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Abstract

The study of the next-generation distributed systems for distributed moni-
toring and user localization in smart environment is treated in this thesis. In
the last years, a growing amount of attention has been focused on the adop-
tion of Wireless Sersor Networks (WSN) as a scalable and flexible backbone to
implement innovative services in smart environments, like smart building and
smart cities. In this framework, this thesis will describe heterogeneous solutions
to improve the supervision, control, monitoring, and management of public and
private spaces. All these systems exploit the wireless communication and sensing
in combination with smart methodologies to provide advanced services to the end
user in many application fields, from environmental monitoring to energy man-
agement in smart districts or private and public buildings, up to road security
and indoor occupancy for management and security reason. The data acquired
by the WSN technology are used as input of customized strategies and algorithms
developed for the real-time processing, fast analysis and result visualization.

Keywords
Wireless Sensor Network, Smart Environment, Distributed Monitoring, Power
Metering, Occupation Estimation






Published Conference Papers

[C1]

C2]

|C3]

[C4]

[C5]

|C6]

G. Oliveri, E. Giarola, L. Manica, P. Rocca, L. Gandini, G. Ruscitti,
and A. Massa, “An innovative planning tool for 3G wireless cellular
networks,” PIERS 2011 in Suzhou, Suzhou, China, September 12-16,
2011.

F. Viani, M. Salucci, F. Robol, E. Giarola, and A. Massa, “WSNs as
enabling tool for next generation smart systems,” Atti XIX Riunione
Nazionale di Elettromagnetismo (XIX RiNEm), Roma, pp. 393-396,
10-14 Settembre 2012.

F. Viani, F. Robol, M. Salucci, E. Giarola, S. De Vigili, M. Rocca,
F. Boldrini, G. Benedetti, and A. Massa, “WSN-based early alert
system for prevent ing wildlife-vehicle collisions in Alps regions - From
the laboratory test to the real-world implementation,” EuCAP 20183,
Gothenburg, Sweden, pp. 1857-1860, April 8-12, 2013.

G. Menduni, F. Viani, F. Robol, E. Giarola, A. Polo, G. Oliveri, P.
Rocca, and A. Massa, “A WSN-based architecture for the E-Museum
- The experience at “Sala dei 500” in Palazzo Vecchio (Florence),”
Proc. 2013 IEEE AP-S International Symposium, Lake Buena Vista,
Florida, USA, pp. 1114-1115, July 7-12, 2013.

F. Viani, F. Robol, A. Polo, E. Giarola, and A. Massa, “Localization
strategies in WSNs as applied to landslide monitoring,” 2013 Amer-
ican Geophysical Union Fall Meeting, San Francisco, USA, p. A5,
December 9-13, 2013 (Invited paper; Session title: aNew technolo-
gies in landslide monitoring and risk managementa & A. Pasuto and
L. Schenato).

F. Viani, F. Robol, E. Giarola, G. Benedetti, S. Devigili, and A.
Massa, “Advances in wildlife road-crossing early-alert system: new ar-
chitecture and experimental validation”, 8th European Conference on
Antennas and Propagation (EUCAP 2014), The Hague, The Nether-
lands, pp. 3457-3461, April 6-11, 2014.



C7]

C8]

[CO]

[C10]

[C11]

[C12]

[C13]

[C14]

A. Polo, F. Viani, E. Giarola, G. Oliveri, P. Rocca, and A. Massa,
“Semantic wireless localization enabling advanced services in muse-
ums”, 8th European Conference on Antennas and Propagation (EU-
CAP 2014), The Hague, The Netherlands, pp. 443-446, April 6-11,
2014.

F. Viani, E. Giarola, A. Polo, G. Vannuccini, .. Longo, and A.
Massa, “Decision support system for museum management through
distributed wireless sensing,” MWF2014: Museums and the Web, Flo-
rence, Italy, February 19-21, 2014.

F. Viani, A. Polo, E. Giarola, F. Robol, P. Rocca, P. Garofalo, S.
De Vigili, G. Benedetti, L. Zappini, A. Zorer, S. Marchesi, and A.
Massa, "Semantic wireless localization for innovative indoor/outdoor
services,” Proc. 2014 IEEE AP-S International Symposium and USNC-
URSI Radio Science Meeting, Memphis, Tennessee, USA, pp. 402-
403, July 6-12, 2014.

E. Giarola, S. Marchesi, A. Polo, F. Robol, F. Viani, L.. Zappini, A.
Zorer, and A. Massa, “Innovative wireless solutions for smart cities,”
Atti XX Riunione Nazionale di Elettromagnetismo (XX RiNEm),
Padova, pp. 385-388, 15-18 Settembre 2014.

F. Viani, E. Giarola, F. Robol, G. Oliveri, and A. Massa, “Dis-
tributed monitoring for energy consumption optimization in smart
buildings,” Proc. 2014 IEEE Antenna Conference on Antenna Mea-
surements and Applications (IEEE CAMA 2014), Antibes Juan-les-
Pins, France, pp. 1-3, November 16-19, 2014.

F. Viani, F. Robol, E. Giarola, A. Polo, A. Toscano, and A. Massa,
“Wireless monitoring of heterogeneous parameters in complex mu-
seum scenario,” Proc. 2014 IEEE Antenna Conference on Antenna
Measurements and Applications (IEEE CAMA 2014), Antibes Juan-
les-Pins, France, pp. 1-3, November 16-19, 2014.

F. Viani, E. Giarola, F. Robol, A. Polo, A. Lazzareschi, T. Moriyama,
and A. Massa, “Passive wireless localization strategies for security in
large indoor areas,” Proc. 201/ IEEE Antenna Conference on An-
tenna Measurements and Applications (IEEE CAMA 201/ ), Antibes
Juan-les-Pins, France, pp. 1-3, November 16-19, 2014.

F.Viani, F. Robol, E. Giarola, P. Rocca, G. Oliveri, and A. Massa,
“Passive imaging strategies for real-time tracking of non-cooperative
targets in security applications,” 9th Furopean Conference on An-
tennas and Propagation (EUCAP 2015), Lisbon, Portugal, pp. 1-4,
April 12-17, 2015 (Invited paper; Session title: "Wave-based sensing

il



[C15]

[C16]

[C17]

C18]

[C19]

C20]

[C21]

[C22]

and imaging for security applications" & J. Martinez and C. Rappa-
port).

F. Viani, E. Giarola, P. Rocca, G. Oliveri, and A. Massa, “Wire-
less coverage optimization for robotic swarm in emergency scenario,”
Proc. 2015 IEEE AP-S International Symposium and USNC-URSI
Radio Science Meeting , Vancouver, BC, Canada, pp. 276-277, July
19-25, 2015.

F. Robol, F. Viani, A. Polo, E. Giarola, P. Garofalo, C. Zambiasi,
and A. Massa, “Opportunistic crowd sensing in WiFi-enabled indoor
areas,” Proc. 2015 IEEE AP-S International Symposium and USNC-
URSI Radio Science Meeting, Vancouver, BC, Canada, pp. 274-275,
July 19-25, 2015.

F. Robol, F. Viani, E. Giarola, and A. Massa, “Wireless sensors
for distributed monitoring of energy-efficient smart buildings,” Proc.
2015 IEEE Mediterranean Microwave Symposium (MMS-2015), Lecce,
[taly, pp. 1-4, November 30 a4 December 2, 2015.

F. Viani, A. Polo, and E. Giarola, “Exploiting EM simulation mod-
elling for wireless indoor localization,” 10th European Conference on
Antennas and Propagation (EUCAP 2016), Davos, Switzerland, pp.
1-4, April 11-15, 2016.

F. Viani, F. Robol, A. Polo, and E. Giarola, “Wildlife road-crossing
monitoring system: Advances and test site validation,” 10th European
Conference on Antennas and Propagation (EUCAP 2016), Davos,
Switzerland, pp. 1-4, April 11-15, 2016.

H. Ahmadi, M. S. Dao, E. Giarola, A. Polo, F. Robol, F. Viani,
and A. Massa, “Distributed wireless sensing, monitoring, and decision
support: current activities @ ELEDIA Research Center,” Atti XXI
Riunione Nazionale di Elettromagnetismo (XXI RiNEm), Parma, pp.
156-159, 12-14 Settembre 2016.

F. Viani, A. Polo, F. Robol, A. Ferro, and E. Giarola, “Experimental
validation of a wireless distributed system for smart public lighting
management,” Proc. 2016 IEEE International Smart Cities Confer-
ence (ISC2), Trento, Italy, pp. 1-6, September 12-15, 2016.

F. Viani, A. Polo, E. Giarola, G. Benedetti, S. Zanetti, and F. Robol,
“Performance assessment of a smart road management system for
the wireless detection of wildlife road-crossing,” Proc. 2016 IEEE
International Smart Cities Conferenoce (ISC2), Trento, Ttaly, pp. 1-
6, September 12-15, 2016.

iii



[C23]

F. Viani, A. Polo, E. Giarola, M. Salucci, and A. Massa, “Principal
component analysis of CSI for the robust wireless detection of passive
targets,” 2017 International Applied Computational Electromagnetics
Society Symposium, (ACES 2017), Firenze, Italy, pp. 1-2, March
26-30, 2017 (Invited paper; Special Session title: “Electromagnetic
Techniques for the Internet of Things”, A. Costanzo and P. Nepa).

iv



Published Journals Papers

[R1]

[R2]

[R3]

[R4]

T. Moriyama, F. Viani, M. Salucci, F. Robol, and E. Giarola, “Pla-
nar multiband antenna for 3G /4G advanced wireless services,” IEICE
FElectronics Express, vol. 11, no. 17, pp. 20140570(1-10), 10 Septem-
ber 2014.

T. Moriyama, E. Giarola, M. Salucci, and G. Oliveri, “On the radi-
ation properties of ADS-thinned dipole arrays,” IEICE Electronics
Ezpress, vol. 11, no. 16, pp. 20140578(1-12), August 2014.

F. Viani, A. Polo, M. Donelli, and E. Giarola, “A relocable and re-
silient distributed measurement system for electromagnetic exposure
assessment,” IEEE Sensors Journal, vol. 16, no. 11, pp. 4595-4604,
June 2016.

F. Viani, A. Polo, P. Garofalo, N. Anselmi, M. Salucci, and E. Gi-
arola, “Evolutionary optimization applied to wireless smart lighting
in energy-efficient museums,” IEEE Sensors Journal, vol. 17, no. 5,
pp. 1213-1214, March 2017.



vi



Contents

1 Introduction 1
2 System Architecture 5
2.1 Wireless Sensor Network . . . . . . ... ... ... ........ 5
2.1.1 The Architecture of a WSN . . . . .. ... ... ..... 6
2.2 System Prototypes . . . . . .. .. ..o 10
2.2.1  Wildlife Road-Crossing Event Detection System . . . . . . 10

2.2.2  Wireless Distributed System for Smart Public Lighting
Management . . . . . . .. ... 15
3 Distributed Monitoring for Energy Consumption Optimization 27

3.1 Distributed Monitoring for Energy Consumption Optimization in
Smart Building . . . .. ... Lo 29
3.1.1 System Architecture . . . . ... .. ... ... ... 30
3.1.2  Control Strategy . . . . . . ... ... ... ... 31
3.1.3 Numerical and Experimental Results . . . . ... ... .. 34
3.2 Wireless Smart Lighting in Energy-Efficient Museums . . . . . . 45
3.2.1 Wireless Architecture . . . . . . . ... ... ... ..... 45
3.2.2  Control Strategy (Particle Swarm Optimizer) . . .. . .. 46
3.2.3 Experimental Validation . . . . ... ... ......... 50

4 Opportunistic Occupancy Estimation System for Museum En-

vironments 55
4.1 System Architecture . . . . . .. ..o oo 57
4.2 Control Strategy . . . . . . . .. 59
4.2.1 Support Vector Machine . . . . . .. .. ... ... .... 61
4.3 Experimental Validation and Results . . . . ... ... ... ... 66
4.3.1 WSN Node Prototype . . . . . ... .. ... ... ... 66
4.3.2 Deployment in a Real Museum Environment . . . . . . .. 68
4.3.3 Occupancy Estimation . . . . .. ... ... ........ 73
5 Conclusions 75
5.1 Conclusions and Future Developments . . . . . ... ... .. .. 76

Vil



CONTENTS

viil



List of Tables

2.1

3.1
3.2
3.3
3.4
3.5

Number of Monitored Lamps. . . . . . . .. ... ... ......

PAR values after the CP Optimizations. . . . . .. ... ... ..
Time-Slot for each user in “ideal” condition. . . . . . .. ... ..
Time-Slot for each user in “real” condition. . . . . . .. .. ...
Time-Slot for each user in “complex” condition. . . . .. .. ...
PAR values after the CP Optimizations varying the time slot con-

ditions. . . . .. L

ix



LIST OF TABLES




List of Figures

2.1
2.2

2.3

2.4

2.5

2.6
2.7
2.8
2.9
2.10
2.11

2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4
3.5

3.6

3.7
3.8

Architecture of a wireless sensor node. . . . . . .. ... ... ..
Network architectures in a WSN: (a) “star” topology-nodes com-
municates only with the gateway, (b) “mesh” topology-data trans-
mission is performed through node-to-node communications, and
(c) “cluster” topology-the network is subdivided into clusters.
Experimental test-site: (a) wildlife road-crossing and (b) security
area of the WSN-based system. . . . . ... .. ... ... ... .
WSN node installed on road delimiters of the experimental test-
SIbe. .
Event detection at the experimental test-site: (a) actual road-
crossing event and (b) related measured data. . . . ... .. ...
Statistical analysis of the system detection capability. . . . . ..
WSN node installed in the streetlight pole. . . . . . .. ... ..
WSN-based smart lighting system architecture. . . . . . ... ..
Internal (a) and external (b) antenna installation. . . . .. ...
Test sites in dense urban area (a) and in rural area (b). . . . . .
Comparison of power consumption profiles pre and post installa-
BION. . . e
Power consumption profiles of the the Is = 51 controlled nodes.
Dimming profiles of the the Ig = 51 controlled nodes. . . . . . ..
Brightness level measured by the lux meter. . . . . ... ... ..
Energy saving during the experimental campaign. . . . ... ..

Wireless architecture in smart home test site. . . . . .. .. ...
System architecture for energy monitoring and optimization.
Player 1 - appliances schedule before and after optimization.
Original versus optimized energy profiles. . . . . .. ... .. ..
Performances of the GT-based approach varying the number of
users P: (a) P =2, (b) P =4, (¢c) P =6, (d) P = 8 and (e)
P=10. . . . .
Performances of the GT-based approach varying the time slot con-
ditions. . . . .. L
Experimental setup for wireless power metering and control.
Graphical interface for data visualization and management.

xi

31
33
35
36

37

42

43
44



LIST OF FIGURES

3.9 WSAN architecture for smart lighting in museums. . . . . . . .. 46
3.10 Particle Swarm Optimizer: (a) Bees searching a field for the loca-
tion of the most flowers (b) All the bees swarm around the best

location. . . . . . ..o 47
3.11 Particle swarm optimizer: flowchart. . . . .. ... ... ... .. 48
3.12 Devices used in the experimental validation: (a) TI SensorTag,

(b) Mi-Light dimmable lamps. . . . . .. ... ... ... .... 51

3.13 Test-case 1: (a) Fitness function evolution, (b) light intensity, (c)
power consumption and (d) dimming profiles of the smart actua-
tors in the regions of interest. . . . . . . ... ... L. 52
3.14 Test-case 2: (a) Fitness function evolution, (b) light intensity, (c)
power consumption and (d) dimming profiles of the smart actua-

tors in the regions of interest. . . . . . . . ... ... ... 53
3.15 Light intensity (a), power consumption in the regions of interest

(b), and optimal dimming profiles of the smart actuators (¢). . . 54
4.1 Hybrid WSN architecture for complex museum monitoring. . . . 58
4.2 WSN deployment in a museum. . . . . .. ... L. 59
4.3 Vertical distributions of (a) the temperature profile a(h,t), and

(b) the humidity profile S(h,t). . . . . .. ... ... .. ... .. 60
4.4 Non-linear mapping of the input space to the feature space. . . . 63
4.5 Prototype of the WSN sensor node. . . . ... ... .. ..... 67
4.6 EMuseum Web Tool. . . . . ... . ... . oL 69
4.7 Network Installation inside the “Sala dei 500”. . . . . .. ... .. 70
4.8 Sensing layers inside the “Sala dei 500”. . . . . .. ... .. ... 71
4.9 WSN Node Diagnostic Information. . . . . ... ... ... ... 72
4.10 WSN Node Historic Data. . . . . .. .. ... ... ... ..... 72
4.11 Derivatives of daily vertical profiles of (a) the temperature, and

(b) the humidity. . . . . ... ... ... 73
4.12 Actual and estimated indoor occupancy. . . . .. . ... ... .. 74

Xii



Chapter 1

Introduction

In the last decade, the vision of widespread computing as an emerging model
for the next-generation smart systems [1]| has become more and more relevant
thanks to the increase of computing and communication capabilities as well as in
interactions with end users. The miniaturization of portable and multi-features
devices has contributed to the diffusion of terminals able to communicate in an
active way with distributed networks for communications and information acqui-
sition. In this framework, the Wireless Sensor Networks (WSNs) [2, 3] have been
investigated as enabling technology for next generation intelligent networks and
services that can satisfy the arising user needs. One of the main characteristic
of WSNs devoted to smart systems is that, to overcome the limited capabilities
of each single sensor node, cooperative schemes throughout the whole network
can be implemented to enable the solution of even complex tasks [6]. Moreover,
heterogeneous functionalities can coexist thanks to the multi-sensor character-
istic of each node, by enabling multiple applications within the same hardware
backbone. For all the well-known features of the WSN technology, has been in-
vestigated the design of a cross-layer architecture for the implementation of smart
systems where heterogeneous and multiple functionalities can be integrated for
the solution of different user needs in smart environments.

For this reason this work deals the WSNs for the distributed monitoring of
heterogeneous parameters and its advanced application in two principal smart
environments: the Smart Cities and the Smart Building.

The concept of Smart Cities can be applied to different outdoor applicative
scenarios; in this work road security and public light management systems are
proposed. In the context of road security a system for the monitoring of roadsides
for the real-time detection of wildlife road-crossing events has been realized using
wireless sensors equipped with low-cost Doppler radars. This solution aspires to
alert the approaching drivers to prevent the risk of wildlife-vehicle collisions. The
main challenge of the system is to process the acquired radar signals in real-time
to activate the road signs only when actual events occur, in order to reduce the
users habit-forming to fixed signs. On the other hand, in the context of pub-



lic light managements, a system for the smart management of public lighting
is proposed. This system is aimed at reducing the power consumptions of the
street lamps. The distributed and adaptive control of the dimming profiles has
been investigated taking in consideration the time-varying environmental condi-
tions. The presented system is able to control each single lamp thanks to the
integration of smart wireless devices in the existing light poles. Both these sys-
tems have been installed in experimental sites, in order to test and evaluate their
performances. The road security system has been deployed along a real stretch
of road, in Cavalese (Trento), in the north of Italy, while the public lighting
management system has been installed in different areas of the city of Trento, in
cooperation with the municipality of Trento, which is responsible for the control
and maintenance of the public lighting. The advantages and the limitations of
the proposed solutions will be experimentally assessed and their performances
will be evaluated.

Moreover, the smart monitoring of indoor areas (Smart Building) with wire-
less sensors will be analyzed, by presenting systems developed in two different
application fields: consumption optimization in smart environment and oppor-
tunistic occupancy estimation in smart museum.

Nowadays, efficient energy saving strategies and solutions are very important
to increase user awareness of energy resources management in social and eco-
nomic aspects. The traditional power grid needs new monitoring and control
tools for the optimal management of producers and consumers through adaptive
energy distribution schemes. The issue of energy consumption reduction can be
addressed at different scales, ranging from the management of single home ap-
pliances up to building, district, and city level. In this work, a wireless system
architecture for the distributed monitoring and intelligent supervision of energy
consumptions in smart home is proposed. The energy information related to a
multi-user scenario are acquired by distributed wireless sensors and processed
by a decision-making support tool aimed at the adaptive optimization of user’s
energy-habits and successive energy cost reduction. In a smart museum environ-
ment an intelligent lighting system control is proposed. It treats multiple and
competing targets, such as the energy saving as well as the quality of the visitor
experience. In this context, to adaptively control the light intensity starting from
the real-time measurement of the energy consumption and brightness conditions,
an evolutionary optimization strategy is proposed. The system is implemented
using low-cost wireless devices and it has been experimentally validated in a real
indoor test site.

In a particular environment like a museum, beyond the control of a light-
ing system, the artwork conservation is one of the most important purposes to
reach. For this reason, an environmental monitoring system designed for mu-
seum scenarios is proposed in this work. Nowadays environmental monitoring
systems are largely employed in order to measure parameters for artworks con-
servation and to control exhibitions in order to avoid and prevent critical events,
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as for example damages or theft. In this context the WSN technology allows the
non-invasive integration of such monitoring functionalities in complex museum
scenarios, that can be hosted also in historic buildings. The proposed system
deals with the problem of monitoring multiple physical parameters of interest
for museum curators, exploiting the advantages of a pervasive, cooperative, and
flexible WSN architecture. Moreover, a scalable and low-cost solution for occu-
pancy estimation in museums is here proposed by exploiting in an opportunistic
way the wireless architectures already deployed for artworks conservation pur-
poses. The information about the presence and the distribution of the visitors
is produced throughout the analysis of the environmental parameters acquired
by the proposed monitoring system. Indeed, the relationships between museum
fruition and environmental indexes are deduced by a learning-by-example tech-
nique. An experimental application of this system in a real museum site is also
presented and discussed to give a proof of the reliability and efficacy of the pro-
posed approach.

Thesis outline

The thesis is organized as follows. Firstly, the general architecture of all the
systems is discussed, by analyzing the Wireless Sensor Network technology in
Chapter 2, with some example of distributed monitoring systems developed in
the smart city context. Then, the problem of distributed monitoring for energy
consumption optimization in smart building is presented in Chapter 3, with a
detailed description of two systems for consumption optimization: a Distributed
Monitoring for Energy Consumption Optimization in Smart Building and Wire-
less Smart Lighting for Energy-Efficient Museums, analyzing the technological
and methodological features of each system. In Chapter 4 the specific museum
environmental monitoring problem is analyzed and a monitoring system for this
type of environment is proposed. In this Chapter an opportunistic occupancy
estimation system will be proposed too. Then the final conclusions are drawn in
Chapter 5.






Chapter 2

System Architecture

In this Chapter, the Wireless Sensor Network (WSN) technology is presented.
This technology is used for the distributed monitoring of heterogeneous parame-
ters and is characterized by small, low-cost, and autonomous devices that collect
data about physical quantities in a distribute and pervasive fashion. This tech-
nology has been applied to many systems in order to remotely control parameters
and actuate actions when these parameters assume particular values, by notify-
ing a message to an operator or performing actions that modify them. After the
introduction to this technology, two WSN prototypes developed in the context
of Smart Cities during my Ph.D. at ELEDIA Research center will be presented.

2.1 Wireless Sensor Network

The Wireless Sensor Network (WSN), is a technology based on a network of tiny,
low-cost, low-power, and autonomous devices (called nodes) that use sensors to
monitor physical quantities [4, 5] in a cooperative way. Recently, WSNs have
achieved much attention in many research areas for their ability to enhance the
interactions between environment, humans, and machines.

If we compare the WSN to traditional communication networks, they do not
have any physical infrastructure that restricts their topology. These networks
combine simple wireless communication techniques, minimal computation facili-
ties, and the sensing of the physical environment into a new form of network [6].
Moreover, low-cost hardware allows the pervasive and dense deployment of many
nodes in the physical environment, with a scalability property provided by the
flexible network architecture. Unlike other large and medium-scale observation
technologies, WSNs not only sense the environment but also provide some inter-
actions by exploiting the functionality of a set of so-called actuator nodes. These
systems are known as Wireless Sensor Actuators Network (WSAN) [7], and are
characterized by sensors that collect information about the physical world and
transmit them to some controllers. Finally, the actuators will perform suitable
actions to influence the physical behavior of the system under test. [3]
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2.1.1 The Architecture of a WSIN

A WSN typically consists of a network of sensor nodes, that measure the moni-
tored parameters, and a gateway (called also sink node), that collects these pa-
rameters and provides the connection with the the external worls (i.e., through
Internet). Each sensor node is typically equipped with: a radio transceiver or
other wireless communications device, a small micro-controller, and an energy
source. The size of the single unit can vary from about ten centimeters to sev-
eral millimeters, but future implementations will probably be characterized by
smaller size, thus allowing a more dense deployment in the physical environment
[8]. In order describe a typical WSN, we will focus mainly on the characteristics
of a sensor node and on the network architectures. For a more detailed overview
about the architectures and technologies for the Wireless Sensor Networks, the
interested reader can refer to [6], [5] and the references cited therein. [3]

2.1.1.1 Wireless Sensor Node

A wireless sensor node consists of a processing unit with a storage device, one or
multiple sensors, a radio unit, and a power unit, as represented in Fig. 2.1.

Each subsystem of these nodes is designed in order to minimize the energy
consumption, because the WSN typically operates for enough long time periods
in harsh environments. For the same reason, the processing unit is composed by
a small processor with limited computational power. This processor aims at the
careful management of the limited power resources (e.g., by activating the sensing
and radio units only when needed) and takes care of the reception, transmission,
storage and processing of data. As an example, the TinyNode 584 is equipped
with a Texas Instruments MSP430 micro-controller [9]. This micro-controller
features low power mode and it is optimized to achieve extended battery life in
measurement, applications. Such a micro-controller is characterized by a 16-bit
RISC CPU with 16-bit registers, 10 kB of RAM, and 48 kB of flash memory.
The digitally controlled oscillator (DCO) allows wake-up from low-power mode
to active mode in less than 6us and may operate up to 8 MHz. The MSP430
has a current consumption of 0.2uA in the sleep mode and 2.5 mA in the active
mode, in typical operating conditions.
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Sensor Node
Power Supply 1

(battery, energy scavenging, voltage regulator)

/O
ADC
UART

| ]
Devices

Sensors| | (actuators,

GPS. ...)

Figure 2.1: Architecture of a wireless sensor node.

Regarding the sensing unit, it consists of one or multiple sensors that convert
a physical quantity into an electric signal, that can be processed and stored in
a memory. For this device a typical sensing tasks can be the measurement of
temperature, light, vibration, sound, and radiation. Recently, innovative sensors
have appeared thanks to the exploitation of micro electro-mechanical systems
(MEMS) [10].

The data exchange is the most expending operation for a WSN node. The
authors of [11] state that the power required to transmit one bit of informa-
tion for a 100 m distance is equivalent to the amount of power needed for the
implementation of the 3000 instructions calculation. For this reason, the radio
transceiver is probably the most critical device in the design of a sensor node.
Since node-to-node communications are carried out mostly in a short range,
power consumptions related to transmission and reception are on average similar
[6]. Data exchange typically requires a start-up phase after the activation of
the radio unit, mostly related to the lock time of the phase-locked loop (PLL).
During this phase, which may take a time similar to the duration of the trans-
mission phase, a non-negligible amount of power is wasted. It may be convenient
to switch off the radio unit after data transmission in the case sporadic sens-
ing, whereas start-up time could be responsible for wasting power in constant
event monitoring. Regarding to the power consumption, the radio module of the
TinyNode 584 requires 62 mA in the transmit mode (at the maximum power),
14 mA in the receive mode, and 4 pA in sleep mode. Concerning the speed of
data exchange, sensor nodes are characterized by data rates up to 250 kbps in

7
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the 2.4 GHz ISM band when using IEEE 802.15.4 protocol or up to 40 kbps
within the 868 MHz ISM band. Anyway, data rates depend on the antenna gain,
on the nodes transmission power, on the background noise, and on the value of
the Signal-to-Interference-plus-Noise Ratio (SINR) at receiver.

For these reasons, the power source has to be chosen taking into considera-
tion a mathematical model for radio power consumption [12]. Usually, in many
application environment, power sources cannot be recharged or replaced and con-
sequently their design can define the sensor node and network lifetime. As an
example, the sensor node TinyNode 584 with a subsoil thermometer and five soil
moisture sensors may require up to 120 mA at 6 V for about 2 s in the active
mode and 80 pA for the remaining duty cycle time. If the sampling rate is equal
to 10 minutes and its power source is a 1.2 Ah battery, the lifetime of the unit
is limited to three months. However, thanks to the use of an energy scavenging
technology, such as a solar panel providing 250 mA at 7 V, the lifetime of the
wireless node can be potentially extended to infinite (limited only by the max-
imum number of the battery charge/discharge cycles). Recently, thanks to the
advances in nanotechnologies and MEMS, more effective energy scavenging (or
harvesting) solutions have been developed in order to recharge the power source
by means of the exploitation of the physical environment where the nodes are
deployed [13]. Although this technologies can generally provide a limited amount
of power, they appear to be compatible with WSN because of the low-cost and
small size of each sensor node. [3]

2.1.1.2 Network Architecture

The power consumption of the sensor node can be influenced also by the network
architecture.

As shown in Fig. 2.2, the simplest network architecture is the so-called “star”
topology, where all nodes communicates only with the gateway. This config-
uration is used for simple scenarios, where the spatial density of the nodes is
limited and the coverage of the gateway reaches all the sensor nodes of the ne-
towrk (e.g., when sensor nodes are in line-of-sight of the gateway). Moreover,
the “star” topology is mainly used when nodes need only to transmit information
to the gateway. Despite the architectural simplicity, this architecture involves an
important drawback in terms of network reliability, because the gateway is a sin-
gle point of failure and is usually characterized by a greater power consumption
[12].
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Figure 2.2: Network architectures in a WSN: (a) “star” topology-nodes communi-
cates only with the gateway, (b) “mesh” topology-data transmission is performed
through node-to-node communications, and (c) “cluster” topology-the network is
subdivided into clusters.

A more effective solution to deal with complex scenarios consists in the use of
“mesh” topologies, where data exchange is mainly carried out by means of node-
to-node communications. This architecture is characterized by a uniform power
consumption and provides a high degree of reconfigurability and scalability, but
requires complex and computationally expensive routing algorithm in order to
control data transmission [6], [14].

To manage the data transmission and optimize the power consumption, the
sensor nodes can be organized using hybrid architectures where the entire net-
work is subdivided into clusters coordinated by the “cluster heads” [12]. The
“cluster head” selection and partitioning procedure are usually real-time and
continuously performed, taking into account the network topology as well as the
energy/signal level of each unit. [3]
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2.2 System Prototypes

Nowadays, the smart city paradigm is attracting more and more attention of
both researchers and industries, thanks to the enormous advantages that smart
technologies and services can provide to citizens and public administrations [21].
Among the emerging topics, those related to security, surveillance, mobility,
health, and energy have been mostly investigated because of the immediate and
evident impact of innovative information communication technologies (ICT) as
applied to smart city services [22].
In this Section will be proposed two systems related to this topic:

1. Road security: wildlife road-crossing event detection system;

2. Power management: wireless distributed system for smart public lighting
management;

2.2.1 Wildlife Road-Crossing Event Detection System

Wildlife monitoring is attracting more and more attention during the last decade.
Most of the studies are focused on the understanding of animal behavior, their
physiology, socialization, and diffusion [17][18][19]. To this end, researchers have
proposed many autonomous monitoring systems mainly based on wireless sensor
network (WSN) infrastructures [2][3]. [15]

Here a low-cost and scalable wireless system for the prevention of wildlife-
vehicles collisions is proposed. In particular, the nodes of a WSN have been
customized with dedicated Doppler radars for the real-time detection of wildlife
presence on the roadsides. The detection of such event triggers the adaptive alert
notification to the approaching drivers (through smart light road signs).

A system prototype has been developed and deployed in a real test-site for
the performance assessment in real operative conditions. Long-term testing has
been performed to verify the robustness of the system in different seasons and
weather conditions. The number of detected events has been statistically ana-
lyzed and compared with the ground truth acquired by means of a surveillance
video recording system. [16]

2.2.1.1 System Architecture

The wireless network is composed by four node typologies according to the re-
quested functionalities. The gateway nodes are dedicated to the data collection
and forwarding to the control unit, that implements the processing and actuation
strategies. The anchor nodes are devoted to the wireless network management
through multihop architecture for coverage extension along the roadsides. The
actuator nodes receive actuation commands when the control unit identifies a
warning situation and turn on the light signals on the roadsides accordingly. Fi-
nally, the sensing nodes integrate the heterogeneous sensors for the detection of
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moving animals. They are deployed on the roadsides and their position defines
the security zone.

Each node is equipped with two Doppler radar modules (working frequency
fe, maximum coverage 7., horizontal and vertical aperture [h?, v?]) with different
orientations for improved detection in terms of horizontal aperture. The output
signal of the radars is multiplexed in time (through an hardware switch) and a
single output data stream x,(tx), n = 1,..., N being the node index, is sampled
at time instants ¢, = ty + kAt, where ¢, is the boot time instant, k = 1,..., K
is the time sampling index ( K being the maximum data samples that can be
locally stored on the device memory), and At is a constant time interval a-priori
defined according to the internal clock performance. Once t, = KAt, the older
data are iteratively overwritten in order to have a local copy of the last newest
K samples. A filtered version of the raw radar signal is successively processed
by the customized filter function ®(e) has been introduced to discard the un-
desired movements (i.e., the too slow and the too quick target movements) and
to enhance the radar signature of the desired target through signal rectification
and amplification. The filtered signal is then analyzed by a calibrated hardware
thresholder that provides in output the following binary behavior

1 oif Zn(te) > X

Otx) :{ 0 if ulte) < Xun (2.)

where Xy, is a calibrated triggering threshold .

If 6(tx) = 1 the WSN node reduces the sampling period At, activates the
wireless transceiver, and transmits a scaled version of the filtered signal stored
on the local memory. The transmission stops when §(t;) = 0. Successively, the
transceiver is shut down and At is restored to its default value. Transceiver
modules complies with the IEEE 802.15.4 standard, operating at frequency
fie = 2.4GHz and equipped with monopole antenna for omnidirectional radi-
ation pattern on the horizontal plane.

The transmitted data are received by the gateway node and forwarded to the
remote control unit for additional real-time processing. In particular, temporal
and spatial correlation of the received data are performed in order to estimate
additional features of the wildlife movement and to evaluate offline statistics
about the road risk-level.

In order to accurately assess the system performance for longterm test peri-
ods, the ground truth of the wildlife presence within the monitored road-sides has
been also acquired. Toward this end, an infrared video-surveillance system has
been installed in order to record the monitored road during the whole measure-
ment campaign. The output of the verification system is a binary information
related to the absence/presence of a target within a predefined area (along the
road-sides) of the video recordings. Accordingly, the actual status of the sce-
nario can be occupied if a target occupies the security area, or empty, otherwise.
The comparison between the binary function and the ground truth provides a

11
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first performance evaluation in terms of false positive and false negative and
detections. [16]

2.2.1.2 Experimental Validation

The wildlife monitoring system presented in this Sub-Section has been deployed
along a real stretch of road, in the Alps region near Trento, in the north of Italy.
The monitored test-site is 300m long [Fig. 2.3(a)]. N = 21 sensor nodes have
been deployed along the test site, on the two sides of the road as shown in Fig.
2.3(b).

Security areas

Monitored road

Figure 2.3: Experimental test-site: (a) wildlife road-crossing and (b) security
area of the WSN-based system.

Two Doppler radar sensors, characterized by F. = 2dGHz, r. = 15m and
[h2,v°] = [80°,32°], have been integrated in each sensor node and properly ori-
ented to obtain an horizontal aperture of about 160°. This allows the definition of
the so-called security area [Fig. 2.3(b)]. The devices have been installed directly
on the road delimiters, which are placed 20m far from each other (as stated by
the Ttalian regulation).

The data-sampling rate is set to the default value of At = 250ms [when
d(tx) = 0] , and reduced to At = 30ms [when §(¢;) = 1]. The transmission

threshold has been set to Xy, = 30% .

In Fig. 2.4, a sensor node deployed in the experimental test-site is shown. As
it can be noticed, two solar panels have been integrated on the lateral sides of
the prototype, in order to extend the lifetime of the battery.

12
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Figure 2.4: WSN node installed on road delimiters of the experimental test-site.

As a representative example of the experimental validation, a real event de-
tected by the monitoring system is reported in Fig. 2.5. In particular, a snapshot
of the ground truth acquired by the infrared verification system is shown in Fig.
2.5(a). The selected picture represents the actual position of the target moving
towards the left side of the road (and entering in the radar coverage of the node
n = 2). The corresponding scaledsignal Z5(t) compared with the ground truth
&(t) is reported in Fig. 2.5(b).

The comparison shows a good matching between the actual event and the
measured signal, thus confirming the good capability of the system to detect the
target. In particular, the sensor node has detected the target presence with a
maximum delay of about 250ms, proportional to the sampling rate At.

Finally, regarding false positive and false negative analysis, Fig. 2.6 reports
the number of actual daily events W compared to the detected ones, during a 9-
days measurement campaign. It may be noticed that 3 false-negative detections
happened during the investigated period, thus leading the correct detection rate
to 77%. False-negative detection are mainly related to target speed, which are
filtered by the function ®(e) in case of too slow or too fast target movements.
Further calibration procedures are under investigation to limit the false-negative
detection and increase the system reliability. [16]
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2.2.2 Wireless Distributed System for Smart Public Light-
ing Management

For energy-aware applications, the framework of smart grid is rapidly growing
together with the upgrading of the electricity distribution and management. Ad-
vanced communication capabilities and improved control strategies are expected
to affect all areas of the electric power system, from the generation to the distri-
bution. Among the applicative fields related to the smart grid, the smart lighting
is a representative example where the integration of new ICT tools is providing
substantial energy saving [23|[24]. Both indoor and outdoor lighting services
have been improved by modern industrial solutions including efficient lamps, in-
novative electronic controls, soft-start systems, and smart actuation strategies
[25]. Besides the improvement in the lighting devices, one of the main challenges
to enable energy saving is the pervasive and adaptive control of the lighting net-
work. Many methodological solutions have been proposed for in-building lighting
management, where the energy saving has been obtained by dimming the lamps
according to the indoor lighting conditions and to the user needs [39]. However,
different strategies are required for the control of outdoor street lighting since
other constraints exist. The high spatial extension, the huge number of lamps,
the harsh environment conditions, the strict regulations on the quality of service,
the high spatial variability of urban scenarios, the heterogeneity of the existing
lighting networks, make the smart control of the public lighting a challenging
task.

Even if different technological solutions are available, it has to be noticed that
the costs for designing and deploying from scratch a new street lighting system is
often too high for both private and public entities. Starting from this assumption,
the inexpensive, scalable, and non-invasive solutions able to convert an existing
system in a more energy-efficient one are preferred and considered the first step
for the short-term cost saving. Accordingly, the wireless sensor network (WSN)
technology represents a suitable alternative to enable the low-cost distributed
monitoring and control. [20]

2.2.2.1 Application Requirements

The local public authority is responsible for the lighting management and one
of the main concerns is to reduce the operation costs with minimum financial
investments. This final objective determines the requirements to be satisfied by
the proposed control system, which include:

1. the easy integration in the existing street lamps and cabinets (Fig. 2.7);

2. the absence of additional wiring or substitution of infrastructures and fa-
cilities.
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Integrated
WSN Node

External
Antenna

Figure 2.7: WSN node installed in the streetlight pole.

At the same time, the proposed control system has to guarantee high robust-
ness and reliability since the public lighting network offers a fundamental service
to the citizens. The wireless network has to support hundreds of nodes and to
guarantee reliable wireless links even in very complex urban environments. The
adopted WSN nodes have to control the on/off sequences as well as the dimming
profiles of the street lamps, to measure the power consumptions, to monitor the
status of the lamps, and to handle the data exchange with the network. More-
over, besides the power consumption monitoring for energy saving, the system
architecture may become an open backbone for other additional services in the
framework of the smart cities and communities. To this end, both the hardware
and software components are designed to manage additional sensors and features
according to next generation services for the citizens. [20]

2.2.2.2 Wireless Network Features

The smart lighting system is based on a clustered mesh WSN composed by:

K= ﬁfj I, (2.2)
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wireless nodes, where (™ =1,...,I,,, n =1, ..., N are the nodes belonging to the
clusters managed by the N coordinators, as pictorially shown in Fig. 2.8.

Optical Fiber

I= =

o
‘g_ f‘ Coordinator

Ga.gway n=1
Gateway n=N
Control
Unit

Figure 2.8: WSN-based smart lighting system architecture.

The coordinator nodes are interconnected to the gateway devices dedicated
to the data forwarding from the wireless network toward the existing wired in-
frastructure. The spatial distribution of each cluster n = 1,..., N depends on
the geographical properties of the considered area as well as the electrical inter-
connection of the street lamps. As a basic rule, the lamps interconnected to the
same electric line belong to the same cluster. However, the clusters can be recon-
figured according to the time-varying characteristics of the urban environment
and the consequent changes in the wireless signal propagation.

The WSN nodes have been placed within the structure of the light poles,
close to the lamp and to the electronic ballast for easy access during the standard
maintenance operations. The antenna can be internal or external according to

the material properties (plastic or metallic) of the outer case, as represented in
Fig. 2.9.
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Figure 2.9: Internal (a) and external (b) antenna installation.

The robustness of the wireless network is guaranteed when each node is con-
nected with more than one neighbor node, and the optimal network configuration
is achieved when at least three neighbors are within the wireless coverage. Such
an optimal configuration is easily satisfied in dense urban areas where many in-
tersections among streets and alleys exist [Fig. 2.10(a)| but turns out to be more
complex in rural areas where linear streets are more common [Fig. 2.10(b)].
In this configuration, the antenna positioning and the network electromagnetic
planning have been carefully considered to guarantee a robust and stable wireless
coverage. [20]
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Figure 2.10: Test sites in dense urban area (a) and in rural area (b).

2.2.2.3 Node Control and Power Metering

Each WSN node handles the common street lighting operations, including the
on/off and the dimming of the interconnected lamp. Moreover, the power con-
sumption is measured in real-time by means of the on-board power metering
subsystem. Respect to the standard metering solutions, which usually measure
the total power consumption of the whole electric line, the power information of
each individual lamp is acquired, thus enabling the analysis of the lamp diag-
nostic information, such as its voltage, the lamp ignition failure, or the lifetime
statistics. The implemented onboard firmware provides different working modal-
ities according to the status of the network. For example, if the control unit goes
down because of system failure, the nodes automatically switch to the off-line
mode and manage the lamps applying a predefined scheme in order to guaran-
tee the minimum working capability and quality of service. The firmware of
the nodes can be updated over the air sending simple commands from the main
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control unit, avoiding the maintenance intervention directly on the streetlight
poles. The remote control unit is interconnected to the WSN gateways through
a wired network and hosts the software stack for data processing, storage, and
visualization. The network managers can access the system from remote termi-
nals through user-friendly tools and interfaces implemented at the application
layer. Among the implemented features, the software enables the localization of
all the monitored streetlights on a geographic information system (GIS) and all
the information related to power consumption, diagnostics, sensor data, lamp in-
formation are easily accessible. The power dimming profiles can be configured for
single or group of lamps providing high flexibility and timely update according
to the requirements or to the environmental changes. The environmental bright-
ness B, = [Bn(t);t =1,...,T], m =1, ...M, is measured at discrete time intervals
t =1,..T by a set of M lux meters deployed in multiple positions of the moni-
tored streets and interconnected to the gateways. The environmental brightness
conditions f3,,, m = 1,...M, and the energy consumptions of each single lamp
E., k=1,.. K, represent the input data of the control method, while the output
is the set of dimming profiles § = 0y, k = 1,..., K, where 0, = [0,(¢);t =1, ..., T).

The objective of the control method is to identify the best profiles that min-
imize the cost function:

Q8) = a % > 5’”@57_5’”1 +b [% > %] (2.3)

where a and b are user-defined weights, 3,, = [Bm(t);t =1, ...,T}, m=1,..M,

are the desired brightness values, and Ej, = [Ek(t);t =1,.., T}, k=1,..,k the
target energy consumptions. The minimization mins [$2(d)] has been performed

applying the particle swarm evolutionary optimization (PSO) according to the
guidelines described in Sub-Section 3.2.2 [27]. [20]

2.2.2.4 Experimental Validation

The proposed system has been installed in two different test sites, which present
different geographical and topological characteristics. In particular, the first
site is located in the historic center of Trento [Fig. 2.10(a)|, the second one in a
suburban area on the hills near the city [Fig. 2.10(b)|. A total number of K = 737
lamps are individually controlled through a network of N = 11 gateways installed
in the transformer stations. The details of the network clusters are reported in
Tab. 2.1. Before the installation of the monitoring system, a preinstallation
measurement, campaign has been performed on a selected set of streetlight lines
in order to estimate the power consumption of the existing infrastructure in the
standard operative configuration.
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‘ Test Site ‘ Gateway Index, N ‘ Position ‘ Controlled Lamps, I, ‘
1 1 Piazza Dante 108
1 2 Piazza Lodron 52
1 3 Via Belenzani 92
1 4 Via S. Giovanni Bosco 24
1 5 Via S. Marco 68
1 6 Via S. Pietro 120
1 7 Vicolo Capitolo 125
1 8 Vicolo Terlago 51
2 9 Via Bellavista 50
2 10 Via del Forte 18 17
2 11 Via del Forte 42 30

Total ‘ 737

Table 2.1: Number of Monitored Lamps.

Toward this end, dedicated power meters have been installed in the trans-
former stations to collect the aggregate power consumptions of the connected
electric lines. For comparative purposes, those measurements have been used
as reference values to estimate the consumption of the preinstallation configura-
tion assuming the same working schedule determined by the smart monitoring
system.

Toward this end, the following active equivalent energy has been estimated

B - (ﬁ(day) » h(day)) + (ﬁ(m‘ghw % h(m‘ght)) (2.4)

where pl@%) is the active equivalent power measured during the daytime slot
h{dav) while p"9") the one measured during the night hours A9

The active powers have been computed as follows starting from the differential
energy values

Flday) _ polday)

~(day) _ “end start
P = ,(day) (2.5)
(night) (night)
ﬁ(night) _ Eend — Estart (26)

h(night)

where Esmrt and Eend are the cumulative energy measured at the beginning and
the end of the considered time slot, respectively. A representative comparison
between two daily power consumption profiles obtained pre and post installation
of the system is shown in Fig. 2.11. The reported values refer to an electric line
composed by Ig = 51 streetlight lamps.
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Figure 2.11: Comparison of power consumption profiles pre and post installation.

As it can be noticed, in the pre-installation configuration the lamps were acti-
vated according to a predefined time slot without time-varying dimming profiles.
On the contrary, a lower and time-varying power profile has been measured when
adaptive dimming rules are applied to the monitored lamps. Such a total profile
is the aggregation of the different consumptions of each lamp, which are shown
in Fig. 2.12.

The consumptions of the considered lamps differ one from the others because
different dimming rules have been configured according to the changing environ-
mental brightness at the street level. The adopted dimming profiles shown in
Fig. 2.13 have been calibrated taking in consideration the properties of the lamps
as well as the environmental light measured by the lux meters and according to
the results of the minimization in (2.3).

The preliminary optimizations have been performed setting the user-defined
weights @ = 0.5 and b = 0.5 . An example of the lux measurements used for
dimming calibration is reported in Fig. 2.14.
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Figure 2.12: Power consumption profiles of the the Ig = 51 controlled nodes.
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Figure 2.13: Dimming profiles of the the Ig = 51 controlled nodes.
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Figure 2.14: Brightness level measured by the lux meter.
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Figure 2.15: Energy saving during the experimental campaign.

The total energy saving has been computed as the normalized difference be-
tween the energy consumption pre and post installation of the monitoring system
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E—F
§= """ %100 (2.7)
E

where E is the total energy consumption measured by the smart meters inte-
grated in the wireless nodes.

The summary of such percentage saving is reported in Fig. 2.15 for about
three-year measurement campaign. The results point out lower savings in the
initial months of the monitoring caused by the setup of the devices and the cali-
bration of the system parameters. The following months show a nearly constant
energy saving of 30%. [20]
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Chapter 3

Distributed Monitoring for Energy
Consumption Optimization

The home technology is moving quickly from the programmable thermostat to
an era where all home systems will be integrated into a centralized control one,
accessible from different entry points such as telephones, computer screens, touch
pads, and other wireless mobile devices, like smartphones and tablets. The result
is a highly personalized home environment, that reacts to individual needs and
wants, and anticipates also changes. This perspective is a clear consequence of
the dramatic impact that pervasive technologies have had on society.

In this a framework, a widely diffused viewpoint on the smart home and its
implementation, in particular the home automation, is related to the following
idea of comfort that can be explained as follows: “Morning brings a graduated
alarm that plays some of your favorite music. The volume builds slowly and the
bedroom curtains gently part until you react and tell the alarm. Meanwhile,
the bathroom floors are already warming in anticipation of your arrival, and the
coffee-maker starts brewing up”[28]. The problem complexity, the competition
between vendors, the multiple incompatible standards, and the high expenses,
together with this idea have limited the penetration of home automation to
home. Only a little part of users is disposed today to spend money for those
luxury and expensive facilities, because other needs are considered more essential
with respect to this strictly comfort-based functionalities. For this reason, much
of the potential that would technically be available is still confined to research
projects, test beds, or industrial experiments, as shown by the rich state-of-the-
art produced in the last years [29]-[33]. Consequently, the researchers are now
paying close attention to test and deploy technologies in real environments and for
long-term periods by reducing the complexity of this system and implementing
solutions providing more evident and tangible advantages to the end users.

Among smart home functionalities, a specific case study of the proposed
wireless system is the Energy Consumption Optimization. These smart home
applications received high emphasis because they have a direct impact on money
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saving for both public services and private users.

With the growth of the smart grid research area, concerned with the intel-
ligent control of electricity usage, the smart home plays a key role in the inter-
action between the grid and the consumers [30]. The end-users’ perspective of
reducing the costs of in-home power consumptions and the government decisions
for optimizing the resources brought to an increasing deployment of the power
management systems in private homes all over the world. Many solutions have
been proposed for integrating smart meter devices capable of communicating at
the same time with both the energy distributors and the household [39], [35].
Toward this end, can be established two main guidelines. The first direction
is to collect energy information through the standard utility meter that gives
aggregate information about the home consumption [36]. The second direction
is to monitor individual appliances of interest by means of in-home distributed
smart meters and communicating the recorded data to a central data processing
unit [37]. This second solution is sometimes costly and complex to implement
because of the need of infrastructure [35]. However, many disavantages related
to costs, wiring, and complexity are going to be overcome thanks to the diffusion
of wireless architectures [33], [38]-[45]. [60]
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CHAPTER 3. DISTRIBUTED MONITORING FOR ENERGY
CONSUMPTION OPTIMIZATION

3.1 Distributed Monitoring for Energy Consump-
tion Optimization in Smart Building

In the recent years, the fast growing of the energy market and the need of a more
intelligent management of the resources stimulated more and more interactions
between the utility companies and their customers, with the aim of optimizing
the grid management as well as the energy consumptions and costs. Programs
and rules have been developed for the efficient management of the user demands,
to reduce waste by encouraging energy-aware consumption patterns, and to ob-
tain more energy efficient buildings [59], [60]. The fundamental requirement
of such scenario is the precise knowledge of when and how energy is used by
end-users. Many technological solutions exist for the measurement of residential
power consumption, usually monitored by utilities at the home level. Improved
savings would be possible with direct control of single loads and appliances. To
this end, low-cost and noninvasive approaches are required to make such solution
feasible and accepted by users. [57]

From the technological perspective, the main challenges are related to the
nonscalable integration of heterogeneous technologies that often cannot commu-
nicate together, require hard wiring, are ad hoc designed, and cannot be evolved,
updated, or easily replaced. The shortage of a common and flexible infrastruc-
ture that host heterogeneous functionalities according to the user needs often
comes out, and it represents a key challenge that have to be considered in the
development of smart home concepts.

Because of these problems, is considered to be inevitable taking advantages of
wireless networks as a means for remote monitoring and commanding. Different
wireless technologies have been reviewed [33], [46] and applied to smart metering
[38], [40], [42], [45], [47], underlining advantages and limitations of current solu-
tions. As a key requirement, the wireless backbone components must be easy to
deploy and maintain, inexpensive enough, and making them widely acceptable
to end users. Furthermore, it has to be noticed that the the wireless sensor net-
work technology is the most diffused wireless architecture |6, 3, 50|. They have
become more and more important because of their ability to manage and mon-
itor information in various intelligent services. The adoption of WSNs in many
and heterogeneous applicative fields [48]-[50] has been stimulated by their well-
known features like low power, scalability, integrability, low-cost, multisensing,
and reconfigurability. These advantages have been transferred to a smart home
environment to fulfill the vision of ambient intelligence through an responsive,
interconnected, intelligent, and transparent wireless backbone layer. To exploit
the technological advantages of WSNs in managing real-time and contextaware
applications without directly capturing privacy sensitive informations is the most
important challenge of this work. [60]

Starting from the advanced features provided by a dense wireless network
architecture (respect to limitations of standalone devices), also the possibility
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to actively interact with the monitored environment and change its state ac-
cording to the rules of adaptive algorithms can be exploited. This bidirectional
interaction between the system and the environment requires, besides the actu-
ator devices (able to influence the conditions of the measured scenario), also a
userfriendly interface to keep the user in the loop in a transparent way. [57]

For this reason, the advantages of WSN technology have been fused with
those of smart control strategies with the final objectives of:

1. making available the user consumption patterns to the energy providers for
better management of power grids and peak loads;

2. supporting the end-users of a smart building in the everyday decisions by
suggesting optimal solutions for energy cost reduction through improved
awareness and optimal habits.

3.1.1 System Architecture

Different wireless technologies have been incorporated at home due to cost effec-
tiveness, flexibility, interoperability, and the consequent improvements in many
smart home applications [33], [51]. The proliferation of well-known wireless stan-
dards like ZigBee, WiFi, Bluetooth and Z-Wave can be considered at the same
time an advantage from a technological point of view, but a commercial draw-
back [42]. Many investors consider that today’s situation is still unstable and
they wait to understand which emerging standard will consolidate. For this rea-
son, many solutions are still under investigation, and many real test beds have
been deployed with good outcomes. The large diffusion of smart home systems
based on WSN technology [39], [52], [53] confirms the feasibility of this technol-
ogy designed to merge the computetional and physical infrastructures and that
allows smooth integration of new services and functionalities. One of the most
diffused wireless standard is the IEEE 802.15.4 [54], designed for low-power wire-
less personal area networks (WPAN) with low data rate up to 250 kb/s. IEEE
802.15.4 has been used as a basis for higher layer protocols such as the well-known
ZigBee, developed by the ZigBee Alliance [55], that incorporates predefined net-
working and routing functionalities for easy network management. ZigBee fits
the smart home market thanks to its characteristics, and many compliant de-
vices are already available for sale. Many efforts have been devoted to provide
ready-to-use devices that require very simple configurations in order to enable
the creation of distributed wireless networks among the home rooms. It has
been claimed that, even if in some cases ZigBee underperforms with respect to
other communication standard [56], the arising key advantages like low cost, net-
work self-organization, and low power make this communication standard a good
solution for smart home services.
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Figure 3.1: Wireless architecture in smart home test site.

By assuming the adoption of ZigBee wireless devices and using the corre-
sponding terminology, our WSN architecture deployed for smart home applica-
tions is composed by a set of routers (power meters) plugged in power outlets
(ensuring the near absence of battery maintenance), supporting mesh network
typology, and associated to a network coordinator that manages the network and
collects all the data (Fig. 3.1). The coordinator is interconnected to a control
unit like a smart TV, laptop, home gateway, etc., to enable data processing,
forwarding, and visualization.

The physical quantities under test, including real-time [W]| and cumulative
[Wh| power, are acquired by the sensors in a continuous and pervasive way.
Such information are locally stored on the node for simple pre-processing and
data consistency check, and successively sent throughout the wireless network
towards the home gateway control unit.

The communication among the nodes and the gateway are bidirectional to en-
able both the data acquisition and the appliances control through actuators. The
WSN nodes integrate the capability to turn on and off the attached appliances,
thus enabling adaptive management of the total load.

3.1.2 Control Strategy

The data acquired during the sensing phase represent the input to the processing
step, that implements the proposed Decision Support System (DSS). According
to the predefined objectives, this step aims at the real-time evaluation of changes
that should be applied to the user load profile.
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Different methodological solution have been explored to manage the optimiza-
tion of consumptions in presence of multiple and conflicting constraints (e.g., all
the users would pay less). Optimization algorithms based on evolutionary strate-
gies [27] usually fit the needs of heterogeneous applications because of their ability
in facing with high number of unknowns and multi-minima problems. Genetic
algorithms (GA) [27] have been also proposed at the state of the art in the field of
sensing and actuation systems. Learning by example (LBE) methodologies [61]
also present good matching in the implementation of unsupervised approaches
for automatic prediction of system states and estimation of unknown patterns
for optimal actuation strategies.

The objective of the optimization is to minimize the total energy cost in
the multi-user system. The awareness on cost reduction thanks to a shared
pricing mechanism stimulates the users to cooperate. This approach has been
formulated through a Game Theoretic (GT) analysis [62]. With an appropriate
pricing scheme, the Nash equilibrium of the energy consumption game among the
participating users (who share the same energy source) is the optimal solution.
Once the problem has been optimized all the user pay less (i.e., when the set of
actions for which any user has an unilateral incentive to change actions is found).
The cost function to be minimized is mainly regulated by the energy cost, and
the unknowns of the optimization problem are the load profiles of all the users, to
be adapted in order to reduce as much as possible the peak loads (it is assumed
that energy peaks correspond to higher energy costs). [57]

In the following will be defined the main building blocks of the proposed
GT-based approach. [58]

3.1.2.1 The Players

The P end users are the players of the game and A,, appliances are controlled by
each pth user. A daily energy profile is associated to each player

E(t) = X0, C2 (1) p=1,..,P (3.1)

t is the time instant, while C% (¢) (a, = 1,...,4,) being the consumption of
the ath home appliance of the pth user/player. The time-varying profiles of the
consumptions at every ath appliance {C? (t);a, = 1,..., A,} are measured in real
time by a set of wireless power meters, wirelessly interconnected in a multihop
fashion to a gateway node dedicated to data collection and storage. The WSN-
based architecture is devoted to both monitor the appliance’s loads (“sensing”
phase) and control /change their on/off status during the consequent “actuation”
phase [2]. The total energy profile of this multiplayer scenario is measured at
the building level and it is defined as the sum of the energy consumption of all
P lodger of the analized building.

2t) = 3 B, (3.2)
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Figure 3.2: System architecture for energy monitoring and optimization.

3.1.2.2 The Game Actions

Every player/user can control the so-called shiftable loads (i.e., those appliances
whose usage can be shifted in time according to the user’s preference), and can’t
control the not shiftable loads (i.e., refrigerator, freezer, etc.). Mathematically,
the control of shiftable loads is represented by a binary variable b}

1 Appliance On (3.3)
by, =0 Appliance O f f )
with (a, =1,..., Ap;p =1, ..., P). Let us suppose that:

1. all the A, appliances of each pth user are shiftable loads that can be turned
on/off from the user itself;

2. all the P users play the “game” with the same rules,;

3. each pth user can implement a personalized strategy according to its own
awareness.

3.1.2.3 The Reward

From the user’s perspective, the goal of the game is the reduction of the energy
bill and the reward of each user is the saving of money that will be reached
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through energy cost reduction. The way of limiting the use of the appliances is
a trivial option and it is not considered as a viable solution. The energy cost
depends from the total energy profile in a nonlinear fashion, we can refer to the
following quadratic relation for the energy cost [63]

C(Q,t) = a(t)Q(t)? (3.4)

where «(t) is a calibration coefficient set by the utility to determine its own cost
tariff. In such a model, when there are peaks of energy consumptions (i.e., high
values of the total energy profile) the energy cost rapidly increases. To maximize
the player’s reward wehave to minimize the energy cost

2

P
Copt = mingyyC (82, ) = ming, [a(t) Z E,(t) (3.5)
p=1

where b(t) = {b,(t);p = 1,..., P}, being b,(t) = {of sap =1,.., Ap}. From the
GT viewpoint, the solution of (3.5) is the socalled Nash equilibrium [62] that
holds true “when no user would benefit by deviating from the evaluated schedule”.
Because of the convexity of the optimization problem at hand (3.5), a convex
programming (CP) technique [64] can be applied. More specifically, to make
each user indipent and to avoid sharing personal behaviors, the optimal solution
of (3.5) from a GT viewpoint is reached by solving with CP the following P
independent and local optimization problems.

_ , 2
boPH(t) = argming, ;) {a(t) {Ep(t) + 25:179# Eg(t)} } p=1,..,P (3.6)
When the Nash equilibrium is reached, the peak-to-average ratio (PAR) [59]

__maTieqr, 1, (1))
1/(Tar — Ty) 22 Q(t)dt

PAR(t) (3.7)

is minimized, as well, with {7},,=+T),} the considered time window. The reduction
of the PAR and its time stability are a quality indicator of the optimized solution.

3.1.3 Numerical and Experimental Results

The approach proposed in this Section has been validated running several nu-
merical simulations to evaluate the efficacy of the GT-based approach, while a
preliminary experimental test has been implemented to give some insights on the
real use of the WSN-based monitoring system.

3.1.3.1 Numerical Validation

This first numerical simulation is a representative example of the performance
of the system. In this case we consider P = 8 players each controlling A, = 10
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(p = 1,..., P) loads with different nominal power consumptions and usage time
windows. For example, the appliance a = 3 of the user p = 2 models a dryer with
a time-window use in the range ¢t € {5: 00PM <+ 8 : 00PM} and a consumption
of C3(t) = 1.2 KW. As for the energy cost model, the calibration coefficient in
(3.4) has been defined as follows

a(t) = { 0.2 cent t € {10: 00PM =7 :00AM} (night) (3.5)

0.3 cent t e {7:00AM <10 : 00PM} (day)

The GT-based approach has been used and the optimized appliance schedules
have been evaluated by executing the P CP optimizations of (3.6) in a random
order to reach an unbiased solution. By applying the GT-optimized appliance
scheduling the reached total energy profile Q(t) is represented in Fig. 3.4, while
the original schedule of the loads and the optimized one of the first user (p = 1)
are shown in Fig. 3.3). The energy peak reduction improvement with respect to
the nonoptimized case turns out to be equal a decrease of the PAR of 43.01%
from PAR = 2.26 down to PAR = 1.29. [5§]

24 T T T T T T T L]

I E FTY ]

) II|| T ’ 'I-' !f:

| original m—

| S S , Optinized S—
a1=1 a1=2 a1=3 a1=4 a1=51 a1=6 a1=7 a1=8 a1=9 a1=10
b (1)

t [hh]

e &

Figure 3.3: Player 1 - appliances schedule before and after optimization.
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Figure 3.4: Original versus optimized energy profiles.

To give an extended evaluation of the algorithm, multiple simulations have
been run to test it in different configurations. In the following are reported the
two additional test cases:

1. Varying the number of users P that play the game;

2. Changing the appliance’s time-slot configuration.

Varying the Number of Users P In this test case the number of the users
P that play the game has been varied from 2 to 10. In Fig. 3.5 are reported the
results for P = 2 |Fig. 3.5(a)|, P = 4 [Fig. 3.5(b)], P = 6 [Fig. 3.5(c)|, P =8
[Fig. 3.5(d)] and P = 10 [Fig. 3.5(e)].

From these graphs can be made these three main considerations:

1. Increasing the number of users P, the amount of total energy profile in-
creases (more users mean more appliances);

2. The algorithm is able to optimize the power consumption for each number
of users P, minimizing the PAR of total energy profile {)(¢);

3. The PAR at the end of each simulation is almost the same (Tab. 3.1).
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Figure 3.5: Performances of the GT-based approach varying the number of users
P:(a) P=2,(b) P=4,(c) P=6,(d) P=28and (e) P = 10.
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‘ Number of User P ‘ Optimized PAR ‘

2 1.282
4 1.289
6 1.286
8 1.286
10 1.288

Table 3.1: PAR values after the CP Optimizations.

Changing the Appliance’s Time-Slot Configuration In this test case an
option has been integrate inside the algorithm: each user can limit the duration of
the time slots in which the algorithm can move the scheduling of each appliance.
Three main contitions have been defined:

1. Ideal: the time slot are not present and the algorithm can place the appli-
ance scheduling at every hour of the day;

2. Real: each user can choose, for each shiftable appliance, a time slot with
a duration of about 8/9 hours, in which its usage can be scheduled by the
algorithm;

3. Complex: each user can choose, for each shiftable appliance, a time slot
with a duration of about 5/6 hours, in which its usage can be scheduled by
the algorithm;

In Tab. 3.2, Tab. 3.3 and Tab. 3.4 are respectively reported the experimen-
tal time slots set for each condition (the appliances followed by N.S. are not
shiftable).
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User p:
#1 #2 #3 ##4 #5 #6 #T #8 #9 #10
Appliances ayp:
Phev 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Food Cutter 0-23 0-23
Dryer 0-23 0-23 0-23 0-23 0-23
Vacuum Cleaner 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Dehumidifier 0-23 0-23 0-23 0-23 0-23
Electric Iron 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Oven 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Dishwasher 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Washing Machine 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Pasta Maker 0-23 0-23 0-23 0-23 0-23 0-23
Microwave 0-23 0-23 0-23 0-23 0-23 0-23
Hair Dryer 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Sauna 0-23 0-23 0-23 0-23
Alarm Clock (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Stereo (N.S.) 0-23 0-23 0-23 0-23 0-23
Air-Conditioning (N.S.) 0-23 0-23 0-23 0-23 0-23
Light (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Freezer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Refrigerator (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Computer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Television (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Table 3.2: Time-Slot for each user in “ideal” condition.
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User p:
#1 #2 #3 #4 #5 #6 #T #8 #9 #10
Appliances ap:
Phev 0-8 0-9 2-10 0-8 0-9 0-10 1-10 0-8
Food Cutter 11-20 12-20
Dryer 0-8 14-22 15-23 14-23 0-9
Vacuum Cleaner 10-19 10-19 6-15 10-20 9-18 10-18 7-16
Dehumidifier 9-18 15-23 15-23 10-20 14-22
Electric Iron 14-22 13-22 6-15 9-18 14-23 13-23 10-19 9-18
Oven 11-20 12-20 11-19 12-21 11-19 11-19 12-20 11-21 11-19 12-20
Dishwasher 13-22 12-21 14-23 14-22 13-21 15-23 13-22 13-21 12-22 13-23
Washing Machine 0-10 15-23 0-9 15-23 0-9 0-8 0-9 10-20 11-19 15-23
Pasta Maker 15-23 6-14 7-16 11-19 14-22 7-16
Microwave 12-20 11-19 11-20 12-20 11-20 12-20
Hair Dryer 15-23 15-23 6-14 8-16 15-23 6-14 15-23
Sauna 15-23 14-22 14-23 14-23
Alarm Clock (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Stereo (N.S.) 0-23 0-23 0-23 0-23 0-23
Air-Conditioning (N.S.) 0-23 0-23 0-23 0-23 0-23
Light (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Freezer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Refrigerator (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Jomputer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Television (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Table 3.3: Time-Slot for each user in “real” condition.
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User p:
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Appliances ap:
Phev 0-6 6-12 1-7 2-8 0-6 5-12 1-7 1-8
Food Cutter 11-16 12-17
Dryer 0-7 17-23 0-6 17-22 0-6
Vacuum Cleaner 6-11 6-12 7-13 7-13 6-11 10-16 7-14
Dehumidifier 10-17 11-18 9-16 15-22 11-18
Electric Iron 15-20 14-20 14-19 15-20 14-20 14-20 16-21 9-15
Oven 17-23 11-17 18-23 11-17 11-17 17-23 12-19 18-23 17-22 11-18
Dishwasher 18-23 12-18 18-23 13-20 12-19 18-23 13-20 18-23 13-20 12-17
Washing Machine 0-7 17-22 0-6 0-6 0-6 17-22 0-7 0-6 2-8 17-23
Pasta Maker 17-22 7-13 17-22 17-22 7-13 7-13
Microwave 10-17 18-23 12-18 10-17 17-22 11-16
Hair Dryer 7-12 6-11 6-11 8-13 6-12 7-12 6-11
Sauna 18-23 17-23 16-23 17-22
Alarm Clock (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Stereo (N.S.) 0-23 0-23 0-23 0-23 0-23
Air-Conditioning (N.S.) 0-23 0-23 0-23 0-23 0-23
Light (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Freezer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Refrigerator (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Computer (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23
Television (N.S.) 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23

Table 3.4: Time-Slot for each user in “complex” condition.

In Fig. 3.6 are reported the results of the simulations ran in this test case. In
the ideal condition the CP algorithm is able to optimize the energy consumptions
as in the previous test cases while, in real and complex condition, the algorithm
optimizes the energy profiles, but reaches higher PAR values as reported in Tab.
3.5. In these cases the algorithm reaches a sub-obtimal solution. It is not able
to reach the optimal PAR value because it has to match the constraint set by
each user in a more realistic scenario.
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Figure 3.6: Performances of the GT-based approach varying the time slot con-
ditions.

‘ Contition ‘ PAR ‘
Not Optimized | 2.001
Ideal 1.288
Real 1.578
Complex 1.770

Table 3.5: PAR values after the CP Optimizations varying the time slot condi-
tions.
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3.1.3.2 Experimental Results

The proposed system has been experimentally tested and a preliminary set of
results have been selected to assess the potentialities and limitations of both the
monitoring WSN based architecture and the DSS for energy optimization and
cost reduction in smart buildings.

Wireless

Smart Meter
Total Power

Metering

Figure 3.7: Experimental setup for wireless power metering and control.

As for the experimental validation, a demonstrative prototype has been built
(Fig. 3.7) with WSN nodes equipped with Zigbee compliant wireless power
meters able to:

1. acquire in real-time the power consumption;
2. switch (on/off) the interconnected loads;

3. dimmer the output power.

A network of P =5 WSN nodes have been connected to a set of lamps, which
represent the user’s loads, and the changes of the players’ power consumption
have been simulated by dimming the lamps. A centralized power meter has been
added to measure the total power (modeling the power consumption of whole
building). All the powers measured by this devices have been transmitted to
a control unit equipped with a Zigbee coordinator. The control unit has been
dedicated to execute and actuate the GT-based scheduling by controlling the
wireless power meters, and for easy data visualization and system management.
An example of the graphical user interface of the developed web tool is shown
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in Fig. 3.8. The output of the DSS that is the optimal suggestion about when
and how use the appliances has been made available to the users. The automatic
management of the appliances has been also implemented and, if activated by the
user, the on/off schedule is automatically applied through the WSN actuators.
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Figure 3.8: Graphical interface for data visualization and management.

By considering an analysis of 24-h experimental data, it turns out that the
GT-based optimization has been able to reduce the PAR value from 2.08 down
to 1.54 (i.e., a decrease of 25.19%) with a corresponding energy cost reduction
(deduced from the real tariffs of the utility) from 35.31 $ e to 32.09 § e (i.e., a
cost saving of 9.22%).
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3.2 Wireless Smart Lighting in Energy-Efficient
Museums

In the application field of smart museums, a strong attention has been given to
the lighting quality, mainly from the perspective of the visitors and with respect
to the artworks’ conservation [66]. However, less attention has been given to
the energy saving. The management of multiple and competing objectives is
not straightforward and requires a suitable strategy to support the decision of
the museum energy manager in the control of the lighting systems. In this Sec-
tion, an evolutionary optimization strategy based on particle swarm optimization
(PSO) [27] is proposed to control the light intensity of multiple lamps taking in
consideration both the quality of the user experience and the energy saving. The
wireless sensor and actuator (WSAN) technology [2] has been exploited to sense
the environmental condition and the energy consumption as well as to control
the lamp actuators. The proposed system provides an innovative solution to the
energy managers for the autonomous light dimming, which satisfies the desired
requirements even in complex museum rooms. The system has been deployed and
tested in a museum scenario in order to experimentally assess the performance
in terms of lighting quality of artworks and energy saving. [65]

3.2.1 Wireless Architecture

In this system N wireless nodes for the acquisition of the light intensity are
installed in the points of interests r(*), n = 1,..., N, close to the artworks to
be properly illuminated (Fig. 3.9). Each node is equipped with environmental
sensors including the lux meter for the measurement of the light intensity [,,,
n = 1,..,N. M wireless actuators are integrated in the smart lamps of the
lighting system, in positions 7(%), m = 1,..., M, and are devoted to control the
dimming levels d,,, m = 1, ..., M, computed by the centralized actuation strategy.
The light intensities determine the power consumptions p,,, m =1, ..., M of the
museum. The wireless network is managed by a local coordinator, which hosts
the proposed smart lighting algorithm.|65]
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Figure 3.9: WSAN architecture for smart lighting in museums.

3.2.2 Control Strategy (Particle Swarm Optimizer)

The Particle Swarm Optimizer (PSO) has been developed by Kennedy and Eber-
hart [76] inspired by social behavior of insect swarms, school of fish and flocks
of birds. The goal of a swarm of bees is to find the location with the highest
density of flowers inside a field. Without any knowledge of the field, the bees
begins the research of flowers in random locations with random velocities. Each
bee can remember the locations where it found the most quantity of flowers (per-
sonal best), and knows the locations where the other bees found an abundance
of flowers (general best). Each bee explores the field undecided about whether
to return to the location where it had personally found abundance of flowers or
to explore the location with the highest density of flower of the field, reported
by the others bees of the swarm [Fig. 3.10(a)|]. For these reason the bees ac-
celerate in both directions changing their trajectory to fly somewhere between
these two points, depending on whether social influence or nostalgia dominates
their decisions. If a bee find a position with a higher concentration of flowers
than it had found previously, it updates this position as its new personal best.
Along the way, a bee could find a place with a higher concentration of flowers
than had been encountered by any bee in the swarm. In this case the bee tells to
the whole swarm that this location is the new general best. In this way the bees
explore the field: overflying locations of greatest concentration of flowers, then
being pulled back toward them. They are continuously checking the territory
hoping to find the absolute highest flowers concentration. Quickly, all the bees
of the swarm will fly around this point because they are unable to find any other
points with a higher flower concentration [Fig. 3.10(b)]. [79]

46



CHAPTER 3. DISTRIBUTED MONITORING FOR ENERGY
CONSUMPTION OPTIMIZATION

\
° ® °
bA e ¥ i Ve
ok "".- o 43,
B 1 Y
Fate Il v
] A
) 1 1 ,"' -
; [} ) 1 [ A
}I ° = v C | &
1 . v e % -> U 1
v wig ¥ ] ,I L
g ® ek /ey e
{ | I ' L
AL 1 108 y’
; 0 0
L A
~—
§ o Cmm—————— o s \ 1
WL . ."- e \\_I' b
| ——— s e 'y ® ¥ T
b ¥ i b

Figure 3.10: Particle Swarm Optimizer: (a) Bees searching a field for the location
of the most flowers (b) All the bees swarm around the best location.

3.2.2.1 Mathematical Formulation

In Particle Swarm Optimizer, an agent, l_),(f ), called particle is characterized by a
position i]ip)in the solution space and a velocity y,(cp ) that models the capability
of the pth particle to fly from the current position to another successive position
L(Qr The whole set of particles {l_),(ﬁp),p =1,..., P} constitutes the swarm Fj. In
its classical implementation [76], the particle update equations are

= £+ 39
and
vy = wul) + Crri(p) — £2) + Coralgns — £7) (3.10)

whose physical interpretation, derived by Newton’ laws, has been given in [78|.
In (3.10), w, Cy and Cy are control parameters known as inertial weight, cog-
nitive and social acceleration terms, respectively [77]. Moreover, r; and ro
are two random variables having uniform distribution in [0, 1]. With refer-
ence to a minimization problem, the values p{"’ = arg{min,.—,__,[®(f)]} and
g = a'r’g{mini:17..,7k;p:1,___,p[CID(fi(p))]} are the socalled personal and global best

solutions, namely the best positions found by the pth particle and by the whole
swarm until iteration k, respectively.
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As far as the iterative optimization is concerned (Fig. 3.11), starting from

guess values of L()p) and y(()p), p = 1,..., P, the positions and velocities of the
particles are updated according to equations (3.9) and (3.10).
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Figure 3.11: Particle swarm optimizer: flowchart.

The main advantages of the PSO if compared to other optimization tecniques
as the Genetic Algorithms (GAs) or Differential Evolution (DE) can be summa-
rized in the followings:

e the simplicity of the algorithm implementation and the use of a single
operator (i.e., the velocity update) instead of three genetic operators (i.e.,
the crossover, the mutation and the selection);

e the easy manipulation of the calibration parameters [79] (i.e., the swarm
size, the inertial weight and the acceleration coefficients) which controls the
velocity update operator. Even if the number of control parameters (i.e.,
the population size, the crossover rate, the mutation rate) is similar, it is
certainly easier to set the PSO indices than evaluating the optimal setting
among various operators and several options of implementation;

e the ability to prevent the stagnation by controlling the inertial weight and
the acceleration coefficients to sample new regions of the solution space.
In standard GAs and DE, the stagnation occurs when the trial solutions
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assume the same genetic code close to that of the fittest individual. In such
a case, the crossover does not contribute to the evolution and only a lucky
mutation could locate a new individual in other interesting region of the
solution space;

e a smaller number of agents, which turn out in a reduced computational cost
of the overall optimization and enable a reasonable compromise between
computational burden and efficiency of the iterative process.

Regarding the setting of the parameters, Clerc and Kennedy [68| examined in
detail the behavior of the PSO and defined some conditions on the PSO param-
eters to avoid a divergent search. With reference to a simplified one-dimensional
(i.e., N = 1) and deterministic (Cyr; = Cy and Cary = Cy) model, described by
the following updating equations

Vg1 = vk + ©(t — f)
(3.11)

Jrr1 = fu +vra

where ¢ = C1 4+ C5 and t = %ﬁ is the index related to both the cognitive
and the social term and by supposing the personal best and global best position
fixed (i.e., pr = p and gy = g), it has been shown that when ¢ > 4, the particles
diverge as a function of k, while when 0 < ¢ < 4 the trajectories oscillate around
the position ¢ [71] with cyclic or quasi-cyclic behavior depending on ¢. These
conclusions have been drawn from the analysis of (3.11) rearranged in the matrix
form as follows: Fy 1 = MJF, where Fj, = [vg, 2|7 , being 2z = (t — fi), and the
dynamic matrix is given by

M:l_ll 1551 (3.12)

As a matter of fact, it turns out that F, = M*F,, Fy being the initialization
vector. A sufficient condition to reach an equilibrium point at the convergence
(i.e., t) is that the amplitudes of the two eigenvalues of M are lower than unity
[75]. However, a random choice of ¢ causes the uncontrolled increasing of the
velocity term wvy4q [77].

Further developing the approach based on the generalized matrix, it has been
proved that the following constriction system

Vg1 = X[ve + Ciri(p — fi) + Cora(g — fr)]
(3.13)

frt1 = fe + Vi1

where y = ij = 0.7298 with ¢ = 2C; = 2C5 = 4.1 guarantees the

stability of the optimization process.
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Other variants of the PSO exist and a careful analysis about the convergence
taking into account the randomness of the algorithm has been reported in [72].

Concerning the optimal choice of the control coefficients, it is still worthwhile
pointing out that since higher values of w produce relatively straight particle
trajectories, resulting in a good global search characteristic, while small values
of w encourage a local searching, some researchers have gained advantage from a
decrease [69, 74| or a random variation of w during the iterations [70]. In regard
to the coefficients C and Cs, they are usually set to 2.0 as recommended by some
papers in the PSO literature |76, 77, 73] and found through experimentation in
several optimization fields [67]. [27]

3.2.2.2 Custom Fitness Function

The solution to the considered multi-objective problem has been addressed by a
customized PSO optimizer through the minimization of the following multi-terms
cost function:

(d) = oy n = @)l _Ll"(d’ 2 i _gm(d’ 2l (3.14)
n n m m
where d = [d,,;m = 1, ..., M] is the set of dimming profiles imposed to the actua-
tors, L, and P, are the desired light levels and the desired power consumptions,
respectively, € is the environmental brightness measured outdoor, and a and
are the user-defined weights to balance the impact of the two objectives.

The multi-objective problem has been reformulated in (3.14) as a linear com-
bination of the two conflicting objectives in order to avoid the choice of the
best solution among the Pareto optimal ones [27]. The PSO has been adopted
since the problem presents many suboptimal solutions, due to the intrinsic com-
plexity of the indoor environment, the overlapping of the light beams, and the
time-varying nature of ¢, which determines an unpredictable relation between
the actuators and the light in the regions of interest. The iterative minimization
of (3.14) is aimed at continuously updating d in order to reach the desired goals
imposed by the museum manager. The targets L, and P,,, as well as the weights
« and [ are calibrated according to museum conditions and artworks typologies.

[65]

3.2.3 Experimental Validation

The proposed system has been experimentally validated using commercial low-
cost devices, both for sensing and actuation to verify the portability of the pro-
posed control strategy on top of existing hardware. The TI SensorTag [Fig.
3.12(a)| based on the ZigBee wireless technology has been selected as a small,
low-power, and low-cost multi-sensors platform. The commercial WiFi-based
dimmable lamps by Mi-Light [Fig. 3.12(b)| have been adopted to implement the
smart actuators.
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Figure 3.12: Devices used in the experimental validation: (a) TI SensorTag, (b)
Mi-Light dimmable lamps.

The multistandard (i.e., both WiFi and ZigBee) coordinator has been imple-
mented with a low-cost Raspberry Pi platform. A smallscale museum area has
been equipped with a set of N = 2 sensors and M = 4 actuators to manage three
regions of interest. The protocol for the data acquisition and for the command
transmission has been customized to guarantee a system lifetime of at least 6
months, introducing low-power strategies with adaptive duty cycling based on
the temporal dynamics of the indoor brightness. Some selected test cases are
presented to preliminary show the optimization capabilities. [65]

In the first test-case, the desired power consumptions of 3 W has been set
for all the smart lamps and the desired light levels of 500 Lux has been set for
all the lux meters. In Fig. 3.13(a), Fig. 3.13(b), Fig. 3.13(c) and Fig. 3.13(d)
have been respectively represented: the evolution of the PSO fitness function P,
the evolution of the light levels L,,, the evolution of the power consumptions P,,,
and the evolution of the dimming profiles of the smart actuators d,,.

In the second test-case (Fig. 3.14) has been presented a more general setting
of the system, by imposing a custom desired value for every light sensor and
smart lamp installed in the system (T'argetL; = 400[Luz|, Target Ly = 500[Luz],
TargetPy = 2[W], TargetPy, = 5[W|, TargetPy = 3[W] and TargetP, = 4[W1).
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Figure 3.13: Test-case 1: (a) Fitness function evolution, (b) light intensity, (c)
power consumption and (d) dimming profiles of the smart actuators in the regions

of interest.
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Figure 3.14: Test-case 2: (a) Fitness function evolution, (b) light intensity, (c)
power consumption and (d) dimming profiles of the smart actuators in the regions
of interest.

Finally, a third test-case is presented to preliminary show the optimization
capabilities with continuous time-varying environmental brightness e, which has
been measured every 6 minutes during this test.

Fig. 3.15 shows the time evolution of the measured lights [Fig. 3.15 (a)], the
measured consumptions [Fig. 3.15 (b)] and the computed dimming profiles [Fig.
3.15 (c)| setting uniform cost function weights, L,, = 500 [Lux|, and P,, = 60 [W
|, which is 40[%)] lower than the nominal power of the lamp in order to force the
energy saving. The results point out the capability to maintain the variability
of light lower than 100 [Lux| in the regions of interest for more than 95 [%] of
the 3 hours test duration, even in presence of external environmental changes
and with an average energy saving of 37 [%|. The changes of light during the
optimization take few milliseconds in order to make the process transparent to
the users.
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Chapter 4

Opportunistic Occupancy
Estimation System for Museum
Environments

Museum monitoring systems have been widely adopted for artworks conservation
tasks, through the adoption of different monitoring technologies. In this scenario,
both wired and wireless sensors have been developed for accurate measurement
of physical parameters, that is one of the main concerns in museums. In order
to conserve both the artworks and the museum itself (in particular for museum
in historic buildings), it is fundamental to continuously measure and control
quantities like temperature, humidity, and light. Moreover, in this applicative
scenario it is fundamental to minimize the visual impact for esthetical reasons.

The wireless sensor network (WSN) technology has been widely adopted in
a variety of application fields [81]-[85] and also in museum scenario it exhibits
several suitable features, including: the capability to integrate multiple and het-
erogeneous sensors on a single small WSN node, the absence of cables or wired
invasive infrastructures, the cooperation among the nodes for coverage extension
and user interaction, simple and quick system scalability, management of high
number of measurement points, high lifetime, and the low cost of the hardware
platform. The deployment of a WSN-based monitoring system in museum allows
periodical measurements of single artworks (e.g. paintings, sculptures, artifacts),
making them an active element of the museum, always connected and remotely
controllable [48][49].

The smart cooperation among the WSN nodes allows also to overcome the
limitations proper of a single low-power and low-cost device, improving for ex-
ample the total coverage of the system through the intelligent forwarding of the
information throughout the network towards the control unit [86][87][102]. In this
Chapter, the architecture, the objectives and the implementation of the proposed
WSN-based museum monitoring system are presented. The main challenges re-
lated to the deployment in historic buildings as well as the capabilities of such
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backbone to adapt according to the specific characteristics and requirements of
different museums are described. [80]

Furthermore, in this Chapter, to indirectly estimate the presence of visitors
and the museum occupancy will be opportunistically employed the environmental
data available for artworks conservation purposes. It is worth pointing out that
these information are of paramount importance for a wide set of location-based
services, including route planning, low management, exhibitors positioning, and
security issues.

56



CHAPTER 4. OPPORTUNISTIC OCCUPANCY ESTIMATION SYSTEM
FOR MUSEUM ENVIRONMENTS

4.1 System Architecture

The architecture of a WSN-based monitoring system can assume different topolo-
gies (e.g., star-, tree- and mesh- topology) according to the connection and rout-
ing rules established among the network nodes. As an example, in the star-
topology one single node is in charge of the network coordination. This solution
is very simple but implies a limited wireless coverage (i.e., limited to the single
node-node wireless link). A more complex solution is represented by the tree-
topology, based on a rigorous hierarchy defining the coordination points along
the different tree branches. Each node has to communicate with its nearest par-
ent, namely the network node at the immediately higher level in the hierarchy.
As another example, in the mesh-topology each node is connected to the others,
thus making the system more robust but contemporarily more complex, given
the high number of connections and the consequent consumptions due to more
computations and transmissions.

The architecture of the proposed system is based on a hybrid topology com-
posed by two different WSN node types: the anchor node and the sensor node.
The main difference between these two node categories is related to the specific
functionalities they are designed for. In particular, a sensor node is mainly de-
voted to sense and acquire environmental parameters through specific sensors
directly interconnected within the wireless platform. Anchor nodes are mainly
devoted to collect the information transmitted by sensor nodes and forward it
towards the control unit. The adoption of anchor nodes is mainly due to wireless
coverage extension and network robustness improvement. Given these tasks, the
anchor nodes have been designed to be connected also to the power grid, since
they have to keep continuously on the radio module, that usually represents the
highest power drain of the WSN node power budget. Synchronization strategies
among the nodes have been also implemented in order to limit the on-time of
the transceiver. The density of the anchor nodes depends both to the number of
sensor nodes and to the dimension of the area to be monitored. Summarizing,
the deployment of the network has to take into consideration multiple parame-
ters that are optimized during the planning phase once the museum requirements
and characteristics are known. Fig. 4.1 shows an example of the implemented
hybrid architecture. The blue points represent the anchor nodes while the green
ones are the sensor nodes. The control unit is the element of the network in-
terconnected with the anchor nodes through a multi-hop strategy and in charge
of collecting all the data acquired by sensor nodes. The control unit performs
pre-processing tasks and stores data both locally and on a remote database for
successive analysis.

57



4.1. SYSTEM ARCHITECTURE

® Sensor node Control unit

@ Anchor node

Figure 4.1: Hybrid WSN architecture for complex museum monitoring.

The museum scenario depicted in Fig. 4.1 presents the typical challenge of
thick walls of historic buildings. This aspect has to be carefully considered during
the network design process, in order to guarantee the right wireless communica-
tion of sensor nodes towards the closest anchor node. In addition, the typical
low density (or absence) of power sockets in museums increases the complexity in
the design of the monitoring system and forces the adoption of battery-powered
anchor nodes, which integrate much more advanced power saving strategies to
increase the system lifetime reducing as much as possible the maintenance in-
terventions. Summarizing, museums can be reasonably considered complex sce-
narios in which wireless monitoring systems need to be carefully designed to
guarantee high reliability and robustness. [80]
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4.2 Control Strategy

We can consider a finite set of K WSN nodes positioned at known positions

T = (Tp, Yg, 2x), £ = 1,..., K inside a monitored threedimensional domain (2
(Fig. 4.2).

—_—
E
—
£
e
g =
.29
U
X

Figure 4.2: WSN deployment in a museum.

In each sensor node there are some environmental sensors for the acquisition
of the features vector ,(,x,t) € RF*!, where ¢ is the sampling time-instant and F
the number of environmental features. The sensor nodes acquire each feature and
transmit them (e.g., the air temperature, the humidity, etc.) to the gateway node
through multi-hop wireless connections, that will be finally saved in a remote
database. The proposed algorithm runs on a remote control unit and its goal is
to estimate the occupancy level Oq(t) of the domain 2, which is defined as the
percentage of the maximum number of people allowed within €2 according to the
museum regulations, starting from the knowledge of the environmental feature
vector. To this end, will be considered the following basic physical principles of
indoor environmental behavior:

1. the hot air raises to the top when people occupy the domain 2.

2. the humidity saturates from below when people occupy the domain €.

Let the WSN nodes be distributed so that z, € [h;,0 = 1,..,I]; k = 1,..., K,
hy < ho < ... < h; being the vertical positions of the nodes. Furthermore, let
a(h,t) be the function describing the vertical profile of the temperature values,
while 3(h,t) denotes the humidity profile function as shown in Fig. 4.3.
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Figure 4.3: Vertical distributions of (a) the temperature profile a(h,t), and (b)
the humidity profile B(h,t).

By considering that there is a connection between the occupancy percentage
and the slope of such distributions [i.e., a high occupancy causes an increase of
the positive slope of a «(h, t) as well as a decrease of the negative slope of 3(h, t)],
the first derivatives of the corresponding vertical profiles have been evaluated to
determine the so-called environmental occupancy indicator defined as

Oa(h,t) 0B (h,t)
oh ¢ oh
where A and ¢ are suitable calibration coefficients that balance the impact of the
temperature and the humidity in each museum environment. Even if it is clear
that ['(¢) increases with the museum occupancy and it tends to zero when the
domain is empty, the relation between I'(f) and the actual museum occupancy
Oq(t) depends on multiple and time-varying conditions in a nonlinear fashion
including the building characteristics and materials, the air management systems,
and the external weather conditions, and so forth. Consequently, neither simple
descriptive models can be adopted nor analytic closed-forms are available. The
occupancy estimation problem at hand has then been addressed by recurring to
the generalization capabilities of a learning-by-example strategy based on support
vector machine (detailed explained in Sub-Section 4.2.1)[61]. More in detail, in
this work has been adopted the support vector regression (SVR) to evaluate a
linear regression function in a high dimensional feature space where the data are
mapped through a nonlinear function W[I'(¢)] = Oq(¢). A finite set of R input-
output learning patterns (I'(¢), Oq(t)),; 7 = 1,..., R has been collected to train

the SVR once and offline.
After the training phase, the SVR processes the available feature vectors
vk, t) collected by the WSN nodes in real-time, calculates the environmental

(t) = A (4.1)
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indicator T'(t), and in the end provides the estimated occupancy level Ogq(t).
[105]

4.2.1 Support Vector Machine

Learning-by-examples techniques are computer-aided approaches based on ma-
chine learning [88] that are pointed at solving complex real-world problems. In
our case the “complexity” can be related to the need of computing the solution
in real-time, not feasible by means of other methods. To address these prob-
lems, LBE strategies are characterized by two phases: the training phase and
the testing phase.

e In the training phase, a LBE technique learns the behavior of a function
from a set of input-output pairs. The goal of the training is the creation
of a surrogate model able to emulate the real system.

e In the testing phase, the LBE technique is applied to input samples not
observed during the training phase and is able to generalize what learned.

Support Vector Machine is a Learning-by-examples technique built on a solid
theoretical framework, the statistical learning theory [89], in which the defini-
tion of the control parameters of p(e) is formulated as a quadratic optimization
problem ensuring a global optimum. Moreover, the resulting model turns out
being sparse, since only training samples associated to non-vanishing coefficients
(i.e., the so-called “support vectors”) are exploited to make predictions, thus
controlling the model complexity and avoiding over-fitting. [90]

The SVM-based classification approach can be formulated as the following
two-step procedure[61]:

1. Determining a decision function d that correctly classifies an input pattern
(I, m) (not necessarily belonging to the training set);

2. Mapping the decision function ®{(L,m)} into an a posteriori probability
Prix=1[L}.

4.2.1.1 Definition of the Decision Function

At this step, we define x,,, m = 1,..., M as the points of a two-dimentional
space, which status will be determined by the algorithm. Mathematically, such
a problem formulates in the definition of a suitable discriminant function ®
separating the two classes, which are labeled as y = +1 and y = —1. Since
these classes are nonlinearly separable, the definition of a non-linear (in terms
of the original data ') discriminant function is usually required as well as the
solution of an optimization problem where multiple optima (also local optima)
are present.
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SVM defines a linear decision function corresponding to a hyperplane that
maximizes the separating margin between the classes and it requires the solution
of an optimization problem where only one minimum there exists. More in detail,
the linear data-fitting is not carried out in the original input space R{L}, but
in a higher dimensional space X{o(L')} (called feature space) where the original
examples are mapped through a nonlinear operator, ¢(e). The nonlinear SVM
classifier so obtained is defined as

A

D(p(L,m)) =w- (L, m)+b m=1,.M (4.2)

where w and b are the parameters of ® to be determined during the training phase
and (L', m) is a non-linear function mapping the original input data, (I, m), to
a higher dimensional space, called feature space, where the surrogate model can
be defined through a simple linear function (4.2) (Fig. 4.4).

The hyperplane so-defined causes the largest separation between the decision
function values for the “margin” training examples from the two classes. Math-
ematically, such a hyperplane can be found by minimizing the following cost
function

1
0w = 5 (43)
subject to the separability constraints
Q~£(£(n),m)+bz +1 fO'r’ X&g) = +1, m=1,...M (4 4)
w-p(L™,m)+b< =1 for X = —1, n=1,..,N '

In this sense, SVM can be considered as a kind of regularized network, as indi-
cated in [91].

However, since the training data in the feature space are generally noncom-
pletely separable by a hyperplane, slack variables (denoted by é((zb))) are intro-
duced to relax the separability constraints in (4.4) as follows:

W@ m)+b>1—€0 for X =+1,  m=1,...M )
@'E(E(n),m)erSS((%_—l for x\M = —1, n=1,..,N '

Such a procedure is justified by the Cover’s theorem, a key point in the SVM
methodology as indicated in [92].
Thus, the cost function in (4.3) turns out to be

el c & Ng) 0 3
Qw) = — X f:; + 5:;_ (4.6)
2 et (N + N}~ |50 a5

where N(J;n) and N, indicate the number of training patterns for which x(") =

+1 and Y™ = —1, respectively. The user-defined hyperparameter C' controls
the tradeoff between the empirical risk (i.e., the training errors) and the model
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complexity [the first term in (4.7)] to avoid the overfitting. In that case, the
decision boundary too precisely corresponds to the training data. Thereby, the
method is unable to deal with data outside the training set [92].

; DT, m)}
(T, m) ‘D(i’ ™ O{pL,m)}

Input Space Tm) Feature Space (L, m)

—

@(8): R > R* K <K*

Figure 4.4: Non-linear mapping of the input space to the feature space.

Moreover, to include a priori knowledge about class distributions [93], two
weighting constants can be defined A = C/ XM, N(J;n) and \_ = C/ XM Ny
[94], and (4.6) modifies as follows:

o - 10, 5 quw 5 Zé" (4.7)

m=1 n=1 m=1 n=1

In order to minimize (4.7), it can be observed that a necessary (4.3) condition
is that is a linear combination of the mapped vectors f@("), m)

M N
w= 33 {alxPe@™, m} (4.8)
m=1n=1

where o™ >0, n=1,...,N, m = 1,..., M are Lagrange multipliers to be de-
termined. Moreover, from the Karush-Khun-Tucker conditions at the optimality
[95], b turns out to be expressed as follows:

MmN I = 2 2 {a@e@™ m) - (TP, 9)}
NS'U

b:

(4.9)

N, being the number of patterns (F(") m) for which (™ # 0 (called support
vectors). Since support vectors lie on the hyperplane for which (4.5) is satisfied
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with equality, they are taken into account for the classification while the others
are neglected. Such an event reflects the “sparsity” property of the SVM classifier
allowing the use of few input patterns. Substituting (4.8) and (4.9) in (4.2) yields

B(p(D),m) = Sty Sy {al e (L™, L, p,m) } +
(4.10)

DD D] {ngf) —231:1 Z;,V:I {0455)9(2(") L®) p,m) } }
_'_
NS’U

where © (E(i),ﬂ(j),p, m) = f(ﬂi),p) -f(ﬂj),m) is a suitable kernel func-
tion [96]. Then, the decision function is completely determined when the La-
grange multipliers are computed. Toward this end, the constrained optimization
problem formulated in (4.6) and (4.5) is reformulated in a more practical dual
form. The solution of the dual problem, which is equivalent to the solution
of the primal optimization problem (4.3)-(4.4), appears in (4.11), subject to
SN ST eyt =0, o™ e [0,A]if x™ = —1 and o™ € [0, \,] otherwise.

Maro{Qpua()} =

PO DD DD Dy {aﬁf)aép)x%)xép)e)(ﬂ") L@ ,p,m)}
= Maxy 3 - (4.11)

- 2%21 ZnNzl aﬁr’f)}

Finally, since Qpuq(a) is a convex and quadratic function of the unknown
parameters ™, it is solved numerically by means of a standard quadratic pro-
gramming technique (e.g., the Platt’s SMO algorithm for classification [97], an
optimal implementation of the SMO algorithm is the “LibSVM” tool available
at http://www.kernel-machines.org). More in detail, the SMO algorithm breaks
the large optimization problem at hand in a series of smaller ones characterized
by only two variables and solved through an effective updating formula [97], thus

inducing nonnegligible computational savings. [61]

4.2.1.2 Mapping of the Decision Function Into the A Posteriori Prob-
ability

Concerning standard classification, the SVM classifier labels an input pattern
according to the following rule [98|:

Xm = Sign {@(f@, m))} , m=1,...M (4.12)

Unlike standard approaches, the proposed method is aimed at defining an a
posteriori probability. Consequently, some modifications to the standard SVM-
based classification approach are needed. Toward this aim, a set of efficient
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solutions has been proposed (e.g., see [96], [99]-[101]) either based on a direct
training of the SVM with a logistic link function and a regularized maximum-
likelihood score or based on a posterior fitting probability process.

The first class of approaches usually leads to nonsparse kernel machines and
requires a significant modification of the SVM structure. In this paper, the a
posteriori probability fitting method [101] is adopted since the use of a parametric
model allows a direct fitting of the a posteriori probability Pr{x = 1|L'}. More in
detail, such a model approximates the a posteriori probability through a sigmoid
function

Prixm =1L, m)} =

—

1+ezp{'y<i>(_(£,m)+5} ’ m= 1’ o M (413)
where v and ¢ are unknown parameters to be determined.
To estimate the optimal values for the parameters of the sigmoid function, a

fitting process is performed. A subset of the input patterns of the training set is
chosen {(Lm,xm; m=1, ...,M)(S); s=1,.., S}, where ®(5) = & (g(ﬂs),m)).
Then, the following cost function is defined as in (4.14) and successively mini-
mized to define v and § according to the numerical procedure proposed by Lin
et al. (see http://www.csie.ntu.edu.tw/~cjlin/, ) to solve the problems (i.e., the
use of a kind of Levenberg-Marquardt method for unconstrained optimization) of

the implementation of Platt’s probabilistic outputs method pointed out in [101].

(

T(v,0)=—=>2 M, {X%Hl‘)g [ ! ] +

14exp (y&ﬁj) +5)

_ grsl) ezp('y‘igihré)
* (1 > > log [1+ezp(’y<i>£,sl)+5)] }

Summarizing, the SVM optimization problem needs three successive steps:

(4.14)

1. determining the hyperparameters array (model selection), i.e., C' and all
the parameters that define the kernel function (e.g., the Gaussian ¢ width
when Gaussian kernels are used), by considering the “training dataset”;

2. determining the functional parameters o and b starting from the “training
dataset” and solving the dual problem (4.11);

3. determining the a posteriori fitting parameters v and ¢ starting from a
subset of the “training dataset” (validation phase);

4. testing the SVM on a different dataset (test phase).

[61]

65



4.3. EXPERIMENTAL VALIDATION AND RESULTS

4.3 Experimental Validation and Results

The main objective of museums is to make artworks accessible to the public
and at the same time to ensure the longterm safety and preservation of the
collections. In the past, chart recorders and hygrothermographs were the most
common instruments used to monitor various areas within a museum, but this
is rapidly changing in the last years. With the diffusion of digital monitoring
devices, alternatives such as data loggers are more and more widely adopted.
Digital solutions minimize maintenance tasks, like the regular change of charts
and the manual calibration performed by trained staff. However, even if such
solutions represent an advance respect to analog recording devices, they still
present many limitations with respect to the emerging needs of museums that
will go beyond the environment monitoring. Indeed, the current trend is to
enhance the connection of the museum with its audience, so that the visitors’
preferences can be exploited to provide additional “personalized” services [104].
The experimental validation of a WSN-based infrastructure for the monitoring
of museum environment is presented. The hardware platform has been designed
and realized for the deployment in the “Sala dei 5007, the most important cham-
ber inside the Palazzo Vecchio, Florence, Italy. The network of sensors acquires
heterogeneous data, starting from the environmental parameters, with the aim
of reproducing the museum characteristics through web-based application tools
and enhancing the interactions between museum and users. The software archi-
tecture has been developed to enable the integration of additional services based
on the collection of sensor data eventually fused together with other available
museum information. The installation of the system in a highly visited museum
has given the opportunity to test the capabilities and robustness of the WSN
technology in dealing with the monitoring of large and crowded spaces. The
details of the installation and the preliminary obtained results are here reported
as a representative test case of the E-Museum platform validation. [103]

4.3.1 WSN Node Prototype

The prototypes of sensor node and anchor node typologies have been realized
integrating the transmitting/receiving unit, the antenna, the power subsystem,
the computational unit, and the sensors within a small package of maximum size
90x65x25 mm. The dimensions have been reduced as much as possible to limit
the visual impact in the proximity of the artworks. Fig. 4.5 shows a prototype of
a sensor node that integrates a temperature and humidity sensor, with accuracy
+0.3°C, £2%RH in the range -40°C, +125°C and 0-100%RH, a light sensor
sensible to light wavelength in the range 430-1100 nm, and finally a three-axes
accelerometer, with £1.5g sensitivity.
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Figure 4.5: Prototype of the WSN sensor node.

The sensor unit can be easily modified and integrated thanks to the available
expansions that has been made available on the main hardware platform (up
to 15 digital I/O lines and 4 12bit-ADC available for additional sensors). As
an example, high-precision thermistors for surface temperature measurements
as well as light sensors for UV radiation measurements have been designed for
successive integration.

The radio module is compliant to IEEE 802.15.4 low-power standard, using
the sub-GHz reference working frequency =868 MHz. This frequency guarantees
better propagation throughout the museum rooms respect to the widely diffused
2.4GHz ISM frequency band. Good coverage performance are also guaranteed
by the maximum transmitting power that can be dynamically configured (up
to Ptx—=12 dBm) and by the very high receiver sensitivity (down to Srx—-121
dBm).

Once the devices have been installed, the remote control of the wireless net-
work allows direct control of every single WSN node, that can be configured
in real-time according to the museum staff expertise. The maintenance of the
nodes is minimized since information about the hardware and battery status
are given only if an action is required. The battery lifetime strictly depends by
the transmission rate. Assuming a time delay of 10 minutes between two suc-
cessive transmissions, the duration is around 13-15 months using standard AA
commercial batteries.
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4.3.2 Deployment in a Real Museum Environment

The WSN nodes have been deployed in museum areas according to curators sug-
gestions in order to guarantee representative data measurements from the preser-
vation point of view. The high flexibility of the wireless infrastructure has been
fully exploited since most of the measurement points are usually very difficult to
reach and the quality of the wireless connections has been guaranteed through
the adaptive management of multihop network tipology. Each wireless node is
equipped with a multi-sensor platform for the measurement of the desired pa-
rameters. Both temperature and relative humidity sensors are integrated in the
designed board. All the sensor data are measured through analog to digital con-
verters and locally stored for pre-processing before the transmission throughout
the wireless network. Power saving strategies have been carefully implemented
on-board in order to limit as much as possible the consumptions related both to
the sensors and the radio transceiver.

The implemented network allows bidirectional communications between the
nodes and the remote control unit. Respect to standard WSN infrastructures
that enable only one-way data collection from the sensors to the gateway, the
proposed system provides a set of commands (e.g., on-off, calibration, diagnostic
commands) that the end-user can use to interrogate a specific node or a set of
nodes. The acquired data are collected by a control unit dedicated to data pro-
cessing and storage. Data fusion strategies have been implemented to generate
an aggregated representation of the monitored domain. A user-friendly web tool
(Fig. 4.6) has been developed to enable both data visualization and interaction
with the system.

The proposed E-Museum monitoring system has been deployed in the “Sala
dei 5007, inside Palazzo Vecchio, the town hall of Florence, Ttaly, (Fig. 4.7)
that represents one of the most significant public spaces in Italy. The “Sala dei
500” has a length L=>52m and width W=23m. The ceiling, that is adorned with
39 panels, is H=18m high. A set of N=22 wireless nodes has been installed at
different heights according to the monitoring requirements (Fig. 4.8).

68



CHAPTER 4. OPPORTUNISTIC OCCUPANCY ESTIMATION SYSTEM
FOR MUSEUM ENVIRONMENTS

W Monitored Parameters Sat, 30 Dec 2017 11:03:11

testata SUD

testata NORD

Salone Dei Cinquecento
[Layer3[n: 18 m) | ® Temperawre  Humidity  Geometry | Set |

w 5 - e = T
-

e PLANET INSPIRED I‘ ﬁ ledi
13.06 °C 14.52 °C e

Figure 4.6: EMuseum Web Tool.
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(e) (f)

Figure 4.7: Network Installation inside the “Sala dei 500”.
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Figure 4.8: Sensing layers inside the “Sala dei 500”.

In particular, three horizontal layers have been identified at the heights hy =
1.8 m, hy = 5.0 m, and hs = 18 m, close to the sculptures, the wall paintings, and
the paneled ceiling, respectively. Moreover, an additional node has been installed
outdoor [Fig. 4.7(f)] , on the building side close to Piazza della Signoria, for
indoor-outdoor correlation. The installation procedures have been carried out in
collaboration with the trained staff of the museum. In particular, the nodes at
height hs have been hanged with hand-line and raised up from the upper side
of the paneled ceiling where only authorized technicians have access. Finally,
the sensors have been positioned as close as possible to the target artworks.
Once all the sensors have been installed, the boot sequence has been executed
through the implemented user commands in order to activate the acquisition
with the desired time interval. The graphical interface of the E-Museum web
tool has been activated in order to visualize the processed data and to enable
the interaction with all the online sensors. Diagnostic information like battery
status, internal CPU temperature, and wireless link quality can be requested
(Fig. 4.9).

In case of node malfunctioning or discharge, automatic messages are sent to
the control unit in order to plan the maintenance. Thanks to the data storage in
remote databases, even complex analysis of the historic data can be performed
offline (Fig. 4.10). [103]

71



4.3. EXPERIMENTAL VALIDATION AND RESULTS

* -
' 1 =1

30/12, 10:48
¥ fir T o
55.2 %
334V
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Figure 4.10: WSN Node Historic Data.
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4.3.3 Occupancy Estimation

In the following will be presented a selected set of experimental results to show
the potentialities and the limitations of the proposed occupancy estimation al-
gorithm. The scenario is composed by the WSN described before: K = 22 nodes
installed at I = 3 different heights, and each node is equipped with environmen-
tal sensors able to measure F' = 2 features: the temperature and the humidity
values. After the acquisition, the environmental information are sent with a
sampling period of At = 10’; the optimal trade-off between the WSN power
consumption and the necessary time-resolution for detecting the environmental
variations.

a(h_, r)

-

,B(h,f)

Temperature
Humidity

hy h, h, h, h, hy Height

(a) (b)

Figure 4.11: Derivatives of daily vertical profiles of (a) the temperature, and (b)
the humidity.

For illustrative purposes, Fig. 4.11 shows the first derivative of the vertical
profile of the temperature [Fig. 4.11(a)] and the humidity [Fig. 4.11(b)| for
different, occupancy conditions (low and high). As it can be experimentally
proved and observed, large values of % and small values of % occur at
the same time when the domain occupancy is high.

As for the environmental occupancy indicator I'(¢), it has been determined
by applying (4.1) and setting the calibration parameters to ¢ = 0.5 and A =
0.5. Regarding the estimation of the occupancy index Og(t), radial basis kernel
functions have been chosen for the SVR-based method trained with a set of r =
1008 known input-output data, that correspond to one week of acquisitions, and
setting the SVR metaparameters to € = 0.1 and ¢ = 10. Later, the experimental
prediction has been performed with unknown (i.e., input data not belonging to
the training set) test data related to three representative situations:

1. closed museum;

2. normal week-day;
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3. crowded museum during a special event.
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Figure 4.12: Actual and estimated indoor occupancy.

Fig. 4.12 represents the estimated occupancy levels and the real occupancy
trends as inferred from the museum ticketing. The comparison underlines that
there is a good matching between estimated and real occupancy percentages in
any. As expected, there is a shift between the estimated trends and the actual
occupancy dued to the time-delay of the environmental indexes in "recognizing"
the variations of the people presence. In reverse, this latter can be easily avoided

considering it during the training phase.

As expected, there is a shift between the estimated trends and the actual
occupancy dued to the time-delay of the environmental indexes in "recognizing"
the variations of the people presence. In reverse, this latter can be easily avoided
considering it during the training phase. [105]
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Conclusions

In this Chapter, conclusions and future developments regarding the proposed
system are presented. In particular, additional considerations are given regarding
the actual status of these systems.
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5.1 Conclusions and Future Developments

In this thesis, innovative wireless solutions for the development of smart en-
vironments have been proposed. Adaptive, learning, cognitive and bio-inspired
systems as well as distributed and embedded control and sensing have been stud-
ied, and tested as an important avenue for the medium to long term development
of the next-generation smart cities. Each solution has been developed starting
from the combination of wireless platforms with dedicated data analysis methods
to enable not only the data acquisition, but also the adaptive decision support
according to the real end-users needs in different applicative scenarios. The se-
lected systems have been experimentally validated in real test-sites to point out
the real-world applicability of the proposed wireless solutions.

Going into detail, this thesis has presented systems that belong to the so-
called smart cities and smart building.

The concept of smart cities has been applied in power management, with a
wireless distributed system for smart public light management. A demonstrative
prototype composed by more than 700 controlled lamps has been installed in
the city of Trento, Italy, for the experimental assessment of the advantages and
limitations of the investigated solution. The introduction of adaptive dimming
profiles calibrated according to the time varying conditions of the scenario has
enabled a total energy saving close to 30 [%] after a three-years measurement
campaign. The optimization of the dimming rules may offer even higher per-
formance and future activities will be also focused on the integration of smart
methods for the automatic and real-time calibration of the rules to support the
decisions of the operators in the smart lighting system management.

On the other hand, the concept of smart building has been treated describing
smart monitoring systems of indoor areas with wireless sensors. Particular at-
tention has been given to the monitoring of museums as well as smart buildings
such as residential homes. First of all the energy saving problem in smart build-
ings has been re-elaborated as a multiplayer game and an appropriate strategy
based on game theory has been implemented in a Decision Support System, that
helps the end user to choose the best time slot to switch on his appliances. The
proposed system has been preliminary assessed through both experimental and
numerical tests showing good performance in reducing the energy costs and PAR
(Peak to Average Ratio). Later, the energy saving problem has been applied to a
different scenario, the intelligent control of lightning in a smart museum. In this
specific context, there are multiple goals: increase the visitor experience qual-
ity and minimize the power consumption of the lighting system. This system
is composed of a Wireless Sensor and Actuator Network (WSAN) that acquires
light and power quantities from the environment and controls the lamp intensity
in order to reach the goals of this system. The control strategy is based on a
Particle Swarm Optimizer (PSO) that minimizes a multi-term cost function. The
obtained results point out the capability to find the optimal actuation strategy
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able to satisfy the constraints on both energy saving (up to 37%) and the quality
of the artworks presentation (for more than 95% of the considered time). Finally,
the environment of the smart museum has been treated, by proposing a system
for the monitoring of environmental parameters in order to safeguard the status
of artwork, using the WSN technology. Taking advantage of environmental in-
formation available from a WSN devoted to artwork conservation purposes, an
occupancy estimation algorithm has been implemented. By exploiting the gen-
eralization properties of a suitably trained SVR-based strategy, the evaluation of
the complex relation between visitors occupancy and environmental parameters
has been performed and preliminary evaluated in a real-world experimental setup
(Sala dei 500, Firenze, Italy). The obtained results have confirmed the poten-
tialities of the proposed approach for improving the awareness on the museum
usage, the museum quality-of-service, and the security issues related to the flow
management.
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