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Abstrat

The thesis fouses on prediting tolerane e�ets on the radiation pattern of re-

�etarray antennas through Interval Analysis. In fat, the unertainty on the

atual size of all parameters under fabriation toleranes suh as element dimen-

sions and dieletri properties, are modeled with interval values. Afterwards, the

rules of Interval Arithmeti are exploited to ompute the bounds of deviation in

the resonane frequeny of eah element, the phase response of the element and

the radiated power pattern. Due to the redundany problems of using Interval

Cartesian (IA−CS) for omplex struture, the interval bounds are overestimated
and the reasons are the Dependeny and Wrapping e�ets of using interval anal-

ysis for omplex strutures. Di�erent tehniques are proposed and assessed in or-

der to eliminate the dependeny e�et suh as reformulating the interval funtion

and the Enumerative interval analysis. Moreover, the Minkowski sum approah

is used to eliminate the wrapping e�et. In numerial validation, a set of rep-

resentative results, show the power bounds omputations with Interval Cartesian

method (IA − CS), a modi�ed Interval Cartesian method (IA − CS∗
), Inter-

val Enumerative method (IA − ENUM) and Interval Enumerative Minkowski

method ( IA − ENUM −MS) and a omparative study is reported in order to

assess the e�etiveness of the proposed approah (IA − ENUM − MS) with

respet to the other methods. Furthermore, di�erent toleranes in path width,

length, substrate thikness and dieletri permittivity are onsidered whih shows

that the higher unertainty produes the larger deviation of the pattern bounds

and the larger deviation inlude the smaller deviation and the nominal one. To

validate the inlusion properties of the interval bounds, the results are ompared

with Monte Carlo simulation results. Then, a numerial study is devoted to

analyze the dependeny of the degradation of the pattern features to steering an-

gle and the bandwidth. Finally, the e�et of feed displaement errors on the

power pattern of re�etarray antennas is onsidered with Interval Enumerative

Minkowski method. The maximal deviations from the nominal power pattern

(error free) and its features are analyzed for several re�etarray strutures with

di�erent foal-length-to-diameter ratios to prove the e�etiveness of the proposed

method.

Keywords

Re�etarray Antennas, Sensitivity Analysis, Antenna Unertainties, Interval Anal-
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Struture of the Thesis

The thesis is strutured in hapters aording to the organization detailed in

the following.

The �rst hapter (hapter 1) deals with an introdution to the thesis and the

state-of-the-art investigation, fousing on the introdutory remarks on re�etar-

rays and the main motivations of using interval analysis for tolerane analysis of

the re�etarray antenna.

Chapter 2 provides the di�erent approahes used for the analysis of the ra-

diation pattern of re�etarrays , fousing on the Aperture Field Method and

Floquet model expansions. Tehniques for omputing the phase distribution on

the re�etarray aperture surfae are provided in this hapter. Approahes for

designing the unit ell is also overed in this hapter. The analytial expression

for the re�etion oe�ient is explained. The radiation pattern and its relation

to the physial parameters of the unit ell is expressed.

Chapter 3 is devoted to the fundamental of the Interval Analysis method, fo-

using on the de�nition, properties and the key features of the interval arithmeti

rules. Interval funtions with inlusion theory are de�ned. Complex interval is

explained. The two main problems of Dependeny and Wrapping related to the

use of Interval Analysis and Arithmeti of Intervals in omplex struture are fully

explained. These problems produe the redundany in the interval bounds. Re-

formulating of the interval expression for solving the dependeny e�et is properly

determined.

Mathematial formulation of the re�etarray analysis and its interval exten-

sion are desribed in hapter 4. A mirostrip re�etarray antenna is onsidered

as an illustration. Then Aperture Field method together with Floquet model

expansions are onsidered for analysis the mirostrip re�etarray antenna. To
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LIST OF FIGURES

onsider the e�et of the geometrial parameters error on the radiation perfor-

mane of the antenna, interval analysis is applied. This hapter deals with the

interval extension of the re�etarray radiation pattern expression. Geometrial

parameters suh path length, width, substrate thikness and dieletri permit-

tivity are modeled with interval values, then the interval funtion of the far �eld

is omputed. Di�erent tehniques for eliminating dependeny e�et in re�etar-

ray antenna formulations are expressed. Minkowski Sum approah to remove the

wrapping e�et is explained.

Several representative results are presented in hapter 5. The inlusion prop-

erties are heked by omparing the resulting bounds with the Monte Carlo

simulation results. A omparative study heks the improvement of Interval

Enumerative Minkowski (IA−ENUM −MS) to Interval Cartesian (IA−CS).
Pattern feature analysis versus steering angle, bandwidth are assessed and de-

sribed. The e�et of feed displaement errors on the radiation performane of

the re�etarrays is also onsidered in this hapter. The bounds of the deviation

as a result of the axial errors are omputed by Interval Minkowski methods. The

inlusion properties are heked by omparing the results with the Monte Carlo

simulation results. Analysis versus di�erent foal-length-to-diameter (F/D) ra-
tios in di�erent tolerane errors in the feed positions is evaluated. The results

are explained and ompared together.

Conlusions and further developments are presented in Chapter 6.
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Chapter 1

Introdution and State-of-the-Art

In the introdution, the motivation of the thesis is pointed out starting from a

brief overview on the re�etarrays and tehniques presented in the state-of-the-

art for tolerane analysis of the re�etarray antenna.
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High gain antennas are needed in a variety of ommuniation systems suh as

radar, long distane ommuniation, wireless ommuniation and remote sensing

appliations. Re�etor and array antennas are traditionally two main antennas

for high gain appliations [1℄. Curve surfae of the re�etor antennas makes the

manufaturing proess more di�ult. Furthermore, high mass and volume of

re�etor antenna inrease the launh ost speially in spae ommuniation. In

reent years, phased array antennas have been used as an appropriate option for

satellite ommuniation due to the advantages of low pro�le, low ost, low mass

and high gain radiation patterns [2℄. Despite the previously mentioned advan-

tages, the feeding system of the phased array antennas is quite ompliated. The

most ideal antennas for spae ommuniation are the ones whih an ombine

the best features of the re�etor and array antennas. Over the past few years,

re�etarray antennas have proved to be an exellent alternative to re�etor and

array antennas. Re�etarray antennas �rst introdued in 1960s by Berry, Maleh

and Kennedy [3℄. They were short-ended waveguide with variable-length waveg-

uide. Then in mid-1970s �spiraphase� re�etarray was presented by Phelan [4℄.

In the 1980s, mirostrip re�etarray antennas were developed [5℄.

Favorable features of low pro�le, low mass, low ost and high e�ieny as well

as the ability of being folded in spae have made the re�etarrays the most appli-

able antennas for spae ommuniations [6℄, [7℄. Re�etarray antenna struture

inlude several radiating elements loated in a re�etive surfae whih are illumi-

nated by a feed antenna. Mirostrip pathes, dipoles and rings are the radiating

elements in the re�etarray antenna [8℄, [9℄ . These radiating elements produe

the required phases to form a planar phase front in the far-�eld [10℄. Di�erent

approahes an be used to produe the required phases[13℄. These approahes

are variable phase delay lines attahed to element [11℄, variable-size pathes [12℄,

dipoles or rings and the element rotations . Among them variable-size approah

has the disadvantages of the the limited realizable phase range. The ahievable

phase range by this approah is less that 360 [deg℄. This unattainable phase

range leads to phase error. To take a phase variation near to 360 [deg℄, path

size should hange signi�antly about 40 perent whih leads to an ine�ieny

[10℄. By using element rotation better e�ieny ould be obtained due to the

lak of speular re�etion of the o�-broadside inident rays [10℄. Despite of all

advantages of the re�etarray antenna, it has one main disadvantage whih is its

narrow bandwidth. It is usually beyond ten perent depending on its element de-

sign, aperture size and the foal length [14℄. This bandwidth is mainly limited by

the element geometry and di�erential spatial phase delay. For ahieving wider

bandwidth thik substrate, staking multiple pathes and sequentially rotated

subarrays are proposed. More than 15 perent bandwidth is gained by these ap-

proahes [15℄, [16℄. Re�etarray with larger foal-length-to-diameter (f/D) ratio

have wider bandwidth. Curved re�etarray with pieewise �at surfaes has larger

bandwidth than a �at re�etarray antenna. Despite of the bandwidth limitation

of the re�etarray antenna, due to several apabilities, development and researh
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CHAPTER 1. INTRODUCTION AND STATE-OF-THE-ART

for re�etarray antenna are still an ongoing proess. Several development and

innovation tehniques are used in re�etarray antenna design whih is worth to

mention. Using multi-layer staked path inrease the bandwidth from a few

perent to ten perent [15℄, [16℄. This struture an improve the phase range far

in exess of 360 [deg℄. By varying the dimensions of three staked pathes, over

600 [deg℄ phase ranges an be ahieved. In [17℄, the eletrially largest re�e-

tarray in the mirowave and millimeter-wave spetra is introdued. It is a 3-m

Ka-band irularly polarized in�atable re�etarray onsisting of 200000 elements.

In [3℄, an amplifying re�etarray antenna was developed in whih eah element

reeives the signal from feed, then goes to ampli�er and retransmit the signal.

It an give very high equivalent isotropi radiated power. Another improvement

in re�etarray antenna design is applying optimization algorithm to synthesis

the antenna pattern. There are di�erent parameters in re�etarray antenna suh

as substrate thikness, path size, inident angle, main beam and bandwidth.

These parameters an be optimized in order to ahieve the high gain, e�ieny

and the diretivity. Geneti Algorithm (GA) and Partile Swarm Optimization

(PSO) are properly used in [20℄ and [19℄ to synthesize the re�etarray antenna.

A novel re�etarray antenna integrated with solar ells for satellite ommunia-

tion is developed in [21℄. Over all of these innovations and developments, there

is one main hallenge whih is not onsidered e�iently in re�etarray antenna

design. Re�etarray antenna an be a�eted by surfae deviations and the man-

ufaturing toleranes due to its re�etion mehanism, path dimensions and the

eletrial phases [10℄. The phase response of the path element in mirostrip

re�etarray depends on its physial parameters [22℄. Due to the inauraies in

manufaturing proess, the dimension of the single element and the position of

the feed deviate from their atual values. This deviation auses a onsiderable

hange in phase response of the single element and eventually the degradation

in the radiation pattern. To derease the sensitivity toward manufaturing er-

rors, two layer struture is suggested. As an example, a tolerane error of 0.1

mm in path dimension will produe only 6.5 error in phase, whih indiate the

low sensitivity to manufaturing toleranes rather than a single layer re�etar-

ray antenna [10℄. The e�et of manufaturing errors is more sensible when the

frequeny is inreasing.

To improve the robustness of the system, any hange in the phase response

should be avoided. Di�erent mehanisms have been applied to estimate the phase

errors and the pattern degradation. Tolerane analysis has been applied to the

re�etarray antenna in the work of Pozar et al. [24℄ where statistial approahes

are implemented to estimate the deviation in phase response of mirostrip path

element while the root-mean-square error of path dimensions are known. In [23℄,

numerial analysis is presented to ompute radiation disrepany of metalli re-

�etarray antenna experiening manufaturing distortion at millimeter waves.

Errors are modeled with normal distribution. Sine re�etarray antennas are

sensitive to manufaturing errors, the need for the tolerane analysis is unavoid-
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able. Initial work on tolerane analysis of the antenna was based on statistial

approahes. Tolerane analysis is used to onsider the e�et of tolerane in the

position of the element due to mehanial errors [25℄. A probabilisti analysis is

exploited in [26℄ and [27℄ to alulate the maximum tolerane in array elements

to satisfy the spei� onstrains. In [47℄, tolerane analysis based on Monte Carlo

method is exploited to predit the e�ets of errors in the exitation and the po-

sition of eah element. The above-mentioned methods are based on statistial

approahes in whih the a-priori knowledge of the error distribution is neessary.

The main problem assoiated with Monte Carlo method is the lengthy ompu-

tations of the in�nite number of error ombinations. Sine it is not plausible

to realize the in�nite number of errors, the Monte Carlo results are not totally

reliable [47℄.

To overome the urrent limitations of statistial approahes in tolerane

analysis, Arithmeti Interval is applied to perform operations between interval

values [29℄. Interval Analysis was �rst used to solve the linear and nonlinear

funtions [29℄ and optimization problems [30℄. Its usage in eletromagneti �eld

was initiated with the robust design of the magneti devies [31℄ and reliable

systems for target traking radar [32℄. Reently Interval Analysis was used to

model the manufaturing toleranes in exitation and position of linear array

antenna. Interval arithmeti was then exploited to ompute the bounds of the

radiation pattern degradation over the interval errors [33℄. A losed form expres-

sion has been presented for the upper and lower bounds of the power pattern in

the re�etor antenna with bump-like surfae by the features of Interval Analysis

and the rules of arithmeti for intervals [49℄. Aording to the state of the art,

the signi�ane of applying manufaturing tolerane analysis in antenna design is

quite well-known. In order to apply interval analysis in re�etarray antenna, we

need to apply proper analysis method. In the next hapter, di�erent tehniques

for analysis of the re�etarray antenna radiation pattern will be explained.

4
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Chapter 2

Radiation Analysis for Re�etarray

Antenna

In this hapter di�erent approahes for analysis of the radiation pattern of the

re�etarray antenna are presented. Comparative studies among these approahes

are provided. There are several approximations for feed antenna pattern and

the element re�etion oe�ient. These approximations are explained in this

setion. The aurate method for analysis of the o- and ross-omponents of

the radiation pattern is also provided.
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2.1. INTRODUCTION

2.1 Introdution

To ompute the radiation harateristi of the re�etarray antenna, di�erent

approahes suh as Array-Theory method and Aperture-Field method an be

applied. Advantages and disadvantages of using these methods are desribed in

this setion. One of the most ruial part of the re�etarray analysis and design

is the aurate evaluation of the unit ell element whih provide a required phase-

shift. The phase shift distribution of the re�etarray surfae and unit ell design

are lari�ed in this setion.

2.2 Overview of Analysis Tehniques

2.2.1 Array-Theory Method

Conventional array theory is applied to ompute the far �eld radiation pattern

of the re�etarray antenna. Considering the array antenna withM ∗N elements.

The total eletri �eld of the array antenna is the multipliation of the element

pattern and the element exitation as [35℄:

E(v̂) =

M∑

m=1

N∑

n=1

−→
b mn(v̂) • −→a mn(

−→r mn), (2.1)

v̂ = x̂sinθcosφ+ ŷsinθsinφ + ẑcosθ (2.2)

Where

−→r mn is the position vetor and bmn , amn are the element fator and

the exitation vetor funtion, respetively. For the sake of simpliity element

fators and the exitation vetor are approximated by salar funtions. A osine

q model is onsidered for the element pattern as:

bmn(v̂) ≈ cosqe(θ)ejk(
−→r mn•v̂)

(2.3)

The exitation vetor

−→a mn is approximated as:

amn ≈ cosqfθf (m,n)

|−→r mn −−→r f |
e−jk(|−→r mn−−→r f |)|Γmn|ejφmn

(2.4)

The element exitation is the multipliation of the feed-horn pattern funtion

and the reeiving mode pattern of the element (Γmn). Feed horn pattern is

approximated by osine q model and taking into aount the distane between

the feed horn and the element. θf is the spherial angel and

−→r f is the position

vetor of feed. The reeiving mode pattern of the element is as follows:

|Γmn| = cosqeθe(m,n) (2.5)

With all of these approximations, the radiation pattern is presented as [35℄:

8



CHAPTER 2. RADIATION ANALYSIS FOR REFLECTARRAY ANTENNA

E(θ, φ) =
M∑

m=1

N∑

n=1

cosqeθ
cosqfθf(m,n)

|−→r mn −−→r f |
e−jk(|−→r mn−−→r f |−−→r mn•v̂)cosqeθe(m,n)e

jφmn

(2.6)

where φmn is the required phase delay of mn-th element.

Advantages and disadvantages of this method are as follows [35℄:

• Advantage: simpliity of the formulation and the program development

• Disadvantage: the ross-polarization is not modeled.

2.2.2 Aperture-Field Method

In this method, �rst the tangential eletri �eld on the aperture surfae is om-

puted by onsidering the polarization of the �eld horn. A horn antenna is usually

used as a feed in the re�etarray antenna. The radiation pattern of the horn an-

tenna is given [10℄:

For a x-polarized feed

EFx(θ, φ) =
jke−jkr

2πr
(θ̂CE(θ)cosφ− φ̂CH(θ)sinφ) (2.7)

For a y-polarized feed

EFy(θ, φ) =
jke−jkr

2πr
(θ̂CE(θ)sinφ+ φ̂CH(θ)cosφ) (2.8)

CH and CE are the H-plane and E-plane radiation patterns of the horn antenna.

They are modeled as cosq(θ) funtions. q is the value whih is omputed from the

aperture e�ieny and the feed horn data. In (2.7) and (2.8), the radiated �eld

of the feed in the spherial oordinate is omputed. The spherial omponents

of the eletri �eld is transformed to Cartesian omponents from the following

matrix transformation.



EF

x

EF
y

EF
z


 =



sinθcosφ cosθcosφ −sinφ
sinθsinφ cosθsinφ cosφ
cosθ −sinθ




 EF

θ

EF
φ




Then this omponents should onvert from feed oordinate system to the re�e-

tarray oordinate system by a proper transformation matrix.

2.2.3 Radiation Patterns

After omputing the tangential eletri �eld, the radiated far �eld is obtained

by an asymptoti evaluation of the integrals. The radiated far �eld are as follow

[10℄:

9



2.2. OVERVIEW OF ANALYSIS TECHNIQUES

E(θ, φ) = jk[(θ̂cosφ− φ̂sinφcosθ)ẼRx(u, v)+(θ̂sinφ+ φ̂cosφcosθ)ẼRy(u, v)]
e−jkr

2πr
(2.9)

Where ẼRx(u, v) and ẼRy(u, v) are the Fourier transform of the Cartesian om-

ponents of the tangential eletri �eld ERx(u, v) and ERy(u, v) , expressed as

follows:

ẼRx/y(u, v) =

∫ ∫

RA

ERx/y(x, y)e
jk0(ux+vy)dxdy (2.10)

Where u and v are the angular oordinates as:

u = sinθcosφ (2.11)

v = sinθsinφ (2.12)

To ompute the (2.10) element by element, variable hange in the oordinate is

used for the oordinate (x, y):

x = x
′

+mpx −
(Nx − 1)px

2
;m = 0, 1, 2, ..., Nx − 1 (2.13)

y = y
′

+ npy −
(Ny − 1)py

2
;n = 0, 1, 2, ..., Ny − 1 (2.14)

Central point of the element (m,n) are (mpx − (Nx−1)px
2

, npy − (Ny−1)py
2

). x
′

and

y
′

are withing the following bounds [10℄:

−px
2

≤ x
′ ≤ px

2
(2.15)

−py
2

≤ y
′ ≤ py

2
(2.16)

where px and py are the periodiity along x and y, diretions. Maximum number

of element in x and y diretion are Nx and Ny, respetively. By substituting

(2.13), (2.14) in (2.10), the spetral funtion is as:

ẼRx/y(u, v) = K1

M−1∑

m=0

N−1∑

n=0

[ejk0(umpx+vnpy)

∫ −px
2

−px
2

∫ py
2

− py
2

Em,n
Rx/y(x

′

, y
′

)ejk0(ux
′

+vy
′

)dx
′

dy
′

]

(2.17)

where

10



CHAPTER 2. RADIATION ANALYSIS FOR REFLECTARRAY ANTENNA

K1 = e−j
k0
2
[u(M−1)dx+v(N−1)dy ]

(2.18)

Tangential �eld omponents in eah ell of the re�etarray is shown with the

omplex oe�ient of the re�eted �eld.

Em,n
Rx/y(x

′

, y
′

) = ax/Y (m,n) = Ax/y(m,n)ejφx/y(m,n)
(2.19)

By substituting (2.19) in (2.17), the integration an be written by the summation

as:

ẼRx/y(u, v) = K1pxpysinc(
k0upx
2

)sinc(
k0vpy
2

)

M∑

m=0

N∑

n=0

Ax/y(m,n)e
jφx/y(m,n)ejk0(umdx+vndy)

(2.20)

In every re�etarray element, Cartesian omponents of the re�eted and the

inident �eld are related to eah other by sattering matrix as:

[
ax(m,n)
ay(m,n)

]
=

[
S11 S12

S21 S22

] [
EF

x

EF
y

]
(2.21)

This sattering matrix an be omputed by the Method of Moment in the spe-

tral domain. The element of the sattering matrix an also be replaed by the

re�etion oe�ient.

[
ax(m,n)
ay(m,n)

]
=

[
Γxx Γxy

Γyx Γyy

] [
EF

x

EF
y

]
(2.22)

As it is obvious in (2.21) and (2.22), sattering matrix and the re�etion oe�-

ient are the main parts for omputing the radiation pattern. These oe�ients

relate to element performane of the unit ell. In the following part, di�erent

tehniques for analysis of the unit ell element are proposed.

2.2.4 Unit Cell Design

Eah element in re�etarray antenna should produe the required phases in order

to ompensate di�erent spatial distanes from feed to element. This phase shift

distribution is omputed from the following expressions.

2.2.4.1 Phase-Shift Distribution Tehnique

Eah element must produe a phase-shift to provide a ollimated beam in a given

diretion. From the array theory, the phase distribution to produe a beam in

the main beam diretion (θb, φb) is as [10℄:

φ(xmn, ymn) = −k0sinθbcosφbxmn − k0sinθbsinφbymn (2.23)

11



2.2. OVERVIEW OF ANALYSIS TECHNIQUES

(xmn, ymn) is the loation of the mn-th element in the re�etarray surfae. k0
is the propagation onstant. Phase of the re�eted eletri �eld an also be

omputed from the following way. Phase of the re�eted �eld is equal to the

phase of the inident �eld plus phase-shift produed by eah element as:

φ(xmn, ymn) = −k0Rmn + φR(xmn, ymn) (2.24)

Rmn is the distane from phase enter of the feed to element. φR(xmn, ymn) is a
phase-shift for mn-th element. From (2.23) and (2.24), the required phase shift

for eah element is:

φR(xmn, ymn) = k0(Rmn − (xmncosφb + ymnsinφb)sinθb) (2.25)

In re�etarray antenna phase of the re�etion oe�ient should hange in order

to math these phases. Di�erent tehniques an be used to provide these phases.

These tehniques are as follows:

• Conneting variable-length stubes to element

• Path with variable sizes

• Element loaded with MEMS, varators and liquid ristal polymers

Performane of the antenna element in re�etarray antenna related to its physial

parameters suh as

• path dimensions length (l) and width (w)

• substrate thikness (d)

• dieletri onstant (εr)

• dieletri and ondutor losses (tanδ, σ)

• spaing between elements (px, py)

In the following setion, reent tehniques for analysis and design of the single

element are provided.

2.2.4.2 Tehniques for Analysis of the Unit Cell

In this setion, di�erent methods for analysis of the unit ell elements are men-

tioned. And the most reent theoretial method for analysis of the single element

is explained with more details. Tehniques of the analysis of the single element

are as follows:

• Numerial methods suh as spetral domain method of moments (MoM),

�nite element method (FEM), �nite di�erene time domain (FDTD)

12
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• Commerial pakages suh as HFSS, CST, FEKO

• Theoretial model based on full-wave simulations

• Analytial approah based on Q fator analysis

Sine in this thesis we want to ompute the radiation pattern analytialy, ana-

lytial approah based on Q fator is explained with more details in the following

part.

2.2.4.3 Analytial Approah Based on Q Fator Analysis

A omplete analytial approah based on Q fator is introdued to extrat the

re�etion properties of the unit ell. In order to extrat the losed-form formulas,

we need to express the inident and the re�eted �eld in terms of orthogonal

Floquet modes. Let us provide a short explanation about Floquet harmonis

and its expression.

2.2.4.4 Floquet Harmonis

An arbitrary inident �eld an be de�ned as a summation of the TE and TM

Floquet spae harmonis with omplex amplitude. The inident eletri �eld

propagating toward -z with Floquet harmoni expansion is written as [10℄:

Ei
1 =

2L∑

l=1

d1e1exp(j(kxmx+ kyny + kzlz)) (2.26)

The transverse re�eted eletri �eld propagate toward z with the Floquet har-

moni expansion is:

Er
1 =

2L∑

l=1

a1e1exp(j(kxmx+ kyny − kzlz)) (2.27)

The normalized modal �elds for TE and TM Floquet harmonis el are as:
for (TE) 1 ≤ l ≤ L

el =
1

kcl
(−kynx̂+ kxmŷ) (2.28)

for (TM)L+ 1 ≤ l ≤ 2L

el =
1

kcl
(kxmx̂+ kynŷ) (2.29)

with

kcl =
√
k2xm + k2yn (2.30)

kxm = k0sinθcosφ+
2mπ

px
= kx0 +

2mπ

px
(2.31)

13



2.2. OVERVIEW OF ANALYSIS TECHNIQUES

kyn = k0sinθcosφ+
2nπ

py
= ky0 +

2nπ

py
(2.32)

Complex amplitude of the inident �eld are (dx) and (dy). They an be on-

verted to dl(TE) and dL+1(TM) omponents by a matrix transformation. This

transformation is as follows:

[
dl
dL+1

]
=

1

kcl

[
−ky0 kx0
kx0 ky0

] [
dx
dy

]
(2.33)

Similarly, the TE/TM omponents of the re�eted �eld al(TE) and aL+1(TM)
an onvert to x/y omponents as:

[
ax
ay

]
=

1

kcl

[
−ky0 kx0
kx0 ky0

] [
al
aL+1

]
(2.34)

The inident and re�eted �elds of the re�etarray are represented by Floquet

modes. They are onneted to eah other by the re�etion oe�ient. The

expression for the re�etion oe�ient is explained using oupled-mode theory.

Theoretial expression for the re�etion oe�ient are desribed in the next part.

2.2.4.5 Theoretial Expression for The Re�etion Coe�ient

In order to extrat the re�etion oe�ient expression for a single element, the

antenna element is onsidered inside a waveguide supporting Floquet modes. By

onsidering the waveguide with two orthogonal polarized fundamental Floquet

modes (TE00, TM00), the o-oupling and ross-oupling re�etion oe�ient are

as follows [22℄:

When the inident �eld is TE , the fration of the re�eted power into TE

mode is alled TE o-oupled re�etion oe�ient with the following expression

[22℄:

ΓTEco(f) =

1
QradTE

− ( 1
QradTM

+ 1
Q0

)− 2j(f−f0)
f0

1
QradTE

+ 1
QradTM

+ 1
Q0

+ 2j(f−f0)
f0

(2.35)

when the inident �eld is TM , the fration of the re�eted power into TM mode

is alled TM o-oupled re�etion oe�ient with the following expression [22℄:

ΓTMco(f) =

1
QradTM

− ( 1
QradTE

+ 1
Q0

)− 2j(f−f0)
f0

1
QradTE

+ 1
QradTM

+ 1
Q0

+ 2j(f−f0)
f0

(2.36)

Cross-oupling is a fration of the re�eted power into (TE/TM) when the in-

ident �eld is (TM/TE). The ross-oupling expression is as [22℄:

Γcross(f) =

2√
QradTEQradTM

1
QradTE

+ 1
QradTM

+ 1
Q0

+ 2j(f−f0)
f0

(2.37)
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CHAPTER 2. RADIATION ANALYSIS FOR REFLECTARRAY ANTENNA

where, QradTE and QradTM are the radiation Q fators for the TE and TM
modes, respetively. f is the working frequeny. f0 is the resonant frequeny.

Q0 is a ombined Q fators of ondutor and dieletri losses as:

Qc = d
√
πfµσ (2.38)

Qd =
1

tanδ
(2.39)

Q0 =
QcQd

Qc +Qd
(2.40)

where substrate thikness is (d) and the loss tangent is tanδ. The e�et of the

inident angle and the physial parameters are obvious in the Q fator expression.

As an example, the losed form expression for a retangular mirostrip path in

term of unit ell's physial parameters and the inident angle as [22℄:

QradTE =
f0πε

4d

l

w
pxpy

η0
cosθcos2φ

(2.41)

QradTM =
f0πε

4d

l

w
pxpy

η0cosθ

sin2φ
(2.42)

These expressions help us to properly investigate the e�et of physial pa-

rameters errors on the re�etion oe�ient and the radiation pattern. By sub-

stituting (5.24) ,(2.42), (2.38), (2.39) and (2.40) in (5.22),(2.36) and (2.37), the

re�etion oe�ient of the unit ell are obtained.

If we onsider inident �eld of the re�etarray in terms of the TE and TM
Floquet harmonis (2.22), the re�eted TE and TM omponents related to the

inident Floquet harmonis by the re�etion oe�ients as:

[
ETE

ref

ETM
ref

]
=

[
ΓTEco Γcross

Γcross ΓTMco

] [
ETE

inc

ETM
inc

]
(2.43)

By substituting (2.43) in (2.22) and onsequently in the (2.17) and (2.9), the

total power pattern expression an be ahieved. By using analytial expression

for the re�etion oe�ient, the analytially expression for the total power pat-

tern is obtained. In this total power pattern, the diret relation between the

radiation pattern and the physial parameters are desribed. The physial pa-

rameters deviate from their nominal values due to manufaturing unertainties.

This random manufaturing unertainties produe di�erent radiation patterns.

Our goal is to de�ne an e�ient strategy to ompute inlusive pattern bounds for

a given maximum toleranes on the re�etarray geometrial parameters. After

providing the analytial expression for the radiation pattern, the tolerane anal-

ysis should be applied in order to ompute the power pattern deviation bounds.

As it is mentioned in the hapter 1, Interval Analysis proved to be an e�ient
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2.2. OVERVIEW OF ANALYSIS TECHNIQUES

tools for the tolerane analysis of the antenna. In the next hapter, Interval

Analysis method with their properties and features are explained.
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Chapter 3

Fundamentals of Interval Analysis

In this hapter, an overview for learning Interval Analysis is introdued. First

the interval values and their need in our real life are desribed by examples.

Then Interval Analysis approahes are de�ned. The rules for the arithmeti

Interval operations suh as addition, subtration, multipliation and division are

provided. Then the properties of Interval Arithmeti are presented. Interval

funtion and their features are fully desribed in this hapter. Dependeny and

wrapping e�et in interval arithmeti are ompletely explained.
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3.1. INTRODUCTION

3.1 Introdution

Unertainty is part of our �every-day� life. The need to enlose the number is

obvious in many di�erent appliations.In the following example, we want to show

the appearane of the unertainty in our daily life.

Suppose we want to measure the dimension of the table. The table with the

dimensions is shown in the Fig (3.1).

l 

w 

Figure 3.1: Sketh of the table and its dimension

Di�erent measurement instruments suh as tailor or aliper an be used to

measure the dimensions. First we use a a tailor to measure the dimensions. The

dimension are shown as follows:

l = 1.2 + /− 0.1m (3.1)

w = 0.8 + /− 0.1m (3.2)

Then with a aliper or more preise devies, the dimension values are as follows:

l = 1.20m+ /− 0.01m (3.3)

w = 0.80m+ /− 0.01m (3.4)

As it is lear from the measurement, unertainty is always available regardless of

the auray of the instrument. By using aliper, the orret length/width lies

within ertain ranges.

0.19 < l < 1.21 → l ∈ [1.19, 1.21] (3.5)

0.79 < w < 0.81 → w ∈ [0.79, 0.81] (3.6)
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Clearly, the length and width belongs to the intervals. As it is mentioned

before, unertainty is unavoidable part of our life. We need to apply the proper

mathematial tools to deal with unertain values. I would like to explain the need

for Interval Analysis by the other example from physial siene. By onsidering

Newtons law as [36℄:

F = ma (3.7)

If the quantity of the fore F and the mass m lie in the ertain ranges as:

F0 −∆F ≤ F ≤ F0 +∆F (3.8)

Then the aeleration a is de�ned with the bounds as follows:

al ≤ a ≤ au (3.9)

lower and upper range of the the aeleration (al , au) depends on F0, m0, ∆F
, ∆m . Sine the quantity of fore is not an exat value and an be de�ned in

a ertain range then the aelerations is also desribe within the range whose

upper and lower bounds depends on the upper and lower bounds of the fore.

One of the strong mathematial tool to ope with unertain world is the Interval

Analysis method. In the following setion, the de�nition of interval numbers and

the interval arithmeti rules will be desribed.

3.2 Interval Analysis

A real interval [X ] is a non-empty ompat set of real numbers between and

inluding the endpoints xinf and xsup [36℄.

[X ] = {x ∈ R : xinf ≤ x ≤ xsup} (3.10)

As it is shown in Fig (3.2), left end point in�mum of [X ] and the right end

point supremum of [X ] are the maximum and minimum of all points in the

interval:

xinf = min{x ∈ [X ]} (3.11)

xsup = max{x ∈ [X ]} (3.12)
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infx

R 0 
[ ] 

supx

Figure 3.2: Interval end points

Two intervals [X ] and [Y ] are equal if their endpoints are equal. The absolute
value of the interval |[X ]| is the maximum of the absolute values of its endpoints.

|[X ]| = max{|xinf |, |xsup|} (3.13)

Width and the midpoint of the interval [X ] are shown in �gure (3.3). The

de�nition of the width of the interval [X ] based on the endpoints is as:

w([X ]) = xsup − xinf (3.14)

Midpoint of [x] is related to the endpoints given as:

m([X ]) =
xinf + xsup

2

Width of the interval with the interval mid-point are shown in Fig. 3.3

infx

R 0 
[ ] 

supx

m ([X]) 

w ([X]) 

m (

Figure 3.3: Interval midpoint and width

3.2.1 Interval Elementary Operations

Elementary operations an also be applied for the interval numbers. This ele-

mentary operations inlude sum, di�erene, produt , inverse and the division.

In interval domain, operations are dealing with sets than a value. By performing

an operation between two intervals, the resulting is a set ontaining all pairs

from two initial sets as given below [36℄:

20



CHAPTER 3. FUNDAMENTALS OF INTERVAL ANALYSIS

[X ] + [Y ] = {x+ y : x ∈ [X ], y ∈ [Y ]}
[X ]− [Y ] = {x− y : x ∈ [X ], y ∈ [Y ]}

[X ].[Y ] = {xy : x ∈ [X ], y ∈ [Y ]}
[X]
[Y ]

= {x
y
; x ∈ [X ], y ∈ [Y ]}

(3.15)

Whatever the operation is, the resulting interval enlose all the possible results.

3.2.2 Interval Arithmeti

Interval arithmeti is a set of rules for performing elementary arithmeti opera-

tions on intervals.

Endpoint Formulas for Arithmeti of Intervals

Let us show the operational formulas for the elementary operation related to

boundary of intervals. For the sum of two intervals [X ] and [Y ], the operation
is as [36℄:

[X ] + [Y ] = [xinf + yinf , xsup + ysup] (3.16)

The operational formula for interval subtration in term of endpoints is as:

[X ]− [Y ] = [xinf − ysup, xsup − yinf ] (3.17)

The relation of the produt of two intervals [X ] and [Y ] to their endpoints is:

[X ][Y ] =
[min(xinfyinf , xinfysup, xsupyinf , xsupysup),
max(xinfyinf , xinfysup, xsupyinf , xsupysup)]

(3.18)

The inverse of the interval is :

1

[X ]
= [

1

xsup
,

1

xinf
]; 0 /∈ [X ] (3.19)

Division of two intervals an be aomplished by using the multipliation of the

interval and the inverse of the interval as:

[X ][Y ] =
[min(xinf/yinf , xinf/ysup, xsup/yinf , xsup/ysup),
max(xinf/yinf , xinf/ysup, xsup/yinf , xsup/ysup)]

(3.20)

0 /∈ [Y ]

The key feature of the operation is that the operations involve the boundaries of

the intervals suh as xinf , xsup, yinf and ysup. The resulting interval inlude all

the possible results.
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3.2.3 Properties of the Interval Arithmeti

3.2.4 Algebrai Properties

Interval addition and multipliation are ommutative and assoiative. Let us

onsider three intervals [X ] and [Y ] and [Z], the ommutative and assoiative

features are shown as [36℄:

[X ] + [Y ] = [Y ] + [X ]
[X ] + ([Y ] + [Z]) = ([X ] + [Y ]) + [Z]

[X ].[Y ] = [Y ].[X ]
[X ].([Y ].[Z]) = ([X ].[Y ]).[Z]

(3.21)

0 and 1 are additive and multipliative identity element in the interval domain.

0 + [X ] = [X ] + 0 (3.22)

1.[X ] = [X ].1 = [X ] (3.23)

0.[X ] = [X ].0 = 0 (3.24)

In a real numbers, −x is an additive inverse for x. But this is not true in interval

domain. In interval systems for any interval [X ], we have:

[X ] + (−[X ]) = [xinf , xsup] + [−xsup,−xinf ] = [xinf − xsup, xsup − xinf ] (3.25)

If xxup = xinf then this equals [0, 0]. Otherwise

[X ]− [X ] = w[X ][−1, 1] (3.26)

There is no multipliative inverses exept w[X ] = 0, in general we have

[X ]

[X ]
=

{
[
xinf

xsup
, xsup

xinf
] if 0 < xinf

[xsup

xinf
,
xinf

xsup
] if xsup < 0

(3.27)

For the interval systems we have the following inequality:

[X ]([Y ] + [Z]) 6= [X ][Y ] + [X ][Z] (3.28)

This rule an be shown by onsidering three following intervals as

[X ] = [1, 2], [Y ] = [1, 1], [Z] = −[1, 1] (3.29)

Left side of the (3.28) by onsidering the values of 3.29 is as:

[X ]([Y ] + [Z]) = [1, 2].([1, 1]− [1, 1]) = [1, 2].[0, 0] = [0, 0] (3.30)
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Whereas, the right side by using interval arithmeti rules is as:

[X ][Y ] + [X ][Z] = [1, 2].[1, 1]− [1, 2].[1, 1] =
[min(1, 2), max(1, 2)]− [min(1, 2), max(1, 2)] = [1, 2]− [1, 1] = [−1, 1]

(3.31)

As it is shown in (3.30) and (3.31), the right and left side are not equal. If

[Y ][Z] > 0 then [X ]([Y ]+ [Z]) = [X ][Y ]+ [X ][Z] hold true. In general, following

rule hold true for the interval.

[X ]([Y ] + [Z]) ⊆ [X ][Y ] + [X ][Z] (3.32)

A real number an multiply to the summation of two intervals as:

x([Y ] + [Z]) = x[Y ] + x[Z] (3.33)

Canellation law is also valid in interval systems:

[X ] + [Z] = [Y ] + [Z] ⇒ [X ] = [Y ] (3.34)

3.2.5 Inlusion Property of Interval Arithmeti

If we onsider two intervals [x] = [xinf , xsup],[y] = [yinf , ysup] and perform the op-

eration between two intervals, the resulting interval [Z] = [X ]op[Y ] from what-

ever operation between two intervals inludes all values z = {xopy}(belongs to
[Z] (i.e.,z ∈ [Z])) whih is the resulting z = {xopy} value from the same opera-

tion on the real numbers of the x ∈ [X ] and y ∈ [Y ].

3.2.6 Interval Funtion

Interval funtion is an interval valued funtion of one or more intervals arguments.

Let us onsider f as a real-valued funtion of a variable x. The range of f(x) as
x represent by interval [X ] is the interval funtion. In more general ase for a

given funtion f = f(x1, ..., xn) of several variables, the interval of f is as:

f([X1], ..., [Xn]) = {f(x1, ..., xn) : x1 ∈ [X1], ..., xn ∈ [Xn]} (3.35)

where [X1], ..., [Xn] are spei� intervals. An example of the interval funtion is

shown in Fig. (3.5)
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x 

f(x) 

f([X]) = [F] 

0 

f(x0) 

x0 

[X] 

Figure 3.4: Interval funtion

Let us onsider elementary funtion of intervals by providing following fun-

tion f(x) = x2, if [X ] = [xinf , xsup]then the interval of f [X ]an be expressed as

follows:

f([X ]) =





[x2inf , s
2
sup], 0 ≤ xinf ≤ xsup

[x2inf , s
2
sup], xinf ≤ xsup ≤ 0

[0, max{x2inf , x2sup}], xinf ≤ 0 ≤ xsup

(3.36)

Monotoni Funtions

If f(x) is a monotoni, it maps the interval [X ] = [xinf , xsup] into interval

f([X ]) = [f(xinf), f(xsup)]. As an example, f(x) = exp(x) = ex(x ∈ R) then
exp[X ] = [exp(xinf ), exp(xsup)]. Similarly for logarithmi is a monotoni funtion

and its interval is,

f(x) = logx(x > 0)
log[X ] = [logxinf , logxsup]

(3.37)

The expression for the square root of interval is as:

√
[X ] = [

√
xinf ,

√
xsup] (3.38)

3.2.7 Interval Funtion Property

If [F ] = f([X ]) is an interval extension of the funtion f then the interval funtion
f([X ]) = [F ] must inlude all the values f(X) for x ∈ [X ].

3.2.8 Inlusion Monotoniity

An interval funtion f([X1], [X2], ..., [XN ]) is inlusion monotoni with respet to

funtion f(x1, x2, ..., xN) when [F ] = f([X1], [X2], ..., [XN ]) ontains the range
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of values of f(x1, x2, ..., xN ) for all xn ∈ [xn]n = 1, ..., N . If we onsider

f([X ]) = [F ] and [X
′

] ⊆ [X ] then [F
′

] = f([X
′

]) ⊆ [F ] = f([x]) [37℄. Inlu-

sion monotoniity property is shown in Fig (3.5) .

x 

f(x) 

f([X]) = [F] 

0 

]'[X

][])([ 'FX'f

][X

Figure 3.5: Inlusion Monotoniity

As it is obvious, if [X
′

] ⊆ [X ] then [F
′

] = f([X
′

]) ⊆ [F ] = f([x]).

3.2.9 Dependeny Problem

In general, eah ourrene of a given variable in an interval omputation is

treated as a di�erent variable. This ause widening of omputed sharp numerial

bounds. This unwanted extra interval width is alled the dependeny problem.

Let us suppose we want to evaluate the interval perimeter [P ] of a retangular
table whih has a interval length [L] = [1.19, 1.21] and width [W ] = [0.79, 0.81].
We apply two di�erent ways to ompute:

• First adding intervals of the [L] and [W ]: [P ] = [L] + [W ] = [1.98, 2.02]m

• Subtrating [W ] and [L] from [2P ]: [P ] = [2P ]− [W ]− [L] = [1.94, 2.06]m

As it is shown, two di�erent results are ahieved from the same quantity. The

appearane of the dependeny e�et in subtrating [W ] and [L] from [2P ] is
explained with details:
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[P ] = [2P ]− [W ]− [L] = [W ] + [W ] + [L] + [L]− [W ]− [L] =
+[L] + ([W ]− [W ]) + ([L]− [L]) =

+[1.19, 1.21] + ([0.79, 0.81]− [0.79, 0.81]) + ([1.19, 1.21]− [1.19, 1.21]) =
[1.98, 2.02] + ([−0.02, 0.02] + [−0.02, 0.02]) =
[1.98, 2.02] + [−0.04, 0.04] = [1.94, 2.06]m

(3.39)

As we an see in (3.39) , [W ] − [W ] 6= 0 and [L] − [L] 6= 0 , this is beause of

the dependeny e�et in the interval analysis. Every ourrene of an interval

variable is onsidered as an independent variable [W ]− [W ] = [W1]− [W2] even
if [W ] = [W1] = [W2] are the same interval. The dependeny problem inrease

the width of the resulting interval. Following rules an be applied to avoid

dependeny problem:

• Redue the number of ourrene of eah variable: as an example of interval

perimeter of the table

[P ] = [W ] + [W ] + [L] + [L]− [W ]− [L] → [P ] = [W ] + [L]

• Rede�ne interval operations/funtions [W ] − [W ] = 0 instead of [winf −
wsup, wsup − winf ] 6= 0

By using proper interval funtion de�nition, the optimal interval solution will be

obtained.

3.2.9.1 Dependeny Problem in Interval Funtion

Assume that we have the funtions f(x) = f1(x) = f2(x) then we want to

evaluate interval extension of f . Interval extension of f1([X ]) and f2([X ]) has
the bounds of [F1] and [F2]. These two bounds are not the same. [F1] and [F2]
inlude all values of f(x) for x ∈ [X ] but w([F1]) is larger than w([F2]). As it

is lear, f1(x) = f2(x) for same [X ], but f1([X ]) ⊂ f2([X ]). The reason is the

dependeny in the interval funtion. To solve this problem, we need to de�ne a

funtion in a suitable way. In the following example, the dependeny e�et in

the interval funtion will be shown. Let us evaluate f(x) = x2 + 1 over interval

[X ] = [−1, 2]. The interval bounds by interval arithmeti rules are as follows:

f([−1, 2]) = [−1, 2].[−1, 2] + [1, 1] = [min(1,−2,−2, 4), max(1,−2,−2, 4)] +
[2, 2] = [−2, 4] + [1, 1] = [−1, 5]

Sine the value of [X ]2 + 1 an not be a negative value therefore the bounds

are not the proper bounds. There is the dependeny problem. In order to remove

the dependeny problem, we need to apply proper de�nition of non-elementary

funtions. Suitable de�nition for removing dependeny from [X ]2 is as:
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[X ]2 =





[x2inf , x
2
sup] if xinf ≥ 0

[x2sup, x
2
inf ] if xsup ≤ 0

[0, max(x2inf , x
2
sup)] if xinf ≤ 0 ≤ xsup

(3.40)

We will evaluate the funtionf(x) = x2 + 1 over the interval [−1, 2] after using
the proper de�nition for [X ]2. The bounds are as follows:

f([−1, 2]) = [−1, 2]2 + [2, 2] = [0, 4] + [1, 1] = [1, 5] (3.41)

As ompared to previous bounds, with this method, better bounds are ahieved

and the inlusion property is satis�ed. Another way to remove the dependeny

is rede�ning the interval funtion. It will be de�ned by the following examples.

Interval of f(x) = x2 + x over [−1, 1] by using natural interval extension is:

[−1, 1]2 + [−1, 1] = [0, 1] + [−1, 1] = [−1, 2] (3.42)

The better expression for f(x) = x2 + x to remove dependeny is when x only

appear one. We an rewrite the expression f(x) = x2 + x as follows:

f(x) = (x+
1

2
)2 − 1

4
(3.43)

Therefore the bounds are :

([−1, 1] +
1

2
)2 − 1

4
= [−1

2
,
3

2
]2 − 1

4
= [0,

9

4
]− 1

4
= [−1

4
, 2] (3.44)

By rewriting the expression, more meaningful bounds are ahieved.

3.3 Complex Intervals

A omplex interval [Z] is an ordered pair of intervals [Z] = [[X ], [Y ]] with [X ] =
[xinf , xsup] and [Y ] = [Yinf , Ysup] real intervals. Complex interval with the bounds

for the real and imaginary parts are shown in Fig. 3.6 [38℄.

[Z] = {z = (x+ iy) ∈ C; xinf ≤ x ≤ xsup; yinf ≤ y ≤ ysup} (3.45)
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infx supx

infy

supy

z

Re

Im

]z[

]]y[],x[[=]z[

Figure 3.6: Complex Interval Value

Let us onsider omplex elementary operations by two omplex intervals [Z] =
[X, Y ] and [Z

′

] = [X
′

, Y ,′ ] whose real and imaginary parts have the following

intervals [38℄:

[X ] = [Xinf , Xsup] [Y ] = [Yinf , Ysup]
[X

′

] = [X
′

inf , X
′

sup] [Y
′

] = [Y
′

inf , Y
′

sup]
(3.46)

Elementary operations on the omplex intervals are as follows:

• Sum:

[Z] + [Z
′

] = [X +X ,, Y + Y ,] (3.47)

• Sum of Negative:

[Z]− [Z] = [0, 0] (3.48)

• Sum of omplex onjugate:

[Z] + [Z]∗ = [2X, 0] (3.49)
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• Subtration:

[Z]− [Z ,] = [X −X
′

, Y − Y
′

] (3.50)

• Produt:

[Z][Z
′

] = [XX
′ − Y Y

′

, XY
′

+ Y X ,]

• Produt of Complex Conjugate:

[Z][Z∗] = [X2 + Y 2, 0]

• Inverse:

1

[Z]
=

[X,−Y ]

[X2 + Y 2, 0]

• Division:

[Z]

[Z ′]
= [

(xx
′

+ yy
′

)

(x′2 + y′2)
,
(yx, − xy,)

(x′2 + y′2)
]

The main feature of the previous operations is that they involve real intervals

[X ], [Y ], [X
′

], [Y ,].

3.3.1 Complex Interval Funtion

Evaluation of omplex interval funtion reat as evaluation of real interval fun-

tions. Following features hold true for omplex intervals:

• Results for real hold true also for omplex interval funtions

• Dependeny problem still remains

• Inlusion theorem holds true for omplex interval funtions

3.3.1.1 Wrapping Problem

Wrapping problem is related to the representation of omplex intervals. Complex

interval an be presented by Cartesian interval representation and Polar interval

representation. Curved in red is the Cartesian representation and the urve in

blue is the polar representation. In Cartesian interval representation, there is an

overestimation in the interval bounds whih alled wrapping e�et as it is shown

in Fig(3.7).
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xERe

xExEIm

xE

xEarg x

ERe

EIm

Figure 3.7: Wrapping E�et of The Complex Interval

As it is lear in the Fig (3.7), by polar representation the overestimation of

the power bounds will be eliminated.

• Cartesian Interval Representation

In Cartesian Interval, omplex interval represented in terms of the interval of real

and imaginary parts. Classial IA methods are used in omplex interval ompu-

tation. Interval arithmeti for Cartesian Interval is simple and available. In Fig

3.8 , we an see the example for the summation of two omplex interval with

Cartesian representation. Overestimation will be happened in using omplex

interval with Cartesian representation.
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ERe

EIm

1xE

2xE

][A ][B

Figure 3.8: Cartesian Interval Representation

• Polar Interval Representation

Complex interval an be presented by polar representation as shown in Fig. 3.9.

Polar representation is the best representation for the omplex interval (4.3).

However interval arithmeti are not available for this representation.

1xE

ERe

EIm

2xE

Figure 3.9: Polar Interval Representation
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Chapter 4

Interval Analysis Method for

Re�etarray Antennas

In this hapter, the interval extension of the re�etarray antenna is desribed and

assessed. Unertainty on ething path dimensions and onstruting substrate

thikness are modeled with interval values. By exploiting interval arithmeti

rules, bounds of the deviation in the radiation �eld are obtained. By reformulat-

ing the interval extension funtion and using Enumerative strategy, Dependeny

e�et is removed. Some omparative results are shown the proess. Wrapping

e�et is also eliminated by using Minkowski sum approah. Some results are

reported for the assessment as well as for omparison purposes.
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4.1. INTRODUCTION

4.1 Introdution

In this hapter, inauraies in ething the mirostrip pathes and onstruting

the substrate thikness are modeled via interval values. Then the bounds of

the deviation in the power pattern as a result of the bounded random errors in

the path length, width, substrate thikness and the dieletri permittivity are

omputed. This approah is proved to be a useful tool in re�etarray antenna

to ompute the worst-ase bound. Cartesian interval analysis (IA−CS) an be

used to ompute the power pattern deviations of the re�etarray antenna. Nom-

inal power pattern of the re�etarray antenna is analytially omputed by the

Aperture Field method together with the analytial expression of the re�etion

oe�ient [22℄. As it is mentioned in the previous hapter, IA − CS has the

dependeny and wrapping problem in dealing with omplex struture whih an

make an overestimation in the power pattern [39℄. Dependeny problem appears

due to the use of an interval variable more than one in the interval funtion.

However, Wrapping problem arises from the representation of the IA − CS in

the omplex domain. Using IA− CS for re�etarray interval analysis ause the

overestimation in the power bounds [40℄. In this hapter, a solution for removing

redundany problems are properly explained. This redundany will appear in

the interval extension of the re�etarray power pattern. To takle the Depen-

deny problem, the omplex re�etion oe�ient of eah ell is rewritten in the

proper way and it is extended to the interval funtion (IA − CS∗
). Sine in

the re�etion oe�ient funtion, parameters are reursively onneted to eah

other, we ould not eliminate all dependeny problem by rewriting the fun-

tion. In order to fully eliminate this problem, an enumerative strategy is used

by sampling among the interval of the geometrial parameters. The maximum

and minimum of the phase and amplitude of the omplex re�etion oe�ient

for these samples are omputed (IA−ENUM) [52℄. The wrapping problem an

be solved by means of the Minkowski sum (IA−ENUM −MS) . In Minkowski

sum approah, instead of using retangular and irular representation of inter-

vals, interval phasors are onsidered [42℄. The smallest onvex polygon enirling

these interval phasors is used to ompute the interval Minkowski onvex polygon.

The upper and lower bounds are omputed among the verties of the resulting

polygons. The �nal bounds are narrower, reliable and still inlusive. The validity

of the IA − ENUM −MS bounds are heked with the number of the Monte

Carlo patterns. A number of omparative results shows the improvement in the

IA− CS bounds with respet to the IA− ENUM −MS . These omparative

bounds are onsidered for the error on all geometrial parameters suh as width,

length, substrate thikness and dieletri permittivity.
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ANTENNAS

4.2 Mathematial Formulation

Let us onsider a re�etarray antenna as it is shown in Fig (4.1), lying on the

xy-plane whose retangular mirostrip pathes are loated on a square grid with

inter-element spaing px and py along the x and y diretion, respetively. To

ompute radiation pattern analytially, we onsider Aperture Field Method [35℄.

The radiated far �eld is obtained from the following expression [10℄.

E(θ, φ) =
e−jkr

r

[
(θ̂cosφ− φ̂sinφcosθ)ẼRx(u, v) + (θ̂sinφ+ φ̂cosφcosθ)ẼRy(u, v)

]

(4.1)

where j =
√
−1, k = 2π

λ
is the wavenumber, λ being the wavelength, and u =

sin θ cosφ and v = sin θ sin φ are the diretion osine oordinates with θ ∈
[
0; π

2

]

and φ ∈ [0; π]. ẼRx/y(u, v) (slash means x or y omponents) is the Fourier

transformation of the Cartesian omponents of the tangential eletri �eld. It

an be expressed as [10℄:

ẼRx/y(u, v) = K
M−1∑

m=0

N−1∑

n=0

(Γxx/yy
mn (f)Ax/y

mn + Γxy/yx
mn (f)Ay/x

mn)e
jk(umpx+vnpy)

(4.2)

where

K = pxpysinc(
k0upx
2

)sinc(
k0vpy
2

)ej
k
2
[u(N−1)px+v(M−1)py ]. (4.3)

As it is shown in Fig. 4.1, M and N are the maximum number of elements in x

and y diretions, respetively. As it an be seen in (4.2), tangential eletri �eld in

eah ell is approximated by a omplex oe�ient de�ned as the multipliation of

the omplex re�etion oe�ient of eah ell Γ
xx/yy
mn (f),Γ

xy/yx
mn (f), and the omplex

amplitude of the inident �eld Floquet harmoni A
x/y
mn , A

y/x
mn illuminating the mn-

th ell.

More spei�ally, Γ
xx/yy
mn (f) is the o re�etion oe�ient of x/y-polarization

when unit ell is illuminated by x/y-polarization wave. Γ
xy/yx
mn (f) is the ross

re�etion oe�ient of x/y-polarization when the unit ell is illuminated by y/x-
polarization. We hoose the re�etion oe�ient expression from [22℄, in whih

we an see the relationship between the omplex re�etion oe�ient and the

length l, width w, substrate thikness d and the dieletri permittivity εr of the
element. The expression an be as the follows [22℄.

Γxx/yy
mn (f) =

1
Qrad

mn
− 1

Q0 − 2j f−f0
mm

f0
mn

1
Qrad

mn
+ 1

Q0 + 2j f−f0
mm

f0
mn

(4.4)

where working frequeny is f , the resonane frequeny of the mn-th element

f 0
mn , ombined quality fator Q0

and radiation quality fator of the mn-th
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Figure 4.1: Sketh of the re�etarray antenna with its parameters .

element Qrad
mn . Radiation quality fator in the ase of retangular mirostrip

path illuminated under the normal inident plane wave is as [22℄:

Qrad
mn =

f 0
mnπε0εr
4d

lmn

wmn
pxpyη0 (4.5)

where d and εr are the substrate thikness and the relative dieletri

permittivity, lmn and wmn are the length and width of the mn-th element in the

aperture of the re�etarray antenna. and η0 is the free spae wave impedane.

The ombined quality fator Q0
depends on the ondutor and dieletri loss

quality fators Qc
and Qd

by the following expressions [22℄:

Q0 =
QcQd

Qc +Qd
(4.6)

The expression of the ondutor and dieletri loss is given by [22℄:

Qd =
1

tanδ
;Qc = d

√
πfµσ (4.7)

here, tanδ is the loss tangent, µ,σ are the permeability of the free spae and

the metal ondutivity, respetively. The relationship between the resonane

frequeny and the antenna geometries of the retangular mirostrip path an

be determined as follows:
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f 0
mn =

C

2leff
√
εreff

(4.8)

where leff = lmn + 2δl and εreff are the e�etive permittivity and the e�etive

eletrial length of the path antenna. The expression for δl and εreff are de�ned
by:

δl = 0.412d
(εreff + 0.3)

(εreff − 0.258)

(wmn

d
+ 0.264)

(wmn

d
+ 0.8)

(4.9)

εreff =
εr + 1

2
+
εr − 1

2

√
1

1 + 12 d
wmn

(4.10)

If we substitute (4.10,4.9,4.8, 4.7,4.6,4.5) in(4.4), then by substituting (4.4) in

(4.2) and (4.2,4.1), we an extrat the expression whih shows the relationship

between the eletri �eld and the antenna geometrial parameters. In order to

realize the unertainty in fabriation proess of the antenna struture, we will

apply Interval Arithmeti rules. In the following, we will de�ne the interval

extension of the previous expressions.

4.2.1 Cartesian (IA− CS)

Within the interval analysis approah, the atual values of themn-th path width
(wmn), length (lmn), substrate thikness (d) and dieletri permittivity (εr) are
between in�mum and supermum values as follows [52℄

[wmn] = [wmn −△w;wmn +△w] [lmn] = [lmn −△l; lmn +△l] (4.11)

[d = [d−△d; d+△d] [ε] = [ε−∆ε; ε+∆ε] (4.12)

These in�mum and supremum values are alulated from the maximum tolerane

error on ething path width (△w) and length (△l). △d and△ε are the maximum

tolerane errors on the material properties. These deviation from the atual

values an a�et the e�etive eletrial length of the path antenna, the e�etive

dieletri permittivity, resonane frequeny and the re�etion oe�ient. We an

extrat the analytial expression for the upper and lower bounds of the previous

funtions. In the �rst example, error on the path width of the antenna is

onsidered while other geometrial parameters are �xed in their nominal values.

So the path width is presented by interval value [wmn] to enompass all these

random errors. Sine nominal e�etive permittivity depends on the width of the

path. By substituting interval of the width, interval funtion of the e�etive
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dieletri permittivity an be omputed. Analytial expression of the lower and

upper bounds of the e�etive dieletri permittivity is as:

[εreff ] = [εINF
reff ; ε

SUP
ref ] (4.13)

εINF
reff =

εr + 1

2
+
εr − 1

2

√
1

1 + 12( d
wmn−∆w

)
(4.14)

εSUP
reff =

εr + 1

2
+
εr − 1

2

√
1

1 + 12( d
wmn+∆w

)
(4.15)

Interval funtion for additional length value in e�etive eletrial length an be

extrated from its risp funtion as

[δl] = 0.412d
([εreff ] + 0.3)

([εreff ]− 0.258)

( [wmn]
d

+ 0.264)

( [wmn]
d

+ 0.8)
(4.16)

By applying the interval arithmeti rules for the multipliation and division

of two interval values, we an extrat the analytial expression for the upper and

lower bounds of the interval funtion of additional length in e�etive eletrial

length expression. If we rewrite the (4.16) as follows:

[δl] = 0.412d
[GINF

1 ;GSUP
1 ]

[GINF
2 ;GSUP

2 ]

[GINF
3 ;GSUP

3 ]

[GINF
4 ;GSUP

4 ]
(4.17)

Where

GINF
1 = εINF

reff + 0.3;GSUP
1 = εSUP

reff + 0.3
GINF

2 = εINF
reff − 0.258;GSUP

2 = εSUP
reff − 0.258

(4.18)

GINF
3 = wINF

mn

d
+ 0.264;GSUP

3 = wSUP
mn

d
+ 0.264

GINF
4 = wINF

mn

d
+ 0.8;GSUP

4 = wSUP
mn

d
+ 0.8

(4.19)

[δl] = [δlINF ; δlSUP ] (4.20)

δlINF = 0.412d
min[GINF

1 GINF
3 , GINF

1 GSUP
3 , GSUP

1 GINF
3 , GSUP

1 GSUP
3 ]

max[GINF
2 GINF

4 , GINF
2 GSUP

4 , GSUP
2 GINF

4 , GSUP
2 GSUP

4 ]
(4.21)

δlSUP = 0.412d
max[GINF

1 GINF
3 , GINF

1 GSUP
3 , GSUP

1 GINF
3 , GSUP

1 GSUP
3 ]

min[GINF
2 GINF

4 , GINF
2 GSUP

4 , GSUP
2 GINF

4 , GSUP
2 GSUP

4 ]
(4.22)
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Interval Arithmeti rules are implemented to ompute the bounds of the interval

funtions of resonane frequeny of eah path [f 0
mn]. Then with the same rules,

upper and lower bounds of [Qrad
mn] are omputed. Eventually aording to omplex

interval analysis [36℄, bounds of the interval funtion are obtained. As it is lear

from the risp expression of the Fourier transform of the re�eted �eld (4.2),

Interval of the Fourier transform of the tangential eletri �eld [ẼRx/y(u, v; [wmn])]
is the summation of the interval of the re�etion oe�ient of eah ell. Here

the inident feed is a y-polarized feed horn illuminating the re�etarray antenna

under normal inident angle. In normal inident angle ross oupling re�etion

oe�ient [Γ
xy/yx
mn (f)] is zero. Therefore the interval of the Fourier transform an

be presented as

[̃ERx/y(u, v; [wmn])] = K
Nx−1∑

m=0

Ny−1∑

n=0

([Γyy
mn(f ; [wmn])]A

x/y
mn )e

jk(umpx+vnpy)
(4.23)

Then the interval of the radiated far �eld is omputed from the previous

interval (4.23) as

[E(θ, φ; [wmn])] = [Eθ(θ, φ; [wmn])]θ̂ + [Eφ(θ, φ; [wmn]]φ̂ (4.24)

[Eθ(θ, φ; [wmn])] =
e−jkr

r
((cosφ)[ẼRx(u, v; [wmn])] + (sinφ)[ẼRy(u, v; [wmn])])

(4.25)

[Eφ(θ, φ; [wmn])] =
e−jkr

r
((sinφcosθ)[ẼRx(u, v; [wmn])] + ((cosφ)cosθ)[ẼRy(u, v; [wmn]))

(4.26)

Interval of the co- and cross- omponents of the far eletri �eld for the y

polarized feed are[10℄

[Eco(θ, φ; [wmn])] = sin(φ)[Eθ(θ, φ; [wmn])] + cos(φ)[Eφ(θ, φ; [wmn])] (4.27)

[Ecross(θ, φ; [wmn])] = cos(φ)[Eθ(θ, φ; [wmn])]− sin(φ)[Eφ(θ, φ; [wmn])] (4.28)

Aording to the omplex interval rules [33℄, interval of the power pattern of

the co− and cross− omponents is
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[Pco(θ, φ; [wmn])] = [Eℜ
co(θ, φ; [wmn])]

2 + [Eℑ
co(θ, φ; [wmn])]

2
(4.29)

[Pcross(θ, φ; [wmn])] = [Eℜ
cross(θ, φ; [wmn])]

2 + [Eℑ
cross(θ, φ; [wmn])]

2
(4.30)

where [Eℜ
co(θ, φ; [wmn])], [E

ℑ
co(θ, φ; [wmn])] is the real and imaginary part of co-

polar eletri �eld. And [Eℜ
cross(θ, φ; [wmn])], [E

ℑ
cross(θ, φ; [wmn])] are the real and

imaginary parts of the cross-polar eletri �eld. As it is lear in (4.16), interval

of the e�etive dieletri permittivity and the width of the path repeat more

than one in the nominator and denominator. This repetition makes the so-alled

Dependeny problem whih overestimate the bounds. Suh redundany an be

removed by the following strategies.

4.2.2 Cartesian (IA− CS∗)

In this part, we will show how to takle with the Dependeny e�et in the

Interval analysis appliation. If an interval parameter arues several time in the

alulation of the interval funtions and eah ourrene is onsidered separately,

the unwanted resulting interval is appeared [52℄. This e�et an make extra

bounds in the output interval. This problem an be solved by rewriting the

funtions in a proper way before expanding them to interval to derease the

ourrene of the interval variable. If the expression has the simple relation

to the interval variable, by reformulating the expression, dependeny an be

fully removed. Otherwise, in the ompliated interval funtion, reformulating

an partially remove the dependeny problem. In (4.31), repeating the interval

values of [εreff ] and [wmn] auses dependeny e�et and overestimate the interval

bounds in [δl].

[δl] = 0.412d
([εreff ] + 0.3)

([εreff ]− 0.258)

( [wmn]
d

+ 0.264)

( [wmn]
d

+ 0.8)
(4.31)

By reformulating the interval funtion (4.16) in the following way, the interval

variable appears only one. The dependeny removed funtion of (4.16)(width

is realized with interval values and the substrate thikness is �xed in its atual

value) given by:

[δl] = 0.412(
1

1− ( 0.258
[εreff ]

)
+

0.3

[εreff ]− 0.258
)(

d

1 + 0.8( d
[wmn]

)
+

0.264d2

[wmn] + 0.8d
) (4.32)

The omparison of the the upper and lower bound of the [δl] in ( 4.20) and

(4.32) is shown in Fig. 4.2. It is obvious that the upper and lower bounds of

the interval e�etive eletrial length with dependeny e�et are muh larger
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Figure 4.2: Dependeny assessment - inf and sup of the e�etive eletrial length

with dependeny and dependeny free interval funtion.

than its dependeny free bounds. If we onsider the substrate thikness [d] as
an interval value and �x the path width on its atual value, the dependeny

removed interval funtion is as follows

[∆l] = 0.412(
1

1− ( 0.258
[εreff ]

)
+

0.3

[εreff ]− 0.258
)(

1
1
[d]

+ ( 0.8
wmn

)
+

0.264

w( 1
[d]

+ 0.4
wmn

)2 − 0.16
w2

mn

)

(4.33)

Sine the power pattern expression is ompliated and parameters are

reursively onneted to eah other, by this way, dependeny is partially

removed. In order to remove all dependeny e�et, we need to implement an

alternative method.

4.2.3 Enumerative Strategy (IA− ENUM)

By pursuing the following steps, we an �nd a surrogate method to suppress the

dependeny problem, the steps of Enumerative method are de�ned as:
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• Step 1: Get the e�ient number of sample points between the in�mum

and supremum of the interval values. These interval values an be a path

length, width, substrate thikness and the dieletri permittivity. By on-

sidering χi as a sampling parameters suh as path length and width (lmn)
, (wmn), substrate thikness (d) and dieletri permittivity (εr) then the

sampling proedure is as

χi = inf{χi}+
i

Ii
(SUP{χi} − INF{χi}) (4.34)

where i = 0, ..., Ii, Ii is the maximum number of the sampling. For eah i, there
is a new value for eah geometrial parameter of the path.

• Step 2: Let us onsider the behaviour of the re�etion amplitude (|Γmn(f, χi)|)
(Fig. 4.3a) and phase (argΓmn(f, χi)) (Fig. 4.3b) versus nominal param-

eter χi. Then alulate the amplitude and phase of the risp re�etion

oe�ient Γmn(f, χi) for eah value of the sampling parameter.

• Step 3: Speify the interval amplitude and phase of the re�etion oe�ient

of eah ell by the following ways:

INF{|Γmn(f, χi)|} = mini=0,...,Ii{|Γmn(f, χi)|} (4.35)

SUP{|Γmn(f, χi)|} = maxi=0,...,Ii{|Γmn(f, χi)|} (4.36)

INF{[arg(Γmn(f, χi))]} = mini=0,...,Ix{arg(Γmn(f, χi))} (4.37)

SUP{[arg(Γyy
mn(f, χi))]} = maxi=0,...,Ii{arg(Γmn(f, χi))} (4.38)

• Step 4: Compute the Fourier transform of the re�eted eletri �eld from

the interval of the re�etion oe�ient of step 3.

[ẼENUM
Rx/y (u, v; [χi])] = K

∑M
m=0

∑N
n=0[|Γmn(f, χi)|](cos([arg(Γmn(f, χi))])+

jsin([arg(Γmn(f, χi))]))A
x/y
mn )ejk(umpx+vnpy))

(4.39)

• Step 5: Compute the power pattern bounds from the same proedure in

(4.29).

By this proedure, we an remove the dependeny problem. The overestimation

in the power pattern bounds an be dereased by the IA − ENUM proedure.

There is still the Wrapping e�et whih an enlarge the output bounds. This
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e�et an be prevented by using Minkowski Sum whih is explained in the fol-

lowing.

[ ]
[

[

iI=i1=i

}inf{ i
}sup{ ii

|}inf{| mn

|}sup{| mn

|)(| imn

|| mn

i

(a)

[ ]

[

[

iI=i1=i

}inf{ i
}sup{ ii

))(arg( imn

)arg( mn

i

)}inf{arg( mn

)}sup{arg( mn

(b)

Figure 4.3: Enumerative strategy (a) Sampling of the amplitude of the re�etion

oe�ient (b) Sampling of the re�etion phase.
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4.2.4 Minkowski (IA−MS)

The IA − CS, IA − CS∗
and IA − ENUM still produe overestimated power

bounds due to wrapping e�et produed by retangular representation of the

omplex interval in the omplex domain. This redundany is proportional to

the number of elements. Sine re�etarray antenna onsist of several elements,

we need to properly remove this obstale from analysis. Using Minkowski sum

to alulate the interval phasors an remove the relevant redundany e�et. In

following, detail of the Minkowski sum omputation will be de�ned.

Interval power pattern [Pco(θ, φ)] is the funtion of the interval Fourier transform

of the eletri �eld [ẼRx/y(u, v)]. This interval is the summation of the interval

phasor of [|Γyy
mn(f)|]ej[arg(Γ

yy
mn(f))]

. Let us provide some details about how to per-

form Minkowski sum of two phasors of the �rst and seond ells ([Aq]q = 1, ..., Q
and [Bq]q = 1, ..., Q).

• Step I, by referring to Fig. 4.4, a small onvex polygons enirling the

following four main verties from the ombination of the minimum and

maximum of the amplitudes and phases as:

A1 = INF [|Γyy
11(f)|]ejINF [arg(Γyy

11 (f))] A2 = SUP [|Γyy
11(f)|]ejINF [arg(Γyy

11 (f))]

(4.40)

AQ = INF [|Γyy
11(f)|]ejSUP [arg(Γyy

11 (f))] AQ−1 = SUP [|Γyy
11(f)|]ejSUP [arg(Γyy

11 (f))]

(4.41)

B1 = INF [|Γyy
12(f)|]ejINF [arg(Γyy

12 (f))] B2 = SUP [|Γyy
12(f)|]ejINF [arg(Γyy

12 (f))]

(4.42)

BQ = INF [|Γyy
12(f)|]ejSUP [arg(Γyy

12 (f))] BQ−1 = SUP [|Γyy
12(f)|]ejSUP [arg(Γyy

12 (f))]

(4.43)

This polygon inludes the edges A1A2 , AQ−1AQ, AQA1 and the urve A2AQ−1.

The ar between A2AQ−1 is approximated with number of verties. In Fig. 4.4

we just show 3 verties in the urve as an example. Then omplex interval [B]
has been bounded with the onvex polygons of seond ell as it is seen in Fig.

4.4. The ar between B2BQ−1 is approximated with the same three verties.

• Step II, as shown in Fig. 4.4, by onsidering two onvex polygons enirle

omplex phasors [Aq] and [Bq], Minkowski sum of these two polygons is

a onvex polygon. Number of verties of the resulting polygon is at most

equal to sum of verties of polygon enirling phasors [A] and [B] . By

iteratively following this proedure the onvex polygon of interval Fourier

transform an be obtained.
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Figure 4.4: IA-Minkowski approah - Minkowski Sum of two interval phasors.

• Step III, Compute the minimum and maximum distanes with respet to

the enter of the omplex plane. This an give us the maximum and mini-

mum bounds for [ẼENUM−MS
Rx/y (u, v)]. Then maximum and minimum of the

power pattern are omputed with interval arithmeti rules as inf [PENUM−MS(θ, φ)] =

|inf [ẼENUM−MS
Rx/y (u, v)]|2and sup[PENUM−MS(θ, φ)] = |sup[ẼENUM−MS

Rx/y (u, v)]|2.
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Chapter 5

Interval Method Validation with

Numerial Results
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5.1. INTRODUCTION

5.1 Introdution

In this hapter manufaturing error in fabriation of the mirostrip re�etarray

antenna struture is onsidered. Geometrial parameters of the antenna suh as

width, length of the path antenna with the substrate thikness and the dieletri

permittivity are deviated from their nominal values due to manufaturing errors.

In order to mathematially realize these errors on the analytial omputation

of the radiation pattern, interval analysis tehnique is used. Wrapping e�et is

eliminated by using Minkowski sum approah. Some results are reported for the

assessment as well as for omparison purposes. Then a tolerane analysis based

on Interval Analysis (IA) together with Minkowski sum approah is implemented

to ompute the deviation bounds. Interval pattern features for di�erent re�e-

tarray strutures with several ratios of the foal-length-to-diameter (F/D) values
are omputed. The proposed IA-Minkowski (IA−MS) based approah provide

a reliable tool to predit pattern degradation.

5.1.1 Nominal Pattern Computation

For analytially ompute the nominal radiation pattern, Aperture Field method

together with the analytial expression of the re�etion oe�ient from the refer-

ene [22℄ is implemented. In order to be sure about the orret implementation of

this analytial method, the nominal radiation pattern is ompared with the state

of the art for the same re�etarray struture with the following harateristi:

• Frequeny- 32 GHz

• Antenna Aperture type- Cirular with 15.5λ0

• Number of element- 749

• Element type- Retangular Mirostrip path

• periodiity- px = py = λ0/2

• substrate thikness- d = 5mil

• dieletri permittivity- εr = 10.2

• path width- wmn = 2mm

• feed antenna position- (0, 0, 36.328mm)

• q = 1.5

The phase distribution in the aperture surfae is shown in Fig 5.1. H-plane

radiation pattern of my implemented ode is ompared with the the state-of-

the art as shown in Fig 5.2. E-plane radiation pattern of my software with

omparison to the the state-of-the art is shown in Fig 5.3 :
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Figure 5.1: Phase distribution on the aperture surfae for re�etarray with 749

elements
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Figure 5.2: H-Plane radiation pattern with omparison with Karnati 2014
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Figure 5.3: E-Plane radiation pattern with omparison with Karnati 2014
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In the following part, radiation pattern is omputed with the previous men-

tioned analytial method for the proposed re�etarray struture. Then the In-

terval bounds for di�erent errors are extrated.

5.2 Interval Computation

5.2.1 Re�etor Error

We want to ompute the interval power bounds for the re�etarray antenna with

the the following strutures. Let us onsider a enter-fed re�etarray made of 529
isotropi retangular mirostrip pathes equally-spaed along the x and y axis

of px = py = λ
2
. Re�etarray antenna has a square aperture with diameter of

11.5λ0 in 30 working frequeny. Substrate is a Rogers RT580 with d = 0.5 mm,

εr = 2.2, tanδ = 0.0009. Feed antenna is a y-polarized horn antenna in 30 GHz
modeled as cosθq with q = 8.5. It is loated in z = 114.3mm. Variable path

lengths approah in normal inident angle is used to design the array elements

over the aperture surfae to obtain the required phased. Nominal width value of

eah ell is wmn = 3.95 mm. The antenna power pattern antenna is omputed

by 4.1. Phase distribution on the aperture surfae is omputed by the expression

of (2.25) and it is shown in Fig 5.4.

Then variable path length approah is applied to realize the desired phase

of eah ell. The phase behaviour versus hanging the path length is provided

in Fig 5.5

5.2.1.1 Tolerane Analysis Against Path Error

First the impat of path width error on the power pattern is omputed.We

onsider maximum tolerane ∆w = 50µm in the width of the path of eah ell

while other parameters are �xed in their nominal values. To mathematially

model this error, path width is represented by an interval value. Therefore, real

width value of the path after manufaturing proess an be one of the random

values among this interval [3.95− 0.05, 3.95 + 0.05]. The interval power pattern
for this tolerane is omputed with IA − CS method. To avoid dependeny

problem, the interval power pattern bounds are omputed by the IA − CS∗
.

This methodology is valid for simple formulas. To fully remove the dependeny

problem, we ompute the IA−ENUM power pattern bounds. Then Minkowski

sum is implemented in the IA − ENUM − MS omputation to mitigate the

Wrapping problem. The omparative interval result in v = 0 plane is presented

in Fig.5.6. As an be seen, the IA − ENUM −MS an provide the tightest

bounds whih avoids the meaningless result of using the other Interval methods.

Following priniple of

INF [PENUM−MS
co (θ, φ)] > {INF [PCS

co (θ, φ)]], INF [PCS∗

co (θ, φ)], INF [PENUM
co (θ, φ)]}

SUP [PENUM−MS
co (θ, φ)] < {SUP [PCS

co (θ, φ)]], SUP [PCS∗

co (θ, φ)], SUP [PENUM
co (θ, φ)]} ,
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Figure 5.4: Phase distribution on the aperture surfae
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Figure 5.6: Comparative Assessment △w = 50µm; Plot of the interval power

pattern predited with the IA−CS, the IA−CS∗
, IA−ENUM , IA−ENUM−

MS together with the nominal power patter in H-Plane (φ = 0◦).

hold true. It proved that the IA−ENUM −MS method an provide the tight,

reliable, aurate and inlusive bounds.

In order to hek the reliability of the IA− ENUM −MS , a Monte Carlo

test with a set of T = 5 ∗ 105 trial power patterns has been performed to over

the IA−MS−ENUM bounds. In Fig.5.7, this Monte Carlo pattern is shown to

over IA−ENUM −MS bounds of ∆w = 50[µm] in v = 0 plane. It proves that
the whole set of trial nominal power patterns are inside the IA−ENUM −MS
bounds. Closeness of the IA − ENUM −MS to the upper and lower part of

the Monte Carlo patterns demonstrates the reliability and e�etiveness of this

method.

5.2.1.2 Method Validation

To validate inlusion properties, interval power pattern for di�erent toleranes

in path width △w = 5, 10, 20, 50µm for two di�erent uts are shown in Fig.

5.8(a)v = 0 plane and Fig. 5.8 (b)u = 0 plane . Antenna pattern features suh

as SLL,BW,P,∆ are shown in table 5.1. In Fig. 5.9(a)v = 0 plane and(b)u = 0
plane, interval power bounds for di�erent toleranes of △l = 5, 10, 20, 50µm in
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Figure 5.7: Method Validation - Comparison of IA − CS , IA − ENUM ,

IA−ENUM −MS IA−CS∗
, together with the Monte Carlo patterns △w =

50µm.
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∆W,µm [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.380 0.092

5 [-0.0008,0.0006℄ [-21.457,-21.304℄ [0.091,0.092℄ 0.02

10 [-0.001,0.013℄ [-21.536,-21.227℄ [0.091,0.092℄ 0.03

20 [-0.003,0.002℄ [-21.659,-21.077℄ [0.091,0.092℄ 0.05

50 [-0.001,0.001℄ [-21.659,-21.077℄ [0.091,0.092℄ 0.07

v=0

0 0 -22.561 0.092

5 [-0.0008,0.0006℄ [-22.657,-22.481℄ [0.091,0.092℄ 0.02

10 [-0.001,0.001℄ [-22.740,-22.385℄ [0.091,0.092℄ 0.04

20 [-0.003,0.002℄ [-22.925,-22.212℄ [0.091,0.092℄ 0.08

50 [-0.008,0.07℄ [-23.504,-21.707℄ [0.09,0.09℄ 0.2

Table 5.1: Analysis of the IA-based pattern predition vs. path width errors

in u = 0 and v = 0 planes, △w = {5, 10, 20, 50}{µm}- Interval pattern features

[p(u, v), SLL,BW ] and pattern tolerane index ∆

path length are depited. In table 5.2, interval pattern features of the length

toleranes are depited. Inlusion property for interval of length ([l]|∆l=5µm ⊂
[l]|∆l=10µm ⊂ [l]|∆l=20µm ⊂ [l]|∆l=50µm)

and ([w]|∆w=5µm ⊂ [w]|∆w=10µm ⊂ [w]|∆w=20µm ⊂ [w]|∆w=50µm) leads to the inlu-
sion of the interval power pattern

([PENUM−MS
co ]|∆w=5µm ⊂ [PENUM−MS

co ]|∆w=10µm ⊂ [PENUM−MS
co ]|∆w=20µm ⊂

[PENUM−MS
co ]|∆w=50µm)

and ([PENUM−MS
co ]|∆l=5µm ⊂ [PENUM−MS

co ]|∆l=10µm ⊂ [PENUM−MS
co ]|∆l=20µm ⊂

[PENUM−MS
co ]|∆l=50µm).

It is worth to show the dependeny of the degradation of the pattern fea-

tures on path toleranes against steering angle . Four di�erent nominal re-

�etarray arrangements have been synthesized to steer the main beam along

diretions: (θ0, φ0) = (10, 0)[deg], (θ0, φ0) = (20, 0)[deg], (θ0, φ0) = (30, 0)[deg],
(θ0, φ0) = (40, 0)[deg]. The plot of interval power pattern features only along the

ut v = 0 for tolerane values ∆l = {5, 10, 20, 50}{µm} are shown in Fig.5.10.

These interval features are also represented in table 5.3 . The dependeny of

the power pattern degradation on path toleranes against antenna bandwidth is

also studied. Four di�erent working frequenies f = 28.5, f = 29.25, f = 30.75,
f = 31.5 have been investigated. In Fig.5.11 interval pattern features for toler-

ane values ∆l = {5, 10, 20, 50}{µm} for ut v = 0 are shown. In table 5.4 these

pattern features are presented.
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Figure 5.8: Inlusion property validation against path width error - Nomi-

nal power pattern and IA − ENUM −MS interval power pattern for △w =
{5, 10, 20, 50}(a) in v = 0 plane (b) in u = 0 plane.
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Figure 5.9: Inlusion property validation against path length error - Nomi-

nal power pattern and IA − ENUM − MS interval power pattern for △l =
{5, 10, 20, 50}(a) in v = 0 plane (b) in u = 0 plane.
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∆l, µm [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.380 0.092

5 [-0.014,0.009℄ [-22.641,-20.271℄ [0.088,0.090℄ 0.3

10 [-0.032,0.017℄ [-24.101,-19.275℄ [0.086,0.094℄ 0.6

20 [-0.081,0.027℄ [-27.997,-17.542℄ [0.082,0.098℄ 1.2

50 [-0.340,0.040℄ [-inf,-13.582℄ [0.072,0.011℄ 3.6

v=0

0 0 -22.561 0.092

5 [-0.014,0.009℄ [-24.046,-21.284℄ [0.090,0.094℄ 0.3

10 [-0.032,0.017℄ [-25.821,-20.155℄ [0.088,0.096℄ 0.6

20 [-0.081,0.027℄ [-30.969,-18.230℄ [0.084,0.100℄ 1.3

50 [-0.340,0.040℄ [-inf,-13.658℄ [0.072,0.112℄ 4.1

Table 5.2: Analysis of the IA-based pattern predition vs. path length errors

in u = 0 and v = 0 planes, △l = {5, 10, 20, 50}{µm}- Interval pattern features

[p(u, v), SLL,BW ] and pattern tolerane index ∆

∆l, µm [P (u, v)] [SLL], dB [BW ], u ∆× 10
f = 28.5

0 0 -17.526 0.096

10 [-0.113,0.104℄ [-18.983,-16.261℄ [0.0920,0.102℄ 0.66

f = 29.25
0 0 -21.110 0.092

10 [-0.071,0.059℄ [-23.479,-19.246℄ [0.088,0.098℄ 0.63

f = 30.75
0 0 -21.085

10 [-0.069,0.057℄ [-23.964,-18.868℄ [0.084,0.092℄ 0.7

f = 31.5
0 0 -18.888 0.086

10 [-0.112,0.110℄ [-21.204,-17.034℄ [0.082,0.092℄ 0.8

Table 5.3: Analysis vs. bandwidth f = {28.5, 29.25, 30.75, 31.5} for path

length errors in v = 0 plane, △l = {10}{µm}- Interval pattern features

[p(u, v), SLL,BW ] and pattern tolerane index ∆
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Figure 5.11: Analysis versus frequeny, IA-pattern features (a)P (u0)(b) SLL (c)
BW against frequeny (a)f = 28.5 (b)f = 29.25 (c)f = 30.75(d)f = 31.5.
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∆l, µm [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.380 0.092

5 [-0.014,0.009℄ [-22.641,-20.271℄ [0.088,0.090℄ 0.3

10 [-0.032,0.017℄ [-24.101,-19.275℄ [0.086,0.094℄ 0.6

20 [-0.081,0.027℄ [-27.997,-17.542℄ [0.082,0.098℄ 1.2

50 [-0.340,0.040℄ [-inf,-13.582℄ [0.072,0.011℄ 3.6

v=0

0 0 -22.561 0.092

5 [-0.014,0.009℄ [-24.046,-21.284℄ [0.090,0.094℄ 0.3

10 [-0.032,0.017℄ [-25.821,-20.155℄ [0.088,0.096℄ 0.6

20 [-0.081,0.027℄ [-30.969,-18.230℄ [0.084,0.100℄ 1.3

50 [-0.340,0.040℄ [-inf,-13.658℄ [0.072,0.112℄ 4.1

Table 5.4: Analysis vs. bandwidth f = {28, 5, 29.25, 30.75, 31.5} for path

length errors in v = 0 plane, △l = {10}{µm}- Interval pattern features

[p(u, v), SLL,BW ] and pattern tolerane index ∆

5.2.1.3 Tolerane Analysis Against Substrate Error

Interval power pattern as a result of tolerane error on the substrate thikness

is omputed by the previous methods. It an be shown that sensitivity of the

radiated power pattern toward the substrate thikness error is more than path

width error. Sine the nominal value of the substrate thikness is muh less than

the nominal width of the path, the e�et of the 50µm substrate thikness devia-

tion on the radiation pattern is more than the same tolerane on the width of the

path. There should be some onstraints on the maximum tolerable tolerane

error based on the working frequeny, nominal value of the parameter and the

sensitivity of the resonane frequeny, re�etion phase toward the spei� toler-

anes. Due to this issues, the same tolerane on eah parameter an not make

the same e�et on the radiation performane of the antenna. In Fig.5.12(a)-(b),
the interval power pattern is extrated for toleranes of △ε = 0.003, 0.005, 0.007
in the dieletri permittivity in ut v = 0 and u = 0 ,respetively. The errors

on the substrate thikness have been �xed in ∆d = {5, 10, 20, 50}[µm]. The plot
of the nominal power pattern and the interval bounds through the Minkowski-

based Interval Analysis is shown in Fig.5.13. The pattern features for interval

dieletri permittivity and the interval substrate are shown in table 5.5 and 5.6.

5.3 Feed Error

Re�etarray antennas inludes several radiating elements whih are illuminated

by the feed antenna. Feed antenna an have the displaement from the on-axis
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Figure 5.12: Inlusion property validation against path dieletri permittivity

error - Nominal power pattern and IA− ENUM −MS interval power pattern

for △ε = {0.003, 0.005, 0.007}(a) in v = 0 plane (b) in u = 0 plane.
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Figure 5.13: Inlusion property validation against path substrate thikness error

- Nominal power pattern and IA − ENUM − MS interval power pattern for

△d = {5, 10, 20, 50}(a)in v = 0 plane (b)in u = 0 plane.
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∆d, µm [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -22.561 0.092

5 [-0.012,0.009℄ [-22.653,-20.261℄ [0.088,0.092℄ 0.2

10 [-0.028,0.017℄ [-24.130,-19.259℄ [0.086,0.094℄ 0.5

20 [-0.071,0.029℄ [-28.078,-17.519℄ [0.084,0.098℄ 1.2

50 [-0.292,0.044℄ [-inf,-13.575℄ [0.072,0.108℄ 3.4

v=0

0 0 -22.561 0.092

5 [-0.012,0.009℄ [-26.822,-21.296℄ [0.09,0.094℄ 0.3

10 [-0.028,0.017℄ [-25.836,-20.150℄ [0.088,0.096℄ 0.6

20 [-0.071,0.029℄ [-31.003,-18.224℄ [0.084,0.098℄ 1.3

50 [-0.292,0.044℄ [-60.044,-13.821℄ [0.074,0.11℄ 3.9

Table 5.5: Analysis of the IA-based pattern predition vs. substrate thikness

errors in u = 0 and v = 0 planes, △d = {5, 10, 20, 50}{µm}- Interval pattern
features [p(u, v), SLL,BW ] and pattern tolerane index ∆

∆ε [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.380 0.092

0.003 [-0.0052,0.0006℄ [-21.457,-21.304℄ [0.091,0.092℄ 0.02

0.005 [-0.001,0.013℄ [-21.536,-21.227℄ [0.091,0.092℄ 0.03

0.007 [-0.003,0.002℄ [-21.659,-21.077℄ [0.091,0.092℄ 0.05

v=0

0 0 -22.561 0.092

0.003 [-0.005,0.004℄ [-21.884,-20.975℄ [0.091,0.092℄ 0.1

0.005 [-0.009,0.006℄ [-22.511,-20.915℄ [0.091,0.092℄ 0.2

0.007 [-0.013,0.009℄ [-22.515,-20.395℄ [0.088,0.092℄ 0.28

Table 5.6: Analysis of the IA-based pattern predition vs. dieletri permittivity

errors in u = 0 and v = 0 planes, △ε = {0.003, 0.005, 0.007}{µm}- Interval
pattern features [p(u, v), SLL,BW ] and pattern tolerane index ∆
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fous due to some unpreditable unertainties. This displaement make a phase-

error over the aperture surfae and onsequently distortion on the radiation pat-

tern. Beam distortion due to a lateral feed displaement in a paraboloid antenna

is investigated in [43℄. The ombined e�et of lateral and axial displaement of

the feed phase enter on the seondary performane of a paraboli re�etor is

desribed in [44℄. The impat of feed loation on the operating band of broad-

band re�etarray antenna is addressed in [45℄. Sine the nature of these errors

is random, we need deterministi approahes to ompute the e�et of these ran-

dom errors on the radiation performane. As it is proved in the previous setion,

Minkowski Enumerative Interval Analysis (IA −MS − ENUM) provide more

reliable and e�etive results rather than Cartesian Interval Analysis (IA−CS).
This novel Minkowski-based Interval analysis is proposed to onsidered the e�et

of feed displaement errors on the radiation pattern of re�etarray antenna. The

result of the Minkowski-Interval analysis inlude upper and lower bounds of the

power pattern as a result of feed position errors.

5.3.1 Mathematial Representation of Feed Loation Dis-

tortion

Assume re�etarray antenna in Fig. 5.14 in whih the feed position has a dis-

plaement error △rf from on-axis fous. Feed position errors an a�et the

antenna performane. Based on the interval analysis approah and the vertial

displaement error [52℄, feed on-axis fous loation an be presented by following

errors and intervals as follows :

∆rf = (∆xf ,∆yf ,∆zf ) (5.1)

[rf ] = [xf ]x̂+ [yf ]ŷ + [zf ]ẑ (5.2)

[xf ] = [xf −△xf ; xf +△xf ] (5.3)

[yf ] = [yf −△yf ; yf +△yf ] (5.4)

[zf ] = [zf −△zf ; zf +△zf ] (5.5)

where feed loation along x and y and z are xf , yf and zf , respetively. As
it is lear in Fig. 5.14, due to the feed displaement errors, distane from feed

to element Rmn will hange to R
′

mn . Sine this displaement an be random so

they an be presented by interval values [Rmn] to inlude all of these random
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Figure 5.14: Antenna struture with the feed displaement .

distane values R
′

mn. Sine the inident angles are omputed by the knowing

the feed position and the distane from feed to element so the spherial phases

(θmn, φmn) are also represented by interval values to assess the e�et of random

errors on feed nominal position.

Inident feed an express by Floquet harmonis. Amplitude and phase of the

Floquet harmonis whih illuminate eah path are omputed from the far �eld

of the feed horn antenna. This amplitude and phase now are the interval values

due to interval of the feed position. Interval of the far �eld of the horn antenna

with respet to mn-th path/element in the re�etarray are:

[EFy([θmn], [φmn], [rf ])] = [EFy
θ ([θmn], [φmn], [rf ])]θ̂ + [EFy

φ ([θmn], [φmn], [rf ])]φ̂
(5.6)

[EFy
θ ([θmn], [φmn], [rf ])] =

jke−jk[Rmn]

[Rmn]
(CE([θmn])sin([φmn]) (5.7)

[EFy
φ ([θmn], [φmn], [rf ])] =

jke−jk[Rmn]

[Rmn]
(CH([θmn])cos([φmn]) (5.8)

Where [θmn] , [φmn] are the interval of the inident angles whih illuminate

mn-th element in the aperture surfae. CE(θ) = cosqE(θ) and CH(θ) = cosqH(θ)
are the E- and H- plane patterns of the feed-horn. We need to selet a proper

value for qE = qH in order to ontrol the aperture e�ieny. Interval of the

inident angle relates to interval of the feed positions by the following expressions:

[θmn] = atan

√
(xmn − [xf ])2 + (ymn − [yf ])2

zf
(5.9)
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[φmn] = atan
ymn − [yf ]

xmn − [xf ]
(5.10)

Interval of the [Rmn], [rmn] depends on the feed loations interval values by the

following expression:

[Rmn] =
√

([rmn])2 + [z2f ] (5.11)

[rmn] =
√

(xmn − [xf ])2 + (ymn − [yf ])2

Inident Floquet harmonis omputed from the Cartesian omponents of the far

�eld of the inident �eld. Interval of the Cartesian omponents of the inident

�eld related to the interval of the far �eld of the feed horn (5.6) antenna by:







[dFx ([θmn], [φmn], [rf ])]

[dFy ([θmn], [φmn], [rf ])]

[dFz ([θmn], [φmn], [rf ])]






=





sin([θmn]cos[φmn]) cos([θmn]cos[φmn]) −sin([φmn])
sin([θmn]sin[φmn]) cos([θmn]sin[φmn]) cos([φmn])

cos([θmn]) −sin([θmn ]) 0











0

[E
Fy
θ

([θmn], [φmn], [rf ])]

[E
Fy
φ

([θmn], [φmn], [rf ])]







(5.12)

Then the interval of the Floquet harmonis illuminated eah mn-th element

related to the interval of the Cartesian omponents of the far eletri �eld of eah

element by the following expression:

[

[dTE([θmn], [φmn], [rf ])]

[dTM ([θmn], [φmn], [rf ])]

]

=

1
[kcl([θmn],[φmn],[rf ])]

[

−[ky0([θmn], [φmn], [rf ])] [kx0([θmn], [φmn], [rf ])]

[kx0([θmn], [φmn], [rf ])] [ky0([θmn], [φmn]; [rf ])]

]

[

[dFx ([θmn], [φmn], [rf ])]

[dFy ([θmn], [φmn], [rf ])]

]

(5.13)

[kx0([θmn], [φmn]; ([rf ]))] = k0sin([θmn])cos([φmn]) (5.14)

[ky0([θmn], [φmn]; ([rf ]))] = k0sin([θmn])sin([φmn]) (5.15)

[kcl([θmn], [φmn], [rf ])] =
√

[k2x0([θmn], [φmn], [rf ])] + [k2y0([θmn], [φmn], [rf ])]

(5.16)

After omputing the interval of the inident Floquet harmonis illuminating

mn-th element. Now we need to ompute the interval of the Fourier transform

of the re�eted eletri �eld on the re�etarray aperture. This Interval Fourier

transform is the summation of the interval of re�eted Floquet harmonis of eah

element as follows [10℄:

[ẼRx/y(u, v; [θmn], [φmn], [rf ])] = K

M−1∑

m=0

N−1∑

n=0

[ax/ymn ([θmn], [φmn], [rf ])]e
jk0(umpx+vnpy)

(5.17)

Where [ax/y] is the interval of the Cartesian omponents of the re�eted �eld

illuminating eah element. We want to ompute the interval of the re�eted Flo-

quet harmonis of eah ell. This re�eted Floquet harmonis related to inident
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Floquet harmonis with the re�etion oe�ient of eah ell. The expression for

the re�etion oe�ient inludes the interval of the inident angle. Therefore the

e�et of the feed displaements is seen in both inident angle and the re�etion

oe�ient. The relation between the interval of the re�eted Floquet harmonis

([aTE([θmn], [φmn], [rf ])], [a
TM([θmn], [φmn], [rf ])]) and the Cartesian omponents

of the re�eted eletri �eld ([ax([θmn], [φmn], [rf ])], [a
y([θmn], [φmn], [rf ])]) of eah

element are as follows:

[

[ax([θmn], [φmn], [rf ])]

[ay([θmn], [φmn], [rf ])]

]

=

1
[kcl([θmn],[φmn],[rf ])]

[ −[ky0([θmn], [φmn], [rf ])] [kx0([θmn], [φmn], [rf ])]

[kx0([θmn], [φmn], [rf ])] [ky0([θmn], [φmn], [rf ])]

] [

[aTE([θmn], [φmn], [rf ])]

[aTM ([θmn], [φmn], [rf ])]

]

(5.18)

interval of the re�eted eletri �eld related to the interval of the inident Floquet

harmonis by:

[

[aTE([θmn], [φmn], [rf ])]

[aTM ([θmn], [φmn], [rf ])]

]

=
[

[ΓTE([θmn], [φmn], [rf ])] [Γcross([θmn], [φmn], [rf ])]

[Γcross([θmn], [φmn], [rf ])] [ΓTM ([θmn], [φmn], [rf ])]

] [

[dTE([θmn], [φmn], [rf ])]

[dTM ([θmn], [φmn], [rf ])]

]
(5.19)

Then the interval of the TE and TM and cross re�etion oe�ient are as

follows:

[ΓTE([θmn], [φmn], [rf ])] =
1

[QradTE([θmn],[φmn],[rf ])]
−( 1

[QradTM([θmn],[φmn],[rf ])]
+ 1

Q0
)−2j

(f−f0)
f0

1
[QradTE([θmn],[φmn],[rf ])]

+ 1
[QradTM([θmn],[φmn],[rf ])]

+ 1
Q0

+2j
(f−f0)

f0

(5.20)

[ΓTM([θmn], [φmn], [rf ])] =
1

[QradTM([θmn],[φmn],[rf ])]
−( 1

[QradTE([θmn],[φmn],[rf ])]
+ 1

Q0
)−2j

(f−f0)
f0

1
[QradTM([θmn],[φmn],[rf ])]

+ 1
[QradTE([θmn],[φmn],[rf ])]

+ 1
Q0

+2j
(f−f0)

f0

(5.21)

[Γcross([θmn], [φmn], [rf ])] =
2√

[QradTE([θmn],[φmn],[rf ])][QradTM([θmn],[φmn],[rf ])]

1
[QradTM([θmn],[φmn],[rf ])]

+ 1
[QradTE([θmn],[φmn],[rf ])]

+ 1
Q0

+2j
(f−f0)

f0

(5.22)

Here we have the expression for quality fators whih depends on the inident

angles and the geometrial parameters of the element. Sine the inident angle

are interval, the quality fators an be represented by interval values as follows:

[QradTE([θmn], [φmn], [rf ])] =
f0πε

4d

lmn

wmn

pxpy
cos[θi]

(5.23)

[QradTM([θmn], [φmn], [rf ])] =
f0πε

4d

lmn

wmn
pxpycos[θi] (5.24)

periodiity of array along x and y are px and py, respetively. Length and with
of the path are lmn and wmn. d is the substrate thikness. f0 is the resonane
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frequeny of eah element. Q0 is the ombined quality fators as expressed in

[22℄. After omputing the interval of the Fourier transform of the re�eted eletri

�eld in re�etarray aperture surfae . Interval funtion of the power pattern of

the eletri �eld is as:

[E(θ, φ; [θmn], [φmn], [rf ])] =

[Eθ(θ, φ; [θmn], [φmn], [rf ])]θ̂ + [Eφ(θ, φ; [θmn], [φmn], [rf ])]φ̂
(5.25)

[Eco(θ, φ; [θmn], [φmn], [rf ])] =

sinφ[Eθ(θ, φ; [θmn], [φmn], [rf ])]θ̂ + cosφ[Eφ(θ, φ; [θmn], [φmn], [rf ])]φ̂
(5.26)

[Ecross(θ, φ; [θmn], [φmn], [rf ])] =

cosφ[Eθ(θ, φ; [θmn], [φmn], [rf ])]θ̂ − sinφ[Eφ(θ, φ; [θmn], [φmn], [rf ])]φ̂
(5.27)

[Eθ(θ, φ; [θmn], [φmn], [rf ])] =
e−jkr

r
(cosφ[ẼRx(u, v; [θmn], [φmn], [rf ])] + sinφ[ẼRy(u, v; [θmn], [φmn], [rf ])])

(5.28)

[Eφ(θ, φ; [θmn], [φmn], [rf ])] =
e−jkr

r
(sinφcosθ[ẼRx(u, v; [θmn], [φmn], [rf ])] + cosφcosθ[ẼRy(u, v; [θmn], [φmn], [rf ])])

(5.29)

where j =
√
−1, k = 2π

λ
is the wavenumber, λ being the wavelength, and u =

sin θ cosφ and v = sin θ sin φ are the diretion osine oordinates with θ ∈
[
0; π

2

]

and φ ∈ [0; π].

5.3.2 IA-based Approah

In the following the IA− ENUM −MS approah is explained for feed errors:

• Divide the interval of feed displaement to e�ient number of sampling

points i = i, ..., Ii. onstrut eah point ψi by in�mum and supremun of

[xf ], [yf ] and [zf ] as

ψi = inf([xf ]/[yf ]/[zf ]) +
i
Ii
(sup([xf ]/[yf ]/[zf ])− inf([xf ]/[yf ]/[zf ]))

• Compute the amplitude and phase of the re�eted Floquet harmonis

a
x/y
mn(ψi) for eah sampling point, then ompute the maximum and min-

imum among the amplitude and phase of the re�eted Floquet harmonis.

• Enirle a small onvex polygon inluding the ombination of the maxi-

mum and minimum of the amplitude and phase of the re�eted Floquet

harmonis.

• Perform Minkowski sum among the onvex polygons.
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5.3.3 Numerial Results

In this setion, some numerial results are proposed to validate the e�etiveness of

IA−ENUM−MS in omputing feed displaement errors. co−polar omponent

of the nominal pattern are omputed by Aperture Field method together with

the co and cross re�etion oe�ient of the element. Bounds of the deviation of

power pattern for di�erent tolerane errors on the feed position are investigated.

Then we hek the inlusion properties of the power bounds by omparing the

bounds with Monte Carlo results. Then feed antenna is reloated in di�erent

values of the foal points (F ), then the sensitivity of the Minkowski power bounds

versus these hanging is evaluated.

5.3.3.1 Comparative Assessment

Let us onsider a enter-fed re�etarray made of 529 isotropi retangular mi-

rostrip pathes equally-spaed along the x and y axis of px = py =
λ
2
. Re�etar-

ray antenna has a square aperture with diameter of 11.5λ0 in 30GHz working fre-
queny. Substrate is a Rogers RT580 with d = 0.5 mm, εr = 2.2, tanδ = 0.0009.
Feed antenna is a y-polarized horn antenna in 30 GHz modeled as cosθqH with

qH = 8.5. It is loated in (xf , yf , zf) = (0, 0, 114.3)mm. Variable path lengths

approah in normal inident angle is used to design the array elements over the

aperture surfae to obtain the required phased. Nominal width value of eah ell

is wmn = 3.95 mm.

5.3.3.2 Tolerane Analysis Feed Error

First the impat of error on feed loation along z axis on the lower and upper

bounds of co-polar omponents of the eletri �eld [Eco(θ, φ; [θmn], [φmn], [rf ])] is
analyzed. The nominal loation is �xed in (xf , yf , zf) = (0, 0, 114.3mm) . We

assume the feed antenna has displaement error within the interval of zf ∈ [zf −
∆zf , zf +∆zf ] and ∆zf = λ/200,λ/100, λ/50, λ/20, λ/10 . IA−ENUM −MS
power bounds related to di�erent errors on z axis in ut v = 0.0 and u = 0.0
are presented in Fig.5.15 (a) and (b). The value for the pattern features are

presented in table 5.7. In order to hek the reliability and inlusion feature of

IA − ENUM −MS power bounds, a set of T = 105 Monte Carlo trial values

within the interval of ztf ∈ [zf − λ/20; zf + λ/20] have been hosen and their

patterns omputed. As an be observed in Fig.5.16, all Monte Carlo patterns

are within the IA−ENUM−MS bounds whih validate the inlusion property.

The e�et of feed deviation errors along x and y axis an also be evaluated.

In order to alulate the error e�ets on these two axis, di�erent tolerane errors

along x and y are onsidered. Interval of the power bounds versus toleranes er-
rors ∆xf = λ/200,λ/100, λ/50, λ/20, λ/10 along x diretions for co-polar pattern
is presented in Fig. 5.17 (a) and (b) for ut v = 0 and u = 0, respetively.
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Figure 5.15: Inlusion property validation against feed loation error - Nom-

inal power pattern and IA − MS co-polar interval power pattern for △zf =
{λ/200, 100, 50, 20, 10}(a)in v = 0 plane (b)in u = 0 plane.
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Figure 5.16: Monte Carlo power pattern over IA−MS bounds with △zf = λ/20.

∆zf [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.349 0.090

λ/200 [-0.015,0.007℄ [-21.551,-21.293℄ [0.09,0.09℄ 0.04

λ/100 [-0.0191,0.003℄ [-21.711,-21.184℄ [0.09,0.09℄ 0.09

λ/50 [-0.026,0.003℄ [-22.051,-20.987℄ [0.09,0.09℄ 0.17

λ/20 [-0.051,0.024℄ [-23.970,-20.830℄ [0.088,0.094℄ 0.44

λ/10 [-0.095,0.057℄ [-24.528,-19.018℄ [0.084,0.096℄ 0.88

v=0

0 0 -22.561 0.092

λ/200 [-0.015,0.002℄ [-23.032,-22.530℄ [0.092,0.092℄ 0.02

λ/100 [-0.019,0.003℄ [-23.033,-22.425℄ [0.092,0.092℄ 0.08

λ/50 [-0.026,0.004℄ [-23.310,-22.090℄ [0.090,0.094℄ 0.18

λ/20 [-0.051,0.024℄ [-24.386,-21.295℄ [0.09,0.096℄ 0.45

λ/10 [-0.095,0.057℄ [-26.514,-19.994℄ [0.086,0.098℄ 0.09

Table 5.7: Analysis of the IA-based co-polar pattern predition vs. feed displae-

ment errors errors in u = 0 and v = 0 planes, △zf = {λ/200, 100, 50, 20, 10}-
Interval pattern features [p(u, v), SLL,BW ] and pattern tolerane index ∆
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Figure 5.17: Inlusion property validation against feed loation error - Nomi-

nal power pattern and IA − MS co-polar interval power pattern for △xf =
{λ/200, 100, 50, 20, 10}(a)in v = 0 plane (b)in u = 0 plane.
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∆xf [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.349 0.090

λ/200 [-0.022,0.003℄ [-21.831,-20.891℄ [0.09,0.092℄ 0.15

λ/100 [-0.0353,0.010℄ [-22.347,-20.453℄ [0.088,0.092℄ 0.3

λ/50 [-0.124,0.0314℄ [-23.486,-18.994℄ [0.084,0.096℄ 0.7

λ/20 [-0.214,0.086℄ [-28.217,-17.044℄ [0.074,0.102℄ 1.74

λ/10 [-0.335,0.164℄ [-inf,-14.923℄ [0.07,0.112℄ 3.37

v=0

0 0 -22.561 0.092

λ/200 [-0.022,0.0003℄ [-23.213,-22.145℄ [0.092,0.092℄ 0.138

λ/100 [-0.035,0.010℄ [-23.805,-21.649℄ [0.090,0.094℄ 0.27

λ/50 [-0.124,0.031℄ [-25.120,-20.009℄ [0.088,0.095℄ 0.7

λ/20 [-0.214,0.086℄ [-30.854,-17.844℄ [0.082,0.102℄ 1.62

λ/10 [-0.335,0.164℄ [-inf,-14.933℄ [0.074,0.11℄ 3.26

Table 5.8: Analysis of the IA-based co−polar pattern predition vs. feed dis-

plaement errors in u = 0 and v = 0 planes, △xf = {λ/200, 100, 50, 20, 10}-
Interval pattern features [p(u, v)]

The value of the pattern features and the peak power for co-polar pattern
is shown in Table 5.8 and 5.9 respetively. Inlusion properties for the inter-

val of feed ([xf ]|△xf=λ/200 ⊂ [xf ]|△xf=λ/100 ⊂ [xf ]|△xf=λ/50 ⊂ [xf ]|△xf=λ/20 ⊂
[xf ]|△xf=λ/10) leads to the inlusion properties of the co-polar power pattern

([P co]|△xf=λ/200 ⊂ [P co]|△xf=λ/100 ⊂ [P co]|△xf=λ/50 ⊂ [P co]|△xf=λ/20 ⊂ [P co]|△xf=λ/10).

Interval of the co-polar power bounds for toleranes of∆yf = λ/200,100, 50, 20, 10
in Fig. 5.18. We an see the values of the pattern features in table 5.9.

We onsider errors on the feed loations based on the error range for re�etor

antenna. Re�etarray antenna are more sensitive to the feed error. We will

onsider the more pratial feed errors in the z axis, then we will show that this

method is onsistent to any error. The interval pattern with the tolerane of

{λ/5, λ/2, λ} is as shown in 5.19. As it is lear the bounds are larger than the

previous errors but it is still inlusive.

5.3.3.3 Performane Analysis Versus Di�erent Foal-length-to-diameter

Ratio (F/D)

After evaluating the reliability of the Interval Minkowski with respet to feed po-

sition errors, we want to hek the dependeny of tolerane analysis to di�erent

foal-length-to-diameter values (F/D). With this analysis, robustness and stabil-

ity of the method will be assessed. The analysis versus foal-length-to-diameter

values has been arried out by onsidering F/D = {0.3; 0.5; 0.7; 0.9}. A suitable
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Figure 5.18: Inlusion property validation against feed loation error - Nom-

inal power pattern and IA − MS co-polar interval power pattern for △yf =
{λ/200, 100, 50, 20, 10}(a)in v = 0 plane (b)in u = 0 plane.
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Figure 5.19: Analysis of the IA-based co−polar pattern predition vs. feed

displaement errors in u = 0 and v = 0 planes, △zf = {λ/5, 2, 1}- Interval
pattern features [p(u, v)].
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∆yf [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.349 0.090

λ/200 [-0.024,0.001℄ [-21.817,-20.903℄ [0.09,0.092℄ 0.13

λ/100 [-0.038,0.0137℄ [-22.309,-20.477℄ [0.088,0.092℄ 0.27

λ/50 [-0.13,0.0372℄ [-23.388,-19.029℄ [0.086,0.094℄ 0.68

λ/20 [-0.229,0.098℄ [-27.695,-17.084℄ [0.080,0.100℄ 1.53

λ/10 [-0.359,0.179℄ [-inf,-14.915℄ [0.072,0.100℄ 2.95

v=0

0 0 -22.561 0.092

λ/200 [-0.024,0.0001℄ [-23.228,-22.134℄ [0.092,0.094℄ 0.159

λ/100 [-0.0383,0.013℄ [-23.832,-21.633℄ [0.090,0.094℄ 0.31

λ/50 [-0.130,0.037℄ [-25.194,-19.984℄ [0.086,0.098℄ 0.78

λ/20 [-0.229,0.098℄ [-31.342,-17.817℄ [0.080,0.104℄ 1.82

λ/10 [-0.359,0.179℄ [-inf,-15.068℄ [0.072,0.114℄ 3.65

Table 5.9: Analysis of the IA-based co−polar pattern predition vs. feed

displaement errors errors in u = 0 and v = 0 planes, △yf =
{λ/200, 100, 50, 20, 10}.Interval pattern features [p(u, v), SLL,BW ] and pattern

tolerane index ∆

design for nominal lengths of re�etarray pathes is needed to realize required

phase for the proposed F/D values. Four di�erent re�etarray arrangements

have been synthesized for di�erent ratios of F/D.

The behaviour of the peak power pattern versus F/D = {0.3; 0.5; 0.7; 0.9} in
toleranes of ∆xf = {λ/200,λ/100, λ/50, λ/20, λ/10} is shown in Fig. 5.20(a).
Beam width and sidelobe level for these ratios are presented in Fig. 5.20 (b)
and Fig. 5.20(c) , respetively. It is lear from these �gures, as the (F/D)
is inreasing, the sensitivity of the power pattern to the tolerane errors are

dereasing. The value of the pattern features suh as peak power, beam width

and sidelobe level are shown in table 5.10.

Sine F/D ratio is hanging, we need to apply the appropriate values for qH =
qE in (5.7), (5.8 ) to ahieve the same aperture e�ieny of the struture in eah

value of F/D . This value is omputed in eah F/D . The following values of

qH = {1; 1.2; 3.2; 6} are hosen for F/D = {0.3; 0.5; 0.7; 0.9}[10℄.
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∆xf [P (u, v)] [SLL], dB [BW ], u
F/D = 0.3

0 0 -23.510 0.092

λ/200 [-0.027,0.025℄ [-24.856,-22.340℄ [0.09,0.094℄

λ/100 [-0.154,0.049℄ [-28.615,-21.197℄ [0.086,0.098℄

λ/50 [-0.221,0.090℄ [-34.763,-19.414℄ [0.082,0.102℄

λ/20 [-0.377,0.186℄ [-inf,-14.143℄ [0.070,0.116℄

λ/10 [-0.986,0.293℄ [-inf,-7.017℄ [0.05,0.142℄

F/D = 0.5
0 0 -18.286 0.086

λ/200 [-0.014,0.012℄ [-18.858,-17.752℄ [0.084,0.088℄

λ/100 [-0.089,0.024℄ [-19.474,-16.769℄ [0.082,0.090℄

λ/50 [-0.124,0.044℄ [-20.867,-15.888℄ [0.078,0.092℄

λ/20 [-0.265,0.092℄ [-27.498,-13.699℄ [0.076,0.100℄

λ/10 [-0.550,0.153℄ [-inf,-12.355℄ [0.056,0.120℄

F/D = 0.7
0 0 -19.380 0.088

λ/200 [-0.012,0.011℄ [-18.858,-17.752℄ [0.086,0.088℄

λ/100 [-0.025,0.021℄ [-19.474,-16.769℄ [0.082,0.090℄

λ/50 [-0.113,0.041℄ [-21.662,-17.098℄ [0.082,0.094℄

λ/20 [-0.221,0.091℄ [-26.990,-15.066℄ [0.076,0.100℄

λ/10 [-0.408,0.159℄ [-12.355,-19.380℄ [0.062,0.114℄

F/D = 0.9
0 -20.153 0.088

λ/200 [-0.011,0.010℄ [-20.611,-19.717℄ [0.088,0.090℄

λ/100 [-0.023,0.020℄ [-21.097,-19.305℄ [0.086,0.090

λ/50 [-0.109,0.040℄ [-22.166,-17.979℄ [0.084,0.094℄

λ/20 [-0.198,0.089℄ [-26.523,-16.102℄ [0.076,0.100℄

λ/10 [-0.333,0.157℄ [-inf,-14.012℄ [0.068,0.112℄

Table 5.10: Analysis vs. F/D ,F/D = {0.3, 0.5, 0.7, 0.9} for feed displaement

errors in v = 0 plane, △xf = {λ/200, 100, 50, 20, 10}- Interval pattern features

[p(u, v), SLL,BW ] and pattern tolerane index ∆
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Chapter 6

Conlusions and Future

Developments

In this last hapter, some onlusions are drawn and further advanes are envis-

aged in order to address the possible developments of the proposed tehnique.
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In this thesis, an approah for the tolerane analysis of re�etarray antennas

has been presented and validated. The method is based on the Interval Analysis.

Interval Arithmeti rules are exploited to model the e�et of unertainties on the

radiation pattern of antenna whih is analyzed with Aperture �eld method. In

the interval extension of the re�etarray power pattern funtions with Cartesian

Interval method (IA− CS), the so alled Wrapping and Dependeny problems

are appeared and these problems overestimate the power bounds. In this thesis,

the proper way to deal with these redundany problems is addressed. Refor-

mulating the interval funtion is the �rst method to eliminate the dependeny

e�et (IA−CS∗
). Sine the radiation pattern expression has a omplex relation

with the geometrial parameters, reformulating (IA − CS∗) an not remove all

dependeny problems. To fully remove the dependeny, Interval Enumerative

(IA−ENUM) method is applied. Then the Minkowski Sum approah is imple-

mented to eliminate the Wrapping e�et (IA−ENUM −MS). The numerial

analysis has proved that:

• the IA−ENUM −MS power pattern bounds are narrower, more reliable

than those predited by the IA− CS , IA− CS∗
, IA− ENUM

• the IA−ENUM −MS bounds are still inlusive and satisfy the Inlusion

Theorem of IA;

To validate the dependeny of the degradation of the pattern features against

varying steering angle, di�erent re�etarray antennas strutures are onsidered

and analyzed, in di�erent path toleranes. Similar to the previous validation,

the analysis is onsidered in several bandwidths. The results proved the e�e-

tiveness and robustness of the IA−ENUM −MS analysis in di�erent steering

angles and frequenies. After heking the method validity with path and sub-

strate errors, the tolerane e�et on the feed position is onsidered. Then, the

interval bounds of the co- polar omponents of the power pattern are alulated

by Interval arithmeti rules together with Minkowski sum approah. Further-

more, di�erent strutures of re�etarray antenna for several F/D are onsidered

and their interval bounds are omputed. Larger F/D ratio an inrease the sys-

tem robustness to the tolerane of error. E�etiveness of this tolerane analysis

toward feed error is obvious from the results.

For the future of this work, probabilisti interval analysis an be onsidered to

predit the power pattern deviations. The statistial behaviour of the geometrial

parameters are modeled with probability density funtion. Then aording to

this funtion, probabilisti upper and lower bounds of the power pattern an be

de�ned with Interval Arithmeti rules.

For further examination of the proposed method, we an apply the Interval

Analysis method for re�etarray with di�erent shapes, espeially aperture ou-

pled and FSS shape sattering elements. Furthermore, multilayered re�etarray

struture an be onsidered to estimate the e�et of geometrial toleranes in
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CHAPTER 6. CONCLUSIONS AND FUTURE DEVELOPMENTS

di�erent layers and the ombination of all errors for the whole struture. Sine

re�etarray antenna with di�erent strutures is one of the most useful antennas

for spae ommuniation, this omplete tolerane analysis in re�etarray antenna

ould be a very useful tool for an antenna engineer to make a more robust design

against manufaturing and other unpreditable toleranes.
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