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Abstract 

Nanodiamonds (NDs) are the subject of intense investigation for their unique 
physical and chemical properties. Due to high hardness, optical transparency and 
biocompatibility, NDs find applications in tribology, catalysis and drug delivery. 
When enriched with nitrogen-vacancy (NV) centers, NDs can be used in bioimaging 
and biosensing. While the field is progressing rapidly, a number of problems are 
still open. In this dissertation I have tackled two important aspects for the 
development of NDs as biosensors: 

1) production of NDs with controlled size and properties; 
2) characterization and optimization of commercial fluorescent NDs as probes 

of paramagnetic species. 

In the first part of my thesis, I report a novel synthesis route for NDs by pulsed laser 
ablation (PLA) in water. PLA can directly produce diamonds on a nanoscopic scale, 
with potential advantages over alternative methods, like grinding of bulk crystals or 
detonation techniques. Specifically, I demonstrate synthesis of nanometric diamond 
crystals by PLA in aqueous environment, and investigate the thermodynamics of 
this process. Indeed, the synthesis of NDs by PLA is related to a drastic change in 
the thermodynamic state of the target upon laser irradiation. Fast laser-induced 
heating results in melting and superheating of the target, followed by a strong 
boiling, a process named “phase explosion”, and then by a fast cooling of the 
molten material in water. I provide a theoretical description of both superheated 
and undercooled liquids and of the mechanism of phase explosion. The 
investigation of the link between the metastable liquids (superheated or 
undercooled) and the synthesis of nanoparticles is carried out by theoretical 
analyses, computer simulations and comparison of our experimental data with 
previous literature.  

In the second part of the thesis I turn to commercial NDs enriched with (NV) 
centers. The purpose of the investigation is to explore the use of fluorescent NDs 
for sensing of paramagnetic species of biological interest. To this end, I explored 
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the effects of size and surface coating on the optical properties and sensing 
capabilities of fluorescent NDs. 

Following a theoretical introduction to the basic properties of the NV centers and 
to the ground state spin dynamics of these color centers, I describe the set up used 
for the experimental characterization of the NDs. All NDs used in my experiments, 
characterized by different sizes and coatings, presented high fluorescence levels, 
the result of a relatively high concentration of NV center. In all NDs I observed a 
fast loss in coherence due to interactions between the NV centers and with the 
external environment. The most striking and unexpected result concerns the 
dynamics of the spin-lattice relaxation time 𝑇1. Differently from previous reports, 
spin dynamics after polarization of NV centers could not be described by a single 
exponential decay, but showed a sharp signal increase that I attribute to charge 
dynamics and charge conversion between the negative and neutral forms of the NV 
center. Unexpectedly, I found that coupled charge and spin dynamics are strongly 
affected by paramagnetic interactions, yielding unprecedented sensitivity to 
subnanomolar concentrations of gadolinium, a strong paramagnetic contrast 
agent. The connection between relaxation dynamics and concentration of 
paramagnetic species can open new perspectives in biosensing and in bioimaging. 
As a demonstration of a practical application, I tested the sensitivity of NDs in the 
detection of deoxyhemoglobin, an endogenous paramagnetic species in blood. 
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 Chapter 1 

Introduction 
 

 

 Nanoparticles have attracted attention in the last decades for their 
interesting physical and chemical properties and for new potential 
technological applications. As an intermediate system between molecules on 
one side and bulk materials on the other side, nanoparticles’ size-dependent 
properties are determined by their small volume in connection to a large 
surface area. Active areas of investigation include mechanical1, optical2 , 
thermosphysical3 and electronic4 properties of nanoparticles. Nanoparticles 
have been used in photocatalysis and water purification schemes5, in 
hydrogen production6 and storage7, with potential applications in the field of 
renewable energies. Moreover, nanoparticles may find important applications 
in medicine8 (especially drug delivery9) and biophysics10. Due to this growing 
interest, different physical and chemical techniques have been exploited for 
their synthesis, including sol-gel11, hydrothermal methods12, precipitation13 
and laser-assisted techniques14. Moreover, substantial theoretical work has 
been performed in order to explain the formation of nanoparticles15-17. 

 Among nanoparticles, nanodiamonds (NDs) occupy a special position. NDs 
combine features of nanoparticles with some of the properties of bulk 
diamond: highest hardness and resistance to friction, high thermal 
conductivity, optical transparency, chemical stability and biocompatibility18. 
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This makes NDs a versatile tool in many fields19, including tribology, 
catalysis19, drug delivery, biomarkers and bioimaging20,21.  

 Production of NDs by detonation22 dates back to the sixties. Nevertheless, 
NDs synthesis is still a challenge as it requires extreme pressure and 
temperature conditions. Several  methods have been proposed, including 
detonation23,24, high-pressure-high-temperature (HPHT) growth18, ultrasound 
cavitation25, chemical vapor deposition26, carbon dioxide reduction27 and 
laser-assisted techniques28-30. Purification and production cost of NDs remain 
a problem for most of these approaches.  

 Importantly, NDs can be enriched with nitrogen to obtain nitrogen-vacancy 
centers (NV centers)31,32. NV centers are point defects that can exist in two 
forms, the neutral NV0, and the negatively charged NV−. Even if both charged 
states are commonly found in NDs, the NV− has attracted much more 
attention due to its spin-dependent fluorescence that enables ultrasensitive 
detection of electric and magnetic fields at the nanoscale (nano-
magnetometry33 and nano-electrometry34), with applications in nano-
thermometry35, bioimaging and biosensing36-39. NV− centers can be polarized 
and their polarization can be transferred to the surrounding environment40,41, 
with potential application in NMR. Charge manipulation may allow long term 
data storage42. Finally, NV− centers are single photon emitters in quantum 
optics43 and, as a solid state qubit, the NV− has been proposed as a candidate 
for quantum information technologies44. 

 Detection of small fields requires careful manipulation of NV− spin levels 
through combined laser and microwave pulse sequences, used in Ramsey 
interferometry and Hahn echo schemes. By measuring the time evolution of 
single NV− centers, weak magnetic fields can be detected with high sensitivity 
(few nT/√Hz) and sub-nanometer spatial resolution45. Sensitivity can be 
further improved using ensembles of NV− centers46, but the price is the loss 
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of spatial resolution. In addition to that, a local probe, as a diamond of 
nanometric size, is affected by surface noise that reduces the coherence 
properties of NV− spins, strongly limiting the field sensitivity. Practically, 
strongly NV−-doped NDs have T2∗ of ~0.1 μs or shorter47,48, making the use of 
the standard sequences a hard task. In this thesis, we have explored the 
dependence of the spin-lattice relaxation time T1, which has a much longer 
characteristic time of few ms, on magnetic interactions. Specifically, we have 
demonstrated detection of paramagnetic centers by monitoring the spin 
relaxation dynamics. Interestingly, we found that spin dynamics and charge 
state conversion between NV− and NV0 must be considered together to fully 
explain the experimental findings. 

 

1.1 Thesis outline 
 This thesis can be ideally divided in two parts: the first describes a novel 
route for the production of NDs through laser ablation of carbon materials; 
the second demonstrates the application of NDs to detection of paramagnetic 
centers. In the first section of this thesis (Chapters 2-4), we face the problem 
of synthesis under two perspectives, the theoretical and the experimental one. 
The main goal is the elaboration of a theoretical model for NDs synthesis and 
growth, starting from a more general model of nanoparticles synthesis. In the 
second section of the thesis (Chapters 5-6), we consider the applications of 
NV-enriched NDs in the detection of paramagnetic impurities in biologically 
relevant conditions.  

 More specifically, in Chapter 2 we deal with nanoparticles produced by 
pulsed laser deposition (PLD). Shortly, PLD relies on the irradiation of a pulsed 
laser on a target. The energy density, wavelength, pulse length and repetition 
rates vary widely depending on the application. The complicated interaction 
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between the laser pulse and the target comprises a large number of thermal, 
diffusional and mechanical processes on different timescales49 and, as a 
consequence, more than one ablation mechanism. Vaporization is always 
present, while ejection of liquid and solid particles occurs when laser intensity 
exceeds threshold values. In the theoretical work we considered highly 
powerful (~1 GW cm−2) laser pulses with pulse length of 20 ns. We chose 
these conditions to match the experimental parameters of our set-up. Under 
these conditions, the target quickly heats at rates of 10 11 − 10 12 K s−1, and 
becomes a superheated liquid, approaching the critical temperature (around 
90% of Tc). Fast relaxation mechanisms (i.e. electron-phonon interactions50, 
on timescales of 10−12 − 10−11 s) thermalize the irradiated spot, so local 
thermal equilibrium can be assumed upon melting. In this metastable liquid, 
homogeneous nucleation of vapor bubbles is the main mechanism appointed 
to the phase transformation51. The change in phase from a metastable liquid 
to a “foamy” mixture of vapor bubbles and percolated liquid occurs at 
dramatic rates, taking therefore the name of explosive boiling or phase 
explosion52. Under vapor generation and expansion, the liquid nanodomains 
are pushed away from the target, together with vapor and ions, in an 
expanding plume. The nanodroplets assume a spherical shape by minimizing 
the internal energy53 and can then be collected on a substrate. 

 In this thesis, we model phase explosion by considering a continuum 
thermodynamic model54,55. Accordingly, thermodynamic variables describing 
the system are considered to behave as continuous functions of temperature 
up to the critical point. At the same time, fluctuations are modeled through 
the definition of a nucleation frequency, representing the average number of 
bubbles (or “nuclei” of the new phase) arising per unit time in a unit volume. 
Even if continuum models are led to the limits of their validity56 in the near-
critical region, they are more accessible and scalable57 than simulations based 
on molecular dynamics. 
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 The starting point is then an outline of the thermodynamics and kinetic 
theory of metastable liquids. The general treatment is intended to hold for 
both superheated and undercooled liquids, the two metastable systems 
considered largely in this thesis. Physical quantities that play a role in the 
phase change, as the critical radius and the nucleation rate are introduced. In 
a second step we define the main thermodynamic parameters and their 
temperature dependence close to the critical point. The goal is the modeling 
of phase explosion to link the bubbles-saturated liquid geometry with the size 
distribution of nanodroplets ejected from the target, and with the 
vapor/liquid fraction of ejected material54. This was accomplished with the aid 
of Monte Carlo simulations for a set of metals, finding excellent 
correspondence between experiments, theoretical predictions and molecular 
dynamics simulations. 

 Based on these results we move on focusing more specifically on carbon. 
The peculiarities of carbon, reflected also in the phase diagram, are 
emphasized whenever possible and compared with results previously found. 

 In Chapters 3 and 4 the attention is focused principally on the pulsed laser 
ablation (PLA) of graphite and the structural change from a graphitic sp2 to a 
diamantine sp3 structure. The ablation of graphite is considered to occur in a 
cryogenic liquid, water or liquid nitrogen, adding a fast cooling mechanism 
(again, 10 11 − 10 12 K s−1) to the picture. Henceforth, undercooled liquid 
carbon is considered, in a somewhat “specular” fashion with respect to the 
superheated liquids of the previous chapter. 

 The most interesting feature of undercooled liquids is the possibility to 
solidify preferentially in metastable crystallites instead of forming the true 
stable phase. This phenomenon, known as phase selection58,59, has been 
observed in different metals and salts60, and in particular in the low pressure, 
low temperature synthesis of diamond (metastable compared to graphite). 
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This apparent paradox can be explained by considering the additional effect 
of surface energy and surface stresses, that rise the pressure inside the 
nanocrystal and make diamond the true stable phase61. In Chapter 3, we take 
on the problem of relative stabilities of NDs and nanographites, and identify 
the conditions ensuring preferred nucleation of NDs, in the stable region of 
macroscopic graphite. As a result, we propose a size-dependent modified 
phase diagram of carbon, accounting for NDs-graphite coexistence lines. 
Later we consider explicitly nucleation of NDs in undercooled liquid and 
growth of diamond seeds in the liquid environment. By considering the 
dynamics of the liquid transient phase and the crystal growth velocity, it is 
possible to extract the final size of NDs obtained with PLD synthesis. 

 The theoretical results of Chapter 3 are particularly meaningful when 
compared to experiments, presented in Chapter 4, in which we give a detailed 
description of our experimental set up and of the whole process of synthesis. 
Single crystals and sub-micrometric cluster NDs have been successfully 
synthesized through UV pulsed laser irradiation of raw graphite in deionized 
water62. Further, we describe a new procedure for graphite removal based on 
sonication and UV-irradiation of NDs powders in H2O2, ensuring safer 
handling and treatment compared to common procedures that rely on strong 
boiling acids. In order to characterize our powder, we employed different 
analytical techniques: scanning electron microscopy (SEM) and energy 
dispersive spectroscopy (EDS), electron diffraction and Raman spectroscopy. 
The result of the analyses is the understanding of the thermodynamic path 
allowing the synthesis of compressively strained NDs, mediated by a 
metastable liquid phase. At the end of the chapter we provide comparison 
between theoretical predictions and experimental results. We also 
contextualize our results in the current research field, by comparison with 
other available experimental data, and raise questions about the role of laser 
wavelength and pulse duration. 
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 The second section of the thesis (Chapters 5 and 6) is entirely devoted to 
the characterization and application of fluorescent NDs enriched with NV 
centers. The NDs we used are commercially available, and come in two 
different sizes, 40nm and 100nm, bare or coated by a thin layer of silica. These 
NDs present strong emission, due to the high concentration of NV centers, 
potentially an advantage for bioimaging applications. However, interactions 
between NV centers and with other defects may affect coherence times, thus 
limiting their use as sensors of the magnetic properties of the environment at 
a nanoscopic scale. From a more fundamental point of view, the high density 
of NV centers might open new perspectives in the study of ensemble 
interactions and collective dynamics63,64. 

 Chapter 5 reports a thorough characterization of the spectroscopic and 
magneto-optical properties of NV centers in NDs. In the first part of the 
chapter, we present a brief theoretical introduction with a description of the 
Hamiltonian that describes the relevant interactions31,32,65. The experimental 
section reports a series of experiments, including photoluminescence, optical 
detection of magnetic resonance (ODMR), Rabi oscillations, Ramsey 
interferograms and spin-lattice relaxation measurements.  

 The experiments showed very short T2∗ and a fast decoherence dynamics 
for NV− centers in all samples. Interestingly, however, the spin-lattice 
relaxation time T1 proved to be much longer, up to hundreds of μs, and 
potentially a useful reporter of the magnetic properties of the surrounding 
bath66,67. Moreover, T1 can be evaluated after optical initialization of the NV 
centers, without further manipulation involving microwaves. This is particularly 
important for the study of biological tissues, for which microwaves can be 
extremely harmful. 

 Driven by these promising observations, in Chapter 6, we applied T1 
relaxometry to the study of paramagnetic gadolinium surrounding the NDs. 
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Gadolinium is a contrast agent used in MRI and a good model system to test 
the sensitivity of this method. In the first part of the chapter, we describe the 
experimental set up; experimental results are shown and discussed in the 
subsequent sections. Unexpectedly, we found a complex dependence of the 
relaxation curves on Gadolinium concentration, pointing to multiple 
mechanisms that contribute to the evolution of the NV states under 
interactions with the paramagnetic agent. This phenomenon, not previously 
reported, can be described in terms of coupled spin and charge dynamics, 
both sensitive to the external environment. Indeed, optical pumping, used to 
polarize the NV centers, can also change their charge state and induce 
photoionization and recharge mechanisms68-72 between NV− and NV0. This 
phenomenon is particularly apparent at high concentrations of Gadolinium, 
when T1 magnetic relaxation times become very short. Finally, we describe T1 
measurements with NDs in blood, demonstrating the use of fluorescent NDs 
to probe the magnetic properties of deoxyhemoglobin and opening new 
perspectives for future improvements in a variety of bioimaging studies. 
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 Chapter 2 

Superheated liquids: phase 
explosion and formation of 
nanoparticles 
 

 

The synthesis of new materials often relies on the attainment of a transient 
metastable phase, which acts as a precursor of the new phase. It was found 
that a metastable phase can favor the synthesis of new materials which would 
be otherwise difficult to obtain73,74. In turn, metastable phases require 
extremely fast heating or cooling (up to 1012 K s-1) over short timescales 
(nanosecond down to femtosecond regime). Pulsed laser ablation (PLA) and 
pulsed laser deposition (PLD) in different media satisfy both requirements 
under proper conditions.  

In the first part of this chapter (Section 2.1) we consider the dynamics of 
homogenous nucleation of vapor bubbles in a superheated liquid, a 
phenomenon known as explosive boiling or phase explosion. This 
phenomenon is expected when the metastable liquid overcomes the binodal 
line and approaches the spinodal line, beyond a value of temperature of 
about 90% of the critical temperature 𝑇𝑐. Phase explosion, alongside 
vaporization and spallation, is a mechanism involved in the laser-assisted 



BACKGROUND: FEW NOTES ABOUT NUCLEATION THEORY 
 
 

 

10 
 

ablation of targets75. It is however the most efficient mechanism for short 
laser pulses (in the nanosecond to femtosecond range)76, leading to the 
ejection of liquid nanodroplets, which, upon solidification, turn into 
nanoparticles.  

Starting from the description of thermodynamic properties of liquids in the 
near-critical region and the homogeneous nucleation dynamics (Section 2.2) it 
is possible to model the development of a dense-packed distribution of vapor 
bubbles and liquid intervolumes. The rupture of the surface, driven by the 
high pressures involved, give rise to a distribution of liquid nanodroplets. The 
aim of the model is to obtain information about the nanodroplets size 
distribution and the content of vaporized atoms (Section 2.3). The framework 
of the model is a continuum approach, given its simplicity and scalability up 
to large volumes54,55.  

Since the continuum approach provides a good starting point for the 
description of nanoparticles (NPs) synthesis it is adopted also for carbon. The 
peculiarities of carbon are introduced in this chapter and will be examined 
deeply in Chapter 3 and Chapter 4.  

At the end of this chapter we show that the theoretical predictions of the 
continuum model are in good agreement with results of both atomistic 
simulations and experiments. 

 

2.1 Background: few notes about nucleation 

theory 
Metastability is a thermodynamic concept describing, in our case, the 

behavior of superheated and supercooled liquids. Thermodynamics alone, 
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however, does not characterize completely the appearance of a new phase. 
The event of nucleation and the lifetime of the metastable system can change 
by many orders of magnitude and a kinetic theory is required to depict the 
effectiveness of formation of a new phase. In this section we give few notes 
about the thermodynamics of the homogeneous nucleation of a new phase 
and introduce the kinetic variables involved in the process77,78. 

Classical theory of homogeneous nucleation defines the important 
variables of the process: the critical radius (the size of a nucleus of the new 
phase at equilibrium with the surrounding metastable liquid) and the 
frequency of nucleation (the rate of formation of critical radii per unit 
volume). Following on this theory, the internal energy of the metastable liquid 
before the nucleation is  

𝑈0 = 𝑇𝑇 − 𝑝𝑝 + 𝜇𝜇 (2.1) 

where T, S, p, V, µ and N are temperature, entropy, pressure, volume, chemical 
potential and number of molecules in the liquid. The appearance of a small 
nucleus of the new phase is accompanied by a change in the internal energy 

𝑈 = 𝑇𝑇′ + 𝑇𝑇′′ − 𝑝𝑝′ − 𝑝′′𝑝′′ + 𝜇𝜇′ + 𝜇′′𝜇′′ + 𝜎𝜎  (2.2) 

where the primes refer to the liquid and the double primes to the new phase, 
𝜎 is the surface tension and 𝜎 the surface area of the nucleus. The system is 
supposed to be in contact with a thermal reservoir at temperature 𝑇 and a 
work reservoir that applies a constant pressure 𝑝. If the system is isolated and 
the process is reversible the total entropy, volume and number of particles 
(system + reservoir) are constant. The difference 𝑈 − 𝑈0 = 𝑊 is the work 
needed to create the new phase. Since 𝑇 and 𝑝 are constant, is gives also the 
variation of the Gibb’s free energy, 𝑊 = ∆𝐺. Finally, by considering all the 
conditions and constraints, this variation can be written as 
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∆𝐺 = 4𝜋𝑟2𝜎 + (𝑝 − 𝑝′′)
4
3
𝜋𝑟3 + �𝜇′′(𝑇, 𝑝′′) − 𝜇′(𝑇,𝑝)�𝜇′′  (2.3) 

in which the nucleus is assumed spherical. The first term on the right side of 
eq 2.3 is the energy required to create the liquid-vapor interface, the second 
the volume work against the pressure forces, the third is the “molecular” work, 
or the energy in excess in the liquid phase. The third term is negative and 
always balances the second term, which can be positive. In fact, if the nucleus 
is incompressible  

𝜇′′(𝑇,𝑝′′) − 𝜇′′(𝑇,𝑝) = 𝑣′′(𝑝′′ − 𝑝) (2.4) 

with 𝑣′′ the volume per molecule of the new phase. So  

4
3
𝜋𝑟3(𝑝 − 𝑝′′) + �𝜇′′(𝑇,𝑝′′) − 𝜇′(𝑇,𝑝)�𝜇′′ =

4
3
𝜋𝑟3

∆𝜇(𝑇, 𝑝)
𝑣′′

  (2.5) 

and finally 

∆𝐺 = 4𝜋𝑟2𝜎 +
4
3
𝜋𝑟3

∆𝜇(𝑇,𝑝)
𝑣′′

  (2.6) 

where ∆𝜇(𝑇,𝑝) = 𝜇′′(𝑇,𝑝) − 𝜇′(𝑇,𝑝) < 0 for pressures 𝑝 below the equilibrium 
pressure 𝑝𝑒𝑒. The eq. 2.6 has two terms, one corresponding to a volume “bulk” 
free energy variation, which is negative, and another positive one 
corresponding to the creation of the interface. For large radii ∆𝐺 < 0 and the 
growth of the new phase is thermodynamically favored. For small radii ∆𝐺 > 0 
and the new phase tend to collapse. This intermediate region behaves as a 
potential barrier, whose height decrease with increasing metastability of the 
liquid. The maximum of the curve defines the critical radius: 

𝑟𝑐𝑐 =
2𝜎𝑣′′
−∆𝜇

  (2.7) 

and the critical energy 
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∆𝐺𝑐𝑐 =
16𝜋

3
�
𝜎3 2⁄ 𝑣′′
−∆𝜇

�
2

.  (2.8) 

The rate at which critical nuclei appear is indicated by 𝐽, the homogenous 
nucleation rate. From to the early works of Volmer and Weber to more refined 
theories, the nucleation rate is proportional to the energy barrier in the sense  

𝐽 ∝ exp �−
∆𝐺𝑐𝑐
𝑘𝐵𝑇

�.  (2.9) 

Given the dramatic dependence of 𝐽 on the temperature, through the 
exponent ∆𝐺𝑐𝑐, a liquid can pass from an apparent situation of stability to a 
strong nucleation regime within a small range of temperatures. In the next 
section the homogeneous nucleation of vapor bubbles inside superheated 
liquids is considered more in detail. 

 

2.2 Thermodynamics of superheated liquids and 

phase explosion 
We considered initially homogeneous nucleation in superheated liquids, a 

process often defined explosive boiling or phase explosion (here the terms 
critical nucleus and critical bubble are used as synonyms). It involves the 
appearance and the growth of spherical vapor bubbles that ultimately 
saturate the liquid. It is useful to rewrite 𝑟𝑐𝑐 and ∆𝐺𝑐𝑐 by explicating their 
dependence on pressure:  

𝑟𝑐𝑐 =
2𝜎

𝑝𝑣 − 𝑝𝑙
  (2.10) 

    ∆𝐺𝑐𝑐 =
16𝜋𝜎3

3(𝑝𝑣 − 𝑝𝑙)2
  (2.11) 
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where now 𝑝𝑣(𝑇) and 𝑝𝑙(𝑇) are the pressures of the vapor and liquid phases, 
respectively. The nucleation rate is derived as a solution of the differential 
equation 

𝑑𝐽
𝑑𝑑

=
𝐽𝑠 − 𝐽
𝜏𝑙𝑙𝑙

  (2.12) 

where  

𝐽𝑠 = 𝜌𝑙�
6𝜎

(3 − 𝑏)𝜋𝑚3 𝑒
−∆ℎ𝑣𝑅𝑅 𝑒−

∆𝐺𝑐𝑐
𝑘𝐵𝑅   (2.13) 

is the stationary nucleation frequency as reported by Skripov77, in the form 
proposed by Döring and Volmer and 

𝜏𝑙𝑙𝑙 = �
2𝜋𝑚
𝑘𝐵𝑇

4𝜋𝜎𝑝𝑣
(𝑝𝑣 − 𝑝𝑙)

  (2.14) 

is the time lag, i.e. the time required for the attainment of the steady state. 𝜌𝑙 , 
∆ℎ𝑣, 𝑚 and 𝑅 are the liquid density, the molar enthalpy of vaporization, the 
atomic/molecular mass and the ideal gas constant, respectively. At constant 
temperature eq. 2.12 can be easily integrated to give 

𝐽(𝑑) = 𝐽𝑠 �1 − 𝑒
− 𝑡
𝜏𝑙𝑙𝑙�  (2.15) 

 Clearly, knowing the dependence of thermodynamic parameters close to 
the critical point is required in order to model the phase explosion process. 
However, the direct measurement of near-critical parameters is extremely 
difficult. To overcome this obstacle we followed the common procedure of 
extrapolating fits of experimental data to higher temperatures, guided by 
theoretical arguments about the constraints on critical exponents56,78,79. 
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 Quite recently, Blairs and Abbasi80 considered a Lennard-Jones potential for 
liquid metals and gave an empirical relation between the critical temperature 
𝑇𝑐 on one side and molar volume 𝑣𝑚 and surface tension 𝜎𝑚, both evaluated 
at the melting temperature 𝑇𝑚, on the other side: 

𝑇𝑐 = 𝜎𝑚 �
𝑚 ∙ 𝑣𝑚

(𝐶 ∙ 𝑣𝑚)5/6 − 𝑞
�
4
  (2.16) 

where 𝑚 = 8.9733 × 10−19, 𝑞 = −1.0459 × 10−25 and 𝐶 = 1.484 × 10−24 are 
fitting parameters. The estimates of 𝑇𝑐 are listed in Table 2.1 with other 
thermodynamic parameters characterizing few common metals. 

 

Element 𝑇𝑚 𝑇𝑏 𝑇𝑐 𝑝𝑐 𝜌𝑙(𝑇𝑚) 𝜎(𝑇𝑚) ∆ℎ𝑣(𝑇𝑏) 
 [K]a [K]a [K] [108 Pa] [kg/m3]a [N/m]b [kJ/mol] 
Al 933 2792 6319 3.2 2375 1.05 294a 
Fe 1811 3134 8059 5.4 6980 1.909 355c 
Co 1768 3200 7710 5.4 7750 1.928 375c 
Ni 1728 3186 7241 6.5 7810 1.834 378c 
Cu 1358 2835 5741 4.6 8020 1.374 300c 
Ag 1235 2435 5851 3.3 9320 0.955 255c 
Au 1337 3129 7003 3.9 17310 1.162 324a 
Cd 4765 4765 6810 2.2 1613 0.32 99.2 

Table 2.1– Parameters used for the thermodynamic modeling and corresponding references: 
melting temperature 𝑇𝑚, boiling temperature 𝑇𝑏 and critical temperature 𝑇𝑐 estimated with eq 
2.16, critical pressure 𝑝𝑐 , liquid density at the melting point 𝜌𝑙(𝑇𝑚), surface tension at the 
melting point 𝜎(𝑇𝑚) and enthalpy of vaporization at the boiling point ∆ℎ𝑣(𝑇𝑏). a Data taken 
from “Lide, Handbook of Chemistry and Physics”81. b Values of surface tension were taken from 
Keene82. c Data taken from Lu and Jiang83. d Parameters corresponding to carbon were taken 
from Leider84. 
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 A temperature dependence of surface tension was proposed in 1945 by 
Guggenheim 85: 

𝜎(𝑇) = 𝜎𝑚 �
𝛩
𝛩𝑚

�
11
9

  (2.17) 

with adimensional temperatures 𝛩 = 𝑅𝑐−𝑅
𝑅𝑐

 and 𝛩𝑚 = 𝑅𝑐−𝑅𝑚
𝑅𝑐

.  

 For the molar enthalpy of vaporization, we refer to the formula of 
Watson86: 

∆ℎ𝑣(𝑇) = ∆ℎ𝑣(𝑇𝑏) �
𝛩
𝛩𝑏
�
0.38

  (2.18) 

and 𝛩𝑏 = 𝑅𝑐−𝑅𝑏
𝑅𝑐

. The formula is applicable from 𝑇𝑚 to 𝑇𝑐.  

 Isobaric specific heat capacity for the liquid phase was approximated by a 
semi-empirical rule: 

𝑐𝑝,𝑙(𝑇) = 𝑐𝑝,𝑙(𝑇𝑚) �
𝛩
𝛩𝑚

�
−0.24

.  (2.19) 

 Similar laws exist for both the sum and the difference of liquid and vapor 
densities87-89. By manipulating these expressions and employing available 
experimental data54 it is possible to write separately 𝜌𝑙 and 𝜌𝑣 in terms of two 
coupled power series  

⎩
⎪
⎨

⎪
⎧𝜌𝑙(𝑇)

𝜌𝑐
= 1 + 𝐷0𝛩 + 𝐶1𝛩𝛽 + 𝐷1𝛩1−𝛼 + 𝐶2𝛩𝛽+∆

𝜌𝑣(𝑇)
𝜌𝑐

= 1 + 𝐷0𝛩 − 𝐶1𝛩𝛽 + 𝐷1𝛩1−𝛼 − 𝐶2𝛩𝛽+∆
  (2.20) 

with critical exponents 𝛼 = 0.101, 𝛽 = 0.325 and ∆= 0.51. The calculated 
material-dependent coefficients are plotted in Table 2.2.  
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 The Clausius-Clapeyron line locates the boundary between the phases of 
liquid and vapor at equilibrium, expressing the saturated vapor pressure 𝑝𝑠 as 
a function of temperature: 

𝑑𝑝𝑠
𝑑𝑇

=
∆ℎ𝑣(𝑇)

𝑇[𝑣𝑣(𝑇) − 𝑣𝑙(𝑇)]  (2.21) 

where 𝑣𝑣 and 𝑣𝑙 are the molar volumes of vapor and liquid phases. The eq. 
can be integrated numerically to obtain 𝑝𝑠. The actual pressure inside a critical 
bubble is78: 

𝑝𝑣 = 𝑝𝑠 exp �
(𝑝𝑙 − 𝑝𝑠)𝑣𝑙

𝑅𝑇
�  (2.22) 

and the liquid pressure, in turn, is incremented by the recoil effect of 
vaporized material. By considering the conservation of mass, momentum and 
energy across the vaporized layer, Anisimov90 and later Knight91 proposed a 
solution for the recoil pressure of vapor, with a final outcome of 
𝑝𝑙 = 0.55 ∙ 𝑝𝑠(𝑇𝑠), the surface temperature being 𝑇𝑠 ≈ 0.9𝑇𝑐. 

 

Element 𝜌𝑐 𝐷0 𝐶1 𝐷1 𝐶2 
 [kg/m3]     
Al 634 ± 5 1.1 ± 0.2 1.75 ± 0.04 -0.17 0.08 
Fe 1467± 53 1.8 ± 0.5 1.51 ± 0.08 -0.24 1.02 
Co ≈ 1350 ≈ 3.1 ≈ 1.3 -0.7 2.01 
Ni 2159 ± 45 1.1 ± 0.3 1.75 ± 0.04 -0.15 0.10 
Cu 2363 ± 23 1.2 ± 0.2 1.82 ± 0.03 -0.27 -0.02 
Ag 2718 ± 55 1.4 ± 0.3 1.68 ± 0.04 -0.57 0.06 
Au 5066 ± 5 1.4 ± 0.1 1.73 ± 0.01 -0.64 -0.07 

Table 2– Results of the interpolation of vapor and liquid densities. The experimental 
parameters needed in the calculation are reported in the first column. 
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 Carbon has some differences with respect to the metals under 
consideration and requires a special analysis. First, the melting point is one of 
the highest for pure elements (around 4800 K). Second, melting and 
sublimation take place in the same range of temperatures, the only difference 
being the pressure: the liquid phase is stable only at high pressures. The triple 
point between graphite, liquid and vapor has been located at 𝑇𝑙𝑙𝑣 = 4800 ±
150 K and 𝑝𝑙𝑙𝑣 = 11 ± 2 MPa by laser irradiation of a graphite target in a 
pressurized chamber92. Therefore, extreme conditions are required to reach 
the liquid phase, as those generated during pulsed laser ablation. It is 
reported, in fact, that during pulse laser ablation, irradiated material can reach 
temperature of thousands of Kelvins57 and pressure of several GPa93, close to 
the thermodynamic critical point. 

 It is important that the thermodynamic parameters show internal 
consistency. Leider et al.84 analyzed the properties of liquid and vapor carbon 
in the proximity of the critical point at 𝑇𝑐 = 6819 K and 𝑝𝑐 = 223 MPa. The 
author found that the vapor above 4500 K is mainly constituted by C3 and C7 
complexes. By considering the contribution of all the carbon ions, the authors 
plotted a vapor-liquid coexistence curve. Additionally, the enthalpy of 
vaporization and the liquid density were also furnished, via the Watson 
relation and a Riedel equation, by considering a decrease of 20% of liquid 
density with respect to graphite at triple point. The critical density was found 
to be 0.64 gcm-3. Thus, the density of saturated vapor can be estimated by 
reversing the Clausius-Clapeyron equation. The only missing parameter is 
surface tension and, to the best of our knowledge, there are no experimental 
available data. The Guggenheim–Katayama equation94 relates a prefactor to 
critical values of 𝑇 and 𝑝:  

𝜎(𝑇) = 𝐾(𝑇𝑐𝑝𝑐2)
1
3 �1 −

𝑇
𝑇𝑐
�
11
9

  (2.23) 
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where 𝐾 is a constant whose value is ≈ 2.4 ∙ 10−7 mPa1/3K-1/3. At the melting 
point the expression gives 𝜎𝑚 = 0.38 Nm-1. In Figure 2.1 the relevant 
thermodynamic properties of carbon are plotted together with those of iron, 
as comparison. The temperature scale was normalized to the respective 
critical temperatures. Note however, that a value of 0.7Tc for carbon just 
represents the melting point, while for iron the same value refers to a 
moderate degree of superheating (the melting point being at 0.22Tc). These 
differences are even more visible when considering the kinetic variables of 
nucleation. 

Figure 2.1– Relevant thermodynamic parameters of carbon (in red) and iron (blue). a: 
Saturated vapor pressure (solid line), vapor pressure inside the bubbles (dashed line) and 
liquid pressure (dotted lines). For carbon the vapor pressure inside the bubble is almost 
identical to the saturation pressure. b: Liquid density (solid line) and vapor density (dashed 
lines) normalized to the respective critical densities. c: Enthalpy of vaporization. d: Surface 
tension. 
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 All the thermodynamic parameters considered so far have been reduced to 
functions of temperature only. Therefore a major assumption is whether the 
temperature can be considered constant in space (no gradients) and in time 
(no heating of the liquid). For this specific case we plot in Figure 2.2 𝑟𝑐𝑐, 𝐽𝑠, 
𝜏𝑙𝑙𝑙, the vapor/liquid atomic ratio 𝜇𝑣/𝜇𝑙 and the phase explosion time 𝜏𝑝𝑒 for 
different metals. The last quantity is defined as the time interval between the 
appearance of the first critical bubble and the breakout of the liquid surface, 
with ejection of liquid material. It is then a measure of the lifetime of the 
superheated liquid. If the bubbles have all the same critical volume 𝑝𝑐𝑐 the 
quantity has a simple analytic expression: 

𝜏𝑝𝑒 =
𝛼

𝐽𝑠𝑝𝑐𝑐
ln �1 +

𝜂𝑚𝑙𝑚
1 − 𝜂𝑚𝑙𝑚

1
𝛼
�  (2.24) 

where 𝛼 = 𝜌𝑙
𝜌𝑣

 and 𝜂 is the vapor bubble packing fraction 𝑉𝑣
𝑉𝑡𝑡𝑡

, i.e. the fraction of 

vapor bubbles volume over the total volume. Monte Carlo simulations54 show 
that the packing fraction increases with time and reaches a maximum value of 
𝜂𝑚𝑙𝑚 = 0.30. This value can also determine the vapor/liquid atomic ratio: 

𝜇𝑣
𝜇𝑙

=
1
𝛼

𝜂𝑚𝑙𝑚
1 − 𝜂𝑚𝑙𝑚

  (2.25) 

Note that 𝜇𝑣/𝜇𝑙 ≈ 0.3. It only takes into account the vapor in the bubbles and 
does not consider the atomic yield duo to other concurrent ablation 
mechanisms, as vaporization. 

 Even if the thermodynamic parameters can have some uncertainty, the 
kinetic variables behaviors (Figure 2.2) are common to many materials: the 
critical radius goes to zero with increasing temperature superheat and so 
does the critical work. In a temperature interval of 200 − 300 K the steady 
nucleation frequency has a major variation of ~14 − 15 orders of magnitude. 
𝜏𝑝𝑒 has a large variation in a very narrow temperature interval. On the 
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contrary, 𝜏𝑙𝑙𝑙varies by a factor 10 in the same range. For low degrees of 
superheating 𝜏𝑙𝑙𝑙 ≪ 𝜏𝑝𝑒 and the nucleation can be assumed stationary. We 
see in Section 2.4 that also for higher degrees of superheating the time lag 
has a minor effect in the nucleation process.  

 

Figure 2.2 – a: critical radius, b: nucleation frequency, c: 𝜏𝑙𝑙𝑙 (solid line) and 𝜏𝑝𝑒 (dashed line), 
d: vapor/liquid atomic ratio for carbon (red curves) and iron (blue curves). 
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2.3 Modeling of phase explosion and 

nanoparticles synthesis 
 Our main goal in the study of phase explosion is the possibility to extract 
useful information about the size distribution of the ejected droplets and the 
fraction of nanoparticles over the total ablated material. Physically, when the 
liquid is filled with a dense packing of spheres, pressure gradients lead to the 
ejection of liquid volumes, which arrange in spherical nanodroplets, and 
vapor. To model this phenomenon we employed Monte Carlo (MC) 
simulations, based on positioning supercritical spheres, calculated with eq. 
2.10, in a large control cubic volume. Computations show that a packing 
fraction of 𝜂𝑚𝑙𝑚 = 0.30 corresponds to a situation of dense packing, with a 
“foam” of bubbles in contact with each other and percolated liquid. For this 
reason, when 𝜂 reaches the value of 0.3 the simulation interrupts and an 
algorithm assigns a spherical volume to proper liquid intervolumes. Details of 
the simulation and the algorithm are reported elsewere54. Figure 2.3 shows an 
easily viewable 2D analogous of the 3D simulation. 

 A more refined theory should lift few assumptions of the previous model, 
as the constant temperature and the steady nucleation, and consider explicitly 
the growth velocity of bubbles. In this improved model, a number 𝑑𝜇 = 𝐽𝑝𝑙𝑑𝑑 
of bubbles is randomly generated in the residual liquid volume 𝑝𝑙 in a time 
interval 𝑑𝑑. All the thermodynamic parameters and the kinetic variables 
depend on temperature, which increases with time at a constant rate of 
𝑑𝑅
𝑑𝑡

= 1011 − 1012 K s-1. These values are compatible with a high power ns laser 

heating the target. In particular, the nucleation rate is not constant in time 
and can be found by numerical integration of eq. 2.12.  

 



CHAPTER 2 - SUPERHEATED LIQUIDS: PHASE EXPLOSION AND FORMATION OF NANOPARTICLES 
 
 

 

23 
 

Figure 2.3: 2D simulation of homogeneous nucleation: supercritical bubbles in white and 
liquid intervolumes with different colors. 

 

 The growth dynamics of a single bubble in a superheated liquid was 
considered experimentally95,96 and explained with use of semi-analytical and 
computational models97,98. A system of coupled equations considers both the 
work of expansion of the bubble and the heat exchange with the surrounding 
liquid: 

⎩
⎪
⎨

⎪
⎧                         𝑅

𝑑2𝑅
𝑑𝑑2

+
3
2
�
𝑑𝑅
𝑑𝑑
�  =

𝑝𝑣(𝑇)− 𝑝∞
𝜖𝜌𝑙

−
2𝜎(𝑇)
𝜖𝜌𝑙𝑅

− 4
𝜇

𝜖𝜌𝑙𝑅
𝑑𝑅
𝑑𝑑

𝜕𝑇
𝜕𝑑

+ 𝜖
𝑅2

𝑟2
𝑑𝑅
𝑑𝑑

𝜕𝑇
𝜕𝑟

=
𝐾

𝜌𝑙𝑐𝑝,𝑙
�
𝜕2𝑇
𝜕𝑟2

+
2
𝑟
𝜕𝑇
𝜕𝑟
�

  (2.26) 

where 𝑅 is the bubble radius and 𝑟 the radial variable (in principle ranging 
from 𝑅 to ∞), 𝜖 = 1 − 𝜌𝑣/𝜌𝑙 , 𝜇 is the dynamic viscosity and 𝐾 the thermal 
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conductivity, approximated with the Wiedemann-Franz law55. Further, 𝑇∞ and 
𝑝∞ are the temperature and pressure in the superheated liquid far away from 
the bubbles, while 𝑇𝑠𝑙𝑡 is the saturation temperature corresponding to 𝑝∞. 
Energy balance sets a boundary condition at the bubble interface: 

�
𝜕𝑇
𝜕𝑟
�
𝑅

=
∆ℎ𝑣
3𝐾

1
𝑅2

𝑑
𝑑𝑑

(𝑅3𝜌𝑣)  (2.27) 

and also 𝑇(∞, 𝑑) = 𝑇∞(𝑑). Initial conditions are 𝑅(𝑑 = 0) = 𝑅𝑐 , �̇�(𝑑 = 0) = 0 
and 𝑇(𝑟, 0) = 𝑇∞. 

 The system of equations 2.26 is solved computationally on a discrete mesh-
grid with regular spatial discretization and a variable time step54. No initial 
disturbance is needed to initiate the bubble growth, differently from the case 
of the work of Lee and Merte. Here the temperature increases at a constant 
rate and therefore the critical radius decreases with time, meaning that all the 
bubbles spontaneously exit from metastability and start to grow. 

 

2.4 Results and discussion 
 In Figure 2.4 we show a typical solution of eq. 2.26 for single bubbles non 
interacting with each other, in the case of Al and for a heating rate of 1012 Ks-

1. The growth velocity becomes effective between 50 and 100 ps. At the same 
time, the growth rate must be compared with the lifetime of the liquid, which 
is of 80 ps in the present case. This means that the fast nucleation prevents 
the formation of excessively large radii and, in turn, large nanoparticles.  
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Figure 2.4: Growth of a single bubble in Al. The radius 𝑅(𝑑) is plotted as a function of time 
(edge of the white region). The contour plot shows the temperature field in the liquid phase 
in the bubble neighborhoods: it demonstrates in particular the cooling effect of the bubble 
upon expansion. 

 

 To be fairly general, the homogeneous nucleation occurs in a very narrow 
time interval, of the order of 80 − 500 ps, which corresponds to a temperature 
rise of 50 − 80 K, depending on the heating rate. Even if an unsteady 
nucleation rate was chosen, the fast nucleation process takes place without a 
significant time delay, as if 𝜏𝑙𝑙𝑙 played no role. This is proven also by the 
observation that the bubble generation is anticipated by an order of 
magnitude, when the heating rate is increased by an order of magnitude. 

 Turning to the size distribution, we plot the number of Al nanodroplets 
with respect to number of atoms per nanodroplet, obtained with different 
heating rates, in a log-log histogram (Figure 2.5). The droplets size 
distributions obtained through our simulation follow the power law 
𝑓(𝜇) ∝ 𝜇−𝑙, where 𝜇 is the number of atoms per droplet and 𝜎 ≈ 2. The 
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power law is observed in a quite large range, from 300 to 10000 atoms per 
droplet. No significant variations of the parameter 𝜎 is noted when going 
from a steady temperature (panel a, with 𝜎 = 1.9) to the high heating rates of 
1012 Ks-1 (panel d, with 𝜎 = 1.92). 

 

 

Figure 2.5 – log-log histograms of counts of nanodroples versus number of atoms per 
nanodroplet, for Al under different heating rates: a, no heating, c, 1011 Ks-1, d, 1012 Ks-1, all 
based on our simulation. Panel b shows the results of a molecular dynamics simulation, 
reprinted with permission from Wu and Zhigilei99, Springer-Verlag, 2013 
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The value of 𝜎, the average diameter of droplets �̅�𝑑𝑐𝑑𝑝 and the average 
number of atoms for droplet 𝜇�𝑑𝑐𝑑𝑝 are reported in Table 2.3. Our value of 1.9 
does not differ much to the value of 1.43 found recently with molecular 
dynamics simulation of an Al target irradiated by a 100 fs laser pulse99, shown 
in panel b. The first three rows of the table refer to Al: it can be seen from the 

value of the final temperature 𝑅𝑓
𝑅𝑐

 that the average diameter �̅�𝑑𝑐𝑑𝑝 decreases 

with increasing temperature, as expected. Note finally that the size 
distribution of radii follows the even steeper power law of 𝑓(𝑟) ∝ 𝑟−3𝑙, 
meaning that the ejected nanodroplets give rise to a narrow distribution 
peaked around the average diameter �̅�. This is the same conclusion we took 
by inspection of Figure 2.4: the extremely fast dynamics of nucleation or, 
equivalently, the short lifetime of superheated Al does not allow the 
formation of large NPs. 

 

Element 
𝑑𝑇
𝑑𝑑

 
𝑇𝑓
𝑇𝑐

 𝜎 𝜇�𝑑𝑐𝑑𝑝 �̅�𝑑𝑐𝑑𝑝 

 [Ks-1] %   [nm] 
Ala -- 90.8 1.9 𝜇𝑝𝑒𝑙𝑘 = 145 𝑑𝑐𝑐 = 3.52 
Al 1011 91.2 1.88 242 2.6 
Al 1012 92.3 1.92 95 1.9 
Fe  1012 93.2 1.97 73 1.7 
Co  1012 93.6 1.86 81 1.8 
Ni  1012 93.0 1.99 89 1.6 
Cu  1012 93.3 2.05 86 1.6 
Ag  1012 92.2 2.00 71 1.7 
Au  1012 92.3 2.06 67 1.7 

Table 2.3 – Results of our computational method. 𝑇𝑓 is the final temperature, 𝜎 the exponent 
of the size distributions power law, 𝜇�𝑙𝑡𝑑𝑚 the average number of atoms per nanodroplet and 
�̅�𝑑𝑐𝑑𝑝 the average diameter of the droplets. a Values of aluminum reported in Mazzi et al.54 
and calculated with MC algorithm for a constant temperature model with high density of 
percolated bubbles. 
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 The best way to validate our theoretical prediction is by comparison with 
experiments. Here the size distribution predicted by our MC simulation for 
liquid silver heated at 1012 Ks-1 is compared with the values of Through Thin 
Film Ablation (TTFA) of silver in high vacuum, using a KrF nanosecond laser100. 
Our method produces a monomodal distribution, peaked at almost 2 nm. On 
the other hand the experimental histogram, obtained through TEM imaging, 
shows two components, one centered at about 2 nm and another at about 8 
nm. These large particles are not observed in the simulation and could be 
ascribed to nanoparticles agglomeration on the substrate, a 
thermodynamically favored process, since coalescence reduces the free 
energy. This process could also be facilitated by a relatively high density of 
NPs on the substrate. The same tendency of coalescence, with a shift of the 
size distribution toward larger values, was observed when increasing the 
number of laser pulses, with more material deposited on the target101 
Nevertheless, the computed size distribution is in good agreement with the 
first peak of the experimental bimodal distribution, proving the validity of our 
procedure. 

Figure 2.6 – Our theoretical prediction for Ag at a heating rate of 1012 Ks-1 show a 
monomodal distribution for the size distribution (a). On the contrary, imaging of TTFA Ag 
nanoparticles using a KrF nanosecond laser100 shows a bimodal distribution, the larger peak 
being probably due to clustering. 
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 Chapter 3 

Undercooled liquids: nucleation 
and growth of nanodiamonds 
 

 

 In this chapter we consider the synthesis of nanodiamonds (NDs). It is 
known that bulk diamond is the stable phase of carbon at pressures higher 
than 2 GPa. On this basis, many techniques for diamond synthesis rely on the 
attainment of high pressures, whether it is carried by a shockwave, or by 
constant high-pressure-high-temperature conditions18,22,102. Nevertheless, 
chemical vapor deposition (CVD) and rapid quenching of liquid carbon 
demonstrated the possibility of nucleating diamond at low pressures and low 
temperatures, in the region of graphite stability. This apparent paradox is 
explained when considering the effect of surface stresses and surface energy, 
which rises the pressure inside the nucleating nanocrystals and make 
diamond the stable phase. This additional effect of surface is not exclusive of 
carbon and it has been observed for other metastable materials60.  

 In Section 3.1 the surface effects are considered when analyzing the relative 
stability of a ND and a nanographite, in terms of chemical potentials. The 
conditions of superior stability of NDs lead to a modification of the phase 
diagram of carbon, where the size is displayed.  
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 At the same time, NDs do not nucleate directly from graphite, but from a 
transient liquid phase. Pulsed laser ablation (PLA) of a carbon-based target 
(normally graphite) is a very fast process, able to generate pressures of several 
GPa and temperatures of thousands of K, in a timescale of few ns. Under such 
extreme conditions, nucleation of NDs has been reported73,103-106. When 
irradiation occurs in a cryogenic liquid, as water or in a pressurized gas107, a 
fast thermal dissipation can undercool the molten carbon and trigger the 
homogeneous nucleation of a solid phase. Direct nucleation from an 
undercooled liquid parental phase and subsequent growth of the crystal in 
the melt are the subjects of Section 3.2. In this way we can explain the 
observation of large crystals, in the sub-micrometer range106,108. The 
ambiguity which still affects the triple points and coexistence lines of phase 
diagram of carbon seems to play a marginal role and does not modify the 
overall picture. 

 At the end of the analysis, we see that both allowed nucleation and growth 
in the metastable region determine the final size of NDs. The theoretical 
predicted size of NDs, obtained by PLA of graphite in water, will serve in the 
next Chapter, as it will be compared with our experimental values and with 
other values taken from the literature. 

 

3.1 Stability of nanodiamonds and nanographites 
 Homogeneous nucleation in supercooled liquids is somehow specular to 
the nucleation in superheated liquids: the supercooled liquids are metastable 
with respect to the solid crystalline phase. The kinetic variables that we used 
in Chapter 2, as the critical radius, the critical work of nucleation, the 
nucleation frequency and the growth velocity find here an equivalent 
description. In particular, the Gibbs free energy variation can again be written 
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as a contribution of two terms, one related to bulk properties and another 
one to the creation of a liquid-solid interface. 

 There are however two important differences with respect to superheated 
liquids. The first is that the liquid and solid phases differ not only in density 
but also in degree of order. An additional energy term, associated with the 
crossing of the liquid-solid interface, must then be added. This term can be 
regarded as an activation energy for diffusion in the liquid109,110. As a result, 
the nucleation rate of the new phase has a maximum peaked at a certain 
temperature and then decreases sharply with a further reduction in 
temperature. Below a certain threshold the system cannot nucleate a new 
phase and converts into glass. 

 The second difference is that more than a solid phase can exist. For high 
degrees of undercooling there are experimental evidences of a metastable 
phase formation instead of the true stable phase, a phenomenon known as 
phase selection58,59,111. This high undercooling was obtained with a 25 ns Q-
switched ruby laser irradiation of manganese. 

 In the case of diamond synthesis, which is the topic considered in this 
chapter, Hwang et al61,112 explained the apparent paradox of NDs formation at 
low pressures and low temperatures during CVD. ND nucleation was seen to 
be preferred to graphite synthesis at the pressure of 2700 Pa and at the 
temperature of 1200 K, in the deep region of stability of graphite. Moreover, it 
was also observed that NDs of ≈ 2 − 5 nm are more stable than graphite NPs 
of the same size at low temperatures and pressures113,114. This can be 
explained by considering the capillary effect: the pressure inside the 
nanocrystal is higher than the pressure of the surrounding and stability 
conditions must be revisited, as we show in Figure 3.1.  
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Figure 3.1 – The chemical potentials of diamond (blue line), graphite (red line) and liquid 
carbon (yellow dashed line) at constant temperature. Below the equilibrium line, the graphite 
is the stable phase. If the surface stress is considered, the chemical potentials invert and ND is 
more stable than nanographite (blue and red circles). The slopes of the curves give the molar 
volumes, assumed constant. Note that the the high pressure liquid is denser than 
graphite115,116, so its molar volume is smaller. 

 

 In the region of stability of graphite, at pressure 𝑝 and temperature 𝑇, the 
chemical potential per molecule of graphite 𝜇𝐺(𝑝,𝑇) is smaller than the one of 
diamond 𝜇𝐷(𝑝,𝑇), so ∆𝜇(𝑝,𝑇) = 𝜇𝐷(𝑝,𝑇) − 𝜇𝐺(𝑝,𝑇) > 0. The capillary effect 
lifts the actual chemical potentials: 

⎩
⎨

⎧𝜇𝐷𝑐 (𝑝,𝑇) = 𝜇𝐷(𝑝,𝑇) +
2𝛾𝐷
𝑟𝐷

𝑝𝐷

𝜇𝐺𝑐 (𝑝,𝑇) = 𝜇𝐺(𝑝,𝑇) +
2𝛾𝐺
𝑟𝐺

𝑝𝐺
  (3.1) 



CHAPTER 3 - UNDERCOOLED LIQUIDS: NUCLEATION AND GROWTH OF NANODIAMONDS 
 
 

 

33 
 

where 𝑟 is the radius of the nanoparticle, 𝑝 the volume per molecule, 𝛾 the 
surface stress averaged on all the crystal planes and the subscript D, G refer to 
diamond and graphite, respectively. Incompressible solid phases were 
considered. Further, let us assume that the number of atoms in the 
nanographite 𝜇𝐺 and in the ND 𝜇𝐷 are the same, so 4

3
𝜋𝑟𝐺3/𝑝𝐺 = 4

3
𝜋𝑟𝐷3/𝑝𝐷. It 

may happen that 𝜇𝐷𝑐 (𝑝,𝑇) = 𝜇𝐺𝑐 (𝑝,𝑇) for a certain number of atoms in the 
nucleus 𝜇∗. Then 

𝜇∗ =
32𝜋

3
�
𝑝𝐺
2/3𝛾𝐺 − 𝑝𝐷

2/3𝛾𝐷
∆𝜇(𝑝,𝑇) �

3

.  (3.2) 

The difference in chemical potentials can be related to the exact point in the 
(𝑝,𝑇) phase diagram as  

∆𝜇(𝑝,𝑇) = (𝑝𝐺 − 𝑝𝐷)�𝑝𝑒𝑒 − 𝑝�  (3.3) 

with the graphite-diamond equilibrium line (after Bundy117,118) 𝑝𝑒𝑒 = 2.01 ×
106𝑇 + 2.02 × 109. The critical diameter of the diamond nanocrystal in the 
conversion from graphite is  

𝑑𝑐𝑐∗ (𝑝,𝑇) =
4𝑝𝐷

1/3

𝑝𝐺 − 𝑝𝐷
�

𝑝𝐺
2/3𝛾𝐺 − 𝑝𝐷

2/3𝛾𝐷
2.01 × 106𝑇 + 2.02 × 109 − 𝑝

�.  (3.4) 

This means that NDs smaller than 𝑑𝑐𝑐∗ , which means with less than 𝜇∗ atoms, 
will be more stable compared to nanographite with the same number of 
atoms. 

 As in the case of superheated liquids, we need the knowledge of the 
thermodynamic parameters under extreme conditions of temperature and 
pressure. The molar volumes are set at their values at ambient pressure and 
temperature, 𝑝𝐺 = 5.29 cm3mol-1 and 𝑝𝐷 = 3.42 cm3mol-1. For the surface 
stress, Yang and Li119 propose a common value of 𝛾 = (𝛾𝐺 + 𝛾𝐷)/2. Since 
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𝛾𝐺 ≈ 1.1 Jm-2 and 𝛾𝐷 ≈ 6.1 Jm-2 the common value120,121 is 𝛾 = 3.6 J/m2. 
Finally, the expression for the critical diameter is 

𝑑𝑐𝑐∗ (𝑝,𝑇) =
8.89 J/m2

2.01 × 106𝑇 + 2.02 × 109 − 𝑝
.  (3.5) 

 We plot in Figure 3.2 a modified phase diagram of carbon by taking into 
account the effect of size. The pressure scale is linear to emphasize the lines 
of 5 nm and 2 nm NDs stability, drawn with dotted lines unlike the solid lines 
of macroscopic equilibrium between phases. It can be seen that the model 
predicts the existence of nanometric diamonds in the region of graphite 
stability, even at room temperature and pressure, in agreement with other 
modified phase diagrams119. At the same time, the model might be improved 
by considering pressure and temperature dependence of the thermodynamic 
parameters, an overall decrease of surface stress with size60 and additional 
terms in the Gibbs’ free energy, as anisotropies and the energies of surfaces, 
edges and corners122,123. Let’s notice that also the liquid-diamond binodal 
could undergo a size-dependent shift, as suggested by Yang et al119. In Figure 
3.2, the metastable region of diamond formation is also indicated, bounded 
by the analytical extension of the diamond-liquid binodal (red curve), as 
suggested by Basharin124, beyond the diamond-graphite-liquid carbon (DGL) 
triple point (at 𝑇 ≈ 5000 K and 𝑝 ≈ 12 GPa). The slope of the binodal between 
graphite and liquid carbon is negative, as expected from a higher density 
liquid, since 𝑑𝑝/𝑑𝑇 = ∆ℎ/(𝑇∆𝑣). In the high pressure region the vapor phase 
is not displayed. The purple rectangle is the region at 8 GPa and between 
3500 and 4500 K considered for the calculation of the kinetic variables of the 
next section. 
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Figure 3.2 – The size-dependent phase diagram of carbon. Lines of stability of 2 and 5 nm are 
indicated with dotted lines. The red curve is the analytical continuation of the diamond-liquid 
binodal, which contains the region where nucleation of ND is favored compared to 
nanographite. The purple rectangle is the temperature interval at 8 GPa selected for the 
computation of the kinetic variables of nucleation. 

 

 Evidence of direct diamond synthesis in the mestastable region was given 
by rapid quenching of liquid carbon, at a low pressure of 12 MPa and at a low 
temperature of 4160 K124. Analogous results were reported by Narayan et al106 
upon single shot irradiation of melted diamond-like carbon (DLC), with a 
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20 ns ArF laser at fluences of 0.3 − 0.6 Jcm-2. In this case, micrometric 
diamonds were synthesized, probably because the parental phase already 
contained a relevant content of sp3 phase, coming from molten DLC. In both 
cases the undercooled liquid crossed the melting line of graphite without a 
phase transition, acquiring ≈ 1000 K of undercooling. 

 

3.2 Nucleation and growth of nanodiamonds in 

the metastable region 
 Under PLD NDs do not nucleate directly from graphite but from 
undercooled liquid carbon. The value of 𝑑𝑐𝑐∗  is important to establish whether 
the diamond phase is favored, but the kinetics of diamond nucleation must be 
determined from the comparison of the properties of metastable diamond 
and liquid carbon. Homogeneous nucleation of diamond occurs at constant 
pressure 𝑝 and temperature 𝑇 below the equilibrium crystallization 
temperature 𝑇𝑚 corresponding to 𝑝. Then, by defining the degree of 
supercooling as ∆𝑇 = 𝑇𝑚 − 𝑇, the variation in chemical potential is given by 
∆𝜇 = −∆𝑠∆𝑇 or ∆𝜇 = −∆ℎ∆𝑇/𝑇𝑚, where ∆𝑠 is the entropy of fusion and ∆ℎ the 
heat of fusion. The solid-liquid interfacial energy is temperature-dependent60: 

𝜎 = 𝜎0(𝑇𝑚) �
𝑇
𝑇𝑚
�
2

  (3.6) 

with 𝜎0(𝑇𝑚) ≈ 3.5 Jm-2. The form of eq. 3.6 lowers the critical size and the 
critical work for nucleation. Differentiation of the Gibbs’ free energy (eq 2.6) 
yields, for the critical radius, 

𝑟𝑐𝑐(𝑝,𝑇) =
2𝜎𝑝𝑇𝑚
∆ℎ∆𝑇

  (3.7) 
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Pressure is buried inside the melting temperature, 𝑇𝑚 = 𝑇𝑚(𝑝). Then, the work 
necessary to build a critical nucleus becomes:  

∆𝐺𝑐𝑐(𝑝,𝑇) =
16𝜋

3
�
𝜎3/2𝑝𝑇𝑚
∆ℎ∆𝑇

�
2

.  (3.8) 

Turnbull and Fisher125 in 1949 gave an expression for the nucleation rate: 

𝐽(𝑝,𝑇) =
𝑅𝑇
𝑣𝑙ℎ

exp �−
∆𝐺𝑐𝑐(𝑝,𝑇)

𝑘𝐵𝑇
� exp �−

𝐸
𝑘𝐵𝑇

�  (3.9) 

Where 𝑣𝑙 is the molar volume of the liquid phase, ℎ the Planck’s constant and 
𝐸 ≈ 240 kJ mol-1 the activation energy in the crossing of the liquid-solid 
interface108. It is not easy to measure experimentally the nucleation rate 𝐽, so 
it is better to consider the relative efficiencies of diamond and graphite 
nucleations, in the metastable region. The ratio of nucleation rates depends 
mainly on the critical works from liquid to diamond ∆𝐺𝑐𝑐𝐿𝐷(𝑝,𝑇) and from 
liquid to graphite ∆𝐺𝑐𝑐𝐿𝐺(𝑝,𝑇), because the first exponential of eq.3.9 has the 
strongest variation with temperature. So 

𝐽𝐷
𝐽𝐺
≈ exp �

∆𝐺𝑐𝑐𝐿𝐺(𝑝,𝑇) − ∆𝐺𝑐𝑐𝐿𝐷(𝑝,𝑇)
𝑘𝐵𝑇

�  (3.10) 

which means that diamond nucleates preferentially if ∆𝐺𝑐𝑐𝐿𝐷(𝑝,𝑇) < ∆𝐺𝑐𝑐𝐿𝐺(𝑝,𝑇). 
In Figure 3.3 log 𝐽𝐷

𝐽𝐺
 is plotted with respect to the temperature of nucleation, 

below the melting temperature of graphite 𝑇𝑚 ≈ 5100 K, corresponding to a 
constant pressure of 8 GPa. The logarithm of the ratio is positive below 
4400 K and down to a lower limit of 3825 K, which represents the onset of 
vitrification (red dashed line). This lower value was set to 0.75𝑇𝑚, in analogy 
with the reported vitrification range of 0.70 ÷ 0.85𝑇𝑚 for most of the 
elements109. Let us notice that the approximation of equal activation energies 
𝐸𝐷 ≈ 𝐸𝐺 does not change substantially the picture: even a difference of 
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100 kJmol-1 at 4000 K would just shift vertically the black curve by a value of 
1.3. The critical radius of NDs is also plotted: it decreases rapidly with 
temperature and in the region of effective nucleation has a value of about 
1 nm. 

Figure 3.3 – Ratio of nucleation frequencies (black curve) and critical radius of NDs nucleated 

from liquid carbon at the pressure of 8 GPa. Below 4400 K (14% of undercooling), the 

nucleation of NDs is favored compared to nanographites. The dashed line represents the limit 

of undercooling (0.75𝑇𝑚). 
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 The size of NDs is not due only to the critical radius, but it depends mainly 
on the growth in the liquid parental phase. After nucleation, liquid carbon 
provides material for the growth of large structures104,106,126, in the range of 
100 nm − 1 μm. Figure 3.1 shows that both the chemical potentials of 
graphite and diamond lie below the line of undercooled liquid carbon. With 
increasing size of nanocrystals, the pressure term provided by surface stress 
becomes less and less important, until the difference in chemical potentials at 
constant pressure is the only driving force for growth. Then, a reasonable 
assumption is that growth can occur as long as the system remains liquid. The 
growth velocity is expressed by  

𝑣 = 𝑓𝐷𝑓 exp �−
𝐸
𝑘B𝑇

� �1 − exp �
∆𝜇
𝑘B𝑇

��  (3.11) 

where 𝑓 is the fraction of sites available for attachment (supposed to be 1), 
𝐷 = 0.154 is the interatomic spacing of diamond and 𝑓 = 2.5 ∙ 1013 Hz is the 
thermal vibration frequency108. 

 Again, the degree of undercooling determines the growth velocity. The 
choice of the graphite-liquid binodal also affects the growth velocity 
substantially. In Figure 3.4 we plot the growth velocities attributed to three 
different binodals, the one proposed originally by Bundy118, the updated 
version of Zazula127 and the calculated line of Ghiringhelli128 as a function of 
the degree of undercooling normalized by the melting temperature of 
graphite. All the three growth velocities have a maximum, because they come 
from the product of two terms, one related to metastability (given by ∆𝜇, 
increasing with the undercooling) and another one related to the viscosity 
term 𝐸 (decreasing with undercooling). The peak values of the three curves 
are quite different. The binodal of Ghiringhelli is shifted at high pressures and 
low temperatures, compared to the other two, so the differences are 



RESULTS AND DISCUSSION 
 
 

 

40 
 

expectable. In the three cases the growth velocities cover the range of 
0.1 − 1.6 m/s. 

 

3.3 Results and discussion  
 To calculate the final diameter of NDs we made use of the formula 
𝑑𝑓𝑓𝑓𝑙𝑙 = 2�𝑟∗ + 𝑣𝜏𝑙� where 𝜏𝑙 is the time available for crystal growth. In many 
cases this time is of the order of magnitude of the duration of the laser 
pulse129,130, so, as a first approximation, 𝜏𝑙 = 20 ns, the length of our laser 
pulse (see Chapter 4). A cooling rate of 1011 Ks-1 corresponds to a cooling of 
2000 K in 20 ns. Such values are commonly encountered in undercooled 
liquids131 and are comparable with the heating rates considered in pulsed 
laser ablation (see Chapter 2). 

 From the values of Figure 3.4 and taking the constant temperature relative 
to the peaks, the diameters of the nucleated diamonds are of 68, 37 and 
13 nm, for the Bundy’s, Zazula’s and Ghiringhelli’s curves, respectively. These 
values are comparable with the biggest diamond synthesized with laser 
ablation techniques, given a sufficient time for the crystallization process. We 
must notice, however, that in this picture all the surrounding liquid is 
considered to turn into diamond, neglecting the concurrent mechanisms of 
graphitization, which is always present. In this sense, 𝑑𝑓𝑓𝑓𝑙𝑙 is the “maximum” 
diameter that can be obtained in 𝜏𝑙. 
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Figure 3.4 – Growth velocities of NDs in the metastable region, corresponding to different 
choices of binodal lines. The pressure is constant at 8 GPa. The dashed line represents the 
vetrification threshold, at 25% of the graphite melting temperature. 
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 Chapter 4 

Synthesis of nanodiamonds by 
pulsed laser ablation 
 

 

 In the previous chapter we focused the attention on the theoretical basis of 
NDs nucleation in a liquid carbon environment. As a conclusion, not only the 
nucleation of NDs was demonstrated to be preferred to nucleation of 
graphite in specific experimental conditions, but also crystal growth played an 
important role in the achievement of large NDs. We want now to validate the 
theoretical predicted values by comparison with results of experimental 
procedures. 

 The experimental work was conducted in the frame of confined pulsed 
laser ablation132 (CPLA), which relies on the focusing of a high power, short 
pulse laser, on a graphite target in water. If the target is immersed in a liquid 
during ablation, the plume expansion is dampened by the inertia of the liquid. 
The vaporized and ionized material is ejected with sonic velocities, so a shock 
wave is produced at the liquid-solid interface, with pressures of the order of 
GPa. In particular, the recoil pressure is of the same magnitude, much higher 
than those generated in vacuum133-136. A simple but rigorous solution to the 
problem of pressure evaluation is provided by the Fabbro’s model, which is 
adopted and explained in the chapter.  
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 The liquid has another effect on the ablated material. The high temperature 
plume now can transfer part of the energy to the surrounding environment 
through the mechanisms of heat conduction and heat convection, which are 
absent for the ablation in vacuum. The cooling rate is comparable to the 
heating rate (≈ 10 11 − 10 12 K s-1) and the molten material turns into an 
undercooled liquid. 

 In the first part of the chapter (Section 4.1), an overview of our 
experimental set up is given. As a distinctive feature, emphasis is devoted to 
confined pulsed laser ablation (CPLA) in liquid environment at room-
temperature and standard atmospheric pressure, which has been recently 
proposed as a potentially scalable and cost effective process for the 
production of NDs. Specifically, we perform laser ablation of a substrate of 
graphite under a water layer that serves both as a confinement factor and as a 
medium for the suspension of the ablation products137. Moreover, a safe 
physical-chemical method to extract the NDs from the surrounding graphite 
is developed. The NDs are fully characterized via electron and Raman 
spectroscopies in Section 4.2. At the end of the chapter, the obtained 
experimental data are explained in the framework of a thermodynamic model, 
introduced in chapter 3, which relies on a graphite-liquid-diamond route for 
the synthesis of NDs. To this purpose a comparison with experimental data 
taken from the literature is also performed. 

 

4.1 Experimental set up 
 In our CPLA experiment, a target of graphite was ablated by a KrF excimer 
laser (Coherent LPX220i) with λ = 248 nm, FWHM of 20 ns, a flat-top profile 
and repetition rate of 10 Hz (Figure 4.1). We chose a high number of pulses 
(9000 − 12000 laser shots) to increase the ablated material. Periodically the 
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target was moved to avoid excessive damage in the same spot and formation 
of craters. The energy of the laser was varied from ≈ 250 mJ to ≈ 600 mJ, and 
the beam was focused with a quartz lens with focal length 𝑓 = 40 cm to 
fractions of mm2, achieving laser intensities in the range of 1– 10 GWcm-2. The 
laser spot is irregular, so the power density is averaged on the spotsize. This 
means that the peak intensity in a smaller subregion of the spot could be 
higher. Due to the spatial irregularity of the laser spot, we measured 
experimentally the spotsize on the focal plane, instead of using the equation  

𝜃𝑤0 = 𝑀2 𝜆
𝜋

  (4.1) 

with 𝜃 the divergence angle, 𝑤0 the waist diameter in the focal plane and 𝑀2 
a factor accounting for the multimodal nature of the excimer beam. We 
assume that the water does not affect the focal distance and the intensity of 
the laser substantially. In fact, a thin layer of water 𝑙 increases the focal length 
by138  

∆𝑓 ≈ 𝑙 �1 −
1
𝑛
�  (4.2) 

where 𝑛 = 1.38 is the refractive index of water at 248 nm, resulting in a 
∆𝑓 = 0.55 mm for 𝑙 = 2 mm. This value falls below the spatial resolution of 
our instruments, so the focal shift was neglected. 

 A liquid can also absorb partially the incident light. In the present case the 
absorption coefficient of water is 0.0176 cm-1 and then the absorption is 
minimal. Therefore, the only effect taken into consideration is air-water 
interfacial reflection, which amounts to ≈ 3%. 

 The graphite target (a disk obtained by cutting a pyrolytic graphite rod) 
was covered by few millimeters of ultrapure water (conductivity of 
0.055 μS cm-1) during the irradiation. If necessary, water was added to restore 
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the initial level. The high energy deposited on the graphite target in the water 
medium created dispersed graphite particles together with embedded NDs. 

 After ablation, the graphite powders containing NDs were sonicated in 
acetone for 3 hours and then irradiated with UV light (λ = 365 nm) in a 
solution of concentrated hydrogen peroxide for 6 h. Shorter steps of 
sonication and UV-irradiation were repeated to reach the indicated time. 
Sonication in acetone had the effect of separating the powder that tends to 
aggregate. After sonication, acetone was evaporated and hydrogen peroxide 
added before UV irradiation. The combined chemical treatment removed 
some of the graphite and exposed free ND crystals. It should be noticed that 
this procedure, even if slower, is substantially safer and simpler than other 
methods to remove graphitic residues from NDs102, typically involving boiling 
acids (perchloric, piranha solution,…) or explosive compounds (ammonium 
nitrate). The UV light speeds up the dissociation of hydrogen peroxide into 
the strong oxidizing hydroxyl radicals ∙ OH. The effectiveness of this chemical 
treatment will emerge during the Raman analyses. 

 For the characterization of the product, the samples were prepared by 
dispersing the graphite particles embedding the NDs into ultra-pure water. A 
droplet of this suspension was then deposited on a clean 1 × 1 cm2 Si wafer 
piece, and then soft backing was applied until complete evaporation of water. 

 Morphological and compositional analyses were performed using a JEOL 
JSM-7001F Field Emission SEM equipped with an Oxford INCA PentaFETX3 
EDXS detector. SEM-EDS analyses were performed at 20 keV energy beam 
and 10 mm of WD to allow simultaneous acquisition of morphological images 
and compositional spectra.  

 A LabRam Aramis confocal microRaman system of JobinYvon Horiba was 
used for the spectroscopic characterization of the same powders deposited 
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on Si wafer. The two lines were provided by a He-Ne laser source (λ =
632.8 nm) and a DPSS laser source (λ = 532 nm). The signal was collected on 
an air-cooled multichannel CCD, with a wavenumber accuracy of ≈ 1 cm-1 in 
the range between 450 nm and 850 nm. 

 

 

Figure 4.1 – Schematic of the CPLA process. The UV laser output is focused through a quartz 
lens and irradiates the pyrolytic graphite target. Ablated particles are suspended in water. 

 

4.2 Results and discussion 
 As indicated in the previous paragraph, ablation of graphite occurred in 
water. The liquid acted as the confinement medium, where the ablated 
graphite particles as well as nano- and micro-clusters of assembled NDs were 
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dispersed. The ablated carbon powder underwent the chemical treatment 
described above to separate as much as possible of the graphitic phase from 
the NDs. After this multistep procedure, we used several analytical techniques 
for the characterization of the material. SEM images (Figure 4.2 b and c) 
clearly indicate the presence of single and clustered crystallites attributed to 
NDs agglomerates having a typical size in the range 0.1 − 1 μm. Both isolated 
and clustered crystallites were surrounded by a graphitic matrix. Energy 
dispersive spectroscopy (EDS, panel a) shows that the crystals are composed 
almost exclusively of carbon.  

 An electron diffraction pattern (Figure 4.2d) taken on a graphitic-
embedded crystallite (panel e) exhibits reflection rings that can be indexed as 
(002n)g reflections of a graphite structure with an interlayer spacing of 3.45 Å, 
characteristic of a disordered stacking of graphitic layers, plus reflections that 
are compatible with a diamond structure. Among these a large ring which can 
contain at the same time the 2.13 Å periodicity ((100)g of graphite) and the 
2.05 Å periodicity of (111)d of diamond and a well defined ring of periodicity 
1.26 Å which can be indexed at the same time as (110)g and (220)d. 

 In order to evaluate the relative content of the carbon hybridizations, sp2 vs 
sp3, we analyzed the ablation products with Raman spectroscopy at 633 nm 
and 532 nm laser excitation wavelengths. Carbon with sp2-hybridized bonds 
undergoes a double-resonant Raman scattering139 that dominates the Raman 
spectrum, independently of the excitation wavelength (Figure 4.3). Ablated 
material displayed both the G-peak and the D-peak, indicating the 
appearance of disorder in the form of carbon nanoparticles. Successful 
removal of the graphitic component by UV treatment in H2O2 enabled the 
detection of the characteristic Raman peak of diamond at around 1332 cm-1. 
Our samples showed a peak at 1337 cm-1 that is commonly attributed to 
compressively-strained nano-crystalline diamonds140. Compressive strain 
blue-shifts the line of diamond141 from its typical position at 1332 cm-1 and 
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causes the broadening142 from ≈ 4 cm-1 to ≈ 10 cm-1. This observation is not 
surprising, as we showed in the previous chapter that the surface stress could 
play a role in increasing the pressure inside the NDs. The graphitic G-peak is 
still visible, while the D-peak is not detected. The difference in the heights of 
the green and red spectra is due to the higher intensity of the green line 
compared to the red. The peak at 1380 cm-1  could be due to contaminating 
sodium nitrate143. 

 In order to explain the formation of NDs (Figs. 4.2 and 4.3) from graphite 
under laser irradiation treatment and water confinement, we have modeled 
the path in the phase diagram under the thermodynamic constraints that 
govern this transition (Figure 4.4). The confining medium was water in the 
present case (confining liquids are reported in many articles73,104,144,145), while 
confining solid, glass/quartz, are reported by Nian et al.132. Regardless of the 
type of confinement, the CPLA can be represented as a three-step process: 

1) First, during high power laser irradiation, a very intense plasma plume 
is created at the graphite-water interface and pressure and 
temperature reach their peak values of 1– 10 GPa and 5000– 6000 K, 
respectively103,133,146,147. These values fall in the liquid region of the 
carbon phase diagram describing the appearance of a melt layer 
between the plume and graphite of the bulk target. Ejection of liquid 
material was also quantitatively described in the paper of Mazzi et al.54 

2) Upon expansion of the plume, temperature and pressure decrease. 
Heat is also conveyed to water and, if the cooling rate is sufficiently 
high, the liquid carbon becomes supercooled. At this point nucleation 
of NDs is initiated. 

3) Growth of diamond nuclei continues as long as pressure and 
temperature favor the crystallization of liquid into diamond nuclei. 
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When temperature and pressure drop excessively, the surrounding 
carbon material turns into glassy carbon. 

Figure 4.2 – Experimental analyses of typical crystallites of intergrown NDs and graphite. a: 
Single crystallite with linear size of about 800 nm and b: typical agglomerate of crystallites of 
500 nm average size. Panel c shows EDS spectrum taken on crystallites as in panels a and b. 
The crystallites are composed by carbon and the peak of silicon comes from the substrate, 
where the sample powders were deposited. Oxygen is always present as a superficial 
contamination. Panel d displays an electron diffraction done inside the TEM apparatus on 
crystal shown in panel e. 
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 The transformation process is thus in the form graphite-liquid carbon-
diamond (compare to the work of X.D. Ren et al.148). The presence of a liquid 
phase is essential, since the model considers the nucleation and the growth of 
diamond crystals in an undercooled liquid. 

 

 

Figure 4.3 – Raman spectroscopic analyses. Raman spectra of chemically treated NDs taken at 
two different excitation wavelengths (green and red line), and of untreated ablated graphitic 
powder (dotted line). A peak at 1337 cm-1 becomes clearly visible after the UV/chemical 
cleaning. After chemical treatment, graphite is still present with a weak peak at 1580 cm-1 (the 
G peak), while the graphite related D peak at 1350 cm-1 is not detected. The peak at 1380 cm-

1comes from contaminants and was attributed to sodium nitrate. 
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 The description of the high-power laser pulse interacting with the graphite 
layer, through the heat transport equation and related boundary conditions, 
requires knowledge of several thermodynamic and optical parameters that 
are not experimentally available. To avoid use of several free parameters to 
calculate pressure-temperature values induced in the irradiated graphite 
sample, we made use of a simpler model, known as Fabbro’s model. This 
model is generally accepted for the estimation of pressure in the plume, 
which represents the recoil pressure acting on the graphite target133. Fabbro’s 
model is rigorously derived from the first principle of thermodynamics, under 
the hypothesis of ideal gas behavior of the vapor plume, and states that the 
evolution of pressure at the graphite-target interface depends on the 
intensity of the laser 𝐼. A simple solution considers a constant laser intensity 𝐼0 
during the laser pulse-length 𝜏. Then, pressure is also constant and given by: 

𝑝 = �
𝛼

2𝛼 + 3
𝑍𝐼0 

where 𝛼 is the fraction of internal energy of plasma related to thermal energy, 
and 1 − 𝛼 the ionization fraction of internal energy (usually 𝛼 = 0.1 − 0.5). The 

quantities 𝑍 = 2𝑍𝑙𝑍𝑤
(𝑍𝑙+𝑍𝑤)

 and 𝑍𝑙, 𝑍𝑤 are the reduced shock impedances of the 

system and the shock impedances of graphite and water, respectively. A 
number of papers133,146, mostly involving foils of Al, Cu, Zn and steel 
immersed in water, have shown a good agreement of this model with 
experimental data. In particular, during pulsed laser ablation of metal targets 
in water, the generated plume can easily attain pressures of 1 − 10 GPa for 
laser intensities of 1 − 10 GW cm-2. For the calculation of the pressure in eq. 
4.3, we chose 𝛼 ≈ 0.25 as in previous works135,149. The shock impedances149,150 
were taken as 𝑍𝑤 ≈ 1.65 × 106 kg m-2 s-1 and 𝑍𝑙 ≈ 12.0 × 106 kg m-2 s-1. 
Therefore, 𝑍 ≈ 2.9 × 106 kg m-2 s-1. In the present work, the highest value of 
the effective intensity of the laser was 4.5 GW cm-2, corresponding to a 
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pressure of 3.17 GPa. Temperature was estimated to be in the interval of 
4000 − 6000 K, as in other works103,147. Actually, these conditions of 
temperature and pressures fall in the liquid region of the phase diagram of 
carbon (Figure 4.4). The pressure exerted by the plasma/plume is so high that, 
in the inner layers, the transition occurs from graphite to liquid carbon. There 
is experimental evidence151 of graphite melting for laser fluences exceeding 
the threshold of 0.6 J cm-2, with a ruby laser (𝜆 = 694.3 nm) and 30 ns of pulse 
duration. The melt depth increases almost linearly with the laser fluence and 
reaches a value of about 200 nm for 2 − 3 J cm-2. To the best of our 
knowledge there are no available experimental data for our laser fluences, in 
the proximity of 100 J cm-2. However, analytical models that consider both 
vaporization and melting152 predict up to 1 μm thick melt layer at intensities 
of 1 GW cm-2, as in our case. A thickness of several hundred nanometers is 
compatible with the size of our final structure (Figure 4.2).  

 After melting, the system undergoes cooling, because the molten graphite 
is in thermal contact with the bulk graphite and surrounding water, and 
temperature and pressure decrease abruptly. The cooling velocity of the 
molten graphite is expected to be as high as 1010 − 1011 K s-1 and, in these 
conditions, within a few nanoseconds and in undercooling state, the system is 
brought into the region of stability of diamond or metastability of graphite, 
where the nucleation of diamond is favored124,153. 

 To estimate the size of the NDs obtained under our experimental 
conditions, we looked at the theory of the homogeneous nucleation. We 
recall the definition of critical radius 𝑟∗ (the radius of a nucleus at 
thermodynamic equilibrium with the surrounding liquid): 

𝑟∗(𝑇,𝑝) =
2𝜎𝑣𝐷
∆𝜇

  (4.4) 
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where 𝜎 is the surface energy, ∆𝜇 is the difference between the chemical 
potential of diamond 𝜇𝐷 and the liquid carbon 𝜇𝐿 and 𝑣𝐷 is the molecular 
volume of diamond.  

 The melting temperature 𝑇𝑚(𝑝), depending on the pressure, is located on 
the binodal line, defined by the Clausius-Clapeyron: 

𝑑𝑝
𝑑𝑇

=
𝑙

𝑇∆𝑣
  (4.5) 

with  ∆𝑣 = 𝑣𝐿 − 𝑣𝐷 , 𝑣𝐿 being the molecular volume of liquid carbon and 
𝑙 = 125 kJ mol-1 the enthalpy of fusion127. We refer to the work of Ghiringhelli 
et al154 for the evaluation of the diamond and liquid molar volumes, 𝑣𝐷 and 
𝑣𝐿. Surface tension is a function of both temperature and radius of NDs60: 

𝜎 = 𝜎0(𝑇𝑚) �1 −
3𝐷
2𝑟
� �

𝑇
𝑇𝑚
�
2

  (4.6) 

with 𝐷 = 0.154 nm being the interatomic spacing of diamond and 
𝜎0(𝑇𝑚) ≈ 3.5 J m-2.  

 The final size of the crystals was mainly due to the growth of diamond 
nuclei in the liquid. Let us rewrite the growth velocity (eq. 3.11) 

𝑣 = 𝑓𝐷𝑓 𝑒𝑒𝑝 �−
𝐸
𝑘𝐵𝑇

� �1 − 𝑒𝑒𝑝 �−
|∆𝜇|
𝑘𝐵𝑇

��  (4.7) 

where 𝑓 is the fraction of sites available for attachment (supposed to be ≈ 1), 
𝐸 ≈ 240 kJ mol-1 is the molar adsorption energy necessary to cross the liquid-
solid interface and 𝑓 = 2.5 ∙ 1013 Hz is the thermal vibration 
frequency108,117,155,156. To calculate the final diameter of NDs we made use of 
the formula 𝑑𝑓𝑓𝑓𝑙𝑙 = 2�𝑟∗ + 𝑣𝜏𝑙� where 𝜏𝑙 is the time available for crystal 
growth. In many cases this time is of the order of magnitude of the duration 
of the laser pulse129,130, so we set 𝜏𝑙to twice the pulse-length of the laser. In 
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the same time interval we can assume a constant pressure, equal to its peak 
value135. Accordingly, the system pathway in Figure 4.4 shows a clear increase 
of pressure and temperature from ambient conditions to the liquid region, 
followed by a fast cooling at almost constant pressure. It is to be intended, of 
course, that this is true on average of the ablated material, while single nano- 
and micrometric cluster can undergo different conditions (different pathways 
in the phase diagram). The different lines and points refer to diamond-liquid 
binodals and triple points proposed by different authors (see the caption of 
Figure 4.4 for more details). 

 In Figure 4.5, the blue-dashed box represents the region in which the size 
of our single NDs crystals falls. These crystallites are intermixed clusters of 
NDs and graphite, while the size of single NDs crystallites – measured with 
SEM – spans the range of 30 − 70 nm and does not display great differences 
due to the change in laser intensity, from 2.4 to 5.2 GW cm-2. The theoretical 
estimations are in reasonable agreement with the experimental data, despite 
the fact that the presented model considers only the thermodynamic state of 
the system and does not take into account laser wavelength and pulse 
duration, which, however, play a role mainly in the thermal history of the 
irradiated material. 
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Figure 4.4 – The phase diagram of carbon. The four regions of diamond D (white), graphite G 
(light grey), gaseous carbon V (light blue) and liquid carbon L (blue) are separated by 
coexistence lines (in black118). The coexistence line between diamond and liquid carbon (DL-
line) falls in the grey-dashed region, which is bounded by the green DL-line (Ghiringhelli et 
al154), and by the red DL-line (as described by Basharin124),and encloses the black DL-line 
(according to Zazula127). The dashed lines indicate the analytical continuations of the three 
curves. The dashed lines define a stable or metastable region for diamond nucleation. The red 
dot represents a metastable diamond at p=0.012 GPa and T=4160 K, obtained by quenching 
liquid carbon124. The purple triangles indicate the region of graphite melting measured by 
Togaya157. The dark green leftward triangle, orange rightward triangle, light green hexagon, 
blue square and light blue downward triangle represent the diamond-graphite-liquid triple 
points (DGL-points) according to Fateeva158, Bundy118, Ghiringhelli154, Glosli et Ree159, and van 
Thiel et Ree116, respectively. The purple squares describe our experimental system crossing 
the DL-line of Zazula from the right and becoming an undercooled liquid. Pressures of the 
purple squares were calculated from experimental laser intensities133. The red arrow indicates 
the evolution of the system in our experiment: from ambient temperature and pressure to 
liquid carbon, then to an undercooled liquid and finally to metastable diamond and graphite. 
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 In order to try to understand the role of the laser parameters, especially the 
wavelength, in determining the final NDs size, we compared our model with 
experimental data from the literature (graph of Figure 4.5). The colors indicate 
the wavelength of the exciting laser: 1064 nm for the red points, 532 nm for 
the green points, 355 nm for the black point and 248 for the blue-dashed 
region. We also plot three curves showing the final size single-crystal, 𝑑𝑓𝑓𝑓𝑙𝑙, 
due to nucleation and growth in a supercooled liquid, by considering the DL-
lines of Basharin124, Zazula127 and Ghiringhelli154. The DL binodal line has still 
some uncertainty. In fact, for the laser intensity of 4.5 GW cm-2 the final size of 
NDs is found to be of 5.5 nm, 15.8 nm or 59.2 nm whether we account for the 
DL binodals of Ghiringhelli, Zazula or Basharin, respectively. All the points 
relate to NDs synthesized in water by PLA. The starting material was graphite, 
either in the form of microparticles suspended in water148,160-163 or in the form 
of a bulk target103-105. Apart from the pentagon105, NDs produced with IR laser 
are one order of magnitude smaller than NDs produced with green and UV 
lasers, regardless the intensity of the laser. Mortazavi et al.105 compared the 
results of graphite ablation with an ArF 193 nm and a Q-switched ND: YAG 
1064 nm laser. They argued that the ArF laser is more capable to dissociate 
the carbon bonds and increase the 𝑠𝑝3/𝑠𝑝2 ratio, while the 1064 nm laser 
leads the formation of a variety of carbon structures, including NDs. In fact, a 
IR laser excites more species in the plasma plume, as the C2 dimers, that 
reduce the 𝑠𝑝3 fraction164. Further, a strong excitation of the plasma with an IR 
laser can induce dissociation of the confining liquid molecules, thus causing 
interaction of C atoms with other non-carbon ionic species and the 
generation of different bonds additional to sp3 diamond bonds. The size of 
our single crystals seems to confirm this trend. Finally, the biggest structures 
(green points) are presumably intergrown polycrystals of cubic and hexagonal 
diamonds, according to the authors165. 
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Figure 4.5 – Experimental size of NDs as a function of laser intensity. The dashed-blue box 
represents the region in which the size of our single NDs crystals falls. It spans a range from 
30 to 70 nm, centered at 50 nm, with laser intensities from 2.4 and 5.2 GW cm-2. This box 
encloses our experimental results, whose SEM images are shown in the right panels 
(numbered from 1 to 6). It can be seen that the size of our NDs clusters do not vary 
appreciably with laser intensities. Red points are taken from Sun160 (empty square), Hu161 
(empty circle), Bai162 (empty diamond and empty triangle), Ren148,163 (hexagon and stars) and 
Mortazavi105(pentagon) and correspond to ultrafine NDs produced with a 1064 nm laser. The 
black square was obtained with a 355 nm laser103. Finally, the green points correspond to 
diamond produced with a 532 nm, taken from Yang104,145,165(circle, upward triangle and 
downward triangle) and Wang73 (square). Solid points correspond to ns laser pulses (5 −
20 ns pulse lengths), while empty points correspond to laser pulses of 0.4 − 1.2 ms. The pink 
dotted line indicates the threshold for the region of absolute stability of diamond at 4500 K, 
i.e. the temperature of the DGL triple point according to Bundy. The purple, orange and green 
curves represent the theoretical size of a single diamond crystal as a function of pressure for a 
supercooled liquid crossing the DL-lines continuations of Basharin124, Zazula127 and 
Ghirinhelli154, respectively. The apparent discrepancy between theory and data may be 
explained by the fact that the biggest crystals experimentally observed consist of 
agglomerates of smaller crystals (polycrystals). 
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 In addition to the preferential excitation of particular ionic species in the 
plasma, different wavelengths lead also to different energy densities in the 
surface layers of graphite. The Beer-Lambert law relates the laser intensity at a 
certain depth in the graphite with the laser intensity at the interface 𝐼0 and 
depends on the penetration depth 𝛿𝜆: 

𝐼(𝑧, 𝜆) = 𝐼0𝑒−𝑧/𝛿𝜆 .  (4.8) 

 The calculated values of the penetration depth (from values of dielectric 
relative permittivity) are 45 nm for 𝜆 = 1064 nm, 31 nm for 𝜆 = 532 nm, 9 nm 
for 𝜆 = 248 nm and 19 nm for 𝜆 = 193 nm. The higher energy density 
deposited with a UV laser is expected to induce a more efficient dissociation 
of carbon atoms from the initial 𝑠𝑝2 lattice. 

 It must also be noticed that pulse duration seems to be a relevant 
parameter for the crystallization/agglomeration process. Some of the crystals 
are obtained by laser pulses of 0.4 − 1.2 ms (empty points in Figure 4.5). 
Clearly, in this case, the growth mechanism should be different from the 
nucleation in a supercooled liquid. Long heating time at relatively low 
intensity could allow the entire system to thermalize at the same temperature, 
with much lower cooling velocity at the end of the laser pulse. 

 Pressures calculated from the intensity of the laser through eq. 4.3 in our 
experimental conditions or in literature reports, are lower than the pressures 
corresponding to the region of diamond phase (Figure 4.4 and Figure 4.5). In 
some cases160-162, the estimated pressure is about 0.1 GPa, much less than the 
10 GPa required to have the absolute stability of diamond. Nonetheless, 
diamonds of various sizes were nucleated under these experimental 
conditions. This apparent inconsistency might have two explanations. The first 
is that Fabbro’s model underestimates the pressures generated in the plume 
acting on liquid carbon, in the case of graphite. More precisely, the local 
pressure could be higher. This is not surprising, because of the complexity of 
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the problem of the laser-surface interaction in high energy-density regime. 
The second explanation has been given in Chapter 3: the formation of 
nanoscopic diamonds can occur even in the deep region of absolute stability 
of graphite, through the additional effects of surface tension and proximity of 
chemical potentials of diamond and liquid carbon (see Chapter 3). 

 Liquid carbon molecules make a transition toward more stable 
configurations. The diamond chemical potential lies between the liquid and 
the graphite chemical potentials: liquid carbon is driven to the diamond 
configuration before reaching the more stable graphitic phase. If the cooling 
process is sufficiently rapid, part of the system is “blocked” in the diamond 
phase. This last hypothesis is corroborated by the possibility of obtaining 
diamond at the very low pressure of 0.012 GPa at the temperature of 4160 K, 
by quenching liquid carbon124. Presumably, nucleation of diamond continues 
as long as thermodynamic conditions are favorable, but the melted carbon 
surrounding the NDs solidifies into graphite or glassy carbon, creating NDs-
graphite shell particles and clusters of intermixed NDs and graphite. 

 

4.3 Conclusions 
I conclude the first part of the thesis by summarize the most important 
results. We have demonstrated that CPLA of graphite in water under ambient 
conditions is a viable route to produce NDs suspended in an aqueous 
medium. Moreover, we proposed a simple and safe procedure to extract the 
NDs from the embedding graphite. The NDs produced with the presented 
method can be delivered in a water suspension, a formulation that is 
advantageous for biological applications, e.g. for administration to cell and 
tissue cultures. Finally, the experimental results can be explained in terms of a 
metastable phase (diamond) nucleating in an undercooled liquid 
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(undercooled carbon). This allows a robust comparison between the 
theoretical predicted size of NDs, based on the results of chapters 2 and 3, 
and the experimental results of both our procedures and other data taken 
from the literature. 
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 Chapter 5 

Basic properties of nitrogen-
vacancy centers in nanodiamonds 
 

 

 This chapter is mainly devoted to the characterization of the properties of 
NV centers in commercial NDs and the understanding of the peculiarities of 
NDs compared to macroscopic diamonds. The NDs we used are commercially 
available (from Bikanta corporation), and come in two different sizes, 40 nm 
and 100 nm, bare or coated by a thin layer of silica. They are enriched with NV 
centers, to an average density of 5 ppm. For this reason, luminescence of NDs 
is intense, which can be an advantage in bioimaging. For the characterization 
of these systems we employed different spectroscopic and magneto-optic 
techniques, commonly adopted in the investigation of NV centers in bulk 
diamond as well. The experimental results are introduced by a theoretical 
framework describing the basic physics of NV centers and, in particular, of the 
ground state triplet. Far from being a thorough and complete analysis of the 
physics of NV in NDs, the theoretical description serves as a guideline to 
interpret the experiments. These, in turn, are designed to explore the sensing 
capabilities of fluorescent NDs, to understand their advantages and 
drawbacks when applied in the imaging of biological system and to study the 
effects of size and coating. In Table 5.1 we summarize the main characteristics 
of the NV -enriched NDs, as indicated by the suppliers.  
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Type Diameter (SEM) [nm] Diameter (DLS) [nm] Functionalization 
40 nm bare 42±16 107±0.8 none 
100 nm bare 120±37 188±7 none 

100 nm SiO2 120±37 core, 9±2 
shell  silica 

Table 5.1 – Size of NV-enriched NDs calculated by scanning electron microscopy (SEM) and 
by dynamics light scattering (DLS), as indicated by the suppliers. Also shown the 
functionalization of the surface. 

 

5.1 The basic physics of NV centers 
 The NV center is a point defect in diamond that consists of a nitrogen atom 
and a neighboring vacancy substituting a couple of carbon atoms (Figure 
5.1a). The three dangling bonds of carbon atoms provide an electron each to 
the center and other two come from the outer shell of nitrogen. This five-
electrons configuration is the neutral form of the NV, known as the NV0. A 
sixth electron can be provided by the environment, for instance by 
substitutional nitrogen donors: the addition of another electron generates the 
negatively charged center, or NV−. It was reported that the balance between 
NV− and NV0 depends on the concentration of substitutional nitrogen68 and 
on the distance from the diamond surface166, the NV− being favored at high 
nitrogen densities and in the inner layers of diamond. Of the two centers, the 
NV− has attracted much more attention due to the possibility of manipulating 
the population in the ground state sublevels, and its sensitivity to external 
fields, with applications in nanoscale magnetometry33, electrometry34, 
thermometry35, and bio-imaging36-39. Furthermore, the centers can be 
polarized and can transfer the polarization to the surrounding 
environment40,41, with potential application in NMR. As a solid state qubit, the 
NV− has been proposed as candidate for quantum information 
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technologies44. In this work we generically refer to the negatively charged 
center as the NV center, unless otherwise specified. 

 Nitrogen is naturally found in Type I diamonds167 (up to a concentration of 
0.1 − 0.2%) and in HPHT synthetic diamonds168. Alternatively, nitrogen might 
be implanted in high purity diamond samples169. Vacancies are generated 
during irradiation with electrons or ions and during annealing the vacancies 
move toward substitutional nitrogen to generate the centers170,171. This 
second procedure allows to obtain a desired density of NV centers, from 
individual to ensembles, depending on the applications47. 

 

𝜒 
IR 

𝐸 𝐶3 𝐶32 𝜎𝑣1 𝜎𝑣2 𝜎𝑣3 

𝐴1 1 1 1 1 1 1 
𝐴2 1 1 1 -1 -1 -1 
𝐸 2 -1 -1 0 0 0 

Table 5.2 – Characters of every element of the symmetry group 𝐶3𝑣 are listed for each 
irreducible representation. 

 

 The symmetry of the system is 𝐶3𝑣, with the nitrogen lying on the symmetry 
axis (parallel to the �̂� axis) and three vertical reflection planes containing the 
three carbon atoms. The six elements of the group are the identity 𝐸, two 
rotations 𝐶3 of ± 120° and three reflections on vertical planes 𝜎𝑣 (one is 
shown if Figure 5.1a). The elements of the group can be represented by 
matrices acting on vectors32,172 describing the dangling bonds 𝜎1, 𝜎2, 𝜎3 and 
𝜎𝑁.Among all the representations, the irreducible representations (IRs) give 
the best description, since the wave functions of the system transform 
according to one of the possible IRs of the group, which in the present case 
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are called 𝐴1, 𝐴2 (one dimensional) and 𝐸 (two dimensional). In Table 5.2 we 
indicate the characters 𝜒𝑒

(𝑐) of the group elements in the 𝑟-th IR. Note that the 
two rotations, on one side, and the three reflections, on the other side, have 
the same characters, because they belong to the same class (and the number 
of classes in a group is equal to the number of IRs173). 

Figure 5.1 – a: schematics of an NV center, with a reflection plane 𝜎𝑣 and the symmetry axis 
𝐶3. b: the center inserted in the diamond lattice. The center is aligned along one of the four 
[111] equivalent directions. 

 

 The four single-electron orbitals 𝜑𝑐 are obtained from the dangling bonds 
𝜎𝑓 by means of the projection operators 𝑃(𝑐): 

𝜑𝑐 = 𝑃(𝑐)𝜎𝑓 =
𝑙𝑐
ℎ
�𝜒𝑒

(𝑐)𝑅𝑒
𝑒

𝜎𝑓  (5.1) 
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where ℎ = 6 is the number of elements in the group, 𝑙𝑐 is the order of the 𝑟-th 
IR and 𝑅𝑒 the operation. Two non-degenerate totally symmetric orbitals 𝜎1 
and 𝜎1′ transform according to the IR 𝐴1. Two doubly-degenerate states 𝑒𝑚 
and 𝑒𝑦 transform according to the IR 𝐸. Explicitly31: 

 𝜎1 = (𝜎1 + 𝜎2 + 𝜎3) + 𝜆𝜎𝑁  (5.2a) 

 𝜎1′ = 𝜎𝑁 − 𝜆′(𝜎1 + 𝜎2 + 𝜎3)  (5.2b) 

 𝑒𝑚 = 2𝜎1+𝜎2+𝜎3
√6

  (5.2c) 

 𝑒𝑦 = 𝜎2−𝜎3
√2

  (5.2d) 

 where  𝜆 and 𝜆′ are related to the Coulomb interaction energy. We refer to 
the work of Maze32 for more details.  

 The (energetically increasing) orbitals 𝜎1′, 𝜎1 and �𝑒𝑚, 𝑒𝑦� must be filled with 
six electrons: 𝜎1′ and 𝜎1 can accommodate four (two each), so the last two 
must allocate in the �𝑒𝑚, 𝑒𝑦� orbitals. Two electrons are needed to fill the shell 
so it is more convenient to adopt a two-holes description instead of a six-
electrons one. Again, the two-holes spatial wave function must transform 
according to the 𝐴1, 𝐴2 and 𝐸 IRs. The spin can be found in a triplet (𝑇 = 1) or 
in the singlet (𝑇 = 0) configurations, while the total wave function must be 
antisymmetric. Hence, the First Hund’s rule can predict the ground state 
configuration: it is a spin triplet (𝑇 is maximized), which is symmetric, with an 
antisymmetric spatial wave function, 𝐴2. The notation for the ground state is 
then 𝐴23 . In Table 5.3 we list the total wave function, with the electronic 
configuration and the state labeling according to the 𝐶3𝑣 symmetry. In the 
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hole notation, the ground state is indicated with 𝑒2 and the excited state with 
𝜎𝑒.  

 

Electronic 
configuration 

State State label 𝑚𝑠 

 
𝑒2(𝑇) 

|𝑒𝑚𝑒𝑦 − 𝑒𝑦𝑒𝑚〉 ⊗ |↑↑〉 
|𝑒𝑚𝑒𝑦 − 𝑒𝑦𝑒𝑚〉 ⊗ |↑↓ +↓↑〉 

|𝑒𝑚𝑒𝑦 − 𝑒𝑦𝑒𝑚〉 ⊗ |↓↓〉 

 
𝐴23  

+1 
0 
-1 

𝑒2(𝑇) 
|𝑒𝑚𝑒𝑚 − 𝑒𝑦𝑒𝑦〉 ⊗ |↑↓ −↓↑〉 
|𝑒𝑚𝑒𝑦 + 𝑒𝑦𝑒𝑚〉 ⊗ |↑↓ −↓↑〉 
|𝑒𝑚𝑒𝑚 + 𝑒𝑦𝑒𝑦〉 ⊗ |↑↓ −↓↑〉 

} 𝐸1  
0 
0 

𝐴11  0 

𝜎𝑒(𝑇) 

|𝜎1𝑒𝑚〉⊗ |↑↑〉 

𝐸3  

+1 
|𝜎1𝑒𝑚〉⊗ |↓↓〉 -1 

|𝜎1𝑒𝑚 + 𝑒𝑚𝜎1〉 ⊗ |↑↓ +↓↑〉 0 
|𝜎1𝑒𝑦〉 ⊗ |↑↑〉 +1 
|𝜎1𝑒𝑦〉 ⊗ |↓↓〉 -1 

|𝜎1𝑒𝑦 + 𝑒𝑦𝜎1〉⊗ |↑↓ +↓↑〉 0 

𝜎𝑒(𝑇) 
|𝜎1𝑒𝑚 + 𝑒𝑚𝜎1〉 ⊗ |↑↓ −↓↑〉 

𝐸1  0 
|𝜎1𝑒𝑦 + 𝑒𝑦𝜎1〉⊗ |↑↓ −↓↑〉 0 

Table 5.3 – Adapted from Maze et al.32 The states configuration is expressed in the hole 
notation. States are labeled with spatial and spin functions, which emphasize the triplet or 
singlet configurations. 

 

 The ground state 𝐴23  is a spin triplet, while the excited state 𝐸3  has a 
more complicated structure, with total six levels. Metastable singlet states 𝐸1  
and 𝐴11  lie energetically between the 𝐴23  and the 𝐸3  and are not accessible 
from the ground state through electrical dipole transitions, since the orbital 
wave functions are the same. Nevertheless, spin-orbit interaction couples the 
triplet states with the intermediate singlets with different coupling strength 
according to the spin projection. We will consider this interaction in detail 
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when measuring optically induced magnetic resonance (ODMR) in the next 
paragraph. Two possible wave functions of the ground state and excited state 
are shown in Figure 5.2a,b. 

 I started the characterization of our samples with the spectroscopic 
measurement of photoluminescence (PL), recorded with a confocal 
microRaman system (see chapter 4 for technical details). Figure 5.2c indicates 
the ground and the excited states involved in the electronic transition, with a 
sketch of the vibrational bands, represented for simplicity by a harmonic 
potential with equally spaced vibrational levels. The excitation wavelength is 
532 nm. In Figure 5.2d we plot the collected luminescence of the 100 nm 
uncoated, the 40 nm uncoated and the 100 nm silica-coated NDs. For better 
comparison, the spectra were normalized to the peak intensity. In both 
absorption and emission, the electron transition is accompanied by the 
creation of phonons. Consequently, a zero phonon line (ZPL) at 637 nm is 
clearly visible in the emission spectra, as well as an extended phonon 
sideband up to 800 nm. This behavior obeys the Franck-Condon principle, 
which states that effective transitions between the ground and one excited 
vibrational state occur when the two wave functions are highly overlapped. 
The ZPL at 575 nm and the phonon sideband of the NV0 are also visible.  

 From the fit of the NV− luminescence we measured phonon energies of 
≈ 65 meV, a value close to those reported in previous works174-177. In the case 
of the NV0, the spacing is about 40 − 45 meV. Further, the ratio between the 
ZPL luminescence 𝐼𝑍𝑍𝐿 and the total integrated luminescence 𝐼0 can be used 
to estimate the Huang-Rhys factor 𝑇, defined experimentally as − ln(𝐼𝑍𝑍𝐿/𝐼0). 
The factor 𝑇 gives the approximate number of phonons emitted during the 
optical decay. By inserting the extracted data we find 𝑇 = 3.86 − 4.07 for the 
NV− and 𝑇 = 2.76 − 3.3 for the NV0. Both the values of ≈ 4 and ≈ 3 phonons 
for the NV− and the NV0, respectively, are in good agreement with previous 
estimates176,178-180. Within the phonon sideband of the NV−, no major 
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difference is encountered in the factor 𝑇 and in the spacing of phonon replica 
in the three spectra. This is reasonable, since the vibrational modes are quasi-
local and involve few atoms around the defect175,176, being almost insensitive 
to the - already large - size of the NDs. 

Figure 5.2 – Two possible wave functions of the ground and excited states are sketched in 
panels a and b, respectively. Panel c shows the ground and excited electronic states with 
vibronic structure. Collected PL is displayed in panel d, taken with a 532 nm laser excitation, 
for the 40 nm uncoated (blue line), 100 nm uncoated (orange line) and 100 nm silica-coated 
(green line) NDs. A striking difference of PL in the NV 0 region can be ascribed to the silica 
coating, which seems to favor the amount of NV - compared to NV 0. PL is so strong that it 
completely overtakes the Raman peak of diamond at 1332 cm-1 (inset of panel d). 
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 On the other hand, our spectra of Figure 5.2d show that at wavelengths 
longer than 680 nm the three spectra coincide, but around 575 nm the NV0 
emission of the silica-coated NDs (green curve) is lower than the other two. 
From the ZPLs ratio I𝑁𝑉−/I𝑁𝑉0 and the 𝑇 factors one can express the ratio 
between the concentrations of NV− and NV0, with a procedure analogous to 
the one of Acosta et al.47. With the concentrations normalized according to 
[NV−] + [NV0] = 1, we find [NV−] = 0.79 for the silica-coated NDs, and lower 
values of 0.59  and 0.60 for the 40 nm and 100 nm uncoated NDs, 
respectively. Defects, especially on the surface, can increase the concentration 
NV0 with respect to NV− and a proper surface termination is often required181-

183. Comparison of the spectra suggests that surface termination or coating 
are more important than size in determining the ratio I𝑁𝑉−/I𝑁𝑉0, at least for 
NDs of tens of nm. The intensity of the laser could also affect the ratio, 
through the mechanism of photoionization68. This effect will be examined in 
more detail in the next chapter. Finally, we notice that the Raman peak of 
diamond is totally exceeded by the strong luminescence and no signal is 
detected (inset of panel d). 

 

5.2 The spin Hamiltonian 
 The crystalline field sets the basis for the description of the ground and the 
excited states and the corresponding degeneracy of levels. Additional 
interactions that consider explicitly spin lift these degeneracies and make the 
system a suitable tool for detecting magnetic, electric and strain fields, just 
through a thorough measurement of luminescence. Here we just give a short 
list of the interactions that play a prominent role, since the full derivation is 
beyond the scope of this work and we refer to other works for more 
information65. The form of the Hamiltonians terms can be separate in an axial 
component along the symmetry axis (let’s be oriented along the direction �̂�) 
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and a transverse component on the perpendicular plane, reflecting the 
symmetry of the 𝐶3𝑣 group. A summary of the coupling constants is given in 
Table 5.4. The Hamiltonian of the ground state is: 

ℋ = ℋ𝑆𝑆 + ℋ𝑆𝑆 + ℋ𝑍 + ℋ𝐻𝐻  (5.3) 

where ℋ𝑆𝑆 is the spin-spin interaction term, ℋ𝑆𝑆 the spin-orbit, ℋ𝑍 accounts 
for the Zeeman interaction of the electron spin with a magnetic field and ℋ𝐻𝐻 
is the nuclear hyperfine term. All the values are normalized by the Planck 
constant ℎ, so the Hamiltonian is expressed in frequency units. More in detail  

ℋ𝑆𝑆 = 𝐷𝑙𝑠 �𝑇𝑧2 −
𝐒𝟐

3
� + 𝐸�𝑇𝑦2 − 𝑇𝑚2� (5.4) 

 The longitudinal zero-field splitting (ZFS) 𝐷𝑙𝑠 arises from spin-spin 
interaction and removes the degeneracy between the 𝑚𝑠 = 0 and the 
𝑚𝑠 = ±1 spin levels of the ground state. It depends on temperature, because 
the thermal expansion affects the average distance between the electrons in 
the center184, with a value at room temperature of ≈ 2.87 GHz. The transverse 
component of spin-spin interaction 𝐸 measures the strain and it is therefore 
sample-dependent, with typical values of few MHz.  

 The spin-orbit Hamiltonian 

ℋ𝑆𝑆 = 𝜆𝑧𝐿𝑧𝑇𝑧 + 𝜆⟘�𝐿𝑚𝑇𝑚 + 𝐿𝑦𝑇𝑦�  (5.5) 

has a negligible second-order effect on the ground state and a first order on 
the excited state185. Additionally, 𝜆𝑧 links states with 𝑚𝑠 = 0 in the same 
electron configuration, while 𝜆⟘ links states with 𝑚𝑠 = ±1 to singlets in 
different electronic configuration. This can be visualized more clearly if the 
transverse part is written in terms of ladder operators, 𝜆⟘(𝐿+𝑇− + 𝐿−𝑇+).  
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 When an external magnetic field is applied, the energy levels are shifted 
according to the Zeeman interaction, valid for strong magnetic fields. The 
Hamiltonian term is 

ℋ𝑍 =
𝑔𝑠𝜇𝐵
ℎ

𝐁 ∙ 𝐒  (5.6) 

where 𝑔𝑠 ≈ 2,003 is the Landé g-factor of the electron65, with small 
differences between axial and transverse components186, and 𝜇𝐵 the Bohr 
magneton. Since the spin is oriented along the 𝑧-axis, only 𝐵𝑧 contributes to 
the splitting. Clearly, NV centers with different orientations feel different 
effective magnetic fields.  

 

Coupling coefficient Symbol Value Reference 
Axial ZFS 𝐷𝑙𝑠 2.87 GHz Chen et al.184 
Axial SOa 𝜆𝑧 5.5 MHz Maze et al.32 
Transverse SOa 𝜆⟘ 7.3 MHz Maze et al.32 
Landé g-factor 𝑔𝑠 2.003 Felton et al.186 

Table 5.4 – Coupling constants used in the spin-spin, spin-orbit and Zeeman interactions. a 
the SO parameters refer to the excited state. 

 

 The nuclear hyperfine term depends on the type of nucleus:  

ℋ𝐻𝐻 = 𝑃𝑙𝑠 �𝐼𝑧2 −
𝐈𝟐

3
� + 𝐴𝑧𝑇𝑧𝐼𝑧 + 𝐴⟘�𝑇𝑚𝐼𝑚 + 𝑇𝑦𝐼𝑦�  (5.7) 

 The first is a quadrupolar term that is non zero for N14  and vanishes for N15  
and C13 . The isotopic composition of nitrogen is 99.6% of N14  and 0.4% of 

N15 , while C13  constitutes 1.1% of the total carbon atoms. The second term 
gives the hyperfine coupling with axial (𝐴𝑧) and transverse (𝐴⟘) constants. The 
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nitrogen under consideration is the one of NV center itself. On the contrary, 
the carbon can be found in the first neighbor position (one of the three atoms 
around the vacancy) or farther, with different interaction strengths186-188. Table 
5.5 lists the coupling constants for the hyperfine interaction. In the 
Hamiltonian we have neglected additional interactions whose magnitude is 
usually lower, or which are not used in the common schemes of ODMR, as 
Zeeman splitting of the nuclear spin levels and electric field-dipole 
interaction. Figure 5.3a shows the spin-spin, Zeeman and N14  hyperfine 
interaction on the ground state sublevels.  

 

Coupling coefficient Symbol Value (MHz) 
Quadrupole parameter N14  𝑃𝑙𝑠 -5.01 
Axial hyperfine N14  𝐴𝑧 -2.14 
Transverse hyperfine N14  𝐴⟘ -2.70 
Quadrupole parameter N15  𝑃𝑙𝑠 - 
Axial hyperfine N15  𝐴𝑧 3.03 
Transverse hyperfine N15  𝐴⟘ 3.65 
Quadrupole parameter C13  𝑃𝑙𝑠 - 
Axial hyperfine C13 a 𝐴𝑧 199.7 
Transverse hyperfine C13 a 𝐴⟘ 120.3 

Table 5.5 – Coupling coefficients in the hyperfine potentials with nuclei of 𝜇14 , 𝜇15  and 𝐶13 . 
Values are taken from Felton et al.186. a Values referred to first neighbor atoms. 

 

 As anticipated, spin-orbit mixes levels with different spin projections and 
different orbital wave functions. The outcome of this mechanism can be seen 
in the ODMR spectra. When the NV center is optically excited, the system 
goes from a spin level of the ground state to a level of the excited state with 
the same spin projection, because of selection rules of the electric-dipole 
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transitions. In the excited state, the system can decay radiatively to the 
ground state with the emission of a photon (again a spin-preserving 
transition) or it can decay non-radiatively to an intermediate singlet through 
the SO interaction. The rate constants for the non-radiative decay are zero for 
𝑚𝑠 = 0 and 30 ∙ 106 s-1 for 𝑚𝑠 = ±1 (Figure 5.3b), resulting in a weaker 
luminescence from the 𝑚𝑠 = ±1 of the excited state. This non-radiative 
pathway is known as intersystem crossing (ISC). As a consequence, upon laser 
pumping ISC depletes the population of the 𝑚𝑠 = ±1 levels of the ground 
state and increases the population of 𝑚𝑠 = 0, which becomes optically 
polarized. The 𝑚𝑠 = ±1 levels can be again populated by a resonant 
microwave radiation (matching the zero field splitting of 2.87 GHz plus or 
minus the Zeeman and/or hyperfine energies), resulting once more in a 
reduced fluorescence emission. This microwave-dependent drop in 
luminescence is shown in Figure 5.3c. The ODMR spectrum was taken from 
the collected emission of 100 nm uncoated NDs over a large area of 
~330 × 330 μm2 (panel d), with a modified Nikon Ti-E inverted wide field 
microscope. The two shallow side resonances are due to the C13  hyperfine 
interaction. In this particular sample the ZFS components are 𝐷 = 2871 MHz 
and 𝐸 = 5 MHz. Finally, panel e shows the scheme adopted for ODMR.  
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Figure 5.3 – Ground state sublevels are depicted in panel a, with coupling coefficients due to 
ZFS, Zeeman and 14N hyperfine interactions. b: excitation (green line) can be followed by 
optical relaxation (red line) or a non-radiative decay, called intersystem crossing (ISC), trough 
singlet dark states. The ISC is selective in the spin projection and luminescence can be 
modulated by the application of an external microwave field (panel c, over sample in paned 
d). e: the sequence adopted in continuous wave ODMR (CW ODMR). 

 

5.3 Experimental set up 
 The experimental set up is sketched in Figure 5.4. It is composed by 
two independent parts, the first containing the laser excitation and the 
detection (enclosed by the grey dashed box) and the second containing the 
microwave circuits and the possibility to apply a magnetic field (in the pink 
dashed box). For the optical excitation, we used two 532 nm lasers: either a 
high-power Verdi G5 of Coherent or a low-power GEM of Laser Quantum. The 
two laser beams were polarized with a linear polarizer and the intensity 
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optionally reduced with neutral density filters. Two acousto optic modulators, 
either the ISOMET M1133-Aq110-2 or the AA Opto Electronic MT200-A0,5-
VIS were used to pulse the high and low power lasers, respectively. Laser 
pulses were focused with a 40X Olympus Plan Achromat Objective (0.65 NA, 
0.6 mm WD) onto the sample. Luminescence was collected with the same 
objective and coupled into a fiber before detection with a photon counter 
(Excelitas SPCM-AQRH-14-FC). A combination of a shortpass and a highpass 
filters was adopted to limit the detection bandwith to the interval 
620 − 750 nm.  

Figure 5.4 – The experimental set up is composed by a part containing the optical line 
(enclosed by the grey box) and another for the microwave line (pink box). The diamond sits 
on a loop, with the possibility of 3D motion and application of a magnetic field. 
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Figure 5.5 – Pictures of the devices used to perform the experimental part. Either a high 
power Verdi (a) or a GEM (b) green lasers were focused through acousto-optic modulators (c, 
d) to obtain pulsed excitations. mw pulses were also controlled with a switch (e). The diamond 
sample sat on a loop for mw excitation, under a microscope objective (f). The luminescence 
were collected by the same objective and brought to a photon counter, enclosed in a box (g) 

 

 Microwaves were generated by a Keysight N5171B generator, then 
amplified and selectively pulsed with a mw switch (Mini-Circuits, ZASWA-2-
50DR+). The sample was lying on a custom-made Au-coated copper loop, 
connected to the mw line, to make the mw field uniform at the sample 
position. Optionally the 3-axis Helmholtz coil 100G HHC of MicroMagnetics 
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could provide a magnetic field up to 100 G along each axis and a 3-axis 
translator was able to move the position of the focal spot on the sample.  

 The AOM, mw generator, mw switch and photon counter were remotely 
controlled via TTL pulses by PBESR-PRO-300 pulse generator by SpinCore 
Technologies and data were collected by a data acquisition card (PCIe-6323 
of National Instruments). The main devices are shown in Figure 5.5. 

 

5.4 Characterization of the NDs through optical 

analyses 
 We characterized our NDs to understand the capabilities as a probing 
system in different environments. First we checked the pump power 
dependence on the photoluminescence. It is known that, under continuous 
pumping, the photoluminescence reaches a steady value that is determined 
by the various decay rates between the ground and excited states, which we 
indicate collectively as 𝑘. Then, the number of photon detected per unit time 
is  

𝑅(𝐼) = 𝑅∞(𝑘,𝜑)
𝐼

𝐼 + 𝐼𝑠
  (5.8) 

where 𝐼𝑠 is the saturation intensity and 𝑅∞ the maximum emission rates which 
depends also on the photon detection efficiency 𝜑. In Figure 5.6 the 
experimental data are fitted with the hyperbole of Eq. 5.8 with parameters 
𝐼𝑠 = 23.8 mW and 𝑅∞ = 28.0 ∙ 106 counts s-1. The collected emission was 
reduced by a 3.8 optical density (OD) filter, meaning a reduction of a factor 
~6300 in the number of photons. 
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 In Figure 5.7a and 5.7b the ODMR spectra of 100 nm SiO2-coated NDs are 
plotted as a function of the laser pump power and microwave power, 
respectively. The contrast decreases with the pump power (panel c), a 
phenomenon that could be related to photoionization of the NV−. However, 
the signal to noise ratio (snr) increases with laser power, so the proper 
conditions of laser pumping are a tradeoff between contrast and snr. On the 
other side, with high mw power contrast is high, but there is also a 
broadening of the resonance dips (panel d). Again, a tradeoff between 
contrast and resolution in frequency is required. By extrapolating the FWHM 
at zero mw power, it is possible to give a raw estimate of the dephasing time 
𝑇2∗, which will be explained in details in the next chapter. For the SiO2-coated 
NDs we found 𝑇2∗ = 68 ns, a value that is in good agreement with the 
dephasing time obtained with more sophisticated procedures of Ramsey 
interferometry. 

Figure 5.6 – Luminescence, expressed in counts s-1, as a function of laser intensity. The power 
of the laser was taken far from the saturation level to minimize the effect of photoionization 
of the 𝜇𝑝− centers. 
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Figure 5.7 – ODMR contrast as a function of laser power (a, c) and mw power (b, d). The 
contrast decreases with increasing laser power, probably related to the phenomenon of 
photoionization, and increases with mw power. From the FWHM it is possible to estimate the 
dephasing time 𝑇2∗ (panel d). 

 

 The FWHM has been estimated for the three types of NDs under the same 
conditions of laser intensity irradiation (3.3 mW) and mw power (−23 dBm at 
generator). The ODMR spectra were modified for a better comparison: 
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naming 𝐼(𝑓) the intensity as a function of frequency, 𝐼𝑑𝑓𝑓 the off-resonance 
value of 𝐼, far from the dips, and 𝐼𝑚𝑓𝑓 the minimum value of 𝐼 at the dips, in in 
Figure 5.8 we plotted the normalized intensity 

𝐼𝑑𝑓𝑓 − 𝐼(𝑓)
𝐼𝑑𝑓𝑓 − 𝐼𝑚𝑓𝑓

.  (5.9) 

 

Figure 5.8 – ODMR normalized in order to emphasize the broadening due to size. The 40 nm 
uncoated NDs have a larger FWHM, resulting in a shorter dephasing time. 

2.80 2.82 2.84 2.86 2.88 2.90 2.92 2.94
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 in
te

ns
ity

 d
ro

p

Frequency (GHz)

 40 nm uncoated
 100 nm uncoated
 100 nm SiO2 coated



CHAPTER 5 - BASIC PROPERTIES OF NITROGEN-VACANCY CENTERS IN NANODIAMONDS 
 
 

 

83 
 

 

 From the analyses, it seems that the coating is not affecting substantially 
the broadening of the ODMR and the 100 nm NDs. Both the uncoated (red 
curve/points) and the silica-coated (green curve/points) have almost the same 
FWHM in those conditions, around 6.4 MHz. On the contrary, the 40 nm 
uncoated have a broader FWHM, around 9.4 MHz. This reflects on the length 
of the dephasing time 𝑇2∗, that will be examined in the next paragraph, 
through the relation47,189 𝑇2∗ = 1/(𝜋𝛾𝑓𝑓ℎ), where 𝛾𝑓𝑓ℎ is the inhomogeneous 
broadening, obtained by extrapolating the FWHM at zero mw field. The 
estimated value of 𝑇2∗ ≈ 70 ns for the 100 nm uncoated and 100 nm silica-
coated NDs reduces to almost 50 ns in the case of 40 nm uncoated NDs. This 
suggests that in a minor volume the NV centers are more sensitive to radicals 
on the surface190 and, possibly, that a smaller volume implies higher surface-
induced strain acting on the centers and a more defective structure of the 
lattice191,192. Irrespective of this difference, 𝑇2∗ is short in all the three samples 
when measured in connection with ensemble of NV centers in a large single 
crystal. 

 In most of the experiments we kept a low sub-threshold pumping intensity 
(2 − 10 mW) to avoid the phenomenon of photoionization as much as 
possible and to increase the contrast, while, on the other side, ensuring a 
sufficient initialization of the ms = 0 spin ground state. At the same time, the 
microwave (MW) power was kept at −23 dBm before amplification 
(corresponding to almost 8 mW at the NDs sample holder) to limit the line 
broadening. 

 As a first application, we wanted to check the capabilities of NV-enriched 
NDs in the sensing of magnetic fields in the range ≤ 50 G. The application of 
a magnetic field results in the Zeeman splitting of the ms = ±1 spin levels. If 
the laser focal spot contains a large number of NDs with random orientations, 
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the magnetic field projects on the differently oriented NV centers with a 
certain probability, giving a distribution of splitted energies. For low magnetic 
fields, the splitting in frequencies is symmetric48: 

𝑓± = 𝐷 ± �𝑓02 cos2 𝜗 + 𝐸2  (5.10) 

with  

𝑓0 =
𝑔𝑠𝜇𝐵𝐵
ℎ

  (5.11) 

and 𝜗 is the angle between the magnetic field and a center. The collected 
ODMR signal is the convolution between the single resonance lineshape and 
the probability to have a certain orientation between the magnetic field and 
an NV axis, considering also the transition probability among different spin 
levels193. Since 𝑓± do not depend on the azimuthal angle 𝜑 and are quadratic 
in cos𝜗, this probability is just sin𝜗, or, for the 𝑚𝑠 = +1 level 

𝑝(𝑓) = �1 +
𝐸2 − (𝑓 − 𝐷)2

𝑓02
  (5.12) 

between the unperturbed value 𝑓𝜗=𝜋/2 = 𝐷 + 𝐸, and 𝑓𝑚𝑙𝑚 = 𝐷 + �𝑓02 + 𝐸2, 
and zero outside. For the 𝑚𝑠 = −1 level the probability is reversed between 
𝑓𝑚𝑓𝑓 = 𝐷 − �𝑓02 + 𝐸2 and 𝑓𝜗=𝜋/2 = 𝐷 − 𝐸. The resonance lineshape is 
approximately a Lorentzian peaked around a center frequency 𝑓𝑐 

𝐿(𝑓) = 𝐴 −
𝐴𝑝𝛤2

4(𝑓 − 𝑓𝑐)2 + 𝛤2
  (5.13) 

where 𝐴 is the offset, 𝑝 the contrast and 𝛤 the full width at half maximum 
(FWHM). The convolution 

𝑝(𝑓) ∗ 𝐿(𝑓)  (5.14) 
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is plotted in Figure 5.9 for two values of magnetic field. At the low value of 
10 G, the fit reproduces correctly the ODMR shape. At 50 G the fit is able to 
reproduce amplitude and width, but it is centered at lower frequencies. This 
can be explained by the fact that at high magnetic fields the Zeeman splitting 
of the 𝑚𝑠 = ±1 levels is not symmetric, but it is dragged at higher frequencies 
and depends strongly on the mutual orientation between 𝐵 and the NV 
axis48,194. The experimental spectrum therefore is centered around 2878 MHz, 
some 7 MHz more than the computed convolution. Finally, we estimated a 
single layer of NDs deposited on the glass substrate, with few tens of NDs in 
the focal spot of the laser. Increasing the magnetic field, there are fewer NV 
centers contributing to a particular frequency, resulting in the broadening of 
the ODMR with a drop in the contrast. Our results are consistent with those of 
a recent paper193 in which the ODMR coming from an ensemble of randomly 
oriented NDs is investigated in details. 

 The results reported indicate that in principle it is possible to measure the 
amplitude of magnetic fields of several G even with clusters of randomly 
oriented NDs, by looking at the broadening and at the shift of the central 
“peak” in the ODMR spectra. 

 

5.5 Spin dynamics 
 In this paragraph we focus on the spin dynamics of NV centers and on ways 
of manipulating the population in the ground state sublevels by applying 
sequences of laser and mw pulses. The surroundings can interact with the NV 
centers and lead to a loss of population in suitably prepared states, or to a 
depolarization of the optically polarized |0⟩ ground state. Three parameters 
describe the timescales at which those interactions strongly influence the NV 
spin dynamics: the dephasing time 𝑇2∗, the decoherence time 𝑇2 and the spin-
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lattice relaxation time 𝑇1. They are introduced one by one in the following 
discussion. 

 

Figure 5.9 – ODMR of NV-enriched NDs ensembles, at the two magnetic fields of 10 G (a) and 
50 G (b). The ODMR are a superposition of single Lorentzian lineshapes at different frequency 
shifts. With 50 G of magnetic field the center of this convolution is moved at higher 
frequencies.  

 

 Within the ground state of the NV center the 𝑚𝑠 = ±1 levels are splitted by 
the transverse ZFS 2𝐸 in addition to the splitting induced by an external 
magnetic field. Each couple of states |0⟩, |+1⟩ and |0⟩, |−1⟩ constitutes a two 
levels system analogous to a spin state 𝑇 = 1

2
 that can be described by a 

general Hamiltonian of the form 
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𝐻� =
1
2
�
𝐸0 + 𝑊𝑧 𝑊𝑚 − 𝑖𝑊𝑦
𝑊𝑚 + 𝑖𝑊𝑦 𝐸0 −𝑊𝑧

� =
1
2
𝐸0 +

1
2
𝑾 ∙ 𝝈  (5.15) 

where 𝑾 = �𝑊𝑚,𝑊𝑦,𝑊𝑧� and 𝝈 = �𝜎𝑚,𝜎𝑦,𝜎𝑧� and 𝜎𝑚,𝑦,𝑧 are the Pauli matrices. 
The evolution of a state |Ψ(𝑑)⟩ = 𝛼(𝑑)|0⟩ + 𝛽(𝑑)|−1⟩ can be readily visualized 
on the Bloch sphere, where the north pole is chosen to be the state |0⟩ and 
the south pole the state |−1⟩ (Figure 5.10). Then 

|Ψ0⟩ = cos
𝜗
2

|0⟩ + 𝑒𝑓𝑖 sin
𝜗
2

|−1⟩  (5.16) 

with 𝜗 the polar angle and 𝜑 the azimuthal angle with respect to the 𝑒-axis. 
The application of an external microwave field with a frequency 𝜔 resonant or 
slightly detuned with the separation 𝜔0 and orthogonal to the 𝑧-axis results in 
a Hamiltonian of the form 

𝐻� =
ℏ
2
� −𝜔0 𝜔𝑑𝑒𝑓𝑖𝑡

𝜔𝑑𝑒−𝑓𝑖𝑡 𝜔0
�  (5.17) 

and ℏ𝜔𝑑 gives the amplitude of the driving microwave field. As a result, the 
population in the state |0⟩ oscillates periodically between a maximum and 
minimum value, with a probability to find the state in |−1⟩ given by 

𝑃−1(𝑑) = |〈−1|Ψ(𝑑)〉|2 =
1
2

𝜔𝑑
2

Δ2 + 𝜔𝑑
2 �1 − cos�𝑑�Δ2 + 𝜔𝑑

2��  (5.18) 

where Δ = 𝜔 − 𝜔0 is the detuning. At resonance Δ = 0 and is possible to 
invert completely the population from |0⟩ to |−1⟩, by applying a 𝜋 pulse of 
length 𝑑𝜋 = 𝜋

𝑖𝑑
. A 𝜋/2 pulse of length 𝜋

2𝑖𝑑
 creates a superposition 

1
√2
�|0⟩ + 𝑒𝑓𝑖|−1⟩� that is aligned along the 𝑒�- axis for 𝜑 = 0 and along the 𝑦�-

axis for 𝜑 = 𝜋/2. In the rotating frame approximation the 𝑒�- and 𝑦�-axes 
precede around �̂� with frequency 𝜔, so the magnetic field is constant, let us 
say along 𝑒�, and the |Ψ(𝑑)⟩ rotates in the 𝑦𝑧 plane. 
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Figure 5.10 – Bloch sphere representation of a two-level spin system. The couple of spin 
states |0⟩ and |−1⟩ occupy the north and south poles of the Bloch sphere, respectively, and 
every other point on the sphere (red arrow) is a superposition of these two states and can be 
represented by a couple of polar and azimuthal angles (ϑ and ϕ). 

 

 Since the population of the two states |0⟩ and |−1⟩ is proportional to the 
collected luminescence, it can be addressed optically through a combined 
sequence of laser and MW pulses (Figure pulse sequence 5.11c). A 3D plot of 
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Rabi nutation curves taken on NV ensembles as a function of time and MW 
power is shown in Figure 5.11a. The spin is coupled with the 
environment44,64,195 and quickly loses coherence. When many electrons are 
initialized in the |0⟩ state the system is polarized. However, the local 
environment is different for each NV center and the time evolution of the spin 
is affected by external perturbation. Paramagnetic defects as C13  nuclear spins 
and the electronic magnetic moments of substitutional nitrogen, for instance, 
give rise to a local additional magnetic field acting on the NV spins, with a 
coupling strength that depend mostly on the amount of these 
inhomogeneities and their spatial distribution45,196. Then, the local 
environment leads to a dephasing of the initial equally polarized spins with a 
characteristic time known as the dephasing time T2∗, ranging from 100 ns in 
HPTH diamonds to 100 μs in 12C isotopically pure CVD. The NV spins can be 
partially decoupled from the environment by employing the Hahn-Echo or 
multiple-echo pulse sequences, thanks to which the effect of slow varying 
fields cancels out. As a result, coherence might be increased to timescales 
much longer than T2∗, of the order of the decoherence time T2 (up to 1 s in 
isotopically pure diamonds at low temperatures197). The decay times T2∗ and T2 
allow to investigation of the local environment in diamond lattice44,195. 

 A rough overestimate of T2∗ comes from the exponential envelope of the 
Rabi oscillations, fitted in our case by the single exponential decay function 

𝐼(𝑑) = 𝐼0 + 𝐴𝑒−𝑡/𝑅𝑅𝑙𝑏𝑅 𝑐𝑐𝑠�𝜔(𝑑 − 𝑑0)�  (5.19) 

The decay time TRabi is determined by a complicated interplay between the 
strength of the driving field 𝜔, the coupling between the NV centers and a 
bath of spins, and the intrabath dynamics63,64. Values of ≈ 200 ns have been 
obtained by fitting the envelope, so TRabi is significantly larger (3 − 4 times) 
than T2∗ calculated from the FWHM of the ODMR curves. In our case the 
detected luminescence is an overlap of signals coming from an 
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inhomogeneous ensemble of spins and the Rabi oscillations decay fast, 
compared to the case of single NV (Figure 5.11a). As a consequence, 
oscillations are detected only at strong driving fields or, equivalently, at high 
microwave powers, more than few Watts. The Rabi frequency obeys the usual 
linear relation with the magnetic field 𝐵 or with the square root of the 
microwave power198 (Figure 5.11b). Let’s remark that, when analyzing organic 
matter, elevate microwave intensities are extremely harmful and must be 
avoided, posing a limitation in the use of these pulse sequences. 

 

Figure 5.11 – Rabi nutations at different mw power (a), taken with the sequence pulse shown 
in panel c. The signals come from an inhomogeneous ensemble of NV spins and overlap to 
give a fast decaying curve. The Rabi frequency is plotted as a function of square root of the 
mw power, displaying a linear trend (b). 
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 The decay envelope of Ramsey interferometry gives a more accurate 
evaluation of T2∗ (Figure 5.12b). The Bloch sphere of Figure 5.12a summarizes 
visually the time evolution of the NV spins: the spin ensemble is initially 
polarized in the |0⟩ state and then flipped onto the equator state 
1
√2
�|0⟩ + 𝑒𝑓𝑖|−1⟩� with a 𝜋/2 pulse. After that, spins precede during the free 

induction decay time 𝑑 with a frequency dependence on the local strength of 
magnetic field, with faster (pink) and slower (yellow) components, resulting in 
a net loss of common phase. A second 𝜋/2 pulse orients the spin to the 
“south pole”, the spin state |−1⟩, ready for optical readout (Figure 5.12c). It 
should be noticed that the dephasing time is comparable with the value 
extrapolated from the ODMR FWHM at different MW powers (Figure 5.5d) 
and both are shorter than the Rabi decay time by a factor of ~ 3. 

Figure 5.12 – a: Bloch sphere representation of free induction decay pulse sequence (shown in 
panel c). The decay represents a loss in coherence of initially polarized spins, due to external 
perturbation. Panel b shows the decay as a function of time. From the envelope it is possible 
to extract a dephasing time 𝑇2∗ of ≈ 78 ns. 
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 The perturbation of the environment is not limited to dephasing. The NV 
spin can effect a “longitudinal” transition from the “north pole” to the “south 
pole” of the Bloch sphere, i.e. from |0⟩ to |−1⟩. The time characterizing this 
transition is the spin-lattice relaxation time 𝑇1. Phonons are responsible of the 
variability of 𝑇1 with temperature199,200. A shortening of 𝑇1 may come from 
nuclear spins, paramagnetic defects, perturbation from external magnetic 
fields200,201 and even from high density of 𝜇𝑝 centers through the mechanism 
of flip-flop cross-relaxations. However, under normal conditions the inequality 
𝑇2∗ < 𝑇2 < 𝑇1 holds, and 𝑇1 can be several orders of magnitude longer than 𝑇2∗, 
even with a high level of defects in the diamond. Long dynamics is 
appreciable when investigating the properties of the environment and 𝑇1 has 
been adopted more and more often as a robust tool to investigate the 
magnetic properties around the center. In addition to that, 𝑇1 relaxometry 
needs only optical initialization, without any further manipulation with 
microwaves. Therefore, both longer dynamics and absence of microwave 
fields are valuable properties of 𝑇1 relaxometry when implemented to 
biological sample. 

In Figure 5.13 we show a comparison between the 𝑇1 of the three different 
types of NDs. The data were acquired under the same experimental 
conditions of laser power intensity and time of initialization. We observed an 
irregular deposit of NDs on the glass and different subregions in the deposit 
display variable levels of luminescence. For this reason, the initialization of the 
NV centers might be slightly different in the three types of NDs (compare also 
Figure 5.6), depending on the amount of NDs. The small difference in the 
offset of 𝑇1 at longer times can then be ascribed to a tiny difference in the 
conditions of initialization and to the choice of normalization at the initial 
point. Apart from that, the uncoated NDs have a comparable 𝑇1, longer than 
0.6 ms, while for the silica coated NDs 𝑇1 is a little shorter (0.47 ms). An 
additional contribution to the dephasing in the silica coated NDs might come 
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from the high amount of NV centers (compare Figure 5.2d) and more effective 
flip-flop interactions inside the ND lattice72. As expected, 𝑇1 is much longer 
than 𝑇2∗, four orders of magnitude (compare results of Figure 5.5, Figure 5.12).  

 

Figure 5.13 – a: spin-lattice relaxometry of our luminescent NDs. 𝑇1 is four orders of 
magnitude longer than 𝑇2∗ and does not require mw fields, which makes it more promising in 
biosensing. Panel b shows the pulse sequence adopted. 
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5.6 Conclusions 
 I conclude this chapter by summarizing the results obtained in the analyses 
of NDs. The high concentration of NV centers and high density of NDs 
deposited on the glass slide results in a strong luminescent signal that can be 
readily detected with our set-up. The ODMR is composed by the 
superposition of different resonance spectra, with no sign of hyperfine 
splitting due to N14 , N15  and C13 . The randomness of NV orientation in the 
focal spot of the laser is demonstrated also by the application of a magnetic 
field that broadens the ODMR signal. Nevertheless, with a proper convolution, 
it is possible to measure the magnitude of the magnetic field applied with 
possible applications in the high-field magnetometry. Detection of low 
magnetic fields is made difficult by the short dephasing time, of the order of 
70 ns for the biggest NDs of 100 nm, regardless of the coating, and 50 ns for 
the 40 nm NDs. This suggests a more disordered structure for the smallest 
NDs, a result which seems to be consistent with general observations. On the 
other side, the spin-lattice relaxation time has proven to be four orders of 
magnitude longer. Importantly, 𝑇1 can be measured without the need of 
microwave pulses. These two aspects could make it a suitable tool in 
biosensing, bioimaging and, in general, in the detection of paramagnetic 
species in the surroundings of the nanodiamonds. In the analyses of 𝑇1, we 
observed a value close to 0.65 ms for the uncoated NDs and around 0.47 ms 
for the silica coated NDs. This observation is linked with a difference in the 
photoluminescence spectra of the three NDs samples. In fact, the SiO2-coated 
NDs display a low luminescence coming from neutral NV0 compared to the 
uncoated NDs, implying a lower amount of NV0 and, in turn, a higher amount 
of NV−. The interaction between different NV− has been proposed as a source 
of 𝑇1 reduction, compatible with experimental observations. In the next 
chapter we will use these results to investigate the effect of paramagnetic Gd 
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and blood on 𝑇1 shortening and find an interesting interplay between charge 
and spin dynamics.  

  



CONCLUSIONS 
 
 

 

96 
 

 
  



 

97 
 

 Chapter 6 

Coupled charge and spin dynamics 
of 𝑻𝟏 relaxation in the presence of 
paramagnetic species 
 

 

 We saw in the previous chapter that the dephasing time of NV ensemble in 
nanodiamonds is extremely short. This means that it is difficult to investigate 
the magnetic environment with ODMR, Rabi and Ramsey sequences. On the 
other side, 𝑇1 is much longer, around 0.6 ms, with no big differences with 
respect to NDs size (100 nm or 40 nm) or induced by a thin silica coating. As 
we pointed out, 𝑇1 can be measured by optical initialization and readout, 
without involving microwave pulses, a valuable condition when working with 
biological samples. To start with, we checked the sensitivity of NDs to external 
paramagnetic gadolinium, a contrast agent used in nuclear magnetic 
resonance for its high magnetic moment. It must be noted that the possibility 
of measuring a single spin, in particular of Gd, by 𝑇1 relaxometry has recently 
attracted a lot of interest and can open new perspectives in the biomedical 
field66,67,190,202,203. 

 This chapter is entirely based on the experimental measurement of 𝑇1. In 
the first section we show the results of 𝑇1 relaxometry in the presence of Gd, 
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describing the effect of laser power and Gd concentration on the 
luminescence shape. As it will be discussed, the luminescence clearly detects 
two components, one related to the usual 𝑇1 relaxation and the second 
attributed to charge recombination (recharge), after a photoionization of NV 
centers during the preparation pulse. It will be shown that a single 
exponential decay, consistent with spins relaxation, is not enough to describe 
the evolution of luminescence coming from ensembles of NV centers. Only by 
considering two coupled dynamics of charge and spin it is possible to 
reproduce the evolution of the luminescence. 

 Even if the photodynamics of the two charge states NV0 and NV− has been 
intensively studied, some aspects are not fully understood. Under laser 
irradiation, the NV− may lose an electron and be photoionized into NV0. The 
recharge process (back conversion NV0 → NV−) is also induced by laser 
radiation71,204,205. The photoionization of NV− occurs either via a two-photon 
process (under intense irradiation), where one photon excites the system from 
the ground state to the 𝐸3  triplet and the second photon sends the electron 
into the conduction band, or via a single-photon process (under weaker 
irradiation), where the excited state cedes an electron to a close defect via 
tunneling68,206. The single-photon process is likely to depend on the amount 
of defects, such as vancancies and substitutional nitrogen atoms, capable of 
trapping and donating electrons207. In particular, substitutional nitrogen is an 
electron donor and it was speculated that it can affect the charge state of 
proximate NV, by forming coupled systems68 of the type [NV − N]. 

 In a recent work72 is was experimentally reported that the recharge 
mechanism NV0 → NV− occurs in the dark, without any optical and thermal 
excitation. This evidence supports the picture of tunneling-mediated charge 
diffusion. Our NDs have an NV content of 5 ppm. Assuming a tenfold 
concentration of substitutional nitrogen (common in HPHT diamonds, the 
starting bulk material of our NDs), we obtain 50 ppm of nitrogen, either in 
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neutral (N0) or charged state (N+). Due to this high nitrogen content68 and 
the experimental evidences take from literature, we implicitly consider the 
possibility of charge transfer between the NV centers and single or “networks” 
of nitrogen impurities. The details of this model will be presented in the next 
section. Despite being a hazardous source of spin depolarization70, charge 
dynamics, together with spin dynamics, gives a striking demonstration of NV 
sensing the magnetic noise. 

 In the second and final section we repeat the same kind of measures with 
rat’s blood. Deoxygenated hemoglobin (deoxyhemoglobin) is paramagnetic 
and supposed to play a role in 𝑇1 shortening. We will see that spin dynamics 
alone can describe the experimental observations, with no sign of coupled 
charge and spin dynamics. 

 

6.1 T1 relaxometry with gadolinium 
 Mixtures of NDs and gadolinium were realized in two different ways. In the 
first set of experiments several solutions of Gd complexes at different 
concentrations were obtained by dilution of gadoteridol (0.5 M) with 
deionized water; the solutions were then added to a suspension of NDs and 
sonicated for several minutes to avoid clustering. A droplet of each mixture 
was deposited on thin glass slides and let dry. Each sample was then 
measured in turn. In the second set, a droplet of suspended NDs was 
deposited on a glass slide and later Gd was added recursively. At each step, 
the droplet was let evaporate and 𝑇1 relaxation was recorded, before adding 
another droplet. In this way it was possible to increase gradually the material 
deposited onto the NDs without changing the sample. The two methods did 
not display appreciable differences. 
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 The experimental results of the recursive addition of Gd, at constant laser 
power of 5 mW before focusing, are shown in Figure 6.1. 4 μg of NDs were 
deposited onto a glass slide, obtaining a spot of diameter ≈ 2 mm and height 
≈ 350 nm. The average diameter of the spot was measured with a caliper, 
while the height was calculated from the mass of the precipitate by 
considering a molar mass of 12.01 g mol-1 for the NDs. Then Gd was 
deposited, ranging between 10−4 μmol and 0.12 μmol. With no Gd, the 
expected 𝑇1 exponential decay was observed (𝑇1 ≈ 0.6 ms, panel a). With 
increasing amounts of Gd, a new component appeared at longer times, 
getting more and more prominent. At the same time the spin-lattice decay 
became steeper until the dynamics was dominated by the growing 
component. While the first decay curve has been attributed to longitudinal 
relaxations, the new component has not been reported in the literature so far, 
to the best of our knowledge. The whole decay profile was empirically fitted 
by a double exponential, with a global function of the type 

𝐼(𝑑) = 𝐼𝑒𝑒�1 − 𝛼(𝐼𝑍, 𝑐𝐺𝑑)𝑒−𝑡/𝑅𝑐 + 𝛽(𝐼𝑍, 𝑐𝐺𝑑)𝑒−𝑡/𝑅1�  (6.1) 

with 𝐼𝑒𝑒 the equilibrium intensity (at long times), 𝑇𝑐 a second characteristic 
time and the pre-exponential coefficients (amplitudes) 𝛼 and 𝛽 depending on 
the intensity of the preparation pulse 𝐼𝑍 and on the Gd concentration 𝑐𝐺𝑑 . 
Even if the fitting function can be improved, for instance by considering two 
stretched exponentials, we chose to minimize the number of parameters, to 
avoid artifacts due to the fitting. The double exponential function is able to 
capture the full dynamics, with only tiny discrepancies around 3 ms (Figure 
6.1c,d). A way to improve the fitting will be considered later in the discussion. 
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Figure 6.1 – 𝑇1 relaxation curves with increasing amount of Gd deposited on 100 nm bare 
NDs. With no Gd deposited (a) only a single exponential decay is detected, related to the 
usual spin-lattice relaxation. With increasing Gd concentration (b, c, d), a longer component 
related to recharge of the 𝜇𝑝0 becomes more and more visible. As an effect, the probilng 
pulse detects a number of 𝜇𝑝− growing with time and the luminescence increases.  

 

 We could describe qualitatively the observed unusual behavior by invoking 
charge and spin dynamics in a two-step model. First, a fraction of the NV- is 
polarized and another is photoionized, during the initialization pulse. The 
outcome is a non-equilibrium configuration: the ms = 0 level is preferentially 
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polarized over the ms = ±1 levels and the ratio NV0/NV− increases. In our 
picture, photoelectrons get trapped into intraband defects. After the laser 
switches off, the spins tend to redistribute equally among the ground state 
triplet and the electrons might recombine in the NV0. As anticipated, this 
second relaxation process, named recharge, has been thought to occur under 
light excitation until recently, when recharge during the dark time was 
reported72. The dynamics of recharge increases the number of NV− with time 
and, consequently, could explain the rise in luminescence. Based on this 
assumption, we call 𝑇𝑐 the recharge time throughout the chapter. 

 The decay times 𝑇1, 𝑇𝑐 and the coefficients 𝛼 and 𝛽 of curves like those in 
Figure 6.1 are plotted in Figure 6.2. As displayed, 𝛼 and 𝛽 do not vary 
substantially in the broad range spanned by the amount of Gd deposited on 
NDs. Additionally, it appears that the dynamics of the recharge components 
of curves related to little Gd (below 1 nmol) extend well beyond the time limit 
of our present experiments, fixed at 12 ms. For these reason we do not display 
the fitting parameters in Figure 6.2. On the other side, 𝑇1 decreases 
considerably with increasing amount of Gd. This reduction of 𝑇1 was explained 
before in terms of high-frequency noise produced by a paramagnetic 
environment acting on the NV spins. Explicitly67,190, 

1
𝑇1

=
1

𝑇1𝑏𝑏𝑙𝑘
+

3𝛾𝑒2

2𝜋
〈𝐵⊥2〉𝑓𝐺𝑑
𝑓𝐺𝑑2 + 𝐷2  (6.2) 

where 𝛾𝑒 is the electron gyromagnetic ratio, 𝐷 = 2.87 GHz is the ZFS, 〈𝐵⊥2〉 is 
the variance of the zero-mean transverse magnetic field produced by the 
fluctuating Gd spins and 𝑓𝐺𝑑 is its frequency. Equation 6.2 states that 
longitudinal relaxation is highly enhanced when the frequency of the 
magnetic noise matches the ZFS separation. Tetienne et al.190 reported that 
the main contribution to 𝑓𝐺𝑑 comes from intra-bath dipolar coupling and it 
scales as √𝜎, where 𝜎 is the density of Gd paramagnetic spins at the ND 
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surface. The variance 〈𝐵⊥2〉 was found proportional to 𝜎. Therefore, the second 
term of Equation 6.2 scales as 𝜎3/2 at low spin concentration and as 𝜎1/2 at 
high spin concentration. Put in other words, in a log-log scale, the slope of 𝑇1 
with respect to 𝜎 varies between −0.5 and −1.5. Figure 6.2a indicates a slope 
of −2/3, consistent with this theoretical prediction, once assumed that the 
spin density at the NDs surface increases with recursive addition of Gd 
complexes. Apparently it seems that also 𝑇𝑐 is affected by the amount of Gd, 
even though to a lesser extent. The reduction of 𝑇𝑐 by an order of magnitude, 
between 1 nmol and 0.1 μmol of Gd deposited, has not been understood 
completely and will be the subject of future investigation. The qualitative 
difference between curves b and d of Figure 6.1 is not due to a change in the 
pre-exponential coefficients 𝛼 and 𝛽 (which are almost constant), but to a 
shortening of 𝑇1, from ≈ 650 μs without Gd to ≈ 5 μs with a lot of Gd. This 
reduction uncovers the longer dynamics of recharge. We want to emphasize 
that 𝑇1 relaxometry proved to be sensitive to fractions nmoles of Gd (actually 
0.1 nmol) deposited on 0.3 μmol of NDs, as it can be seen by the shortening 
of 𝑇1, from 0.65  ms (rectangular tick on the y axis) to 0.25 ms. This sensitivity 
is unprecedented. Quite recently, Steinert et al.67 built a microfluidic device on 
a diamond containing an array of NV centers. Gadolinium was flowed in the 
channel and detected by longitudinal relaxations of optically polarized NV 
spins. By inspecting the Gd-assisted 𝑇1 relaxation, lowest concentrations of 
250 μM of Gd, with oriented NV, and of 80 μM of Gd, with all four NV axes, 
were detected. Because of complete evaporation of the solution, we were able 
to detect 0.1 nmol deposited, which corresponds to an initial concentration of 
50 μM. This high detection efficiency could be facilitated by the elevate 
density of NV centers and by the large surface/volume ratio typical of 
nanoparticles, which results in a large area of interaction. 
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Figure 6.2 – Plot of the spin-lattice relaxation time and recharge time (a) and plot of the pre-
exponential coefficients (b) as a function of deposited Gd, as obtained by the biexponential fit 
of experimental curves. 𝛼 and 𝛽 do not show a strong variation in the experimental range, 
while 𝑇1 and 𝑇𝑐 change by two orders of magnitude. Panel c shows the mechanism of 
recharge and relaxation during the dark time, i.ei between the initializing pulse and the 
probing pulse. 

 

 The Equation 6.1 can be obtained by considering the simple 4-level system 
of Figure 6.3, where we consider the ground state triplet and a “metastable” 
state |𝑀〉 that actually collects a number of levels, depending on the decay 
mechanism considered. Here |𝑀〉 contains the excited state, the conduction 
band and the dark singlet states of the NV−, populated upon intersystem 
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crossing. It might also contain other intraband levels, allowing the possibility 
of charge transfer. Naming 𝛾 the transition rate between |0〉 and | ± 1〉, 𝐼 the 
laser intensity, 𝜎 an indicative cross section of absorption and ionization and 
𝑘, 𝑘′ the recombination rates, it is possible to write the rate equations in 
matrix form 

 

𝑑
𝑑𝑑
�

𝑛0
𝑛−1
𝑛+1
𝑛𝑀

� = �

−2𝛾 − 𝐼𝜎 𝛾 𝛾 𝑘
𝛾 −𝛾 − 𝐼𝜎 0 𝑘′
𝛾 0 −𝛾 − 𝐼𝜎 𝑘′
𝐼𝜎 𝐼𝜎 𝐼𝜎 −𝑘 − 2𝑘′

� �

𝑛0
𝑛−1
𝑛+1
𝑛𝑀

� (6.3) 

 

where 𝑛0, 𝑛−1, 𝑛+1 and 𝑛𝑀 are the population of the |0〉, | + 1〉, | − 1〉 and |𝑚〉 
states, respectively. The solution for 𝑛0 and 𝑛±1 is found in terms of a double 
decaying exponential, with decay times 𝑇1 = 1

3𝛾+𝐼𝜎
, 𝑇𝑐 = 1

𝑘+2𝑘′+𝐼𝜎
 and with 

coefficients functions of the rate constants and laser intensity, i.e. 
𝛼(𝛾,𝑘,𝑘′, 𝐼𝜎) and 𝛽(𝛾,𝑘,𝑘′, 𝐼𝜎), such that the two components are coupled. By 
continuous pumping, the level population reach an equilibrium configuration 
where 𝑛0 and 𝑛±1 go to zero, and  

𝑛𝑀 =
𝐼𝜎

𝑘 + 2𝑘′ + 𝐼𝜎
  (6.4) 

analogous to Equation 5.8. When the laser is switched off, the times become 
𝑇1 = (3𝛾)−1 and 𝑇𝑐 = (𝑘 + 2𝑘′)−1 and the two components are still coupled 
through the pre-exponential coefficients. We did not see any appreciable 
difference in the coupled dynamics when changing the duration of the 
preparation pulse (finally fixed at 1 ms), so we assume that the preparation 
pulse is sufficiently long and intense to set stationary populations in the four 
levels. 
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Figure 6.3 – 4-level scheme adopted to extract analytically the biexponential decay. At 
equilibrium, with laser off, the population is equally distributed in the |0〉 and | ± 1〉 states. 
When laser is on, the population is pumped into a “metastable” state at a rate 𝐼𝜎, which 
represent a collection of states (excited states, conduction band, singlet dark states,…) and 
relax with different rates (𝑘 and 𝑘’) into the ground state triplet. The population in the ground 
state triplet is further balanced by direct transitions between the |0〉 and | ± 1〉 states (at a 
rate 𝛾). 

 

 The metastable state |𝑀〉 contains a group of states. Recombination rates 𝑘 
and 𝑘′ can stand for radiative and non-radiative transitions and even for 
charge tunneling. For this reason, the 4-level scheme is highly general and can 
be adopted to explain, at least qualitatively, a biexponential trend. Let us 
quickly examine three mechanisms that could lead to such a strong 
modification of the usual single decay. The singlet states involved in the 
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intersystem crossing becomes populated under laser irradiation. The 
population relaxes toward the ground state sublevels, so 𝑛0 and 𝑛±1 are 
expected to grow over time. This was actually reported190. Further, the 
coupling between the singlet states and the excited and ground states was 
found to be dependent on high external magnetic field208. Nevertheless, the 
lifetime of the singlet states is of the order of 200 ns190,209, so this mechanism 
does not play a role at longer times. Chapman and Plakhotnik70 inspected the 
ionization of the NV− via a two photon process and elaborated a model based 
on ten levels. Under optical illumination, the conduction band is populated by 
photoelectrons, that quickly decay in the excited state, first, and then in the 
ground state. Again, due to the short lifetime of both conduction band and 
excited state210,211 (less that 50 ns and ≈15 ns, respectively), it is unlikely that 
this mechanism can provide free electrons for recharge few ms after switching 
off the laser. This picture may be modified if we assume the existence of 
intraband defects, that can temporarily trap electrons. Manson and Harrison68 
hypothesized the possibility of forming coupled systems of [NV]− − [N]+ and 
[NV]0 − [N]0, with electrons tunneling between these two charge 
configurations. Since a lot of NV centers (5 ppm) are associated to many other 
defects212, including substitutional nitrogen, this phenomenon could take 
place on much longer timescales (around 100 μs)72, possible depending also 
on the relative distance between the NV and the defects207. Therefore, this 
third mechanism is the most suitable candidate for the interpreatation of our 
experimental data. 

 Two important remarks to the 4-level model must be added. First, with 𝜇 
levels one can have as much as 𝜇 decay rates. In our 4-level model, one rate 
is zero and corresponds to equilibrium, other two build up 𝑇1 and 𝑇𝑐. A fourth 
decay rate governs a net population transfer between | + 1〉 and | − 1〉, 
without affecting 𝑛0 and 𝑛𝑀 . We considered 𝑛+1 = 𝑛−1, so this transition was 
neglected. In fact, it could play a role only if the | ± 1〉 states had a different 
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initial population, as a consequence, for instance, of the application of a 
microwave pulse. Second, the dynamics of NV centers varies depending on 
the position in the ND and on the closeness to external Gd. The collected PL 
signal comes from several NDs, whose subsurface NV feel a stronger 
interaction with the external spin bath, compared to the inner NV. A 
convolution of these decay signals is expected to generate stretched 
exponentials and is the subject of future investigation. 

 

Figure 6.4 – Laser-power dependence of spin and charge relaxations in NDs. The recharge 
mechanism is facilitated by laser power (a, b, c). The bump in (a) has not been interpreted yet. 
Panels d and e depict the relaxation times and respective pre-exponential coefficients. The 
position of the minimum (f) also shifts to early times by increasing the laser power. 
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 The Equation 6.1 was tested in another experiment, where the Gd 
concentration was kept constant (5 ∙ 10−4 μmol) and only the laser power was 
changed (Figure 6.4). It can be seen that the transition rates 𝛾,𝑘, 𝑘′ depend on 
the Gd concentration and laser intensity, and in turn 𝑇1, 𝑇𝑐 and the coefficients 
vary also with laser intensity. 

 

Figure 6.5 – Effect of Gd deposited on 100 nm silica-coated NDs. The silica coating prevents a 

direct exchange of charges with the external environment, even if the mechanism of 

recombination is facilitated by the presence of external Gd (panel b) with respect to the case 

of no Gd deposited (panel a). 

 

 In our current picture, it must be noticed that charges are not directly 
provided from the external environment, since Gd complexes have an overall 
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neutral charge and the same behavior is obtained with silica-coated NDs, in 
which the ≈ 10 nm silica layer electrically insulates the NDs (Figure 6.5). The 
experiments with silica-coated NDs are enlightening for two reasons: first, 
they show that charge dynamics is uncovered by the presence of Gd, but it is 
always present if the laser intensity is sufficiently high (compare panels a and 
b of Figure 6.5 and also Figure 6.4). This again supports the hypothesis of an 
internal mechanism, with no net exchange of electrons with the surrounding 
environment. Second, even if the NV spin is coupled with the Gd spin via a 
dipole-dipole interaction, which scales as the cube of the distance, the NV 
centers are so sensitive that a 10 nm layer of silica do not exclude the 
interaction. With 5 ∙ 10−3 μmol of Gd, 𝑇1 is about 7.5 μs, two orders of 
magnitude less than the case with no Gd (Figure 6.5a,b). This relatively long 
range of detection is another valuable trait of NV-enriched NDs. 

 

6.2 T1 relaxometry with blood 
 In this final paragraph, the same procedure use to perform 𝑇1 relaxation 
with Gd solutions was adopted with blood. we mixed 2 μL of 100 nm bare 
NDs suspension with 2 μL of deoxygenated blood of rat and saline, then 
deposited the solution on a microscope glass and let it dry. The results of 𝑇1 
relaxometry are shown in Figure 6.6. The relaxation curves with and without 
blood are normalized for a better comparison. Differently from the case of Gd, 
no signature of the recharge dynamics is detected. However, there is an 
indication of 𝑇1 shortening, probably due to the paramagnetic nature of 
deoxyhemoglobin. 
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Figure 6.6 – Comparison of the spin-lattice relaxation decays with and without blood added 
to NDs. The decay is fitted by a single exponential, with no signature of recharge dynamics. 
There is an indication of 𝑇1 shortening, probably due to the paramagnetic nature of 
deoxygenated hemoglobin. 
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 Summary 

 

 In this thesis I consider both the synthesis and an application in biosensing 
of NDs. In the first part (Chapters 2, 3 and 4), I demonstrate that PLA of 
graphite in water is a viable route to produce NDs in aqueous environment, a 
valuable condition for biological applications. PLA can directly synthesize 
nanometric diamonds, with potential advantages over alternative methods, 
like grinding of bulk crystals or detonation techniques. Moreover, I proposed 
a simple and safe procedure to extract the NDs from the embedding graphite. 

 Beside synthesis I examine the thermodynamic process leading to 
nucleation and growth of NDs. Fast laser-induced heating results in the 
superheating of the target, followed by phase explosion and then by a fast 
cooling of the molten material. For this reason I provide a theoretical 
description of the thermodynamics of metastable liquids, both superheated 
and undercooled, and of the process of phase explosion (Chapters 2 and 3). 
The investigation of the link between the metastable liquids and the synthesis 
of nanoparticles is carried out by theoretical analyses, computer simulations 
and by a robust comparison with our experimental data and with previous 
literature (Chapter 4). 

 In the second part of the thesis I explore the use of commercial NV-
enriched NDs for sensing of paramagnetic species of biological interest. To 
this end, I explored the effects of size and surface coating on the optical 
properties and sensing capabilities of NDs. The relatively high concentration 
of NV centers in NDs results in high fluorescence levels and fast loss in 
coherence. The experimental results fit in a theoretical framework, describing 
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the basic properties and the ground state spin dynamics of these color 
centers.  

 The most striking result concerns the dynamics of the spin-lattice relaxation 
time 𝑇1. Differently from previous reports, spin dynamics after polarization of 
NV centers could not be described by a single exponential decay, but showed 
a complex time evolution that I attribute to charge conversion between the 
negative and neutral forms of the NV center. Unexpectedly, I found that 
coupled charge and spin dynamics are strongly affected by paramagnetic 
interactions, yielding elevate sensitivity to subnanomolar concentrations of 
gadolinium, a strong paramagnetic contrast agent. The connection between 
relaxation dynamics and concentration of paramagnetic species can open new 
perspectives in biosensing and in bioimaging. As a demonstration of a 
practical application, I tested the sensitivity of NDs in the detection of 
deoxyhemoglobin, an endogenous paramagnetic species in blood. 
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