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Chapter 1

Introduction

Grinding is a top-down process which exploits mechanical energy to diminish the size of solid materials
and, in general, to introduce various defects modifying properties and internal energy of the product [I—
|. Early applications of this technique date back to the beginning of civilisation [2], growing in time to
date, with a large variety of uses ranging from the production of boulders and pebbles from rock masses,
limestone and clinker to make cement to the top-down preparation of nanostructured materials [2-5].

Among the multitude of grinding devices, this Thesis focuses on the planetary ball mill, an apparatus
featuring high efficiency and versatility, being suitable for processing almost any kind of material [0,

|. Examples of application chiefly include the mechanical alloying of metals as well as the synthesis of
ceramics [3—10]. This technology proved also to be effective in processing organic and exotic materials,
like, respectively, in the comminution of drugs, often required by pharmaceutical industry to enhance
dissolution of poorly soluble compounds [ 1-11], and in the mechanical exfoliation of bulk systems, lead-
ing to large-scale production of two-dimensional nanostructured materials, such as graphene and boron
nitride nanosheets [15, 16]. Moreover, besides reducing the size of the mill charge, this device is widely
adopted to augment the internal energy of the ground solid materials, so to induce chemical reactions,
an approach known as mechanochemistry [1, 17].

Although the design and the working principles of this device are rather simple and well known, being
based on impacts between milling media (balls and jar) and mill charge, the characteristics of the end
product strongly depend on a multitude of milling variables determining balls trajectories and velocities;
these, in turn, depend on the nature and magnitude of the much less known impulsive forces acting during
collisions [12].

Insights into the effect of some variables are provided by the wide literature available on this subject,
but in general each application requires specific attention and calibration [12, 18]. A brute-force empir-
ical testing, based on extended trial-and-error experimental campaigns, is the most frequently adopted
approach to process parameters optimisation i.e. to select the best milling conditions for a given choice
of mill and materials [12, 19-21].

As a valuable alternative, numerical simulations can be employed to investigate and comprehend me-
chanical processes. Indeed, the time evolution of kinematic and dynamic properties of milling media — as
well as quantities involved in contact events — computed by these methods can shed light on the role of
each milling variable and thus address the design of the characteristics of the end product [12, 18, 22].
The continuous development of methods and softwares combined with the constantly increasing power
of computers contributed to augment popularity of this approach. In particular, multibody simulation
is a powerful tool for the investigation and design of systems consisting of several bodies (multibody
systems) and it is nowadays employed in several applications dealing with moving components, including
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e.g. automotive industry, aerospace, robotics, machinery and biomechanics [23]. As a major advantage
over other modelling approaches, multibody dynamics simulations produce a clear picture of the dynamic
response of a system under different conditions, therefore allowing a quick and reliable optimisation of
its performance [23, 21].

This Thesis chiefly deals with the development of a multibody dynamics model of the planetary ball
milling process, including its validation and evaluation of the effect of the main milling variables; results
also supported an investigation on innovative solutions to fine-tuning specific collisions features, involving
the design of new jars with innovative internal shape.

Being the collision the crucial phenomenon underlying the milling process, in Chapter 2 selected contact
models are discussed and the multibody dynamics framework employed to implement the model of the
planetary ball mill is introduced.

The model is presented in Chapter 3, including a review of available analytical and numerical modelling
methods, and it is exploited to analyse the effect of selected variables — e.g. the jar-to-plate velocity
ratio. Special emphasis is given to the validation of the modelling outcomes against experimental data,
indirectly accomplished by characterising the microstructure of a test material, calcium fluoride, by X-ray
powder diffraction.

Chapter 4 focuses on the re-design of the internal shape of the jar that. This specific aspect of grinding
technology, although barely investigated in literature, is revealed as an alternative and advantageous
approach to improve the process efficiency. Particularly, new profiles modifying the ratio of normal-to-
tangential transferred mechanical action are proposed with the main goal of enhancing the comminution
efficiency of the mill charge and reducing process time. Modification of balls motion regimes increasing the
number of high-energy impacts is analysed in simulations and validated by in-operando video recordings
of the process. Experimental grinding of calcium fluoride powder is performed to assess the effect of
milling time, through the evaluation of the size and strain of the end product.

To conclude, two rather extreme and opposite case studies are considered in Chapter 5, proposing the
investigation of the milling process of two materials requiring energy to be exchanged mostly along either
the tangential or the normal direction to be successfully accomplished, corresponding respectively to the
exfoliation of graphite and the comminution of the anti-HIV drug Efavirenz.

1.1 Problem statement and goals

The fundamental purpose of this Thesis is to investigate the ball milling technique, whose success strictly
relates to the careful milling parameters assessment, governing the effectiveness of the large amount of
involved impacts. For process optimisation, namely for the set up of the milling variables leading to
the best grinding results, the use of the multibody dynamics simulation technique is proposed as an
alternative to experimental testing. This enables understanding of the role of each grinding variable —
e.g. physical properties of colliding bodies and kinematic parameters — on the characteristics of the end
product, both in terms of comminution efficiency and defects content. In contrast to experimental test-
ing, computer simulations allow for a quicker, cheaper and more insightful comprehension of the effect of
different parameters, as well as the implementation of innovative grinding solutions. Moreover, selected
case studies are corroborated by an experimental X-ray powder diffraction structural and microstructural
characterisation of the end product, to deeply correlate modelling outcomes and ground material charac-
teristics.
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Concisely, the basic objectives of the Thesis follow:

1.

to understand the fundamental laws of impact dynamics and their implementation into a multibody
dynamics simulations framework (Chapter 2)

. to develop a procedure to estimate contact parameters needed by contact laws (Chapter 2)

to develop a numerical multibody dynamics model of the planetary ball mill and to validate it either
directly, against camera recordings, and indirectly, against X-ray powder diffraction characterisation
of the end product (Chapter 3, Chapter 4)

. to propose and test innovative solutions, e.g. the modification of the internal shape of the jar to

increase grinding efficiency (Chapter 4)

to employ the model to design solutions enhancing the force exchange along a specific contact axis as
required for processing peculiar materials e.g. graphene and the anti-HIV drug Efavirenz, assumed
as relevant case studies (Chapter 5)



Chapter 2

Some remarks on contact dynamics modelling

Impact is defined as the process occurring every time two or more bodies collide [25-27]. The scientific and
technological disciplines in which this notion can be found range from astrophysics and space exploration
— e.g. the Moon Impact Probe, used to discover the presence of water on the Moon [28] — to microscopic
particle technology, from particle physics to the investigation of matter — e.g. by means of X-ray, neutron
or electron scattering — from ballistics to mechanical engineering and robotics [20, 27, 29-34]. An impact
event is mainly characterised by very short duration, sudden change in colliding bodies velocities, very
large stresses, deformation localised in the contact area and, usually, consequent dissipation of energy
in various forms including e.g. permanent deformation, friction and heat [25, 35]. The phenomenon
is therefore complex, depending on several properties of impinging bodies e.g. material characteristics,
bodies geometry and relative velocity: theoretical models providing with a simplified description of the
physical process are thus necessary to investigate the behaviour of colliding bodies [25, 20].

Research on impact dynamics modelling started with Newton’s work [36], who analysed collisions among
rigid bodies and formulated motion laws and correction factors accounting for energy loss [26, 36]. Fur-
ther important advances were later granted by the advent of the theory of elasticity and, within this
field, the Hertz’s formulation describing the deformation and stress distribution near the contact point
must especially be cited [37]. Successive extensions of these methods as well as new approaches to the
problem — e.g. including vibrational aspects — have been proposed (see e.g. [38—11]), leading to the
modern formulations capable of investigating complex contact scenarios [341]. As a further step forward,
in more recent years research focused on the development of algorithms implementing contact models
into computer codes, allowing to simulate the dynamics of complicated systems involving a large amount
of objects (multibody systems) and impact events [31].

The fundamental goal of this Thesis is the development of a multibody dynamics computer model for
the investigation of the behaviour of the planetary ball mill, a mechanical grinding apparatus exploiting
impacts to accomplish its task. Crucial point in achieving reliable simulation results is the comprehension
of the fundamentals of impacts modelling [34] and, therefore, the most widespread theories are briefly re-
viewed in the next section. An insight on the main concepts of multibody dynamics simulation technique
is then also provided, focusing especially on the solutions adopted to deal with impacts.

2.1 Contact dynamics modelling

Among the several theories proposed in literature to describe the behaviour of colliding bodies, two main
approaches can be distinguished, namely the discrete and continuous methods!. Particularly, while the
former assumes that the impact event is instantaneous and does not significantly alter the configuration
of colliding bodies, the latter presupposes a finite duration of the event and a contact force acting

While other schemes and /or methodologies can be found in literature, this Thesis chiefly follows the approach proposed
in [25]
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continuously, in turn resulting in deformation and stresses at the contact area [25]. Below, peculiarities
of the most widespread contact models belonging to both categories are briefly reviewed.

2.1.1 Discrete contact models

The discrete approach (or impulse-momentum method or nonsmooth dynamics formulation [12]) refers to
the oldest and classical theory of impact, called steromechanics, mostly based on the impulse-momentum
law. It was introduced by Isaac Newton [30], analysing the impact among rigid bodies, and later expanded
mainly by Whittaker [13] to include also the effect of friction. This approach is based on the fundamental
assumptions that (i) colliding bodies are rigid, (ii) the interaction among them is instantaneous, (iii) the
arising impact force has impulsive nature, (iv) the velocities undergo a sudden an discontinuous change
whereas (v) the configuration of the bodies does not change significantly at contact location [25, 26]. The
impact dynamics is modelled through the linear impulse-momentum and the angular impulse-momentum
principles, introducing relations among the problem variables relative to the beginning and to the end

of the event [25, 26, 31]. Particularly, for the most straightforward case of the non-frictional central f
impact of 2 non-rotating bodies (examples treating more complex conditions e.g. presence of friction can
be found in [20]) these laws lead the event to be described as[20],

M1 v1,i, +M202 4, =Miv1 f, +M2vU2 f,
v1,i, = V1, f, (2.1)

V2,4 = V2, fy

where v are the velocities and m the masses of the approaching bodies, whereas n, t denote the normal
and the tangential directions of a coordinate system with origin at the contact point, 1, 2 the bodies
and ¢, f the beginning and the end of the impact respectively. While for this simple configuration the
tangential component of the velocity remains unchanged, to predict the velocities of objects after the
event in normal direction, vy f, and vy, , an additional relation is required and it can be provided by the
so-called coefficient of restitution, e [26, 31]. This parameter represents the energy loss during the impact
and ranges from 0 and 1 idealising the concepts of plastic and perfectly elastic collision, respectively.
Several formulations have been proposed for e and, according to the most common, it can be expressed
as the ratio of final-to-initial relative normal velocity components (us/u;) [20]

U2 f, T UL f,  Uf

e ; (2.2)
V2,in — Vl,ip, Uj
Therefore, from equations 2.1 and 2.2, vy s, and vo 5, can be computed as a function of e,
mg V1,4, — M2 V24
v =v . —(l+e ) P 2.3
Lfn = Vi — (1+€) F— (2.3)
mivy g, — M1V g
Vo, = V2, + (14 €) R (2.4)

mi + meo

being e estimable from e.g. experiments [26, 441].

For more complex cases, where frictional properties of contact surface are taken into account, other
equations must be introduced for completely describe the impact process. In particular, friction affects
the tangential component of the velocity of colliding bodies that, remains constant in an impact among

fCentral impact occurs when the contact point of impinging bodies is located on line connecting their centres of mass

26]
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two perfectly smooth surfaces (no friction) whereas vanishes if impinging objects are completely rough
(infinite friction) [26]. The most exploited law to account for this phenomenon is the so-called Coulomb’s
model (see figure 2.2), depending on the friction coefficient p, which is also the only one that can be
adopted within the discrete approach for contact modelling.

The main advantages of this approach are the straightforward mathematical description and the avail-
ability of closed-form analytical solutions for simple impact geometries. However, this model can give
predictions only on the velocities after the impact and the consequent energy loss, which also strongly
relates to the coefficients of restitution and friction that should therefore be carefully determined. More-
over, this model is incapable of describing contact force, stress and deformation at contact location and,
as an another drawback, it is not easily extendible to more complex impact scenarios, where impacts
occur at the same time in many points of the system [25, 45].

Coefficient of restitution: theory and experimental assessment

The coeflicient of restitution e purports to globally describe the energy dissipated in an impact, incorpo-
rating many dissipative phenomena e.g. viscoelasticity of materials and plastic deformation at contact
surfaces as well as vibrations in the bodies [20]. It is a dimensionless quantity, varying between 0 and 1,
where these 2 limit cases represent respectively the perfectly inelastic and the perfectly elastic impact i.e.
in the former case all the energy is dissipated and at the end of the event the 2 colliding bodies move as
a single mass whereas in the latter, the kinetic energy of the system is completely conserved.

The first definition of e was derived by Newton [3(] from the law of conservation of mechanical energy and
expresses it as the ratio of final-to-initial relative velocity of impinging bodies (equation 2.2). Although
more refined expressions have been proposed in literature [25, 27, 46], the Newton’s one is still the most
used owing to its mathematical simplicity.

Originally, the value of e was believed to be an intrinsic property of materials but experiments, mainly
performed by Goldsmith, pointed out its dependence on mass, shape as well as relative velocity of collid-
ing bodies [20].

Referring to Newton’s definition, the most straightforward way to determine e from experiments is drop-
ping a sphere on a flat plate from a height hg and measuring the first rebound height h*. Indeed, being
the relative velocity of the 2 bodies equal to the velocity of the sphere and exploiting the kinematical
equation of free fall, v = /2gh (where g is the gravitational acceleration), e can be computed as

ap  [2gh*  |h*
€ iLi 29h0 ho ( )

Being this parameter crucial for properly predicting the impact dynamics, some experimental tests were
performed following this approach, so to determine the most appropriate e for materials and geometries
that will be adopted later in this Thesis for the modelling of the collisions involved in the planetary ball
milling process. Experimental procedure and results of the performed tests are reported hereafter.

Experimental tests Sphere-on-plate drop tests were performed for (i) a 12mm diameter steel sphere
and a 10mm thick massive steel flat plate and for (ii) a 6mm diameter zirconium-oxide (yttria stabilised)
sphere and 10mm thick zirconium-oxide (yttria stabilised) flat plate. The sphere was dropped from a
height hg increased from 100 to 800mm by steps of 100mm so to investigate the effect of different initial
relative velocities ;. For every height 10 tests were performed.

The employed testing apparatus is shown in figure 2.1 and comprises of a dropping column allowing
to release the ball by switching off a magnetic field, a steel flat base holding the target and a high-
speed camera (Sony Action Cam HDR-~-AS200V, 240 fps, 1280X720 pixel resolution) recording the tests.
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Collected movies allowed to read the first rebound height, h*, on a millimetric scale located behind the

dropping column.

Figure 2.1: Drop test experimental setup

Error in measuring h* mostly relates to the reading of the millimetric scale and to parallax and, since it
can be considered the same for each test, it is not reported in the results. A rough estimate of its value
could be + 5mm. As an example, table 2.1 shows the results of the tests performed for the (ii) case of
a zirconium oxide ball dropped on a zirconium oxide plate. For every hg, the average h* resulting from

the 10 performed test is reported.

ho | h* e
100 | 76 0.87
200 | 155 0.88
300 | 215 0.86
400 | 322 0.9
500 | 404 0.9
600 | 483 0.9
700 | 582 0.92
800 | 646 0.9

eaverage:O-g

Table 2.1: Results of drop tests performed for a zirconium oxide sphere dropped from different heights kg on a
zirconium oxide plate providing with an average estimate of the coefficient of restitution, eqverage

The same tests were repeated for the (i) steel on steel case and provided with egyerage=0.516
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Friction models

Friction at the contact location is another crucial aspect of the impact process, influencing the motion of
the bodies as well as the energy dissipation [25, 47].

The first and most straightforward friction model refers to the Coulomb law, stating that (i) the direction
of the frictional force, F}, is always opposite to the relative tangential motion between colliding bodies and
(ii) its magnitude can be related to the magnitude of the normal contact force, F', through the so-called
friction coefficient, u [25, 47, 48]. Particularly, friction at the contact point was shown to prevent colliding
bodies from sliding (sticking condition, characterised by null relative tangential velocity of bodies ;) as
long as [25, 47, 19]

Ft S Ms F7 (26)
where i is the static friction coefficient. Once sliding occurs, F; can be described instead by the equation

Fy=pg F 2 (2.7)
|t
being g the dynamic friction coefficient and 1; the relative tangential velocity of the colliding bodies.
It is worth noting that two friction coefficients are used, pus and pg, since experiments demonstrated that
an higher external tangential force is required to start the motion than to maintain a constant relative

velocity. Coefficients pus and pq were shown to depend only on the characteristics of the surfaces in contact

— mainly material and surface quality — and not on the relative velocity (see figure 2.2) [17, 18]. Although
literature suggests straightforward tests to estimate these coeflicients, for the sake of simplicity they are
often assumed to be equal and only a single value, u, is used [25, 17, 18].

The Coulomb friction model, whose most straightforward formulation is depicted in figure 2.2a, introduces
a discrete transition from sticking to sliding and wviceversa characterised by a discontinuity for u; crossing
zero, that can lead to numerical instability as pointed out by some authors [25, 47, 48]. Nevertheless,
this is the only model compatible with the discrete description of the impact and, moreover, being easily
implementable, it has often been exploited. Extensions of this formulation were also developed to capture
more complex phenomena like viscous friction (see e.g. [18]).

F | F |

WF /
i —/ i

a) b)

Figure 2.2: The Coulomb friction model in the (a) standard and (b) regularised formulations. The latter
formulation smooths the intrinsic discontinuity of the former to avoid discontinuities in computation. More detail
are reported in subsection 2.1.2. Adapted from [23].
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Dynamic friction coefficient experimental assessment A widespread experimental method to
evaluate the dynamic friction coefficient, y4, is the pin-on-disc tribological test [50] and it is exploited in
this Thesis to characterise the frictional behaviour of the couples of materials involved in the modelling
of the planetary ball mill, presented in the next chapter. It is worth noting that materials constituting
the milling media as well as the mill charge have been tested since during the grinding process impacts
among milling media either free or covered by a layer of ground material can occur.

Experiments were performed using a pin-on-disk tribometer (CSM tribometer [51], see figure 2.3) consist-
ing of a fixed pin under an applied load in contact with a rotating stage holding the sample (generally a
disk). Every shape can be adopted for the pin so to account for the effect of geometry at contact area
[50] but the most exploited is the spherical one, which is also the most suitable to represent interactions
among spheres and/or jar wall, typical of the ball mill. Therefore, for the experiments here proposed, a
6mm diameter pin was used together with a 50mm diameter and 5mm height disk.

0.8

| —  0.46 -0.14%exp(-0.32x)

0.7

0.2
0 10 20 30 40 50 60

length, m

Figure 2.3: Left, pin-on-disc tribometer [51], right, an example of coefficient of dynamic friction measured during
the tribological test and exponential fit of the data. The example is relative to one of the tests performed for a
zirconium oxide pin and a Efavirenz disk (Efavirenz is a pharmaceutical, treated in detail in chapter 5)

During the experiment the friction force is measured continuously and, exploiting the Coulomb law, the
coefficient of friction is computed as the ratio of this force to the loading force on the pin. At the end of
the experiment the average coefficient of friction is provided. However, as shown in figure 2.3right, the
obtained value was further validated by fitting an exponential curve to the data corresponding to the
first part of the test, where the measure is presumably not affected by wear and other phenomena arising
during the test, changing the geometry of the pin. Different couples of materials were tested adopting
2N load, 1.2 m/s rotation speed and 1200 sliding distance. 8 experiments were performed for each case
and the mean value of the resulting pg is reported in table 2.2.

Material Pin Material Disk 1d
Steel (AISI C1020) | Steel (AISI C1020) | 0.8
Steel (AISI C1020) | Calcium Fluoride | 0.2

Zirconium Oxide Zirconium Oxide | 0.67

Zirconium Oxide Efavirenz 0.2

Table 2.2: Results of tribological tests providing with the dynamic friction coefficient for different couples of
materials tested since they are going to be involved in the simulations of the ball milling process, as reported in
the next chapters.
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2.1.2 Continuous contact models

The previously-described discrete method refers to the hypothesis of rigid bodies. However, physical
objects are compliant and therefore the impact duration — although extremely short — is greater than
zero [15]. According to this more realistic view of the phenomenon, continuous (or force-based) models,
describing the impact dynamics as a continuous-time event, have been developed. This formulation (i)
assumes that colliding bodies deform and undergo local indentation and (ii) introduces a contact force,
expressed as a function of indentation, acting in a continuous manner over the finite impact duration.
This implies a simple addition of the contact forces to the equations of motion upon the occurrence of a
collision, quite easily identifiable through e.g. a minimum distance criterion. A valuable advantage of the
continuous over the discrete approach is that not only the relative velocities of bodies after the impact but
also insights on the pressure at contact location can be assessed using this method [25, 45]. Furthermore,
the method can be almost effortless extended to a multiple contacts scenario and it is well suited for the
implementation into computer codes dealing with impact dynamics problems (e.g. multibody dynamics
or the Discrete Element Method (DEM)) owing to its computational simplicity and efficiency [25, 31].
Also thanks to to the development of Computer Aided Engineering (CAE) analysis tools, over the last
decades the continuous method gained increased importance and several expressions of the interaction
force at the surface of two bodies in contact were postulated [29, 52].

Some of the proposed models are purely elastic while others include dissipative terms, generally expressed
in the form of internal damping. Some widespread schemes are briefly reviewed below and some hints
about parameters assessment are also given. A short description of friction models is also provided since,
unlike the discrete approach, the continuous method permits to adopt several different formulations for
taking into account the phenomenon.

Pure elastic contact force models

Linear Hooke contact model The simplest elastic contact force model, known as the Hooke’s law,
consists of a linear spring element embodying the elasticity of the contacting surfaces. The normal — i.e.
along the impact axis — contact force, F', is expressed as

F=ku, (2.8)

being k; the spring stiffness and u the compenetration between the colliding bodies (namely, the relative
displacement of two bodies from the beginning of the contact event, as illustrated in figure 2.4). The
coefficient k; depends on objects physical properties and geometry and can be analytically estimated for
simple cases or through experiments [53, 5], whereas u is computed from the relative positions of the
bodies during the collision.

Only a rough description of the contact force is provided by this model, unable to properly account for
the complexity of shape, surface conditions and mechanical properties of colliding objects [34].

Non-linear Hertz contact model One of the most exploited representations of the impact force
refers to the Hertz theory of contact [37]. This pioneering work, described in detail e.g. in [20], provides
a geometrical relation among compenetration (assumed to be localised in a very small contact area) and
the static compression of two isotropic elastic bodies with smooth surfaces that, within the contact area,
can be approximated by two paraboloids [37].

The expression derived for the contact force is a non-linear power function of compenetration, that can

10
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be idealised as a non-linear spring acting along the impact axis,

F=ku", (2.9)

where k and n are, respectively, the generalised stiffness parameter and the non-linear power exponent,
depending on material and geometric properties at the contact area and estimable through elastostatic
theory [37].

The parameter n, in case of a parabolic distribution of stresses, equals 3/2 as in the original work by
Hertz [34] but it can be varied if materials at the contact surface exhibit peculiar characteristics [55, 50].
The value of k£ for two colliding spheres ¢ and j is expressed as

4 (1 | RiR;
Esph—sph = — I 2.10
PRSPl = 3 (nﬁnj) R; + R, (2.10)

and for a collision between a sphere ¢ and a plate j,

4 1
ksph—plate = ( ) V Ri7 (211)

31 \n; + 1

where R is the sphere radius and 7 includes the elastic properties of the materials,

2

Y
7TEZ‘

being v the Poisson’s ratio and E the Young’s modulus.

The advantages of the Hertz law over the Hooke scheme rely on the improved physical meaning, repre-
sented both by the non-linearity and on the connection between model parameters and body properties.
However, this formulation does not account for energy dissipation and therefore it is limited to low impact
speeds, hard materials and frictionless surfaces [25].

= (2.12)

Dissipative contact force models

Since the amount of energy dissipated in a contact event is generally not negligible, the previously
introduced purely elastic schemes are not the most appropriate for the careful description of the impact
phenomenon and, therefore, several models augmenting the Hookean or the Hertzian laws with dissipative
terms have been proposed [25, 34, 45]. The dissipative contact force models are typically representable by
a spring-dashpot scheme [26], tuned by a parameter expressing the internal damping of materials. Many
linear and non-linear formulations of this term have been developed, generally in turn a function of the
coefficient of restitution, e [25, 27, 57].

The linear Kelvin-Voigt contact model (linear spring and linear damper) The simplest dissi-
pative contact force model is the one named after Kelvin and Voigt [20], schematising the impact through
a linear spring in parallel with a linear damper (dashpot) representing, respectively, the elastic behaviour
and the dissipation of energy. In this framework, the normal component of the contact force is expressed
as [27, 3]

F=ku+ca, (2.13)

11
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being k; the spring stiffness (Hooke’s-type behaviour), u the compenetration (see the linear Hooke contact
model), ¢ the linear damping coefficient and 4 the relative normal velocity of colliding bodies.

The ¢ parameter can be estimated from the solution of the classic problem of damped vibration of a mass
spring system, where it is expressed as the product of the damping ratio, ¢, and the critical damping, c.,

of the system [58, 59], i.e. for two colliding bodies i and j [27]
c="Cc.=(2mewy = 2/ meky, (2.14)
being w, = ,/% the natural frequency of the system and m, = ngﬂzj its equivalent mass. For ¢ and

k; different formulations have been proposed, and in particular an explicit relation between ¢ and the
coefficient of restitution, e, was derived by Zang et al. [57, 60],

¢=—In(e), /M, (2.15)

leading to
1
c=—2In(e), | —5———= /' mek*. 2.16
(¢) In?(e) + 72 ‘ (2.16)
A possible equivalent formulation for the stiffness, k*, was provided by Di Maio el al. [61] by imposing

the equality between the maximum force-to-displacement ratio computed from Hertz theory and from
the linear model, resulting in

320 1/5
k* = <81meai0E§R§> , (2.17)

where 1,0 is the relative normal impact velocity and 1/R. = 1/R; + 1/R; and 1/E, = 1/E; + 1/E;
account for the geometrical and elastic properties of the colliding bodies respectively .

Some weakness of the Kelvin-Voigt model have been highlighted in literature. Particularly, the formu-
lation of the dissipative term leads to a non-zero contact force at the beginning of the impact event
and to a negative force — i.e. attractive — at the end (being in this condition the compenetration null
and the relative velocity negative), obviously not correct from a physical point of view. Furthermore
the energy dissipation rate is improperly assumed to be constant during the entire contact event due
to the fixed value of the damping coefficient [25, 62-641]. Nevertheless, the model was demonstrated to
provide a satisfactory approximation of the phenomenon in case of reasonably small material damping
and moderate relative impact velocity and therefore it has been often exploited, especially owing to its
simplicity [61, 65—09]. In particular, this model was the first to be introduced in numerical methods
(e.g. within the DEM [70]) and computer codes developed to investigate the dynamics of systems with
multiple interacting bodies, such as granular materials [71].

The non-linear spring and linear damper model To partially account for the non-linear nature
of the impact, Dubrowsky et al. presented an extension of the linear Kelvin-Voigt scheme, modelling the
behaviour of colliding bodies at the contact area through a Hertzian spring and a linear damper [72],

F=ku" +c1, (2.18)

12
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where n and k are given by the Hertz law (k computed according to equations 2.10 and 2.11 for e.g. a
sphere-sphere and a sphere-plate contact respectively) and equations 2.16 and 2.17 can give an estimate
of the damping parameter, ¢. However, as for the Kelvin-Voigt case, the physics of the energy loss is not
accurately represented by this model since the damping parameter is constant [73].

The non-linear spring and non-linear damper model To overcome the limits of the previous
models, Hunt and Crossley proposed the following representation of the contact force, adding a non-
linear viscous damper to the Hertzian response [73]

F=ku"+C(u)u, (2.19)

being C(u) the damping coefficient that, to satisfy the boundary conditions of null contact force at
the beginning and at the end of the impact event, is expressed as a function of the compenetration, u,
between colliding bodies, modelling as well a non-constant energy loss during the impact, therefore leading
to a more physically sound representation of the event [25, 31] at the cost of augmented computational
complexity (for more details see e.g. [31]).

Other dissipative contact models Starting from the non-linear spring and damper model, other
schemes have been developed especially to account for plastic or permanent deformation at the contact
area [14, 71, 75]. More details can be found e.g. in [25, 34].

Friction models

As an advantage over the discrete method, several models for friction can be adopted within the con-
tinuous approach to impact modelling [25]. The simplest and most exploited ones consist of regularised
expressions of the Coulomb friction model (see figure 2.2b), smoothing the intrinsic discontinuity of the
standard formulation and thus allowing a continuous transition from sticking to sliding through a contin-
uous friction force [18].

More complicate formulations have also been developed to properly include various friction phenomena
— e.g. stick-slip, viscous friction or pre-sliding — that can influence the dynamic response of the system
(an exhaustive list is reported e.g. in [18]). However, price to pay for a more accurate description of the
phenomenon is the dependence of the model on a larger number of parameters that often can not be
easily estimated [25, 18].

Parameters assessment

The main drawback of the continuous impact models with respect to the discrete ones is the greater effort
required for parameters assessment, especially for the generalised stiffness and the damping coefficients
[25, 48]. As shown, these parameters are expressed as mathematical functions of physical and geometrical
properties of colliding bodies and they are not directly measurable from simple experiments, as a difference
with the discrete approach where models mainly refer to the coefficient of restitution deducible from e.g.
drop tests. Although accurate, analytical formulas provide an estimate of the coefficients that should be
validated and, eventually, tuned e.g. by comparing the modelling outcomes and the results of experimental
tests [25].
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2.2 Impacts in multibody dynamics simulations

Since 1988, when it first appeared in a textbook [32], the kinematic and dynamic computer simulation has
become a powerful tool for the investigation and the design of systems consisting of several bodies (multi-
body systems) and it is nowadays employed in almost any application dealing with moving components,
including e.g. automotive industry, aerospace, robotics, machinery and biomechanics [23]. Multibody
dynamics simulation provides with a clear picture of the dynamic response of a system under different
conditions, therefore allowing to quickly and economically optimise the performance [23, 24].
The importance gained by this simulation technique is demonstrated by the number of available soft-
wares and, above all, by the publication of a large amount of studies [24], investigating and addressing
several issues including, but not limited to, methods for the formulation and the more efficient numerical
solution of the equations of motion [76, 77] as well as analyses on the modelling of material properties
and mechanical constraints [78].
This method usually incorporates a finite set of mathematically described elements including rigid or
elastic bodies, kinematic constraints (joints), springs and dampers, bearings, gears as well as forces and
torques for the definition of the characteristics and the dynamics of the system. The temporal evolution
is obtained by numerically integrating the equations of motion, generally expressed according to the
Newton-Euler or Lagrange formalism, together with additional constraints and contact conditions [23,
I
Being moving bodies often subjected to impacts, the implementation of contact and friction models ever
more sophisticated, has been fundamental for increasing the reliability of simulation results [23, 15].
Within this context, in this Thesis the framework of multibody dynamic simulation is exploited for the
study of the planetary ball mill, a grinding device where impacts play the key role.
However, it should be mentioned that there is another popular method for simulating interactions among
moving bodies, the DEM. This technique, developed for the analysis of discontinuous materials [70],
mostly addresses problems in granular flow and powder or rock mechanics (see e.g. [33, 67, 79, 80]).
DEM and mutlibody dynamics share the same working principles but, generally speaking, while the
former deals with a very large amount of small particles driven by gravity or kinematically simple ma-
chinery, the latter can simulate systems more complex in terms of motion but including a smaller number
of parts. In principle, both the DEM and the multibody dynamics methods are suitable for simulating
the planetary ball mill since this system involves a number of bodies not too large for the multibody and a
kinematic that can be efficiently handled also by DEM. The choice of the multibody approach within this
Thesis is chiefly motivated by (i) the simple management/modification of the kinematics and dynamics of
the system given by the built-in joints as well as (ii) the possibility of using both native solids and CAD
imported models for defining the geometry of the bodies offered by the software used, i.e. MSC.Adams
[21], and by (iii) the larger diffusion that this method, allowing to simulate almost any mechanical system
or component, can obtain in industry and scientific research areas dealing with mechanics. Furthermore,
the employed multibody dynamics software, MSC.Adams, implements a robust but at the same time
more straightforward contact scheme (although any formulation can be added by the user) than several
DEM softwares, thus reducing the effort and the uncertainties related to parameters fitting. Finally, it is
worth noting that the DEM has already been widely exploited for the simulations of the planetary ball
mill (see e.g. [12, 18, 22, 82-84]) whereas, to the best of my knowledge, no models of this system in the
framework of multibody dynamics simulation are reported in literature.

2.2.1 MSC.Adams contact model and parameters assessment

For a reliable simulation of the planetary ball milling process, impacts modelling plays a crucial role.
Particularly, the software employed within this Thesis, MSC.Adams [31], adopts the continuous approach
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(see subsection 2.1.2) and therefore, once the contact among two bodies is detected, an impact force is
added to the equations of motion. This force is expressed through the hard-coded impact function (but
every other scheme can be added by the user), implementing the non-linear spring and linear damper
scheme [15] (equation 2.20)

F=ku"+cu

However, to prevent discontinuities and avoid the previously reported side effects of this model, in contrast
with the classic formulation, the impact function introduces a damping coefficient, ¢, which is not constant
but dependent on the compenetration of colliding bodies, u, computed as the difference of a reference
distance w1 and the istantaneously measured distance between the centre of mass and the external surface
of the colliding bodies ug (see left part of figure 2.4) [15, 81],

c= —cm<%)2<3 - 2%). (2.20)

According to this function, sketched in the right portion of figure 2.4, ¢ varies from zero (no compenetra-
tion) to a maximum value, ¢,,, applied when the compenetration is greater than or equal to d.
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Figure 2.4: Left, definition of compenetration and right, trend of damping coefficient introduced in the
MSC.Adams impact function as a function of compenetration. Differently from the standard formulation, defining
a constant ¢, in the impact one this parameter varies as a function of compenetration among colliding bodies, u.
Adapted from [85].

This contact scheme requires therefore the introduction of the parameters k, n for describing the elastic
part of the contact force and c¢,,, d for the dissipative one.

A default procedure for parameters assessment is not defined and therefore the user can refer to every
kind of method: from experiments to theory.

Hereafter the procedure developed in this Thesis is briefly explained.

Parameters assessment First of all it should be underlined that, although the planetary ball milling
process is quite complex, involving a large number of collisions at different speed and angle, the contact
model parameters were estimated for single impacts representative of the events occurring in the real
scenario [84, 86], namely impacts among spheres and among spheres and the curved jar wall. The deter-
mined parameters were then extended to all the events involved in the process and, as will be shown in the
next chapters, the overall contact dynamics was then validated through comparison against experiments.
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For the contact model parameters assessment the impact between two spheres and between a sphere and
a plate were considered, the latter assumed to approximate the collision of a ball with the jar wall, being
the ball radius much smaller than the jar one.
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Figure 2.5: Left, simulated ball-on-plate drop test. Right-bottom analysis of the effect of each parameter
introduced in the impact function on the first rebound height of the ball, h*, provided by simulations. Starting
from the first-estimate values, parameters were varied of = 50 % and, for each simulation, h* was measured (the
figure reports the variation of this quantity expressed as Ah = h* — hg/hg). It can be noticed that ¢ and d have
the larger influence on this variable. Right-top, d fitting of h*. Results here reported refers to case study of a
12mm diameter steel ball dropping from hy = 500mm on a steel plate. Adapted from [55].

Being the MSC.Adams impact function formulation related to the non-linear spring and linear damper
model, the theoretical expressions previously presented for this case were exploited to estimate k, n and c¢;,.
Starting from the sphere-plate case, the generalised stiffness k and the n exponent were deduced from the
Hertz theory (see non-linear Hertz contact model paragraph) and particularly n=3/2 was fixed whereas
k was computed according to equation 2.11. For estimating ¢,, instead, the expression 2.16, proposed for
the linear damper, was used introducing (i) the value of e provided by the drop test experiments reported
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in subsection 2.1.1 (ii) k* derived from the equation by Di Maio el al. (equation 2.17) and (iii) equivalent
mass 1/me = 1/Mgphere since myqee should be considered oo for this kind of collisions [26, 87].

Being d a feature of the MSC.Adams code, no suggestions for its estimate are provided in literature and
therefore a first-tentative value was fixed according to considerations about the materials properties, the
dimensions of the bodies and, in turn, the expected compenetration.

While calculations provided a reasonable first-order guess, experiments — more complicated but without
simplifying assumptions in theories — were used to validate results. Particularly, as suggested by literature
[34, 86], the ball-on-plate drop test was exploited, providing with the first rebound height of the dropping
sphere, h* (see subsection 2.1.1).

This experiment was simulated (see left portion of figure 2.5) — for a dropping height, hg, chosen as
representative of the impact velocities that can take place in the ball milling process — introducing in
the impact function the first-tentative parameters determined from the above-described methods. h* was
extracted from simulation results and compared with the corresponding experimentally measured value.
Since no match was found, further simulations were performed varying d until the correspondence among
numerical and experimental h* was reached (see top-right part of figure 2.5). It should be specified
that d was adopted as fitting variable since (i) a parametric analysis on the effect of each contact model
parameter on the variation of h* was performed (bottom-right part of figure 2.5) and it pointed out
that the dissipative terms mostly influence this quantity and (ii) it was chosen over ¢ since no analytical
first-guess expressions are available for its estimate.

For contact model parameters assessment for the impact among spheres, the same methods were adopted.
However, being sphere-on-sphere experimental drop tests hardly performable with the apparatus showed
in subsection 2.1.1, as a first-order approximation, the value of e derived from sphere-on-plate tests was
introduced in equation 2.16 to compute ¢,,. Subsequent drop test simulations showed a rebound h*
approximately 20% higher than for the sphere-plate case, which is quite in agreement with the differences
in terms of mass, geometry and stiffness among these 2 cases [206, 88-00]. Beside the contact force,
MSC.Adams allows to account for friction at contact location through the following hard-coded regularised
expression of the Coulomb model (see the paragraph on friction models),

. 2 .
" <“t> (3 - 2?“) 0 < 1y < s
Uts Uts 9

— 1 — 1 e — U . . . 2.21
M= s — (s — ) (w) (3_zw s < iy < g, (221)
Utd — Uts Utd — Uts

Id U > Utd

gradually varying from the static ps to the dynamic pg friction coefficient as a function of the tangential
relative velocity of colliding bodies 4, as illustrated in figure 2.6 (but it should be noticed that any other
friction model can be implemented by the user).
The required stiction (1) and friction (4.q) velocities, representing the transition from sticking to sliding,
were assumed low enough to allow a quick passage to sliding so to mimic the standard formulation of the
Coulomb model (see figure 2.2) and ensure the application of a sliding friction force also at relatively low
impact tangential velocities, as those typically developing during the planetary ball milling process.
For pg instead, the results of the pin-on-disc tribological tests (reported in subsection 2.1.1) were used
whereas ps; was deduced from literature.

Integrator settings Other aspects strongly influencing the results of the simulation are the settings of
the integrator and the calculation step (time step). For the integrator several formulations are available in
MSC.Adams and in this Thesis the Hilber-Hughes-Taylor (HHT) one was adopted being very well suited
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friction coefficient, w

tangential relative velocity, i,

Figure 2.6: MSC.Adams formulation of the friction Coulomb model. Friction coefficient varies as a function of
the tangential relative velocity, ;. Adapted from [81] — user manual.

for problems involving impacts (see [31] — user manual). Among the multitude of parameters that can be
tuned by the user, the effects on the solution of (i) error, representing the allowed integration tolerance,
(i) Amaz, indicating the maximum integration time step permitted and (iii) step, governing the output
frequency (number of calculation points dumped to a file per second of simulation), were investigated.
Simulations of the ball-on-plate drop test, systematically varying the above mentioned parameters, were
performed until reproducibility of the solution in terms of trajectory of the bouncing sphere was achieved:
maximum error and ., ensuring this result were adopted. The step value instead, was chosen so that
both a good description of the events was given and the size of the output files was not tremendously huge.
It should be noticed that, this variable is also closely related to the time step, the latter being equal to
1/ step if hypqz is not defined. On the other hand, even if A4, is set, to provide a more accurate solution
in case of especially complex events (e.g. impacts), MSC.Adams reduces automatically the time step
below hme, (adaptive time step) and, proportionally, increases the number of output points describing
the event [$1]. The number of calculation and output points per second of simulation therefore strictly
depends on these variables as well as on the complexity of the modelled process and consequently it is
not completely controllable by the user.

2.3 Impact of two spheres: comparison of analytically and numerically computed
velocities

To validate the previously proposed procedure for parameters assessment and, in turn, the modelling
outcomes,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>