
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DIT - University of Trento

Concept Search:

Semantics Enabled Information Retrieval

Uladzimir Kharkevich

Advisor:

Prof. Fausto Giunchiglia

Università degli Studi di Trento

March 2010

Abstract

The goal of information retrieval (IR) is to map a natural language query,

which specifies the user information needs, to a set of objects in a given

collection, which meet these needs. Historically, there have been two major

approaches to IR that we call syntactic IR and semantic IR. In syntactic

IR, search engines use words or multi-word phrases that occur in document

and query representations. The search procedure, used by these search en-

gines, is principally based on the syntactic matching of document and query

representations. The precision and recall achieved by these search engines

might be negatively affected by the problems of (i) polysemy, (ii) synonymy,

(iii) complex concepts, and (iv) related concepts. Semantic IR is based on

fetching document and query representations through a semantic analysis

of their contents using natural language processing techniques and then re-

trieving documents by matching these semantic representations. Semantic

IR approaches are developed to improve the quality of syntactic approaches

but, in practice, results of semantic IR are often inferior to that of syntac-

tic one. In this thesis, we propose a novel approach to IR which extends

syntactic IR with semantics, thus addressing the problem of low precision

and low recall of syntactic IR. The main idea is to keep the same machinery

which has made syntactic IR so successful, but to modify it so that, when-

ever possible (and useful), syntactic IR is substituted by semantic IR, thus

improving the system performance. As instances of the general approach,

we describe the semantics enabled approaches to: (i) document retrieval,

(ii) document classification, and (iii) peer-to-peer search.

Keywords

Semantic Information Retrieval, Concept Indexing, P2P Search, Semantic

DHT, Semantic Flooding.

4

Acknowledgments

I would like to thank my scientific advisor, Prof. Fausto Giunchiglia, for

believing in me when no one else would and for giving me the ’one chance’

to experience the extremely interesting life of a PhD student in Trento

University. Also, I am thankful to Ilya Zaihrayeu who together with Prof.

Giunchiglia spent countless number of hours teaching me how to do re-

search and write articles.

I also thank all my friends who helped me to remember that the life is

not only about doing the research. In particular, I am extremely grateful

to two people who really become my family in Trento: my ’brother’ Mikalai

Krapivin and my ’sister’ Volha Kerhet. These two people made really a

great effort to keep my head above the water.

Finally, I thank all my real family: my mother Valentina Kharkevich, my

father Mikhail Kharkevich, my sister Elena Branovec, my nephew Egorka

and nice Nastenka for love, the tremendous support and inspiration which

they gave me in all these years.

5

Contributions

This thesis makes the following contributions:

• A survey of state of the art information retrieval approaches and se-

mantic approaches which are used in information retrieval;

• Design and development of a new approach to semantics enabled in-

formation retrieval, called concept search;

• Design and development of the algorithms which are based on the

general approach and applied to the problems of document retrieval,

document classification, and peer-to-peer search;

• Implementation of semantic matching of complex concepts, i.e., the

core building block in the concept search approach, by using the in-

verted index technology;

• Empirical evaluation of the developed algorithms on various data sets.

6

Publications

The material presented in the thesis has been developed in collaboration

with Fausto Giunchiglia, Ilya Zaihrayeu, Alethia Hume, Sheak Rashed

Haider Noori, Dharanipragada Janakiram, Harisankar Haridas and Piy-

atat Chatvorawit and published in various workshops and conferences:

• [39] Fausto Giunchiglia, Ilya Zaihrayeu, and Uladzimir Kharkevich.

Formalizing the get-specific document classification algorithm. In

Proceedings of ECDL, pages 26–37, 2007.

• [34] Fausto Giunchiglia, Uladzimir Kharkevich, and Ilya Zaihrayeu.

Concept search: Semantics enabled syntactic search. In Proceedings

of SemSearch2008 workshop at ESWC, 2008.

• [35] Fausto Giunchiglia, Uladzimir Kharkevich, and Ilya Zaihrayeu.

Concept search. In Proceedings of ESWC, pages 429–444, 2009.

• [33] Fausto Giunchiglia, Uladzimir Kharkevich, and Sheak Rashed Haider

Noori. P2P Concept Search: Some preliminary results. In Proceedings

of SemSearch2009 workshop at WWW, 2009.

• [47] Uladzimir Kharkevich. Automatic generation of a large scale

semantic search evaluation data-set. In Proceedings of ICSD, 2009.

• [32] Fausto Giunchiglia, Uladzimir Kharkevich, Alethia Hume, and

Piyatat Chatvorawit. Semantic Flooding: Search over semantic links.

In Proceedings of DeSWeb 2010 workshop at ICDE, 2010.

7

Contents

Introduction i

I State of the Art 1

1 Information Retrieval 3

1.1 Models . 4

1.2 Data Structures . 7

1.3 Term Matching . 9

1.4 Problems . 9

1.5 Summary . 11

2 Semantic Search 13

2.1 From Natural Language

to Formal Language . 15

2.2 From Words to Phrases . 16

2.3 From String Similarity

to Semantic Similarity . 17

2.4 Summary . 19

3 P2P Search 21

3.1 Search in Unstructured Networks 22

3.2 Search in Structured Networks 23

i

3.3 Semantic P2P Search . 26

3.4 Summary . 26

II Semantics Enabled Information Retrieval 27

4 Concept Search 29

4.1 From Words

to Complex Concepts . 30

4.2 From Word

to Concept Matching . 34

4.3 Relevance Ranking . 38

4.4 Concept Search

via Inverted Indexes . 41

4.4.1 Approach 1: C-Search via a Record Level Inverted

Index . 41

4.4.2 Approach 2: C-Search via a Word Level Inverted Index 44

4.4.3 Approach 3: C-Search with a Minimum Index Size 47

4.4.4 Approach 4: C-Search with a Hybrid Index 49

4.4.5 Approach 5: Approximated C-Search 50

4.5 Summary . 51

5 Document Classification:

Get-Specific Algorithm 53

5.1 The Get-Specific Algorithm 54

5.1.1 Classifications and a Classification Model 55

5.1.2 Modelling the Get-Specific Classification Algorithm 56

5.1.3 Problems of the Get-Specific Classification Algorithm 58

5.2 Formalizing the

Get-Specific Algorithm . 59

ii

5.2.1 From Natural Language to Formal Language 60

5.2.2 The Algorithm . 61

5.2.3 Dealing with Problems 64

5.3 Summary . 65

III Semantics Enabled P2P Search 67

6 P2P Concept Search 69

6.1 Distributed Knowledge . 70

6.2 Indexing and Retrieval . 72

6.3 Summary . 78

7 Semantic Flooding 79

7.1 A Semantic Overlay Network 81

7.2 Semantic Flooding . 83

7.2.1 Identifying semantically relevant peers 84

7.2.2 Searching inside a relevant peer 86

7.2.3 Aggregation of search results 87

7.3 Semantic Link Discovery 88

7.4 Summary . 89

IV Evaluation 91

8 Automatic

Data-Set Generation 93

8.1 Data-Set Generation . 93

8.2 Summary . 99

9 Evaluation Results 101

iii

9.1 Concept Search . 101

9.1.1 Quality Evaluation: TREC Data-Set 102

9.1.2 Quality Evaluation: Document Size 103

9.1.3 Quality Evaluation: Semantic Heterogeneity 105

9.1.4 Performance Evaluation 107

9.1.5 Quality vs. Performance 109

9.2 Document Classification 110

9.3 P2P C-Search . 112

9.4 Semantic Flooding . 114

9.5 Summary . 117

10 Conclusions 119

Bibliography 121

A Correctness and Completeness 135

iv

List of Tables

4.1 Statistics for the number of more specific concepts 49

8.1 Query-category pairs . 98

8.2 AboutUs data-set statistics 99

9.1 Evaluation results . 103

9.2 Semantic heterogeneity in TREC ad-hoc data-sets 107

9.3 Data-set statistics and evaluation results 111

9.4 Evaluation results: Syntactic vs. Semantic 113

v

List of Figures

1.1 Queries and a document collection 4

1.2 Inverted Index . 8

1.3 Polysemy . 10

1.4 Synonymy . 10

1.5 Complex concepts . 11

1.6 Related concepts . 11

2.1 Semantic Continuum . 14

4.1 Document and Query Representations 32

4.2 Example of terminological knowledge base TWN 35

4.3 Concept u-index . 42

4.4 Concept t-index . 42

4.5 Document index . 43

4.6 Positional Inverted Index 45

5.1 A part of the DMoz web directory 55

5.2 The decision making block 56

5.3 Formal Classification . 60

5.4 Vertical choice (“?” means no relation is found) 62

6.1 Peer’s information . 75

6.2 Query Answering . 77

7.1 P2P Network of User-Generated Classifications 80

vii

7.2 Classification . 82

7.3 A Semantic Overlay Network 83

9.1 Recall-Precision Graphs 103

9.2 Evaluation results: Document Size 104

9.3 Evaluation results: Semantic Heterogeneity 106

9.4 Size of the inverted index 108

9.5 Search time . 108

9.6 Influence of a max number of senses for a word on a search

time and MAP . 110

9.7 Influence of a max distance between concepts on a search

time and MAP . 111

9.8 Analysis of the “Languages” data-set results 112

9.9 Evaluation Results . 116

viii

Introduction

If the only tool you have is a hammer,
you tend to see every problem as a nail

Abraham Maslow

The goal of information retrieval (IR) is to map a natural language query,

which specifies the user information needs, to a set of objects in a given

collection, which meet these needs. Historically, there have been two major

approaches to IR that we call syntactic IR and semantic IR. In syntactic

IR, search engines use words or multi-word phrases that occur in document

and query representations. The search procedure, used by these search

engines, is principally based on the syntactic matching of document and

query representations. The precision and recall achieved by these search

engines might be negatively affected by the problems of (i) polysemy, (ii)

synonymy, (iii) complex concepts, and (iv) related concepts. Semantic IR is

based on fetching document and query representations through a semantic

analysis of their contents using natural language processing techniques and

then retrieving documents by matching these semantic representations.

Semantic IR approaches are developed to improve the quality of syntactic

approaches but, in practice, results of semantic IR are often inferior to

that of syntactic one. In fact, most of the state of the art search engines

are based on syntactic IR. There are many reasons for this, where one of

them is that techniques based on semantics, to be used properly, need a

lot of background knowledge which, in general, is not available. Moreover,

i

CHAPTER 0. INTRODUCTION

the current state of the art techniques in the word sense disambiguation

(i.e. converting words to meanings), does not allow to achieve the high

quality of output in the concept extraction process. This leads to mistakes

during the query-document matching process and, consequently, to the low

quality of obtained results.

The main goal of this thesis is to develop semantics-enabled IR algo-

rithms which can work better than (or at least as good as) syntactic IR

analogues in the situation when the limited knowledge and imperfect mech-

anism for converting natural language to formal language are used. To

achieve the goal, in this thesis, we propose a novel approach to IR which

extends syntactic IR with semantics, thus addressing the problem of low

precision and low recall of syntactic IR. The main idea is to keep the same

machinery which has made syntactic IR so successful, but to modify it

so that, whenever useful, syntactic IR is substituted by semantic IR, thus

improving the system performance. This is why we call this approach a se-

mantics enabled syntactic search. Semantics can be enabled along different

dimensions, on different levels, and to different extents forming a space of

approaches lying between purely syntactic search and fully semantic search.

We call this space the semantic continuum. In principle, a semantics en-

abled approach can work on the continuum from purely syntactic search

to purely semantic search, performing at least as well as syntactic search

and improving over it by taking advantage of semantics when and where

possible. As a special case, when no semantic information is available, the

semantics enabled search reduces to syntactic search, i.e., results produced

by semantic and syntactic approaches are the same. The semantics enabled

approaches scale as much as syntactic search can scale because semantics

is seamlessly integrated in the syntactic search technology.

As an instance of the general semantics enabled approach, in Chapter 4

of this thesis, we describe a free text document retrieval approach which

ii

CHAPTER 0. INTRODUCTION

we call Concept Search (C-Search in short). To solve the problems related

to the ambiguity of natural language, namely, the problems of polysemy

and synonymy, in C-Search, we move from words, expressed in a natural

language, to concepts (word senses), expressed in an unambiguous formal

language. To solve the problem related to complex concepts, we analyze

natural language phrases, which denote these concepts. The problem with

related concepts is addressed by incorporating lexical knowledge about

term relatedness. C-Search is based on the semantic matching of complex

concepts, where semantic matching is implemented by using (positional)

inverted index.

Using search engines is not the only way to discover the relevant infor-

mation. Classification hierarchy is another major approach for improving

the information discovery. It have always been a natural and effective way

for humans to organize their knowledge about the world in such a way,

that a person, who navigates the classification, will be facilitated in find-

ing objects related to a given topic. These hierarchies are rooted trees

where each node defines a topic category. Child nodes’ categories define

aspects or facets of the parent node’s category, thus creating a multifaceted

description of the objects which can be classified in these categories. To

attain such organization of objects, in standard classification approaches,

objects are manually classified by human classifiers which follow a pre-

defined system of rules. The actual system of rules may differ widely in

different classification approaches, but there are some generic principles

which are commonly followed. These principles make the ground of the

get-specific algorithm, which requires that an object is classified in a cate-

gory (or in a set of categories), which most specifically describes the object.

In Chapter 5 of this thesis, we present a first attempt to formalize the get-

specific document classification algorithm and to fully automate it through

reasoning in a propositional concept language without requiring a user in-

iii

CHAPTER 0. INTRODUCTION

volvement or a training data-set. The get-specific algorithm is an example

of a semantics enabled document classification algorithm.

The current web is a huge repository of documents, distributed in a

network of autonomous information sources (peers). The number of these

documents keeps growing significantly from year to year making it increas-

ingly difficult to locate relevant documents while searching on the web.

In addition to the massiveness, the web is also a highly dynamic system.

Peers are continually joining and leaving the network, new documents are

created on peers, and existing ones are changing their content. The search

problem becomes even more complex. Nowadays, the major search engines

are based on a centralized architecture. They attempt to create a single

index for the whole Web. But the size, dynamics, and distributed nature

of the Web make the search problem extremely hard, i.e., a very powerful

server farm is required to have complete and up-to-date knowledge about

the whole network to index it. The peer-to-peer (P2P) computing para-

digm appeared as an alternative to centralized search engines for searching

web content. Each peer in the P2P network organizes only a small portion

of the documents in the network, while being able to access the informa-

tion stored in the whole network. Robustness and scalability are the major

advantages of the P2P architecture over the centralized architecture. Also,

as the requirements for computational and storage resources of each peer

in a P2P network are much lighter than for a server in a centralized ap-

proach, a peer’s search engine can employ much more advanced techniques

for search, e.g. semantic search.

In this thesis, we describe two approaches to semantics enabled P2P

search: P2P C-Search (Chapter 6) and Semantic Flooding (Chapter 7).

P2P C-Search extends C-Search allowing semantic search on top of distrib-

uted hash table (DHT). The key idea is to exploit distributed, rather than

centralized, background knowledge and indices. Centralized document in-

iv

CHAPTER 0. INTRODUCTION

dex is replaced by distributed index build on top of DHT. The reasoning

with respect to a single background knowledge is extended to the reasoning

with respect to the background knowledge distributed among all the peers

in the network.

Semantic Flooding algorithm is based on the following idea. Links in

classification hierarchies codify the fact that a node lower in the hierarchy

contains documents whose contents are more specific than those one level

above. In turn, multiple classification hierarchies can be interconnected by

semantic links which represent mappings among them and which can be

computed, e.g., by ontology matching. In Chapter 7 of this thesis, we de-

scribe how these two types of links can be used to define a semantic overlay

network which can cover any number of peers and which can be flooded

to perform semantic search on links, i.e., to perform semantic flooding. In

our approach, only a relatively small number of peers need to be queried

in order to achieve high accuracy.

Structure of the Thesis

The thesis is organized in four parts. Part I provides an overview of syn-

tactic/semantic centralized/distributed IR approaches. Part II introduces

and describes the semantics enabled IR approach. Part III extends the se-

mantics enabled IR approach to the case of semantics enabled P2P search.

Part IV provides an evaluation of the algorithms described in Parts II

and III. Each part consists of several chapters, as follows:

Part I State of the Art

• Chapter 1 provides an overview of classical IR models and data

structures. Syntactic matching of document and query terms is

discussed and its problems are highlighted.

v

CHAPTER 0. INTRODUCTION

• Chapter 2 introduces semantic continuum and describes three di-

mensions where semantics can improve syntactic IR approaches.

• Chapter 3 provides an overview of existing state-of-the-art IR ap-

proaches in the P2P networks.

Part II Semantics Enabled Information Retrieval

• Chapter 4 introduces and describes the semantic enabled docu-

ment retrieval algorithm.

• Chapter 5 describes semantics enabled algorithms for hierarchical

document classification.

Part III Semantics Enabled P2P Search

• Chapter 6 describes an implementation of semantics enables doc-

ument retrieval algorithm on top of the distributed hash table.

• Chapter 7 shows how links in classification hierarchies together

with links across the classifications of different peers can be used

to implement semantic flooding algorithm in P2P networks.

Part IV Evaluation

• Chapter 8 presents an approach for automatic generation of IR

data-sets based on search engines query logs and data from human-

edited web directories.

• Chapter 9 provides evaluation results for the algorithms described

in Chapters 4, 5, 6, and 7.

vi

Part I

State of the Art

Chapter 1

Information Retrieval

The goal of an IR system is to map a natural language query q (in a

query set Q), which specifies a certain user information needs, to a set of

documents d in the document collection D which meet these needs, and to

order these documents according to their relevance to q. IR can therefore

be represented as a mapping function:

IR : Q → D (1.1)

In order to implement an IR System we need to decide (i) which mod-

els (Model) are used for document and query representation, for comput-

ing query answers and relevance ranking, (ii) which data structures (Data

Structure) are used for indexing document representations in a way to al-

low for an efficient retrieval, (iii) what is an atomic element (Term) in

document and query representations, and (iv) which matching techniques

(Match) are used for matching document and query terms. Thus, an IR

System can be abstractly modelled as the following 4-tuple:

IR System = 〈Model, Data Structure, Term, Match〉 (1.2)

In the rest of this chapter, we will briefly describe the classical IR models

(Section 1.1), data structures (Section 1.2), and the term matching process

(Section 1.3). Readers interested in a detailed discussion of IR systems and

3

1.1. MODELS CHAPTER 1. INFORMATION RETRIEVAL

A small baby dog runs after a huge white cat. D1:

A laptop computer is on a coffee table. D2:

A little dog or a huge cat left a paw mark on a table. D3:

Babies and dogs Q1: Computer table Q3: Carnivores Q4: Paw printQ2:

Documents:

Queries:

Figure 1.1: Queries and a document collection

their components are referred to [59]. The problems which may negatively

affect the performance of IR systems are discussed in Section 1.4. Sec-

tion 1.5 summarizes the chapter.

1.1 Models

The bag of words model [59], i.e., the model in which the ordering of words

in a document is not considered, is the most widely used model for docu-

ment representation. The boolean model [59], the vector space model [79],

and the probabilistic model [23] are the classical examples of models used

for computing query answers and relevance ranking.

In the boolean model [59], documents are represented by using the bag of

words model. Queries are represented as boolean expressions of terms, i.e.,

terms are combined with the operators AND, OR, and NOT. Document is

considered to be an answer to a query if the boolean condition in the query

is satisfied. For instance, a document D2 (in Figure 1.1) is an answer to

a query “laptop AND coffee AND (NOT dog)” because both words laptop

and coffee appears in the document and there is no word dog. One of the

problems with boolean retrieval is that, in the large document collection,

the number of documents which match the query can also be large, i.e., it

can be bigger than a user is willing to sift through. In order to address this

problem, conventional search engines rank query results according to their

4

CHAPTER 1. INFORMATION RETRIEVAL 1.1. MODELS

relevance to the query. Different models for estimating the document-query

relevance are discussed below.

In the vector space model [79], documents and queries are represented

as vectors in a common vector space, in which there is an axis for each

term. A component corresponding to a term t in a document (query)

vector represents the importance of t in the document (query). Different

measures (based on the statistics of term occurrences) were proposed to

weight the term importance [62], where the tf-idf (term frequency - inverse

document frequency) is probably the most popular one. The tf-idf weighting

scheme assigns high weights to terms which appear frequently but within

a small number of documents. Relevance score between a query and a

document, in the vector space model, is computed by using the cosine

similarity [105] between the vector representations of the query and the

document. For instance, the scoring function which is derived from the

vector space model and which is used in Lucene1 (an open source IR toolkit

used in many search applications2) is shown below3:

score1(q, d) =
∑ f

1
2 (1 + ln(N

n+1))
2

dl
1
2

(1.3)

where f - the frequency of occurrence of the term within the document;

dl - the document length measured as the number of indexing terms in

the document; n - the number of documents containing the term; N - the

number of documents in the document collection.

In the probabilistic model [23], documents are ranked according to the

probability of being relevant to the user information need which is uncer-

tainly expressed by the user query. According to the Probability Ranking

Principle (PRP) [72], if “the probabilities are estimated as accurately as

possible on the basis of whatever data have been made available to the sys-
1http://lucene.apache.org/java/docs/index.html
2http://wiki.apache.org/lucene-java/PoweredBy
3Note that Formulas 1.3, 1.4, and 1.5 are simplified for the sake of presentation

5

1.1. MODELS CHAPTER 1. INFORMATION RETRIEVAL

tem for this purpose, the overall effectiveness of the system to its user will

be the best that is obtainable on the basis of those data”. Different ways of

estimating these probabilities (or measures related to probabilities which

don’t change the ordering of results) have been proposed in the literature

(e.g., see [94, 73, 85]). An example of the popular probabilistic scoring

function Okapi BM25 [74] is shown below:

score2(q, d) =
∑

ln(
N − n + 1

2

n + 1
2

)
(k1 + 1)f

k1((1− b) + b dl
avdl) + f

(1.4)

where k1 and b (which default to 1.2 and 0.75 respectively) are the tun-

ing parameters; avdl is the average document length across the document

collection.

Using of statistical language models [67, 42], which assign a proba-

bility for generating of an arbitrary sequence of terms, is an alternative

probabilistic approach which is used in IR. In a basic language modelling

approach, a language model is built for each document in the document

collection. A relevance score between a query and a document is com-

puted as a probability of generating the query terms by the document’s

language model. A language modelling approach can also be used to build

the language model for the query [51]. The relevance score, in this case,

is computed by estimating the probability of generating the document by

the query’s language model. In [50], authors show how the above two ap-

proaches can be efficiently combined. The simplest (yet the most widely

used) form of language model is the unigram language model. The uni-

gram model assigns each term a probability of occurrence independently

from other terms. An example of a scoring function, derived from the

unigram language model, is shown below [100]:

score3(q, d) = ql · ln(
µ

dl · µ) +
∑

ln(1 +
f

µ n
N

) (1.5)

where, ql is the query length and µ is the tuning parameter. In higher order

6

CHAPTER 1. INFORMATION RETRIEVAL 1.2. DATA STRUCTURES

models, e.g., the bigram language model, the probabilities are assigned to

terms depending on the previous terms. The use of higher order models in

IR is discussed in [29].

In the discussed above models, the user can be involved in the re-

trieval process (and improve the results of IR) by using a relevance feedback

(RF) [78] mechanism. After receiving an initial set of retrieval results, the

user specifies which results are relevant to his information need and which

are not. The query representation is then modified to take the feedback

information into account and to produce a final retrieval results. This

procedure can be repeated as many times as needed. The Rocchio Algo-

rithm [75] is an example of how the relevance feedback information can be

incorporated into the vector space model. Instead of manual selection of

the relevant results, top-k ranked documents from the initial set of results

can be considered relevant. This is the basic idea of the technique which

is called pseudo relevance feedback [78].

1.2 Data Structures

Various index structures, such as the signature file [106] and the inverted

index [105], are used as data structures for efficient retrieval. Inverted in-

dex, which stores mappings from terms to their locations in documents, is

the most popular solution [59]. The two parts of an inverted index are:

Dictionary, i.e., a list of terms used for document indexing; and posting

lists (Postings), where every posing list is associated with a term and con-

sists of documents in which this term occur. Note that the inverted index

dictionary is kept in main memory and postings are kept on the disk. Dif-

ferent techniques for an efficient index construction where developed in the

last years (e.g., see [105, 52, 17, 3]). For large document collections using

of a single machine can be insufficient and, therefore, indexing may need

7

1.2. DATA STRUCTURES CHAPTER 1. INFORMATION RETRIEVAL

D2 D3table

D3little

D1 D3

computer

Dictionary (terms)

dog

Query Postings

D2 D3

table AND computer

…
…

…

…
…

…

Figure 1.2: Inverted Index

to be distributed over multiple (hundreds or thousands of) machines. Ap-

plication of a general MapReduce [26] distributed computing architecture

is the popular solution for the distributed document indexing.

The query processing in Inverted Index is separated into three main

steps: (i) to locate terms in dictionary which match query terms, (ii) to re-

trieve postings for these terms, and (iii) merge (e.g., intersect or unite) the

postings. An example of boolean retrieval using Inverted Index technol-

ogy is given in Figure 1.2. We are processing a query table AND computer.

First, for each query term we identify those terms in dictionary that match

this term (table → {table} and computer → {computer}). Second, we

search inverted index with computed dictionary terms (table → {D2, D3}
and computer → {D2, D3}). And finally, we take the intersection of docu-

ment sets, found for every query terms, as an answer to the query (D2 and

D3 in our example).

The fast search in the inverted index dictionary is usually implemented

by using search trees [48]. Algorithms for an efficient access and merging

of posting lists, which are based on skip lists, are discussed in [61, 13,

90]. Note that users usually see only the top-k retrieval results. Different

heuristics which allow for a fast retrieval of the top-k results were proposed

in [2, 30, 4].

8

CHAPTER 1. INFORMATION RETRIEVAL 1.3. TERM MATCHING

1.3 Term Matching

In the simplest case, document and query words4 can be considered as

terms in document and query representations. A potential problem with

this approach is that different inflectional forms of a word can be used in a

query and a document and, therefore, the document will not be retrieved

as an answer to the query. In order to address this problem, the inflectional

forms of words can be reduced to a common base form which is used as a

term. For instance, the stemmer can remove the ends of words by using a

set of rules [68]. Furthermore, in order to reduce the number of mismatches,

terms are usually converted to lower case.

Basic term matching is implemented as a search for identical terms.

Furthermore, some systems perform approximate matching by searching

for terms within a certain edit distance with a given term [104]. Spelling

error correction and other forms of query refinement [40] can also be seen

as a kind of approximate term matching. The usage of wildcard queries for

term matching is covered in Chapter 3 of [59]. A wildcard query is a query

which uses special characters which match any character or an arbitrary

sequence of characters. For instance, a query cat* will match documents

with terms cats and catastrophe. The described above approaches are all

examples of syntactic matching. Hereafter, IR systems which use syntactic

matching of terms are referred to as syntactic search systems.

1.4 Problems

There are several problems which negatively affect the performance of syn-

tactic search, as discussed below.

Polysemy (Figure 1.3). The same word may have multiple meanings

4Also phrases and, in general, any other character sequences which can not be classified as words, e.g.,
dates, ip addresses, emails, etc

9

1.4. PROBLEMS CHAPTER 1. INFORMATION RETRIEVAL

W1

W
o
rd

s
C

o
n
ce

p
ts

C1 C2

Figure 1.3: Polysemy

W2

W
o
rd

s
C

o
n
ce

p
ts

C1

W1

Figure 1.4: Synonymy

and, therefore, query results may contain documents where the query word

is used in a meaning which is different from what the user had in mind when

she was defining the query. For instance, a document D1 (in Figure 1.1)

which talks about baby in the sense of a very young mammal is irrelevant

if the user looks for documents about baby in the sense of a human child

(see query Q1 in Figure 1.1). An answer for query Q1, computed by a

syntactic search engine, includes document D1, while the correct answer

is the empty set.

Synonymy (Figure 1.4). Two different words can express the same

meaning in a given context, i.e., they can be synonyms. For instance,

words mark and print are synonymous when used in the sense of a visible

indication made on a surface, however, only documents using word print

will be returned if the user query was exactly this word. An answer for

query Q2 (in Figure 1.1), computed by a syntactic search engine, is the

empty set, while the correct answer includes document D3.

Complex concepts (Figure 1.5). Syntactic search engines fall short in

taking into account complex concepts formed by natural language phrases

and in discriminating among them. Consider, for instance, document D2

(in Figure 1.1). This document describes two concepts: a laptop computer

and a coffee table. Query Q3 (in Figure 1.1) denotes concept computer

table which is quite different from both complex concepts described in D2,

whereas a syntactic search engine is likely to return D2 in response to

10

CHAPTER 1. INFORMATION RETRIEVAL 1.5. SUMMARY

W2

W
o
rd

s
C

o
n
ce

p
ts

C1

W1

C2 C3

W2W1+

Figure 1.5: Complex concepts

W2

W
o
rd

s
C

o
n
ce

p
ts

C1

W1

C2

Figure 1.6: Related concepts

Q3, because both words computer and table occur in this document. The

correct answer to Q3 is the empty set.

Related concepts (Figure 1.6). Syntactic search does not take into

account concepts which are semantically related to the query concepts.

For instance, a user looking for carnivores might not only be interested in

documents which talk about carnivores but also in those which talk about

the various kinds of carnivores such as dogs and cats. An answer for query

Q4 (in Figure 1.1), computed by a syntactic search, is the empty set, while

the correct answer might include documents D1 and D3, depending on

user information needs and available semantic information.

1.5 Summary

This chapter provided a brief overview of classical IR models and data

structures. Various approaches to syntactic matching of terms were also

discussed. Finally we identified several problems which negatively affect

the performance of syntactic IR approaches (the approaches which are

based on the syntactic matching of terms).

11

1.5. SUMMARY CHAPTER 1. INFORMATION RETRIEVAL

12

Chapter 2

Semantic Search

Semantic search is a research topic that has its roots in the IR community

that proposed first approaches to extending the classical IR with explicit

semantics long time ago (e.g., see [24]). Since then many approaches were

proposed by the community. However, their core common idea to codify

the explicit semantics was in the use of informal knowledge representation

structures such as thesauri with no or little formal reasoning support. On

the other hand, with the advent of the Semantic Web (SW), many formal

frameworks to represent and reason about knowledge were proposed. How-

ever, in the SW community, semantic search is primarily seen as the data

retrieval task. RDF graph is queried with a query in a formal language

(such as SPARQL) in order to retrieve elements of the graph satisfying the

given query. See [43, 58] for an overview of approaches proposed so far in

both IR and SW communities.

In the rest of this chapter, we will concentrate on the document retrieval

problem where documents and queries are represented as a free text. We

will see how the semantic search approaches can be used to address the

problems of syntactic search described in Section 1.4. We identify three di-

mensions where semantics can improve syntactic search and represent these

dimensions in the cartesian space shown in Figure 2.1. In Section 2.1, we

13

CHAPTER 2. SEMANTIC SEARCH

NL2FL

W2P

+Noun Phrase

+Lexical

knowledge

+Verb Phrase

…
C-Search

(0, 0, 0)

Pure Syntax

NL

 (FL)

1

Word

String

Similarity

+Statistical

Knowledge

1

(Complete

 Ontological

 Knowledge)

…

1 (Full-fledged

 sentence)

KNOW

+Descriptive Phrase

NL&FL

Full Semantics

(1, 1, 1)

Figure 2.1: Semantic Continuum

will discuss approaches in which concepts are used for document index-

ing and retrieval (NL2FL-axis in Figure 2.1). In the NL2FL-axis, value 0

represents the situation where only words are used, while value 1 repre-

sents the situation where only concepts are used. In Section 2.2, we will

discuss approaches where indexing by words is extended to indexing by

phrases (W2P-axis in Figure 2.1). In the W2P-axis, value 0 represents the

situation where only single words are used, while value 1 represents the

situation where noun phrases or complex concepts, extracted from full-

fledged sentences, are used. In Section 2.3, we will see how knowledge

about term relatedness can be incorporated into a term matching process

(KNOW-axis in Figure 2.1). In the KNOW-axis, value 0 represents the

situation where only string similarity is used, while 1 represents the situa-

tion where complete ontological knowledge is used. The three-dimensional

space contained in the cube (see Figure 2.1) represents the semantic con-

tinuum where the origin (0,0,0) is a purely syntactic search, the point with

coordinates (1,1,1) is full semantic search, and all the points in between

14

CHAPTER 2. SEMANTIC SEARCH
2.1. FROM NATURAL LANGUAGE

TO FORMAL LANGUAGE

represent search approaches in which semantics is enabled to different ex-

tents.

2.1 From Natural Language

to Formal Language

The fact that the syntactic nature of classical IR (which is based on syn-

tactic matching of ambiguous words) leads to problems with precision and

recall was recognized by the IR community a long time ago (e.g., see [88]).

To solve the problems related to the ambiguity of natural language, namely,

the problems of polysemy and synonymy, we need to move from words, ex-

pressed in a natural language, to concepts (word senses), expressed in an

unambiguous formal language. This process is commonly referred to as

Word Sense Disambiguation (WSD) [64].

An overview of existing approaches to a sense (concept) based IR is

presented in [80]. The common pattern is to use a WSD technique in order

to associate words in a document corpus with atomic lexical concepts in a

linguistic database and then to index these documents with the associated

concepts. Different linguistic databases were used in the sense based IR,

where WordNet [60] is a particularly popular one. The approach described

in [88] is an example of the sense based IR approach which is based on

WordNet. WSD in [88] is based on the information about words which

co-occur with a word in a document, collocations which contain the given

word and the frequency of senses for the word from WordNet. The most

frequent sense is assigned to a word if there is no enough information which

can be used to perform WSD. Given the lack of context in queries, which

usually consist of few words, query terms in [88] are disambiguated by

using the most frequent sense heuristic only.

When we move from words to concepts, it is not always possible to find

15

2.2. FROM WORDS TO PHRASES CHAPTER 2. SEMANTIC SEARCH

a concept which corresponds to a given word. The main reason for this

problem is the lack of background knowledge [31, 37], i.e., a concept corre-

sponding to a given word may not exist in the lexical database. To address

this problem, indexing and retrieval in the continuum can be performed

by using both syntactic and semantic information. For example, Hybrid

Search [10] combines syntactic search with semantic search, where semantic

search is implemented on metadata and syntactic search is implemented on

keywords. The results of both techniques are then intersected and ranked

according to scores computed by syntactic search. In [18], ontology-based

search is combined with the classical IR. First, documents are scored by

using each technique separately and then the final score is computed as a

linear combination of scores computed by these techniques.

2.2 From Words to Phrases

To solve the problem related to complex concepts, natural language phrases

(which denote these concepts) need to be analyzed. It is well known that

in natural language concepts are expressed mostly as noun phrases [84].

In general, concepts can be expressed as more complex phrases than noun

phrases (e.g., verb phrases) and possibly as arbitrary complex full-fledged

sentences.

An example of a noun phrase parsing algorithm and its application to

document indexing and retrieval is described in [99]. The parsing is per-

formed by a fast probabilistic noun phrase parser. Indexing and retrieval

are performed by using both words and phrases. It is suggested that, in

this case, some parsing errors may be tolerable. Using of different combi-

nations of words and phrases is discussed in [99]. For instance, single words

can be combined with full noun phrases, head modifier pairs, or both.

There are approaches in which the conceptual content of noun phrases is

16

CHAPTER 2. SEMANTIC SEARCH
2.3. FROM STRING SIMILARITY

TO SEMANTIC SIMILARITY

also analyzed. For instance, in [1], noun phrases are automatically trans-

lated into ontological descriptors by using a semantic analysis which is

based on a domain-specific ontology. The goal of the semantic analysis is

to ensure that noun phrases with similar conceptual content receive the

same or similar descriptions. The retrieval is performed by matching de-

scriptors extracted from queries with those extracted from documents.

2.3 From String Similarity

to Semantic Similarity

The problem with related concepts can be solved by incorporating knowl-

edge about term relatedness into the retrieval process. For instance, it can

be statistical knowledge about term co-occurrence (e.g., see [27]), lexical

knowledge about synonyms and related terms (e.g., see [63]), or ontological

knowledge about classes, individuals, and their relationships (e.g., see [18]).

Latent Semantic Analysis (LSA) [27] is an example of a technique which

makes use of knowledge about term co-occurrence. Singular-value decom-

position (SVD) [89] and low-rank approximation [9] are used to approx-

imate term-document matrix with a new matrix which can be seen as a

linear combination of small number (e.g., 100) of factors or latent concepts.

Note that in this case, a concept is a weighted vector of related words (i.e.,

words with similar co-occurrences). The key idea of LSA is to describe

queries and documents as a linear combination of latent concepts and to

perform query-document matching by comparing the latent concepts in-

stead of words. Note that, in this case, a document can be found similar

to the query even though not all the query words appear in the document.

A probabilistic extension of the LSA technique is provided in [44, 12].

Lexical knowledge about synonyms and related terms is used in [95,

63, 46, 54, 97]. Roget’s thesaurus [76] and WordNet [60] are examples

17

2.3. FROM STRING SIMILARITY
TO SEMANTIC SIMILARITY CHAPTER 2. SEMANTIC SEARCH

of the popular lexical resources which are used for this purpose. In the

simplest case, terms in a query are expanded with related terms from the

thesaurus and then the expanded query is used in the retrieval process

(e.g., see [95, 63]). The expanded terms are usually weighted differently

from the original query terms (e.g., see [46]). In [54], the combination of

search technique which are based on detecting phrases and query expan-

sion is discussed. It is argued that phrases, which are extracted from the

query, should be considered more important for document retrieval than

the single words. In [97], natural language processing and machine learning

techniques are used to identify (noun) phrases in a document corpus, to

analyze the structure and content of these phrases, and to organize them

in a subsumption hierarchy. The resulting hierarchy is used to make con-

nections between (possibly different) terminologies in the user query and

indexed documents. On of the problems in using manually built thesauri is

that many terms and relations can be missing, hence, affecting the perfor-

mance of IR systems which use these thesauri. To overcome this problem it

is suggested to replace (or to enrich) manually built thesauri by automat-

ically generated ones. Automatic thesaurus generation and its application

to IR is discussed in [69, 81, 57].

In [18], query expansion is implemented by using domain ontologies in-

stead of thesauri. Documents are annotated by concepts and instances

from an ontology. A reasoning engine is used to find concepts and in-

stances which satisfy the query and which are in the ontology. Documents

which are annotated with these concepts and instances are considered to

be relevant to the query. Document ranking is implemented by adopting

the cosine similarity from the vector space model where terms are replaced

with atomic elements from the ontology.

18

CHAPTER 2. SEMANTIC SEARCH 2.4. SUMMARY

2.4 Summary

In this chapter, we introduced semantic continuum and identified three

dimensions in the continuum where semantics can be enabled in syntactic

IR approaches. Different search approaches in which semantics is enabled

to different extents and along different dimensions were discussed.

19

2.4. SUMMARY CHAPTER 2. SEMANTIC SEARCH

20

Chapter 3

P2P Search

The current web is a huge repository of documents, distributed in a net-

work of autonomous information sources (peers). The number of these

documents keeps growing significantly from year to year making it increas-

ingly difficult to locate relevant documents while searching on the web.

In addition to the massiveness, the web is also a highly dynamic system.

Peers are continually joining and leaving the network, new documents are

created on peers, and existing ones are changing their content. The search

problem becomes even more complex.

Nowadays, the major search engines are based on a centralized archi-

tecture. They attempt to create a single index for the whole Web. But the

size, dynamics, and distributed nature of the Web make the search prob-

lem extremely hard, i.e., a very powerful server farm is required to have

complete and up-to-date knowledge about the whole network to index it.

The peer-to-peer (P2P) computing paradigm appeared as an alternative to

centralized search engines for searching web content. Each peer in the P2P

network organizes only a small portion of the documents in the network,

while being able to access the information stored in the whole network. Ro-

bustness and scalability are major advantages of the P2P architecture over

the centralized architecture. Also, as the requirements for computational

21

3.1. SEARCH IN UNSTRUCTURED NETWORKS CHAPTER 3. P2P SEARCH

and storage resources of each peer in a P2P network are much lighter than

for a server in a centralized approach, a peer’s search engine can employ

much more advanced techniques for search, e.g. semantic search.

A number of P2P search approaches have been proposed in the literature

(for an overview see [71]). In the rest of this chapter, we will discuss some

of these approaches concentrating on syntactic search in unstructured (Sec-

tion 3.1) and structured (Section 3.2) networks. In Section 3.3, approaches

implementing semantic search in P2P networks will be discussed.

3.1 Search in Unstructured Networks

The algorithm implemented by Gnutella is the classical example of a query

flooding algorithm. In early versions of Gnutella, connections between

peers were made mainly chaotically. A P2P network was completely un-

structured, i.e., it did not have any predefined structure. The query sent by

a peer was propagated to all the actively connected peers within a prede-

fined number of hops from the query sender. The search process was blind,

i.e., peers have no information related to the resource location. The lack

of scalability was recognized as the main problem of the Gnutella. Various

techniques were adopted in later versions of Gnutella protocol in order to

make the search process more scalable. Super-peers were introduced to

utilize the heterogeneity between peers in computer power, bandwidth and

availability. Informed search, i.e., when peers maintain additional infor-

mation about resource locations which can be useful for the search, re-

placed blind search. In Gnutella, informed search is implemented by using

Query Routing Protocol (QRP). Query Routing Tables (QRT) consisting

of hashed keywords are exchanged between peers. During query routing,

search request is propagated only to those peers which have all of the query

words in its QRT. In [21], a peer uses Routing Indices to forward queries to

22

CHAPTER 3. P2P SEARCH 3.2. SEARCH IN STRUCTURED NETWORKS

neighbors that are more likely to have answers. Query topics are compared

to neighbor’s expertise to select relevant peers.

The basic idea of [6, 20, 86, 103, 22] is to organize peers into Similar

Content Groups on top of unstructured P2P systems, i.e., a peer clustering

approach is implemented. Peers from the same group tend to be relevant

to the same queries. A query is guided to Similar Content Group that

is more likely to have answers to the given query and then the query is

flooded within this group. For instance, in Semantic Overlay Networks

(SONs) [22] peers that have similar documents are clustered at the same

group. A predefined classification hierarchy is used to classify the peers’

documents. Thus two peers belong to the same SON if some of their

documents classified under the same concept in this global classification.

Peers can belong to more than one SON.

3.2 Search in Structured Networks

CAN [70], Chord [87], Pastry [77], and Tapestry [102] use another ap-

proach to the routing and topology organization of P2P networks. This

approach employs the idea of distributed hash tables (DHT) functionality

(e.g. mapping keys onto values) on Internet-like scale. In DHT, every ob-

ject is associated with a key, which is transformed into a hash using some

hash function. The range of the output values of the hash function forms

an ID space. Every peer in the network is responsible for storing a certain

range of keys. Values, e.g., objects or information about objects, are stored

at the precisely specified locations defined by the keys. A data clustering

approach is implemented, i.e., similar data is placed in the same place.

Such systems are highly structured. Their topology is tightly controlled.

Search in these systems is limited to an exact key search. The two main

operations provided by DHT are:

23

3.2. SEARCH IN STRUCTURED NETWORKS CHAPTER 3. P2P SEARCH

• put (key, value) - stores the value on the peer responsible for the given

key.

• get (key) → value - finds a peer responsible for the key and retrieve

the value for the key.

A straightforward way to implement syntactic search is to use the DHT

to distribute peers’ inverted indices in the P2P network [71]. Peers locally

compute posting lists P (t) for every term t and store them in the network

by using the DHT ’put’ operation. The key in this case is a term t while

the value is a posting list P (t) associated with t. In DHT, each peer is

responsible for a few terms and for every term t the peer merges all the

posting lists P (t) for t from all the peers in the network. In order to find a

set of documents which contain a term t we just need to contact the peer

responsible for t and retrieve the corresponding posting list. The DHT ’get’

operation does exactly this. In order to search for more than one term,

we, first, need to retrieve posting lists for every single term, and then to

intersect all these posting lists.

The above approach has several problems (see e.g. [53, 91]). Let us

consider some of these problems.

Storage. For a large document collection, the number and the size of

posting lists can be also large. Therefore, the storage needed to store the

posting lists can potentially be bigger than the storage peers can (or want

to) allocate.

Traffic. Posting lists need to be transferred when peers join or leave

the network. Searching with multiple terms requires intersection of posting

lists, which also need to be transferred. In the case of huge posting lists,

a bandwidth consumption can exceed the maximum allowed. In [53], it is

shown that the efficiency of DHT can be even worse than the efficiency of

a simple flooding algorithm.

24

CHAPTER 3. P2P SEARCH 3.2. SEARCH IN STRUCTURED NETWORKS

Load balancing. Popularity of terms, i.e., the number of occurrences

of the terms, can vary enormously among different terms. It can result in

an extremely imbalanced load e.g., some peers will store and transfer much

more data than others.

Several approaches were proposed in order to address the described

above problems and to improve performance of IR in structured P2P net-

works. Some of the optimization techniques (e.g., Bloom Filters), which

can improve the performance of posting lists intersection, are summarized

in [53]. Caching of results for queries with multiple terms is discussed

in [11, 83]. In [83], only those queries are cached which are frequent enough

and simple flooding is used for rare queries. In [91], only important (or top)

terms are used for indexing of each document. Moreover, the term lists are

stored on peers responsible for these top terms. Notice that by using only

the top terms we can decrease the quality of search results. Automatic

query expansion is proposed as a way to address this problem [91]. Some

techniques to balance the load across the peers are also presented in [91].

Normally users are interested only in a few (k) high quality answers. An

example of the approach for retrieving top k results, which does not require

transmitting of entire posting lists, is discussed in [101]. In [55], indexing

is performed by terms and term sets appearing in a limited number of

documents. Different filtering techniques are used in [55] in order to make

vocabulary to grow linearly with respect to the document collection size.

In [8, 7], it was proposed to index a peer containing a document and not

the document itself. At search time, first, those peers are selected, which

are indexed by all the terms in the query, then, the most promising peers

are selected, and finally, local search is performed on these peers.

Ambiguity. Another important problem with the above approaches is

that all of them implement syntactic search. Therefore, the problems of

syntactic search, i.e., problems of (i) polysemy, (ii) synonymy, (iii) complex

25

3.3. SEMANTIC P2P SEARCH CHAPTER 3. P2P SEARCH

concepts, and (iv) related concepts (see Section 1.4), can also affect the

quality of the results produced by these approaches.

3.3 Semantic P2P Search

All of the described so far approaches are based on syntactic matching of

terms. In this section, we will discuss P2P search approaches which use

matching techniques which use the knowledge about term relatedness (and

not only syntactic similarity of terms). For instance, statistical knowledge

about term co-occurrence is used in [92]. Knowledge about synonyms and

related terms is used in [56].

Different semantic search approaches are also used in Edutella [65] and

Bibster [41]. These two approaches are built on JXTA framework and aim

to combine meta-data with P2P networks. Each peer is described and

published using an advertisement, which is an XML document describing

a network resource. For example in the Bibster [41] system, these expertise

descriptions contain a set of topics that the peer is an expert in. Peers use

a shared ontology to advertise their expertise in the Peer-to-Peer network.

3.4 Summary

In this chapter, we discussed various state-of-the-art IR approaches to syn-

tactic and semantic search in structured and unstructured P2P networks.

26

Part II

Semantics Enabled Information

Retrieval

Chapter 4

Concept Search

C-Search is a document retrieval approach which is implemented according

to the model described in Equations 1.1 and 1.2 from Section 1.4. In

our proposed solution, C-Search reuses retrieval models (Model) and data

structures (Data Structure) of syntactic search with the only difference

in that now words (W) are substituted with concepts (C) and syntactic

matching of words (WMatch) is extended to semantic matching of concepts

(SMatch). This idea is schematically represented in the equation below:

Syntatic Search
Term(W → C), Match(WMatch → SMatch)−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C-Search

Material presented in this chapter has been developed in collaboration with

Fausto Giunchiglia and Ilya Zaihrayeu and published in [34, 35].

In the rest of this chapter, we will consider in detail how the words in

W are converted into the complex concepts in C (Section 4.1) and also

how the semantic matching SMatch is implemented (Section 4.2). Sec-

tion 4.3 describes how semantics enabled relevancy ranking is implemented

in C-Search. In Section 4.4, we show how C-Search can be efficiently im-

plemented using the inverted index technology.

29

4.1. FROM WORDS
TO COMPLEX CONCEPTS CHAPTER 4. CONCEPT SEARCH

4.1 From Words

to Complex Concepts

Searching documents, in C-Search, is implemented using complex concepts

expressed in a propositional Description Logic (DL) [5] language LC (i.e., a

DL language without roles). Complex concepts are computed by analyzing

meaning of words and phrases in queries and document bodies.

Single words are converted into atomic concepts uniquely identified as

the lemma-sn, where lemma is the lemma of the word, and sn is the sense

number in a lexical database such as WordNet [60]. For instance, the

word dog used in the sense of a domestic dog, which is the first sense

in the lexical database, is converted into the atomic concept dog-1. The

conversion of words into concepts is performed as follows. First, we look

up and enumerate all meanings of the word in the lexical database. Next,

we perform word sense filtering, i.e., we discard word senses which are not

relevant in the given context. In order to do this, we follow the approach

presented in [98], which exploits part-of-speech (POS) tagging information

and the lexical database for the disambiguation of words in short noun

phrases. Differently from [98] we do not use the disambiguation technique

which leaves only the most probable sense of the word, because of its low

accuracy. If more than one sense is left after the word sense filtering step

then we keep all the left senses. If no senses from the lexical database are

found then lemma itself is used as the identifier for the atomic concept. In

this case, C-Search is reduced to syntactic search.

Complex concepts are computed by extracting phrases and by analyzing

their meaning. Noun phrases are translated into the logical conjunction of

atomic concepts corresponding to the words in the phrase. For instance,

the noun phrase A little dog is translated into the concept little-4u dog-1.

Here, we adopt the approach described in [36] by defining the extension

30

CHAPTER 4. CONCEPT SEARCH
4.1. FROM WORDS

TO COMPLEX CONCEPTS

of a concept as a set of noun phrases which describe this concept. For

instance, the extension of the concept little-4u dog-1 is the set of all noun

phrases about dogs of a small size.

Concepts in natural language can be described ambiguously. For in-

stance, the phrase A little dog or a huge cat represents a concept which

encodes the fact that it is unknown whether the only animal described in

the document is a little dog or a huge cat. In order to support complex

concepts which encode uncertainty (partial information) that comes from

the coordination conjunction OR in natural language, we introduce the

notion of descriptive phrase. We define a descriptive phrase as a set of

noun phrases, representing alternative concepts, connected by OR:

descriptive phrase ::= noun phrase {OR noun phrase} (4.1)

Descriptive phrases are translated into the logical disjunction of the for-

mulas corresponding to the noun phrases. For instance, the phrase A

little dog or a huge cat is translated into the concept (little-4 u dog-1) t
(huge-1 u cat-1). To locate descriptive phrases we, first, follow a standard

NLP pipeline to locate noun phrases, i.e., we perform sentence detection,

tokenization, POS tagging, and noun phrase chunking. Second, we locate

descriptive phrases satisfying Formula 4.1.

In C-Search, every document d is represented as an enumerated sequence

of conjunctive components uAd (where Ad is an atomic concept from d,

e.g., dog-1) possibly connected by disjunction symbol “t”. For example,

in Figure 4.1 we show the sequences of uAd extracted from documents in

Figure 1.1. Rectangles in Figure 4.1 represent either conjunctive compo-

nents uAd or the disjunction symbol “t”. A number in a square at the

left side of a rectangle represents the position of the rectangle in the whole

sequence. Note, that symbol “t” is used to specify that conjunctive com-

ponents uAd connected by this symbol form a single disjunctive concept

31

4.1. FROM WORDS
TO COMPLEX CONCEPTS CHAPTER 4. CONCEPT SEARCH

2

3

laptop-1 computer-1

carnivore-1 computer-1 table-1 paw-1 print-3baby-1

onpaw-1 mark-4leavehuge-1 cat-1little-4 dog-1 D3:

Q1: Q3: Q4:Q2:

2 31 4 5 table-176

AND dog-1

Documents:

Queries:

coffee-1 table-1beD2: 41 on 3

huge-1 white-1 cat-1runsmall-4 baby-3 dog-1 D1: 21

Figure 4.1: Document and Query Representations

t u Ad, namely:

t u Ad ::= (uAd){(“ t ”)(uAd)} (4.2)

For example, the first three positions in the sequence for document D3 in

Figure 4.1 represent the concept (little-4 u dog-1) t (huge-1 u cat-1).

Queries usually are short phrases (i.e., 1-3 words) and, as shown in [98],

standard NLP technology, primarily designed to be applied on full-fledged

sentences, is not effective enough in this application scenario. For instance,

an atomic concept in a query can be computed incorrectly, because of the

selection of a wrong part-of-speech tag. In order to address this problem,

for short queries, we use a POS-tagger which is specifically trained on short

phrases [98]. On the other hand, for long queries (i.e., 4 words or more),

we use the standard NLP technology.

Even if atomic concepts are computed correctly, complex concepts can

be erroneously computed. One of the reasons is that a complex concept can

be represented as a sequence of words without following the grammar for

noun phrases. For instance, the query cat huge is converted into two atomic

concepts cat-1 and huge-1, while the correct concept might be cat-1 u
huge-1. Another reason is that a query describing more than one concept,

without properly separating them, can be recognized as a single complex

concept. For instance, the query dog cat is converted into the concept

dog-1 u cat-1, while the user might be actually looking for a document

describing both animals, i.e., dog-1 and cat-1. The examples described

32

CHAPTER 4. CONCEPT SEARCH
4.1. FROM WORDS

TO COMPLEX CONCEPTS

above show that, in general, it is unknown how atomic concepts Aq
1, . . . ,

Aq
n, extracted from short queries, should be combined in order to build

complex query concepts. To represent this uncertainty we use the following

query:

(Aq
1 AND . . . AND Aq

n) AND (Aq
1 t · · · t Aq

n) (4.3)

where the first part (Aq
1 AND . . . AND Aq

n), i.e., atomic concepts Aq
1, . . . ,

Aq
n connected by using boolean operator AND, encodes the fact that it is

known that the query answer should contain documents which are relevant

to all the atomic concepts in the query. The second part, i.e., the complex

concept Aq
1 t · · · tAq

n, can be equivalently rewritten as (Aq
1)t (Aq

2)t · · · t
(Aq

1 u Aq
2) t · · · t (Aq

1 u · · · u Aq
n) and, therefore, encodes the fact that it

is unknown to which complex concept (e.g., Aq
1 u Aq

2, or Aq
1 u · · · u Aq

n)

the documents in the query answer should actually be relevant to. For

instance, for queries cat huge and dog cat the following C-Search queries

will be generated:

cat huge ⇒ cat-1 AND huge-1 AND cat-1 t huge-1 t (cat-1 u huge-1)

dog cat ⇒ dog-1 AND cat-1 AND dog-1 t cat-1 t (dog-1 u cat-1)

Note that in C-Search (as it will be discussed later in Section 4.3) we give

a preference to documents which match complex concepts, therefore, in

the first example, documents about cat-1 u huge-1 will be ranked higher.

Let us assume that in the second example there are no documents about

complex concept dog-1ucat-1. In this case, it can be shown that the query

results will be the same as the results of the query dog-1 AND cat-1.

33

4.2. FROM WORD
TO CONCEPT MATCHING CHAPTER 4. CONCEPT SEARCH

4.2 From Word

to Concept Matching

In C-Search, we allow the search of documents describing concepts which

are semantically related to query concepts. We assume that, when a user

is searching for a concept, she is also interested in more specific concepts1.

For example, the extension of concept (little-4 u dog-1) t (huge-1 u cat-1)

is a subset of the extension of concept carnivore-1. Therefore, documents

describing the former concept should be returned as answers to the query

encoded by the latter concept. Formally a query answer A(Cq, T) is defined

as follows:

A(Cq, T) = {d | ∃Cd ∈ d, s.t. T |= Cd v Cq} (4.4)

where Cq is a complex query concept extracted from the query q, Cd is

a complex document concept extracted from the document d, and T is a

terminological knowledge base (the background knowledge) which is used

in order to check if Cd is more specific then Cq. Equation 4.4 states that

the answer to a query concept Cq is the set of all documents d, such that,

there exists concept Cd in d which is more specific than the query concept

Cq.

During query processing we need to compute A(Cq, T) for every query

concept Cq in the query. One approach is to sequentially iterate through

each concept Cd, compare it to the query concept Cq using semantic match-

ing [38], and collect those Cd for which semantic matching returns more

specific (v). However, this approach may become prohibitory expensive as

there may be thousands and millions of concepts described in documents.

In order to allow for a more efficient computation of A(Cq, T), we propose

an approach described below.
1This could be easily generalized to any set of semantically related concepts. The impact of this choice

onto the system performance is part of the future work.

34

CHAPTER 4. CONCEPT SEARCH
4.2. FROM WORD

TO CONCEPT MATCHING

cat-1 lion-1

carnivore-1

canine-2 feline-1

dog-1 wolf-1

is a subsumption relation

Figure 4.2: Example of terminological knowledge base TWN

Let us assume, as it is the case in the current implementation, that T
consists of the terminological knowledge base TWN generated from Word-

Net and extended by words (represented as concepts) for which no senses

in WordNet are found. One small fragment of TWN is represented in Fig-

ure 4.2. TWN can be thought of as an acyclic graph, where links represent

subsumption axioms in the form Ai v Aj, with Ai and Aj atomic concepts.

Concepts Cd and Cq, are created by translating descriptive phrases into

propositional DL formulas (see Section 4.1 for details). The resulting con-

cepts are disjunctions (t) of conjunctions (u) of atomic concepts (A) with-

out negation, i.e., Cd ≡ t u Ad and Cq ≡ t u Aq. For example, possible

document and query concepts are:

Cd ≡ (little-4 u dog-1) t (huge-1 u cat-1)

Cq ≡ (small-4 u canine-2) t (large-1 u feline-1)

By substituting Cd with t u Ad, Cq with t u Aq, and T with TWN in

Equation 4.4, we obtain:

A(tuAq, TWN) = {d | ∃(tuAd) ∈ d, s.t. TWN |= tuAd v tuAq} (4.5)

Let us denote by CtuAq the set of all the complex document concepts

t uAd, which are equivalent to or more specific than t uAq, in formulas:

CtuAq = {t u Ad | TWN |= t u Ad v t u Aq} (4.6)

35

4.2. FROM WORD
TO CONCEPT MATCHING CHAPTER 4. CONCEPT SEARCH

Then Equation 4.5 can be rewritten as follows:

A(t u Aq, TWN) = {d | ∃(t u Ad) ∈ d, s.t. (t u Ad) ∈ CtuAq} (4.7)

In order to compute set CtuAq , as defined in Equation 4.6, we need to solve

the following subsumption problem:

TWN |= t u Ad v t u Aq (4.8)

Given that TWN consists only of subsumption axioms between atomic con-

cepts, and that concepts t uAd and t uAq do not contain negations, the

problem in Equation 4.8 can be reduced to the set of subsumption problems

TWN |= uAd v Aq (4.9)

This problem reduction is obtained by applying the following three equa-

tions2:

TWN |=tuAdvtuAq iff for all uAd in tuAd, TWN |=uAdvtuAq (4.10)

TWN |=uAdvtuAq iff there existsuAq intuAq, TWN |=uAdvuAq (4.11)

TWN |=uAdv uAq iff for all Aq in u Aq , TWN |=uAdvAq (4.12)

Notice that the second part of each equation is the same as the first part of

the equation that follows, and that the first part of Equation 4.10 and the

last part of Equation 4.12 are exactly Equations 4.8 and 4.9. This proves

that the above problem reduction is correct.

If by Cu
C we denote a set of all the conjunctive components uAd, which

are equivalent to or more specific than concept C, i.e.,

Cu
C = {uAd | TWN |= uAd v C}, where C ∈ {Aq,uAq,t u Aq} (4.13)

Given Equations 4.10, 4.11, and 4.12, the query answer A(Cq, TWN), as

defined in Equation 4.7, can be computed by using Algorithm 1. The
2In Appendix A, we prove correctness and completeness of Equation 4.11 when the knowledge base

and complex concepts are as described above. Note, that in general, Equation 4.11 cannot be applied.
One such case is when negation is allowed, a counterexample is |= Ai v Aj t¬Aj . A second case is when
T contains axioms of the form Ai v Aj tAk; consider, e.g., T = {Ai v Aj tAk} |= Ai v Aj tAk.

36

CHAPTER 4. CONCEPT SEARCH
4.2. FROM WORD

TO CONCEPT MATCHING

Algorithm 1 Compute A(t u Aq, TWN)

1: Cu
tuAq ← ∅

2: for all uAq in t u Aq do

3: i ← 0

4: Cu
uAq ← ∅

5: for all Aq in uAq do

6: Cu
Aq ← {uAd |TWN |=uAd v Aq}

7: if i = 0 then

8: Cu
uAq ← Cu

Aq

9: else

10: Cu
uAq ← Cu

uAq ∩Cu
Aq

11: end if

12: i ← i + 1

13: end for

14: Cu
tuAq ← Cu

tuAq ∪Cu
uAq

15: end for

16: CtuAq ← {t u Ad | all uAd in t u Ad belong to Cu
tuAq}

17: A ← {d | there exists t u Ad in d, s.t., t u Ad belongs to CtuAq}

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

algorithm consists of the five principle phases which are described below:

Phase 1 (line 6) We compute Cu
Aq , i.e., the set of all uAd, such that,

uAd v Aq.

Phase 2 (lines 5-13) We compute Cu
uAq , i.e., a set of all uAd, such that,

uAd v uAq. As it follows from Equation 4.12, uAd ∈ Cu
uAq only if for

every Aq in uAq, uAd∈Cu
Aq . To compute Cu

uAq , we intersect sets Cu
Aq

for all Aq in uAq.

Phase 3 (lines 2-15) We compute the set Cu
tuAq , i.e., the set of all uAd,

such that, uAd v t u Aq. As it follows from Equation 4.11, uAd ∈
Cu
tuAq if uAd ∈ Cu

uAq at least for one uAq in t uAq. To compute the

set Cu
tuAq , we take the union of all the sets Cu

uAq for all uAq in tuAq.

Phase 4 (line 16) We compute the set CtuAq , i.e., the set of all complex

37

4.3. RELEVANCE RANKING CHAPTER 4. CONCEPT SEARCH

document concepts t uAd, such that, t uAd v tuAq. As it follows

from Equation 4.10, t u Ad ∈ CtuAq only if all the conjunctive com-

ponents uAd in t u Ad belong to Cu
tuAq . To compute the set CtuAq ,

we collect all tuAd which consist only from conjunctive components

uAd in Cu
tuAq .

Phase 5 (line 17) We compute A(tuAq, TWN) as defined in Equation 4.7,

i.e., by collecting all the documents which contain concepts from

CtuAq .

The next section reports different approaches to how all the phases of

the above algorithm can actually be implemented and their output on a

running example.

In C-Search, query concepts Cq can be combined into more complex

queries q by using the boolean operators AND, OR, and NOT. Query

answer A(q, TWN) in this case is computed by recursively applying the

following rules:

A(qi AND qj, TWN) = A(qi, TWN) ∩ A(qj, TWN)

A(qi OR qj, TWN) = A(qi, TWN) ∪ A(qj, TWN)

A(qi NOT qj, TWN) = A(qi, TWN) 6 A(qj, TWN)

(4.14)

For instance, the query answer for query baby-1 AND dog-1 (in Figure 4.1)

is computed as follows: A(baby-1 AND dog-1, TWN) = A(baby-1, TWN) ∩
A(dog-1, TWN) = ∅ ∩ {D1, D3} = ∅

4.3 Relevance Ranking

In order to compute the relevance of documents, in C-Search, standard IR

ranking techniques are adapted. In syntactic search, ranking of documents

is usually performed by calculating frequencies f(wq, d) of appearance of

38

CHAPTER 4. CONCEPT SEARCH 4.3. RELEVANCE RANKING

query words wq in a document d and then by applying different scoring

functions score(wq, d) = score(f(wq, d), d), which depend on f(wq, d) and,

in general, can also depend on many other parameters, e.g., length of d (see

Section 1.1). In order to adapt such techniques for ranking query results

in C-Search, f(wq, d) is replaced by the following function:

f ′(Aq, wq, d) = P (Aq, wq)·
∑

AdvAq

SS(Aq, Ad)·P (Ad, wd)·f(Ad, wd, d) (4.15)

which takes into account frequencies f(Ad, wd, d) of all the atomic docu-

ment concepts Ad which are related to Aq and described in d. Moreover,

f ′(Aq, wq, d) takes into account the fact that not all the atomic concepts Aq

are equally important to query concept Aq. To measure this importance

the following three parameters are used: SS(Aq, Ad) - a measure of seman-

tic similarity between concepts Ad and Aq; P (Aq, wq) - a coefficient which

is proportional to the probability of that atomic concept Aq is correctly

assigned to a word wq in the query; and P (Ad, wd) - a coefficient which

is proportional to the probability that an atomic concept Ad is correctly

assigned to a word wd in the document. Informally, f ′(Aq, wq, d) is higher

for: (i) concepts Ad which are closer in the meaning to the concept Aq, (ii)

a concept Aq which is more likely to be a correct sense of a word wq in a

query q, and (iii) concepts Ad which are more likely to be correct senses

for words wd in a document d.

As a measure of semantic similarity SS(Aq, Ad) the following formula is

used3:

SS(Aq, Ad) =
1

10dist(Aq,Ad)
(4.16)

where dist(Aq, Ad) is a distance between concepts Aq and Ad in the concept

hierarchy from TWN . To estimate the coefficients P (A,w), we use the

3Note that other measures of semantic similarity (e.g., see [16]) can also be used. It is a part of our
future work to analyze the performance of different semantic similarity measures.

39

4.3. RELEVANCE RANKING CHAPTER 4. CONCEPT SEARCH

following formula:

P (A,w) =
freq(A,w)

maxFreq(w)
(4.17)

where freq(A,w) is a number provided by WordNet which shows how

frequently the specified word w is used to represent the meaning A (incre-

mented by one in order to avoid zero values), maxFreq(w) is a maximum

freq(A,w) for w.

As an example, let us compute value f ′(Aq, wq, d) for a concept canine-2

in a document D1 from Figure 4.1. The only more specific concept for

a concept canine-2 in D1 is a concept dog-1. Given that the distance

dist(canine-2, dog-1) is equal to one (see Figure 4.2), SS(canine-2, dog-1)

will be equal to 10−1. Assume that concepts canine-2 and dog-1 are the

only concepts assigned to words canine and dog respectively. In this

case, P (canine-2, canine) = P (dog-1, dog) = 1. A word dog appears

in document D1 only once, therefore, f(dog-1, dog, D1) = 1. Finally,

f ′(canine-2, canine, D1) = 1 ∗ 10−1 ∗ 1 ∗ 1 = 10−1.

If by score′(q, d) we denote a relevance score (for the document d with

respect to the query q) computed by a syntactic relevancy ranking tech-

nique with f(wq, d) replaced by f ′(Aq, wq, d), then the final document score

with respect to the complex query concept t u Aq is computed by using

the following equation.

score(tuAq, d) = score′(q, d) ·
∑

uAq∈tuAq

isAns(uAq, d) · size2(uAq) (4.18)

where isAns(uAq, d) is a function which has value 1 when document d

describes at least one conjunctive component uAd which is more specific

than the given conjunctive component uAq from the query concept tuAq;

otherwise, it has value 0. Function size(uAq) returns the number of atomic

concepts in conjunctive component uAq. Informally, score(t u Aq, d) is

higher for those documents d which are answers to more complex concepts

uAq in t u Aq.

40

CHAPTER 4. CONCEPT SEARCH
4.4. CONCEPT SEARCH

VIA INVERTED INDEXES

4.4 Concept Search

via Inverted Indexes

In the section, we will show how document representations (e.g., see Fig-

ure 4.1) can be indexed and retrieved by using (different modifications of)

inverted indexes.

4.4.1 Approach 1: C-Search via a Record Level Inverted Index

In this section, we describe how the document representations (see Fig-

ure 4.1) can be indexed and retrieved by using a record level inverted

index (as it was proposed in [34]). In the inverted index, as used in syntac-

tic search (see Section 1.2), there are two parts: the dictionary, i.e., a set

of terms (t) used for indexing; and a set of posting lists P(t). A posting

list P(t) is a list of all the postings for term t:

P (t) = [〈d, freq〉]
where 〈 d, freq〉 is a posting consisting of a document d associated with

term t and the frequency freq of t in d.

In Approach 1, inverted indexes are used to:

1. index conjunctive components uAd by their atomic concepts Ad. We

call the resulting index the concept u-index. Concept u-index stores

a mapping from each atomic concept to a set of all the conjunctive

components which contain this concept. In Figure 4.3, we show a

fragment of a concept u-index.

2. index complex concepts tuAd by their conjunctive components uAd.

We call the resulting index the concept t-index. Concept t-index

stores a mapping from each conjunctive component uAd to a set of

complex concepts tuAd which contain this component. In Figure 4.4,

we show a fragment of a concept t-index.

41

4.4. CONCEPT SEARCH
VIA INVERTED INDEXES CHAPTER 4. CONCEPT SEARCH

Dictionary (t) Posting lists (P(t))

little-4 [〈little-4udog-1 , 1〉; 〈small-4ubaby-1udog-1 , 1〉]
dog-1 [〈little-4udog-1 , 1〉; 〈small-4ubaby-1udog-1 , 1〉]

huge-1 [〈huge-1ucat-1 , 1〉; 〈huge-1uwhite-1ucat-1 , 1〉]
cat-1 [〈huge-1ucat-1 , 1〉; 〈huge-1uwhite-1ucat-1 , 1〉]

Figure 4.3: Concept u-index

Dictionary (t) Posting lists (P(t))

little-4udog-1 [〈(little-4udog-1) t (huge-1ucat-1), 1〉]
huge-1ucat-1 [〈(little-4udog-1) t (huge-1ucat-1), 1〉]

Figure 4.4: Concept t-index

3. index documents by (complex) concepts described in the documents.

We call the resulting index the document index. The document index

stores a mapping from each (complex) concept to a set of all the

documents which describe this concept. In Figure 4.5, we show a

fragment of a document index.

Now we will see how Algorithm 1 in Section 4.2 can be implemented

in Approach 1 given that concept u- and t- indexes as well as document

index were constructed.

Phase 1 To compute the set Cu
Aq (line 6 in Algorithm 1), first, we search

the knowledge base TWN for a set CA
Aq of atomic concepts A which are

equivalent to or more specific than Aq. For example (see Figure 4.2),

CA
canine-2 = {canine-2, dog-1, wolf -1, . . . }

CA
feline-1 = {feline-1, cat-1, lion-1, . . . }

CA
little-4 = {little-4, . . . }

Second, we collect all the conjunctive components uAd in Cu
Aq by

42

CHAPTER 4. CONCEPT SEARCH
4.4. CONCEPT SEARCH

VIA INVERTED INDEXES

Dictionary (t) Posting lists (P(t))

small-4ubaby-1udog-1 [〈D1, 1〉]
huge-1uwhite-1ucat-1 [〈D1, 1〉]

(little-4udog-1) t (huge-1ucat-1) [〈D3, 1〉]

Figure 4.5: Document index

searching in the concept u-index with atomic concepts from CA
Aq . For

instance (see Figure 4.3),

Cu
canine-4 = {little-4 u dog-1, small-4 u baby-1 u dog-1}

Cu
feline-1 = {huge-1 u cat-1, huge-1 u white-1 u cat-1}

Cu
little-4 = {little-4 u dog-1, small-4 u baby-1 u dog-1}

Phase 2 Compute the set Cu
uAq (lines 5-13 in Algorithm 1). For instance,

Cu
little-4ucanine-1 = {little-4 u dog-1, small-4 u baby-1 u dog-1}

Phase 3 Compute the set Cu
tuAq (lines 2-15 in Algorithm 1). For instance,

Cu
canine-2tfeline-1 ={little-4 u dog-1, small-4 u baby-1 u dog-1,

huge-1 u cat-1, huge-1 u white-1 u cat-1}

Phase 4 We compute the set CtuAq (line 16 in Algorithm 1) by search-

ing in the concept t-index with conjunctive components from Cu
tuAq .

Note that we search only for those concepts tuAd which have all their

conjunctive components uAd in Cu
tuAq and discard other concepts. For

instance (see Figure 4.4),

Ccanine-2tfeline-1 ={small-4 u baby-3 u dog-1, huge-1 u white-1 u cat-1,

(little-4 u dog-1) t (huge-1 u cat-1)}

43

4.4. CONCEPT SEARCH
VIA INVERTED INDEXES CHAPTER 4. CONCEPT SEARCH

Phase 5 The query answer (line 17 in Algorithm 1) is computed by search-

ing in the document index with complex concepts from CtuAq . For

instance (see Figure 4.5),

A(canine-2 t feline-1, TWN) = {D1, D3}

The described above approach has several potential problems. First, the

size of an inverted index dictionary in concept t-index and document index,

in the worst case, is exponential with respect to the size of terminology

TWN . Second, the search time can be lengthy. If the query concepts Aq are

very general, than, in phases 1,4, and 5, the sets CA
Aq , Cu

tuAq , and CtuAq

can contain many (in principle, all) related concepts. Consequently, the

search time, which is growing linearly with the number of related (complex)

concepts, can exceed an acceptable limit.

4.4.2 Approach 2: C-Search via a Word Level Inverted Index

In this section, we describe how the document representations (see Fig-

ure 4.1) can be indexed and retrieved by using a positional (word level)

inverted index (as it was proposed in [35]). In a positional inverted index,

differently from a record level inverted index, a posting list P(t) addition-

ally contains all the positions of term t within a document.

P (t) = [〈d, freq, [position]〉]

where 〈 d, freq, [position]〉 is a posting consisting of a document d asso-

ciated with term t, the frequency freq of t in d, and a list [position] of

positions of t in d.

In Approach 2, we adopt a positional inverted index to index conjunctive

components uAd by all more general or equivalent atomic concepts from

TWN . For example, in Figure 4.6 we show a fragment of the positional in-

verted index created by using the document representations in Figure 4.1.

44

CHAPTER 4. CONCEPT SEARCH
4.4. CONCEPT SEARCH

VIA INVERTED INDEXES

Dictionary (t) Posting lists (P(t))

t [〈D3, 1, [2]〉]
baby-3 [〈D1, 1, [1]〉]

canine-2 [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]
carnivore-1 [〈D1, 2, [1, 3]〉; 〈D3, 2, [1, 3]〉]
computer-1 [〈D2, 1, [1]〉]

feline-1 [〈D1, 1, [3]〉; 〈D3, 1, [3]〉]
leave [〈D3, 1, [4]〉]

little-4 [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]

Figure 4.6: Positional Inverted Index

The inverted index dictionary, in Approach 2, consists of atomic concepts

from TWN (e.g., concepts baby-3 and canine-2 in Figure 4.6), and sym-

bol “t” (e.g., the first term in Figure 4.6). Note that differently from

Approach 1, the size of the dictionary in this case is the same as the

size of TWN . The posting list P (A) for an atomic concept A stores the

positions of conjunctive components uAd, such that, uAd v A. For in-

stance, P(canine-2) = [〈D1, 1, [1]〉; 〈D3, 1, [1]〉], which means that at first

position in documents D1 and D3 there are conjunctive components (i.e.,

small-4u baby-3u dog-1 and little-4u dog-1) which are more specific than

canine-2. The posting list P (t) stores the positions of the symbol “t”.

Now, let us see how Algorithm 1 in Section 4.2 can be implemented by

using the positional information of conjunctive components uAd stored in

the inverted index. Notice that below instead of conjunctive components

themselves we work only with their positions in documents.

Phase 1 Positions of conjunctive components uAd in the set Cu
Aq (line 6

in Algorithm 1) are computed by fetching the posting list P (Aq) for

an atomic concept Aq. For instance (see Figure 4.6),

Cu
little-4 = [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]

Cu
carnivore-1 = [〈D1, 2, [1, 3]〉; 〈D3, 2, [1, 3]〉]

45

4.4. CONCEPT SEARCH
VIA INVERTED INDEXES CHAPTER 4. CONCEPT SEARCH

Phase 2 The intersection of the sets of conjunctive components (line 10

in Algorithm 1) is implemented by the intersection of corresponding

posting lists. For instance,

Cu
little-4ucarnivore-1 = [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]

Phase 3 The union of the sets of conjunctive components (line 14 in

Algorithm 1) is implemented by uniting corresponding posting lists.

For instance,

Cu
canine-2tfeline-1 = [〈D1, 2, [1, 3]〉; 〈D3, 2, [1, 3]〉]

Phase 4 Every concept in set CtuAq (line 16 in Algorithm 1) should con-

sists only from the conjunctive components in Cu
tuAq . In order to find

the positions of such concepts, we take the union of the posting lists for

Cu
tuAq with the posting list for the symbol “t”. Then we filter out all

the positions which does not comply with the pattern defined in Equa-

tion 4.2. For instance, for complex query concept canine-2tfeline-1,

we will find the following complex document concepts:

〈D1, 1, [1]〉 ⇒ 1 | small-4 u baby-3 u dog-1

〈D1, 1, [3]〉 ⇒ 3 | huge-1 u white-1 u cat-1

〈D3, 1, [1, 2, 3]〉 ⇒ 1 | little-4 u dog-1 2 | t 3 | huge-1 u cat-1

Phase 5 The query answer (line 17 in Algorithm 1) is computed by col-

lecting the documents from all the postings. For instance,

A(canine-2 t feline-1, TWN) = {D1, D3}

If n is a number of atomic concepts Aq in the query concept tuAq, then

to compute A(Cq, TWN) it takes n posting list merges (i.e., intersections

and unions). Note that, in a positional inverted index, the same number

46

CHAPTER 4. CONCEPT SEARCH
4.4. CONCEPT SEARCH

VIA INVERTED INDEXES

of posting list merges is required to process a phrase query consisting of

n + 1 words [59].

The main problem with Approach 2, is that the size of the index can be

relatively big. If s is the maximum number of concepts which are assigned

to each word after the word sense filtering step and depth is the depth of

the knowledge base TWN (i.e., the number of edges on the longest path

from the concept to a root concept in TWN), then, in the worst case, a

semantic inverted index in Approach 2 will contain s ∗ depth times more

postings than an inverted index in syntactic search for the same document

collection. For example, if depth = 16 (as it is the case in WordNet) and

s = 3, then, in the worst case, semantic inverted index will contain 48

times more postings than the syntactic inverted index.

4.4.3 Approach 3: C-Search with a Minimum Index Size

In this section, we propose Approach 3 which is a modification of Ap-

proach 2, such that, the size of an inverted index is minimized.

First, in Approach 3, positions of conjunctive components are indexed

only by atomic concepts which are contained in the conjunctive components

uAd (and not by all the more general atomic concepts as it was done in

Approach 2). Algorithm 1, in this case, is implemented in the same way

as in Approach 2 apart from phase 1. Now, in phase 1, we first search

the knowledge base TWN for a set CA
Aq of atomic concepts A which are

equivalent to or more specific than Aq. Second, the positions of conjunctive

components uAd in the set Cu
Aq (line 6 in Algorithm 1) are computed by

fetching the posting lists P (Aq) for atomic concepts Aq in CA
Aq and merging

them.

Second, all the atomic concepts which have been assigned for a word,

in Approach 3, are stored in a single posting (and not in separate postings

as it was done in Approach 2). An inverted index which supports payloads

47

4.4. CONCEPT SEARCH
VIA INVERTED INDEXES CHAPTER 4. CONCEPT SEARCH

is used. A payload is metadata that can be stored together with each

occurrence of a term4. In a positional inverted index with payloads, a

posting list P(t) is represented as follows:

P (t) = [〈d, freq, [position, payload]〉]

where payload is a sequence of bytes of an arbitrary length which is associ-

ated with the term t and which can be used to codify additional information

about t at the position position in the document d.

The inverted index dictionary, in Approach 3, consists only of word

lemmas (as in syntactic search) and the symbol “t”. Payloads are used to

store sense numbers sn in WordNet. Each payload is seen as a bit array,

where the size of the array is equal to the number of possible senses for

a given lemma and the positions of bits which are set to one are used to

represent active sense numbers sn (note that in general all the bits can be

set to one if no senses were filtered out). For instance, if we take the word

dog which has 7 senses in WordNet, then the posting list P (dog) created

by using the document representations in Figure 4.1 will be as follows:

P (dog) = [〈D1, 1, [1, 1000000]〉; 〈D3, 1, [1, 1000000]〉]

During the retrieval, the posting list P(Aq =lemma-sn) can be computed,

first, by fetching posting list P(lemma) and then by filtering out all the

positions where sn bit is not set to one.

In this approach, the size of the inverted index dictionary as well as

the number of postings are almost the same as in the inverted index in

syntactic search (note that the symbol “t” is the only additional term).

Payloads take some additional space, but it can also be minimized. For

instance, we can store a payload in a posting only when its value is different

from the one in the preceding posting and use the payload value from the

4http://lucene.apache.org/java/2 4 0/api/org/apache/lucene/index/Payload.html

48

CHAPTER 4. CONCEPT SEARCH
4.4. CONCEPT SEARCH

VIA INVERTED INDEXES

Table 4.1: Statistics for the number of more specific concepts

Number N of more
specific concepts

Number of concepts with
N more specific concepts

Number of concepts (%)

N<=10 95264 94.98

10<N<=100 4130 4.12

100<N<=1000 745 0.74

1000<N<=10000 136 0.13

10000<N<=100000 28 0.03

preceding posting otherwise.

P (dog) = [〈D1, 1, [1, 1000000]〉; 〈D3, 1, [1]〉]
Here the assumption is that the same word tends to have the same meaning

within the same document [28]. If it is the case, then only a few additional

bytes will be stored for each document.

Similarly to Approach 1, the potential problem of Approach 3 is that

the search time can increase if we search for a very general atomic concept

Aq. Note, however, that differently from Approach 1, we need to consider

only related atomic concepts, and not all the complex concepts, which, in

the worst case, are exponentially many.

4.4.4 Approach 4: C-Search with a Hybrid Index

Approach 3 can perform well if atomic concepts Aq in a query have only a

few more specific concepts in TWN , but it can become inefficient otherwise.

In Table 4.1, we show a statistics for a number of more specific concepts

in WordNet. As we can observe from Table 4.1, only 909 out of 100303

concepts (i.e., less than 1%) are very general, i.e., have more than 100

more specific atomic concepts. For instance, concepts mammal-1, animal-

1, and entity-1 have 9472, 12953, and 76439 more specific atomic concepts

respectively. These 909 concepts form a tree (where > is a root) which we

call a ‘cap’ of the knowledge base.

49

4.4. CONCEPT SEARCH
VIA INVERTED INDEXES CHAPTER 4. CONCEPT SEARCH

In this section, we propose Approach 4 which combines Approaches 2

and 3, where Approach 2 is used only for concepts in the cap and Ap-

proaches 3 is used for the rest of the concepts. Let us consider how it is

done in detail. First, all the concepts are indexed by using Approach 2.

Second, each concept which is not in the cap is additionally indexed by

the most specific concept(s) from the cap, which is more general than the

given concept.

During the retrieval, in order to compute the posting list P (Aq) for a

concept Aq which is in the cap, first, we follow Approach 3, where the set

CA
Aq consists only of atomic concepts A which are equivalent to or more

specific than Aq and are in the cap. Second, we follow Approach 2 by

using the most specific atomic concepts from CA
Aq (i.e., we use only those

concepts which don’t have more general concepts in CA
Aq). The results of

both approaches are then merged. For concepts which are not in the cap

we just follow Approach 3. Note that for all the concepts inside/outside the

cap Approach 3 is used for a relatively small number of atomic concepts.

If s is the number of senses, then in the worst case the index will contain

2 ∗ s times more postings (and not s ∗ depth as in Approach 2) than in the

syntactic search approach. Moreover, the search time in Approach 4 can be

always kept relatively small for both very specific and very general concepts

(which is not the case in Approach 3).

4.4.5 Approach 5: Approximated C-Search

As it was discussed in Section 4.3, only those atomic document concepts Ad

are scored high which are not very distant from the query concepts Aq (see

Formula 4.15) in the concept hierarchy of TWN . Therefore, if we use only

the closest concepts, the quality of results returned by C-Search should not

be affected much. Moreover, as it was discussed in Sections 4.4.1-4.4.4, by

using fewer related concepts, we can decrease the search time.

50

CHAPTER 4. CONCEPT SEARCH 4.5. SUMMARY

Approach 5 is a modified version of Approach 3 which approximates

the results of C-Search by using not all but only more specific concepts

within distance dist from the atomic concept Aq. Also, in Approach 5, we

limit the number of atomic concepts which can be assigned for each word

in a query, by selecting only the s most probable senses. The influence

of parameters dist and s on a quality and a performance of C-Search is

discussed in Section 9.1.5.

4.5 Summary

In this chapter we presented a novel approach to document retrieval in

which syntactic search is extended with a layer of semantics which enables

semantic searching still fully reusing the proven IR technologies such as

the inverted index. The C-Search approach can be positioned anywhere in

the semantic continuum (see Figure 2.1) with the purely syntactic search

being its base case, and the full semantic search being the optimal solution,

at the moment beyond the available technology.

To the best of our knowledge, there are few approaches that are based

on similar ideas to those of C-Search. For example, Hybrid Search [10]

is similar to C-Search in that it combines syntactic search with semantic

search. Differently from us, in [10], semantic search is implemented on

metadata and is totally separated from syntactic search, implemented on

keywords. Another approach, reported in [18], uses classes and instances

of an RDF ontology to annotate documents in order to combine ontology-

based search with the classical IR. Our approach is different from both [10]

and [18] in that it is based on a seamless integration of syntactic and se-

mantic kinds of search within a single solution enabled by the proven IR

technology based on inverted indexes. In a sense, instead of using a rea-

soning engine to enable semantics (as it is done e.g. in [18]), we integrated

51

4.5. SUMMARY CHAPTER 4. CONCEPT SEARCH

semantic reasoning within an inverted index, by taking advantage of the

simplifying assumptions that we made about the ontologies used to enable

the semantic search (see Section 4.2).

52

Chapter 5

Document Classification:

Get-Specific Algorithm

Classification hierarchies have always been a natural and effective way for

humans to organize their knowledge about the world. These hierarchies are

rooted trees where each node defines a topic category. Child nodes’ cate-

gories define aspects or facets of the parent node’s category, thus creating

a multifaceted description of the objects which can be classified in these

categories. Classification hierarchies are used pervasively: in conventional

libraries (e.g., the Dewey Decimal Classification system (DDC) [19]), in

web directories (e.g., DMoz1), in e-commerce standardized catalogues (e.g.,

UNSPSC2), and so on.

Standard classification methodologies amount to manually organizing

objects into classification categories following a predefined system of rules.

The rules may differ widely in different approaches, but there is one clas-

sification pattern which is commonly followed. The pattern is called the

get-specific principle, and it requires that an object is classified in a cate-

gory (or in a set of categories), which most specifically describes the object.

Following this principle is not easy and is constrained by a number of lim-

1http://dmoz.org/
2http://www.unspsc.org/

53

5.1. THE GET-SPECIFIC ALGORITHM
CHAPTER 5. DOCUMENT CLASSIFICATION:

GET-SPECIFIC ALGORITHM

itations, discussed below:

• the meaning of a given category is implicitly codified in a natural

language label, which may be ambiguous and may therefore be inter-

preted differently by different classifiers;

• a link, connecting two nodes, may also be ambiguous in the sense that

it may specify the meaning of the child node, of the parent node, or

of both;

• as a consequence of the previous two items, the classification task also

becomes ambiguous in the sense that different classifiers may classify

the same objects differently, based on their subjective opinion.

In this chapter we describe the approach which address the three problems

discussed above by implementing the get-specific principle through propo-

sitional reasoning on complex concepts extracted from classification labels.

Material presented in this chapter has been developed in collaboration with

Fausto Giunchiglia and Ilya Zaihrayeu and published in [39].

The remainder of the chapter is organized as follows. In Section 5.1 we

introduce the classification model, we show how the get-specific algorithm

can be described in this model, and we identify the main problems pecu-

liar to the algorithm. In Section 5.2 we show how classifications can be

translated into formal classifications, how the get-specific algorithm can

be encoded in the concept language, and how its peculiar problems can be

dealt with in the concept language.

5.1 The Get-Specific Algorithm

In this section, we describe the get-specific document classification algo-

rithm.

54

CHAPTER 5. DOCUMENT CLASSIFICATION:
GET-SPECIFIC ALGORITHM 5.1. THE GET-SPECIFIC ALGORITHM

Top

Recreation Shopping

Antiques and Collectibles

Coins

Ancient Coins World Coins

Collecting

Coins

Ancient

Greek

(1)

(2) (7)

(9)

(12)

(8)

(10)

(4)

(3)

(5)

(6) Ancient Greece(13)Europe(11)

Figure 5.1: A part of the DMoz web directory

5.1.1 Classifications and a Classification Model

To avoid ambiguity of interpretation, in Definition 5.1.1 we formally define

the notion of classification; and in Figure 5.1 we give an example of a

classification, extracted from the DMoz web directory and adjusted for

sake of presentation.

Definition 5.1.1. A classification is a rooted tree C = 〈N, E,L〉 where N

is a set of nodes, E is a set of edges on N , and L is a set of labels expressed

in a natural language, such that for any node ni ∈ N , there is one and only

one label li ∈ L.

We see the process of classification as a decision making procedure in

which the classification tree is divided into a set of minimal decision making

blocks. Each block consists of a node (called the root node of the block) and

its child nodes (see Figure 5.2). While classifying an object, the classifier

considers these blocks in a top-down fashion, starting from the block at

the classification root node and then continuing to blocks rooted at those

child nodes, which were selected for further consideration. These nodes

are selected following decisions which are made at each block along two

dimensions: vertical and horizontal. In the vertical dimension, the classifier

decides which of the child nodes are selected as candidates for further

consideration. In the horizontal dimension, the classifier decides which of

55

5.1. THE GET-SPECIFIC ALGORITHM
CHAPTER 5. DOCUMENT CLASSIFICATION:

GET-SPECIFIC ALGORITHM

... ...

Facets
S

p
e
c
if
ic

-
G

e
n
e
ra

l

li

lnlj lm

Figure 5.2: The decision making block

the candidates are actually selected for further consideration. If none of

the child nodes are appropriate or if there are no child nodes, then the

root node of the block becomes a classification alternative for the given

object. The process reiterates and continues recursively until no more

nodes are left for further consideration. At this point, all the classification

alternatives are computed. The classifier then decides which of them are

most appropriate for the classification of the object and makes the final

classification choice.

5.1.2 Modelling the Get-Specific Classification Algorithm

In this subsection we discuss the general principles lying behind the get-

specific algorithm and we show how these principles can be implemented

within the model introduced in the previous subsection. Particularly, we

discuss how vertical and horizontal choices, as well as the final classification

choice are made.

• Vertical choice. Classification hierarchies are organized such that

upper level categories represent more general concepts, whereas lower

level categories represent more specific concepts. When the classifier

searches for an appropriate category for the classification of an object,

she looks for the ones which most specifically describe the object and,

therefore, when making a vertical choice, she selects a child node as

a candidate if it describes the object more specifically than the par-

56

CHAPTER 5. DOCUMENT CLASSIFICATION:
GET-SPECIFIC ALGORITHM 5.1. THE GET-SPECIFIC ALGORITHM

ent does. For example, if a document about ancient Greek coins is

classified in the classification from Figure 5.1, then node n6 is more

appropriate for the classification than node n5. When this principle

is applied recursively, it leads to the selection of the category which

lies as deep in the classification hierarchy as possible. The principle

described above is commonly called the get-specific principle. Let us

consider, for instance, how Yahoo! describes it:

“When you suggest your site, get as specific as possible.

Dig deep into the directory, looking for the appropriate sub-

category.”3

• Horizontal choice. Child nodes may describe different aspects or

facets of the parent node and, therefore, more than one child node

may be selected in the vertical choice if a multifaceted document is

being classified. As a consequence of this, the classifier needs to decide

which of the several sibling nodes are appropriate for further consid-

eration. When one sibling node represents a more specific concept

than another, then the former is usually preferred over the latter. For

example, node n10 is more appropriate for the classification of ancient

Greek coins than node n12. As a rule of thumb, the horizontal choice

is made in favor of as few nodes as possible and, preferably, in favor of

one node only. We call the principle described above, the get-minimal

principle. Consider, for instance, how DMoz describes it.

“Most sites will fit perfectly into one category. ODP cate-

gories are specialized enough so that in most cases you should

not list a site more than once.”4

3Yahoo! guidelines: See http://docs.yahoo.com/info/suggest/appropriate.html
4DMoz guidelines: See http://dmoz.org/guidelines/site-specific.html

57

5.1. THE GET-SPECIFIC ALGORITHM
CHAPTER 5. DOCUMENT CLASSIFICATION:

GET-SPECIFIC ALGORITHM

• Tradeoff between vertical and horizontal choices. The two prin-

ciples described above cannot always be fulfilled at the same time.

Namely, if the vertical choice results in too many candidates, then it

becomes hard to fulfill the principle of minimality in the horizontal

choice. In order to address this problem, a tradeoff needs to be in-

troduced between the two requirements, which usually means trading

specificity in favor of minimality. The following is an example of a

tradeoff rule used in DMoz:

“If a site offers many different things, it should be listed

in a more general category as opposed to listing it in many

specialized subcategories.”4

• The final classification choice. When all classification alternatives

are determined, the classifier confronts all of them in order to make

her final classification choice. Note that now the choice is made not

at the level of a minimal decision making block, but at the level of the

whole classification. However, the classifier uses the same selection

criteria as those used in the horizontal choice. For example, nodes

n6 and n13 are more appropriate for the classification of documents

about ancient Greek coins than node n11.

5.1.3 Problems of the Get-Specific Classification Algorithm

As discussed in [36], there are several problems which are common to docu-

ment classification algorithms. The problems are caused by the potentially

large size of classifications, by ambiguity in natural language labels and

in document descriptions, by different interpretations of the meaning of

parent-child links, and so on. All these problems lead to nonuniform, dupli-

cate, and error-prone classification. In addition to the problems discussed

in [36], the get-specific algorithm has two peculiar problems, related to the

58

CHAPTER 5. DOCUMENT CLASSIFICATION:
GET-SPECIFIC ALGORITHM

5.2. FORMALIZING THE
GET-SPECIFIC ALGORITHM

two decision dimensions. We discuss these problems below on the example

of a document titled “Gold Staters in the Numismatic Marketplace”, being

classified in the classification from Figure 5.1.

• Vertical choice: the “I don’t know” problem. The classifier may

make a mistake because she does not (fully) understand the meaning

of a child node or the relation of the document to that node, whereas

the node is a valid candidate. For example, the classifier may not

know that “Gold Stater” is a coin of ancient Greece and, therefore,

will erroneously classify the document into node n5, whereas a more

appropriate node is n6.

• Horizontal choice: the “Polarity change” problem. The clas-

sifier may make a mistake when one of the sibling candidate nodes

is more appropriate for further consideration than another, but a de-

scendent of the latter is more appropriate for the classification than

a descendant of the former node. For instance, the label of node n10

more specifically describes the document than the label of node n12.

Therefore, the classifier will choose node n10 only as a candidate and

will finally classify the document in node n11, whereas a more appro-

priate node for the classification is node n13, a descendent of n12.

5.2 Formalizing the

Get-Specific Algorithm

In this section we formalize the get-specific classification algorithm by en-

coding it as a problem expressed in LC . First, we discuss how natural

language node labels and document descriptions are converted into for-

mulas in LC . Second, we discuss how we reduce the problems of vertical,

horizontal, and final classification choices to fully automated propositional

59

5.2. FORMALIZING THE
GET-SPECIFIC ALGORITHM

CHAPTER 5. DOCUMENT CLASSIFICATION:
GET-SPECIFIC ALGORITHM

Top

recreation-{1, 2} shopping-1

antique-2 collectibles-1

coin-1

ancient-{1, 3} coin-1 world-{1, 4} coin-1

collecting-1

coin-1

ancient-{1, 3}

greek-1

(1)

(2) (7)

(9)

(12)

(8)

(10)

(4)

(3)

(5)

(6) Europe-{1, 2, 3} ancient-1 Greece-1(13)(11)

Figure 5.3: Formal Classification

reasoning. Finally, we show how the problems discussed in Section 5.1.3

can be dealt with in a formal way.

5.2.1 From Natural Language to Formal Language

Classification labels are expressed in a natural language, which is ambigu-

ous and, therefore, is very hard to reason about. In order to address this

problem, we encode classification labels into formulas in LC following the

approach proposed in [36]. This allows us to convert the classification into

a new structure, which we call Formal Classification (FC):

Definition 5.2.1. A Formal Classification is a rooted tree FC = 〈N, E,LF 〉
where N is a set of nodes, E is a set of edges on N , and LF is a set of

labels expressed in LC, such that for any node ni ∈ N , there is one and

only one label lFi ∈ LF .

Note that natural language labels li (see Definition 5.1.1) are converted

into formulas lFi by following the approach described in Section 4.1. For

instance, in Figure 5.3 we show the result of conversion of the classification

from Figure 5.1 into a FC.

Before a document can be automatically classified, it also has to be as-

signed an expression in LC , which we call the document concept, written

Cd. The assignment of a concept to a document is done in two steps:

60

CHAPTER 5. DOCUMENT CLASSIFICATION:
GET-SPECIFIC ALGORITHM

5.2. FORMALIZING THE
GET-SPECIFIC ALGORITHM

first, a set of n keyphrases is retrieved from the document using text min-

ing techniques (see, for example, [93, 49]); the keyphrases are converted

to formulas in LC , and the document concept is then computed as the

conjunction of the formulas.

5.2.2 The Algorithm

In the following we describe how we make vertical and horizontal choices,

compute the tradeoff, and make the final classification choice in FCs.

• Vertical choice. A child node ni is a candidate, given that a docu-

ment with concept Cd is being classified, if the label of the node, lFi ,

subsumes Cd, i.e., if the following holds: Cd v lFi . In formulas, if Nc

is the set of child nodes in the block, then we compute the vertical

choice V (Cd) as:

V (Cd) = {ni ∈ Nc|Cd v lFi } (5.1)

If the vertical choice results in no candidates, then root node nr of the

current block is added to the set of classification alternatives A(Cd):

if |V (Cd)| = 0 then A(Cd) ← A(Cd) ∪ {nr} (5.2)

In Figure 5.4a we show an example of a situation when two child nodes

n2 and n4 are selected for further consideration, and in Figure 5.4b we

show an example of a situation when no child node can be selected.

• Horizontal choice. Given the set of candidates V (Cd), we exclude

those nodes from the set, whose label is more general than the label

of another node in the set. In formulas, we compute the horizontal

choice H(Cd) as:

61

5.2. FORMALIZING THE
GET-SPECIFIC ALGORITHM

CHAPTER 5. DOCUMENT CLASSIFICATION:
GET-SPECIFIC ALGORITHM

coin

ducat

(1)

certifiedgold stater (4)(3)(2)

?

stater

(b)

coin

greek

(1)

certifiedancient (4)(3)(2)

?

stater

(a)

Figure 5.4: Vertical choice (“?” means no relation is found)

H(Cd) = {ni ∈ V (Cd)|@nj ∈ V (Cd), s.t. j 6= i, lFj v lFi , and lFj 6w lFi }
(5.3)

We introduce the last condition (i.e., lFj 6w lFi) to avoid mutual exclu-

sion of nodes, whose labels in the FC are equivalent concepts. For in-

stance, two syntactically different labels “seacoast” and “seashore” are

translated into two equivalent concepts. When such situation arises,

all the nodes, whose labels are equivalent, are retained in H(Cd).

• The tradeoff. Whenever the size of H(Cd) exceeds some threshold

k, the nodes of H(Cd) are discarded as candidates and root node nr

of the block is added to the set of classification alternatives A(Cd). In

formulas:

if |H(Cd)| > k then H(Cd) ← ∅ and A(Cd) ← A(Cd) ∪ {nr} (5.4)

• The final classification choice. When no more nodes are left for

further consideration, set A(Cd) includes all the classification alterna-

tives. We compare them to make the final classification choice, but,

differently from vertical and horizontal choices, we compare the mean-

ings of nodes given their path to the root, and not their labels. We

encode the meaning of node ni into a concept in LC , called concept of

62

CHAPTER 5. DOCUMENT CLASSIFICATION:
GET-SPECIFIC ALGORITHM

5.2. FORMALIZING THE
GET-SPECIFIC ALGORITHM

node [38], written Cn
i , and computed as:

Cn
i =

{
lFi if ni is the root of the FC

lFi u Cn
j if ni is not the root, where nj is the parent of ni

(5.5)

Similar to how the horizontal choice is made, we exclude those nodes

from A(Cd), whose concept is more general than the concept of an-

other node in the set. In formulas, we compute the final classification

choice C(A) as:

C(A) = {ni ∈ A(Cd)|@nj ∈ A(Cd), s.t. j 6= i, Cn
j v Cn

i , and Cn
j 6w Cn

i }
(5.6)

The last condition (i.e., Cn
j 6w Cn

i) is introduced to avoid mutual

exclusion of nodes with the same meaning in the classification hi-

erarchy. For instance, two paths top/computers/games/soccer and

top/sport/soccer/computer games lead to two semantically equivalent

concepts. When such situation arises, all the nodes with the same

meaning are retained in C(A).

Computing Equations 5.1, 5.3, and 5.6 requires verifying whether the

subsumption relation holds between two formulas in LC . As shown in [36],

a problem expressed in LC can be rewritten as an equivalent problem ex-

pressed in propositional logic. Namely, if we need to check whether a

certain relation rel (which can be v, w, ≡, or ⊥) holds between two con-

cepts A and B, given some knowledge base KB (which represents our a

priori knowledge), we construct a propositional formula according to the

pattern shown in Equation 5.7 and check it for validity:

KB → rel(A,B) (5.7)

63

5.2. FORMALIZING THE
GET-SPECIFIC ALGORITHM

CHAPTER 5. DOCUMENT CLASSIFICATION:
GET-SPECIFIC ALGORITHM

5.2.3 Dealing with Problems

Encoding a classification algorithm into a problem in LC allows it to avoid

many problems, which are common to classification algorithms [36]. Par-

ticularly, since the problem is encoded in a formal language, there is no

ambiguity in interpretation of classification labels, of edges, and document

contents. Apart from this, since computation is performed by a machine,

the problem of classification size becomes largely irrelevant. Finally, since

the formal algorithm is deterministic, the classification is always performed

in a uniform way.

In Section 5.1.3 we discussed two problems, peculiar to the get-specific

algorithm. Below we discuss what they mean in LC and how they can be

dealt with.

• Vertical choice: the “I don’t know” problem. This problem

arises when the specificity relation in Equation 5.1 cannot be com-

puted while a human observes that it exists. The problem is caused

by lack of background knowledge and it can be dealt with by adding

missing axioms to the underlying knowledge base [37]. For instance, if

we add a missing axiom which states that concept Stater (defined as

“any of the various silver or gold coins of ancient Greece”) is more spe-

cific than concept Greek (defined as “of or relating to or characteristic

of Greece . . . ”), then the algorithm will correctly classify document

“Gold Staters in the Numismatic Marketplace” into node n6 in the

classification shown in Figure 5.1.

• Horizontal choice: the “Polarity change” problem. The prob-

lem arises when the label of node ni is more specific than the label of

its sibling node nj (i.e., lFi v lFj), but the concept of a ni’s descendant

node nk is more general than the concept of a nj’s descendant node

nm (i.e., Cn
k w Cn

m). In the simplest case, this problem can be dealt

64

CHAPTER 5. DOCUMENT CLASSIFICATION:
GET-SPECIFIC ALGORITHM 5.3. SUMMARY

with by not performing the horizontal choice. In this case, both nk

and nm will be in the classification alternative set for some document,

and nk will then be discarded when the final classification choice is

made.

5.3 Summary

In this chapter, first, we provided a classification model and showed how

the get-specific document classification algorithm, commonly used in hier-

archical document classification systems, can be described in this model.

Second, we showed how the get-specific algorithm can be fully automated

using a knowledge-centric approach, an approach which is conceptually

different from the one used in Information Science.

65

5.3. SUMMARY
CHAPTER 5. DOCUMENT CLASSIFICATION:

GET-SPECIFIC ALGORITHM

66

Part III

Semantics Enabled P2P Search

Chapter 6

P2P Concept Search

In order to provide semantic search in P2P networks, we propose to extend

the centralized version of C-Search to P2P C-Search. First, we extend the

reasoning with respect to a single background knowledge T to the reasoning

with respect to the background knowledge TP2P which is distributed among

all the peers in the network. Second, we extend the centralized inverted

index (II) to distributed inverted index build on top of DHT. The idea is

schematically represented in the equation below.

C-Search
Knowledge(T →TP2P),Index(II→DHT)−−−−−−−−−−−−−−−−−−−−−−→ P2P C-Search

Material presented in this chapter has been developed in collaboration with

Fausto Giunchiglia, Sheak Rashed Haider Noori, Dharanipragada Janaki-

ram, and Harisankar Haridas and published in [33, 45].

The remainder of this chapter is organized as follows. In Section 6.1, we

show how the distributed background knowledge TP2P can be implemented

on top of DHT. In Section 6.2, we describe how DHT can be used, in

P2P C-Search, to provide an efficient distributed semantic indexing and

retrieval.

69

6.1. DISTRIBUTED KNOWLEDGE CHAPTER 6. P2P CONCEPT SEARCH

6.1 Distributed Knowledge

To access the background knowledge T , stored on a single peer, C-Search

needs at least the following three methods:

getConcepts(W) returns a set of all the possible meanings (atomic

concepts A) for word W. For example, getConcepts(canine) → {canine-1

(’conical tooth’), canine-2 (’mammal with long muzzles’)}.
getChildren(A) returns a set of all the more specific atomic concepts

which are directly connected to the given atomic concept A in T . For

example, with respect to T in Figure 4.2, getChildren (carnivore-1) →
{canine-2, feline-1}.

getParents(A) returns a set of all the more general atomic concepts

which are directly connected to the given atomic concept A in T . For

example, with respect to T in Figure 4.2, getParents (dog-1) → {canine-2}.
In order to provide access to background knowledge TP2P distributed

over all the peers in the P2P network, we create distributed background

knowledge DBK. In DBK, each atomic concept A is identified by a unique

concept ID (AID) which is composed from peer ID (PID), where peer is

a creator of the atomic concept, and local concept ID in the Knowledge

Base of the peer. Every atomic concept A is represented as a 3-tuple:

A = 〈AID, POS, GLOSS〉, where AID is a concept ID; POS is a part

of speech; and GLOSS is a natural language description of A. In the

rest of the chapter, for the sake of presentation, instead of the complete

representation 〈AID, POS, GLOSS〉 we use just lemma-sn.

DBK is created on top of a DHT. Atomic concepts are indexed by words

using the DHT ’put’ operation, e.g., put(canine, {canine-1, canine-2}).
Moreover, every atomic concept is also indexed by related atomic concepts

together with the corresponding relations. We use a modification of the

DHT ’put’ operation put(A, B, Rel), which stores atomic concept B with

70

CHAPTER 6. P2P CONCEPT SEARCH 6.1. DISTRIBUTED KNOWLEDGE

relation Rel on the peer responsible for (a hash of) atomic concept A, e.g.,

put(canine-2, dog-1, ’v’), put(canine-2, carnivore-1, ’w’).

After DBK has been created, getConcepts(W) can be implemented by

using the DHT ’get’ operation, i.e., getConcepts(W) = get(W). Both meth-

ods getChildren(A) and getParents(A) are implemented by using a modified

DHT ’get’ operation get(A, Rel), i.e., getChildren(A) = get(W, ’v’) and

getParents(A) = get(W, ’w’). The operation get(A, Rel) finds a peer re-

sponsible for atomic concept A and retrieve only those atomic concepts B

which are in relation Rel with A.

Let us now see how DBK can be bootstrapped. At the beginning we

have one single peer in the P2P network and DBK is equivalent to the

background knowledge T of this peer. For example, T can be created

from WordNet. A new peer joining the P2P network bootstraps its own

background knowledge from DBK by doing the following three steps. First,

the peer computes a set of words which are used in the local document

collection. Second, the peer downloads from DBK a set of all the atomic

concepts which are associated with these words by using ’getConcepts’

method. Finally, the peer downloads all the more general atomic concepts

by recursively calling ’getParents’ method.

Notice, that by extending peer’s background knowledge T to DBK which

stores TP2P , we are likely to have a higher coverage on words, atomic

concepts, and relations. Therefore, we can enable semantics to a higher

extend in the semantic continuum, e.g., when user types a word which

is not present in her T , she can use atomic concepts from background

knowledge of other peers stored in DBK.

The potential problem with the above approach is that it can require a

lot of messages to collect and keep up to date all the more general concepts

for every concept on each peer. In order to address this problem, we

propose to cache the content of DBK on a special peer which we call the

71

6.2. INDEXING AND RETRIEVAL CHAPTER 6. P2P CONCEPT SEARCH

caching peer. We fix an ID in the DHT, and the caching peer is dynamically

selected based on the range of IDs the peer is responsible for (i.e., the ID

should belong to the ID space of the peer). The request for a part of the

DBK first goes to the caching peer (whose ip address can be cached) and

then if the caching peer is busy or unavailable the request is processed by

using the DBK.

6.2 Indexing and Retrieval

The query answer defined in Equation 4.4, can be extended to the case

of distributed search by taking into account that the document collection

DP2P is equivalent to the union of all the documents from all the peers in

the network (where each document d is uniquely identified by a document

ID) and also that background knowledge TP2P is distributed among all the

peers.

QA(Cq,T
P2P

)={d ∈ D
P2P
|∃Cd∈d, s.t.T

P2P
|=CdvCq} (6.1)

Let us consider a subset QA(Cq,T
P2P

, A) of the query answer QA(Cq,T
P2P

).

QA(Cq,T
P2P

, A) consists of documents d which contain at least one complex

concept Cd which is more specific than the complex query concept Cq and

contains atomic concept A.

QA(Cq,T
P2P

,A)={d ∈ D
P2P
|∃Cd∈d, s.t. T

P2P
|=CdvCq

and∃Ad∈Cd, s.t.Ad = A}
(6.2)

For the sake of presentation, in the rest of the chapter we assume Cq = uAq.

If we denote by C(A) a set of all atomic concepts Ad, which are equivalent

to or more specific than concept A, i.e.,

C(A) = {Ad | T
P2P

|= Ad v A} (6.3)

72

CHAPTER 6. P2P CONCEPT SEARCH 6.2. INDEXING AND RETRIEVAL

then, it can be shown that, given Equation 6.2, the query answer QA(Cq,T
P2P

)

can be computed as follows

QA(Cq,T
P2P

)=
⋃

A∈C(A∗)

QA(Cq,T
P2P

,A) (6.4)

where A∗ is an arbitrarily chosen atomic concept Aq in conjunctive compo-

nent Cq = uAq

Given Equation 6.4, the query answer can be computed by using the

algorithm described below. The algorithm takes complex query concept

Cq as input and computes a query answer QA in six macro steps:

Step 1 Initialize the query answer: QA = ∅. Initialize auxiliary sets

Cms = ∅ and C′
ms = ∅.

Step 2 Select one atomic concept A from complex query concept Cq and

add it to Cms.

Step 3 For every A ∈ Cms, repeat steps 4 and 5.

Step 4 Compute QA(Cq,T
P2P

,A) and add it to QA.

Step 5 Compute the set of all more specific atomic concepts B which are

directly connected to the given atomic concept A in TP2P and add

them to C′
ms.

Step 6 If C′
ms 6= ∅, then assign Cms = C′

ms, C′
ms = ∅ and repeat step 3.

Note that on step 2 atomic concept A can be selected arbitrarily. In order to

minimize the number of iterations, we choose A with the smallest number

of more specific atomic concepts. The smaller the number, the fewer times

we need to compute QA(Cq,T
P2P

,A) on step 3.

In the following, we, first, show how documents are indexed in P2P

C-Search, and then we show how the described above algorithm can be

implemented.

73

6.2. INDEXING AND RETRIEVAL CHAPTER 6. P2P CONCEPT SEARCH

In P2P C-Search, complex concepts are computed in the same way as

in C-Search (see Section 4.1). The only difference is that now if an atomic

concept is not found in the local background knowledge T , then TP2P is

queried instead. P2P C-Search also uses the same document representation

as C-Search (see Figure 4.1).

After document representations are computed, the indexing of docu-

ments is performed as follows. Every peer computes a set of atomic con-

cepts A which appear in the representations of peer’s documents. For every

atomic concept A, the peer computes a set of documents d which contain

A. For every pair 〈A, d〉, the peer computes a set S(d,A) of all the complex

document concepts Cd in d, which contain A.

S(d,A) = {Cd∈d | A∈Cd} (6.5)

For example, if d is document D1 in Figure 4.1 and A is equivalent to dog-

1, then S(d,A) = {small-4 u baby-3 u dog-1}. For every A, the peer sends

document summaries corresponding to A, i.e., pairs 〈d, S(d,A)〉, to a peer

pA responsible for A in DBK. The peer pA indexes these summaries using

the local C-Search (Approach 3 from Section 4.4.3 is used). Overall, every

peer in the network is responsible for some words and for some atomic

concepts. Peers maintain the following information for their words and

concepts:

1. For every word, the peer stores a set of atomic concepts (word senses)

for this word.

2. For every atomic concept, the peers stores a set of direct more specific

and more general atomic concepts.

3. Document summaries 〈d, S(d,A)〉 for all the atomic concepts A (for

which the peer is responsible) are stored on the peer and indexed in

the local C-Search.

74

CHAPTER 6. P2P CONCEPT SEARCH 6.2. INDEXING AND RETRIEVAL

Word senses

canine canine-1, canine-2

More specific concepts

canine-2 dog-1, wolf-1

More general concepts

canine-2 carnivore-1

C-Search index

canine-2 〈D4, 1, [1]〉
population-4 〈D4, 1, [1]〉

Figure 6.1: Peer’s information

An example of the information, which can be stored on the peer responsible

for a single word canine and for a single atomic concept canine-2, is shown

in Figure 6.1.

Now, let us see how different steps of the algorithm for computing the

query answer are implemented in P2P C-Search:

Step 1 Peer pI initiates the query process for complex query concept Cq.

Step 2 pI selects A in Cq with the smallest number of more specific atomic

concepts. Cq is propagated to the peer pA responsible for A. On peer

pA, QA is initialized to an empty set and A is added to Cms.

Step 3 Steps 4 and 5 are repeated for every atomic concept B in Cms.

Step 4 pA submits Cq to the peer pB responsible for B. pB receives the

query concept Cq and locally (by using C-Search) computes the set

QA(Cq,T
P2P

,B). The results are sent back to pA. Note that if B=A,

then the query propagation is not needed. On receiving new results

QA(Cq,T
P2P

,B), pA merges them with QA.

Step 5 Moreover, pB also computes the set of atomic concepts which are

more specific than B by querying locally stored (direct) more specific

concepts (e.g., see ’More specific concepts’ in Figure 6.1). The results

75

6.2. INDEXING AND RETRIEVAL CHAPTER 6. P2P CONCEPT SEARCH

are also propagated to peer pA where they are added to set C′
ms. If

B=A, then the set of more specific concepts are computed on pA itself.

Step 6 If C′
ms 6= ∅, then pA assigns Cms = C′

ms, C′
ms = ∅ and repeats

step 3. Otherwise the results are sent to the initiator peer pI .

Note, that, in order to optimize query propagation, peer pA can pre-

compute addresses of peers pB which are responsible for more specific

concepts, and use DHT to locate such peers only when pre-computed

information is outdated.

An example showing how the query answer QA(Cq,T
P2P

,A) is computed

is given in Figure 6.2. Peers, represented as small circles, are organized

in a DHT, represented as a circle. A query consisting of a single query

concept Cq = little-4 u canine-2 is submitted to peer PI . Let us assume

that atomic concept, canine-2 has smaller number of more specific atomic

concepts than concept little-4. In this case, Cq is propagated to a peer

Pcanine-2, i.e., the peer responsible for atomic concept canine-2. The query

propagation is shown as a firm line in Figure 6.2. Pcanine-2 searches in a local

C-Search index with Cq. No results are found in this case. Pcanine-2 collects

all the atomic concepts which are more specific than canine-2, i.e., atomic

concepts dog-1 and wolf -1. Query concept Cq is propagated to peers Pdog-1

and Pwolf-1. Pwolf-1 finds no results while Pdog-1 finds document D1. D1

is an answer because it contains concept small-4u baby-3u dog-1 which is

more specific than little-4 u canine-2. D1 is sent to PA. The propagation

of the results is shown as a dash line in Figure 6.2. Both peers Pdog-1 and

Pwolf-1 have no more specific concepts than dog-1 and wolf -1, therefore Cq

is not propagated to any other peers. PA sends the final result, i.e. D1, to

peer PI .

Note that the deeper we go in propagating the query, the less precise can

be the answer. For instance, the user searching for canine-2 might be more

76

CHAPTER 6. P2P CONCEPT SEARCH 6.2. INDEXING AND RETRIEVAL

MS Concepts:

canine-2 {dog-1, wolf-1}

CSearch index:

canine-2 <D4, 1, [1]>

population-4 <D4, 1, [1]>

Cq = little-4 canine-2

PI
Pcanine-2

Pdog-1

Pwolf-1MS Concepts:

wolf-1 {}

CSearch index:

wolf-1 {}

MS Concepts:

dog-1 {}

CSearch index:

dog-1 <D1, 1, [1]>

small-4 <D1, 1, [1]>

Figure 6.2: Query Answering

interested in documents about concept canine-2 than in documents about

concept dog-1, and she may not be interested at all in documents about

very specific types of dogs (e.g., affenpinscher-1). In P2P C-Search, we

allow a user to specify the maximum allowed distance in terms of numbers

of links between atomic concepts in TP2P . Notice that this distance is

similar to a standard time-to-live (TTL) [71]. Moreover, we allow the user

to specify the maximum number of more specific concepts which can be

used per each atomic concept in Cq.

In order to compute the query answer for a more complex query, e.g.,

query baby-1 AND dog-1 (in Figure 4.1), the intersection of posting lists

needs to be computed (see Equation 4.14). Since our approach is not re-

placing syntactic search but extending it with semantics, for an efficient

implementation of the intersection, we can reuse the optimization tech-

niques developed in P2P syntactic search (see e.g. Section 3.2).

77

6.3. SUMMARY CHAPTER 6. P2P CONCEPT SEARCH

6.3 Summary

In this chapter, we have presented an approach, called P2P C-Search, which

allows for a semantic search on top of distributed hash table (DHT). There

are two main aspects in which P2P C-Search extends C-Search: (i) central-

ized document index is replaced by distributed index build on top of DHT;

(ii) reasoning with respect to a single background knowledge is extended to

the reasoning with respect to the background knowledge distributed among

all the peers in the network.

78

Chapter 7

Semantic Flooding

We can see the Web as a network of peers (a P2P network) where each

peer stores various documents about a set of topics which are of interest

to its users. Most often these documents are organized into classifications

(see Section 5.1.1). An abstract example of user generated classifications

of several peers can be seen in Figure 7.1. In this chapter, we show how

multiple classifications can be exploited to help the user in finding docu-

ments about the topics which are the same or related to the topics (and/or

queries) in the user’s classification. For example, a user novice in some

topic might benefit from finding a peer, the user of which is an expert

in the given topic. Moreover, when searching for a particular document

about the topic, even an expert might be interested in finding not only

those documents which are stored in the local document collection, but

also the documents stored on other peers.

In this chapter, we describe an approach, that we call Semantic Flooding,

which is based on the following key ideas:

1. The first is that the links which connect nodes inside a classification

together with the links which codify ontology mappings among mul-

tiple classifications form a semantic overlay network which can be

exploited to perform a semantic search on nodes and later a semantic

79

CHAPTER 7. SEMANTIC FLOODING

Peer1

Peer2

Peer3

animal

big animal

large animal

large dog

cars

small animal

mouse opossum

elephant

giraffe hippopotamus

animals and cars

fast cars

porsche lamborghini

Italian German

Ferrari Fiat BMW Audi

Figure 7.1: P2P Network of User-Generated Classifications

search on documents classified inside these nodes.

2. The second is that a semantic search is implemented by flooding the

links of the semantic overlay network. Differently from “normal”

flooding as it happens, for instance, in Gnutella1, these links carry

meaning and, more precisely, codify the semantic relation holding be-

tween two nodes (i.e., equivalence, more or less general) and allow,

therefore, for “more informed” query propagation.

3. The third and last is that a semantic search inside a node is performed

using C-Search (see Chapter 4), thus exploiting as much as possible

the advantages of a syntactic search and also a semantic search, as a

function of the available background knowledge [37].

Material presented in this chapter has been developed in collaboration with

Fausto Giunchiglia, Alethia Hume, and Piyatat Chatvorawit and published

in [32].

The chapter is structured as follows. In Section 7.1, we define the se-

1http://en.wikipedia.org/wiki/Gnutella

80

CHAPTER 7. SEMANTIC FLOODING 7.1. A SEMANTIC OVERLAY NETWORK

mantic overlay network built out of the classification links and mappings

across classifications. In Section 7.2, we show how this network can be

exploited to perform semantic flooding. In Section 7.3, we show how links

across classifications can be computed via semantic matching (as described

in [38]) or via P2P Concept Search (see Chapter 6).

7.1 A Semantic Overlay Network

In our approach, a user of each peer in the P2P network organizes her

documents in a classification(s). Three examples of user-generated classi-

fications are shown in Figure 7.1. Recall that nodes in the classification

specify (complex) concepts which the user is interested in. For example, the

user of peer1 is interested in documents about mice and hippopotamuses.

The whole classification specifies the user interest profile. For example, the

user of peer1 is interested in various kinds of animals, and the user of peer3

is interested in cars. Notice, that a user can be interested in more than one

topic. For instance, the user of peer2 stores documents about both animals

and cars.

In order to allow an automatic reasoning about classifications and their

content, each classification is converted into Formal Classification (FC) and

each document d is assigned a document concept Cd (see Section 5.2.1). To

convert a classification into FC, the background knowledge (BK) [37] of the

user is used. BK represents the knowledge of the user about concepts and

their relationships over a specific domain or a limited set of domains. An

example of a FC created from the classification in Figure 7.2a is shown in

Figure 7.2b. After a FC has been created, documents can be automatically

classified to nodes in the classification by using the get-specific principle

(see Section 5.2). Formally, a set of documents S(n) classified in a sub-tree

81

7.1. A SEMANTIC OVERLAY NETWORK CHAPTER 7. SEMANTIC FLOODING

animal

big animalsmall animal

mouse opossum hippopotamusgiraffe

animal-1

big-1 animal-1 small-2 animal-1

mouse-1 opossum-2 hippopotamus-1 giraffe-1

(a) User-Generated (b) Formal

Figure 7.2: Classification

of node n is defined as follows:

S(n) = {d | Cd v Cn} (7.1)

where Cn is the concept of node (see Equation 5.5).

To make the peers in the P2P Network able to reason about the contents

of each other, semantic links, expressed in the C-OWL language [15], can

be created between related nodes in their classifications. We concentrate

on the following links: (i) equivalence links A
≡−→ B, (ii) more general links

A
w−→ B, and (iii) more specific links A

v−→ B. For example, in Figure 7.3,

the link between nodes with labels ”large dog” and ”huge dalmatian” is

used to specify that the concept of the former node (large-1 u dog-1) is

more general than the concept of the latter node (huge-1 u dalmatian-2).

Note that according to the get-specific principle, all the documents which

are classified in the subtree of the later node can be classified also in the

subtree of the former node.

The set of the links which connect nodes inside a classification plus

C-OWL links across classifications constitute a semantic overlay network

which can be built on top of any underlying set of peers and their physical

connections.

82

CHAPTER 7. SEMANTIC FLOODING 7.2. SEMANTIC FLOODING

Peer1 Peer2 PeerN

…

animal-1

big-1 animal-1

large-1 animal-1

large-1 dog-1

huge-1 dalmatian-2

Figure 7.3: A Semantic Overlay Network

7.2 Semantic Flooding

When a user searches for documents, she, first, selects a node n in the

classification. The root node of the classification serves as a default node

for search if none of nodes are selected. Second, the user issues the query q.

The query is converted into an expression in LC as described in Section 4.1.

Let Cn be a complex concept of node n and Cq be a complex concept

extracted from query q. The goal of the Semantic Flooding algorithm is to

find documents stored in the network, such that, concept of document Cd

is more specific than the concept of node Cn and there exists concept C

described in d which is more specific than the query concept Cq. Formally

a query answer A(Cn, Cq) is defined as follows:

A(Cn, Cq) = {d | Cd v Cn and ∃C ∈ d, s.t.C v Cq} (7.2)

The problem of a semantic search in the P2P network can be decom-

posed into three subproblems:

1. Identifying semantically relevant peers

2. Searching inside relevant peers

3. Aggregation of the search results

83

7.2. SEMANTIC FLOODING CHAPTER 7. SEMANTIC FLOODING

Let us consider these three subproblems in detail.

7.2.1 Identifying semantically relevant peers

We consider a peer to be semantically relevant to the query if there are

nodes in peer’s classification which are relevant to the node selected by the

user. Moreover, some of the documents classified in these nodes should

be relevant to the user query. In order to store the information about

potentially relevant peers, the initiator peer pI creates a peer information

list, defined as follows:

peerinfos(n) = [〈p, nodeinfos(p, n), stat〉],

where p is a relevant peer, stat is a status of p: NQ - peer is not queried, QU

- peer is already queried, or RE - response is returned, and nodeinfos(p, n)

is a list which stores information about nodes n′ from peer p which are

semantically related to node n plus a set {l} of incoming links l for every

node n′:

nodeinfos(p, n) = [〈n′, {l}〉]
Initially, peerinfos(n) contains information only about the local peer pI :

peerinfos(n) = [〈pI , [〈n, ∅〉], NQ〉]. After peerinfos(n) is initialized, pI

starts an infinite loop, where a single iteration is performed as follows:

• Select the first (if any) peer info 〈p, nodeinfos(p, n), stat〉 from peerinfos(n),

such that, stat = NQ.

• If there are no such peer infos, wait until the peerinfos(n) list is

modified and perform the previous step again.

• Form a query request 〈Cn, Cq〉 and submit it to peer p.

• Change the status of peer p to stat = QU .

84

CHAPTER 7. SEMANTIC FLOODING 7.2. SEMANTIC FLOODING

When peer p receives the query request, it locally computes a set of links L,

such that, a target node has a complex concept which is more specific than

the complex concept Cn. It is important to note, that at the same time,

the concept of the target node in a link can be equivalent, more specific,

or more general than the concept of the source node. All the links in L are

sent back to the initiator peer pI . Peer pI updates the peerinfos(n) list

by using information from links in L. peerinfos(n) list is then sorted in a

decreasing order of the number of incoming links. We assume that in this

way, peers are queried in a decreasing order of their importance.

Every node n′ in nodeinfos(p, n) lists has only the documents with

complex document concepts Cd which are more specific than the complex

concept Cn. This is because, from Cd v Cn′ and Cn′ v Cn, it follows

that Cd v Cn. In spite of this, links between nodes do not describe all

complex concepts C, which can be found in the documents classified to

these nodes. Therefore, it can be the case that node n′ has no documents

which are relevant to the query concept Cq. The portion of such nodes can

increase when concept Cn becomes more and more general. In the worst

case, i.e., when Cn ≡ >, all the nodes which can be reached by all the links

can be added to nodeinfos(p, n) and all the corresponding peers p can be

queried. Semantic flooding in this case is reduced to a normal flooding

and, in general, can be very inefficient.

In order to implement a more efficient selection of semantically relevant

peers, we propose to use a measure of semantic similarity SS(Cn′, Cq)

between complex concepts at node Cn′ and the complex query concept

Cq (see, for example, [14]). As a simple example of a semantic similarity

measure SS(Cn′, Cq), let us consider the following measure:

SS(Cn′, Cq) =

{
1 if Cn′ v Cq

0 otherwise

85

7.2. SEMANTIC FLOODING CHAPTER 7. SEMANTIC FLOODING

Observe that for n′ with SS(Cn′, Cq) = 1, concepts Cd, for all the doc-

uments classified to n′, are more specific than query concept Cq. It is

because, from Cd v Cn′ and Cn′ v Cq, it follows that Cd v Cq. Given

that Cd is built from concepts C found in the document d, it is likely that

d is relevant to query q. The following measure of semantic similarity is

actually used2:

SS(Cn′, Cq) =
∑

Aq∈Cq

1

10
min

An′∈Cn′
(dist(An′ ,Aq))

(7.3)

Now, instead of just the number of incoming links, peerinfos(n) list is

sorted in a decreasing order of the peer scores computed as a sum of node

scores score(q, n′). A node score score(q, n′) is computed as follows:

score(q, n′) = (Nl + 1) ∗ (SS(Cn′, Cn) + SS(Cn′, Cq)), (7.4)

where, Nl is a number of incoming links for node n′. Note that only links

for those nodes which are relevant for current search request are considered

while sorting peerinfos(n).

7.2.2 Searching inside a relevant peer

Each peer p, on receiving a search request 〈Cn, Cq〉, performs search for

relevant documents in a local document collection by using the C-Search

(see Chapter 4). The output of C-Search is a list of documents ordered by

their relevance to the query. A list of top k ranked documents, nodes to

which the documents are classified, and the information about frequencies

of atomic concepts A ∈ Cq in the retrieved documents and in the whole

local document collection are sent back to the initiator peer pI . Status of p

is changed to stat = RE. In order to store the information about relevant

documents, initiator peer pI uses a document information list:

docinfos(q) = [〈d, n′, [〈A, tf(A, d)〉]〉],
2Equation 7.3 is a generalized version of Equation 4.16

86

CHAPTER 7. SEMANTIC FLOODING 7.2. SEMANTIC FLOODING

where d is a document which is classified to node n′, and which is also

relevant to query q, tf(A, d) is a number which represents importance of

document d to an atomic concept A ∈ Cq. Moreover, in order to store the

global information about importance of atomic concepts A ∈ Cq, pI uses

term information lists for all A:

terminfos(A) = [〈p, numDocsp, docFreqp(A)〉],

where docFreqp(A) is a number which represents the frequency of atomic

concept A in the document collection of peer p which have numDocsp doc-

uments in total. On receiving new results, peer pI updates the docinfos(q)

and terminfos(A) tables.

The search process terminates when: (i) the required number (e.g., 100)

of documents is retrieved; or (ii) all the relevant documents are retrieved;

or (iii) the search time exceeds some predefined limits; or (iv) the user

terminates the process.

7.2.3 Aggregation of search results

After the search process is terminated, peer pI merges query answers

from different peers into a single query answer. First, the relevance score

score(q, d) is computed for every retrieved document d as it was discussed

in Section 4.3. Note that the number of documents (N) is computed as

a sum of all the numDocsp, and document frequency (n) is computed as

a sum of all the docFreqp(A). Second, the document score score(q, d) is

combined with the score score(q, n) of the node n to which the document

is classified in order to compute the final score of the document:

score′(q, d) = score(q, n) + score(q, d),

Finally, documents are ordered according to the relevance score and pre-

sented to the user in the decreasing order of relevance.

87

7.3. SEMANTIC LINK DISCOVERY CHAPTER 7. SEMANTIC FLOODING

7.3 Semantic Link Discovery

When a new peer joins the network, there are no semantic links connecting

the nodes in a classification of this peer with the nodes in classifications

of other peers. In fact, this is not the only scenario in which links can be

missing. Sometimes users become interested in new topics and therefore

they e.g. can create new nodes or issue queries that are not related to

any of nodes in their classifications. In the following we discuss how new

semantic links can be discovered in these and other similar situations.

If two classifications which need to be connected are known in advance,

then semantic links between these classifications can be computed by using

semantic matching (S-Match) [38]. When the relevant classifications are

not known, one way of computing semantic links is to run S-Match be-

tween the given classification and all the classifications of other peers. The

problem with this approach is that the number of peers in the network can

be huge and, therefore, running S-Match for all the possible combinations

of classifications can become unfeasible.

In order to allow for an efficient discovery of semantic links, we propose

to use P2P Concept Search approach (see Chapter 6). In this chapter, P2P

Concept Search is used in order to index and retrieve complex concepts at

nodes Cn′. In this case, the query answer QA(C, Tp2p) (see Equation 6.1),

produced by P2P Concept Search for complex concept C, contains a set of

nodes n′ in which complex concepts Cn′ are more specific than C:

QA(C, Tp2p) = {n′ | Tp2p |= Cn′ v C}
If the user wants to discover semantic links for a node n or a query q,

first, the query answer A(C, Tp2p) is computed using the complex concept

Cn or Cq accordingly. The system then returns the ordered list of possibly

relevant nodes to the user. Note that if no exact matches are found, partial

matches are returned, i.e., when not all atomic concepts A ∈ Cn are used.

88

CHAPTER 7. SEMANTIC FLOODING 7.4. SUMMARY

Finally, semantic links are created for those nodes which are selected by

the user. Links created by users are indexed in the DHT by id’s of target

nodes. Note that these links can be used in the computation of node score

in Equation 7.4. After semantic links are discovered for a node (or a set of

nodes), S-Match can be run between the user’s classification and some of

the classifications which are connected by the links.

One of the main problems of DHT based IR is that the storage and

bandwidth required for inverted lists, e.g., during inverted list intersection,

can exceed the maximum allowed limits (see Section 3.2). In our approach

P2P Concept Search is used only to retrieve nodes and not documents.

Note that the number of nodes and size of their labels are usually smaller

then the number and size of documents classified to these nodes. As a

result, less storage space is needed for storing the inverted lists. Moreover,

a node has only one complex concept and, therefore, intersection of inverted

indices is not required which reduces a bandwidth consumption.

7.4 Summary

In this chapter, we showed how links in classification hierarchies together

with semantic links which codify the mappings existing among nodes from

classifications of different peers can be used to define a semantic overlay

network which can cover any number of peers (e.g., in the Web). In the

semantic overlay, peers with similar content are connected to each other by

the means of semantic links. Differently from [22], a global classification is

not required and users are free to create their own classification hierarchies.

We have also shown how the semantic overlay network can be flooded

and used to perform semantic search on links. Finally different ways for

performing link discovery were discussed.

89

7.4. SUMMARY CHAPTER 7. SEMANTIC FLOODING

90

Part IV

Evaluation

Chapter 8

Automatic

Data-Set Generation

The conference series like TREC provide different manually built data-sets

for evaluation of search systems performance on various IR tasks. For

instance, the Ad Hoc task is used for evaluation of free-text retrieval and

it examines the performance of systems where the set of documents is

fixed and the query set is not known before the experiment. In the rest of

this chapter, we propose an approach for automatic generation of IR data-

sets based on search engines query logs and data from human-edited web

directories. Material presented in this chapter has been published in [47].

8.1 Data-Set Generation

In order to evaluate the efficiency of an IR system, we need a data-set

which consists at least of the following three components:

Documents (D): Traditionally, documents are represented as Natural

Language (NL) texts which vary in size, use different vocabularies,

and are about different subject matters. Since most of the real IR

systems need to deal with large document collections, the set of doc-

uments in the data-set should be also big enough. Otherwise, the

93

8.1. DATA-SET GENERATION
CHAPTER 8. AUTOMATIC

DATA-SET GENERATION

results obtained on the data-set can not be considered as a good ap-

proximation of the real performance of the evaluated system.

Queries (Q): Queries are short statements of user information needs. In

fact, the average size of queries which are submitted to the current

search engines is less than three words. Such short queries can be

ambiguous. In order to be able to evaluate the quality of the results

returned by an IR system, the data-set should provide an unambigu-

ous description for these queries. For instance, each query in the

ad-hoc TREC document collection1 is assigned a description, i.e., one

sentence which describes a topic area, and a narrative, i.e., a concise

description of what makes a document relevant to the query.

Relevance judgments (R): A relevance judgment is a query-document

pair where the relevance of the document to the query is specified. For

instance, in TREC, the binary relevance judgment is used, i.e., either

a document is relevant to the query or it is not. The following rule is

used by TREC assessors to evaluate the relevancy of a document to

the query. If any information contained in a document can be used to

write a report about subject of the query, then the document should be

marked as relevant. In ideal case, a set of relevancy judgments should

be complete and correct. In reality, the size of document collections

make it infeasible to produce the complete set of relevance judgments,

and, therefore, some approximation of the relevancy judgments set

is used instead. For example, the pooling methodology is used in

TREC [96] to provide such approximation.

In this chapter, we propose an approach for automatic generation of data-

sets by using search engines query logs and data from human-edited web di-

rectories. We use the AOL query log [66], which consists of over 20,000,000

1http://trec.nist.gov/data/test coll.html

94

CHAPTER 8. AUTOMATIC
DATA-SET GENERATION 8.1. DATA-SET GENERATION

queries made by over 500,000 AOL users during a three-month period. As

a web directory we use the Open Directory Project2, (ODP) also known

as DMoz. DMoz is a multilingual open content directory of World Wide

Web links that is constructed and maintained by a community of more

than 80,000 volunteer editors. The DMoz directory contains over 590,000

multilingual categories organized into a hierarchy and over 4,500,000 web-

sites classified to these categories. The meaning of each category is defined

by its position in the hierarchy. For instance, category Languages, which

can be reached by a path Top/Computers/Programming/Languages/ repre-

sents a set of web-sites about programming languages and directly related

topics. Moreover, all the sub-categories of this category also need to be

related to programming languages. For instance, category Java with the

path Top/Computers/Programming/Languages/ Java/ is about program-

ming language Java. Each web-site, in Dmoz, is represented by an URL, a

title, and a short description of its content. Web-sites are classified to cat-

egories according to the get-specific rule (see Section 5.1), i.e., the category

which describe the content of the web-site in the most specific way should

be chosen. In the following, we discuss how AOL query log and DMoz web

directory can be used for automatic generation of data-sets.

The documents, in the data-set, are created by using web-sites classified

in DMoz. First, we collect all the URLs of web-sites classified in DMoz.

Note, that we excluded from consideration all the web sites classified in

Adult, World, Regional and Kids and Teens sub-trees. Adult sub-tree is

excluded because it can contain web-sites with inappropriate adult content,

World sub-tree is excluded because it contain web-sites with non-English

content, and both Kids and Teens and Regional sub-trees are excluded

because they have guidelines which are different from those for the rest of

the directory. Second, for every URL, we fetch a single web-page pointed

2http://www.dmoz.org/

95

8.1. DATA-SET GENERATION
CHAPTER 8. AUTOMATIC

DATA-SET GENERATION

by the URL. Third, for every web-page we extract out-links, i.e., URLs

which appear in the web-page together with their anchor, and, if there is

an out-link with the phrase about us (or about me), we fetch the web-page

corresponding to this URL. All the markup is eliminated from first and

about us web pages. The fetching of web-site contents and elimination of

the markup is implemented by using Nutch3.

In this chapter, as a document set we used only those web-sites which

have ‘about us’ web-pages. We use AboutUs as a name for the data-set.

Every document in the AboutUs data-set consists of three textual fields,

which describe what the corresponding web-site is about:

Description In DMoz, for each web-site, there is a short description, writ-

ten by a DMoz editor, which describes what the web-site is about from

her point of view. “The description gives specific information about

the content and/or subject matter of the site. It should be informa-

tive and concise, usually no longer than one or two lines. The basic

formula for a good description is: Description = Subject + Content.

. . . End users should be able to determine relevancy without having to

visit a site.”4

First page First page is the first (and probably the last) think that user

see when she visits the web-site. So, the first page should usually

give a good idea about web-site content. We see the first page as a

description of what the web site is about from the point of view of a

web-site visitors.

’About us’ Web-site’s about page describes what the web site is about

from the point of view of web-site authors.

3http://lucene.apache.org/nutch/
4http://www.dmoz.org/guidelines/describing.html#descriptions

96

CHAPTER 8. AUTOMATIC
DATA-SET GENERATION 8.1. DATA-SET GENERATION

Note, that other web-pages, which can be reached from the first page, can

also be used to describe the topic and the content of the web-site. The

problem is that it is hard to distinguish between these pages and the ones

which are completely unrelated.

In order to generate a query set, we first, collect all the unique queries

from AOL query log. One word queries, queries which contain punctuation,

special symbols, or boolean operators (e.g., ’+’, and ’?’), and queries which

contain the words shorter than 3 letters are filtered out. Second, for every

query, we search for a set C of DMoz categories with titles consisting

only of the query words (we used exact matching of lowercased words).

For example, for query africa scuba diving we find categories Africa and

Scuba Diving. Third, for every category in C, we check if its path to the

root contains a combination of categories (which are also in C), which

all together contain all and only query words. For example, the path to

the root Top/Recreation/Outdoors/Scuba Diving/Regional/Africa has two

categories Scuba Diving and Africa with all and only words from the given

query. In order to have queries with only one possible interpretation, we

filtered out all the queries which matched more than on paths to the root.

In Table 8.1, we show some examples of query-category pairs which we

obtained as a result of the described above process. Notice, that many

categories in DMoz are assigned descriptions. These descriptions, similarly

to the query descriptions in TREC collections, can be used to describe the

meaning of the query in the corresponding query-category pair.

In order to generate a set of relevance judgments, we used a mapping

from queries to categories obtained as described above and also a mapping

from categories to the documents classified to these categories by DMoz

editors. For every category, we collect all the documents classified to this

category plus all the documents classified to more specific categories. All

the documents collected for a category are considered to be relevant to

97

8.1. DATA-SET GENERATION
CHAPTER 8. AUTOMATIC

DATA-SET GENERATION

Table 8.1: Query-category pairs
AOL Query DMoz Category

africa scuba diving Top/Recreation/Outdoors/Scuba Diving/Regional/Africa

analytical chemistry Top/Science/Chemistry/Analytical

breast cancer organizations Top/Health/Conditions and Diseases/Cancer/Breast/Organizations

business awards Top/Business/Consumer Goods and Services/Awards

home based business

opportunities
Top/Business/Opportunities/Home Based

homebrewing beer Top/Recreation/Food/Drink/Beer/Homebrewing

knowledge management Top/Reference/Knowledge Management

laser toner Top/Computers/Hardware/Peripherals/Printers/Supplies/Laser Toner

lions clubs international Top/Society/Organizations/Service Clubs/Lions Clubs International

luxury jewelry Top/Shopping/Jewelry/Watches/Luxury

nuclear magnetic resonance Top/Science/Chemistry/Nuclear Magnetic Resonance

photography education Top/Arts/Photography/Education

rehabilitation medicine Top/Health/Medicine/Medical Specialties/Rehabilitation Medicine

rugby football union Top/Sports/Football/Rugby Union

shih tzu breeders Top/Recreation/Pets/Dogs/Breeds/Toy Group/Shih Tzu/Breeders

small business accounting

software
Top/Computers/Software/Accounting/Small Business

solar energy business Top/Business/Energy/Renewable/Solar

travel around the world Top/Recreation/Travel/Travelogues/Around the World

united states adoption Top/Home/Family/Adoption/Wish to Adopt/Regional/United States

yellow pages directories Top/Reference/Directories/Address and Phone Numbers/Yellow Pages

the query in the corresponding query-category pair. Here, the intuition

is that, since documents in DMoz are sub-categorized and organized by

topics5, all the documents classified in the sub-tree should be relevant to

all the categories on the path to the root, including those categories which

are matched by the query words. Trivial query-document matches, i.e., the

ones where documents include query as an exact phrase were excluded from

the data-set together with corresponding documents. For example, for a

query “west highland white terrier”, document “The West Highland White

Terrier is a small terrier” is considered trivial, because any syntactic or se-

mantic technique can trivially find this document. Moreover, we pruned

all the queries which have less than 10 relevant results. The statistics of

the resulting AboutUs data-set is summarized in Table 8.26. Notice that

the generated set of relevance judgments is correct and complete, in the

5http://www.dmoz.org/guidelines/subcategories.html
6White space is used as an indication of a separation between words

98

CHAPTER 8. AUTOMATIC
DATA-SET GENERATION 8.2. SUMMARY

Table 8.2: AboutUs data-set statistics
Statistics category Value

Documents 100,807

Queries 330

Relevance judgments 8,704

Query length (words), avg. 2.4

Description length (words), avg. 16.0

First page length (words), avg. 485.4

‘About Us’ page length (words), avg. 473.3

case, when (i) editors do not do mistakes and do not miss relevant docu-

ments, and (ii) the document description is rich enough to judge about the

relevance of this document to the query. According to DMoz guidelines:

“An effective editor will search and/or browse through the ODP in areas

inside and outside his or her top level category to find areas of potential

duplication”5. Assuming that most of editors are “effective editors”, the set

of relevance judgments (obtained by the described above approach) should

be a good approximation of the ideal (i.e., complete and correct) set of

relevance judgments. The impact of the richness of the document descrip-

tions on the performance of search techniques is studied in the following

section.

8.2 Summary

In this chapter, we presented an approach for automatic generation of the

data-sets for evaluation of the ad hoc retrieval task. The generation of the

data-sets is done using search engines query logs and data from human-

edited web directories.

99

8.2. SUMMARY
CHAPTER 8. AUTOMATIC

DATA-SET GENERATION

100

Chapter 9

Evaluation Results

This chapter provides evaluation results for the algorithms described in

Chapters 4, 5, 6, and 7. Namely, evaluation results for C-Search algorithm

are discussed in Section 9.1. Evaluation results for Get-Specific document

classification algorithm are discussed in Section 9.2. Evaluation results for

P2P C-Search algorithm are discussed in Section 9.3 and Semantic Flooding

algorithm is evaluated in Section 9.4.

9.1 Concept Search

In order to evaluate the C-Search approaches (see Chapter 4), we built

six IR systems. One system is an instantiation of syntactic search and is

build on top of Lucene. Standard tokenization and English Snowball stem-

mer were used for document and query preprocessing. The AND operator

was used as a default boolean operator in a query. The Lucene default

implementation of the cosine similarity from the vector space model was

used for relevancy ranking1. Other five systems are semantics enabled ver-

sions of Lucene, implemented following the approaches described in Sec-

tions 4.4.1-4.4.5. WordNet 2.1 was used as a lexical database in all these

systems. GATE [25] was used in order to locate descriptive phrases (see

1http://lucene.apache.org/java/2 4 0/api/org/apache/lucene/search/Similarity.html

101

9.1. CONCEPT SEARCH CHAPTER 9. EVALUATION RESULTS

Section 4.1). Relevancy ranking, in these systems, was implemented by

modifying Lucene default score function1 as it was described in Section 4.3.

9.1.1 Quality Evaluation: TREC Data-Set

In this section, we compared the quality of results returned by Lucene

and by C-Search. Approach 3 was used for this evaluation but, given

that the approaches 1, 2 and 4 implement the same algorithm, the results

returned by these approaches should be comparable. As a data-set for

our experiments, we used the TREC ad-hoc document collection2 (disks 4

and 5 minus the Congressional Record documents) and three query sets:

TREC6 (topics 301-350), TREC7 (topics 351-400) and TREC8 (topics 401-

450). Only the title for each topic was used as a query. The whole data-set

consists of 523,822 documents and 150 queries. In the evaluation we used

the standard IR measures and in particular the mean average precision

(MAP) and precision at K (P@K), where K was set to 5, 10, and 15.

The average precision for a query is the mean of the precision obtained

after each relevant document is retrieved (using 0 as the precision for not

retrieved documents which are relevant). MAP is the mean of the average

precisions for all the queries in the test collection. P@K is the percentage of

relevant documents among the top K ranked documents. MAP is used to

evaluate the overall accuracy of IR system, while P@K is used to evaluate

the utility of IR system for users who only see the top K results.

First, in Table 9.1, we report the evaluation results for the two systems

and further, in Figure 9.1 we provide recall-precision graphs, i.e., we plot

precision as a function of recall, for these systems. The experiments

show that, on TREC ad-hoc data sets, C-Search performs better than the

purely syntactic search, which supports the underlying assumption of our

approach. In particular, from Table 9.1 we observe that C-Search improves

2http://trec.nist.gov/data/test coll.html

102

CHAPTER 9. EVALUATION RESULTS 9.1. CONCEPT SEARCH

Table 9.1: Evaluation results
TREC6 (301-350)

MAP P@5 P@10 P@15

Lucene 0.1361 0.3200 0.2960 0.2573

C-Search(Lucene) 0.1711(+25.7%) 0.3920(+22.5%) 0.3480(+17.6%) 0.3000(+16.6%)

TREC7 (351-400)

MAP P@5 P@10 P@15

Lucene 0.1138 0.3560 0.3280 0.3000

C-Search(Lucene) 0.1375(+20.8%) 0.4200(+18.0%) 0.3680(+12.2%) 0.3427(+14.2%)

TREC8 (401-450)

MAP P@5 P@10 P@15

Lucene 0.1689 0.4320 0.4000 0.3573

C-Search(Lucene) 0.2070(+22.6%) 0.4760(+10.2%) 0.4280(+7.0%) 0.4013(+12.3%)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e

c
is

io
n

C-Search

Lucene

TREC6

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e

c
is

io
n

C-Search

Lucene

TREC7

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e

c
is

io
n

C-Search

Lucene

TREC8

Figure 9.1: Recall-Precision Graphs

precision P@K for all K in all three TREC data sets. This is coherent with

the intuition that semantics improve on precision. Notice that it means

that we are able to show to the users more relevant documents at the top

of the list. From Figure 9.1 we observe that the recall-precision graphs for

C-Search are above those for Lucene, which means that the improvement

in precision achieved by C-Search does not decrease recall.

9.1.2 Quality Evaluation: Document Size

In this section, we study how a size of a web-site description, which can be

used as a rough indicator of the amount of available information about the

web-site, and the level of details in the description, can affect the perfor-

mance of search techniques. Three data-sets were generated based on the

AboutUs data-set (see Section 8.1). These data-sets represent differen lev-

103

9.1. CONCEPT SEARCH CHAPTER 9. EVALUATION RESULTS

descr descr+fp descr+fp+ap

MAP P@5 P@10 MAP P@5 P@10 MAP P@5 P@10

Lucene 0.0200 0.0879 0.0558 0.1008 0.2255 0.1945 0.1349 0.2473 0.2236

C-Search(Lucene) 0.0359 0.1230 0.0924 0.1411 0.2345 0.2182 0.1798 0.2685 0.2524

Improvement +79.5% +39.9% +65.6% +40.0% +4.0% +12.2% +33.3% +8.6% +12.9%

0,0

0,1

0,2

0,3

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e

c
is

io
n

C-Search

Lucene

descr descr+fp

0,0

0,1

0,2

0,3

0,4

0,5

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e

c
is

io
n

C-Search

Lucene

0,0

0,1

0,2

0,3

0,4

0,5

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e

c
is

io
n

C-Search

Lucene

descr+fp+ap

Figure 9.2: Evaluation results: Document Size

els of details in document description. The first data-set (descr) consists

only of short descriptions, created by DMoz editors, which briefly describe

the web-site. In the second data-set (descr+fp), every document is com-

posed from the description and the text from the first page of the web-site.

The third data-set (descr+fp+ap) consists of the documents, which are

composed from description, first and ’about us’ web-pages. Actually, de-

scr+fp+ap represents the complete AboutUs data-set.

We evaluated the performance of Lucene and C-Search on all three data-

sets. The evaluation results are reported in Figure 9.2. The experiments

show, that, the bigger is the document description, the easier is the search

task for both Lucene and C-Search. After manual inspection of the re-

sults, we concluded that the main reason for this is the increase in the

quality of the data-set. If a document description is only a short sum-

mary of a web-site (as it is the case in the descr data-set), it may not be

relevant to a query created for a category in which the web-site is clas-

sified. For instance, let us consider the following document description:

Links to auto reviews and articles. The description is created for the web-

104

CHAPTER 9. EVALUATION RESULTS 9.1. CONCEPT SEARCH

site classified to category New3 and, therefore, this document description

can be associated with the query purchasing new automobiles, but, as we

can see, this description contains no information relevant to purchasing

of something new. If, in addition to the description, we consider also the

first page (as in the descr+fp data-set), and ‘About Us’ page (as in the

descr+fp+ap data-set) then the web-site description become more com-

plete and the search techniques improve their results. Note, however, that

data collected from web-sites can be very noisy, because usually there are

many advertisements on web-sites and/or because web-site administrators

use different search engine optimization (SEO) techniques, such as adding

popular keywords to their web-pages in order to improve the find-ability

of their web-sites. In general, it can cause decrease in precision. As we can

observe from Figure 9.2, the incompleteness of the document descriptions

and the noisiness of web-pages are not playing decisive role if we want to

conduct comparative evaluation of different search techniques. For exam-

ple, C-Search performs better than Lucene on all three data-sets.

9.1.3 Quality Evaluation: Semantic Heterogeneity

In the context of IR, semantic heterogeneity refers to a phenomenon, when

a person submitting a search query and authors of documents have no

agreement about how to represent the same or related objects. For in-

stance, it can lead to the situation, when words which are used to describe

the object in a query are different from those words which are used to

describe the same object in the document description. In this section, we

study how the semantic heterogeneity problem can affect the performance

of search techniques.

We create three data-sets: descr+fp+ap 25, descr+fp+ap 10, and

descr+fp+ap 0, which are based on AboutUs data-set (descr+fp+ap).

3http://www.dmoz.org/Home/Consumer Information/Automobiles/Purchasing/New/

105

9.1. CONCEPT SEARCH CHAPTER 9. EVALUATION RESULTS

descr+fp+ap 25 descr+fp+ap 10 descr+fp+ap 0

MAP P@5 P@10 MAP P@5 P@10 MAP P@5 P@10

Lucene 0.1098 0.2188 0.1724 0.0466 0.1497 0.1064 0.0000 0.0000 0.0000

C-Search(Lucene) 0.1543 0.2400 0.2079 0.1178 0.1824 0.1496 0.0604 0.0804 0.0707

Improvement +40.5% +9.7% +20.6% +152.8% +21.8% +40.7% - - -

0,0

0,1

0,2

0,3

0,4

0,5

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e

c
is

io
n

C-Search

Lucene

descr+fp+ap_25

0,0

0,1

0,2

0,3

0,4

0,5

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e

c
is

io
n

C-Search

Lucene

descr+fp+ap_10

0,0

0,1

0,2

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e

c
is

io
n

C-Search

Lucene

descr+fp+ap_0

Figure 9.3: Evaluation results: Semantic Heterogeneity

The number X, which appears at the end of the data-set name descr+fp+

ap X, represents the percentage of relevant documents which can have all

the words from the corresponding query. The data-sets were created by

excluding all the documents and corresponding relevance judgments which

were above the specified limit. Notice, that the bigger is X, the higher is

the level of semantic heterogeneity, where the descr+fp+ap 0 data-set

represents the extreme case when syntactic search is not possible.

The performance of Lucene and C-Search was evaluated on these data-

sets. The evaluation results are reported in Figure 9.3. From Figure 9.3, we

observe that improvements, achieved by C-Search, starts being significant

when the heterogeneity is high (i.e., when the number X is small).

In order to compare the level of semantic heterogeneity in the gener-

ated data-sets with those in standard IR data-sets, we took three TREC

data-sets: TREC6 (topics 301-350), TREC7 (topics 351-400), and TREC8

(topics 401-450). The average number (and the average percentage) of

relevant documents which have all the query words is computed for these

data-sets (see Table 9.2). As we can see from Table 9.2, in TREC data-sets,

more than 20 relevant documents in average can be retrieved by syntac-

106

CHAPTER 9. EVALUATION RESULTS 9.1. CONCEPT SEARCH

Table 9.2: Semantic heterogeneity in TREC ad-hoc data-sets

Data-set

Average number of relevant

documents which contain

all the query words

Average percentage of relevant

documents which contain

all the query words

TREC6 23.9 27.32 %

TREC7 24.2 29.67 %

TREC8 34.7 40.98 %

tic matching of document and query words. These documents in average

amount to more than 25% of all the relevant documents. The level of

semantic heterogeneity problem in TREC data-sets is rather low to show

the advantages of semantic techniques (especially when retrieval of top-k

results is considered).

9.1.4 Performance Evaluation

In this section, we compared an index size and a search time of different

versions of C-Search. TREC was used as a document collection. Three

query sets, with queries consisting of: (i) 1 word, (ii) 2 words, and (iii) 3

words were generated by randomly selecting a set of 1000 queries from the

AOL query log [66] for each query set. Queries which contain punctuation,

special symbols, or boolean operators (e.g., ’+’, ’ ’, and ’?’); queries which

contain the words shorter than 3 letters; and queries which didn’t have any

results were filtered out. All the experiments described in this section were

run on a machine with the following parameters:

• CPU : Intel(R) Core(TM)2 Duo T7500 @2.20GHz

• RAM : 3GB

• HD : 250GB @ 5400 RPM

• OS : Windows XP (SP3)

107

9.1. CONCEPT SEARCH CHAPTER 9. EVALUATION RESULTS

0

1

2

3

4

5

6

7

8

9

10

11

Lucene Approach 1 Approach 2 Approach 3 Approach 4

In
d

e
x

 s
iz

e
 (

G
B

)

Figure 9.4: Size of the inverted index

1

10

100

1000

10000

Lucene Approach 1 Approach 2 Approach 3 Approach 4

S
e
a
rc

h
 t

im
e
 (

m
s
)

1 word

2 words

3 words

Figure 9.5: Search time

In Figure 9.4, we report on the size of the inverted indexes created by

Lucene and by C-Search (approaches 1-4). In Figure 9.5, we report an

average search time per query in milliseconds (ms)4. As we can observe

from Figure 9.5, Approach 2 is the the fastest among of C-Search approachs.

It can provide answers in less than a second, namely in a time which

is acceptable for the user to wait. The main reason why Approach 2 is

still much slower than Lucene is that, in C-Search, we need to analyze

positions of atomic concepts and not just the number of their occurrences.

Note that the number of positions which need to be analyzed can be much

bigger than the number of relevant documents (especially for a very general

query concept). The large size of the index in Approach 2 (see Figure 9.4)

4Every experiment was run 5 times and the average result was reported.

108

CHAPTER 9. EVALUATION RESULTS 9.1. CONCEPT SEARCH

is also due to the large amount of positions which need to be stored (see

Section 4.4.2 for details). On the contrary, in Approach 3, the size of the

index is the smallest among all the other C-Search approaches and the

average search time is within a few seconds. Approach 4 improves the

search time of Approach 3 at the cost of doubling its index size.

9.1.5 Quality vs. Performance

In this section, we studied the influence of the following two parameters on

the quality of results and performance of Approach 5 (see Section 4.4.5):

(i) s - a maximum number of senses which can be assigned to a word

in a query after the word sense filtering step; and (ii) dist - a maximum

allowed distance between atomic concepts in a query and a document. As

a data-set, we used the data-set described in Section 9.1.1.

Figure 9.6 shows the influence of the parameter s on the search time

(represented as bars) and MAP (represented as broken lines) for Approach 5

on the three query sets: TREC6, TREC7, and TREC8. As we can see

from Figure 9.6, the quality of results (measured by MAP) returned by

the approximated version of C-Search is not decreasing much if we use s

equal to or bigger than three. At the same time, the search time decreases

substantially, namely, if s is reduced from 7 to 3, the search time becomes

three times smaller on the TREC7 query set. In Figure 9.7, we show how

the search time and MAP for Approach 5 are influenced by the parameter

dist (where s was set to 3). As we can see from Figure 9.7, the MAP

remains almost constant if we keep dist equal or bigger than three. If dist

is set to 3, the search time is decreased around two times, with respect to

the case when dist is not limited. In total, by using s = 3 and dist = 3,

Approach 5 can perform 6 times faster than Approach 3, while having

almost no decrease in the quality of results measured by MAP.

109

9.2. DOCUMENT CLASSIFICATION CHAPTER 9. EVALUATION RESULTS

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7

Maximum number of senses (s)

S
e

a
rc

h
 t

im
e

 (
m

s
)

0,06

0,1

0,14

0,18

0,22

M
e

a
n

 a
v

e
ra

g
e

 p
re

c
is

io
n

TREC6 TREC7 TREC8
TREC6 TREC7 TREC8

Figure 9.6: Influence of a max number of senses for a word on a search time and MAP

9.2 Document Classification

In order to evaluate the get-specific document classification algorithm (see

Chapter 5), we selected four subtrees from the DMoz web directory, con-

verted them to FCs, extracted concepts from the populated documents,

and automatically (re)classified the documents into the FCs by using the

get-specific algorithm. Document concepts were extracted by computing

the conjunction of the formulas corresponding to the first 10 most fre-

quent words appearing in the documents (excluding stop words). We used

WordNet [60] for finding word senses and their relations, and we used

S-Match [38] for computing Equation 5.7. Parameter k for tradeoff com-

putation was set to 2.

In the evaluation we employ standard IR measures such as micro- and

macro-averaged precision, recall, and F1 [82]. In Table 9.3 we report data-

set statistics and evaluation results for each of the four data-sets. We

performed a detailed analysis of the “Languages” data-set results (see Fig-

ure 9.8). In Figure 9.8a we show how precision and recall are distributed

among nodes. Figure 9.8b shows how far (in terms of the number of edges)

110

CHAPTER 9. EVALUATION RESULTS 9.2. DOCUMENT CLASSIFICATION

0

500

1000

1500

0 1 2 3 4 5 6 7 inf

Maximum distance (dist)

S
e

a
rc

h
 t

im
e

 (
m

s
)

0,06

0,1

0,14

0,18

0,22

M
e

a
n

 a
v

e
ra

g
e

 p
re

c
is

io
n

TREC6 TREC7 TREC8
TREC6 TREC7 TREC8

Figure 9.7: Influence of a max distance between concepts on a search time and MAP

Table 9.3: Data-set statistics and evaluation results

Data-set Nodes Docs

Max.

subtree

depth

Mi-Pr Mi-Re Mi-F1 Ma-Pr Ma-Re Ma-F1

Photographya 27 871 4 0.2218 0.1871 0.2029 0.2046 0.1165 0.1485

Beveragesb 38 1456 5 0.4037 0.4938 0.4442 0.3848 0.3551 0.3693

Mammalsc 88 574 5 0.3145 0.3014 0.3078 0.3854 0.2677 0.3159

Languagesd 157 1217 6 0.4117 0.4503 0.4301 0.4366 0.4187 0.4275

ahttp://dmoz.org/Shopping/Photography/.
bhttp://dmoz.org/Shopping/Food/Beverages/.
chttp://dmoz.org/Health/Animal/Mammals/.
dhttp://dmoz.org/Science/Social Sciences/Linguistics/Languages/Natural/Indo-European/.

an automatically classified document is from the node where it was actually

classified in DMoz.

From Figure 9.8a we observe that about 40% of nodes in the “Lan-

guages” data-set have precision and recall equal to 05. After manual in-

spection of the results, we concluded that this problem is caused by lack

of background knowledge. For instance, 8 documents about Slovenian lan-

guage were misclassified because there was no WordNet synset “Slovenian”

defined as “the Slavic language spoken in Slovenia” and a hypernym re-

5Precision for nodes with no documents was counted as 0.

111

9.3. P2P C-SEARCH CHAPTER 9. EVALUATION RESULTS

0

10

20

30

40

50

P=0, R=0 P=1, R=1 P=1, 0<R<1 0<P<1, R=1 0<P<1,0<R<1

Precision(P), Recall(R)

N
u

m
b

e
r

o
f

n
o

d
e
s
 (

%
)

(a)

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 …

Hierarchical distance

N
u

m
b

e
r

o
f

d
o

c
u

m
e
n

ts
 (

%
)

(b)

Figure 9.8: Analysis of the “Languages” data-set results

lation of it with synset “Slavic language”. Figure 9.8b shows that about

20% of documents are classified in one edge distance from the node where

they were originally populated, whereas 89% of them were classified one

node higher on the path to the root. Note that this still allows it to find a

document of interest by browsing the classification hierarchy.

9.3 P2P C-Search

In order to evaluate P2P C-Search approach, we developed real imple-

mentations of the following two prototypes: P2P Syntactic Search (see

Section 3.2) which is based on Lucene, and P2P C-Search (see Chapter 6)

built on top of C-Search (see Section 4.4.3)6. The performances of P2P

Syntactic Search and P2P C-Search were compared. Experiments with the

real implementation could not be performed on thousands of nodes due to

physical limitations. Hence, a custom simulator was developed by reusing

the real implementation. For validation of the simulator, the real imple-

mentations of P2P Syntactic Search and P2P C-Search were tested on a

cluster of 47 heterogeneous nodes. The same queries were performed on

the simulator and the results were found exactly same as that in a real

6To validate that there are no optimizations which can affect the fair comparison between syntactic
and semantic approaches we compared the results of syntactic approach with the results of semantic
approach when the background knowledge is empty. No significant difference was found.

112

CHAPTER 9. EVALUATION RESULTS 9.3. P2P C-SEARCH

Table 9.4: Evaluation results: Syntactic vs. Semantic

TREC8 (401-450)

P2P Syn. Search P2P C-Search

MAP 0.1648 0.1884(+14.3%)

P@5 0.4040 0.4440(+9.9%)

P@10 0.3860 0.4200(+8.8%)

P@15 0.3733 0.3907(+4.7%)

network setting.

As a data-set for this experiment, we used the TREC ad-hoc document

collection and the query set from TREC8 (topics 401-450). The results

of the evaluation are shown in Table 9.4. The experiments show that,

on TREC ad-hoc data set the results achieved by P2P C-Search are better

than those achieved by P2P syntactic search. Note that the results achieved

by distributed approaches are comparable with the results of the centralized

versions of Lucene and C-Search (see Section 9.1.1), i.e., quality is not lost

much due to distribution.

The average number of postings (document id and additional informa-

tion related e.g. to score of the document) transferred per query (network

overhead) was 49710.74 for P2P syntactic search and 94696.44 for P2P

C-Search. Thus the network overhead of P2P C-Search is 1.9 times that

of syntactic search. But, the average length of intermediate posting lists

transferred for P2P C-Search is only 37.48% as that of syntactic search

even though the cumulative size is bigger. Thus by incorporating the op-

timizations proposed in Section 6.2 (i.e. pre-compute addresses of peers

responsible for more specific and getting respective postings in parallel),

the response time for semantic search could be reduced compared to that

of syntactic search. But the current basic prototype, doesn’t include so-

phisticated optimizations and hence the search time comparisons are not

made.

113

9.4. SEMANTIC FLOODING CHAPTER 9. EVALUATION RESULTS

The number of postings transferred per query was taken as the mea-

surement of network bandwidth consumption as they form the majority of

network traffic for search (DHT lookup cost is comparatively negligible).

Also, different optimizations like Bloom filters can be used to improve the

transfer bandwidth for both syntactic and concept search.

9.4 Semantic Flooding

In order to evaluate Semantic Flooding approach (see Chapter 7), we con-

ducted a set of simulation experiments, where the results of distributed

Semantic Flooding algorithm and of centralized C-Search were compared.

The key intuition here is to see how much we lost, in terms of the number

of documents which are retrieved by a centralized search approach and

which are missing from the results of a distributed search approach. In the

evaluation we measured the accuracy of search results depending on the

number of visited peers, where the accuracy is defined as follows:

Accuracy =
|RCS ∩RSF |

|RCS| ∗ 100%,

where RCS are results returned by C-Search and RSF are results returned

by Semantic Flooding. Only the first 10 results were considered.

Four data-sets were generated by using data from the DMoz web di-

rectory. The data-sets consist of 10, 100, 1000, and 10000 peers, where a

classification of each peer was generated by extracting a part of the DMoz

classification. The generation of a classification was performed as follows.

First, Ns sub-trees were randomly selected in DMoz, where Ns is a ran-

domly selected number in a range [10..20]. We used only those sub-trees

in DMoz which are rooted by nodes at the second level in the DMoz clas-

sification (e.g., Top/Arts/Animation/ and Top/Health/Alternative). Sec-

ond, Np paths from leaf nodes to the root node were randomly selected

114

CHAPTER 9. EVALUATION RESULTS 9.4. SEMANTIC FLOODING

from these sub-trees (Np ∈ [90..110]). Third, a random number of nodes

were selected from every path. Then, a set of Nd documents was ran-

domly selected for each node (Nd ∈ [10..30]). Documents in the data-set

were created by concatenating titles and descriptions of web-sites. Fi-

nally, the classification was created from all the nodes, and the docu-

ments were classified to these nodes. On average, classification of each

peer have 159 nodes and 768 documents. For each data-set, a C-Search

index ICS was created. All the documents in the data-set were indexed

in ICS. Indexes of each single peers were created by filtering ICS. Note

that classifications of different peers can partially overlap, where the over-

lap have a higher probability on the higher levels of classifications (e.g.,

Top/Business/ and Top/Games/). In this case, there can be many peers

which share some general interests (e.g., business and games), and there

can be only one (or few) peers with information about a very specific topic

(e.g., Top/Games/Gambling/Sports/Racing/Horse Racing/).

A query set was generated by randomly selecting a set of Nq (100)

queries from the AOL query log [66] for each data-set. One word queries;

queries which contain punctuation, special symbols, or boolean operators

(e.g., ’+’, and ’ ?’); queries which contain the words shorter than 3 letters;

and queries which had less than 10 results in ICS were filtered out. For each

query, we randomly selected a node n in DMoz classification, such that,

query requests 〈Cn, Cq〉 have at least 10 relevant documents as computed

by C-Search.

The evaluation results are reported in Figure 9.9. We compared the

performance achieved by Semantic Flooding algorithm when: (i) the query

request 〈Cn, Cq〉 (namely it consists of a starting node n with concept Cn

and of a query q with a concept Cq) is used; (ii) the query request is

〈>, Cq〉, namely the same as (i) but with no starting node, i.e., Cn ≡ >;

and (iii) the same as (ii) but the semantic similarity SS(Cn′, Cq) is not

115

9.4. SEMANTIC FLOODING CHAPTER 9. EVALUATION RESULTS

semantic flooding no starting node no semantic similarity

N = 10

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10

Queried peers

A
c

c
u

ra
c

y

N = 100

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10

Queried peers
A

c
c

u
ra

c
y

N = 1000

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30 35 40 45 50

Queried peers

A
c

c
u

ra
c

y

N = 10000

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 5 10 15 20 25 30 35 40 45 50

Queried peers

A
c

c
u

ra
c

y

Figure 9.9: Evaluation Results

used. Note that in P2P networks of 10 and 100 peers, the total number of

queried peers was set to 10, whereas in P2P networks of 1000 and 10000

peers, it was set to 50.

From Figure 9.9, we can see that, when peers are selected without using

the similarity function and also without a starting node specified (see “no

semantic similarity” lines in Figure 9.9), accuracy decreases very quickly

with the total number of peers in the network. The situation improves

when semantic similarity is used and only starting node is missing (see “no

starting node” lines in Figure 9.9). When the starting node n is selected,

i.e., concept Cn is provided, the accuracy of Semantic Flooding becomes

close to the accuracy of the centralized C-Search approach (see “semantic

flooding” lines in Figure 9.9). In fact, in the network of 10000 peers, only

116

CHAPTER 9. EVALUATION RESULTS 9.5. SUMMARY

50 peers need to be queried in order to achieve 70% of accuracy. Note that

if we need to retrieve one relevant result (i.e., 10% of accuracy), only one

peer needs to be queried.

9.5 Summary

In this chapter we have presented the evaluation results for the semantics

enabled algorithms presented in previous chapters. The results are promis-

ing and demonstrate the proof of concept for the approach proposed in this

thesis.

117

9.5. SUMMARY CHAPTER 9. EVALUATION RESULTS

118

Chapter 10

Conclusions

In this thesis we presented an approach in which syntactic IR is extended

with a semantics layer in order to address some of the problems of the

syntactic IR approach and to improve the quality of the results returned

by this approach. We concentrated on addressing the problems of (i) poly-

semy, (ii) synonymy, (iii) complex concepts, and (iv) related concepts. The

main idea behind the proposed approach is to keep the same machinery

which has made syntactic IR so successful, but to modify it so that, when-

ever useful, syntactic IR is substituted by semantic search, thus improving

the system performance.

Several instances of the general approach applied to the problems of doc-

ument classification, centralized and distributed document indexing and

retrieval were presented. In Chapter 4, we described a free text document

retrieval approach (C-Search) which is based on the semantic matching of

complex concepts, where semantic matching is implemented by using (po-

sitional) inverted index. In Chapter 5, we described how the get-specific

document classification algorithm, which requires that an object is clas-

sified in a category (or in a set of categories) which most specifically de-

scribes the object, can be formalized in order to fully automate it through

reasoning in a propositional concept language without requiring user in-

119

CHAPTER 10. CONCLUSIONS

volvement or a training data-set. In Chapter 6, we showed how C-Search

can be extended to P2P C-Search approach which allows semantic search

on top of distributed hash table (DHT). Differently from C-Search, P2P C-

Search exploits distributed, rather than centralized, background knowledge

and indices. Centralized document index is replaced by distributed index

build on top of DHT. The reasoning with respect to a single background

knowledge is extended to the reasoning with respect to the background

knowledge distributed among all the peers in the network. In Chapter 7,

we presented Semantic Flooding approach which exploits semantic links in

the user generated classifications and also the links between the classifica-

tions of different users in order to build semantic overlay network which

can be flooded to perform semantic search.

We performed an evaluation of the approaches proposed in this thesis.

The reported experimental results demonstrate the proof of concept and

show that proposed approaches perform as good as syntactic analogues

while allowing for an improvement whenever semantics is available and

can be exploited.

120

Bibliography

[1] Troels Andreasen, Per Anker Jensen, Jorgen Fischer Nilsson, Patrizia

Paggio, Bolette Sandford Pedersen, and Hanne Erdman Thomsen.

Content-based text querying with ontological descriptors. Data &

Knowledge Engineering, 48:199–219, 2004.

[2] Vo Ngoc Anh, Owen de Kretser, and Alistair Moffat. Vector-space

ranking with effective early termination. In Proceedings of SIGIR,

pages 35–42, 2001.

[3] Vo Ngoc Anh and Alistair Moffat. Improved word-aligned binary

compression for text indexing. IEEE Transactions on Knowledge

and Data Engineering, 18:857–861, 2006.

[4] Vo Ngoc Anh and Alistair Moffat. Pruned query evaluation using pre-

computed impacts. In Proceedings of SIGIR, pages 372–379, 2006.

[5] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele

Nardi, and Peter Patel-Schneider. The Description Logic Handbook:

Theory, Implementation and Applications. Cambridge University

Press, 2003.

[6] Mayank Bawa, Gurmeet Singh Manku, and Prabhakar Raghavan.

SETS: Search enhanced by topic segmentation. In Proceedings of

SIGIR, pages 306–313, 2003.

121

BIBLIOGRAPHY BIBLIOGRAPHY

[7] Matthias Bender, Sebastian Michel, Peter Triantafillou, Gerhard

Weikum, and Christian Zimmer. MINERVA: Collaborative P2P

search. In Proceedings of VLDB, pages 1263–1266, 2005.

[8] Matthias Bender, Sebastian Michel, Peter Triantafillou, Gerhard

Weikum, and Christian Zimmer. P2P content search: Give the web

back to the people. In Proceedings of 5th International Workshop on

Peer-to-Peer Systems (IPTPS 2006), 2006.

[9] Michael Berry, Susan Dumais, and Gavin O’Brien. Using linear alge-

bra for intelligent information retrieval. SIAM Review, 37:573–595,

1995.

[10] Ravish Bhagdev, Sam Chapman, Fabio Ciravegna, Vitaveska Lan-

franchi, and Daniela Petrelli. Hybrid search: Effectively combining

keywords and semantic searches. In Proceedings of ESWC, 2008.

[11] Bobby Bhattacharjee, Sudarshan Chawathe, Vijay Gopalakrishnan,

Pete Keleher, and Bujor Silaghi. Efficient peer-to-peer searches using

result-caching. In Proceedings of the 2nd Int. Workshop on Peer-to-

Peer Systems, 2003.

[12] David Blei, Andrew Ng, and Michael Jordan. Latent Dirichlet allo-

cation. JMLR, 3:993–1022, 2003.

[13] Paolo Boldi and Sebastiano Vigna. Compressed perfect embedded

skip lists for quick inverted-index lookups. In Proceedings of SPIRE,

2005.

[14] Alexander Borgida, Thomas Walsh, and Haym Hirsh. Towards mea-

suring similarity in description logics. In Proceedings of the 2005

International Workshop on Description Logics (DL2005), 2005.

122

BIBLIOGRAPHY BIBLIOGRAPHY

[15] Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano

Serafini, and Heiner Stuckenschmidt. Contextualizing ontologies.

Journal of Web Semantics, 1:325–343, 2004.

[16] Alexander Budanitsky and Graeme Hirst. Evaluating WordNet-based

measures of lexical semantic relatedness. Computational Linguistics,

32:13–47, 2006.

[17] Stefan Büttcher and Charles Clarke. Indexing time vs. query time:

Trade-offs in dynamic information retrieval systems. In Proceedings

of CIKM, pages 317–318, 2005.

[18] Pablo Castells, Miriam Fernández, and David Vallet. An adaptation

of the vector-space model for ontology-based information retrieval.

IEEE Transactions on Knowledge and Data Engineering, 19:261–272,

2007.

[19] Lois Mai Chan and J.S. Mitchell. Dewey Decimal Classification: A

Practical Guide. Forest P.,U.S., 1996.

[20] Edith Cohen, Amos Fiat, and Haim Kaplan. Associative search in

peer to peer networks: Harnessing latent semantics. In Proceedings

of IEEE INFOCOM, pages 1261–1271, 2003.

[21] Arturo Crespo and Hector Garcia-Molina. Routing indices for peer-

to-peer systems. In Proceedings of the 22nd IEEE International Con-

ference on Distributed Computing Systems (ICDCS), 2002.

[22] Arturo Crespo and Hector Garcia-Molina. Semantic overlay networks

for P2P systems. Technical report, Stanford University, 2002.

[23] Fabio Crestani, Mounia Lalmas, Cornelis J. Van Rijsbergen, and Iain

Campbell. Is this document relevant? . . . probably: A survey of prob-

123

BIBLIOGRAPHY BIBLIOGRAPHY

abilistic models in information retrieval. ACM Computing Surveys,

30:528–552, 1998.

[24] W. Bruce Croft. User-specified domain knowledge for document re-

trieval. In Proceedings of SIGIR, pages 201–206, 1986.

[25] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and

Valentin Tablan. GATE: A framework and graphical development

environment for robust nlp tools and applications. In 40th Anniver-

sary Meeting of the Association for Computational Linguistics, 2002.

[26] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data

processing on large clusters. In Proceedings of Symposium on Oper-

ating System Design and Implementation, 2004.

[27] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,

George W. Furnas, and Richard A. Harshman. Indexing by latent

semantic analysis. Journal of the American Society of Information

Science, 41:391–407, 1990.

[28] William A. Gale, Kenneth W. Church, and David Yarowsky. One

sense per discourse. In Proceedings of the workshop on Speech and

Natural Language, pages 233–237, 1992.

[29] Jianfeng Gao, Jian-Yun Nie, Guangyuan Wu, and Guihong Cao. De-

pendence language model for information retrieval. In Proceedings of

SIGIR, pages 170–177, 2004.

[30] Steven Garcia, Hugh E. Williams, and Adam Cannane. Access-

ordered indexes. In Proceedings of Australasian Conference on Com-

puter Science, pages 7–14, 2004.

124

BIBLIOGRAPHY BIBLIOGRAPHY

[31] Fausto Giunchiglia, Biswanath Dutta, and Vincenzo Maltese.

Faceted lightweight ontologies. In Conceptual Modeling: Foundations

and Applications, pages 36–51, 2009.

[32] Fausto Giunchiglia, Uladzimir Kharkevich, Alethia Hume, and Piy-

atat Chatvorawit. Semantic Flooding: Search over semantic links. In

Proceedings of DeSWeb 2010 workshop at ICDE, 2010.

[33] Fausto Giunchiglia, Uladzimir Kharkevich, and Sheak Rashed Haider

Noori. P2P Concept Search: Some preliminary results. In Proceedings

of SemSearch2009 workshop at WWW, 2009.

[34] Fausto Giunchiglia, Uladzimir Kharkevich, and Ilya Zaihrayeu. Con-

cept Search: Semantics enabled syntactic search. In Proceedings of

SemSearch2008 workshop at ESWC, 2008.

[35] Fausto Giunchiglia, Uladzimir Kharkevich, and Ilya Zaihrayeu. Con-

cept Search. In Proceedings of ESWC, pages 429–444, 2009.

[36] Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu. Encod-

ing classifications into lightweight ontologies. In Journal on Data

Semantics (JoDS) VIII, Winter 2006.

[37] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. Discov-

ering missing background knowledge in ontology matching. In Pro-

ceedings of ECAI, 2006.

[38] Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Semantic

matching: Algorithms and implementation. Journal on Data Seman-

tics (JoDS), 9:1–38, 2007.

[39] Fausto Giunchiglia, Ilya Zaihrayeu, and Uladzimir Kharkevich. For-

malizing the get-specific document classification algorithm. In Pro-

ceedings of ECDL, pages 26–37, 2007.

125

BIBLIOGRAPHY BIBLIOGRAPHY

[40] Jiafeng Guo, Gu Xu, Hang Li, and Xueqi Cheng. A unified and

discriminative model for query refinement. In Proceedings of SIGIR,

pages 379–386, 2008.

[41] Peter Haase, Jeen Broekstra, Marc Ehrig, Maarten Menken, Peter

Mika, Mariusz Olko, Michal Plechawski, Pawel Pyszlak, Björn Schni-

zler, Ronny Siebes, Steffen Staab, and Christoph Tempich. Bibster -

a semantics-based bibliographic peer-to-peer system. In Proceedings

of ISWC, pages 122–136, 2004.

[42] Djoerd Hiemstra. A linguistically motivated probabilistic model of

information retrieval. In Proceedings of ECDL, pages 569–584, 1998.

[43] M. Hildebrand, J. van Ossenbruggen, and L. Hardman. An analysis of

search-based user interaction on the semantic web. Technical Report

INS-E0706, CWI, 2007.

[44] Thomas Hofmann. Probabilistic Latent Semantic Indexing. In Pro-

ceedings of SIGIR, pages 50–57, 1999.

[45] Dharanipragada Janakiram, Fausto Giunchiglia, Harisankar Haridas,

and Uladzimir Kharkevich. Two-layered architecture for peer-to-peer

concept search. Technical Report DISI-10-022, Trento University,

2010.

[46] Kalervo Järvelin, Jaana Kekäläinen, and Timo Niemi. Expansion-

Tool: Concept-based query expansion and construction. Information

Retrieval, 4:231–255, 2001.

[47] Uladzimir Kharkevich. Automatic generation of a large scale seman-

tic search evaluation data-set. In Proceedings of ICSD, 2009.

[48] Donald E. Knuth. The Art of Computer Programming, Volume 3:

Sorting and Searching. Addison Wesley, 3rd edition, 1997.

126

BIBLIOGRAPHY BIBLIOGRAPHY

[49] Mikalai Krapivin, Maurizio Marchese, Andrei Yadrantsau, and

Yanchun Liang. Unsupervised key-phrases extraction from scientific

papers using domain and linguistic knowledge. In Proceedings of

ICDIM, pages 105–112, 2008.

[50] John Lafferty and Chengxiang Zhai. Document language models,

query models, and risk minimization for information retrieval. In

Proceedings of SIGIR, pages 111–119, 2001.

[51] Victor Lavrenko and W. Bruce Croft. Relevance-based language mod-

els. In Proceedings of SIGIR, pages 120–127, 2001.

[52] Nicholas Lester, Alistair Moffat, and Justin Zobel. Fast on-line index

construction by geometric partitioning. In Proceedings of CIKM,

pages 776–783, 2005.

[53] Jinyang Li, Boon Thau, Loo Joseph, M. Hellerstein, and M. Frans

Kaashoek. On the feasibility of peer-to-peer web indexing and search.

In Proceedings of 2nd International Workshop on Peer-to-Peer Sys-

tems (IPTPS 2003), 2003.

[54] Shuang Liu, Fang Liu, Clement Yu, and Weiyi Meng. An effective ap-

proach to document retrieval via utilizing WordNet and recognizing

phrases. In Proceedings of SIGIR, pages 266–272, 2004.

[55] Toan Luu, Gleb Skobeltsyn, Fabius Klemm, Maroje Puh, Ivana Pod-

nar Zarko, Martin Rajman, and Karl Aberer. AlvisP2P: scalable

peer-to-peer text retrieval in a structured p2p network. In Proceed-

ings of VLDB Endowment, 2008.

[56] Wenhui Ma, Wenbin Fang, Gang Wang, and Jing Liu. Concept index

for document retrieval with peer-to-peer network. In Proceedings of

SNPD, 2007.

127

BIBLIOGRAPHY BIBLIOGRAPHY

[57] Rila Mandala, Takenobu Tokunaga, and Hozumi Tanaka. Combining

multiple evidence from different types of thesaurus for query expan-

sion. In Proceedings of SIGIR, pages 191–197, 1999.

[58] Christoph Mangold. A survey and classification of semantic search

approaches. Journal on Metadata Semantics and Ontology, 2:23–34,

2007.

[59] Christopher Manning, Prabhakar Raghavan, and Hinrich Schtze. In-

troduction to Information Retrieval. Cambridge University Press,

2008.

[60] George Miller. WordNet: An electronic Lexical Database. MIT Press,

1998.

[61] Alistair Moffat and Justin Zobel. Self-indexing inverted files for fast

text retrieval. TOIS, 14:349–379, 1996.

[62] Alistair Moffat and Justin Zobel. Exploring the similarity space.

SIGIR Forum, 32:18–34, 1998.

[63] Dan Moldovan and Rada Mihalcea. Using WordNet and lexical opera-

tors to improve internet searches. IEEE Internet Computing, 4:34–43,

2000.

[64] Roberto Navigli. Word sense disambiguation: A survey. ACM Com-

puting Surveys, 41:1–69, 2009.

[65] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael

Sintek, Ambjörn Naeve, Mikael Nilsson, Matthias Palmér, and Tore

Risch. Edutella: A P2P networking infrastructure based on RDF. In

Proceedings of WWW, 2002.

128

BIBLIOGRAPHY BIBLIOGRAPHY

[66] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of

search. In Proceedings of the 1st international conference on Scalable

information systems (InfoScale), 2006.

[67] Jay Ponte and W. Bruce Croft. A language modeling approach to

information retrieval. In Proceedings of SIGIR, pages 275–281, 1998.

[68] Martin Porter. An algorithm for suffix stripping. Program, 14:130–

137, 1980.

[69] Yonggang Qiu and Hans-Peter Frei. Concept based query expansion.

In Proceedings of SIGIR, pages 160–169, 1993.

[70] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and

Scott Schenker. A scalable content-addressable network. In Proceed-

ings of SIGCOMM, 2001.

[71] John Risson and Tim Moors. Survey of research towards robust peer-

to-peer networks: Search methods. Computer Networks, 50:3485–

3521, 2006.

[72] Stephen Robertson. The probability ranking principle in IR. Journal

of documentation, 33:294–304, 1977.

[73] Stephen Robertson. How Okapi came to TREC. In Proceedings of

TREC, pages 287–299. The MIT Press, 2005.

[74] Stephen Robertson and Steve Walker. Okapi/Keenbow at TREC-8.

In Proceedings of TREC, 1999.

[75] J. Rocchio. Relevance feedback in information retrieval. In Salton G,

Ed., The Smart Retrieval System– Experiments in Automatic Docu-

ment Processing, pages 313–323. Prentice-Hall Inc., 1971.

129

BIBLIOGRAPHY BIBLIOGRAPHY

[76] Peter Mark Roget. Roget’s International Thesaurus. Thomas Y.

Crowell, 1946.

[77] Antony Rowstron and Peter Druschel. Pastry: scalable, distributed

object location and routing for large-scale peer-to-peer systems. In

Proceedings of ACM SIGCOM, 2001.

[78] Ian Ruthven and Mounia Lalmas. A survey on the use of relevance

feedback for information access systems. Knowledge Engineering Re-

view, 18:95–145, 2003.

[79] Gerard Salton, editor. The SMART Retrieval System – Experiments

in Automatic Document Processing. Prentice Hall, 1971.

[80] Mark Sanderson. Retrieving with good sense. Information Retrieval,

2:49–69, 2000.

[81] Hinrich Schutze and Jan O. Pedersen. Information retrieval based on

word senses. In Proceedings of 4th Annual Symposium on Document

Analysis and Information Retrieval, 1995.

[82] Fabrizio Sebastiani. Machine learning in automated text categoriza-

tion. ACM Computing Surveys, 34:1–47, 2002.

[83] Gleb Skobeltsyn and Karl Aberer. Distributed cache table: efficient

query-driven processing of multi-term queries in P2P networks. In

Proceedings of the international workshop on Information retrieval in

peer-to-peer networks (P2PIR), 2006.

[84] John Sowa. Conceptual Structures: Information Processing in Mind

and Machine. Addison-Wesley, 1984.

[85] Karen Spärck Jones, S. Walker, and Stephen E. Robertson. A proba-

bilistic model of information retrieval: Development and comparative

130

BIBLIOGRAPHY BIBLIOGRAPHY

experiments. Information Processing and Management, 36:779–808,

809–840, 2000.

[86] Kunwadee Spripanidkulchai, Bruce Maggs, and Hui Zhang. Efficient

content location using interest-based locality in peer-to-peer systems.

In Proceedings of IEEE INFOCOM, pages 2166–2176, 2003.

[87] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and

Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for

internet applications. In Proceedings of SIGCOMM, 2001.

[88] Christopher Stokoe, Michael P. Oakes, and John Tait. Word sense

disambiguation in information retrieval revisited. In Proceedings of

SIGIR, pages 159–166, 2003.

[89] Gilbert Strang, editor. Introduction to Applied Mathematics.

Wellesley-Cambridge Press, 1986.

[90] Trevor Strohman and W. Bruce Croft. Efficient document retrieval

in main memory. In Proceedings of SIGIR, pages 175–182, 2007.

[91] Chunqiang Tang and Sandhya Dwarkadas. Hybrid global-local in-

dexing for effcient peer-to-peer information retrieval. In Proceedings

of the 1st conference on Symposium on Networked Systems Design

and Implementation (NSDI), 2004.

[92] Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas. Peer-to-peer

information retrieval using self-organizing semantic overlay networks.

In Proceedings of ACM SIGCOMM, pages 175–186, 2003.

[93] Peter Turney. Learning algorithms for keyphrase extraction. Infor-

mation Retrieval, 2:303–336, 2000.

[94] Cornelis Joost van Rijsbergen. Information Retrieval. Butterworths,

1979.

131

BIBLIOGRAPHY BIBLIOGRAPHY

[95] Ellen Voorhees. Query expansion using lexical-semantic relations. In

Proceedings of SIGIR, pages 61–69, 1994.

[96] Ellen Voorhees. Overview of TREC 2006. In Proceedings of TREC,

2006.

[97] William Woods. Conceptual indexing: A better way to organize

knowledge. Technical Report TR-97-61, Sun Microsystems Labora-

tories, USA, 1997.

[98] Ilya Zaihrayeu, Lei Sun, Fausto Giunchiglia, Wei Pan, Qi Ju, Ming-

min Chi, and Xuanjing Huang. From web directories to ontologies:

Natural language processing challenges. In Proceedings of ISWC

2007, 2007.

[99] Chengxiang Zhai. Fast statistical parsing of noun phrases for doc-

ument indexing. In Proceedings of the Fifth Conference on Applied

Natural Language Processing, pages 312–319, 1997.

[100] Chengxiang Zhai and John Lafferty. A study of smoothing meth-

ods for language models applied to ad hoc information retrieval. In

Proceedings of SIGIR, pages 334–342, 2001.

[101] Jiangong Zhang and Torsten Suel. Efficient query evaluation on large

textual collections in a peer-to-peer environment. In Proceedings of

the Fifth IEEE International Conference on Peer-to-Peer Computing

(P2P), 2005.

[102] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastruc-

ture for fault-tolerant wide-area location and routing. Technical re-

port, Computer Science Department, University of California, 2001.

132

BIBLIOGRAPHY BIBLIOGRAPHY

[103] Yingwu Zhu and Yiming Hu. ESS: Efficient semantic search on

Gnutella-like P2P system. Technical report, Department of ECECS,

University of Cincinnati, 2004.

[104] Justin Zobel and Philip Dart. Finding approximate matches in large

lexicons. Software Practice and Experience, 25:331–345, 1995.

[105] Justin Zobel and Alistair Moffat. Inverted files for text search engines.

ACM Computing Surveys, 38, 2006.

[106] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. In-

verted files versus signature files for text indexing. ACM Transactions

on Database Systems, 23:453–490, 1998.

133

Appendix A

Correctness and Completeness

In order to show that Algorithm 1 in Section 4.2 is sound and complete,

we need to prove the following theorem:

Theorem A.0.1. Let A′ and B′ be atomic concepts, and TWN be a ter-

minological knowledge base which can be represented as an acyclic graph,

where nodes are atomic concepts and edges are subsumption axioms in the

form A′ v B′. Then:

TWN |=uA′vt uB′ iff there exists uB′ in t uB′, s.t., TWN |=uA′vuB′

(A.1)

Note that, in Equation A.1, by uA we denote conjunction (u) of atomic

concepts (A) without negation and by tuA we denote disjunctions (t) of

uA.

Proof. It is known, that a subsumption problem with respect to an acyclic

terminological knowledge base can be reduced to a subsumption problem

with respect to the empty knowledge base [5]:

TWN |= D′ v E ′ ⇐⇒ |= D v E (A.2)

where (complex) concepts D and E are obtained by replacing each oc-

currence of atomic concept A′ in (complex) concepts D′ and E ′ by the

135

APPENDIX A. CORRECTNESS AND COMPLETENESS

conjunction uA of all atomic concepts A from TWN which are more gen-

eral than or equivalent to A′.

Given A.2, we can rewrite Equation A.1 as follows:

|=uAvt uB iff there exists uB in t uB, s.t., |=uAvuB (A.3)

Now, in order to prove Equation A.1, it is enough to prove Equation A.3.

In the following we first prove the “if” direction of Equation A.3 and later

we demonstrate the proof for the “only if” direction of Equation A.3.

If. Recall that disjunction (“t”) is distributive over conjunction (“u”), i.e.,

if A1, A2, and A3 are concepts than A1t (A2uA3) ≡ (A1tA2)u (A1tA3).

By using the distributive property of disjunction we can convert concept

t u B from DNF into CNF (we use indexes i,j,k,l in order to enumerate

atomic concepts):

ti uj Bij ≡ uk tl Ckl (A.4)

Notice, that concepts Bij and Ckl in Equation A.4 satisfy the following
property:

for all the possible combinationsB1, . . . , BI of atomic conceptsB,

where an atomic conceptBi is taken from i-th conjunctive clause uj Bij

in ti ujBij , there exists disjunctive clause tl Ckl in uk tlCkl, s.t.,

tl Ckl is composed from all and only atomic concepts in {B1, . . . , BI}.

(A.5)

Given A.4, subsumption |=uAvt u B in Equation A.3 can be rewritten

as follows:

|=uAvu t C (A.6)

A concept can be subsumed by a conjunction of concepts if and only if it

is subsumed by every concept in the conjunction:

|=uAvu t C iff for all t C in u tC, |=uAvtC (A.7)

136

APPENDIX A. CORRECTNESS AND COMPLETENESS

Recall that if A1 and A2 are concepts, then:

A1 v A2 iff A1 u ¬A2 v ⊥ (A.8)

¬(A1 t A2) ≡ ¬A1 u ¬A2 (A.9)

Given A.8 and A.9, subsumption |= uA v tC in Equation A.7 can be

rewritten as follows:

|=uAvtC iff |= (uA) u (u¬C) v ⊥ (A.10)

From A.10, it follows that (a) there exists a pair of atomic concepts A

and C which have the same name; or (b) there exists an atomic concept

A ≡ ⊥; or (c) there exists an atomic concept C ≡ >. From above, it

follows that there exists a pair of atomic concepts A and C, such that, A

is more specific than C.

|=uAvtC iff there exists A and there exists C , s.t., A v C (A.11)

Recall that if at least one concept A in conjunction uA is subsumed by

concept C, then the whole conjunction uA is also subsumed by C. Taking

it into account and using Equation A.11 we can prove that:

|=uAvtC iff there exists C in t C, s.t., |=uAvC (A.12)

Given A.12, second part of Equation A.7 can be rewritten as follows:

for all t C there exists C in t C, s.t., |=uAvC (A.13)

Now, let us assume that the “if” direction of Equation A.3 doesn’t hold,

i.e., concept uA is not subsumed by any concept uB:

for all uB in t uB, 6|=uAvuB (A.14)

137

APPENDIX A. CORRECTNESS AND COMPLETENESS

Recall that a concept can be subsumed by a conjunction of concepts if and

only if it is subsumed by every concept in the conjunction:

|=uAvuB iff for all B in uB, |=uAvB (A.15)

Given A.15, Equation A.14 can be rewritten as follows:

for all uB in t uB there exists B in uB s.t., 6|=uAvB (A.16)

Given Property A.5, Equation A.16 can be rewritten as follows:

there exists t C s.t., for all C in t C 6|=uAvC (A.17)

Equation A.17 is in contradiction with Equation A.13. Therefore, we

discard the assumption made in Equation A.14, which means that the

“if”direction of Equation A.3 holds.

Only-if. The union of concepts is more general or equivalent to every

concept in the union:

for all uB in t uB, TWN |=uBvt uB (A.18)

Recall that the subsumption is the transitive relation, i.e.,

if TWN |=uAvuB and TWN |=uBvtuB, then TWN |=uAvtuB (A.19)

From A.19, we can see that the “only-if” direction of Equation A.3 holds.

Equation A.3 and consequently Theorem A.0.1 are proved.

138

