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Abstract

The thesis focuses on predicting tolerance effects on the radiation pattern of re-
flectarray antennas through Interval Analysis. In fact, the uncertainty on the
actual size of all parameters under fabrication tolerances such as element dimen-
sions and dielectric properties, are modeled with interval values. Afterwards, the
rules of Interval Arithmetic are exploited to compute the bounds of deviation in
the resonance frequency of each element, the phase response of the element and
the radiated power pattern. Due to the redundancy problems of using Interval
Cartesian (IA—CS) for complex structure, the interval bounds are overestimated
and the reasons are the Dependency and Wrapping effects of using interval anal-
ysis for complex structures. Different techniques are proposed and assessed in or-
der to eliminate the dependency effect such as reformulating the interval function
and the Enumerative interval analysis. Moreover, the Minkowski sum approach
s used to eliminate the wrapping effect. In numerical validation, a set of rep-
resentative results, show the power bounds computations with Interval Cartesian
method (1A — CS), a modified Interval Cartesian method (IA — CS*), Inter-
val Enumerative method (IA — ENUM ) and Interval Enumerative Minkowsksi
method (1A — ENUM — MS) and a comparative study is reported in order to
assess the effectiveness of the proposed approach (IA — ENUM — MS) with
respect to the other methods. Furthermore, different tolerances in patch width,
length, substrate thickness and dielectric permittivity are considered which shows
that the higher uncertainty produces the larger deviation of the pattern bounds
and the larger deviation include the smaller deviation and the nominal one. To
validate the inclusion properties of the interval bounds, the results are compared
with Monte Carlo simulation results. Then, a numerical study is devoted to
analyze the dependency of the degradation of the pattern features to steering an-
gle and the bandwidth. Finally, the effect of feed displacement errors on the
power pattern of reflectarray antennas is considered with Interval Enumerative
Minkowski method. The mazimal deviations from the nominal power pattern
(error free) and its features are analyzed for several reflectarray structures with
different focal-length-to-diameter ratios to prove the effectiveness of the proposed
method.

Keywords
Reflectarray Antennas, Sensitivity Analysis, Antenna Uncertainties, Interval Anal-
ysis, Minkowski Sum, Feed Error, Phase Error.
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Structure of the Thesis

The thesis is structured in chapters according to the organization detailed in
the following.

The first chapter (chapter 1) deals with an introduction to the thesis and the
state-of-the-art investigation, focusing on the introductory remarks on reflectar-
rays and the main motivations of using interval analysis for tolerance analysis of
the reflectarray antenna.

Chapter 2 provides the different approaches used for the analysis of the ra-
diation pattern of reflectarrays , focusing on the Aperture Field Method and
Floquet model expansions. Techniques for computing the phase distribution on
the reflectarray aperture surface are provided in this chapter. Approaches for
designing the unit cell is also covered in this chapter. The analytical expression
for the reflection coefficient is explained. The radiation pattern and its relation
to the physical parameters of the unit cell is expressed.

Chapter 3 is devoted to the fundamental of the Interval Analysis method, fo-
cusing on the definition, properties and the key features of the interval arithmetic
rules. Interval functions with inclusion theory are defined. Complex interval is
explained. The two main problems of Dependency and Wrapping related to the
use of Interval Analysis and Arithmetic of Intervals in complex structure are fully
explained. These problems produce the redundancy in the interval bounds. Re-
formulating of the interval expression for solving the dependency effect is properly
determined.

Mathematical formulation of the reflectarray analysis and its interval exten-
sion are described in chapter 4. A microstrip reflectarray antenna is considered
as an illustration. Then Aperture Field method together with Floquet model
expansions are considered for analysis the microstrip reflectarray antenna. To
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consider the effect of the geometrical parameters error on the radiation perfor-
mance of the antenna, interval analysis is applied. This chapter deals with the
interval extension of the reflectarray radiation pattern expression. Geometrical
parameters such patch length, width, substrate thickness and dielectric permit-
tivity are modeled with interval values, then the interval function of the far field
is computed. Different techniques for eliminating dependency effect in reflectar-
ray antenna formulations are expressed. Minkowski Sum approach to remove the
wrapping effect is explained.

Several representative results are presented in chapter 5. The inclusion prop-
erties are checked by comparing the resulting bounds with the Monte Carlo
simulation results. A comparative study checks the improvement of Interval
Enumerative Minkowski (/A — ENUM — MYS) to Interval Cartesian (IA—CS).
Pattern feature analysis versus steering angle, bandwidth are assessed and de-
scribed. The effect of feed displacement errors on the radiation performance of
the reflectarrays is also considered in this chapter. The bounds of the deviation
as a result of the axial errors are computed by Interval Minkowski methods. The
inclusion properties are checked by comparing the results with the Monte Carlo
simulation results. Analysis versus different focal-length-to-diameter (#'/D) ra-
tios in different tolerance errors in the feed positions is evaluated. The results
are explained and compared together.

Conclusions and further developments are presented in Chapter 6.

Xii



Chapter 1

Introduction and State-of-the-Art

In the introduction, the motivation of the thesis is pointed out starting from a
brief overview on the reflectarrays and techniques presented in the state-of-the-
art for tolerance analysis of the reflectarray antenna.



High gain antennas are needed in a variety of communication systems such as
radar, long distance communication, wireless communication and remote sensing
applications. Reflector and array antennas are traditionally two main antennas
for high gain applications [1]. Curve surface of the reflector antennas makes the
manufacturing process more difficult. Furthermore, high mass and volume of
reflector antenna increase the launch cost specially in space communication. In
recent years, phased array antennas have been used as an appropriate option for
satellite communication due to the advantages of low profile, low cost, low mass
and high gain radiation patterns [2]. Despite the previously mentioned advan-
tages, the feeding system of the phased array antennas is quite complicated. The
most ideal antennas for space communication are the ones which can combine
the best features of the reflector and array antennas. Over the past few years,
reflectarray antennas have proved to be an excellent alternative to reflector and
array antennas. Reflectarray antennas first introduced in 1960s by Berry, Malech
and Kennedy [3|. They were short-ended waveguide with variable-length waveg-
uide. Then in mid-1970s “spiraphase” reflectarray was presented by Phelan [4].
In the 1980s, microstrip reflectarray antennas were developed [5].

Favorable features of low profile, low mass, low cost and high efficiency as well
as the ability of being folded in space have made the reflectarrays the most appli-
cable antennas for space communications [6], [7]. Reflectarray antenna structure
include several radiating elements located in a reflective surface which are illumi-
nated by a feed antenna. Microstrip patches, dipoles and rings are the radiating
elements in the reflectarray antenna [8], [9] . These radiating elements produce
the required phases to form a planar phase front in the far-field [10]. Different
approaches can be used to produce the required phases[13|. These approaches
are variable phase delay lines attached to element [11], variable-size patches [12],
dipoles or rings and the element rotations . Among them variable-size approach
has the disadvantages of the the limited realizable phase range. The achievable
phase range by this approach is less that 360 [deg|. This unattainable phase
range leads to phase error. To take a phase variation near to 360 [deg|, patch
size should change significantly about 40 percent which leads to an inefficiency
[10]. By using element rotation better efficiency could be obtained due to the
lack of specular reflection of the off-broadside incident rays [10]. Despite of all
advantages of the reflectarray antenna, it has one main disadvantage which is its
narrow bandwidth. It is usually beyond ten percent depending on its element de-
sign, aperture size and the focal length [14]. This bandwidth is mainly limited by
the element geometry and differential spatial phase delay. For achieving wider
bandwidth thick substrate, stacking multiple patches and sequentially rotated
subarrays are proposed. More than 15 percent bandwidth is gained by these ap-
proaches [15], [16]. Reflectarray with larger focal-length-to-diameter (f/D) ratio
have wider bandwidth. Curved reflectarray with piecewise flat surfaces has larger
bandwidth than a flat reflectarray antenna. Despite of the bandwidth limitation
of the reflectarray antenna, due to several capabilities, development and research
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for reflectarray antenna are still an ongoing process. Several development and
innovation techniques are used in reflectarray antenna design which is worth to
mention. Using multi-layer stacked patch increase the bandwidth from a few
percent to ten percent [15], [16]. This structure can improve the phase range far
in excess of 360 [deg]. By varying the dimensions of three stacked patches, over
600 [deg|] phase ranges can be achieved. In [17], the electrically largest reflec-
tarray in the microwave and millimeter-wave spectra is introduced. It is a 3-m
Ka-band circularly polarized inflatable reflectarray consisting of 200000 elements.
In [3], an amplifying reflectarray antenna was developed in which each element
receives the signal from feed, then goes to amplifier and retransmit the signal.
It can give very high equivalent isotropic radiated power. Another improvement
in reflectarray antenna design is applying optimization algorithm to synthesis
the antenna pattern. There are different parameters in reflectarray antenna such
as substrate thickness, patch size, incident angle, main beam and bandwidth.
These parameters can be optimized in order to achieve the high gain, efficiency
and the directivity. Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO) are properly used in [20] and [19] to synthesize the reflectarray antenna.
A novel reflectarray antenna integrated with solar cells for satellite communica-
tion is developed in [21]. Over all of these innovations and developments, there
is one main challenge which is not considered efficiently in reflectarray antenna
design. Reflectarray antenna can be affected by surface deviations and the man-
ufacturing tolerances due to its reflection mechanism, patch dimensions and the
electrical phases [10]. The phase response of the patch element in microstrip
reflectarray depends on its physical parameters [22|. Due to the inaccuracies in
manufacturing process, the dimension of the single element and the position of
the feed deviate from their actual values. This deviation causes a considerable
change in phase response of the single element and eventually the degradation
in the radiation pattern. To decrease the sensitivity toward manufacturing er-
rors, two layer structure is suggested. As an example, a tolerance error of 0.1
mm in patch dimension will produce only 6.5 error in phase, which indicate the
low sensitivity to manufacturing tolerances rather than a single layer reflectar-
ray antenna [10]. The effect of manufacturing errors is more sensible when the
frequency is increasing.

To improve the robustness of the system, any change in the phase response
should be avoided. Different mechanisms have been applied to estimate the phase
errors and the pattern degradation. Tolerance analysis has been applied to the
reflectarray antenna in the work of Pozar et al. [24] where statistical approaches
are implemented to estimate the deviation in phase response of microstrip patch
element while the root-mean-square error of patch dimensions are known. In [23],
numerical analysis is presented to compute radiation discrepancy of metallic re-
flectarray antenna experiencing manufacturing distortion at millimeter waves.
Errors are modeled with normal distribution. Since reflectarray antennas are
sensitive to manufacturing errors, the need for the tolerance analysis is unavoid-



able. Initial work on tolerance analysis of the antenna was based on statistical
approaches. Tolerance analysis is used to consider the effect of tolerance in the
position of the element due to mechanical errors [25]. A probabilistic analysis is
exploited in [26] and [27] to calculate the maximum tolerance in array elements
to satisfy the specific constrains. In [47], tolerance analysis based on Monte Carlo
method is exploited to predict the effects of errors in the excitation and the po-
sition of each element. The above-mentioned methods are based on statistical
approaches in which the a-priori knowledge of the error distribution is necessary.
The main problem associated with Monte Carlo method is the lengthy compu-
tations of the infinite number of error combinations. Since it is not plausible
to realize the infinite number of errors, the Monte Carlo results are not totally
reliable [47].

To overcome the current limitations of statistical approaches in tolerance
analysis, Arithmetic Interval is applied to perform operations between interval
values [29]. Interval Analysis was first used to solve the linear and nonlinear
functions [29] and optimization problems [30]. Its usage in electromagnetic field
was initiated with the robust design of the magnetic devices [31] and reliable
systems for target tracking radar [32]. Recently Interval Analysis was used to
model the manufacturing tolerances in excitation and position of linear array
antenna. Interval arithmetic was then exploited to compute the bounds of the
radiation pattern degradation over the interval errors [33]. A closed form expres-
sion has been presented for the upper and lower bounds of the power pattern in
the reflector antenna with bump-like surface by the features of Interval Analysis
and the rules of arithmetic for intervals [49]. According to the state of the art,
the significance of applying manufacturing tolerance analysis in antenna design is
quite well-known. In order to apply interval analysis in reflectarray antenna, we
need to apply proper analysis method. In the next chapter, different techniques
for analysis of the reflectarray antenna radiation pattern will be explained.









Chapter 2

Radiation Analysis for Reflectarray
Antenna

In this chapter different approaches for analysis of the radiation pattern of the
reflectarray antenna are presented. Comparative studies among these approaches
are provided. There are several approximations for feed antenna pattern and
the element reflection coefficient. These approximations are explained in this
section. The accurate method for analysis of the co- and cross-components of
the radiation pattern is also provided.



2.1. INTRODUCTION

2.1 Introduction

To compute the radiation characteristic of the reflectarray antenna, different
approaches such as Array-Theory method and Aperture-Field method can be
applied. Advantages and disadvantages of using these methods are described in
this section. One of the most crucial part of the reflectarray analysis and design
is the accurate evaluation of the unit cell element which provide a required phase-
shift. The phase shift distribution of the reflectarray surface and unit cell design
are clarified in this section.

2.2 Overview of Analysis Techniques

2.2.1 Array-Theory Method

Conventional array theory is applied to compute the far field radiation pattern
of the reflectarray antenna. Considering the array antenna with M % N elements.
The total electric field of the array antenna is the multiplication of the element
pattern and the element excitation as [35]:

M N

E0) =35 8 n(®) @ @ oun(7 ), (2.1)
m=1 n=1

U = &sinbfcosd + ysinbsing + Zcost (2.2)

Where 7mn is the position vector and b,,, , a,,, are the element factor and
the excitation vector function, respectively. For the sake of simplicity element
factors and the excitation vector are approximated by scalar functions. A cosine
¢ model is considered for the element pattern as:

by (D) =2 cosqe(H)ejk(?’”"“}) (2.3)

The excitation vector @, is approximated as:

~

cos b (m,n) .=
Uy R f( )ef]k:(\ 7

mn*7f|)|rmn|€j¢mn (2.4)
|7 = 7]
The element excitation is the multiplication of the feed-horn pattern function
and the receiving mode pattern of the element (I',,,). Feed horn pattern is
approximated by cosine ¢ model and taking into account the distance between
the feed horn and the element. 0 is the spherical angel and 7f is the position
vector of feed. The receiving mode pattern of the element is as follows:

Ty | = cos?0.(m, n) (2.5)

With all of these approximations, the radiation pattern is presented as [35]:

8
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Z ZC Sqeecos 9f m n) _ k(|?mn—?f\—7mn.ﬁ)cosqeee(m’ n)ej¢m"

m=1n=1 ‘ Pmn — T f|
(2.6)
where ¢,,, is the required phase delay of mn-th element.

Advantages and disadvantages of this method are as follows [35]:

e Advantage: simplicity of the formulation and the program development

e Disadvantage: the cross-polarization is not modeled.

2.2.2 Aperture-Field Method

In this method, first the tangential electric field on the aperture surface is com-
puted by considering the polarization of the field horn. A horn antenna is usually
used as a feed in the reflectarray antenna. The radiation pattern of the horn an-
tenna is given [10]:

For a z-polarized feed

Lo—jkr .
£74(0,6) = 25 (6Co(B)cos — 6Ci(0)sin) (2.7
For a y-polarized feed
F jhke AT . ;
E™(0,0) = (9CE( )sing + ¢C'y(0)cose) (2.8)

Cy and Cg are the H-plane and E—plane radiation patterns of the horn antenna.
They are modeled as cos?(f) functions. ¢ is the value which is computed from the
aperture efficiency and the feed horn data. In (2.7) and (2.8), the radiated field
of the feed in the spherical coordinate is computed. The spherical components
of the electric field is transformed to Cartesian components from the following
matrix transformation.

EF stnfcosp cosbcosp —sing
Ej = | sinfsing cosfsing cosp E}
EF cost) —sind Ef

Then this components should convert from feed coordinate system to the reflec-
tarray coordinate system by a proper transformation matrix.

2.2.3 Radiation Patterns

After computing the tangential electric field, the radiated far field is obtained
by an asymptotic evaluation of the integrals. The radiated far field are as follow
[10]:
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e—jkr

E,¢) = jk[(écosqb—gzgsinqbcosH)ERx(u,v)+(ésin¢+<ﬁcos¢cos€)ERy(u,v)] 5
(2.9)

Where Eg,(u,v) and Eg,(u,v) are the Fourier transform of the Cartesian com-
ponents of the tangential electric field Eg,(u,v) and Eg,(u,v) , expressed as
follows:

Epepy(u,v) = // Erepy(z,y)e*oWs ) dydy (2.10)
RA
Where u and v are the angular coordinates as:
u = sinbcosg (2.11)

v = sinfsing (2.12)

To compute the (2.10) element by element, variable change in the coordinate is
used for the coordinate (x,y):

:L’::c/+mpx—W;mzo,l,l...,]\@—l (2.13)

yzy/+npy—w;n:O,l,Q,...,Ny—1 (2.14)

Central point of the element (m,n) are (mp, — %, npy — W) z" and
y are withing the following bounds [10]:

_% < < % (2.15)

_% <y < % (2.16)

where p, and p, are the periodicity along = and y, directions. Maximum number
of element in z and y direction are N, and NN, respectively. By substituting
(2.13), (2.14) in (2.10), the spectral function is as:

M—-1N-1 —gac PTH , ,
5 — Jko(umpg+vnpy) m,n "N gko(ux +vy ) 7, 7.
Epeyy(u,v) = Ko ZO Zo[e ’ : / /_ B (@ y )t ) da dy |
m=0 n= 2 2

(2.17)

where

10



CHAPTER 2. RADIATION ANALYSIS FOR REFLECTARRAY ANTENNA

Ky = ¢ /B BM-1dotv(N-1)d,] (2.18)

Tangential field components in each cell of the reflectarray is shown with the
complex coefficient of the reflected field.

Epl (2 y) = awyy (m,n) = Az /y(m,n)e P=/v(mm) (2.19)

By substituting (2.19) in (2.17), the integration can be written by the summation
as:

M N

~ kou k: v .

Eprysy(u,v) = Kipgpysinc( 02p inc(— py E E Ay yy(m, n)edery(mm) gikolumds Fundy)
m=0 n=0

(2.20)
In every reflectarray element, Cartesian components of the reflected and the
incident field are related to each other by scattering matrix as:

a;(m,n) S S EF
= g 2.21
[ ay(m,n) :| |: 521 522 :| |: Ej ( )
This scattering matrix can be computed by the Method of Moment in the spec-
tral domain. The element of the scattering matrix can also be replaced by the

reflection coefficient.
az(myn) | | Tuw Tuy EF
[ ay(m,n) ] o [ r Ly Ej (2.22)

yx

As it is obvious in (2.21) and (2.22), scattering matrix and the reflection coeffi-
cient are the main parts for computing the radiation pattern. These coefficients
relate to element performance of the unit cell. In the following part, different
techniques for analysis of the unit cell element are proposed.

2.2.4 Unit Cell Design

Each element in reflectarray antenna should produce the required phases in order
to compensate different spatial distances from feed to element. This phase shift
distribution is computed from the following expressions.

2.2.4.1 Phase-Shift Distribution Technique

Each element must produce a phase-shift to provide a collimated beam in a given
direction. From the array theory, the phase distribution to produce a beam in
the main beam direction (6, ¢3) is as [10]:

O Tmn, Ymn) = —koSinOycoSOpTomn — koSinbysindyYmn (2.23)

11



2.2. OVERVIEW OF ANALYSIS TECHNIQUES

(Tyns Ymn) 1s the location of the mn-th element in the reflectarray surface. ko
is the propagation constant. Phase of the reflected electric field can also be
computed from the following way. Phase of the reflected field is equal to the
phase of the incident field plus phase-shift produced by each element as:

R, is the distance from phase center of the feed to element. ¢r(Zyn, Ymn) is a
phase-shift for mn-th element. From (2.23) and (2.24), the required phase shift
for each element is:

OR(Tmn, Ymn) = ko(Rimn — (ZmncoS@y + YmnSingy)sinby) (2.25)

In reflectarray antenna phase of the reflection coefficient should change in order
to match these phases. Different techniques can be used to provide these phases.
These techniques are as follows:

e Connecting variable-length stubes to element
e Patch with variable sizes

e Element loaded with MEMS, varactors and liquid cristal polymers

Performance of the antenna element in reflectarray antenna related to its physical
parameters such as

e patch dimensions length (1) and width (w)
e substrate thickness (d)

e dielectric constant (e,)

e dielectric and conductor losses (tand, o)

e spacing between elements (p,, py)

In the following section, recent techniques for analysis and design of the single
element are provided.

2.2.4.2 Techniques for Analysis of the Unit Cell

In this section, different methods for analysis of the unit cell elements are men-
tioned. And the most recent theoretical method for analysis of the single element
is explained with more details. Techniques of the analysis of the single element
are as follows:

e Numerical methods such as spectral domain method of moments (MoM),
finite element method (FEM), finite difference time domain (FDTD)

12
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e Commercial packages such as HFSS, CST, FEKO
e Theoretical model based on full-wave simulations

e Analytical approach based on Q) factor analysis

Since in this thesis we want to compute the radiation pattern analyticaly, ana-
lytical approach based on () factor is explained with more details in the following
part.

2.2.4.3 Analytical Approach Based on Q Factor Analysis

A complete analytical approach based on Q factor is introduced to extract the
reflection properties of the unit cell. In order to extract the closed-form formulas,
we need to express the incident and the reflected field in terms of orthogonal
Floquet modes. Let us provide a short explanation about Floquet harmonics
and its expression.

2.2.4.4 Floquet Harmonics

An arbitrary incident field can be defined as a summation of the TE and TM
Floquet space harmonics with complex amplitude. The incident electric field
propagating toward -z with Floquet harmonic expansion is written as [10]:

2L
E{ - Z dlelexp(j(kmmx + kyny + kzlz)) (2'26)
=1

The transverse reflected electric field propagate toward z with the Floquet har-
monic expansion is:

2L
B = Z a1616xp(j(k$mx + k:yny — k;zlz)) (2.27)
=1

The normalized modal fields for TE and TM Floquet harmonics ¢; are as:
for (TE)1<I<L

1
e = k—(—kyn:i’ + kym¥) (2.28)
cl
for (TM)L+1<1<2L
1 . .
e = k—(kwmx + kyn¥) (2.29)
cl
with
ko = +\/k2,, + k:;n (2.30)
2 2
kwm = kosinfcosep + mr_ kzo + mr (2.31)
x Pz

13
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2 2
kyn = kosinfcosg + il kyo + i} (2.32)

y Py
Complex amplitude of the incident field are (d,) and (d,). They can be con-
verted to d;(TE) and dp.1(T'M) components by a matrix transformation. This
transformation is as follows:

dl 1 _kyO ka:O :| |: da: :|
= 2.33
{ dr11 ] ka [ kw0 Eyo d, ( )

Similarly, the TE/TM components of the reflected field a;(TF) and ar41(TM)
can convert to z/y components as:

Ay 1 _kyO k:vO ap
N —— 2.34
|: Qy :| k?cl |: k:vO kyO ar+1 ( )
The incident and reflected fields of the reflectarray are represented by Floquet
modes. They are connected to each other by the reflection coefficient. The

expression for the reflection coefficient is explained using coupled-mode theory.
Theoretical expression for the reflection coefficient are described in the next part.

2.2.4.5 Theoretical Expression for The Reflection Coefficient

In order to extract the reflection coefficient expression for a single element, the
antenna element is considered inside a waveguide supporting Floquet modes. By
considering the waveguide with two orthogonal polarized fundamental Floquet
modes (T Eoy, T Moyo), the co-coupling and cross-coupling reflection coefficient are
as follows [22]:

When the incident field is TE , the fraction of the reflected power into TE
mode is called TE co-coupled reflection coefficient with the following expression
[22]:

Q ldTE - (Q ilTM + QL) - 2j(J;:f0)

. Ta Ta 0 0

PTEco(f) - 1 N 1 n 1 v 25 (F—fo) (235)
QradTE QradTM Qo fo

when the incident field is TM , the fraction of the reflected power into TM mode
is called TM co-coupled reflection coefficient with the following expression [22]:

Q (11TM - <Q ldTE + QL> - 2]‘(];#0)

o Ta Ta 0 0

FTMCO(f) - 1 n 1 N 1 N 25 (f—fo) (236)
QradTE QradTM Qo fo

Cross-coupling is a fraction of the reflected power into (T'E/T M) when the in-
cident field is (T'M/TFE). The cross-coupling expression is as [22]:

2

_ VQradTEQradT M
Leross(f) = — PR TV (2.37)
QradTE QradTM Qo fo

14
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where, Q,.ire and Q..qry are the radiation () factors for the TE and T'M
modes, respectively. f is the working frequency. fy is the resonant frequency.
(0o is a combined @ factors of conductor and dielectric losses as:

Qc = d/mfuo (2.38)

1

Qa = tand (2:39)
o Qch
Q= Qe+ Qq (2:40)

where substrate thickness is (d) and the loss tangent is tand. The effect of the
incident angle and the physical parameters are obvious in the () factor expression.
As an example, the closed form expression for a rectangular microstrip patch in
term of unit cell’s physical parameters and the incident angle as [22]:

Jore 1 Mo
TE = +——— _ 2.41
Qrad Ad wh Py cosfcos?¢ (241)
Qraary — 1=l ocost (2.42)

4d w' Py sin%¢

These expressions help us to properly investigate the effect of physical pa-
rameters errors on the reflection coefficient and the radiation pattern. By sub-
stituting (5.24) ,(2.42), (2.38), (2.39) and (2.40) in (5.22),(2.36) and (2.37), the
reflection coefficient of the unit cell are obtained.

If we consider incident field of the reflectarray in terms of the TF and T'M
Floquet harmonics (2.22), the reflected TE and T'M components related to the
incident Floquet harmonics by the reflection coefficients as:

[ E?e? :| o |: FTEco Fcross :| |: Ezj;f :| (2 43)
Eg;]]‘f/j N Fcross FTMCO E;I;L]c\/[ .
By substituting (2.43) in (2.22) and consequently in the (2.17) and (2.9), the
total power pattern expression can be achieved. By using analytical expression
for the reflection coefficient, the analytically expression for the total power pat-
tern is obtained. In this total power pattern, the direct relation between the
radiation pattern and the physical parameters are described. The physical pa-
rameters deviate from their nominal values due to manufacturing uncertainties.
This random manufacturing uncertainties produce different radiation patterns.
Our goal is to define an efficient strategy to compute inclusive pattern bounds for
a given maximum tolerances on the reflectarray geometrical parameters. After
providing the analytical expression for the radiation pattern, the tolerance anal-
ysis should be applied in order to compute the power pattern deviation bounds.
As it is mentioned in the chapter 1, Interval Analysis proved to be an efficient
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tools for the tolerance analysis of the antenna. In the next chapter, Interval
Analysis method with their properties and features are explained.
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Chapter 3

Fundamentals of Interval Analysis

In this chapter, an overview for learning Interval Analysis is introduced. First
the interval values and their need in our real life are described by examples.
Then Interval Analysis approaches are defined. The rules for the arithmetic
Interval operations such as addition, subtraction, multiplication and division are
provided. Then the properties of Interval Arithmetic are presented. Interval
function and their features are fully described in this chapter. Dependency and
wrapping effect in interval arithmetic are completely explained.
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3.1. INTRODUCTION

3.1 Introduction

Uncertainty is part of our “every-day” life. The need to enclose the number is
obvious in many different applications.In the following example, we want to show
the appearance of the uncertainty in our daily life.

Suppose we want to measure the dimension of the table. The table with the
dimensions is shown in the Fig (3.1).

<€ >

Figure 3.1: Sketch of the table and its dimension

Different measurement instruments such as tailor or caliper can be used to
measure the dimensions. First we use a a tailor to measure the dimensions. The
dimension are shown as follows:

[=12+4/—01m (3.1)

w=08+/—-0.1m (3.2)

Then with a caliper or more precise devices, the dimension values are as follows:

I=120m+ /—0.01m (3.3)

w = 0.80m+ / — 0.0lm (3.4)

As it is clear from the measurement, uncertainty is always available regardless of
the accuracy of the instrument. By using caliper, the correct length/width lies
within certain ranges.

0.19 <1< 1.21 — [ € [1.19,1.21] (3.5)

0.79 < w < 0.81 — w € [0.79,0.81] (3.6)
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CHAPTER 3. FUNDAMENTALS OF INTERVAL ANALYSIS

Clearly, the length and width belongs to the intervals. As it is mentioned
before, uncertainty is unavoidable part of our life. We need to apply the proper
mathematical tools to deal with uncertain values. I would like to explain the need
for Interval Analysis by the other example from physical science. By considering
Newtons law as [36]:

F =ma (3.7)

If the quantity of the force F' and the mass m lie in the certain ranges as:

Fy— AF < F < Fy+AF (3.8)

Then the acceleration a is defined with the bounds as follows:

a<a<a, (3.9)

lower and upper range of the the acceleration (a; , a,) depends on Fy, mg, AF
, Am . Since the quantity of force is not an exact value and can be defined in
a certain range then the accelerations is also describe within the range whose
upper and lower bounds depends on the upper and lower bounds of the force.
One of the strong mathematical tool to cope with uncertain world is the Interval
Analysis method. In the following section, the definition of interval numbers and
the interval arithmetic rules will be described.

3.2 Interval Analysis

A real interval [X] is a non-empty compact set of real numbers between and
including the endpoints x;,,; and x,, [36].

(X]={z € R: iy <z <4y} (3.10)

As it is shown in Fig (3.2), left end point infimum of [X] and the right end
point supremum of [X]| are the maximum and minimum of all points in the
interval:

Ting = min{z € [X]} (3.11)

Teup = maz{x € [X]} (3.12)
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0 /E} R
Xinf

Xsup

Figure 3.2: Interval end points

Two intervals [X] and [Y] are equal if their endpoints are equal. The absolute
value of the interval |[X]| is the maximum of the absolute values of its endpoints.

(X = maz{|zingl, |[2supl } (3.13)

Width and the midpoint of the interval [X] are shown in figure (3.3). The
definition of the width of the interval [X] based on the endpoints is as:

w([X]) = Tsup — Tinf (314)
Midpoint of [z] is related to the endpoints given as:

o Tinf + L sup
2

Width of the interval with the interval mid-point are shown in Fig. 3.3

m([X])

m ([X])

0 E} R
>
/ w (IX])

X

X
inf sup

Figure 3.3: Interval midpoint and width

3.2.1 Interval Elementary Operations

Elementary operations can also be applied for the interval numbers. This ele-
mentary operations include sum, difference, product , inverse and the division.
In interval domain, operations are dealing with sets than a value. By performing
an operation between two intervals, the resulting is a set containing all pairs
from two initial sets as given below [36]:
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X]+[Y] = {z+y: o [X,ye ]
X] =[] ={z-y:oc [Xlye M) s
XL[Y] = {ay 0 € [X],y € [V]} -

Whatever the operation is, the resulting interval enclose all the possible results.

3.2.2 Interval Arithmetic

Interval arithmetic is a set of rules for performing elementary arithmetic opera-
tions on intervals.

Endpoint Formulas for Arithmetic of Intervals

Let us show the operational formulas for the elementary operation related to
boundary of intervals. For the sum of two intervals [X| and [Y], the operation
is as [36]:

The operational formula for interval subtraction in term of endpoints is as:

(X]-[Y]= [l‘mf — Ysups Tsup — yinf] (3.17)
The relation of the product of two intervals [X] and [Y] to their endpoints is:
[X] [Y] _ [mm(ffmfymf, TinfYsups LsupYinf xsupysup)a (318)
ma(fEmfymf, TinfYsups LsupYinf, xsupysup)]

The inverse of the interval is :

1 1 1
7 = [ —1;0 ¢ [X] (3.19)
[X] LTsup Tinf
Division of two intervals can be accomplished by using the multiplication of the
interval and the inverse of the interval as:

[X] [Y] _ [m2n<xmf/ymf7 xinf/ysupa l’sup/ymf, xsup/ysup)

! 3.20
max<xinf/yinf7 xinf/ysupa $sup/yinf7 xsup/ysupﬂ ( )

0¢[Y]

The key feature of the operation is that the operations involve the boundaries of
the intervals such as j,f, Tsup, Yiny and ys,p. The resulting interval include all
the possible results.
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3.2.3 Properties of the Interval Arithmetic

3.2.4 Algebraic Properties

Interval addition and multiplication are commutative and associative. Let us
consider three intervals [X] and [Y] and [Z], the commutative and associative
features are shown as [36]:

X4 a2 = (X D+ 1
+ = +
Y] = [V].[X) (3.21)

04 [X] = [X]+0 (3.22)
1.[X] = [X].1 = [X] (3.23)
0.X] = [X].0=0 (3.24)

In a real numbers, —z is an additive inverse for . But this is not true in interval
domain. In interval systems for any interval [X], we have:

X+ (=[X]) = [@ing, Toup) + [=Toup, =Ting] = [Ting = Tsups Toup — Ting] (3.25)

If 2,4y = %ins then this equals [0,0]. Otherwise

[X] = [X] = wlX][-1,1] (3.26)

There is no multiplicative inverses except w[X| = 0, in general we have

X Zint Zewp g () < xg,
(X)) ey g 170 < s (3.27)
[X] [mmf’ Tsup ] fo“p <0
For the interval systems we have the following inequality:
(XI([Y]+ [2]) # [X][Y] + [X][Z] (3.28)
This rule can be shown by considering three following intervals as
Left side of the (3.28) by considering the values of 3.29 is as:
(XI([YT+[2]) = [1,2.([1, 1] = [1,1]) = [1,2].]0,0] = [0, 0] (3-30)

22



CHAPTER 3. FUNDAMENTALS OF INTERVAL ANALYSIS

Whereas, the right side by using interval arithmetic rules is as:

(XIYT + [X][2] = [1,2.01, 1] = [1,2].1, 1] =
[min(1,2),max(1,2)] — [min(1,2),max(1,2)] = [1,2] — [1,1] = [-1,1]
(3.31)
As it is shown in (3.30) and (3.31), the right and left side are not equal. If
[Y][Z] > 0 then [X]([Y]+[Z]) = [X][Y]+ [X][Z] hold true. In general, following
rule hold true for the interval.

XI(Y] + [2]) € [(X]IY] + [X]]Z] (3.32)

A real number can multiply to the summation of two intervals as:

z([Y]+[Z]) = z[Y] + z[Z] (3.33)

Cancellation law is also valid in interval systems:

X]+(2] = [Y] + 2] = [X] = [Y] (3.34)

3.2.5 Inclusion Property of Interval Arithmetic

If we consider two intervals [z] = [Zinf, Toups[Y] = [Ying, Ysup) and perform the op-
eration between two intervals, the resulting interval [Z] = [X|op[Y] from what-
ever operation between two intervals includes all values z = {xopy}(belongs to
[Z] (i.e.,z € [Z])) which is the resulting z = {xopy} value from the same opera-
tion on the real numbers of the z € [X] and y € [Y].

3.2.6 Interval Function

Interval function is an interval valued function of one or more intervals arguments.
Let us consider f as a real-valued function of a variable . The range of f(z) as
x represent by interval [X] is the interval function. In more general case for a
given function f = f(xy,...,x,) of several variables, the interval of f is as:

FUX oo [Xa]) = Lf (@1, s ) 21 € [X2]y oo € [Xo]} (3.35)

where [X1], ..., [X,,] are specific intervals. An example of the interval function is
shown in Fig. (3.5)
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ALX]) = [F]

Figure 3.4: Interval function

Let us consider elementary function of intervals by providing following func-

tion f(z) = 22, if [X] = [Zins, Tsup/then the interval of f[X]can be expressed as
follows:
['Tzznf7 Sgup]v 0 < Linf < Tsup
(X)) = [xzzn]” Sgup]VTinf < Toup <0 (3.36)
0, max{x?nf, :cgup}], Tinf <0< Ty
Monotonic Functions
If f(x) is a monotonic, it maps the interval [X] = [z, Tsyp into interval
FUX]) = [f(@ing), f(@sup)]. As an example, f(z) = exp(x) = e*(x € R) then
exp[X| = [exp(Tins), exp(Tsyp)]. Similarly for logarithmic is a monotonic function

and its interval is,

f(z) =logz(x > 0)

log[X] = [loging, l0gT sup) (3.37)

The expression for the square root of interval is as:
\% [X] = [\/ xinf7 vV xsup] (338)

3.2.7 Interval Function Property

If [F] = f([X]) is an interval extension of the function f then the interval function
f([X]) = [F] must include all the values f(X) for x € [X].

3.2.8 Inclusion Monotonicity

An interval function f([X7], [X3], ..., [Xu]) is inclusion monotonic with respect to
function f(z1,x,....,2n) when [F] = f([X4], [X2],...,[Xn]) contains the range
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of values of f(x1,,...,xy) for all T € [xpuJn = 1,...,N . If we consider
F(IX]) = [F] and [X'] C [X] then [F] = f([X]) C [F] = f([z]) [37]. Inclu-
sion monotonicity property is shown in Fig (3.5) .

AX) = [F]
AX1)=1F1]

v
<

[X']
[X]
Figure 3.5: Inclusion Monotonicity

As it is obvious, if [X] C [X] then [F'] = f([X']) C [F] = f([z]).

3.2.9 Dependency Problem

In general, each occurrence of a given variable in an interval computation is
treated as a different variable. This cause widening of computed sharp numerical
bounds. This unwanted extra interval width is called the dependency problem.

Let us suppose we want to evaluate the interval perimeter [P] of a rectangular
table which has a interval length [L] = [1.19, 1.21] and width [W] = [0.79, 0.81].
We apply two different ways to compute:

e First adding intervals of the [L] and [W]: [P] = [L] + [W] = [1.98,2.02]m

e Subtracting [W] and [L] from [2P]: [P] = [2P] — [W] — [L] = [1.94, 2.06]m

As it is shown, two different results are achieved from the same quantity. The
appearance of the dependency effect in subtracting [W] and [L] from [2P] is
explained with details:
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[P] = [2P] = W] = [L] = W] + [W] + [L] + [L] = [W] = [L] =
+[L]+ (W] = W]) + ([L] - [Z]) =
+[1.19,1.21] + ([0.79,0.81] — [0.79,0.81]) + ([1.19,1.21] — [1.19,1.21]) =
[1.98,2.02] 4+ ([—0.02,0.02] + [— 0.02,0.02])
[1.98,2.02] + [—0.04, 0.04] = [1.94,2.06]m
(3.39)
As we can see in (3.39) , [W] — [W] # 0 and [L] — [L] # 0, this is because of
the dependency effect in the interval analysis. Every occurrence of an interval
variable is considered as an independent variable [WW] — [W] = [W;] — [W3] even
if W] = [W;] = [W3] are the same interval. The dependency problem increase
the width of the resulting interval. Following rules can be applied to avoid
dependency problem:

e Reduce the number of occurrence of each variable: as an example of interval
perimeter of the table

e Redefine interval operations/functions [W] — [W] = 0 instead of [w;,f —
Wsupy Wsup — wmf] 7£ 0

By using proper interval function definition, the optimal interval solution will be
obtained.

3.2.9.1 Dependency Problem in Interval Function

Assume that we have the functions f(z) = fi(x) = fo(z) then we want to
evaluate interval extension of f . Interval extension of fi([X]) and fo([X]) has
the bounds of [Fi] and [F3]. These two bounds are not the same. [Fi| and [F]
include all values of f(z) for z € [X] but w([F}]) is larger than w([F,]). As it
is clear, fi(x) = fa(x) for same [X], but f1([X]) C f2([X]). The reason is the
dependency in the interval function. To solve this problem, we need to define a
function in a suitable way. In the following example, the dependency effect in
the interval function will be shown. Let us evaluate f(z) = z* + 1 over interval
[X] = [—1,2]. The interval bounds by interval arithmetic rules are as follows:

F(-1,2]) = [-1,21.[-1,2] + [1,1] = [min(1, -2, —2,4), maz(1, -2, —2,4)] +
2,2] = [-2,4] + [1,1] = [-1,5]

Since the value of [X]? 4+ 1 can not be a negative value therefore the bounds
are not the proper bounds. There is the dependency problem. In order to remove
the dependency problem, we need to apply proper definition of non-elementary
functions. Suitable definition for removing dependency from [X]? is as:
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(255> Toup) 1 Ting >0

infr ¥ sup

[0’ max(x?nf, "L‘gup)] Zf xinf S 0 S xSUp

We will evaluate the functionf(z) = 2? + 1 over the interval [—1,2] after using
the proper definition for [X]?. The bounds are as follows:

f(=1,2]) = [-1,2]* +[2,2] = [0,4] + [1,1] = [1, 5] (3.41)

As compared to previous bounds, with this method, better bounds are achieved
and the inclusion property is satisfied. Another way to remove the dependency
is redefining the interval function. It will be defined by the following examples.
Interval of f(z) = 2* + x over [—1,1] by using natural interval extension is:

1,1+ [-1,1] = [0,1] + [~1,1] = [~1, 2] (3.42)

The better expression for f(x) = 2? + x to remove dependency is when z only
appear once. We can rewrite the expression f(z) = 2 + x as follows:

2
= —) - = A
fa)= (o4 5)* - (3.3
Therefore the bounds are :
1 1 1 3 1 9 1 1
L4 2P — =2, 2P = =[0,5] — = = [--,2 44
(FL1 452 - =[5 5F-7=0g-7=[732 (4

By rewriting the expression, more meaningful bounds are achieved.

3.3 Complex Intervals

A complex interval [Z] is an ordered pair of intervals [Z] = [[X], [Y]] with [X] =
[Ting, Toup) and [Y] = [Yins, Yiup) real intervals. Complex interval with the bounds
for the real and imaginary parts are shown in Fig. 3.6 [38|.
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Figure 3.6: Complex Interval Value

Let us consider complex elementary operations by two complex intervals [Z] =
[X,Y] and [Z'] = [X',Y"] whose real and imaginary parts have the following
intervals [38|:

[X] = KXings Xowp] [Y] = [Ying, Youp)

X] = X0 Xo) V) = Yoy, Vo) (3:40)
Elementary operations on the complex intervals are as follows:
e Sum:
2]+ [Z]=[X+X,Y + V] (3.47)
e Sum of Negative:
2] = 121 = [0,0] (3.48)
e Sum of complex conjugate:
Z]+ [Z]" = [2X,0] (3.49)
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Subtraction:

Z]-[Z2]=[X-X,Y —Y] (3.50)

Product:

(Z][Z]=[XX —YY' XY +VX]

Product of Complex Conjugate:
2][27] = [X* +Y?,0)

Inverse:

1 (X, Y]

Z] [ X?24Y?20]

Division:

2] _ [(m' +yy) (yw — o),

[Z/] (:L‘/2 +y/2) ? (:L‘/2 +y/2)
The main feature of the previous operations is that they involve real intervals
[X], Y], [X] Y.

3.3.1 Complex Interval Function

Evaluation of complex interval function react as evaluation of real interval func-
tions. Following features hold true for complex intervals:

e Results for real hold true also for complex interval functions
e Dependency problem still remains

e Inclusion theorem holds true for complex interval functions

3.3.1.1 Wrapping Problem

Wrapping problem is related to the representation of complex intervals. Complex
interval can be presented by Cartesian interval representation and Polar interval
representation. Curved in red is the Cartesian representation and the curve in
blue is the polar representation. In Cartesian interval representation, there is an
overestimation in the interval bounds which called wrapping effect as it is shown
in Fig(3.7).
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Figure 3.7: Wrapping Effect of The Complex Interval

As it is clear in the Fig (3.7), by polar representation the overestimation of
the power bounds will be eliminated.

e Cartesian Interval Representation

In Cartesian Interval, complex interval represented in terms of the interval of real
and imaginary parts. Classical [A methods are used in complex interval compu-
tation. Interval arithmetic for Cartesian Interval is simple and available. In Fig
3.8 , we can see the example for the summation of two complex interval with
Cartesian representation. Overestimation will be happened in using complex
interval with Cartesian representation.
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Im{E}

[
»

— : | Re{E}

Figure 3.8: Cartesian Interval Representation

e Polar Interval Representation

Complex interval can be presented by polar representation as shown in Fig. 3.9.
Polar representation is the best representation for the complex interval (4.3).
However interval arithmetic are not available for this representation.

A

ImiE}

RelE}

v

Figure 3.9: Polar Interval Representation
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Chapter 4

Interval Analysis Method for
Reflectarray Antennas

In this chapter, the interval extension of the reflectarray antenna is described and
assessed. Uncertainty on etching patch dimensions and constructing substrate
thickness are modeled with interval values. By exploiting interval arithmetic
rules, bounds of the deviation in the radiation field are obtained. By reformulat-
ing the interval extension function and using Enumerative strategy, Dependency
effect is removed. Some comparative results are shown the process. Wrapping
effect is also eliminated by using Minkowski sum approach. Some results are
reported for the assessment as well as for comparison purposes.
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4.1 Introduction

In this chapter, inaccuracies in etching the microstrip patches and constructing
the substrate thickness are modeled via interval values. Then the bounds of
the deviation in the power pattern as a result of the bounded random errors in
the patch length, width, substrate thickness and the dielectric permittivity are
computed. This approach is proved to be a useful tool in reflectarray antenna
to compute the worst-case bound. Cartesian interval analysis (/A — CS) can be
used to compute the power pattern deviations of the reflectarray antenna. Nom-
inal power pattern of the reflectarray antenna is analytically computed by the
Aperture Field method together with the analytical expression of the reflection
coefficient [22]. As it is mentioned in the previous chapter, TA — C'S has the
dependency and wrapping problem in dealing with complex structure which can
make an overestimation in the power pattern [39]. Dependency problem appears
due to the use of an interval variable more than once in the interval function.
However, Wrapping problem arises from the representation of the TA — C'S in
the complex domain. Using IA — C'S for reflectarray interval analysis cause the
overestimation in the power bounds [40]. In this chapter, a solution for removing
redundancy problems are properly explained. This redundancy will appear in
the interval extension of the reflectarray power pattern. To tackle the Depen-
dency problem, the complex reflection coefficient of each cell is rewritten in the
proper way and it is extended to the interval function (/A — C'S* ). Since in
the reflection coefficient function, parameters are recursively connected to each
other, we could not eliminate all dependency problem by rewriting the func-
tion. In order to fully eliminate this problem, an enumerative strategy is used
by sampling among the interval of the geometrical parameters. The maximum
and minimum of the phase and amplitude of the complex reflection coefficient
for these samples are computed (IA— ENUM) [52]. The wrapping problem can
be solved by means of the Minkowski sum (/A — ENUM — MS) . In Minkowski
sum approach, instead of using rectangular and circular representation of inter-
vals, interval phasors are considered [42]. The smallest convex polygon encircling
these interval phasors is used to compute the interval Minkowski convex polygon.
The upper and lower bounds are computed among the vertices of the resulting
polygons. The final bounds are narrower, reliable and still inclusive. The validity
of the A — ENUM — MS bounds are checked with the number of the Monte
Carlo patterns. A number of comparative results shows the improvement in the
IA — CS bounds with respect to the TA — ENUM — MS . These comparative
bounds are considered for the error on all geometrical parameters such as width,
length, substrate thickness and dielectric permittivity.
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4.2 Mathematical Formulation

Let us consider a reflectarray antenna as it is shown in Fig (4.1), lying on the
xy-plane whose rectangular microstrip patches are located on a square grid with
inter-element spacing p, and p, along the z and y direction, respectively. To
compute radiation pattern analytically, we consider Aperture Field Method [35].
The radiated far field is obtained from the following expression [10].

—jkr . R . . . -
E,¢) = ¢ (Bcosp — psingcosd) Er,(u,v) + (0sing + ¢pcospcostd) By, (u, v)]
, @ @
(4.1)
where j = —1, k = 2—” is the wavenumber, A being the wavelength, and v =

sin @ cos ¢ and v = sin 0 sin ¢ are the direction cosine coordinates with 6 € [O; g]
and ¢ € [0; 7. ERx/y(u,v) (slash means z or y components) is the Fourier
transformation of the Cartesian components of the tangential electric field. It
can be expressed as [10]:

M-1N-1
ER:v/y u,v) =K Z Z FM/yy A%g + anyT{W(f)A%nm)ejk(“mp””"p“) (4.2)
m=0 n=0
where
k?OU T

K = p,pysinc( b )smc(%)ejg[“w1)p”+”(M1)py]. (4.3)
As it is shown in Fig. 4.1, M and N are the maximum number of elements in x
and y directions, respectively. As it can be seen in (4.2), tangential electric field in
each cell is approximated by a complex coefficient defined as the multiplication of
the complex reflection coefficient of each cell Tie/¥Y (f),T'ev/ ym( f), and the complex
amplitude of the incident field Floquet harmonic A%, A% illuminating the mn-
th cell.

More specifically, [5/Y"(f) is the co reflection coefficient of z/y-polarization
when unit cell is illuminated by z/y-polarization wave. T'%/Y"(f) is the cross
reflection coefficient of z/y-polarization when the unit cell is illuminated by y/z-
polarization. We choose the reflection coefficient expression from [22], in which
we can see the relationship between the complex reflection coefficient and the
length [, width w, substrate thickness d and the dielectric permittivity ¢, of the
element. The expression can be as the follows [22].

1 R 2]f fmm
P/ ) = i L (4.4
Qrad + 0 + 2] ’Zm

where working frequency is f, the resonance frequency of the mn-th element

U, combined quality factor Q° and radiation quality factor of the mn-th
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Figure 4.1: Sketch of the reflectarray antenna with its parameters .

element Q7%¢ . Radiation quality factor in the case of rectangular microstrip

patch illuminated under the normal incident plane wave is as [22]:

0
rad __ fmnﬂgogr lmn

— omn_ 77 4.

where d and &, are the substrate thickness and the relative dielectric
permittivity, ,,, and w,,, are the length and width of the mn-th element in the
aperture of the reflectarray antenna. and 7 is the free space wave impedance.
The combined quality factor Q° depends on the conductor and dielectric loss
quality factors Q¢ and Q¢ by the following expressions [22]:

0 QCQd
Q _Q0+Qd

The expression of the conductor and dielectric loss is given by [22]:

(4.6)

Q' = Q= Vo (4.7)

here, tand is the loss tangent, p,0 are the permeability of the free space and
the metal conductivity, respectively. The relationship between the resonance
frequency and the antenna geometries of the rectangular microstrip patch can
be determined as follows:
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C
. — (4.8)
2lep/Eress
where loff = Ly + 201 and €,y are the effective permittivity and the effective
electrical length of the patch antenna. The expression for 6/ and €,.5¢ are defined
by:

(reps +0.3) (== +0.264)

(5reff — 0258) (wgm + 08)

e+1 e -1 1
reff — 4.10
R R R | W T (410)

If we substitute (4.10,4.9,4.8, 4.7,4.6,4.5) in(4.4), then by substituting (4.4) in
(4.2) and (4.2,4.1), we can extract the expression which shows the relationship
between the electric field and the antenna geometrical parameters. In order to
realize the uncertainty in fabrication process of the antenna structure, we will
apply Interval Arithmetic rules. In the following, we will define the interval
extension of the previous expressions.

0l =0.412d

(4.9)

4.2.1 Cartesian (/A —CS)

Within the interval analysis approach, the actual values of the mn-th patch width
(Win ), length (1), substrate thickness (d) and dielectric permittivity (e,) are
between infimum and supermum values as follows [52]

[d=[d— Agd+ A [e] = e — Ag e+ AL (4.12)

These infimum and supremum values are calculated from the maximum tolerance
error on etching patch width (A,,) and length (4\;). Agand A\, are the maximum
tolerance errors on the material properties. These deviation from the actual
values can affect the effective electrical length of the patch antenna, the effective
dielectric permittivity, resonance frequency and the reflection coefficient. We can
extract the analytical expression for the upper and lower bounds of the previous
functions. In the first example, error on the patch width of the antenna is
considered while other geometrical parameters are fixed in their nominal values.
So the patch width is presented by interval value [w,,,] to encompass all these
random errors. Since nominal effective permittivity depends on the width of the
patch. By substituting interval of the width, interval function of the effective
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dielectric permittivity can be computed. Analytical expression of the lower and
upper bounds of the effective dielectric permittivity is as:

lerers] = ety ent”] (4.13)
e &t 1 e —1 1
€ = + 4.14
reff 2 2 \/1 + 12(wmndew) ( )
SUP Er + 1 Epr — 1 1
€ = + 4.15
reff 2 2 \/1 + 12(wmnc‘l|'Aw) ( )

Interval function for additional length value in effective electrical length can be
extracted from its crisp function as

([evess] +0.3) (Hzmnl 4 0.264)
([greff] - 0258) ([wgm} + 08)

[01] = 0.412d (4.16)

By applying the interval arithmetic rules for the multiplication and division
of two interval values, we can extract the analytical expression for the upper and
lower bounds of the interval function of additional length in effective electrical
length expression. If we rewrite the (4.16) as follows:

[GINT; GV [GENT G5V

61] = 0'412d[G§NF- GSUP] [GINT: G507 (4.17)
Where
INF __ _INF . SUP __ _SUP
S e FOBGL = ey 403 (4.18)
G2 = greff — 02587 G2 = greff — 0258

GANF = w4 0.264; G5V7 = —wff +0.264 (4.19)

GINF — w4 (8, GIUP — wma” 4 (8 '
[61] = [§1'NEF; §15UF] (4.20)
5ZINF B 0 412dmm[G{NFG§NF, G{NFGgUP, GfUPGéNF’ G.ISUPGgUP] (4 21)

- ma$[G£NFG£NF,GgNFGfUP,GgUPGiNF,GgUPGfUP] .
5ZSUP _ 0.412dma$[G{NFG§NF’ G{NFGgUP, GfUPGéNF, GiS‘UPGgUP] (4‘22)

. INFINF ~INFASUP ASUPAINE ~SUPSUP
m’m[Gz G, GG GV G, GRE TG ]
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Interval Arithmetic rules are implemented to compute the bounds of the interval
functions of resonance frequency of each patch [f° ]. Then with the same rules,
upper and lower bounds of [Q"%¢] are computed. Eventually according to complex
interval analysis [36], bounds of the interval function are obtained. As it is clear
from the crisp expression of the Fourier transform of the reflected field (4.2),
Interval of the Fourier transform of the tangential electric field [Ep, Jy(U, U3 [Winn] )]
is the summation of the interval of the reflection coefficient of each cell. Here
the incident feed is a y-polarized feed horn illuminating the reflectarray antenna
under normal incident angle. In normal incident angle cross coupling reflection
coefficient [T24/Y"(f)] is zero. Therefore the interval of the Fourier transform can

be presented as

[ f gy (15 05 [wrnn])] = K (0%, (f5 [win] ) ALY )Tt Cmmpetenea) (4.23)

Then the interval of the radiated far field is computed from the previous
interval (4.23) as

~

[E(0, & [wmn))] = [Eo(0, 3 [wmn])0 + [Es(6, 6; [wmn]]0 (4.24)

[E6(0, §; [wmn])] =

#((Cos@b) [ERz(u7 U3 [Wmn])] + (sing) [ERy<U, v: [wmn])]) (4.25)

[E(0, @5 [Wmn])] =

#((31'”@50036) [ER:B(U/7 U3 [Winn])] + ((cos¢)cos€)[ERy(u7 0; [Winnl)) (4.26)

Interval of the co- and cross- components of the far electric field for the y
polarized feed are[10]

[Eco(0, 93 [wmn])] = sin(9)[Eo(0, ¢; [wmn])] + cos(@)[E(0, &; [wmn])]  (4.27)

[Eeross (0, &; [wmn])] = cos(9)[Ep(0, ¢; [wmn])] — sin(§)[Es (0, ¢; [wmn])]  (4.28)

According to the complex interval rules [33|, interval of the power pattern of
the co— and cross— components is
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(&3

[Peo(0, 03 [wrmn])] = [ng,(e, 0¥ [wmn])]z + [EC‘Z(Q, é; [wmn])]Q (4.29)

[Peross (0, &3 [Winn])] = [Eerous (0, 65 [wmn])]* + [Eeyous (0, 63 [wnn] )P (4.30)

where [E% (0, ¢; [winn])], [ES (0, &; [wimn])] is the real and imaginary part of co-
polar electric field. And [E%__ (0, &; [won))], [ES oes(0, ; [wimn])] are the real and
imaginary parts of the cross-polar electric field. As it is clear in (4.16), interval
of the effective dielectric permittivity and the width of the patch repeat more
than once in the nominator and denominator. This repetition makes the so-called
Dependency problem which overestimate the bounds. Such redundancy can be

removed by the following strategies.

4.2.2 Cartesian (IA — CS")

In this part, we will show how to tackle with the Dependency effect in the
Interval analysis application. If an interval parameter accrues several time in the
calculation of the interval functions and each occurrence is considered separately,
the unwanted resulting interval is appeared [52]. This effect can make extra
bounds in the output interval. This problem can be solved by rewriting the
functions in a proper way before expanding them to interval to decrease the
occurrence of the interval variable. If the expression has the simple relation
to the interval variable, by reformulating the expression, dependency can be
fully removed. Otherwise, in the complicated interval function, reformulating
can partially remove the dependency problem. In (4.31), repeating the interval
values of [g,¢ff] and [w,,,] causes dependency effect and overestimate the interval
bounds in [dl].

([eress] +0.3) (Hzmnl 1-0.264)
([greff] - 0258) (% + 08)

By reformulating the interval function (4.16) in the following way, the interval
variable appears only once. The dependency removed function of (4.16)(width
is realized with interval values and the substrate thickness is fixed in its actual
value) given by:

[01] = 0.412d

(4.31)

N 0.3 \( d N 0.264d>
1— (225)  [erers) —0.258 1 4 0.8(%—)  [wmn] + 0.8d

[Ereff] [wmn}

[61] = 0.412(

) (4.32)

The comparison of the the upper and lower bound of the [§l] in ( 4.20) and
(4.32) is shown in Fig. 4.2. It is obvious that the upper and lower bounds of
the interval effective electrical length with dependency effect are much larger
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Figure 4.2: Dependency assessment - inf and sup of the effective electrical length
with dependency and dependency free interval function.

than its dependency free bounds. If we consider the substrate thickness [d] as
an interval value and fix the patch width on its actual value, the dependency
removed interval function is as follows

0.3 1 0.264

[Al] = 0.412( + ) + 015 )
1= (22) " [erers] - 0258 L+ (25) " w(f + 2L)2 - 5
(4.33)

Since the power pattern expression is complicated and parameters are
recursively connected to each other, by this way, dependency is partially
removed. In order to remove all dependency effect, we need to implement an
alternative method.

4.2.3 Enumerative Strategy (/A — ENUM)

By pursuing the following steps, we can find a surrogate method to suppress the
dependency problem, the steps of Enumerative method are defined as:
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e Step 1: Get the efficient number of sample points between the infimum
and supremum of the interval values. These interval values can be a patch
length, width, substrate thickness and the dielectric permittivity. By con-
sidering x; as a sampling parameters such as patch length and width (I,,,)
, (Wmn), substrate thickness (d) and dielectric permittivity (e,) then the
sampling procedure is as

=inf{xi} +— (SUP{XZ} INF{xi}) (4.34)

where 1 =0, ..., I;, I; is the maximum number of the sampling. For each i, there
is a new value for each geometrical parameter of the patch.

e Step 2: Let us consider the behaviour of the reflection amplitude (|Ty.,. (f, x:)

(Fig. 4.3a) and phase (argl',..(f,x:)) (Fig. 4.3b) versus nominal param-
eter x;. Then calculate the amplitude and phase of the crisp reflection
coefficient I',,,,(f, x;) for each value of the sampling parameter.

e Step 3: Specify the interval amplitude and phase of the reflection coefficient
of each cell by the following ways:

INF{|Tpn(f, x) |} = mini—o,_1,{|Tomn(f, xi)|} (4.35)
SUP{|Pmn(f7 XZ)I} = Mmax;=o,..., IZ{|1—‘mn(f7 XZ)I} (436)
INF{[arg(Pmn(fa Xz))]} = mini=o,.. 1,107 g(Crmn(f, Xi)) } (4'37)

SUP{[arg(T%,(f, xi)]} = mavi=o,...,{arg(Trmn(f; X))} (4.38)

e Step 4: Compute the Fourier transform of the reflected electric field from
the interval of the reflection coefficient of step 3.

[ERM (w05 D)) = K Yo ZoncollToun (F x) (o8 ([arg(Tonn(f, X))+

G5in([arg(Con (f Xi))])) Al &7k wmpatonn)
(4.39)

e Step 5: Compute the power pattern bounds from the same procedure in
(4.29).

By this procedure, we can remove the dependency problem. The overestimation

in the power pattern bounds can be decreased by the IA — ENUM procedure.
There is still the Wrapping effect which can enlarge the output bounds. This
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effect can be prevented by using Minkowski Sum which is explained in the fol-
lowing.

r 3

T

mn

Sup | L [5-

| 1ﬂmn(%i) |

nf{| Ly 13

arg(lin, ) |

sup {arg(rmn ) }’

arg(l'y, (%))
lnf{ arg(l—‘mn )} T

Figure 4.3: Enumerative strategy (a) Sampling of the amplitude of the reflection
coefficient (b) Sampling of the reflection phase.
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4.2.4 Minkowski (/A — MS)

The TA—CS, IA—CS* and A — ENUM still produce overestimated power
bounds due to wrapping effect produced by rectangular representation of the
complex interval in the complex domain. This redundancy is proportional to
the number of elements. Since reflectarray antenna consist of several elements,
we need to properly remove this obstacle from analysis. Using Minkowski sum
to calculate the interval phasors can remove the relevant redundancy effect. In
following, detail of the Minkowski sum computation will be defined.

Interval power pattern [P, (6, ¢)] is the function of the interval Fourier transform
of the electric field [ERI/y(u, v)]. This interval is the summation of the interval
phasor of [|[T¥, (f)|]e/lersTmn(fDI. Let us provide some details about how to per-
form Minkowski sum of two phasors of the first and second cells ([A,l¢ =1,...,Q

and [Bjlg=1,...,Q).

e Step I, by referring to Fig. 4.4, a small convex polygons encircling the
following four main vertices from the combination of the minimum and
maximum of the amplitudes and phases as:

Ay = INF[|TYW(f)|JeINFlargmHUNL - Ay = SUP[|ITYY(f)[]ed N Flarg T ()]
(4.40)

Ag = INFITH(PersTH O 4g_, = SUP[LH(p)[Jer s lersrt )
(4.41)

Y

By = INF[[TY(f)||e/ NFlarsCEU] B, = SUP[|TY(f)[]e/ N FlersTi3 ()]
(4.42)

Bg = INF[|TYY(f)|)SUPlara@EWN - B, = SUP[TYY(f)|]e/SUFlera T ()]
(4.43)
This polygon includes the edges A1 Ay , Ag_1A¢g, AgA; and the curve Ay Ag_;.
The arc between AyAg_; is approximated with number of vertices. In Fig. 4.4
we just show 3 vertices in the curve as an example. Then complex interval [B]
has been bounded with the convex polygons of second cell as it is seen in Fig.
4.4. The arc between ByBg_; is approximated with the same three vertices.

e Step II, as shown in Fig. 4.4, by considering two convex polygons encircle
complex phasors [4,] and [B,], Minkowski sum of these two polygons is
a convex polygon. Number of vertices of the resulting polygon is at most
equal to sum of vertices of polygon encircling phasors [A] and [B] . By
iteratively following this procedure the convex polygon of interval Fourier
transform can be obtained.
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Im ,

“ > Re

Figure 4.4: I A-Minkowski approach - Minkowski Sum of two interval phasors.

e Step III, Compute the minimum and maximum distances with respect to
the center of the complex plane. This can give us the maximum and mini-

mum bounds for [E’gﬁgM_MS(u, v)]. Then maximum and minimum of the

power pattern are computed with interval arithmetic rules as in f[PENUM=MS(§ 4)] =

[in f[Epay ™M (u, v)][Pand sup[PPNUM=MS(9, 6)] = |sup[ ELNTM M (u, 0)] 2.
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Chapter 5

Interval Method Validation with
Numerical Results
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5.1 Introduction

In this chapter manufacturing error in fabrication of the microstrip reflectarray
antenna structure is considered. Geometrical parameters of the antenna such as
width, length of the patch antenna with the substrate thickness and the dielectric
permittivity are deviated from their nominal values due to manufacturing errors.
In order to mathematically realize these errors on the analytical computation
of the radiation pattern, interval analysis technique is used. Wrapping effect is
eliminated by using Minkowski sum approach. Some results are reported for the
assessment as well as for comparison purposes. Then a tolerance analysis based
on Interval Analysis (I A) together with Minkowski sum approach is implemented
to compute the deviation bounds. Interval pattern features for different reflec-
tarray structures with several ratios of the focal-length-to-diameter (F'/ D) values
are computed. The proposed IA-Minkowski (IA — M S) based approach provide
a reliable tool to predict pattern degradation.

5.1.1 Nominal Pattern Computation

For analytically compute the nominal radiation pattern, Aperture Field method
together with the analytical expression of the reflection coefficient from the refer-
ence [22] is implemented. In order to be sure about the correct implementation of
this analytical method, the nominal radiation pattern is compared with the state
of the art for the same reflectarray structure with the following characteristic:

e Frequency- 32 GHz

e Antenna Aperture type- Circular with 15.5)
e Number of element- 749

e Element type- Rectangular Microstrip patch
e periodicity- p, = p, = A\o/2

e substrate thickness- d = 5mil

e dielectric permittivity- ¢, = 10.2

e patch width- w,,, = 2mm

e feed antenna position- (0,0, 36.328mm)

e g=15

The phase distribution in the aperture surface is shown in Fig 5.1. H-plane
radiation pattern of my implemented code is compared with the the state-of-
the art as shown in Fig 5.2. E-plane radiation pattern of my software with
comparison to the the state-of-the art is shown in Fig 5.3 :
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Figure 5.1: Phase distribution on the aperture surface for reflectarray with 749
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Figure 5.2: H-Plane radiation pattern with comparison with Karnati 2014
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5.2. INTERVAL COMPUTATION

In the following part, radiation pattern is computed with the previous men-
tioned analytical method for the proposed reflectarray structure. Then the In-
terval bounds for different errors are extracted.

5.2 Interval Computation

5.2.1 Reflector Error

We want to compute the interval power bounds for the reflectarray antenna with
the the following structures. Let us consider a center-fed reflectarray made of 529
isotropic rectangular microstrip patches equally-spaced along the x and y axis
of p, = py, = % Reflectarray antenna has a square aperture with diameter of
11.5)g in 30 working frequency. Substrate is a Rogers RT580 with d = 0.5 mm,
g, = 2.2, tand = 0.0009. Feed antenna is a y-polarized horn antenna in 30 GHz
modeled as cosf? with ¢ = 8.5. It is located in z = 114.3mm. Variable patch
lengths approach in normal incident angle is used to design the array elements
over the aperture surface to obtain the required phased. Nominal width value of
each cell is w,,, = 3.95 mm. The antenna power pattern antenna is computed
by 4.1. Phase distribution on the aperture surface is computed by the expression
of (2.25) and it is shown in Fig 5.4.

Then variable patch length approach is applied to realize the desired phase
of each cell. The phase behaviour versus changing the patch length is provided

in Fig 5.5

5.2.1.1 Tolerance Analysis Against Patch Error

First the impact of patch width error on the power pattern is computed.We
consider maximum tolerance A,, = 50um in the width of the patch of each cell
while other parameters are fixed in their nominal values. To mathematically
model this error, patch width is represented by an interval value. Therefore, real
width value of the patch after manufacturing process can be one of the random
values among this interval [3.95 — 0.05,3.95 + 0.05]. The interval power pattern
for this tolerance is computed with /A — C'S method. To avoid dependency
problem, the interval power pattern bounds are computed by the IA — CS*.
This methodology is valid for simple formulas. To fully remove the dependency
problem, we compute the /A — ENUM power pattern bounds. Then Minkowski
sum is implemented in the TA — ENUM — MS computation to mitigate the
Wrapping problem. The comparative interval result in v = 0 plane is presented
in Fig.5.6. As can be seen, the A — ENUM — MS can provide the tightest
bounds which avoids the meaningless result of using the other Interval methods.
Following principle of
INF[PNUM=M5(0, ¢)] > {INF[P,°(0, )|, INF[P,> (0, 9)], INF[PLNUY(0, ¢)]}
SUPIPENUM=MS(0, ¢)] < {SUP[PL(0, )], SUPIPL® (0, 6)], SUP[PENUY(0, )]}
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Normalized Power Pattern (dB)

P(u)
IA-CS ——  IA-ENUM

IA-CS*

IA-ENUM-MS =——

Figure 5.6: Comparative Assessment Aw = 50um; Plot of the interval power
pattern predicted with the [A—C'S, the IA—CS*, [IA—ENUM, IA—ENUM —
MS together with the nominal power patter in H-Plane (¢ = 0°).

hold true. It proved that the IA— ENUM — MS method can provide the tight,
reliable, accurate and inclusive bounds.

In order to check the reliability of the [A — ENUM — MS , a Monte Carlo
test with a set of 7' = 5 * 10° trial power patterns has been performed to cover
the IA—MS—FENUM bounds. In Fig.5.7, this Monte Carlo pattern is shown to
cover [A— ENUM — M S bounds of A,, = 50[um] in v = 0 plane. It proves that
the whole set of trial nominal power patterns are inside the JA— ENUM — M S
bounds. Closeness of the ITA — ENUM — MS to the upper and lower part of
the Monte Carlo patterns demonstrates the reliability and effectiveness of this
method.

5.2.1.2 Method Validation

To validate inclusion properties, interval power pattern for different tolerances
in patch width A, = 5,10,20,50um for two different cuts are shown in Fig.
5.8(a)v = 0 plane and Fig. 5.8 (b)u = 0 plane . Antenna pattern features such
as SLL, BW, P, A are shown in table 5.1. In Fig. 5.9(a)v = 0 plane and(b)u = 0
plane, interval power bounds for different tolerances of A; = 5,10,20,50um in
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Normalized power pattern (dB)
n
o

T

45 LIERT Rial
-1 -08 0 02 04 06 08 1
u
P(u) — sup{P(u)}
P(u)-trial inf{P(u)}

Figure 5.7: Method Validation - Comparison of TA — CS , IA — ENUM ,
IA—ENUM — MS [A—CS*, together with the Monte Carlo patterns Aw =
50um.
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AW, pim | [P(u,v)] [SLL],dB | [BW],u |Ax10
u—0
0 0 -21.380 0.092
5 [-0.0008,0.0006] | [-21.457,-21.304] | [0.091,0.002] | 0.02
10 [-0.001,0.013] | [-21.536,-21.227] | [0.091,0.092] | 0.03
20 [-0.003,0.002] | [-21.659,-21.077] | [0.091,0.092] | 0.05
50 [-0.001,0.001] | [-21.659,-21.077] | [0.091,0.092] | 0.07
v=0
0 0 -22.561 0.092
5 [-0.0008,0.0006] | [-22.657,-22.481] | [0.091,0.002] | 0.02
10 [-0.001,0.001] | [-22.740,-22.385] | [0.091,0.092] | 0.04
20 [-0.003,0.002] | [-22.925,-22.212] | [0.091,0.092] | 0.08
50 [0.008,0.07] | [-23.504,-21.707] | [0.09,0.09] | 0.2

Table 5.1: Analysis of the IA-based pattern prediction vs. patch width errors
in u = 0 and v = 0 planes, Aw = {5, 10,20, 50}{um }- Interval pattern features
[p(u,v), SLL, BW] and pattern tolerance index A

patch length are depicted. In table 5.2, interval pattern features of the length
tolerances are depicted. Inclusion property for interval of length ([I]|a,=sum C

[ ar=10pm C [ a,=200m C []] A;=50,m)

and ([w]|a,=sm C [W]|a,=10um C [W0][a,=20um C [w]|A,=50,m) leads to the inclu-
sion of the interval power pattern

([PENUMfMS]

; P£NUM7MS]
[PENUMfMS]
co

ENUM-MS
Pco ]

| Aw=5um C | | Aw=10m C [ | Aw=20um C

|Aw:50um)

[ ust [FJ\}E%VUM_MS“AFWW C [P MM am10um C [Pog™ MM A —a0um C
Pco -

| A=50m)-

It is worth to show the dependency of the degradation of the pattern fea-
tures on patch tolerances against steering angle . Four different nominal re-
flectarray arrangements have been synthesized to steer the main beam along
directions: (6o, o) = (10,0)[deg], (6o, Po) = (20,0)[deg], (6o, Po) = (30,0)[deg],
(0o, do) = (40, 0)[deg]. The plot of interval power pattern features only along the
cut v = 0 for tolerance values A; = {5,10,20,50}{pm} are shown in Fig.5.10.
These interval features are also represented in table 5.3 . The dependency of
the power pattern degradation on patch tolerances against antenna bandwidth is
also studied. Four different working frequencies f = 28.5, f = 29.25, f = 30.75,
f = 31.5 have been investigated. In Fig.5.11 interval pattern features for toler-
ance values A; = {5,10,20,50}{pum} for cut v = 0 are shown. In table 5.4 these
pattern features are presented.
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Normalized Power Pattern (dB)

P(u)-0,, =5 e ??Jiﬁm:—zsoo[t‘ﬂ]
P(u)-2 £10 [um]

Normalized Power Pattern (dB)

P()-A,, =5 (] Pl =50 fim] —
P(v)-4,, =10 [um] ——

(b)

Figure 5.8: Inclusion property validation against patch width error - Nomi-
nal power pattern and IA — ENUM — MS interval power pattern for Aw =
{5,10,20,50}(a) in v = 0 plane (b) in u = 0 plane.
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Normalized Power Pattern (dB)
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Figure 5.9: Inclusion property validation against patch length error - Nomi-
nal power pattern and /A — ENUM — MS interval power pattern for Al =
{5,10,20,50}(a) in v = 0 plane (b) in u = 0 plane.
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INTERVAL COMPUTATION

Al,pm | [P(u,v)] | [SLL,dB | [BW],u [Ax10
u—0
0 0 -21.380 0.092
5 | [-0.014,0.000] | [-22.641,-20.271] | [0.088,0.090] | 0.3
10 | [-0.032,0.017] | [24.101,-19.275] | [0.086,0.004] | 0.6
20 | [-0.081,0.027] | [-27.997,-17.542] | [0.082,0.008] | 1.2
50 | [-0.340,0.040] | [inf,-13.582] | [0.072,0.001]| 3.6
v=0
0 0 -22.561 0.092
5 [-0.014,0.009] | [-24.046,-21.284] | [0.090,0.094] 0.3
10 | [-0.032,0.017] | [-25.821,-20.155] | [0.088,0.096] | 0.6
20 | [-0.081,0.027] | [-30.969,-18.230] | [0.084,0.100] | 1.3
50 | [-0.340,0.040| | [inf-13.658] | [0.072,0.112] | 4.1

Table 5.2: Analysis of the TA-based pattern prediction vs. patch length errors
in v = 0 and v = 0 planes, Al = {5, 10,20, 50}{pm}- Interval pattern features
[p(u,v), SLL, BW] and pattern tolerance index A

Al,pm | [P(u,v)] | [SLL,dB | [BW]u |Ax10
f=285
0 0 -17.526 0.096
10 [ [-0.113,0.104] | [-18.983,-16.261] | [0.0920,0.102] | 0.66
f=29.25
0 0 -21.110 0.092
10 | ]-0.071,0.059] | [-23.479,-19.246] | [0.088,0.098] | 0.63
f=30.75
0 0 -21.085
10 | ]-0.069,0.057] | [-23.964,-18.868] | [0.084,0.092] | 0.7
f=315
0 0 -18.888 0.086
10 | [-0.112,0.110] | [-21.204,-17.034] | [0.082,0.092] | 0.8

Table 5.3: Analysis vs. bandwidth f = {28.5,29.25,30.75,31.5} for patch
length errors in v 0 plane, Al = {10}{wm}- Interval pattern features
[p(u,v), SLL, BW] and pattern tolerance index A
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Figure 5.11: Analysis versus frequency, TA-pattern features (a)P(ug)(b) SLL (c)
BW against frequency (a)f = 28.5 (b)f =29.25 (¢)f = 30.75(d) f = 31.5.
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Al,pm | [P(u,v)] | [SLL,dB | [BW]u [Ax10
u—0
0 0 -21.380 0.092
5 | [-0.014,0.000] | [-22.641,-20.271] | [0.088,0.090] | 0.3
10 | [-0.032,0.017] | [-24.101,-19.275] | [0.086,0.004] | 0.6
20 | [-0.081,0.027] | [-27.007,-17.542] | [0.082,0.098] | L2
50 | [-0.340,0.040] | [inf,13.582] | [0.072,0.011] | 3.6
v=0
0 0 -22.561 0.092
5 [-0.014,0.009] | [-24.046,-21.284] | [0.090,0.094] 0.3
10 | [-0.032,0.017] | [-25.821,-20.155| | [0.088,0.096] | 0.6
20 | [-0.081,0.027] | [-30.969,-18.230] | [0.084,0.100] | 1.3
50 | [-0.340,0.040] | [inf-13.658] | [0.072,0.112] | 4.1

Table 5.4: Analysis vs. bandwidth f = {28,5,29.25,30.75,31.5} for patch
length errors in v 0 plane, Al = {10}{wm}- Interval pattern features
[p(u,v), SLL, BW] and pattern tolerance index A

5.2.1.3 Tolerance Analysis Against Substrate Error

Interval power pattern as a result of tolerance error on the substrate thickness
is computed by the previous methods. It can be shown that sensitivity of the
radiated power pattern toward the substrate thickness error is more than patch
width error. Since the nominal value of the substrate thickness is much less than
the nominal width of the patch, the effect of the 50um substrate thickness devia-
tion on the radiation pattern is more than the same tolerance on the width of the
patch. There should be some constraints on the maximum tolerable tolerance
error based on the working frequency, nominal value of the parameter and the
sensitivity of the resonance frequency, reflection phase toward the specific toler-
ances. Due to this issues, the same tolerance on each parameter can not make
the same effect on the radiation performance of the antenna. In Fig.5.12(a)-(b),
the interval power pattern is extracted for tolerances of Ae = 0.003,0.005,0.007
in the dielectric permittivity in cut v = 0 and v = 0 ,respectively. The errors
on the substrate thickness have been fixed in Ay = {5, 10,20, 50} [wm]. The plot
of the nominal power pattern and the interval bounds through the Minkowski-
based Interval Analysis is shown in Fig.5.13. The pattern features for interval
dielectric permittivity and the interval substrate are shown in table 5.5 and 5.6.

5.3 Feed Error

Reflectarray antennas includes several radiating elements which are illuminated
by the feed antenna. Feed antenna can have the displacement from the on-axis
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Normalized Power Pattern (dB)
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P(v)-A, =0.003 ———  P(v)-A, =0.007 —

(b)

Figure 5.12: Inclusion property validation against patch dielectric permittivity
error - Nominal power pattern and IA — ENUM — MJS interval power pattern
for Ae = {0.003,0.005,0.007}(a) in v = 0 plane (b) in w = 0 plane.
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Normalized Power Pattern (dB)
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Figure 5.13: Inclusion property validation against patch substrate thickness error
- Nominal power pattern and IA — ENUM — MS interval power pattern for
Ad = {5,10,20,50}(a)in v = 0 plane (b)in u = 0 plane.
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Ad,pm | [P(u,v)] | [SLL,dB | [BW]u [Ax10
u—0
0 0 -22.561 0.092
5 [-0.012,0.009] | [-22.653,-20.261] | [0.088,0.092] 0.2
10 | [[0.028,0.017] | [-24.130,-19.259] | [0.086,0.094] | 0.5
50 | [-0.071,0.029] | [-28.078,-17.519] | [0.084,0.008 | 1.2
50 | [0.292,0.044] | [Anf-13.575] | [0.072,0.108] | 3.4
v=0
0 0 -22.561 0.092
5 [-0.012,0.009] | [-26.822,-21.296] | [0.09,0.094] 0.3
10 | [:0.028,0.017] | [-25.836,-20.150] | [0.088,0.096] | 0.6
20 [-0.071,0.029] | [-31.003,-18.224] | [0.084,0.098] 1.3
50 [-0.292,0.044] | [-60.044,-13.821] | [0.074,0.11] 3.9

Table 5.5: Analysis of the IA-based pattern prediction vs. substrate thickness
errors in u = 0 and v = 0 planes, Ad = {5, 10, 20, 50}{pm}- Interval pattern
features [p(u,v), SLL, BW] and pattern tolerance index A

Ae | [P(wwv)] | [SLLL,dB | [BW]u |Ax10
u—>0
0 0 -21.380 0.092

0.003 | [-0.0052,0.0006] | [-21.457,-21.304] | [0.091,0.092] | 0.02
0.005 | [-0.001,0.013| | [-21.536,-21.227] | [0.091,0.092] | 0.03
0.007 | [-0.003,0.002| | [-21.659,-21.077] | [0.091,0.092] | 0.05
v=0

0 0 -22.561 0.092
0.003 | [-0.005,0.004]| | [-21.884,-20.975] | [0.091,0.092] 0.1
0.005 | [-0.009,0.006] | [-22.511,-20.915] | [0.091,0.092] 0.2
0.007 | [-0.013,0.009] | [-22.515,-20.395] | [0.088,0.092] | 0.28

Table 5.6: Analysis of the IA-based pattern prediction vs. dielectric permittivity
errors in v = 0 and v = 0 planes, Ae = {0.003,0.005,0.007}{um}- Interval
pattern features [p(u,v), SLL, BW] and pattern tolerance index A
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focus due to some unpredictable uncertainties. This displacement make a phase-
error over the aperture surface and consequently distortion on the radiation pat-
tern. Beam distortion due to a lateral feed displacement in a paraboloid antenna
is investigated in [43]. The combined effect of lateral and axial displacement of
the feed phase center on the secondary performance of a parabolic reflector is
described in [44]. The impact of feed location on the operating band of broad-
band reflectarray antenna is addressed in [45]. Since the nature of these errors
is random, we need deterministic approaches to compute the effect of these ran-
dom errors on the radiation performance. As it is proved in the previous section,
Minkowski Enumerative Interval Analysis (/A — MS — ENUM) provide more
reliable and effective results rather than Cartesian Interval Analysis (1A — CS).
This novel Minkowski-based Interval analysis is proposed to considered the effect
of feed displacement errors on the radiation pattern of reflectarray antenna. The
result of the Minkowski-Interval analysis include upper and lower bounds of the
power pattern as a result of feed position errors.

5.3.1 Mathematical Representation of Feed Location Dis-
tortion

Assume reflectarray antenna in Fig. 5.14 in which the feed position has a dis-
placement error Ar, from on-axis focus. Feed position errors can affect the
antenna performance. Based on the interval analysis approach and the vertical
displacement error [52], feed on-axis focus location can be presented by following
errors and intervals as follows :

Ar; = (Azyp, Ayp, Azy) (5.1)
[rs] = [zs]2 + [yslg + [24]2 (5.2)
[2f] = [f — Dayyzp + Axyl (5.3)
sl = lyr — Dypiyr + Dyyl (5.4)
[2f] = [2r = Dzp; 25 4+ Dy (5.5)

where feed location along x and y and z are x; , y; and 2y, respectively. As
it is clear in Fig. 5.14, due to the feed displacement errors, distance from feed
to element R,,, will change to R, . Since this displacement can be random so
they can be presented by interval values [R,,,| to include all of these random
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Figure 5.14: Antenna structure with the feed displacement .

distance values R, . Since the incident angles are computed by the knowing
the feed position and the distance from feed to element so the spherical phases
(Orns dmn) are also represented by interval values to assess the effect of random
errors on feed nominal position.

Incident feed can express by Floquet harmonics. Amplitude and phase of the
Floquet harmonics which illuminate each patch are computed from the far field
of the feed horn antenna. This amplitude and phase now are the interval values
due to interval of the feed position. Interval of the far field of the horn antenna

with respect to mn-th patch/element in the reflectarray are:

(BT ([Bmn), [0l 1) = [Eg™ (Bmnl, [Dmn], [£D10 + (B (Brmn], [fmn], [5])]

(5.6)
1 e_jk[Rmn]

(B3 ([Brn)s [Dmn], [24])] = %(CE([‘gmn])Sinq‘bmn]) (5.7)
y e—jk[Rmn}

[E5" ([Bran)s [Dmn], [24])] = %(CH([emn])cosq(bmn]) (5-8)

Where [0n] , [@mn] are the interval of the incident angles which illuminate
mn-th element in the aperture surface. Cg(6) = cos?(0) and Cy(0) = cos? ()
are the E- and H- plane patterns of the feed-horn. We need to select a proper
value for ¢F = qH in order to control the aperture efficiency. Interval of the
incident angle relates to interval of the feed positions by the following expressions:

\/(xmn - [xf])Z + (Ymn — [%‘])2
zf

0] = atan (5.9)
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Ymn — [yf]
Tmn — [xf]
Interval of the [R,,,], [rmn] depends on the feed locations interval values by the
following expression:

[Gmn] = atan (5.10)

[Ronn] =/ ([Tmn])? + [ZJ%] (5.11)

Foun] = 3/ @ = [7)2 + Win — [y7))?

Incident Floquet harmonics computed from the Cartesian components of the far
field of the incident field. Interval of the Cartesian components of the incident
field related to the interval of the far field of the feed horn (5.6) antenna by:

[dZ ((Bmn]s [@mn], [r5])] sin([0mn]cos[dmn])  cos([Bmn]cos[dmn])  —sin([pmn]) 0
[dg([gan[‘bWLn]’[ff])] = { sin([0mn]sin[dmn])  cos([Omn]sin[émn])  cos([dmn]) } [Eiy([Gmn],[qun],[zf])]
[dZ ([0mn], [émnl, [r;])] cos([6mnl) —sin([fmn] 0 (B (10manl, [fmn], [£f])]

(5.12)

Then the interval of the Floquet harmonics illuminated each mn-th element

related to the interval of the Cartesian components of the far electric field of each
element by the following expression:

[ [dF ([0mn], [$mn], [£s])] }:
(@M ((0mn], [pmn]. [)]

\ —[kyo(Omnl, [bmal, e D] ozo(Omnl, [Bmnls D] 1] 14 Omal, bl ;0] | &

ke (Omn] [émnli(r D] [ [kzo ([Omn]; [Pmnl, [f])] [kyo ([Omn], [Pmnl; [zf])] ] |: [di([@mn],[¢mn],[£f])] :|
k20 ([0mn], [Pmnl; ([r4]))] = Kosin([Opn])cos([mn]) (5.14)
[kyo([Omn], [Dmnl; ([r4]))] = Kosin([0hmn])sin([dmn]) (5.15)

[kt (10mn], [@ma], [r4])] = \/ k20 ([Omn], [Bmn], 2 D] + (K50 ([Orun], (D], [r4])]
(5.16)
After computing the interval of the incident Floquet harmonics illuminating
mn-th element. Now we need to compute the interval of the Fourier transform
of the reflected electric field on the reflectarray aperture. This Interval Fourier
transform is the summation of the interval of reflected Floquet harmonics of each
element as follows [10]:

M—-1N-1

B0, 03 B [ )] = K D7 S (a2l (D). [ e omomms

m=0 n=0
(5.17)
Where [a®/¥] is the interval of the Cartesian components of the reflected field
illuminating each element. We want to compute the interval of the reflected Flo-
quet harmonics of each cell. This reflected Floquet harmonics related to incident
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Floquet harmonics with the reflection coefficient of each cell. The expression for
the reflection coefficient includes the interval of the incident angle. Therefore the
effect of the feed displacements is seen in both incident angle and the reflection
coefficient. The relation between the interval of the reflected Floquet harmonics
(@™ ([Omn], [Emn) [£D)], [@™™ ([0man], [@mn), [r;])]) and the Cartesian components
of the reflected electric field ([a®([0n], [@mnl, [1£])], (0¥ ([Omn]; [@mnl, [14])]) of each
element are as follows:

[a® ([0mn], [pmn]; [rs])] ]
[a¥ ([Omn], [dmn], [ff])}

1 { =[kyo([Omn], [¢mn], [re])]  [kzo([Omn], [¢
ket ([Omn],[dmnl,lrf]] kzo([0mn], [Pmn], [T‘f])} [kyo([Omn], [

mn; [r5])] [aE ([0mn], [pmn], [rf])]
mnl; [rf])] } { [aTM ([Omn], [$man], [4])] ]
(5.18)

interval of the reflected electric field related to the interval of the incident Floquet
harmonics by:

[GTE([gmn}v [Pmn], [Tfm

[a™M ([Bmn], [$mn], [r4])]
[LTE([Bmn], [Gmnl, [ ])] (L7 ([Omn], [dmn], [r4])] ] { [ ([6mn], [$mn], [r4])]
(Lm0 ([Bman], [fmnl, L)) [LTM ((mn], [dmn], [rf})] [dTM ([0mn], [$mn], [r4])]

(5.19)

Then the interval of the TE and TM and cross reflection coefficient are as
follows:

[FTE([emn]a [¢mn]a [ff])] =

1 . 1 (f—fo0)
[QradTEGmn],Bmnl D] ([deTM([emn],[¢>mn],[zf]>]*Qo) L, (5.20)
1 + 1 +L 195 (f=fo)
[QTadTE([emn],[¢mn]7lif])] [QTGdT]VI([emn]7[¢mn]7[If])] Q() fo
™
T ([Oan], [Prn) [ff])] = .
1 _ 1 (—fo)
Qrad T M (O om0~ [@redTE@mnl Tomnl M T @ a5) U5 (5.21)

1 1 (f=fo)
[@radT M (O] [Bmn 2, N] T [@radT B @mn] [@mnl2;N] T Qo TR A

L7 B, (B, [r])] =

\/1QradT E([0mn] [omn] [r)][QradT M (10mn].[omnl, [rfm (5.22)
(F=fo)
fo

1 1
@radT N (O] ol D1 T [@radTE (@] G2y D1 T @ +2

Here we have the expression for quality factors which depends on the incident
angles and the geometrical parameters of the element. Since the incident angle
are interval, the quality factors can be represented by interval values as follows:

QT BB . [r])) = L7 e L (5.23)
QradT M ([ [0l e )] = 2522 cosfo] (529

periodicity of array along x and y are p, and p,, respectively. Length and with
of the patch are [,,,, and w,,,. d is the substrate thickness. f; is the resonance
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frequency of each element. )y is the combined quality factors as expressed in
[22]. After computing the interval of the Fourier transform of the reflected electric
field in reflectarray aperture surface . Interval function of the power pattern of
the electric field is as:

[E<‘97 (b; [emn]v [(bmn]v [ff])] =

00,6t O] [, )10 + (B0, 6 B, [0l 16 %)
(£ (0, ¢ [emAn]v [Prmnl, [ﬁf])] = . (5.26)
sing[Ep(0, ¢; [Ormn], [Omnl, [14])10 + cos@[Eg (6, &; [Omnl, [mn], [rs])] @ '
[e70%3(0), ¢ [epm]a [Prmn); [Zf])] = ) (5.27)
cosG[Ep(0, ¢; [Ormn], [dmnl, [14])]0 — sing[Ey(0, ¢; [Ormn], [Gmnl, [14])]0 '
» [Eo(6, &3 [0mnls [Omn], [r])] =
< (cosGLER (u, 0; [Oun], [Smn [1])] +$m¢[ERy(U,v; [Orn], [ [rg])])
(5.28)
i [E4(0, 05 [Omn), [Gmn], [4])] =
S (singeosO B (u, v5 (O], [Smn), [1])] + cosdeosOERY (u, v; [Bmn, (), [14])])
(5.29)
where j = /=1, k = % is the wavenumber, \ being the wavelength, and u =

sin @ cos ¢ and v = sin 6 sm ng are the direction cosine coordinates with 6 € [O, 2}
and ¢ € [0; 7.

5.3.2 IA-based Approach
In the following the A — ENUM — M S approach is explained for feed errors:

e Divide the interval of feed displacement to efficient number of sampling
points ¢ = 1, ..., [;. construct each point ¢; by infimum and supremun of

(2], [yy] and [z] as
by = inf([x5]/lys)/[2¢]) + £ (sup(( )/ Tys) /125)) — inf ([5]/[ys]/[27]))

e Compute the amplitude and phase of the reflected Floquet harmonics
a®ly (1;) for each sampling point, then compute the maximum and min-

imum among the amplitude and phase of the reflected Floquet harmonics.

e Encircle a small convex polygon including the combination of the maxi-
mum and minimum of the amplitude and phase of the reflected Floquet
harmonics.

e Perform Minkowski sum among the convex polygons.
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5.3.3 Numerical Results

In this section, some numerical results are proposed to validate the effectiveness of
IA—ENUM — MS in computing feed displacement errors. co—polar component
of the nominal pattern are computed by Aperture Field method together with
the co and cross reflection coefficient of the element. Bounds of the deviation of
power pattern for different tolerance errors on the feed position are investigated.
Then we check the inclusion properties of the power bounds by comparing the
bounds with Monte Carlo results. Then feed antenna is relocated in different
values of the focal points (F'), then the sensitivity of the Minkowski power bounds
versus these changing is evaluated.

5.3.3.1 Comparative Assessment

Let us consider a center-fed reflectarray made of 529 isotropic rectangular mi-
crostrip patches equally-spaced along the z and y axis of p, = p, = % Reflectar-
ray antenna has a square aperture with diameter of 11.5\y in 30GHz working fre-
quency. Substrate is a Rogers RT580 with d = 0.5 mm, ¢, = 2.2, tand = 0.00009.
Feed antenna is a y-polarized horn antenna in 30 GHz modeled as cos§?" with
qH = 8.5. Tt is located in (zy,yy, 2f) = (0,0,114.3)mm. Variable patch lengths
approach in normal incident angle is used to design the array elements over the
aperture surface to obtain the required phased. Nominal width value of each cell
iS Wi = 3.95 mm.

5.3.3.2 Tolerance Analysis Feed Error

First the impact of error on feed location along z axis on the lower and upper
bounds of co-polar components of the electric field [E(0, ¢; [0nn], [Pmn], [1])] is
analyzed. The nominal location is fixed in (xf,yy, z¢) = (0,0,114.3mm) . We
assume the feed antenna has displacement error within the interval of zy € [zf —
Azs, zp + Azg] and Azp = A/200,A/100, A/50, A/20, /10 . TA— ENUM — MS
power bounds related to different errors on z axis in cut v = 0.0 and v = 0.0
are presented in Fig.5.15 (a) and (b). The value for the pattern features are
presented in table 5.7. In order to check the reliability and inclusion feature of
IA — ENUM — MS power bounds, a set of T = 10° Monte Carlo trial values
within the interval of 2} € [zy — \/20; 2y + A/20] have been chosen and their
patterns computed. As can be observed in Fig.5.16, all Monte Carlo patterns
are within the TA— ENUM — M S bounds which validate the inclusion property.

The effect of feed deviation errors along x and y axis can also be evaluated.
In order to calculate the error effects on these two axis, different tolerance errors
along x and y are considered. Interval of the power bounds versus tolerances er-
rors Az = A/200,A/100, A/50, /20, A/10 along x directions for co-polar pattern
is presented in Fig. 5.17 (a) and (b) for cut v = 0 and u = 0, respectively.
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Normalized Power Pattern (dB)
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()

Figure 5.15: Inclusion property validation against feed location error - Nom-
inal power pattern and /A — MS co-polar interval power pattern for Az, =
{A\/200, 100, 50, 20, 10}(a)in v = 0 plane (b)in v = 0 plane.
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Figure 5.16: Monte Carlo power pattern cover IA—MS bounds with Azy = X/20.

Az, | [Pluww)] | [SLLL,dB | [BW]u |Ax10
u—0

0 0 -21.349 0.090

/200 | [-0.015,0.007] | [-21.551,-21.293] | [0.09,0.09] | 0.04

/100 | ]-0.0191,0.003] | [-21.711,-21.184] | [0.09,0.09] | 0.09

\/50 | [-0.026,0.003] | [-22.051,-20.987] | [0.09,0.09] | 0.17

/20 | [-0.051,0.024] | [-23.970,-20.830] | [0.088,0.094] | 0.44

3/10 | [0.095,0.057] | [-24.528,-19.018] | [0.084,0.096] | 0.88
v=0

0 0 -22.561 0.092

A/200 | [-0.015,0.002] | [-23.032,-22.530] | [0.092,0.092] | 0.02

/100 | [-0.019,0.003] | [-23.033,-22.425] | [0.092,0.092] | 0.08

\/50 | [-0.026,0.004] | [-23.310,-22.090] | [0.090,0.094] | 0.18

/20 | [0.051,0.024] | [-24.386,-21.295] | [0.09,0.096] | 0.45

2/10 | [0.095,0.057] | [-26.514,-19.994] | [0.086,0.098] | 0.09

Table 5.7: Analysis of the TA-based co-polar pattern prediction vs. feed displace-
ment errors errors in © = 0 and v = 0 planes, Azy = {)/200, 100, 50, 20, 10}-
Interval pattern features [p(u,v), SLL, BW] and pattern tolerance index A
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Normalized Power Pattern (dB)
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Figure 5.17: Inclusion property validation against feed location error - Nomi-
nal power pattern and IA — MS co-polar interval power pattern for Az, =
{A/200, 100, 50, 20, 10}(a)in v = 0 plane (b)in u = 0 plane.
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Az; | [Pluw,v)] | [SLL,dB | [BW]u [Ax10
u—>0
0 0 -21.349 0.090

2/200 | ]-0.022,0.003]
2/100 | [-0.0353,0.010]

21.831,-20.891] | [0.09,0.092] 0.15
22.347,-20.453| | [0.088,0.092] 0.3
A/50 | [-0.124,0.0314] | [-23.486,-18.994] | [0.084,0.096] 0.7
A/20 | [-0.214,0.086] 28.217,-17.044] | [0.074,0.102] 1.74
A/10 | [-0.335,0.164] [-inf,-14.923] [0.07,0.112] 3.37
v=0

0 0 -22.561 0.092
A/200 | [-0.022,0.0003] | [-23.213,-22.145] | [0.092,0.092] | 0.138
A/100 | [-0.035,0.010] 23.805,-21.649| | [0.090,0.094] | 0.27
A/50 | [-0.124,0.031] 25.120,-20.009] | [0.088,0.095] 0.7
A/20 | [-0.214,0.086] 30.854,-17.844| | [0.082,0.102] 1.62
A/10 | [-0.335,0.164] [-inf,-14.933] [0.074,0.11] 3.26

[_
[_
[_
[_

[_
[_
[_
[_

Table 5.8: Analysis of the IA-based co—polar pattern prediction vs. feed dis-
placement errors in v = 0 and v = 0 planes, Axzy = {)/200, 100, 50, 20, 10}-
Interval pattern features [p(u,v)]

The value of the pattern features and the peak power for co-polar pattern
is shown in Table 5.8 and 5.9 respectively. Inclusion properties for the inter-
val of feed ([zf]laz;=a/200 C [Tf]lazs=a/100 C [T]lae;=rs50 C [Tf]lazs=a/20 C
[24]|az;=2/10) leads to the inclusion properties of the co-polar power pattern
([P]] azp=r/200 C [P) azy=n/100 C [P) azp=rs50 C [P)| azs=n/20 C [P]| azp=r/10)-

Interval of the co-polar power bounds for tolerances of Ay, = X/200,100, 50, 20, 10
in Fig. 5.18. We can see the values of the pattern features in table 5.9.

We consider errors on the feed locations based on the error range for reflector
antenna. Reflectarray antenna are more sensitive to the feed error. We will
consider the more practical feed errors in the z axis, then we will show that this
method is consistent to any error. The interval pattern with the tolerance of
{A/5,\/2, A} is as shown in 5.19. As it is clear the bounds are larger than the
previous errors but it is still inclusive.

5.3.3.3 Performance Analysis Versus Different Focal-length-to-diameter
Ratio (F/D)

After evaluating the reliability of the Interval Minkowski with respect to feed po-
sition errors, we want to check the dependency of tolerance analysis to different
focal-length-to-diameter values (F//D). With this analysis, robustness and stabil-
ity of the method will be assessed. The analysis versus focal-length-to-diameter
values has been carried out by considering F//D = {0.3;0.5;0.7;0.9}. A suitable
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Normalized Power Pattern (dB)
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Figure 5.18: Inclusion property validation against feed location error - Nom-
inal power pattern and /A — MS co-polar interval power pattern for Ay, =
{A/200, 100, 50, 20, 10}(a)in v = 0 plane (b)in u = 0 plane.
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Normalized Power Pattern (dB)
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Figure 5.19: Analysis of the TA-based co—polar pattern prediction vs. feed
displacement errors in u = 0 and v = 0 planes, Az; = {\/5,2,1}- Interval
pattern features [p(u, v)].
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Ayy | [Pwo)] | [SLILdB | [BWlu [AX10
u—>0
0 0 -21.349 0.090

2/200 | [-0.024,0.001] | [-21.817,-20.903] | [0.09,0.092] | 0.13
2/100 | [-0.038,0.0137] | [-22.309,-20.477] | [0.088,0.092] | 0.27
A/50 | [-0.13,0.0372] | [-23.388,-19.029] | [0.086,0.094] | 0.68
2/20 | [-0.229,0.008] | [-27.695,-17.084] | [0.080,0.100] | 1.53

A/10 | [-0.359,0.179] [-inf,-14.915] [0.072,0.100] 2.95
v=0
0 0 -22.561 0.092

2/200 | [-0.024,0.0001] | [-23.228,-22.134] | [0.092,0.094] | 0.159
A/100 | [-0.0383,0.013] | [-23.832,-21.633] | [0.090,0.094] | 0.31
A/50 | [-0.130,0.037] | [-25.194,-19.084] | [0.086,0.008] | 0.78
A/20 | [-0.229,0.008] | [-31.342,-17.817] | [0.080,0.104] | 1.82
A/10 | [-0.359,0.179] | [inf-15.068] | [0.072,0.114] | 3.65

Table 5.9: Analysis of the TA-based co—polar pattern prediction vs. feed
displacement errors errors in v = 0 and v = 0 planes, Ay; =
{A/200, 100, 50, 20, 10}.Interval pattern features [p(u,v), SLL, BW] and pattern
tolerance index A

design for nominal lengths of reflectarray patches is needed to realize required
phase for the proposed F/D values. Four different reflectarray arrangements
have been synthesized for different ratios of F//D.

The behaviour of the peak power pattern versus F'/D = {0.3;0.5;0.7;0.9} in

tolerances of Axzy = {A/200,A/100, /50, A/20, A/10} is shown in Fig. 5.20(a).
Beam width and sidelobe level for these ratios are presented in Fig. 5.20 (b)
and Fig. 5.20(c) , respectively. It is clear from these figures, as the (F/D)
is increasing, the sensitivity of the power pattern to the tolerance errors are
decreasing. The value of the pattern features such as peak power, beam width
and sidelobe level are shown in table 5.10.
Since F'/D ratio is changing, we need to apply the appropriate values for ¢H =
¢F in (5.7), (5.8 ) to achieve the same aperture efficiency of the structure in each
value of F//D . This value is computed in each F'//D . The following values of
qH = {1;1.2;3.2;6} are chosen for F//D = {0.3;0.5;0.7;0.9}[10].
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Ar; | [Pww)] | [SLLL,dB | [BWl]u
F/D =03
0 0 -23.510 0.092
2/200 | [-0.027,0.025] | [-24.856,-22.340] | [0.09,0.094]
A/100 | [-0.154,0.049] | [-28.615,-21.197] | [0.086,0.098]
A/50 | [-0.221,0.090] | [-34.763,-19.414] | [0.082,0.102]
A/20 | [-0.377,0.186] | [-inf.-14.143] | [0.070,0.116]
A/10 | [-0.986,0.293] | [-inf-7.017] [0.05,0.142]
F/D=0.5
0 0 -18.286 0.086
2/200 | [-0.014,0.012] | [-18.858,-17.752] | [0.084,0.088]
A/100 | [-0.089,0.024] | [-19.474,-16.769] | [0.082,0.090]
A/50 | [-0.124,0.044] | [-20.867,-15.888] | [0.078,0.092]
A/20 | [-0.265,0.092] | [-27.498,-13.699] | [0.076,0.100]
A/10 [ [-0.550,0.153] | [-inf-12.355] | [0.056,0.120]
F/D=0.7
0 0 -19.380 0.088
2/200 | [-0.012,0.011] | [-18.858,-17.752] | [0.086,0.088]
A/100 | [-0.025,0.021] | [-19.474,-16.769] | [0.082,0.090]
A/50 | [-0.113,0.041] | [-21.662,-17.098] | [0.082,0.094]
2/20 | ]-0.221,0.091] | [-26.990,-15.066] | [0.076,0.100]
A/10 | [-0.408,0.159] | [-12.355,-19.380] | [0.062,0.114]
F/D =09
0 -20.153 0.088
A/200 | [-0.011,0.010] | [-20.611,-19.717] | [0.088,0.090]
A/100 [ [-0.023,0.020] | [-21.097,-19.305] | [0.086,0.090
A/50 | [-0.109,0.040] | [-22.166,-17.979] | [0.084,0.094]
2/20 | ]-0.198,0.089] | [-26.523,-16.102] | [0.076,0.100]
A/10 | [-0.333,0.157] | [-inf.-14.012] | ]0.068,0.112]

Table 5.10: Analysis vs. F/D ,F/D = {0.3,0.5,0.7,0.9} for feed displacement
errors in v = 0 plane, Azy = {)/200, 100, 50, 20, 10}- Interval pattern features
[p(u,v), SLL, BW] and pattern tolerance index A
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Chapter 6

Conclusions and Future
Developments

In this last chapter, some conclusions are drawn and further advances are envis-
aged in order to address the possible developments of the proposed technique.
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In this thesis, an approach for the tolerance analysis of reflectarray antennas
has been presented and validated. The method is based on the Interval Analysis.
Interval Arithmetic rules are exploited to model the effect of uncertainties on the
radiation pattern of antenna which is analyzed with Aperture field method. In
the interval extension of the reflectarray power pattern functions with Cartesian
Interval method (/A — C'S), the so called Wrapping and Dependency problems
are appeared and these problems overestimate the power bounds. In this thesis,
the proper way to deal with these redundancy problems is addressed. Refor-
mulating the interval function is the first method to eliminate the dependency
effect (1A —CS*). Since the radiation pattern expression has a complex relation
with the geometrical parameters, reformulating (/A — C'S*) can not remove all
dependency problems. To fully remove the dependency, Interval Enumerative
(IA— ENUM) method is applied. Then the Minkowski Sum approach is imple-
mented to eliminate the Wrapping effect (IA — ENUM — MS). The numerical
analysis has proved that:

o the JA— ENUM — MS power pattern bounds are narrower, more reliable
than those predicted by the IA—-CS , IA—-CS*, IA— ENUM

e the JA— ENUM — MS bounds are still inclusive and satisfy the Inclusion
Theorem of TA;

To validate the dependency of the degradation of the pattern features against
varying steering angle, different reflectarray antennas structures are considered
and analyzed, in different patch tolerances. Similar to the previous validation,
the analysis is considered in several bandwidths. The results proved the effec-
tiveness and robustness of the /A — ENUM — M S analysis in different steering
angles and frequencies. After checking the method validity with patch and sub-
strate errors, the tolerance effect on the feed position is considered. Then, the
interval bounds of the co- polar components of the power pattern are calculated
by Interval arithmetic rules together with Minkowski sum approach. Further-
more, different structures of reflectarray antenna for several F//D are considered
and their interval bounds are computed. Larger F'/D ratio can increase the sys-
tem robustness to the tolerance of error. Effectiveness of this tolerance analysis
toward feed error is obvious from the results.

For the future of this work, probabilistic interval analysis can be considered to
predict the power pattern deviations. The statistical behaviour of the geometrical
parameters are modeled with probability density function. Then according to
this function, probabilistic upper and lower bounds of the power pattern can be
defined with Interval Arithmetic rules.

For further examination of the proposed method, we can apply the Interval
Analysis method for reflectarray with different shapes, especially aperture cou-
pled and FSS shape scattering elements. Furthermore, multilayered reflectarray
structure can be considered to estimate the effect of geometrical tolerances in
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different layers and the combination of all errors for the whole structure. Since
reflectarray antenna with different structures is one of the most useful antennas
for space communication, this complete tolerance analysis in reflectarray antenna
could be a very useful tool for an antenna engineer to make a more robust design
against manufacturing and other unpredictable tolerances.
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