
UNIVERSITY OF TRENTO

DOCTORAL THESIS

Bridging Sensor Data Streams and Human
Knowledge

Author:
Mattia ZENI

Supervisor:
Prof. Fausto GIUNCHIGLIA

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Knowdive Group
Department or Information Engineering and Computer Science

November 2, 2017

http://www.unitn.it
http://www.mattiazeni.eu
http://www.mattiazeni.eu
http://disi.unitn.it/~fausto/
http://disi.unitn.it/~fausto/
http://disi.unitn.it/~knowdive/
http://disi.unitn.it

iii

Declaration of Authorship
I, Mattia ZENI, declare that this thesis titled, “Bridging Sensor Data Streams and
Human Knowledge” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date: November 2, 2017

http://www.mattiazeni.eu

v

“I think that’s the single best piece of advice: constantly think about how you could be doing
things better and questioning yourself.”

Elon Musk

vii

Abstract
Bridging Sensor Data Streams and Human Knowledge

by Mattia ZENI

Generating useful knowledge out of personal big data in form of sensor streams is
a difficult task that presents multiple challenges due to the intrinsic characteristics of
these type of data, namely their volume, velocity, variety and noisiness. This prob-
lem is a well-known long standing problem in computer science called the Semantic
Gap Problem. It was originally defined in the research area of image processing as "...
the lack of coincidence between the information that one can extract from the visual
data and the interpretation that the same data have for a user in a given situation..."
[Smeulders et al., 2000]. In the context of this work, the lack of coincidence is be-
tween low-level raw streaming sensor data collected by sensors in a machine-readable
format and higher-level semantic knowledge that can be generated from these data and
that only humans can understand thanks to their intelligence, habits and routines.

This thesis addresses the semantic gap problem in the context above, propos-
ing an interdisciplinary approach able to generate human level knowledge from
streaming sensor data in open domains. It leverages on two different research
fields: one regarding the collection, management and analysis of big data and the
field of semantic computing, focused on ontologies, which respectively map to the
two elements of the semantic gap mentioned above.

The contributions of this thesis are:

• The definition of a methodology based on the idea that the user and the world
surrounding him can be modeled, defining most of the elements of her context
as entities (locations, people, objects, among other, and the relations among
them) in addition with the attributes for all of them. The modeling aspects
of this ontology are outside of the scope of this work. Having such a struc-
ture, the task of bridging the semantic gap is divided in many, less complex,
modular and compositional micro-tasks that are which consist in mapping the
streaming sensor data using contextual information to the attribute values of
the corresponding entities. In this way we can create a structure out of the un-
structured, noisy and highly variable sensor data that can then be used by the
machine to provide personalized, context-aware services to the final user;

• The definition of a reference architecture that applies the methodology above and
addresses the semantic gap problem in streaming sensor data;

• The instantiation of the architecture above in the Stream Base System (SB), re-
sulting in the implementation of its main components using state-of-the-art
software solutions and technologies;

• The adoption of the Stream Base System in four use cases that have very differ-
ent objectives one respect to the other, proving that it works in open domains.

Keywords: Big Data, Ubiquitous Computing, Pervasive Computing, Context
Aware Systems, Computational Humanism, Semantic Gap, Sensor Data, Knowledge

http://www.mattiazeni.eu

ix

Acknowledgements
I feel that this section is the best opportunity I have to thank all of the people who
have helped me throughout my graduate career, and probably the last good op-
portunity to express my gratitude, in writing, to the many individuals who have
supported me in this long and perilous journey.

Firstly, I would like to express my sincere gratitude to my advisor Prof. Fausto
Giunchiglia for the continuous support of my Ph.D study and related research, for
his patience, motivation, and immense knowledge. His guidance helped me in all
the time of research and writing of this thesis. I could not have imagined having
a better advisor and mentor for my Ph.D study. He also taught me many more
things than simply scholarly matters, which this section is far too short to list in
their entirety. In the end, we had fun together.

I would like to thank all the Knowdive members for their devices to test my
applications and more importantly for the stimulating discussions, for the sleepless
nights we were working together before deadlines, and for all the fun we have had
in the last four years.

Another important thank goes to my dear colleague Enrico, who helped me
many times in different situations, both from an academic but also a personal point
of view. You’re a good friend and we’ve been through a lot. I hope to continue
working with you and do great things together.

On a more personal level, I must thank my patient and understanding girlfriend
Valentina who supported me from the beginning. She has not only accepted my self
afflicted impoverishment but has fed and clothed me on occasion. Most importantly,
I have never had difficulty in leaving work in the office as coming home to Valentina
is coming home to the most important girl in the world. Her support in my life
outside and inside academic life has been and is invaluable and cannot be properly
expressed here in few lines. She helped me in very difficult moments of my life and
most likely I won’t be here without her.

Mattia Zeni
University of Trento

December 2017

The work compiled in this thesis has been partially supported by:

• the European Union’s Horizon 2020 (H2020) research and innovation programme un-
der grant agreement n. 732194, QROWD - Because Big Data Integration is Humanly
Possible http://www.qrowd-project.eu/

• the European Union’s Seventh Framework Program (FP7) under grant agreement
600584, Smart Society - Hybrid and Diversity-aware Collective Adaptive Systems:
Where People Meet Machines to Build Smarter Societies
http://www.smart-society-project.eu/

http://www.qrowd-project.eu/
http://www.smart-society-project.eu/

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

Author’s Contributions xxiii

I General Notions 1

1 Introduction 3
1.1 Motivating Example . 3
1.2 The Context . 4
1.3 The Problem . 5
1.4 The Solution . 6
1.5 Structure of the thesis . 7

2 The Problem 9
2.1 Data Acquisition and Management . 10

2.1.1 Data Collection . 10
2.1.2 Data Storage and Retrieval . 11

2.2 Knowledge Generation . 12
2.2.1 Knowledge Instantiation . 12
2.2.2 Knowledge Update . 12

2.3 Knowledge Exploitation for Services . 13

3 Ground Knowledge 15
3.1 Fundamental Notions . 15
3.2 Knowledge Schema . 19
3.3 Instantiation of Knowledge . 20

3.3.1 Entity Identifiers . 20
3.3.2 Entity Instances . 21

3.4 Existing Systems for Knowledge Management 23
3.5 Summary . 23

II The Proposed Methodology 25

4 Data Acquisition and Management 27
4.1 Data Collection . 27

4.1.1 Data Collection Characteristics 27
4.1.1.1 Data Volume . 28
4.1.1.2 Data Quality . 28

xii

4.1.2 Data Collection From the Smartphone 29
4.1.2.1 Unobtrusiveness and Transparency 29
4.1.2.2 User Informed Consent 33
4.1.2.3 Multiple Sensor Streams 36
4.1.2.4 Storage . 37
4.1.2.5 Synchronization . 38
4.1.2.6 Configurability . 39

4.2 Data Storage and Retrieval . 40
4.2.0.1 Types of Streaming Data 41
4.2.0.2 Schema considerations 42
4.2.0.3 Data Privacy . 45

4.3 Summary . 46

5 Knowledge Generation 47
5.1 The Context as a Snapshot of the Personal World 47
5.2 Knowledge Instantiation . 49

5.2.1 User Defined Knowledge Instantiation 49
5.2.2 Machine Triggered Knowledge Instantiation 51

5.3 Knowledge Update . 52
5.3.1 Numeric Attribute Update . 54

5.3.1.1 Motivating Example . 54
5.3.1.2 Numeric Update Procedure 55

5.3.2 Semantic Attribute Update . 56
5.3.2.1 Motivating Example . 56
5.3.2.2 Semantic Update Procedure 57

5.4 Summary . 59

6 Knowledge Exploitation 61
6.1 Personalized Services . 61
6.2 User Privacy . 62
6.3 Summary . 63

III The Reference Architecture and System 65

7 Reference Architecture 67
7.1 Requirements . 67
7.2 System Logical View . 70
7.3 System Dynamic View . 70

7.3.1 User Data Collection . 70
7.3.2 Knowledge Generation . 71
7.3.3 Knowledge Exploitation . 72

7.4 Summary . 73

8 Data Acquisition and Management Subsystem 77
8.1 Data Sources . 78
8.2 Data Import . 79

8.2.1 Streams Data Import Pipeline . 79
8.2.1.1 Sensors Streams . 79
8.2.1.2 Attribute Values Streams 81

8.2.2 Knowledge Data . 81
8.3 Data Storage . 82

xiii

8.3.1 Entity Data Storage . 84
8.3.2 Streaming Data Storage . 85

8.4 Summary . 86

9 Knowledge Generation Subsystem 89
9.1 Knowledge Generation Procedures Repository 90
9.2 Knowledge Instantiation . 91

9.2.1 User Defined Knowledge Instantiation 92
9.2.2 Machine Triggered Knowledge Instantiation 92

9.3 Knowledge Update . 93
9.3.1 Knowledge Mapping . 93
9.3.2 Knowledge Materialization . 94

9.4 Operations Scheduler . 94
9.5 Summary . 95

10 Knowledge Exploitation Subsystem 97
10.1 Authentication . 98
10.2 Anonymization . 98
10.3 Access Control . 99
10.4 Data Subscription . 99
10.5 Services . 100

10.5.1 System Services . 101
10.5.1.1 Data Control . 101
10.5.1.2 Publish/Subscribe Mechanism 102
10.5.1.3 Users Registration . 102

10.5.2 External Services . 103
10.6 Summary . 103

11 The StreamBase (SB) System 105
11.1 Modular Architecture Based on Microservices 105

11.1.1 Microservices . 106
11.1.2 Docker . 107
11.1.3 Kubernetes . 108

11.2 Distributed Database System . 108
11.2.1 What is Cassandra . 109
11.2.2 How Cassandra Stores the Data 110
11.2.3 Querying a Cassandra Node . 111
11.2.4 Cassandra Data Model for Streams 111
11.2.5 Performances . 114

11.3 Framework for Distributed Computing 115
11.3.1 What is Apache Spark . 116
11.3.2 Resilient Distributed Datasets (RDD) 118

11.4 Instantiating the StreamBase (SB) System 118
11.5 Summary . 119

IV Use cases 121

12 Knowdive Experiments 123
12.1 Knowdive One . 123

12.1.1 Objectives . 123
12.1.2 Smartphone Battery Consumption 123

xiv

12.1.2.1 Idle state . 124
12.1.2.2 Single Sensors . 126
12.1.2.3 Sensor Groups . 127
12.1.2.4 Frequency-dependent Consumption 127
12.1.2.5 Parallel Sensing Consumption 128

12.1.3 Outcome . 129
12.2 Knowdive Two . 131

12.2.1 Audio Sensor . 131
12.2.2 Fast and Easy Deployment . 131

13 SmartUnitn Experiments 135
13.1 SmartUnitn One . 135

13.1.1 Objectives . 135
13.1.2 Requirements . 136
13.1.3 Design . 137

13.1.3.1 Sample Selection . 137
13.1.3.2 i-Log Application User Interface 138
13.1.3.3 Sensor Selection . 139
13.1.3.4 Time Diaries Design . 140

13.1.4 Results . 144
13.1.4.1 Behavioural Dataset . 144
13.1.4.2 Quantifying Students Biases 144
13.1.4.3 Using the Biases to Find Inconsistencies in Students

Home . 148
13.2 SmartUnitn Two . 155

V Conclusions 157

14 Related Work 159
14.1 Context Awareness . 159
14.2 Context Modelling . 159
14.3 Life Logging in Ubiquitous Computing 160
14.4 Hybrid Approaches to Activity Recognition 161
14.5 Database Technologies . 163
14.6 Time diaries . 164
14.7 Participatory Sensing . 165

15 Conclusions and Future Work 167
15.1 The Context . 167
15.2 The Contributions . 167
15.3 The Use Cases . 168
15.4 Future Work . 170

A i-Log Sensors List 171

Bibliography 173

xv

List of Figures

3.1 An example of an ET Location instantiated into two different repre-
sentations (inter-difference). 22

3.2 An example of an ET Location instantiated into two different repre-
sentations (intra-difference). 23

4.1 i-Log notifications used to inform the user about the logging process. . 30
4.2 How the i-Log notification is showed in the notification area. 31
4.3 i-Log minimal user interface. 32
4.4 How Android asks the user to approve a permission request. 34
4.5 How Whatsapp asks the user to approve a permission request. 35
4.6 Representation of the reference system for the accelerometer sensor

on a smartphone. 44

5.1 The user context represented with the entity-centric approach. 48
5.2 Screenshots of how the system leverages on i-Log to ask the user to

help in instantiating new knowledge. 53
5.3 Schematic of the elements composing a Numeric Attribute Update

procedure. 55
5.4 Schematic of the elements composing a Semantic Attribute Update

procedure. 58

7.1 Schematic of the reference architecture of the SB with the three main
subsystems: Data Acquisition and Management, Knowledge Genera-
tion and Knowledge Exploitation. 71

7.2 Sequence diagram of the user synchronizing log files of streaming
data collected by her smartphone. 74

7.3 Sequence diagram of the knowledge generation phase. The user man-
ually instantiates an entity and the system starts to automatically up-
date one of its attributes. 75

7.4 Sequence diagram of the system exploiting the user generated knowl-
edge to provide a service. 76

8.1 Schematic of the components of the Data Acquisition and Manage-
ment Subsystem. 77

8.2 Schematic presenting the two pipelines used for importing the stream-
ing data into the system database. 79

8.3 Schematic presenting the pipeline used for importing the knowledge
data into the system database. 81

8.4 Schematic presenting the two storage systems of the SB. 83

9.1 Schematic of the components of the Knowledge Generation Subsystem 89
9.2 Schematic of the Knowledge Generation Procedures Repository com-

ponent. 90
9.3 Schematic of the Knowledge Instantiation component. 91

xvi

9.4 Schematic of the Knowledge Update component. 93
9.5 Schematic of the OperationScheduler component. 94

10.1 Schematic presenting the Knowledge Exploitation Subsystem and its
components. 97

10.2 Schematic presenting the elements of the Anonymization component
of the Knowledge Exploitation Subsystem. 98

10.3 Schematic presenting the elements of the Access Control component
of the Knowledge Exploitation Subsystem. 99

10.4 Schematic presenting the elements of the Data Subscription compo-
nent of the Knowledge Exploitation Subsystem. 100

10.5 Schematic presenting the Services component of the Knowledge Ex-
ploitation Subsystem. 100

10.6 Mockup of the Publish/Subscribe service of the SB. 102

11.1 A representation of how Docker works. 108
11.2 A representation of how Cassandra stores timeseries data. 111
11.3 Graphic showing the Cassandra reading performances for the config-

uration used in the SB with one node, 913 threads reading 1 million
values. 115

11.4 Graphic showing the Cassandra writing performances for the config-
uration used in the SB with one node, 913 threads writing 1 million
values. 115

11.5 Schematic showing the components of the Apache Spark Stack. 117

12.1 The two screenshots show the procedure to enable the Developer Mode
on an Android device. 132

12.2 The i-Log mobile application published on the Google Play Store. . . . 133

13.1 The two screenshots show the progresses made on the i-Log user in-
terface to make it more user-friendly. 139

13.2 The user can manually disable the GPS, WiFi and Bluetooth sensor
through the top menu in the Android operating system. 140

13.3 The mapping from WA to the activities annotation list. 142
13.4 The mapping from WE to the locations annotation list. 142
13.5 The mapping from WO to the social relations annotation list. 143
13.6 Distribution of the ∆QA parameter. The red and blue dashed vertical

lines represents the mean value of 30.4. 146
13.7 Distribution of the ∆A(X,Y) parameter accounting for weekdays and

weekends. The red and blue dashed vertical lines represents the mean
values of respectively 8.87 and 8.78. 148

13.8 Distribution of the ’Home’ clusters across a latitude, longitude repre-
sentation. The clusters are represented by the colored circles labelled
as reduced set where each color represents a student. The black dots
of the full set represent the original points we computed the clusters
from. The red area is a zoom over the municipality of Trento that con-
tains most of the dots. 149

13.9 Distribution of the number of clusters for the “Home" location. 150
13.10Distribution of the number of clusters for the “Home" location with

∆QA higher than 10min. 151
13.11Distribution of the number of clusters for the “Home" location with

∆QA lower than 10min. 152

xvii

13.12Distribution of the number of clusters for the “Home" location with
∆QA higher than 30,44min. 152

13.13Distribution of the number of clusters for the “Home" location with
∆QA lower than 30,44min. 153

13.14Distribution of the number of clusters for the “Home" location with
∆A(X,Y) greater than 8.8sec. 154

13.15Distribution of the number of clusters for the “Home" location ∆A(X,Y)

lower than 8.8sec. 154

xix

List of Tables

11.1 Schema for the 3-axes sensors. 112
11.2 Schema for the sensors that generate only one value, modeled to allow

query based on the timestamp. 112
11.3 Schema for the sensors that generate only one value, modeled to allow

query based on the value. 113
11.4 Schema for the Bluetooth and Bluetooth LE, modeled to allow query

based on the address. 113
11.5 Schema for the Bluetooth and Bluetooth LE, modeled to allow query

based on the timestamp. 113
11.6 Schema for the Bluetooth and Bluetooth LE, modeled to allow query

based on the signal strength (RSSI). 113
11.7 Schema for the Location data, modeled to allow query based on the

timestamp. 114
11.8 Cassandra performances summarized for the SB deployment with one

single node, 913 threads and 1 million records. 116

12.1 Table showing all the possible states of the phone when idle and the
relative current consumption values in mA. The "-" symbol means
disabled while the "+" means enabled. 125

12.2 Table showing the normalized consumption values in % with respect
to the current consumption in idle state of all the hardware sensors
in the Samsung Galaxy S4 smartphone, grouped according to simi-
lar consumption patterns. We show the values at different sampling
frequencies and the average value of each group at each frequency. . . 126

12.3 Table showing the normalized consumption values in % with respect
to the current consumption in idle state of all the other sensors in the
Samsung Galaxy S4 smartphone. 126

12.4 Table showing the frequency dependency of the energy consumption
of the different sensor groups in percentage respect to the lowest sam-
pling frequency. 127

12.5 Table showing the normalized consumption values in % with respect
to the current consumption in idle state while using multiple sensors
in parallel per Group. 129

13.1 Socio-demographics of SmartUnitn One students 138
13.2 The questionnaire administered to the users. 143
13.3 Statistics about the collected answers using i-Log within the SmartU-

nitn One project. 145
13.4 Distribution of the ∆QA parameter at different time slots. 146
13.5 Mean values and standard deviation for the ∆QA parameter calcu-

lated based on real world and socio-demographical variables. 147
13.6 Distribution of the ∆QA parameter at different time slots based on real

world and socio-demographical variables. 147

xx

13.7 Distribution of the ∆A(X,Y) parameter at different time slots. 148
13.8 Summary of results of the clustering for the Home location depending

on the ∆QA parameter. 153
13.9 Summary of results of the clustering for the Home location depending

on the ∆A(X,Y) parameter. 153

14.1 Databases comparison with respect to five key features from [Tudor-
ica and Bucur, 2011]. 163

A.1 i-Log sensor list with details about the logging process 171

xxi

List of Abbreviations

3G 3rd Generation. 38, 39

A Attribute. 21, 22, 24

AD Attribute Definition. 21, 22, 24, 60

AI Artificial Intelligence. 5, 9, 13, 17, 20

API Application Programming Interface. 34

AT Attribute Type. 22

AV Attribute Value. 60

C Component. 43

CA Container Architecture. 168

CPU Central Processing Unit. 38

CSV Comma Separated Value. 37

E Entity. 21, 24

EB Entity Base System. 6, 7, 23, 42, 47–50, 52, 61, 62

ET Entity Type. 19–22, 24, 47, 52

EU European Union. 30

FIFO First In First Out. 38

GDPR General Data Protection Regulation. 11, 13, 33, 45, 62, 63

GPS Global Positioning System. 9, 33, 37, 48, 51, 169

H High. 37

KB Knowledge Base System. 6, 7, 23, 47

L Low. 37

LTE Long Term Evolution. 38, 39

M Medium. 37

N None. 37

xxii

P Procedure. 60

S Streams. 43

SB Stream Base System. vii, xv, xvi, xix, 6–8, 11, 12, 15–18, 20, 23, 24, 27, 29, 33,
35, 38, 40–42, 46, 47, 50, 54, 56, 59, 61–63, 67–73, 77–79, 81–87, 90–95, 97–99,
101–103, 105–108, 111, 114–116, 118, 119, 123, 135, 136, 168, 170

SHA-1 Secure Hash Algorithm 1. 45

SMS Short Messaging System. 35

SPR Smartphone Penetration Rate. 4

SURI Semantic Universal Resource Identifiers. 20, 21, 24

SURL Semantic Uniform Resource Locators. 20, 21, 24

SUS Smartphone Usage Statistics. 4

URI Universal Resource Identifiers. 20, 21

URL Uniform Resource Locators. 20

URN Uniform Resource Names. 20

UTC Coordinated Universal Time. 43

Weak AI Weak Artificial Intelligence. 61

xxiii

Author’s Contributions

What follows is the list of publications of the author that are relevant to the work
presented in this thesis.

Bahle Gernot Gruenerbl Agnes, Lukowicz Paul Bignotti Enrico Zeni Mattia and
Giunchiglia Fausto (2014). “Recognizing hospital care activities with a coat pocket
worn smartphone”. In: Mobile Computing, Applications and Services (MobiCASE),
2014 6th International Conference on. IEEE, 175–181 **BEST PAPER AWARD**.

Caprini, Carlo et al. (2013). “TinyBox: Social, local, mobile content sharing”. In: Per-
vasive Computing and Communications Workshops (PERCOM Workshops), 2013 IEEE
International Conference on. IEEE, pp. 300–302.

Giunchiglia, Fausto, Enrico Bignotti, and Mattia Zeni (2017). “Human-like context
sensing for robot surveillance”. In: INTERNATIONAL JOURNAL OF SEMANTIC
COMPUTING 2017.

Giunchiglia, Fausto et al. (2017a). “Analyzing the impact of students’ time allocation
on academic performance via smartphone and time diaries”. In: Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, **SUBMITTED
TO**.

— (2017b). “Mobile Social Media and Academic Performance”. In: International Con-
ference on Social Informatics. Springer, pp. 3–13.

Giunchiglia, Fausto et al. (2017c). “Mobile Social Media Usage and Academic Per-
formance”. In: Computers in Human Behavior, **SUBMITTED TO**.

— (2018). “Personal Context Recognition via Reliable Human-Machine Collabora-
tion”. In: Pervasive Computing and Communications (PerCom), 2018 IEEE Interna-
tional Conference on. IEEE, **SUBMITTED TO**.

Giunchiglia Fausto, Bignotti Enrico and Zeni Mattia (2017a). “Human-like context
modelling for robot surveillance”. In: Semantic Computing (ICSC), 2017 IEEE 11th
International Conference on. IEEE, pp. 360–365.

— (2017b). “Personal context modelling and annotation”. In: Pervasive Computing
and Communications Workshops (PerCom Workshops), 2017 IEEE International Con-
ference on. IEEE, pp. 117–122.

Zeni, M. and K. Weldemariam (2017). “Extracting Information from Newspaper Archives
in Africa”. In: IBM Journal of Research and Development 61.6.

Zeni, Mattia, Daniele Miorandi, and Francesco De Pellegrini (2013). “YOUStatAn-
alyzer: a tool for analysing the dynamics of YouTube content popularity”. In:

xxiv

Proceedings of the 7th International Conference on Performance Evaluation Method-
ologies and Tools. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), pp. 286–289.

Zeni, Mattia, Daniele Miorandi, and Francesco De Pellegrini (2016). “Understand-
ing the Diffusion of YouTube Videos”. In: Proceedings of ECCS 2014. Springer,
pp. 309–319.

Zeni, Mattia, Ilya Zaihrayeu, and Fausto Giunchiglia (2014). “Multi-device activity
logging”. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct Publication. ACM, pp. 299–302.

Zeni Mattia Ondula Elizabeth, Mbitiru Reagan Nyambura Agnes Samuel Lianna
Fleming Kala and Weldemariam Komminist (2015). “Low-power low-cost wire-
less sensors for real-time plant stress detection”. In: Proceedings of the 2015 Annual
Symposium on Computing for Development. ACM, pp. 51–59.

xxv

Dedicated to the only person who has been with me
all the time, me, myself, and I. . .

1

Part I

General Notions

3

Chapter 1

Introduction

This Chapter is intended to introduce the work presented in this Ph. D. thesis. We
start by defining a simple motivating example that will facilitate the understanding
of the methodologies and theories presented in this work. We then present the con-
text according to which this work should be looked at. Then, we present which are
the problems this thesis wants to tackle, starting from the motivating example and
the context. Finally, we draft the solution to these problems, that is composed by a
methodology, a reference architecture and an instantiation of this architecture in a
working system used in four different use cases.

1.1 Motivating Example

Fausto has an appointment in the Trento city center today at lunch and he cannot
afford to be late (again). The i-Log application installed on his smartphone knows
about this because Fausto gave it permissions to check the agenda in addition to
other personal information. At 11:30AM the application notifies Fausto that he has
to leave for his appointment and proposes him the best route to cover to reach the
parking lot. This apparently simple service that notifies about an appointment in-
volves a lot of knowledge the system has to be aware of. First of all, the locations
about where Fausto is now and where he has to be for lunch. Knowing the locations,
the system is able to calculate the time necessary for reaching the destination con-
sidering additional information such as real-time traffic conditions in the area. Not
only this, the system is aware that Fausto has a specific goal referred to the physical
activity he has to perform every day, being it a total of 10.000 steps. Since today he
didn’t move much, the system wants to incentive Fausto to walk more and proposes
a parking lot that is a bit further away. For this reason, the departure time from the
office takes into account also this additional element. Additionally, the system has
learned from previous experiences with Fausto that he always tends to be late and
then adapted the departure time accordingly, anticipating it by 10 minutes. Fausto is
having an amazing time at lunch and didn’t realize that the time is going on. In fact,
he has a very important meeting with a Professor coming from another university.
Since the meeting is scheduled at 1PM but at 12:40 Fausto is still at the restaurant,
the system notifies him with the same service used in the morning, but this time
Fausto decides he wants to finish the conversation an ignores the notification. At
this point the system elaborates a strategy, based on a past experience, that involves
sending an email to Mattia, one of Fausto’s postdoc, communicating about his delay.
One month before in fact, Fausto was in a similar situation and decided to send an
email to inform about the delay and advice that the meeting could start without him.

4 Chapter 1. Introduction

In such a scenario described above, which is common with many users, the AI
system must have knowledge of the user preferences and habits among other het-
erogeneous information such as about his surroundings in order to provide the ap-
propriate service at the right time. To have such knowledge, and most importantly,
to structure it in a way that makes it easy to retrieve and use it, is not an easy task.

1.2 The Context

Understanding what people are doing in a context-aware manner and react accord-
ingly is an active field both from a research but also an industrial point of view. The
final goal of this task is to provide services that are highly personalized on the user
and that ultimately will improve her quality of life. This has become a field that is
gaining interest especially thanks to the increasing number of electronic devices that
surround the user in every aspect of his life. This devices are so pervasive and pow-
erful that can enable completely new possibilities that few years ago were not even
foreseeable. As an example we can mention IoT devices in general and smartphones
with wearables. Smartphones in particular are devices that are more intertwined
with our lives. There are two dimensions of this phenomena:

• The Smartphone Penetration Rate (SPR) which is the measure of the number
of users that own and use at least one smartphone. There are yearly conducted
surveys that show an amazing 30,9%1 of worldwide smartphone adoption in
2017, that corresponds to 2.5 Billion people. This value increases if we consider
a country such the United States, with a total penetration of 81%2 in December
2016. These numbers are seeing an incredible growth, for example in devel-
oping countries, where they moved from a 21%3 penetration rate in 2013 to a
37%3 two years later.

• The Smartphone Usage Statistics (SUS) that refers to a measurement of the
time spent using smartphone in specific situations. A person uses the smart-
phone for an average of 3 hours4 per day, that excluding the sleeping time,
it corresponds to almost 19% of the time available during the day. In addi-
tion to the time spent using the phone, there are other interesting dimensions
that should be considered. For example, 52%5 of UK owners look at the de-
vice within 15 minutes after wake up in the morning, which increases to 86%5

within one hour. Similar values can be found considering the time interval
between when the user looks at the phone and when he goes to sleep, with a
43% within 15 minutes that raise up to 77%5 within one hour. Also in the mid-
dle of the night, 34%5 of the users claimed they check at least one time their
smartphones for different purposes. Finally, these numbers are even more sig-
nificant if we consider only a subset of the population, for example filtering by
age. Millennials are the one that use more these devices, with 87%6 of them
saying that they never leave their smartphones during the day and 80%6 say-
ing that they are the first thing they look at when they wake up in the morning.

These statistics support our intuition that smartphones are the devices that are
more intertwined with our lives. Another very important element is that they are

1http://goo.gl/5qGJBZ
2http://goo.gl/7zUEmG
3http://goo.gl/s5MqED
4http://goo.gl/ctXFLv
5http://goo.gl/t9krFC
6http://goo.gl/2KJFZF

http://goo.gl/5qGJBZ
http://goo.gl/7zUEmG
http://goo.gl/s5MqED
http://goo.gl/ctXFLv
http://goo.gl/t9krFC
http://goo.gl/2KJFZF

1.3. The Problem 5

facing an exponential increase in performances and features. Even a low-end smart-
phone today has enough memory, computational power and sensors to run most of
the applications available.

All these considerations let us understand that the smartphone is the best can-
didate in a system that wants to tackle the situation described in the motivating
example of previous Section. In fact, a device that is always with the user and that is
powerful and flexible enough to run custom application can be used to collect huge
amounts of data and to provide the results of the analysis in terms of context aware
personalized services.

This thesis looks at many situations where an Artificial Intelligence (AI) system
can help the user in improving her everyday life.

1.3 The Problem

Starting from the motivating example of Section 1.1 and within the context described
in Section 1.2 the problem this thesis addresses is part of a long standing problem in
computer science defined as the semantic gap problem [Smeulders et al., 2000]. In the
context of this thesis we can refer to it as the lack of coincidence between the sensor
data collected by the machine and the understanding of the situation the user has
and the machine doesn’t have. Thanks to her contextual information composed by
habits, routines and ultimately her intelligence, the user has a completely different
understanding with respect to the machine. The reason can be explained by the fact
that the same sensor values can refer to multiple situations if no contextual infor-
mation is provided. This is even more evident if we consider that two very similar
situations can be perceived as very different to a person. If a person is very close
to the door of a room, it is very different if she is inside or outside it. If she is in-
side, she can be attending a meeting, while if she is outside, probably she is at the
copy machine one meter away from the door. From a machine point of view, the
two positions can be assimilated with a unique point in space, due to the accuracy
and errors in the measurement. To better explain this statement we can make an ad-
ditional simple example: consider an application that collects location points about
the places visited by the user. From an human perspective, the same location points
collected by the machine in terms of coordinates can be interpreted very differently
depending on the context. If the user has to communicate where she works to a new
person met in a conference, she cannot reply with "I work in my office" but rather
she will say something like "The University of Trento in Povo (TN)". As a counterex-
ample if a user’s friend asks where she is, she cannot reply using "The University of
Trento in Povo (TN)" but she would prefer saying "I’m in my office". This situation
shows that, depending on the context, a different output is enabled starting from the
same sensor inputs, i.e., the physical coordinates of the University.

From this problem, we identified the following sub-problems:

1. Data Acquisition and Management. Collecting data from the people is not
as easy as collecting data from other sources e.g., the web or sensor networks.
When dealing with the user one must take into consideration all the psycholog-
ical and social implications of such an operation. In fact, she must be engaged in
collaborating in order to provide her data. Moreover, the privacy requirements
for personal data are more strict with respect to other cases;

2. Knowledge Generation. Analyzing the sensor data in a context aware manner
is not an easy task and this is why the semantic gap problem is still unsolved,

6 Chapter 1. Introduction

especially in open domain scenarios. There is the need to represent the differ-
ent elements of the context involved in the analysis and create the appropriate
methodologies to process sensor data;

3. Knowledge Exploitation for Services. Different users have different needs.
This personalization aspect adds an additional challenge and must be taken
into account when providing services to the user. Different solutions must be
considered so that everyone receives the service she wants.

1.4 The Solution

This Ph. D. Thesis wants to find a solution to the semantic gap problem applied to
personal data by giving the machine the necessary contextual information so that
it can understand the user situations represented by the sensor data collected from
her smartphone. In other words, the machine needs to analyze the collected data
in a meaningful way for the human, ending up helping her in the every day life
situations.

The contributions of this Ph. D. Thesis are:

• The definition of a methodology based on an interdisciplinary approach able to
generate human level knowledge from streaming sensor data in open do-
mains. It leverages on two different research fields: one regarding the col-
lection, management and analysis of big data and the field of semantic com-
puting, focused on ontologies, which respectively map to the two elements of
the semantic gap mentioned above. The methodology is based on the idea
that we can model the user and the world surrounding her, with an incremen-
tal method, defining most of the elements of his context as entities (locations,
people, objects, among other, and the relations among them) in addition with
the attributes for all of them. The modeling aspects of this ontology are out-
side of the scope of this work. Having such a structure, the task of bridging
the semantic gap is divided in many, less complex, modular and compoositional
micro-tasks which consist in mapping the streaming sensor data in a context
aware way in the attribute values of the entities. In this way we can create a
structure out of the unstructured, noisy and highly variable sensor data that
can then be used by the machine to provide personalized, context-aware ser-
vices to the final user;

• The definition of a reference architecture that implements the methodology above
to collect, store, process and finally generate human level knowledge out of
streaming sensor data that can be generated by a smartphone as well as any
other IoT device;

• The instantiation of the architecture above in the SB using state-of-the-art software
solutions to fulfill the requirements in terms of scalability, performance and ef-
ficiency. The system has three main goals: (i) to collect the streaming data from
the users devices (smartphone and others) using a mobile application devel-
oped for this scope called i-Log [Zeni, Zaihrayeu, and Giunchiglia, 2014] and
store them in a distributed database system; (ii) to apply the methodology de-
fined in this thesis to generate human level knowledge from the sensor data
using context information stored in the Entity Base System (EB) and Knowl-
edge Base System (KB); (iii) finally, to provide a framework that makes the

1.5. Structure of the thesis 7

human-level knowledge available to other applications that want to provide
services to the final user;

• The adoption of the SB in four real-life use case with different goals in mind,
proving that the system works in open domains.

1.5 Structure of the thesis

The remainder of this thesis is organized as follows:

• Chapter 2 elicitates in details the different elements of the problem that are
related to the task of generating high-level human knowledge out of streaming
sensor data in a context aware way;

• Chapter 3 describes the basic notions needed to fully understand the content
of the thesis. In particular, those related to the representation and organization
of the knowledge in the EB and KB. Moreover, since the knowledge schema
is outside the scope of this work, a part of the whole schema needed for this
work will be introduced in this chapter as well;

• Chapter 4 explains the methodology we developed to solve the problems re-
lated to the data acquisition and management of personal big data from the
user’s smartphone;

• Chapter 5 illustrates the methodology we developed to solve the problems
related to the human knowledge generation from the personal big data in form
of streams of sensor data collected and stored as described in the previous
Chapter.

• Chapter 6 describes the methodology we developed to solve the problems re-
lated to the knowledge exploitation for providing context aware services to the
users that are meant to improve their quality of life;

• Chapter 7 presents the second contribution of this thesis, the definition of a
reference architecture that has been designed according to the methodology
elements presented in Chapters 4, 5, and 6. We present the requirements, the
logical view and a dynamic view that facilitate the reading of the next Chap-
ters. The architecture is general in the sense that do not focus on any specific
use case and do not sticks to any specific technology;

• Chapter 8 describes in details the architectural solutions related to the acquisi-
tion and management of the users’ data;

• Chapter 9 describes in details the architectural solutions related to the genera-
tion of human knowledge from the streaming sensor data;

• Chapter 10 describes in details the architectural solutions related to the ex-
ploitation of the generated knowledge to provide services to the users;

• Chapter 11 describes in details how we instantiated the reference architecture
into a real working prototype of the SB. It describes the technologies we used
to satisfy all the strict requirements we defined;

• Chapter 12 illustrates how we used and evaluated the implemented SB into
two use cases run inside the University of Trento;

8 Chapter 1. Introduction

• Chapter 13 illustrates how we used and evaluated the implemented SB into
two use cases run outside a laboratory setting on the students of the University
of Trento;

• Chapter 14 presents the related work in different areas that are connected with
the work presented in this thesis. Since our solution is highly interdisciplinary,
in this Chapter different research communities are presented;

• Chapter 15 wraps up the thesis, presenting the conclusions and possible re-
search directions that will follow this work;

9

Chapter 2

The Problem

The goal of this thesis is to define a system able to transform huge amounts of sen-
sor data into meaningful knowledge for the user in an open domain scenario. This
knowledge will then be used by the AI to react to context changes and to provide
personalized services that improve the user’s quality of life.

However, this goal forces us to address a long standing problem in computer
science, i.e., the semantic gap problem. It was originally defined in the research area
of image processing as "... the lack of coincidence between the information that one
can extract from the visual data and the interpretation that the same data have for a
user in a given situation..." [Smeulders et al., 2000]. The same issue applies within
the work of this thesis, since the two sources of information that we rely on are hu-
mans and sensors. These two sources represent the world very differently, and their
representations are not coherent. This makes it very hard, sometimes impossible, to
understand that they actually represent the same real world. Consider for instance
how both sensors and humans represent a location:

• Sensors: a location can be reduced to (a set of) coordinates, which may also be
collected with different sensors with varying degree of granularity and noise.
For instance, rooms within buildings are hard to be represented with current
technologies embedded in smartphones with the same granularity of exter-
nal buildings, which are easily detectable using the Global Positioning System
(GPS) [Ladd et al., 2004].

• Users: Humans understand their surroundings via context, i.e., “a theory of the
world which encodes an individual’s subjective perspective about it" [Giunchiglia,
1993], which relates and make sense of different elements of humans’ environ-
ment(s). In the case of locations, humans distinguish between different types
of locations not only in terms of functions, e.g., my house vs my workplace,
but also in relation to other elements such as social circles, e.g., family vs col-
leagues.

The misalignment between these two representations originates from the fact
that the same sensor values can ideally refer to multiple situations if no further con-
textual information is provided. This is even more evident if we consider that for a
person two very similar situations can be perceived as very different. In fact, sensors
always collect position with a certain error, e.g., being in front of a door vs being in-
side, which for humans implies radically different situations, e.g., being in a meeting
vs walking in the street.

This semantic gaps affect not only humans and machines, but also humans be-
tween themselves. For instance, if the user has to communicate where she works
to a new person met in a conference, she cannot reply with "I work in my office"
but rather she will say something like "The University of Trento in Povo (TN)". As

10 Chapter 2. The Problem

a counterexample if a user’s friend asks where she is, she cannot reply using "The
University of Trento in Povo (TN)" but she would prefer saying "I’m in my office".
This additional layer of complexity only worsens the fact that, from the point of view
of sensors, a different output is enabled starting from the same sensor inputs.

What the methodology and the system presented in this thesis wants to achieve
is to give the machine these contextual information so that it will eventually be able
to provide the right answer at the right time. In other words, we want to bridge the
semantic gap so that the machine can analyze the collected data in a meaningful way
for the human, ending up helping her in the every day life situations.

The overall problem can be split into different sub-problems that will be de-
scribed in the next Sections: issues related to data acquisition and management,
how to generate the knowledge and finally how to exploit the generated knowledge
to provide highly personalized services to the user.

2.1 Data Acquisition and Management

The first element of the problem consists in having the data from the users that the
system can use to do its analysis. This is a non-trivial issue considering its different
dimensions: how to collect the data, how to store it efficiently and finally how to
access these data.

Considering that the knowledge modelling aspects are outside the scope of this
thesis (a summary is presented in Section 3), in this Section we refer only to the sen-
sor data collected by the machine from the user personal devices. This task is usually
called Lifelogging and is defined as "a record of a person’s everyday life produced
by a portable camera and/or other digital device which the person regularly carries
around with them1". In this work [Gurrin, Smeaton, and Doherty, 2014] they refer to
Lifelogging as "Personal Big Data" and we believe this definition perfectly fits with
what this thesis presents. Dealing with big data adds additional challenges and this
affects every element of the anayslis and the system.

2.1.1 Data Collection

Data collection is defined as the process of gathering and measuring information on
targeted variables in an established systematic fashion. In Computer Science there
are thousands of approaches to collect information from the multitude of sources
available, the web in general, social networks in particular, sensors, among others.

Since we are dealing with personal data and then ultimately with the people, this
task involves an additional challenge related to the interdisciplinarity. In fact, in-
teracting with the users requires additional competences from other field of studies
such as psychology, social sciences and humanities in general. The result is that all
the dimensions of a typical data collection problem such as data quantity, quality
and privacy are conditioned by the interdisciplinary factor.

Data Volume. Collecting data from the users is not as easy as collecting data
from other sources e.g., sensor networks. The reason for this is that when dealing
with the people one must take into consideration all the psychological and social im-
plications of such an operation. It is in fact not enough to develop a system able to
collect data in the most efficient way since if the user does not collaborate, the data

1http://www.macmillandictionary.com/buzzword/entries/lifelogging.html

http://www.macmillandictionary.com/buzzword/entries/lifelogging.html

2.1. Data Acquisition and Management 11

cannot be collected. To facilitate this collaboration the user must be engaged.

Data Quality. While methods to ensure the proper volume of collected data vary
by discipline, the goal for all of them is to capture quality evidence. Considering the
problem presented in this thesis we identified two key quality metrics: the sensor
sampling rate and the presence of multiple sensors. All the considerations made to de-
sign the data collection task must take into account these two dimensions, otherwise
the data won’t be good enough to provide meaningful results.

Data Privacy. When dealing with personal data the privacy and in general any
ethical issue that can arise from their collection and exploitation are very important.
The European commission will introduce (starting from May 2018) the Directive
95/46/EC called General Data Protection Regulation (GDPR)2 that will completely
change the way personal data are managed by organizations. In a system such as
the SB we must take into account all the elements related to the privacy of the users.
We will present them in the data collection even if we will make extensive use of
them more when the data are accessed to be exploited.

2.1.2 Data Storage and Retrieval

If in the case of the data collection task there are multiple interdisciplinary factors
to take into consideration, on the other hand in the case of data storage the problem
is more on the technical side. The key point is to find the best solution able to store
the collected data and deal with all their characteristics, the volume, the velocity at
which they are generated and finally their variety of formats.

Data Volume. Personal big data can easily reach big volumes and on resource
constrained devices such as the smarpthones, this constitutes a problem. Specific so-
lutions must be designed to address this problem that are general and do not focus
on a single use case of technology.

Data Velocity. The problem is even bigger considering that the memory can be
filled up in a short period of time due to the speed these data are generated, usually
in days.

Data Variety. The personal data collected from the smartphone are of different
types that have heterogeneous formats. The best solution to store each of them is
needed.

Storing the data is only half of the problem. After the information has been stored
it needs to be extracted for the contextual analysis. The context in this thesis (as will
be defined in Section 3.1) is the personal view of the world of the user in a specific
moment in time. The rate at which the context changes varies on the situation but
can be short, then for creating a context-aware system the real time aspect is crucial.
To generate insights in such a short time the data must be always available and most
importantly they must be retrieved very quickly from the storage systems. This is
a non-trivial task because affects the choices made in the selection of the database
technology, the data schema and also the hardware configurations. Details about
this will be provided in Section 11.

2http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.
119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC

12 Chapter 2. The Problem

2.2 Knowledge Generation

The knowledge generation task is at the core of the methodology and the SB pre-
sented in this thesis. There are different ways the system can leverage on for gen-
erating meaningful knowledge to the user, each one comes with its own problems:
how to instantiate the knowledge, both in a semi-automatic or in a manual way and
how to update the existing knowledge automatically by exploiting the data collected
from the users’ smartphone.

2.2.1 Knowledge Instantiation

They key element of transforming sensor streaming data into meaningful knowl-
edge automatically stands in the ability of the system to map the raw data into the
property values in the knowledge (we refer to Section 3 for notions required to un-
derstand the knowledge elements of this research). This involves the creation of a
systematic way that is able to:

Select the Appropriate Streams of Sensor Data. Since the data collection task is
costly, this phase must take into account to use the minimum required information
to produce accurate results.

Select the Right Time Intervals. Retrieving the information from the database
is an expensive operation if the mapping task has to be performed in semi real time.
Then, there is the need to extract only the necessary data.

Select the algorithm. Select the most efficient machine learning algorithm for
the task and the data in input, that is efficient enough to process the data in a short
period of time to allow the real time dimension.

Select the Entity Attribute. Once the result is generated, the entity attribute
value has to be updated with the one generated from the algorithms, this involves
the search in the Knowledge Graph.

2.2.2 Knowledge Update

We believe the user is the best candidate to annotate her own data. The annotation
task we are referring to is the one that usually is performed by a field expert when su-
pervised machine learning algorithms are used. In a situation such the one described
in this work, in an open domain scenario and where the possible context elements to
be recognized are not constrained, the idea of using an external expert annotator is
unfeasible. By looking at the data, even an expert cannot really understand the spe-
cific situation the user was involved in. On the other hand we believe the user can
help in this task since she has her own personal representation of what’s happening
that is for sure meaningful to her. This of course presents some challenges:

Don’t Bother the User. Interacting with the user in a systematic way can be very
useful but also very dangerous. In fact, if she feels she is asked too many things too
frequently, she can decide to quit.

2.3. Knowledge Exploitation for Services 13

Represents all the Answers using a Time Diary. Linked to the previous element
there is the fact that short and fast to select answers must be presented to the user.
This implies additional challenges in the way the time diaries are adapted.

User Unreliability. The user should be incentivized to help the machine in un-
derstanding his own context. But we cannot assume that her annotations are always
realiable, since she is not an expert.

Finally, another way the human can be kept in the loop and help the machine to
improve the context recognition task is through another type of interaction usually is
referred to as active learning. On a non-regular basis, whenever the machine cannot
decide among one possible representation of the real world to choose from as the
result of the analysis, it can ask directly the user. Even if the task is different with
respect to the previous one, the challenges that can arise are the same.

2.3 Knowledge Exploitation for Services

The final goal of generating meaningful knowledge out of streaming data is ulti-
mately to generate an AI that can improve the quality of life of the user by pro-
viding useful, highly personalized services at the right time in the right place. The
challenges that this task represents are the following:

User’s privacy in accessing the data. We already presented some information
about the privacy of the users and GDPR while explaining the data collection. In
this situation, where the data is accessed for providing the service, these privacy is-
sues become even more important. A whole security pipeline must be implemented
to satisfy all the requirements in terms of authentication, anonoymization, access
control.

Select which services are more suitable to satisfy the user needs. It is not obvi-
ous which are the services that can be created out of the user’s data. Focus groups
should be executed to understand the user needs and requirements for the different
use cases. Moreover, in order to obtain the highest user satisfaction, all the services
should be personalized on the user needs and configurable.

Services from different providers. Multiple providers should be able to provide
services to the users since everyone of them should be expert and have information
in its specific field of work. For example, a Municipality can provide services that
are different from the one provided by an University or a National Health System.

How to provide the service. It is not obvious neither how to provide the services
to the users, if on a desktop application or directly on the mobile device. Addition-
ally, even if the mean is clear there are many possibilities to provide the service and
all of them must be studied.

15

Chapter 3

Ground Knowledge

This chapter is intended to introduce the general notions used to set the ground
knowledge for the content that is presented throughout this thesis. Therefore, we
define the basic elements that will be used as building blocks for the SB.

We start by presenting the notions of user, smartphone, sensor, context, service,
entity and entity attribute. We illustrate the semantic schema we adopt in this thesis
for representing the data. Then we illustrate the instantiation process that allows to
create the actual data that describes the users and their context. Finally we present
the set of simplified entities the SB uses.

Acknowledgement. The knowledge modelling aspects are outside of the scope
of this work. In fact, we leveraged on previous work developed by the members of
the Knowdive1 group, in particular [Fernandez and Ignacio, 2012], [Hume Llamosas,
2014] and the work of Enrico Bignotti.

3.1 Fundamental Notions

This Section explains the definitions of some key notions that will be extensively
used in the SB and in the next Chapters of this thesis.

User. The user is the person who uses the SB and leverages on its services to im-
prove her quality of life. In exchange of the services, most (or all) of them
free-of-charge, the user provides her data, so that they can be analyzed and
the insights can be generated. The data she provides are sensor data collected
from her smartphone, referred to as personal big data and additional high-
level knowledge in form of annotations using semantic labels. This knowledge
is seen as an help to the AI that provides the user’s personal view of what is
happening.

Smartphone. The smartphone is a mobile device that performs many of the func-
tions of a computer, typically having a touchscreen interface, Internet access,
and an operating system capable of running third parties applications. Addi-
tionally in the context of this thesis such a device has also sensing capabilities.
The internal sensors can sense different elements of the person, like the posi-
tion, the movement, her social life, and also environmental conditions. Every
device has a different set of sensors, every sensor with different characteristics
like sampling frequency, sensitivity, among others.

Sensor. The most common definition of sensor states that "a sensor is an electronic
component, module, or subsystem whose purpose is to detect events or changes
in its environment and send the information to other electronics, frequently a

1http://disi.unitn.it/~knowdive

http://disi.unitn.it/~knowdive

16 Chapter 3. Ground Knowledge

computer processor. A sensor is always used with other electronics, whether
as simple as a light or as complex as a computer."2. There are sensors for every
purpose and of every size but, in general, there are three main characteristics
the all sensors must have:

• It is sensitive enough to measure the property it has been designed for.

• It is insensitive to any other property.

• It does not influence the measured property.

For the sake of simplicity in the next Chapters we will refer only to sensors
embedded inside smartphones. This doesn’t mean the SB cannot manage other
sensor sources. In fact, it has been designed to accept streaming sensor data
from any device through dedicated data input pipelines.

With respect to dedicated sensing devices, using a smartphone to sense the
user has both advantages and disadvantages. The former comprehend: (i) the
fact that they can easily be deployed outside lab settings since they require to
install only a dedicated application on the smartphone; (ii) this translates in a
cheaper setup with respect to dedicated devices; (iii) finally, since the data col-
lection is unobtrusive and does not require additional bulky devices, truthful
data is generated, since the user doesn’t perceive to be monitored. At the same
time the disadvantages are: (i) a less accurate measurement since the internal
sensors to the smartphone are not explicitly designed for this purpose and (ii)
the fact that the measurement affects the battery life of the device and counter-
measurements must be taken into account. We believe that the advantages are
far more important then the disadvantages and this is why we are using the
smartphone to sense the user.

Context. One of the first definitions of context is the one by [Giunchiglia, 1993],
which defines it as “a theory of the world which encodes an individual’s sub-
jective perspective about it". A second definition that better refers to the work
presented in this thesis, which belongs to the field of ubiquitous computing is
“...any information that can be used to characterize the situation of an entity
(person, place, physical or computational object) that is considered relevant to
the interaction between the entity and application" [Abowd et al., 1999]. The
core entity is the user; every user has her own personal view of the world,
that is originated from her habits and routines and that is composed by all the
elements (i.e., people, locations, objects, events) that surround her and the re-
lations among these elements. The context is a part of this view that accounts
for the temporal dimension. In other words, all the context situations we en-
counter compose our personal view of the world. A formal definition of this is
defined by the tuple

MyWorld =< {CxtT0, CxtT1, ..., CxtTN} > (3.1)

where Cxt is the (real world) context, aggregating different elements surround-
ing the user at a specific time instant Ti. Furthermore, the context is defined
by the tuple

Cxt =< WA,WE,WO,WI > (3.2)
2https://en.wikipedia.org/wiki/Sensor

https://en.wikipedia.org/wiki/Sensor

3.1. Fundamental Notions 17

where:

• WE is the Spatial context, i.e., the context generated from the question
“WhEre are you?". For instance, an office or my house.

• WA is the Temporal context, i.e., the context generated from the question
“WhAt are you doing?". For instance, being in a meeting or taking the
bus.

• WO is the Social context, i.e., the context generated from the question
“WhO are you with?". For instance, my girlfriend or my colleagues.

• WI is the Artifact context, i.e., the context generated from the question
“What are you wIth?". For instance, my smartphone.

Service. A service in this thesis is an output produced by the AI that is meant to
help the user in her everyday life situations. In order to provide a personalized
service at the right moment in time the machine has to be aware of the user’s
context [Jones, 2008]. The specific nature of the service is domain and device
dependent and in general all the variances are possible with the SB thanks to
its modularity and adaptability. These are some of the services we already
developed for our vertical solutions:

• Quantified self3 reports. The concept Quantified Self, refers to a move-
ment aimed at incorporating technology into data acquisition on all the
aspects of a person’s daily life, from the food consumed, to the quality of
surrounding air, the mood, health related aspects performance, whether
mental or physical. It is considered self-knowledge through self-tracking
with technology. In the last years many works in the research commu-
nity started focusing on it [Lupton, 2016], [Swan, 2013], [Fox and Felkey,
2016], [Swan, 2012a] and [Swan, 2012b]. Our thoughts about this are that
a person lies to herself in an involuntary manner. We always believe we
perform better than we actually do and the quantified self helps in this re-
gard by showing us what we really are and allows to improve ourselves.
Having a service that, on a fixed time interval basis (daily, weekly, etc),
presents the user a quantified self report will really help her in being self
aware and improve her quality of life.

• Alerts. With such a pervasiveness in our lives, the smartphone is the per-
fect device to provide services. One of its main characteristic is that it
allows third-party applications to run and communicate in realtime. De-
signing a service that, based on the context, generates and presents alerts
to the user can really provide an added value to her. The notifications
themselves will be domain dependent and the design specifications will
vary based on it.

• Dedicated applications. Third-party applications out of the scope of the
SB can be developed as well to exploit its context-aware insights. These
applications can be used as an interface with other systems that will en-
able additional service in a domain dependent manner. Examples regard
smart homes ad smart environments in general as well as everything that
is related with the internet of things.

Entity. There are multiple definitions of entity but the one we refer to is a "thing"
that exists in the real world. Entities can be defined as abstract or physical

3http://quantifiedself.com/

http://quantifiedself.com/

18 Chapter 3. Ground Knowledge

objects, can be of different types (e.g., person, location, event, artifact) and
are described by attributes (e.g., name, position, address, etc.) which vary
based on the type of the entity but also on the domain. Different domains
want different attributes for the same entity, e.g., in the educational domain is
enough to provide few attributes to the entity type person, like name, address,
faculty, while in a medical domain much more attributes should be provided
at a much higher level of details like blood type, among others. Within the SB
we formalize the notion of entities and we adopt the entity-centric approach
that uses entities as the basic element of the knowledge.

Entity attribute. The attributes (also called properties) of an entity are those that
characterize it. Different entity types differ one respect to the other thanks to
a different set of attributes. Moreover, entities of the same entity type differ
thanks to different attribute values. Even if the knowledge schema is outside
of the scope of this thesis and for this reason we present it in a simplified way
(Section 3.2), it is worth spending some few words on the entity attributes since
they are the one the SB will more frequently interact with.

In a very simplified way, we can say that the process of bridging the semantic gap
defined by our methodology and implemented in the StreamBase (SB) system consists
in updating the entity attribute values based on a context aware analysis.

In addition to these definitions the following additional considerations must be
taken into account:

• One user may have different representations of the same entity, we call it intra-
user difference. In this situation, the different versions differ by the name
and/or by the set of attributes they have. The set of attributes depends on
the context. In fact, one representation in one context may require additional
and/or different attributes with respect to another representation in another
context.

• Users represent their own "versions" of the same global entity, we call it inter-
user difference. As a consequence, different users may describe different as-
pects of the same entity because everyone focuses on different details.

• The user has only a partial view of the world, we called it MyWorld above. This
is the consequence of the fact that different users may know an entity for only
a subset of its attributes.

The work produced in this thesis up to now refers to the "personal world" of
every user, but the methodology and system described in this work will benefit from
the interoperability across different users, in terms of knowledge. In other words,
sharing the entities between users can help everyone in improving each personal
view of the world. For this to happen there is the need to find an agreement on
the formal models that they will follow in representing the data. The entity-centric
approach adopted in this thesis helps in this regard since it distinguished between
the schema that defined this format and the knowledge that comprehends the actual
data. In the following sections we formally present these elements.

3.2. Knowledge Schema 19

3.2 Knowledge Schema

There are multiple definitions of schema but the one that best fits with the work
presented in this thesis is the one provided by the Schema.org4 initiative. A schema
is "A set of types, each associated with a set of properties and where the types are
arranged in hierarchy.". Our approach is aligned with this idea and allows the defini-
tion of templates for each type of entity defined in the system. The objective of using
such templates is to restrict the set of possible attributes that can be used to describe
that type of entity. In our implementation the meaning of each entity and prop-
erty is further defined by mapping the single elements from the schema to concepts
from a knowledge base. The word concept has different definitions: it is defined as
"an abstract idea" in the Oxford dictionary5 while Wikipedia6 defines it as "An idea,
something that is conceived in the human mind". In the area of knowledge repre-
sentation a concept is used to formalize and represent the meaning of a word in a
language independent manner.

Let’s now move to the definition of the main elements our schema will be made
of, namely entities and their attributes.

An Entity Type (ET) is formalized as a tuple

ET =< C, {AD} > (3.3)

where,

• C represents a concept associated to the name of the entity type and which
defines the class of entities that are described in it;

• AD is a non-empty set of attribute definitions denoting the type of attributes
that can be used to describe an entity of the corresponding ET. Some of the
attributes are mandatory while some others are optional and depend, for ex-
ample, on the current representation the user is referring to, or in other words,
on the context (intra-difference).

The notion of Attribute Definition (AD) is aimed to explicitly state constraints
regarding how can be describe certain property of an entity. It is formally defined as
the tuple

AD =< C,AT > (3.4)

where,

• C is a concept associated to the name of the attribute, which provides a mean-
ing for the property that an instance of the corresponding AD is describing;

• AT is a data type that establishes constraints on the values for the definition of
the attribute. We can distinguish among those that are natively supported by
the system (e.g., integer, string, float, data, relational, etc.), complex concepts
from a knowledge base and the application defined ETs.

4http://schema.org/
5https://en.oxforddictionaries.com/definition/concept
6https://en.wikipedia.org/wiki/Concept

http://schema.org/
https://en.oxforddictionaries.com/definition/concept
https://en.wikipedia.org/wiki/Concept

20 Chapter 3. Ground Knowledge

3.3 Instantiation of Knowledge

The additional step required to use the knowledge which is based on the schema
presented in Section 3.2 in a real application is to instantiate it. An entity type ET is
instantiated to represent a particular representation of a real world entity.

3.3.1 Entity Identifiers

Each entity is unique within a pre-defined context and its uniqueness, that allows to
distinguish it from other entities, is given by its identity. The identity is defined by
the intrinsic (e.g., that belongs by nature) or extrinsic (e.g., acquired from the world)
characteristics of the entity [Do Van Thanh, 2007]. It is a fundamental notion when
dealing with entities because it allows to understand their relations one respect to
the other and with other elements of the context [Windley, 2005; Camp, 2004].

Starting from the notion of identity, the identifiers are used to identify a person,
a location or, in general, any type of entity within a context. The same entity can
have multiple identifiers that are used for different purposes or in different contexts.
In the SB we can distinguish between two main types of identifiers: the ones used
by humans, also called human-understandable identifiers and those used by the
machine called machine-understandable identifiers.

Humans usually refer to someone or something (any entity) by its name because
for them the name is uniquely mapped to the representation they remember of such
entity [Fernandez and Ignacio, 2012]. The context dimension is implicit when deal-
ing with humans since we always think in a context aware manner. Of course, an
entity can be called by multiple names (e.g., the building in via Sommarive 14, Povo
(TN) can be referred as the University of Trento, the Department of Information
Engineering and Computer Science, my work place) and at the same time different
entities can be referred by (called using) the same name (e.g., the university has mul-
tiple locations scattered around the city but one can call each of them the University
of Trento) as a consequence of being arbitrary assigned. This makes perfect sense for
a person, since she can understand the context and disambiguate the name based on
the situation but makes impossible for the machine to do the same operation. For
this reason, we need machine-understandable identifiers to allow the AI to refer to
entities.

In the case of machine-understandable identifiers, the best choice is then not the
name, but something that can be uniquely solved by the computers. Among the
many standards available in the WWW for digital identifiers the most widely used
are Universal Resource Identifiers (URI)7, Uniform Resource Locators (URL)8 and
Uniform Resource Names (URN)9. In the SB we need to distinguish the different
representations of the same real world entity (inter- or intra-difference) while still
maintaining track of the global entity the representation is referring to. With the
purpose of distinguishing between local and global identifiers, the work [Fernandez
and Ignacio, 2012] creates two new identifiers, called Semantic Uniform Resource
Locators (SURL) and Semantic Universal Resource Identifiers (SURI).

A SURL is defined as a semantic URL that represents a particular representation
(from the user point of view) of a real world entity. A SURL is created for each entity
being represented by the user, it is globally unique and can be dereferenced to ob-
tain the full representation of the entity. In other words, it encodes the location of a

7RFC1630
8RFC1738
9RFC1737

3.3. Instantiation of Knowledge 21

particular representation of a real world entity. A SURI is defined as a semantic URI
that represents a real world entity without attaching it to a particular representation.
The same SURI is shared by different users describing the same real world entity, it is
also globally unique. A SURI cannot be directly used to retrieve an entity represen-
tation, because it does not commit to one single representation and it rather includes
the different points of view from which an entity is represented. Differently from
other approaches from the Semantic Web that combine URIs and URLs to identify
entities in the Web (e.g., OKKAM, semanticweb.org10, www.w3.org11), the separa-
tion between local and global identifiers allow us to split the identification of a real
world entity and its representation(s). Further, other approaches implicitly impose
a representation for the real world entity when reusing the identifier, while we (by
adopting the local/global identifiers) embrace diversity with regard to the point of
views represented by different users.

3.3.2 Entity Instances

As described above, the knowledge we are referring to in this thesis is represented
through the instantiation of the models described in Section 3.2.

An Entity (E) is an instantiation of an entity type ET and describes a real world
entity from a specific point of view (i.e., of the person). This representation is asso-
ciated with a set of attributed that characterize the entity. Additionally it is also at-
tached with the identifiers that are used to refer to it, both the human-understandable
and the machine-understandable identifiers. Formally, it is defined as a tuple

E =< SURL, SURI, {N}, ET, {A} > (3.5)

where,

• SURL is the unique (personal) identifier;

• SURI is the unique identifier of the real world entity the E is describing;

• {N} is a set of strings representing the names used by the corresponding repre-
sentation E to identify the real world entity;

• ET is the entity types among those allowed in the system;

• {A} is a non-empty set of attributes that characterize the entity.

An Attribute (A) instantiates an attribute definition Attribute Definition (AD)
that represents a characteristic of the entity he refers to. An attribute is attached
with a value that can be of different type: some attributes may have multiple values,
its values can be mapped to a meaning in the Knowledge Base (i.e., a semantic value)
or can refer to another entity in the system (i.e., relational attribute). Formally, it is
defined as the tuple

A =< AD, {V } > (3.6)

where,

• AD is an attributed definition defined in the knowledge schema for that system
and is meant to constraint on the possible values the attribute can have;

10http://semanticweb.org/wiki/Uniform_Resource_Identifier
11http://www.w3.org/TR/cooluris/#semweb

http://semanticweb.org/wiki/Uniform_Resource_Identifier
 http://www.w3.org/TR/cooluris/#semweb

22 Chapter 3. Ground Knowledge

• {V} is the set of attribute values of the type Attribute Type (AT) of the corre-
sponding AD. If that corresponding AT is an ET then A is called a relational
attribute since it defines a relation between two entities. The possible relations
are many, e.g., my office is part-of the university building.

An example of how the knowledge schema is instantiated into two entities (for
the inter-difference situation), simplified for the sake of clarity, is presented in Fig-
ure 3.1. In this case we have one ET instantiated by two different users (User1 and
User2) into two personal representations that refer to the same global entity. The two
instantiation both have the mandatory attributes Name, Address, Building, but they
differ for the optional one. In fact, User2 in this case represents this Location with an
additional attribute that is important for him: the Reached by attribute. This element
is important because he can choose between different means of transportation. De-
pending on the mean of transportation he uses, for example, the time required to go
to work changes and also the building entrance is different.

Description 1 for User1
———————————————
URL: p1/entity1
URI: uri/entity1
Name: University of Trento
———————————————
Address: via Sommarive, 14
Building: Povo 1
Floor(s): 3
Entrances: East, North, South

Description 1 for User2
———————————————
URL: p1/entity2
URI: uri/entity1
Name: University of Trento
———————————————
Address: via Sommarive, 14
Building: Povo 1
Floor(s): 3
Entrances: East, North
Reached by: Bike

Entity Type: Location
———————————————

Name: {String}
Address: String
Building: String
Floor(s): Integer
Entrances: {String}
Reached by*: Concept

SCHEMA

KNOWLEDGE

instance-of instance-of

Identifiers

Attributes

Identifiers

Attributes

FIGURE 3.1: An example of an ET Location instantiated into two dif-
ferent representations (inter-difference).

The second example presented in Figure 3.2 on the other hand presents an ex-
ample of instantiation with two different entities belonging to the same User1 (intra-
difference). In this case the instances are the same and the only difference is their
name. According to the context, the user can choose to use one with respect to the
other.

For both the examples it is important to notice that the URI is always the same
while the URL is different for every entity.

3.4. Existing Systems for Knowledge Management 23

Description 1 for User1
———————————————
URL: p1/entity1
URI: uri/entity1
Name: University of Trento
———————————————
Address: via Sommarive, 14
Building: Povo 1
Floor(s): 3
Entrances: East, North, South

Description 2 for User1
———————————————
URL: p1/entity2
URI: uri/entity1
Name: Work Place
———————————————
Address: via Sommarive, 14
Building: Povo 1
Floor(s): 3
Entrances: East, North, South

Entity Type: Location
———————————————

Name: {String}
Address: String
Building: String
Floor(s): Integer
Entrances: {String}

SCHEMA

KNOWLEDGE

instance-of instance-of

Identifiers

Attributes

Identifiers

Attributes

FIGURE 3.2: An example of an ET Location instantiated into two dif-
ferent representations (intra-difference).

3.4 Existing Systems for Knowledge Management

What presented above is the theory behind two systems developed by various mem-
bers of the Knowdive12 group in the past years, namely the KB and the EB. They are
used for the various research projects of the members of the group and allow to gen-
erate, maintain and retrieve the knowledge elements of a model. For the sake of
completeness we summarize in the following sections what they are, and how they
work since we will be using them in the SB. We will use them to manage the contex-
tual information about the user. The EB in particular will contain a snapshot of the
user context, the most recent one. All the other components of the system will be
able to read a consistent version of this context and update it when required.

3.5 Summary

This chapter introduced the main notions that are at the foundation of the work
presented in this thesis which will be extensively used in the next chapters to build
the SB. We presented our definitions of user, smartphone, sensor, context, service,
entity and entity attribute. The user is the person using the SB who leverages on its
services to improve her quality of life. In exchange of these free-of-charge services
she provides her own data. The smartphone is the main (but not the only one) device
that allows the user to interact with the SB in both directions. The sensors are those
embedded in the smarpthone that allow to collect personal and environmental data.

12http://disi.unitn.it/~knowdive

http://disi.unitn.it/~knowdive

24 Chapter 3. Ground Knowledge

The context is part of the user’s personal view of the world, in a specific moment in
time (a snapshot). This view is originated from everyone’s habits and routines and is
composed by all the elements (i.e., People, Locations, Objects, Events) that surround
her and the relations among these elements. A service is the output of the SB after
having analyzed the data from the user in a context-aware manner. The final goal
of such a service is to improve the user’s quality of life. An entity is a representation
of any object that exists in the world, it has a type and is described by a set of entity
attributes that are the key elements of our methodology and system. Moreover, we
defined the entity-centric approach as the main representation formalism.

We then presented the schema as the reference structure for all the knowledge
represented in the SB. We saw that there are ET composed by a concept and an
AD. To generate knowledge out of this schema, it must be instantiated to create real
world entities. The same user (intra-difference) or different users (inter-difference)
can create multiple personal representations of the same real world entity in order to
accommodate all the possible contexts. This notion will be the key for our method-
ology. We used the definitions of SURL and SURI as defined in [Fernandez and
Ignacio, 2012] as a mean of identification of the entities, in particular those who are
personal representations of the same real world entity. Each E is composed by a set
of A that belong to a AD that characterize it and that will be the key element used
by the methodology and system presented in this thesis.

Finally, since the knowledge modelling aspects are outside the scope of this
thesis, we summarized two existing systems developed by the Knowdive13 group
which are meant to store the knowledge and the entities. The SB will leverage on
these two components to manage the contextual information needed to generate
knowledge that is meaningful for the user from the sensor data collected from her
devices.

13http://disi.unitn.it/~knowdive

http://disi.unitn.it/~knowdive

25

Part II

The Proposed Methodology

27

Chapter 4

Data Acquisition and Management

In this chapter we present the methodology developed in this thesis to tackle the
data acquisition and management related issues when dealing with personal big
data.

The first step consists in analyzing the data collection task and find the best so-
lution considering the problem dimensions presented in Section 2.1.1. We start by
defining some high level considerations that a data collection system must take into
account when dealing with personal big data. We then present how the smartphone
can be used in such a situation to collect high quality data, in the right quantity
to produce meaningful results, without violating the privacy of the users. Every
dimension of the process is analyzed: how the smartphone can be used to collect
streams of sensor data, how this data can be efficiently synchronized for the analy-
sis, how the collection task can be configured to be able to fast react to changes, how
to engage the user in the data collection process designing a solution that is user
friendly and finally, how to be transparent with the user so that he is aware of how
her data is used.

The second part of the chapter describes how to manage the data collected by
multiple users in the SB. Efficient solutions must be found to deal with such a huge
amount of information and with such a variable work load. More in details, the anal-
ysis of the type of streams is made, with considerations also regarding the schema of
the data without focusing on a single technology or use case. Lastly, considerations
related to the users’ privacy will be elicited.

4.1 Data Collection

The first element of the problem the SB is trying to solve consists in finding the best
and most efficient solutions to collect data from the users that will be then used for
the generation of the knowledge. This task can be assimilated to Lifelogging and
in particular can be referred to as Personal Big Data [Gurrin, Smeaton, and Doherty,
2014]. Due to the characteristics of such data it is difficult to deal with them, collect,
store and use them.

4.1.1 Data Collection Characteristics

The task of collecting personal big data presents additional challenges with respect
to a traditional data acquisition task since it requires to interact with the user. The
human factor must be taken into account with its psychological and sociological
implications. We start the discussion of the methodology by defining the key char-
acteristics the data has to satisfy: its volume, its quality and privacy related issues.

28 Chapter 4. Data Acquisition and Management

4.1.1.1 Data Volume

Unfortunately it is hard to define how much data is required for solving the semantic
gap problem. The problem is twofold: there is the risk of having not enough data
since the user can decide not to collaborate but at the same time there is also the
risk of generating so many data that we cannot even manage them. This last aspect is
particularly relevant when dealing with personal big data. In fact, as the standard
definitions based on the 3 Vs [Laney, 2001] claims, big data are huge in terms of
volume since they are generated very fast (velocity) and they are various in terms of
data types. A solution that finds a good balance between the two is necessary.

When dealing with pervasive technologies such as in this work, these problems
are even more difficult to tackle. The smartphone can easily generate data volumes
that fill up the internal memory very quickly (within days) and the generated data
are various. But collecting data from the users is not as easy as collecting data from
other sources e.g., sensor networks. It is not enough do deploy the devices and wait
for the data to come. The reason for this is that when dealing with the people one
must take into consideration all the psychological and social implications of such
an operation. Having a perfect smartphone application dedicated to the collection
of the data is not sufficient. In fact, the user must collaborate, she needs to install this
application and use it constantly in the next days. This requires the data scientist to
find proper solutions in engaging the user. One possible solution is to incentivize
the user in different ways: by providing useful services free of charge, creating a
gamification mechanism, proposing a money compensation, among others. Unfor-
tunately, it is not granted that this solution always works. In fact, if the require-
ments at the data collection side are too strict, the user feels like the incentives are
not enough. To mention an easy example, if the data collection task impacts the en-
ergy consumption of the device resulting in only 3 hours of battery life, most likely
the user won’t accept any incentive; since the smartphone is used for purposes other
than the data collection, this task cannot affect its normal usage. Usually a trade-off
must be found between the two sides: on one side there is the need to have a lot of
data and on the other there is the need of the user that does not want to be bothered
and does not want her habits to be modified. In most of the situations the user wins
and the data scientist must define less strict constraints. It can be the case that the
new ones do not produce data good enough, but the alternative was to don’t have
data at all.

In this work the context is defined as a particular situation the user faces and
believes is important. During a day we face many different situations that are im-
portant to us. Starting from this consideration we can define a requirement for the
data collection task, that is, the system must collect data at least on a daily basis. As
we will see this is not enough and a real time data collection scenario is foreseeable.
Additional considerations must be done about how many data is needed to process
each sensor stream, but we will deal with this in Section 4.1.2.

4.1.1.2 Data Quality

While methods to ensure the right volume of collected data vary by discipline, the
goal for all of them is to capture quality evidence. A dataset is considered to be high
quality if it "fits for [its] intended uses in operations, decision making and planning."
[Redman, 2008]. This definition is broad and does not define the characteristics (also
called quality metrics) a dataset must have to be considered high quality. Usually

4.1. Data Collection 29

these metrics are defined ad hoc to solve specific problems [Huang, Lee, and Wang,
1998; Laudon, 1986].

For the sensor data collected from the user’s personal device we can say that if
the algorithms are able to produce accurate results from them, then the quality or
the original data is high. The quality metrics that affect the analysis in the context of
this work are are:

• The sensor sampling rate. Is a parameter typical of the sensor that usually
can be configured that represents how frequently one measurement is gener-
ated. Is expressed in Hz or values per second. This metric is related with the
data quality in the following way: the more values we collect about a specific
phenomena, the more details we have about it and the less approximations we
do. Many research works go in this direction: [Lau and David, 2010] states
that with 20Hz and 10Hz they are able to obtain an accuracy of up to 99, 27%
and 95.42%, respectively. Their results are based on the task of recognizing the
movements from accelerometer data. [Yamansavaşçılar and Güvensan, 2016]
similarly find that with a sample rate of 20Hz and 5Hz they have an accuracy
of > 90% and > 95% respectively. This metric of course is directly related with
the data volume as well.

• Sensor fusion. The second aspect to take into consideration for data quality
is the presence of multiple sensor streams to be used for the analysis. This is
otherwise called sensor fusion, when multiple sensors are analyzed together to
improve the final recognition accuracy [Khan et al., 2014; Johnson and Trivedi,
2011] with respect to a solution that analyses a single stream at the time. The
SB allows to analyze multiple sensor streams to produce a single output, as
explained in Section 5.3.

4.1.2 Data Collection From the Smartphone

The data collection in the SB has been designed so that to allow the usage of different
sources of streaming data. In this work, usually we refer to the smartphone as the
main source but it is important to mention that, even if it is the best one for the scope,
it is not the only one and the system can accept data from any sources. However,
according to our findings, the smartphone is the device that is always with the user
and consequently allows to collect truthful data. We developed a solution [Zeni, Za-
ihrayeu, and Giunchiglia, 2014] the SB is currently using which consists in a mobile
application called i-Log that takes into account all the before mentioned dimensions,
i.e., Volume and Quality of the data. Multiple works in the research community have
focused on Lifelogging solutions using the user’s smartphone [Zhou and Gurrin,
2012; Shah et al., 2012].

i-Log is a modular application for mobile devices that allows to simultaneously
collect sensor streaming data from all the sensor embedded in the device, taking
into consideration all the dimensions of the problem as explained in Section 4.1. The
main key points in describing i-Log and its functionalities are presented in the next
sections.

4.1.2.1 Unobtrusiveness and Transparency

One of the advantages of using the smartphone to collect personal data is that it
can collect data for extended periods of time [Eagle and Pentland, 2006] and most
importantly it can collect truthful data. To better explain this statement we have to

30 Chapter 4. Data Acquisition and Management

make a comparison with the other means that can be used to collect personal data,
e.g., using dedicated sensing devices. In the research community, especially in the
past, multiple works used these devices. They are devices that are designed specif-
ically for collecting data. This means that the sensing hardware embedded in them
has better characteristics with respect the one embedded in today’s smartphones.
On the other hand it has been proved that when the user uses these devices, she is
aware of their presence and alters her routines only because she knows she is moni-
tored. Using a smartphone on the other hand this effect doesn’t happen because the
logging process is unobtrusive to the user.

The aspects we took into consideration in designing i-Log that are related to un-
obtrusiveness and transparency can be summarized as follows:

(A) Notification while
the screen is locked.

(B) Notification in the
notification drawer.

FIGURE 4.1: i-Log notifications used to inform the user about the log-
ging process.

Informed Logging. To be as transparent as possible with the users and to com-
ply to the European Union (EU) regulations in terms of privacy and ethics, in i-Log
we have to constantly inform the user about the logging process. This means that
when the application is running and is actually collecting data, the user needs to
be informed in some way. We analyzed different solutions, like periodic notifica-
tions with sound, but in the end the best solution we found is to use a visual clue.
Technically speaking this corresponds with a notification always present on the user

4.1. Data Collection 31

FIGURE 4.2: How the i-Log notification is showed in the notification
area.

screen. As notifications are implemented in Android1 they are visible when the screen
is locked and when the user opens the notification drawer. On the other hand, when the
user uses the smartphone normally, the only way to see a notification is from the
notification area at the top of the screen that shows a small icon for every notifica-
tion. This perfectly balances the need to inform the user but at the same time to be
as unobtrusive as possible.

The way we implemented the i-Log notification system can be seen in Figures
4.1a, 4.1b and 4.2. The first one shows how the notification appears when the screen
is locked, the second one when the notification drawer is open and the last one
shows the icon in the notification area.

Minimal User Interface. As can be seen from the screenshots above, we kept
the user interface essential. At the beginning i-Log was created as a tool for the data
scientist to collect the data that later he will analyze. For this reason the user interface
was composed by multiple screens that allow to control the logging process. For
example it was possible to see all the collected sensor values or one could enable or
disable the collection from single sensors.

Unfortunately, when we changed the target audience from the data scientist to
the normal user, we discovered that these features were only creating a lot of confu-
sion. In fact, the user not being used to the technicalities, was disoriented and some
time also scared. We needed to completely re-design the user interface, removing
all the views in order to simplify it as much as possible. As it if designed today, the
user interface is composed by only the notification as explained before and a small
setting screen. We also removed the application from the "recent application" screen
(Figure 4.3a) because our experiments showed the user was annoyed by it.

The users can now interact with i-Log only via: the notification where she can
stop the logging process and open the settings screen (Figure 4.3b). The settings
screen is very simple, the user can only login and see how many logs are still present
on the phone before the synchronization. Finally, the user can click the application
icon in the Android launcher to start the application and the logging process.

Battery Efficiency. The evolution in the smartphone industry is so disruptive
that every year important breakthroughs are made in regard to the computational
power. Unfortunately there is still a huge limit in today’s devices — the battery.
The technology behind modern lithium batteries powering these devices has not

1https://developer.android.com/guide/topics/ui/notifiers/notifications.
html

https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://developer.android.com/guide/topics/ui/notifiers/notifications.html

32 Chapter 4. Data Acquisition and Management

(A) i-Log is no longer
present in the recently
used applications list.

(B) i-Log settings win-
dow.

FIGURE 4.3: i-Log minimal user interface.

changed significantly since their first introduction decades ago2. A mitigation to the
phenomenon (but not a solution) is given by the increase in the devices size which
results in an increase in the battery size, allowing for more energy storage capacity.
Additionally we start seeing fast charging solution that allow to completely charge
the phone in less than one hour.

Due to this important limitation a smartphone can rarely last more than a whole
day with normal usage patterns3. This phenomenon is even worse when the phone
is used for tasks other than messaging, calling and browsing, e.g., for collecting data
from the internal sensors, when the battery can barely last for few hours. In fact, as
several works in the research community pointed out [Lee et al., 2012; Micallef et al.,
2015; Carroll and Heiser, 2010; Zhang et al., 2010; Viredaz, Brakmo, and Hambur-
gen, 2003; Perrucci, Fitzek, and Widmer, 2011; Koenig, Memon, and David, 2013],
there are sensors inside the smartphone that consume a huge amount of energy. The
battery life problem in modern smartphone is today considered their major limita-
tion with apparently no short-term commercial widespread solutions. In a scenario
where an application is using real time sensor data to infer the user context the bat-
tery problem is crucial. A workaround to this issue is to have a clear knowledge

2https://goo.gl/fsPU7y
3https://goo.gl/hClNVH

https://goo.gl/fsPU7y
https://goo.gl/hClNVH

4.1. Data Collection 33

of each sensor discharging behavior so that the application developers can take the
appropriate countermeasures to mitigate the battery draining issue.

This aspect of the battery life is strictly related with the user experience and in
the end can be assimilated with an obtrusive factor. Having a device that needs to
be charged every 5 hours makes impossible to use it for the purpose of collecting
data. The user will most likely uninstall the application after few days because, the
application will prevent her from using the smartphone normally.

In i-Log we addressed this issue, finding a good solution that balances the needs
of the data scientist and the user. We analyzed each sensor consumption rate under
different conditions, the collection frequency and the combination of multiple sen-
sors together. We discovered that the collection rate affects the battery consumption
(as well as the data quality as explained above) and we found a balance between the
two needs. The sensors that consume more energy are the radio ones, WiFi, Blue-
tooth and GPS. But the GPS can consume up to 3138, 99 times the energy consumed
by the phone in idle state. To have a comparison for this value, the digital compass
consumes 6, 85 times the energy in idle state. We then decided to adapt the collection
frequencies rate, reducing the ones for the sensors that use more energy, as will be
explained below.

4.1.2.2 User Informed Consent

The Directive 95/46/EC GDPR4 imposes new strict rules on how the user data must
be collected, stored and processed. An important element regards the fact that the
user must explicitly give her consent. In the SB we do this in two different ways:
by asking for the standard written consent and an additional consent directly on the
device.

Written Consent. Usually when there are privacy related issue the user is asked
to sign a piece of paper that explains under which conditions her data will be used
and shared. Since this is the actual regulation we complained to this form as well.
The students were asked to sign two different documents:

• The first one was a standard privacy policy statement

• The second one was a document explaining what the experiment wanted to
achieve and which data we were collecting from them

Additionally the participants were asked to participate in a workshop in which
the experiment was explained to them

On the Smartphone. Since the very first versions of the mobile operating sys-
tems, both iOS5 and Android6 there has always been a form of control over what
the applications can do (or otherwise what they are forbidden to do). Historically
iOS has always been the more strict with this regard but Android is adapting to
this trend as well. Referring to Android, there are limitations about the data usage,
the background execution, the hardware usage, the applications interaction, among
others. To overcome these limitations the application developer is asked to specify
which permissions7 her application requires. "To maintain security for the system and

4http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.
119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC

5https://www.apple.com/it/ios/ios-11/
6https://www.android.com/
7https://developer.android.com/guide/topics/permissions/index.html

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC
https://www.apple.com/it/ios/ios-11/
https://www.android.com/
https://developer.android.com/guide/topics/permissions/index.html

34 Chapter 4. Data Acquisition and Management

users, Android requires apps to request permission before the apps can use certain system
data and features. Depending on how sensitive the area is, the system may grant the permis-
sion automatically, or it may ask the user to approve the request".

(A) Permission request
for device location.

(B) Permission request
for storing data on the

device.

FIGURE 4.4: How Android asks the user to approve a permission
request.

This last element of asking the user to approve the request is called at run time
permission request8 that Android introduced from Application Programming Inter-
face (API) level 23 (Android 6.0 Marshmallow) of the operating system. Before it
all the permissions were automatically granted during the installation phase: the
user was presented with a list of permissions and by pressing install she was auto-
matically accepting all of them. Now things are different and the user is asked to
approve the request when the corresponding feature is used for the first time. Un-
fortunately, the request for approval are designed in an unfriendly way as can be
seen from Figures 4.4a and 4.4b and there is no way to customize it at the moment.
The most important issue with them is that they lack of details, and are not precise
in describing what is requested. Consider for example Figure 4.4b, we see that the
application asks to "Allow i-Log to access photos, media, and files on your device?".
From this message it seems that i-Log will read the files on the device but instead

8https://developer.android.com/training/permissions/requesting.html

https://developer.android.com/training/permissions/requesting.html

4.1. Data Collection 35

it is only trying to store its own logs containing the the collected sensor data. This
procedure usually ends up in the user denying the permissions.

(A) Screen designed
by Whatsapp to help
the user in approving
the next permission

request.

(B) Permission request
for storing data on the

device.

FIGURE 4.5: How Whatsapp asks the user to approve a permission
request.

We took this new requirement as an opportunity to further inform the user about
the data she is sharing with the SB that will be used to provide her the services.
We then decided to design a procedure that guides the user in the approval of the
requests. It consists in showing a user-friendly screen for every permission with
additional information just before the user is asked to approve it. This is similar to
what other famous applications do, like Whatsapp9 as showed in Figures 4.5a and
4.5b.

In i-Log the system requires the user to approve 10 different permissions: to access
the contacts, to access the device’s location, to record audio, to access photos, media, and files
on the device, to Short Messaging System (SMS), to Phone, to take pictures and record
video, notification access, usage access and finally to run the application in background
without limitations. The only mandatory permission is the last one that allows to
run i-Log in background, all the others are optional (but as we said before, one of

9https://www.whatsapp.com

https://www.whatsapp.com

36 Chapter 4. Data Acquisition and Management

the metrics to establish the quality of the data is related to the number of sensors
collected. The more the sensors, the easier to infer the user context). The background
limitation was introduced by Android in the last versions of the operating system to
preserve the battery life. Since it has no mean of understanding how many energy an
application is demanding from the battery, it superficially blocks all the applications
in the background after some time if they are not whitelisted. As we said in Section
4.1.2.1 we already tackled the battery consumption issue and then we require the
user to whitelist i-Log.

To ask the user to approve all these permission requests, we designed a proce-
dure that alternates a description screen to the one that actually asks the approval,
as Whatsapp does. To design these screens we followed some simple rules:

• Be transparent and honest with the user;

• Put the logos of the institution(s) the user knows: the University of Trento (and
in one of the use cases also the Municipality of Trento). Seeing a familiar and
official logo helps the user in approving the permissions;

• The screens were kept simple but nice to see;

• The jargon was kept colloquial to facilitate the understanding;

• Present a link to a webpage that shows more exhaustive explanation of what
the permissions are and all the privacy related aspects.

4.1.2.3 Multiple Sensor Streams

Today’s high end smartphones are so powerful that their hardware at some extent
can be compared to the one of an average laptop, both in terms of processing power
and memory. Moreover, they are often equipped with internal hardware sensors
used to improve the user experience. These two elements, and the fact that it is
fairly easy and inexpensive to develop ad hoc applications that can run on them,
makes them the ideal device for collecting data about the user.

i-Log [Zeni, Zaihrayeu, and Giunchiglia, 2014] is able to collect multiple sen-
sor streams from the user’s smartphone and attached wearables. Every device has
a different set of sensors, with different characteristics both in terms of sampling
frequency but also considering their accuracy in sensing the world. All these as-
pects have been taken into account in designing i-Log which is able to adapt to any
Android device. If a sensor is present and has been configured as enabled, the ap-
plication starts collecting data from it.

But the internal hardware sensors are not the only ones that can collect data about
the user. There are events generated by other components of the smartphone that if
collected will be useful to the analysis. We created dedicated software components
in i-Log to detect such events and collect them. We call these components software
sensors. A nice characteristic of these sensors is that they do not affect the battery life
since they do not use an hardware component on the phone. There are two main
types of software sensors:

• System Broadcast Events. The Android operating system is designed to send
broadcast messages10 of different type and nature to the applications running
on top of it. The application only needs to subscribe to the updates of these
events. Example of such broadcasts are the WiFi connection/disconnection

10https://developer.android.com/guide/components/broadcasts.html

https://developer.android.com/guide/components/broadcasts.html

4.1. Data Collection 37

events, a new notification appearance/disappearance, an incoming phone call,
among others. We developed single software components that can register or
each of these events and listen when they are trigger. When this happens, i-Log
logs the event. Because of the nature of these broadcast, there is no way to con-
trol the collection frequency but they are collected when their status changes.

• Poll Events. Some of the software sensor require to trigger the collection pro-
cess instead to waiting for a change. Examples of these sensors are the one that
logs the running application in foreground on the smartphone or the one that
records the audio, among others. For them, we need to create a scheduler that
periodically collects the value and logs it. This is done using a timer and the
duration of this timer can be configured. We can assimilate this time interval
to the collection frequency of the hardware sensors.

A list of all the sensors i-Log can collect data from, both hardware and software
is presented in Appendix A.

Except for the System Broadcast Events Software sensors, that as explained are
generated when an event is detected, all the other sensors, both hardware and soft-
ware can be configured to collect data at a specific collection frequency. As said in
Section 4.1.1.2, the collection frequency is one of the two metrics used to determine
the quality of the collected data. The higher the frequency, the higher the quality. Un-
fortunately the frequency also affects the battery life (as explained in Section 12.1.2)
and the amount of data generated, that in the case of personal big data can be easily
become unmanageable. Specifically, the higher the frequency the lower the battery
life and the higher the amount of data. The right strategy is to find a trade off to
choose the best collection frequency for every single sensor. Table A.1 in Appendix
A presents for every sensor also details about the amount of collected data and of
battery consumed. The former can be High (H) or Low (L) while the latter can be H,
Medium (M), L or None (N).

The i-Log application has been kept as simple as possible to reduce the battery
consumption. It only collects, stores and synchronizes the data. But if needed it can
also perform smart sensing strategies that can be designed to be context dependent.
This means that a sensor can used with respect to another if certain conditions apply.
The only contextual sensing feature that is actually implemented in i-Log regards
the collection of location data. The standard way on a smartphone to know the
position of the user is to use the GPS sensor. It is very accurate, up to 3 meters, but
unfortunately has some drawbacks: it consumes a lot of energy and it works only
outdoor. In an indoor situation usually the WiFi network is used to understand the
user position. For this reason, it is counter-productive to keep the GPS on when
inside a building: it won’t produce any data and on the other hand will drain the
battery very quickly. For this reason we created a smart sensing strategy that consists
in disabling the GPS sensor when connected to a WiFi network and enabling it back
when the connection with the WiFi terminates.

Other strategies can be easily implemented thanks to the modularity the appli-
cation architecture has.

4.1.2.4 Storage

i-Log stores the collected data from the sensors as log files, formatted according to
the Comma Separated Value (CSV) format. The reason for this choice is that this is
the easiest and fastest way to store the data, and this corresponds to savings in terms

38 Chapter 4. Data Acquisition and Management

of energy consumption. We also evaluated to use an internal SQLite database, but
it required too many Central Processing Unit (CPU) resources to insert and extract
the data. Every time a new reading is generated, it is added to a First In First Out
(FIFO) in memory. When the FIFO is full, it is flushed to file. In this way we reduce
disk access and then the battery consumption of the whole procedure, with respect
to creating an empty file and appending the content to it for every received value.

Depending on the sampling frequency and on how many sensors the smart-
phone collects data from, the amount of generated data varies. Our tests show that
one high-end smartphone, collecting data from all the 3X sensors, can generate be-
tween 300MB and 2GB of data per day. Considering that i-Log has been designed to
collect data from the user’s smartphone for multiple consequent days, a good strat-
egy for storing these data must be found. As we will present in the next section, the
data needs to be synchronized with the server for the analysis but it can happen that,
in some situations, the user cannot find a WiFi connection for more days. Consider-
ing the data generation rate a phone will run out of memory quickly. For this reason
we implemented a feature that allows to compress the i-Log logs as they are gener-
ated. Actually they are written to disk directly in the bzip2 format [Seward, 1998].
Even if it is considered slower than others we decided to use it for its high compres-
sion rate. In fact, for the small log files we have the time required to compress them
is slow.

4.1.2.5 Synchronization

In the SB all the analysis is done in the backend system while the smartphone is
used only to collect the data and to provide the services generated from the results
of the analysis to the user. This shows the necessity of synchronizing such collected
data with the server at least on a daily basis, ideally multiple times per day. The main
reason for this is to meet the desired responsiveness for the service. As we illustrated
in Section 3.1 the context changes multiple times per day. Then, for a context-aware
application to work it needs to adapt to these changes when they happen. Having
said this, there is the need to design a synchronization mechanism for the collected
data.

Data synchronization can happen in two ways: (i) with a wired or (ii) wireless
connection. Following the idea that the collection process must be as unobtrusive
and transparent as possible for the user, the wired solution cannot be applied since
we do not want to ask the user to plug the cable in his smartphone. The other pos-
sibility is to use a wireless communication channel. Today’s smarpthones are em-
bedded with multiple wireless communication capabilities: Bluetooth11, WiFi12, 3rd
Generation (3G)/Long Term Evolution (LTE) radios. All of them have very specific
characteristics that make it hard to select the best solution a priori. Depending on
the use case one should be selected with respect to the other. What follows is a sum-
mary of what are the main characteristics of each of them in order to explain the
choice made in our application:

• Bluetooth: This connection type is very diffused in mobile devices such as a
smartphone and is usually dedicated to short range, slow speed and small size
file transfers. The energy consumption is low in the latest versions.

11https://www.bluetooth.com/
12https://www.wi-fi.org/

https://www.bluetooth.com/
https://www.wi-fi.org/

4.1. Data Collection 39

• WiFi: This connection is the standard for wireless communications, it allows to
move huge files at high speed in mid-range situations with a moderate energy
usage.

• 3G/LTE: Very diffused in smarpthones is the main long-range wireless com-
munication methodology that allows to reach high speeds comparable to the
one of a WiFi connection. From an energy perspective point of view this is
the one that requires more energy, in particular in those situations where the
signal strength is poor.

For the synchronization task we evaluated all of them ending up in choosing
the WiFi as the final wireless communication standard. We discarded the Bluetooth
since its short range couldn’t enable the synchronization with the server. The best
candidate would have been the 3G/LTE since he had all the necessary characteris-
tics but unfortunately the limited amount of data that could be sent and received
constituted an important bottleneck. Standard data plans are limited to few GBs per
month, between 2GB and 5GB (in Italy). Having the necessity to synchronize up
to 300MB on a daily basis forced us to discard this solution and choose instead the
WiFi.

The WiFi has some limitations as well, in particular the mid-range connection
capability. To be able to synchronize the data the device needs to be connected to
a WiFi network. Fortunately, today there are multiple freely available WiFi hotspot
scattered around our cities. The application has been designed to opportunistically
exploit this connection opportunities. This means that, whenever a connection event
is detected, the application starts synchronizing the available data. If the connection
window is too short to synchronize all the data, then some of them is sent and the
remaining one is shared at the next opportunity.

With this approach we are able to synchronize the data multiple times per day
meeting the requirement defined above.

4.1.2.6 Configurability

The user interaction is a critical aspect when designing mobile applications. Re-
questing the user to perform an operation is always considered dangerous for mul-
tiple reasons. First of all, one must understand when is the right moment to ask the
user to do such an operation. In fact, asking in the wrong moment can imply loosing
the user. Secondly, even if the user is willing to contribute, it is not obvious that he
knows how to do it. For all these reasons and for the sake of simplicity, we decided
to leave to the user the possibility to set only few configuration parameters directly
inside the application while we implemented a functionality that allows to remotely
configure the application. This functionality allows us to improve the collection pro-
cess (and ultimately the user experience) without involving the user directly. The
parameters that can be configured are the one the can affect the quality of the data,
i.e., the sensor sampling rate and the simultaneous collection from multiple sensors as
reported in Section 2.1.1. Remotely we can enable or disable the collection from sin-
gle sensors inside the device and additionally we can change the individual rate at
which these sensors collect the data.

To implement this functionality we leveraged on an existing service provided by
Google to its developers called Firebase13. It provides a simplified way to access the
users’ devices by sending them messages. Creating the appropriate messages and

13https://firebase.google.com/

https://firebase.google.com/

40 Chapter 4. Data Acquisition and Management

creating a dedicated module in the mobile application that receives these messages
we were able to exploit this solution to remotely configure the data collection. The
reasons why we chose this solutions are the following:

• Security: all the communications take place through the Google servers. We
developed a specific server side module that sends request to the Google server
and then they deliver the message to the devices.

• Energy efficient: using the Google Firebase service we are able to obtain an
higher energy efficiency in delivering these messages. The reason for this is
that Google collects messages from multiple applications and uses a single
short window to deliver all of them, waking up the phone only one time. Con-
sider the phone on the desk, with the screen off. In this situation most likely
the phone is in a sleep state if the user didn’t use it in the last minutes. By
sending it a message it will exit this state (if he can receive the message at all),
resulting in an energy waste. On the other hand, Google Firebase collects some
messages from different applications like Email, Facebook, Whatsapp and then
finds the best moment to deliver all of them in a single moment.

• Semi real time delivery: the considerations done in the previous point in-
dicate that the delivery of the message, i.e., the configuration command, can
be delayed by Google. This is not a problem in this situation since there is no
need to apply the new configuration in real time.

• Lack of connectivity: the adopted solution helps also in the case in which
the phone is not connected to the internet. In fact, Firebase is designed so that
when the smartphone connects back, all the messages are delivered.

We developed a dedicated web application so that the data scientist was able
to interact with the Google Firebase service and sens the configuration messages to
the device. This configuration can be done by user or by topic. It is possible to
create groups of users by making them subscribe to a specific topic. The strategies
we followed for grouping the users were related to some of their characteristic that
could affect the data collection: device, demographics (i.e., age, sex, occupation) and
by the services they used.

4.2 Data Storage and Retrieval

A second very important aspect of the problem the SB is trying to solve consists
in finding the best solution to efficiently store and later access the streaming infor-
mation. The solution must be able to tackle the standard problems linked with the
management of big data, namely their volume, velocity and variety.

Volume. We already tackled the problem of the size of personal big data when
explaining how these data are collected from the smartphones. Since all the user
send their data to a backend server for the analysis, this problem becomes even more
relevant for the storage phase. In fact, thousands of users need to synchronize huge
amounts of data on a daily basis. Of course, a server has much more computational
power and storage capabilities with respect to a smartphone, but if we consider the
amount of users in the system, the problem remains relevant. In fact, having an
arbitrary big number of users generating up to 2GB of data per day, will quickly
saturate the server resources. This corresponds to a situation in which we collect

4.2. Data Storage and Retrieval 41

everything from the users. In future implementations, once the system is stable
enough and once the algorithms start getting more complex, we can decide to collect
only the necessary data and reduce the requirements in this regard.

In one of our use-case we aim at reaching 1000 people that will use i-Log for
few weeks. These users will generate 2TB of data per day that must be stored in
a database system, using a schema, so that the retrieval will be possible and most
importantly fast.

This last aspect is the key: there are no issues in just storing all the comma sep-
arated values generated from the smartphones in a standard filesystem, but at that
point it will be nearly impossible to retrieve the data. On the other hand, since real
time analysis must be done from these data, an efficient storage system must be
used. Most importantly, the appropriate schema for the data must be used.

Velocity. The collected data come in huge quantities in short periods of time.
This is due to different reasons: (i) the way big data are generated, (ii) the number
of users in the system and finally (iii) the way the data are synchronized. This last
aspect is the one that most affects the speed at which the data need to be stored into
the internal database. In fact, as we said in Section 4.1.2.5 the data is synchronized
following an opportunistic connection pattern. More in details, whenever the smart-
phone is connected to a WiFi network, it starts uploading the data. Some users are
always connected to a WiFi router, both at work and also at home. For these people
we do not see particular issues since basically the data will be synchronize as they
are created. In the other hand, for some specific categories of people, this is not the
case. They can have a WiFi connection only at home, or only at work. In both situ-
ations the phone stores the collected data in the internal memory and synchronizes
them later when possible. These two situations show an issue that is related to the
speed the data will need to be inserted into the database. In fact, it will be the case
that a lot of people arrive at home/work at the same time, and all their smartphones
will require to send the data at the same time. Then the system needs to handle these
burst in the load and the database need dto support very fast inserts.

Variety. The data generated from the smartphones is modeled as time series.
A time series can be defined as a sequence of data points that have a timestamp
associated with every value. The data points can be of any kind, numbers, strings,
complex structures and this is where the variety of the data comes from. Most of
the values in the database will be float numbers that represent the real world, but
we store also files (pictures, audio, etc), text and objects such as the Point for the
location. The data type, in general, affects the queries. These arguments depend on
the technology used to store the datam i.e., the database system. Since here we are
referring to a solution that must be general, we don’t go into further details and we
will explain it in Section 11.2.

4.2.0.1 Types of Streaming Data

A stream of data is defined as a continuous flow of information that is made avail-
able over time. In contrast with non-streaming data, new values are always pro-
duced and must be added to the ones that have already been generated.

In the SB there are two types of steaming data which can be modelled using the
same schema, but that have different characteristics:

• Sensor streams. The streams of sensor data collected from the user’s smart-
phone. These are the personal big data that have a huge volume, are generated

42 Chapter 4. Data Acquisition and Management

at high speed and have different formats. For this type of streams the choice
of the database technology will be critical since not all the database can handle
them.

• Attribute values streams. Attribute values keep changing depending on the
user context. This means that we can refer to them as streams. However, the
way we store the context in the EB does not allow to store the older values.
Being it a snapshot, is only memorizes the last values, overwriting the old one.
However we believe these values are of key importance in the SB and decided
to keep track of the older values too. They are stored in the streaming storage
system with the sensor streams collected form the user devices as a stream of
attribute values.

We created this distinction because even if they can be both referred to as streams,
they have very different characteristics and this affects the way the are stored and
used.

4.2.0.2 Schema considerations

In a database system the data schema usually refers to the structure according to
which the data is stored. More in details, it refers to the organization of data as a
blueprint of how the database is constructed. The data schema is associated with
the database technology used since different databases require to build schema dif-
ferently.

In this Section we want to give a general description of how the data must be
structured in a scenario like the one the SB is trying to tackle. Moreover, we re-
fer only to the streaming data since the defining the schema of knowledge data is
outside the scope of this thesis. Specific considerations are technology dependent
and are left to the final sections of this thesis, where an instantiation of the reference
architecture that applies this methodology is presented.

There are different dimensions of the methodology with respect to how the data
need to be stored:

Users’ Data Separation. The first element to be considered about the data schema
refers to the separation of the user data. For privacy reasons, the system must isolate
the users’ data so that one user can access only her own data. This separation can be
obtained in two ways:

• Physical separation: we can allocate one database instance for every user. In
this way the data is separated since one instance can only access his own data.
The separation can happen on the same machine or even on different physical
machines. This is the solution that guarantees the best isolation; unfortunately,
having N database instances requires to allocate N times the resources of a
single instance;

• Logical separation: the second solution to this aspect of the problem is to cre-
ate a schema that allows to store the data by user so that one user can access
only her own data. This solution allows to optimize the hardware require-
ments but the effect of the isolation is reduced.

From the point of view of the privacy both solutions are possible and is up to
the technology define which one is the best. There is the need to balance the privacy

4.2. Data Storage and Retrieval 43

requirements with the technical requirements.

Schema for Time Series. In the context of this thesis we formalize a Streams (S)
as a set of Elements (ET)

S =< {ET } > (4.1)

where an Element (ET) of a stream is defined as a tuple

ET =< T, {C} > (4.2)

where

• T is the time moment at which the Element (ET) was generated. The times-
tamp is stored as a long value, using the Unix time14 convention. It is defined
as the number of milliseconds that have elapsed since 00:00:00 Coordinated
Universal Time (UTC) which corresponds to Thursday, 1 January 1970;

• {C} is a set of non-empty components. In the case of a sensor stream they are
the components of the collected value. In the case of attribute values streams
these are the attributes of an entity.

A Component (C) is then defined by a tuple

C =< N,V > (4.3)

where

• N is a label representing the name of the component;

• V is the value of the component.

This schema is valid for both the sensor streams but also the attribute values
streams. What follows is an example of the schema maps to both of them:

• Sensor streams. In this example we consider the stream of data that stores the
information collected from the accelerometer sensor of the smartphone. The
sensed measure is the acceleration, defined as the rate of change of velocity of
an object with respect to time. It is the net result of any and all forces acting on
the object, as described by Newton’s Second Law. In the International System
of Unit it is measured in [m/s2]. The acceleration is a vector quantity, meaning
that it has a magnitude and a direction. In fact, the accelerometer collects the
acceleration of the device as three values among the different axes: X, Y and
X. A body that is at rest is subjected to a total acceleration equal to the gravi-
tational acceleration g = 9, 81m/s2, that, depending on its balance, should be
split across the three axes. In a smartphone usually the reference system if the
one showed in Figure 4.6. This means that, if a smartphone is on a desk, with
the screen up, all the accelerations the smartphone is subjected to is the gravita-
tional acceleration over the Z axes and in particular the measured value should
be negative. Each of these values is mapped to one C in the schema above.

Formally, the stream of accelerometer values is defined as:

SA =< {EA
T } > (4.4)

14ISO 8601

44 Chapter 4. Data Acquisition and Management

FIGURE 4.6: Representation of the reference system for the accelerom-
eter sensor on a smartphone.

where an Element (EA
T) of the stream is defined as a tuple

EA
T =< 1507618087, {CA} > (4.5)

where

– 1507618087 is the time moment at which the Element (EA
T) was collected

on the device, this long number corresponds to Tue, 10 Oct 2017 06:48:07
GMT;

– {CA} is the set of components of the acceleration, X, Y and Z with their
corresponding values:

{CA} = {< X, 0, 001 >,< Y, 0, 010 >,< Z,−9, 81 >} (4.6)

• Attribute values streams. Consider the example of Section 5.3.1.1. The ob-
jective of that knowledge update task is to update the attribute speed of the
Person by leveraging on both sensor data and contextual information referred
to her car. Mapping on the above schema, we will have two streams, one for
the entity Vehicle (e42b47a699d3a) and one for the entity Person (cf507j3fert16).
The former has one attribute, Speed of type float, while the latter has two at-
tributes, the Speed and the UserPresence, respectively of types float and boolean.

Formally this situation can be described as:

Se42b47a =< {Ee42b47a
T } > (4.7)

Scf507j3 =< {Ecf507j3
T } > (4.8)

where

Ee42b47a
T =< 1507621075, {Ce42b47a

A } > (4.9)

and

Ecf507j3
T =< 1507631081, {Ccf507j3

A } > (4.10)

4.2. Data Storage and Retrieval 45

Finally

{Ce42b47a
A } = {< Speed, 8.2 >} (4.11)

and

{Ccf507j3
A } = {< Speed, 8.2 >,< UserPresence, true >} (4.12)

4.2.0.3 Data Privacy

A key element a system must take into account when dealing with the data is the
privacy and any ethical issue that can arise from their collection and exploitation. In
the case of personal data this aspect is even more crucial.

Any European organization or institution that deals with personal data at any
level has to comply with the European rules15 about protection of personal data.
This applies also to organizations based outside the European union that collect data
about European citizens. The European Commission is in the process of proposing a
completely new regulation that will start being active from May 2018, the Directive
95/46/EC called GDPR16. This regulation is much more strict with respect to the
old one and has been designed to give individuals better control over their personal
data held by organizations. The most salient elements introduced by it are:

• Measures to protect the data. Organizations need to implement appropriate
measures to protect the users’ data and avoid leaks;

• Require the consent. Organizations need consent from the user if they want
to collect data from her;

• Data access. Users should always be able to access all their data, see it and
decide to delete it totally or partially.

The system presented in this work tackles the privacy issue by anonymizing the
collected data to store them and additionally gives the possibility to the user to have
full control on her data. The anonymization consists in storing the user data and
associate it to a unique identifier instead to the username. This unique identifier
is created randomly by the machine when the user creates an account in the sys-
tem. Specifically it is a salt, that in cryptography refers to a casual sequence of bits,
usually used in combination with a password and an hash function. The salt is gen-
erated using a methodology based on the Secure Hash Algorithm 1 (SHA-1) which is
a cryptography hash function designed by the United States National that generates
a 40bytes string. This string is the one used to refer to the data in all the databases
of the system. Of course, since the data is received from the users that are logged in
with their accounts (with a standard username and password authentication mech-
anism) there is the need to link the unique identifier and the users’ accounts. This
is done through an encrypted disambiguation table that is small, and contains only
one row per user, where the relation between the account and the unique identifier
is make explicit.

15http://ec.europa.eu/justice/data-protection/
16http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.

119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC

http://ec.europa.eu/justice/data-protection/
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC

46 Chapter 4. Data Acquisition and Management

4.3 Summary

In this section we presented the methodology we developed to collect personal big
data from the user. The data are at the core of the SB and then the data collection
and management task is crucial.

We presented the different dimensions of the problem, i.e., collecting enough
quality data to be used in the solution of the semantic gap problem. These data
could be collected from different sources but we decided to focus our attention on the
smartphone, since it is the best device to continuously collect truthful data from the
user. We presented i-Log, the application we developed to collect huge amounts of
data from the user in an unobtrusive and privacy aware way from multiple sensors
inside the device. We described how the data is stored locally and synchronized
with the server where the analysis occurs. We explained how the mobile application
can be remotely configured to improve the data collection phase.

Finally, we explained how the streaming data should be stored inside a system
that is able to deal with personal big data, also accounting for the privacy of the
users.

47

Chapter 5

Knowledge Generation

In this Chapter we present the methodology behind the knowledge generation task
performed by the SB, which is at the core of the problem we are solving within this
thesis.

We start by precisely defining what is the context within this work from a tech-
nical point of view, starting from the formal definition given in Section 3.1.

We then discuss how the knowledge can be instantiated, automatically by the
machine with the help of the user or manually by the user herself. Moreover, we
present how the already instantiated knowledge can be updated using the streaming
data collected from the user smartphone using previously designed algorithms that
leverage both on the streaming data and on the status of other entity attribute values
in the user context.

5.1 The Context as a Snapshot of the Personal World

In Section 3.1 we defined the context as any information that can be used to char-
acterize a situation of the user that is considered relevant for the interactions with
other entities in any specific moment. It can be seen as the personal view of the
world of the user at a specific time T that is dynamic.

To enable highly personalized services we need to have access to a consistent
snapshot of the user context, in real time. For this reason we decided to represent it
following the entity-centric approach which describes the context as a series of enti-
ties, characterized by attributes and accounting also for the relations among them.

Among all the possible ET, we decided the fundamental ones to describe any
possible user context are the Locations, the People, the Events and finally the Ar-
tifacts (objects). The definition of the schema of such Entity Types is outside the
scope of this thesis and we leveraged on the work done by the other members of
the Knowdive1 group. In order to use this context as described above, the first step
is to instantiate all the entities composing it, as described in Section 3.3. While the
schema is defined inside the KB, the instantiated entities are stored into the EB, as
explained in Section 3.4.

The EB system and its content is the core of the personal representation of the
world of every user. From now on we will refer to this representation as the knowl-
edge of the user. The context is the part of this knowledge that is relevant in a specific
moment, or in other words, those entities that are enabled among the one available in the user
knowledge.

Every component of the SB has access to the contextual information of the user
from the EB, and all of them have a consistent view of it. At the same time, at the

1http://disi.unitn.it/~knowdive

http://disi.unitn.it/~knowdive

48 Chapter 5. Knowledge Generation

PartOf

Where

Nr: 1234
Sensors: Wi-Fi,
Bluetooth, GPS

Smartphone

Nr: 567
Markers: 2

Board

Model:
 XYZ
Temperature: 25 C

Thermostate

Name: University of
Trento
Location: Trento

University

Name: OS2
Department: DISI

OpenSpace

Name: Fausto
Role: Professor

Person

In

Near

Name: 9.30 meeting
Meeting

Name: Enrico
Role: PhD student

Person

Attend

Attend

In

Own

HasActivity

With Who

ME

What

FIGURE 5.1: The user context represented with the entity-centric ap-
proach.

moment when the context varies, the dedicated component of the system can mod-
ify the corresponding information in the EB so that everyone will be aware of this
change. An example of how the entity centric approach represents the context of the
user and ultimately how it is stored into the EB system is shown in Figure 5.1. We
see the user at the core, with four sample instantiated entities, one per type, that are
part of her context.

There are two possible ways of generating user knowledge:

• Knowledge instantiation. This refers to the ability of adding or removing entity
instances from the user knowledge database. Since this represents the personal
representation the user has of her own world, the contribution of the user is im-
portant and required. At the beginning when the EB is empty, the user must
create her own instances, for example defining places or people that are im-
portant. After a while the machine can start analyzing the available data and
consequently help the user in the instantiation phase. An example of this can
be a Location that is frequently visited but that is not saved as an important
location in the EB. The machine, starting from the GPS coordinates, can detect
this location and since it cannot find a match in the user knowledge among the
important places, it can ask the user herself to identify it (see Section 5.2.2). At
this point the user can decide to help the machine, i.e., saying that the loca-
tion i s her new "Home" location or she can decide that it is not a place worth
remembering. In the first situation, the reference to the old home location is
deleted while the new one is added. In the second case no action is taken.

• Knowledge update. Once the personal view of the world of the user is full
of entity instances, the system must keep them updated so that to reflect the
contextual information of the user. As said before, the context is a snapshot of
the user knowledge that the user believes is important for the situation. This
means that the entity instances composing the user knowledge are enabled or

5.2. Knowledge Instantiation 49

disabled depending on the situation she is facing. A part from enabling or
disabling the instances, some of them will also need to update their attribute
values, i.e., the user position. This can be automatically done by the machine
using the streams of sensor data collected by the user smartphone (see Section
5.3). The analysis is done exploiting the contextual information stored in EB so
that to produce meaningful results for the user.

The concepts mentioned in this Section are fundamental for the rest of this sec-
tion and what follows is a summarization for the reader’s convenience:

• The user has a personal view of the world surrounding him, we call it knowl-
edge;

• This knowledge is represented using the entity-centric approach and is stored
into the EB that allows to manage it;

• The knowledge is composed by entities, characterized by attributes and linked
one to the other by relations;

• The context is a snapshot of this knowledge in a specific moment in time in
which all the entities that are relevant for the user in that situation are enabled;

• When the context changes, the relations among the entities composing the user
knowledge change, this means that some of them are disabled while others are
enabled and for those enabled, their attribute values can change as well;

• The fact of enabling or disabling one entity depends on the links they have one
with respect to the other. Entities that are linked with enabled entities become
enabled;

• The core entity of the system is the user which is considered always enabled;

• The same process works also for different representations of the same entity
that can be enabled or disabled.

5.2 Knowledge Instantiation

The entity-centric approach used in this thesis to represent the context requires to
instantiate the knowledge schema in order to generate the real entities that compose
the user personal view of the world, as explained in Section 3.3. Since this view
is composed by any information that can be used to characterize a situation that is
considered relevant by the user, the main contributor in its instantiation must be the
user herself. The machine can eventually trigger the generation of the instances by
knowing other elements composing the user’s view of the world, but this needs to
be approved by the user in the first place.

5.2.1 User Defined Knowledge Instantiation

The user is at the core of the methodology and system presented in this thesis and
her help is particularly important in any phase of the knowledge instantiation pro-
cess for the reasons presented above. There are three main situations in which we
foresee the user can instantiate her own knowledge manually:

50 Chapter 5. Knowledge Generation

Profile creation. The first step the user has to perform when she decides to use
the SB is to create an account on the platform. This is when the EB is created, with
no entities inside. Proceeding in the profile creation phase, some key information
are asked so that few entities can be already instantiated. In general the informa-
tion asked are of three possible categories: (i) personal, (ii) location information she
believes are important and eventually (iii) some information related to the services
that will be provided by the SB. The registration process happens directly on the
smartphone when the user executes for the first time the i-Log application. More in
details:

• Personal information. These information are the most important because al-
low to create the entity at the core of the whole knowledge: the user. Some of
the main identifying attributes will be asked at this step.

• Location information. We believe the Location component of the context is the
most important among the four possible ones, for many reason. First of all it is
the easiest one to be computed and additionally, is the one that most can help
in inferring the other one. A dedicated procedure has been designed so that
the user can interact with a map, by placing pins on it and defining names for
the locations. In this way we give an interactive tool to the user to instantiate
the location entities.

• Service related information. The service related information are use case de-
pendent. To mention an example, if one of the services provided to the user
is related to her physical activities, most likely some information about her
physical situation will be asked, such as height, weight, among others.

The idea is to keep this first step as lightweight as possible and ask only the
strictly necessary information so that to not frighten or discourage the user, that will
immediately uninstall the application.

Knowledge import. Another approach for manual knowledge instantiation con-
sists in importing the entities from other external repositories. Example of such
repositories are the agenda for the entity of type Person, a calendar for the Event en-
tities, among others. The import operation presents some challenges due to the dif-
ferences in the schema between the original source and the one of the entity-centric
approach used in the EB. An additional step is needed to match the information so
that the correct attributes are assigned to the new entities. This process is done auto-
matically by the system which leverages of existing solutions that we do not tackle
directly in this thesis. In the whole process the user is required only to select which
elements to import into the contextual knowledge of the SB choosing among the
ones he believes are more relevant.

Manual creation. The last possibility for the user to create his own knowledge is
to manually generate the instances using a dedicated tool. This is something similar
to what she does during the registration phase but in this case is up to her to decide
which ones and how many entities to create. Of course, the more the generated in-
stances the more accurate the system will be in the analysis. Since this can be a time
consuming task, we left it as optional. We have a specific place in the mobile appli-
cation that allows to perform this task. Entities of the four types can be instantiated
using an user interface that facilitates the process.

5.2. Knowledge Instantiation 51

5.2.2 Machine Triggered Knowledge Instantiation

As we said in the previous section, there are different possibilities for the user to cre-
ate the instances that compose her own representation of the world. Unfortunately
all of them involve the user contribution at different levels. A standard rule in hu-
man machine interaction says that all the aspects related to the user interacting with
the machine must be carefully designed because the user can easily get bored and
leave. In order to alleviate this phenomena, since we cannot avoid asking the user,
we gave the machine the ability to instantiate the knowledge, and periodically the
user can be asked to confirm the machine findings.

There are two possibilities our system allows at the moment:

User Feedback. By analyzing the streaming data the machine can find patterns
or repetitive situations that can lead to knowledge instantiation. An example is the
one presented in Section 5.3.2.1 where an unknown location is found from the GPS
points of the user smartphone. If the machine finds this location for more conse-
quent days this can mean that it is a meaningful location for the user (see Section
5.3.2.2 for details about the procedure to find these locations). For this reason, we
decided to create a procedure to ask the user to give her feedback about possible new
instances that can be added to his representation of the world. Usually the machine
instantiates the knowledge using as attributes the values computed from the sensor
streams while the user is asked to give the generated entity only the name. In fact, as
explained in Section 3 the schema can be instantiated in an entity only if this entity
is given a name, that ultimately differentiates it from the other entities. Of course, a
meaningful name can be provided only by the user because she is the only one that
knows what the specific entity represents in her context.

We designed and implemented a procedure on the user smartphone that at spe-
cific moments in time shows a notification that, when clicked, opens a window that
allows the user to select a name for the specific instance. As well as all the other
aspects of the system, this one as well is configurable and can be adapted depending
on the use cases. So far, we have mainly focused in the design of how to ask the
names of the Location types (since this was the requirements of our use cases) and
the first results can be shown in Figure 5.2a.

The automatic instantiation of entities by the system can be performed only when
some entities have already been inserted by the user. At the beginning, without any
prior knowledge, this task is unfeasible.

User Live Annotation. Another aspect related to having the user helping the
machine to automatically instantiate her knowledge is the one that is based on the
annotations made by the user. In our application, the user is annotating her own
sensor streaming data using the smartphone. We believe that a standard solution
seeing an external expert annotator cannot be used since in this situation the task will
require a huge amount of work but most importantly the external human annotator
does not have the same understanding of the situation the user has. We do this by
administering the user a questionnaire at a fixes time interval designed as a time
diary built out of the user knowledge. Time diaries are standard tool sociologist use
to ask the user to report her time usage during the day. We extended this concept and
adapted them to be used through smartphones [Giunchiglia et al., 2017; Giunchiglia
Fausto and Mattia, 2017]. With this new approach we are able to collect answers to
very specific questions in terms of labels. The questions are three and regard the
main elements of the context, the people, the locations and the events as shown in

52 Chapter 5. Knowledge Generation

Figure 5.2b. These labels can then be used by the machine to create new knowledge.
For example, all the locations where the user replied to be at home can be analyzed
and a single "Home" location can be found the same can be done for people and
activities.

Since the user is not a field expert, we cannot assume that she will be able to
generate always truthful annotations. She is incentivated in doing so, but we cannot
take it for granted. Our methodology allows us to discover those labels that are
more keen to be unreliable through two time parameters formalized as ∆QA and
∆A(X,Y), where:

1. ∆QA refers to memory bias, defined as the inadequate recall of respondents
when reporting their time use. The main reason is that the answers are often
given with a delay after being carried out [Tourangeau, Rips, and Rasinski,
2000]. The formalized parameter is the time interval (in minutes) from when
the question is presented to respondents to when the answer is given.

2. ∆A(X,Y) instead refers to carelessness, that is, a set of behaviours that lead to
hurriedness when reporting time use. The formalized parameter is defined
as the time interval (in seconds) elapsed from when the user starts answering
one question of the time diary entry X and answers another question Y, where
X >= 1, Y <= Z, and Z is the total number of questions and X < Y . The
higher the value, the better in terms of reliability.

A detailed explanation about the two time parameters our methodology allows
to identify and use will be presented in Section 13.1.4.2, where we associate them
with the use cases referred to the students of the University of Trento.

5.3 Knowledge Update

The other fundamental aspect at the core of our methodology is to allow the machine
to automatically updating the contextual information about the user. The machine
is able to do so by updating the Attribute Values {V} in the corresponding entities
that compose the context, stored in the EB. For this task we assume the EB to already
contain the entities composing the user context.

As explained in Section 3.2, the schema of the entity-centric approach we are
using defines an ET composed by a Concept C and a set of Attributed Definitions
{AD}. In other words, what characterizes an entity type i.e., person, location etc, is
the set of attributes they have. A location entity type has a set of attribute that are
different with respect to the ones of the person since their intrinsic characteristics
are very different. Additionally we defined an Attribute Definition (AD) as a notion
used to constrain an attribute composed by a Concept C and an Attribute Type (AT).
AT can be of different types, divided into to categories numeric or semantic data
types. The former is composed by boolean, integer, long and float data types that
are used to quantify. The latter on the other hand are the so called relational attributes
that create the link from the origin entity and other Concepts or Entities.

Updating one with respect to the other has different meanings in the context of
this thesis:

• Numeric: the update of a numeric attribute value is necessary to quantify the
entity that then can be aggregated together to infer higher level contextual
elements. These updates have little or no meaning for the user while they are
necessary for the machine.

5.3. Knowledge Update 53

(A) Screenshot rep-
resenting how the
i-Log application asks
the user to name an
entity instance of type

Location.

(B) Screenshots pre-
senting how the three
questions of the time
diary are showed to the

user.

FIGURE 5.2: Screenshots of how the system leverages on i-Log to ask
the user to help in instantiating new knowledge.

• Semantic: by updating a relational attribute the entity is linked with another
one. If the newly linked entity was disabled in the current snapshot of the con-
text, it becomes automatically enabled in the new one. An example of this is
the attribute Location of the User (that we assume to be always enabled). If
this attribute was set to point to the Entity "Work" and the algorithm changes
it to "Home" I disable the "Work" entity from the current snapshot of the con-
text and I consequently enable "Home". This update works for the different
representations of the same entity too.

The core of both update methodologies consists in the fact that the sensor data
collected by the users are exploited, in combination with the contextual information
to update the attribute values of the entities.

54 Chapter 5. Knowledge Generation

5.3.1 Numeric Attribute Update

All the elements in the real world have some characteristics that are numeric values.
A person has an height of 1.78m and she moves at a speed of 4Km/h, etc. The
former is a characteristic that identifies the person while the second one quantifies her
motion (in this situation). Usually the identifying values are the ones that are static
or change very infrequently. On the other hand, the quantifying attributes change
more often and are the one we would like to update with the methodology presented
in this section.

5.3.1.1 Motivating Example

For the sake of clarity we decided to keep the examples as simple as possible so that
one can understand the process underneath it.

Suppose the system needs to know how fast the user is moving because it needs
to compute the required time to reach a destination. Of course, the person can use
multiple transportation means: walking, using the bus, using the car, among others.
Unfortunately we do not have any direct way of inferring the user’s speed because
we don’t have a dedicated sensor on her smartphone. On the other hand we are able
to detect the user’s car speed because of an IoT device that produces these data. We
also have the information about when the user is in the car. By merging these two
pieces of information, we are able to infer the required user speed that can then be
used to make other analysis.

This very simple example perfectly maps with the objective of the Numeric At-
tribute Update feature of the SB. In our context, there are two entities involved, the
user and the car, respectively of Entity Type (ET) Person and Vehicle (is-a Artifact).
They have different Attributes (A) that characterize the entity themselves. For the
sake of simplicity, here we present only the ones required to explain the example.
For the Person we have:

• Speed: this is the Attribute (A) we need to update leveraging on sensor streams
and contextual information. It is defined as

PSPEED =<< Speed, FLOAT >, 0.0 > (5.1)

while for the Vehicle we have,

• Speed: this is the Attribute (A) collected as a stream of sensor data from an
external device. It is defined as

VSPEED =<< Speed, FLOAT >, 48.0 > (5.2)

• UserPresence: the car is provided with a sensor that detects the user presence
which generates a boolean value

VUSERPRESENCE =<< Presence,BOOLEAN >, true > (5.3)

In this situation the attribute speed of the person is the one we want to update us-
ing other entities in the context, in this case the vehicle. For this, a small computation
task must be performed so that the different elements can be merged to produce the
result used to update the value.

5.3. Knowledge Update 55

FEATURE
EXTRACTION

{F}
ALG

STREAMS {SS} OUTPUT
NUMERICAL

ATTRIBUTE VALUE
(O)

ATTRIBUTE
VALUES {A}

FIGURE 5.3: Schematic of the elements composing a Numeric At-
tribute Update procedure.

5.3.1.2 Numeric Update Procedure

In order to solve the situation presented in the motivating example above, we present
the following procedure that is able to update those attributes that have an Attribute
Type (AT) of one of the allowed numeric types (i.e., integer, long, float, boolean).

A Procedure (P) is defined by a field expert for each Attribute Definition (AD) in
the schema. This procedure will be then applied by the machine anytime an update
is requested. As shown in the schematic of Figure 5.3, it is composed by one or
more input sensor stream {SS}, one or more attribute values of other entities {A}
(optional), a set of features {F} to be extracted from the data and an algorithm that
processes all such inputs to generate the output of the same format of the Attribute
Type (AT) of the specific Attribute Definition (AD). Formally speaking it is defined
as a tuple

P =< AT, {SS}, {F}, {A}, O,ALG > (5.4)

where,

• AT is the data type of the Attribute Definition (AD) the procedure is updating;

• {SS} is a non-empty set of sensor streams the attribute value has to be com-
puted from. They can be mandatory and optional. The optional ones, if present,
can be used to reinforce the output;

• {F} is a set of features that need to be analyzed by the algorithm to generate the
output. These features are computed from the input sensor streams {SS} by a
dedicated Feature Extraction component in the procedure;

• {A} is a non-empty set of attributes belonging to the same or other entities
whose values has to be considered in the analysis. They can be mandatory and
optional. The optional ones, if present, can be used to reinforce the output;

• O is the output Attribute of the entity of type AT the procedure has to update;

• ALG is the algorithm that generates the numeric value that updates the entity
attribute. It takes into account both the mandatory inputs and the optional
ones if present and the reinforcement strategy in the latter case should be de-
fined.

Let us illustrate how the procedure is defined for the use case in the motivating
example presented in Section 5.3.1.1:

56 Chapter 5. Knowledge Generation

• The situation illustrates the need of creating one Procedure (P) for updating
the Value (V) of the Attribute (A) speed of the Entity (E) person.

• The data type AT is a FLOAT

• The input stream is only the vehicle speed, VSPEED

• The feature that needs to be used is the average of the speed values so that to
remove unwanted fast changes

• The contextual information input is the presence of the user in the car that
maps to the corresponding attribute VUSERPRESENCE

• The attribute where to update is PSPEED

• The algorithm ALG in this case is straightforward and does not require partic-
ular machine learning techniques.

The resulting procedure is represented as follows:

P =< FLOAT, VSPEED, AV ERAGE, VUSERPRESENCE , PSPEED, ALG > (5.5)

5.3.2 Semantic Attribute Update

The second type of attributes an entity can have is the semantic type, otherwise
called relational attributes. They allow to create links between entities that ulti-
mately create the graph of the context of the person. An example of this attribute is
the position of the user: it always refers to an existing location on earth, i.e., Home,
Work, etc. In this situation the process of updating the attribute value is a bit more
complex and requires additional interaction with the user knowledge database EB
system. The process of updating one relational attribute corresponds to the action of
enabling or disabling one entity. In fact, when the old attribute value (the reference
to an entity) is replaced by a new one, disables the old entity since it is no more in-
volved in the active contest of the user. The process works for different entities but
also for different representations of the same entity, as explained in Section 3.3.1.

5.3.2.1 Motivating Example

A smart home environment needs to know when the user arrives at home in order
to perform some task, i.e., turning on the lights of the living room. Instead of having
dedicated sensors deployed in the environment the system leverages on the data col-
lected from the user smartphone. The smartphone collects multiple sensor streams
and few of them allow to determine the user position: the GPS coordinates or the
WiFi network the user is connected to. Both have advantages and disadvantages. The
GPS is the most accurate but works only for outdoor and since he drains the battery
very quickly, the sampling frequency is set very low. On the other hand, the WiFi
is cheaper in terms of battery consumption and, in this particular scenario, is very
accurate if the system previously mapped the fact of being connected to the network
"home-1234" as being at home. For both sensor streams, an additional step is re-
quired to translate the raw data to the higher level situation of "being at home". This
step uses the raw data in combination with some contextual information to change
the Position attribute of the Person to "Home".

This example, still remaining very simple, shows an additional dimension in the
Semantic Attribute Update process of the SB, which is, it requires to compare some

5.3. Knowledge Update 57

results of the analysis of the sensor streams with data in the user knowledge and
then return a reference to one of the elements of this knowledge, i.e., "Home". This
element, will then become enabled in the active context while the previous relation
will be disabled.

In this example there are three entities involved (actually two plus one which
was not mentioned in the example). These entities are: the User, the Home and the
Office. The first one is of Entity Type (ET) Person while the other two are Location.
They have different Attributes (A) and to keep things simple, with present only the
ones directly related with this example.

For the Person we have:

• Position: this is the most recent known position of the user. It is represented
as a relational attribute that links the user with another entity that pertains to
his knowledge (view of the world). It is defined as

PPOSITION =<< Position,ENTITY >,ESURI > (5.6)

where ESURI is the identifier (as explained in Section 3.3.1) of the representa-
tion the user has of a certain location represented by entity E.

while for the Office we have,

• Position: this is the position of the user’s office in the real world, expressed
with an object defined as Coordinates

OPOSITION =<< Position,OBJECT >, coordinates > (5.7)

where Coordinates is composed by three numeric float values: latitude, longi-
tude, altitude

Coordinates =< latitude, longitude, altitude > (5.8)

and for Home:

• Position: this is the position of the user’s office in the real world, expressed
with an object defined as Coordinates

HPOSITION =<< Position,OBJECT >, coordinates > (5.9)

where Coordinates is composed by three numeric float values: latitude, longi-
tude, altitude

Coordinates =< latitude, longitude, altitude > (5.10)

• WifiNetworkAddress: this is the MAC address of the WiFi router present in
the user home. Is is defined as:

HWIFINETWORKADDRESS =<< Address, STRING >, ”address” > (5.11)

5.3.2.2 Semantic Update Procedure

In order to solve the situation presented in the motivating example above, we present
the following procedure that allows to update those attributes that have a Semantic
Attribute Type (AT).

58 Chapter 5. Knowledge Generation

A Procedure (P) is defined by a field expert for each Attribute Definition (AD) in
the schema. This procedure will be then applied by the machine anytime an update
is requested. With respect to the procedure for the Numeric Attribute Types, this
one needs to account for the variability of the attributes of the entities and then is
more complex. As shown in the schematic of Figure 5.4, it is composed by one or
more input sensor stream {SS}, one or more attribute values of other entities {A}
(optional), a set of features {F} to be extracted from the data, an algorithm ALG that
processes all such inputs and searches for a match {SR} in the user knowledge that
will be then provided as output to the attribute O. Formally speaking it is defined
as a tuple

P =< {SS}, {F}, {A}, {SR}, O,ALG > (5.12)

where,

• {SS} is a non-empty set of sensor streams the attribute value has to be com-
puted from. They can be mandatory and optional. The optional ones, if present,
can be used to reinforce the output;

• {F} is a set of features that need to be analyzed by the algorithm to generate the
output. These features are computed from the input sensor streams {SS} by a
dedicated Feature Extraction component in the procedure;

• {A} is a set of attributes belonging to the same or other entities whose values
has to be considered in the analysis. They can be mandatory and optional. The
optional ones, if present, can be used to reinforce the output;

• {SR} is a set of entity SURI that match the query performed by the algorithm
ALG based on the result of the computation of the input streams {SS} based on
the attribute values {A}, if any;

• O is the output Attribute of the entity the procedure has to update;

• ALG is the algorithm that generates the numeric value that updates the entity
attribute. It takes into account both the mandatory inputs and the optional
ones if present and the reinforcement strategy in the latter case should be de-
fined.

FEATURE
EXTRACTION

{F}
ALG

STREAMS {SS} OUTPUT
NUMERICAL

ATTRIBUTE VALUE
(O)

ATTRIBUTE
VALUES {A}SEARCH {SR}

FIGURE 5.4: Schematic of the elements composing a Semantic At-
tribute Update procedure.

What follows is the description of how the procedure is defined for the use case
presented in Section 5.3.2.1:

5.4. Summary 59

• The situation illustrates the need of creating one Procedure (P) for updating
the Value (V) of the Attribute (A) Position of the Entity (E) Person.

• There are two input streams, the GPS coordinates and the WiFi network the smart-
phone is connected to;

• The feature that needs to be computed for the GPS data is a median point that
averages the last X collected points in a short period of time in order to balance
the uncertainly. This is done with a clustering algorithm. For the WiFi network
name, nothing is done;

• There is no contextual information input {A}

• The attribute where to update is PPOSITION

• The algorithm ALG needs to perform different tasks:

– Take the point generated from the feature extraction component and, if
any, perform a query to the knowledge database of the user, the EB sys-
tem, for entities of type Location which Position attribute matches the
point;

– Or, if the stream of GPS points is empty, use the second stream, the WiFi
network address the phone is connected to. In this situation will search
for the entities of type Location which WifiNetworkAddress attribute matches
the WiFi address;

– The SURI of the found entity will be then sent to the output O of the
Procedure.

The resulting procedure is represented as follows:

P =< {GPS,WiFi}, {CLUSTER,−},−, UPOSITION , ALG > (5.13)

Since the output of the Semantic Attribute Update Procedure (P) is a reference
(SURI) to an existing Entity in the user personal knowledge resulting from a search
process, it can be that the search does not produce any match. If no match are present
the algorithm generates an Unknown Entity. To characterize this entity the user
feedback is needed and he can decide to help the machine in creating this new en-
tity, by giving it a name, since he believes this entity is important for his context.
Otherwise, the user can discard the newly created unknown entity. For details about
Entity creation we remind to Section 5.2.

5.4 Summary

In this Section we illustrated the methodology we developed to create meaningful
knowledge for the user out of the noise personal big data generated from her smart-
phone. This methodology is at the core of the SB and will be extensively used in
it.

We started by describing what is the user context, that is, a snapshot of the per-
sonal world of the user. We modelled it using the entity-centric approach. It is
composed by entities with their attribute and relations that interact one with respect
to the other. There are four main
glset that describe the user context: People, Locations, Events and Artifacts.

60 Chapter 5. Knowledge Generation

We then described how the knowledge can be generated, dividing this phase
into two sub-phases: the knowledge instantiation and the knowledge update. The
former is used to create entity instances that are not present in the user personal
view of the world but that she believes are relevant. The latter on the other hand is
needed to update the existing entities so that to adapt to the context changes.

For the knowledge instantiation we said that the user is fundamental, since only
her is aware of what are the relevant entities. The user can instantiate instances
manually or can be helped by the machine. The machine can analyze the streaming
data and find patterns. Then, it needs to ask for the user feedback to corroborate the
findings, ending up in a new entity created.

For the knowledge update, instead, the process is automatic. The field expert
must define one Procedure (P) for every AD of the entities so that the system is able
to use it, when needed, to update the Attribute Value (AV). There are two types of
values that can be updated, numerical values or semantic values.

61

Chapter 6

Knowledge Exploitation

This section explains how the knowledge generated and maintained in the SB can
be exploited to help the user in her day life situations, which is the ultimate goal of
the system presented in this thesis.

At some extent the SB can be assimilated to a Weak Artificial Intelligence (Weak
AI) considering the following definition1 "Weak AI is machine intelligence that is
limited to a specific or narrow area. Weak AI simulates human cognition and ben-
efits mankind by automating time-consuming tasks and by analyzing data in ways
that humans sometimes can’t". This is exactly what the methodology and system
defined in this PhD thesis do: the machine is able to analyze huge amounts of sen-
sor information collected from the user and the world in a way that is meaningful
for the user herself and that otherwise she alone could not analyze. The definition
also mentions what the AI is intended for, "to benefit mankind by automating time-
consuming tasks...". The way we see this automation task is through a set of services
that help the user in her day life situations.

6.1 Personalized Services

Generally speaking a service is effective when satisfy the user, in every dimension.
It is almost impossible to create a single, unique service that satisfies all the people
using it since everyone has very different needs. To solve this issue we propose to
use highly personalized services that are built on the user preference. The personal-
ization comes at different levels:

• Among all the available services, the user is free to decide which one to use;

• Once the services has been selected, the user can decide when to enable it. All
the services are configurable;

• The content of each service is based on the user knowledge.

In order to have such personalized services the system needs to know all the as-
pects of the user’s life, in other words it needs to know the user context. In the SB, the
EB contains exactly this, a snapshot of the user context. Each service needs to moni-
tor changes to the involved entities in the EB and react accordingly. The service can
leverage only on the already present information in the EB but it can also generate
new information that can be saved back to the user knowledge and then proposed
directly to the user in its various forms: quantified self reports, notifications, among
others.

1http://www.investopedia.com/terms/w/weak-ai.asp

http://www.investopedia.com/terms/w/weak-ai.asp

62 Chapter 6. Knowledge Exploitation

The services are strictly related to the use cases and to the users. In the use cases
we worked so far for example we focused on the citizens of a city interested in mo-
bility issues and on university students interested in understanding how their habits
influence the academic performances. For every use case there is the need to under-
stand the user needs, that usually depend on their demographic characteristics, sex,
age, occupation, etc.

We identified the following procedure to create a service in the SB:

• Understanding the user needs. A way we used to understand these needs is
through focus groups, namely a group of people representing the sample of
the final users using the system for the specific use case. These people can be
asked to reply to some precise questions the scientist have or to propose their
own ideas of a possible service.

• Service design. The scientist translates the high level user requirements iden-
tified in the focus groups and design the service, defining the outcome, the
process and the input to use.

• Schema design. It can be that some new entities need to be created because
not present in the system. This is done by a field expert. Once the schema is
created, these newly created entities can be instantiated by the single users in
their knowledge.

• Update procedures design. Once the instances are created they need to be
used by the service to produce its output. Similarly to the others entities, this
is done by updating their attribute values. This task requires a second field
expert to design the update procedures as explained in Section 5.3.

• Service knowledge. Some services requires to keep track of their operation
and have their own representation of the world at a global level outside each
user’s knowledge. Then, an EB can be instantiated for the service to store its
information, again following the entity-centric approach.

To design a service, these steps have to be performed. After a test phase, the
service is made available to the users that can subscribe and start using it. The
subscription involves the user to give explicit consent to the usage of her data ac-
cording to the latest privacy regulations. The way we implement service is through
a publish-subscribe mechanism where multiple publishers can propose their own
services. We remind to Section 10 for details.

6.2 User Privacy

In a system such as the one described in this thesis that has to deal with personal
data, all the privacy related aspects must be carefully taken into account. We already
mentioned the GDPR in Section 4.2.0.3 related to the data collection phase. It is a set
of regulations that will start to be applied in May 2018 to all the companies and
institution that collect personal data about European citizens. The main novelty
point is that the user should always be in control of her own data.

In the SB the privacy of the user is guaranteed by design. Since in this section
we illustrate how the user generated knowledge can be exploited to provide useful
services, this is where the privacy is more important. In fact, every service must
have access to the user data to elaborate them and provide the desired output to the
user.

6.3. Summary 63

The way we made the SB compliant to GDPR is thanks to these elements:

• Authentication. Every operation performed in the SB needs to be authenti-
cated. This is done to guarantee the separation of the data among the users.
Once the user register to the platform, she is given a username and a password
that must be used on the smartphone to collect the data and, in general, in the
user interfaces she interacts to, both on the desktop and on the mobile;

• Anonymization. One important point GDPR impose to the companies is to
take all the possible precautions to protect the user data and prevent data leaks.
This can be guaranteed by adopting software and or hardware solutions to iso-
late the data from ill-intentioned. However, it is possible that even if the best
solutions have been adopted, some data can be accessd from outside the com-
pany. To prevent this, we decided to completely anonymize the data stored
in our systems. Once the data is sent from the smartphone to the server, and
before storing it, it is anonymized so that, even if someone access it, he will not
be able to refer back to the user who generated it;

• Access control. A part from the authentication, another practice we adopt
in the SB is to implement access control policies based on roles. Each roles
can access different elements of the system and can perform different tasks.
However, only the user can access her own data. Neither the administrator,
nor developers or others can access the user data stored in the databases if the
user didn’t express her explicit consent;

• Data Subscription. The last element that characterizes the privacy related as-
pects in the SB is the fact that the way the services are provide is through a pub-
lish/subscribe mechanism. The service is made available from one producer
(multiple producers are allowed in the system) and the user has to subscribe to
it. The subscription process comprehends a series of steps that involve the user
that has to explicitly give the consent to allow the usage of her own data from
the service. The subscription always has a duration and after that the service
has to ask the user again.

More details about these elements will be explained in the reference architecture
presented in Section 10.

6.3 Summary

In this section we described how the knowledge internally generated by the sys-
tem from the personal big data collecting from the user can be exploited to provide
services that ultimately will improve the user’s quality of life.

We described which are the main characteristics of the highly personalized and
context-aware services provided by the SB. We then explained how one service can
be designed, starting from the user needs.

We also explained that in this phase the privacy of the user is crucial, when the
system has to access her data. The SB is GDPR compliant by design. In fact, the user
is always in control of her own data and decides which one in the system can access
them and for how long it can do it. The data is stored in an anonymized way so that
it is not possible to lead back to the user who generated it.

65

Part III

The Reference Architecture and
System

67

Chapter 7

Reference Architecture

In this chapter we present the reference architecture for the SB which integrates dif-
ferent components that interact with each other in a complex manner. We present
the different roles of these components and how they can work together to address
the problem tackled in this Ph. D. thesis. The architecture itself is one of the contri-
butions of the thesis.

The first step when defining an architecture is to elicitate the high-level require-
ments (Section 7.1). For the SB we analyzed the sub-problems composing the main
problem we are addressing in the thesis and from there we defined the requirements.
We organized them around some dimensions that are considered of key importance
in the design of such a complex system: the data collection, the data storage, the user
participation, the services, the privacy and the performances.

Starting from these requirements we designed the system architecture keeping
in mind that the problem needed to be tackled in a general way. The architecture
must be abstracted from any application specific constraint in order to be used in
any possible scenario and context and with any possible technology.

The resulting architecture is composed by multiple components that can be grouped
into three categories defined by their purpose: Data Acquisition and Management
Subsystem, Knowledge Generation Subsystem and Knowledge Exploitation Subsys-
tem. Each of these subsystems and their components will be explained in details in
Chapters 8, 9 and 10 respectively.

Finally, we described how the components communicate one with the other to
work in symbiosis to solve the main problem at the core of this thesis. In details, we
present a dynamic view of the system that highlights how the different components
interact in the three main situation that can arise: the data is collected from the user,
the knowledge is generated out of the streaming sensor data and finally how this
knowledge is used to provide services to the user.

7.1 Requirements

The requirement analysis for the architecture of the SB starts from the problems de-
fined in Chapter 2. In details, we focused on defining the requirements starting
from the different sub problems identified in the three macro areas: Data Acquisi-
tion and Management, Knowledge Generation and Knowledge Exploitation. Even
if the three areas are very different, the requirements are shared among them and we
will present them to address the global problem. What follows is the results of this
analysis.

Data Collection. The system architecture described in this thesis deals with sen-
sor streaming data about the user. The requirements are described as follows:

68 Chapter 7. Reference Architecture

• The data can be collected from any source that is able to generate streams of
sensor data. The smartphone is the best candidate but others are allowed as
well and should be integrated into the system through dedicated data import
pipelines;

• The data collection from the smartphone is done through a mobile application.
A device that allows to install third-parties application is required. i-Log is
currently supported on Android and the iOS version is under development;

• The installation process of such application and the creation of the user profile
must be easy and fast to be done;

• The data collection process from the smartphone must not affect the device
usage under any circumstance. Using the app we expect a little increase in the
battery consumption, a small percentage of the internal storage to be occupied,
no performance degradation;

• The data need to be periodically synchronized with the backend server for the
analysis. The device should be connected to a WiFi network at least once per
day if the user does not want to use her 3G network and incur in additional
costs.

Data Storage. In this thesis we have two different types of data that are very dif-
ferent one respect to the other but that must be used together to solve the problem.
The first one is modeled according to the entity-centric approach, that uses the no-
tion of entities to represent the data, i.e., the knowledge of the user as described in
Chapter 3. These kind of data is stored in the so called Entity Base system. How to
model these data and how the EB works are elements outside the scope of this thesis.
The second one are the streams of sensor data collected from the user smartphone
and represented as time series. These data are at the core of the work presented in
this thesis. These data types have direct impact on the requirements of the SB. In
details, for the entities we have this set of requirements:

• Each user has one personal Entity Base (EB) system so that the information
are stored separately from the other users. Since we leverage on others work
for this component of the system, we assume that the separation can be either
physical (multiple instances of the Entity Base) or logical (one instance of the
Entity Base and the user’s knowledges are logically separated);

• The knowledge schema must be shared among the users so that to simplify
the design process and to being able to reuse the knowledge generation algo-
rithms. Therefore, the system itself should provide a point of reference to get a
basic and extendable schema as well as general purpose knowledge composed
by entities of general interest like the geography of the territory, etc.

Considering on the other hand the streams:

• The data are logically separated one respect to the other due to privacy issues.
There is one big storage system that collects all the steaming data of the users;

• We assume that the raw data referring to the past will be eventually deleted
when the analysis have been performed, so that to free up space for new data;

7.1. Requirements 69

• Since the amount of data is huge, we assume that the database system must
be distributed and can scale up (and down) depending on the number of users
using the system.

User Participation. The user is the core of the SB.

• In order to get the services back, she needs to share with the system the col-
lected sensor data;

• The user should be as honest as possible when is asked to collaborate in the
knowledge instantiation. If she cheats, the system can be misled;

• All the tasks that require the interaction of the user should be very easy to
perform in order to be able of being executed by any user.

Services. Through the SB it should be possible to access different services allow-
ing the user to exploit her personal data to improve her quality of life. This means
that:

• The system (or external entities) should provide these services so that the user
perceives the SB as useful;

• Different services should be designed and implemented in order to satisfy the
different preferences of all the users;

• The services should exploit the personal streaming sensor data, the user’s
knowledge and if needed also external knowledge.

Privacy. The SB deals with personal information that can be considered sensitive,
i.e., the user’s location. This may raise privacy concerns that needs to be taken into
account. New regulations will start applying soon and the system described in this
work can tackle most of their new elements:

• The data should be stored anonymized in the databases. This means that, is
someone can violate the security measures and come into possession of the
data, he cannot associate the data with the real person who generated it. A
unique identifier is assigned to a newly created user and this identifier will be
used to store the data. One single table called "mapping table" should contain
the mapping between the identifier and the user and this table should be saved
in a safe place;

• The data should not be shared with other entities outside the SB if the user did
not allow this;

• The user should always be in control of her data, she can access and delete
them when she believes this is needed;

• The control over the data should be extended also over those elements of the
system that use the data. This means the user should explicitly grant access to
her data from a component of the system.

Performance. The system is expected to be designed to handle an arbitrary large
number of users, collecting data from them, generating their knowledge and pro-
viding them services. This is mapped to these architectural requirements:

70 Chapter 7. Reference Architecture

• The system should be able to scale in the number of users while still providing
acceptable performances in all its tasks;

• The system should be able to scale with respect to the number of sensors and
entities per each user it can manage;

• The system should be able to scale and handle different users, in different sit-
uations, with different needs while still providing good quality of service.

7.2 System Logical View

A logical view of the reference architecture is presented in Figure 7.1. This view
shows the different components that are part of the SB and how they are connected
together. The logical division in the three areas is also showed: Data Acquisition
and Management Subsystem, Knowledge Generation Subsystem and Knowledge
Exploitation Subsystem. Each subsystem will be presented in the next Chapters, 8,
9 and 10 respectively.

7.3 System Dynamic View

The dynamic view of the system outlines the interactions among the different sys-
tem components in performing a task. These interactions can be very complex and
involve multiple components that work on parallel threads. However, a simplified
view of such interactions can help in understanding the overall system behaviour
for three of the most important tasks the system has to deal with: the data collection
from the users, the generation of the knowledge and the knowledge exploitation for
the services.

7.3.1 User Data Collection

Figure 7.2 shows the sequence diagram of the operations needed to synchronize the
sensor streaming data from the users smartphone to the server.

When the smartphone synchronizes the data with the backend, the first oper-
ation is to reach out the API where to upload the compressed log file. Together
with the file, the user credentials are sent for authentication that is performed by the
dedicated component in the SB. If the authentication succeeds, the procedure can
start. The API generates in output an array of compressed bytes that is sent to the
unzip component. It uncompresses the data and generates a byte array of uncom-
pressed data which is sent to the pre-processing stage. The pre-processing adapts
and restores the original format of the data that was modified by the smartphone.
These data are then matched to the schema of the destination database, mapping
each sensor variable. At this point, the data can be inserted in the database but to
do so, the component must know where to store the data. As we will explain in
Section 10.2, the data are stored anonymized in order to preserve the user privacy.
The anonymization is obtained by storing the data with a UUID that is a random
generated string of 40bytes. To store the data then, the Data Insert component needs
to know this UUID for the authenticated user. This information is stored in the
anonymization component that, after having determined that the request is legit,
sends the UUID through a secure connection. Finally, the data can be stored in the
appropriate tables under the user database.

7.3. System Dynamic View 71

Knowledge Exploitation Subsystem

Data Acquisition and Management Subsystem

Knowledge Generation Subsystem Knowledge Generation Procedures Repositories

OPERATIONS

REPOSITORY

Operations Scheduler

TRIGGERS

TIMERS

Knowledge Instantiation

User Defined Knowledge Instantiation

Machine Triggered Knowledge Instantiation

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

User
Interaction

Profile Creation Knowledge Import Manual Creation

Knowledge Update

Materialization
Service

Mapping Service

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Anonymization

ANONYMIZATION
TABLE

Access Control

RULES TABLE

Data Subscription

SUBSCRIPTIONS
TABLE

AUTHENTICATION

Services

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICS

Data Storage

Streaming Data Storage

 Sensors

Attributes

Entity Data Storage

Users

 World

Knowledge Data Import Pipeline

DATA API SCHEMA MATCHING DISAMBIGUATION LINKING DATA INSERT

Streams Data Import Pipelines

Attribute Values Streams Data Import Pipeline

DATA INSERTDATA API

Sensor Streams Data Import Pipeline

SCHEMA
MATCHING DATA INSERTDATA PRE-

PROCESSINGUNZIPDATA API

to/from Data Storage

to/from Data Storage

to/from Data Storage

to/from Data Storage

from Data Storage

to Authentication

to Authentication

to Authentication

FIGURE 7.1: Schematic of the reference architecture of the SB with the
three main subsystems: Data Acquisition and Management, Knowl-

edge Generation and Knowledge Exploitation.

7.3.2 Knowledge Generation

Figure 7.3 shows the sequence diagram of the operations needed to automatically
generate knowledge from the user collected data. The knowledge generation task
we are referring to here and we took as an exmaple, is the Numeric Attribute Update
as defined in the example illustrated in Section 5.3.1.1. The example is about the
system that needs to know how fast the user is moving, without having any data
that refers to it. It needs then to compute this value using a Procedure defined by
the field expert, that uses the high level information of the user being in her car
plus the speed of the car itself. By merging these two, the system can automatically
update the user speed attribute value with the speed of the vehicle.

72 Chapter 7. Reference Architecture

The process starts with the user manually creating one entity she believes is rel-
evant for her context. Once the entity is created, the system searches in the Knowl-
edge Generation Procedures Repository if a procedure that automatically updates
the values of the attributes of such an entity has already been defined by the field
expert. For the sake of simplicity, in the schematic of Figure 7.3, this is shown only
for one of the attributes but in the final system this happens for all the attributes of
the newly instantiated entity. In this case, the procedure is already present and then
is instantiated in the Knowledge Update component of the user. In particular, the
instantiation is in the mapping module. From now on, this procedure will be avail-
able and able to automatically update the values of the specified attribute, according
to events i.e., changes in the context, or on a time bases. In this situation we consid-
ered a timer that schedules the update periodically. Every time the timer triggers the
knowledge update, it calls the procedure that performs the following operations:

• It requests and obtains the contextual information (if needed for this attribute)
to the corresponding Entity Data Storage component.

• It requests and obtains the streaming data (if needed for this attribute) to the
corresponding Streaming Data Storage component.

• It then performs the computation defined by the algorithm implemented in the
procedure.

• Finally, the result of the computation is mapped to the Streaming Data Storage
in the corresponding stream of the attribute values.

We said previously that an update is composed by two tasks: mapping and ma-
terialization. The mapping computes the new attribute value and stores it in the
Streaming Data Storage while the materialization takes this value and updates it in
the Entity Data Storage to update the context of the user. In this specific example, the
materialization happens together with the mapping. Then, the newly generated at-
tribute value is read from the Steaming Data Storage and is copied as is in the Entity
Data Storage.

7.3.3 Knowledge Exploitation

The last example we present for describing the interactions among the different sys-
tem components refers to the task of exploiting the knowledge to provide services
to the user. This situation is presented in Figure 7.4.

As explained in the methodology, the user must subscribe to benefit from one ser-
vice. This is done by contacting the Publish/Subscribe system service of the Knowl-
edge Exploitation Subsystem. The user requires and receives the list of services, and
then requests for subscribing to one of them. The service replies with a request for
permissions to the user. This request comprehends information about which data
the service needs and for how long it needs it. Once the user grants these permis-
sions, a new entry is inserted in the Data Subscription table in the corresponding
component of the SB. From that moment on, the service is instantiated and starts
operating. To operate, it needs data, that are stored anonymized to preserve the
privacy of the user. To de-anonymize the data the service needs the UUID associ-
ated with the user, which id stored in the Anonymization component of the system.
Once the service receives the key, it can query the Entity Data Storage and retrieve
the data it needs. After some processing of various form, e.g., visualization, aggre-
gation, among others, the service can be provided to the final user who requested
it.

7.4. Summary 73

7.4 Summary

In this Section we illustrated the reference architecture for the SB that implements
the methodology previously presented.

We started by defining the high-level requirements the system has to satisfy in
terms of data collection, data storage, user participation, services, privacy and finally
performances.

We then illustrated a logical view that consists in a schematic showing all the
components of the SB. They can be grouped into three sub-systems: Data Acquisi-
tion and Management Subsystem, Knowledge Generation Subsystem, Knowledge
Exploitation Subsystem. Everyone of them will be presented in details in the next
Chapters, describing what are their objectives and their components.

Finally, we presented a dynamic view of the system that illustrates how the dif-
ferent components interact one with respect to the other to provide three main func-
tionalities: data collection from the users, knowledge generation from such data and
exploitation of such knowledge to provide services to the user that will improve her
quality of life.

74 Chapter 7. Reference Architecture

Data Storage
User Privacy

Data Collection

DATA API
UNZIP

DATA PRE-
PRO

CESSING
SCHEM

A
M

ATCHING
DATA INSERT

STREAM
ING

DATA STO

RAG
E

AUTHEN
TICATIO

N
ANO

NYM
IZATIO

N

Synchronization

Authenticate the user w
ith the credentials

UU
ID of the user

User authenticated

Zipped file

Unzipped file

Processed data

Adapted data

UUID Request

Lock released

Synchronization

Inserting the data in the database

UU
ID of the user

Zipped file

Unzipped file

Processed data

Adapted data

UUID Request

Inserting the data in the database

Lock released

F
IG

U
R

E
7.2:Sequence

diagram
ofthe

user
synchronizing

log
files

ofstream
ing

data
collected

by
her

sm
artphone.

7.4. Summary 75

En
tit

y
C

re
at

io
n

En
tit

y
In

st
an

tia
tio

n

Da
ta

 S
to

ra
ge

EN
TI

TY
 D

AT
A

ST
O

RA
G

E
ST

RE
AM

IN
G

DA

TA
 S

TO
RA

G
E

Kn
ow

le
dg

e
U

pd
at

e

M
AP

PI
N

G
M

AT
ER

IA
LI

ZA
TI

O
N

O
pe

ra
tio

ns
 S

ch
ed

ul
er

TI
M

ER

U
se

r D
efi

ne
d

Kn
ow

le
dg

e
In

st
an

tia
tio

n

M
AN

U
AL

 C
RE

AT
IO

N

Kn
ow

le
dg

e
G

en
er

at
io

n
Pr

oc
ed

ur
es

 R
ep

os
ito

ry

RE
PO

SI
TO

RY

Pr
oc

ed
ur

e
se

ar
ch

Pr
oc

ed
ur

e
in

st
an

tia
tio

n

Ti
m

er
 s

ch
ed

ul
e

M
ap

pi
ng

 P
ro

ce
du

re

ca
ll

Pr
oc

ed
ur

e
ca

ll

Re
qu

es
tin

g
co

nt
ex

tu
al

 in
fo

rm
at

io
n

Re
tri

ev
in

g
co

nt
ex

tu
al

 in
fo

rm
at

io
n

Re
qu

es
tin

g
st

re
am

in
g

in
fo

rm
at

io
n

Re
tri

ev
in

g
st

re
m

am
in

g
in

fo
rm

at
io

n

C
om

pu
ta

tio
n

M
ap

pi
ng

 to
 S

tre
am

in
g

Da
ta

 S
to

ra
ge

M
at

er
ia

liz
at

io
n

Pr
oc

ed
ur

e
ca

ll
Re

qu
es

tin
g

th
e

St
re

am
in

g
Va

lu
e

Re
tri

ev
in

g
th

e
St

re
am

in
g

Va
lu

e
U

pd
at

in
g

th
e

AD

va
lu

e

En
tit

y
C

re
at

ed

FI
G

U
R

E
7.

3:
Se

qu
en

ce
di

ag
ra

m
of

th
e

kn
ow

le
dg

e
ge

ne
ra

ti
on

ph
as

e.
Th

e
us

er
m

an
ua

lly
in

st
an

ti
at

es
an

en
ti

ty
an

d
th

e
sy

st
em

st
ar

ts
to

au
to

m
at

ic
al

ly
up

da
te

on
e

of
it

s
at

tr
ib

ut
es

.

76 Chapter 7. Reference Architecture

Check for
services

U
ser Privacy

DATA SU
BSC

RIPTIO
N

ANO
NYM

IZATIO
N

System
 Services

PUBLISH/
SU

BSC
RIBE

Data Storage

ENTITY DATA
STO

RAG
E

External Services

SERVIC
E X

Services
List

Service
Subscription
Perm

issions
Request

Perm
issions

G
ranted

Data Subscription
for Service X

Perm
ission

G
ranted

UUID of the user

UUID Request

Data Request

Retrieving the data

Com
putation

Service Provision

F
IG

U
R

E
7.4:Sequence

diagram
ofthe

system
exploiting

the
user

generated
know

ledge
to

provide
a

service.

77

Chapter 8

Data Acquisition and Management
Subsystem

The user generated data, also called personal big data are at the core of the SB. The
analysis of such data, through the knowledge generation phase, enables the highly
personalized and context aware services that the user will ultimately use. Without
any data, the system cannot perform its tasks and ultimately solve the problem at
the base of this thesis.

The data acquisition and management task becomes crucial and a potential point
of failure for the whole system. To guarantee the collection of the data we meticu-
lously followed the requirements designed in Section 7.1 in addressing the problems
presented in Section 2. We then designed the subsystem to be made of a series of
components that work in symbiosis to efficiently collect the data from the user’s
smartphone. A schematic representation of the logical components of the Data Ac-
quisition and Management Subsystem is presented in Figure 8.1.

Data Storage

Streaming Data Storage

 Sensors

Attributes

Entity Data Storage

Users

 World

Knowledge Data Import Pipeline

DATA API SCHEMA MATCHING DISAMBIGUATION LINKING DATA INSERT

Streams Data Import Pipelines

Attribute Values Streams Data Import Pipeline

DATA INSERTDATA API

Sensor Streams Data Import Pipeline

SCHEMA
MATCHING DATA INSERTDATA PRE-

PROCESSINGUNZIPDATA API

FIGURE 8.1: Schematic of the components of the Data Acquisition
and Management Subsystem.

We can logically split the subsystem into three main groups of components: the
data sources, the importing pipelines and the data storage systems. Each of them
has specific tasks that can be described as follows:

• Data Sources. The system deals with different types of data that are gener-
ated from different sources. On the one hand there is the user, where her
smartphone can be used to generate stream of sensor data, but also high level
knowledge. The knowledge is generated in terms of answers to specific ques-
tions i.e., through feedbacks. The other source of information do not regards
the user, and regard any other form of data referring to the world, composed
by streets, buildings, institutions, etc.

78 Chapter 8. Data Acquisition and Management Subsystem

• Data Import. The data are generated from different sources, namely the user or
external actors. The data import component allows create data pipelines that
adapt the incoming data to a format that allows to be stored in the two data
storage components of the SB. There are then two different input strategies:
one about streaming data and one about the knowledge. This last element will
only be superficially described since is not part of this PhD thesis.

• Data storage. In this thesis we have two different types of data: the streaming
data and the knowledge data. For each of them we have a separate storage
solution. The reason why we separated the data is that they have very different
characteristics and requirements and then they are modeled differently: one
are time series data while the other follows the entity-centric approach. The
latter is outside the scope of this thesis, and then we used a solution developed
by the other members of the Knowdive Group1 as presented in Section 3. For
this reason we will only present some key elements in the following sections
about it while we will focus our attention on the storage for the streaming data.

In this Chapter we are presenting one subsystem of the reference architecture of
the whole SB. As we said before, the reference architecture it must address the prob-
lem in a general way without focusing on specific solutions or technologies. Here
we present only the high level considerations we made to design such components,
leaving to Chapter 11 the description of the technical solutions adopted for the im-
plementation of the reference architecture in the working SB.

8.1 Data Sources

The system collects all its data from external sources that will be then used internally
to generate the user knowledge. The most of the information comes from the user
which is at the core of the system. Additionally a small part can come from other
sources that allow to better represent and understand the surrounding of the user.
The main distinction the system does according to the data it manages regards their
type:

• Streaming Data. The stream data sources mainly refer to the user generated
streams from the sensors embedded in her smartphone. As we said before,
they can easily generate huge amounts of data that must be analyzed by the
system. However, the system allows to collect, store and use also other stream-
ing data sources: these data are streams become from IoT devices or any other
sensor embedded in an object that can be used to represent the world. In a
smart city application for examples it is possible to have sensors embedded on
the public transportation cars so that to have a clear understanding of where
they are and how they move. The two sources can be then used in combination
to create a more immersive user experience.

• Knowledge Data. The other data this system deals with are the knowledge in-
formation. A we said, they are modelled using the entity-centric approach and
stored in the Entity Base (EB) system. The main source of these type of data
is the user, who can generate them helped or not, by the machine. Addition-
ally, the system is able to deal with other sources of knowledge information.

1http://disi.unitn.it/~knowdive

http://disi.unitn.it/~knowdive

8.2. Data Import 79

These sources can be various and the data can represent many things. Refer-
ring back to the example of the smart city, an example of knowledge can be the
list of buses and routes and timetables2 they follow. Other examples are the
data provided by the institutions as Open Data. Having such information and
integrating it with the streaming data coming directly from the vehicles and
from the user can really create useful services that add value.

8.2 Data Import

Once the data have been collected they must be imported into the storage compo-
nents of the system, both the Entity Data Storage (EB) and the Streaming Data Stor-
age. In this Section we will describe in details how the import of the streaming data
works while just describing at high level what are the main steps of the knowledge
data import, since the EB is outside of the scope of this thesis.

8.2.1 Streams Data Import Pipeline

Figure 8.2 shows a detailed schematic of what are the components of the streams
data import pipeline we designed. As already said, the streaming data are com-
posed by two different types of data that must be imported: the sensor streams and
the attribute values streams. For the latter the procedure is easier since the data is
generated inside the SB, and no pre-processing has to be performed. The former on
the other hand requires additional steps to adapt the external data acquired from the
sensing devices to the internal schema where the data is stored as time series.

Streams Data Import Pipelines

Attribute Values Streams Data Import Pipeline

DATA INSERTDATA API

Sensor Streams Data Import Pipeline

SCHEMA
MATCHING DATA INSERTDATA PRE-

PROCESSINGUNZIPDATA API

FIGURE 8.2: Schematic presenting the two pipelines used for import-
ing the streaming data into the system database.

8.2.1.1 Sensors Streams

The sensor streams are generated from sources that are external to the SB. The are
no constraint about which device and which format to use since this pipeline is de-
veloped with the purpose of adapting the data. If the input devices are different,
multiple pipelines can be developed and instantiated. The only requirement on the
input device is that it can send the data over the internet to the SB. In this work we
are focusing on personal data and we defined that the user’s smartphone is the best
candidate as data collection device in such a scenario.

2https://developers.google.com/transit/gtfs/

https://developers.google.com/transit/gtfs/

80 Chapter 8. Data Acquisition and Management Subsystem

The sensor streams data import pipeline is composed by five elements that are
used in series, meaning that the output of the previous one is sent as input of the
next one. The components are:

• Data Api. The entry element of the pipeline is a component that implements
a RESTsul API. The smartphone when synchronizes the data, sends them to
this endpoint. An authentication mechanism is implemented so that the data
is recognized and associated to the user who generated them. The username
and password are sent with the request for this purpose. The output of this
component is a stream of compressed bytes. This is the only component of the
pipeline which is blocking. This means, till the upload operation is finished
the phone cannot upload another file. From this step on, everything is done
exploiting the multi-threading capabilities of the processor using concurrent
threads.

• Unzip. Since the smartphone has limited resources, in particular in terms of
internal storage and amount of data it can synchronize (if not on WiFi), it has
been decided to compress the generated data. This process is explained in
details in Section 4.1.2. To summarize, the device generates comma separated
value (csv) files, where each row consists in one sensor measurement. When a
certain number of rows are added to the file, it is compressed and stored, while
a new one is created. These compressed logs are the one sent over the network
to this pipeline. This block of the system receives the compressed stream of
bytes representing the log from the previous component of the pipeline and
decompressed it using the bzip2 algorithm. The uncompressed stream of bytes
is let made available to the next component.

• Data pre-processing. In order to reduce the size of the generated data on the
phone we removed useless decimal places for every collected value. Unfor-
tunately the roundup operation turned out to be expensive in terms of CPU
usage considering that we need to round thousands of values per second. The
solution we found was to apply the following formula

OUT = (int)(IN ∗D) (8.1)

where

– OUT is the output, represented as an integer;

– IN is the input float value that needed to be rounded;

– D is a multiple of 10, depending on the decimals that need to be pre-
served, i.e., 10 for 1 decimal, 100 for 2 decimals, and so on.

This operation corresponds to converting the original float into an integer num-
ber. A float value 1, 783467 is converted into an integer value of 178 if only two
decimals were enough.

On the server these data must go through a pre-processing step that converts
back the values in the log files to their real float value, by diving it by the
correct multiple of 10.

• Schema matching. Once the values have been pre-processed, they must be
mapped to the schema so that they can be stored. This process is done by a

8.2. Data Import 81

dedicated component that maps the values from the csv file to the correspond-
ing label in the schema. The mapping consists in taking the right element of
each line, at positions 0 to N, and mapping it to its label.

• Data insert. The last step consists in inserting the data into the database.
This component is technology dependent since different databases use differ-
ent ways of inserting the data. One can use a tool to for importing some raw
file, while others have a query language that allow to directly insert i.e., SQL,
CQL, etc. In some situations this procedure can be even parallelized so that to
obtain faster inserts i.e., with Apache Cassandra.

8.2.1.2 Attribute Values Streams

The pipeline for importing attribute values into the streaming data storage is sim-
pler since the data is generated in the right format by the knowledge generation
subsystem. There are only two steps in this case:

• Receiving the data. Receiving the data from a component internal to the SB
is different with respect to an external one. But, the internal/external concept
is non-trivial in the architecture presented in this thesis. In fact, thanks to the
high modularity of the SB (as will be explained in details in Chapter 11) every
component even if it is logically grouped with others, it can run on the same or
different physical machines. According to this, and since we need to design an
architecture that is general we have to make the right design decisions about
how the different elements exchange the information.

Going back to the problem of receiving the data from the knowledge genera-
tion subsystem, we decided to discard the possibility of sharing the data in-
memory and instead going for a generic broker/messaging system;

• Data insert. Similarly to the previous case, the data must be loaded into the
database and how to do it depends on the database technology.

8.2.2 Knowledge Data

As presented in Section 5.2.1 the user is allowed to import knowledge from external
sources e.g., contacts from the agenda, events from the calendar, locations from the
map, into her personal knowledge base. The process consists in selecting which
elements to import and instantiating new entities using their values. The import of
knowledge is a non-trivial task that requires different aspects to be considered, but
since the knowledge modelling aspects are outside the scope of this thesis, we just
present the main sub-problems of such a task, without going into the details. The
knowledge data import pipeline is presented in Figure 8.3.

Knowledge Data Import Pipeline

DATA API SCHEMA MATCHING DISAMBIGUATION LINKING DATA INSERT

FIGURE 8.3: Schematic presenting the pipeline used for importing the
knowledge data into the system database.

The main steps of the knowledge importing procedure are:

82 Chapter 8. Data Acquisition and Management Subsystem

• Receiving the data. Usually the knowledge data is saved according to a format
that allows to give a structure to the data, a csv file, an ontology, a json or
an rdf. The first step of the process is to receive these data, usually from a
data catalogue, and then read its content and make it available to the next
component in the pipeline.

• Schema matching. The source data, being them complex objects, can be struc-
tured according to a different format with respect to the schema of the des-
tination. If this is the case, the original data must me mapped to match the
knowledge schema. This is done by mapping the values at the origin with the
attributes at the destination.

• Disambiguation. Once the entities have been created some of them can have
duplicates since they were instantiated from unstructured (or semi-structured)
data. The disambiguation phase allows to delete duplicated entities or merge
partially completed ones. For example, consider the two entities (as formalized
in Section 3.3) defined as

E1 =< .., ..,M.Rossi, .., {<< AGE, .. >, 29 >} > (8.2)

and

E2 =< .., ..,MarioRossi, .., {<< HEIGHT, .. >, 1.78 >} > (8.3)

They refer to the same person and then are merged together:

E =< .., ..,MarioRossi, .., {<< AGE, .. >, 29 >,<< HEIGHT, .. >, 1.78 >} >
(8.4)

• Linking. Another problem that can occur regards how the entities are linked
together to compose the knowledge. It is usually hard to detect the links when
importing from unstructured data. The links can be reconstructured using spe-
cific techniques.

• Data insert. Once all the entities, their attributes and their relation have been
discovered the whole knowledge can be imported into the EB and merged with
the already existing knowledge.

This procedure is valid for both the user knowledge but also the global knowl-
edge containing all the global entities like streets, buildings, among others. It the
latter case the situation can be facilitated by the fact that the open data should usu-
ally be published according to a specific format but this is not always the case.

8.3 Data Storage

The data storage element of the Data Acquisition and Management Subsystem of
the SB is composed by two different database systems where all the data are stored,
as showed in Figure 8.4. The reason for the division lies in the different nature of the
data:

8.3. Data Storage 83

• Entity data storage. We defined that the knowledge about the user, that is com-
posed by all the elements she considers relevant, are represented following the
entity-centric approach. In this thesis we did not focus on the aspects related to
the knowledge representation since we leveraged on the previous work from
the members of the Knowdive Group3 as presented in Section 3. We said that
this knowledge in terms of entities and relations among them is stored in a sys-
tem called the Entity Base (EB) system. In Section 8.3.1 we will present some
additional details, in particular about the interaction between this component
with the other components of the SB.

• Streaming data storage. This is the core of the Data Acquisition and Manage-
ment Subsystem. It is the place where all the streaming data referring to the
user are stored. We designed it to store two different types of data: the streams
of sensor data collected from the user smartphone and the streams of entity at-
tribute values computed during the knowledge generation phase. It consists of
a distributed database system with an application layer on top of it developed
to insert and extract the data.

Data Storage

Streaming Data Storage

 Sensors

Attributes

Entity Data Storage

Users

 World

FIGURE 8.4: Schematic presenting the two storage systems of the SB.

In the next sections we describe the characteristics of the two mentioned data
storages. Since the knowledge modeling and storage aspects are outside the scope
of this thesis, we did not develop our own solution for the entity storage. On the
other hand, we used the EB system which is a component developed by the Know-
dive Group. For this reason, in Section 8.3.1 we just describe at high level how the
system works, mainly focusing on its content related to the data sources. On the
other hand, in Section 8.3.2 we describe the streaming data storage that we devel-
oped, integrating the information previously illustrated in the methodology. Specific
considerations are technology dependent and are left to Chapter 11.

3http://disi.unitn.it/~knowdive

http://disi.unitn.it/~knowdive

84 Chapter 8. Data Acquisition and Management Subsystem

8.3.1 Entity Data Storage

As anticipated in Chapter 3, the Entity Base (EB) System is responsible for storing
and maintaining the knowledge, represented using the entity-centric approach. All
the elements stored in it are represented as entities with their attributes and links
that allow to create a network of entities, namely the knowledge. This system has
been developed by the Knowdive Group members in the past years and is currently
used as reference technology to manage the knowledge by all its members in the
vertical solutions.

In the context of this thesis the main piece of knowledge refers to the user per-
sonal representation of the world. Then, depending on the situations, the entities
that are relevant for the user in a specific situation are enabled to compose the user
context. Since the system has to deal with multiple users, every one with her own
knowledge, we needed to use the EB system in a particular configuration to allow all
the data to be separated for privacy reasons. Additionally, there is also the need to
have some knowledge that is shared among all the users. This knowledge refers to
the world and is composed by streets, buildings, public services and anything that
can help the system in solving the problem at the core of this thesis.

User Entity Data Storage. Usually when designing a system, the data separation
can be one of the requirements. And the data separation can happen according to
different criterias: type of entities, based on the users, on groups of users, among
others. Multiple reasons can be at the base of this decision but usually the most
important one relates to privacy. Since the user knowledge should consists in the
personal representation of the world of its owner, we can consider it sensitive data
that can be accessed only by the user itself. There are two possibilities to separate
the data in a storage system:

• Physical separation. To physically separate the data into different databases.
This means, we will need N instances of the EB system, one for every user.
This is the best solution from a privacy point of view since the databases are
physically different, most likely even on different machines.

• Logical separation. To logically separate the data. In this second solution the
database is unique, there is one single instance of the Eb system that contains
the data of all the users.

Starting from the assumption that the system performances are the same in the
two situations above, we don’t have any preference for the SB, both can be used.

World Entity Data Storage. This knowledge is useful especially for computing
the services, where data not referring to the users is needed. The entities inside this
EB system should refer to a more objective view of the world which is not person-
alized on the user. They should refer to locations, services, objects, streets that are
part of cities, municipalities, states. These are the entities the users that use the SB
should interact with but at the same time entities that are not relevant for the user,
so that they are not stored in their personal knowledges.

These data should come from external actors that have interest in the users us-
ing their data. A great example is Open Government Data. Recently always more
institutions are starting to produce open data about their areas of competences, both
at the global level (i.e., European Union4) but also at the local level (i.e., Italy5 or

4https://data.europa.eu
5http://www.dati.gov.it/

https://data.europa.eu
http://www.dati.gov.it/

8.3. Data Storage 85

the Municipality of Trento6). Open data are those data that are freely accessible by
anyone and can be used without restrictions (except the citation of the source) for
both non-commercial but also commercial uses. The core concept behind open gov-
ernment data is that the public administrations should be open to the citizens and
transparent about the decisions they take. Moreover, these data can be of great value
for the companies that can avoid investing a part of their profits in building these
datasets.

If these data are imported into this knowledge base and all the users in the SB
can use it, this will highly facilitate the exploitation of the knowledge for creating
useful services. Consider for example a scenario in which the user wants to move
around the city using public transportation. Having a detailed snapshot of what is
the situation of public transport in the city can enable personalized solutions based
on the user context. From the user personal knowledge the system knows she has
to reach a destination for an event. From the world knowledge on the other hand
the system knows all the possible means the user can use to reach this destination,
considering all the variables. At this point, by merging the two, a useful service
can be created. The service is useful for the user, because she can obtain what she
wanted, but is useful also for the Municipality who provided the data, because it is
reducing the number of cars in the city, which is a long term goal they have.

In this thesis this second knowledge will be stored in a separated EB system. All
the users in the SB will be able to access its content, without any restriction. From
a privacy point of view this EB will be exempted: in fact, the data stored in it are
public and don;t have any privacy restriction.

8.3.2 Streaming Data Storage

A stream of data is defined as a continuous flow of information that is made avail-
able over time. In contrast with non-streaming data, new values are always pro-
duced and must be added to the ones that have already been generated. For this
specific type of data, represented as described in Section 4.2.0.1, we have a dedi-
cated component. It contains data that can be classified into two types:

• The streams of sensor data collected from the user’s smartphone

• The streams of entity attributes values generated by the system out of the sen-
sor streams

This system component is constituted by a single database system that stores
both data. Since they have very different characteristics, we decided to logically
separating them inside the database.

Streams of Sensor Data. Previously in this thesis we referred to this type of data
as personal big data: they have huge size, they are generated very fast and they
are of different types. Solutions to store such information must be addressed if we
want the SB to be able to generate knowledge out of them and ultimately solve the
semantic gap problem.

Not all the database technologies can deal with such huge amounts of data like
the one generated by the users and managed by this component of the SB. A gen-
eral consideration we needed address in the design phase was that standard SQL
databases do not scale well when dealing with big data and most importantly, it

6http://dati.trentino.it/

http://dati.trentino.it/

86 Chapter 8. Data Acquisition and Management Subsystem

is not easy to scale them up when the users increase. Then, we believe a NOSQL
database technology should be used. This type of databases provide a way to store
and retrieve the data that is modeled in means other than the tabular relations used
in relational databases. The motivations behind this shift in the paradigm include:
the simplicity of design, a simpler horizontal scaling to clusters composed by multi-
ple machines and the possibility to tune the availability of the data base on the use
case. Since the data structure is different and with less contraints, some operations
are faster with respect to SQL. Many of the different NOSQL technologies compro-
mise consistency (as defined in the CAP theorem) in favor of availability, partition
tolerance, and speed. Additionally, most NoSQL stores lack of ACID transactions.
On the other hand, most NoSQL databases offer a concept of "eventual consistency"
in which database changes are propagated to all nodes "eventually" (typically within
milliseconds) so queries for data might not return updated data immediately or
might result in reading data that is not accurate. In the case of streaming data such
in this thesis, represented as time series, if some of the values are lost does not create
any issue.

Streams of Attribute Values. The knowledge generation process in the SB con-
sists in updating the attribute values of the entities, using the streaming sensor data
in combination with other contextual information. Since the attributes represent an
abstraction of the sensor data, their size will be much smaller with respect to them.
For example, one hour of streaming sensor data collected by the accelerometer from
the user smartphone can be translated into the Attribute Value (V) "Walking" of the
Attribute Definition (AD) "Movement". We generated knowledge out of the stream-
ing data with the resulting knowledge mapped to a concept that is much more mean-
ingful to the user with respect to the sensor values collected in the hour. At the next
change in the movement of the user, the knowledge in the EB system will be up-
dated and since it contains only a snapshot of the most recent situation (the context)
the previous data will be lost. To avoid this and keep track of all the attribute values
that can be useful for the historical analysis, we took the design decision of storing
this information into the Streaming Data Storage component of the SB.

8.4 Summary

In this Chapter we went into the details of the Data Acquisition and Management
Subsystem, presenting its main components, that deal with the acquisition, import-
ing and storage of all the data represented in the system. We didn’t go into the
details since the application should be general and able to be adapted to all the use
cases and technologies.

We presented the different sources of the data, both streaming and knowledge.
The former being considered as personal big data, collected from the user’s smart-
phone and the latter modeled using the entity-centric approach, generated by the
user manually or helped by the machine. Additionally we said that other knowl-
edge can be pushed into the system from external sources, for example to model
cities, streets and other elements that will help in the description of the surround-
ings of the user.

We then presented the two data import pipelines that will be used to import both
data sources into the SB. These pipelines present some general characteristics but is
then up to the specific use case to define specific pipelines, depending on the data
they have to import.

8.4. Summary 87

Finally, we presented the data storage systems of the SB, being them the Stream-
ing Data Storage that has to scale well when the load increases and the Entity Data
Storage, for which we used the Entity Base (EB) System, developed by the members
of the Knowdive Group.

89

Chapter 9

Knowledge Generation Subsystem

From an architectural point of view the Knowledge Generation Subsystem is com-
posed by four components, as shown in Figure 9.1, that are meant to apply the
methodology defined in Chapter 5. The Knowledge Instantiation and the Knowl-
edge Update are two logically separated blocks since they perform two different
tasks, where the former requires the user feedback. There is then a Repository com-
ponent where all the procedures defined by the field expert for the Attribute Def-
initions (AD) are stored. This repository is shared among all the users and when
one of them has to use one of the procedures, it can get and instantiate it in his own
Knowledge Generation component. Finally, all the knowledge generation tasks are
triggered by a dedicated Operation Scheduler on a (i) regular basis by a timer, or (ii)
according to external conditions, like an user input, a change in the context, among
others.

Knowledge Generation Procedures Repositories

OPERATIONS

REPOSITORY

Operations Scheduler

TRIGGERS

TIMERS

Knowledge Instantiation

User Defined Knowledge Instantiation

Machine Triggered Knowledge Instantiation

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

User
Interaction

Profile Creation Knowledge Import Manual Creation

Knowledge Update

Materialization
Service

Mapping Service

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

FIGURE 9.1: Schematic of the components of the Knowledge Genera-
tion Subsystem

90 Chapter 9. Knowledge Generation Subsystem

9.1 Knowledge Generation Procedures Repository

As explained in the methodology developed in this thesis and presented in Section
5, the process of generating knowledge is divided into two tasks:

• Knowledge Intantiation. This steps refers to the ability of adding or remov-
ing entity instances from the use knowledge database. This database at the
beginning is empty and progressively must be filled up with the entities that
the user believes are relevant to represent her context.

• Knowledge Update. The user context is dynamic, since it is used to represent
the situations in which the user is involved. There is then the need to update
the entities in this snapshot of the user knowledge. Doing so corresponds to
updating the attributes of these entities depending on the sensor data collected
from the user’s smartphone.

For both the Knowledge Instantiation and Knowledge Update tasks the machine
automatically performs the analysis, thanks to the procedures developed by the field
expert, according to the changes in the user context. Our methodology associates a
Procedure to every Attribute Definition (AD) that needs to be updated. The proce-
dure defines which input must be used to produce the output, at the different levels,
both sensor streaming data (and their features) and the user knowledge represented
as attribute values. Moreover, it defines also the algorithm that must be used to
analyze the inputs to generate the desired output.

Knowledge Generation Procedures Repositories

OPERATIONS

REPOSITORY

FIGURE 9.2: Schematic of the Knowledge Generation Procedures
Repository component.

All the procedures, one per attribute definition, once created are stored into the
Knowledge Generation Procedures Repository in the SB, which is a globally shared
repository among all the users. A schematic of it can be seen in Figure 9.2. Its objec-
tives are twofold:

• Create a unique place where all the procedures can be created, updated, tested
and deployed;

• Create a way of letting the users instantiate these procedures in their respective
local systems when an Entity with an Attribute Definition for which a proce-
dure is defined is created. This allows for reusability of the procedures and
helps in scaling the system and the number of users.

9.2. Knowledge Instantiation 91

When the knowledge of a certain type is created, i.e., an Entity with a spe-
cific attribute associated with an attribute definition, the corresponding procedure
is searched in the repository. If present, the procedure is instantiated in the SB, ei-
ther in the Knowledge Update or the Knowledge Instantiation components. If not
present, a field expert is required to create one. Every time the procedure must be
used to update or instantiate an Entity in the user contextual information (stored in
the EB system), the corresponding procedure is executed.

The repository provides different functionalities that help to plan the implemen-
tation of certain procedures, facilitating the collaboration between field experts. It
can be the case that a procedure is fairly complex and an entire team needs to work
on it, not a single person. The generated procedure can then be tested and bugs can
be reported. Finally, a stable procedure can be released in production so that the
users can use it and this allows also to manage updates. These are all functionalities
of standard solutions, e.g., GitLab1 we will use for this component.

The procedure creation by the field expert happens through the Operations mod-
ule of the Knowledge Generation Procedures Repository. It provides some abstrac-
tions and default methods to read and access the input data from both the storage
systems, the Streaming and the Entity and allows to push the results to the cor-
responding attribute. It provides also the authentication mechanism for the field
expert using the components described in Sections 10.1 and 10.3

9.2 Knowledge Instantiation

The Knowledge Instantiation component is the one that takes care of filling up the
user personal database (EB) with the entity instances the user believes are important
for her context. A schematic of the component is shown in Figure 9.3.

Knowledge Instantiation

User Defined Knowledge Instantiation

Machine Triggered Knowledge Instantiation

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

User
Interaction

Profile Creation Knowledge Import Manual Creation

FIGURE 9.3: Schematic of the Knowledge Instantiation component.

Since every user has her own view of the world, the entities that must be instan-
tiated are different. For this reason, this component cannot be shared among all the

1https://about.gitlab.com/

https://about.gitlab.com/

92 Chapter 9. Knowledge Generation Subsystem

users, like others in the SB. There are no constraints about how to obtain the neces-
sary separation across users, if physically, meaning that every user needs her own
instance of the component, or if this can be done logically, both can be applied. In
the schematic of Figure 9.3, the division is logical and every color maps to one user:
user1 represented in red has two procedures instantiated, user2 in blue has three
procedures and user3 has only one.

As said in Section 5.2, the instantiation of the knowledge can happen in two
ways, both requiring the user interaction: the user defined knowledge instantiation
and the machine triggered knowledge instantiation.

9.2.1 User Defined Knowledge Instantiation

The user can help the machine in producing more accurate results by generating her
own knowledge manually. As we said in the methodology, it can be done while she
creates her profile on the platform, providing personal information, details about her
locations or additional data useful for the services she wants to use. On the other
hand, the user can also import the knowledge from other sources like the contact list,
the agenda, among others. Finally, the user can manually create the knowledge using
a dedicated tool. In all these situations, the only procedure that needs to be applied is
the conversion of the origin format to the entity-centric model. The whole pipeline
in this case can be used by multiple users in parallel and the generated data will
be saved in the user entity base. For each of the three methods, an application or
module must be created: for the user profile generation, an online procedure must
be enabled so that the user can introduce her own information and the same is for
the manual creation. On the other hand, for the importing, dedicated modules must
be used, one for every type of application or at least of data.

9.2.2 Machine Triggered Knowledge Instantiation

In Section 5.2 we said that the machine can trigger the knowledge generation and
the user is asked only to confirm the entity instances the machine generated.

This process uses Procedures similar to the one of the knowledge update task,
to analyze the streaming data collected from the user’s smartphone and generate
entity instances. These procedures are generated by the field expert and are stored
in the Knowledge Generation Procedures Repository. The user can instantiate one
or more of them, depending on the entities she wants to create. Once a Procedure is
instantiated, it starts working in the background in the user "personal" Knowledge
Instantiation component. It continously analyzes the streams of data collected from
the user’s smartphone and every time a pattern is detected, a confirmation task is
generated. The task asks the user to corroborate the findings at the most appropriate
moment. The separation among the users allows them to have different procedures
running: a user can be most interested in locations, while another in people, and so
on. In Figure 9.3 we can see that the blue user has three active procedures, while the
red one has two and so on.

For example, a Procedure that infers where the user home is, continuously anal-
ysis the GPS data comeing from the user’s smartphone with a clustering algorithm,
i.e., DBSCAN, and generates some clustered locations made by multiple points.
These locations will be then presented to the user and her feedback will be asked,
through a dedicated component in the system. Once the feedback has been pro-
vided, the newly created entity is added to the user personal representation of the
world. The user interaction part takes into consideration all the elements defined in

9.3. Knowledge Update 93

the methodology in order to define the best moment when to ask to the user so that
to not bother her.

9.3 Knowledge Update

The Knowledge Update component is the one responsible for updating the attribute
values of the entity instances in the user personal knowledge and context. It imple-
ments the methodology defined in Section 4.2.0.1. A schematic of this component
can be seen in Figure 9.4.

Knowledge Update

Materialization
Service

Mapping Service

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

Procedure

Output

Input

Algorithm

FIGURE 9.4: Schematic of the Knowledge Update component.

This component is composed by two elements, the Materialization and the Map-
ping services, that are very similar one with respect to the other. They are containers
of instantiated Procedures taken from the repository component. The procedures
are the one defined by the field expert to let the machine automatically update the
attribute values of the entities. As we presented in Section 4.2.0.1 there are two
types of streaming data in the SB: the first one are the data collected from the user’s
smarpthone, while the second one refers to the attribute values that keeps updating
and then generate a stream. The entity storage (EB) contains only a snapshot of the
user personal view of the world, the context, meaning that when a new attribute
value is generated, the old one is overwritten. To keep track of the attribute values
changes, once they are generated, they are mapped into the corresponding stream
into the Streaming Data Storage. Then, when the update needs to be reflected to the
Entity Base and then to the context, the value is materialized. The two operations are
left separated in order to have the maximum flexibility but they can also be executed
at the same time.

Also in this case as for the Knowledge Instantiation component, the user Proce-
dures must be kept separated, either physically or logically.

9.3.1 Knowledge Mapping

The Knowledge Mapping process is the one that uses the Procedures as defined by
our methodology and that actually generates the updated attribute value. The newly

94 Chapter 9. Knowledge Generation Subsystem

generated attributes values are mapped to the corresponding stream in the Stream-
ing Data Storage since we want to keep track of the values changes. We cannot
directly store them into the Entity Base (EB) system since it contains only a snap-
shot of the most updated view of the world of the user. This means that the newly
generated values overwrite the old ones.

This component is a container for all the active Procedure for every user and
allows to run them as a process to update the attribute values when needed.

9.3.2 Knowledge Materialization

The Knowledge Materialization consists in taking the attribute values from the Stream-
ing Data Storage and materialize them in the Entity Base (EB) system so that they
can be used by the other components of the SB that need contextual information. We
left the Mapping and the Materialization procedures independent so that to obtain
the maximum flexibility.

Complex strategies can be defined so that to perform a smart materialization that
is not simply a 1-to-1 process. The operation that are allowed at the moment are the
following:

• Average;

• Maximum;

• Minimum;

• User defined operation.

All these operations can be performed on the last N attribute values generated
or on the values generated in a range of time.

9.4 Operations Scheduler

The Operations Scheduler is the component that schedules all the Knowledge In-
stantiation and Update tasks.

Operations Scheduler

TRIGGERS

TIMERS

FIGURE 9.5: Schematic of the OperationScheduler component.

As can be seen form Figure 9.5, there are two ways the knowledge can be gener-
ated:

• Timers. The timer allows to perform operations on a regular basis the user
or an external service defined. For example, a service that generates a quanti-
fied self report can be executed during the night, on the data of the previous

9.5. Summary 95

day, so that in the morning the user can visualize it and see information of the
day before. The timer can be arbitrarily complex, allowing to do any possible
combination with exceptions.

• Triggers. On the other hand, some external inputs can trigger the knowledge
generation process, like the user input or a change to any value of the entities
in the context.

9.5 Summary

In this Chapter we presented the Knowledge Generation Subsystem of the SB. We
defined is as composed by four main components: the knowledge update compo-
nent, the knowledge instantiation component, the knowledge generation procedures
repository and the operations scheduler.

As we said in the methodology, the knowledge generation consists of two oper-
ations, i.e., the instantiation of new knowledge or the update of already instantiated
one. For both, a dedicated component has been designed so that to separate the two
tasks. Moreover, every instantiation and update is kept separated for the different
users in the system since the context is different for every user.

We then described where all the Procedures created by the field expert can be
searched and retrieved to be used to generate the knowledge.

Finally, we explained how the knowledge generation can be triggered, using a
timer that schedules the operations at fixed time intervals or using external triggers.

97

Chapter 10

Knowledge Exploitation
Subsystem

The role of the Knowledge Exploitation Subsystem is to use the data to provide
services to the users in order to improve their quality of life. In this section we will
describe all the components of such a system, that have to tackle the privacy related
issues in retrieving the data from the storage systems. These components are shared
among different subsystems in the SB, i.e., the Data Acquisition and Management
Subsystem but we decided to present it here since the privacy related issues are more
relevant when using the data. Since the privacy related aspects are not at the core
of this thesis, we just describe them at high level, representing the most important
elements. The components can be logically grouped into two groups: the first one
composed by the blocks that make the data available to the services according to
the different privacy dimensions while the second one composed by the blocks that
actually provide the services. A schematic of the components of the Knowledge
Exploitation Subsystem can be seen in Figure 10.1.

ServicesAnonymization

ANONYMIZATION
TABLE

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICSAccess Control

RULES TABLE

Data Subscription

SUBSCRIPTIONS
TABLE

AUTHENTICATION

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICS

FIGURE 10.1: Schematic presenting the Knowledge Exploitation Sub-
system and its components.

More in details, we have the following components: an authentication module,
an anonymization module, an access control module, a data subscription module
and finally the module that provides the services. The architecture, designed in this
way, is compliant with the latest regulations introduced by the Directive 95/46/EC,
otherwised called General Data Protection Regulation (GDPR)1 introduced by the
European Union that will start applying in May 2018.

1http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.
119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC

98 Chapter 10. Knowledge Exploitation Subsystem

10.1 Authentication

Every system requires the user to authenticate to access its services. In the SB we
have an authentication module that is shared among all the components in the sys-
tem. The authentication requires the user to communicate her credentials, username
and password. If they match with the one present in the system, the user is consid-
ered authenticated and an acknowledgment is sent back to the user.

The authentication is the first protection mechanism in the SB to ensure data pro-
tection of the user. Used in combination with the other elements, i.e., anonymization,
access control and data subscription makes it very difficult for an ill-intentioned to
access the user data.

Since it is shared among different elements, it is also the one that directly makes
available the other privacy related functionalities (anonymization, access control
and data subscription) to the other components of the system.

From an architectural point of view there isn’t much to say about authentication
since the details are usually related to the technology and the specific solutions used
to implement it.

10.2 Anonymization

In the SB we have to deal with user personal and sensitive information and the
privacy is a key element one must take into account. Among all the privacy related
aspects the most important one is to guarantee the right protection of the user data.
In other words, the system has to take all the possible counter measures to prevent
external actors who don’t have the rights, to access and use the users’ data. A part
from the security measures, one way to guarantee this is to store the user data in an
anonymized way. This is done to prevent others that will take possession of the user
data due to a data leak to be able to use them and lead back to the users themselves.

The SB has a specific component that deals with the anonymization and deanonymiza-
tion of the user data and it is shown in Figure 10.2.

Anonymization

ANONYMIZATION
TABLE AUTHENTICATION

FIGURE 10.2: Schematic presenting the elements of the Anonymiza-
tion component of the Knowledge Exploitation Subsystem.

The data in the SB is stored anonymously as explained in Section 4.2.0.3. The way
to anonymize the user data is to store and associated them with a unique identifier
that refers to the user. This identifier is a 40bytes string that is generated when
the user account is created. When another component needs to store or retrieve
data about one specific user, it needs this unique identifier that must be requested.
When a component needs to access the users’ data, it contacts the Anonymization
component that, after the request has been authenticated, uses the user credentials to

10.3. Access Control 99

lookup in the anonymization table. The table itself is very simple, composed by only
two columns, username and uniqueidentifier. Given the importance of this table, that
is the only way to lead back from the data to their owners, we decided to encrypt it
using one of the strongest encryption algorithm: the Advanced Encryption Standard
(AES) [Standard, 2001]. It is a standard used by the US Government to encrypt their
document. In particular we choose the most secure version with the largest key,
256bits.

10.3 Access Control

Another key element in granting the users privacy are the access control policies
based on roles. In the context of this thesis, there are different roles, i.e., administra-
tor, developer, field expert, user, etc. These roles are used to access and control the
different components of the system. Not all the roles can perform the same opera-
tions for example, the user cannot register other users, while the field expert can cre-
ate algorithms for the knowledge generation task but cannot add new components
to the system. The Access Control component allows to manage the permissions to
perform such operations based on the the different roles. It is composed by a rules
table, as shown in Figure 10.3 that associates the permissions with the corresponding
roles. The roles are associated with the user credentials. When a new request comes
associated with one user requiring to access some information, the user is searched
in the internal table. If found, the access request is compared and if matched, the
confirmation is sent back, otherwise the access is denied.

Access Control

RULES TABLE AUTHENTICATION

FIGURE 10.3: Schematic presenting the elements of the Access Con-
trol component of the Knowledge Exploitation Subsystem.

The access control policies do not regard the user data. The user data can be
accessed only by the user herself and no other role can access them without the user
permission. In particular, the management of the permissions the user grants work
according to a publish/subscribe mechanism with a dedicated component in the
system.

10.4 Data Subscription

As mentioned in the previous Section, only the user can access her own data, neither
the administrator nor any other role can access them. Of course, in order to have
personalized services, each service needs to access the user data. The access is added
through a data subscription action made by the user. The are Service Providers that
create services that can be used by the users in the platform. These providers can be
internal to the SB or also external i.e., the University, the Municipality, among others.

100 Chapter 10. Knowledge Exploitation Subsystem

Once the services are published, the user can enter a user interface that allows to see
the services and subscribe to them. With every subscription some permissions to
access the data are requested and the user must accept them.

The Data Subscription component of the Knowledge Exploitation Subsystem al-
lows to manage the subscriptions by keeping track of all of them. A Figure of the
component is shown in Figure 10.4: it shares the authentication component with the
other components and then has a subscription table where all the subscriptions, with
the expiration dates and other information, are stored.

Data Subscription

SUBSCRIPTIONS
TABLE AUTHENTICATION

FIGURE 10.4: Schematic presenting the elements of the Data Sub-
scription component of the Knowledge Exploitation Subsystem.

When a service needs to access some personal data, this component is queried to
check if that specific service has the right to access the user data, and, if yes, which
data he can query. At that point the request is forwarded to the database.

10.5 Services

The core part of the Knowledge Exploitation Subsystem if the part that provides the
services to the users. As shown in Figure 10.5, multiple services can be executed in
parallel.

Services

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICS

Service

INPUT
OUTPUT

LOGICS

FIGURE 10.5: Schematic presenting the Services component of the
Knowledge Exploitation Subsystem.

10.5. Services 101

A service is composed by three main elements: the data that they must use, the
logic that defines how the data is analyzed and processed and how it must be com-
bined to show the output to the user. The input part interacts with all the other
components of the Knowledge Exploitation Subsystem to have access to the data.
How the interaction works is described as follows:

• When a service needs to produce an output for the user it contacts the Data
Subscription module to check if it has an active subscription to read the data;

• If the first step succeeds, then the service has all the permissions to read the
user data. The additional step required to do so is to have the correct unique
identifier for the user so that to deanonymize her data. This information is
stored in the Anonymization component;

• At this point the service can contact the storage system and read the data for
the user.

The logic of each service, the algorithms and procedures that analyze the data
to produce the output are use case dependent. There can be services in the context
of smart cities or health related services, among others. The services are developed
by the SB or by external actors that want to use the platform to reach the users.
These actors can be other institutions like the University, the Municipality, the Na-
tional Health System or private companies as well. The more the actors the more
the services and the more the user has the chance to find the most suitable ones for
her situations. Similarly, also the output of the service is use case dependent: one
service can produce a notification system that alerts the user about events on her
smartphone or it can create a dedicaed user interface for the web.

10.5.1 System Services

Among the different services that the actors can create to help the users there are also
some services that are created by the SB to allow the user to configure different sys-
tem functionalities. These services, will interact with the Access Control component.
Some basic services we already developed (or are in the process to be developed) are
the one that follow.

10.5.1.1 Data Control

As previously said, due to the latest EU regulations about personal data protection
i.e., GDPR, the user must always be in control of her own data. To accomplish this
we designed a system service that allows her to always look what is the situation of
her data in the SB. This allows to:

• See how many data the system contains about her, both from the knowledge
but also the streaming point of view;

• Allows to access and browse the data. This functionality is more crucial on the
knowledge, since the streams of data have little meaning for the user, they will
be only a lot of numbers for her;

• Delete pieces of knowledge or streaming data.

Before the user can do this she must authenticate with her credentials so that all
the security checks are made, namely access control, and deanonymization.

102 Chapter 10. Knowledge Exploitation Subsystem

10.5.1.2 Publish/Subscribe Mechanism

Similarly to the previous service, this one allows the user to control the publish/subscribe
mechanism in the system. It allows to visualize the subscriptions, to subscribe to
new ones and to delete unwanted ones. Every permission is associated with an ex-
piration data since a permission can be granted only for a limited amount of time.
With every subscription it is possible to visualize which data the service can access,
how frequently it can do that and other information. A mockup of this service was
developed for one of the use cases and can be seen in Figure 10.6.

FIGURE 10.6: Mockup of the Publish/Subscribe service of the SB.

In the screenshot we can see in the left table what are the services made available
by others on the platform that the user can choose from. In the two tables on the
right on the other hand we can see which are the services he subscribed to.

10.5.1.3 Users Registration

The user registration service has been created to allow users to register and start us-
ing the platform autonomously. As said in Section 5.2.1, when the user registers, she
creates her own profile and the Entity Base (EB) is filled up with such information.
There is the need to balance the need for data with the need to keep the procedure
simple. In fact, we cannot afford to loose the user because we asked too many infor-
mation during the registration phase. The procedure is very simple and allows first
to create username and password and later provide all the additional data. When
the user registers, the components of the Knowledge Exploitation Subsystem share
the data so that it is possible to create the anonymization id used to store the user
data. This unique identifier is stored in the Anonymization Component with the
username and is the only way the data can be anonymized when strictly necessary
to provide services to the user.

10.6. Summary 103

10.5.2 External Services

A part from the internal system services, the way we designed the SB allows to
third-party entities to produce their own services that can be used by the users. If
the user decides to subscribe, her data is shared with the service provider as long as
the user allows this; she is always in control and can decide to quit at any moment.
These services can be distributed by institutions like the National Health System, the
Municipalities or the Universities but also by private companies.

Let’s consider a simple example of service that can be provided by the University
of Trento to its students. With this service the university wants to understand which
study rooms are more crowded than others so that to help decision makers in finding
a solution to this problem. This has direct impact on the way the single student
lives this aspect of the university life. In fact, if the university has knowledge on
the current occupancy of its rooms, by aggregating the data coming from the single
students, it can create a service that can suggest where to go to find a free spot.
At the same time, if enough users use the same service, it can use the aggregated
data collected form them to take decisions like changing the opening hours of the
library, rather than building a new library since the once available have reached the
maximum capacity.

A similar service can be provided by the Municipality of Trento to study the
impact of public transportation on the citizens to re-schedule the timetables of the
buses, among others.

The publish/subscribe mechanism implemented in the SB enables such a sce-
nario and allows the services to be created by multiple actors that can really use the
generated data to improve the users’ quality of life in different areas. The privacy
aspects have been also tackled since, by design, the user is always in control of her
own data.

10.6 Summary

In this Chapter we presented how the Knowledge Exploitation Subsystem of the
SB uses the internally generated knowledge to provide services to the users. It is
composed by two main elements that perform two different tasks. The first one is
related with the privacy of the users while the second one is the one that provides
the services.

All the privacy related aspects are tackled in all the architecture, not only in this
subsystem but we decided to present them here since they are more relevant when
the data is accessed and used. We presented our approach based on authentication,
anonymization, access control and data subscription. All of them are security mea-
sured at the backbone of the SB that make it compliant by design with the latest
EU regulations, i.e., GDPR. The data subscription aspects are very important for the
services, since the user must always be aware of how others use her own data.

The services can be provided by the system itself (internal services) but also from
external entities like institutions or private companies. The user must subscribe to
every service accepting the conditions for sharing her data. The platform allows for
multiple services being provided at the same time to multiple users.

105

Chapter 11

The StreamBase (SB) System

In the previous chapters we have presented a methodology we have defined to solve
the semantic gap problem in the context of this thesis, how to collect the data from
the users, how to use them to generate useful knowledge and finally how to exploit
this knowledge to provide useful services to the user. We then have presented a
reference architecture for the SB that is based on that methodology.

In this chapter we present how we instantiated the reference architecture into a
real working prototype of the StreamBase (SB) System, we describe the technical so-
lutions and technologies we identified to fulfill the requirements defined in Section
7.1. Finally, we present how the SB can be quickly and easily deployed in the differ-
ent use cases that will use its functionalities.

The key element of the whole SB is its modularity. As we explicitly explained
during the thesis, most of the components instantiate algorithms and/or databases.
To support these allocations and deallocations of resources, specific technologies
must be taken into account to facilitate the integration and allow to automate this
process as much as possible.

11.1 Modular Architecture Based on Microservices

To meet the specifications previously mentioned about the SB, state of the art soft-
ware solutions must be used for its implementation. This is particularly true for the
modularity aspect that regards the instantiation and termination of computational
procedures and or databases (or part of them). Additionally, this is needed also for
the highly variable workload expected for the system, that depends on the number
of users connected simultaneously. This modularity should be cheap in terms of
time but also costs. For this reason, is it not feasible to depend on a system archi-
tecture that runs directly on Physical Machine (PM). A computer system that runs
directly on the hardware is the most efficient one since it is highly optimized, and
the operating system directly runs on top of it. Then, on top of the operating sys-
tem, the applications are executed. The first computers were running only in this
configuration, but also today it is possible to find very performant systems that are
still like this. Starting from the 1960s the first virtualization solutions start to be used
and were designed to logically divide the resources provided by powerful main-
frame computers between different applications. The idea behind a Virtual Machine
(VM) is to virtualize and simulate the hardware and then install the operating sys-
tem on top of it. This allows to install multiple instances of an operating system on
the same powerful machine. This is the most common used configuration today in
datacenters.

106 Chapter 11. The StreamBase (SB) System

Neither Physical Machine (PM) architectures, nor Virtual Machine (VM) ones are
suitable for the SB since the requirements in terms of modularity and scalability go
beyond what these two solutions can provide. More in details, the modularity of the
former is both time consuming and expensive in terms of money while for the latter
the time required is the main bottleneck.

Recently, a new approach has started to gain consensus in the computer science
community, the so called Container Architecture (CA) built using Microservices. The
container architecture derives directly from the virtual machines concept of having
a virtualized environment above the hardware of a computer. Differently from a
virtual machine though, each container is a virtual space where to execute one ap-
plication in resource-isolated processes. This means that, instead of having an entire
operating system in each virtual space, each container is able to perform only few
operations. This is why they are built of Microservices. Each application can be
packed into easy to use building blocks, providing all its code, dependencies and
configurations. With such a configuration it is easy to obtain environmental consis-
tency, operational efficiency, developer productivity, and version control. Such con-
tainerized applications give also an additional level of control over resources with an
improvement in the final efficiency. This can happen on one single physical machine
but also among multiple physical machines with additional tools. This means that
the scalability of this solution is virtually unlimited. It is easy to move one container
from one machine to the other, without the need of reconfiguring the environment
every time a new deployment is done. Moreover, the deployment of a new container
can be automatized based on a set of rules. Consider a system like the one we are
describing in this thesis where multiple data sources can, asynchronously, write or
read huge amounts of data to a server. In this case, a containerized application can
duplicate its instances automatically depending on the number of request arriving
at any specific moment in time.

11.1.1 Microservices

For more then 100 years, our business markets have been about creating products
and driving consumers to wanting those products. Today, everything is about services.
Consider the following companies: Uber1 is the number one private hire company in
the world, and it has no cars; Flixbus2 is a brand which offers intercity bus service in
Europe, and it owns no buses; finally, Airbnb3 is the worldwide leader in hospitality
service, and it has no real estate. All of them provide a service to their customers,
that is, connecting demand and offer through their online platforms. They build
software solutions, both desktop and mobile, to create communities of users.

A Microservice Architecture (MSA) is a new approach of building software sys-
tems that decomposes business domain models into smaller, consistent blocks im-
plemented by services [Posta, 2016]. These services are isolated and autonomous
and communicate one to the other to provide the required funcitonalities. They
usually have enough autonomy that each of them can change its internal implemen-
tation with minimal impact across the rest of the system. When a new microservice
is designed, all the specifications to use the service must be produced as well, oth-
erwise it is useless. They usually comprehend API and documentation, plus others.

1https://www.uber.com/
2https://www.flixbus.com/
3https://www.airbnb.com/

https://www.uber.com/
https://www.flixbus.com/
https://www.airbnb.com/

11.1. Modular Architecture Based on Microservices 107

Each service must implement the right technology with the appropriate program-
ming language to solve the problem it is designed for. The boundaries for a service
can be elicited as follows:

• Understand what is the task the service has to solve without considering other
concerns related to the large application;

• Quickly build the service in a local environment;

• Pick the right technology and programming language for the problem;

• Once implemented, test the service;

• Build/deploy/release at a cadence necessary for the business;

• Identify and horizontally scale parts of the architecture where needed;

• Improve resiliency of the system as a whole.

Services allow to cancel the synchronization costs. However, they have also a
drawback if used like we just explained, that is, it can be more resource intensive.

The concept of microservices maps 1-to-1 with the SB as presented in the previ-
ous sections. Many times we referred to instantiating a knowledge generation procedure,
instantiating a service for the user, instantiating the database. All these elements are seen
as a microservice (or multiple if the final element is too complex to fit in one single
microservice) that runs independently from all the rest of the architecture.

11.1.2 Docker

As said before, microservices nicely work with the Container Architecture paradigm,
and Docker4 is the world’s leading software containerization platform. It allows to
package an application with all of the dependencies it needs, i.e., OS, JVM, libraries,
in a lightweight, layered, image format. These images are then used to run the ap-
plications inside a Linux container with isolated CPU, memory, network and disk
usage. We can see these containers as a form of application virtualization or even pro-
cess virtualization. This means that we can get more applications running on a single
set of hardware for higher density without the overhead of an additional operating
system like for virtual machines [Merkel, 2014; Turnbull, 2014].

A standard Virtual Machine (VM) emulates the hardware of the Physical Ma-
chine (PM) it is installed on. When you launch a VM and run a program that hits
disk, its generally talking to a "virtual" disk. When you run a CPU-intensive task,
those CPU commands need to be translated to something the host CPU understands.
All these abstractions come at a cost: two disk layers, two network layers, two pro-
cessor schedulers, even two whole operating systems that need to be loaded into
memory. These limitations typically mean you can only run a few virtual machines
on a given piece of hardware before you start to see an unpleasant amount of over-
head and churn. On the other hand, you can theoretically run hundreds of Docker
containers on the same host machine without issue.

The machine hosting the Docker containers has its own infrastructure and oper-
ating system. Instead of the hypervisor (like in Virtual Machines), it has the Docker
Engine installed, and this is what interacts with the containers. Each container holds

4https://www.docker.com/

https://www.docker.com/

108 Chapter 11. The StreamBase (SB) System

BARE METAL

HOST OPERATING SYSTEM

DOCKER ENGINE

VM

SERVICE

APP

LIBRARIES

VM

SERVICE

APP

LIBRARIES

VM

SERVICE

LIBRARIES

FIGURE 11.1: A representation of how Docker works.

its application and the required binaries, libraries and other dependencies, as seen in
Figure 11.1. It is important to note that they don’t require their own guest operating
system. This allows the containers to be significantly smaller in size, and able to be
distributed, deployed and started in a fraction of the time taken by virtual machines.

11.1.3 Kubernetes

Kubernetes5 is an open-source system for automating deployment, scaling and man-
agement of containerized applications. It allows to create a cluster of physical ma-
chines on which the containers can be deployed, automatically. It was developed by
Google Inc. and released as an open source project beck in 2013. Google is known to
run all its applications using the container architecture paradigm at scale, since they
run more that two billions container per week. Kubernetes brings a lot of function-
ality for running clusters of microservices inside Linux containers at scale.

Kubernetes orchestrates, schedules and manages pods, instead of containers. One
or more containers are grouped into a pod. Among the different characteristics of a
pod, the most important one is that all the containers inside the pod run on the same
physical machine. Moreover, all containers in a pod share the same IP address and
Volume. Additionally, pods, like containers, can be destroyed at any time and then
it is important to make them stateless.

Since the microservices we are referring to must solve scalability issues, this
means that multiple instances of the same microservice will be running at the same
time. Kubernetes allows this and, most importantly, allows the containers to scale
automatically, thanks to the ReplicationController that manages the number of repli-
cas for a given microservice.

11.2 Distributed Database System

From a technological points of view, out of all the different databases able to man-
age big data (as reported in Section 14.5) we decided to adopt Apache Cassandra as
main storage for the SB, specifically for the streams of data generated by the user’s
smartphone. As reported in [Wlodarczyk, 2012], Cassandra in a good choice for
storing time series data, in particular for its elastic scalability and eventual consis-
tency features. In this section we illustrate what is Cassandra, what are its most

5https://kubernetes.io/

https://kubernetes.io/

11.2. Distributed Database System 109

important features and how we used it to store the streams collected from the user’s
smartphone.

11.2.1 What is Cassandra

Among all the available definitions we found about Cassandra, the one that we like
more is the one in [Carpenter and Hewitt, 2016]:

"Apache Cassandra is an open source, distributed, decentralized, elastically scalable,
highly available, fault-tolerant, tuneably consistent, column-oriented database that bases its
distribution design on Amazon’s Dynamo and its data model on Google’s Bigtable. Created
at Facebook, it is now used at some of the most popular sites on the Web."

Cassandra is a distributed database system, meaning that it is capable of running
on multiple machines while appearing to the final user as a unique database. This
means that every node stores only a part of the data and this helps when the load
starts to grow since every single machine has to manage only some data. Addition-
ally, Cassandra is also decentralized meaning that all these nodes are the same, there
is no master-slave distinction. There are no nodes that perform organizing tasks dis-
tinct from any other and this element gives a great contribution in reliability of the
whole cluster since there is no single point of failure. This aspect is called server
symmetry because all the nodes are the same and there is not a special host that if
fails will cause the whole cluster to fail and this is the key to Cassandra’s high avail-
ability. Scalability is an architectural feature of any system that can continue to reply
to a greater number of requests with little degradation in performance. There are
two types of scalability:

• Vertical: it usually refers to systems that are not distributed and then that run
on a single machine. To vertically scale means that by adding hardware to
this machine, it is still able to continue serving requests without being affected
by performance degradation. With hardware usually they refer to CPU and
RAM, but also disk to store more data. This is the easiest solution, that can be
achieved in less time but that is also very expensive and ideally has an upper
bound limit.

• Horizontal: this is typical of distributed systems, and refers to the ability of
adding smaller, less performant machines to an existing cluster so that no one
machine has to bear the entire burden of serving requests. Of course, dedicated
software solutions must be used to keep the data in sync and avoid conflicts.

Cassandra goes beyond these two concepts and introduces the elastic scalability. It is
referred to as a special property of horizontal scalability and means that the cluster
can scale up and back down seamlessly. When a new node is added to the cluster
and starts participating, there should be a mechanism to send him a copy of some
or all of the data and start serving new requests from the users without major dis-
ruption or reconfiguration of the whole cluster. All the balancing and queries are
automatically managed by the cluster itself, there is no need to change the applica-
tions that use the server. When removing a node because of a failure or any other
reason it works the same, a simple command can be triggered on the node and af-
ter some time the cluster balances itself to receive its data and the new node can be
removed. The availability of a system is usually measured according to its ability to
fulfill requests, but computers can have all sorts of failures, hardware failures, net-
work failures, power outages, among others that will prevent the system from being

110 Chapter 11. The StreamBase (SB) System

available. A system to be highly available and fault tolerant it must include multiple
networked computers and of course the software running on them must be capable
of operating in a cluster and recognizing failures. In this regard, Cassandra is highly
available and fault tolerant because it can replace a failing node with no downtime.
A database system to be consistent means that a read operation always returns the
most recently written value. Of course, scaling up is not free and some trade-off
must be made between data consistency, node availability and partition tolerance.
The CAP theorem [Gilbert and Lynch, 2002] refers to the three characteristics just
mentioned and says that only two of them can be achieved at the same time in a
distributed system. In Cassandra the application can tune the consistency level, but in
general it is more on the trade-off between availability and partition tolerance, mean-
ing that the system may return inaccurate data but it is always available, replies fast
and is always possible to write. We believe this is the best approach for time series
data: it is important to write them all, and there is no "rush" in reading them and
even if some values are skipped, it is not a big deal since we collect hundreds of
values per second. Cassandra is is not relational, and it represents its data structures
in sparse multidimensional hashtables where sparse means that for any given row
you can have one or more columns, but each row doesn’t need to have all the same
columns as other rows like it. Each row has a unique key that makes the data ac-
cessible. We can think at Cassandra as an indexed, row-oriented store. Cassandra
has been designed for high performances meaning that it can scale consistently and
seamlessly to hundreds of terabytes.

Despite Cassandra’s design and features, it is not the right tool for every job. First
of all, it is meant to operate in large deployments. None of its qualities like high
availability, tuneable consistency, peer-to-peer protocol is meaningful in a single-
node cluster. Second of all, Cassandra is optimized for excellent throughput on
writes with less predictable read operations. The ability to handle application work-
loads that require high performance at significant write volumes with many concur-
rent client threads is one of the primary feature of Cassandra and in particular this
suites well for time series where a lot of data is continuously written.

11.2.2 How Cassandra Stores the Data

Cassandra’s data model is an excellent fit for handling data in sequence regardless
of datatype or size. When writing data to Cassandra, data is written sequentially to
disk. When retrieving data by row key and then by range, you get a fast and efficient
access pattern due to minimal disk seeks – time series data is an excellent fit for this
type of pattern.

We refer to the Datastax documentation6 to explain how time series are stored in
Cassandra, to motivate the modelling choices we made in Section 11.2.4. The sim-
plest model for storing time series data is creating a wide row of data. The timestamp
of the reading will be the column name and the temperature the column value. Since
each column is dynamic, the row will grow as needed to accommodate the data. In
some cases, the amount of data gathered isn’t practical to fit onto a single row. Cas-
sandra can store up to 2 billion columns per row, but if we’re storing data every
millisecond you wouldn’t even get a month’s worth of data. The solution is to use a
pattern called row partitioning by adding data to the row key to limit the amount of
columns you get per device. Using data already available in the event, we can use

6https://academy.datastax.com/resources/getting-started-time-series-data-modeling

https://academy.datastax.com/resources/getting-started-time-series-data-modeling

11.2. Distributed Database System 111

the date portion of the timestamp. This will basically produce one row per day, and
an easy way to find the data. This representation is showed in Figure 11.2.

Date
Timestamp

Value

Timestamp

Value

Data as Needed

Columns as Needed

FIGURE 11.2: A representation of how Cassandra stores timeseries
data.

11.2.3 Querying a Cassandra Node

Querying a Cassandra cluster is an operation that is performed using the Cassandra
Query Language (CQL). The way Cassandra is structured allows to perform only
certain types of query, that do not affect performances. In other words, a query is
allowed only if takes a reasonable amount of time to complete and return results,
otherwise is not allowed at all. The main reason is related to the very particular data
model Cassandra uses and if this seems a bottleneck in using the system because
requires a lot of time in the design phase, it simplifies the queries and improves the
performances. Only fast queries are allowed in Cassandra and if a query is slow,
then there is a mistake in the way the developer modelled the data. Queries in CQL
are done using the SELECT and WHERE clauses. These constructs allow to select
and filter the results of the query according to some conditions the user specifies
in the query itself. Another important aspect about queries is the fact that they are
strictly linked to the PRIMARY KEY which is composed by the PARTITION KEY
and the CLUSTERING KEY. With these considerations in mind let’s list some of the
rules7 that must be taken into considerations while querying Cassandra:

• Range queries (<=>) are not allowed on the partitioning key

• Restrictions on the partitioning keys are allowed. We must restrict all keys or
none.

• An alternative to the restriction of all the keys is to restrict only some of them
and use ALLOW FILTERING. This practice is a performance killer.

• In general, every query can involve only those columns that are part of the
primary key.

• There is the possibility to override rule 4 in the sense that we can query on
additional columns that use secondary indexes. Also in this case as for rule 3
this practice is a performance killer.

11.2.4 Cassandra Data Model for Streams

In the SB Cassandra is used as a persistence system that stores the logs collected
from multiple sensors for multiple users. The amount of data and the amount of
writes per second are very high and the system has to be carefully designed. Our
application collects data continuously from up to 30 sensors for each user at a rate

7http://www.datastax.com/dev/blog/a-deep-look-to-the-cql-where-clause

http://www.datastax.com/dev/blog/a-deep-look-to-the-cql-where-clause

112 Chapter 11. The StreamBase (SB) System

of 20 readings per second (up to 350 per second). At the lowest collection rate the
application can easily collect more than 30 million values per day per user. Usually
the synchronization occurs at night, when the phone is plugged and there is wireless
connectivity. For this reason, writes are not distributed across the whole day but are
focused in a short period of time (burst) and this corresponds to more load for the
server. Details about the performances of the system are presented in Section 11.2.5.
With these considerations in mind let present the data model carefully designed for
this system.

In order to preserve users’ privacy, we adopted a complete separation between
users using one keyspace per user. The keyspace name is a specific unique identifier
for the user which cannot lead back to the username and in particular is a salt. In
cryptography, a salt is random data that is used as an additional input to a one-way
function that hashes a password or passphrase. The primary function of salts is to
defend against dictionary attacks versus a list of password hashes and against pre-
computed rainbow table attacks. We generate this salt when the user registers to
the system using the SHA-1 algorithm. Since our application is user centric, which
means that every user has access only to his data and is not aware of others’ data,
this division using one keyspace per user is the right choice. Moving forward in the
explanation of the data model, we decided to create one table per sensor in the user
keyspace. In this way we have a logical separation of the sensors in the database
without affecting the performances. Each table has a specific data schema according
to the values we have to store and the queries we have to perform. Although there
are many sensors, some of them share the same schema because they collect the same
values and then we need to perform the same queries on them. The first set of tables
are the ones related to the 3-values sensors, namely those that collect data according
to the 3-axes X, Y, Z. The data schema is presented in Table 11.1 and is valid for
the sensors: accelerometer, gravity, gyroscope, linear acceleration, magnetic field,
orientation and rotation.

TABLE 11.1: Schema for the 3-axes sensors.

Key Name Day Timestamp X Y Z Primary Key
Data Type text text float float float ((day), timestamp)

The next set of tables are those related to the single-value sensors, namely those
sensors that collect only one variable. These sensors are: temperature, proximity,
light, pressure and humidity. As explained in the previous Sections Cassandra en-
courages data denormalization and duplication because usually disk space is very
cheap while time during queries is very expensive. To satisfy all the queries for our
application we need to duplicate these tables and create 2 tables (11.2 and 11.3) with
two different data schema (primary key) for each sensor.

TABLE 11.2: Schema for the sensors that generate only one value,
modeled to allow query based on the timestamp.

Key Name Day Timestamp Value Primary Key
Data Type text text float ((day), timestamp)

Similarly, for the Bluetooth and Bluetooth LE sensors we have to create 3 tables
according to the schemas presented in Tables 11.4, 11.5 and 11.6. This is necessary
to allow, respectively, query by address, by timestamp and by signal intensity (dis-
tance).

11.2. Distributed Database System 113

TABLE 11.3: Schema for the sensors that generate only one value,
modeled to allow query based on the value.

Key Name Day Timestamp Value Primary Key
Data Type text text float ((day), value)

TABLE 11.4: Schema for the Bluetooth and Bluetooth LE, modeled to
allow query based on the address.

Key
Name

Day Timest. Name Address Bond
State

Rssi Primary
Key

Data
Type

text text text text text float ((day,
ad-
dress),
times-
tamp)

TABLE 11.5: Schema for the Bluetooth and Bluetooth LE, modeled to
allow query based on the timestamp.

Key
Name

Day Timest. Name Address Bond
State

Rssi Primary
Key

Data
Type

text text text text text float ((day),
times-
tamp)

TABLE 11.6: Schema for the Bluetooth and Bluetooth LE, modeled to
allow query based on the signal strength (RSSI).

Key
Name

Day Timest. Name Address Bond
State

Rssi Primary
Key

Data
Type

text text text text text float ((day),
RSSI)

The last set of tables are the one dedicated to the user location. In particular,
we have two sensors on the mobile device that allow to acquire the location of the
user: the network location and the GPS. The former is a way to triangulate the user
that uses information from the GSM network or the WIFI network. These two ap-
proached allow to extract only the latitude and the longitude with an accuracy value
that ranges from 30m to 3km. The latter instead uses a dedicated GPS sensor inside
the smartphone that is far more accurate than the previous method and allows to
acquire other very important information. More in details, the GPS can acquire the
user’s latitude, longitude, altitude, speed, bearing with an accuracy that can go be-
low to 3m. By default, Cassandra doesn’t have direct support for Geolocalization
and this means that we have to design the schema to be very efficient while query-
ing. We created a custom type in the database called Point which is composed by
latitude, longitude and altitude

Point < latitude, longitude, altitude > (11.1)

where this point type is the basic element for the data schema we designed. We iden-
tified one single table to store these data as shown in table 11.7. With this table, we

114 Chapter 11. The StreamBase (SB) System

can natively support per timestamp queries, while we need an external tool to sup-
port geographical queries. This tool is called Stratio’s Cassandra Lucene Index8 and
leverages on the indexing capabilities of Cassandra to index the location points so
that geographical queries can be performed, such as "Give me all the Points stored in
the database that are in a radius of X meters from the location Point<latitude, longi-
tude, altitude>". What Stratio does is basically to provide near real time search such
as ElasticSearch or Solr, including full text search capabilities and free multivariable,
geospatial and bitemporal search.

TABLE 11.7: Schema for the Location data, modeled to allow query
based on the timestamp.

Key
Name

Day Timest. Acc. Bearing Point Provider Speed Primary
Key

Data
Type

text text float double frozen
<point>

text float ((day),
times-
tamp)

11.2.5 Performances

As reported in Section 11.2.1, Cassandra has been designed to take full advantage
of multiprocessor/multicore machines, and run across many dozens of machines
housed in multiple datacenter, always operating with high performances. In partic-
ular, the best performances are during the write phase since Cassandra is optimized
for excellent throughput on writes.

In this section we present the performances result in terms of throughput and
load we obtained during our test with the schema used by the SB. We have two
separate test clusters:

• The first cluster is composed by 5 nodes, where every node is a virtual machine
with remarkable resources: 8 2.2GHz processors, 96GB of RAM, 1Tb of disk
hosted in a NAS, connected to the machine through an optical fiber connection.

• The second cluster is composed by only one node, with the same characteristics
as the first one.

We used the second cluster to test the throughput we could obtain from Cas-
sandra, using the "cassandra-stress" tool shipped with the database. We run both
write and read tests, which results are respectively shown in Figures 11.3 and 11.4.
In these tests, we used one single node, 913 threads writing/reading simultaneously
for a total of 1 million values.

The results are summarized also in Table 11.8. As it is possible to see, the writes
are 21.16% faster than the reads in terms of throughput, while the result for the
latency are not clear towards one or the other.

We also tested how much data a Cassandra cluster can store without affecting the
performances. For this test, we wrote random data modeled according to the schema
described in Section 11.2.4 on the first test cluster. We let it run at the maximum
speed for two months, writing at 80000[op/s], and we ended up having a total size
of 1.79TBytes of data. With these data stored in the database, we could not see any
concrete performance degradation.

8https://github.com/Stratio/cassandra-lucene-index

https://github.com/Stratio/cassandra-lucene-index

11.3. Framework for Distributed Computing 115

FIGURE 11.3: Graphic showing the Cassandra reading performances
for the configuration used in the SB with one node, 913 threads read-

ing 1 million values.

FIGURE 11.4: Graphic showing the Cassandra writing performances
for the configuration used in the SB with one node, 913 threads writ-

ing 1 million values.

11.3 Framework for Distributed Computing

In Computer Science, the size of the data keeps rising and this generates the need
to change the way these data are processed and managed, as individual processors
clock speed evolution slowed down and system evolved to a multi-processor ori-
ented architecture. There are already scenarios where the data size is too big to be
analyzed in acceptable time by a single system, and in this cases is where Distributed

116 Chapter 11. The StreamBase (SB) System

TABLE 11.8: Cassandra performances summarized for the SB deploy-
ment with one single node, 913 threads and 1 million records.

Operations
[op/s]

Latency [ms]

Mean Mean Median 95th
perc.

99th
perc.

99.9th
perc.

Max

Write 38282 24.1 17.0 55.4 163.1 251.8 418.1
Read 31594 29.7 23.4 74.3 113.0 196.7 368.5

Computing Solutions are able to shine. Today there are different solutions that al-
low to do this, the most important and consolidated one is Apache Hadoop9 which
is designed to efficiently distribute large amounts of work and data across multiple
systems. however, in this thesis we decided to adopt Apache Spark10 which is a data
parallel general-purpose batch-processing engine. The main reason of this choice is
that it is much faster than Hadoop since it works in memory.

In the SB we use it for performing heavy calculations such as to speed up the
data input process, or to apply machine learning techniques on the data, among
others. The fact that the heavy tasks happens on the Apache Spark cluster (which
usually is executed on separate machines) let us have a tighter control on the single
components of the application, since they are lightweight and we can better manage
the local resources.

11.3.1 What is Apache Spark

The simplest but also more complete definition we found about Apache Spark is the
one in [Karau et al., 2015]:

Apache Spark is an open-source cluster-computing framework which provides an inter-
face for programming entire clusters with implicit data parallelism, fault-tolerance, speed
and generality.

Spark extends the popular MapReduce [Dean and Ghemawat, 2008] model to
efficiently support more types of computations, including stream processing. One
of the main feature it offers for speed is the ability to run computations in memory,
even if it is more efficient with respect to MapReduce even on disk. On the gener-
ality side, Spark is designed to cover a wide range of workloads that are divided
into categories such as streaming, batch applications, machine learning, and since
all of them are integrated in the same engine, it is easy and inexpensive to combine
different processing types which is often a requirement in production data analysis
pipelines. More in details, at its core, Apache Spark is a computational engine that is
responsible for scheduling, distributing, and monitoring applications consisting of
multiple tasks across many workers in a computing cluster. Since, the core engine is
fast and general purpose, it powers multiple higher-level components that are spe-
cialized on different tasks. These components are designed to interoperate closely
so that an application can easily combine their functionalities. This tight integration
brings different advantages: first of all, optimizations made in the core, are reflected
in all the components; secondly, the cost of deploy, maintain, test and support stacks

9http://hadoop.apache.org/
10http://spark.apache.org/

http://hadoop.apache.org/
http://spark.apache.org/

11.3. Framework for Distributed Computing 117

of applications is reduced with respect to single ones; finally, when a new compo-
nent is added to the stack, every organization that uses Spark will immediately be
able to use it as well.

Spark SQL
Structured Data

SparkStreamin
g real-time

MLib Machine
Learning

GraphX Graph
Processing

Spark Core

Standalone Scheduler MesosYARN

FIGURE 11.5: Schematic showing the components of the Apache
Spark Stack.

What follows is a brief introduction to the Spark components, as shown in Figure
11.5:

• Spark Core. It contains the basic functionalities of Spark, scheduling, memory
management, fault recovery, interacting with the storage systems, and more.

• Spark SQL. This package allows to work with structured data. It enables
queries via SQL but allows to include also other sources, such as Apache Par-
quet11 or JSON12 files. A part from providing the interface, this component al-
lows also to intermix SQL queries with the programmatic data manipulations
supported by the different languages for complex analytics.

• Spark Streaming. It enables processing of live streams of data. API are pro-
vided that closely match the Spark Core’s RDD API.

• MLib. It is a library that contains common machine learning (ML) algorithms
such as classification, regression, clustering, as well as model evaluation and
data import.

• GraphX. Is a library for manipulating graphs and performing graph-parallel
computations.

• Cluster Managers. Similarly to Apache Cassandra, Spark is designed to effi-
ciently scale up from one to many thousands of workers. To achieve this and
improve the flexibility, it allows to use different cluster managers, including
Hadoop YARN13, Apache Mesos14, and a simpler ad-hoc solution.

11https://parquet.apache.org/
12http://www.json.org/
13https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/

YARN.html
14http://mesos.apache.org/

https://parquet.apache.org/
http://www.json.org/
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html
http://mesos.apache.org/

118 Chapter 11. The StreamBase (SB) System

11.3.2 Resilient Distributed Datasets (RDD)

The Spark’s core abstraction for working with data is the Resilient Distributed Dataset
(RDD) which can be simply defined as an immutable distributed collection of ele-
ments. They are the core elements of the Spark framework, in fact, all the work can
either create new RDDs, transform existing ones or produce results from them. The
data contained in RDDs is automatically split into partitions and distributed across
the cluster to parallelize the operations performed on them.

RDDs can be created in two ways: by loading an external dataset or by distributing
a collection of objects. Once created, two possible operations are possible on them:
transformations and actions. The former creates a new RDD from an existing one for
example by filtering the data that match a predicate. The latter, compute a result
based on an RDD and either return it to the driver program or save it to an external
storage system, e.g., HDFS. It is important to notice that Spark computes RDD in
a lazy fashion, meaning that is happens the first time they are used in an action.
Consider the example in which an application reads a 1TB text file and stores it in a
RDD. Immediately after this, it asks to perform a task only for the first line in the file.
If Spark waits to read all the triggered commands, it can optimize its operations (this
is easier to understand when multiple commands are run in series). In the example
just mentioned, Spark waits for the command to read the first line to execute the
load operation. Actually, it never loads the whole file but on the other hand loads
only the first line. Another characteristics is that RDDs are recomputed each time an
application runs an action on them but the RDD is stored in memory (distributing it
in the nodes) after the first action.

11.4 Instantiating the StreamBase (SB) System

The technological decisions we took for instantiating the reference architecture in
the SB are made to make it modular and easy to develop, maintain and deploy. In
fact, our idea is to have one instance of the system for every project we will carry on,
both for research but also industrial applications.

Docker15 containers orchestrated by Kubernetes16 are at the core of the system
and define its architecture. We have a computer cluster managed by Kubernetes
that will deploy containers on demand, depending on the configurations and on the
system load.

Every element of the system will be developed as a Docker container: this will
provide the modularity and scalability required by the SB. A component, as pre-
sented in the architecture, can be a unique container or a set of multiple running
containers. For example, the Anonymization component is one container that will
manege all the requests by the other components, while the Knowledge Update com-
ponent will be logically composed by multiple container, one per Procedure. In the
description of the system, when we referred to "instantiation" of an element, we
meant that the corresponding Docker container will be created and executed, man-
aged by Kubernetes.

Also the Cassandra cluster and the Apache Spark cluster will be created using
docker containers so that to automatically scale up and down when required. In the
case of Cassandra the situation is a bit more complicated because we must take into
account the persistance of the data: as we explained in Section 11.1.3, the Docker

15https://www.docker.com/
16https://kubernetes.io/

https://www.docker.com/
https://kubernetes.io/

11.5. Summary 119

containers orchestrated by Kubernetes are dynamic, meaning that they can be de-
ployed and deleted without notice. This cannot be tolerated in the case of a database
system such as Cassandra, where the data must be persisted. For this reason, we
created dedicated volumes that are detached from the containers as such. A Cassan-
dra Node (CN) is composed by a Power Resource (PR) and the Data (D), defined as
follows:

• Data (D). This is the disk used to store data for the experiments. The usable
disk space should be considered to be 1/4 of the total hard drive space on
the physical machine. 1/2 of the space is used by the backup configuration
(best option will be RAID 10) and the additional 1/2 is used by Cassandra to
compact the data (See Cassandra Compaction Strategies for more information).
This means that if we want to be able to store 1TB of data we need a physical
disk of 4TB;

• Power Resources (PR). RAM and CPU used by the Cassandra process(es) to
consume the data, where consuming means writing to disk while collecting or
reading from disk to do analytics and reply to queries

• Cassandra Node (CN). It is a Docker container composed by 1 unit of D and 1
unit of PR attached to it as a mounted Volume, where D and PR are logically
decoupled. The minimum requirements for one CN instance are:

PR:

– at least 16GB of RAM (32GB best option);

– 4 CPU cores (8 best option).

D:

– One node can easily handle 1TB of data, we cannot overcome this limit.
Considering the requirements on D as above, each CN needs up to 4TB of
data

At this point, the Cassandra Database for a use case will be composed by multi-
ple Cassandra Nodes (CN).

Moving to the deployment of the architecture for the different use case, the tech-
nical solutions we adopted are used to facilitate the procedure: with Kubernetes we
can define a set of containers, i.e., Pod that can be deployed with a single command
an this pod will contain all the elements needed for the experiment i.e., a Cassandra
Cluster, an Apache Cluster, and all the components of the SB.

11.5 Summary

In this section we described how we implemented the reference architecture into a
working prototype of the SB. More in details, we described which are the main soft-
ware solutions and technologies we used. We described own the implementation is
based on Docker containers, orchestrated by Kubernetes. This solution brings huge
advantages in terms of modularity, and scalability which is automatically managed
by Kubernetes. The containers can be replicated when the load requires it so that to
be able to satisfy all the requests.

We then presented the technology we adopted for the database system, Apache
Cassandra. It is a distributed database system able to scale to terabytes of data by

120 Chapter 11. The StreamBase (SB) System

simply adding machines to the cluster. This feature is strictly related with Docker
containers and Kubernetes. In order to let Cassandra store streams of sensor data,
some consideration have been made and a data model has been presented for the
scope. We also tested Cassandra on our test clusters to see what are its performances
under heavy loads.

Finally, we presented the computational framework we leverage on, Apache
Spark. It is a distributed application that allows to schedule works that are auto-
matically distributed on a cluster of machines, with a mechanism similar to Mpa
Reduce. Using this solution allows to keep the system components simple and easy
to manage, while delegating all the huge workloads to this cluster.

121

Part IV

Use cases

123

Chapter 12

Knowdive Experiments

The Knowdive experiments are a set of internal use cases done on the members of
the Knowdive Group1 at the Department of Information Engineering and Computer
Science of the University of Trento. Their main aim is to test the solutions developed
in this thesis before the real deployment in the wild. These experiments are eas-
ier to carry out since they usually involve less people, which already know how to
use the mobile application given their computer scientist background and have an
additional motivational factor of helping the group that we can leverage on.

The experiments done so far were two, one dedicated to debugging the general
functionalities of the i-Log application and SteamBase system in general to prepare
the real life deployment on the university students (SmartUnitn One). The second,
on the other hand, was focused on the test of more specific features, such as the
audio collection and the marketplace deployment.

12.1 Knowdive One

Knowdive One is the first real-life test of the methodologies and solutions described
in this thesis to see if the implemented SB could scale well with multiple users. We
decided to instantiate the system and use the i-Log mobile application to collect data
using as users the members of the Knowdive Group at the Department of Informa-
tion Engineering and Computer Science at the University of Trento.

The most important outcome of this first experiment was to test the i-Log mo-
bile application and the backend infrastructure of the SB in terms of data collection
and storage and in particular to quantify the impact the data collection has on the
smartphone battery life.

12.1.1 Objectives

The objective of this first trial was to debug the whole architecture, both the mobile
client and the backend infrastructure and understand if the distributed solutions
we adopted were capable of managing an increasing number of users and scale. In
particular, we mainly focused on the data collection and management aspects since
they were never tested before outside a laboratory setting. Additionally, this internal
use case was designed to quantify the impact on the battery life of the whole data
collection process for the upcoming experiment SmartUnitn One.

12.1.2 Smartphone Battery Consumption

As it is well known in the state of the art, using the smartphone as a sensing device
has some advantages but also many disadvantages. The first and most important

1http://disi.unitn.it/~knowdive

http://disi.unitn.it/~knowdive

124 Chapter 12. Knowdive Experiments

one concerns the battery life of the device [Ferreira, Dey, and Kostakos, 2011]. A
smartphone is designed to be used for an entire day, but this means that when the
screen is off, the applications are generally either not supposed to run or do only
little work, thus allowing the smartphone to preserve energy. On the other hand,
when the smartphone is used to collect data about the user, an application is always
running in the background and this increases the energy demand, making it difficult
to cover en entire day. For i-Log the situation is the same, and with this first use case
we had the chance to quantify the phenomena and try to reduce its effects.

The device chosen for the battery measurements is a Samsung Galaxy S4 (GT-
I9500) since it has an above average number of sensors among the currently avail-
able phones on the market. We can divide these sensors into two classes: the hard-
ware sensors that are real sensors used to collect data at a certain sampling frequency.
There are 9 sensors belonging to this category on this device: Magnetic Field (MF),
Temperature (T), Humidity (H), Pressure (P), Accelerometer (A), Gyroscope (GY),
Orientation (O), Gravity (GR) and Light (L). The sensors belonging to the second
class are called radio sensors because they all use a radio signal, and they are: Lo-
cation Sensors (GPS or NET), Wi-Fi, Bluetooth (BT or BTLE) and the Microphone
(MIC). They cannot be considered sensors per se because they are not designed with
the purpose of collecting data. They are smartphone components with different pur-
poses in the system that we decided to use in a way that allowed us to collect user’s
personal data. Since they are not real sensor, there is no real sampling frequency but
we had to define an equivalent parameter to perform the analysis. We then defined
the sampling interval as the interval between two consecutive data collections.

First, we present the consumption we collected with the phone in idle state, namely
the phone turned on with no application running, no sensor collection in process
and the screen turned off. Then we illustrate each sensor discharging behavior and
we identify different sensor groups, putting together those sensors that have a similar
energy consumption. Then we present how the sampling frequency affects each group
and try to compare the values. Finally, we measured multiple sensors collecting data
together to understand if using them in parallel affects the battery life more than
using them singularly.

12.1.2.1 Idle state

When considering the phone in idle, we evaluated the idle energy consumption over
multiple states given by a combination of different options available in the Android
OS2. The options we considered are those that can be reached by swiping down from
the top of the screen with two fingers:

• Wi-Fi enabled: the WIFI chip is enabled.

• Wi-Fi connected: same as above with the addition that the phone is connected
to one of the available networks.

• Bluetooth: the bluetooth chip is enabled.

• Location: the locations settings are enabled.

• Power Saving: this is an option available on many recent Android devices that
allows to smartphones consume less energy by diminishing the clock speed of
the main CPU in addition to other tweaks.

2Not all the OS versions and smartphone have them

12.1. Knowdive One 125

TABLE 12.1: Table showing all the possible states of the phone when
idle and the relative current consumption values in mA. The "-" sym-

bol means disabled while the "+" means enabled.

Current Power Wifi Bluetooth
Location

Wifi

[mA] Saving Enabled Enabled Connected

3.9 - - - - -

4.5 + - - - -

3.8 - + - - -

3.8 + + - - -

4.8 - - + - -

4.6 + - + - -

3.9 - - - + -

3.9 + - - + -

4.9 - + + + -

4.9 + + + + -

7.0 - + - - +

7.1 + + + - +

7.6 - + - + +

8.5 + + + + +

The corresponding 14 states given by a combination of the above mentioned op-
tions enabled (+) or disabled (-) are showed in Table 12.1 with the corresponding
measured current consumption values in mA.

From this analysis, we are able to draw the following conclusions:

1. By simply enabling the different options (the first 10 states in the table) there is
little change in the measured energy consumption that can be considered as a
standard deviation due to the absolute resolution of the multimeter.

2. In the idle state, the Power Saving option does not help much in preserving the
energy stored in the battery. This is due to the little computation required to
keep the smartphone on, so there is really no way to save battery by reducing
the CPU clock. On the other hand, when the phone is connected to a Wi-Fi
network we can see a noticeable decrease in the battery life of the smartphone
even if there is no transmission over the communication channel, since it is not
connected to any network.

The energy consumption of the smartphone in idle state is very important in this
work. In fact, we have to subtract the idle current consumption and then normal-
ize over it to have an objective measure. From now on, the presented consumption
values refer only to the normalized sensor component of the measured energy con-
sumption. A consumption value of 200, for example, means that the specific sensor
consumes 200 times the energy of the phone in idle state.

126 Chapter 12. Knowdive Experiments

TABLE 12.2: Table showing the normalized consumption values in %
with respect to the current consumption in idle state of all the hard-
ware sensors in the Samsung Galaxy S4 smartphone, grouped accord-
ing to similar consumption patterns. We show the values at different
sampling frequencies and the average value of each group at each

frequency.

Group Sensor

Sampling Frequencies

low (5Hz) medium (20Hz) high (100Hz)

single avg. single avg. single avg.

HW1

Magnetic Field (MF) 6.85

6.22

7.05

6.74

7.22

7.04
Temperature (T) 5.27 6.68 6.94

Humidity (H) 5.92 6.54 6.79

Pressure (P) 6.82 6.71 7.20

HW2

Accelerometer (A) 214.68

213.13

216.66

217.24

7.22

227.65
Gyroscope (GY) 208.63 209.92 208.77

Orientation (O) 215.00 217.01 226.67

Gravity (GR) 214.20 225.38 229.54

Light (L) 1697.47 1749.88 2705.76

TABLE 12.3: Table showing the normalized consumption values in %
with respect to the current consumption in idle state of all the other

sensors in the Samsung Galaxy S4 smartphone.

Sensor
Sampling Intervals

low (5min) medium (1min) high (5sec)

Microphone (MIC) 1665.80

Bluetooth (BT) 46.90 81.49 126.65

Bluetooth LE (BTLE) 333.16 353.01 364.57

Wi-Fi Networks (WIFI) 44.77 46.72 50.77

Network Loc (NET) 36.31 36.34 37.06

GPS Loc (GPS) 1819.93 2032.38 3138.99

12.1.2.2 Single Sensors

The results of the analysis are summarized in Table 12.2 for the hardware sensors
and in Table 12.3 for the radio sensors. The results are presented at the different sam-
pling frequencies (5Hz (low), 20Hz (med) and 100Hz (high)) and sampling intervals
(5min (low), 1min (med) and 5sec (high)) respectively. The hardware sensors show
a certain homogeneity in the results; moreover, we were able to identify 2 groups
that have a similar discharging pattern plus the Light (L) sensor, that is excluded
from both. On the other hand, the radio sensors show little homogeneity and only
between WIFI and NET, while all the others have very different behaviors in terms
of both absolute consumption and frequency dependency.

12.1. Knowdive One 127

TABLE 12.4: Table showing the frequency dependency of the energy
consumption of the different sensor groups in percentage respect to

the lowest sampling frequency.

Group

∆Freq
low-med low-high Impact

HW1 8.46% 13.18% Negligible

HW2 1.93% 6.81% Negligible

Light (L) 3.08% 59.39% Substantial

Bluetooth (BT) 73.76% 170.03% Negligible

Bluetooth LE (BTLE) 5.95% 9.42% Negligible

Wi-Fi Networks (WIFI) 4.35% 13.38% Negligible

Network Location (NET) 0.07% 2.05% Negligible

GPS Location (GPS) 11.67% 72.47% Substantial

12.1.2.3 Sensor Groups

In Table 12.2 we show the results for the hardware sensors by grouping together
those sensors with similar battery discharging behaviors. We were able to identify
two main groups: HW1, i.e., Magnetic Field (MF), Temperature (T), Humidity (H)
and Pressure (P) and HW2, i.e., Accelerometer (A), Gyroscope (GY), Orientation (O)
and Gravity (GR). Additionally, the results for the Light (L) sensor are presented but
are not grouped with any other sensor since it behaves very differently. In fact, it
consumes a significant amount of energy, 10 to 400 times more than any other hard-
ware sensor in the device. The results are presented per sensor per frequency and
averaged per frequency per group. The Light (L) sensor can be compared to the
GPS, which is the most energy demanding sensor. Other conclusions that we can
draw from these results are that sensors from HW2 consume 30 to 40 times more
energy than those belonging to group HW1. By taking into consideration this divi-
sion while defining which sensors are used to resolve a service, we can balance the
energy consumption of the overall system.

12.1.2.4 Frequency-dependent Consumption

We know that the usability of the sensor data is strictly dependent on the sampling
frequency, especially in context aware applications where outdated data can gener-
ate false clues and where a continuous stream of data is needed. An example of this
phenomenon is the GPS signal: if I receive GPS updates every 5 minutes when I am
driving and I need real time navigation information, the data is unusable since I will
not receive the service I want, while at the same time if I am at work in my office it is
likely I do not need frequent GPS location information. This frequency-dependent
usability of the data is true also for other sensors like the hardware ones. The authors
in [Ryu et al., 2013] claim that they can detect the correct average step count from Ac-
celerometer data with an accuracy of up to 98.9% at 10Hz sampling rate and 99.6%
at 20Hz sampling rate. These two examples explain the importance of the sampling
frequency and show that the problem can be two-fold: we can have oversampling
and undersampling at the same time. With the former we generate more data than
needed with a resulting waste of energy while the latter implies having not enough
data to provide the service to the user.

128 Chapter 12. Knowdive Experiments

By looking at the results of Table 12.2 for the hardware sensors and Table 12.3 for
all the others, we can compute the energy consumption variations based on the fre-
quency and produce the new results showed in Table 12.4. It shows the percentage
of variation of the consumption in using medium and high frequencies with respect
to the low ones. We identified two possible behaviors for the frequency variation:
Negligible or Substantial. The former refers to the fact that if the sensor has to be used,
there is no difference in using it at the lowest or the highest sampling frequency. On
the other hand, the latter refers to the fact that if the sensor has to be used, it should
be used at the appropriate frequency; otherwise, an energy waste will occur.

As shown in Table 12.4, considering the low-med variations we have different
values for the two hardware groups. For HW1 we have a value of 8.46% for low-
medium variation and 13.18% for low-high. Generally speaking, such variations
values should not be discarded. However, in this case, since the starting min value
is incredibly low (6.22%) if compared to the idle energy consumption value, we can
conclude that the variation of the energy consumption depending on the sampling
frequency for the sensors belonging to HW1 is negligible. A similar result can be seen
for group HW2 but with an opposite relation between the variation and the initial
min consumption. In this case we have a more significant initial minimum value
with respect to the idle sensor consumption (213.13%) but the low-medium and low-
high variations are lower, 1.93% and 6.81% respectively. We can then conclude that
for both HW1 and HW2 there is no measurable change in the energy consumption
at the increase of the sampling frequency. It is then suggested to use the highest
sampling frequency for the hardware sensors belonging to groups HW1 and HW2

in order to have more data and produce potentially better results.
Similar considerations can be made for Wi-Fi Networks (Wi-Fi), Bluetooth (BT)

and Bluetooth LE (BTLE) where the frequency dependency is negligible. As an oppo-
site result, for GPS Location (GPS) and Light (L) sensors we have a very high depen-
dency between the frequency variation and an increase in the energy consumption,
especially for the low-high case with values of 72.47% and 59.39%. Additionally,
these sensors have a very high low energy consumption value. We can conclude
that for these two sensors, where the frequency dependency is Substantial, it is better
to optimize as much as possible by using them at the lowest frequency.

12.1.2.5 Parallel Sensing Consumption

The last analysis we performed concerns the usage of multiple sensors simultane-
ously for the two hardware sensor groups HW1 and HW2. This analysis is very im-
portant for context aware applications where multiple services should be activated
at the same time from multiple sensor streams. We wanted to understand whether
using multiple sensors simultaneously could generate different energy consumption
patterns with respect to singular sensors and possibly an unwanted overhead. We
evaluated this at different sampling frequencies like in the previous analysis, i.e.,
low, medium and high; the results are showed in Table 12.5. Considering the sen-
sors in groups HW1 or HW2 we can see that the energy consumed when all the
sensors in one group are collecting data at the same time is basically the same of
using only one sensor in the group. Also, considering all the sensors of both groups
HW1 + HW2 collecting simultaneously, we see that their consumption can be ap-
proximated by the sum of the consumption values of one of the sensors in HW1

and one of the sensors HW2. More formally, the total consumption of the sensing
process for the hardware sensors can be expressed as the sum of the consumption
of any sensor in all the groups. Suppose there is a function c() that calculates the

12.1. Knowdive One 129

TABLE 12.5: Table showing the normalized consumption values in
% with respect to the current consumption in idle state while using

multiple sensors in parallel per Group.

Sensor Combination

Freq low medium high

(5Hz) (20Hz) (100Hz)

HW1

T 5.27 6.68 6.94

T+P 6.16 6.59 6.85

T+P+H 6.61 6.65 6.48

T+P+H+MF 6.85 6.91 6.68

HW2

A 214.68 216.66 245.61

A+GR 217.26 216.58 248.90

A+GR+GY 216.29 216.58 247.59

A+GR+GY+O 212.95 216.46 236.31

HW1 + HW2

T+P+H+MF+A+GR+GY+O 244.60 250.71 252.50

energy consumption of its argument that can be a single sensor j in a group i (Equa-
tion 12.1), multiple sensors from a single group i (Equation 12.2) or multiple sensors
from multiple groups (Equation 12.3). In this scenario a sensor j in group i work-
ing at sampling frequency f is represented as Sf

ij where 1 < i < 2, 1 < j < 4 and
f ∈ [low,medium, high]. The final computed overall consumption of HW1 + HW2

for i = 1 and i = 2 is presented in Equation 12.4.

CP f
ij = c(Sf

ij) (12.1)

CP f
i = c(Sf

i) ∼= c(Sf
ij) ∀j, f (12.2)

CP f =
2∑

i=1

c(Sf
i) ∼=

2∑
i=1

c(Sf
ij) ∀j, f (12.3)

CP f ∼= c(Sf
1j) + c(Sf

2j) ∀j, f (12.4)

The reason for this behavior can be attributed to the fact that most of the energy
consumption in collecting the data goes into enabling the hardware itself rather than
in processing the generated information by the CPU. For this reason, it is then more
efficient to collect data from all the sensors at the same time because the amount of
generated data per energy unit is higher.

12.1.3 Outcome

What emerged from the analysis of the battery consumption is that the GPS sensor
must be optimized due to its high energy demand; the Light (L) sensor should not
be used at all, since it consumed too much energy if compared with the value of

130 Chapter 12. Knowdive Experiments

the data it generates; the Bluetooth generates data for free when the component
is already in use by the system or it does consume an almost negligible amount
of energy and should be optimized; finally all the other sensors have a negligible
energy consumption and can be used without restrictions.

Additionally to the energy consumption analysis, this experiment was important
because allowed us also to discover and fix numerous bugs in the i-Log application.
Debugging a mobile application is usually hard because different smartphones and
configurations can affect the application and generate different errors which are dif-
ficult to reproduce.

12.2. Knowdive Two 131

12.2 Knowdive Two

Knowdive Two is a second internal use case carried out in collaboration with the
members of the Knowdive Group to test additional functionalities added to the i-
Log application with respect to the first version. In particular, we focused on testing
a new sensor, i.e., the audio sensor, that collects audio chunks that will be used
to infer the user context from sound. Additionally, we improved the application
deployment process to make it ready for production by publishing it in the Play
Store3 in order to facilitate deployments on large number of users.

12.2.1 Audio Sensor

Inferring the context dimensions from the sound collected in the environment around
the user has been done before in the research community [Heittola et al., 2013; Heit-
tola et al., 2010; Scott and Dragovic, 2005; Betsworth et al., 2013; Lu et al., 2009;
Zeng et al., 2008; Eronen et al., 2006] especially for locations or activities that require
sound. For this reason, we decided to add this functionality in i-Log to test if it can
generate meaningful results. We decided to collect audio in chunks of ten seconds
every minute, specifically to preserve the privacy of the user. We collect 10 seconds
every minute.

To develop the algorithms that have to analyze the audio in the backend, we
needed a lot of labeled audio data. We decided to use this Knowdive Two use case
to collect this type of data. Approximately 6000 hours of audio recordings were
collected during the whole experiment.

12.2.2 Fast and Easy Deployment

Before this test, for both Knowdive One and SmartUnitn One (see Chapters 12.1
and 13.1 respectively) the i-Log application needed to be installed manually on the
smartphone of the participants. The reason was that the application was not stable
enough and did not follow the policies to be published on the Play Store so that it
could be downloaded directly from the participants.

A published application goes through an approval process done by Google Inc4

that is based on different rules the developers have to follow. Among them there are
rules about the content, the intellectual property, the privacy and security. For secu-
rity reasons, in order to install an application that is not published, on Android, the
procedure is quite long and complex. It can be done only5 from the developer com-
puter that has to compile the source code directly into the destination smartphone.
The whole manual installation procedure can be divided into sub-procedures as fol-
lows:

Enabling Developer Options. In order to install an application on an Android
device from the computer of the developer, the so called Developer Mode must
be enabled on the destination smartphone. Some applications do not even allow
to be executed on smartphones while the Developer mode is enabled, for security
reasons6. In other words, enabling this modality prevents the user from using her

3https://play.google.com/
4https://play.google.com/about/developer-content-policy/
5Depends on the application and on the permissions the user granted.
6These applications are mainly Bank or Credit Cards applications

https://play.google.com/
https://play.google.com/about/developer-content-policy/

132 Chapter 12. Knowdive Experiments

phone normally, and this should be absolutely avoided. Moreover, it allows to per-
form advanced operations that done by an can damage the smarpthone itself.

(A) Message showing
information about the
risks of breaking or
misbehaving the smart-
phone and the applica-

tions running on it.

(B) Message showing
details about the USB

debugging mode.

FIGURE 12.1: The two screenshots show the procedure to enable the
Developer Mode on an Android device.

The modality by default is disabled on any Android smartphone and to be en-
abled, the following steps must be taken:

• Go into the Settings, About Phone menu and click 5 times the Build Num-
ber item. A message pops-up saying that the "Developer Options" mode is
enabled.

• Go back to Settings, click on Developer Options and enable them. A message
pops-up showing the danger of such as operation, as shown in Figure 12.1a.

• Scroll down till the item USB Debugging and enable it. Also in this case, a
message pops-up showing potential risks, as shown in Figure 12.1b.

Once these operations have been made, the computer can correctly see the smart-
phone attached via an usb cable and the application can be installed.

12.2. Knowdive Two 133

FIGURE 12.2: The i-Log mobile application published on the Google
Play Store.

Compiling the Application. Compiling an application made by thousands or
millions of lines of code is not an immediate task; it may usually take several min-
utes. In the case of a mobile application, and i-Log in particular, the code is quite
compact and this operation can be done in a variable amount of time that goes from
2 up to 5 minutes.

Updating the Application. Updating an application on Android is easy and au-
tomatic for those applications downloaded from the Play Store. It usually happens

134 Chapter 12. Knowdive Experiments

at night, when the smartphone is in charge and connected to WiFi. For an unpub-
lished application instead there is no such process and the developer has to design
the whole procedure. In fact, we created an endpoint on the server where each phone
could query to see if a new update was available. This requires the phone to contin-
uously check for updates and this corresponds to an energy waste. Additionally, the
update could not be automatic but it always required the user confirmation.

This is what is required to manually install an application on an Android device.
On iOS, there are even more restrictions because the device must be registered by
the developer and she cannot use any smartphone she wants. If we consider the
SmartUnitn One use case where we had 72 participants, doing this procedure took
2 full days of work because we had to organize sessions to meet the students and
install i-Log on their smartphones.

The Play Store allows to publish an application according to different policies:
public, internal to the organization, beta tester. Since we needed to control who uses
i-Log, we could not yet make it public, since at the moment its usage is linked with a
specific use case. We could not even make it internal to the organization (University
of Trento) since some of the use cases in the near future will be on people outside it.
We then decided to go for the beta tester program. It allows to send an invitation to
a specific email address that will be redirected to the Google Play Store as shown in
Figure 12.2.

Publishing an application on the Play Store requires additional work in order to
make it compliant to the requirements. Furthermore, creating the app page itself
in the store requires some time but we believe this will facilitate the deployment
process and let us save an enormous amount of time in the next use cases.

135

Chapter 13

SmartUnitn Experiments

The SmartUnitn experiments are a set of use cases in which we applied the tech-
nologies developed in this thesis on the students of the University of Trento. The
main objective is to find the correlation between how students allocate their time
and their academic performances. The final goal of these experiments is to provide
useful services to improve the students academic experience and even academic per-
formances. Our aim is to perform such experiments on a regular basis, every six
months, each time adding elements to the analysis and improving the overall re-
sults.

13.1 SmartUnitn One

In this section we describe the main elements characterizing the SmartUnitn One use
case, in particular the objectives, the requirements, how we designed it by adapting
the SB and finally some of the results we obtained from the data generated from the
participants.

SmartUnitn One is the first large scale data collection trial performed with the SB
on non-expert users, external to the Knowdive Group (see Chapter 12.1). The exper-
iment was conducted by the Department of Information Engineering and Computer
Science in collaboration with the Department of Sociology and Social Research of the
University of Trento on students from the same institution with the final objective
of filling the empirical gap concerning students time allocation and academic per-
formance by providing a detailed description of how their time management affects
their academic achievements both in terms of grades but also number of credits (i.e.,
number of exams).

13.1.1 Objectives

The main goal of the SmartUnitn One experiment is to understand the correlation
between students time allocation and their academic performances. To do so, we
instantiated the SB and install the i-Log mobile application on the students’ smart-
phones so that we were able to collect data about them. The analysis consisted in
extracting useful information from such data related to how students manage their
time, and then understand if there was a correlation with their academic perfor-
mances. Transitioning from high school to university is usually hard for young stu-
dents because the organization in completely different. Students are no longer asked
to follow schedules or instructions from the teacher but are completely free to orga-
nize their study time as they wish. It is common knowledge that a person who is able
to manage her time wisely is more likely that she successfully completes the transi-
tion from high school to university. Currently, there is a lack of data about students
time allocation in Italy, which are only available as aggregate data, e.g., [Mucciardi,

136 Chapter 13. SmartUnitn Experiments

2013]. The focus is generally on how much time students spent for specific activities,
thus ignoring the exact time these activities are occurring or their sequence. With our
approach we are able also to understand precisely when students do what, e.g., we
can see the differences in studying during the night or during the day, among others.

Since this is the first time we used the SB outside a controlled laboratory setting
(see Chapter 12.1) this was a good opportunity also to see if the system could scale
well. We collected data from all the smartphones internal sensors of the participants,
and additionally we administered a questionnaire to the students. This allows us to
have a dataset which is annotated and the annotations refer to how the user inter-
preted the situation.

The data collection lasted two weeks: during the first one, students were asked to
answer a time diary on their smartphone about their time use, while the application
was collecting sensor data in the background. During the second week they were
only required to have the application running for collecting sensor data. To promote
compliance and data quality, students received a fixed money compensation, as an
incentive to participate, with additional three final prizes assigned to random users
that used the application in the correct way. This quality measure was based on three
parameters:

1. How much data their smartphones recorded in via GPS, Bluetooth, and Wi-
Fi. We chose these three sensors since they are the only sensors that students
could decide to turn off;

2. How many answers students answered;

3. How long they kept the application running, knowing that they could turn it
off at any moment;

The experiment was conducted during the Winter semester, in November-December
2017, for two weeks.

13.1.2 Requirements

The requirement analysis for the SmartUnitn One use case starts from the general
problems this thesis is tackling as defined in Chapter 2. In details, we adapted them
on the specific target of users and the goal the use case has.

Data Collection. The different dimensions of the data collection we had to take
into consideration can be summarized as follows:

• When we started designing the experiment we did not know exactly on which
data we will be going to perform the analysis in order to understand the corre-
lation between students time allocation and academic performances. For this
reason, we should collect as much data as possible;

• We had to keep in mind that the way the student uses her phone could not be
affected by the data collection process. For this reason, we should reduce the
collection frequency so that to not affect the battery life of the phone;

• For privacy reasons, not all the data could be collected. We should avoid those
data that are sensitive, like the content of the sms, among others;

• Some sensors like the GPS, WiFi and Bluetooth are the only one that can be
turned off by the user. Then, we should incentivize the usage of these sensors.

13.1. SmartUnitn One 137

• Since the size of generated data can be important, we should allow the syn-
chronization only over a "verified" WiFi network.

User Participation. The students involvement was fundamental for the success
of the experiment. We should design a mechanism to incentivize the users in using
i-Log that takes into account all the dimensions of the problem:

• The users should use i-Log for as many hours as possible, even on a 24h basis
if possible;

• The users should answer as many questions (questionnaire) as possible during
the first week of the experiment;

• The user should keep on as long as possible the three sensors (GPS, WiFi and
Bluetooth) she can manually disable

User Privacy. The privacy must guaranteed to all the participants of the experi-
ment.

• All the data should be collected in an anonymized way and the results as well
should be computed on the aggregated sample instead of on the single student;

• The user must always be informed of the collection of her data. For this rea-
son, a specific solution should be designed so that to alert her about the data
collection on the smartphone;

• The user should be in control of the collection process. We then need to allow
her to stop the collection any time she wants to.

• Before starting the data collection, we obtained the approval from the ethical
committee of the University of Trento.

13.1.3 Design

This section presents the design process we followed to prepare the SmartUnitn One
use case. It consists of different steps that ultimately allow us to select the people for
the experiment, the data we will collect from them and finally what questions they
need to answer during the data collection. All these elements are highly dependent
on the use case.

13.1.3.1 Sample Selection

In SmartUnitn One, the focus was on student from our university. We sent out a call
for collaboration to all the students enrolled at University of Trento in the Academic
year 2015-2016 and in particular only those who fulfill these criteria:

• to have filled three university surveys in order to obtain their socio-demographic
data, shown in Table 13.1, and other characteristics, e.g., psychological and
time use related, that could be later matched with our application’s data. The
demographics reported in the table are only some of the one that are available.
We decided to show these ones because are the one we believe are most re-
lated with the academic performances of the students: many works correlate
the difference in academic performances between men and women, the same
for the faculty they belong to i.e., Engineering vs Philosophy. The scholarship

138 Chapter 13. SmartUnitn Experiments

factor is more related with the number of exams a student does since at the
University of Trento, in order to get the scholarship, the students have to fulfill
some minimum requirements such as obtain more that 18 credits before March
of the first academic year, among others;

• to attend lessons during the period of our experiment in order to describe their
daily behavior during the university experience;

• to have an Android smartphone with an Android version 5.0.2 or higher. This
is motivated by the fact that some functionalities in i-Log cannot run on devices
with older versions of the operating system.

TABLE 13.1: Socio-demographics of SmartUnitn One students

Gender Departments Scholarship
Male Female Scientific Humanities True False
61.1% 39.9% 56.9% 43.1% 37.5% 62.5%

From the students reached by the call (almost 300), 72 replied and finally gave
their availability for the experiment. One important thing to underline is that this
recruitment procedure was done only by the team involved in the experiment, with-
out leveraging on the University. We believe that having done an official call from
the general office of the university would allow to have much more participants and
this is what we want to do for the next experiments.

The students were asked to attend an introductory presentation where they are
presented with the aims of the project and how to use the i-Log application. If they
wished to participate, after the presentation they signed a consent form, and then
installed i-Log on their own smartphones. Users were informed about all aspects of
the management of their personal information concerning privacy, from data collec-
tion to storage to processing.

13.1.3.2 i-Log Application User Interface

The i-Log application was originally designed to be the main tool for the data sci-
entist to collect data from her own smartphone to be used to test the system and
algorithms. For this reason, it was not user-friendly and complicated to use for a
normal user. Figure 13.1a shows what was the main window of the original appli-
cation called LifeLog back in 2014. As we can see, the data scientist had complete
control on the data collection: it could see the collected data in real time, it could
enable/disable single sensors and had many more settings he could set.

With a non-expert user it was unfeasible to keep the same user interface. There
are several reasons for this:

• From a technical point of view, the UI was requesting too many CPU resources
in order to update the views in real time since the sensor values were changing
multiple times per second.

• The user was scared by seeing all those data flowing. She had the idea of being
monitored more than necessary.

• The possibility of disabling single sensors was a problem since the user could
erroneously toggle them.

13.1. SmartUnitn One 139

(A) Original design of
the LifeLog application.

(B) Final design of the i-
Log application.

FIGURE 13.1: The two screenshots show the progresses made on the
i-Log user interface to make it more user-friendly.

For this use case we redesigned completely the user interface, removing all the
unnecessary elements. We ended up removing the application main window, and
showing only the notification in the system control panel where the user could stop
the data collection or open a setting menu where she could login with her creden-
tials, as shown in Figure 13.1b. We also removed the application from the list of
recent apps because our tests suggested that many users were annoyed by it. In all
the versions of the Android OS, there is a physical button that allows to visualize
the recent apps used and still open. It is usually presented as a list and the user
can swipe every app to completely close it and save memory and battery. Having
i-Log in that list was perceived in the wrong way by the user that most of the time,
intentionally or unintentionally, was closing it.

13.1.3.3 Sensor Selection

Since this was the first trial with real participants that were external to our group
(and then people that can be considered non-experts) we did not have a clear idea
yet of what to collect since we did not design how to analyze the data. For this
reason, we collected data from all the available sensors in every smartphone of the
participants, taking into account the battery requirement that relates to the sampling

140 Chapter 13. SmartUnitn Experiments

frequency of each sensor. In order to affect the battery life as little as possible, we
decided to reduce the frequency at which we were collecting data, as showed in
Table A.1 in Appendix A.

FIGURE 13.2: The user can manually disable the GPS, WiFi and Blue-
tooth sensor through the top menu in the Android operating system.

As described in Section 4.1.2, the data collection on the smartphone is remotely
configurable in order to adapt to all the use cases. However, we have little or no
control on three of the available sensors i.e., the GPS, the WiFi and the Bluetooth.
In fact, we can decide to collect data from them or not, we can define the collection
frequency, but the user is always in control. As shown in Figure 13.2, using the
top menu, the user can manually disable them. By doing so, the data collection
from those sensors stops and i-Log has no other mean of obtaining that information.
Unfortunately those are also very important sensors because they allow to localize
the users.

13.1.3.4 Time Diaries Design

Students were asked to reply some question during the day for the first week of the
experiment. These questions were administered as time diaries.

Time use surveys are particularly relevant approaches, since they are widely
used to investigate a specific aspect of people’s time management, e.g., working,
academic performance, and so on [Claessens et al., 2007]. In fact, we based our
modelling for activities on several time use surveys, especially the American Time
Use Survey (ATUS) [Shelley, 2005].

To test and apply our methodology, we interacted with sociology experts in the
SmartUnitn One project for linking student behaviour and academic performance.
Students are recruited via surveys and participate by signing a consent form allow-
ing an application, is installed on their smartphones. The project lasted two weeks:
during the first one, students needed to answer a questionnaire on their day and
must carry their phone with them for the collection of sensor data. The interaction

13.1. SmartUnitn One 141

with sociology experts for this project led to the following methodological consider-
ations:

1. From ontology to annotation lists: Following the sociology experts inputs,
we made our general ontology model into a list of annotations, without any
sort of hierarchy. In fact, a simpler, leaner presentation is more likely to elicit
and engage the students’ answers, coupled with a controlled vocabulary for
reducing possible ambiguities. In order to capture the most salient triple of
location, activity and social relations [Hellgren, 2014], the annotations act as a
list of possible answer for the corresponding questions, i.e. “Where are you?"
(locations), “What are you doing?" (activities) and “Who is with you?" (social
relations).

2. No WI: In the case of this experiment, out of the four context dimensions, the
sociology experts do not deem the WI relevant. Thus, no mapping with the
object context is required.

3. Ordering of the questions: According to the sociology experts, and in general
for time use surveys [Hellgren, 2014], activities are more relevant than loca-
tions and social relation in the experiment. Thus, the ordering of the three
question mirrors this hierarchy: activities first, locations second and then so-
cial relations.

4. No locations and activities constraints: In activity recognition, locations can
often act as constraints for the activities performed there [Riboni and Bettini,
2011]; for instance, when in bathrooms, people take a shower instead of cook-
ing. However, from a sociological point of view, constraints may lead to a loss
of valuable sociological data, e.g., students studying in places not explicitly
designed for it, such as workplaces, bars or gyms. As a result, no constraints
are imposed between the locations and activities annotation lists.

5. Adding “Other”: In time use surveys, the answer “Other” is a standard option
with possible variations, e.g., the “n.e.c.” field (i.e., Not Elsewhere Classified)
in the ATUS Shelley, 2005. Methodologically speaking, this means that the
possible activity, location or social relation is outside the research scope of the
sociologist, so it does not matter; “Other” covers such cases [Claessens et al.,
2007]. Ontologically speaking, “Other” acts as an element of openness, i.e., as
a placeholder node in the ontology to accommodate and expand new pieces of
information to be added in time to an ontology.

The result of the mapping between our initial ontology and the sociological in-
puts for the experiment is three different lists of annotations. Notice that there is a
decreasing level of granularity among activities, locations, and social relations in the
mapping.

• Activities: Figure 13.3 shows the mapping of activities, i.e., the WA context,
and the question about activities. Here the annotations are adapted by the first
tier of activities, especially for “Relax", which maps to 4 annotations, i.e., “Hob-
bies", “Cultural Activity", “Other Free Time", and “Social Life". This coarseness
in the mapping is due to the fact that, in order to capture high level patterns,
activities are required to be very general. Furthermore, more detailed activi-
ties, as underlined by the sociology experts, would cause more cognitive load
in terms of memory for students and force them to answer more questions to
reach an unnecessary fine grained level of detail.

142 Chapter 13. SmartUnitn Experiments

Reading

…

Shopping…

Social
Media

Internet

Working

Laundry

Sleeping

Body
Care

Lesson

Education Transportation

Errands

SportRelax

Computer
House
works

Personal

Personal
Care

Eating
Study

StudyLesson
Social

life

Volunteering

House
work

Working

Other
Other Free

Time
Hobbies

Shopping

Sport
Cultural
Activity

En routePersonal
Care

Social
Media &
Internet

Eating

Activity
Volunteering

QUESTION: WHAT ARE YOU DOING?

WA CONTEXT

…
…

…

…

FIGURE 13.3: The mapping from WA to the activities annotation list.

• Locations: Figure 13.4 shows the mapping from the locations, i.e., the WE con-
text, to the question about locations. Here the mapping is almost one to one
with the lowest tier, except for “Other University place" and “Other Home",
since they group more specific types of buildings.

Notice that, even though “En route" is an activity, it refers to actual locations.
So, if a student chooses it, then, instead of the options in Figure 13.4, a list of
means of transportation is provided and the question is “How are you trav-
elling?”. The possible means of transportation are listed exactly as suggested
by the sociology experts, i.e., “By Foot", “By Bus", “By Train", “By Car", “By
Motorbike", and “By Bike".

University …

Workplace

Own

House

Restaurant

Commercial

SportEducational

Building

Residential

Shop

Shop
Bar/ Pub/

etc…
Library Outdoor

Work

place

Other

Study HallCanteen Classroom GymHome

Location

Outdoor

QUESTION: WHERE ARE YOU?

WE CONTEXT

…

…

Gym

Other

Home

Canteen

LibraryClassroom

Department

Study Hall

…

Other University

place

FIGURE 13.4: The mapping from WE to the locations annotation list.

• Social relations: In the case of social relations, unlike locations and activities,
the mapping is one to one, since they are a simple list in the WO context, as
shown in Figure 13.5.

13.1. SmartUnitn One 143

Friend(s)
Alone

Classmate(s)

Classmate(s)Alone

Other

Relative(s) Colleague(s)Friend(s)

Role

QUESTION: WHO IS WITH YOU?

WO CONTEXT

Roomate(s)

Roomate(s)

Relative(s) Colleague(s)Partner(s)

Partner(s)

FIGURE 13.5: The mapping from WO to the social relations annota-
tion list.

The three lists of annotations compose the questionnaire to be administered to
students, shown in Table 13.2.

TABLE 13.2: The questionnaire administered to the users.

What are you doing? Where are you? Who is with you?
Lesson Class Alone
Study Study Hall Classmate(s)
Eating Library Friend(s)
Personal Care Other University place Roomate(s)
En Route(*) Canteen Partner(s)
Social Life Bar/Pub/etc... Relative(s)
Social media/internet Home Colleague(s)
Cultural Activity Other Home Other
Sport Workplace
Shopping Outdoors
Hobbies Gym
Other Free Time Shop
Work Other Place
Housework (*) How are you travelling?
Volunteering Be Foot
Other By Bus

By Train
By Car
By Motorbike
By Bike
Other

Each list of answers is the mapped set of annotations from Figure 13.3, i.e., ac-
tivities answering the question “What are you doing?", Figure 13.4, i.e., locations

144 Chapter 13. SmartUnitn Experiments

answering the question “Where are you?" and Figure 13.5, i.e., social relations an-
swering the question “Who is with you?". The link between the fourth question
“How are you travelling?” and the “En route" activity is shown via an asterisk at the
end of the latter.

13.1.4 Results

There are three main three main categories of results from SmartUnitn One: the
dataset, the biases and the quality of the answers.

13.1.4.1 Behavioural Dataset

The immediate result of the SmartUnitn One experiment is a dataset of annotated
sensor data about university students. We collected a total of 110 Gb of data from
the 72 students for the whole duration of the experiment. The resulting dataset is a
behavioural dataset that is fully semantic, and exploiting sociological insights from
the very beginning. It is also merged both with socio-demographic characteristics of
students obtained through surveys and academic performance data from the admin-
istrative office of the University of Trento. The privacy is guaranteed by the i-Log
infrastructure through data anonymization in all the steps, from data acquisition, to
storage to processing.

This dataset allows us to study what affects the academic performances of the
students under many possible points of view: the locations they visit, how they use
their time, how they use the smartphone or social networks, among many others.
In the next sections we present some of the results we published starting from this
dataset.

13.1.4.2 Quantifying Students Biases

The main tool that sociologists employ for investigating human behaviour with
respect to time use are time use surveys (also defined as time diaries), where re-
spondents provide answers about their management of time. However, there are
several issues related to respondents’ behaviour that affect time use surveys. For
instance, unwillingness to respond or insufficient cooperation [Juster and Stafford,
1991] are when the sample of respondents avoid answering questions entirely or be-
come gradually unresponsive during the survey. These behaviours may be due to,
e.g., the respondent not understanding instructions or not paying attention to intro-
ductory explanations on the survey process [West and Sinibaldi, 2013]. Conditioning
is a change in respondents’ behaviour as a result of keeping the diary, i.e., that their
reported behaviour changes to underline or minimise aspects that they believe to
socially desirable with respect to the survey aims [Corti, 1993]. For instance, people
may report that they spend more time on exercising than they actually do because
they are self conscious about their health.

The two most important issues are memory bias [Freedman et al., 2013] and care-
lessness [Corti, 1993]:

1. Memory bias is the inadequate recall of respondents when reporting their time
use. The main reason is that the answers are often given with a delay after
being carried out [Tourangeau, Rips, and Rasinski, 2000]. We formalize this
behaviour as a parameter called ∆QA, i.e., the time interval (in minutes) from
when the question is presented to respondents to when the answer is given.

13.1. SmartUnitn One 145

2. Carelessness is the set of behaviours that lead to hurriedness when reporting
time use. This term accounts for misleading answers, be they intentional or
due to, e.g., distraction or similar factors. We formalize it as a parameter called
∆A(X,Y), defined as the time interval (in seconds) elapsed from when the user
starts answering one question of the time diary entry X and answers another
question Y, where X >= 1, Y <= Z, and Z is the total number of questions
and X < Y . The higher the value, the better in terms of reliability.

These two issues are a source of inconsistencies in survey data. We define incon-
sistencies as the mismatch between the obtained survey data and their adherence to
reality. In order to identify them, a further source of information is needed; smart-
phones can act as such thanks to their sensors. In fact, their sensors can used as
proxy for recognizing locations, activities and also social relations with different de-
grees of accuracy and coverage.

Table 13.3 presents general statistics about the answers provided by the students
during the first week of the experiment. Out of a total number of 27111 collected
answers, 9905 were empty because expired, with a final value of valid answers of
17207. It is important to notice that the reasons for these answers to be expired are
various and one of them is that the student was sleeping. We also report data about
the “Home" answer because will be used in Section 13.1.4.3. Moreover, out of 8729
answers indicating “Home", only 6474 of them are associated with sensor data about
the actual position, either via GPS or NETWORK. This is due to the fact that students
could disable the data collection about their location at any time.

TABLE 13.3: Statistics about the collected answers using i-Log within
the SmartUnitn One project.

Total 27111 100%
Empty 9905 36.53%
Valid 17207 63.46%
Home 8729 (6474) 32.19% (23.87%)

In the SmartUnitn One project the students had up to 2.5 hours to reply to a ques-
tion, hence the ∆QA ranges from 0 to 150min. Figure 13.6 shows the distribution of
the values of the parameter across all the 17207 answers generated by the students
during the 7 days of the experiment. The mean value was identified as 30.44 min-
utes with a standard deviation of 37.5, which is much higher than the standard 10
minutes in traditional time use surveys [Claessens et al., 2007]. The general trend is
that many answers were given for a low value of ∆QA and decreased upon nearing
to the maximum limit of 150 minutes to answer. This result can be attributed to the
incentive mechanism, since students were incentivized to reply to as many questions
as possible.

The same result is presented in Table 13.4, giving more emphasis on the percent-
ages of the distribution; notice that only 41.5% of the questions were replied in less
than the standard 10 minutes interval [Romano, 2008]. This result suggests that per-
haps this threshold is too low. Considering instead the average value of 30.4 minutes
obtained from our data, the coverage reaches an higher value of 66.4%. At the same
time, we can also see that 82.3% of the answers were given within an hour.

In order to better characterize these results, we evaluated them according to other
variables because students’ interaction with the survey could depend on elements
related to the outside world or their socio-demographic characteristics. More in de-
tail, we looked at the following elements:

146 Chapter 13. SmartUnitn Experiments

FIGURE 13.6: Distribution of the ∆QA parameter. The red and blue
dashed vertical lines represents the mean value of 30.4.

TABLE 13.4: Distribution of the ∆QA parameter at different time slots.

10min 30min 60min 90min 120min 150min
∆QA 41.5% 24.9% 15.9% 8.4% 5.4% 3.8%

• Time variations by considering differences for both working-days (from Mon-
day to Friday) and the weekend (Saturday and Sunday) and for different time
intervals within the day (2hours slots, starting from 7AM to 11PM);

• Individual characteristics such as:

– Gender;

– Faculty in which students are enrolled, distinguishing between scientific
faculties and humanities;

– Whether student are exempted from university fees.

The results are presented in Tables 13.5 and 13.6 where the former shows the
average values of ∆QA while the latter shows how the distribution changes.

An interesting pattern emerged. Firstly, students took 5 more minutes on average
when completing the questions during the weekend with respect to the week days,
moving from 34.7 minutes down to 29.7. This result can be better observed in Figure
13.6, where answers appear to distribute towards the higher values. Secondly, not
all time intervals within the day show the same behaviour. We found a significant
increase of 9.2 minutes in ∆QA in the first time slot (7AM-9AM), which covers the
time slot where many students were probably still sleeping. Considering the other
time slots, there is little difference among them except for a slight increase in ∆QA

considering the last two time slots of the day, i.e., 7PM-9PM and 9PM-11PM. The
socio-demographics variables reveal a delay of time answer both for males (mean
value of ∆QA of 31.6 minutes) with respect to females (mean value of ∆QA of 29.9
minutes) and for students enrolled in a scientific faculty (mean value of ∆QA of 31.8
minutes) with respect to those from humanities (mean value of ∆QA of 29.7 min-
utes). Finally, students with scholarship (mean value of ∆QA of 29.6 minutes) have

13.1. SmartUnitn One 147

TABLE 13.5: Mean values and standard deviation for the ∆QA param-
eter calculated based on real world and socio-demographical vari-

ables.

Mean St. Dev.
Working-days 29.7 36.9
Week-end 34.7 38.9
7AM - 9AM 39.6 42.2
9AM - 11AM 25.5 31.8
11AM - 11PM 23.4 28.9
1PM - 3PM 24.8 30.4
3PM - 5PM 24.3 27.8
5PM - 7PM 23.2 27.9
7PM - 9PM 27.3 31.9
9PM - 11PM 27.0 30.7
Male 31.6 36.5
Female 29.9 39.0
Scientific 31.8 36.7
Humanities 29.7 38.6
Scholarship 29.6 36.3
No Scholarship 31.7 38.2

TABLE 13.6: Distribution of the ∆QA parameter at different time slots
based on real world and socio-demographical variables.

10min 30min 60min 90min 120min 150min
Working-days 43.1% 24.7% 15.4% 8.0% 5.2% 3.6%
Week-end 35.9% 25.9% 18.0% 9.7% 6.1% 4.3%
7AM - 9AM 32.6% 23.3% 18.2% 12.4% 8.0% 5.5%
9AM-11AM 48.5% 22.5% 14.8% 7.2% 4.5% 2.4%
11AM-1PM 47.7% 26.3% 14.6% 6.1% 3.4% 1.9%
1PM-3PM 46.8% 26.1% 14.1% 6.9% 4.2% 1.9%
3PM-5PM 44.1% 27.6% 17.0% 7.5% 2.6% 1.3%
5PM-7PM 46.2% 27.4% 15.7% 6.4% 3.0% 1.3%
7PM-9PM 42.3% 26.5% 17.0% 7.4% 4.3% 2.5%
9PM-11PM 42.8% 26.0% 17.2% 8.5% 3.8% 1.7%
Male 40.0% 25.1% 16.5% 8.9% 5.5% 3.8%
Female 43.6% 24.7% 15.1% 7.6% 5.2% 3.7%
Scientific 40.3% 24.5% 16.6% 8.8% 5.8% 4.0%
Humanities 43.0% 25.7% 15.1% 7.8% 4.9% 3.5%
Scholarship 43.2% 25.1% 15.2% 7.9% 5.0% 3.6%
No scholarship 40.3% 24.9% 16.5% 8.7% 5.7% 3.9%

148 Chapter 13. SmartUnitn Experiments

a lower ∆QA than students without it (mean value of ∆QA of 31.7 minutes).

Moving to ∆A(X,Y), we calculated an average value of 8.8 on the 17207 answers,
with a standard deviation of 33.2; however, this results cannot be compared with
other previous methodologies since they are not based on smartphones. Table 13.7
shows how the answers are distributed across all the possible values of ∆A(X,Y). We
defined six time intervals to represent all the samples; moreover, the upper bound
was set to 60 seconds since only 0.04% of the answers were given with a duration
above this threshold.

TABLE 13.7: Distribution of the ∆A(X,Y) parameter at different time
slots.

4sec 8sec 12sec 20sec 40sec 60sec
∆A(X,Y) 36.96% 40.04% 11.14% 7.05% 4.01% 0.76%

Similarly to ∆QA, we tried to evaluate also ∆A(X,Y) according to other variables
related to the outside world or the students’ socio-demographic characteristics. In
this case, the results do not show any relevant variation. As an example, Figure
13.7 refers to the distribution of ∆A(X,Y) calculated depending on the whole week,
weekdays and the weekend. We can only report a small variation and in particular
a delay of 1.02% during the weekend.

FIGURE 13.7: Distribution of the ∆A(X,Y) parameter accounting for
weekdays and weekends. The red and blue dashed vertical lines rep-

resents the mean values of respectively 8.87 and 8.78.

13.1.4.3 Using the Biases to Find Inconsistencies in Students Home

To the best of our knowledge, our approach is the first one that allows to quantify
these biases. The result of such a quantification is that we can account for them when
using the answers generated by the students, thus finding inconsistencies.

Among different sensing strategies that could be employed for evaluating the
inconsistencies in answers out of sensor data, we chose to focus on the location of

13.1. SmartUnitn One 149

the students since it is easier to detect. Among the available location options from
the questionnaire, we chose students’ homes, since it is reasonable to think that a
student could have at most 2 homes. We validated this claim by manually com-
paring students’ collected locations with their demographic data provided by the
University of Trento; in fact, the average number of locations per student was 2.17.
Students were instructed during the presentation meeting to consider “Home" as
their main residential locations. They were supposed to do so regardless of the fact
that they were either residents in Trento or commuters or that they usually went
back to their hometown during the weekends; this last case would in fact imply
an additional residence. Nonetheless, in case they where staying in other private
building, e.g., houses belonging to members of their social circles, then they were
supposed to mark them as “Other Private Home". From a sensor point of view, the
answer “Home" was associated with a unique location point collected by the smart-
phone when the answer was generated, either from the GPS sensor or calculated
through the network Wi-Fi connection. By clustering together the points belonging
to the “Home" answers for each student, we were able to identify a certain number
of proxy locations. Hence, each student should have at maximum two clusters, as-
suming some of those returning home in the weekend may have mistakenly chosen
their hometown.

FIGURE 13.8: Distribution of the ’Home’ clusters across a latitude,
longitude representation. The clusters are represented by the colored
circles labelled as reduced set where each color represents a student.
The black dots of the full set represent the original points we com-
puted the clusters from. The red area is a zoom over the municipality

of Trento that contains most of the dots.

We used DBSCAN [Ester et al., 1996] as clustering algorithm, which is based on
the spatial density of the points to cluster. Among the parameters of the algorithm
there is ε, the maximum distance between two points so that they are considered
as in the same neighborhood. To characterize this value, we averaged the accuracy
of all the points collected by the location sensor at the time of the “Home" answer

150 Chapter 13. SmartUnitn Experiments

input. In fact, the location collected with i-Log is composed by a tuple of infor-
mation, namely latitude, longitude, altitude, speed, bearing, accuracy and provider. The
accuracy variable contains information about the accuracy of the current measure-
ment, where the lower the better, represented in meters from the point centered in
latitude, longitude, altitude, and usually varies from few meters when using the GPS
up to tens of meters when using the Wi-Fi network provider, or even up to hundreds
of meters when using the cellular network provider. We initially observed an aver-
age value of 395.81 meter with a standard deviation of 5705.27 meter on a total of
6548 considered points. However, we noticed that 74 of those 6548 positions where
characterized by a very high value of the accuracy variable, ranging from 20 Kms
up to 180 Kms. This was certainly due to a cold start problem of the GPS sensor,
since, during the first few seconds after a period of inactivity, it usually provides
data with a very low accuracy. Since we could reconstruct the source of these data,
which affected only 1.1% of the total points, we decided to treat them as outliers and
exclude them from the analysis. After this exclusion, we found an average value for
the accuracy of 108.27m with a standard deviation of 314.68m that can be correctly
used as ε parameter for the DBSCAN algorithm.

FIGURE 13.9: Distribution of the number of clusters for the “Home"
location.

Figure 13.8 shows the clusters (reduced set) generated from all the points (full
set) extracted from the “Home" answers, reported in a latitude/longitude reference
system. The area covered between latitude 44.5-47.0 and longitude 9.0-13.0 repre-
sents the northern region of Italy, where the students of our University usually re-
side. The highlighted red area in the Figure is a zoom over the municipality of Trento
that contains the majority of the points and consequently of the clusters.

Moving to the analysis of the results, Figure 13.9 represents the distribution of
the number of clusters for the “Home" location across the students participating in
the experiment.

While 2 homes was a reasonable and expected upper bound, the results showed
that the clusters of size 1 to 6 have higher occurrence values with two peaks for 2
and 4 clusters. Moreover, a few students claimed that their home corresponds to 9
or even 14 different places. This result shows a mean value of 3.47 home locations

13.1. SmartUnitn One 151

per student with a standard deviation of 2.49 and a median value of 3.0. This result
does not follow our expectations of at most 2 homes per student and shows that our
approach correctly identified inconsistency in the location data for the "Home" an-
swer. The clusters are calculated out of 6409 points belonging to all the users in the
experiment.

13.1.4.3.1 Memory bias vs. inconsistencies in “Home" Concerning ∆QA, we
considered an additional value other than the 30.44 minutes from Section 13.1.4.2,
since we wanted to compare with the 10 mintues time interval usually used in time
surveys, also adopted in [Sonck and Fernee, 2013].
Figures 13.10 and 13.11 show how the distribution of the number of clusters per stu-
dents changes depending on whether the ∆QA parameter is greater and lower than
10 minutes, respectively.

FIGURE 13.10: Distribution of the number of clusters for the “Home"
location with ∆QA higher than 10min.

For ∆QA greater than 10 minutes, we can underline that the result is almost the
same as the one without considering this parameter. In fact, the distribution did
not change, showing a mean value of 3.11 with a standard deviation of 2.19 and a
median value of 3.0. On the other hand, with a value of ∆QA lower than 10 minutes
very different clusters distribution with an average value of 2.28 with a standard
deviation of 1.54 and a median value of 2.0. These examples respectively account
for 3887 and 2563 location points belonging to all the participants in both cases.

The second value of ∆QA we decided to test was the mean delta value out of stu-
dents answers from Section 13.1.4.2. Figure 13.12 and Figure 13.13 show the cluster
distribution with ∆QA higher and lower than 30.44 minutes, respectively.

The results for the clusters distribution for ∆QA are almost the same for value
greater or lower than 30.44. For values greater than the threshold we have a mean
of 2.52 and standard deviation 1.88 and a median value of 2.0. In the other case, the
results have a mean value of 2.81 and standard deviation 1.92 and a median value
of 2.0. The former results are produced out of 2315 location points while the latter
out of 4135 both belonging to all the participants.

152 Chapter 13. SmartUnitn Experiments

FIGURE 13.11: Distribution of the number of clusters for the “Home"
location with ∆QA lower than 10min.

FIGURE 13.12: Distribution of the number of clusters for the “Home"
location with ∆QA higher than 30,44min.

Summarizing the considerations for the ∆QA parameter as illustrated in Table
13.8, we can say that staying below a certain threshold value can improve the consis-
tency of the results. The fact that this phenomenon is more evident for the standard
time use survey threshold value of 10 minutes, which in [Sonck and Fernee, 2013]
is a source of criticism by respondents, suggest that non-mobile solutions are effec-
tively filled at a later time, and that this same value may not be directly applicable
to smartphone-based survey. The same happens with the case of answers provided
after the ∆QA of 30.44 minutes. Overall, these results provide a quantitative estima-
tion, in addition to a corroboration, of the first issue of time use surveys identified
in Section 13.1.4.2, i.e. memory biases in respondents.

13.1. SmartUnitn One 153

FIGURE 13.13: Distribution of the number of clusters for the “Home"
location with ∆QA lower than 30,44min.

TABLE 13.8: Summary of results of the clustering for the Home loca-
tion depending on the ∆QA parameter.

Mean St. Dev. Median Points Students
> 10min 3.11 2.19 3.0 3887 71
6 10min 2.28 1.54 2.0 2563 71
> 30.4min 2.52 1.88 2.0 2315 71
6 30.4min 2.81 1.92 2.0 4135 71

13.1.4.3.2 Carelessness vs inconsistencies in “Home" We now present how the
∆A(X,Y) metric affects the same answers about students’ home; in this case the
threshold value is on average 8.8 secondsfrom Section 13.1.4.2, which is due to the
lack of other metrics in the literature. Figure 13.15 represents the cluster distribution
for the values of ∆A(X,Y) lower than 8.8 sec, and underlines how the distribution
of clusters tends to peak at the lower values, with a mean value of 3.15 and a stan-
dard deviation of 2.44 and a median value of 3.0. These values are computed out
of a number of 5247 initial points, representing all the students in the dataset. Fig-
ure 13.14, showing the cluster distribution for the values of ∆A(X,Y) higher than 8.8
sec, indicates that the number of clusters moves towards the expected result of a
correlation between data quality and questions completion time.

TABLE 13.9: Summary of results of the clustering for the Home loca-
tion depending on the ∆A(X,Y) parameter.

Mean St. Dev. Median Points Students
6 8.8sec 3.15 2.44 3.0 5247 72
> 8.8sec 2.21 1.30 2.0 1186 70

The average value is 2.21 with a standard deviation of 1.30 and a median value
of 2.0 calculated out of 1186 points, which represent 70 out of 71 students. Table 13.9
presents a summarization of the results for the ∆A(X,Y) parameter, which, although
it does not have an additional value in the literature to be compared with, can still

154 Chapter 13. SmartUnitn Experiments

provide insights of the carelessness issues, since a low value of ∆A(X,Y) may indicate
hurriedness when answering the questions.

FIGURE 13.14: Distribution of the number of clusters for the “Home"
location with ∆A(X,Y) greater than 8.8sec.

FIGURE 13.15: Distribution of the number of clusters for the “Home"
location ∆A(X,Y) lower than 8.8sec.

13.2. SmartUnitn Two 155

13.2 SmartUnitn Two

SmartUnitn Two is the second experiment that will take place in the Winter Semester
of the academic year 2017/2018, more or less in the same period of SmartUnitn One.
The hope in this case is to reach more students, up to 300. We will also try to reach
the participants of the first experiment in order to have data belonging to the same
users after a year.

The main difference with respect to SmartUnitn One will consist in using the
new version of i-Log, as presented in Section 12.2, so that the user will be able to au-
tonomously download and configure it, without the need to involve the developer in
this process. Additionally, we added an additional question with respect to the three
available in the previous version which regards the mood of the student. There are
multiple researches in Sociology that deal with the mood of the participants during
their activities, but as for the other data, the mood is collected with a granularity that
is not good enough to produce good results. By asking the user this parameter very
30 minutes, we hope to produce a dataset about the mood of the students that will
be used in other researches. We will ask the student to indicate their mood based on
the question: "How do you judge your mood?". The answer will be a number, from
1 to 10, with 1 corresponding to negative and 10 to positive.

At the moment of writing this thesis the experiment has not been carried out yet,
and for this reason we have no results to present.

157

Part V

Conclusions

159

Chapter 14

Related Work

The work presented in this Ph.D. thesis has a strong interdisciplinary component. In
fact, we deal with approaches from different areas like life logging, ubiquitous com-
puting, context-aware systems, big data management, knowledge management, hu-
man computer interaction, psychology, sociology and finally data mining and ma-
chine learning. This Chapter presents the state of the art in the different research
communities related to the most relevant among these fields.

14.1 Context Awareness

As specified by Pentland in [Pentland, 2000], machines have to be aware of the con-
text in which the user is involved in order to work autonomously. [Knappmeyer
et al., 2013] provides a survey on the current work in the research community that
deals with context-awareness. The authors claim that the context is an element that
only humans can see, interpret and use and is constituted by “implicit situational
information” that are used to “increase the conversational bandwidth”. The main
element that allows to the context to exist is the fact that humans have a global
vision of how the world and society work. Moreover, the goal of context-aware sys-
tems is to simplify the interactions between the user and the machine: the user no
longer becomes responsible for choosing which information is relevant and which
is not. If computers were to access context information, we could improve the qual-
ity of their output and their services. [Schilit and Theimer, 1994] first addressed
the notion of context-awareness almost 20 years ago by claiming that the context is
provided as “location, identities of nearby people and objects, and changes to those
objects”. [Abowd et al., 1999] presents context as series of examples or synonyms.
A closer proposal to our understanding of context is provided by [Dey, Abowd, and
Wood, 1998], defining context as “the user’s physical, social, emotional of informa-
tional state”; nonetheless, [Abowd et al., 1999] definition of context is widely cited
in the literature. It claims that context “is any information that can be used to char-
acterize the situation of an entity. An entity is a person, or object that is considered
relevant to the interaction between a user and an application, including the user and
applications themselves”. In [Liu, Li, and Huang, 2011] a similar survey is presented
with analog results to [Abowd et al., 1999], which means that defining what context
is still represents an open issue.

14.2 Context Modelling

In order to exploit contextual information in the activity recognition field there is the
need to represent and model the context. The main area of related work is context

160 Chapter 14. Related Work

modelling, starting with CoBrA [Chen, Finin, and Joshi, 2003], an agent-based in-
frastructure, designed for campus spaces, capable of performing several context op-
erations such as modelling, reasoning, and knowledge sharing. CONON [Wang et
al., 2004] focuses on modelling locations by providing an upper ontology and lower
domain-specific ontologies organized into a hierarchy. PiVOn [Hervás, Bravo, and
Fontecha, 2010] consists of four independent ontologies (users, environment, de-
vices, and services), used to describe smart environments. The users perform tasks
that have a goal and use some services, while the device ontology defines specifica-
tions of devices. Lastly, the environment ontology represents the position of objects
and their type of location. CaCONT [Xu et al., 2013] defines several types of entities,
focusing on locations. It provides different levels of abstraction for specifying infor-
mation about the location of entities, e.g., GPS and location hierarchies. Finally, the
Mining Minds Context Ontology [Villalonga et al., 2015] represents contexts defined
as a triple of locations, activities and emotions, that in turn are grouped according to
an aggregating element, e.g., amusement, housework, commuting and so on. Our
main novelty with respect to these works is that our methodology for modelling
context is consistent with and accounts for both sociological approaches and sensor
data for activity recognition.

14.3 Life Logging in Ubiquitous Computing

As the definition of context shows, the crucial aspect of context-aware applications is
information. Therefore, it is necessary to have updated information about the users
and the environment surrounding them, especially in those fast-varying situations
as in the ubiquitous computing field. In the research community, many are working
on the collection of data finalized to the inference of the context. This practice is
similar to the ones of Lifelogging, which is the systematic collection of information
with the final objective of allowing review of future logs; however, there are some
differences. Some of them are pointed out in [Rawassizadeh et al., 2013], where an
innovative Lifelogging system called UbiqLog is presented. The authors claim that
unlike context-aware applications, lifelogging needs to store the collected informa-
tion for a much longer period, e.g., at least the life of a person, with a need to focus
on privacy and annotation. This work proposes an interesting approach: to config-
ure the sensors and provide high flexibility to the data structure, in order to allow
the addition of other sources of information later. Since Lifelogging and logging for
context-awareness share some similarity, for our purposes we can partially consider
solutions from the lifelogging field. Currently, there are two main approaches to the
collection of data from users: (1) by using external dedicated devices, and (2) by us-
ing less complex and general purpose devices such as smartphones and wearables.
In this second approach, the collection and interpretation of the information is more
challenging since we do not have a sensor for each variable to be monitored and
those available sensors are less accurate, since they are grouped in only one place
and have more constraints such as the battery life of the devices. At the same time,
these integrated solutions are completely unobtrusive and therefore are potentially
applicable outside of the constrained experimental setups of laboratories. Moreover,
they can continuously generate more truthful data; this is why we chose them as the
main collection approach for this work. [Lu et al., 2010] focuses on internal smart-
phone’s sensors such as GPS, accelerometer and microphone and presents a sensing
engine that is used to log user information. [Froehlich et al., 2007] presents a collec-
tion framework for mobile devices which allows to automatically log smartphone

14.4. Hybrid Approaches to Activity Recognition 161

sensors data such as environmental data, device usage, among others. In [Eagle and
Pentland, 2006] the authors present a logging approach based on smartphones reg-
istering users’ location through Bluetooth beacons, the proximity among different
users and the smartphone usage with the final purpose of studying social dynamics
of groups. [Sellen and Whittaker, 2010] criticizes those life logging solutions that
capture everything while they claim that one solution should focus on specific ele-
ments. [Kikhia, Hallberg, and Synnes, 2009] presents a context-aware life-logging
system which can improve the quality of life of people with mild dementia. [Reki-
moto, Miyaki, and Ishizawa, 2007] deals with continuous WiFi-based location log-
ging of a person to detect life patterns. The motivation for focusing only on WiFi is
that the GPS does not work indoor and then it does not allow for monitoring all the
movements during the day. On the other hand, [Rekimoto, Miyaki, and Ishizawa,
2007] claims to have obtained an accuracy which is similar to the one using the GPS.
[Belimpasakis, Roimela, and You, 2009] presents Experience Explorer, a client-server
architecture that enables life logging, via mobile context collection, and processes
the data so that meaningful higher-level context can be derived. [Kiukkonen et al.,
2010] describes a data collection campaign done on 170 participants in Lusanne for
a year. The authors in [Jalal and Kamal, 2014] present a real-time life logging sys-
tem via depth imaging-based human activity recognition leveraging on cameras.
[Petroulakis, Askoxylakis, and Tryfonas, 2012] illustrates a life-logging solution in
smart environments, presenting the challenges and the security threats such a sys-
tem can pose. Their conclusion is that the Internet of Things is characterized by the
lack of suitable security mechanisms and protocols because of the limited resources
of the smart objects. The authors in [Blum, Pentland, and Troster, 2006] present
InSense, an interest-based lifelogging solution. They evaluate the user context in
real time and try to predict moments of interest using sensor data collected from a
PDA. The following works [Kiukkonen et al., 2010; Farrahi and Gatica-Perez, 2011;
Chittaranjan, Blom, and Gatica-Perez, 2013] present interesting analysis of the data
collected from mobile devices, in particular about the location of the users.

In addition to academic work, we must cite also the different commercial solu-
tions aimed at logging what the user does, proving that it is a growing industry.
Such devices, which usually focus on the healthcare and fitness dimension, are Fit-
Bit,1 Nike+ FuelBand,2 Jawbone,3 among others.

14.4 Hybrid Approaches to Activity Recognition

Activity recognition is a mature field of studies; in fact the first works in the com-
puter science communities date back to 1980s [Kautz, 1987; Kautz and Allen, 1986;
Lesh and Etzioni, 1995; Charniak and Goldman, 1993]. It aims at recognizing the
actions and goals of one or more agents from a series of observations on the agents’
actions and the environmental conditions. A general definition of activity recogni-
tion is provided by [Cheng, 2013]: “to output a label of human activity Y given a set
of input observations X”.

There are two main methodologies to infer activities performed by the user start-
ing from raw data: (1) supervised and (2) unsupervised. The former is the most adopted
one, and produces more accurate results. A series of samples are collected in order
to “train” the algorithms so that they can later recognize the activity. On the other

1http://www.fitbit.com
2http://www.nike.com/us/en_us/c/nikeplus-fuelband
3https://jawbone.com

162 Chapter 14. Related Work

hand, unsupervised techniques do not need a training set. In this case we are not
dealing anymore with a classification problem, instead we face a recognition prob-
lem or pattern discovery. The key element of both these data-driven approaches is
that they can handle noisy and incomplete data [Chen and Nugent, 2009] with ex-
cellent results in some cases. However, they also present important limitations, as
[Rodríguez et al., 2014] notes:

• Scalability: solely data-driven supervised methods require a huge amount of
training data for each activity to be recognizes. If the system has to recognize
multiple activities, this approach cannot scale.

• Modularity: if a new set of activities is added to the initial set to be recognized,
data-driven methods require a new training phase

• Consistency: if an activity can be performed in different ways, we must train
a mathematical methods for each possible way in which the activity can be
performed.

In order to solve these limitations, hybrid techniques have been proposed in the
research community. They use ontologies and their semantic inference capabilities
in combination with sensor data in order to increase the final recognition accuracy.
[Rodríguez et al., 2014] illustrate also a possible solution that these methods can
provide to solve the problems above:

• Scalability: the semantics inference given by the ontology partially tackles this
issue, to the point of not requiring training data in some cases.

• Modularity: hybrid techniques allow for the addition of new activities on-the-
fly by updating the ontology.

• Consistency: with hybrid techniques we can define an approach that can be
reused.

Work in this area focuses on smart homes environments (SH) and activities of
daily livings (ADL) [Liu et al., 2016]. This means dealing with small environments
with limited variability, allowing for an a priori defined description of the environ-
ment itself [Riboni and Bettini, 2011; Chen, Nugent, and Wang, 2012; Ye, Stevenson,
and Dobson, 2015]. The main issue of ontologies in this area is their scalability,
due to the small environments they represent, and the fact that they are designed
in a “bottom-up" fashion, i.e., sensors are the only source of information for mod-
elling; most of them are not open domain and too dependant on their application
domain. [Cheng, 2013] presents a new approach that does not need training sam-
ples and therefore can recognize unseen complex activities. The solution consists of
a framework that uses human knowledge to identify the hierarchies of human ac-
tivities. These activities are decomposed into atomic units that are then individually
recognized and used with their sequential order to recognize the original complex
activity. In [Riboni et al., 2011] the authors point out the utility of such hybrid tech-
niques. They claim that there are not exhaustive evaluations about the effectiveness
of these methods yet and that as a preliminary analysis, they behave worse respect
to standard data-driven approaches. The main reason is that in the actual solutions
the temporal reasoning between activities is not considered, e.g., a certain activity
follows another one after a certain amount of time and that another activity can
be performed in parallel to the first two. The authors suggest that by adding this

14.5. Database Technologies 163

element to hybrid methods it is possible to obtain results as good as those of data-
driven approaches with HMM techniques. In [Riboni and Bettini, 2011] a framework
called COSAR for the recognition of activities using a combination of data-driven
and ontology-driven approaches is presented. In particular, mobile sensor data in
combination with the structured knowledge provided by ontologies allows for the
recognition of the activity performed by the user, increasing the overall accuracy
with respect to only data-driven methods. Moreover, the ontology presented assists
the system in recognizing complex activities that otherwise will not be recognized.
Other researches in this field do not refer to personal user data collected by general
purpose mobile devices. For instance, [Chen and Nugent, 2009] present an innova-
tive hybrid approach in the smart homes field. Their system facilitates the domain
knowledge reuse and exploits semantic reasoning for activity recognition with an
interesting result in the final recognition accuracy of 94.44%.

14.5 Database Technologies

At the core of this thesis there is the user and her data. To store and manage effec-
tively this amount of data (also called personal big data) a good database system
must be used.

In the last decade a lot of databases have been developed to accommodate the
need for storing information in the different areas of computer science. There are
databases dedicated to highly structured data (SQL databases), while others perform
better with unstructured data (NoSQL databases). This section presents what are the
most frequently used databases with their respective characteristics.

The authors in [Han et al., 2011] present a survey on NoSQL databases. They
claim that for large scale and high-concurrency applications, using classic relational
databases to store and query dynamic user data has appeared to be inadequate. Sim-
ilarly, [Tudorica and Bucur, 2011] compares three main database technologies. The
comparison is based on five main features they identified to be the most important
ones. The results of their analysis is presented in Table 14.1.

TABLE 14.1: Databases comparison with respect to five key features
from [Tudorica and Bucur, 2011].

Feature Cassandra4 HBase5 MySQL6

Persistence YES YES YES
Replication YES YES YES
High availability Distributed Distributed Distributed, avail-

able with MySQL
Cluster

Transactions Eventually Con-
sistent

Locally Consistent

Rack-locality
awareness

YES YES YES

[Moniruzzaman and Hossain, 2013] presents an analysis of the current technolo-
gies among the NoSQL databases showing the different dimensions of the problem
and comparing the nine most popular technologies. The authors in [Abramova and
Bernardino, 2013] go more in depth with the technologies and present a compar-
ison of the two most popular databases: MongoDB and Cassandra. Their results
show that MongoDB becomes slower at the increasing of the data size and it starts

164 Chapter 14. Related Work

to perform poorly. On the other hand, Cassandra gets faster while working with an
increase of data. Moreover, even for the update operations Cassandra is faster. Their
conclusion is that MongoDB falls short with increase of the data while Cassandra
still has a lot to offer.

14.6 Time diaries

In this section we discuss which are the main tools sociologists use for their re-
searches in analyzing the human behaviour. Among them, one of the most impor-
tant and most used ones are those that allow researchers to study time allocation,
i.e., how people use their time. Time-use research is defined as an interdisciplinary
field of study dedicated to learning how people allocate their time during an av-
erage day. The comprehensive approach to time-use research addresses multiple
issues, i.e., political, economic, social, and cultural ones.

The main tool for time use research are time diaries [Sorokin and Berger, 1939],
where respondents are asked to indicate three main dimensions of their everyday
life: i) the activities they perform (sometimes indicating also secondary activities,
i.e., activities that the respondent reports being done at the same time as the diary
(primary) activities [Juster and Stafford, 1991]), ii) the locations they visit and iii)
the people around them. Usually diaries consist of tables divided by time intervals
of 10 minutes [Romano, 2008], covering the whole day, where each interval is an
entry divided in the corresponding dimensions. In addition, time diaries may be
either open or structured. Open time diaries allow respondents to record activities
and events in their own words, which requires manual decoding in accordance with
a uniform classification criteria, where activities are ordered in mutually exclusive
groups [Robinson, 1985]. In structured time diaries, all activities are based on pre-
coded categories, so it is the user who decides which activities to report [Hellgren,
2014]. Additionally, time diaries can be administered either as “leave behind di-
aries", where the respondents fill the data in real time as the day progresses [Juster
and Stafford, 1991], or as “recall diaries", where respondents have to recall their
activities for the previous day [Pentland et al., 1999]. A major drawback for time
diaries is that they are expensive and time consuming, especially for the amount of
work required to process the data collected, e.g., the correct coding of open answers
by dedicated coders [Hellgren, 2014].

Sociologists have only recently begun to explore the use of smartphones with
time diaries. The first (and only) pilot study using smartphones as a survey tool
[Sonck and Fernee, 2013] developed a diary app where a selected sample of about
150 people was asked to record their activities for two days, i.e., a Wednesday and
a Saturday, by selecting them from a list of 41 activities from the Harmonized Euro-
pean Time Use Survey (HETUS) [EUROSTAT, 2009]. Respondents could also retro-
spectively record their activities the following day. Smartphones were used to collect
the respondents’ positions via GPS every 10 minutes in addition to log-data of their
calls and SMSs. This work allowed to establish that smartphone-based diaries do not
differ substantially from other time diaries in terms of number of answers provided.

In this thesis we adopted the concept of paper-based time diaries and adapted
them to be administered on smartphones. This aspect, used in combination with the
sensor data collection i-Log allows, in an innovative approach in the sense that the
user can contribute in annotating her own data. Moreover, our solution allows to
take into consideration also the human factor; since the user may not be an expert,
she can sometimes generate unreliable data.

14.7. Participatory Sensing 165

14.7 Participatory Sensing

In ubiquitous computing, there is an active area of research that focuses on collect-
ing annotations from users in real life scenarios, i.e., participatory sensing [Kanhere,
2011]. The main idea is to have everyday users collect and share sensed data from
their surrounding environments using their mobile phones. In this area, there has
been recent interest in understanding the best approaches to elicit not only data, but
their annotations as well. [Chang, Paruthi, and Newman, 2015; Chang et al., 2017]
analyze three approaches for the data collection, i.e., Participatory (PART), Context-
Triggered In Situ (SITU), and Context-Triggered Post Hoc (POST). Participatory refers
to users actively collecting data, i.e., they actively use a specific instrument in order
to collect data. Context triggered in situ and post hoc refer to obtaining annotations
from user data during the experiment when a certain event happened, or to prompt
users afterwards to obtain retrospective annotations. These approaches were experi-
mented on 37 users that had to record their travelling habits. The users had to record
and annotate at least two trips per day, stating the type of transportation and other
optional details, on a dedicated app on their phone called Minuku that could col-
lect data and send questionnaires. Every four days, this app would switch from one
data collection approach to the other to test its effectiveness. As a ground truth to
compare users annotations, participants had to carry a special camera that took a
photo every 30 seconds, so that researchers could validate users’ annotations retro-
spectively. The results suggest the PART approach is the most effective approach
since it produces a larger amount of activity data and with less noise, although SITU
and POST leads to more activity recordings.

167

Chapter 15

Conclusions and Future Work

15.1 The Context

This Ph. D. Thesis deals with the semantic gap problem in the context of personal
big data. The problem consists in the lack of coincidence between low-level sensor
streaming data collected by sensors in a machine-readable format and high-level se-
mantic knowledge that can be generated from these data and that only humans can
understand thanks to their intelligence, habits and routines. To allow the machine to
automatically generate meaningful knowledge for the user out of the huge amounts
of noise sensor data collected from the smartphone, it needs to be aware of the con-
text and in general about any information that the user is aware of. The reason of
this problem lies in the fact that the same sensor data can be analyzed and produce
very different results from the human perspective. Being inside a building, or one
meter away outside the window, is very different for a human being while for the
machine this can make little difference. At the same time is also true that the user
can interpret the situation and produce different output depending on it, while the
machine that has no contextual information cannot do that. Within this, the user is
the core of the problem but also the solution. We need to represent the contextual
information the user is aware of and let the machine use them to analyze the data
in a context-aware way. We do this by formalizing the user context and represent-
ing it using the entity-centric approach. The smartphone is the key device used for
both collecting the personal big data from the users but also to let them exploit the
services produced by the generated knowledge.

15.2 The Contributions

Within this context, the contributions developed in this thesis can be summarized as
follows:

A methodology that addresses the semantic gap problem. The methodology
is based on an interdisciplinary approach able to generate human level knowledge
from streaming sensor data in open domains. It leverages on two different research
fields: one regarding the collection, management and analysis of big data using ma-
chine learning techniques and the other that deals with ontologies, where each one
respectively maps to one of the two dimensions of the semantic gap problem. The
methodology focuses on the idea that the user and the world surrounding her can
be modeled using an incremental method, defining the elements the user believes
are relevant. These elements are the people, the locations the events and the artifacts
that compose her context. Modelling them according to the entity-centric approach,

168 Chapter 15. Conclusions and Future Work

allows to have entities with attributes and relations among them. With such a struc-
ture used to represent the user knowledge, we defined an approach that is able to
bridge the semantic gap and allows to create and update such a knowledge starting
from the sensor streaming data collected from the user’s smartphone. The approach
allows to create small, simple, modular and compositional micro-tasks that allow
to deal with the single attributes of each entities. By continuously updating these
attributes so that to react to context changes, leveraging both on the sensor data but
also other contextual information, it allows to bridge the semantic gap in the open
domain. With this we are able to create a structure out of the unstructured, noisy and
highly variable sensor data. Finally, the generated knowledge that is meaningful for
the user, can be used to provide services back to her that will ultimately improve her
quality of life.

A reference architecture. The problem we are trying to solve presents multiple
sub problems that must be taken into consideration. By creating the reference ar-
chitecture that implements the above methodology with solved this problems. They
mainly refer to the aspects related to personal big data collection and analysis, with
a particular focus on the performances and on privacy of the user. The result is an
architecture that is general enough and not constrained on a single use case or on a
specfiic technology.

An instantiation of the architecture in the SB. We started from the methodology
and the reference architecture and we implemented the system creating a real work-
ing prototype we are currently using for our researches. For doing so, we used state
of the art software solutions and technologies, based on distributed systems for both
the databases but also the computation. This allows to scale and be able to serve
always an higher number of users. The adoption of Apache Cassandra and Apache
Spark allow to horizontally scale when the load of the system increases by adding
machines to the respective clusters. This is very important because in every use case
we increase the number of users. Moreover, we spent a lot of time on making the
system modular and compositional, following the idea expressed in the methodol-
ogy. To do so we used the Container Architecture (CA) paradigm that is based on
microservices highly interconnected one with respect to the other.

The evaluation of the SB in four use cases. We tested the implemented system
in four use cases, every one with an increasing number of users and features.

15.3 The Use Cases

We evaluated all the dimensions of the methodology and system developed in this
thesis in four different use cases. For each of them, we instantiated the system and
collected data from the users using the i-Log mobile application.

Knowdive One. It was the first real-life test of the methodologies and solutions
implemented in the SB. This test was run on the members of the Knowdive Group
at the Department of Information Engineering and Computer Science of the Univer-
sity of Trento. The objective was to debug the whole architecture, both the backend
infrastructure but also the mobile client to understand if it could work well and scale
with an increasing number of users. We mainly focused on the data collection and

15.3. The Use Cases 169

management aspects they were never tested before outside a laboratory settings. In
particular, in addition to the discovery and fix of numerous bugs, we were able to
study how the logging process affects the smartphone battery life, which is the main
drawback in using such devices for collecting personal big data. Our findings show
that the internal hardware sensors such as the accelerometer or the gyroscope do
not affect much the battery life. On the other hand, the GPS or the radio sensor in
general consume a tangible amount of energy and, if not used wisely (reducing the
sampling rate), the battery life can be affected.

Knowdive Two. This was the third use case chronological and the second done
on the members of the Knowdive Group. Like the first one, in this case we wanted
to test the system and in particular some new functionalities that were introduced
after the first two use cases. These functionalities were related to the addition of a
new sensor, that allows to collection the audio from the devices. Many works in the
research community in the field of ubiquitous computing use the audio to infer the
user location. We decided to do the same and for this we collected the audio from
the users and we applied machine learning techniques to map the noises to the loca-
tions as labelled by the users themselves. To preserve the user privacy, we collected
only 10 seconds of audio for every minute. Additionally we used a new deploy-
ment methodology to install the application on the participants’ smartphones that
leverages on the Play Store. Before this use case, the installation of the application
was done manually by the developer’s computer. With this, we adapted and im-
proved the application so that to be able to publish it in the Google Play Store. We
constrained the download by publishing the application as a Beta Version. In this
way, we could send invitations to download the app only to selected users since we
didn’t want external users to use it. This process allowed us to same a huge amount
of time to start a new use case.

SmartUnitn One. This was the very first large scale use case executed on people
in the wild, outside a controlled environment. It was managed by the Department
of Information Engineering and Computer Science and the Department of Sociology
and Social Research of the University of Trento on the students of the same institu-
tion. The final goal was to study how the students’ allocation of time affects their
academic achievements both in terms of grades but also on the number of credits,
i.e., number of exams. Additionally, we tested if the technical solutions were able
to manage an increased number of user, that reached a total of 72 people that gen-
erated data for two weeks. With this use case we were able to identify that people
are not always reliable while they annotate their data (by providing answers to the
questionnaires) but we were able also to detect these inconsistencies by merging the
answers with the data collected by the smartphones’ sensors. The two main sources
of inconsistencies were memory bias and carelessness. The former being related to
the time difference between when the question was asked and when it was replied,
while the latter due to the hurriedness in replying to the questions. Once found,
these inconsistencies can be discarded or even compared with other correct answers
and fixed.

SmartUnitn Two. The last use case we designed, but that still has to take place
is again performed on university students. It will be carried out in November 2017
on many more student from the University of Trento. The goal is the same as for
SmartUnitn One: study how the students time allocation affects their academic per-
formances. This time, we modified the questionnaire to ask also for the mood of

170 Chapter 15. Conclusions and Future Work

the students. In fact, multiple works in sociology try to correlate this aspect to the
users’ life. Additionally, we made additional improvements to the i-Log application
collecting more data and reducing the battery consumption.

15.4 Future Work

A number of opportunities to extend the scope of this thesis were left for future
work1, either for lack of time or limitation of resources (after all we are in Italy,
aren’t we?). In what follows we describe some of these possibilities.

An interesting feature we would have time to evaluate and eventually integrate
in the SB is related with the sharing of the generated knowledge among different
users. As we said, the knowledge generation task is highly personalized, but there
are some entities that are seen in the same way by multiple people and then can be
shared. For example, if one user identifies a location as a bar, all the others in the
platform could exploit this information. This will also add interesting dimensions to
the problem, since for one person a place can be the "Home", while for the other it can
be a "Shop" (where the home is an apartment above the shop, but the smartphone
sensors cannot identify this difference).

One technical aspect that is currently missing in the platform is the mobile appli-
cation dedicated to iOS devices. On the smartphone market the two most diffused
operating system are Android and iOS. At the moment, i-Log works only on An-
droid and we are aware we are excluding a considerable amount of people. Before
going in production with the SB we need to produce one version of the application
that runs on iOS devices. We are also aware that iOS is more restrictive in terms
of functionalities the applications can implement, and then it will be a challenge to
collect the same information.

Apply the methodology and system in other use cases. For example, within the
QROWD project, we have already scheduled a use case that will leverage on 1000
citizens from the Municipality of Trento, with the final objective of studying how
they move around the city. Often this analysis is related with the analysis of the
modal split, in other words, how the citizens split their journey to reach their final
destinations. We will install i-Log on the citizens’ devices and we will collect data
for an extended period of time. This will improve how the citizens live their city but
will also help the municipality in defining new laws and strategies to reduce traffic
and pollution. In fact, a law imposes the Municipality of Trento to reduce by 1% on a
yearly bases the amount of cars used by citizens. This is not an easy task, and ad-hoc
solutions should be studied.

1Future work is highly framed in the context of the QROWD Project (EU H2020 Grant n.732194,
http://www.qrowd-project.eu/)

http://www.qrowd-project.eu/

171

Appendix A

i-Log Sensors List

What follows it the list of sensor streams that i-Log can collect in the latest version
available (1.3.0 at the time of writing).

TABLE A.1: i-Log sensor list with details about the logging process

Type Sensor Frequency Data Battery

HW

Acceleration 20 Hz H L
Linear Acceleration 20 Hz H L

Gyroscope 20 Hz H L
Gravity 20 Hz H L

Rotation Vector 20 Hz H L
Magnetic Field 20 Hz H L

Orientation 20 Hz H L
Temperature 20 Hz L L

Atmospheric Pressure 20 Hz L L
Humidity 20 Hz L L
Proximity On change L L
Position 1/60 Hz L H
Audio 1/60 Hz H M

SW

BC

Running Application 1/5 Hz H N
WIFI Networks Available 1/60 Hz L M

Bluetooth Device Available 1/60 Hz L M
Bluetooth LE Device Available 1/60 Hz L M

P

Screen Status [ON/OFF] On change L N
Flight Mode [ON/OFF] On change L N

Battery Charge [ON/OFF] On change L N
Battery Level On change L N

Doze Modality [ON/OFF] On change L N
Headset plugged in [ON/OFF] On change L N
Audio mode [Silent/Normal] On change L N

Music Playback On change L N
WIFI Network Connected to On change L N
Incoming Calls (No audio) On change L N
Outgoing Calls (No audio) On change L N

Incoming Sms (No text) On change L N
Outgoing Sms (No text) On change L N

Notification On change L N
Touch event On change L N

It follows the division made in Section 4.1.2 in Hardware (HW) and Software

172 Appendix A. i-Log Sensors List

(SW) sensors and about the latter, an additional division is made according to Broad-
cast Events (BC) and Poll Events (P). We then illustrate at which frequency we collect
the data for every sensor in order to balance the need for data with the need to pre-
serve the battery life. Finally, the last two columns ’Data’ and ’Battery’ show the
impact each sensor has in terms of generated data and energy consumption, respec-
tively. Where (H) stands for High, (L) for Low, (M) for medium and (N) for null.

173

Bibliography

Abowd, Gregory et al. (1999). “Towards a better understanding of context and context-
awareness”. In: Handheld and ubiquitous computing. Springer, pp. 304–307.

Abramova, Veronika and Jorge Bernardino (2013). “NoSQL databases: MongoDB vs
cassandra”. In: Proceedings of the international C* conference on computer science and
software engineering. ACM, pp. 14–22.

Belimpasakis, Petros, Kimmo Roimela, and Yu You (2009). “Experience explorer: a
life-logging platform based on mobile context collection”. In: Next Generation Mo-
bile Applications, Services and Technologies, 2009. NGMAST’09. Third International
Conference on. IEEE, pp. 77–82.

Betsworth, Liam et al. (2013). “Audvert: Using spatial audio to gain a sense of place”.
In: IFIP Conference on Human-Computer Interaction. Springer, pp. 455–462.

Blum, Mark, Alex Pentland, and Gerhard Troster (2006). “Insense: Interest-based life
logging”. In: IEEE MultiMedia 13.4, pp. 40–48.

Camp, JL (2004). “Digital identity”. In: IEEE Technology and society Magazine 23.3,
pp. 34–41.

Carpenter, Jeff and Eben Hewitt (2016). Cassandra: The Definitive Guide: Distributed
Data at Web Scale. " O’Reilly Media, Inc."

Carroll, Aaron and Gernot Heiser (2010). “An Analysis of Power Consumption in a
Smartphone.” In: USENIX annual technical conference. Vol. 14. Boston, MA.

Chang, Yung-Ju, Gaurav Paruthi, and Mark W Newman (2015). “A field study com-
paring approaches to collecting annotated activity data in real-world settings”.
In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing. ACM, pp. 671–682.

Chang, Yung-Ju et al. (2017). “An investigation of using mobile and situated crowd-
sourcing to collect annotated travel activity data in real-word settings”. In: Inter-
national Journal of Human-Computer Studies 102, pp. 81–102.

Charniak, Eugene and Robert P Goldman (1993). “A Bayesian model of plan recog-
nition”. In: Artificial Intelligence 64.1, pp. 53–79.

Chen, Harry, T Finin, and A Joshi (2003). “An intelligent broker architecture for
context-aware systems”. In: PhD proposal in computer science, University of Mary-
land, Baltimore, USA.

174 BIBLIOGRAPHY

Chen, Liming and Chris Nugent (2009). “Ontology-based activity recognition in in-
telligent pervasive environments”. In: International Journal of Web Information Sys-
tems 5.4, pp. 410–430.

Chen, Liming, Chris D Nugent, and Hui Wang (2012). “A knowledge-driven ap-
proach to activity recognition in smart homes”. In: IEEE Transactions on Knowl-
edge and Data Engineering 24.6, pp. 961–974.

Cheng, Heng-Tze (2013). “Learning and Recognizing The Hierarchical and Sequen-
tial Structure of Human Activities”. In:

Chittaranjan, Gokul, Jan Blom, and Daniel Gatica-Perez (2013). “Mining large-scale
smartphone data for personality studies”. In: Personal and Ubiquitous Computing
17.3, pp. 433–450.

Claessens, Brigitte JC et al. (2007). “A review of the time management literature”. In:
Personnel review 36.2, pp. 255–276.

Corti, Louise (1993). “Using diaries in social research”. In: Social research update 2.2.

Dean, Jeffrey and Sanjay Ghemawat (2008). “MapReduce: simplified data processing
on large clusters”. In: Communications of the ACM 51.1, pp. 107–113.

Dey, Anind K, Gregory D Abowd, and Andrew Wood (1998). “CyberDesk: A frame-
work for providing self-integrating context-aware services”. In: Knowledge-Based
Systems 11.1, pp. 3–13.

Do Van Thanh, IVAR JØRSTAD (2007). “The Ambiguity of Identity”. In: Identity
Management, p. 3.

Eagle, Nathan and Alex Sandy Pentland (2006). “Reality mining: sensing complex
social systems”. In: Personal and ubiquitous computing 10.4, pp. 255–268.

Eronen, Antti J et al. (2006). “Audio-based context recognition”. In: IEEE Transactions
on Audio, Speech, and Language Processing 14.1, pp. 321–329.

Ester, Martin et al. (1996). “A density-based algorithm for discovering clusters in
large spatial databases with noise.” In: Kdd. Vol. 96. 34, pp. 226–231.

EUROSTAT (2009). Harmonised European Time Use Surveys (2008 Guidelines). https:
//www.h2.scb.se/tus/tus/AreaGraphCID.html.

Farrahi, Katayoun and Daniel Gatica-Perez (2011). “Discovering routines from large-
scale human locations using probabilistic topic models”. In: ACM Transactions on
Intelligent Systems and Technology (TIST) 2.1, p. 3.

Fernandez, Pane and Juan Ignacio (2012). “Distributed Identity Management”. PhD
thesis. University of Trento.

https://www.h2.scb.se/tus/tus/AreaGraphCID.html
https://www.h2.scb.se/tus/tus/AreaGraphCID.html

BIBLIOGRAPHY 175

Ferreira, Denzil, Anind K Dey, and Vassilis Kostakos (2011). “Understanding human-
smartphone concerns: a study of battery life”. In: Pervasive Computing. Springer,
pp. 19–33.

Fox, Brent I and Bill G Felkey (2016). “The Quantified Self”. In: Hospital Pharmacy
51.2, pp. 189–190.

Freedman, Vicki A et al. (2013). “Interviewer and respondent interactions and qual-
ity assessments in a time diary study”. In: Electronic international journal of time
use research 10.1, p. 55.

Froehlich, Jon et al. (2007). “MyExperience: A System for in Situ Tracing and Cap-
turing of User Feedback on Mobile Phones”. In: Proceedings of the 5th Interna-
tional Conference on Mobile Systems, Applications and Services. MobiSys ’07. San
Juan, Puerto Rico: ACM, pp. 57–70. ISBN: 978-1-59593-614-1. DOI: 10.1145/
1247660.1247670. URL: http://doi.acm.org/10.1145/1247660.
1247670.

Gilbert, Seth and Nancy Lynch (2002). “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services”. In: Acm Sigact News 33.2,
pp. 51–59.

Giunchiglia, Fausto (1993). “Contextual reasoning”. In: Epistemologia, special issue on
I Linguaggi e le Macchine 16, pp. 345–364.

Giunchiglia, Fausto et al. (2017). “Mobile Social Media and Academic Performance”.
In: International Conference on Social Informatics. Springer, pp. 3–13.

Giunchiglia Fausto, Bignotti Enrico and Zeni Mattia (2017). “Personal context mod-
elling and annotation”. In: Pervasive Computing and Communications Workshops
(PerCom Workshops), 2017 IEEE International Conference on. IEEE, pp. 117–122.

Gurrin, Cathal, Alan F Smeaton, Aiden R Doherty, et al. (2014). “Lifelogging: Per-
sonal big data”. In: Foundations and Trends R© in Information Retrieval 8.1, pp. 1–
125.

Han, Jing et al. (2011). “Survey on NoSQL database”. In: Pervasive computing and
applications (ICPCA), 2011 6th international conference on. IEEE, pp. 363–366.

Heittola, Toni et al. (2010). “Audio context recognition using audio event histograms”.
In: Signal Processing Conference, 2010 18th European. IEEE, pp. 1272–1276.

— (2013). “Context-dependent sound event detection”. In: EURASIP Journal on Au-
dio, Speech, and Music Processing 2013.1, p. 1. ISSN: 1687-4722. DOI: 10.1186/
1687-4722-2013-1. URL: https://doi.org/10.1186/1687-4722-
2013-1.

Hellgren, Mattias (2014). “Extracting More Knowledge from Time Diaries?” In: Social
Indicators Research 119.3, pp. 1517–1534.

https://doi.org/10.1145/1247660.1247670
https://doi.org/10.1145/1247660.1247670
http://doi.acm.org/10.1145/1247660.1247670
http://doi.acm.org/10.1145/1247660.1247670
https://doi.org/10.1186/1687-4722-2013-1
https://doi.org/10.1186/1687-4722-2013-1
https://doi.org/10.1186/1687-4722-2013-1
https://doi.org/10.1186/1687-4722-2013-1

176 BIBLIOGRAPHY

Hervás, Ramón, José Bravo, and Jesús Fontecha (2010). “A Context Model based
on Ontological Languages: a Proposal for Information Visualization.” In: J. UCS
16.12, pp. 1539–1555.

Huang, Kuan-Tse, Yang W Lee, and Richard Y Wang (1998). Quality information and
knowledge. Prentice Hall PTR.

Hume Llamosas, Alethia Graciela (2014). “Distributed Contact and Identity Man-
agement”. PhD thesis. University of Trento.

Jalal, Ahmad and Shaharyar Kamal (2014). “Real-time life logging via a depth silhouette-
based human activity recognition system for smart home services”. In: Advanced
Video and Signal Based Surveillance (AVSS), 2014 11th IEEE International Conference
on. IEEE, pp. 74–80.

Johnson, Derick A and Mohan M Trivedi (2011). “Driving style recognition using
a smartphone as a sensor platform”. In: Intelligent Transportation Systems (ITSC),
2011 14th International IEEE Conference on. IEEE, pp. 1609–1615.

Jones, Keith (2008). “Building a context-aware service architecture”. In: IBM develop-
erWorks.

Juster, F Thomas and Frank P Stafford (1991). “The allocation of time: Empirical find-
ings, behavioral models, and problems of measurement”. In: Journal of Economic
literature 29.2, pp. 471–522.

Kanhere, Salil S (2011). “Participatory sensing: Crowdsourcing data from mobile
smartphones in urban spaces”. In: Mobile Data Management (MDM), 2011 12th
IEEE International Conference on. Vol. 2. IEEE, pp. 3–6.

Karau, Holden et al. (2015). Learning spark: lightning-fast big data analysis. " O’Reilly
Media, Inc."

Kautz, Henry A and James F Allen (1986). “Generalized Plan Recognition.” In: AAAI.
Vol. 86. 3237, p. 5.

Kautz, Henry Alexander (1987). “A formal theory of plan recognition”. PhD thesis.
University of Rochester. Department of Computer Science.

Khan, Adil Mehmood et al. (2014). “Activity recognition on smartphones via sensor-
fusion and kda-based svms”. In: International Journal of Distributed Sensor Net-
works 10.5, p. 503291.

Kikhia, Basel, Josef Hallberg, Kare Synnes, et al. (2009). “Context-aware life-logging
for persons with mild dementia”. In: Engineering in Medicine and Biology Society,
2009. EMBC 2009. Annual International Conference of the IEEE. IEEE, pp. 6183–6186.

Kiukkonen, Niko et al. (2010). “Towards rich mobile phone datasets: Lausanne data
collection campaign”. In: Proc. ICPS, Berlin.

BIBLIOGRAPHY 177

Knappmeyer, Michael et al. (2013). “Survey of context provisioning middleware”.
In: IEEE Communications Surveys & Tutorials 15.3, pp. 1492–1519.

Koenig, I., A. Q. Memon, and K. David (2013). “Energy consumption of the sensors
of Smartphones”. In: Wireless Communication Systems (ISWCS 2013), Proceedings
of the Tenth International Symposium on, pp. 1–5.

Ladd, A.M. et al. (2004). “On the feasibility of using wireless ethernet for indoor
localization”. In: Robotics and Automation, IEEE Transactions on 20.3, pp. 555–559.

Laney, Doug (2001). “3D data management: Controlling data volume, velocity and
variety”. In: META Group Research Note 6, p. 70.

Lau, Sian Lun and Klaus David (2010). “Movement recognition using the accelerom-
eter in smartphones”. In: Future Network and Mobile Summit, 2010. IEEE, pp. 1–9.

Laudon, Kenneth C (1986). “Data quality and due process in large interorganiza-
tional record systems”. In: Communications of the ACM 29.1, pp. 4–11.

Lee, Woojoo et al. (2012). “Power Conversion Efficiency Characterization and Opti-
mization for Smartphones”. In: Proceedings of the 2012 ACM/IEEE International
Symposium on Low Power Electronics and Design. ISLPED ’12. Redondo Beach,
California, USA: ACM, pp. 103–108. ISBN: 978-1-4503-1249-3. DOI: 10.1145/
2333660.2333687. URL: http://doi.acm.org/10.1145/2333660.
2333687.

Lesh, Neal and Oren Etzioni (1995). “A sound and fast goal recognizer”. In: IJCAI.
Vol. 95, pp. 1704–1710.

Liu, Wei, Xue Li, and Daoli Huang (2011). “A survey on context awareness”. In:
Computer Science and Service System (CSSS), 2011 International Conference on. IEEE,
pp. 144–147.

Liu, Ye et al. (2016). “From action to activity: Sensor-based activity recognition”. In:
Neurocomputing 181, pp. 108–115.

Lu, Hong et al. (2009). “SoundSense: scalable sound sensing for people-centric ap-
plications on mobile phones”. In: Proceedings of the 7th international conference on
Mobile systems, applications, and services. ACM, pp. 165–178.

Lu, Hong et al. (2010). “The Jigsaw continuous sensing engine for mobile phone
applications”. In: Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems. ACM, pp. 71–84.

Lupton, Deborah (2016). The quantified self. John Wiley & Sons.

Merkel, Dirk (2014). “Docker: lightweight linux containers for consistent develop-
ment and deployment”. In: Linux Journal 2014.239, p. 2.

https://doi.org/10.1145/2333660.2333687
https://doi.org/10.1145/2333660.2333687
http://doi.acm.org/10.1145/2333660.2333687
http://doi.acm.org/10.1145/2333660.2333687

178 BIBLIOGRAPHY

Micallef, Nicolas et al. (2015). “Sensor use and usefulness: Trade-offs for data-driven
authentication on mobile devices”. In: Pervasive Computing and Communications
(PerCom), 2015 IEEE International Conference on. IEEE, pp. 189–197.

Moniruzzaman, ABM and Syed Akhter Hossain (2013). “Nosql database: New era of
databases for big data analytics-classification, characteristics and comparison”.
In: arXiv preprint arXiv:1307.0191.

Mucciardi, Massimo (2013). “Student time allocation and self-rated performance–
Evidence from a sample survey in Sicily (Italy)”. In: Electronic International Journal
of Time Use Research.

Pentland, A. (2000). “Looking at people: sensing for ubiquitous and wearable com-
puting”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 22.1,
pp. 107–119. ISSN: 0162-8828. DOI: 10.1109/34.824823.

Pentland, Wendy E et al. (1999). Time use research in the social sciences. Springer.

Perrucci, Gian Paolo, Frank HP Fitzek, and Jörg Widmer (2011). “Survey on energy
consumption entities on the smartphone platform”. In: Vehicular Technology Con-
ference (VTC Spring), 2011 IEEE 73rd. IEEE, pp. 1–6.

Petroulakis, Nikolaos E, Ioannis G Askoxylakis, and Theo Tryfonas (2012). “Life-
logging in smart environments: Challenges and security threats”. In: Communi-
cations (ICC), 2012 IEEE International Conference on. IEEE, pp. 5680–5684.

Posta, Christian (2016). Microservices for Java Developers. A Hands-On Introduction to
Frameworks and Containers. " O’Reilly Media, Inc."

Rawassizadeh, Reza et al. (2013). “UbiqLog: a generic mobile phone-based life-log
framework”. In: Personal and ubiquitous computing 17.4, pp. 621–637.

Redman, Thomas C (2008). Data driven: profiting from your most important business
asset. Harvard Business Press.

Rekimoto, Jun, Takashi Miyaki, and Takaaki Ishizawa (2007). “LifeTag: WiFi-based
continuous location logging for life pattern analysis”. In: LoCA. Vol. 2007, pp. 35–
49.

Riboni, Daniele and Claudio Bettini (2011). “COSAR: hybrid reasoning for context-
aware activity recognition”. In: Personal and Ubiquitous Computing 15.3, pp. 271–
289.

Riboni, Daniele et al. (2011). “Is ontology-based activity recognition really effec-
tive?” In: Pervasive Computing and Communications Workshops (PERCOM Work-
shops), 2011 IEEE International Conference on. IEEE, pp. 427–431.

Robinson, John P (1985). “The validity and reliability of diaries versus alternative
time use measures”. In: Time, goods, and well-being 3.

https://doi.org/10.1109/34.824823

BIBLIOGRAPHY 179

Rodríguez, Natalia Díaz et al. (2014). “A survey on ontologies for human behavior
recognition”. In: ACM Computing Surveys (CSUR) 46.4, p. 43.

Romano, MC (2008). “Time use in daily life. A multidisciplinary approach to the
Time use’s analysis”. In: Tech. Rep. ISTAT No 35.

Ryu, UkJae et al. (2013). “Adaptive step detection algorithm for wireless smart step
counter”. In: 2013 International Conference on Information Science and Applications
(ICISA). IEEE, pp. 1–4.

Schilit, Bill N and Marvin M Theimer (1994). “Disseminating active map information
to mobile hosts”. In: Network, IEEE 8.5, pp. 22–32.

Scott, James and Boris Dragovic (2005). “Audio location: Accurate low-cost location
sensing”. In: Pervasive Computing, pp. 307–311.

Sellen, Abigail J and Steve Whittaker (2010). “Beyond total capture: a constructive
critique of lifelogging”. In: Communications of the ACM 53.5, pp. 70–77.

Seward, Julian (1998). bzip2.

Shah, Mohit et al. (2012). “Lifelogging: Archival and retrieval of continuously recorded
audio using wearable devices”. In: Emerging Signal Processing Applications (ESPA),
2012 IEEE International Conference on. IEEE, pp. 99–102.

Shelley, Kristina J (2005). “Developing the American time use survey activity classi-
fication system”. In: Monthly Lab. Rev. 128, p. 3.

Smeulders, Arnold WM et al. (2000). “Content-based image retrieval at the end of
the early years”. In: IEEE Transactions on pattern analysis and machine intelligence
22.12, pp. 1349–1380.

Sonck, Nathalie and Henk Fernee (2013). “Using smartphones in survey research: a
multifunctional tool”. In: Sociaal en Cultureel Planbureau.

Sorokin, Pitirim Aleksandrovich and Clarence Quinn Berger (1939). Time-budgets of
human behavior. Vol. 2. Harvard University Press.

Standard, NIST-FIPS (2001). “Announcing the advanced encryption standard (AES)”.
In: Federal Information Processing Standards Publication 197, pp. 1–51.

Swan, Melanie (2012a). “Health 2050: the realization of personalized medicine through
crowdsourcing, the quantified self, and the participatory biocitizen”. In: Journal
of personalized medicine 2.3, pp. 93–118.

— (2012b). “Sensor mania! the internet of things, wearable computing, objective
metrics, and the quantified self 2.0”. In: Journal of Sensor and Actuator Networks
1.3, pp. 217–253.

— (2013). “The quantified self: Fundamental disruption in big data science and bi-
ological discovery”. In: Big Data 1.2, pp. 85–99.

180 BIBLIOGRAPHY

Tourangeau, Roger, Lance J Rips, and Kenneth Rasinski (2000). The psychology of sur-
vey response. Cambridge University Press.

Tudorica, Bogdan George and Cristian Bucur (2011). “A comparison between sev-
eral NoSQL databases with comments and notes”. In: Roedunet International Con-
ference (RoEduNet), 2011 10th. IEEE, pp. 1–5.

Turnbull, James (2014). The Docker Book: Containerization is the new virtualization. James
Turnbull.

Villalonga, Claudia et al. (2015). “High-Level Context Inference for Human Behav-
ior Identification”. In: International Workshop on Ambient Assisted Living. Springer,
pp. 164–175.

Viredaz, Marc A, Lawrence S Brakmo, and William R Hamburgen (2003). “Energy
management on handheld devices”. In: Queue 1.7, p. 44.

Wang, Xiao Hang et al. (2004). “Ontology based context modeling and reasoning
using OWL”. In: Pervasive Computing and Communications Workshops, 2004. Pro-
ceedings of the Second IEEE Annual Conference on. Ieee, pp. 18–22.

West, Brady T and Jennifer Sinibaldi (2013). “The quality of paradata: A literature
review”. In: Improving Surveys with Paradata, pp. 339–359.

Windley, Phillip J (2005). Digital Identity: Unmasking identity management architecture
(IMA). " O’Reilly Media, Inc."

Wlodarczyk, Tomasz Wiktor (2012). “Overview of time series storage and processing
in a cloud environment”. In: Cloud Computing Technology and Science (CloudCom),
2012 IEEE 4th International Conference on. IEEE, pp. 625–628.

Xu, Nan et al. (2013). “CACOnt: a ontology-based model for context modeling and
reasoning”. In: Applied Mechanics and Materials. Vol. 347. Trans Tech Publ, pp. 2304–
2310.

Yamansavaşçılar, Barış and M Amaç Güvensan (2016). “Activity Recognition on Smart-
phones: Efficient Sampling Rates and Window Sizes”. In: Pervasive Computing and
Communication Workshops (PerCom Workshops), 2016 IEEE International Conference
on. IEEE, pp. 1–6.

Ye, Juan, Graeme Stevenson, and Simon Dobson (2015). “KCAR: A knowledge-driven
approach for concurrent activity recognition”. In: Pervasive and Mobile Computing
19, pp. 47–70.

Zeng, Zhi et al. (2008). “Adaptive context recognition based on audio signal”. In:
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on. IEEE, pp. 1–
4.

Zeni, Mattia, Ilya Zaihrayeu, and Fausto Giunchiglia (2014). “Multi-device activity
logging”. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct Publication. ACM, pp. 299–302.

BIBLIOGRAPHY 181

Zhang, Lide et al. (2010). “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones”. In: Proceedings of the
eighth IEEE/ACM/IFIP. ACM, pp. 105–114.

Zhou, Lijuan Marissa and Cathal Gurrin (2012). “A survey on life logging data cap-
turing”. In: SenseCam 2012.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Author's Contributions
	I General Notions
	Introduction
	Motivating Example
	The Context
	The Problem
	The Solution
	Structure of the thesis

	The Problem
	Data Acquisition and Management
	Data Collection
	Data Storage and Retrieval

	Knowledge Generation
	Knowledge Instantiation
	Knowledge Update

	Knowledge Exploitation for Services

	Ground Knowledge
	Fundamental Notions
	Knowledge Schema
	Instantiation of Knowledge
	Entity Identifiers
	Entity Instances

	Existing Systems for Knowledge Management
	Summary

	II The Proposed Methodology
	Data Acquisition and Management
	Data Collection
	Data Collection Characteristics
	Data Volume
	Data Quality

	Data Collection From the Smartphone
	Unobtrusiveness and Transparency
	User Informed Consent
	Multiple Sensor Streams
	Storage
	Synchronization
	Configurability

	Data Storage and Retrieval
	Types of Streaming Data
	Schema considerations
	Data Privacy

	Summary

	Knowledge Generation
	The Context as a Snapshot of the Personal World
	Knowledge Instantiation
	User Defined Knowledge Instantiation
	Machine Triggered Knowledge Instantiation

	Knowledge Update
	Numeric Attribute Update
	Motivating Example
	Numeric Update Procedure

	Semantic Attribute Update
	Motivating Example
	Semantic Update Procedure

	Summary

	Knowledge Exploitation
	Personalized Services
	User Privacy
	Summary

	III The Reference Architecture and System
	Reference Architecture
	Requirements
	System Logical View
	System Dynamic View
	User Data Collection
	Knowledge Generation
	Knowledge Exploitation

	Summary

	Data Acquisition and Management Subsystem
	Data Sources
	Data Import
	Streams Data Import Pipeline
	Sensors Streams
	Attribute Values Streams

	Knowledge Data

	Data Storage
	Entity Data Storage
	Streaming Data Storage

	Summary

	Knowledge Generation Subsystem
	Knowledge Generation Procedures Repository
	Knowledge Instantiation
	User Defined Knowledge Instantiation
	Machine Triggered Knowledge Instantiation

	Knowledge Update
	Knowledge Mapping
	Knowledge Materialization

	Operations Scheduler
	Summary

	Knowledge Exploitation Subsystem
	Authentication
	Anonymization
	Access Control
	Data Subscription
	Services
	System Services
	Data Control
	Publish/Subscribe Mechanism
	Users Registration

	External Services

	Summary

	The StreamBase (SB) System
	Modular Architecture Based on Microservices
	Microservices
	Docker
	Kubernetes

	Distributed Database System
	What is Cassandra
	How Cassandra Stores the Data
	Querying a Cassandra Node
	Cassandra Data Model for Streams
	Performances

	Framework for Distributed Computing
	What is Apache Spark
	Resilient Distributed Datasets (RDD)

	Instantiating the StreamBase (SB) System
	Summary

	IV Use cases
	Knowdive Experiments
	Knowdive One
	Objectives
	Smartphone Battery Consumption
	Idle state
	Single Sensors
	Sensor Groups
	Frequency-dependent Consumption
	Parallel Sensing Consumption

	Outcome

	Knowdive Two
	Audio Sensor
	Fast and Easy Deployment

	SmartUnitn Experiments
	SmartUnitn One
	Objectives
	Requirements
	Design
	Sample Selection
	i-Log Application User Interface
	Sensor Selection
	Time Diaries Design

	Results
	Behavioural Dataset
	Quantifying Students Biases
	Using the Biases to Find Inconsistencies in Students Home

	SmartUnitn Two

	V Conclusions
	Related Work
	Context Awareness
	Context Modelling
	Life Logging in Ubiquitous Computing
	Hybrid Approaches to Activity Recognition
	Database Technologies
	Time diaries
	Participatory Sensing

	Conclusions and Future Work
	The Context
	The Contributions
	The Use Cases
	Future Work

	i-Log Sensors List
	Bibliography

