
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School

Design and Evolution of
Sociotechnical Systems

A Requirements Engineering Perspective

Fatma Başak Aydemir

Advisor
Prof. Paolo Giorgini
Università degli Studi di Trento

Co-Advisor
Prof. John Mylopoulos
Università degli Studi di Trento

April 2016

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisors Prof. Paolo Giorgini
and Prof. John Mylopoulos for the continuous support of my Ph.D study and related
research, for their patience, motivation, immense knowledge and wisdom. Their guidance
helped me in all the time of research and writing of this thesis.

Besides my advisors, I would like to thank the rest of my thesis committee: Prof.
Giacomo Cabri, Prof. Roberto Sebastiani, Prof. Munindar Singh, and Dr. Anna Perini,
for their insightful comments and the lively discussion during my defense. I would like to
thank Prof. Munindar Singh also for giving me the opportunity to visit his team and the
access to the research facilities at North Carolina State University. The discussions I had
with him and his team broaden my horizons and helped me with my research.

I am grateful for collaborating with inspirational researchers during my Ph.D. studies.
Dr. Tong Li, Dr. Fenglin Li, and Dr. Amit Chopra were great collaborators with their
ideas and hard work. Dr. Fabiano Dalpiaz supported me in doing research, as well as
in the writing process with his hands-on approach. Dr. Jennifer Horkoff has been a role
model and inspired me with her attention to details, willingness to take initiative, and
strong research ethics.

I also thank my friends from the Multiagent Systems Laboratory at the Boğaziçi
University. Dr. Özgür Kafalı and Dr. Akın Günay encouraged me throughout my Ph.D
studies and contributed to the final version of my thesis with their comments. I’m grateful
for Prof. Pınar Yolum for helping me having my first steps into research during my masters
studies and providing support during my Ph.D.

I received great emotional support from friends. Fellow Ph.D students in the Software
Engineering and Formal Methods froup empathized with me in good and hard times.
Dr. Ramona Marfievici shared her wisdom on life and secrets about Trentino with me.
We experienced the importance of stamina together. I also cannot thank enough to Dr.
Begüm Demir who took care of me and became my family in Trento.

Last but not the least, I would like to thank my family: my parents and to my brother
supporting me in every step of my life. This thesis is dedicated to them.

Abstract

Sociotechnical systems are systems of systems where social, technical, and organiza-
tional systems interact with each other to satisfy their requirements. The interplay of
social and technical systems blurs the borders in between them, and the constant change
within and outside the sociotechncial systems create difficulties to manage the overall evo-
lution. This thesis explores the methods to model, analyse, and evolve the requirements
of sociotechnical systems. We propose a systematic design process and a formal language
to aid social systems refine their requirements into not other requirements but also so-
cial interactions to generate system as well as interaction specifications. Although such
specifications are useful to generate interaction protocols among systems, they haven’t
been investigated in detail by the requirements engineering community. We then explore
the design space created during the design process with artificial intelligence planing to
discover sequence of actions to satisfy requirements with minimal cost.

We adopt an iterative approach for handling requirements evolution and focus on the
problem of selecting the optimal set of requirements for the next release. We capture syn-
ergies among requirements in goal-oriented requirements models and transform the next
release problem into a multi-objective satisfiability modulo theories/optimization modulo
theories problem and solve it using an external reasoner. We apply a similar approach for
risk analysis using goal models. We model goals, risks, and treatments in three layers and
solve multi-objective risk analysis problem with SMT/OMT reasoning. We evaluate our
proposal with self-evaluation studies, a case study and scalability experiments and report
results. The novelty of these two approaches is the combination of satisfiability analysis
with multi-objective optimization for goal models.
Keywords requirements engineering, sociotechnical systems, design, social commitments,
planing, next release problem, multi-objective optimization, satisfiability modulo theories,
optimization modulo theories, risk analysis, goal-models

Contents

1 Introduction 1
1.1 Sociotechnical Systems . 1
1.2 Design and Evolution of Sociotechnical Systems 2
1.3 Challenges . 3
1.4 Research Roadmap . 5

1.4.1 Research Questions . 5
1.4.2 Evaluation Activities . 7

1.5 Overview and Contributions . 9
1.5.1 Designing Sociotechnical Systems with Protos 9
1.5.2 Exploring Sociotechnical System Designs 9
1.5.3 Evolution of Requirements . 10
1.5.4 Risk Analysis . 11

1.6 Publications . 11
1.7 Organization of the Thesis . 12

2 Related Work 15
2.1 Goal–Oriented Requirements Engineering 16

2.1.1 Goal Modeling . 16
2.1.2 Analyzing Goal Models . 18

2.2 Modeling Social Interactions . 19
2.3 Evolution . 22

2.3.1 Software Evolution . 22
2.3.2 Requirements Evolution . 23
2.3.3 The Next Release Problem . 24

2.4 Risk Assessment . 26
2.4.1 Risk Analysis . 26
2.4.2 Goal–Oriented Risk Analysis Approaches 26

3 Protos: A Methodology for Designing Sociotechnical Systems 29
3.1 Research Baseline . 31

3.1.1 Classical Formulation of the Requirements Problem 31
3.1.2 Commitment Models . 32
3.1.3 Refinement . 32

i

3.2 Requirements Engineering for Sociotechnical Systems 33
3.2.1 Rethinking Requirements Engineering Characterization 34
3.2.2 Modularity of the Design Space . 35

3.3 Social Refinement . 36
3.3.1 Model Elements . 36
3.3.2 Design Configurations . 37
3.3.3 Design Process . 38
3.3.4 Social Refinement Types . 40
3.3.5 Logic of Design Elements . 42
3.3.6 Example of Design Paths . 42
3.3.7 Soundness . 43

3.4 Evaluation . 44
3.5 Chapter Summary . 45

4 Exploring Sociotechnical System Design Space 49
4.1 DEST: A Modeling Language for Designing Sociotechnical Systems 49

4.1.1 Requirements . 50
4.1.2 Actors . 51
4.1.3 Commitments . 53

4.2 Designing a Sociotechnical System . 53
4.3 Implementation . 57
4.4 Evaluation . 59
4.5 Chapter Summary . 61

5 The Next Release Problem 63
5.1 Research Baseline . 64
5.2 The Next Release Problem . 65
5.3 Encoding NRP to SMT . 70
5.4 Reasoning . 72
5.5 Evaluation . 74

5.5.1 Next Release Tool . 74
5.5.2 Scalability Experiments . 75

5.6 Chapter Summary . 79

6 Risk Analysis in Sociotechnical Systems 81
6.1 Risk Modeling . 82
6.2 Evaluation of the Visual Notation . 84
6.3 Risk Analysis . 86
6.4 Chapter Summary . 92

7 Discussion, Conclusions, and Future Work 93
7.1 Fulfillment of Success Criteria . 93
7.2 Conclusions . 94
7.3 Ongoing and Future Work . 95

ii

7.4 Future Lines of Research . 96

iii

List of Tables

1.1 Research questions and success criteria . 6
1.2 Satisfaction of Succes Criteria via Evaluation Activities 8

3.1 Insurance illustration refinement . 39
3.2 The underlying logic is propositional logic augmented with the following

axioms pertaining to the symbols introduced in Protos. 43
3.3 A portion of the design process during the modeling session on the London

Ambulance System . 46

4.1 List of PDDL Predicates and Fluents 58

5.1 Inter-Dependencies between requirements for the next release identified by
Carlshamre et al [148] . 65

v

List of Figures

3.1 The overall design space for sociotechnical systems 33
3.2 Paths through the design space. 42

4.1 Meta-model of the DEST modeling language 50
4.2 DEST model of the travel reimbursement sociotechnical system 52
4.3 A partial design plan for the model described in Figure 4.2 56
4.4 PDDL action for an actor satisfying the goal of which it is capable 59
4.5 The results of the scalability experiments w.r.t model size 62

5.1 A simple goal model . 64
5.2 Metamodel for the NRP . 66
5.3 An example model . 67
5.4 Process diagram for solving the NRP . 69
5.5 Sample models demonstrating precedence relation 71
5.6 A screenshot from Next Release Tool . 75
5.7 Component Diagram of Next Release Tool 76
5.8 Scalability wrt problem size . 77
5.9 Scalability wrt problem size . 78
5.10 Scalability wrt problem size . 78
5.11 Scalability wrt alternatives . 79

6.1 Meta–model for risk modeling in goal models 82
6.2 Illustrative example: Loan Origination Process (LOP) 83
6.3 Legend for the visual notation . 86
6.4 Risk impact on a goal . 88

vii

Chapter 1

Introduction

1.1 Sociotechnical Systems

Traditional institutions such as government bodies, health-care systems, universities, and
many others have been increasingly relying on technical systems to generate and consume
information, to communicate with others, and run tasks that are too dangerous, difficult,
or repetitive for humans. The rise of certain technologies enable contemporary institu-
tions, such as massive open online courses and open source software communities, where
the technical infrastructures are indispensable parts of the organization. Hardware and
software systems have been integral components of institutions big and small to operate
and reach their goals.

Eric Trist, Ken Bamford, and Fred Emery coined the term sociotechnical systems
(STSs) to describe English coal mines, referring to the interrelatedness of human, tech-
nical, and organizational aspects [1], [2]. There are several examples of sociotechnical
systems in our daily lives, some of which are mentioned above. A smart city is a sociotech-
nical system, where citizens, province, and law-enforcement officers are few of human and
organizational systems, and traffic sensors, garbage collection machines, and lighting in-
frastructures are examples of technical systems. Similarly, an e-commerce website is
another example of sociotehnical systems where the management, employers, purchasing
department and customers are social systems that are supported by the technical systems
such as the web site, mobile app, source management software and so on.

Günther Ropohl [3] describes sociotechnical systems using general systems theory [4].
In this sense, sociotechnical systems are systems-of-systems where where social systems
interact with and through technical ones. Each system that is part of a sociotechnical
system is an action system, that takes actions to reach its goals, changes its environment,
and communicates with others during its operation. According to Ropohl, a sociotechnical
system itself is also an action system. We adopt his definition for sociotechnical systems.

Systems that compose a sociotechnical system coordinate, collaborate, and communi-
cate with each other. These activities are necessary for them to satisfy their local goals as
well as global (sociotechnical system) goals. On different levels of abstraction, each sys-
tem of a sociotechnical system can be a sociotechnical system itself, creating a hierarchy,

1

CHAPTER 1. INTRODUCTION

suggesting that organizations as a whole can be part of sociotechnical system. This is an
application of the principle of excluded reductionism from general systems theory.

There are three ways of achieving goals of sociotechnical systems in terms of organiza-
tional relations: hierarchy, heterarchy, and responsible autonomy. Military and religious
organizations exemplify strict hierarchy. In heterarchical sociotechnical systems control
shifts around systems based on their capabilities (personality, skills, experience). Con-
sortia established for European projects operate heterachically, where different partners
lead the work packages that match to their qualifications and expertise the best. Finally,
in case of responsible autonomy the systems have autonomy to decide what to do, but
are accountable for the outcome of their decision. Research groups (generally) have re-
sponsible autonomy; they can decide on the venues to present their works, candidates to
hire, proposals to write and so on. In general, the combination of these three aproaches
in various degrees are applied to sociotechnical systems [5].

In a sociotechnical system actions may be executed by technical (hardware or software)
or social (humans or organizations) systems, hence the principle of equi-functionality
applies. Due to technological advances especially in the artificial intelligence area, the
border between social and technical systems become blurry. Technical systems do not
take final decisions or set global or local goals as of now, but they highly support social
systems for these actions. Technical systems are capable of executing human actions, in
some cases performing even better than humans.

In summary, sociotechnical systems are systems-of-systems composed of both social
and technical systems. Internal systems as well as the global sociotechnical systems are
goal oriented, and capable of taking actions to reach their goals. There is a hierarchical
structure that is formed by the ways inner systems collaborate with each other. Yet the
social systems still set goals and make final decisions and technical systems are assigned
to tasks that are repetitive, dangerous, or difficult for humans.

1.2 Design and Evolution of Sociotechnical Systems

Sociotechnical systems are composed of heterogeneous systems, which might be software
or hardware systems, human systems, organizations, and combinations of these. As we
discuss above, these systems interact with each other in various ways to achieve the local
and global goals. Thus, one of the identifiers of a system is its interactions with others.
A system may participate in multiple sociotechnical systems through the interactions
it forms. For example, a company interacts with other companies, its customers, and
government bodies to conduct business. It may operate in different countries, hence
participate in different sociotechnical systems.

An underlying technical infrastructure supports interactions between systems, soft-
ware is part of this infrastructure. Ideally the software should be transparent, satisfying
requirements of the system without being obtrusive. Pervasive [6] and ubiquitous [7]
computing paradigms has shifted software design towards this direction, hiding technical
details from social systems that use the software. Another significant paradigm that has

2

1.3. CHALLENGES

facilitated interactions is distributed computing. Distributed computing removed physical
barriers for social systems to engage in with each other [8]. Service–oriented computing [9],
grid computing [10], application programming interfaces (APIs) [11], among many others,
exemplify distributed computing, enabling multiple social and technical systems to use
the same software products, form interactions in various forms: sharing their resources,
trading goods, and building collaborations.

When a technical system is designed, the requirements of individual systems are con-
sidered, but the interactions among the systems are often not taken into account, which
results in undesired outcomes. A great example is the ‘Flash Crash’, where the Dow Jones
Industrial Average dropped by over 600 points that resulted in a total loss of $800bn in
market value on May 6, 2010 [12]. Although the market recovered within minutes, the
‘Flash Crash’ got a lot of attention from multiple disciplines from policy making to infor-
mation systems engineering. The incident was caused by a single large block of sale by
a fund management company, leading to a sudden drop and rise in the market. In this
case, all technical systems worked as specified, however a legitimate exchange between
a social system and the other caused tremondous negative side–effects for the overall
sociotechnical system.

Designing social interactions has received attention from the areas of requirements en-
gineering and agent–oriented software engineering. One of the most prominent framework
is i* [13], which is a goal–oriented requirements modeling framework and is the research
baseline for this thesis. i* describes an organizations as a set of actors that interact with
each other through dependencies to satisfy their goals. The interaction may be in the
form of achieving a goal, executing a task, or providing a resource for another actor. The
dependencies in i* do not capture the two way interactions between actors, they represent
on which way an actor relies on the other. Also, i* framework does not have a modeling
process defined to build the social models. In this thesis, we propose a goal–oriented
modeling language that captures two-way interaction among systems and a requirements
refinement process to build social models.

1.3 Challenges

Designing sociotechnical systems is still an open challenge due to several reasons. i. The
focus of each system might be different, it is likely that their local goals are diverse, ii.
they may even be conflicting with local goals of other systems. iii. Due to heterogeneity
of sociotechnical systems, participating systems have different technical backgrounds, dif-
ferent capabilities, and use different jargon to express their goals. Interaction is one of the
core elements for satisfying local and global goals. We identify the challenge of designing
a sociotechncial systems as follows:

C1 Defining a systematic approach for the design process that considers the heterogeneous
structure of sociotechnical systems, diverse goals of participating systems and rthe
degree of autonomy of each system. The process should provide means to systems to

3

CHAPTER 1. INTRODUCTION

resolve their conflicts, guide systems through the design activity, let systems specify
their local goals, and create a common understanding of the state of the design.

Sociotechnical systems are situated in dynamic environments. Environmental changes
may force altering strategies for achieving goals, or even reconsideration of global and local
goals. Change in sociotechnical system goals implies evolution of sociotechnical system.
Apart from the environmental causes, internal factors may also force evolution. For
example, an internal social system may change its local goals, a software product that is
part of a technical system may have a new release. If not handled properly, sociotechnical
system evolution may cause misalignment among systems, causing failures. In order
to prevent such cases, evolution should be controlled by carefully selecting its direction
among many possibilities. It is important to consider the objectives of the sociotechnical
system, and how well each direction of evolution maximizes (resp. minimizes) these
objectives. Challenges related to sociotechnical system evolution are as follows:

C2 capturing existing and new goals, and synergies that will result from applying changes.
There are synergistic relationships between goals apart from the traditional relation-
ships, such as decomposition, make, help, hurt, and break. Synwrgystic relationships
are active when both goals are satisfied, and they have impact on criteria other than
the satisfaction of the goal, such as a reduction on cost, or increased utility. These
synergies should be identified, and captured within goal models.

C3 finding optimal solutions for the next iteration of evolution. Optimization in goal
models has not been explored in detail, yet for the controlled evolution of require-
ments, optimization analysis is significant for the selection of requirements for the
next iteration. Fo example, maximizing the utility while minimizing the cost could
be an objective for a sociotechnical system design.

Studies show that risks are highly underestimated in IT projects [14]. Identifying
incidental and intentional risks early in the design process is necessary to minimize loss,
and propose treatments when possible. The complex structure of sociotechnical systems
leads to more complicated relations among the requirements of the systems. For example,
one system’s requirements may create risks for others, but may help mitigating the impact
of other risks. It is difficult for decision-makers to reason on these complex relations and
discover the optimal solutions with respect to multiple criteria such as cost, gain, or risk
aversion.

C4 capturing the synergies among goals in terms of risk and mitigation. We need methods
capture risk likelihoods and impacts on requirements models, as well as mitigations.
Satisfaction of a requirement may create a risk for the satisfaction of another requ-
irement, or may help to mitigate the impact of a risk.

C5 analyzing risk for sociotechnical system and discovering optimal solutions inline with
the risk management strategies of a sociotechnical system. After capturing the risk
related synergies, risk analysis should be conducted on the requirements models in

4

1.4. RESEARCH ROADMAP

the early stages. Many strategies might be followed for this task, such as minimizing
cost, minimizing risk, an maximizing the mitigation impact. We need methods to
assess and mitigate risk in requirements models.

1.4 Research Roadmap

Design and evolution of sociotechnical systems is a broad area that includes many chal-
lenges with respect to social and technical aspects. Section 1.2 discusses specific challenges
that we are interested in within the scope of this thesis. Social interactions should be con-
sidered during the design process, as they are the key of satisfying sociotechnical goals.
Systems should be part of the design process both to express their goals and to build the
interactions needed to achieve those goals.

The evolution of sociotechnical systems should be controlled in order to prevent mis-
alignment within sociotechnical systems, or worse, the collapse as a result. The ‘eco-
nomics’ of evolution should be considered, the optimal solution that maximizes (resp.
minimizes) the objectives of the sociotechnical system should be found. Risk analyses
should be incorporated to these processes from early stages for improved risk manage-
ment.

We tackle these challenges form a requirements engineering perspective. Our aim is
to stand on the shoulder of giants of goal–oriented requirements engineering, revising
and extending existing approaches for improving approaches for design and evolution of
sociotechnical systems.

1.4.1 Research Questions

Our research objective is to support design and evolution of sociotechnical systems from the
requirements engineering perspective by providing languages, processes, reasoning mecha-
nisms, and tools. The overall objective of the thesis will be achieved by answering the
following research questions.

RQ1 What is an effective process for designing, analysing requirements, and generating
specifications for sociotechnical systems?

RQ2 How to analyze requirements models in order to select optimal plans for sociotech-
nical systems?

RQ3 How to manage the incremental evolution of requirements of sociotechnical systems?

RQ4 What is an effective method for risk analysis for sociotechnical systems?

In order to evaluate our approach towards answering these research question, we iden-
tify several success criteria. Table 1.1 summarizes our research questions and the success
criteria.

5

CHAPTER 1. INTRODUCTION

Table 1.1: Research questions and success criteria

RQ Success Criteria

RQ1 SC1 Have a systematic approach that is
SC1.1 able to conduct modeling requirements and interactions,
SC1.2 applicable to different domains,
SC1.3 equipped with a formal semantics.

RQ2 SC2 Have a systematic approach that is
SC2.1 able to capture requirements and interactions,
SC2.2 able to automatically create plans to execute at run-time.

RQ3 SC3 Have a systematic approach that is
SC3.1 able to capture requirements and synergies for next iteration,
SC3.2 able to support automated analysis for finding optimal solutions.
SC3.3 able to provide solutions in acceptable time.

RQ4 SC4 Have a systematic approach that is
SC4.1 able to capture risk and synergies in requirements models,
SC4.2 able to support automated analysis for finding optimal solutions.

In order to address RQ1, ‘What is an effective process for modeling requirements and
interactions of sociotechnical systems?’ we need a systematic approach that supports
modeling activities to specify a sociotechnical system.

SC1.1 Conduct modeling requirements and interactions in few steps. There should be a
systematic modeling process that supports designing sociotechnical systems starting
from requirements of participating systems, and builds a specification by refining the
initial requirements, forming interactions among systems, and creating new systems
when necessary. The process should respect the characteristics of sociotechnical
systems such as heterogeneity, autonomy of individual systems, and open systems
principle.

SC1.2 Applicability to different domains. The process should be domain-independent,
that is, it can be used to specify different sociotechnical systems from different
domains.

SC1.3 Formal semantics. The design produced as the product of the process should
not only capture and convey the specification of a sociotechnical system, but also
allow formal reasoning to answer questions, such as ‘Is the design complete?’, ‘Are
there any requirements that are not accounted for by a system?’. Having a formal
semantics enables us to reason on the models.

RQ2 ‘How to analyze requirements models in order to select optimal plans for so-
ciotechnical systems?’ concerns with automatically generating concrete action plans based
on the specifications of sociotechnical systems. Our success criteria for this question in-
cludes the following:

6

1.4. RESEARCH ROADMAP

SC2.1 Capture requirements and interactions. The modeling framework should capture
requirements and interactions within sociotechnical system and visualize them. Vi-
sual models better conveys actors, their requirements, their interactions, and a s a
result a better overview of the sociotechnical system that is modeled.

SC2.2 Automatically create plans as a solution to the design problem.A plan, which is
a list of executable actions, should be generated based on the requirements and
interaction models. The plan should respect the commitments specified at design-
time and satisfy the requirements of the systems.

We ask RQ3 ‘How to manage the iterative evolution of sociotechnical systems?’ to
make progress towards challenges C2 and C3 discussed in Section 1.2. We need a sys-
tematic approach that supports controlled, iterative evolution. Success criteria for RQ3

are:

SC3.1 Capture requirements and synergies for next iteration. We provide a conceptual
model to capture requirements, both implemented and under consideration for the
next iteration, and the synergies rise from including certain requirements together.

SC3.2 Support automated analysis for finding optimal solutions. It is not trivial for re-
quirements analyst to find a solution that i. satisfies requirements and ii. optimizes
the objectives stated for the model. Automated analysis supports the analyst to
make a decision for the next iteration of evolution.

SC3.3 Provide solutions in acceptable time. The analysis should scale well with respect
to different model sizes, number of alternative solutions available in the model, and
the degree of connectivity of model elements.

RQ4 ‘What is an effective method for risk analysis for sociotechnical systems’ addresses
C4 explained in Section 1.2. We need a systematic approach that can be integrated into
early phases of requirements modeling and analysis. Success criteria for RQ4 are:

SC4.1 Capture risk and synergies in requirements models. We provide a conceptual model
to capture requirements, risks, treatments, and the synergies between these model
elements.

SC4.2 Support automated analysis for finding optimal solutions. It is not trivial for re-
quirements analyst to find a solution that i. satisfies requirements and ii. optimizes
the objectives stated for the model. Our approach supports several risk management
strategies, finding optimal solutions for different objective functions.

1.4.2 Evaluation Activities

Our proposal towards answering the research questions presented in Section 1.4.1 has
multiple components. We perform several evaluation activities to verfiy that these com-
ponents as part of solutions we provide establish the success criteria also presented in

7

CHAPTER 1. INTRODUCTION

Section 1.4.1. The categories of evaluation activities that are carried out to evaluate one
or more components are listed below.

E1 Self– evaluation study via scenarios. For this activity we apply the design process,
the language, and other artifacts to a scenario. The scenario can be derived from
interviews with stakeholders (domain experts, end– users, and others), examination
of a domain, or documents describing a domain. Scenarios from previous research
work can be used. The aim of this activity is to demonstrate the applicability of
the proposal in the given domain and scenario.

E2 Self– evaluation study of the visual notation. The visual of the elements of the artifacts
are analyzed according to visual design principles, mainly for the principles stated
for modeling languages by Moody [15], [16]. The results discuss the cognitive and
visual loads of models, and effectiveness of the visual notation.

E3 Case study. We interact with the intended user groups, provide them with a scenario.
End users build models following the design process and using the language and tools
developed by us. We then collect feedback from users via interviews, questionnaires,
and discussions and report them.

E4 Formal semantics. We propose formal frameworks in order to provide unambiguous
description mechanisms, verify and analyze models.

E5 Scalability study. This activity evaluates the scalability of the proposed analysis with
respect to increasing model size, the degree of connectivity of model elements, and
the number of solutions available in the model.

Table 1.2: Satisfaction of Succes Criteria via Evaluation Activities

Design Operationalization Evolution Risk Analysis
SC1.1 SC1.2 SC1.3 SC2.1 SC2.2 SC3.1 SC3.2 SC3.3 SC4.1 SC4.2

E1 S.E. Scenario X X X X
E2 S.E. Visual X X
E3 Case Study X
E4 Formal Semantics X X X X
E5 Scalability X

Table 1.2 maps the success criteria we present in Section 1.4.1 to evaluations activities
conducted to verify their satisfaction.

8

1.5. OVERVIEW AND CONTRIBUTIONS

1.5 Overview and Contributions

1.5.1 Designing Sociotechnical Systems with Protos

RQ1, ‘What is an effective process for modeling requirements and interactions of sociotech-
nical systems?’ Protos is a requirements engineering approach that gives prominence to
the interactions of systems and specifies a sociotechnical system in terms of the social in-
teractions of systems. Protos addresses challenges with respect to design of sociotechnical
systems stated in Section 1.2. The contributions of Protos beyond the state of the art are
the following:

Requirements problem for sociotechnical systems. Zave and Jackson [17] characterize
the requirements problem in terms of a set of domain assumptions, machine specification,
and a set of stakeholder requirements. The problem is to come up with a specification that
satisfies the requirements given the domain assumptions. Such characterization ignores
the role of social systems towards a solution for the requirements problem, therefore
insufficient to capture the requirements problem for sociotechnical systems.

We propose a new formulation of the requirements problem for sociotechnical systems.
Instead of relying on a single machine specification, our formulation relies on a system
specification and an interaction specification, that is, a protocol, for the satisfaction of
requirements under domain assumptions. A system might be a social or a technical
system, which does not have to reveal all of its local goals, such as the goals related to
other sociotechnical systems than the one being specified.

Modeling Language. We provide a modeling language to capture the requirements
and interactions. We separate systems parts of a sociotechnical system (teams) from
the systems participating at the design process (stakeholders). Social commitments [18]
capture interactions. We define refinement relations for each type of construct that maps
one construct to another, which is assumed to be more concrete and refined.

Design Process. Protos defines a set of formal rules to be applied by stakeholders
during design. Each rule aims at moving the design to a state that is more elaborated,
better defined, and more refined. Applications of these rules to the initial set of constructs
creates the design space of the sociotechnical system, with alternative design paths.

Evaluation. We have self–evaluated the design process and language using a car in-
surance scenario [19]. We have also conducted a case study with PhD students to further
evaluate the effectiveness of the approach using London Ambulance Scenario [20].

1.5.2 Exploring Sociotechnical System Designs

RQ2 ‘How to analyze requirements models in order to select optimal plans for sociotech-
nical systems?’ We propose DEST (DEsigning Sociotechnical sysTems), a goal-oriented
requirements modeling language, to represent systems (as actors) in a sociotechnical sys-
tem, their goals, and their social interactions. The language also supports expressing the
capabilities of a system to achieve goals, conflicts in goals, temporal ordering constraints
on requirements, and priorities.

9

CHAPTER 1. INTRODUCTION

Formal semantics. We formalize the notion of a sociotechnical system configuration
and design plan, and shows how these concepts are useful for describing how to design an
STS from scratch. A plan is a sequence of actions that leads to the establishment of a
network of interactions among the subsystems of the STS that fulfills their requirements.
We describe the planning of finding a plan as an AI (artificial intelligence) automated
planning problem, and encode it in PDDL (planning domain definition language) [21].

Evaluation. For the evaluation of our approach, we have built a travel reimbursement
scenario by interviewing administrative personnel, project investigators, students, and
professors at the University of Trento. We have used this scenario to self-evaluate the
modeling language. We have also evaluated the visual notation.

1.5.3 Evolution of Requirements

RQ3 ‘How to manage the iterative evolution of sociotechnical systems?’ We support
controlled evolution of sociotechnical systems in order to prevent misalignment among
systems. Our starting point is software evolution, which is handled in iterations, in forms
of ‘updates’, ‘versions’, ‘releases’, and so on. The problem of selecting the optimal set
of requirements to be included in the next release of a software product is stated as the
next release problem, first as a single objective optimization problem by Bagnall et al.
[22], and later as a multiobjective optimization problem by Zhang et al. [23]. These
approaches follow search–based software engineering and apply genetic search algorithms
to disocver optimal solutions. We propose a more expressive modeling approach to capture
the hieararchy among requirements as well as several interpedendencies between them.

Modeling Language. We provide a goal–oriented requirements modeling language to
capture requirements in consideration for the next release as well as the requirements
that have been implemented. We also represent ‘synergies’ arising from having certain
requirements together in a solution. One example of such a synergy is one requirement
increasing the customer value of another, such as implementing a graphical user interface
to increase the value of a functionality. Our meta-model also enables representing ex-
clusions, and temporal constraints. Requirements may have associated reward and cost
values, and synergies have intensities to determine optimal solutions during analysis.

Formal Semantics. We transform goal oriented requirement models into Satisfiability
modulo theories (SMT) / optimization modulo theories (OMT) clauses. It is possible to
specify lexicographic order of objectives, linear multi–objective functions, or a combina-
tion of both.

Next Release Tool. Next Release tool is a standalone Eclipse RCP application. It has
a graphical modeling editor to help users to build syntactically correct models. It also
checks the well-formedness of the models. It automatically converts next release models
into SMT/OMT formulas, and runs external OMT solver OptimathSAT [24] to obtain
the optimal solution that satisfies the mandatory requirements respecting constraints in
the model. The tool highlights the solution in the model and produce textual reports.

Evaluation. We have interviewed with a research programmer and investigated bug
reports for a research tool to build a scenario for self–evaluation. We have conducted three

10

1.6. PUBLICATIONS

different scalability experiments to evaluate the scalability of our approach with respect
to model size, model connectivity, and number of alternative solutions.

1.5.4 Risk Analysis

RQ4 ‘What is an effective method for risk analysis for sociotechnical systems’ We extend
the three layered-approach of Asnar et al. [25] with relations to capture synergies in the
models. Asset layer includes the initial requirements, which are threatened by the risks
represented in the event layer. In order to mitigate these risks, treatments are considered
in the treatment layer. As for the synergies, risks may increase the likelihood or the
severity of impact other risks. Similarly, treatments reduce the likelihood, or the severity
of impact.

Formal Semantics. We map requirement–risk models in Satisfiability modulo theories
(SMT) / optimization modulo theories (OMT) clauses. We rely on OptiMAthSAT [24]
as SMT/OMT solver.

Risk Management Strategies. We implement several optimization schemes that serve
for different risk management strategies from risk aversion to cost aware and to more
opportunistic strategies. For each strategy we identify the combination of the OMT
optimization scheme and demonstrate how different strategies can be combined together.

Evaluation. We use the Loan Origination Process (LOP) scenario presented in [25] to
self–evaluate the modeling language. We also provide an analysis of the visual notation.

1.6 Publications

We list the published work related to this thesis here.
International Conferences

1. Amit Chopra, Fabiano Dalpiaz, Fatma Başak Aydemir, Paolo Giorgini, John My-
lopoulos, and Munindar Singh (2014), Protos: Foundations for Engineering Inno-
vative Sociotechnical Systems, In Proceedings of the 22nd IEEE International Re-
quirements Engineering Conference, pages 53–62.

2. Fatma Başak Aydemir, Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos
(2014), Exploring Alternative Designs for Sociotechnical Systems, In Proceedings
of the 8th IEEE International Conference on Research Challenges in Information
Sciences, pages 1–12.

3. Jennifer Horkoff, Fatma Başak Aydemir, Feng-Lin Li, Tong Li, John Mylopoulos
(2014), Evaluating Modeling Languages: An Example from the Requirements Do-
main, In Proceedings of the 33rd International Conference on Conceptual Modeling,
pages 260-274.

11

CHAPTER 1. INTRODUCTION

4. Fatma Başak Aydemir, Paolo Giorgini, and John Mylopoulos (2016), Risk Analysis
with Goal Models, In Proceedings of the IEEE 10th International Conference on
Research Challenges in Information Sciences, (to appear).

International Workshop and Demos

1. Fatma Başak Aydemir, Paolo Girogini, and John Mylopoulos (2014), Designing
Sociotechnical Systems with Protos, In Proceedings of the 7th i* Workshop.

2. Fatma Başak Aydemir, Dagmawi Neway Mekuria, Paolo Girogini, and John My-
lopoulos (2015), Next Release Tool, 34th International Conference on Conceptual
Modeling, [online], http://er2015.dsv.su.se/files/2014/07/demo-3.pdf

Under preparation
International Conferences

1. Fatma Başak Aydemir, Dagmawi Neway Mekuria, Paolo Giorgini, and John My-
lopoulos, Scalable Solutions to the Next Release Problem: A Goal-Oriented Perspec-
tive, Submitted to 24th IEEE International Requirements Engineering Conference.

2. Jennifer Horkoff, Fatma Başak Aydemir, Evellin Cardoso, Tong Li, Alejandro Mate
Morga, Elda Paja, Mattia Salnitri, John Mylopoulos, and Paolo Giorgini, Goal-
Oriented Requirements Engineering: A Systematic Literature Map, Submitted to
24th IEEE International Requirements Engineering Conference.

1.7 Organization of the Thesis
The rest of the thesis is organized as follows.

• Chapter 2 presents the related work for this thesis. We review goal-oriented require-
ments engineering languages and methodologies in Section 2.1. We investigate the
state of the art for modeling social interactions in Section 2.2. Section 2.3 presents
research for software evolution and risk analysis techniques and risk modeling lan-
guages are examined in Section 2.4.

• Chapter 3 presents Protos approach for designing sociotechnical systems.

• Chapter 4 includes our work on sociotechnical system design. The meta–model is
presented in Section 4.1. Section 4.2 lists the actions that are part of execution
plan. PDDL mapping is described in Section 4.3. Section 4.4 reports on the results
of the evaluation of the virtual notation.

• Chapter 5 provides our modeling language (Section 5.2), encoding of next release
models into SMT/OMT (Section 5.3), and different kind of analyses possible for the
next release problem (Section 5.4). The scalability analysis results are presented in
Section 5.5.

12

1.7. ORGANIZATION OF THE THESIS

• Chapter 6 proposes a goal-oriented risk analysis framework that includes inter-
dependencies among treatments and risks in terms of likelihood and generate optimal
solutions with respect to multiple objectives such as goal rewards, treatment costs,
or risk factor. Section 6.1 presents our meta–model for requirement–risk models.
Section 6.3 lists different types of analyses supported by our approach.

• Chapter 7 draws conclusions for this thesis, describes ongoing work, and presents
future directions.

13

CHAPTER 1. INTRODUCTION

14

Chapter 2

Related Work

Ross and Schoman state that requirements analysis must state why a system is needed,
what system features satisfy this need, and how the system is to be constructed [26]. Zave
defines requirements engineering as the branch of software engineering that deals with the
real-world goals for, functions of and constraints on software systems in [27]. More re-
cently Nuseibeh and Easterbrook describe requirements engineering as the process of the
process of discovering the purpose of software systems by identifying stakeholders and
their needs and by documenting these in a form that is amenable to analysis, communi-
cation, and subsequent implementation [28]. van Lamsweerde lists the activities withing
requirements engineering as domain analysis, elicitation, negotiation and agreement, spec-
ification, specification analysis, documentation, and evolution [29].

Goal–Oriented Requirements Engineering (GORE) is a requirements engineering ap-
proach where goals are used to used to conduct the activities stated by van Lamsweerde
[30]. Goals have been used in artificial intelligence before their adoption by requirements
engineering. There are several definitions of a goal in the requirements engineering lit-
erature. van Lamsweerde defines a goal as an objective that the system should achieve
through cooperation cooperation of agents in the software-to-be and in the environment
[30]. Anton describes goals as high-level objectives of the of the business, organization or
system that aid decision making at various levels within an enterprise [31]. The common
perspective is that goals represent objectives, desired states of affairs.

Goal models are hierarchical structures where top goals are refined into lower level
goals. Higher level goals capture raison d’être behind lower level ones, and lower level
goals capture how higher level can be achieved. van Lamsweerde [30] and Lapouchnian
[32] provide an overview for the goal–oriented requirements engineering literature. In the
next section we review the most influential goal modeling approaches.

15

CHAPTER 2. RELATED WORK

2.1 Goal–Oriented Requirements Engineering

2.1.1 Goal Modeling

NFR framework [33], [34] captures and reasons on non-functional requirements (NFRs),
global requirements such as maintainability, reliability, performance and so on. This work
highlights the importance of non-functional requirements and use them to justify decisions
during software development process. The authors state that a qualitative or quantitative
approach can be adopted, yet obtaining quantitative measurements are too hard, so they
present a qualitative treatment of NFRs. There are five major components of the NFR
Framework. i. a set of goals that represent NFRs, design decisions, and arguments in
support or against other goals, ii. a set of link types that relate goals to other goals, iii.
a set of methods to refine goals into other goals, iv. a set of rules to infer interaction
among goals, and v. a labeling procedure to decide the level of satisfaction of an NFR.
Actually, instead of satisfied or achieved, the framework uses the term satisficed, a term
coined by Simon in [35], for there is no clear cut criterion for full satisfaction of an NFR.
During the design process goals are refined into other goals using the refinement rules,
as a result Soft-goal Interdependency Graph (SIG) is built. The requirement analyst can
select between alternative results by applying label propagation algorithms to verify how
well each alternative satisfice the high-level NFRs.

Jureta et al. propose Techne [36] modeling language. In Techne requirement state-
ments are labeled, therefore categorized into five categories: goals, quality constraints,
softgoals, tasks, and domain assumptions. In Techne quantitative treatment for soft-
goals are adopted. Softgoals are approximated into quality constraints in the models, and
preference relations are used to represent preferred approximation by the requirements
analyst. Our evaluation of Techne [37] shows that this concept is difficult to realize during
early requirements engineering stage.

Li et al. [38] treat NFRs as qualities over requirements. Qualities are captured as map-
pings, and have a domain and codomains in requirements models. The authors provide
a set of refinement operators in [39] to incrementally refine informal, vague, ambiguous
requirements into a formal, practically satisfiable and measurable specification.

KAOS (Knowledge Acquisition in automated Specification) [40] is a goal–oriented
requirements engineering methodology. The main focus of KAOS is to formalize require-
ments which are conceptualized as goals. KAOS is presented as a supporting methodology
fro requirements acquisition phase, where the main objective is to understand why a sys-
tem is needed. In KAOS models, each node represent either a goal, action, agent, entity,
or event and links between these nodes represent relations between these concepts. The
meta-model of KAOS has three layers: the meta-level presents the domain independent
abstractions such as agents, actions, and relations, the domain level describes concepts
specific to a domain, and the instance level refers to specific instances of concepts pre-
sented in the domain level. KAOS methodology the instances of the concepts presented in
the meta-model (goals, objects, actions, agents) are identified and reduced until they are
concrete enough, and then agents are assigned responsibilities based on their capabilities.

16

2.1. GOAL–ORIENTED REQUIREMENTS ENGINEERING

KAOS methodology later extended to handle obstacles [41], and to build anti-models,
models that capture intentions of an attacker [42], and to focus on security requirements
[43], and so on.

GBRAM (Goal–Based Requirements Analysis Method) [44] is a method to identify,
analyze, elaborate, and specify requirements. GBRAM starts by exploring available infor-
mation related to requirements (policies, interviews, transcripts, and so on). Next, goals
and the responsible agents are identified, and the goals are classified and dependency rela-
tions are built. ‘Refine’ activity refers to pruning of the goal set. Then, the prune goal set
is elaborated by analyzing obstacles and constructing scenarios to uncover hidden goals.
Finally the goals are operationalized, they are transformed into operational requirements
for the final requirements specification.

Rolland et al. [45] use goals to discover scenarios, and scenarios to discover goals.
They call a goal and a scenario pair a requirement chunk (RC). Requirement chunk models
capture RCs, where high-level, fuzzy RCS are refined into concrete RCs. The authors make
a distinction of refinement and AND/OR decomposition. The conceptual meta-model is
supplemented with a set of guidelines to help discovery of goals and scenarios.

i* [13], [46] is an agent–oriented goal modeling framework for business process re-
engineering, organizational modeling, and requirements engineering. In other approaches
such as KAOS and GBBRAM, goals exist regardless of agents, and agents are assigned
goals towards the final steps of the requirements process. On the other hand, goals existed
only if an associaoted agent exists in i* models, so agents have goals, and they depend
on each other to satisfy them. i* has a broad view of agents, that are actors. Agents
are concrete actors with certain capabilities. Roles can also be actors, they are abstract
actors with responsibilities and expectations captured as goals, or positions which are
socially recognized roles. Actors have intentional, they have their goals. There are two
types of goals, hard and softgoals, the difference is that softgoals do not have a clear
cut criteria for achievement as opposed to hardgoals. Hardgoals, softgoals, resources,
and task may contribute positively or negatively to other intentional elements. Strategic
Dependency (SD) graphs capture dependencies among actors. Strategic Rationale (SR)
models capture the rationale of every actor in terms of hardgoals, softgoals, resources,
tasks, dependencies and relations between these. i* framework has been very influential
in the goal-oriented requirements engineering and has been extended in multiple ways:
SI/*/ [47], to better capture security and trust requirements, URN as a combination of
GRL and use case maps [48], and Tropos [49] to name the few.

Tropos [49] is an agent–oriented software engineering methodology based on i*. Tropos
spans five phases: early requirements analysis, late requirements analysis, architectural
design, detailed design, and implementation. Tropos relies on i* meta-model yet it puts
some additional restrictions such as allowing decompositions only between homogeneous
elements.

17

CHAPTER 2. RELATED WORK

2.1.2 Analyzing Goal Models

Goal models are used to capture and communicate requirements, yet their structure natu-
rally allows reasoning on the achievement of goals as well as some domain properties such
as security and trust. There are number of analysis methods proposed in the literature
of goal–oriented requirements engineering.

Satisfaction analysis concerns whether goals in the model are achieved or denied. The
procedure is to assign a set of initial values to the model and propagate these values either
forward or backward direction of the links present in the model.

Amyot et al. [50] propose a quantitative reasoning technique that is based on forward
propagation of labels for URN, which combines GRL and use case maps. The labels are
determined by a predefined set of rules that combines evidence from contribution links,
which can be make, help, some positive, unknown, negative, break, and hurt. There
are seven satisfaction levels (labels), which are denied, weakly denied, weakly satisfied,
satisfied, conflict, unknown, and none.

Chung et al. [34] propose a forward reasoning technique to reason on NFRs, similar
to the technique presented in [50] there are several labels to represent the degree of
satisfaction. Instead of relying of predefined set of rules to combine the evidence from
contribution links, this method relies on human interference.

Giorgini et al. devise forward propagation qualitative and quantitative reasoning tech-
niques techniques [51]. Conflicting contributions are combined according to a set of rules.
The results are presented as achieved/denied for the qualitative analysis or in terms of
numeric values for the quantitative analysis.

Sebastiani et al. [52] encode the satisfaction analysis as a satisfiability problem and
allows user to define additional constraints on the models. If the problem is satisfiable
the solver returns an assignment for the model. There might be multiple assignments,
in order to distinguish between these weights are assigned to goals, and minimum weight
assignment is returned by the solver. Asnar et al. [53] apply this technique [52] to reason
on risk in goal models and to find minimum cost solutions, where cost values are assigned
to task as their weights. Wang et al. [54] adapt the same technique to diagnose run-time
failures using goal models.

Giorgini et al. present forward and backward reasoning applied in Tropos in [55]. The
techniques presented in [55] is a combination of those presented in [51] and [52] applied
to Tropos models, so contribution links are automatically combined. For satisfaction and
denial, partial (P) and fully (F) labels are used.

Horkoff and Yu [56] transform goal models in conjunctive normal form (CNF) and
iteratively apply SAT solver and human intervention. Human judgment is used to decide
for the combination of the conflicting contribution links. The approach is applied to i*
models that are formalized by the authors.

Letier and van Lamsweerde [57] present techniques for specifying probabilistic degrees
of goal satisfaction. For each refinement in the goal model refinement equations are defined
over quality variables, and quantitative values of quality variables are propagated bottom-
up. Having different equations for each refinement, the authors are able to distinguish

18

2.2. MODELING SOCIAL INTERACTIONS

between alternatives in terms of quality values.
Some methods apply maps the design problem into AI planning problem to determine

the sequence of actions to satisfy goals. Bryl et al. [58] create social interaction networks
within goal models by finding plans in terms of cost. The authors later extend this
approach and apply it to i* and Tropos models [59] as a requirements analysis method.
The authors define planning actions and encode the models in PDDL. The encoding of the
actions (domain file) and the encoding of the modeling domain (the problem file) is given
as input to an external planner and if there is a sequence of actions that satisfy the top
level goals, the planner returns a plan. The author later defines metrics to evaluate the
plans in [60]. Three metrics defined are i. the length of the proposed plan, ii. overall plan
cost, iii. degree of satisfaction of NFRs. Asnar et al. [61] combine the planning-based
approach presented in [58] and goal-based risk analysis technique presented in [53].

Liaskos et al. [62] distinguish between mandatory goals and preferences (nice-to-have
goals). Preferences are goals of stakeholders whose satisfaction is desired yet their denial
does not invalidate a solution. The authors use priorities to set a level of importance on
preferences. The authors also introduce temporal preferences, temporal constraints over
the sequences of goals of the mandatory decompositions. Goal models are formalized into
hierarchical task network (HTN) and PDDL, and an external planner HTNPlan-P [63].
The preference score of a plan is the sum of prioritization (weights) of preferences satisfied
by a plan. The plan with the highest preference score is returned by the planner.

Nguyen et al. [64] encode goal models in satisfiability modulo theories/optimization
modulo theories and can perform not only satisfaction analysis but also multi-objective
optimization analysis. It is possible to set global constraints, such as setting a budget
limit for solutions, on the models as well as local constraints on goals, such as specifying
a budget limit for the solution of a single goal. The framework allows prioritization of
goals and is able to capture and reason on conflict relations. Goals can be mandatory
and optional goals are supported. The framework is fully formalized and has tool support
which is proved to be scalable. The tool automatically converts constrained goal models
into SMT/OMT formulas and feeds these as in put to external solver OptiMathSat [24].
The optimal solution retrieved from the solution is highlighted on the graphical goal
model. Although there have been attempts for single objective optimization analysis
[25], [52] these approaches are not as expressive as constrained goal models in terms of
expressing multiple global and local constraints, multiple objectives and objective schema
(lexicographic and linear objective functions).

2.2 Modeling Social Interactions

Social interaction occurs when two or more social entities interact with each other. In
physical world examples of social interactions are talking to a person, purchasing some-
thing from a shop keeper. Technical systems increasingly support social interactions,
sending an e-mail, an instant message, sharing a photograph on Instagram or SnapChat,
making an online purchase are all forms of social interactions supported by technical

19

CHAPTER 2. RELATED WORK

systems. Social interactions are studied in different areas, our focus is on agents and
multiagents systems, conceptual modeling, software and service engineering.

AUML (Agent Unified Modeling Language) [65] The first layer represents the overall
protocol, using packages and templates. The second level includes interactions among
agents. Sequence diagrams are directly borrowed from existing UML specification. Col-
laboration diagrams are diagrams similar to sequence diagrams. In sequence diagrams
an ordered sequence of interactions can be followed from top to bottom, in collaboration
diagrams the number of the interaction is labeled on the links between agents, which
can be placed anywhere. Activity diagrams consist of pool of agents, and activities in
these pools showing how they trigger other operations and events. Statecharts capture
valid states, where agent interactions are labeled on the edges between states. Finally the
third level concerns the internal processing of agents. In this layer, activity diagrams and
statechart diagrams are used to depict internal processing of agents.

KQML (Knowledge Query and Manipulation Language) is an agent communication
language (ACL), independent of content syntax and applicable ontology. There are three
components of a KQML message: content, communication, and message. The content
is the actual content of the message, and can be in any language. The communication
part includes meta information such as the identity of the sender of the identifier of the
message. The message part identifies the interaction protocol and supplies a speech act.
A speech act is an utterance that has performative function [66]. The syntax of KQML
includes balanced parentheses lists.

FIPA Agent Communication Language [67] is another speech act-based agent commu-
nication language. Similar to KQML, the conent of FIPA ACL can be in any language.
Sender, receiver, and reply-to fields are used to represents the agents included in the
communication. Communicative act is the performative of the message. The content
field is the content of the message. The receiver interprets the content together with the
communicative act.

Singh [68] points that these languages do not solve the interoperability problem among
heterogeneous agents. The author argues that the communicative acts are not clear since
they are based on interpretation of the receiver or the sender agent. The languages do not
cover all of the most common communicative acts, which are assertives, directives, com-
missives, permissives, prohibitives, declaratives, and expressives, focusing on assertives
and declaratives only. Moreover, the languages rely on agents’ internal state rather than
providing means for communication independent of the internal beliefs, goals, desires, and
intentions of agents. The author states that existing ACLs design autonomy (minimizing
requirements on agent builders) and execution autonomy (agent’s freedom of choosing its
own actions), and communication is inherently public and depends on the social context
of agents.

Kumar et al. [69] propose a landmark based protocol specification, where a landmark
is a state of affairs that must hold during protocol execution. Protocols are joint action
expressions that can be derived from partially ordered landmarks. The success of the
protocol execution can be verified by the achievement of the landmarks. Protocols can
be combined for more complex protocols. This approach can only work for cooperative

20

2.2. MODELING SOCIAL INTERACTIONS

agents, and it is not designed for open systems.
Cheong and Winikoff [70] propose a goal–oriented approach to agent interaction. Her-

mes approach has three parts: a methodology for for designing goal-based interactions,
failure handling mechanisms, and a process for mapping design artefacts to an executable
implementation. The authors argue that message–based protocols restrict autonomy of
agents, and limit the flexibility (shortcuts) and robustness of agent interaction. Goal–
oriented interaction is described in terms of interaction goals, available actions, and con-
straints. Message sequences among agents are not predefined, but they emerge during
interaction. The methodology is consisted of six steps: role and goal identification, inter-
action goal hierarchy, action identification, action sequences, message identification, and
message definitions. Action failures can be recovered by re-performing an action. If an
interaction goal fails due to an action failure, the interaction can be terminated or agents
may request a rollback to the previous interaction goal. This approach may fit for the
greenfield design of a multiagent system, but it does not consider an open system where
new agents with different interaction goals can enter to the multiagent system.

Singh proposes social commitments in [18] to overcome challenges stated above regard-
ing agent communication. The framework is called spheres of commitments and relies on
eight assumptions set by the author: agents can be recursively composed of heterogeneous
individuals or groups of agents, agents are autonomous but constrained by commitments,
social commitments cannot be reduced into internal commitments, commitments are in
general revocable, commitments exist and can be manipulated all in social context, com-
mitments rely on the social structure of the multiagent system in which they exist, but
they also help creating the social structure, the semantics of commitments must be dis-
tinguished from their pragmatics, and finally commitments are evaluated in the world not
in the minds of agents. A commitment c is a four place relation c=C(x, y, G, p) where
x is the debtor agent, which is committed, y is the creditor agent, which receives the
commitment, G is the context and y is the discharge condition. So c=C(x, y, G, p) is a
commitment from x to y in the context of G and for the proposition p. Commitments can
be created, discharged (satisfied), canceled, released (eliminated), delegated, or assigned.

Yolum and Singh [71], [72] build flexible communication protocol using commitments.
In their formal framework a base level commitment C(x,y,p) refers to a commitment from
debtor x to creditor y for the condition p. A conditional commitment CC(x,y,p,q) denotes
that if the condition p is brought out, x will be committed to y for q. The framework is
formalized in event calculus [73]. A protocol specification is a set of initiates and termi-
nates clauses, and the protocol execution is a set of happens clauses. The interaction is
meaningful, meanings of the actions are captured via commitments, verifiable via commit-
ments, and declarative. Later Desai et al. [74] specify interaction protocols for business
processes using commitments, their framework is formalized in the π-calculus [75]. Telang
and Singh [76] extend Tropos framework [49] with commitments, identifying goals and
goal dependencies between roles, refining these into task and task dependencies. Finally,
task dependencies are refined into conditional commitments, enabling verification of agent
interactions at run-time. Dalpiaz et al. [77], [78] propose a conceptual architecture for
handling adaptation in open systems, demonstrating their approach on Tropos framework

21

CHAPTER 2. RELATED WORK

[49] extended with commitments. Chopra et al. reason on service–oriented architectures
[79] and on protocols [80] using agents and commitments, their frameworks are formalized
in Datalog [81].

2.3 Evolution

2.3.1 Software Evolution

Software evolution is a term in use since 1960s [82]. Later Lehman and his colleagues
state overall eight laws on software evolution. The first three laws are presented in [83],
which are i. a software product either undergoes continual change or become less and
less useful, ii. as software evolves, its complexity increases unless some work done to
main or reduce it, iii. software growth inevitably slows as it grows older. Two more
laws, iv. the average rate of change in an evolving software system tends to stay constant
(invariant) over the life time of a system, and v. the average incremental growth remains
invariant or declines as systems evolve, are introduced in [84]. The sixth law, ‘functional
content of a software must be continually increased to maintain user satisfaction over its
lifetime’ is included in [85], Final two laws, vii. software will be perceived as of declining
quality unless rigorously maintained and adapted to a changing operational environment,
viii. software development processes constitute multi-loop, multi-level feedback systems
and must be treated as such to be successfully modified or improved are presented in
[86]. These laws are effective on what Lehman et al. call type E systems, that are,
software systems that deal with, or solve problems in real world. There is supporting and
contradicting of these laws [87], yet our point is that software evolution is a valid concern
for over 40 years.

Chapin et al. [88] state that software evolution spans the time between the initial
creation of software to its retirement. Their definition of software evolution includes the
term ‘version’, where time period between two versions may last from less then a minute
to decades, and the later version having new properties or functionality from the prior
version. In their classification, software evolution may effect business rules and software
properties whereas software maintenance effects documentation and support interface ad-
ditional to these. Software evolution can be enhancive, corrective, or reductive on business
rules. Types of software evolution applicable on software properties are adaptive and per-
formance. Maintenance types on business rules are the same as evolution types, and on
software properties preventive and groomative in addition to adaptive and performance.
Maintenance on documentation can be updative (the software does not change) and re-
formative (the software changes). Finally, maintenance on support interface can be of
evaluative, consultive, or training activities. As the classification points out, evolution
and maintenance activities can occur in different parts and layers of abstraction and as
the paper states one activity may trigger other activities in different parts.

22

2.3. EVOLUTION

2.3.2 Requirements Evolution

Zowghi et al. [89], [90] specifically focus on the evolution of requirements. They propose
a framework formalized in Telos [91]. Requirements are kept in a belief base, and the
framework manages changes in requirements models (beliefs), checking also consistency
and completeness. The approach has explained using a toy example and intended for
systems monolithic software systems, making the assumption that the requirements should
be complete and consistent. Such assumptions are not realistic for modern software, or
sociotechnical systems.

Barber et al. [92] propose applying system engineering process activities (SEPA)
for managing the evolution of requirements. The authors identify necessary steps to
practice ‘good’ software engineering and manage evolving requirements as mapping new
requirements into old ones, creating traceability links from the existing implementation to
new requirements, implementing components for new requirements that are not covered
by the old implementation, and integrating the old and the new implementation. A
funnel metaphor is used to describe SEPA activities, where there is continual gathering
of knowledge (requirements and domain knowledge) which are refined into component-
based system design specification. The objective is to create a single technical system, the
methodology does not handle relations among requirements, or requirements from multiple
stakeholders. The infrastructure reference architecture classes diagram presented in the
paper, people are clearly separated from technology. So the approach is not suitable for
handling requirement for sociotechnical systems.

Anderson and Fellici [93] present an empirical investigation of controlled evolution
of requirements. The study is conducted for the requirements of a technical system, a
safety-critical avionics system. Two significant results for our research work are i. the
number of requirements increases over software releases, ii. the evolution tends to show
some dependencies between requirements. So requirements evolution is a valid challenge
that should be attended over the course of software life cycle, and dependencies between
requirements have a significant role during evolution. The authors define metrics for
monitoring evolution of requirements in [94].

Zowghi and Gervasi [95], [96] propose a formal foundation to ensure consistency, com-
pleteness, and correctness of requirements. They present the requirements problem in
terms of evolving requirements and domain assumptions. For sociotechnical system de-
sign where multiple systems are involved, conflict and inconsistency in requirements are
inevitable. Rigid systems that do not allow modeling inconsistency and conflicts are not
suitable to model and analyze requirements in sociotechnical systems.

Ernst et al. [97], [98] find incremental solutions to evolving requirements. The authors
distinguishes between the evolving requirements and adaptive requirements. In adaptive
requirement frameworks, overall set of requirements do not change, the implementation
is monitored and alternative valid solutions are selected if/when a failure of satisfying
requirements detected. The authors claim that evolving requirements result from unan-
ticipated changes. We do not agree with this claim, for software has long been released
in iterations, with each release having a different set of requirements, and such change

23

CHAPTER 2. RELATED WORK

is anticipated, and it is part of the evolution of the requirements. The authors state a
requirements problem for evolving requirements, and four different alternatives for valid
solutions: the standard solution that ignores the implemented requirements and treat the
problem as a greenfield design problem, the minimal change effort solution that selects
the new requirement set based on its distance from the previous set, the maximal famil-
iarity solution that selects the solution with the maximal reuse, and solutions that re-use
past solutions. The proposed framework uses knowledge base [99] to store information ac-
quired during requirements acquisition and domain modeling and query this information
to discover and compare alternative solutions. The paper reports the results of scalability
experiments.

Ali et al. [100] propose a goal–oriented requirements engineering approach to handle
requirements evolution. The authors define requirements evolution in a broad way, for
example, they classify switching to an alternative solution due to a failure caused by a
change in the context. An ‘autonomic’ evolution is to automatically select a variant based
on historical success/failure data, such a case is classified as adaptation by others, such
as [98]. Designer supported evolution occurs when the requirements analyst modifies the
goal model.

Ghaisas and Ajmeri [101] develop a knowledge–assisted ontology–based method to
deal with requirements evolution. The authors advocate for knowledge re-use for 50%
of requirements knowledge for similar system can be re-used completely or with minimal
modification [102]. K-RE tool developed by the authors enable knowledge sharing between
stakeholders using environmental context ontology, problem domain ontology, generic
requirements ontology, and RE process ontology. The tool also helps analyst handling
change requests, listing related requirements for a specific request.

2.3.3 The Next Release Problem

Bagnall et al. [22] define and solve the next release problem where each customer has
their set of requirements, and a weight representing the customer’s importance to the
company. All possible software enhancements are represented in a directed, acyclic graph,
where edges denote requirements dependencies. Each requirement has an associated cost.
The problem is to find a set customers, whose requirements to be satisfied in the next
release of the software, such that the sum of customer weights in the selected set is
maximized subject to the sum of cost of requirements to be satisfied. This problem
statement has attract attention and many solutions have been proposed. The authors
apply three different methods: i. knapsack formulation, ii. greedy algorithms, and iii.
local search algorithms.

Ruhe and Greer [103], [104] propose EVOLVE+ approach to deal with the release
planning problem. The problem is similar to the next release problem, but the objective
is to find solutions for multiple releases. The authors state that the overall goal is to find an
assignment of requirements to increments that maximize the sum of weighted priorities.
Similar to the formulation of the next release problem, the stakeholders have different
weights representing their associated priorities. Each requirement also has an associated

24

2.3. EVOLUTION

effort and risk estimation as well as a resource constraint. Requirement dependencies
are shown as a partial order. They propose an iterative approach that applies a genetic
algorithm to determine L best solutions that respect constraints (temporal constraints and
requirements dependencies). Saliu and Ruhe [105] apply analytic hierarchy process (AHP)
[106] to determine the weights used for objectives. Ngo-The and Ruhe [107] integrate a
multi-criteria decision aid method (ELECTRE IS) for deciding the final solution. Du and
Ruhe [108] apply rough set analysis (RSA) [109] and dependency network analysis (DNA)
[110] techniques to the framework.

Baker et al. [111] report on the performance of the search–based approaches for the
next release problem. They compare simulated annealing and greedy algorithms and
human judgment. Both search-based methods outperform expert judgment. Simulated
annealing algorithm also performs better than greedy algorithm.

Zhang et al. [23] define the multi-objective next release problem, adding ‘value’ ob-
jective to ‘cost’ objective. In this formulation of the next release problem, requirements
dependencies are ignored. The authors solve the problem in four different ways: i. non-
dominated sorting generic algorithm-II (NSGA-II) [112], ii. Pareto GA algorithm, iii.
single–objective GA, iv. random search. NSGA-II algorithm performs the best in a scal-
ability experiment where the highest number of requirements and customers are 140 and
100, respectively.

Durillo et al. [113], [114] solve the multi-objective next release problem with three
different algorithms: i. NSGA-II, ii. multi-objective cellular genetic algorithm [115], and
iii. random search. In the scalability experiment number of requirements vary between
40 and 200 whereas the number of customers vary between 15 to 100. NSGA-II algorithm
outperforms the others.

Jiang et al. [116], [117] use approximate backbone–based multilevel algorithm to solve
the next release problem. Their approach reduce large problem instances into smaller ones.
The experiment results show that such divide and conquer approach canperformance than
direct solving approaches.

Sagrado et al. [118] compares genetic algorithms, simulated annealing, and ant colony
optimization techniques for the solution of the next release problem. Ant colony opti-
mization techniques demonstrate better performance than the other algorithms.

Veerapen et al. [119] apply integer linear programming techniques to single and bi-
objective next release problem. They report that exact solutions for large single objective
and small bi-objective problems can be found in reasonable time using linear programming
techniqes thanks to advancements in solvers. On large bi-objective instances, execution
times can still be significant. The Integer Linear Programming-based approximate algo-
rithm outperforms the NSGA-II genetic approach on large bi-objective instances.

Pitangueria et al. [120] transform the multi-objective next release problem to satisfia-
bility problem. They use stakeholder dissatisfaction risk, cost, and value objectives. Two
data sets are used to experiment with this approach, the first one has 50 requirements and
4 stakeholders whereas the second has 25 requirements and 9 stakeholders. The authors
compare their approach with NSGA-II algorithm which performs better in terms of time
but finds suboptimal solutions.

25

CHAPTER 2. RELATED WORK

2.4 Risk Assessment

2.4.1 Risk Analysis

Uncertain events are defined over their likelihood to happen and severity. probabilistic
risk analysis (PRA) is used for quantitative analysis [121]. Quantitative approaches such
as FMECA (Failure Mode, Effects, and Critical Analysis) [122] use qualitative values. For
example frequent, reasonably probable, occasional remote, and extremely likely is used
for distinguishing frequencies for likelihood. Expectancy loss or risk factor, which is the
product of the likelihood of an event and the severity, is used to determine the criticality
of a risk.

CORAS [123] is a risk analysis framework that models, analyzes, and treats risks.
In CORAS, each risk is analyzed independent of system or malicious actor objectives.
Each risk has a single impact and likelihood, so the effect of the same event on multiple
objectives are considered as separate risks.

Feather [124] proposes Defect Detection and Prevention (DDP) as a three layered (ob-
jectives, risks, and mitigation) approach. Each risk has a likelihood as the probability of
occurrence, and the severity of a risk is represented by an impact relationship between
the risk and an objective. Mitigation and risks have affect relations. There are no depen-
dencies captured within objectives, risks, or mitigations. The author later models risks as
fault trees, providing a more structured representation. ‘What if’ question is investigated
by turning mitigations on and off.

2.4.2 Goal–Oriented Risk Analysis Approaches

KAOS [40] is extended with the concepts of obstacle [41] and anti-goals [42]. Obstacles
are situation that lead to goal failure, they create unintended risks for a system. On the
other hand anti-goals are malicious intentions of a malicious actor, such as an attackers
threatening a system. Van Lamsweerde et al. provide a systematic approach to derive
and resolve obstacles in [41] and building anti-models to capture intentions of attackers
and mitigate threats in [42].

Asnar et al. [25], [53] propose Goal–Risk (GR) Framework for modeling and reasoning
about risk during requirements engineering process. Goal–Risk models have three layers.
The asset layer includes requirements represented as goals. Goal can be AND/OR de-
composed and contribute to each other as in i* and Tropos. The event layer is consisted
of events, each event has an associated likelihood to happen and and impact on some of
the goals captured in the asset layer. The severity of the impact denotes how the event
affect the satisfaction of a goal. Tasks presented in the treatment layer mitigate risks.
Forward and backward label propagation algorithms are used in combination to decide
satisfaction and denial of goals, multiple evidence is combined according to predefined
rules. The framework discovers optimal results with respect to a single object, total cost
of tasks and goals. Risk assessment process proposed by the framework has three steps:
i. finding alternative solutions, ii. evaluating each alternatives against relevant risks, and

26

2.4. RISK ASSESSMENT

iii. assessing the countermeasures to mitigate risks. The framework is equipped with two
tools, GR-Tool and SI* Tool.

Mayer et al. [125] et al. extend i* with concepts related to security risks. The
approach first identifies business assets in the models and then set security goals on these
assets. ‘Controls’ are modeled to ensure the satisfaction of the security goals. Controls
have an associated cost so the authors use cost-benefit analysis together with satisfaction
analysis.

Matulevicius et al. [126] focus on handling security related risks in information sys-
tems. The framework extends Secure Tropos framework [127], an extension of Tropos
framework focusing on modeling and analyzing security. Similar to [25], constructs in
the language are categorized into three categories. Asset related constructs are actors,
hardgoals, softgoals, resources, plans, and secure goals. Risk related constructs are the
same but malicious versions of the original, shown using a different syntax in models.
Impact relation is defined to represent the effect of the risk related constructs on asset
related constructs. Treatment related constructs are the same as asset related concepts,
with the addition of mitigates relation. Risk assessment process with asset identification,
continues with risk analysis and then treatment identification. The framework provides
satisfaction analysis only.

Siena et al. [128] model risks in open source software in terms of situations, risks, and
goals and use label propagation algorithms to check whether the goals are satisfied under
presence of risks. Their models do not include treatments for risks. Later Costal et al.
[129] combine i* and RiskML [128] to align business goals and risk in open source software
and use existing reasoning methods [130] to analyze the achievement of stakeholder goals.
The reasoning focuses on propagating the impact of risks to related goals.

27

CHAPTER 2. RELATED WORK

28

Chapter 3

Protos: A Methodology for Designing
Sociotechnical Systems

We define a SocioTechnical System as one involving interactions between humans and
organizations (principals) facilitated by technical artifacts, including software. STSs under
this definition include two or more autonomous parties, who ordinarily act and interact
in ways that promote their respective agendas. Thus the participants may act in ways
that are unexpected by others.

We further restrict our attention to STSs whose rules of encounter are formally repre-
sented, whether created via explicit engineering or otherwise. The benefit of an “institu-
tionalized” STS is that its explicit rules of encounter facilitate reasoning by (prospective)
participants about whether and how to participate in the STS. Examples of such STSs
can be found in many domains, such as healthcare, finance, transportation, and com-
merce. STSs, especially those with explicit rules of encounter, provide a conceptual basis
for innovation by the participants. (Other STSs may also support innovation but we limit
our claims to institutional STSs.)

Innovations in STSs include the emergence of new social practices. For example,
beginning from goals of passengers and transporters, we might design an airport as a hub
where they can execute their transactions. However, an enterprising person could invent
the notion of an airport as a venue for shopping in general (as Brendan O’Regan did in
1947). Similarly, the goals of providing capital for new ventures yield a market for public
offerings of stocks, which have morphed into the financial systems of today. Notice that
not every innovation is desirable and in general some participants would gain and some
would lose from any innovation.

Classical Requirements Engineering (RE) approaches fail to sufficiently support in-
novation and thus do not help realize the innovative potential of STSs. Classical RE
begins from an elicitation of the goals of stakeholders, followed by an analysis phase that
produces a specification of a software system that would satisfy those goals given some
assumptions about its operating environment. A limitation of such approaches is that the
goals of the stakeholders used as a basis for modeling may have little in common with
the goals of the participants in the STS (whom we call “principals”). We posit that a

29

CHAPTER 3. PROTOS: A METHODOLOGY FOR DESIGNING
SOCIOTECHNICAL SYSTEMS

goal-based treatment of STSs undercuts innovation. It offers up the following dilemma.
Either the participants innovate but in an ad hoc manner (such as on social media today,
where memes and conventions such as emoticons emerge sporadically) or the participants
are regimented to the original goals and do not innovate at all. Regimentation is not
viable for autonomous participants. In practice, ad hoc innovation is what we see most
often.

Motivation. Our research question is as follows: {How can RE facilitate innovation in
STSs? That is, how may the stakeholders of an STS systematically produce a specification
that facilitates innovation}?

We posit that the RE effort be broken into two logically distinct phases: (1) coming
up with the rules of encounter in an STS and (2) given the rules of encounter, coming
up with models of participants (e.g., their policies) that determine how they participate.
A common representation of the rules of encounter ties these two phases together. The
first phase is carried out jointly by (or on behalf of) the stakeholders specifying the STS.
The second phase is carried out separately by (or on behalf of) stakeholders for each
participant.

A major benefit of the aforementioned common representation is that not only does
it enable the interoperation needed to realize the STS but also decouples the participants
with respect to what is not specified, and thus frees them up to innovate. As long as they
comply with the rules of encounter, the innovation is not ad hoc.

STSs are exemplified by many practical settings. Let us consider a healthcare sys-
tem, which we understand as involving interactions among physicians, nurses, patients,
hospitals, insurance sellers, and regulatory bodies. There are two potential ways one can
approach the requirements engineering of such a system given stakeholder requirements.
The traditional or regimented approach is to specify a software module that all the prin-
cipals would use. The other or interaction-oriented approach involves is to specify the
interaction protocols that would support meeting the requirements.

An interaction protocol would describe how any principal adopting one or more roles,
such as hospital or physician, would interact with others. In particular, the protocol
would specify the social expectations that principals playing one of the roles could have
of principals playing other roles. Each principal would be free to develop its own software
in accordance with its requirements. For example, different principals playing the role of
hospital could adopt different implementations and policies by which they conduct their
business. We refer to each principal’s software as its agent.

Traditional works on requirements engineering (RE) and methodologies [17], [131]
generally tend to be regimented: they address the specification of software conceptualized
as a machine that resides within STSs, not the sociotechnical system itself. Approaches
such as Tropos [49] begin from modeling the sociotechnical system, but end up with a
regimented software system.

We refine the above question further to emphasize the foundational aspects of RE,
namely, /What is a suitable formulation and formalization of the STS design space that
is conducive to the autonomy both of stakeholders and principals?/ To focus on the rep-
resentational aspects, we place as out of our scope the important challenges of negotiation

30

3.1. RESEARCH BASELINE

among stakeholders and of collaborative and concurrent engineering of a sociotechnical
system.

This chapter makes the following contributions:

• We introduce a way of specifying an STS as a protocol in terms of roles and their
social commitments [18] to each other. Our approach applies to social expectations
generally, though for concreteness, we focus on commitments here.

• We present a model for requirements satisfaction in which stakeholder requirements
are satisfied by a protocol specification, modulo any stated assumptions.

• We propose a generalization of one of the foundational axioms of RE that accom-
modates the separation of concerns between specifying an STS and an individual
principal specifying its agent.

• We present an abstract design process for STSs that extends the classical idea of
refinement. We refer to this extended notion of refinement as social refinement to
emphasize the refinement of requirements into commitment-based specifications. We
illustrate the process in a systematic case study of the London Ambulance System.

The rest of the chapter is organized as follows. Section 3.1 introduces background on
protocols and requirements refinement. Section 3.2 revisits the traditional RE problem
to accommodate STSs and shows that specifying STSs and specifying agents are two
independent problems. Section 3.3 motivates and formalizes a set of refinement reductions
to obtain STS specifications from stakeholders’ requirements. Section 3.4 applies our
approach to the London Ambulance System. Section 3.5 summarizes our contributions,
and outlines future directions.
Acknowledgements. This chapter is based on our collaborative work presented in [132].

3.1 Research Baseline

We adopt a scenario from automobile insurance based on Browne and Kellet’s [19] real-life
description.

3.1.1 Classical Formulation of the Requirements Problem

Zave and Jackson [17] characterize RE in terms of A (a set of domain assumptions),
M (a software (machine) specification), and R (a set of stakeholder requirements). A
requirements engineer’s task is to come up with a software specification and the domain
assumptions that together guarantee that the requirements are met, which Eq. 3.1 shows:

A,M ` R (3.1)

31

CHAPTER 3. PROTOS: A METHODOLOGY FOR DESIGNING
SOCIOTECHNICAL SYSTEMS

3.1.2 Commitment Models

A commitment represents a directed social expectation between principals. We express
a commitment as a four-tuple C(debtor, creditor, antecedent, consequent) the debtor is
committed to the creditor that if the antecedent holds, the consequent will hold [133].
A commitment is detached when its antecedent holds, unless it has timed out. It is
discharged when its consequent holds, unless it has timed out.

Example 3.1 The insurance company commits to the car owner to reimburse any dam-
ages if the insurance policy is valid: C(Insurer, Car Owner, hasValidInsurance, getReim-
bursed).

Example 3.2 If the Car Owner has a valid policy, the above commitment is detached
and the following unconditional commitment holds: C(Insurer, Car Owner, true, getRe-
imbursed).

If the car owner is reimbursed, the insurer’s commitment is discharged. The commit-
ment is violated if the car owner owns a valid policy but does not get reimbursed for
damages.

A protocol specifies the rules of encounter among principals adopting roles in it. In
general, a commitment is established by communication from its debtor to its creditor:
it is thus autonomously created and becomes part of the social state of the interacting
parties. However, we concentrate here on the commitments themselves without regard
to the communications that bring them about. Thus, here, a protocol specifies a set of
commitments, such as in Example 3.1. By adopting roles in a protocol, a principal would
become the creditor of some commitments and debtor of others.

Commitments, like goals, are a high-level abstraction. However, unlike goals, commit-
ments provide a standard of correctness for interactions among principals that is inde-
pendent of their mental states. Thus, for example, a particular insurance company may
intend to avoid paying for the damages of a particular car owner even if the owner has
valid coverage. If the insurance company goes through with its intention, though, it would
violate its commitments to the car owner.

3.1.3 Refinement

Refinement is a foundational concept in software engineering [134]. Goal refinement, in
particular, is a fundamental concept for systematically extracting a specification from a
set of requirements, e.g., in Tropos.

Design refinement is a relation between design problems p and p′, where p′ is an
incremental improvement of p, p ↪→ p′, and a solution for problem p′ also constitutes a
solution for problem p. A design space (P,R↪→, p0) consists of an abstract set of design
problems, P ; a root problem, p0 ∈ P ; and a refinement relationship R↪→ ⊆ P ×P . A root
problem is one that is not a refinement of any other problem.

32

3.2. REQUIREMENTS ENGINEERING FOR SOCIOTECHNICAL SYSTEMS

In Zave and Jackson’s terminology an engineer could begin from the requirements in
R and progressively refine them to produce an implementable M . Software development,
then, is concerned with implementing M .

3.2 Requirements Engineering for Sociotechnical Sys-
tems

Figure 3.1: The overall design space for sociotechnical systems

Figure 3.1 illustrates the overall design space for STSs as discussed above. Stakeholders
are of two kinds: STS stakeholders and principals (that is, runtime participants in the
STS). The principals of an STS might have been involved as STS stakeholders in its design,
but that is not necessary. The innovation opportunity of STSs arises partly because its
principals may never have been imagined as its stakeholders during design, though the
principals should have something in common with the STS stakeholders. The dark boxes
(and relationships) capture the design space for STS stakeholders. The light boxes (and
relationships) capture an individual principal’s design space. Whereas STS stakeholders
specify a protocol by refining STS requirements, a principal specifies an agent from its
requirements. The principal, via its agent, adopts one or more roles in the protocol. By
decoupling STS requirements from principal requirements and concomitantly decoupling
protocol (STS) specifications from agent specifications, we enable a principal to comply
or not with a protocol. Additionally, a principal may comply with a protocol while
functioning in novel ways, thereby promoting innovation.

Below, for clarity, we identify STS stakeholders with roles (based on the intuition that
stakeholder types and STS roles would normally coincide) and use proper names to identify

33

CHAPTER 3. PROTOS: A METHODOLOGY FOR DESIGNING
SOCIOTECHNICAL SYSTEMS

principals. Thus, for example, in an automobile insurance system, the stakeholders include
Insurer, Mechanic, and Car Owner. Alessia and Cristina are particular mechanics; Great
Insurance Co. is a particular insurance company.

3.2.1 Rethinking Requirements Engineering Characterization

The conception of the design space in Figure 3.1 necessitates a rethinking of Zave and
Jackson’s formulation. Eq. 3.1 is adequate for refining the stakeholders’ requirements into
a specification of a machine, i.e., the software that would reside in an STS. For example,
we might specify software that would support a car owner to file a claim and an insurance
staff member to approve the claim and assign a mechanic. The formulation captures the
essence of regimented approaches, as illustrated by Example 3.3.

Example 3.3 Let stakeholders Insurer and Mechanic get together to design software for
an automobile insurance STS (we neglect Car Owner for simplicity). Let R1 be the set of
Insurer’s requirements, containing only one requirement: any replacement parts ordered by
a mechanic that are priced above $500 must be approved by the Insurer. This requirement,
following Eq. 3.1, would be refined into a software specification that disables for mechanics
the functionality of ordering parts priced over $500 unless Insurer’s approval is recorded.
The specification can be implemented using an access control module.

If a principal who plays Mechanic wants to order parts without the insurance com-
pany’s approval (e.g., because of urgency or because the approver—(staff member)—is
on holiday), the above-mentioned software would not allow the mechanic to proceed.
The mechanic would be forced to wait for approval—the software, effectively, regiments
interactions [135].

What we would like instead is to come up with a specification that captures the essence
of the stakeholder requirement and yet does not regiment the actions of any principal in
the STS. This is possible if stakeholder requirements are refined into, not a machine,
but a protocol specification. Any principal who adopts a role in the protocol is free to
specify (and implement) its own agent in accordance with its own requirements. Eq. 3.2
captures the above intuition. Ag and S are the sets of agent and protocol specifications,
respectively. Eq. 3.2 separates the essential nature of the interaction in the protocol from
the autonomous decision-making of the participants involved in its enactment.

A,Ag , S ` R (3.2)

Note that when Ag is a singleton and S is thus a null protocol, Eq. 3.2 reduces to
Eq. 3.1. Therefore, Eq. 3.2 generalizes the traditional requirements specification problem
equation, Eq. 3.1, to a setting of multiple autonomous principals. Example 3.4 illustrates
Eq. 3.2.

Example 3.4 Consider R1 from Example 3.3. Let S1 be the protocol specification {C(Mechanic, Insurer, price(item) >
500, getApproval(item) precedes order(item))}. For simplicity, let A1 (the set of assump-
tions) be empty. Let Ag1 = {i,m}; and i and m be the agents of Great Insurance Co. and

34

3.2. REQUIREMENTS ENGINEERING FOR SOCIOTECHNICAL SYSTEMS

Alessia, respectively. Suppose Alessia has designed m to obtain approvals before ordering
any parts. The overall system is correct, that is, A1,Ag1, S1 ` R1.

Example 3.5 Modify Example 3.4 such that Alessia’s agentm never asks for preapproval,
so it would violate the above-mentioned commitment to obtain preapproval. Let’s refer
to this agent as m′ and let Ag ′1 = {i,m′}. Then R1 wouldn’t be satisfied either, i.e.,
A1,Ag

′
1, S1 6` R1.

3.2.2 Modularity of the Design Space

We can achieve the separation of design spaces illustrated in Figure 3.1. A protocol
provides a solution for the requirements, independently of the agents who would ultimately
play roles in that protocol to instantiate the STS. That is, given some assumptions AS

of the domain, protocol S ensures R under the assumption E that all principals adopting
roles in the protocol satisfy their commitments. In other words, the following holds.

AS, E, S ` R (3.3)

Example 3.6 Returning to our example, under the assumption E (here meaning that any
principal playing Mechanic would satisfy the commitment to get approval), A1, E, S1 ` R1.

Assuming E during STS design does not mean that any principal who wants to play a
role in the STS must be compliant. Its purpose is to capture precisely the intuition that
it is the satisfaction of the commitment (and not, for instance, its creation) that satisfies
some requirement. Also note that E is not relativized to the particular STS (that is
why there is no E1 as there are R1, S1, and A1). The assumption E is purely formal:
it assumes the satisfaction of whichever commitments there are in the specification; in
particular, assuming E is not a matter of choice for the stakeholders.

We are concerned with the process of designing protocols from requirements, as in Eq.
3.3 (and the dark boxes in Figure 3.1). Example 3.7 illustrates how agent specifications, as
in the lighter boxes in Figure 3.1, fit into the overall requirements satisfaction argument.

Example 3.7 We know that A1, E, S1 ` R1. Cristina wants to play Mechanic in S1.
Cristina’s requirements are Rc and she wants to design an agent c accordingly. Rc may or
may not contain requirements imposed by the protocol. Let’s say Rc contains the require-
ments and c is specified appropriately following Eq. 3.1, that is, Ac, c ` Rc. As before, let
i (Great Insurance Co.’s agent) play Insurer and, further, that Ai, i ` Ri. Putting every-
thing together, we get Ai, Ac, A1, {i, c}, S1 ` R1. This is like Eq. 3.2: A = Ai ∪ Ac ∪ A1;
Ag = {i, c}, and S = S1. (The assumption E does not figure in the final equation as it is
“replaced” by actual agent specifications.)

Example 3.7 demonstrates that even the simple modification of introducing a protocol
yields interesting payoffs. The protocol provides a precise description of the nature of the
interactions among principals but leaves open the possibility of enacting the protocol in

35

CHAPTER 3. PROTOS: A METHODOLOGY FOR DESIGNING
SOCIOTECHNICAL SYSTEMS

multiple ways based on their own requirements, thus enabling innovation. For example,
this approach accommodates heterogeneous software for different mechanics, and enables
ordering before getting the approval (although a mechanic who does so may lose money
if the insurance company denies the authorization).

3.3 Social Refinement

We seek a theory of design for STSs founded on the concept of refinement. Since the con-
cepts in terms of which STSs are conceived (e.g., roles, protocols, and commitments) are
fundamentally different from those of traditional software engineering(e.g., goals, func-
tions, and actions for requirements, statements and variables for programs), our task is
to define new refinements that are specific to STS design problems.

Below, we introduce our model elements, use them to define a design configuration,
and introduce a design process.

3.3.1 Model Elements

The following are the key primitives of Protos.

Proposition, which represents a state of the world in the domain of the STS. A propo-
sition may be atomic or composite (representing the conjunction or disjunction of
propositions). The set of all propositions is P .

Stakeholder, an autonomous entity present during the design process of an STS.

Team, one or more stakeholders who function as a cohesive unit for design purposes.
That is, no team is empty. We denote that τi is a subteam of τ as τi v τ . We write
a team τ that comprises subteams τi as τ =

⊔
i τi. We do not consider the subtleties

of organizational structures, though our approach could be enhanced to incorporate
such models. The set of all teams is T , and includes individual stakeholders as
unary terms.

Commitment, a social relationship between a debtor team and a creditor team, re-
ferring to an antecedent proposition and a consequent proposition. The set of all
commitments is C. Thus, C ⊆ T × T × P × P .

Refinement, a reflexive, transitive, antisymmetric relation between propositions. We
notate refinement as ↪→ where a ↪→ b means that a refines into b (that is, b is
a refinement of a). Thus, ↪→⊆ P × P . The refinement of commitments and other
constructs follows from the above. We lift refinement to design configurations where
one configuration refines into another.

Conflict, an irreflexive, symmetric relationship over propositions. We notate conflict as
⊕ where p⊕ q means that p conflicts with q. Thus, ⊕ ⊆ P × P .

36

3.3. SOCIAL REFINEMENT

Requirement, a representation of an expectation that a team would like to achieve a
proposition. The set of all requirements is R. R ⊆ T × P . The notation R(τ, π)
means that (τ, π) ∈ R.

Onus, a representation of the assumption that a team takes on the onus of ensuring a
proposition. O(τ, π) means that team τ takes on the onus for ensuring proposition
π. We include onus assertions with other assumptions.

3.3.2 Design Configurations

We use these model elements to talk about design episodes. A design episode proceeds
from one design configuration to another by systematically applying refinements. We
define the following concepts to help us describe design episodes.

Requirements are given as R, a finite set of assertions describing what each team (stake-
holder) wants to achieve in the STS. The teams are autonomous, each holding a stake
in its own requirements, though a team’s requirements may hold for its subteams.
Thus, R ⊆ R.

Specifications are given as S, a finite set of assertions describing how the STS to be will
function. As motivated above, these assertions describe the interactions in the STS
but not the internal details of any of its participants. The interactions are naturally
captured as social relationships among the participants. Thus, S ⊆ C.

Domain assumptions are given as A, a finite set of assertions that must hold true in
order to ensure that the specifications will satisfy the requirements. The set of
possible domain assumptions is A = {p|p ∈ P}∪{O(τ, p)|τ ∈ T and p ∈ P}∪{a ↪→
b|a, b ∈ P}.

Needs are given as N , a finite set of requirements. That is, N ⊆ R. N represents the
set of requirements that are yet to be addressed during the design episode.

The foregoing leads to a definition of a design configuration. %

Definition 3.1 Given a set of stakeholder teams T and a set of propositions P, a design
configuration is a tuple 〈S,A,N〉, where N ⊆ R; S ⊆ S; and A ⊆ A.

Table 3.1 contains an illustration of the complete process of deriving specifications
from requirements for an automobile insurance scenario. C, I, M, G, and F represent
the stakeholders—/Car Owner/, Insurer, Mechanic, Manager, and Finance, respectively.
Manager and Finance are subteams of Insurer ; the former approves the payments and the
latter makes the transactions. In Table 3.1, the S, A, and N cells of each row constitute
a design configuration. We refer to the table to illustrate our formal definitions.

The following definitions are needed in Section 3.3.3 to specify how a design process
may begin, terminate, and whether its outcome is consistent and meets the requirements.

37

CHAPTER 3. PROTOS: A METHODOLOGY FOR DESIGNING
SOCIOTECHNICAL SYSTEMS

Definition 3.2 A design configuration 〈S,A,N〉 is initial for requirements R if and only
if N = R, S = ∅, and A = ∅.

In Table ??, Row 1 refers to the initial design configuration. Car Owner ’s requirement
is to be prepared for the emergencies: {R(c, prepared)}, Insurer has the requirement of
selling insurance: R(I, sold), and Mechanic wants to get paid for his repair services.

Definition 3.3 A design configuration 〈S,A,N〉 is final if and only if N = ∅.

In Table 3.1, Row 8 refers to the final design configuration.

Definition 3.4 A design configuration 〈S,A,N〉 is consistent if and only if A∪S 6` false.

Definition 3.5 A design configuration 〈S,A,N〉 satisfies requirements R if and only if
A ∪ S ` R.

3.3.3 Design Process

The requirements of stakeholders feed a design (refinement) process, which we imagine as
being conducted by stakeholders and facilitated by requirements engineers. The output of
the process is an STS specification, and a set of domain assumptions. We model the design
process as iteratively taking a design configuration and producing another, refined, design
configuration through an application of one of the above reductions, beginning from an
initial configuration and ending in a final configuration.

We initialize a design configuration from the requirements by treating each requirement
as the technical debt of the relevant team. The design process iteratively addresses each
need. A team may take on the onus for any of its needs. Alternatively, it may obtain a
commitment from another team, in which case its need would change to the antecedent
of the commitment. A design episode concludes when a configuration is obtained that
resolves all needs of all teams.

Potentially, more than one reduction may apply on a given design configuration. That
is, the design space can be large. Some explorations of it may end up in failure. An
exploration is consistent when it constitutes a series of refinements from an initial to a
final consistent configuration.

Definition 3.6 A design step takes as input a configuration 〈S,A,N〉 and produces a
configuration 〈S ′, A′, N ′〉 provided we can conclude 〈S,A,N〉 ↪→ 〈S ′, A′, N ′〉.

In Table 3.1, going from one row to the next is a design step (the latter row is annotated
with the applied reduction from Section 3.3.4).

Definition 3.7 A design path for requirements R is a finite series of configurations
〈S0, A0, N0〉 . . . 〈Sn, An, Nn〉 where (1) 〈S0, A0, N0〉 is initial for R; (2) 〈Sn, An, Nn〉 is
final and consistent; and (3) for each i, 0 ≤ i < n, 〈Si, Ai, Ni〉 ↪→〈Si+1, Ai+1, Ni+1〉 is a
design step.

38

3.3. SOCIAL REFINEMENT

Ta
bl
e
3.
1:

In
su
ra
nc
e
ill
us
tr
at
io
n
re
fin

em
en
t

Sp
ec
ifi
ca
ti
on

s
(S
)

A
ss
um

pt
io
ns

(A
)

N
ee
ds

(N
)

R
efi
ne
m
en
t

T
yp

e
1

∅
∅

R
(C

,p
re
pa

re
d)
,R

(I
,s

ol
d)
,

R
(M

,p
ai
d)

2
∅

A
1
=
{p

re
pa

re
d
↪→

co
ve
re
d
∧

em
e
}

R
(C

,c
ov
er
ed
∧

em
e)
,R

(I
,

so
ld
),
R
(M

,p
ai
d)

N
ee
d

re
fin

em
en
t

3
C
(C

,I
,c

ov
er
ed

,s
ol
d
),
C
(I
,C

,
so
ld

,c
ov
er
ed

)
A

1
R
(C

,e
m
e
∧

so
ld

),
R
(I
,

co
ve
re
d
),
R
(M

,p
ai
d
)

C
yc
lic

co
m
m
it
m
en
ts

4
C
(C

,I,
re
pa

ir
ed
,d

at
a
∧
fe
e)
,C

(I
,

C
,d

at
a
∧

fe
e,

re
pa

ir
ed
)

A
2
=

A
1
∪
{
so
ld
↪→

da
ta
∧

fe
e,

co
ve
re
d
↪→

re
pa

ir
ed
}

R
(C

,e
m
e
∧

da
ta
∧

fe
e)
,

R
(I
,r
ep
ai
re
d)
,R

(M
,p

ai
d)

C
om

m
it
m
en
t

re
fin

em
en
t
i

5
C
(C

,I
,f
ou

nd
∧fi

xe
d,

da
ta
∧f
ee
),

C
(I
,C

,d
at
a
∧f
ee
,f
ou

nd
∧fi

xe
d)

A
3
=

A
2
∪
{
re
pa

ir
ed

↪→
fo
un

d∧
fix

ed
}

R
(C

,e
m
e
∧

da
ta
∧

fe
e)
,R

(I
,

fo
un

d
∧

fix
ed

),
R
(M

,p
ai
d
)

C
om

m
it
m
en
t

re
fin

em
en
t
i

6
C
(C

,I
,f
ou

nd
∧fi

xe
d,

da
ta
∧f
ee
),

C
(I
,C

,d
at
a
∧f
ee
,f
ou

nd
∧fi

xe
d)
,

C
(M

,I
,p

ai
d,

fix
ed
),
C
(I
,M

,
fix

ed
,p

ai
d)

A
3

R
(C

,e
m
e
∧

da
ta
∧

fe
e)
,R

(I
,

fo
un

d
∧

pa
id

),
R
(M

,fi
xe
d)

C
yc
lic

co
m
m
it
m
en
ts

7
C
(C

,I
,f
ou

nd
∧fi

xe
d,

da
ta
∧f
ee
),

C
(I
,C

,d
at
a
∧f
ee
,f
ou

nd
∧

fix
ed
),
C
(M

,I
,p

ai
d,

fix
ed
),
C
(I
,

M
,fi

xe
d,

pa
id
)

A
4
=

A
3
∪{

G
@

I,
F
@

I,
pa

id
↪→

tr
an

sf
er
∧

ap
p}

R
(C

,e
m
e
∧

da
ta
∧

fe
e)
,R

(I
,

fo
un

d)
,R

(M
,fi

xe
d)
,R

(G
,

ap
p)
,R

(F
,t
ra
ns
fe
r)

Su
bt
ea
m
s

8
C
(C

,I
,f
ou

nd
∧fi

xe
d,

da
ta
∧

fe
e)
,C

(I
,C

,d
at
a
∧

fe
e,

fo
un

d
∧

fix
ed
),
C
(M

,I
,p

ai
d,

fix
ed
),
C
(I
,

M
,fi

xe
d,

pa
id
)

A
5
=
A

4
∪{

O
(C

,e
m
e
∧

fe
e
∧

da
ta
),
O

(I
,f
ou

nd
),
O
(M

,
fix

ed
),
O
(G

,a
pp

),
O
(F

,
tr
an

sf
er
)}

∅
O
nu

s

39

CHAPTER 3. PROTOS: A METHODOLOGY FOR DESIGNING
SOCIOTECHNICAL SYSTEMS

Table 3.1 shows a design path from Row 1 to Row 8.

Definition 3.8 A design path 〈S0, A0, N0〉 . . . 〈Sn, An, Nn〉 for requirements R is sound
if and only if 〈Sn, An, Nn〉 is consistent and 〈Sn, An, Nn〉 satisfies R.

In Table 3.1, the design path from Row 1 to Row 8 is sound. Soundness relies on
Theorem 3.1 that establishes that design paths following the reductions below are sound.

Recall Eq. 3.3 states that AS, E, S ` R. It captures the problem of specifying a
protocol from requirements. The design process described above conforms to Eq. 3.3. Sn

and An in the design path for R map to S and AS ∪ E, respectively. If the design path
is sound, we obtain the relation Sn, An ` R.

3.3.4 Social Refinement Types

Below, we list social refinement types supported by Protos. (Here the set operators
associate to the left and to reduce clutter we do not place assertions in quotations.)

Need refinement: Based on proposition refinement. The intuition is that if p refines
to p′, a need for p can be met by meeting a need for p′. For soundness, we must record
the assumption that p refines to p′.

〈S,A,N ∪ {R(τ, p)}〉 ↪→ 〈S,A ∪ {p ↪→ p′}, N \ {R(τ, p)} ∪ {R(τ, p′)}〉

Notice that we write the needs set as N ∪ {R(τ, p)} to ensure that a need R(τ, p) belongs
to the needs set. In the resulting configuration, we remove R(τ, p) from N to make sure it
is not present in the resulting needs set and introduce the refined need R(τ, p′) explicitly.

Example 3.8 Row 2 in Table 3.1 is obtained from Row 1 by refining R(C, prepared) into
two other needs, R(C, covered) and R(C, eme), namely,accident coverage and emergency
response, respectively.

Commitment introduction i: If τ1 has a need for q, τ1 can address that need by obtaining
a commitment from τ0 to τ1 whereby τ0 commits to bringing about q provided p holds.
Here, τ1 takes on the need for p.

〈S,A,N ∪ {R(τ1, q)}〉 ↪→ 〈S ∪ {C(τ0, τ1, p, q)}, A,N \ {R(τ1, q)} ∪ {R(τ1, p)}〉

Commitment introduction ii: If τ1 has a need for q, τ1 can address that need by obtaining
a commitment from τ0 to τ1 whereby τ0 commits to bringing about q provided p holds.
In this case, we add an assumption that p will hold.

〈S,A,N ∪ {R(τ1, q)}〉 ↪→ 〈S ∪ {C(τ0, τ1, p, q)}, {A ∪ {p}}, N \ {R(τ1, q)}〉

Commitment refinement i: Based on the refinement of either or both of its antecedent
and consequent. That is, if the antecedent or consequent of a commitment can be refined,
then so can the commitment. As before, we record the refinements as assumptions.

〈S ∪ {C(τ0, τ1, p, q)}, A,N ∪ {R(τ1, p)}〉 ↪→〈S \ {C(τ0, τ1, p, q)} ∪ {C(τ0, τ1, p
′, q′)},

A ∪ {p ↪→ p′, q ↪→ q′},
N \ {R(τ1, p)} ∪ {R(τ1, p

′)}〉

40

3.3. SOCIAL REFINEMENT

Notice that, the resulting commitment need not logically entail the original commitment.
For example, a commitment to provide coffee for payment may be refined into a commit-
ment to provide coffee for payment of Euros, though the second commitment is weaker
than the original.

Example 3.9 Row 4 in Table 3.1 is obtained by refining the commitments in Row 3.
Specifically, buying a policy is refined into providing personal data and paying the fee,
whereas providing coverage is refined into repairing the car. The commitments and needs
in Row 4 reflect this refinement.

Commitment refinement ii: Based on the refinement of either or both of the commit-
ment’s creditor and debtor.

〈S ∪ {C(τ0, τ1, p, q)}, A,N ∪ {R(τ1, p)}〉 ↪→〈S \ {C(τ0, τ1, p, q)} ∪ {C(τ0′, τ1′, p, q)},
A ∪ {τ0′ v τ0, τ1′ v τ1},
N \ {R(τ1, p)} ∪ {R(τ1′, p)}〉

Cyclic commitments: Given n teams (n ≥ 2) where for each i, 0 ≤ i < n, team τi
has a need for pi, these teams can address their needs via (cyclic) commitments from
τi to τ(i+1 mod n) whereby τi commits to bringing about p(i+1 mod n) provided pi holds.
Reciprocal commitments are a special case of cyclic commitments when n = 2.

〈S,A,N ∪
⋃
i

{R(τi, pi)}〉 ↪→ 〈S ∪
⋃
i

{C(τi, τ(i+1 mod n), pi, p(i+1 mod n))}, A,

N \
⋃
i

{R(τi, pi)} ∪
⋃
i

{R(τ(i+1 mod n), pi)}〉

Example 3.10 Row 3 in Table 3.1 is obtained from Row 2 by applying Cyclic Com-
mitments. In Row 2, /Car Owner/ and /Insurer/ need coverage and sale of policies,
respectively. To meet these needs, in Row 3, /Car Owner/ commits to buying a policy if
/Insurer/ provides coverage for accidents and /Insurer/ commits to providing coverage if
a policy is bought. Further, /Car Owner/ and /Insurer/ need to buy policy and provide
coverage, respectively.

Subteams: If a team τ has a need p, we can assign pi to subteams τi; this is appropriate
only because we assume that τi is a subteam of τ .

〈S,A,N ∪ {R(τ, p)}〉 ↪→〈S,A ∪ {p ↪→
∧
i

pi} ∪
⋃
i

{τi v τ},

N \ {R(τ, p)} ∪
⋃
i

{R(τi, pi)}〉

Example 3.11 Row 7 in Table 3.1 is obtained by applying Subteams. The payment need
R(I, paid) is refined into approval and transaction, namely, R(I, app) and R(I, transfer).
The manager and the finance department, which are the insurer’s subteams, adopt these
needs, that is, R(G, app) and R(F, paid).

41

CHAPTER 3. PROTOS: A METHODOLOGY FOR DESIGNING
SOCIOTECHNICAL SYSTEMS

Onus: A team takes on the onus for some need locally; that is, it decides not to delegate
that need to another team.

〈S,A,N ∪ {R(τ, p)}〉 ↪→ 〈S,A ∪ {O(τ, p)}, N \ {R(τ, p)}〉

Example 3.12 Row 8 is obtained by applying Onus: all stakeholders take on the onus
for their remaining needs.

Composition: Refinements compose in that, if part of a configuration is refined through
a particular operation, so is an entire configuration through the same operation.

〈S ′, A′, N ′〉 ↪→ 〈S ′′, A′′, N ′′〉(S ∪ S ′ ∪ A ∪ A′) 6` false

〈S ∪ S ′, A ∪ A′, N ∪N ′〉 ↪→ 〈S ∪ S ′′, A ∪ A′′, N \N ′ ∪N ′′〉

3.3.5 Logic of Design Elements

For simplicity, we assume that a logic is available for reasoning about the various elements
of a design configuration. In particular, this logic provides an inference relation, notated
`. The various elements of a design configuration are closed under `, as specified by Table
3.2.

3.3.6 Example of Design Paths

Figure 3.2 illustrates the above definitions. The root is the requirement. Immediately
below the root is the initial design configuration. Each of the leaves is a final configuration
and satisfies the requirements. Each configuration is consistent. Each path is a well-
formed design path and is sound for the requirements. The edge labels are informal
descriptions.

R(y, q)

S = {}; A = {}; N = {R(y, q)}

S = {C(x, y, p, q)}; A = {}; N = {R(y, p)}

S = {C(x, y, p, q)}; A = {O(y, p)}; N = {}

Accept onus

Introduce commitment

S = {}; A = {O(y, q)}; N = {}

Do it in-house

Begin design

Figure 3.2: Paths through the design space.

42

3.3. SOCIAL REFINEMENT

Table 3.2: The underlying logic is propositional logic augmented with the following axioms
pertaining to the symbols introduced in Protos.

Conflict means we cannot satisfy both
pp⊕ q
¬q

A subteam’s stronger need satisfies a
team’s need: and

R(τ ′, p ∧ q)τ ′ v τ
R(τ, p)

A subteam’s stronger need satisfies a
team’s need: or

R(τ ′, p)τ ′ v τ
R(τ, p ∨ q)

Subteams together cover needs that a
team’s need refines to

∧
i
R(τ i, pi)p ↪→

∧
i
pi
∧
i
τ i v τ

R(τ, p)

If a team takes on an onus, the
corresponding need is covered

O(τ, p)

R(τ, p)

A conditional commitment along with its
antecedent cover its consequent

R(τ, p)C(τ ′, τ, p, q)

R(τ, q)

An unconditional commitment covers its
consequent

C(τ ′, τ, true, q)

R(τ, q)

3.3.7 Soundness

We now establish the soundness of our formal model.

Theorem 3.1 (Soundness) Let P = 〈S0, A0, N0〉 . . . 〈Sn, An, Nn〉 be a design path for
requirements R. Then P is sound.

Proof sketch. Establish the invariant that A ∪ S ∪ N ` R by structural induction: it
holds for an initial configuration by construction and for each subsequent configuration by
inspection of the reductions. In a final configuration, N = ∅: hence we have the result.

The above reductions do not consider conflict. The following reduction ensures that if τ1
and τ2 (could be the same team) have conflicting needs, at most one of those needs can
be pursued.

Conflict introduction: Introduce an assumption of a conflict into a design configura-
tion.

〈S,A,N ∪ {R(τ1, p),R(τ2, q)}〉 ↪→
〈S,A ∪ {p⊕ q}, N \ {R(τ2, q)} ∪ {R(τ1, p)}〉

43

CHAPTER 3. PROTOS: A METHODOLOGY FOR DESIGNING
SOCIOTECHNICAL SYSTEMS

If we include the above reduction, Theorem 3.1 fails: although consistency is pre-
served, we can no longer establish that the original requirements are satisfied, because
some may be dropped along the way. Incorporating conflict would lead us to formalize
satisficing [35]. Then we may seek to establish that a design process satisfices the stated
requirements.

Let us see how Protos would support design in the presence of conflicts. Imagine
in Table 3.1 that Car Owner has an additional requirement concerning data privacy,
that is, R(C, privacy). Conceptually, this requirement would conflict with the disclosure
of personal data, that is, R(C, disclosure). In Protos, the stakeholder would introduce
an assumption that disclosure ⊕ privacy via Conflict Introduction. Then, by Conflict
from Table 3.2, we are guaranteed that one of the two propositions, i.e., one of the two
requirements, cannot be met. In essence, the design process fails at this point.

3.4 Evaluation

We conducted a case study evaluation via a modeling session involving modelers other than
the authors. To this end, we recruited eight modelers, all doctoral students in computing
who are familiar with goal modeling, to participate in our modeling session. At the
beginning of the session, we instructed the participants in Protos concepts, reductions,
and design process.

We instructed the modelers to apply Protos to jointly create a specification of Kramer
and Wolf’s [20] case study of the London Ambulance System (LAS), which we described
for the modelers. Kramer and Wolf’s LAS scenario includes nine stakeholders, namely,
the service consumer, call taker, call reviewer, LAS management, ambulance crew, call
reviewer, radio operator, operator at ambulance station, dispatcher, and resource alloca-
tor. The requirement of the service consumer is to receive an ambulance when there is
an incident. The call taker needs incident details to report the incident and the resource
allocator requires the incident report. The radio has the requirement of the resource allo-
cation information and the ambulance crew needs mobility instructions. For our modeling
session, we merged the call taker and call reviewer stakeholders to ensure a one-to-one
correspondence between the study participants and the stakeholders.

The study participants then designed the LAS STS starting from their respective
requirements. Table 3.3 provides a partial design process with a few representative stake-
holders where the call taker and the service consumer established a commitment and
refined it prior to Step 1 of Table 3.3. Both stakeholders take the respective onuses which
are added into the assumptions set in Step 1. In Step 2, the call taker and resource
allocator apply commitment introduction ii and the call taker commits to the resource
allocator to report information about the incident upon receiving such information. In
Step 3 the call taker takes the onus for this commitment. Step 4 and 5 are compressed
representations of the iterative design process that is similar to Step 2 and 3, where at
each step commitment introduction ii is applied and then the oOnus is taken by the
respective stakeholder.

44

3.5. CHAPTER SUMMARY

Observations. The commitment network created by the participants following Protos
superficially resembles the i* strategic dependency diagram for LAS, as provided in [136].
However, the Protos modeling of the LAS offers distinct advantages over the i* modeling
of the LAS. One, the participants were able to collectively refine the commitments to
make the interaction explicit and concrete. Two, the stakeholders were able to model
conditional interactions via commitments, whereas an i* dependency is not conditional.
Three, the design reductions of Protos helped focus the design process; i* lacks such
a formalization. Four, removing the needs as the respective stakeholders took on the
corresponding onuses helped the participants track the status of the design. Further, an
empty needs set served as a clear stopping criterion for the design process; such a criterion
does not exist in i*.

Threats to validity. The reference document used for the LAS domains [20] includes a
small number of stakeholders relative to other examples such as smart cities or a national
health-care system. This somewhat narrow starting point and the participants’ limited
familiarity with the domain prevented them exploring designs that are not described in
the reference document. Despite this, however, the participants elaborated details of
interaction that are not present in the reference document by negotiating and using argu-
mentation. The participants were collaborative and understanding to others’ demands.
In a real-life scenario one may expect more aggressive behavior from the stakeholders due
to their conflict of interests that may even result in failure in the design process.

3.5 Chapter Summary

Protos is a novel RE process for sociotechnical systems that enables refining stakeholder
requirements into commitment-based system specifications. Whereas other approaches
are conceptually founded upon the notion of refining requirements into machines, Protos
refines them into protocols. This brings modularity to the problem space: the problem
of designing principals’ software (agents) is related but separate from the problem of
specifying protocols. Further, it demonstrates a generalization of Zave and Jackson’s
foundational characterization of RE.

We emphasize the point about the divergence of the requirements of the STS stake-
holders from the requirements of the principals. Supporting this divergence is the key
to innovation. Simply put, whatever the goals of the stakeholders might be we simply
cannot install such goals in the decision models for the individual principals.

Protos opens up some interesting and important directions for further research. First,
the emphasis on multiple stakeholders suggests a deeper study of conflict at design and
run time, incorporating the notion of satisficing requirements, possibly in relation to
notions such as social welfare of the stakeholders and bringing to bear techniques such
as argumentation [137] for determining which of the conflictin requirements to satisfy
and which to ignore. Second, the sociotechnical setting opens up challenges of vagueness,
inconsistency, and defeasibility of requirements [36]. Third, we would need to explore
modeling concepts geared for requirements in diverse STS settings, e.g., with respect to the

45

CHAPTER 3. PROTOS: A METHODOLOGY FOR DESIGNING
SOCIOTECHNICAL SYSTEMS

Table
3.3:

A
portion

ofthe
design

process
during

the
m
odeling

session
on

the
London

A
m
bulance

System

S
tep

S
p
ecifi

cation
A
ssu

m
p
tion

s
N
eed

s
R
efi

n
em

ent

1
C

(ct,sc,a
d
d
ress

∧
sta

tu
s,in

cid
en
tT
a
k
en

)

A
1

=
{in

cid
en
tR
eported

↪→
a
d
d
ress

∧
sta

tu
s,O

(sc,
a
d
d
ress

∧
sta

tu
s),O

(ct,
in
cid
en
tT
a
k
en

)}

R
(sc,
a
m
bR
eceiv

ed
),

R
(a
c,

m
obility

I
n
f
oS
en
t),

R
(ro,
resou

rceA
lloca

ted
),

R
(ra,
in
f
oR
eported

)

O
nus

2
C

(ct,sc,a
d
d
ress

∧
sta

tu
s,in

cid
en
tT
a
k
en

)
C

(ct,ra
,in

cid
en
tT
a
k
en
,in

f
oR
eported

)
A

1

R
(sc,
a
m
bR
eceiv

ed
),

R
(a
c,

m
obility

I
n
f
oS
en
t),

R
(ro,
resou

rceA
lloca

ted
),

R
(ct,
in
f
oR
eported

)

C
om

m
itm

ent
introduction
ii

3
C

(ct,sc,a
d
d
ress

∧
sta

tu
s,in

cid
en
tT
a
k
en

)
C

(ct,ra
,in

cid
en
tT
a
k
en
,in

f
oR
eported

)
A

2
=

A
1
∪
{O

(ct,
in
f
oR
eported

)}

R
(sc,
a
m
bR
eceiv

ed
),

R
(a
c,

m
obility

I
n
f
oS
en
t),

R
(ro,
resou

rceA
lloca

ted
)

O
nus

4

C
(ct,sc,a

d
d
ress

∧
sta

tu
s,in

cid
en
tT
a
k
en

)
C

(ct,ra
,in

cid
en
tT
a
k
en
,in

f
oR
eported

)
C

(ra
,ro,in

f
oR
eported

,resou
rceA

lloca
ted

)
C

(ro,a
c,resou

rceA
lloca

ted
,m

obility
I
n
f
oS
en
t)

C
(a
c,sc,m

obility
I
n
f
oS
en
t,a

m
bR
eceiv

ed
)

A
2

R
(a
c,

a
m
bR
eceiv

ed
),

R
(ro,
m
obility

I
n
f
oS
en
t),

R
(ra,
resou

rceA
lloca

ted
)

C
om

m
itm

ent
introduction
ii

5

C
(ct,sc,a

d
d
ress

∧
sta

tu
s,in

cid
en
tT
a
k
en

)
C

(ct,ra
,in

cid
en
tT
a
k
en
,in

f
oR
eported

)
C

(ra
,ro,in

f
oR
eported

,resou
rceA

lloca
ted

)
C

(ro,a
c,resou

rceA
lloca

ted
,m

obility
I
n
f
oS
en
t)

C
(a
c,sc,m

obility
I
n
f
oS
en
t,a

m
bR
eceiv

ed
)

A
3

=
A

2
∪
{
O

(a
c,

a
m
bR
eceiv

ed
),

O
(ro,

m
obility

I
n
f
oS
en
t),

O
(ra,

resou
rceA

lloca
ted

)}

∅
O
nus

sc:
service

consum
er,ct:

calltaker,ra:
resource

allocator,ro:
radio

operator,ac:
am

bulance
crew

46

3.5. CHAPTER SUMMARY

normative relationships [138], and for which we can establish results such as completeness.
Fourth, it would be crucial to develop a methodology and tools that support the Protos
design process.

47

CHAPTER 3. PROTOS: A METHODOLOGY FOR DESIGNING
SOCIOTECHNICAL SYSTEMS

48

Chapter 4

Exploring Sociotechnical System Design
Space

The previous chapter introduces Protos, a requirements engineering approach to support
the design process of sociotechnical systems. The output of the design process is a speci-
fication of the sociotechnical system in terms of system interactions, domain assumptions
made by systems, and finalized responsibilities of the systems to realize at run-time.

This chapter explores the alternative solutions in the design space and constructs
a plan to execute to satisfy the selected solution. Section 4.1 presents a goal–oriented
requirements modeling language to capture the requirements of the systems, systems
presented as actors in line with i* and Tropos frameworks. Section 4.2 defines the actions
to be taken as part of a plan that fulfill system requirements. A plan is a sequence of
actions through which participants requirements are satisfied [139]. We map the design
problem into a planning problem as previously demonstrated by Gans et al. [140]. We
devise plans that preserve the stability of the sociotechnical system by respecting the
interactions agreed at design time, and minimize the cost. The details of implementation
in PDDL are presented in Section 4.3. The results of self–evaluation of the visual notation
and a brief analysis of the scalability of the approach is included in Section 4.4.

Acknowledgment This chapter is based on our work presented in [141].

4.1 DEST: A Modeling Language for Designing So-
ciotechnical Systems

DEST (DEsigning Sociotechnical sysTems) is a modeling language for designing so-
ciotechnical systems. DEST focuses on the social components and their interactions;
we reify technical systems through the social entity (their developer, owner, or user) that
is liable for the effects of their interactions with other entities. We model each component
as an actor, an autonomous entity that aims to satisfy its own requirements either by its
own means or through social interactions with other actors.

DEST is based on and extends i. the i* modeling framework, from which we take

49

CHAPTER 4. EXPLORING SOCIOTECHNICAL SYSTEM DESIGN SPACE

Actor Goal
Category

Commitment Refinement
type

Goal State of
Affairs

Precedence

Priority
Capability

has-capability

0. . . *

capable-of

0. . . *

capable-of

0. . . *

capable-of

0. . . *former1
latter 1

has-debtor

1

has-creditor

1

has-precedence
0. . . *

has-goal

1. . . *

conflicts
0. . . *

has-category0. . . *

has-refinement

0. . . 1

parent

1

subgoal

*has-consequent 1. . . *

has-antecedent
1. . . *

has-priority

0. . . *

high
1low

1

refers to

Figure 4.1: Meta-model of the DEST modeling language

the concepts of actor, goal, and refinement ; ii. social commitments to represent the
social interactions among the actors ; and iii. advanced requirements, relations such as
priority and precedence [36], [142]. Together, these elements support expressive modeling
and reasoning for requirements and interactions during sociotechnical system design and
evolution.

Figure 4.1 presents the meta-model of DEST. We explain the three fundamental
concepts—goals, actors, and commitments—in the following subsections. Figure 4.2 illus-
trates the graphical syntax of DEST for the travel reimbursement sociotechnical system,
whose scenario is constructed by us based on the system in practice at the University of
Trento in 2013.

4.1.1 Requirements

We represent stakeholder requirements as goals. In addition we introduce priority and
precedence relations between goals, so as to enable a fine-grained specification of the
relative importance and urgency of the goals. Specifically, DEST supports the following
elements to represent requirements:

Goal models a desired state-of-affairs that an actor wants the sociotechnical system-to-
be to achieve. In a sociotechnical system the behavior of actors is determined by
their respective goals.

Precedence: a type of relation between goals that specifies that one goal is to be sat-
isfied/carried out before another. Precedence relation represent actors’ temporal

50

4.1. DEST: A MODELING LANGUAGE FOR DESIGNING SOCIOTECHNICAL
SYSTEMS

constraints on the goals. For example, a project fund manager may require that a
conference paper should be accepted to be published before its authors submit a
travel authorization request.

Priority: a type of a relation between goals that indicates that one goal has higher
priority than another. A student may prioritize spending its travel budget on plane
tickets rather than on accommodation.

Conflict: a goal may conflict with another, that is, they cannot both be satisfied in the
same sociotechnical system configuration.

Refinement: A goal may be AND/OR-refined to subgoals that are easier to fulfill than
their parent. For example, a goal could be AND-refined into two subgoals for which
there are actors capable of fulfilling them.

Capability: the actors ability to achieve a goal, a category of goals or a state of affairs.

Goal Category: each goal may belong in a category that indicates the type of capa-
bility needed to fulfill it. For example, in the travel reimbursement sociotechnical
system, a goal category could be “authorization”, to aggregate all goals that can
be fulfilled through authorization the requests. An actor that has the capability of
satisfying a certain category, does not need to declare his capability for each goal
that belongs to that category.

Figure 4.2 describes a model built by using the concepts described above. For example,
‘trip booked’ is a goal that is OR-refined into two other goals: ‘booked by student’ ‘booked
via travel agent’, which implies that the child goals are easier than to satisfy the parent
goal. In the model, a precedence relation is defined between the goals ‘trip planned’
and ‘paid by student’, which states that the former should be satisfied before the latter.
The goal ‘expensive accommodation’ has priority over the goal ‘expensive tickets’ so when
taking actions in a plan towards satisfying the goals, the former goal has a higher priority.
There is a conflict relation defined between the ‘cash payment’ and the ‘expensive tickets’
goals, therefore only one of them could be satisfied by the sociotechnical system.

4.1.2 Actors

An actor is an autonomous component of a sociotechnical system. An actor could be a
human such as a student or a project fund manager, a social entity such as an airline or
a hotel, or a technical system such as the information system used within a department.
The following relations relate actors to their requirements:

has-goal: this denotes that an actor has a requirement to be satisfied by the sociotechni-
cal system. In DEST, requirements consist of goals and relations such as precedence,
priority, and conflict. A solution to the design problem should respect these relations
and satisfy the goals of actors.

51

CHAPTER 4. EXPLORING SOCIOTECHNICAL SYSTEM DESIGN SPACE

Travel
Agen

cyStude
nt

trip
booked

booked by
student

booked via
travel agency

Or

paid by
student

expenses
reimbursed

trip info
provided

auth. sent

And And

get
authorized

info.
submittted

auth. req.
submitted

auth.
received

And

profit

trip
reserved

payment
received

info.
received

trip
paid

Actor

Goal

Legend:

And

And

Fund
Manag

er

research
activity

increased

conf.
papers

published

journal
paper

published

And

trip info provided
AND auth. sent

reservation
received

booking

auth. sent AND
trip reserved

payment received

payment
done

auth. sent

Conf. paper published
AND auth. req. submitted

auth. sent

precedes

precedes

precedes

paper
published

trip planed

accom.
found itinerary

found

cheap
accom.

expensive
accom.

cheap
tickets

exp. tickets

cash
payment

wire transfer
made

Or

precedes

And

has-priority

Or Or
conflicts

Capability

Antecedent
Consequent

Debt
or

Cred
itor Commitment

precedes has-priority conflicts
AND-refinement

OR-refinement

And

Or

reservati
on

received

Figure 4.2: DEST model of the travel reimbursement sociotechnical system

is-capable-of: an actor is capable of (fulfilling) a goal if it can do so on its own, without
any help from other actors. I an actor has some goals that she is not capable of
satisfying, the actor must interact with other actors to get the goal satisfied by some
other actor who is capable of satisfying the goal. The actor who has the capability
to satisfy the goal may ask for the satisfaction of some of her own goals, as often in
case of real life, which initiates a reciprocal social interaction between actors with
various capabilities. There may be alternative solutions for a sociotechnical system
where an actor still interacts with others to get a goal satisfy of which she is capable.
For example, a travel agent may choose to use some intermediary travel company
for bookings due to its lower cost although she has the capability of booking tickets
and hotel rooms.

is-capable-of-category: an actor is capable of satisfying any goal that belongs in a
particular category.

There are three actors in the model presented in Figure 4.2: student, project fund
manager, and travel agent. Each actor has its requirements represented as goals, priorities,

52

4.2. DESIGNING A SOCIOTECHNICAL SYSTEM

and precedence relations within its actor boundary. Capabilities such as ‘booking’ and
‘payment done’ are shown in cloud shaped nodes within the boundaries of the actor who
is capable of them.

4.1.3 Commitments

A commitment represents a contractual relation between two actors as they socially inter-
act. Two actors get engaged in a commitment whenever their capabilities are insufficient
for satisfying their requirements, or when interacting with others is more convenient than
exercising an internal capability. A commitment is defined in terms of four relations:

has-debtor: the actor who is responsible for satisfying the consequent of the commit-
ment. A debtor participates in the commitment because there is at least one goal
listed in the antecedent that he wants to achieve. The debtor should be capable of
satisfying all goals in the consequent.

has-creditor: the actor who is the beneficiary of the commitment. The creditor of
the commitment is interested in the satisfaction of at least one goal listed in the
consequent. The creditor should ensure that antecedent goals are satisfied, but need
not be the one to do so.

has-antecedent: a set of goals whose satisfaction is a precondition for the commitment
to be fulfilled.

has-consequent: a set of goals that the debtor is obliged to fulfill.

Figure 4.2 includes three commitments represented as split rectangles. For example,
the commitment between the travel agent and student, where travel agent is the debtor
that commits to book the trip if the student provides needed information about the trip
and sends authorization for it.

4.2 Designing a Sociotechnical System

The modeling language introduced in Section 4.1 helps abstracting the requirements of
actors in a sociotechnical system, relations among these requirements, actor capabilities
and social interactions between actors that help fulfilling the requirements. Analysis of this
model consists of exploring the space of alternatives for fulfilling requirements: actor root
goals, while respecting precedence, priority, and conflict relations. Alternative solutions
may follow different paths to satisfy the root goals. Differences in a path includes following
different OR-refinement branches, using an actor’s own capabilities to satisfy leaf goals,
and activating one of the commitments described in the model. A sociotechnical system
deploys one of the alternative solutions at run time as its configuration.

53

CHAPTER 4. EXPLORING SOCIOTECHNICAL SYSTEM DESIGN SPACE

Definition 4.1 (Configuration) A configuration Cfg of a DEST model M is a 3-tuple
〈G,Cap,Com〉, where G is the set of (sub-)goals that the actors in the sociotechnical system
are adopting, Cap is the set of capabilities that the actors are exploiting, and Com is the
set of commitments that the actors have established. G, Cap, and Com are subsets of the
set of goals, capabilities, and commitments in M, respectively.

A configuration is empty at the beginning. Actors state their goals, their capabilities
and relations among their goals as well possible refinements and commitments. A valid
configuration includes the selected set of commitments and refinements that satisfies the
top-level goals of the actors while respecting the specified relations among goals.

We now present the design process whereby a sociotechnical system is designed using
DEST:

Definition 4.2 (Design process) Let M be a DEST model that represents the space of
alternatives of a sociotechnical system, and let Cfg be a valid configuration of M. A design
process DCfg,M is a list of actions (Act1, . . . ,Actn) that, if correctly executed starting from
an empty configuration, leads to the configuration Cfg.

The actions that construct a design process correspond to the execution of one of the
following action types on an element of a DEST model:

Adopt goal: an actor can adopt a new goal when he doesn’t have the goal, and the goal
is not already satisfied. As a result of this action, the actor intends to achieve (has)
the goal.

Satisfy goal via capability: an actor can satisfy a goal if

• the actor has the goal,

• the goal has not been satisfied,

• no conflicting goals are satisfied,

• all goals that shall precede it are satisfied, and

• the actor is either capable of satisfying the goal itself or the category of the
goal.

As a result, the goal becomes satisfied, and the actor does no longer have the goal.

Refine goal: an actor may AND/OR-refine a goal if

• the actor has the goal,

• the goal has not been satisfied, and

• there is a refinement for that goal in the actor’s goal model.

As a result of the action, the actor does no longer have the parent goal, but he has the
subgoals.

54

4.2. DESIGNING A SOCIOTECHNICAL SYSTEM

Create commitment: An actor may create a commitment playing the role of debtor
if there is at least one goal in the antecedent that the actor wants to satisfy.

Accept commitment: An actor accepts a commitment as creditor if the actor wants
to satisfy at least one of the consequent goals.

As a result, the actor drops its goal(s) listed in the consequent, and adds the goals in the
antecedent.

Detach commitment: The debtor of the commitment detaches it when all goals in the
antecedent are satisfied. Such condition binds the debtor to satisfy the consequent,
so he adopts the goals listed in the consequent.

Discharge commitment: The creditor of the commitment discharges the commitment
when all the goals in the consequent are satisfied.

All action types defined above are used at design time and executed on goals and
commitments. Actors may adopt new goals during the design process. After adopting a
goal, an actor may either satisfy the goal, or further refine it into other goals. If capable,
the actor may choose to satisfy the goal via its own capabilities. If the actor is not capable
of satisfying the goal or does not prefer to do so due to some constraints such as budget,
the actor creates a commitment with another actor to get its goal satisfied. Creating
a commitment is to activate the respective commitment described in the model and a
declaration to the creditor of the commitment to satisfy the goals listed in the consequent
of the commitment one of which may be adopted by the creditor. In return, the debtor
actor expects the goals listed in the antecedent to be satisfied. If the creditor is interested
in the commitment, that is, if there are some of its goals listed in the consequent of the
commitment, the creditor accepts the commitment. Once the goals in the antecedent
are satisfied, the commitment becomes detached. When the debtor actor satisfies the
goals in the consequent the commitment is discharged. The list of actions that operate on
commitments do not include two commitment operations that are defined in [18] canceling
a commitment and violating a commitment. We deliberately omit these operations as
they are deviations from the successful execution of commitments, which may occur at
run run-time as exceptions but are not used at design time.

The output of the design process is a set of actions of whose execution leads to a valid
configuration for the sociotechnical system. The precedes relation imposes constraints on
the satisfaction order of goals; thus, the order of the actions in a design process is relevant
and should be used as a guideline for the implementation of the sociotechnical system.

Figure 4.3 we provide a partial enactment of the design process for our example so-
ciotechnical system in Figure 4.2. The plan sets up the interaction between the student
and the travel agency. In this scenario, the travel agency wants to make profit by selling
trips, and needs to receive necessary information for the trip as well as reimbursement for
the trip (hotel and tickets). The travel agency is capable of making payments and book-
ing trips. In the following steps, first, the student adopts and refines a goal (Steps 1-3).
Then the travel agency creates a commitment which potentially matches its goals and the

55

CHAPTER 4. EXPLORING SOCIOTECHNICAL SYSTEM DESIGN SPACE

1. Student adopts ‘trip booked’.

2. Student OR-refines ‘trip booked’ to ‘booked by student’ and ‘booked via travel
agency’.

3. Student AND-refines ‘booked via travel agency’ to ‘trip info provided’, ‘autho-
rization sent’, and ‘reservation received’.

4. Travel Agency creates commitment ‘C(Travel Agency, Student, trip info. pro-
vided AND auth. sent, reservation received)’.

5. Student accepts commitment ‘C(Travel Agency, Student, trip info. provided
AND auth. sent, reservation received)’.

6. Student satisfies ‘trip info provided’.

7. Student satisfies ‘authorization sent’.

8. Travel Agency detaches commitment ‘C(Travel Agency, Student, trip info.
provided AND auth. sent, reservation received)’.

9. Travel Agency satisfies ‘reservation received’.

10. Student discharges commitment ‘C(Travel Agency, Student, trip info. pro-
vided AND auth. sent, reservation received)’.

Figure 4.3: A partial design plan for the model described in Figure 4.2

capabilities to those of the student ’s (Step 4). The student accepts the commitment (Step
5), and the two successfully A possible sequence of run-time interaction that instantiates
the design plan is also shown (Steps 6-10). Among these steps, detaching (Step 8) and
discharging a commitment (Step 10) are necessary for one actor to acknowledge that the
other actor has, indeed, satisfied the antecedent (Step 8) and the consequent (Step 10).

It is generally the case that there are alternative ways to satisfy requirements for a
sociotechnical system. This happens when a goal is OR-refined, when several actors have
capabilities for the same goal, and when multiple commitments are possible for fulfilling
a goal.

The problem of identifying configurations that fulfill a given set of requirements can
be reduced to an automated planning problem [143], where a tool is employed to search
the encoding of a DEST model for feasible design plans that respect the constraints. The
planner returns a list of actions (a plan) to be followed at run time that results in the
satisfaction of the requirements of the actors.

In order to identify the best plan, among many possible ones, we assign a cost value

56

4.3. IMPLEMENTATION

to each action, which corresponds to the effort for an actor to execute that action. There
are multiple ways of expressing cost: either a cost can be assigned to each action (e.g.,
to adopt(g1)), or a standard value is assigned to action types, or simply, all actions are
assumed to have unit cost. The best plan is the one that has minimal cost, among all
possible plans. An alternative way to quantify the results of the actions is to add a utility
to each action, in this case the best plan maximizes the total utility. How to assign
these values are beyond the scope of this thesis, one of the existing methods from the
literature could be applied for this task. Karlsson and Ryan [144] adopts a cost based
approach for prioritizing requirements. Regan et al. [145] provide a method on eliciting
reward information and use regret-reduction to choose suitable solutions. Their approach
could be broadened to utility elicitation. In the next section we show how we map the
identification of the best plan into an input for an off-the-shelf planner.

4.3 Implementation

The field of AI planning has found a number of applications in various areas such as
multiagent systems and robotics. A planning problem includes the initial state of the
world, the desired of the world, and the possible actions that can be taken throughout
the plan [143]. Using the DEST language described in Section 4.1 and the actions in
Section 4.2, we encode the problem of building a network of interactions for the actors
in a sociotechnical system to a planning problem that satisfies actor requirements while
minimizing cost. We encode the problem using the Planning Domain Definition Language
(PDDL) [21], the de-facto standard input format for planners. We use PDDL v3.0 [146],
which supports preferences and soft constraints that we need to implement the has-priority
relation.

An of-the-shelf PDDL planner has two inputs: the domain description and the problem
definition. We map the DEST concepts defined in Figure 4.1 into PDDL constructs in
the domain description file. Mappings of the actions in Section 4.2 are also added to
the domain description file. This file can be re-used for various problem definitions, each
consisting of the model (instances of the concepts), the initial state of the sociotechnical
system, metrics for the plan, and the instances of the requirements.

In the domain description file, we state the requirements for the planner, which are
features of PDDL that the planner provides. For our purposes, we use typing to ab-
breviate the type declarations for the multiple objects of the same type, adl for using
disjunctions, quantifiers in preconditions, and conditional effects, :constraints for the
trajectory constraints and numeric-fluents to model costs. Among the concepts pre-
sented in Section 4.1 we map Actor, Goal, Goal Category, and Commitment into object
types in PDDL, so goal(trip-booked) is translated that trip-booked represents an in-
stance of the goal class in DEST. Since there is a one-to-one correspondence between
DEST and PDDL for these four classes, we directly map their relations into namesake
PDDL predicates. For example, a has-goal relation between actor a and goal g is mapped
to has-goal(?a - actor, ?g - goal). Note that we provide a template in the domain

57

CHAPTER 4. EXPLORING SOCIOTECHNICAL SYSTEM DESIGN SPACE

Table 4.1: List of PDDL Predicates and Fluents

Predicates Predicates Fluents

(is-satisfied ?g - goal) (and-ref ?g ?g1 - goal) (actor-cost ?a - actor)
(or-ref ?g ?g1 - goal) (has-goal ?a - actor ?g - goal) (has-goal-cost ?a - actor
(precedes ?g ?g1 - goal) (has-priority ?g ?g1 - goal) ?g - goal)
(has-category ?g ?gc - gcat) (conflicts ?g ?g1 - goal) (total-cost)
(is-capable ?a - actor ?g - goal) (is-capable-cat ?a - actor ?g - goal)
(has-debtor ?c - comm ?a - actor) (has-creditor ?c - comm ?a - actor)
(has-ant ?c - comm ?g - goal) (has-cons ?c - comm ?g - goal)
(is-created ?c - comm) (is-discharged ?c - comm)
(is-detached ?c - comm)

description file, and the question marks mean that these objects are variables for that
predicate.

Refinement, conflicts, precedence, and has-priority are mapped through their relations
with the four classes mentioned above into PDDL, rather than introducing namesake ob-
ject types. We implement and-ref, or-ref, and conflicts to capture refined-to relation
(specifying the refinement type) and has-conflict relation, respectively. For the priority
class, we combine high- and low-priority relations into has-priority. Similarly, we define
the precedes predicate for the precedence classes. Other than these predicates, we define
auxiliary predicates to check the state of a goal or a commitment, such as is-satisfied
for a goal and is-created for a commitment. The full list of the predicates,together with
the object types and orders are given in the first two columns of Table 4.1.

In our implementation of the actions and the DEST language, in order to find an
optimal plan, we use cost as a metric. The individual efforts performed by each actor are
aggregated via in the actor-cost fluent. When an actor performs an action, the actor’s
cost increases by that action’s cost. The cost of satisfying a goal by a particular action
is kept in has-goal-cost. Finally, the overall cost of the plan is kept in total-cost.
Those values are initiated in the problem definition files before the planning starts. All the
fluents that we use are listed in the third column of Table 4.1. Various cost aggregation
functions or other metrics could be defined and implemented in the PDDL language and
we leave exploring the details of plan optimization as a future work. The implementation
of the priority relation is also part of the future work where the priority violence is possible
but not desired.

We define a PDDL action for each action in Section 4.2. Also, to determine the satis-
faction of a goal through AND/OR-refinement, we implement the corresponding actions
that satisfies the goals instead of relying on the PDDL’s derived axioms due to per-
formance issues. A PDDL action has three components: parameters, precondition, and
effect. Below we provide the PDDL code for the satisfy-goal action: both preconditions
(the actor has the goal, etc.) and effects (the goal becomes satisfied, etc.) correspond to
those described in Section 4.2. Finally, the costs are increased by

58

4.4. EVALUATION

• a variable cost for satisfying the goal g by the actor a, and

• a fixed cost for satisfying a goal.

;Actor satisfies a goal
(:action satisfy-goal
:parameters(?a - actor ?g - goal)
:precondition(and (has-goal ?a ?g)
(not (is-satisfied ?g))
(or (is-capable ?a ?g)
(exists(?cat - gcat)
(and (has-category ?g ?gcat)
(is-capable-cat ?a ?gcat))))

(not(exist(?cg - goal)
(and (or (conflicts?g ?cg)

(conflicts ?cg ?g))
(is-satisfied ?cg))))

(forall(?pc - goal)
(imply(precedes ?a ?pc ?g)
(is-satisfied ?pc))))

:effect (and (is-satisfied ?g)
(not (has-goal ?a ?g))
((total-cost) += (has-goal-cost ?a ?g) + <num>)
((actor-cost ?a) += (has-goal-cost ?a ?g) + <num>)))

Figure 4.4: PDDL action for an actor satisfying the goal of which it is capable

The second part of the implementation is the problem definition, where the instances
of the objects and relations are defined and the initial values of the fluents are assigned,
such as (:init (=(total-cost) 0)). Also, the goals that are adopted by the actors
are stated in the (:goal ...) part to tell the planner to satisfy these particular goals. In
this implementation we opt for a simple metric, the minimal total cost, which is encoded
as (:metric minimize (total-cost)).

In order to handle evolution, we implement remove-actions: for each action a imple-
mented, remove-action-a takes back the effects of the action a(except the cost). Moreover,
in the case of evolution, the initial state is a definition of the current configuration (as
opposed to the empty state for the initial design case).

4.4 Evaluation
Visual scalability. Figure 4.2 illustrates our running travel reimbursement sociotechni-
cal system example in DEST. We deliberately choose a syntax similar to that of i*/Tropos

59

CHAPTER 4. EXPLORING SOCIOTECHNICAL SYSTEM DESIGN SPACE

to foster adoption from experts in the area of goal-oriented requirements engineering. The
visual notation of DEST follows the design principles provided in [15], [16].

Semiotic clarity. There is a one-to-one correspondence between the symbols used
in the visual notation and their referent concepts: each symbol is only used to represent
a single concept from the language and each language concept is represent by only one
symbol.

Perceptual discriminability. Concepts, such as actor, goal, capability and commit-
ments are highly distinguishable as their respective symbols have clearly different shapes
from different shape families. Goals belong in the oval family, whereas actors are from
the circles. We introduced the new node shape for commitment, which is represented by
split rectangles so the shape does not only belong to a different shape family from other
symbols used in DEST visual syntax but it also distinctly different from the rectangle
node used in i* which represent resources since it is split in two. The other introduced
node is the cloud-shaped node that corresponds to ‘can-satisfy’ relation. By using shapes
from distinct shape families we ensure the visual distance between the node symbols are
at least one.

To further increase the visual distance, positional cues are used. Goal and capability
nodes are placed within the boundaries of an actor, actor name nodes are placed on
the actor boundary and the commitments are placed between the actors. Since the goal
and capability symbols are spatially close to each other, we use color as the secondary
dimension for the visual distance. As light green is traditionally used for the goal nodes,
we use white for the capability nodes. We depart from the i* syntax for the actor names
and color them in blush to increase the visual distance from goal nodes both of which are
light green in the i* syntax.

Complexity management. We omit representation of goal categories not to over-
load the visual syntax. Furthermore, in order to distinguish the goals that an actor is
capable of satisfying himself, we place small cloud shape nodes on them. So, with the
shape, size, color, horizontal and vertical positions being different, the nodes have a visual
distance of five from each other.

The visual distance of the edges used in the notation is also greater than one. Edges
to and from commitments are solid lines with an arrowhead filled with black. Since the
direction of the edges naturally conveys the meaning for the debtor and the creditor we
do not use textual labels on these edges to keep the notation light for the human eye. We
follow the traditional representation for the refinements, which is solid blue lines, and the
type label is positioned close to the parent node. Among the edges that represent the
precedes, has-priority and conflicts, the edge that represents conflicts relations differenti-
ates from the other since it is i bi-directional dashed ii has simple arrowhead, has-priority
edge has a dotted line whereas precedes edge has the dashed style. So at least a visual
distance of two is ensured among the edge types with the variables texture (line style),
shape (arrowhead), and color. Textual labels also ensure that the three edge types are
distinguishable from each other.

Overall, symbols used in the DEST visual notation have at least visual distance one
from the other symbols. In terms of shape, color, and position the notation stays well

60

4.5. CHAPTER SUMMARY

within the boundaries of the cognitive capacities, that is number of perceptible chunks
as there are 3 relative positions with respect to the actor boundaries (in, out, on) and 2
with respect to the refinements (label is closer to the parent and at the intersection of the
edges) so a total of 5 where the maximum value is ten to fifteen. Also there are 4 colors
used in the notation where the maximum capacity for the color variable is seven to ten.

Scalability with respect to the size of the problem. To test the scalability
of our approach with respect to the size of the problem, we manually create a DEST
model that consists of three actors, four commitments, two OR-refinements, five AND-
refinements, one precedence, one conflict and 20 goals. We then automatically generate 30
test models by replicating the original model. So the final model consists of 90 actors, 600
goals, 120 commitments, 60 OR-refinements, 150 AND-refinements, 30 precedence and 30
conflicts. We use sgplan version 5.221 as our choice of of-the-shelf planner and run our
test files together with our domain file which includes our domain declaration in PDDL.
The experiment is run on an Ubuntu 12.04 virtual machine with 2 GB memory hosted on
a Mac OSX with 4 GB memory and a 2.5 GHz Intel Core i5 processor. The results of the
experiments are summarized in Figure4.5 where y-axis shows the time in seconds to find a
solution (plan) and x-axis shows the number of replicas in the test model. The first phase
to find a solution is to read the domain description and problem files and to construct
the model. The time spent for the first phase is indicated as ‘parsing time’ and shown
by bright green line with cross in Figure4.5. Parsing time increases rapidly beyond 1000
model elements. The second phase is the planning phase in which the planner search for
solutions in the search space, that is, the constructed model in the first phase. Planning
time is shown by the blue line with squares in Figure4.5. The planning time constitutes
a less significant of the total time spent. Parsing time has a more rapid increase than
the planning time. The reported values highly depends on the performance of the chosen
planner.

The results are promising, for we have artificially synthesized extra-large models that
are way bigger than those that are typically created by modelers. However, more work
is required to test scalability when increasing other dimensions of the model, such as
complexity and connectivity.

4.5 Chapter Summary

We have presented a framework that supports exploring alternative plans for building and
evolving a sociotechnical system. Our framework is model-driven, and uses our proposed
DEST language for representing actor requirements in a sociotechnical system and the
space of alternative designs.

In addition to introducing DEST, we have proposed techniques for building a network
of interaction that fulfills participant requirements from scratch, and also to re-design such
a network in case of evolution. For implementation, we have encoded plan generation to
a problem a native language of an automated planner.

1http://wah.cse.cuhk.edu.hk/wah/programs/SGPlan/

61

CHAPTER 4. EXPLORING SOCIOTECHNICAL SYSTEM DESIGN SPACE

Figure 4.5: The results of the scalability experiments w.r.t model size

DEST visual notation has similar limitations in terms of readability as the other goal-
oriented approaches do. As the DEST models become bigger, it is hard for humans to
read the model as a whole. A dedicated editor with different types of views as in could
be a solution to this problem. Eliciting cost values for single actions is a challenge for
practical purposes, yet even more elaborate cost schemes, and the effect of actions on
other actions are other future challenges that are need to be addressed. Finally, to obtain
the quantitative effect of additions and removals during the evolution is another challenge
to overcome. Trying to satisfice the requirements as suggested in [35] may help decreasing
the complexity.

62

Chapter 5

The Next Release Problem

Evolution for software products is managed through releases. The next release for a given
product is determined by gathering candidate new requirements over a time period (say,
six months) and then selecting which of these are going to be implemented, taking into
account logical constraints (such as mutual exclusion and precedence), as well as quality
considerations such as minimize costs, maximize customer value, and the likes. Following
the literature [22], we refer to this as the next release problem (NRP) for a software
product.

The NRP has already been studied in the literature. In particular, [22] formalizes
the problem as a single-objective optimization problem that is shown to be NP-hard.
More recently, [23] formulates the problem as a multi-objective optimization problem,
and tackles it through a combination of genetic algorithms. However, in many situations
the qualities relative to which objective functions need to be defined are poorly understood
and therefore hard to quantify. Software cost, for example, is notoriously hard to estimate
even approximately. Customer satisfaction, as a competing quality, is even harder to boil
down to numerical scores. Modern software development methodologies, such as agile
methodologies often rely on relative rather than absolute estimations. Moreover, existing
approaches represent requirements as flat collections of functions that do not take into
account the hierarchical nature of requirements, therefore lose valuable information about
the relations between requirements, possible alternatives, and even the raison d’être of
some requirements.

We are interested in revisiting the NRP, framing it in terms of goal models where
requirements are hierarchically structured and inter-dependent (conflicting/synergistic).
The space of alternatives is then explored to discover pareto-optimal solutions by using
combined qualitative and quantitative reasoning techniques founded on automated reason-
ing technologies, notably Satisfiability and Optimization Modulo Theories (SMT/OMT).

The main contributions of this chapter are:

• A goal-oriented framework for reasoning with NRPs that supports both logical and
quantitative reasoning,

• An implemented tool that supports both modeling and reasoning with NPRs;

63

CHAPTER 5. THE NEXT RELEASE PROBLEM

• Experimental results that demonstrate that the proposed framework scales to realistic-
size problems.

5.1 Research Baseline

Goal Models. Goal models have been used to represent requirements for more than 20
years. Goals, softgoals, and tasks are the main concepts used in goal modeling frameworks
such as KAOS [40], NFR [33], /i/* [13], and Tropos [49]. Goals/softgoals can be refined
through AND/OR refinements into more concrete ones to render a hierarchical structure
to goal models. Goals/softgoals can also be inter-related through conflict/synergy links.

G1

G2 G3

G4 G5

G6

G7 G8

Figure 5.1: A simple goal model

Figure 5.1 presents a simple goal model. The black filled circle denotes the single
AND-refinement in this example. A solution to a goal model consists of a set of leaf nodes
which together satisfy all root goals and optimize an objective function. Traditionally,
the objective is to minimize the number of leaf goals in the solution [147]. There are four
solutions, including {G2, G4, G7}, {G2, G5, G7}, {G2, G4, G8}, {G2, G5, G8} in Figure
5.1 for this objective.

Satisfiability and Optimization Modulo Theories. Satisfiability Modulo Theo-
ries (SMT) is the problem of deciding the satisfiability of a quantifier-free first-order for-
mula with respect to some decidable theory T (e.g., linear arithmetic over the rationals,
LRA). An Optimization Modulo Theories over LRA problem is the problem of finding
solution(s) to an SMT(LRA) formula which optimize some rational-valued objective func-
tions, either singularly or lexicographically (with the objective functions prioritized). Very
efficient SMT(LRA) and OMT(LRA) solvers are available, which combine the power of
modern SAT solvers with dedicated linear-programming decision and minimization pro-
cedures. For instance, the solver OptiMathSAT [24] was able to handle problems with
thousands of Boolean/rational variables in less than 10 minutes each.

Nguyen et al. [64] introduce constrained goal models (CGMs), extending the notion of
goal models by assigning penalties or rewards to goals and their refinements and defining
constraints for possible solutions. The authors provide several reasoning techniques to find

64

5.2. THE NEXT RELEASE PROBLEM

solutions that respect the defined constraints and optimize the given penalty or reward
functions. A possible application is to assign cost for each goal node as a penalty and
reason on the goal model for finding a solution that respects all constraints and optimizes
given objective (penalty or reward) functions. The prototype tool developed in this work
uses the OptiMathSat [24] solver for reasoning and provides a graphical editor for goal
modeling.

Next Release Models. Bagnall et al. [22] model requirements as acyclic graphs
where nodes represent requirements and edges denote that the source requirement is a
prerequisite of the target one. Towards a more structured approach to modeling require-
ments for the next release problem, Carlshamre et al. [148] identify six inter-dependencies
for requirements considered for the next releases of a software product and represent these
as a matrix using spreadsheets as well as a graph where the nodes represent requirements
and labeled edges represent inter-dependencies. Table 5.1 lists these inter-dependencies.
Our proposal accommodates all six of these relations, though we don’t always use the
same name.

Table 5.1: Inter-Dependencies between requirements for the next release identified by
Carlshamre et al [148]

Inter-Dependency Meaning
REQUIRES R1 requires R2 to function
AND R1 requires R2 and vice versa
TEMPORAL R1 needs to be implemented before R2

CVALUE R1 positively or negatively contributes to the customer value of R2

ICOST R1 positively or negatively contributes the cost of R2

OR Only one of {R1, R2} has to be implemented

5.2 The Next Release Problem
The next release problem concerns finding the optimal set of requirements to be imple-
mented for the next release of a software product. There may be multiple criteria for
the optimal solution, such as cost and customer value. In a given problem, not only
the independent values assigned to requirements but also the inter-dependencies among
requirements impact the optimal solution. For example, a requirement may decrease the
cost of implementing of another requirement, or increase the customer value of yet another
requirement. In this light, release engineers should consider inter-dependencies among re-
quirements when calculating the optimal solutions. Our proposed framework includes the
following concepts and relations for modeling NRPs:

Goal: Requirements are represented by goals. A mandatory goal must be included in
the solution set of a goal model. Goals that are implemented in the previous releases are
marked as implemented. A goal is either satisfied (included in the next release) or denied
(not included). Top goals have associated rewards, leaf goals have costs and customer

65

CHAPTER 5. THE NEXT RELEASE PROBLEM

Goal

Refinement

Inter-dependency

Undirected
Inter-dependency

Directed Inter-
dependency

Exclusion

Precedence

Cost Contribution

Customer Value
Contribution

refinedBy aggregates

hasSource

hasTarget

links

isA

isA

isA

Figure 5.2: Metamodel for the NRP

values. Reward, cost, and customer value assignments are optional but it should be
consistent (all relative or absolute) for all goals to obtain accurate results for the analysis.

Refinement: A refinement relates a set of child goals to a parent goal. A parent goal
may have multiple refinements, each of which is an alternative way of achieving that goal.

Figure 5.3 shows a fragment of the goal model derived from interviews with a developer
implementing a research tool. Goal nodes are represented as oval nodes. Refinement
nodes that link multiple child nodes to a parent node are shown as black-filled circles.
Refinement nodes that link one child node to a parent goal are omitted for visual simplicity.
For example, the goal ‘/Analysis results are shown/’ is refined into ‘/Graphical model
highlighted/’, ‘/Textual report shown/’.

Cost contribution: A cost contribution inter-dependency exists between two goals when
the implementation of a goal has an effect on the cost of implementation of another goal as
stated in [148]. The effect could be positive when the implementation of one goal increases
the cost of the other, or it could be negative when it decreases the implementation cost
of the other goal. Cost contributions can be cyclic, and they do not effect the well-
formedness of a goal model. If both the target and the source goals are included in a
solution, that is, both of them are satisfied, the link contributes to an objective defined
for the solution. Each positive cost contribution means that the implementation of two
goals together brings additional cost for the solution. On the other hand, each negative
cost contribution indicates a reduction in the cost. The release engineer may opt for
a qualitative analysis by not assigning any quantitative measure (weight) to this inter-
dependency, or she can fine tune the model with such measures to capture the intensity
of each inter-dependency.

In our graphical modeling language, instead of using a dedicated node and two edges
(one incoming edge from the source and one outgoing edge to the target goal), we use

66

5.2. THE NEXT RELEASE PROBLEM

Analysis
results are

shown

Graphical
model

highlighted
Textual
report
shown

Report
shown in app

report
file

exported

file
generated

content
formatted

content
generated

PDF
exported

text file
exported

PDF files
viewed

external
viewer
used

files
viewed
in app

CV ++

table
displayed

table
content

formatted

table
content

generated

table is
sortable

table is
unsortable

Add save
as as a
feature

Non-Ascii
characters

are
supported

Renaming
files is

enabled
File content
is preserved

when
renamed

E

File names
can be
changed

CV ++

CC--

CC++

CV ++

Enable
easy

navigation

Add auto
scroll to
canvas

precedes

modular
view

enabled

goal

CV ++ Postive customer
value contribution
Negative customer
value contribution

CV --

CC++ Positive cost
contribution

CC-- Negative cost
contribution

precedes Precedence

E Exclusion

Refinement

Figure 5.3: An example model

67

CHAPTER 5. THE NEXT RELEASE PROBLEM

dotted line edges from source to target goals labeled as CC++ for the positive cost
contribution and CC– for the negative cost contribution to decrease the visual clutter. In
the model presented in Figure 5.3, the support for ASCII characters has a positive cost
contribution on the formatting of the table content and preserving the goal ‘/file content
is preserved when renaming the file/’ has a negative cost contribution on ‘/adding “save
as” as a feature/’.

Customer value contribution: Implementation of a goal may increase or decrease the
customer value of another goal, and such inter-dependencies between two goals is cap-
tured by a customer value contribution. Similar to cost contribution, customer value
contributions could be cyclic. A positive customer value contribution indicates that the
implementation of these two goals results in an increase in the customer value. However,
a negative customer value contribution indicates that the implementation of the source
goal decreases the customer value of the target goal. Similar to cost contribution, it is
optional to assign any quantitative values to this inter-dependency. The release engineer
may reflect the differences in severity of each inter-dependency by assigning absolute or
relative values, or treat them the same by not assigning any value.

In Figure 5.3 customer value contribution inter-dependencies are shown via dashed
line edges and labeled as CV++ for the positive customer value contribution and CV–
for the negative customer value contribution. For example, having an integrated PDF
viewer in the application, which is denoted by ‘/files viewed in app/’ goal, has a positive
customer value contribution to the exporting reports in PDF format, which is represented
as ‘/PDF exported/’ goal node.

Exclusion: The release engineer may decide not to include certain goals together in
the same release for various reasons, such as the limited developer-hours or the marketing
strategy of the company. Such goals are related to each other with an n-ary exclusion
inter-dependency and which states that those goals cannot be included in the same release
together. By default, the exclusion inter-dependency states that at least one of the goals
should be omitted from the release. The release engineer may also state that m out of n
goals could be included in the release. Unlike cost or customer value contribution inter-
dependencies, exclusion does not introduce any reward or penalty to the solution, rather
it creates a constraint for valid solutions. Any selection of goals that does not respect the
exclusion is not considered as a valid solution for the next release.

Exclusion inter-dependencies are shown with squares with the capital letter E in our
graphical notation. In Figure 5.3 there is one exclusion that relates three goals together.
According to the model, ‘/Non-Ascii characters are supported/’, ‘/Renaming files is en-
abled/’, and ‘/Add save as as a feature/’ cannot be included in the same solution.

Precedence: When there is a temporal order for the implementation of two goals, a
precedence inter-dependency exists between the two and denotes that the implementation
of the source goal should precede the implementation of the target goal. Similar to
exclusion, precedence inter-dependency imposes a constraint on valid solutions, the target
goal (the goal that should be implemented later) cannot be included in the solution
without the source goal (the goal that should be implemented before). A valid solution
should respect the constraints introduced by the precedence and exclusion relations.

68

5.2. THE NEXT RELEASE PROBLEM

Precedence inter-dependencies are represented by dashed double-line edges and labeled
as ‘precedes’ in Figure 5.3. In our sample model, it is stated that adding auto-scroll feature
to the canvas should precede the implementation of the integrated PDF viewer.

Objective Function. The release engineer sets objectives to determine the optimal
solution for the next release. The objective could be a single objective such as minimizing
cost, or maximizing the top goal rewards, or maximizing positive customer value inter-
dependency. Multiple objectives can be set by using a lexicographic ordering, where the
solution is first optimized with respect to the first objective, and if there are multiple
solutions with the optimal value, the solution with the optimal value for the second
objective is selected, and so on. The release engineer can also combine multiple objectives
by assigning weight to each of them in a linear multi-objective function, in this case
differences in the scale of magnitude for the objectives should be considered.

The next release problem. Given a model whose elements are described above, the next
release problem concerns finding a set of leaf goals that respects the constraints imposed
by the model elements and optimizes the objective functions stated for the model while
satisfying all mandatory requirements.

Start with exist-
ing release model

Integrate existing
and new elements

Set manda-
tory goals

Modify the model

Adjust quanti-
tative measures

Encode the
model into

OMT formulas

OMT reasoning

Visualize resultsEnd

reject

accept

Figure 5.4: Process diagram for solving the NRP

Methodology. Figure 5.4 presents the process for solving the next release problem.
The input is a requirements model that includes all implemented and candidate require-
ments. It is the decision of the release engineer to mark the implemented requirements
as mandatory for dropping or changing them may introduce a high cost. On the other
hand, it might be beneficial to re-evaluate some of the implemented requirements to ex-
plore alternative solutions. A proposed next release model is a model that represents the
new requirements, refinements, and inter-dependencies proposed for the next release as
well as the previous ones. The release engineer links previous and new model elements

69

CHAPTER 5. THE NEXT RELEASE PROBLEM

via inter-dependencies and refinements as she sees fit. The merged model constitutes the
search space for solutions that satisfy all mandatory requirements, however, there may be
multiple solutions for a given goal model. At this stage, the release engineer may adjust
quantitative measures or prefer a qualitative analysis in order to differentiate the optimal
solution(s) from the rest. Due to its computational power and optimization capabilities,
we rely on OMT reasoning techniques to find a solution. In order to use an OMT solver,
the goal model should be encode (i.) encoded as OMT formulas and the optimization
scheme should be set, (ii.) OMT reasoning should be applied to the formulas. Once the
solutions are returned by the solver, they should be visualized on the graphical model so
that the release engineer can interpret the results. If the engineer accepts the presented
optimal release candidate as a solution the process ends. If the model is not satisfiable,
that is, there is no solution satisfying the constraints and refinements, or the engineer does
not find the presented release candidate(s) adequate, she modifies the model by adding
or dropping requirements, changing the mandatory and optional goals, and adjusting the
weights and re-run the automated processes to discover new release candidates. Our
prototype fully automatizes encoding, reasoning, and visualization of the solutions (gray-
filled nodes) in the process presented in Figure 5.4, and supports release engineers during
modeling.

5.3 Encoding NRP to SMT

Our conceptual framework suplaments the constrained goal models presented in [64]. We
adopt their syntax and semantics for goals and refinements, but enrich their conceptual
model with inter-dependencies that better describe NRPs.

Definition 5.1 (Next Release Model) A Next Release Model (NRM) is a tuple M def
=

〈B,N,D,Ψ,W 〉, such that,

• B
def
= G ∪ R is a set of atomic propositions where G

def
= {G1, . . . , Gn}, R

def
=

{R1, . . . , Rk} are respectively a set of goal labels and refinement labels.

• N is a set of numerical variables in the rationals;

• D is a goal graph, such that, all its goal nodes are labeled by a goal label in G, all
its refinements are labelled by a refinement label in R;

• Ψ is an SMT(LRA) formula on B and N ;

• W : G 7→ Q is a function assigns a rational number to each goal.

An NRM is a directed acyclic goal graph with goals as elements and refinements as
grouped edges, weights assigned to goals, and constraints introduced in form of SMT (LRA)
(satisfiability modulo theories with linear arithmetic over rationals) formulas.

70

5.3. ENCODING NRP TO SMT

Goals and refinements. G,Gi represent goals and R,Rj represent refinement label as
in {‘Graphical model highlighted ’, ‘Textual report shown’ } R5→ ‘Analysis results are shown’
. In Figure 5.3 labels are not shown for visual simplicity. As defined above goals and
refinements are atomic propositions. A mandatory goal Gi is set to be satisfied by the
release engineer so the encoding is (Gi := >). Each refinement R in an NRM where
{G1, . . . , Gn}

R→ Gp introduces the following formula, (
∧n

i=1Gi ↔ R)∧ (R→ Gp). For all
refinements {R1, . . . , Rn} of a goal Gp, Gp →

∨n
i=1Ri is inserted.

Exclusion. Exclusion introduces a constraint that G1, . . . , Gn cannot be satisfied all
together, so it is encoded as ¬(

∧n
i=1Gi).

Precedence. Precedence relation denotes that the implementation of the source pre-
cedes the implementation of the target node. The valid cases are that i. both are included
in the solution, ii. both are excluded from the solution, and iii. the source is included but
the target is excluded from the solution. Given G1 precedes G2, the encoding captures
this relation is (G2 → G1).

Example. Figure 5.5a presents a simple model containing a precedence relation be-
tween G4 and G5 so the truth assignments that violate the encoding are the ones that
include G4 but not G5. In Figure 5.5b, assuming that G1 is mandatory, two solutions
are {G3, G4, G1, G5, G2}, {G3, G4, G1, G5, G6, G2}. Assuming the objective is to
minimize cost and each leaf goal has equal costs, the first solution is returned by the
solver. The release engineer may favor by assigning a negative cost. Then the second
solution is returned by the solver. On the other hand, the only solution in Figure 5.5b is
{G3, G4, G1, G5, G2} for G6 cannot be in the same solution as G4, and G4 is required
to satisfy G1, which is mandatory.

G1 G2

G3
G4

G5

G6

precedes

(a)

G1 G2

G3

G4

G5

G6
precedes

E

(b)

Figure 5.5: Sample models demonstrating precedence relation

Cost contribution. The encoding of the positive or negative cost contribution has two
steps. Given that G1 contributes to the cost of G2,

1. a new atomic proposition G1,2 is created, and a new constraint is encoded as (G1,2 ↔
(G1 ∧G2)),

2. it’s weight is set as W (G12) = Q where Q ∈ Q. If the release engineer does not
specify the intensity for the inter-dependency the weight is set to zero. We keep the

71

CHAPTER 5. THE NEXT RELEASE PROBLEM

number of positive and negative cost contibution inter-dependencies included in the
solution and use this value if the release engineer opts for qualitative analysis by
not stating weights for this inter-dependency.

Customer value contribution Similar to the cost contribution, the encoding of the
customer value contribution has two steps. Given that G1 contributes to the customer
value of G2,

1. a new boolean G1,2 is created, and its truth value is encoded as (G1,2 ↔ (G1∧G2)),

2. it’s weight is set as W (G12) = Q where Q ∈ Q. If the release engineer does not
specify the intensity for the inter-dependency the weight is set to zero. We keep
the number of positive and negative customer value contribution inter-dependencies
included in the solution and use this value if the release engineer opts for qualitative
analysis by not stating weights for this inter-dependency.

Definition 5.2 (Release candidate) LetM def
= 〈B,N, D,Ψ,W 〉 be a next release model.

A release candidate of M is an LRA-interpretation µ over B ∪N such that µ � Ψ.

Proposition 1 Let M def
= 〈B,N,D,Ψ,W 〉 be a next release model, µ a release candidate

of M , and {obj1, . . . , objk} LRA–terms occuring in Ψ. Then we have that:

1. for every objii in {obj1, . . . , objk}, µ minimizes [resp. maximizes] obji if and only
if µ is a solution of the OMT(LRA) minimization [resp. maximization] problem
< Ψ, < obji >>;

2. µ lexicographically minimizes [resp. maximizes] < obj1, . . . , objk > if and only if
µ is a solution of the OMT(LRA) lexicographic minimization [resp. maximization]
problem < Ψ, < obji, . . . , objk >>.

An optimal release candidate is a release candidate that lexicographically minimizes (resp.
maximizes) the objectives of a given next release model.

5.4 Reasoning
The encoding of the goal model to SMT/OMT ensures that the reasoner returns the
global optimal solution for the next release problem. In this section we provide examples
to better explain the reasoning process.

Mandatory goals. If there is no mandatory goal in the model, no rewards specified
for the top goals, the optimal solution is the empty set. The release engineer ensures the
inclusion of the intended goals to the solution set by setting them mandatory. Considering
only the ‘/PDF files viewed/’ goal and its refinements located in the lower left part of
the model presented in Figure 5.3, and assuming that the top goals is mandatory, there
are three possible solutions in the model. Either one of the two goals are satisfied, or

72

5.4. REASONING

both of them satisfied so that their parent goal is satisfied as well, therefore included in
the solution. Other objectives and quantitative values of the goals determine the optimal
solutions.

Cost. In order to differentiate among these three solutions, cost assignment can be
used. Assuming that the minimizing the cost is the objective, if both goals have a negative
cost, that is, the inclusion of each goal further reduces the cost calculated by the reasoner,
they are both included. A more realistic assignment is to assign positive costs to the leaf
goals. In this case the reasoner returns the solution with the minimum cost. If the costs of
the two are equal, the reasoner lists two separate solutions as they are both optimal. Cost
assignment can be relative or optimal. If implementing the external viewer costs $5000
and has a cost assignment of 5000, and the in application viewing costs $500 and has a
cost assignment of 500, the reasoner returns the cheaper option. However, the same result
is obtained by simply assigning the relative costs, for example, 10 and 1, respectively. The
reasoning for the customer value follows the same principles as those for cost.

Exclusion. There is an exclusion inter-dependency on the upper right side of Figure
5.3. Given that ‘/File renaming enabled/’ goal is mandatory, it is certain that its two child
goals must be included in the solution. So either one or both of ‘/Non-ASCII characters
are supported/’ ‘/Add save as a feature/’ are omitted from the solution.

Cost and customer value contribution inter-dependencies. Positive and negative syn-
ergistic relations among requirements in terms of cost and customer value are captured by
corresponding inter-dependencies in next release models. For example, implementing a
graphical user interface for a function increases the customer value of the function, and the
positive customer value inter-dependency from the goal of implementing the graphical user
interface to the goal of implementing the function represents this case. It is possible to use
these inter-dependencies in multiple ways in our approach. We acknowledge the fact that it
is difficult to estimate the values of these inter-dependencies, so it is possible not to assign
the severity of the inter-dependency. We keep the number of inter-dependencies included
in the solution for each of the four kind and use these values for optimization if there is an
objective of minimizing (resp. maximizing) any one of them. Similar to cost and customer
value assignment, a relative assignment scheme is possible to differentiate the intensity of
different contributions. Finally, it is possible to use the absolute values if the data is avail-
able. The release engineer can define objectives related to these contributions. An example
is to minimize positive cost contributions where the reasoner returns solutions with mini-
mal cost contribution, either in terms of number of negative cost contributions included in
the solution or the sum of intensities of negative cost contributions. A more complex ob-
jective is to combine positive and negative cost contributions in a single objective function,
minimizing NumberOf(CC++)−NumberOf(CC--), for example. Finally, the intensity of
these contribution can be combined with the values assigned to goals, calculating a total
cost where TotalCost = Sum(GoalCost) + Intensity(CC--)− IntensityCC(++).

Precedence. The precedence inter-dependency denotes a temporal order for the im-
plementation of given goals. In the example model it is stated that ‘/Add auto scroll to
canvas/’ precedes ‘/files viewed in app/’ on the bottom right part of the model. According
to this inter-dependency, the solutions that include ‘/files viewed in app/’ but not ‘/Add

73

CHAPTER 5. THE NEXT RELEASE PROBLEM

auto scroll to canvas/’ are not valid since the preceding goal is left out even the goal that
is supposed to be implemented later is included in the solution.

Optimization. Above examples are individual cases where the optimal solution is based
on a few values. However, in a model those values how to be aggregated in a way that
represents the intention of the release engineer.

• Lexicographic optimization: A finite number of objective functions are optimized
in lexicographic order. An example of a lexicographic order of objective functions
is this: (i.) minimize goal cost, (ii.) maximize goal rewards, (iii.) maximize
negative cost contributions, (iv.) maximize positive customer value contribution,
(v.) minimize negative customer value contribution. According to this setting, the
reasoner returns the solution that has the minimum goal cost where goal cost is the
sum of costs of goals that are included in the solution. If there are several solutions
with the same goal cost, the reasoner orders them by their goal rewards and returns
the solution with maximal rewards. The process continues until the reasoner returns
the single optimal solution, or all the solutions that are equally optimal.

• Linear objective function: Another option is to have a linear objective function that
combines the relevant values in a way specified by the engineer.

• Combination of the two: Two approaches described above can be combined for
more complex solutions. The release engineer may specify multiple linear objec-
tive functions and specify a lexicographic order among them combined with single
objectives.

5.5 Evaluation

5.5.1 Next Release Tool

A prototype tool is implemented to support modeling and reasoning. Next Release Tool
(NRT) is a standalone application that is available for Windows, MAC OS, and Linux
operating systems. The component diagram of the tool is presented in Figure 5.7. Figure
5.6 includes a screenshot of the tool where the project manager is shown on the left side
and the palette is located on the right side. The center of the tool is dedicated to graphical
modeling and the bottom part is used to set the properties of the model, and displaying
the results from the OMT solver.

Graphical Modeling. NRT provides a graphical editor based on Eclipse Modeling
Framework (EMF) 1 and Graphical Editing Framework (GEF) 2. Certain rules are set to
prevent user mistakes when modeling, for example, a goal cannot be refined into itself so
it is not possible to create both incoming and outgoing edges from a goal to a refinement
node.

1http://www.eclipse.org/modeling/emf/
2http://www.eclipse.org/gef/

74

5.5. EVALUATION

Figure 5.6: A screenshot from Next Release Tool

Well-formedness check. The tool automatically check the consistency of the drawn
model with the semantics of the next release conceptual framework.

SMT/OMT Formula Transformations. The model elements and the optimization
scheme stated by the user are automatically encoded as SMT/OMT formulas by the
tool.

Automated Reasoning. The tool feeds OptiMathSolver with the encoding of the model
and proper commands for the solver based on the and retrieves the results. The reasoning
is done by OptiMathSolver.

Visualizing the results. The results retrieved by the solver are presented in two different
ways. First, the results are reported in a written report. Second, the optimum release
candidate is highlighted in the graphical model if it is found. Otherwise, the user is
informed that no solution is found. In case of multiple optimal release candidates (pareto-
optimal release candidates that has the same weight, which is the minimum among all
release candidates) the user is presented with the first release candidate returned by
OptiMathSolver, the implementation of presenting multiple solutions is an ongoing work.

5.5.2 Scalability Experiments

We set up three experiments to investigate the scalability of the Next Release Tool. All
experiments are run on a Windows 64 bit machine with Intel(R) Core(TM) i7-3770 CPU
3.40Ghz and 8GB of RAM, and collected the reasoning time reported by OptiMathSAT
to find the solution. For the experiments, we use OptiMathSAT version 3.5, which is the
latest version available to public. The Next Release Tool, models used for the experiments,
their corresponding encodings in the SMT-LIB v2 Language [149], and the results are
available at https://www.nextrelease.eu.

Scalability with respect to problem size. We define the size of the problem

75

CHAPTER 5. THE NEXT RELEASE PROBLEM

Figure 5.7: Component Diagram of Next Release Tool

as the number of model elements, that is total number of goals, refinements, and inter-
dependencies. In order to figure out how our tool scales with respect to the size of the
problem, we have created an input model which includes 13 goal nodes, nine refinements,
and four inter-dependencies. Lexicographic optimization scheme is selected for the opti-
mization. We have generated 75 cases by replicating the input model 10 to 750 times and
connecting the replicas to a root goal via the same refinement element. As a result, we
have generated test models of size from 255 to 17275 model elements. We have run the
experiment five times. Creating goal models for representing and analyzing requirements
is a human-centric activity for it involves understanding and capturing. Applying patterns
or following catalogers may ease the process, but it cannot be fully automized. Manual
creation of goal models limits their size and complexity. Furthermore, comprehending and
modifying goal models become too difficult beyond a certain level. One of the most in-
tensive i* models created for a real-life application includes approximately 525 links and
350 elements [150]. Given this information, our artificially generated experiment cases
have sufficiently enough number of model elements. Figure 5.8 reports a linear trend for
the result of this experiment. The size of the models are shown on the x-axis whereas the
y-axis reports the reasoning time in milliseconds.

Scalability with respect to problem complexity. In order to understand how
the tool behaves as the number of inter-dependencies increase, we generated 400 test

76

5.5. EVALUATION

0

50

100

150

200

250

300

350

400

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e
(m

s)

Number of Model Elements

First Run

×××
××××××
×××××
×××××××××

××××
×××××
×××××××

×××
×
××××
××××
×××××××××

××××
×
×
××××
×××××

×
Second Run

���
�
�
����
��������

�
�
����
�
�
�
�
�
�
�
��
�
�
�
�
��
��
�
��
�
��
����
���
�������

��
��
���
��
��
�
����

Third Run

◦◦◦
◦◦◦◦◦◦◦◦

◦◦◦◦◦
◦◦◦◦◦
◦◦◦◦
◦
◦◦◦
◦◦◦◦
◦◦◦◦
◦
◦
◦◦◦◦
◦◦◦◦◦◦◦

◦◦◦◦
◦◦◦◦
◦◦◦◦◦
◦◦◦◦
◦
◦◦◦◦◦◦
◦

◦
Fourth Run

44444
4
4
44444
4444444

44444
4
44
444444
44444
4444
44444444

4
44
444444
4444
44444444

44444
Fifth Run

♦
♦
♦
♦
♦
♦♦♦♦
♦
♦
♦♦♦
♦♦
♦
♦♦
♦♦♦♦♦♦
♦♦♦♦♦
♦♦♦

♦
♦♦
♦♦
♦
♦
♦♦♦♦♦♦
♦
♦
♦♦
♦
♦
♦
♦♦
♦
♦
♦
♦
♦♦
♦♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

♦
♦♦

♦

Figure 5.8: Scalability wrt problem size

cases by increasing the number of directed inter-dependencies in a fixed size model. Our
initial model had 250 goal nodes, 118 refinement nodes, 16 precedence, and 16 exclusions.
For each run, an increasing number of random directed inter-dependencies are placed
between randomly selected goal nodes from the original model. Figure 5.8 presents the
result of this experiment. The number of added inter-dependencies are shown on the x-axis
whereas the y-axis reports the reasoning time in milliseconds. There is a smooth increase
in reasoning time until approximately 150 added inter-dependencies, the reasoning time
increases rapidly after this threshold.

Scalability with respect to alternatives. Multiple refinements of a goal introduce
alternative solutions for satisfying that goal (/i/* and Tropos use the term OR decom-
position.). In order to test the scalability of the tool against the number of alternative
solutions in a model, we created five model variations with fixed number of goals and
inter-dependencies, 11918 and 1402, respectively. In the first model, all 5609 refinement
elements had two incoming edges, and a parent goal had only one incoming refinement
edge. This setup corresponds to having all AND decompositions in an i or Tropos model.
For the second variation, we have started with the first model, but for the 25% refinement
elements, we have created another refinement element pointing to the same parent goal,
and directed one of the two incoming edges of the original refinement element to the newly
created one, in other words, we have converted 25% of the AND decompositions to OR
decompositions. For the rest of the variations, we have increased the conversion rate to
50%, 75%, and finally 100% and run the reasoner releases times for each model. Figure
5.10 presents the results of this experiment. The reasoner finds a solution for the first two
models run under a second, for the second two models around three seconds and for the
fifth model around five seconds. These results confirm that as the number of alternative
solutions increases in a problem, so does the reasoning time. Figure 5.11 presents the

77

CHAPTER 5. THE NEXT RELEASE PROBLEM

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450

T
im

e
(s
)

Number of Added Inter-dependencies

++
+++++++++++++

++++
++++

+
++++++
+++++

+

+
+
+
+
++
+++++
+++
++++
+
+++
+
++
++
+

++
+
+
+++
+++
+
+
+
+
+
+

+

+
++
+
+
+

+

++
+

+

+

+

+++

+
+

++
+++
+

+
++
+
++

+

+

+

+

+

+

++
+

+

+

+
+

+

+

+

+

+
+

+

+

++
++

+

+

+

+

++

+

+

+

+

+

+

+

+

+
+
+

+

+

++

+

+
++

+
+

+++

+

+
+

+

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+

+
+

+

+

+

+
+

++

+
+

+

+
+

++
++ +

Figure 5.9: Scalability wrt problem size

results for the same experiment, where y axis is the average time passed to find a solution
and x axis indicates the percentage of OR refinements in the model.

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

T
im

e
(s
)

Runs

Model 1
× × × × × × × × × ×

×
Model 2

� � � � � � � � � �

�
Model 3

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
Model 4

4 4 4 4 4 4 4 4 4 4

4
Model 5

� � � � � � � � � �

�

Figure 5.10: Scalability wrt problem size

Discussion. We focus on evaluating the scalability of our proposed approach with
respect to the size of the model, complexity of the model in terms of inter-dependencies
that affect the selection of the optimal solution, and the number of alternative solutions.
We use artificially created models for our experiments that have higher size and complexity
than reported real-life examples. The results confirm that our tool is scalable for all three

78

5.6. CHAPTER SUMMARY

0

1

2

3

4

5

0 25 50 75 100

T
im

e
(s
)

Percentage of ORs”

• •

• •

•

Figure 5.11: Scalability wrt alternatives

cases even for artificially generated big models. However, as the connectivity within
a model via directed inter-dependencies increases, the scalability of the tool decreases.
Even in this case, the tool returns the optimal solution for a model of 250 goals and 200
inter-dependencies. The inter-dependency to goal ratio is much higher than the real-life
cases reported by [148], which is around 20%.

5.6 Chapter Summary

Our contribution is three-fold in this paper. First, we propose an expressive goal-oriented
framework to represent the next release problems. Second, we formalize frameworks by
mapping NRP into SMT/OMT formulas. Third, we have implemented a prototype tool
that supports the modeling process, automatically maps NRP models into SMT/OMT
formulas, apply SMT/OMT reasoning utilizing a back-end solver, and visualize the results
in two different ways. Our modeling framework is more expressive than the existing ap-
proaches to the NRP, supporting NRP relations and preferences. Moreover, the scalability
of our tool has been established experimentally.

Our visual notation suffers from a common problem of visualizing goal models. Goal
models are intended to be created and read by humans, however, they become unwieldy
to understand as they grow. Limited screen space prevents users to visualize the whole
model at once, as the nodes and labels shrink when the user zooms out. One solution
proposed to overcome this problem is to visualize the model in a more modular fashion,
either using layers assigned for different model elements or expanding and collapsing parts
of the models. We leave this feature of the tool as future work. Another limitation of our
approach is that goal modeling is a human-centric activity. It is laborious to build goal

79

CHAPTER 5. THE NEXT RELEASE PROBLEM

models and identify inter-dependencies among goals.

80

Chapter 6

Risk Analysis in Sociotechnical Systems

Risk analysis should be an integral part of any development project for complex socio-
technical systems intended to operate within an uncertain environment. Yet studies show
that risks are highly underestimated in IT projects leading repeatedly to disastrous finan-
cial losses, delays, or total failures [14]. Risk analysis involves risk assessment and man-
agement, the activities for the first comprise risk identification and evaluation whereas
the latter requires the selection of treatments to prevent or at least ameliorate to the
implications of risks [151].

Existing approaches to risks identify situations that may lead to risks, assess the impact
of risks on the system, and introduce treatments to mitigate the impact. The treatments
may refine existing design, or even change the initial requirements [152]. However chang-
ing the requirements in later stages of software development adds additional cost, thus
integrating risk analysis with requirements analysis has financial benefits in addition to
leading to more robust designs [153].

Goal models have been used to capture and hierarchically structure requirements for
sociotechnical systems. Higher level goals capture stakeholder needs whereas lower level
goals capture strategies for fulfilling higher-level ones. The structure of goal models
supports systematic analysis techniques to determine solutions to root-level goals [147].
Goal models can also be used to reason about security and trust for a system-to-be [154]–
[156].

Considering the advantages of goal-oriented requirements engineering and integrating
risk analysis with requirements analysis, Asnar et al. [25] proposes a goal-risk analysis
framework. Goal-risk models capture stakeholder requirements, risks, and treatments, and
support their analysis to find the optimal solutions with respect to cost. This approach
focuses on avoiding risk while minimizing cost.

Alternative ways of managing risk include taking risks in exchange of possible greater
benefits, accepting risk, and preparing a contingency plan. For the former, the solutions
are optimized with respect to a utility function of stakeholder goals, for the latter, treat-
ments to impact of risks should be modeled and analyzed. Cost is a factor that cannot be
ignored for both cases. So a thorough risk analysis requires multi-objective optimization
and various types of analysis to identify alternative solutions. In many cases, the analysts

81

CHAPTER 6. RISK ANALYSIS IN SOCIOTECHNICAL SYSTEMS

consider trade–offs between cost, risk aversion, utilities, and so on.
We adopt Asnar’s framework, and extend it with constrained goal model [64] in

order to support multiple types of risks analyses for different risk management strate-
gies. Our extension exploits Satisfiability Modulo Theories/Optimization Modulo Theo-
ries (SMT/OMT) solvers to support efficient reasoning and discovery of solutions for risk
analysis problems. We define multiple objective functions such as maximum goal reward,
minimum risk factor, maximum risk prevention, minimum cost, and minimum damage on
risk models and discover globally optimal solutions with respect to multiple objectives.

6.1 Risk Modeling

We follow the three layered approach of Asnar et al. [25] for modeling risk in goal models,
and we keep the names for the sake of convention: asset layer, event layer, and treatment
layer. These layers are shown in green, red, and blue, respectively, in our meta-mode
presented in Figure 6.1. Details of the meta-model are explained below.

Situation
Goal

Is-
mandatory

Mid-Goal
Business
Objective

Reward

Task

Cost

TreatmentMid-T.

T. Ob-
jective

T. Task

Cost

Anti-goal Mid-AG.

AG. Task

AG.
Objective

Risk

Likelihood

Impact

Severity

Goal Re-
finement

T. Ref. AG. Ref

Incidental
Risk

Intentional
Risk

hasImpact

aggregates

aggregatesrefinedBy

refinedBy

refinedBy

aggregates

aggregates

refinedBy

refinedBy

aggregates

refinedBy

aggregates

decrease severity

decrease likelihood

increase
likelihood

increase
severity

Figure 6.1: Meta–model for risk modeling in goal models

A situation represents a partial state of the world [157]. In our goal modeling frame-
work, situations are used as binary propositions that either hold true or false. Goals are
desired situations. Stakeholder goals are represented in the asset layer. Goals without any
parents (top goals) are business objectives that have associated rewards with them. The
reward of a business objective is the utility gained from the achievement of the objective.
Once the business objectives are identified, they are refined into more concrete child goals.
Refinement nodes aggregate child goals and connect them with a parent goal. A parent
goal may have multiple refinements, and it is satisfied when at least one of its refinement
nodes is satisfied. A refinement node is satisfied when all child goals associated with the
refinement goals are satisfied. Finally, the leaf goals with no incoming edges from refine-

82

6.1. RISK MODELING

ment nodes are tasks that have associated costs. If a goal is labelled mandatory, it must
be satisfied by any proposed solution. Otherwise, a goal is preferred and is to be satisfied
by a solution if it is not in conflict with any elements of that solution.

G1: Earn
more income

G2: Earn loan
interest

G3: Earn
more income

G4: Receive
loan

application

G5: Receive
hard copy
application

G6: Receive
electronic
application

G7: Ensure
loan

repayment

G8: Ask
morgage

G9: Monitor
the usage
of loan

G10: Handle
loan

applications

G11: Verify
loan

applications

G12: Asses
Application

G13: Asses
by Credit
bureau

G14:
Assessed by
in house

G15: Define
Loan Schema

G16:
Proposed by
customer

G17: Defined
by bank

G18: Approve
loan

application

G18:
Approved by

clerk

G18:
Approved by
Manager

S1: Increase
Interest rate

of loan
S5: Debtor
defaults

S11: Customer
becomes

unemployed

S6: Fake
id

S7: Fake
identity
document

S8: Inaccurate
credit rating

by CB

S9: Mispredict
monetary
condition

S10: Collusion
between

customer and
clerk

T1: Use
digital

signature

T2: Have
digital

signature
info.

T3: Install
public key

info.

T4: put
personal
images

T5:Employ
Strict Access

control

T6: Hire
underwiter

T7: Verify ID
doc with Gov.

DB

T8: Assign
Liaison Officer

for Credit
Bureau

T8: Assess
Application
Anonymously

S12:
Electronic

applicstion is
forged.

S13: Economic
resession.

S2: Forgery
from external

attack

S4:
Credentials
are obtained

S3: Information
system is
phished S13: ID

Document
faked

Figure 6.2: Illustrative example: Loan Origination Process (LOP)

To illustrate our modeling framework, we model the Loan Origination Process (LOP)
[25] in Figure 6.2. The process is initiated by a loan application and ends with a decision.
The bank’s ultimate motive is, of course, to earn income, and this is to be achieved by
handling loan applications, and ensuring loan repayment. The topmost layer is the asset
layer, goals are depicted as oval nodes, while refinement nodes are shown as black-filled
circles. Child nodes are connected to refinement nodes, which then relate them to parent
nodes. One example is G7: Ensure loan repayment, which is refined in to G8: Ask mortgage
and G9:Monitor usage of loan. We omit numerical values from the model presented for
visual simplicity. If the reward of all top goals are the same, the attribute values can be
omitted. Similarly, all leaf goals (tasks) have a cost, which can be filled with relative (for
example, within a scale of 1–5) or absolute values (230 for G9).

Risks, anti-goals, and other situations that lead to risks are modeled in the event
layer. A situation models a partial state of the world [157]. An anti-goal is an undesired
situation of the system being modeled, yet it is desired by another system, which may
be malicious, such as S2: Forgery from external attack presented in an octagon node in
Figure 6.2. Similar to goal refinement, an anti-goal refinement links a set of child anti-
goals to their parent anti-goal. A parent anti-goal may have multiple refinements as
alternative ways of being achieved. The parent anti-goal is achieved when at least on of
its refinements is achieved. A refinement is achieved when all child anti-goals connected

83

CHAPTER 6. RISK ANALYSIS IN SOCIOTECHNICAL SYSTEMS

to the refinement are achieved. For example, in Figure 6.2 S2: Forgery from external
attack is refined into S3: Information system is phished and S4: Credentials are obtained.
A risk is a situation that harms one or more goals of the system being modeled with a
possibility of loss. Each risk has an associated likelihood as the probability of the risk to
happen. An intentional risk rises due to an anti-goal. In our illustrative example the risk
S12: Electronic application is forged exists due to the anti-goal S2: Forgery from external
attack. The directed edge with dotted line and black arrowhead from the anti-goal to the
risk indicates an increase likelihood relation. Increase likelihood relation is only allowed
between and anti-goal an a risk. Incidental risks are caused by external factors that can’t
be controlled, such as S13: Economic recession. Impact captures the effect of a risk on a
goal. A risk may have different impacts on different goals. During modeling, the severity
of the impact can be modeled in terms of absolute values such as monetary loss, or in
terms of a relative scale can be used such as the five value scale used by CORAS [123]. In
our illustrative example, S12: Electronic application is forged has an impact on the goal G6:
Receive electronic application. In order to reduce the number of model elements, we omit
the impact node between a risk and a goal, and use a directed dashed edge with a white
arrowhead to represent has-impact relation. An anti-goal may increase the severity of an
impact on a goal through increase severity relation. In LOP example S13: ID Document
faked anti-goal increases the impact of S12 on G6.

Treatment layer includes treatments which are goals intended to mitigate the impact
and/or reduce the probability of the risk. Treatment refinement links child treatments
to parent treatment. Similar to other types of refinements, the parent treatment may
have multiple refinements, each indicating an alternative way of achieving the parent.
Treatment objectives are top treatments, and treatment tasks are the leaf treatments and
they have a treatment cost attribute. Treatments mitigate the severity of an impact via
decrease severity to recover after the occurrence of a risk. On the other hand treatments
may also aim for prevention, decreasing the likelihood of the risk through decrease likeli-
hood relation. In the example presented in Figure 6.2 the treatment layer is the bottom
layer in which treatment are presented in hexagonal nodes. T1:Use digital signature treat-
ment decreases the likelihood of S12: Electronic application is forged (prevention). T6:ire
underwriters reduces the severity of the impact of S5: Debtor defaults on G7: Ensure loan
repayment.

6.2 Evaluation of the Visual Notation

We follow the guidelines presented by Moody [16] for ‘good’ graphical notation. First, we
use the horizontal position (planar variable) to distinguish layers, thick dashed lines clearly
separates the three layers. The topmost layer is the asset layer, where stadium shaped
nodes are goals, black filled dots are goal refinements and directed straight edges with
black arrows are aggregation links of child goals to refinement nodes, and refines relations
from the refinement nodes to parent goals. The straight edge is overloaded, yet the usage
is inline with the conventional use, successfully conveys the semantics, yet decreases the

84

6.2. EVALUATION OF THE VISUAL NOTATION

visual clutter. Another symbol overload in this layer is the representation of goals where
we do not differentiate the symbols for business objectives, middle goals, and tasks (top,
middle, and leaf goals, respectively). Again, in this situation the symbol overload does
not cause ambiguity for it is easy to differentiate the concepts by checking the incoming
and outgoing edges. Among these three constructs two of them have numerical attributes.
We propose placing the values in square brackets after the text when modeling on paper
or a board, and ability to toggle the display of the values when modeling with a software
tool to keep visual simplicity.

The middle layer is the event layer. We keep the convention of using house-shaped
nodes for representing risk. A semantically immediate solution would be to use fire shaped
nodes for risks, however this reduces the text area available for the description, and might
introduce difficulty when using analog tools. Instead we opt for red color to signify
danger. Even though incidental and intentional risks can be differentiated by perceptual
configuration due to the incoming edges from anti-goals, we increase the thickness of the
border of incidental risks (use as a retinal variable) to emphasize the distinction. Anti-
goals are represented as parallelograms in [43], we prefer using octagons for the text are
can be used more effectively. For anti-goal refinement we use the same visual elements
as the goal refinements to preserve graph economy by keeping the number of graphical
notations low. Dashed edges with white double triangle arrowheads are used to represent
the increase likelihood relation (from anti-goals to risk nodes), double triangle arrowhead
signifies an increase and increases the visual distance from other edge types together with
the line type and arrowhead color. Increase severity relation is represented by dotted
edges with white double triangle arrowheads. Although the visual distance is one (line
type) between the representation of this relation and the former one, target constructs are
different (the target of the former is a risk node, whereas the latter aims to has impact
edge), helping perceptual configuration. Has impact relation is represented by dashed and
dotted line with a white triangle arrowhead, for the white the arrowhead is a construct
from the event layer, yet this relation does not signify an increase so a single triangle is
chosen. According to the principle of dual coding, complementing the graphical notation
with text annotations convey information more effectively, yet using edge labels creates
usual clutter, we propose using tool-tips for edge labels for software tool support.

The bottom layer is the treatment layer. We use cloud shape nodes for the conventional
octagonal nodes used in [25] is from the same shape family (polygons) as nodes used in
the event layer therefore they are too similar. We use the color blue to fill the nodes
to smooth out the danger implied by the nodes in the event layer. There are two inter-
dependencies whose sources are treatments, one is decrease likelihood whose target is a
risk node and the other is decrease severity whose target is an impact edge. We use open
triangle arrow heads to emphasize the decrease, vary the line types to increase the visual
distance. Figure 6.3 summarizes our visual notation.

Three layered approach also helps managing the complexity of the models, enabling
modularization, thus focusing on specific layers both in analog and digital tools. Consid-
ering all edge and node types, our notation exceeds the cognitive limit of six categories,
yet this is an open problem present in other graphical notations [15].

85

CHAPTER 6. RISK ANALYSIS IN SOCIOTECHNICAL SYSTEMS

BUSINESS
OBJECTIVE

TASK TASK

INCIDENTAL
RISK

INTENTIONAL
RISK

ANTI-GOAL

has
impact

increase
likelihood

increase
 severity

TREATMENT

decrease
likelihood

decrease
impact

refinement

Figure 6.3: Legend for the visual notation

6.3 Risk Analysis

Risk models are instrumental to comprehend, capture, and convey goals of a system,
risks that may harm these goals, anti-goals that may create these risks or increase the
severity of their impact on system goals, and treatments that prevent or mitigate the
risks. The structure of the models enables systematic analysis to extract information that
is not trivial for the analyst. Risk analysts are interested in multiple questions to asses
and manage risks. Risk assessment includes setting likelihood and impact of each risk,
which is done during modeling, and calculating the risk factor as the product of these two
values. Once the risk assessment is done, the analyst has several strategies to manage
risk. The first strategy is to avoid risk, that is, selecting a solution with the minimal
risk factor. The second strategy is to prevent risk, that involves utilizing treatments to
decrease the likelihood of the risk (or prevent the risk from happening). The third strategy
is to mitigate the impact of the risk through treatments. Apart from the risk management
strategies, the analyst may be interested in the reward of the system-to-be, giving a higher
priority to utility rather than risks. The budget for the project is a constraint of which
the analyst should keep track, so the analyst may opt for minimizing the cost, trading
cost for risk factor. Below we provide a list of questions that help risk analyst to asses
risk and select a strategy for risk management.

Q1. Which solution has the maximum goal rewards?

Q2. Which solution has the minimum task costs?

Q3. Which solution has the minimum risk factor?

Q4. Which solution has the minimum risk likelihood?

86

6.3. RISK ANALYSIS

Q5. Which solution has the maximum recovery?

Q6. Which solution has the maximum prevention?

Q7. Which solution has the minimum treatment cost?

SMT/OMT reasoning is a powerful scalable approach that combines multi-objective
optimization and satisfiability. We transform our models into SMT-LIB language [149] to
pass the models as input to the external solver OptiMathSAT [24].

((∧n
j=1Gj)↔ R) ∧ (R→ Gparent) (6.1a)

Task Cost =
∑
G

ite(Gi, costGi
, 0) (6.1b)

Reward =
∑
G

ite(Gi, rewardGi
, 0) (6.1c)

Formulas (6.1a) to (6.1c) presents the propositional encoding of the asset layer. For-
mula (6.1a) states that a refinement node R is achieved if and only if all sub-goals that are
connected to the refinement node is satisfied (((∧nj=1Gj) ↔ R)), and the satisfaction of
the refinement R implies the satisfaction of the parent goal G. Formulas (6.1b) and (6.1c)
are numeric pseudo-boolean functions that define the Task Cost and Reward functions,
respectively. ite(Gi, costGi

, 0) denotes an i f-then-else term, which is evaluated as cost of
the task Gi, if Gi is achieved, 0 otherwise.

The transformation to SMT-LIB is trivial for Formula (6.1a). In order to represent
the if-then-else term for the cost and reward functions, soft–assertions are used with
the syntax as the following, (assert-soft (not G3) :weight 5 :id task.cost). This
soft–assertion introduces a cost when G3 holds true. For all task costs the same id (:id
cost) should be used. In order to find the total task cost of a solution, we declare a
task cost function, which is the sum of the cost attributes of all tasks that holds true
within a solution. This is achieved i. declaring a real function (declare-fun taskcost
() Real). ii. asserting the id of the task costs as the value of this function (assert
(= reward (- task.cost 0))) (Formula (6.1b)). In order to find the solution with
the minimum task cost (minimize taskcost) command is used. Similarly, to find the
solution with the maximum reward, we define a reward function that returns the reward
of the business objectives that are assigned to be true in a given solution, achieved by
the following two statements: (declare-fun reward () Real) (assert (= reward (-
bo.reward 0))). The optimization command is stated as (maximize reward).

The previous paragraph explains how to formalize our models and provide the input
to the reasoner to answer Q1 and Q2, that are general concerns when reasoning on goal
models. The third question aims to help decision making in presence of risks. A risk
factor is the product of the likelihood and the severity of the impact of a risk. A lower
risk factor indicates a safer decision. Consider two tasks G13: Assessed by credit Bureau
and G14: Assessed in house from the illustrative example which are connected to the same

87

CHAPTER 6. RISK ANALYSIS IN SOCIOTECHNICAL SYSTEMS

G13: Asses
by Credit
bureau

S8: Inaccurate
credit rating
by CB [0.05]

[10000]

(a) Risk impacting a goal

risk.factorG13 = 0.05 ∗ 10000 (6.2a)
rfG13,S8 ↔ (G13 ∧ S8) (6.2b)
Risk Factor (6.2c)

=
∑
G

ite(rfGi
, risk.factorGi, 0) (6.2d)

(b) Propositional Encoding

Figure 6.4: Risk impact on a goal

parent node through different refinement nodes, so they are alternatives to each other.
G13 is under the risk of S8: Inaccurate credit rating by Credit Bureau with a likelihood of
5% which may lead to a loss of €10000 whereas G14 is also under the risk of S9:Mispredict
monetary condition with a likelihood of 10% and a possible loss of €8000. Out of these two
alternative tasks G13 is safer due to its lower risk factor (€500 versus €800). Selecting
a solution with the minimal risk factor is a result of adopting risk avoidance strategy for
risk management.

Figure 6.4a is a sample from the illustrated example presented in the previous section,
Figure 6.4b presents the propositional encoding of the Risk Factor objective function and
how risk factor of an individual task is calculated. Once the risk factor is calculated
for each impact on a task, the numerical value is presented in the SMT-LIB language
similar to the presentation of task cost, however here we introduce an additional model
element, which is set to true when both the task and the risk holds true in the model.
The reason is that the analyst may choose the ignore some risks if she believes that they
will not occur at run-time. So the calculated risk factor values are aggregated in the Risk
Factor function only if the task is included in the solution where the risk is considered in
the model by the analyst, as shown by the second line of Figure 6.4b. In SMT-LIB, an
individual risk factor is represented as (assert-soft (not RF-G13-S8) :weight 500
:id task.risk.factor), and those individual values are aggregated by (declare-fun
riskfactor () Real) (assert (= riskfactor (- task.risk.factor 0))). Finally,
the optimization scheme is set to minimize riskfactor to receive the solution that has
the lowest risk factor.

Q4 searches for the solution that has the minimum chance of encountering a risk,
regardless of the impact of the risk. Formula (6.3a) presents the associated risk likeli-
hood of G13. Similar to risk factor encoding, we introduce an additional element (rlG13)
to ensure that only likelihood of risks that are considered by the analyst are included
(Formula (6.3b)). The soft-assertion (assert-soft (not rl-G13) :weight 0.05 :id
task.risk.likelihood) is the translation of the if-then-else pseudo boolean function
used in Formula (6.3c). The objective function returns the sum of the values for tasks

88

6.3. RISK ANALYSIS

that are included in the solution (tasks are set to be true). Here our assumption is that
each impact edge comes from independent risks, therefore we sum the probabilities. More
complex representation of risks in the event layer requires a change in the definition of
this objective function in the future.

risk.likelihoodG13 = 0.05 (6.3a)
rlG13,S8 ↔ (G13 ∧ S8) (6.3b)

Risk Likelihood =
∑
G

ite(Gi, risk.likelihoodGi
, 0) (6.3c)

Q5 aims to find a solution including not only the stakeholder goals but also treatments
to mitigate the impacts on the risks on goals. The mitigation of a treatment on an
impact is represented by a decrease severity inter-dependency, and the numerical attribute
indicates how much the treatment recovers the impact of the risk on a task. For the
analysis, the important point is to achieve treatment objects that recovers tasks that
are also included in the solution. From the illustrative example, it does not make sense
to achieve the treatment ‘verify ID documents with the government bodies’ (T7) that
decreases the severity of the impact to € 5000 just because there is a risk of fake documents
(S6) unless the goal of verifying loan applications (G11), which is affected by the risk, is
part of the solution. Therefore we introduce a new element for each decrease severity
relation, which is set to be true when the target treatment and the source risk are true,
and the task that is under that risk is included in the solution (Formula (6.4a)). For
all decrease severity inter-dependencies, the total recovery is aggregated by the pseduo-
boolean function presented in Formula (6.4c). In order to avoid misleading solutions due
to the numerical values, it is important to put a constraint during modeling a mitigation
on an impact cannot be higher than the severity of the impact of the risk.

tr − risk − goalT7,S8,G13 ↔ (G13 ∧ S8 ∧ T7) (6.4a)
recT7,S8 = 5000 (6.4b)

Recovery =
∑
T,G,S

ite(tr − risk − goalTi,Sj ,Gk
, recTi,Sj

, 0) (6.4c)

Total or partial prevention of a risk (decreasing the likelihood) decreases i. the risk
factor of affected goals. The purpose of asking Q6 is to discover solutions including goals
and treatments that has the minimum total risk factor. The main difference between Q3
and Q6 is the former does not consider treatments so the focus is to find a solution within
the asset layer with the lowest risk factor. On the other hand Q6 considers treatments
which lead to different solutions within the asset layer, for example among two alternative
solutions with risk factor 3 and 5 the solution for Q3 is the first alternative, however if
there is a treatment that reduces the second risk factor to 2, the solution for Q6 is the
second alternative. In order to answer Q6, we first need to calculate the likelihood of the
risk for each combination of treatments that decreases its likelihood. Then, for each new

89

CHAPTER 6. RISK ANALYSIS IN SOCIOTECHNICAL SYSTEMS

likelihood, a new risk factor is calculated for each task that is affected by that risk. Once
pre-processing calculates these values, we transform the model, similar to the approached
presented in Figure 6.4. The main difference is that, for each calculated value, a new
element is created, which is set to true when all considered treatments, risk, and the task
is true, and other treatments that prevents that risk but not considered are false. The
pseudo-boolean function for the prevented risk factor aggregates the new risk factor values
for the new elements that holds true.

Algorithm 1 creates necessary SMT/OMT formulas. Before running the reasoner,
we need to declare all possible likelihoods of a risk resulting from combining different
treatments that reduce its likelihood. Lines 3 to 5 in in Algorithm 1 calculates the
likelihood after prevention by all possible combinations of treatments that are related to
a given risk.

1 initialization;
2 foreach task t of asset layer do
3 foreach impact i of risk r on t do
4 M = {Treatments decreases likelihood of r} foreach N ⊂M do
5 calculate new likelihood of r ;
6 calculate risk factor after prevention;
7 declare a new element n;
8 n↔ (t ∧ r∧ {

∧
treatments ∈ N}∧ ¬{

∨
treatments ∈M \N});

9 assert risk factor after prevention for n;
10 end
11 end
12 end

Algorithm 1: Minimizing total risk factor with prevention

Q7 focuses on the objective of minimizing the cost of treatments selected as part of
the solution. The transformation from the models to SMT/OMT clauses are quite similar
to the transformation of the asset layer. Formula (6.5a) presents the cost function for
treatments.

Treatment Cost =
∑
T

ite(Ti, costTi
, 0) (6.5a)

Custom objective functions. Risk analysis plays an important role in project manage-
ment for projects of all sizes from IT projects to governmental decisions. There are two
main strategies to follow for risk management, the first strategy is to avoid risk, selecting
solutions that have low risk factor. An analyst who is interested in risk avoidance tries to
answer Q3. The second strategy is to accept risk, but either prevent it from happening
(Q6) or mitigate its impact (Q5). Cost is an important factor for deciding the risk man-
agement strategy. In some cases risk prevention is cheaper than recovery, for example

90

6.3. RISK ANALYSIS

preventive health measures are usually cheaper, that’s the reason behind governments’
investments in public vaccination campaigns to prevent an epidemic so that they would
not need to face with the cost of treating infected masses. In some other cases, the oppo-
site is true. Instead of keeping several backup servers all the time to prevent any service
disruption, a bank may prefer to pay for a recovery service in case of a down-time. Safety
critical systems give the highest priority to prevent risks, so they ask Q4 and Q6 first,
and may give cost a lower priority. The analyst may also give the utility gained from
the achievement of goals a high priority. A start-up may choose to roll a product to the
market even though such move is associated with a high risk factor, yet the reward of
their business objectives is too tempting. A thorough risk analysis requires combining
these analyses, such as finding the solution with the minimal total cost of treatments and
goals that has the minimal risk factor with maximum risk recovery. Depending on the
objectives of the analysts several queries may be constructed.

Using SMT/OMT reasoning the analyst may set the optimization scheme for the
solution in three ways. When there is a clear ordering of objectives, the analyst may opt
for lexicographic optimization. The reasoner orders the solution according to the order of
objectives, so the optimum solutions with respect to the first objective is returned first. If
there are multiple solutions with the same objective value, the solutions are then ordered
with respect to the second objective and so on. An example order of objectives is the
following.

(minimize taskcost)
(minimize task.risk.factor.prevented)
(maximize reward)

The analyst may also construct a single multi-objective optimization function such as
$0.6 * task.cost + 0.4 * treatment.cost $ and minimize or maximize that function. The
third option is to combine these techniques together, having multiple objective functions
ordered clearly.
Additional constraints. Constrained goal models and SMT/OMT reasoning allow
applying additional constraints on solutions. For example, it is possible to set a constraint
on the total budget of the solution, where the total budget is the sum of task and treatment
costs. The reasoner returns the solution with maximal recovery whose total cost is less
than € 100000 in the following example. Another example is for the consideration of
risks, the analyst may choose to ignore risks whose likelihood is under a certain threshold,
or allow risk factor up to a certain value. Additional constraints can be asserted as both
hard and soft constraints in SMT-LIB.

(assert < totalCost 100000)
(maximize recovery)

Security risk analysis. Anti-goals [43] and obstacle analysis [158] are used to analyze
risk that is caused by malicious actors. existing reasoning techniques can be applied in
the event layer to determine whether a risk holds or not. In this chapter our focus is on

91

CHAPTER 6. RISK ANALYSIS IN SOCIOTECHNICAL SYSTEMS

finding optimal solutions with respect to loss, cost, and rewards.
Opportunity analysis. An opportunity is a probabilistic situation that has a positive
impact on stakeholder goals. Opportunity identification and analysis is conducted during
new product development [159], our approach can be used to discover optimal solutions
with respect to gain. Opportunity factor is calculated similar to risk factor, and it is
desired to be maximized.
Scalability. We set up an experiment to test the scalability of our approach, running
the experiment run on a Windows 64 bit machine with Intel(R) Core(TM) i7-3770 CPU
3.40Ghz and 8GB of RAM, and collected the reasoning time reported by OptiMathSAT
to find the solution. For the experiments, we use OptiMathSAT version 1.3.10. Starting
from an initial input model of 22 elements, we kept replicating the input model and
connecting to the same parent node. The solver returned the results for the largest model
with 17275 model elements uder 400 miliseconds showing a linear trend. Our results are
parallel to those reported in [24], [64].

6.4 Chapter Summary
This chapter presents a multi-objective goal-oriented risk modeling and analysis frame-
work by extending Asnar et al. [25] with constrained goal models [64]. We provide a
meta-model enhanced with inter-dependencies in the model elements that determines the
optimality of a solution. Our visual notation follows the design principles summarized in
[16]. We transform goal–oriented risk models to SMT/OMT to discover optimal solution
with respect to multiple objectives. Our proof-of-concept tool automatically maps the
models into SMT/OMT formulas and retrieves solutions from the back–end reasoner. We
investigate a pre-defined set of questions for analyzing risk yet our approach is flexible so
that the analyst may define her own objective function and search for the optimal solution
with respect to this custom objective function.

Limitations. SMT/OMT–based reasoning can handle linear arithmetic over ratio-
nals, it is a limitation for our framework. We overcome this limitation by pre-processing
our models before transformation to SMT-LIB formulas, yet using combinations of treat-
ments increases the number of formulas. Our graphical models suffer from the complexity
problem of goal models. Building large goal models is an error-prone manual activity
where the modeller loses grasp of what her model says as it gets bigger. We use layers to
decrease the number of visible elements when the focus is on a single layer.

92

Chapter 7

Discussion, Conclusions, and Future
Work

7.1 Fulfillment of Success Criteria
In this section we re-visit success criteria defined in Section 1.4 and state whether they
are satisfied. We also discuss which contribution satisfies the criteria.

Adressing RQ1, ‘What is an effective process for modeling requirements and interac-
tions of sociotechnical systems?’

SC1.1 Conduct modeling requirements and interactions in few steps. This success criteria
is fulfilled by a self-evaluation study and a case study.

• Protos approach defines and formalizes finite number of refinement rules to be
applied during sociotechnical systems design.

• We have performed a self-evaluation study in the automobile insurance domain.
• We have conducted a case study with PhD students at the University of Trento

in London Ambulance System.

SC1.2 Applicability to different domains. We satisfied this criteria by applying the design
process in different domains.

• Evaluation activities involve automobile insurance domain and London Ambu-
lance system domain.

SC1.3 Formal semantics. We provide formal semantics of the language in Chapter 3.

Addressing RQ2 ‘How to explore designs of sociotechnical systems?’

SC2.1 Capture requirements and interactions. We propose an i* based requirements
modeling language that captures social interactions as commitments.

SC2.2 Automatically create plans as a solution to the design problem. We encode goal
models in PDDL and use an external planner to generate plans.

93

CHAPTER 7. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

Addressing RQ3 ‘How to manage the iterative evolution of sociotechnical systems?’

SC3.1 Capture requirements and synergies for next iteration. We provide a modeling
language that captures relations and synergies among requirements. The relations
and synergies are based on an industrial survey.

SC3.2 Support automated analysis for finding optimal solutions. We encode goal models
in SMT/OMT formulas so we benefit from OptiMathSat solver.

SC3.3 Provide solutions in acceptable time. Our scalability analysis show that our ap-
proach scales with respect to the number of model elements, degree of model con-
nectivity and number of alternative solutions.

Addressing RQ4 ‘What is an effective method for risk analysis for sociotechnical sys-
tems’

SC4.1 Capture risk and synergies in requirements models. We provide a conceptual model
to capture requirements, risks, treatments, and the synergies between these model
elements.

SC4.2 Support automated analysis for finding optimal solutions. We encode goal models
in SMT/OMT formulas so we benefit from OptiMathSat solver.

7.2 Conclusions

Design and evolution are two open challenges for sociotechnical systems [160]. Autonomy
of systems, existence of local and global goals, possibly conflicting with each other, hazy
boundaries between social and technical systems, and continual change are characteristics
of sociotechnical system which also define problem characteristics.

We have proposed languages, analysis techniques, and methods to support sociotechni-
cal system design and evolution. Key features of our contributions are i. Protos approach
for sociotechnical system design, ii. DEST modeling language and a planning based ex-
ploration technique for discovering alternative design solutions, iii. a modeling language
and a mapping to SMT/OMT formulas to apply SMT/OMT reasoning to the next release
problem, iv. a modeling language, mapping to SMT/OMT formulas, and demonstration
of several risk management strategies.

Protos: Protos is a requirements engineering approach for designing sociotechnical
system. We re-formulate the requirements engineering problem stated by Zave and Jack-
son [17], and place specifications of social interaction (protocols) and multiple systems in
the problem statement, as opposed to specifications for a machine as stated previously.

Protos design process relies on continual refinement of first class concepts: require-
ments can be refined into other requirements, systems (teams) can be refined into other
systems, social refinements create and further refine social interactions, captured as com-
mitments. The modeling process continues until all requirements are dealt with: either

94

7.3. ONGOING AND FUTURE WORK

satisfied through refinements, or a system takes final responsibility to satisfy them. The
modeling language, concepts and refinement rules, are formalized.

Exploring design space: We propose a formalized, visual modeling language based on
i* to capture requirements of sociotechnical system. The meta-model includes social com-
mitments to capture social interactions. In i* framework social interactions are captured
by dependencies, however dependencies are from one actor from another, and do not state
whether the dependee accepts the dependency or whether there are any conditions for the
dependum to be satisfied. In this sense, DEST provides a richer representation of social
interactions. The meta-model also allows modeling temporal constraints between goals.

There could be several solutions within a model, so we explore these alternative so-
lutions using AI planning. We define actions to AND and OR decompose goals, create
and discharge commitments and encode these actions in PDDL language. An external
planner is used to generate plans, a sequence of actions.

Handling iterative requirements evolution: Towards handling evolution of requirements
in sociotechnical systems, we start from the well-established next release problem. All of
the existing approaches are search–based software engineering methods, unable to guar-
antee the optimal results, mostly ignoring dependencies, relations and synergies between
requirements.

We formulate the problem for goal models and propose a modeling language based on
concepts and relations identified through an industrial survey. We transform goal models
into SMT/OMT formulas, and allow flexible objective function specification. We use an
external reasoner (OptiMathSat [24]) to discover the globally optimal solution.

Next Release Tool is a standalone application developed to support modeling and
analysis activities for the next release problem. The tools provides a graphical editor and
automatically converts goal models into SMT/OMT formulas. It feeds the formulas to
OptiMathSat, retrieves and highlights the results on the graphical model.

Risk analysis: Uncertainty is a reality for different types of systems whether it indicates
attacks from malicious agents, or unknown decisions of another system that affect others.
For risk assessment, we propose a modeling language that captures synergies between
goals, risks, and treatments. These concepts are modeled in three different layers, and
relations and synergies among them are captured in the goal–risk models.

Unlike existing approaches in goal–driven risk management literature our focus is
multi-objective risk analysis. We transform goal–risk models to SMT/OMT formulas ans
rely on OptiMathSat for discovering optimal results. A system may adopt one or more risk
management policies. We demonstrate how each policy transforms into an optimization
schema as a guideline to analysts.

7.3 Ongoing and Future Work

Several future directions remain open for our research.
Empirical evaluation: One of the limitation of our work is that proposed languages

and reasoning methods are not evaluated in real life case studies. In the short term our

95

CHAPTER 7. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

aim is to evaluate our approach on the next release problem in two different settings. One
study is based on data gathered from feature request system of an open source project
where we build goal models based on the available data and discover the optimal solution
and compare this solution to historical data on decisions during software development.
The other study is planned to be run with a company where experts build or supervise
building goal models and evaluate the solutions. Our aim is also to collect expert opinion
about our language used to represent the next release problem.

Enhancing meta-models: Our research objective is to support design and evolution
of sociotechnical systems yet the meta-model of final two components of our research
do not capture individual systems an their goals. Although it is still possible to use
these approaches for risk analysis and iterative evolution of sociotechnical systems, our
short term objective is to enhance these meta-models to better capture characteristics of
sociotechnical systems.

Improving tool support: The Next Release Tool is the most mature tool we have for our
research. There is no implementation for Protos, and proof-of-concept implementations
for exploring alternatives in sociotechnical systems design space and analyzing risk. For
now our focus is on the Next Release Tool as it will be used for the empirical evaluations,
but we plan to develop a more mature tool for risk analysis. In the long run, our objective
is to implement a tool that allows distributed modeling and supports participatory design
process.

Framework integration: Several components with respect to design and evolution of
sociotechnical systems compose our framework, yet these components are not integrated
with each other. Similar but different modeling languages are used depending on the
problem we address so an ontology or mapping could be devised to integrate these lan-
guages so that output of a component could be directly used as input of another. For
that reason integrated tool support is also important.

7.4 Future Lines of Research

Aside from our research agenda, our research open new research directions.
Serious games: Serious games and gamification have been applied to different domains

to increase user engagement, organizational productivity, ease of use and usefulness of
systems. Game-design elements and game principles can be applied to our framework for
the benefits mentioned. For example, Protos methodology can be gamified to increase
participation of the stakeholders to the modeling process, to encourage participants for
more in depth and high-quality refinements, or to encourage building social commitments
using badges, and points. Landmarks could be set for the modeling process as levels to
be passed by the stakeholders.

Multi-criteria decision making: Our approach concerning risk analysis and the next
release problem could be generalized to aid decision making in a more general context,
or could be turned into a customizable framework, where end users specify the synergies
exist in their domain and their effects, their constraints on solutions, and benefit from

96

7.4. FUTURE LINES OF RESEARCH

automated SMT/OMT reasoning fro making their final decisions.
Crowd sourcing: We provide reasoning techniques that rely on quantitative or qual-

itative information. Although we refer to several existing techniques to extract these
informations, how to get these values are beyond the scope of this thesis. The reasoning
mechanisms could be combined with crowd-sourced models where the crowd provides syn-
ergies and intensity values to collectively help building models and automated reasoning
provides the optimal solutions. One possible application domain is public administration,
where the general public is provided with partial models and asked for their input. Cit-
izen concerns could be directly presented on models, also as an exercise of participatory
design, and then optimal solution is found by the reasoner.

Understanding human judgment: Humans take decision under certain assumptions
and constraints based on multiple, possibly conflicting objectives. Now that we have
powerful tools for capturing decision domains and discovering optimal solutions, it is
possible to compare human judgment with the optimal solutions found by automated
reasoners. Such research could answer questions like ‘How well do human experts specify
objective functions?’, ‘How do humans prioritize objectives?’, ‘How does expert judgment
work compared to automated reasoning?’.

97

CHAPTER 7. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

98

Bibliography

[1] F. E. Emery and E. L. Trist, “The causal texture of organizational environments”,
Human relations, vol. 18, no. 1, pp. 21–32, 1965.

[2] E. L. Trist and K. W. Bamforth, “Some social and psychological consequences of
the longxwall method of coal-getting: An examination of the psychological situation
and defences of a work group in relation to the social structure and technological
content of the work system”, Human Relations, vol. 4, no. 1, pp. 3–38, 1951.

[3] G. Ropohl, “Philosophy of socio-technical systems”, Techné: Research in Philosophy
and Technology, vol. 4, no. 3, pp. 186–194, 1999.

[4] L. V. Bertalanffy, General System Theory: Foundations, Development, Applica-
tions. George Braziller Inc., 1969.

[5] G. Fairtlough, The three ways of getting things done. Triarchy Press Limited, 2007.

[6] M. Satyanarayanan, “Pervasive computing: Vision and challenges”, IEEE Pers.
Commun., vol. 8, no. 4, pp. 10–17, 2001.

[7] K. Lyytinen and Y. Yoo, “Ubiquitous computing”, Communications of the ACM,
vol. 45, no. 12, pp. 63–96, 2002.

[8] A. Mowshowitz, “Virtual organization: A vision of management in the information
age”, The Information Society, vol. 10, no. 4, pp. 267–288, 1994.

[9] M. Papazoglou, “Service-oriented computing: Concepts, characteristics and direc-
tions”, in Proceedings of the 7th International Conference on Properties and Ap-
plications of Dielectric Materials (Cat. No.03CH37417), 2003, pp. 3–12.

[10] I. Foster, “The anatomy of the grid: Enabling scalable virtual organizations”, In-
ternational Journal of High Performance Computing Applications, vol. 15, no. 3,
pp. 200–222, 2001.

[11] M. Henning, “Api design matters”, Queue, vol. 5, no. 4, pp. 24–36, 2007.

[12] I. Sommerville, D. Cliff, R. Calinescu, J. Keen, T. Kelly, M. Kwiatkowska, J.
Mcdermid, and R. Paige, “Large-scale complex it systems”, Communications of
the ACM, vol. 55, no. 7, p. 71, 2012.

[13] E. Yu, “Towards modelling and reasoning support for early-phase requirements
engineering”, in 3rd IEEE International Symposium on Requirements Engineering,
Jan. 1997, pp. 236–235.

99

BIBLIOGRAPHY

[14] B. Flyvbjerg and A. Budzier, “Why your it project may be riskier than you think”,
Harvard Business Review, vol. 89, no. 9, pp. 601–603, 2011.

[15] D. L. Moody, P. Heymans, and R. Matulevicius, “Improving the effectiveness of
visual representations in requirements engineering: An evaluation of i* visual syn-
tax”, in RE, Aug. 2009, pp. 171–180.

[16] D. Moody, “The physics of notations: Toward a scientific basis for constructing
visual notations in software engineering”, IEEE Transactions on Software Engi-
neering, vol. 35, no. 6, pp. 756–779, 2009.

[17] P. Zave and M. Jackson, “Four dark corners of requirements engineering”, ACM
Transactions on Software Engineering and Methodology, vol. 6, no. 1, pp. 1–30,
1997.

[18] M. P. Singh, “An ontology for commitments in multiagent systems”, Artificial In-
telligence and Law, vol. 7, no. 1, pp. 97–113, 1999.

[19] S. Browne and M. Kellett, “Insurance (motor damage claims) scenario”, Document
Identifier D, vol. 1, 1999.

[20] J. Kramer and A. L. Wolf, “Succeedings of the 8th international workshop on
software specification and design”, SIGSOFT Softw. Eng. Notes, vol. 21, no. 5,
pp. 21–35, 1996.

[21] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,
and D. Wilkins, “Pddl-the planning domain definition language”, 1998.

[22] A. Bagnall, V. Rayward-Smith, and I. Whittley, “The next release problem”, In-
formation and Software Technology, vol. 43, no. 14, pp. 883–890, 2001.

[23] Y. Zhang, M. Harman, and S. A. Mansouri, “The multi-objective next release
problem”, in GECCO, 2007, pp. 1129–1137.

[24] R. Sebastiani and P. Trentin, “Optimathsat: A tool for optimization modulo the-
ories”, in Computer Aided Verification, Springer Science + Business Media, 2015,
pp. 447–454.

[25] Y. Asnar, P. Giorgini, and J. Mylopoulos, “Goal-driven risk assessment in require-
ments engineering”, Requirements Engineering, vol. 16, no. 2, pp. 101–116, 2010.

[26] D. Ross and K. Schoman, “Structured analysis for requirements definition”, IEEE
Transactions on Software Engineering, vol. SE-3, no. 1, pp. 6–15, 1977.

[27] P. Zave, “Classification of research efforts in requirements engineering”, ACM Com-
puting Surveys (CSUR), vol. 29, no. 4, pp. 315–321, 1997.

[28] B. Nuseibeh and S. Easterbrook, “Requirements engineering”, in Proceedings of the
conference on The future of Software engineering - ICSE ’00, - 2000, nil.

[29] A. van Lamsweerde, “Requirements engineering in the year 00”, in Proceedings of
the 22nd international conference on Software engineering - ICSE ’00, - 2000, nil.

100

BIBLIOGRAPHY

[30] A. van Lamsweerde, “Goal-oriented requirements engineering: A guided tour”, in
Proceedings Fifth IEEE International Symposium on Requirements Engineering,
2001, pp. 249–262.

[31] A. I. Antón, W. M. McCracken, and C. Potts, “Goal decomposition and scenario
analysis in business process reengineering”, in Advanced Information Systems En-
gineering, ser. Advanced Information Systems Engineering. Springer Science +
Business Media, 1994, pp. 94–104.

[32] A. Lapouchnian, “Goal-oriented requirements engineering: An overview of the
current research”, University of Toronto, Tech. Rep., 2005, http : / / modald .
googlecode.com/svn/masterthesis/Papers/Lapouchnian-Depth.pdf.

[33] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using nonfunctional
requirements: A process-oriented approach”, IEEE Transactions on Software En-
gineering, vol. 18, no. 6, pp. 483–497, 1992.

[34] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional requirements in
software engineering. Springer Science & Business Media, 2012, vol. 5.

[35] H. A. Simon, The sciences of the artificial. MIT press, 1996.

[36] I. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos, “Techne: Towards a new
generation of requirements modeling languages with goals, preferences, and incon-
sistency handling”, in International Requirements Engineering Conference, 2010,
pp. 115–124.

[37] J. Horkoff, F. B. Aydemir, F. Li, T. Li, and J. Mylopoulos, “Evaluating modeling
languages: An example from the requirements domain”, in ER, 2014, pp. 260–274.

[38] F.-L. Li, J. Horkoff, J. Mylopoulos, R. S. S. Guizzardi, G. Guizzardi, A. Borgida,
and L. Liu, “Non-functional requirements as qualities, with a spice of ontology”, in
2014 IEEE 22nd International Requirements Engineering Conference (RE), Aug.
2014, nil.

[39] F.-L. Li, J. Horkoff, A. Borgida, G. Guizzardi, L. Liu, and J. Mylopoulos, “From
stakeholder requirements to formal specifications through refinement”, in Require-
ments Engineering: Foundation for Software Quality, ser. Requirements Engineer-
ing: Foundation for Software Quality. Springer Science + Business Media, 2015,
pp. 164–180.

[40] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed requirements ac-
quisition”, Science of Computer Programming, vol. 20, no. 1-2, pp. 3–50, 1993.

[41] A. van Lamsweerde and E. Letier, “Handling obstacles in goal-oriented require-
ments engineering”, IEEE Transactions on Software Engineering, vol. 26, no. 10,
pp. 978–1005, 2000.

[42] A. Van Lamsweerde, S. Brohez, R. De Landtsheer, and D. Janssens, “From system
goals to intruder anti-goals: Attack generation and resolution for security require-
ments engineering”, in In Proc. of RHAS’03, 2003.

101

BIBLIOGRAPHY

[43] A. Van Lamsweerde, “Elaborating security requirements by construction of inten-
tional anti-models”, in Proceedings of the 26th International Conference on Soft-
ware Engineering, IEEE Computer Society, 2004, pp. 148–157.

[44] A. Anton and C. Potts, “The use of goals to surface requirements for evolving
systems”, in Proceedings of the 20th International Conference on Software Engi-
neering, Apr. 1998, pp. 157–166.

[45] C. Rolland, C. Souveyet, and C. Achour, “Guiding goal modeling using scenarios”,
IEEE Transactions on Software Engineering, vol. 24, no. 12, pp. 1055–1071, 1998.

[46] E. S. K. Yu and J. Mylopoulos, “Understanding “ Why ” in Software Process
Modelling, Analysis, and Design”, 1994, pp. 159–168.

[47] F. Massacci, J. Mylopoulos, and N. Zannone, “Security requirements engineering:
The si* modeling language and the secure tropos methodology”, in Advances in
Intelligent Information Systems, ser. Advances in Intelligent Information Systems.
Springer Science + Business Media, 2010, pp. 147–174.

[48] D. Amyot and G. Mussbacher, “Urn: Towards a new standard for the visual descrip-
tion of requirements”, in Lecture Notes in Computer Science, ser. Lecture Notes in
Computer Science. Springer Science + Business Media, 2003, pp. 21–37.

[49] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos, “Tropos:
An agent-oriented software development methodology”, Autonomous Agents and
Multi-Agent Systems, vol. 8, no. 3, pp. 203–236, 2004.

[50] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and E. Yu, “Eval-
uating goal models within the goal-oriented requirement language”, International
Journal of Intelligent Systems, vol. 25, no. 8, pp. 841–877, 2010.

[51] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Formal reasoning
techniques for goal models”, in Journal on Data Semantics I, ser. Journal on Data
Semantics I. Springer Science + Business Media, 2003, pp. 1–20.

[52] R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Simple and minimum-cost satisfia-
bility for goal models”, in Advanced Information Systems Engineering, ser. Ad-
vanced Information Systems Engineering. Springer Science + Business Media,
2004, pp. 20–35.

[53] Y. Asnar and P. Giorgini, “Modelling risk and identifying countermeasure in organi-
zations”, in Critical Information Infrastructures Security, ser. Critical Information
Infrastructures Security. Springer Science + Business Media, 2006, pp. 55–66.

[54] Y. Wang, S. A. McIlraith, Y. Yu, and J. Mylopoulos, “An automated approach
to monitoring and diagnosing requirements”, in Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering - ASE
’07, - 2007, nil.

[55] P. Giorgini, J. Mylopoulos, and R. Sebastiani, “Goal-oriented requirements analysis
and reasoning in the tropos methodology”, Engineering Applications of Artificial
Intelligence, vol. 18, no. 2, pp. 159–171, 2005.

102

BIBLIOGRAPHY

[56] J. Horkoff and E. Yu, “Finding solutions in goal models: An interactive backward
reasoning approach”, in Conceptual Modeling - ER 2010, ser. Conceptual Modeling
- ER 2010. Springer Science + Business Media, 2010, pp. 59–75.

[57] E. Letier and A. van Lamsweerde, “Reasoning about partial goal satisfaction for
requirements and design engineering”, SIGSOFT Softw. Eng. Notes, vol. 29, no. 6,
p. 53, 2004.

[58] V. Bryl, P. Giorgini, and J. Mylopoulos, “Designing cooperative is: Exploring and
evaluating alternatives”, in On the Move to Meaningful Internet Systems 2006:
CoopIS, DOA, GADA, and ODBASE, ser. On the Move to Meaningful Internet
Systems 2006: CoopIS, DOA, GADA, and ODBASE. Springer Science + Business
Media, 2006, pp. 533–550.

[59] ——, “Supporting requirements analysis in tropos: A planning-based approach”,
in Agent Computing and Multi-Agent Systems, ser. Agent Computing and Multi-
Agent Systems. Springer Science + Business Media, 2009, pp. 243–254.

[60] ——, “Designing socio-technical systems: From stakeholder goals to social net-
works”, Requirements Engineering, vol. 14, no. 1, pp. 47–70, 2009.

[61] Y. Asnar, V. Bryl, and P. Giorgini, “Using risk analysis to evaluate design alter-
natives”, in Lecture Notes in Computer Science, ser. Lecture Notes in Computer
Science. Springer Science + Business Media, 2007, pp. 140–155.

[62] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos, “Representing and rea-
soning about preferences in requirements engineering”, Requirements Engineering,
vol. 16, no. 3, pp. 227–249, 2011.

[63] S. Sohrabi, J. A. Baier, and S. A. McIlraith, “HTN planning with preferences”, in
IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009, 2009, pp. 1790–1797.

[64] M. C. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Multi-objective
reasoning with constrained goal models”, http://arxiv.org/abs/1601.07409,
2016.

[65] J. J. Odell, H. V. D. Parunak, and B. Bauer, “Representing agent interaction
protocols in uml”, in Agent-Oriented Software Engineering, ser. Agent-Oriented
Software Engineering. Springer Science + Business Media, 2001, pp. 121–140.

[66] J. R. Searle, Speech acts: An essay in the philosophy of language. Cambridge uni-
versity press, 1969, vol. 626.

[67] F. for Intelligent Physical Agents (FIPA), “Fipa specification part 2: Agent com-
munication language.”, FIPA, Tech. Rep., 1997.

[68] M. Singh, “Agent communication languages: Rethinking the principles”, Computer,
vol. 31, no. 12, pp. 40–47, 1998.

103

BIBLIOGRAPHY

[69] S. Kumar, M. J. Huber, and P. R. Cohen, “Representing and executing protocols
as joint actions”, in Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems part 2 - AAMAS ’02, - 2002, pp. 543–
550.

[70] C. Cheong and M. Winikoff, “Hermes: Designing goal-oriented agent interactions”,
in Agent-Oriented Software Engineering VI, ser. Agent-Oriented Software Engi-
neering VI. Springer Science + Business Media, 2006, pp. 16–27.

[71] P. Yolum and M. P. Singh, “Commitment machines”, in Lecture Notes in Computer
Science, ser. Lecture Notes in Computer Science. Springer Science + Business
Media, 2002, pp. 235–247.

[72] P. Yolum and M. P. Singh, “Flexible protocol specification and execution”, in Pro-
ceedings of the first international joint conference on Autonomous agents and mul-
tiagent systems part 2 - AAMAS ’02, - 2002, nil.

[73] M. Shanahan, “The event calculus explained”, in Artificial Intelligence Today,
ser. Artificial Intelligence Today. Springer Science + Business Media, 1999, pp. 409–
430.

[74] N. Desai, A. Mallya, A. Chopra, and M. Singh, “Interaction protocols as design
abstractions for business processes”, IEEE Transactions on Software Engineering,
vol. 31, no. 12, pp. 1015–1027, 2005.

[75] R. Milner, Communicating and mobile systems: the pi calculus. Cambridge univer-
sity press, 1999.

[76] P. R. Telang and M. P. Singh, “Enhancing tropos with commitments”, in Concep-
tual Modeling: Foundations and Applications, ser. Conceptual Modeling: Founda-
tions and Applications. Springer Science + Business Media, 2009, pp. 417–435.

[77] F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “An architecture for requirements-
driven self-reconfiguration”, in Advanced Information Systems Engineering, ser. Ad-
vanced Information Systems Engineering. Springer Science + Business Media,
2009, pp. 246–260.

[78] F. Dalpiaz, A. K. Chopra, P. Giorgini, and J. Mylopoulos, “Adaptation in open
systems: Giving interaction its rightful place”, in Conceptual Modeling - ER 2010,
ser. Conceptual Modeling - ER 2010. Springer Science + Business Media, 2010,
pp. 31–45.

[79] A. K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “Modeling and reasoning
about service-oriented applications via goals and commitments”, in Advanced In-
formation Systems Engineering, ser. Advanced Information Systems Engineering.
Springer Science + Business Media, 2010, pp. 113–128.

[80] ——, “Reasoning about agents and protocols via goals and commitments”, in Pro-
ceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems: Volume 1 - Volume 1, ser. AAMAS ’10, Toronto, Canada: International
Foundation for Autonomous Agents and Multiagent Systems, 2010, pp. 457–464.

104

BIBLIOGRAPHY

[81] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted to know about datalog
(and never dared to ask)”, IEEE Trans. Knowl. Data Eng., vol. 1, no. 1, pp. 146–
166, 1989.

[82] M. Halpern, “The evolution of the programming system”, Datamation, vol. 10,
no. 7, pp. 51–53, 1964.

[83] M. M. Lehman, “Programs, cities, students- limits to growth?”, in Programming
Methodology, ser. Programming Methodology. Springer Science + Business Media,
1978, pp. 42–69.

[84] ——, “Programs, life cycles, and laws of software evolution”, Proceedings of the
IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[85] ——, “Software engineering, the software process and their support”, Softw. Eng.
J. UK, vol. 6, no. 5, p. 243, 1991.

[86] ——, “Laws of software evolution revisited”, in Software Process Technology, ser. Soft-
ware Process Technology. Springer Science + Business Media, 1996, pp. 108–124.

[87] I. Skoulis, P. Vassiliadis, and A. Zarras, “Open-source databases: Within, outside,
or beyond lehman’s laws of software evolution?”, in Advanced Information Systems
Engineering, ser. Advanced Information Systems Engineering. Springer Science +
Business Media, 2014, pp. 379–393.

[88] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W.-G. Tan, “Types of
software evolution and software maintenance”, Journal of Software Maintenance
and Evolution: Research and Practice, vol. 13, no. 1, pp. 3–30, 2001.

[89] D. Zowghi, A. K. Ghose, and P. Peppas, “A framework for reasoning about re-
quirements evolution”, in Lecture Notes in Computer Science, ser. Lecture Notes
in Computer Science. Springer Science + Business Media, 1996, pp. 157–168.

[90] D. Zowghi and R. Offen, “A logical framework for modeling and reasoning about
the evolution of requirements”, in Proceedings of ISRE ’97: 3rd IEEE International
Symposium on Requirements Engineering, Jan. 1997, pp. 247–257.

[91] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis, “Telos: Representing
knowledge about information systems”, ACM Transactions on Information Sys-
tems, vol. 8, no. 4, pp. 325–362, 1990.

[92] K. S. Barber and T. J. Graser, “Requirements evolution and reuse using the sys-
tems engineering process activities (sepa)”, Australasian Journal of Information
Systems, vol. 6, no. 2, 1999.

[93] S. Anderson and M. Felici, “Controlling requirements evolution: An avionics case
study”, in Computer Safety, Reliability and Security, ser. Computer Safety, Relia-
bility and Security. Springer Science + Business Media, 2000, pp. 361–370.

[94] S. Anderson and M. Felici, “Quantitative aspects of requirements evolution”, in Pro-
ceedings 26th Annual International Computer Software and Applications, - 2002,
pp. 27–32.

105

BIBLIOGRAPHY

[95] D. Zowghi and V. Gervasi, “On the interplay between consistency, completeness,
and correctness in requirements evolution”, Information and Software Technology,
vol. 45, no. 14, pp. 993–1009, 2003.

[96] ——, “Erratum to "on the interplay between consistency, completeness, and cor-
rectness in requirements evolution"”, Information and Software Technology, vol. 46,
no. 11, pp. 763–779, 2004.

[97] N. A. Ernst, J. Mylopoulos, Y. Yu, and T. Nguyen, “Supporting requirements
model evolution throughout the system life-cycle”, in 2008 16th IEEE International
Requirements Engineering Conference, Sep. 2008, nil.

[98] N. A. Ernst, A. Borgida, and I. Jureta, “Finding incremental solutions for evolving
requirements”, in 2011 IEEE 19th International Requirements Engineering Con-
ference, Aug. 2011, nil.

[99] H. J. Levesque, “Foundations of a functional approach to knowledge representa-
tion”, Artificial Intelligence, vol. 23, no. 2, pp. 155–212, 1984.

[100] R. Ali, F. Dalpiaz, P. Giorgini, and V. E. S. Souza, “Requirements evolution: From
assumptions to reality”, in Enterprise, Business-Process and Information Systems
Modeling, ser. Enterprise, Business-Process and Information Systems Modeling.
Springer Science + Business Media, 2011, pp. 372–382.

[101] S. Ghaisas and N. Ajmeri, “Knowledge-assisted ontology-based requirements evolu-
tion”, in Managing Requirements Knowledge, ser. Managing Requirements Knowl-
edge. Springer Science + Business Media, 2013, pp. 143–167.

[102] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and Tech-
niques, 1st. Wiley Publishing, 1998.

[103] G. Ruhe and D. Greer, “Quantitative studies in software release planning under
risk and resource constraints”, in International Symposium on Empirical Software
Engineering, 2003, pp. 262–271.

[104] D. Greer and G. Ruhe, “Software release planning: an evolutionary and iterative
approach”, Inf. Softw. Technol., vol. 46, no. 4, pp. 243–253, Mar. 2004.

[105] O. Saliu and G. Ruhe, “Software release planning for evolving systems”, Innovations
Syst Softw Eng, pp. 189–204, 2005.

[106] T. L. Saaty, “How to make a decision: The analytic hierarchy process”, European
Journal of Operational Research, vol. 48, no. 1, pp. 9–26, 1990.

[107] A. Ngo-The and G. Ruhe, “A systematic approach for solving the wicked problem
of software release planning”, Soft Comput, vol. 12, no. 1, pp. 95–108, 2007.

[108] G. Du and G. Ruhe, “Two machine-learning techniques for mining solutions of the
releaseplanner™ decision support system”, Information Sciences, vol. 259, pp. 474–
489, 2014.

[109] Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data. Springer Science
& Business Media, 2012, vol. 9.

106

BIBLIOGRAPHY

[110] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie, “De-
pendency networks for inference, collaborative filtering, and data visualization”,
The Journal of Machine Learning Research, vol. 1, pp. 49–75, 2001.

[111] P. Baker, M. Harman, K. Steinhofel, and A. Skaliotis, “Search based approaches to
component selection and prioritization for the next release problem”, in 2006 22nd
IEEE International Conference on Software Maintenance, Sep. 2006, nil.

[112] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii”, IEEE Transactions on Evolutionary Computation,
vol. 6, no. 2, pp. 182–197, 2002.

[113] J. J. Durillo, Y. Zhang, E. Alba, and A. J. Nebro, “A study of the multi-objective
next release problem”, in 2009 1st International Symposium on Search Based Soft-
ware Engineering, May 2009, nil.

[114] J. J. Durillo, Y. Zhang, E. Alba, M. Harman, and A. J. Nebro, “A study of the
bi-objective next release problem”, Empirical Software Engineering, vol. 16, no. 1,
pp. 29–60, 2010.

[115] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, “Mocell: A cel-
lular genetic algorithm for multiobjective optimization”, International Journal of
Intelligent Systems, vol. 24, no. 7, pp. 726–746, 2009.

[116] H. Jiang, J. Xuan, and Z. Ren, “Approximate backbone based multilevel algorithm
for next release problem”, in Proceedings of the 12th annual conference on Genetic
and evolutionary computation - GECCO ’10, - 2010, nil.

[117] J. Xuan, H. Jiang, Z. Ren, and Z. Luo, “Solving the large scale next release prob-
lem with a backbone-based multilevel algorithm”, IEEE Transactions on Software
Engineering, vol. 38, no. 5, pp. 1195–1212, 2012.

[118] J. del Sagrado, I. M. del Aguila, and F. J. Orellana, “Ant colony optimization for
the next release problem: A comparative study”, in 2nd International Symposium
on Search Based Software Engineering, Sep. 2010, nil.

[119] N. Veerapen, G. Ochoa, M. Harman, and E. K. Burke, “An integer linear program-
ming approach to the single and bi-objective next release problem”, Information
and Software Technology, vol. 65, no. nil, pp. 1–13, 2015.

[120] A. Pitangueira, P. Tonella, A. Susi, R. Maciel, and M. Barros, “Risk-aware multi-
stakeholder next release planning using multi-objective optimization”, in REFSQ,
2016.

[121] T. Bedford and R. Cooke, “Probabilistic risk analysis: Foundations and methods”,
The Syndicate of the Press of University of Cambridge, 2001.

[122] J. B. Bowles, “The new sae fmeca standard”, in Reliability and Maintainability
Symposium, 1998. Proceedings., Annual, IEEE, 1998, pp. 48–53.

107

BIBLIOGRAPHY

[123] R. Fredriksen, M. Kristiansen, B. A. Gran, K. Stølen, T. A. Opperud, and T.
Dimitrakos, “The coras framework for a model-based risk management process”,
in Computer Safety, Reliability and Security, ser. Computer Safety, Reliability and
Security. Springer Science + Business Media, 2002, pp. 94–105.

[124] M. Feather, “Towards a unified approach to the representation of, and reasoning
with, probabilistic risk information about software and its system interface”, in 15th
International Symposium on Software Reliability Engineering, Nov. 2004, pp. 391–
402.

[125] N. Mayer, E. Dubois, and A. Rifaut, “Requirements engineering for improving
business/it alignment in security risk management methods”, in Enterprise In-
teroperability II, ser. Enterprise Interoperability II. Springer Science + Business
Media, 2007, pp. 15–26.

[126] R. Matulevicius, H. Mouratidis, N. Mayer, E. Dubois, and P. Heymans, “Syntactic
and semantic extensions to secure tropos to support security risk management”, J.
UCS, vol. 18, no. 6, pp. 816–844, 2012.

[127] H. Mouratidis and P. Giorgini, “Secure tropos: A security-oriented extension of the
tropos methodology”, Int. J. Soft. Eng. Knowl. Eng., vol. 17, no. 02, pp. 285–309,
2007.

[128] A. Siena, M. Morandini, and A. Susi, “Modelling risks in open source software
component selection”, in Conceptual Modeling, ser. Conceptual Modeling. Springer
Science + Business Media, 2014, pp. 335–348.

[129] D. Costal, L. López, M. Morandini, A. Siena, M. C. Annosi, D. Gross, L. Mén-
dez, X. Franch, and A. Susi, “Aligning business goals and risks in oss adoption”,
in Conceptual Modeling, ser. Conceptual Modeling. Springer Science + Business
Media, 2015, pp. 35–49.

[130] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Reasoning with goal
models”, in Conceptual Modeling - ER 2002, ser. Conceptual Modeling - ER 2002.
Springer Science + Business Media, 2002, pp. 167–181.

[131] A. van Lamsweerde, “Reasoning about alternative requirements options”, in Con-
ceptual Modeling: Foundations and Applications, ser. Conceptual Modeling: Foun-
dations and Applications. Springer Science + Business Media, 2009, pp. 380–397.

[132] A. K. Chopra, F. Dalpiaz, F. B. Aydemir, P. Giorgini, J. Mylopoulos, and M. P.
Singh, “Protos: Foundations for engineering innovative sociotechnical systems”, in
2014 IEEE 22nd International Requirements Engineering Conference (RE), Aug.
2014, nil.

[133] M. P. Singh, “Semantical considerations on dialectical and practical commitments.”,
in AAAI, vol. 8, 2008, pp. 176–181.

[134] R.-J. Back and J. Wright, Refinement calculus: a systematic introduction. Springer
Science & Business Media, 2012.

108

BIBLIOGRAPHY

[135] A. J. I. JONES and M. SERGOT, “A formal characterisation of institutionalised
power”, Logic Journal of IGPL, vol. 4, no. 3, pp. 427–443, 1996.

[136] V. E. S. Souza, “An Experiment on the Development of an Adaptive System based
on the LAS-CAD—Incomplete Version1”, DISI, University of Trento, Tech. Rep.,
2012.

[137] A. K. Chopra and M. P. Singh, “Colaba: Collaborative design of cross-organizational
processes”, in 2011 Workshop on Requirements Engineering for Systems, Services
and Systems-of-Systems, Aug. 2011, pp. 36–43.

[138] M. P. Singh, “Norms as a basis for governing sociotechnical systems”, TIST, vol. 5,
no. 1, pp. 1–23, 2013.

[139] M. P. Georgeff and A. L. Lansky, “Reactive reasoning and planning.”, in AAAI,
vol. 87, 1987, pp. 677–682.

[140] G. Gans, M. Jarke, S. Kethers, and G. Lakemeyer, “Modeling the impact of trust
and distrust in agent networks”, in Proc. of AOIS’01, 2001, pp. 45–58.

[141] F. B. Aydemir, P. Giorgini, J. Mylopoulos, and F. Dalpiaz, “Exploring alternative
designs for sociotechnical systems”, in 2014 IEEE Eighth International Conference
on Research Challenges in Information Science (RCIS), May 2014, pp. 1–12.

[142] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos, “Integrating preferences
into goal models for requirements engineering”, in 2010 18th IEEE International
Requirements Engineering Conference, Sep. 2010, nil.

[143] D. S. Weld, “Recent advances in {AI} planning”, AI Magazine, vol. 20, no. 2, p. 93,
1999.

[144] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing requirements”,
IEEE Softw., vol. 14, no. 5, pp. 67–74, 1997.

[145] K. Regan and C. Boutilier, “Regret-based reward elicitation for markov decision
processes”, in Proceedings of the Twenty-Fifth Conference on Uncertainty in Ar-
tificial Intelligence, ser. UAI ’09, Montreal, Quebec, Canada: AUAI Press, 2009,
pp. 444–451.

[146] A. Gerevini and D. Long, “Plan constraints and preferences in pddl3”, The Lan-
guage of the Fifth International Planning Competition. Tech. Rep. Technical Re-
port, Department of Electronics for Automation, University of Brescia, Italy, vol. 75,
2005.

[147] J. Horkoff and E. Yu, “Analyzing goal models”, in SAC, 2011.

[148] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. N. och Dag, “An
industrial survey of requirements interdependencies in software product release
planning”, in IEEE International Symposium on Requirements Engineering, 2001,
pp. 84–91.

109

BIBLIOGRAPHY

[149] C. Barrett, P. Fontaine, and C. Tinelli, “The SMT-LIB Standard: Version 2.5”, De-
partment of Computer Science, The University of Iowa, Tech. Rep., 2015, Available
at www.SMT-LIB.org.

[150] J. Horkoff, E. Yu, and L. Liu, “Analyzing trust in technology strategies”, in Inter-
national Conference on Privacy, Security and Trust, 2006.

[151] A. P. Sage and Y. Y. Haimes, Risk modeling, assessment, and management. John
Wiley & Sons, 2015.

[152] G. Roy and T. Woodings, “A framework for risk analysis in software engineering”,
in Proceedings Seventh Asia-Pacific Software Engeering Conference. APSEC 2000,
Dec. 2000, pp. 441–445.

[153] S. Cornford, M. Feather, V. Heron, and J. Jenkins, “Fusing quantitative require-
ments analysis with model-based systems engineering”, in 14th IEEE International
Requirements Engineering Conference (RE’06), Sep. 2006, nil.

[154] E. Paja, F. Dalpiaz, and P. Giorgini, “Modelling and reasoning about security
requirements in socio-technical systems”, Data & Knowledge Engineering, vol. 98,
no. nil, pp. 123–143, 2015.

[155] L. Liu, E. Yu, and J. Mylopoulos, “Security and privacy requirements analysis
within a social setting”, in Journal of Lightwave Technology, Sep. 2003, pp. 151–
161.

[156] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone, “Requirements engi-
neering for trust management: Model, methodology, and reasoning”, International
Journal of Information Security, vol. 5, no. 4, pp. 257–274, 2006.

[157] T. Wetzel, States of affairs, http://plato.stanford.edu/archives/fall2008/
entries/states-of-affairs/, Last accessed Fri Jan 29 13:40 2016, 2003.

[158] L. Duboc, E. Letier, and D. S. Rosenblum, “Systematic elaboration of scalabil-
ity requirements through goal-obstacle analysis”, IEEE Transactions on Software
Engineering, vol. 39, no. 1, pp. 119–140, 2013.

[159] P. A. Koen, “The fuzzy front end for incremental, platform and breakthrough
products and services”, PDMA Handbook, pp. 81–91, 2004.

[160] P. Feiler, J. Goodenough, R. Linger, T. Longstaff, R. Kazman, M. Klein, L. Northrop,
and K. Wallnau, “Ultra-large-scale systems the software challenge of the future”,
Software Engineering Institute, Carnegie Mellon University, Tech. Rep., 2006.

110

