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Abstra
t

The thesis fo
uses on predi
ting toleran
e e�e
ts on the radiation pattern of re-

�e
tarray antennas through Interval Analysis. In fa
t, the un
ertainty on the

a
tual size of all parameters under fabri
ation toleran
es su
h as element dimen-

sions and diele
tri
 properties, are modeled with interval values. Afterwards, the

rules of Interval Arithmeti
 are exploited to 
ompute the bounds of deviation in

the resonan
e frequen
y of ea
h element, the phase response of the element and

the radiated power pattern. Due to the redundan
y problems of using Interval

Cartesian (IA−CS) for 
omplex stru
ture, the interval bounds are overestimated
and the reasons are the Dependen
y and Wrapping e�e
ts of using interval anal-

ysis for 
omplex stru
tures. Di�erent te
hniques are proposed and assessed in or-

der to eliminate the dependen
y e�e
t su
h as reformulating the interval fun
tion

and the Enumerative interval analysis. Moreover, the Minkowski sum approa
h

is used to eliminate the wrapping e�e
t. In numeri
al validation, a set of rep-

resentative results, show the power bounds 
omputations with Interval Cartesian

method (IA − CS), a modi�ed Interval Cartesian method (IA − CS∗
), Inter-

val Enumerative method (IA − ENUM) and Interval Enumerative Minkowski

method ( IA − ENUM −MS) and a 
omparative study is reported in order to

assess the e�e
tiveness of the proposed approa
h (IA − ENUM − MS) with

respe
t to the other methods. Furthermore, di�erent toleran
es in pat
h width,

length, substrate thi
kness and diele
tri
 permittivity are 
onsidered whi
h shows

that the higher un
ertainty produ
es the larger deviation of the pattern bounds

and the larger deviation in
lude the smaller deviation and the nominal one. To

validate the in
lusion properties of the interval bounds, the results are 
ompared

with Monte Carlo simulation results. Then, a numeri
al study is devoted to

analyze the dependen
y of the degradation of the pattern features to steering an-

gle and the bandwidth. Finally, the e�e
t of feed displa
ement errors on the

power pattern of re�e
tarray antennas is 
onsidered with Interval Enumerative

Minkowski method. The maximal deviations from the nominal power pattern

(error free) and its features are analyzed for several re�e
tarray stru
tures with

di�erent fo
al-length-to-diameter ratios to prove the e�e
tiveness of the proposed

method.

Keywords

Re�e
tarray Antennas, Sensitivity Analysis, Antenna Un
ertainties, Interval Anal-

ysis, Minkowski Sum, Feed Error, Phase Error.
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Stru
ture of the Thesis

The thesis is stru
tured in 
hapters a

ording to the organization detailed in

the following.

The �rst 
hapter (
hapter 1) deals with an introdu
tion to the thesis and the

state-of-the-art investigation, fo
using on the introdu
tory remarks on re�e
tar-

rays and the main motivations of using interval analysis for toleran
e analysis of

the re�e
tarray antenna.

Chapter 2 provides the di�erent approa
hes used for the analysis of the ra-

diation pattern of re�e
tarrays , fo
using on the Aperture Field Method and

Floquet model expansions. Te
hniques for 
omputing the phase distribution on

the re�e
tarray aperture surfa
e are provided in this 
hapter. Approa
hes for

designing the unit 
ell is also 
overed in this 
hapter. The analyti
al expression

for the re�e
tion 
oe�
ient is explained. The radiation pattern and its relation

to the physi
al parameters of the unit 
ell is expressed.

Chapter 3 is devoted to the fundamental of the Interval Analysis method, fo-


using on the de�nition, properties and the key features of the interval arithmeti


rules. Interval fun
tions with in
lusion theory are de�ned. Complex interval is

explained. The two main problems of Dependen
y and Wrapping related to the

use of Interval Analysis and Arithmeti
 of Intervals in 
omplex stru
ture are fully

explained. These problems produ
e the redundan
y in the interval bounds. Re-

formulating of the interval expression for solving the dependen
y e�e
t is properly

determined.

Mathemati
al formulation of the re�e
tarray analysis and its interval exten-

sion are des
ribed in 
hapter 4. A mi
rostrip re�e
tarray antenna is 
onsidered

as an illustration. Then Aperture Field method together with Floquet model

expansions are 
onsidered for analysis the mi
rostrip re�e
tarray antenna. To

xi
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onsider the e�e
t of the geometri
al parameters error on the radiation perfor-

man
e of the antenna, interval analysis is applied. This 
hapter deals with the

interval extension of the re�e
tarray radiation pattern expression. Geometri
al

parameters su
h pat
h length, width, substrate thi
kness and diele
tri
 permit-

tivity are modeled with interval values, then the interval fun
tion of the far �eld

is 
omputed. Di�erent te
hniques for eliminating dependen
y e�e
t in re�e
tar-

ray antenna formulations are expressed. Minkowski Sum approa
h to remove the

wrapping e�e
t is explained.

Several representative results are presented in 
hapter 5. The in
lusion prop-

erties are 
he
ked by 
omparing the resulting bounds with the Monte Carlo

simulation results. A 
omparative study 
he
ks the improvement of Interval

Enumerative Minkowski (IA−ENUM −MS) to Interval Cartesian (IA−CS).
Pattern feature analysis versus steering angle, bandwidth are assessed and de-

s
ribed. The e�e
t of feed displa
ement errors on the radiation performan
e of

the re�e
tarrays is also 
onsidered in this 
hapter. The bounds of the deviation

as a result of the axial errors are 
omputed by Interval Minkowski methods. The

in
lusion properties are 
he
ked by 
omparing the results with the Monte Carlo

simulation results. Analysis versus di�erent fo
al-length-to-diameter (F/D) ra-
tios in di�erent toleran
e errors in the feed positions is evaluated. The results

are explained and 
ompared together.

Con
lusions and further developments are presented in Chapter 6.

xii



Chapter 1

Introdu
tion and State-of-the-Art

In the introdu
tion, the motivation of the thesis is pointed out starting from a

brief overview on the re�e
tarrays and te
hniques presented in the state-of-the-

art for toleran
e analysis of the re�e
tarray antenna.

1



High gain antennas are needed in a variety of 
ommuni
ation systems su
h as

radar, long distan
e 
ommuni
ation, wireless 
ommuni
ation and remote sensing

appli
ations. Re�e
tor and array antennas are traditionally two main antennas

for high gain appli
ations [1℄. Curve surfa
e of the re�e
tor antennas makes the

manufa
turing pro
ess more di�
ult. Furthermore, high mass and volume of

re�e
tor antenna in
rease the laun
h 
ost spe
ially in spa
e 
ommuni
ation. In

re
ent years, phased array antennas have been used as an appropriate option for

satellite 
ommuni
ation due to the advantages of low pro�le, low 
ost, low mass

and high gain radiation patterns [2℄. Despite the previously mentioned advan-

tages, the feeding system of the phased array antennas is quite 
ompli
ated. The

most ideal antennas for spa
e 
ommuni
ation are the ones whi
h 
an 
ombine

the best features of the re�e
tor and array antennas. Over the past few years,

re�e
tarray antennas have proved to be an ex
ellent alternative to re�e
tor and

array antennas. Re�e
tarray antennas �rst introdu
ed in 1960s by Berry, Male
h

and Kennedy [3℄. They were short-ended waveguide with variable-length waveg-

uide. Then in mid-1970s �spiraphase� re�e
tarray was presented by Phelan [4℄.

In the 1980s, mi
rostrip re�e
tarray antennas were developed [5℄.

Favorable features of low pro�le, low mass, low 
ost and high e�
ien
y as well

as the ability of being folded in spa
e have made the re�e
tarrays the most appli-


able antennas for spa
e 
ommuni
ations [6℄, [7℄. Re�e
tarray antenna stru
ture

in
lude several radiating elements lo
ated in a re�e
tive surfa
e whi
h are illumi-

nated by a feed antenna. Mi
rostrip pat
hes, dipoles and rings are the radiating

elements in the re�e
tarray antenna [8℄, [9℄ . These radiating elements produ
e

the required phases to form a planar phase front in the far-�eld [10℄. Di�erent

approa
hes 
an be used to produ
e the required phases[13℄. These approa
hes

are variable phase delay lines atta
hed to element [11℄, variable-size pat
hes [12℄,

dipoles or rings and the element rotations . Among them variable-size approa
h

has the disadvantages of the the limited realizable phase range. The a
hievable

phase range by this approa
h is less that 360 [deg℄. This unattainable phase

range leads to phase error. To take a phase variation near to 360 [deg℄, pat
h

size should 
hange signi�
antly about 40 per
ent whi
h leads to an ine�
ien
y

[10℄. By using element rotation better e�
ien
y 
ould be obtained due to the

la
k of spe
ular re�e
tion of the o�-broadside in
ident rays [10℄. Despite of all

advantages of the re�e
tarray antenna, it has one main disadvantage whi
h is its

narrow bandwidth. It is usually beyond ten per
ent depending on its element de-

sign, aperture size and the fo
al length [14℄. This bandwidth is mainly limited by

the element geometry and di�erential spatial phase delay. For a
hieving wider

bandwidth thi
k substrate, sta
king multiple pat
hes and sequentially rotated

subarrays are proposed. More than 15 per
ent bandwidth is gained by these ap-

proa
hes [15℄, [16℄. Re�e
tarray with larger fo
al-length-to-diameter (f/D) ratio

have wider bandwidth. Curved re�e
tarray with pie
ewise �at surfa
es has larger

bandwidth than a �at re�e
tarray antenna. Despite of the bandwidth limitation

of the re�e
tarray antenna, due to several 
apabilities, development and resear
h

2



CHAPTER 1. INTRODUCTION AND STATE-OF-THE-ART

for re�e
tarray antenna are still an ongoing pro
ess. Several development and

innovation te
hniques are used in re�e
tarray antenna design whi
h is worth to

mention. Using multi-layer sta
ked pat
h in
rease the bandwidth from a few

per
ent to ten per
ent [15℄, [16℄. This stru
ture 
an improve the phase range far

in ex
ess of 360 [deg℄. By varying the dimensions of three sta
ked pat
hes, over

600 [deg℄ phase ranges 
an be a
hieved. In [17℄, the ele
tri
ally largest re�e
-

tarray in the mi
rowave and millimeter-wave spe
tra is introdu
ed. It is a 3-m

Ka-band 
ir
ularly polarized in�atable re�e
tarray 
onsisting of 200000 elements.

In [3℄, an amplifying re�e
tarray antenna was developed in whi
h ea
h element

re
eives the signal from feed, then goes to ampli�er and retransmit the signal.

It 
an give very high equivalent isotropi
 radiated power. Another improvement

in re�e
tarray antenna design is applying optimization algorithm to synthesis

the antenna pattern. There are di�erent parameters in re�e
tarray antenna su
h

as substrate thi
kness, pat
h size, in
ident angle, main beam and bandwidth.

These parameters 
an be optimized in order to a
hieve the high gain, e�
ien
y

and the dire
tivity. Geneti
 Algorithm (GA) and Parti
le Swarm Optimization

(PSO) are properly used in [20℄ and [19℄ to synthesize the re�e
tarray antenna.

A novel re�e
tarray antenna integrated with solar 
ells for satellite 
ommuni
a-

tion is developed in [21℄. Over all of these innovations and developments, there

is one main 
hallenge whi
h is not 
onsidered e�
iently in re�e
tarray antenna

design. Re�e
tarray antenna 
an be a�e
ted by surfa
e deviations and the man-

ufa
turing toleran
es due to its re�e
tion me
hanism, pat
h dimensions and the

ele
tri
al phases [10℄. The phase response of the pat
h element in mi
rostrip

re�e
tarray depends on its physi
al parameters [22℄. Due to the ina

ura
ies in

manufa
turing pro
ess, the dimension of the single element and the position of

the feed deviate from their a
tual values. This deviation 
auses a 
onsiderable


hange in phase response of the single element and eventually the degradation

in the radiation pattern. To de
rease the sensitivity toward manufa
turing er-

rors, two layer stru
ture is suggested. As an example, a toleran
e error of 0.1

mm in pat
h dimension will produ
e only 6.5 error in phase, whi
h indi
ate the

low sensitivity to manufa
turing toleran
es rather than a single layer re�e
tar-

ray antenna [10℄. The e�e
t of manufa
turing errors is more sensible when the

frequen
y is in
reasing.

To improve the robustness of the system, any 
hange in the phase response

should be avoided. Di�erent me
hanisms have been applied to estimate the phase

errors and the pattern degradation. Toleran
e analysis has been applied to the

re�e
tarray antenna in the work of Pozar et al. [24℄ where statisti
al approa
hes

are implemented to estimate the deviation in phase response of mi
rostrip pat
h

element while the root-mean-square error of pat
h dimensions are known. In [23℄,

numeri
al analysis is presented to 
ompute radiation dis
repan
y of metalli
 re-

�e
tarray antenna experien
ing manufa
turing distortion at millimeter waves.

Errors are modeled with normal distribution. Sin
e re�e
tarray antennas are

sensitive to manufa
turing errors, the need for the toleran
e analysis is unavoid-

3



able. Initial work on toleran
e analysis of the antenna was based on statisti
al

approa
hes. Toleran
e analysis is used to 
onsider the e�e
t of toleran
e in the

position of the element due to me
hani
al errors [25℄. A probabilisti
 analysis is

exploited in [26℄ and [27℄ to 
al
ulate the maximum toleran
e in array elements

to satisfy the spe
i�
 
onstrains. In [47℄, toleran
e analysis based on Monte Carlo

method is exploited to predi
t the e�e
ts of errors in the ex
itation and the po-

sition of ea
h element. The above-mentioned methods are based on statisti
al

approa
hes in whi
h the a-priori knowledge of the error distribution is ne
essary.

The main problem asso
iated with Monte Carlo method is the lengthy 
ompu-

tations of the in�nite number of error 
ombinations. Sin
e it is not plausible

to realize the in�nite number of errors, the Monte Carlo results are not totally

reliable [47℄.

To over
ome the 
urrent limitations of statisti
al approa
hes in toleran
e

analysis, Arithmeti
 Interval is applied to perform operations between interval

values [29℄. Interval Analysis was �rst used to solve the linear and nonlinear

fun
tions [29℄ and optimization problems [30℄. Its usage in ele
tromagneti
 �eld

was initiated with the robust design of the magneti
 devi
es [31℄ and reliable

systems for target tra
king radar [32℄. Re
ently Interval Analysis was used to

model the manufa
turing toleran
es in ex
itation and position of linear array

antenna. Interval arithmeti
 was then exploited to 
ompute the bounds of the

radiation pattern degradation over the interval errors [33℄. A 
losed form expres-

sion has been presented for the upper and lower bounds of the power pattern in

the re�e
tor antenna with bump-like surfa
e by the features of Interval Analysis

and the rules of arithmeti
 for intervals [49℄. A

ording to the state of the art,

the signi�
an
e of applying manufa
turing toleran
e analysis in antenna design is

quite well-known. In order to apply interval analysis in re�e
tarray antenna, we

need to apply proper analysis method. In the next 
hapter, di�erent te
hniques

for analysis of the re�e
tarray antenna radiation pattern will be explained.
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Chapter 2

Radiation Analysis for Re�e
tarray

Antenna

In this 
hapter di�erent approa
hes for analysis of the radiation pattern of the

re�e
tarray antenna are presented. Comparative studies among these approa
hes

are provided. There are several approximations for feed antenna pattern and

the element re�e
tion 
oe�
ient. These approximations are explained in this

se
tion. The a

urate method for analysis of the 
o- and 
ross-
omponents of

the radiation pattern is also provided.
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2.1. INTRODUCTION

2.1 Introdu
tion

To 
ompute the radiation 
hara
teristi
 of the re�e
tarray antenna, di�erent

approa
hes su
h as Array-Theory method and Aperture-Field method 
an be

applied. Advantages and disadvantages of using these methods are des
ribed in

this se
tion. One of the most 
ru
ial part of the re�e
tarray analysis and design

is the a

urate evaluation of the unit 
ell element whi
h provide a required phase-

shift. The phase shift distribution of the re�e
tarray surfa
e and unit 
ell design

are 
lari�ed in this se
tion.

2.2 Overview of Analysis Te
hniques

2.2.1 Array-Theory Method

Conventional array theory is applied to 
ompute the far �eld radiation pattern

of the re�e
tarray antenna. Considering the array antenna withM ∗N elements.

The total ele
tri
 �eld of the array antenna is the multipli
ation of the element

pattern and the element ex
itation as [35℄:

E(v̂) =

M∑

m=1

N∑

n=1

−→
b mn(v̂) • −→a mn(

−→r mn), (2.1)

v̂ = x̂sinθcosφ+ ŷsinθsinφ + ẑcosθ (2.2)

Where

−→r mn is the position ve
tor and bmn , amn are the element fa
tor and

the ex
itation ve
tor fun
tion, respe
tively. For the sake of simpli
ity element

fa
tors and the ex
itation ve
tor are approximated by s
alar fun
tions. A 
osine

q model is 
onsidered for the element pattern as:

bmn(v̂) ≈ cosqe(θ)ejk(
−→r mn•v̂)

(2.3)

The ex
itation ve
tor

−→a mn is approximated as:

amn ≈ cosqfθf (m,n)

|−→r mn −−→r f |
e−jk(|−→r mn−−→r f |)|Γmn|ejφmn

(2.4)

The element ex
itation is the multipli
ation of the feed-horn pattern fun
tion

and the re
eiving mode pattern of the element (Γmn). Feed horn pattern is

approximated by 
osine q model and taking into a

ount the distan
e between

the feed horn and the element. θf is the spheri
al angel and

−→r f is the position

ve
tor of feed. The re
eiving mode pattern of the element is as follows:

|Γmn| = cosqeθe(m,n) (2.5)

With all of these approximations, the radiation pattern is presented as [35℄:

8



CHAPTER 2. RADIATION ANALYSIS FOR REFLECTARRAY ANTENNA

E(θ, φ) =
M∑

m=1

N∑

n=1

cosqeθ
cosqfθf(m,n)

|−→r mn −−→r f |
e−jk(|−→r mn−−→r f |−−→r mn•v̂)cosqeθe(m,n)e

jφmn

(2.6)

where φmn is the required phase delay of mn-th element.

Advantages and disadvantages of this method are as follows [35℄:

• Advantage: simpli
ity of the formulation and the program development

• Disadvantage: the 
ross-polarization is not modeled.

2.2.2 Aperture-Field Method

In this method, �rst the tangential ele
tri
 �eld on the aperture surfa
e is 
om-

puted by 
onsidering the polarization of the �eld horn. A horn antenna is usually

used as a feed in the re�e
tarray antenna. The radiation pattern of the horn an-

tenna is given [10℄:

For a x-polarized feed

EFx(θ, φ) =
jke−jkr

2πr
(θ̂CE(θ)cosφ− φ̂CH(θ)sinφ) (2.7)

For a y-polarized feed

EFy(θ, φ) =
jke−jkr

2πr
(θ̂CE(θ)sinφ+ φ̂CH(θ)cosφ) (2.8)

CH and CE are the H-plane and E-plane radiation patterns of the horn antenna.

They are modeled as cosq(θ) fun
tions. q is the value whi
h is 
omputed from the

aperture e�
ien
y and the feed horn data. In (2.7) and (2.8), the radiated �eld

of the feed in the spheri
al 
oordinate is 
omputed. The spheri
al 
omponents

of the ele
tri
 �eld is transformed to Cartesian 
omponents from the following

matrix transformation.



EF

x

EF
y

EF
z


 =



sinθcosφ cosθcosφ −sinφ
sinθsinφ cosθsinφ cosφ
cosθ −sinθ




 EF

θ

EF
φ




Then this 
omponents should 
onvert from feed 
oordinate system to the re�e
-

tarray 
oordinate system by a proper transformation matrix.

2.2.3 Radiation Patterns

After 
omputing the tangential ele
tri
 �eld, the radiated far �eld is obtained

by an asymptoti
 evaluation of the integrals. The radiated far �eld are as follow

[10℄:

9



2.2. OVERVIEW OF ANALYSIS TECHNIQUES

E(θ, φ) = jk[(θ̂cosφ− φ̂sinφcosθ)ẼRx(u, v)+(θ̂sinφ+ φ̂cosφcosθ)ẼRy(u, v)]
e−jkr

2πr
(2.9)

Where ẼRx(u, v) and ẼRy(u, v) are the Fourier transform of the Cartesian 
om-

ponents of the tangential ele
tri
 �eld ERx(u, v) and ERy(u, v) , expressed as

follows:

ẼRx/y(u, v) =

∫ ∫

RA

ERx/y(x, y)e
jk0(ux+vy)dxdy (2.10)

Where u and v are the angular 
oordinates as:

u = sinθcosφ (2.11)

v = sinθsinφ (2.12)

To 
ompute the (2.10) element by element, variable 
hange in the 
oordinate is

used for the 
oordinate (x, y):

x = x
′

+mpx −
(Nx − 1)px

2
;m = 0, 1, 2, ..., Nx − 1 (2.13)

y = y
′

+ npy −
(Ny − 1)py

2
;n = 0, 1, 2, ..., Ny − 1 (2.14)

Central point of the element (m,n) are (mpx − (Nx−1)px
2

, npy − (Ny−1)py
2

). x
′

and

y
′

are withing the following bounds [10℄:

−px
2

≤ x
′ ≤ px

2
(2.15)

−py
2

≤ y
′ ≤ py

2
(2.16)

where px and py are the periodi
ity along x and y, dire
tions. Maximum number

of element in x and y dire
tion are Nx and Ny, respe
tively. By substituting

(2.13), (2.14) in (2.10), the spe
tral fun
tion is as:

ẼRx/y(u, v) = K1

M−1∑

m=0

N−1∑

n=0

[ejk0(umpx+vnpy)

∫ −px
2

−px
2

∫ py
2

− py
2

Em,n
Rx/y(x

′

, y
′

)ejk0(ux
′

+vy
′

)dx
′

dy
′

]

(2.17)

where

10



CHAPTER 2. RADIATION ANALYSIS FOR REFLECTARRAY ANTENNA

K1 = e−j
k0
2
[u(M−1)dx+v(N−1)dy ]

(2.18)

Tangential �eld 
omponents in ea
h 
ell of the re�e
tarray is shown with the


omplex 
oe�
ient of the re�e
ted �eld.

Em,n
Rx/y(x

′

, y
′

) = ax/Y (m,n) = Ax/y(m,n)ejφx/y(m,n)
(2.19)

By substituting (2.19) in (2.17), the integration 
an be written by the summation

as:

ẼRx/y(u, v) = K1pxpysinc(
k0upx
2

)sinc(
k0vpy
2

)

M∑

m=0

N∑

n=0

Ax/y(m,n)e
jφx/y(m,n)ejk0(umdx+vndy)

(2.20)

In every re�e
tarray element, Cartesian 
omponents of the re�e
ted and the

in
ident �eld are related to ea
h other by s
attering matrix as:

[
ax(m,n)
ay(m,n)

]
=

[
S11 S12

S21 S22

] [
EF

x

EF
y

]
(2.21)

This s
attering matrix 
an be 
omputed by the Method of Moment in the spe
-

tral domain. The element of the s
attering matrix 
an also be repla
ed by the

re�e
tion 
oe�
ient.

[
ax(m,n)
ay(m,n)

]
=

[
Γxx Γxy

Γyx Γyy

] [
EF

x

EF
y

]
(2.22)

As it is obvious in (2.21) and (2.22), s
attering matrix and the re�e
tion 
oe�-


ient are the main parts for 
omputing the radiation pattern. These 
oe�
ients

relate to element performan
e of the unit 
ell. In the following part, di�erent

te
hniques for analysis of the unit 
ell element are proposed.

2.2.4 Unit Cell Design

Ea
h element in re�e
tarray antenna should produ
e the required phases in order

to 
ompensate di�erent spatial distan
es from feed to element. This phase shift

distribution is 
omputed from the following expressions.

2.2.4.1 Phase-Shift Distribution Te
hnique

Ea
h element must produ
e a phase-shift to provide a 
ollimated beam in a given

dire
tion. From the array theory, the phase distribution to produ
e a beam in

the main beam dire
tion (θb, φb) is as [10℄:

φ(xmn, ymn) = −k0sinθbcosφbxmn − k0sinθbsinφbymn (2.23)

11



2.2. OVERVIEW OF ANALYSIS TECHNIQUES

(xmn, ymn) is the lo
ation of the mn-th element in the re�e
tarray surfa
e. k0
is the propagation 
onstant. Phase of the re�e
ted ele
tri
 �eld 
an also be


omputed from the following way. Phase of the re�e
ted �eld is equal to the

phase of the in
ident �eld plus phase-shift produ
ed by ea
h element as:

φ(xmn, ymn) = −k0Rmn + φR(xmn, ymn) (2.24)

Rmn is the distan
e from phase 
enter of the feed to element. φR(xmn, ymn) is a
phase-shift for mn-th element. From (2.23) and (2.24), the required phase shift

for ea
h element is:

φR(xmn, ymn) = k0(Rmn − (xmncosφb + ymnsinφb)sinθb) (2.25)

In re�e
tarray antenna phase of the re�e
tion 
oe�
ient should 
hange in order

to mat
h these phases. Di�erent te
hniques 
an be used to provide these phases.

These te
hniques are as follows:

• Conne
ting variable-length stubes to element

• Pat
h with variable sizes

• Element loaded with MEMS, vara
tors and liquid 
ristal polymers

Performan
e of the antenna element in re�e
tarray antenna related to its physi
al

parameters su
h as

• pat
h dimensions length (l) and width (w)

• substrate thi
kness (d)

• diele
tri
 
onstant (εr)

• diele
tri
 and 
ondu
tor losses (tanδ, σ)

• spa
ing between elements (px, py)

In the following se
tion, re
ent te
hniques for analysis and design of the single

element are provided.

2.2.4.2 Te
hniques for Analysis of the Unit Cell

In this se
tion, di�erent methods for analysis of the unit 
ell elements are men-

tioned. And the most re
ent theoreti
al method for analysis of the single element

is explained with more details. Te
hniques of the analysis of the single element

are as follows:

• Numeri
al methods su
h as spe
tral domain method of moments (MoM),

�nite element method (FEM), �nite di�eren
e time domain (FDTD)

12
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• Commer
ial pa
kages su
h as HFSS, CST, FEKO

• Theoreti
al model based on full-wave simulations

• Analyti
al approa
h based on Q fa
tor analysis

Sin
e in this thesis we want to 
ompute the radiation pattern analyti
aly, ana-

lyti
al approa
h based on Q fa
tor is explained with more details in the following

part.

2.2.4.3 Analyti
al Approa
h Based on Q Fa
tor Analysis

A 
omplete analyti
al approa
h based on Q fa
tor is introdu
ed to extra
t the

re�e
tion properties of the unit 
ell. In order to extra
t the 
losed-form formulas,

we need to express the in
ident and the re�e
ted �eld in terms of orthogonal

Floquet modes. Let us provide a short explanation about Floquet harmoni
s

and its expression.

2.2.4.4 Floquet Harmoni
s

An arbitrary in
ident �eld 
an be de�ned as a summation of the TE and TM

Floquet spa
e harmoni
s with 
omplex amplitude. The in
ident ele
tri
 �eld

propagating toward -z with Floquet harmoni
 expansion is written as [10℄:

Ei
1 =

2L∑

l=1

d1e1exp(j(kxmx+ kyny + kzlz)) (2.26)

The transverse re�e
ted ele
tri
 �eld propagate toward z with the Floquet har-

moni
 expansion is:

Er
1 =

2L∑

l=1

a1e1exp(j(kxmx+ kyny − kzlz)) (2.27)

The normalized modal �elds for TE and TM Floquet harmoni
s el are as:
for (TE) 1 ≤ l ≤ L

el =
1

kcl
(−kynx̂+ kxmŷ) (2.28)

for (TM)L+ 1 ≤ l ≤ 2L

el =
1

kcl
(kxmx̂+ kynŷ) (2.29)

with

kcl =
√
k2xm + k2yn (2.30)

kxm = k0sinθcosφ+
2mπ

px
= kx0 +

2mπ

px
(2.31)

13
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kyn = k0sinθcosφ+
2nπ

py
= ky0 +

2nπ

py
(2.32)

Complex amplitude of the in
ident �eld are (dx) and (dy). They 
an be 
on-

verted to dl(TE) and dL+1(TM) 
omponents by a matrix transformation. This

transformation is as follows:

[
dl
dL+1

]
=

1

kcl

[
−ky0 kx0
kx0 ky0

] [
dx
dy

]
(2.33)

Similarly, the TE/TM 
omponents of the re�e
ted �eld al(TE) and aL+1(TM)

an 
onvert to x/y 
omponents as:

[
ax
ay

]
=

1

kcl

[
−ky0 kx0
kx0 ky0

] [
al
aL+1

]
(2.34)

The in
ident and re�e
ted �elds of the re�e
tarray are represented by Floquet

modes. They are 
onne
ted to ea
h other by the re�e
tion 
oe�
ient. The

expression for the re�e
tion 
oe�
ient is explained using 
oupled-mode theory.

Theoreti
al expression for the re�e
tion 
oe�
ient are des
ribed in the next part.

2.2.4.5 Theoreti
al Expression for The Re�e
tion Coe�
ient

In order to extra
t the re�e
tion 
oe�
ient expression for a single element, the

antenna element is 
onsidered inside a waveguide supporting Floquet modes. By


onsidering the waveguide with two orthogonal polarized fundamental Floquet

modes (TE00, TM00), the 
o-
oupling and 
ross-
oupling re�e
tion 
oe�
ient are

as follows [22℄:

When the in
ident �eld is TE , the fra
tion of the re�e
ted power into TE

mode is 
alled TE 
o-
oupled re�e
tion 
oe�
ient with the following expression

[22℄:

ΓTEco(f) =

1
QradTE

− ( 1
QradTM

+ 1
Q0

)− 2j(f−f0)
f0

1
QradTE

+ 1
QradTM

+ 1
Q0

+ 2j(f−f0)
f0

(2.35)

when the in
ident �eld is TM , the fra
tion of the re�e
ted power into TM mode

is 
alled TM 
o-
oupled re�e
tion 
oe�
ient with the following expression [22℄:

ΓTMco(f) =

1
QradTM

− ( 1
QradTE

+ 1
Q0

)− 2j(f−f0)
f0

1
QradTE

+ 1
QradTM

+ 1
Q0

+ 2j(f−f0)
f0

(2.36)

Cross-
oupling is a fra
tion of the re�e
ted power into (TE/TM) when the in-


ident �eld is (TM/TE). The 
ross-
oupling expression is as [22℄:

Γcross(f) =

2√
QradTEQradTM

1
QradTE

+ 1
QradTM

+ 1
Q0

+ 2j(f−f0)
f0

(2.37)
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where, QradTE and QradTM are the radiation Q fa
tors for the TE and TM
modes, respe
tively. f is the working frequen
y. f0 is the resonant frequen
y.

Q0 is a 
ombined Q fa
tors of 
ondu
tor and diele
tri
 losses as:

Qc = d
√
πfµσ (2.38)

Qd =
1

tanδ
(2.39)

Q0 =
QcQd

Qc +Qd
(2.40)

where substrate thi
kness is (d) and the loss tangent is tanδ. The e�e
t of the

in
ident angle and the physi
al parameters are obvious in the Q fa
tor expression.

As an example, the 
losed form expression for a re
tangular mi
rostrip pat
h in

term of unit 
ell's physi
al parameters and the in
ident angle as [22℄:

QradTE =
f0πε

4d

l

w
pxpy

η0
cosθcos2φ

(2.41)

QradTM =
f0πε

4d

l

w
pxpy

η0cosθ

sin2φ
(2.42)

These expressions help us to properly investigate the e�e
t of physi
al pa-

rameters errors on the re�e
tion 
oe�
ient and the radiation pattern. By sub-

stituting (5.24) ,(2.42), (2.38), (2.39) and (2.40) in (5.22),(2.36) and (2.37), the

re�e
tion 
oe�
ient of the unit 
ell are obtained.

If we 
onsider in
ident �eld of the re�e
tarray in terms of the TE and TM
Floquet harmoni
s (2.22), the re�e
ted TE and TM 
omponents related to the

in
ident Floquet harmoni
s by the re�e
tion 
oe�
ients as:

[
ETE

ref

ETM
ref

]
=

[
ΓTEco Γcross

Γcross ΓTMco

] [
ETE

inc

ETM
inc

]
(2.43)

By substituting (2.43) in (2.22) and 
onsequently in the (2.17) and (2.9), the

total power pattern expression 
an be a
hieved. By using analyti
al expression

for the re�e
tion 
oe�
ient, the analyti
ally expression for the total power pat-

tern is obtained. In this total power pattern, the dire
t relation between the

radiation pattern and the physi
al parameters are des
ribed. The physi
al pa-

rameters deviate from their nominal values due to manufa
turing un
ertainties.

This random manufa
turing un
ertainties produ
e di�erent radiation patterns.

Our goal is to de�ne an e�
ient strategy to 
ompute in
lusive pattern bounds for

a given maximum toleran
es on the re�e
tarray geometri
al parameters. After

providing the analyti
al expression for the radiation pattern, the toleran
e anal-

ysis should be applied in order to 
ompute the power pattern deviation bounds.

As it is mentioned in the 
hapter 1, Interval Analysis proved to be an e�
ient
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tools for the toleran
e analysis of the antenna. In the next 
hapter, Interval

Analysis method with their properties and features are explained.
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Chapter 3

Fundamentals of Interval Analysis

In this 
hapter, an overview for learning Interval Analysis is introdu
ed. First

the interval values and their need in our real life are des
ribed by examples.

Then Interval Analysis approa
hes are de�ned. The rules for the arithmeti


Interval operations su
h as addition, subtra
tion, multipli
ation and division are

provided. Then the properties of Interval Arithmeti
 are presented. Interval

fun
tion and their features are fully des
ribed in this 
hapter. Dependen
y and

wrapping e�e
t in interval arithmeti
 are 
ompletely explained.

17



3.1. INTRODUCTION

3.1 Introdu
tion

Un
ertainty is part of our �every-day� life. The need to en
lose the number is

obvious in many di�erent appli
ations.In the following example, we want to show

the appearan
e of the un
ertainty in our daily life.

Suppose we want to measure the dimension of the table. The table with the

dimensions is shown in the Fig (3.1).

l 

w 

Figure 3.1: Sket
h of the table and its dimension

Di�erent measurement instruments su
h as tailor or 
aliper 
an be used to

measure the dimensions. First we use a a tailor to measure the dimensions. The

dimension are shown as follows:

l = 1.2 + /− 0.1m (3.1)

w = 0.8 + /− 0.1m (3.2)

Then with a 
aliper or more pre
ise devi
es, the dimension values are as follows:

l = 1.20m+ /− 0.01m (3.3)

w = 0.80m+ /− 0.01m (3.4)

As it is 
lear from the measurement, un
ertainty is always available regardless of

the a

ura
y of the instrument. By using 
aliper, the 
orre
t length/width lies

within 
ertain ranges.

0.19 < l < 1.21 → l ∈ [1.19, 1.21] (3.5)

0.79 < w < 0.81 → w ∈ [0.79, 0.81] (3.6)

18



CHAPTER 3. FUNDAMENTALS OF INTERVAL ANALYSIS

Clearly, the length and width belongs to the intervals. As it is mentioned

before, un
ertainty is unavoidable part of our life. We need to apply the proper

mathemati
al tools to deal with un
ertain values. I would like to explain the need

for Interval Analysis by the other example from physi
al s
ien
e. By 
onsidering

Newtons law as [36℄:

F = ma (3.7)

If the quantity of the for
e F and the mass m lie in the 
ertain ranges as:

F0 −∆F ≤ F ≤ F0 +∆F (3.8)

Then the a

eleration a is de�ned with the bounds as follows:

al ≤ a ≤ au (3.9)

lower and upper range of the the a

eleration (al , au) depends on F0, m0, ∆F
, ∆m . Sin
e the quantity of for
e is not an exa
t value and 
an be de�ned in

a 
ertain range then the a

elerations is also des
ribe within the range whose

upper and lower bounds depends on the upper and lower bounds of the for
e.

One of the strong mathemati
al tool to 
ope with un
ertain world is the Interval

Analysis method. In the following se
tion, the de�nition of interval numbers and

the interval arithmeti
 rules will be des
ribed.

3.2 Interval Analysis

A real interval [X ] is a non-empty 
ompa
t set of real numbers between and

in
luding the endpoints xinf and xsup [36℄.

[X ] = {x ∈ R : xinf ≤ x ≤ xsup} (3.10)

As it is shown in Fig (3.2), left end point in�mum of [X ] and the right end

point supremum of [X ] are the maximum and minimum of all points in the

interval:

xinf = min{x ∈ [X ]} (3.11)

xsup = max{x ∈ [X ]} (3.12)
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infx

R 0 
[ ] 

supx

Figure 3.2: Interval end points

Two intervals [X ] and [Y ] are equal if their endpoints are equal. The absolute
value of the interval |[X ]| is the maximum of the absolute values of its endpoints.

|[X ]| = max{|xinf |, |xsup|} (3.13)

Width and the midpoint of the interval [X ] are shown in �gure (3.3). The

de�nition of the width of the interval [X ] based on the endpoints is as:

w([X ]) = xsup − xinf (3.14)

Midpoint of [x] is related to the endpoints given as:

m([X ]) =
xinf + xsup

2

Width of the interval with the interval mid-point are shown in Fig. 3.3

infx

R 0 
[ ] 

supx

m ([X]) 

w ([X]) 

m (

Figure 3.3: Interval midpoint and width

3.2.1 Interval Elementary Operations

Elementary operations 
an also be applied for the interval numbers. This ele-

mentary operations in
lude sum, di�eren
e, produ
t , inverse and the division.

In interval domain, operations are dealing with sets than a value. By performing

an operation between two intervals, the resulting is a set 
ontaining all pairs

from two initial sets as given below [36℄:
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[X ] + [Y ] = {x+ y : x ∈ [X ], y ∈ [Y ]}
[X ]− [Y ] = {x− y : x ∈ [X ], y ∈ [Y ]}

[X ].[Y ] = {xy : x ∈ [X ], y ∈ [Y ]}
[X]
[Y ]

= {x
y
; x ∈ [X ], y ∈ [Y ]}

(3.15)

Whatever the operation is, the resulting interval en
lose all the possible results.

3.2.2 Interval Arithmeti


Interval arithmeti
 is a set of rules for performing elementary arithmeti
 opera-

tions on intervals.

Endpoint Formulas for Arithmeti
 of Intervals

Let us show the operational formulas for the elementary operation related to

boundary of intervals. For the sum of two intervals [X ] and [Y ], the operation
is as [36℄:

[X ] + [Y ] = [xinf + yinf , xsup + ysup] (3.16)

The operational formula for interval subtra
tion in term of endpoints is as:

[X ]− [Y ] = [xinf − ysup, xsup − yinf ] (3.17)

The relation of the produ
t of two intervals [X ] and [Y ] to their endpoints is:

[X ][Y ] =
[min(xinfyinf , xinfysup, xsupyinf , xsupysup),
max(xinfyinf , xinfysup, xsupyinf , xsupysup)]

(3.18)

The inverse of the interval is :

1

[X ]
= [

1

xsup
,

1

xinf
]; 0 /∈ [X ] (3.19)

Division of two intervals 
an be a

omplished by using the multipli
ation of the

interval and the inverse of the interval as:

[X ][Y ] =
[min(xinf/yinf , xinf/ysup, xsup/yinf , xsup/ysup),
max(xinf/yinf , xinf/ysup, xsup/yinf , xsup/ysup)]

(3.20)

0 /∈ [Y ]

The key feature of the operation is that the operations involve the boundaries of

the intervals su
h as xinf , xsup, yinf and ysup. The resulting interval in
lude all

the possible results.
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3.2.3 Properties of the Interval Arithmeti


3.2.4 Algebrai
 Properties

Interval addition and multipli
ation are 
ommutative and asso
iative. Let us


onsider three intervals [X ] and [Y ] and [Z], the 
ommutative and asso
iative

features are shown as [36℄:

[X ] + [Y ] = [Y ] + [X ]
[X ] + ([Y ] + [Z]) = ([X ] + [Y ]) + [Z]

[X ].[Y ] = [Y ].[X ]
[X ].([Y ].[Z]) = ([X ].[Y ]).[Z]

(3.21)

0 and 1 are additive and multipli
ative identity element in the interval domain.

0 + [X ] = [X ] + 0 (3.22)

1.[X ] = [X ].1 = [X ] (3.23)

0.[X ] = [X ].0 = 0 (3.24)

In a real numbers, −x is an additive inverse for x. But this is not true in interval

domain. In interval systems for any interval [X ], we have:

[X ] + (−[X ]) = [xinf , xsup] + [−xsup,−xinf ] = [xinf − xsup, xsup − xinf ] (3.25)

If xxup = xinf then this equals [0, 0]. Otherwise

[X ]− [X ] = w[X ][−1, 1] (3.26)

There is no multipli
ative inverses ex
ept w[X ] = 0, in general we have

[X ]

[X ]
=

{
[
xinf

xsup
, xsup

xinf
] if 0 < xinf

[xsup

xinf
,
xinf

xsup
] if xsup < 0

(3.27)

For the interval systems we have the following inequality:

[X ]([Y ] + [Z]) 6= [X ][Y ] + [X ][Z] (3.28)

This rule 
an be shown by 
onsidering three following intervals as

[X ] = [1, 2], [Y ] = [1, 1], [Z] = −[1, 1] (3.29)

Left side of the (3.28) by 
onsidering the values of 3.29 is as:

[X ]([Y ] + [Z]) = [1, 2].([1, 1]− [1, 1]) = [1, 2].[0, 0] = [0, 0] (3.30)
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Whereas, the right side by using interval arithmeti
 rules is as:

[X ][Y ] + [X ][Z] = [1, 2].[1, 1]− [1, 2].[1, 1] =
[min(1, 2), max(1, 2)]− [min(1, 2), max(1, 2)] = [1, 2]− [1, 1] = [−1, 1]

(3.31)

As it is shown in (3.30) and (3.31), the right and left side are not equal. If

[Y ][Z] > 0 then [X ]([Y ]+ [Z]) = [X ][Y ]+ [X ][Z] hold true. In general, following

rule hold true for the interval.

[X ]([Y ] + [Z]) ⊆ [X ][Y ] + [X ][Z] (3.32)

A real number 
an multiply to the summation of two intervals as:

x([Y ] + [Z]) = x[Y ] + x[Z] (3.33)

Can
ellation law is also valid in interval systems:

[X ] + [Z] = [Y ] + [Z] ⇒ [X ] = [Y ] (3.34)

3.2.5 In
lusion Property of Interval Arithmeti


If we 
onsider two intervals [x] = [xinf , xsup],[y] = [yinf , ysup] and perform the op-

eration between two intervals, the resulting interval [Z] = [X ]op[Y ] from what-

ever operation between two intervals in
ludes all values z = {xopy}(belongs to
[Z] (i.e.,z ∈ [Z])) whi
h is the resulting z = {xopy} value from the same opera-

tion on the real numbers of the x ∈ [X ] and y ∈ [Y ].

3.2.6 Interval Fun
tion

Interval fun
tion is an interval valued fun
tion of one or more intervals arguments.

Let us 
onsider f as a real-valued fun
tion of a variable x. The range of f(x) as
x represent by interval [X ] is the interval fun
tion. In more general 
ase for a

given fun
tion f = f(x1, ..., xn) of several variables, the interval of f is as:

f([X1], ..., [Xn]) = {f(x1, ..., xn) : x1 ∈ [X1], ..., xn ∈ [Xn]} (3.35)

where [X1], ..., [Xn] are spe
i�
 intervals. An example of the interval fun
tion is

shown in Fig. (3.5)
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3.2. INTERVAL ANALYSIS

x 

f(x) 

f([X]) = [F] 

0 

f(x0) 

x0 

[X] 

Figure 3.4: Interval fun
tion

Let us 
onsider elementary fun
tion of intervals by providing following fun
-

tion f(x) = x2, if [X ] = [xinf , xsup]then the interval of f [X ]
an be expressed as

follows:

f([X ]) =





[x2inf , s
2
sup], 0 ≤ xinf ≤ xsup

[x2inf , s
2
sup], xinf ≤ xsup ≤ 0

[0, max{x2inf , x2sup}], xinf ≤ 0 ≤ xsup

(3.36)

Monotoni
 Fun
tions

If f(x) is a monotoni
, it maps the interval [X ] = [xinf , xsup] into interval

f([X ]) = [f(xinf), f(xsup)]. As an example, f(x) = exp(x) = ex(x ∈ R) then
exp[X ] = [exp(xinf ), exp(xsup)]. Similarly for logarithmi
 is a monotoni
 fun
tion

and its interval is,

f(x) = logx(x > 0)
log[X ] = [logxinf , logxsup]

(3.37)

The expression for the square root of interval is as:

√
[X ] = [

√
xinf ,

√
xsup] (3.38)

3.2.7 Interval Fun
tion Property

If [F ] = f([X ]) is an interval extension of the fun
tion f then the interval fun
tion
f([X ]) = [F ] must in
lude all the values f(X) for x ∈ [X ].

3.2.8 In
lusion Monotoni
ity

An interval fun
tion f([X1], [X2], ..., [XN ]) is in
lusion monotoni
 with respe
t to

fun
tion f(x1, x2, ..., xN) when [F ] = f([X1], [X2], ..., [XN ]) 
ontains the range
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of values of f(x1, x2, ..., xN ) for all xn ∈ [xn]n = 1, ..., N . If we 
onsider

f([X ]) = [F ] and [X
′

] ⊆ [X ] then [F
′

] = f([X
′

]) ⊆ [F ] = f([x]) [37℄. In
lu-

sion monotoni
ity property is shown in Fig (3.5) .

x 

f(x) 

f([X]) = [F] 

0 

]'[X

][])([ 'FX'f

][X

Figure 3.5: In
lusion Monotoni
ity

As it is obvious, if [X
′

] ⊆ [X ] then [F
′

] = f([X
′

]) ⊆ [F ] = f([x]).

3.2.9 Dependen
y Problem

In general, ea
h o

urren
e of a given variable in an interval 
omputation is

treated as a di�erent variable. This 
ause widening of 
omputed sharp numeri
al

bounds. This unwanted extra interval width is 
alled the dependen
y problem.

Let us suppose we want to evaluate the interval perimeter [P ] of a re
tangular
table whi
h has a interval length [L] = [1.19, 1.21] and width [W ] = [0.79, 0.81].
We apply two di�erent ways to 
ompute:

• First adding intervals of the [L] and [W ]: [P ] = [L] + [W ] = [1.98, 2.02]m

• Subtra
ting [W ] and [L] from [2P ]: [P ] = [2P ]− [W ]− [L] = [1.94, 2.06]m

As it is shown, two di�erent results are a
hieved from the same quantity. The

appearan
e of the dependen
y e�e
t in subtra
ting [W ] and [L] from [2P ] is
explained with details:
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[P ] = [2P ]− [W ]− [L] = [W ] + [W ] + [L] + [L]− [W ]− [L] =
+[L] + ([W ]− [W ]) + ([L]− [L]) =

+[1.19, 1.21] + ([0.79, 0.81]− [0.79, 0.81]) + ([1.19, 1.21]− [1.19, 1.21]) =
[1.98, 2.02] + ([−0.02, 0.02] + [−0.02, 0.02]) =
[1.98, 2.02] + [−0.04, 0.04] = [1.94, 2.06]m

(3.39)

As we 
an see in (3.39) , [W ] − [W ] 6= 0 and [L] − [L] 6= 0 , this is be
ause of

the dependen
y e�e
t in the interval analysis. Every o

urren
e of an interval

variable is 
onsidered as an independent variable [W ]− [W ] = [W1]− [W2] even
if [W ] = [W1] = [W2] are the same interval. The dependen
y problem in
rease

the width of the resulting interval. Following rules 
an be applied to avoid

dependen
y problem:

• Redu
e the number of o

urren
e of ea
h variable: as an example of interval

perimeter of the table

[P ] = [W ] + [W ] + [L] + [L]− [W ]− [L] → [P ] = [W ] + [L]

• Rede�ne interval operations/fun
tions [W ] − [W ] = 0 instead of [winf −
wsup, wsup − winf ] 6= 0

By using proper interval fun
tion de�nition, the optimal interval solution will be

obtained.

3.2.9.1 Dependen
y Problem in Interval Fun
tion

Assume that we have the fun
tions f(x) = f1(x) = f2(x) then we want to

evaluate interval extension of f . Interval extension of f1([X ]) and f2([X ]) has
the bounds of [F1] and [F2]. These two bounds are not the same. [F1] and [F2]
in
lude all values of f(x) for x ∈ [X ] but w([F1]) is larger than w([F2]). As it

is 
lear, f1(x) = f2(x) for same [X ], but f1([X ]) ⊂ f2([X ]). The reason is the

dependen
y in the interval fun
tion. To solve this problem, we need to de�ne a

fun
tion in a suitable way. In the following example, the dependen
y e�e
t in

the interval fun
tion will be shown. Let us evaluate f(x) = x2 + 1 over interval

[X ] = [−1, 2]. The interval bounds by interval arithmeti
 rules are as follows:

f([−1, 2]) = [−1, 2].[−1, 2] + [1, 1] = [min(1,−2,−2, 4), max(1,−2,−2, 4)] +
[2, 2] = [−2, 4] + [1, 1] = [−1, 5]

Sin
e the value of [X ]2 + 1 
an not be a negative value therefore the bounds

are not the proper bounds. There is the dependen
y problem. In order to remove

the dependen
y problem, we need to apply proper de�nition of non-elementary

fun
tions. Suitable de�nition for removing dependen
y from [X ]2 is as:
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[X ]2 =





[x2inf , x
2
sup] if xinf ≥ 0

[x2sup, x
2
inf ] if xsup ≤ 0

[0, max(x2inf , x
2
sup)] if xinf ≤ 0 ≤ xsup

(3.40)

We will evaluate the fun
tionf(x) = x2 + 1 over the interval [−1, 2] after using
the proper de�nition for [X ]2. The bounds are as follows:

f([−1, 2]) = [−1, 2]2 + [2, 2] = [0, 4] + [1, 1] = [1, 5] (3.41)

As 
ompared to previous bounds, with this method, better bounds are a
hieved

and the in
lusion property is satis�ed. Another way to remove the dependen
y

is rede�ning the interval fun
tion. It will be de�ned by the following examples.

Interval of f(x) = x2 + x over [−1, 1] by using natural interval extension is:

[−1, 1]2 + [−1, 1] = [0, 1] + [−1, 1] = [−1, 2] (3.42)

The better expression for f(x) = x2 + x to remove dependen
y is when x only

appear on
e. We 
an rewrite the expression f(x) = x2 + x as follows:

f(x) = (x+
1

2
)2 − 1

4
(3.43)

Therefore the bounds are :

([−1, 1] +
1

2
)2 − 1

4
= [−1

2
,
3

2
]2 − 1

4
= [0,

9

4
]− 1

4
= [−1

4
, 2] (3.44)

By rewriting the expression, more meaningful bounds are a
hieved.

3.3 Complex Intervals

A 
omplex interval [Z] is an ordered pair of intervals [Z] = [[X ], [Y ]] with [X ] =
[xinf , xsup] and [Y ] = [Yinf , Ysup] real intervals. Complex interval with the bounds

for the real and imaginary parts are shown in Fig. 3.6 [38℄.

[Z] = {z = (x+ iy) ∈ C; xinf ≤ x ≤ xsup; yinf ≤ y ≤ ysup} (3.45)
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infx supx

infy

supy

z

Re

Im

]z[

]]y[],x[[=]z[

Figure 3.6: Complex Interval Value

Let us 
onsider 
omplex elementary operations by two 
omplex intervals [Z] =
[X, Y ] and [Z

′

] = [X
′

, Y ,′ ] whose real and imaginary parts have the following

intervals [38℄:

[X ] = [Xinf , Xsup] [Y ] = [Yinf , Ysup]
[X

′

] = [X
′

inf , X
′

sup] [Y
′

] = [Y
′

inf , Y
′

sup]
(3.46)

Elementary operations on the 
omplex intervals are as follows:

• Sum:

[Z] + [Z
′

] = [X +X ,, Y + Y ,] (3.47)

• Sum of Negative:

[Z]− [Z] = [0, 0] (3.48)

• Sum of 
omplex 
onjugate:

[Z] + [Z]∗ = [2X, 0] (3.49)
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• Subtra
tion:

[Z]− [Z ,] = [X −X
′

, Y − Y
′

] (3.50)

• Produ
t:

[Z][Z
′

] = [XX
′ − Y Y

′

, XY
′

+ Y X ,]

• Produ
t of Complex Conjugate:

[Z][Z∗] = [X2 + Y 2, 0]

• Inverse:

1

[Z]
=

[X,−Y ]

[X2 + Y 2, 0]

• Division:

[Z]

[Z ′]
= [

(xx
′

+ yy
′

)

(x′2 + y′2)
,
(yx, − xy,)

(x′2 + y′2)
]

The main feature of the previous operations is that they involve real intervals

[X ], [Y ], [X
′

], [Y ,].

3.3.1 Complex Interval Fun
tion

Evaluation of 
omplex interval fun
tion rea
t as evaluation of real interval fun
-

tions. Following features hold true for 
omplex intervals:

• Results for real hold true also for 
omplex interval fun
tions

• Dependen
y problem still remains

• In
lusion theorem holds true for 
omplex interval fun
tions

3.3.1.1 Wrapping Problem

Wrapping problem is related to the representation of 
omplex intervals. Complex

interval 
an be presented by Cartesian interval representation and Polar interval

representation. Curved in red is the Cartesian representation and the 
urve in

blue is the polar representation. In Cartesian interval representation, there is an

overestimation in the interval bounds whi
h 
alled wrapping e�e
t as it is shown

in Fig(3.7).
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xERe

xExEIm

xE

xEarg x

ERe

EIm

Figure 3.7: Wrapping E�e
t of The Complex Interval

As it is 
lear in the Fig (3.7), by polar representation the overestimation of

the power bounds will be eliminated.

• Cartesian Interval Representation

In Cartesian Interval, 
omplex interval represented in terms of the interval of real

and imaginary parts. Classi
al IA methods are used in 
omplex interval 
ompu-

tation. Interval arithmeti
 for Cartesian Interval is simple and available. In Fig

3.8 , we 
an see the example for the summation of two 
omplex interval with

Cartesian representation. Overestimation will be happened in using 
omplex

interval with Cartesian representation.
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ERe

EIm

1xE

2xE

][A ][B

Figure 3.8: Cartesian Interval Representation

• Polar Interval Representation

Complex interval 
an be presented by polar representation as shown in Fig. 3.9.

Polar representation is the best representation for the 
omplex interval (4.3).

However interval arithmeti
 are not available for this representation.

1xE

ERe

EIm

2xE

Figure 3.9: Polar Interval Representation
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Chapter 4

Interval Analysis Method for

Re�e
tarray Antennas

In this 
hapter, the interval extension of the re�e
tarray antenna is des
ribed and

assessed. Un
ertainty on et
hing pat
h dimensions and 
onstru
ting substrate

thi
kness are modeled with interval values. By exploiting interval arithmeti


rules, bounds of the deviation in the radiation �eld are obtained. By reformulat-

ing the interval extension fun
tion and using Enumerative strategy, Dependen
y

e�e
t is removed. Some 
omparative results are shown the pro
ess. Wrapping

e�e
t is also eliminated by using Minkowski sum approa
h. Some results are

reported for the assessment as well as for 
omparison purposes.
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4.1. INTRODUCTION

4.1 Introdu
tion

In this 
hapter, ina

ura
ies in et
hing the mi
rostrip pat
hes and 
onstru
ting

the substrate thi
kness are modeled via interval values. Then the bounds of

the deviation in the power pattern as a result of the bounded random errors in

the pat
h length, width, substrate thi
kness and the diele
tri
 permittivity are


omputed. This approa
h is proved to be a useful tool in re�e
tarray antenna

to 
ompute the worst-
ase bound. Cartesian interval analysis (IA−CS) 
an be

used to 
ompute the power pattern deviations of the re�e
tarray antenna. Nom-

inal power pattern of the re�e
tarray antenna is analyti
ally 
omputed by the

Aperture Field method together with the analyti
al expression of the re�e
tion


oe�
ient [22℄. As it is mentioned in the previous 
hapter, IA − CS has the

dependen
y and wrapping problem in dealing with 
omplex stru
ture whi
h 
an

make an overestimation in the power pattern [39℄. Dependen
y problem appears

due to the use of an interval variable more than on
e in the interval fun
tion.

However, Wrapping problem arises from the representation of the IA − CS in

the 
omplex domain. Using IA− CS for re�e
tarray interval analysis 
ause the

overestimation in the power bounds [40℄. In this 
hapter, a solution for removing

redundan
y problems are properly explained. This redundan
y will appear in

the interval extension of the re�e
tarray power pattern. To ta
kle the Depen-

den
y problem, the 
omplex re�e
tion 
oe�
ient of ea
h 
ell is rewritten in the

proper way and it is extended to the interval fun
tion (IA − CS∗
). Sin
e in

the re�e
tion 
oe�
ient fun
tion, parameters are re
ursively 
onne
ted to ea
h

other, we 
ould not eliminate all dependen
y problem by rewriting the fun
-

tion. In order to fully eliminate this problem, an enumerative strategy is used

by sampling among the interval of the geometri
al parameters. The maximum

and minimum of the phase and amplitude of the 
omplex re�e
tion 
oe�
ient

for these samples are 
omputed (IA−ENUM) [52℄. The wrapping problem 
an

be solved by means of the Minkowski sum (IA−ENUM −MS) . In Minkowski

sum approa
h, instead of using re
tangular and 
ir
ular representation of inter-

vals, interval phasors are 
onsidered [42℄. The smallest 
onvex polygon en
ir
ling

these interval phasors is used to 
ompute the interval Minkowski 
onvex polygon.

The upper and lower bounds are 
omputed among the verti
es of the resulting

polygons. The �nal bounds are narrower, reliable and still in
lusive. The validity

of the IA − ENUM −MS bounds are 
he
ked with the number of the Monte

Carlo patterns. A number of 
omparative results shows the improvement in the

IA− CS bounds with respe
t to the IA− ENUM −MS . These 
omparative

bounds are 
onsidered for the error on all geometri
al parameters su
h as width,

length, substrate thi
kness and diele
tri
 permittivity.
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4.2 Mathemati
al Formulation

Let us 
onsider a re�e
tarray antenna as it is shown in Fig (4.1), lying on the

xy-plane whose re
tangular mi
rostrip pat
hes are lo
ated on a square grid with

inter-element spa
ing px and py along the x and y dire
tion, respe
tively. To


ompute radiation pattern analyti
ally, we 
onsider Aperture Field Method [35℄.

The radiated far �eld is obtained from the following expression [10℄.

E(θ, φ) =
e−jkr

r

[
(θ̂cosφ− φ̂sinφcosθ)ẼRx(u, v) + (θ̂sinφ+ φ̂cosφcosθ)ẼRy(u, v)

]

(4.1)

where j =
√
−1, k = 2π

λ
is the wavenumber, λ being the wavelength, and u =

sin θ cosφ and v = sin θ sin φ are the dire
tion 
osine 
oordinates with θ ∈
[
0; π

2

]

and φ ∈ [0; π]. ẼRx/y(u, v) (slash means x or y 
omponents) is the Fourier

transformation of the Cartesian 
omponents of the tangential ele
tri
 �eld. It


an be expressed as [10℄:

ẼRx/y(u, v) = K
M−1∑

m=0

N−1∑

n=0

(Γxx/yy
mn (f)Ax/y

mn + Γxy/yx
mn (f)Ay/x

mn)e
jk(umpx+vnpy)

(4.2)

where

K = pxpysinc(
k0upx
2

)sinc(
k0vpy
2

)ej
k
2
[u(N−1)px+v(M−1)py ]. (4.3)

As it is shown in Fig. 4.1, M and N are the maximum number of elements in x

and y dire
tions, respe
tively. As it 
an be seen in (4.2), tangential ele
tri
 �eld in

ea
h 
ell is approximated by a 
omplex 
oe�
ient de�ned as the multipli
ation of

the 
omplex re�e
tion 
oe�
ient of ea
h 
ell Γ
xx/yy
mn (f),Γ

xy/yx
mn (f), and the 
omplex

amplitude of the in
ident �eld Floquet harmoni
 A
x/y
mn , A

y/x
mn illuminating the mn-

th 
ell.

More spe
i�
ally, Γ
xx/yy
mn (f) is the 
o re�e
tion 
oe�
ient of x/y-polarization

when unit 
ell is illuminated by x/y-polarization wave. Γ
xy/yx
mn (f) is the 
ross

re�e
tion 
oe�
ient of x/y-polarization when the unit 
ell is illuminated by y/x-
polarization. We 
hoose the re�e
tion 
oe�
ient expression from [22℄, in whi
h

we 
an see the relationship between the 
omplex re�e
tion 
oe�
ient and the

length l, width w, substrate thi
kness d and the diele
tri
 permittivity εr of the
element. The expression 
an be as the follows [22℄.

Γxx/yy
mn (f) =

1
Qrad

mn
− 1

Q0 − 2j f−f0
mm

f0
mn

1
Qrad

mn
+ 1

Q0 + 2j f−f0
mm

f0
mn

(4.4)

where working frequen
y is f , the resonan
e frequen
y of the mn-th element

f 0
mn , 
ombined quality fa
tor Q0

and radiation quality fa
tor of the mn-th
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Figure 4.1: Sket
h of the re�e
tarray antenna with its parameters .

element Qrad
mn . Radiation quality fa
tor in the 
ase of re
tangular mi
rostrip

pat
h illuminated under the normal in
ident plane wave is as [22℄:

Qrad
mn =

f 0
mnπε0εr
4d

lmn

wmn
pxpyη0 (4.5)

where d and εr are the substrate thi
kness and the relative diele
tri


permittivity, lmn and wmn are the length and width of the mn-th element in the

aperture of the re�e
tarray antenna. and η0 is the free spa
e wave impedan
e.

The 
ombined quality fa
tor Q0
depends on the 
ondu
tor and diele
tri
 loss

quality fa
tors Qc
and Qd

by the following expressions [22℄:

Q0 =
QcQd

Qc +Qd
(4.6)

The expression of the 
ondu
tor and diele
tri
 loss is given by [22℄:

Qd =
1

tanδ
;Qc = d

√
πfµσ (4.7)

here, tanδ is the loss tangent, µ,σ are the permeability of the free spa
e and

the metal 
ondu
tivity, respe
tively. The relationship between the resonan
e

frequen
y and the antenna geometries of the re
tangular mi
rostrip pat
h 
an

be determined as follows:
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f 0
mn =

C

2leff
√
εreff

(4.8)

where leff = lmn + 2δl and εreff are the e�e
tive permittivity and the e�e
tive

ele
tri
al length of the pat
h antenna. The expression for δl and εreff are de�ned
by:

δl = 0.412d
(εreff + 0.3)

(εreff − 0.258)

(wmn

d
+ 0.264)

(wmn

d
+ 0.8)

(4.9)

εreff =
εr + 1

2
+
εr − 1

2

√
1

1 + 12 d
wmn

(4.10)

If we substitute (4.10,4.9,4.8, 4.7,4.6,4.5) in(4.4), then by substituting (4.4) in

(4.2) and (4.2,4.1), we 
an extra
t the expression whi
h shows the relationship

between the ele
tri
 �eld and the antenna geometri
al parameters. In order to

realize the un
ertainty in fabri
ation pro
ess of the antenna stru
ture, we will

apply Interval Arithmeti
 rules. In the following, we will de�ne the interval

extension of the previous expressions.

4.2.1 Cartesian (IA− CS)

Within the interval analysis approa
h, the a
tual values of themn-th pat
h width
(wmn), length (lmn), substrate thi
kness (d) and diele
tri
 permittivity (εr) are
between in�mum and supermum values as follows [52℄

[wmn] = [wmn −△w;wmn +△w] [lmn] = [lmn −△l; lmn +△l] (4.11)

[d = [d−△d; d+△d] [ε] = [ε−∆ε; ε+∆ε] (4.12)

These in�mum and supremum values are 
al
ulated from the maximum toleran
e

error on et
hing pat
h width (△w) and length (△l). △d and△ε are the maximum

toleran
e errors on the material properties. These deviation from the a
tual

values 
an a�e
t the e�e
tive ele
tri
al length of the pat
h antenna, the e�e
tive

diele
tri
 permittivity, resonan
e frequen
y and the re�e
tion 
oe�
ient. We 
an

extra
t the analyti
al expression for the upper and lower bounds of the previous

fun
tions. In the �rst example, error on the pat
h width of the antenna is


onsidered while other geometri
al parameters are �xed in their nominal values.

So the pat
h width is presented by interval value [wmn] to en
ompass all these

random errors. Sin
e nominal e�e
tive permittivity depends on the width of the

pat
h. By substituting interval of the width, interval fun
tion of the e�e
tive
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diele
tri
 permittivity 
an be 
omputed. Analyti
al expression of the lower and

upper bounds of the e�e
tive diele
tri
 permittivity is as:

[εreff ] = [εINF
reff ; ε

SUP
ref ] (4.13)

εINF
reff =

εr + 1

2
+
εr − 1

2

√
1

1 + 12( d
wmn−∆w

)
(4.14)

εSUP
reff =

εr + 1

2
+
εr − 1

2

√
1

1 + 12( d
wmn+∆w

)
(4.15)

Interval fun
tion for additional length value in e�e
tive ele
tri
al length 
an be

extra
ted from its 
risp fun
tion as

[δl] = 0.412d
([εreff ] + 0.3)

([εreff ]− 0.258)

( [wmn]
d

+ 0.264)

( [wmn]
d

+ 0.8)
(4.16)

By applying the interval arithmeti
 rules for the multipli
ation and division

of two interval values, we 
an extra
t the analyti
al expression for the upper and

lower bounds of the interval fun
tion of additional length in e�e
tive ele
tri
al

length expression. If we rewrite the (4.16) as follows:

[δl] = 0.412d
[GINF

1 ;GSUP
1 ]

[GINF
2 ;GSUP

2 ]

[GINF
3 ;GSUP

3 ]

[GINF
4 ;GSUP

4 ]
(4.17)

Where

GINF
1 = εINF

reff + 0.3;GSUP
1 = εSUP

reff + 0.3
GINF

2 = εINF
reff − 0.258;GSUP

2 = εSUP
reff − 0.258

(4.18)

GINF
3 = wINF

mn

d
+ 0.264;GSUP

3 = wSUP
mn

d
+ 0.264

GINF
4 = wINF

mn

d
+ 0.8;GSUP

4 = wSUP
mn

d
+ 0.8

(4.19)

[δl] = [δlINF ; δlSUP ] (4.20)

δlINF = 0.412d
min[GINF

1 GINF
3 , GINF

1 GSUP
3 , GSUP

1 GINF
3 , GSUP

1 GSUP
3 ]

max[GINF
2 GINF

4 , GINF
2 GSUP

4 , GSUP
2 GINF

4 , GSUP
2 GSUP

4 ]
(4.21)

δlSUP = 0.412d
max[GINF

1 GINF
3 , GINF

1 GSUP
3 , GSUP

1 GINF
3 , GSUP

1 GSUP
3 ]

min[GINF
2 GINF

4 , GINF
2 GSUP

4 , GSUP
2 GINF

4 , GSUP
2 GSUP

4 ]
(4.22)
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Interval Arithmeti
 rules are implemented to 
ompute the bounds of the interval

fun
tions of resonan
e frequen
y of ea
h pat
h [f 0
mn]. Then with the same rules,

upper and lower bounds of [Qrad
mn] are 
omputed. Eventually a

ording to 
omplex

interval analysis [36℄, bounds of the interval fun
tion are obtained. As it is 
lear

from the 
risp expression of the Fourier transform of the re�e
ted �eld (4.2),

Interval of the Fourier transform of the tangential ele
tri
 �eld [ẼRx/y(u, v; [wmn])]
is the summation of the interval of the re�e
tion 
oe�
ient of ea
h 
ell. Here

the in
ident feed is a y-polarized feed horn illuminating the re�e
tarray antenna

under normal in
ident angle. In normal in
ident angle 
ross 
oupling re�e
tion


oe�
ient [Γ
xy/yx
mn (f)] is zero. Therefore the interval of the Fourier transform 
an

be presented as

[̃ERx/y(u, v; [wmn])] = K
Nx−1∑

m=0

Ny−1∑

n=0

([Γyy
mn(f ; [wmn])]A

x/y
mn )e

jk(umpx+vnpy)
(4.23)

Then the interval of the radiated far �eld is 
omputed from the previous

interval (4.23) as

[E(θ, φ; [wmn])] = [Eθ(θ, φ; [wmn])]θ̂ + [Eφ(θ, φ; [wmn]]φ̂ (4.24)

[Eθ(θ, φ; [wmn])] =
e−jkr

r
((cosφ)[ẼRx(u, v; [wmn])] + (sinφ)[ẼRy(u, v; [wmn])])

(4.25)

[Eφ(θ, φ; [wmn])] =
e−jkr

r
((sinφcosθ)[ẼRx(u, v; [wmn])] + ((cosφ)cosθ)[ẼRy(u, v; [wmn]))

(4.26)

Interval of the co- and cross- 
omponents of the far ele
tri
 �eld for the y

polarized feed are[10℄

[Eco(θ, φ; [wmn])] = sin(φ)[Eθ(θ, φ; [wmn])] + cos(φ)[Eφ(θ, φ; [wmn])] (4.27)

[Ecross(θ, φ; [wmn])] = cos(φ)[Eθ(θ, φ; [wmn])]− sin(φ)[Eφ(θ, φ; [wmn])] (4.28)

A

ording to the 
omplex interval rules [33℄, interval of the power pattern of

the co− and cross− 
omponents is
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[Pco(θ, φ; [wmn])] = [Eℜ
co(θ, φ; [wmn])]

2 + [Eℑ
co(θ, φ; [wmn])]

2
(4.29)

[Pcross(θ, φ; [wmn])] = [Eℜ
cross(θ, φ; [wmn])]

2 + [Eℑ
cross(θ, φ; [wmn])]

2
(4.30)

where [Eℜ
co(θ, φ; [wmn])], [E

ℑ
co(θ, φ; [wmn])] is the real and imaginary part of co-

polar ele
tri
 �eld. And [Eℜ
cross(θ, φ; [wmn])], [E

ℑ
cross(θ, φ; [wmn])] are the real and

imaginary parts of the cross-polar ele
tri
 �eld. As it is 
lear in (4.16), interval

of the e�e
tive diele
tri
 permittivity and the width of the pat
h repeat more

than on
e in the nominator and denominator. This repetition makes the so-
alled

Dependen
y problem whi
h overestimate the bounds. Su
h redundan
y 
an be

removed by the following strategies.

4.2.2 Cartesian (IA− CS∗)

In this part, we will show how to ta
kle with the Dependen
y e�e
t in the

Interval analysis appli
ation. If an interval parameter a

rues several time in the


al
ulation of the interval fun
tions and ea
h o

urren
e is 
onsidered separately,

the unwanted resulting interval is appeared [52℄. This e�e
t 
an make extra

bounds in the output interval. This problem 
an be solved by rewriting the

fun
tions in a proper way before expanding them to interval to de
rease the

o

urren
e of the interval variable. If the expression has the simple relation

to the interval variable, by reformulating the expression, dependen
y 
an be

fully removed. Otherwise, in the 
ompli
ated interval fun
tion, reformulating


an partially remove the dependen
y problem. In (4.31), repeating the interval

values of [εreff ] and [wmn] 
auses dependen
y e�e
t and overestimate the interval

bounds in [δl].

[δl] = 0.412d
([εreff ] + 0.3)

([εreff ]− 0.258)

( [wmn]
d

+ 0.264)

( [wmn]
d

+ 0.8)
(4.31)

By reformulating the interval fun
tion (4.16) in the following way, the interval

variable appears only on
e. The dependen
y removed fun
tion of (4.16)(width

is realized with interval values and the substrate thi
kness is �xed in its a
tual

value) given by:

[δl] = 0.412(
1

1− ( 0.258
[εreff ]

)
+

0.3

[εreff ]− 0.258
)(

d

1 + 0.8( d
[wmn]

)
+

0.264d2

[wmn] + 0.8d
) (4.32)

The 
omparison of the the upper and lower bound of the [δl] in ( 4.20) and

(4.32) is shown in Fig. 4.2. It is obvious that the upper and lower bounds of

the interval e�e
tive ele
tri
al length with dependen
y e�e
t are mu
h larger

40



CHAPTER 4. INTERVAL ANALYSIS METHOD FOR REFLECTARRAY

ANTENNAS

 0.24

 0.245

 0.25

 0.255

 0.26

 0.265

 0.27

 0.275

 0.48  0.485  0.49  0.495  0.5  0.505  0.51  0.515  0.52

[∆
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Figure 4.2: Dependen
y assessment - inf and sup of the e�e
tive ele
tri
al length

with dependen
y and dependen
y free interval fun
tion.

than its dependen
y free bounds. If we 
onsider the substrate thi
kness [d] as
an interval value and �x the pat
h width on its a
tual value, the dependen
y

removed interval fun
tion is as follows

[∆l] = 0.412(
1

1− ( 0.258
[εreff ]

)
+

0.3

[εreff ]− 0.258
)(

1
1
[d]

+ ( 0.8
wmn

)
+

0.264

w( 1
[d]

+ 0.4
wmn

)2 − 0.16
w2

mn

)

(4.33)

Sin
e the power pattern expression is 
ompli
ated and parameters are

re
ursively 
onne
ted to ea
h other, by this way, dependen
y is partially

removed. In order to remove all dependen
y e�e
t, we need to implement an

alternative method.

4.2.3 Enumerative Strategy (IA− ENUM)

By pursuing the following steps, we 
an �nd a surrogate method to suppress the

dependen
y problem, the steps of Enumerative method are de�ned as:
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• Step 1: Get the e�
ient number of sample points between the in�mum

and supremum of the interval values. These interval values 
an be a pat
h

length, width, substrate thi
kness and the diele
tri
 permittivity. By 
on-

sidering χi as a sampling parameters su
h as pat
h length and width (lmn)
, (wmn), substrate thi
kness (d) and diele
tri
 permittivity (εr) then the

sampling pro
edure is as

χi = inf{χi}+
i

Ii
(SUP{χi} − INF{χi}) (4.34)

where i = 0, ..., Ii, Ii is the maximum number of the sampling. For ea
h i, there
is a new value for ea
h geometri
al parameter of the pat
h.

• Step 2: Let us 
onsider the behaviour of the re�e
tion amplitude (|Γmn(f, χi)|)
(Fig. 4.3a) and phase (argΓmn(f, χi)) (Fig. 4.3b) versus nominal param-

eter χi. Then 
al
ulate the amplitude and phase of the 
risp re�e
tion


oe�
ient Γmn(f, χi) for ea
h value of the sampling parameter.

• Step 3: Spe
ify the interval amplitude and phase of the re�e
tion 
oe�
ient

of ea
h 
ell by the following ways:

INF{|Γmn(f, χi)|} = mini=0,...,Ii{|Γmn(f, χi)|} (4.35)

SUP{|Γmn(f, χi)|} = maxi=0,...,Ii{|Γmn(f, χi)|} (4.36)

INF{[arg(Γmn(f, χi))]} = mini=0,...,Ix{arg(Γmn(f, χi))} (4.37)

SUP{[arg(Γyy
mn(f, χi))]} = maxi=0,...,Ii{arg(Γmn(f, χi))} (4.38)

• Step 4: Compute the Fourier transform of the re�e
ted ele
tri
 �eld from

the interval of the re�e
tion 
oe�
ient of step 3.

[ẼENUM
Rx/y (u, v; [χi])] = K

∑M
m=0

∑N
n=0[|Γmn(f, χi)|](cos([arg(Γmn(f, χi))])+

jsin([arg(Γmn(f, χi))]))A
x/y
mn )ejk(umpx+vnpy))

(4.39)

• Step 5: Compute the power pattern bounds from the same pro
edure in

(4.29).

By this pro
edure, we 
an remove the dependen
y problem. The overestimation

in the power pattern bounds 
an be de
reased by the IA − ENUM pro
edure.

There is still the Wrapping e�e
t whi
h 
an enlarge the output bounds. This
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e�e
t 
an be prevented by using Minkowski Sum whi
h is explained in the fol-

lowing.

[ ]
[

[

iI=i1=i

}inf{ i
}sup{ ii

|}inf{| mn

|}sup{| mn

|)(| imn

|| mn

i

(a)

[ ]

[

[

iI=i1=i

}inf{ i
}sup{ ii

))(arg( imn

)arg( mn

i

)}inf{arg( mn

)}sup{arg( mn

(b)

Figure 4.3: Enumerative strategy (a) Sampling of the amplitude of the re�e
tion


oe�
ient (b) Sampling of the re�e
tion phase.
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4.2.4 Minkowski (IA−MS)

The IA − CS, IA − CS∗
and IA − ENUM still produ
e overestimated power

bounds due to wrapping e�e
t produ
ed by re
tangular representation of the


omplex interval in the 
omplex domain. This redundan
y is proportional to

the number of elements. Sin
e re�e
tarray antenna 
onsist of several elements,

we need to properly remove this obsta
le from analysis. Using Minkowski sum

to 
al
ulate the interval phasors 
an remove the relevant redundan
y e�e
t. In

following, detail of the Minkowski sum 
omputation will be de�ned.

Interval power pattern [Pco(θ, φ)] is the fun
tion of the interval Fourier transform

of the ele
tri
 �eld [ẼRx/y(u, v)]. This interval is the summation of the interval

phasor of [|Γyy
mn(f)|]ej[arg(Γ

yy
mn(f))]

. Let us provide some details about how to per-

form Minkowski sum of two phasors of the �rst and se
ond 
ells ([Aq]q = 1, ..., Q
and [Bq]q = 1, ..., Q).

• Step I, by referring to Fig. 4.4, a small 
onvex polygons en
ir
ling the

following four main verti
es from the 
ombination of the minimum and

maximum of the amplitudes and phases as:

A1 = INF [|Γyy
11(f)|]ejINF [arg(Γyy

11 (f))] A2 = SUP [|Γyy
11(f)|]ejINF [arg(Γyy

11 (f))]

(4.40)

AQ = INF [|Γyy
11(f)|]ejSUP [arg(Γyy

11 (f))] AQ−1 = SUP [|Γyy
11(f)|]ejSUP [arg(Γyy

11 (f))]

(4.41)

B1 = INF [|Γyy
12(f)|]ejINF [arg(Γyy

12 (f))] B2 = SUP [|Γyy
12(f)|]ejINF [arg(Γyy

12 (f))]

(4.42)

BQ = INF [|Γyy
12(f)|]ejSUP [arg(Γyy

12 (f))] BQ−1 = SUP [|Γyy
12(f)|]ejSUP [arg(Γyy

12 (f))]

(4.43)

This polygon in
ludes the edges A1A2 , AQ−1AQ, AQA1 and the 
urve A2AQ−1.

The ar
 between A2AQ−1 is approximated with number of verti
es. In Fig. 4.4

we just show 3 verti
es in the 
urve as an example. Then 
omplex interval [B]
has been bounded with the 
onvex polygons of se
ond 
ell as it is seen in Fig.

4.4. The ar
 between B2BQ−1 is approximated with the same three verti
es.

• Step II, as shown in Fig. 4.4, by 
onsidering two 
onvex polygons en
ir
le


omplex phasors [Aq] and [Bq], Minkowski sum of these two polygons is

a 
onvex polygon. Number of verti
es of the resulting polygon is at most

equal to sum of verti
es of polygon en
ir
ling phasors [A] and [B] . By

iteratively following this pro
edure the 
onvex polygon of interval Fourier

transform 
an be obtained.
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ANTENNAS
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Figure 4.4: IA-Minkowski approa
h - Minkowski Sum of two interval phasors.

• Step III, Compute the minimum and maximum distan
es with respe
t to

the 
enter of the 
omplex plane. This 
an give us the maximum and mini-

mum bounds for [ẼENUM−MS
Rx/y (u, v)]. Then maximum and minimum of the

power pattern are 
omputed with interval arithmeti
 rules as inf [PENUM−MS(θ, φ)] =

|inf [ẼENUM−MS
Rx/y (u, v)]|2and sup[PENUM−MS(θ, φ)] = |sup[ẼENUM−MS

Rx/y (u, v)]|2.
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5.1. INTRODUCTION

5.1 Introdu
tion

In this 
hapter manufa
turing error in fabri
ation of the mi
rostrip re�e
tarray

antenna stru
ture is 
onsidered. Geometri
al parameters of the antenna su
h as

width, length of the pat
h antenna with the substrate thi
kness and the diele
tri


permittivity are deviated from their nominal values due to manufa
turing errors.

In order to mathemati
ally realize these errors on the analyti
al 
omputation

of the radiation pattern, interval analysis te
hnique is used. Wrapping e�e
t is

eliminated by using Minkowski sum approa
h. Some results are reported for the

assessment as well as for 
omparison purposes. Then a toleran
e analysis based

on Interval Analysis (IA) together with Minkowski sum approa
h is implemented

to 
ompute the deviation bounds. Interval pattern features for di�erent re�e
-

tarray stru
tures with several ratios of the fo
al-length-to-diameter (F/D) values
are 
omputed. The proposed IA-Minkowski (IA−MS) based approa
h provide

a reliable tool to predi
t pattern degradation.

5.1.1 Nominal Pattern Computation

For analyti
ally 
ompute the nominal radiation pattern, Aperture Field method

together with the analyti
al expression of the re�e
tion 
oe�
ient from the refer-

en
e [22℄ is implemented. In order to be sure about the 
orre
t implementation of

this analyti
al method, the nominal radiation pattern is 
ompared with the state

of the art for the same re�e
tarray stru
ture with the following 
hara
teristi
:

• Frequen
y- 32 GHz

• Antenna Aperture type- Cir
ular with 15.5λ0

• Number of element- 749

• Element type- Re
tangular Mi
rostrip pat
h

• periodi
ity- px = py = λ0/2

• substrate thi
kness- d = 5mil

• diele
tri
 permittivity- εr = 10.2

• pat
h width- wmn = 2mm

• feed antenna position- (0, 0, 36.328mm)

• q = 1.5

The phase distribution in the aperture surfa
e is shown in Fig 5.1. H-plane

radiation pattern of my implemented 
ode is 
ompared with the the state-of-

the art as shown in Fig 5.2. E-plane radiation pattern of my software with


omparison to the the state-of-the art is shown in Fig 5.3 :
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tarray with 749

elements

49



5.1. INTRODUCTION

-50

-40

-30

-20

-10

 0

-80 -60 -40 -20  0  20  40  60  80

N
or

m
al

iz
ed

 P
ow

er
 P

at
te

rn
 (

dB
)

θ[deg]
[Nominal (H-Plane)]

[Karnati 2014 (H-Plane)]

Figure 5.2: H-Plane radiation pattern with 
omparison with Karnati 2014

50



CHAPTER 5. INTERVAL METHOD VALIDATION WITH NUMERICAL

RESULTS

-50

-40

-30

-20

-10

 0

-80 -60 -40 -20  0  20  40  60  80

N
or

m
al

iz
ed

 P
ow

er
 P

at
te

rn
 (

dB
)

θ[deg]
[Nominal (E-Plane)]

[Karnati 2014 (E-Plane)]

Figure 5.3: E-Plane radiation pattern with 
omparison with Karnati 2014

51



5.2. INTERVAL COMPUTATION

In the following part, radiation pattern is 
omputed with the previous men-

tioned analyti
al method for the proposed re�e
tarray stru
ture. Then the In-

terval bounds for di�erent errors are extra
ted.

5.2 Interval Computation

5.2.1 Re�e
tor Error

We want to 
ompute the interval power bounds for the re�e
tarray antenna with

the the following stru
tures. Let us 
onsider a 
enter-fed re�e
tarray made of 529
isotropi
 re
tangular mi
rostrip pat
hes equally-spa
ed along the x and y axis

of px = py = λ
2
. Re�e
tarray antenna has a square aperture with diameter of

11.5λ0 in 30 working frequen
y. Substrate is a Rogers RT580 with d = 0.5 mm,

εr = 2.2, tanδ = 0.0009. Feed antenna is a y-polarized horn antenna in 30 GHz
modeled as cosθq with q = 8.5. It is lo
ated in z = 114.3mm. Variable pat
h

lengths approa
h in normal in
ident angle is used to design the array elements

over the aperture surfa
e to obtain the required phased. Nominal width value of

ea
h 
ell is wmn = 3.95 mm. The antenna power pattern antenna is 
omputed

by 4.1. Phase distribution on the aperture surfa
e is 
omputed by the expression

of (2.25) and it is shown in Fig 5.4.

Then variable pat
h length approa
h is applied to realize the desired phase

of ea
h 
ell. The phase behaviour versus 
hanging the pat
h length is provided

in Fig 5.5

5.2.1.1 Toleran
e Analysis Against Pat
h Error

First the impa
t of pat
h width error on the power pattern is 
omputed.We


onsider maximum toleran
e ∆w = 50µm in the width of the pat
h of ea
h 
ell

while other parameters are �xed in their nominal values. To mathemati
ally

model this error, pat
h width is represented by an interval value. Therefore, real

width value of the pat
h after manufa
turing pro
ess 
an be one of the random

values among this interval [3.95− 0.05, 3.95 + 0.05]. The interval power pattern
for this toleran
e is 
omputed with IA − CS method. To avoid dependen
y

problem, the interval power pattern bounds are 
omputed by the IA − CS∗
.

This methodology is valid for simple formulas. To fully remove the dependen
y

problem, we 
ompute the IA−ENUM power pattern bounds. Then Minkowski

sum is implemented in the IA − ENUM − MS 
omputation to mitigate the

Wrapping problem. The 
omparative interval result in v = 0 plane is presented

in Fig.5.6. As 
an be seen, the IA − ENUM −MS 
an provide the tightest

bounds whi
h avoids the meaningless result of using the other Interval methods.

Following prin
iple of

INF [PENUM−MS
co (θ, φ)] > {INF [PCS

co (θ, φ)]], INF [PCS∗

co (θ, φ)], INF [PENUM
co (θ, φ)]}

SUP [PENUM−MS
co (θ, φ)] < {SUP [PCS

co (θ, φ)]], SUP [PCS∗

co (θ, φ)], SUP [PENUM
co (θ, φ)]} ,
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Figure 5.6: Comparative Assessment △w = 50µm; Plot of the interval power

pattern predi
ted with the IA−CS, the IA−CS∗
, IA−ENUM , IA−ENUM−

MS together with the nominal power patter in H-Plane (φ = 0◦).

hold true. It proved that the IA−ENUM −MS method 
an provide the tight,

reliable, a

urate and in
lusive bounds.

In order to 
he
k the reliability of the IA− ENUM −MS , a Monte Carlo

test with a set of T = 5 ∗ 105 trial power patterns has been performed to 
over

the IA−MS−ENUM bounds. In Fig.5.7, this Monte Carlo pattern is shown to


over IA−ENUM −MS bounds of ∆w = 50[µm] in v = 0 plane. It proves that
the whole set of trial nominal power patterns are inside the IA−ENUM −MS
bounds. Closeness of the IA − ENUM −MS to the upper and lower part of

the Monte Carlo patterns demonstrates the reliability and e�e
tiveness of this

method.

5.2.1.2 Method Validation

To validate in
lusion properties, interval power pattern for di�erent toleran
es

in pat
h width △w = 5, 10, 20, 50µm for two di�erent 
uts are shown in Fig.

5.8(a)v = 0 plane and Fig. 5.8 (b)u = 0 plane . Antenna pattern features su
h

as SLL,BW,P,∆ are shown in table 5.1. In Fig. 5.9(a)v = 0 plane and(b)u = 0
plane, interval power bounds for di�erent toleran
es of △l = 5, 10, 20, 50µm in
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Figure 5.7: Method Validation - Comparison of IA − CS , IA − ENUM ,

IA−ENUM −MS IA−CS∗
, together with the Monte Carlo patterns △w =

50µm.
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∆W,µm [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.380 0.092

5 [-0.0008,0.0006℄ [-21.457,-21.304℄ [0.091,0.092℄ 0.02

10 [-0.001,0.013℄ [-21.536,-21.227℄ [0.091,0.092℄ 0.03

20 [-0.003,0.002℄ [-21.659,-21.077℄ [0.091,0.092℄ 0.05

50 [-0.001,0.001℄ [-21.659,-21.077℄ [0.091,0.092℄ 0.07

v=0

0 0 -22.561 0.092

5 [-0.0008,0.0006℄ [-22.657,-22.481℄ [0.091,0.092℄ 0.02

10 [-0.001,0.001℄ [-22.740,-22.385℄ [0.091,0.092℄ 0.04

20 [-0.003,0.002℄ [-22.925,-22.212℄ [0.091,0.092℄ 0.08

50 [-0.008,0.07℄ [-23.504,-21.707℄ [0.09,0.09℄ 0.2

Table 5.1: Analysis of the IA-based pattern predi
tion vs. pat
h width errors

in u = 0 and v = 0 planes, △w = {5, 10, 20, 50}{µm}- Interval pattern features

[p(u, v), SLL,BW ] and pattern toleran
e index ∆

pat
h length are depi
ted. In table 5.2, interval pattern features of the length

toleran
es are depi
ted. In
lusion property for interval of length ([l]|∆l=5µm ⊂
[l]|∆l=10µm ⊂ [l]|∆l=20µm ⊂ [l]|∆l=50µm)

and ([w]|∆w=5µm ⊂ [w]|∆w=10µm ⊂ [w]|∆w=20µm ⊂ [w]|∆w=50µm) leads to the in
lu-
sion of the interval power pattern

([PENUM−MS
co ]|∆w=5µm ⊂ [PENUM−MS

co ]|∆w=10µm ⊂ [PENUM−MS
co ]|∆w=20µm ⊂

[PENUM−MS
co ]|∆w=50µm)

and ([PENUM−MS
co ]|∆l=5µm ⊂ [PENUM−MS

co ]|∆l=10µm ⊂ [PENUM−MS
co ]|∆l=20µm ⊂

[PENUM−MS
co ]|∆l=50µm).

It is worth to show the dependen
y of the degradation of the pattern fea-

tures on pat
h toleran
es against steering angle . Four di�erent nominal re-

�e
tarray arrangements have been synthesized to steer the main beam along

dire
tions: (θ0, φ0) = (10, 0)[deg], (θ0, φ0) = (20, 0)[deg], (θ0, φ0) = (30, 0)[deg],
(θ0, φ0) = (40, 0)[deg]. The plot of interval power pattern features only along the


ut v = 0 for toleran
e values ∆l = {5, 10, 20, 50}{µm} are shown in Fig.5.10.

These interval features are also represented in table 5.3 . The dependen
y of

the power pattern degradation on pat
h toleran
es against antenna bandwidth is

also studied. Four di�erent working frequen
ies f = 28.5, f = 29.25, f = 30.75,
f = 31.5 have been investigated. In Fig.5.11 interval pattern features for toler-

an
e values ∆l = {5, 10, 20, 50}{µm} for 
ut v = 0 are shown. In table 5.4 these

pattern features are presented.
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Figure 5.8: In
lusion property validation against pat
h width error - Nomi-

nal power pattern and IA − ENUM −MS interval power pattern for △w =
{5, 10, 20, 50}(a) in v = 0 plane (b) in u = 0 plane.
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Figure 5.9: In
lusion property validation against pat
h length error - Nomi-

nal power pattern and IA − ENUM − MS interval power pattern for △l =
{5, 10, 20, 50}(a) in v = 0 plane (b) in u = 0 plane.
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∆l, µm [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.380 0.092

5 [-0.014,0.009℄ [-22.641,-20.271℄ [0.088,0.090℄ 0.3

10 [-0.032,0.017℄ [-24.101,-19.275℄ [0.086,0.094℄ 0.6

20 [-0.081,0.027℄ [-27.997,-17.542℄ [0.082,0.098℄ 1.2

50 [-0.340,0.040℄ [-inf,-13.582℄ [0.072,0.011℄ 3.6

v=0

0 0 -22.561 0.092

5 [-0.014,0.009℄ [-24.046,-21.284℄ [0.090,0.094℄ 0.3

10 [-0.032,0.017℄ [-25.821,-20.155℄ [0.088,0.096℄ 0.6

20 [-0.081,0.027℄ [-30.969,-18.230℄ [0.084,0.100℄ 1.3

50 [-0.340,0.040℄ [-inf,-13.658℄ [0.072,0.112℄ 4.1

Table 5.2: Analysis of the IA-based pattern predi
tion vs. pat
h length errors

in u = 0 and v = 0 planes, △l = {5, 10, 20, 50}{µm}- Interval pattern features

[p(u, v), SLL,BW ] and pattern toleran
e index ∆

∆l, µm [P (u, v)] [SLL], dB [BW ], u ∆× 10
f = 28.5

0 0 -17.526 0.096

10 [-0.113,0.104℄ [-18.983,-16.261℄ [0.0920,0.102℄ 0.66

f = 29.25
0 0 -21.110 0.092

10 [-0.071,0.059℄ [-23.479,-19.246℄ [0.088,0.098℄ 0.63

f = 30.75
0 0 -21.085

10 [-0.069,0.057℄ [-23.964,-18.868℄ [0.084,0.092℄ 0.7

f = 31.5
0 0 -18.888 0.086

10 [-0.112,0.110℄ [-21.204,-17.034℄ [0.082,0.092℄ 0.8

Table 5.3: Analysis vs. bandwidth f = {28.5, 29.25, 30.75, 31.5} for pat
h

length errors in v = 0 plane, △l = {10}{µm}- Interval pattern features

[p(u, v), SLL,BW ] and pattern toleran
e index ∆
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Figure 5.11: Analysis versus frequen
y, IA-pattern features (a)P (u0)(b) SLL (c)
BW against frequen
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∆l, µm [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.380 0.092

5 [-0.014,0.009℄ [-22.641,-20.271℄ [0.088,0.090℄ 0.3

10 [-0.032,0.017℄ [-24.101,-19.275℄ [0.086,0.094℄ 0.6

20 [-0.081,0.027℄ [-27.997,-17.542℄ [0.082,0.098℄ 1.2

50 [-0.340,0.040℄ [-inf,-13.582℄ [0.072,0.011℄ 3.6

v=0

0 0 -22.561 0.092

5 [-0.014,0.009℄ [-24.046,-21.284℄ [0.090,0.094℄ 0.3

10 [-0.032,0.017℄ [-25.821,-20.155℄ [0.088,0.096℄ 0.6

20 [-0.081,0.027℄ [-30.969,-18.230℄ [0.084,0.100℄ 1.3

50 [-0.340,0.040℄ [-inf,-13.658℄ [0.072,0.112℄ 4.1

Table 5.4: Analysis vs. bandwidth f = {28, 5, 29.25, 30.75, 31.5} for pat
h

length errors in v = 0 plane, △l = {10}{µm}- Interval pattern features

[p(u, v), SLL,BW ] and pattern toleran
e index ∆

5.2.1.3 Toleran
e Analysis Against Substrate Error

Interval power pattern as a result of toleran
e error on the substrate thi
kness

is 
omputed by the previous methods. It 
an be shown that sensitivity of the

radiated power pattern toward the substrate thi
kness error is more than pat
h

width error. Sin
e the nominal value of the substrate thi
kness is mu
h less than

the nominal width of the pat
h, the e�e
t of the 50µm substrate thi
kness devia-

tion on the radiation pattern is more than the same toleran
e on the width of the

pat
h. There should be some 
onstraints on the maximum tolerable toleran
e

error based on the working frequen
y, nominal value of the parameter and the

sensitivity of the resonan
e frequen
y, re�e
tion phase toward the spe
i�
 toler-

an
es. Due to this issues, the same toleran
e on ea
h parameter 
an not make

the same e�e
t on the radiation performan
e of the antenna. In Fig.5.12(a)-(b),
the interval power pattern is extra
ted for toleran
es of △ε = 0.003, 0.005, 0.007
in the diele
tri
 permittivity in 
ut v = 0 and u = 0 ,respe
tively. The errors

on the substrate thi
kness have been �xed in ∆d = {5, 10, 20, 50}[µm]. The plot
of the nominal power pattern and the interval bounds through the Minkowski-

based Interval Analysis is shown in Fig.5.13. The pattern features for interval

diele
tri
 permittivity and the interval substrate are shown in table 5.5 and 5.6.

5.3 Feed Error

Re�e
tarray antennas in
ludes several radiating elements whi
h are illuminated

by the feed antenna. Feed antenna 
an have the displa
ement from the on-axis
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Figure 5.12: In
lusion property validation against pat
h diele
tri
 permittivity

error - Nominal power pattern and IA− ENUM −MS interval power pattern

for △ε = {0.003, 0.005, 0.007}(a) in v = 0 plane (b) in u = 0 plane.
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Figure 5.13: In
lusion property validation against pat
h substrate thi
kness error

- Nominal power pattern and IA − ENUM − MS interval power pattern for

△d = {5, 10, 20, 50}(a)in v = 0 plane (b)in u = 0 plane.
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∆d, µm [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -22.561 0.092

5 [-0.012,0.009℄ [-22.653,-20.261℄ [0.088,0.092℄ 0.2

10 [-0.028,0.017℄ [-24.130,-19.259℄ [0.086,0.094℄ 0.5

20 [-0.071,0.029℄ [-28.078,-17.519℄ [0.084,0.098℄ 1.2

50 [-0.292,0.044℄ [-inf,-13.575℄ [0.072,0.108℄ 3.4

v=0

0 0 -22.561 0.092

5 [-0.012,0.009℄ [-26.822,-21.296℄ [0.09,0.094℄ 0.3

10 [-0.028,0.017℄ [-25.836,-20.150℄ [0.088,0.096℄ 0.6

20 [-0.071,0.029℄ [-31.003,-18.224℄ [0.084,0.098℄ 1.3

50 [-0.292,0.044℄ [-60.044,-13.821℄ [0.074,0.11℄ 3.9

Table 5.5: Analysis of the IA-based pattern predi
tion vs. substrate thi
kness

errors in u = 0 and v = 0 planes, △d = {5, 10, 20, 50}{µm}- Interval pattern
features [p(u, v), SLL,BW ] and pattern toleran
e index ∆

∆ε [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.380 0.092

0.003 [-0.0052,0.0006℄ [-21.457,-21.304℄ [0.091,0.092℄ 0.02

0.005 [-0.001,0.013℄ [-21.536,-21.227℄ [0.091,0.092℄ 0.03

0.007 [-0.003,0.002℄ [-21.659,-21.077℄ [0.091,0.092℄ 0.05

v=0

0 0 -22.561 0.092

0.003 [-0.005,0.004℄ [-21.884,-20.975℄ [0.091,0.092℄ 0.1

0.005 [-0.009,0.006℄ [-22.511,-20.915℄ [0.091,0.092℄ 0.2

0.007 [-0.013,0.009℄ [-22.515,-20.395℄ [0.088,0.092℄ 0.28

Table 5.6: Analysis of the IA-based pattern predi
tion vs. diele
tri
 permittivity

errors in u = 0 and v = 0 planes, △ε = {0.003, 0.005, 0.007}{µm}- Interval
pattern features [p(u, v), SLL,BW ] and pattern toleran
e index ∆
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fo
us due to some unpredi
table un
ertainties. This displa
ement make a phase-

error over the aperture surfa
e and 
onsequently distortion on the radiation pat-

tern. Beam distortion due to a lateral feed displa
ement in a paraboloid antenna

is investigated in [43℄. The 
ombined e�e
t of lateral and axial displa
ement of

the feed phase 
enter on the se
ondary performan
e of a paraboli
 re�e
tor is

des
ribed in [44℄. The impa
t of feed lo
ation on the operating band of broad-

band re�e
tarray antenna is addressed in [45℄. Sin
e the nature of these errors

is random, we need deterministi
 approa
hes to 
ompute the e�e
t of these ran-

dom errors on the radiation performan
e. As it is proved in the previous se
tion,

Minkowski Enumerative Interval Analysis (IA −MS − ENUM) provide more

reliable and e�e
tive results rather than Cartesian Interval Analysis (IA−CS).
This novel Minkowski-based Interval analysis is proposed to 
onsidered the e�e
t

of feed displa
ement errors on the radiation pattern of re�e
tarray antenna. The

result of the Minkowski-Interval analysis in
lude upper and lower bounds of the

power pattern as a result of feed position errors.

5.3.1 Mathemati
al Representation of Feed Lo
ation Dis-

tortion

Assume re�e
tarray antenna in Fig. 5.14 in whi
h the feed position has a dis-

pla
ement error △rf from on-axis fo
us. Feed position errors 
an a�e
t the

antenna performan
e. Based on the interval analysis approa
h and the verti
al

displa
ement error [52℄, feed on-axis fo
us lo
ation 
an be presented by following

errors and intervals as follows :

∆rf = (∆xf ,∆yf ,∆zf ) (5.1)

[rf ] = [xf ]x̂+ [yf ]ŷ + [zf ]ẑ (5.2)

[xf ] = [xf −△xf ; xf +△xf ] (5.3)

[yf ] = [yf −△yf ; yf +△yf ] (5.4)

[zf ] = [zf −△zf ; zf +△zf ] (5.5)

where feed lo
ation along x and y and z are xf , yf and zf , respe
tively. As
it is 
lear in Fig. 5.14, due to the feed displa
ement errors, distan
e from feed

to element Rmn will 
hange to R
′

mn . Sin
e this displa
ement 
an be random so

they 
an be presented by interval values [Rmn] to in
lude all of these random
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Figure 5.14: Antenna stru
ture with the feed displa
ement .

distan
e values R
′

mn. Sin
e the in
ident angles are 
omputed by the knowing

the feed position and the distan
e from feed to element so the spheri
al phases

(θmn, φmn) are also represented by interval values to assess the e�e
t of random

errors on feed nominal position.

In
ident feed 
an express by Floquet harmoni
s. Amplitude and phase of the

Floquet harmoni
s whi
h illuminate ea
h pat
h are 
omputed from the far �eld

of the feed horn antenna. This amplitude and phase now are the interval values

due to interval of the feed position. Interval of the far �eld of the horn antenna

with respe
t to mn-th pat
h/element in the re�e
tarray are:

[EFy([θmn], [φmn], [rf ])] = [EFy
θ ([θmn], [φmn], [rf ])]θ̂ + [EFy

φ ([θmn], [φmn], [rf ])]φ̂
(5.6)

[EFy
θ ([θmn], [φmn], [rf ])] =

jke−jk[Rmn]

[Rmn]
(CE([θmn])sin([φmn]) (5.7)

[EFy
φ ([θmn], [φmn], [rf ])] =

jke−jk[Rmn]

[Rmn]
(CH([θmn])cos([φmn]) (5.8)

Where [θmn] , [φmn] are the interval of the in
ident angles whi
h illuminate

mn-th element in the aperture surfa
e. CE(θ) = cosqE(θ) and CH(θ) = cosqH(θ)
are the E- and H- plane patterns of the feed-horn. We need to sele
t a proper

value for qE = qH in order to 
ontrol the aperture e�
ien
y. Interval of the

in
ident angle relates to interval of the feed positions by the following expressions:

[θmn] = atan

√
(xmn − [xf ])2 + (ymn − [yf ])2

zf
(5.9)
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[φmn] = atan
ymn − [yf ]

xmn − [xf ]
(5.10)

Interval of the [Rmn], [rmn] depends on the feed lo
ations interval values by the

following expression:

[Rmn] =
√

([rmn])2 + [z2f ] (5.11)

[rmn] =
√

(xmn − [xf ])2 + (ymn − [yf ])2

In
ident Floquet harmoni
s 
omputed from the Cartesian 
omponents of the far

�eld of the in
ident �eld. Interval of the Cartesian 
omponents of the in
ident

�eld related to the interval of the far �eld of the feed horn (5.6) antenna by:







[dFx ([θmn], [φmn], [rf ])]

[dFy ([θmn], [φmn], [rf ])]

[dFz ([θmn], [φmn], [rf ])]






=





sin([θmn]cos[φmn]) cos([θmn]cos[φmn]) −sin([φmn])
sin([θmn]sin[φmn]) cos([θmn]sin[φmn]) cos([φmn])

cos([θmn]) −sin([θmn ]) 0











0

[E
Fy
θ

([θmn], [φmn], [rf ])]

[E
Fy
φ

([θmn], [φmn], [rf ])]







(5.12)

Then the interval of the Floquet harmoni
s illuminated ea
h mn-th element

related to the interval of the Cartesian 
omponents of the far ele
tri
 �eld of ea
h

element by the following expression:

[

[dTE([θmn], [φmn], [rf ])]

[dTM ([θmn], [φmn], [rf ])]

]

=

1
[kcl([θmn],[φmn],[rf ])]

[

−[ky0([θmn], [φmn], [rf ])] [kx0([θmn], [φmn], [rf ])]

[kx0([θmn], [φmn], [rf ])] [ky0([θmn], [φmn]; [rf ])]

]

[

[dFx ([θmn], [φmn], [rf ])]

[dFy ([θmn], [φmn], [rf ])]

]

(5.13)

[kx0([θmn], [φmn]; ([rf ]))] = k0sin([θmn])cos([φmn]) (5.14)

[ky0([θmn], [φmn]; ([rf ]))] = k0sin([θmn])sin([φmn]) (5.15)

[kcl([θmn], [φmn], [rf ])] =
√

[k2x0([θmn], [φmn], [rf ])] + [k2y0([θmn], [φmn], [rf ])]

(5.16)

After 
omputing the interval of the in
ident Floquet harmoni
s illuminating

mn-th element. Now we need to 
ompute the interval of the Fourier transform

of the re�e
ted ele
tri
 �eld on the re�e
tarray aperture. This Interval Fourier

transform is the summation of the interval of re�e
ted Floquet harmoni
s of ea
h

element as follows [10℄:

[ẼRx/y(u, v; [θmn], [φmn], [rf ])] = K

M−1∑

m=0

N−1∑

n=0

[ax/ymn ([θmn], [φmn], [rf ])]e
jk0(umpx+vnpy)

(5.17)

Where [ax/y] is the interval of the Cartesian 
omponents of the re�e
ted �eld

illuminating ea
h element. We want to 
ompute the interval of the re�e
ted Flo-

quet harmoni
s of ea
h 
ell. This re�e
ted Floquet harmoni
s related to in
ident
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Floquet harmoni
s with the re�e
tion 
oe�
ient of ea
h 
ell. The expression for

the re�e
tion 
oe�
ient in
ludes the interval of the in
ident angle. Therefore the

e�e
t of the feed displa
ements is seen in both in
ident angle and the re�e
tion


oe�
ient. The relation between the interval of the re�e
ted Floquet harmoni
s

([aTE([θmn], [φmn], [rf ])], [a
TM([θmn], [φmn], [rf ])]) and the Cartesian 
omponents

of the re�e
ted ele
tri
 �eld ([ax([θmn], [φmn], [rf ])], [a
y([θmn], [φmn], [rf ])]) of ea
h

element are as follows:

[

[ax([θmn], [φmn], [rf ])]

[ay([θmn], [φmn], [rf ])]

]

=

1
[kcl([θmn],[φmn],[rf ])]

[ −[ky0([θmn], [φmn], [rf ])] [kx0([θmn], [φmn], [rf ])]

[kx0([θmn], [φmn], [rf ])] [ky0([θmn], [φmn], [rf ])]

] [

[aTE([θmn], [φmn], [rf ])]

[aTM ([θmn], [φmn], [rf ])]

]

(5.18)

interval of the re�e
ted ele
tri
 �eld related to the interval of the in
ident Floquet

harmoni
s by:

[

[aTE([θmn], [φmn], [rf ])]

[aTM ([θmn], [φmn], [rf ])]

]

=
[

[ΓTE([θmn], [φmn], [rf ])] [Γcross([θmn], [φmn], [rf ])]

[Γcross([θmn], [φmn], [rf ])] [ΓTM ([θmn], [φmn], [rf ])]

] [

[dTE([θmn], [φmn], [rf ])]

[dTM ([θmn], [φmn], [rf ])]

]
(5.19)

Then the interval of the TE and TM and cross re�e
tion 
oe�
ient are as

follows:

[ΓTE([θmn], [φmn], [rf ])] =
1

[QradTE([θmn],[φmn],[rf ])]
−( 1

[QradTM([θmn],[φmn],[rf ])]
+ 1

Q0
)−2j

(f−f0)
f0

1
[QradTE([θmn],[φmn],[rf ])]

+ 1
[QradTM([θmn],[φmn],[rf ])]

+ 1
Q0

+2j
(f−f0)

f0

(5.20)

[ΓTM([θmn], [φmn], [rf ])] =
1

[QradTM([θmn],[φmn],[rf ])]
−( 1

[QradTE([θmn],[φmn],[rf ])]
+ 1

Q0
)−2j

(f−f0)
f0

1
[QradTM([θmn],[φmn],[rf ])]

+ 1
[QradTE([θmn],[φmn],[rf ])]

+ 1
Q0

+2j
(f−f0)

f0

(5.21)

[Γcross([θmn], [φmn], [rf ])] =
2√

[QradTE([θmn],[φmn],[rf ])][QradTM([θmn],[φmn],[rf ])]

1
[QradTM([θmn],[φmn],[rf ])]

+ 1
[QradTE([θmn],[φmn],[rf ])]

+ 1
Q0

+2j
(f−f0)

f0

(5.22)

Here we have the expression for quality fa
tors whi
h depends on the in
ident

angles and the geometri
al parameters of the element. Sin
e the in
ident angle

are interval, the quality fa
tors 
an be represented by interval values as follows:

[QradTE([θmn], [φmn], [rf ])] =
f0πε

4d

lmn

wmn

pxpy
cos[θi]

(5.23)

[QradTM([θmn], [φmn], [rf ])] =
f0πε

4d

lmn

wmn
pxpycos[θi] (5.24)

periodi
ity of array along x and y are px and py, respe
tively. Length and with
of the pat
h are lmn and wmn. d is the substrate thi
kness. f0 is the resonan
e
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frequen
y of ea
h element. Q0 is the 
ombined quality fa
tors as expressed in

[22℄. After 
omputing the interval of the Fourier transform of the re�e
ted ele
tri


�eld in re�e
tarray aperture surfa
e . Interval fun
tion of the power pattern of

the ele
tri
 �eld is as:

[E(θ, φ; [θmn], [φmn], [rf ])] =

[Eθ(θ, φ; [θmn], [φmn], [rf ])]θ̂ + [Eφ(θ, φ; [θmn], [φmn], [rf ])]φ̂
(5.25)

[Eco(θ, φ; [θmn], [φmn], [rf ])] =

sinφ[Eθ(θ, φ; [θmn], [φmn], [rf ])]θ̂ + cosφ[Eφ(θ, φ; [θmn], [φmn], [rf ])]φ̂
(5.26)

[Ecross(θ, φ; [θmn], [φmn], [rf ])] =

cosφ[Eθ(θ, φ; [θmn], [φmn], [rf ])]θ̂ − sinφ[Eφ(θ, φ; [θmn], [φmn], [rf ])]φ̂
(5.27)

[Eθ(θ, φ; [θmn], [φmn], [rf ])] =
e−jkr

r
(cosφ[ẼRx(u, v; [θmn], [φmn], [rf ])] + sinφ[ẼRy(u, v; [θmn], [φmn], [rf ])])

(5.28)

[Eφ(θ, φ; [θmn], [φmn], [rf ])] =
e−jkr

r
(sinφcosθ[ẼRx(u, v; [θmn], [φmn], [rf ])] + cosφcosθ[ẼRy(u, v; [θmn], [φmn], [rf ])])

(5.29)

where j =
√
−1, k = 2π

λ
is the wavenumber, λ being the wavelength, and u =

sin θ cosφ and v = sin θ sin φ are the dire
tion 
osine 
oordinates with θ ∈
[
0; π

2

]

and φ ∈ [0; π].

5.3.2 IA-based Approa
h

In the following the IA− ENUM −MS approa
h is explained for feed errors:

• Divide the interval of feed displa
ement to e�
ient number of sampling

points i = i, ..., Ii. 
onstru
t ea
h point ψi by in�mum and supremun of

[xf ], [yf ] and [zf ] as

ψi = inf([xf ]/[yf ]/[zf ]) +
i
Ii
(sup([xf ]/[yf ]/[zf ])− inf([xf ]/[yf ]/[zf ]))

• Compute the amplitude and phase of the re�e
ted Floquet harmoni
s

a
x/y
mn(ψi) for ea
h sampling point, then 
ompute the maximum and min-

imum among the amplitude and phase of the re�e
ted Floquet harmoni
s.

• En
ir
le a small 
onvex polygon in
luding the 
ombination of the maxi-

mum and minimum of the amplitude and phase of the re�e
ted Floquet

harmoni
s.

• Perform Minkowski sum among the 
onvex polygons.
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5.3.3 Numeri
al Results

In this se
tion, some numeri
al results are proposed to validate the e�e
tiveness of

IA−ENUM−MS in 
omputing feed displa
ement errors. co−polar 
omponent

of the nominal pattern are 
omputed by Aperture Field method together with

the co and cross re�e
tion 
oe�
ient of the element. Bounds of the deviation of

power pattern for di�erent toleran
e errors on the feed position are investigated.

Then we 
he
k the in
lusion properties of the power bounds by 
omparing the

bounds with Monte Carlo results. Then feed antenna is relo
ated in di�erent

values of the fo
al points (F ), then the sensitivity of the Minkowski power bounds

versus these 
hanging is evaluated.

5.3.3.1 Comparative Assessment

Let us 
onsider a 
enter-fed re�e
tarray made of 529 isotropi
 re
tangular mi-


rostrip pat
hes equally-spa
ed along the x and y axis of px = py =
λ
2
. Re�e
tar-

ray antenna has a square aperture with diameter of 11.5λ0 in 30GHz working fre-
quen
y. Substrate is a Rogers RT580 with d = 0.5 mm, εr = 2.2, tanδ = 0.0009.
Feed antenna is a y-polarized horn antenna in 30 GHz modeled as cosθqH with

qH = 8.5. It is lo
ated in (xf , yf , zf) = (0, 0, 114.3)mm. Variable pat
h lengths

approa
h in normal in
ident angle is used to design the array elements over the

aperture surfa
e to obtain the required phased. Nominal width value of ea
h 
ell

is wmn = 3.95 mm.

5.3.3.2 Toleran
e Analysis Feed Error

First the impa
t of error on feed lo
ation along z axis on the lower and upper

bounds of co-polar 
omponents of the ele
tri
 �eld [Eco(θ, φ; [θmn], [φmn], [rf ])] is
analyzed. The nominal lo
ation is �xed in (xf , yf , zf) = (0, 0, 114.3mm) . We

assume the feed antenna has displa
ement error within the interval of zf ∈ [zf −
∆zf , zf +∆zf ] and ∆zf = λ/200,λ/100, λ/50, λ/20, λ/10 . IA−ENUM −MS
power bounds related to di�erent errors on z axis in 
ut v = 0.0 and u = 0.0
are presented in Fig.5.15 (a) and (b). The value for the pattern features are

presented in table 5.7. In order to 
he
k the reliability and in
lusion feature of

IA − ENUM −MS power bounds, a set of T = 105 Monte Carlo trial values

within the interval of ztf ∈ [zf − λ/20; zf + λ/20] have been 
hosen and their

patterns 
omputed. As 
an be observed in Fig.5.16, all Monte Carlo patterns

are within the IA−ENUM−MS bounds whi
h validate the in
lusion property.

The e�e
t of feed deviation errors along x and y axis 
an also be evaluated.

In order to 
al
ulate the error e�e
ts on these two axis, di�erent toleran
e errors

along x and y are 
onsidered. Interval of the power bounds versus toleran
es er-
rors ∆xf = λ/200,λ/100, λ/50, λ/20, λ/10 along x dire
tions for co-polar pattern
is presented in Fig. 5.17 (a) and (b) for 
ut v = 0 and u = 0, respe
tively.
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Figure 5.15: In
lusion property validation against feed lo
ation error - Nom-

inal power pattern and IA − MS co-polar interval power pattern for △zf =
{λ/200, 100, 50, 20, 10}(a)in v = 0 plane (b)in u = 0 plane.
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Figure 5.16: Monte Carlo power pattern 
over IA−MS bounds with △zf = λ/20.

∆zf [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.349 0.090

λ/200 [-0.015,0.007℄ [-21.551,-21.293℄ [0.09,0.09℄ 0.04

λ/100 [-0.0191,0.003℄ [-21.711,-21.184℄ [0.09,0.09℄ 0.09

λ/50 [-0.026,0.003℄ [-22.051,-20.987℄ [0.09,0.09℄ 0.17

λ/20 [-0.051,0.024℄ [-23.970,-20.830℄ [0.088,0.094℄ 0.44

λ/10 [-0.095,0.057℄ [-24.528,-19.018℄ [0.084,0.096℄ 0.88

v=0

0 0 -22.561 0.092

λ/200 [-0.015,0.002℄ [-23.032,-22.530℄ [0.092,0.092℄ 0.02

λ/100 [-0.019,0.003℄ [-23.033,-22.425℄ [0.092,0.092℄ 0.08

λ/50 [-0.026,0.004℄ [-23.310,-22.090℄ [0.090,0.094℄ 0.18

λ/20 [-0.051,0.024℄ [-24.386,-21.295℄ [0.09,0.096℄ 0.45

λ/10 [-0.095,0.057℄ [-26.514,-19.994℄ [0.086,0.098℄ 0.09

Table 5.7: Analysis of the IA-based co-polar pattern predi
tion vs. feed displa
e-

ment errors errors in u = 0 and v = 0 planes, △zf = {λ/200, 100, 50, 20, 10}-
Interval pattern features [p(u, v), SLL,BW ] and pattern toleran
e index ∆
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Figure 5.17: In
lusion property validation against feed lo
ation error - Nomi-

nal power pattern and IA − MS co-polar interval power pattern for △xf =
{λ/200, 100, 50, 20, 10}(a)in v = 0 plane (b)in u = 0 plane.
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∆xf [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.349 0.090

λ/200 [-0.022,0.003℄ [-21.831,-20.891℄ [0.09,0.092℄ 0.15

λ/100 [-0.0353,0.010℄ [-22.347,-20.453℄ [0.088,0.092℄ 0.3

λ/50 [-0.124,0.0314℄ [-23.486,-18.994℄ [0.084,0.096℄ 0.7

λ/20 [-0.214,0.086℄ [-28.217,-17.044℄ [0.074,0.102℄ 1.74

λ/10 [-0.335,0.164℄ [-inf,-14.923℄ [0.07,0.112℄ 3.37

v=0

0 0 -22.561 0.092

λ/200 [-0.022,0.0003℄ [-23.213,-22.145℄ [0.092,0.092℄ 0.138

λ/100 [-0.035,0.010℄ [-23.805,-21.649℄ [0.090,0.094℄ 0.27

λ/50 [-0.124,0.031℄ [-25.120,-20.009℄ [0.088,0.095℄ 0.7

λ/20 [-0.214,0.086℄ [-30.854,-17.844℄ [0.082,0.102℄ 1.62

λ/10 [-0.335,0.164℄ [-inf,-14.933℄ [0.074,0.11℄ 3.26

Table 5.8: Analysis of the IA-based co−polar pattern predi
tion vs. feed dis-

pla
ement errors in u = 0 and v = 0 planes, △xf = {λ/200, 100, 50, 20, 10}-
Interval pattern features [p(u, v)]

The value of the pattern features and the peak power for co-polar pattern
is shown in Table 5.8 and 5.9 respe
tively. In
lusion properties for the inter-

val of feed ([xf ]|△xf=λ/200 ⊂ [xf ]|△xf=λ/100 ⊂ [xf ]|△xf=λ/50 ⊂ [xf ]|△xf=λ/20 ⊂
[xf ]|△xf=λ/10) leads to the in
lusion properties of the co-polar power pattern

([P co]|△xf=λ/200 ⊂ [P co]|△xf=λ/100 ⊂ [P co]|△xf=λ/50 ⊂ [P co]|△xf=λ/20 ⊂ [P co]|△xf=λ/10).

Interval of the co-polar power bounds for toleran
es of∆yf = λ/200,100, 50, 20, 10
in Fig. 5.18. We 
an see the values of the pattern features in table 5.9.

We 
onsider errors on the feed lo
ations based on the error range for re�e
tor

antenna. Re�e
tarray antenna are more sensitive to the feed error. We will


onsider the more pra
ti
al feed errors in the z axis, then we will show that this

method is 
onsistent to any error. The interval pattern with the toleran
e of

{λ/5, λ/2, λ} is as shown in 5.19. As it is 
lear the bounds are larger than the

previous errors but it is still in
lusive.

5.3.3.3 Performan
e Analysis Versus Di�erent Fo
al-length-to-diameter

Ratio (F/D)

After evaluating the reliability of the Interval Minkowski with respe
t to feed po-

sition errors, we want to 
he
k the dependen
y of toleran
e analysis to di�erent

fo
al-length-to-diameter values (F/D). With this analysis, robustness and stabil-

ity of the method will be assessed. The analysis versus fo
al-length-to-diameter

values has been 
arried out by 
onsidering F/D = {0.3; 0.5; 0.7; 0.9}. A suitable
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Figure 5.18: In
lusion property validation against feed lo
ation error - Nom-

inal power pattern and IA − MS co-polar interval power pattern for △yf =
{λ/200, 100, 50, 20, 10}(a)in v = 0 plane (b)in u = 0 plane.
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Figure 5.19: Analysis of the IA-based co−polar pattern predi
tion vs. feed

displa
ement errors in u = 0 and v = 0 planes, △zf = {λ/5, 2, 1}- Interval
pattern features [p(u, v)].
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∆yf [P (u, v)] [SLL], dB [BW ], u ∆× 10
u=0

0 0 -21.349 0.090

λ/200 [-0.024,0.001℄ [-21.817,-20.903℄ [0.09,0.092℄ 0.13

λ/100 [-0.038,0.0137℄ [-22.309,-20.477℄ [0.088,0.092℄ 0.27

λ/50 [-0.13,0.0372℄ [-23.388,-19.029℄ [0.086,0.094℄ 0.68

λ/20 [-0.229,0.098℄ [-27.695,-17.084℄ [0.080,0.100℄ 1.53

λ/10 [-0.359,0.179℄ [-inf,-14.915℄ [0.072,0.100℄ 2.95

v=0

0 0 -22.561 0.092

λ/200 [-0.024,0.0001℄ [-23.228,-22.134℄ [0.092,0.094℄ 0.159

λ/100 [-0.0383,0.013℄ [-23.832,-21.633℄ [0.090,0.094℄ 0.31

λ/50 [-0.130,0.037℄ [-25.194,-19.984℄ [0.086,0.098℄ 0.78

λ/20 [-0.229,0.098℄ [-31.342,-17.817℄ [0.080,0.104℄ 1.82

λ/10 [-0.359,0.179℄ [-inf,-15.068℄ [0.072,0.114℄ 3.65

Table 5.9: Analysis of the IA-based co−polar pattern predi
tion vs. feed

displa
ement errors errors in u = 0 and v = 0 planes, △yf =
{λ/200, 100, 50, 20, 10}.Interval pattern features [p(u, v), SLL,BW ] and pattern

toleran
e index ∆

design for nominal lengths of re�e
tarray pat
hes is needed to realize required

phase for the proposed F/D values. Four di�erent re�e
tarray arrangements

have been synthesized for di�erent ratios of F/D.

The behaviour of the peak power pattern versus F/D = {0.3; 0.5; 0.7; 0.9} in
toleran
es of ∆xf = {λ/200,λ/100, λ/50, λ/20, λ/10} is shown in Fig. 5.20(a).
Beam width and sidelobe level for these ratios are presented in Fig. 5.20 (b)
and Fig. 5.20(c) , respe
tively. It is 
lear from these �gures, as the (F/D)
is in
reasing, the sensitivity of the power pattern to the toleran
e errors are

de
reasing. The value of the pattern features su
h as peak power, beam width

and sidelobe level are shown in table 5.10.

Sin
e F/D ratio is 
hanging, we need to apply the appropriate values for qH =
qE in (5.7), (5.8 ) to a
hieve the same aperture e�
ien
y of the stru
ture in ea
h

value of F/D . This value is 
omputed in ea
h F/D . The following values of

qH = {1; 1.2; 3.2; 6} are 
hosen for F/D = {0.3; 0.5; 0.7; 0.9}[10℄.
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Figure 5.20: Analysis versus F/D, IA-pattern features (a)P (u0)(b) SLL (c) BW .
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∆xf [P (u, v)] [SLL], dB [BW ], u
F/D = 0.3

0 0 -23.510 0.092

λ/200 [-0.027,0.025℄ [-24.856,-22.340℄ [0.09,0.094℄

λ/100 [-0.154,0.049℄ [-28.615,-21.197℄ [0.086,0.098℄

λ/50 [-0.221,0.090℄ [-34.763,-19.414℄ [0.082,0.102℄

λ/20 [-0.377,0.186℄ [-inf,-14.143℄ [0.070,0.116℄

λ/10 [-0.986,0.293℄ [-inf,-7.017℄ [0.05,0.142℄

F/D = 0.5
0 0 -18.286 0.086

λ/200 [-0.014,0.012℄ [-18.858,-17.752℄ [0.084,0.088℄

λ/100 [-0.089,0.024℄ [-19.474,-16.769℄ [0.082,0.090℄

λ/50 [-0.124,0.044℄ [-20.867,-15.888℄ [0.078,0.092℄

λ/20 [-0.265,0.092℄ [-27.498,-13.699℄ [0.076,0.100℄

λ/10 [-0.550,0.153℄ [-inf,-12.355℄ [0.056,0.120℄

F/D = 0.7
0 0 -19.380 0.088

λ/200 [-0.012,0.011℄ [-18.858,-17.752℄ [0.086,0.088℄

λ/100 [-0.025,0.021℄ [-19.474,-16.769℄ [0.082,0.090℄

λ/50 [-0.113,0.041℄ [-21.662,-17.098℄ [0.082,0.094℄

λ/20 [-0.221,0.091℄ [-26.990,-15.066℄ [0.076,0.100℄

λ/10 [-0.408,0.159℄ [-12.355,-19.380℄ [0.062,0.114℄

F/D = 0.9
0 -20.153 0.088

λ/200 [-0.011,0.010℄ [-20.611,-19.717℄ [0.088,0.090℄

λ/100 [-0.023,0.020℄ [-21.097,-19.305℄ [0.086,0.090

λ/50 [-0.109,0.040℄ [-22.166,-17.979℄ [0.084,0.094℄

λ/20 [-0.198,0.089℄ [-26.523,-16.102℄ [0.076,0.100℄

λ/10 [-0.333,0.157℄ [-inf,-14.012℄ [0.068,0.112℄

Table 5.10: Analysis vs. F/D ,F/D = {0.3, 0.5, 0.7, 0.9} for feed displa
ement

errors in v = 0 plane, △xf = {λ/200, 100, 50, 20, 10}- Interval pattern features

[p(u, v), SLL,BW ] and pattern toleran
e index ∆
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Chapter 6

Con
lusions and Future

Developments

In this last 
hapter, some 
on
lusions are drawn and further advan
es are envis-

aged in order to address the possible developments of the proposed te
hnique.
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In this thesis, an approa
h for the toleran
e analysis of re�e
tarray antennas

has been presented and validated. The method is based on the Interval Analysis.

Interval Arithmeti
 rules are exploited to model the e�e
t of un
ertainties on the

radiation pattern of antenna whi
h is analyzed with Aperture �eld method. In

the interval extension of the re�e
tarray power pattern fun
tions with Cartesian

Interval method (IA− CS), the so 
alled Wrapping and Dependen
y problems

are appeared and these problems overestimate the power bounds. In this thesis,

the proper way to deal with these redundan
y problems is addressed. Refor-

mulating the interval fun
tion is the �rst method to eliminate the dependen
y

e�e
t (IA−CS∗
). Sin
e the radiation pattern expression has a 
omplex relation

with the geometri
al parameters, reformulating (IA − CS∗) 
an not remove all

dependen
y problems. To fully remove the dependen
y, Interval Enumerative

(IA−ENUM) method is applied. Then the Minkowski Sum approa
h is imple-

mented to eliminate the Wrapping e�e
t (IA−ENUM −MS). The numeri
al

analysis has proved that:

• the IA−ENUM −MS power pattern bounds are narrower, more reliable

than those predi
ted by the IA− CS , IA− CS∗
, IA− ENUM

• the IA−ENUM −MS bounds are still in
lusive and satisfy the In
lusion

Theorem of IA;

To validate the dependen
y of the degradation of the pattern features against

varying steering angle, di�erent re�e
tarray antennas stru
tures are 
onsidered

and analyzed, in di�erent pat
h toleran
es. Similar to the previous validation,

the analysis is 
onsidered in several bandwidths. The results proved the e�e
-

tiveness and robustness of the IA−ENUM −MS analysis in di�erent steering

angles and frequen
ies. After 
he
king the method validity with pat
h and sub-

strate errors, the toleran
e e�e
t on the feed position is 
onsidered. Then, the

interval bounds of the co- polar 
omponents of the power pattern are 
al
ulated

by Interval arithmeti
 rules together with Minkowski sum approa
h. Further-

more, di�erent stru
tures of re�e
tarray antenna for several F/D are 
onsidered

and their interval bounds are 
omputed. Larger F/D ratio 
an in
rease the sys-

tem robustness to the toleran
e of error. E�e
tiveness of this toleran
e analysis

toward feed error is obvious from the results.

For the future of this work, probabilisti
 interval analysis 
an be 
onsidered to

predi
t the power pattern deviations. The statisti
al behaviour of the geometri
al

parameters are modeled with probability density fun
tion. Then a

ording to

this fun
tion, probabilisti
 upper and lower bounds of the power pattern 
an be

de�ned with Interval Arithmeti
 rules.

For further examination of the proposed method, we 
an apply the Interval

Analysis method for re�e
tarray with di�erent shapes, espe
ially aperture 
ou-

pled and FSS shape s
attering elements. Furthermore, multilayered re�e
tarray

stru
ture 
an be 
onsidered to estimate the e�e
t of geometri
al toleran
es in
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di�erent layers and the 
ombination of all errors for the whole stru
ture. Sin
e

re�e
tarray antenna with di�erent stru
tures is one of the most useful antennas

for spa
e 
ommuni
ation, this 
omplete toleran
e analysis in re�e
tarray antenna


ould be a very useful tool for an antenna engineer to make a more robust design

against manufa
turing and other unpredi
table toleran
es.
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