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Prof. Pietro Zanuttigh, Università degli Studi di Padova, Italy
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Abstract
Event recognition is one of multimedia applications that has been gain-
ing ground recently. However, it has received scarce attention relatively
to other applications. The methodologies presented hereby are aimed at
event-based analysis of multimedia content, which is achieved from three
perspectives, namely (i) event recognition in single images, (ii) event recog-
nition in personal photo collections and (iii) fusion of social media infor-
mation and satellite imagery for natural disaster detection. A close look at
the relevant literature suggests that more attention has been paid to event
recognition in single images. Event recognition in personal photo collec-
tion has also received a number of interesting solutions. Natural disaster
detection in images from social media and satellite imagery, however, is
relatively new. As a matter of fact, many issues remain unsolved mostly
due to the heterogeneity, multi-modality and the unstructured nature of
the data.

In this dissertation, such open problems are presented and analyzed.
New perspectives and approaches are suggested, alongside a detailed exper-
imental validation and analysis. In details, our contribution is multi-fold.
On the one hand, we aim at demonstrating that the fusion of different
feature extraction and classification strategies can outperform the single
methods by jointly exploiting the learning capabilities of individual deep
models. On the other side, we analyze the importance of event-salient ob-
jects and local image regions in event recognition. We also present a novel
framework for event recognition in personal photo collections. Moreover,
we also present our system JORD, and our Convolutional Neural Networks
(CNNs) and Generative Adversarial Network (GAN) based fusion of social
media and satellite images for natural disaster detection. A thorough ex-
perimental analysis of each proposed solution is provided on benchmark
datasets along with the potential direction of future work.
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Chapter 1

Introduction

1.1 Context

The habit of taking pictures of everyday life moments is more and more
spreading into the society, especially with the advent of cams and low
cost hand-held devices, together with the increasing popularity of social
networks, it has become easier to generate and share multimedia contents.
These phenomena have changed the way in which people consume and
communicate through social media, causing a huge number of images being
collected, stored, posted, and shared through the Internet. For instance,
according to a recent report1 based on an analysis conducted on Flickr,
in 2016, a total of 612 millions public pictures have been uploaded to the
platform at a rate of 1.68 millions photos per day, and these figures keep
increasing on a daily basis. As a consequence, there is an ever increasing
need for automatic tools able to suitably organize and retrieve image data
from large unstructured multimedia archives, relieving content owners from
the tedious task of manually arranging their media collections.

Although this domain has been widely investigated in the past [54], no
ultimate solution is still available. Looking at the problem from a user’s
perspective, multimedia collections often refer to personal experiences and

1https://www.flickr.com/photos/franckmichel/6855169886/
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1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

activities, which can be referred to as events. The assumption that per-
sonal media collections can be viewed as the visual facet of events [134]
opened new research directions in media indexing and retrieval, where the
personal experience plays a central role. Some interesting applications of
such concepts can be found in the area of event summarization and event-
based organization of personal photo collections [124].

1.2 Problem Statement

So far, various solutions have been proposed to address the issue of event
recognition in videos [58, 23], although event recognition from still pictures
remains a more challenging problem, due to the sparsity of data and the
absence of a coherent and contiguous information flow. The computer
vision literature suggests that conventional paradigms based upon shallow
handcrafted visual features are prone to failure, as they cannot fill the gap
between the spatial/chromatic content of an optical image and its semantic
attributes [32, 95].

Following their immense success in image classification, object recog-
nition and detection [90], Convolutional Neural Networks (CNNs) have
demonstrated to perform well also in event recognition tasks (e.g., [106,
131, 40, 93]). However, though very efficient, CNNs are known to require
large training sets in order to capture the undergoing spatial/chromatic
cues across the images at hand. This is a major problem in media event
recognition, as it is extremely difficult and time consuming to collect suf-
ficiently large and significant datasets to meet the training and validation
requirements on one side, and to avoid generalization problems on the
other. As an alternative, a common option is to fine-tune pre-trained (on
large-scale datasets) CNNs to tailor them to event classes [2, 131, 130].
Common datasets used in the literature for this purpose are ImageNet [33]

2
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and Places [144].
Another important aspect to be taken into account is the use of scene

and object-level information. The works proposed in [130, 93, 131] demon-
strated that appropriately blending these two levels of information can pro-
vide significant improvements in event recognition. Most approaches tend
however to fuse the two types of information (i.e., object-level and scene-
level) assigning them equal contributions (e.g., weights). In our view, this
is sub-optimal as images of events exhibit a diversified set of chromatic
and spatial contexts. Thus, some images may favor scene-level informa-
tion over object features and vice-versa. In this respect, we believe that,
in fusing various CNN models/architectures, personalized weights should
be allocated to each model, based on its capacity in representing specific
pieces of information and features that are characteristic of the underlying
event.

Moreover, little attention has been paid to understanding and analyzing
the key visual elements, which are more revealing for a human observer.
We think targeting such event salient objects can help in improving the
performances of event recognition algorithms.

Furthermore, it is important to note that most of the existing literature
on event recognition focuses on the analysis of single images while very few
attempts have been made for event recognition in personal photo collec-
tions [124, 28]. There are many factors that make event recognition from
personal photo albums a very challenging task. Indeed, they may con-
tain ambiguous or irrelevant pictures and are usually annotated at album
level. Such problems of the presence of irrelevant photos and the so called
weakly-labelled data (at album only) make event recognition in personal
photo collections a more challenging task. The existing approaches relying
on supervised learning can not cope with such issues.

Another interesting application is to collect and analyze information

3
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about natural disasters available on the social network. To this aim, a
number of interesting solutions have been proposed to effectively utilize
social media for information collection and analyzing the impact of a nat-
ural disaster [69, 105, 7]. The literature reveals that Twitter has been
heavily exploited for inferring information about different types of events.
However, to the best of our knowledge, there is very limited prior work
which aims to collect information from multiple platforms for natural dis-
asters, simultaneously. Although collecting information about natural and
technological disasters from different platforms is a time consuming task,
the combination of different sources (text, images and videos) to one sum-
marized overview can be very useful for users to analyze the impact of a
disaster and be a good source of information.

In addition, satellite imagery of the effected area before and after a
disaster can be helpful to give a bird’s-eye view of the damage incurred. To
the best of our knowledge no prior efforts have been subjected by literature
to combine information from social media and satellite for event detection.

To sum up, five points are to be highlighted. First, a large scale bench-
marking image dataset for the evaluation and comparison of event discovery
algorithms from single images is still missing. Second, a thorough analysis
of the performances of existing deep models, particularly a proper uti-
lization of object and scene-level information for event recognition, is still
missing. Third is that, to the best of our awareness so far, event saliency
has been treated rather scarcely in the relevant literature. The fourth point
is that very few attempts have been made for event recognition in personal
photo collections. The final element regards a proper combination of satel-
lite data and social media information that to the best of our knowledge,
has not been properly investigated in prior works. This can help to tell a
much broader story of a disaster.

4
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1.3 Research Contributions

The main research goal of this thesis is to move forward the state-of-the-art
on event based analysis of multimedia contents for an efficient multimedia
indexing and retrieval. Here, we briefly discuss the main research contri-
butions of this work.

1.3.1 Event Recognition in Single Images

UNITN Social Event Dataset (USED)

There is an ongoing trend of image representation, which derives benefits
from deep neural architectures. However, the existing benchmark datasets
for event discovery in single images are not large enough to be used for
training deep learning algorithms. Therefore, it is essential to establish a
large-scale bench-mark dataset for the evaluation and comparison of event
discovery algorithms in single images. The key contributions in this regard
are:

• We provide a large collection (around 490,000 images) of annotated
event related images.

• Moreover, a deep learning based approach is introduced into event
discovery from single images as one of the potential applications of
this dataset and to set a benchmark.

Ensembles of Deep Models

As aforementioned, there is an ongoing trend to jointly utilize object and
scene-level information for event recognition. Existing approaches tend to
treat both types of information equally. In our view, this is not optimal as
different images exhibit different characteristics. Thus, we believe that, in

5
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fusing various CNN models/architectures, personalized weights should be
allocated to each model. Thus:

• Three efficient late fusion strategies are presented. We show in par-
ticular that an ad-hoc fusion of an ensemble of deep models can out-
perform, considerably, the use of each individual model.

• Stemming from the fact that deep learning is a staple ingredient in
many multimedia analysis and computer vision pipelines, we carry out
a thorough analysis of four well-known architectures, pre-trained on
object and places datasets, both individually and in different combi-
nations.

A Hierarchical Approach to Event Discovery

In event recognition, both object specific and background information play
an important role, depending on the nature of the underlying event. In
order to provide a detailed analysis of the importance of both earlier com-
ponents, we contribute with:

• We investigate full images, which usually contain contextual clues of
underlying event in the background, as well as event-salient objects to
uncover the event depicted in the image.

• We propose a two-step hierarchical approach where initially full im-
ages are utilized for event classification, and then event-salient features
are exploited to further refine the classification decision.

A Saliency based Approach to Event Recognition

Event-related images usually contain objects that are more revealing for a
human observer. We believe that targeting such event salient objects can

6
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help in improving the performances of event recognition algorithms. To
this aim in this work:

• We propose a novel framework exploiting event-salient regions.

• We propose and conduct a crowd-sourcing activity to extract event-
salient objects and regions.

1.3.2 Event Recognition in Personal Photo Collections

The conventional approaches relying on supervised learning methods lack
in dealing with non-relevant images in photo albums annotated at album-
level only. To this end, in this work:

• We propose a novel pipeline relying on MIL paradigm for event recog-
nition in personal photo collections.

• We provide a detailed analysis of the trade-off between classification
performance and computational cost.

• We also collect an image dataset containing a large number of photo
albums per event.

1.3.3 Natural Disasters Events

We believe that a proper fusion of social media and satellite imagery can
help to provide a more detailed story of a disaster. Key contributions in
this regard are:

JORD: A System for collecting Information and Monitoring Natural Disasters

• We present a system that is able to automatically collect information
and news items about natural disasters from social media, and links
it with satellite imagery in real time.

7
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• We also provide query refinement by automatically generating queries
in all local languages that are relevant to the position of a disaster.

• In addition, to ensure the quality of the retrieved multimedia data,
we propose a hierarchical content based filtering mechanism.

• It is equipped with a novel method for linking and retrieving satellite
imagery with the events by analyzing the tweets text to identify and
extract GPS coordinates of the areas struck by the disaster.

• JORD also consists of a novel framework for flood detection in satellite
images as a use-case of the disaster event detection in satellite imagery.

Medieval Bench-marking

• We propose Convolutional Neural Networks (CNNs) and Generative
Adversarial Networks (GANs) based satellite and social media fusion
for natural disasters detection.

1.4 Structure of the Thesis

This dissertation is organized as follows:

• Chapter 2 provides a detailed description of the event recognition in
single images, our proposed solutions along with conducted experi-
ments, the results achieved, and their description and comparisons
against the state-of-the-art.

• Chapter 3 is mainly devoted to event recognition in personal photo
collections. It provides the details of proposed solutions, conducted
experiments and experimental results. It also covers the details of
our newly collected dataset for event recognition in personal photo
collections.

8
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• Chapter 4 shifts the analysis from daily life events to natural and
technological disaster events. It presents a detailed description of
our proposed system JORD and the approaches we proposed for a
benchmark competition in MediaEval 2017.

• Chapter 5 draws the conclusions of this research work and discusses
the possible future directions.

9
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Chapter 2

Events in Single Images

2.1 Introduction

In recent years, event based analysis of multimedia content got great at-
tention of the research community. To this aim, a number of interesting
solutions have been proposed for event recognition. The existing works on
the subject mostly focus on an efficient representation of multimedia con-
tents, and on strategies to exploit all of available information to achieve
better performance in event recognition. In this regard, metadata, such as
tags, title, and temporal and geo-location information, have been heavily
exploited. However, metadata is not always reliable [72] and the recent
trend is to shift towards the analysis of visual information.

The state-of-the-art in visual-based event detection has so far revealed
considerable uncertainties and poor classification performances. We believe
that such limitations can be mostly attributed to the selection of the visual
features used for classification. Recently Convolutional Neural Networks
(CNNs) have been proven efficient in various application domains (e.g.,
object recognition and remote sensing). Based on these considerations,
we believe that deep learning can prove to be a breakthrough also in this
research area, providing a more detailed and complete description of the
visual content, and bringing the quality of the analysis one step closer to
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the performances of a human observer, who, in this area, still demonstrated
to outperform automatic systems. The main limitation of CNNs is their
requirement of a large number of annotated samples, which is the main
hurdle for its applicability in event discovery from single images. The
existing benchmark datasets for event discovery in single images are not
large enough to be used for training deep learning algorithms, in particular
convolutional neural networks.

Another important aspect to be taken into account is the proper use of
scene and object-level information. As demonstrated in [130, 93] a blend
of these two levels of information can provide significant improvements in
event recognition. However, most of the existing approaches tend to treat
the models for these different types of information equally by assigning
equal weights to each type of information. In our view, this is sub-optimal
as images of events exhibit a diversified set of chromatic and spatial con-
texts, then, some images may favor scene-level information over object
features and vice-versa. Thus, we believe that personalized weights should
be allocated to each model, based on its capacity in representing specific
pieces of information and features that are characteristic of the underlying
event.

Moreover, the current research in visual information-based approaches
to event recognition mostly focus on defining better representation and
classification schemes. However, no significant efforts have been made to
understand and analyze the event-salient visual elements in event-related
images. We believe, a proper use of such objects can help in improving the
performances of event recognition algorithms.

Based on these considerations, we proposed some solutions to mitigate
the limitations of state-of-the-art. The rest of the chapter presents our
proposed solutions for event recognition in single images.

12
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2.2 Related Work

The mainstream of the literature on event analysis is largely developed
along two main streams: (i) evidencing the most adequate representa-
tions schemes [130, 49], and (ii) establishing discriminative classification
paradigms [124].

In this regard, numerous contributions suggest exploiting additional in-
formation associated to the multimedia data (e.g., [32, 95, 24, 92, 39]).
This additional information may include user-supplied tags, titles, owner
and upload information along with comments from users. Moreover, geo-
location and temporal references could play an important role in event
recognition. Though such additional data, manifested in the form of meta-
data, has proven to be effective in event recognition, they also come with
many practical limitations, which make their use questionable [124]. These
challenges include wrong or no settings of camera’s time zone, missing
time-stamps and modification of tags. Moreover, the ambiguous mean-
ing of user-supplied tags also affects the performance of event recognition
methods relying on metadata [72].

Considering these limitations of metadata, visual content can be re-
garded as a valuable information for event recognition [32, 42]. For in-
stance, Dao et al. [31] proposed an event-type specific representation for
event related images incorporating three different types of features, namely
GIST [89], time and visual salient features [51]. Similarly in [42], visual in-
formation are used for event detection in videos. However, most of the ear-
lier works in this domain rely on hand-crafted visual features, such as SIFT
[74] and SURF [?], which cannot cope with the gap between image features
and event semantics [124]. To cope with such issues, Tsampoulatidis et al.
[123] proposed a multi-concept detection approach that combines different
visual concept detectors for classification of event-related multimedia con-
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tents. A similar approach is used in [67], where a fusion strategy is adopted
to combine different types of handcrafted visual features for a better rep-
resentation of event-related multimedia contents. This joint approach of
multi-concept detection through handcrafted features, partially solves the
problem. However, the literature shows that considerable improvements
are still possible by attacking the problem from different viewpoints: in-
troducing more discriminative visual features, improving models, mixing
content and context [124, 82].

More recently, from the viewpoint of feature extraction tools, deep neu-
ral architectures demonstrated cutting-edge performance in the multimedia
analysis, and proved to be effective in a variety of application scenarios.
Similar to other computer vision applications [57], the mainstream ap-
proaches to event recognition tend to capitalize on CNN architectures, ex-
ploiting both their capability of offering significant and compact representa-
tions of data, and their superior classification performance [93, 106, 129].
Due to the unavailability of large scale event-related datasets, most of
the efforts that are being spent in this domain concerning the optimiza-
tion of fine-tuning strategies to be applied to existing pre-trained models
[2, 130]. For instance, in [2], a pre-trained model [66] is fine-tuned on a
newly collected dataset covering 14 different social events. In [130], three
different network architectures, namely AlexNet [66], VGGNet [110] and
bn-inception [56], have been exploited for event recognition.

An ongoing trend is to jointly utilize the prior models pre-trained on Im-
ageNet [33] and Places dataset [144] for event recognition. More in detail, a
network pre-trained on ImageNet is expected to focus on object-centric in-
formation, while a network pre-trained on the Places dataset shows a better
response to scene-level information. Interesting solutions have been pro-
posed to efficiently map CNN models pre-trained on ImageNet and Places
datasets onto event recognition [130, 93]. For instance, in [49], object and
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scene-level information are used for event recognition in a hierarchical way.
These approaches adopt simple fusion strategies relying on equal weights
for object and scene-level information, which may not be convenient in
general, as object cues may dominate over scene information and vice-
versa, depending on the dataset. This suggests that allocating optimized
weights, tailored to different deep models may significantly improve the
performance.

It is also to be noted that little attention has been paid to understand
which are the key-visual elements in an event-related media item that help
an observer recognizing the underlying multimedia event. An attempt in
this direction is made by Rosani et al. [104], where a gamification technique
is used to extract event salient objects from event related images. In the
paper, a limited number of event saliency samples (35 samples per class)
are collected for 14 classes of social events. It is important to mention
that the concept of event saliency is different from the conventional visual
saliency [77].

Table 2.1 summarizes the most relevant literature on event recognition,
reporting the features, the datasets and the fusion mechanisms adopted by
each approach.

2.3 Solutions

2.3.1 Ensembles of Deep Models

Overview

In this part of the work, we propose to fuse different CNN models pre-
trained on ImageNet [33] and Places [144] datasets, exploring the capabili-
ties of three late fusion strategies: (i) Induced Ordered Weighted Averaging
(IOWA); (ii) Genetic Algorithms (GA); and (iii) Particle Swarm Optimiza-
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Table 2.1: Summary of some relevant works in event recognition: overall objectives,
features and dataset used for validation, fusion schemes, and a brief description of the
method.

Refs. Features Fusion Dataset Notes
[72] Meta-data and vi-

sual features
Early MediaEvent

[120]
Concatenates different types of information
(meta-data and hand-crafted visual features)

[104] SURF with BoW N/A SED2013 (Sub-
set)

The concept of event saliency was introduced
with some initial experiments. Provides very
few event salient objects for 14 events, only

[88] SIFT, BoW Early SED2013 [102] Low level features along with meta-data
[20] Textual and

hand-crafted
visual features

Hybrid Soccer and Con-
certs Event [91]

Firstly, aggregates the textual features which
are later used in combination with visual fea-
tures in a hierarchical way

[49] CNNs features Late PEC [19] It uses object and scene-level information ob-
tained via a single architecture in a hierar-
chical way. It also relies on late fusion with
equal weights for event recognition in personal
photo collections

[100] CNNs features Late USED [2] and
WIDER [138]

Equally treats object and scene-level informa-
tion from two architectures

[130] CNNs features Late UIUC [70],
Cultural
Events [38]
and WIDER

Focuses on other aspects of object and scene-
level information obtained from deep and
very deep architectures while simply adopting
equal weights mechanism for fusion

[138] CNN features Early Cultural Events
[38]

Fuses features extracted from different layers
of a CNN

[4] CNN features N/A SED [102] Provides a hierarchical approach with event
salient objects and full images. Does not di-
vide the test image into regions

[71] CNN features Late WIDER A combination of models of an architecture
fine-tuned on full images and image regions.
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tion (PSO). Furthermore, with respect to the proposed fusion schemes, we
assess the impact of various combinations of ten different CNN models,
from four commonly used deep architectures. We also evaluate the gener-
alization capabilities of the proposed framework by testing a dataset with
the weights learned on the other. Finally, we exhaustively validate the per-
formance of a variety of deep models along with their respective per-class
rates. Such rigorous analysis will contribute to creating a benchmark for
future deep learning based event recognition research.

In summary, we can synthesize the main contributions of this work as:

(i) Through the introduction of three efficient late fusion strategies, we
demonstrate that the ad-hoc fusion of an ensemble of deep models can
considerably outperform each individual model.

(ii) Stemming from the fact that deep learning is a staple ingredient in
many multimedia analysis and computer vision pipelines, we carry out
a thorough analysis of four well-known architectures, pre-trained on
object and places datasets, both individually and in different combi-
nations.

(iii) We carry out thorough experiments on three challenging benchmark
datasets and show that better scores are achieved as compared to
recent literature.

Proposed Methodology for the Ensembles of Deep Models

Figure 2.1 displays the block diagram of the proposed framework. It is
essentially composed of two stages: (i) feature extraction and classification,
and (ii) score-level fusion. In the first stage, CNN features are extracted by
means of a bunch of pre-trained CNN models, and the extracted features
are fed into an ensemble of Support Vector Machines (SVM), which provide
classification scores in terms of posterior classification probabilities. In
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the second stage, the obtained posterior probabilities are fused using the
proposed late fusion schemes. The first stage is rather standard, and we
mainly focus on the second part of the methodology. We opted for SVM
on the account of its proven efficiency in many applications, such as object
recognition [21] and remote sensing [16]. In the next subsections, a detailed
description of both stages is provided.

Figure 2.1: Block diagram of the proposed framework for Ensembles of deep models.

Feature Extraction and Classification
In order to conduct a thorough analysis and evaluation of deep fea-

tures for event recognition, we made reference to the four most commonly
used architectures in this domain, namely AlexNet [66], GoogleNet [114],
VGGNet [110], and ResNet [53]. Each network was pre-trained on both
object and Places datasets. AlexNet consists of 8 weighted layers, while
GoogleNet is composed of 22 layers. VGGNet and ResNet are available in
different configurations. In this study, we opted for both configurations of
VGGNet (VGGNet16 with 16 layers, and VGGNet19 with 19 layers), while
for ResNet we evaluated the configurations containing 50, 101 and 152 lay-
ers. Table 2.2 summarizes some characteristics of these CNN architectures
while a detailed description is available in the literature [66, 114, 110, 53].

For feature extraction with AlexNet, VGGNet16 and VGGNet19, we
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Table 2.2: Summary of the properties of the CNN models used in this work

CNN Model # Layers # Parameters Properties
AlexNet 8 60 M 5 convolutional and 3 fully con-

nected layers. GPU-based imple-
mentation of the convolution op-
eration. Total of 1.5 billions of
floating point operations per sec-
ond (FLOPS)

GoogleNet 22 102 M network in a network policy, re-
lies on the Hebbian principles and
multi-scale processing

VGGNet-16 16 138 M Stack of convolutional layers are
followed by 3 fully connected lay-
ers, convolutional layers are com-
posed of filters with small receptive
fields, 19.6 billions of FLOPs

VGGNet-19 19 144 M More deeper than VGGNet-
16 with same configura-
tions/techniques. 19.6 billions
of FLOPs

ResNet-50 50 25.6 M Deeper models with less num-
ber of parameters compared to
other models. Avoids the vanish-
ing/exploding gradients problem
with residual learning framework,
3.8 billion FLOPS

ResNet-101 101 44.5 M More deeper model with same
techniques. 7.6 billion FLOPs

ResNet-152 152 60.2 M More deeper, more parameters and
more FLOPs (11.3 billion)
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made use of the Caffe toolbox1; for GoogleNet and ResNet we relied on
Vlfeat Matcovnet2. Overall, we extracted ten feature vectors through four
different architectures for each image. AlexNet and VGGNet returned a
feature vector of size 4096; GoogleNet and ResNet (all configurations) pro-
vided feature vectors of size 1024 and 2048, respectively. These features
are then used to train individual SVM classifiers, which provide the clas-
sification results in the form of posterior probabilities.

Fusion of CNN Models
Coming to the second stage of the methodology, to jointly utilize the

results achieved by the ten classifiers, we propose three different mech-
anisms for score-level fusion. These methods are based on Induced Or-
dered Weighted Averaging (IOWA) operators, Genetic Algorithms (GA),
and Particle Swarm Optimization (PSO). In the next subsections, we de-
scribe each method in detail.

Order-Induced Score Fusion
The proposed fusion strategy is learning-free, which entails that the

weights are inferred directly from the posterior classification probabilities.
It is inspired by Induced Ordered Weighted Averaging Operators (IOWA)
by Yager et al. [141]. The essence of the proposed fusion strategy emerges
from the fact that different CNN models yield different classification scores
for a given set of event images. Thus, it is convenient to fuse their outcomes
assigning higher weights to the models that show higher confidence.

Let us assume that N is the number of the adopted pre-trained models,
and that an SVM classifier is associated to each model. The total number
of event classes at hand is denoted by M. Therefore, an NxM matrix is
built, whose entries correspond to the posterior probabilities of an image
with respect to all classes. Suppose pi, i = 1, 2, 3, . . . , N , is the score array

1http://caffe.berkeleyvision.org/
2http://www.vlfeat.org/matconvnet/
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pointed out by the ith classifier. The proposed IOWA fusion strategy aims
at gathering an ensemble of pairs [pi, oi]. Here pi is called the argument
value, while oi represents the corresponding order-inducing value, which
quantifies how confident the score pi produced by the ith classifier is (i.e.,
how correct the classification probabilities are). Hence, the IOWA opera-
tor, which represents the final decision as a weighted sum of the reordered
posterior probability vectors, is given by:

F (pi, oi) = 1
N

N∑
i=1

wisi (2.1)

where W = [wi, w2, . . . , wN ] denotes the respective weights, and S =
[s1, s2, . . . , sN ] denotes to reordered P = [p1, p2, . . . , pN ] in descending order
(i.e., posterior probability arrays are sorted according to their associated
inducing values oi).

Regarding the selection of the inducing value (i.e., oi), which gauges the
reliability of its corresponding argument value in the form of a probability
array pi, we adopt the standard deviation of the highest values in the array
of posterior classification probabilities pi returned by the ith classifier in
order to address the uncertainties in the (e.g., five) highest scores. Thus,
the event class with the closest similarity corresponds to the most probable
outcome in F .

Genetic Modeling of Deep Features
The second fusion scheme is based on GAs [108]. A Genetic Algorithm is

an optimization strategy that seeks for an optimal value (or a set of values)
that contribute to the minimization of a given cost function. Differently
from the previous approach, GAs require a training procedure: to seek
the optimal solution, the algorithm iteratively minimizes the output of the
cost function as depicted in Figure 2.2. As can be seen, the process usually
starts with an initial randomly generated population. Subsequently, the
fitness of each individual in the current generation is evaluated based on the
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fitness function, and fit individuals are selected for the next generation with
modified genome, iteratively. The process terminates either by reaching to
maximum number of generations or achieving a sufficient level of fitness.
Moreover, the crossover and mutation are the basic operators of GAs to
discover local and better (global) minimum/maximum, respectively.

Figure 2.2: Block diagram of the Genetic Algorithm optimization scheme.

Two key components determine the performance of GAs: (i) the defini-
tion of a suitable fitness function, and (ii) the structure of chromosomes. In
our case, the chromosomes denote the CNN models, while the fitness func-
tion aims at minimizing the accumulative classification error. Therefore,
we compute the posterior probabilities for each classifier on a validation
set in order to infer the weights. Given a test image, the obtained weights
are employed to linearly combine posterior probabilities as expressed in
Equation 2.2. Here, w(n) represents the weight while pn represents the
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probability vector pertaining to the nth model. P is the combined valida-
tion posterior probability.

p = w(1) ∗ p1 + w(2) ∗ p2 + ... + w(n) ∗ pn (2.2)

Based on the combined validation posterior probabilities, we compute
the accumulative accuracy on the validation set denoted as Aacc. Next,
the accumulative classification error is computed according to Equation
2.3, with the goal of finding the combination of weights that minimize the
classification error.

Y = 1−Aacc (2.3)

The weights learned on the training set via cross validation, are then
mapped on the test set. Details on GAs parameter selection are provided
in the experimental section.

Particle Swarm Optimization
The third proposed fusion method is based on Particle Swarm Opti-

mization (PSO) [15, 43]. PSO, inspired by the social behaviour of birds
flocking, is a stochastic optimization technique. Despite the many simi-
larities with GAs, PSO does not involve any evolution operators, such as
crossover and mutation, in the optimization process. It rather solves the
optimization problem by iteratively trying to improve a candidate solution
(particle) with respect to a given criterion. Figure 2.3 shows a block di-
agram of our PSO-based optimization approach. In total, it is composed
of 9 different phases starting from parameter settings, which is followed
by a random selection of a candidate solution. In our case, each com-
bination of weights can be referred to as a candidate solution while the
fitness function uses the same concept of accumulative classification error
used in GAs (Equation 2.3) as a qualitative criteria for a candidate solu-
tion. The weight selection encompasses three main steps; (i) evaluation of
each candidate solution according to the the fitness function; (ii) updating
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Figure 2.3: Block diagram of the PSO optimization scheme.

the individual best (Pbest) and global best (Gbest) fitness and positions by
comparing the new fitness output with the previous values; (iii) updating
velocity and position of each particle. The final step is mainly responsible
for the optimization abilities of PSO, where the velocity of the swarm is
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updated according to Equation 2.4.

vi(t + 1) = w ∗ vi(t) + c1r1[x′
i(t)− xi(t)] + c2r1[g(t)− xi(t)] (2.4)

Here, vi(t) and vi(t + 1) represent the velocity of the ith particle at
time t and t + 1, respectively. The position of the ith particle at time
t is represented as xi(t). Similarly, the best individual and global best
candidate solutions at time t are represented by x′i(t) and gi(t), respectively;
w, c1, and c2 are user-defined parameters; r1 (0 ≤ r1 ≤ 1) and r2 (0 ≤ r2 ≤
1) are the randomly generated values for each velocity update.

Also in this case it is necessary to train the optimizer on a pre-defined
set of samples, and then transfer the calculated weights to the test set.

2.3.2 A Hierarchical Approach with MIL Framework

Overview

In this work, we provide a detailed analysis of multimedia contents in
the context of event recognition in single images focusing on key visual-
elements and background information. In details, we investigate full im-
ages, which usually contain contextual clues of underlying event in the
background, as well as event-salient details, i.e. visual objects critical to
understand the underlying event depicted in the image. In particular,
we propose a two-step hierarchical approach based on the MIL paradigm
where initially full images are utilized for event classification, and then
event-salient features are exploited to further refine the classification de-
cision. For event-salient features, event-saliency maps introduced in [104]
have been used. The refinement process will benefit from event specific
visual objects, which are common in all positive samples of an event. In-
deed MIL paradigm will focus only on such features/objects common in all
positive samples of a particular event.
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Figure 2.4: Hierarchical approach to event discovery in single images: in the first phase full
images are analyzed in Multiple-instance learning framework for event detection. In the
second phase event-sailent details extracted as in [104] are exploaited for the refinement
of the classification.

Proposed Methodology

Figure 2.4 shows the block diagram of the proposed approach. As shown
in the block diagram, both phases (upper and lower rows) differ at the first
stage. In the first phase, Colour Structure Descriptor (CSD) [81] is used
for the representation of full images with background information while
in the second phase, first we used event-saliency maps [104] to extract
event-related visual objects. Subsequently, CSD descriptor is used for the
representation of these event-related visual objects that is then followed by
MIL based classification. To deal with multi-class classification problem, in
both phases we adopted one-against-one strategy where decision is made
on the basis of majority votes. All steps of the proposed approach are
discussed below.

Visual Cues Extraction
As aforesaid, in the refinement step of the proposed method, we ex-

ploit visual information not about the whole image but representing the
so-called event-salient parts of a picture. Indeed, it has been demonstrated
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: Visual objects extraction: (a) and (d) represent original images; (b) and (e)
represent their corresponding event-saliency maps; visual objects, extracted using event
saliency maps, are shown in (c) and (f).

in [104] that there exist special areas in event-related images which contain
key visual elements allowing human observer understanding the depicted
event. Such information is coded in event-saliency maps, as reported in the
two examples of Figure 2.5. An event saliency map, which is different from
the traditional concept of visual saliency [65], does not focus on perceptual
prominence but rather on event-related semantics of media. Event-saliency
maps have been created using crowd intelligence [104], where a gamifica-
tion technique with a large number of users has been proposed. In the
game, users are involved in competitive roles where one is asked to prevent
the other from recognizing the underlying event by hiding the key visual el-
ements, which help the human observer to recognize the underlying event.
Subsequently, binary maps are created of the images by highlighting the
parts containing event-salient information. Starting from these maps, we
can extract specific visual objects in images which contain important clues
for the detection of underlying event. In the refinement phase (second
phase), we used these event-related visual objects contained in the images
as instances of positive and negative bags for training purposes in the MIL
paradigm.
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Image Representation

This step is common in both phases of the proposed hierarchical ap-
proach. To this aim, we use Color Structure Descriptor (CSD) [81]. We
use CSD because it encodes both information: about the spatial struc-
ture as well as colors occurrence frequencies in an image using structure
elements. The number of structure elements used in CSD is usually 64.
The biggest advantage of CSD descriptor is that it uses no more space than
ordinary color histogram with significant improvement in performance [81].

Classification with MIL

In this work, we treat event recognition as a multiple instance learning
problem. The basic motivation comes from the fact that an event-related
image may contain multiple event-salient objects, and we do not know
which of them is responsible for the label of the image. To this aim, we
rely on the Citation K-Nearest Neighbor (C-KNN) based implementation
[128] of the MIL paradigm.

In order to map our event recognition task into MIL paradigm, we collect
images/event salient objects into bags, where each image (in the case of
full images) or event salient objects (in the case of event salient features)
is considered as an instance of the bag. Moreover, label is assigned to
complete bag instead of individual instances. For the prediction of an
event class/bag b, both R-nearest references (bags in its neighborhood)
and C-nearest citers bags, which consider b as their own neighbor, are
considered. For reference bags simply the k-nearest samples are taken
into account while for the selection of citer bags a ranking mechanism
is adopted. Suppose n is the number of all samples in a database Bs,
represented as Bs = {b1, b2, b3....bn}. Then, for a test sample bi ∈ Bs, the
rest of the samples are ranked according to the similarity to the sample bi.
For instance, the rank of a sample bj ∈ Bs with respect to bi is represented
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as Rank(bj, bi). Subsequently, the C-nearest citers are defined as:

Citers(bi, C) = {bj|Rank(bj, bi) ≤ C, bj ∈ Bs}. (2.5)

For the similarity measurement, a bag-level distance metric known as Haus-
dorff distance [128], which is the shortest distance between any two in-
stances from each bag, is used.

After the summation of R-nearest references and C-nearest citers in
terms of positive bags (denoted as bp) and negative bags (denoted as bn), a
majority voting approach is used for the prediction of a given test bag bi.
The bag bi is classified as positive if bp (# positive bags) > bn (# negative
bags), otherwise as negative as show in Equation 2.6.

bLabel =
{

1 if bp > bn

0 otherwise

}
(2.6)

Finally, in order to deal with multi-class classification, we adopt the
one-against-one strategy where the final classification is made on the basis
of majority voting. It must be noted that the only difference between
classification with MIL framework in the first and second phase is the type
of information used in positive and negative bags. In the first phase full
images are used as instances of bags while in the second phase only the
event-related visual objects contained in the images are used as instances
of bags.

Decision Making Module
In the proposed hierarchical approach, the decision is taken as follows:

first, the analysis is done on the whole image where the background in-
formation can strongly help the classification of the depicted event. If the
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MIL framework recognizes already a clear majority agreement among bi-
nary classifiers, then the decision is taken and the image is classified. Oth-
erwise, we proceed with the refinement step which takes into consideration
only event-salient visual objects in the image (i.e., bags of event-related
visual objects are provided as negative and positive samples to C-KNN)
and the final decision is made on the majority test. This way, we aim at
first recognizing events utilizing complete images. Since some events may
share very common backgrounds (e.g., concert and theater images usually
have similar backgrounds) so in such cases in the second step we exploit
the new concept of event-saliency to improve the classification based on
event-related visual clues (e.g., music instruments are better visual clues
for concert events).

2.3.3 A Saliency-based Approach

Overview

In this work, we aim to investigate how the objects that are more revealing
for a human observer can be utilized for an automatic event recognition
in single images? and how these objects can be extracted from event-
related images? To this aim, we propose a novel framework that exploits
event salient regions in a Multiple Instance Learning (MIL) paradigm. We
propose and conduct a crowd-sourcing activity for the selection of event
salient regions from a bundle of images for different types of events. The
ultimate goal is to choose a set of event salient regions for different events
that can be used to train a classifier. Our choice of choosing a crowd-
sourcing task is motivated by the need of finding out the most significant
image patches from a human perspective, being sufficiently generic also in
terms of cultural and societal background.

The second contribution of the work is at the classification stage, where
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a Multiple Instance classification (MIL) framework is adopted for the clas-
sification of a test image at the hand on the basis of the extracted regions.
Multiple Instance Learning (MIL) and classification has proven to be very
effective in many applications [109], and well fits our needs for region-based
approach to event recognition.

Proposed Methodology

As can be seen in Figure 2.6, there are four different stages of the proposed
approach. We start by extracting regions from event-related images at dif-
ferent scales. Next, in order to select event salient regions from the different
region proposals extracted in the first stage, we conduct a crowd-sourcing
task. The crowd-sourcing activity is followed by feature extraction, where
we use a pre-trained network VGGNet16 [110] for a better representation of
the selected regions. Event-salient regions are then assembled into positive
and negative bags for bag-level classification of the regions obtained from
the test images. At the end, we adopt one-against-one strategy to deal
with multi-class classification, where the final decision is made on the ba-
sis of majority voting. In the following sub-sections, we provide a detailed
description of the each stage of the proposed approach.

Figure 2.6: Block diagram of the proposed event-salient regions-based methodology.

Region Extraction and Pre-filtering
Images often contain information provided by the presence of objects

or details that make them unique and give humans the capability of un-
derstanding the underlying event. For example, concert images usually
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contain musical instruments (e.g., microphones, guitars, etc.). Similarly,
birthday images are often characterized by the presence of a cake and can-
dles. A proper use of these event-salient regions may help improving the
performances in event recognition. Therefore, we propose to divide images
into different regions, and propose bag-level classification of the regions in-
stead of classifying the whole image. The basic motivation of this approach
is to target only the event related objects and regions in the classification.

As we do not have any information of the exact location and scale of
the salient regions for event recognition, following the data driven selective
search approach introduced in [125], we obtain a number of region proposals
at different scales by combining exhaustive search and segmentation from
an image at hand.

A detailed analysis of the region proposals shows that a significant num-
ber of the regions obtained through Selective Search [125] are irrelevant
with respect to certain events, as well as for the event classification prob-
lem itself (i.e., they are not enough discriminative). Moreover, processing
more regions per image requires more processing resources and time. To
this aim, we first introduce a filtering stage, to filter out the less informa-
tive region proposals on the basis of their size and width-height ratio; in
particular we propose to remove very small and thin regions, leading to a
reduced set of image regions (on the average 15 regions per image). The
pre-filtering phase helps to reduce the processing time by dropping the less
informative regions from both test and training samples. This assumption
is verified by our initial experiments on the validation set, which shows
that the initial filtering reduces the processing time considerably without
any significant impact on the classification results.

Salient Regions Selection via Crowd-sourcing
In the pre-filtering phase, we remove some regions based on the size

and width-height ratio of the regions. However, still there are a number
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of regions which are either not enough discriminative or have strong visual
correlation with regions from other event classes. For example, concert and
theater images may have similar backgrounds. Similarly, fashion images,
although containing domain-specific objects, they usually contain elements
that have strong correlation with the images from other classes like exhi-
bition and conference. Moreover, event salient objects can be anywhere
in an image, and are very difficult to be identified automatically through
conventional visual saliency approaches [104]. To this aim, in order to
select more relevant image-regions for training purposes, we propose and
conduct a crowd-sourcing study where a large number of volunteers are
engaged. In order to reduce efforts in the crowd-sourcing task, we ran-
domly choose candidate regions from the pool of the extracted regions for
the crowd-sourcing study.

In the crowd-sourcing task, we ask the volunteers to give their opinion
about the candidate regions extracted after pre-filtering. In order to ensure
a correct outcome of the study, and according to the literature [103], we
tried to keep the task as simple as possible, making sure that most of the
answers can be considered reliable.

Figure 2.7 depicts the design of the proposed crowd-sourcing task. In
the proposed task, the extracted regions are presented to the users inde-
pendently and randomly (regions are randomly shuffled, thus users do not
know the order of appearance of the event classes). This strategy helps to
make sure that the volunteers make a decision on the basis of the current
region, only.

We asked the volunteers two different questions: (i) From these ”N”
possible events, which one do you think has been presented to you? In the
case of WIDER dataset, which contains 61 event classes, only a limited list
of possible classes is presented to the user, where the user has to choose
the relevant event, including the correct one. Another event class under
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Figure 2.7: The design of the crowd-sourcing task developed for the selection of the event
salient regions for training samples. At the top, an introduction to the task is provided
with details of the proposed system. Then, regions extracted from the event-related
images are provided one by one to the users involved in the crowd-sourcing activity for
annotation purposes. Two different questions are posed regarding the shown regions: the
first one asks to select the event class, the second one is meant to receive a motivation for
the selection.
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the name of ”Others” is included in the list, so users may select this option
in the case they are not sure about the region class.

The second question is an open question where the volunteers need to
briefly motivate their choice. This question aims to get feedback from the
users about the visual contents (i.e., objects and regions) that help humans
to perceive the underlying event in an event-related image. Moreover, a
selection of users’ answers has been inspected manually. This question has
been useful to evaluate the reliability of the volunteers’ answers participat-
ing in the study.

In Figure 2.8, we illustrate the whole process of region selection by pro-
viding a sample input image, sample region proposals and regions selected
after filtering phase along with sample event-salient regions.

Feature Extraction
The current literature in event recognition reveals that image represen-

tation schemes deriving benefits from deep neural architectures, namely
Convolutional Neural Networks (CNNs), has shown a significant improve-
ment over the conventional hand-crafted visual features. On this point,
there is an ongoing trend of utilizing existing deep models pre-trained
on object (ImageNet [33]) and places [144] datasets for the representa-
tion of event-related images. However, the earlier works in the domain
demonstrate better performance for deep learning models pre-trained on
ImageNet compared to the ones pre-trained on Places datasets [49, 131].
Moreover, in the proposed work we are mainly interested in event-specific
objects and regions instead of the complete scene. Therefore, we need an
image descriptor that can well represent such event specific objects in the
extracted image regions.

To this aim, for feature extraction, we opt for VGGNet16 [110] pre-
trained on ImageNet [33], which focuses on object centric information.
VGGNet16 is composed of a total of 16 layers. For further details about
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Figure 2.8: Region selection process: (1) represent an input image; (2) shows sample
region proposals; (3) provides some sample regions after filtering phase while (4) represents
sample event-salient regions obtained through crowd-sourcing study from the input image.

the network architecture, please refer to [110]. From each image region, we
extract a feature vector of size 4096.

Multiple Regions based Classification of an Image

As mentioned earlier, in the proposed approach, we divide the train-
ing as well as the test images into a number of regions of different sizes,
and then classify the image at hand on the basis of the extracted regions.
This problem can be easily mapped into a Multiple Instance Classification
(MIC) problem. Multiple instance learning and classification is a modified
version of supervised learning, where a classifier is trained on a set of bags
containing multiple feature vectors [10]. Similarly, the test bags are also
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composed of multiple feature vectors. Moreover, labels are assigned to the
bags, only.

In order to map our salient regions-based approach into multiple in-
stance classification, we treat each image as a bag of multiple regions,
where each region is treated as an independent instance of the bag. It is
to be noted that the crowd-sourcing study is carried out for the training
samples, only. On the other hand, for the test samples all the extracted
regions that pass the pre-filtering stage from each image are gathered into
a single test bag. Moreover, in the training bags we put image-regions ran-
domly from the pool of regions obtained in in the crowd-sourcing study,
which are not necessary to belong to the same image. On the other hand,
the test bags are composed of the image-regions extracted from the same
test image, only.

For the bag-level classification of image regions, we use an approach
inspired by C-KNN [127], by considering R-nearest references (bags in the
neighborhood of the test sample) and C -citers bags, which consider the test
sample as their own neighbor. The concept of citer bags is originated from
library sciences [41]. The underlying insight is if a paper cites a previous
paper (reference) both are considered to be related. Similarly, if a paper
is cited by another paper (citer) the paper is said to be related to its citer.
Thus, both citers and references are considered to be related to a paper.
This blend of references and citer bags helps to mitigate the effect of false
positive instances. The reference bags are simply the R-nearest neighbours.
However, for the selection of C -citers of the bag a ranking mechanism [127]
is adopted. For instance, if n is the number of total samples we have in a
database Bs, represented as Bs = {b1, b2, b3, . . . , bn}, then, for a test bag
bi, the training samples are ranked according to the similarity to the test
sample bi. For instance, the rank of a sample bj ∈ Bs with respect to bi is
represented as Rank(bj, bi). Subsequently, C -nearest citers with threshold
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c (i.e., the number of total citers to be selected) are defined as:

Citers(bi, c) = {bj|Rank(bj, bi) ≤ c, bj ∈ Bs} (2.7)

For the similarity measurement among bags, a bag-level distance metric,
the Hausdorff distance [127], is used. For instance, for the comparisons of
two bags X and Y , the Hausdorff distance is defined as follows:

hk(X, Y ) = kth
x∈Xminy∈Y ‖xi − yi‖ (2.8)

where xi and yj are the corresponding instances (i.e., image-regions in our
case) and kth is the kth ranked value, which decides the value of the overall
distance [127]. In our case, we opt for the minimal Hausdorff distance (i.e.,
k = 1) [127].

After the summation of R-nearest references and C -nearest citers in
terms of positive bags of image-regions (i.e., Bp = Rp + Cp) and negative
bags (i.e., Bn = Rn + Cn), a majority voting approach is used for the
prediction of a given test bag bi. The bag bi is classified as positive if Bp

(# positive bags) > Bn (# negative bags), otherwise as negative according
to Equation 3. In the case of a tie we assign a negative label to the test
sample as more weight is given to negative samples compared to positive
ones in multiple-instance learning paradigm [127]).

CLabel =
{

1 if Bp > Bn

0 Otherwise

}
(2.9)

Finally, in order to deal with multi-class classification we choose to
adopt the one-against-one strategy where results are obtained from all
binary classifiers. Subsequently, the final classification decision is made on
the basis of majority votes.
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Table 2.3: Event classes covered in USED.

Event Names Event Names

Concert concert
Graduation Conference

Mountain Trip Exhibition
Meeting Fashion
Picnic Sports

Sea Holiday Protest
Ski Holiday Theater/Dance

Wedding -

2.4 Datasets

In this section, we provide a detailed description of our self-collected dataset
USED along with other different datasets used for the validation of the pro-
posed approaches.

2.4.1 UNITN Social Event Dataset (USED)

Overview
As aforesaid, the existing benchmark datasets for event discovery in

single images are not large enough to be used for training deep learning
models. To this aim, in this work, we are providing a large collection of
event related images covering 14 different types of social events, as shown
in Table 2.3, selected among the most shared ones in the social network.
Table 2.4 shows the details of different datasets available for the evaluation
of event recognition algorithms in single images. As can be seen, our newly
collected dataset is the largest among the all in terms of total number of
images. The next subsections provide a detailed description of the dataset,
its collection and annotation processes and its organization.
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Table 2.4: Details of the datasets for event recognition in single images

Dataset Total Images Total Event-classes
SED [102] 57,165 7
EiMM [79] 13,219 8

Cultural Events Dataset [38] 11,000 100
WIDER [138] 60,000 61

UIUC [70] 1,579 8
USED (Ours) [2] 490,000 14

Dataset Collection and Annotation

The newly collected dataset is composed of 490,000 images, which are
arranged into 14 different types of social events. In order to make it bal-
ance, we collected an equal number of images (35,000) per event-class from
Flickr using the respective API. The dataset is downloaded between 7th
and 20th of September 2015 based on the event-related keywords. Since,
in this work, we intend to provide a benchmark dataset for visual analysis
of events. Therefore, in order to make sure the quality of the dataset, we
removed the outliers and borderline cases manually.

The collected images provide a good variety in terms of contents (e.g.,
it has indoor as well as outdoor images, single person images and group
pictures). We also tried our best to cover every aspect of the considered so-
cial events by collecting images for the same events with diverse contents in
terms of viewpoints, colours, group pictures vs. single portrait and outdoor
vs. indoor images, where the high variability of the represented information
can be effectively explored to ensure better performances in event classifi-
cation. For example, in graduation, sports and wedding event-classes, we
collected single person pictures, group pictures and the pictures taken at
the time of celebration. Similarly, in ski-holiday and mountain-trip classes,
our dataset covers both the pictures taken in green mountains as well as
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images of white and bare mountains. Another important characteristic of
this dataset is the diversity in culture. For example, in wedding image
collection, we tried our best to cover diverse cultures by collecting wedding
images from different cultures and communities (e.g., we have collected
wedding images from both Asian and European countries).

In the context of visual contents, there are certain event-classes which
usually overlap with each others. For instance, concert and theater/dance
events often have similar visual contents in backgrounds. In such situations,
for visual information based approaches to event detection, it becomes
difficult to differentiate among such event-classes. Such kinds of images
with overlapping contents/concepts have been observed in SED dataset
[102]. To cover this aspect of the events, in our dataset, we also provide
images having similar contents in the backgrounds with less noise (i.e.,
images with less resemblance with other classes), where precision in correct
association to a class can be achieved by exploiting visual information.
Figure 2.9 shows some sample images from the newly collected dataset.

As far as the annotation of the images is concerned, we labeled each
image with one of the 14 categories. To facilitate the retrieval and experi-
mentation process, we also provide an event id, representing an event type,
to each image in the dataset.

Dataset organization

The collected dataset is made publically available3. A user-friendly and
attractive interface has been provided to facilitate the research commu-
nity to download the dataset. As aforesaid the dataset is composed of 14
different social event-classes covering two different benchmarking datasets
i.e., EiMM and SED. In order to facilitate the downloading process, we
provide each type of event-related images in separate directories as well

3http://mmlab.disi.unitn.it/USED/
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Figure 2.9: Sample images from the newly-collected dataset.

as in single pools of test and training images containing images from all
event-classes. Thus, the users have options to download either the whole
dataset or selected event-classes according to their needs. We also provide
separate CSV files, containing image names and the corresponding event
classes and IDs, for each event-class.
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2.4.2 Social Event Detection Dataset (SED)

Social Event Detection Dataset (SED) [102] is a large scale benchmark
dataset created within the framework of the MediaEval 2013 competition
task on social event detection [102]. SED mainly covers 7 different types
of social events including: concerts, conference, exhibition, fashion shows,
protests, sports events and theater. It is important to mention that sports
events are, though composed of different sub events, considered as a single
class.

The dataset is provided in two subsets, namely training set and test
set. The training set contains a total of 27,754 images, which are collected
during 27th to 29th of April 2013. On the other hand, the test set is
collected between 7th and 13th of May 2013. It counts a total of 29,411
images. All the images in the dataset are downloaded from Instagram
using event-related key words.

SED also provides additional information, such as user’s tags, title, de-
scription and geo-location information. However, these additional features
are not present for all pictures. For example, geo-location information is
available only for 27.8% of the pictures. Similarly, 93.4% of images con-
tains title while at least one tag is available for almost all pictures. Figure
2.14 shows some sample images from SED dataset.

2.4.3 EIMM

EiMM Event Detection Dataset [79] mainly targets events related to the
personal spher, which are divided into two different categories (i) sport
events and (ii) social events. Table 2.5 provides the details of events classes
from both categories of EiMM dataset. All the images in the dataset are
downloaded from Picasa Web Album service4, and annotated through hu-

4http://picasa.google.com/
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Table 2.5: Details of EiMM Event Detection Dataset

Sports Events Social Events
Baseball Golf Concert Graduation

Basketball Hockey Mountain Trip Meeting
Motor Bike Rowing Picnic Sea Holiday

Cycling Skatting Ski Holiday Wedding
Swimming - - -

man annotators. The dataset also divides some events (e.g., wedding,
graduation and sea holiday) into sub-categories by providing sub-category
labels. For instance, wedding images are further divided into group pic-
tures, ceremony, party eating and unknown.

2.4.4 Web Images Dataset for Event Recognition (WIDER)

Web Images Dataset for Event Recognition (WIDER) [138] is one of the
most recently introduced datasets for the evaluation of event recognition
paradigms. WIDER holds a total of around 60,000 images from 61 different
event classes. It stems as most complex benchmark for event recognition
in still images to date covering diverse event classes. For instance, it con-
tains event categories from sports (such as football, basketball and tennis),
daily life events (such as shopping and meeting) and social events (such
as concert, celebration and funeral). Moreover, it also covers some specific
events, such as demonstration, riots, surgery and soldier marching and
drilling. Most of these event classes are taken from Large Scale Ontology
for Multimedia (LSCOM) [86]. Table 2.6 lists the event names covered by
WIDER dataset. Each event class contains a significant number of images
in both training and test sets. All the images are downloaded from Flickr
using the corresponding Api. Figure 2.14 shows some sample images from
WIDER.
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Table 2.6: Events covered by WIDER dataset

Event Names Event Names Event Names
Parade Handshaking Demonstration

Riot Dancing Car Accident
Funeral Cheering Election Campaign

Press Conference People Marching Meeting
Group Interview Traffic

Stock Market Award Ceremony Ceremony
Concerts Couple Family Group Photo
Festival Picnic Shoppers

Soldier Firing Soldier Patrol Soldier Drilling
Spa Sports Fan Students Schoolkids

Surgeons Waiter, Waitress Worker Laborer
Running Baseball Basketball
Football Soccer Tennis

Ice Skating Gymnastics Swimming
Car Racing Row Boat Aerobics
Balloonist Jockey Matador Bullfighter

Parachutist Paratrooper Greeting Celebration, Party
Dresses Photographers Raiar Racing
Rescue Sports Coach Trainer Voter
Angler Hockey People Driving Car

Street Battle - -

2.4.5 UIUC Sports Event Dataset

UIUC Sports Event Dataset (UIUC) is comparatively a small dataset re-
leased by Li et al. [70]. UIUC is considered as one of the oldest datasets
made publically available for the evaluation of event recognition paradigms.
It mainly covers 8 sports events, namely badminton, rowing, polo, bocce,
snowboarding, croquest, sailing and rock-climbing. The dataset is not bal-
anced; providing different number of images per event class. Table 2.7
provides the details of the number of images in each class of the dataset.

The dataset also provides some additional information in terms of the
complexity in recognition on the basis of human subjective judgment for
each image. The images from each class are divided into three different
categories, namely easy, medium and complex images. Moreover, the dis-
tance of the foreground for objects are also provided. Figure 2.14 provides
some sample images from UIUC Sports Dataset.

45



2.4. DATASETS CHAPTER 2. EVENTS IN SINGLE IMAGES

Figure 2.10: Sample images from WIDER dataset

Figure 2.11: Sample images from UIUC Sports dataset

Figure 2.12: Sample images from SED2013 dataset

Figure 2.13: Sample images from USED dataset

Figure 2.14: Sample images from all datasets
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Table 2.7: Details of UIUC Sports Dataset

Event Name # Images Event Name # Images
Badminton 200 Polo 182

Bocce 137 Rowing 250
Croquet 236 Rock-climbing 194

Snowboarding 190 Sailing 190

2.5 Experiments

2.5.1 UNITN Social Event Dataset (Benchmark)

In this section, we provide a detailed description of the experimental eval-
uation along with distribution of our self-collected dataset into training,
validation and test sets. Experimental results of the basic experiments
with a state-of-the-art CNN on the dataset to set a benchmark are also
discussed in detail.

Data Assemblage

In the experimentation process, the newly collected dataset is divided into
3 subsets, namely training, validation, and test sets by randomly selecting
images for each phase. For training (fine-tuning) of the Convolutional
Neural Network (AlexNet [66]), we used 20,000 images per class while for
validation and test purposes we used 7,000 images per class for each phase.
The validation set is used to estimate how well the model has been trained.
Thus, we used a total of 140,000 for training/fine-tuning purposes from
each subset. As far as the validation and test collections are concerned,
we used 49,000 images from each subset in both phases. It is to be noted
that, in order to be consistent with state-of-the-art, in these experiments
we train/fine-tune a separate model on each subset (i.e., one of the event
classes covered in SED and the other on the events of EiMM).
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Table 2.8: Confusion matrix of our network on the event-classes belonging to subset 1
(accuracy in percentage).

A
ct

ua
l-
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s

Predicted classes
Conc. Gra. Meet. Mount. Trip Pic. Sea Holi. Ski Holi. Wedd.

Conc. 74.00 11.27 8.15 0 6.45 .10 0 .01
Gra. .24 66.00 18.38 0 15.18 .18 0 0
Meet. .94 9.38 78.70 2.41 7.98 .47 .07 0
Mount. Trip 0 4.42 0 67.00 15.94 2.18 10.44 0
Pic. .98 5.65 12.62 8.68 54.74 2.97 .08 14.25
Sea Holi. .05 .31 1.10 14.32 10.20 74.00 0 0
Ski Holi. .21 2.15 13.67 30.22 5.48 .24 48.00 0
Wedd. .44 19.71 26.15 1.04 1.61 .01 .01 51.00

Results and Analysis

Experimental results of our CNN based approach to event recognition are
reported in Table 2.8 and Table 2.9 on the subset 1 and subset 2 of the
newly collected dataset, respectively. On the subset 1 (i.e., concert, grad-
uation, mountain trip, meeting, picnic, sea-holiday, ski-holiday and wed-
ding), we got an overall accuracy of 67% and 65.96% on validation and test
sets, respectively. As far as the performance of our trained CNN on the
event-classes from subset 2 is concerned, we achieved an overall accuracy
of 70.03% on the test set.

For a thorough analysis of the experimental results, we provide confu-
sion matrices of our CNN on both test sets as shown in Table 2.8 and Table
2.9. In Table 2.8, it can be seen that the proposed approach provides good
results on all classes of social events. However, some concepts/events are
misclassified. The confusion is typically due to the similarity of visual con-
tents, as an example in the case of graduation and meeting, and ski holiday
and mountain trip the backgrounds are visually correlated with each other,
which causes significant confusion among these event classes. The research
community is encouraged to provide novel strategies and efficient repre-
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Table 2.9: Confusion matrix of our network on the event-classes belonging to subset 2
(accuracy in percentage).

A
ct
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l-
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s

Predicted-class
Concert Conference Exhibition Fashion Protest Sport Theater

Concert 91.98 2.10 2.00 1.70 0 0 2.3
Conference .91 75.70 9.80 2.24 7.88 3.47 0
Exhibition .98 19.58 58.54 7.04 .84 2.95 10.01
Fashion 2.10 9.34 12.17 65.34 .61 2.41 8.01
Protest .77 9.90 8.62 2.64 74.58 3.47 0
Sports .34 5.84 4.61 2.81 10.17 72.21 4.02
Theater 14.78 10.18 8.40 12.20 2.47 .05 51.90

sentation schemes to tackle such issues. Best performances are achieved
on meeting, concert and sea holiday. We have slightly lower accuracy on
ski holiday class, which is most of the time confused with mountain trips.
Similarly, in Table 2.9, it can be seen that some events are confused with
each others, such as concert is confused with conference, exhibition and
protest while conference is confused with exhibition. There is no signifi-
cant miss-classification among event classes in this test set tough, except
between exhibition and conference, which are 19.5% times confused with
each other, due to the high perceptual correlation between these event
classes.

2.5.2 Ensembles of Deep Models

Experimental setup

In this part of the work, the objective of our experimental testing is man-
ifold. We want to assess the performance of each individual CNN model,
pre-trained on object and places datasets, along with the performance of
different combinations of such models for event recognition. Moreover,
we are interested in analyzing the effect of transferring weights from one
dataset to another, in order to prove their generalization capabilities. To
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attain these goals, we performed a sequence of experiments:

• First, we analyze the performance of ten individual CNN models from
4 different architectures on the large-scale dataset WIDER. This ex-
periment basically builds a basis for the next experiments conducted
in this work.

• Then, we investigate the performances of different combinations of the
CNN models, where the weights are learned through three methods
described in the previous section (IOWA, GA, and PSO) for each com-
bination. For a fair comparison, we also investigate the performance
of these combinations of CNN models when treated equally.

• Finally, we assess the generalization abilities of GA and PSO, swap-
ping the weights on two different datasets, and computing the classi-
fication results before and after swapping. This further draws an idea
about the cross-dataset transferability of the weights of the proposed
solution.

Experimental Results

This section reports a detailed description of the conducted experiments,
the results achieved, and their description and comparisons against the
state-of-the-art. Since GA and PSO require a learning phase, we use a
subset of the training set from all datasets for validation purposes. The
validation data is used to calculate the error rate in the fitness functions.
Although IOWA does not require learning, the same data are used for
training and testing to ensure a fair comparison.

Analysis of individual models’ performances
Table 2.10 shows the experimental results of our first experiment, where

we assess 10 different CNN models from 4 different architectures on WIDER,
including 2 different configurations of VGGNet (i.e., 16 and 19 layers). For
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CNN Model Avg. Acc. CNN Model Avg. Acc.
AlexNet (ImageNet) .4220 AlexNet (Places Dataset) .4154

VGGNet16 (ImageNet) .477 VGGNet16 (Places Dataset) .454
VGGNet19 (ImageNet) .479 VGGNet19 (Places Dataset) .4682

GoogleNet (ImageNet) .448 ResNet50 (ImageNet) .3010
ResNet152 (ImageNet) .3008 ResNet101 (ImageNet) .3006

Table 2.10: Performances of individual CNN models on WIDER (High and low performing
models are highlighted in bold)

ResNet, we evaluate the performance of all three configurations with 50,
101 and 152 layers. It is observed that deeper VGGNet19 pre-trained on
both ImageNet and places datasets performs slightly better than its coun-
terpart of 16 layers, and achieves overall the best performances. ResNet is
instead the worst performing, for all the three configurations.

Although there is no significant difference in the performance of models
pre-trained on ImageNet and Places datasets, the variation in the perfor-
mances suggests that in event recognition, object specific information and
scene-level information can well complement each other.

To better show the performance variations of different models for each
event class, we compute the standard deviation of the per-class perfor-
mance of all the classifiers in Figure 2.15. The limited performance of
ResNet in this task highlights how it strongly contributes in increasing the
standard deviation values. The standard deviation values provide evidence
about how differently these models respond to the same event classes, and
this is the main driver for the next set of experiments, where we want
to assess how different classification architectures could contribute to the
global classification goal using learned weights.

Besides providing the achieved results following the three optimization
methods mentioned above, we include for the sake of clarity and for a more
objective evaluation, also the combination of different architectures using
equal weights.
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Figure 2.15: Standard deviation of the performances of individual models per class on
WIDER.

Experimental results of different combinations of CNN Models
In the next experiment (see Table 2.11), we compare the performance

of different combinations of existing CNN models via four different fusion
techniques. It is to be observed that, for each pair of CNN models, the
weights for both GA and PSO are re-learned. Moreover, to conduct a fair
comparison, the parameter configuration is kept unaltered for all tests. In
the case of Genetic modeling, we use 1000 generations with a population
size of 50 and fitness limit of 0.5. For PSO, the maximum number of
iterations is set to 1000, and the upper and lower bounds are set to 1 and
0, respectively.

We initiate our analysis by combining models of the same architecture,
pre-trained on two different datasets (ImageNet and Places). We evalu-
ate the performance of 3 different architectures, namely AlexNet and both
configurations of VGGNet with 16 and 19 layers. As mentioned previously
the idea of having networks pre-trained on ImageNet and Places is to grasp
object centric and scene-level information at the same time. As can be no-
ticed in Table 2.11 this blend of object and scene-level information improves
the performance, significantly. In fact, the best combination (VGGNet19
ImageNet and VGGNet19 Places via IOWA based fusion) achieves a sig-
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nificant gain of 4% over the individual best model (VGGNet19 pre-trained
on ImageNet). This improvement in the performance encourages a further
exploration in this direction, where we try different combinations of 10
different models.

In this setup, the most accurate results are obtained with the combi-
nation of VGGNet19 and AlexNet, both pre-trained on ImageNet for all
the fusion methods adopted in this study. This confirms the results of our
initial experiments, where object-centric models provided a higher classi-
fication accuracy. The best results are achieved using IOWA; it is also
observed that GA and PSO provide comparable results with a slight ad-
vantage for PSO. The main strength of IOWA comes from its ability to
give more importance to the decision of the most confident models. On
the other side, less accurate results are observed when these models are
treated equally (i.e., assigned equal weights), confirming that it is conve-
nient to optimize the weights for the CNN models based on their merit in
discriminating diverse event classes. The gap in the performance of fusion
methods is more evident when a low-performing model (i.e., ResNet in our
case) is fused with other models.

We now investigate whether combining different configurations of the
same model pre-trained on the same dataset can improve the results. To
this aim, we combine both configurations of VGGNet with 16 and 19
layers, and we also test different combinations of the 3 configurations of
ResNet. The results reported in Table 2.11 show a slight gain in the per-
formance when combing different configurations of the same architectures,
pre-trained on the same datasets. It turns out though that it is more ben-
eficial to use different models instead of combining different configurations
of the same architecture.

In order to analyze whether it is feasible (in terms of performance and
computational complexity) to combine more models, in our next experi-
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Combinations
Fusion Methods

IOWA GA PSO Equal Weights
AlexNet ImageNet + AlexNet Places .5074 .4794 .4873 .4767

VGGNet16 ImageNet + VGGNet16 Places .5149 .5135 .5132 .5110
VGGNet19 ImageNet + VGGNet19 Places .5191 .5180 .5172 .4999

VGGNet16 ImageNet + VGGNet19 ImageNet .5003 .5012 .5021 .4891
VGGNet16 Places + VGGNet19 Places .4935 .4878 .4996 .4701

ResNet50 (ImageNet) + ResNet101 (ImageNet) .3330 .3310 .3319 .3309
ResNet50 (ImageNet) + ResNet152 (ImageNet) .3361 .3320 .3329 .3310

ResNet101 (ImageNet) + ResNet152 (ImageNet) .3274 .3261 .3256 .3216
VGGNet19 ImageNet + AlexNet ImageNet .5412 .5396 .5391 .5206

VGGNet19 ImageNet + AlexNet Places .5310 .5229 .5320 .5192
VGGNet19 ImageNet + GoogleNet (ImageNet) .5130 .5096 .5073 .4867

VGGNet19 Places+ AlexNet ImageNet .5251 .5173 .5201 .5130
VGG19 Places + GoogleNet (ImageNet) .4989 .5029 .4953 .5169
VGG19 Places + ResNet50 (ImageNet) .4291 .4225 .4285 .3918

AlexNet ImageNet + ResNet50 (ImageNet) .4110 .4162 .4210 .3903
AlexNet ImageNet + GoogleNet (ImageNet) .5097 .4974 .5032 .4982

GoogleNet (ImageNet) + ResNet50 (ImageNet) .4271 .4192 .4187 .3874

Table 2.11: Evaluations of different CNN models on WIDER using three different methods
for late fusion in the event recognition context (Highest and low performing combinations
are highlighted in bold).

ment we combine the available models for the classification of a test image
at hand. We first use all of them, and then we leave out ResNet (according
to the experimental results from Table 2.10). This experiment also al-
lows investigating which fusion method is more affected by a relatively low
performing model. Although combining more models requires more com-
putational resources, Table 2.12 shows an evident gain in the performances
when jointly using more CNNs. Another interesting observation is that,
in contrast to previous experiments, PSO-based method performs slightly
better than the other two methods. Moreover, although the individual
performance of ResNet is much lower compared to other models, it still
contributes in improving the overall accuracy for both IOWA and PSO-
based fusion methods. One of the possible reasons for this is its capability
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Method
Avg. Acc.

All models All except ResNet
IOWA .5840 .5798

GA .5826 .5838
PSO .5908 .5897

Equal Weights .5593 .5671

Table 2.12: Evaluation results of IOWA, GA, PSO, and equal weights late fusion on
WIDER by combining more than 2 models (Highest score is highlighted in bold)

of accurately classifying certain event classes.
Generalization analysis of learned weights
We finally analyze the generalization and transfer capability of the

learned weights across different datasets. In our third experiment, we
swap the weights learned on WIDER and USED. Considering that IOWA
is learning-free, this experiment is performed for GA and PSO, only. Ta-
ble 2.13 shows the results before and after exchanging the weights learned
through both methods. Although the expected reduction in the perfor-
mance can be seen for both methods, it is worth noting that the combina-
tion of more models still guarantees significant performance, thus demon-
strating good generalization capabilities.

Dataset
Avg. Acc. with GA Avg. Acc. with PSO

Before Swapping After Swapping Before Swapping After Swapping
WIDER .5826 .5522 .5908 .5612
USED .7875 .7685 .7991 .7848

Table 2.13: Impacts on the performance by swapping the weights learned on two different
datasets (WIDER and USED)

Comparisons against State-of-the-art
Although in this comparative study we are mainly interested in a de-

tailed evaluation of different CNN models and their combinations, we
want to also demonstrate the absolute performance of the proposed ap-
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WIDER Dataset UIUC Dataset

Method Avg. Acc. Method Avg. Acc.
Baseline Method [138] .397 Baseline Method [70] .7340

Deep Channel Fusion [138] .424 Places CNN Features [144] .9410
Rachmadi et al. [100] .4406 GoogleNet GAP [143] .9500

Wang et al. [130] .530 Wang et al. [130] .9880
Our Approach (IOWA) .5840 Our Approach (IOWA) .9854

Our Approach (GA) .5826 Our Approach (GA) .9870
Our Approach (PSO) .5908 Our Approach (PSO) .9887

Our Approach (equal weights) .5593 Our Approach (equal weights) .9731

Table 2.14: Comparison against state-of-the-art on WIDER and UIUC Datasets

proach by comparing the achieved results against best performing methods
[138, 100, 130, 70, 143, 2, 99] on three different datasets. To demonstrate
the superiority of the three fusion methods, we also include the compar-
isons of the same pool of network models by equally treating all the models
in the pool. Table 2.14 summarizes the comparison against best perform-
ing methods on WIDER and UIUC. On WIDER, our approach achieves
a significant gain of 5.4%, 5.26%, 5.58% and 2.93% over state-of-the-art
with IOWA, GA and PSO and fusion by equally treating all the models,
respectively. On the other hand, on UIUC the results are similar with the
best performing method but the dataset is comparatively smaller, with
a slight advantage in favour of the PSO-based fusion. Table 2.15 shows
the comparisons of our fusion methods against state-of-the-art on USED
dataset [2]. Our approach, for each fusion method, scores higher results
compared to the state-of-the-art approaches. In fact, our best combination
(PSO) achieves a gain of 7.9% over the best performing method on USED
dataset.

2.5.3 A Hierarchical Approach using MIL Framework

Experimental Setup

The event-saliency maps, we used in this work, are available for only 7
and 8 classes of social events from SED and EiMM dataset, respectively
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Methods Avg. Acc.

Baseline Method [2] .700
Rachmadi et al. [99] .72

Our Approach (IOWA) .7883
Our Approach (GA) .7875
Our Approach (PSO) .7991

Our Approach (equal weights) .7833

Table 2.15: Comparison vs state-of-the-art on USED dataset

[104]. Therefore, in this work, we consider only SED and EiMM datasets
for the validation of the proposed hierarchical approach to event discovery
in single images. Details of the datsets are provided in Section 2.4.

In this work, we conducted three different types of experiments with
different information for training purposes:

• First, we use full images with background information as training
samples. The basic insight of this experiment is to utilize the revealing
contextual information often contained in the background.

• Then, we rely on the event-related visual cues extracted with the so
called concept of event saliency [104] for training our classifier. This
experiment aims to investigate the importance of event salient visual
cues in event recognition.

• Finally, we combine both background information and event-salient
details where first full images are analyzed, and then event-related
visual objects are used to support the first decision.

During the experimentation process, we used a group of images as a single
bag. For the selection of number of images per bag, we tried out different
numbers of images per bag on the validation set. Although there was
not much variation in the performance of the proposed approach with the
number of images per bag, we achieved a slightly better results with five
images per bag. Therefore, in all experiments, we used a group of five
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images per bag in the training phase while the test bag/sample contains
only one image. In the case of event-related objects, since an image may
have more than one event-salient objects, therefore, we used every event-
salient object in an image as an instance of the bag.

Experimental Results

The experimental results are reported in Figure 2.16 where a comparison of
all three types of experiments conducted are provided in terms of an overall
accuracy on three test collections. As can be seen in Figure 2.16, compared
to event-related visual objects only, MIL paradigm performs better with
full images as training samples. This shows that background information
plays an important role in event classification. Although in event-related
images backgrounds usually contain rich contextual information as also
demonstrated by experimental results, during the experimentation pro-
cess we noticed that sometimes certain event-classes have been confused.
This confusion is due to the strong visual correlation among certain event-
classes. For instance, concert images share similar backgrounds with the-
ater/dance, and conference has visual correlation with exhibition. In order
to further investigate this issue, after the analysis of full images we added
a refinement phase, where event-salient details are used for training pur-
poses in a hierarchical way to avoid the confusion due to the background
information in the early phase. With the refinement phase we achieved
significant improvement over our other two types of approaches (i.e., single
phase experiments with full images and event-salient details only). As can
be seen in Figure 2.16, the hierarchical approach has an overall accuracy of
85.79% on test collection from SED dataset [102] while the MIL framework
with full images and event-salient features provides an overall accuray of
77.49% and 60.29%, respectively. Similarly, on test collections from EiMM
and SED datasets used in [104] the hierarchical approach provides better
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Test	  Set	  1	   Test	  Set2	   Test	  Set3	  
Full	  Images	   77.49	   84.74	   91.66	  
Visual	  Objects	   60.29	   77.33	   85.28	  
Hierarchical	  Approach	   85.79	   90.74	   93.68	  
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Figure 2.16: Comparison of event detection with full images, event-salient features and
hierarchical approach on three different datasets. Test set 1 represents the test collection
from [101] while test set 2 and test set 3 represent the test collection used in [104] from
SED and EiMM datasets, respectively.

performance compared to the individual single phase approaches demon-
strating the effectiveness of the proposed hierarchical approach.

We also provide a comparison of our approach with a baseline method-
ology presented in [104], which also exploits event-saliency. Figure 2.17
shows a comparison of our approaches with [104] on two test collections
from EiMM and SED datasets used in [104]. The overall accuracy of our
hierarchical approach on test collections from EiMM and SED datasets,
used in [104], is 93.68% and 90.74%, respectively, while the approach used
in [104] has an overall accuracy of 41.54% and 45.95% on EiMM and SED
datasets, respectively. Similarly, also in the case of single phases (i.e.,
MIL framework with full images and salient features only) our approach
outperforms the approach presented in [104] by a significant margin.

2.5.4 A Saliency-based Approach

Experimental Setup

As mentioned in Section 2.4, each of the datasets devotes a large portion
of data for training purposes. However, in order to reduce efforts in the
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Figure 2.17: Comparison of our approach with the baseline methodology presented in
[104] in terms of overall accuracy.

crowd-sourcing study, we use a subset of training samples. From SED2013
and UIUC datasets, we extract image regions from 150 and 30 randomly
selected images per class, respectively. Since USED and SED2013 share
similar event classes, we use the same regions as training samples for both
datasets. In the case of WIDER, we extract image regions from 200 ran-
domly selected images per class, mostly due to the complexity and the
dynamic nature of the events. Moreover, the event classes from WIDER
dataset, compared to the other datasets, have closer visual correlation with
each others. For example, we have close resemblance among soldier firing,
soldier drilling, and soldier marching events. This strong similarity makes
the recognition task more challenging, and therefore a higher number of
samples would be desirable to allow a better discrimination among classes.
This is also confirmed by the crowd-sourcing volunteers as we observed a
higher number of regions tagged as ”others” for WIDER.

As aforesaid, the crowd-sourcing study has been conducted for the selec-
tion of regions in training samples only, which are then randomly assembled
into bags. The number of regions per bag has a significant impact on the
processing time (i.e., using a higher number of image regions per bag will
take more time to be processed). Therefore, the most important param-
eters to be defined in the proposed approach are the number of images
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per training bag as well as the number of citers and reference bags. To
this aim. we validate our approach using 3 different configurations with
5,10 and 15 regions per bag on the validation set. As far as the test bags
are concerned, we used all the regions except the ones discarded in the
pre-filtering phase. As far as the number of citer and reference bags is
concerned, we tried different combinations on the validation set to find the
best values. At the end, we choose 3 references and 5 citer bags.

Experimental Results

In this section, we provide the analysis of our crowd-sourcing study along
with the detailed description of the conducted experiments for event recog-
nition in single images.

Crowd-sourcing Analysis

All in all, in the crowd-sourcing task, we received around 25,000 re-
sponses from more than 400 distinct volunteers for 76 different events. On
the average each volunteer investigated more than 60 image regions. We
discarded 47 responses because the answers in the open question demon-
strated the difficulty of the user in understanding the task or revealed
inconsistencies between the question and the answer. For each image re-
gion we have at least 3 responses from 3 different volunteers, and put them
into the bags of an event class with majority of the responses. Figure 2.18,
shows some sample regions along with the tags provided by the volun-
teers. There are also a number of image regions for which the majority
of volunteers are not sure, and are tagged as ”others”. Figure 2.19 shows
some sample regions which are tagged as ”others” by the volunteers. Such
regions are discarded from the training samples.
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Figure 2.18: Sample regions tagged by the volunteers as concert, conference, protest and
exhibition (top to down) during the crowd-sourcing task.

Figure 2.19: Sample regions from concert, conference and sports images (top to down)
tagged as others by the volunteers.

Overall in SED2013 and UIUC Sports Events datasets we observed a
higher precision in the answers of the volunteers. This cannot be said
instead for WIDER, where we observed a certain degree of uncertainty in
the event class assignment5.

Moreover, having a closer look into the answers of the second question
from the volunteers that participated in the study reveals interesting facts
about the objects and regions a human thinks should be associated to a
specific event. For example, in concert images volunteers tagged the regions

5The created dataset of the selected event salient regions will be made publicly available upon accep-
tance of the paper
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Table 2.16: Classification results in terms of accuracy per class on SED Dataset

Event Acc. Event Acc.
Concert .916 Conference .856

Exhibition .868 Fashion .963
Protest .892 Sport .893
Theater .950 - -
Overall Acc. .911

based on the musical instruments and the lighting effects. Similarly, in all
sports events, volunteers tend to tag the regions based on the sport goods
and kits, such as tennis racket and ball, baseball bat and ball.

Event Analysis
In this section, we analyze the importance of event-salient regions in

event recognition. We tested our method with different bag sizes, to de-
termine the best trade-off between computational complexity and classifi-
cation accuracy. On the validation set, we observed similar performances
by using 5, 10 and 15 image regions per training bag, therefore in order to
limit the computational requirements in our experiments we use 5 regions
per bag in the training samples.

In order to provide a thorough analysis, we validate our approach on four
different datasets namely, SED2013, USED, UIUC Sports and WIDER. Ta-
ble 2.16 provides the experimental results of our approach on SED2013. As
can be seen in Table 2.16, our approach provides overall better performance
on almost every event-class of the dataset. Exceptions can be noticed on
events containing more distinguishable objects and regions, such as con-
cert and theater, where the performance is significantly superior. We also
observed that some test samples from exhibition and conference events are
mis-classified as fashion, a problem that was evident also when conducting
the crowd-sourcing study.

On WIDER our approach achieves an overall accuracy of 55.04%. Table
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Table 2.17: Classification results on WIDER dataset [138] in terms of accuracy per class

Event Acc. Event Acc. Event Acc.
Parade .546 Handshaking .410 Demonstration .839

Riot .260 Dancing .475 Car Accident .743
Funeral .506 Cheering .285 Election Campaign .225

Press Conference .689 People Marching .267 Meeting .666
Group .499 Interview .328 Traffic .597

Stock Market .563 Award Ceremony .591 Ceremony .415
Concerts .373 Couple .465 Family Group .281
Festival .382 Picnic .681 Shoppers .547

Soldier Firing .621 Soldier Patrol .690 Soldier Drilling .357
Spa .804 Sports Fan .269 Students Schoolkids .238

Surgeons .631 Waiter, Waitress .685 Worker Laborer .425
Running .716 Baseball .656 Basketball .569
Football .675 Soccer .550 Tennis .741

Ice Skating .718 Gymnastics .648 Swimming .726
Car Racing .747 Row Boat .798 Aerobics .506
Balloonist .463 Jockey .364 Matador Bullfighter .732

Parachutist Paratrooper .684 Greeting .267 Celebration, Party .482
Dresses .735 Photographers .359 Raiar Racing .477

54 .427 Sports Coach Trainer .161 Voter .346
Angler .462 Hockey .550 People Driving Car .618

Street Battle .229 - - - -
Overall Acc. .5504

2.17 shows the results on the individual events. In contrast to SED2013,
performance on the event classes from WIDER are very diverse. In fact
for certain events, such as riot, spa and some sports events (e.g., tennis
and ice skating) the proposed approach performs very well. This is mostly
due to the distinctive visual features and image patterns that appear in
the scene. On other classes the performances decrease significantly, mostly
because of the complexity of the events themselves.

We also compare our approach against state-of-the-art on 4 different
datasets. To show the significance of event-salient features, we provide
the comparison of our approach against the best performing methods on
each dataset. The gain our approach achieves over the state-of-the-art is
reported in Table 2.18.

The comparisons on WIDER dataset [138] are provided in Table 2.19.
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Table 2.18: Comparisons against state-of-the-art on SED2013.

Method Avg. Acc.
Schinas et al. [107] .334
Rosani et al. [104] .4595
Ahmad et al. [2] .7003
Ahmad et al. [4] .8579
Our Approach .9115

Table 2.19: Comparisons against state-of-the-art on WIDER [138].

Method Avg. Acc.
Baseline Method [138] .397

Deep Channel Fusion [138] .4204
Rachmadi et al. [100] .4406

Init. based object-Scene Transferring [130] .508
Knowl. based object-Scene Transferring [130] .520
Data based object-Scene Transferring [130] .526

Data + Knowl. based object-Scene Transferring [130] .530
Our Approach [3] .5504

As can be seen in Table 2.19, our approach shows promising results on
these complex event classes. As mentioned earlier, in order to reduce the
efforts in crowd-sourcing study, instead of complete training samples, from
each event class we use a subset of training data. We have an overall gain
of 2.04% over the state-of-the-art, using only a subset of the training set,
which shows the significance of the proposed approach.

The comparisons on USED [2] and UIUC Sports Events dataset [70] are
provided in Table 2.20 and Table 2.21, respectively. Our approach achieves
a significant gain of around 5% against the state-of-the-art on USED. The
performance obtained on UIUC sports dataset, are instead comparable
with the state-of-the-art, possibly due to the limited size of the dataset.
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Table 2.20: Comparison against state of the art on USED.

Methods Avg. Acc.

Baseline Method [2] .700
Rachmadi et al. [99] .720
Our Approach [3] .771

Table 2.21: Comparisons against state of art on UIUC Sports Dataset [70].

Methods Avg. Acc.

Baseline Method [70] .7340
ImageNet CNN Features [144] .9440

Places CNN Features [144] .9410
GoogleNet GAP [143] .9500

Object-Scene Transferring [130] .9880
Our Approach [3] .9838

2.6 Summary

In this chapter, we presented three different solutions to event recognition
in single images along with a benchmark dataset. We conducted a com-
prehensive analysis of the state-of-the-art deep models and assessed their
individual as well as joint performance. We also analyzed the importance
of event-salient objects and regions in event recognition where event-salient
objects are extracted through a crowd-sourcing study. We demonstrated
that it is possible to achieve superior event recognition performance by
selecting the best models and combining them in an optimal way through
appropriate late fusion strategies. Moreover, we showed that better results
can be obtained by targeting the so called event-salient visual objects in
event recognition.
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Chapter 3

Events in Photo Collections

3.1 Introduction

As aforesaid, most of the existing literature on event recognition focus on
the analysis of single images while very few attempts have been made for
event recognition in personal photo collections [124, 28]. In contrast to
event recognition in single images, there are a number of factors that make
event recognition in personal photo collections a more challenging task. In
fact, in event recognition from single photos, the visual content of photos
is usually strictly related to the labeled event. However, personal photo
collections tend to have a large portion of ambiguous and irrelevant photos,
which do not necessarily match a particular event tag. Figure 3.1 shows
some sample irrelevant photos in the context of event recognition in per-
sonal photo collections. In details, there can be face close-ups (which could
be part of any event class) or just images where the specific objects (e.g.,
birthday cake and candles in birthday images) are not present. Moreover,
most of the events in personal photo collections are composed of multiple
sub-events.

Another important challenge for event recognition frameworks in per-
sonal photo collection is the weakly-labeled training data. In fact, in event
recognition in personal photo collection training labels are available at
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Figure 3.1: Sample irrelevant images from the collections: images not containing objects
of interest (top) and images with face close-ups (bottom)

album-level only.

3.2 Related Work

To tackle event recognition in personal collections, some existing works
use Hidden Markov Models (HMMs) [36] to consider the time gap between
photos[19]. On the other hand, Tang et al. [117] approach the problem us-
ing a probabilistic fusion of different classifiers trained on manually-selected
pictures from a collection. In another work [121] from the same authors, an
object centric approach is proposed where Histogram of Gradient (HoG)
[30] are used to capture objects of interest in an image. A similar strategy
is adopted by Tsai et al.[122], which mines training samples for the most
frequent object patterns; object patterns are then ranked according to their
discrimination ability for training purposes.

Similarly, Guo et al.[49] use average and aggregated visual features ex-
tracted with multiple Convolutional Neural Networks (CNNs) [66] of all
pictures in a collection for event recognition in a hierarchical way. Initially,
photo albums are classified via a coarse event classifier trained on features
extracted with Convolutional Neural Network (CNN) pre-trained on places
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datasets [144]. Subsequently, CNN features extracted with AlexNet [66]
pre-trained on ImageNet [33] are used to train fine event classifiers. Sim-
ilar visual features extracted via Convolutional Neural Networks (CNNs)
pre-trained on ImageNet and Places datasets are used by Bach et al. [13]
in a probablistic graphical model.

In addition to visual features, some works also utilize the additional
information available in the form of meta-data for event recognition in
personal photo collections [45, 63]. For instance, Namaan et al. [85] rely
on temporal and geo-location information for the organization of photo
collections. Similarly, in [46] a combination of visual and temporal infor-
mation are used to train four different classifiers. This work mainly covers
a limited number of indoor and outdoor events.

Although a number of interesting solutions have been proposed for event
recognition in personal photo collections, most of the existing approaches
particularly the ones relying on supervised learning lack in dealing with
non-relevant images in photo albums annotated at album-level only, which
may significantly affect their performance, as demonstrated in the experi-
mental validation of more recent works in this domain [49, 13, 46].

3.3 Solutions

3.3.1 MIL based Classification of Multiple Images

Overview

Despite the variations in content, there are certain objects or features that
are common to all albums of a particular event, and are crucial for the iden-
tification of underlying events (e.g., birthday albums usually have images
of a cake)[104]. The key to success in event recognition in photo collec-
tions consists also of the ability to identify such images across all albums.
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Identifying such images within the example/training albums, with a large
number of ambiguous images, remains a hard problem for the conventional
approaches relying on supervised learning.

In this work, we propose a novel pipeline for event recognition in per-
sonal photo collections relying on a Multiple Instance Learning (MIL)
paradigm. MIL is a modified form of supervised learning, which fits well in
applications with weakly labeled data. This strategy aims at minimizing
the effects of ambiguous photos in the learning and prediction phases. The
underlying insight of the MIL-based approach, we propose, is its suitability
for applications with polymorphism and part-whole ambiguities [12]. Such
capabilities make MIL strategies a better choice also in a number of other
computer vision tasks [126]. In the context of event recognition in personal
photo collections, polymorphism ambiguities refer to the fact that photo
albums may contain images representing different sub-events of a partic-
ular event, and it is not known which of these images is responsible for
the label of the album. Similarly, the part-whole ambiguity represents the
annotations at album-level, instead of each image inside the albums.

The important benefits of the proposed approach are: (i) it guarantees
higher performances even in the presence of irrelevant photos in weakly-
labeled data; (ii) event classification is achieved with a reduced number
of training samples per class; (iii) computation complexity is reduced by
using a limited number of images per bag as detailed later.

The main contributions of this work are: (1) we propose a novel pipeline
for event recognition in personal photo collections relying on a MIL paradigm
that outperforms state-of-the-art approaches; (2) we provide a detailed
analysis of the trade-off between classification performance and computa-
tional cost through extensive experimental evaluation (3) we propose an
image dataset containing a large number of photo albums per event.
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Figure 3.2: Block diagram of the proposed methodology for event recognition in personal
photo collections.

Methodology

As can be seen in Figure 3.2, the proposed solution mainly consists of three
different steps. In the first step, we use Convolutional Neural Networks
(CNNs) features for the representation of images in photo albums. After
feature extraction, photo albums are divided into negative and positive
bags for MIL-based classification, where each bag contains multiple images
from a photo album. To deal with multi-class classification, we adopt a
one-against-one strategy, and the final classification decision is made on
the basis of majority voting.

Feature Extraction
The state-of-the-art in visual-based event recognition has so far revealed

considerable uncertainties with ample room for improvement. We believe
that such limitations can be mostly attributed to the selection of the visual
features used for representation. In fact, as also reported in the experimen-
tal validation of some of the existing works [104], conventional approaches
to event recognition in single images, relying on handcrafted visual features,
cannot cope with high complexity and variations in event-related multime-
dia contents. On the other hand, deep models have proven to be very
effective in different application areas, such as image and video analysis, as
in the Cultural event recognition challenge introduced at ChaLearn Look-
ing at People [106, 93], and TRECVID event detection task [40]. Based
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on these considerations, in this work we choose CNN features for image
representation, and we use VGGNet [110], pre-trained on ImageNet ob-
ject dataset, as a feature extractor. The motivation for the selection of
object-level features is due to the typical association that objects have
with events. For example, concert images usually contain musical instru-
ments (e.g., microphones, guitars, etc.). Similarly, birthday images are
often characterized by the presence of a cake and candles. We extract a
4096-dimensional feature vector from each photo in the dataset using Caffe
toolbox2.

Classification Via MIL
Considering the weak labeled and ambiguous data in personal photo

collections, for conventional approaches relying on supervised learning it
becomes hard to identify which photos in the training albums are relevant.
However, this problem fits well in MIL [127, 136, 133], which is a varia-
tion of supervised learning, conceived for applications with incomplete or
ambiguous knowledge about training labels. In MIL, training labels are
assigned to the bags of instances, only.

In this work, in order to map event recognition in personal collections
into a MIL problem, each image in an album is treated as an instance of a
bag representing the album. For the prediction of a given test album a, we
adopt a k-nearest neighbor approach, by considering both R-nearest refer-
ences (bags in its neighborhood) as well as C -citers bags, which consider
album a as their own neighbor [127]. This blend of references and citer
bags helps to mitigate the effect of false positive instances in positive bags.
The reference bags are simply the R nearest neighbors. However, defining
C -citers of an album is slightly more complex, and a ranking mechanism
is used to this aim. For instance, if n is the number of all example albums,
represented as As = a1, a2, a3, . . . , an, then, for an album ai ∈ As, the rest

2http://caffe.berkeleyvision.org/
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of the albums are ranked according to the similarity to the album ai. For
instance, the rank of a sample aj ∈ As with respect to ai is represented as
Rank(aj, ai). Subsequently, c-nearest citers are defined as:

citers (ai, c) = aj|Rank(aj, ai) ≤ c, aj ∈ As (3.1)

where c represents the number of citers to be used.
For similarity measurement, a bag-level distance metric, the modified

Hausdorff distance [127], is used. In contrast to the original implementation
of Hausdorff distance, the modified version is less sensitive to outliers. For
instance, for the comparisons of two bags/albums X and Y , the modified
Hausdorff distance is defined as follows:

hk(X, Y ) = kthminx∈Xy∈Y ‖xi − yi‖ (3.2)

where X and Y represent the two bags/albums, xi and yj are the corre-
sponding instances and the kth ranked value decides the value of the overall
distance[127]. In our case, we opt for the minimal Hausdorff distance (i.e.,
k = 1) [127].

After the summation of R-nearest references and C -nearest citers in
terms of positive bags/albums (i.e., Sp = Rp+Cp) and negative bags/albums
(i.e., Sn = Rn + Cn), a majority voting approach is used for the prediction
of a given test bag/album a according to Equation 2:

CLabel =
{

1 if Sp > Sn

0 otherwise

}
(3.3)

Finally, in order to deal with multi-class classification, we adopt the
one-against-one strategy where we trained n ∗ (n− 1)/2 binary classifiers.
Subsequently, the final classification decision is made on the basis of ma-
jority voting where a class with more positive labels is selected as the final
classification outcome.
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3.4 Experiments

3.4.1 Datasets

For the experimental evaluation of the proposed work, we use two large-
scale datasets namely (i) Personal Events Collection (PEC) released by
Bossard et al. [19] and (ii) the one collected by ourselves. Although PEC
[19] provides a sufficient amount of photos (61,000) assembled into 807
albums from 14 different events, a larger portion of them belongs to the
training set while the test set contains only 10 albums per event. Table
3.1 provides the details of the benchmark dataset. Moreover, it also lacks
a large number of photo albums per event. Therefore, in order to conduct
a more thorough evaluation of the proposed approach, we have collected
a second dataset, composed of 7 different event classes and 662 albums.
Each album contains at least 20 photos, covering different aspects of the
underlying event. All the photos are downloaded from Flickr. The details
are summarized in Table 3.2.

In contrast to other approaches, our system does not require large
amount of data to train the classifier. Therefore, we use a large portion
of our dataset for testing purposes. We use 20 albums per event-class for
training, 60 for test, and 20 albums for validation, in order to determine
the model parameters. As far as the second dataset is concerned, training
and test sets have been already defined in the corresponding paper [19].

3.4.2 Experimental Settings

In order to validate the proposed algorithm for event recognition, we test
it by changing the number of images per bag (album) to understand the
trade-off between classification performance and computational cost. There-
fore, the most important parameters to be defined are the number of citers
and reference bags as well as the number of images used per bag.
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Table 3.1: Details of the dataset released in [19]

Event # albums Event # albums
Birthday 60 Cruise 45

Childbirthday 64 Easter 84
Christmas 75 Exhibition 70
Concert 43 Graduation 51

Halloween 40 Hiking 49
Road-trip 55 Saint Patrick’s Day 55
Wedding 69 Skiing 44

Table 3.2: Details of the proposed dataset.

Event # Albums Event # Albums

Concert 100 Fashion 100
Conference 100 Protest 100
Exhibition 62 Sports 100

Theater 100 Total Albums 662

We validate our approach using 7 different configurations, randomly
selecting 1 to 15 images per test bag, and 5 to 15 images per training
bag, on the validation set. As far as the number of citers and reference
bags is concerned, after an extensive test of the possible combinations, we
opted for 3 references and 5 citers. Some of the combinations we tried are
provided in Table 3.3.

Table 3.3: Parameter analysis for reference and citer bags on the validation set

No. of References No. of Citers Accuracy on the validation set
1 1 .80
2 2 .84
3 3 .84
4 4 .86
5 5 .83
3 5 .87
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3.4.3 Experimental Results

According to the results achieved on the validation set, we achieve the high-
est accuracy using 15 images per bag in training (see Table 3.4). Therefore,
in the experiments on the test set we use 15 images per bag in the training
samples. Similar to the training phase, we are now required to find an
optimal number of instances/images for each bag for the test set. Also in
this case, we conducted experiments with 7 different bag-sizes (see Table
3.5).

As can be seen in Table 3.5, there is a significant improvement in the
performance of the proposed approach when using multiple images in test
bags, with a difference of 12% when using five images instead of a single
one. This demonstrates that using multiple images for event recognition re-
duces the errors in classification, as we have more chances of picking up an
image that well represents the underlying event. However, as the number

Table 3.4: Accuracy on the validation set with different number of randomly selected
images in training and test bags (in %)

Test
1 2 3 4 5 10 15

T
ra

in
in

g 5 75.00 77.14 78.57 83.57 86.42 87.14 86.42
10 76.42 80.71 81.42 85.00 89.28 89.28 89.82
15 77.85 80.00 82.85 87.85 92.14 91.42 92.85

of images in the bag increases, the performances stabilize. This is because
similar events also share similar visual features, at least at the bag/album
level, and our approach is able to capture such common pattern/features
even with a limited number of images from each album, without compro-
mising the performances significantly and, instead, considerably reducing
the computational burden. In fact, using 15 images per bag/album turns
out to be about 3 times slower, compared to using a bag-size of 5 images.
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Table 3.5: Performance of our approach with different number of photos in test bags on
the proposed dataset

#photos in Test Bags Avg. Accuracy (%)
1 84.29
2 87.28
3 89.60
4 94.45
5 96.48
10 96.98
15 96.50

Table 3.6: Comparisons against best method in state-of-the-art approaches, tested on the
dataset[19]

Method Accuracy (%)
HAS [49] 91.04

SVM-CNN (majority voting) 89.01
MIL-SMO 93.89

Our Approach 96.48

We also provide a comparison of our approach against the state-of-the-
art. On our dataset, the proposed approach achieves an average accuracy
of 96.48% with an improvement of 5.44% over the state-of-the-art method
[49], which attains an average accuracy of 91.04% as shown in Table 3.6.

The comparison results on the benchmark dataset [19] are shown in
Table 4.1. Our approach has an overall gain of 8.95% over the state-of-
the-art. We observed that the state-of-the-art methods especially the ones
relying on aggregated score of all photos in an album (e.g., AgS [19]) are
badly affected by the irrelevant photos in albums. The average feature vec-
tors adopted in HAS [49] leads to expected mis-classification if an album
contains a large number of ambiguous photos. The same pattern has been
observed on both datasets, where the existing approaches show poor per-
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formance on the albums with more ambiguous photos. For instance, state-
of-the-art achieve poor performances on events, such as birthday, children
birthday, and Easter collections. We also perform some additional exper-
iments with SVM trained on VGGNet features along side with an alter-
native implementation of Multiple-instance Learning paradigm with SVM
(MIL-SMO). In the experiment with SVM without MIL, we classify each
and every image in the test albums, and the final decision is made on the
basis of majority voting. We achieve an average accuracy of 82.30% with
SVM without MIL paradigm while the MIL-SMO implementation achieves
an overall accuracy of 91.53%, which shows the superiority of MIL strategy
in this particular application.

Moreover, we also investigate the performance of the reference method
[49] with different configurations, although not foreseen in the original
work. Instead of all photos in an album, we use 15 randomly selected
images from each album to analyze its performance using less data, and
achieve a significant reduction in performances (6.25%). Thus, to make
accurate predictions, this confirms that the reference method [49] needs a
significant number of relevant photos in an album, which is not always the
case in personal photo collections.

Table 3.7: Comparisons against state-of-the-art approaches, tested on the dataset[19]

Method Accuracy (%) Method Accuracy (%)

AgS [19] 41.43 ShMM [19] 55.71
Method in [137] 73.43 HAS [49] 86.32

AgS-CNN(Scene) [49] 73.31 AvS-CNN(Scene) [49] 80.61
R-OS-PGM [13] 74.28 SVM with CNN Features 82.30%

Our Approach (MIL-SMO) 91.53 Our Approach (Test Bag = 5 images) 95.27
Our Approach (10 images per bag) 94.48 Our Approach (15 images per bag) 95.27
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3.5 Summary

In this chapter, we present a MIL-based approach to event recognition in
personal photo collections. We consider each photo album as a single bag,
and choose multiple images from each album for classification purposes. We
show that, even due to album level annotation and presence of ambiguous
photos in the albums MIL can guarantee higher performances. At the same
time, the approach achieves good performances also using a limited number
of images per bag, thus keeping the computational load acceptable.
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Chapter 4

Disasters and Social Media

4.1 Introduction

Natural disasters include the adverse events caused by natural processes
(e.g., floods, hurricanes and tornadoes), which might have a negative im-
pact on the environment and people. These adverse events can be more
dangerous if they occur in dense populated areas. Recovery from such dis-
asters is a gradual process, and can be made faster and more effective if
detailed information about its impact is known. For instance, government
and non-government relief and aid organizations can then direct their re-
sources to the areas struck by the disaster, and policies can be amended
to speed up the recovery process, accordingly.

During the last few decades, satellite data has been widely used to an-
alyze the impacts of adverse events on the surface of the earth. Being able
to cover a large spatio-temporal area, remote sensed data has been proved
to be very effective in different applications, such as classification and map-
ping of vegetation, crop stress detection, and disaster management [59, 52].
More recently, NASA released a dataset from the longest running satellite
program called Landsat1. The latest Landsat dataset2 contains images shot

1http://landsat.usgs.gov/
2https://aws.amazon.com/public-data-sets/landsat/
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Figure 4.1: A satellite image of a sandstorm in the Sahara. Based on the image, however,
it is almost impossible to give a clear statement about its impact on the environment and
society (image from NASA).

by the Landsat 8 satellite. Such a dataset holds a lot of opportunities for
society, and enables researchers to develop systems that integrate remote
sensed data in different applications. However, remote-sensed data also
comes with some challenges. For example, satellite imagery usually takes
several days to be available after an event, and more importantly, they
only give a bird’s-eye view of an event [94]. For instance, sandstorms can
be detected in the satellite images of Sahara, as shown in Figure 4.1, but
how to determine, just by looking to the image at hand, if this sandstorm
had any impact on the people and the environment.

On the other hand, over the last few years, social media has emerged
as an important source of information and rapid communication in emer-
gency situations. Particularly, Twitter has been proved to be very effective
in dissemination of news about natural disasters [11]. Moreover, as demon-
strated in [112], there are many situations in which news agencies could
not provide information at all or in time simply due to the lack of having
reporters spread all over the world. In such cases, social media plays an
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important role [11].

A rather recent trend is to combine content from social media with
remote sensed data, e.g., in the MediaEval benchmark initiative with the
”placing” task3, where researchers try to predict geo-coordinates for images
and videos from Flickr. Additionally, a task to build a system that links
social multimedia to events, which can be detected in satellite images,
has been introduced as a challenge at ACM MM 20164 and MediaEval
2017 [17]. This clearly shows that the multimedia research community is
interested in this new direction.

In this work, we propose two different solutions to jointly utilize social
media and satellite imagery to provide a better overview of the underlying
natural disaster event. Our first work is mainly concerned to develop a
system that is able to collect and monitor natural disasters by linking social
media and satellite imagery. Our second work is based on Multimedia and
Satellite challenge introduced in MediaEval 2017 5. In the next sections,
we provide detailed descriptions of each of the proposed work.

4.2 Related Work

This section starts with a general overview of the importance of remote
sensed data in different applications with a particular emphasis on disaster
management, followed by a detailed description of the characteristics of
social media and its applicability as a medium of information in emergency
situations.

3http://multiMediaEval.org/MediaEval2016/placing/
4http://www.acmmm.org/2016/wp-content/uploads/2016/03/ACMMM16_GC_Sky_and_the_Social_

Eye_latest.pdf
5http://www.multiMediaEval.org/MediaEval2017/
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4.2.1 Remote Sensed Data

Since the launch of Landset 16, formerly known as Earth Resources Tech-
nology Satellite (ERTS), satellite imagery has been used in different appli-
cation areas [59]. For instance, satellite imagery is widely used in meteo-
rology, fishing industry, agriculture, forestry, landscape, geology, regional
planning, education, and warfare [22]. However, the use of satellite imagery
in an application depends on a number factors. These factors include spa-
tial and spectral resolution, coverage and cloud cover.

Over the last few years, satellite data has been also widely used in disas-
ter management, and analyzing its impacts on the environment. The wide
geographical coverage and multi-spectral resolution make satellite imagery
an important source of information and support tool in disaster manage-
ment activities. For instance, according to the authors in [59], the disaster
management process can be roughly divided into 4 different phases, and
satellite data is equally useful in all of them. These phases include re-
duction, readiness, response and recovery. In this regard, a number of
international cooperation mechanisms and organizations have been estab-
lished to help and support in the disaster management, which heavily rely
on remote sensed data. For instance, the Disaster Management Support
Group (DMSG) [135] is developed to perceive the specifications, basic ob-
servations, and monitoring requirements for disaster management systems
based on satellite imagery. Following the guidelines of such organizations
and mechanisms, a number of interesting systems have been proposed to
effectively utilize satellite images in investigating the impact of a disaster
on the environment [59].

Literature shows that most of the disaster management systems focus
on the acquisition and pre-processing of satellite imagery, however, little

6https://landsat.gsfc.nasa.gov/landsat-1/
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attention has been paid to develop a system that can detect a disaster in
satellite imagery. To analyze satellite imagery for disaster detection, Amit
et al. [9] proposed a Convolutional Neural Networks (CNNs) based ap-
proach for the detection of certain disasters, such as landslides and floods.
Similar approach is adopted in [61], where a deep model is trained on
aerial photos captured through an unmanned aerial vehicles (UAV). Simi-
larly, Convolutional Neural Networks (CNNs) features are exploited by Liu
et al. [73] for the representation of landslide images.

More recently, in a benchmark challenge in MediaEaval 2017, flooded
regions detection in satellite images has been introduced as a separate task
[17]. A number of interesting solutions are proposed in the response to the
challenge. For instance, Benjamin et al. [18] approach the challenge as a
segmentation problem relying on three different variations of a deep model,
namely VggNet [110]. In details, the final convolutional layer is replaced
with a up-sampling layer relying on bi-linear interpolation to re-scale the
down-sampled feature maps into original patch size. Subsequently, a soft-
max layer is used to classify the pixels into flooded and non-flooded regions.
Similarly, in [62], an approach based on the concept of convolutional deep
model with dilated convolution is proposed to deal with the segmentation
and classification of satellite image patches into flooded and non-flooded
regions. In total, four different models with different number of dilated
convolutional layers are used. Moreover, all the models are trained with
overlapping patches each of size 25x25. The same strategy is used in the
prediction phase, where the final result is based on the average probabili-
ties of all patches. On the other hand, in contrast to earlier two methods,
Avgerinakis et al. [64] use Mahalanobis distances with stratified co-variance
estimates along with morphological post-processing to this aim.

It is to be noted that, satellite data also have some limitations. For
example, low temporal frequency is one of the biggest hurdles in different
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applications, particularly in disaster management and monitoring. How-
ever, satellite images before and after a disaster7 combined with other in-
formation can be a better source to get an overview of a disaster’s impacts,
and monitor the recovery process.

4.2.2 Social Media and Disasters

On the other side, The huge amount of content shared through social net-
works represents a potential resource for many applications and research
studies in different fields, such as economics, sociology and computer sci-
ence. One question that emerges is why social networks are so attractive?
It is possible to find a lot of answers to this question. For instance, the
authors in [26] have proved the effectiveness of the social network as a
powerful medium for disseminating good practices. Moreover, in [113], a
case study has been provided to highlight the importance of social media in
e-commerce. Besides being a social and business instrument of influence,
a social network can be considered also a medium of mass communication
[112, 55]. For instance, Stelter et al. [112], analyzed Twitter as a medium
of communication in emergency situations.

In recent years, a common practice is to infer events from the informa-
tion shared through social media. For instance, Popescu and Pennacchiotti
[98] extracted a list containing names of actors, musicians, politicians and
sports men from Wikipedia to be used for crawling Twitter to detect con-
troversial events about them. Subsequently, a regression model is used
to asses the controversial contents. Similarly, there are several other ap-
proaches relying on unsupervised frameworks for the detection of social
events, such as concert and theaters etc., in Twitter [11]. As an exam-
ple, Mathiodakis et al. [78] use clustering techniques on bursty key words

7http://www.satimagingcorp.com/applications/environmental-impact-studies/
natural-disasters/
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to detect trends in Twitter. Similarly, Meladianos et al. [80] proposed
a methodology for sub-event (i.e., key moments of an event) detection in
Twitter streams using the concept of graph degeneracy. In [48], a statis-
tical approach relying on tweets, and the frequency of links, inserted by
users in their tweets, has been proposed to detect social events.

A number of works in this regard also exploit Twitter data to detect
and analyze emergency situations and disaster events. For instance, Li et
al. [69] proposed a method to detect crime and disaster events in Twitter’s
text streams. Similarly, in [105], tweets are analyzed to detect earthquakes
in Japan, where some key words, such as earthquake and typhoons, are
used to crawl Twitter. Similarly, in [14], a method for the detection of
earthquake in tweets has been proposed. In the proposed method, a graph
based clustering technique has been utilized to target geo-located commu-
nities in Twitter. Similarly, in [29], Twitter is utilized as a social sensor
to capture information about a natural disaster from users in real time.
In [35], a concept derived from seismology, originally developed to detect
and time seismic phases, is used for earthquake detection in Twitter text
streams. The authors monitor a rapid increase in the tweets containing
words earthquake relying on a short-term-average over long-term-average
(STA/LTA) algorithm. More recently, Xu et al. [140] proposed a participa-
tory sensing-based model for collecting information about disaster events
in micro-blogs. In [116], the authors examine the use of social media par-
ticularly twitter in emergency situations considering a number of factors,
such as time and location of the user, and type of users (e.g., general public,
journalist and agencies etc.,).

Twitter is of course the most exploited resource, but other works have
also tried to exploit other social media platforms to detect such events, as
for example Flickr [124]. In this regard, most of the existing works target
social events and daily life activities [124, 132, 4]. However, more recently,
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a benchmark is initiated to detect flood related images in social media [17].
In the response to the task, a number of interesting solutions have been
proposed for the classification of flooded and non-flooded images in social
media [62, 87, 64, 84, 5]. For instance, in [8], the classification results
of different classifiers trained on different Convolutional Neural Networks
(CNNs) models are combined in two late fusion methods. Moreover, user
tags, geo-location information and description of an image are also used, as
an additional information to support the visual features. Benjamin et al.
[18] also rely on an image representation scheme deriving benefits from deep
architectures. In details, they extract features from two deep architectures,
namely DeepSentiBank [25] and X-ResNet [60]. Subsequently, a Support
Vector Machine (SVM) is used for the classification purposes. On the other
hand, to solve the same problem, some works rely on hand-crafted visual
features [83, 142]. For instance, in [87], a combination of CEDD, CL and
GABOR features are used along with meta-data.

The analysis of literature on multimedia analysis reveals that social me-
dia platforms, particularly Twitter has been heavily exploited for inferring
information about natural disasters. However, little attention has been
paid to collect information from other platforms of social media. To the
best of our knowledge there is no prior work which collects multi-modal
information from multiple platforms at a time. Although, collecting and
analyzing information from different platforms of social media is a tedious
and time consuming job, the combination of different sources to one sum-
marized overview can be very useful for users.
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4.3 Solutions

4.3.1 The JORD System

Overview

In this section, we present our system called JORD (after the Norwegian
goddess of the earth), which is to the best of our knowledge the first one
that is able to automatically collect information and news items about
natural disasters from four different social media platforms, and links it
with satellite imagery in real-time8. It also provides query refinement by
automatically generating queries in all local languages that are relevant to
the position of a disaster. With such a system, that combines multimedia
mining, retrieval, linking and summarization methods [76, 37], we are able
to tell a much clearer and more useful story to the users9. Moreover,
the proposed system retrieves information continuously, which makes it a
better source to monitor long term recovery efforts.

In addition, to ensure the quality of the retrieved multimedia data,
we propose a hierarchical filtering mechanism. Firstly, temporal and geo-
location information are used to filter out irrelevant data, which is followed
by a content based filtering and analysis scheme to further filter out less
informative content, and provide the more relevant one, only. In the cur-
rent implementation, we are providing the content analysis for the images
and tweets only, and intend to extend it to other types of multimedia
contents (videos). In order to obtain positioning information necessary to
retrieve and link satellite imagery to the underlying events, we extract the
GPS coordinates of the places and city names mentioned in the tweets
relying on natural language processing (NLP) techniques. The system is

8Real-time in the context of information retrieval in JORD system means that JORD continuously
monitors various information sources and retrieves the information as soon as a query match is found.

9The potential users of the system are relief workers and aid agencies, who need to know where things
are and what has changed, and the general public to get information about the disaster.
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also equipped with a novel methodology for identifying the areas hit by
the disaster in complex satellite imagery. For evaluation purposes, we have
conducted a crowd-sourcing campaign with a large number of users, asking
them to share their feedback about the retrieved contents and the system
itself.

In summary, we can synthesize the main features of JORD as:

(i) It collects data about events autonomously and automatically in real-
time from a disaster database (i.e., when JORD is running and an
event occurs, it will continuously gather new information from social
media to enhance the event information).

(ii) JORD is able to generate queries in local languages spoken in the area
hit by the underlying disaster.

(iii) JORD automatically filters irrelevant information in a hierarchical
way relying on temporal information and content analysis of the re-
trieved data.

(iv) JORD combines social media and satellite imagery in a novel way,
and provides a more detailed event description to the users.

(v) It is equipped with a novel method for linking and retrieving satellite
imagery with the events by analyzing the tweets text to identify and
extract GPS coordinates of the areas struck by the disaster.

(vi) JORD also consists of a novel framework for flood detection in satellite
images as a use-case of the disaster event detection in satellite imagery.

Proposed System

As shown in Figure 4.2, JORD consists of four main components (high-
lighted in different colors with corresponding labels): (i) query refinement,
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(ii) multimedia data retrieval from social media, (iii) temporal and content-
based filtering of the retrieved multimedia content, and (iv) linking social
media data with remote-sensed data. In the query refinement phase, we
generate new queries in local languages spoken in the areas struck by the
disaster. Subsequently, we crawl different social media platforms to collect
as much information as possible. The data retrieval phase is followed by a
filtering stage, where we analyze and process the retrieved content. Next,
we extract the geo-location information from images and tweets, which are
then used to retrieve the satellite images. Finally, the satellite images are
analyzed and processed to detect the underlying disaster event. In the next
subsections, we provide a detailed descriptions of these phases.

Sensing New Events (Natural Disasters)
As aforesaid, one of the main advantages of JORD is the capability to

collect information about natural and technological disasters in real time,
which basically means that if JORD is once started, it will continue col-
lecting and linking events as long as they occur. To this aim, the proposed
system extracts a list of natural and technological disaster events from the
EM-DAT database [47] in real-time. This means that as soon as a new
event occurs in the database, JORD starts collecting and linking informa-
tion about it. EM-DAT is an international disaster database (supported
by the World Health Organization - WHO) that provides information of
natural and technological disasters that have occurred all over the world.
Table 4.1 provides a list of some samples events sensed and analyzed by
our system. It is to be noted that JORD is able to collect, link and analyze
an unlimited number of events depending on the processing and storage
resources, and can operate live as an quasi autonomous system, and on
demand, namely controlled by a user.

Query Refinement and Translation
JORD utilizes the time and location information, provided in the EM-
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Figure 4.2: Block diagram of the proposed JORD system.
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Table 4.1: A list of examples for natural and technological disasters retrieved by JORD.

Event Location Time Period Event Location Time Period
Earthquake Italy August 2016 Floods Laos August 2016
Earthquakes Esmeraldas, Ecuador May 2016 Landslides Kegalle district, Sri Lanka May 2016
Cyclone Roanu Bangladesh May 2016 Landslides West regions of Uganda May 2016
Tornadoes Oklahoma, United States May 2016 Floods Kilinochchi district, Sri Lanka May 2016
Thunderstorms Bangladesh May 2016 Landslide Sibolangit, Indonesia May 2016
Landslide Rwanda May 2016 Floods Ethiopia April 2016
Landslide Uganda May 2016 Mudslide Taining district May 2016
Severe weather Haiti May 2016 Wildfires Alberta province, Canada May 2016
Thunderstorms Uruguay April 2016 Flash flooding Texas, United States April 2016
Floods Port-au-Prince, Haiti April 2016 Floods Southern China April 2016
Thunderstorms Myanmar April 2016 Floods Assam, Nagaland, India April 2016
Thunderstorms China April 2016 Drought India April 2016
Drought Timor-Leste April 2016 Floods Saudi Arabia April 2016
Earthquake Kumamoto, Japan April 2016 Storm Dolores, Uruguay April 2016
Earthquake Ecuador April 2016 Floods Santiago region, Chili April 2016
Flash floods Yemen April 2016 Earthquake Kumamoto, Japan April 2016
Earthquake Pakistan April 2016 Floods Ethiopia April 2016
Storm Katie France and UK March 2016 Floods KpK Pakistan April 2016
Severe weather United States March 2016 Drought India March 2016
Floods Kashmir, Pakistan March 2016 Severe weather United States March 2016
Floods Indonesia March 2016 Floods China March 2016
Coal mine explosion Lougansk, Ukraine May 2016 Shipwreck Libya April 2016
Thunderstorms Uruguay April 2016 flooding Texas, United States April 2016
Floods Haiti April 2016 Floods Southern China April 2016
Thunderstorms Myanmar April 2016 Floods Assam, India April 2016
Drought Timor-Leste April 2016 Explosion in a plant Mexico April 2016
Shipwreck Lybia April 2016 Shipwreck Mynamar April 2016
Plane crash Papua New Guinea April 2016 Storm Katie France and UK March 2016
Floods and landslides Pakistan March 2016 Earthquake Tainan, Taiwan Feb. 2016
Earthquake Spain and Morocco Jan. 2016 Floods China Jan. 2016
Snowstorm East coast, United States Jan. 2016 Earthquake Qinghai province, China Jan. 2016
Wildfires Spain Dec. 2015 Tornadoes South of United States Dec. 2015
Floods Kenya Dec. 2015 Cyclone Chapala Yemen Nov. 2015
Plane crash South Sudan Nov. 2015 Floods Somalia Oct. 2015
Floods Nigeria Sept. 2015 Wildfires California, United States Sept. 2015
Floods Ibaraki (Japan) Sept. 2015 Landslides Kaski, Nepal July 2015
Earthquake Pakistan Oct. 2005 Cyclone Winston Fiji Feb. 2016
Wildfires Greece July 2015 Floods Myanmar July 2015

DAT database for each event, in the retrieval of related social multimedia
data including videos, images and text. JORD supports query refinement
by collecting additional tags for the underlying events by determining and
translating them to the local languages of the region where the disaster
occurred. By looking at news or social media posts, one can easily observe
that during natural and technological disasters the local community usu-
ally initiates the process of sharing news about a disaster. This normally
happens by commenting, posting and sharing information using different
channels and media types just after an event occurs. Furthermore, ge-
ographically close people usually tend to post and share information in
their local languages. Based on these observations, our system automati-
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Table 4.2: Sample queries of events translated by JORD using the Google Translate Api.

Original Query System-generated Query Translated to
Floods Saudi Ara-
bia
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®Ë @ Arabic

Storm and flood
Dolores Uruguay

Tormentas e inundaciones Do-
lores Uruguay

Spanish

Earthquake
Ecuador

terremoto de Ecuador Spanish

Cyclone Chapala
Yemen
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Floods Ibaraki
Japan
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H. CJ� Q�Ò
�

�»
	
àA

�
J�» AK� Urdu

cally generates queries in the local languages that are relevant to the posi-
tion of a disaster. This step is achieved by including Google Translator10

in combination with a database of spoken local languages per country in
our pipeline. The list of local languages along with the country names
are retrieved from InfoPlease11, which is a free encyclopedia almanac, at-
las, dictionary, and thesaurus. Table 4.2 provides some sample queries
generated by our system in local languages.

Subsequently, the translated queries are used for the multimedia data
collection. This blend of translated and original queries results in a larger
amount of retrieved data per query (we observed that for some events, a
search based on only English queries results in very little or none results).
Moreover, the information retrieved with translated queries are more rel-
evant to underlying events. As an example, Table 4.3 shows the top 5
tweets retrieved by our system for recent floods in Saudi Arabia. Both the
original and translated queries along with meanings of the tweets in the
local language are provided. It can be seen in Table 4.3 that most of the
tweets retrieved with original query are irrelevant (e.g., most of them are

10https://cloud.google.com/translate/docs/
11http://www.infoplease.com/ipa/A0855611.html
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reporting about Saudi Arabia’s aid to flood victims in different parts of the
world). On the other hand, the tweets retrieved with translated queries,
which are posted by local community in the local language, provide more
accurate and relevant information about the recent floods in Saudi Arabia.

Table 4.3: Top 5 Tweets retrieved with original English query and JORD generated query
in Arabic language

Tweets with En-
glish query

Tweets with JORD generated
query
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aid to those affected
by the floods in Sudan
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#Venezuela could col-
lapse and take much
of its #oil production
with it or summer can
end and #SaudiAra-
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Good Luck!
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The beginning of the
flash floods yesterday in
Saudi Arabia, and flood
waters submerged the
bridge in seconds !!

Social Media Platforms
Social networks have emerged as important sources of information that

report events in real-time, and provide a much broader story [34]. In
this regard, Twitter has been widely used by commenting, posting and
sharing information just after an adverse event occurs [11]. Similarly, Flickr
and YouTube allow users to share audio-visual contents about an event
whenever it happens. Therefore, to get an overview of an event, it is a
convenient option to look for multimedia data in social media. To this
aim, we crawl four different platforms, i.e., Twitter, YouTube, Flickr and
Google image search. However, the queries in local languages, generated in
query refinement phase, are supported by three platforms of media, namely
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Twitter, YouTube and Google. Flickr supports English queries only.
Content based Filtering
In order to investigate the importance of the content based methods

to filter and analyze the collected content for the end users, we conduct
extensive experiments on retrieved multimedia data (images and tweets)
collected by JORD. In this section, we provide a detailed description of
the methodologies, we propose, for the content analysis of the collected
multimedia data.

Content Analysis of Retrieved Images
The basic motivation of the content analysis of retrieved images is to

filter out irrelevant or less informative images from content point-of-view,
and provide the ones which visually well represent the underlying events.
To this aim, we perform explorative multi-class recognition experiments on
the images collected by JORD. To this aim, from the most common adverse
events related crawled images, we created a dataset containing 14 classes
of events. The classes are cyclone, drought, earthquake, flood, thunder-
storm, tornado, wildfire, not-relevant-cyclone, not-relevant-drought, not-
relevant-earthquake, not-relevant-flood, not-relevant-others, not-relevant-
thunderstorm, not-relevant-tornado, not-relevant-wildfire. All in all, the
dataset contains 20, 934 images.

We experimented using various configurations of two main approaches
including: (i) classification using global features (GF), and (ii) classification
using concepts extracted with a pre-trained deep learning model.

In the GF approach, we extract global features from the images using
the latest version of the Lire open source software [75]. We extracted JCD
features with a feature vector of size 167, representing texture and color in
an image.

In the implementation of the deep learning based approach, we use
Keras [27] with Google Tensorflow [1]. The extraction of concepts is based
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on the Inception-v3 model [115], which allows the extraction of 1, 000 con-
cepts learned from the ImageNet dataset. In this case, we simply use the
pre-trained model to extract all possible concepts per image, and use them
as a feature vector of size 1, 000 as input in different classification config-
urations.

Content Analysis of the retrieved tweets
The objective of tweets analysis is two-fold. On one hand, we assess

the quality of the retrieved tweets and filter out the less informative and
irrelevant tweets. On the other hand, we are interested in collecting the
coordinates of the areas affected by the disaster. To do so, we perform the
following two experiments on the collected tweets.

• We perform binary and multi-class classification to identify and filter-
out the irrelevant tweets. This experiment is intended to improve
users’ experience providing them with more appropriate data.

• We also analyze and extract the places and city names mentioned in
the tweets’ text to retrieve and link satellite imagery with the events.
The basic motivation for this experiment comes from the fact that
the GPS coordinates associated with tweets do not necessarily match
with the location of the disaster. Moreover, the presence of GPS
information in tweets is not always guaranteed. Instead, users tend
to mention the exact places affected by the underlying disaster in the
text.

Similarly to image analysis, we started with the collection of a dataset
by choosing tweets related to eight common natural disasters from the pool
of tweets retrieved by JORD. These disasters include: cyclone, drought,
earthquake, floods, landslides, snow-storm, thunder-storm and wildfires.
We also populate the dataset with 8 additional classes including: not-
relevant-cyclone, not-relevant-drought, not-relevant-earthquake, not-relevant-
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floods, not-relevant-landslides, not-relevant-snowstorm, not-relevant-thunderstorm
and not-relevant-wildfires. For the labeling of tweets with positive and neg-
ative samples (i.e., relevant and irrelevant tweets), annotation is performed
manually. To further populate the negative samples, we crawled twitter
with additional queries containing the names of the countries affected by
the disaster.

To discard irrelevant tweets, we have explored two different solutions:
(i) binary classification (i.e., relevant vs non-relevant), and (ii) multi-class
classification with 9 classes: 8 of them refer to disaster events, while the 9th
represents the non-relevant tweets. As far as the text analysis is concerned,
we rely on a state-of-the-art library12, used both for tweets’ classification
and to retrieve places and city names. Initially, text is broken into tokens,
followed by identifying the places and city names in the extracted tokens.
Some sample tweets, where the places (e.g., states, districts, city and local
areas names) affected by the underlying disaster are mentioned, include :
”FIF Pakistan distribute Relief goods of Drought victims in Tharparkar
(city name)”, ”The EU supports livelihoods nutrition in drought-stricken
Sindh (province name) Pakistan”, ”11 dead 50 wounded in Bundibugyo
(District name) landslide Uganda”. Moreover, the GPS coordinates of the
identified places and cities are crawled for remote sensed imagery, which
are then processed for disaster detection.

Linkage with remote sensed data
In this section, we detail how the geo-location information is used to re-

trieve and link remote-sensed images to the underlying events. To this aim,
JORD relies on Google Earth, which provides satellite images continuously;
this allows to retrieve series of images before and after a disaster. JORD
extracts GPS information from the retrieved data (images and tweets) and
crawls Google Earth over a time window centered in the event date. Figure

12https://textblob.readthedocs.io/en/dev/
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4.3 shows sample satellite images of the national palace of Haiti retrieved
through Google Earth before and after the earthquake. Without loss of
generality, other sources of remote sensed data can be crawled and inte-
grated in JORD. Figure 4.4 shows a sample output of our system for a
query about recent floods in Kenya, where the retrieved images, tweets,
videos and the satellite data from Google Earth are shown.

Figure 4.3: Sample Google Earth images before and after Haiti earthquake.

Flood detection in satellite images: a use-case
In this section, we present the application of our method to the use case

of flood detection in satellite images. The proposed method is designed
to process image patches of satellite images covering a wide spatial areas
of multiple instances of flooding events. The satellite image patches are
usually recorded during (or shortly after) the flooding event at different
locations. The basic satellite imagery used in this work has been taken
from Planet’s 4-band satellites [118]. The whole dataset and the corre-
sponding data usage instructions are publicly available [17] and consists of
a set of image patches with corresponding pixel-level segmentation masks
of the flooded areas. The image patches are stored in the non-normalized
4-channel 16-bit TIFF file format while the corresponding segmentation
masks are stored in the 1-channel 8-bit PNG file format.

The image patches consist of fours 16-bit channels: Red (R), Green (G),
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Figure 4.4: A sample output of JORD in terms of retrieved images (at the top), Tweets,
Videos and the satellite data.

Blue (B) and Infrared (IR). None of the existing satellite image visualiza-
tion software was able to display such data correctly. Moreover, most of the
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existing image processing softwares are designed to be used with standard
three-channel RGB images. To overcome this issue, we decided to convert
each image patch into a pair of images, namely three-channel RGB and
single-channel IR images. After the extraction of raw channels data, we
performed the normalization for both image components, independently.
For the RGB images, we use the joint three-channel normalization, which
fits all the R, G and B pixel values of the input geo-image into the stan-
dard 0-255 RGB values region. It has to be noted that the normalization
coefficients are kept same for all three channels, which helps to achieve real
color balance even in cases of low variations in one of the three components.
The normalization of the IR component is performed separately, as shown
below:

rgbmin = min(min
i∈R

ri, min
i∈G

gi, min
i∈B

bi)

rgbmax = max(max
i∈R

ri, max
i∈G

gi, max
i∈B

bi)

irmin = min
k∈IR

irk, irmax = max
k∈IR

irk

∀i ∈ {R|G|B} {r|g|b}∗i = ({r|g|b}i − rgbmin) ∗ 255
rgbmax − rgbmin

∀k ∈ IR ir∗i = (irk − irmin) ∗ 255
irmax − irmin
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(a) Three-channel normalized
RGB image.

(b) Single-channel normalized IR
image.

(c) Flooding area segmentation
mask.

Figure 4.5: Example of the converted image patch from the original satellite imagery.

After the conversion to RGB and IR image pairs (see example in figure
4.5), we performed visual analysis of the converted images in order to as-
sess the resulting image quality, the correctness of the conversion and the
contents of the dataset. We found the images to be non-contrast, blurry
and significantly color-range-limited. During our initial experiments, we
realized that it is not possible to use off-the-shelf image segmentation
frameworks due to the nature of the provided satellite imagery. Based
on our previous experience [97], we decided to use GANs for the segmenta-
tion task. GANs [44] are machine learning algorithms used in unsupervised
learning, and implemented via two neural networks, namely Generator and
Discriminator, contesting with each other in a zero-sum game framework.
They achieved promising results both in terms of performance and data
processing speed in image segmentation tasks.

As the basis for our method, we use a neural network architecture orig-
inally developed for the retinal vessel segmentation in fundoscopic images
with GANs (V-GAN) [111]. The V-GAN architecture [111] is designed for
the processing of retinal images that have comparable visual properties,
and provides the required output with one-class per-pixel image segmen-
tation output. The basic insight behind V-GAN is to treat the vessels
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detection/segmentation as an image translation task, where the generator
network is supposed to generate the segmentation map of the input fun-
doscopic image. On the other hand, discriminator network tries to refine
the output of the generator. V-GAN proved to be very effective in the de-
tection of fine vessels, and at the same time less affected by false positive
compared to existing approaches [111].

In order to adapt V-GAN to our flood detection approach, we modified
the network architecture by changing the top-layers configuration in order
to support both standard three-channel RGB and four-channel RGB+IR
geo-image-compatible input. Furthermore, the final layer of the generator
network is extended with a threshold activation layer to generate the binary
segmentation maps.

During our initial experiments with our model, we observed that, though
the modified V-GAN is able to perform the segmentation of the provided
satellite images, the estimated performance metrics were below the ex-
pected level. Additional visual analysis of the converted RGB and IR im-
ages showed that sometimes the IR component of the sourced geo-images
is irrelevant to the flooding areas, which is one of the possible reasons that
caused our model to be biased during the training process, preventing it
from the extraction of the properties of the flooding areas. Based on these
considerations, we decided to exclude the IR component from the model
input, and process the RGB components only, which resulted in a good
detection performance. Furthermore, we continued to investigate deeper
into the multi-channel approach and, after debugging of our model, we
realized that the used normalization scheme is causing problems. Despite
the good results obtained from the detection using the RGB-normalized
images only, the independent normalization procedure of IR channel was
resulted in the significantly base-value-shifted output images, mostly be-
cause of the high variations in the IR channel caused by the significant
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difference of the value of the reflected IR light depending on the day time
and cloud coverage for the area. To resolve this problem, we redesigned the
data preparation and augmentation code as well as the input layer of our
model in order to support direct input of the raw satellite imagery data.
This resulted in significant improvements in the model training behaviour
and allowed us to perform experimental evaluations using both RGB and
RGB+IR channels configurations.

System Evaluation via Crowd-sourcing

To evaluate the system, in terms of if the retrieved multimedia contents
about the events are correct and useful for the users, we conducted a
crowd-sourcing-study on Microworkers. We asked workers to give their
opinion about the retrieved multimedia contents, including images, tweets
and videos, related to underlying events. We paid each worker 1.50 USD
and tried to be as fair as possible regarding the discarding of workers. As
shown in [103, 6], controlling and discarding workers too much can lead to
an undesired outcome of the study, which we tried to avoid by accepting
almost every worker if they did the task in a reasonable way. We asked the
crowd-workers five different questions:

1. Do you think the system provided information was useful? This ques-
tion aims to get feedback from workers about the usefulness of the
collected multimedia data using a scale from one (not useful) to five
(very useful).

2. From three possible events, which one do you think has been the one
presented to you? This question was used to evaluate if JORD can
help the user to understand the retrieved event.

3. How useful was each type of information for you? Here, the worker had
to scale the usefulness of different type of multimedia content (images,

104



CHAPTER 4. DISASTERS AND SOCIAL MEDIA 4.3. SOLUTIONS

tweets and videos) from one (not useful) to five (very useful).

4. If such a system would exist, would you use it? This was a simple yes
or no question where we asked the workers if they would use such a
system or not.

5. Why would you use or not use it? This was an open question where
the crowd-workers had to reason their yes or no from the previous
question. We used this question to filter out workers who did the task
in a wrong way. We checked each answer manually for each worker.
If the answer made sense and showed that the worker was thinking
about it, we accepted it. If not, we did not include it in the final
evaluation.

4.3.2 Multimedia Satellite: A Benchmark Task

Overview

In this section, we present the solution proposed for the MediaEval 2017
Multimedia and Satellite challenge [17]. The basic insight of the challenge
is to jointly utilize satellite imagery and social media to provide a detailed
story of the underlying disaster event. The challenge is mainly composed
of two sub-tasks namely (i) Disaster Image Retrieval from Social Media
(DIRSM) and (ii) Flood Detection in Satellite Images (FDSI). The basic
insight of the first task is to design and develop a system that is able to
identify flood related images in a collection of images along with meta-data
from social media. Although additional information, such as user’s tags,
date on which the image is taken along with geo-location information are
provided, only the images having a visual evidence of a flood are considered
to be true positive samples. The main challenge of DIRSM task is to
differentiate in images of lakes and flooded streets as well as among the
different types of flooding, such as coastal flooding and river flooding.
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In order to efficiently utilize all of the available information, the partic-
ipants were asked for three different runs using:

• Visual Information, only

• Meta-data, only

• A combination of meata-data and visual information

The second task is mainly concerned to develop a system that is able to
identify flooded regions in satellite images. The participants are provided
with satellite image patches of multiple instance flooding events along with
the segmentation masks in the development set to train their model.

Proposed Approach

Methodology for DIRSM Task
To tackle challenge (i), we rely on Convolutional Neural Network (CNN)

features. In detail, first we extract CNN features for seven different mod-
els from state-of-the-art architectures pre-trained on the ImageNet [33]
and places datasets [144]. These models include AlexNet [66] (pre-trained
on both ImageNet and places datasets), GoogleNet [114] (pre-trained on
ImageNet ), VGGNet 19 [110] (pre-trained on both ImagNet and places
datasets) and different configurations of ResNet [53] with 50, 101 and 152
layers. In total, Alexnet is composed of 8 weighted layers , Google Net
contains 22 layers while VGGNet19 has 19 layers. For feature extraction
from Alexnet and VGGNet19, we use the Caffe toolbox13 while in the case
of GoogleNet and Resnet we exploited Vlfeat Matcovnet14.

All in all, we extract eight feature vectors through four different net-
work architectures from the same image. AlexNet and VGGNet16 provide
a feature vector of size 4096 while GoogleNet and Resnet provide feature

13http://caffe.berkeleyvision.org/
14http://www.vlfeat.org/matconvnet/
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vectors of sizes 1024 and 2048, respectively. Subsequently, the extracted
features are fed into ensembles of Support Vector Machines (SVMs), which
provide classification scores in terms of posterior classification probabili-
ties. We also consider user’s tags, date taken along with GPS information
from the available meta-data. For the classification of meta-data, we rely
on the Random Tree classifier provided by the WEKA toolbox [50]. We
opted for SVM on the account of its proven efficiency in many applications,
such as object recognition [21] and remote sensing [16]. On the other hand,
for textual features, we tried different classification techniques and choose
Random Forest based on its better performance on the development set.
Finally, the classification scores obtained through Random Trees and SVM
trained on meta-data and visual features are fused using a late fusion mech-
anism. For the late fusion, we propose two different methods, namely, (i)
Induced Ordered fusion scheme inspired by Induced Ordered Weighting
Averaging Operators (IOWA) by Yager et al. [141] and (ii) Particle Swarm
Optimization (PSO). Figure 4.6 provides a block diagram of the proposed
methodology for the Disaster Images Retrieval from Social Media (DIRSM)
task.

Methodology for FDSI Task

For the challenge (ii), we used the methodology described in Section
4.3, where we rely on a neural network architecture originally developed
for the retinal vessel segmentation in fundoscopic images with generative
adversarial networks (V-GAN) 15. The only difference is that in this par-
ticular challenge we used only RGB components of the satellite imagery.
On the other side, we perform additional analysis in Section 4.3.

15https://bitbucket.org/woalsdnd/v-gan
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Figure 4.6: Block diagram of the proposed methodology for DIRSM task.

4.4 Experiments

4.4.1 JORD

Content Analysis

As mentioned earlier, based on the collected data by JORD, we conducted
experiments with the goal of exploring if the content information of the
collected data can help to improve the results for the users. As a first step,
in this section, we present the experimental results of our content based
analysis of the JORD collected images and tweets.

Content Analysis of the Retrieved Images
In this work, for the classification of the retrieved images, we use Ran-

dom Forest (RF) and Logistic Model Tree (LMT) classifiers provided in
the Weka machine learning library [50]. It is worth mentioning that in
the current implementation, we do not perform any data augmentations,
such as cropping, for any of the approaches. For the evaluation, we use 10-
fold cross validation to get a robust and representative results. We tested
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Table 4.4: Classification results of our content based analysis

Features Classifier Precision Recall F-Measure

Concept Random Forrest 0.564 0.51 0.452
Global Feature Random Forrest 0.544 0.493 0.466
Global Feature Simple Logistic 0.37 0.385 0.346

Concept Simple Logistic 0.426 0.42 0.394
Baseline ZeroR 0.06 0.244 0.096

several different classifiers, and the baseline is calculated with the ZeroR
classifier that finds and uses the majority class in the dataset for classifi-
cation. Table 4.4 shows the experimental results of our content analysis.
Over all, in terms of precision and recall, we get better results with Ran-
dom Forest on the concepts extracted through Inception-v3 [115]. During
the experiments, we observed that certain disasters, such as earthquakes,
wildfires, floods and cyclone, have specific textures and patterns, and thus
are easy to be identified and recognized through visual content. However,
we also noticed that for certain disasters, such as tornadoes and droughts,
it is very difficult to recognize or differentiate among them through visual
content. Nevertheless, we observe that using the visual content for filtering
the results can be a promising step as also confirmed by our results.

Content Analysis of the Retrieved Tweets
As mentioned earlier, for filtering out the irrelevant tweets, in the pro-

posed work we perform two different experiments (i) binary and (ii) multi-
class classification. In both experiments, we rely on two different classifiers
namely, Navie Bayes and Decision Tree classifier provided in TextBlob tool-
box16. Table 4.5 provides experimental results of our binary classification,
where tweets are investigated to be relevant or non-relevant to a particular
disaster event, with Naive Bayes and Decision Tree classifiers. We report
the results of our tweet classification experiments in terms of accuracy,
precision, recall and F1 score. As can be seen, though we achieve en-

16https://textblob.readthedocs.io/en/dev/
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Table 4.5: binary tweet-classification results with Naive Bayes and Decision Tree classifiers

Disasters
Naive Bayes Decision Tree

Acc. Prec. Recall F1 Acc. Prec. Recall F1
Cyclone .9322 .9189 1.0 .9557 .9661 .9705 .9705 .9705
Drought .6451 .6956 .8421 .7640 .774 .973 .77 .859

Earthquake .8521 .7972 .9833 .7618 .9565 .933 1.0 .965
Floods .8971 .851 .9273 .8876 .92 .8659 .9491 .9056

Landslides .9271 .9176 .975 .9457 .8344 .851 .862 .8569
Snowstorm .8785 .8387 1.0 .9126 .8598 .8431 .347 .886

Thunderstorm .8095 .7441 .8648 .8003 .8095 .729 .843 .7818
Wildfires .6744 .75 .78 .7352 .9065 .92 .92 .92

Table 4.6: Multi-class classification with Decision Tree classifier

Event Accuracy
Cyclone .9491
Drought .7903

Earthquake .9565
Floods .901

Landslides .8741
Snowstorm .8037

Thunderstorm .75
Wildfires .9069

Non-relevant .912

couraging results with both classifiers, Decision Tree classifier has a slight
improvement over the Naive Bayes classifier.

In order to further investigate the performance of our proposed con-
tent based filtering scheme, we also perform multi-class classification using
Decision Tree classifier. Table 4.6 reports the experimental results of our
multi-class classification experiment. Overall, we achieve better results on
each event motivating the fact that it will lead to an improved experience
for the users.
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Flood Detection in Satellite Images

For the detailed experimental evaluation of our algorithm of flood detec-
tion in satellite images, we used the publicly available dataset [17] of the
Multimedia Satellite Task, which was a part of the 2017 MediaEval Bench-
marking Initiative for Multimedia Evaluation 17. The dataset consists of
development and validation sets of satellite image patches with correspond-
ing pixel-level segmentation masks of the flooded areas. The development
set consists of 463 image patches with corresponding flooding segmentation
masks. The test set contains 260 image patches along with the flooding
segmentation masks. The dataset covers seven different flooding events
occurred in the different regions of the world. In order to evaluate the
generalization properties of our detection algorithm, we mixed all the im-
ages from the different events and regions interpreting the image sets as
the data sources with unknown geographical, temporal and event-related
information. In this experimental study, we evaluate our method with a
two-fold cross-validation strategy. During a first evaluation run, we used
the dataset in the original order: the development set is used as a training
set, and the validation set as a test set. In the second evaluation run, we
used the dataset in the flipped order: the development set is used as a
test set, and the validation set is used as a training set. The non-equal
splitting of the number of images in the training and test sets can be seen
as an additional test for the redundancy and the efficiency of the proposed
detection algorithm. Moreover, we also performed the evaluation of both
detection approaches: three-channel normalized RGB and four-channel raw
RGB+IR, which gave us four different evaluation runs in total.

The proposed neural network model performs flooded areas detection
on the pixel-level, and provides the output in the form of a binary segmen-

17http://www.multimediaeval.org/mediaeval2017/

111

http://www.multimediaeval.org/mediaeval2017/


4.4. EXPERIMENTS CHAPTER 4. DISASTERS AND SOCIAL MEDIA

(a) Input RGB
channels

(b) Input IR chan-
nel

(c) Ground truth
mask.

(d) Segmentation
of RGB.

(e) Segmentation of
RGB+IR.

Figure 4.7: Example of the correctly found flooded area. This example shows that detec-
tion was performed better for combination of RGB and IR channels.

tation map, which contains true values (white pixels) for the pixels belongs
to the detected flooded areas and false values (black pixels) for the areas
without flooding detected. The examples of the model’s segmentation out-
put together with the source RGB and IR images as well as corresponding
ground truth masks are presented in figures 4.7, 4.8 and 4.9. As one can
see, the RGB and IR channels provide a different information about the
region being analyzed. In most of the cases, the four-channel combination
of RGB and IR channels results in the better detection performance and
can increase the detection accuracy significantly (see figure 4.7 for an ex-
ample). Nevertheless, in some cases when the IR channel contains data
that confuses the detection algorithm and leads to a mis-detection with a
tendency to increase number of false-positive pixels (see figure 4.8 for an
example). Moreover, in some quite rare cases (at least within the dataset
used) no combination of the channels are sufficient to perform a distinc-
tive and accurate detection of the flooded areas because of a presence of
a water that is ”legal” (see figure 4.9), for example in the irrigation chan-
nels, normal rivers and lakes, etc. To be able to deal with such cases the
comparative time-based analysis must be added to the detection algorithm
utilizing as many satellite images of the same region taken in different peri-
ods as possible. The time-based analysis will be a subject of a future work
of our research.
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(a) Input RGB
channels

(b) Input IR chan-
nel

(c) Ground truth
mask.

(d) Segmentation
of RGB.

(e) Segmentation of
RGB+IR.

Figure 4.8: Example of the correctly found flooded area. This example shows that in
some cases detection was performed better for three RGB channels.

(a) Input RGB
channels

(b) Input IR chan-
nel

(c) Ground truth
mask.

(d) Segmentation
of RGB.

(e) Segmentation of
RGB+IR.

Figure 4.9: Example of the false positive detection of the flooding. The water in this
image patch is ”legal” water in the irrigation channels. To be able to deal with such cases
the comparative time-based analysis must be added to the detection algorithm utilizing
many satellite images of the same region taken in different periods of time.

Our proposed model for the flood detection includes the top layer with
an adjustable threshold parameter, which is used for the final output seg-
mentation map binarization. The value of this threshold parameter de-
fines a border line for each pixel to be counted as belonging to flooding
area depending of the model’s output probability value, and it has a di-
rect effect on the number of flooded pixels detected. Thus, in order to
perform a complete model evaluation, we have repeated all four evaluation
runs with different values of the threshold parameter. For an overall per-
formance evaluation of this threshold-value-effect evaluation experiments,
we selected the Matthews correlation coefficient (MCC) which is used in
machine learning as a measure of the quality of binary (two-class) classi-
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fications. It takes into account true and false positives and negatives, and
is generally regarded as a balanced measure that can be used even if the
classes are of very different sizes. The MCC value lies in the region between
-1 and +1. Literature [96] also confirms that MCC is the most convenient
metric for the binary classification tasks.

The results of the threshold value evaluation are depicted in figure 4.10.
As one can see, the low < 0.1 and the high > 0.9 values of the threshold
have strong negative effect on the performance of the proposed model. The
optimal threshold value lies, as it was expected before the experimental
studies, in between 0.4 and 0.6 depending on the exact order of the samples
in the dataset and the number of channels used. The best value of the
threshold parameter is 0.42 for the three-channel RGB model regardless
of the sets order. For the four-channel RGB+IR model, best value is
0.518. Despite the fact that the best values of the threshold parameter
are slightly different depending on the dataset and number of channels
used, the resulting difference of the performance is small for the threshold
values within the interval from 0.4 to 0.6 (which includes the found best
values) and for the future work we will use the threshold value of 0.5 for
all the cases. Nevertheless, in this work we have performed an evaluation
of the performance metrics of the developed detection method using the
best found threshold values. The interesting finding is that RGB and
RGB+IR approaches perform almost equally for the original dataset, but
RGB+IR performs better for the flipped datasets. That can be caused
by a significantly reduced size of the training dataset in the flipped runs,
which makes one additional information channel important for the proper
model generalization during training process.

The results of the performance evaluation for the best threshold values
are presented in Table 4.7. The first two runs was performed by the three-
channel RGB model and the original and flipped datasets. The threshold
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Figure 4.10: The comparison of the flooding detection performance in terms of MCC
measure computed with the different probability threshold values for three- and four-
channel satellite imagery data for the original and the flipped datasets.

value used was 0.42 for both runs. The results show that the best MCC
evaluation performance metrics value of 0.805 was achieved for the original
datasets order. For the flipped datasets order, MCC metrics was a slightly
lower with a value of 0.742 which can be caused by the significantly lower
number of the training images in the flipped datasets that caused a less
level of the model generalization. Nevertheless, the MCC values as well as
other common performance characteristics depicted in table 4.7 confirms
the validity and usability of the model developed together with the high
adaptation rate and ability to learn even on the limited training dataset
size.

The performance results computed for the four-channel RGB+IR model

115



4.4. EXPERIMENTS CHAPTER 4. DISASTERS AND SOCIAL MEDIA

Table 4.7: Two-fold cross-validation results for the two presented flooding detection ap-
proaches. The performance numbers of accuracy (ACC), precision (PREC), sensitivity or
recall (REC), specificity (SPEC), F-Measure (F1) and Matthews correlation coefficient
(MCC) are presented in the original / flipped order regarding to the original dataset [17]
for the selected values of the probability threshold value (THRESH).

Input Thresh Acc. Pre. Rec. Spe. F1 MCC

RGB
Orignal set

0.420
0.913 0.879 0.862 0.940 0.870 0.805

Flipped set 0.883 0.835 0.827 0.913 0.831 0.742

RGB+IR
Orignal set

0.518
0.911 0.883 0.849 0.943 0.865 0.800

Flipped set 0.889 0.827 0.862 0.904 0.844 0.758

runs (see table 4.7) with the threshold value of 0.518 shows almost the
MCC performance values of 0.8 and 0.758 respectively. As one can see,
the original datasets run has the same performance as the RGB model
(the difference is not significant). For the flipped run the RGB+IR model
perform noticeable better, thus using of four-channel RGB+IR model can
be considered as preferable for the flooding detection tasks. Moreover,
visual inspection of the datasets provided showed that in some cases IR
channel may provide distinctive clues for distinguishing between flooded
areas and ”normal” water areas, but this should be investigated deeper
using more datasets of bigger sizes.

Crowd-sourcing Analysis

In the crowd-sourcing-study, we had 349 distinct valid responses. We dis-
carded 36 because their answers in the open question showed that they did
not understand the task or did it in a wrong way. We did not discard work-
ers, if they did not choose the right event in question 3 since this question
was intended to evaluate how useful and informative the retrieved content
is.

The first question (i) where the workers had to state if they find the
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system useful or not, had an average score of 4.47 for all workers. This is a
clear indication that workers find the system and the provided information
useful.

For the second question (ii) where the workers had to chose the cor-
rect event out of three possible ones, only 19 workers out of 349 failed
to correctly recognize the event presented to them. A closer investigation
showed that all of them had just the country wrong but gave a correct
answer about the disaster. This shows two important things. Firstly, that
the retrieved information of JORD is accurate and can help users to get
more information about events and secondly, that connecting it to satellite
images and showing on a map is important to improve understanding of
the event in terms of location.

For the third question (iii) where the workers had to report how useful
they find the different types of multimedia content we got an average of
4.23 for images, 4.08 for tweets and 4.44 for videos. Based on this, we
can see a tendency that users find videos most useful and tweets least.
We think that this might be due to the fact that a video usually contains
more information than a text or image and that it helps people more to
understand and experience the current situation.

The last two questions (iv) and (v) are evaluated together. For the first
question (iv), 336 from 349 workers (around 96%) stated that they find
the system useful, which is a promising indicator that such a system would
be useful and used by users. Having a closer look into the answers of the
last question (v) from crowd-workers that did not find it useful revealed
the following reasons: they find the system scary; can use Google; would
use a system that can predict event; or not do and never will face such an
event. Examples from users who would like to use the system are: ”I was a
victim of Katrina...”, ”I like how it provides different forms of media, from
different perspectives of the world”. ”It is an interesting way to view news;
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Videos are always more impressive than images and tweets; I would like
to use it to get better trusted info; and It is informative and gives a very
COMPLETE view of what is happening”. ”I love the use of ALL forms of
information, as in, photos, videos, and tweets”.

Based on our evaluation using crowd-sourcing, it appears that such a
system would be interesting and useful for users.

4.4.2 Multimedia Satellite: A Benchmark Task

In this section, we provide a detailed description of the conducted experi-
ments, and their analysis along with the details of the dataset.

Dataset

For the DIRSM task, a total of 6,600 Flickr images along with the addi-
tional information in the form of meata-data are provided from YFCC100M-
Data [119]. The meta-data include user’s tags, user’s id, user’s nickname,
title, description, longitude and latitude. The dataset is provided in two
separate parts namely (i) development set and (ii) test set. The develop-
ment set contains a total of 5,280 images along with the labels while the
test set is composed of 1,320 images. The images are collected with rele-
vant tags, such as flooding, floods and flood. However, human annotators
are used to rate the collected images based on their relevance with the
events.

On the other hand, satellite image patches obtained from Planet’s 4-
band satellites with ground-sample distance (GSD) of 3.7 meters [118]
have been provided for the FDSI task. The dataset mainly contains im-
ages from 8 different flood events and is collected during 01.06.2016 and
01.05.2017. All the patches have been projected in the UMT projection us-
ing WGS84 datum, and are provided in the GeoTiff format having shape
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of 320x320x4 pixels. Moreover, each patch is composed of 4 channels,
namely Red (R), Green (G), Blue (B) and Infrared band (IF) information.
Similar to DIRSM, FDSI dataset is divided into development and test test.
The development set contains 462 image patches from 6 different locations.
However, the test set has been further divided into two subsets. The first
test set contains unseen image patches from the same locations covered
in the development set while the test set 2 contains unseen image patches
from different location not covered in the development dataset. Figure 4.13
provides some sample images from both datasets.

Runs Description in DIRSM Task

For DIRSM, we submitted five different runs. Table 4.8 provides the official
results of our methods in terms of average precision at the cut-off 480
and mean over precision at different cutoffs (50, 100, 250, 480). Run 1
and run 4 are mainly based on visual information extracted with seven
different CNN models, which are jointly utilized in PSO and IOWA based
fusions, respectively. As can be seen in Table 4.8, the PSO based fusion
method outperforms IOWA with a significant gain of 3.79% and 5.34%. On
the other hand, run 2 is based on meta-data achieving the worst results
among the all runs. This lower performance with meta-data reveals that
the additional information available in the form of meta-data is not much
useful in this particular case. Similarly, run 3 and run 5 represents two
different variations of our method used for combining meta-data and visual
information. Run 3 is based on IOWA while run 5 represents our PSO
based fusion of meta-data and visual information. Again, PSO based fusion
performs better. One of the main limitations of IOWA based fusion is
its mechanism of assigning more weight to a more confident model. In
this particular case, we noticed that our classifier trained on meta-data
provides more confident decisions with high probabilities causing significant
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Figure 4.11: Sample images from the dataset for DIRSM task.

Figure 4.12: Sample images from the dataset for FDSI task.

Figure 4.13: Sample images from the Multimedia and Satellite challenge.
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Table 4.8: Evaluations of the proposed approach in terms of precision at 480 and mean
over average precision at different cutoffs (50, 100, 250 and 480).

Run Features Precision at 480 Mean precision
1 Visual only 84.94% 95.11%
2 Meta-data only 25.88% 31.45%
3 Meta-data and Visual 54.74% 68.12%
4 Visual only 81.15% 89.77%
5 Meta-data and Visual 73.83% 82.68%

Table 4.9: Evaluations of the proposed approach (team 2) in terms of precision at 480
and mean over average precision at different cutoffs (50, 100, 250 and 480).

Run Features Precision at 480 Mean precision
1 Visual only 86.81% 95.73%
2 Meta-data only 22.83% 18.23%
3 Meta-data and Visual 83.73% 92.55%

reduction in the performance. This can also be concluded from the results
on run 2 where the meta-data obtain worst results.

During our experiments on the development set, we noticed some CNN
models providing better results compared to others. Particularly, better
results are obtained for AlexNet. As a separate team, we submitted 3
different runs with visual information extracted with AlexNet pre-trained
on ImageNet and Places datasets only. Table 4.9 provides the experimental
results of our second team participated in the task.

We also provide the comparison of our method against the methods
proposed by other participants. As can be seen in Table 4.10, overall, on
visual information we got first and second places on both at cutoff 480
and mean average precision at 50, 100, 250 and 480. Although, the lower
performance on meta-data affects the performance of our fusion methods,
we achieved higher performance at cutoffs 50, 100, 250 and 480. Moreover,
better results of other participants on meta-data shows a hint of improve-
ment in this direction. In future, we aim to develop better schemes to
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Table 4.10: Comparison against other participants on DIRSM task

Team
Cutoff 480 Cutoff (50,100, 250 and 480)

Visual Meta-data Visual + Meta-data Visual Meta-data Visual + Meta-data
WISC [87] .5095 .6678 .8087 .6275 .7437 .7226

Lopez et al. [68] .6158 .6754 .6840 .6638 .7016 .8396
ELEDIA [83] .7762 .5707 .8541 .8787 .5712 .9039

Konstantinos et al. [64] .7882 .3615 .6857 .9227 .3990 .8337
Keiller et al. [62] .7460 .7671 .9584 .8788 .6253 .8563

Zhengyu et al. [142] .5146 .6370 .7316 .6470 .7574 .8543
Hanif et al. [84] .65 .649 .646 .8098 .7179 .8484

BMC [139] - - - .1921 .1284 .1830
UTAOS (ours) [5] .8494 .2585 .7383 .9511 .3145 .8268

MLDCSE (ours) [8] .8681 .2283 83.73 .9573 .1823 .9255

make better use of the additional information.

Runs Description in FDSI Task

Table 4.11 represents the experimental results of our proposed method for
Floods Detection in Satellite Images (FDSI) task. In total, we submitted 5
different runs for 7 different locations. We have used different binarization
threshold level for the different runs with the same model in order to find
the optimum balance in the number of false-positive and false-negative
pixels in the segmented images. The best results are reported for location
03 (which have the best ground visibility without clouds and proper lighting
with strong light reflections from the water surface in the flooded areas) in
all runs. Overall better results are obtained at runs 3 and 4 with threshold
.5 and .35 achieving mean IoU of 0.83 each. For the new location (07)
better results are obtained at runs 3 and 4.

4.5 Summary

In this chapter, we presented two approaches to jointly utilize information
from social media and satellite imagery to provide a more detailed story
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Table 4.11: Evaluations of the proposed approach for Floods Detection in Satellite Images
(FDSI) task

Run(Thresh.)
Mean IoU per Location

01 02 03 04 05 06 Overall 07 (new )
1 (0.78) 0.79 0.81 0.88 0.78 0.75 0.80 0.82 0.73
2 (0.94) 0.77 0.78 0.86 0.74 0.72 0.78 0.80 0.70
3 (0.5) 0.79 0.82 0.88 0.79 0.76 0.81 0.83 0.74
4 (0.35) 0.79 0.82 0.87 0.79 0.77 0.80 0.83 0.74
5 (0.12) 0.78 0.80 0.86 0.78 0.77 0.78 0.81 0.73

about a natural disaster. In the first part, we presented our system JORD
which is able to autonomously and automatically retrieve social media
data from various social platforms about natural disasters and links it to
remote-sensed images. Moreover, a hierarchical filtering mechanism rely-
ing on temporal and content analysis. We also demonstrated that queries
in local languages that are relevant to the exact position of natural dis-
asters retrieve more accurate information about a disaster event. We also
presented a novel approach to extract places and city names to find the co-
ordinates of flood affected area, which are used to retrieve satellite imagery
and link it with the underlying events.

The evaluation of the JORD system was carried out through a crowd-
sourcing-study where workers were asked to evaluate the usefulness of the
system and to identify an event presented to them with collected images,
tweets and videos. The evaluation indicates that JORD works very accu-
rate without human input, and it can be used to collect and merge a large
number of event based data for technological and environmental disasters
from different sources.

In the second part of the chapter, we presented our approach based
on Convolutional Neural Network (CNN) and Generative Adversarial Net-
works (GANs) for disaster image retrieval and flood detection in satellite
images, respectively. In the first task, we also utilized meta-data along
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with visual features using two different fusion methods. We observed that
visual features perform better compared to meta-data.
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Chapter 5

Conclusions and Future Directions

In dissertation, three open issues in event-based analysis of multimedia
contents are studied including: (i) event recognition in single images; (ii)
event recognition in personal photo collections; and (iii) joint utilization
of social media and satellite imagery for natural disaster events. For event
recognition in single images, three different novel solutions have been pro-
posed. Similarly, to tackle the challenges of event recognition in personal
photo collections, in this work, we presented a novel pipeline relying on a
multiple instance-learning (MIL) strategy. Moreover, we also presented our
system JORD, and our CNN and GAN based fusion of social media and
satellite images for natural disaster detection. In the rest of this chapter,
we discuss conclusions drawn from each individual part of the work and
their corresponding future directions.

Event Recognition in Single Images:

In this part, we argued about the problems of event recognition in sin-
gle images, addressing the problem from two perspectives. On the one
hand, we aimed at demonstrating that the fusion of different feature ex-
traction and classification strategies can outperform the single methods by
jointly exploiting the learning capabilities of individual deep models. To
this aim, we conducted a comprehensive analysis of renown deep models
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and assessed their individual as well as joint performance. On the other
side, we analyzed the importance of event-salient objects and regions in
event recognition. For the selection of event salient objects and regions, a
crowd-sourcing study was conducted with a large number of volunteers.

We showed that it is possible to achieve superior event recognition per-
formance by selecting the best models and combining them in an optimal
way through appropriate late fusion strategies. All the proposed strategies
articulate over the fact that different CNN architectures show diverse and
complementary image characterization capabilities. Thus, we can conclude
that fusing different CNN models stands out as a reliable choice to tackle
the event recognition problem. This opens the possibility of relying on
different models or combination of models depending on the task at hand,
splitting the computational burden across a distributed architecture.

We also show that better results can be obtained by involving only
event-salient regions in event recognition. Moreover, the multiple instance
learning and classification scheme better suits the region-based approach
to event recognition. A possible future direction for this part of the work
is to enrich the framework with better schemes to automatically filter out
the less informative and irrelevant image regions, which will ultimately lead
to more accurate classification and significant reduction in the processing
time and resources.

Event Recognition in Personal Photo-collections:
In this part of the work, we presented a MIL-based approach to event

recognition in personal photo collections. We showed that, even at album-
level annotation and presence of ambiguous photos in the albums, MIL
can still guarantee higher performances. At the same time, the approach
achieves good performances also using a limited number of images per bag,
thus keeping the computational load acceptable. Moreover, considering
the performance of the proposed approach, we did not observe any major
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limitation of the approach. The performance may degrade in the case of
false positives in positive bags. However, considering both the references
and citer bags helps to overcome this issue of false positive.

In the current implementation, we are relying on single network features
(i.e., object information) only. As a future development, we aim to utilize
a better scheme to fuse the scene and object-level information obtained
through deep models pre-trained on ImageNet and Places datsets, without
increasing the dimensionality of features, which may further improve the
results. Moreover, active learning is an other potential direction of research
to tackle the problems associated with event recognition in personal photo
collections due ambiguous and irrelevant pictures therein.

Disasters and Social Media:
This part is devoted to an interesting application, namely natural dis-

aster recognition. We approached the problem from two complementary
perspectives. On the one side, we collect information from social media
while on the other side we rely on satellite imagery to give a bird’s eye-
view of the natural disaster. We presented our system JORD, which is
able to autonomously and automatically retrieve social media data from
various social platforms about natural disasters and links it to remotely
sensed images, to ensure the quality of retrieved data, we perform tem-
poral and content based filtering and analysis. We have shown that the
combination of social media data and satellite images provides a better
story of a disaster. We also demonstrated that queries in local languages
that are relevant to the exact position of natural disasters retrieve more
accurate information about a disaster event.

The evaluation of the JORD system was carried out through a crowdsourcing-
study where workers were asked to evaluate the usefulness of the system
and to identify an event presented to them in the form of collected images,
tweets and videos. The evaluation indicates that JORD works very accu-
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rate without human input, and it can be used to collect and merge a large
number of event based data for technological and environmental disasters
from different sources.

In another work, presented in this chapter, we rely on Convolutional
Neural Networks (CNNs) and Generative Adversarial Networks (GANs) for
disaster image retrieval and flood detection in satellite images, respectively.
In the first task, we utilized meta-data along with visual features, and we
observed better performances with visual features only. Moreover, VGAN,
originally developed for medical images, can be easily mapped into such
applications.

Closing Remarks
In this dissertation, we established an argument about the widespread

use of event-based analysis of multimedia content in a number of applica-
tions, such as multimedia indexing, retrieval, and organization and man-
agement of multimedia collections. We argued about how user-generated
data are usually associated with personal experiences or collective activ-
ities, and how multimedia data can be assembled in the form of events.
Most of the work presented in this dissertation has already been published
in international journals and conference proceedings. A list of the publica-
tions can be found in Appendix A.
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