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Abstra
t

The study of the next-generation distributed systems for distributed moni-

toring and user lo
alization in smart environment is treated in this thesis. In

the last years, a growing amount of attention has been fo
used on the adop-

tion of Wireless Sersor Networks (WSN) as a s
alable and �exible ba
kbone to

implement innovative servi
es in smart environments, like smart building and

smart 
ities. In this framework, this thesis will des
ribe heterogeneous solutions

to improve the supervision, 
ontrol, monitoring, and management of publi
 and

private spa
es. All these systems exploit the wireless 
ommuni
ation and sensing

in 
ombination with smart methodologies to provide advan
ed servi
es to the end

user in many appli
ation �elds, from environmental monitoring to energy man-

agement in smart distri
ts or private and publi
 buildings, up to road se
urity

and indoor o

upan
y for management and se
urity reason. The data a
quired

by the WSN te
hnology are used as input of 
ustomized strategies and algorithms

developed for the real-time pro
essing, fast analysis and result visualization.
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Chapter 1

Introdu
tion

In the last de
ade, the vision of widespread 
omputing as an emerging model

for the next-generation smart systems [1℄ has be
ome more and more relevant

thanks to the in
rease of 
omputing and 
ommuni
ation 
apabilities as well as in

intera
tions with end users. The miniaturization of portable and multi-features

devi
es has 
ontributed to the di�usion of terminals able to 
ommuni
ate in an

a
tive way with distributed networks for 
ommuni
ations and information a
qui-

sition. In this framework, the Wireless Sensor Networks (WSNs) [2, 3℄ have been

investigated as enabling te
hnology for next generation intelligent networks and

servi
es that 
an satisfy the arising user needs. One of the main 
hara
teristi


of WSNs devoted to smart systems is that, to over
ome the limited 
apabilities

of ea
h single sensor node, 
ooperative s
hemes throughout the whole network


an be implemented to enable the solution of even 
omplex tasks [6℄. Moreover,

heterogeneous fun
tionalities 
an 
oexist thanks to the multi-sensor 
hara
ter-

isti
 of ea
h node, by enabling multiple appli
ations within the same hardware

ba
kbone. For all the well-known features of the WSN te
hnology, has been in-

vestigated the design of a 
ross-layer ar
hite
ture for the implementation of smart

systems where heterogeneous and multiple fun
tionalities 
an be integrated for

the solution of di�erent user needs in smart environments.

For this reason this work deals the WSNs for the distributed monitoring of

heterogeneous parameters and its advan
ed appli
ation in two prin
ipal smart

environments: the Smart Cities and the Smart Building.

The 
on
ept of Smart Cities 
an be applied to di�erent outdoor appli
ative

s
enarios; in this work road se
urity and publi
 light management systems are

proposed. In the 
ontext of road se
urity a system for the monitoring of roadsides

for the real-time dete
tion of wildlife road-
rossing events has been realized using

wireless sensors equipped with low-
ost Doppler radars. This solution aspires to

alert the approa
hing drivers to prevent the risk of wildlife-vehi
le 
ollisions. The

main 
hallenge of the system is to pro
ess the a
quired radar signals in real-time

to a
tivate the road signs only when a
tual events o

ur, in order to redu
e the

users habit-forming to �xed signs. On the other hand, in the 
ontext of pub-

1



li
 light managements, a system for the smart management of publi
 lighting

is proposed. This system is aimed at redu
ing the power 
onsumptions of the

street lamps. The distributed and adaptive 
ontrol of the dimming pro�les has

been investigated taking in 
onsideration the time-varying environmental 
ondi-

tions. The presented system is able to 
ontrol ea
h single lamp thanks to the

integration of smart wireless devi
es in the existing light poles. Both these sys-

tems have been installed in experimental sites, in order to test and evaluate their

performan
es. The road se
urity system has been deployed along a real stret
h

of road, in Cavalese (Trento), in the north of Italy, while the publi
 lighting

management system has been installed in di�erent areas of the 
ity of Trento, in


ooperation with the muni
ipality of Trento, whi
h is responsible for the 
ontrol

and maintenan
e of the publi
 lighting. The advantages and the limitations of

the proposed solutions will be experimentally assessed and their performan
es

will be evaluated.

Moreover, the smart monitoring of indoor areas (Smart Building) with wire-

less sensors will be analyzed, by presenting systems developed in two di�erent

appli
ation �elds: 
onsumption optimization in smart environment and oppor-

tunisti
 o

upan
y estimation in smart museum.

Nowadays, e�
ient energy saving strategies and solutions are very important

to in
rease user awareness of energy resour
es management in so
ial and e
o-

nomi
 aspe
ts. The traditional power grid needs new monitoring and 
ontrol

tools for the optimal management of produ
ers and 
onsumers through adaptive

energy distribution s
hemes. The issue of energy 
onsumption redu
tion 
an be

addressed at di�erent s
ales, ranging from the management of single home ap-

plian
es up to building, distri
t, and 
ity level. In this work, a wireless system

ar
hite
ture for the distributed monitoring and intelligent supervision of energy


onsumptions in smart home is proposed. The energy information related to a

multi-user s
enario are a
quired by distributed wireless sensors and pro
essed

by a de
ision-making support tool aimed at the adaptive optimization of user's

energy-habits and su

essive energy 
ost redu
tion. In a smart museum environ-

ment an intelligent lighting system 
ontrol is proposed. It treats multiple and


ompeting targets, su
h as the energy saving as well as the quality of the visitor

experien
e. In this 
ontext, to adaptively 
ontrol the light intensity starting from

the real-time measurement of the energy 
onsumption and brightness 
onditions,

an evolutionary optimization strategy is proposed. The system is implemented

using low-
ost wireless devi
es and it has been experimentally validated in a real

indoor test site.

In a parti
ular environment like a museum, beyond the 
ontrol of a light-

ing system, the artwork 
onservation is one of the most important purposes to

rea
h. For this reason, an environmental monitoring system designed for mu-

seum s
enarios is proposed in this work. Nowadays environmental monitoring

systems are largely employed in order to measure parameters for artworks 
on-

servation and to 
ontrol exhibitions in order to avoid and prevent 
riti
al events,

2



CHAPTER 1. INTRODUCTION

as for example damages or theft. In this 
ontext the WSN te
hnology allows the

non-invasive integration of su
h monitoring fun
tionalities in 
omplex museum

s
enarios, that 
an be hosted also in histori
 buildings. The proposed system

deals with the problem of monitoring multiple physi
al parameters of interest

for museum 
urators, exploiting the advantages of a pervasive, 
ooperative, and

�exible WSN ar
hite
ture. Moreover, a s
alable and low-
ost solution for o

u-

pan
y estimation in museums is here proposed by exploiting in an opportunisti


way the wireless ar
hite
tures already deployed for artworks 
onservation pur-

poses. The information about the presen
e and the distribution of the visitors

is produ
ed throughout the analysis of the environmental parameters a
quired

by the proposed monitoring system. Indeed, the relationships between museum

fruition and environmental indexes are dedu
ed by a learning-by-example te
h-

nique. An experimental appli
ation of this system in a real museum site is also

presented and dis
ussed to give a proof of the reliability and e�
a
y of the pro-

posed approa
h.

Thesis outline

The thesis is organized as follows. Firstly, the general ar
hite
ture of all the

systems is dis
ussed, by analyzing the Wireless Sensor Network te
hnology in

Chapter 2, with some example of distributed monitoring systems developed in

the smart 
ity 
ontext. Then, the problem of distributed monitoring for energy


onsumption optimization in smart building is presented in Chapter 3, with a

detailed des
ription of two systems for 
onsumption optimization: a Distributed

Monitoring for Energy Consumption Optimization in Smart Building and Wire-

less Smart Lighting for Energy-E�
ient Museums, analyzing the te
hnologi
al

and methodologi
al features of ea
h system. In Chapter 4 the spe
i�
 museum

environmental monitoring problem is analyzed and a monitoring system for this

type of environment is proposed. In this Chapter an opportunisti
 o

upan
y

estimation system will be proposed too. Then the �nal 
on
lusions are drawn in

Chapter 5.
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Chapter 2

System Ar
hite
ture

In this Chapter, the Wireless Sensor Network (WSN) te
hnology is presented.

This te
hnology is used for the distributed monitoring of heterogeneous parame-

ters and is 
hara
terized by small, low-
ost, and autonomous devi
es that 
olle
t

data about physi
al quantities in a distribute and pervasive fashion. This te
h-

nology has been applied to many systems in order to remotely 
ontrol parameters

and a
tuate a
tions when these parameters assume parti
ular values, by notify-

ing a message to an operator or performing a
tions that modify them. After the

introdu
tion to this te
hnology, two WSN prototypes developed in the 
ontext

of Smart Cities during my Ph.D. at ELEDIA Resear
h 
enter will be presented.

2.1 Wireless Sensor Network

The Wireless Sensor Network (WSN), is a te
hnology based on a network of tiny,

low-
ost, low-power, and autonomous devi
es (
alled nodes) that use sensors to

monitor physi
al quantities [4, 5℄ in a 
ooperative way. Re
ently, WSNs have

a
hieved mu
h attention in many resear
h areas for their ability to enhan
e the

intera
tions between environment, humans, and ma
hines.

If we 
ompare the WSN to traditional 
ommuni
ation networks, they do not

have any physi
al infrastru
ture that restri
ts their topology. These networks


ombine simple wireless 
ommuni
ation te
hniques, minimal 
omputation fa
ili-

ties, and the sensing of the physi
al environment into a new form of network [6℄.

Moreover, low-
ost hardware allows the pervasive and dense deployment of many

nodes in the physi
al environment, with a s
alability property provided by the

�exible network ar
hite
ture. Unlike other large and medium-s
ale observation

te
hnologies, WSNs not only sense the environment but also provide some inter-

a
tions by exploiting the fun
tionality of a set of so-
alled a
tuator nodes. These

systems are known as Wireless Sensor A
tuators Network (WSAN) [7℄, and are


hara
terized by sensors that 
olle
t information about the physi
al world and

transmit them to some 
ontrollers. Finally, the a
tuators will perform suitable

a
tions to in�uen
e the physi
al behavior of the system under test. [3℄

5
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2.1.1 The Ar
hite
ture of a WSN

A WSN typi
ally 
onsists of a network of sensor nodes, that measure the moni-

tored parameters, and a gateway (
alled also sink node), that 
olle
ts these pa-

rameters and provides the 
onne
tion with the the external worls (i.e., through

Internet). Ea
h sensor node is typi
ally equipped with: a radio trans
eiver or

other wireless 
ommuni
ations devi
e, a small mi
ro-
ontroller, and an energy

sour
e. The size of the single unit 
an vary from about ten 
entimeters to sev-

eral millimeters, but future implementations will probably be 
hara
terized by

smaller size, thus allowing a more dense deployment in the physi
al environment

[8℄. In order des
ribe a typi
al WSN, we will fo
us mainly on the 
hara
teristi
s

of a sensor node and on the network ar
hite
tures. For a more detailed overview

about the ar
hite
tures and te
hnologies for the Wireless Sensor Networks, the

interested reader 
an refer to [6℄, [5℄ and the referen
es 
ited therein. [3℄

2.1.1.1 Wireless Sensor Node

A wireless sensor node 
onsists of a pro
essing unit with a storage devi
e, one or

multiple sensors, a radio unit, and a power unit, as represented in Fig. 2.1.

Ea
h subsystem of these nodes is designed in order to minimize the energy


onsumption, be
ause the WSN typi
ally operates for enough long time periods

in harsh environments. For the same reason, the pro
essing unit is 
omposed by

a small pro
essor with limited 
omputational power. This pro
essor aims at the


areful management of the limited power resour
es (e.g., by a
tivating the sensing

and radio units only when needed) and takes 
are of the re
eption, transmission,

storage and pro
essing of data. As an example, the TinyNode 584 is equipped

with a Texas Instruments MSP430 mi
ro-
ontroller [9℄. This mi
ro-
ontroller

features low power mode and it is optimized to a
hieve extended battery life in

measurement appli
ations. Su
h a mi
ro-
ontroller is 
hara
terized by a 16-bit

RISC CPU with 16-bit registers, 10 kB of RAM, and 48 kB of �ash memory.

The digitally 
ontrolled os
illator (DCO) allows wake-up from low-power mode

to a
tive mode in less than 6µs and may operate up to 8 MHz. The MSP430

has a 
urrent 
onsumption of 0.2µA in the sleep mode and 2.5 mA in the a
tive

mode, in typi
al operating 
onditions.
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Figure 2.1: Ar
hite
ture of a wireless sensor node.

Regarding the sensing unit, it 
onsists of one or multiple sensors that 
onvert

a physi
al quantity into an ele
tri
 signal, that 
an be pro
essed and stored in

a memory. For this devi
e a typi
al sensing tasks 
an be the measurement of

temperature, light, vibration, sound, and radiation. Re
ently, innovative sensors

have appeared thanks to the exploitation of mi
ro ele
tro-me
hani
al systems

(MEMS) [10℄.

The data ex
hange is the most expending operation for a WSN node. The

authors of [11℄ state that the power required to transmit one bit of informa-

tion for a 100 m distan
e is equivalent to the amount of power needed for the

implementation of the 3000 instru
tions 
al
ulation. For this reason, the radio

trans
eiver is probably the most 
riti
al devi
e in the design of a sensor node.

Sin
e node-to-node 
ommuni
ations are 
arried out mostly in a short range,

power 
onsumptions related to transmission and re
eption are on average similar

[6℄. Data ex
hange typi
ally requires a start-up phase after the a
tivation of

the radio unit, mostly related to the lo
k time of the phase-lo
ked loop (PLL).

During this phase, whi
h may take a time similar to the duration of the trans-

mission phase, a non-negligible amount of power is wasted. It may be 
onvenient

to swit
h o� the radio unit after data transmission in the 
ase sporadi
 sens-

ing, whereas start-up time 
ould be responsible for wasting power in 
onstant

event monitoring. Regarding to the power 
onsumption, the radio module of the

TinyNode 584 requires 62 mA in the transmit mode (at the maximum power),

14 mA in the re
eive mode, and 4 µA in sleep mode. Con
erning the speed of

data ex
hange, sensor nodes are 
hara
terized by data rates up to 250 kbps in

7
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the 2.4 GHz ISM band when using IEEE 802.15.4 proto
ol or up to 40 kbps

within the 868 MHz ISM band. Anyway, data rates depend on the antenna gain,

on the nodes transmission power, on the ba
kground noise, and on the value of

the Signal-to-Interferen
e-plus-Noise Ratio (SINR) at re
eiver.

For these reasons, the power sour
e has to be 
hosen taking into 
onsidera-

tion a mathemati
al model for radio power 
onsumption [12℄. Usually, in many

appli
ation environment, power sour
es 
annot be re
harged or repla
ed and 
on-

sequently their design 
an de�ne the sensor node and network lifetime. As an

example, the sensor node TinyNode 584 with a subsoil thermometer and �ve soil

moisture sensors may require up to 120 mA at 6 V for about 2 s in the a
tive

mode and 80 µA for the remaining duty 
y
le time. If the sampling rate is equal

to 10 minutes and its power sour
e is a 1.2 Ah battery, the lifetime of the unit

is limited to three months. However, thanks to the use of an energy s
avenging

te
hnology, su
h as a solar panel providing 250 mA at 7 V, the lifetime of the

wireless node 
an be potentially extended to in�nite (limited only by the max-

imum number of the battery 
harge/dis
harge 
y
les). Re
ently, thanks to the

advan
es in nanote
hnologies and MEMS, more e�e
tive energy s
avenging (or

harvesting) solutions have been developed in order to re
harge the power sour
e

by means of the exploitation of the physi
al environment where the nodes are

deployed [13℄. Although this te
hnologies 
an generally provide a limited amount

of power, they appear to be 
ompatible with WSN be
ause of the low-
ost and

small size of ea
h sensor node. [3℄

2.1.1.2 Network Ar
hite
ture

The power 
onsumption of the sensor node 
an be in�uen
ed also by the network

ar
hite
ture.

As shown in Fig. 2.2, the simplest network ar
hite
ture is the so-
alled �star�

topology, where all nodes 
ommuni
ates only with the gateway. This 
on�g-

uration is used for simple s
enarios, where the spatial density of the nodes is

limited and the 
overage of the gateway rea
hes all the sensor nodes of the ne-

towrk (e.g., when sensor nodes are in line-of-sight of the gateway). Moreover,

the �star� topology is mainly used when nodes need only to transmit information

to the gateway. Despite the ar
hite
tural simpli
ity, this ar
hite
ture involves an

important drawba
k in terms of network reliability, be
ause the gateway is a sin-

gle point of failure and is usually 
hara
terized by a greater power 
onsumption

[12℄.

8



CHAPTER 2. SYSTEM ARCHITECTURE

Figure 2.2: Network ar
hite
tures in a WSN: (a) �star� topology-nodes 
ommuni-


ates only with the gateway, (b) �mesh� topology-data transmission is performed

through node-to-node 
ommuni
ations, and (
) �
luster� topology-the network is

subdivided into 
lusters.

A more e�e
tive solution to deal with 
omplex s
enarios 
onsists in the use of

�mesh� topologies, where data ex
hange is mainly 
arried out by means of node-

to-node 
ommuni
ations. This ar
hite
ture is 
hara
terized by a uniform power


onsumption and provides a high degree of re
on�gurability and s
alability, but

requires 
omplex and 
omputationally expensive routing algorithm in order to


ontrol data transmission [6℄, [14℄.

To manage the data transmission and optimize the power 
onsumption, the

sensor nodes 
an be organized using hybrid ar
hite
tures where the entire net-

work is subdivided into 
lusters 
oordinated by the �
luster heads� [12℄. The

�
luster head� sele
tion and partitioning pro
edure are usually real-time and


ontinuously performed, taking into a

ount the network topology as well as the

energy/signal level of ea
h unit. [3℄
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2.2 System Prototypes

Nowadays, the smart 
ity paradigm is attra
ting more and more attention of

both resear
hers and industries, thanks to the enormous advantages that smart

te
hnologies and servi
es 
an provide to 
itizens and publi
 administrations [21℄.

Among the emerging topi
s, those related to se
urity, surveillan
e, mobility,

health, and energy have been mostly investigated be
ause of the immediate and

evident impa
t of innovative information 
ommuni
ation te
hnologies (ICT) as

applied to smart 
ity servi
es [22℄.

In this Se
tion will be proposed two systems related to this topi
:

1. Road se
urity: wildlife road-
rossing event dete
tion system;

2. Power management: wireless distributed system for smart publi
 lighting

management;

2.2.1 Wildlife Road-Crossing Event Dete
tion System

Wildlife monitoring is attra
ting more and more attention during the last de
ade.

Most of the studies are fo
used on the understanding of animal behavior, their

physiology, so
ialization, and di�usion [17℄[18℄[19℄. To this end, resear
hers have

proposed many autonomous monitoring systems mainly based on wireless sensor

network (WSN) infrastru
tures [2℄[3℄. [15℄

Here a low-
ost and s
alable wireless system for the prevention of wildlife-

vehi
les 
ollisions is proposed. In parti
ular, the nodes of a WSN have been


ustomized with dedi
ated Doppler radars for the real-time dete
tion of wildlife

presen
e on the roadsides. The dete
tion of su
h event triggers the adaptive alert

noti�
ation to the approa
hing drivers (through smart light road signs).

A system prototype has been developed and deployed in a real test-site for

the performan
e assessment in real operative 
onditions. Long-term testing has

been performed to verify the robustness of the system in di�erent seasons and

weather 
onditions. The number of dete
ted events has been statisti
ally ana-

lyzed and 
ompared with the ground truth a
quired by means of a surveillan
e

video re
ording system. [16℄

2.2.1.1 System Ar
hite
ture

The wireless network is 
omposed by four node typologies a

ording to the re-

quested fun
tionalities. The gateway nodes are dedi
ated to the data 
olle
tion

and forwarding to the 
ontrol unit, that implements the pro
essing and a
tuation

strategies. The an
hor nodes are devoted to the wireless network management

through multihop ar
hite
ture for 
overage extension along the roadsides. The

a
tuator nodes re
eive a
tuation 
ommands when the 
ontrol unit identi�es a

warning situation and turn on the light signals on the roadsides a

ordingly. Fi-

nally, the sensing nodes integrate the heterogeneous sensors for the dete
tion of

10



CHAPTER 2. SYSTEM ARCHITECTURE

moving animals. They are deployed on the roadsides and their position de�nes

the se
urity zone.

Ea
h node is equipped with two Doppler radar modules (working frequen
y

fc, maximum 
overage rc, horizontal and verti
al aperture [ho
c, v

o
c ]) with di�erent

orientations for improved dete
tion in terms of horizontal aperture. The output

signal of the radars is multiplexed in time (through an hardware swit
h) and a

single output data stream xn(tk), n = 1, ..., N being the node index, is sampled

at time instants tk = t0 + k∆t, where t0 is the boot time instant, k = 1, ..., K
is the time sampling index ( K being the maximum data samples that 
an be

lo
ally stored on the devi
e memory), and ∆t is a 
onstant time interval a-priori

de�ned a

ording to the internal 
lo
k performan
e. On
e tk = K∆t, the older
data are iteratively overwritten in order to have a lo
al 
opy of the last newest

K samples. A �ltered version of the raw radar signal is su

essively pro
essed

by the 
ustomized �lter fun
tion Φ(•) has been introdu
ed to dis
ard the un-

desired movements (i.e., the too slow and the too qui
k target movements) and

to enhan
e the radar signature of the desired target through signal re
ti�
ation

and ampli�
ation. The �ltered signal is then analyzed by a 
alibrated hardware

thresholder that provides in output the following binary behavior

δ(tk) =

{
1 if x̂n(tk) ≥ Xth

0 if x̂n(tk) < Xth
(2.1)

where Xth is a 
alibrated triggering threshold .

If δ(tk) = 1 the WSN node redu
es the sampling period ∆t, a
tivates the
wireless trans
eiver, and transmits a s
aled version of the �ltered signal stored

on the lo
al memory. The transmission stops when δ(tk) = 0. Su

essively, the
trans
eiver is shut down and ∆t is restored to its default value. Trans
eiver

modules 
omplies with the IEEE 802.15.4 standard, operating at frequen
y

ftx = 2.4GHz and equipped with monopole antenna for omnidire
tional radi-

ation pattern on the horizontal plane.

The transmitted data are re
eived by the gateway node and forwarded to the

remote 
ontrol unit for additional real-time pro
essing. In parti
ular, temporal

and spatial 
orrelation of the re
eived data are performed in order to estimate

additional features of the wildlife movement and to evaluate o�ine statisti
s

about the road risk-level.

In order to a

urately assess the system performan
e for longterm test peri-

ods, the ground truth of the wildlife presen
e within the monitored road-sides has

been also a
quired. Toward this end, an infrared video-surveillan
e system has

been installed in order to re
ord the monitored road during the whole measure-

ment 
ampaign. The output of the veri�
ation system is a binary information

related to the absen
e/presen
e of a target within a prede�ned area (along the

road-sides) of the video re
ordings. A

ordingly, the a
tual status of the s
e-

nario 
an be o

upied if a target o

upies the se
urity area, or empty, otherwise.

The 
omparison between the binary fun
tion and the ground truth provides a

11
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�rst performan
e evaluation in terms of false positive and false negative and

dete
tions. [16℄

2.2.1.2 Experimental Validation

The wildlife monitoring system presented in this Sub-Se
tion has been deployed

along a real stret
h of road, in the Alps region near Trento, in the north of Italy.

The monitored test-site is 300m long [Fig. 2.3(a)℄. N = 21 sensor nodes have

been deployed along the test site, on the two sides of the road as shown in Fig.

2.3(b).

(a) (b)

Figure 2.3: Experimental test-site: (a) wildlife road-
rossing and (b) se
urity

area of the WSN-based system.

Two Doppler radar sensors, 
hara
terized by Fc = 24GHz, rc ≡ 15m and

[ho
c , v

o
c ] = [80o, 32o], have been integrated in ea
h sensor node and properly ori-

ented to obtain an horizontal aperture of about 160o. This allows the de�nition of
the so-
alled se
urity area [Fig. 2.3(b)℄. The devi
es have been installed dire
tly

on the road delimiters, whi
h are pla
ed 20m far from ea
h other (as stated by

the Italian regulation).

The data-sampling rate is set to the default value of ∆t = 250ms [when

δ(tk) = 0℄ , and redu
ed to ∆t = 30ms [when δ(tk) = 1℄. The transmission

threshold has been set to Xth = 30% .

In Fig. 2.4, a sensor node deployed in the experimental test-site is shown. As

it 
an be noti
ed, two solar panels have been integrated on the lateral sides of

the prototype, in order to extend the lifetime of the battery.

12
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Figure 2.4: WSN node installed on road delimiters of the experimental test-site.

As a representative example of the experimental validation, a real event de-

te
ted by the monitoring system is reported in Fig. 2.5. In parti
ular, a snapshot

of the ground truth a
quired by the infrared veri�
ation system is shown in Fig.

2.5(a). The sele
ted pi
ture represents the a
tual position of the target moving

towards the left side of the road (and entering in the radar 
overage of the node

n = 2). The 
orresponding s
aledsignal

˜̃x2(t) 
ompared with the ground truth

ξ(t) is reported in Fig. 2.5(b).

The 
omparison shows a good mat
hing between the a
tual event and the

measured signal, thus 
on�rming the good 
apability of the system to dete
t the

target. In parti
ular, the sensor node has dete
ted the target presen
e with a

maximum delay of about 250ms, proportional to the sampling rate ∆t.

Finally, regarding false positive and false negative analysis, Fig. 2.6 reports

the number of a
tual daily events Ψ 
ompared to the dete
ted ones, during a 9-

days measurement 
ampaign. It may be noti
ed that 3 false-negative dete
tions

happened during the investigated period, thus leading the 
orre
t dete
tion rate

to 77%. False-negative dete
tion are mainly related to target speed, whi
h are

�ltered by the fun
tion Φ(•) in 
ase of too slow or too fast target movements.

Further 
alibration pro
edures are under investigation to limit the false-negative

dete
tion and in
rease the system reliability. [16℄
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(a) (b)

Figure 2.5: Event dete
tion at the experimental test-site: (a) a
tual road-
rossing

event and (b) related measured data.

Figure 2.6: Statisti
al analysis of the system dete
tion 
apability.
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2.2.2 Wireless Distributed System for Smart Publi
 Light-

ing Management

For energy-aware appli
ations, the framework of smart grid is rapidly growing

together with the upgrading of the ele
tri
ity distribution and management. Ad-

van
ed 
ommuni
ation 
apabilities and improved 
ontrol strategies are expe
ted

to a�e
t all areas of the ele
tri
 power system, from the generation to the distri-

bution. Among the appli
ative �elds related to the smart grid, the smart lighting

is a representative example where the integration of new ICT tools is providing

substantial energy saving [23℄[24℄. Both indoor and outdoor lighting servi
es

have been improved by modern industrial solutions in
luding e�
ient lamps, in-

novative ele
troni
 
ontrols, soft-start systems, and smart a
tuation strategies

[25℄. Besides the improvement in the lighting devi
es, one of the main 
hallenges

to enable energy saving is the pervasive and adaptive 
ontrol of the lighting net-

work. Many methodologi
al solutions have been proposed for in-building lighting

management, where the energy saving has been obtained by dimming the lamps

a

ording to the indoor lighting 
onditions and to the user needs [39℄. However,

di�erent strategies are required for the 
ontrol of outdoor street lighting sin
e

other 
onstraints exist. The high spatial extension, the huge number of lamps,

the harsh environment 
onditions, the stri
t regulations on the quality of servi
e,

the high spatial variability of urban s
enarios, the heterogeneity of the existing

lighting networks, make the smart 
ontrol of the publi
 lighting a 
hallenging

task.

Even if di�erent te
hnologi
al solutions are available, it has to be noti
ed that

the 
osts for designing and deploying from s
rat
h a new street lighting system is

often too high for both private and publi
 entities. Starting from this assumption,

the inexpensive, s
alable, and non-invasive solutions able to 
onvert an existing

system in a more energy-e�
ient one are preferred and 
onsidered the �rst step

for the short-term 
ost saving. A

ordingly, the wireless sensor network (WSN)

te
hnology represents a suitable alternative to enable the low-
ost distributed

monitoring and 
ontrol. [20℄

2.2.2.1 Appli
ation Requirements

The lo
al publi
 authority is responsible for the lighting management and one

of the main 
on
erns is to redu
e the operation 
osts with minimum �nan
ial

investments. This �nal obje
tive determines the requirements to be satis�ed by

the proposed 
ontrol system, whi
h in
lude:

1. the easy integration in the existing street lamps and 
abinets (Fig. 2.7);

2. the absen
e of additional wiring or substitution of infrastru
tures and fa-


ilities.
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Figure 2.7: WSN node installed in the streetlight pole.

At the same time, the proposed 
ontrol system has to guarantee high robust-

ness and reliability sin
e the publi
 lighting network o�ers a fundamental servi
e

to the 
itizens. The wireless network has to support hundreds of nodes and to

guarantee reliable wireless links even in very 
omplex urban environments. The

adopted WSN nodes have to 
ontrol the on/o� sequen
es as well as the dimming

pro�les of the street lamps, to measure the power 
onsumptions, to monitor the

status of the lamps, and to handle the data ex
hange with the network. More-

over, besides the power 
onsumption monitoring for energy saving, the system

ar
hite
ture may be
ome an open ba
kbone for other additional servi
es in the

framework of the smart 
ities and 
ommunities. To this end, both the hardware

and software 
omponents are designed to manage additional sensors and features

a

ording to next generation servi
es for the 
itizens. [20℄

2.2.2.2 Wireless Network Features

The smart lighting system is based on a 
lustered mesh WSN 
omposed by:

K =
N∑

n=1

In (2.2)
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wireless nodes, where i(n) = 1, ..., In, n = 1, ..., N are the nodes belonging to the


lusters managed by the N 
oordinators, as pi
torially shown in Fig. 2.8.

Figure 2.8: WSN-based smart lighting system ar
hite
ture.

The 
oordinator nodes are inter
onne
ted to the gateway devi
es dedi
ated

to the data forwarding from the wireless network toward the existing wired in-

frastru
ture. The spatial distribution of ea
h 
luster n = 1, ..., N depends on

the geographi
al properties of the 
onsidered area as well as the ele
tri
al inter-


onne
tion of the street lamps. As a basi
 rule, the lamps inter
onne
ted to the

same ele
tri
 line belong to the same 
luster. However, the 
lusters 
an be re
on-

�gured a

ording to the time-varying 
hara
teristi
s of the urban environment

and the 
onsequent 
hanges in the wireless signal propagation.

The WSN nodes have been pla
ed within the stru
ture of the light poles,


lose to the lamp and to the ele
troni
 ballast for easy a

ess during the standard

maintenan
e operations. The antenna 
an be internal or external a

ording to

the material properties (plasti
 or metalli
) of the outer 
ase, as represented in

Fig. 2.9.
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(a)

(b)

Figure 2.9: Internal (a) and external (b) antenna installation.

The robustness of the wireless network is guaranteed when ea
h node is 
on-

ne
ted with more than one neighbor node, and the optimal network 
on�guration

is a
hieved when at least three neighbors are within the wireless 
overage. Su
h

an optimal 
on�guration is easily satis�ed in dense urban areas where many in-

terse
tions among streets and alleys exist [Fig. 2.10(a)℄ but turns out to be more


omplex in rural areas where linear streets are more 
ommon [Fig. 2.10(b)℄.

In this 
on�guration, the antenna positioning and the network ele
tromagneti


planning have been 
arefully 
onsidered to guarantee a robust and stable wireless


overage. [20℄
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(a)

(b)

Figure 2.10: Test sites in dense urban area (a) and in rural area (b).

2.2.2.3 Node Control and Power Metering

Ea
h WSN node handles the 
ommon street lighting operations, in
luding the

on/o� and the dimming of the inter
onne
ted lamp. Moreover, the power 
on-

sumption is measured in real-time by means of the on-board power metering

subsystem. Respe
t to the standard metering solutions, whi
h usually measure

the total power 
onsumption of the whole ele
tri
 line, the power information of

ea
h individual lamp is a
quired, thus enabling the analysis of the lamp diag-

nosti
 information, su
h as its voltage, the lamp ignition failure, or the lifetime

statisti
s. The implemented onboard �rmware provides di�erent working modal-

ities a

ording to the status of the network. For example, if the 
ontrol unit goes

down be
ause of system failure, the nodes automati
ally swit
h to the o�-line

mode and manage the lamps applying a prede�ned s
heme in order to guaran-

tee the minimum working 
apability and quality of servi
e. The �rmware of

the nodes 
an be updated over the air sending simple 
ommands from the main
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ontrol unit, avoiding the maintenan
e intervention dire
tly on the streetlight

poles. The remote 
ontrol unit is inter
onne
ted to the WSN gateways through

a wired network and hosts the software sta
k for data pro
essing, storage, and

visualization. The network managers 
an a

ess the system from remote termi-

nals through user-friendly tools and interfa
es implemented at the appli
ation

layer. Among the implemented features, the software enables the lo
alization of

all the monitored streetlights on a geographi
 information system (GIS) and all

the information related to power 
onsumption, diagnosti
s, sensor data, lamp in-

formation are easily a

essible. The power dimming pro�les 
an be 
on�gured for

single or group of lamps providing high �exibility and timely update a

ording

to the requirements or to the environmental 
hanges. The environmental bright-

ness βm = [βm(t); t = 1, ..., T ], m = 1, ...M , is measured at dis
rete time intervals

t = 1, ...T by a set of M lux meters deployed in multiple positions of the moni-

tored streets and inter
onne
ted to the gateways. The environmental brightness


onditions βm, m = 1, ...M , and the energy 
onsumptions of ea
h single lamp

Ek, k = 1, ...K, represent the input data of the 
ontrol method, while the output

is the set of dimming pro�les δ = δk, k = 1, ..., K, where δk = [δk(t); t = 1, ..., T ].

The obje
tive of the 
ontrol method is to identify the best pro�les that min-

imize the 
ost fun
tion:

Ω(δ) = a

[
1

M

M∑

m=1

βm(δ)− β̂m

β̂m

]
+ b

[
1

K

K∑

k=1

Ek(δ)− Êm

Êm

]
(2.3)

where a and b are user-de�ned weights, β̂m =
[
β̂m(t); t = 1, ..., T

]
, m = 1, ...M ,

are the desired brightness values, and Êk =
[
Êk(t); t = 1, ..., T

]
, k = 1, ..., k the

target energy 
onsumptions. The minimization minδ [Ω(δ)] has been performed

applying the parti
le swarm evolutionary optimization (PSO) a

ording to the

guidelines des
ribed in Sub-Se
tion 3.2.2 [27℄. [20℄

2.2.2.4 Experimental Validation

The proposed system has been installed in two di�erent test sites, whi
h present

di�erent geographi
al and topologi
al 
hara
teristi
s. In parti
ular, the �rst

site is lo
ated in the histori
 
enter of Trento [Fig. 2.10(a)℄, the se
ond one in a

suburban area on the hills near the 
ity [Fig. 2.10(b)℄. A total number ofK = 737
lamps are individually 
ontrolled through a network ofN = 11 gateways installed
in the transformer stations. The details of the network 
lusters are reported in

Tab. 2.1. Before the installation of the monitoring system, a preinstallation

measurement 
ampaign has been performed on a sele
ted set of streetlight lines

in order to estimate the power 
onsumption of the existing infrastru
ture in the

standard operative 
on�guration.
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Test Site Gateway Index, N Position Controlled Lamps, In

1 1 Piazza Dante 108

1 2 Piazza Lodron 52

1 3 Via Belenzani 92

1 4 Via S. Giovanni Bos
o 24

1 5 Via S. Mar
o 68

1 6 Via S. Pietro 120

1 7 Vi
olo Capitolo 125

1 8 Vi
olo Terlago 51

2 9 Via Bellavista 50

2 10 Via del Forte 18 17

2 11 Via del Forte 42 30

Total 737

Table 2.1: Number of Monitored Lamps.

Toward this end, dedi
ated power meters have been installed in the trans-

former stations to 
olle
t the aggregate power 
onsumptions of the 
onne
ted

ele
tri
 lines. For 
omparative purposes, those measurements have been used

as referen
e values to estimate the 
onsumption of the preinstallation 
on�gura-

tion assuming the same working s
hedule determined by the smart monitoring

system.

Toward this end, the following a
tive equivalent energy has been estimated

Ẽ =
(
p̃(day) × h(day)

)
+

(
p̃(night) × h(night)

)
(2.4)

where p̃(day) is the a
tive equivalent power measured during the daytime slot

h(day)
, while p̃(night) the one measured during the night hours h(night)

.

The a
tive powers have been 
omputed as follows starting from the di�erential

energy values

p̃(day) =
Ẽ

(day)
end − Ẽ

(day)
start

h(day)
(2.5)

p̃(night) =
Ẽ

(night)
end − Ẽ

(night)
start

h(night)
(2.6)

where Ẽstart and Ẽend are the 
umulative energy measured at the beginning and

the end of the 
onsidered time slot, respe
tively. A representative 
omparison

between two daily power 
onsumption pro�les obtained pre and post installation

of the system is shown in Fig. 2.11. The reported values refer to an ele
tri
 line


omposed by I8 = 51 streetlight lamps.

21



2.2. SYSTEM PROTOTYPES

Figure 2.11: Comparison of power 
onsumption pro�les pre and post installation.

As it 
an be noti
ed, in the pre-installation 
on�guration the lamps were a
ti-

vated a

ording to a prede�ned time slot without time-varying dimming pro�les.

On the 
ontrary, a lower and time-varying power pro�le has been measured when

adaptive dimming rules are applied to the monitored lamps. Su
h a total pro�le

is the aggregation of the di�erent 
onsumptions of ea
h lamp, whi
h are shown

in Fig. 2.12.

The 
onsumptions of the 
onsidered lamps di�er one from the others be
ause

di�erent dimming rules have been 
on�gured a

ording to the 
hanging environ-

mental brightness at the street level. The adopted dimming pro�les shown in

Fig. 2.13 have been 
alibrated taking in 
onsideration the properties of the lamps

as well as the environmental light measured by the lux meters and a

ording to

the results of the minimization in (2.3).

The preliminary optimizations have been performed setting the user-de�ned

weights a = 0.5 and b = 0.5 . An example of the lux measurements used for

dimming 
alibration is reported in Fig. 2.14.
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Figure 2.12: Power 
onsumption pro�les of the the I8 = 51 
ontrolled nodes.

Figure 2.13: Dimming pro�les of the the I8 = 51 
ontrolled nodes.
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Figure 2.14: Brightness level measured by the lux meter.
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Figure 2.15: Energy saving during the experimental 
ampaign.

The total energy saving has been 
omputed as the normalized di�eren
e be-

tween the energy 
onsumption pre and post installation of the monitoring system
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δ =
Ẽ −E

Ẽ
× 100 (2.7)

where E is the total energy 
onsumption measured by the smart meters inte-

grated in the wireless nodes.

The summary of su
h per
entage saving is reported in Fig. 2.15 for about

three-year measurement 
ampaign. The results point out lower savings in the

initial months of the monitoring 
aused by the setup of the devi
es and the 
ali-

bration of the system parameters. The following months show a nearly 
onstant

energy saving of 30%. [20℄
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Chapter 3

Distributed Monitoring for Energy

Consumption Optimization

The home te
hnology is moving qui
kly from the programmable thermostat to

an era where all home systems will be integrated into a 
entralized 
ontrol one,

a

essible from di�erent entry points su
h as telephones, 
omputer s
reens, tou
h

pads, and other wireless mobile devi
es, like smartphones and tablets. The result

is a highly personalized home environment, that rea
ts to individual needs and

wants, and anti
ipates also 
hanges. This perspe
tive is a 
lear 
onsequen
e of

the dramati
 impa
t that pervasive te
hnologies have had on so
iety.

In this a framework, a widely di�used viewpoint on the smart home and its

implementation, in parti
ular the home automation, is related to the following

idea of 
omfort that 
an be explained as follows: �Morning brings a graduated

alarm that plays some of your favorite musi
. The volume builds slowly and the

bedroom 
urtains gently part until you rea
t and tell the alarm. Meanwhile,

the bathroom �oors are already warming in anti
ipation of your arrival, and the


o�ee-maker starts brewing up�[28℄. The problem 
omplexity, the 
ompetition

between vendors, the multiple in
ompatible standards, and the high expenses,

together with this idea have limited the penetration of home automation to

home. Only a little part of users is disposed today to spend money for those

luxury and expensive fa
ilities, be
ause other needs are 
onsidered more essential

with respe
t to this stri
tly 
omfort-based fun
tionalities. For this reason, mu
h

of the potential that would te
hni
ally be available is still 
on�ned to resear
h

proje
ts, test beds, or industrial experiments, as shown by the ri
h state-of-the-

art produ
ed in the last years [29℄-[33℄. Consequently, the resear
hers are now

paying 
lose attention to test and deploy te
hnologies in real environments and for

long-term periods by redu
ing the 
omplexity of this system and implementing

solutions providing more evident and tangible advantages to the end users.

Among smart home fun
tionalities, a spe
i�
 
ase study of the proposed

wireless system is the Energy Consumption Optimization. These smart home

appli
ations re
eived high emphasis be
ause they have a dire
t impa
t on money
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saving for both publi
 servi
es and private users.

With the growth of the smart grid resear
h area, 
on
erned with the intel-

ligent 
ontrol of ele
tri
ity usage, the smart home plays a key role in the inter-

a
tion between the grid and the 
onsumers [30℄. The end-users' perspe
tive of

redu
ing the 
osts of in-home power 
onsumptions and the government de
isions

for optimizing the resour
es brought to an in
reasing deployment of the power

management systems in private homes all over the world. Many solutions have

been proposed for integrating smart meter devi
es 
apable of 
ommuni
ating at

the same time with both the energy distributors and the household [39℄, [35℄.

Toward this end, 
an be established two main guidelines. The �rst dire
tion

is to 
olle
t energy information through the standard utility meter that gives

aggregate information about the home 
onsumption [36℄. The se
ond dire
tion

is to monitor individual applian
es of interest by means of in-home distributed

smart meters and 
ommuni
ating the re
orded data to a 
entral data pro
essing

unit [37℄. This se
ond solution is sometimes 
ostly and 
omplex to implement

be
ause of the need of infrastru
ture [35℄. However, many disavantages related

to 
osts, wiring, and 
omplexity are going to be over
ome thanks to the di�usion

of wireless ar
hite
tures [33℄, [38℄-[45℄. [60℄
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CHAPTER 3. DISTRIBUTED MONITORING FOR ENERGY

CONSUMPTION OPTIMIZATION

3.1 Distributed Monitoring for Energy Consump-

tion Optimization in Smart Building

In the re
ent years, the fast growing of the energy market and the need of a more

intelligent management of the resour
es stimulated more and more intera
tions

between the utility 
ompanies and their 
ustomers, with the aim of optimizing

the grid management as well as the energy 
onsumptions and 
osts. Programs

and rules have been developed for the e�
ient management of the user demands,

to redu
e waste by en
ouraging energy-aware 
onsumption patterns, and to ob-

tain more energy e�
ient buildings [59℄, [60℄. The fundamental requirement

of su
h s
enario is the pre
ise knowledge of when and how energy is used by

end-users. Many te
hnologi
al solutions exist for the measurement of residential

power 
onsumption, usually monitored by utilities at the home level. Improved

savings would be possible with dire
t 
ontrol of single loads and applian
es. To

this end, low-
ost and noninvasive approa
hes are required to make su
h solution

feasible and a

epted by users. [57℄

From the te
hnologi
al perspe
tive, the main 
hallenges are related to the

nons
alable integration of heterogeneous te
hnologies that often 
annot 
ommu-

ni
ate together, require hard wiring, are ad ho
 designed, and 
annot be evolved,

updated, or easily repla
ed. The shortage of a 
ommon and �exible infrastru
-

ture that host heterogeneous fun
tionalities a

ording to the user needs often


omes out, and it represents a key 
hallenge that have to be 
onsidered in the

development of smart home 
on
epts.

Be
ause of these problems, is 
onsidered to be inevitable taking advantages of

wireless networks as a means for remote monitoring and 
ommanding. Di�erent

wireless te
hnologies have been reviewed [33℄, [46℄ and applied to smart metering

[38℄, [40℄, [42℄, [45℄, [47℄, underlining advantages and limitations of 
urrent solu-

tions. As a key requirement, the wireless ba
kbone 
omponents must be easy to

deploy and maintain, inexpensive enough, and making them widely a

eptable

to end users. Furthermore, it has to be noti
ed that the the wireless sensor net-

work te
hnology is the most di�used wireless ar
hite
ture [6, 3, 50℄. They have

be
ome more and more important be
ause of their ability to manage and mon-

itor information in various intelligent servi
es. The adoption of WSNs in many

and heterogeneous appli
ative �elds [48℄-[50℄ has been stimulated by their well-

known features like low power, s
alability, integrability, low-
ost, multisensing,

and re
on�gurability. These advantages have been transferred to a smart home

environment to ful�ll the vision of ambient intelligen
e through an responsive,

inter
onne
ted, intelligent, and transparent wireless ba
kbone layer. To exploit

the te
hnologi
al advantages of WSNs in managing real-time and 
ontextaware

appli
ations without dire
tly 
apturing priva
y sensitive informations is the most

important 
hallenge of this work. [60℄

Starting from the advan
ed features provided by a dense wireless network

ar
hite
ture (respe
t to limitations of standalone devi
es), also the possibility
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to a
tively intera
t with the monitored environment and 
hange its state a
-


ording to the rules of adaptive algorithms 
an be exploited. This bidire
tional

intera
tion between the system and the environment requires, besides the a
tu-

ator devi
es (able to in�uen
e the 
onditions of the measured s
enario), also a

userfriendly interfa
e to keep the user in the loop in a transparent way. [57℄

For this reason, the advantages of WSN te
hnology have been fused with

those of smart 
ontrol strategies with the �nal obje
tives of:

1. making available the user 
onsumption patterns to the energy providers for

better management of power grids and peak loads;

2. supporting the end-users of a smart building in the everyday de
isions by

suggesting optimal solutions for energy 
ost redu
tion through improved

awareness and optimal habits.

3.1.1 System Ar
hite
ture

Di�erent wireless te
hnologies have been in
orporated at home due to 
ost e�e
-

tiveness, �exibility, interoperability, and the 
onsequent improvements in many

smart home appli
ations [33℄, [51℄. The proliferation of well-known wireless stan-

dards like ZigBee, WiFi, Bluetooth and Z-Wave 
an be 
onsidered at the same

time an advantage from a te
hnologi
al point of view, but a 
ommer
ial draw-

ba
k [42℄. Many investors 
onsider that today's situation is still unstable and

they wait to understand whi
h emerging standard will 
onsolidate. For this rea-

son, many solutions are still under investigation, and many real test beds have

been deployed with good out
omes. The large di�usion of smart home systems

based on WSN te
hnology [39℄, [52℄, [53℄ 
on�rms the feasibility of this te
hnol-

ogy designed to merge the 
omputetional and physi
al infrastru
tures and that

allows smooth integration of new servi
es and fun
tionalities. One of the most

di�used wireless standard is the IEEE 802.15.4 [54℄, designed for low-power wire-

less personal area networks (WPAN) with low data rate up to 250 kb/s. IEEE

802.15.4 has been used as a basis for higher layer proto
ols su
h as the well-known

ZigBee, developed by the ZigBee Allian
e [55℄, that in
orporates prede�ned net-

working and routing fun
tionalities for easy network management. ZigBee �ts

the smart home market thanks to its 
hara
teristi
s, and many 
ompliant de-

vi
es are already available for sale. Many e�orts have been devoted to provide

ready-to-use devi
es that require very simple 
on�gurations in order to enable

the 
reation of distributed wireless networks among the home rooms. It has

been 
laimed that, even if in some 
ases ZigBee underperforms with respe
t to

other 
ommuni
ation standard [56℄, the arising key advantages like low 
ost, net-

work self-organization, and low power make this 
ommuni
ation standard a good

solution for smart home servi
es.
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Figure 3.1: Wireless ar
hite
ture in smart home test site.

By assuming the adoption of ZigBee wireless devi
es and using the 
orre-

sponding terminology, our WSN ar
hite
ture deployed for smart home appli
a-

tions is 
omposed by a set of routers (power meters) plugged in power outlets

(ensuring the near absen
e of battery maintenan
e), supporting mesh network

typology, and asso
iated to a network 
oordinator that manages the network and


olle
ts all the data (Fig. 3.1). The 
oordinator is inter
onne
ted to a 
ontrol

unit like a smart TV, laptop, home gateway, et
., to enable data pro
essing,

forwarding, and visualization.

The physi
al quantities under test, in
luding real-time [W℄ and 
umulative

[Wh℄ power, are a
quired by the sensors in a 
ontinuous and pervasive way.

Su
h information are lo
ally stored on the node for simple pre-pro
essing and

data 
onsisten
y 
he
k, and su

essively sent throughout the wireless network

towards the home gateway 
ontrol unit.

The 
ommuni
ation among the nodes and the gateway are bidire
tional to en-

able both the data a
quisition and the applian
es 
ontrol through a
tuators. The

WSN nodes integrate the 
apability to turn on and o� the atta
hed applian
es,

thus enabling adaptive management of the total load.

3.1.2 Control Strategy

The data a
quired during the sensing phase represent the input to the pro
essing

step, that implements the proposed De
ision Support System (DSS). A

ording

to the prede�ned obje
tives, this step aims at the real-time evaluation of 
hanges

that should be applied to the user load pro�le.
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Di�erent methodologi
al solution have been explored to manage the optimiza-

tion of 
onsumptions in presen
e of multiple and 
on�i
ting 
onstraints (e.g., all

the users would pay less). Optimization algorithms based on evolutionary strate-

gies [27℄ usually �t the needs of heterogeneous appli
ations be
ause of their ability

in fa
ing with high number of unknowns and multi-minima problems. Geneti


algorithms (GA) [27℄ have been also proposed at the state of the art in the �eld of

sensing and a
tuation systems. Learning by example (LBE) methodologies [61℄

also present good mat
hing in the implementation of unsupervised approa
hes

for automati
 predi
tion of system states and estimation of unknown patterns

for optimal a
tuation strategies.

The obje
tive of the optimization is to minimize the total energy 
ost in

the multi-user system. The awareness on 
ost redu
tion thanks to a shared

pri
ing me
hanism stimulates the users to 
ooperate. This approa
h has been

formulated through a Game Theoreti
 (GT) analysis [62℄. With an appropriate

pri
ing s
heme, the Nash equilibrium of the energy 
onsumption game among the

parti
ipating users (who share the same energy sour
e) is the optimal solution.

On
e the problem has been optimized all the user pay less (i.e., when the set of

a
tions for whi
h any user has an unilateral in
entive to 
hange a
tions is found).

The 
ost fun
tion to be minimized is mainly regulated by the energy 
ost, and

the unknowns of the optimization problem are the load pro�les of all the users, to

be adapted in order to redu
e as mu
h as possible the peak loads (it is assumed

that energy peaks 
orrespond to higher energy 
osts). [57℄

In the following will be de�ned the main building blo
ks of the proposed

GT-based approa
h. [58℄

3.1.2.1 The Players

The P end users are the players of the game and Ap applian
es are 
ontrolled by

ea
h pth user. A daily energy pro�le is asso
iated to ea
h player

Ep(t) =
∑Ap

ap=1C
p
ap
(t) p = 1, ..., P (3.1)

t is the time instant, while Cp
ap
(t) (ap = 1, ..., Ap) being the 
onsumption of

the ath home applian
e of the pth user/player. The time-varying pro�les of the


onsumptions at every ath applian
e {Cp
ap
(t); ap = 1, ..., Ap} are measured in real

time by a set of wireless power meters, wirelessly inter
onne
ted in a multihop

fashion to a gateway node dedi
ated to data 
olle
tion and storage. The WSN-

based ar
hite
ture is devoted to both monitor the applian
e's loads (�sensing�

phase) and 
ontrol/
hange their on/o� status during the 
onsequent �a
tuation�

phase [2℄. The total energy pro�le of this multiplayer s
enario is measured at

the building level and it is de�ned as the sum of the energy 
onsumption of all

P lodger of the analized building.

Ω(t) =
P∑

p=1

Ep(t) (3.2)
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Figure 3.2: System ar
hite
ture for energy monitoring and optimization.

3.1.2.2 The Game A
tions

Every player/user 
an 
ontrol the so-
alled shiftable loads (i.e., those applian
es

whose usage 
an be shifted in time a

ording to the user's preferen
e), and 
an't


ontrol the not shiftable loads (i.e., refrigerator, freezer, et
.). Mathemati
ally,

the 
ontrol of shiftable loads is represented by a binary variable bpap

bpap = 1 ApplianceOn

bpap = 0 ApplianceOff
(3.3)

with (ap = 1, ..., Ap; p = 1, ..., P ). Let us suppose that:

1. all the Ap applian
es of ea
h pth user are shiftable loads that 
an be turned
on/o� from the user itself;

2. all the P users play the �game� with the same rules,;

3. ea
h pth user 
an implement a personalized strategy a

ording to its own

awareness.

3.1.2.3 The Reward

From the user's perspe
tive, the goal of the game is the redu
tion of the energy

bill and the reward of ea
h user is the saving of money that will be rea
hed
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through energy 
ost redu
tion. The way of limiting the use of the applian
es is

a trivial option and it is not 
onsidered as a viable solution. The energy 
ost

depends from the total energy pro�le in a nonlinear fashion, we 
an refer to the

following quadrati
 relation for the energy 
ost [63℄

C(Ω, t) = α(t)Ω(t)2 (3.4)

where α(t) is a 
alibration 
oe�
ient set by the utility to determine its own 
ost

tari�. In su
h a model, when there are peaks of energy 
onsumptions (i.e., high

values of the total energy pro�le) the energy 
ost rapidly in
reases. To maximize

the player's reward wehave to minimize the energy 
ost

Copt = minb̄(t)C(Ω, t) = minb̄(t)


α(t)

P∑

p=1

Ep(t)



2

(3.5)

where b̄(t) = {b̄p(t); p = 1, ..., P}, being b̄p(t) = {bpap ; ap = 1, ..., Ap}. From the

GT viewpoint, the solution of (3.5) is the so
alled Nash equilibrium [62℄ that

holds true �when no user would bene�t by deviating from the evaluated s
hedule�.

Be
ause of the 
onvexity of the optimization problem at hand (3.5), a 
onvex

programming (CP) te
hnique [64℄ 
an be applied. More spe
i�
ally, to make

ea
h user indipent and to avoid sharing personal behaviors, the optimal solution

of (3.5) from a GT viewpoint is rea
hed by solving with CP the following P
independent and lo
al optimization problems.

b̄optp (t) = argminb̄p(t)

{
α(t)

[
Ep(t) +

∑P
g=1,g 6=pEg(t)

]2}
p = 1, ..., P (3.6)

When the Nash equilibrium is rea
hed, the peak-to-average ratio (PAR) [59℄

PAR(t) =
maxt∈{{Tm÷TM}}[Ω(t)]

1/(TM − Tm)
∫ TM

Tm
Ω(t)dt

(3.7)

is minimized, as well, with {Tm÷TM} the 
onsidered time window. The redu
tion

of the PAR and its time stability are a quality indi
ator of the optimized solution.

3.1.3 Numeri
al and Experimental Results

The approa
h proposed in this Se
tion has been validated running several nu-

meri
al simulations to evaluate the e�
a
y of the GT-based approa
h, while a

preliminary experimental test has been implemented to give some insights on the

real use of the WSN-based monitoring system.

3.1.3.1 Numeri
al Validation

This �rst numeri
al simulation is a representative example of the performan
e

of the system. In this 
ase we 
onsider P = 8 players ea
h 
ontrolling Ap = 10
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(p = 1, ..., P ) loads with di�erent nominal power 
onsumptions and usage time

windows. For example, the applian
e a = 3 of the user p = 2 models a dryer with

a time-window use in the range t ∈ {5 : 00PM ÷ 8 : 00PM} and a 
onsumption

of C2
3 (t) = 1.2 KW. As for the energy 
ost model, the 
alibration 
oe�
ient in

(3.4) has been de�ned as follows

α(t) =

{
0.2 cent t ∈ {10 : 00PM ÷ 7 : 00AM} (night)
0.3 cent t ∈ {7 : 00AM ÷ 10 : 00PM} (day)

(3.8)

The GT-based approa
h has been used and the optimized applian
e s
hedules

have been evaluated by exe
uting the P CP optimizations of (3.6) in a random

order to rea
h an unbiased solution. By applying the GT-optimized applian
e

s
heduling the rea
hed total energy pro�le Ω(t) is represented in Fig. 3.4, while

the original s
hedule of the loads and the optimized one of the �rst user (p = 1)
are shown in Fig. 3.3). The energy peak redu
tion improvement with respe
t to

the nonoptimized 
ase turns out to be equal a de
rease of the PAR of 43.01%

from PAR = 2.26 down to PAR = 1.29. [58℄

Figure 3.3: Player 1 - applian
es s
hedule before and after optimization.
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Figure 3.4: Original versus optimized energy pro�les.

To give an extended evaluation of the algorithm, multiple simulations have

been run to test it in di�erent 
on�gurations. In the following are reported the

two additional test 
ases:

1. Varying the number of users P that play the game;

2. Changing the applian
e's time-slot 
on�guration.

Varying the Number of Users P In this test 
ase the number of the users

P that play the game has been varied from 2 to 10. In Fig. 3.5 are reported the

results for P = 2 [Fig. 3.5(a)℄, P = 4 [Fig. 3.5(b)℄, P = 6 [Fig. 3.5(
)℄, P = 8
[Fig. 3.5(d)℄ and P = 10 [Fig. 3.5(e)℄.

From these graphs 
an be made these three main 
onsiderations:

1. In
reasing the number of users P , the amount of total energy pro�le in-


reases (more users mean more applian
es);

2. The algorithm is able to optimize the power 
onsumption for ea
h number

of users P , minimizing the PAR of total energy pro�le Ω(t);

3. The PAR at the end of ea
h simulation is almost the same (Tab. 3.1).
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Figure 3.5: Performan
es of the GT-based approa
h varying the number of users

P : (a) P = 2, (b) P = 4, (
) P = 6, (d) P = 8 and (e) P = 10.
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Number of User P Optimized PAR

2 1.282

4 1.289

6 1.286

8 1.286

10 1.288

Table 3.1: PAR values after the CP Optimizations.

Changing the Applian
e's Time-Slot Con�guration In this test 
ase an

option has been integrate inside the algorithm: ea
h user 
an limit the duration of

the time slots in whi
h the algorithm 
an move the s
heduling of ea
h applian
e.

Three main 
ontitions have been de�ned:

1. Ideal: the time slot are not present and the algorithm 
an pla
e the appli-

an
e s
heduling at every hour of the day;

2. Real: ea
h user 
an 
hoose, for ea
h shiftable applian
e, a time slot with

a duration of about 8/9 hours, in whi
h its usage 
an be s
heduled by the

algorithm;

3. Complex: ea
h user 
an 
hoose, for ea
h shiftable applian
e, a time slot

with a duration of about 5/6 hours, in whi
h its usage 
an be s
heduled by

the algorithm;

In Tab. 3.2, Tab. 3.3 and Tab. 3.4 are respe
tively reported the experimen-

tal time slots set for ea
h 
ondition (the applian
es followed by N.S. are not

shiftable).
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User p:

Applian
es ap:

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Phev 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Food Cutter 0-23 0-23

Dryer 0-23 0-23 0-23 0-23 0-23

Va
uum Cleaner 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Dehumidi�er 0-23 0-23 0-23 0-23 0-23

Ele
tri
 Iron 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Oven 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Dishwasher 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Washing Ma
hine 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Pasta Maker 0-23 0-23 0-23 0-23 0-23 0-23

Mi
rowave 0-23 0-23 0-23 0-23 0-23 0-23

Hair Dryer 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Sauna 0-23 0-23 0-23 0-23

Alarm Clo
k (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Stereo (N.S.) 0-23 0-23 0-23 0-23 0-23

Air-Conditioning (N.S.) 0-23 0-23 0-23 0-23 0-23

Light (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Freezer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Refrigerator (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Computer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Television (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Table 3.2: Time-Slot for ea
h user in �ideal� 
ondition.
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User p:

Applian
es ap:

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Phev 0-8 0-9 2-10 0-8 0-9 0-10 1-10 0-8

Food Cutter 11-20 12-20

Dryer 0-8 14-22 15-23 14-23 0-9

Va
uum Cleaner 10-19 10-19 6-15 10-20 9-18 10-18 7-16

Dehumidi�er 9-18 15-23 15-23 10-20 14-22

Ele
tri
 Iron 14-22 13-22 6-15 9-18 14-23 13-23 10-19 9-18

Oven 11-20 12-20 11-19 12-21 11-19 11-19 12-20 11-21 11-19 12-20

Dishwasher 13-22 12-21 14-23 14-22 13-21 15-23 13-22 13-21 12-22 13-23

Washing Ma
hine 0-10 15-23 0-9 15-23 0-9 0-8 0-9 10-20 11-19 15-23

Pasta Maker 15-23 6-14 7-16 11-19 14-22 7-16

Mi
rowave 12-20 11-19 11-20 12-20 11-20 12-20

Hair Dryer 15-23 15-23 6-14 8-16 15-23 6-14 15-23

Sauna 15-23 14-22 14-23 14-23

Alarm Clo
k (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Stereo (N.S.) 0-23 0-23 0-23 0-23 0-23

Air-Conditioning (N.S.) 0-23 0-23 0-23 0-23 0-23

Light (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Freezer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Refrigerator (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Computer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Television (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Table 3.3: Time-Slot for ea
h user in �real� 
ondition.
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User p:

Applian
es ap:

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Phev 0-6 6-12 1-7 2-8 0-6 5-12 1-7 1-8

Food Cutter 11-16 12-17

Dryer 0-7 17-23 0-6 17-22 0-6

Va
uum Cleaner 6-11 6-12 7-13 7-13 6-11 10-16 7-14

Dehumidi�er 10-17 11-18 9-16 15-22 11-18

Ele
tri
 Iron 15-20 14-20 14-19 15-20 14-20 14-20 16-21 9-15

Oven 17-23 11-17 18-23 11-17 11-17 17-23 12-19 18-23 17-22 11-18

Dishwasher 18-23 12-18 18-23 13-20 12-19 18-23 13-20 18-23 13-20 12-17

Washing Ma
hine 0-7 17-22 0-6 0-6 0-6 17-22 0-7 0-6 2-8 17-23

Pasta Maker 17-22 7-13 17-22 17-22 7-13 7-13

Mi
rowave 10-17 18-23 12-18 10-17 17-22 11-16

Hair Dryer 7-12 6-11 6-11 8-13 6-12 7-12 6-11

Sauna 18-23 17-23 16-23 17-22

Alarm Clo
k (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Stereo (N.S.) 0-23 0-23 0-23 0-23 0-23

Air-Conditioning (N.S.) 0-23 0-23 0-23 0-23 0-23

Light (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Freezer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Refrigerator (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Computer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Television (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Table 3.4: Time-Slot for ea
h user in �
omplex� 
ondition.

In Fig. 3.6 are reported the results of the simulations ran in this test 
ase. In

the ideal 
ondition the CP algorithm is able to optimize the energy 
onsumptions

as in the previous test 
ases while, in real and 
omplex 
ondition, the algorithm

optimizes the energy pro�les, but rea
hes higher PAR values as reported in Tab.

3.5. In these 
ases the algorithm rea
hes a sub-obtimal solution. It is not able

to rea
h the optimal PAR value be
ause it has to mat
h the 
onstraint set by

ea
h user in a more realisti
 s
enario.
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Figure 3.6: Performan
es of the GT-based approa
h varying the time slot 
on-

ditions.

Contition PAR

Not Optimized 2.001

Ideal 1.288

Real 1.578

Complex 1.770

Table 3.5: PAR values after the CP Optimizations varying the time slot 
ondi-

tions.
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3.1.3.2 Experimental Results

The proposed system has been experimentally tested and a preliminary set of

results have been sele
ted to assess the potentialities and limitations of both the

monitoring WSN based ar
hite
ture and the DSS for energy optimization and


ost redu
tion in smart buildings.

Figure 3.7: Experimental setup for wireless power metering and 
ontrol.

As for the experimental validation, a demonstrative prototype has been built

(Fig. 3.7) with WSN nodes equipped with Zigbee 
ompliant wireless power

meters able to:

1. a
quire in real-time the power 
onsumption;

2. swit
h (on/o�) the inter
onne
ted loads;

3. dimmer the output power.

A network of P = 5 WSN nodes have been 
onne
ted to a set of lamps, whi
h

represent the user's loads, and the 
hanges of the players' power 
onsumption

have been simulated by dimming the lamps. A 
entralized power meter has been

added to measure the total power (modeling the power 
onsumption of whole

building). All the powers measured by this devi
es have been transmitted to

a 
ontrol unit equipped with a Zigbee 
oordinator. The 
ontrol unit has been

dedi
ated to exe
ute and a
tuate the GT-based s
heduling by 
ontrolling the

wireless power meters, and for easy data visualization and system management.

An example of the graphi
al user interfa
e of the developed web tool is shown
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in Fig. 3.8. The output of the DSS that is the optimal suggestion about when

and how use the applian
es has been made available to the users. The automati


management of the applian
es has been also implemented and, if a
tivated by the

user, the on/o� s
hedule is automati
ally applied through the WSN a
tuators.

Figure 3.8: Graphi
al interfa
e for data visualization and management.

By 
onsidering an analysis of 24-h experimental data, it turns out that the

GT-based optimization has been able to redu
e the PAR value from 2.08 down

to 1.54 (i.e., a de
rease of 25.19%) with a 
orresponding energy 
ost redu
tion

(dedu
ed from the real tari�s of the utility) from 35.31 $ e to 32.09 $ e (i.e., a


ost saving of 9.22%).
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3.2 Wireless Smart Lighting in Energy-E�
ient

Museums

In the appli
ation �eld of smart museums, a strong attention has been given to

the lighting quality, mainly from the perspe
tive of the visitors and with respe
t

to the artworks' 
onservation [66℄. However, less attention has been given to

the energy saving. The management of multiple and 
ompeting obje
tives is

not straightforward and requires a suitable strategy to support the de
ision of

the museum energy manager in the 
ontrol of the lighting systems. In this Se
-

tion, an evolutionary optimization strategy based on parti
le swarm optimization

(PSO) [27℄ is proposed to 
ontrol the light intensity of multiple lamps taking in


onsideration both the quality of the user experien
e and the energy saving. The

wireless sensor and a
tuator (WSAN) te
hnology [2℄ has been exploited to sense

the environmental 
ondition and the energy 
onsumption as well as to 
ontrol

the lamp a
tuators. The proposed system provides an innovative solution to the

energy managers for the autonomous light dimming, whi
h satis�es the desired

requirements even in 
omplex museum rooms. The system has been deployed and

tested in a museum s
enario in order to experimentally assess the performan
e

in terms of lighting quality of artworks and energy saving. [65℄

3.2.1 Wireless Ar
hite
ture

In this system N wireless nodes for the a
quisition of the light intensity are

installed in the points of interests r(s)n , n = 1, ..., N , 
lose to the artworks to

be properly illuminated (Fig. 3.9). Ea
h node is equipped with environmental

sensors in
luding the lux meter for the measurement of the light intensity ln,
n = 1, .., N . M wireless a
tuators are integrated in the smart lamps of the

lighting system, in positions r(a)m , m = 1, ...,M , and are devoted to 
ontrol the

dimming levels dm,m = 1, ...,M , 
omputed by the 
entralized a
tuation strategy.

The light intensities determine the power 
onsumptions pm, m = 1, ...,M of the

museum. The wireless network is managed by a lo
al 
oordinator, whi
h hosts

the proposed smart lighting algorithm.[65℄
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Figure 3.9: WSAN ar
hite
ture for smart lighting in museums.

3.2.2 Control Strategy (Parti
le Swarm Optimizer)

The Parti
le Swarm Optimizer (PSO) has been developed by Kennedy and Eber-

hart [76℄ inspired by so
ial behavior of inse
t swarms, s
hool of �sh and �o
ks

of birds. The goal of a swarm of bees is to �nd the lo
ation with the highest

density of �owers inside a �eld. Without any knowledge of the �eld, the bees

begins the resear
h of �owers in random lo
ations with random velo
ities. Ea
h

bee 
an remember the lo
ations where it found the most quantity of �owers (per-

sonal best), and knows the lo
ations where the other bees found an abundan
e

of �owers (general best). Ea
h bee explores the �eld unde
ided about whether

to return to the lo
ation where it had personally found abundan
e of �owers or

to explore the lo
ation with the highest density of �ower of the �eld, reported

by the others bees of the swarm [Fig. 3.10(a)℄. For these reason the bees a
-


elerate in both dire
tions 
hanging their traje
tory to �y somewhere between

these two points, depending on whether so
ial in�uen
e or nostalgia dominates

their de
isions. If a bee �nd a position with a higher 
on
entration of �owers

than it had found previously, it updates this position as its new personal best.

Along the way, a bee 
ould �nd a pla
e with a higher 
on
entration of �owers

than had been en
ountered by any bee in the swarm. In this 
ase the bee tells to

the whole swarm that this lo
ation is the new general best. In this way the bees

explore the �eld: over�ying lo
ations of greatest 
on
entration of �owers, then

being pulled ba
k toward them. They are 
ontinuously 
he
king the territory

hoping to �nd the absolute highest �owers 
on
entration. Qui
kly, all the bees

of the swarm will �y around this point be
ause they are unable to �nd any other

points with a higher �ower 
on
entration [Fig. 3.10(b)℄. [79℄
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(a) (b)

Figure 3.10: Parti
le Swarm Optimizer: (a) Bees sear
hing a �eld for the lo
ation

of the most �owers (b) All the bees swarm around the best lo
ation.

3.2.2.1 Mathemati
al Formulation

In Parti
le Swarm Optimizer, an agent, b
(p)
k , 
alled parti
le is 
hara
terized by a

position f (p)
k
in the solution spa
e and a velo
ity v

(p)
k that models the 
apability

of the pth parti
le to �y from the 
urrent position to another su

essive position

f (p)
k+1

. The whole set of parti
les {b
(p)
k , p = 1, ..., P} 
onstitutes the swarm Fk. In

its 
lassi
al implementation [76℄, the parti
le update equations are

f (p)
k+1

= f (p)
k

+ v
(p)
k+1 (3.9)

and

v
(p)
n,k+1 = ωv

(p)
n,k + C1r1(p

(p)
n,k − f

(p)
n,k) + C2r2(gn,k − f

(p)
n,k) (3.10)

whose physi
al interpretation, derived by Newton' laws, has been given in [78℄.

In (3.10), ω, C1 and C2 are 
ontrol parameters known as inertial weight, 
og-

nitive and so
ial a

eleration terms, respe
tively [77℄. Moreover, r1 and r2
are two random variables having uniform distribution in [0, 1℄. With refer-

en
e to a minimization problem, the values p
(p)
k = arg{mini=1,...,k[Φ(f

(p)
i )]} and

gk = arg{mini=1,...,k;p=1,...,P [Φ(f
(p)
i )]} are the so
alled personal and global best

solutions, namely the best positions found by the pth parti
le and by the whole

swarm until iteration k, respe
tively.
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As far as the iterative optimization is 
on
erned (Fig. 3.11), starting from

guess values of f (p)
0

and v
(p)
0 , p = 1, ..., P , the positions and velo
ities of the

parti
les are updated a

ording to equations (3.9) and (3.10).

Figure 3.11: Parti
le swarm optimizer: �ow
hart.

The main advantages of the PSO if 
ompared to other optimization te
niques

as the Geneti
 Algorithms (GAs) or Di�erential Evolution (DE) 
an be summa-

rized in the followings:

• the simpli
ity of the algorithm implementation and the use of a single

operator (i.e., the velo
ity update) instead of three geneti
 operators (i.e.,

the 
rossover, the mutation and the sele
tion);

• the easy manipulation of the 
alibration parameters [79℄ (i.e., the swarm

size, the inertial weight and the a

eleration 
oe�
ients) whi
h 
ontrols the

velo
ity update operator. Even if the number of 
ontrol parameters (i.e.,

the population size, the 
rossover rate, the mutation rate) is similar, it is


ertainly easier to set the PSO indi
es than evaluating the optimal setting

among various operators and several options of implementation;

• the ability to prevent the stagnation by 
ontrolling the inertial weight and

the a

eleration 
oe�
ients to sample new regions of the solution spa
e.

In standard GAs and DE, the stagnation o

urs when the trial solutions
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assume the same geneti
 
ode 
lose to that of the �ttest individual. In su
h

a 
ase, the 
rossover does not 
ontribute to the evolution and only a lu
ky

mutation 
ould lo
ate a new individual in other interesting region of the

solution spa
e;

• a smaller number of agents, whi
h turn out in a redu
ed 
omputational 
ost

of the overall optimization and enable a reasonable 
ompromise between


omputational burden and e�
ien
y of the iterative pro
ess.

Regarding the setting of the parameters, Cler
 and Kennedy [68℄ examined in

detail the behavior of the PSO and de�ned some 
onditions on the PSO param-

eters to avoid a divergent sear
h. With referen
e to a simpli�ed one-dimensional

(i.e., N = 1) and deterministi
 (C1r1 = C1 and C2r2 = C2) model, des
ribed by

the following updating equations

vk+1 = vk + ϕ(t− fk)

fk+1 = fk + vk+1

(3.11)

where ϕ = C1 + C2 and t = C1p+C2g
C1+C2

is the index related to both the 
ognitive

and the so
ial term and by supposing the personal best and global best position

�xed (i.e., pk = p and gk = g), it has been shown that when ϕ ≥ 4, the parti
les
diverge as a fun
tion of k, while when 0 < ϕ < 4 the traje
tories os
illate around
the position t [71℄ with 
y
li
 or quasi-
y
li
 behavior depending on ϕ. These


on
lusions have been drawn from the analysis of (3.11) rearranged in the matrix

form as follows: Fk+1 = MFk where Fk = [vk, zk]
T
, being zk = (t− fk), and the

dynami
 matrix is given by

M =

[
1 ξ
−1 1− ξ

]
(3.12)

As a matter of fa
t, it turns out that Fk = MkF0, F0 being the initialization

ve
tor. A su�
ient 
ondition to rea
h an equilibrium point at the 
onvergen
e

(i.e., t) is that the amplitudes of the two eigenvalues of M are lower than unity

[75℄. However, a random 
hoi
e of ϕ 
auses the un
ontrolled in
reasing of the

velo
ity term vk+1 [77℄.

Further developing the approa
h based on the generalized matrix, it has been

proved that the following 
onstri
tion system

vk+1 = χ[vk + C1r1(p− fk) + C2r2(g − fk)]

fk+1 = fk + vk+1

(3.13)

where χ = 2

|2−ǫ−
√
ǫ2−4ǫ|

= 0.7298 with ϕ = 2C1 = 2C2 = 4.1 guarantees the

stability of the optimization pro
ess.
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Other variants of the PSO exist and a 
areful analysis about the 
onvergen
e

taking into a

ount the randomness of the algorithm has been reported in [72℄.

Con
erning the optimal 
hoi
e of the 
ontrol 
oe�
ients, it is still worthwhile

pointing out that sin
e higher values of ω produ
e relatively straight parti
le

traje
tories, resulting in a good global sear
h 
hara
teristi
, while small values

of ω en
ourage a lo
al sear
hing, some resear
hers have gained advantage from a

de
rease [69, 74℄ or a random variation of ω during the iterations [70℄. In regard

to the 
oe�
ients C1 and C2, they are usually set to 2.0 as re
ommended by some

papers in the PSO literature [76, 77, 73℄ and found through experimentation in

several optimization �elds [67℄. [27℄

3.2.2.2 Custom Fitness Fun
tion

The solution to the 
onsidered multi-obje
tive problem has been addressed by a


ustomized PSO optimizer through the minimization of the following multi-terms


ost fun
tion:

Φ(d) = α
∑

n

|Ln − ln(d, ε)|

Ln

+ β
∑

m

|Pm − pm(d, ε)|

Pm

(3.14)

where d = [dm;m = 1, ...,M ] is the set of dimming pro�les imposed to the a
tua-

tors, Ln and Pm are the desired light levels and the desired power 
onsumptions,

respe
tively, ε is the environmental brightness measured outdoor, and α and β
are the user-de�ned weights to balan
e the impa
t of the two obje
tives.

The multi-obje
tive problem has been reformulated in (3.14) as a linear 
om-

bination of the two 
on�i
ting obje
tives in order to avoid the 
hoi
e of the

best solution among the Pareto optimal ones [27℄. The PSO has been adopted

sin
e the problem presents many suboptimal solutions, due to the intrinsi
 
om-

plexity of the indoor environment, the overlapping of the light beams, and the

time-varying nature of ε, whi
h determines an unpredi
table relation between

the a
tuators and the light in the regions of interest. The iterative minimization

of (3.14) is aimed at 
ontinuously updating d in order to rea
h the desired goals

imposed by the museum manager. The targets Ln and Pm, as well as the weights

α and β are 
alibrated a

ording to museum 
onditions and artworks typologies.

[65℄

3.2.3 Experimental Validation

The proposed system has been experimentally validated using 
ommer
ial low-


ost devi
es, both for sensing and a
tuation to verify the portability of the pro-

posed 
ontrol strategy on top of existing hardware. The TI SensorTag [Fig.

3.12(a)℄ based on the ZigBee wireless te
hnology has been sele
ted as a small,

low-power, and low-
ost multi-sensors platform. The 
ommer
ial WiFi-based

dimmable lamps by Mi-Light [Fig. 3.12(b)℄ have been adopted to implement the

smart a
tuators.
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(a) (b)

Figure 3.12: Devi
es used in the experimental validation: (a) TI SensorTag, (b)

Mi-Light dimmable lamps.

The multistandard (i.e., both WiFi and ZigBee) 
oordinator has been imple-

mented with a low-
ost Raspberry Pi platform. A smalls
ale museum area has

been equipped with a set of N = 2 sensors and M = 4 a
tuators to manage three

regions of interest. The proto
ol for the data a
quisition and for the 
ommand

transmission has been 
ustomized to guarantee a system lifetime of at least 6

months, introdu
ing low-power strategies with adaptive duty 
y
ling based on

the temporal dynami
s of the indoor brightness. Some sele
ted test 
ases are

presented to preliminary show the optimization 
apabilities. [65℄

In the �rst test-
ase, the desired power 
onsumptions of 3 W has been set

for all the smart lamps and the desired light levels of 500 Lux has been set for

all the lux meters. In Fig. 3.13(a), Fig. 3.13(b), Fig. 3.13(
) and Fig. 3.13(d)

have been respe
tively represented: the evolution of the PSO �tness fun
tion Φ,
the evolution of the light levels Ln, the evolution of the power 
onsumptions Pm,

and the evolution of the dimming pro�les of the smart a
tuators dm.
In the se
ond test-
ase (Fig. 3.14) has been presented a more general setting

of the system, by imposing a 
ustom desired value for every light sensor and

smart lamp installed in the system (TargetL1 = 400[Lux], TargetL2 = 500[Lux],
TargetP1 = 2[W ], TargetP2 = 5[W ], TargetP3 = 3[W ] and TargetP4 = 4[W ]).
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Figure 3.13: Test-
ase 1: (a) Fitness fun
tion evolution, (b) light intensity, (
)

power 
onsumption and (d) dimming pro�les of the smart a
tuators in the regions

of interest.
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Figure 3.14: Test-
ase 2: (a) Fitness fun
tion evolution, (b) light intensity, (
)

power 
onsumption and (d) dimming pro�les of the smart a
tuators in the regions

of interest.

Finally, a third test-
ase is presented to preliminary show the optimization


apabilities with 
ontinuous time-varying environmental brightness ε, whi
h has

been measured every 6 minutes during this test.

Fig. 3.15 shows the time evolution of the measured lights [Fig. 3.15 (a)℄, the

measured 
onsumptions [Fig. 3.15 (b)℄ and the 
omputed dimming pro�les [Fig.

3.15 (
)℄ setting uniform 
ost fun
tion weights, Ln = 500 [Lux℄, and Pm = 60 [W

℄, whi
h is 40[%℄ lower than the nominal power of the lamp in order to for
e the

energy saving. The results point out the 
apability to maintain the variability

of light lower than 100 [Lux℄ in the regions of interest for more than 95 [%℄ of

the 3 hours test duration, even in presen
e of external environmental 
hanges

and with an average energy saving of 37 [%℄. The 
hanges of light during the

optimization take few millise
onds in order to make the pro
ess transparent to

the users.
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Figure 3.15: Light intensity (a), power 
onsumption in the regions of interest

(b), and optimal dimming pro�les of the smart a
tuators (
).
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Chapter 4

Opportunisti
 O

upan
y

Estimation System for Museum

Environments

Museum monitoring systems have been widely adopted for artworks 
onservation

tasks, through the adoption of di�erent monitoring te
hnologies. In this s
enario,

both wired and wireless sensors have been developed for a

urate measurement

of physi
al parameters, that is one of the main 
on
erns in museums. In order

to 
onserve both the artworks and the museum itself (in parti
ular for museum

in histori
 buildings), it is fundamental to 
ontinuously measure and 
ontrol

quantities like temperature, humidity, and light. Moreover, in this appli
ative

s
enario it is fundamental to minimize the visual impa
t for estheti
al reasons.

The wireless sensor network (WSN) te
hnology has been widely adopted in

a variety of appli
ation �elds [81℄-[85℄ and also in museum s
enario it exhibits

several suitable features, in
luding: the 
apability to integrate multiple and het-

erogeneous sensors on a single small WSN node, the absen
e of 
ables or wired

invasive infrastru
tures, the 
ooperation among the nodes for 
overage extension

and user intera
tion, simple and qui
k system s
alability, management of high

number of measurement points, high lifetime, and the low 
ost of the hardware

platform. The deployment of a WSN-based monitoring system in museum allows

periodi
al measurements of single artworks (e.g. paintings, s
ulptures, artifa
ts),

making them an a
tive element of the museum, always 
onne
ted and remotely


ontrollable [48℄[49℄.

The smart 
ooperation among the WSN nodes allows also to over
ome the

limitations proper of a single low-power and low-
ost devi
e, improving for ex-

ample the total 
overage of the system through the intelligent forwarding of the

information throughout the network towards the 
ontrol unit [86℄[87℄[102℄. In this

Chapter, the ar
hite
ture, the obje
tives and the implementation of the proposed

WSN-based museum monitoring system are presented. The main 
hallenges re-

lated to the deployment in histori
 buildings as well as the 
apabilities of su
h
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ba
kbone to adapt a

ording to the spe
i�
 
hara
teristi
s and requirements of

di�erent museums are des
ribed. [80℄

Furthermore, in this Chapter, to indire
tly estimate the presen
e of visitors

and the museum o

upan
y will be opportunisti
ally employed the environmental

data available for artworks 
onservation purposes. It is worth pointing out that

these information are of paramount importan
e for a wide set of lo
ation-based

servi
es, in
luding route planning, �ow management, exhibitors positioning, and

se
urity issues.
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FOR MUSEUM ENVIRONMENTS

4.1 System Ar
hite
ture

The ar
hite
ture of a WSN-based monitoring system 
an assume di�erent topolo-

gies (e.g., star-, tree- and mesh- topology) a

ording to the 
onne
tion and rout-

ing rules established among the network nodes. As an example, in the star-

topology one single node is in 
harge of the network 
oordination. This solution

is very simple but implies a limited wireless 
overage (i.e., limited to the single

node-node wireless link). A more 
omplex solution is represented by the tree-

topology, based on a rigorous hierar
hy de�ning the 
oordination points along

the di�erent tree bran
hes. Ea
h node has to 
ommuni
ate with its nearest par-

ent, namely the network node at the immediately higher level in the hierar
hy.

As another example, in the mesh-topology ea
h node is 
onne
ted to the others,

thus making the system more robust but 
ontemporarily more 
omplex, given

the high number of 
onne
tions and the 
onsequent 
onsumptions due to more


omputations and transmissions.

The ar
hite
ture of the proposed system is based on a hybrid topology 
om-

posed by two di�erent WSN node types: the an
hor node and the sensor node.

The main di�eren
e between these two node 
ategories is related to the spe
i�


fun
tionalities they are designed for. In parti
ular, a sensor node is mainly de-

voted to sense and a
quire environmental parameters through spe
i�
 sensors

dire
tly inter
onne
ted within the wireless platform. An
hor nodes are mainly

devoted to 
olle
t the information transmitted by sensor nodes and forward it

towards the 
ontrol unit. The adoption of an
hor nodes is mainly due to wireless


overage extension and network robustness improvement. Given these tasks, the

an
hor nodes have been designed to be 
onne
ted also to the power grid, sin
e

they have to keep 
ontinuously on the radio module, that usually represents the

highest power drain of the WSN node power budget. Syn
hronization strategies

among the nodes have been also implemented in order to limit the on-time of

the trans
eiver. The density of the an
hor nodes depends both to the number of

sensor nodes and to the dimension of the area to be monitored. Summarizing,

the deployment of the network has to take into 
onsideration multiple parame-

ters that are optimized during the planning phase on
e the museum requirements

and 
hara
teristi
s are known. Fig. 4.1 shows an example of the implemented

hybrid ar
hite
ture. The blue points represent the an
hor nodes while the green

ones are the sensor nodes. The 
ontrol unit is the element of the network in-

ter
onne
ted with the an
hor nodes through a multi-hop strategy and in 
harge

of 
olle
ting all the data a
quired by sensor nodes. The 
ontrol unit performs

pre-pro
essing tasks and stores data both lo
ally and on a remote database for

su

essive analysis.
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Figure 4.1: Hybrid WSN ar
hite
ture for 
omplex museum monitoring.

The museum s
enario depi
ted in Fig. 4.1 presents the typi
al 
hallenge of

thi
k walls of histori
 buildings. This aspe
t has to be 
arefully 
onsidered during

the network design pro
ess, in order to guarantee the right wireless 
ommuni
a-

tion of sensor nodes towards the 
losest an
hor node. In addition, the typi
al

low density (or absen
e) of power so
kets in museums in
reases the 
omplexity in

the design of the monitoring system and for
es the adoption of battery-powered

an
hor nodes, whi
h integrate mu
h more advan
ed power saving strategies to

in
rease the system lifetime redu
ing as mu
h as possible the maintenan
e in-

terventions. Summarizing, museums 
an be reasonably 
onsidered 
omplex s
e-

narios in whi
h wireless monitoring systems need to be 
arefully designed to

guarantee high reliability and robustness. [80℄
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4.2 Control Strategy

We 
an 
onsider a �nite set of K WSN nodes positioned at known positions

rk = (xk, yk, zk), k = 1, ..., K inside a monitored threedimensional domain Ω
(Fig. 4.2).

Figure 4.2: WSN deployment in a museum.

In ea
h sensor node there are some environmental sensors for the a
quisition

of the features ve
tor ρ(rk, t) ∈ ℜF×1
, where t is the sampling time-instant and F

the number of environmental features. The sensor nodes a
quire ea
h feature and

transmit them (e.g., the air temperature, the humidity, et
.) to the gateway node

through multi-hop wireless 
onne
tions, that will be �nally saved in a remote

database. The proposed algorithm runs on a remote 
ontrol unit and its goal is

to estimate the o

upan
y level OΩ(t) of the domain Ω, whi
h is de�ned as the

per
entage of the maximum number of people allowed within Ω a

ording to the

museum regulations, starting from the knowledge of the environmental feature

ve
tor. To this end, will be 
onsidered the following basi
 physi
al prin
iples of

indoor environmental behavior:

1. the hot air raises to the top when people o

upy the domain Ω.

2. the humidity saturates from below when people o

upy the domain Ω.

Let the WSN nodes be distributed so that zk ∈ [hi, i = 1, ..., I]; k = 1, ..., K,

h1 < h2 < ... < hI being the verti
al positions of the nodes. Furthermore, let

α(h, t) be the fun
tion des
ribing the verti
al pro�le of the temperature values,

while β(h, t) denotes the humidity pro�le fun
tion as shown in Fig. 4.3.
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(a) (b)

Figure 4.3: Verti
al distributions of (a) the temperature pro�le α(h, t), and (b)

the humidity pro�le β(h, t).

By 
onsidering that there is a 
onne
tion between the o

upan
y per
entage

and the slope of su
h distributions [i.e., a high o

upan
y 
auses an in
rease of

the positive slope of a α(h, t) as well as a de
rease of the negative slope of β(h, t)℄,
the �rst derivatives of the 
orresponding verti
al pro�les have been evaluated to

determine the so-
alled environmental o

upan
y indi
ator de�ned as

Γ(t) = λ
∂α(h, t)

∂h
− φ

∂β(h, t)

∂h
(4.1)

where λ and φ are suitable 
alibration 
oe�
ients that balan
e the impa
t of the

temperature and the humidity in ea
h museum environment. Even if it is 
lear

that Γ(t) in
reases with the museum o

upan
y and it tends to zero when the

domain is empty, the relation between Γ(t) and the a
tual museum o

upan
y

OΩ(t) depends on multiple and time-varying 
onditions in a nonlinear fashion

in
luding the building 
hara
teristi
s and materials, the air management systems,

and the external weather 
onditions, and so forth. Consequently, neither simple

des
riptive models 
an be adopted nor analyti
 
losed-forms are available. The

o

upan
y estimation problem at hand has then been addressed by re
urring to

the generalization 
apabilities of a learning-by-example strategy based on support

ve
tor ma
hine (detailed explained in Sub-Se
tion 4.2.1)[61℄. More in detail, in

this work has been adopted the support ve
tor regression (SVR) to evaluate a

linear regression fun
tion in a high dimensional feature spa
e where the data are

mapped through a nonlinear fun
tion Ψ[Γ(t)] = OΩ(t). A �nite set of R input-

output learning patterns (Γ(t), OΩ(t))r; r = 1, ..., R has been 
olle
ted to train

the SVR on
e and o�ine.

After the training phase, the SVR pro
esses the available feature ve
tors

ρ(rk, t) 
olle
ted by the WSN nodes in real-time, 
al
ulates the environmental

60



CHAPTER 4. OPPORTUNISTIC OCCUPANCY ESTIMATION SYSTEM

FOR MUSEUM ENVIRONMENTS

indi
ator Γ(t), and in the end provides the estimated o

upan
y level ÔΩ(t).
[105℄

4.2.1 Support Ve
tor Ma
hine

Learning-by-examples te
hniques are 
omputer-aided approa
hes based on ma-


hine learning [88℄ that are pointed at solving 
omplex real-world problems. In

our 
ase the �
omplexity� 
an be related to the need of 
omputing the solution

in real-time, not feasible by means of other methods. To address these prob-

lems, LBE strategies are 
hara
terized by two phases: the training phase and

the testing phase.

• In the training phase, a LBE te
hnique learns the behavior of a fun
tion

from a set of input-output pairs. The goal of the training is the 
reation

of a surrogate model able to emulate the real system.

• In the testing phase, the LBE te
hnique is applied to input samples not

observed during the training phase and is able to generalize what learned.

Support Ve
tor Ma
hine is a Learning-by-examples te
hnique built on a solid

theoreti
al framework, the statisti
al learning theory [89℄, in whi
h the de�ni-

tion of the 
ontrol parameters of ϕ(•) is formulated as a quadrati
 optimization

problem ensuring a global optimum. Moreover, the resulting model turns out

being sparse, sin
e only training samples asso
iated to non-vanishing 
oe�
ients

(i.e., the so-
alled �support ve
tors�) are exploited to make predi
tions, thus


ontrolling the model 
omplexity and avoiding over-�tting. [90℄

The SVM-based 
lassi�
ation approa
h 
an be formulated as the following

two-step pro
edure[61℄:

1. Determining a de
ision fun
tion Φ̂ that 
orre
tly 
lassi�es an input pattern

(Γ, m) (not ne
essarily belonging to the training set);

2. Mapping the de
ision fun
tion Φ̂{(Γ, m)} into an a posteriori probability

Pr{χ = 1|Γ}.

4.2.1.1 De�nition of the De
ision Fun
tion

At this step, we de�ne χm, m = 1, ...,M as the points of a two-dimentional

spa
e, whi
h status will be determined by the algorithm. Mathemati
ally, su
h

a problem formulates in the de�nition of a suitable dis
riminant fun
tion Φ̂
separating the two 
lasses, whi
h are labeled as χ = +1 and χ = −1. Sin
e

these 
lasses are nonlinearly separable, the de�nition of a non-linear (in terms

of the original data Γ) dis
riminant fun
tion is usually required as well as the

solution of an optimization problem where multiple optima (also lo
al optima)

are present.
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SVM de�nes a linear de
ision fun
tion 
orresponding to a hyperplane that

maximizes the separating margin between the 
lasses and it requires the solution

of an optimization problem where only one minimum there exists. More in detail,

the linear data-�tting is not 
arried out in the original input spa
e ℜ{Γ}, but
in a higher dimensional spa
e ℵ{ϕ(Γ)} (
alled feature spa
e) where the original

examples are mapped through a nonlinear operator, ϕ(•). The nonlinear SVM

lassi�er so obtained is de�ned as

Φ̂(ϕ(Γ, m)) = ω · ϕ(Γ, m) + b m = 1, ...M (4.2)

where ω and b are the parameters of Φ̂ to be determined during the training phase

and ϕ(Γ, m) is a non-linear fun
tion mapping the original input data, (Γ, m), to
a higher dimensional spa
e, 
alled feature spa
e, where the surrogate model 
an

be de�ned through a simple linear fun
tion (4.2) (Fig. 4.4).

The hyperplane so-de�ned 
auses the largest separation between the de
ision

fun
tion values for the �margin� training examples from the two 
lasses. Math-

emati
ally, su
h a hyperplane 
an be found by minimizing the following 
ost

fun
tion

Ω(ω) =
1

2
‖ω‖2 (4.3)

subje
t to the separability 
onstraints

ω · ϕ(Γ(n), m) + b ≥ +1 for χ(n)
m = +1, m = 1, ...,M

ω · ϕ(Γ(n), m) + b ≤ −1 for χ(n)
m = −1, n = 1, ..., N

(4.4)

In this sense, SVM 
an be 
onsidered as a kind of regularized network, as indi-


ated in [91℄.

However, sin
e the training data in the feature spa
e are generally non
om-

pletely separable by a hyperplane, sla
k variables (denoted by ξ
(n)
(m)) are intro-

du
ed to relax the separability 
onstraints in (4.4) as follows:

ω · ϕ(Γ(n), m) + b ≥ 1− ξ
(n)
(m)+ for χ(n)

m = +1, m = 1, ...,M

ω · ϕ(Γ(n), m) + b ≤ ξ
(n)
(m)− − 1 for χ(n)

m = −1, n = 1, ..., N
(4.5)

Su
h a pro
edure is justi�ed by the Cover's theorem, a key point in the SVM

methodology as indi
ated in [92℄.

Thus, the 
ost fun
tion in (4.3) turns out to be

Ω(ω) =
‖ω‖2

2
+

C
∑M

m=1

{
N−

(m) +N+
(m)

} ×
M∑

m=1





N+
(m)∑

n=1

ξ
(n)
(m)+ +

N−

(m)∑

n=1

ξ
(n)
(m)−





(4.6)

where N+
(m) and N−

(m) indi
ate the number of training patterns for whi
h χ(n)
m =

+1 and χ(n)
m = −1, respe
tively. The user-de�ned hyperparameter C 
ontrols

the tradeo� between the empiri
al risk (i.e., the training errors) and the model
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omplexity [the �rst term in (4.7)℄ to avoid the over�tting. In that 
ase, the

de
ision boundary too pre
isely 
orresponds to the training data. Thereby, the

method is unable to deal with data outside the training set [92℄.

Figure 4.4: Non-linear mapping of the input spa
e to the feature spa
e.

Moreover, to in
lude a priori knowledge about 
lass distributions [93℄, two

weighting 
onstants 
an be de�ned λ+ = C/
∑M

m=1 N
+
(m) and λ− = C/

∑M
m=1 N

−
(m)

[94℄, and (4.6) modi�es as follows:

Ω(ω) =
‖ω‖2

2
+ λ+

M∑

m=1

N+
(m)∑

n=1

ξ
(n)
(m) + λ−

M∑

m=1

N−

(m)∑

n=1

ξ
(n)
(m)− (4.7)

In order to minimize (4.7), it 
an be observed that a ne
essary (4.3) 
ondition

is that is a linear 
ombination of the mapped ve
tors ϕ(Γ(n), m)

ω =
M∑

m=1

N∑

n=1

{
α(n)
m χ(n)

m ϕ(Γ(n), m)
}

(4.8)

where α(n)
m ≥ 0, n = 1, ..., N , m = 1, ...,M are Lagrange multipliers to be de-

termined. Moreover, from the Karush-Khun-Tu
ker 
onditions at the optimality

[95℄, b turns out to be expressed as follows:

b =

∑M
m=1

∑Nsv

n=1

{
χ(n)
m −

∑M
q=1

∑N
p=1

{
α(p)
m ϕ(Γ(n), m) · ϕ(Γ(p), q))

}}

Nsv

(4.9)

Nsv being the number of patterns

(
Γ(n), m

)
for whi
h α(n)

m 6= 0 (
alled support

ve
tors). Sin
e support ve
tors lie on the hyperplane for whi
h (4.5) is satis�ed
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with equality, they are taken into a

ount for the 
lassi�
ation while the others

are negle
ted. Su
h an event re�e
ts the �sparsity� property of the SVM 
lassi�er

allowing the use of few input patterns. Substituting (4.8) and (4.9) in (4.2) yields

Φ̂(ϕ(Γ), m) =
∑M

m=1

∑N
n=1

{
α(n)
m χ(n)

m Θ
(
Γ(n),Γ, p,m

)}
+

+

∑M

m=1

∑Nsv

n=1

{
χ
(n)
m −

∑M

q=1

∑N

p=1

{
α
(p)
m Θ(Γ(n),Γ(p),p,m)

}}

Nsv

(4.10)

where Θ
(
Γ(i),Γ(j), p,m

)
= ϕ(Γ(i), p) · ϕ(Γ(j), m) is a suitable kernel fun
-

tion [96℄. Then, the de
ision fun
tion is 
ompletely determined when the La-

grange multipliers are 
omputed. Toward this end, the 
onstrained optimization

problem formulated in (4.6) and (4.5) is reformulated in a more pra
ti
al dual

form. The solution of the dual problem, whi
h is equivalent to the solution

of the primal optimization problem (4.3)-(4.4), appears in (4.11), subje
t to∑N
n=1

∑M
m=1 α

(n)
m χ(n)

m = 0, α(n)
m ∈ [0, λ−] if χ

(n)
m = −1 and α(n)

m ∈ [0, λ+] otherwise.

maxα{ΩDual(α)} =

= maxα





∑N

n=1

∑N

p=1

∑M

m=1

∑M

q=1

[
α
(n)
m α

(p)
q χ

(n)
m χ

(p)
q Θ(Γ(n),Γ(p),p,m)

]

2
−

−
∑M

m=1

∑N
n=1 α

(n)
m

}

(4.11)

Finally, sin
e ΩDual(α) is a 
onvex and quadrati
 fun
tion of the unknown

parameters α(n)
m , it is solved numeri
ally by means of a standard quadrati
 pro-

gramming te
hnique (e.g., the Platt's SMO algorithm for 
lassi�
ation [97℄, an

optimal implementation of the SMO algorithm is the �LibSVM� tool available

at http://www.kernel-ma
hines.org). More in detail, the SMO algorithm breaks

the large optimization problem at hand in a series of smaller ones 
hara
terized

by only two variables and solved through an e�e
tive updating formula [97℄, thus

indu
ing nonnegligible 
omputational savings. [61℄

4.2.1.2 Mapping of the De
ision Fun
tion Into the A Posteriori Prob-

ability

Con
erning standard 
lassi�
ation, the SVM 
lassi�er labels an input pattern

a

ording to the following rule [98℄:

χm = sign
{
Φ̂(ϕ(Γ, m))

}
, m = 1, ...,M (4.12)

Unlike standard approa
hes, the proposed method is aimed at de�ning an a

posteriori probability. Consequently, some modi�
ations to the standard SVM-

based 
lassi�
ation approa
h are needed. Toward this aim, a set of e�
ient
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solutions has been proposed (e.g., see [96℄, [99℄-[101℄) either based on a dire
t

training of the SVM with a logisti
 link fun
tion and a regularized maximum-

likelihood s
ore or based on a posterior �tting probability pro
ess.

The �rst 
lass of approa
hes usually leads to nonsparse kernel ma
hines and

requires a signi�
ant modi�
ation of the SVM stru
ture. In this paper, the a

posteriori probability �tting method [101℄ is adopted sin
e the use of a parametri


model allows a dire
t �tting of the a posteriori probability Pr{χ = 1|Γ}. More in

detail, su
h a model approximates the a posteriori probability through a sigmoid

fun
tion

Pr{χm = 1|(Γ, m)} = 1

1+exp{γΦ̂(ϕ(Γ,m)+δ}
, m = 1, ...,M

(4.13)

where γ and δ are unknown parameters to be determined.

To estimate the optimal values for the parameters of the sigmoid fun
tion, a

�tting pro
ess is performed. A subset of the input patterns of the training set is


hosen

{
(Γ, m, χm; m = 1, ...,M)(s) ; s = 1, ..., S

}
, where Φ̂(S)

m = Φ̂
(
ϕ(Γ(s), m)

)
.

Then, the following 
ost fun
tion is de�ned as in (4.14) and su

essively mini-

mized to de�ne γ and δ a

ording to the numeri
al pro
edure proposed by Lin

et al. (see http://www.
sie.ntu.edu.tw/~
jlin/, ) to solve the problems (i.e., the

use of a kind of Levenberg-Marquardt method for un
onstrained optimization) of

the implementation of Platt's probabilisti
 outputs method pointed out in [101℄.

Υ(γ, δ) = −
∑S

s=1

∑M
m=1





χ
(s)
m +1
2

log


 1

1+exp

(
γΦ̂

(s)
m +δ

)


+

+
(

1−χ
(s)
m

2

)
log




exp

(
γΦ̂

(s)
m +δ

)

1+exp

(
γΦ̂

(s)
m +δ

)









(4.14)

Summarizing, the SVM optimization problem needs three su

essive steps:

1. determining the hyperparameters array (model sele
tion), i.e., C and all

the parameters that de�ne the kernel fun
tion (e.g., the Gaussian σ2
width

when Gaussian kernels are used), by 
onsidering the �training dataset�;

2. determining the fun
tional parameters α and b starting from the �training

dataset� and solving the dual problem (4.11);

3. determining the a posteriori �tting parameters γ and δ starting from a

subset of the �training dataset� (validation phase);

4. testing the SVM on a di�erent dataset (test phase).

[61℄
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4.3 Experimental Validation and Results

The main obje
tive of museums is to make artworks a

essible to the publi


and at the same time to ensure the longterm safety and preservation of the


olle
tions. In the past, 
hart re
orders and hygrothermographs were the most


ommon instruments used to monitor various areas within a museum, but this

is rapidly 
hanging in the last years. With the di�usion of digital monitoring

devi
es, alternatives su
h as data loggers are more and more widely adopted.

Digital solutions minimize maintenan
e tasks, like the regular 
hange of 
harts

and the manual 
alibration performed by trained sta�. However, even if su
h

solutions represent an advan
e respe
t to analog re
ording devi
es, they still

present many limitations with respe
t to the emerging needs of museums that

will go beyond the environment monitoring. Indeed, the 
urrent trend is to

enhan
e the 
onne
tion of the museum with its audien
e, so that the visitors'

preferen
es 
an be exploited to provide additional �personalized� servi
es [104℄.

The experimental validation of a WSN-based infrastru
ture for the monitoring

of museum environment is presented. The hardware platform has been designed

and realized for the deployment in the �Sala dei 500�, the most important 
ham-

ber inside the Palazzo Ve

hio, Floren
e, Italy. The network of sensors a
quires

heterogeneous data, starting from the environmental parameters, with the aim

of reprodu
ing the museum 
hara
teristi
s through web-based appli
ation tools

and enhan
ing the intera
tions between museum and users. The software ar
hi-

te
ture has been developed to enable the integration of additional servi
es based

on the 
olle
tion of sensor data eventually fused together with other available

museum information. The installation of the system in a highly visited museum

has given the opportunity to test the 
apabilities and robustness of the WSN

te
hnology in dealing with the monitoring of large and 
rowded spa
es. The

details of the installation and the preliminary obtained results are here reported

as a representative test 
ase of the E-Museum platform validation. [103℄

4.3.1 WSN Node Prototype

The prototypes of sensor node and an
hor node typologies have been realized

integrating the transmitting/re
eiving unit, the antenna, the power subsystem,

the 
omputational unit, and the sensors within a small pa
kage of maximum size

90x65x25 mm. The dimensions have been redu
ed as mu
h as possible to limit

the visual impa
t in the proximity of the artworks. Fig. 4.5 shows a prototype of

a sensor node that integrates a temperature and humidity sensor, with a

ura
y

±0.3◦C, ±2%RH in the range -40

◦
C, +125

◦
C and 0-100%RH, a light sensor

sensible to light wavelength in the range 430-1100 nm, and �nally a three-axes

a

elerometer, with ±1.5g sensitivity.
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Figure 4.5: Prototype of the WSN sensor node.

The sensor unit 
an be easily modi�ed and integrated thanks to the available

expansions that has been made available on the main hardware platform (up

to 15 digital I/O lines and 4 12bit-ADC available for additional sensors). As

an example, high-pre
ision thermistors for surfa
e temperature measurements

as well as light sensors for UV radiation measurements have been designed for

su

essive integration.

The radio module is 
ompliant to IEEE 802.15.4 low-power standard, using

the sub-GHz referen
e working frequen
y f=868 MHz. This frequen
y guarantees

better propagation throughout the museum rooms respe
t to the widely di�used

2.4GHz ISM frequen
y band. Good 
overage performan
e are also guaranteed

by the maximum transmitting power that 
an be dynami
ally 
on�gured (up

to Ptx=12 dBm) and by the very high re
eiver sensitivity (down to Srx=-121

dBm).

On
e the devi
es have been installed, the remote 
ontrol of the wireless net-

work allows dire
t 
ontrol of every single WSN node, that 
an be 
on�gured

in real-time a

ording to the museum sta� expertise. The maintenan
e of the

nodes is minimized sin
e information about the hardware and battery status

are given only if an a
tion is required. The battery lifetime stri
tly depends by

the transmission rate. Assuming a time delay of 10 minutes between two su
-


essive transmissions, the duration is around 13-15 months using standard AA


ommer
ial batteries.
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4.3.2 Deployment in a Real Museum Environment

The WSN nodes have been deployed in museum areas a

ording to 
urators sug-

gestions in order to guarantee representative data measurements from the preser-

vation point of view. The high �exibility of the wireless infrastru
ture has been

fully exploited sin
e most of the measurement points are usually very di�
ult to

rea
h and the quality of the wireless 
onne
tions has been guaranteed through

the adaptive management of multihop network tipology. Ea
h wireless node is

equipped with a multi-sensor platform for the measurement of the desired pa-

rameters. Both temperature and relative humidity sensors are integrated in the

designed board. All the sensor data are measured through analog to digital 
on-

verters and lo
ally stored for pre-pro
essing before the transmission throughout

the wireless network. Power saving strategies have been 
arefully implemented

on-board in order to limit as mu
h as possible the 
onsumptions related both to

the sensors and the radio trans
eiver.

The implemented network allows bidire
tional 
ommuni
ations between the

nodes and the remote 
ontrol unit. Respe
t to standard WSN infrastru
tures

that enable only one-way data 
olle
tion from the sensors to the gateway, the

proposed system provides a set of 
ommands (e.g., on-o�, 
alibration, diagnosti



ommands) that the end-user 
an use to interrogate a spe
i�
 node or a set of

nodes. The a
quired data are 
olle
ted by a 
ontrol unit dedi
ated to data pro-


essing and storage. Data fusion strategies have been implemented to generate

an aggregated representation of the monitored domain. A user-friendly web tool

(Fig. 4.6) has been developed to enable both data visualization and intera
tion

with the system.

The proposed E-Museum monitoring system has been deployed in the �Sala

dei 500�, inside Palazzo Ve

hio, the town hall of Floren
e, Italy, (Fig. 4.7)

that represents one of the most signi�
ant publi
 spa
es in Italy. The �Sala dei

500� has a length L=52m and width W=23m. The 
eiling, that is adorned with

39 panels, is H=18m high. A set of N=22 wireless nodes has been installed at

di�erent heights a

ording to the monitoring requirements (Fig. 4.8).
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Figure 4.6: EMuseum Web Tool.
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(a) (b)

(
) (d)

(e) (f)

Figure 4.7: Network Installation inside the �Sala dei 500�.
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Figure 4.8: Sensing layers inside the �Sala dei 500�.

In parti
ular, three horizontal layers have been identi�ed at the heights h1 =
1.8 m, h2 = 5.0 m, and h3 = 18 m, 
lose to the s
ulptures, the wall paintings, and

the paneled 
eiling, respe
tively. Moreover, an additional node has been installed

outdoor [Fig. 4.7(f)℄ , on the building side 
lose to Piazza della Signoria, for

indoor-outdoor 
orrelation. The installation pro
edures have been 
arried out in


ollaboration with the trained sta� of the museum. In parti
ular, the nodes at

height h3 have been hanged with hand-line and raised up from the upper side

of the paneled 
eiling where only authorized te
hni
ians have a

ess. Finally,

the sensors have been positioned as 
lose as possible to the target artworks.

On
e all the sensors have been installed, the boot sequen
e has been exe
uted

through the implemented user 
ommands in order to a
tivate the a
quisition

with the desired time interval. The graphi
al interfa
e of the E-Museum web

tool has been a
tivated in order to visualize the pro
essed data and to enable

the intera
tion with all the online sensors. Diagnosti
 information like battery

status, internal CPU temperature, and wireless link quality 
an be requested

(Fig. 4.9).

In 
ase of node malfun
tioning or dis
harge, automati
 messages are sent to

the 
ontrol unit in order to plan the maintenan
e. Thanks to the data storage in

remote databases, even 
omplex analysis of the histori
 data 
an be performed

o�ine (Fig. 4.10). [103℄
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Figure 4.9: WSN Node Diagnosti
 Information.

Figure 4.10: WSN Node Histori
 Data.
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4.3.3 O

upan
y Estimation

In the following will be presented a sele
ted set of experimental results to show

the potentialities and the limitations of the proposed o

upan
y estimation al-

gorithm. The s
enario is 
omposed by the WSN des
ribed before: K = 22 nodes
installed at I = 3 di�erent heights, and ea
h node is equipped with environmen-

tal sensors able to measure F = 2 features: the temperature and the humidity

values. After the a
quisition, the environmental information are sent with a

sampling period of ∆t = 10′; the optimal trade-o� between the WSN power


onsumption and the ne
essary time-resolution for dete
ting the environmental

variations.

(a) (b)

Figure 4.11: Derivatives of daily verti
al pro�les of (a) the temperature, and (b)

the humidity.

For illustrative purposes, Fig. 4.11 shows the �rst derivative of the verti
al

pro�le of the temperature [Fig. 4.11(a)℄ and the humidity [Fig. 4.11(b)℄ for

di�erent o

upan
y 
onditions (low and high). As it 
an be experimentally

proved and observed, large values of

∂α(h,t)
∂h

and small values of

∂β(h,t)
∂h

o

ur at

the same time when the domain o

upan
y is high.

As for the environmental o

upan
y indi
ator Γ(t), it has been determined

by applying (4.1) and setting the 
alibration parameters to φ = 0.5 and λ =
0.5. Regarding the estimation of the o

upan
y index ÔΩ(t), radial basis kernel
fun
tions have been 
hosen for the SVR-based method trained with a set of r =
1008 known input-output data, that 
orrespond to one week of a
quisitions, and

setting the SVR metaparameters to ε = 0.1 and c = 10. Later, the experimental

predi
tion has been performed with unknown (i.e., input data not belonging to

the training set) test data related to three representative situations:

1. 
losed museum;

2. normal week-day;
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3. 
rowded museum during a spe
ial event.

Figure 4.12: A
tual and estimated indoor o

upan
y.

Fig. 4.12 represents the estimated o

upan
y levels and the real o

upan
y

trends as inferred from the museum ti
keting. The 
omparison underlines that

there is a good mat
hing between estimated and real o

upan
y per
entages in

any. As expe
ted, there is a shift between the estimated trends and the a
tual

o

upan
y dued to the time-delay of the environmental indexes in "re
ognizing"

the variations of the people presen
e. In reverse, this latter 
an be easily avoided


onsidering it during the training phase.

As expe
ted, there is a shift between the estimated trends and the a
tual

o

upan
y dued to the time-delay of the environmental indexes in "re
ognizing"

the variations of the people presen
e. In reverse, this latter 
an be easily avoided


onsidering it during the training phase. [105℄
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Chapter 5

Con
lusions

In this Chapter, 
on
lusions and future developments regarding the proposed

system are presented. In parti
ular, additional 
onsiderations are given regarding

the a
tual status of these systems.
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5.1 Con
lusions and Future Developments

In this thesis, innovative wireless solutions for the development of smart en-

vironments have been proposed. Adaptive, learning, 
ognitive and bio-inspired

systems as well as distributed and embedded 
ontrol and sensing have been stud-

ied, and tested as an important avenue for the medium to long term development

of the next-generation smart 
ities. Ea
h solution has been developed starting

from the 
ombination of wireless platforms with dedi
ated data analysis methods

to enable not only the data a
quisition, but also the adaptive de
ision support

a

ording to the real end-users needs in di�erent appli
ative s
enarios. The se-

le
ted systems have been experimentally validated in real test-sites to point out

the real-world appli
ability of the proposed wireless solutions.

Going into detail, this thesis has presented systems that belong to the so-


alled smart 
ities and smart building.

The 
on
ept of smart 
ities has been applied in power management, with a

wireless distributed system for smart publi
 light management. A demonstrative

prototype 
omposed by more than 700 
ontrolled lamps has been installed in

the 
ity of Trento, Italy, for the experimental assessment of the advantages and

limitations of the investigated solution. The introdu
tion of adaptive dimming

pro�les 
alibrated a

ording to the time varying 
onditions of the s
enario has

enabled a total energy saving 
lose to 30 [%℄ after a three-years measurement


ampaign. The optimization of the dimming rules may o�er even higher per-

forman
e and future a
tivities will be also fo
used on the integration of smart

methods for the automati
 and real-time 
alibration of the rules to support the

de
isions of the operators in the smart lighting system management.

On the other hand, the 
on
ept of smart building has been treated des
ribing

smart monitoring systems of indoor areas with wireless sensors. Parti
ular at-

tention has been given to the monitoring of museums as well as smart buildings

su
h as residential homes. First of all the energy saving problem in smart build-

ings has been re-elaborated as a multiplayer game and an appropriate strategy

based on game theory has been implemented in a De
ision Support System, that

helps the end user to 
hoose the best time slot to swit
h on his applian
es. The

proposed system has been preliminary assessed through both experimental and

numeri
al tests showing good performan
e in redu
ing the energy 
osts and PAR
(Peak to Average Ratio). Later, the energy saving problem has been applied to a

di�erent s
enario, the intelligent 
ontrol of lightning in a smart museum. In this

spe
i�
 
ontext, there are multiple goals: in
rease the visitor experien
e qual-

ity and minimize the power 
onsumption of the lighting system. This system

is 
omposed of a Wireless Sensor and A
tuator Network (WSAN) that a
quires

light and power quantities from the environment and 
ontrols the lamp intensity

in order to rea
h the goals of this system. The 
ontrol strategy is based on a

Parti
le Swarm Optimizer (PSO) that minimizes a multi-term 
ost fun
tion. The

obtained results point out the 
apability to �nd the optimal a
tuation strategy
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able to satisfy the 
onstraints on both energy saving (up to 37%) and the quality

of the artworks presentation (for more than 95% of the 
onsidered time). Finally,

the environment of the smart museum has been treated, by proposing a system

for the monitoring of environmental parameters in order to safeguard the status

of artwork, using the WSN te
hnology. Taking advantage of environmental in-

formation available from a WSN devoted to artwork 
onservation purposes, an

o

upan
y estimation algorithm has been implemented. By exploiting the gen-

eralization properties of a suitably trained SVR-based strategy, the evaluation of

the 
omplex relation between visitors o

upan
y and environmental parameters

has been performed and preliminary evaluated in a real-world experimental setup

(Sala dei 500, Firenze, Italy). The obtained results have 
on�rmed the poten-

tialities of the proposed approa
h for improving the awareness on the museum

usage, the museum quality-of-servi
e, and the se
urity issues related to the �ow

management.
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