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Abstrat

The study of the next-generation distributed systems for distributed moni-

toring and user loalization in smart environment is treated in this thesis. In

the last years, a growing amount of attention has been foused on the adop-

tion of Wireless Sersor Networks (WSN) as a salable and �exible bakbone to

implement innovative servies in smart environments, like smart building and

smart ities. In this framework, this thesis will desribe heterogeneous solutions

to improve the supervision, ontrol, monitoring, and management of publi and

private spaes. All these systems exploit the wireless ommuniation and sensing

in ombination with smart methodologies to provide advaned servies to the end

user in many appliation �elds, from environmental monitoring to energy man-

agement in smart distrits or private and publi buildings, up to road seurity

and indoor oupany for management and seurity reason. The data aquired

by the WSN tehnology are used as input of ustomized strategies and algorithms

developed for the real-time proessing, fast analysis and result visualization.
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Chapter 1

Introdution

In the last deade, the vision of widespread omputing as an emerging model

for the next-generation smart systems [1℄ has beome more and more relevant

thanks to the inrease of omputing and ommuniation apabilities as well as in

interations with end users. The miniaturization of portable and multi-features

devies has ontributed to the di�usion of terminals able to ommuniate in an

ative way with distributed networks for ommuniations and information aqui-

sition. In this framework, the Wireless Sensor Networks (WSNs) [2, 3℄ have been

investigated as enabling tehnology for next generation intelligent networks and

servies that an satisfy the arising user needs. One of the main harateristi

of WSNs devoted to smart systems is that, to overome the limited apabilities

of eah single sensor node, ooperative shemes throughout the whole network

an be implemented to enable the solution of even omplex tasks [6℄. Moreover,

heterogeneous funtionalities an oexist thanks to the multi-sensor harater-

isti of eah node, by enabling multiple appliations within the same hardware

bakbone. For all the well-known features of the WSN tehnology, has been in-

vestigated the design of a ross-layer arhiteture for the implementation of smart

systems where heterogeneous and multiple funtionalities an be integrated for

the solution of di�erent user needs in smart environments.

For this reason this work deals the WSNs for the distributed monitoring of

heterogeneous parameters and its advaned appliation in two prinipal smart

environments: the Smart Cities and the Smart Building.

The onept of Smart Cities an be applied to di�erent outdoor appliative

senarios; in this work road seurity and publi light management systems are

proposed. In the ontext of road seurity a system for the monitoring of roadsides

for the real-time detetion of wildlife road-rossing events has been realized using

wireless sensors equipped with low-ost Doppler radars. This solution aspires to

alert the approahing drivers to prevent the risk of wildlife-vehile ollisions. The

main hallenge of the system is to proess the aquired radar signals in real-time

to ativate the road signs only when atual events our, in order to redue the

users habit-forming to �xed signs. On the other hand, in the ontext of pub-
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li light managements, a system for the smart management of publi lighting

is proposed. This system is aimed at reduing the power onsumptions of the

street lamps. The distributed and adaptive ontrol of the dimming pro�les has

been investigated taking in onsideration the time-varying environmental ondi-

tions. The presented system is able to ontrol eah single lamp thanks to the

integration of smart wireless devies in the existing light poles. Both these sys-

tems have been installed in experimental sites, in order to test and evaluate their

performanes. The road seurity system has been deployed along a real streth

of road, in Cavalese (Trento), in the north of Italy, while the publi lighting

management system has been installed in di�erent areas of the ity of Trento, in

ooperation with the muniipality of Trento, whih is responsible for the ontrol

and maintenane of the publi lighting. The advantages and the limitations of

the proposed solutions will be experimentally assessed and their performanes

will be evaluated.

Moreover, the smart monitoring of indoor areas (Smart Building) with wire-

less sensors will be analyzed, by presenting systems developed in two di�erent

appliation �elds: onsumption optimization in smart environment and oppor-

tunisti oupany estimation in smart museum.

Nowadays, e�ient energy saving strategies and solutions are very important

to inrease user awareness of energy resoures management in soial and eo-

nomi aspets. The traditional power grid needs new monitoring and ontrol

tools for the optimal management of produers and onsumers through adaptive

energy distribution shemes. The issue of energy onsumption redution an be

addressed at di�erent sales, ranging from the management of single home ap-

plianes up to building, distrit, and ity level. In this work, a wireless system

arhiteture for the distributed monitoring and intelligent supervision of energy

onsumptions in smart home is proposed. The energy information related to a

multi-user senario are aquired by distributed wireless sensors and proessed

by a deision-making support tool aimed at the adaptive optimization of user's

energy-habits and suessive energy ost redution. In a smart museum environ-

ment an intelligent lighting system ontrol is proposed. It treats multiple and

ompeting targets, suh as the energy saving as well as the quality of the visitor

experiene. In this ontext, to adaptively ontrol the light intensity starting from

the real-time measurement of the energy onsumption and brightness onditions,

an evolutionary optimization strategy is proposed. The system is implemented

using low-ost wireless devies and it has been experimentally validated in a real

indoor test site.

In a partiular environment like a museum, beyond the ontrol of a light-

ing system, the artwork onservation is one of the most important purposes to

reah. For this reason, an environmental monitoring system designed for mu-

seum senarios is proposed in this work. Nowadays environmental monitoring

systems are largely employed in order to measure parameters for artworks on-

servation and to ontrol exhibitions in order to avoid and prevent ritial events,

2



CHAPTER 1. INTRODUCTION

as for example damages or theft. In this ontext the WSN tehnology allows the

non-invasive integration of suh monitoring funtionalities in omplex museum

senarios, that an be hosted also in histori buildings. The proposed system

deals with the problem of monitoring multiple physial parameters of interest

for museum urators, exploiting the advantages of a pervasive, ooperative, and

�exible WSN arhiteture. Moreover, a salable and low-ost solution for ou-

pany estimation in museums is here proposed by exploiting in an opportunisti

way the wireless arhitetures already deployed for artworks onservation pur-

poses. The information about the presene and the distribution of the visitors

is produed throughout the analysis of the environmental parameters aquired

by the proposed monitoring system. Indeed, the relationships between museum

fruition and environmental indexes are dedued by a learning-by-example teh-

nique. An experimental appliation of this system in a real museum site is also

presented and disussed to give a proof of the reliability and e�ay of the pro-

posed approah.

Thesis outline

The thesis is organized as follows. Firstly, the general arhiteture of all the

systems is disussed, by analyzing the Wireless Sensor Network tehnology in

Chapter 2, with some example of distributed monitoring systems developed in

the smart ity ontext. Then, the problem of distributed monitoring for energy

onsumption optimization in smart building is presented in Chapter 3, with a

detailed desription of two systems for onsumption optimization: a Distributed

Monitoring for Energy Consumption Optimization in Smart Building and Wire-

less Smart Lighting for Energy-E�ient Museums, analyzing the tehnologial

and methodologial features of eah system. In Chapter 4 the spei� museum

environmental monitoring problem is analyzed and a monitoring system for this

type of environment is proposed. In this Chapter an opportunisti oupany

estimation system will be proposed too. Then the �nal onlusions are drawn in

Chapter 5.
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Chapter 2

System Arhiteture

In this Chapter, the Wireless Sensor Network (WSN) tehnology is presented.

This tehnology is used for the distributed monitoring of heterogeneous parame-

ters and is haraterized by small, low-ost, and autonomous devies that ollet

data about physial quantities in a distribute and pervasive fashion. This teh-

nology has been applied to many systems in order to remotely ontrol parameters

and atuate ations when these parameters assume partiular values, by notify-

ing a message to an operator or performing ations that modify them. After the

introdution to this tehnology, two WSN prototypes developed in the ontext

of Smart Cities during my Ph.D. at ELEDIA Researh enter will be presented.

2.1 Wireless Sensor Network

The Wireless Sensor Network (WSN), is a tehnology based on a network of tiny,

low-ost, low-power, and autonomous devies (alled nodes) that use sensors to

monitor physial quantities [4, 5℄ in a ooperative way. Reently, WSNs have

ahieved muh attention in many researh areas for their ability to enhane the

interations between environment, humans, and mahines.

If we ompare the WSN to traditional ommuniation networks, they do not

have any physial infrastruture that restrits their topology. These networks

ombine simple wireless ommuniation tehniques, minimal omputation faili-

ties, and the sensing of the physial environment into a new form of network [6℄.

Moreover, low-ost hardware allows the pervasive and dense deployment of many

nodes in the physial environment, with a salability property provided by the

�exible network arhiteture. Unlike other large and medium-sale observation

tehnologies, WSNs not only sense the environment but also provide some inter-

ations by exploiting the funtionality of a set of so-alled atuator nodes. These

systems are known as Wireless Sensor Atuators Network (WSAN) [7℄, and are

haraterized by sensors that ollet information about the physial world and

transmit them to some ontrollers. Finally, the atuators will perform suitable

ations to in�uene the physial behavior of the system under test. [3℄
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2.1.1 The Arhiteture of a WSN

A WSN typially onsists of a network of sensor nodes, that measure the moni-

tored parameters, and a gateway (alled also sink node), that ollets these pa-

rameters and provides the onnetion with the the external worls (i.e., through

Internet). Eah sensor node is typially equipped with: a radio transeiver or

other wireless ommuniations devie, a small miro-ontroller, and an energy

soure. The size of the single unit an vary from about ten entimeters to sev-

eral millimeters, but future implementations will probably be haraterized by

smaller size, thus allowing a more dense deployment in the physial environment

[8℄. In order desribe a typial WSN, we will fous mainly on the harateristis

of a sensor node and on the network arhitetures. For a more detailed overview

about the arhitetures and tehnologies for the Wireless Sensor Networks, the

interested reader an refer to [6℄, [5℄ and the referenes ited therein. [3℄

2.1.1.1 Wireless Sensor Node

A wireless sensor node onsists of a proessing unit with a storage devie, one or

multiple sensors, a radio unit, and a power unit, as represented in Fig. 2.1.

Eah subsystem of these nodes is designed in order to minimize the energy

onsumption, beause the WSN typially operates for enough long time periods

in harsh environments. For the same reason, the proessing unit is omposed by

a small proessor with limited omputational power. This proessor aims at the

areful management of the limited power resoures (e.g., by ativating the sensing

and radio units only when needed) and takes are of the reeption, transmission,

storage and proessing of data. As an example, the TinyNode 584 is equipped

with a Texas Instruments MSP430 miro-ontroller [9℄. This miro-ontroller

features low power mode and it is optimized to ahieve extended battery life in

measurement appliations. Suh a miro-ontroller is haraterized by a 16-bit

RISC CPU with 16-bit registers, 10 kB of RAM, and 48 kB of �ash memory.

The digitally ontrolled osillator (DCO) allows wake-up from low-power mode

to ative mode in less than 6µs and may operate up to 8 MHz. The MSP430

has a urrent onsumption of 0.2µA in the sleep mode and 2.5 mA in the ative

mode, in typial operating onditions.
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Figure 2.1: Arhiteture of a wireless sensor node.

Regarding the sensing unit, it onsists of one or multiple sensors that onvert

a physial quantity into an eletri signal, that an be proessed and stored in

a memory. For this devie a typial sensing tasks an be the measurement of

temperature, light, vibration, sound, and radiation. Reently, innovative sensors

have appeared thanks to the exploitation of miro eletro-mehanial systems

(MEMS) [10℄.

The data exhange is the most expending operation for a WSN node. The

authors of [11℄ state that the power required to transmit one bit of informa-

tion for a 100 m distane is equivalent to the amount of power needed for the

implementation of the 3000 instrutions alulation. For this reason, the radio

transeiver is probably the most ritial devie in the design of a sensor node.

Sine node-to-node ommuniations are arried out mostly in a short range,

power onsumptions related to transmission and reeption are on average similar

[6℄. Data exhange typially requires a start-up phase after the ativation of

the radio unit, mostly related to the lok time of the phase-loked loop (PLL).

During this phase, whih may take a time similar to the duration of the trans-

mission phase, a non-negligible amount of power is wasted. It may be onvenient

to swith o� the radio unit after data transmission in the ase sporadi sens-

ing, whereas start-up time ould be responsible for wasting power in onstant

event monitoring. Regarding to the power onsumption, the radio module of the

TinyNode 584 requires 62 mA in the transmit mode (at the maximum power),

14 mA in the reeive mode, and 4 µA in sleep mode. Conerning the speed of

data exhange, sensor nodes are haraterized by data rates up to 250 kbps in
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the 2.4 GHz ISM band when using IEEE 802.15.4 protool or up to 40 kbps

within the 868 MHz ISM band. Anyway, data rates depend on the antenna gain,

on the nodes transmission power, on the bakground noise, and on the value of

the Signal-to-Interferene-plus-Noise Ratio (SINR) at reeiver.

For these reasons, the power soure has to be hosen taking into onsidera-

tion a mathematial model for radio power onsumption [12℄. Usually, in many

appliation environment, power soures annot be reharged or replaed and on-

sequently their design an de�ne the sensor node and network lifetime. As an

example, the sensor node TinyNode 584 with a subsoil thermometer and �ve soil

moisture sensors may require up to 120 mA at 6 V for about 2 s in the ative

mode and 80 µA for the remaining duty yle time. If the sampling rate is equal

to 10 minutes and its power soure is a 1.2 Ah battery, the lifetime of the unit

is limited to three months. However, thanks to the use of an energy savenging

tehnology, suh as a solar panel providing 250 mA at 7 V, the lifetime of the

wireless node an be potentially extended to in�nite (limited only by the max-

imum number of the battery harge/disharge yles). Reently, thanks to the

advanes in nanotehnologies and MEMS, more e�etive energy savenging (or

harvesting) solutions have been developed in order to reharge the power soure

by means of the exploitation of the physial environment where the nodes are

deployed [13℄. Although this tehnologies an generally provide a limited amount

of power, they appear to be ompatible with WSN beause of the low-ost and

small size of eah sensor node. [3℄

2.1.1.2 Network Arhiteture

The power onsumption of the sensor node an be in�uened also by the network

arhiteture.

As shown in Fig. 2.2, the simplest network arhiteture is the so-alled �star�

topology, where all nodes ommuniates only with the gateway. This on�g-

uration is used for simple senarios, where the spatial density of the nodes is

limited and the overage of the gateway reahes all the sensor nodes of the ne-

towrk (e.g., when sensor nodes are in line-of-sight of the gateway). Moreover,

the �star� topology is mainly used when nodes need only to transmit information

to the gateway. Despite the arhitetural simpliity, this arhiteture involves an

important drawbak in terms of network reliability, beause the gateway is a sin-

gle point of failure and is usually haraterized by a greater power onsumption

[12℄.
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Figure 2.2: Network arhitetures in a WSN: (a) �star� topology-nodes ommuni-

ates only with the gateway, (b) �mesh� topology-data transmission is performed

through node-to-node ommuniations, and () �luster� topology-the network is

subdivided into lusters.

A more e�etive solution to deal with omplex senarios onsists in the use of

�mesh� topologies, where data exhange is mainly arried out by means of node-

to-node ommuniations. This arhiteture is haraterized by a uniform power

onsumption and provides a high degree of reon�gurability and salability, but

requires omplex and omputationally expensive routing algorithm in order to

ontrol data transmission [6℄, [14℄.

To manage the data transmission and optimize the power onsumption, the

sensor nodes an be organized using hybrid arhitetures where the entire net-

work is subdivided into lusters oordinated by the �luster heads� [12℄. The

�luster head� seletion and partitioning proedure are usually real-time and

ontinuously performed, taking into aount the network topology as well as the

energy/signal level of eah unit. [3℄
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2.2 System Prototypes

Nowadays, the smart ity paradigm is attrating more and more attention of

both researhers and industries, thanks to the enormous advantages that smart

tehnologies and servies an provide to itizens and publi administrations [21℄.

Among the emerging topis, those related to seurity, surveillane, mobility,

health, and energy have been mostly investigated beause of the immediate and

evident impat of innovative information ommuniation tehnologies (ICT) as

applied to smart ity servies [22℄.

In this Setion will be proposed two systems related to this topi:

1. Road seurity: wildlife road-rossing event detetion system;

2. Power management: wireless distributed system for smart publi lighting

management;

2.2.1 Wildlife Road-Crossing Event Detetion System

Wildlife monitoring is attrating more and more attention during the last deade.

Most of the studies are foused on the understanding of animal behavior, their

physiology, soialization, and di�usion [17℄[18℄[19℄. To this end, researhers have

proposed many autonomous monitoring systems mainly based on wireless sensor

network (WSN) infrastrutures [2℄[3℄. [15℄

Here a low-ost and salable wireless system for the prevention of wildlife-

vehiles ollisions is proposed. In partiular, the nodes of a WSN have been

ustomized with dediated Doppler radars for the real-time detetion of wildlife

presene on the roadsides. The detetion of suh event triggers the adaptive alert

noti�ation to the approahing drivers (through smart light road signs).

A system prototype has been developed and deployed in a real test-site for

the performane assessment in real operative onditions. Long-term testing has

been performed to verify the robustness of the system in di�erent seasons and

weather onditions. The number of deteted events has been statistially ana-

lyzed and ompared with the ground truth aquired by means of a surveillane

video reording system. [16℄

2.2.1.1 System Arhiteture

The wireless network is omposed by four node typologies aording to the re-

quested funtionalities. The gateway nodes are dediated to the data olletion

and forwarding to the ontrol unit, that implements the proessing and atuation

strategies. The anhor nodes are devoted to the wireless network management

through multihop arhiteture for overage extension along the roadsides. The

atuator nodes reeive atuation ommands when the ontrol unit identi�es a

warning situation and turn on the light signals on the roadsides aordingly. Fi-

nally, the sensing nodes integrate the heterogeneous sensors for the detetion of
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moving animals. They are deployed on the roadsides and their position de�nes

the seurity zone.

Eah node is equipped with two Doppler radar modules (working frequeny

fc, maximum overage rc, horizontal and vertial aperture [ho
c, v

o
c ]) with di�erent

orientations for improved detetion in terms of horizontal aperture. The output

signal of the radars is multiplexed in time (through an hardware swith) and a

single output data stream xn(tk), n = 1, ..., N being the node index, is sampled

at time instants tk = t0 + k∆t, where t0 is the boot time instant, k = 1, ..., K
is the time sampling index ( K being the maximum data samples that an be

loally stored on the devie memory), and ∆t is a onstant time interval a-priori

de�ned aording to the internal lok performane. One tk = K∆t, the older
data are iteratively overwritten in order to have a loal opy of the last newest

K samples. A �ltered version of the raw radar signal is suessively proessed

by the ustomized �lter funtion Φ(•) has been introdued to disard the un-

desired movements (i.e., the too slow and the too quik target movements) and

to enhane the radar signature of the desired target through signal reti�ation

and ampli�ation. The �ltered signal is then analyzed by a alibrated hardware

thresholder that provides in output the following binary behavior

δ(tk) =

{
1 if x̂n(tk) ≥ Xth

0 if x̂n(tk) < Xth
(2.1)

where Xth is a alibrated triggering threshold .

If δ(tk) = 1 the WSN node redues the sampling period ∆t, ativates the
wireless transeiver, and transmits a saled version of the �ltered signal stored

on the loal memory. The transmission stops when δ(tk) = 0. Suessively, the
transeiver is shut down and ∆t is restored to its default value. Transeiver

modules omplies with the IEEE 802.15.4 standard, operating at frequeny

ftx = 2.4GHz and equipped with monopole antenna for omnidiretional radi-

ation pattern on the horizontal plane.

The transmitted data are reeived by the gateway node and forwarded to the

remote ontrol unit for additional real-time proessing. In partiular, temporal

and spatial orrelation of the reeived data are performed in order to estimate

additional features of the wildlife movement and to evaluate o�ine statistis

about the road risk-level.

In order to aurately assess the system performane for longterm test peri-

ods, the ground truth of the wildlife presene within the monitored road-sides has

been also aquired. Toward this end, an infrared video-surveillane system has

been installed in order to reord the monitored road during the whole measure-

ment ampaign. The output of the veri�ation system is a binary information

related to the absene/presene of a target within a prede�ned area (along the

road-sides) of the video reordings. Aordingly, the atual status of the se-

nario an be oupied if a target oupies the seurity area, or empty, otherwise.

The omparison between the binary funtion and the ground truth provides a
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�rst performane evaluation in terms of false positive and false negative and

detetions. [16℄

2.2.1.2 Experimental Validation

The wildlife monitoring system presented in this Sub-Setion has been deployed

along a real streth of road, in the Alps region near Trento, in the north of Italy.

The monitored test-site is 300m long [Fig. 2.3(a)℄. N = 21 sensor nodes have

been deployed along the test site, on the two sides of the road as shown in Fig.

2.3(b).

(a) (b)

Figure 2.3: Experimental test-site: (a) wildlife road-rossing and (b) seurity

area of the WSN-based system.

Two Doppler radar sensors, haraterized by Fc = 24GHz, rc ≡ 15m and

[ho
c , v

o
c ] = [80o, 32o], have been integrated in eah sensor node and properly ori-

ented to obtain an horizontal aperture of about 160o. This allows the de�nition of
the so-alled seurity area [Fig. 2.3(b)℄. The devies have been installed diretly

on the road delimiters, whih are plaed 20m far from eah other (as stated by

the Italian regulation).

The data-sampling rate is set to the default value of ∆t = 250ms [when

δ(tk) = 0℄ , and redued to ∆t = 30ms [when δ(tk) = 1℄. The transmission

threshold has been set to Xth = 30% .

In Fig. 2.4, a sensor node deployed in the experimental test-site is shown. As

it an be notied, two solar panels have been integrated on the lateral sides of

the prototype, in order to extend the lifetime of the battery.
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Figure 2.4: WSN node installed on road delimiters of the experimental test-site.

As a representative example of the experimental validation, a real event de-

teted by the monitoring system is reported in Fig. 2.5. In partiular, a snapshot

of the ground truth aquired by the infrared veri�ation system is shown in Fig.

2.5(a). The seleted piture represents the atual position of the target moving

towards the left side of the road (and entering in the radar overage of the node

n = 2). The orresponding saledsignal

˜̃x2(t) ompared with the ground truth

ξ(t) is reported in Fig. 2.5(b).

The omparison shows a good mathing between the atual event and the

measured signal, thus on�rming the good apability of the system to detet the

target. In partiular, the sensor node has deteted the target presene with a

maximum delay of about 250ms, proportional to the sampling rate ∆t.

Finally, regarding false positive and false negative analysis, Fig. 2.6 reports

the number of atual daily events Ψ ompared to the deteted ones, during a 9-

days measurement ampaign. It may be notied that 3 false-negative detetions

happened during the investigated period, thus leading the orret detetion rate

to 77%. False-negative detetion are mainly related to target speed, whih are

�ltered by the funtion Φ(•) in ase of too slow or too fast target movements.

Further alibration proedures are under investigation to limit the false-negative

detetion and inrease the system reliability. [16℄
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(a) (b)

Figure 2.5: Event detetion at the experimental test-site: (a) atual road-rossing

event and (b) related measured data.

Figure 2.6: Statistial analysis of the system detetion apability.
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2.2.2 Wireless Distributed System for Smart Publi Light-

ing Management

For energy-aware appliations, the framework of smart grid is rapidly growing

together with the upgrading of the eletriity distribution and management. Ad-

vaned ommuniation apabilities and improved ontrol strategies are expeted

to a�et all areas of the eletri power system, from the generation to the distri-

bution. Among the appliative �elds related to the smart grid, the smart lighting

is a representative example where the integration of new ICT tools is providing

substantial energy saving [23℄[24℄. Both indoor and outdoor lighting servies

have been improved by modern industrial solutions inluding e�ient lamps, in-

novative eletroni ontrols, soft-start systems, and smart atuation strategies

[25℄. Besides the improvement in the lighting devies, one of the main hallenges

to enable energy saving is the pervasive and adaptive ontrol of the lighting net-

work. Many methodologial solutions have been proposed for in-building lighting

management, where the energy saving has been obtained by dimming the lamps

aording to the indoor lighting onditions and to the user needs [39℄. However,

di�erent strategies are required for the ontrol of outdoor street lighting sine

other onstraints exist. The high spatial extension, the huge number of lamps,

the harsh environment onditions, the strit regulations on the quality of servie,

the high spatial variability of urban senarios, the heterogeneity of the existing

lighting networks, make the smart ontrol of the publi lighting a hallenging

task.

Even if di�erent tehnologial solutions are available, it has to be notied that

the osts for designing and deploying from srath a new street lighting system is

often too high for both private and publi entities. Starting from this assumption,

the inexpensive, salable, and non-invasive solutions able to onvert an existing

system in a more energy-e�ient one are preferred and onsidered the �rst step

for the short-term ost saving. Aordingly, the wireless sensor network (WSN)

tehnology represents a suitable alternative to enable the low-ost distributed

monitoring and ontrol. [20℄

2.2.2.1 Appliation Requirements

The loal publi authority is responsible for the lighting management and one

of the main onerns is to redue the operation osts with minimum �nanial

investments. This �nal objetive determines the requirements to be satis�ed by

the proposed ontrol system, whih inlude:

1. the easy integration in the existing street lamps and abinets (Fig. 2.7);

2. the absene of additional wiring or substitution of infrastrutures and fa-

ilities.
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Figure 2.7: WSN node installed in the streetlight pole.

At the same time, the proposed ontrol system has to guarantee high robust-

ness and reliability sine the publi lighting network o�ers a fundamental servie

to the itizens. The wireless network has to support hundreds of nodes and to

guarantee reliable wireless links even in very omplex urban environments. The

adopted WSN nodes have to ontrol the on/o� sequenes as well as the dimming

pro�les of the street lamps, to measure the power onsumptions, to monitor the

status of the lamps, and to handle the data exhange with the network. More-

over, besides the power onsumption monitoring for energy saving, the system

arhiteture may beome an open bakbone for other additional servies in the

framework of the smart ities and ommunities. To this end, both the hardware

and software omponents are designed to manage additional sensors and features

aording to next generation servies for the itizens. [20℄

2.2.2.2 Wireless Network Features

The smart lighting system is based on a lustered mesh WSN omposed by:

K =
N∑

n=1

In (2.2)
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wireless nodes, where i(n) = 1, ..., In, n = 1, ..., N are the nodes belonging to the

lusters managed by the N oordinators, as pitorially shown in Fig. 2.8.

Figure 2.8: WSN-based smart lighting system arhiteture.

The oordinator nodes are interonneted to the gateway devies dediated

to the data forwarding from the wireless network toward the existing wired in-

frastruture. The spatial distribution of eah luster n = 1, ..., N depends on

the geographial properties of the onsidered area as well as the eletrial inter-

onnetion of the street lamps. As a basi rule, the lamps interonneted to the

same eletri line belong to the same luster. However, the lusters an be reon-

�gured aording to the time-varying harateristis of the urban environment

and the onsequent hanges in the wireless signal propagation.

The WSN nodes have been plaed within the struture of the light poles,

lose to the lamp and to the eletroni ballast for easy aess during the standard

maintenane operations. The antenna an be internal or external aording to

the material properties (plasti or metalli) of the outer ase, as represented in

Fig. 2.9.

17



2.2. SYSTEM PROTOTYPES

(a)

(b)

Figure 2.9: Internal (a) and external (b) antenna installation.

The robustness of the wireless network is guaranteed when eah node is on-

neted with more than one neighbor node, and the optimal network on�guration

is ahieved when at least three neighbors are within the wireless overage. Suh

an optimal on�guration is easily satis�ed in dense urban areas where many in-

tersetions among streets and alleys exist [Fig. 2.10(a)℄ but turns out to be more

omplex in rural areas where linear streets are more ommon [Fig. 2.10(b)℄.

In this on�guration, the antenna positioning and the network eletromagneti

planning have been arefully onsidered to guarantee a robust and stable wireless

overage. [20℄
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(a)

(b)

Figure 2.10: Test sites in dense urban area (a) and in rural area (b).

2.2.2.3 Node Control and Power Metering

Eah WSN node handles the ommon street lighting operations, inluding the

on/o� and the dimming of the interonneted lamp. Moreover, the power on-

sumption is measured in real-time by means of the on-board power metering

subsystem. Respet to the standard metering solutions, whih usually measure

the total power onsumption of the whole eletri line, the power information of

eah individual lamp is aquired, thus enabling the analysis of the lamp diag-

nosti information, suh as its voltage, the lamp ignition failure, or the lifetime

statistis. The implemented onboard �rmware provides di�erent working modal-

ities aording to the status of the network. For example, if the ontrol unit goes

down beause of system failure, the nodes automatially swith to the o�-line

mode and manage the lamps applying a prede�ned sheme in order to guaran-

tee the minimum working apability and quality of servie. The �rmware of

the nodes an be updated over the air sending simple ommands from the main
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ontrol unit, avoiding the maintenane intervention diretly on the streetlight

poles. The remote ontrol unit is interonneted to the WSN gateways through

a wired network and hosts the software stak for data proessing, storage, and

visualization. The network managers an aess the system from remote termi-

nals through user-friendly tools and interfaes implemented at the appliation

layer. Among the implemented features, the software enables the loalization of

all the monitored streetlights on a geographi information system (GIS) and all

the information related to power onsumption, diagnostis, sensor data, lamp in-

formation are easily aessible. The power dimming pro�les an be on�gured for

single or group of lamps providing high �exibility and timely update aording

to the requirements or to the environmental hanges. The environmental bright-

ness βm = [βm(t); t = 1, ..., T ], m = 1, ...M , is measured at disrete time intervals

t = 1, ...T by a set of M lux meters deployed in multiple positions of the moni-

tored streets and interonneted to the gateways. The environmental brightness

onditions βm, m = 1, ...M , and the energy onsumptions of eah single lamp

Ek, k = 1, ...K, represent the input data of the ontrol method, while the output

is the set of dimming pro�les δ = δk, k = 1, ..., K, where δk = [δk(t); t = 1, ..., T ].

The objetive of the ontrol method is to identify the best pro�les that min-

imize the ost funtion:

Ω(δ) = a

[
1

M

M∑

m=1

βm(δ)− β̂m

β̂m

]
+ b

[
1

K

K∑

k=1

Ek(δ)− Êm

Êm

]
(2.3)

where a and b are user-de�ned weights, β̂m =
[
β̂m(t); t = 1, ..., T

]
, m = 1, ...M ,

are the desired brightness values, and Êk =
[
Êk(t); t = 1, ..., T

]
, k = 1, ..., k the

target energy onsumptions. The minimization minδ [Ω(δ)] has been performed

applying the partile swarm evolutionary optimization (PSO) aording to the

guidelines desribed in Sub-Setion 3.2.2 [27℄. [20℄

2.2.2.4 Experimental Validation

The proposed system has been installed in two di�erent test sites, whih present

di�erent geographial and topologial harateristis. In partiular, the �rst

site is loated in the histori enter of Trento [Fig. 2.10(a)℄, the seond one in a

suburban area on the hills near the ity [Fig. 2.10(b)℄. A total number ofK = 737
lamps are individually ontrolled through a network ofN = 11 gateways installed
in the transformer stations. The details of the network lusters are reported in

Tab. 2.1. Before the installation of the monitoring system, a preinstallation

measurement ampaign has been performed on a seleted set of streetlight lines

in order to estimate the power onsumption of the existing infrastruture in the

standard operative on�guration.
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Test Site Gateway Index, N Position Controlled Lamps, In

1 1 Piazza Dante 108

1 2 Piazza Lodron 52

1 3 Via Belenzani 92

1 4 Via S. Giovanni Boso 24

1 5 Via S. Maro 68

1 6 Via S. Pietro 120

1 7 Violo Capitolo 125

1 8 Violo Terlago 51

2 9 Via Bellavista 50

2 10 Via del Forte 18 17

2 11 Via del Forte 42 30

Total 737

Table 2.1: Number of Monitored Lamps.

Toward this end, dediated power meters have been installed in the trans-

former stations to ollet the aggregate power onsumptions of the onneted

eletri lines. For omparative purposes, those measurements have been used

as referene values to estimate the onsumption of the preinstallation on�gura-

tion assuming the same working shedule determined by the smart monitoring

system.

Toward this end, the following ative equivalent energy has been estimated

Ẽ =
(
p̃(day) × h(day)

)
+

(
p̃(night) × h(night)

)
(2.4)

where p̃(day) is the ative equivalent power measured during the daytime slot

h(day)
, while p̃(night) the one measured during the night hours h(night)

.

The ative powers have been omputed as follows starting from the di�erential

energy values

p̃(day) =
Ẽ

(day)
end − Ẽ

(day)
start

h(day)
(2.5)

p̃(night) =
Ẽ

(night)
end − Ẽ

(night)
start

h(night)
(2.6)

where Ẽstart and Ẽend are the umulative energy measured at the beginning and

the end of the onsidered time slot, respetively. A representative omparison

between two daily power onsumption pro�les obtained pre and post installation

of the system is shown in Fig. 2.11. The reported values refer to an eletri line

omposed by I8 = 51 streetlight lamps.
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Figure 2.11: Comparison of power onsumption pro�les pre and post installation.

As it an be notied, in the pre-installation on�guration the lamps were ati-

vated aording to a prede�ned time slot without time-varying dimming pro�les.

On the ontrary, a lower and time-varying power pro�le has been measured when

adaptive dimming rules are applied to the monitored lamps. Suh a total pro�le

is the aggregation of the di�erent onsumptions of eah lamp, whih are shown

in Fig. 2.12.

The onsumptions of the onsidered lamps di�er one from the others beause

di�erent dimming rules have been on�gured aording to the hanging environ-

mental brightness at the street level. The adopted dimming pro�les shown in

Fig. 2.13 have been alibrated taking in onsideration the properties of the lamps

as well as the environmental light measured by the lux meters and aording to

the results of the minimization in (2.3).

The preliminary optimizations have been performed setting the user-de�ned

weights a = 0.5 and b = 0.5 . An example of the lux measurements used for

dimming alibration is reported in Fig. 2.14.
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Figure 2.12: Power onsumption pro�les of the the I8 = 51 ontrolled nodes.

Figure 2.13: Dimming pro�les of the the I8 = 51 ontrolled nodes.
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Figure 2.14: Brightness level measured by the lux meter.
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Figure 2.15: Energy saving during the experimental ampaign.

The total energy saving has been omputed as the normalized di�erene be-

tween the energy onsumption pre and post installation of the monitoring system
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δ =
Ẽ −E

Ẽ
× 100 (2.7)

where E is the total energy onsumption measured by the smart meters inte-

grated in the wireless nodes.

The summary of suh perentage saving is reported in Fig. 2.15 for about

three-year measurement ampaign. The results point out lower savings in the

initial months of the monitoring aused by the setup of the devies and the ali-

bration of the system parameters. The following months show a nearly onstant

energy saving of 30%. [20℄
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Chapter 3

Distributed Monitoring for Energy

Consumption Optimization

The home tehnology is moving quikly from the programmable thermostat to

an era where all home systems will be integrated into a entralized ontrol one,

aessible from di�erent entry points suh as telephones, omputer sreens, touh

pads, and other wireless mobile devies, like smartphones and tablets. The result

is a highly personalized home environment, that reats to individual needs and

wants, and antiipates also hanges. This perspetive is a lear onsequene of

the dramati impat that pervasive tehnologies have had on soiety.

In this a framework, a widely di�used viewpoint on the smart home and its

implementation, in partiular the home automation, is related to the following

idea of omfort that an be explained as follows: �Morning brings a graduated

alarm that plays some of your favorite musi. The volume builds slowly and the

bedroom urtains gently part until you reat and tell the alarm. Meanwhile,

the bathroom �oors are already warming in antiipation of your arrival, and the

o�ee-maker starts brewing up�[28℄. The problem omplexity, the ompetition

between vendors, the multiple inompatible standards, and the high expenses,

together with this idea have limited the penetration of home automation to

home. Only a little part of users is disposed today to spend money for those

luxury and expensive failities, beause other needs are onsidered more essential

with respet to this stritly omfort-based funtionalities. For this reason, muh

of the potential that would tehnially be available is still on�ned to researh

projets, test beds, or industrial experiments, as shown by the rih state-of-the-

art produed in the last years [29℄-[33℄. Consequently, the researhers are now

paying lose attention to test and deploy tehnologies in real environments and for

long-term periods by reduing the omplexity of this system and implementing

solutions providing more evident and tangible advantages to the end users.

Among smart home funtionalities, a spei� ase study of the proposed

wireless system is the Energy Consumption Optimization. These smart home

appliations reeived high emphasis beause they have a diret impat on money
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saving for both publi servies and private users.

With the growth of the smart grid researh area, onerned with the intel-

ligent ontrol of eletriity usage, the smart home plays a key role in the inter-

ation between the grid and the onsumers [30℄. The end-users' perspetive of

reduing the osts of in-home power onsumptions and the government deisions

for optimizing the resoures brought to an inreasing deployment of the power

management systems in private homes all over the world. Many solutions have

been proposed for integrating smart meter devies apable of ommuniating at

the same time with both the energy distributors and the household [39℄, [35℄.

Toward this end, an be established two main guidelines. The �rst diretion

is to ollet energy information through the standard utility meter that gives

aggregate information about the home onsumption [36℄. The seond diretion

is to monitor individual applianes of interest by means of in-home distributed

smart meters and ommuniating the reorded data to a entral data proessing

unit [37℄. This seond solution is sometimes ostly and omplex to implement

beause of the need of infrastruture [35℄. However, many disavantages related

to osts, wiring, and omplexity are going to be overome thanks to the di�usion

of wireless arhitetures [33℄, [38℄-[45℄. [60℄
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CONSUMPTION OPTIMIZATION

3.1 Distributed Monitoring for Energy Consump-

tion Optimization in Smart Building

In the reent years, the fast growing of the energy market and the need of a more

intelligent management of the resoures stimulated more and more interations

between the utility ompanies and their ustomers, with the aim of optimizing

the grid management as well as the energy onsumptions and osts. Programs

and rules have been developed for the e�ient management of the user demands,

to redue waste by enouraging energy-aware onsumption patterns, and to ob-

tain more energy e�ient buildings [59℄, [60℄. The fundamental requirement

of suh senario is the preise knowledge of when and how energy is used by

end-users. Many tehnologial solutions exist for the measurement of residential

power onsumption, usually monitored by utilities at the home level. Improved

savings would be possible with diret ontrol of single loads and applianes. To

this end, low-ost and noninvasive approahes are required to make suh solution

feasible and aepted by users. [57℄

From the tehnologial perspetive, the main hallenges are related to the

nonsalable integration of heterogeneous tehnologies that often annot ommu-

niate together, require hard wiring, are ad ho designed, and annot be evolved,

updated, or easily replaed. The shortage of a ommon and �exible infrastru-

ture that host heterogeneous funtionalities aording to the user needs often

omes out, and it represents a key hallenge that have to be onsidered in the

development of smart home onepts.

Beause of these problems, is onsidered to be inevitable taking advantages of

wireless networks as a means for remote monitoring and ommanding. Di�erent

wireless tehnologies have been reviewed [33℄, [46℄ and applied to smart metering

[38℄, [40℄, [42℄, [45℄, [47℄, underlining advantages and limitations of urrent solu-

tions. As a key requirement, the wireless bakbone omponents must be easy to

deploy and maintain, inexpensive enough, and making them widely aeptable

to end users. Furthermore, it has to be notied that the the wireless sensor net-

work tehnology is the most di�used wireless arhiteture [6, 3, 50℄. They have

beome more and more important beause of their ability to manage and mon-

itor information in various intelligent servies. The adoption of WSNs in many

and heterogeneous appliative �elds [48℄-[50℄ has been stimulated by their well-

known features like low power, salability, integrability, low-ost, multisensing,

and reon�gurability. These advantages have been transferred to a smart home

environment to ful�ll the vision of ambient intelligene through an responsive,

interonneted, intelligent, and transparent wireless bakbone layer. To exploit

the tehnologial advantages of WSNs in managing real-time and ontextaware

appliations without diretly apturing privay sensitive informations is the most

important hallenge of this work. [60℄

Starting from the advaned features provided by a dense wireless network

arhiteture (respet to limitations of standalone devies), also the possibility
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to atively interat with the monitored environment and hange its state a-

ording to the rules of adaptive algorithms an be exploited. This bidiretional

interation between the system and the environment requires, besides the atu-

ator devies (able to in�uene the onditions of the measured senario), also a

userfriendly interfae to keep the user in the loop in a transparent way. [57℄

For this reason, the advantages of WSN tehnology have been fused with

those of smart ontrol strategies with the �nal objetives of:

1. making available the user onsumption patterns to the energy providers for

better management of power grids and peak loads;

2. supporting the end-users of a smart building in the everyday deisions by

suggesting optimal solutions for energy ost redution through improved

awareness and optimal habits.

3.1.1 System Arhiteture

Di�erent wireless tehnologies have been inorporated at home due to ost e�e-

tiveness, �exibility, interoperability, and the onsequent improvements in many

smart home appliations [33℄, [51℄. The proliferation of well-known wireless stan-

dards like ZigBee, WiFi, Bluetooth and Z-Wave an be onsidered at the same

time an advantage from a tehnologial point of view, but a ommerial draw-

bak [42℄. Many investors onsider that today's situation is still unstable and

they wait to understand whih emerging standard will onsolidate. For this rea-

son, many solutions are still under investigation, and many real test beds have

been deployed with good outomes. The large di�usion of smart home systems

based on WSN tehnology [39℄, [52℄, [53℄ on�rms the feasibility of this tehnol-

ogy designed to merge the omputetional and physial infrastrutures and that

allows smooth integration of new servies and funtionalities. One of the most

di�used wireless standard is the IEEE 802.15.4 [54℄, designed for low-power wire-

less personal area networks (WPAN) with low data rate up to 250 kb/s. IEEE

802.15.4 has been used as a basis for higher layer protools suh as the well-known

ZigBee, developed by the ZigBee Alliane [55℄, that inorporates prede�ned net-

working and routing funtionalities for easy network management. ZigBee �ts

the smart home market thanks to its harateristis, and many ompliant de-

vies are already available for sale. Many e�orts have been devoted to provide

ready-to-use devies that require very simple on�gurations in order to enable

the reation of distributed wireless networks among the home rooms. It has

been laimed that, even if in some ases ZigBee underperforms with respet to

other ommuniation standard [56℄, the arising key advantages like low ost, net-

work self-organization, and low power make this ommuniation standard a good

solution for smart home servies.
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Figure 3.1: Wireless arhiteture in smart home test site.

By assuming the adoption of ZigBee wireless devies and using the orre-

sponding terminology, our WSN arhiteture deployed for smart home applia-

tions is omposed by a set of routers (power meters) plugged in power outlets

(ensuring the near absene of battery maintenane), supporting mesh network

typology, and assoiated to a network oordinator that manages the network and

ollets all the data (Fig. 3.1). The oordinator is interonneted to a ontrol

unit like a smart TV, laptop, home gateway, et., to enable data proessing,

forwarding, and visualization.

The physial quantities under test, inluding real-time [W℄ and umulative

[Wh℄ power, are aquired by the sensors in a ontinuous and pervasive way.

Suh information are loally stored on the node for simple pre-proessing and

data onsisteny hek, and suessively sent throughout the wireless network

towards the home gateway ontrol unit.

The ommuniation among the nodes and the gateway are bidiretional to en-

able both the data aquisition and the applianes ontrol through atuators. The

WSN nodes integrate the apability to turn on and o� the attahed applianes,

thus enabling adaptive management of the total load.

3.1.2 Control Strategy

The data aquired during the sensing phase represent the input to the proessing

step, that implements the proposed Deision Support System (DSS). Aording

to the prede�ned objetives, this step aims at the real-time evaluation of hanges

that should be applied to the user load pro�le.
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Di�erent methodologial solution have been explored to manage the optimiza-

tion of onsumptions in presene of multiple and on�iting onstraints (e.g., all

the users would pay less). Optimization algorithms based on evolutionary strate-

gies [27℄ usually �t the needs of heterogeneous appliations beause of their ability

in faing with high number of unknowns and multi-minima problems. Geneti

algorithms (GA) [27℄ have been also proposed at the state of the art in the �eld of

sensing and atuation systems. Learning by example (LBE) methodologies [61℄

also present good mathing in the implementation of unsupervised approahes

for automati predition of system states and estimation of unknown patterns

for optimal atuation strategies.

The objetive of the optimization is to minimize the total energy ost in

the multi-user system. The awareness on ost redution thanks to a shared

priing mehanism stimulates the users to ooperate. This approah has been

formulated through a Game Theoreti (GT) analysis [62℄. With an appropriate

priing sheme, the Nash equilibrium of the energy onsumption game among the

partiipating users (who share the same energy soure) is the optimal solution.

One the problem has been optimized all the user pay less (i.e., when the set of

ations for whih any user has an unilateral inentive to hange ations is found).

The ost funtion to be minimized is mainly regulated by the energy ost, and

the unknowns of the optimization problem are the load pro�les of all the users, to

be adapted in order to redue as muh as possible the peak loads (it is assumed

that energy peaks orrespond to higher energy osts). [57℄

In the following will be de�ned the main building bloks of the proposed

GT-based approah. [58℄

3.1.2.1 The Players

The P end users are the players of the game and Ap applianes are ontrolled by

eah pth user. A daily energy pro�le is assoiated to eah player

Ep(t) =
∑Ap

ap=1C
p
ap
(t) p = 1, ..., P (3.1)

t is the time instant, while Cp
ap
(t) (ap = 1, ..., Ap) being the onsumption of

the ath home appliane of the pth user/player. The time-varying pro�les of the

onsumptions at every ath appliane {Cp
ap
(t); ap = 1, ..., Ap} are measured in real

time by a set of wireless power meters, wirelessly interonneted in a multihop

fashion to a gateway node dediated to data olletion and storage. The WSN-

based arhiteture is devoted to both monitor the appliane's loads (�sensing�

phase) and ontrol/hange their on/o� status during the onsequent �atuation�

phase [2℄. The total energy pro�le of this multiplayer senario is measured at

the building level and it is de�ned as the sum of the energy onsumption of all

P lodger of the analized building.

Ω(t) =
P∑

p=1

Ep(t) (3.2)
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Figure 3.2: System arhiteture for energy monitoring and optimization.

3.1.2.2 The Game Ations

Every player/user an ontrol the so-alled shiftable loads (i.e., those applianes

whose usage an be shifted in time aording to the user's preferene), and an't

ontrol the not shiftable loads (i.e., refrigerator, freezer, et.). Mathematially,

the ontrol of shiftable loads is represented by a binary variable bpap

bpap = 1 ApplianceOn

bpap = 0 ApplianceOff
(3.3)

with (ap = 1, ..., Ap; p = 1, ..., P ). Let us suppose that:

1. all the Ap applianes of eah pth user are shiftable loads that an be turned
on/o� from the user itself;

2. all the P users play the �game� with the same rules,;

3. eah pth user an implement a personalized strategy aording to its own

awareness.

3.1.2.3 The Reward

From the user's perspetive, the goal of the game is the redution of the energy

bill and the reward of eah user is the saving of money that will be reahed
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through energy ost redution. The way of limiting the use of the applianes is

a trivial option and it is not onsidered as a viable solution. The energy ost

depends from the total energy pro�le in a nonlinear fashion, we an refer to the

following quadrati relation for the energy ost [63℄

C(Ω, t) = α(t)Ω(t)2 (3.4)

where α(t) is a alibration oe�ient set by the utility to determine its own ost

tari�. In suh a model, when there are peaks of energy onsumptions (i.e., high

values of the total energy pro�le) the energy ost rapidly inreases. To maximize

the player's reward wehave to minimize the energy ost

Copt = minb̄(t)C(Ω, t) = minb̄(t)


α(t)

P∑

p=1

Ep(t)



2

(3.5)

where b̄(t) = {b̄p(t); p = 1, ..., P}, being b̄p(t) = {bpap ; ap = 1, ..., Ap}. From the

GT viewpoint, the solution of (3.5) is the soalled Nash equilibrium [62℄ that

holds true �when no user would bene�t by deviating from the evaluated shedule�.

Beause of the onvexity of the optimization problem at hand (3.5), a onvex

programming (CP) tehnique [64℄ an be applied. More spei�ally, to make

eah user indipent and to avoid sharing personal behaviors, the optimal solution

of (3.5) from a GT viewpoint is reahed by solving with CP the following P
independent and loal optimization problems.

b̄optp (t) = argminb̄p(t)

{
α(t)

[
Ep(t) +

∑P
g=1,g 6=pEg(t)

]2}
p = 1, ..., P (3.6)

When the Nash equilibrium is reahed, the peak-to-average ratio (PAR) [59℄

PAR(t) =
maxt∈{{Tm÷TM}}[Ω(t)]

1/(TM − Tm)
∫ TM

Tm
Ω(t)dt

(3.7)

is minimized, as well, with {Tm÷TM} the onsidered time window. The redution

of the PAR and its time stability are a quality indiator of the optimized solution.

3.1.3 Numerial and Experimental Results

The approah proposed in this Setion has been validated running several nu-

merial simulations to evaluate the e�ay of the GT-based approah, while a

preliminary experimental test has been implemented to give some insights on the

real use of the WSN-based monitoring system.

3.1.3.1 Numerial Validation

This �rst numerial simulation is a representative example of the performane

of the system. In this ase we onsider P = 8 players eah ontrolling Ap = 10
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(p = 1, ..., P ) loads with di�erent nominal power onsumptions and usage time

windows. For example, the appliane a = 3 of the user p = 2 models a dryer with

a time-window use in the range t ∈ {5 : 00PM ÷ 8 : 00PM} and a onsumption

of C2
3 (t) = 1.2 KW. As for the energy ost model, the alibration oe�ient in

(3.4) has been de�ned as follows

α(t) =

{
0.2 cent t ∈ {10 : 00PM ÷ 7 : 00AM} (night)
0.3 cent t ∈ {7 : 00AM ÷ 10 : 00PM} (day)

(3.8)

The GT-based approah has been used and the optimized appliane shedules

have been evaluated by exeuting the P CP optimizations of (3.6) in a random

order to reah an unbiased solution. By applying the GT-optimized appliane

sheduling the reahed total energy pro�le Ω(t) is represented in Fig. 3.4, while

the original shedule of the loads and the optimized one of the �rst user (p = 1)
are shown in Fig. 3.3). The energy peak redution improvement with respet to

the nonoptimized ase turns out to be equal a derease of the PAR of 43.01%

from PAR = 2.26 down to PAR = 1.29. [58℄

Figure 3.3: Player 1 - applianes shedule before and after optimization.
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Figure 3.4: Original versus optimized energy pro�les.

To give an extended evaluation of the algorithm, multiple simulations have

been run to test it in di�erent on�gurations. In the following are reported the

two additional test ases:

1. Varying the number of users P that play the game;

2. Changing the appliane's time-slot on�guration.

Varying the Number of Users P In this test ase the number of the users

P that play the game has been varied from 2 to 10. In Fig. 3.5 are reported the

results for P = 2 [Fig. 3.5(a)℄, P = 4 [Fig. 3.5(b)℄, P = 6 [Fig. 3.5()℄, P = 8
[Fig. 3.5(d)℄ and P = 10 [Fig. 3.5(e)℄.

From these graphs an be made these three main onsiderations:

1. Inreasing the number of users P , the amount of total energy pro�le in-

reases (more users mean more applianes);

2. The algorithm is able to optimize the power onsumption for eah number

of users P , minimizing the PAR of total energy pro�le Ω(t);

3. The PAR at the end of eah simulation is almost the same (Tab. 3.1).
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Figure 3.5: Performanes of the GT-based approah varying the number of users

P : (a) P = 2, (b) P = 4, () P = 6, (d) P = 8 and (e) P = 10.
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Number of User P Optimized PAR

2 1.282

4 1.289

6 1.286

8 1.286

10 1.288

Table 3.1: PAR values after the CP Optimizations.

Changing the Appliane's Time-Slot Con�guration In this test ase an

option has been integrate inside the algorithm: eah user an limit the duration of

the time slots in whih the algorithm an move the sheduling of eah appliane.

Three main ontitions have been de�ned:

1. Ideal: the time slot are not present and the algorithm an plae the appli-

ane sheduling at every hour of the day;

2. Real: eah user an hoose, for eah shiftable appliane, a time slot with

a duration of about 8/9 hours, in whih its usage an be sheduled by the

algorithm;

3. Complex: eah user an hoose, for eah shiftable appliane, a time slot

with a duration of about 5/6 hours, in whih its usage an be sheduled by

the algorithm;

In Tab. 3.2, Tab. 3.3 and Tab. 3.4 are respetively reported the experimen-

tal time slots set for eah ondition (the applianes followed by N.S. are not

shiftable).
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User p:

Applianes ap:

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Phev 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Food Cutter 0-23 0-23

Dryer 0-23 0-23 0-23 0-23 0-23

Vauum Cleaner 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Dehumidi�er 0-23 0-23 0-23 0-23 0-23

Eletri Iron 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Oven 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Dishwasher 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Washing Mahine 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Pasta Maker 0-23 0-23 0-23 0-23 0-23 0-23

Mirowave 0-23 0-23 0-23 0-23 0-23 0-23

Hair Dryer 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Sauna 0-23 0-23 0-23 0-23

Alarm Clok (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Stereo (N.S.) 0-23 0-23 0-23 0-23 0-23

Air-Conditioning (N.S.) 0-23 0-23 0-23 0-23 0-23

Light (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Freezer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Refrigerator (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Computer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Television (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Table 3.2: Time-Slot for eah user in �ideal� ondition.
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User p:

Applianes ap:

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Phev 0-8 0-9 2-10 0-8 0-9 0-10 1-10 0-8

Food Cutter 11-20 12-20

Dryer 0-8 14-22 15-23 14-23 0-9

Vauum Cleaner 10-19 10-19 6-15 10-20 9-18 10-18 7-16

Dehumidi�er 9-18 15-23 15-23 10-20 14-22

Eletri Iron 14-22 13-22 6-15 9-18 14-23 13-23 10-19 9-18

Oven 11-20 12-20 11-19 12-21 11-19 11-19 12-20 11-21 11-19 12-20

Dishwasher 13-22 12-21 14-23 14-22 13-21 15-23 13-22 13-21 12-22 13-23

Washing Mahine 0-10 15-23 0-9 15-23 0-9 0-8 0-9 10-20 11-19 15-23

Pasta Maker 15-23 6-14 7-16 11-19 14-22 7-16

Mirowave 12-20 11-19 11-20 12-20 11-20 12-20

Hair Dryer 15-23 15-23 6-14 8-16 15-23 6-14 15-23

Sauna 15-23 14-22 14-23 14-23

Alarm Clok (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Stereo (N.S.) 0-23 0-23 0-23 0-23 0-23

Air-Conditioning (N.S.) 0-23 0-23 0-23 0-23 0-23

Light (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Freezer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Refrigerator (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Computer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Television (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Table 3.3: Time-Slot for eah user in �real� ondition.
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User p:

Applianes ap:

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Phev 0-6 6-12 1-7 2-8 0-6 5-12 1-7 1-8

Food Cutter 11-16 12-17

Dryer 0-7 17-23 0-6 17-22 0-6

Vauum Cleaner 6-11 6-12 7-13 7-13 6-11 10-16 7-14

Dehumidi�er 10-17 11-18 9-16 15-22 11-18

Eletri Iron 15-20 14-20 14-19 15-20 14-20 14-20 16-21 9-15

Oven 17-23 11-17 18-23 11-17 11-17 17-23 12-19 18-23 17-22 11-18

Dishwasher 18-23 12-18 18-23 13-20 12-19 18-23 13-20 18-23 13-20 12-17

Washing Mahine 0-7 17-22 0-6 0-6 0-6 17-22 0-7 0-6 2-8 17-23

Pasta Maker 17-22 7-13 17-22 17-22 7-13 7-13

Mirowave 10-17 18-23 12-18 10-17 17-22 11-16

Hair Dryer 7-12 6-11 6-11 8-13 6-12 7-12 6-11

Sauna 18-23 17-23 16-23 17-22

Alarm Clok (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Stereo (N.S.) 0-23 0-23 0-23 0-23 0-23

Air-Conditioning (N.S.) 0-23 0-23 0-23 0-23 0-23

Light (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Freezer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Refrigerator (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Computer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Television (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Table 3.4: Time-Slot for eah user in �omplex� ondition.

In Fig. 3.6 are reported the results of the simulations ran in this test ase. In

the ideal ondition the CP algorithm is able to optimize the energy onsumptions

as in the previous test ases while, in real and omplex ondition, the algorithm

optimizes the energy pro�les, but reahes higher PAR values as reported in Tab.

3.5. In these ases the algorithm reahes a sub-obtimal solution. It is not able

to reah the optimal PAR value beause it has to math the onstraint set by

eah user in a more realisti senario.
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Figure 3.6: Performanes of the GT-based approah varying the time slot on-

ditions.

Contition PAR

Not Optimized 2.001

Ideal 1.288

Real 1.578

Complex 1.770

Table 3.5: PAR values after the CP Optimizations varying the time slot ondi-

tions.
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3.1.3.2 Experimental Results

The proposed system has been experimentally tested and a preliminary set of

results have been seleted to assess the potentialities and limitations of both the

monitoring WSN based arhiteture and the DSS for energy optimization and

ost redution in smart buildings.

Figure 3.7: Experimental setup for wireless power metering and ontrol.

As for the experimental validation, a demonstrative prototype has been built

(Fig. 3.7) with WSN nodes equipped with Zigbee ompliant wireless power

meters able to:

1. aquire in real-time the power onsumption;

2. swith (on/o�) the interonneted loads;

3. dimmer the output power.

A network of P = 5 WSN nodes have been onneted to a set of lamps, whih

represent the user's loads, and the hanges of the players' power onsumption

have been simulated by dimming the lamps. A entralized power meter has been

added to measure the total power (modeling the power onsumption of whole

building). All the powers measured by this devies have been transmitted to

a ontrol unit equipped with a Zigbee oordinator. The ontrol unit has been

dediated to exeute and atuate the GT-based sheduling by ontrolling the

wireless power meters, and for easy data visualization and system management.

An example of the graphial user interfae of the developed web tool is shown
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in Fig. 3.8. The output of the DSS that is the optimal suggestion about when

and how use the applianes has been made available to the users. The automati

management of the applianes has been also implemented and, if ativated by the

user, the on/o� shedule is automatially applied through the WSN atuators.

Figure 3.8: Graphial interfae for data visualization and management.

By onsidering an analysis of 24-h experimental data, it turns out that the

GT-based optimization has been able to redue the PAR value from 2.08 down

to 1.54 (i.e., a derease of 25.19%) with a orresponding energy ost redution

(dedued from the real tari�s of the utility) from 35.31 $ e to 32.09 $ e (i.e., a

ost saving of 9.22%).
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3.2 Wireless Smart Lighting in Energy-E�ient

Museums

In the appliation �eld of smart museums, a strong attention has been given to

the lighting quality, mainly from the perspetive of the visitors and with respet

to the artworks' onservation [66℄. However, less attention has been given to

the energy saving. The management of multiple and ompeting objetives is

not straightforward and requires a suitable strategy to support the deision of

the museum energy manager in the ontrol of the lighting systems. In this Se-

tion, an evolutionary optimization strategy based on partile swarm optimization

(PSO) [27℄ is proposed to ontrol the light intensity of multiple lamps taking in

onsideration both the quality of the user experiene and the energy saving. The

wireless sensor and atuator (WSAN) tehnology [2℄ has been exploited to sense

the environmental ondition and the energy onsumption as well as to ontrol

the lamp atuators. The proposed system provides an innovative solution to the

energy managers for the autonomous light dimming, whih satis�es the desired

requirements even in omplex museum rooms. The system has been deployed and

tested in a museum senario in order to experimentally assess the performane

in terms of lighting quality of artworks and energy saving. [65℄

3.2.1 Wireless Arhiteture

In this system N wireless nodes for the aquisition of the light intensity are

installed in the points of interests r(s)n , n = 1, ..., N , lose to the artworks to

be properly illuminated (Fig. 3.9). Eah node is equipped with environmental

sensors inluding the lux meter for the measurement of the light intensity ln,
n = 1, .., N . M wireless atuators are integrated in the smart lamps of the

lighting system, in positions r(a)m , m = 1, ...,M , and are devoted to ontrol the

dimming levels dm,m = 1, ...,M , omputed by the entralized atuation strategy.

The light intensities determine the power onsumptions pm, m = 1, ...,M of the

museum. The wireless network is managed by a loal oordinator, whih hosts

the proposed smart lighting algorithm.[65℄
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Figure 3.9: WSAN arhiteture for smart lighting in museums.

3.2.2 Control Strategy (Partile Swarm Optimizer)

The Partile Swarm Optimizer (PSO) has been developed by Kennedy and Eber-

hart [76℄ inspired by soial behavior of inset swarms, shool of �sh and �oks

of birds. The goal of a swarm of bees is to �nd the loation with the highest

density of �owers inside a �eld. Without any knowledge of the �eld, the bees

begins the researh of �owers in random loations with random veloities. Eah

bee an remember the loations where it found the most quantity of �owers (per-

sonal best), and knows the loations where the other bees found an abundane

of �owers (general best). Eah bee explores the �eld undeided about whether

to return to the loation where it had personally found abundane of �owers or

to explore the loation with the highest density of �ower of the �eld, reported

by the others bees of the swarm [Fig. 3.10(a)℄. For these reason the bees a-

elerate in both diretions hanging their trajetory to �y somewhere between

these two points, depending on whether soial in�uene or nostalgia dominates

their deisions. If a bee �nd a position with a higher onentration of �owers

than it had found previously, it updates this position as its new personal best.

Along the way, a bee ould �nd a plae with a higher onentration of �owers

than had been enountered by any bee in the swarm. In this ase the bee tells to

the whole swarm that this loation is the new general best. In this way the bees

explore the �eld: over�ying loations of greatest onentration of �owers, then

being pulled bak toward them. They are ontinuously heking the territory

hoping to �nd the absolute highest �owers onentration. Quikly, all the bees

of the swarm will �y around this point beause they are unable to �nd any other

points with a higher �ower onentration [Fig. 3.10(b)℄. [79℄
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(a) (b)

Figure 3.10: Partile Swarm Optimizer: (a) Bees searhing a �eld for the loation

of the most �owers (b) All the bees swarm around the best loation.

3.2.2.1 Mathematial Formulation

In Partile Swarm Optimizer, an agent, b
(p)
k , alled partile is haraterized by a

position f (p)
k
in the solution spae and a veloity v

(p)
k that models the apability

of the pth partile to �y from the urrent position to another suessive position

f (p)
k+1

. The whole set of partiles {b
(p)
k , p = 1, ..., P} onstitutes the swarm Fk. In

its lassial implementation [76℄, the partile update equations are

f (p)
k+1

= f (p)
k

+ v
(p)
k+1 (3.9)

and

v
(p)
n,k+1 = ωv

(p)
n,k + C1r1(p

(p)
n,k − f

(p)
n,k) + C2r2(gn,k − f

(p)
n,k) (3.10)

whose physial interpretation, derived by Newton' laws, has been given in [78℄.

In (3.10), ω, C1 and C2 are ontrol parameters known as inertial weight, og-

nitive and soial aeleration terms, respetively [77℄. Moreover, r1 and r2
are two random variables having uniform distribution in [0, 1℄. With refer-

ene to a minimization problem, the values p
(p)
k = arg{mini=1,...,k[Φ(f

(p)
i )]} and

gk = arg{mini=1,...,k;p=1,...,P [Φ(f
(p)
i )]} are the soalled personal and global best

solutions, namely the best positions found by the pth partile and by the whole

swarm until iteration k, respetively.
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As far as the iterative optimization is onerned (Fig. 3.11), starting from

guess values of f (p)
0

and v
(p)
0 , p = 1, ..., P , the positions and veloities of the

partiles are updated aording to equations (3.9) and (3.10).

Figure 3.11: Partile swarm optimizer: �owhart.

The main advantages of the PSO if ompared to other optimization teniques

as the Geneti Algorithms (GAs) or Di�erential Evolution (DE) an be summa-

rized in the followings:

• the simpliity of the algorithm implementation and the use of a single

operator (i.e., the veloity update) instead of three geneti operators (i.e.,

the rossover, the mutation and the seletion);

• the easy manipulation of the alibration parameters [79℄ (i.e., the swarm

size, the inertial weight and the aeleration oe�ients) whih ontrols the

veloity update operator. Even if the number of ontrol parameters (i.e.,

the population size, the rossover rate, the mutation rate) is similar, it is

ertainly easier to set the PSO indies than evaluating the optimal setting

among various operators and several options of implementation;

• the ability to prevent the stagnation by ontrolling the inertial weight and

the aeleration oe�ients to sample new regions of the solution spae.

In standard GAs and DE, the stagnation ours when the trial solutions
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assume the same geneti ode lose to that of the �ttest individual. In suh

a ase, the rossover does not ontribute to the evolution and only a luky

mutation ould loate a new individual in other interesting region of the

solution spae;

• a smaller number of agents, whih turn out in a redued omputational ost

of the overall optimization and enable a reasonable ompromise between

omputational burden and e�ieny of the iterative proess.

Regarding the setting of the parameters, Cler and Kennedy [68℄ examined in

detail the behavior of the PSO and de�ned some onditions on the PSO param-

eters to avoid a divergent searh. With referene to a simpli�ed one-dimensional

(i.e., N = 1) and deterministi (C1r1 = C1 and C2r2 = C2) model, desribed by

the following updating equations

vk+1 = vk + ϕ(t− fk)

fk+1 = fk + vk+1

(3.11)

where ϕ = C1 + C2 and t = C1p+C2g
C1+C2

is the index related to both the ognitive

and the soial term and by supposing the personal best and global best position

�xed (i.e., pk = p and gk = g), it has been shown that when ϕ ≥ 4, the partiles
diverge as a funtion of k, while when 0 < ϕ < 4 the trajetories osillate around
the position t [71℄ with yli or quasi-yli behavior depending on ϕ. These

onlusions have been drawn from the analysis of (3.11) rearranged in the matrix

form as follows: Fk+1 = MFk where Fk = [vk, zk]
T
, being zk = (t− fk), and the

dynami matrix is given by

M =

[
1 ξ
−1 1− ξ

]
(3.12)

As a matter of fat, it turns out that Fk = MkF0, F0 being the initialization

vetor. A su�ient ondition to reah an equilibrium point at the onvergene

(i.e., t) is that the amplitudes of the two eigenvalues of M are lower than unity

[75℄. However, a random hoie of ϕ auses the unontrolled inreasing of the

veloity term vk+1 [77℄.

Further developing the approah based on the generalized matrix, it has been

proved that the following onstrition system

vk+1 = χ[vk + C1r1(p− fk) + C2r2(g − fk)]

fk+1 = fk + vk+1

(3.13)

where χ = 2

|2−ǫ−
√
ǫ2−4ǫ|

= 0.7298 with ϕ = 2C1 = 2C2 = 4.1 guarantees the

stability of the optimization proess.

49



3.2. WIRELESS SMART LIGHTING IN ENERGY-EFFICIENT MUSEUMS

Other variants of the PSO exist and a areful analysis about the onvergene

taking into aount the randomness of the algorithm has been reported in [72℄.

Conerning the optimal hoie of the ontrol oe�ients, it is still worthwhile

pointing out that sine higher values of ω produe relatively straight partile

trajetories, resulting in a good global searh harateristi, while small values

of ω enourage a loal searhing, some researhers have gained advantage from a

derease [69, 74℄ or a random variation of ω during the iterations [70℄. In regard

to the oe�ients C1 and C2, they are usually set to 2.0 as reommended by some

papers in the PSO literature [76, 77, 73℄ and found through experimentation in

several optimization �elds [67℄. [27℄

3.2.2.2 Custom Fitness Funtion

The solution to the onsidered multi-objetive problem has been addressed by a

ustomized PSO optimizer through the minimization of the following multi-terms

ost funtion:

Φ(d) = α
∑

n

|Ln − ln(d, ε)|

Ln

+ β
∑

m

|Pm − pm(d, ε)|

Pm

(3.14)

where d = [dm;m = 1, ...,M ] is the set of dimming pro�les imposed to the atua-

tors, Ln and Pm are the desired light levels and the desired power onsumptions,

respetively, ε is the environmental brightness measured outdoor, and α and β
are the user-de�ned weights to balane the impat of the two objetives.

The multi-objetive problem has been reformulated in (3.14) as a linear om-

bination of the two on�iting objetives in order to avoid the hoie of the

best solution among the Pareto optimal ones [27℄. The PSO has been adopted

sine the problem presents many suboptimal solutions, due to the intrinsi om-

plexity of the indoor environment, the overlapping of the light beams, and the

time-varying nature of ε, whih determines an unpreditable relation between

the atuators and the light in the regions of interest. The iterative minimization

of (3.14) is aimed at ontinuously updating d in order to reah the desired goals

imposed by the museum manager. The targets Ln and Pm, as well as the weights

α and β are alibrated aording to museum onditions and artworks typologies.

[65℄

3.2.3 Experimental Validation

The proposed system has been experimentally validated using ommerial low-

ost devies, both for sensing and atuation to verify the portability of the pro-

posed ontrol strategy on top of existing hardware. The TI SensorTag [Fig.

3.12(a)℄ based on the ZigBee wireless tehnology has been seleted as a small,

low-power, and low-ost multi-sensors platform. The ommerial WiFi-based

dimmable lamps by Mi-Light [Fig. 3.12(b)℄ have been adopted to implement the

smart atuators.
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(a) (b)

Figure 3.12: Devies used in the experimental validation: (a) TI SensorTag, (b)

Mi-Light dimmable lamps.

The multistandard (i.e., both WiFi and ZigBee) oordinator has been imple-

mented with a low-ost Raspberry Pi platform. A smallsale museum area has

been equipped with a set of N = 2 sensors and M = 4 atuators to manage three

regions of interest. The protool for the data aquisition and for the ommand

transmission has been ustomized to guarantee a system lifetime of at least 6

months, introduing low-power strategies with adaptive duty yling based on

the temporal dynamis of the indoor brightness. Some seleted test ases are

presented to preliminary show the optimization apabilities. [65℄

In the �rst test-ase, the desired power onsumptions of 3 W has been set

for all the smart lamps and the desired light levels of 500 Lux has been set for

all the lux meters. In Fig. 3.13(a), Fig. 3.13(b), Fig. 3.13() and Fig. 3.13(d)

have been respetively represented: the evolution of the PSO �tness funtion Φ,
the evolution of the light levels Ln, the evolution of the power onsumptions Pm,

and the evolution of the dimming pro�les of the smart atuators dm.
In the seond test-ase (Fig. 3.14) has been presented a more general setting

of the system, by imposing a ustom desired value for every light sensor and

smart lamp installed in the system (TargetL1 = 400[Lux], TargetL2 = 500[Lux],
TargetP1 = 2[W ], TargetP2 = 5[W ], TargetP3 = 3[W ] and TargetP4 = 4[W ]).
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Figure 3.13: Test-ase 1: (a) Fitness funtion evolution, (b) light intensity, ()

power onsumption and (d) dimming pro�les of the smart atuators in the regions

of interest.
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Figure 3.14: Test-ase 2: (a) Fitness funtion evolution, (b) light intensity, ()

power onsumption and (d) dimming pro�les of the smart atuators in the regions

of interest.

Finally, a third test-ase is presented to preliminary show the optimization

apabilities with ontinuous time-varying environmental brightness ε, whih has

been measured every 6 minutes during this test.

Fig. 3.15 shows the time evolution of the measured lights [Fig. 3.15 (a)℄, the

measured onsumptions [Fig. 3.15 (b)℄ and the omputed dimming pro�les [Fig.

3.15 ()℄ setting uniform ost funtion weights, Ln = 500 [Lux℄, and Pm = 60 [W

℄, whih is 40[%℄ lower than the nominal power of the lamp in order to fore the

energy saving. The results point out the apability to maintain the variability

of light lower than 100 [Lux℄ in the regions of interest for more than 95 [%℄ of

the 3 hours test duration, even in presene of external environmental hanges

and with an average energy saving of 37 [%℄. The hanges of light during the

optimization take few milliseonds in order to make the proess transparent to

the users.
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Figure 3.15: Light intensity (a), power onsumption in the regions of interest

(b), and optimal dimming pro�les of the smart atuators ().
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Chapter 4

Opportunisti Oupany

Estimation System for Museum

Environments

Museum monitoring systems have been widely adopted for artworks onservation

tasks, through the adoption of di�erent monitoring tehnologies. In this senario,

both wired and wireless sensors have been developed for aurate measurement

of physial parameters, that is one of the main onerns in museums. In order

to onserve both the artworks and the museum itself (in partiular for museum

in histori buildings), it is fundamental to ontinuously measure and ontrol

quantities like temperature, humidity, and light. Moreover, in this appliative

senario it is fundamental to minimize the visual impat for esthetial reasons.

The wireless sensor network (WSN) tehnology has been widely adopted in

a variety of appliation �elds [81℄-[85℄ and also in museum senario it exhibits

several suitable features, inluding: the apability to integrate multiple and het-

erogeneous sensors on a single small WSN node, the absene of ables or wired

invasive infrastrutures, the ooperation among the nodes for overage extension

and user interation, simple and quik system salability, management of high

number of measurement points, high lifetime, and the low ost of the hardware

platform. The deployment of a WSN-based monitoring system in museum allows

periodial measurements of single artworks (e.g. paintings, sulptures, artifats),

making them an ative element of the museum, always onneted and remotely

ontrollable [48℄[49℄.

The smart ooperation among the WSN nodes allows also to overome the

limitations proper of a single low-power and low-ost devie, improving for ex-

ample the total overage of the system through the intelligent forwarding of the

information throughout the network towards the ontrol unit [86℄[87℄[102℄. In this

Chapter, the arhiteture, the objetives and the implementation of the proposed

WSN-based museum monitoring system are presented. The main hallenges re-

lated to the deployment in histori buildings as well as the apabilities of suh
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bakbone to adapt aording to the spei� harateristis and requirements of

di�erent museums are desribed. [80℄

Furthermore, in this Chapter, to indiretly estimate the presene of visitors

and the museum oupany will be opportunistially employed the environmental

data available for artworks onservation purposes. It is worth pointing out that

these information are of paramount importane for a wide set of loation-based

servies, inluding route planning, �ow management, exhibitors positioning, and

seurity issues.
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CHAPTER 4. OPPORTUNISTIC OCCUPANCY ESTIMATION SYSTEM

FOR MUSEUM ENVIRONMENTS

4.1 System Arhiteture

The arhiteture of a WSN-based monitoring system an assume di�erent topolo-

gies (e.g., star-, tree- and mesh- topology) aording to the onnetion and rout-

ing rules established among the network nodes. As an example, in the star-

topology one single node is in harge of the network oordination. This solution

is very simple but implies a limited wireless overage (i.e., limited to the single

node-node wireless link). A more omplex solution is represented by the tree-

topology, based on a rigorous hierarhy de�ning the oordination points along

the di�erent tree branhes. Eah node has to ommuniate with its nearest par-

ent, namely the network node at the immediately higher level in the hierarhy.

As another example, in the mesh-topology eah node is onneted to the others,

thus making the system more robust but ontemporarily more omplex, given

the high number of onnetions and the onsequent onsumptions due to more

omputations and transmissions.

The arhiteture of the proposed system is based on a hybrid topology om-

posed by two di�erent WSN node types: the anhor node and the sensor node.

The main di�erene between these two node ategories is related to the spei�

funtionalities they are designed for. In partiular, a sensor node is mainly de-

voted to sense and aquire environmental parameters through spei� sensors

diretly interonneted within the wireless platform. Anhor nodes are mainly

devoted to ollet the information transmitted by sensor nodes and forward it

towards the ontrol unit. The adoption of anhor nodes is mainly due to wireless

overage extension and network robustness improvement. Given these tasks, the

anhor nodes have been designed to be onneted also to the power grid, sine

they have to keep ontinuously on the radio module, that usually represents the

highest power drain of the WSN node power budget. Synhronization strategies

among the nodes have been also implemented in order to limit the on-time of

the transeiver. The density of the anhor nodes depends both to the number of

sensor nodes and to the dimension of the area to be monitored. Summarizing,

the deployment of the network has to take into onsideration multiple parame-

ters that are optimized during the planning phase one the museum requirements

and harateristis are known. Fig. 4.1 shows an example of the implemented

hybrid arhiteture. The blue points represent the anhor nodes while the green

ones are the sensor nodes. The ontrol unit is the element of the network in-

teronneted with the anhor nodes through a multi-hop strategy and in harge

of olleting all the data aquired by sensor nodes. The ontrol unit performs

pre-proessing tasks and stores data both loally and on a remote database for

suessive analysis.
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Figure 4.1: Hybrid WSN arhiteture for omplex museum monitoring.

The museum senario depited in Fig. 4.1 presents the typial hallenge of

thik walls of histori buildings. This aspet has to be arefully onsidered during

the network design proess, in order to guarantee the right wireless ommunia-

tion of sensor nodes towards the losest anhor node. In addition, the typial

low density (or absene) of power sokets in museums inreases the omplexity in

the design of the monitoring system and fores the adoption of battery-powered

anhor nodes, whih integrate muh more advaned power saving strategies to

inrease the system lifetime reduing as muh as possible the maintenane in-

terventions. Summarizing, museums an be reasonably onsidered omplex se-

narios in whih wireless monitoring systems need to be arefully designed to

guarantee high reliability and robustness. [80℄

58



CHAPTER 4. OPPORTUNISTIC OCCUPANCY ESTIMATION SYSTEM

FOR MUSEUM ENVIRONMENTS

4.2 Control Strategy

We an onsider a �nite set of K WSN nodes positioned at known positions

rk = (xk, yk, zk), k = 1, ..., K inside a monitored threedimensional domain Ω
(Fig. 4.2).

Figure 4.2: WSN deployment in a museum.

In eah sensor node there are some environmental sensors for the aquisition

of the features vetor ρ(rk, t) ∈ ℜF×1
, where t is the sampling time-instant and F

the number of environmental features. The sensor nodes aquire eah feature and

transmit them (e.g., the air temperature, the humidity, et.) to the gateway node

through multi-hop wireless onnetions, that will be �nally saved in a remote

database. The proposed algorithm runs on a remote ontrol unit and its goal is

to estimate the oupany level OΩ(t) of the domain Ω, whih is de�ned as the

perentage of the maximum number of people allowed within Ω aording to the

museum regulations, starting from the knowledge of the environmental feature

vetor. To this end, will be onsidered the following basi physial priniples of

indoor environmental behavior:

1. the hot air raises to the top when people oupy the domain Ω.

2. the humidity saturates from below when people oupy the domain Ω.

Let the WSN nodes be distributed so that zk ∈ [hi, i = 1, ..., I]; k = 1, ..., K,

h1 < h2 < ... < hI being the vertial positions of the nodes. Furthermore, let

α(h, t) be the funtion desribing the vertial pro�le of the temperature values,

while β(h, t) denotes the humidity pro�le funtion as shown in Fig. 4.3.
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(a) (b)

Figure 4.3: Vertial distributions of (a) the temperature pro�le α(h, t), and (b)

the humidity pro�le β(h, t).

By onsidering that there is a onnetion between the oupany perentage

and the slope of suh distributions [i.e., a high oupany auses an inrease of

the positive slope of a α(h, t) as well as a derease of the negative slope of β(h, t)℄,
the �rst derivatives of the orresponding vertial pro�les have been evaluated to

determine the so-alled environmental oupany indiator de�ned as

Γ(t) = λ
∂α(h, t)

∂h
− φ

∂β(h, t)

∂h
(4.1)

where λ and φ are suitable alibration oe�ients that balane the impat of the

temperature and the humidity in eah museum environment. Even if it is lear

that Γ(t) inreases with the museum oupany and it tends to zero when the

domain is empty, the relation between Γ(t) and the atual museum oupany

OΩ(t) depends on multiple and time-varying onditions in a nonlinear fashion

inluding the building harateristis and materials, the air management systems,

and the external weather onditions, and so forth. Consequently, neither simple

desriptive models an be adopted nor analyti losed-forms are available. The

oupany estimation problem at hand has then been addressed by reurring to

the generalization apabilities of a learning-by-example strategy based on support

vetor mahine (detailed explained in Sub-Setion 4.2.1)[61℄. More in detail, in

this work has been adopted the support vetor regression (SVR) to evaluate a

linear regression funtion in a high dimensional feature spae where the data are

mapped through a nonlinear funtion Ψ[Γ(t)] = OΩ(t). A �nite set of R input-

output learning patterns (Γ(t), OΩ(t))r; r = 1, ..., R has been olleted to train

the SVR one and o�ine.

After the training phase, the SVR proesses the available feature vetors

ρ(rk, t) olleted by the WSN nodes in real-time, alulates the environmental
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indiator Γ(t), and in the end provides the estimated oupany level ÔΩ(t).
[105℄

4.2.1 Support Vetor Mahine

Learning-by-examples tehniques are omputer-aided approahes based on ma-

hine learning [88℄ that are pointed at solving omplex real-world problems. In

our ase the �omplexity� an be related to the need of omputing the solution

in real-time, not feasible by means of other methods. To address these prob-

lems, LBE strategies are haraterized by two phases: the training phase and

the testing phase.

• In the training phase, a LBE tehnique learns the behavior of a funtion

from a set of input-output pairs. The goal of the training is the reation

of a surrogate model able to emulate the real system.

• In the testing phase, the LBE tehnique is applied to input samples not

observed during the training phase and is able to generalize what learned.

Support Vetor Mahine is a Learning-by-examples tehnique built on a solid

theoretial framework, the statistial learning theory [89℄, in whih the de�ni-

tion of the ontrol parameters of ϕ(•) is formulated as a quadrati optimization

problem ensuring a global optimum. Moreover, the resulting model turns out

being sparse, sine only training samples assoiated to non-vanishing oe�ients

(i.e., the so-alled �support vetors�) are exploited to make preditions, thus

ontrolling the model omplexity and avoiding over-�tting. [90℄

The SVM-based lassi�ation approah an be formulated as the following

two-step proedure[61℄:

1. Determining a deision funtion Φ̂ that orretly lassi�es an input pattern

(Γ, m) (not neessarily belonging to the training set);

2. Mapping the deision funtion Φ̂{(Γ, m)} into an a posteriori probability

Pr{χ = 1|Γ}.

4.2.1.1 De�nition of the Deision Funtion

At this step, we de�ne χm, m = 1, ...,M as the points of a two-dimentional

spae, whih status will be determined by the algorithm. Mathematially, suh

a problem formulates in the de�nition of a suitable disriminant funtion Φ̂
separating the two lasses, whih are labeled as χ = +1 and χ = −1. Sine

these lasses are nonlinearly separable, the de�nition of a non-linear (in terms

of the original data Γ) disriminant funtion is usually required as well as the

solution of an optimization problem where multiple optima (also loal optima)

are present.
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SVM de�nes a linear deision funtion orresponding to a hyperplane that

maximizes the separating margin between the lasses and it requires the solution

of an optimization problem where only one minimum there exists. More in detail,

the linear data-�tting is not arried out in the original input spae ℜ{Γ}, but
in a higher dimensional spae ℵ{ϕ(Γ)} (alled feature spae) where the original

examples are mapped through a nonlinear operator, ϕ(•). The nonlinear SVM
lassi�er so obtained is de�ned as

Φ̂(ϕ(Γ, m)) = ω · ϕ(Γ, m) + b m = 1, ...M (4.2)

where ω and b are the parameters of Φ̂ to be determined during the training phase

and ϕ(Γ, m) is a non-linear funtion mapping the original input data, (Γ, m), to
a higher dimensional spae, alled feature spae, where the surrogate model an

be de�ned through a simple linear funtion (4.2) (Fig. 4.4).

The hyperplane so-de�ned auses the largest separation between the deision

funtion values for the �margin� training examples from the two lasses. Math-

ematially, suh a hyperplane an be found by minimizing the following ost

funtion

Ω(ω) =
1

2
‖ω‖2 (4.3)

subjet to the separability onstraints

ω · ϕ(Γ(n), m) + b ≥ +1 for χ(n)
m = +1, m = 1, ...,M

ω · ϕ(Γ(n), m) + b ≤ −1 for χ(n)
m = −1, n = 1, ..., N

(4.4)

In this sense, SVM an be onsidered as a kind of regularized network, as indi-

ated in [91℄.

However, sine the training data in the feature spae are generally nonom-

pletely separable by a hyperplane, slak variables (denoted by ξ
(n)
(m)) are intro-

dued to relax the separability onstraints in (4.4) as follows:

ω · ϕ(Γ(n), m) + b ≥ 1− ξ
(n)
(m)+ for χ(n)

m = +1, m = 1, ...,M

ω · ϕ(Γ(n), m) + b ≤ ξ
(n)
(m)− − 1 for χ(n)

m = −1, n = 1, ..., N
(4.5)

Suh a proedure is justi�ed by the Cover's theorem, a key point in the SVM

methodology as indiated in [92℄.

Thus, the ost funtion in (4.3) turns out to be

Ω(ω) =
‖ω‖2

2
+

C
∑M

m=1

{
N−

(m) +N+
(m)

} ×
M∑

m=1





N+
(m)∑

n=1

ξ
(n)
(m)+ +

N−

(m)∑

n=1

ξ
(n)
(m)−





(4.6)

where N+
(m) and N−

(m) indiate the number of training patterns for whih χ(n)
m =

+1 and χ(n)
m = −1, respetively. The user-de�ned hyperparameter C ontrols

the tradeo� between the empirial risk (i.e., the training errors) and the model
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omplexity [the �rst term in (4.7)℄ to avoid the over�tting. In that ase, the

deision boundary too preisely orresponds to the training data. Thereby, the

method is unable to deal with data outside the training set [92℄.

Figure 4.4: Non-linear mapping of the input spae to the feature spae.

Moreover, to inlude a priori knowledge about lass distributions [93℄, two

weighting onstants an be de�ned λ+ = C/
∑M

m=1 N
+
(m) and λ− = C/

∑M
m=1 N

−
(m)

[94℄, and (4.6) modi�es as follows:

Ω(ω) =
‖ω‖2

2
+ λ+

M∑

m=1

N+
(m)∑

n=1

ξ
(n)
(m) + λ−

M∑

m=1

N−

(m)∑

n=1

ξ
(n)
(m)− (4.7)

In order to minimize (4.7), it an be observed that a neessary (4.3) ondition

is that is a linear ombination of the mapped vetors ϕ(Γ(n), m)

ω =
M∑

m=1

N∑

n=1

{
α(n)
m χ(n)

m ϕ(Γ(n), m)
}

(4.8)

where α(n)
m ≥ 0, n = 1, ..., N , m = 1, ...,M are Lagrange multipliers to be de-

termined. Moreover, from the Karush-Khun-Tuker onditions at the optimality

[95℄, b turns out to be expressed as follows:

b =

∑M
m=1

∑Nsv

n=1

{
χ(n)
m −

∑M
q=1

∑N
p=1

{
α(p)
m ϕ(Γ(n), m) · ϕ(Γ(p), q))

}}

Nsv

(4.9)

Nsv being the number of patterns

(
Γ(n), m

)
for whih α(n)

m 6= 0 (alled support

vetors). Sine support vetors lie on the hyperplane for whih (4.5) is satis�ed
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with equality, they are taken into aount for the lassi�ation while the others

are negleted. Suh an event re�ets the �sparsity� property of the SVM lassi�er

allowing the use of few input patterns. Substituting (4.8) and (4.9) in (4.2) yields

Φ̂(ϕ(Γ), m) =
∑M

m=1

∑N
n=1

{
α(n)
m χ(n)

m Θ
(
Γ(n),Γ, p,m

)}
+

+

∑M

m=1

∑Nsv

n=1

{
χ
(n)
m −

∑M

q=1

∑N

p=1

{
α
(p)
m Θ(Γ(n),Γ(p),p,m)

}}

Nsv

(4.10)

where Θ
(
Γ(i),Γ(j), p,m

)
= ϕ(Γ(i), p) · ϕ(Γ(j), m) is a suitable kernel fun-

tion [96℄. Then, the deision funtion is ompletely determined when the La-

grange multipliers are omputed. Toward this end, the onstrained optimization

problem formulated in (4.6) and (4.5) is reformulated in a more pratial dual

form. The solution of the dual problem, whih is equivalent to the solution

of the primal optimization problem (4.3)-(4.4), appears in (4.11), subjet to∑N
n=1

∑M
m=1 α

(n)
m χ(n)

m = 0, α(n)
m ∈ [0, λ−] if χ

(n)
m = −1 and α(n)

m ∈ [0, λ+] otherwise.

maxα{ΩDual(α)} =

= maxα





∑N

n=1

∑N

p=1

∑M

m=1

∑M

q=1

[
α
(n)
m α

(p)
q χ

(n)
m χ

(p)
q Θ(Γ(n),Γ(p),p,m)

]

2
−

−
∑M

m=1

∑N
n=1 α

(n)
m

}

(4.11)

Finally, sine ΩDual(α) is a onvex and quadrati funtion of the unknown

parameters α(n)
m , it is solved numerially by means of a standard quadrati pro-

gramming tehnique (e.g., the Platt's SMO algorithm for lassi�ation [97℄, an

optimal implementation of the SMO algorithm is the �LibSVM� tool available

at http://www.kernel-mahines.org). More in detail, the SMO algorithm breaks

the large optimization problem at hand in a series of smaller ones haraterized

by only two variables and solved through an e�etive updating formula [97℄, thus

induing nonnegligible omputational savings. [61℄

4.2.1.2 Mapping of the Deision Funtion Into the A Posteriori Prob-

ability

Conerning standard lassi�ation, the SVM lassi�er labels an input pattern

aording to the following rule [98℄:

χm = sign
{
Φ̂(ϕ(Γ, m))

}
, m = 1, ...,M (4.12)

Unlike standard approahes, the proposed method is aimed at de�ning an a

posteriori probability. Consequently, some modi�ations to the standard SVM-

based lassi�ation approah are needed. Toward this aim, a set of e�ient
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solutions has been proposed (e.g., see [96℄, [99℄-[101℄) either based on a diret

training of the SVM with a logisti link funtion and a regularized maximum-

likelihood sore or based on a posterior �tting probability proess.

The �rst lass of approahes usually leads to nonsparse kernel mahines and

requires a signi�ant modi�ation of the SVM struture. In this paper, the a

posteriori probability �tting method [101℄ is adopted sine the use of a parametri

model allows a diret �tting of the a posteriori probability Pr{χ = 1|Γ}. More in

detail, suh a model approximates the a posteriori probability through a sigmoid

funtion

Pr{χm = 1|(Γ, m)} = 1

1+exp{γΦ̂(ϕ(Γ,m)+δ}
, m = 1, ...,M

(4.13)

where γ and δ are unknown parameters to be determined.

To estimate the optimal values for the parameters of the sigmoid funtion, a

�tting proess is performed. A subset of the input patterns of the training set is

hosen

{
(Γ, m, χm; m = 1, ...,M)(s) ; s = 1, ..., S

}
, where Φ̂(S)

m = Φ̂
(
ϕ(Γ(s), m)

)
.

Then, the following ost funtion is de�ned as in (4.14) and suessively mini-

mized to de�ne γ and δ aording to the numerial proedure proposed by Lin

et al. (see http://www.sie.ntu.edu.tw/~jlin/, ) to solve the problems (i.e., the

use of a kind of Levenberg-Marquardt method for unonstrained optimization) of

the implementation of Platt's probabilisti outputs method pointed out in [101℄.

Υ(γ, δ) = −
∑S

s=1

∑M
m=1





χ
(s)
m +1
2

log


 1

1+exp

(
γΦ̂

(s)
m +δ

)


+

+
(

1−χ
(s)
m

2

)
log




exp

(
γΦ̂

(s)
m +δ

)

1+exp

(
γΦ̂

(s)
m +δ

)









(4.14)

Summarizing, the SVM optimization problem needs three suessive steps:

1. determining the hyperparameters array (model seletion), i.e., C and all

the parameters that de�ne the kernel funtion (e.g., the Gaussian σ2
width

when Gaussian kernels are used), by onsidering the �training dataset�;

2. determining the funtional parameters α and b starting from the �training

dataset� and solving the dual problem (4.11);

3. determining the a posteriori �tting parameters γ and δ starting from a

subset of the �training dataset� (validation phase);

4. testing the SVM on a di�erent dataset (test phase).

[61℄
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4.3 Experimental Validation and Results

The main objetive of museums is to make artworks aessible to the publi

and at the same time to ensure the longterm safety and preservation of the

olletions. In the past, hart reorders and hygrothermographs were the most

ommon instruments used to monitor various areas within a museum, but this

is rapidly hanging in the last years. With the di�usion of digital monitoring

devies, alternatives suh as data loggers are more and more widely adopted.

Digital solutions minimize maintenane tasks, like the regular hange of harts

and the manual alibration performed by trained sta�. However, even if suh

solutions represent an advane respet to analog reording devies, they still

present many limitations with respet to the emerging needs of museums that

will go beyond the environment monitoring. Indeed, the urrent trend is to

enhane the onnetion of the museum with its audiene, so that the visitors'

preferenes an be exploited to provide additional �personalized� servies [104℄.

The experimental validation of a WSN-based infrastruture for the monitoring

of museum environment is presented. The hardware platform has been designed

and realized for the deployment in the �Sala dei 500�, the most important ham-

ber inside the Palazzo Vehio, Florene, Italy. The network of sensors aquires

heterogeneous data, starting from the environmental parameters, with the aim

of reproduing the museum harateristis through web-based appliation tools

and enhaning the interations between museum and users. The software arhi-

teture has been developed to enable the integration of additional servies based

on the olletion of sensor data eventually fused together with other available

museum information. The installation of the system in a highly visited museum

has given the opportunity to test the apabilities and robustness of the WSN

tehnology in dealing with the monitoring of large and rowded spaes. The

details of the installation and the preliminary obtained results are here reported

as a representative test ase of the E-Museum platform validation. [103℄

4.3.1 WSN Node Prototype

The prototypes of sensor node and anhor node typologies have been realized

integrating the transmitting/reeiving unit, the antenna, the power subsystem,

the omputational unit, and the sensors within a small pakage of maximum size

90x65x25 mm. The dimensions have been redued as muh as possible to limit

the visual impat in the proximity of the artworks. Fig. 4.5 shows a prototype of

a sensor node that integrates a temperature and humidity sensor, with auray

±0.3◦C, ±2%RH in the range -40

◦
C, +125

◦
C and 0-100%RH, a light sensor

sensible to light wavelength in the range 430-1100 nm, and �nally a three-axes

aelerometer, with ±1.5g sensitivity.
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Figure 4.5: Prototype of the WSN sensor node.

The sensor unit an be easily modi�ed and integrated thanks to the available

expansions that has been made available on the main hardware platform (up

to 15 digital I/O lines and 4 12bit-ADC available for additional sensors). As

an example, high-preision thermistors for surfae temperature measurements

as well as light sensors for UV radiation measurements have been designed for

suessive integration.

The radio module is ompliant to IEEE 802.15.4 low-power standard, using

the sub-GHz referene working frequeny f=868 MHz. This frequeny guarantees

better propagation throughout the museum rooms respet to the widely di�used

2.4GHz ISM frequeny band. Good overage performane are also guaranteed

by the maximum transmitting power that an be dynamially on�gured (up

to Ptx=12 dBm) and by the very high reeiver sensitivity (down to Srx=-121

dBm).

One the devies have been installed, the remote ontrol of the wireless net-

work allows diret ontrol of every single WSN node, that an be on�gured

in real-time aording to the museum sta� expertise. The maintenane of the

nodes is minimized sine information about the hardware and battery status

are given only if an ation is required. The battery lifetime stritly depends by

the transmission rate. Assuming a time delay of 10 minutes between two su-

essive transmissions, the duration is around 13-15 months using standard AA

ommerial batteries.
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4.3.2 Deployment in a Real Museum Environment

The WSN nodes have been deployed in museum areas aording to urators sug-

gestions in order to guarantee representative data measurements from the preser-

vation point of view. The high �exibility of the wireless infrastruture has been

fully exploited sine most of the measurement points are usually very di�ult to

reah and the quality of the wireless onnetions has been guaranteed through

the adaptive management of multihop network tipology. Eah wireless node is

equipped with a multi-sensor platform for the measurement of the desired pa-

rameters. Both temperature and relative humidity sensors are integrated in the

designed board. All the sensor data are measured through analog to digital on-

verters and loally stored for pre-proessing before the transmission throughout

the wireless network. Power saving strategies have been arefully implemented

on-board in order to limit as muh as possible the onsumptions related both to

the sensors and the radio transeiver.

The implemented network allows bidiretional ommuniations between the

nodes and the remote ontrol unit. Respet to standard WSN infrastrutures

that enable only one-way data olletion from the sensors to the gateway, the

proposed system provides a set of ommands (e.g., on-o�, alibration, diagnosti

ommands) that the end-user an use to interrogate a spei� node or a set of

nodes. The aquired data are olleted by a ontrol unit dediated to data pro-

essing and storage. Data fusion strategies have been implemented to generate

an aggregated representation of the monitored domain. A user-friendly web tool

(Fig. 4.6) has been developed to enable both data visualization and interation

with the system.

The proposed E-Museum monitoring system has been deployed in the �Sala

dei 500�, inside Palazzo Vehio, the town hall of Florene, Italy, (Fig. 4.7)

that represents one of the most signi�ant publi spaes in Italy. The �Sala dei

500� has a length L=52m and width W=23m. The eiling, that is adorned with

39 panels, is H=18m high. A set of N=22 wireless nodes has been installed at

di�erent heights aording to the monitoring requirements (Fig. 4.8).
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Figure 4.6: EMuseum Web Tool.
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(a) (b)

() (d)

(e) (f)

Figure 4.7: Network Installation inside the �Sala dei 500�.
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Figure 4.8: Sensing layers inside the �Sala dei 500�.

In partiular, three horizontal layers have been identi�ed at the heights h1 =
1.8 m, h2 = 5.0 m, and h3 = 18 m, lose to the sulptures, the wall paintings, and

the paneled eiling, respetively. Moreover, an additional node has been installed

outdoor [Fig. 4.7(f)℄ , on the building side lose to Piazza della Signoria, for

indoor-outdoor orrelation. The installation proedures have been arried out in

ollaboration with the trained sta� of the museum. In partiular, the nodes at

height h3 have been hanged with hand-line and raised up from the upper side

of the paneled eiling where only authorized tehniians have aess. Finally,

the sensors have been positioned as lose as possible to the target artworks.

One all the sensors have been installed, the boot sequene has been exeuted

through the implemented user ommands in order to ativate the aquisition

with the desired time interval. The graphial interfae of the E-Museum web

tool has been ativated in order to visualize the proessed data and to enable

the interation with all the online sensors. Diagnosti information like battery

status, internal CPU temperature, and wireless link quality an be requested

(Fig. 4.9).

In ase of node malfuntioning or disharge, automati messages are sent to

the ontrol unit in order to plan the maintenane. Thanks to the data storage in

remote databases, even omplex analysis of the histori data an be performed

o�ine (Fig. 4.10). [103℄
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Figure 4.9: WSN Node Diagnosti Information.

Figure 4.10: WSN Node Histori Data.
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4.3.3 Oupany Estimation

In the following will be presented a seleted set of experimental results to show

the potentialities and the limitations of the proposed oupany estimation al-

gorithm. The senario is omposed by the WSN desribed before: K = 22 nodes
installed at I = 3 di�erent heights, and eah node is equipped with environmen-

tal sensors able to measure F = 2 features: the temperature and the humidity

values. After the aquisition, the environmental information are sent with a

sampling period of ∆t = 10′; the optimal trade-o� between the WSN power

onsumption and the neessary time-resolution for deteting the environmental

variations.

(a) (b)

Figure 4.11: Derivatives of daily vertial pro�les of (a) the temperature, and (b)

the humidity.

For illustrative purposes, Fig. 4.11 shows the �rst derivative of the vertial

pro�le of the temperature [Fig. 4.11(a)℄ and the humidity [Fig. 4.11(b)℄ for

di�erent oupany onditions (low and high). As it an be experimentally

proved and observed, large values of

∂α(h,t)
∂h

and small values of

∂β(h,t)
∂h

our at

the same time when the domain oupany is high.

As for the environmental oupany indiator Γ(t), it has been determined

by applying (4.1) and setting the alibration parameters to φ = 0.5 and λ =
0.5. Regarding the estimation of the oupany index ÔΩ(t), radial basis kernel
funtions have been hosen for the SVR-based method trained with a set of r =
1008 known input-output data, that orrespond to one week of aquisitions, and

setting the SVR metaparameters to ε = 0.1 and c = 10. Later, the experimental

predition has been performed with unknown (i.e., input data not belonging to

the training set) test data related to three representative situations:

1. losed museum;

2. normal week-day;
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3. rowded museum during a speial event.

Figure 4.12: Atual and estimated indoor oupany.

Fig. 4.12 represents the estimated oupany levels and the real oupany

trends as inferred from the museum tiketing. The omparison underlines that

there is a good mathing between estimated and real oupany perentages in

any. As expeted, there is a shift between the estimated trends and the atual

oupany dued to the time-delay of the environmental indexes in "reognizing"

the variations of the people presene. In reverse, this latter an be easily avoided

onsidering it during the training phase.

As expeted, there is a shift between the estimated trends and the atual

oupany dued to the time-delay of the environmental indexes in "reognizing"

the variations of the people presene. In reverse, this latter an be easily avoided

onsidering it during the training phase. [105℄
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Conlusions

In this Chapter, onlusions and future developments regarding the proposed

system are presented. In partiular, additional onsiderations are given regarding

the atual status of these systems.
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5.1 Conlusions and Future Developments

In this thesis, innovative wireless solutions for the development of smart en-

vironments have been proposed. Adaptive, learning, ognitive and bio-inspired

systems as well as distributed and embedded ontrol and sensing have been stud-

ied, and tested as an important avenue for the medium to long term development

of the next-generation smart ities. Eah solution has been developed starting

from the ombination of wireless platforms with dediated data analysis methods

to enable not only the data aquisition, but also the adaptive deision support

aording to the real end-users needs in di�erent appliative senarios. The se-

leted systems have been experimentally validated in real test-sites to point out

the real-world appliability of the proposed wireless solutions.

Going into detail, this thesis has presented systems that belong to the so-

alled smart ities and smart building.

The onept of smart ities has been applied in power management, with a

wireless distributed system for smart publi light management. A demonstrative

prototype omposed by more than 700 ontrolled lamps has been installed in

the ity of Trento, Italy, for the experimental assessment of the advantages and

limitations of the investigated solution. The introdution of adaptive dimming

pro�les alibrated aording to the time varying onditions of the senario has

enabled a total energy saving lose to 30 [%℄ after a three-years measurement

ampaign. The optimization of the dimming rules may o�er even higher per-

formane and future ativities will be also foused on the integration of smart

methods for the automati and real-time alibration of the rules to support the

deisions of the operators in the smart lighting system management.

On the other hand, the onept of smart building has been treated desribing

smart monitoring systems of indoor areas with wireless sensors. Partiular at-

tention has been given to the monitoring of museums as well as smart buildings

suh as residential homes. First of all the energy saving problem in smart build-

ings has been re-elaborated as a multiplayer game and an appropriate strategy

based on game theory has been implemented in a Deision Support System, that

helps the end user to hoose the best time slot to swith on his applianes. The

proposed system has been preliminary assessed through both experimental and

numerial tests showing good performane in reduing the energy osts and PAR
(Peak to Average Ratio). Later, the energy saving problem has been applied to a

di�erent senario, the intelligent ontrol of lightning in a smart museum. In this

spei� ontext, there are multiple goals: inrease the visitor experiene qual-

ity and minimize the power onsumption of the lighting system. This system

is omposed of a Wireless Sensor and Atuator Network (WSAN) that aquires

light and power quantities from the environment and ontrols the lamp intensity

in order to reah the goals of this system. The ontrol strategy is based on a

Partile Swarm Optimizer (PSO) that minimizes a multi-term ost funtion. The

obtained results point out the apability to �nd the optimal atuation strategy
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able to satisfy the onstraints on both energy saving (up to 37%) and the quality

of the artworks presentation (for more than 95% of the onsidered time). Finally,

the environment of the smart museum has been treated, by proposing a system

for the monitoring of environmental parameters in order to safeguard the status

of artwork, using the WSN tehnology. Taking advantage of environmental in-

formation available from a WSN devoted to artwork onservation purposes, an

oupany estimation algorithm has been implemented. By exploiting the gen-

eralization properties of a suitably trained SVR-based strategy, the evaluation of

the omplex relation between visitors oupany and environmental parameters

has been performed and preliminary evaluated in a real-world experimental setup

(Sala dei 500, Firenze, Italy). The obtained results have on�rmed the poten-

tialities of the proposed approah for improving the awareness on the museum

usage, the museum quality-of-servie, and the seurity issues related to the �ow

management.
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