sense that the 

similarity between them and what is represented is not needed. They are discrete because 

they are complex expressions separable in smaller parts, or they are atomic parts without 

any internal structure. Arbitrariness and discreteness allow the propositional 

representations of concepts to be highly formal and abstract.  

NFAI. These theories have been developed in recent years and are also known as post-

classical theories. The NFAI class can be divided into two main sub-classes: the situated 

robotics theories and the connectionist theories. The situated robotics program still need to 

be consolidated and cannot be considered as genuine theory, however it is being tested and 

used in many AI researches and applications (e.g., dynamical systems). Differently from 

the situated robotics, the connectionist research program has a long story and dates backs 

to the 40’s [68], [53]. The many success stories of the symbolic approach around the 50’s 
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and 60’s put connectionism in the shade for a long period. However, in the late 80’s it 

began to increase again its popularity. Connectionism shares the computational hypothesis 

of the symbolic approach, but providing a different model for concepts. In particular, 

according to this view, concepts can be seen as representations distributed throughout a 

large number of processing elements [34]. Concepts are embedded in a network composed 

by interconnected units, which, at a certain level of abstraction, simulate the behavior of a 

conglomerate of neural cells. So far, even if they cannot be considered as a proper models 

of real neural systems, different types of (artificial) neural networks have been successfully 

adopted for addressing specific AI tasks. 

CFAI. These theories are not in contrast with the GOFAI and NFAI programs. What we 

call CFAI theories rely, indeed, on assumptions that may be shared by both the previously 

described classes of theories. They can be seen as complementary views introduced in 

order to model aspects of cognition that are difficult to be modeled with GOFAI and NFAI 

frames only. Under the category of CFAI theories we group the procedural theories, the 

analogical theories, and the prototype-exemplar-theory (PET) theories. Procedural 

theories raised during the 70s and their slogan says that is not necessary for a concept to 

be explicitly represented as a mental symbol [55]. According to procedural theories 

concepts can be implicitly represented as a “procedure”, i.e., as the execution of a piece of 

an algorithm. According to this framework, having a concept is having a capability to do 

something. For instance, having the concept of ‘Cat’ is having the ability of recognizing 

something as a ‘Cat’ or having the capability of using it in inference processes (i.e., it is an 

animal). Similarly, the analogical theories, around the late 60s, introduced another new 

interpretation of concepts. According to these theories, concepts are analogical (and not 

propositional, like in the classical-symbolic theories) representations. These kinds of 

representation are defined as mental objects that are similar to the objects they represent, 

like, for instance a picture of a cat or the image of a cat on my eye retina [96]. Differently 

from the propositional concepts introduced by GOFAI, the analogical concepts are not 

claimed to be discrete. This means that concepts do not provide a selection of features and 

the whole perceptual information are collected (this is a value for concreteness and 

completeness but, for instance, is a problem for compositionality and abstraction. For 

further information, see sections below). Another interesting issue is that, with their 
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representation of concepts, analogical theories provide an account for simulation (see for 

instance proxy-types) processes in cognition [4], [86]. Among the CFAI theories we have 

what we call PET theories. Here we group three kinds approaches to concepts 

representation that are very similar, i.e., the prototypical approach, the exemplar approach 

and the theory approach.  According to the prototypical approach, concepts provide the 

representation of the “most typical” occurrence for a given perceived object. Concepts are 

prototypes, i.e., a sort of weighted set of features (e.g., the prototype for ‘Apple’ is 

something round, green, red or yellow, with a specific range of weight, and so forth). In 

the exemplar view concepts can be seen as devices storing information about specific 

example occurrences for a given perceived object (e.g., the information about the apples 

we encountered in our experience). Within the theory approaches concepts are represented 

as (micro-)theories. For instance, having a concept for ‘Apple’ means having (micro-

)theory about apples. 

 

Fig. 1. Theories of concepts: a classification. 

2.2. A characterization of Conceptual Representations 

GOFAI, NFAI and CFAI programs rely on different assumptions about the nature of 

concepts and underlie different strategies for their representation. All these strategies of 
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representation can be analyzed along seven different dimensions1: intentionality, coverage, 

shareability, typicality, compositionality, formality and flexibility. Any type of conceptual 

representation can be indeed reduced to a way of addressing (following different 

approaches) one or more issues related to these dimensions. To make the explanation clear, 

we describe each dimension using the symbolic and the connectionist theories as reference 

examples. Let us look briefly at each of these in turn. 

Intentionality. The notion of intentionality is needed for giving an account of how 

concepts can be about, represent, or stand for, things (or state of affairs). Intentionality is 

essential for explaining the semantics of any given conceptual model. Within the symbolic 

paradigm, a key line of research that account for intentionality is the so called causal 

approach to mental content [2]. According to this view, a concept of something in the 

world is basically a representation caused by this “something” (articulated in terms of sets 

of properties). The assumption here is that a concept C represents something S, if and only 

if S causes C. The basic idea is that any conceptual representation is derived by and 

covaries with what it represents, according to a causal relation. Similarly, within the 

connectionist frame, there are approaches on which the notion of intentionality plays an 

important role. Here concepts are represented as patterns of activation in a network of 

simple nodes. Even if these patterns are difficult to be semantically evaluated, they are 

always to be considered in relation to intentional activities.  

Coverage. A desideratum of a conceptual model is that it can be used for representing all 

the types of concepts (see, for instance, individual concepts, e.g., here, Venus, etc., 

properties, e.g., yellow, near; living being concepts, e.g., animal, plant, stuff 

concepts, e.g., milk, gold; abstract concepts, e.g., music, information; role 

concepts, student, father; action concepts, create, move, etc.). Providing a model 

for concepts considering just few examples and the generalizing the model to all the 

possible types of concepts lead to unconvincing results. Within the models grounded on 

the symbolic approach we have an account for a large variety of concepts. The concepts 

that are more suitable to be modeled in a connectionist frame are kinds that are concrete or 

                                                
1 These seven characteristics are derived from an analysis of the explanations provided in [26], 
[98], [77], [18] and [83].  
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singular concepts, i.e., concepts that are strongly grounded in perception (e.g., basic level 

categories) [101].  

Shareability. Another important feature of concepts is that they have to be shareable 

between human and artificial agents [26]. The shareability dimension of concepts is 

typically supported by their explicit representation. In the classical symbolic paradigm 

concepts are constructed from constituent symbols and syntactic combination of these 

symbols, and they can be seen as the descriptive product of human designers. This support 

the shareability of the symbolic models. However, an important issue is that, so far, it has 

proven impossible to develop fully reusable and shareable symbolic representations (see, 

for instance, ontologies [49]), the motivation being the set of underlying assumptions that 

always underlies their design. In the connectionist approach concepts are implicit 

representations associated to an activation pattern, distributed over different units (or 

“nodes”), where each unit is involved in the representation of different concepts (this 

characteristic is the reason of why the connectionist paradigm is also called sub-symbolic 

paradigm). The “opacity” of connectionist model of concepts is a classical well-known 

problem for their shareability. Any of these models behaves as a sort of black box and the 

interpretation for units and connections weight is always deeply complex. 

Typicality. Around the mid-70s of the last century the empirical results of Eleanor Rosch 

[89] demonstrated the necessity of a new model for capturing both the structure of ordinary 

common sense concepts and the categorization processes. The results obtained by Rosch 

showed that most of the ordinary concepts often exhibit typicality effects, i.e., they have 

common features that are central in the recognition and categorization of perceived objects. 

Approaches addressing typicality can be seen as complementary views of the classical 

symbolic approaches, they were introduced to address some new cognitive issues. This 

dimension seems to be well-addressed in the connectionist models as well, where concepts 

correspond to distributed representations with a position in a multidimensional semantic 

space [101].  

Compositionality. This dimension refers to the capability of producing infinite complex 

concepts starting from a finite set of atomic concepts. This is an essential feature for 

explaining conceptual systems productivity [33]. Concepts compositionality is well 

addressed by symbolic approaches, where it is achieved through the application of certain 
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syntactic rules. In the connectionist approaches compositionality seems very difficult to be 

addressed [34]. It is not clear if this depends only on technical issues and some solutions 

can be provided with few modifications of the existing models. A connectionist model that 

seem to be able to capture some compositional properties of the symbolic models is the so 

called recurrent neural network (RNN) [29].  

Formality. Cognition involves many rational and logical processes. Formality (along with 

abstraction and discreteness) seems to be a key dimension for modelling conceptual 

information and using it for enabling rational behaviors. For instance, just think of the 

reasoning activities performed by an agent. These are built upon inference mechanisms 

dealing with formal and consistent information. Within the symbolic frames, formality is 

a key dimension. For this reason, most of the systems devised according to the symbolic 

principles are targeted for enabling forms of logic-valid automatic processes. Differently, 

formality is not a central dimension in the connectionist frames and the development of 

solutions for supporting rational tasks grounded on the connectionist approach is not so 

widely explored. Anyhow, recently interesting connectionist experiments, suitable, for 

instance, to address logical deduction, are being devised, see for instance neural reasoners 

[84]. 

Flexibility. The high flexibility of biological cognitive agents is a pivotal feature of their 

cognition system (see, for instance, learning, evolution and adaptation tasks). The focus 

on formal semantics and LOT makes flexibility, comparatively speaking, difficult to be 

addressed for models built upon a symbolic approach. Any update, modification or 

elimination task have a huge impact on the whole symbolic system. Nevertheless, there 

have been some developments of flexible symbolic models, see for instance default logic 

[9], fuzzy logic [57] systems. In the context of connectionist paradigm, the very foundation 

has always been learning. This presupposes the high flexibility of connectionist models, 

which is addressed by tuning of weights or other parameters in huge networks [101]. Due 

to such a flexibility, connectionist models excel at dealing with incompleteness, 

inconsistency, uncertainty, approximate information, and so forth, and seem to be high 

capable of simulating some complex cognitive behavior of biological agents.  
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2.3. Classical-Symbolic Representations 

A perfect example of a computational approach to conceptual representation that is 

influenced by classical-symbolic principles is the modelling of ontologies [Ref.]. The most 

widely shared definition of ontology in the computer science community is “a formal, 

explicit specification of a shared conceptualization” [49]. Such a definition can be seen as 

derived from the composition of different definitions [104]. Ontologies can be seen as 

complex data structures, i.e., information artifacts, which can be designed (and formalized) 

using different representational languages, see for instance RDF2 and OWL3, following 

different principles (e.g., OntoClean [47]). All the languages used for representing these 

“conceptualizations” can be reduced to a fragment of first order logic (FOL) and can be 

seen as a perfect instantiation of what in the classical-symbolic frame is taken as LOT [32]. 

The main goal of these artifacts is to support knowledge representation (KR) and 

integration tasks, but they can be used for other tasks as well (see for instance driving NLP, 

or providing a data exchange formats). DOLCE4 and BFO5 are two example of top-level 

ontologies, i.e., ontologies representing cross-domain knowledge. Both of them are 

designed according to well-defined principles and are used in many different ontology 

design and integration tasks. OWL-Time6 and the Organization7 ontology are typical 

examples of what in the ontology design community are called “core ontologies”, i.e., 

ontologies (more specific that top-level ontologies) expressing and specifying some 

concepts that can be shared among different area of knowledge. OWL-Time is an ontology 

expressed in OWL-28, describing temporal concepts, enabling the ability to express facts 

about topological relations among intervals and instants, together with information about 

temporal position, frequency and durations. The Organization ontology provide a 

conceptualization representing the structure of organizations (e.g., business organizations, 

educational organization, an d so forth). It is designed in order to equip specific domain 

                                                
2 https://www.w3.org/RDF/ 
3 https://www.w3.org/OWL/ 
4 http://www.loa.istc.cnr.it/old/DOLCE.html 
5 http://ifomis.uni-saarland.de/bfo/ 
6 https://www.w3.org/TR/owl-time/ 
7 https://www.w3.org/TR/vocab-org/ 
8 https://www.w3.org/TR/owl2-overview/ 
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applications with information about organizations and roles. The Wine9 ontology is another 

example of ontology, i.e., a domain ontology. Such an ontology is often used as reference 

object for tutorials and ontology design tasks, and provide a representations of wines, 

winery and all the objects needed for expressing this specific area of knowledge. 

 

All these computational artefacts provide an abstraction of (a portion of) the world and are 

used to enable software systems in addressing some specific (high-level) intelligent tasks. 

Looking at the dimensions provided in the previous section, there are some main 

observations. From the point of view of coverage, ontologies can be used for modelling a 

huge varieties of concepts. As a check we can take the huge number of ontological 

vocabularies collected in LOV10. Let us take, for instance, Schema.org11, which can be 

expressed and formalized as an ontology (see the its RDF formalization) and the set of its 

“commonly used types”. We have concepts like CreativeWork, Artifact, Event, 

Organization, Person and Place; concepts like Action (e.g., defining actions like 

Assess, Achieve, Move, Organize, along with Create, Reproduce, and so 

forth). Similarly, we have concepts of roles like Creator or Student, concepts of 

properties like Gender, JobTitle, Nationality, and so forth.  

 

Ontologies may also provide interesting insights on how to address the shareability issue. 

The main goal of ontologies is indeed “to enable computers and people to work in 

cooperation” [8]. Here shareability is addressed by providing an explicit and formal 

representation of each concept. For instance, the concept Person and Nationality 

map into a specific logical formula that can be reused among different software agents and 

can be used by humans for understanding the intended model behind the concept 

representations. Along with shareability, the concepts represented with ontologies are 

characterized by formality and compositionality. Firstly, they are indeed used for enabling 

logic-based process and their main role is to discretize and schematize the information 

coming from the external environment. Secondly, they can be seen as symbols of a 

                                                
9 https://www.w3.org/TR/owl-guide/wine.rdf 
10 http://lov.okfn.org/dataset/lov/ 
11 http://schema.org/ 
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propositional formal language, characterized by a specific syntax and different 

compositional rules. 

 

For what concerns intentionality ontologies are for sure representation of concepts that aim 

to capture what these concepts are about. The pivotal point here is that world objects are 

mapped into key basic constructs, i.e., instances which should point to specific world 

object (or an occurrence of them). This enable the class-relational structure encoding 

ontologies with a formal semantics. Formal semantics is necessary for supporting 

intelligent logic-based tasks (see for instance reasoning) but involve losing the tie with the 

external environment. Loosely speaking, do ontology concepts refer to real world objects, 

or to a formal representation of them, i.e., instances?  

 

The default features of ontologies do not allow to address the typicality and flexibility 

dimensions. Anyhow, there is a huge research work on ontology evolution and adaptation 

(see [80] for more details and [9], [57] as examples of formalism) and typicality is 

addressed by some complementary approaches that can be integrated to more classical 

models (for further details see Section 6 below). 

2.4. Connectionist and Embodied Representations 

Neural networks are typical computational representations inspired by the connectionist 

view of concepts. These artifacts can be reduced to a set of interconnected units, i.e., 

abstract representation of neurons, where any connection between these neurons is an 

abstract representation of a synapse. According to these representations, each unit is 

associated to a numerical value, i.e., an activation state (or firing, namely the frequency by 

which a neuron sends signals through synapses). Each connection between neuron 

representation units is characterized by a weight that codifies the strength of that 

connection. The influence of a unit x on a unit y is given by the activation value of the unit 

x multiplied by the weight of the connection from x to y. The weight value can be positive 

or negative so that the signal sent through the connection can activate or deactivate the 

neuron reached by the signal. So far, a lot of neural networks have been devised for 

capturing aspects of cognition. Feed forward networks (FF or FFNN) [91] are usually 
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employed on pattern recognition tasks. These are powerful networks characterized by three 

layers of different units: input units, hidden units and output units. The connections of FF 

networks are always unidirectional, i.e., they start always from an input unit through a 

hidden unit until an output unit. One interesting aspect of these networks is that they can 

be easily trained, i.e., they can learn how to produce results and tune their activation state 

by using a back-propagation mechanism. This allow the network to improve their reactions 

to given inputs and then improve their results. Besides FF networks we have many other 

(more or less recent) kinds of neural networks, for instance: radial basis function (RBF) 

networks [21], hopfield network (HN) [54], Markov chains (MC) or discrete time Markov 

Chain, (DTMC) [51], deep belief networks (DBN) [7] and deep residual networks (DRN) 

[52]. Each of them was devised for enabling some specific artificial activities. 

 

Looking at the dimensions provided in the previous section, there are some main 

observations. From the point of view of intentionality we may say that connectionist 

representations of concepts share the same goal of the classical approaches. Anyhow, 

neural networks, in addition, provide interesting performances on dealing with partial or 

wrong information. This means that they can infer new information starting from the 

available partial information. In other words, they can run induction processes by which 

unknown properties of objects can be discovered starting from the properties of objects 

that we already known. Formality and compositionality are not pivotal requirements of 

these models, since they do not commit to a formal semantics. For what concerns the 

shareability dimension, we can say that this is not a key dimension as well. Here concepts 

are not explicitly represented, but derived by some properties of the net: this limit their 

human understandability and the possibility to share them among different situations and 

agents. Similarly, coverage is not a priority within this framework. By contrast, neural 

networks can perfectly address the typicality and flexibility dimensions. These information 

artefacts are indeed able to generate prototypical representations by generalizing from the 

collected data. This is mainly because they are the result of a training process enabled by 

the adaptation and evolution capability of the entire net. 

 

Among the NFAI computational representations of concepts we have the so called 

embedded (or situated) approaches, which are usually implemented by the situated robotics 
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research program. A key exemplification of these approaches is the work by the MIT 

research group, managed by Rodney Brooks [20]. This group is building robots that are 

equipped with simple sensory-motor devices and a collection of modules. Each of these 

modules are specialized for addressing a specific task, such as checking for the presence 

of an obstacle, avoiding an obstacle, exploring, and so forth. Each of these activities is run 

by a processor that works together with other processors and exchange information with 

the sensory-motor system and other processors. In these models no explicit representations 

are provided and no data is stored. The robots are not equipped with a mental model; they 

are automata that can be described just through finite states [83]. All the information used 

by these agents is grasped from the environment. Here concepts can be seen only as 

temporary representations, information flows, built upon the different phases of the 

perceptual process. The main goal is to derive the useful information from the environment, 

send them to the right processors and then produce an action. Thus, every robot can be seen 

just as a collection of behaviors in competition [19]. From an external point of view, it is 

possible to detect coherent behavioral patterns. However, locally, these robots are 

characterized by just casual processes. The robots devised following the situated 

approaches seem to be able to reproduce the cognitive capabilities of some insects, and, 

according to recent results, seems that can be evolved by introducing new processing 

modules connected to the others.  

 

The embodied approaches offer interesting insights for understanding how to address a 

conceptual representation task. The main findings are the following. Firstly, it seems to be 

possible to address cognitive tasks without having explicit representations of the external 

environment. As showed by Rodney Brooks automata different tasks may just be 

controlled by perceptual-motor loops. Secondly, grounding cognitive tasks in perception 

may be useful for addressing the so called frame problem, i.e., the difficulty of a cognitive 

agent to adapt to specific and different situations, given the abstract and rigid nature of 

their internal representations. An agent that is embodied in the context and the environment 

seem to be more capable of adaptation. It is clear that the pivotal dimension addressed by 

the embodied approaches is the one of flexibility. It is interesting to notice how, within this 

framework, differently from neural networks, flexibility must be grounded on sensory-
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motor devices, and how the main assumption is that “intelligent behaviours are possible 

without representations”, i.e., collecting data only form the external environment. 

2.5. Complementary Representations 

Besides the approaches supporting the classical idea of concepts as symbols of a language 

of thought, characterized by a propositional nature, we have approaches supporting the idea 

that concepts are analogical representations. According to these frameworks concepts are 

mental entities that are similar to the entities they represent, i.e., they are like pictures of 

(portions of) reality. In AI this view is well supported by research result like [96] and rises 

the issue of how some cognitive process are grounded on imagination and deal with mental 

images. The underlying assumption of the analogical approaches is that perception plays a 

central role in cognition. This lead them to focus on the relevance of simulation processes 

and share some hypothesis with the embodied approaches to representation. There is a lack 

of computational frameworks implementing the analogical approach, however, recently, 

some solution grounded on this paradigm are being developed. For instance, see the work 

in [92], whose attempt is to provide a computational accounts of cognition in modality-

specific processing [6]. Furthermore, examples of attempts in implementing simulations 

are in [23], [22], [56] and [81]. The difficulty to formalize the analogical approach seems 

to be the main reason of why a mature computational account of this framework still need 

to be provided. However, there are not a priori reasons why formalization is impossible. 

The main conceptual dimension addressed by this view are for sure, intentionality and 

flexibility. Concepts as analogical representations are taken to be mirror images of 

something that is outside the mind and, they are considered as simulations of what is 

experienced and they are taken to be adaptable and flexible according to the variations 

provided by perception. 

 

Among the complementary approaches we have also the procedural representations. 

Differently from the analogical approaches, we have more computational frameworks 

implementing the ideas of these approaches. For those in AI starting from the procedural 

frame, the key idea is that concepts can be implicitly represented as fragments of 

algorithms. Concepts can be reduced to a sort of know-how that is not explicitly 
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representable by means of data structures. However, these algorithms need some explicit 

information, or data structures, to work. Thus, procedural approaches do not exclude the 

possibility that the mental content is partially determined by some explicit information, but 

they state that such content is determined by the operations performed over it. Every 

representation is both involved in a causal relation with the external environment and in a 

causal relation with some mental operations. Good examples of computational frameworks 

linked to procedural semantics are semantic networks like KL-ONE [16] (for a detailed 

description see [30] [15]) and resources like WordNet12 or FrameNet13 inspired by 

Inferential Role Semantics (IRS), Lexical Semantics (LS) or Frame Semantics  [31], i.e., a 

semantic theories that underlie lot of the procedural assumptions. Moreover, we have 

works like the one in [40] with a particular focus on teleosemantics [69], providing its 

(partial) formalization, its application in the context of KR and its integration with the 

classical approach. Within the procedural framework, for sure, coverage and shareability 

dimensions are not taken as priorities. Usually, procederual representations apply to some 

certain kinds of concepts only (e.g., there are no accounts for property concepts), and since 

these concepts are often modeled as implicit procedures or not formalized networks, they 

are not claimed to be sharable. Similarly, for what concerns the typicality, there is a lack 

of results addressing this dimension. Intentionality, on the other side, is of course a central 

issue, since the main assumption underlying proceduralism is that concepts are causally 

related to the external environment. Formality and compositionality are in some extent 

addressed by some computational approaches, but they are not in the agenda of the original 

procedural program. Finally, flexibility seems to be a well addressed dimension, concepts 

can be seen indeed as devices that change in relation to the environment and the specific 

task that need to be addressed. In this regard see for instance the notion of function provided 

by teleosemantics [62].   

 

Among the complementary theories we can find another group of theories, i.e., what we 

called PET. Is not easy to trace back these approaches to a computational framework. 

However, we can find some work in AI explicitly taking some of the ideas grounding these 

theories and trying to better cover some dimensions of their representations. An exemplar 

                                                
12 https://wordnet.princeton.edu/ 
13 https://framenet.icsi.berkeley.edu/fndrupal/ 
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computational work exploiting some of the features of prototypical an exemplar theories 

is the one provided by Lieto and Frixione [60], which is also partially inspired by the theory 

of conceptual spaces (see [38]). Here the main goal is to combine the typicality effects of 

a prototypical representation with the compositionality effects of a more classical 

representation of concepts. The result is a sort of hybrid architecture, i.e., what they call 

DUAL-PECCS [61]. This is basically an integrated KR system aiming at supporting 

artificial cognitive capabilities such as categorization, by implementing classical, 

prototypical and exemplar-based representations of concepts. For what concern the theory 

theories, in some extent, we may say that core ontologies are examples of computational 

applications. Just think the organization core ontology: as we showed in Section 4, this is 

a typical formalism grounded on the symbolic frame, however it can be also seen as a 

(formal) micro-theory representing the corresponding concept.  

2.6. A summary Overview of the Computational Approaches 

In Table 1 below we list the computational implementations we described, grouping them 

according to the classification provided in Section 2 and the characterization provided in 

Section 3.  
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Table 1.  Comparing different computational approaches to concepts representations  

  CONCEPT REPRESENTATION CLASSES 

  Classical  

Representations 

Post-classical  

Representations 

Complementary  

Representations   

C
H

A
R

A
C

T
E

R
IZ

A
T

IO
N

 D
IM

E
N

SI
O

N
S 

In
te

nt
io

na
lit

y 

ü Ontologies 

are devised to 

capture a 

representation of 

what exist and can be 

easily traced back to 

a representational 

approach where 

intentionality is a 

pivotal requirements 

(see [49]) 

ü Neural 

networks are always 

involved in tasks that 

simulate intentional 

activities. Example of 

particular interests are 

FFNN [91] 

ü The existence 

of an external 

environment is a key 

assumption of the 

embodied approaches 

[19] 

ü A mandatory 

requirement for both 

analogical and procedural 

theories [15] 

ü A key dimension for 

all the PET theories [36] 
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C
ov

er
ag

e 

ü Ontologies 

provide an account 

for a large variety of 

concepts, see for 

instance huge 

resources as 

Schema.org 

û Not a pivotal 

dimension. 

Connectionist 

approaches provide an 

account for specific 

kind of concepts (see 

for instance empirical 

concepts involved in 

learning and prediction 

[34]. 

û According to 

the embodied 

approaches concepts 

are just behavioural 

patterns. Their 

classification and 

characterization is not 

addressed [19]   

û This dimension is not 

covered by procedural and 

analogical programs, since 

both of them are focused on 

empirical concept (most of 

the examples are grounded 

on vision [83] 

û The range of concepts 

that can be represented by 

PET theories is for sure 

wider than the one covered 

by analogical and procedural 

theories, however it is still 

limited (abstract concepts are 

not addressed, property 

concepts are not considered, 

and so forth [26] 
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Sh
ar

ea
bi

lit
y 

ü A pivotal 

dimension addressed 

by ontologies (used 

in their evaluation, 

which, as for [104], 

should be 

characterized by an 

explicit (human 

understandable) 

representation of 

concepts 

û Not a pivotal 

dimension, mainly 

because of the sub-

symbolic nature of 

neural networks (this 

issue is discussed 

mainly in [101]) 

û Not a pivotal 

dimension, mainly 

because of the anti-

representational view 

of the embodied 

approaches [83] 

û According to 

analogical and procedural 

programs, concepts are not 

claimed to be shareable, they 

are internal (or local) 

representations/processes 

and the issue of how these 

can be shared among agents 

is not explicitly addressed 

[18], [83] 

ü PET theories account 

for shareability. Prototypical 

and exemplar effects, for 

instance, are claimed to be 

shareable among different 

agents [36] 

T
yp

ic
al

ity
 

û Usually this 

dimension is not 

addressed. 

Ontologies are 

characterized by a 

lack of prototypical 

or exemplar 

information (for 

further explanation 

see [37]) 

ü Neural 

networks are able to 

generate prototypical 

representations by 

generalizing from the 

collected data [83] 

û According to 

the embodied 

approaches it is 

possible to derive 

behavioural patterns 

[20], but these are far 

from capturing 

prototypical or 

exemplar effects  

û There is a lack of 

work in addressing this 

dimension within the 

analogical and procedural 

frames [83] 

ü A pivotal feature, 

perfectly addressed by 

prototypical and exemplar 

models [36] 
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C
om

po
si

tio
na

lit
y 

ü A typical 

characteristic of 

ontologies, which 

can be seen  as a 

computational 

instantiation of LOT 

[32];  see for 

instance 

atomic/complex 

concepts distinction 

in DLs [3] 

û Not a pivotal 

dimension, mainly 

because of the sub-

symbolic nature of 

neural networks, see 

the discussion in [34] 

û The anti-

representational view 

of the embodied 

approaches does not 

allow to cover this 

dimension [19] 

û This is not a 

requirement for analogical 

and procedural 

representations [26] 

û This dimension is not 

clearly captured by PET 

approaches, however there is 

a lively debate on this issue 

[37], for instance, describes 

how prototypes can be 

compositional 
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Fo
rm

al
ity

 

ü Ontologies 

enables forms of 

logic-based systems, 

some of their most 

central features are 

formality, 

abstractness and 

discreteness ([50], 

[49]) 

û NNs are 

devised according to a 

well-defined 

formalisms and in 

some cases, see for 

instances the hybrid 

approaches described 

in [84], can be mapped 

to logic, however they 

are not devised for 

logic-based systems 

û The conceptual 

representation of 

embodied approaches 

can just be inferred. 

Locally, concepts are 

not represented and 

there is no formalism 

depicting a mental 

model. Each activity is 

the casual result of the 

composition of some 

processes and 

mechanisms [19]  

û Even if there are 

some work that are starting 

to provide a formal account, 

these dimension is still far to 

be addressed in the context 

of procedural and analogical 

views 

ü A pivotal feature, 

perfectly addressed by 

prototypical and exemplar 

models [26] 
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Fl
ex

ib
ili

ty
 

û Not a pivotal 

dimension, partially 

addressed by 

adopting some ad 

hoc methodologies 

(see ontology 

evolutions 

techniques in [80]) 

ü A pivotal 

dimension in NN, 

which is addressed 

by tuning of weights 

or other parameters 

in huge networks 

[101]. Neural 

networks are central 

in capturing these 

aspects and this 

makes them essential 

in tasks involving, for 

instance, learning 

and adaptation  

ü Embodied 

approaches are 

devised mainly to 

address this 

dimension. The main 

outcome of these 

approaches is that 

robots can easily 

adapt to the external 

environment [20] 

ü Not explicitly 

addressed by analogical 

approaches, but clearly 

addressed by procedural 

approaches [15] 

û This is cannot be 

considered a key 

dimension of PET 

approaches, and so far their 

ways of addressing 

flexibility still need to be 

clearly discussed [37] 
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Part II 

The Proposed Solution 
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Chapter 3 

 

3. Concepts as (Recognition) Abilities 

Concepts are an essential notion for the understanding of human thought. They allow us to 

give an account of phenomena such as knowledge acquisition and representation, language 

understanding, inference, and categorization [59]. A mainstream line of research on this 

topic, called in the philosophical literature Descriptionism [75], takes concepts to be 

classes. According to this view, a concept of something in the world is a representation of 

this “something”, articulated in terms of sets of properties. Descriptionism has had a large 

influence on the work in Artificial Intelligence (AI) and Knowledge Representation (KR) 

and has motivated various KR languages. The main focus of this work has been (and still 

is) on how concepts can be used to organize knowledge via the classification of instances 

into classes as a function of their properties. Although KR formalisms have been used in 

several applications with many success stories, there are still many open issues related, for 

instance, to the several roles played by concepts in cognition, see, e.g., [59] for a discussion 

of some of the issues which arise with this approach.  

 

Lately, the field of Teleosemantics has proposed an alternative approach. According to this 

school of thought, concepts implement suitable (biological) functions. The shift is from the 

study of the means by which the world is represented to the study of the means by which 

such representations are generated. Here the notion of function is the same as that used in 

neurobiology when attributing functions to components of the brain (as in “the function of 

processing visual information”). According to this view, concepts are components 

(devices) of the human brain characterized by sets of abilities of performing, under certain 

conditions, specific functions. Most relevant to us is the work by Ruth Millikan [107]. 

Millikan’s work concentrates on what she calls substance concepts, namely, specific types 

of concepts which can be characterized as abilities of recognizing a certain type of items, 

that she calls substances, which are perceived as being part of the real world [70]. 

Substance concepts have the main function of collecting and accumulating knowledge 

from the world.  
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The goal of the work described in this chapter is to lay the foundations of a unified theory 

of perception and KR that integrates the results from the two approaches above. The 

underlying intuition is to think of all types of concepts as abilities, to identify the different 

forms of functions, and corresponding representations, and to study how these functions 

can be composed as part of an overall process enabling cognition. Thus, if substance 

concepts are recognition abilities, when we concentrate on the classification task, as it is 

the case in KR, we think of concepts as classification abilities, namely as abilities “... of 

simplifying the environment, of reducing the load on memory, and of helping us to store 

and retrieve information efficiently. …” [75], [64]. This chapter provides the following 

three contributions: 

 

a) It provides a model of concepts as recognition abilities by clarifying their role and by 

defining their main characteristics. This work can be seen as providing a rationalization 

and formalization of Millikan’s work. The main result is a precise characterisation of 

the similarities but also the (non-trivial) differences between concepts as recognition 

abilities and concepts as classification abilities. 

b) Based on the results above, it provides the definition of an (early version of an) ontology 

RAO, for Ontology of (Recognition) Abilities, as the basis for an integrated study of the 

two types of concepts. 

c) It provides the beginning of a methodology for how to use RAO for discovering which 

concepts as classification abilities, among those contained in the state of the art 

ontologies, correspond also to recognition abilities.   

 

It is important to notice that, within KR, various approaches have attempted to provide 

broader notions of concepts and/or to overcome some of the existing limitations. Some 

examples are: methodologies for making explicit the semantics of the underlying 

conceptual models inside KR languages [50], the analysis of cognitive and ontological 

principles that ground knowledge engineering processes [46], the implementation of new 

conceptual theories, with a sound cognitive foundation, such as conceptual spaces [2], [38], 

the perceptual symbol system approach [6], [85], the proxy-type theory [60], [86]. In 
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addition to these theories we may find works addressing the problem of empirical 

classification and of how to build representations from “observations” [11], [58]. The work 

described in this chapter is orthogonal to this work and, as far as we know, it is the first 

attempt to provide a unified view of concepts as recognition abilities and as classification 

abilities.    

 

This chapter is organized as follows. Section 3.1 defines the notion of substance concept. 

Sections 3.2 and 3.3 analyse the various kinds of substance concepts. Section 3.4 provides 

a comparison between concepts as recognition abilities and concepts as classification 

abilities. Section 3.5 introduces RAO and its main categories. Section 3.6 provides an 

example of how to use RAO for the identification of substance concepts among the 

concepts which are used in state of the art ontologies. Finally, Section 3.7 analyses the 

implications of the results presented in this chapter for the development of complex AI 

systems which integrate recognition and knowledge representation, as a first (small) step 

towards a unified architecture for cognition. 

3.1. Substances and Substance Concepts 

We model how things are in terms of subjects able to experience the world, where by world 

we mean anything that is external to the subjects themselves. We call these subjects, 

perceptual-cognitive systems (PCSs) [71] to emphasize our focus on the study of systems 

where perception and knowledge are integrated.  

 

Time is the horizon over which PCSs and the world “meet”. A PCS experiences the world 

through encounters. An encounter is the event through which (a portion of) the world 

manifests itself to a PCS. We call such part of the world, substance, where, quoting 

Millikan, “… substances are those things about which you can learn from one encounter 

something of what to expect on other encounters, where this is no accident but the result 

of a real connection” [75]. The uniquely identifying characteristic of substances is their 

ability to manifest some form of invariance through multiple encounters. This invariance 

is grounded in what we call the substance causal factor [72], meaning by this an inner 

characteristic which is associated to a substance and which is the cause of its invariance 
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across encounters. In turn, this invariance takes the form of a set of outer characteristics 

which occur across encounters and allow for the recognition of a substance. Thus, for 

instance, cats14, like all species, are characterized by a homeostatic mechanism which, in 

turn, causes them to possess a certain set of common traits (e.g., in shape or weight) and, 

often but not always, to look similar.  

 

As from the above quote, substances are subjects of learning, namely, of the generation of 

new knowledge from perception. This process is enabled by substance concepts, where 

substance concepts are taken to be recognition abilities, namely abilities which allow a 

PCS to realize that the substance involved in the current encounter is the same substance 

as from previous encounters. Substance concepts implement functions that allow to 

recognize a substance as such and to learn and to cumulate the new knowledge about it 

through a sequence of encounters. They allow to recognize sameness of content in time 

and also to group pieces of information together, as being from the same substance [70]. 

Substance concepts are innate abilities, which are at the core of cognition, which match the 

stimuli coming from substances (what we call signals) and which allow humans to generate 

knowledge from signals. Consider, for instance, the substance concept “cat”15: we can 

observe today that cats drink milk or that scratch when we disturb them and this knowledge 

will be confirmed in future encounters.  

 

The set of (outer) characteristics that a substance manifests over encounters are matched 

with a set of substance property concepts, or simply, (substance) properties, which are 

associated to its corresponding substance concept. Substance properties play a central role 

in the recognition of substances. A substance property is an ability to discriminate a 

substance characteristic over encounters. This ability is manifested in sameness of reaction 

to substance characteristics. There are two types of properties that we call determinables 

and determinates [73], where determinables can be thought as slots that collect 

determinates. Thus, for instance, colour is a determinable which is used to collect 

                                                
14 Throughout the chapter we write cat meaning Felis catus. 
15 To distinguish between substance concepts and substances we write the former in “quotes”. 
Thus for instance, “cat” is an example of substance concept which corresponds to the substance 
cat. 
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determinates such as blue, red, or yellow. From a biological point of view, determinable 

properties correspond to the use of neurons located in certain early sensory areas of the 

brain (e.g., colour is tuned to neurons in visual cortex) while, on the other hand, determinate 

properties (e.g., red) would represent single states produced as a reaction to perception 

(e.g., a red stimulus) [63]. 

3.2. Kinds of Substance Concepts 

There are two types of substances and, correspondingly, two types of substance concepts, 

namely individuals and real kinds. Individuals are single units, scattered in space, enduring 

through time. In language, individuals are usually revealed by the use of proper nouns or 

definite descriptions. Examples of named individuals are Barack Obama, my cat Garfield 

and the Empire State Building. On the other hand, we usually think of real kinds as clusters 

of elements, what we usually call the real kind members, which are characterized by a 

common, empirically observable, connection grounded in some, most often natural, law. 

Real kinds “... allow successful inductions to be made from one or a few members to other 

members of the kind not by accident” [72]. Examples of real kinds are: stuff, e.g., gold or 

water, biological species, e.g., cat and Quercus Alba, artefacts, e.g., chair and car, and also 

social roles, e.g., doctor and father. The members of real kinds, what we perceive as a 

“generic” chair or cat, are substances as well. 

 

A first observation relates to the statement that real kinds, their members and individuals 

are all substances, a statement which is somewhat counter-intuitive for anybody working 

in KR. For someone coming from this field, the most obvious way to think of the world is 

to map real kinds to classes and individuals to instances which, in turn, are members of 

classes. This mapping is discussed in detail in Section 5 below. Here it is worthwhile 

noticing that with substance concepts we focus on recognition, modelled as an ability. In 

this respect, both individuals and real kinds share the property that, during an encounter, 

they are only partially perceived by PCSs. In the same way as we always perceive only one 

or a few members of a kind, we always get only a partial view of an individual (e.g., the 

back or the front). The best way to understand this commonality is to think of substances, 

no matter whether they are individuals or real kinds, as wholes which are only partially 



 

 38 

presented, with some of their parts, by their manifestations to a PCS. In perception there 

are neither sets nor instances, there are only wholes (substances) that are perceived only 

partially. There is however a key difference between real kinds and individuals which is at 

the basis of the KR representation of the world in terms of classes and instances. Real kinds 

have the property, not possessed by individuals, of being in multiple places at the same 

time, meaning by this the fact that any kind can have, at the same time, multiple 

occurrences inside one or more (contemporary) encounters. This property, clearly, does 

not hold for individuals: a PCS will perceive at most one individual as part of the same 

encounter. Thus, for instance, I can perceive two cats together on top of the wall in front 

of me, but I can only perceive (at most) one occurrence of Garfield per encounter. 

 

A second observation relates to the fact that the inductive grounding that allows the 

recognition of the same real kind across encounters is very much the same as for 

individuals. The key observation is that a real kind manifests itself through its members. 

Both in the case of individuals and of real kinds, the PCS is faced, in time, with similar 

characteristics that allow a substance to be recognized as being the same from a previous 

encounter. Thus, for instance, the members of the real kind cat, what we usually call cats, 

like all species, possess a certain set of common properties (e.g., similar shape and weight) 

and, consequently, often look similar. Analogously, Garfield, like all individuals, looks 

pretty much the same across encounters. The ability of substances to manifest some form 

of invariance through multiple encounters is grounded in their causal factor, as defined 

above. But the nature of this causal factor is very different between real kinds and 

individuals. In the first case it consists of some causal connection that is shared by all 

members of a real kind while in the second case it is related to the fact that the same 

individual usually changes slowly in time.  

 

The third observation relates to the process by which substances get recognized through 

substance concepts. This observation is also crucial to understand the distinction between 

individuals and members of a real kind, a distinction that in KR is blurred into the notion 

of instance. This distinction is, again, deeply rooted in the profound difference which exists 

between recognition and classification. Consider for instance an encounter with Garfield. 

What will the PCS recognize: the individual Garfield or the (member of the) real kind cat, 
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what we usually call “a cat”? We have the first case when recognition happens via the 

individual substance concept, the second case when the real kind substance concept is 

enabled. The “selection” of the substance concept is related to the substance properties 

being recognized. This process is not univocal and depends on many factors. The most 

important seems to be the actual goal of the PCS (is it looking for Garfield because it wants 

to feed it or is it just trying to avoid hitting a cat running in front of the car?), but it also 

depends on the context (e.g., it is harder to recognize an individual at night), on which 

characteristics are manifested and/or grasped (it is harder to recognize an individual from 

the back) and so on. Notice that the recognition of Garfield will most likely exploit different 

characteristics from those used in the recognition of a cat. In the first case, the PCS will 

exploit those characteristics that uniquely identify Garfield among the other cats, while in 

the second case it will exploit those characteristics that uniquely identify cats among the 

other animals. These two sets of characteristics overlap only partially.  

 

The fourth and last observation is that the same substance changes over different 

encounters thus presenting a set of continuously evolving characteristics. Thus, for 

instance, two encounters with the real kind cat may produce very different manifestations, 

though looking similar to two other manifestations which in turn look similar to two other 

manifestations which …, eventually, will look similar. As a paradigmatic example, under 

what conditions a person is (recognized as being) the same person as 30 years ago? If I 

meet a person after 30 years, most likely I will not recognize her as being the same 

individual. Dually, with an individual with no salient distinguishing marks, there is a high 

probability to fail its recognition over encounters. Think for instance of forks. In this case 

what usually happens is that only the real kind fork is recognized as there is no interest in 

distinguishing among the various individuals. We just look for any fork. This of course 

will not be the case with that specific fork that I was playing with when I was a kid. 

3.3. Kinds of Real Kinds 

Real kinds can be further divided into two more specific categories, i.e., eternal kinds and 

historical kinds.  

 



 

 40 

Eternal kinds correspond to what is often called stuff, e.g., “gold” and “water”. The 

members of eternal kinds share some fundamental characteristics without being historically 

related to one another. This inner structure remains stable over time without exceptions. 

Eternal kinds are often expressed through their mass and/or atomic number, are named 

using uncountable nouns and are said to have “essences” in a very classical sense, i.e., 

essences that can be discovered through empirical investigation.  

 

Historical kinds are real kinds “… for which historical location does play a role in 

explaining likeness” [72]. Examples of historical kinds are species, artefacts and social 

roles, e.g., “doctor” and “baker”. Historical kinds are named in this way because their 

members bear a certain common relation which has evolved in time. For instance, consider 

species. All their members have a connection with some prior member from which they 

derive their characteristics. Similarly, all artefacts can be seen as being derived from some 

prior member, i.e., a prototype, a model of a chair. Finally, younger doctors learn how to 

act from older doctors.  

 

Historical kinds are strongly correlated and, for what we have figured out so far, include 

as sub-kinds what the psychologist Eleanor Rosch calls basic level categories (and 

objects). These are the concepts that children learn first and use to categorize the world. 

They are the easiest to recognize via sensory (e.g., visual) and motor interaction with 

substances. Basic level categories can be detected by running experiment(s) like the one 

described in [90]. As shown in this experiment, in a hierarchy (a classification) of 

categories, basic level categories maximize the number of characteristics shared by their 

members and minimize the number of characteristics shared with the members of their 

sibling categories. A further characterization of basic level categories is that, usually, the 

members of their superordinate categories share a very small number of characteristics 

while the members of their subordinate categories, usually, share a large number of 

characteristics that, however, are shared also by the members of the sibling categories. The 

consequence is that the members of basic level categories have a much higher probability 

of successful recognition than the members of their superordinate or subordinate 

categories. Recognizing a cat, for instance, is much easier than recognizing an animal or a 

Siamese cat. In other words, basic level categories provide the ideal balance between the 
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similarity of their members and the dissimilarity of the members of their sibling categories. 

One interesting observation is that, contrarily to what was initially expected by 

anthropological and linguistic researchers, biological basic level objects are at the level of 

abstraction of species, namely one level up from the level of abstraction of the basic level 

objects which are artefacts (e.g., furniture, as from the experiment by Rosch). 

 

Following Rosch we can further distinguish basic level categories, namely historical kinds, 

into biological and non-biological basic kinds. The former are the basic units of biological 

classification, i.e., biological species, while the latter are defined as the complement of the 

former and are therefore not well characterized. Examples of non-biological basic kinds, 

are artefacts like “car” or “chair” (subsumed by superordinate categories like vehicle and 

furniture, respectively) or social roles like “doctor” and “baker”. 

3.4. Classification and Recognition 

In KR, the main focus so far has been on classification more than on recognition. As a 

result, knowledge is modelled in terms of instances (e.g., Garfield), concepts (e.g., cat), 

namely sets of instances and properties defined as the Cartesian product of two classes, 

e.g., being of colour yellow, being near something). Concepts are associated to sets of 

properties and the values of the latter allow to make distinctions among the members of 

the former. We call below this kind of concepts, classification concepts, or simply classes, 

to distinguish them from substance concepts. We also talk of classification properties when 

we need to distinguish them from substance properties.  

 

The mapping between the work and notions defined in this chapter and these notions 

coming from KR can be established based on the following steps: 

 

a) We think of classification as the ability of organizing instances into classes as a 

function of their properties. This is the ability that generates and manipulates classes, 

classification properties and instances as representations of the world. 

b) With an overloading of the terms, we talk of substance concepts and substance 

properties meaning not only the corresponding functions and abilities but also the 
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representations generated by such functions, and dually for classification concepts. This 

allows to eliminate the difference in approach between us and the “usual” KR approach. 

For both classification and recognition, we distinguish among devices, abilities, 

functions and representations only when needed. 

c) We acknowledge that recognition and classification are two distinct abilities which 

generate and manipulate distinct representations of the world, the first being a 

perception-oriented representation the second being a semantic language-oriented 

representation of the world. This implies that classes and substance concepts, 

classification properties and substance properties, instances and individuals are actually 

distinct representations. It is important to notice that this assumption is coherent with 

the most recent discoveries in neuroscience which provide evidence that perception and 

“semantic” oriented representations are actually stored in two different parts of the 

brain [65].  

 

As a result of these assumptions we are now in the condition of studying the pair-wise 

similarities between the recognition and classification representations of the world. The 

existence of these similarities is the obvious consequence of the fact that substance 

concepts and classification concepts are both representations of substances. However, this 

mapping is far less obvious than one would expect, the motivation being rooted in the very 

nature of the functions of recognition and classification. Substance concepts allow to 

recognize substances over encounters and to acquire knowledge about them, while 

classification concepts allow to group together substances about which we already have 

some knowledge. Thus the former are representations of sets of occurrences of substances, 

while the latter are representations of sets of substances. With substance concepts we 

describe substances over time, while with classification concepts we describe substances 

in time. Similarly, individuals are representations of sets of occurrences of substances, 

while instances are representations of (single) substances. This generates various crucial 

distinctions.  

 

Let us start from individuals. An individual is a set of occurrences of the same substance 

and, as such, it can be mapped to the single instance representing that substance. A crucial 



 

 43 

difference is that individual substance concepts need not have names. Names play no role 

in the recognition process, while they are crucial in the deployment of classification 

abilities: you need an identifier to be able to refer to an instance, this is a prerequisite to 

classification. Furthermore, the mapping individual – instance is not one-to-one. Thus, I 

can have two or more individuals for the same instance because I did not recognize them 

as being (sets of) manifestations of the same substance, e.g., myself at the age of five and 

the age of fifty, or myself dressed as Santa Claus and being recognized as such. The 

contrary, namely having two or more instances for the same individual, seems to be the 

case only when there is a need to reason about occurrences of individuals in different 

moments in time, e.g., because reasoning of the color of my hair at the age of five and at 

the age of fifty. Furthermore, I can have an instance which does not correspond to an 

individual, e.g., the Minotaur, because it is a product of the mind with no existence in the 

real world, or Homer who I have never seen in person or described in any form; but I can 

also have an individual which is not an instance, e.g., a specific part of the mountain I see 

every day from the window of my office. I look at this view every day, I love it but I do 

not need to name it because there is no need for me to classify it and reason about it. 

 

Real kinds can be mapped to classes. Classes are sets of instances where real kinds group 

sets of encounters, one set per instance. Again, as in the case of individuals, and for the 

same reason, real kinds and their members need not have names. It is interesting to notice 

that in natural language, when we speak of a member of a real kind, e.g., “cat”, we speak 

of a cat meaning a generic cat while we speak of Garfield meaning the specific individual. 

And the kind of mental image and reasoning that is performed in the two situations is 

usually different. In most cases we have a one-to-one mapping between a class and a real 

kind. However, as for individuals, this mapping presents lots of exceptions. Thus we may 

have a real kind with no corresponding class, similarly to what happens for individuals. 

We may also have a class with no corresponding real kind. Following Millikan, we call 

these types of classes, Nominal Kinds or simply, Nominals. Nominals are sets of instances 

which do not share a causal factor but that, rather, are grouped together according to a 

definition provided in terms of the set of properties they share. 
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With nominals we have two possible situations. In the first case we have one nominal kind 

that can be mapped to two or more real kinds. This situation arises with concepts like 

“stone” or “animal”. Thus, “animal” can be thought as the union of the real kinds “cat”, 

“dog”, “lion”, and so on. With stones, for instance we may focus on their shape, weight, 

composition and so forth. These types of nominal kinds are concepts that are high in the 

abstraction hierarchy and are very useful to classify and organize real kinds. But this 

conventional, theory driven, characterization of stones has nothing to do with the rich, 

recognition driven substance concepts. When I say “animal” which image of which animal 

should come to my mind? A cat, a crocodile, or …? In the second case we have a real kind 

that can be mapped to two or more classes. This situation arises any time we distinguish 

among the members of a real kind by assigning them some specific property. Thus, for 

instance, “cat” can be thought as the union of “white cat”, “black cat”, and so on.   

 

If we concentrate on the mapping between substance properties and classification 

properties we have pretty much the same situation as for instances and real kinds. Even if 

some mapping exists, it is not one-to-one and it presents various exceptions. Thus, for 

instance, as from [63], the (substance) properties that we use in recognition are often quite 

different, and much more complex from the classification properties we use to describe 

substances. There is also a further interesting twist. While most classification properties 

map to substance properties, this turns out not to be the case for social roles. Social roles 

are real kinds that in KR are modelled as properties. Social roles are real kinds as a 

consequence of the fact that their members, e.g., doctors, manifest similar behaviours. No 

matter the concrete individual who is playing the role of doctor, given a certain situation, 

her activities will be similar to those of other doctors, as they would be needed to carry out 

their duty. 

3.5. An ontology of (Recognition) Abilities 

Figure 1 introduces RAO, for Ontology of (Recognition) Abilities, a very early version of 

an ontology which organizes the notions introduced above. RAO must be understood as 

follows. As from the root, we concentrate on substance concepts taking them to be abilities 

as well as the representations generated by these abilities. Nominal kinds are added (in 
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dashed lines) for completeness meaning by this that they can be thought as extreme cases 

of substance concepts with no recognition ability.  

 

Fig. 2. The RAO ontology. 

The structure of RAO is motivated by causal factors, as defined in the rest of this section. 

Thus, with individuals we have the following: 

 

a) A natural conservation law. Individuals have the ability to preserve their properties 

from day to day [72]. Take for instance a person. If she has brown eyes, is tall, is a good 

tennis player and knowledgeable about informatics, it is likely that she will have these 

same traits also tomorrow. A similar argument applies to the other kinds of individuals, 

e.g., to artefacts. 

 

It is important to observe that the causal factor of individuals works very much in the same 

way as the physics law of the conservation of energy.  

 

The members of real kinds share an empirically observable connection grounded in some 

law. Real kinds are taken to be the union of historical kinds and eternal kinds. The 

connections characterizing historical kinds are provided by the possession of one or more 

of the following four causal factors:  
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b) Being the result of a copying activity. In this case, historical kinds share determinate 

properties because of some form of previous “copying” activity. We say that a 

substance B is a “copy” of a substance A, or that B is modelled on A, or that B is a 

reproduction of A. B can be a true copy of A, as in the case of genes and viruses. B can 

also be an indirect copy of A resulting from a wider reproduction process. Thus for 

instance the heart of a person is an indirect reproduction of the heart of her parents 

while an artefact is another form of indirect reproduction from some abstract model. 

c) A function. In this case, historical kinds are associated with a function which defines 

their purpose. This property is possessed in particular by artefacts, and its concrete 

appearance is often influenced by the cultural context [72]. Chairs for instance are 

defined by the function of allowing people to sit on them, and Japanese chairs are very 

different from European chairs. Social roles, e.g. mother, are examples of human 

functions. 

d) A similar training. In this case, historical kinds are living beings, e.g., persons, who 

have characteristics or skills that are transferred across generations through training. 

Example kinds are socially constructed substances such as roles, e.g., doctors and 

bakers. 

e) A homeostatic mechanism. For instance, the members of biological species can be seen 

as “… homeostatic systems […] amazingly well-buffered to resist change and maintain 

stability in the face of disturbing influences” [70]. The key observation here is that, 

despite having many different properties, the members of a species remain stable and 

relatively similar in time (e.g., adult weight, internal temperature and so forth). This is 

because species evolve as a result of continuous adaptation and, at the same time, of 

the necessity for the various genes in a gene pool to be compatible with one another.   

 

The members of biological basic kinds possess factors (b) and (e) while the members of 

historical kinds that are held together according to (b) or (c) or (d), or their combination, 

can be grouped in the catch-all category of non-biological kinds.  
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Finally, eternal kinds can be characterized by the following causal factors: 

 

f) An inner structure or a single underlying cause. Eternal kinds have a sort of real essence 

that can be discovered by empirical investigation.   

 

Notice that the above list of properties, and therefore RAO, is neither claimed to be final 

nor complete. It is a first characterization that organizes the state of the art and which can 

be further extended. Among others, an open research issue is whether non-biological kinds 

can be divided into more fine-grained categories according to some specific applications 

of (b), (c) or (d). For instance, a possible subordinate category of non-biological kinds 

could be the “artefact kind”, whose members are alike due to a special case of (b), which 

should be applied in a non-biological sense and (c), applied as in the chair example above.  

3.6. From classification abilities to recognition abilities – a case study 

Starting from RAO it is possible to devise the beginning of a methodology for identifying 

which classification concepts from existing ontologies correspond to substance concepts. 

In this section we show how this can be done by mapping RAO to the light version of 

DOLCE16, i.e., DOLCE-Lite, and to the PIZZA domain ontology17. DOLCE-Lite provides 

a large repertoire of very abstract concepts while the PIZZA ontology classifies more 

concrete concepts. The resulting mapping is depicted in Figure 2 below.  

                                                
16 http://www.loa.istc.cnr.it/old/DOLCE.html 
17 http://protege.stanford.edu/ontologies/pizza/pizza.owl 
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Fig. 3. Mapping RAO to DOLCE and the PIZZA Ontology. 
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Due to lack of space we have reported our results only for the first three levels of the input 

ontologies. The RAO concepts are identified with boxes (kinds/individual) and ellipses 

(properties). dol:, piz:, rao:, stand for concepts coming from DOLCE, PIZZA and 

RAO, respectively. The underlined terms denote classes which are not mapped. Dashed 

edges denote the mapping, where two arrows mean equivalence and one arrow means 

subsumption. 

 

Focusing on DOLCE-Lite, 36% of its classes are mapped to RAO. Two classes are mapped 

with an equivalence relation. The first is dol:PhysicalEndurant, which is mapped 

with rao:RealKind, the second is dol:Quality, which, according to our current 

understanding, maps to rao:determinable category. 28% of the DOLCE classes 

(78% of all the mapped classes) are mapped to rao:NominalKind via a subsumption 

relation. As an example of the kind of reasoning which motivates the mapping with 

nominal kinds, consider the dol:SpatioTemporalParticular class, (Figure 2), 

which is labelled as nominal. The reason for this choice is that the class “spatio-temporal 

particular”, as from DOLCE-Lite, is a “dummy class for optimizing some property 

universes”. Here we may find concepts such as endurants (i.e., dol: Endurant), 

perdurants (i.e., dol:Perdurant) and physical realizations (i.e., 

dol:PhysicalRealization), which  cannot be grounded in a causal factor.  

 

85% of the PIZZA ontology classes are successfully mapped, resulting in eleven 

subsumption relations. For instance, piz:hot and piz:mild are subsumed by 

rao:determinate. These concepts map well to our definition of determinate. They are 

distinguishable because of a set of common features (in this case, features related to 

spiciness, i.e., piz:spiciness, which perfectly map to rao:determinable). 

Similarly, classes like piz:Pizza and piz:IceCream are subsumed by 

rao:NonBiologicalBasicKind. In fact, if, as from the experiment by Rosch, 

piz:Food is a nominal, pizzas are artefacts grounded in a “copying” causal factor. 38,5% 

of “pizza” ontology classes (45,5% of all the mapped classes) are mapped to nominal kinds 

via subsumption. These classes are clear examples of conventionally defined, theory 

driven, groupings (e.g., piz:Value-partition).  
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This exercise provides the highlights of a general methodology for identifying substance 

concepts. At the same time, it also provides evidence of the fact that there is a need to 

further refine RAO: 64% of the concepts from DOLCE-Lite and 15% of the concepts from 

the PIZZA ontology are unmapped. Let us consider some examples. For instance, 

following Millikan’s suggestion that events are substance concepts, the classification 

concept dol:Perdurant, should be mapped to a new recognition ability. As another 

example, the concept dol:Endurant and its more specific concepts should be linked to 

RAO through several more classes which are more specific than the ones we have provided 

so far. For instance, dol:AmountOfMatter, is a dol:PhysicalEndurant which 

can be successfully mapped to what Millikan would call “stuff”, i.e., a kind of 

rao:EternalKind. A further issue is whether quality spaces, as defined in DOLCE, 

can be used as kind of “determination dimensions” and whether they can be employed to 

guide the linking between determinables and determinates. This analysis is essential to 

explore the relation between the concept of “determinate” and the concept of “quale” thus 

providing a contribution to the modelling of properties [82].  All these examples define a 

path of research that will allow us to provide a clear mapping of how, in practice, we could 

deploy concepts which implement a recognition function, a classification function, or both 

in an integrated manner. 

3.7. Implications on AI systems 

The differences between substance concepts and classification concepts highlighted above 

provide interesting insights on how to build integrated AI perception and reasoning 

systems. The general question is which concepts should be selected for artificial 

recognition (e.g., vision, sensory) systems and how we should treat them in relation to the 

classification concepts which are represented inside KR systems, for instance as elements 

of ontologies. How to create a mapping between these two kinds of concepts is a very well-

known open problem, i.e. the semantic gap problem, which has been solved only in very 

particular situations [62]. 

 

From the point of view of recognition, substance concepts are the ones where most efforts 

should be concentrated, as they are the concepts that, thanks to the causal factor in which 
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they are grounded, have a more immediate mapping with their appearance. Thus for 

instance, the recognition of cats and dogs from a set of pictures will need to handle less 

diversity than the recognition of animals. Dually, the function of classification is very 

valuable and worthwhile with nominals, not only because it allows to organize substance 

concepts (thus delegating them the recognition function) but also because the definitions 

of nominals are very stable, with essentially no exceptions. These definitions can in fact be 

provided as sets of properties with no need to map with the complexity and infinite variety 

of the real world. Animals, for instance, are best defined and thought of as cats or dogs or 

…, without trying to recognize them in terms of the sensory input.  

 

A further interesting situation arises when there is a need to recognize some specific sub-

kinds of real kinds, for instance when we need to distinguish cats by their color. This type 

of categorization turns out to be useful in substance recognition from sensors as it allows 

to apply to recognition the compositionality of meaning which is intrinsic in knowledge 

representation. The work described in [103] is a rather successful experiment in this 

direction. We are aware of the consequences of what discussed by Millikan in her critique 

to Fodor [70], namely that the compositionality of properties in KR may not correspond to 

the compositionality of properties in recognition. Thus, even if I know how to recognize a 

person and how to recognize a hat I may fail to recognize that very same person wearing 

that very same hat. However, our early attempts to apply compositionality to recognition 

hold a lot of promise, the main reason being that they exponentially decrease the cost of 

training of the learning components [103]. 

 

The big challenge is how to manage and reason about those substances for which we have 

both classes and substance concepts. The problem is that the static definition of classes 

does not fit well with the variance of appearance of their substances, and therefore, with 

the corresponding variability of substance concepts. A long discussion on this issue 

leading, among other things, to the distinction between conception and concept can be 

found in [75]. As a small example, it is essentially impossible to provide a definition of 

what the real kind “cat” is, as what makes a cat “a cat” is its causal factor while its apparent 

characteristics change in time. A discussion of this issue is out of the scope of this chapter. 

Our general approach, which will be the topic of a follow-up work, is that the (substance) 
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properties which are chosen when defining, e.g., the class “cat”, should not be fixed a priori 

but, rather, should be adapted at run time as a function of the goal which the definition 

must serve, for instance the alignment with what is being recognized by a vision system.  
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Chapter 4 

 

4. Teleologies: Objects, Actions and Functions 

A crucial characteristic of humans is their ability to build and exploit representations of 

what they perceive, what we usually call the world. Such representations usually consist of 

complex combinations of concepts, where we take a concept to be an abstract idea 

generalized from particular instances. However, the very notion of concept is controversial 

[40]. Thus, for instance, on one side we have the Biosemantics approach which takes a 

concept to be a device and a representation supporting certain biological processes, in 

particular, perception (e.g, human vision) [87], while, on the other side, we have the so-

called Descriptionist approach which takes a concept to be a class, namely a set of instances 

characterized by some shared set of properties, as the basic construct enabling knowledge 

representation, classification and reasoning. The former and latter notions of concept 

underlie the work in Computer Vision (CV) [35] and in Knowledge Representation (KR) 

[102], respectively.  

 

The work desribed in the previous chapter shows how the two notions above have different 

characteristics and calls them substance concepts and classification concepts, respectively. 

Substance concepts represent what we perceive and, therefore, are characterized by a 

notion of perceptual identity (and diversity) while classification concepts represent what 

we reason about and, therefore, are characterized by a notion of reasoning identity (and 

diversity). While perceptual identity captures invariance over the occurrences of what we 

perceive, reasoning identity captures invariance over the occurrences of what we reason 

about. Thus, for instance, we recognize a rock as being such depending on what we 

perceive, while we reason about the same rock as an obstacle when it is in our way, or as 

a kind of weapon when throwing it at someone.  

 

In this chapter we show how to integrate substance and classification concepts into a 

hierarchy of increasing abstraction from what is perceived. Thus, at the first level, we have 

objects (which roughly correspond to substance concepts), which are representations of 

what is perceived (e.g., a car); at the second level we have actions, which represent how 



 

 55 

objects change in time (e.g., move, where, among others, cars can move); while, at the third 

level, we have functions (which roughly correspond to classification concepts), which 

represent the expected behavior of objects as it is manifested in terms of “an object 

performing a certain set of actions” (e.g., a vehicle, where vehicles, e.g., cars, can perform 

many actions, e.g., move and stop). The intuition is that, by performing actions, objects 

interfere with other objects, this being the basic mechanism by which the world evolves. 

In this perspective, functions model the expected interference among objects. Object 

interference, and therefore function, is captured via the notions of producer and consumer, 

where an object is a producer when it performs an action affecting another object and a 

consumer when it is affected by it.  

 

The patterns by which producers affect consumers provide the basis for the construction of 

Teleologies.18 Ontologies19 are defined as explicit formal specifications of the terms in a 

domain [45]. The same definition can be applied for teleologies but with the proviso that 

teleologies focus on function and on how a chosen representation fits a certain purpose, 

this being the basis for a general model for the diversity of knowledge [44]. In this respect, 

the distinction between objects and their multiple functions is the first source of 

heterogeneity, modeling the diversity between the representation of what we perceive and 

the representation of what we reason about. The second source of heterogeneity is our 

ability to represent and reason about what we perceive at different levels of abstraction, as 

function of the problem to be solved. Thus, for instance, I can describe a person as moving 

her legs, as walking, or as moving, depending on my focus.  

 

This work is a first step towards a solution to the problem of managing knowledge diversity 

not in the sense that we are able to define the ultimate teleology which can be reused in 

general (which is impossible) but, rather, in the sense that we provide the basis for a general 

methodology for the construction, integration and/or adaptation of data and knowledge 

coming from multiple heterogeneous sources. We organize the chapter as follows. In 

                                                
18 The word teleology builds on the Greek words telos (meaning “end, purpose”) and logia, 
(meaning “a branch of learning”). 
19 The word ontology builds on the Greek words ont (meaning “being”) and logia, (meaning “a 
branch of learning”). 
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Section 4.1, we introduce objects, actions and functions. In Section 4.2 we introduce 

producers, consumers and producer – consumer (PC) patterns. In Section 4.3 we introduce 

the three PC pattern transformations which can be used to reduce one pattern to another 

pattern, preserving the pattern intended meaning. In Section 4.4, we provide a small 

example of how to build and how to adapt a teleology, using the pattern transformations 

from Section 4.4, adaptation being they key for handling diversity in knowledge. Finally, 

in Section 4.5, we provide the related work. 

 

4.1. Object, Action and Function 

We live immersed in a spatio-temporal continuum where space and time are the a-priori 

forms of perception [10]. We do not perceive space or time, but anything we perceive is 

part of a precise spatial or temporal ordering, and fills it. We perceive these parts through 

encounters, namely events during which such parts manifest themselves to an observer. 

We call such parts, substances, where, as from [75], “… substances are those things about 

which you can learn from one encounter something of what to expect on other encounters, 

where this is no accident but the result of a real connection”.  

 

People represent substances as concepts. However, the mapping between substances and 

concepts is not one-to-one. Thus, I may perceive a substance as a cat that I am trying to 

avoid hitting, as my cat, as an animal, or as an obstacle. Even more, there are substances 

for which we do not have a concept. One such example, the part of the mountain that I can 

see from the window of my office. Concepts represent those parts of the spatio-temporal 

continuum that are relevant to us, in the way which is most convenient for us,20 as the world 

where we live.21 But if the world, as we perceive it, is representation, and if there is a certain 

degree of freedom in what we represent and in how we represent it, is there a general 

principle to which we all adhere and that allows us to live in the same world, or at least in 

worlds which are very similar?  

                                                
20 The concepts we use are also largely influenced by our language, culture, history, place where 
we live, and many other contextual factors. 
21 Interestingly enough, the ancient Latin word for world is mundus, meaning “clean, elegant”, 
itself a translation of the Greek word cosmos, meaning “orderly arrangement”. 
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Fig. 4. Object, Action and Function.  

 
Our answer to the above questions is based on a distinction among three types of concepts, 

namely objects, actions, and functions, which represent what is perceived, across 

encounters, at increasing levels of abstraction (see Figure 1). 

 

We take Objects to be those concepts which represent substances, i.e., what is perceived 

across encounters. Examples of objects are: cats, cars, rivers. As from described in the 

previous chapter, an object can be thought as the set of all of the representations of how 

the same substance “fills” space, any time we encounter it. Objects can be individuals (what 

in KR we call instances, e.g., my cat Garfield) or kinds (i.e., generic instances of what in 

KR we call classes, e.g., any cat that I can encounter while walking). Objects are first level 

abstract representations in the sense that they abstract over multiple occurrences of the 

same substance (as recognized during encounters) and collect them in clusters (one cluster 

per object). An object, e.g., “a cat”, is nothing else but the set of representations of all the 

times we have perceived (e.g., seen) it. 

 

We take Actions to be those concepts which represent how objects change in time. 

Examples of actions are: running (performed by, e.g., cats), carrying (performed by, e.g., 

cars) and flowing (performed by, e.g., rivers). As with objects, actions are generated any 

time we encounter a substance. Actions are second level abstract representations in the 

sense that they abstract over multiple occurrences of changes in time of a substance (as 

recognized during encounters) and collect them in clusters (one cluster per action). An 

action, e.g., “running”, is taken to be the set of representations of all times we have 

perceived a running object, e.g., “a cat” (or “a dog”), where the representation of “a running 

cat” or (“a running dog”), is a temporal sequence of “cat” (“dog”) occurrences. Notice how 
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actions are independent of the specific object carrying them out; objects are abstracted 

away to keep track only of what changes. 

 

We say that a certain object O performs a certain action A when we perceive O subject to 

the change described by A. Notice that there are only so many actions that can be performed 

by an object. For instance a car cannot be used to fly. We capture this intuition by saying 

that any object O is associated to a set of admissible actions {A}a:O, where A is an action 

and “a:O” stands for “admissible for O”. We have the following: 

 

AaO(O) = {A | for any A ∈{A}a:O} 

OaA(A) = {O | for any O such that A ∈{A}a:O} 

 

where AaO and OaA are to be read, respectively, (admissible) Actions of (Object) and 

Objects of (admissible Action). Thus, for instance we have AaO(car)  = {move, transport, 

trap, …} and OaA(move) = {car, bus, person, table, …}. For any object, its set of 

admissible actions, as well as its set of not admissible (inadmissible) actions, is infinite, as 

infinite are the ways in which an object can evolve in time. At the same time, an admissible 

action can be performed only under certain contextual conditions. For instance, a car needs 

gas to run its engine and move around. Admissible actions are similar in spirit to Millikan’s 

abilities and somewhat related to the notion of affordance, as formalized by Gibson [39] 

and then taken up in various contexts, see, e.g., [94], [82]. The crucial difference is that 

affordances are related to what an environment enables an object to do, more than what an 

object is, by itself, able to do.  

 

Certain admissible actions occur quite rarely. For instance, a car can be used as a trap for 

certain animals, but this is rather unusual. Many admissible actions are instead quite 

common. Thus for instance, a car usually moves around and transports people, while a 

person usually eats, sleeps and walks. Similarly, at school, quite often an older person (that 

we call “a teacher”) explains some topic to a younger person (that we call “a student”), she 

gives homework, she grades it, and so on. The fact that certain sets of actions are repeatedly 

performed by the same object allows humans to make predictions about the future 



 

 59 

behaviour of objects and to reason about this. We formalize this fact through the notion of 

function. The function of an object formalizes the behavior that an object is expected to 

have. This expected behavior may be due to the object’s purpose (as it is the case with 

artifacts, e.g., a car) or to its role, for instance in the world and society (as it is the case 

with living organisms, e.g., a cat, a tree or a person). Sometimes the word used to denote a 

function is the same used to denote the object performing it (e.g., car, cat); in many cases 

language provides dedicated words (e.g., teacher, parent) possibly with a negative 

connotation (e.g., obstacle, enemy, garbage).  

 

We capture this intuition by saying that an object can perform one or more functions, where 

a function is defined as a set of actions. Let O be an object and {FO}p:O  a set of proper 

functions FO (where proper emphasizes the fact that these are functions which are 

“expected”). Then we have the following (“p:O/p:FO” stands for “proper for O/FO”): 

 

FpO(O) = {FO | for any FO ∈ {FO}p:O} 

OpF(FO) = {O | for any O such that FO ∈{FO}p:O} 

 

with: 

 

ApF(FO) = {A | for any A ∈{A}p:Fo} 

FpA(A) = {FO | for any FO such that A ∈{A}p:Fo} 

 

where: FpO and OpF are to be read (proper) Functions of (Object) and Objects of (proper) 

Function, respectively, and ApF and FpA are to be read (proper) Actions of (Function) and 

Functions of (proper Action), respectively. Thus, for instance, we have ApF(vehicle) = 

{move, transport, …} and FpA(move) = {vehicle, person, …}. Obviously, {A}p:Fo 

⊂{A}a:O. {FO}p:O is assumed to be finite. The finiteness of {FO}p:O, in the case of artifacts 

follows from the fact that we build artifacts with a specific purpose in mind. The finite 

functionality of living beings is not connected to the fact that we know their purpose but to 

the fact that they have shape and behavior which comes from nature and is replicated 

through reproduction, and from the fact that we model it as their role. It is a fact that (the 
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functions of) living beings are more easily recognized and perceived than (those of) 

artifacts [90]. At the same time, ApF(FO) contains (again) a possibly infinite number of 

actions, this meaning, in practice, that there is always the possibility to characterize a 

specific change of an object/function as a new action. If language allows us to precisely 

denote an object or a function with a word, a precise characterization in terms of its possible 

actions is impossible. 

 

As from Figure 1, functions are third level abstract representations in the sense that they 

abstract over multiple occurrences of objects performing actions (as recognized during 

encounters) and collect them in clusters (one cluster per function). A function, e.g., 

“mover”, consists of the set of representations of all the times we have perceived an object 

performing a certain expected action, e.g., “a running cat” or “a walking person”.  

4.2. Producer – Consumer Patterns 

We model the interaction between objects, actions and functions using patterns like the one 

in Figure 2. More precisely, the pattern in Figure 2, is a specific instance of what we call 

an OAO (for Object-Action-Object) pattern. In OAO patterns, round boxes represent 

objects, arrow boxes represent actions and square boxes represent functions. t1 and t2 define 

start and end of the action. The specific pattern in Figure 2 instantiates what in natural 

language we would describe as ‘a car transporting a person’. In Figure 2, Transport is the 

action, Car is the producer object, Person is the consumer object, Vehicle is the function 

performed by the producer while Passenger is the function performed by the consumer. 

The intuition is that an object plays the function of a producer when it performs an action 

affecting another object, possibly itself, and that the function of consumer is played by the 

object being affected by this action. The intuition of what “an action affecting another 

object” means is that an object is associated with a state and that this state changes any 

time an object is a consumer. The state of an object includes its physical properties (e.g., 

position, shape, beauty), the actions it performs (a subset of the set AaO(O)), namely the 

patterns where it is a producer and the state of its functions (being, e.g., active, idle, 

malfunctioning, sick, in love, angry, …). 
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Fig. 5. ‘OAO pattern – A car transporting a person’. 

 
In Figure 2, the arrows from/to objects represent two crucial aspects of the model: 

 

1. an object is always both a producer and a consumer, being embedded in the 

continuous evolution of the world;  

2. an object may occur in multiple OAO patterns while an action may occur only inside 

a single OAO pattern. 

 

OAO patterns have the form of the pattern in Figure 2 with three possible variations: (i) 

producer and consumer may be dropped when the relevant concept is not lexicalized or it 

is lexicalized with the same term as the object, (ii) the producer and the consumer may be 

the same object (as in, e.g., “a person walking”), in which case the pattern forms a cycle, 

and (iii) the action may be in passive form (as in, e.g., “a person transported by a car”), 

this being useful to compose OAO patterns, as described below. 

4.3. Basic Patterns 

OAO patterns model the world evolution. Clearly there are infinitely many such patterns. 

However, that there are only four primitive OAO patterns and corresponding primitive 

functions, which model the world evolution basic modalities. These patterns model (i) how 

new objects are conceived, (ii) how they are realized and (iii) how they are destroyed, and 

(iv) how they affect the state of other objects. The first such pattern, called Conception, or 

OCO pattern, defines the function conceiver. See Figure 3.  
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Fig. 6. ‘OCO - Object conception pattern’. 

 
Conception represents the process by which a concept, which was not lexicalized before, 

is conceived. Concept conception amounts not only to the creation of the new concept in 

the mind of a living being, e.g., a person, but also to the creation, via perception, of the 

causal relation between the concept and the substance being perceived. For instance, 

Johannes Gutenberg in 1439 conceived the first printing press. Notice that living beings 

are the only objects which can conceive new functions and that they do this by reflexively 

“enriching” their state with a new concept, where the word in parenthesis in Figure 3 

represents the concept being conceived. 

 

The second primitive pattern, that we call Realization, or ORO pattern, defines the function 

maker. See Figure 4. The realization of an object coincides with the moment when an object 

assumes its (recognizable) identity in the world. For instance, my car was realized in 2014, 

15 days before I bought it. For an object to be realized, its defining functions must have 

been previously conceived. Figure 4 depicts three important specializations of the pattern, 

namely: (i) the capability of living beings to procreate, (ii) the manufacturing skills by 

which a factory (or a person) can realize objects, e.g., a press, and (iii) the ability of 

“intelligent” machines to assemble new objects. 
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Fig. 7. ‘ORO - Object realization pattern’. 

 
The third primitive pattern, called Destruction, or ODO pattern, defines the function 

destroyer. See Figure 5. 

 

 
 

Fig. 8. ‘ODO - Object destruction pattern’. 

 

ODO patterns represent the process by which an object “disappears” because losing its 

identity. This is the inverse pattern of realization. Thus, eating an orange and a car wrecker 

destroying my car are both instantiations of this pattern. 

 

The last primitive pattern, called Service Provision, or OSO pattern, defines the functions 

provider and receiver. See Figure 6.  
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Fig. 9. ‘OSO - Object service pattern’. 

 

This is the pattern that models the process by which any two objects may affect one another. 

The specialization patterns represent some important specializations, namely: (i) the 

inception of a living being (it is a “service” in the sense that the state of the consumer is 

changed), (ii) a living being acquiring the energy needed to live by eating, and (iii) an 

object affecting the state, e.g., the position, of another object.  

 

The key observation is that the world evolution can be modeled by suitably 

specializing/generalizing and/or by composing OAO patters to produce complex patterns. 

We call the patterns obtained in this way, Producer – Consumer (PC) patterns. The figures 

above provide examples of specializations. PC patterns compose OAO patterns by making 

the consumer of a former pattern coincide with the producer of a latter pattern. 

4.4. Complex patterns 

PC patterns can produce graphs of arbitrary complexity. The simplest versions of PC 

patterns are OAOAO patterns. These patterns are of particular relevance since they 

represent how the application of the function in the first OAO pattern provides input to the 

function applied in the second OAO pattern. Examples of relevant OAOAO patterns are: 

reproduction, which models how something is constructed as a copy of some object, 

transformation which models how objects change their function (e.g., a car transformed 

into a cage or a rock into a chair); undo by which the second function, under certain 
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conditions, cancels the effects of the first function, this allowing to define the inverse 

function; service composition, which models how complex services are provided, online 

or in the world, and so on. As an example of OAOAO pattern, Figure 7 depicts Creation.  

 

 
 

Fig. 10. ‘Creation compound pattern’. 

 

Creation allows for the construction of a new type of object (e.g., presses, in the case of 

Gutenberg’s press). Notice that the central object has two inputs which may occur at 

different times. The first observation is that the double input captures the fact that nothing 

can be created but can only be “transformed” from something else. The second is that what 

we represent is always an approximation, e.g., we could further complicate the above 

pattern to consider more materials, human effort, and so on. 

4.5. Pattern transformations 

PC patterns allow for a uniform representation of the spatio-temporal continuum. However, 

they do not give us the means for univocally representing this continuum as (the evolution 

of) the world where we live. And this could not be the case! As from Section 2, there is a 

many-to-many mapping between substances and substance concepts (i.e., objects) and, as 

from the previous chapter, there is a many-to-many mapping between substance concepts 

and classification concepts, this latter intuition being captured by the two relations FpO 

and OpF introduced in Section 2. These two mappings are at the core of the phenomenon 

of knowledge diversity and formalize two levels of freedom in the representation of the 

spatio-temporal continuum. The first, from substances to objects, corresponds to the many 
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possible ways in which the same substance can be perceived as a certain object. The 

second, from objects to functions, corresponds to the many possible ways in which the 

same object can be reasoned about in terms of the function it performs.  

 

Our solution to the problem of managing diversity in knowledge is to exploit the uniform 

representation provided by PC patterns and define a set of PC pattern transformation 

operators that allow, given any two PC patterns, to reduce one to the other, preserving 

their intended meaning. The intuition is that the existence of such a reduction will be 

evidence that the two PC patterns represent the same or similar configurations of 

substances, and the contrary when this is not the case. Notice how this does not avoid the 

possibility of multiple descriptions of the same (set of) substances, but it does provide a 

systematic approach for absorbing diversity.  

 

We have identified three PC pattern transformation operators, that we call Granularity, 

Abstraction and Partiality, where the combined effects of these three operators allow to 

transform  patterns, still preserving the underlying semantics.22  

 

The Granularity operator allows for two types of transformation: (i) substituting parts with 

wholes or vice versa, and (ii) substituting more specific concepts with more general 

concepts or vice versa. The examples in the previous section are all applications of this 

operator. Figure 8 provides a further example where the pattern at the bottom is obtained 

from the one at the top via a whole-part transformation and a more general-more specific 

transformation.  

 

 

                                                
22 A general formalization of this intuition, not provided here for lack of space, will be provided 
in a follow-up work and will be based on the work described in [43], which provides a 
formalization of the problem of theory transformation in terms of abstraction operators. 
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Fig. 11. ‘Granularity operator’. 

 
The Abstraction (concretization) operator enables the (un)folding of concepts, towards a 

less (more) fine-grained structure; making some concepts implicit (explicit). Figure 9 

provides an example of abstraction (top) and one of concretization (bottom). Notice how 

an Action Object Action pattern gets reduced to a single action and vice versa. 

 

 
 

Fig. 12. ‘Abstraction/concretization operator’. 

 
The granularity and the abstraction operators output PC patterns. This is not the case for 

the Partiality operator which outputs two patterns, namely (i) patterns containing only 

actions and functions, that we call AA patterns, and (ii) patterns containing only objects 

and functions, that we call OO patterns. The Partiality operator achieves this result by 

dropping all elements of certain kinds (O or A). Consider for instance Figure 10, where the 

top pattern is obtained from the middle one by dropping objects (and functions) and where 

the bottom pattern is obtained from the middle one by dropping actions. Notice how AA 

patterns focus on the process, as it is done, e.g., in planning and activity recognition (see, 

e.g., [78]) while OO patterns focus on objects and their functions, as it is done, e.g., in 
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Schema.org [5]. The choice of where to focus depends on the purpose of the modeling. We 

call the union of PC patterns, OO patterns and AA patterns, teleology patterns, to capture 

the idea that any representation is chosen to best fit the problem to be solved. 

 

 
 

Fig. 13. ‘Partiality operator’. 

4.6. Teleologies 

Teleology patterns are the basic constituents of Teleologies. Teleologies are nothing else 

but structured organizations of teleology patterns where the horizontal dimension is given 

by the teleology patterns themselves while the vertical dimension follows the “usual” 

more/less general hierarchy. In this respect the name “teleology” has a double motivation 

as, on one side, teleologies allow for the explicit representation of function, while, on the 

other side, are organized as needed for the problem to be solved. 

 

The top part of teleologies is organized in two levels. The root is “Concept”, meaning that 

the focus is on representation rather than on what is the case, as it happens in (upper level) 

ontologies (where, for instance, the root of DOLCE is “Thing” [25] and the root of SUMO 

is “Entity” [79]). In turn, the root has three children, namely “Object”, “Action” and 

“Function”, the last being then further subdivided into “Producer” and “Consumer”. 

Furthermore, functions, objects and actions are linked by the relations defined in Section 

2, i.e., “AaO”, “OaA”, “FpO”, “OpF”, “FpA” and “ApF”. 
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Teleologies are designed to satisfy two main properties: 

 

1. to allow for the representation of teleology patterns, as the way to provide a uniform 

view of the concepts recognized via perception and the concepts used and derived 

via reasoning;  

2. to allow for their continuous modification, via pattern transformation operators, as 

the way by which a teleology can be adapted to integrate new inputs, e.g., new 

concepts needed to represent a new input from perception or from a heterogeneous 

dataset, or concepts coming from another teleology. 

 

Let us start with the first property. For the sake of argumentation, as an example, we can 

assume that we have, as initial set of “relevant” concepts, those which are reported in Table 

1 and are not tagged with “*”. Notice that in Table 1 we have “Person” and “Car” but also 

“LivingBeing” and “Machine”, with the latter two concepts being more general than the 

former two. It is in general a good practice to use a set of high level concepts as collectors 

of functions and actions. Thus, for instance, the functions and actions of “LivingBeing” 

can be inherited by, e.g., “Cat”. The idea is to avoid unnecessary diversity as the more 

general concepts drive the instantiation of their more specific concepts.  

 

 

Table 2. An example of relevant concepts. 

Object Function Action 

LivingBeing {LivingBeing} {Conceive} 

Machine {Machine} {Transport} 

Person {Person, Driver, Maker, Passenger, 

*Rider*} 

{Conceive, Drive, Make, 

*Ride*} 

Car {Car, Vehicle, Transportation} {Transport} 

*Motorcycle* {*Motorcycle*, Vehicle} {Transport} 
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A snapshot of the resulting teleology is reported in Figure 11. 

 
Fig. 14. ‘A small example of teleology’. 

 

The white arrows represent more/less general relations, the black diamonds represent 

associative relations, e.g., “partOf”, “FpO” and “ApF”. The “ApF” links in Figure 11 must 

be read as follows: producers enable the actions in ApF(producer) while consumers are 

affected by the actions in ApF(consumer). Notice how the PC pattern in Figure 2 is 

reconstructed via the associative relations linking “Car”, “Person”, “Vehicle”, “Transport” 

and “Passenger”. Notice also how roles such as, e.g., “driverOf” or vehicleOf”, not 

represented in Figure 11 for lack of space, are more specific concepts than the relation 

resulting from the composition of FpO and ApF. Roles are crucial for the representation of 

OO patterns like the one represented in Figure 10 (bottom). 

 

Let us now see how we can use the same process as above to adapt, e.g., extend/change, 

the current teleology in the presence of a new concept (for instance coming from another 

vocabulary). Consider, for instance, the concept “Car”, classified in  Schema.org23 as a 

                                                
23 http://schema.org/Car  
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“Product” and as a “Vehicle”. This concept is perfectly aligned with that with the same 

name in the teleology in Figure 11. The only (optional) addition is to add “Product” (as a 

function, more precisely as a consumer). Consider now the more complex situation of 

updating the teleology in Figure 11 by adding the object “Motorcycle”, as defined in 

Schema.org24, as a specialization of “Machine”. “Motorcycle” is not present in Figure 11 

nor is there any PC pattern to which it can be connected. The relevant PC pattern(s) can be 

added by applying the granularity operator, more specifically by specializing the function 

“Driver” with “Rider” and the action “Drive” with “Ride”. Figure 12 represents a focus on 

the relevant part of Figure 11 where the new concepts (marked with “*” in Table 1) are 

added. The resulting teleology is now capable of modeling the PC pattern described by the 

natural language sentence ‘a person riding a motorcycle’. 

 

 
Fig. 15. ‘An example of teleology update’. 

 

 

 

 

 

 

                                                
24 https://auto.schema.org/Motorcycle  
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Chapter 5 

 

5. Tracing and Exploiting Knowledge Diversity via a Causal Model 

Our knowledge about the world is entangled with one fundamental issue that must be 

handled by any representation, namely world change. The central question is: how can we 

know something as the same thing despite its change? Let us take for instance an everyday 

research item like an article, i.e., a paper. Each encounter with it provides us with multiple 

different pieces of information. Does the article that is on the online repository is the same 

article that is on the table of my apartment in the evening? Does the article that is now 

dusty and sketched is the same article that one week ago was completely clean? Does this 

article is the same article even after cutting away its title page? Does this article that I use 

as rough paper for taking some notes is the same article that was written by my advisor one 

month ago? Does this article remain the same even after being cut into small pieces?   

 

In the context of KR, three are the main state-of-the-art strategies of approaching this 

challenge (see chapter 2 for a detailed survey). The first strategy is to define properties that 

something must have for being that something, where a property is taken as a quality, an 

attribute, or a characteristic describing something. For instance, for being an article 

something must have ‘pages’, a ‘title’, an ‘author’, and so forth. For being the same article, 

something must have the same ‘author(s)’, same ‘DOI’, and so forth. Typical information 

artifacts implementing this strategy are top-level (i.e., foundational) ontologies, like 

Dolce25, for very abstract notions, or core ontologies like Vivo26, devised for modeling 

more concrete notions, like ‘article’ or ‘academic article’. The second strategy is to keep-

track of all the properties that something may have, i.e., that can be present when this 

something is encountered in every possible context. For instance, an article along with 

‘author’, ‘title’ and ‘DOI’, may have a ‘format’, an ‘illustrator’, a ‘review’, a ‘pagination’, 

and so forth. The same article may have different formats, many reviews, many number of 

pages, and so forth. Typical information artifacts implementing this strategy are huge 

                                                
25 http://www.loa.istc.cnr.it/old/DOLCE.html  
26 http://vivoweb.org/ontology/core  
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“catch-all” schemas for structuring a large amount of data like Schema.org27 or 

DBpedia.org28. The third strategy is to provide the properties that something is likely to 

have over encounters in a given context. For instance, an article, in the context of a library 

catalog, is likely to have a ‘location’, an ‘availability’, a ‘sound recording’ and so forth. 

The same article is likely to have the same subject, the same author(s), but not always the 

same location or availability, and so forth. Typical information artifact implementing this 

strategy are database schemas or domain ontologies like the schema underlying Osikat29 

(just check the advanced search) or the bibliographic domain ontology30, which are 

designed for very specific application needs. 

 

All these strategies have significant drawbacks. The first strategy is very difficult to be 

applied. The task of finding identifying properties is indeed an almost impossible task for 

most of the things that can be encountered. Thinks about animals, artifacts, plants, general 

stuff; most of the time it is impossible to find a set of properties that do not change over 

time and that can be used for identifying them over encounters. The definition of article 

provided by Vivo is a perfect example. Not all the articles, for instance, have a ‘DOI’, 

which would seem to be a perfect identifier. The second strategy involves the construction 

of undetermined representations. In order to catch all the possible properties that something 

may have over encounters, the identification criteria are lost or too vague to be applied. 

Consequently, the puzzle of understanding if something is the same or is different from 

something else still remain unsolved. The representation provided by Schema.org is a 

perfect example. The things that can potentially be captured by all the properties associated 

to the schema ‘article’ are very different. See for instance the ambiguity in identifying 

‘news article’ and ‘scholarly article’. The third strategy offers criteria that can be used for 

identifying things only in a given context, which are very difficult to be used outside that 

context. Just think about the property ‘location’ provided by the Osikat schema. It is very 

difficult to find this information about an article, outside the context of a library service. 

 

                                                
27 http://schema.org/  
28 http://wiki.dbpedia.org   
29 http://oskicat.berkeley.edu/search/X  
30 http://bibliographic-ontology.org/  
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Figure 16: Diversity in knowledge and sameness puzzle 

 

Figure 1 shows how the major implications of the above described drawbacks are: i) the 

generation of multiple and diverse representations (i.e., conventionally defined 

descriptions) for the same things; ii) the generation of multiple identifiers, i.e., pointers by 

which we identify something (e.g., URI), that can be related to the same resources, i.e., any 

physical or virtual thing of limited availability within a system [14] (e.g., a web page, an 

Amazon product, an article, and so forth). Just think how many new classes, properties, 

instances and corresponding URIs are created with ontology editors like Protégé whenever 

a new ontology is constructed. Following our example resumed by Figure 1, we can come 

out with puzzling situations where the same article is described and pointed as two articles 

just because we are selecting two different formats (i.e., paper and digital). Moreover, we 

may say that the article that I have on my desk (i.e., the draft of a research work that my 

advisor gave me one year ago) is the same article that now is stored in the library. 

 

The issues of knowledge diversity and unique identifiers for resources that correspond to 

“things” are clearly central issues. They need to be addressed for achieving knowledge 

integration and semantic interoperability. This is why, in the last few years, most of the 

research effort has been devoted on designing the best methods for constructing reusable 

ontologies, and aligning and integrating multiple heterogeneous representations. All these 
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attempts are motivated by the effect produced by the above described approaches to the 

sameness question, which, in turn, is the main reason for the difficulties in reusing and 

managing schemas, ontologies and identifiers of resources that correspond to thing.  

 

In our opinion there is a lack of work on devising a new KR approach for addressing the 

puzzle of sameness without generating the above mentioned difficulties. This new reliable 

methodology would be a promising solution in supporting the current existing knowledge 

integration methodologies. It would help indeed in understanding whether two 

representations are about the same thing, thus exploiting (and not eliminating) the value of 

diversity in knowledge and enabling the reuse of identifiers. 

5.1. Specifying the causal model: PC model 

Where the underlying assumption of the state-of-the-art approaches is that two things are 

the same when they share some specific properties, the underlying assumption of our 

approach is that two things are the same when they are part of the same causal history, 

where we take a causal history to be a sequence of elements related by causal dependencies. 

We call causal model the information object that we use to represent and codify a causal 

history at different levels of complexity. A causal model is a relational structure, its relata 

are Objects, i.e., things of any particular sorts (e.g., animals, artifacts, stuff, and so forth), 

that may cause or be caused. These objects may stand in various relations, for instance, 

spatiotemporal relations and relations of part and whole (for more details see chapter on 

how to model teleologies). Moreover, they are linked by the Actions they perform (e.g., 

running, eating, informing, and so forth). But it is the objects Functions that make a causal 

model. Following the teleosemantics approach, we take Producer and Consumer functions 

as the functions that are used for modeling the causal dependencies in a causal model. For 

instance, ‘writer’ is the producer function of a person who writes something, ‘reader’ is the 

consumer function of a person who read something, and so forth. This way of modeling 

the causal chain of every causal model is what allows us to describe a causal model as a 

Producer-Consumer (PC) Model. 
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5.1.1 PC model nodes 
In the design of the PC Model we began with the core of the PC Patterns modeling effort 

provided in the previous chapter. In a PC Model, “object” is a cover term for those concepts 

that represent what is perceived across encounters. Every object can be thought as the set 

of all the representations of how the same thing “fills” space, any time we encounter it. 

The specification of Object is shown below: 

 

Object = Oid Type [Comment] ; 
Oid = ObjectID ; 
ObjectID = "o" Integer ; 
Type = "kind" | "individual" ; 
Comment = Text ; 

 

The Type nonterminal captures distinctions about the two main possible types of objects. 

Examples of each of these object types are: 

 

1. Kind: person, cat, car, article, … 

2. Individual: Barak Obama, Garfield, Fiat Punto, … 

 

The comment nonterminal is a part of all the PC Model specifications, and exists to allow 

for annotations, adding clarifications and other observations about the element being 

modeled. 

 

“Action” is a cover term for those concepts that represent how objects change in time. 

Actions represent an abstraction over multiple occurrence of changes in time of an object. 

The specification of Action is shown below: 

 

Action = Aid Type [Comment] ; 
Aid = ActionID ; 
ActionID = "a" Integer ; 
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Type = "conceive" | "realize" | "destroy"                 
| "conceive" ; 

Comment = Text ; 

 

The Type nonterminal captures distinctions about the four main possible types of actions. 

Examples of each of these action types are: 

 

1. Conceive: devise, invent, create, … 

2. Realize: give-birth, build, assemble, … 

3. Destroy: eat, burn, wreck, … 

4. Serve: feed, transport, inform, … 

 

Conceive represents the process by which an object, which was not existing before, is 

conceived. Realize represents the activity of building something with or from something 

else, i.e., making it recognizable. Destroy is the inverse of “realize” and represents the 

activity by which an object “disappears”. Serve represents the activity by which any two 

objects may affect one another.  

 

“Function” is a cover term for those concepts that represent the behavior that an object is 

expected to have in a causal chain. The specification of Function is shown below: 

 

Function = Fid Type [Comment] ; 
Fid = FunctionID ; 
FunctionID = "f" Integer ; 
Type = "producer" | "consumer" ; 
Comment = Text ; 

 

The Type nonterminal captures distinctions about the two main possible types of objects. 

Examples of each of these function types are: 
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1. Producer: writer, mother, vehicle, …  

2. Consumer: reader, son, passenger, … 

 

Every object that performs an action plays a specific function. The object that affects 

another object, possibly itself, plays the function of a Producer. The object being 

affected by the action of another object plays the function of a Consumer. The fact that 

objects affect each other by actions and can play the functions of a producer or a consumer 

involves the definition of the notion of State.  

 

“State” is a cover term for those concepts that represent how objects, actions and functions 

change in a causal chain. States describe how objects, actions and functions fill any given 

causal model. The specification of State is shown below: 

 

State = Sid Type [Comment] ; 
Sid = StateID ; 
StateID = "s" Integer ; 
Type = "spatial_state" | "temporal_state" | 

"functional_state" ; 
Comment = Text ; 

 

The Type nonterminal captures distinctions about the three main possible types of states. 

Examples of each of these state types are: 

 

1. Spatial state: weight, heavy, color, position, … 

2. Temporal state: duration, date, before, … 

3. Functional state: active, idle, in love, sick, …  

5.1.2 PC model links 
We capture the fact that an object may perform one or more actions, may play one or more 

functions, and a function may involve one or more actions, by using the “by*” link. This 

link encodes all the possible relations that exist between objects, actions and functions, 
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thus forming the backbone structure of every PC model. The specification of By* is shown 

below: 

 

By* = Bid (FromObject | FromAction | 
FromFunction) (ToObject | 
ToAction | ToFunction) Bond 
[Comment] ; 

Bid = ByID ; 
ByID = "b" Integer ; 
FromObject = IDREF ; 
IDREF = ObjectID ; 
FromAction = IDREF ; 
IDREF = ActionID ; 
FromFunction = IDREF ; 
IDREF = FunctionID ; 
ToObject = IDREF ; 
IDREF = ObjectID ; 
ToAction = IDREF ; 
IDREF = ActionID ; 
ToFunction = IDREF ; 
IDREF = FunctionID ; 
Bond = "admissible" | "proper" 

{default, if absent, is 
"admissible"} ; 

Comment = Text ; 

 

Besides having its own ID, By* has three From* optional IDs and three To* optional IDs, 

this is to allow the selection of the relata of the links. For instance, if the pair of optional 

IDs is FromObject and ToAction it means that the given By* is providing the action 

performed by an object. Notice that we are admitting the case in which By* can be used 

for modeling reflexive relations (e.g., FromObject and ToObject). This can be used 
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for modeling parthood relations (e.g., an object that is a part of another object)31. The major 

function of the Bond nonterminal is to capture the fact that some elements are “expected” 

to be associated to other elements. For instance, the fact that an article has the function of 

informing someone is usually expected. On the contrary, the fact that an article is used as 

scrapbook is just possible, but usually not expected. This can be modeled by saying that 

“being information” is a proper function of an article and ‘being a scrapbook’ is just an 

admissible function of an article.  

 

Together with by* link we provide the st* link. This link encodes all the possible relations 

between objects, actions, functions and their states, thus capturing how the elements of a 

PC model affect each other and how they change over a causal chain. The specification of 

St* is shown below: 

 

St* = Stid FromState 
(ToObject | ToAction | 
ToFunction) [Comment] ; 

Stid = StID ; 
StID = "st" Integer ; 
FromState = IDREF ; 
IDREF = StateID ; 
ToObject = IDREF ; 
IDREF = ObjectID ; 
ToAction = IDREF ; 
IDREF = ActionID ; 
ToFunction = IDREF ; 
IDREF = FunctionID ; 
Comment = Text ; 

 

                                                
31 We are willing to address this issue in our future work. 
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Here, besides the St* ID, we have a FromState nonterminal that is not optional, 

providing the reference state ID, and three optional nonterminal elements, like for the by* 

link i.e., ToObject, ToAction and ToFunction, used for providing the related ID. 

We would like to point out that, at this level of specification, we left implicit a possible 

existing constraint. The type of the source state (spatial, temporal and functional) may 

indeed force the selection of a specific target element. If this is the case, it would mean 

that, for instance, all the temporal states can be only associated to actions and all the 

functional states can be only associated to function.  

 

To illustrate a possible application of By* and St* links, along with the elements specified 

in the previous sub-section, let us consider the two following examples: 

 

(1) a person wrote something one month ago 
<OBJECT Oid="o1" Type="kind"> 
person 
</OBJECT> 
<ACTION Aid="a1" Type="realize"> 
wrote 
</ACTION> 
<STATE Sid="s1" Type="temporal_state"> 
one month ago 
</STATE> 
<By* FromObject="o1" ToAction="a1" bond="proper"/>  
<St* FromState="s1" ToAction="a1"/> 
 

(2) the author of this article is famous 
<FUNCTION Fid="f1" Type="producer"> 
author 
</FUNCTION> 
<OBJECT Oid="O2" Type="kind"> 
article 
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</OBJECT> 
<STATE Sid="s2" Type="functional_state"> 
famous 
</STATE> 
<By* FromFunction="f1" ToObject="o2" bond="proper"/>  
<St* FromState="s2" ToFunction="f1"/> 

5.2. Tracing and exploiting the causal model 

Saying that two things are the same if they are part of the same causal history is like saying 

that something that is happening right now is the same of something that was happening 

some moments ago. We can say that they are the same writing (or the same reading) 

because they are part of the same causal history: it is me (object-producer) writing (action) 

this article (object-consumer). Now, according to this new strategy of approaching the 

sameness puzzle, change can be easily explained through the parts of a causal history. For 

instance, there would be no problems at claiming that the article that yesterday was on the 

online repository is the same article that today is on the table of my apartment. This just 

means focusing on two spatiotemporal parts of that article: the first that yesterday was on 

the online repository, the second that today is in the apartment. Similarly, it would be 

perfectly fine to state that this article and the same article without the title page (and maybe 

without some other pages) are two parts of the same causal history. Moreover, there would 

be no inconsistencies in admitting that we are talking about the same article even after it 

has been cut into small pieces. It is just a matter of considering a longer or a shorter causal 

history for that article.     
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Figure 17: The new way of approaching the sameness puzzle 

Figure 2 shows how the major implications of the above described strategy shift are: i) 

enabling to trace the multiple and diverse representations of the same thing via a single 

representation (i.e., the reference causal history); ii) mitigating the generation of multiple 

identifiers, considering each single representation (class, property or instance) just as a part 

of the same thing (i.e., the reference causal history). 

5.2.1 From KRs to PC model 
The PC model we described in the previous section plays a central role in the computational 

implementation of this new approach. However, a full implementation can be provided 

only by specifying the process that allows to reduce any number of input KRs to a reference 

PC Model and to keep-track of them by exploiting their diversity. We call this process 

Concretization operation and we describe it as follows. 
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(1) Concretization()		

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

	

21	

22	

for	each	krc	and	pcn	

	 	 if	krc	=	<	Class	>	and	pcn	=	<	Object	>	

get	krc	

return	pcn	

end	if	

if	krc	=	<	ObjectPropertyN	>	and	pcn	=	<	Function	>	

get	krc	

return	pcn	

determine	By*	as	Function-Object	link	

end	if	

if	krc	=	<	ObjectPropertyV	>	and	pcn	=	<	Action	>	

get	krc	

return	pcn	

determine	By*	as	Action-Object	link	

determine	By*	as	Action-Function	link		

end	if	

if	krc	=	<	DataProperty	>	and	pcn	=	<	State	>	

get	krc	

return	pcn	

determine	St*	as	State-Object		or	State-Action	

or	State-Function	link	

end	if	

end	for	

 

The inputs of Concretization() are always: i) a knowledge representation construct, i.e., 

krc (as represented in the table above), taken from a given KR (e.g., an ontology with 

classes and properties), and ii) a PC model node, i.e., pcn (as represented in the table above), 

taken from a given PC model (e.g., Person-Author-Write-WrittenWork-Article). Here we 
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consider the possible knowledge representation constructs as the constructs used in OWL32, 

but the set of input reference representation languages can be easily extended, for instance, 

to RDF33 and others. Thus, in this case, on the one hand, a krc can be a class, like ‘Article’, 

an object property like ‘Author’, with range ‘Person’, and a data property like 

‘NumberOfPages’, with datatype ‘Integer’. Notice that we make a central distinction 

between object properties denoted by nouns and object properties denoted by verbs 

(ObjectPropertyN and ObjectPropertyV in the table above). This is in order to make a clear 

distinction among those properties that can be functions and those properties that can be 

actions. On the other hand, a pcn is one of the nodes that we specified in Section 3. Through 

the concretization process each given krc is converted into a given pcn. Moreover, after 

each conversion step a by* link or a st* link is determined. The final expected output is a 

PC Model evoked by the input knowledge representation.  

 

Now, there are two major observations. Firstly, in the example we provided, we assumed 

that all the knowledge representation constructs have an already existing PC model input 

to which they can be associated. However, there may be the case in which, given a krc, no 

pcn can be returned. This situation is handled by evaluating a possible extension of the 

given PC model. This can be done by adding a new object, action, function, or state, or by 

determining a new by* or a new st*. For instance, ‘booking’ and ‘availability’ as 

knowledge representation inputs may involve an evaluation for the enrichment of the given 

PC model with a new state and a new action. If this is the case, given the input object 

property ‘booking’ and the input data property ‘availability’, the concretization process 

returns the action ‘booking’ and the state ‘availability’. It must be noticed that the given 

PC model may have also been left unchanged. This would have meant that the given 

knowledge representation inputs are not taken as part of that causal history representation. 

The second observation is that the output PC model produced by means of the 

concretization operation can be used as input with a new KR, thus producing a new 

extended PC model, including both the given input KRs. If this is the case, it is possible to 

state that: i) the two input KRs are parts of the same causal history, represented by the 

                                                
32 https://www.w3.org/OWL/  
33 https://www.w3.org/RDF/  
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given extended PC model and ii) both the input KRs can be considered as the same by 

integrating them into a unified KR.  

5.2.2 From PC model to KR 
The generation of a unified KR from an extended PC model (including two inputs KRs) 

happens according to another central process, i.e., what we call Abstraction operation. This 

operation can be seen as the inverse of concretization and we describe it as follows. 
 

(2) Abstraction()		
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

for	each	pcn	and	krc	

	 	 if	pcn	=	<	Object	>	and	krc	=	<	Class	>	

get	pcn	

return	krc	

end	if	

if	pcn	=	<	Function	>	and	krc	=	<	Class	>	

get	pcn	

return	krc	

end	if	

if	pcn	=	<	Function	>	and	krc	=	<	ObjectPropertyN	>	

get	pcn	

return	krc	

determine	class	expression	(Class-

ObjectProperty)	

end	if	

if	pcn	=	<	Action	>	and	krc	=	<	Class	>	

get	pcn	

return	krc	

end	if	

if	pcn	=	<	Action	>	and	krc	=	<	ObjectPropertyV	>	

get	pcn	

return	krc	
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23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

determine	class	expression	(Class-

ObjectProperty)	

end	if	

if	pcn	=	<	State	>	and	krc	=	<	Class	>	

get	pcn	

return	krc	

end	if	

if	pcn	=	<	State	>	and	krc	=	<	DataProperty	>	

get	pcn	

return	krc	

determine	class	expression	(Class-

DataProperty)	

end	if	

end	for	

 
 

The inputs of Abstraction() are always: i) a PC model node, i.e., pcn taken from a given 

PC model that may be the result of the integration of more given KRs (see previous 

section); ii) a knowledge representation construct, i.e., krc, taken from two or more input 

KRs. As showed in the table above, every given PC model input object is converted into a 

given class. Every given PC model input function may be converted into a given class or a 

given object property. Every given PC model input action may be converted into a given 

class or a given object property. Every given PC model input state may be converted into 

a given class or a given data property. Moreover, whenever a property is returned, a class 

expression for defining the KR classes is determined. The expected output of the whole 

operation is a KR that is an integration of the two (or more) given KRs. This is possible 

because the input KRs are taken as parts of the same causal history and can be considered 

as different descriptions of the same thing. 
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5.3. A cause study 

We ground the explanation of our approach in the following concrete example. Let us take 

the three reference knowledge representations introduced in Section 2, i.e., the 

Vivoweb.org, the Schema.org and the Oskikat representations of ‘Article’. We consider 

them as KR1, KR2 and KR2 respectively and we represent (a portion of) the corresponding 

schemas (with some instantiation examples) as follows.  

 

Article	–	KR1	

DOI	 abstract	 pageNo	 subject	 date	

#123	 Text	 56	 ai	 01-01-2017	

 

Article	–	KR2	

author	 award	 comment	 editor	 rating	

J.		 Award	‘a’	 4	 K.	 3	stars	

J.	and	M.		 Award	‘a’	 13	 W.	 4	stars	

 

Article	–	KR3	

title	 author	 location	 language	 availability	

Text	 J.	and	M.	 Data	Lab	 Eng	 Boolean	

 

In this example we take the table labels as classes and the field labels as either object 

properties or data properties. Suppose that there is a need to check whether these are three 

representations of the same thing. We solve this problem via Concretization(). Let us 

assume that the reference PC model, i.e., PC0, has been already constructed and that a 

representation of it, with the concepts that are relevant to this example, is as reported in 

Tab. 1 (the terms in “*” are the result of the iterative application of the concretization 

operation, as described below). 
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Table 3: An example of PC Model  

Object	 Function	 Action	 State	

Person	 {Author,	

*Editor*}	

{Write,	*Edit*}	 {Date}	

Article	 {Realization,		

*Edition*}	

{null}	 {DOI,	Abstract,	PageNo,	*Subject*,	Award,	

Rating,	Title,	Location,	Language,		

*Availability*}	

 

The concretization operation is processed sequentially. The first application of the 

operation takes KR1 and PC0 as given inputs and return PC1 as expected output. The second 

application of the operation takes KR2 and PC1 as given inputs and return PC2 as expected 

output. The third application of the operation takes KR3 and PC2 as given inputs and return 

PC3 as expected output. Every time we run the operation we may encounter the following 

situations.  

 

1. a KR input is returned into a given PC input. In the example this may be the case of 

the ‘DOI’ property, which is returned into a corresponding state (see Tab. 1); 

2. a KR property input of a KR class input that is returned as a PC Model object, is 

returned as a state that in the PC model is associated to an action. In the example this 

is the case for ‘Date’ that in KR1 is a property of ‘Article’ but in PC0 it is a temporal 

state either of ‘Writing’ or ‘Editing’. This situation is handled just by returning the 

associations as they are modeled in the PC model; 

3. a KR input (i.e., a class or a property) cannot be associated to any PC input (i.e., the 

corresponding term does not occur in the given PC model). In the example this is the 

case for ‘Subject’ (in KR1), ‘Editor’ (in KR2) and ‘Availability’ (in KR3). This 

situation can be handled by: 

a. enriching the reference PC model with one corresponding element. For 

instance, ‘Date’ and ‘Subject’ will be present in PC1 and ‘Availability’ in PC3 

(see term marked with ‘*’ in Tab. 1); 

b. enriching the reference PC model by adding more elements. For instance, the 

producer function ‘Editor’ will be present in PC2 along with the consumer 
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function ‘Edition’ and the action ‘Editing’ (see term marked with ‘*’ in Tab. 

1). This solution is usually provided whenever the causal chain encoded by the 

PC model is extended with a new core element (i.e., object, function, action). 

 

Once the concretization process is finished, the final PC model output, i.e., PC3, according 

to the given example, can be used as input of Abstraction(). This can be done for 

generating: 

 

1. one of the previous knowledge representation inputs, KR1, KR2 or KR3. For instance, 

the representation of ‘Article’ provided by KR1; 

2. a new representation for the previous input KRs elements. For instance, we may 

have an article with just ‘DOI’, ‘rating’, ‘title’ and ‘author’ (collapsing all the 

information provided by ‘Author’, i.e., ‘J.’ and ‘J. and M.’ are taken as ‘J. and M.’); 

3. a new representation for a new KR element. For instance, we may run abstraction 

for creating a new class labeled as ‘Editor’; 

4. a new representation that is the result of the integration of the previous input KRs. 

For instance, we may have a KR that is the result of the integration between KR1 

with KR2, or between KR1, KR2 and KR3.  

 

The example process described above highlights various key features of our approach. Let 

us analyze them. Firstly, it seems plausible to assume that the PC model can be used for 

modelling a huge varieties of concepts. As a cross-check we can take any online vocabulary 

and see whether its concepts can be modeled according to our approach. Let us take, for 

instance, some of the Schema.org “commonly used types”. The ‘CreativeWork’ type can 

be easily seen as a kind of object. The type ‘Event’ can be seen as the result of an 

abstraction operation that combines information derived from objects, actions and 

functions together (just think about the reading of an article). We have the same situation 

for the concept ‘Person’. Similarly, the type ‘Place’ can be easily captured by abstracting 

from an object just some specific ‘SpatialStates’. A similar check can be performed for all 

the Schema.org concepts that are commonly used as properties. For instance, a property 

like ‘Creator’ can be mapped into a function. The same happens for properties like ‘Read’, 

‘Write’, and so forth, that can be mapped into actions, or properties like PageNo, Title, 
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Language, etc., which can be easily mapped into states. The possible domains and 

codomains for each property is simply captured by the by* and st* relations codified in the 

PC model. For instance, the domain and codomain of the property ‘Creator’ can be derived 

from the by* used for linking it to ‘Person’ and ‘Article’. Secondly, it is interesting to 

consider in depth the concretization operation and the role played by the reference PC 

model. Every concretization operation output is indeed a PC model that is built from the 

integration of multiple KR inputs. This underline how every PC model is a highly flexible 

conceptual structure and can guarantee for the interoperability of different KRs. As we 

have showed above, a PC model can be continuously adapted and tuned over time with 

more information. The upshot is that, projecting the knowledge representations over a 

causal chain, the different conceptualizations seem to be always compatible and do not 

generate inconsistencies. This flexibility is essential in supporting central tasks like 

knowledge acquisition and adaptation, and is required primary for tracing and exploiting 

knowledge diversity. Finally, our approach may also provide interesting insights on how 

to integrate different computational approaches to the representation of concepts.  A PC 

model, depending on the perspective adopted, can be seen, for instance, as a grounding for 

both a symbolic and connectionist view of concepts. By means of abstraction, the 

constructs composing a PC model can be easily mapped, as we have showed above, into a 

class-relational structure. Similarly, by means of concretization, the basic constructs of a 

class-relational structure can be transformed into a representation that is very similar to the 

formalism used for representing a neural network. Objects, functions and actions can be 

taken, indeed, for representing the (internal) units composing the hidden layer of a 

connectionist network. States and state types, can be taken for representing the external 

(input/output) units. The pivotal point here is that it seems possible to provide an account 

for different conceptual modelling formalisms by using a single reference conceptual 

modeling frame. 
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Part III 

Conclusion 
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Chapter 6 

 

6. Conclusions and future work 

In this thesis, besides providing a shared terminology for the characterization of concepts 

and for their computational representation, we have provided a characterization of concepts 

as (recognition) abilities. We showed how this new characterization of concepts can be 

mapped to the notion of concepts studied so far in KR, what we call classification concepts. 

We exploited this characterization to develop RAO, a first version of an ontology of 

concepts as recognition abilities and we showed how it can be used to characterize which 

classification concepts are only nominals or also substance concepts.  

 

Moreover, we have shown how the world can be modeled in terms of three concepts at 

three increasing levels of abstractions: objects which represent the result of the perception 

of substances, actions which represent how substances change in time, and functions which 

represent the expected behaviour of objects. These three notions have allowed us to 

introduce PC patterns and then teleologies as a first step towards a general solution of the 

knowledge and data integration problem. To this extent, we have briefly described how 

teleologies can be tuned to the specific problem and later adapted as needed, following a 

precise methodology.  

 

As a final outcome, we described how tracing diversity via a causal model can represent a 

first foundational step towards the implementation of an adaptive KR system. Because of 

the use of what we call PC model and the sharp distinction between the “causal layer” and 

the “representational layer”, it is possible to address the lack of generality that affect current 

KR approaches. We exploited some of the Millikan’s main findings to design an 

architecture which integrate perception, knowledge acquisition and knowledge (re-)use, 

and we showed how any representation can be seen as the result of an adaptive process.  
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6.1. Future work 

A number of paths with opportunities to extend the scope of this thesis were left for future 

work, either for lack of time or limitation of resources. In what follows we describe some 

of these paths. The first and most obvious is to analyze and implement possible 

improvements of the proposed approach, as well as its evaluation. For instance, we would 

like to further refine RAO and its use in the identification of classification concepts which 

are also substance concepts. We are also interested to exploit these ideas in the 

implementation of an integrated system that deploys both a recognition and a knowledge 

representation function. This work will consist in the development of large scale 

teleologies (including a full formalization of schema.org) and a reference top-level 

teleology. Another aspect that we are interested in is the development of a detailed 

methodology for the construction of teleologies (and corresponding PC models) and related 

KRs, together with the implementation of an ad hoc editor for the creation of teleologies, 

and the exporting and the importing of reference knowledge representations.  

 

By last, we mentioned throughout the thesis that our work takes into consideration main 

biosemantics principles, proposing a first computational view of the biosemantics frame 

that facilitate the distinction between substance and classification concepts. As part of the 

future work, we are interested in extending the proposed formalization.  This requires a 

more deeply study of biosemantics in the context of artificial intelligence, which may in 

turn require a re-design of some of the proposed formalizations. Although we are aware of 

the challenges of this line of work, we also believe it represents the most interesting path 

for a future work. 
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