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Abstract

Innovative methodologies for the wireless localization of users and related appli-
cations are addressed in this thesis.

In last years, the widespread diffusion of pervasive wireless communication
(e.g., Wi-Fi) and global localization services (e.g., GPS ) has boosted the in-
terest and the research on location information and services. Location-aware
applications are becoming fundamental to a growing number of consumers (e.g.,
navigation, advertising, seamless user interaction with smart places), private and
public institutions in the fields of energy efficiency, security, safety, fleet man-
agement, emergency response. In this context, the position of the user - where
is often more valuable for deploying services of interest than the identity of the
user itself - who.

In detail, opportunistic approaches based on the analysis of electromagnetic
field indicators (i.e., received signal strength and channel state information) for
the presence detection, the localization, the tracking and the posture recognition
of cooperative and non-cooperative (device-free) users in indoor environments are
proposed and validated in real world test sites. The methodologies are designed
to exploit existing wireless infrastructures and commodity devices without any
hardware modification.

In outdoor environments, global positioning technologies are already avail-
able in commodity devices and vehicles, the research and knowledge transfer
activities are actually focused on the design and validation of algorithms and
systems devoted to support decision makers and operators for increasing effi-
ciency, operations security, and management of large fleets as well as localized
sensed information in order to gain situation awareness. In this field, a decision
support system for emergency response and Civil Defense assets management
(i.e., personnel and vehicles equipped with TETRA mobile radio) is described in
terms of architecture and results of two-years of experimental validation.

This thesis is in partial fulfillment for the degree of Doctor of Philosophy
at the Department of Information Engineering and Computer Science of the
University of Trento, Italy. The work, carried out between 2012 and 2017 at
the ELEDIA Research Center, has been published in peer-reviewed journals and
conferences.

Keywords
Wireless positioning, device-free localization, target users detection, electromag-
netic modeling, received signal strength, channel state information, location-
aware decision support systems, multi-objective evolutionary optimization, fleet
management, emergency-response, terrestrial trunked radio (TETRA).
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Thesis Outline

The thesis is organized as follows. Firstly, Chapter 1 introduces the motivations,
the application scenarios and the architectures of wireless technologies for the
presence detection, the localization and the human monitoring of both coopera-
tive and non-cooperative (device-free) target users.

In Chapter 2, an innovative and opportunistic methodology for the accurate
positioning of wireless devices in indoor scenarios is addressed. The proposed ap-
proach is based on training-less self-calibrating numerical electromagnetic propa-
gation modeling of the wireless communications. It relies on existing commodity
wireless infrastructures and it exploits the minimal information about the en-
vironment required by the algorithm (i.e., location of Wi-Fi Access Points and
blueprint of the building) for improving the accuracy accordingly to probabilistic
and semantic considerations.

In Chapter 3, non-cooperative target users are considered. Unlike many
device-free localization techniques, the proposed methodologies do not require
any kind of hardware customization. Indeed, the wireless monitoring of a stan-
dard communication link established between two commercial wireless devices
(e.g., a Wi-FI Access Point and a client) is opportunistically exploited for hu-
man presence detection, localization and posture recognition.

In Chapter 4, the focus is on the application of location-based technologies
and services in outdoor environments (e.g., GPS, TETRA) for supporting deci-
sion makers and operators within the field of distributed wireless monitoring and
fleet management for institutional and emergency-response agencies. A full-scale
prototype software tool experimentally validated by hundreds of professionals of
the civil defense of the Trentino region is illustrated.
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Chapter 1

Introduction

The problem of guaranteeing a reliable, accurate, and robust localization
information (especially in indoor scenarios) is a fundamental challenge at the
intersection of many information engineering disciplines because of its importance
and impact from the scientific and industrial viewpoint.

While ICT services were initially focused on transmitting identity, request
and response for accomplishing explicit user needs, recently with the widespread
diffusion of pervasive wireless communication networking such as indoor Wi-Fi
technologies and with the advent of (GPS -enabled) smart-phones, the paradigm
has evolved in order to provide services able to understand, assist and forecast
user activities without standard command-and-control interactions. This new
approach moves the focus from who are you to where are you information as user
habits and location are exploited for characterizing user profile and consequently
his real-time needs. Nowadays both the industry and the consumers have realized
the benefits that location-based services bring, applications like search, maps and
navigation are becoming fundamental to a growing number of consumers, and
they are still gaining more and more interest as they provide new opportunities
in the mobile value chain. Indeed, the range of applications requiring an accurate
localization of people, goods, or devices is vast, also governments and authorities
are interested in services dedicated to emergency-call positioning, emergency-
response and fleet management, road-traffic optimization, tracking vulnerable
and elderly people, and so on. While location-based services enable a dynamic
user experience and interactivity, offering a new level of convenience that was
not possible before and that changes the way businesses and institutions interact
with customers and other enterprises, they also raise many concerns about user
privacy. These concerns are particularly relevant for non-cooperative localization
and human monitoring, in this scenario device-free solutions that also preserve
the user identification and privacy such as the wireless electromagnetic-based
localization techniques presented in this work constitute of a valid alternative to
the computer-vision approaches often adopted within security and surveillance
applications.
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1.1 Scenarios and Motivations

1.1.1 Smart Home and Internet of Things

The home technology is moving rapidly from the programmable thermostat to an
era where all home systems are integrated into a centralized control one accessible
from multiple entry points like touch pads, computer screens, telephones, and
other wireless mobile devices, such as smart-phones and tablets. The result is
a highly personalized environment, a house that reacts to individual needs and
wants, and even anticipates changes. This perspective is a clear consequence of
the dramatic impact that pervasive technologies have had on society.
In such a framework, a widely diffused viewpoint on the smart home and its
implementation, more specifically the home automation, is related to the idea
of comfort that can be explained as follows: “Morning brings a graduated alarm
that plays some of your favorite music. The volume builds slowly and the bedroom
curtains gently part until you react and tell the alarm. Meanwhile, the bathroom
floors are already warming in anticipation of your arrival, and the coffee-maker
starts brewing up [1].” The problem complexity, the competition between ven-
dors, the multiple incompatible standards, and the high expenses, have limited
the diffusion of smart home technologies in the real scenario. Only a niche of
users is disposed nowadays to (or can) spend money for those expensive and
luxury facilities. Other needs are considered more essential with respect to the
strictly comfort-based functionalities. As a consequence, much of the poten-
tial that would technically be available are still confined to research projects,
test beds, or industrial experiments, as clearly shown by the rich state of the
art produced in the last years [2][3][4][5][6]. Consequently, the researchers are
now focusing on testing and deploying technologies in real environments and for
long-term periods by reducing the system complexity and implementing solu-
tions providing more evident and tangible advantages to the everyday life of the
end users. Among smart home functionalities, the following ones are here con-
sidered as most interesting applications and case studies of wireless localization
system because of their direct impact on environmental efficiency (i.e., energy
and money saving), safety and security for both private users and public services:

• Smart power management for energy cost reduction. With the growth of
the smart grid research area, concerned with the intelligent control of elec-
tricity usage, the smart home plays a key role in the interaction between
the grid and the consumers [3]. Power management systems are undergo-
ing an increasing deployment in private homes all over the world because
of the government decisions for fulfilling the optimization of resources and
from the end-users perspective of reducing the costs of in-home power con-
sumptions. Many solutions have been proposed for integrating smart meter
devices capable of simultaneously communicating with both the energy dis-
tributors and the household [7][8]. Toward this end, two main guidelines
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have been established. The one is to collect energy information through the
standard utility meter that gives aggregate information about the consump-
tion of the home [9]. The other direction is that of monitoring individual
appliances of interest by means of in-home distributed smart meters and
communicate the recorded data to a central data processing unit [10]. This
latter solution has been sometimes considered costly and complex to imple-
ment because of the need of infrastructure [8]. However, many drawbacks
related to wiring, costs, and complexity are going to be overcome thanks
to the diffusion of wireless architectures [6, 11, 12, 13, 14, 15, 16, 17, 18].

• Assistive services for elderly people monitoring and security. Health-care
systems have attracted enormous attention worldwide [19][20] and many
national associations have reported the urgent need for in-home assistance
due to the high cost of institutional living [21]. In this framework, the social
security and health-care systems are taking advantage of the out coming
assistive technologies [4] that can be integrated in smart home scenarios.
Several projects have been developed [22, 23, 24, 25, 26, 27] giving em-
phasis and priority to the functionalities provided to the end users. Smart
homes have been equipped with various sensors to improve the detection of
anomalies or behavioral changes [28, 29, 30, 31]. Starting from the sensors
acquisitions, data fusion techniques are mandatory to extract useful evo-
lutions inside the large set of information. Despite all these efforts, some
drawbacks like privacy and reliability are still limiting the wide diffusion
and commercialization of such systems. A solution is that of focusing on
the unobtrusiveness as a key issue to improve user satisfaction and accep-
tance. This mainstream has been pursued testing more and more perva-
sive, non-invasive, and low cost technologies [6][32] capable of inferring the
user behavior, while avoiding the installation of cameras or microphones.
Towards this end, wireless technologies are very promising tools enabling
flexible adding/removing of components and facilitating the scalability and
the integrability of small devices within other existing wireless backbones
[33, 34, 35].

It is worth noticing that previous topics present common challenges from both
a technological and methodological point of view. The actual state of the art
presents many lessons learned from experiences in project activities and the
difficulties that are limiting the proliferation of next-generation smart homes have
been pointed out [36]. From the technological perspective, the main challenges
are related to the non-scalable integration of heterogeneous technologies that
often cannot communicate together, require hard wiring, are ad-hoc designed
and cannot be evolved, updated, or easily replaced [4]. The lack of a common
and flexible infrastructure hosting heterogeneous functionalities according to the
user needs often comes out and it represents a key challenge to be considered
in the development of smart home concepts. Because of these problems, taking
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advantages of exploiting wireless networks as a means for sensing and actuation
is considered to be inevitable.

Whether the initial objective of the home intelligence was to automatically
control devices and systems according to specific rules previously implemented
[37], nowadays, the purpose of the algorithms is to enable an interactive home
environment capable of adapting its operations to accommodate the users. The
main requirement to enable interactions is to gather information not only on
the environment, but also related to the users presence and location-based ac-
tivities. The methodologies for the activity recognition vary as greatly as the
types of adopted technologies and corresponding sensed data [38]. Currently
used methods are mostly based on machine-learning models such as Bayes clas-
sifiers [39, 40], Markov models [41, 42], artificial neural networks [43, 44], and
support vector machines [45][46] thanks to their ability to create context models
from measured data and to adapt them according to the changing behavior and
needs, and their computational efficiency (i.e., real-time response) enabling inte-
gration in low power wireless devices with constrained resources. The obtained
results demonstrate that such approaches are promising for behavior classifica-
tion and prediction. However, once applied to real test-cases, single methods
would not suffice to bring forward the best systemic solution, while the combi-
nation of different techniques could lead to more sophisticated hybrid intelligent
systems [10]. It has also to be noticed that evolutionary optimization strategies
[47] have been profitably exploited in many applicative fields thanks to their abil-
ity to solve complex problems with high number of unknowns. Such a feature
has been exploited and integrated in hybrid algorithms for decision making to
find optimal user preferences adapting to new knowledge without deleting the
existing one [48, 49]. Each solution is effective for a limited set of conditions
mainly due to the specific initialization given by the experts and to the kind
of adopted sensors. Up to now, the decision making phase is still considered a
support tool where the user has to interact to give additional information [50].
In these years, researchers began to recognize the importance of improving and
applying methodologies for behavior monitoring and decision making also in the
fields of assistance services [51][52] and power management [43]. In this regard,
the implementation of distributed intelligence on top of wireless platforms like
Wireless Sensor Networks (WSN ) and Internet of Things (IoT ) has emerged
as a promising solution and is attracting more and more attention [53] as the
increasing capabilities of very low-cost embedded wireless devices (e.g., System
on Chip micro-boards such as ESP8266, which is sold at few euros) supporting
easy re-programmability and offering to developers interesting features for local-
ization (i.e., Wi-Fi connectivity) and monitoring (i.e, digital inputs for sensors
and output for actuation). The work on active and passive localization presented
in the thesis has been designed to exploit these kind of new opportunities and
the new indoor networking paradigms in terms of communication standard (i.e.,
IEEE 802.11g/n/ac/ax ) and availability of inter-connected devices. In fact, each
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wireless device of the network, being cooperative or not, will provide some valu-
able information to a localization system based on the electromagnetic analysis
of wireless links and channels.

1.1.2 Fleet and Emergency Management

In last decade, the spread of outdoor digital wireless communication systems
and low-cost global positioning services that are embedded in commodity prod-
ucts such as smart-phones and vehicles, as well as professional networks such
as the terrestrial trunked radio (ETSI TETRA) [54] and digital mobile radio
(ETSI DMR) for civil defense and critical applications is offering more and more
opportunities for the adoption in real-world scenario of location-based systems
supporting the pervasive environmental monitoring, the goods tracking, the fleet
and the emergency-response management (Fig. 1.1). In the outdoor scenario,
different global navigation satellite systems (GNSS ) have been established as
de-facto standard for civilian and military positioning (i.e., with different level
of restrictions and accuracy) at worldwide level:

• Global Positioning System (GPS ) from United States of America;

• Global Navigation Satellite system (GLONASS ) from Russia;

• BeiDou Navigation Satellite System (BeiDou / BDS ) from China;

• and GALILEO, the newest solution from European Community, that is
actually being finalized and activated.

Modern organizations such as goods transportation industry and crisis manage-
ment agencies share the need of tracking, dispatching and coordinating many
heterogeneous resources distributed on the field (e.g., trucks, ambulances, fire-
engines, helicopters, drones) for the accomplishment of simple tasks as well as
critical missions. In the last decades, more and more natural and man-made
emergencies have occurred (e.g., urban accidents, forest fires, flooding, landslides,
tsunamis, toxic chemical spills) with widespread consequences on the population
and on the societal costs [55, 56]. Consequently, the interest in the improved
crisis management has grown at worldwide level. As an example, one third of
the budget is reserved for societal needs in the forthcoming H2020 calls of the
European Commission [57].

The fleet and emergency management scenario deals with a highly dynamic,
uncertain, and dangerous environment where the exchange of information and
the coordination between civil defense actors are essential for mission accom-
plishment. The situation room operators have to take quick and proper deci-
sions according to their interpretation of the situational picture. This is possible
only when professional managers and first responders have access to the required
information, and when the assets are ready to intervene with very low latency
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[58]. Location-based Decision Support Systems (DSS ) are aimed at assisting
decision makers, operators and control rooms for different tasks in which the po-
sition of assets and localized information themselves (such as weather and traffic
conditions) play a crucial role in the evaluation of efficient solutions for mission
management problems such as vehicle coordination, goods routing and mission
planning. Modern DSS have benefit from the new communication, sensing, and
positioning technologies in order to provide real-time awareness to the situation
room and to support the decision making process in complex and dynamic emer-
gency situations [59]. In Chapter 4, a prototype (TRL-7 ) that supports the
environmental monitoring and the fleet management operations for civil defense
situation rooms and operators is presented.

Figure 1.1: Outdoor Localization Scenario. Fleet assets are equipped with Global
Positioning System (GPS) device that provides real-time location (e.g., latitude,
longitude, direction, speed) to the central operation center. Bidirectional voice
and data communication, including command and control channel, is provided
by TETRA, 2G, 3G, 4G and soon 5G mobile communication technologies.

1.2 Wireless Approaches and Architectures

The electromagnetic (EM ) field generated by a radio transceiver integrated in
wireless devices, such as home router, smart TVs, personal computers, smart-
phones and tablets has its own sensing capabilities as any other dedicated sensor.
The EM field that propagates throughout the environment “collects” informa-
tion about physical and electrical characteristics of objects in the form of radio-
frequency (RF ) perturbations. Accordingly, the problem of human presence
and movements estimation can be recast as the following inverse problem one
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[47]: “Starting from measurements of electromagnetic field, reconstructing the
characteristics of the propagation scenario that fit the measured data”. Almost
all wireless transceivers including low-cost and low-power devices provide a raw
information on the RF signal quality, the Received Signal Strength (RSS ) indica-
tor. Modern communication standards, such as IEEE 802.11n/ac Wi-Fi, are de-
signed to acquire, exploit and provide more detailed information as the Channel
State Information (CSI ) that describes the EM channel response in Single-Input
Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) configura-
tion. Such indicators measure the magnitude of the received EM field and it
“contains” a valuable information for the estimation of the human behavior. As
a matter of fact, human positions are inferred by measuring the absorption, the
reflection, the scattering of the EM field caused by the human bodies. It has
to be noticed that, unlike most of standard sensors, EM sensors permeate the
home environment since the primary role of the RF signal is to provide wireless
connectivity throughout the home (and often not limited to the perimeter of
the house). It is worth noticing that people has already accepted the presence
of home wireless network to enable Internet connectivity service, thus implicitly
accepting the presence of EM sensing. Accordingly, the measurement of RSS
and eventually CSI of any wireless network device turns out to be a transpar-
ent procedure that does not require dedicated sensors and gives a preliminary
estimation of user activities.

This opportunistic way of exploiting EM signals is here adopted both for pas-
sive (i.e., the target does not need to carry any RF transceiver to be localized)[60,
61, 62, 63, 64, 65] and active (i.e., the target is an active RF node of the wire-
less network) [66] localization and tracking of targets moving throughout areas
monitored with wireless technologies. Consequently, the following classification
arises from the role of the user:

• Cooperative user. The end user actively interacts with the components of
the system. The personal wireless devices such as smart-phones, IoT sensor
or actuator, or other dedicated wearable sensors are used by the coopera-
tive user for a direct communication with the smart home infrastructure.
In such a configuration, the user is a mobile node of the network and it
is recognized by the system through the identification of the associated
devices. The localization and the behavior interpretation is based on the
processing of data actively exchanged with the wireless network devices.
Cooperative users refer to an active localization strategy;

• Non-cooperative user. Unlike cooperative users, no wearable devices are
present and no direct communication with the system is established by the
user. The user is part of the environment instead of being part of the wire-
less network infrastructure. Therefore, the behavior monitoring depends on
the ability of the system to sense the environmental changes and, in partic-
ular, the perturbation caused by the user presence and movements. Passive
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localization strategies have to be adopted in order to acquire representative
parameters influenced by the human body presence.

The integration of our active and passive approaches in the same wireless hard-
ware backbone enables the behavior estimation of both cooperative and non-
cooperative users, thus enhancing the system performance in several domestic
situations. The reference scenario of a smart home where our heterogeneous
wireless devices coexist to cooperatively extract information on cooperative and
non-cooperative users is shown in Fig. 1.2. As it can be seen, the non-cooperative
target can be monitored by passive strategy while cooperative target may be lo-
calized also by active architecture (yellow links with the Wi-Fi access points in
the map). Both active and passive localization systems are present, but users
should not be aware of their existence. The non-invasiveness of our smart home
system is guaranteed since inhabitants are not compelled to follow procedures or
activate devices. As a consequence, the best way to make our system transparent
is to integrate the functionalities in existing devices that user is already used to
interact with. Let us consider that almost everyone has a cellphone nowadays and
smart-phones with integrated Wi-Fi connectivity are becoming popular. More-
over, the number of houses without at least a personal computer and an Internet
connection is rapidly reducing. Under these assumptions, our proposed active
strategies can leverage the presence of a minimal wireless infrastructure for the
localization of devices like smart-phones and tablets.

Figure 1.2: Indoor Localization Scenario. Cooperative and non-cooperative users
localized through active and passive localization strategies.

8
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1.3 State of the Art

In this Section, a short survey of the State of the Art in the field of wireless
active and passive localization is reported.

1.3.1 Active Localization

The widespread diffusion of wireless technologies and systems in both public and
private environment has stimulated the exploitation of electromagnetic (EM )
waves to enable location-based services for cooperative users. In particular, one
of the most applications of interest is the positioning and the tracking of mobile
terminals such as users’ smart-phone and tablet. the Different theoretical princi-
ples of the EM propagation have been introduced in the formulation of the local-
ization methods, providing different performance according to the application re-
quirements and objectives. The angle of arrival (AOA) [67], the time difference of
arrival (TDOA) [68, 69], the ultra-wideband (UWB) frequency spectrum [70, 71],
the backscattering of radio frequency identification (RFID) [72, 73] are exam-
ples of EM propagation features enabling the wireless localization. However, the
approaches based on such principles often require expensive and complex hard-
ware, which is not readily available in most of the application scenarios. On the
contrary, the well-known received signal strength (RSS ) indicator can be easily
measured by commercial wireless devices without any modification. Nevertheless
the relationship between RSS and distance between antennas is trivial only in
the theoretical free-space propagation model. In real indoor environments, the
EM propagation exhibits scattering, diffraction and reflection phenomena which
are not considered by the free-space model [74, 75]. The presence of static and
dynamic obstacles strongly interferes with RSS behavior in terms of expected
value and high space-time fluctuations. The complexity of the wireless propaga-
tion and the instability of RSS data has been addressed in the state of the art
by fingerprinting strategies, which collect a large number of RSS measurements
in known positions to create a kind of look-up table between the RSS signatures
and the target positions [76]. The methods based on the fingerprinting are ac-
curate but they require extensive and expensive data collection campaigns for
system training as well as frequent recalibration when small environment changes
occur [77]. RSS can be also exploited by the propagation-based approach, these
methods numerically compute the attenuation of the transmitted signal due to
the wireless propagation in complex media using analytical models. In partic-
ular, starting from the signal attenuation, the transmitter-receiver distance is
estimated according to the defined propagation rules. The position of the target
is then estimated respect to the (a-priori known) positions of fixed anchors (e.g.,
the Wi-Fi access points). This kind of propagation-based approaches do not
require time-consuming trainings nor frequent calibrations, but the localization
accuracy is strongly related to the precision of the propagation model.
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1.3.2 Passive Localization

In the last years, the passive wireless localization, also called device-free lo-
calization (DFL), has revealed strong interest in many applications related to
building management, security, surveillance, healthcare monitoring, and many
other fields where location-based services need the detection and localization of
non-cooperative people in indoor scenarios [62][78]. The main advantage of the
passive strategies is that the target needs neither to carry active devices, nor to
cooperate to the localization procedure. Different technologies have been used
to enable the presence and the motion detection of device-free targets, including
ultrawideband (UWB) radar-based systems [79], computer vision [80], wireless
local area network (WLAN )[81][82], wireless sensor networks [60][83], and cel-
lular networks [84]. In particular, the increasing interest for contact-free and
privacy-preserving target sensing has stimulated the research of methodologies
for the presence detection [85], people counting [86], localization [87], motion
tracking [78], behaviour monitoring [88], gesture recognition [89][90], vital signs
monitoring [91][92], up to emotion detection [93] of humans in indoor spaces.
However, the adopted wireless architectures have been often customized and
deployed in a specific way in order to solve such complex and challenging prob-
lems, to the best of the authors’ knowledge, target features like the presence,
position, movement, posture have been studied individually with specific sys-
tem requirements and theoretical assumptions. However, in real-world scenarios,
these features are usually combined and mixed together generating the common
daily-life human activities.

The basic principle of DFL based on electromagnetic (EM ) propagation of
radio-frequency (RF ) wireless networks relies on the fact that the RF propaga-
tion is affected by the changes in the environment, including the time-varying
presence and position of people acting as EM scatterers, especially if wireless
systems operate at the microwave frequencies of the common wireless standards,
such as the IEEE802.11 (i.e., Wi-Fi) or the IEEE802.15.4 (e.g., Bluetooth and
Zigbee). Recently, another trend arised in the scientific community is focused on
the opportunistic exploitation of existing wireless devices to enable the so-called
ubiquitous sensing paradigm [94], with less and less impact and changes to be
applied on the radio-frequency systems.

One of the main challenges related to the target detection problem is the ca-
pability to implement a low-cost, low-overhead, and robust system, which is able
to estimate the information of interest without special hardware or additional
sensors. In this regard, most of the aforementioned solutions provide reliable
performance under relevant assumptions, which often limit the application and
diffusion in real-world and large-scale scenarios. For example, sensor-based so-
lutions are affected by environmental changes, they require frequent calibrations
in time-varying conditions, and the installation procedures are expensive and
time consuming. Even if the sensor-less solutions are more robust to calibration
issues and sensors’ faults, most of the state of the art techniques have been usu-
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ally evaluated in controlled environments [95] or in small-scale test fields [96].
Concerning WSN-based systems, they often constrain the size of the detection
area to guarantee a high density of wireless links and a full-coverage radio map
[62].

Wi-Fi is one of the most diffused wireless technologies in both public and pri-
vate areas, and its exploitation for wireless target sensing enables the disruptive
proliferation of new location-based applications. The state of the art on device-
free target sensing throughWi-Fi is rapidly growing and the current achievements
point out the feasibility to extract the aforementioned target information from
the properties of the wireless signals. Among the solutions available in the state
of the art for passive wireless localization, [95] and [60] have modeled the lo-
calization problem as a machine learning problem for the real-time estimation
of target positions in wireless environments, through the real-time processing of
the received signal strength (RSS ). More recently, [62] and [97] have formulated
the target localization as a radio tomographic imaging (RTI ) problem, solving
the position estimation as an ill-posed inverse problem with a regularization
method. Many other reference works have been proposed to solve the numerous
challenges of RSS -based passive localization, introducing more and more com-
plex algorithms for performance improvement and for multi-target localization
[85][98][99], including compressive sensing [100][101], Bayesian grid [102], sup-
port vector machines (SVM ) [61][103], Diffraction models [104], Kalman filters
[105]. Most of such solutions present common requirements for the correct de-
tection and localization of targets. The most relevant are (i) the high number of
wireless links to collect enough information about the spatial distribution of the
RSS perturbations, (ii) the need of target motion during the data acquisition
to make the EM perturbation non-negligible (in particular for variance-based
approaches [106]), (iii) the acquisition of large training data set with targets in
known and predefined positions, and often (iv) the customization of the wireless
devices adopted for RSS measurement. Even if the available solutions provide
outstanding performance, the aforementioned requirements make their diffusion
and real-world exploitation not so straightforward.
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Chapter 2

Semantic Wireless Localization
of Cooperative Users

In this Chapter, an innovative and opportunistic methodology for the localization
of cooperative wireless devices in indoor scenarios is addressed.

In particular, a training-less localization approach based on a numerical prop-
agation model of wireless transmission calibrated online also with a semantic rep-
resentation of the scenario is proposed. The objectives of the proposed solution
are (i) to improve the localization accuracy exploiting additional environment
information, (ii) to avoid the time-consuming survey of a specific indoor site as
in the case of fingerprinting approaches, (iii) to prevent the need of updating or
calibrating the localization system (as usually required by learning-by-example
solutions), and (iv) to reduce the computational complexity of the localization
procedure to guarantee real-time performance. The parameters of the propaga-
tion model are constantly optimized by means of an evolutionary optimization
technique, the proposed cost function has been formulated to consider in the
calibration both the spatio-temporal changes of the indoor EM propagation as
well as the semantic representation of the environment, which has been recast
as a two-dimensional probability map. Such a probability has been estimated
exploiting the available blueprint of the considered indoor area including the
geometry of the walls, rooms, corridors, obstacles, and restricted areas, which
determine the subset of positions where the targets can be located.
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2.1. RSS -BASED EM PROPAGATION APPROACH

2.1 RSS-based EM Propagation Approach

One of the main challenges for accurate RSS -based localization is related to the
scalability of the methodology due to the complex EM propagation in indoor
environments. In fact, solutions that work well in a given test scenario (e.g., a
room or floor of a specific building) might suffer from different environmental
and network infrastructure characteristic in other sites (e.g., moving furniture,
changing location of access points). Indeed, the presence of obstacles with various
shape, size, and material causes different and complex propagation phenomena
like scattering, diffraction, reflection, and absorption of the transmitted wireless
signals. Moreover, the presence of moving people makes the propagation even
more complex, since the human bodies are also scatterers, which introduce un-
predictable perturbations of the RSS indicator. While passive solutions exploit
such perturbations for the localization of the targets [60, 107, 108], the active
ones suffer the RSS instability. The RSS fingerprinting (FP) has been widely
adopted [76, 109, 110, 111] by active methods as a practical solution to reduce
the negative effects of the RSS instability. However, the collection of a large
set of RSS fingerprints in multiple positions of the considered area is required.
Such samples are used to build a fingerprint database, also called radio-map, in
which the collected RSS values are related with the recorded target locations.
Successively, the position estimation is performed looking at the best match be-
tween the new RSS acquisitions and the available samples in the fingerprint
database. Although satisfactory localization accuracy is obtained by FP meth-
ods, the site survey is complex and time-consuming, especially in large domains
like museums, airports, and shopping centers. Many FP -based approaches aimed
at reducing the size of the database or the complexity of the radio-map gener-
ation have been investigated. In [101], the theory of compressive sensing has
been adopted to significantly reduce the number of RSS measurements. An au-
tonomous FP mechanism based on the inertial sensors of the mobile terminals
for the self-localization of fingerprints has been proposed in [109]. [112] intro-
duced a method for database construction during target walking, in order to
reduce the site survey effort. Even if such methods simplify the training phase,
the FP still presents weaknesses in the long-term operation due to the unavoid-
able changes in the conditions of the environment. Accordingly, the fingerprint
database requires periodical and time consuming updates and calibrations [113].
Some solutions have been investigated to automatically update the RSS record-
ings through incremental learning approaches [114, 115] but they still need an
accurate initialization of the training procedure.

An alternative approach to the FP -based methodologies is represented by
the numerical characterization of the wireless propagation. Such training-less
solutions do not require the acquisition of large databases because the position
estimation is based on the online comparison of the RSS measurement with
the output of numerical propagation models. The numerical formulation of the
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underlying EM propagation is exploited to estimate the transmitter-receiver dis-
tance as a fundamental information to localize the target [116]. In [117], the
common one-slope and two-slopes log-distance path-loss models have been used,
while a more accurate third-order polynomial extension has been introduced in
[118]. The ray-tracing modeling has been exploited in [119] in order to consider
the effects of human bodies in the proximity of the transmitter. It has to be no-
ticed that more accurate models provide a more feasible RSS estimation, but the
higher accuracy often requires site-specific customization as well as complex cal-
ibrations when environmental changes occur. Accordingly, the proper trade-off
between the prediction accuracy and the model simplicity has to be found. Dif-
ferent strategies have been studiled to improve the quality of the models without
increasing the complexity. A deep statistical analysis of RSS has been performed
in [120] in order to better characterize the RSS indoor distribution, and in [121]
a machine learning strategy for the mitigation of the non-line-of-sight (NLOS )
indoor propagation has been proposed. However, even if the learning strategy is
not site-dependent, a time-consuming training phase is still required.

The constant growth of the state of the art on indoor positioning points
out that the accurate and robust localization of moving devices using common
wireless technologies is still an open issue. Many research efforts are recently
focused on the exploitation and fusion of different sources of information. In this
regard, the new paradigm of semantic localization has been recently proposed
[122, 123, 124, 125]. The semantic localization is referred to the estimation of
target position not only from a physical point of view, but also in relation to
the properties of the environment and of the objects located in the proximity of
the target. Such an approach requires the prior characterization of the domain,
which can be inferred from a topological map of the environment.

2.2 Mathematical Formulation

Let us consider the two-dimensional (2D) office area organized in corridors and of-
fices shown in Figure 2.1. The considered domainD = {0 ≤ x ≤ XD; 0 ≤ y ≤ YD}
is inhomogeneous and constituted by a set of objects and obstacles (e.g., furniture
and walls) of different shape and size, which determine the spatial sub-domain
DO. The area under test is infrastructured with a set of P wireless APs deployed
in known and fixed spatial positions rp, p = 1, ..., P , where r = (x, y) is the po-
sition vector. The area is occupied by a target identified by its position rT and
equipped with a mobile wireless terminal. The available APs are detected by
the mobile terminal using the standard Wi-Fi scanning procedure. Figure 2.2
schematically shows different solutions for the RSS data collection and process-
ing, which can be performed by a remote processing unit [Fig. 2.2(a) and Fig.
2.2(b)], receiving the RSS data and providing the location estimation, or by the
terminal itself [Fig. 2.2(c)].
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Figure 2.1: Semantic Localization - Indoor localization domain. Two-
dimensional map of the considered indoor office area (a), and snapshot of the
existing wireless infrastructure exploited for opportunistic localization (b).

Once the scan is completed, the target device in position rT has collected
the RSS values ρi (rT , ri), i = 1, ..., I, I ≤ P , where I is the subset of the
transmitting APs located within the wireless coverage of the target. More in
detail, the remote solution can be implemented with two different communication
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modes. Since the scan procedure can be executed whether the device is connected
or disconnected from the Wi-Fi network, the interconnection with the remote
unit can be established through the Wi-Fi network [Fig. 2.2(a)] or exploiting
other wireless architectures (e.g., 2G/3G/4G networks) [Fig. 2.2(b)]. This last
solution is particularly useful when the access to the local Wi-Fi is limited or
prevented to the device at hand.

Figure 2.2: Semantic Localization - Wireless architectures for indoor localiza-
tion. Remote solution with connected terminal (a), Remote with disconnected
terminal (b), and Local solution with computation on the wireless terminal (c).
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2.2.1 Semantic Description of the Target-Environment In-

teraction

Let us assume that the obstacles within D are solid and impenetrable and that
the targets can move throughout the target domain DT = D −DO. In order to
improve the quality of the target localization within DT , the proposed strategy
aims to extend the geometrical characteristics of D exploiting a semantic inter-
pretation of the spatial relation between the environment and the target. Toward
this end, let us partition the localization domain D into a two-dimensional lattice
of N = NX ×NY cells, each one corresponding to a square area of sides ∆X and
∆Y and centered in rn, n = 1, ..., N . The semantic status of each cell can be
accessible [gn = g (rn) = 1, rn ∈ DT ] or restricted [gn = g (rn) = 0, rn ∈ DO] ac-
cording to the absence or presence of obstacles within the cell, respectively [Fig.
2.3(a)]. Besides the binary status, the state transition between an accessible and
a restricted cell can be also considered to model how likely the target occupies
the domain in proximity of obstacles. Starting from the a-priori assumption that
the user behavior and movements are influenced by the presence of obstacles in
the environment, a spatial probability model is defined to enrich the knowledge
about the target surroundings from a context-aware perspective. Toward this
end, the probability Γ (r) that a target occupies a position within D can be fully
described by means of the coefficients gn, n = 1, ..., N , of the following expansion

Γ (r) =
N∑

n=1

gnβn (r) (2.1)

where βn (r), n = 1, ..., N , are the basis functions chosen according to the
desired probability pattern between an accessible and a restricted cell. Different
transition patterns can be adopted to describe how the probability decreases
when the target approaches an obstacle. As an example, to formulate a linear
transition of such a probability, triangular basis functions βn (r) = Trn (r, θ)
centered in positions r = rn, n = 1, ..., N , can be adopted, where θ is the interior
angle at the base of the triangular function. Alternatively, in order to model a
Gaussian probability transition, the basis function is formulated as follows

βn (r) = ωn

(
r, σ2

T

)
=

∫

D

1

(2πσ2
T )

e
− 1

2σ2
T

(‖r−r′‖)2

dr′ (2.2)

where σ2
T is the variance of the Gaussian distribution. Summarizing, besides

the shape of the basis function, the probability function Γ (r) is calculated in
the whole domain D in order to obtain values Γ (r) = 1 where the target is
supposed to move (r ∈ DT ), while Γ (r) = 0 is forced in the sub-domain DO

where the target presence is unfeasible. A graphical representation of the func-
tion Γ (r) evaluated with the two reference basis functions τn (r, θ) and ωn (r, σ

2
T )

is pictorially shown in Fig. 2.3(b). Such a semantic interpretation of the solu-
tion space through the definition of the function Γ (r) can be inferred from the
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two-dimensional blueprint of the considered floor. Additional information about
known obstacles introducing dedicated interactions of moving targets with their
physical surroundings can be considered for the generation of a more detailed
function Γ (r).

Figure 2.3: Semantic Localization - Example of a two dimensional lattice com-
posed by accessible [gn = 1, rn ∈ DT ] and restricted [gn = 0, rn ∈ DO] cells
(a), and graphical representation of the probabilistic function Γ generated with
triangular and Gaussian basis functions (b).
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2.2.2 Real-time Wireless Localization Strategy

The acquired RSS data can be numerically estimated using the well-known path-
loss model

ρ̂i (rT , ri) = ρ0i (d0)− 10αi log

(‖rT − ri‖
d0

)
− εnoise i = 1, ..., I (2.3)

where ρ0i (d0) is the RSS measured at the reference distance d0, αi is the
path-loss exponent, and εnoise is the noise term modeled as a Gaussian dis-
tributed random variable with zero mean and variance σ2

noise. Accordingly, the
output of the propagation model can be controlled by the input parameters
ξ
i
= [ρ0i , αi, rT ],i = 1, ..., I. Taking into consideration the high spatial variabil-

ity of the EM propagation in the indoor domain, each wireless link between the
target and the set of i = 1, ..., I scanned APs is affected by different propagation
phenomena and a dedicated calibration of the corresponding numerical model is
required in order to accurately predict the simulated values ρ̂i (rT , ri), i = 1, ..., I,
given a target position rT . The arising model calibration problem is recast as an
optimization problem formulated as follows

ξ̂
opt

= min
ξ

Φ
{
ξ
∣∣ ρi (rT , ri) ; i = 1, ..., I

}
(2.4)

where ξ =
[
ξ
i
; i = 1, ..., I

]
is the set of the input parameters describing the

i = 1, ..., I path-loss models, and ξ̂
opt

= [ρ̂0i , α̂i, r̂T ; i = 1, ..., I] is the estimated

solution obtained through the minimization of the function

Φ
(
ξ
)
=

1

Γ (rT )
×

∑I
i=1

[
ρ0i (d0)− 10αi log

(
‖rT−ri‖

d0

)
− ρi (rT , ri)

]2

∑I

i=1 ρi (rT , ri)
2

. (2.5)

The minimization of (2.5) has been performed by means of a suitable PSO im-
plementation [126] developed according to the guidelines in [127]. Starting from
each of the trial parameter sets ξ(m,k), (m = 1, ...,M , being the trial index, and
k = 1, ..., K, the iteration index of the optimization process) defined by the PSO,

the trial target positions r̂
(m,k)
T , m = 1, ...,M , k = 1, ..., K, represent the solu-

tions computed during the optimization process. The iterative process continues

until k = K or Φ
(
ξ̂
opt

)
< χ, where χ is the predefined convergence threshold.

Such termination criteria are fundamental when solving the localization problem
directly on the wireless terminals because the maximum convergence time has to
be controlled according to the application requirements. The maximum process-
ing time can be formulated as τ = K∆τ , where ∆τ is the duration of a single
iteration of the PSO. In summary, the final solution r̂optT

∣∣
ξ=ξ̂

opt

belongs to the

optimized parameter set that (i) minimizes the difference between the numerical
and measured RSS, and (ii) maximizes the probability that the target is in a
valid position from the semantic point of view and according to the probability
function in (2.1).

20



CHAPTER 2. SEMANTIC WIRELESS LOCALIZATION OF
COOPERATIVE USERS

2.3 Experimental Assessment

The effectiveness and the feasibility of the proposed approach have been assessed
in a real test field (Fig. 2.1) through an extensive experimental validation. The
size of the considered building floor, at the ELEDIA Research Center laborato-
ries, are XD = 80 [m] and YD = 46 [m]. The APs of the existing Wi-Fi network
are deployed in known positions rp, p = 1, ..., P , P = 8, graphically shown in
Fig. 2.1(a). The existing wireless network is compliant to the standards IEEE
802.11b/g/n and the working frequency of the wireless links adopted for the lo-
calization purposes is f = 2.4 [GHz]. In order to guarantee the opportunistic
exploitation of the available wireless infrastructures, any kind of customization
has been applied to the configuration and the position of the involved hardware.
Different commercial mobile devices (namely, a smartphone Samsung Galaxy
S4 mini, hereinafter the smartphone, and a tablet Sony Xperia Z, the tablet)
have been used by the moving target to collect the RSS data. A dedicated An-
droid -based application has been developed to enable the acquisition, processing,
transmission, and visualization of the data, as shown in Figure 2.4.

The available floor map of the domain D reported in Fig. 2.5(a) has been
processed in order to compute the probability function Γ (r). More in detail,
the map has been discretized in the two-dimensional lattice of NX = 1435 and
NY = 826 cells of sides ∆X = ∆Y = 0, 56 [m], and the coefficients gn, n =
1, ..., N , have been set to obtain the black-and-white representation shown in
Fig. 2.5(b). The black regions (gn = 0, rn ∈ DO) represent the sub-domain DO

as a combination of restricted cells, and the white regions (gn = 1, rn ∈ DT ) are

composed by accessible cells. The RSS test set has been collected in a set of r
(u)
T ,

u = 1, ..., U , U = 35 positions (Fig. 2.6) randomly chosen within the sub-domain
DT . In each position, Z = 150 acquisitions have been repeated to collect the

RSS ρ(u) =
[
ρ
(z)
i

(
r
(u)
T , ri

)
; i = 1, ..., I;z = 1, ..., Z

]
considering different target

postures and orientations in order to reproduce the common variability of the
target behavior in real conditions.

The localization performance has been assessed in terms of the localiza-
tion error λ =

∥∥rT − r̂optT

∥∥ computed as the Euclidean distance between the
actual and the estimated target position. The first-order error statistics λmin =
minu

[
minz

(
λ(z,u)

)]
, λmax = maxu

[
maxz

(
λ(z,u)

)]
, λ = 1

U×Z

∑U

u=0

∑Z

z=0 λ
(z,u)

and the variance var (λ) = 1
U×Z

∑U

u=1

∑Z

z=1

(
λ(z,u) − λ̄

)2
have been also evalu-

ated.
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(a)

(b)

Figure 2.4: Semantic Localization - The software front-end of the central local-
ization system (a) showing the real-time map and signal strength of wireless links
measured on the connected device. (b) The App scanning for nearby wireless
devices - links.
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Figure 2.5: Semantic Localization - Floor map of the considered domain D (a)
used for the generation of the binary representation of accessible (white regions)
and restricted (black regions) areas (b).

23



2.3. EXPERIMENTAL ASSESSMENT

2.3.1 Performance Analysis of the Proposed Semantic Ap-

proach

The first experiment aims at presenting the performance improvement caused
by the introduction of the proposed semantic interpretation of the environment.
Toward this end, the optimal configuration of the probability function Γ (r) as
well as the optimal PSO parameters have been adopted for the performance
comparison with the standard PSO-based localization method (i.e., using a flat
semantic function Γ (r) = 1, ∀r ∈ D). More in detail, the Gaussian basis function
ωn (r, σ

2
T ) has been selected, with the optimal variance σ2

T = 0.5 [m]. The PSO
adopted for this validation has been calibrated with a population formed by
M = 15 trial solutions, and the termination criteria have been configured with
threshold χ = 10−4 and a maximum number of iterationK = 200. The remaining
PSO parameters have been set as in [126] and according to the reference literature
[127]. The propagation model parameters have been optimized within the ranges
−48 [dBm] < ρ0i < −44 [dBm] and 2.2 < αi < 4.8.

The average localization error λ̄u, u = 1, ..., U , U = 35 has been evalu-
ated in all the test positions (Fig. 2.6) applying the standard approach as well
as the semantic one, results are shown in Figure 2.7. As it can be noticed,
lower localization errors have been obtained introducing the semantic contri-
bution in all the considered positions. The error statistics reported in Tab. I

point out a reduction of the minimum (1−
[
100× λ

(smt)
min

λ
(std)
min

]
= 61.9 [%]), maximum

(1−
[
100× λ

(smt)
max

λ
(std)
max

]
= 35.1 [%]), and average errors (1−

[
100× λ

(smt)

λ
(std)

]
= 20.6 [%])

as well as a reduction of the error variance (1 −
[
100× var(λ)(smt)

var(λ)(std)

]
= 54.7 [%]),

which is an important indicator of an improved stability of the localization pro-
cess. The uncertainty of the estimations is strictly related to the variance of
the localization error, and such an improvement given by the semantic contribu-
tion points out a higher reliability of the target localization with a mean error
variance var (λ)(smt) = 7.94 [m] (Tab. 2.1).

Localization Error λ [m]
λmin [m] λmax [m] λ̄ [m] var (λ) [m]

standard 0.21 33.82 7.84 17.56
semantic 0.08 21.95 6.22 7.94

Table 2.1: Semantic Localization. Error statistics of the standard and the se-
mantic (Gaussian basis function, σ2

T = 0.5 [m]) approaches.
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Figure 2.6: Semantic Localization - Floor map of the considered domain D indi-
cating the coordinates of target tests u = 1, ..., U , U = 35.

Figure 2.7: Semantic Localization. Average localization error λ̄u , u = 1, ..., U ,
U = 35, calculated with the standard and the semantic (Gaussian model, σ2

T =
0.5 [m]) approaches.

25



2.3. EXPERIMENTAL ASSESSMENT

Besides the reduction of the localization error, the proposed approach im-
proves the capability to correctly identify the room where the target is located.
A common problem for location-based services in indoor sites, which are orga-
nized in multiple and adjacent corridors and rooms, is to assign the target to
the proper sub-domain. As an example, two adjacent offices divided by a wall
are geometrically very close but they can have very different features, such as
the intended use. Figure 2.8 shows the estimated target positions of a target
located in a corridor [Fig. 2.8(a)] and in an adjacent office [Fig. 2.8(b)] within
the experimental test field. The results obtained with the standard and the se-
mantic approaches are reported in order to compare the spatial distributions of
the solutions. Such a comparison clearly shows the impact of the probability
function introduced by the semantic approach. Besides the reduction of the av-
erage localization error, one of the main advantages of the semantic information
is to bound the solutions in the feasible spatial sub-domains, also reducing the
wrong interpretation of the target position respect to its surrounding.

Figure 2.8: Semantic Localization. Target positions estimated with the stan-
dard and the semantic approaches with target in two adjacent but semantically
different positions, namely on the corridor (a) and within an office (b).
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2.3.2 Probabilistic Map and Optimization Parameters Cal-

ibration

In order to point out the robustness of the proposed solution using different
parameters configurations, the second experiment deals with the calibration
of the probabilistic function and of the input parameters of the PSO strat-
egy. The impact of different semantic contributions on the localization per-
formance has been analyzed using both the triangular and the Gaussian ba-
sis functions formulated in Sect. 2.2.1 for the generation of Γ (r). The trian-
gular basis function Tr (r, θ) has been generated with different angles in the
range θ ∈ [45◦ ÷ 90◦], while the variance of the Gaussian function ωn (r, σ

2
T )

has been changed in the range σ2
T ∈ [0 [m]÷ 1.0 [m]] in order to evaluate the

effects of the different transition shapes between accessible and restricted cells.
The arising localization error has been considered as the performance indica-
tor. Figure 2.9 shows the average localization error λ calculated on the whole
dataset of RSS acquisitions Zu = 150, u = 1, ..., U , U = 35. As it can
be observed, the error trends obtained with both the triangular [Fig. 2.9(a)]
and the Gaussian [Fig. 2.9(b)] basis functions present a minimum. Although

the two minimum values are quite close to each other (λ
(tri)

∣∣∣
θ=63◦

= 6.42 [m]

and λ
(gau)

∣∣∣
σ2
T
=0.5 [m]

= 6.25 [m]), the Gaussian function outperforms the trian-

gular one. Moreover, the error variability is also lower (∆λ
(tri)

= 0.81 [m]

and ∆λ
(gau)

= 0.66 [m], where ∆λ
(tri)

= maxθ

(
λ
(tri)

=
)
− minθ

(
λ
(tri)

)
and

∆λ
(gau)

= maxσ2
T

(
λ
(gau)

)
− minσ2

T

(
λ
(gau)

)
) pointing out a higher stability of

the Gaussian profile. In order to get an insight into the effects of the consid-
ered basis functions on the optimization strategy, the minimization of the cost
function in (2.5) has been analyzed. In Fig. 2.10, the evolution of the fitness
function Φk, k = 1, ..., K, is reported to show the convergence of the PSO al-
gorithm toward the optimal solution. To fairly compare the two configurations
with the calibrated triangular (θ = 63◦) and the Gaussian (σ2

T = 0.5 [m]) basis
functions, the same representative test data set has been used. The termination
criteria as well as the remaining PSO parameters have been set as described in

Sect. 2.3.1). The Gaussian approach enables a faster (Φ
(gau)
k

∣∣∣
k=100

= 0.9× 10−5

and Φ
(tri)
k

∣∣∣
k=100

= 3.1 × 10−3) and a higher (Φ
(gau)
k

∣∣∣
k=500

= 0.6 × 10−5 and

Φ
(tri)
k

∣∣∣
k=500

= 1.4 × 10−3) convergence compared to the triangular one. The

effects of the PSO population size on the localization error has been also verified
(the Gaussian basis function has been selected for this experiment) in order to
identify the minimum number of trial solutions which guarantees satisfactory
performances. In fact, the reduction of the population size is fundamental in the
framework of mobile applications from the computational point of view, as also
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analyzed in Sect. 2.3.4. As it can be observed (Fig. 2.11), the localization error
is higher for small populations, as expected, and is minimum with M = 15.

Figure 2.9: Semantic Localization - Calibration of the probabilistic function Γ.
Localization error λ̄ versus the angle θ of the triangular basis function (a), and
versus the variance σ2 of the Gaussian basis function (b).
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Figure 2.10: Semantic Localization - Fitness function. Convergence comparison
using the triangular (θ = 63◦) and the Gaussian (σ2 = 0.5 [m]) basis functions
for the generation of Γ.

Figure 2.11: Semantic Localization - Localization error λ̄ versus the PSO pop-
ulation size obtained with the semantic approach, Gaussian basis function
(σ2

T = 0.5 [m]).
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2.3.3 Comparison with a State of the Art Trilateration

Technique

The third experiment is aimed at confirming the validity and the robustness of
the proposed semantic approach over a standard localization method based on
the principle of trilateration. The parameter configuration adopted in Sect. 2.3.1
and motivated in Sect. 2.3.2 has been used for this comparison. The trilateration
techniques use distance measurements computed by fixed anchors to estimate the
unknown spatial coordinates of the target. Such methods are usually based on
linear or non-linear least square estimators. The state-of-the-art implementation
here adopted is based on the Levenberg-Marquardt algorithm (LMA) [128] for
the minimization of the quasi-likelihood function

Θ (r̂T ) =

I∑

i=1

[
ζi − ζ̂i

]2
=

I∑

i=1

[ζi − ‖r̂T − ri‖]2 (2.6)

where ζ̂i, i = 1, ..., I, are the anchors-target distances (assuming ri, i =
1, ..., I, the positions of the Wi-Fi APs, I ≥ 3 being the number of the available
fixed anchors) estimated by the trilateration approach, while ζi = ‖rT − ri‖,
i = 1, ..., I, are the distances computed using the same path-loss propagation
model formulated in (2.3). More in detail, starting from the measured RSS, the
path-loss distance is computed as

ζi =
10[ρ

0
i (d0)−ρi(rT ,ri)]

10αi

, i = 1, ..., I, (2.7)

where the model parameters ρ0i (d0) and αi, i = 1, ..., I, have been a-priori
calibrated with the average values inferred from the results obtained during the
experiments described in the previous Sections (ρ0i (d0) = ρ0 = −45.4 [dBm] and
αi = α = 2.4). The localization error obtained with the trilateration method has
been computed and compared with the results of the proposed semantic approach
(Fig. 2.12). Such a comparison clearly shows the outperforming capabilities of

the proposed optimization strategy (1−
[
100× λ

(smt)

λ
(lat)

]
= 56.8 [%]) and points out

the strong limitations of range-based approaches, like the trilateration (λ
(lat)

=
14.4 [m]), in dealing with the high complexity of the indoor wireless propagation,
which reflects in the high instability of the measured RSS.

In order to further highlight the advantages given by the adaptive calibration
of the wireless propagation model minimizing the cost function in (2.5) over
the predefined distance model in (2.7) used by the standard trilateration, Fig.
2.13 compares the relation between the received signal strength and the anchor-
target distance. The measured RSS values are reported to show the actual
behavior of the considered indoor wireless propagation. It has to be noticed
that the proposed semantic approach adaptively calibrate the model parameters
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at each data acquisition, while the trilateration approach exploits a predefined
propagation models. As it can be noticed, the RSS trend estimated with the
semantic approach is more accurate than the trilateration one, which is very
sensitive to small changes of the predefined model parameters, as pointed out by
the curves obtained with α = 2.0 and α = 3.0 (small variations of α cause high
variations of the distance estimations).

Figure 2.12: Semantic Localization - Comparison of the localization error λ̄ be-
tween the semantic approach and a state-of-the-art trilateration method.

Figure 2.13: Semantic Localization - Path-loss models computed with the seman-
tic approach and the trilateration method compared with the RSS measurements.
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2.3.4 Computational Performance Analysis on Different

Platforms

The last experiment is aimed to assess the computational performance of the
proposed method tested with the remote and the local architectural solutions
(Fig. 2.2). Toward this end, three different typologies of processing platforms
have been compared, namely the server (a quad-core desktop PC with 8GB
of RAM ) adopted for the remote architecture, while the smartphone and the
tablet for the local solution. As far as the localization accuracy is concerned, the
target positions r

(u)
T , u = 1, ..., U , U = 35, have been estimated using the three

hardware platforms. The results of the comparison (Fig. 2.14) point out that
the same localization error has been obtained, regardless the platform typology.
Such results have been computed using the proposed PSO-based strategy initial-
ized with the parameters χ = 10−4, K = 500, and M = 15. The computational
time of the optimization procedure has been analyzed taking into consideration
the computational resources of the smartphone and tablet terminals in order to
evaluate the feasibility of the local architecture. Fig. 2.15 presents the compu-
tational time [Fig. 2.15(a)] and the localization error [Fig. 2.15(b)] versus the
iteration number k. Such an analysis points out the relation between the com-
putational time and the localization performance, enabling the identification of
the best trade-off according to the application requirements.

Figure 2.14: Semantic Localization - Average localization error λ̄ obtained with
the server, smartphone, and tablet platforms in the considered target position
u = 1, ..., U , U = 35.
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The obtained results suggest that the maximum number of iterations can be
set to K = 200, as also confirmed by the analysis reported in Tab. 2.2 about the
variations of the average localization error λ̄ and the processing time τ versus
the number of PSO iterations. With reference to the smartphone platform, the
localization performance are stable when K ≥ 200, corresponding to a processing
time τ |K=200 = 2.02 [s].

Figure 2.15: Semantic Localization - Computational performance analysis. Com-
putational time τ (a) and localization error λ̄ (b) versus the iteration number.
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K = 100 K = 200 K = 300 K = 400 K = 500

Average error λ̄ [m] 7.92 6.81 6.32 6.19 6.02

Processing time τ [s]
server 0.02 0.04 0.05 0.06 0.07
tablet 0.70 1.21 1.81 2.91 3.81

smartphone 1.01 2.02 2.80 3.55 4.75

Table 2.2: Semantic Localization - Processing time τ and average localization
error λ̄ versus the maximum iteration numbers K.

2.4 Conclusions

In this Chapter, an innovative semantic strategy for the indoor localization of
wireless terminals has been proposed. The challenging indoor localization prob-
lem has been solved exploiting the available geometrical information about the
considered scenario. The features of the objects like the walls and the fixed fur-
niture (extracted from the topological map of the building floor) have been used
to introduce a semantic interpretation of the target-environment relation. The
probability that a target occupies a position has been modeled in a probabilistic
map of the indoor domain. Such a semantic information together with the RSS
data measured by the wireless device has been exploited to calibrate in real-time
the parameters of a simple path-loss propagation model. Toward this end, a
training-less optimization procedure has been formulated in order to avoid the
complex and time-consuming site survey usually required by the widely adopted
fingerprinting methods.

The effectiveness of the proposed approach has been assessed dealing with the
localization of Wi-Fi-enabled smartphones and tablets in a real indoor scenario.
The obtained experimental results have shown that:

• the proposed semantic interpretation of the environment improves the lo-
calization performance with a reduction of the localization error higher
than 20 [%];

• the Gaussian profile with variance σ2
T = 0.5 [m] is suitable to model the

semantic spatial relation between the positions of the moving targets and
the obstacles in the environment;

• the use of a training-less procedure allows the adaptive and real-time cali-
bration of the indoor propagation model in order to take in consideration
the time-varying propagation phenomena;

• the proposed localization approach outperforms the standard trilateration
method with a percentage reduction of the average localization error higher
than 58 [%];
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• the proposed PSO-based optimization strategy is executed by the mobile
platforms with a computational time compliant with the common require-
ments of the indoor location-based applications (τ ≃ 2 [s]);

• the localization performance are stable regardless the considered hardware
platforms (i.e., server, smartphone, and tablet) where the proposed method
is executed.
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Chapter 3

Opportunistic Localization of
Device-free Passive Targets

In this Chapter, innovative methodologies for the opportunistic monitoring of
transceiver-free targets by using existing wireless infrastructures is addressed.

The main goal of the proposed works is to opportunistically exploit wireless
link established between two commercial wireless devices (e.g., an access point
and a client) for the real-time monitoring of humans in the considered domain.
As opposed to many device-free localization techniques, the adopted configu-
ration is designed to minimize the system complexity and to avoid any kind of
hardware customization as required in most of real-world applications. In partic-
ular, Received Signal Strength (RSS ) indicator and Channel State Information
(CSI ) of commodity Wi-Fi devices are exploited for (i) human presence detec-
tion, (ii) localization and (iii) posture recognition. A selected set of experiments
carried out in a real indoor test site are presented in order to assess the current
advantages and limitations of the proposed methodologies.
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3.1 RSS-based Presence Detection

This Section addresses the challenge of detecting non-cooperative device-free tar-
gets through the opportunistic exploitation of the simplest wireless architecture
that can be installed in whichever indoor wireless scenario. Commodity Wi-Fi
access points have been used in [81][86][95] as an existing hardware backbone,
which can be opportunistically used as target detector to enable a set of applica-
tions, such as intrusion detection, border protection, surveillance, and healthcare
services. Good detection capabilities have been obtained, but it has to be no-
ticed that the considered experiments always consider multiple wireless links.
The common assumption is that the environment is noisy and that many false
detections can be generated if the systems are based on a single link. As an ex-
ample, in [81] a refinement module generates a global anomaly score by summing
the individual anomalies computed for each stream. In [86], the system Nuzzer
has been tested in large-scale typical environments, without special hardware and
using six raw data streams. Nuzzer aims to track multiple entities and applies
fingerprinting in order to reach satisfactory performance. The authors declare
that the main limitation of Nuzzer is the substantial calibration effort related
to the construction of the passive radio map, however this is necessary when
fingerprinting strategies are adopted. The proposed work aims at improving the
robustness of the detection methodology in order to further reduce the number
of the required wireless links without affecting the detection performance and
avoiding time-consuming fingerprinting. The main goal is to enable a reliable
target detection even using a single wireless link, which is the simplest building-
block of any wireless architecture and can be easily replicated propagating the
detection performance regardless of the number of wireless devices and links.

Toward this end, let us suppose to exploit the RSS of a single wireless link
between a transmitter and a receiver. Representative and real-world examples
are the home wireless networks typically composed by a single access point (AP)
with a wireless device (e.g., a desktop computer) connected, or a wireless bridge
for internet connectivity between two areas located in different positions of a
historical building. In such daily-life scenarios the deployment of dense wire-
less networks composed by many APs is unfeasible, but different location-based
services may be of interest for the end-users. In this conditions, the main as-
sumption is that any kind of modification can be applied to the existing devices
and the available RSS readings have to be exploited in a transparent and simple
way. The proposed method is aimed at maximizing the reliability of the passive
target detection applying a customized algorithm based on the analysis of the
RSS time series in the frequency domain. More in detail, in order to enhance
the effects of the target presence on the RSS data stream, an empirical mode
decomposition (EMD) has been applied for the denoising of the raw input series.
Successively, the denoised sequences have been transformed in the frequency do-
main by means of a discrete Fourier transform (DFT ) for the extraction and
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filtering of the DFT coefficients. Finally, the small set of denoised and filtered
coefficients have been used as features for the training of a learning by examples
(LBE ) method based on a SVM binary classifier. The output of the SVM -
based detector is the probability that a target occupies the area in proximity
of the wireless link. The proposed method has been experimentally validated
in a real indoor test site using a single IEEE802.11 wireless link operating at
the 2.4 [GHz] Industrial-Scientific-Medical (ISM ) frequency band. A selected
set of experiments have been reported and discussed in order to point out the
performance in terms of failure rate and to estimate the spatial coverage of the
indoor detection respect to the length of the wireless link.

3.1.1 Rationale of the Detection Procedure

The building blocks of the proposed detection methodology are schematically
represented in Fig. 3.1 and summarized in the following:

• RSS denoising . The first step is aimed at removing from the RSS time
series the noise components due to the environment and to the hardware
non-idealities using the EMD technique. Since any kind of customization
has been applied to the involved hardware, a dedicated denoising strategy
is required for the robust analysis of the noisy information acquired by
commercial platforms. The EMD is a non-parametric data-driven analysis
tool proposed by N. E. Huang [129] for the time-domain decomposition of
non-linear and non-stationary signals. As opposed to other well-known de-
composition methods (e.g., wavelet), EMD does not require a set of basis
functions to analyze the input signal, reducing the overall complexity of the
algorithm. EMD has been widely used for the suppression of acoustic dis-
tortions in noisy speech signals, where different indices of non-stationarity
exist due to the high variability of the environmental noise [130]. Such
properties are here exploited for the enhancement of the target signature
in the RSS data. The details of the denoising procedure are given in Sect.
3.1.2.1.

• Feature extraction and selection . Analyzing the spectral character-
istics of the signal provides a different representation of the RSS non-
stationarity. Most of the literature processes the RSS data in the time
domain [107]-[132], and less attention has been given to the analysis of the
target effects on the RSS in the frequency domain. The goal of such an
approach is to identify the frequency contributions of interest in terms of
Fourier coefficients. Toward this end, the frequency domain representation
of the denoised data is obtained by applying the DFT. The distance be-
tween two transformed RSS sequences, one in absence and one in presence
of targets, is computed and the most relevant differential DFT coefficients
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are selected to further isolate the signal components related to the tar-
get absence/presence. The feature extraction procedure and the successive
selection through the coefficients band-pass filtering are detailed in Sect.
3.1.2.2.

• Training phase. The automatic learning of the unknown relation be-
tween the filtered DFT coefficients and the target absence/presence is ad-
dressed offline by means of a customized SVM -based classifier. A set of
RSS data streams are acquired in known conditions, both in absence and
in presence of humans inside the monitored domain. The distance be-
tween the two RSS streams transformed in the frequency domain and the
statistics (i.e., the mean and the variance) of the DFT coefficients are the
features of the SVM training set. The definition of the training procedure
and the generation of the decision function are described in Sect. 3.1.2.3.

• Target detection phase. Once the learning process is completed, the
online detection is performed on unforeseen RSS data streams. The SVM -
based detector classifies in real-time the test data with labels “target ab-
sence” or “target presence” and estimates the class probability, as well.
The SVM test phase and the formulation of the detection probability are
presented in Sect. 3.1.2.3.

3.1.2 Mathematical Formulation

Let us consider a single wireless link in the domain Ω between the transmit-
ter and the receiver located in the known positions rTX and rRX , respectively,
r = (xΩ, yΩ, zΩ) being the position vector. Heterogeneous obstacles like furni-
ture and walls occupy the domain, as well as a variable number of p = 1, ..., P
human targets. Let S (t) = {s (t− k∆t) ; k = 0, ..., K − 1} denote the RSS vec-
tor available at the receiver at the time instant t and composed of K readings
stored with a constant sampling rate ∆t. The RSS time series is analyzed by
applying a sliding time window ω (t) = [s (t− U∆t + u∆t) ; u = 0, ..., U − 1] of
length U ≤ K and ending at the time instant t.
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Figure 3.1: RSS Presence Detection. Block scheme of the passive wireless detec-
tion approach.
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3.1.2.1 Empirical Mode Decomposition for RSS Denoising

The RSS stream is decomposed in a finite number of intrinsic mode functions
(IMFs), which represent the oscillatory modes embedded in the signal, adopting
the so-called sifting process [129] summarized in the following main steps:

1. identify the local maxima and minima of the considered time-windowed
data ω (t);

2. evaluate the upper and lower envelopes by interpolating the local maxima
and minima identified at step 1;

3. estimate the local trend as the average between the upper and lower en-
velopes;

4. calculate the difference between the original signal and the local trend. The
difference is the first IMF if (i) the number of extrema and the number of
zero-crossing differs by one, and (ii) it is zero-mean. If such conditions are
not satisfied, iterate steps 1-4 on the calculated difference;

5. once the highest frequency (i.e., the first IMF ) is extracted from the signal,
the same procedure is applied on the residue to identify the next highest
frequency. Finally, the original signal is decomposed as follows

ω (t) =
I∑

i=1

ci (t) + ϑ (t) (3.1)

where ci (t), i = 1, ..., I, are the IMFs and ϑ (t) is the final negligible
residual. The IMFs are narrowband components with decreasing frequency
[the first IMF ci (t), i = 1, is composed of faster oscillations than the second
(i = 2), which in its turn has faster fluctuations than the third (i = 3), and
so on].

The reconstruction of the denoised signal is obtained combining only a subset
of IMFs in order to remove the undesired frequency components. The proper
selection of the significant IMFs is performed considering the Hurst exponent
H ∈ ]0÷ 1[, which is a measure of long-term memory of a time series [133].
Higher values indicate a persistent behavior of the time series and long-term au-
tocorrelation, while lower values refer to fast changes between adjacent pairs of
the series (i.e., lower autocorrelation). According to this rule, high Hurst expo-
nents are more related to the signal components while lower values are represen-
tative of the noise. The reconstructed time window obtained with the selected
IMFs is

ω̃ (t) =
G∑

g=1

ς
g
(t) (3.2)
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where ς
g
(t), g = 1, ..., G, G ≤ I, are the IMFs selected according to the

following rule

ς
g
(t) =

{
ci (t) if H (ci (t)) ≥ Hth

0 if H (ci (t)) < Hth
g = 1, ..., G (3.3)

H (·) being the function devoted to the computation of the Hurst exponent,
and Hth ∈ ]0÷ 1[ a user-defined threshold.

3.1.2.2 RSS Features Extraction in the Frequency Domain

The Euclidean distance between two RSS time series acquired in absence and in
presence of targets has been adopted as similarity measure in order to analyze
the effects on the RSS stream caused by the target presence. In particular, the
distance has been formulated as

δ
(
ω̃(A) (t) , ω̃(P ) (t)

)
=

√√√√
U−1∑

u=0

(
ω̃
(A)
u (t)− ω̃

(P )
u (t)

)2

(3.4)

where ω̃(A) (t) and ω̃(P ) (t) are the denoised time windows acquired in absence and
in presence of targets, respectively. In order to extract few and representative
features of such difference, the time sequences are mapped in the frequency
domain to isolate the frequencies of interest for the detection problem at hand.
The DFT provides a mathematical tool to represent the denoised time window
ω̃ (t) into periodic Fourier series. The sequence of coefficients ξ = [ξf ; f = 0, ..., U − 1]
is given by

ξf =
1

U

U−1∑

u=0

ω̃u (t) e
− j2πfu

U f = 0, ..., U − 1 (3.5)

where j =
√
−1 is the imaginary unit, and ξf , f = 1, ..., U − 1, are complex

numbers (ξ0 is real since the input signal ω̃ (t) is real). According to the Parseval
theorem [134], the energy of the signal in the time domain is the same as the
energy in the frequency domain as follows

U−1∑

u=0

∣∣ω̃(A)
u (t)

∣∣2 =
U−1∑

f=0

|ξf |2 (3.6)

and this implies that the Euclidean distance between two sequences in the time
domain is the same as their distance in the frequency domain, formulated as
[135]

δ̂
(
ξ(A), ξ(P )

)
=

√√√√
U−1∑

f=0

(
ξ
(A)
f − ξ

(P )
f

)2

(3.7)
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where ξ(A) and ξ(P ) are the DFT coefficients computed in absence and in
presence of targets, respectively.

In order to further enhance the effects of the target presence on the Euclidean
distance computed in the frequency domain, a band-pass filtering procedure is
applied to the DFT coefficients. The bandwidth of the filter is calibrated to
discard the frequency contributions not affected by the target absence/presence.
The Euclidean distance computed with the filtered coefficients is formulated as

∆
(
ξ̃
(A)

, ξ̃
(P )

)
=

√√√√
fmax∑

f=fmin

(
ξ
(A)
f − ξ

(P )
f

)2

(3.8)

where ξ̃
(A) ⊂ ξ(A) and ξ̃

(P ) ⊂ ξ(P ) are the subset of filtered DFT coefficients,
and fmin and fmax are the corresponding lower and upper coefficients indexes,
respectively. The number of filtered DFT coefficients is F = fmax − fmin.

3.1.2.3 SVM-based Target Detector

The automatic estimation of the target absence/presence from the RSS data
stream is based on a SVM -based classifier trained with a finite set of m =
1, ...,M known input-output samples {xm, ym; m = 1, ...,M}, where xm is the m-
th vector of input features, and ym ∈ {−1,+1} indicates the target absence (i.e.,
ym = −1) and presence (i.e., ym = +1). More in details, the input vectors include
the Euclidean distance ∆m, m = 1, ...,M , (defined in Sect. 3.1.2.2) calculated
between a reference configuration in absence of targets (the corresponding DFT

coefficients are ξ̃
(A)

m
) and a training configuration ξ̃

(train)

m
, m = 1, ...,M , which

includes both the absence of targets (for the training samples m = 1, ...,M/2)
and the presence of targets (for the remaining samples m = M/2 + 1, ...,M).
Moreover, in order to also consider the trend of the DFT coefficients during
the learning process, the input vector includes the statistical indicators of the
coefficients, as follows

xm =
[
∆m, ξ

(A)

m , var
(
ξ(A)

m

)
, ξ

(train)

m , var
(
ξ(train)
m

)]
;

m = 1, ...,M
(3.9)

where ξ and var
(
ξ
)
are the mean and the variance of the considered DFT coef-

ficients.
A linear SVM -based learning method is devoted to separate the training data

set with the function
y = sign

[
wTϕ (x) + w0

]
(3.10)

where sign (·) is the binary sign function, w and w0 are weight parameters
computed during the training phase [136], and ϕ (·) is the linear function mapping
the data from the input space to the feature space. However, since the RSS data
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acquired in the two absence/presence status are not linearly separable, a non-
linear radial basis function (RBF ) has been adopted for the features mapping

k (x, xm) = ϕ (x)T · ϕ (xm) = e−γ‖x−xm‖2 (3.11)

where γ > 0 is the RBF parameter learned during the training phase. The
learning process requires the solution of the following optimization problem

min
(w,w0,ǫ)

[
1

2
wTw + C

M∑

m=1

ǫm

]
(3.12)

subject to

ym
(
wTϕ (xm) + w0

)
≥ 1− ǫm; m = 1, ...,M (3.13)

where C is the penalty parameter of the error terms ǫm, m = 1, ...,M , cal-
ibrated to control the trade-off between the model complexity and the training
error [137]. The optimization problem can be solved with its Lagrangian dual
and the Karush-Kuhn-Tucker conditions [138].

Once the training phase is done and the model parameters are estimated, the
SVM prediction computed during the online test phase is given by

y(test) = sign [Φ (x)] = sign

[
M∑

m=1

λmymk (x, xm) + w0

]
(3.14)

λm, m = 1, ...,M being the Lagrange multipliers and Φ (·) the decision func-
tion. Moreover, instead of only predicting the binary labels of the test data, the
proposed approach approximates the a-posterior class probability

Π = Pr
(
y(test) = 1

∣∣x
)
=

1

1 + exp (αΦ (x) + β)
(3.15)

where α and β are the parameters of the Sigmoid function estimated ac-
cording to the Platt algorithm [139]. Besides the estimation of the target ab-
sence/presence, such a probability represents an additional information about
the confidence level of the detection estimation.

3.1.3 Experimental Validation

The effectiveness and the robustness of the proposed detection method are as-
sessed in the following by considering a set of experimental configurations in a
real indoor scenario. The test field is within the laboratories of the ELEDIA
Research Center at the University of Trento (ELEDIA@UniTN ).

The whole building floor covers an area of XΩ = 80 [m], YΩ = 46 [m], and
ZΩ = 2.8 [m] organized in offices and laboratories, with different and hetero-
geneous obstacles such as furniture and lab equipment [Fig. 3.2(a)]. A single
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wireless link between two IEEE802.11b/g Wi-Fi access points has been consid-
ered. The APs belong to the existing Wi-Fi network, they are installed at the
ceiling level and configured to operate at the working frequency φ = 2.4 [GHz]
with transmitting power PTX = 18 [dBm].
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Figure 3.2: RSS Presence Detection - Indoor test site for experimental validation.
(a) Blueprint of the building floor with snapshots of ground truth acquisition,
(b) test area with the wireless link of Experiment 1, dS = 11.9 [m].
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The proposed system stores the RSS readings in the vector S (t) with a
constant sampling rate ∆t = 0.6 [sec] 1. The APs have been chosen in order to
center the wireless link respect to the area monitored by the video-surveillance
system, which has been deployed for the acquisition of the actual target presence.
Figure 3.2(a) shows two sample snapshots of the camera views, while Fig. 3.2(b)
the boundary of the area controlled by the surveillance system. A set of 2
surveillance cameras has been used to obtain the occupancy ground truth. The
occupancy information (i.e., the number of occupants inside the detection area
and their position) has been inferred from the video recordings and used for the
manual labeling of the dataset.

Let us define the status of “target presence” when P ≥ 1 humans occupy such
sub-domain of the considered test site. The focus of this work is to estimate the
binary status of target presence and target absence, while the impact of the
number of humans on the detection probability will be investigated in future
studies.

The detection performance of the proposed strategy has been evaluated in
terms of false positive rate ρFP [%] , which refers to the wrong detections gen-
erated in absence of targets, false negative rate ρFN [%] pointing out how much
the method fails to detect the target presence, and finally of failure rate ρ [%],
which is the total error rate considering both false positives and false negatives.
More in detail, the performance metrics have been formulated as follows

ρFP =
100

K − U

K−U∑

q=1

(
χ(+)
q

∣∣
y
(test)
q =−1

)
(3.16)

ρFN =
100

K − U

K−U∑

q=1

(
χ(−)
q

∣∣
y
(test)
q =+1

)
(3.17)

ρ =
100

K − U

K−U∑

q=1

(
χ(−)
q

∣∣
y
(test)
q =+1

+ χ(+)
q

∣∣
y
(test)
q =−1

)
(3.18)

where

χ(+)
q =

{
1 if Pr

(
y
(test)
q = 1

∣∣∣ x
)
> 0.5

0 otherwise
(3.19)

and

χ(−)
q =

{
1 if Pr

(
y
(test)
q = 1

∣∣∣x
)
≤ 0.5

0 otherwise .
(3.20)

1The sampling rate depends by the adopted hardware platform. The well-known Linksys
WRT54GL has been adopted for validation. The standard scanning procedure provided by the
OpenWRT operating system (v. 8.09, r14511, Kamikaze) has been used for the acquisition of
the RSS.
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All the experiments have been performed using test dataset not belonging
to the training dataset. More in details, the testing periods are temporally
shifted respect to the training periods (the reference configuration assumes the
test period with one week delay after the training).

3.1.3.1 Experiment 1 - Detection Performance

In the first experiment (Experiment 1 ), the detection methodology has been
configured with the optimal parameters set in order to point out the perfor-
mance in the reference working conditions. The considered APs are located in
rTX = (78.0, 19.0, 2.6) [m] and rRX = (71.5, 9.0, 2.6) [m] and the arising wire-
less link with line-of-sight (LOS ) length dS = 11.9 [m] shown in Fig. 3.2(b) has
been taken into account for the acquisition of the RSS time series. A 3 -days
measurement campaign has been carried out during working days (Thursday and
Friday) and during the weekend (Saturday) in order to consider different user
presence patterns. The area has been occupied by a variable number of targets
0 ≤ p ≤ 25 during the measurements. A total number of K = 442 × 103 RSS
readings have been stored in S (t) and successively processed applying a sliding
window ω (t) of size U = 500. It has to be noticed that the detection algorithm
is executed every ∆t = 0.6 [sec] and that each estimation has a “memory” of
U × ∆t = 300 [sec]. The EMD denoising has been performed with a threshold
Hth = 0.6 applied to the Hurst exponent for the selection of the most informa-
tive IMFs. The band-pass filtering procedure has been applied and the DFT
coefficients between the lower index fmin = 1 and the upper index fmax = 10
have been selected, pointing out a significant reduction of the most important
features, from U/2 = 250 (only half coefficients are considered by the method due
to the symmetry of the Fourier spectrum) to F = 9. The SVM -based classifier
has been trained with M = 200 samples well balanced between the absence and
presence classes (m = 1, ..., 100|ym=+1 and m = 101, ..., 200|ym=−1 acquired one
week before the testing period), and calibrated with the RBF parameter γ = 1
and the penalty parameter C = 100.

The detection probability Π has been computed for the whole 3 -days test
period and the obtained results have been compared with the ground truth ac-
quired by means of the video-surveillance system. The comparison shown in Fig.
3.3 points out a good matching of the estimated probability with the actual tar-
get presence, as also confirmed by the performance indicators reported in Tab.
3.1.

The values ρFP [%], ρFN [%], and ρ [%] have been calculated for each day of
the measurement campaign in order to analyze the detection performance during
the different daily user activity patterns. As it can be seen, the higher false
detection rate has been obtained during the second day (ρ = 8.37 [%]), mainly
due to the high value of the false negative estimations (ρFN = 12.53 [%]) obtained
during the Friday afternoon. It has to be noticed that, even if the ground truth
declares the target presence during the whole afternoon, lower activity has been

48



CHAPTER 3. OPPORTUNISTIC LOCALIZATION OF DEVICE-FREE
PASSIVE TARGETS

recorded by the surveillance system (less than 20 target movements have been
detected from 2:30 PM to 7:00 PM). As expected, this result points out that the
presence of still targets within the domain makes the passive detection from RSS
perturbations much more complex, but the failure rate is still lower than 10 [%].

Test Period Performance Metrics

ρFP [%] ρFN [%] ρ [%]

Day 1 (Thursday) 1.02 7.09 6.73
Day 2 (Friday) 0.00 12.53 8.37
Day 3 (Saturday) 1.04 0.01 1.16

Total 0.69 6.54 5.42

Table 3.1: RSS Presence Detection - Experiment 1 (short link, U = 500,
Hth = 0.6, fmin = 1, fmax = 10, M = 200). Performance metrics of the 3 -
days measurement campaign.
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Figure 3.3: RSS Presence Detection - Experiment 1 (U = 500, Hth = 0.6,
fmin = 1, fmax = 10, M = 200). Time evolution of the real and estimated
detection probability Π.

Besides the temporal analysis of the target absence/presence, the same ex-
periment has been also exploited to estimate the spatial extension of the passive
detection capability with a single wireless link. Figure 3.4 shows the spatial rep-
resentation of the detection probability inferred from the comparison between the
timestamp of the detection estimations and the actual movements of the targets
extracted from the video recordings. Also predefined and controlled target paths
have been deliberately scheduled during the 3 -days measurement campaign in
order to cover most of the test area. As it can be noticed, the area where the
target presence is detected differs from the predefined boundary adopted for
the computation of the ground truth. The shape of the “detection coverage” is
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strictly related to the geometrical and electrical properties of the scenario. This
analysis points out that the detection area is not geometrically limited to the
transmitter-receiver LOS, but extends beyond with satisfactory detection proba-
bility over than 10 meters far from the devices. Such a behavior is related to the
very complex indoor propagation and to the unpredictable effects of the objects
and obstacles, which alter the EM propagation generating NLOS reflections,
diffractions, and scattering phenomena. Such effects extend the impact of the
target to a wider area respect to the commonly considered LOS shadowing.
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Figure 3.4: RSS Presence Detection - Experiment 1 (U = 500, Hth = 0.6,
fmin = 1, fmax = 10, M = 200). Target detection coverage map of the short link
dS = 11.9 [m].

3.1.3.2 Experiment 2 - Parameters Calibration

The second experiment (Experiment 2 ) deals with the calibration of the input
parameters in order to study the effect of changing the system configuration on
the detection performance. The failure rate ρ [%] has been used as the main
performance metric. The first calibration test has been carried out on the length
U of the sliding time window ω (t). Such a parameter highly affects the overall
performance of the proposed method, as clearly shown in Fig. 3.5. Longer
time windows (e.g., U = 1500) enable higher performance since much more
information is available, but at the cost of a higher time delay and a lower
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time resolution of the detections. As an example, the failure rate decreases to
ρ = 2.31 [%] with U = 1500, but each estimation is based on a time window of
U × ∆t = 900 [sec]. The optimal value U = 500 has been adopted as the best
trade-off between accuracy and real-time performance.

The EMD denoising strategy has been calibrated computing the failure rate
for different values of the Hurst exponent threshold Hth ∈ [0.1÷ 0.9]. The results
of the threshold calibration are shown in Fig. 3.6. As it can be seen, the trend of
the failure rate presents an unstable behavior but with a minimum at Hth = 0.6,
and such value has been selected for the optimal parameter set.

The calibration of the feature extraction procedure by means of the DFT
is devoted to identify the best fmin and fmax indexes for the selection of the
most significant DFT coefficients ξf , f = fmin, ..., fmax. The results shown in
Fig. 3.7 point out that most of the information useful for the target detection is
contained in the first set of coefficients at the lower frequencies. In particular,
the first coefficient ξ0 related to the DC component, which is simply the average
value of the signal itself, has been filtered setting fmin = 1, while the upper
coefficient index has been set to fmax = 10. The failure rate decreased from
ρ = 15.53 [%] to the minimum value ρ = 5.42 [%] using this configuration of the
band-pass filtering strategy.

The last calibration refers to the training set size and to the hyper-parameters
setting of the SVM classifier. The number of training samples has been varied
in the range 10 ≤ M ≤ 360 to identify the minimum value that guarantees a
satisfactory failure rate. Figure 3.8 shows a decreasing trend of the failure rate
that stabilizes when M > 150. According to this result, the SVM classifier has
been trained with M = 200 samples, which represents a good trade-off between
low training complexity and estimation accuracy. The parameter C = 100 and
the RBF parameter γ = 1 have been calibrated using the well known cross-
validation procedure [136].
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Figure 3.5: RSS Presence Detection - Experiment 2 (50 ≤ U ≤ 1500). Failure
rate analysis vs the length U of the sliding window.
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Figure 3.6: RSS Presence Detection - Experiment 2 (0.1 ≤ Hth ≤ 0.9). Failure
rate analysis vs the Hurst exponent threshold Hth for EMD denoising.
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Figure 3.7: RSS Presence Detection - Experiment 2 (0.1 ≤ Hth ≤ 0.9). Failure
rate analysis vs the Hurst exponent threshold Hth for EMD denoising.
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Figure 3.8: RSS Presence Detection - Experiment 2 (2 ≤ f ≤ 250). Failure
rate analysis vs the bandwidth of the band-pass filtering for DFT coefficients
selection.
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3.1.3.3 Experiment 3 - Detection in Large-scale Complex Scenario

The third experiment (Experiment 3 ) is aimed at assessing the detection per-
formance in a more complex system configuration. Toward this end, a second
measurement campaign has been performed in the same week days of the pre-
vious one (Thursday, Friday, and Saturday, with a variable number of target
0 ≤ p ≤ 21) but a different transmitting AP has been selected among the
available ones (the new position is rTX = (71.5, 43.1, 2.6) [m]) already installed
in the domain in order to increase the LOS length of the wireless link from
dS = 11.9 [m] to dL = 34.1 [m], as graphically shown in Fig. 3.9(a).

The transmitting power is unchanged respect to the previous experiments
(PTX = 18 [dBm]), and the RSS values are close to the sensitivity threshold of
the receiver (s (t) = −90 [dBm]). It is expected that an higher distance between
the transmitter and the receiver causes noisier RSS with direct consequences on
the detection performance. Compared to the previous results reported in Fig.
3.4, the detection coverage is wider as it can be clearly observed in Fig. 3.9(b),
but the values of the detection probability are lower and the failure rates are
increased (the daily values of ρFP [%], ρFN [%] and ρ [%] are reported in Tab.
3.2).

As it can be noticed, the extension of the link length has caused an increase
of the average failure rate from ρ = 5.42 [%] to ρ = 9.94 [%], with a significant
increase of the false negatives (up to ρFN = 24.81 [%] during the second day).
This means that longer links may detect the target presence in wider areas but
with a lower reliability. The time evolution of the detection probability is shown
in Fig. 3.10. Even if the probability values point out a more unstable trend com-
pared to the previous results shown in Fig. 3.3, the detection is still satisfactory
except for the false negatives estimated during the second day.

Test Period Performance Metrics

ρFP [%] ρFN [%] ρ [%]

Day 1 (Thursday) 2.43 18.32 12.57
Day 2 (Friday) 2.01 24.81 16.89
Day 3 (Saturday) 0.05 0.01 0.38

Total 1.50 14.38 9.94

Table 3.2: RSS Presence Detection - Experiment 3 (long link, dL = 34.1 [m]).
Performance metrics of the 3 -days measurement campaign.
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Figure 3.9: RSS Presence Detection - Experiment 3 (long link, dL = 34.1 [m]).
(a) Geometry of the scenario with the longer wireless link, (b) target detection
coverage map of the long link.
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Figure 3.10: RSS Presence Detection - Experiment 3 (long link, dL = 34.1 [m]).
Time evolution of the real and estimated detection probability Π.

3.1.3.4 Experiment 4 - Comparison with the State of the Art

In the fourth experiment (Experiment 4 ), the proposed methodology is com-
pared to different detection methods available in the state of the art. As a first
comparison, a variance-based method for the detection of anomalies in the time
evolution of RSS stream has been considered. The RSS variance is a statisti-
cal indicator commonly adopted by many passive wireless localization methods
available in the state of the art. The variance of the RSS readings stored in the
sliding time window ω (t) has been computed and considered anomalous if above
a predefined silence threshold. More in detail, the target detection is verified
when var (ω (t)) > sth, where sth has been computed according to the method in
[107], using the same time window length as above (U = 500). The comparison
has been performed on the same 3 -days data set and in the same test field of
the Experiment 1. The obtained performance is reported in Tab. 3.3.

The failure metrics point out that the proposed method outperforms the
time-domain analysis, especially in the reduction of the false positive detections
(the time-domain analysis shows ρFP = 17.51 [%] respect to the false positive
rate ρFP = 0.69 [%] obtained with the proposed detection strategy).

In order to further compare the proposed method with the state of the art
on device-free target detection, the RASID approach presented in [81] has been
considered as a robust WLAN motion detection system, that outperforms other
state of the art solutions based on the moving average (MA) and the moving
variance (MV ) proposed in [95], and on the maximum likelihood estimation
(MLE ) proposed in [96]. RASID considers multiple wireless links but since
each stream is analyzed independently, the comparison has been fairly performed
using the single wireless link adopted also in the previous Experiment 1 (with
the sliding window length U = 500).

The anomaly score has been computed according to the formulation of the
Basic Detection Module [81] based on the sample variance of the time window
and assuming the significance parameter α = 0.01. The performance of RASID
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are reported in Tab. 3.4. The obtained results point out detection capabilities
in line with the false negative and false positive rates declared by Kosba et al. in
[81]. Such failure metrics show that the method proposed in this work strongly
outperforms RASID in terms of false positive (average ρFP = 0.69 [%] obtained
in Experiment 1 respect to the RASID false positive rate ρFP = 17.51 [%]) as
well as false negative rates (average ρFN = 6.54 [%] obtained in Experiment
1 respect to the RASID false negative rate ρFN = 15.03 [%]). It has also to
be noticed that the performance of the proposed solution is still comparable to
RASID even if the test field of Experiment 3 (i.e., with the longer wireless link
of LOS length dL = 34.1 [m]) is considered.

Test Period Performance Metrics

ρFP [%] ρFN [%] ρ [%]

Day 1 (Thursday) 34.67 19.32 29.37
Day 2 (Friday) 16.51 25.03 22.39
Day 3 (Saturday) 1.36 0.81 2.35

Total 17.51 15.03 18.03

Table 3.3: RSS Presence Detection - Experiment 4 (state-of-the-art comparison).
Performance metrics of the variance-based time domain analysis [107].

Test Period Performance Metrics

ρFP [%] ρFN [%] ρ [%]

Day 1 (Thursday) 19.55 12.22 17.87
Day 2 (Friday) 13.23 21.51 19.11
Day 3 (Saturday) 0.98 0.73 1.29

Total 11.25 11.48 12.75

Table 3.4: RSS Presence Detection - Experiment 4 (state-of-the-art comparison).
Performance metrics of the RASID detection method [81].

The methodology presented in [83] has been also considered to compare the
performance of the proposed method with the state of the art. Zhao et al. exploit
the kernel distance quantifying the difference between two histograms of signal
strength measurements in order to detect the presence of a person on the wireless
link line. The receiver operating characteristic (ROC ) curve has been calculated
in order to assess and compare the detection performance of the proposed method
with RASID and with the kernel-based solution. The results shown in Fig. 3.11
point out that the proposed solution outperforms the state of the art methods
based on the sample variance (RASID in [81]) and on the kernel distance [83].
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In particular, the proposed solution provides higher detection performance (up
to 80 [%]) even with very low false positive rates (lower than 10 [%]).

The detection of a person crossing wireless links between transceivers de-
ployed linearly along a border has been addressed in [82]. The classifiers pro-
posed by Hillyard et al. have been considered for comparison as valuable de-
tection methods in the state of the art. Their performance has been analyzed
assuming the reference wireless architecture considered in this work and com-
posed by a single wireless link. It has been verified that, as also declared by the
authors in [82], none of the classifiers worked well when a reduced number of
wireless devices are deployed, since the basic working principle is to leverage the
redundancy of multiple and overlapping links to mitigate the detection errors.
Accordingly, the obtained probability of correct classification turned out to be
in line with the results shown in [82], and much lower that the ones obtained
with the previous state of the art approaches. Detection probabilities lower than
10 [%] have been obtained with a single wireless link (the authors declared an
average classification probability of 7.6 [%] when 3 nodes are adopted).

The system Nuzzer [86] has been also considered as a powerful state of the art
method providing satisfactory performance to be compared with the proposed
solution. Instead of detecting the target presence, Nuzzer aims to localize it
exploiting a fingerprinting strategy. In order to guarantee a fair comparison, the
discrete space estimator of Nuzzer has been adapted to provide the probability
of target presence (using the same dataset of the Experiment 1 ) assuming that
all the samples acquired in presence of the target have been collected in a single
spatial position. This modification has been introduced because the comparison
is about the target detection instead of the localization. It has been verified that
the probability of correct estimation obtained by the discrete space estimator
with a single wireless link is lower than 40 [%] and with an average false pos-
itive rate ρFP = 22.3 [%] (it has to be noticed that Seifeldin et al. declares a
probability of correct estimation lower than 50 [%] using four wireless links).

Summarizing, the proposed solution outperforms four different state of the
art approaches in the binary detection of passive targets when a single wireless
link is adopted. The obtained performance is higher in terms of both detection
capability as well as false positive rate.
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Figure 3.11: RSS Presence Detection - Experiment 4 (state-of-the-art compari-
son). ROC curve of the proposed method compared to RASID [81] and kernel
distance [83] methods.
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3.2 CSI -based Localization and Human Moni-

toring

The received signal strength information (RSSI ) has been widely used to enable
detection, localization, and monitoring of targets in indoor areas [62, 61, 78] .
However, the RSSI suffers from a significant quantization error and is a rough
indicator of the amplitude of the electromagnetic field on the antenna. Fur-
thermore, it does not allow to take advantage of the phase of the measured field,
that is a quantity highly sensible to the variations of the environment. In the last
decade, a great effort has been devoted to assure a better use of the available fre-
quency and spatial resources for high-rate wireless connectivity. To this end, the
knowledge of the wireless channel response, known as Channel State Information
(CSI ), is required [141]. This opens new possibilities for localization systems,
taking advantage of the CSI to obtain much more detailed information about
the effects of the humans on the electromagnetic fields [142]. However, the CSI
has been partially exploited in the current state of the art. For example, many
approaches avoid to use the phase information, which is considered unstable and
difficult to be calibrated [143].

In this Section, an innovative approach to analyze the CSI available in Wi-
Fi based systems for the estimation of the presence, position, and posture of a
device-free target is addressed through a multi-resolution strategy that applies a
virtual zoom on the information content of the CSI measured by a single Wi-Fi
link. The method is based on the representation of the CSI data as ”strings”
and on the analysis of their distance in the complex domain in order to identify
different human behaviour and actions. The scattering of the human body is
exploited to solve the inverse problem of human behavior reconstruction from
the electromagnetic field measurement. A preliminary experiment using a couple
of IEEE 802.11 wireless devices in a non-controlled indoor scenario is reported.

3.2.1 Multi-resolution Wireless Sensing Strategy

In this work, multiple target features characterized by different resolution levels
are estimated simultaneously by applying a multi-resolution strategy, which it-
eratively exploits the large amount of information content of the channel state
information [140] of a multiple-input multiple-output (MIMO) Wi-Fi link. Three
different target features are considered, namely the presence (low-resolution), the
position (medium-resolution), and the posture (high-resolution). Accordingly,
three customized support vector machine (SVM ) classifiers [60] are trained us-
ing the complex-valued constellations of the CSI measured at multiple carrier
frequencies of the 5 [GHz] Wi-Fi band.

Let us consider an indoor three-dimensional investigation domain Ω where a
couple of Wi-Fi transmitter and receiver equipped with Ntx and Nrx antennas
are located in known and fixed positions rtx and rrx, r = (x, y, z) being the
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position vector, and generate an IEEE 802.11ac MIMO connection based on the
orthogonal frequency division multiplexing (OFDM ) technique. The complex
terms of the CSI vector Hu (t, f) = [hu (t, fc) ; c = 1, ..., C], where hu (t, fc) =
|hu (t, fc)| ej∠hu(t,fc), u = 1, ..., U , are measured at multiple sub-carrier frequencies
fc, c = 1, ..., C, at the time instant t, and for each orthogonal spatial sub-channel
u = 1, ..., U , U = Ntx × Nrx. Let us consider the CSI vectors Hu (t, f) ∈ C,
u = 1, ..., U , as the complex representation of the channel frequency response
(CFR) determined by the adopted OFDM constellation scheme, and subject
to the perturbations of the electromagnetic propagation from the transmitter
to the receiver. Such perturbations reflect on the changes of Hu (t, f), u =
1, ..., U , which are exploited by the communication standard to maximize the
link robustness. Accordingly, a strict relation exists between the target activities
within Ω and the time-varying shapes of Hu (t, f), u = 1, ..., U , which can be
represented as “CSI strings” on the complex plane. The goal of the proposed
multi-resolution technique is to learn such a relation and to make it usable for the
reconstruction of the underlying target activities. Unlike most of the contribution
in the state of the art, all the available CSI information has been considered since
the strings are generated by the complex-valued measurement [expressed in the
form of magnitude |hu (t, fc)| and phase ∠hu (t, fc)] at the sub-carrier frequencies
fc, c = 1, ..., C and the MIMO sub-channels u = 1, ..., U . In order to profitably
use such a large amount of information on the communication channel, the fine-
grained CSI is pre-processed as follows.

Phase correction: the linear phase shift due to the transmission at different
frequencies is removed, and a common phase reference is introduced, which is not
used in IEEE 802.11ac to avoid the complex process of phase synchronization.

Outlier removal : an Hampel filter is applied to remove the isolated and short-
time changes of the CSI strings that are not related to the target activities but
to the unpredictable adaptive schemes of the physical layer management.

Features extraction: the phase-corrected and time-filtered strings H̃u (t, f),
u = 1, ..., U , are approximated by a set of least-squared splines in order to repre-
sent the shapes of the strings in the complex plane by using a number of uniformly
spaced control points K lower than the number of carrier frequencies (i.e., K <
C) for features selection. More in detail, the whole set of CSI data is represented
by a set of features φ (t) = [|Hu,k (t)| ; ∠Hu,k (t) ; u = 1, ..., U ; k = 1, ..., K], where

Hu,k is the spline-based interpolated value of H̃u (t, f) evaluated at the k-th con-
trol point in the complex plane.

The features φ (tm), computed at successive time instants tm = t0 + m∆t,
∆t being the acquisition sampling time, are used to train a set of SVM binary
classifiers devoted to learn the unknown relations between the CSI strings and
the target presence, position, and posture. The learning process is organized in a
multi-step procedure in order to iteratively focus on the strings’ shapes that are
effectively related to the addressed target feature. The synthetic zoom applied by
the proposed multi-resolution strategy fully exploits the very high sensitivity of

61



3.2. CSI -BASED LOCALIZATION AND HUMAN MONITORING

the CSI using the proper amount of information according to the spatial accuracy
required at each sensing step. The target detection is applied to the whole domain
Ω, the localization is focused on the target position within Ω′, while the desired
posture is recognized within the smallest domain Ω′′, as pictorially shown in Fig.
3.12. The three SVM binary classifiers aim to maximize the margin (i) between
the background in absence of targets and any other target presence pattern in
Ω, (ii) between whatever target position and the positions within Ω′, and (iii)
between whatever posture in Ω′ and the posture in Ω′′. During the test phase,
the trained classifiers are triggered one after the other according to the following
simple rule: the localization in Ω′ is activated only if a target is detected in Ω,
and the posture is estimated in Ω′′ only if a target is localized in Ω′.

Figure 3.12: CSI Multi-Resolution Strategy. Iterative procedure for the estima-
tion of multiple location-based target features.
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3.2.1.1 Experimental Validation

The proposed multi-resolution sensing strategy has been experimentally vali-
dated in a non-controlled indoor area of size X = 8.4 [m], Y = 9.6 [m], Z =
4.2 [m]. An IEEE 802.11ac Wi-Fi access point has been deployed in posi-
tion rtx = (3.0 [m] , 2.0 [m] , 0.9 [m]) as transmitter, while the receiver equipped
with the Intel Link 5300 network interface card (NIC ) has been located in
rrx = (3.0 [m] , 9.0 [m] , 0.9 [m]), with a tx-rx line-of-sight distance d = 7 [m].
A set of U = 6 wireless sub-channels have been generated by using Ntx = 2
and Nrx = 3 antennas. The transmitter has been configured with the working
frequency f = 5.18 [GHz] (i.e., the Wi-Fi channel 36) and the CSI is provided
by the receiver at C = 30 frequency sub-carriers with the sampling interval
∆t = 0.05 [s]. The number of control points has been set to K = 10, lead-
ing to a features selection rate of K

C
= 1

3
. A measurement campaign has been

performed to collect the training data set in different scenario conditions includ-
ing the empty domain, the target presence and movement in random positions
within Ω, the target in the reference position rT within Ω′, and the target in the
reference posture shown in Fig. 3.12 (i.e., sit down in the spatial position rT
and within Ω′′). Three different training subsets composed by M = 1600 well-
balanced samples have been generated according to the binary classification task
of each SVM classifier. For example, M |Γ=0 = 800 and M |Γ=1 = 800 samples
have been labeled with class index Γ = 0 (i.e., target absence) and Γ = 1 (i.e.,
target presence) for the target detection task. The radial basis function (RBF )
kernel has been selected, the training hyperparameter CSVM = 104 and the RBF
parameter γSVM = 10−1 have been calibrated through a 5-fold cross-validation
strategy.

The representative test case is concerned with a target entering the domain
Ω for a duration of 1 minute (i.e., for a total number of test samples M ≃ 1200
with ∆t = 0.05 [s]). During this presence period, the target has changed posi-
tion frequently and has stopped twice in the reference position rT , each time for
15 [s]. When the target was in position rT , the reference “sit down” posture has
been assumed for 5 [s] two times. As an illustrative example, Fig. 3.13 shows
the output probability given by the three SVM classifiers. The grey backgrounds
represent the activation time periods of the classifiers, which are triggered ac-
cording to the estimations of the previous and lower-resolution classification step.
As can be observed, the target presence [Fig. 3.13(a)], position [Fig. 3.13(b)],
and posture [Fig. 3.13(c)] have been correctly estimated by comparing the actual
and the estimated target behaviour. The classification performance have been
quantified in terms of false detection, false localization, and false posture rates
(defined as the ratio between the number of wrong and total classifications, with
probability threshold set to 0.5), which turned out ρD = 1.3 [%], ρL = 2.1 [%],
ρP = 3.4 [%], respectively.

Preliminary experiments point out the feasibility to estimate high-resolution
features such as the target posture even in very large investigation domains,
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passing through the estimation of the target presence and position. A robust
and ubiquitous wireless sensing is obtained with failure rates lower than 2.5%
ρ = 2.5 [%] in the three considered resolution steps.
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Figure 3.13: CSI Multi-Resolution Strategy. Probability of target presence (a),
of target localization in the reference position (b), and of target behaviour in the
reference “sit down” posture (c).
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3.2.2 CSI Data Interpretation for Human Monitoring

In this Section, an intuitive approach to understand and quantify the degree
of reliability of the whole CSI data, both magnitude and phase across all the
frequency subcarriers, to enable indoor accurate location-based services is pro-
posed. The results of a preliminary experiment for human posture recognition
are presented to assess the advantages and the limitation of the investigated
method.

The aim of this Section is twofold. On a side, a way to quantify the amount
of human information associated to the CSI is described. On the other hand, a
method to extract such information is proposed. In order to quantify the amount
of information conveyed by CSI, the number of distinguishable CSI configura-
tions has to be identified. The method adopted in this paper is based on the
Kolmogorov approach to information theory. The Kolmogorov approach [144]-
[146] is intuitive, simple, and general. The basic idea is that, given a continuous
set of data X , two elements of the set give different information when they are
distinguishable. To be more specific, given a continuous set X of elements x,
affected by an uncertainty ǫ, we consider an ǫ-packing of the set a group of open
balls having ǫ radius (called ǫ-balls) whose centers are at least (2× ǫ) far each to
the others. Kolmogorov proposed to identify the maximum number of balls of
any ǫ-packing of the set as the amount of information associated to the set. This
is equivalent to identify the maximum number of elements of X having at least
(2× ǫ) distance. This number is known as the Kolmogorov ǫ-capacity of the set.

Let us consider the CSI information collected using an orthogonal frequency
division multiplexing (OFDM ) multiple-input multiple output (MIMO) system
with Nt transmitting elements ad Nr receiving elements, on Nf subcarriers, and
during NT time instants [145]. For the sake of simplicity, let us consider a static
environment. We collect the real and imaginary part of the Nf signals received
on the Nf subcarriers of the (h, l) link, in a complex vector a(h,l)(tk) ∈ CNf ,
wherein tk is the k-th time instant, and h and l are the h-th and l-th receiving and
transmitting elements. Consequently, the value of the n-th entry of the a(h,l)(tk)
vector for a given tk represents the data transmitted by the h-th antenna at time
tk on the n-th subcarrier and received by the l-th antenna.

After subtracting the linear phase shift associated to different sucarriers and
normalizing to the mean phase, let â(h,l)(tk) be a vector whose shape is a function
of the frequency and is a specific fingerprint of the environment. Consequently,
also the information on the human in the environment is encoded in the shape
and position of the 3D strings representing the â(h,l)(tk) vectors.

Using the Kolmogorov approach, the points of the set X are the configura-
tions of the strings associated to the â(tk) vectors. Two strings give different
information when their distance is larger than the uncertainty ǫ. In the follow-
ing, the standard deviation of the strings is adopted as uncertainty level ǫ. In the
Kolmogorov approach, the signal â(tk) is an element in a Nf ×Nt ×Nr complex
space. In order to give a pictorial view, the signal for a fixed (h, l) TX-RX path
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in a 3D space is represented, where (x, y) are the real and imaginary parts of the
signal, and z is the index of the subcarrier.

Let us consider the following numerical example. A single-input single-output
(SISO) system consisting of two short dipole elements is placed in (x = 0, y =
0, z = 0) and (x = 0, y = 30λ, z = 0), and a point-like metallic scatterer with unit
reflection coefficient is placed in 3 different positions (x = 5λ, y = 15λ, z = 0),
(x = 7λ, y = 15λ, z = 0), (x = 5λ, y = 9λ, z = 0). A number of 100 data
samples affected by a noise level of −20 [dB] are collected for each position of
the scatterer. The mean value of the received signal and the standard deviation
have been evaluated for each subcarrier and for each data set. The uncertainty
circle is plotted in the x − y plane for each OFDM subcarrier. The circles are
centered in the mean value of the CSI and have radius equal to the standard
deviation. The data at different frequencies are plotted at different z values. As
an example, the results obtained from the vector ã(1,1)(tk) considering the three
different positions of the scatters are plotted in Fig. 3.14 (first position: blue,
second position: red, third position: green). A slight superposition between the
uncertainty circles associated to the first and second positions can be noted.
The degree of superposition is an indication of the probability that the positions
can not be distinguished. Such a probability is proportional to the intersection
area. Figure 3.14 gives an intuitive idea of the information content of the CSI
data, and also suggests a practical way to elaborate such information in terms
of strings. Two different configurations of the scenario are distinguishable if the
distance between the strings is larger than the sphere of uncertainty ǫ affecting
the data.
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Figure 3.14: CSI Analysis. Pictorial view of the CSI strings. The colors represent
different positions of the scattering object. The OFDM frequency subcarriers
are along the vertical axis. The circles in the horizontal complex I-Q plane are
centered in the mean value of the CSI and the radius is equal to the standard
deviation.
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3.2.2.1 Experimental Validation of Human Posture Monitoring

The CSI data collected in three different configuration of the scenario shown in
Fig. 3.15 are considered. The uncertainty circles of the received signal in the
three cases are plotted respectively in blue [Fig. 3.15(a), configuration 1 - empty
environment], red [Fig. 3.15(b), configuration 2 - standing man], and black [Fig.
3.15(c), configuration 3 - crouched man] in Fig. 3.16. Non-intersecting circles
of the three configurations are shown, confirming that the three sets of strings
carry different information on the environment.

(a) (b) (c)

Figure 3.15: CSI Analysis. Indoor scenario for experimental validation. Empty
environment (a), standing man (b), and crouched man (c).

According to the concept of Kolmogorov capacity, a distance among the
received signals can be introduced. In the following, the Euclidean distance
‖â(h,l)(tk)− b̂(h,l)(tk)|2 will be adopted, where â and b̂ are two different strings.
The distance is evaluated for the three environmental configurations considered
above and reported in Fig. 3.16. The temporal sequence of configurations re-
produced in the measurement campaign is 1-2-3-2-3-1 (i.e., empty, standing,
crouched, standing, crouched, empty). A reference signal has been acquired for
each configuration and let R1, R2, R3 be the strings of the reference signals.

The CSI data have been acquired using an Intel Wi-Fi Wireless Link 5300
(IWL5300 ) IEEE 802.11a/b/n network card using a 3×2 MIMO system, obtain-
ing a total of 6 spatial channels and 30 frequency subcarriers. The measurements
have been performed at 2.4 [GHz]. The distance between the point associated
to the CSI data and the reference signals R1, R2, R3 are reported on a polar
plot at angles θ ∈ 0, 2π proportional to the acquisition time. The angle θ = 0
corresponds to the starting time instant. The results are reported in Fig. 3.17
showing that the proper sequence of the minimum distance has been obtained.
The estimated sequence is: 1 (blue), 2 (red), 3 (green), 2 (red), 3 (green), 1
(blue), as expected. The obtained results have been obtained using a single spa-
tial channel. As an additional example, the six CSI data strings acquired using
the 3× 2 MIMO system have been elaborated adopting a simple “choice by ma-
jority”, obtaining the results shown in Fig. 3.18. The reliability of the choice is
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plotted as blue curve and the time evolution of the estimated configuration is re-
ported with the red curve. As it can be noticed, the estimated sequence properly
reproduced the actual target posture (i.e., configuration sequence: 1-2-3-2-3-1).
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Figure 3.16: CSI Analysis. CSI strings of empty environment (black), standing
man (red), and crouched man (blue).
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Figure 3.17: CSI Analysis - SISO system. Polar representation of the distance
among the reference and measured CSI strings. Blue (1 - empty), red (2 -
standing), green (3 - crouched). The estimated sequence of minimum distance
is: 1-2-3-2-3-1, as expected.
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Figure 3.18: CSI Analysis - MIMO system (6 spatial links). Temporal evolution
of the estimated scenario configuration (red), and of the degree of estimation
confidence (blue). The estimated sequence is: 1-2-3-2-3-1, as expected.

3.3 Conclusions

In this Chapter, methodologies for the presence detection, the localization and
the posture recognition of device-free passive targets in indoor scenarios have
been presented. Both approaches, (i) RSS -based presence detection and (ii)
CSI -based posture recognition, rely on the electromagnetic channel analysis of a
single wireless link communication between two commodity devices without any
hardware modification as they have been designed work in real-world scenarios
where simple wireless architectures already exist for standard communications.

In particular, (i) exploits received signal strength (RSS) measurements by
means of a Learn-by-Example (LBE) strategy for the extraction of the compo-
nents in the frequency domain that are more affected by the target presence.
The proposed method has shown being able to:

• detect humans approaching the monitored area exploiting a single wire-
less link between commercial wireless devices. The detection capability
has been verified with different link lengths, up to the maximum wireless
coverage (with RSS values close to the receiver sensitivity);

• cover a detection area (π > 0.5) of 250 [m2] (Experiment 1 ) using a wireless
link of length dS = 11.9 [m], and up to 450 [m2] with a link length dL =
34.1 [m] (Experiment 3 );
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• estimate the target absence/presence with failure rates lower than 10 [%],
even with the longer wireless link (Experiment 3 );

• provide target detection in real-time (every ∆t = 0.6 [sec]) processing the
RSS data stored in a sliding time window of length U ×∆t = 300 [sec].

Further analyses are required to explore whether the proposed strategy can per-
form in different and more complex configurations. For example, the following
points are currently under study to extend the potentialities of the method:

• the complex relation between the detection probability and the number
of targets occupying the area is currently under investigation in order to
better understand and formulate the detection sensitivity in presence of
single or multiple targets;

• the detection area of a single wireless link strictly depends by the environ-
ment characteristics and by the complex indoor EM propagation. Current
activities are focused on the estimation of the minimum number of links
required to provide a robust detection in a desired area;

• further studies are aimed at understanding the relation between the cover-
age requirements for standard wireless communication and for the target
detection in order to understand a-priori the detection capabilities of an
existing wireless networks composed by multiple APs.

In Section 3.2 (ii) the more accurate channel state information (CSI ) is con-
sidered. This information is required by new high-speed MIMO communication
standards (e.g., IEEE 802.11n/ac/ax ) and can be exploited for real-time local-
ization and posture recognition. In particular the CSI of a single IEEE 802.11ac
Wi-Fi link acquired by commercial OFDM-MIMO Wi-Fi devices has been ex-
ploited in the form of interpolated CSI strings changing in the complex plane
according to the channel frequency response. The huge information content of
the CSI has been fully exploited focusing on the changes effectively related to
the target presence, position, and posture accordingly to the proposed multi-
resolution strategy. The feasibility to estimate multiple target features at differ-
ent resolutions using a single TX-RX couple of Wi-Fi devices has been assessed
by considering an experimental test case in a large indoor test area, the obtained
re-sults have shown a satisfactory robustness of the SVM -based classification
method, with an average failure rate lower than ρ = 2.5 [%]. In order to improve
the reliability and the accuracy of the human posture recognition among a set of
reference CSI configuration, a ”choice of majority” strategy has been adopted.
The Kolmogorov principle has been exploited to quantify the separability among
the CSI strings and to estimate the temporal behavior of the passive human
moving in proximity of the MIMO wireless links. A preliminary measurement
campaign has shown the feasibility to use the key-concept of the Kolmogorov
ǫ-capacity to extract the human information from the highly sensitive CSI data.
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Chapter 4

Location-Aware Decision
Support Systems

In this Chapter, the field of decision support systems (DSS ) based on location
information is considered.

In particular, a DSS tool for the environmental monitoring and the fleet
management in the field of emergency response and assets coordination is il-
lustrated. The system is interconnected with the assets on the field - vehicles
and rescue teams by means of civilian and military communication networks,
such as 3G,4G and TETRA respectively. Distributed wireless sensor networks
and online data-sources feed the system with real-time information, such as road
traffic and weather information, for providing situation awareness to the decision
makers and the situation room operators. Finally, a novel method for support-
ing the selection of assets to be deployed for rescuing emergencies is proposed.
The illustrated DSS has been experimentally validated by domain experts in real
scenarios for more than two years.
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4.1 Fleet and Emergency Management

The fleet and emergency management scenario deals with a highly dynamic, un-
certain, and dangerous environment where the exchange of information and the
coordination between civil defense actors are essential for mission accomplish-
ment. The situation room operators have to take quick and proper decisions
according to their interpretation of the situational picture. This is possible only
when professional managers and first responders have access to the required in-
formation, and when the assets are ready to intervene with low latency [58] and
supported by the situation room personnel and technologies during the opera-
tions on the field.

4.1.1 Decision Support System

The term Decision Support System (DSS) has been coined before the computer
invention and was usually referred to hard copy documents and collections of
experience-based best practices. Over the years, DSSs have been implemented
and applied in a variety of scenarios [147]. With advances in information and
communication technologies, advanced systems have been developed to improve
the activity of decision-makers at different levels of the command chain.

Modern DSS s are able to rapidly gain the situation awareness thanks to the
massive amount of data acquired by systems distributed on the territory, such
as wireless sensors and wireless communication systems. The key characteristics
of a DSS [148] are:

• assistance and improvement of human reasoning without replacing the hu-
man final control;

• adaptability to context changes and to the availability of new information;

• combination of analytical models that provide synthetic information auto-
matically gathered from heterogeneous and distributed sources;

• user-friendly interactivity/interfaces;

• alleviation of efforts to amplify decision making capability of the operators.

One of the main factors affecting the decision-making process is that multiple
groups (e.g., different kind of employers and stakeholders such as firefighters,
policeman, medical first responders, volunteers, etc.) have often to cooperate in
the same mission. The combination of different viewpoints (even if a common
final objective exists), different internal organizations, heterogeneous resources
including personnel, facilities, and equipment make the mission management dif-
ficult to be accomplished by standalone operators. The main role of a fleet and
emergency management DSS is to provide situation awareness to the control
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room and to support the selection and the activation of the best resources for
the efficient accomplishment of each mission [59, 150]. Decision support tools
based on this research do not aim to replace the operators, but to provide up-
dated, reliable, punctual information and propose candidate solutions in order
to support the process and reduce the risk of taking wrong choices, for exam-
ple due to the emotional involvement. In the following, the main features and
functional aspects that characterize decision support systems in the field of fleet
management and emergency response are introduced.

4.1.2 Real-time Wireless Communication and Localiza-

tion

Modern organizations and civil defense agencies exchange information and coor-
dinate teams on the field by means of wireless technologies. In last decade, legacy
voice communications relying on analog radio-frequency protocols are being re-
placed by digital systems that also provide real-time messaging, asset status
notifications, localization, and the ability to share rich information about the
mission among actors and the situation room [59]. In particular, real-time com-
munication and messaging services for mission control can be provided by civil-
ian technologies such as the global system for mobile communications (GSM ),
3G, 4G long-term evolution (LTE ) as well as more reliable and secure military
telecommunication networks such as the terrestrial trunked radio (TETRA) [54].
The current status and the location of these assets is known thanks to more and
more diffused location technologies such as global positioning system (NAVS-
TAR GPS ) and newer technologies such as GALILEO. In particular, TETRA
terminals and the communication system itself integrates the GPS positioning
service. The DSS tool can exploit online mapping and routing services (e.g.,
Google Maps, Microsoft Bing, TomTom, etc.) for estimating the real distance
on the road and for predicting the travelling time between asset location and
mission destination at run-time by considering real-time road and traffic condi-
tions.

4.1.3 Distributed Sensing for Situation Awareness

The ability to gather precise real-time information on the mission scenario is a
key requirement for decision-makers. In smart cities, the spread of wireless sen-
sors, interconnected devices (i.e., IoT) and online data-sources available on the
Internet offers many advantages to the DSS. Some relevant examples are road-
traffic information, weather conditions, river and floods level status, and high
resolution video streams of strategic locations. The information, once normal-
ized and aggregated by custom adapter software modules (as these data-sources
are hosted by different organizations and available in different formats and pro-
tocols), can be exploited by the engine algorithms and directly offered to the
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operators through the interactive front-end. All these data put the decision
maker in the position of understanding the mission scenario characteristics from
a practical and physical point of view.

4.1.4 Knowledge Base and Inference Engine

In order to provide useful information to operators and assist best practices such
as the selection of assets to be deployed for accomplishing a given action, the DSS
must be aware of a-priori information about available assets, supported missions
taxonomy and their correlations. For example, the transportation of a good
might require special vehicles supporting its weight and volume, therefore the
characteristics of each vehicle must be available. In the emergency management
scenario, more constraints are typically related to given mission kind with respect
to personnel skills and on-board vehicles equipment.

4.1.5 System Security and Accessibility

In the fleet management scenario and in particular when dealing with emergency
mission control, the assets location and mission information are strictly confi-
dential and cannot be accessed by all users. Therefore the system must embed
security mechanisms based on the organizational role assigned to the user.

4.1.6 Front-end Interface

In order to interact with emergency managers and situation room operators, the
system shall provide an interactive user-friendly interface for having users access
to information of interest including the setup of new missions and the output
representation. Moreover the system shall provide useful information related to
the fleet, such as the currently active missions and environmental information
describing the target scenario.
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4.2 Assets Selection for Emergency Response

In this Section, one of the most relevant problem in the field of emergency re-
sponse - the selection of assets to be deployed for a given emergency event is
addressed. For example, in order to put out a fire emergency, the situation room
shall deploy specific fleet assets depending on the kind of fire, its context (i.e.,
location) and considering assets availability in real-time. The selection requires
the simultaneous optimization of different objectives, for example taking into
account the utility of selected assets with respect to mission accomplishment,
the estimated time of arrival, cost, the risk of moving assets from their current
location, the skills of personnel. In the following, the use of evolutionary meta-
heuristic is adopted for estimating the best set of assets to be selected for a given
task.

4.2.1 Proposed Approach

The classical approach consists in reducing the multi-objective problem into a
single-objective one by combining (usually linearly) the objectives [47], although
in this kind of problems objectives are typically non-commensurable (i.e., in
different units) and conflicting (i.e., the improvement of one leads to another
objective degradation). As result, those classical techniques have serious draw-
backs, in particular the functional definition requires a-priori information about
the problem dynamics in order to balance the contribution of each objective by
means of empirical weights and thresholds. In last years, multi-objective evo-
lutionary algorithms (MOEA) have been applied in many fields where optimal
decisions are taken in presence of trade-offs among multiple conflicting objec-
tives [149]. Unlike single objective optimization, multi-objective optimization
does not provide a single solution, but rather a set of idempotent solutions (i.e.,
the Pareto front), that eventually can be ordered by considering one objective at
time. Hence, the term “optimize” means finding such solutions that would give
the values of all the objective functions acceptable to the decision maker.

In the problem at hand, the solution defines how many and which assets shall
be deployed for the given mission. The knowledge base of the system, which
represents the features of entities (e.g., vehicle taxonomy and characteristics,
requirements for handling emergency events, missions best practices) and the
relationships between candidate asset and target mission features can be very
complex to be fully represented and handled at run-time by an autonomous
software system, in this work we propose a very simple feature mapping approach
based on scalar weights that define the cross-correlations between such features.
Given a target mission, the system selects from the knowledge base the set of
suitable mappings (i.e., matrixes).
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4.2.1.1 Features Definition

The system supports an extensible taxonomy of domain entities like vehicles and
events, as well as standardized and user-defined features defined as key-value
properties. Each property provides some granular information (e.g., classification
label) that might be exploited in the decision process. For example, the vehicles
are classified into five major categories Aerial -Vehicle, Road -Vehicle, OffRoad -
Vehicle, Amphibious-Vehicle, Water -Vehicle and latter with a more specialized
taxonomy defined by classes such as Fire-Engine, Pick-Up, Police-Car, Ambu-
lance and so on. This approach has two major advantages: it’s simple, human
friendly, and easy to be obtained. Secondly, it synthetizes in a single high-level
indicator many features related to the capabilities and the utility of the asset.
Each event is classified and decorated with information that are usually acquired
by emergency operators such as the location, the typology (e.g., Fire, Landslide,
Medical or Road emergency), the number of injured people. Moreover some
information are inferred from event meta data, such as the environmental char-
acteristics of the event location that can be latter used for selecting the best
suitable rescue vehicles (e.g., urban road, forest, on mountain, near a lake).

4.2.1.2 Features Mapping

Emergency operators and fleet managers plan asset deployment basing decisions
on best practices and their experience, but a computerized system usually eval-
uates only mathematical rules such as the balance between utility and costs for
a given asset - event tuple. Given an emergency, domain experts might de-
fine the knowledge base as the collection of relationships between assets features
with respect to emergency event features. For example, we can assume that
fire events require the early deployment of fire-engines rather than ambulances.
These relationships can be represented as a set of matrices where each one refers
to a mapping between one asset feature and one event feature, eventually un-
der given conditions or filtered by some event properties. This simple approach
brings some relevant advantages: it can be easily understood and edited by hu-
mans, and secondly it’s fast, scalable and dynamic in terms of values, features
mappings extension and pre-condition evaluation. The weights are typically ini-
tialized with empirical values assigned with the support of domain experts, but
they also might be updated and tuned with respect to best practices by analyzing
historical missions statistics, enabling the DSS to be self-adaptive.

At run time, the inference engine searches the whole knowledge base for each
specific mapping query and retrieves the matching columns. For example, given
a Fire emergency event, the Table 4.1 would be considered for estimating the
utility of vehicle type given the event location. The vehicle type is mapped to
the place (Place-Type) where a given fire event occurred (i.e., Event-Type set to
Fire is the implied condition). Each cell element of the matrix defines the utility
of a specific feature mapping tuple (e.g., Off-Road and Urban). An higher weight
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implies that the related mapping is more suitable for the given context. In this
case, we are instructing the DSS to prefer the selection of some vehicle types
depending on target location, in particular the assumption is that the vehicle
type Off-Road is more useful in sub-urban or extra-urban environment rather
than in urban one.

Vehicle Type Place-Type feature mapping of Fire Event
Urban Industrial Forest Mountain

Normal Car 0.97 0.89 0.01 0.02
Off-Road Vehicle 0.20 0.25 0.85 0.78

Helicopter 0.01 0.20 0.78 0.95

Table 4.1: Fleet Asset Selection. A sample feature mapping matrix that define
relationship between the type of place when the emergency (Fire) event occurred
and the kind of vehicles that are suitable for deployment.

4.2.1.3 Decision Engine

The decision engine is responsible of preparing the problem context for a given
input emergency event and running the solver algorithm that outputs the selec-
tion of assets to be deployed. First, the event and all available assets are loaded
into problem context. Parameters which are constant with respect to problem
scope are estimated only once during initialization, such as the matrix of routes
and estimated time of arrival for each candidate asset. Secondly, the engine
queries the inference engine for all available features mappings. All the matrices
which validate pre-conditions (e.g., event type is Fire) and describe mappings
related to any existing event feature are loaded. During optimization, the utility
of each asset is evaluated by considering the weight of matching features. The
cost of asset selection is estimated by considering the distance of the asset to
event location, as well as the asset activation and travelling time.

4.2.2 Mathematical Formulation

In the problem at hand, a solution describes how many and which assets shall
be deployed for the given event and takes into account three objectives: (i)
the utility of selected assets shall be maximized, (ii) the dispatch time shall
be minimized, and (iii) the cost of moving assets from its currently assigned
location shall be also minimized. In practice, the solution can be represented as
an ordered string of bits having length equal to the number of all candidate assets
and where each bit enables the selection of one asset. For example, given a set
K = 10 of available assets, one solution could be represented as the bit-string:
{0 1 0 1 0 0 1 0 0 0}. Note that the cardinality (i.e., number of bits set to 1) of a
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solution, that is the number of selected assets, is a variable in the optimization
process.

For a given emergency event to be handled, the multi-objective optimization
problem can be stated as follows:

r̂opt = min
r∈Ω

Θ (r)

(
1

U (r)
, T (r) , C (r)

)
(4.1)

where a Θ (r) : Ω → Rm consists of m = 3 real-values objective functions and
Rm is called the objective space. A candidate solution r = [rk; k = 1, ..., K] is
defined as the set of K ≤ N assets selected from all available assets N . Since the
objectives in 4.1 contradict each other, no point in Ω minimize all the objectives
simultaneously. One has to balance them, the best tradeoff among the objectives
can be represented in terms of Pareto front optimality. The definition of each
objective term follows.

1. Maximize the utility of selected assets for the considered mission in terms
of required personnel, vehicle features such as the typology, equipment and
tools. The utility function U (r) is defined as the sum of selected assets
utility:

U (r) =
K∑

k=1

U (rk) (4.2)

where the utility of each selected asset U (rk) is estimated by means of
the inference engine taking into account the characteristic of the k -th asset
with respect to given mission features and requirements and can be formu-
lated as follows:

U (rk) =
1

M

M∑

m=1

αm ·Hm (rk) (4.3)

where M is the total number of feature mappings m = 1, ...,M found in
knowledge base, in particular each mapping refer to one correlation matrix
as the example shown in Tab. 4.1. The factor 0 ≤ αm ≤ 1 represents an
user configurable constant weight to balance feature relevance, the weight
default value is set to αm = 1. Hm is the transfer function that selects the
normalized weight of the specific asset-mission tuple of the m-th feature
mapping from the knowledge base. In other words, the transfer function
selects the weight of them-th matrix that describes the correlation between
input mission feature and m-th asset feature.

2. Minimize the dispatch time in terms of asset activation and traveling time,
including also the route feasibility for selected asset as constraint (e.g.,
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some arduous locations not reachable by road vehicles require the use of
helicopters or drones). Formally, we define the objective T (r) as follows:

T (r) = max
rk

[ATk +RT (dk)] for k = 1, ..., K (4.4)

where the estimated time of arrival of k -th asset is the sum of the time
activation time AT required to setup the asset for deployment (including
personnel) and the vehicle travel time RT required to cover the distance
dk between the k -th asset and mission target location. Accordingly to
domain experts, the K assets selected for the mission are considered as a
monolithic group, therefore the maximum deployment time is considered
(e.g., all assets must be at target location for mission accomplishment).

3. Minimize the cost of moving an asset away from assigned area. The idea
behind this objective is that the deployment of some assets implies not only
an economic cost (i.e., related to the consumption of resources, such as fuel)
but also a risk of compromising the default behaviour of the fleet. In fact,
under normal conditions, the fleet is distributed and moves on the field
with some rational scheme defined by the organization logistic protocol.
For example, a good transportation truck (and its driver) might usually
travel forward and back along similar routes or in the same territory; in
the emergency management scenario, an ambulance might be assigned to
a reference parking location in order to guarantee an upper-bound rescue
time in the nearby area. Formally, we define the objective C (r) as the sum
of selected assets cost contribution:

C (r) =
K∑

k=1

C (rk) (4.5)

where the cost of each selected asset C (rk) is defined as:

C (rk) = dk · [1− ρ (x, y |rk )] (4.6)

where dk is the estimated route length between the current position of k -th
asset and mission target location (x, y), and ρ (x, y |rk ) models the a-priori
spatial correlation between the area usually covered by k -th asset and target
mission location. In particular, the probability ρ is estimated against the
recent history of the asset routes (e.g., one month of interpolated location
samples). The more an asset is near and at ease with target location, the
more is suitable for mission accomplishment.
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4.2.3 Preliminary Assessment

The experimental assessment of DSS applied to emergency response field is not
trivial as the civil defense agencies must follow well-known and consolidated prac-
tices and system when handling real situations. Actually we are still collecting
data and logs from state-of-the-art methodologies (which are mostly based on
personnel experience) in order to validate the solutions proposed by the DSS.
In the meanwhile, we focused on the study and validation of the multi-objective
evolutionary optimization approach itself in a small scale scenario. In particular,
we are interested in evaluating which optimization algorithm is suitable and in
comparing the performances of most used algorithms. The assets database has
been populated with 10 fully featured vehicles of different kinds. The target
emergency event is a fire in a carpenter’s shop occurring in an industrial (sub-
urban) zone. The multi-objective optimization process quality shall be evaluated
in terms of two proprieties: convergence and uniform diversity. Many indicators
for measuring these criteria have been proposed in literature, the most common
metrics were considered:

• generational distance [153] is a metric representing how ”far” the non-
dominated solution set found at a given iteration is from a reference set
(i.e., the Pareto front);

• hyper-volume [154] represents the n-dimensional (i.e., 3) space “contained”
by a set of points and measures the spread of the solutions along the Pareto
front as well as the closeness of the solution set to the optimal front;

• maximum spread [155] takes into account the proximity to the true Pareto
front in terms of the objective functions range (i.e., min/max).

It should be noted that most interesting performance metrics require the Pareto
optimal set, when the true optimal set is not defined (as in this case), the best
known approximation might be used. In the proposed example, the reference
set shown in Fig. 4.1 were generated merging results of all the algorithms
using a very high number of iterations (i.e., 5000), population size (i.e., 100)
and seeds (i.e., 50). The following algorithms have been considered: Duplicate
Elimination Non-domination Sorting Evolutionary Algorithm (DENSEA) [156],
Multiobjective Optimization Evolutionary Algorithm Based on Parameter ǫ (ǫ-
MOEA) [157], Nondominated Sorted Genetic Algorithm II Based on Parameter ǫ
(ǫ-NSGAII) [158], Fast Pareto Genetic Algorithm (FastPGA) [159], (General) In-
dicator Based Evolutionary Algorithm (IBEA) [160], Multi Objective Version of
a Cellular Genetic Algorithm (MOCell) [161], Multi Objective Version of Convex
Hull Contribution (MOCHC) [162], Nondominated Sorted Genetic Algorithm II
(NSGA-II) [163], Nondominated Sorted Genetic Algorithm III (NSGA-III) [164],
Pareto Archived Evolution Strategy (PAES) [165], Second Version of Pareto
Envelope Based Selection (PESA-II) [166], Multiobjective selection based on
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dominated hyper-volume (SMSEMOA) [167], Second Version of Strength Pareto
Evolutionary Algorithm (SPEA-II) [168]. All algorithms were configured with a
population size set to 20; the optimization is limited to 500 iterations. Run-time
metrics have been collected and aggregated for each algorithm using 10 random
seeds.

The results of most interesting indicators, including processing time are listed
in Tab. 4.2. Algorithms have been compared by means of standard optimization
metrics and with respect to Random search which proved to be much slower even
in such small-scale scenario taking into account a limited domain space (i.e.,
any possible combination set of the 10 candidate assets). We can notice that
ǫ-MOEA and IBEA methods have a zero generational distance, meaning they
perfectly match the approximation set used as reference set (assumed as the true
Pareto front) and shown in Fig. 4.1. The Hyper-volume indicator is stable for
all algorithms, as rule of thumb the higher value the better computed front. The
spread takes zero value for an ideal distribution, pointing out a perfect spread
of the solutions in the Pareto front, such as in the DENSEA case. We expect
that as the problem complexity grows (i.e., considering more candidate assets
and more features), the gap between considered strategies will grow. Future
work will focus on the extension and the validation of the knowledge base and
the assets database, also analyzing statistical effects of weights value distribution
on results. We will also introduce equipment entries (e.g., water, CO2 detector,
hydraulic clamp) and their relationships with vehicles and events both.

Performance Metrics
Algorithm Generational Distance Hyper-volume Spread Time [ms]

Random Search 7.06693 ·10−3 0.74794 6.11135 125.284
DENSEA 0.09374 ·10−3 0.41656 0 40.54
eMOEA 0 0.76876 4.4115 60.935
eNSGAII 0.13795 ·10−3 0.7865 5.99173 44.834
FastPGA 0.96136 ·10−3 0.78582 5.98473 73.856
IBEA 0 0.77759 12.8435 50.358
MOCell 0.53598 ·10−3 0.78741 5.69376 56.463
MOCHC 0.85239 ·10−3 0.77102 6.41539 50.183
NSGAII 0.78629 ·10−3 0.78081 6.55847 19.331
NSGAIII 0.14822 ·10−3 0.77052 6.13967 21.852
PAES 0.26930 ·10−3 0.78699 6.19187 34.538
PESA2 0.62066 ·10−3 0.78808 5.6668 43.421

SMSEMOA 0.30632 ·10−3 0.78729 6.13085 87.838
SPEA2 1.41677 ·10−3 0.78584 5.93479 70.969

Table 4.2: Fleet Asset Selection. Key Performance Indicators of the multi-
objective optimization process with respect to different algorithms.
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Figure 4.1: Fleet Asset Selection. The approximation set used as reference set
(Pareto Front) for computing performance metrics of the Utility and Cost objec-
tives.
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4.3 System Architecture and Features

This Section introduces the system architecture, components and the main fea-
tures of the proposed DSS tool for the fleet and emergency management scenario.
Civil defense units exchange information and often coordinate the rescue teams
interventions by means of wireless technologies. Namely, INSPECTOR is a geo-
graphic informative system (GIS ) that supports operators in the situation rooms
and on the field for monitoring the environment, tracking assets (e.g., vehicles,
helicopters, drones) and that assists decision makers for mission planning and
coordination.

The proposed system is based on a modular architecture distributed across
different networks and infrastructures. This approach is not only required for
interacting with external software, hardware and telecommunication systems
located in different physical facilities, but also to support the redundancy re-
quirements and to simplify the maintenance operations. The system modules,
including user front-ends, device firmware, mobile applications, databases and
bindings with external systems, are interconnected by means of highly secured
wireless channels, including the TETRA standard (Fig. 4.2). Accordingly, the
platform is usually installed in a redundant clustered environment as shown in
Figure 4.3 rather than as a single instance (Fig. 4.4).

Figure 4.2: INSPECTOR - Network Architecture. The application clients are
connected to the frontier servers that provides access to other networks and
information.
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The system can be transparently extended by means of remote hooks and
adaption layers, in order to support more communication protocols, information
data sources, and actuators. Modules, such as data-sources (i.e., adapters), ser-
vices and database drivers have been designed in a modular manner and requiring
minimal dependencies in order to be easily maintained. Components interact by
means of a well-defined Application Programming Interface (API ) and the sys-
tem provides a wide set of built-in implementations of real-world entities, such
as radio devices, vehicles, events, professionals, teams, and missions.

Figure 4.3: INSPECTOR - Production Platform. The standard architecture
based on replicated instances in terms of front-end and database. The approach
grants high reliability and supports many simultaneous users.

Figure 4.4: INSPECTOR - Minimal Platform. The architecture in a non-
clustered environment, ideal for development, beta testing and backup instal-
lations.
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Figure 4.5: INSPECTOR - Framework Architecture. The framework is based on
modular packages, the core API provides all interfaces used by modules.

On top of Figure 4.5 the three major aspects of the system are shown: data-
management, reasoning, and front-end. They have been split in different dae-
mons and applications, designed to cooperate across multiple servers through
RESTful services and eventually and enterprise messaging bus (AMQP). Due to
the high confidentiality level of the treated data (i.e., location history or emer-
gency events) and the access by users with different levels of privilege, the system
is required to support multi-user and multi-group security policies. The decision
support modules exploit the integration of different data like traffic and viability,
meteorological real-time indicators and forecasts as well. In this sense, the pro-
posed system is a collector of heterogeneous information acquired periodically
and in real-time from distributed monitoring systems and professional telecom-
munication networks such as TETRA. This complex task is accomplished by
the data-management modules. The location module is responsible of acquir-
ing positioning information from external data-sources, such as the terminals of
the TETRA network, mobile devices, or GPS modules. In fact, the TETRA
standard enables not only voice calls but also advanced data and positioning ser-
vices. The real-time locations are stored in the central databases and analyzed in
runtime for monitoring the lifecycle of planned operations, eventually triggering
alerts and reactions. The reasoning engine takes care of solving the problems
proposed by the user (e.g., planning a mission), it performs classification and
data mining tasks to extract useful information from available knowledge base
and live data streams. For example, traffic and viability events can be exploited
to improve suggested routes and selection of roads to vehicles, while weather
and wind statistics and forecasts can be used to predict the flight conditions of
helicopters and drones.

The system provides multiple front-end clients, summarized in next sub Sec-
tions, that are customized for web and mobile platforms. The user interface for
situation room exploits state-of-the-art HTML5 web technologies and it is ac-
cessible through standard Internet browsers (Fig. 4.6). Applications for mobile
devices (e.g., smartphones and tablets) have been designed to provide real-time
bidirectional communication with the headquarters(Fig. 4.7). For example, the
synchronization of the mission information and the navigation routes, the loca-
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tion and the state of the assets, as well as the multimedia content are constantly
shared with the situation room. Toward this end, the geo-referenced informa-
tion are accessible through an interactive geographic map with thematic layers
(e.g., assets, events, sensing stations, points of interest, etc.) and grouped in a
hierarchical tree, each layer can be activated as it is required. Data is stored in
relational (SQL) and NO-SQL databases.

Figure 4.6: INSPECTOR - Screenshot. The web interface based on HTML5
technologies showing the location of the fleet and distributed sensors.

Figure 4.7: INSPECTOR - Screenshot. App optimized for Mobile devices.
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4.3.1 Fleet Positioning and Tracking

The operators in the control room monitor the movements of assets on the inter-
active map. Therefore, operators are constantly aware of fleet movements and
they can support the on-field navigation by sending suggestions about the best
route and providing reference points to the drivers. The system is connected
in real-time with fleet and external data sources by means of pluggable module
adapters. The client application for mobile devices (i.e., Android 4.1 or later) has
been designed to support location features similar to the TETRA LIP technol-
ogy, including asynchronous location requests and real-time reconfiguration. The
system is also able to reconfigure the settings of remote terminals in real-time
(e.g., the transmission frequency of terminal position can be adaptively controlled
to manage the power supply according to the risk level of the operation). As
a matter of fact, any positioning technology such as low-cost global positioning
system (GPS ) is transparently managed by the system. The system exploits
online mapping and routing services (i.e., Google Maps API ) for estimating the
real distance, the route and the travelling time between two locations.

The real-time fleet monitoring interface (Fig. 4.8) shows the current location
and recent movements of each asset. The kind of asset is graphically identified
by a custom icon (e.g., vehicle, handheld radio, helicopter), the asset status with
respect to active missions is highlighted by using different background colors
(e.g., the green background means that the asset is available). Finally, the recent
track of each asset is shown using different pseudo-random colors (aligned to icon
border). In the left panel, the operator can apply filters on time and asset type,
configure advanced display options, and export data.

Figure 4.8: INSPECTOR - Screenshot. The map showing typology (icon sym-
bol), position, recent route, and status (color) of assets on the field.
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4.3.2 Interoperability with Military Network (TETRA)

TETRA is a digital trunked mobile radio standard developed by the European
Telecommunications Standards Institute (ETSI ) and designed for providing pro-
fessional data, voice and positioning services in critical applications such as mil-
itary and civil defense missions. Since 1995, TETRA has been spread to tradi-
tional professional mobile radio user organizations such as public safety, trans-
portation, oil and gas utilities. In fact, TETRA is the only wireless network
that was approved in Schengen agreement to serve as public safety and security
(PSS ) network in Europe. Modern TETRA hardware, such as base-stations and
terminals, is deployed by international manufactures (e.g., Motorola, DAMM )
and is available in more than 114 countries.

The interoperability with vehicles and helicopters as well as with personnel
equipped with TETRA terminals in terms of real-time positioning, tracking and
exchange of information (e.g., asset status and textual messaging) is implemented
by another standalone software system which acts as smart gateway between
the TETRA network and high-level external clients - applications such as the
proposed DSS tool. The system enables the seamless access and interaction
with remote TETRA terminals.

The network architecture, shown in Figure 4.9, allows to overcome some
important practical limitations of the TETRA terminals (e.g., vehicular and
hand-held radio) that typically allow only a single entry (ISSI address) for the
central TETRA application server that is allowed to perform actions on the
radio and that is the recipient address of positioning datagram (LIP protocol).
The software gateway allows multiple remote applications to interact with the
networks and to receive asynchronous updates from remote TETRA devices, such
as their status and location.

Figure 4.9: HOSTESS - Network Architecture. Client requests and asynchronous
data from the TETRA network are stored, translated and forwarded to/from
TETRA on-air protocol used by the TETRA SDR network component by means
of TCP/IP channel.
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The key features of the framework follows:

• it enables the seamless interaction with remote TETRA terminals;

• it extends many TETRA functionalities in terms of status management,
textual messaging, real-time localization and tracking (spontaneous and on
demand), on-air reconfiguration of remote terminals (e.g., how and when a
terminal acquires its location), batch operations of many devices at once;

• it implements the most used part of ETSI (on-air) TETRA protocol, and
in particular the full stack of the Location Information Protocol (LIP);

• it support granular security to each feature on the basis of account (or
access token) permissions and roles;

• it stores every information to the persistent database (e.g., locations, mes-
sages, terminal configuration);

• it is a modular, extendible software framework;

• it supports most used communication protocols (HTTP REST, AMQP,
SQL, Web interface);

• it is connected to TETRA network through TCP/IP communication (with
the Short Data Router component);

• the framework Application Programming Interface and the Software De-
veloper Kit (e.g., including a fully-featured network simulator) are well
documented, the whole software is written in Java;

The system architecture consists of a central server component that communi-
cates on TCP/IP with the Short Data Router (SDR) of the TETRA network
and a second server that supports the database and interconnects the remote
software applications - clients offering well-known communication protocols such
as HTTP REST, AMQP Messaging and SQL database accessibility (Fig. 4.10).
The embedded web administration of the gateway allows authorized users to
monitor the system, browse and search data (e.g., statuses, messages, locations),
interact with remote terminals and apply new configurations of the air (e.g., in-
crease the frequency at which a terminals transmit its location). In Figure 4.11,
the dashboard of the gateway shows the some overall statistics, the status of the
TETRA connection link and recent information on interest.
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Figure 4.10: HOSTESS - I/O Flow scheme. The TETRA protocol channel
is (de)coded to higher level communication standards (Push messaging, HTTP
REST) and reliable databases for data persistence.

Figure 4.11: HOSTESS - Web Interface for Administrators. It allows users to
monitor system status and interact with remote TETRA terminals.
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4.3.3 Interoperability with Civil Networks (3G,4G)

The web front-end is accessible on the Internet from any device equipped with a
standard web browser, including smart-phones and tablets, although a native mo-
bile application for Android platform has been implemented in order to improve
the usability of the most used features, such as map navigation, for operators
and decision makers on the field (Figure 4.12). The INSPECTOR Mobile appli-
cation is particularly interesting as it provides also remote sensing and actuation
functionalities through the user device by means of a secure bidirectional com-
munication channel with the central architecture. The communication channel,
based on Google Cloud Messaging technology, allows the device to post on the
server acquired information as well to execute locally some actions requested by
the server. In particular, most interesting features follows:

• Access to all information in a modern hierarchical card-view layout

• User Positioning using Android Location services (GPS, Wi-Fi)

• Remote Reconfiguration of localization settings (e.g., push location modal-
ities and frequency)

• Push Textual Notifications and Map-routes (e.g., a target location to be
reached sent by control room)

Figure 4.12: INSPECTOR - Screenshot of Mobile App for Android devices. On
the left, the main menu; on the right, the map of road-traffic events.
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4.3.4 Routes Analysis and Fleet Statistics

In order to improve the efficiency assessment of the situation room response and
the coordination of rescue teams as well as to enforce the best practices, past
missions are periodically evaluated by quality managers. The proposed DSS
provides visualization and reporting tools for the statistical analysis of historical
locations of the assets. Figure 4.13 shows an example of a vehicle track (i.e., a set
of location samples acquired in a given time period) that has been automatically
segmented in chronological itineraries and associated to the intervention missions.
In particular, the system automatically analyzes space-time correlation between
location samples and related missions, when the distance in term of time or
space of two sequential locations is not statistically coherent with the samples
distribution (i.e., 2nd and 3rd order statistics), a new path is assumed.

The user can generate mission reports, which describe the assets involvement,
also aggregated according to predefined key performance indicators (e.g., asset
typology, owner unit, distances, paths, etc.). Finally, the system can export
data in most common format to be imported in third-party GIS tools for further
analysis.

Figure 4.13: INSPECTOR - Screenshot of Asset Tracking front-end showing the
route of a vehicle in a given period. Two different itineraries (’Percorso 1’ and
’Percorso 2’) of the considered route are highlighted (i.e., forward and backward
travel). On the left panel, overall statistics and details about each path are
shown.
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4.3.5 Distributed Wireless Monitoring

The ability to gather precise information about the target environment during an
emergency is a key requirement for decision-makers. The spread of low-cost wire-
less sensors as real-time data sources offers many advantages to DSS s, although
such information is typically hosted by different organizations and made available
in custom formats and third-party applications. A key feature of the proposed
solution is the seamless integration and the aggregation of heterogeneous sensing
sources in the same user interface. Decision-makers in the situation room and
operators working on the field can easily access real-time information such as
road-traffic, weather conditions, river and floods level status, and high resolu-
tion video streams of strategic locations. In fact, the system has been designed
to support the integration of any kind of data stream coming from distributed
networks of sensors by means of a modular plugin-based architecture that can
be easily extended as the needs and the availability of information grows.

The environmental monitoring interface shows acquired information in the
same map for providing situation awareness to the operator. In particular, envi-
ronmental monitoring data-sources are organized in the layers tree shown in the
left panel and includes:

• road events - the traffic status and the presence of works on the roads

• emergency events - the current events handled by civil defense agencies
(i.e., medial rescue, fire-fighters)

• weather conditions - the live data acquired by weather stations installed
on the field

• hydrometers - the level of rivers and lakes

• video-cameras - for monitoring roads and places of interest

• point of interest and localized equipment - such as critical infrastructures
and hydrants for fire-fighters

The user can access to real-time data by clicking on each asset icon. The latest
status of each sensor data-stream and the recent history (up to 12 hours) are
cached locally by the system and information is exploited within the assisted
procedures such as the select of asset to be deployed to an emergency event. For
example, at the time of writing the installation of the tool counts more than
59 video-cameras installed at strategic urban locations and along the highways
(Figure 4.14), 263 weather stations measuring air temperature, precipitations
and wind (Figure 4.15), 206 hydrometers monitoring main rivers and floods are
monitored (Figure 4.16), 52 snow sensor stations for monitoring and preventing
avalanches during the winter period. Points of interest includes road events
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(Figure 4.17), 39 critical infrastructures, 1347 hydrants of the city of Trento
(Figure 4.18), and 17 sites at risk (i.e., seismic monitored areas).

Figure 4.14: INSPECTOR - Screenshot of Environmental monitoring front-end
showing Video cameras. The real-time snapshot of the video stream is shown in
the embedded popup window.

Figure 4.15: INSPECTOR - Screenshot of Environmental monitoring front-end
showing Weather Stations and Hydrometers. The information and the recent his-
tory of data (e.g. air temperature and precipitations series) acquired by selected
weather station are shown in the embedded popup window.
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Figure 4.16: INSPECTOR - Screenshot of Environmental monitoring front-end
showing Weather Stations and Hydrometers. The information and the recent
history of water level (and/or flow) acquired by selected Hydrometer is shown in
the embedded popup window.

Figure 4.17: INSPECTOR - Screenshot of Environmental monitoring front-end
showing Road Events layers (only). The information and metadata of interest
about selected event are shown in the popup window (event type, description,
duration, last update).
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Figure 4.18: INSPECTOR - Screenshot of Environmental monitoring front-end
showing Points of interest. In particular, hydrants of the city of Trento are useful
information to fire-fighters for mission planning and fire-engines routing.

4.3.6 User Accounting and Security Management

The DSS tool implements advanced mechanisms for enforcing security and re-
stricting the operations accordingly to the organization and the roles of the user.
Any operation on the system requires the user to be recognized - authenticated
for security and privacy issues. The access to information and system features is
authorized by considering explicit permissions as well as privileges inherited from
user roles and memberships. In fact, the system might be accessible not only
by the situation rooms of central emergency agencies but also by operators and
decision makers on the field by means of Internet connection and a compatible
device (i.e., any web browser).

In particular, the system security is based on Apache Shiro framework which
is a powerful Java security framework that performs authentication, authoriza-
tion, cryptography, and session management. The Shiro framework has been
extended for matching the system requirements including account definition, the
support of fine permissions granularity and the application of user privileges on
changes in real-time (i.e., not requiring the target user to logout and login again).
An account defines the information necessary to uniquely identify and authorize
the access to system features and data. The system administration might grant
to each single user the access to high-level functionalities (e.g., ability to view a
map-layer) as well as specific operations to each system entity (e.g., a device, an
event, a point-of-interest). A typical example is granting the visibility of assets
location, and the possibility to request and obtain the real-time location of a
remote terminal on demand.
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An account is typically associated with an individual, but it is possible to
define virtual accounts that are shared by multiple people, such as in the case of
operators in situation rooms and emergency call center. The account holds login
credentials (username and encrypted password), roles (that implies privileges),
relationships with organization, explicit permissions, network access limitations,
the account status and scheme- free metadata. The logical states of an account
are listed in chronological order as follows:

1. Created. The account was set up by the administration that validates
the essential information: name, surname, email and defines the granted
permissions, such as which assets share which information (e.g., location
tracking). The account is in a transient state and is not yet usable;

2. Enabled. During the creation or at a later time, the administration enables
the account for access and eventually defines a time period in which the
account is valid. It is not possible to access the system by a not-enabled ac-
count. As enabled, the account can be activated by the user autonomously;
(at this point, the administration notifies the user of the availability of the
account through the system mailer)

3. Activated. The user completes the automated activation procedure de-
scribed in the mail my accessing to the Account management application.
Once the identity is confirmed and the user accepts the terms of use (li-
cense), the account is activated and accessible (even if a password has not
yet been set);

4. Accessible. The account can access to granted features. After the activation
procedure or at any time (i.e., in the case of lost password), the user can
restore the access and reset the password through the automated procedure
based on two-way secret links sent to the private user email.

Figure 4.19: INSPECTOR - Screenshot of Account Management front-end on
desktop (on the left) and on mobile (on the right).
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In terms of user interaction, all aspects are managed by a custom web-based
tool (Figure 4.19) that (i) allows standard users to activate and ti restore the
account (Fig. 4.20), to edit profile details and to review events related to the
account activity (Figure 4.21), and (ii) supports system administrators with most
common operations such as creating, searching and updating existing accounts
details (Figure 4.22) and privileges (Figure 4.23). Batch operations on multiple
accounts and the sending of massive emails are also supported (Figure 4.24).

Figure 4.20: INSPECTOR - Screenshot of Account Password Reset. The front-
end prompts the procedure for resetting the password (user identity has been
verified through the email by sending secret temporary web link).
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Figure 4.21: INSPECTOR - Screenshot of the Timeline of an Account. The
table at bottom page lists all activities for security checks.

Figure 4.22: INSPECTOR - Screenshot of Account Management. The panels
at the top let administrators to edit details inline and to execute most common
actions such as (de)activation, password restore.
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Figure 4.23: INSPECTOR - Screenshot of Account Privileges Management. The
interactive interface allows administrators to apply security templates, predefined
roles and explicit permissions.

Figure 4.24: INSPECTOR - Screenshot of Batch Operations on Accounts. The
front-end supports administrators for modifying many accounts at once, for im-
porting accounts from external data-sources and for sending communications to
the users.
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4.3.7 Assisted Mission Planning

The selection of assets to be deployed toward an emergency event for the res-
cue operation is mainly related to aspects related to localization information,
such as the resource-event distance, the time of arrival on the event, the ve-
hicle characteristics, such as the available equipment and the personnel skills.
The optimization strategy proposed in Sect. 4.2 has been preliminary integrated
into the DSS tool. The implementation exploits the real-time information from
the fleet (i.e., location, status, assets metadata) and embeds the well-known
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [151] that proven good
results in the optimization performance assessment. The experience of situa-
tion room operators has been integrated as the set scalar matrixes that describe
most relevant mappings which defines features correlation between considered
emergency mission and the assets suitable for the deployment.

The system assists the operator in the asset selection process by means of the
interactive visual interface shown in Fig. 4.25. The operator typically pre-filter
assets to be considered nearby the target location (e.g., 50 Km) by editing the
mask on the map which display the real-time position of candidate assets. This
step is not required by the proposed approach and it has been introduced only
to reduce the process computational time and the number of proposed solutions,
accordingly to operators best practices. On the left panel, selection criteria (i.e.,
objectives) can be deactivated and ordered by priority, the order affects the
default proposed solution and the ranking of candidate assets list. The travel
time depends on the current location and the kind of the asset, in the case of road
vehicles it is estimated using online navigation services (i.e., Google Maps API ).
The system computes the solutions front in few seconds, the best solution (e.g.,
dispatching the second and forth asset in Fig. 4.25) is pre-selected accordingly
to current criteria ordering, and the full listing of all candidate assets, that is
the union of assets included in all solutions sets, is shown in the bottom panel.
The estimated route including time of arrival and path length are shown in the
output table and on the map.
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Figure 4.25: INSPECTOR - Screenshot of the Fleet Assets Selection Wizard.
The operator configures objectives and refine the proposed selection of assets to
be deployed for the emergency event.
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4.4 Experimental Validation in Trentino

The research activities including the development and the experimental valida-
tion of the proposed work has been carried out within the framework of the ”MoU
between Centrale Unica Emergenza (CUE ) and ELEDIA Research Center” and
has been experimentally validated in real cases by Civil Defense agencies of the
Autonomous Province of Trento since 2015. At the time of writing, the pro-
posed systems are still active. The illustrated DSS tool has been implemented
and customized with the support of the domain experts who have supported the
definition of requirements, objectives and the main features of the system. A lot
of work has been done for importing external data-sources, for enabling interop-
erability with TETRA network and for modeling the knowledge base. Finally,
situation rooms (e.g., fire-fighter station shown in Fig. 4.26) and more than
270 professionals have been added as end-users. Among the experimental test
cases and scenarios, the most relevant case of success of the system in terms of
usage and users satisfaction are related to the support given during inter-forces
emergency missions and during the search and rescue of missing people (Fig.
4.27).

Figure 4.26: INSPECTOR - Picture. The tool running on one of the monitors
of the emergency call-taking center of fire-fighters, Trentino - Italy.

The institutional TETRA network covers more than 87% of the whole region
(157 km2) by means of 78 base stations that serve about 3900 radio terminals
(hand-held radios, vehicles, helicopters) on the field. After an accurate trial,
briefly summarized in next Section, the HOSTESS gateway has been installed
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in civil defense data-center and connected to the TETRA network for enabling
interoperability with INSPECTOR and other software tools supporting operators
and decision makers in the situation rooms. At the time of writing, the spatial
database of the DSS tool stored more than 9 million of positions, with a rate of
about half million new entries per month.

Figure 4.27: INSPECTOR - Picture. The tool on the main monitor of the
situation room of fire-fighters, Trentino - Italy.

4.4.1 TETRA HOSTESS: Trial and Stress Tests

The official activation of HOSTESS gateway within the TETRA core network in
date 13 October 2016 at 11:07. At the time of writing the system is still running
continuously without any failure. In date 23 June 2016, an extensive validation-
trial of system functionalities and reliability, including stress tests of the software
and the hardware components (i.e., the Mobile Switching Office, base station,
terminals), has been done. In fact, the reliability is a key point as the TETRA
network is used for emergency communications and coordination by civil defense
organizations and police.

In particular, all features supported by HOSTESS relevant for the users of
the network have been validated for hand-held and vehicular radio terminals, as
shown in Fig. 4.28. The base station used within the experiment, a Motorola
MTS2, is shown in Figure 4.29. It should ne noted that the TETRA ETSI stan-
dard includes many non-mandatory features and supports advanced mechanism
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for extending the protocol itself. The support of such features depends on the
device and typically the manufacturer. Features of interest can be grouped in
three categories:

• Localization functionalities (Location Information Protocol - LIP). TETRA
terminals embed a GPS device and can be programmed, even over the air,
to push the location periodically or on specific triggers. The supported
features are listed in Tab. 4.3.

• Status Communication. States are used the emergency management to
identify the status of an asset, namely: ’Ready’, ’Outgoing’, ’On Place’,
’Returning’. The states are associated with textual and numeric codes that
are encoded as SDS and in other custom TETRA protocols, such as PID
200 implemented by Sepura. HOSTESS provides to applications clients
a transparent abstraction of the encoding used for each kind of terminal,
functions related to states are summarized in Tab. 4.4;

• Textual Messaging (Short Data Service - SDS ). The transmission and the
reception of textual messages from HOSTESS application client to remote
TETRA terminals, results are summarized in Tab. 4.5;

Hand-held Terminals Vehicular Terminals
Localization Function STP9000 MTH800 SRG3009 MTM800

Receive Location (short) OK OK OK OK
Receive Location (long) OK OK OK OK
Request location (short) OK OK OK OK
Request location (long) Unavailable OK Unavailable OK
Read Triggers Unavailable OK Unavailable OK
Toggle Triggers OK OK OK OK
Add/Edit/Remove Trigger OK OK OK OK

Table 4.3: HOSTESS Localization features supported by different TETRA ter-
minals.

Hand-held Terminals Vehicular Terminals
States Function STP9000 MTH800 SRG3009 MTM800

Send as Text OK OK OK OK
Send as Code (Protocol 200) OK Unavailable OK Unavailable
Receive Text OK OK OK OK
Receive (Protocol 200) OK Unavailable OK Unavailable
Send on Emergency button OK Unavailable OK Unavailable

Table 4.4: HOSTESS States features supported by different TETRA terminals.
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Hand-held Terminals Vehicular Terminals
Messaging Function STP9000 MTH800 SRG3009 MTM800

Send SDS (Standard) OK OK OK OK
Receive SDS (Standard) OK OK OK OK
Send SDS (Protocol 200) OK Unavailable OK Unavailable
Send SDS (Fake Sender) OK Unavailable OK Unavailable

Table 4.5: HOSTESS Messaging features supported by different TETRA termi-
nals.

(a)

(b) (c)

Figure 4.28: The TETRA hand-held and vehicular radio terminals used within
HOSTESS validation: (a) on the left a Sepura STP9000 and on the right a
Motorola MTH800-HL, (b) Motorola MTM800-E, (c) Sepura SRG3009.
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Figure 4.29: The TETRA base station (Motorola MTS2 ) used within HOSTESS
validation.

After the validation of the end-user operational functions, the second part
of the trial concerns the analysis of the whole system of TETRA infrastructure
and information systems under heavy and critical network traffic conditions. In
particular, we considered the scenario in which a large number of TETRA radios
are associated with a single base station and interact massively with the network.
This kind of scenario may happen during big events and large emergencies in rural
locations. In particular, the objectives of the qualitative experiment are:

• estimate the limits of the base station and the TETRA network, with
respect to the number of associated devices (e.g., the saturation state of
the TETRA control channel, the stability of the association between the
base station and terminals);

• evaluate the features and the conditions that lead to a degradation of voice
services;

• estimate the impact of having many terminals transmit the location at the
maximum frequency (every 30 seconds) on the quality of other services and
the control channel;

• reach the conditions in which the voice service is subject to a degradation
perceivable by end users.

The experimental analysis has been divided into eight sequential scenarios as
the stress conditions, in terms of number of involved terminals and concurrent
networks operations, are progressively increased toward the limits of the infras-
tructure. In TETRA network protocol, both the short data service (SDS textual
messaging) and location service (LIP protocol) are transmitted on the control
channel that is responsible of basic network operations including voice service
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management. The saturation of control channel lead to degradation of all ser-
vices and finally to communications failure (i.e., the terminal is disconnected).
During the experiment, the state of the base station and of the control channel
was constantly monitored by the technical staff of the TETRA operation center.

The 136 hand-held radio terminals of different brands (Fig. 4.30) were ini-
tially switched off and were configured to be associated to a single Base Station
dedicated for the test (i.e., Motorola MTS2 ) which was connected to HOSTESS
gateway through the Short Data Router (i.e., Motorola DIMETRA v. 8.1 ). Ter-
minals were placed in line of sight with the base station (antenna was replaced
with a dummy load) and under sky visibility for ensuring GPS service availabil-
ity. The simulation of the massive use of network was performed through an
ad-hoc (AMQP) client application connected to the HOSTESS system that en-
ables the execution of concurrent batch procedures on a given range of recipient
devices. Each operation, such as the transmission of a text message, is performed
in parallel on four processes and sequentially on all recipient terminals having a
maximum delay of 100ms between invocations.

Figure 4.30: The TETRA terminals (136) used within the stress tests during
HOSTESS trial.

During the experiment (about four hours), HOSTESS and the TETRA net-
work correctly managed 15760 location reports (i.e., with peaks of 15 reports
per second), 965 textual messages, 43 states, 534 location requests, 376 re-
configurations of GPS triggers settings of involved terminals. The statistics
of textual messages and location reports sent during the test are shown in Fig.
4.31 and Fig 4.32, respectively.

At time of writing, HOSTESS gateway is still running without failures. In
about 14 months, the system handled 4600 messages, 40000 states and 3.4 million
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of location reports, as shown in Figure 4.11.

Figure 4.31: HOSTESS - Trial. The number of textual messages sent during
HOSTESS stress tests.

Figure 4.32: HOSTESS - Trial. The number of location reports received during
HOSTESS stress tests. During the experiment, terminals were re-configured to
progressively increase the push rate.
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4.4.2 INSPECTOR: Facts and Numbers

After eight months of internal validation, in October 2015 the application IN-
SPECTOR was made available as an official tool to the fire-fighters central sta-
tion of Trento which handles the call-taking and the management of technical
emergencies occurring in the whole province (Fig. 4.26).

Since 2016, together with the distribution of TETRA equipment to all 13
district unions of the fire-fighters volunteers (counting many thousands of per-
sonnel), the access to the system was granted to the heads of the organization
and to the commanders in charge of all corps. Of course the privileges of each
user reflect his roles in the organization, for example a commander is allowed
to track and interact only with the assets in charge. In many occasions, the
privileges of users have been elevated for supporting inter-corps and inter-force
rescue missions (e.g., security of big events, search of missing persons) through
the INSPECTOR Account tool (Fig. 4.23). In the period between the end of
2016 and May 2017, the access was progressively granted to all corps of fire-
fighters, as shown in Figure 4.33. At the time of writing, 279 users are registered
and allowed to use the tool, 210 users (about 75%) have used the tool at least
one time, the number of monthly accesses is shown in Figure 4.34. The distri-
bution of per-user accesses to the system shows that most users have used the
system between 4 and 15 times, as shown in Figure 4.35. Accordingly to users
feedback, INSPECTOR has been proven to be an useful DSS tool in many real
world scenario (Fig. 4.36).

Figure 4.33: INSPECTOR - Statistics. The number of active users since October
2016.

110



CHAPTER 4. LOCATION-AWARE DECISION SUPPORT SYSTEMS

 0

 100

 200

 300

 400

 500

 600

 700

 800

10/16 11/16 12/16 01/17 02/17 03/17 04/17 05/17 06/17 07/17 08/17 09/17 10/17 11/17

N
um

be
r 

of
 A

cc
es

se
s 

(p
er

 m
on

th
)

Date [mm/yy]

Figure 4.34: INSPECTOR - Statistics. The number of monthly accesses to the
tool since October 2016.
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Figure 4.35: INSPECTOR - Statistics. The number of active users with respect
to the total number of accesses of each user since October 2016.
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Figure 4.36: INSPECTOR - Press. A local newspaper describing the usage
of TETRA and INSPECTOR tool during a Search-and-Rescue operation (for
missing person).

4.5 Conclusions

In this Chapter, location-based applications for the smart management of large
fleet of personnel, vehicles and localized information are considered.

In particular, the illustrated DSS tool provides situation awareness to emergency-
response operators and decision makers by means of historical data and real-time
information streams acquired from distributed wireless sensor networks, online
data-sources, military (i.e., TETRA) and civilian (i.e., 3G,4G) networks:

• vehicles of the fleet (i.e., many hundreds of vehicles and 5 helicopters
equipped with TETRA radio);

• professionals and volunteers (i.e., almost four thousands of personnel equipped
with TETRA hand-held radio);

• weather information (i.e., 263 weather station, 206 hydrometers, 52 snow
sensors);
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• road-traffic information (i.e., real-time events from public agencies, traffic
data from Google Maps);

• critical infrastructures, points of interest (e.g., sites at risk, emergency
stations, helicopters pads, hydrants).

The system has been experimentally validated in real scenarios by Civil Defense
domain experts of Trentino region since 2015. The access was granted to the
heads and situation room operators of the technical and medical emergency-
response agencies as well as to the commanders in charge of all fire-fighters
corps, actually there are 279 registered user accessing the system about 12 times
per day.
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