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Università degli Studi di Verona

January 12, 2018





Doctoral thesis in Mathematics
Joint doctoral programme in Mathematics, 30th cycle
Department of Mathematics, University of Trento
Department of Computer Science, University of Verona
Academic year 2017/18
Supervisor: Peter Schuster, University of Verona

Trento, Italy
January 12, 2018



Abstract

Maximality principles such as the ones going back to Kuratowski and Zorn ensure the
existence of higher type ideal objects the use of which is commonly held indispensable for
mathematical practice. The modern turn towards computational methods, which can be
witnessed to have a strong influence on contemporary foundational studies, encourages a
reassessment within a constructive framework of the methodological intricacies that go along
with invocations of maximality principles.

The common thread that can be followed through the chapters of this thesis is explained
by the attempt to put the widespread use of ideal objects under constructive scrutiny. It
thus walks the tracks of a revised Hilbert’s programme which has inspired a reapproach to
constructive algebra by finitary means, and for which Scott’s entailment relations have already
shown to provide a vital and utmost versatile tool.

In this thesis several forms of the Kuratowski-Zorn Lemma are introduced and proved
equivalent over constructive set theory; the notion of Jacobson radical is brought from com-
mutative rings to a general ideal theory for single-conclusion entailment relations; a flexible
conservation criterion of Scott for multi-conclusion entailment relations is put into action;
elementary and constructive variants for algebraic extension theorems such as Sikorski’s on
the injectivity of complete atomic Boolean algebras are phrased and proved in terms of entail-
ment relations; and a point-free version of Sikora’s theorem on spaces of orderings of groups
is obtained by a revisitation with syntactical means of some of the classical criteria for groups
to be orderable.
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Preface

Maximality principles such as the ones going back to Kuratowski and Zorn stipulate the existence
of higher type ideal objects without so much as accounting for an effective procedure to bear
witness. This concerns a commonplace lack of computational justification which forces a strong
ontological commitment, yet prevents any means of epistemic access. Throughout mathematics,
typical examples arise from the alleged need for totality where partiality abounds, e.g., if maps
are to be extended from sub- to ambient structures in a coherent manner, the classical solution
to which may sometimes nearly be held to ridicule the intuitive and ‘procedural’ concept of a
function. If taking a rather practical stance, one is confronted with foundational issues that are
inherently difficult to address.

Needless to say, this describes unfounded worries from a classical point of view. But even a
finitist adversary might vindicate all this quickly, presumably on the grounds of deeming those
ideal objects to be mere fictions. Yet the sheer amount of deep results obtained by ideal methods,
generations worth of achievements, and last but not least everyday curricula can hardly be denied,
disregarded, or overruled—all of which reinforces a commonly held belief that ideal objects are
indispensable for mathematical practice: be it for a far-reaching development of contemporary
abstract algebra, or even to address matter-of-fact questions stemming from an economic theory
of preferences. But then again, dropping the subject on the former, whether ideal methods should
have found their way into the latter discipline might very well be worth an argument.

I hasten to add, with all due emphasis, that this thesis does not set out to do away with
misconceptions, and it does not intend to clarify conclusively whether the above rests on a mis-
conception at all. Nor does it advocate a large-scale reapproach. But the overall turn towards
computational methods, which today can be witnessed to have a strong influence on the founda-
tions of mathematics, seems to encourage a reassessment of the methodological intricacies that
go along with invocations of maximality principles in a constructive framework. It is here that
some steps shall be taken. The common thread which can be followed through the chapters of this
thesis is explained by the attempt to put the widespread use of ideal objects under constructive
scrutiny.

Genesis and context

The studies that have led to this thesis took motivation from Bell’s [33] dictum that the Kuratowski-
Zorn lemma (henceforth KZL) be “constructively neutral”—as opposed to the Axiom of Choice,
which has long been known to be incompatible with intuitionistic logic—along with a methodolog-
ical discussion and an assessment that deems KZL to be of comparatively little use unless applied
in a classical setting. It appeared reasonable that a similar analysis could be bestowed upon
Raoult’s principle of Open Induction, which in recent times has caused an attentional shift [36, 73,
223]. Eventually, such an analysis has not been carried out thoroughly, yet to a large extent the
later development of this thesis can be traced back as to have originated in this context. It stems
from the endeavour to rephrase several prominent applications of KZL (e.g., characterizations of
injective objects, and orderability criteria for algebraic structures) in a manner which puts strong
emphasis on constructions which sometimes are lurking in the background; and which allows to
unveil their computational underpinning, if at least from a liberal, non-formal point of view.
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Preface

With its aims declared, this thesis walks on the tracks of a revised Hilbert’s programme [243,
257] which has inspired a reapproach to constructive algebra by finitary means [94], and for which
Scott’s entailment relations [229] have already shown to provide a vital and utmost versatile tool
([62, 82]; see Chapter 3 for a wealth of references, and Chapter 4 for a thorough introduction).
The notion of ideal element, which above has already been insinuating Hilbert’s terminology, will
here be understood as model of an entailment relation. While we cannot circumvent transfinite
methods in order to assert the existence of such an object in general, it could well be argued
that entailment relations are “couched in cognitively accessible terms” [126]. They allow for a
replacement of ideal semantics, which more often than not necessitates classical reasoning, in a
direct manner by formal, syntactical correspondents. For instance, rather than resorting to model
existence principles, we aim at asserting consistency, and at providing an elementary proof for any
claim of the latter. It is then tempting to say that we obtain constructive versions of classical
theorems. Surely it is in order to quote Coquand and Lombardi [82], the work of whom has had
an unmistakable influence on this thesis:

“When we say that we have a constructive version of an abstract algebraic theorem,
this means that we have a theorem the proof of which is constructive, which has a clear
computational content, and from which we can recover the usual version of the abstract
theorem by an immediate application of a well classified non-constructive principle.”

The development of this thesis considerably owes to joint work with Peter Schuster and Davide
Rinaldi, and it naturally reflects on its content and structure, about which will be reported in the
following.

Content and structure

Chapter 1 is based on joint work with Schuster [224]. Here we single out an immediate con-
sequence of the Kuratowski-Zorn Lemma KZL, from which quite a few abstract extension
theorems can be deduced more directly, save certain definitions by cases. In Section 1.3 we
demonstrate that our General Extension Theorem (GET) is equivalent to a suitable form
of KZL over constructive set theory CZF, which we take from unpublished work by Aczel
[6]. In Section 1.5 we discuss a variety of induction principles that take serious the one-step
extension principle [33] which is at the heart of many an application of KZL in algebraic
contexts.

Chapter 2 is based on joint work with Schuster [225]. This chapter has experimental charac-
ter: by analogy, we generalize a concept of extension narrower than simple containment
from the theory of quasi-orders, where this is common and indeed inevitable, to an abstract
ideal theory for single-conclusion entailment relations; the ideals are the subsets saturated
with respect to the corresponding algebraic closure operators. A proof pattern called Zorn
Scheme that over constructive set theory derives from Raoult’s principle of Open Induction
(Section 2.2.2) then prompts variants of Lindenbaum’s Lemma in Section 2.3.2, and helps
to describe the intersection of all complete ideals above a given ideal in a computationally
meaningful way. To this end in Section 2.3.3 we carry over from commutative ring theory
a point-free version of the Jacobson radical, which moreover prompts a syntactical counter-
part of Lindenbaum’s Lemma. In Section 2.4, our results turn out to have applications in
commutative algebra, lattice theory, formal logic and order theory; the running example is
in fact the deducibility relative to intuitionistic and classical logic. In Section 2.5 we finally
relate all this to multi-conclusion entailment relations, which thus leads over to the following
chapter.

Chapter 3 is a main pillar of this thesis. It concentrates on the interplay of single- and multi-
conclusion entailment relations, and is based on joint work with Rinaldi and Schuster [209,
210]. We show how a fairly general syntactical conservation theorem that covers plenty of the
semantic approaches to conservation follows from a versatile criterion due to Scott (Lemma
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3.3). We work with multi-conclusion entailment relations as extending single-conclusion
entailment relations. Additional axioms with disjunctions in positive position can be elim-
inated by reducing them to the corresponding disjunction elimination rules, which in turn
prove admissible in a wealth of mathematical instances. In deduction terms this means to
fold up branchings of proof trees by way of properties of the relevant mathematical struc-
tures. Applications in Section 3.4 include syntactical counterparts of the theorems or lemmas
known under the names of Artin-Schreier, Krull-Lindenbaum and Szpilrajn, as well as of the
spatiality of coherent locales.

Chapter 4 continues by addressing further aspects of Scott multi-conclusion entailment relations,
and may as well be considered an introduction to the second part of this thesis. We discuss
the Completeness Theorem (CT) for entailment relations along with a few of its consequences,
and explain some limitations of the semantic method over CZF. For instance, we show that
CT necessitates classical logic (Corollary 4.15). To give an idea of the line of reasoning
employed in the remaining chapters, the reader will find a first and thorough case study on
paths as ideal objects in Section 4.5. What need be taken from this chapter is the technique
of adequate and hereditary predicates introduced in Section 4.4, which can help to provide
concrete, non-inductive descriptions for inductively generated entailment relations, as well
as the concept of an atomic conjunction (Definition 4.23), which brings the lattice-theoretic
notion of an atom to the context of entailment relations.

Chapter 5 gives an account of inverse limits as spectra of suitable entailment relations. This
chapter takes its main motivation from an idea of Rinaldi, and grew out of our joint endeavour
to find a constructive version of Sikorski’s extension theorem. In Section 5.2.1 we first discuss
a specific entailment relation the ideal elements of which are choice functions. Putting
additional axioms on top of this entailment relations leads to a formal description of inverse
limits as spectra in Section 5.2.2. After a brief introduction to the main concepts of universal
algebra in Section 5.3, we are ready to prove an elementary and constructive version of
the fact that profinite algebras are pure-injective objects in their corresponding categories
(Theorem 5.32).

Chapter 6 is based on joint work with Rinaldi and puts together our manuscripts [212, 213]. By
employing entailment relation, we are able to turn Sikorski’s extension theorem, the most
general form of which states that every complete Boolean algebra is an injective object in
the category of distributive lattices, into a constructive and syntactical conservation result
(Proposition 6.15). Moreover, a slight modification then leads to an elementary version of
Monteiro’s theorem [20, 182] in Section 6.5.3, regarding extension of dominated maps. With
respect to the latter, we introduce the concept of reductive lattices in Section 6.33. This
allows to give a conservation criterion for the corresponding entailment relation of bounded
lattice map.

Chapter 7 is based on [254], in which attention is turned to ordered algebraic structures. The
classical criterion for a group to be orderable will here be given a constructive equivalent in
terms of a consistency statement for a suitable entailment relation. We hasten to add that
group orderability has long been considered in the context of entailment relations, ever since
their applicability for constructive algebra has been pointed out [79]. On the one hand, the
contribution consists of a slight but straightforward generalization to arbitrary groups. In
the abelian case this leads to a constructive version of Levi’s theorem that an abelian group
is linearly orderable if and only if it is torsion-free (Proposition 7.10). On the other hand,
prompted by Cederquist and Coquand’s fundamental theorem for entailment relations, in
Section 7.4 we develop a finitary and point-free version of Sikora’s theorem [235], which
asserts that the space of orderings of Zn(n > 1) is a Cantor space. The classical counterpart
will be reobtained in Section 7.6.

Chapter 8 concludes the main part of this thesis with several perspectives, and points out some
directions which future developments may take. Naturally, the content of this chapter does
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not intend to give a definitive account. We break the symmetry of entailment relations
and allow for arbitrary sets of succedents. This requires us to explain a conditional form of
model existence as well as a general form of completeness under additional hypotheses on the
entailment relation. To build a bridge between the first and the final chapter, in Section 8.2
we further give an elementary—yet classically equivalent—form of Baer’s criterion, along
with several applications, the proofs of which to a definite extent are extracted from the
classical ones. This provides an occasion to reevaluate the example discussed before in
Section 5.3.1.

Chapter 9 is based on joint work with Schuster, and presents our publication [226]. We take
a new approach to the notion of Suzumura consistency, which is known as a sufficient and
necessary condition for a binary relation to have an order extension. We advocate the use
of equivalent but negation-free forms of Suzumura consistency and of the related notion of
compatible extension. From a methodological perspective, our proposals enable to work
more abstractly, in the algebra of relations, and to give more direct proofs. To illustrate this
we reconsider various forms and proofs of the order extension principle. As a complement
in Section 9.8.4 we adopt to quasi-orders Bell’s argument that Gödel–Dummett logic is
necessary for order extension. Even though this chapter represents a digression in view of
the preceding content, all this gave rise to the development of Chapter 2, and provided us
with an example for a non-conservative extension in Chapter 3, whence it is included here.

This dissertation is cumulative and based on several self-contained manuscripts. This has the
perhaps favourable effect that its chapters can be read almost independently and in any order,
except that after Chapter 4 we do not give an introduction to entailment relations all over again.
Therefore, before taking a look at Chapters 5, 6, 7, and 8, it is recommendable to throw a glance
at Chapter 4 first, which is meant to provide useful tools, and which intends to serve as a belated
but thorough introduction to this later part of the thesis. In particular, we will use adequate and
hereditary predicates repeatedly in order to characterize inconsistent subsets, and decisive subsets,
which will also be introduced in Chapter 4, are central for the purpose of Chapter 7.

Method and foundations

We work in constructive set theory CZF [3–5, 7, 8] which is based on intuitionistic logic and
provides a framework for the development of Bishop-style constructive mathematics [41, 181].
Due to this methodological choice, certain assumptions sometimes have to be made explicit that
otherwise, i.e., in classical Zermelo-Fraenkel set theory (ZF) would be trivial. For instance, a set
S is discrete if

∀x, y ∈ S (x = y ∨ x 6= y );

and a subset T of a set S is detachable if

∀x ∈ S (x ∈ T ∨ x /∈ T ).

These are instances of the restricted principle of excluded middle (REM)

ϕ ∨ ¬ϕ

where ϕ is a bounded formula, i.e., one in which all quantifiers occur only in one of the forms
∃x ∈ y or ∀x ∈ y. We make use of class notation and terminology [7] throughout. A class is
said to be predicative [7] if it can be defined by a bounded formula. All classes in Chapter 1 are
supposed to be predicative; this assumption can be relaxed in Chapter 2. Given a class E , a partial
order of E is a subclass 6 of E × E that satisfies the usual axioms of a partial order: reflexivity,
transitivity, antisymmetry. For instance, if S is a set, then the class Pow(S) of all subsets of S is
partially ordered by the subset relation. Crucially, CZF promotes a predicative setting and does
not postulate the Powerset axiom! However, recall that CZF has Exponentiation, i.e., if S and
T are sets, then so is the class of all functions f : S → T . It follows that if S is a set, then the
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class Fin(S) of all finite subsets of S is a set as well. Here, a set S is finite if there is n > 0 and
a surjective function { 1, . . . , n } → S.1 Sometimes we write U ⊆f S in order to assert that U is a
finite subset of a set S.

In the following, whenever we write that a certain principle holds classically, then we mean that
REM is adopted in order to prove the implication in question; in other words, we thus work in CZF+
REM, which theory proves the same theorems as ZF does [7, Corollary 4.2.8]. Similarly, whenever
we require principles beyond CZF, e.g., the Completeness Theorem for entailment relations (CT),
then this will be indicated appropriately.

Axioms

For the reader’s convenvience and sake of reference, we briefly recall the axioms and axiom schemes
of constructive set theory CZF. The language of CZF is the first–order language of ZF with the
non–logical symbols ∈ and =. The logical symbols are all the intuitionistic operators ⊥, ∧, ∨, →,
∃, and ∀. In particular, ¬ϕ is defined as ϕ→⊥. A formula of CZF is bounded or is a ∆0–formula
if all occurring quantifiers are bounded, i.e., of the form ∃x ∈ y or ∀x ∈ y, where ∃x ∈ y ϕ and
∀x ∈ y ϕ stand for ∃x (x ∈ y ∧ ϕ) and ∀x (x ∈ y → ϕ), respectively. In addition to the axioms
for intuitionistic first–order logic with equality, the axioms of CZF are the following set–theoretic
axioms and axiom schemes [3–5, 7, 8].

1. Extensionality
∀a ∀b (∀y (y ∈ a↔ y ∈ b) → a = b)

2. Pair
∀a∀b∃x∀y (y ∈ x ↔ y = a ∨ y = b)

3. Union
∀a∃x∀y (y ∈ x ↔ ∃z ∈ a (y ∈ z))

4. Bounded Separation
∀a∃x ∀y (y ∈ x ↔ y ∈ a ∧ ϕ(y))

for every ∆0–formula ϕ (y) in which x is not free.

5. Subset Collection

∀a ∀b∃c∀u (∀x ∈ a ∃y ∈ bϕ(x, y, u) →
∃d ∈ c (∀x ∈ a ∃y ∈ dϕ(x, y, u) ∧ ∀y ∈ d∃x ∈ aϕ(x, y, u)))

for every formula ϕ(x, y).

6. Strong Collection

∀a (∀x ∈ a∃y ϕ(x, y) →
∃b (∀x ∈ a ∃y ∈ b ϕ(x, y) ∧ ∀y ∈ b∃x ∈ aϕ(x, y)))

for every formula ϕ(x, y).

7. Strong Infinity
∃a (Ind (a) ∧ ∀b (Ind (b)→ ∀x ∈ a (x ∈ b)))

where the following abbreviations are used:

Empty(y) for ∀z ∈ y ⊥ ,

Succ(x, y) for ∀z (z ∈ y ↔ z ∈ x ∨ z = x) ,

Ind(a) for ∃y ∈ aEmpty(y) ∧ ∀x ∈ a ∃y ∈ aSucc(x, y) .

1 For the sake of a slicker wording we thus deviate from the prevalent terminology of constructive mathematics
and set theory [7, 8, 40, 41, 169, 181]: (1) to call ‘subfinite’ or ‘finitely enumerable’ a finite set in the sense above,
i.e., a set T for which there is a surjection from {1, . . . , n} to T for some n ≥ 0; and (2) to reserve the term ‘finite’
to sets which are in bijection with {1, . . . , n} for a necessarily unique n ≥ 0.
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8. Set Induction
∀a (∀x ∈ aϕ(x) → ϕ(a)) → ∀aϕ(a)

for every formula ϕ(x).

The axiom schema of Replacement

∀x ∈ a∃!yϕ(x, y) → ∃b∀y ( y ∈ b ↔ ∃x ∈ aϕ(x, y) )

for all formulae ϕ(x, y), where b is not free in ϕ(x, y), is a consequence of Strong Collection.
Myhill’s axiom of Exponentiation (Exp) [186] is a consequence of Subset Collection.

From CZF we can extend to Intuitionistic Set Theory IZF if we allow for unbounded separation
and postulate the Powerset Axiom [7, 30]. We obtain classical Zermelo-Fraenkel set theory ZF by
further admitting the (unbounded) principle of excluded middle.

Most of what follows is likely to be formalizable in a weaker fragment of CZF, e.g., in Elemen-
tary Constructive Set Theory ECST [7], potentially strengthened by the Finite Powers Axiom
(FPA), which states that for every set A and for each x ∈ ω, the class of all functions x→ A is a
set [7]; here ω denotes the set of natural numbers (the smallest inductive set, provided for by the
axiom of Strong Infinity). Another viable option would be to strengthen ECST with Exp, which
results in a subtheory of CZF [7]. However, we adopt an intuitive understanding of constructive
set theory; moreover, our main focus will not be on determining the strength of new principles
over CZF, but on providing constructive and elementary versions of classical theorems. Therefore,
with the exception of Chapter 4, we favor to work over CZF rather than over a potential fragment,
even if this may cause a slight loss of generality.

In order to apply a result of Aczel in Chapter 4, we have to go beyond CZF and postulate
DC + uREA. DC denotes the axiom of Dependent Choice which states that for all sets a and
set relations R ⊆ a× a, if R is total, i.e., if

∀x ∈ a∃y ∈ a xRy

and a0 ∈ a, then there exists a function f : ω → a such that f(0) = a0 and

∀n ∈ ω f(n)Rf(n+ 1).

We use infix notation, i.e., xRy stands for (x, y) ∈ R. uREA is a variant of the Regular Extension
Axiom (REA). Recall that a set A is transitive if ∀x ∈ A∀y ∈ x y ∈ A. A set A is said to be
regular if it is inhabited, transitive, and for any u ∈ A and every total relation R ⊆ u × A there
exists v ∈ A such that

∀x ∈ u∃y ∈ v xRy ∧ ∀y ∈ v ∃x ∈ uxRy.

REA is the principle that every set is a subset of a regular set. It was introduced to accomodate
inductive definitions in CZF [3, 5, 7]. Among several variants [203] of REA there is uREA, which
states that every set is a subset of a union-closed regular set [2], i.e., a regular set A such that,
for every set a, if a ∈ A then

⋃
a ∈ A.
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9.8.4 From Order Extension to Gödel–Dummett Logic . . . . . . . . . . . . . . . 166
9.8.5 Further directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xiv



Contents

Bibliography 169

xv





Chapter 1

A general extension theorem for
directed-complete partial orders

This chapter is based on [224].

1.1 Introduction

An invocation of the Kuratowski-Zorn Lemma (KZL) [159, 259] often takes place within an indirect
proof of a universal statement. Supposing towards a contradiction that there be any counterexam-
ple, the maximal counterexample provided by KZL helps—by what Bell calls “one-step extension
argument” [33]—to the desired contradiction. Crucially though, this one-step argument does not
depend on maximality, and in fact a more general method is hovering in the background, which
a priori is not limited to hypothetical counterexamples only. An alternative approach thus seems
desirable which at once is more affirmative inasmuch as it really focuses on the one-step argu-
ment, but still is in the spirit of KZL. To this end, we distill a general extension theorem (GET) for
directed-complete partial orders, the intended meaning being that the poset under consideration
consists of partial extensions of which one is to be proved total. The principal hypothesis of GET
encodes the one-step argument which can also be found in proofs of specific extension theorems
such as the ones going back to Hahn and Banach: that every partial extension can be extended by
any potential element of its domain—which, of course, is impossible for any maximal extension.
As compared with the typical indirect proof by KZL of such an extension theorem, GET allows for
a fairly direct proof relative to a certain type of definition by cases. This is possible because GET
already postulates the existence of a total extension rather than a maximal one.

In this chapter we proceed as follows. First, in Section 1.2, we explain the concept of an ex-
tension pattern on a partially ordered class, and we provide several elementary examples. Then,
in Section 1.3, we phrase our general extension principle GET and prove it equivalent over con-
structive set theory CZF both to a certain variant of the Hausdorff Maximal Principle as well as
to a form of KZL which is suitable for CZF. In Section 1.4 we focus on a specific application from
module theory, obtaining a classical proof of Baer’s criterion by means of GET. Finally, we obtain
from GET a classically equivalent induction principle in Section 1.5.

We make use of class notation and terminology [7], notably when it comes to phrasing KZL
over CZF. A class is said to be predicative [7] if it can be defined by a bounded formula. In this
chapter, by a class we will invariably mean a predicative class. We denote classes by script letters.
Given a (predicative) class E , a partial order of E is a (predicative) subclass 6 of E × E that
satisfies the usual axioms of a partial order: reflexivity, transitivity, antisymmetry. For instance,
if S is a set, then the class Pow(S) of all subsets of S is partially ordered by the subset relation.
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1.2 Extension

Typically, when attempting to prove an extension theorem, e.g. in case of the Hahn-Banach the-
orem, an application of KZL takes the following form. Given a map f : Y → Z and Y ⊆ X, we
are asked for an extension of f , i.e., another map g : X → Z for which f(x) = g(x) for all x ∈ Y .
When structural properties need to be preserved, this rarely is a trivial task, but a way out is
provided by KZL. So one considers the collection E of intermediate extensions of f , and proceeds
by showing E to be closed under unions of directed subsets. Due to KZL, the directed-complete
partially ordered set E then has a maximal element, and a “one-step extension argument” [33]
helps to the desired conclusion that the maximal element indeed has domain X. This one-step
argument is captured by what Bell calls the extension principle for a family E of partial functions
on a set X:

∀x ∈ X ∀f ∈ E ∃g ∈ E ( f ⊆ g ∧ x ∈ dom(g) ).

Under this extension principle, if f is a maximal element of E, then in fact dom(f) = X, which is
to say that f is total.

Example 1.1. Let R be a relation with dom(R) = X, and let E be the set of subfunctions of
R. If the domain dom(f) is a detachable subset of X whenever f ∈ E, then a simple definition
by cases allows for an extension principle for E [33]. For let f ∈ E and x ∈ X. If x ∈ dom(f),
then an extension g of f by x is trivially given by g = f ; and in case of x /∈ dom(f) we may set
g = f ∪ { (x, y) } for any y such that (x, y) ∈ R. On the other hand, KZL applies to E and thus
gives a subfunction of R with the same domain. This is how AC (appropriately formulated and
with classical reasoning) may be deduced from KZL with the aid of an extension principle.

If EP denotes the assertion that for every relation R there is an extension principle for the
set of subfunctions of R, then KZL+EP entails AC in CZF. As is well known [7, 8, 101, 122], AC
implies REM. While KZL is “constructively neutral” [33], it is EP which implies REM [33].

The situation one encounters may change, but the overall strategy with KZL remains quite the
same, if only there is a one-step argument at hand.1 We are thus led to rephrase Bell’s extension
principle in a somewhat more general fashion.

Definition 1.2. Let (E ,6) be a partially ordered class. An extension pattern (X ,) on E is
given by a class X together with a class relation  ⊆X × E satisfying the extension property

∀x ∈X ∀e ∈ E ∃e′ ∈ E
(
e 6 e′ ∧ x  e′

)
.

An element e of E is said to be total if

∀x ∈X (x  e ).

We use extension data as a name for the elements of X .

The intended meaning of an extension pattern is best explained in analogy with Bell’s principle
for a family of functions. Where the latter keeps track of the domain of a function, general
extension data x ∈ X are related to elements e ∈ E in a similar manner but by means of an
arbitrary relation .2

Lemma 1.3. Let E be a partially ordered class. If e ∈ E is maximal, then e is total for every
extension pattern (X ,) on E .

Proof. Let e ∈ E be maximal and let x ∈ X . Then there is e′ ∈ E with e 6 e′ and x  e′. Since
e is maximal, we actually have e = e′, hence x  e. Therefore x  e for all x ∈ X which means
that e is total.

1While to our knowledge a one-step argument was made explicit first by Szpilrajn [242], more recent explicit
occurrences include [192], of course on top of [33].

2Our choice of notation follows the one for Sambin’s Basic Pairs [219] by which is meant a relation  between
sets X and S.
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Example 1.4. Let E be a set of partial functions on a set X. This E is a poset, naturally ordered
by inclusion. Consider every element x of X as extension data and define  by

x  e iff x ∈ dom(e).

Bell’s extension principle says that this is an extension pattern. However, for this to go through
constructively, in general we need dom(e) to be a detachable subset of X for every e ∈ E. In fact,
this is the prime example of an extension pattern, and one encounters it under various circum-
stances once one sets out to capture specific one-step principles in terms of extension patterns.

Example 1.5 (“Trivial Pattern”). Let E be a partially ordered class. By stipulating X = ∅ we
get an extension pattern for which all elements e ∈ E are total. In particular, if E is a partially
ordered class with extension pattern, then the collection of all total elements need not form a set.
Furthermore, total elements need not be maximal.

Example 1.6 (“Maximal Pattern”). Let E be a partially ordered class with decidable partial
order. This E works as a class of extension data for itself by way of a definition by cases:

x  e iff (x > e→ x = e) and e′ =

{
x if x > e

e otherwise

for all x, e ∈ E . We then indeed have the extension property

e 6 e′ and x  e′.

In fact, if x > e, then e′ = x and thus x  e′; if x � e, then e′ = e and thus again x  e′. With
respect to the relation , the total elements for this pattern are precisely the maximal ones.

Example 1.7. Recall that a partially ordered class E is said to be directed if every pair of elements
has an upper bound, i.e.,

∀x ∈ E ∀y ∈ E ∃e ∈ E
(
x 6 e ∧ y 6 e

)
.

Consider this as extension property for the pattern on E which is defined by again taking E to be
a class of extension data for itself and stipulating

x  e iff x 6 e.

An element e of E is total for this pattern if and only if e is the greatest element of E .

1.3 Equivalence

Let (E ,6) be a partially ordered class. From now on, by a directed subset in E we understand
an inhabited subset D of E such that every pair of elements of D has an upper bound in D. We
say that E is a directed-complete partially ordered class, for short a dcpo, if E is such that every
directed subset D of E has a least upper bound

∨
D ∈ E [2, 7]. Most dcpo’s under consideration

in this context are made of certain subsets of a fixed set, ordered by inclusion, for which suprema
of directed families simply are unions. A dcpo E is said to be set-generated if there is a subset G
of E such that, for every e ∈ E ,

Ge = { g ∈ G : g 6 e }

is a directed set with ∨
Ge = e.

Remark 1.8. A directed-complete partially ordered set E is set-generated, of course: take G = E.
Conversely, if we admit the Powerset axiom, if G is a generating set for a dcpo E , then the class
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Pow(G) of all subsets of G is a set, and so is the class D(G) of all directed subsets of G. Then,
still with the Powerset axiom, being the surjective image of a function

D(G)→ E , D 7→
∨
D,

we see that a set-generated dcpo E is a set.

One of the suitable forms of KZL over constructive set theory reads as follows [6].

KZL Every inhabited set-generated dcpo has a maximal element.

An extension pattern is hidden in many an indirect proof of an extension theorem by KZL,
which provides a maximal element that in fact proves total. With our General Extension Theorem
we extract the essence of this method.

GET Every inhabited set-generated dcpo with extension pattern has a total element.

Proposition 1.9. KZL implies GET.

Proof. Lemma 1.3.

By contrast, total elements for an extension pattern need not be maximal, as was seen above
with the trivial pattern in Example 1.5. The notions of totality and maximality hence do not
necessarily coincide—unlike maximality, totality may depend on the pattern.

More often than not, there is an explicit method available, the application of which provides
an extension e′ of a given element e of E by arbitrary extension data x ∈ X . We denote this
extension e′ by f(x, e); indeed, we then have a class function

f : X × E → E

satisfying the condition

∀x ∈X ∀e ∈ E
(
e 6 f(x, e) ∧ x  f(x, e)

)
.

We say that an extension pattern as such is functional. Whether or not a pattern is functional
solely depends on how extension data relate to elements e ∈ E , i.e., f is not to be considered as
an addendum to the definition of extension pattern, even though we could have demanded it in
the first place.3 It rather is a requirement on how X and  capture the one-step argument.

Example 1.10. Let E be an ω-dcpo [11], i.e., a directed-complete partially ordered set such
that every countable ascending sequence { en }n∈N in E has a least upper bound, and let e0 be
a distinguished element of E. Let (X,, f) be a functional extension pattern on E which is
monotone, insofar as that

∀x ∈ X ∀e, e′ ∈ E (x  e ∧ e 6 e′ → x  e′ ).

We did not stipulate this property as part of our definition of extension pattern, but it appears
to be a rather natural condition: think of E as being ordered by extension, e.g. in case of a poset
of partial functions, then extents should step-wise increase along with extension. Now, for every
sequence α : N→ X there is e ∈ E such that

∀n ∈ N (α(n)  e ).

3It is interesting to note that the resulting principle fGET applies such as to convert every extension pattern
into a functional one. However, to code additional information into extension data requires a certain definition by
cases. Below we give an argument that shows GET and fGET constructively equivalent.

4



1.3. Equivalence

This is because we may define

e1 = f(α(0), e0)

...

en+1 = f(α(n), en)

and take e =
∨
{ en }n∈N, for which we then have

{α(n) : n ∈ N } ⊆ { x ∈ X : x  e } .

In particular, if α is surjective, then this e is total for the pattern. To put it in a nutshell, if E is
an (inhabited) ω-dcpo, then for every functional and monotone extension pattern on E, that has
a countable set of extension data, there is a total element.

Notice that in Example 1.10, the pattern being functional helps to get around invoking choice
so as to obtain an ascending sequence the supremum of which is total for the sequence α.

As for the reformulation of GET in case of a functional pattern, we have the following.

fGET Every inhabited set-generated dcpo with functional extension pattern has a total element.

Clearly, GET implies fGET. It is straightforward to show that these principles are classically
equivalent. In fact, by means of fGET, every set-generated dcpo has a total element for the maximal
pattern from Example 1.6, which indeed is functional, provided the partial order is decidable. The
total element in question then is a maximal one.

As it turns out, with a more refined argument we are able to show that GET and fGET are
equivalent even over CZF. To this end, we make use of the following variant of the Hausdorff
Maximal Principle for directed (rather than linearly ordered) subsets of a partially ordered set.

MDP Every inhabited partially ordered set has a maximal directed subset.

Proposition 1.11. fGET implies MDP.

Proof. Let (E,6) be an inhabited partially ordered set. Consider the (predicative) partially
ordered class E of all directed subsets of E, ordered by inclusion. We claim that E is an inhabited
set-generated dcpo. A generating set for E is given by the set G of all finite directed subsets of
E. Indeed, if D ∈ E , then

{D0 ∈ G : D0 ⊆ D }

is a set and it is directed: if D0 and D1 are finite directed subsets of D, then (being finite) they
have a greatest element x ∈ D0 and y ∈ D1, respectively. Then, since D is directed, there is z ∈ D
such that x, y 6 z and we have D0 ∪ D1 ∪ { z } ∈ G as well as D0 ∪ D1 ∪ { z } ⊆ D. Moreover,
D =

⋃
{D0 ∈ G : D0 ⊆ D }, since G contains every singleton subset of E, in particular. Next, if

D is a directed subset of E , then
⋃

D ∈ E , whence E is directed-complete.
Now we describe an extension pattern on E with corresponding relation being the one from

Example 1.6. For the class of extension data we take E itself and stipulate, for C,D ∈ E ,

C  D ≡ (C ⊇ D → C = D ).

Furthermore, there is a class function

f : E × E → Pow(E), f(C,D) = D ∪ { z ∈ C : C ⊇ D } .

In order to have an extension pattern, we need to verify ran(f) ⊆ E as well as that for all C,D ∈ E
we have

D ⊆ f(C,D) and C  f(C,D).
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As regards the range of f , we need to show that f(C,D) is directed. If x, y ∈ f(C,D), then we can
distinguish several cases. We may have both x, y ∈ D in which case nothing needs to be checked,
since D is directed. But if, say, x ∈ { z ∈ C : C ⊇ D }, then C ⊇ D. This implies x, y ∈ C, and
C is directed. Next, by the very definition of f we have D ⊆ f(C,D). So it remains to show
C  f(C,D). To this end, suppose that C ⊇ f(C,D). Since f(C,D) ⊇ D, we get C ⊇ D and
it follows from the definition of f that f(C,D) = C, as required. By way of fGET, there is an
element D ∈ E which is total for the pattern just defined. This D is a maximal directed subset of
E.

Proposition 1.12. MDP implies KZL.

Proof. Let E be an inhabited set-generated dcpo and let G be a generating subset of E . This G
is inhabited since E is, and we restrict the partial order on E to G. According to MDP, there is a
maximal directed subset D of G. Since E is a dcpo, this D has a least upper bound

∨
D ∈ E . We

claim that
∨
D is a maximal element of E . Indeed, if e ∈ E is such that

∨
D 6 e, then we have

an inclusion of sets
D ⊆ { g ∈ G : g 6 e } .

This is because of D ⊆ G and since for every g ∈ D we have

g 6
∨
D 6 e.

Now take into account that { g ∈ G : g 6 e } is directed by our very assumption on G being a
generating set for E . Therefore, by maximality of D among directed subsets of G, we get

D = { g ∈ G : g 6 e } ,

whence ∨
D =

∨
{ g ∈ G : g 6 e } = e,

as required.

Remark 1.13. Recall that all the classes considered in this chapter are supposed to be predicative.
This allows for the above restriction of the order on E to the subset G by bounded separation,
and thus to obtain a partially ordered set.

Remark 1.14. Under assumption of the Powerset axiom, all of the above proofs go through
unchanged if the proviso “set-generated” is being dropped.

Corollary 1.15. The following are equivalent: KZL, GET, fGET, and MDP.

1.4 Application

We place ourselves in CZF + REM in order to allow for a certain argument by cases. Let R be
a ring. In the following, ideals of R and R-modules are understood to be left ideals and left R-
modules, respectively. Recall that an R-module M is injective if every R-homomorphism A→M
can be extended along injective R-homomorphisms i : A→ B.

A B

M

i

∀
∃

By means of Baer’s criterion, injectivity of a module M can be tested by considering R-homo-
morphisms I →M on ideals I of R only.

Baer’s criterion Let R be a ring. An R-module M is injective already if every R-homomorphism
I →M , defined on an ideal I of R, extends onto R.
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Proposition 1.16 (REM). GET implies Baer’s criterion.

Proof. Let M be an R-module with the property that every R-homomorphism I →M , defined on
an ideal I of R, extends onto R. Let ϕ : A→M and let A→ B be an injective R-homomorphism;
we assume that the latter is the inclusion mapping and A therefore is a submodule of B. As in
the proof by Zorn’s Lemma (see, e.g., [192, 247]), we consider the set E of partial extensions of ϕ,
ordered by inclusion.

A A′ B

M

ϕ ϕ′

Of course, E is readily shown to be directed-complete. The one-step extension principle, which
helps to show that a maximal intermediary extension of ϕ is total, now encodes in an extension
pattern for GET as follows. We have a set X of extension data an element of which is a triple

(ψ, x, ν) ∈ E ×B ×HomR(R,M),

subject to the condition
ν
∣∣
I(ψ,x)

= ν(ψ, x), (∗)

where
I(ψ, x) = (dom(ψ) : x) = { r ∈ R : rx ∈ dom(ψ) }

and
ν(ψ, x) : I(ψ, x)→M, r 7→ ψ(rx).

The relation  ⊆ X × E is then defined by

(ψ, x, ν)  ψ′ iff ψ 6= ψ′ or x ∈ dom(ψ′).

In case of (ψ, x, ν) 1 ψ′, we have ψ = ψ′ and x /∈ dom(ψ′), and the one-step extension χ of ψ′ by
(ψ, x, ν) can be constructed as follows (e.g. [247]):

χ : dom(ψ′) +Rx→M, y + rx 7→ ψ′(y) + ν(r).

Then, if ψ is total for this pattern, we can directly verify that it is defined everywhere on the
R-module B. For if x ∈ B, we merely need to consider the R-homomorphism ν(ψ, x) defined on
the ideal I(ψ, x). Due to the assumption on M , this ν(ψ, x) is extended by some ν ∈ HomR(R,M).
We then have (ψ, x, ν) ∈ X and (ψ, x, ν)  ψ by totality, from which we infer x ∈ dom(ψ).

The extension pattern with which we have deduced Baer’s criterion was defined so as to be
functional. Alternatively, we could simply have set

X = B and x  ψ iff x ∈ dom(ψ)

for all x ∈ B and ψ ∈ E, with E as before. If we then had proceeded as before, we would have had
to choose ν in order to perform the extension step. The above use of more complex data—here,
triples (ψ, x, ν) rather than only elements x—offers a way around this inasmuch as the choice of
ν is anticipated.

1.5 Induction

Back to CZF. A subclass F of a dcpo E is closed if the supremum of every directed subset of
F again belongs to F , in which case F is a dcpo itself. If E has a functional extension pattern
(X ,, f) and F moreover is such that f(x, e) ∈ F whenever x ∈ X and e ∈ F , then the
extension pattern restricts on F which thus has a total element by fGET. The relative version of
our extension theorem then reads as follows.
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rfGET Let E be an inhabited set-generated dcpo with functional extension pattern (X ,, f) and
let F be a closed subclass of E such that

∀x ∈X ∀e ∈ E ( e ∈ F → f(x, e) ∈ F ). (†)

If F is inhabited and set-generated, then F has a total element.

This is an equivalent form of fGET, of course, because every dcpo may be considered a closed
subclass of itself.

Conversely, a subclass O of E is said to be open if it cannot contain the supremum of a directed
subset D of E unless it meets this D in at least one element, i.e., if∨

D ∈ O → D G O

for every directed subset D of E . Here, we write D G O if the intersection D ∩ O is inhabited.4

Classically speaking, it is easy to see that the notions of closed and open subset of a dcpo are
complementary to each other. Dualising the relative version of GET results in a principle for
induction on functional extension patterns.

ifGET Let E be a set-generated dcpo with functional extension pattern (X ,, f) and let O be an
open subclass of E such that

∀x ∈X ∀e ∈ E ( f(x, e) ∈ O → e ∈ O ). (‡)

If O contains all total elements, then E = O.

Respective forms hold also for extension patterns (X ,) which need not be functional. In
order to state them in an analogous way, let us write f(x, e) for the subclass of E consisting of all
x-extensions of a given element e ∈ E , i.e.,

f(x, e) = { e′ ∈ E : e 6 e′ ∧ x  e′ } .

In case of a functional pattern, we have f(x, e) ∈ f(x, e), of course. But the latter moreover
includes every total element which might be above e. The relative version of GET for closed
subclasses is immediate.

rGET Let E be an inhabited set-generated dcpo with extension pattern (X ,) and let F be a
closed subclass of E such that

∀x ∈X ∀e ∈ E ( e ∈ F → f(x, e) ⊆ F ). (†′)

If F is inhabited and set-generated, then F has a total element.

iGET Let E be a set-generated dcpo with extension pattern (X ,) and let O be an open subclass
of E such that

∀x ∈X ∀e ∈ E (f(x, e) G O → e ∈ O ). (‡′)

If O contains all total elements, then E = O.

We proceed by showing how these principles relate to each other.

Proposition 1.17.

1. iGET implies GET.

2. ifGET implies fGET.

4We have adopted this notation from Giovanni Sambin.
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3. rGET classically implies iGET.

4. rfGET classically implies ifGET.

Proof. 1. Given an extension pattern (X ,) on E , we consider the subclass

O = { e ∈ E : ∃e′ ∈ E ( e 6 e′ ∧ ∀x ∈X (x  e′ ) ) }

of totally extendable elements. This O contains all total elements. Since O is downwards
monotone, i.e.,

∀e, e′ ∈ E ( e 6 e′ ∧ e′ ∈ O → e ∈ O )

it is open (recall that directed subsets are to be inhabited) and it satisfies (‡′). Thus E = O,
whence every element of E is totally extendable.

2. Employ a similar argument as for the preceding item.

3. Given an extension pattern (X ,) on a set-generated dcpo E , let O be an open subclass of
E containing all total elements and such that (‡′) holds. Working classically, suppose that
there is e ∈ E such that e /∈ O. Consider F = E −O. This F is an inhabited (set-generated,
and even a set by Remark 1.8) closed subclass of E for which (†′) holds. Therefore, F has
a total element, however all of which should belong to O.

4. Employ a similar argument as for the preceding item.

We do not know whether there are constructive proofs for the above classical implications,
nor if it can be shown that iGET implies ifGET over CZF. Anyway, keep in mind that GET and
rGET, as well as fGET and rfGET, are mere reformulations of each other, respectively. Along
with Corollary 1.15 and Proposition 1.17, we see that all principles considered in this chapter are
classically equivalent.

Corollary 1.18 (REM). The following are equivalent: KZL, MDP, GET, rGET, iGET, fGET,
rfGET, ifGET.

Let us briefly compare our induction principles on extension patterns with Raoult’s principle
of Open Induction [201]. A subclass P of a partially ordered class (E ,6) is said to be progressive
if

∀e ∈ E (∀e′ ∈ E ( e′ > e→ e′ ∈P ) → e ∈P ),

where e′ > e is understood to be the conjunction of e 6 e′ and e 6= e′. Here is a version of Open
Induction for set-generated dcpo’s.

OI Let E be a set-generated dcpo. If P is an open and progressive subclass of E , then P = E .

For instance, let (X ,) be an extension pattern on E , and let O ⊆ E be open, contain every
total element, and satisfy (‡′). Suppose that totality is a decidable property on E insofar as that
for every element e ∈ E , either e is total or else there is certain data x ∈ X for which x 1 e.
Now, if e ∈ E is such that e′ ∈ O whenever e′ > e, we also have e ∈ O. For either is e total, by
which e ∈ O is immediate, or there is x ∈X with x 1 e. In case of the latter, by extension there
is e′ ∈ E such that e < e′ and x  e′. It follows that f(x, e) G O. As O is supposed to satisfy (‡′),
we get e ∈ O. This shows how OI implies iGET under the above proviso that one can tell for each
e ∈ E whether e is total or has a witness to the opposite. Compare [131, 197, 223].
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1.6 Conclusion

An extension pattern lies at the heart of many a proof by means of KZL, be it for obtaining a
maximal element (with the maximal pattern) or showing any such maximal element to be total
for a specific set of extension data. Our principle GET is not just KZL in disguise; the one-step
principle on which it rests helps to circumvent the proof by contradiction typical of invocations of
KZL.

The principle GET derives from a straightforward application of KZL, and subsumes KZL by
virtue of an appropriate pattern. It thus is an instance with generalizing attitude. As pointed out
before, being directly implied by KZL, our extension theorems do not have any nonconstructive
consequences. However, defining an extension pattern typically requires a definition by cases—the
very applicability of GET hence goes along with the law of excluded middle. But here we did not
set out finding constructive extension theorems. From a didactical viewpoint, GET moreover is
a tool which applies quite in the manner of KZL, but sheds fresh light on how we make use of
maximal principles with extension arguments in everyday practice.
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Chapter 2

Logical completeness and Jacobson
radicals

This chapter is based on [225].

2.1 Introduction

Szpilrajn [242] has ascribed to Banach, Kuratowski and Tarski his proof of the order extension
principle for strict partial orders. Following Kuratowski’s [159] method of eliminating transfinite
numbers, he invokes what now is known as the Kuratowski–Zorn lemma (KZL) to ensure the
existence of a linear extension of a strict partial order. Szpilrajn’s proof is further based on the
key lemma that if a strict partial order < does not yet compare two points a and b, then there
is an extension <′ of < which too is a strict partial order but for which a <′ b. In particular, a
maximal extension as given by KZL thus cannot fail to be linear.1

Order extension principles play a seminal role in mathematical economics, social choice, and
the theory of preference relations; see, for example, [13, 48, 61]. Arrow [13] has formulated the
order extension principle for quasi-orders the proof of which is due to Hansson [129]. In this
context, more often than not a specific notion of extension 4 narrower than simple containment ⊆
is employed [48, 61], which indeed makes good sense for preference relations [13]. As a side effect
this conceptual choice rules out [129, p. 453] the trivial linearisation by E × E of any relation
whatsoever on a set E, and thus makes those principles true forms [137] of the Axiom of Choice.2

More precisely, given binary relations R and S on X with R ⊆ S, the additional condition for S
to extend R in the aforementioned stronger sense, R 4 S, is equivalent [226] to

S ∩R◦ ⊆ R

where R◦ stands for the inverse relation, sometimes called reciprocation [112]:

R◦ = { (b, a) : (a, b) ∈ R } .

Now the universal relation S = E×E extends R with respect to 4 precisely when R is symmetric,
which hardly is the case for order relations.

All this can be developed in quite an abstract, algebraic manner [226]. Our intention in this
chapter is to take further steps by analogy, leave behind the topic of order extension, and focus on
a basic concept which in fact is at the heart of the above: single-conclusion entailment relations,
finitary coverings [65, 67], or algebraic closure operators. In this much wider context, a proof
pattern that derives from Raoult’s principle of Open Induction prompts an appropriate form of

1The key lemma is one of the “one-step extension” arguments Bell [33] has singled out as typical for such proofs.
We have studied this [224] for a general extension theorem on dcpo’s.

2The Axiom of Choice, however, is not required for syntactical conservation of linearity for Horn sequents [190,
209, 210] and for numerous related issues in algebra [92, 169].
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Lindenbaum’s Lemma which not only resembles the aforementioned extension principle for quasi-
orders, but also has applications reaching far beyond, encompassing several prominent results from
commutative algebra and lattice theory. Our approach thus makes possible a universal treatment
similar to the one carried out in [208], from which in fact we take further motivation. While [208]
concentrates on finitary coverings that satisfy the pivotal condition of Encoding which represents
prime ideals, here instead we consider certain complete ideals which roughly correspond to maximal
ideals. We generalize the concept of Jacobson radical from commutative rings—thus regaining one
of the computationally meaningful characterizations [169] by abstract, yet altogether elementary
means—to a general ideal theory for single-conclusion entailment relations, in which context we
even obtain a syntactial counterpart of Lindenbaum’s Lemma.

This chapter is structured as follows. In Section 2.2 we collect certain tools that will be needed
later on. First we make some observations on preframes, thus providing abstract grounds for
our extension principle. Next we discuss, and prove equivalent, several consequences of Raoult’s
principle of Open Induction including the Zorn Scheme used in this chapter. Finally, we give
preliminaries of single-conclusion entailment relations and define the notion of (strong) reductivity.
In Section 2.3 we introduce the concept of tight extension, and show under suitable hypotheses that
the class of ideals for a reductive single-conclusion entailment relations is a set-generated directed-
complete partially ordered class with respect to tight extension. This will lead to a variant of
Lindenbaum’s Lemma as well as to a generalization of several concepts from commutative ring
theory to strongly reductive single-conclusion entailment relations. In particular, we obtain an
explicit characterization of the set of all elements common to every complete ideal of a strongly
reductive single-conclusion entailment relation. Concrete examples and applications are studied
in Section 2.4. In the final Section 2.5 we discuss certain aspects of the conservation of multi-
conclusion entailment relations over their single-conclusion counterparts.

2.2 Key instruments

2.2.1 Order

Let (E ,6) be a partially ordered class. Recall that a subset D of E is directed if it is inhabited
and every pair of elements x, y ∈ D has an upper bound in D. A partially ordered class E is
directed-complete (a dcpo for short), if every directed subset D has a least upper bound (a join)∨
D in E . A subclass F of E is a sub-dcpo if it is a dcpo with respect to the induced ordering. A

class function f : E → F between dcpo’s E and F is Scott-continuous if it preserves directed sets
and their joins. That is, if D is a directed subset of E , then the image f(D) of D under F is a
directed subset of F , and f(

∨
D) =

∨
f(D). Every Scott-continuous map F is monotone, while

monotonicity suffices for F to preserve directed subsets. A preframe [25, 149] is a dcpo which has
finite meets which distribute over joins of directed subsets:∨

D ∧ x =
∨
{ y ∧ x : y ∈ D } .

In particular, every preframe has a top element 1, being the empty meet. We will not go into the
theory of preframes later on, let alone provide any further development of this theory over CZF.
However, we have now available appropriate tools for the following.

Definition 2.1. Let (E ,6,∧) be a preframe, and let ◦ : E → E be a Scott-continuous class
function. We define a binary subrelation 4 of 6 by

x 4 y ≡ x 6 y and y ∧ x◦ 6 x.

If E denotes the class of quasi-orders on a set E, ordered by ⊆, and if we take ◦ as reciprocation,
then the concept of extension [129] as explained in the introduction is a special case of Definition
2.1. In this vein, the following abstract argument can indeed be used to prove a version of
Szpilrajn’s extension theorem for quasi-orders [226].
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Proposition 2.2. Let (E ,6,∧) be a preframe, and let ◦ : E → E be a Scott-continuous class
function. Every sub-dcpo F of E with respect to 6 is a sub-dcpo also with respect to 4. In
particular, (E ,4) is a dcpo.

Proof. We first show that the subrelation 4 is a partial ordering on E . Clearly, reflexivity and
antisymmetry are inherited from 6. As for transitivity, if x 4 y and y 4 z, then x 6 z by
transitivity of 6, and

z ∧ x◦ = (z ∧ x◦) ∧ x◦ 6 (z ∧ y◦) ∧ x◦ 6 y ∧ x◦ 6 x,

since both ◦ and ∧ preserve the order. Now let F be a sub-dcpo of E . This F is partially ordered
by 4 too. If D is a directed subset of F with respect to 4, then D is directed with respect to
6 as well, for which it thus has join

∨
D. We show that

∨
D is the least upper bound of D also

with respect to 4. Of course, if x ∈ D, then x 6
∨
D. Furthermore, since D is directed, for every

y ∈ D there is z ∈ D with x, y 4 z; in particular y 6 z and z ∧ x◦ 6 x. Together this yields
y ∧ x◦ 6 z ∧ x◦ 6 x, whence

(
∨
D) ∧ x◦ =

∨
y∈D

(y ∧ x◦) 6 x,

and therefore x 4
∨
D. Next, suppose that there is z ∈ F with x 4 z for every x ∈ D. Then we

have
∨
D 6 z and

z ∧
(∨

D
)◦

= z ∧
( ∨
x∈D

x◦
)

=
∨
x∈D

(z ∧ x◦) 6
∨
x∈D

x =
∨
D

because ◦ is Scott-continuous. Therefore
∨
D 4 z, as required.

But why consider sub-dcpo’s F of E in the first place? The reason is that ◦ may not restrict
on F , that is to say, there can be x ∈ F such that x◦ /∈ F . However, the induced relation 4
makes F a dcpo whatsoever.

Yet another notion will be important: Suppose that E also has binary joins providing E with
a lattice structure. We say that an element x ∈ E is complete if

x ∨ x◦ = 1.

The following observation is of interest when it comes to applications of the Kuratowski-Zorn
lemma and Raoult’s principle of Open Induction [201], see Section 2.2.2 below.

Lemma 2.3. Let E be a preframe with distributive binary joins, and let ◦ : E → E be a Scott-
continuous class function. For every x, y ∈ E , if y 6 x ∨ x◦, then x = y already if x 4 y. In
particular, every complete element is maximal with respect to 4.

Proof. If y 6 x ∨ x◦ and x 4 y, then x 6 y as well. Moreover

y = y ∧ y 6 y ∧ (x ∨ x◦) = (y ∧ x) ∨ (y ∧ x◦) 6 x,

whence x = y. If x is complete, i.e., if x ∨ x◦ = 1, then y 6 x ∨ x◦ for every y ∈ E . Thus, if x is
complete and x 4 y, then x = y by the preceding observation.

2.2.2 Some consequences of Open Induction

Let E be a dcpo. Recall that E is said to be set-generated [2] if there is a subset G of E such that,
for every x ∈ E ,

Gx = { g ∈ G : g 6 x }
is directed and ∨

Gx = x.

In general, set-generated classes—rather than just dcpo’s—play a distinctive role in constructive
set theory; see, e.g., [10, 144, 248]. For instance, if S is a set, then the class Pow(S), partially
ordered with respect to ⊆, is a set-generated dcpo, with generating subset G = Fin(S).
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Remark 2.4. If we make the Powerset axiom available, for instance, by way of REM [7], then
every set-generated dcpo E actually is a set. Indeed, if G is a generating set for E , and if Pow(G)
is a set, then so is the class D(G) of all directed subsets of G. Therefore, since E is the surjective
image of a function

D(G)→ E , D 7→
∨
D,

we see that E is a set by Replacement.

Over CZF one of the possible forms [6] of Kuratowski’s and Zorn’s famous maximality principle
can be phrased as follows:

Kuratowski-Zorn Lemma (KZL) Let E be a set-generated dcpo. Over every element x of E
there is one which is maximal.

Now let O be a subclass of E . One says that O is progressive if

∀x ∈ E
(
∀y ∈ E ( y > x → y ∈ O ) → x ∈ O

)
,

where y > x is understood as the conjunction of x 6 y and x 6= y. Furthermore, O is open if∨
D ∈ O → D G O

for every directed subset D of E , where D G O means that D and O have an element in common.3

Raoult [201] has coined the following principle, of which we consider a reformulation for set-
generated dcpo’s, suitable for CZF.

Open Induction (OI) Let E be a set-generated dcpo. If O is an open and progressive subclass
of E , then E = O.

Raoult [201] has deduced OI from KZL over ZF. In fact, both principles are equivalent by
complementation and thus with classical logic. See further [36, 66, 73, 208, 222].

We say that a subclass O of E is (downward) monotone if

∀x, y ∈ E (x 6 y ∧ y ∈ O → x ∈ O ).

Every monotone subclass is an open subclass. In fact, if O is monotone, and if D is a directed
subset of E such that

∨
D ∈ O, then even D ⊆ O; keep in mind that in this chapter every directed

subset is required to have an element.

The following principle is a direct consequence of OI.

Monotone Induction (MI) Let E be a set-generated dcpo. If O is a monotone and progressive
subclass of E , then E = O.

MI turns out useful for replacing proofs by means of KZL with proofs by OI, because predicates
expressing “total extendability” are monotone. Incidentally, this suggests how to bring MI close
to a form resembling KZL.

Zorn Scheme (ZS) Let E be a set-generated dcpo. If C is a subclass of E , then

∀x ∈ E ∃y ∈ E (x < y ∨ x ∈ C ) → ∀x ∈ E ∃y ∈ E (x 6 y ∧ y ∈ C ).

3We have adopted this notation from Giovanni Sambin.
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Intuitively, if every element x of a dcpo E either falls under the concept that constitutes a
certain subclass C of E or else is strictly exceeded, then over every element of E there is one which
does fall under the concept in question. Notice how this describes the common strategy for proofs
by means of KZL. Yet proofs of the latter kind usually appeal to an argument by contradiction,
for instance when it comes to verify total some maximally extended partial functional for proving
the Hahn-Banach theorem. In comparison, with ZS one would have to know about the “extent”
of every such object right in the first place.

Next we show that ZS is a direct consequence of MI.

Proposition 2.5. MI implies ZS.

Proof. Let C be a subclass of E such that

∀x ∈ E ∃y ∈ E ( x < y ∨ x ∈ C ). (†)

We define another subclass O of E by

x ∈ O ≡ ∃z ∈ E ( x 6 z ∧ z ∈ C ).

Reflexivity of 6 implies C ⊆ O, and O is monotone: if x 6 y and y ∈ O, then

x 6 y ∧ ∃z ∈ E ( y 6 z ∧ z ∈ C ),

and therefore
∃z ∈ E ( x 6 z ∧ z ∈ C )

by transitivity of 6, whence x ∈ O. As for O being progressive, consider x such that

∀y ∈ E ( y > x → y ∈ O ). (‡)

By (†) we either have x ∈ C and thus x ∈ O anyway, or else there is y ∈ E with x < y. In the
latter case we have y ∈ O by assumption (‡), whence again x ∈ O, as O is monotone. Now, by
way of MI, we get E = O, which is to say that

∀x ∈ E ∃z ∈ E ( x 6 z ∧ z ∈ C ).

Classically, ZS is utterly useful—as useful as KZL, of course. In the above setting of section
2.2.1, the subclass which is of primary interest consists of all complete elements:

x ∈ C ≡ ( x ∨ x◦ = 1 ).

But then, in order for ZS to be applicable in the first place, we need to make sure that for every
element which is not complete there indeed is another one by which it is strictly exceeded. In this
vein, let us say that a dcpo E has a strong maximality test if the following holds:

∀x ∈ E
(
∀y ∈ E (x 6 y → x = y ) ∨ ∃z ∈ E (x < z )

)
Proposition 2.6. ZS implies KZL for set-generated dcpo’s with strong maximality test.

Proof. Stipulate
x ∈ C ≡ ∀y ∈ E ( x 6 y → x = y ),

which means that x is maximal in E . Then, if E has a strong maximality test, for every x ∈ E
either we have x ∈ C right away, or there is y ∈ E with x < y. Then, by way of ZS, for every
x ∈ E there is y ∈ E with x 6 y and such that y ∈ C . In other words, over every element of E
there is one that is maximal.

Corollary 2.7. Over ZF, the principles OI, MI, ZS, and KZL are equivalent.

Before we proceed, a caveat is in order. Whereas KZL allegedly is constructively neutral [33]—as
opposed to the Axiom of Choice, which is known to imply REM over CZF [7, 8, 101, 122, 202]—OI,
along with its direct consequences MI and ZS, can hardly be worse. As a rule of thumb, induction
principles are constructively “less harmful” than maximality principles. In the following, however,
any application of ZS can straightforwardly be replaced by one of KZL, mutatis mutandis.
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2. Logical completeness and Jacobson radicals

2.3 Ideals and extensions

2.3.1 Entailment

We are interested in the semantics of a particular class of entailment relations, some preliminaries
for which we now take the opportunity to briefly recall. Let S be an inhabited set. A single-
conclusion entailment relation [83, 103, 115, 132–134, 170, 209, 210, 229, 234, 244, 255], see also
[67, 188, 218, 220], is a relation

B ⊆ Fin(S)× S

between finite subsets U and elements a of S which in the following sense is reflexive, monotone,
and transitive, respectively:

U 3 a
U B a

(R)
U B a

U,U ′ B a
(M)

U B b U ′, bB a

U,U ′ B a
(T)

It is common to write U, V for the union U ∪V and sometimes to simply write a where it actually
should read a singleton set { a }. If T is an arbitrary subset of S, then stipulating

TB = { a ∈ S : ∃U ∈ Fin(T ) (U B a ) }

yields an algebraic closure operator on the class Pow(S) of all subsets of S. A saturated subset I of
S is one for which I = IB. A saturated subset will also be called an ideal. In terms of entailment,
ideals are the deductively closed subsets of S, i.e., I is an ideal if and only if I splits entailment:

I ⊇ U U B a
I 3 a

Ideals need not be proper subsets of S. For instance, the underlying set S itself is an ideal.
If T is an arbitrary subset of S, then the quotient [116, 194] of B with respect to T is the

single-conclusion entailment relation BT defined by

U BT a ≡ ∃V ∈ Fin(T ) (U, V B a ).

An element a ∈ S is said to be convincing [208] for B if

∀b ∈ S ( aB b ).

This amounts to { a }B = S in terms of the saturation. If T is an arbitrary subset of S, then by
its reciprocation T ◦ we understand the set of all convincing elements for the quotient BT , thus

T ◦ = { a ∈ S : ∀b ∈ S( aBT b ) } .

Again, in terms of the saturation,

a ∈ T ◦ if and only if (T, a)B = S.

Reciprocation is (upward) monotone, i.e., if T ⊆ T ′, then T ◦ ⊆ T ′◦. Moreover, notice that

(TB)◦ = T ◦

which is because of (TB, a)B = (T, a)B for every a ∈ S. While S◦ = S, it is not required that the
reciprocation of a proper ideal be saturated too, and in general it isn’t.

With our notation, an element a is convincing if and only if a ∈ { a }◦, while the set of
all convincing elements is given by ∅◦, which might as well be empty. If a is convincing, then
{ a }◦ = S. Moreover, if a is convincing, then an ideal I is proper if and only if a /∈ I.

We say that (S,B) is trivial if S ⊆ ∅◦, which is to say that every element is convincing:

∀a, b ∈ S ( aB b ).
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2.3. Ideals and extensions

We say that an element a ∈ S is complemented if there is b ∈ S such that a ∈ { b }◦, which is to say
that { a, b }B = S, and par abus de langage that S as a whole is complemented if every element
of S is complemented.4 For example, if S has a convincing element, then S is complemented.
Furthermore, a ∈ { b }◦ is equivalent to b ∈ { a }◦.

The following conditions on single-conclusion entailment relations will be crucial.

Definition 2.8. Let B be a single-conclusion entailment relation on S. We say that B is reductive
if, for every subset T of S,

a ∈ T ◦ =⇒ ∃U ∈ Fin(TB)
(
a ∈ U◦

)
.

B is strongly reductive if
a ∈ T ◦ =⇒ ∃b ∈ TB

(
a ∈ { b }◦

)
.

Strongly reductive single-conclusion entailment relations play a distinctive role in [195]. The
definition of reductivity does not prevent U from being empty, in which case a is supposed to
be convincing. The definition of strong reductivity is the special case where U is a singleton set.
Both definitions bring about certain properties of (S,B). In the following, by a dense subset of S
will be meant one the saturation of which equals S. So S is the only dense ideal.

Lemma 2.9.

1. If B is reductive, then S has a finite dense subset.

2. If B is strongly reductive, then S is complemented.

Proof. Both assertions follow from the fact that S◦ = S, and since S is supposed to be inhabited.

As a final preliminary remark, we point out that we do not require from the outset that S
comes equipped with any algebraic structure, or is closed under certain connectives. What is
required for the main part of this note can be expressed in terms of the entailment relation only.
Furthermore, while it is certainly instructive to construe of B in terms of logical inference, see
Example 2.20 and Example 2.25 below, S need not consist of formulae as specified by a certain
formal language [229], by which the use of entailment relations is not at all limited to logic [62].

2.3.2 A variant of Lindenbaum’s Lemma

In the following, let S be an inhabited set with a single-conclusion entailment relation B. We
introduce a partial order on the class of all ideals of B as follows. Let I and J be ideals of B, the
latter being an extension of the former, i.e., I ⊆ J . We say that this containment is tight if in
addition

J ∩ I◦ ⊆ I.

This is an instance of Definition 2.1, and we write I 4 J in order to indicate tight extension. For
instance, an inclusion I ⊆ J of ideals is tight in each of the cases I = J , I◦ ⊆ I, and I = S.
Furthermore, an ideal I is tightly contained in S if and only if I◦ ⊆ I.

Lemma 2.10. Let I be an ideal of B. If I◦ G I, then I = S.

Proof. If a ∈ I◦ ∩ I, then S = (I, a)B ⊆ I.

Corollary 2.11. Between proper ideals I and J , we have I ⊆ J if and only if I 4 J , in fact
J ∩ I◦ = ∅ in any such case.

Proof. Let I ⊆ J . If a ∈ J ∩ I◦, then J G J◦, and thus J = S by Lemma 2.10, yet J is supposed
to be proper. Thus J ∩ I◦ = ∅ ⊆ I, and therefore I 4 J .

4With reference to [195], this circumstance may also be addressed by saying that B has denial.
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2. Logical completeness and Jacobson radicals

Corollary 2.12. Suppose that B is strongly reductive, and let I and J be ideals. If I is inhabited
and proper, then I 4 J implies that J is proper.

Proof. Suppose that J = S, whence I◦ ⊆ I due to tightness. If B is strongly reductive, then S is
complemented by Lemma 2.9. Therefore, if a ∈ I, then there is b ∈ S such that S = { a, b }B ⊆
(I, b)B, from which we read off b ∈ I◦ ⊆ I, and thus I = S by Lemma 2.10.

All this is well in accordance with the motivating ideas that stem from the theory of preference
relations, as explained in the introduction, where a narrower concept of extension makes sure to
avoid the trivial extension of a quasi-order by the universal relation on the underlying set.

At this point, the reader may rightfully claim that our concept of strong containment teeters
on the brink of triviality. However, it does have certain virtues even from a classical perspective:
by involving tightness we automatically keep track of proper extensions, and by allowing ideals to
be improper we are able to phrase several prominent extension theorems succinctly, and in a clear
and concise manner, see Section 2.4.

In the following, we write Id(B) for the class of all ideals of B. We further say that an ideal
is subdetachable if it is proper or dense. Note that if I is subdetachable, then

∀a ∈ ∅◦ ( a ∈ I ∨ a /∈ I ),

and the converse holds if S has a convincing element.

Theorem 2.13. If B is reductive, then
(
Id(B),4

)
is a dcpo. If, in addition, every ideal is

subdetachable, then Id(B) is set-generated.

Proof. We apply Proposition 2.2 to the sub-dcpo Id(B) of Pow(S), the latter of which is a dcpo
with regard to ⊆. We thus need to verify that reciprocation is Scott-continuous on Pow(S). If
D is a directed set of subsets of S, then

∨
D =

⋃
D, whence we have to show that reciprocation

commutes with directed union, i.e., (
⋃
D)◦ =

⋃
T∈D T

◦. Since ◦ is monotone, it suffices to
concentrate on the left-to-right containment. But if a ∈ (

⋃
D)◦, then, since B is reductive, there

is a finite subset U of (
⋃
D)B such that a ∈ U◦. Since D is directed, we can find T ∈ D such that

U ⊆ TB and therefore a ∈ T ◦, as required.
Now suppose that we can decide for every ideal of B whether it is proper or dense, in which

case we intend to show that Id(B) is set-generated. We consider the set G of all finitely generated
ideals, i.e.,

G =
{
I ∈ Id(B) : ∃U ∈ Fin(S) ( I = UB )

}
.

If J is a proper ideal, then
GJ = { I ∈ G : I 4 J }

is directed. For if J is proper, then ∅B ∈ GJ by Corollary 2.11, whence GJ is inhabited. If we
have I1 ∈ GJ and I2 ∈ GJ , and, say I1 = UB1 and I2 = UB2 , where U1 and U2 are finite subsets of
S, then we claim that the finitely generated ideal I3 = (U1 ∪U2)B belongs to GJ as well, to which
end we have to show that J is a tight extension of the latter. In any case, I3 is contained in J ,
and thus (Corollary 2.11) tightly contained. The final step is to show

J =
⋃
GJ

which, however, is trivial: if a ∈ J , then { a }B is tightly contained in J for the same reasons as
were just mentioned. It remains to consider S as an ideal. Since B is reductive, S has a finite dense
subset U by Lemma 2.9, from which it straightforwardly follows that GS is directed as well.

We say that an ideal C is

1. complete if C ∪ C◦ = S, and

2. consistent if C ∩ C◦ = ∅.
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2.3. Ideals and extensions

By Lemma 2.10, every proper ideal is consistent; conversely, if C is consistent and C◦ is inhabited,
then C is proper.

Proposition 2.14. If C is a consistent complete ideal, then C is detachable and C◦ = S \ C.

Corollary 2.15. The class of all proper complete ideals of B is a set.

Proof. The class of detachable subsets of S is a set, hence so is the class of all proper complete
ideals of B by way of bounded separation.

Of course, the underlying set S is a complete ideal itself. However, unless every complete ideal
is subdetachable, or we work with the Powerset axiom, in general we cannot state that the full
class of complete ideals is a set; see Remark 2.19 below.

Next, we say that an ideal I is subcomplete if it either is complete or else there is a witness to
the opposite:

∃a ∈ S ( a /∈ I ∧ a /∈ I◦ ).

A subcomplete ideal which is not itself complete, and thus proper, is properly contained in another
proper ideal, as follows. Of course, this is trivial from a classical point of view.

Lemma 2.16. Let I be an ideal, and let a ∈ S such that a /∈ I ∪I◦. Then I is properly and tightly
contained in the proper ideal (I, a)B.

Proof. Given an element a as indicated, both containments I ⊆ (I, a)B and (I, a)B ⊆ S are proper.
The former one is tight by way of Lemma 2.10.

In analogy to Lemma 2.3, every complete ideal is maximal with respect to tight extension.
The next observation may further motivate our interest in complete ideals.

Proposition 2.17. Let I be a proper ideal of B. The following are equivalent.

1. I is complete.

2. I is subcomplete and maximal for tight extension.

Proof. As mentioned before, every complete ideal I is subcomplete, and I being maximal for tight
extension is a consequence of Lemma 2.3. As for the converse, let I be a subcomplete ideal, and
suppose that I is maximal for tight extension. Due to subcompleteness, we know that either I is
complete, or there is an element a of S such that both a /∈ I and a /∈ I◦. However, since the latter
disjunct would allow for a proper and tight extension of I according to Lemma 2.16, it leads to a
contradiction, thus leaving us with the former one.

Here is a variant of Lindenbaum’s Lemma for reductive single-conclusion entailment relations.
The general assumption of subcompleteness is required in order to make ZS applicable.

Theorem 2.18 (ZS). Suppose that every ideal is subcomplete and subdetachable. If B is reductive,
then every ideal is tightly contained in some complete ideal.

Proof. The partially ordered class Id(B) of ideals is a set-generated dcpo with respect to tight
containment (Theorem 2.13). Every ideal I is either complete, or else properly and tightly con-
tained in another ideal J (Lemma 2.16). Invoking ZS, every ideal is tightly contained in a complete
ideal.

Over ZF+ZS, we can drop the additional assumptions of subcompleteness and subdetachability,
and simply state that if B is reductive, then every ideal is tightly contained in a complete ideal.
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2. Logical completeness and Jacobson radicals

Remark 2.19. The additional hypothesis for every ideal to be subdetachable in general implies
REM. It thus signifies a considerable obstruction with regard to the overall applicability of Theorem
2.18 in a constructive setting. To give an example, write 0 = ∅ and 1 = { 0 }, take S = 1 for our
domain of discourse, and consider B to be given by the single entailment

1B 0.

This entailment relation actually coincides with the membership relation, i.e., U B a if and only if
a ∈ U , so every subset of 1 is an ideal for B. Now let ϕ be an arbitrary bounded formula in the
first-order language of set theory and consider its intuitionistic truth value

Iϕ = { a ∈ 1 : ϕ } ,

which is an ideal of course, and for which ϕ is equivalent to 0 ∈ Iϕ and thus to Iϕ = S. Therefore, if
every ideal of B were either proper or dense, then plainly this would give rise to REM. Furthermore,
since every element of S is convincing, it follows that every ideal of B is complete. Therefore,
if the class of all complete ideals of B would be a set, then so would be Pow(1), which with
Exponentiation would give rise to the Powerset axiom [3].

Example 2.20. Let’s put all this in the context of logical theories [66, 208]. Let L be an arbitrary
language of first-order predicate logic and take for S the corresponding set of formulae ϕ in L .
For a finite subset U and element ϕ of S put

U B ϕ ≡ U `i ϕ

where `i stands for deducibility with intuitionistic logic. We take for granted familiarity with the
common notational conventions [217]. Recall that negation is considered an abbreviation:

¬ϕ ≡ ϕ→ ⊥.

If T is a set of formulae in L , then

T ◦ =
{
ϕ : ¬ϕ ∈ TB

}
.

In fact, if ¬ϕ ∈ TB, then ψ ∈ (T, ϕ)B for every ψ ∈ S in view of ex falso quodlibet, by means
of which falsum ⊥ is a convincing element. Conversely, if ϕ ∈ T ◦, then ⊥ ∈ (T, ϕ)B and thus
¬ϕ ∈ TB. An ideal I for B is nothing but a deductively closed subset, or, briefly, a theory.
According to the above, if I is a theory, then ϕ ∈ I◦ if and only if ¬ϕ ∈ I. A theory I thus is
complete in the sense of reciprocation precisely when, for every ϕ ∈ S,

ϕ ∈ I ∨ ¬ϕ ∈ I,

which is to say that I is a complete theory in the usual sense. A theory I is proper if and only if
it is consistent, that is, ⊥ /∈ I.

Finally, as can be seen from the concrete description of reciprocation, this B is strongly re-
ductive. By classical meta-reasoning, employing ZS and REM, Theorem 2.18 implies a variant of
Lindenbaum’s Lemma:

Every theory I is tightly contained in a complete theory C.

Since every theory contains ⊥ → ⊥, we obtain a more conventional form from Corollary 2.12,
since if I consistent, and thus proper, then so is any complete theory C tightly containing I.

2.3.3 Jacobson radical

In this section we address the following question: do the elements which are common to every
complete ideal of an entailment relation share a certain property, expressible solely in terms of the
entailment relation at hand? For strongly reductive single-conclusion entailment relations it turns
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2.3. Ideals and extensions

out they do, in a manner which closely resembles the situation in ring theory, as will be seen later
on.

Let T be an arbitrary subset of S and consider

J(T ) = { a ∈ S : ∀b ∈ S ( b ∈ (T, a)◦ → b ∈ T ◦ ) } .

This will turn out an abstract version of the definition of Jacobson radical for commutative rings
[17, 169], and distributive lattices [85, 146], which will be recalled and discussed later on in Section
2.4.

Observe first that J(T ) = J(TB), because of T ◦ = (TB)◦. Furthermore, J is expansive, i.e.,
if T is an arbitrary subset of S, then T ⊆ J(T ). Indeed, for if a ∈ T and b ∈ (T, a)◦, then
S = (T, a, b)B = (T, b)B, whence b ∈ T ◦. With regard to the empty subset, we have

a ∈ J(∅) if and only if ∀b ∈ S ( b ∈ { a }◦ → b ∈ ∅◦ ).

This means that every element a of J(∅) comes with a criterion for density: if b complements
a ∈ J(∅), then b is convincing.

Proposition 2.21. Let S be complemented, and let T be a subset of S. If J(T ) = S, then T ◦ = S.
If I is an inhabited ideal and J(I) = S, then I = S.

Proof. Let b ∈ S and pick a ∈ S such that { a, b }B = S. By assumption, we have a ∈ J(T ), and
since b ∈ (T, a)◦ we get b ∈ T ◦. Therefore, if I is an inhabited ideal with c ∈ I and such that
J(I) = S, then c ∈ I◦ in particular, whence I G I◦ and thus I = S by Lemma 2.10.

Instantiating the following proposition, we see that if B is strongly reductive, then J(∅) consists
precisely of those elements of S that are common to every complete ideal. To this end, we further
need to assume that every ideal I is subdetachable, i.e., I 6= S or I = S. By Corollary 2.15 this
additional assumption yields that all complete ideals form a set.

Theorem 2.22 (ZS). Suppose that every ideal is subcomplete and subdetachable. If B is strongly
reductive, then

J(I) =
⋂
{ C : I ⊆ C }

where C ranges over all the complete ideals. In particular, J(I) is an ideal.

Proof. Let a ∈ J(I) and let C be a complete ideal containing I. By completeness of C we know
that either a ∈ C right away, or else a ∈ C◦. In the latter case, since B is strongly reductive,
there is b ∈ C with a ∈ { b }◦, or equivalently b ∈ { a }◦. It follows that b ∈ (I, a)◦, and therefore
b ∈ I◦ as a ∈ J(I). By monotonicity of reciprocation we get b ∈ C◦ and thus C G C◦. This implies
C = S by Lemma 2.10, whence a ∈ C, anyway.

As regards the converse, suppose that an element a of S belongs to every complete ideal C
that contains I. We need to show a ∈ J(I). To this end, let b ∈ S be such that b ∈ (I, a)◦. We
consider the ideal J = (I, b)B which, by Theorem 2.18 and ZS, is tightly contained in a complete
ideal C. Tightness of C over J means

J ⊇ C ∩ J◦ = C ∩
(
(I, b)B

)◦
= C ∩ (I, b)◦.

By a ∈ (I, b)◦ and a ∈ C we obtain a ∈ J . We can now calculate

S = (I, a, b)B ⊆ ((I, b)B, a)B = (I, b)B

from which we read off b ∈ I◦. Since every intersection of saturated sets again is saturated, we
further see that J(I) is an ideal.

We take note from the proof of Theorem 2.22 that B is required to be strongly reductive just
in order to show that J(I) is contained in the intersection of all complete ideals containing I,
which does not require ZS, whereas for the reverse inclusion in view of Theorem 2.18 a reductive
single-conclusion entailment relation suffices but we have to make use of ZS.
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Corollary 2.23 (ZS). Under the hypotheses of Theorem 2.22, if T is an arbitrary subset of S,
then T ◦ = J(T )◦.

Proof. Since J is expansive and reciprocation is monotone, we may concentrate on showing J(T )◦ ⊆
T ◦. If a ∈ J(T )◦, then, since J(T ) is an ideal and B is strongly reductive, there is b ∈ J(T ) such
that a ∈ { b }◦. This implies a ∈ T ◦.

Corollary 2.24 (ZS). Suppose that every ideal is subcomplete and subdetachable. If B is strongly
reductive, then J restricts to a closure operator on ideals,

J : Id(B)→ Id(B).

Every fixed point I of J is the intersection of all complete ideals containing I. Moreover, if I is a
proper inhabited ideal, then so is J(I).

Proof. Since J is expansive, and monotone by way of Theorem 2.22, it remains to show that
J(J(T )) ⊆ J(T ), so let a ∈ J(J(T )). If b ∈ (T, a)◦, then b ∈ (J(T ), a)◦, thus b ∈ J(T )◦, and finally
b ∈ T ◦ by Corollary 2.23. As regards the add-on, by Proposition 2.21 we know that if I is an
inhabited ideal, then J(I) is proper whenever I is.

Example 2.25. We continue the discussion of logical theories as carried out in Example 2.20.
Consider again a language of first-order predicate logic, let S be the corresponding set of formulae,
and let B stand for deducibility with intuitionistic logic. We claim that if I is a theory, then

J(I) = { ϕ : ¬¬ϕ ∈ I } .

To see this, let ϕ ∈ J(I). We have ¬ϕ ∈ (I, ϕ)◦, and therefore ¬ϕ ∈ I◦. Because of I◦ =
{ ψ : ¬ψ ∈ I } (Example 2.20) we obtain ¬¬ϕ ∈ I. Conversely, consider ϕ such that ¬¬ϕ ∈ I, and
let ψ ∈ (I, ϕ)◦. We need to show ψ ∈ I◦, to which end we simply have to recall the provable rule

I, ϕ `i ¬ψ
I,¬¬ϕ `i ¬ψ

which rests on Brouwer’s observation [54] that

`i ¬¬¬ϕ→ ¬ϕ

holds for every formula ϕ. In view of this, ψ ∈ I◦ is immediate.
Thus, if we pass with B to classical logic, then every theory is J-fixed, which can be considered

a syntactical version of Lindenbaum’s Lemma. With ZS and REM at hand, Theorem 2.22 sub-
sequently yields that every theory is the intersection of all complete theories containing it. Note
that for classical logic and a theory I we also have

J(I) =
{
ϕ : (I, ϕ)B ⊆ I

}
from which J(I) = I follows immediately.

2.3.4 Local entailment relations

Recall that in commutative algebra a ring with exactly one maximal ideal is said to be local
[17]. The purpose of this section is to carry over this concept to the context of single-conclusion
entailment relations, and thus to put flesh on the analogy with commutative algebra.

Let S again be our default set with entailment relation B. Recall that ∅◦ is the set of convincing
elements. In this section we work under the additional assumption that S has a convincing element.
In other words, we suppose that ∅◦ is inhabited. The set S \ ∅◦ of non-convincing elements is a
proper subset of S.

Definition 2.26. We say that B is local if there is a unique proper complete ideal for B.
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Assuming that the convincing elements form a detachable subset of S, we will see that if S \∅◦
is saturated, then S is local with unique proper complete ideal S \ ∅◦. As for the converse, we
seem to require transfinite methods. We are now going to make this precise, and give an explicit
characterization for a strongly reductive single-conclusion entailment relation to be local, making
use of our intersection principle from the preceding section.

Lemma 2.27. Suppose that ∅◦ is detachable. If S \ ∅◦ is an ideal, then B is local with unique
proper complete ideal S \ ∅◦.

Proof. Suppose that I = S \ ∅◦ is an ideal. This I is complete because, by assumption, for every
a ∈ S either a ∈ ∅◦ which implies a ∈ I◦, or else a /∈ ∅◦ and thus a ∈ I. If C is a proper complete
ideal, then clearly C ⊆ I. On the other hand, if a ∈ I, then a ∈ C or a ∈ C◦ by completeness of
C. However, if a ∈ C◦, then S = (C, a)B ⊆ I, but I is proper.

Lemma 2.28 (ZS). Suppose that every ideal is subcomplete and subdetachable, and let B be
reductive. If B is local with unique proper complete ideal C, then C = S \ ∅◦.

Proof. Clearly, if a ∈ C, then a cannot be convincing, for C would be dense. Conversely, if
a ∈ S \∅◦, then { a }B is a proper ideal and by Theorem 2.18 contained in a proper complete ideal
C ′ (taking into account also Corollary 2.12). This C ′ must coincide with C since B is local.

Proposition 2.29 (ZS). Suppose that every ideal is subcomplete, subdetachable, and inhabited. If
B is strongly reductive, then B is local if and only if

S 6= ∅◦ and S = ∅◦ ∪ J(∅). (∗)

Proof. Recall from Theorem 2.22 that if B is strongly reductive, then J(∅) = J(∅B) is the inter-
section of all complete ideals. Thus, if B is local, then J(∅) = S \ ∅◦ by Lemma 2.28. Since every
ideal is subdetachable, it follows that S = ∅◦ ∪ J(∅), which is the right hand conjunct of (∗), and
S 6= ∅◦ follows from the assumption that every ideal has an element. Conversely, if (∗) holds, then
J(∅) need be proper, for if J(∅) = S, then ∅◦ = S by Proposition 2.21. It follows that J(∅) = S\∅◦,
whence B is local by Lemma 2.27.

For instance, every quotient BC with respect to a complete ideal C of B satisfies the right hand
conjunct of (∗). Indeed, for every a ∈ S two cases can be distinguished, as usual: either a ∈ C◦,
and this just means that a is convincing for BC , or else a ∈ C, in which case for every b ∈ S we
have { a, b }BC = S if and only if b ∈ C◦. Since every convincing element of B is convincing also
for BC , our additional working assumption carries over from B to the quotient BC , and we obtain
the following.

Corollary 2.30 (ZS). Under the hypotheses of Proposition 2.29, if B is strongly reductive and C
is a proper complete ideal, then the quotient BC is local.

Proof. It only remains to check S 6= ∅◦C , where we write T ◦C for the reciprocation of a subset
T of S with respect to the quotient BC . In particular, ∅◦C = C◦. Therefore, if S = ∅◦C , then
Proposition 2.14 implies S = S \ C, but C is supposed to have an element.

2.3.5 Operations

Before turning our attention to some concrete case studies, we consider operations on S which are
compatible with the single-conclusion entailment relation in a sense to be made precise.
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2. Logical completeness and Jacobson radicals

2.3.5.1 Binary operations

Let us first consider binary operations

µ : S × S → S, (x, y) 7→ x ◦ y

with which S becomes a magma. The following pivotal condition to be imposed on finitary
coverings [207, 208] lies at the heart of many a syntactical conservation theorem [209, 210] of
multi- over single-conclusion entailment relations.

Encoding.
U, aB c U, bB c

U, a ◦ bB c

An ideal I is prime [208] if

∀a, b ∈ S ( a ◦ b ∈ I → a ∈ I ∨ b ∈ I ).

It should come as no surprise that even in this abstract setting every complete ideal turns out
prime, provided that the binary operation satisfies Encoding. This is an abstract version of the
statement that every maximal ideal is prime in commutative ring theory. The simple reason is
that in the presence of Encoding reciprocations are multiplicative [208] subsets of S:

Lemma 2.31. Suppose that Encoding holds. If T is an arbitrary subset of S, then

∀a, b ∈ S ( a ∈ T ◦ ∧ b ∈ T ◦ → a ◦ b ∈ T ◦ )

Proof. If a, b ∈ T ◦, then we get

S = S ∩ S = (T, a)B ∩ (T, b)B ⊆ (T, a ◦ b)B

by Encoding, and therefore a ◦ b ∈ T ◦.

Proposition 2.32. A complete ideal is prime for every operation which satisfies Encoding.

Proof. Let C be a complete ideal, and let a, b ∈ S be such that a◦b ∈ C. By completeness of C we
know that a ∈ C or a ∈ C◦, as well as b ∈ C or b ∈ C◦. As we need to show that a ∈ C or b ∈ C,
it suffices to consider the case when both a ∈ C◦ and b ∈ C◦. However, under this assumption we
get a ◦ b ∈ C◦ by Lemma 2.31. But then C G C◦, hence C = S and a, b ∈ C anyway.

Remark 2.33. Under the hypotheses of Theorem 2.22, if also Encoding holds, then every J-fixed
ideal is the intersection of all prime ideals that contain it. But actually this holds for every ideal,
no matter whether B is strongly reductive or not. This is due to the Universal Krull-Lindenbaum
Theorem [208] which asserts that if Encoding holds, then⋂

{ P : P ⊇ I } = I

for every ideal I, where P ranges over the (proper) prime ideals of B. However, we believe that
(strong) reductivity is as crucial for complete ideals as Encoding is for prime ideals.

2.3.5.2 Unary operations

Next we consider unary operations

∼ : S → S, a 7→∼ a.

Unary operations have also been considered in the context of finitary coverings [208]. If ∼ is such
that

∀a ∈ S (∼ a ∈ { a }◦ )
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or, directly in terms of the saturation, if ∼ is such that for every a ∈ S we have

{ a,∼ a }B = S,

then we say that ∼ is a dedicated negation. In this case, if T is a subset of S and ∼ a ∈ T , then
a ∈ T ◦. So an ideal I is complete whenever

∀a ∈ S ( a ∈ I ∨ ∼ a ∈ I ).

For a subset T of S we write
∼ T = { ∼ a : a ∈ T }

for the image of T under this operation. If ∼ is a dedicated negation, then

∼ T ⊆ T ◦.

The following shows that if S is local, and a ∈ S, then either a is convincing or ∼ a is.

Lemma 2.34. Suppose that S is local in the sense that

∀a ∈ S
(
a ∈ ∅◦ ∨ a ∈ J(∅) ). (∗)

If ∼ is a dedicated negation, then

∀a ∈ S ( a ∈ ∅◦ ∨ ∼ a ∈ ∅◦ ).

Proof. This follows from (∗) simply because ∼ a ∈ { a }◦.

The following will be useful when it comes to applications in the next section. Recall that an
operation ∼ : S → S is involutive if

∀a ∈ S (∼∼ a = a ),

in which case
∼ T = { a ∈ S :∼ a ∈ T }

Proposition 2.35. Let ∼ : S → S be an involutive dedicated negation, and T a subset of S. If
T ◦ ⊆ ∼ T , then T is J-fixed.

Proof. Let T be such that T ◦ ⊆ ∼ T . As J is expansive, it suffices to show J(T ) ⊆ T . To this
end, let a ∈ J(T ). Since ∼ is dedicated, we have ∼ a ∈ { a }◦, thus ∼ a ∈ (T, a)◦ by monotonicity
of reciprocation, and therefore ∼ a ∈ T ◦ since a ∈ J(T ). Now we have ∼ a ∈∼ T by T ◦ ⊆∼ T ,
and thus a =∼∼ a ∈ T .

Remark 2.36. Under the hypotheses of Theorem 2.22, if ∼ is an involutive dedicated negation,
then T ◦ ⊆∼ T implies that T is an ideal by way of being J-fixed.

2.4 Applications

In this section we turn our attention to several concrete applications which show that requiring a
single-conclusion entailment relation to be reductive is not too far-fetched an assumption. First
we consider the motivating example from commutative ring theory, and see how our findings lead
to elementary descriptions of the concepts of Jacobson radical and Jacobson ring. We discuss
some of the examples studied thoroughly in [208], but emphasis is shifted from prime ideals to
complete ideals. Moreover, Theorem 2.18 and Theorem 2.22 will turn out equivalent to the Axiom
of Choice over ZF. For simplicity’s sake, to get by without assuming ideals to be subcomplete and
subdetachable, we invoke REM, i.e., work in CZF+REM; recall that this proves the same theorems
as ZF.
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2. Logical completeness and Jacobson radicals

2.4.1 Rings and ideals

2.4.1.1 Krull’s Lemma

Let R be a commutative ring (with 1), and let R∗ denote the set of units of R, that is,

R∗ = { a ∈ R : ∃b ∈ R (ab = 1) } .

We take S = R as domain of discourse, and consider the single-conclusion entailment relation B
of ideal of R. This B is an example of an inductively generated entailment relation, as it is the
least one to contain all instances of the following axioms:

B 0

a, bB a+ b

aB ab

If U is a finite subset and a an element of S = R, then

U B a if and only if a ∈ 〈U〉,

where 〈U〉 denotes the ideal of R (of course, now in the ring-theoretic sense) that is generated
by U , i.e., 〈U〉 consists of all the sums of products r1a1 + · · · + rnan with a1, . . . , an ∈ U and
r1, . . . , rn ∈ R. In particular, the ideals of R are precisely the B-saturated subsets of R. If T is
an arbitrary subset of R, then

a ∈ T ◦ if and only if 1 ∈ 〈T, a〉;

recall that I = S if and only if 1 ∈ I, for every ideal I of R. In particular,

a ∈ { b }◦ iff ∃r, s ∈ R ( 1 = ra+ sb ).

Hence this B is strongly reductive. In fact, if a ∈ T ◦, which is to say that there are a1, . . . an ∈ T
and r1, . . . , rn, r ∈ R such that

1 = r1a1 + . . . rnan + ra,

then a ∈ { b }◦ for b =
∑n
i=1 riai ∈ TB. An element a ∈ R is convincing precisely when it is a

unit.
With ZS and REM at hand, Theorem 2.18 leads over to the following variant of Krull’s Lemma

for commutative rings [157]:

In a commutative ring every ideal is tightly contained in a complete ideal.

Next let us bring back to mind the interplay of completeness and maximality. Recall that a
maximal ideal of a commutative ring is an ideal that is maximal among the proper ideals of R.

Proposition 2.37. Let I be an ideal of a commutative ring R.

1. If I is such that for every ideal J ,

I ⊆ J =⇒ ( I = J ∨ J = R ),

then I is complete with respect to reciprocation ◦.

2. If I is proper and complete, then I is maximal among the proper ideals, that is, for every
ideal J ,

( I ⊆ J ∧ J 6= R ) =⇒ I = J.

Proof. 1. For every a ∈ R, by assumption, either I = 〈I, a〉, which implies a ∈ I, or else
〈I, a〉 = R, which is to say that a ∈ I◦.
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2. Let J be another proper ideal and suppose that I ⊆ J . By completeness, for every a ∈ J
either a ∈ I anyway, or else a ∈ I◦ and thus a ∈ J◦, which however would imply J = R
(Lemma 2.10).

Corollary 2.38 (REM). The proper complete ideals of a commutative ring R are precisely the
maximal (proper) ideals. In particular, R is local if and only if the entailment relation B of ideal
of R is local.

With Theorem 2.22 and Corollary 2.38 we thus regain the classical description of the Jacobson
radical of an ideal as the description of all maximal ideals containing it.

Corollary 2.39 (ZS + REM). If I is an ideal of a commutative ring R, then⋂
{ C : I ⊆ C } = J(I)

where C ranges over all the maximal (proper) ideals of R.

Remark 2.40. Recall from Corollary 2.12 that if I is proper, then so is every complete ideal that
contains I. Taking into account Corollary 2.38 and working with ZS+REM, we thus obtain a more
familiar reading of Krull’s Lemma: every proper ideal is contained in a maximal (proper) ideal.
Hence, as “Krull implies Zorn” [24, 136], over ZF the statement of Theorem 2.18 is equivalent
to the Axiom of Choice. Similarly, keep in mind that if I is proper, then so is J(I), due to
Proposition 2.21. Therefore, still working with ZS + REM, Theorem 2.22 implies that there is
a proper complete ideal C containing I. This C is maximal among proper ideals according to
Corollary 2.38. It follows that over ZF the statement of Theorem 2.22 is equivalent to the Axiom
of Choice, as well.

We take the opportunity to point out that our formal description of J(I) directly leads over to
the well-known and computationally meaningful characterization of the Jacobson radical [169].

Proposition 2.41. Let I be an ideal of a commutative ring R.

1. J(I) = { a ∈ R : ∀b ∈ R ( 1 ∈ 〈a, b〉 → ∃c ∈ I ( 1 ∈ 〈b, c〉 ) ) }.

2. J(∅) = { a ∈ R : ∀b ∈ R ( 1− ab ∈ R∗ ) }.

Proof. 1. Suppose that a ∈ J(I), and let b ∈ R such that 1 ∈ 〈a, b〉. This is to say that
b ∈ { a }◦, hence also b ∈ (I, a)◦, and thus b ∈ I◦. Since B is strongly reductive, there is
c ∈ I such that 1 ∈ 〈b, c〉. Conversely, in order to show a ∈ J(I), consider an arbitrary
b ∈ (I, a)◦. There are d ∈ I and r, s ∈ R such that 1 = d+ ra+ sb. Writing b′ = d+ sb, we
have 1 ∈ 〈a, b′〉. Therefore, by assumption, there is c ∈ I with 1 ∈ 〈b′, c〉 ⊆ 〈I, b〉. In other
words, b ∈ I◦, as required.

2. Recall that J(∅) = J(∅B). We may thus resort to the preceding item. It is straightforward
to verify that the description provided before is equivalent to the one that is claimed in case
of I = ∅B = { 0 }.

2.4.1.2 Local rings

Recall once more that in classical mathematics a ring R is said to be local if and only if it has
a unique maximal (proper) ideal. Applying Proposition 2.29 in the present context, we regain
several well-known and concrete criteria for a ring to be local [150, 169].

Proposition 2.42 (ZS + REM). The following are equivalent.

1. 0 6= 1 and ∀a ∈ R ( a ∈ R∗ ∨ ∀b ∈ R ( 1− ab ∈ R∗ ) ).

2. 0 6= 1 and ∀a ∈ R ( a ∈ R∗ ∨ 1− a ∈ R∗).
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2. Logical completeness and Jacobson radicals

3. 0 6= 1 and ∀a, b ∈ R ( a+ b ∈ R∗ → ( a ∈ R∗ ∨ b ∈ R∗ ) )

4. R is a local ring.

5. The entailment relation of ideal of R is local.

Proof. The first item directly implies the second, from which the third item follows by instantiation
with (a+ b)−1a. The third item in turn yields that R is local with maximal ideal R \R∗. Keeping
in mind Corollary 2.38, we arrive back at the first item with Proposition 2.29, by noticing that
0 = 1 is equivalent to R = ∅◦, and reformulating the respective condition (∗) with Proposition
2.41(2).

We hasten to add that in modern constructive algebra [169, 256] the defining condition for a
ring R to be local is taken to be the right hand conjunct of the third item of Proposition 2.42.
Note that the trivial ring (for which 0 = 1) is in fact local according to this definition [169]. A
ring for which the right hand conjunct of the first item of Proposition 2.42 holds is said to be a
residually discrete local ring [169]. Constructively, this is a stronger condition than being local
in the above sense of constructive algebra [169].5 In view of Proposition 2.41(2), the right hand
conjunct of condition (∗) in Proposition 2.29 generalizes the concept of residually discrete local
rings to entailment relations.

2.4.1.3 Jacobson rings

In the context of Hilbert’s Nullstellensatz, Goldman [121] and Krull [158] independently considered
rings R in which every prime ideal is the intersection of all maximal ideals containing it. In this
section, we see how this concept fits into the present context.

Let again R be a commutative ring. Recall that a radical ideal of R is an ideal I such that

∀a ∈ R ( a2 ∈ I → a ∈ I ).

We next consider the single-conclusion entailment relation B of radical ideal that is generated on
R by all instances of the following axioms:

B 0

aB ab

a, bB a+ b

a2 B a

If U is a finite subset and a an element of R, then

U B a if and only if a ∈
√
〈U〉,

where 〈U〉 denotes the ideal generated by U (see Section 2.4.1), and the radical of an ideal I of R
is √

I =
{
r ∈ R : ∃` > 1 (r` ∈ I)

}
.

This single-conclusion entailment relation is strongly reductive, and a subset I of R is saturated
for B if and only if it is a radical ideal. Furthermore, B satisfies Encoding for multiplication [208,
222, 223]:

U, aB c U, bB c
U, abB c

Therefore, by Proposition 2.32, every complete ideal is prime.

Proposition 2.43 (ZS + REM). Let R be a commutative ring. The following are equivalent.

5We are grateful to Henri Lombardi for having pointed this out to us.
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1. Every radical ideal of R is J-fixed.

2. Every prime ideal of R is the intersection of all complete ideals containing it.

Proof. In view of Theorem 2.22, and since every prime ideal is a radical ideal, it suffices to
concentrate on showing that the second item implies the first. Thus, suppose that every prime
ideal of R is the intersection of all complete ideals containing it. Now let I be a radical ideal, and
consider the set (keep in mind that we are working classically) PI of all prime ideals of R that
contain I. Since Encoding holds, I =

⋂
PI by the Universal Krull-Lindenbaum Theorem [208]

(see Remark 2.33). By assumption, for every P ∈PI ,

P =
⋂
{ C : C ⊇ P }

where C ranges over the complete ideals of R. Combining this, we obtain

I =
⋂

PI =
⋂

P∈PI

⋂
{ C : C ⊇ P } =

⋂
{ C : C ⊇ I } = J(I),

which makes use of the fact that every complete ideal is prime (Proposition 2.32). This shows
that I is J-fixed.

Rings in which the second item of Proposition 2.43 is satisfied, with “maximal” in place of
“complete”, have been called Jacobson rings by Krull [158], and have independently been intro-
duced as Hilbert rings by Goldman [121]. Since J(I) = J(

√
I), the first item of Proposition 2.43

can be replaced by demanding that, for every ideal I of R,
√
I = J(I),

which was Krull’s defining property for Jacobson rings: the two notions of radical coincide. The
first item of Proposition 2.43 can thus be seen as an elementary characterization of Jacobson rings.
We briefly return to this in Section 2.5.

2.4.2 Filters

Let L be a bounded distributive lattice, with top and bottom elements 1 and 0, respectively. We
take S = L as domain of discourse, and consider the single-conclusion entailment relation B of
filter of L that is inductively generated by all instances of the following axioms:

B 1

a, bB a ∧ b
aB a ∨ b

If U is a finite subset and a an element of S = L, then

U B a if and only if a ∈ 〈U〉,

where 〈U〉 denotes the filter generated by U , i.e., 〈U〉 consists of all the a ∈ L for which there
are a1, . . . , an ∈ U such that a1 ∧ · · · ∧ an 6 a. In particular, the filters of L are precisely the
B-saturated subsets of L. If T is an arbitrary subset of L, then

a ∈ T ◦ if and only if 0 ∈ 〈T, a〉;

recall that F = L if and only if 0 ∈ F , for every filter F of L. In particular,

a ∈ { b }◦ iff a ∧ b = 0.

As for ideals, this single-conclusion entailment relation is strongly reductive. With ZS and REM,
Theorem 2.18 implies the following variant of Krull’s Lemma for distributive lattices:
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2. Logical completeness and Jacobson radicals

In a distributive lattice every filter is tightly contained in a complete filter.

Arguments similar to those put forward in the proof of Proposition 2.41 yield the following
description of J(F ) for a filter F of L. It is taken from [85, 146].

Proposition 2.44. Let F ⊆ L be a filter.

1. J(F ) = { a ∈ L : ∀b ∈ L ( a ∧ b = 0 → ∃c ∈ F ( b ∧ c = 0 ) ) }.

2. J(∅) = { a ∈ L : ∀b ∈ L ( a ∧ b = 0 → b = 0 ) }.

Before turning our attention to complemented distributive lattices, i.e., Boolean algebras,
we briefly consider semi-normal lattices, which allow for a decomposition of completeness into
primality and J-fixedness. This requires some preparation. From [208] we take that Encoding
holds for ∨, i.e.,

U, aB c U, bB c
U, a ∨ bB c

Thus, by Lemma 2.32, every complete filter F is prime:

∀a, b ∈ L ( a ∨ b ∈ F → a ∈ F ∨ b ∈ F ).

Mind that we do not require prime filters to be proper.6 Next, following [146], but dualizing in
order to put focus on the meet operation, we say that a distributive lattice L is semi-normal if,
whenever a ∧ b = 0, there are c, d ∈ L such that a ∧ d = b ∧ c = 0 and c ∨ d ∈ J(∅). The line of
argument for the proof of the next proposition follows [146, Lemma 1.12].

Proposition 2.45 (REM). Let L be semi-normal, and let F ⊆ L be a filter. The following are
equivalent.

1. F is complete.

2. F is prime and J-fixed.

Proof. Every complete filter turns out J-fixed by means of Proposition 2.21 and is prime due
to Encoding. Conversely, to show that every prime and J-fixed filter F is complete, we reason
classically. Thus, let a ∈ L and suppose that a /∈ F . Since F is J-fixed, a /∈ J(F ), so there is
b ∈ L such that a∧ b = 0, but b∧ c 6= 0 for every c ∈ F . Since L is semi-normal, there are c, d ∈ L
such that a ∧ d = b ∧ c = 0 and c ∨ d ∈ J(∅). Then, since F is J-fixed and prime, either c ∈ F or
d ∈ F . The former is impossible due to b∧ c = 0. Therefore d ∈ F , which implies a ∈ F ◦ because
of a ∧ d = 0.

Needless to say, one may dually consider ideals of distributive lattices, rather than filters, and
obtain similar results.

Now suppose that L is a Boolean algebra, i.e., every a ∈ L has a complement −a ∈ L for
which a∧−a = 0 and a∨−a = 1. Thus we have a dedicated and involutive negation a 7→ −a. In
particular,

−F = { a ∈ L : −a ∈ F } .

The reciprocal of a filter is obtained by taking complements:

Lemma 2.46. Let L be a Boolean algebra. If F is a filter of L, then F ◦ = −F .

Proof. Let F be a filter of L. Since complementation gives a dedicated negation, we know that
−F ⊆ F ◦. Conversely, let a ∈ F ◦, which is to say that 0 ∈ 〈F, a〉. It follows that there is b ∈ F
such that a ∧ b = 0. This implies b 6 −a, whence −a ∈ F , since F is a filter. Thus a ∈ −F .

6Filters which are understood to be prime in this sense have also been called partially prime [183].
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Recall that a proper filter F of a Boolean algebra is said to be an ultrafilter if, for every a ∈ L,
either a ∈ F or −a ∈ F (but not both). Combining Proposition 2.35 with Lemma 2.46 yields the
following.

Proposition 2.47. Let L be a Boolean algebra. If F is a filter of L, then

1. F is J-fixed, and

2. F is proper and complete if and only if it is an ultrafilter.

In particular, every Boolean algebra is a Jacobson lattice [85], by which here we understand a
distributive lattice every filter of which is J-fixed. Furthermore, with ZS, REM and Theorem 2.22,
we obtain the following classical variant of the Boolean ultrafilter theorem:

Every filter of a Boolean algebra is the intersection of all complete filters containing it.

It is worth pointing out that our notion of complete filter coincides with Mulvey’s concept of
partial maximality [183].7 Recall that a (not necessarily proper) filter P of a Boolean algebra is
said to be partially maximal if, for every filter F that contains P , one has that

∀a ∈ F ( a ∈ P ∨ 0 ∈ F ).

Proposition 2.48. Let L be a Boolean algebra, let P ⊆ L be a filter. The following are equivalent.

1. P is complete.

2. P is partially maximal.

Proof. If P is complete and P ⊆ F , then, for every a ∈ F , by completeness either a ∈ P or
−a ∈ P . In the latter case, −a ∈ F and thus 0 = a ∧ −a ∈ F since F is a filter. Conversely,
suppose that P is partially maximal, and let a ∈ L. Consider F = 〈P, a〉. Since P is partially
maximal, either a ∈ P , or else 0 ∈ F , which amounts to a ∈ P ◦. So P is complete.

2.4.3 Order extension

2.4.3.1 Bounded quasi-orders

We return to the topic of order extension, the subject matter which has prompted the present
chapter and provided motivation [226], and see how it fits into this general framework. Let E
be a set with two distinguished elements 0 and 1. Our objects are bounded quasi-orders on E,
i.e., reflexive transitive binary relations 6 such that 0 6 a and a 6 1 for every a ∈ E. With the
set S = E × E as our domain of discourse, we consider the single-conclusion entailment relation
B of bounded quasi-order that is inductively generated by all instances of the following axioms:

B (0, a)

B (a, 1)

B (a, a)

(a, b), (b, c)B (a, c)

Let T be an arbitrary subset of S and (a, b) ∈ S. We have

T B (a, b) if and only if (a, b) ∈ rtc
(
T ∪ ({ 0 } × E) ∪ (E × { 1 })

)
where rtc means the reflexive-transitive closure, or, in other words, the hull of a binary relation.
The ideals clearly are the bounded quasi-orders on E, and (1, 0) is a convincing element for B.

7We are grateful to Thierry Coquand for having pointed this out to us.
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Therefore, as regards reciprocation, unfolding the non-inductive description of B in terms of the
hull, we obtain that (a, b) ∈ T ◦ holds if and only if there are elements

1 = a0, a1, . . . , am = a and b = b0, b1, . . . , bn = 0

of E such that (ai, ai+1) ∈ T ∪ ({ 0 } × E) for every i < m, and (bj , bj+1) ∈ T ∪ (E × { 1 }) for
every j < n. If R is a bounded quasi-order, then

(a, b) ∈ R◦ if and only if (1, a) ∈ R ∧ (b, 0) ∈ R

and therefore, since (TB)◦ = T ◦, for arbitrary T ⊆ S,

(a, b) ∈ T ◦ if and only if { (1, a), (b, 0) } ⊆ TB.

This entailment relation is reductive, because (a, b) ∈ { (1, a), (b, 0) }◦. For instance, if R is a
bounded partial order, i.e., an antisymmetric bounded quasi-order, then R◦ = { (1, 0) }. For every
bounded quasi-order R we have

R◦ ⊆ { (a, b) : (b, a) ∈ R } ,

for if (1, a) ∈ R and (b, 0) ∈ R, then by transitivity we get (b, a) ∈ R since (0, 1) ∈ R.8 Therefore,
every complete ideal for B is a linear bounded quasi-order. By means of ZS, REM, and Theorem
2.18, we obtain the following variant of Hansson’s theorem [129]:

Every bounded quasi-order is tightly contained in a linear bounded quasi-order.

2.4.3.2 Szpilrajn’s theorem

Next we consider Szpilrajn’s extension principle in its original form for strict partial orders, i.e.,
irreflexive transitive relations. Once again, let E be a set. We take the product S = E × E as
our domain of discourse and consider the entailment relation B of strict partial order of E which
is inductively generated by all instances of the following axioms of irreflexivity and transitivity

(a, a)B (x, y)

(a, b), (b, c)B (a, c)

respectively. We note that the proper ideals for B are precisely the strict partial orders of E.
Next, let

∆ = { (a, b) ∈ S : a = b }
be the diagonal. Now a relation T ⊆ S is irreflexive if and only if T ∩∆ = ∅. We take the following
non-inductive description for the entailment relation of strict partial order from [210].

Lemma 2.49. Let U be a finite subset of S and let (a, b) ∈ S. The following are equivalent.

1. U B (a, b)

2. tc(U) G { (a, b) } ∪∆,

where tc(U) denotes the transitive closure of U .

From the generating axioms we obtain with transitivity (T) all instances of the axiom of
asymmetry which here takes the following form:

(a, b), (b, a)B (x, y).

This amounts to saying that the involutive swap mapping

∼ : S → S, (a, b) 7→ (b, a)

is a dedicated negation. Reciprocation can be characterized as follows.

8In this case, notice further that R◦ ⊆∼ R, where ∼ (a, b) = (b, a) is the involutive swap mapping. However,
this ∼ is not in general a dedicated negation. To see this, consider a set E with pairwise distinct elements 0, a, b, 1.
We do not have (1, 0) ∈ { (a, b), (b, a) }B.
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Lemma 2.50. Let T be a subset of S and let (a, b) ∈ S. The following are equivalent.

1. (a, b) ∈ T ◦

2. tc(T ) G { (b, a) } ∪∆

Proof. Suppose that (a, b) ∈ T ◦, i.e., (T, (a, b))B = S. In particular, (b, a) ∈ (T, (a, b))B. It follows
that there is a finite subset U of T such that, according to Lemma 2.49, either

(b, a) ∈ tc(U, (a, b)) or tc(U, (a, b)) G ∆.

By case analysis, unfolding the definition of transitive closure, it follows that

(b, a) ∈ tc(U) or tc(U) G ∆,

which since U ⊆ T implies tc(T ) G { (b, a) } ∪ ∆. The converse follows from Lemma 2.49 with
asymmetry: if U is a finite subset of T such that U B (b, a), then, for every (x, y) ∈ S, transitivity
(T) with (a, b), (b, a)B (x, y) yields U, (a, b)B (x, y), whence (T, (a, b))B = S.

Corollary 2.51. Every strict partial order of E is J-fixed.

Proof. If T is a strict partial order, then tc(T ) = T and T ∩∆ = ∅, in view of which the second
item of Lemma 2.50 amounts to ∼ (a, b) ∈ T , so that T ◦ ⊆∼ T . Proposition 2.35 asserts that T
is J-fixed.

Because of Lemma 2.50, the entailment relation B is strongly reductive, since if (a, b) ∈ T ◦,
then (b, a) ∈ TB, and { (a, b), (b, a) }B = S is due to asymmetry. Furthermore, the proper complete
ideals C of B are precisely the linear strict partial orders of E, i.e., those such that for all a, b ∈ E,
if a 6= b, then (a, b) ∈ C or (b, a) ∈ C. Thus, with ZS and REM, combining Theorem 2.22 with
Corollary 2.51, we reobtain Dushnik and Miller’s classical result [106], for which Corollary 2.51
provides a syntactical counterpart:

Every strict partial order of E is the intersection
of all linear strict partial orders that contain it.

The examples in this Section 2.4 have been considered also in the context of conservation
criteria for multi-conclusion extensions of single-conclusion entailment relations [209, 210].

2.5 Conservation

In this final section we shed some light on certain aspects of multi-conclusion entailment relations
as extending their single-conclusion counterparts [103, 115, 140, 170, 229, 234, 255]. We start
with a brief summary, referring to [209, 210] for a thorough account, which extends and builds on
ideas and results from proof theory [190], and dynamical and constructive algebra [87, 92, 169].
The importance of entailment relations for constructive algebra and point-free topology has been
advocated ever since Coquand and Cederquist’s seminal paper [62]. Entailment relations are also
related to resolution calculi [90, 258].

Let S be a set. Recall that a multi-conclusion entailment relation [229–231] is a relation

`⊆ Fin(S)× Fin(S)

between finite subsets U and V of S which is reflexive, monotone, and transitive:

U G V

U ` V (R)
U ` V

U,U ′ ` V, V ′
(M)

U ` V, a U ′, a ` V ′

U,U ′ ` V, V ′
(T)
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2. Logical completeness and Jacobson radicals

making use of the usual shorthand notations. A model of ` is a subset α of S that splits entailment
as follows:

α ⊇ U U ` V
α G V

A multi-conclusion entailment relation ` extends a single-conclusion entailment relation B on S
if, for every finite subset U and element a of S, U B a implies U ` a. In case the converse holds
as well, this extension is said to be conservative. It can be shown [209, 210] that an extension `
of B is conservative if and only if the following holds:

a1, . . . , ak ` b1, . . . , b` U, b1 B c . . . U, b` B c
U, a1, . . . , ak B c (#)

Example 2.52. Let B be a single-conclusion entailment relation on S and suppose that C is a
proper complete ideal of B. Stipulate, for finite subsets U and V of S,

U `C V ≡ U G C◦ ∨ V G C

It may be instructive to think of this `C in terms of material implication: either U contains a
falsity or V contains a truth, taking S to consist of certain states of affairs of which C gathers
those that are agreed to be true.9 It is straightforward to verify that `C is an entailment relation,
taking into account that C◦ = S \ C (Proposition 2.14).

This `C is an extension of the quotient BC . In fact, suppose that U BC a, i.e., there is a finite
subset V of C with U, V B a. Now either a ∈ C, and U `C a is immediate, or else a ∈ C◦, and
thus U G C◦. To see the latter, as C is detachable (Proposition 2.14) it suffices to rule out U ⊆ C,
in which case by V ⊆ C we would get a ∈ C since C is an ideal of B, whence C = S by Lemma
2.10, in contradiction to C being proper.

It can be shown directly that if B is reductive, then `C is conservative over BC . To see this,
suppose that U `C a, which is to say that U G C◦ or a ∈ C. In the latter case U BC a by U, aB a.
In the former case, if b ∈ U ∩ C◦, then, since B is reductive, there is a finite subset V of C such
that b ∈ V ◦, that is, (V, b)B = S. In particular V, bB a, and thus again U BC a.

However, all this requires a proper complete ideal of B to begin with, the existence of which,
as we have seen, may well depend on assumptions beyond CZF.

For the following we make use of the conservation criterion recalled above [209, 210] as well as
of the notion of Jacobson radical as developed in Subsection 2.3.3.

Proposition 2.53. Let B be a single-conclusion entailment relation, and let ` be a multi-conclusion
entailment relation that extends B.

1. Let B be reductive. If ` is conservative over B, then every proper complete ideal of B is a
model of `.

2. (ZS+REM) Let B be strongly reductive such that every ideal of B is J-fixed. If every proper
complete ideal of B is a model of `, then ` is conservative over B.

Proof. 1. Let B be reductive and let ` be conservative over B. Let C be a proper complete
ideal of B. In order to show that C is a model of `, consider finite subsets U and V of S,
and assume that U ` V and U ⊆ C. By Proposition 2.14, C is detachable with complement
C◦. Hence to prove C G V it suffices to rule out the alternative V ⊆ C◦. In this case, since
B is reductive, for every b ∈ V there is a finite subset Ub of C such that b ∈ U◦b . Now let
c ∈ S be arbitrary. By the definition of reciprocation, for every b ∈ V we have Ub, bB c, so
that by monotonicity of B we get W, bB c for every b ∈ V , where W =

⋃
b∈V Ub. Then, by

way of conservation (#), we obtain U,W B c and thus c ∈ C since C is an ideal of B and
U,W ⊆ C. As c was considered arbitary, it follows that C = S. Yet C is supposed to be
proper!

9This is to be compared with Carnap’s concept of involution [58], to whom, among others, the development of
multi-conclusion entailment relations can be traced back [152, 234].
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2. Let B be strongly reductive such that every ideal of B is J-fixed, and suppose that every
proper complete ideal of B is a model of `. We want to show that ` is conservative over B,
to which end we consider a finite subset U and element a of S with U ` a. If C is a proper
complete ideal that contains U , then, since C is a model of `, we get a ∈ C. From Theorem
2.22 it follows that a ∈ J(UB). Since UB is J-fixed, we get a ∈ UB, which is to say that
U B a, as required.

Let’s support the seemingly ad hoc hypotheses of Proposition 2.53(2) with some concrete
examples.

Example 2.54. We return to the setting of Section 2.4.1.3. Thus, let S = R be a commutative
ring and consider once again the entailment relation B of radical ideal. Let the multi-conclusion
entailment relation ` be generated by the axioms of B plus all instances of the axioms of properness
and primality

1 `
ab ` a, b

respectively. The models of ` are the proper prime ideals of the ring R. Let us say that R is
a Jacobson ring if every radical ideal is J-fixed with respect to B. In view of Proposition 2.43,
this classically amounts to the customary definition of a Jacobson ring [121, 158]. Every proper
complete ideal C of B is prime, hence is a model of `. Invoking ZS and REM, Proposition 2.53(2)
now tells us that if R is a Jacobson ring, then ` is conservative over B. However, this can as well
be shown constructively for arbitrary rings and with syntax only [209, 210].

Example 2.55. As in Section 2.4.2, let L be a distributive lattice. To extend the single-conclusion
entailment relation B of filter of L, we consider multi-conclusion axioms

0 `
a ∨ b ` a, b

The models of ` are the proper prime filters of L. Conversely, since Encoding holds, every (proper)
complete ideal of B is (proper and) prime (Proposition 2.32). If L is a Jacobson lattice, i.e., such
that every filter of L is J-fixed, then ` is conservative over B according to Proposition 2.53(2).
For instance, this holds if L is a Boolean algebra. However, as in the preceding Example 2.54, all
this can be shown constructively for arbitrary distributive lattices and by means of syntax only
[209, 210].

Example 2.56. Consider the single-conclusion entailment relation B of strict partial order on a
set E from Section 2.4.3.2. On top of the axioms of B we put multi-conclusion axioms

(a, a) `
` (a, b), (b, a) (a 6= b)

with side condition as indicated. The models of ` are the strict linear orders of E. Since every
proper complete ideal of B is a model of `, and since every ideal of B is J-fixed by Corollary 2.51,
it follows from Proposition 2.53(2) that ` is conservative over B. Again, we refer to [210] for a
purely syntactical treatment.
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Chapter 3

Eliminating disjunctions by disjunction
elimination

This chapter is based on [209, 210].

3.1 Introduction

As is well-known, certain additional axioms in which disjunctions occur in positive position such
as

P (x ∗ y) → P (x) ∨ P (y) P (e) → ⊥
> → Q(z) ∨Q(∼z) Q(z) ∧Q(∼z) → ⊥

are extremely useful in proof practice: they make possible quicker and slicker proofs in the special
cases specified by the axioms. Examples include the characteristic axioms of integral domain, local
ring, linear order, ordered field and valuation ring. The use of such axioms, however, is said [228]
to obstruct the extraction of computational content from classical proofs.1,2

To reduce the general case to the special case, moreover, one needs to have at hand—in the
terminology of Hilbert’s Programme—the ideal objects characterised by the axioms, as there are
prime ideals, prime filters, ultrafilters, complete theories and linear orders. Yet the existence of
these ideal objects is tied together—again in Hilbert’s terms—with transfinite methods (Axiom
of Choice, Well-Ordering Theorem, Ultrafilter Theorem, Zorn’s Lemma, etc.) in the appropriate
mathematical forms shaped by Artin–Schreier, Hahn–Banach, Krull–Lindenbaum, Szpilrajn and
others.

This method is related to semantic conservation3 proofs with adequate completeness theorems
at hand: by suitably embedding any given model of the base theory T into a model of the extended
theory T ∗ [233]. In fact, if T ∗ ` ϕ, then T ∗ � ϕ by soundness; whence T � ϕ by embedding,
and thus T ` ϕ by completeness. While completeness and embedding normally need transfinite
methods, in some cases Boolean-valued models can be used for constructive arguments [80].

More often than not one can also put and prove a syntactical conservation theorem the proof
of which contains a proof-theoretic conversion algorithm that works at least for what is known
as Horn sequents [148] or definite Horn clauses [217]. This approach is not new and has already
proved practicable in different but related contexts: for example, in point-free topology such as
locale theory and formal topology [62, 63, 72, 75, 184, 185]; in constructive algebra, especially
with dynamical methods [81, 92, 164, 167–169, 256]; and in proof theory, e.g. in proof analysis
[189, 190].

1 This ample and active field of research has been displayed both in monographs [153, 227] and in survey papers
[37, 155], which list of references is by no means exhaustive; early original references are, e.g., [57, 154].

2Falsity can be seen as nullary disjunction; and binary and nullary disjunctions cover all finite disjunctions.
3We prefer to write ‘conservation’ rather than ‘conservativity’, which choice of terminology follows, e.g., [109,

239].
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3. Eliminating disjunctions by disjunction elimination

Towards a considerable generalisation (Theorem 3.4) we now employ a method pointed out in
[62]: that is, to work with Scott’s entailment relations. More specifically, we invoke the extremely
efficient ‘sandwich criterion’ Scott [229] has proved equivalent to syntactical conservation of a
multi-conclusion entailment relation extending a single-conclusion entailment relation (Theorem
3.2 below). This criterion has turned out to hold in numerous cases including the ones abstracted
before [208].

In a nutshell, applying Scott’s criterion means to eliminate the additional axioms with dis-
junctions in positive position by reducing them to the corresponding disjunction elimination rules,
which have proved admissible in all mathematical instances considered so far.4 In deduction terms
this means to fold up branchings of proof trees by way of properties of the relevant mathematical
structures.

Perhaps it is in order to remember a saying by Scott [230, pp. 793–4]:

Unfortunately, in my opinion, both because of the aim of Gentzen’s own work and
in the light of later applications, the Gentzen systems have been very much oriented
toward proof-theoretic analyses—especially the problems of establishing the so-called
cut elimination theorem. For me this was misleading. It took me a long time to realize
that cut is not eliminable—except in very special circumstances. This is not to say that
cut elimination is uninteresting or unimportant, but there does seem to be a simple
and basic point to make with the aid of Gentzen’s idea which may not be so generally
appreciated.

On method

All but Section 3.5 can be expressed within Elementary Constructive Zermelo–Fraenkel Set Theory
ECST [7, 8]. This is a fragment of Constructive Zermelo–Fraenkel Set Theory CZF, which is based
on intuitionistic logic and does not contain the Axiom of Power Set, let alone the Axiom of Choice.
To supply semantics (Section 3.5) sometimes requires to use classical logic, to speak of power sets
or to invoke Zorn’s Lemma; for simplicity’s sake we refer to ZFC in any such case.

3.2 Relation

3.2.1 Consequence

Let S be a set and B ⊆ Pow(S)× S. All but one of Tarski’s axioms of consequence [244] can be
put as

U 3 a
U B a

(R)
∀b ∈ U(V B b) U B a

V B a
(T)

U B a
∃U0 ∈ Fin(U)(U0 B a)

(A)

where U, V ⊆ S and a ∈ S. Since Sambin’s [218]5 these axioms have also characterised a finitary
covering or Stone covering in formal topology; see further [65, 67, 187, 188, 219, 220].

The notion of consequence has allegedly been described first by Hertz [132–134]. We do not
employ the one of Tarski’s axioms by which he requires that S be countable. This axiom aside,
Tarski has rather characterised the set of consequences of a set of propositions, which corresponds
to the algebraic closure operator U 7→ UB on Pow(S) correlated to a relation B as above, viz.

UB ≡ {a ∈ S : U B a} .

Rather than with Tarski’s notion, we henceforth work with its restriction to finite subsets, that
is, the notion of a single-conclusion entailment relation. This is a relation B ⊆ Fin(S) × S that

4Strictly speaking these are provable implications rather than admissible rules in the formal reading of Lorenzen’s
term [172]; for the sake of a slicker notation we still write them with horizontal lines.

5This also is from where we have taken the symbol B, which is further used [64, 252] to denote a ‘consecution’
[204].
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satisfies

U 3 a
U B a

(R)
V B b V ′, bB a

V, V ′ B a
(T)

U B a
U,U ′ B a

(M)

for all finite U,U ′, V, V ′ ⊆ S and a, b ∈ S, where as usual U, V ≡ U ∪ V and V, b ≡ V ∪ {b}.
Our focus thus is on finite subsets of S, for which we reserve the letters U, V,W, . . .; we also

sometimes write a1, . . . , an in place of {a1, . . . , an}. Redefining

TB ≡ {a ∈ S : ∃U ∈ Fin(T )(U B a)} (3.1)

for arbitrary subsets T of S gives back an algebraic closure operator on Pow(S). Hence the
single-conclusion entailment relations correspond exactly to the relations satisfying Tarski’s axioms
above.

3.2.2 Entailment

Let S be a set and `⊆ Fin(S)× Fin(S). Scott’s [229] axioms of entailment can be put as

U GW

U `W (R)
V `W, b V ′, b `W ′

V, V ′ `W,W ′
(T) U `W

U,U ′ `W,W ′
(M)

for finite U, V,W ⊆ S and b ∈ S, where U GW means that U and W have an element in common.6

To be precise, any such ` is a multi-conclusion entailment relation, where ‘multi’ includes ‘empty’.
The axioms are symmetric: that is, ` satisfies the axioms if and only if so does the converse
relation a.

This fairly general notion of entailment has been introduced by Scott [229–231], building on
Hertz’s and Tarski’s work (see above), and of course on Gentzen’s sequent calculus [117, 118].
Shoesmith and Smiley [234] trace multi-conclusion entailment relations back to Carnap [58]. Before
Scott, Lorenzen has developed analogous concepts formally [170, 171, 173, 174]; he has even listed
[170, pp. 84–5] counterparts of the axioms (R), (T) and (M) for single- and multi-conclusion
entailment [83, 84, 86].7 The relevance of the notion of entailment relation to point-free topology
and constructive algebra has been pointed out in [62]; this has been used e.g. in [72, 76, 82, 87,
89, 90, 190, 207]. Consequence and entailment have caught interest from various angles [19, 103,
115, 138, 139, 196, 234, 255].

It is in order to point out a major virtue Scott’s treatment of entailment [229] has in comparison
with the ones of his predecessors: the base set S may be any set whatsoever, and especially need
not consist of formulas. The recommended reading of U ` V still is as a sequent à la Gentzen, or
rather as ∧

b∈U

v(b)→
∨
c∈V

v(c)

where v is a distinguished predicate on S, normally the one that is of primary interest in the given
context. In more logical terms one may view the elements of S as propositional variables and v as
a valuation. Although this can be made precise by semantics, see Section 3.5, let us stress that—
apart from heuristics—it is by no means constituent for our syntactical considerations, i.e. for all
but Section 3.5.

Just as for sequents, it is common to abbreviate ∅ B a by Ba, and to use ` V and U ` as
shorthands of ∅ ` V and U ` ∅, respectively. One occasionally even writes ` in place of ∅ ` ∅.

3.2.3 Generation

Let E ⊆ Pow(X × Y ) be a class of relations between sets X and Y . We order E by inclusion ⊆,
and call every R ∈ E an E -relation. Let R ⊆ X × Y , and (xi, yi) ∈ X × Y with i ∈ I. We say

6We have adopted this notation from Giovanni Sambin.
7Stefan Neuwirth has pointed this out to us.
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3. Eliminating disjunctions by disjunction elimination

that R is the E -relation generated by the axioms xiRyi with i ∈ I if R is the least E -relation to
which (xi, yi) belongs for every i ∈ I. Note that we thus do not incur circularity inasmuch as we
suppose R to be given.

We will apply this in the two cases in which E either consists of all single-conclusion entailment
relations on a given set S, or else of all multi-conclusion entailment relations on S. In these cases
the axioms rather are axiom schemes in the sense that every parameter is tacitly understood as
ranging over its domain. For example, if ◦ is a binary operation on S, then by saying that B is
generated by the axiom a, b B a ◦ b we mean that B is generated by all axioms a, b B a ◦ b with
a, b ∈ S.

To actually construct an entailment relation generated by axioms, in a non-circular way, one
can inductively generate it from the axioms by closing up with respect to (R), (T) and (M). This
anyway is how we deal with our applications (Section 3.4), but is not always necessary for making
proofs work. For example, for proving our main result (Theorem 3.4) it is enough to know that
the entailment relations under consideration literally are the least entailment relations that satisfy
the required axioms.

3.3 Conservation

Let B and ` stand for a single-conclusion and a multi-conclusion entailment relation, respectively.

3.3.1 Back and forth

Given `, its trace B` is defined by
U B` a ≡ U ` a

and in fact is a single-conclusion entailment relation.
Given B and `, it makes sense to say that

1. ` is an extension of B if B ⊆ B`;

2. ` is conservative over B if B ⊇ B`.

By the very definitions, every ` is a conservative extension of its trace B`.
Given B, there are `min

B and `max
B as follows [229]:8

U `min
B V ≡ ∃b ∈ V (U B b)

U `max
B V ≡ ∀W ∈ Fin(S)∀c ∈ S

(
∀b ∈ V (W, bB c)→W,U B c

)
Remark 3.1.

1. Both `min
B and `max

B are multi-conclusion entailment relations, and `min
B ⊆`max

B .

2. Both `min
B and `max

B are conservative extensions of B, which is the trace of either relation.

We note in passing9 that the trace B` of a multi-conclusion entailment relation ` both is

1. the least single-conclusion entailment relation over which ` is conservative and

2. the least single-conclusion entailment relation B such that `max
B contains `.

For later use we observe that a1, . . . , ak `max
B b1, . . . , b` is tantamount to

W, b1 B c . . . W, b` B c
W, a1, . . . , ak B c

(3.2)

for all finite W ⊆ S and c ∈ S.

8This definition of `max
B is not identical but equivalent to the one given in [229].

9These observations have been made by Hajime Ishihara.
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3.3.2 Unfolding sandwiches

Given B, the ` which are extensions of B (respectively, which are conservative over B) are closed
upwards (respectively, closed downwards) with respect to ⊆. Hence the ` which are conservative
extensions of B form an interval. This interval has endpoints `min

B and `max
B according to the

following ‘sandwich criterion’ for conservative extension given by Scott [229]:

Theorem 3.2. A multi-conclusion entailment relation ` is a conservative extension of the single-
conclusion entailment relation B if and only if ` lies between `min

B and `max
B , which is to say

that

B = B` ⇐⇒ `min
B ⊆`⊆`max

B .

Lorenzen [174, Satz 14, Satz 15] already had `min
B and `max

B as well as ⇒ of Theorem 3.2 [83,
84].10

By proof inspection we could make Scott’s criterion slightly more precise, as follows:

Lemma 3.3.

1. ` is an extension of B if and only if `min
B ⊆`.

2. If `⊆`max
B , then ` is conservative over B.

3. If ` is an extension of B, then ` is conservative over B if and only if `⊆`max
B .

Proof. 1. If B ⊆ B`, then U `min
B V implies U ` b for some b ∈ V ; whence U ` V by (M).

Conversely, if `min
B ⊆` and U B b, then U `min

B b and thus U ` b or, equivalently, U B` b.

2. If `⊆`max
B and U ` a, then U `max

B a, which amounts to U B a because B is the trace of
`max
B .

3. Suppose that ` conservatively extends B, and let U ` V where V = { b1, . . . , b` }. To prove
U `max

B V , let W ∈ Fin(S) and c ∈ S such that

W, b1 B c . . . W, b` B c .

Since ` extends B, we have as well

W, b1 ` c . . . W, b` ` c .

With U ` V at hand we can successively cut b1, . . . , b` and thus obtain W,U ` c, which by
conservation implies W,U B c as required.

In view of part 2 of Lemma 3.3, to have that conservation follows from `⊆`max
B it is not necessary

that ` be an extension of B.

Remembering the recommended disjunctive reading of the conclusion V of any sequent U ` V ,
in the light of Lemma 3.3 a possible interpretation of extension and conservation is as follows:

1. extension as that disjunctions introduced from B can be expressed as sequents of `;

2. conservation as that disjunctions expressed as sequents of ` can be eliminated in terms of
B.

10Stefan Neuwirth pointed this out to us.
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3. Eliminating disjunctions by disjunction elimination

3.3.3 Adding axioms

Let the single-conclusion entailment relation B be generated by axioms. Let the multi-conclusion
entailment relation ` be generated by the axioms of B, of course with ` in place of B, and by
additional axioms of the form

ϕ : a1, . . . , ak ` b1, . . . , b`

where k, ` ≥ 0. In any such situation we say that ` extends B, and list the additional axioms if
needed. This is legitimate inasmuch as if ` extends B, then ` is an extension of B in the sense of
3.3.1. By the conservation criterion of an axiom ϕ as above we understand

W, b1 B c . . . W, b` B c
W, a1, . . . , ak B c

(Eϕ)

for all finite subsets W of S and c ∈ S.11

Theorem 3.4. If ` extends B, then ` is conservative over B precisely when, for every additional
axiom ϕ of `, the conservation criterion Eϕ holds for B.

Proof. As ` is an extension of B, the former is conservative over the latter if and only if `⊆`max
B

(Lemma 3.3). Now recall that ` is the least multi-conclusion entailment relation that satisfies
not only the axioms of B but also the additional axioms of `; and that `max

B as an extension of
B already satisfies the former axioms. Hence `⊆`max

B is tantamount to `max
B too satisfying all

additional axioms, i.e.

a1, . . . , ak `max
B b1, . . . , b`

for every additional axiom ϕ as above. In view of (3.2), this is equivalent to Eϕ for B.

Given an axiom such as ϕ above, let `ϕ denote the multi-conclusion entailment relation that
extends B with the single additional axiom ϕ. If `ϕ is conservative over B, we say—par abus de
langage—that ϕ is conservative over B. The related special case of Theorem 3.4 reads as follows:

Corollary 3.5. An axiom ϕ is conservative over B if and only if Eϕ holds for B.

By reduction to Eϕ we can thus eliminate from proof trees occurrences of an additional axiom
ϕ, roughly as follows; note that the result of this conversion does not contain ` at all:

W B a1 . . . W B ak ϕ : a1, . . . , ak ` b1, . . . , bl
W ` b1, . . . , bl W, b1 B c . . . W, bl B c

W ` c

W B a1 . . . W B ak

W, b1 B c . . . W, bl B c (Eϕ)
W,a1, . . . , ak B c

W B c

By Corollary 3.5 the following is an equivalent formulation of Theorem 3.4.

Corollary 3.6. If ` extends B, then ` is conservative over B precisely when every additional
axiom ϕ of ` is conservative over B.

The next lemma will prove useful for modifying the base of an instance of conservation; we
hasten to add that item 1 below is the single-conclusion version of [62, Lemma 2].

11In the terminology of [190], this Eϕ corresponds to the ‘single-succedent left rule’ of the ‘mathematical axiom’
ϕ.
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Lemma 3.7. Let B be a single-conclusion entailment relation on S that is generated by axioms.
For any subset D of S, let B′ be generated by the axioms of B, and by the extra axioms B′d with
d ∈ D.

1. We have U B′ a if and only if U, V B a for a finite subset V ⊆ D.

2. If an axiom

ϕ : a1, . . . , ak ` b1, . . . , b`

is conservative over B, then it is conservative over B′.

Proof. 1. ‘only if’: Since B′ is generated from B by adding axioms, we may argue inductively.
We consider first the axioms generating B′. If U B′ a by way of an axiom U B a of B, then
V = ∅ will do. If we have at hand B′d for a certain d ∈ D, then d B d by reflexivity of B.
Next we address (R), (M), and (T). Our claim certainly applies to (R); by induction it also
applies to (M): if U,U ′ B′ a and there is a finite subset V of D such that U, V B a, then
U,U ′, V B a by (M) for B. As for (T), consider the following instance:

U B′ b U ′, bB′ a

U,U ′ B′ a

If U, V B b and U ′, V ′, bB a for finite subsets V and V ′ of D, then U,U ′, V, V ′B a by (T) for
B.

‘if’: Let V be a finite subset of D such that U, V B a. Then U, V B′ a as well, because B′

extends B. We further have B′d for every d ∈ V . By repeated application of (T) we get
U B′ a.

2. By Corollary 3.5 we have to deduce from the conservation criterion for B its counterpart for
B′:

W, b1 B′ c . . . W, b` B′ c

W, a1, . . . , ak B′ c

By part 1, the premisses say that for every i 6 ` there is a finite Vi ⊆ D such that W,Vi, biBc.
By (M) and the conservation criterion for B this yields

W,V1, . . . , V`, a1, . . . , ak B c ;

whence the desired conclusion W,a1, . . . , akB′ c is witnessed (see part 1) by V1∪· · ·∪V`.

Lemma 3.8. Let B be a single-conclusion entailment relation on S that is generated by axioms.
Let C be a set of finite subsets of S. Let B′ be generated by the axioms of B, and by the extra
axioms C B′ d with C ∈ C and d ∈ S.

1. We have U B′ a if and only if

U B a or ∃C ∈ C ∀c ∈ C (U B c ).

2. For every C ∈ C the empty-conclusion axiom

ν : C `

is conservative over B′.

Proof. 1. ‘only if’: Since B′ is generated from B by adding axioms, we may argue inductively.
We consider first the axioms generating B′. If U B′ a by way of an axiom U B a of B, then
the conclusion is immediate. If we have at hand C B′ d with C ∈ C and d ∈ S, then of
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3. Eliminating disjunctions by disjunction elimination

course C B c for every c ∈ C by reflexivity of B. As (R) and (M) are easily dealt with, we
may focus on (T), of which we consider the following instance:

U B′ b U ′, bB′ a

U,U ′ B′ a

and suppose that we have

U B b or ∃C ∈ C ∀c ∈ C (U B c )

as well as
U ′, bB a or ∃C ′ ∈ C ∀c′ ∈ C ′ (U ′, bB c′).

Now we have to check each of the possible combinations, but actually it suffices to do the
case

U B b and ∃C ′ ∈ C ∀c′ ∈ C ′ (U ′, bB c′).

Applying (T) for B, we get U,U ′ B c′ for every c′ ∈ C ′. This means that C ′ ∈ C is as
required.

‘if’: If U B a, then of course U B′ a, since B′ contains the generating axioms of B. On the
other hand, suppose that there is C ∈ C such that for every c ∈ C we have U B c. Recall
that we have an axiom C B′ a. Therefore, by repeated application of (T), we obtain U B′ a.

2. By Corollary 3.5 it suffices to verify the corresponding conservation criterion

W,C B′ d
(Eν)

where C ∈ C . Since we have axioms C B′ d, this Eν follows by (M).

Lemma 3.8.2 may perhaps be compared with elimination of empty succedents in Gentzen
systems [217, p. 66, Lemma 3.1.8]. It has applications in the context of order relations, e.g., to
bring into the scope of our method Szpilrajn’s extension principle for strict partial orders (Section
3.4.3).

3.4 Application

3.4.1 Weak order relations

Our approach subsumes the existing syntactical treatment [190] of order extension, the semantics
of which is that every (proper) quasi-order can be extended to a linear one [129].

3.4.1.1 Quasi-orders

As a binary relation ≤ on a set X is a quasi-order if ≤ is reflexive and transitive, the single-
conclusion entailment relation B of quasi-order on S = X ×X is generated by the corresponding
axioms of reflexivity and transitivity :

ρ : B(a, a) τ : (a, b), (b, c)B (a, c)

The multi-conclusion entailment relation `λ of linear quasi-order extends B with the single addi-
tional axiom of linearity :

λ : ` (a, b), (b, a)

The conservation criterion of λ reads as follows:

W, (a, b)B (r, s) W, (b, a)B (r, s)

W B (r, s)
(Eλ)
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3.4. Application

The closure operator corresponding to B assigns to a subset T of S its reflexive-transitive closure
T ∗. With this at hand, or following the proof of [190, Theorem 5.1], one readily verifies that
Eλ holds for B; whence `λ is conservative over B (Theorem 3.4). This can equally be seen by
restricting to single-conclusion instances an alternative description of `λ in terms of cycles [190,
Section 7]. Reflexivity ρ is necessary for conservation, by way of the special case a = b = r = s of
Eλ.

3.4.1.2 Bounded quasi-orders

We say that a quasi-order (X,≤) with distinguished elements 0, 1 is bounded if 0 ≤ s and r ≤ 1 for
all r, s ∈ X; and that ≤ is proper if 1 6≤ 0. Accordingly, the single-conclusion entailment relation
B′ of bounded quasi-order on S = X ×X is generated by the axioms ρ and τ as above plus the
following:

β0 : B(0, s) β1 : B(r, 1)

The multi-conclusion entailment relation `′ of linear proper bounded quasi-order extends B′ with
the additional axioms of linearity λ and properness:

π : (1, 0) `

The conservation criterion of π reads as follows:

W, (1, 0)B (r, s)
(Eπ)

By transitivity τ it is easy to see that Eπ holds for B′. As Eλ holds for B (Section 3.4.1.1), Eλ
holds for B′ too (Corollary 3.5 , Lemma 3.7). In all, `′ is conservative over B′ (Theorem 3.4).

3.4.1.3 Discussion

A proof-theoretic analysis of order relations is carried out in [190], with sequent calculi GPO
and GLO which correspond to the theories of quasi-order and linear quasi-order, respectively. It
is shown that a single-conclusion sequent derivable in GLO is derivable already in GPO [190,
Theorems 5.1].

This conservation result is then carried over to nondegenerate nontrivial quasi-orders [190,
Theorem 5.2]. While nondegenerate means 1 66 0, i.e. what we have called ‘proper’, a quasi-order
≤ with distinguished elements 0 and 1 is said nontrivial if 0 ≤ 1. In terms of the single-conclusion
entailment relation of quasi-order, nontriviality means to add the axiom

B(0, 1)

to reflexivity ρ and transitivity τ . With this add-on, conservation of linearity λ carries over
(Lemma 3.7), whereas the conservation of properness π depends on the presence of β0 and β1.

The conservation of linearity for quasi-orders is an instance of the Universal Krull–Lindenbaum
principle, to which we now turn our attention.

3.4.2 Universal Krull–Lindenbaum

In the sequel B and ` always stand for a single-conclusion and a multi-conclusion entailment
relation, respectively.

3.4.2.1 Universal Krull

Let S come with a (partial) binary operation ∗ : S × S → S and with a distinguished element
e ∈ S. Given B, let ` extend B with additional axioms

µ : a ∗ b ` a, b π : e `

In this situation Theorem 3.4 reads as follows:
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3. Eliminating disjunctions by disjunction elimination

Corollary 3.9. ` is a conservative extension of B precisely when

W,aB c W, bB c
(Eµ)

W,a ∗ bB c (Eπ)
W, eB c

for all finite W ⊂ S and a, b, c ∈ S.

The conservation criteria Eµ and Eπ have occurred [208] as ‘B satisfies Encoding ’ and as ‘e
is convincing for B’, respectively. They can be compared with disjunction elimination12 and ex
falso quodlibet, especially if S is a bounded distributive lattice such as an intuitionistic Lindenbaum
algebra, with ∨ as ∗ and ⊥ as e, and B is the single-conclusion entailment relation of filter or
theory, see Section 3.4.2.3.

It is noteworthy that the axiom of contraction

a ∗ aB a

is necessary for conservation, by the special case a = b = c of Eµ; see Section 3.4.2.9 for details.
The converse of µ is the following axiom of magma, which in fact is a single-conclusion axiom:

a, b ` a ∗ b

Assuming that ∗ be commutative and associative, which is the case in many an application below,
we can relate the axioms above to the multi-conclusion axiom of regularity [83] or exchange:

a ∗ x, b ∗ y ` a ∗ y, b ∗ x

Remark 3.10. Regularity and contraction together imply µ. Magma and µ together imply
regularity.

3.4.2.2 Universal Lindenbaum

Let S come with a (partial) unary operation ∼. Given B, let ` extend B with additional axioms

η : ` a,∼a ν : a,∼a `

In this situation Theorem 3.4 reads as follows:

Corollary 3.11. ` is a conservative extension of B precisely when

W,aB c W,∼aB c
(Eη)

W B c
(Eν)

W,a,∼aB c

Corollary 3.11 can be compared with excluded middle and non-contradiction, especially if S is
a Boolean algebra such as a Lindenbaum algebra in classical logic, with complement or negation ¬
as ∼. In these cases B again is the entailment relation of filter or theory (Section 3.4.2.3). Further
applications of Corollary 3.11 include Artin and Schreier’s theorem, see Section 3.4.2.5.

3.4.2.3 Distributive lattices

Krull’s Lemma for distributive lattices says that every proper filter (respectively, proper ideal) can
be extended to a proper prime filter (respectively, proper prime ideal). To view the corresponding
conservation statement, let L be a bounded lattice with meet ∧ and join ∨, and with bottom and
top element 0 and 1, respectively. The entailment relation B of filter on S = L is generated by
the axioms

B1 a, bB a ∧ b aB a ∨ b (3.3)

12In the context of formal languages, Eµ can further be compared with the ‘proof-by-cases property’ [64, 95,
252].
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3.4. Application

The multi-conclusion entailment relation ` of proper prime filter extends B with additional axioms

µ : a ∨ b ` a, b π : 0 ` (3.4)

for which the conservation criteria read as follows:

W,aB c W, bB c
(Eµ)

W,a ∨ bB c (Eπ)
W, 0B c

The closure operator corresponding to B assigns to a subset T of S the filter generated by T .
Thus 0 is convincing, while Eµ, i.e. Encoding for B, follows from L being distributive [208, p. 4.2].
Therefore, with ∨ as ∗ and 0 as e, Universal Krull implies that the multi-conclusion entailment
relation of proper prime filter on a distributive lattice is a conservative extension of the single-
conclusion entailment relation of filter.

Dually, the single-conclusion entailment relation B′ of ideal on S = L is generated by the
axioms

B′0 a, bB′ a ∨ b aB′ a ∧ b
This B′ extends to the multi-conclusion entailment relation `′ of proper prime ideal by adding the
following axioms:

µ′ : a ∧ b `′ a, b π′ : 1 `′

The closure operator corresponding to B′ assigns to a subset T of S the ideal generated by T .
Reasoning dually to the case of filters shows that the multi-conclusion entailment relation of proper
prime ideal is a conservative extension of the single-conclusion entailment relation of ideal.

While this approach fits Universal Krull, if L is a Boolean algebra with complement −, then
we may instead add the axioms

η : ` a,−a ν : a,−a `

to both B and B′. Now Universal Lindenbaum applies, giving rise to conservation over B and B′

of the multi-conclusion entailment relations of proper complete filter and proper complete ideal,
respectively. This conservation corresponds to Lindenbaum’s Lemma for Boolean algebras, which
says that every proper filter (respectively, proper ideal) can be extended to a proper complete
filter (respectively, proper complete ideal).

3.4.2.4 Commutative rings

The original form of Krull’s Lemma, for commutative rings [157], says that every proper filter can
be extended to a proper prime filter, which can be carried over from ideals to filters. In order to
display the corresponding conservation results, let B be the single-conclusion entailment relation
of radical ideal (or reduced ring) on a commutative ring S which is generated by the axioms of
ideal (or zero)

B0 a, bB a+ b aB ab (3.5)

together with the characteristic axiom of radical ideal

a2 B a . (3.6)

The corresponding closure operator assigns to every subset T of S the radical of the ideal generated
by T . The following hold for all finite W ⊆ S and a, b, c ∈ S (see e.g. [208, Lemma 19] for a proof
of the first one):

W,aB c W, bB c
(Eµ)

W,abB c
(Eπ)

W, 1B c

By Universal Krull, with multiplication as ∗ and 1 as e, the following axioms of prime ideal (or
integral domain) are conservative over B:

µ : ab ` a, b π : 1 `
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3. Eliminating disjunctions by disjunction elimination

The five axioms for ` stem from [62], and conservation of ` over B is essentially known from
dynamical algebra [92].

Dually, the single-conclusion entailment relation of filter (or unit) on a commutative ring S is
generated by the following axioms:

B1 a, bB ab abB a

The corresponding closure operator assigns to every subset T of S the filter generated by T . The
following hold for all finite W ⊆ S and a, b, c ∈ S (see e.g. [208, Lemma 20] for a proof of the first
one):

W,aB c W, bB c
(Eµ)

W,a+ bB c
(Eπ)

W, 0B c

By Universal Krull, now with addition + in place of ∗ and 0 as e, the axioms of prime filter (or
local ring) are conservative over B:

µ : a+ b ` a, b π : 0 `

This again is essentially known from dynamical algebra [167].

3.4.2.5 Ordered fields

Artin and Schreier’s Theorem [15], saying that every proper quadratic preorder on a field can be
extended to a total order, was used to solve Hilbert’s 17th Problem in the affirmative [14]. Towards
the corresponding conservation result in terms of entailment relations, let the single-conclusion
entailment relation B of quadratic preorder on a field S of char 6= 2 be generated by the following
axioms:

Ba2 a, bB a+ b a, bB ab

The corresponding closure operator assigns to every subset T of S the quadratic preorder generated
by T . The following hold for all finite W ⊆ S and a, b, c ∈ S (see [208, Lemma 24] for a proof of
the first one):

W,aB c W, bB c
(Eµ)

W,a+ bB c
(Eπ)

W,−1B c

By Universal Krull, with addition + as ∗ and −1 as e, the following axioms are conservative over
B:

µ : a+ b ` a, b π : −1 `

Equivalently so are the axioms of total order on S \ {0}:

η : ` a,−a ν : a,−a `

We thus not only have an instance of Universal Krull but also one of Universal Lindenbaum, with
minus − in place of ∼. A related set of axioms [62] already contains µ and ν.

Once more, this conservation statement is essentially known from dynamical algebra [168].
There is vast literature on computational and continuous aspects of the Artin–Schreier Theorem,
Hilbert’s 17th Problem and related results, see e.g. [29, 42, 97, 98, 200].

3.4.2.6 Valuation rings

Let R be a subring of a field K, and let R[U ] denote the subring of K containing R that is generated
by U ⊆ K. Take the single-conclusion entailment relation B on S = K that is generated by the
axioms of subring of K containing R

Br (r ∈ R) a, bB a+ b a, bB ab (3.7)
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together with the following axiom of integral closure:

s1, . . . , sn B a (an + s1a
n−1 + · · ·+ sn = 0, n ≥ 1) (3.8)

The corresponding closure operator assigns to every subset T of S the integral closure R[T ] of
R[T ]; and by [208, Lemma 23] we have

W,aB c W, bB c
(Eµ)

W,abB c

for all finite W ⊆ S and a, b, c ∈ S. By Corollary 3.5, the additional axiom

µ : ab ` a, b

is conservative over B. As there is no convincing element for B, this is a partial instance of
Universal Krull, with multiplication in place of ∗.

Up to this point everything equally works for subrings of a ring K rather than a field K. For
a field K, however, an alternative generation [62, 87] of ` makes use of the axiom of valuation:

η : ` a, a−1 (a 6= 0)

Given the axioms of B, this η is equivalent to µ as above whenever the field K is discrete in the
sense that the characteristic axiom of a field holds in the form

a = 0 ∨ ∃b (ab = 1) .

Hence η too is conservative over B for discrete fields K, and we have a partial instance of Universal
Lindenbaum as well. This approach has been followed in the context of Kronecker’s Theorem [166]
and Dedekind’s Prague Theorem [87], and more generally to study valuations in a point-free way
[78].

3.4.2.7 Ordered vector spaces

Let S be a vector space over the field Q of rationals. Let the single-conclusion entailment relation
B on S be generated by the axioms of additive submonoid

B0 a, bB a+ b (3.9)

together with the axiom of positive cone:

n · aB a (n ∈ N, n ≥ 1) (3.10)

The corresponding closure operator assigns to every T ⊆ S the positive cone generated by T , and

W,aB c W, bB c
(Eµ)

W,a+ bB c

holds for B. By Theorem 3.4, the multi-conclusion entailment relation ` extending B with the
additional axiom

µ : a+ b ` a, b

is conservative over B. The axiom n ·aBa of B follows from Eµ by induction and thus is necessary
for conservation. A different set of axioms [62] for ` includes µ as above and the following axiom:

ν : a,−a `

From this one can go to the point-free treatments [62, 63, 72, 75] of the Hahn–Banach theorem in
succession to [184, 185]. Unlike for many of the ring-theoretic applications mentioned above, it is
not clear whether one can make computational use of the Hahn–Banach theorem itself [72].
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3. Eliminating disjunctions by disjunction elimination

3.4.2.8 Weak order relations revisited

Some syntactic variants of order extension for weak orders may also be viewed as instances of Uni-
versal Krull–Lindenbaum. To discuss this we take up Section 3.4.1, adopting also some notation.

Let X be a set. The swap operation

∼ (a, b) = (b, a)

on S = X × X fits Universal Lindenbaum in parts, giving rise to Section 3.4.1.1. In fact, the
axiom η becomes linearity λ, and thus Eη holds (Section 3.4.1.1) by reflexivity ρ and transitivity
τ , whereas Eν does not hold in general.

On the same S = X ×X we have the partial binary operation ◦ of composition defined by

(a, b) ◦ (b, d) = (a, d) .

With ◦ in place of ∗, the axiom µ becomes cotransitivity

κ : (a, d) ` (a, b), (b, d) ,

the conservation criterion of which reads

W, (a, b)B (r, s) W, (b, d)B (r, s)
(Eκ)

W, (a, d)B (r, s)

and can be proved by transitivity τ only. By reflexivity ρ, (conservation of) linearity λ is a special
case of (conservation of) cotransitivity κ. With (1, 0) as e, Section 3.4.1.2 thus is an instance of
Universal Krull as a whole.

Still on S = X ×X there further is the total binary operation ∗ of composition defined by

(a, b) ∗ (c, d) = (a, d) ,

with which S is a semigroup. This operation ∗ gives rise to the additional axiom

µ : (a, d) ` (a, b), (c, d) .

The corresponding conservation criterion is

W, (a, b)B (r, s) W, (c, d)B (r, s)
(Eµ)

W, (a, d)B (r, s)

holds by transitivity τ only. Before working this out in detail (Lemma 3.12 below) we note in
passing that irreflexive relations satisfying the weakened form

µ′ : (a, d), (c, b) ` (a, b), (c, d)

of axiom µ are known as interval orders in utility theory [51, 110, 238].13

Let B be the single-conclusion entailment relation of transitive relation on S that is generated
by transitivity τ only, the closure operator of which assigns to a subset W of S its transitive closure
W+.

Lemma 3.12. Eµ holds for the single-conclusion entailment relation B of transitive relation.

Proof. Suppose that (r, s) ∈
(
W, (a, b)

)+∩ (W, (c, d)
)+

. In order to show (r, s) ∈
(
W, (a, d)

)+
, the

following diagram offers a one-glance proof, easily to be made precise:

a b

r s

c d

13Furthermore, this axiom µ′ is part of the definition of semi order [176, 232].
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The upper two dashed arrows indicate chains in W ∪ { (a, b) }, while the two lower dashed arrows
indicate chains in W ∪{ (c, d) }. There are n,m > 1 and certain elements x0, . . . , xn and y0, . . . , ym
of X such that

(r, s) = (x0, xn) and ∀i < n (xi, xi+1) ∈W ∪ { (a, b) } (1)

and

(r, s) = (y0, ym) and ∀j < m (yj , yj+1) ∈W ∪ { (c, d) } . (2)

We may assume that both pairs (a, b) and (c, d) occur at least once, respectively. Hence, let i0 < n
be the index corresponding to the first occurence of (a, b) among the pairs (xi, xi+1) in (1), and
let j0 < m correspond to the last occurence of (c, d) among the pairs (yj , yj+1) in (2), all such
that

(xi0 , xi0+1) = (a, b) and (yj0−1, yj0) = (c, d).

We get a new chain

r, x1, . . . , xi0−1, a, d, yj0+1, . . . , ym−1, s

which by construction witnesses (r, s) ∈
(
W, (a, d)

)+
.

By Corollary 3.5 the axiom µ is conservative over the single-conclusion entailment relation
of transitive relation; and (conservation of) cotransitivity κ follows from (conservation of) µ by
setting b = c.

Over the single-conclusion entailment relation of quasi-order obtained by adding reflexivity ρ,
the axiom µ remains conservative (Lemma 3.7) and yields conservation of the axiom of strong
linearity [180]

σ : ` (a, b), (c, a) .

Here (conservation of) linearity λ follows as the special case b = c of (conservation of) σ.
Let us say that a relation satisfying axiom µ is strongly cotransitive. Notice that strong linearity

is to strong cotransitivity just as linearity is to cotransitivity: the respective former implies the
latter with transitivity at hand, while the converse holds in the presence of reflexivity:

µ σ

κ λ

refl

trans

refl

trans

3.4.2.9 Axioms necessary for conservation

The single-conclusion entailment relations that we studied above as instances of Universal Krull-
Lindenbaum are arguably not the most ‘natural’. In the case of commutative rings (Section
3.4.2.4), for example, the axioms of ideal (3.5) are at first glance more natural before one adds the
axiom of radical ideal (3.6); similarly, in the case of valuation rings (Section 3.4.2.6) the axioms
of a subring (3.7) are perhaps more natural without the extra axiom of integral closure (3.8).

But in either case the seemingly more natural entailment relation B lacks the conservation
criterion

W,aB c W, bB c
(Eµ)

W,a ∗ bB c

with respect to the given operation ∗ (which in both cases is multiplication). In fact, the supposedly
unnatural extra axioms are among those which shortly turn out necessary for Eµ, and thus for the
additional axiom a ∗ b ` a, b being conservative (Corollary 3.5).

In the sequel we say that a single-conclusion entailment relation on an algebraic structure S
is natural if it is generated by axioms which only on the right-hand side of B have terms built by
means of the given operations on S. For instance, aB a ∗ b is a natural axiom, but a ∗ bB a is not
natural.

51



3. Eliminating disjunctions by disjunction elimination

We now show that in most of the instances of Universal Krull-Lindenbaum studied before the
chosen single-conclusion entailment relation is in fact the least one that both contains its apparent
‘natural core’ and satisfies Eµ with respect to the given operation ∗.

Lemma 3.13. Let B be a single-conclusion entailment relation on a set S.

1. If ∗ is a binary operation on S satisfying Eµ, then we have for all finite U ⊆ S and a, b ∈ S:

a) Contraction

a ∗ aB a

b) Cut
U B a ∗ b U, bB a

U B a

2. If ∼ is a unary operation on S which satisfies Eη, then we have consequentia mirabilis:

U,∼ aB a
U B a

U, aB ∼ a
UB ∼ a (3.11)

Proof. With Eµ at hand it is straightforward to verify both contraction and cut:

a ∈ {a}
aB a (R)

a ∈ {a}
aB a (R)

a ∗ aB a (Eµ)
U B a ∗ b

a ∈ U, a
U, aB a U, bB a

U, a ∗ bB a (Eµ)

U B a
(T)

By the appropriate instances of (R) again, (3.11) is an immediate consequence of Eη.

In the cases of distributive lattices, ordered fields and weak order extensions (Sections 3.4.2.3,
3.4.2.5 and 3.4.2.8) the single-conclusion entailment relations under consideration are already
natural and satisfy Eµ. In the following we thus may focus on Sections 3.4.2.4, 3.4.2.6 and 3.4.2.7.

Commutative rings Let S be a commutative ring, and let B be a single-conclusion entailment
relation satisfying both the (natural) axioms of ideal (3.5) and Eµ with multiplication · in place
of ∗. By Lemma 3.13, B also satisfies contraction, which in this case is the (unnatural) axiom of
radical ideal (3.6).

Valuation rings Let R be a subring of a discrete field K, and let B be a single-conclusion
entailment relation on K that satisfies Eµ with multiplication · in place of ∗ on top of the (natural)
axioms (3.7) of subring of K containing R. By Lemma 3.13 we have, for all a ∈ K∗,

U, a−1 B a
U B a

(if you prefer to use cut, note that B1 and thus U B aa−1). In particular, if a ∈ R[U ], which is
to say that a ∈ R[U, a−1], then U, a−1 B a because B satisfies (3.7), and thus U B a by the above.
Hence B also satisfies the axiom of integral closure (3.8).

Ordered vector spaces Let S be a Q–vector space, and let B be a single-conclusion entailment
relation satisfying the (natural) axioms (3.9) of additive submonoid as well as Eµ with addition
+ in place of ∗. By Lemma 3.13, B satisfies contraction, which in this case reads 2a B a. By
induction one can even get na B a, which is to say that B also satisfies the (unnatural) axiom
(3.10) of positive cone, in fact, Eµ applied to aB a and naB a yields (n+ 1)aB a.
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3.4.3 Strict order relations

Szpilrajn’s theorem in its original form [242] is about strict partial orders: that is, irreflexive
transitive relations R. This form, too, can be brought within the scope of our conservation
criterion, as follows.

Let X be a set. Once more we work with the single-conclusion entailment relation B of
transitive relation on S = X×X that is generated by transitivity τ only, and the closure operator
of which assigns to a subset W of S its transitive closure W+.

The single-conclusion entailment relation B′ of strict partial order, extending B, is generated
by the only axiom τ of B, and by the extra axioms

(c, c)B′ (a, b)

with a, b, c ∈ X. By Lemma 3.8.1 with C = { { (c, c) } : c ∈ X }, the closure operator corresponding
to B′ can be described as follows:

Lemma 3.14. Let U be a finite subset of S and let (a, b) ∈ S. The following are equivalent.

1. U B′ (a, b)

2. (a, b) ∈ U+ or there is c ∈ X such that (c, c) ∈ U+.

The multi-conclusion entailment relation `′ of strict linear order extends B′ with the additional
axioms of irreflexivity ι and restricted linearity λ′ as follows:

ι : (c, c) `′ λ′ : `′ (a, b), (b, a) [a 6= b]

The latter axiom is restricted to pairs of distinct elements, in order to not render `′ trivial. Notice
that irreflexivity ι is the special case a = b of asymmetry

ν : (a, b), (b, a) `′ ,

which in turn—as is well-known—follows by (T) from irreflexivity ι and transitivity τ .
By Lemma 3.8.2 with C = { { (c, c) } : c ∈ X } we have the conservation criterion for irreflex-

ivity:

W, (c, c)B′ (a, b)
(Eι)

Lemma 3.15. Eλ′ holds for the single-conclusion entailment relation B′ of strict partial order.

Proof. We have to prove

W, (a, b)B′ (c, d) W, (b, a)B′ (c, d)

W B′ (c, d)
(Eλ′)

where a 6= b, to which end we make use of Lemma 3.14. Writing

∆ = { (x, x) : x ∈ X }

for the diagonal in S = X ×X, suppose that[
(c, d) ∈

(
W, (a, b)

)+ ∨ (W, (a, b))+ G ∆
]
∧
[
(c, d) ∈

(
W, (b, a)

)+ ∨ (W, (b, a)
)+
G ∆

]
again with a 6= b. Now the reader may check all possible combinations. For each case it is a simple
matter of pasting chains in order to see that either (c, d) ∈W+ or W+ G ∆, as required.

By Corollary 3.5 the multi-conclusion entailment relation `′ of strict linear order thus is a
conservative extension of the single-conclusion entailment relation B′ of strict partial order. This
is a syntactical and constructive variant of Szpilrajn’s order extension principle in its original form
[242].
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3. Eliminating disjunctions by disjunction elimination

3.5 Semantics

Now we place ourselves within ZFC. As before let S be a set, and write U, V,W, . . . for finite
subsets.

3.5.1 Lindenbaum’s Lemma and completeness

According to [229], a (multi-conclusion) entailment relation � on S is complete if for each a ∈ S
either � a or a �, and consistent if for no a ∈ S both � a and a �. Note that [229] if � is
inconsistent, then � holds in the sense that ∅ � ∅. Conversely, if � holds, then � is inconsistent
unless S = ∅.

The complete consistent entailment relations � are just the valuations on S, i.e. predicates
v ∈ 2S . More precisely, if � corresponds to v, then

U � V ⇐⇒ (
∧
b∈U

v(b)⇒
∨
c∈V

v(c)) . (3.12)

The following [229] surely is one of the most general versions of Lindenbaum’s Lemma:

Theorem 3.16. Each entailment relation ` on a set S equals the intersection of all complete
consistent entailment relations � on S with �⊇`.

For an arbitrary subset P of S we set

U P V ⇐⇒ (P ⊇ U ⇒ V G P ) .

Now let ` denote an arbitrary entailment relation. If `⊆P , then P is said to be an ideal element
[90] of S or a model [76] of `, for short P ∈ Mod(`). It is appropriate to say that ` has enough
models if

U ` V ⇐⇒ ∀P ∈ Mod(`)(U P V ) (3.13)

for all finite subsets U and V of S. Clearly, only ⇐ of (3.13) is crucial, as ⇒ is the definition of a
model.

As the valuations v on S are just the subsets P of S, in view of (3.12) we have the following:

Remark 3.17. The complete consistent entailment relations � (which contain `) are precisely
the relations of the form P where P is a—not necessarily finite—subset of S (respectively, a
model of `).

Hence Lindenbaum’s Lemma (Theorem 3.16) is tantamount to the following Completeness
Theorem for entailment relations [90]:

Theorem 3.18. Every entailment relation ` on any set S has enough models.

The models of the converse relation a are exactly the complements of the models of `. For
example, the prime filters of a distributive lattice or commutative ring are exactly the complements
of the prime ideals.

Interpretations An interpretation (S,`) → (S′,`′) of entailment relations is a function f :
S → S′ that preserves entailment as follows [90]:

U ` V =⇒ f(U) `′ f(V ).

If this implication always is an equivalence, then f is said to be a conservative interpretation [79].
The inverse image mapping induced by an interpretation restricts to a map of models

f−1 : Mod(`′)→ Mod(`), P 7→ f−1(P ).
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3.5. Semantics

By completeness (Theorem 3.18), an interpretation f is conservative if and only if the induced
mapping f−1 on models is surjective [79]. This provides other means, related to yet different
from the ones used in this chapter, to address extension theorems as syntactical conservation
results. Examples include the Hahn-Banach theorem [62, 72], measure theory on lattices [77], and
Sikorski’s and Monteiro’s extension theorems for finite Boolean algebras [212, 213].

Constructive semantics A constructive semantics is possible, to be expressed in CZF.14 If S
is a bounded distributive lattice, then a natural choice of a (multi-conclusion) entailment relation
is

U `6 V ≡
∧
U ≤

∨
V

with (R) and (M) being automatic but (T) equivalent to distributivity [229]. In this case the
models of ` are nothing but the proper prime filters of S. In fact, one readily shows the
following:

Remark 3.19. `6 equals the entailment relation ` of proper prime filter generated by the axioms
(3.3)+(3.4).

In terms of interpretations, the identity map on S is a conservative interpretation between `6 and
`.

Concerning the converse, the following seminal theorem [62, Theorem 3] now is already called
‘fundamental theorem of entailment relations’ [169, XI, Theorem 5.3]: 15

Theorem 3.20. For every entailment relation ` on a set S there is a distributive lattice D together
with a conservative interpretation i : (S,`) → (D,`6) such that if L is an arbitrary distributive
lattice and j : (S,`)→ (L,`6) is an interpretation, then there is a unique lattice homomorphism
f : D → L such that f ◦ i = j:

S D

L

i

j
f

This can also be seen as the constructive essence of Theorem 3.18. In fact, (3.13) follows in ZFC
where every distributive lattice has enough prime filters by the adequate variant of Krull’s Lemma.

3.5.2 Extension and conservation semantically

Back to ZFC, let B and ` be a single-conclusion and a multi-conclusion entailment relation,
respectively. The models of B are exactly the subsets of S which are closed under the associated
algebraic closure operator (3.1). The corresponding counterpart of Theorem 3.18 is trivial, with B
in place of ` and for singleton V : the closure of U equals the intersection of the closed supersets
of U .

The next statements, however, largely rely on completeness (Theorem 3.18).

Lemma 3.21.

1. ` is an extension of B if and only if, for every finite U ⊆ S,⋂
{P ∈ Mod(`) : P ⊇ U} ⊇ UB .

14For the question whether in CZF the models of a given entailment relation form at least a ‘set-generated class’
we refer to [10, 34, 144]; see also Chapter 4. When consulting this literature we suggest to observe that—as Hajime
Ishihara has kindly pointed out to us—an entailment relation R on S is a specific sort of ‘set of rules’ on S; that the
latter can be viewed as generating sets for the former; and that the models of R are exactly the subsets of S that are
‘R–closed’. Roughly speaking, nondeterministic inductive definitions are to deterministic ones as multi-conclusion
entailment relations are to single-conclusion ones.

15The anonymous referee of [209] has kindly indicated this name to us, as well as the fact that both this theorem
and the analogous one for single-conclusion entailment relations, with semilattices in place of lattices, were already
known to Lorenzen [170].
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3. Eliminating disjunctions by disjunction elimination

2. ` is conservative over B if and only if, for every finite U ⊆ S,⋂
{P ∈ Mod(`) : P ⊇ U} ⊆ UB .

In fact, by Theorem 3.18 for singleton V we have that, for every finite U ⊆ S,⋂
{P ∈ Mod(`) : P ⊇ U} = UB` .

Mind that in Lemma 3.21.2 the multi-conclusion entailment relation ` need not be an extension
of B.

Lemma 3.22. ` is an extension of B if and only if every model of ` is a model of B.

Proof. Suppose that ` extends B and let P ∈ Mod(`). If U Ba, then we have U ` a by extension;
whence if U ⊆ P , then a ∈ P . So P ∈ Mod(B). Conversely, suppose that Mod(`) ⊆ Mod(B)
and let U B a. In order to show U ` a, we use completeness (Theorem 3.18). To this end let
P ∈ Mod(`) with U ⊆ P . Since P ∈ Mod(B) by hypothesis, we get a ∈ P as required.

A model I of B is finitely generated if there is a finite subset U of S such that I = UB. The
following gives a semantic account of conservation.

Theorem 3.23. If ` extends B, then the following are equivalent.

1. ` is conservative over B.

2. For every subset J of S and every a ∈ S, every maximal member of

{ I ∈ Mod(B) : J ⊆ I ∧ a /∈ I }

is a model of `.

3. If I is a (finitely generated) model of B, then⋂
{P ∈ Mod(`) : P ⊇ I} = I . (3.14)

In fact, it suffices to assume that (3.14) hold only for the finitely generated models I of B.

Proof. 1. =⇒ 2. Let I ∈ Mod(B) be maximal such that J ⊆ I and a /∈ I. To see that I is a
model of `, let U ` V and suppose that U ⊆ I but I ∩ V = ∅. Because of maximality, for
every b ∈ V there is a finite subset Ub of I such that Ub, b B a. If ` is conservative over B,
then By item 1,

⋃
b∈V Ub, U B a. We thus obtain a ∈ I, a contradiction.

2. =⇒ 3. Let I ∈ Mod(B). It suffices to show that if a /∈ I, then there is a model P of ` such
that I ⊆ P and a /∈ P . But if indeed a /∈ I, then, by means of Zorn’s Lemma, there is a
model P of B which is maximal such that I ⊆ P and a /∈ P . By item 2, this P actually is a
model of `.

3. =⇒ 1. Let U be a finite subset of S. Since ` extends B, every model of ` is a model of B
(Lemma 3.22). Therefore, if P ∈ Mod(`), then U ⊆ P if and only if UB ⊆ P . By item 3
applied to I = UB we get

⋂
{ P ∈ Mod(`) : P ⊇ U } = UB; whence ` is conservative over

B by Lemma 3.21.2.

More often than not—so already in the foregoing proof—the characterisation of conservation
from Theorem 3.23.3 occurs in its contrapositive form, viz.

for every I ∈ Mod(B) and a ∈ S, if I 63 a, then there is P ∈ Mod(`) with P ⊇ I and
P 63 a.
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3.5. Semantics

While this perfectly fits Zorn’s Lemma, to arrive at the original form of Theorem 3.23.3 (and
Theorem 3.16 and Theorem 3.18) it is perhaps more natural [66, 208, 222, 223] to use Raoult’s
Open Induction [201]; for the use of Open Induction in diverse contexts see [36, 73].

In the situation of Section 3.4.1.1, for example, Theorem 3.23.3 reads as

every quasi-order R on a set X equals the intersection of all linear quasi-orders on X
that contain R,

the contrapositive of which is as follows [129, 190, 242]:

every proper quasi-order R on a set X can be extended to a proper linear quasi-order
on X .

More generally, if ` is to B as in Section 3.4.2.1, then Theorem 3.23.3 is the conclusion of the
Universal Krull–Lindenbaum Theorem (UKL) [208, Theorem 14, Corollary 15]. This UKL has
been abstracted from Krull’s [157] and Lindenbaum’s [244, p. 394] results in algebra and logic,
respectively.

Encoding, the crucial hypothesis of UKL in [208], is the first conservation criterion Eµ from
Section 3.4.2.1. We note in passing that Eµ is indeed necessary for UKL. The second conservation
criterion Eπ is irrelevant inasmuch as (3.14) remains invariant [208] whether or not the intersection
is limited to proper subsets of `; this limitation would be imposed by requiring that the models
of ` respect the axiom π : e `, which is to say that they miss the convincing element e.

3.5.3 Yet another case: finitary formal topologies

Given a spectral topological space X with a basis of compact opens (Ba)a∈S closed under finite
intersections, one can define a relation of consequence on the index set S by setting

U B a ≡ Ba ⊆
⋃
b∈U

Bb . (3.15)

As X is spectral, both the set X and its topology can be regained from B; see below.
A general abstract version of this kind of consequence, introduced as ‘formal topology’ [218–

220], has proved practicable as a constructive and predicative substitute for the notion of topo-
logical space. The finitary case—see, for instance, [65, 67, 187, 188]—corresponding to coherent
locales and spectral spaces can be described in terms of single-conclusion entailment relations as
follows.

While for purely syntactical considerations we first work in ECST, for semantical purposes we
later need classical logic and/or the Axiom of Choice, and thus move to ZF and ZFC, respectively.

Let (S, ·, 1) be a commutative monoid, and let B be a single-conclusion entailment relation
on S. For the sake of an easier reading we usually denote the monoid operation · simply by
juxtaposition.

Suppose that the structure
S = (S,B, ·, 1)

be a finitary formal topology, that is, weakening (W), contraction (C) and localisation (L) hold:

U B a
U B ab

(W)
U B a2

U B a
(C)

U B a
UbB ab

(L)

Note that (W) and (C) are tantamount to axioms; and that (L) is equivalent to Stability (S): that
is,

aB ab (W) a2 B a (C)
U B a V B b
UV B ab

(S)

Let the multi-conclusion entailment relation ` extend B with the additional axioms of formal
point :

µ : ab ` a, b π : 1 ` .
This is yet another instance of Universal Krull (Section 3.4.2.1), with · as ∗ and 1 as e:
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3. Eliminating disjunctions by disjunction elimination

Lemma 3.24. The conservation criteria Eµ and Eπ hold for every finitary formal topology:

W,aB c W, bB c
W, abB c

(Eµ)
W, 1B c

(Eπ)

Proof. As for Eµ, let U, aB c and U, bB c. By (L) and (C),

Uc, acB c and Ua, abB ac .

So Uc, Ua, abB c by (T), and finally U, abB c by appropriate applications of (W), (T) and (M).
As for Eπ, by (W) we have 1B c1 = c, and thus W, 1B c by (M).

Hence we have conservation, by Corollary 3.9:

Proposition 3.25. ` is a conservative extension of B for every finitary formal topology.

Given a finitary formal topology S as above one can retrieve a topological space structure. A
formal point of S is a—not necessarily finite—subset α of S which splits B in the sense that

U B a =⇒ (a ∈ α⇒ α G U) (3.16)

and for which the following hold:

a ∈ α b ∈ α
ab ∈ α 1 ∈ α (3.17)

The collection Pt(S ) of formal points of S has a spectral topology with a basis (Ba)a∈S defined
by

Ba = {α ∈ X : a ∈ α} ,
which are compact opens and for which—by (W), (3.16) and (3.17)—we have

Bab = Ba ∩Bb and B1 = Pt(S ) . (3.18)

If X is a spectral space with a basis (Ba)a∈S of compact opens such that B is as in (3.15), and ·
and 1 satisfy (3.18), then Pt(S ) is homeomorphic to X.

A finitary formal topology S as above has enough points or is spatial if

∀α ∈Pt(S)(a ∈ α⇒ α G U) =⇒ U B a . (3.19)

The converse of (3.19) is automatic by the part (3.16) of the definition of formal point.

Lemma 3.26 (ZF). By complementation, the models of ` correspond exactly to the formal points
of S .

In particular, (3.19) is tantamount to

∀P ∈ Mod(`)(P ⊇ U ⇒ a ∈ P ) =⇒ U B a . (3.20)

If ` has enough models, then (3.20) is equivalent to conservation (Lemma 3.21.2). Hence we have:

Proposition 3.27 (ZF). If ` has enough models, then ` is conservative over B precisely when
S has enough points.

In all, by Theorem 3.18 and Proposition 3.25 we obtain the following [207]:

Theorem 3.28 (ZFC). Every finitary formal topology S has enough points.

Conservation of ` over B thus is the syntactical underpinning of “coherent locales are spatial”
[147].

Spatiality of the more comprehensive class of locally Stone formal topologies [187] can be proved
in ZFC as well. In fact every finitary formal topology is locally Stone; whence what we recall by
Theorem 3.28 is a special case of [187, Proposition 5.1].16 17

16We are grateful to the anonymous referee of [210] for indicating this to us.
17With regard to the spatiality of countably presented formal topologies, we further refer to [246].
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3.6 Limitation

3.6.1 A non-conservative extension: Suzumura consistency

The property of Suzumura consistency (see Chapter 9), which plays a crucial role in the mathe-
matics of preference relations and social choice theory [48, 49, 61, 241], allows us to give a coun-
terexample to conservation in ECST. A binary relation R on a set X is (Suzumura) consistent18

if

R+ ∩R−1 ⊆ R

where as before R+ stands for the transitive closure of R, and

R−1 = { (y, x) : (x, y) ∈ R }

denotes the inverse relation of R as usual. On S = X×X the single-conclusion entailment relation
B of consistent relation is generated by the axioms

γ : (x0, x1), (x1, x2), . . . , (xn−1, xn), (xn, x0)B (x0, xn) [n > 0] .

The closure operator corresponding to B assigns to a subset R of S its consistent closure cc(R)
defined as follows [46, 48, 226]:

cc(R) = R+ ∩ (R ∪R−1) .

The models of B are exactly the consistent relations.

Every transitive relation is consistent, but consistency is strictly weaker than transitivity. For
instance, if a set X has two distinct elements x and y, then the relation R = { (x, y), (y, x) } on X
is consistent, but fails to be transitive; in fact, this R lacks reflexivity and thus is non-linear. Yet
every linear consistent relation R on any set X whatsoever is transitive. Indeed, if R is linear,
then R ∪R−1 = X ×X; if, in addition, R is consistent, then R is transitive, because

R+ = R+ ∩ (X ×X) = R+ ∩ (R ∪R−1) = cc(R) = R .

To rephrase this argument within the context of entailment relations, let the multi-conclusion
entailment relation ` of linear consistent relation extend B with the additional axiom of linearity

λ : ` (a, b), (b, a) .

Unless X has at most one element, ` is not conservative over B. To see this observe first that

τ` : (a, b), (b, c) ` (a, c)

holds by (T) applied to the instances

` (a, c), (c, a) and (a, b), (b, c), (c, a) ` (a, c)

of λ and γ, respectively. In particular, every model of ` is a transitive relation.

If ` were conservative over B, then

τB : (a, b), (b, c)B (a, c).

would follow. Hence every model of B—that is, every consistent relation on X—would be tran-
sitive, too. This, as we have seen above, is not the case whenever X has at least two distinct
elements.

18In fact, as shown in Chapter 9, this is a classically equivalent, positive way of defining Suzumura consistency
[226].
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3. Eliminating disjunctions by disjunction elimination

3.6.2 Calibrating Universal Krull-Lindenbaum

Placing ourselves in ZF, we now characterise the strength of the Universal Krull–Lindenbaum
Theorem (UKL) [208, Theorem 14, Corollary 15]. We thus address an issue that was raised but
remained unattended in [208]. First we need to rephrase UKL in terms of entailment relations:

UKL Let S be a set with a binary operation ∗, and let B be a single-conclusion entailment relation
on S. Let ` be the multi-conclusion entailment relation extending B with the additional
axiom

µ : a ∗ b ` a, b .

If µ is conservative over B, then, for every model I of B,⋂
{ P ∈ Mod(`) : P ⊇ I } = I.

This UKL is an instance of semantical conservation (Theorem 3.23) . More generally one can put
the following Intersection Principle, which shortly will turn out equivalent to UKL.

IP Let S be a set with a single-conclusion and a multi-conclusion entailment relation B and `,
respectively. If ` is a conservative extension of B, then, for every model I of B,⋂

{ P ∈ Mod(`) : P ⊇ I } = I .

When proving the items of Theorem 3.23 equivalent, for simplicity’s sake we made use of Zorn’s
Lemma. However, a slightly refined argument shows that the Completeness Theorem for entail-
ment relations (Theorem 3.18, for short CT) actually suffices—hence so does the well-known Prime
Ideal Theorem for distributive lattices (PIT).

Proposition 3.29. Over ZF, the following are equivalent: UKL, PIT, CT and IP.

Proof. Notice first that PIT is among the consequences of UKL [208], and that PIT proves CT [62,
90]. Since UKL is an instance of IP, we may concentrate on showing that CT implies IP.

To this end, let S be a set with a single-conclusion and a multi-conclusion entailment relation
B and `, respectively; and assume that the latter be a conservative extension of the former. Let
I be a model of B, and let the single-conclusion entailment relation BI be defined as follows:

U BI a ≡ ∃U0 ∈ Fin(I) (U,U0 B a ).

Because I is a model of B, we have a ∈ I if and only if BI a. Similarly, a multi-conclusion
entailment relation `I is readily defined by

U `I V ≡ ∃U0 ∈ Fin(I) (U,U0 ` V ).

Since ` is a conservative extension of B, precisely so is `I over BI . Therefore, a ∈ I if and
only if `I a, and with completeness (applied to the entailment relation `I) we see that a ∈ I is
tantamount to a ∈

⋂
Mod(`I). Finally, notice that P ∈ Mod(`I) if and only if both P ∈ Mod(`)

and P ⊇ I.
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Chapter 4

Some aspects of entailment relations

4.1 Introduction

This chapter is meant to serve several purposes. To begin with, a certain amount of preliminaries
might be helpful for the remaining chapters, if only to avoid repetition, and for future reference.
Moreover, the occasion seems right to provide space for a few general and elementary aspects
(some of which may undisputably rank as “folklore”) of entailment relations which came about
along with the overall content of this thesis.

We start with a review and explanation of Scott’s notion of entailment relation in Section 4.2,
and in Section 4.3 we discuss semantics, keeping an eye on limitations over CZF. For instance,
we address some issues concerning the size of model classes, and we give a decomposition of
the completeness theorem (CT) as REM together with a certain representation principle (Rep)
for entailment relations. Section 4.4 is about a generalization of Scott’s conservation criterion
and presents results which in parts are due to Rinaldi. Section 4.5 concentrates on a first and
thorough case study: paths of finitary branching trees as ideal elements. This exemplifies the line
of reasoning in the remaining chapters. The final Section 4.6 discusses a pattern that underlies
many a concrete instance.

4.2 Entailment

Let S be a set. An entailment relation [229–231] on S is a relation

` ⊆ Fin(S)× Fin(S)

between finite subsets of S, which is reflexive, monotone, and transitive in the following sense,
written in rule notation:

U G V

U ` V (R)
U ` V

U,U ′ ` V, V ′
(M)

U ` V, a U, a ` V
U ` V (T)

Transitivity (T) is an abstract form of Gentzen’s cut rule for sequent calculus. In (R) the notation
U G V means that U ∩ V is inhabited. We write U, V rather than U ∪ V , as well as just a where
it actually should read a singleton set { a }. Moreover, it is common to use U ` and ` V as
shorthands of U ` ∅ and ∅ ` V , respectively. We refer to the elements of S as abstract statements,
but take into account that S need not consist of syntactic objects in the proper sense, that is to
say, formulae in the sense specified by a certain formal language. An intuitive explanation can
best be given as a conditional assertion, i.e., to read

a1, . . . , ak ` b1, . . . , b`

just as a Gentzen sequent: conjunctively for antecedents ai, and disjunctively for succedents bj .
We refer to [234] for an historical account of the development of entailment relations; see also [209]
and Chapter 3.
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As has already been indicated in the preceding chapter, we employ rule notation to provide
for a shorthand. In the tradition of formal topology, the conditions, “though written in the shape
of rules, must be understood as requirements of validity: if the premises hold, also the conclusion
must hold” [91, p. 77].

Example 4.1. Let X and S be sets. Let ⊆ X×S be a relation.1 There is a canonical entailment
relation on S associated with  which is defined as follows. First, for every a ∈ S write

ext(a) = { x ∈ X : x  a } .

Then, if U and V are finite subsets of S, stipulate

U ` V ≡
⋂
a∈U

ext(a) ⊆
⋃
b∈V

ext(b).

Simple set-theoretic reasoning shows that this ` satisfies reflexivity, monotonicity, and transitivity,
hence is an entailment relation. Of course, it is possible to define an entailment relation on X in
a dual manner, as well. Suppose now that X is a subset of Pow(S) and define  ⊆ X × S by

x  a ≡ a ∈ x.

As for the entailment relation which is associated with  as above, we have, for all finite subsets
U and V of S,

U ` V if and only if ∀x ∈ X (U ⊆ x → x G V ).

As a consequence of the Completeness Theorem (CT) for entailment relations, in fact every en-
tailment relation on a set S arises in this way from a set X of subsets of S. This, however, in
general requires classical reasoning.

If an entailment relation ` is such that U ` V for every pair of finite subsets U and V of
S, then we say that ` collapses, which notion is in the tradition of dynamical algebra [92]. In
presence of monotonicity (M), an entailment relation ` collapses if and only if ∅ ` ∅. For yet
another characterization, consider the following.

Lemma 4.2. Let ` be an entailment relation on a set S. The following are equivalent.

1. ` collapses.

2. There is a finite subset U of S such that A ` B whenever A and B are finite subsets of S
with A ∪B = U .

Proof. One implication is apparent. As for the other, write U = { a1, . . . , an } and argue by
induction on n. If U is empty, then ` collapses by assumption on U . Next suppose that U =
{ a1, . . . , an, an+1 } has the propertion in question. Let A and B be finite subsets of S such that
A∪B = { a1, . . . , an }. According to the assumption, we have both A ` B, an+1 and A, an+1 ` B,
and we obtain A ` B by cut. Thus we see that U ′ = { a1, . . . , an } is such that A ` B whenever
A ∪B = U ′. The inductive hypothesis now implies that ` collapses.

Remark 4.3. Nothing prevents us from considering entailment relations on an empty domain of
discourse, i.e., on S = ∅. For instance, as pointed out in [234], there are two distinct entailment
relations `0= ∅ and `1= { ∅ `1 ∅ } on ∅, the latter of which by definition collapses, while the
former does not. But to say that these are all entailment relations on ∅ necessitates REM. See also
Remark 4.19.

1This choice of notation is motivated by Sambin’s Basic Pairs [219].
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If there is at least one pair of finite subsets U and V of S for which U ` V does not hold,
briefly U 0 V , then we say that ` is consistent. If U is a finite subset of S for which U `, then
U is inconsistent. We say that U is consistent if U 0. Mind that if U is not consistent, then
we cannot in general conclude that U is inconsistent, because this would necessitate REM (see
Remark 4.19). To understand and characterize an inductively generated entailment relation in
non-inductive terms, often it suffices to explain inconsistency.

Usually we start with a set A ⊆ Fin(S) × Fin(S) of initial entailments or axioms, meant to
generate an entailment relation ` on S. Since Pow(S) × Pow(S) is an entailment relation, and
so is in turn every intersection of entailment relations, we may then consider the least one to
contain A. But in order to avoid issues of impredicativity, instead of taking up the aforementioned
static point of view, we consider ` instead to be an inductive definition [1] generated by A along
with the rules for reflexivity, monotonicity, and transitivity.2 We have then at hand a method
of proof by induction for generated entailment relations. In order to verify that the entailment
relation generated by a given set of axioms is subject to a certain property, we may concentrate on
showing this property to hold for every axiom, and that it persists under applications of reflexivity,
monotonicity, and transitivity. This strategy, which will prove useful throughout this text, shows
the property in question to actually define an entailment relation which thus contains the one that
is generated by the given set of axioms.

Needless to say, similar observations apply in an analogous manner to inductively generated
single-conclusion entailment relations.

Example 4.4. Let R be a commutative ring with 1. Take S = R for our domain of discourse and
consider the entailment ` on S inductively generated by all instances of the following axioms:

` 0

a ` ab
a, b ` a+ b

1 `
ab ` a, b

This is the entailment relation of proper prime ideal of R. Let U and V be finite subsets of S. It
can be shown [62] that U ` V holds if and only if the ideal 〈U〉 that is generated by U meets the
multiplicative monoid generated by V . It follows that ` being consistent amounts to R being a
non-trivial ring. Furthermore, the direct description of ` shows that, for every finite subset U of
S, we have U ` if and only if 〈U〉 = R.

Remark 4.5. Since Fin(S) is a set in CZF, so is every entailment relation which is generated by
a set of axioms. This is not the case for ECST, upon which a further axiom needs to be imposed
for Fin(S) to be a set. Mind that every entailment relation contains the overlap relation between
finite subsets U and V of the underlying set. Over ECST, this relation is a proper class.

Next we consider semantics of entailment relations.

2It is not necessary to go beyond CZF in order to provide for an inductively generated ` to be a set, carrying out,
e.g., the approach with construction sequences [196]. A very powerful characterization for inductively generated
entailment relations results from the fundamental theorem of entailment relations [62, 169], see Section 4.3.5, which
shows the canonical entailment relation on a distributive lattice to be typical.

63



4. Some aspects of entailment relations

4.3 Spectra

4.3.1 Ideal elements

Let ` be an entailment relation on a set S. An ideal element (or model, point)3 [62, 90] of ` is a
subset α ⊆ S which splits entailments, i.e., in rule notation,

α ⊇ U U ` V
α G V

If ` is an inductively generated entailment relation, then for a subset α of S to be an ideal element
of ` it suffices that α split every axiom: consider the entailment relation � as described in Example
4.1 with X = {α }, i.e., for every pair of finite subsets U and V of S, put

U � V ≡ U ⊆ α → α G V.

If α splits every initial entailment of `, then ` is contained in � by minimality, thus α splits every
entailment, hence is an ideal element. We write

Spec(`)

for the collection of all ideal elements of `, and say that Spec(`) is the spectrum of `. Rather
than forming sets, spectra may well be proper classes in CZF. For instance, if ` is defined by

U ` V ≡ U G V.

then Spec(`) = Pow(S). In other words, every subset of S is ideal for overlap. Notwithstanding
such minor ontological shortcomings over CZF, model classes at least are predicative, i.e., defined
by bounded formulae (but we need the entailment relation at hand to be a set). Moreover, it is
easy to see that Spec(`) is directed-complete, i.e., if D is a directed set of ideal elements of `,
then

⋃
D is a model as well, due to the fact that we are dealing with finite sets of antecedents

only. The situation can further be remedied by providing for Spec(`) to be a set-generated dcpo
(cf. Chapter 1). As a consequence, suitable forms of the Kuratowski-Zorn Lemma over CZF ensure
that models can be maximally extended.

The following is a general lemma that will be needed later on. It is but a slight generalization
of [62, Lemma 2].

Lemma 4.6. Let S be a set with entailment relation `. Let A and B be arbitrary subsets of S.
Generate an entailment relation `′ on S by putting further axioms

`′ a (a ∈ A)

b `′ (b ∈ B)

on top of `. If U and V are finite subsets of S, then

U `′ V if and only if ∃W0 ∈ Fin(A)∃W1 ∈ Fin(B)
(
U,W0 ` V,W1

)
.

Moreover, for every subset α of S, the following are equivalent:

1. α ∈ Spec(`′)

2. α ∈ Spec(`) and A ⊆ α ⊆ S \B.

Proof. The first claim is (almost) apparent. It can be verified by a simple inductive argument, and
with a series of cuts. The second claim can be read off directly from the additional axioms.

3The term ‘ideal element’ refers back to the informal discussion in the preface; ‘model’ of course is logical
terminology; and ‘point’ is topologically motivated, since every entailment relation gives rise to a spectral space by
means of the fundamental theorem, cf. Section 4.3.5. More dynamically, sometimes we even write that α ‘is ideal
for’ or ‘models’ an axiom.
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4.3.2 Set generation and maximality

With our focus on the syntactical point of view of entailment relations, we need not really be
bothered by the fact that spectra tend to form proper classes in CZF. It should further be taken
into account that whenever we draw semantical consequences from observations on mere syntax, to
a large extent classical reasoning is necessary, and this causes a move to classical set theory within
which spectra clearly are sets, anyway. However, even in CZF, as far as semantics is concerned,
one may be interested in those models of an entailment relation that are maximal elements of their
corresponding spectra. Of course, to be able to generally postulate the existence of maximal ideals
we require a principle like KZL. In order to remain true to our forms and phrasings of maximality
and extension principles as have been pointed out in Chapter 1, we need to ensure that spectra
are set-generated dcpo’s. The principle in question is the following.

Set generation for entailment relations (ER). Let S be a set with entailment relation `. The
class Spec(`) of ideal elements of ` is a set-generated dcpo.

We do not intend to fully calibrate the strength of this principle. It is a set existence axiom
and can perhaps be compared to finitary NID, which in turn postulates that the class of closed
subsets of a finitary non-deterministic inductive definition is a set-generated class [34, 144].4 We
now make use of an abstract result of Aczel [2]. Let S and S′ be sets and consider a class function

Γ : Pow(S)→ Pow(S′).

This operator Γ is monotone if, for all sets Y, Y ′ ∈ Pow(S),

Y ⊆ Y ′ implies Γ(Y ) ⊆ Γ(Y ′),

and finitary if, for every Y ∈ Pow(S) and every a ∈ Γ(Y ) there is a finite subset U of Y such that
a ∈ Γ(U). Suppose that we further have an assignment

R : S′ → Pow(S).

4Let S be a set. A rule on S is a pair (a, b) of subsets a and b of S. A rule is said to be nullary if a is empty,
elementary if a is a singleton, and finitary if a is finite. A subset α of S is closed under the rule (a, b) if

a ⊆ α → α G b.

If R is a set of rules on S, then a subset α of S is R-closed if it is closed under each rule of R. Here is the principle
of non-deterministic inductive definitions [248]:

NID. For any set S and any set R of rules on S, the class ClosR(S) is set-generated.

If the rules in R are required to be nullary, elementary, or finitary, then the corresponding principles are referred to
as nullary NID, elementary NID, and finitary NID, respectively. Nullary NID is equivalent to Fullness [144]. Finitary
NID is equivalent to SGA [248]. If R is set of rules, then ClosR(S) may be empty. For instance, if x ∈ S and
R = { (∅, {x }), ({x } , ∅) }. In general, the question as to whether R allows for S to have an R-closed subset in
general can only be answered affirmatively invoking a suitable choice principle. The full Axiom of Choice (AC)
can be expressed in terms of non-deterministic inductive definitions. For instance, the following items are mere
reformulations of each other:

1. ∀a ∀b [ ∀x ∈ a∃y ∈ b ϕ(x, y) → ∃f : a→ b ∀x ∈ aϕ(x, f(x)) ], where ϕ is a bounded predicate.

2. Let ϕ be a bounded predicate, let a and b be sets such that ∀x ∈ a∃y ∈ b ϕ(x, y). Let

S = { (x, y) ∈ a× b : ϕ(x, y) }

and consider the following sets of rules

Rs =
{

({ (x, y), (x, y′) } , ∅) : ϕ(x, y) ∧ ϕ(x, y′) ∧ y 6= y′
}

and
Rt = { (∅, { (x, y) ∈ {x } × b : ϕ(x, y) }) : x ∈ a }

on S. Let R = Rs ∪Rt. Then ClosR(S) is inhabited.

In fact, any R-closed subset of S is a choice function. If { y ∈ b : ϕ(x, y) } is a finite set for every x ∈ a, then we are
in the scope of entailment relations, and R can be considered a set of generating axioms for an entailment relation
` the ideal elements of which precisely are the choice functions sought after. See Chapter 5.
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4. Some aspects of entailment relations

With this information at hand, a subset α of S is said to be Γ, R-closed if

∀x ∈ Γ(α)α G Rx.

We write Clos(Γ, R) for the class of all Γ, R-closed subsets of S.

The following is taken from [2, Theorem 37].

Theorem 4.7 (CZF+ uREA+DC). Given Γ and R as above, if Γ is monotone and finitary, then
Clos(Γ, R) is a set-generated dcpo.

Corollary 4.8 (CZF+uREA+DC). If S is a set with entailment relation `, then the class Spec(`)
of ideal elements of ` is a set-generated dcpo.

Proof. In order to apply Theorem 4.7, we need to define a suitable monotone and finitary operator
Γ together with an assignment R as above, and in such a manner that the class of ideal elements
of ` coincides with the class of Γ, R-closed sets. To this end, take the given set S and, for every
subset Y of S, define Γ(Y ) to be the set of all entailments U ` V the antecedents of which belong
to Y . To be precise, let

S′ = Fin(S)× Fin(S)

and

Γ : Pow(S)→ Pow(`), Γ(Y ) = { (U, V ) ∈ S′ : U ` V ∧ U ⊆ Y } .

This Γ clearly is monotone, and it is finitary by way of definition: if (U, V ) ∈ Γ(Y ), then U is a
finite subset of Y for which (U, V ) ∈ Γ(U). In addition to that, let R be the second projection,
i.e.,

R : S′ → Pow(S), R(U,V ) = V.

It is straightforward to show that a subset α of S is Γ, R-closed if and only if it is an ideal element
of `. According to Theorem 4.7, it follows that Spec(`) is a set-generated dcpo,

Remark 4.9. Suppose that G generates Spec(`), let U and V be finite subsets of S, and let α be
an ideal element. In order to show that α splits (U, V ), i.e., that if U ⊆ α, then α G V , we could
resort to generating elements. That is, if every γ ∈ Gα splits (U, V ), then so does α. In fact, since
α = ∪Gα is a directed union of ideal elements, if U ⊆ α, then there is γ ∈ Gα with U ⊆ γ. Now,
if γ G V , then we obtain α G V .5

We have the following maximality principle by way of KZL and Aczel’s abstract result over
CZF + uREA + DC.

Maximal ideal principle (Max). Let S be a set with entailment relation `. Every ideal element
of ` is contained in a maximal ideal element.

Corollary 4.10 (CZF + uREA + DC). KZL implies Max.

Proof. If ` has an ideal element, say α, then Spec(`α) is an inhabited set-generated dcpo, accord-
ing to Corollary 4.8, where `α is defined as follows:

U `α V ≡ ∃W ∈ Fin(α) (U,W ` V ).

Then, by means of KZL (cf. Chapter 1), this `α has a maximal ideal element β which is ideal for
` and contains α (see Lemma 4.6).

5We are grateful to Takako Nemoto for having pointed this out to us.
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Max generalizes a variety of concrete algebraic maximality principles. For instance, and to
mention only two, both the maximal ideal theorem for distributive lattices as well as the maximal
ideal theorem for commutative rings follow from Max with MEL, and both these principles are
well-known to be classically equivalent to AC [137]. But keep in mind that KZL is “constructively
neutral” [33], hence so is Max.

Recall that a partially ordered class E is flat [2, 7] if

∀x, y ∈ E (x 6 y → x = y ).

In other words, a partially ordered class E is flat if and only if every member of E is maximal.
Odd as it may seem, most of the entailment relations that will be considered later on do have flat
spectra.

Corollary 4.11. ER implies that every flat spectrum is a set.

Proof. We adapt and make use of an argument put forward in [2, 7]. Since it is set-generated, the
dcpo Spec(`) of ideal elements has a subset G of generators, all of which are ideal elements of `.
In particular, if α ∈ Spec(`), then there is g ∈ G with g ⊆ α, whence g = α since Spec(`) is flat.
To put it briefly, the set G coincides with the class of ideal elements of `.

With a similar argument it can be shown that if ` is an entailment relation on a set S, then
the class Min(`) consisting of all minimal points is a set, provided that Spec(`) is set-generated.6

For if G generates the spectrum and α is an ideal element, then there is g ∈ G such that g ⊆ α,
whence g = α in case α is minimal. Therefore, Min(`) ⊆ G is a set by bounded separation.
For instance, under ER the class of minimal prime ideals of a commutative ring is a set; cf. [10,
Corollary 7.3].

Example 4.12. In constructive algebra [82, 169, 256] a commutative ring R has Krull dimension
6 ` − 1 if and only if, for any sequence x1, . . . , x` of elements of R, there are a1, . . . , a` ∈ R and
m1, . . . ,m` ∈ N such that

xm1
1 (· · · (xm`` (1 + a`x`) + · · · ) + a1x1) = 0.

This makes a dimension theory with an “explicit computational content in the form of existence
of some algebraic identities” possible [82]. If R has Krull dimension 6 0, then for all x ∈ R there
are a ∈ R and m ∈ N such that

xm(1 + ax) = 0. (4.1)

Consider the entailment relation ` of proper prime ideal of R. With a simple argument it follows
at once that if R has Krull dimension 6 0, then Spec(`) is flat.

In order for the class of proper prime ideals of a ring with Krull dimension 6 0 to be a set,
the above discussion actually need not be carried out over CZF + uREA + DC. Example 4.12
builds on a constructive notion of Krull dimension for distributive lattices [82]. It is possible to
explain a notion of dimension for an arbitrary entailment relation by considering the dimension of
the lattice that it generates (see below for the fundamental theorem of entailment relations). For
instance, a distributive lattice L has Krull dimension 6 0 if and only if L is a Boolean algebra [82].
Recall that for a distributive lattice L there is a correspondence between lattice maps L→ 2 and
detachable prime filters. If L is Boolean, in fact every prime filter of L is detachable, in which case
the class of prime filters of L is a set. This observation can be applied in order to show already
that by strengthening CZF with the principle of completeness for entailment relations we obtain
REM.

The situation is considerably less difficult for single-conclusion entailment relations than it
is for their multi-conclusion counterparts. In particular, set existence axioms beyond CZF are

6We are grateful to Hajime Ishihara for having pointed this out to us.
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not required, and without further ado it can be shown that if S is a set with single-conclusion
entailment relation B, then the class of all ideals of B is a set-generated dcpo. In fact, a generating
set G is given by the collection of all finitely generated ideals of B, i.e., put

G =
{
UB : U ∈ Fin(S)

}
,

which is a set by replacement. If I is an ideal of B and U is a finite subset of I, then the saturation
UB is an ideal of B as well, and we have U ⊆ UB ⊆ I.7

4.3.3 Completeness and model existence

For elementary and syntactical results about entailment relations to be considered constructive
versions of certain classical theorems, we require a principle that shows the equivalence of both
approaches over an accordingly strengthened set theory. The following makes this possible and
goes back to Scott [229], see also [62, 90].

Completeness Theorem (CT) Let S be a set with entailment relation `. For every pair of
finite subsets U and V of S, the following are equivalent.

1. U ` V
2. ∀α ∈ Spec(`) (U ⊆ α → α G V )

The implication from the first to the second item is soundness and nothing but a definitional
consequence. The converse is inherently non-constructive, it is a form of the Axiom of Choice,
classically equivalent to the prime ideal theorem for distributive lattices, and it gives rise to the
restricted principle of excluded third (REM). From a constructive point of view, it may still be
used for heuristics.

Lemma 4.13. Let B be a Boolean algebra, and let ` be the entailment relation of proper prime
filter of B. The class Spec(`) is a set.

Proof. There is a bijective correspondence between detachable proper prime filters of B and lattice
homomorphisms B → 2. The latter form a set by way of exponentiation and bounded separation.
In a Boolean algebra, every proper prime filter is detachable.

Proposition 4.14. CT implies that every bounded formula is equivalent to a negated bounded
formula.

Proof. The main line of reasoning follows [32, p. 161 sq.]. Let ϕ be a bounded formula and consider

Bϕ = { { a ∈ 1 : ϕ } , 1 } ,

where 1 = { 0 } as usual. This Bϕ is a set by bounded separation and pairing. We equip Bϕ with
a Boolean algebra structure as follows. The top element of Bϕ is 1, and the bottom element is
{ a ∈ 1 : ϕ }. Meets are intersections, joins are unions, and the complement of x ∈ Bϕ is

−x = { a ∈ 1 : a ∈ x → ϕ } .

Note that ϕ is equivalent to { a ∈ 1 : ϕ } = 1, which in turn amounts to saying that Bϕ is trivial.
Next we consider the entailment relation ` of proper prime filter on Bϕ. By Lemma 4.13, the

class Spec(`) is a set. For every x ∈ Bϕ we have

` x if and only if x = 1.

7This in fact shows the collection of ideals of a single-conclusion entailment relation to be a strongly set-generated
class in the sense of [144].
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By CT, this reads ⋂
Spec(`) = { 1 } (4.2)

and thus yields that
Bϕ is trivial if and only if Spec(`) = ∅ .

As for the latter, if Bϕ is trivial, then it has no proper (prime) filter. Conversely, if Spec(`) = ∅,
then

Bϕ = { 1 }

by (4.2). In all, ϕ is equivalent to the negated bounded formula

Spec(`) = ∅.

As Brouwer has observed [54, p. 253], for every formula ψ the implication

¬¬¬ψ → ¬ψ

holds in intuitionistic logic. In view of this and Proposition 4.14, CT implies

¬¬ϕ→ ϕ

for every bounded formula ϕ, which amounts to REM by Brouwer’s other observation [18, 53] that

¬¬(ψ ∨ ¬ψ)

holds for every formula ψ in intuitionistic logic.8

Corollary 4.15. CT implies REM.

Next we can justify our remark from Example 4.1 that every entailment relation on a set S
arises from a certain set of subsets of S.

Representation principle (Rep). Let S be a set with entailment relation `. There is a subset
X of Pow(S) such that, for every pair of finite subsets U and V of S,

U ` V if and only if ∀x ∈ X (U ⊆ x → x G V ). (ρ)

Proposition 4.16. The following are equivalent.

1. CT

2. Rep + REM

Proof. CT implies REM (Corollary 4.15) which in turn implies Pow in presence of Exp [7, Propo-
sition 10.1.1]. It follows that Spec(`) is a set and we can take X = Spec(`) in order to obtain
Rep. As for the converse, notice first that if a certain set X represents `, then X ⊆ Spec(`). In
fact, if U ⊆ x ∈ X and U ` V , then x G V is immediate from (ρ). Working classically with REM,
we may now concentrate on the contrapositive of CT. Thus, let U and V be finite subsets of S
and suppose that U 0 V . With (ρ) it follows that there is x ∈ X such that U ⊆ x and x ∩ V = ∅.
As we have noticed before, this x actually is an ideal element, i.e., x ∈ Spec(`).

In the proof of Proposition 4.16 we have already hinted at the following.

Model existence lemma (MEL). Let S be a set with entailment relation `. If ` is consistent,
then Spec(`) is inhabited.

8We refer to [245] for the early history of intuitionistic logic, and to [250] for a study of the interplay between
tertium non datur, ex falso quodlibet and reductio ad absurdum.
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In comparison to CT, model existence for entailment relations does of course not fare better
from a constructive point of view. For instance, it gives rise to the principle of choice for families
of finite sets, see Chapter 5. However, if the underlying set of finite inconsistent subsets of S is
detachable, then MEL can be proven in CZF at least in case the underlying set S is countable. We
hasten to add that this is just a simple variant of Lindenbaum’s Lemma for propositional logic,
asserting that each consistent set of propositional formulae is contained in a maximally consistent
set. See, e.g., [96, Lemma 1.5.7],

Proposition 4.17. Let S be a countable set with consistent entailment relation `. If the set of
finite inconsistent subsets of S is detachable, then ` has an ideal element.

Proof. We can write S = { a0, a1, a2, . . . } and define a chain of finite subsets of S inductively as
follows. Put S0 = ∅ and let

Si+1 =

{
Si, if Si, ai `
Si ∪ { ai } , if Si, ai 0

for i > 0. Take into account that all of these sets Si are defined to be consistent. We write

α =
⋃
i∈N

Si.

Note that every finite subset of α is consistent. Moreover, for every a ∈ S either we have a ∈ α
or else there is a finite subset U of α such that U, a `. Indeed, for if a ∈ S then we can write
a = ai0 with a certain i0 ∈ N. Now, since the set of finite inconsistent subsets of S is supposed
to be detachable, either we have Si0 , a ` right away, or else Si0 , a 0 in which case by definition
Si0+1 = Si0 ∪ { a } and thus a ∈ α. Our next claim is

α ∈ Spec(`).

In fact, let U and V be finite subsets of S and suppose that U ` V and U ⊆ α. According to
the preceding observation, for every b ∈ V either we have b ∈ α, whence α G V anyway, or else
there is a finite subset Ub of α such that Ub, b `. Therefore, it suffices to rule out that the latter
disjunct holds for every b ∈ V . To this end, suppose that for every b ∈ V there is a finite subset
Ub of α with Ub, b `. Considering the union U ′ =

⋃
b∈V Ub, for every b ∈ V we have U ′, b `. We

can successively cut U ` V and this yields U,U ′ `. However, this would be to say that α contains
the finite inconsistent subset U ∪ U ′, yet any finite subset of α is consistent, as was pointed out
before.

Example 4.18. Let R be a commutative ring. Recall from Example 4.4 the entailment relation
` of proper prime ideal of R. If R is non-trivial and countable and such that for finitely generated
ideals I of R we can decide 1 ∈ I, then R has a proper prime ideal by way of Proposition 4.17. In
fact, following the proof of Proposition 4.17, this R has a maximal ideal.

As a matter of fact, working within a constructive setting and without any further assumption
on the underlying set S, inconsistency with respect to an entailment relation hardly ever needs to
be a decidable property for finite subsets U of S.

Remark 4.19. With regard to what has been indicated before, it is worth noting that the following
are equivalent:

1. REM

2. For every set S, if ` is an entailment relation on S, then

{ U ∈ Fin(S) : U ` }

is a detachable subset of Fin(S).
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In fact, since U ` is nothing but a shorthand notation for (U, ∅) ∈`, the second item is an
immediate consequence of the first. We thus concentrate on showing the converse. Let ϕ be a
bounded formula and define a relation `ϕ between finite subsets U and V of an arbitrary set S
(we might as well take S = ∅) by stipulating

U `ϕ V ≡ U G V ∨ ϕ.

It is straightforward to show that `ϕ indeed is an entailment relation (cf. Lemma 4.27). We have
U `ϕ if and only if ϕ. Therefore, if inconsistency with respect to `ϕ is decidable, then ϕ ∨ ¬ϕ.
As ϕ was taken arbitrary for this argument, REM follows.

Needless to say, Remark 4.19 does of course not preclude entailment relations which do allow
for the set of finite inconsistent subsets to be detachable. For instance, the entailment relation of
positive cone of a torsion-free abelian group of finite rank has a decidable inconsistency predicate
by way of the constructive Positivstellensatz, cf. Chapter 7. Sometimes, while we may not get
by without employing classical reasoning at all, some weak instance of excluded middle, e.g., the
limited principle of omniscience (LPO), may already suffice for inconsistency to be a decidable
property, cf. Section 4.5.

4.3.4 Interpretation

Let S and S′ be sets with entailment relations ` and `′, respectively, In order to relate ` to `′, we
need a notion of morphism between entailment relations. A natural and practicable one is given
by functions between the underlying sets which preserve entailments. The following goes back to
[79].

Let f : S → S′ be a function. We say that f is an interpretation if, for every pair of finite
subsets U and V of S,

U ` V implies f(U) ` f(V ). (4.3)

We write

f : (S,`)→ (S′,`′)

in order to denote an interpretation.

Lemma 4.20. If f : (S,`) → (S′,`′) is an interpretation, then the inverse image mapping
f−1 : Pow(S)→ Pow(S) restricts on ideal elements, i.e.,

f−1 : Spec(`′)→ Spec(`), β 7→ f−1(β).

Proof. Let β be an ideal element of `′ and write α = f−1(β). In order to show that α is an ideal
element of `, let U and V be finite subsets of S and suppose that U ⊆ α and U ` V . We have
β ⊇ f(U), as well as f(U) `′ f(V ) by interpretation. It follows that β G f(V ), whence α G V .

If (4.3) is an equivalence, then we say that f is conservative. This will be an important concept
for later developments in view of the following Theorem 4.21, which has been taken from [79]. To
the best of my knowledge there is no detailed proof for Theorem 4.21 available in the literature.
This gives an opportunity to provide one here.9 Keep in mind that along with CT we have at
hand REM and MEL.

Theorem 4.21 (CT). If f : (S,`)→ (S′,`′) is an interpretation, then the following are equivalent.

1. f is conservative.

9Alternatively, it is possible to apply the fundamental theorem of entailment relations (see Section 4.3.5) and
give a lattice theoretic argument using prime filters. This was communicated to us by Thierry Coquand and gave
rise to our rather elementary proof.

71



4. Some aspects of entailment relations

2. f−1 is surjective on ideal elements.

Proof. 1 =⇒ 2: Suppose that f is conservative and let α ∈ Spec(`). We have to exhibit β ∈
Spec(`′) with f−1(β) = α, and in order to do so, we first define an auxiliary relation
`′f(α) on S′ by stipulating U ′ `′f(α) V

′ if and only if there are W ′0 ∈ Fin(f(α)) and W ′1 ∈
Fin(f(S) \ f(α)) such that

U ′,W ′0 `′ V ′,W ′1.

Recall from Lemma 4.6 that this is an entailment relation with the property that if β is a
subset of S′, then β ∈ Spec(`′f(α)) if and only if β ∈ Spec(`′) and

f(α) ⊆ β ⊆ (S′ \ f(S)) ∪ f(α). (4.4)

Suppose that `′f(α) collapses, i.e., let a1, . . . , ak ∈ α and b1, . . . , b` ∈ S \ α be such that

f(a1), . . . , f(ak) `′ f(b1), . . . , f(b`).

Since f is conservative, this implies

a1, . . . , ak ` b1, . . . , b`.

But since α ∈ Spec(`) and a1, . . . , ak ∈ α, we arrive at a contradiction. Thus `′f(α) is

consistent. Using MEL, there is β ∈ Spec(`′f(α)) and we claim that α = f−1(β). On the one
hand, we have

α ⊆ f−1(f(α)) ⊆ f−1(β)

by the left hand containment of (4.4). On the other hand, if a ∈ f−1(β), then we must have
f(a) ∈ f(α) by the right hand containment of (4.4), and therefore `′f(α) f(a). This is to say

that there are a1, . . . , ak ∈ α and b1, . . . , b` ∈ S \ α such that

f(a1), . . . , f(ak) `′ f(b1), . . . , f(b`), f(a).

Conservativity implies

a1, . . . , ak ` b1, . . . , b`, a.

Finally, since α ∈ Spec(`), we get α G { b1, . . . , b`, a }, which leaves us with a ∈ α, as
required.

2 =⇒ 1: Let f−1 be surjective on ideal elements. In order to show that f is conservative, let U
and V be finite subsets of S such that f(U) `′ f(V ). We need to show U ` V , to which end
we employ completeness for entailment relations. Thus, let α ∈ Spec(`) with U ⊆ α. Since
f−1 is surjective, there is an ideal element β of `′ such that f−1(β) = α. It follows that
f(U) ⊆ β, and since β ∈ Spec(`′) we get β G f(V ). The latter implies α G V .

Example 4.22. Let A be a set, 2 = { 0, 1 }, and take S = A×2. On S we consider the entailment
relation ` which is inductively generated by all instances of the following axioms of single-values
and totality.

(a, 0), (a, 1) ` (s)

` (a, 0), (a, 1) (t)

To begin with, an ideal element α of ` is a subrelation of A × 2. While axiom (s) forces α to
be single-valued, if α models (t), then α is a total relation. In a nutshell, ideal elements of ` are
nothing but functions A→ 2. This example has long been put forward [79] and underlies most of
those that are yet to come. ` can be characterized by empty-conclusion instances, and for every
finite subset U of A× 2 we have U ` if and only if there is a ∈ A such that { (a, 0), (a, 1) } ⊆ U .
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Suppose now that f : A → B is a function. On S′ = B → 2 we consider the entailment relation
`′ of function B → 2, and have an interpretation

if : (S,`)→ (S′,`′), (a, i) 7→ (f(a), i).

Taking for granted the above characterization of inconsistency, it is straightforward to show that
if is conservative if and only f is injective. Semantically, by way of Theorem 4.21, we see that f
is injective if and only if the induced map i−1

f of ideal elements is onto, which in turn is equivalent
to 2 being an injective set. Over CZF the latter assertion gives rise to RWEM [9], i.e., excluded
middle for negated bounded formulae,

¬ϕ ∨ ¬¬ϕ

so classical reasoning is necessary in order to infer extendability from the conservation argument.

It is clear that interpretations compose, whence there is a category: objects are sets equipped
with a distinguished entailment relations, and morphisms are interpretations. We refer to [90] for
a discussion on several categorical equivalences.10

4.3.5 Fundamental theorem

Let L be a bounded distributive lattice. Recall that a canonical choice for an entailment relation
on L is given by stipulating, for every pair of finite subsets U and V of L,

U ` V ≡
∧
U 6

∨
V.

A subset α of L is an ideal element of ` if and only if α is a prime filter. Up to conservative
interpretation, every entailment relation is of this form!

We take the following seminal result from [62], see also [90] and [169].

Fundamental theorem (FT). Let S be a set with entailment relation `. There is a distributive
lattice L(S), together with a map i : S → L(S) such that, for every pair of finite subsets U
and V of S,

U ` V if and only if
∧
a∈U

i(a) 6
∨
b∈V

i(b), (∗)

and whenever f : S → L′ is an interpretation of ` in another distributive lattice L′, i.e.,
satisfying (∗) with f in place of i, then there is a lattice map f ′ : L(S) → L′ such that the
following diagram commutes:

S L(S)

L′

i

f
f ′

10Different notions of mapping between entailment relations prove practicable, too. Let S and S′ be sets, each
equipped with an entailment relation ` and `′, respectively. An approximable relation [62] between ` and `′ is a
relation � between finite subsets of S′ and elements of S such that

1. If V ′ ⊇f U
′ and U ′ � a, then V ′ � a, i.e. � is monotone.

2. If U ′ `′ b′1, . . . , b′` and U ′, b′j � a for 1 6 j 6 `, then U ′ � a.

3. If a1, . . . , ak ` b1, . . . , b` and U ′ � ai for 1 6 i 6 k, then there are finite subsets V ′1 , . . . , V
′
` of S′ such that

V ′j � bj for 1 6 j 6 `, and U ′ `′ b′1, . . . , b′` for any choice of elements b′1 ∈ V ′1 , . . . , b′` ∈ V
′
` .

For instance, every interpretation f : (S,`) → (S′,`′) gives way to an approximable relation by stipulating, for
finite subsets U ′ of S′ and a ∈ S,

U ′ � a ≡ U ′ `′ f(a).

Here we shall be content with the more specific notion of interpretation in terms of entailment-preserving functions.
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4. Some aspects of entailment relations

FT is a constructive theorem, and has an abundance of important applications and conse-
quences [62].

There is now a correspondence between ideal elements of ` and prime filters of the generated
distributive lattice L(S) [62, 90]. If P is a prime filter of L(S), then its inverse image i−1(P ) along
the canonical interpretation i is an ideal element of `. Conversely, if α ∈ Spec(`), then

Pα =
{
x ∈ L(S) : ∃U ∈ Fin(α) (

∧
i(U) 6 x )

}
is a prime filter of the generated lattice L(S) such that α = i−1(Pα). Now recall that every
distributive lattice L canonically defines a spectral space [147] the points of which are the prime
filters P of L.

In this manner, every entailment relation gives rise to a spectral space. Syntactical properties
of the former can be understood topologically by means of the latter. For instance, if the generated
lattice is complemented, i.e., a Boolean algebra, then its atoms correspond with the isolated points
of the space it gives rise to. This will be applied in Chapter 7.

4.3.6 Atoms in the generated lattice

For the following we need an observation that can be made prior to the construction for the proof
of FT [62, 169]: if ` is an entailment relation on a set S, then every element x of the generated
distributive lattice L(S) can be put in “disjunctive normal form”, i.e., there is a finite subset U
of finite subsets U of S such that

x =
∨
U∈U

∧
a∈U

i(a).

Let L be a distributive lattice. Recall from [169] that an atom of L is a non-zero element x ∈ L
such that

∀y ∈ L
(

(x ∧ y = 0) ∨ (x ∧ y = x)
)
.

If L is discrete, then a non-zero element x ∈ L is an atom if and only if it is minimal among non-
zero elements [123, 156, 169]. However, we go with the former definition which in turn directly
suggests the next.

Definition 4.23. Let ` be an entailment relation on a set S. We say that a finite subset A of S
is decisive if, for every b ∈ S,

A, b ` or A ` b.

We say that a finite consistent decisive subset of S is an atomic conjunction.

Thus, a finite subset A of S is decisive if and only if, for every abstract statement b ∈ S, either
b is a consequence of A or else A ∪ { b } is inconsistent. Moreover, the empty subset is an atomic
conjunction if and only if ` is consistent and complete [229], which is to say that for every a ∈ S
either a ` or ` a.

Proposition 4.24. Let S be a set with entailment relation `. The following are equivalent.

1. (S,`) has an atomic conjunction.

2. The generated distributive lattice L(S) has an atom.

Proof. Suppose that A ⊆ S is an atomic conjunction and consider

x =
∧
a∈A

i(a).

This x is non-zero, since A is supposed to be consistent. Now let y ∈ L(S), which can be written
in disjunctive normal form [62, 169]

y =
∨
V ∈V

∧
b∈V

i(b)

74



4.4. Counterparts for inconsistency predicates

for a certain finite set V of finite subsets V of S. Since A is decisive, for every V ∈ V and b ∈ V
we have either A, b ` or else A ` b, according to which either x ∧ i(b) = 0 or x 6 i(b). It now
follows that

x ∧ y =
∨
V ∈V

∧
b∈V

x ∧ i(b) ∈ { 0, x } .

Conversely, if L(S) has an atom x, this atom too can be written in normal form

0 6= x =
∨
U∈U

∧
a∈U

i(a),

where we may suppose that U is a singleton, i.e., U = {U }. This U is consistent; moreover,
if b ∈ S, then x ∧ i(b) = 0 or x 6 i(b) since x is an atom, which by the fundamental theorem
translates back to U, b ` or U ` b, so U is decisive. In all U is an atomic conjunction.

Remark 4.25. Let S be a set with entailment relation ` and suppose that A is an atomic
conjunction. We claim that

A` = { a ∈ S : A ` a } (4.5)

is an ideal element of `. In fact, let U ` V and suppose that U ⊆ A`. Since A is decisive, for
every b ∈ V either we have A ` b, whence b ∈ A`, or else A, b `. We thus have to rule out that
the latter holds for every b ∈ V . But if this were indeed the case, with a successive application
of transitivity we could obtain A `, yet A is supposed to be consistent. It follows that in order
to show that the generated lattice is atomless, it suffices to show that there can be no finitely
generated ideal element as specified by (4.5). This strategy will be put into action in Chapter 7.

4.4 Counterparts for inconsistency predicates

Let S be a set equipped with an inductively generated entailment relation `. If the corresponding
generated lattice is Boolean, in order to give a non-inductive characterization of `, it can be shown
that being able to do so for empty-conclusion instances suffices. As a matter of fact, all but few
of the entailment relations that will be studied later on do allow for a characterization in this
manner. Here we put together some notions and tools that can help to explain inconsistency.11

In the following, by a finitary predicate Φ on S will be meant a subset of Fin(S), and we
use Φ(U) as shorthand for U ∈ Φ. The canonical inconsistency predicate Φ` for ` is defined by
stipulating

Φ`(U) ≡ U `

where U is a finite subset of S. Due to monotonicity of `, this Φ` is monotone too, in the sense
that if U and V are finite subsets of S with U ⊆ V , then Φ`(U) implies Φ`(V ).

Suppose now that we have a monotone finitary predicate Φ on S. In this section we are
interested in characterizing entailment relations ` on S for which the canonical inconsistency
predicate Φ` coincides with Φ.

Definition 4.26. Let Φ be a finitary predicate on S. We introduce two relations `min
Φ and `max

Φ

between finite subsets U and V of S, as follows.

U `min
Φ V ≡ U G V ∨ Φ(U)

U `max
Φ V ≡ ∀U ′ ⊇f U

(
∀b ∈ V ( Φ(U ′, b) ) → Φ(U ′)

)
.

Lemma 4.27. If Φ is a finitary monotone predicate on S, then

1. `min
Φ is an entailment relation, and

11For the content of this section I am indebted to Davide Rinaldi, for having shared and communicated his
insights while we were trying to tackle different ends of the same problem. Rinaldi’s results now form parts of [211].
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2. `max
Φ is an entailment relation.

Proof. 1. Since `min
Φ contains the overlap relation, reflexivity is apparent. Monotonicity for

`min
Φ is a consequence of Φ being monotone. With respect to cut (T), let a ∈ S and U and
V be finite subsets of S such that both U `min

Φ V, a and U, a `min
Φ V . This is to say that

U G (V, a) ∨ Φ(U) and (U, a) G V ∨ Φ(U, a).

Keep in mind that U G (V, a) amounts to U G V or a ∈ U , whence U `min
Φ V follows

immediately.

2. Suppose first that a ∈ U ∩ V and let U ′ ⊇f U . If Φ(U ′, b) for every b ∈ V , then Φ(U ′, a) in
particular and thus Φ(U). This means that `max

Φ is reflexive. Next, suppose that U `max
Φ V

and let U ′ and V ′ be finite subsets of S. In order to show U,U ′ `max
Φ V, V ′, let U ′′ ⊇f U ∪U ′,

and suppose that for every b ∈ V ∪ V ′ we have Φ(U ′′, b). In particular, for every b ∈ V we
have Φ(U ′′, b), whence Φ(U ′′) is an immediate consequence of the assumption U `max

Φ V . It
remains to consider cuts. Suppose that both U `max

Φ V, a and U, a `max
Φ V . In order to show

U `max
Φ V , let U ′ ⊇ U and suppose that for every b ∈ V we have Φ(U ′, b). By way of the

latter entailment, we have Φ(U ′, a). Now that we know Φ(U ′, b) for every b ∈ V ∪ { a }, we
get Φ(U ′) from the former entailment.

Given a finitary monotone predicate Φ on S, what are the canonical inconsistency predicates
that correspond to the entailment relations `min

Φ and `max
Φ , respectively? It is Φ in both cases:

Lemma 4.28. Let Φ be a finitary monotone predicate on S. For every finite subset U of S, the
following are equivalent.

1. Φ(U)

2. U `min
Φ

3. U `max
Φ

Proof. Clearly, U `min
Φ if and only if Φ(U). Similarly, we have U `max

Φ if and only if ∀U ′ ⊇f

U ( Φ(U ′) ) which by instantiation and monotonicity in fact is equivalent to Φ(U).

The following is due to Rinaldi and generalizes Scott’s “sandwich criterion” for multi-conclusion
entailment relations as extending their single-conclusion counterparts, see [209, 229, 234], Chapter
3, and [211].

Theorem 4.29. Let ` be an entailment relation, and let Φ be a monotone predicate on S. The
following are equivalent.

(i) Φ = Φ`

(ii) `min
Φ ⊆`⊆`max

Φ .

Proof. Suppose that Φ` = Φ, and let U and V be finite subsets of S. If U `min
Φ V , then U G V or

Φ(U), both cases of which imply U ` V . We thus concentrate on showing `⊆`max
Φ . Accordingly,

let U ` V , let U ′ ⊇ U , and suppose that for every b ∈ V we have Φ(U ′, b). Since Φ = Φ`, we have
U ′, b ` for every b ∈ V . Therefore, by a series of cuts with U ` V we get U ′ `, and Φ(U ′) follows,
as required.

Conversely, if ` is an entailment relation between `min
Φ and `max

Φ , then, for every finite subset
U of S, we have a chain of implications

Φ(U) =⇒ U `min
Φ =⇒ U ` =⇒ U `max

Φ =⇒ Φ(U)

by way of the preceding Lemma 4.28, and therefore Φ = Φ`.
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It is worth mentioning that Theorem 4.29 can also be obtained by means of a cut-elimination
principle for entailment relations [211].

In order to capture inconsistency in a succinct manner, we next we introduce the notion of an
adequate and hereditary predicate.

Definition 4.30. Let ` be an entailment relation, and let Φ be a finitary monotone predicate on
S. We say that

1. Φ is hereditary for ` if

a1, . . . , an ` b1, . . . , bm Φ(U, b1) . . . Φ(U, bm)

Φ(U, a1, . . . , an)

where U is a finite subset of S.

2. Φ is adequate for ` if Φ ⊆ Φ`.

Lemma 4.31. Let Φ be a finitary monotone predicate on S.

1. Φ is adequate for ` if and only if `min
Φ ⊆`.

2. Φ is hereditary for ` if and only if `⊆`max
Φ .

Proof. 1. Suppose that Φ is adequate for ` and let U and V be finite subsets of S. If U `min
Φ V ,

then Φ(U) or U G V , both cases of which imply U ` V .

Conversely, suppose that `min
Φ ⊆`. If Φ(U), then U `min

Φ , and thus U `. This means that Φ
is adequate for `.

2. Suppose that Φ is hereditary for `. If U and V are finite subsets of S such that U ` V , let
U ′ ⊇f U and suppose that Φ(U ′, b) for every b ∈ V . Since Φ is hereditary, it follows that
Φ(U ′, U) which apparently simplifies to Φ(U ′), as required for U `max

Φ V .

Conversely, suppose that `⊆`max
Φ . Thus, if a1, . . . , an ` b1, . . . , bm, then we have as well

a1, . . . , an `max
Φ b1, . . . , bm. If Φ(U, bj) for 1 6 j 6 m, then by monotonicity we get

Φ(U, a1, . . . , an, bj) for 1 6 j 6 m, and therefore Φ(U, a1, . . . , an).

Corollary 4.32. The following are equivalent.

(i) Φ is adequate and hereditary.

(ii) Φ = Φ`.

Proof. Put together Theorem 4.29 and Lemma 4.31.

Corollary 4.33.

1. Let Φ be adequate for `. If Φ(∅), then ` collapses.

2. Let Φ be hereditary for `. If ` collapses, then Φ(∅).

Now we have at hand a strategy that helps characterizing inconsistency. Once an andequate
predicate has been formulated, it remains to verify that it is hereditary. In general, this may
require a bit of work. Fortunately, it suffices to concentrate only on generating axioms.

Lemma 4.34. Let ` be an inductively generated entailment relation, and let Φ be a finitary
monotone predicate on S. The following are equivalent.

(i) Φ is hereditary for `.

(ii) Φ is hereditary for every axiom of `.
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Proof. Of course, if Φ is hereditary for `, then so it is for every initial entailment. Conversely,
suppose that Φ is hereditary for every initial entailment. This allows for an argument by induction,
whence we need to address the rules. The case for reflexivity (R) is trivial, while the case for
monotonicity (M) is handled by the assumption that Φ is monotone. We thus concentrate on
transitivity (T). Suppose that we have

...
a1, . . . , an ` b1, . . . , bm, c

...
a1, . . . , an, c ` b1, . . . , bm

a1, . . . , an ` b1, . . . , bm

and let U be a finite subset of S with Φ(U, bj) for 1 6 j 6 m. Employing the inductive hypothesis
with regard to the right-hand entailment above the lower inference line, we get Φ(U, a1, . . . , an, c).
Next we consider U ′ = U ∪ { a1, . . . , an }, and have, since Φ is monotone, Φ(U ′, bi) for 1 6 i 6 m,
as well as Φ(U ′, c). We may now employ the hypothesis with regard to the left-hand entailment
above, leading us to Φ(U ′, a1, . . . , an). This just means Φ(U), as required.

Example 4.35. Scott’s criterion that we have put into action in Chapter 3 is a special case of
Theorem 4.29 (see also [211]). Let B be a single-conclusion entailment relation, extended by a
multi-conclusion entailment relation `, i.e, for every finite subset U and element a of S we have
that U B a implies U ` a. In case the converse holds as well, this extension is conservative, see
Chapter 3. For every element a ∈ S we define an entailment relation `a as follows:

U `a V ≡ U ` V, a.

We further define a monotone predicate Φa by way of

Φa(U) ≡ U B a.

Since ` extends B, notice that Φa is adequate for `a, i.e. Φa ⊆ Φ`a . We claim that the following
are equivalent.

(i) For every a ∈ S the predicate Φa is hereditary for `a.

(ii) ` is a conservative extension of B.

In fact, if U ` a, then Φ`a(U). If Φa is hereditary (and since it is adequate) for `a, then we get
Φa(U) by Corollary 4.32 and this means nothing but U B a. Thus ` is conservative over B.

Conversely, suppose that ` is a conservative extension of B, and let a ∈ S. In order to show
that Φa is hereditary, we consider

a1, . . . , an ` b1, . . . , bm

and assume to have

Φa(U, b1) . . . Φa(U, bm),

which by definition of Φa means

U, b1 B a . . . U, bm B a.

Since ` extends B we have

U, b1 ` a . . . U, bm ` a.

By repeated application of transitivity we obtain U, a1, . . . , an ` a. Since ` is conservative over B
we get U, a1, . . . , an B a. This translates back to Φa(U, a1, . . . , an).
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Remark 4.36. Related concepts have been studied in the context of disjunctive logic program-
ming [215, 258]. Let us briefly compare our approach with the concept of hyperresolution from
clausal logic, following [90]. Let again S be a set with entailment relation. A finite subset X of S
is called a clause. A clause set is a set of clauses. Let us say that a clause set W is closed under
the hyperresolution rule if

a1, X1 . . . an, Xn a1, . . . , an ` Y
X1, . . . , Xn, Y

which is to say that whenever a1, . . . , an ` Y and { ai } ∪Xi ∈ W for every i ∈ { 1, . . . , n }, then
we have ∪ni=1Xi ∪ Y ∈ W . Now let Φ be a finitary monotone predicate on S. This Φ can be
construed as a clause set. The following are equivalent:

1. Φ is hereditary for `.

2. Φ is closed under the hyperresolution rule with respect to the opposite a=`◦.

Monotone subsets of Fin(S) which are closed under the hyperresolution rule with respect to the
opposite of ` are called conjunctive states [90]. We can thus say that Φ as above is hereditary if
and only if it is a conjunctive state. Conjunctive states are the ideals of a certain coverage relation
[147] with which an explicit construction of the frame generated by an entailment relation can be
given [90].

4.5 Infinite paths as ideal elements

We turn our attention to a first and thorough case study that brings into action some of the
methods developed so far. Moreover, the opportunity arises to examine some aspects of non-
constructivity of MEL, even in case the underlying domain of discourse is a countable set, by
showing this principle to give rise to a version of the Weak König Lemma (WKL).

While outlining this section’s preliminaries we closely follow [88], which in fact provides overall
motivation for what follows.

4.5.1 Trees

Let A be a finite discrete inhabited set, for instance A = { 0, 1 }. Let

A∗ =
⋃
n>0

An

be the set of finite sequences of elements of A. The length of u ∈ An is |u| = n. The only sequence
of length 0 is the empty sequence 〈〉. The n-th finite initial segment

un = 〈u(0), . . . , u(n− 1)〉

of u with |u| > n has length n. Note that u0 = 〈〉, u|u| = u, and unm = um whenever m 6 n.
Each sequence 〈a〉 of length 1 is identified with its only element a. The concatenation of u and v
is denoted by their juxtaposition uv. We write u 6 w if u is a restriction of w, i.e.,

u 6 w ≡ ∃v (uv = w ).

Since A is discrete, this puts a decidable partial order on A∗. Clearly, the empty sequence 〈〉 is
the least element of A∗ with respect to this order. A subset T of A∗ is unbounded if

∀n∃u ( |u| > n ∧ u ∈ T ).

A subset T of A∗ is closed under restrictions if

∀u,w (u 6 w ∧ w ∈ T → u ∈ T ).
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If T is closed under restrictions, then T being inhabited is tantamount to 〈〉 ∈ T . Moreover, any
such T is unbounded precisely when

∀n∃u ( |u| = n ∧ u ∈ T ).

A tree is an inhabited subset T of A∗ which is closed under restrictions. A tree is a spread if every
element of T has an immediate successor in T , i.e.,

∀u
(
u ∈ T → ∃a ∈ A (ua ∈ T )

)
.

A linear spread is a spread which is linearly ordered with respect to 6. A linear spread has exactly
one element of any given length.

4.5.2 Paths are ideal elements

Let again A be a finite discrete inhabited set. We make use of the following predicate for finite
sequences u, v ∈ A∗:

N(u, v) ≡ ∃i
(
i 6 min { |u|, |v| } ∧ u(i) 6= v(i)

)
.

Since A is discrete, N(u, v) is decidable, and we make the following simple observation.

Lemma 4.37.

∀u, v
(
¬N(u, v) → (u 6 v ∨ v 6 u )

)
Proof. Since 6 is decidable, we have u 6 v or u 
 v. In the latter case, if ¬N(u, v), it follows that
v 6 u.

Let T ⊆ A∗ be an unbounded detachable tree. The set of sequences of a given length n
belonging to this tree will be denoted T (n), viz.

T (n) = { u ∈ T : |u| = n } .

Since a detachable subset of a finite set is finite, this T (n) is finite. We now take the set S = T for
our domain of discourse and consider the entailment relation ` on S that is inductively generated
by all instances of the following axioms of single-values, monotonicity, and totality :

u, v ` (s [N(u, v)])

w ` u (m [u 6 w])

` T (n) (t [n > 0])

with side conditions as indicated. Notice that

` 〈〉

is a consequence of the above axioms and need not be postulated. In fact, for every u ∈ T such
that |u| = 1 we have u ` 〈〉 as an instance of (m). We can repeatedly cut the corresponding
instance of totality ` { u ∈ T : |u| = 1 } and obtain ` 〈〉.

Due to the axioms for totality (t) and single-values (s), this entailment relation enjoys what in
the following we will loosely call back-and-forth property.

Lemma 4.38. Let U and V be finite subsets of T and let w ∈ T . The following are equivalent.

1. U ` V,w

2. U,w′ ` V for every w′ ∈ T (|w|) \ {w }.
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Proof. For every w′ ∈ T (|w|), if w 6= w′, then there is i 6 |w| such that w(i) 6= w′(i), whence
N(w,w′) and we have an axiom w,w′ `. This entailment can be used to cut U ` V,w and we
obtain U,w′ ` V .

Conversely, if U,w′ ` V for every w′ ∈ T (|w|) \ {w }, then we can cut the corresponding
instance of totality ` T (|w|) repeatedly, until we have U ` V,w.

It follows from Lemma 4.38 that in order to provide a non-inductive description of `, it suffices
to characterize empty conclusion entailment only, and hence to find an adequate and hereditary
predicate. Before doing so, let us briefly discuss semantics.

Lemma 4.39. Let α be a subset of T . The following are equivalent.

1. α ∈ Spec(`)

2. α is a linear spread.

Proof. Suppose that α models `. Because of ` 〈〉, this α is inhabited. Furthermore, it is closed
under restrictions by way of axiom (m), whence α is a tree. In order to show that α is a spread,
we have to show that every element u of α has an immediate successor in α. Due to totality (t),
we know that there is w ∈ α with |w| = |u|+1. Now that we have u,w ∈ α, we know that N(u,w)
is impossible, and u 6 w follows from Lemma 4.37. The same argument applies to show that α is
linear.

Conversely, if α indeed is a linear spread, then α has an element of any given length, thus is
ideal for (t). Moreover, α is closed under restrictions, by which it is ideal for (m). Finally, every
linear spread is ideal for the axiom of single-values (s).

According to Lemma 4.39 we say that ` is the entailment relation of linear spread of T . Recall
that by an infinite path in a tree T one usually understands an infinite sequence β : N → A for
which all finite initial segments

βn = 〈β(0), . . . , β(n− 1)〉

belong to T [88]. Now, apparently every such β gives way to a linear spread

α =
{
βn : n > 0

}
∈ Spec(`)

in the above sense. As for the converse, i.e., in order to extract an infinite path from a linear
spread, suppose that α ∈ Spec(`). Due to totality (t) and single-values (s), for every n ∈ N there
is exactly one u in T such that |u| = n and u ∈ α, and if u, v ∈ α and |u| 6 |v|, then u 6 v. By
means of replacement, there is a function f assigning to each n ∈ N the unique finite sequence
fn ∈ α such that |fn| = n. With this data at hand, we define an infinite sequence

β : N→ A, n 7→ fn+1(n)

for which all finite initial segments

βn = 〈β(0), β(1), . . . , β(n− 1)〉 = 〈f1(0), f2(1), . . . , fn(n− 1)〉 = fn

belong to T .
Keeping in mind this digression on the semantics of the entailment relation of linear spread, we

next aim at an explicit description of `. First we need to introduce another shorthand notation:
if U is a finite subset of T , let

|U | = max { |u| : u ∈ U ∪ { 〈〉 } } .

Lemma 4.40. Let U be a finite subset of T . If n > |U |, then

U ` { v ∈ T : |v| = n ∧ ∀u ∈ U (u 6 v ) } .
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Proof. Notice first that if U is empty, then we merely reclaim the generating axiom of totality (t).
Since the underlying set A is discrete, we can write

T (n) = { v ∈ T (n) : ∀u ∈ U (u 6 v ) } ∪ { v ∈ T (n) : ∃u ∈ U N(u, v) } .

Focussing on the right-hand set of this partition, the corresponding axiom of totality

` T (n)

can thus be cut with instances of single-values

u, v `

where u ∈ U, v ∈ T (n) and N(u, v). Doing so repeatedly, we obtain

U ` { v ∈ T (n) : ∀u ∈ U (u 6 v ) } .

Intuitively, Lemma 4.40 asserts that in order to extend a finite subset U of T coherently, i.e.,
without causing inconsistency, it is necessary to choose an element among the common successors
of U . Lemma 4.40 already hints at an inconsistency predicate for `. We stipulate, for finite subsets
U of T ,

Φ(U) ≡ ∃n
(
n > |U | ∧ { v ∈ T (n) : ∀u ∈ U (u 6 v ) } = ∅

)
.

It is easy to see that this predicate Φ is monotone: let U ⊆ U ′ and let n > |U | be such that
{ v ∈ T (n) : ∀u ∈ U (u 6 v ) } is empty. Consider n′ = |U ′| and suppose that there is v ∈ T (n′)
such that u 6 v whenever u ∈ U ′. Since T is closed under restrictions, we have vn ∈ T (n).
Furthermore, for every u ∈ U it follows that u 6 vn. This, however, contradicts our assumption
and we may conclude Φ(U ′).

According to Lemma 4.40, if U is a finite subset of T such that Φ(U), then U is inconsistent, so
Φ is an adequate predicate for `. What is the intuitive meaning of Φ? In order for a finite subset
U of T to be consistent, from a semantical point of view it should be extendable to a linear spread.
The following circumstances might hinder this: for instance, U may contain an incomparable pair,
whence may not even be a finite chain in the first place. Yet even if U is linearly ordered, if it
happens to have an element with only finitely many successors, then it is impossible to extend U
to a linear spread of T . Both these circumstances are captured in terms of Φ.

Lemma 4.41. Φ is hereditary for `.

Proof. It suffices to show that Φ is hereditary for generating axioms. With regard to single-values
(s), let u, v ∈ T and suppose that N(u, v), i.e., let i 6 min { |u|, |v| } be such that u(i) 6= v(i). For
an arbitrary sequence w ∈ T (n), where n = max { |u|, |v| }, we cannot have both u 6 w and v 6 w.
Thus, if N(u, v) and U is a finite subset of T , then Φ(U, u, v). Next we consider monotonicity
(m). Let U be a finite subset of T , let u 6 w, and suppose that Φ(U, u). Accordingly, there is
n > |U ∪ {u }| such that

{ v ∈ T (n) : ∀u ∈ U ∪ {u } (u 6 v ) } = ∅.

Let m = max {n, |w| }, hence m > |U ∪ {w }| and clearly

{ v ∈ T (m) : ∀u ∈ U ∪ {w } (u 6 v ) } = ∅.

For if the latter set were inhabited, e.g., by v ∈ T (m), then vn ∈ T (n) would contradict the
formerly displayed one being empty, due to the fact that u 6 w. It remains to consider totality
(t). Let U again be a finite subset of T , let n > 0, and suppose that for every w ∈ T (n) we have
Φ(U,w). This means that for every w ∈ T (n) there is kw > max { |U |, n } such that

{ v ∈ T (kw) : ∀u ∈ U ∪ {w } (u 6 v ) } = ∅. (†)
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Consider
m = max { kw : w ∈ T (n) } .

for which we claim that it witnesses Φ(U). Clearly, m > |U |. Now suppose that there is a
particular v ∈ T (m) such that

∀u ∈ U (u 6 v ). (‡)
Keeping in mind vn ∈ T (n) and

|v| = m = max { kw : w ∈ T (n) } > kvn > max { |U |, n } > n,

assertion (‡) implies
∀u ∈ U ∪ { vn }

(
u 6 vkvn

)
.

However, this contradicts (†).

Since Φ is both adequate and hereditary for `, it follows that Φ` = Φ. In order to recapitulate,
we obtain a characterization of empty-conclusion entailment as follows.

Proposition 4.42. Let U be a finite subset of T . The following are equivalent.

1. U is inconsistent.

2. There is n > |U | such that { v ∈ T (n) : ∀u ∈ U (u 6 v ) } is empty.

Consistency of ` is an immediate consequence of Proposition 4.42.

Corollary 4.43. ` is consistent.

Proof. According to Proposition 4.42, ∅ ` ∅ being inferrable is tantamount to Φ(∅). This would
be to say that there is n > 0 such that T (n) is empty. However, T is supposed to have elements
of any given length.

Bringing into play the back-and-forth property of ` as stated in Lemma 4.38, Proposition 4.42
leads over to a non-inductive description of `, as follows.

Proposition 4.44. The following are equivalent.

1. u1, . . . , uk ` v1, . . . , v`

2. For any choice of elements

v′1 ∈ T (|v1|) \ { v1 } , . . . , v′` ∈ T (|v`|) \ { v` }

there is n > |{u1, . . . , uk, v1, . . . , v` }| such that

{ w ∈ T (n) : ∀u ∈ {u1, . . . , uk, v
′
1, . . . , v

′
` } (u 6 w ) } = ∅.

4.5.3 Entailment on universal trees

Let again A be a finite discrete inhabited set. As opposed to the preceding section, here we
consider the entailment relation ` of linear spread on the full tree

A∗ =
⋃
n>0

An.

The axiom of totality (t) does now appear unrestricted. In other words, we are interested in the
case T = A∗. Accordingly, let ` on A∗ be inductively generated by all instances of the following
axioms:

u, v ` (s [N(u, v)])

w ` u (m [u 6 w])

` An (t [n > 0])

with side-conditions as indicated. This entailment relation has an explicit description in somewhat
simpler terms than the one provided above for a given but arbitrary tree T ⊆ A∗.
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Proposition 4.45. Let U be a finite subset of A∗. The following are equivalent.

1. U `

2. ∃u, v ∈ U N(u, v).

Proof. It suffices to show that the second item defines a hereditary predicate for ` and we only
consider the axiom of totality (t). We have to show that if U is a finite subset of S such that
Φ(U,w) whenever w ∈ An, then Φ(U). Suppose that for every w ∈ An there are u, v ∈ U ∪ {w }
such that N(u, v). In any such case, if both u, v ∈ U , then Φ(U) is immediate. We may thus
concentrate on showing that

∀w ∈ An ∃u ∈ U N(u,w) (∗)

too implies Φ(U). To this end, we describe how to obtain a single element w ∈ An with which
Φ(U,w) directly leads to Φ(U). To begin with, we consider an arbitrary element w1 ∈ An. Because
of (∗), there are u1 ∈ U and i1 6 min { |u1|, n } such that u1(i1) 6= w1(i1). We may suppose that
i1 is minimal in this regard, which is to say that if i < i1, then u1(i) = w1(i), or in other words
ū1(i1 − 1) = w̄1(i1 − 1). Next we consider w2 ∈ An defined by cases as follows:

w2(i) =

{
u1(i) 1 6 i 6 i1
u1(i1) i1 < i 6 n.

Notice that w̄2i1 = ū1i1. According to (∗), there are u2 ∈ U and i2 6 min { |u2|, n } with
u2(i2) 6= w2(i2), where i2 again may be considered minimal, i.e., if i < i2, then u2(i) = w2(i).
Now, if i2 6 i1, then w2(i2) = u1(i2), whence u2(i2) 6= u1(i2) and u1, u2 witness Φ(U). Else, if
i1 < i2, then we define another finite sequence w3 ∈ An by cases as follows:

w3(i) =


u1(i) 1 6 i 6 i1
u2(i) i1 < i 6 i2
u2(i2) i2 < i 6 n.

Proceeding in this manner, we have at hand a method for obtaining a series of elements u1, . . . , uk ∈
U along with corresponding indices

1 6 i1 < i2 < · · · < ik−1 < ik = n

with which we can define yet another finite sequence w ∈ An by cases as follows:

w(i) =



u1(i) 1 6 i 6 i1
u2(i) i1 < i 6 i2
u3(i) i2 < i 6 i3
...

uk(i) ik−1 < i 6 ik

Finally, and once more because of (∗), there are u ∈ U and i 6 min { |u|, n } with u(i) 6= w(i).
According to the definition of w(i), it now follows that Φ(U).

Example 4.46. Let u, v ∈ S. If |u| 6 |v|, then the following are equivalent.

1. u 6 v

2. v ` u

In fact, if u 6 v, then v ` u is an axiom. Conversely, since 6 is decidable, it suffices to show that
if v ` u, then u 
 v is contradictory. But if u 
 v, then there is i 6 |u| such that u(i) 6= v(i),
whence N(u, v). According to Proposition 4.45, it follows that we have u, v `. Cut yields v `, yet
there are no inconsistent singletons for `.
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Turning Proposition 4.45 upside down, with Lemma 4.37 we get the following.

Corollary 4.47. Let U be a finite subset of A∗. The following are equivalent.

1. U is consistent.

2. U is a chain.

Moreover, the set of finite inconsistent subsets of A∗ is detachable.

Example 4.48. Suppose that A has at least two distinct elements a and a′, and let C be an
inhabited finite consistent subset of A∗. By Corollary 4.47, this C is a chain, so let u ∈ C be its
greatest element. Then both C ∪ {ua } and C ∪ {ua′ } are chains, as well. Therefore

C, ua 0 and C, ua′ 0

hence C cannot be an atomic conjunction. For if C was decisive, then we had C ` ua as well as
C ` ua′. By cut with ua, ua′ ` we could obtain C `, yet C is supposed to be consistent. It follows
that the entailment relation of linear spread generates an atomless Boolean algebra in case the
underlying set A has at least two distinct elements. It follows further that the spectrum of ` is a
Cantor space. Cf. the discussion in Section 7.6.

Last but not least, we turn our attention to the more restrictive case of entailment with
regard to unbounded binary trees T ⊆ { 0, 1 }∗, briefly addressing the question as to whether the
corresponding inconsistency predicate is decidable.

4.5.4 Omniscience

We conclude this section with a brief glance at König’s lemma. There is a vast amount of literature
on this subject, and by no means is it meant to be mastered here. Let T ⊆ { 0, 1 }∗ be an unbounded
detachable binary tree and consider the entailment relation ` of linear spread of T . In this context
MEL makes an assertion about the existence of infinite paths in T .

Weak König Lemma (WKL). Every unbounded detachable binary tree has an infinite path.

Corollary 4.49. MEL implies WKL.

Constructive reverse mathematics has given a direct decomposition of WKL into the lesser
limited principle of omniscience (LLPO) and a weak form of dependent choice [35] over BISH,
see also [142, 143]. It follows that Φ cannot be a decidable predicate for finite subsets of T . Yet
excluded middle is not required in its full generality; for instance, it suffices to make use of Bishop’s
limited principle of omniscience.

Limited principle of omniscience (LPO). Let α : N → { 0, 1 } be a binary sequence. Either
there exists n ∈ N such that α(n) = 1, or else α(n) = 0 for every n ∈ N.

Lemma 4.50. Let T be an unbounded detachable tree and let ` be the entailment relation of linear
spread of T . LPO implies that the set of finite inconsistent subsets of T is detachable.

Proof. Let U be a finite subset of T . We define a binary sequence α by distinction of cases as
follows:

α(n) =

{
0, if ∃v ∈ T (n+ |U |)∀u ∈ U (u 6 v ),

1, else.

By way of LPO, either there is n ∈ N such that α(n) = 1 and therefore Φ(U). Otherwise, we have
α(n) = 0 for every n ∈ N and this implies ¬Φ(U).

Proposition 4.51. LPO implies WKL.
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Proof. Let T be an unbounded detachable binary tree and consider the entailment relation `
of linear spread of T . According to the preceding Lemma 4.50, the corresponding inconsistency
predicate is decidable by way of LPO. Applying Proposition 4.17, we see that this entailment
relation has an ideal element.

Proposition 4.51 is not optimal in view of that the weak limited principle of omniscience
(WLPO) suffices to derive WKL. Over intuitionistic set theory IZF this WLPO sits strictly in
between LPO and WKL [130].

From WKL it is possible to infer a suitable form of the compactness theorem for entailment
relations, and then to show the classical equivalence of WKL and CT for entailment relations
on countable sets.12 It might be interesting to attend to these matters in a more thorough and
systematic manner, e.g., by further addressing the question as to the interplay of CT and Brouwer’s
fan theorem (FAN) in a constructive setting. Suitable forms of completeness, compactness, and
Lindenbaum’s lemma for propositional logic have been shown equivalent to FAN over a formal
system of intuitionistic second-order arithmetic WKV (“Weak Kleene–Vesley”) [163] in the vein
of (classical) reverse mathematics [237].

Remark 4.52. A considerable generalization of the results of this section is possible and this will
be carried out in the following Chapter 5. It will be shown that to every inverse system S of
finite inhabited sets an entailment relation ` can be associated in such a manner that the points
of ` correspond to the elements of the inverse limit of S . As it turns out, the entailment relation
of linear spread is just a special case.

4.6 A pattern for maximality

In this final section we quickly present a strategy that underlies most of the case studies the
following chapters are concerned with, but no claim as to this being the definitive pattern is made.

Let S be a set with single-conclusion entailment relation B. We assume to have at hand a
binary symmetric relation ./ on S which is finitary, i.e., such that for every a ∈ S the image

♦a = { b ∈ S : a ./ b }

is a finite subset of S. On top of B we put multi-conclusion axioms of single-values and totality

a, b ` (s [a ./ b])

` a,♦a (t)

with side condition on the former as indicated. This ` has a back-and-forth property as follows.

Lemma 4.53. For every pair of finite subsets U and V of S, and a ∈ S, the following are
equivalent.

1. U ` V, a

2. U, b ` V for every b ∈ ♦a.

Proof. Cut with single-values (s) and totality (t), respectively.

We aim at describing ` in terms of B and ./. This will be achieved by way of an adequate and
hereditary predicate for `. To this end, we first introduce an auxiliary predicate on finite subsets
U of S by stipulating

mv(U) ≡ ∃a, b ∈ S ( a ./ b ∧ U B a ∧ U B b ).

12See [82, Annex] for a sketch on how to obtain compactness for propositional logic by way of LLPO and
dependent choice.
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This mv is monotone by monotonicity of B, and it is adequate, because if U B a and U B b for
a ./ b, then U ` follows by cut with (s) since ` extends B. On top of this we define, still for finite
subsets U of S,

Φ(U) ≡ ∃a1, . . . , an ∈ S ∀b1 ∈ { a1 } ∪ ♦a1 . . . ∀bn ∈ { an } ∪ ♦anmv(U, b1, . . . , bn)

where n > 0. For instance, if a ./ b, then mv(a, b) and therefore Φ(a, b). This Φ is monotone
as well. The main point is that it makes a complete characterization of ` possible, which is a
consequence of the following.

Proposition 4.54. Φ is adequate and hereditary for `.

Proof. Since mv is adequate, so is Φ, which can be seen by successive application of cut with
(t). As for Φ being hereditary, it suffices to go through the axioms. Every single-conclusion
entailment U B a serves as an axiom for `. It is straightforward to show that Φ is hereditary for
entailments of this form, keeping in mind that B is transitive. Φ being hereditary for single-values
(s) is obvious. It remains to consider totality (t). Let U be a finite subset of S, let a ∈ S and
suppose that for every b ∈ { a } ∪ ♦a we have Φ(U, b). This means that for every b ∈ { a } ∪ ♦a
there are a1, . . . , an ∈ S such that whenever b1 ∈ { a1 } ∪ ♦a1, . . . , bn ∈ { an } ∪ ♦an we have
mv(U, b, b1, . . . , bn). In order to witness Φ(U), we simply have to collect this data.

Proposition 4.55. Spec(`) is flat.

Proof. We have to show that every ideal element of ` is maximal. Thus, let α and β be ideal
elements of ` and suppose that α ⊆ β. In order to show α = β, let a ∈ β. Since α is ideal for
` a,♦a it suffices to rule out α G ♦a. To this end, suppose that b ∈ α∩♦a. In particular, we have
b ∈ β, whence both a, b ∈ β. However, β is ideal for a, b ` where a ./ b, yet ideal elements do not
have inconsistent subsets.

Provided that we work with ER, Proposition 4.55 and Corollary 4.11 together ensure that
Spec(`) is a set, rather than a proper class. Even without REM, it thus makes sense to quantify
over all ideal elements of `, in order to describe the subset of S consisting of those elements
which belong to every ideal element. We obtain yet another intersection principle, similar to those
discussed in the preceding chapters.

Corollary 4.56 (CT). ⋂
Spec(`) = { a ∈ S : ∀b ∈ ♦aΦ(b) } .

Proof. By CT we have a ∈
⋂
Spec(`) if and only if ` a. According to the back-and-forth property

from Lemma 4.53, the latter is equivalent to ∀b ∈ ♦a ( b ` ). Since Φ is adequate and hereditary,
by Corollary 4.32 we have b ` if and only if Φ(b).

Actually we do not need to invoke ER in order to ensure that Spec(`) is a set, the reason being
that ` generates a Boolean algebra.

Proposition 4.57. The generated lattice L for ` is complemented.

Proof. Let i : S → L be the standard interpretation of (S,`) in the generated lattice. The axiom
of totality (t) implies

i(a) ∨
∨
b∈♦a

i(b) = 1L

while according to axiom (s) we have

i(a) ∧ i(b) = 0L
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whenever a ./ b, and therefore

i(a) ∧
∨
b∈♦a

i(b) =
∨
b∈♦a

i(a) ∧ i(b) = 0.

This means that i(a) has complement

−i(a) =
∨
b∈♦a

i(b).

Every element of L can be expressed in disjunctive normal form in terms of elements each of which
is complemented, whence every element of L is complemented. In fact, if x ∈ L, then we can write

x =
∨
U∈U

∧
a∈U

i(a)

for a certain finite set U of finite subsets U of S, and we have

−x =
∧
U∈U

∨
a∈U

∨
b∈♦a

i(b).

Since in a Boolean algebra every prime filter is an ultrafilter, we can also take from Proposition
4.57 that every ideal element of ` is maximal.

Our final remark in this chapter concerns consistent decisive subsets.

Remark 4.58. Recall from Remark 4.25 that if A is an atomic conjunction for `, then

A` = { a ∈ S : A ` a } ∈ Spec(`).

In turn, we now see that if ` is generated by means of a pattern as above, then every finitely
generated ideal element is decisive. Indeed, suppose that A is a finite consistent subset of S for
which A` is an ideal element, and let a ∈ S. Since A` is ideal for totality (t), we know that either
a ∈ A` right away, or else A` G ♦a. In case of the second alternative, there is b ∈ S such that
a ./ b and A ` b. The latter entailment can then be cut with single-values (s), i.e., with a, b `,
and we obtain A, a `.

4.7 Conclusion

It is in order to recap. The main purpose of this chapter was to give a thorough introduction to
Scott’s entailment relations. We have learned about the fundamental connection with distributive
lattices, and we have seen some limitations of the semantic method over CZF. We have intro-
duced the notion of an adequate and hereditary predicate, which in practice can help explaining
inductively generated entailment relations in a non-inductive manner. A case study on paths as
ideal elements not only illustrated this, but also indicated the line of reasoning in the following
chapters. Finally, we have seen a pattern for generating (multi-conclusion) entailment relations
on top of single-conclusion entailment relations in such a way that the corresponding model class
is flat. Later on, the reader will easily recognize how this pattern is instantiated. The remaining
chapters are solely devoted to further case studies of rather concrete and algebraic instances. In
the following chapter, we develop a syntactical approach to inverse limits. This will help for an
elementary and constructive version of Sikorski’s extension theorem for complete atomic Boolean
algebras.
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Chapter 5

Inverse limits as spectra

5.1 Introduction

This chapter grew out of a certain discontentment with the somewhat limited applicability of our
version of Sikorski’s extension theorem [212] for finite Boolean algebras only, which called for a
generalization to not necessarily finite codomains. The initial impetus then came from Davide
Rinaldi, who first considered axioms for an entailment relation describing lattice maps into a
profinite Boolean algebra, and asked for an explicit, non-inductive description. As this turned out
more intricate than anticipated, the original question lent itself to a considerable generalization
with the notion of pure injectivity in the context of universal algebra.

We first give an account of choice for families of finite sets in simple terms of entailment
relations. We obtain an elementary consistency statement which with MEL leads over to its
classical counterpart. Imposing further axioms results in the entailment relation of inverse limit
and, in the setting of universal algebra, leads to the entailment relation describing homomorphisms
to a profinite algebra. The main result in this chapter is a constructive variant of the classical
theorem that every profinite algebra is pure-injective among algebras of the same type [178]. This
will be helpful for our version of Sikorski’s theorem that will be presented in Chapter 6.

5.2 Choice and entailment for inverse systems

5.2.1 Choice

We begin by describing the entailment relation of choice function on a family of finite sets, on top
of which we will put further structure preserving axioms in several algebraic contexts later on.

Let I be an inhabited set, and let S = {Sı : ı ∈ I } be an I-indexed family of finite inhabited
sets. We take the disjoint union

S =
⋃
ı∈I
{ ı } × Sı

as our domain of discourse, and consider the entailment relation ` inductively generated by all
instances of the following axioms:

(ı, a), (ı, b) ` (s [a 6= b])

` { (ı, a) : a ∈ Sı } (t)

with side-condition as indicated. With regard to semantics, an ideal element of ` indeed is nothing
but a choice function

c : I →
⋃
ı∈I

Sı

which is to say that for all ı ∈ I we have c(ı) ∈ Sı.
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5. Inverse limits as spectra

Remark 5.1. With an additional axiom

(ı, a), (, a) `

where ı 6= , ideal elements can be forced to be injective. In this manner, entailment relations
provide for a “purely syntactical proof of the Marriage Lemma [128]” [74]. Unmistakably, the
treatment in [74] precedes the approach taken here.

In the presence of transitivity (T), the interplay of single-values (s) and totality (t) brings
about the following “back-and-forth” property of our entailment relation.

Lemma 5.2. Let U and V be finite subsets of S and let (ı, a) ∈ S. The following are equivalent.

(i) U ` V, (ı, a)

(ii) U, (ı, b) ` V for every b ∈ Sı \ { a }.

Proof. Apply transitivity (T) with (s) and (t), respectively.

Let U be a finite subset of S. We stipulate

Φ(U) ≡ ∃ı ∈ I ∃a, b ∈ Sı
(
a 6= b ∧ (ı, a), (ı, b) ∈ U

)
.

Apparently, this Φ is monotone. Moreover, Φ(U) is sufficient for inconsistency of U by way of
the axiom of single-values (s) and monotonicity of entailment (M). In other words, Φ is adequate
(see Definition 4.30). That is, if U is a finite subset of S with Φ(U), then U `. As regards the
converse, actually we only need to show that Φ is hereditary for the axiom of totality (t), which
circumstance is addressed in the following lemma.

Lemma 5.3. Let U be a finite subset of S and let ı ∈ I. If Φ(U, (ı, a)) for every a ∈ Sı, then
Φ(U).

Proof. This is a simple argument. Pick a ∈ Sı. According to the assumption, we have Φ(U, (ı, a)),
which is to say that there are  ∈ I and distinct elements b, b′ of S such that

(, b), (, b′) ∈ U ∪ { (ı, a) } .

If both (, b) ∈ U and (, b′) ∈ U , then  witnesses Φ(U) right away. Otherwise it follows that  = ı,
and since b 6= b′ either (ı, b) ∈ U or (ı, b′) ∈ U . Bringing into play the assumption once more, we
have either Φ(U, (ı, b)) or Φ(U, (ı, b′)), respectively. Both cases now actually read Φ(U).

Lemma 5.3 asserts that Φ is hereditary for the axiom of totality (t). Because Φ is trivially
hereditary for single-values (s), and since it provides an adequate predicate for `, we obtain from
Corollary 4.32 a non-inductive description for inconsistent subsets of S. By way of the back-and-
forth property (Lemma 5.2), from this we obtain an explicit description for arbitrary entailments.

Proposition 5.4. Let U be a finite subset of S. The following are equivalent.

1. U `

2. Φ(U).

It follows that a finite set of statements is inconsistent if and only if it arises from the axiom
of single-values (s) by an application of monotonicity (M). This will not be the case anymore once
further axioms have been put on top of (t) and (s)! The preceding proposition with which ` has
been characterized in terms of Φ immediately yields the consistency of `.

Corollary 5.5. The entailment relation ` of choice functions is consistent.

Proof. We do not have Φ(∅), hence ` is consistent by Corollary 4.33.

We obtain the principle of choice for families of finite sets [137, Form 62] as a semantical
consequence of consistency by means of MEL (see Chapter 4).
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5.2.2 Inverse systems

Let (I,6) be a partially ordered set. Recall that I is said to be directed if it is inhabited and if
for every pair of elements ı,  ∈ I there is κ ∈ I such that ı 6 κ and  6 κ. By an I-indexed
inverse system we here understand a family {Sı }ı∈I of finite discrete inhabited sets together with
a family { fı : S → Sı }ı6 of transition maps such that

fı ◦ fκ = fıκ

S

Sκ Sı

fıfκ

fıκ

whenever ı 6  and  6 κ. The maps fı are also said to be compatible. The inverse limit lim←−ı∈I Sı
of this system is given by the set of all choice functions

α : I →
⋃
ı∈I

Sı

which are such that if ı 6 , then fı ◦α() = α(ı). We now aim at replacing the classical question
as to whether lim←−ı∈I Sı is inhabited with a constructive substitute, showing instead a suitable

entailment relation to be consistent.1

In the following, let I be a directed partially ordered set and let

({Sı }ı∈I , { fı : S → Sı }ı6)

be a fixed but arbitrary I-indexed inverse system of finite discrete inhabited sets. As we did in
the preceding section, we take the disjoint union

S =
⋃
ı∈I
{ ı } × Sı

as our domain of discourse. On top of the axioms from the preceding Section 5.2.1, we put axioms
of transition, and thus consider the entailment relation ` that is inductively generated by all
instances of the following axioms:

(ı, a), (ı, b) ` (s [a 6= b])

(, a) ` (ı, fı(a)) (f [ı 6 ])

` { (ı, a) : a ∈ Sı } (t)

with side-conditions as indicated. For instance, if Sı = { a } is a singleton set, then we do not have
a corresponding axiom for single values on the index ı, while totality reduces to a tautology, i.e.,
` (ı, a).

It is straightforward to see that
Spec(`) = lim←−

ı∈I
Sı.

By abuse of notation, in the following we sometimes write, for a ∈ Sı and ı 6 ,

f−1
ı (a) = { (, b) ∈ S : fı(b) = a } .

Lemma 5.6. Let a ∈ Sı, b ∈ S and suppose that ı 6 . If fı(b) 6= a, then (ı, a), (, b) `.

Proof. Under the assumptions of the lemma, we have entailments

(ı, a), (ı, fı(b)) ` and (, b) ` (ı, fı(b))

as instances of single-valuedness (s) and transition (f), respectively. By cut we get (ı, a), (, b) `.

1Postulating the existence of an element of the inverse limit of an inverse system of finite discrete inhabited
sets is classically equivalent to PIT [137], and hence to CT.
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5. Inverse limits as spectra

Proposition 5.7. Let ı1, . . . , ın, κ ∈ I be indices such that ıi 6 κ for every i ∈ { 1, . . . , n }. If
a1 ∈ Sı1 , . . . , an ∈ Sın , then

(ı1, a1), . . . , (ın, an) `
n⋂
i=1

f−1
ıiκ (ai).

Proof. Notice first that we can write (t) for Sκ as

`
n⋂
i=1

f−1
ıiκ (ai) ∪ { (κ, b) : ∃i ∈ { 1, . . . , n } fıiκ(b) 6= ai } ,

since every set in the system is supposed to be discrete. If b ∈ Sκ is such that there is i ∈ { 1, . . . , n }
with fıiκ(b) 6= ai, then

(ıi, ai), (κ, b) `

according to the preceding Lemma 5.6. We successively cut the former instance of totality and
establish the claim.

Next we define an inconsistency predicate Φ for `. Let U be a finite subset of S. This U can
be written explicitly as U = { (ı1, a1), . . . , (ın, an) } and we stipulate

Φ(U) ≡ ∃κ ∈ I
(
ı1, . . . , ın 6 κ ∧

n⋂
i=1

f−1
ınκ(ai) = ∅

)
.

Thus U is inconsistent if the elements chosen by U do not have a common preimage under transition
in a certain set Sκ above those already indexed in U . Yet in other words, if any choice of an element
Sκ interferes along transition with those previously made by U , then U cannot be extended by
choice of an element of Sκ, hence cannot be considered a finite approximation of an ideal element
of our entailment relation.

Corollary 5.8. Φ is adequate for `.

Proof. If Φ(U), then the entailment that holds by Proposition 5.7 has an empty set of conclusions,
whence U is inconsistent.

Proposition 5.9. Φ is hereditary for `.

Proof. It suffices to show that Φ is hereditary for every initial entailment (Lemma 4.34). First
we consider totality (t). Thus, let U = { (ı1, a1), . . . , (ın, an) } be a finite subset of S, let  ∈ I,
and write S = { b1, . . . , bm }. Suppose that Φ(U, (, bj)) for every j ∈ { 1, . . . ,m }, witnessed by
indices κ1, . . . , κm ∈ I, respectively. In particular, we keep in mind that for each j 6 m we have
ı1, . . . , ın,  6 κj . By directedness, there is κ such that κ1, . . . , κm 6 κ and we claim that this κ
witnesses Φ(U). Clearly, ı1, . . . , ın 6 κ. Suppose that c ∈

⋂n
i=1 f

−1
ıiκ (ai). Then fκ(c) ∈ S, whence

fκ(c) = bj for a certain j 6 m. Now notice that

fκjκ(c) ∈
n⋂
i=1

f−1
ıiκj (ai) ∩ f

−1
κj (bj),

because fıiκj (fκjκ(c)) = fıiκ(c) = ai for every i 6 n, and since fκj (fκjκ(c)) = bj . Now we have
a contradiction, for the latter intersection is supposed to be empty. Thus, Φ is hereditary for
(t). Next, Φ being hereditary for (s) is apparent. As regards transition (f), consider again U as
above, let a ∈ S, and suppose that Φ(U, (ı, fı(a))). This is to say that there is κ ∈ I such that
ı1, . . . , ın, ı 6 κ and

n⋂
i=1

f−1
ıiκ (ai) ∩ f−1

ıκ (fı(a)) = ∅.
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Since I is directed, there is κ′ ∈ I such that ı, κ 6 κ′. We claim that
⋂n
i=1 f

−1
ıiκ′

(ai) ∩ f−1
κ′ (a) = ∅.

For if c ∈ S′κ is such that fκ′(c) = a and fıiκ′(c) = ai for i 6 m, then we have fıiκ(fκκ′(c)) =
fıiκ′(c) = ai as well as fıκ(fκκ′(c)) = fı(fκ′(c)) = fı(a), whence

fκκ′(c) ∈
n⋂
i=1

f−1
ıiκ (ai) ∩ f−1

ıκ (fı(a)),

contrary to the assumption.

Corollary 5.10. Let U be a finite subset of S. The following are equivalent.

1. U `

2. Φ(U)

Finally, here is how to describe entailment non-inductively in terms of transition maps.

Theorem 5.11. The following are equivalent.

(i) (ı1, a1), . . . , (ın, an) ` (1, b1), . . . , (m, bm)

(ii) For all b′1 ∈ S1 \ { b1 } , . . . , b′m ∈ Sm \ { bm } there is κ such that

ı1, . . . , ın, 1, . . . , m 6 κ and

n⋂
i=1

f−1
ıiκ (ai) ∩

m⋂
j=1

f−1
jκ(b′j) = ∅.

Proof. Consider Corollary 5.10 and take into account the back-and-forth property.

There are no inconsistent singletons if we happen to have at hand a surjective inverse system,
i.e., one for which every transition map fı : S → Sı is onto.

Example 5.12. The following is basic material in algebraic number theory; we closely follow and
refer to [191]. Let p be a prime number. Certain complications arising with the definition of the
set Zp of p-adic numbers as given by formal infinite series

f =

∞∑
i=0

aip
i

where 0 6 ai < p, leads to viewing them rather as sequences of residue classes

sn = sn mod pn ∈ Z/pnZ,

where n ∈ N− { 0 }. There are canonical projections

. . . Z/p3Z Z/p2Z Z/pZλ3 λ2 λ1

for which one has
λn(sn+1) = sn

Associating to every p-adic integer f =
∑∞
i=0 aip

i the sequence of residue classes

sn =

n−1∑
i=0

aip
i mod pn ∈ Z/pnZ,

yields a bijection
Zp ∼= lim←−

n∈N−{ 0 }
Z/pnZ.
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This is how one obtains the ring Zp of p-adic integers [191]. Now let us bring into play the
fundamental theorem of entailment relations. We see that every p-adic integer corresponds to a
prime filter of a certain distributive lattice L. The lattice in question is the one that is generated
by the entailment relation which is inductively defined on the disjoint union

S =
⋃
n>0

{n } × Z/pnZ

by all instances of

(n, s), (n, s′) ` (pn - s− s′)
(n+ 1, s) ` (n, smod pn)

` { (n, 0), (n, 1), . . . , (n, pn − 1) }

with side condition as indicated. We have

Zp ∼= Spec(`).

The lattice generated by this entailment relation in fact is a Boolean algebra, hence every p-adic
integer corresponds to an ultrafilter. From a classical topological point of view, Zp is a Stone
space.

5.2.3 Cofinality and conservation

Let (I,6) be a directed partially ordered set. Suppose that I ′ is a subset of I which is directed
with respect to the induced ordering. Recall that I ′ is said to be cofinal in I [205] in case

∀ı ∈ I ∃ı′ ∈ I ′ ( ı 6 ı′ ).

Let ({Sı }ı∈I , { fı : S → Sı }ı6) be an I-indexed inverse system of finite discrete inhabited sets.

If I ′ ⊆ I is cofinal in I, then we have a cofinal subystem(
{S′ı }ı′∈I′ , { fı′′ : S′ → Sı′ }ı′6′

)
.

indexed over I ′. Now we have two inductively generated entailment relations ` and `′ as above,
considered over S =

⋃
ı∈I { ı }×Sı and S′ =

⋃
ı′∈I′ { ı′ }×Sı′ , respectively. By way of containment,

there is an interpretation of entailment relations

ι : (S′,`′) ↪→ (S,`).

Proposition 5.13. ι is conservative.

Proof. It suffices to show conservation for inconsistent subsets of S′. Accordingly, suppose that
(ı1, a1) . . . , (ın, an) `, where ı1, . . . , ın ∈ I ′. Due to Theorem 5.11, there is κ ∈ I such that
ı1, . . . , ın 6 κ and

⋂n
i=1 f

−1
ıiκ (ai) = ∅. Since we have a cofinal subsystem, we can find κ′ ∈ I ′ with

κ 6 κ′. Clearly
⋂n
i=1 f

−1
ıiκ′

(ai) = ∅, which translates back to (ı1, a1) . . . , (ın, an) `′, again by way
of Theorem 5.11.

Remark 5.14. With CT, it follows from Theorem 4.21 that the induced mapping on ideal elements

ι−1 : Spec(`)→ Spec(`′), α 7→ α ∩ S′

is surjective. We can further show that cofinality causes ι−1 to be injective. Indeed, let α and β
be ideal elements of ` and suppose that α ∩ S′ ⊆ β ∩ S′. We need to verify α ⊆ β. To this end,
let (ı, a) ∈ α. Since I ′ is cofinal in I, there is ı′ ∈ I ′ with ı 6 ı′. Since α is ideal for (t), we know
that there is b ∈ S′ı such that (ı′, b) ∈ α ∩ S′, whence (ı′, b) ∈ β ∩ S′. Furthermore, we have an
instance of transition (f)

(ı′, b) ` (ı, fıı′(b))
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which implies (ı, fıı′(b)) ∈ α∩ β. It remains to show fıı′(b) = a. However, if these elements differ,
then we have an instance of single-values (s)

(ı, a), (ı, fıı′(b)) `

yet as an ideal element α does not have inconsistent subsets. Since Sı is discrete, this observation
suffices for fıı′(b) = a. It follows that α ⊆ β, as required.

We have thus established a one-to-one correspondence

lim←−
ı∈I

Sı ∼= lim←−
ı′∈I′

Sı′ .

It is worth noting that we do not need to pick, for every ı ∈ I, an element ı′ ∈ I ′ such that ı 6 ı′.
We refer to [205], where this move is required for defining a correspondence in the first place.

5.3 Some universal algebra

We take a step back from our considerations of inverse limits. In this section we consider algebras
in the sense of Universal Algebra [70, 124]. First we need to provide several basic and preliminary
notions, to which end we closely follow the clear presentation of [125]. By an n-ary operation on
a set A, where n > 0 is a natural number, we mean a mapping

ω : An → A

where An is the n-fold cartesian product of A. Here, the number n is said to be the arity of ω.
The choice of our tools requires us to restrict attention to operations of finite arity only, yet we do
not restrict to finite families of operations. Briefly, a universal algebra is given by a set together
with a set of operations. Universal algebras are classified by their type, specifying operations and
their arity, accordingly. To be precise, the type of a universal algebra is given by a set T together
with a mapping

T → N, ω 7→ nω

assigning to each element ω ∈ T its formal arity. Now, a universal algebra (or simply an algebra)
of type T is given by a set A together with a mapping

T →
⋃
n∈N

AA
n

, ω 7→ (ωA : Anω → A )

assigning to each ω ∈ T an operation ωA on A of arity nω. A subalgebra A′ of a universal algebra A
is a subset A′ of A which is closed under the operations. That is, if a1, . . . , an ∈ A′ and ω has arity
n, then ωA(a1, . . . , an) ∈ A′. If A and B are algebras of the same type T , then a homomorphism
from A to B is a mapping

ϕ : A→ B

such that
ϕ(ωA(a1, . . . , anω )) = ωB(ϕ(a1), . . . , ϕ(anω ))

for all ω ∈ T and elements a1, . . . , anω ∈ A. For the set of all homomorphisms between algebras
A and B of the same type we write

Hom(A,B).

If A and B are algebras of the same type, then the product A×B apparently too carries a structure
of the same type with component-wise operation. In the following, all algebras will be considered
to have the same type T , which remains fixed and thus will be understood implicitly. All algebras
are denoted and referred to by their corresponding and underlying sets of elements.

Now let A and B be algebras, and let B be finite. We take the product

S = A×B
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for our domain of discourse and consider the entailment relation ` which is inductively generated
by all instances of the following axioms:

(a, b), (a, b′) ` (s [b 6= b′])

(a1, b1), . . . , (anω , bnω ) ` (ωA(a1, . . . , anω ), ωB(b1, . . . , bnω )) (ω)

` { (a, b) : b ∈ B } (t)

with side conditions as indicated. As for the semantics of `, it is clear that

Spec(`) = Hom(A,B).

We thus say that ` is the entailment relation of homomorphism A→ B. Given the apparent level
of generality, we do not expect to find an utmost simple, explicit and non-inductive description of
`. Yet it still suffices to be able to give an explanation of inconsistency, or to understand in which
case U cannot be considered a finite approximation of a homomorphism A → B. In order to do
so, it turns out helpful to make use of the single-conclusion entailment relation B of subalgebra of
A×B, generated by all instances of the algebraic axiom

(a1, b1), . . . , (anω , bnω )B (ωA(a1, . . . , anω ), ωB(b1, . . . , bnω )).

Mind that this B is a subrelation of ` inasmuch as U B (a, b) implies U ` (a, b).
Let U again be a finite subset of S. We introduce the following shorthand notation:

mv(U) ≡ ∃a ∈ A ∃b, b′ ∈ B
(
b 6= b′ ∧ U B (a, b) ∧ U B (a, b′)

)
.

Intuitively, if U is a finite subset of S, then mv(U) holds if and only if the subalgebra UB of A×B,
finitely generated by U , assigns distinct values to at least one element of A, whence there is no
way for U to be be extended to a homomorphism. We say that U has multiple values. In this case
U is inconsistent:

Lemma 5.15. For every finite subset U of S, if mv(U), then U `.

Proof. Suppose that there are a ∈ A and b, b′ ∈ B such that b 6= b′ and both U B (a, b) and
U B (a, b′). Likewise, we then have U ` (a, b) and U ` (a, b′). Since b 6= b′, we have an axiom
(a, b), (a, b′) `, with which we can cut the former entailment and obtain U `.

How about the converse, though? It is tempting and appears rather natural to conjecture that
finite inconsistent subsets have to have multiple values, and it does appear so in particular with
hands-on experience of concrete examples. However, as it turns out, this is just a special case,
sometimes to hold, but in general the formal Nullstellensatz of ` is not as easily obtained as a
first educated guess would make one believe.

5.3.1 A digression on abelian groups

Groups rank among the prime examples of universal algebras: they come equipped with a binary
operation of multiplication, along with a unary one for taking inverses, and a nullary operation
that gives rise to the identity element of the group. Now let H and G be abelian groups; we
suppose that G is finite. We consider the entailment relation ` of group homomorphism H → G,
inductively generated on H ×G by all instances of the following axioms:

(x, g), (x, h) ` (s [g 6= h])

(x, g), (y, h) ` (x+ y, g + h) (+)

` (0H , 0G) (0)

` { (x, g) : g ∈ G } (t)

with side condition as indicated. As to be expected, we do not need to postulate axioms forcing
every ideal element of ` to preserve the inverse operation. In Example 5.17 below, we explain
how the corresponding entailment already is a consequence of the given set of axioms. We need
an auxiliary lemma first.
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Lemma 5.16. Let g ∈ G. If g 6= 0G, then (0H , g) `.

Proof. Apply transitivity to (0H , 0G), (0H , g) ` and ` (0H , 0G).

Example 5.17. Suppose that G is discrete. If α : H → G is a group homomorphism, then of
course

α(−x) = −α(x)

for every x ∈ H. In terms of entailment relations, this elementary fact reads

(x, a) ` (−x,−a)

which can be inferred as follows, and to which end we have assumed G to be discrete. First, for
every b ∈ G such that b 6= −a we have

(x, a), (−x, b) ` (0H , a+ b)

Furthermore, (0H , a + b) ` holds by the preceding lemma because a + b 6= 0G, and transitivity
yields (x, a), (−x, b) `. Therefore, since G is discrete, we can successively cut totality

` { (−x, b) : b 6= −a } , (−x,−a)

and obtain (x, a) ` (−x,−a). Soundness yields the aforementioned universal argument on group
homomorphisms.

Recall that an abelian group G is divisible if, for every non-zero integer n and every a ∈ G,
there exists b ∈ G such that a = nb.

Proposition 5.18 (CT). Let G be a finite abelian group. The following are equivalent.

1. For every abelian group H, if (x1, g1), . . . , (xk, gk) ∈ H ×G and x ∈ H are such that if for
every g ∈ G there are m1, . . . ,mk,m ∈ Z such that

k∑
i=1

mixi +mx = 0H and

k∑
i=1

migi +mg 6= 0G

then there are n1, . . . , nk ∈ Z such that

k∑
i=1

nixi = 0H and

k∑
i=1

nigi 6= 0G.

2. For every abelian group H, if ` is the entailment relation of group homomorphism H → G,
and U = { (x1, g1), . . . , (xk, gk) } is a finite subset of H×G, then the following are equivalent:

(i) U `
(ii) There are m1, . . . ,mk ∈ Z such that

k∑
i=1

mixi = 0H and

k∑
i=1

migi 6= 0G.

3. G is divisible.

4. G is trivial.

Proof. 1. =⇒ 2. We show that the condition on U as expressed by item (ii) is both adequate
and hereditary for `. With regard to adequacy, notice that if (ii) holds as indicated, then

we have U ` (0H , g), where g =
∑k
i=1migi 6= 0G. Because of (0H , g) `, we obtain U ` by

transitivity. Conversely, (ii) being hereditary for axioms (s), (0), and (+) is immediate. As
for totality (t), this is precisely what the hypothesis (1.) asserts.
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2. =⇒ 3. We consider the entailment relation ` of abelian group homomorphism Z→ G. Suppose
that if U = { (n1, g1), . . . , (nk, gk) } is a finite subset of Z×G, then U ` if and only if there
are m1, . . . ,mk ∈ Z such that

k∑
i=1

mini = 0 and

k∑
i=1

migi 6= 0G.

In order to show G divisible, let g ∈ G and let n > 0. We claim that the singleton set
{ (n, g) } is consistent. For suppose that (n, g) `. Then there is m ∈ Z such that

mn = 0 and mg 6= 0G.

But now m = 0 is immediate, whence mg = 0G. Now that we have (n, g) 0, applying MEL
yields an ideal element, i.e., a group homomorphism α : Z→ G such that

g = α(n) = nα(1).

Therefore, G is divisible.

3. =⇒ 4. It is well known that if a finite group G is divisible, then it is trivial due to Lagrange’s
theorem: let g ∈ G be arbitrary and consider the index n = |G|. If G is divisible, then there
is g′ ∈ G such that g = ng′. Since ng′ = 0, we have g = 0.

4. =⇒ 1. Ex falso quodlibet.

Let us return to our discussion of the preceding subsection, given algebras A and B of the same
type, where B is finite. Proposition 5.18 shows that for the entailment relation of homomorphism
A→ B we cannot expect in general to have, for every finite subset U of A×B, that U ` implies
mv(U).

Remark 5.19. Interestingly, it can be shown that if an arbitrary (not necessarily finite!) abelian
group is divisible, then the first item of Proposition 5.18 holds.2 More generally, this very argument
can be phrased in such a manner that it applies to arbitrary divisible modules over principal ideal
domains, and not only to abelian groups. Completeness for a generalized notion of entailment
relation—allowing for infinite rather than only for finite sets of succedents—leads over to the
classical theorem that over a principle ideal domain R, a module over R is injective if and only if
it is divisible, invoking of course Baer’s criterion for injective modules [247].

5.3.2 Inconsistency

Back to our general setting, where A and B are algebras of the same type, the latter algebra
being finite. We study the entailment relation ` of homomorphism A → B, considered over the
set S = A×B. Next we define, for finite subsets U of S,

Φ(U) ≡ ∃a1, . . . , an ∈ A∀b1, . . . , bn ∈ Bmv
(
U, (a1, b1), . . . , (an, bn)

)
,

where n > 0. Thus, for n = 0 we understand Φ(U) simply as mv(U). Notice further that this Φ
is monotone, since B is. We claim that Φ is both adequate and hereditary for `, hence gives rise
to an explicit description of `.

Lemma 5.20. Φ is adequate for `.

2Davide Rinaldi kindly pointed this out to me, which then led to Proposition 5.18. At the time of writing this
text, Rinaldi’s argument—along with the question as to the overall applicability of generalized entailment relations
for constructive algebra—is subject to research. See Chapter 8 for several perspectives.
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Proof. Let U be a finite subset of S and suppose that there are a1, . . . , an ∈ A such that for
whatever choice of elements b1, . . . , bn ∈ B we have

mv
(
U, (a1, b1), . . . , (an, bn)

)
,

thus

U, (a1, b1), . . . , (an, bn) `

by Lemma 5.15, still for any choice of elements b1, . . . , bn ∈ B. Fix b1, . . . , bn−1 and write V =
{ (a1, b1), . . . , (an−1, bn−1) }. Then, for every b ∈ B we have

U, V, (an, b) `

Now we can successively cut totality

` { (an, b) : b ∈ B } ,

in order to obtain

U, V `

and then to argue by induction subsequently.

Lemma 5.21. Φ is hereditary for `.

Proof. As usual, we go through the generating axioms only, which suffices for showing Φ to be
hereditary overall. For the axiom of single-values, nothing really needs to be checked. We go on
to (ω) in which regard it is easy to see that if, say,

Φ(U, (ωA(a1, . . . , anω ), ωB(b1, . . . , bnω ))),

where U is a finite subset of S, then

Φ(U, (a1, b1, ), . . . , (anω , bnω ))

because of transitivity of B. As for totality (t), let a ∈ A and suppose that for every b ∈ B we
have Φ(U, (a, b)). This is to say that for every b ∈ B there are a1, . . . , an ∈ A such that for any
choice of elements b1, . . . , bn ∈ B we have

mv
(
U, (a, b), (a1, b1), . . . , (an, bn)

)
.

We put an+1 = a and now have at hand elements a1, . . . , an+1 ∈ A such that for whatever choice
of b1, . . . , bn+1 ∈ B we have

mv
(
U, (a1, b1), . . . , (an+1, bn+1)

)
,

just as required for Φ(U).

Due to the back-and-forth property that ` enjoys, we have obtained not only a characterization
of inconsistent subsets of S, but at the same time a formal Nullstellensatz of `. However, notice
that Φ characterizes a finite subset U of S as inconsistent not in terms of U only, but according
to its behaviour with respect to the existence of certain elements a1, . . . , an of A that may or may
not belong to U . This fact is likely to get in the way of a general conservation result.
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5.3.3 Interpretation

Let A1 and A2 and B be algebras of the same type. Let `1 and `2 be the entailment relations
of homomorphism A1 → B and A2 → B, with underlying sets S1 = A1 × B and S2 = A2 × B,
respectively. Every homomorphism f : A1 → A2 induces an interpretation of entailment relations,
the corresponding mapping on ideal elements of which is given by composition with f . Here are
the precise statements.

Lemma 5.22. Every homomorphism f : A1 → A2 induces an interpretation

if : (S1,`1)→ (S2,`2), (a, b) 7→ (f(a), b)

of entailment relations.

Proof. Since `1 is inductively generated, it suffices to show that if interprets every initial entail-
ment. This is clear both for totality (t) and single-values (s). As regards the structural axioms,

(a1, b1), . . . , (anω , bnω ) `1 (ωA1
(a1, . . . , anω ), ωB(b1, . . . , bnω )),

we have

if (ωA1(a1, . . . , anω ), ωB(b1, . . . , bnω )) =

= (f(ωA1(a1, . . . , anω )), ωB(b1, . . . , bnω ))

= (ωA2(f(a1), . . . , f(anω )), ωB(b1, . . . , bnω ))

from which it follows that if indeed interprets (ω).

Of course, if is nothing but a homomorphism A1 × B → A2 × B of product algebras. Now,
if U is a finite inconsistent subset of S1, i.e., if U `1, then if (U) `2 by interpretation. With
respect to the converse, due to the back-and-forth property which both `1 and `2 enjoy, it actually
suffices to check conservation on empty conclusion entailments only. Conservation has the following
semantical reading.

Proposition 5.23 (CT). Let f : A1 → A2 be a homomorphism. The following are equivalent.

1. The induced interpretation if is conservative.

2. For every homomorphism α : A1 → B there is a homomorphism β : A2 → B such that
α = β ◦ f .

Proof. Recall (Theorem 4.21) that an interpretation (S1,`1) → (S2,`2) of entailment relations
is conservative if and only if the induced mapping Spec(`2) → Spec(`1) is surjective on ideal
elements. In the present context ideal elements are nothing but homomorphisms, between which
the induced mapping simply is given by composition with f .

5.3.4 Conservation and extension

Recall that a formula in a first-order language L is said to be positive primitive if it is (equivalent
to) an existentially quantified conjunction of atomic formulae [214]. In our present context, the
language L at hand is determined by first-order logic with identity, the only non-logical axioms
being the function symbols corresponding to the given type; there are no relation symbols. With
universal algebra taken as a branch of model theory, every algebra A may be considered an L -
structure.

Positive primitive formulae ϕ (with n indeterminates, say) are preserved by homomorphisms,
i.e., if f : A → B is a homomorphism (here, of algebras), and a1, . . . , an ∈ A, then the validity
of ϕ(a1, . . . , an) in A entails that of ϕ(f(a1), . . . , f(an)) in B. Conversely, a homomorphism
f : A→ B for which the validity of ϕ(a1, . . . , an) in A follows from that of ϕ(f(a1), . . . , f(an)) in
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B is said to be a pure homomorphism [214]. For instance, every pure homomorphism is injective.
We refer to [214] for an excellent survey of basic model-theoretic aspects of the notion of purity
and its mathematical origins.

Back to our default algebras. Let A1, A2 and B be of the same type, and let B be finite. We
consider the entailment relations `1 and `2 of algebra homomorphism A1 → B and A2 → B,
respectively. Spelling out the definition of our inconsistency predicate Φ shows that it can indeed
be given by a positive primitive formula with parameters in B, whence should be reflected by pure
homomorphisms between A1 and A2. This merely is a brief sketch of an argument which we now
unfold up to a point at which the import of purity becomes apparent.

Theorem 5.24. If f : A1 → A2 is a pure homomorphism, then the induced interpretation of
entailment relations

if : (S1,`1)→ (S2,`2), (a, b) 7→ (f(a), b)

is conservative.

Proof. It suffices to show conservation for finite inconsistent subsets. To this end, we consider a
finite subset U = { (a1, b1), . . . , (ak, bk) } of S1 and suppose that

if (U) `2

As we have seen in Section 5.3.2, this means that there are x1, . . . , xn ∈ A2 such that for any
choice of y = (y1, . . . , yn) ∈ Bn there are ay ∈ A2 and by,1 ∈ B and by,2 ∈ B with by,1 6= by,2 and
such that

(f(a1), b1), . . . , (f(ak), bk), (x1, y1), . . . , (xn, yn)B (ay, by,1) (∗1)

as well as
(f(a1), b1), . . . , (f(ak), bk), (x1, y1), . . . , (xn, yn)B (ay, by,2). (∗2)

It follows that for every y = (y1, . . . , yn) ∈ Bn we can find certain terms in the corresponding
language (for instance, by an inductive argument)

ty,1 ∈ TerL and ty,2 ∈ TerL

along with elements

z(y)1, . . . , z(y)`(y) ∈ { (f(a1), b1), . . . , (f(ak), bk), (x1, y1), . . . , (xn, yn) }

such that the following equations:

ty,1(z(y)1, . . . , z(y)`(y)) = (ay, by,1)

and
ty,2(z(y)1, . . . , z(y)`(y)) = (ay, by,2)

hold in the product algebra A2 ×B. Next we consider them component-wise. Write

Bn = {y1, . . . ,ymn } .

We see that in A2 the following positive primitive formula holds:

∃x1, . . . , xn, u1, . . . , umn
mn∧
i=1

∧
j=1,2

tyi,j(vi,1, . . . , vi,`(yi)) = ui

where
vi,1, . . . , vi,`(yi) ∈ {πA2z(yi)1, . . . , πA2z(yi)`(yi) } .

and where πA2 : S2 → A2 denotes the canonical projection. Since f is pure, it follows that there
are

x′1, . . . , x
′
n, u
′
1, . . . , u

′
mn ∈ A1

101



5. Inverse limits as spectra

such that
mn∧
i=1

∧
j=1,2

tyi,j(v
′
i,1, . . . , v

′
i,`(yi)

) = u′i

with certain elements
v′i,1, . . . , v

′
i,`(yi)

∈ { a1, . . . , ak, x
′
1, . . . , x

′
n } .

in the corresponding places. We claim that x′1, . . . , x
′
n witness U `1. Indeed, let again y =

(y1, . . . , yn) be an arbitrary element of Bn, say y = yi. Thus, there are

v′i,1, . . . , v
′
i,`(yi)

∈ { a1, . . . , ak, x
′
1, . . . , x

′
n }

such that
tyi,j(v

′
i,1, . . . , v

′
i,`(yi)

) = u′i

for j = 1 and j = 2. We can match this with the corresponding atomic formulae that hold in B,
i.e., with

ty,1(πBz(y)1, . . . , πBz(y)`(y)) = by,1

and
ty,2(πBz(y)1, . . . , πBz(y)`(y)) = by,2

where πB : S2 → B is the projection. Then, bringing all this together and translating it back in
terms of B, we have at hand elements x′1, . . . , x

′
n ∈ A1 such that, for any choice of y1, . . . , yn ∈ B,

there are u ∈ A1 and distinct elements b, b′ ∈ B such that

(a1, b1), . . . , (ak, bk), (x′1, y1), . . . , (x′n, yn)B (u, b)

as well as
(a1, b1), . . . , (ak, bk), (x′1, y1), . . . , (x′n, yn)B (u, b′),

just as required for U `1.

Let us say that an algebra C is pure-injective if homomorphisms A1 → C factor through pure
morphisms A1 → A2,

A1 A2

C

f

∀
∃

This is to say that if g : A1 → C is a homomorphism of algebras and if f : A1 → A2 is pure,
then there is h : A2 → C with h ◦ f = g. Every injective algebra is a pure-injective algebra, in
particular.

Corollary 5.25 (CT). Every finite algebra is pure-injective.

Proof. Let B be a finite algebra, let g : A1 → B be a homomorphism, and suppose that f : A1 →
A2 is pure. Consider the interpretation

if : (S1,`1)→ (S2,`2)

of entailment relations describing homomorphisms A1 → B and A2 → B, respectively. Since f is
pure, it follows from Theorem 4.21 and Theorem 5.24 that the induced mapping

i−1
f : Spec(`2)→ Spec(`1), α→ α ◦ f

is surjective.

Corollary 5.25 is an instance of a more general model-theoretic result: if L is a first-order
language with equality, then every finite L -structure is injective with respect to pure homomor-
phisms of L -structures [178]. This result leads over to profinite L -structures, i.e., structures that
arise as inverse limit of an inverse system of finite L -structures [178], by showing that profinite
L -structures are retracts of ultraproducts of finite L -structures [179]. Rather than mimicking
this argument, we again concentrate on providing an elementary and constructive substitute in
terms of conservation.
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5.4 Profinite algebras

5.4.1 Inverse limits of algebras

Let I be a directed partially ordered set. Let {Bı }ı∈I be an I-indexed family of finite inhabited
discrete algebras Bı, all of which have the same type T , and let { fı : B → Bı } be a set of
compatible maps. We write

P = lim←−
ı∈I

Bı

for the inverse limit which carries the structure of an algebra of type T , as well (we refer to [26]
for an account of (topological aspects of) profinite universal algebras). Let A be an algebra of
type T . We take the disjoint union

S =
⋃
ı∈I

A×Bı × { ı }

for our domain of discourse and study the entailment relation  on S that is inductively generated
by all instances of the following axioms:

(a, b, ı), (a, b′, ı)  (s [b 6= b′])

(a1, b1, ı), . . . , (anω , bnω , ı)  (ωA(a1, . . . , anω ), ωBı(b1, . . . , bnω ), ı) (ω)

(a, b, )  (a, fı(b), ı) (f [ı 6 ])

 { (a, b, ı) : b ∈ Bı } (t)

with side condition as indicated. Moreover, for every ı ∈ I we have the entailment relation `ı of
algebra homomorphism A→ Bı from the preceding section. We aim at describing  “locally” in
terms of `ı.

As for the semantics of , we take note of the following.

Lemma 5.26. The following are equivalent.

1. There is α ∈ Spec().

2. For every ı ∈ I there is αı ∈ Spec(`ı) such that if ı 6 , then fı ◦ α = αı.

Proof. If α ∈ Spec(), then, for every ı ∈ I, let

αı = { (x, b) ∈ A×Bı : (x, b, ı) ∈ α } .

This gives a family of ideal elements as required.
Conversely, suppose that there is such a compatible family of ideal elements αı ∈ Spec(`ı).

By taking the disjoint union we obtain an ideal element α as required, i.e.,

α =
∐
ı∈I

αı ∈ Spec().

If U = { (x1, a1) . . . , (xk, ak) } and V = { (y1, b1), . . . , (y`, b` } are finite subsets of A×Bı such
that U `ı V , then by an inductive argument it is easy to verify that a similar entailment is
inferrable with respect to  once every occurring formal statement has been “labelled” with index
ı, i.e., we have

(x1, a1, ı), . . . , (xk, ak, ı)  (y1, b1, ı), . . . , (y`, b`, ı)

We now aim at a converse. In order to provide a non-inductive description for , it still suffices
to be able to characterize inconsistency. We intend to give this characterization in terms of the
entailment relations `ı for which an explicit description has already been made available. First
we need two auxiliary lemmas.
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Lemma 5.27. Let A and B1 and B2 be algebras of the same type. Let `1 and `2 be the entailment
relations of homomorphism A→ B1 and A→ B2 on S1 = A×B1 and S2 = A×B2, respectively.
Let f : B1 → B2 be a homomorphism. Suppose that

(x1, a1), . . . , (xk, ak) `2 (y1, b1), . . . , (y`, b`).

Let

b′1 ∈ B2 \ { b1 } , . . . , b′` ∈ B2 \ { b` } .

For any choice of elements

u1 ∈ f−1(a1), . . . , uk ∈ f−1(ak) and v1 ∈ f−1(b′1), . . . , v` ∈ f−1(b′`)

we have

(x1, u1), . . . , (xk, uk), (y1, v1), . . . , (y`, v`) `1

Proof. We argue by induction, going first through the axioms that generate `2. As concerns
single-values (s), our claim is straightforwardly verified. Next we consider an instance of algebraic
closure (ω)

(x1, a1), . . . , (xnω , anω ) `2 (ωA(x1, . . . , xnω ), ωB2(a1, . . . , anω )).

Let u1 ∈ f−1(a1), . . . , unω ∈ f−1(anω ), let b 6= ωB2
(a1, . . . , anω ) and let v ∈ f−1(b). With regard

to `1 we have axioms

(x1, u1), . . . , (xnω , unω ) `1 (ωA(x1, . . . , xnω ), ωB1
(u1, . . . , unω ))

and

(ωA(x1, . . . , xnω ), ωB1
(u1, . . . , unω )), (ωA(x1, . . . , xnω ), v) `1

the latter of which is an instance of (s). Now apply transitivity. The axiom of totality (t) is
straightforwardly dealt with, too. We are left to address the rules. As usual, we concentrate on
transitivity (T) only. Consider the instance

...
{ (xi, ai) } `2 { (yj , bj) } , (z, c)

...
{ (xi, ai) } , (z, c) `2 { (yj , bj) }

{ (xi, ai) } `2 { (yj , bj) }

Now let b′j 6= bj , let vj ∈ f−1(b′j), and let ui ∈ f−1(ai). Reasoning inductively, by way of the two

entailments above the lower inference line, we know that for each b ∈ B2 and w ∈ f−1(b) we have

{ (xi, ui) } , { (yj , vj) } , (z, w) `1

Notice that

`1 { (z, w) : w ∈
⋃
b∈B2

f−1(b) }

is an instance of totality. Therefore, by repeated application of transitivity, we obtain

{ (xi, ui) } , { (yj , vj) } `1

as required.

Lemma 5.28. Let x ∈ A, let ı,  ∈ I, and let a ∈ Bı. If ı 6 , then

(x, a, ı)  { (x, b, ) : fı(b) = a }
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Proof. Since B is discrete, totality can be written

 { (x, b, ) : fı(b) = a } ∪ { (x, b, ) : fı(b) 6= a }

Moreover, for every b ∈ B we have an axiom of transition

(x, b, )  (x, fı(b), ı)

as well as, in case fı(b) 6= a, an axiom for single-values

(x, a, ı), (x, fı(b), ı) 

Therefore, for every b ∈ B, if fı(b) 6= a, then

(x, a, ı), (x, b, ) 

Repeated application of transitivity yields

(x, a, ı)  { (x, b, ) : fı(b) = a }

Before we embark on proving the following theorem with which we describe  in terms of
its “components” `ı, let us first do heuristics as to what may cause a finite subset U of S to
be inconsistent for . From the point of view of semantics, if U is inconsistent, then U cannot
be considered a finite approximation of a homomorphism A → P . In other words, any attempt
towards extending U shall fail. This can happen for the following reasons: U may already assign
multiple values at one component, or there is an index κ ∈ I above those occurring in U at
which any choice of an element of Bκ interferes along transition with those previously made with
U . Actually, the former case reduces to the latter, but anyway: inconsistency can be explained
“locally” at the finite algebras Bı and their corresponding entailment relations `ı.

Theorem 5.29. Let (x1, a1, ı1), . . . , (xk, ak, ık) ∈ S. The following are equivalent.

1. (x1, a1, ı1), . . . , (xk, ak, ık) 

2. There is κ ∈ I such that ı1, . . . , ık 6 κ and for all

u1 ∈ f−1
ı1κ(a1), . . . , uk ∈ f−1

ıkκ
(ak)

we have
(x1, u1), . . . , (xk, uk) `κ

Proof. We follow the usual strategy and show that a suitable predicate is both adequate and
hereditary. Let U = { (x1, a1, ı1), . . . , (xk, ak, ık) }. Consider the predicate Φ as it is defined by
way of the second item of the theorem:

Φ(U) ≡ ∃κ ∈ I
(
ıi 6 κ ∧ ∀ui ∈ f−1

ıiκ (ai) { (xi, ui) } `κ
)

Notice first that Φ is monotone. For suppose that Φ({ (xi, ai, ıi) }) is witnessed by κ ∈ I and
let { (yj , bj , j) } be another finite subset of S.3 Since I is directed, there is λ > κ, j . Then let
ui ∈ f−1

ıiλ
(ai) and vj ∈ f−1

jλ
(bj). Since Φ holds for { (xi, ai, ıi) }, we know that

{ (xi, fκλ(ui)) } `κ

According to Lemma 5.27, we get { (xi, ui) } `λ. Monotonicity of `λ yields { (xi, ui) } , { (yj , vj) } `λ.
Thus Φ({ (xi, ai) } , { (yj , bj) }), as required.

3By abuse of notation, here and in the following we write { (xi, ai, ıi) } where it should actually read
{ (x1, a1, ı1), . . . , (xk, ak, ık) }, etc.
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Next we show that Φ is both adequate and hereditary for . As regards the former, suppose
that there is κ > ıi such that for all ui ∈ f−1

ıiκ (ai) we have { (xi, ui) } `κ. It is clear that in any
such case we too have

{ (x1, u1, κ), . . . , (xk, uk, κ) } 
According to Lemma 5.28, we have

(x1, a1, ı1) 
{

(x, u, κ) : u ∈ f−1
ı1κ(a1)

}
...

(xk, ak, ık) 
{

(x, u, κ) : u ∈ f−1
ıkκ

(ak)
}

Repeated application of transitivity yields { (xi, ai, ıi) } . This is to say that Φ(U) implies U ,
whence the second item of Theorem 5.29 does indeed provide an adequate predicate for . It
remains to show that this predicate moreover is hereditary. To this end, it suffices to address
every generating axiom. In the following, let U = { (xi, ai, ıi) }, as before.

(s) For the axiom of single-values
(x, a, ı), (x, a′, ı) 

where a 6= a′, one may simply take κ = ı in which case fıκ = idBı . From Φ((x, a, ı), (x, a′, ı))
we get Φ(U, (x, a, ı), (x, a′, ı)) by monotonicity of Φ.

(ω) Next we consider axioms of algebraic closure

(y1, b1, ı), . . . , (ynω , bnω , ı)  (ωA(y1, . . . , ynω ), ωBı(b1, . . . , bnω ), ı)

Suppose that
Φ(U, (ωA(y1, . . . , ynω ), ωBı(b1, . . . , bnω ), ı)) (1)

is witnessed by κ ∈ I. We need to show

Φ(U, (y1, b1, ı), . . . , (ynω , bnω , ı)).

Thus, let ui ∈ f−1
ıiκ (ai) and let vj ∈ f−1

κ (bj). Take into account that

fıκ(ωBκ(v1, . . . , vnω )) = ωBı(fıκ(v1), . . . , fıκ(vnω )) = ωBı(b1, . . . , bnω )

whence with (1) we get

{ (xi, ui) } , (ωA(y1, . . . , ynω ), ωBκ(v1, . . . , vnω )) `κ

Furthermore, there is an axiom

(y1, v1), . . . , (ynω , vnω ) `κ (ωA(y1, . . . , ynω ), ωBκ(v1, . . . , vnω ))

Cut yields
{ (xi, ui) } , { (yj , vj) } `κ

as required.

(f) Next we address the axioms for transition

(y, b, )  (y, fı(b), ı)

assuming that
Φ(U, (y, fı(b), ı)) (2)

is witnessed by κ ∈ I. Since I is directed, there is λ > , κ. Now let ui ∈ f−1
ıiλ

(ai) and let

v ∈ f−1
λ (b). Notice that

fκλ(ui) ∈ f−1
ıiκ (ai) and fκλ(v) ∈ f−1

ıκ (fı(b)),
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whence
{ (xi, fκλ(ui)) } , (y, fκλ(v)) `κ

according to (2). We obtain
{ (xi, ui) } , (y, v) `λ

by way of Lemma 5.27.

(t) It remains to consider totality
 { (y, b, ) : b ∈ B }

to which end we write B = { b1, . . . , bn } and suppose to have

Φ(U, (y, b1, )) . . . Φ(U, (y, bn, )) (3)

witnessed by κ1, . . . , κn ∈ I, respectively. Since I is directed, there is λ > κ1, . . . , κn. Let
ui ∈ f−1

ıiλ
(ai) and let vj ∈ f−1

λ (bj). We have

fκiλ(ui) ∈ f−1
ıiκi(ai) and fκiλ(vj) ∈ f−1

κi (bj).

Therefore, according to (3) we have

{ (xi, fκ1λ(ui)) } , (y, fκ1λ(v1)) `κ1

...

{ (xi, fκnλ(ui)) } , (y, fκnλ(vn)) `κn
With Lemma 5.27 we obtain

{ (xi, ui) } , (y, v1) `λ
...

{ (xi, ui) } , (y, vn) `λ

Totality on Bλ can be written as

`λ { (y, v) : v ∈
n⋃
j=1

f−1
λ (bj) }

Repeated application of transitivity then yields

{ (xi, ui) } `λ

and therefore Φ(U). The proof is now complete.

5.4.2 Products

This subsection is a digression from our main line of reasoning, but it will find application in the
next chapter. We are still in the setting of the preceding section. Dropping every instance of
transition, we obtain the entailment relation that describes maps into a product. To be precise, for
an I-indexed family of finite inhabited discrete algebras Bı, we consider the entailment relation
which is generated by

(a, b, ı), (a, b′, ı)  (s [b 6= b′])

(a1, b1, ı), . . . , (anω , bnω , ı)  (ωA(a1, . . . , anω ), ωBı(b1, . . . , bnω ), ı) (ω)

 { (a, b, ı) : b ∈ Bı } (t)

with side condition as indicated. We suppose that our set I of indices is discrete. In the following,
if U is a finite subset of S and ı ∈ I, then we write

Uı = { (x, a) : (x, a, ı) ∈ U } .
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Theorem 5.30. Let U be a finite subset of S. The following are equivalent.

1. U 

2. There is ı ∈ I such that Uı `ı

Proof. We stipulate, for finite subsets U of S,

Φ(U) ≡ ∃ı ∈ I (Uı `ı )

This Φ is adequate for , for if Uı `ı can be inferred, then any derivation may just be labelled
with ı ∈ I such as to yield U . As for the converse, it is easy to verify that Φ is hereditary for the
generating axioms of . Here the inductive step makes use of the assumption that I is discrete
and allows for an argument by cases. For instance, consider totality (t). Let U be a finite subset
of S, let x ∈ A, let ı ∈ I, and suppose that for every a ∈ Bı we have Φ(U, (x, a, ı)). This is to say
that for every a ∈ Bı there is ıa ∈ I such that

Uıa , { (x, a, ı) }ıa `ıa

Since I is discrete, either we have ıa = ı for every a ∈ Bı, whence U `ı follows by cut with an
axiom of totality for `ı. Or else we have ıa 6= ı at least for one a ∈ B, and since { (x, a, ı) }ıa is
empty, the above entailment reduces to

Uıa `ıa
at once. A similar argument handles the structural axiom (ω), while Φ being hereditary for
single-values (s) is immediate.

Lemma 5.31. The following are equivalent.

1. There is α ∈ Spec().

2. For every ı ∈ I there is αı ∈ Spec(`ı).

Proof. Cf. Lemma 5.26, the proof of which goes through also without transition maps and their
corresponding axioms.

5.4.3 Conservation and extension

Back to our inverse systems of algebras. Let I be a directed partially ordered set, let(
{Bı }ı∈I , { fı : B → Bı }ı6

)
be an I-indexed system of finite discrete inhabited algebras, all of which are of the same type T .
We write

P = lim←−
ı∈I

Bı

for the inverse limit. Furthermore, let A1 and A2 algebras of type T . We have two entailment
relations 1 and 2 of algebra homomorphism A1 → P and A2 → P , respectively. The following
is a consequence of Theorem 5.29.

Theorem 5.32. If f : A1 → A2 is a pure homomorphism, then the induced interpretation

if : (S1,1)→ (S2,2), (a, b, ı) 7→ (f(a), b, ı)

is conservative.
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Proof. It suffices to verify conservation of inconsistency. To this end, let

U = { (x1, a1, ı1), . . . , (xk, ak, ık) }

be a finite subset of S1 and suppose that if (U) 2. According to Theorem 5.29, this can be
reduced to inconsistency with regard to an algebra Bκ, which is to say that there is κ ∈ I such that
ı1, . . . , ık 6 κ and whenever u1, . . . , uk ∈ Bκ are such that ui ∈ f−1

ıi,κ(ai), then { (f(xi), ui) } `κ.
According to Theorem 5.24, since f is pure, any of the latter entailments actually is equivalent
to { (xi, ui) } `κ, respectively. By way of Theorem 5.29 again, this translates back to U 1, as
required.

Finally, an algebra P (of type T , say) is profinite if it is isomorphic to the inverse limit of an
inverse system of finite algebras of type T . With completeness we obtain from Theorem 5.32 the
following.

Corollary 5.33 (CT). Every profinite algebra is pure-injective.

Proof. Let P be a profinite algebra, say

P ∼= lim←−
ı∈I

Bı

and suppose that g : A1 → P is a homomorphism of algebras. Let f : A1 → A2 pure. We take
entailment relations 1 and 2 of homomorphisms A1 → P and A2 → P , considered over the
disjoint unions S1 =

⋃
ı∈I A1×Bı×{ ı } and S2 =

⋃
ı∈I A2×Bı×{ ı }, and inductively generated

thereupon, respectively. The homomorphism g : A1 → P is not an ideal element of 1 in the
proper sense, but gives rise to one by setting

αg =
⋃
ı∈I
{ (x, πı ◦ g(x), ı) : x ∈ A1 } ∈ Spec(1)

where πı : lim←−ı∈I Bı → Bı denotes the canonical projection. Since f is pure, the interpretation

if : (S1,1)→ (S2,2), (x, a, ı) 7→ (f(x), a, ı)

of entailment relations is conservative, due to which the induced mapping of spectra

i−1
f : Spec(2)→ Spec(1)

is onto. Therefore, there is β ∈ Spec(2) such that

αg = i−1
f (β).

By way of Lemma 5.26, for every ı ∈ I we have at hand

βı ∈ Spec(`ı)

such that if ı 6 , then βı = fı ◦β, where as before `ı is understood to be the entailment relation
of homomorphism A2 → Bı.

A1 A2

lim←−ı∈I Bı Bı

g

f

βıh

πı

This compatible family of homomorphisms βı : A2 → Bı induces a homomorphism

h : A2 → lim←−
ı∈I

Bı
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such that πı ◦ h = βı for every ı ∈ I.
It remains to show that we actually have h ◦ f = g. But it is a simple matter of writing, for

every x ∈ A1 and a ∈ Bı and ı ∈ I,

πı ◦ g(x) = a ≡ (x, a, ı) ∈ αg
≡ (f(x), a, ı) ∈ β
≡ βı ◦ f(x) = a

≡ πı ◦ (h ◦ f)(x) = a

in order to see that g = h ◦ f .

As indicated before, Corollary 5.33 is an instance of a more general model-theoretic result: if
L is a first-order language with equality, then every profinite L -structure is injective with respect
to pure L -homomorphisms [178, Theorem 8]. Needless to say, from a classical point of view we
have obtained nothing more than a new (albeit perhaps conceptually simpler) proof of an instance
of a known theorem. But our focus has been on the syntactical counterpart, i.e., conservation, an
elementary and constructive proof of which is possible.

In the following chapter we will see an application of conservation for profinite structures:
Sikorski’s extension theorem for complete atomic Boolean algebras, along with Monteiro’s gener-
alization for extension under bounding semimorphisms.

110



Chapter 6

Some constructive extension theorems
for distributive lattices

This chapter is based on [212, 213].

6.1 Introduction

Due to a time-honoured result by Sikorski (see, e.g., [236, §33] and [127]), the injective objects in
the category of Boolean algebras have been identified precisely as the complete Boolean algebras.
In other words, a Boolean algebra C is complete if and only if, for every morphism f : B → C of
Boolean algebras, where B is a subalgebra of B′, there is an extension g : B′ → C of f onto B′.
More generally, it has later been shown by Balbes [22], and Banaschewski and Bruns [27], that a
distributive lattice is an injective object in the category of distributive lattices if and only if it is
a complete Boolean algebra.

A popular proof of Sikorski’s theorem proceeds as follows: by Zorn’s lemma the given morphism
on B has a maximal partial extension, which by a clever one-step extension principle [33, 127]
can be shown to be total on B′. In turn, instantiating C with the initial Boolean algebra 2 with
two elements results in a classical equivalent of the Boolean prime ideal theorem, a proper form
of the Axiom of Choice [216]. Taking up a strictly constructive stance, it is even necessary to
object to completeness of 2, as this implies the principle of weak excluded middle [30]. We recall
further that while in classical set theory Sikorski’s theorem is stronger than the Boolean prime
ideal theorem [31], the latter principle is in fact equivalent to the restricted form of Sikorski’s
theorem for complete and atomic Boolean algebras [177].

We can give constructive meaning to Sikorski’s extension theorem for finite discrete Boolean
algebras by phrasing it as a syntactical conservation result. The idea is as follows. Given a
distributive lattice L and a finite discrete Boolean algebra B, we generate an entailment relation
[229–231] the models of which are precisely the lattice maps L → B. This can be done in a
canonical manner, and in particular so with every lattice L′ containing L as a sublattice. Then
we have two entailment relations ` and `′, the former of which can be interpreted in the latter.
By way of a suitable form of the Axiom of Choice, with some classical logic, this interpretation
being conservative is tantamount to the restriction of lattice maps L′ → B to the sublattice L
being surjective—which is extendability. The proof of conservativity, however, is elementary and
constructive, and it rests upon the explicit characterization of ` in terms of an appropriate Formal
Nullstellensatz (see Section 6.2.3).

By introducing bounds as additional axioms, we can furthermore address Monteiro’s result
on extension of maps under preservation of bounds [182]. Last but not least, by employing our
results on profinite structures from the preceding chapter, we can further give a generalization for
complete and atomic Boolean algebras.

We hasten to add that this approach does not stem from an altogether new idea. It is quite
in order to cite Mulvey and Pelletier [184, p. 41], who grasp the “intuitive content which the

111



6. Some constructive extension theorems for distributive lattices

Hahn-Banach theorem normally brings to functional analysis” in view of that

“[...] no more may be proved about the subspace A in terms of functionals on the
seminormed space B than may already be proved by considering only functionals on
the subspace A.”

In this spirit, the Hahn-Banach theorem has been revisited by way of type theory [63], as
well as in terms of entailment relations [62, 72, 75]. Further approaches to extension theorems in
the guise of logical conservation include Szpilrajn’s order extension principle [190]. The idea of
capturing algebraic structures and in particular their ideal objects by way of entailment relations
has been developed and advocated in [62, 72, 87]. The interplay of (multi-conclusion) entailment
relations as extending their single-conclusion counterpart is subject of [209], of course building on
[229]. Clearly, we draw inspiration from these references.

6.2 Sikorski’s theorem

6.2.1 On lattices and Boolean algebras

In the following, every lattice L is considered to be distributive, and bounded, i.e., to have a top
and bottom element, 1L and 0L, respectively. Subscripts will be written in order to emphasize to
which lattice we refer, otherwise they will be omitted. We understand 1 to be the empty meet
and 0 to be the empty join in L. Maps between lattices are meant to preserve structure. Mind
that a lattice is discrete if and only if its order relation 6 is decidable. An atom of a lattice L is
an element e ∈ L which is minimal among non-zero elements, i.e. for every x ∈ L, if 0 < x 6 e,
then x = e; of course x < y is shorthand for x 6 y and x 6= y. The set of all atoms of L will be
denoted AtL.

We will be dealing with finite discrete Boolean algebras only, for which there is the following
Structure Theorem [169, VII, §3, 3.3 Theorem]:

Theorem 6.1. Every finite discrete Boolean algebra is isomorphic to the algebra of the detachable
subsets of a finite discrete set.

Crucially, every finite discrete Boolean algebra B has a finite set of atoms, and 1B =
∨

AtB.
It follows that every element of B is a finite join of atoms. We refer to [169, VII, §3].

There are several classically equivalent ways of describing atoms in a Boolean algebra [156].
They coincide, however, under assumption of discreteness. In particular, for every e ∈ B the
following are equivalent [156],[169, VII, §3].

(i) e ∈ AtB.

(ii) e > 0 and, for every a ∈ B, either e 6 a or e ∧ a = 0.

(iii) e > 0 and, for every a ∈ B, either e 6 a or e 6 −a.

Furthermore, if U ⊆ AtB is finite, and e ∈ AtB, then e 6
∨
U implies e ∈ U . Moreover, since

every element of B can be written as a finite join of atoms, if b 
 b′, then there is e ∈ AtB such
that e 6 b ∧ −b′.

6.2.2 Entailments for maps

Now we fix a distributive lattice L and a finite discrete Boolean algebra B, according to the
conventions in the preceding Section 6.2.1. Confident that it will not lead to confusion, the order
relations on L and B will both be denoted by 6. As our domain of discourse we take L×B, and
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study an entailment relation ` on L × B, inductively generated by the set of all instances of the
following axioms.

(x, a), (x, b) ` (s)

(x, a), (y, b) ` (x ∧ y, a ∧ b) (∧)

(x, a), (y, b) ` (x ∨ y, a ∨ b) (∨)

` (0L, 0B) (0)

` (1L, 1B) (1)

` { (x, a) : a ∈ B } (t)

where a 6= b in (s).
We follow an idea outlined in [79], where suitable axioms of the kind (t) and (s) are taken to

present the space of functions N→ { 0, 1 } by way of a generated entailment relation.
We read any pair (x, a) as ϕ(x) = a for a generic (or yet-to-be-determined) morphism ϕ : L→

B of lattices. In this regard, entailment

(x1, a1), . . . , (xk, ak) ` (y1, b1), . . . , (y`, b`)

should intuitively be read as

if ϕ(x1) = a1 . . . and . . . ϕ(xk) = ak, then ϕ(y1) = b1 . . . or . . . ϕ(y`) = b`.

An ideal element α ⊆ L × B for ` is a relation, in the first place. Axiom (t) forces such an
α to be total, while the second axiom (s) ensures single values. The remaining axioms are to
guarantee that the lattice structure is preserved. We put on record that this entailment relation
really describes what we intend it to:

Lemma 6.2. A subset α ⊆ L×B is an ideal element of ` if and only if it is a homomorphism of
lattices.

Entailments are in good accordance with our intuition about lattice maps. For instance, since
every lattice map is order-preserving, we should expect that an entailment like X ` (x, a) sets a
certain bound on the set of those abstract statements (y, b), which still are consistent with X in
case x 6 y.

Lemma 6.3. For all x, y ∈ L and a, b ∈ B, if x 6 y and a 
 b, then (x, a), (y, b) `.

Proof. We have
(x, a), (y, b) ` (x, a ∧ b)

by (∧) and since x ∧ y = x. This entailment can be cut with

(x, a), (x, a ∧ b) `

which we have as an instance of (s) because a 6= a ∧ b.

It will be useful to have means for moving statements back and forth across the turnstile
symbol. The idea is as follows. If a set X of statements logically forces an element x ∈ L to take
a certain value a ∈ B under every given lattice map L→ B, then adjoining some statement (x, b)
to X should turn out inconsistent in case b 6= a.

Lemma 6.4. For every finite subset X ⊆ L × B and elements x ∈ L, a ∈ B, the following are
equivalent.

(i) X ` (x, a), Y

(ii) X, (x, b) ` Y for every b ∈ B such that b 6= a.
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Proof. Suppose that X ` (x, a), Y is inferrable. If b 6= a, then (x, a), (x, b) ` is an axiom, whence
we get X, (x, b) ` Y by cut. On the other hand, if X, (x, b) ` Y whenever b 6= a, then we can
successively cut ` { (x, b) : b ∈ B }, until we arrive at X ` (x, a), Y .

Example 6.5. Lemma 6.4 has a particularly simple form for the Boolean algebra 2 = { 0, 1 }, in
which case it amounts to complementation of values: for every x ∈ L and i ∈ 2 we have (x, i) ` if
and only if ` (x,−i).

6.2.3 A formal Nullstellensatz

Following the tradition of dynamical algebra [82, 92, 165], a formal Nullstellensatz 1 for ` is a
theorem explicitly describing entailment in terms of certain identities within the algebraic structure
at hand.

We find it useful to have an additional simple piece of notation. If X is a finite subset of L×B
and a ∈ B, then let

Xa = { x ∈ L : (x, a) ∈ X } .

Note that Xa is finite as well.
The following three lemmas are technical and provide for the proof of Theorem 6.10 below.

First we give a condition which is sufficient for finite sets of statements to be inconsistent.

Lemma 6.6. Let X be a finite subset of L×B. If there is e ∈ AtB such that∧
a>e

∧
Xa 6

∨
a>e

∨
X−a,

then X is inconsistent, i.e., X `.

Proof. We can write X = { (x1, a1), . . . , (xk, ak) }. Suppose that there is an atom e as indicated.
Let a ∈ { a1, . . . , ak }. For every x ∈ Xa we have X ` (x, a) by reflexivity. Since

{ (x, a) : x ∈ Xa } `
(∧

Xa, a
)

is inferrable, we get

X `
(∧

Xa, a
)

by cut. In particular, we have such an entailment whenever a ∈ { a1, . . . , ak } and a > e. Thus,
writing

x =
∧
a>e

a∈{ a1,...,ak }

∧
Xa

and
b =

∧
{ a ∈ { a1, . . . , ak } : a > e } ,

we are able to infer
X ` (x, b).

In a similar manner, for

y =
∨
a>e

a∈{−a1,...,−ak }

∨
X−a

and
b′ =

∨
{ −a : a ∈ {−a1, . . . ,−ak } and a > e }

we are able to infer
X ` (y, b′).

1Hilbert’s Nullstellensatz as a proof-theoretic result appears first in [221], see also [162].
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It remains to notice that on the one hand we actually have

x =
∧
a>e

∧
Xa and y =

∨
a>e

∨
X−a.

Thus x 6 y, according to the assumption. On the other hand, we have

e 6 b and b′ 6 −e

which implies b 
 b′. Therefore, by way of Lemma 6.3 we get

(x, b), (y, b′) `

and now X ` is immediate.

We are going to make use of the following combinatorial principle.

Lemma 6.7. Let A be a finite inhabited set and let L and R be subsets of A. If, for every finite
subset U of A, there is an element a ∈ A such that

( a ∈ U ∧ a ∈ L ) ∨ ( a /∈ U ∧ a ∈ R ) (†)

then L and R have an element in common, L G R.

Proof. We argue by induction on the finite number of elements of A. First we consider a singleton
set A = { ∗ } under assumption of (†). If we instantiate with U = ∅ ⊆ A, then this yields ∗ ∈ R
immediately. If instead we instantiate with U = { ∗ }, then we are led to the left-hand disjunct,
thus ∗ ∈ L.

Next we consider A′ = A ∪ { ∗ }, where ∗ is an element not among those of A. We suppose
that the principle in question is valid for A, and that (†) applies with respect to A′. In particular,
for every finite subset U of A, there is a ∈ A′ such that

( a ∈ U ∧ a ∈ L ) ∨ ( a /∈ U ∧ a ∈ R ).

Since either a ∈ A or a = ∗ we get

( a ∈ U ∧ a ∈ L ∩A ) ∨ ( a /∈ U ∧ a ∈ R ∩A ) ∨ ( ∗ ∈ R ).

Then the inductive hypothesis applies, whence we infer (L∩A) G (R ∩A) or ∗ ∈ R. Similarly, for
every finite subset U of A there is a ∈ A′ such that

( a ∈ U ∪ { ∗ } ∧ a ∈ L ) ∨ ( a /∈ U ∪ { ∗ } ∧ a ∈ R ).

Again, since either a ∈ A or a = ∗, we get

( a ∈ U ∧ a ∈ L ∩A ) ∨ ( a /∈ U ∧ a ∈ R ∩A ) ∨ ( ∗ ∈ L )

which with the inductive hypothesis leads to (L ∩ A) G (R ∩ A) or ∗ ∈ L. Taken together, this
yields

(L ∩A) G (R ∩A) ∨ ( ∗ ∈ L ∩R ),

whence we have L G R.

Remark 6.8. Classically, we could have given a much shorter proof of Lemma 6.7. In the classical
setting, if A is finite, then the subset R ⊆ A has to be finite itself. We can then instantiate (†) by
U = R, from which the result trivially follows.

The following may be considered a cut rule for inconsistent sets of statements.2

2The following lemma in fact shows that the inconsistency predicate as being defined by Lemma 6.6 is hereditary
for totality. In order to provide for a largely self-contained presentation, we refrain in this chapter from an explicit
introduction of inconsistency predicates.
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Lemma 6.9. Let X be a finite subset of L×B and let x ∈ L. If for every b ∈ B there is e ∈ AtB
such that ∧

a>e

∧(
X, (x, b)

)
a
6
∨
a>e

∨(
X, (x, b)

)
−a

then there is e′ ∈ AtB such that ∧
a>e′

∧
Xa 6

∨
a>e′

∨
X−a

Proof. If e is an atom of B, then the inequality∧
a>e

∧(
X, (x, b)

)
a
6
∨
a>e

∨(
X, (x, b)

)
−a (#)

amounts to ∧
a>e

∧
Xa ∧ x 6

∨
a>e

∨
X−a (Le)

in case b > e, and to ∧
a>e

∧
Xa 6

∨
a>e

∨
X−a ∨ x (Re)

otherwise, i.e., in case of b � e. We need to find an atom e for which both Le and Re hold—cut
in the lattice L then allows to draw the desired conclusion. To this end, set

L = { e ∈ AtB : Le } and R = { e ∈ AtB : Re } .

In particular, for every finite subset U of AtB our assumption applies to the finite join
∨
U for

which there is e ∈ AtB such that either e 6
∨
U and Le, or else e 


∨
U and Re. Taking into

account that e 6
∨
U if and only if e ∈ U , we see that the combinatorial Lemma 6.7 applies,

whence we get L G R.

Finally, here is how to describe ` explicitly. As it turns out, entailment X ` Y amounts to
certain inequalities in the lattice L. The formal Nullstellensatz lies at the heart of conservation.

Theorem 6.10 (Formal Nullstellensatz). For every finite subset X of L×B, and every finite set
of pairs (y1, b1), . . . , (yk, bk) ∈ L×B, the following are equivalent.

(i) X ` (y1, b1), . . . , (yk, bk)

(ii) For all b′1 6= b1, . . . , b
′
k 6= bk there is e ∈ AtB such that∧

a>e

∧(
X, { (yi, b

′
i) }16i6k

)
a
6
∨
a>e

∨(
X, { (yi, b

′
i) }16i6k

)
−a

Proof. Suppose that X ` (y1, b1), . . . (yk, bk) can be inferred. In order to show the desired inequal-
ity to hold for every choice of b′i 6= bi, we argue by induction. This means that we have to go
through the axioms, which is readily done, case by case. Next the rules need to be considered; we
concentrate on transitivity only, the two remaining ones being almost trivial to check. Hence, if
we have a cut

...
X ` (y1, b1), . . . , (yk, bk), (z, c)

...
X, (z, c) ` (y1, b1), . . . (yk, bk)

X ` (y1, b1), . . . , (yk, bk)

then we are allowed to apply the hypothesis twice, respectively. Now let b′1 6= b1, . . . , b
′
k 6= bk and

write Y ′ = { (y1, b
′
1), . . . , (yk, b

′
k) }. According to the hypothesis, there is an atom e such that∧

a>e

∧(
X,Y ′, (z, c)

)
a
6
∨
a>e

∨(
X,Y ′, (z, c)

)
−a
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Likewise (recall that we have already fixed b′1, . . . , b
′
k) for every c′ 6= c there is an atom e′ such

that ∧
a>e′

∧(
X,Y ′, (z, c′)

)
a
6
∨
a>e′

∨(
X,Y ′, (z, c′)

)
−a

But now Lemma 6.9 applies and allows us to get rid of z altogether! This yields the desired result.
As for the converse implication, assuming that assertion (ii) holds, by way of Lemma 6.6 we

find that for every choice of elements b′1 6= b1, . . . , b
′
k 6= bk the set

X ∪ { (y1, b
′
1), . . . , (yk, b

′
k) }

is inconsistent. In order to conclude, apply Lemma 6.4 repeatedly.

How to formally translate this theorem into the classical extension theorem will be explained
in the next section. First let us see a couple of interesting entailments which we can infer with
the aid of the Nullstellensatz.

Example 6.11. The order relation on L can be expressed in terms of entailment. With Theorem
6.10 it is easy to show that for all x, y ∈ L the following are equivalent:

(i) x 6 y

(ii) (x, 1B) ` (y, 1B)

(iii) (y, 0B) ` (x, 0B)

Example 6.12. For every x ∈ L the following are equivalent:

(i) x = 0L

(ii) ` (x, 0B)

(iii) (x, 1B) `

With completeness, this leads over to the assertion that 0 ∈ L is the only element which maps to
0 ∈ B under every lattice map ϕ : L→ B; see also Section 6.2.6.

Dually, for every x ∈ L the following are equivalent:

(i) x = 1L

(ii) ` (x, 1B)

(iii) (x, 0B) `

Instantiating Theorem 6.10 with empty conclusions, we have at once a simple characterization
of inconsistent sets, and the converse of Lemma 6.6.

Corollary 6.13. For every finite subset X of L×B, the following are equivalent.

(i) X `

(ii) There is an atom e ∈ AtB such that∧
a>e

∧
Xa 6

∨
a>e

∨
X−a

Actually, we had hinted at this result before, and one way to prove Theorem 6.10 is to take
for granted the Nullstellensatz for inconsistent sets, as it is stated in Corollary 6.13, and then to
generalize it by involving “multiple conclusions”, all along keeping in mind Lemma 6.4. In other
words, Corollary 6.13 is equivalent to the Nullstellensatz.

It is interesting to note that non-triviality of ` is for free, given that L is non-trivial:
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Corollary 6.14. The following are equivalent.

(i) ∅ ` ∅

(ii) 1 = 0 in L.

Proof. Since we have ` (0L, 0B) and ` (1L, 1B) as axioms, the entailment relation ` is trivial if
and only if (0L, 0B), (1L, 1B) ` can be inferred. But if e is an arbitrary atom of B, then

1L =
∧
a>e

∧
{ (0L, 0B), (1L, 1B) }a 6

∨
a>e

∨
{ (0L, 0B), (1L, 1B) }−a = 0L.

On the other hand, if indeed 1 = 0 in L, then ∅ ` ∅ can be inferred accordingly.

6.2.4 Extension by conservation

Now let us see how Proposition 6.10 relates to the classical extension theorem. Suppose that L
and L′ are distributive lattices. Given a finite discrete Boolean algebra B, we have two entailment
relations as above, which we denote by ` and `′, respectively, each of which describes lattice maps
L→ B. Every lattice map ϕ : L→ L′ gives way to an interpretation (cf. Chapter 4)

fϕ : (L×B,`)→ (L′ ×B,`′), (x, a) 7→ (ϕ(x), a).

Indeed, it suffices to show that fϕ maps generating axioms for ` to those of `′, which is clear since
ϕ preserves the lattice structure.

Proposition 6.15. If ϕ : L → L′ is an injective map of lattices and B a finite discrete Boolean
algebra, then the induced interpretation

fϕ : (L×B,`)→ (L′ ×B,`′), (x, a) 7→ (ϕ(x), a)

is conservative, i.e. fϕ(X) `′ fϕ(Y ) implies X ` Y .

Proof. It suffices to show conservation of inconsistent sets. Hence, let X ⊆ L × B and suppose
that fϕ(X) `′. According to Theorem 6.10, there is e ∈ AtB such that∧

a>e

∧
fϕ(X)a 6

∨
a>e

∨
fϕ(X)−a

in L′. This means
ϕ
( ∧
a>e

∧
Xa

)
6 ϕ

( ∨
a>e

∨
X−a

)
and implies X ` by injectivity and Theorem 6.10, once more.

Remark 6.16. If ϕ : L → L′ is a lattice map for which the induced interpretation fϕ is conser-
vative with regard to a finite discrete Boolean algebra B, then ϕ is injective. In fact, recall from
Example 6.11 that we have

ϕ(x) 6 ϕ(y) if and only if (ϕ(x), 1) `′ (ϕ(y), 1),

which is to say that ϕ(x) 6 ϕ(y) if and only if fϕ(x, 1) `′ fϕ(y, 1). Likewise, x 6 y is equivalent
to having the entailment (x, 1) ` (y, 1). Therefore, if fϕ is conservative, then ϕ is injective.

Since fϕ is an interpretation, the inverse image mapping of fϕ restricts on ideal elements

f−1
ϕ : Spec(`′)→ Spec(`)

and it is easy to see that f−1
ϕ (α) = α ◦ ϕ. Recall from Chapter 4, that—with completeness at

hand—conservation amounts to f−1
ϕ being surjective. Thus, if ϕ : L→ L′ is a monomorphism of
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lattices, then for every α : L → B there is β : L′ → B with α = β ◦ ϕ. In other words, lattice
maps L→ B extend along embeddings:

L L′

B

ϕ

∀α
∃β

With regard to the following, keep in mind that CT implies REM, and thus every finite Boolean
algebra is discrete by application of the former.

Corollary 6.17 (CT). Every finite Boolean algebra is injective in the category of distributive
lattices.

If L is a sublattice of L′ and if ϕ denotes inclusion of the former, then f−1
ϕ is nothing but

the restriction of lattice maps to the sublattice, and the extension is conservative if and only if
restriction is surjective. But we have to emphasize again that this requires completeness!

It is well known [22, 27] that every injective distributive lattice is a Boolean algebra. In Section
6.4 we will see that complements are necessary for conservation: a finite discrete distributive lattice
which lacks a complement for at least one of its elements cannot allow for a result analogous to
Theorem 6.10, and cannot be injective among distributive lattices.

6.2.5 Profinite Boolean algebras

We can finally exploit the techniques from Chapter 5 and bring into action Theorem 5.29. Recall
that a Boolean algebra B is said to be profinite if there is an inverse system

({Bı }ı∈I , { fı : B → Bı }ı6)

of finite Boolean algebras Bı indexed over a directed partially ordered set I such that

B ∼= lim←−
ı∈I

Bı

Let L be a distributive lattice. Given an inverse system as above with the additional proviso
that every component Bı is discrete, for every ı ∈ I we have an entailment relation `ı of lattice
map L → Bı, considered over the set Sı = L × Bı, inductively generated and with an explicit
description as provided in this chapter. Next we take

S =
⋃
ı∈I

L×Bı × { ı }

to be our domain of discourse and we consider the entailment relation  that is generated by all
instances of the following axioms:

(x, a, ı), (x, b, ı)  (s [a 6= b])

(x, a, ı), (y, b, ı)  (x ∧ y, a ∧ b, ı) (∧)

(x, a, ı), (y, b, ı)  (x ∨ y, a ∨ b) (∨)

(x, a, )  (x, fı(a),ı) (f [ı 6 ])

 (0L, 0Bı , ı) (0)

 (1L, 1Bı , ı) (1)

 { (x, a, ı) : a ∈ Bı } (t)

with side condition as indicated. The semantics of this entailment relation has been described in
Chapter 5. In particular, ideal elements of ` correspond with lattice maps

L→ lim←−
ı∈I

Bı
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Crucially, this entailment relation can be described by means of Theorem 5.29. Together with
Theorem 6.10, we obtain the following. As usual, we concentrate on characterizing inconsistency
only.

Corollary 6.18. Let (x1, a1, ı1), . . . , (xk, ak, ık) ∈ S. The following are equivalent.

1. (x1, a1, ı1), . . . , (xk, ak, ık) 

2. There is κ ∈ I such that ı1, . . . , ık 6 κ and whenever elements

b1 ∈ f−1
ı1κ(a1), . . . , bk ∈ f−1

ıkκ
(ak)

are chosen, there is e ∈ AtBκ such that∧
a>e

∧
{ (x1, b1), . . . , (xk, bk) }a 6

∨
a>e

∨
{ (x1, b1), . . . , (xk, bk) }−a

The general description of entailment derives from Corollary 6.18 by means of the back-and-
forth property which  enjoys, as well.

Now let L′ be another distributive lattice. Likewise, there is the entailment relation ′ of
lattice map L′ → lim←−ı∈I Bı considered over the disjoint union

S′ =
⋃
ı∈I

L′ ×Bı × { ı }

and generated with axioms as above but with elements of L′ in place of those of L. Recall that if
ϕ : L→ L′ is a lattice map, then this ϕ induces an interpretation of entailment relations

iϕ : (S,)→ (S′,′), (x, a, ı) 7→ (ϕ(x), a, ı).

The following is an immediate consequence of Corollary 6.18.

Corollary 6.19. If ϕ : L→ L′ is an injective map of lattices, then the induced interpretation iϕ
of entailment relations is conservative.

From a classical point of view, recall that a Boolean algebra is profinite if and only if it is a
complete and atomic Boolean algebra [147]; see also [38, 39]. Keeping this in mind, Corollary 6.19
leads over to the following version of Sikorski’s theorem. We refer back to Chapter 5 as well.

Corollary 6.20 (CT). Every complete atomic Boolean algebra is injective in the category of
distributive lattices.

Let us now return to our setting that provides for finite codomains of lattice maps L → B
only.

6.2.6 Further consequences of completeness

Results about entailment relations can be used to facilitate proofs of certain classical theorems.
This advantage has also been pointed out in [82]. Of course, to this end we need to invoke
completeness. Here are some examples, the first of which we have already mentioned above
(Example 6.12).

Corollary 6.21 (CT). If L is a distributive lattice, then⋂
α:L→B

ker(α) = { 0L } ,

where α runs over lattice homomorphisms.
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6.3. Injective Heyting algebras

Proof. With the Nullstellensatz it is easy to see that ` (x, 0B) if and only if x = 0L. Now invoke
completeness.

A similar result can be shown about the intersection of all dual kernels, which contains only
the single element 1 ∈ L.

The following is an important application, cf. [147, Prop. I.2.5].

Corollary 6.22 (CT). If L is a distributive lattice and x, y ∈ L are such that x 
 y, then there
exists a homomorphism of lattices ϕ : L→ 2 such that ϕ(x) = 1 and ϕ(y) = 0.

Proof. By way of Theorem 6.10 for the Boolean algebra 2, we have x 6 y if and only if (x, 1), (y, 0) `.
Therefore, if x 
 y, then, by completeness and classical logic, there is an ideal element witnessing
(x, 1), (y, 0) 0. This is a homomorphism ϕ : L→ 2 of lattices such that ϕ(x) = 1 and ϕ(y) = 0.

As a corollary, one obtains an easy proof of the following.

Representation theorem (CT) Let L be a distributive lattice. The map

Φ : L→ Pow(Spec(`)), x 7→ { ϕ : ϕ(x) = 1 }

is a monomorphism of lattices. Therefore, every distributive lattice is isomorphic to a sub-
lattice of a powerset-lattice.

6.3 Injective Heyting algebras

A (bounded) lattice L is said to be a Heyting algebra if, for every pair of elements x, y ∈ L, there
is an element x→ y ∈ L such that, for every z ∈ L,

z 6 x→ y if and only if z ∧ x 6 y.

It is well-known that any Heyting algebra is distributive [147]. A homomorphism of Heyting
algebras is a lattice homomorphism that preserves implication (→). Every Boolean algebra B
is a Heyting algebra with x → y ≡ −x ∨ y. If L is a Heyting algebra, negation is defined by
¬x ≡ x → 0. A Heyting algebra L is a Boolean algebra if and only if ¬¬x = x for every x ∈ L.
An element x ∈ L is said to be regular if ¬¬x = x. The set L¬¬ of all regular elements of L with
the induced order is a Boolean algebra: it is a sub-meet-semilattice of L, with joins defined by
x ∨L¬¬ y ≡ ¬¬(x ∨ y). We refer to [147]. It is well known that Booleanization

¬¬ : L→ L¬¬, x 7→ ¬¬x

is a homomorphism of Heyting algebras [23].
As shown by Balbes and Horn [23], a Heyting algebra is injective (in the category of Heyting

algebras) if and only if it is a complete Boolean algebra. The proof of this result employs Sikorski’s
theorem and argues with the Boolean algebra of regular elements of a Heyting algebra. We adopt
the idea and consider the corresponding conservation result with regard to finite discrete Boolean
algebras.

To this end, let L be a Heyting algebra and B a finite discrete Boolean algebra. The entailment
relation of Heyting algebra morphisms L→ B is inductively generated by the set of all instances
of the following axioms.

(x, a), (x, b) ` (s)

(x, a), (y, b) ` (x ∧ y, a ∧ b) (∧)

(x, a), (y, b) ` (x ∨ y, a ∨ b) (∨)

(x, a), (y, b) ` (x→ y, a→ b) (→)

` (0L, 0B) (0)

` (1L, 1B) (1)

` { (x, a) : a ∈ B } (t)
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where a 6= b in (s).
Thus ` generates from the entailment relation of lattice maps L→ B by adjoining additional

axioms for implication.
Even though L need not be Boolean itself, the value of an arbitrary element x ∈ L under a

Heyting algebra homomorphism L→ B is determined by the value of ¬¬x, and vice versa:

Lemma 6.23. For every (x, a) ∈ L×B we have (x, a) a` (¬¬x, a).

Proof. Both (x, a), (0L, 0B) ` (¬x,¬a) and (¬x,¬a), (0L, 0B) ` (¬¬x,¬¬a) are instances of axiom
(→). By cut with ` (0L, 0B), and since ¬¬a = a in B, we get (x, a) ` (¬¬x, a). Once we have
this entailment, it follows that (x, a), (¬¬x, b) ` for every b 6= a. Therefore, we may cut (t) for x
accordingly, and infer the converse entailment, too.

Now let `′ denote the entailment relation of lattice maps L¬¬ → B, generated as before without
the axiom for implication. Notice that double negation induces an interpretation

(L×B,`)→ (L¬¬ ×B,`), (x, a) 7→ (¬¬x, a).

In the other direction we have an inclusion L¬¬ ↪→ L that preserves meets but not in general joins.
However, an axiom of the form

(x, a), (y, b) `′ (x ∨L¬¬ y, a ∨ b)

means

(x, a), (y, b) `′ (¬¬(x ∨ y), a ∨ b)

which can be inferred also with regard to `, by way of axiom (∨) and in view of Lemma 6.23. It
follows that we have a conservative interpretation of entailment relations. Employing Theorem
6.10, we get the formal Nullstellensatz for this entailment relation. Here is how to describe
inconsistent sets explicitly:

Corollary 6.24. For every finite subset X of L×B, the following are equivalent.

(i) X `

(ii) There is an atom e ∈ AtB such that∧
a>e

∧
¬¬Xa 6

∨
a>e

∨
¬¬X−a.

The general Nullstellensatz for ` derives from the description of inconsistent sets. Conservation
is an immediate consequence.

6.4 From conservation to complements

At the outset, the way in which we have generated the entailment relation in Section 6.2.2 did
not depend on the structure of B as a Boolean algebra, and might as well be carried out with any
finite lattice D instead. At least the ideal elements would exactly be the lattice maps L→ D. One
might thus be tempted to question whether and to what extent complements in D are necessary at
all in order to allow for a corresponding conservation result. Incidentally, the entailment relation
for 2-valued maps has an important application, demonstrated in [62, Theorem 11], which may
be used to resolve this question:

Proposition 6.25. If B, i : L× 2→ B is the distributive lattice generated by (L× 2,`), then B
is a Boolean algebra and L embeds in B.
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Now let us say that a finite distributive lattice D is conservative in case the following holds:
if L and L′ are distributive lattices, L being a sublattice of L′, then (L×D,`) ↪→ (L′ ×D,`′) is
a conservative extension of entailment relations, where ` and `′ are generated as in 6.2.2, with D
in place of B, respectively.

Proposition 6.26 (CT). For every finite distributive lattice D, the following are equivalent.

(i) D is complemented.

(ii) D is conservative.

(iii) D is injective.

Proof. We have already seen that every finite (discrete) Boolean algebra is conservative in the
sense specified before, and injectivity is a classical consequence of completeness. On the other
hand, let D be a finite distributive lattice and suppose that it is injective among distributive
lattices. This D can be considered a sublattice of a Boolean algebra B, applying, for instance,
Proposition 6.25.

D B

D
idD

∃f

By way of injectivity, it follows that D is the homomorphic image of a Boolean algebra, whence
Boolean itself.

What goes wrong in case D is not Boolean? Towards an answer, Proposition 6.26 might not
be considered all too helpful, taking into account that its proof invokes CT. There is another,
more concrete argument, which provides an explicit counterexample to conservation: let D be a
finite discrete distributive lattice, and suppose that d0 ∈ D is not complemented. We consider the
lattice 22 = { (0, 0), (0, 1), (1, 0), (1, 1) }. Let `⊆ 22 × D be the entailment relation of D-valued
lattice maps on 22, generated by axioms as in Section 6.2.2, with D in place of B. Let

X = { ((0, 0), 0D), ((1, 1), 1D), ((0, 1), d0) } .

For every d ∈ D we have X, ((1, 0), d) `. This is because d0 is supposed to not have a complement,
and therefore, for any d ∈ D, either we have d0 ∧ d 6= 0 or d0 ∨ d 6= 1. Involving appropriate
instances of (∧) or (∨) as well as corresponding instances of (s), we infer that for every d ∈ D the
set X, ((1, 0), d) is inconsistent with respect to `. Then we instantiate (t), which reads

` { ((1, 0), d) : d ∈ D } ,

and by way of cut we get X `. However, this set X is not inconsistent for the entailment relation
of D-valued maps on the sublattice { (0, 0), (0, 1), (1, 1) }. In fact, for this very entailment relation
X is an ideal element! We conclude that a finite distributive lattice, which lacks a complement
for at least one of its elements, cannot be conservative either.

6.5 Monteiro’s theorem

In the following, we assume every lattice L under consideration to be non-trivial, which is to say
that 0L 6= 1L. If L and D are lattices, by a ∨-semilattice map d : L→ D we understand a function
preserving joins as well as the top and bottom elements. Mind that every ∨-semilattice map is
order preserving. As for extension of lattice maps for which semilattice maps provide a bound,
the following generalisation of Sikorski’s extension theorem is possible [182].

Monteiro’s theorem (ZFC). Let C be a complete Boolean algebra. Let B be a Boolean algebra
and d : B → C a ∨-semilattice map. If A is a Boolean subalgebra of B and ϕ : A → C a
lattice map such that ϕ 6 d

∣∣
A

, then there is an extension ψ : B → C of ϕ with ψ 6 d.
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Even though this result does appear quite similar, Monteiro’s original proof differs substantially
from Sikorski’s. In this section we provide a constructive version of Monteiro’s result for complete
and atomic Boolean algebras. To this end, we need to modify the entailment relation we used
for Sikorski’s theorem in order to have d-dominated lattice maps as corresponding ideal elements.
The constructive version and proof will be obtained employing similar techniques as led to the
proof of Sikorski’s. The requirement of having a Boolean algebra emerges naturally and is applied
straightforwardly.

6.5.1 Bounds as axioms

We concentrate on the initial Boolean algebra 2 = { 0, 1 } with only two elements. Later we
will employ a slightly different strategy than the one leading to Sikorski’s theorem by means of
profiniteness. Let L and L′ be distributive lattices. We are now interested in extending lattice maps
L → 2 on sublattices L of L′, while maintaining bounds set by a ∨-semilattice map d : L′ → 2,
we add

` (x, 0) (x ∈ ker d)

with side condition as indicated. Equivalently, we may take the axiom of totality (t) as follows:

` (x, 0), (x, d(x)) (td)

leaving the other axioms unchanged. A subset α of L × 2 is an ideal element of ` if and only if
it is a map α : L→ 2 of lattices such that α(x) 6 d(x) for every x ∈ L. In other words, an ideal
element of ` is a lattice map α which is bounded (or dominated) by d, briefly α 6 d.

Here is the formal Nullstellensatz for `. Due to the fact that we are dealing with 2 rather
than with an arbitrary finite discrete Boolean algebra B, the proof actually simplifies the one of
Theorem 6.10 once the additional data for the bounding morphism is being ignored.

Theorem 6.27. Let X and Y be finite subsets of L× 2. The following are equivalent.

(i) X ` Y

(ii) There is z ∈ ker d such that ∧
X1 ∧

∧
Y0 6

∨
X0 ∨

∨
Y1 ∨ z.

Proof. Suppose that X ` Y . In order to show the desired inequality to hold for a certain z ∈ ker d,
we proceed by induction. The axioms are quickly checked, and as far as the rules are concerned,
we only need to concentrate on cut, say

...
X ` Y, (x, a)

...
X, (x, a) ` Y

X ` Y

employing the inductive hypothesis accordingly. Thus, in each of both cases a = 0 and a = 1, we
have ∧

X1 ∧
∧
Y0 ∧ x 6

∨
X0 ∨

∨
Y1 ∨ z

as well as ∧
X1 ∧

∧
Y0 6

∨
X0 ∨

∨
Y1 ∨ x ∨ z′

for certain elements z, z′ ∈ ker d. By way of cut in the lattice L we get∧
X1 ∧

∧
Y0 6

∨
X0 ∨

∨
Y1 ∨ z ∨ z′

where d(z ∨ z′) = d(z) ∨ d(z′) = 0.
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On the other hand, suppose that (ii) holds. Then we have(∧
X1 ∧

∧
Y0, 1) `

(∨
X0 ∨

∨
Y1 ∨ z, 1

)
.

By an inductive argument, axiom (∧) can be generalized so as to be applicable to arbitrary finite
meets. It follows that we have

X,−Y `
(∧

X1 ∧
∧
Y0, 1

)
and we get

X,−Y `
(∨

X0 ∨
∨
Y1 ∨ z, 1

)
by cut. Similarly,

X,−Y, (z, 0) `
(∨

X0 ∨
∨
Y1 ∨ z, 0

)
With axiom (s) we get

X,−Y, (z, 0) `

Since d(z) = 0, we have ` (z, 0), whence X,−Y ` by cut. Moving −Y to the right hand side by
the back-and-forth principle, we obtain X ` Y .

Again we have non-triviality of ` as a direct consequence of its formal Nullstellensatz.

Corollary 6.28. ` is non-trivial, i.e., ∅ 0 ∅.

Proof. According to Theorem 6.27, we have ∅ ` ∅ if and only if 1L ∈ ker d, which would amount
to 0 = 1 in 2.

Here are further consequences of the Nullstellensatz, similar to the observations made in Ex-
ample 6.12.

Corollary 6.29. For every x ∈ L, the following are equivalent.

(i) ` (x, 0)

(ii) x ∈ ker d.

Proof. By Theorem 6.27, if ` (x, 0), then there is z ∈ ker d such that x 6 z. Since d is monotone,
x ∈ ker d. On the other hand, if d(x) = 0, then ` (x, 0) is an axiom.

Corollary 6.30. For every x ∈ L, the following are equivalent.

(i) ` (x, 1)

(ii) There is z ∈ ker d such that x ∨ z = 1.

Proof. Direct application of Theorem 6.27.

Corollary 6.31. For every x ∈ L, the singleton set { (x, d(x)) } is consistent, i.e. (x, d(x)) 0.

Proof. Let x ∈ L and suppose that (x, d(x)) `. Cut with (td) yields ` (x, 0), whence d(x) = 0 by
Corollary 6.29. Therefore, we have (x, 0) ` according to our assumption, and ` (x, 0) is an instance
of (td). With another cut we obtain ∅ ` ∅ which is impossible by way of Corollary 6.28.

Semantically, the corollary means that for every x ∈ L there is a d-dominated lattice map
α : L→ 2 such that α(x) = d(x). This is an instance of a corollary of Monteiro’s theorem [182, 8.
Corollaire] for the two-element Boolean algebra.
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6. Some constructive extension theorems for distributive lattices

Remark 6.32. We may consider the dual notion of ∧-semilattice morphism, providing a lower
(rather than an upper) bound e which is to be maintained under extension. In this case, the axiom
of totality (t) would appear as

` (x, e(x)), (x, 1) (te)

We might as well consider both a lower and an upper bound at once, for which we would have to
put axiom (t) as

` { (x, a) : e(x) 6 a 6 d(x) } (te,d)

of course with the remaining axioms unchanged.

6.5.2 Conservation with bounds

Let L′ be a distributive lattice and let d : L′ → 2 be a ∨-semilattice morphism. Let L be a
sublattice of L′. We have two entailment relations, ` and `′ on L × 2 and L′ × 2, respectively,
the first of which generated with respect to the restricted ∨-semilattice map d

∣∣
L

: L→ 2. By way
of containment,

ι : (L× 2,`) ↪→ (L′ × 2,`′)

we have an interpretation of entailment relations. However, conservation is not immediate any-
more, in view of that the formal Nullstellensatz (Theorem 6.27) involves elements z which may
not belong to the sublattice L. We thus characterize lattices which do allow for conservation.

Definition 6.33. Let L′ be a distributive lattice, and let d : L′ → 2 be a ∨-semilattice morphism.
We say that a sublattice L of L′ is d-reductive if and only if, for all x, y ∈ L,

∃z ∈ ker d (x 6 y ∨ z) → ∃z0 ∈ ker d
∣∣
L

(x 6 y ∨ z0).

Example 6.34. If L′ is discrete, then

d(x) =

{
0 if x = 0L′

1 if x 6= 0L′

defines a ∨-semilattice map d : L′ → 2 for which ker d = 0 and thus every sublattice L of L′ is
d-reductive. It is clear that d is the largest ∨-semilattice map on L′. In particular, d dominates
every lattice map α : L′ → 2. In a classical setting, this d can always be defined as above by
distinction of cases. It follows that Monteiro’s theorem (see below) on extension of dominated
maps does indeed generalize the one of Sikorski.

Lemma 6.35. Let L be a sublattice of L′ and let d : L′ → 2 be a ∨-semilattice map. The following
are equivalent.

(i) L is d-reductive.

(ii) The inclusion
(L× 2,`) ↪→ (L′ × 2,`′)

is a conservative interpretation.

Proof. Suppose that L is d-reductive and let X and Y be finite subsets of L × 2. By Theorem
6.27, if X `′ Y , then there is z ∈ ker d such that∧

X1 ∧
∧
Y0 6

∨
X0 ∨

∨
Y1 ∨ z.

Then, since L is d-reductive, there is z0 ∈ ker d
∣∣
L

with∧
X1 ∧

∧
Y0 6

∨
X0 ∨

∨
Y1 ∨ z0

126



6.5. Monteiro’s theorem

and this translates back to X ` Y , again by way of Theorem 6.27.
On the other hand, suppose that ι is conservative, and let x, y ∈ L and z ∈ ker d be such that

x 6 y ∨ z. By Theorem 6.27, we see that

(x, 1) `′ (y, 1)

and thus (x, 1) ` (y, 1) by conservation. Employing Theorem 6.27 once more, we get z0 ∈ ker d
∣∣
L

such that x 6 y ∨ z0.

Remark 6.36. In the general context of distributive lattices, d-reductiveness may fail bluntly,
hence so may conservation and, semantically, extension of dominated lattice maps [20]. A simple
counterexample is given by the sublattice L = { (0, 0), (0, 1), (1, 1) } of 22, the latter being endowed
with the map d : 22 → 2 given by projection to the second component. For x = (1, 1) ∈ L and
y = (0, 1) ∈ L we can write

(1, 1) 6 (0, 1) ∨ (1, 0),

in 22, where d(1, 0) = 0. However, there is no inequality x 6 y ∨ z with z ∈ ker d
∣∣
L

.

There is one natural hypothesis which provides d-reductiveness and moves us closer to Mon-
teiro’s result:

Lemma 6.37. If B is a Boolean algebra and d : B → 2 a ∨-semilattice map, then every Boolean
subalgebra of B is d-reductive.

Proof. Let A be a Boolean subalgebra of B, let x, y ∈ A and z ∈ ker d, and suppose that x 6 y∨z.
We have

−y ∧ x 6 −y ∧ (y ∨ z) = −y ∧ z 6 z,

whence d(−y ∧ x) = 0. Moreover,

x 6 y ∨ x = y ∨ (−y ∧ x).

Therefore, for the required element of the subalgebra we may take z0 = −y ∧ x ∈ A.

Notice that in the proof of Lemma 6.37 only the fact that y has a complement was used.

6.5.3 Monteiro’s theorem

It remains to adapt our strategy for profinite codomains (Chapter 5) such as to accommodate
dominance and to provide for Monteiro’s theorem for complete atomic Boolean algebras. Rather
than doing so, we present a different route that could also have been employed towards Sikorski’s
theorem above. Let L be a distributive lattice and let κ be a discrete set. Suppose that d : L→ 2κ

is a ∨-semilattice map. We now take the set

S =
⋃
ı∈κ

L× 2× { ı }

for our domain of discourse and consider the entailment relation ` that is inductively generated
by all instances of the following axioms.

(x, a, ı), (x, b, ı)  (s [a 6= b])

(x, a, ı), (y, b, ı)  (x ∧ y, a ∧ b, ı) (∧)

(x, a, ı), (y, b, ı)  (x ∨ y, a ∨ b) (∨)

 (0L, 0Bı , ı) (0)

 (1L, 1Bı , ı) (1)

 (x, 0B , ı) (d [x ∈ kerπı ◦ d])

 { (x, a, ı) : a ∈ Bı } (t)
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6. Some constructive extension theorems for distributive lattices

with side condition as indicated, where πı : 2κ → 2 denotes the projection corresponding to ı ∈ κ.
As can easily be verified, ideal elements of ` correspond with d-dominated lattice maps L → 2κ.
With an inductive argument, it is straightforward to characterize , compare also 5.4.2. To this
purpose, if X is a finite subset of S and ı ∈ I, then we write

Xı = { (x, a) : (x, a, ı) ∈ X }

Moreover, for every ı ∈ κ we have an entailment relation `ı that describes πı ◦d-dominated lattice
maps L→ 2.

Proposition 6.38. Let X be a finite subset of S. The following are equivalent.

1. X 

2. There is ı ∈ κ such that Xı `ı.

The following is an immediate consequence and may be considered a constructive and gener-
alized version of Monteiro’s theorem.

Theorem 6.39. Let L and L′ be distributive lattices, L being a sublattice of L′, and let κ be a
discrete set. Let d : L′ → 2κ be a ∨-semilattice map. Let  and ′ be the entailment relations of
d
∣∣
L

-dominated and d-dominated lattice maps L → 2κ and L′ → 2κ, respectively. If L is πı ◦ d-
reductive for every ı ∈ κ, then the inclusion

(L× 2× κ,) ↪→ (L′ × 2× κ,′)

is a conservative interpretation of entailment relations.

For discrete distributive lattices L′, Theorem 6.39 directly leads over to the unbounded con-
structive version of Sikorski’s theorem: define a ∨-semilattice map d as in Example 6.34 in which
case both dominance and reductiveness are evident.

Instantiating Theorem 6.39 with Boolean algebras A and B in place of L and L′, respectively,
the former being a Boolean subalgebra of the latter, we obtain a constructive version of Monteiro’s
theorem by means of Lemma 6.37. From the point of view of semantics, extendability of dominated
homomorphisms of Boolean algebras is a straightforward classical consequence of the Completeness
Theorem for entailment relations.

Corollary 6.40 (CT). Let C be a complete and atomic Boolean algebra. Let B be a Boolean
algebra and d : B → C a ∨-semilattice map. If A is a Boolean subalgebra of B and ϕ : A → C a
lattice map such that ϕ 6 d

∣∣
A

, then there is an extension ψ : B → C of ϕ with ψ 6 d.

6.6 Conclusion

By using Scott’s notion of entailment relation, we spelled out the constructive content of Sikorski’s
theorem in the form that every complete and atomic Boolean algebra is injective in the category
of distributive lattices. By adding further axioms, the same procedure led us to a constructive
version of Monteiro’s theorem. The corresponding classical version can be canonically retrieved
by applying the principle of completeness for entailment relations.

Any concrete outcome aside, we stress that the ideas employed here do not strictly depend
on the lattice structure, but more generally could be applied to other categories of algebraic
structures and their corresponding homomorphisms. For instance, it is easy to figure out how to
define entailment relations describing group homomorphisms with finite codomain. Nevertheless,
a proper formal Nullstellensatz cannot always be found, as this relates to certain properties of the
structure involved3.

3In this chapter, being a Boolean algebra.
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6.6. Conclusion

We keep for future research a general investigation into the approach taken here, along with
further case studies on injectivity. To this end, it may be necessary to employ a notion of entailment
relation which allows for infinite sets of conclusions in order to force ideal elements to be total.
This could be attained in the context of dynamical algebra [92, 165, 169], an analogous logic-free
approach employed in constructive algebra.
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Chapter 7

Ordering groups syntactically

This chapter is based on [254].

7.1 Introduction

In this chapter, some steps are taken towards an understanding of certain topological aspects
that arise in the theory of ordered groups from the point of view of constructive mathematics. A
starting point of motivation is a seminal result due to Sikora [235], asserting that if n > 1, then the
collection of orders of Zn which are compatible with the abelian group structure is a Cantor space
if suitably topologized. In order to prove his result, Sikora made use of the famous topological
characterization of the Cantor set due to Brouwer [55]. This characterization is well-known to
have an algebraic reading: any two countable atomic Boolean algebras are isomorphic [156].

Starting with an arbitrary group G, we consider the entailment relation of positive cone of
G. Every ideal element of this entailment relation corresponds with a strict linear order of G.
This, as we hasten to add, is an idea that for abelian groups has been put forward repeatedly ever
since the importance of entailment relations for abstract algebra was pointed out [62, 79]. The
fundamental theorem of entailment relations [62] then allows for a topological reading, and paves
the way for a new proof of Sikora’s result by means of Stone duality. However, up to this point
our reasoning is constructive throughout. In particular, our approach does not require us to put
forward any argument involving an abstract order conceived as a completed totality—more often
than not, the existence of which is intimately linked with a suitable form of the Axiom of Choice
[114, 137].

This chapter is structured as follows. First, in Section 7.2, we study the entailment relation
of positive cone of a group, and we give a constructive version of the well-known orderability test
for groups [114], the contrapositive of which in fact provides the formal Nullstellensatz for the
entailment relation at hand. The case of abelian groups leads over to a constructive version of
Levi’s theorem in Section 7.3, to the effect that an abelian group is torsion-free if and only if
the entailment relation of positive cone of G does not collapse. In Section 7.4, we consider the
entailment relation of positive cone of Zn, and we show that the corresponding generated lattice
is atomless. This carries over to discrete torsion-free finite-rank groups in Section 7.5. In Section
7.6, we briefly indicate how to obtain Sikora’s theorem by a duality argument.

7.2 Entailment and ordered groups

Let G be a group, with identity element e ∈ G. We start with the single-conclusion entailment
relation B of normal subsemigroup of G, inductively generated by the set of all instances of the
following axioms of multiplicative closure and normality :

a, bB ab (m)

aB xax−1 (n)
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7. Ordering groups syntactically

By introducing this single-conclusion entailment relation, we provide a convenient shorthand no-
tation which will be used later on. If U is a finite subset of G, then

UB = { a ∈ G : U B a }

indeed is the normal subsemigroup finitely generated by U .

Lemma 7.1. Let U be a finite subset of G and let a ∈ G. The following are equivalent.

1. U B a

2. There are a1, . . . , ak ∈ U and x1, . . . , xk ∈ G such that

a = x1a1x
−1
1 · · ·xkakx

−1
k

where k > 1.

Proof. If a can be written as a product x1a1x
−1
1 · · ·xkakx

−1
k with ai ∈ U , then this can be

disassembled along the initial entailments, such as to yield U Ba. Conversely, since B is generated
by axioms, we can reason inductively. This is straightforward for (m) and (n), as well as for
reflexivity (R) and monotonicity (M). As regards transitivity (T), suppose that

a = x1a1x
−1
1 · · ·xkakx

−1
k and b = y1b1y

−1
1 · · · y`b`y

−1
`

where a1, . . . , ak ∈ U ∪ { b } and b1, . . . , b` ∈ U . Whenever we have ai = b in the former, we can
substitute, in which case

xiaix
−1
i = xiy1b1(xiy1)−1 · · ·xiy`b`(xiy`)−1,

and we obtain an expression as required.

Now we restrict attention to non-identities, each of which to be considered an abstract state-
ment. Hence we take

S = G \ { e }

as our domain of discourse. On top of the restricted axioms of B we put multi-conclusion axioms
describing totality and single-valuedness, that is, we consider the entailment relation ` on S that
is inductively generated by all instances of the following axioms:

a, a−1 ` (s)

a, b ` ab (m [ab 6= e])

a ` xax−1 (n)

` a, a−1 (t)

with side condition on the second axiom (m) as indicated, i.e., we postulate axiom (m) only in
case b 6= a−1. The identity element e will play the role of “falsity” later on and allows to capture
inconsistency of finite subsets of S in terms of B.

An ideal element α of ` is nothing but the positive cone for a strict linear order < of G that is
compatible with the group structure—given α, it is well-known that such an order can be obtained
by stipulating [114]

a < b ≡ a−1b ∈ α.

Accordingly, we say that ` is the entailment relation of positive cone of G.

Remark 7.2. We restrict attention to bi-orderable groups, as opposed to left-, or right-orderable
groups [69]. However, later on our focus will be on abelian groups, in which context the notions
of bi-, left-, and right-orderability coincide.
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7.2. Entailment and ordered groups

Example 7.3. We take this example from [69]. Consider the fundamental group K of the Klein
bottle. This group has presentation

〈a, b | aba−1 = b−1〉.

The entailment relation ` of positive cone of K has two instances of axiom (n)

b ` aba−1

b−1 ` a−1b−1a

which according to the generating relation reduce to

b ` b−1

b−1 ` b

By cut with totality (t) and single-valuedness (s), it follows that ` collapses:

` b, b−1 b−1 ` b
` b

b ` b−1 b, b−1 `
b `

`

From the point of view of semantics, K cannot be ordered in such a way as to respect the group
structure [69].

Lemma 7.4. Let U and V be finite subsets of S and let a ∈ S. The following are equivalent.

1. U ` V, a

2. U, a−1 ` V

Proof. By cut with (s) or (t), respectively.

Due to the property described in the lemma, in order to give an explicit description of `, it
actually suffices to concentrate on characterizing empty-conclusion entailment U ` only.

Lemma 7.5. Let U be a finite subset of S. If U B e, then U is inconsistent, i.e., U `.

Proof. In view of Lemma 7.1, suppose that e = x1a1x
−1
1 · · ·xkakx

−1
k , with a1, . . . , ak ∈ U . We

must have k > 1, thus we obtain

a1, x2a2x
−1
2 · · ·xkakx

−1
k `

from (s) by cut with (n). We further have

x2a2x
−1
2 , . . . , xkakx

−1
k ` x2a2x

−1
2 · · ·xkakx

−1
k

and therefore

a1, x2a2x
−1
2 , . . . , xkakx

−1
k `

Successive application of transitivity with (n) finally yields

a1, . . . , ak `

Example 7.6. We adapt an example taken from [114]. Let n > 1 be an integer and let a ∈ G.
If the equation xn = a has two different solutions, then ` collapses. To this end, notice first that
for all a, b ∈ G, and n > 1,

ab−1 B anb−n
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holds. For this we can argue by induction on n, starting with an instance of reflexivity (R); once
we have ab−1 B an−1b−(n−1), we make use of

an−1b−(n−1) B anb−(n−1)a−1

along with
anb−(n−1)a−1, ab−1 B anb−n

which both are axioms. With transitivity we obtain ab−1B anb−n. Now suppose that x and y are
such that xn = yn, yet x 6= y and thus xy−1 ∈ S. Since xy−1Bxny−n we have xy−1Be. Similarly
we get yx−1 B e. By Lemma 7.5 it follows that we have

xy−1 ` and yx−1 `

with which we can cut the corresponding instance of totality (t)

` xy−1, yx−1

twice. Now we see that ` collapses.

Lemma 7.7. Let U be a finite subset of S. If there are a1, . . . , an ∈ S such that, for any choice
of ε1, . . . , εn ∈ { 1,−1 },

U, aε11 , . . . , a
εn
n B e,

then U is inconsistent.

Proof. Suppose that
U, aε11 , . . . , a

εn
n B e

for whatever choice of ε1, . . . , εn ∈ { 1,−1 }. According to Lemma 7.5, we get

U, aε11 , . . . , a
εn
n `

Cut with appropriate instances of totality (t) leads to

U, { ai : εi = 1 } ` { aj : εj = −1 } .

Keep in mind that ε1, . . . , εn were taken arbitrarily from { 1,−1 }. It follows that for any partition
A ∪B of { a1, . . . , an } there is a corresponding entailment

U,A ` B.

Now that any one of these entailments exhibits the elements of { a1, . . . , an } either conjunctively to
the left, or disjunctively to the right of the turnstile, and since both occurs, they can be considered
eliminands [76], whence can be cancelled (see also Lemma 4.2). In other words, what remains after
successive application of transitivity is the set of retinends, and this is nothing but U , therefore

U `

just as we were required to show.

Proposition 7.8 (Formal Nullstellensatz). Let a1, . . . , ak, b1, . . . , b` ∈ S. The following are equiv-
alent.

1. a1, . . . , ak ` b1, . . . , b`

2. There are c1, . . . , cn ∈ S such that, for any choice of ε1, . . . , εn ∈ { 1,−1 },

a1, . . . , ak, b
−1
1 , . . . , b−1

` , cε11 , . . . , c
εn
n B e,

with n > 0.
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7.2. Entailment and ordered groups

Proof. 1 =⇒ 2: We are dealing with an inductively generated entailment relation, whence we
may argue by induction. This means that we have to go through the axioms first, and then
to address the rules. The former are straightforwardly checked. For instance, as regards (n),
i.e., axioms of the form a ` xax−1, notice that we have entailments

aB xax−1 and xax−1, xa−1x−1 B e

which by transitivity of B yield a, xa−1x−1Be. Concerning the rules of reflexivity (R), mono-
tonicity (M), and transitivity (T), we really may only concentrate on the latter. Consider
an instance of transitivity

...
a1, . . . , ak, a ` b1, . . . , b`

...
a1, . . . , ak ` b1, . . . , b`, a

a1, . . . , ak ` b1, . . . , b`
for which by induction we can suppose that there are elements c1, . . . , cn and d1, . . . , dm such
that for any choice of ε1, . . . , εn, δ1, . . . , δm ∈ { 1,−1 } we have

a1, . . . , ak, b
−1
1 , . . . , b−1

` , a, cε11 , . . . , c
εn
n B e

as well as
a1, . . . , ak, b

−1
1 , . . . , b−1

` , a−1, dδ11 , . . . , d
δm
m B e.

Collecting these elements, it is clear that

a, c1, . . . , cn, d1, . . . , dm

are such that for any choice of γ0, γ1, . . . , γn, γn+1, . . . , γn+m+1 ∈ { 1,−1 } we have

a1, . . . , ak, b
−1
1 , . . . , b−1

` , aγ0 , cγ11 , . . . , c
γn
n , d

γn+1

1 , . . . , dγn+m+1
m B e,

just as required.

2 =⇒ 1: The converse is a combination of Lemma 7.4 and Lemma 7.7.

Instantiating Proposition 7.8 with the empty subset, we can characterize the collapse of `.

Corollary 7.9. The following are equivalent.

1. ` collapses

2. There are a1, . . . , an ∈ S such that, for any choice of ε1, . . . , εn ∈ { 1,−1 },

aε11 , . . . , a
εn
n B e,

with n > 1.

Proof. Suppose that ` collapses, which by Proposition 7.8 is to say that the empty subset is incon-
sistent, and thus that there are a1, . . . , an ∈ G such that, for any choice of elements ε1, . . . , εn ∈
{ 1,−1 },

aε11 , . . . , a
εn
n B e.

Yet we cannot have n = 0, since it is impossible to infer an element of G from the empty subset
U = ∅ by means of B. The converse is a direct consequence of the formal Nullstellensatz, too.

Turning the corollary upside down and reading it contrapositively, with the completeness the-
orem for entailment relations and classical logic we obtain the well-known classical criterion for a
group to be linearly orderable [114, 175, 193], i.e., over ZFC, a group G is orderable if and only if
for any finite subset { a1, . . . , an } of G \ { e } there are εi ∈ { 1,−1 } such that e /∈ 〈aε11 , . . . , aεnn 〉,
where the latter set denotes the normal subsemigroup of G which is generated by the elements
aε11 , . . . , a

εn
n .

In proof theory, orderability criteria for groups recently have been used to generate hyperse-
quent calculi for varieties of lattice-ordered groups, by which new syntactic proofs of theorems
which arise in the theory of ordered groups can be obtained [71].
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7.3 Abelian groups and Levi’s theorem

From now on, let G denote an abelian group, which in the following we will always write additively.
Let B be the single-conclusion entailment relation of subsemigroup of G. Notice that axiom (n)
now is redundant due to commutativity, hence B is generated by all instances of the only axiom

a, bB a+ b

where a, b ∈ G. If U is a finite subset of G and a ∈ G, then we have U B a if and only if there
are a1, . . . , ak ∈ U and n1, . . . , nk > 1, where k > 1, such that

∑k
i=1 niai = a. Next let ` be the

entailment relation of positive cone of G, with underlying set S = G \ { 0 }, and generated by all
instances of the following axioms:

a,−a ` (s)

a, b ` a+ b (a [ab 6= e])

` a,−a (t)

with side condition as indicated.
Recall that an abelian group G is torsion-free [181] if, for every integer n > 1 and every a ∈ G,

if na = 0, then a = 0. In this vein, an element a ∈ G is a torsion element if it is of finite order,
which is to say that there is n > 1 such that na = 0.

Proposition 7.10. The following are equivalent.

1. ` collapses.

2. G has a non-zero torsion element.

Proof. 1 =⇒ 2: If ` collapses, then, by way of Corollary 7.9, there are a1, . . . , an ∈ S, with
n > 1, such that for whatever choice of ε1, . . . , εn ∈ { 1,−1 } we have

ε1a1, . . . , εnan B 0.

In the context of abelian groups this means that there are m1, . . . ,mn ∈ N, at least one of
which is non-zero, such that

n∑
i=1

εimiai = 0.

While our claim is evident in case n = 1, a straightforward argument by induction on n
allows for drawing the conclusion in general.

2 =⇒ 1: Conversely, suppose that na = 0, where n > 1 and a 6= 0. Because of a B na and
−aB−na, the entailment relation ` collapses according to Corollary 7.9.

If G is torsion-free, then G does not have a non-zero torsion element. The converse holds if G
is discrete1, which amounts to

∀a ∈ G ( a = 0 ∨ a 6= 0 ).

The contrapositive of Proposition 7.10 thus reads as follows and provides a constructive version
of Levi’s theorem.

Corollary 7.11. Let G be discrete. The following are equivalent.

1. ` is consistent.

2. G is torsion-free.

1Of course we mean discrete in the sense specified above, rather than referring to the topological notion of a
discrete group.
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Remark 7.12. From a semantical point of view, i.e., by way of completeness for entailment
relations, Corollary 7.11 gives rise to Levi’s theorem that an abelian group is orderable if and only
if it is torsion-free [114, 160, 161]. For sake of comparison, let us recall the well-known classical
argument: the group in question can be embedded in a torsion-free divisible group D. With a
maximal independent set in D, linearly ordered in an arbitrary way, it is possible in turn to obtain
a linear order on G [114, 161].

For later use, we need to describe the trace [209] of `, i.e., the set of all single-conclusion
instances U ` a. To this end, we first take note of the following, which is straightforward to show.

Lemma 7.13. Suppose that G is torsion-free. Let U be a finite subset of G and let a ∈ G. The
following rule is provable:

U, aB 0 U,−aB 0

U B 0

Corollary 7.14. Suppose that G is torsion-free. Let U be a finite subset of S and a ∈ S. The
following are equivalent.

1. U ` a

2. There are a1, . . . , ak ∈ U and n1, . . . , nk > 1,m > 0 such that

k∑
i=1

niai = ma,

with k > 1.

Proof. With Lemma 7.4, Proposition 7.8, and Lemma 7.13 we see that U ` a is equivalent to
U,−a B 0. This in turn means that there are b1, . . . , b` ∈ U ∪ {−a } and n1, . . . , n` > 1, where

` > 1, such that
∑`
j=1 njbj = 0. We cannot have ` = 1, nor can we have bj = −a for all 1 6 j 6 `,

for otherwise G would turn out to have a non-zero torsion element.

The description given in Corollary 7.14 instantiates the entailment relation of linear order for
an abelian group as mentioned in [79]. As a consequence of Corollary 7.14, if G is a torsion-free
abelian group, then there are no tautologies ` a, and neither are there inconsistent singletons a `,
due to Lemma 7.4.

As illustrated in [151], similar results can be obtained by means of certain formal systems
which likewise treat group elements as abstract statements.

7.4 Entailment on integer lattices

We turn our attention to a finitary version of Sikora’s theorem. In this section we consider the
integer lattice Zn (n > 1) as an abelian group with component-wise addition. Accordingly, we
take S = Zn \ { (0, . . . , 0) } as our domain of discourse, and study the entailment relation ` of
positive cone of Zn, inductively generated and explicitly described as in Section 7.3.

Exhibiting an order on Zn does of course not require foundationally perhaps controversial tools
to begin with. For instance, the natural discrete order on Z gives way to the lexicographic order
on Zn which too respects the group structure. As indicated in [69], a plethora of orderings may
be specified on Z2, picking some v = (v1, v2) ∈ R2 with irrational slope and postulating, for every
a, b ∈ Z2 \ { (0, 0) },

a < b ≡ a · v < b · v

where · denotes the dot product. However, employing a classical notion of real number, for this
to be linear classical reasoning is necessary [52, 56, 181].
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7. Ordering groups syntactically

Recall that an abelian group G is said to be divisible [181] if, for every non-zero integer n and
every a ∈ G, there exists b ∈ G such that a = nb. If G is an abelian group and x1, . . . , xm are
indeterminates, let G {x1, . . . , xm } be the group of Z-affine forms on G, i.e., polynomials

a+

m∑
i=1

zixi

with a ∈ G and z1, . . . , zm ∈ Z.
The following theorem provides us with a geometric tool for locating finite consistent sets of

abstract statements. We refer to [92] and [83].

Positivstellensatz. Let G be a discrete divisible linearly ordered group. Let x1, . . . , xm be
indeterminates and let R=0, R>0, and R>0 be finite subsets of G {x1, . . . , xm }. Consider the
associated system S of sign conditions

z(ξ) = 0 if z ∈ R=0, p(ξ) > 0 if p ∈ R>0, s(ξ) > 0 if s ∈ R>0.

There is an algorithm giving the following answer:

1. either an algebraic certificate telling that the system S is impossible in G,

2. or a point ξ = (ξ1, . . . , ξm) ∈ Gm realising the system S .

An algebraic certificate is an identity

s+ p+ z = 0 in G {x1, . . . , xm } ,

where s is a (nonempty) sum of elements of R>0 ∪G>0, p is a (possibly empty) sum of elements
of R>0 ∪G>0, and z is a Z-linear combination of elements of R=0.

Recall that in this section ` denotes the entailment relation of positive cone of Zn, where
n > 2, considered over the set S = Zn − { (0, . . . , 0) }, every element of which is to be considered
an abstract statement.

Corollary 7.15. Let U be a finite subset of S and b ∈ S. If U ∪ { b } is consistent, then there is
a0 ∈ S such that a0 · b > 0, and a0 · a > 0 whenever U ` a.

Proof. We can write U = { a1, . . . , ak }, where for each j ∈ { 1, . . . , k } we have

aj = (aj1, . . . , ajn).

Similarly,

b = (b1, . . . , bn).

To get in the setting of the Positivstellensatz, we consider Q as the underlying discrete divisible
group, naturally ordered, and we put

R>0 =

{
n∑
i=1

a1ixi, . . . ,

n∑
i=1

akixi

}

and

R>0 =

{
n∑
i=1

bixi

}
.

Scaling it to an appropriate length, any realizer ξ = (ξ1, . . . , ξn) ∈ Qn for this system of sign
conditions determines an element a0 ∈ S as required. Thus we need to show that the first
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7.4. Entailment on integer lattices

alternative postulated by the Positivstellensatz is impossible. In fact, for there would be integers
λ > 0 and µ1, . . . , µk > 0 such that

λ

n∑
i=1

bixi +

k∑
j=1

µj

n∑
i=1

ajixi = 0.

Then we could collect coefficients in order to see that, for every i ∈ { 1, . . . , n },

λbi +

k∑
j=1

µjaji = 0,

so that we have

λb+

k∑
j=1

µjaj = 0.

Notice that the latter expression means U, bB 0, whence U, b `. However, U ∪ { b } is supposed to
be consistent.

Another possible way to obtain this corollary is by a suitable version of Farkas’ lemma, e.g., by
an instance of the recently obtained discrete version of Farkas’ Lemma [28].2 Notice that Corollary
7.15 provides us with a geometric interpretation for entailment. Let U be a finite subset of S and
let b ∈ S. If U ∪ { b } is consistent, then U 0 −b. If a0 ∈ S is such as postulated in Corollary 7.15,
then the hyperplane

H(a0) = { r ∈ Qn : a0 · r = 0 }

separates the cone generated by U from −b. Similarly, we know that every inhabited consistent
subset of S is located to one side of a certain hyperplane.

The next proposition is crucial for the purpose of this chapter.

Proposition 7.16. Let U be a finite consistent subset of S. There is a ∈ S such that

U 0 a and U 0 −a.

Proof. We may suppose that U is inhabited and write b =
∑
a∈U a. Notice that b 6= 0, since

U is consistent. Since U ` b, the one-point extension U ∪ { b } is consistent, as well. Now let
a0 ∈ S be an abstract statement according to Corollary 7.15, i.e., one such that a0 · b > 0, and
a0 · a > 0 whenever U ` a. We consider the hyperplane H(a0) (as sitting in Qn), perpendicular
to a0, for which we can construct an integer orthogonal basis b1, . . . , bn−1. Next we employ the
Positivstellensatz again, which for every c ∈ S provides a way to decide

U ` c or U 0 c.3

If, for a certain i ∈ { 1, . . . , n− 1 }, we get both

U 0 bi and U 0 −bi,

2In fact, the Positivstellensatz can be considered a variant of Farkas’ lemma with regard to rational linear
programming [92]. I am grateful to Stefan Neuwirth for having brought this to my attention.

3To this end, write U = { a1, . . . , ak }, where aj = (aj1, . . . , ajn), and c = (c1, . . . , cn). Consider over Q the
system of sign conditions given by

R=0 =


k∑
j=1

aj1xj − c1, . . . ,
k∑
j=1

ajnxj − cn

 and R>0 = { x1, . . . xn } .

Any realizer for this system witnesses U ` c.
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7. Ordering groups syntactically

then we have already obtained an element as required. Otherwise, after relabeling if necessary, we
may assume U ` bi for every i ∈ { 1, . . . , n− 1 }. In the following, let

c =

n−1∑
i=1

bi,

and put

U=0 = { a ∈ U : a0 · a = 0 } and U>0 = { a ∈ U : a0 · a > 0 } .

Notice that U = U=0 ∪ U>0. For every a ∈ U>0, it is possible to find an integer ka > 0 which is
such that

b1, . . . , bn−1, a0 − kac ` a. (†)

Indeed, for we can certainly write

a =

n−1∑
i=1

ribi + sa0

for rational numbers r1, . . . , rn−1 among of which some may be negative, along with a strictly
positive s ∈ Q. Clearing the denominators, we get an equation

ma =

n−1∑
i=1

mibi +m0a0

with certain integers m,m1, . . . ,mn−1, and m0 > 0. Now we put

ka = max { |m1|, . . . , |mn−1| }

with which we can write

ma =

n−1∑
i=1

(mi +m0ka)bi +m0(a0 − kac),

as required for (†). Next consider

k = max { ka : a ∈ U>0 } .

Whenever k > ka for a certain a ∈ U>0, notice that we have entailments

b1, . . . , bn−1 ` (k − ka)c and a0 − kc, (k − ka)c ` a0 − kac

with which we obtain

b1, . . . , bn−1, a0 − kc ` a

by successive cut with (†). It follows that we have

U=0, b1, . . . , bn−1, a0 − kc ` a (‡)

universally for every a ∈ U . We claim that

U 0 a0 − (k + 1)c and U 0 −a0 + (k + 1)c.

In fact, on the one hand we have a0 · (−a0 + (k + 1)c) < 0 which by construction of a0 forbids
U ` −a0 + (k + 1)c right away. On the other hand, let us assume that U ` a0 − (k + 1)c. Along
with (‡) and finitely many cuts we obtain

U=0, b1, . . . , bn−1, a0 − kc ` a0 − (k + 1)c
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7.4. Entailment on integer lattices

Therefore, there are c1, . . . , c` ∈ U=0 ∪ { b1, . . . , bn−1 } and λ1, . . . , λ`, λ, µ > 0 such that

∑̀
i=1

λici + λ(a0 − kc) = µ(a0 − (k + 1)c)

where at least one of λ1, . . . , λ`, λ is non-zero. Keeping in mind that a0 · a = 0 for every a ∈
U=0 ∪ { b1, . . . , bn−1 }, it follows that λ = µ, and thus

∑̀
j=1

λjcj +

n−1∑
i=1

λbi = 0,

by which we see that U=0, b1, . . . , bn−1 `. Since U ` bi for every i 6 n − 1, it follows that U `.
But U is supposed to be consistent, whence the assumption cannot be maintained. We have thus
found an element as required.

Notice that if U 0 a, then U 0 ka for every k > 1. For a finite consistent subset U of S there
are, in fact, infinitely many elements not in the scope of U . In other words, Proposition 7.16 tells
us that a linear order on the group Zn cannot be determined by finitely many elements only: if U
is a finite and consistent subset of S, then the deductive closure of U under the trace [209] of `,
i.e., the set

U` = { a ∈ S : U ` a }

of all immediate consequences of U , models the restricted entailment relation generated by the
axioms for single-values (s) and additivity (a). In this manner U cannot, however, determine a
total model.

The finitely many decisions we had to make with regard to a basis of the hyperplane H(a0) in
the above proof of Proposition 7.16 is redundant under the assumption that U already is decisive,
which would be the case for an atomic conjunction.

Corollary 7.17. If n > 2, then the entailment relation ` of positive cone of Zn does not admit
an atomic conjunction.

Proof. Any finite consistent subset of S fails to be decisive for `.

Remark 7.18. We briefly discuss a classical approach to Corollary 7.17, which is to be compared
with common proofs of Sikora’s theorem [69, 235]. Suppose that A ⊆ S is an atomic conjunction.
Since this A is supposed to be consistent, completeness exhibits a model α of ` containing A. As
explained in [69], involving an ad hoc case distinction on α, this α may be slightly perturbed in
such a way as to obtain a different model α′ of ` which still contains the finite set A. Since α 6= α′,
by classical reasoning there is a ∈ S such that a ∈ α and −a ∈ α′. Since A is decisive, we would
have either A ` a or else A ` −a, which in turn would yield a,−a ∈ α or a,−a ∈ α′. However,
models do not contain inconsistent subsets.

Here and in the following sections we write L(G) for the distributive lattice generated by the
entailment relation of positive cone of a group G, considered over S = G \ { 0 }. The following is
a finitary version of Sikora’s theorem.

Corollary 7.19. L(Zn) is atomless for n > 2.

How this corollary gives way to the usual version of Sikora’s theorem will be explained in the
final Section 7.6. Now we turn our attention to a generalization of Corollary 7.19 for torsion-free
groups of finite rank.
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7. Ordering groups syntactically

7.5 Rank

Let G be an abelian group, and let ` be the entailment relation of positive cone of G. Notice that
the corresponding generated distributive lattice L(G) is a Boolean algebra. In fact, the axioms
for totality (t) and single-values (s) force L(G) to be complemented: for every a ∈ S = G \ { 0 }
we have

i(a) ∧ i(−a) 6 0 and 1 6 i(a) ∨ i(−a).

by interpretation, whence i(−a) complements i(a) in L(G). Since every element x ∈ L(G) can be
written in disjunctive normal form [62] in terms of elements each of which is complemented, any
such x too has a complement.

Now we bring into play the notion of rank [21]. Recall [181] that a torsion-free abelian group
is said to be of rank n if G⊗Q is an n-dimensional discrete vector space over Q. We first consider
the case of rank 1.

Lemma 7.20. Let G be a torsion-free abelian group of rank 1. If a and b are non-zero elements
of G, then

a a` b or a a` −b.
Here we write a a` b for the conjunction of a ` b and b ` a.

Proof. In a torsion-free abelian group of rank 1 any two non-zero elements have a common non-
zero multiple [181]. We thus have na = mb for certain integers n,m of which at least one can be
taken positive. The conclusion is immediate in view of Corollary 7.14

Proposition 7.21. If G is a torsion-free abelian group of rank 1, then L(G) ∼= 22, where 22 is
the Boolean algebra with four elements.

Proof. By way of Lemma 7.20, for all a, b ∈ S we have i(a) = i(b) or i(a) = −i(b). Now pick
any non-identity a of G whatsoever, and consider an arbitrary element x ∈ L(G). This x can be
written in disjunctive normal form

x =
∨
U

∧
b∈U

i(b)

for a certain finite set U of finite subsets U of S. It follows that x ∈ { 0, i(a),−i(a), 1 }. Further-
more, keep in mind that neither i(a) = 0 nor i(a) = 1, since G is torsion-free.

It follows at once that a torsion-free abelian group of rank 1 allows for exactly two orderings
[69]—they correspond with the two prime filters of 22.

Corollary 7.22. L(Z) ∼= 22.

In order to address abelian groups of finite rank other than 1, we make use of the following
theorem for finitely generated subgroups of finite-rank torsion-free groups [181, XI.1.5 Theorem].

Theorem 7.23. Finitely generated subgroups of finite-rank torsion-free abelian groups are direct
sums of cyclic groups.

Proposition 7.24. Let G be a torsion-free abelian group of finite rank n > 1. Let ` be the
entailment relation of positive cone of G. The generated distributive lattice L(G) for ` is atomless.

Proof. In view of Proposition 4.24, suppose that A is a finite consistent decisive subset of S. We
may assume that A is inhabited, since ` does not have inconsistent singletons. We consider the
finitely generated subgroup 〈A〉 of G. By Theorem 7.23, this is a direct sum of cyclic groups, i.e.,
〈A〉 = ⊕ki=1〈gi〉 for certain g1, . . . , gk ∈ G. We claim that k > 1. For suppose that 〈A〉 is generated
by a single element g ∈ G, and consider an arbitrary pair of non-zero elements a and b be of G.
Since A is supposed to be decisive, we have A ` a or A ` −a, as well as A ` b or A ` −b, which
by Corollary 7.14, and since A is consistent, means that there are non-zero m1,m2 ∈ Z such that

ABm1a and A Bm2b.
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Since g generates 〈A〉, there will be n1, n2 ∈ Z such that

n1g = m1a and n2g = m2b,

but then a and b would turn out to have a common non-zero multiple, and it would follow that
G has rank 1, contrary to our assumption. Next we obtain an isomorphism 〈A〉 ∼= Zk, where
k > 1, along which A gives rise to a finite consistent decisive subset of Zk, the existence of which,
however, has already been ruled out by Corollary 7.17.

Remark 7.25. Let us briefly compare our proof with a classical approach to Proposition 7.24
as carried out elsewhere [68, 69]. Again, suppose that A is an atomic conjunction for ` on a
torsion-free abelian group of finite rank > 1. Since A is consistent, there is a model α of ` such
that A ⊆ α. Let H denote the subgroup of G that is generated by A. We may restrict α to an
order α

∣∣
H

, and suppose again that H ∼= Zk for a certain k > 1. Employing previous insights, this

α
∣∣
H

may be perturbed in such a way as to yield a different order α′ of H which still contains A.
One then considers the torsion-free abelian quotient group G/I(H), where

I(H) = { a ∈ G : ∃k ∈ Z ( ka ∈ H ) }

is the isolator subgroup of H in G. This quotient group may be linearly ordered, according to
(the classical and non-constructive version) of Levi’s theorem. Any order on G/I(H) can be used
to extend a given order on H to one on the ambient group G [69]. This observation applies to α′,
in particular. In this manner it is possible to obtain an order different from α, yet still containing
the finite consistent set A we started with.

7.6 Concluding remarks

The following facts and results are all well-known. We switch to a classical setting, and refer to
[119, 127, 156, 236]. Recall that any distributive lattice L canonically defines a spectral space the
points of which are the prime filters P of L [147]. For the distributive lattice generated by an
entailment relation `, the points of this space are completely determined by the collection of ideal
elements of ` [62]. If L is a Boolean algebra, we have at hand a Stone space, i.e., a compact totally
disconnected Hausdorff space. It is well-known that the atoms of a Boolean algebra correspond to
the isolated points of its Stone space, which in case of L(Zn), n > 2, does not have any, according
to Corollary 7.19. It can be shown that the Stone space of a Boolean algebra B is metrizable
if and only if B is at most countable. The latter certainly holds true in case of L(Zn), which
has a countable set of generators. Since any two countable Boolean algebras are isomorphic, and
keeping in mind Brouwer’s characterization of the Cantor set [55], Sikora’s theorem [235] now is a
consequence of the aforementioned facts and results:

Proposition 7.26 (Sikora). For n > 2, the class of orderings on Zn can be equipped with a
topology in such a way as to be homeomorphic to the Cantor set.

Further and advanced lattice-theoretic tools for obtaining Sikora’s and related results on spaces
of orderings of groups are explained in [69].

Remark 7.27. The above discussion rests on Stone’s representation theorem which is known to
necessitate classical reasoning [32]. It might thus be interesting to intervene with Negri’s analysis
of the constructive content of Stone representation [188], applying tools from formal topology [65,
67, 218, 219]. Perhaps another interesting direction for subsequent research might stem from the
relationship between entailment relations and resolution calculi [90, 258]. The universal frame
construction [90], which builds on the fundamental theorem of entailment relations, could be
substituted by a formal topology that arises from the hyperresolution rule [90] in such a manner
that the formal points correspond with the ideal elements of the entailment relation. Presumably,
the formal topology associated in this manner to the entailment relation of positive cone of Zn
(n > 1) is isomorphic to the formal Cantor space [111]. This would provide for another constructive
version of Sikora’s theorem, and is kept for future research.
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Remark 7.28. The approach of this chapter carries over to algebraic structures other than groups,
and can be adapted so as to take account of orderability criteria for rings and fields [114]. Notably,
classical proofs can be turned “upside down” and rephrased in an affirmative manner, allowing
for elementary, constructive proofs. For instance, it can be shown constructively that if K is a
discrete field, then the entailment relation of positive cone of K collapses if and only if −1 is a
sum of squares [211]. The reader may recognize this as a variant of Artin and Schreier’s theorem
[15], which can be regained by means of CT. We will keep for future research an investigation of
orderability criteria for semigroups, which is intended to provide a generalization of the results
obtained in this chapter [253].
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Chapter 8

Perspectives

8.1 Infinitary entailment relations

An apparent obstruction towards an even wider applicability of entailment relations results from
the limitation on entailment to hold only between finite subsets of a given domain of discourse,
as well as from the classical strength of the Completeness Theorem (CT) for entailment relations,
along with its many equivalences [137], beyond which we cannot go. The question arises at once:
how do we adapt our methods in order to take account of principles which might classically be
as strong as the full Axiom of Choice (AC)? How do our insights into conventional entailment
relations carry over?

In view of our approach to Sikorski’s theorem, a first and undoubtedly tempting move is to
break the symmetry of entailment relations and allow for arbitrary rather than only finite sets of
succedents, i.e., to consider relations

`⊆ Fin(S)× Pow(S).

Alas, it has already been pointed out [90] that the Completeness Theorem for these generalized
(or infinitary) entailment relations does not hold in general; entailments may therefore not be
semantically determined anymore.1 In order to address this issue, we should first specify what we
understand by a generalized entailment relation. Thus, let S be a set, and let `⊆ Fin(S)×Pow(S).
We still keep ` to be reflexive and monotone:

U G V
(R)

U ` V
U ` V

(M)
U,U ′ ` V, V ′

where U and U ′ are finite subsets of S, while this restriction need not apply to V and V ′, which
may be arbitrary subsets of S. But once we allow for infinite sets of succedents, we feel motivated
to generalize transitivity as follows:

U ` V,W ∀c ∈W (U ′, c ` V ′ )
(T’)

U,U ′ ` V, V ′

We take this rule from [234], where it is called Cut2. Now W need not be finite, so in order to
make immediate sense of the quantifier above the inference line, it should again be emphasized
that we employ rule notation just as shorthand for implication. In view of the generalized rule
of transitivity (T’), for entailment relations which are generated by axioms, over CZF we might
further have to address the inductive generation procedure carefully [91]. We do not need to adapt
semantics: by an ideal element (or model) of a generalized entailment relation we still understand
a subset α of S which splits every entailment.

1However, building on an argument of Valentini [246], Rinaldi has recently obtained a proof of completeness
for infinitary entailment relations which are generated by a countable set of initial entailments; this result had been
preceded in the context of geometric logic by Fourman and Grayson [111].
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Example 8.1. We can explain the class D(S) of all directed subsets of a partially ordered set S
as the class of ideal elements of a suitable generalized entailment relation. To this end, we take
initial entailments

` S
a, b ` { c ∈ S : a, b 6 c }

the first of which forces ideal elements α to be inhabited, and the second provides for upper bounds
for every pair of elements of α. Therefore, with a generalized form of Max (see Chapter 4), we
could regain MDP (see Chapter 1). While the class of models of a generalized entailment relation
still is directed-complete, we would be required to check that it is set-generated. However, Aczel’s
result, which has been employed in Chapter 4, would again apply without further ado.

Recall from Section 4.4 that we have defined the canonical inconsistency predicate of a con-
ventional entailment relation by

Φ`(U) ≡ U `

where U is a finite subset of S, and then proceeded to characterize finitary monotone predicates
which coincide with Φ`. This makes perfect sense for infinitary entailment relations as well. Φ`
can be extended canonically to a predicate Ψ` on arbitrary subsets A of S by stipulating

Ψ`(A) ≡ ∃U ∈ Fin(A) Φ`(U).

In other words, we have Ψ`(A) if and only if A contains a finite inconsistent subset. Let us now
say that a subset C of S is consistent if ¬Ψ`(C), which is to say that every finite subset of C is
consistent in the usual sense.

Next we consider an arbitrary predicate Ψ on subsets of S, i.e., a subclass of Pow(S). Adopting
terminology from Chapter 4, let us say (for lack of a better term) that Ψ is strongly hereditary
(for `) if, for all finite subsets U and every pair of arbitrary subsets V and W of S,

U ` V ∀b ∈ V Ψ(W, b)

Ψ(U,W ) ([)

For instance, this holds for Ψ` and every right-compact entailment, i.e., provided that U ` V
implies that there is a finite subset V0 of V such that U ` V0. For if V0 = { b1, . . . , bn } and if there
are finite subsets U1, . . . , Un of W such that Ui, bi ` for i 6 n, then we obtain U,U1, . . . , Un ` from
U ` V0 by repeated application of transitivity, and hence Ψ`(U,W ). It is interesting to note that
if ` is generated by axioms, and if Ψ is monotone, then Ψ is strongly hereditary for ` already if
it is strongly hereditary with respect to every initial entailment. If Ψ moreover is adequate, i.e.,
if Ψ(W ) implies that there is U ∈ Fin(W ) such that U `, then we have Ψ = Ψ`, whence we can
characterize arbitrary inconsistent subsets of S in terms of Ψ. We say in this case that Ψ is an
inconsistency predicate for `.

If we read ([) contrapositively and apply REM, then we obtain, for every finite subset U and
every pair of arbitrary subsets V and W of S,

¬Ψ(U,W ) → (U ` V → ∃b ∈ V ¬Ψ(W, b) ) (])

This observation gives rise to an extension principle on the class of consistent subsets of S, as will
become clear in the proof of the following theorem. This theorem provides a conditional version
of the model existence principle (MEL) for infinitary entailment relations with strongly hereditary
inconsistency predicate.

Theorem 8.2 (GET+REM). Let ` be an infinitary entailment relation. The following are equiv-
alent.

1. ` has a strongly hereditary inconsistency predicate.

2. Every consistent subset of S is contained in an ideal element of `.
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Proof. 1. =⇒ 2. Let C0 be a consistent subset of S. The class

C = { C ∈ Pow(S) : C0 ⊆ C ∧ ¬Ψ(C) }

of consistent extensions of C0 is an (inhabited) dcpo: if D is a directed set of consistent
subsets of S, all of which contain C0, then

⋃
D is consistent as well. Next we define an

extension pattern on C . Every entailment is considered extension data, and we define the
relation  between entailments and extensions C as follows:

(U ` V )  C ≡ U ⊆ C → C G V.

To say that a consistent extension C of C0 is total for this pattern is to say that C splits
all entailments, and hence that C is a model of `. Recall that in order to actually have an
extension pattern on C , we need to verify that whenever we take extension data U ` V , and
C ∈ C , there is C ′ ∈ C such that

C ⊆ C ′ and (U ` V )  C ′.

Since we reason classically, we may distinguish cases. If (U ` V )  C then C ′ = C will do.
Otherwise, if (U ` V ) 1 C, then this means U ⊆ C and C ∩V = ∅. We thus have ¬Ψ(U,C).
Since Ψ is strongly hereditary, according to (]) there is b ∈ V such that ¬Ψ(C, b). Now
C ′ = C ∪ { b } ∈ C is as required. We obtain a model of ` by means of GET.

2. =⇒ 1. Suppose that every consistent subset of S can be extended to a model. In order to
show that the canonical inconsistency predicate Ψ is strongly hereditary, we concentrate on
the contrapositive form (]). Thus, let U be a finite and W be an arbitrary subset of S,
and suppose that ¬Ψ(U,W ), which is to say that U ∪W is consistent. According to the
assumption, there is a model α of ` such that U ∪W ⊆ α. Since U ` V and α is a model,
there is b ∈ α ∩ V . Because of W ∪ { b } ⊆ α, it follows ¬Ψ(W, b).

It is interesting to note that if the relation between entailments and consistent subsets as
defined in the proof indeed amounts to an extension pattern, then ([) holds, by which Ψ turns out
strongly hereditary with REM.

Theorem 8.2 is yet another variant of Lindenbaum’s Lemma. To put it in more familiar terms:
every maximal consistent subset is a model, provided that Ψ is strongly hereditary. Needless to
say, we have adopted an approach by means of GET instead of KZL to build a bridge between the
first chapter and the present. However, from a methodological perspective, the semantical notion
of ideal element indeed seems to favour the approach by an extension pattern.2 Notice that since
Ψ is hereditary whenever ` is a conventional, finitary entailment relation, Theorem 8.2 generalizes
the principle of model existence (MEL) from Chapter 4.

Example 8.3. We revisit the leading and motivating example from Chapter 5, which can now
be generalized to families S = {Sı } of arbitrary inhabited sets. On the disjoint union S =⋃
ı∈I { ı } × Sı we consider the infinitary entailment relation ` which is generated by all instances

of the following axioms:

(ı, a), (ı, b) ` (s [a 6= b])

` { (ı, a) : a ∈ Sı } (t)

It can be directly shown that this entailment relation is consistent, and that it has a strongly
hereditary inconsistency predicate. By way of Theorem 8.2, this entailment relation has an ideal
element. It follows that the conditional model existence lemma is classically as strong as the
Axiom of Choice (which is clear also in view of Example 8.1).

2On the other hand, it can be directly shown, without REM, that every maximal consistent extension of a
consistent subset of S is an ideal element if (]) holds. Moreover, the class of all consistent extensions is a set-
generated dcpo: a generating set is given by all finite consistent subsets of S.
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In the context of infinitary entailment relations, it appears that the principle of model existence
does not suffice for completeness anymore, which is likely to be a consequence of the asymmetry
of finite sets of antecedents as opposed to arbitrary sets of succedents. Another explanation for
this semantical misbehaviour3 arises from the fact that Lemma 4.6 does not carry over to its full
extent. But if B is an arbitrary subset of S, then we can still generate an extension `B of ` by
putting additional axioms

b `B (b ∈ B)

on top of the latter. We then have U `B V if and only if U ` V,B. With regard to semantics, if
α is a subset of S, then we have α ∈ Spec(`B) if and only if α ∈ Spec(`) and α ∩B = ∅.

Now let V be an arbitrary subset of S. We say that ` stabilizes on V if, for every pair of
subsets U and W of S,

∀b ∈W ∃Ub ∈ Fin(U) (Ub, b ` V )

∃U0 ∈ Fin(U)∀b ∈W (U0, b ` V )

For instance, let A be a subset of S and consider the extension `A which arises from ` by putting
additional axioms

`A a (a ∈ A)

on top of the latter, thus forcing every ideal element of `A to contain the subset A. If ` stabilizes
on A, then, for every finite subset U and arbitrary subset V of S, we have

U `A V if and only if ∃A0 ∈ Fin(A) (U,A0 ` V ).

Next we explain a conditional form of completeness for infinitary entailment relations. Given a
pair (U, V ) ∈ Fin(S)×Pow(S), provided that ` stabilizes on V , it can be semantically determined
whether entailment U ` V holds.

Corollary 8.4 (GET+REM). Let V be a subset of S. If ` stabilizes on V , then, for any finite
subset U of S, the following are equivalent:

1. U ` V

2. ∀α ∈ Spec(`) (U ⊆ α → α G V )

Proof. It suffices to show that the second item implies the first, to which end we concentrate on the
contrapositive form. Thus, suppose that U 0 V . It is immediately clear that U is consistent with
respect to `V . Because ` stabilizes on V , it follows that `V has a strongly hereditary inconsistency
predicate. Therefore, according to the model existence principle, there is α ∈ Spec(`V ) such that
U ⊆ α. To say that α is a model of `V is to say that α models ` and α ∩ V = ∅. We have found
α as required.

It follows that completeness holds for a generalized entailment relation ` if and only if `
stabilizes on every subset V of S. In particular, if ` has a strongly hereditary inconsistency
predicate, then empty conclusion entailments are semantically determined.

It should also be interesting to investigate whether and to what extent the conservation criteria
of Chapter 3 carry over to this infinitary context. A variety of further extension theorems—e.g.,
the Hahn-Banach theorem and the full version of Sikorski’s theorem, both of which can be proved
with KZL followed by an application of a concrete one-step extension—then might allow to be
readdressed in terms of conservation for single-conclusion entailment. In the following section, to
give a hint at future developments in this direction, we revisit Baer’s criterion (see Chapter 1).
Here the approach with infinitary entailment relations appears to be rather promising.

3The deeper reason for which is to be found in the fact that not every locale is spatial. A thorough investigation
will further require to put generalized entailment relations in context with geometric logic [111, 249].
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8.2 Formal Baer criteria

Throughout, let R be a commutative ring with 1 6= 0. Further specifications will apply later. Let
A and M be modules over R. We take the set S = A ×M for our domain of discourse, and
consider the infinitary entailment relation ` which is generated by all instances of the following
axioms:

(a,m), (a, n) ` (s [m 6= n])

(a,m), (b, n) ` (a+ b,m+ n) (+)

(a,m) ` (ra, rm) (r)

` (0A, 0M ) (0)

` { (a,m) : a ∈M } (t)

with side condition as indicated. An ideal element of ` is a homomorphism of R-modules, thus

Spec(`) = HomR(A,M).

We say that ` is the entailment relation of R-module homomorphism A→M . We write `A,M in
case we need to specify which modules we refer to. For instance, with the ring R in place of A,
we obtain the entailment relation `R,M of R-homomorphism R→M .

In order to provide an explicit description for inconsistent subsets of S, we first consider, for
finite subsets U = { (a1,m1), . . . , (ak,mk) } of S, the following predicate

Φ(U) ≡ ∃r1, . . . , rk ∈ R
( k∑
i=1

riai = 0A ∧
k∑
i=1

rimi 6= 0M
)
.

This predicate expresses that U has multiple values, i.e., we have Φ(U) if and only if mv(U)
in the sense of Chapter 5: as a relation, the closure of U under (+) and (r) would force 0A to
take a non-zero value in M , whence U cannot be considered to approximate an R-homomorphism
A → M . In particular, Φ(U) is adequate. Next let Ψ denote the canonical extension of Φ to
arbitrary subsets W of S, i.e.,

Ψ(W ) ≡ ∃U ∈ Fin(W ) Φ(U).

Again, in case we need to be more specific about the modules we are working with, we do so with a
subscript. For instance, with R in place of A as above, we write ΨR,M for the canonical extension
of the inconsistency predicate ΦR,M to arbitrary subsets of R×M . It is straightforward to show
that Ψ is strongly hereditary for the axiom of single-values (s), as well as for the structural axioms
(+), (r), and (0). As regards totality (t), consider first the contrapositive form (]) for a subset W
of S,

¬Ψ(W ) → ∀a ∈ A∃m ∈M ¬Ψ(W, (a,m)).

If we freely employ REM, then it suffices to verify the latter in order to show that Ψ is strongly
hereditary for totality, to which end we could resort to the extension principle that is explained
in the classical proof of Baer’s criterion, and employ it here in an affirmative manner: first take
into account that every consistent subset of A×M gives rise to a partial R-homomorphism which
is defined on a certain submodule of A. Conversely, every partial homomorphism, construed as a
subset of A×M is consistent with regard to `. Suppose now that M is ideal-injective, i.e., such
that every R-homomorphisms I →M which is defined on an ideal I of R extends to R. In this case,
an explicit one-step extension principle is available (see Chapter 1), due to which (]) is immediate.
By way of Theorem 8.2, we know that M is ideal-injective if and only if the canonical inconsistency
predicate of the entailment relation of R-homomorphism R → M is strongly hereditary. We are
thus led to the following formal version of Baer’s theorem, which by semantics and the model
existence principle gives back the classical criterion for a module to be injective.4

4I am indebted to Rinaldi for having shared first ideas for syntactical variants of Baer’s criterion already during
the 2016 autumn school “Proof and Computation” in Fischbachau. His insights eventually led to the statement
and proof of Theorem 8.5.
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Theorem 8.5. Let M be a module over R. If ΨR,M is strongly hereditary, then, for every R-
module A, ΨA,M is strongly hereditary, as well.

Proof. We concentrate only on showing that ΨA,M is strongly hereditary for totality (t). To
this end, let W be an arbitrary subset of S = A ×M , let a ∈ A, and suppose that for every
m ∈M we have ΨA,M (W, (a,m)). Let WR consist of all pairs (r,m) ∈ R×M such that there are
r1, . . . , rk ∈ R and (a1,m1), . . . , (ak,mk) ∈W with

k∑
i=1

riai = ra and

k∑
i=1

rimi = m.

We claim that for every m ∈M we have ΨR,M (WR, (1,m)). For if m is an arbitrary element of M ,
then, according to our assumption on W , i.e., because of ΨA,M (W, (a,m)), there are r0, r1, . . . , rk ∈
R and (a1,m1), . . . , (ak,mk) ∈W such that

r0a+

k∑
i=1

riai = 0A and r0m+

k∑
i=1

rimi 6= 0M .

By definition of WR, the former implies (−r0,
∑k
i=1 rimi) ∈ WR, and we see immediately that

ΨR,M ((−r0,
∑k
i=1 rimi), (1,m)), and thus ΨR,M (WR, (1,m)) holds indeed. Now, since ΨR,M is

strongly hereditary, we obtain ΨR,M (WR). Therefore, there are (r1,m1), . . . , (r`,m`) ∈ WR and
s1, . . . , s` ∈ R such that

∑̀
j=1

sjrj = 0R and
∑̀
j=1

sjmj 6= 0M .

Moreover, for every rj there are rj1, . . . , r
j
kj
∈ R and (aj1,m

j
1), . . . , (ajkj ,m

j
kj

) ∈W such that

kj∑
i=1

rji a
j
i = rja and

kj∑
i=1

rjim
j
i = mj .

It remains to put this information together and calculate, on the one hand,

∑̀
j=1

kj∑
i=1

sjr
j
i a
j
i =

∑̀
j=1

sj(

kj∑
i=1

rji a
j
i ) =

∑̀
j=1

sjrja = 0R

and, on the other hand,

∑̀
j=1

kj∑
i=1

sjr
j
im

j
i =

∑̀
j=1

sj(

kj∑
i=1

rjim
j
i ) =

∑̀
j=1

sjmj 6= 0M .

This shows that we have found witnesses for ΨA,M (W ), as required.

The following exposition closely follows [247].
Recall that if M is a module over R, and if m ∈M , then m is said to be a torsion element if

there is a non-zero element r ∈ R such that rm = 0M . We say that M is torsion-free if its only
torsion element is 0M .

A zero-divisor of R is an element r for which there is s ∈ R such that s 6= 0R but sr = 0R.
Next recall that R is an integral domain if

∀r, s ∈ R ( rs = 0 → r = 0 ∨ s = 0 ).

If R is an integral domain, and r is a zero-divisor, then r = 0R.
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A module M over an integral domain R is said to be divisible if, for every m ∈ M and for
every r ∈ R which is not a zero-divisor, there is n ∈M such that m = rn.

Now let R be a integral domain, and let FracR be its field of fractions [17]. Let F be an
R-submodule of FracR. If there is a non-zero element r of R such that rF ⊆ R, then F is called
a fractional ideal of R. For instance, every ideal I of R, which in this context is called an integral
ideal, is a fractional ideal. If F and F ′ are fractional ideals, then FF ′ denotes the set of all finite
sums of products ff ′, where f ∈ F and f ′ ∈ F ′. This set is a fractional ideal, as well. Since R
is commutative, note that FF ′ = F ′F . If we have FF ′ = R, then F ′ is said to be invertible. If
every non-zero integral ideal of R is invertible, then we say that R is a Dedekind domain.

The items of the following proposition are taken from [247, Proposition 2.7, Theorem 2.8,
Proposition 2.10], respectively. In each case we follow the leading idea of the proof of the corre-
sponding classical version.

Proposition 8.6. Let R be a discrete integral domain, and let M be an R-module.

1. If M is torsion-free and divisible, then ΨR,M is strongly hereditary.

2. If every ideal of R is a principal ideal, and if M is divisible, then ΨR,M is strongly hereditary.

3. If R is a Dedekind domain such that for every ideal I of R either we have I = { 0R } or else
I 6= { 0R }, and if M is divisible, then ΨR,M is strongly hereditary.

Proof. For every item, we take a subset W of R ×M , consider an element a ∈ R, and suppose
that for every m ∈M we have ΨR,M (W, (a,m)).

1. We start withm = 0M which by assumption gives r0, r1, . . . , rk ∈ R and (a1,m1), . . . , (ak,mk) ∈
W such that

r0a+

k∑
i=1

riai = 0R and

k∑
i=1

rimi 6= 0M .

If r0 = 0, then we are done. Otherwise, if r0 6= 0, then we consider

m0 = −
k∑
i=1

rimi.

Since M is divisible, and r0 is not a zero-divisor, we can write

m0 = r0n0

for a certain n0 ∈ M . Then, because of ΨR,M (W, (a, n0)) there are s0, s1, . . . , s` ∈ R and
(b1, n1), . . . , (b`, n`) ∈W such that

s0a+
∑̀
j=1

sjbj = 0R and s0n0 +

k∑
j=1

sjnj 6= 0M .

Since M is torsion-free, we now multiply with r0, which by substitution yields expressions
from which we can read off ΨR,M (W ). To wit, if we put together all the available data, then
we obtain on the one hand

∑̀
j=1

r0sjbj −
k∑
i=1

s0riai = r0(
∑̀
j=1

sjbj + s0a ) = 0R.
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On the other hand, since r0 is not a zero-divisor and M is torsion-free,∑̀
j=1

r0sjnj −
k∑
i=1

s0rimi =
∑̀
j=1

r0sjnj + s0m0

=
∑̀
j=1

r0sjnj + s0r0n0

= r0(
∑̀
j=1

sjnj + s0n0)

6= 0M .

2. Next we suppose that every ideal of R is a principal ideal. We consider the set{
r ∈ R : ∃r1, . . . , rk ∈ R ∃(a1,m1), . . . , (ak,mk) ∈W

( k∑
i=1

riai = ra
) }

.

It is straightforward to show that this set is an ideal of R; we denote it with IW,a. Since R
is a principal ideal ring, there is r ∈ R such that IW,a = Rr. In particular, r ∈ IW,a, so there
are r1, . . . , rk ∈ R and (a1,m1), . . . , (ak,mk) ∈W such that

k∑
i=1

riai = ra.

We put

m =

k∑
i=1

rimi.

Now we distinguish cases. If r 6= 0R, then, since M is divisible, there is n ∈ M such
that m = rn. We know that ΨR,M (W, (a, n)), hence there are s0, s1, . . . , s` ∈ R and
(b1, n1), . . . , (b`, n`) ∈W such that

s0a+
∑̀
j=1

sjbj = 0R and s0n+

k∑
j=1

sjnj 6= 0M .

From the former expression we infer that s0 ∈ IW,a, whence we can write s0 = s′r for a
certain s′ ∈ R. We may now substitute and obtain

0R = s′ra+
∑̀
j=1

sjbj =

k∑
i=1

s′riai +
∑̀
j=1

sjbj

as well as

0M 6= s′rn+

k∑
j=1

sjnj = s′m+

k∑
j=1

sjnj =

k∑
i=1

s′rimi +

k∑
j=1

sjnj .

This means ΨR,M ({ (ai,mi) } , { (bj , nj) }), so that we have found witnesses for the incon-
sistency of W , as required. It remains to consider the case r0 = 0R, i.e., IW,a = { 0R }.
We argue similarly, now employing the hypothesis ΨR,M (W, (a,m)). Once more we obtain
certain pairs (b1, n1), . . . , (b`, n`) ∈W along with s0, s1, . . . , s` ∈ R such that

s0a+
∑̀
j=1

sjbj = 0R and s0m+
∑̀
j=1

sjnj 6= 0M .

As before, the former yields s0 ∈ IW,a, and therefore s0 = 0R. The conclusion can thus be
drawn immediately.
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3. Once again we make use of the ideal IW,a. If we have IW,a = { 0R }, then we start with
ΨR,M (W, (a, 0M )), which directly leads to ΨR,M (W ). We thus suppose that IW,a 6= { 0R }.
Since R is a Dedekind ring, there is a fractional ideal F such that FIW,a = R. It follows

that there are r1, . . . , r` ∈ IW,a and s1, . . . , s` ∈ F such that
∑`
j=1 sjrj = 1. We may

suppose that every rj is non-zero. Furthermore, for every j with 1 6 j 6 n there are

(aj1,m
j
1), . . . , (aj` ,m

j
`) ∈W and rj1, . . . , r

j
kj
∈ R such that

rja =

kj∑
i=1

rji a
j
i .

Next we write

mj =

kj∑
i=1

rjim
j
i .

Since M is divisible, there are n1, . . . , n` ∈M such that mj = rjnj . Since sjrj ∈ R, we may
put

m =
∑̀
j=1

sjrjnj

and obtain an element of M . Now, according to the assumption, we have ΨR,M (W, (a,m)),
whence there are (b1, n1), . . . , (bk, nk) ∈W and t0, t1, . . . , tk ∈ R such that

t0a+

k∑
i=1

tibi = 0R and t0m+

k∑
i=1

tini 6= 0M .

From the former expression we infer that t0 ∈ IW,a. Therefore, we have t0sj ∈ R whenever
1 6 j 6 n. It remains to calculate

t0a = t01a = t0(
∑̀
j=1

sjrj)a =
∑̀
j=1

t0sjrja =
∑̀
j=1

t0sj(

kj∑
i=1

rji a
j
i )

along with

t0m = t0
∑̀
j=1

sjrjnj =
∑̀
j=1

t0sjmj =
∑̀
j=1

t0sj(

kj∑
i=1

rjim
j
i )

in order to obtain witnesses for ΨR,M (W ).

It might be interesting to address the classical converse to the third item of Proposition 8.6 by
means of our methods: if R is an integral domain such that every divisible R-module is injective,
then R is a Dedekind domain [247, Theorem 4.25].

Our approach to pure-injective algebras in Section 5 further begs the question as to how alge-
braically compact modules [199] might find a natural treatment in terms of infinitary entailment
relations.

It is well-known that divisibility is necessary for a module to be injective. We regain this
statement by means of model existence, as follows.

Corollary 8.7 (GET+REM). Let M be an R-module. If ΨR,M is strongly hereditary, then M is
divisible.

Proof. Let m ∈M and let r be an element of R which is not a zero-divisor. We define f : Rr →M
by f(sr) = sm which gives a well-defined R-homomorphism. Construed as a subset of R×M , this
f is consistent with respect to the entailment relation of R-homomorphism R → M . Therefore,
by means of the model existence principle, it extends to an R-homomorphism g : R→M . Thus

m = f(r) = g(r) = rg(1),

which shows divisibility.
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In particular, with GET+REM we see that if R is a principal ideal domain, then a module M is
divisible if and only if, for every R-module A, we can prove that ΨA,M is strongly hereditary. For
instance, and still in the classical setting, an abelian group (construed as a Z-module) is injective
if and only if it is divisible.5

Example 8.8. Let K be a non-trivial field and let V be a vector space over K. Let ` be the
entailment relation of K-homomorphism V → K. Let u ∈ V . We claim that the following are
equivalent:

1. ` (u, 0K)

2. u = 0V .

Since ` (0V , 0K) is an axiom anyway, it suffices to infer the second item from the first one. To
this end, let µ 6= 0K . By cut with the axiom of single-values (s) we obtain (u, µ) `. According to
the formal Nullstellensatz, this implies that there is λ ∈ K such that λu = 0V and λµ 6= 0K . The
latter gives λ 6= 0K , whence we obtain u = 0V by scaling the former. From a semantical point of
view, this asserts that the only element of V that maps to 0K under every functional α : V → K
can only be 0V , briefly ⋂

α∈V ∗
kerα = { 0V } ,

where V ∗ denotes the dual space of V , i.e., the space of all linear maps α : V → K. This can be
used to show that the canonical mapping

ι : V → V ∗∗, u 7→ ( evu : α 7→ α(u) )

embeds V in its double dual. It is interesting to note that our method allows to go further and
address bilinear forms, or, even more generally, multilinear forms over K, too. This should give
rise to further applications of entailment relations in linear and multilinear algebra. We have done
so already for finite fields, employing conventional finitary entailment relations. The infinitary
generalization now promises to have a much wider applicability.

5Recall that LPO is necessary for Z to be a principal ideal ring [94, 181], which would be a requirement to show
with Proposition 8.6 that if G is an abelian group, then ΨZ,G is strongly hereditary.
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Chapter 9

Suzumura consistency, an alternative
approach

This chapter is based on [226].

9.1 Introduction

Order extension principles are originally due to Szpilrajn [242] for strict partial orders; for quasi-
orders they were phrased by Arrow [13] and proved by Hansson [129]. They play a seminal role in
mathematical economics, game theory, and in the theory of social choice, preferences, and utility
(see, e.g., [12, 61] for an exhaustive overview, and [50] for the rising field of computational social
choice). Suzumura [241] specified a notion of consistency which is sufficient and necessary for a
binary relation to have an order extension. With the customary definition of consistency, however,
proofs often require indirect reasoning and arguments on pairs, i.e., arguments involving specific
elements of the underlying set. We now show how Suzumura consistency can be put in a logically
equivalent and negation-free form, which allows for a somewhat slicker treatment. In fact, this has
an interesting methodological effect: we can keep to a minimum arguments on pairs, and largely
avoid proofs by contradiction—instead we argue abstractly within the algebra of relations.

Yet one cannot do with constructive means only, as J.L. Bell made clear. While Zorn’s Lemma,
the key tool for order extension, allegedly is “constructively neutral” [33], order extension is not:
it results in Gödel–Dummett logic not only for partial orders [32] but also, as we show below
(Section 9.8.4), for quasi-orders. Negri et al. [190] proved practicable a proof–theoretic study of
order extension; see also [209].

This chapter is organised as follows. We first list the most necessary preliminaries in Section
9.2. In Section 9.3 we discuss the notion of consistency, and in Section 9.4 we make precise a
notion of (compatible) extension intimately related with consistency. Then, in Section 9.5, we
concentrate on the extendability of consistent relations to complete quasi-orders, while in Section
9.6 we rephrase a classic result of Dushnik and Miller [106] in terms of consistent relations. In
Section 9.7 we present another proof of Arrow’s generalization, along the lines of [13, 61, 141, 240].
In the complementary Section 9.8 we explain an alternative proof of the order extension principle
by way of Open Induction [201] rather than Zorn’s Lemma; carry over from partial orders to quasi-
orders J.L. Bell’s argument [32] that Gödel–Dummett logic is necessary for the order extension
principle; and revisit Richter’s theorem [206] on rationalizability of choice functions.

9.2 Preliminaries

For the purposes of this chapter, a certain amount of fairly standard terminology needs to be fixed.
Until further notice, we work classically, over ZFC. In the following, let R and S denote binary
relations on a set X, i.e., subsets of the cartesian product X ×X. By “relation” we shall always
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mean “binary relation”, and henceforth we skip “binary”. The opposite (or reciprocation) of R is

R◦ = { (x, y) ∈ X ×X : (y, x) ∈ R } .

Note that (R◦)◦ = R, and if R ⊆ S, then R◦ ⊆ S◦. Furthermore, (R ∪ S)◦ = R◦ ∪ S◦. The
asymmetric part of R is P (R) = R−R◦, which is to say that

P (R) = { (x, y) : (x, y) ∈ R ∧ (y, x) /∈ R } .

The transitive closure of R is
tc(R) =

⋃
i>1

Ri,

with R1 = R and Ri+1 = Ri ◦R, where

R ◦ S = { (x, z) : ∃ y ∈ X (x, y) ∈ R ∧ (y, z) ∈ S }

denotes the relational composition.1 A relationR is transitive if and only ifR◦R ⊆ R, which in turn
holds if and only if tc(R) = R. If R,S are relations, then R ⊆ tc(S) if and only if tc(R) ⊆ tc(S);
that is to say that tc is a closure operator on the powerset P(X × X). As composition obeys
(R ◦ S)◦ = S◦ ◦R◦ and distributes over unions, we see that the transitive closure commutes with
reciprocation, tc(R◦) = tc(R)◦.

We say that R is complete2 if R∪R◦ = X ×X, which is also known as R being linear or total.
Mind that a complete relation is reflexive, i.e., ∆ ⊆ R, where

∆ = { (x, y) ∈ X ×X : x = y }

is the diagonal, and that ∆ ∩R = ∆ ∩R◦. The diagonal is neutral for composition, i.e., ∆ ◦R =
R = R ◦∆. The reflexive closure of R is R ∪∆.

A quasi-order (or preorder) is a reflexive transitive relation. The hull R of a relation R, viz.

R =
⋃
i>0

Ri

where R0 = ∆, is the least quasi-order which contains R. Note that R = tc(R) ∪∆ = tc(R ∪∆).
If Y is a subset of X, then

R
∣∣
Y

= R ∩ (Y × Y )

is the restriction of R on Y . The restricted diagonal is denoted by ∆Y . Occasionally we write
R, (x, y) instead of R ∪ { (x, y) }. If S is a set and X,Y ⊆ S, then X G Y is shorthand for X ∩ Y
being inhabited.3

An antisymmetric quasi-order R on X, i.e., one for which R ∩R◦ ⊆ ∆, is a partial order ; the
underlying set X in which case is called a poset. If R is complete, then X is said to be linearly
ordered. By a chain in a poset X we understand an inhabited subset of X that is linearly ordered
by the restricted relation. We say that X is chain-complete, if X is inhabited and every chain C
has a least upper bound

∨
C in X. A maximal element x in X is such that

∀y ∈ X (x 6 y → x = y) .

One of the standard forms of the Kuratowski-Zorn Lemma reads as follows:

KZL Every chain-complete poset has a maximal element.

It is as such that the Axiom of Choice (AC) gets involved in proving the order extension
principle in its full generality. In fact, a strictly weaker form of AC suffices [107, 145], but this
shall not be of our concern.4

1We adhere to the traditional, Tarskian convention about composition which is customary in the context of
preference relations [48], and even in certain abstract categorical settings [112].

2 The notion of “completeness” is prevalent in the context of logical theories and Lindenbaum’s Lemma.
3We have adopted this notation from Giovanni Sambin.
4The Axiom of Choice is not entirely indispensable: syntactical conservation works for Horn sequents [190]; see

also [209].
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9.3 Consistency

Suzumura [241] gave a sufficient and necessary condition for a relation R to have a complete quasi-
order extension which preserves the asymmetric part P (R). A relation R is Suzumura consistent
if

∀x, y ∈ X
[

(x, y) ∈ tc(R) → (y, x) /∈ P (R)
]
.

Unfolding the definition of P (R), Suzumura consistency amounts to

∀x, y ∈ X
[

(x, y) ∈ tc(R) → ¬
(

(y, x) ∈ R ∧ (x, y) /∈ R
) ]
,

which (with classical logic) is equivalent to

∀x, y ∈ X
[

(x, y) ∈ tc(R) ∧ (y, x) ∈ R → (x, y) ∈ R
]
.

This condition on R can now be written succinctly as set containment. We replace Suzumura
consistency by this equivalent, and simply call it consistency, as follows.

Definition 9.1. A relation R is consistent if

tc(R) ∩R◦ ⊆ R.

Remark 9.2. A relation is consistent if and only if R ∩ R◦ ⊆ R. Moreover, a relation R is
consistent if and only if every cycle in R is “reversible”, by which we mean that every cycle in R
forces its reciprocal to be in R as well. Really this concerns cycles of any length—here is another,
equivalent way to put consistency:

∀n > 0 Rn ∩R◦ ⊆ R.

In terms of preferences, consistency “rules out . . . all cycles with at least one strict preference” [48,
p. 36].

Remark 9.3. Every transitive relation is consistent. In particular, ∆, tc(R) and R are consistent.
On the other hand, it is well-known that consistency is weaker than transitivity. For instance,
R = { (x, y), (y, x) } is consistent on X = {x, y } but not transitive unless x = y, in fact tc(R) =
R ∪∆ and R◦ = R.

But what is missing for a consistent relation to be transitive? Compositions need to be com-
parable.

Proposition 9.4. For a relation R, each of the following items implies the next.

1. R is transitive,

2. tc(R) ⊆ R ∪R◦,

3. R ◦R ⊆ R ∪R◦.

If R is consistent, then the above assertions are equivalent. In particular, transitivity is equivalent
to consistency together with any of (2) and (3) above.

Proof. Of course, if R is transitive, then tc(R) = R, whence (ii) follows from (i). Furthermore,
from R◦R ⊆ tc(R), we know that (ii) implies (iii). Next, if R is consistent and R2 = R◦R ⊆ R∪R◦,
then

R2 = R2 ∩ (R ∪R◦) = (R2 ∩R) ∪ (R2 ∩R◦) ⊆ R ∪ (tc(R) ∩R◦) ⊆ R

Therefore, transitivity is implied by (iii), given that R is consistent.

Remember that we have defined a relation R on X to be complete if R ∪ R◦ = X ×X. The
following corollary is a direct consequence of Proposition 9.4. This observation has also been made
in [48].
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Corollary 9.5. A complete consistent relation is transitive.5 In particular, a relation is complete
and consistent if and only if it is a complete quasi-order.

Consider again conditions (ii) and (iii) in Proposition 9.4 above. Neither of them follows from
consistency, just because a consistent relation need not be transitive. In turn, neither (ii) nor (iii)
implies consistency. For example, if R = { (x, y), (y, z), (z, x) } on a set {x, y, z } with pairwise
distinct elements x, y, z, then the reflexive closure R∪∆ is not a consistent relation, yet it satisfies
(ii). Therefore, consistency is independent of each of these assertions (ii) and (iii). Furthermore,
as the example we have just given also shows (ii) and (iii) to be strictly weaker than transitivity,
by Proposition 9.4 we have at hand a proper decomposition of transitivity.

It has been observed [46] that consistency—just as transitivity—can be expressed by means of
a closure condition. Here this takes the following form.

Definition 9.6. The consistent closure of R is

cc(R) = tc(R) ∩ (R ∪R◦).

Note that R ⊆ cc(R) ⊆ tc(R). The consistent closure reverses cycles and thus “eliminates”
strict preference from any such cycle. Consider for example once more a set X = {x, y, z } with
three pairwise distinct elements x, y, z, together with the “cyclic” relationR = { (x, y), (y, z), (z, x) }.
This relation is not consistent, and the transitive closure of R is universal, i.e., tc(R) = X ×X.
The consistent closure, on the other hand, adds the opposite, but neither is reflexive nor transitive.

Lemma 9.7. Let R and S be relations.

1. R is consistent if and only if cc(R) = R.

2. R ⊆ cc(S) if and only if cc(R) ⊆ cc(S).

Proof. 1. We have cc(R) = (tc(R)∩R)∪(tc(R)∩R◦) = R∪(tc(R)∩R◦). Therefore, cc(R) = R
if and only if tc(R) ∩R◦ ⊆ R.

2. The consistent closure is defined as intersection of transitive closure and symmetrization
R 7→ R ∪ R◦. Therefore, it suffices to show that the latter satisfies the corresponding
equivalence, which is immediate from the properties of reciprocation: if R ⊆ S ∪ S◦, then
R◦ ⊆ (S ∪ S◦)◦ = S◦ ∪ S◦◦ = S◦ ∪ S, whence R ∪R◦ ⊆ S ∪ S◦. The converse implication is
trivial.

In other words, the assignment R 7→ cc(R) defines a closure operator the fixed points of which
are precisely the consistent relations. Furthermore, cc(R) is the least consistent relation which
contains R.

9.4 Compatible Extensions

The following definition is equivalent to the one employed in the context of preference relations
[104].

Definition 9.8. Let R,S be relations. We say that S is a compatible extension of R if

R ⊆ S and S ∩R◦ ⊆ R.

In fact, if R ⊆ S, then S ∩ R◦ ⊆ R precisely when P (R) ⊆ P (S) holds for the asymmetric
parts.

5 This is readily proved element-wise too. Here is another direct argument: if R is complete and consistent,
then

tc(R) = tc(R) ∩ (X ×X) = tc(R) ∩ (R ∪R◦) = cc(R) = R,

whence R is transitive—see below for the consistent closure cc(R) of R.
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Remark 9.9. If S is a compatible extension of R ∪ { (y, x) }, then (x, y) ∈ S implies (x, y) ∈ R,
provided that either R is reflexive or x 6= y. For compatibility of S over R ∪ { (y, x) } means that

R ∪ { (y, x) } ⊇ S ∩
(
R ∪ { (y, x) }

)◦
= S ∩

(
R◦ ∪ { (x, y) }

)
=
(
S ∩R◦

)
∪
(
S ∩ { (x, y) }

)
.

Compatible extension can thus be regarded as “reflecting opposite elements”. On the other
hand, Remark 9.9 also has the following reading: if S is a compatible extension of R ∪ { (y, x) },
and if (x, y) /∈ R, then (x, y) /∈ S.

The containment R ⊆ X ×X is a compatible extension if and only if R◦ ⊆ R, which is to say
that R is symmetric. The reason why compatibility needs to be involved, is to avoid the universal
relation to be an extension of every R [129, p. 453], and hence to be a solution of the problem of
extending a relation to a complete quasi-order in the absence of any further restrictive assumption
as, say, antisymmetry.6 Mind that every relation R is a compatible extension of itself; whence a
compatible extension need not necessarily be consistent. Not even a compatible extension of a
consistent relation needs to be consistent.7

Caveat. For brevity’s sake, following a certain tradition [61, 102, 241], whenever referring to an
extension we will henceforth always mean a compatible extension.

Remark 9.10. Suppose that R ⊆ S ⊆ T . If T extends R, then so does S, because S ∩ R◦ ⊆
T ∩R◦ ⊆ R.

Remark 9.11. Suppose that S is an extension of R. Then S = R already if S ⊆ R ∪ R◦, for in
that case S = S ∩ (R ∪R◦) = (S ∩R)∪ (S ∩R◦) ⊆ R. In particular, every complete relation R is
maximal for extension, i.e., if S extends R and R is complete, then S = R. An extension might
thus be very close; in fact, the consistent closure cc(R) of a relation R cannot extend R unless R
itself is consistent, simply because cc(R) ⊆ R ∪R◦.

In any case, the reflexive closure always gives an extension, which is the special case R = S of
the following.

Remark 9.12. Extensions carry over to reflexive closures. In fact, R ⊆ S is compatible if and
only if R ⊆ S ∪∆ is compatible, because

(S ∪∆) ∩R◦ = (S ∩R◦) ∪ (∆ ∩R◦) = (S ∩R◦) ∪ (∆ ∩R).

Lemma 9.13. Extension defines a partial order on relations.

Proof. Extension clearly is reflexive, and inherits antisymmetry from inclusion. It remains to
verify transitivity, i.e., if S extends R and T extends S, then T extends R. To this end, we
calculate, using that R◦ ⊆ S◦ whenever R ⊆ S,

T ∩R◦ = (T ∩R◦) ∩R◦ ⊆ (T ∩ S◦) ∩R◦ ⊆ S ∩R◦ ⊆ R.

With the following proposition we adapt and extend an interesting result from [61]. The proof
is straightforward in terms of our notion of consistency.

Proposition 9.14. The following are equivalent for every relation R.

1. R is consistent.

2. cc(R) extends R.

3. tc(R) extends R.

6 On the other hand, if R is reflexive, then every extension of R by an antisymmetric relation S automatically
is compatible, for in that case S ∩R◦ ⊆ S ∩ S◦ = ∆ ⊆ R.

7 In fact, the empty relation ∅ is consistent, and is compatibly extended by any—possibly non-consistent—
relation whatsoever.
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4. R extends R.

5. R has a consistent extension.

6. R has a transitive extension.

7. R has a quasi-order extension.

Proof. Notice first that whenever a quasi-order S contains R, we actually have

R ⊆ cc(R) ⊆ tc(R) ⊆ R ⊆ S.

Hence, if S extends R, then (Remark 9.10) so do R, tc(R), and cc(R); the latter extension is
tantamount to R being consistent, by way of Remark 9.11. On the other hand, if R is consistent,
then cc(R) = R, and tc(R) extends R, simply by definition. Adding the diagonal does not do any
harm, so R extends R, if tc(R) does, in which case R has a quasi-order extension.

As noticed in [61], because of R ⊆ cc(R) ⊆ tc(R), it follows that tc(R) = tc(cc(R)). In view
of Lemma 9.7 and Proposition 9.14, then tc(R) is an extension of cc(R). Moreover, R = cc(R).

9.5 Extension Principles

Suzumura singled out that for a relation R to have a complete quasi-order extension, it suffices
for R to be consistent. But as long as there are no further assumptions made on the underlying
set X, some form of the Axiom of Choice has to be involved.

We still need some preparation on our way to Suzumura’s variant of order extension: first
we have to make sure that the consistent extensions of a relation form a chain-complete poset
(Lemma 9.15 below). Then we need to verify, typical indeed for many an application of Zorn’s
Lemma [33], that a consistent relation can be “step-wise” extended. Once all this has been done,
Zorn’s Lemma may be invoked.

Lemma 9.15.

1. Every union of a chain (Ri)i∈I of consistent relations is consistent.

2. If (Ri)i∈I is a chain with respect to extension, then
⋃
i∈I Ri is the least upper bound of

(Ri)i∈I also with respect to extension.

Proof. 1. This is a standard argument. Suppose that (Ri)i∈I is a chain of consistent relations,
and let

(x, y) ∈ tc(
⋃
i∈I

Ri) ∩ (
⋃
i∈I

Ri)
◦.

By the definition of tc, finitely many Ri suffice. As we have a chain, there in fact is i0 ∈ I
with (x, y) ∈ tc(Ri0) ∩R◦i0 . Then (x, y) ∈ Ri0 since Ri0 is consistent, and therefore (x, y) ∈⋃
i∈I Ri.

2. Of course Ri0 ⊆
⋃
i∈I Ri for every i0 ∈ I. Furthermore, as we have a chain of extensions,

for every i ∈ I either Ri extends Ri0 or vice versa, and in each case we have Ri ∩R◦i0 ⊆ Ri0 .
From this we get (⋃

i∈I
Ri) ∩R◦i0 =

⋃
i∈I

(Ri ∩R◦i0) ⊆ Ri0 .

Next, if S is a relation such that S extends Ri for every i ∈ I, then of course
⋃
i∈I Ri ⊆ S,

and
S ∩

(⋃
i∈I

Ri
)◦

= S ∩
(⋃
i∈I

R◦i
)

=
⋃
i∈I

(S ∩R◦i ) ⊆
⋃
i∈I

Ri,

which is to say that S extends the union
⋃
i∈I Ri.
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Simply adding some pair to a consistent relation need not in general result in a consistent
relation. If x, y, z are pairwise distinct, then R = { (x, y), (y, z) } is consistent, yet R′ = R∪{ (z, x) }
is not. Now one might be tempted to work with cc(R′) instead, which, as we have seen, is the least
consistent relation to contain R′. But still there is a problem, since R ⊆ cc(R′) is not compatible,
for cc(R′) ∩R◦ = R◦ * R.

The following, somewhat technical lemmas are crucial in this regard, and when it comes to
proving the order extension principle. We need to provide means for extending consistent relations
by suitable pairs of elements.

Lemma 9.16. If R is a quasi-order, then for all x, y ∈ X

1. if
(
R ◦ { (x, y) } ◦R

)
G R◦, then (y, x) ∈ R,

2. tc
(
R, (x, y)

)
= R ∪

(
R ◦ { (x, y) } ◦R

)
,

3. if (y, x) ∈ tc
(
R, (x, y)

)
, then (y, x) ∈ R, and

4. if tc
(
R, (x, y)

)
extends R, then R, (x, y) is consistent.

Proof. 1. Suppose that (a, b) ∈
(
R ◦ { (x, y) } ◦ R

)
∩ R◦. This means (a, x), (y, b) ∈ R and

(b, a) ∈ R. By transitivity of R we get (y, x) ∈ R.8

2. One inclusion is easily verified; as for the converse inclusion we show(
R, (x, y)

)n ⊆ R ∪
(
R ◦ { (x, y) } ◦R

)
for every n > 1. We have

R ∪ { (x, y) } = R ∪ ∆ ◦ { (x, y) } ◦∆ ⊆ R ∪
(
R ◦ { (x, y) } ◦R

)
which takes care of n = 1 (mind that R needs to be reflexive in order for this to go through).
Next we argue by induction, which gives(

R, (x, y)
)n+1

=
(
R, (x, y)

)n ◦ (R, (x, y)
)

⊆
[
R ∪

(
R ◦ { (x, y) } ◦R

) ]
◦
(
R, (x, y)

)
.

The remainder is left to the reader; take into account the transitivity of R, and

{ (x, y) } ◦R ◦ { (x, y) } ⊆ { (x, y) } .

3. By (2), if (y, x) ∈ tc
(
R, (x, y)

)
, then (y, x) ∈ R or (y, x) ∈ R ◦ { (x, y) } ◦ R. In case of the

latter, due to the definition of relational composition, we get again (y, x) ∈ R.

4. From (3) we know that tc
(
R, (x, y)

)
∩{ (y, x) } ⊆ R. Therefore, if tc

(
R, (x, y)

)
is an extension

of R, then

tc
(
R, (x, y)

)
∩
(
R, (x, y)

)◦
=
[
tc
(
R, (x, y)

)
∩R◦

]
∪
[
tc
(
R, (x, y)

)
∩ { (y, x) }

]
⊆ R.

Lemma 9.17. If R is a quasi-order and (y, x) /∈ R, then R, (x, y) is a consistent extension of R.

Proof. By Lemma 9.16(1), if (y, x) /∈ R, then
(
R ◦ { (x, y) } ◦R

)
∩R◦ = ∅. Now Lemma 9.16(2)

implies tc
(
R, (x, y)

)
∩ R◦ ⊆ R, which is to say that tc

(
R, (x, y)

)
extends R; whence R, (x, y) is

consistent, according to Lemma 9.16(4). Finally, R, (x, y) is an extension of R, simply because
(y, x) /∈ R.

8Notice that reflexivity of R is irrelevant for this argument.
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In terms of [104], Lemma 9.17 establishes that the set of quasi-orders on X is arc-receptive.
We will now see that, with a maximal extension at hand, proving completeness boils down to just
one application of Lemma 9.17, as we will end up with a quasi-order, anyway.

Lemma 9.18. For consistent relations, ordered by extension, maximality implies completeness.

Proof. Let R be maximal among consistent relations, ordered by extension. According to Propo-
sition 9.14, R extends R, hence R = R by maximality, i.e., R is a quasi-order. This R cannot fail
to compare any two elements from X, hence must be complete. To be precise, we need to verify
X ×X = R ∪ R◦, and to this end consider x, y ∈ X such that (x, y) /∈ R◦, i.e., (y, x) /∈ R. Then
R, (x, y) is consistent and extends R by Lemma 9.17. Therefore, again by way of maximality,
R, (x, y) = R, which is to say that (x, y) ∈ R.

We are now ready to put everything together. Recall that a complete relation is consistent
if and only if it is a quasi-order (Corollary 9.5). We have been working towards the following
extension principle for consistent relations [241, Theorem 3]:

Consistent Extension Principle (CEP). Every consistent relation can be extended to a com-
plete quasi-order.

Proof. If R is consistent, then the set E of consistent extensions of R is inhabited, and it is chain-
complete by Lemma 9.15. As we have seen in Lemma 9.18, every maximal element of E is a
complete consistent extension of R, hence a complete quasi-order. The existence of at least one
such maximal extension is ensured by KZL.

It is in order to list also the following two slight variants and immediate consequences of CEP:

Transitive Extension Principle (TEP). Every transitive relation can be extended to a complete
quasi-order.

Quasi-Order Extension Principle (QEP). Every quasi-order can be extended to a complete
quasi-order.

Proof. QEP is a special case of TEP, and TEP follows from CEP as transitivity implies consistency.

9.6 Intersection Principles

We also want to adapt a well-known observation due to Dushnik and Miller [106], which has
been phrased for quasi-orders by Donaldson and Weymark [102], and Bossert [45], and put into
general terms by Duggan [104]. We present a slight variation (Proposition 9.20) from which some
immediate consequences can be drawn.

If R is consistent, then it has at least one complete consistent extension, according to CEP.
Hence we can reasonably talk about the intersection S of all such extensions of R. Since every
complete consistent extension of R is a quasi-order, S too is a quasi-order. This observation sets S
apart from R whenever R happens to lack either reflexivity or transitivity. However, we will now
see that S coincides with the hull R, which is the intersection of all quasi-orders containing R. In
fact, every pair of elements which is comparable under every complete extension of a consistent
relation R must already be comparable by way of its hull.

Lemma 9.19. For a quasi-order R, the intersection S of all complete consistent extensions of R
compares the same elements as R, i.e., R ∪R◦ = S ∪ S◦.
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Proof. Of course R∪R◦ ⊆ S∪S◦. In order to show the reverse inclusion, suppose (x, y) /∈ R∪R◦.
i.e., (x, y) /∈ R and (y, x) /∈ R. Then, according to Lemma 9.17, both R, (x, y) and R, (y, x)
are consistent extensions of R, and both have complete consistent extensions by CEP, say S(x,y)

and S(y,x), respectively, the former of which avoids (y, x), the latter (x, y) (Remark 9.9). Hence
neither (x, y) nor (y, x) is common to all complete consistent extensions of R, which is to say that
(x, y) /∈ S ∪ S◦.

The key observation is that any pair of elements x, y ∈ X which a quasi-order R fails to
compare provides a choice: either adjoin (x, y) or go with (y, x), arbitrarily. In general there is no
hope for a unique complete extension.

We can now state and prove the following Intersection Principle which in fact is equivalent to
CEP.

Proposition 9.20. The hull of a relation R is the intersection of all complete consistent extensions
of cc(R).

Proof. Recall that R = cc(R) extends cc(R), hence every extension of R is an extension of cc(R).
Therefore ⋂

{ T : T ⊇ cc(R) is compatible } ⊆
⋂{

T : T ⊇ R is compatible
}
,

where T ranges over complete consistent relations, i.e., complete quasi-orders. As an intersection
of quasi-orders all of which contain R, the left-hand side contains R. On the other hand, since
any intersection of extensions still is an extension, we know that the right-hand side S extends R.
The assertion now follows from Lemma 9.19 and Remark 9.11.

While CEP results in Proposition 9.20, it is clear that Proposition 9.20 in turn implies CEP.
In fact, if R is consistent, and R is not yet complete, then every pair (x, y) avoided by R yields a
complete quasi-order which extends cc(R) = R, and which avoids (x, y), as well.

Here is an equivalent way to put the Intersection Principle; recall that cc(R) is consistent even
if R is not, and that R = cc(R).

Corollary 9.21. The hull of a consistent relation R is the intersection of all complete consistent
extensions of R.

The following is an immediate consequence. It is implicit already in Lemma 9.19.

Corollary 9.22. Every quasi-order is the intersection of its complete consistent extensions.

We have been very careful in distinguishing compatible extension from simple containment:
the former is a special case of the latter, so, given a quasi-order R, the intersection of all complete
consistent relations containing R cannot exceed the intersection of all complete consistent com-
patible extensions of R; and R is contained in the former. Since a complete consistent relation is
the same as a complete quasi-order, we thus have

Corollary 9.23. Every quasi-order is the intersection of all complete quasi-orders containing
it.

9.7 Relative Extensions

Arrow [13] gave a slightly more general form of the extension principle; Inada [141] provided a
brief and detailed proof of this variant. A further variation was phrased by Suzumura [240] for
consistent relations; recently Cato [61] suggested another generalization. We want to give a short
account, focusing on Cato’s result. We are not going to go into painstaking detail, and leave out
a few details which can be easily verified by “chasing elements”. The point we wish to make is
that the algebraic method suffices at large.

Lemma 9.24. If Q is a quasi-order on Y ⊆ X, and R is a quasi-order with R
∣∣
Y

= ∆Y , then
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1. Q ◦R ◦Q = Q,

2. (Q ∪R)n ⊆ Q ∪ (Q ◦R) ∪ (R ◦Q ◦R) ∪ (R ◦Q) ∪R for every n > 1, and

3. Q ∪R is consistent.

Proof. We omit the symbol ◦ for relational composition, writing RS for R ◦ S, etc.

1. With R
∣∣
Y

= ∆ we have QRQ = QR
∣∣
Y
Q = Q∆YQ = QQ = Q.

2. This is a simple argument by induction; apply (1) and take into account transitivity of R
and Q.

3. From (2) we get
tc(Q ∪R) = Q ∪QR ∪RQR ∪RQ ∪R.

This can be used to show that Q ∪ R is consistent, which [48, 141] demonstrate in detail,
but element-wise. However, an algebraic proof is possible too, the key to which is given by
the law of modularity [112]:

RS ∩ T ⊆ (R ∩ TS◦)S, (†)
which can be put equivalently as

RS ∩ T ⊆ R(S ∩R◦T ). (‡)

E.g., we calculate

RQ ∩R◦
(‡)
⊆ R(Q ∩R◦R◦) ⊆ R(Q ∩R◦) ⊆ R∆Y ⊆ R, (∗)

and then

RQR ∩R◦
(†)
⊆ (RQ ∩R◦R◦)R = (RQ ∩R◦)R

(∗)
⊆ RR = R.

The remaining inclusions can be shown similarly.

The first additional principle we consider reads as follows [13, 61, 141, 240]:

Relative Extension Principle (REP). Let Q be a relation on Y ⊆ X, and let P be a relation
on X such that P

∣∣
Y

= ∆Y . If both P and Q are consistent, then P has a complete consistent
extension which restricts to a complete consistent extension on Y of Q,

Notice that the assumption is put in positive form: instead of assuming [61] that P satisfies
(x, y) /∈ tc(P ) for every pair of distinct elements x, y ∈ Y , we stipulate tc(P )

∣∣
Y
⊆ ∆Y . This makes

possible a more perspicuous proof.

Proof of REP. Suppose that P and Q are consistent as in CEP. The hull P is a quasi-order on
X which extends P . By means of CEP, there is a complete consistent extension Q∗ of Q on Y .
According to Lemma 9.24(3), the union Q∗ ∪ P is consistent, and it extends P on X, because of

Q∗ ∩ P ◦ ⊆ P ◦
∣∣
Y
⊆ (P

∣∣
Y

)◦ = ∆Y ⊆ P .

Another invocation of CEP gives rise to a complete consistent extension S of P ∪Q∗ on X. This S
is an extension of P , and the restriction of S on Y coincides with Q∗. In fact, since Q∗ is complete
on Y , it suffices to show that S

∣∣
Y

extends Q∗ (remember Remark 9.11):

S
∣∣
Y
∩Q∗◦ = (S ∩Q∗◦)

∣∣
Y
⊆
[
S ∩ (P ∪Q∗)◦

]∣∣
Y
⊆ (P ∪Q∗)

∣∣
Y

= Q∗.

This REP is the special case n = 1 of the following principle:

Nested Extension Principle (NEP). If Y0 ⊆ Y1 ⊆ · · · ⊆ Yn is a chain of sets, each of which
is equipped with a consistent relation Pi in such a way that Pi+1

∣∣
Yi

= ∆Yi for every i < n, then
Pn has a complete consistent extension, which restricts for every i < n to a complete consistent
extension on Yi of Pi.

Proof. By a straightforward inductive argument NEP follows from REP.
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9.8 Complements

9.8.1 Complementing Consistency

In Proposition 9.4 we have seen that if a consistent relation R ranks composed pairs, i.e., if R
is consistent and such that R ◦ R ⊆ R ∪ R◦, then R is transitive. If R is even reflexive, then
transitivity follows already in case R ranks (endpoints of) compositions for some length n > 2,
which is to say that

Rn ⊆ R ∪R◦.

For if ∆ ⊆ R, then R2 = R2 ◦∆n−2 ⊆ Rn, and one can proceed with a similar argument as in the
proof of Proposition 9.4.

Another condition on consistent relations, which brings about transitivity, has been given by
Bossert and Suzumura [49]. Their SC-complementarity can be put as

∀x, y, z ∈ X
[
xRy ∧ yRz →

(
xRz ∨ ( ztc(R)x ∧ ¬(zRy ∧ yRx) )

) ]
,

writing xRy for (x, y) ∈ R. Along with Proposition 9.4, it then follows that a consistent relation
R satisfies SC-complementarity if and only if R ◦R ⊆ R ∪R◦.

We should point out that R ◦R ⊆ R∪R◦ occurs in [49] equivalently as TSC-complementarity

∀x, y, z ∈ X
[
xRy ∧ yRz → ¬xNz

]
,

where N = { (x, y) : (x, y) /∈ R ∧ (y, x) /∈ R } is the non-comparable factor of R. We have preferred
to put it positively.

9.8.2 Equivalent Principles

While to prove the order-extension principles CEP, TEP, QEP, REP and NEP we have tacitly
worked in customary Zermelo–Fraenkel Set Theory with the Axiom of Choice (ZFC), to establish
their equivalence requires to drop the Axiom of Choice and move to Zermelo–Fraenkel Set Theory
(ZF) without the Axiom of Choice. Most likely even weaker set theories would suffice, but this
shall not be our concern here.

Proposition 9.25. In ZF the following principles are equivalent: CEP, TEP, QEP, REP and NEP.

Proof. We already know the following implications:

QEP← TEP← CEP→ REP↔ NEP

In view of this we only have to verify that each of QEP and REP implies CEP.
As for QEP implies CEP, let R be consistent. Now R is a quasi-order which, by Proposition

9.14, extends R. By QEP, this hull can be extended to a complete quasi-order S, which is an
extension of R too (Lemma 9.13). As for REP implies CEP, to prove the latter apply the former
with X = Y , Q = R and P = ∆.

9.8.3 Order Extension by Open Induction

Several theorems which commonly are proved by means of Zorn’s Lemma have been reproved in
a more direct way via the principle of Open Induction [201].9 In this vein we now present an
alternative proof of CEP which rests on Open Induction. First some terminology is required.

Let (E,6) be a chain-complete poset, and let O be a predicate on E.10 One says that O is
progressive if

∀x
(
∀y > x O(y) → O(x)

)
,

9 For the use of Open Induction in diverse contexts see [36, 66, 73, 208, 222].
10 This O may be identified with its extension { x ∈ E : O(x) } in E.
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where y > x is understood as the conjunction of x 6 y and x 6= y. Furthermore, O is said to be
open if

O(
∨
C) → ∃x ∈ C O(x)

for every chain C ⊆ E; recall that
∨
C stands for the least upper bound of C. For example, a

predicate O is open whenever it is downward monotone, i.e., satisfies

O(x) ∧ y 6 x → O(y).

Indeed, for if O is downward monotone, and if C is a chain such that O(
∨
C), then even ∀x ∈

C O(x); note every chain is required to have an element.
Raoult [201] has coined the following principle:

Open Induction (OI). If E is a chain-complete poset, and O is open and progressive, then
∀x O(x).

Moreover, Raoult [201] has deduced OI from KZL; in fact, both principles are equivalent by
complementation and thus in ZF—see, e.g., [208]. Here is how to prove CEP by means of OI:

We have seen (Lemma 9.13 and Lemma 9.15) that the set E of consistent relations on X is
partially ordered and chain-complete with respect to the order of (compatible) extension. On E
we consider the predicate O of “being completely extendable”, formally, for R ∈ E :

O(R) ≡ ∃S ∈ E
(
R ⊆ S ∧ S ∩R◦ ⊆ R ∧ S ∪ S◦ = X ×X

)
.

E.g., the universal relation X ×X is completely extendable, for trivial reasons. This predicate O
is downward monotone, hence open. As for O being progressive, suppose that R ∈ E is such that
every strict extension of R is completely extendable. The hull R is a consistent extension of R,
which either is complete—by which R has itself as complete extension—or else fails to compare
a certain pair of elements. In the latter case, say x, y ∈ X are such that (x, y) /∈ R ∪ R◦. Then
R ∪ { (x, y) } is a consistent extension of R by Lemma 9.17, and strictly extends R because of
(x, y) /∈ R. Now R ∪ { (x, y) } is completely extendable, whence R is, as well. Then, by way of
OI, we get ∀R ∈ E O(R), which is to say that every consistent relation R on X has a complete
consistent extension.

Any concrete enough instance, i.e., one for which the underlying set X of alternatives is finite,
should then allow to reduce the invocation of OI to one of what in [222] is called Finite Induction,
which in turn can be proved by means of mathematical induction only.

9.8.4 From Order Extension to Gödel–Dummett Logic

As alluded to in the Introduction, we now briefly sketch how Gödel–Dummett logic [105, 120]
is necessary for QEP, adapting to quasi-orders an argument given by Bell [32, p. 162] for partial
orders. We recall that Gödel–Dummett logic,11 which “naturally turns up in different fields in logic
and computer science” [16, 108], is an intermediate logic between intuitionistic and classical logic.
Roughly speaking, intuitionistic logic [96, 135] is classical logic without the law of excluded middle
but with the principle ex falso sequitur quodlibet. Now Gödel–Dummett logic is intuitionistic logic
plus

Gödel–Dummett Principle (GDP). (ϕ→ ψ) ∨ (ψ → ϕ) for all well-formed formulas ϕ and ψ.

In order to adapt Bell’s argument, we first make the following observation:

Lemma 9.26. Let X be a set and R ⊆ X ×X antisymmetric. Assume that X has top element
1, i.e., xR1 for every x ∈ X. If S is a compatible extension of R, then 1 is S-maximal.

Proof. Since 1 is R-top we have 1R◦x for every x ∈ X. Therefore, if 1Sy, we get 1Ry because of
S ∩R◦ ⊆ R. As R is antisymmetric, y = 1 follows.

11As von Plato points out, Gödel–Dummett logic “was actually introduced by Skolem already in 1913” [251].
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Note that if 1 is R-top and R ⊆ S, then of course 1 is S-top too, but this does not mean that
1 is S-maximal unless S is antisymmetric.

In the following, we work in Friedman’s Intuitionistic Zermelo-Fraenkel set theory IZF [7, 30,
93, 113]. This IZF is as standard Zermelo–Fraenkel set theory (ZF) but with intuitionistic rather
than classical logic; to make this move possible, the axiom of foundation needs to be replaced by
the schema of set induction, whereas the principles of power set and full separation are part of
IZF.

In IZF one thus has the so-called set of intuitionistic truth values Ω = Pow(1), i.e., the set of
subsets of 1 = { 0 } partially ordered by inclusion ⊆. Every formula ϕ in the first-order language
of set theory gives rise to its truth value Vϕ ∈ Ω, viz.

Vϕ = {x ∈ 1 : ϕ} ,

for which ϕ is equivalent to 0 ∈ Vϕ and thus to Vϕ = 1. Conversely, every U ∈ Ω is of the form
Vϕ, for ϕ being U = 1. Note that an implication ϕ → ψ between formulas ϕ and ψ is equivalent
to Vϕ ⊆ Vψ in Ω; and that U ⊆W in Ω amounts to U = 1→W = 1.

Bell [32, p. 162] deduced GDP from the principle that every partial order is contained in
a complete one. To do so he needed that ⊆ is maximal, with respect to containment, among
antisymmetric relations on Ω. As quasi-orders lack antisymmetry, we have to adapt Bell’s tool as
follows.

Lemma 9.27. Every compatible extension 6 of ⊆ on Ω coincides with ⊆, i.e., ⊆ is maximal with
respect to compatible extension of relations on Ω.

Proof. Now suppose that 6 is a compatible extension of ⊆ on Ω. By Lemma 9.26, and since 1 is
⊆-top, we get

U 6W → ( U = 1 → W = 1 )

or, equivalently, U 6W → U ⊆W , for all U,W ∈ Ω.

Proposition 9.28 (IZF). QEP implies GDP.

Proof. Applying QEP, and taking into account Lemma 9.27, we may consider ⊆ on Ω to be
complete, which is tantamount to (ϕ→ ψ) ∨ (ψ → ϕ) for arbitrary formulas ϕ and ψ.

The same assertion holds true if QEP in Proposition 9.28 is replaced by any of its equivalents
from Theorem 9.25, because proving these forms equivalent is possible already in IZF.

To get GDP we have used the same data as Bell [32, p. 162]: the relation ⊆ on the set Ω. In
particular, we have invoked the consequence of QEP that every partial order ⊆ can be extended
to a complete quasi-order. Any such extension of ⊆ on Ω, however, a fortiori is a partial order
anyway (Lemma 9.27).

9.8.5 Further directions

By now our focus has been on methodological advantage which our choice of positive notions for
consistency and compatible extension entails. Now we sketch an important application of order
extension in the theory of preference relations—that is, rationalizability.

We follow [48, 206]. Let again the set X denote our domain of discourse. A choice function is
a mapping

c : T → Pow(X)

which assigns to each inhabited member Y ∈ T , where T ⊆ Pow(X), an inhabited subset
c(Y ) ⊆ Y . A relation R on X rationalizes c if

c(Y ) = { x ∈ Y : ∀y ∈ Y xRy }
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for every Y in the domain of c; no further assumption on R is made. This version of rationalizability
is known as greatest-element rationalizability [48] of the choice function c. The (indirect) revealed
preference relation of a choice function c is defined to be (the transitive closure of)

{ (x, y) : ∃Y ∈ T (x ∈ c(Y ) ∧ y ∈ Y ) } .

A choice function c is said to satisfy the congruence axiom [206] if it is rationalized by its indirect
revealed preference relation. This is the setting for a fundamental application of order extension
in the theory of preference relations, viz.

Richter’s Theorem ([206, Theorem 1]). A choice function satisfies the congruence axiom if and
only if it can be rationalized by a complete quasi-order.

A key step to proving this is the following observation.

Lemma 9.29. Let c : T → Pow(X) be a choice function. If R is transitive and rationalizes c,
then so does every compatible extension of R.

Proof. We redraft an argument laid out in [48, Theorem 3.2]. Suppose that S is a compatible
extension of R. Given that R rationalizes c, and since R ⊆ S, it suffices to show

{ x ∈ Y : ∀y ∈ Y xSy } ⊆ { x ∈ Y : ∀y ∈ Y xRy }

whenever Y ∈ T . To this end, let Y ∈ T , and let x ∈ Y be such that ∀y ∈ Y xSy. Pick any
z ∈ c(Y ). As R rationalizes c, we have ∀y ∈ Y zRy, so in particular zRx. But we also know xSz.
Hence xRz by compatibility of S over R. Now ∀y ∈ Y xRy is immediate, since R is supposed to
be transitive.

Therefore, if a choice function c satisfies the congruence axiom, then every compatible complete
extension of its indirect revealed preference relation rationalizes c as well. This is how Richter’s
theorem rests on order extension.12 Conversely, it is not hard to show that if c can be ratio-
nalized by means of a complete quasi-order, then it satisfies the congruence axiom. In his proof
Richter applies Szpilrajn’s theorem in its original reading that every irreflexive transitive relation,
i.e., every strict partial order, is contained in one which compares every pair of distinct elements.
While Cato has recently deemed this form of Szpilrajn’s theorem “not useful for economic analyses
because partial orders do not allow two alternatives to be indifferent” [60, p. 60], there is again
a definite point to make from the methodological perspective. In order to have (strict) partial
orders at hand, Richter performs a quotient construction—a move which has turned out avoidable
by way of an appropriate extension principle for quasi-orders, as considered before.

Further applications of our method might be possible in the directions that research on order
and extension principles has taken. For instance, the topological notion of continuity comes into
play in [43, 44, 47]. In [99], transitive closure is replaced by several other closure operators, thus
leading to further extension theorems. In [100] conditions for a collection of binary relations to
have a common ordering extension are provided. The classic closure-complement problem has
been revisited for consistent closure in [59]. Last but not least, extensions have been considered
with regard to the existence of maximal elements in quasi-orders. In [198] it is shown that any
maximal element of a quasi-order R is the greatest element for some complete extension of R.

12Incidentally, Richter mentions that “both representability and rationality have existential clauses in their
definitions, so proofs of these properties are likely to involve tools like the axiom of choice and other nonconstructive
techniques.” [206, p. 637]
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[120] Kurt Gödel. “Zum intuitionistischen Aussagenkalkül”. In: Kurt Gödel: Collected Works.
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