
Ph.D. Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Spoken Language Understanding:

From Spoken Utterances to Semantic

Structures

Marco Dinarelli

Advisor:

Prof. Giuseppe Riccardi

Università degli Studi di Trento

January 2010





Abstract

In the past two decades there have been several projects on Spoken Lan-

guage Understanding (SLU). In the early nineties DARPA ATIS project

aimed at providing a natural language interface to a travel information

database. Following the ATIS project, DARPA Communicator project aimed

at building a spoken dialog system automatically providing information on

flights and travel reservation. These two projects defined a first genera-

tion of conversational systems. In late nineties “How may I help you”

project from AT&T, with Large Vocabulary Continuous Speech Recognition

(LVCSR) and mixed initiatives spoken interfaces, started the second gener-

ation of conversational systems, which later have been improved integrating

approaches based on machine learning techniques.

The European funded project LUNA aims at starting the third generation of

spoken language interfaces. In the context of this project we have acquired

the first Italian corpus of spontaneous speech from real users engaged in a

problem solving task, as opposed to previous projects. The corpus contains

transcriptions and annotations based on a new multilevel protocol studied

specifically for the goal of the LUNA project.

The task of Spoken Language Understanding is the extraction of the mean-

ing structure from spoken utterances in conversational systems. For this

purpose, two main statistical learning paradigms have been proposed in the

last decades: generative and discriminative models. The former are robust

to over-fitting and they are less affected by noise but they cannot easily



integrate complex structures (e.g. trees). In contrast, the latter can easily

integrate very complex features that can capture arbitrarily long distance

dependencies. On the other hand they tend to over-fit training data and

so they are less robust to annotation errors in the data needed to learn the

model.

This work presents an exhaustive study of Spoken Language Understand-

ing models, putting particular focus on structural features used in a Joint

Generative and Discriminative learning framework. This combines the

strengths of both approaches while training segmentation and labeling mod-

els for SLU. Its main characteristic is the use of Kernel Methods to encode

structured features in Support Vector Machines, which in turn re-rank the

hypotheses produced by an first step SLU module based either on Stochas-

tic Finite State Transducers or Conditional Random Fields. Joint models

based on transducers are also amenable to decode word lattices generated

by large vocabulary speech recognizers.

We show the benefit of our approach with comparative experiments among

generative, discriminative and joint models on some of the most representa-

tive corpora of SLU, for a total of four corpora in four different languages:

the ATIS corpus (English), the MEDIA corpus (French) and the LUNA

Italian and Polish corpora (Italian and Polish respectively). These also

represent three different kinds of domain applications, i.e. informational,

transactional and problem-solving domains. The results, although depend-

ing on the task and in some range on the first model baseline, show that

joint models improve in most cases the state-of-the-art, especially when a

small training set is available.

4



Keywords

Machine Learning, Kernel Methods, Data-driven approaches, Stochastic

models, Text Processing, Semantic Structures.

5





Contents

1 Introduction 1

1.1 The Context . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The Solution . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Novel Contributions . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . 7

2 Overview of Spoken Language Understanding 9

3 State of the Art 15

3.1 SLU Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Semantic Representations . . . . . . . . . . . . . . . . . . 17

3.3 Models for Spoken Language Understanding . . . . . . . . 24

3.3.1 A Generative Model: Stochastic Finite State Trans-

ducers (SFST) . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 A Discriminative Model: Conditional Random Fields

(CRF) . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Support Vector Machines (SVM) . . . . . . . . . . 35

3.3.4 Kernel Methods . . . . . . . . . . . . . . . . . . . . 37

3.3.5 SLU Models Combination . . . . . . . . . . . . . . 42

3.4 Attribute-Value Extraction: Rule-based and Stochastic Ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

i



3.5 Models Robustness: Confidence Scores and Other Confi-

dence Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Models Combination Via Discriminative Re-ranking 53

4.1 Hypotheses Generation . . . . . . . . . . . . . . . . . . . . 55

4.2 Pairs Generation . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Structures for Kernels . . . . . . . . . . . . . . . . . . . . 58

4.4 Training and Classification . . . . . . . . . . . . . . . . . . 61

4.5 Re-ranking and ROVER for models combination . . . . . . 63

5 Improved Strategies for Reranking-based Models Combi-

nation 65

5.1 Confidence-Based Models Combination: Re-Rank Selection

(RRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Hypotheses Selection Criteria . . . . . . . . . . . . . . . . 70

6 Experimental results 75

6.1 Corpora Description . . . . . . . . . . . . . . . . . . . . . 76

6.1.1 Differences among corpora . . . . . . . . . . . . . . 78

6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Results Description . . . . . . . . . . . . . . . . . . . . . . 85

6.3.1 Comparison of Training Approaches and Pairs Gen-

eration Strategies . . . . . . . . . . . . . . . . . . . 85

6.3.2 Comparison of Kernels and Semantic Structures . . 88

6.3.3 Cross-Corpora Results Comparison . . . . . . . . . 89

6.3.4 Impact of Training Data Size . . . . . . . . . . . . 92

6.3.5 Impact of Re-Rank Selection and Hypotheses Selec-

tion Criteria . . . . . . . . . . . . . . . . . . . . . . 93

6.3.6 Robustness with Respect to Re-ranked Model Baseline 95

6.3.7 Impact of the M -Best List Size . . . . . . . . . . . 99

ii



6.3.8 Comparison with State-Of-The-Art . . . . . . . . . 103

6.4 Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 SLU in Spoken Dialog Systems 109

7.1 Dialogue System Architecture . . . . . . . . . . . . . . . . 110

7.2 Spoken Language Understanding . . . . . . . . . . . . . . 111

7.2.1 Call-Type Classification . . . . . . . . . . . . . . . 112

7.3 Dialogue Management . . . . . . . . . . . . . . . . . . . . 112

7.4 Experiments and Results . . . . . . . . . . . . . . . . . . . 113

7.4.1 General Dialogue Statistics . . . . . . . . . . . . . . 114

7.4.2 Task Success . . . . . . . . . . . . . . . . . . . . . 114

7.4.3 Task Success as Perceived by the User . . . . . . . 115

7.4.4 Call-type Classification vs. Dialogue . . . . . . . . 115

8 Conclusions 117

9 Acknowledgements 119

Bibliography 121

iii





List of Tables

3.1 Semantic concept (att./value) representation for the query

“Please give me the fares since I’d like a room charged not

more than fifty euros”. . . . . . . . . . . . . . . . . . . . . 46

6.1 Statistics of the ATIS training and test sets used in the

experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Statistics of the MEDIA training, development and evalua-

tion sets used for all experiments. . . . . . . . . . . . . . . 76

6.3 Statistics of the Polish LUNA training, development and

evaluation sets used for experiments. . . . . . . . . . . . . 77

6.4 Statistics of the latest version of the LUNA Italian training,

development and evaluation sets used for all experiments. . 77

6.5 Statistics on the first, intermediate version, of the LUNA

Italian corpus . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.6 Results of experiments, in terms of Concept Error Rate

(CER), on the LUNA WOZ corpus using Monolithic Train-

ing approach. The baseline with FST and SVMs used as

individual models are 23.2% and 26.7% respectively. . . . 87

6.7 Results of experiments, in terms of Concept Error Rate

(CER), on the LUNA WOZ corpus using Split Training ap-

proach. The baseline with FST and SVMs used as individual

models are 23.2% and 26.7% respectively. . . . . . . . . . 87

v



6.8 CER of SVMs using STK, PTK and SK on the LUNA Italian

corpus (manual transcriptions). The Baselines, FST and

SVMs alone, show a CER of 23.2% and 21.0%, respectively. 88

6.9 Results of SLU experiments on the ATIS Corpus using man-

ual (ATIStext) and automatic transcriptions (ATISspeech),

in the latter case Word Error Rate (WER) of the ASR is

10.4%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.10 Top most occurring concepts in the ATIS corpus. . . . . . 90

6.11 Results of SLU experiments on the MEDIA and the Italian

LUNA test sets on manual transcriptions for both attribute

names (Attr) and attribute values (Attr+Val) . . . . . . . 91

6.12 Results of SLU experiments on the MEDIA and the Ital-

ian LUNA test sets on automatic transcriptions for both

attribute names (Attr) and attribute values (Attr+Val) ex-

traction (ASR WER is 31.4% for MEDIA and 27.0% for

LUNA IT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.13 Results of SLU experiments on the MEDIA and the Italian

LUNA test sets on manual and automatic transcriptions for

both attribute names (Attr) and attribute values (Attr+Val)

using also the Re-Rank Selection strategy for the re-ranking

model (RRS) . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.14 Results of SLU experiments on the MEDIA and the Italian

LUNA test sets on manual and automatic transcriptions for

both attribute (Attr) names and attribute values (Attr+Val)

using also an improved Hypotheses Selection Criterion (HSC) 95

vi



6.15 Results of SLU experiments on the MEDIA and the Italian

LUNA test sets on manual and automatic transcriptions for

both attribute (Attr) names and attribute values (Attr+Val)

using an improved Hypotheses Selection Criterion together

with the Re-Rank Selection strategy (Imp. stands for im-

provements for the re-ranking model) . . . . . . . . . . . . 96

6.16 Results of SLU experiments on the MEDIA and the Ital-

ian LUNA test sets on manual and automatic transcrip-

tions for both attribute (Attr) names and attribute values

(Attr+Val) using an improved version of the FST model,

FST++, and the improvements for the re-ranking model de-

scribed in Chapter 5 (Imp. stands for improvements for the

re-ranking model) . . . . . . . . . . . . . . . . . . . . . . . 97

6.17 Results of SLU experiments on the POLISH corpus on man-

ual (Text Input) and automatic (Speech Input) transcrip-

tions for both attribute names (Attr) and attribute values

(Attr+Val) extraction (ASR WER is 38.9%) . . . . . . . . 98

6.18 Results of SLU experiments on the Italian corpus using ASR

1-Best and ASR Lattices as input. The Oracle Error Rate

over words of lattices is 22.8% . . . . . . . . . . . . . . . . 98

6.19 Results of SLU experiments on the Italian LUNA test set

on manual and automatic transcriptions for both attribute

(Attr) names and attribute values (Attr+Val) as a function

of the m-best list size, from 10 to 64 . . . . . . . . . . . . 100

6.20 Results of SLU experiments on the MEDIA test set on man-

ual and automatic transcriptions for both attribute (Attr)

names and attribute values (Attr+Val) as a function of the

m-best list size, from 10 to 64 . . . . . . . . . . . . . . . . 101

vii



6.21 Overall improvement achieved during our research work,

FST and CRF baselines are shown together with improve-

ment of the FST baseline (FST++) and results achieved with

the best joint models, FST+++Imp. and CRF+Imp., tak-

ing all improvements into account. . . . . . . . . . . . . . . 101

6.22 Oracle Error Rates (OER) over increasing n-best list size for

the Italian test set on both Text and Speech input and for

both attribute name (Attr) and attribute value extarction

(Attr+Val) . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.23 Oracle Error Rates (OER) over increasing n-best list size

for the French MEDIA test set on both Text and Speech

input and for both attribute name (Attr) and attribute value

extarction (Attr+Val) . . . . . . . . . . . . . . . . . . . . 102

6.24 Oracle Error Rates (OER) on the POLISH corpus test set

on both Text and Speech input for attribute name (Attr)

and attribute value (Attr+Val) extraction for the two re-

ranking models described in this work, “FST Re-ranking”

and “CRF Re-ranking” . . . . . . . . . . . . . . . . . . . . 103

6.25 Oracle Error Rates (OER) on the Italian test set using ASR

1-best (Speech 1-Best Input) and ASR lattice (Speech Lat-

tice Input) speech input. . . . . . . . . . . . . . . . . . . . 103

6.26 Comparison of results achieved with the best joint models

described in this work and the best State-Of-The-Art models

used in the last decade for SLU. The comparison is made on

MEDIA, since results are available for all models only on this

corpus. For CRF are shown both the best result achieved

in the literature (CRFSOA) and our baseline CRFbaseline ob-

tained using the tool CRF++ (http://crfpp.sourceforge.net/)104

viii



7.1 General dialogue and utterance level metrics . . . . . . . . 114

7.2 Task Success as Precision (P), Recall (R) and F-Measure

(F1); and Task Success Rate (TSR) . . . . . . . . . . . . . 115

7.3 Subjective task success assessment normalized by task com-

pletion type (counts given in parentheses) . . . . . . . . . 116

7.4 Classifier vs. Dialogue performance (accuracy) on determin-

ing the problem class . . . . . . . . . . . . . . . . . . . . . 116

ix





List of Figures

2.1 High level architecture of a Spoken Dialog System applica-

tion, the SLU module has been highlighted since it is the

main topic of this dissertation . . . . . . . . . . . . . . . . 10

3.1 An example of ASR word lattice generated from an hypo-

thetical utterance “Good morning I have a problem with my

printer” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 DBN-based 2+1-level SLU system. Concept model (graph

on the left) is used for concept decoding. Value model

(graph on the right) uses concept sequences as observations

for value identification. . . . . . . . . . . . . . . . . . . . . 27

3.3 Examples of different classes of tree fragments used as fea-

tures by Tree Kernels. . . . . . . . . . . . . . . . . . . . . 39

3.4 Example of SLU system outputs alignment carried out by

the ROVER algorithm. @ is used as empty string symbol. 43

4.1 A general diagram of re-ranking framework showing the en-

tire chain of processing, from speech input to the SLU in-

terpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Examples of “FLAT ” and “MULTILEVEL” semantic trees

used for STK and PTK . . . . . . . . . . . . . . . . . . . . 59

4.3 An example of “FEATURES” semantic tree used for STK

or PTK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xi



5.1 Confusion matrixes computed from the output of the FST

and SVM based re-ranker (first and second plots) and their

difference (third plot). On the axis concept identifiers are

reported: values are normalized on columns to emphasize

errors for each reference concept. . . . . . . . . . . . . . . 69

6.1 Comparison between the two approaches for mapping words/categories

into concepts used in the SFST model described in [81]

(above) and the one used for our modified SFST model (be-

low). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Learning curves on MEDIA and LUNA corpora using FST,

CRF and RR on the FST hypotheses . . . . . . . . . . . . 92

6.3 An example of structure intergrating syntactic and semantic

features taken from the LUNA Italian corpus . . . . . . . . 106

7.1 Example dialogue translated to English . . . . . . . . . . . 110

7.2 A general diagram of re-ranking framework showing the en-

tire chain of processing, from speech input to the SLU in-

terpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xii



Chapter 1

Introduction

In last decades Information Technology has been the main topic in most

research centers of the world. Human-Computer interaction is becoming

more and more an easy available technology in everyday life. This thanks

to impressive advancements in research topics like Machine learning, Au-

tomatic Speech Recognition and Understanding, Data-driven stochastic

approaches, Text Processing and Speech Synthesis.

One class of applications relying heavily on this technologies is Spoken

Dialog Systems. Spoken Dialog Systems allow humans to engage complex

dialogs with machines using the most natural communication mean ever

known: their voice. In the last decades, this class of applications has

been made able to interact with humans and satisfy their needs in such

a way that allows hoping that this technology will be soon available to

everybody and in any kind of device, from the most powerful desktop PC

to the cheapest laptops and mobile phones.

1.1 The Context

A Spoken Dialog System is composed of several modules which aim is to

allow a user to engage a dialog with a machine in order to solve a problem

or to retrieve some information. The modules are involved in the dialog one

1



1.2. THE PROBLEM CHAPTER 1. INTRODUCTION

at a time and work in sequence like a pipeline: the output of a module is the

input of another one. In most cases each module processes the input using

some prior acquired information and possibly other external information.

Each module of a Spoken Dialog System is very complex and it took years

of research and hard work to provide solutions that can be exploited in

real applications.

This work focus on a particular module of a Spoken Dialog System ap-

plication: the Spoken Language Understanding module. From a high level

point of view, the Spoken Language Understanding module takes as input

the transcription of a user utterance, based on words, and output its inter-

pretation, based on concepts. The interpretation is used in the following

modules of the system as a high-level layer of the information provided

by the user. As it will be shown, providing an accurate interpretation

of a user utterance is a hard problem that involves complex theories and

technologies.

1.2 The Problem

Designing a Spoken Language Understanding module requires learning how

words can be associated to concepts. Learning this association requires the

availability of manually annotated data, specific for the application. These

provides examples of how to map words into concepts. Words are the

basic constituents of user utterance transcriptions. A Spoken Language

Understanding module must be able to deal with transcriptions that can

be generated in two different ways: manually, as transcriptions of human

experts, or automatically using an Automatic Speech Recognition (ASR)

system. The latter takes as input a speech file and produces the corre-

sponding transcription as a text sentence. Alternatively ASR systems can

generate a set of transcriptions from the same utterance. These are usually

2



CHAPTER 1. INTRODUCTION 1.2. THE PROBLEM

encoded in a compact graph representation called “word lattice”. Going

from manual transcriptions to lattices, the SLU task complexity increases.

Manual transcriptions are used only for development and evaluation pur-

poses, together with words they contain annotation of spontaneous speech

phenomena and possibly punctuation. All this information can be used by

a SLU module to increase the interpretation accuracy. Satisfactory perfor-

mances are reached in most cases on this type of input. The only difficulties

are related to manual data annotation errors and data sparseness.

Automatic transcriptions, as output of automatic systems, contain tran-

scription errors. Further, current ASR systems are not able to exploit effec-

tively spontaneous speech phenomena annotations and punctuation. Thus

ASR output is a raw sequence of words without boundary and structure in-

formation. All these points make the SLU task much harder on automatic

transcriptions. Since the aim of SLU is to be applied in Spoken Dialog

System, an effective SLU module must be robust to ASR output.

Further noise is added when using ASR lattices as input to the SLU

module. A lattice is a word graph containing all the possible transcrip-

tions of a given utterance. The interesting aspect when using lattices is

the fact that, among the huge space of possibilities, a correct transcription

can be found. This goal is very difficult and has not been reached yet. The

complexity of the SLU task, when using lattices as input, is related to the

fact that also the SLU module can generate many different interpretations

from the same sentence. Thus, applying SLU to lattices, transcription pos-

sibilities are multiplied by the interpretation possibilities. Discriminating

correct interpretations in such huge space is very hard.

Words composing the transcription of a user utterance are associated to

concepts. Concepts are basic semantic constituents taken from a predefined

semantic representation. The difficulties involved in both learning this

association and providing the application specific data are not trivial and

3



1.3. THE SOLUTION CHAPTER 1. INTRODUCTION

will be addressed extensively in this dissertation.

In the last decades the interpretation task tackled in the Spoken Lan-

guage Understanding module has been based on stochastic approaches. A

big effort has been done to find continuously more accurate models and in

the last few years, the combination of different stochastic models has been

successfully applied to this task.

1.3 The Solution

Despite the relatively good accuracy provided by the proposed models,

Spoken Language Understanding remains a very complex problem when

applied to real applications. In this respect, models combination seems to

provide a more robust solution.

This work describes the study, the implementation and the evaluation

of an approach based on the combination of different models using several

information sources. The intuition behind this solution is that the differ-

ent models used for Spoken Language Understanding, although providing

similar performances, have very different characteristics that are someway

complementary. Finding a suitable way to put together these characteris-

tics results in an improved approach bringing together advantages of the

combined models.

Our solution for models combination is based on well-known models and

technologies, for instance the first model involved in the combination can

be based on Weighted (or Stochastic) Finite State Transducers or Condi-

tional Random Fields, while the second model is based on Support Vector

Machines and kernel methods. The first generates a list of interpretations,

the m-best hypotheses list. The second re-rank, i.e. re-sort, the list based

on a different metric, providing possibly an interpretation more correct

than the one provided by the first model alone.

4



CHAPTER 1. INTRODUCTION 1.3. THE SOLUTION

Our main contribution is the implementation of a module working as

junction between the two components of the joint models. The module

takes as input the interpretations generated by the first model and convert

them into tree-shaped structures. These structures can be augmented with

additional information, e.g. coming from the application knowledge base,

and coupled with other kinds of structures, e.g. syntactic parses. Interpre-

tation hypotheses to be re-ranked can be selected based on a new semantic

inconsistency metric. The metric is important for two reasons: first it al-

lows to select hypotheses among those generated by the first model, instead

of taking all its hypotheses ranked by the model probability. Second, we

can generate a huge number of hypotheses with the first model, but only

the m-best under this metric are kept to be converted into tree structures

and re-ranked. Given the semenatic inconsistency metric, these hypotheses

are likely to contain less errors. The resulting forest of structures is used

as input by the second model, that can learn words to concepts association

exploiting many sources of information. The second model also learns from

the interpretations of the first model. Using this solution we can create

an SLU system putting together benefits of both individual models. Our

module can process all types of input used in SLU: manual and automatic

transcriptions as well as ASR lattices.

We propose as well a post-processing phase on the joint models out-

put. This module learns the correlation between interpretation correctness

and posterior probabilities provided by the two combined models. This

way the module can eventually choose the most correct interpretation be-

tween those provided by the two individual models. This goes beyond the

traditional solution for the same kind of models combination.

We have evaluated our approach on four different corpora in four dif-

ferent languages: English, French, Italian and Polish. These corpora are

among the most significant tasks for Spoken Language Understanding. We

5



1.4. NOVEL CONTRIBUTIONS CHAPTER 1. INTRODUCTION

provide comparative evaluations with the best SLU models on the same

tasks.

We also integrated our Spoken Language Understanding models into a

new Spoken Dialog System prototype for complex problem solving tasks.

The system is an evolution of a call routing application: Initial call classifi-

cation is done in parallel with our statistical Spoken Language Understand-

ing module. The call-type class must agree with the SLU interpretation on

the first user turn in order to move the dialog to the next step. The rest

of the dialogue is used to elicit further task-relevant details from the user

before passing on the call. The dialogue capability also allows us to ob-

tain clarifications of the initial classifier guess. Based on an evaluation, we

show that conducting a dialogue significantly improves upon call routing

based on call classification alone. We present both subjective and objec-

tive evaluation results of the system according to standard metrics on real

users.

1.4 Novel Contributions

The proposed approach outperforms in most cases the best state-of-the-art

models on all the applications studied here. This is an even more important

achievement taking into account significant and continuous improvements

yielded on the same tasks by other researchers during our work.

Our solution is robust with respect to different sources of noise typical

of the Spoken Language Understanding task and it can learn words to

concepts association using very complex and structured features that we

designed first.

We defined a new hypotheses selection criterion based on a semantic

inconsistency metric specific for SLU. It exploits the semantic representa-

tion used in SLU to detect when it is likely that an interpretation contains

6



CHAPTER 1. INTRODUCTION 1.5. STRUCTURE OF THE THESIS

inconsistent concept names and values. The metric makes it possible com-

bining SLU models also when their characteristics are not really comple-

mentary, e.g. Conditional Random Fields and Support Vector Machines

are both discriminative models. The inconsistency metric is computed

on interpretation hypotheses generated by the first model. It is used to

choose more correct hypotheses to be converted in tree structures and then

passed to the second model, thus enforcing the role played by the junction

component. We designed an effective post-processing module based on

a-posteriori probabilities provided by the combined models.

Since the approach involves several steps of processing, it can be easily

extended and improved in each of its steps.

We implemented a state-of-the-art Spoken Dialog System integrating

our SLU joint models. Other innovative aspects are proposed in the sys-

tem: persistent dialog state, parallel SLU interpretation and call-type clas-

sification.

1.5 Structure of the Thesis

This dissertation is structured as follows: in Chapter 2 we give an in-

troduction to the SLU task, in Chapter 3 we describe all state-of-the-art

models used for Spoken Language Understanding, Chapter 4 describes one

of our main contribution to SLU: the joint models studied during our re-

search work. Chapter 5 describes another main contribution of our work:

two improvement strategies studied and implemented for our joint models.

Corpora, experimental setup and experiment results are given in Chap-

ter 6. Chapter 7 describes the Spoken Dialog System (SDS) implemented

during our research work in which the SLU models described in previous

chapters have been integrated. Conclusions follow in Chapter 8.

7



1.5. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

8



Chapter 2

Overview of Spoken Language

Understanding

Spoken Language Understanding (SLU) is the semantic interpretation of

signs conveyed by a speech signal. The goal of SLU is to extract a con-

ceptual representation from spoken sentence transcriptions in a natural

language. This task is very complex. Signs to be used to produce con-

ceptual representation are coded in the signal along with other noisy in-

formation. Spoken sentences many times don’t follow the grammar of a

language, they could contain self correction, hesitations, repetitions and

many other irregular phenomena due to the spontaneous nature of spoken

language. Furthermore SLU systems are applied to the output of an Auto-

matic Speech Recognizer (ASR) so they must be robust to noise introduced

by spontaneous events typical of spoken language and errors introduced by

ASR. ASR components produce a stream of words with no information

about sentence structure, like punctuation and sentence boundaries, so

SLU systems must perform text segmentation and understanding at the

same time. The level of complexity needed in order to represent the mean-

ing of a spoken utterance depends mainly on the application targeted.

The application we consider is Spoken Dialog, in particular we focus

on the understanding module of this class of applications. A high level

9



The SLU problem

Figure 2.1: High level architecture of a Spoken Dialog System application, the SLU module

has been highlighted since it is the main topic of this dissertation

schema of a Spoken Dialog System application is shown in Figure 2.1. The

dialog is initiated by the user as response to an opening prompt from the

system. The user utterance is automatically transcribed by the Automatic

Speech Recognition (ASR) component. The ASR takes as input a speech

signal and produces its transcription in textual format. The Spoken Lan-

guage Understanding (SLU) module takes as input the output of ASR and

generates a meaning representation. Based on the interpretation coming

from the SLU module, the Dialog Manager (DM) select the next dialog

turn, this is converted into a natural language sentence by the Natural

Language Generation (NLG) module. Finally, the Text-To-Speech (TTS)

module synthsizes the generated sentence as a speech signal, which is sent

back to the user to continue the dialog. The loop depicted in Figure 2.1 is

repeated until the application completes the modelled task.

Spoken dialog systems need sophisticated SLU models in order to im-

plement dialog applications that go beyond solving simple tasks like call

routing or form filling [35]. Three level of complexity can be defined for

dialog applications. The first level involves the translation from words to

basic conceptual constituents. The second level includes semantic compo-

10



The SLU problem

sition on the basic constituents yielded in the first level. At the third level

context-sensitive validation is performed. At this level each utterance is

considered as a set of sub-utterances and a broad context is taken into

account. The interpretation of a sub-utterance is performed context sensi-

tive to the others. Going from level one to level three, tasks of increasing

complexity can be solved, from call routing or classification of utterances

[35] to Help-Desk application for hardware and software repairing [31].

SLU is performed as a semantic parsing of spoken sentences. Approaches

based on syntactic analisys or directly on semantic analisys have been pro-

posed, in any case semantic constituents are instantiated by one or more

words that have a corresponding syntactic constituent. Among under-

standing modules proposed in the last two decades, first solutions were

based on semantic grammars, but as the amount of data available for appli-

cation development increased, as well as application complexity, stochastic

approaches have been preferred.

MIT proposed the linguistic analizer TINA [85]. It is based on context-

free rewrite rules with constraints which are converted at run-time in a

network representing both syntactic and semantic categories. Rules are

trained from data and can be used to constrain recognition based on sen-

tence syntactic structure.

Many problems of interpretation in SLU systems derive from the fact

that many sentences are ungrammatical and ASR hypotheses contain er-

rors, so grammars have a limited coverage. These considerations suggest

the use of more specific, but more robust, models. In the early nineties,

the DARPA ATIS project started a series of task-dependent SLU systems.

Data were collected in the domain of a flight information and reservation

service. ATIS project aimed at providing a natural language interface to

a travel information database and provided a benchmark for many spoken

language understanding systems, one is discussed in [64].

11



The SLU problem

Based on the model used to perform the interpretation process, other

SLU systems can be classified as probabilistic SLU systems. An example

is the Chronus system from AT&T [7]. This system implements the noisy-

channel paradigm and represents knowledge as a Markov model in which

observations are words. One state is used for each semantic concept.

Another type of SLU systems is based on classification models, which

provides in practice a more robust spoken language understanding. This

approach has been used in the context of dialog utterance and user intent

classification. An example of this last context is the system “How May I

Help You” from AT&T [35]. In this system user spoken utterances are clas-

sified into a number of predefined intents using a discriminative approach.

It is basically a call classification application.

AT&T VoiceTone spoken language understanding system [36] mixes use

of classification model and rule-based fixed grammars. A statistical classi-

fier is used to determine user intents, while rule-based grammars are used

for named-entities extraction. An active-learning framework is integrated

in the system in order to improve the model, to adapt it to changes over

time and to minimize human effort for data annotation and labeling. This

last point is based on the selection of data to be annotated depending on

a confidence measure given by the model.

All the stochastic models for Spoken Language Understanding pro-

posed so far performs the translation from spoken sentence to a seman-

tic constituents-based represention using statistical learning models that

broadly fall in two main categories: generative and discriminative learning

models. Such approaches are complementary for some aspects, the former

are robust with respect to overfitting training data and the latter can eas-

ily integrate structured features like word sequences encoding long-distance

dependencies. This work aims at prooving that the joint use of comple-

mentary models, or more in general models with different characteristics,

12



The SLU problem

leads to more robust and accurate SLU systems.

13



The SLU problem

14



Chapter 3

State of the Art

In order to complitely understand how Spoken Language Understanding

is performed, all the different aspects of the task must be explained. Like

all modules that are part of more complex systems, the SLU module can

be explained describing its input, its output and how the latter is gener-

ated starting from the former. This chapter describes separately all these

points. In particular, the extraction of a semantic interpretation from a

user utterance transcription is performed in two different steps: Automatic

Concept Labelling and Attribute-Value Extraction.

In the next section we describe what is the input for a SLU module,

afterward we desctribe what is the generated output, in Section 3.2. The

Automatic Concept Labelling phase of SLU is performed using stochastic

models, in Section 3.3 we describe all the models used for SLU in the

last decade, giving more details for models used in our research work.

The second phase of SLU, Attribute-Value Extraction, can be performed

either with rule-based or probabilistic approaches, these are described in

Section 3.4. Finally, in Section 3.5, we address robustness issues to deal

with when performing SLU.

15



3.1. SLU INPUT CHAPTER 3. STATE OF THE ART

3.1 SLU Input

As mentioned in previous chapter, three different types of input can be used

when performing Spoken Language Understanding: Manual or automatic

transcriptions of utterances and ASR word lattices. Word lattices are graph

encoding all possible transcriptions an ASR module can generate for the

same utterance.

Manual transcriptions are produced by human experts. Usually in the

transcription process also spontaneous speech phenomena are taken into

account and annotated using special tags. In some cases also punctuation

is added. As an example, if an utterance contains the sentence “Good

morning I have a problem with my printer”, an hypothetical manual tran-

scription can be

<filler> Good morning, <filler> I have a

<incomplete>prob</incomplete>, a problem with my

printer!

The example shows speech phenomena like hesitation, which leads in

most cases the user to use fillers, truncation, the word “problem” has

been truncated to “prob” that has been annotated as incomplete, and

self-correction, the user repeated the truncated word to state clearly his

problem.

All the information annotated in the transcription can be used to make

the SLU task easier. For example fillers can be modelled in ASR systems

to produce a more accurate automatic transcriptions, this in turns im-

proves also SLU accuracy. Punctuation can be used for example to detect

sentence boundaries for syntactic chunking. Although satisfactory accu-

racy is usually achieved on manual transcriptions, this output is used only

for development and evaluation purposes. Effective SLU modules must be

robust when using ASR transcriptions as input.

16



CHAPTER 3. STATE OF THE ART 3.2. SEMANTIC REPRESENTATIONS

The spontaneous speech phenomena mentioned above, even if they are

annotated, constitute a source of noise in the speech signal transcribed by

an ASR. Most of these speech phenomena cannot be modeled properly in

ASR systems. Further, current ASR systems are far to be perfect, they

are likely to introduce transcription errors.

Using the same example above, a possible automatic transcription for

the sentence “Good morning I have a problem with my printer” can be

Good morning I had a podium with my printed

Beyond the simple example, it is intuitive that ASR errors can affect

tremendously SLU performance. In case words like “problem” or “printer”,

that are very important in this case to understand the user statement, are

mistaken, the SLU cannot any more extract a correct interpretation.

ASR systems can usually generate more than one transcription for the

same utterance. These are represented in a compact structure represented

as a graph and called word lattice. An example of lattice for the same

sentence above is showed in Figure 3.1. In this picture it can be noticed

that, among the many possible paths, there’s a path corresponding to a

correct transcription. Extracting the correct transcription from a lattice,

when even possible, is a hard task and it has not been solved yet. Using

lattices as input to SLU, as mentioned in previous chapter, leads to a huge

search space where all possible transcriptions appear associated with all

possible concepts. Finding correct semantic interpretations in such huge

space is difficult and remains an open issue.

3.2 Semantic Representations

SLU aims at extracting meaning from natural language sentences. Design-

ing a general meaning representation which can capture the expressivity of

17



3.2. SEMANTIC REPRESENTATIONS CHAPTER 3. STATE OF THE ART

Figure 3.1: An example of ASR word lattice generated from an hypothetical utterance

“Good morning I have a problem with my printer”

a spoken language is difficult. Therefore, in practice, meaning representa-

tions tend to depend on the capabilities desired for each application.

Semantic interpretation is based on the application of relations between

signs and meaning. It can be seen as a translation process, performed

with a semantic analyzer, in which signs are words of natural language and

meaning is represented with a suitable Semantic Representation Language.

In the past, rule-based SLU systems have been created using results from

both syntactic and semantic analysis, e.g. the MIT TINA system intro-

duced in previous chapter [85]. Syntactic and semantic analysis can be

performed by a parser which produces a syntactic parse tree for a sentence

with semantic labels attached to the nodes of the tree. Derivation of se-

mantic interpretation from syntactic parse tree is discussed in details in

[2]. As the availability of data for application development increased, as

well as task complexity, probabilistic approaches have shown better robust-

ness in SLU, an interesting comparison between rule-based, probabilistic

and mixed approaches to SLU is shown in [8]. Additionally, given the

spontaneous nature of utterances used as input in SLU tasks, and the con-

sequent noise encoded within them, probabilistic SLU systems have been

based only on semantic analysis, without making explicit use of syntac-

tic structures. This was motivated by the fact that on such noisy input,

syntactic parsers cannot reach a reasonable high accuracy, thus a manual

annotation of syntactic trees would be required. This in turn would slow

down significantly speech application development. Nevertheless semantic

18



CHAPTER 3. STATE OF THE ART 3.2. SEMANTIC REPRESENTATIONS

representation can be still structured and each semantic constituent corre-

spond implicitly to a syntactic constituent, like for example in [41], or can

be designed to reconstruct complex context-dependent semantic structures

starting from a flat tag annotation, like in [8].

A well-known representation of computer semantics is based on the use

of frame semantics, dating back to 1968 and proposed with two different

interpretations: the “case for case” lexical interpretation proposed by Fill-

more [33] and then realized in the FrameNet project [3]; and the situation

interpretation called “Scripts” proposed by Schank and Abelson [83]. Both

representations try to model the way human brain captures abstract and

concise semantic information from real world events or situations. These

representations have been realized following linguistic theories, but also

taking practical computer applications into account, such as Natural Lan-

guage Processing tasks and Artificial Intelligence applications.

Although very interesting, the hystory and evolution of semantic repre-

sentations for computers go beyond the purpose of this dissertation, which

focus on models for SLU and doesn’t attempt to find more effective rep-

resentations. Thus in the following paragraphs we introduce the most dif-

fused semantic representation based on frame semantics, we describe two

different corpora where these representation is used, we introduce quickly

the task of semantic analysis based on these corpora and we show the

main difference with respect to SLU, motivating the different choice SLU

semantic analysis relies on.

A frame is a structure identified by a name and a set of role-value

pairs called slots. The use of frames allows to represent models in which

can be included procedures to apply relations between signs and meaning.

Procedures can be attached to frame slots. Each frame in the semantic

knowledge of an application defines a prototype from which many instances

can be obtained. An instance is obtained assigning value to roles. Finding

19



3.2. SEMANTIC REPRESENTATIONS CHAPTER 3. STATE OF THE ART

values for roles is a slot filling process performed by attached procedures.

A widely accepted semantic representation framework based on frames

is FrameNet [3]. In FrameNet the annotation of semantic roles is made

directly upon text sentences, instead of using the syntactic parses. Frames

are triggered by particular words, called “targets”, and the roles are related

to the target by semantic relations and they are called semantic roles.

Another well-known representation for semantic analisys of text is the

one adopted in the PropBank corpus [74]. The main difference with respect

to the FrameNet corpus is that in PropBank target words are only verbs

and semantic roles annotation is done upon manually checked syntactic

parse trees. Subsequentely has been provided the mapping between roles

on manual and automatic syntactic trees in order to be able to train systems

also on automatic syntactic parsing.

The task of semantic analisys on text based on frame semantics is often

referred to as Semantic Role Labeling (SRL). There is a huge literature

available describing efficient appraoches to deal with this task, e.g. an

overview is in [11] and [60], some particular SRL systems for different

domains are presented in [46], [5] and [21].

The semantic analisys task modeled in FrameNet and PropBank cor-

pora is based on syntactic analysis. This means that the first step in the

processing is to generate a syntactic parse tree. The tree is then anno-

tated with semantic information and this augmented tree is used to infer

syntactic-semantic dependencies. These are used afterwards with the aim

of performing a more effective semantic analysis. Syntactic analysis in

turn can be based either on syntactic constituents, as the one used in [22]

among many, or on syntactic dependencies, as described in [43] among oth-

ers. This combined syntactic-semantic processing approach is motivated

by the Chomsky hypothesis, where each syntactic constituent of a sentence

maps into a conceptual constituent.

20



CHAPTER 3. STATE OF THE ART 3.2. SEMANTIC REPRESENTATIONS

The kind of data used for Semantic Role Labelling is written text. This

constitute a significant difference with respect to data processed when per-

forming SLU. Data used in SLU tasks are generated starting from conver-

sational speech. Transcription of this kind of data is much more noisy than

written text, it contains many spontaneous speech phenomena, e.g. trun-

cations, misspronunciations, hesitations, auto-corrections, restarting etc.,

that introduce noise and make the SLU task very hard. This also suggests

that on the kind of transcriptions yielded from conversational speech, auto-

matic syntactic parsing would contain many errors, making it even harder

the understanding task based on the use syntactic trees.

For all these points, the general intuition of SLU community is that

solution designed for Semantic Role Labeling would not be effective for

SLU. Although semantic constituents used in SLU are still annotated upon

syntactic chunks, in general no explicit information from syntactic analy-

sis is used when performing SLU (see for example [30] for an annotation

scheme based on syntactic chunking). The semantic representation used

for SLU is very similar to the frame notation. The representation is based

on attributes, like frame slots, which are semantic units instantiated by

sequences of words, like for frames. Unlike frames, the attributes don’t

need to satisfy explicitly semantic relations to instantiate a specific frame,

neither a target word is needed to instantiate a higher level structure like

a frame. These attributes are annotated on manual transcription of utter-

ances and are taken from a knowledge base designed for the specific task.

Although, it is worth to note that recently, a work based on FrameNet

semantic annotation on conversational speech has shown some relatively

good results [23], subsequently refined in [22], hopefully opening an in-

teresting research line towards the integration of syntactic and semantic

features for Spoken Language Understanding.

For what it regards the corpora that will be described later in this dis-

21



3.2. SEMANTIC REPRESENTATIONS CHAPTER 3. STATE OF THE ART

sertation and that have been used for the experiments, for the ATIS corpus

[26] the knowledge base is a relational database while for the MEDIA [8],

the LUNA Italian [30] and the LUNA Polish [56] corpora a domain on-

tolgogy was designed (see [77] for LUNA Italian ontology). Following are

some examples taken from each corpus to make it clear which kind of data

is used in SLU tasks.

An annotation of the sentence “I would like a flight from Phoenix to San

Diego on April First”, from the ATIS corpus, is:

null{I would like a flight from} departute city{Phoenix}
null{to} arrival city{San Diego} null{on} depar-

ture date.month{April} departure date.day number{first}

where departute city, arrival city,

departure date.month and departure date.day number are domain

concepts while null is the tag for words not meaningful for the task.

Given the sentence:

“Buongiorno io ho un problema con la stampante da questa mattina

non riesco piu’ a stamapare”

taken from the LUNA corpus, that translates to ”Good morning I have

a problem with the printer since this morning I cannot print any more”,

an example of the corresponding semantic annotation could be:

null{Buongiorno io ho} HardwareProblem.type{un problema}
Peripheral.type{con la stampante} Time.relative{da questa

mattina} HardwareOperation.negate{non riesco} null{piu’}
HardwareOperation.operationType{a stampare}

in this case the domain concepts are HardwareProblem.type, Pe-

ripheral.type, Time.relative, HardwareOperation.negate and Hard-

wareOperation.operationType, while null has the same meaning as for

22



CHAPTER 3. STATE OF THE ART 3.2. SEMANTIC REPRESENTATIONS

ATIS (and MEDIA as well).

Note that in the Italian corpus concepts are expressed as fields of a class,

so that different concepts belonging to the same class can be eventually

merged to construct more general and abstract semantic objects, similar

to frames. As shown in [77], this representation can be exploited to perform

semantic analysis based on ontology relations.

As an example taken from the MEDIA corpus, let us consider the sen-

tence:

“Je veux une chambre double”

that translates to “I want a double room”, a possible semantic represen-

tation is:

null{Je veux} nb chambre{une} chambre type{chambre dou-

ble}

where nb chambre and chambre type are the domain concepts.

This semantic interpretation contains attributes with the corresponding

surface (chunks).

Another important point in the SLU process is the concept chunking,

i.e. concepts can span over more than one word. In order to have an

one-to-one association between words and concepts, useful in practice for

model training, the beginning of a concept is distinguished by its continua-

tion using markers equivalent to those of the BIO-notation (Begin, Inside,

Outside) [79]: in particular the Outside marker (O) is replaced by the null

tag introduced before.

Using this notation the semantic representation shown above would be:

null{Je veux} nb chambre-B{une} chambre type-B{chambre}
chambre type-I{double}

from this representation attribute names can be easily reconstructed.

23



3.3. MODELS FOR SPOKEN LANGUAGE UNDERSTANDING State Of The ART

3.3 Models for Spoken Language Understanding

In the last decade two major approaches have been studied to find correla-

tion between words and concepts in the SLU tasks: (i) generative models,

whose parameters refer to the joint probability of concepts and seman-

tic constituents; and (ii) discriminative models, that learn a classification

function based on conditional probabilities of concepts given words.

Assuming a labeling problem where observations X must be assigned a

label yi from a set Y , given a sample of data providing examples of label-

ing, generative models assume the sample was generated from a stochastic

source following a joint probability distribution P (X, Y ) and they estimate

the probability from the given data, either directly or via decomposition

into a class-conditional probability P (X|Y ) and a prior label distribution

P (Y ). In contrast, discriminative models directly estimate the posterior

probability P (Y |X) from data, without any attempt to model the under-

lying probability discribution. These two approaches lead to very different

and complex formulations depending if we are dealing with simple classifi-

cation problems, e.g. Naive Bayes classifiers or Logistic Regression ([62]),

or sequence labelling problems, e.g. Hidden Markov Models or linear chains

Conditional Random Fields ([78],[52]).

It is intuitive that theoretically these two models converges as the sam-

ple size goes to infinite, since in this ideal situation the sample distribution

matches the real distribution. Nevertheless in real applications, where a

limited amount of data is available for probability estimation, their behav-

ior is not predictable and it can change depending on many points, e.g.

size of available data, type of task, task complexity, also choosing one or

the other can depend on practical aspects, e.g. training and classification

time, resource request.

Here we describe the most important generative and discriminative mod-

24



State Of The ART Models for SLU

els used for Spoken Language Understanding in the last decade, showing

also advantages and disadvantages of each model. Some of the models de-

scribed in the following sections (Dynamic Bayesian Networks, Maximum

Entropy, Statistical Machine Translation, Conditional Random Fields and

Stochastic Finite State Transducers) as well as the attribute value extrac-

tion approaches described in Section 3.4 have been studied, implemented

and applied to SLU in the context of the European funded project LUNA,

together with other partners from University of Avignon 1, RWTH Aachen

University 2 and Polish-Japanese Institute of Information Technology of

Warsaw 3.

An example of generative model is the Hidden Vector State model (HVS)

[41]. This approach extends the discrete Markov model encoding the con-

text of each state as a vector. State transitions are performed as stack shift

operations followed by a push of a preterminal semantic category label like

for a tree parser. This way the model can capture semantic hierarchi-

cal structures without the need of tree-annotated data (using a minimal

manually annotated bootstrap data set).

Another generative model is the one based on Stochastic Finite State

Transducers (SFST), which performs SLU as a translation process from

words to concepts. This model has shown high accuracy despite its sim-

plicity ([81]). Another interesting aspect is its very easy integrability in

speech recognition systems, where the output can be a word lattice, which

in turn is naturally encoded as a stochastic FST.

A more recent generative model for SLU is based on Dynamic Bayesian

Networks (DBN). Dynamic Bayesian networks have been applied to many

sequential data modeling tasks, for example automatic speech recogni-

tion [96], part-of-speech tagging [92], dialog-act tagging [42], DNA se-

1http://lia.univ-avignon.fr/
2http://www.rwth-aachen.de/go/id/bdz/
3http://www.pjwstk.edu.pl/en/

25



Models for SLU State Of The ART

quence analysis. DBN have shown to provide a great flexibility for complex

stochastic system representation with good performance compared to other

stochastic approaches. Two interesting studies of DBN for Spoken Lan-

guage Understanding are described in [54] and [55].

The DBN-based SLU system described in [54] and [55] performs a pure

stochastic understanding process. Unlike many models described in this

work, DBN can integrate both phases of SLU in a single model, i.e. auto-

matic concept labelling and attribute-value extraction. In contrast many

models perform the second phase in a separate processing step, using a

different model. This means that a DBN based SLU system gives the pos-

sibility of a stochastic value normalization phase, as opposed to the other

main approach for value extraction based on deterministic rules (both ap-

proaches are described in Section 3.4). A new formulation of the concept

decoding is needed when using a DBN model, the concept sequence is

combined with the value sequence as follows:

ĉN1 , v̂
N
1 = argmax

cN1 ,v
N
1

p(cN1 , v
N
1 |wT

1 ) = argmax
cN1 ,v

N
1

p(wT
1 |cN1 , vN1 )p(vN1 |cN1 )p(cN1 )

Hypothesization of concepts is then performed as follows:

ĉN1 = argmax
cN1

∑
vN
1

p(wT
1 |cN1 , vN1 )p(vN1 |cN1 )p(cN1 ) (3.1)

Another important difference with respect to other models is that decod-

ing is performed at segment level, i.e. the models have an inner mechanism

to deal with transitions from a concept sequence to another. In contrast

other models perform a token-wise decoding.

Figure 3.2 shows two generative DBN models used in the SLU system.

For the sake of simplicity, some additional vertices (variables) and edges

(conditional dependency) of the actual DBNs are not represented. In the

26



State Of The ART Models for SLU

Figure 3.2: DBN-based 2+1-level SLU system. Concept model (graph on the left) is

used for concept decoding. Value model (graph on the right) uses concept sequences as

observations for value identification.

figure, only two time slices (corresponding to two words) are depicted. In

practice, the regular pattern (chunk) is repeated so as to fit the entire

word sequence under consideration. With reference to Figure 3.2, filled

nodes are observed variables whereas blank ones are hidden. Plain lines

represent conditional dependencies between variables; dashed lines indicate

switching parents (variables influencing the relationship between others).

An example of a switching parent is given by the transition node which

influences the concept node: when transition is null, concept is a mere copy

of the previous concept but when it is set to 1 the new concept value is

determined accordingly to p(cn|cn−1).

In our context, all variables are observed during training, thus no itera-

tive algorithm is needed to estimate the parameters. The edge’s conditional

probability tables can be directly derived from observation counts. How-

ever, in order to improve their estimates, factored language models (FLM)

have been used along with generalized parallel backoff (GPB) [6]. FLM

are an extension of standard LM where the prediction is based upon a

set of features of the observations, instead of only the observations alone.

To complement this new framework, GPB allows to extend the standard

27



Models for SLU State Of The ART

backoff procedures to the case where heterogeneous feature types are con-

sidered and no obvious temporal order exists (contrary to classical LM,

features in FLM can happen at any time, including the time of the pre-

diction). Several FLM implementations are used in the SLU models, each

one of them corresponding to an arrow in the DBN graph representations

(see Figure 3.2) and estimates the following probabilities:

• p(cN1 ) ' ∏
p(ci|ci−hi−1): attribute name sequences,

• p(vN1 |cN1 ) ' ∏
p(vi|ci): attribute values conditioned on attribute names,

• p(wT
1 |cN1 ) ' ∏

p(wi|wi−h
i−1 , ci): word sequences conditioned on attribute

names (GPB works with order wi−h
i−1 , ci),

• p(wT
1 |vN1 , cN1 ) ' ∏

p(wi|wi−h
i−1 , vi, ci): word sequences conditioned on

attribute names and values (GPB works with order wi−h
i−1 , ci, vi).

where h represents an history which could vary according to the length

of the model used ({−1} for 2-grams, {−1,−2} for 3-grams etc). GPB

uses the modified Kneser-Ney discounting technique in all conditions.

In the DBN models described in [54] and [55], the concept and value

decoding steps are decoupled and correspond to the two graphs depicted

in Figure 3.2. The conceptual decoding process generates concept and

transition sequences that become observed variables for the value decoding

(described in Section 3.4). Conditional probabilities are either 2 or 3-gram

FLM.

Another model used for SLU comes from the Machine Translation com-

munity, it is used for SLU in [39] and [38]. In this approach is used a

standard phrase-based machine translation method which combines several

28



State Of The ART Models for SLU

models. The incorporated models include phrase-based models in source-

to-target and target-to-source direction, IBM-1 like scores at phrase level,

again in source-to-target and target-to-source direction, a target language

model, and additional word and phrase penalties. These models are log-

linearly combined [61]:

p(cN1 |wN
1 ) =

exp
(∑M

m=1 λmhm(cN1 , w
N
1 )
)

∑
c̃N1

exp
(∑M

m=1 λmhm(c̃N1 , w
N
1 )
) (3.2)

where c̃N1 represents all the concept sequences different of cN1 . The

hm(·) represent feature functions and the λm the corresponding scaling

factors. These factors are optimized using some numerical algorithm in

order to maximize translation performance on a development corpus. In

this case, optimization of the scaling factors is done with respect to the

target score (Concept Error Rate in SLU), using the Downhill Simplex al-

gorithm. In contrast to general translation models, NLU reordering of the

target phrases composing the translation is not needed.

An example of discriminative model used for SLU is the one based on

Support Vector Machines (SVMs) [94], as shown in [81]. In this approach,

data is mapped into a vector space and SLU is performed as a sequence of

classification problems using Maximal Margin Classifiers.

A relatively more recent discriminative approach for SLU is based on

Conditional Random Fields (CRF) [52]. CRFs are undirected graph mod-

els. They train conditional probabilities taking into account many features

of the input sequence. Since they are conditionally trained they don’t need

to represent explicitly feature dependencies, conditional dependence is cap-

tured using feature functions. CRF belongs to the family of log-linear mod-

els, the difference from other models of this family is in the factor used for

probability normalization. Choosing a sequence level normalization leads

to linear chain CRF, choosing a positional level normalization leads to the

29



Models for SLU State Of The ART

Maximum Entropy model [4]. This model has been applied to SLU in [39]

and [38] showing good performances.

In the following sections we describe more in details those models used in

experiments performed during our research work: Stochastic Finite State

Transducers model (SFST), Support Vector Machines (SVM), Conditional

Random Fields (CRF) and finally Kernel Methods used in combination

with SVM for our combined models.

3.3.1 A Generative Model: Stochastic Finite State Transducers

(SFST)

The model based on Stochastic Finite State Transducers performs SLU as

a translation process from words to concepts using SFSTs. The decoding

process is realized in four different steps using four different transducers:

• λw is the representation of the input sentence as a FST;

• λG is a transducer mapping words to word categories in order to carry

out some generalization (words not belonging to any category are

mapped into themselves);

• λW2C is a transducer mapping words/word-categories into concepts;

• λSCLM is the transducer representation of a Stochastic Conceptual

Language Model (SCLM).

In the third step, performed by λW2C , the mapping is not one-to-one,

thus several different annotation hypotheses are generated. The fourth

FST, λSCLM , ranks the hypotheses based on the joint probabilities of words

and concept sequences, i.e.:

P (WN
1 , C

N
1 ) =

N∏
i=1

P (wi, ci|hi), (3.3)

30



State Of The ART Models for SLU

where W = w1..wk, C = c1..ck and hi = wi−1ci−1..w1c1.

Since we use a 3-gram conceptual language model, the history hi is

{wi−1ci−1, wi−2ci−2}.
All the decoding steps of the translation process are implemented using

the AT&T FSM/GRM tools [63] and the SRILM [90] tools. In particular

the SCLM is trained using SRILM tools and then converted to a SFST.

This allows the use of a wide set of stochastic language models [12] (both

back-off and interpolated models with several discounting techniques like

Good-Turing, Witten-Bell, Kneser-Ney etc.).

SFST operations are used to combine all the transducers

λSLU = λW ◦ λG ◦ λW2C ◦ λSLM ,

and to find the best interpretation hypothesis performing a Viterbi

search:

(W,C) = bestpath1(λSLU),

where bestpathn searches and outputs the n-best hypotheses (in this

case n is 1 for the 1-best hypothesis).

This model is very simple and very fast in both training and classifica-

tion phases and it has a relatively good accuracy [81]. On the other hand,

since it is a generative model based on joint probabilities of a Stochastic

Language Model, it is affected by the presence of Out-of-Vocabulary words.

Further, this model is not suitable to integrate complex features since

a reliable estimation of joint probabilities of words, concepts and features

requires a huge amount of data. In this situation, the problem is made

tractable usually assuming some independencies between stochastic vari-

ables and the joint probability is split into several conditional probabilities,

leading to Bayesian Network models described earlier. Moreover, depen-

31



Models for SLU State Of The ART

dencies captured explicitly by this type of models are limited to the order

of n-grams used in the stochastic language model.

3.3.2 A Discriminative Model: Conditional Random Fields (CRF)

A relative more recent approach for SLU is based on Conditional Random

Fields (CRF) [52]. CRF are undirected graph log-linear models training

conditional probabilities of concept sequences cN1 = c1, . . . , cN given word

sequences wN
1 = w1, . . . , wN

p(cN1 |wN
1 ) =

1

Z

N∏
n=1

exp

 M∑
m=1

λm · hm(cn−1, cn, w
n+2
n−2)

 (3.4)

where λm is the vector of parameters to be trained, hm(cn−1, cn, w
n+2
n−2) are

the feature functions used to capture dependencies between input features

(words and other features that can be associated with words in a certain

window around the current word to be labeled) and the output concept

[58]. Different kind of feature functions are used, all binary valued:

1) Lexical Features : they capture dependencies between words and con-

cept. Let wi be the ith word in an input sentence and ci the corresponding

concept prediction, then lexical feature functions are defined as

hw,d,c(ci, w
i+d
i−d) = δ(wi+k, w) · δ(ci, c) k ∈ {−d..+ d} (3.5)

where δ(., .) is the Kronecker function. These feature functions fire when

the word wi+k is equal to the word w and the current concept prediction

ci is equal to c.

2) Prefix and Suffix Features : These feature functions are useful to

overcome the problem of Out-Of-Vocabulary words, i.e. words that have

not been seen in the training data. Let the word w be composed of αβ, so

that α (β) is prefix (suffix) of w, then prefix (suffix) features are defined

as:

32



State Of The ART Models for SLU

hᾱ,c(ci, w
i+d
i−d) =


1 if ∃α, β : wi = αβ ∧ α = ᾱ ∧ ci = c

0 otherwise.

hβ̄,c(ci, w
i+d
i−d) =


1 if ∃α, β : wi = αβ ∧ β = β̄ ∧ ci = c

0 otherwise.

3) Capitalization Features : capitalization is a feature typical of proper

names, that starts with a capital letter, and acronyms, that contains only

capital letter, thus using a feature function capturing this characteristic of

words is important. Capitalization feature functions are defined as:

hCAP,c(ci, wi) =


1 if wi starts with a capital letter ∧ci = c

0 otherwise.

hALL,c(ci, wi) =


1 if wi is all capitalized ∧ci = c

0 otherwise.

in the same way we can define a feature function firing when a word

contains a capital letter in general, but usually only the two functions

above are used.

4) Transition Features : these feature functions capture dependencies be-

tween concepts at different positions, in current implementations of CRF

only the previous concept is taken into account (bigram features). Transi-

tion feature functions are defined as:

hc′,c(ci−1, ci) = δ(ci−1, c
′) · δ(ci, c) (3.6)

5) Prior Features : Prior features are needed to compute a prior distri-

bution of concepts, basically they provide unigrams counts:

33



Models for SLU State Of The ART

hc(ci) = δ(ci, c) (3.7)

6) Compound Features : This kind of features allow capturing dependen-

cies between whole phrases and concepts. This way the same information

provided by n-grams can be extracted, possibly with gaps, i.e. one or more

words can be skipped:

h{w1,d1}...{wK ,dK},c(ci, w
i+dk
i−dk

) =
K∏
k=1

δ(wi+j
i−j , wk) · δ(ci, c) (3.8)

j ∈ {−dk...+ dk}

In order to have a unique notation for all types of feature functions, we

can define the input for all functions as:

hm(ci−1, ci, w
i+d
i−d)

then computing the function depending on the type of features we are

considering. Additionally we can associate an index m ∈ {1..6} to each

kind of feature function shown above, this way we can write formula 3.4

consistently.

In formula 3.4, Z is a normalization factor used to model a well defined

probability distribution (summing up to 1):

Z =
∑
c̃N1

N∏
n=1

H(c̃n−1, c̃n, w
n+2
n−2) (3.9)

where c̃n−1 and c̃n are the concepts predicted for the previous and current

words.

34



State Of The ART Models for SLU

As mentioned in Section 3.3, using a positional normalization factor,

that is:

Z =
N∏
n=1

∑
c̃

H(cn−1, c̃, w
n+2
n−2) (3.10)

leads to another log-linear model, called Maximum Entropy model [4].

There is a certain relation between log-linear models and the SMT model

presented in Section 3.3. The feature functions in SMT approach are sta-

tistical models which return float values and thus the features are no more

binary. Merely seven parameters for the combination of the models are

tuned in contrast to the millions of parameters which are used within CRF.

Also, the optimization problem is not convex as in the case of CRFs.

Conditional Random Fields provide someway advantages of both gener-

ative and discriminative models. They can easily take many features of the

input into account since they are conditionally trained, like discriminative

models, and they use previous decisions to trade-off the best label at the

current position.

In current implementations [47, 38], CRFs can use features in a limited

window around the current word to be labeled (like SVMs). Since condi-

tional dependence is modelled by feature functions using such window, this

creates some limits on the dependency distances between features and la-

bels learned from data, as highlighted also in [50]. Finally, the use of many

features and the complexity of the modelled task, in terms of number of

labels, produces training time problems like for SVMs.

3.3.3 Support Vector Machines (SVM)

Support Vector Machines (SVMs) are well-known machine learning algo-

rithms belonging to the class of linear classifiers [94]. Their main idea is

to learn a hyperplane

35



Models for SLU State Of The ART

H(~x) = ~w~x+ b = 0 (3.11)

which divides training examples with maximum margin, where ~x, the fea-

ture vector representation of a classifying object o, ~w ∈ R, and b ∈ R are

the learned parameters [94].

The problem of learning the hyperplane can be solved by applying the

lagrangian optimization theory, which leads to the following dual form of

Eq. 3.11:

∑
i=1..l

yiαi~xi~x+ b = 0, (3.12)

where ~xi are the training examples, yi (+1 or -1) is the label associated

with ~xi and αi are the lagrange multipliers 4.

Support Vector Machines solve the concept labeling problem as a se-

quence of classification problems using binary classifiers. Each classifier

can be trained taking into account many non-local features but, at classifi-

cation time, the current concept in the sequence is decided locally without

using decisions made at previous steps. Each classifier can be trained with

an One-VS-All or a Pair-Wise approach and the final decision is made

with a voting (weighted or not) scheme.

An interesting aspect of SVMs is that they can take into account many

non-local features, but in a limited window around the current word (tar-

get of the labeling). As drawbacks, SVMs make local decisions for labeling

words and even more they are trained with quadratic programming algo-

rithms, this results in a relatively long training time. Classification time

depends on the size of the model, but it can be easily speed-up decom-

posing the computation in several parts and combining afterwards partial

results.
4In the last decades, many alternative algorithms have been proposed to solve Eq. 3.12 more and more

efficiently.

36



State Of The ART Models for SLU

3.3.4 Kernel Methods

Support Vector Machines have proved to be very accurate algorithms and,

as a further quality, they can implicitly represent data in high dimensional

vector spaces (see e.g. [87]). Indeed, Eq. 3.12 shows that SVM algorithm

only depends on the inner product between instances. This allows to use

functions mapping objects onto higher dimensional vector space as follows

∑
i=1..l

yiαiφ(oi)φ(o) + b = 0 (3.13)

where oi and o are two objects described by the feature vectors ~xi and

~x, respectively, and φ is a mapping function.

The final formulation of the dual problem is:

∑
i=1..l

yiαiK(oi, o) + b = 0 (3.14)

Note that in this form we do not need to know the vector space induced

by the function K provided that K is a valid kernel function 5.

Since in many real world cases data cannot be classified using a simple

linear classifier, kernel methods can be used to carry out learning in more

complex spaces. In this work we use kernel functions particularly suitable

for Natural Language Processing (NLP) tasks, i.e.: string kernels [87] and

Tree Kernels [14, 65].

String Kernels

The String Kernels that we consider count the number of substrings con-

taining gaps shared by two sequences, i.e. some of the symbols of the

original string are skipped. Gaps modify the weight associated with the

target substrings as shown in the following.

5Satisfying the Mercer’s theorem conditions [87]

37



Models for SLU State Of The ART

Let Σ be a finite alphabet, Σ∗ =
⋃∞
n=0 Σn is the set of all strings. Given a

string s ∈ Σ∗, |s| denotes the length of the strings and si its compounding

symbols, i.e s = s1..s|s|, whereas s[i : j] selects the substring sisi+1..sj−1sj

from the i-th to the j-th character. u is a subsequence of s if there is a

sequence of indexes ~I = (i1, ..., i|u|), with 1 ≤ i1 < ... < i|u| ≤ |s|, such that

u = si1..si|u| or u = s[~I] for short. d(~I) is the distance between the first and

last character of the subsequence u in s, i.e. d(~I) = i|u| − i1 + 1. Finally,

given s1, s2 ∈ Σ∗, s1s2 indicates their concatenation.

The set of all substrings of a text corpus forms a feature space denoted

by F = {u∞,u∈, ..} ⊂ ±∗. To map a string s in R∞ space, we can use

the following functions: φu(s) =
∑

~I:u=s[~I] λ
d(~I) for some λ ≤ 1. These functions

count the number of occurrences of u in the string s and assign them a

weight λd(~I) proportional to their lengths. Hence, the inner product of the

feature vectors for two strings s1 and s2 returns the sum of all common

subsequences weighted according to their frequency of occurrences and

lengths, i.e.

SK(s1, s2) =
∑
u∈Σ∗

φu(s1) · φu(s2) =
∑
u∈Σ∗

∑
~I1:u=s1[~I1]

λd(~I1)

∑
~I2:u=s2[~I2]

λd(~I2) =
∑
u∈Σ∗

∑
~I1:u=s1[~I1]

∑
~I2:u=s2[~I2]

λd(~I1)+d(~I2),

where d(.) counts the number of characters in the substrings as well as the

gaps that were skipped in the original string. It is worth noting that:

(a) longer subsequences receive lower weights;

(b) some characters can be omitted, i.e. gaps; and

(c) gaps determine a weight since the exponent of λ is the number of

characters and gaps between the first and last character.

38



State Of The ART Models for SLU

(a) Syntactic Tree fragments (STF) (b) Partial Tree fragments (PTF)

Figure 3.3: Examples of different classes of tree fragments used as features by Tree Kernels.

Characters in the sequences can be substituted with any set of symbols. In

our study we preferred to use words so that we can obtain word sequences.

For example, given the sentence: How may I help you ? sample substrings,

extracted by the Sequence Kernel (SK), are: How help you ?, How help ?,

help you, may help you, etc.

Tree kernels

Tree kernels represent trees in terms of their sub-structures (fragments).

The kernel function detects if a tree subpart (common to both trees) be-

longs to the feature space that we intend to generate. For such purpose,

the desired fragments need to be described. We consider two important

characterizations: the syntactic tree (STF) and the partial tree (PTF)

fragments.

Tree Fragment Types

An STF is a general subtree whose leaves can be non-terminal symbols.

For example, Figure 3.3(a) shows 10 STFs (out of 17) of the subtree rooted

in VP (of the left tree). The STFs satisfy the constraint that grammatical

rules cannot be broken. For example, [VP [V NP]] is an STF, which has

two non-terminal symbols, V and NP, as leaves whereas [VP [V]] is not an

STF. If we relax the constraint over the STFs, we obtain more general sub-

structures called partial trees fragments (PTFs). These can be generated

39



Models for SLU State Of The ART

by the application of partial production rules of the grammar, consequently

[VP [V]] and [VP [NP]] are valid PTFs. Figure 3.3(b) shows that the

number of PTFs derived from the same tree as before is still higher (i.e.

30 PTs).

Counting Shared SubTrees

The main idea of Tree Kernels is to compute the number of common sub-

structures between two trees T1 and T2 without explicitly considering the

whole fragment space. To evaluate the above kernels between two T1 and

T2, we need to define a set F = {f1, f2, . . . , f|F|}, i.e. a tree fragment space

and an indicator function Ii(n), equal to 1 if the target fi is rooted at

node n and equal to 0 otherwise. A tree-kernel function over T1 and T2

is TK(T1, T2) =
∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2), where NT1
and NT2

are the sets

of the T1’s and T2’s nodes, respectively and ∆(n1, n2) =
∑|F|
i=1 Ii(n1)Ii(n2).

The latter is equal to the number of common fragments rooted in the n1

and n2 nodes. In the following sections we report the equation for the

efficient evaluation of ∆ for ST and PT kernels.

Syntactic Tree Kernels (STK)

The ∆ function depends on the type of fragments that we consider as basic

features. For example, to evaluate the fragments of type STF, it can be

defined as:

1. if the productions at n1 and n2 are different then ∆(n1, n2) = 0;

2. if the productions at n1 and n2 are the same, and n1 and n2 have only

leaf children (i.e. they are pre-terminals symbols) then ∆(n1, n2) = 1;

3. if the productions at n1 and n2 are the same, and n1 and n2 are not

pre-terminals then

40



State Of The ART Models for SLU

∆(n1, n2) =
nc(n1)∏
j=1

(1 + ∆(cjn1
, cjn2

)) (3.15)

where nc(n1) is the number of children of n1 and cjn is the j-th child of the

node n. Note that, since the productions are the same, nc(n1) = nc(n2).

∆(n1, n2) evaluates the number of STFs common to n1 and n2 as proved

in [14].

Moreover, a decay factor λ can be added by modifying steps (2) and (3)

as follows6:

2. ∆(n1, n2) = λ,

3. ∆(n1, n2) = λ
∏nc(n1)
j=1 (1 + ∆(cjn1

, cjn2
)).

The computational complexity of Eq. 3.15 is O(|NT1
|×|NT2

|) but as shown

in [65], the average running time tends to be linear, i.e. O(|NT1
| + |NT2

|),
for natural language syntactic trees.

The Partial Tree Kernel (PTK)

PTFs have been defined in [65]. Their computation is carried out by the

following ∆ function:

1. if the node labels of n1 and n2 are different then ∆(n1, n2) = 0;

2. else ∆(n1, n2) =

1 +
∑
~I1,~I2,l(~I1)=l(~I2)

∏l(~I1)
j=1 ∆(cn1

(~I1j), cn2
(~I2j))

where ~I1 = 〈h1, h2, h3, ..〉 and ~I2 = 〈k1, k2, k3, ..〉 are index sequences associ-

ated with the ordered child sequences cn1
of n1 and cn2

of n2, respectively,
~I1j and ~I2j point to the j-th child in the corresponding sequence, and,

again, l(·) returns the sequence length, i.e. the number of children.

6To have a similarity score between 0 and 1, we also apply the normalization in the kernel space, i.e.:
K ′(T1, T2) = TK(T1,T2)√

TK(T1,T1)×TK(T2,T2)
.

41



Models for SLU State Of The ART

Furthermore, we add two decay factors: µ for the depth of the tree

and λ for the length of the child subsequences with respect to the original

sequence, i.e. we account for gaps. It follows that ∆(n1, n2) =

µ
(
λ2 +

∑
~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)
l(~I1)∏
j=1

∆(cn1
(~I1j), cn2

(~I2j))
)
, (3.16)

where d(~I1) = ~I1l(~I1) − ~I11 and d(~I2) = ~I2l(~I2) − ~I21. This way, we penalize

both larger trees and child subsequences with gaps. Eq. 3.16 is more

general than Eq. 3.15. Indeed, if we only consider the contribution of the

longest child sequence from node pairs that have the same children, we

implement the STK kernel.

3.3.5 SLU Models Combination

The individual models described in previous sections show different charac-

teristics and performances. As consequence, new SLU models can be found

combining individual models. There are two main approaches that have

been studied for models combination for SLU: the “Recognizer Output

Voting for Error Reduction” (ROVER) [34] and the re-ranking approach.

ROVER performs an alignement of different system outputs training

token level weights and applying a voting scheme in order to choose the best

SLU interpretation. ROVER was first studied for speech recognition [34]

and it has been applied to SLU in [38] where, since a single best output was

considered for each combined system, ROVER is just a majority voting on

concept level after a Levenshtein alignment. Additionally, in the approach

described in [38], the system weights are optimized using Powell’s method

(multistart) [76].

Given three hypothetical SLU system outputs

1. a b c d

42



State Of The ART Models for SLU

Figure 3.4: Example of SLU system outputs alignment carried out by the ROVER algo-

rithm. @ is used as empty string symbol.

2. b z d e

3. b c d e f

the ROVER approach performs first the output alignement, as shown

in Figure 3.4. With reference to this figure, the symbol @ is used for empty

tokens.

Once the alignment has been performed, the best token at each position

is chosen. The set of tokens at each position is called correspondence set

(CS), for example in Figure 3.4, the correspondence set at first position is

{a,@}. The number of occurrences of the token t in the correspondence set

at position i is N(t, i), while the total number of tokens in CS at position

i is N(i). Using these counts, ROVER can be performed using relative

frequency as scoring function at each position. For example, relative fre-

quency of tokens in the CS at position 1, in Figure 3.4 is 0.33 for a and 0.66

for @ (N(a, 1) = 1, N(@, 1) = 2, N(1) = 3). Usually also the confidence

score given by the models can be used as scoring function. In this case the

confidence of the empty string symbol, Conf(@), is a parameter and must

be trained from a validation set. The confidence of a token t in the CS at

position i is C(t, i).

In [34] three different scoring schemes are used to choose the best to-

ken at each position. The first is based only on relative frequency, the

second is based only on confidence scores given by SLU models, the third

43



Models for SLU State Of The ART

scheme combines these two approaches choosing the best token in the CS

at position i with the following scoring function:

Score(t, i) = α(N(t, i)/N(i)) + (1− α)C(t, i) (3.17)

where 0 < α < 1 is another parameter to be trained from a validation

set. As shown in [34], this third scheme gives the best results.

The Re-ranking approach for models combination has been used in sev-

eral tasks: Syntactic Parsing [15, 17, 88, 49, 50, 65], Named Entity Recogni-

tion [15, 14], Machine Translation [89], Question Answering [70], Semantic

Role Labelling [68, 43], and more recently in Spoken Language Under-

standing [29, 28, 27].

Reranking is performed in two phases using two different models. A

first model generates a list of candidate hypotheses for each input sentence.

The second model select possibly the most correct candidate. The second

model is trained on the hypotheses generated by the first model in order to

minimize a ranking loss function [14]. This way the second model learns to

classify as positive examples hypotheses containing less annotation errors,

with respect to a gold standard annotation (the manual annotation of

classified data).

In order to capture different information, some meaningful features must

extracted from the hypotheses. For these purpose, two different feature

representations have been proposed in literature: explicit representation

using feature vectors [15, 14, 50] or implicit representation using kernel

functions [17, 14, 70, 68, 28]. The advantage in using explicit representa-

tion is only in computationl cost, the drawback is the need to manually

engineer effective features, which requires expert knowledge of the task. In

contrast, using kernel functions is computationally expensive, but doesn’t

require features engineering. Objects are compared in arbitrary complex

feature spaces, e.g. tree-fragment space shown in Section 3.3.4, implicitly

44



State Of The Art
3.4. ATTRIBUTE-VALUE EXTRACTION: RULE-BASED AND STOCHASTIC

APPROACHES

represented by the kernel function, basically without loss of performance

[16, 14]. Additionally, using kernel functions can result in a redundant

feature space [50], but this problem is included in the computational cost

problem.

Regarding the model used to generate candidate hypotheses, there is

basically no limitation: Probabilistic Context Free Grammar (PCFG) [17],

Maximum Entropy model [16], Conditional Random Fields [50], SVM [70],

Stochastic Finite State Transducers (SFST) encoding a Semantic Language

Model [28].

Also for the second model, used to select the best candidate, different

learning algorithms have been tried: Perceptron [16, 17, 14], Boosting [16,

50] and SVM [70, 28].

Since re-ranking is the most important basic block of our combined

models, it will be described in details in the following chapters, giving also

a comparison with ROVER in terms of characteristics and advantages.

3.4 Attribute-Value Extraction: Rule-based and Stochas-

tic Approaches

Traditionally, after a concept sequence has been decoded from an input sen-

tence, the segmented word substrings are converted to a normalized form,

as defined in the task semantic dictionary. More generally, the dictionary

is based on the database entities values. In the sentence

“I’d like a room charged not more than fifty euros”,

taken from the MEDIA corpus, the normalization module translates the

sequence

“no more than”

instantiating the attribute name comparative-payment-room to the

normalized attribute value form

45



Attribute-Value Extraction State Of The Art

Table 3.1: Semantic concept (att./value) representation for the query “Please give me the

fares since I’d like a room charged not more than fifty euros”.

words mode attribute name normalized value

donnez-moi + null

le ? refLink-coRef singular

tarif ? object payment-amount-room

puisque + connectProp imply

je voudrais + null

une chambre + number-room 1

qui coûte + object payment-amount-room

pas plus de + comparative-payment less than

cinquante + payment-amount-integer-room 50

euros + payment-unit euro

“less-than” (cf. Table 3.1).

Many lexical sequences can correspond to the same normalized value.

The attribute values are numeric units (e.g. phone numbers, codes, dates),

proper names (e.g. customer’s name) or semantic classes merging lexical

units which are synonyms for the task (e.g. singular and plural names as

well as different tenses of the same verb). The set of normalized values as-

sociated to each attribute is defined in the semantic dictionary, for example

for the MEDIA task, there are three different possible configurations:

• a value enumeration (e.g. the concept “comparative” with possible

values “around”, “less-than”, “maximum, “minimum” and “more-

than”),

• regular expressions (as for dates) or

• open values (i.e. no restrictions, as for client’s names).

This normalization step is commonly based on deterministic rules, but

can also be introduced in the global stochastic model through an additional

46



State Of The Art Attribute-Value Extraction

level. Stochastic approaches for attribute value extraction have been inte-

grated within the DBN and CRF models proposed in [55] and [38], respec-

tively, and described in previous sections.

Approaches based on deterministic rules

In the case of the Stochastic Finite State Transducer approach, the nor-

malization step based on manual rules can be applied either with a finite

state transducer approach (i.e. also rules are encoded as SFST) or a script

language based approach. Both use simple concept attribute dependent

expressions to convert phrases supporting an attribute name into a nor-

malized attribute value.

For SFST, the transducer encoding the rules is induced from the training

data. The main interest of modeling rules as finite state transducers is their

ability to process word graphs, like ASR lattices. Thus, the complete search

space can be kept until the end of the process (see [80] and [86]). For the

experiments reported in this dissertation, only single-best input has been

used and thus only the script-based approaches have been utilized with the

SFST model.

For all the tasks (corpora) used in our experiments, script based ap-

proaches exist. These comprise manually designed regular expressions,

lists of named entities, functions to map written numbers to digits de-

signed in order to process any single-best output coming from any system.

For the four tasks considered in this work, rule-based approaches are more

accurate than statistical approaches.

Stochastic approaches

DBN In the context of stochastic value identification, the concept se-

quence is combined with the value sequence in the concept decoding, ac-

cordingly to Equation 3.1. As a consequence, the word sequence probabil-

47



Attribute-Value Extraction State Of The Art

ities become conditioned both on the concepts and their normalized val-

ues. The complexity of the conceptual model becomes untractable in this

conditions, so the decoding setup must be revised. However traditional

sub-optimal decoding setups (such as beam search) lead to poor perfor-

mance [54]. To avoid this problem, the normalization level is not really

embedded in the conceptual model, but it is performed after the concept

decoding. So, in the so-called 2+1-level approach, v is first marginalized

(see Equation 3.1) then v is decoded given a constant c (ĉ, the hypothesis

from the former level):

v̂N1 = argmax
vN
1

p(wT
1 |ĉN1 , vN1 )p(vN1 |ĉN1 )p(ĉN1 ) (3.18)

Under the assumption that the normalized values have a slight or no

influence on the segmentation process, Equation 3.1 allows for a better

generalization of the conceptual model.

This stochastic approach has been applied to the DBN model in com-

bination with script-based rules as described in [54].

CRF Knowing the location and the attribute name of content words given

by the attribute name extraction, the next step is to extract normalized

values for most of the attribute names, e.g. concerning the following ex-

amples from the Polish corpus and for the values “Request” or “151 ”:

@Action[Request]{chcia lam} @BUS[151]{linie sto piećdziesiat jeden} . . .

@Action[Request]{I would like} @BUS[151]{line one hundred fifty one}
. . .

A 1-to-1 mapping like in attribute name extraction is not used, instead

exactly one value is hypothesized per attribute name. As features, lexical

features on the predecessor, the current, and the successor word can be

used. For attribute names with a huge number of values and in particular

48



State Of The Art Attribute-Value Extraction

attribute names with an infinite set of values (e.g. numbers, dates, phone

numbers), the attribute value extraction is left to a rule based approach in

a possible post-processing step.

The number of possible values varies highly between attribute names.

For example, the attribute name Reaction can take either the value “Con-

firmation” or “Negation” and is triggered by only few content words. In

contrast, the value of STREET NUMB can be any possible number. In

principle, attribute value extraction can be realized using machine learn-

ing. This is a quite easy task when the number of possible values is low,

but can become difficult for attribute names with a huge number of possi-

ble values like street or bus numbers. These numbers can not be covered

completely by the training corpus, which is the only information source at

least for purely data driven approaches.

This CRF model for attribute value extraction has only been applied to

the CRF approach described in [38] and always in combination with rules.

In the SLU task the surfaces realizing a concept are normalized and

only their associated values are returned. Considering again the example

of Section 3.2 taken from MEDIA, a possible attribute-value interpretation

would be:

nb chambre[1] chambre type[double]

which is the so-called flat attribute-value annotation output by an SLU

module as final results. Note that at this level the null tags are removed

since they are used to annotate words not relevant for the task and so

they bring no semantic information. Even more values are a normalization

of the corresponding surfaces in the sense that only keywords are kept for

each concept and in some cases words are converted into digits (e.g. like for

numbers, codes, dates etc.). The example above, shows the typical output

of SLU module. In a Spoken Dialog System context, this output is passed

49



3.5. MODELS ROBUSTNESS: CONFIDENCE SCORES AND OTHER
CONFIDENCE METRICS State Of The Art

to the next processing module, the Dialog Manager, which computes the

next move to be done in the dialog in order to fit user needs in the best

way possible.

3.5 Models Robustness: Confidence Scores and Other

Confidence Metrics

Current state-of-the-art speech recognition and understanding systems are

far from perfect. In speech recognition there are a number of factors, like

environment, telephone line quality, speaker variability, which can affect

recognition performance. Moreover, the understanding component can,

in some cases, generate an incorrect interpretation, leading the dialog in

completely wrong path. Since is not feasible to make systems perfect, the

only solution to these problems is to detect them and to apply a recovery

strategy. Error detection in speech recognition and understanding systems

is based on the evaluation of a confidence measure.

Estimating the confidence of an interpretation involves several issues:

• Choosing the span of the confidence measure: confidence measurement

can be applied at the word level, concept level, utterance level or their

combination.

• Defining the set of features used in order to estimate the confidence

measure: modern approaches use ASR features, like acoustic scores

and linguistic scores, SLU features and dialog context.

• Defining an efficient way to combine the different kind of features.

• Choosing a decision strategy in order to decide when interpretation is

correct or incorrect.

50



State Of The Art Models Robustness

An approach to recognition confidence scoring and a method for inte-

grating confidence scores into the understanding and dialog component is

presented in [40]. In this work confidence scoring is performed at differ-

ent levels. At phonetic level is used a normalized acoustic score produced

by the acoustic model of the recognizer. At utterance level fifteen differ-

ent features, both acoustic and linguistic, are used to estimate a confidence

measure. At word level ten different features, again acoustic and linguistic,

are combined to produce a unique measure. At utterance and word level,

the features are put together in a features vector. The final confidence

measure is obtained with a scalar product of the feature vector by a pro-

jection vector which components are trained from data using a minimum

classification error training technique.

Two methods to incorporate semantic information into word and con-

cept level confidence measures are proposed in [82]. The two methods use

two sets of statistical features to model semantic information in sentences.

The first method relies on semantic parse tree and uses nodes and exten-

sion scores corresponding to tags and labels. This first method is motivated

from the fact that correct sentences are easily parsed and have a higher

score in the parse tree. So, even if spontaneous speech has ungrammati-

cal constructions, since the parser is trained with a data-driven approach,

the parser model learns ungrammatical structures contained in the data.

The second method is based on joining a maximum entropy model of word

sequences and semantic parse trees.

In order to improve user utterance interpretation and classification per-

formance, a very important aspect for confidence measure estimation is to

integrate information related to dialog context. The speech understanding

problem in the context of a spoken dialog system is presented in [1]. In

this work the dialog flow is modeled in a maximum likelihood framework

taking into account both understanding system and dialog manager state

51



Models Robustness State Of The Art

transitions on one side and user-directed state transitions on the other

side. Language model adaptation based on the dialog context is performed

through the clustering of dialog prompts, which are used as features in

conjunction with acoustic and linguistic features.

The work descirbed here focus on models for Spoken Language Un-

derstanding, so we didn’t study new approaches for confidence measure

estimation, we used existing approaches for what it regards ASR and SLU

confidence scores, but we designed a new confidence-based interpretation

re-selection approach for our joint models that will be described deeply

later on.

52



Chapter 4

Models Combination Via

Discriminative Re-ranking

Most of the work described in this document focus on models combination

using discriminative re-ranking [14]. The re-ranking approach we propose

is based on a model able to classify pairs. This means that training and

classification instances are pairs of objects instead of single objects as in

traditional classification tasks.

Once a model M able to generate a list L of semantic annotation hy-

potheses on an input sentence is available, the following steps take place

to perform re-ranking:

• M generates the m most likely semantic annotations for each input

sentence I, i.e. the list L = {s1, ..., sm}. m is a parameter chosen at

the beginning of the process

• L is used to build pairs of hypotheses
〈
si, sj

〉
, with i 6= j, that are the

training and classification instances for the re-ranking model. Pairs

are built in different way for the training and classification phases.

• The Re-ranker is trained and the resulting model R is applied on

classification instances

53



Joint models

Figure 4.1: A general diagram of re-ranking framework showing the entire chain of pro-

cessing, from speech input to the SLU interpretation

• The scores SR computed on the classification instances using R, are

used to re-rank, i.e. re-arrange, the list of hypotheses generated by

the first model based on a different metric. The top ranked hypothesis

of the re-ranked list is the new best interpretation

If we define L = M(I) as the list of hypotheses generated by M on the

input sentence I, SR(L) as the list of scores given by R for each hypothesis

in L, then the best hypothesis given by the reranking model R is the one

associated to the best score argmaxL(SR(M(I))).

All these steps hold in general, regardless which is the model used to

generate hypotheses lists and the model used to re-rank such lists. For the

sake of clarity, this general re-ranking framework is depicted in Figure 4.1.

Re-ranking hypotheses generated with a model allows to exploit the

knowledge coming from the training data in two different ways and to

put together advantages coming from the two combined models: the first

is trained directly from the training; the second takes the hypotheses as

input, thus explointing the knowledge encoded by the first model, and

extracts different features, adding further knowledge.

The pairs used in the re-ranker model are built from the list of hy-

potheses generated by the first model. Pairs must be constructed in such

a way that allows the re-ranker to learn which hypotheses are better than

the others, i.e. which hypotheses contain less mistakes with respect to a

reference semantic annotation and a given metric.

54



Joint models 4.1. HYPOTHESES GENERATION

In the following sections we describe in more details the steps involved

when performing re-ranking: in Section 4.1 we describe how we generate

interpretation hypotheses to be re-ranked, in Section 4.2 we describe how

pairs of hypotheses should be built in order to learn how to classify the

most correct hypotheses. In Section 4.3 are described the structures used

to represent hypotheses in SVM, using kernel functions. Finally, in Sec-

tion 4.4, we describe how training and classification phases are performed

using a particular kernel function designed for re-ranking.

4.1 Hypotheses Generation

The re-ranking framework proposed in our solution is based on SVMs and

Kernel Methods, described in the previous chapter. As we mentioned ear-

lier, all the stochastic models used for SLU, and in general all the stochas-

tic models, can be characterized as generative and discriminative models.

These two classes of models have different and complementary character-

istics. As consequence, it seems intuitive that combining a generative and

a discriminative model is more effective than combining models with same

characteristics.

All the work we have done in SLU on models combination using dis-

criminative re-ranking has been done following this intuition ([29, 28, 27]).

Nevertheless, recently we have applied to our re-ranking models a new

hypotheses selection criterion, described later, that allows to re-rank hy-

potheses generated by any kind of model, generative or discriminative.

Thus, the model used to generate the hypotheses lists can be either

the SFST model described in Section 3.3.1 or the CRF model, described in

Section 3.3.2. From now on, we will refer to the model used to generate the

hypotheses as first model (of the re-ranking framework) or the re-ranked

model.

55



4.1. HYPOTHESES GENERATION Joint models

The first model takes as input the transcription of a spoken sentence

and produces the m most likely conceptual annotations of the sentence,

ranked on the joint probability of the Stochastic Conceptual Language

Model (SCLM) when using the SFST model, while they are ranked on the

posterior probability of concepts given words when using CRF. In partic-

ular the algorithm used to find the m most likely annotations is a Viterbi

search with the SFST model, while with CRF the search is perfomed in

two steps: Viterbi search in a forward step and A∗ search in a backward

step.

A pool of m hypotheses is generated from each of the sentences in the

training and classification data. For example, from the sentence

“Ho un problema col monitor”

which translates to “I have a problem with my screen”, the following

hypotheses can be generated

1. NULL{ho} PROBLEM-B{un} PROBLEM-I{problema} HARDWARE-

B{col} HARDWARE-I{monitor}

2. NULL{ho} ACTION-B{un} ACTION-I{problema} HARDWARE-

B{col} HARDWARE-B{monitor}

...

where NULL, ACTION and HARDWARE are the assigned concepts.

The second annotation is less accurate than the first since problema is

erroneously annotated as ACTION and ”col monitor” is split in two

different concepts. Beyond this simple example, in many cases the top

ranked hypotheses is not the most correct, applying re-ranking we aim at

finding the most correct hypothesis for each input sentence.

56



Joint models 4.2. PAIRS GENERATION

4.2 Pairs Generation

The m-best list of hypotheses is used to build annotation pairs
〈
si, sj

〉
,

where i, j ∈ [1..m] and i 6= j. Pairs are built in two different ways for

training and classification phases:

I) Support Vector Machines are binary classifiers, i.e. they are able to

classify instances in two classes that are tradictionally called positive and

negative class. In order to train a re-ranking model it is needed to define

positive and the negative instances. In training phase, the pairs are positive

instances if si has a lower concept annotation error rate than sj, with

respect to the manual semantic annotation in the training data. The metric

to compare hypotheses with the reference is the edit distance, that is used

as evaluation metric for Automatic Speech Recognition systems (ASR). It

is computed as the ratio between inserted, deleted and substituted tokens

over the number of tokens in the reference.

The edit distance is computed for all the hypotheses and the most cor-

rect is selected (i.e. the hypothesis with the lowest error rate). Let sk be

the most correct hypotheses in the m best list, positive instances for train-

ing the re-ranker are pairs
〈
sk, si

〉
for i ∈ [1..m] and i 6= k. Since the model

is simmetric, negative instances are built simply inverting the elements in

the positive ones, i.e.
〈
si, sk

〉
.

Organizing hypotheses in this way, given a generic pair
〈
si, sj

〉
, a trained

binary classifier can decide if si is more accurate than sj.

II) In classification phase, we cannot rely on assessment of hypotheses

based on the edit distance with respect to the reference annotation, so from

the m-best list of hypotheses, all possible pairs are generated. This means

that o(m2) pairs are generated from the hypotheses list. Nevertheless,

applying the same simplification applied in [14], only o(m) instances are

generated and each instance is a single hypothesis (or tree), providing a

57



4.3. STRUCTURES FOR KERNELS Joint models

significant speed up in classification phase.

The re-ranking model captures the meaningful features of each pair,

the pairs with the highest number of these features receive a higher score,

so that to bring possibly in the top the pair containing the most correct

hypothesis.

4.3 Structures for Kernels

Given the pairs described in previous section, we need to represent them

in SVMs. One alternative to the usual approach of n-gram extraction is

the use of kernel functions applied to structures built from pairs. Kernel

methods are viable approaches to engineer features for text processing, e.g.

[14, 49, 25, 10, 24, 93, 50, 65, 70, 66, 68, 69].

The kernels described in Section 3.3.4 provide a powerful technology

to capture structural features from data. In particular, Tree Kernels were

originally designed for data represented as syntactic parse trees. In Spoken

Language Understanding the data are made of transcriptions of spoken

sentences with their semantic annotation (i.e. basic semantic constituents).

This type of annotation is rather flat with respect to syntactic parse trees,

therefore, to exploit the power of kernels, a careful structure design for

data representation must be carried out. The goal is to build the most

suitable representation for each specific kernel: sequences for the String

Kernel (SK) and tree-like structures for (Partial) Tree Kernel (STK and

PTK), starting from semantic annotation. Note that the latter is made

upon sentence chunks, which implicitly define syntactic structures as long

as the annotation is consistent in the corpus.

Taking into account the characteristics of the target kernel functions

and the structure of semantic annotation, we designed several different

structures that are variants of two main types of structures representing

58



Joint models 4.3. STRUCTURES FOR KERNELS

(a) FLAT Tree (b) MULTILEVEL Tree

Figure 4.2: Examples of “FLAT ” and “MULTILEVEL” semantic trees used for STK and

PTK

Figure 4.3: An example of “FEATURES” semantic tree used for STK or PTK

sequences or trees (see [28]). They refer to the same annotation example

reported in Section 4.1:

• two types of sequential structures exploitable by SK, e.g.:

SK1 NULL ho PROBLEM-B un PROBLEM-I problema HARDWARE-B col HARDWARE-

I monitor

SK2 NULL ho PROBLEM B un PROBLEM I problema HARDWAREB col HARD-

WARE I monitor,

where the B/I tags characterize the Begin and continuation, Inside,

of the multiword concepts.

• the tree structures shown in Figures 4.2(a), 4.2(b) and 4.3, which can

be exploited by STK and PTK.

Structure variants are defined by:

• The position and the use of BIO-like tags (they can be used or not)

59



4.3. STRUCTURES FOR KERNELS Joint models

• Using or not a tag also for marking the end of a concept

• Using a fake level of nodes in the trees needed when using Syntactic

Tree Kernel (which doesn’t split node children, so the whole sequence

of nodes must match at each level of the tree)

• Adding some redundancy in the tree to fit the way kernels compute

similarity in practical implementations

• Using features together with the words instantiating concepts (fea-

tures used are usually word categories and morpho-syntactic features)

The main characteristics of the structures are:

For SK1 and SK2 the order of words and concepts is meaningful since

each word is preceded by its corresponding concept, so a generic sequence

concepti wordj capture a dependence between i and j while the sequence

wordj concepti does not. The difference between SK1 and SK2 is in the

use of BIO-like markers B and I. In SK1, markers are part of the concept,

thus they increase the number of semantic tags in the data whereas in SK2

markers are put apart as separated words so that they can mark effectively

the beginning and the end of a concept, but for the same reason they can

add noise in the sentence.

The structures shown in Figure 4.2(a), 4.2(b) and 4.3 have been designed

for STK and PTK. They provide trees with increasing structure complexity

as described in the following.

The first structure (FLAT) is a simple “flat” tree providing direct de-

pendency between words and chunked concepts. From it, STK and PTK

can extract relevant features (tree fragments).

The second structure (MULTILEVEL) has one more level of nodes and

yields the same separation of concepts and markers shown in SK2. Notice

that the same separation can be carried out putting the markers B and I as

60



Joint models 4.4. TRAINING AND CLASSIFICATION

features at the same level of the words. This would increase exponentially

(in the number of leaves) the number of subtrees taken into account by the

STK computation. Since STK doesn’t separate children, as described in

Section 3.3.4, this structure is lighter but also more rigid.

The third structure (FEATURES) is a more complex structure. It allows

to use a wide number of features (like Word categories, POS tags, morpho-

syntactic features), which are commonly used in SLU. As described above,

the use of features exponentially increases the number of subtrees taken

into account by kernel computations but they also increase the robustness

of the model. In this work, except for particular models described later, we

only used Word Categories as features. They can be domain independent

categories, e.g. ”Months”, ”Dates”, ”Number” etc. or POS tags, which

are useful to generalize target words. Note also that the features in com-

mon between two trees must appear in the same child-position, hence we

sort them based on their indices, i.e. ’F0 ’ for words and ’F1 ’ for word

categories.

4.4 Training and Classification

Once pairs of hypotheses have been generated and they have been repre-

sented as semantic structures exploitable in kernel functions, the re-ranking

model can be trained and used for classification.

Previous work, e.g. [14], has shown that, given the pair of structures

ek =
〈
s1
k, s

2
k

〉
, the most effective re-ranking kernel is:

KR(e1, e2) = K(s1
1, s

1
2) +K(s2

1, s
2
2) (4.1)

− K(s1
1, s

2
2)−K(s2

1, s
1
2),

where K could be any kernel function, in our models we used the kernels

61



4.4. TRAINING AND CLASSIFICATION Joint models

described in Section 3.3.4, i.e. String Kernel (SK), Syntactic Tree Kernel

(STK) and Partial Tree Kernel (PTK).

This re-ranking schema, consisting in summing four different kernels,

has been already applied in [14, 88] for syntactic parsing re-ranking, where

the basic kernel was a Tree Kernel.

In [89] a re-ranking model was applied to different candidate hypotheses

for machine translation but the goal was different and, in general, simpler:

in our task the best annotation of a given input sentence must be learned

while in [89], the model learns to distinguish between ”good” and ”bad”

translations of a sentence. Our approach, for semantic parsing re-ranking,

is more appropriate since there is only one best hypothesis for each sen-

tence, while in machine translation a sentence can have more than one

correct translation.

The re-ranking kernel in Equation 4.1 can be generalized to the case of

t-uple of structures, i.e. several different structures can be associated to

each hypothesis and used with different kernels, these are afterwards put

together to build instances of n structures. Thus, the generic instance ek

has the form:
〈
s1
k...s

n
k

〉
, where the first n

2 structures are associated to the

first hypothesis and the others to the second. The generalized form of the

re-ranking kernel results to be:

KR(e1, e2) =
n/2∑
i=1

(Ki(s
i
1, s

i
2) +Ki(s

i+n/2
1 , s

i+n/2
2 )) (4.2)

−
n/2∑
i=1

(Ki(s
i
1, s

i+n/2
2 ) +K(s

i+n/2
1 , si2)),

where Ki are n/2 kernel functions used with the n/2 structures associ-

ated to each hypothesis.

The re-ranking approach brings several advantages, but also some dis-

advantages. Combining two models can put together their benefits but also

62



Re-ranking VS ROVER4.5. RE-RANKING AND ROVER FOR MODELS COMBINATION

their drawbacks: (a) the SFST model affects re-ranking since it always out-

puts “null” concept for Out-of-Vocabulary (OOV) words in all hypothesis

and (b) the re-ranker training time is linked to SVMs implementations,

which are trained with a quadratic programming algorithm.

Finally, two main advantages can be observed in the re-ranking model:

the first is the ability to put together characteristics of two different models

encoding complex features from generated hypotheses. More important,

using kernels like String and Tree Kernels (see definitions in Section 3.3.4),

the re-ranking model can capture arbitrarily long distance dependencies,

unlike the other models described in this work.

4.5 Re-ranking and ROVER for models combination

As was mentioned in Section 3.3.5, another approach used in SLU for

models combination is ROVER [34]. ROVER has been applied for the

first time to SLU in [38].

ROVER and re-ranking are two very different approaches for models

combination:

1. ROVER performs an alignement of different system outputs at token

level using a weighted voting scheme, it allows potentially to find the

most correct hypotheses subparts. Re-ranking finds the best semantic

annotation for every input sentence, it works on sentence units.

2. Since it uses a voting scheme, ROVER needs the outputs of at least

3 systems to yield improvements with respect to individual system

baselines. Re-ranking takes output of a single system.

3. ROVER is a light-weight system combination approach, in the sense

that training voting weights is relatively fast. Re-ranking is trained

63



Re-ranking VS ROVER Re-ranking VS ROVER

on the output of another model, the cost of training depends on the

task complexity and the training data size.

Regarding point 1, it is difficult to find a priori which is the best solution,

finding correct hypotheses subparts seems more difficult than finding an

alternative hypothesis for an input sentence, but the first solution gives

the possibility to find the correct interpretation of a sentence even if all

the combined hypotheses contain mistakes.

Point 2 is clearly a disadvantage for the ROVER approach, ROVER

relatively a not expensive solution for models combination, but training

three (at least) systems for SLU can be quite expensive. In [38], 5 systems

were combined, comprising a CRF and a SVM model, which are quite

expensive. Point 3 is actually related to point 2.

A comparison of performances of these two approaches will be given in

Chapter 6, together with all results.

64



Chapter 5

Improved Strategies for

Reranking-based Models

Combination

Joint models based on discriminative re-ranking described in previous chap-

ter have shown to be effective with respect to the other state-of-the-art

models used for SLU ([28, 27]). The aim when using a re-ranking approach

for models combination is to find an alternative interpretation to the one

provided by the re-ranked model. Even using information encoded in the

first model hypotheses and extracting more complex features, re-ranking

models have limitations that impact on the final performance:

i) Since the model is trained using information in the best interpretation

of the first model, it is assumed that the re-ranking model always provides

an interpretation more (or at least as) correct than the previous best. In

general, the alternative interpretation provided as final result, can contain

more mistakes than the best interpretation output by the first model;

ii) While for training phase we can measure the correctness of each hy-

pothesis computing the edit distance with respect to the reference manual

annotation, no assessment is performed in classification phase on the hy-

potheses generated by the first model. The first m-best hypotheses, ranked

65



5.1. CONFIDENCE-BASED MODELS COMBINATION: RE-RANK SELECTION
(RRS) Re-Rank Selection

by the probability of the first model, are kept for re-ranking.

The first point is addressed applying confidence based model robust-

ness assessment, the second is overcome using a new hypotheses selection

criterion recently defined.

In the next section we describe how to re-select the final best interpre-

tation using the confidence measures provided by the two models involved

in the re-ranking approach. In Section 5.2 we describe an hypotheses selec-

tion criterion that allows selecting hypotheses generated by the first model

that are likely to be more correct than the others.

5.1 Confidence-Based Models Combination: Re-Rank

Selection (RRS)

The fact that the re-ranking approach can improve an individual system

is related to the way the two models encode prior knowledge in the train-

ing data. In particular a re-ranking model is trained on the hypotheses

generated by another model in such a way that allows to “correct” mis-

takes made by the first model, in the sense that the result provided after

re-ranking is not a new generated one, it is an alternative, possibly more

correct, result of the first individual model.

These points can lead to assume that re-ranking is always more accurate

than the re-ranked model. Unfortunately this is not correct, in some cases,

i.e. for some input sentences, re-ranking can provide an interpretation less

accurate than the previous best.

Results provided by stochastic models can be assessed using confidence

scores computed on the output. CRF models provide posterior probabili-

ties that can be used as confidence measures. The SFST model provide a

hypotheses level likelihood computed with stochastic conceptual language

model it encodes. The SVM model used for re-ranking provide as score

66



Re-Rank Selection Joint Models Improvements

the margin, i.e. the distance of the interpretation from the hyperplane,

in the features space induced by the used kernel. The Likelihood of the

SFST model can be converted into a posterior probability applying the

forward-backward algorithm on the semantic network resulting from the

combination of the input sentence with FST encoding the language model.

The margin of SVM can be conferted into a posterior probability using

a sigmoid transform: let C be the class predicted by SVM (“+1” or “-1”),

f the margin computed with the kernel on the given hypothesis, then the

margin is converted into probability with the following function

P (C|f) =
1

1 + eA·f+B (5.1)

where A and B are two parameters trained with the Platt’s algorithm

([91]).

The posterior probabilities computed by each model involved in the

re-ranking process can be used as confidence measures to provide an as-

sessment of results. This means that when the confidence is low, below a

certain threshold, we can decide to reject the result of the model. Since

two models are involved in the re-ranking framework, when the confidence

of one model is low, we can take as final result the output of the other

model.

What it follows is based on considerations and analysis made on the

output of our joint models. Although results have not been described

yet, we prefer to describe the strategy based on hypotheses re-selection

in this chapter to have an overview on the entire work we have done on

re-ranking, giving afterwards a description of results obtained with all the

different models.

Considering the final result, a re-ranking model has a better perfor-

mance of the re-ranked model. This means that the idea of rejecting the

re-ranked best hypothesis can improve the overall performance of the com-

67



Joint Models Improvements Re-Rank Selection

bined models only under the following assumption: the two models used in

the re-ranking framework make different mistakes on different input sen-

tences. This seems intuitive given that the two combined models have

different characteristics, nervetheless it is a strong assumption, so an error

analisys on the models output is mandatory to proove the effectiveness of

the rejection idea.

In order to show the evidence, in Figure 5.1 we report the confusion

matrices of the FST and SVM based re-ranker model on the LUNA Ital-

ian test set (described later), together with the difference between such

matrices.

The confusion matrix is constructed putting in the columns the refer-

ence concepts and in the rows the hypothesized concepts. The entry of

the matrix with coordinates i, j reports the number of times the reference

concept j is confused with the concept i, so the entries on the diagonal

reports how many times concepts are correctly recognized. Given the high

accuracy of the models, the values on the diagonal would be much higher

than all the others, so to emphasize only errors, we removed such values.

With reference to Figure 5.1, in an extreme case in which FST and

the re-ranker models make the same mistakes, the difference matrix would

contain only zeros and so no picks would be depicted. The fact that the

difference matrix is not flat suggests that the two models tend to make

different mistakes. In particular, reversed picks are values where the re-

ranker makes more mistakes than the FST model on the corresponding

concept. Notice also that the error analysis described refers to the LUNA

Italian test set, so a small data set. This choice is needed to obtain a

readable plot.

The presented analysis shows that the re-ranking model improves the

overall performance of SLU, but it cannot “correct” all the mistakes made

by the FST and even more it introduces other mistakes. Figure 5.1 remarks

68



Re-Rank Selection Joint Models Improvements

Figure 5.1: Confusion matrixes computed from the output of the FST and SVM based

re-ranker (first and second plots) and their difference (third plot). On the axis concept

identifiers are reported: values are normalized on columns to emphasize errors for each

reference concept.

that in several cases, i.e. for several concepts, the two models have a

completely different prediction accuracy. This is reflected in the annotation

error rate of the hypotheses of the two models. In particular, there are cases

where the best hypothesis provided by one model is much less accurate than

the best hypotheses provided by the other model and there are cases where

the opposite situation holds. Using features of these hypotheses combined

with their scores provided by the respective models, it is possible to infer

when the re-ranking model provides a best hypothesis less accurate than

the best hypotheses of the SFST model. For these cases, we reject the

re-ranked best hypothesis and keep the first model best hypothesis. We

call this approach “Re-Rank Selection” (RRS).

In order to apply Re-Rank Selection in practice, we use the two mod-

69



5.2. HYPOTHESES SELECTION CRITERIA Hypotheses Selection

els posterior probabilities associated with the respective best hypothesis

as features and we train two thresholds for these scores. Given such opti-

mal thresholds, we choose the best SLU interpretation with the following

decision function:

BestHypothesis =

 HY PRR if Cfst/crf ≤ Tfst/crf and CRR ≥ TRR

HY Pfst/crf otherwise.

where HY PRR, HY Pfst/crf , Cfst/crf and CRR are the best hypotheses

and the score associated with the best hypotheses of the re-ranked (FST

or CRF) and re-ranking models, respectively. Tfst/crf and TRR are the two

thresholds trained for the decision function.

5.2 Hypotheses Selection Criteria

Together with the structured features design, the most important part

of our re-ranking framework is the hypotheses selection criteria. These

criteria affect how hypotheses are chosen to create pairs to be re-ranked.

In contrast with what we have done in our previous work, described in

[28, 27], the new hypotheses selection is more sophisticated and yields an

effective measure of semantic inconsistency for SLU hypotheses. In contrast

with error rate (ER), that is used to select the best hypothesis in training

phase, the inconsistency metric is measured directly on a single hypothesis

and so can be used for both training and classification phase since it doesn’t

make use of the reference annotation. This is a very important point for

re-ranking models since such a measure open a room for further studies

and improvements on hypotheses selection criteria.

The hypotheses selection criteria applied in previous works, was based

on the simple semantic-tags annotation of the input sentence. Using the

same SLU example reported in section 3.2 (“Buongiorno io ho un prob-

70



Hypotheses Selection Joint Models Improvements

lema con la stampante da questa mattina non riesco piuá stampare” which

translates to “Good morning I have a problem with my printer since this

morning I cannot print any more”),

null{Buongiorno io ho} HardwareProblem.type{un problema} Peripheral.type{con
la stampante} Time.relative{da questa mattina} HardwareOperation.negate{non}
null{riesco piu’} HardwareOperation.operationType{a stampare}

the corresponding segmentation and annotation produced by the SLU model is

null{Buongiorno} null{io} null{ho} HardwareProblem.type-B{un}
HardwareProblem.type-I{problema} Peripheral.type-B{con} Peripheral.type-I{la}
Peripheral.type-I{stampante} Time.relative-B{da} Time.relative-I{questa} ...

where not all tokens have been reported to keep readability. In previous work, all the

hypotheses were compared with the reference transcription via the edit-distance using

this representation, the best hypothesis was then used with all the other in the n-best list

to create pairs as described previously.

In classification phase, since the ER is measured with respect to a reference annota-

tion, no check was done on correctness of hypotheses. The only contraint was unicity of

hypotheses after re-segmentation of concepts, i.e. if the phrase“la mia stampante” (“my

printer”) is labeled as

Peripheral.type-I{la} Peripheral.type-I{mia} Peripheral.type-I{stampante}

since BIO-like markers are just a convention to yield one-to-one association between

words and concepts and the first word “la” is in any case the first word of the phrase,

this was re-segmented as

Peripheral.type-B{la} Peripheral.type-I{mia} Peripheral.type-I{stampante}

Beyond this constraint, the m-best with respect to the first model score were kept and

then re-ranked.

The new hypotheses selection criteria makes use of attribute-value extraction, which in

our case is a module based on regular expression rules. A set of rules is defined separately

for each concept and, if the input phrase matches one of these rules, the corresponding

value is returned. Using this module, the semantic interpretation extracted from the

example above would be:

71



Joint Models Improvements Hypotheses Selection

HardwareProblem.type[problem] Peripheral.type[printer] Time.relative[morning]
HardwareOperation.negate[non] HardwareOperation.operationType[print]

where, as described in Section 3.4, “null” concepts are removed since they don’t bring

any semantic content.

Notice that this representation, since hypotheses are unique in the m-best list, allows to

bring in the list much more various hypotheses, possibly more correct. For the same reason

this representation is more sparse, from different segmentations of the same concepts, the

same interpretation can be produced and only one, for each hypothesis, is kept. For

example, if the phrase “con la stampante” (litterally “with the printer”) is annotated in

different hypotheses as:

• Peripheral.type{con la stampante}

• null{con} Peripheral.type{la stampante}

• null{con} null{la} Peripheral.type{stampante}

always the same interpretation would be generated: Peripheral.type[printer]. So

from three different hypotheses, even if different segmentations are generated, using

attribute-value representation only one hypothesis is kept in the n-best list.

This sparseness implies that this hypotheses representation can be adopted only when

sufficiently big corpora are used, this way enough different instances are generated for

each input sentence and all the meaningful features for each corresponding hypothesis

can be captured in training phase. This is also the reason why this representation was

not used in previous work ([29],[28]), the previous version of the LUNA Italian corpus

was too small and experiments on the big MEDIA corpus are too expensive, in terms of

time, to perform preliminar studies.

Using this representation, in classification phase we can compute a consistency (or

inconsistency) metric on hypotheses. Since rules can extract values only from phrases

containing key words for each concept, e.g. from “con la” the value “printer” cannot

be extracted, while from “stampante”, even if not appearing in the training data, since

regular expressions can easily capture many different phrase variations, we can extract

the correct value, we can exploit this property to compute an inconsistency metric simply

as the number of possibly incorrect values in a hypothesis. A value, given a concept, is

correct if we have the same attribute-value pair in the training set.

Moreover, since usually a robust word categorization is designed for a given task, even

72



Hypotheses Selection Joint Models Improvements

values not appearing in the training set can be assessed for correctness. For example, the

corpus MEDIA was provided with a categorization file containing all the cities, the streets,

the proper names of places etc. annotated in the corpus as an application knowledge base.

Once the model recognize the correct concept (note that this is possible also on OOV

words thanks to these categories), e.g. “+localisation-ville” (“localization-city”)

in MEDIA, we can impose that the extracted value is in the “XVILLE” (“CITY”) category,

otherwise we can assess the given attribute-value pair as inconsistent.

Furthermore, if a phrase that should instantiate a specific concept is wrongly anno-

tated with another concept, the rules used for value extraction cannot extract any value,

and since an empty value is usually not admitted, also this can be used as inconsistency

measure. For example, again from MEDIA, if “Marseille” (a french city) is wrongly anno-

tated as “+localisation-rue” (“localization-street”, this happens since in MEDIA

there is also “rue de Marseille”, “Marseille Street”), rules will not be able to extract

any value since, for this specific concept, some prefixes are expected in the phrase, e.g.

“street”, “avenue”, “square” and so on, so no regular expression would match the given

phrase. Again, an empty value is usually not admitted for any concept so this would

mean that most probably the phrase has been annotated with a wrong concept.

Finally, for those values with an infinite domain, e.g. dates and phone numbers, the

format can be checked to provide a measure of value inconsistency. For example 30/02,

30/15 or 42/12 are not correct values for dates since February has only 28 days (or 29),

the months are only 12 and December has only 31 days, respectively.

Once this inconsistency metric is computed for all hypotheses, they are sorted on

increasing inconsistency values and the m-best are used in the classification phase for

re-ranking. Note that re-ranking is needed in any case since inconsistency is not perfectly

correlated to ER. Two hypotheses with slightly different inconsistency values can have

different ER. Thus, the top most consistent hypothesis is not necessarily the most correct

in terms of ER. Nevertheless, applying this metric to hypotheses in classification phase,

brings in the m-best hypotheses pool of each input sentence much better hypotheses, this

way the re-ranker is more likely to find a more correct one.

Beyond simple examples provided here, results will show that this method is very

effective and allows to improve significantly the “tradictional” re-ranking model.

73



Joint Models Improvements Hypotheses Selection

74



Chapter 6

Experimental results

Despite the fact discriminative re-ranking is not a new idea, the fact that we have applied

this approach to spoken language and we have not used syntactic analisys as the basis of

our structures, imposed a deep study on the behavior of models as a function of several

aspects involving both training and classification phases.

Given the high cost of experiments, not all cases have been studied on all corpora.

Instead, preliminar studies on models have been conducted on a smaller corpus and only

the most promising solutions have been applied to the other corpora.

This experimentation protocol could have missleaded our research line in some cases,

nervertheless it is fairly robust, first because we have compared our work with the best

state-of-the-art approaches, e.g. Conditional Random Fields, Support Vector Machines,

Maximum Entropy, Dynamic Bayesian Networks, second because a model working well in

all conditions (small, medium and larger corpora) should be preferred to a model providing

good results only in specific conditions.

In the remainder of this chapter, we describe first the corpora used for experiments,

then the experimental setup and finally all the results obtained with our joint models.

Experiments have been conducted with the aim of providing:

• Comparative results on the kernel structures designed for our tasks (Section 4.3)

• Comparative results on the training criteria

• Comparative results on the robustness of our re-ranking approach with respect to

the first model baseline

• Comparative results on the different joint models, FST Re-ranking and CRF Re-

ranking

75



6.1. CORPORA DESCRIPTION CHAPTER 6. EXPERIMENTAL RESULTS

ATIS training test

# turns 4,978 893

words concepts words concepts

# tokens 52,178 16,547 8,333 2,800

# Vocabulary 1,045 80 484 69

# OOV rate [%] – – 1.0 0.1

Table 6.1: Statistics of the ATIS training and test sets used in the experiments

MEDIA training development test

# sentences 12,908 1,259 3,005

words concepts words concepts words concepts

# tokens 94,466 43,078 10,849 4,705 25,606 11,383

# vocabulary 2,210 99 838 66 1,276 78

# OOV rate [%] – – 1.33 0.02 1.39 0.04

Table 6.2: Statistics of the MEDIA training, development and evaluation sets used for all

experiments.

• Comparative results on different tasks, in particular on training data size and task

complexity

• Comparative results on hypotheses selection criteria

• Comparative results on experiments conducted using increasing m-best list size

6.1 Corpora Description

The corpora used in our experiments are the most representative for Spoken Language

Understanding. They come from several years of research and provide several important

experimentation conditions:

• Different Languages: English, Italian, French and Polish

• Differnet sizes: from the Italian and English corpora to the French and Polish ones,

the size of the available training data changes significantly.

• Task complexity: from English to Polish, task complexity changes tremendously,

not only for the kind of task modeled, but also for issues inherent to the languages.

76



CHAPTER 6. EXPERIMENTAL RESULTS 6.1. CORPORA DESCRIPTION

LUNA Polish training development test

# sentences 12,908 1,259 3,005

words concepts words concepts words concepts

# tokens 53,418 28,157 13,405 7,160 13,806 7,490

# vocabulary 4,081 195 2,028 157 2,057 159

# OOV rate [%] – – 4.95 0.13 4.96 0.11

Table 6.3: Statistics of the Polish LUNA training, development and evaluation sets used

for experiments.

LUNA Italian training development test

# sentences 3,171 387 634

words concepts words concepts words concepts

# tokens 30,470 18,408 3,764 2,258 6,436 3,783

# vocabulary 2,386 42 777 38 1,059 38

# OOV rate [%] – – 4,22 0.0 3.68 0.0

Table 6.4: Statistics of the latest version of the LUNA Italian training, development and

evaluation sets used for all experiments.

• Data acquisition characteristics: some corpora have been aquired in ideal conditions

with the aim of providing data suitable for application development, other corpora

have been acquired in real conditions, basically with the aim of studying linguistic

phenomena or to provide more realistic conditions.

The Air Travel Information System (ATIS) corpus [26] has been used for the last

decade to evaluate models of Automatic Speech Recognition and Understanding. It is

made of single turns acquired with a Wizard of Oz (WOZ) approach, where users ask for

flight information. Statistics for this corpus are reported in Table 6.1.

The corpus MEDIA was collected within the French project MEDIA-EVALDA [8] for

development and evaluation of spoken understanding models and linguistic studies. The

corpus is composed of 1.257 dialogs (from 250 different speakers) acquired with a Wizard

of Oz (WOZ) approach in the context of hotel room reservations and tourist information.

Statistics on transcribed and conceptually annotated data are reported in Table 6.2.

The data for the Polish corpus has been collected at the Warsaw Transportation call-

center [59]. As part of the LUNA project, the manual annotation of these human-human

dialogues has been performed [71]. This corpus covers the domain of transportation infor-

mation like e.g. transportation routes, itinerary, stops, or fare reductions. Three subsets

77



6.1. CORPORA DESCRIPTION CHAPTER 6. EXPERIMENTAL RESULTS

LUNA Italian (tmp) training test

# turns 1,019 373

words concepts words concepts

# tokens 8,512 2,887 2,888 984

# Vocabulary 1,172 34 - -

# OOV rate [%] – – 3.2 0.1

Table 6.5: Statistics on the first, intermediate version, of the LUNA Italian corpus

have been created using the available data: a training set comprising approximately 8k

sentences, a development and an evaluation set containing roughly 2k sentences each. It

is the first SLU database for Polish, statistics of this corpus are shown in Table 6.3.

The LUNA Italian corpus, produced in the homonymous European project, is the

first Italian dataset of spontaneous speech on spoken dialogs. It is based on help-desk

conversations in a domain of software/hardware repairing [30]. The data is organized in

transcriptions and annotations of speech based on a new multi-level protocol. Experiments

described in this chapter have been conducted on two different version of this corpus: the

first version has been released in the middle of the LUNA project (approximately March

2008) and it is a small subset (250 dialogs) of the final version. The data of the final version

of the Italian corpus are extracted from 723 Human-Machine dialogs (HM) acquired with

a WOZ approach. The data have been split in training, development and test sets.

Statistics of this corpus are reported in Table 6.4. Additionally, also Human-Human

dialogs have been acquired, transcripted and annotated following the same protocol used

for Human-Machine dialogs. These data have been used in some of our previous work

([29]), but after the release of the final version of the corpus, Human-Machine data alone

were sufficient to conduct our studies and, even more, Human-Human dialogs were too

much noisy to provide releable models evaluation.

6.1.1 Differences among corpora

Hereafter, we report shared and different corpus aspects:

First, domain of the application; from this point of view ATIS, MEDIA and the Polish

corpora are rather similar, the first is a corpus of flight information and reservation, the

second is a corpus of hotel information and reservation, the third has been designed for

providing information of the Warsaw transportation system.

Second, data collection paradigm; all corpora, except Polish, have been acquired with

a WOZ approach but with a different setup. In ATIS the data acquisition unit is a single

78



CHAPTER 6. EXPERIMENTAL RESULTS 6.1. CORPORA DESCRIPTION

turn, where the users ask flight information. MEDIA and the LUNA Italian are corpora

of entire dialogs. The Polish corpus is a corpus of Human-Human dialogs.

Third, size of the data; LUNA is the smallest corpus (3.171 and roughly 1.000 turns for

training in the two different versions), while MEDIA is very big (almost 13.000 sentences

for training). ATIS and Polish are in the middle with roughly 5.000 and 8.000 sentences

for training.

Next, the task complexity is usually measured in terms of number of concepts with

respect to the size of the available training data. From this point of view the Italian

corpus, with only 42 concepts, would be the simplest task. ATIS and MEDIA would have

a comparable complexity since the former includes 69 concepts and the original number

of concepts in MEDIA is 65. Nevertheless MEDIA is much more complex since there are

concepts with different specifiers and modes (see [8]). Thus the real number of semantic

tags to be recognized in MEDIA increases to 99. The most complex task from this point

of view is the Polish corpus, with roughly 200 concepts.

It should be noted that the automatic annotation of ATIS can be easier than other SLU

tasks since: (a) most sentences have the form: “Information Request about” flights from

DEPARTURE CITY to ARRIVAL CITY TIME, where “Information Request about” is

one of several ways of asking information, DEPARTURE CITY and ARRIVAL CITY are

the names of two cities and TIME is the specification of a day and/or hour of departure.

This kind of sentences with small variations constitute more than 90% of the corpus. (b)

In the data available for the SLU task on ATIS, which is the same used in [81] and in

[41], concepts are almost always associated with a single token so there is no need of

segmenting them using BIO-like markers as shown in Section 3.2.

As an example the following ATIS sentence:

“I would like a flight from Phoenix to San Diego on April First”

is semantically annotated as:

null{I would like a flight} null{from} departute city{Phoenix} null{to} arrival city{San-Diego}

departure date.month{April} departure date.day number{first}

while, using the annotation style of the other corpora, the sentence would be annotated

as:

null{I would like a flight} departute city{from Phoenix} arrival city{to San Diego} depar-

ture date.month{April} departure date.day number{first}

in this case the concepts departute city and arrival city would have a span of two and

79



6.1. CORPORA DESCRIPTION CHAPTER 6. EXPERIMENTAL RESULTS

three words respectively. In other words, ATIS only concerns with the problem of token

labeling: no concept segmentation is performed in this task. For these reasons, our work

on ATIS only relates to concept labeling: values correspond in most cases to the word

surface forms or can be retrieved exactly from words.

Finally, the task complexity is also affected by the characteristics of utterances. ATIS

and MEDIA were acquired with a WOZ approach with optimal environmental setup (high

quality microphones and absence of noise in the channel). The LUNA Italian corpus has

been acquired in a noisy environment. Additionally, utterances in this corpus are rather

more spontaneous, this adds further noise. Furthermore, the annotation of the turns in

the Italian LUNA corpus has been done taking into account turn context. The same

words can be annotated with a different concept in case the context is different.

For example, the phrase “it is not working” can be a “HardwareOperation” in case

it refers to a “Peripheral”, while it is a “SoftwareOperation” if it refers to “Software”.

Beyond the trivial example, this annotation adds complexity to the task.

For these characteristics, even if the number of concepts to be recognized is smaller,

the Italian corpus is not simpler than the others.

Regarding the Polish corpus, since it is composed of Human-Human dialogs, as op-

posed to all the other corpora, it is by far the most complex task. Further complexity

is added from the characteristics of the Polish language, which shows some properties of

both inflexive (more than Italian and French, since it uses 7 cases and 3 genders) and

agglutinative languages (adjectives are often composed with the noun they refer to).

Additionally, many concepts are closely related. To emphasize the complexity of Polish

as an inflectional language with a relatively free word order, here are examples of different

ways of inflection for Polish location names:

• (jestem) na Polnejadj,fem,loc/Dkabrowskiegoadj,masc,gen

(I am) on Polna Street / Dkabrowskiego Street

• (jadȩ) z Polnejadj,fem,loc /Dkabrowskiegoadj,masc,gen

(I am coming) from Polna Street / Dkabrowskiego Street

• (jadȩ) na Polnkaadj,fem,acc / Dkabrowskiegoadj,masc,gen

(I am going) to Polna Street / Dkabrowskiego Street

In theses phrases are three different concepts describing places: location str, source str

and goal str (str is an abbreviations for street).

80



CHAPTER 6. EXPERIMENTAL RESULTS 6.2. EXPERIMENTAL SETUP

Figure 6.1: Comparison between the two approaches for mapping words/categories into

concepts used in the SFST model described in [81] (above) and the one used for our

modified SFST model (below).

6.2 Experimental Setup

The experimental setup reported in this section is in general referred to all experiments

described later. If experiments have been performed with different setup, this will be

specified case by case.

An important aspect regarding experiments is related to the SFST-based model de-

scribed in Section 3.3.1. During the research work described in this document, the SFST-

based model has been improved on different aspects. Practical processing problems have

been detected in the original model, thus we modified the structure of SFSTs involved

in concepts decoding. We give the explanation of these modifications with some exam-

ples. First, given the phrase “with my printer” that can be tagged with the concept

“Hardware”, the model described in [81] and our model perform mapping from words

to concepts (with the transducer λW2C , see Section 3.3.1) in two different ways, shown in

Picture 6.1, above for the original model and below for our model.

These two approaches have different advantages and disadvantages:

Since the model presented in [81] emits the concept tagging only after matching the

entire surface, it is more rigid. If the test set contains surfaces not seen in the training

set, the transducer cannot traverse the entire path reaching the final state, so no concept

is emitted. If for example in test phase the phrase “the printer” is given as input, that

should be tagged again as “Hardware”, the model would not tag the phrase since the fst

cannot be traversed with this phrase. Our approach would always tag the given surface

in these cases, the BIO markers used to segment the concept are just a convention to

yield a one-to-one association between words and concept tags, they are removed in a

post-processing phase to reconstruct the concept name.

On the other hand, our approach can produce insertion problems since it emits tagged

81



6.2. EXPERIMENTAL SETUP CHAPTER 6. EXPERIMENTAL RESULTS

words also if only partial phrases are given. Nevertheless this problem is unlikely since the

Stochastic Conceptual Language Model used as last step in the decoding process, gives

much higher scores to well formed phrases.

Another improvement of our model is in the generalization step of decoding (performed

by λG), mapping words into word categories.

The original SFST model performs the generalization step mapping a word into its

category. Categories are defined in an external application knowledge base. After the gen-

eralization phase, categories are mapped into concepts concatenated to the corresponsing

category. As an example, taken from the French corpus MEDIA, if the word “Marseille”

belongs to the category “CITY” and can support the concept “Location”, in the original

model there are the following steps, the first in the FST λG, the second in λW2C :

1. Marseille → CITY

2. CITY → CITY.LOCATION-B

where “B” is again the marker for concept beginning. This way the model can correctly

tag also city names not seen in the training set if these cities are defined in the knowledge

base: suppose the city “Bordeaux” is not in the training set, but it is defined as “CITY”

in the application data base, then the generalization FST maps “Bordeaux” into “CITY”

and the correct concept tagging can be performed.

Nevertheless, since the knowledge base of the application is defined a priori, with

no regards to which words realize the different concepts, it is possible that two words

realizing two different concepts belongs to the same category. In this situation the

two words can be tagged with each of the two concepts, even if this association was

not seen in the training set. For example, again from MEDIA, in the training set

there is the word “Italy” instantiating the concept “LOCALISATION-STREET” or

“LOCALISATION-COUNTRY” and the word “Alsace” instantiating the concept

“NAME”. “Italy” and “Alsace” belong to the same category “XCOUNTRY”.

This means that in the generalization FST λG there are the paths:

1. Italy → XCOUNTRY

2. Alsace → XCOUNTRY

then, in the FST mapping categories into concepts (λW2C) there are the paths:

82



CHAPTER 6. EXPERIMENTAL RESULTS 6.2. EXPERIMENTAL SETUP

1. XCOUNTRY → XCOUNTRY.LOCALISATION-STREET-B

2. XCOUNTRY → XCOUNTRY.LOCALISATION-COUNTRY-B

3. XCOUNTRY → XCOUNTRY.NAME-B

As concequence, “Italy” can be tagged also as “NAME” and “Alsace” can be tagged

as “LOCALISATION-STREET” or “LOCALISATION-COUNTRY”, regardless

if these associations were seen in the training set. In general, any word belonging to a

given category can be mapped to any concept associated to this category. Note that this

provide a very high generalization power, nevertheless it adds a lot of noise, the score given

by the SCLM alone (λSLM) will not discriminate between correct and wrong taggings, the

most frequent associations will be always preferred, taking into account also the context.

In order to overcome this problem, we have redefined the generalization step using

concept-dependent categories. Considering the same example above, the two steps of the

decoding process performed by λG and λW2C are, respectively:

1. Italy → XCOUNTRY.LOCALISATION

2. Alsace → XCOUNTRY.NAME

1. XCOUNTRY.LOCALISATION → XCOUNTRY.LOCALISATION-STREET-B

2. XCOUNTRY.LOCALISATION → XCOUNTRY.LOCALISATION-COUNTRY-B

3. XCOUNTRY.NAME → XCOUNTRY.NAME-B

Finally, another improvement with respect to the original FST model is in the tuning

of the SCLM. As explained before, instead of using AT&T tools to train the language

model, we use SRILM tools.

All these small improvements together, provide a more effective model with perfor-

mances much closer to state-of-the-art models with respect to its original implementation.

All the Stochastic Conceptual Language Models (SCLMs) that we apply in the experi-

ments either for the FST model baseline or to produce the input for the re-ranking models,

are trained with the SRILM toolkit [90]. All SCLMs are interpolated models to which

the Kneser-Ney discount technique has been applied [12]. With only exception for the

Polish corpus, where the best model resulted in a 4 -gram language model, for all the other

corpora 3 -grams are used. The SCLMs are converted into SFST using SRILM toolkit.

The decoding process for the SFST model is performed using AT&T FSM/GRM Tools

83



6.2. EXPERIMENTAL SETUP CHAPTER 6. EXPERIMENTAL RESULTS

[63]. N -grams order, best discount technique as well as other language model paramters

(e.g. minimum count for lower order n-grams) have been optimized on the development

set of each corpus.

The model used to obtain the SVM baseline for concept classification was trained

using YamCHA [48], available at http://chasen.org/∼taku/software/yamcha/. The CRF

model was trained with the CRF++ tool, available at http://crfpp.sourceforge.net/ (from

the same author of YamCHA). The setting that we used for it is equivalent to the one

described in [38], which is the state-of-the-art on the corpora we consider1. We used

slightly different features for SVM and CRF baselines: for both we used word categories

and morpho-syntactic features, for SVM we added some Yes/No features (e.g. “does

the word contain symbols?”, “does the word contain numbers?”,“is the word preceded

by symbols” etc.). The feature windows, i.e. the features around the current position

considered to predict the label for the current word, are different for the different tasks

when using CRF++: [-2, +2] for ATIS, [-1,+1] for MEDIA, [-3,+1] for Italian and [-1,+1]

for Polish. Only bigrams of concept tags can be used for CRF (see CRF++ web site

and [38] for more details). The window used for YamCHA instead is always [-3,+3] (see

YamCHA web site) and only the previous concept with respect to the current position is

used to predict the label for the current word. All these settings, like for SCLMs, have

been optimized on the different development sets.

The re-ranking models based on structure kernels and SVMs were trained using the

SVM-Light-TK toolkit (available at htttp://disi.unitn.it/moschitti). The number of hy-

potheses used for re-ranking was always set to 10.

For the ATIS experiments, we did not apply any parameter optimization, i.e. we used

default parameters or parameters from previous work. For the first version of the LUNA

Italian corpus (see Table 6.5), since no developement set was available, we optimized

parameters with a 3-fold cross-validation on the training set.

The results are expressed in terms of concept error rate (CER). This is a standard

measure based on the Levensthein alignment of sentences and it is computed as the

ratio between inserted, deleted and confused concepts and the number of concepts in the

reference sentence. When not specified, CER is computed only on attribute names (Attr),

otherwise CER is computed for both attribute names and values (Attr+Val). Regarding

attribute-value extraction techniques, in all our experiments and for both FST, SVM, CRF

baselines and for our joint models, we always used rule-based approaches, while results

1In [38], CRFs are compared with other four models (Stochastic Finite State Transducers, Support
Vector Machines, Machine Translation, Positional-Based Log-linear model) showing that it is by far the
best model on the MEDIA corpus.

84



CHAPTER 6. EXPERIMENTAL RESULTS 6.3. RESULTS DESCRIPTION

reported in [38], in [37] and all the other state-of-the-art results we will compare with,

unless it is specified explicitely, are obtained using combined rule-based and stochastic

approaches.

All models have been tested on two different kind of inputs: manual transcriptions of

utterances and automatic transcriptions. The latter were produced by speech recognizers

with a WER of 10.4% on the ATIS test set, 28.5% 27.0% on the Italian developemnt and

test sets respectively, 30.3%, 31.4%, 39.5% and 38.9% on MEDIA and Polish development

and test sets, respectively.

Additionally, only for the Italian task, FST Re-ranking has been applied also on

ASR lattices. As mentioned in Section 3.3.1, the SFST model is suitable to be applied

to word lattices, since the latter are naturally encoded as SFST. Also CRFs can be

encoded as SFST, but this is not possible with the publicly available tool we used. Some

work in this direction has been done by the LUNA project partner from RWTH Aachen

University (http://www.rwth-aachen.de/go/id/bdz/). At the moment, applying CRF

on word lattices doesn’t give any improvement with respect to using ASR 1-best, same

result is obtained applying FST Re-ranking, so, beyond some results shown in this work,

we didn’t spend any further effort to investigate in this direction.

In all cases the language model used for ASR is an interpolated model with Kneser-Ney

discount [12], which gives a better performance in most cases.

Another important point in our experiments relates to different corpora versions. Pre-

vious work ([29, 28]) as been done on different version of the Italian and French corpora,

so those results, in terms of the final scores, cannot be compared with the other experi-

ments reported here, but still they provide significant studies on our joint models as well

as on the structures used with kernels.

6.3 Results Description

6.3.1 Comparison of Training Approaches and Pairs Generation

Strategies

In the joint models based on re-ranking, the first model generates the m-best annotations,

i.e. the data used to train the re-ranker based on SVMs. Different training approaches

can be carried out based on the use of the corpus and the method to generate the m-

best list. We apply two different methods for training: Monolithic Training and Split

Training.

In the former, SFSTs are learned with the whole training set. The m-best hypotheses

85



6.3. RESULTS DESCRIPTION CHAPTER 6. EXPERIMENTAL RESULTS

generated by such models on the training set itself are then used to train the re-ranking

classifier. In other words, the data used to train the SFST and the data used to generate

the hypotheses are the same data, the training set of the corpus. This may seem a trivial

approach, nevertheless generative models like SFST don’t overfit complitely training data,

so erroneous hypotheses can still be generated.

In Split Training, the training data are divided in two parts to provide more various

hypotheses for each input sentence and to generate hypotheses on unseen data. More in

details, we train SFSTs on part 1 and generate the m-best hypotheses using part 2 as

a test set. Then we re-apply this procedure inverting part 1 with part 2. Finally, we

train the re-ranker on the merged m-best data. At the classification time, we generate

the m-best hypotheses on the test (or development) set using the SFSTs trained on all

training data (as usual).

Regarding the generation of the training instances 〈si, sj〉, we set m to 10 and we

choose alternatively one of the 10-best hypotheses as the second element of the pair, sj,

thus generating 10 different pairs.

The first element instead can be selected according to three different approaches:

(A): si is the manual annotation taken from the corpus;

(B) si is the most accurate annotation, in terms of the edit distance from the manual

annotation, among the 10-best hypotheses of the SFST model;

(C) as above but si is the best annotation among the 100-best hypotheses.

Experiments with these settings have been performed using also a perceptron (PCT)

as basic learning algorithm for the re-ranking models.

Results are shown in Tables 6.6, using Monolithic Training (MT), and 6.7, using

Split Training (ST). These tables show the best results obtained with the two training

approaches described above and the best semantic structure (described in Section 4.3)

chosen for each kernel used: “FLAT ” semantic tree for the Syntactic Tree Kernel (STK),

“FEATURES” semantic tree for Partial Tree Kernel (PTK) and “SK1 ” sequence struc-

ture for the String Kernel (SK). These results show: first, the perceptron is much less

effective than SVMs providing in many cases worst results with respect to the SFST

model baseline. Results are also very different using the two training approaches and the

different pairs generation strategies. This means that perceptron is most probably not

really suitable for SLU re-ranking in these conditions, even if some effective approaches

based on perceptron, e.g. [14], have been shown for syntactic parse re-ranking.

Comparing results of Table 6.6 and Table 6.7 we can conclude that SVMs is more

effective than perceptron and that “Split Training” (ST) is a better approach for learning

the re-ranker. This is suggested first by our intuition. MT learning provides biased hy-

86



CHAPTER 6. EXPERIMENTAL RESULTS 6.3. RESULTS DESCRIPTION

Monolithic Training
WOZ SVM PCT

STK PTK SK STK PTK SK

RR-A 18.5 18.6 19.1 24.2 28.3 23.3

RR-B 18.5 19.3 19.0 29.4 23.7 20.3

RR-C 18.5 19.3 19.1 31.5 30.0 20.2

Table 6.6: Results of experiments, in terms of Concept Error Rate (CER), on the LUNA

WOZ corpus using Monolithic Training approach. The baseline with FST and SVMs used

as individual models are 23.2% and 26.7% respectively.

Split Training
WOZ SVM PCT

STK PTK SK STK PTK SK

RR-A 20.0 18.6 16.1 28.4 29.8 27.8

RR-B 19.0 19.0 19.0 26.3 30.0 25.6

RR-C 19.0 18.4 16.6 27.1 26.2 30.3

Table 6.7: Results of experiments, in terms of Concept Error Rate (CER), on the LUNA

WOZ corpus using Split Training approach. The baseline with FST and SVMs used as

individual models are 23.2% and 26.7% respectively.

potheses since, as stated earlier, the data used to train SFST and to generate hypotheses

are the same. Even if generative models don’t overfit completely the training data, hy-

potheses generated in these conditions contain relatively few mistakes, that are essential

for the re-ranker in order to learn which structures are meaningful for both learning which

features are contained in correct hypotheses and which features are contained in wrong

hypotheses, so that to distinguish between them. Second, results are much more various

using ST approach and, in average, better than using MT. Third, results reported in these

section are obtained on the first temporary version of the LUNA Italian corpus, which is

a small and simple task. This explains results obtained with the Syntactic Tree Kernel

(STK) and MT approach in Table 6.6: the STK is more rigid than the other kernels,

since it doesn’t split tree children at each node. So using MT, that provides very accurate

hypotheses on such simple task, allows finding eventually the most significant features.

These conditions are specific for this task, using the STK kernel and, additionally, using

the semantic structure shown in Figure 4.2(a).

87



6.3. RESULTS DESCRIPTION CHAPTER 6. EXPERIMENTAL RESULTS

Structure STK PTK SK

FLAT 18.5 19.3 -
MULTILEVEL 20.6 19.1 -
FEATURES 19.9 18.4 -
SK1 - - 16.2
SK2 - - 18.5

Table 6.8: CER of SVMs using STK, PTK and SK on the LUNA Italian corpus (manual

transcriptions). The Baselines, FST and SVMs alone, show a CER of 23.2% and 21.0%,

respectively.

6.3.2 Comparison of Kernels and Semantic Structures

Table 6.8 shows the accuracy of different kernels applied to the different semantic struc-

tures described in Section 4.3: The simple “FLAT ” semantic tree, the “MULTILEVEL”

and “FEATURES” semantic trees. These experiments were conducted using the ap-

proach “ST ” for training and the strategies “C ” for pairs generation, that have shown

better results, on average, in the preliminar studies. Additionally, for these experiments

we have optimized kernel parameters, i.e. vertical decay factor for Syntactic Tree Kernel

and Partial Tree Kernel and sub-sequences length decay factor for Partial Tree Kernel and

String Kernel (see Section 3.3.4). Such results are reported also in our previous work [28]

and, like results in the previous section, are obtained using the first version of the LUNA

Italian corpus. We exploit this outcomes to motivate our choice of the best combination

of kernels and structures to be used for the comparison against the state-of-the-art. The

dash symbol appears where the structure cannot be applied to the corresponding kernel.

Note that for this task, re-rankers significantly improve the baseline results, i.e. 23.2%

(CER for FST) and 21.0% (CER for SVMs). For example, SVM re-ranker using SK, in

the best case, improves FST concept classifier of 23.2− 16.2 = 7 points.

Note also that the structures designed for trees yield rather different results depending

on the used kernel. We can see in Table 6.8 that the best result using STK is obtained

with the simplest structure (“FLAT ”) while with PTK the best result is achieved with the

most complex structure (“FEATURES”). This is due to the fact that STK does not split

the children of each node, as mentioned earlier, and so structures like “MULTILEVEL”

and “FEATURES” result too rigid and prevent STK to be effective. In contrast, the

structure “FLAT ” is rigid as well, but since it is very simple and has only one level of

nodes it can capture the most meaningful features.

Not all the results using different kernels and structures are reported for all corpora,

88



CHAPTER 6. EXPERIMENTAL RESULTS 6.3. RESULTS DESCRIPTION

our studies in this direction were conducted only on the Italian and on the French corpora.

It’s worth underline that as MEDIA is a more complex task (42 concepts in LUNA, 99 in

MEDIA) and it is a noticeable larger corpus, the more complex structures are also more

effective to capture word-concept dependencies.

Table 6.8 shows that a String Kernel with the structure “SK1 ” is the most effective

with a CER of 16.2%. Nevertheless the String Kernel is also the most complex kernel and

its computational complexity prevents using it on big corpora, e.g. MEDIA and the Polish

corpora. For this reasons, we have adopted the Partial Tree Kernel (PTK) with the most

complex tree structure “FEATURES” in all the following re-ranking experiments: this is

the best trade-off between accuracy (i.e. a CER of 18.4%) and computational complexity
2.

All the results reported so far made up our preliminar studies in order to understand

the performance of the re-ranking models as a function of training approaches, pairs

generation strategies, semantic structures and kernel function adopted. All the following

results have been performed using the best settings found in the preliminar studies:

• “Split Training” (ST) training approach

• “C ” strategy for pairs generation

• Partial Tree Kernel (PTK) as kernel function

• “FEATURES” semantic tree structure

Additionally, all results reported from now on are obtained on official version of cor-

pora, so they can be compared with state-of-the-art results that will be given along the

discussion.

6.3.3 Cross-Corpora Results Comparison

In this section we compare our joint models across different corpora, i.e. ATIS, MEDIA

and the LUNA Italian corpus, respectively.

In Table 6.9 are reported the results on the ATIS corpus. Given the characteristics

of this corpus discussed in Section 6.1.1, all models are very accurate, even using auto-

matic transcriptions coming from an ASR system. Nevertheless is worth discussing some

2Some other experiments have been performed on MEDIA for semantic structures and kernels com-
parison that have confirmed that this choice is the most effective, we have not reported these results since
on MEDIA, in some cases, experiments have not been possible for resource request problems, our choice
takes also these aspects into account

89



6.3. RESULTS DESCRIPTION CHAPTER 6. EXPERIMENTAL RESULTS

Model ATIStext (CER) ATISspeech (CER)

FST 6.7% 13.5%
SVM 6.9% 13.8%
CRF 7.1% 14.0%

FST+RR (PTK) 6.2% 13.2%

Table 6.9: Results of SLU experiments on the ATIS Corpus using manual (ATIStext) and

automatic transcriptions (ATISspeech), in the latter case Word Error Rate (WER) of the

ASR is 10.4%.

ATIS concepts counts

ArrivalCity 5043
DepartureCity 5018
DepartureDate.day name 1100
AirlineName 802
DepartureTime.period of day 683
DepartDate.day number 450
DepartDate.month name 435
DepartTime.time 426
RoundTrip 421
DepartTime.time relative 387

Table 6.10: Top most occurring concepts in the ATIS corpus.

interesting outcomes. The errors made on the ATIS test set are caused by an unbalanced

amount of instances of concepts. In Table 6.10 unigram counts of concepts in the ATIS

corpus are reported. As it can be seen from this counts, the concepts DepartureCity,

ArrivalCity and DepartureDate.day name are by far the most frequent (57.7% of

the total counts). This means, for instance, that the models are strongly biased to anno-

tate a city as Departure or Arrival city, even if the context “suggests” another concept.

Note that the re-ranking model, FST+RR (PTK), even in this situation, can improve

individual systems. The improvement is only .5% points on manual transcriptions, with

respect to the re-ranked FST model, since in any case the percentage of such errors with

respect to the total number of reference concepts is very small.

Experimens conducted on ATIS had the goal of comparing our models with previ-

ous state-of-the-art approaches, e.g. [41]. In particular, the Hidden Vector State model

described in [41] is compared with a FST model comparable, in terms of model character-

istics, with our FST baseline model. Nevertheless, we have explained how the FST model

90



CHAPTER 6. EXPERIMENTAL RESULTS 6.3. RESULTS DESCRIPTION

Model MEDIA(CER) LUNA IT(CER)
Attr Attr+Val Attr Attr+Val

FST 14.2% 17.0% 24.4% 27.4%
SVM 13.4% 15.9% 25.3% 27.1%
CRF 11.7% 14.2% 21.3% 23.5%
FST+RR 11.9% 14.6% 21.3% 23.7%

Table 6.11: Results of SLU experiments on the MEDIA and the Italian LUNA test sets

on manual transcriptions for both attribute names (Attr) and attribute values (Attr+Val)

Model MEDIA(CER) LUNA IT(CER)
Attr Attr+Val Attr Attr+Val

FST 28.9% 33.6% 36.4% 39.9%
SVM 25.8% 29.7% 34.0% 36.7%
CRF 24.3% 28.2% 31.0% 34.2%
FST+RR 25.4% 29.9% 32.7% 36.2%

Table 6.12: Results of SLU experiments on the MEDIA and the Italian LUNA test sets on

automatic transcriptions for both attribute names (Attr) and attribute values (Attr+Val)

extraction (ASR WER is 31.4% for MEDIA and 27.0% for LUNA IT)

we use is different from the one used in [81]. Even without the improvements described in

Section 3.3.1, with our SFST model we achieve a F-1 measure of 92.68%, which is already

fairly higher than the result achieved in [41] (89.28%). Beyond this comparison on ATIS,

the remainder of our experiments are performed on the other three corpora considered in

this work.

Table 6.11 shows the results of the SLU experiments on the MEDIA and Italian LUNA

test sets using the manual transcriptions of spoken sentences. Note that on a big corpus

like MEDIA, the baseline models (FST and CRF) can be accurately learned thus less

errors can be “corrected” (this is the effect of re-ranking from another point of view).

As a consequence, the re-ranking approach does not outperforms CRF, that results the

best model, but it still improves the FST’s baseline of 2.3% points (16.2% of relative

improvement).

The behavior of these models doesn’t change on automatic transcriptions from ASR,

shown in Table 6.12, where CRF shows a better robustness to the noisy speech input.

In any case a good performance is obtained again also with the re-ranking model, which

improves significantly the FST model baseline in all cases. For example, on the MEDIA

corpus, for attribute-value extraction, the re-ranking model improves the baseline of 3.7%

91



6.3. RESULTS DESCRIPTION CHAPTER 6. EXPERIMENTAL RESULTS

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

100 500 1000 2000 3000 4000 5000 6000 

C
ER

 

Training Sentences 

FST 
CRF 
RR 

(a) Learning Curve on MEDIA corpus using the
RR model based on SVMs and STK

15 

20 

25 

30 

35 

40 

45 

50 

55 

100 300 500 700 1000 

C
ER

 

Training Sentences 

FST 
CRF 
RR 

(b) Learning Curve on LUNA corpus using the RR
model based on SVMs and SK

Figure 6.2: Learning curves on MEDIA and LUNA corpora using FST, CRF and RR on

the FST hypotheses

points (13.1% relative improvement).

6.3.4 Impact of Training Data Size

The different performance of the re-ranking model on the LUNA and MEDIA corpora,

in terms of achieving the state-of-the-art, is due partially to the task complexity and

partially to the heavy optimization of CRFs on MEDIA corpus (see [39, 38]). The re-

ranking model can be relevantly improved as well with respect to several aspects, e.g.

by applying parameter optimization, by designing new structural features, improving the

re-ranked model baseline etc.

Moreover, with the settings described above, the re-ranking models achieve the highest

accuracy for automatic concept annotation when a small data set like the Italian one is

used. To show this, in figures 6.2(a) and 6.2(b), we report the learning curves obtained

using an increasing number of training sentences on the MEDIA and LUNA corpora,

respectively. To draw the first plot, we used a re-ranker based on STK (and the FLAT

tree), which is less accurate than the other kernels but also the most efficient in terms of

training time, so more appropriate for this expensive experiment on MEDIA. The second

plot refers to the re-ranker accuracy using SK applied to SK1 structure, which is the best

on the Italian corpus and still can be applied on such small corpus.

In these figures, the FST baseline performance is compared with re-ranking (RR) and

a Conditional Random Field (CRF) model. The above curves clearly shows that for

small datasets the RR model is better than CRF whereas when the data increases, CRF

92



CHAPTER 6. EXPERIMENTAL RESULTS 6.3. RESULTS DESCRIPTION

accuracy approaches the one of the RR.

Regarding the use of kernels two main findings can be derived:

• Kernels producing a high number of features, e.g. SK, produce accuracy higher than

kernels less rich in terms of features, e.g. STK. In particular STK is improved by

18.5− 16.2 = 2.3 points (Table 6.8).

• Although the training data is small, the re-rankers based on kernels appear to be very

effective. This may also open a room of discussion about the burden of annotating

large amount of data.

6.3.5 Impact of Re-Rank Selection and Hypotheses Selection

Criteria

Results described in this section aims at showing the benefits of the improvements that we

have described in Chapter 5: Re-Rank Selection (RRS), that applies confidence scores to

choose a posteriori between the best hypothesis provided by the baseline models and the

one provided by the re-ranking model, and the hypotheses selection criteria, that allow

selecting hypotheses kept among the m-best to be re-ranked depending on an inconsistency

metric.

Results obtained applying RRS strategy are shown in Table 6.13. These results show

that the applied strategy always brings some improvements, more on Speech Input (.8%

points in the best case, for attribute name&values extraction on the Italian test set) than

Text Input (.4% points in the best case on MEDIA test set for attribute name&values

extraction). Note that the improvements, in particular on MEDIA, even if small, are

still significant since both baseline and re-ranking models are already very accurate. It

is important to report that effective re-ranking models, using also the score provided by

the re-ranked model, were studied in [14]. There is a big difference between our models

and the approach proposed in [14]. In the latter, the score is used directly as feature in

training phase, so that to learn correlation between features contained in the hypotheses

and the corresponding probability provided by the baseline model. In our work we use this

score in a post-processing step, combined also with re-ranker score, to learn thresholds

and decide when it is more likely that the best hypothesis provided by the baseline model

is more correct than the best hypothesis provided by the re-ranking model. We have run

some experiments using also the approach described in [14]. The resulting models are

more accurate than the “normal” re-ranking models, but significantly less than models

resulting when applying our RRS approach.

93



6.3. RESULTS DESCRIPTION CHAPTER 6. EXPERIMENTAL RESULTS

Text Input(CER) Speech Input(CER)
MEDIA LUNA-IT MEDIA LUNA-IT

Model Attr Attr+Val Attr Attr+Val Attr Attr+Val Attr Attr+Val

FST 14.2% 17.0% 24.4% 27.4% 28.9% 33.6% 36.4% 39.9%
SVM 13.4% 15.9% 25.3% 27.1% 25.8% 29.7% 34.0% 36.7%
CRF 11.7% 14.2% 21.3% 23.5% 24.3% 28.2% 31.0% 34.2%

FST+RR 11.9% 14.6% 21.3% 23.7% 25.4% 29.9% 32.6% 36.2%
FST+RRS 11.7% 14.2% 21.0% 23.5% 25.0% 29.2% 31.8% 35.5%

Table 6.13: Results of SLU experiments on the MEDIA and the Italian LUNA test sets

on manual and automatic transcriptions for both attribute names (Attr) and attribute

values (Attr+Val) using also the Re-Rank Selection strategy for the re-ranking model

(RRS)

Applying the new Hypotheses Selection Criterion (HSC) described in Chapter 5 brings

further improvements on the re-ranking model performance. A very important point in

using the HSC solution is that it allows to re-rank hypotheses generated by any kind of

SLU model. Re-ranking models described so far were based only on the SFST model,

i.e. a generative model. Models with different characteristics, e.g. CRF, a discriminative

model, are less suitable for re-ranking since they learn a very skewed distribution fitting

the training data. Hypotheses generated with these models are much less various than

those that can be produced using a generative model. Since re-ranking needs a relatively

high number of different hypotheses in order to learn all the meaningful features, a dis-

criminative model cannot provide such variaty of hypotheses thus affecting the re-ranking

performance. Applying the new hypotheses selection criterion, as explained in Section 5.2,

enlarge remarkably the variety of hypotheses kept in the m-best list and brings in the

list possibly more correct hypotheses. Thanks to this selection criterion, we can apply

re-ranking also to discriminative models. The model we chose is CRF, which has shown

very good performances in several SLU tasks [81, 38].

Results are depicted in Table 6.14 and they show that the new Hypotheses Selec-

tion Criterion brings on average larger improvements than what it can be reached with

only RRS strategy. For example on the Italian test set, re-ranking FST hypotheses

(“FST+HSC” in the table), we can gain 1.6% points on Speech Input for attribute

name&values extraction (Attr+Val), while on MEDIA the best gain is 1.2% points, again

on Speech Input and on “Attr+Val” extraction. Even larger gains can be achieved re-

ranking CRF hypotheses (“CRF+HSC”), especially on Speech Input. For example, on

the Italian test set, 2% points reduction is achieved on both attribute name (Attr) and

94



CHAPTER 6. EXPERIMENTAL RESULTS 6.3. RESULTS DESCRIPTION

Text Input(CER) Speech Input(CER)
MEDIA LUNA-IT MEDIA LUNA-IT

Model Attr Attr+Val Attr Attr+Val Attr Attr+Val Attr Attr+Val

FST 14.2% 17.0% 24.4% 27.4% 28.9% 33.6% 36.4% 39.9%
SVM 13.4% 15.9% 25.3% 27.1% 25.8% 29.7% 34.0% 36.7%
CRF 11.7% 14.2% 21.3% 23.5% 24.3% 28.2% 31.0% 34.2%

FST+RR 11.9% 14.6% 21.3% 23.7% 25.4% 29.9% 32.6% 36.2%
FST+HSC 11.5% 14.0% 20.7% 22.8% 24.9% 28.7% 31.5% 34.6%
CRF+HSC 11.2% 13.8% 19.9% 21.9% 22.9% 27.2% 29.0% 32.2%

Table 6.14: Results of SLU experiments on the MEDIA and the Italian LUNA test sets

on manual and automatic transcriptions for both attribute (Attr) names and attribute

values (Attr+Val) using also an improved Hypotheses Selection Criterion (HSC)

attribute name&value extraction (Attr+Val), i.e. 6.5% and 5.8% relative improvement,

respectively. Relative improvements yielded by CRF re-ranking on MEDIA are smaller,

due to the fact that CRF baseline is already very accurate on such large corpus.

Combining RRS and HSC together provides further and significant improvements.

This is someway intuitive since, RRS thresholds are trained on the development set re-

ranking output, which contains more correct hypotheses when using also HSC. Results

for these experiments are shown in Table 6.15, where FST and CRF Re-ranking using

RRS and HSC have been shortened as “FST+Imp.” and “CRF+Imp.”, standing for

Improvements (over the re-ranking model).

The most significant improvements with respect to the baseline model are achieved

with FST Re-ranking (“FST+Imp.”): 18.8% (from 17.0% to 13.8%) relative improvement

on Text Input and attribute name&values extraction for MEDIA; 16.1% (from 33.6%

to 28.2%) relative improvement on Speech Input and attribute name&values extraction

again for MEDIA; 21.5% and 14.8% relative improvement on the same tasks for the Italian

corpus.

Relative improvements using CRF Re-ranking (“CRF+Imp.”) are smaller but, with

absolute CER of 22.7% and 26.3% on Speech Input for the MEDIA corpus, we provide

new State-Of-The-Art results for this task (compared with [38]).

6.3.6 Robustness with Respect to Re-ranked Model Baseline

The small improvements for the SFST model described in Section 3.3.1 have been imple-

mented during the research work described in this document. This means that we have

95



6.3. RESULTS DESCRIPTION CHAPTER 6. EXPERIMENTAL RESULTS

Text Input(CER) Speech Input(CER)
MEDIA LUNA-IT MEDIA LUNA-IT

Model Attr Attr+Val Attr Attr+Val Attr Attr+Val Attr Attr+Val

FST 14.2% 17.0% 24.4% 27.4% 28.9% 33.6% 36.4% 39.9%
SVM 13.4% 15.9% 25.3% 27.1% 25.8% 29.7% 34.0% 36.7%
CRF 11.7% 14.2% 21.3% 23.5% 24.3% 28.2% 31.0% 34.2%

FST+RR 11.9% 14.6% 21.3% 23.7% 25.4% 29.9% 32.6% 36.2%
FST+Imp. 11.3% 13.8% 19.2% 21.5% 24.5% 28.2% 30.7% 34.0%
CRF+Imp. 11.1% 13.2% 19.0% 21.1% 22.7% 26.3% 28.3% 31.4%

Table 6.15: Results of SLU experiments on the MEDIA and the Italian LUNA test sets

on manual and automatic transcriptions for both attribute (Attr) names and attribute

values (Attr+Val) using an improved Hypotheses Selection Criterion together with the

Re-Rank Selection strategy (Imp. stands for improvements for the re-ranking model)

been able to perform re-ranking experiments on two different version of the same base-

line model. As consequence we had the opportunity to test another important feature

of our joint models: robustness with respect to the re-ranked individual model baseline

performance. We perfomed exactly the same set of re-ranking experiments using also the

improved version of the SFST model. Results are shown in Table 6.16. The improved

SFST model is named FST++ in this table, so the corresponding re-ranking model is

FST+++Imp.. Results are given together with those achieved with the “traditional”

SFST model for comparison. It can be noticed that FST++ has a significant improve-

ment over the previous SFST model, especially on the Italian corpus, with a relative

improvement of 15.7% on Text Input and 6.8% on Speech Input (both on Attr+Val).

Comparing the re-ranking results obtained with the two SFST models, we can see that

RRS combined with HSC provide a great robustness with respect to the SFST baseline,

in the sense that final results are only slightly different from those previously discussed,

despite the relatively high improvements achieved with the FST++ model. The best

improvements are again on the Italian corpus (since it is smaller it leaves larger margin

for improvements), with 4.1% relative improvement on Speech Input and for attribute

name& values extraction. Improvements are much less significant on the larger MEDIA

corpus.

The improved SFST with Re-ranking based on RRS and HSC, as well as a model of

CRF re-ranking, have been applied also to the Polish corpus, introduced in Section 6.1.

Results for these experiments are depicted in Table 6.17. As mentioned earlier while

introducing the task, Polish is the most difficult language among those considered in

96



CHAPTER 6. EXPERIMENTAL RESULTS 6.3. RESULTS DESCRIPTION

Text Input(CER) Speech Input(CER)
MEDIA LUNA-IT MEDIA LUNA-IT

Model Attr Attr+Val Attr Attr+Val Attr Attr+Val Attr Attr+Val

FST 14.2% 17.0% 24.4% 27.4% 28.9% 33.6% 36.4% 39.9%
FST++ 13.4% 16.2% 20.1% 23.1% 28.3% 32.9% 33.3% 37.2%
SVM 13.4% 15.9% 25.3% 27.1% 25.8% 29.7% 34.0% 36.7%
CRF 11.7% 14.2% 21.3% 23.5% 24.3% 28.2% 31.0% 34.2%

FST+RR 11.9% 14.6% 21.3% 23.7% 25.4% 29.9% 32.6% 36.2%
FST+Imp. 11.3% 13.8% 19.2% 21.5% 24.5% 28.2% 30.7% 34.0%
FST+++Imp. 11.1% 13.3% 18.3% 20.9% 24.3% 27.8% 29.2% 32.6%
CRF+Imp. 11.1% 13.2% 19.0% 21.1% 22.7% 26.3% 28.3% 31.4%

Table 6.16: Results of SLU experiments on the MEDIA and the Italian LUNA test sets on

manual and automatic transcriptions for both attribute (Attr) names and attribute values

(Attr+Val) using an improved version of the FST model, FST++, and the improvements

for the re-ranking model described in Chapter 5 (Imp. stands for improvements for the

re-ranking model)

our work. Additinal complexity is introduced by the task itself that, with roughly 200

concepts to be recognized, is by far the most difficult task.

These aspects affect models performances, especially on Speech Input where the WER

of the ASR is the highest among the corpora used in our experiments (38.9%). As con-

sequence, error rates on speech input for this task are very high, no model can go below

50%. On text input, the joint models based on discriminative re-ranking are again the

most accurate, with a relative improvement of 11.1% on attribute name&values extraction

using FST Re-ranking approach (“FST+++Imp.”).

The re-ranking model based on the new version of the SFST model, FST++, and on

the RRS and HSC strategies results in our best joint model using FST. As mentioned

at the beginning of this chapter, the FST model is suitable to be used with ASR word

lattices, since the latter can be easily encoded as SFST. Applying the re-ranking model

to word lattices requires a slightly different processing procedure with respect to the one

we adopt when processing ASR 1-Best. In the latter case, the ASR 1-Best is converted

into a SFST representation and then processed as a normal text sentence, as explained in

Section 3.3.1. When processing lattices the following steps are performed:

1. The lattice is converted from HTK3 format to AT&T FSM format, using acoustic

3http://labrosa.ee.columbia.edu/doc/HTKBook21/node257.html

97



6.3. RESULTS DESCRIPTION CHAPTER 6. EXPERIMENTAL RESULTS

POLISH Text Input(CER) Speech Input(CER)
Model Attr Attr+Val Attr Attr+Val

FST++ 21.9% 27.1% 57.9% 64.0%
SVM 27.3% 31.2% 58.1% 61.5%
CRF 21.9% 25.9% 56.7% 60.3%
FST+++Imp. 19.5% 24.1% 56.5% 61.3%
CRF+Imp. 21.3% 24.5% 55.7% 59.1%

Table 6.17: Results of SLU experiments on the POLISH corpus on manual (Text Input)

and automatic (Speech Input) transcriptions for both attribute names (Attr) and attribute

values (Attr+Val) extraction (ASR WER is 38.9%)

LUNA-IT Speech 1-Best Input(CER) Speech Lattice Input(CER)
Model Attr Attr+Val Attr Attr+Val

FST++ 33.3% 37.2% 36.6% 41.2%
FST+++Imp. 29.2% 32.6% 32.6% 36.3%

Table 6.18: Results of SLU experiments on the Italian corpus using ASR 1-Best and ASR

Lattices as input. The Oracle Error Rate over words of lattices is 22.8%

score as weight.

2. The lattice is rescored with a stochastic language model trained on the training set

of the corpus (the language model scale factor is 11, optimized on the development

set)

3. The lattice, that is representend as a SFST, is composed with SFSTs constituting the

SLU model described in Section 3.3.1 (the scale factor of the stochastic conceptual

language model is 4, optimized on the development set).

4. From the resulting SFST, up to 1.000 hypotheses are generated, evaluated with the

semantic inconsistency metric, re-sorted with respect to the inconsistency and the

m-best are kept for re-ranking.

The results obtained on ASR lattices are shown in Table 6.18, compared with results

obtained using ASR 1-Best. The latter results are significantly better than results on

lattices (between 3 and 4 percent points). This is someway surprisingly, since WER on

ASR 1-best is worst than Oracle Error Rate of lattices (27% and 22.8% respectively).

Nevertheless working on lattices introduces a lot of noise, the re-ranking approach based

on SFST is affected by noise more than other approaches, as it can be seen comparing

98



CHAPTER 6. EXPERIMENTAL RESULTS 6.3. RESULTS DESCRIPTION

FST and CRF re-ranking results. As a consequence, even applying HSC doesn’t allow

improving results obtained using ASR 1-best as input. Further studies of how to better

constrain hypotheses generated from lattices are needed, the oracle error rate motivates

this work. Some studies are in progress, but this is left as a future work.

6.3.7 Impact of the M -Best List Size

An important point that should be considered when using re-ranking models is the quality

of hypotheses used for training. RRS is a post-processing step, so it doesn’t impact on

the training phase. The Hypotheses Selection Criteria affect training since allows to

select different hypotheses, possibly more correct, that will be used to train the re-ranker.

The best hypothesis in each pool generated from the same input sentence is selected to

build pairs, so that to provide examples of meaningful features, useful to capture the

most significant word-concept dependencies. Beyond this, no further constraint is used in

training phase. The best hypothesis taken from each pool can contain errors, i.e. is not

an oracle. This means that the re-ranking model is learned using also features coming

from wrong concepts tagging.

In general, it is important to provide these features since, also at classification phase,

the best hypothesis provided by the baseline model for a sentence can be not an oracle.

Although, it is interesting to put additional constraints on the quality of hypotheses used

for training and learning a re-ranking model with these settings. As a general approach,

we can keep only those pool of hypotheses where the best has an error rate lower than a

given threshold. As a particular case, we can keep pool of hypotheses only if the best is

an oracle.

We have run some experiments using these settings. Since not for all sentences can

be provided an oracle interpretation, and hypotheses generated from these sentences are

not kept, the coverage in terms of words and features is worst, roughly 30% less than

using all hypotheses. In order to overcome this problem, at least to augment the coverage

if terms of tokens, we modified the “FEATURES” semantic structure (Figure 4.3) using

also prefixes of words in the leaves. The resulting models, since less training instances

are provided, are roughly 30% smaller in terms of support vectors, up to 7 times faster in

training phase and up to 4 times faster in classification phase. This allows to enlarge the

test set size, keeping more than 10-best hypotheses to be re-ranked in classification phase.

We have tried some experiments with an exponentially encreasing number of hypotheses,

i.e. 10, 16, 32 and 64.

Results for these experiments are reported in Table 6.19 for the Italian corpus and in

99



6.3. RESULTS DESCRIPTION CHAPTER 6. EXPERIMENTAL RESULTS

LUNA-IT FST+++Imp. CRF+Imp.

Text Input Speech Input Text Input Speech Input
n-best size Attr Attr+Val Attr Attr+Val Attr Attr+Val Attr Attr+Val

10-best 18.5% 21.0% 29.0% 32.4% 19.8% 21.5% 28.7% 31.9%
16-best 18.1% 20.5% 28.7% 32.2% 20.1% 21.8% 28.7% 32.0%
32-best 18.2% 20.8% 28.8% 32.4% 20.2% 21.9% 28.5% 31.9%
64-best 17.9% 20.3% 28.7% 32.2% 20.4% 22.1% 28.8% 32.2%

Table 6.19: Results of SLU experiments on the Italian LUNA test set on manual and

automatic transcriptions for both attribute (Attr) names and attribute values (Attr+Val)

as a function of the m-best list size, from 10 to 64

Table 6.20 for the French MEDIA corpus. As it was expected given the worst coverage

in terms of tokens, results on Text Input using 10-best hypotheses are slightly worst

than those obtained using the same number of hypotheses in classification phase and

keeping all the hypotheses for training phase. Nevertheless, using a FST Re-ranking model

(“FST+++Imp.”) on the Italian corpus, as the test set size encreases the performance

improves previous re-ranking models. Additionally, on Speech Input these model is more

robust. Even when using 10-best hypotheses for classification, despite the worst coverage

in training phase, the results are slightly better than those shown in Table 6.16, improving

further when using more than 10-best hypotheses: the best result, taking both Text and

Speech Input into account, is obtained using 64-best hypotheses, leading to an average

absolute improvement of .5% points. The same model on MEDIA has a different behavior.

On Text Input the performance of previous models is never reached, but this is achieved

on Speech Input using 16-best hypotheses.

Different interpretations hold for the CRF based re-ranker (“CRF+Imp.”). Results

are basically always the same, with very small variations. The only good point is that the

same performance as previous models can be reached on Speech Input, but with a smaller

and faster model. Results can be explained by the lack of coverage in terms of tokens, by

which CRF re-ranking is more affected.

Beyond some good achievement yielded by these models, a very important point can

be concluded from the results described in this section: important information for learning

accurate re-ranking models are carried also by wrong hypotheses, which provide negative

features allowing a better discrimination for positive ones.

All the best results discussed so far, taking all the experiments into account, are

summarized in Table 6.21. These results show an impressive reduction of error rates

achieved during our research work. From the first SFST model, reaching on Speech Input

100



CHAPTER 6. EXPERIMENTAL RESULTS 6.3. RESULTS DESCRIPTION

MEDIA FST+++Imp. CRF+Imp.

Text Input Speech Input Text Input Speech Input
n-best size Attr Attr+Val Attr Attr+Val Attr Attr+Val Attr Attr+Val

10-best 11.5% 13.5% 24.6% 28.1% 11.5% 13.4% 23.0% 26.4%
16-best 11.5% 13.6% 24.3% 27.9% 11.5% 13.4% 22.7% 26.3%
32-best 11.5% 13.7% 24.5% 28.3% 11.5% 13.5% 22.9% 26.3%
64-best 11.5% 13.7% 24.5% 28.4% 11.5% 13.5% 22.9% 26.4%

Table 6.20: Results of SLU experiments on the MEDIA test set on manual and auto-

matic transcriptions for both attribute (Attr) names and attribute values (Attr+Val) as

a function of the m-best list size, from 10 to 64

Text Input(CER) Speech Input(CER)
MEDIA LUNA-IT MEDIA LUNA-IT

Model Attr Attr+Val Attr Attr+Val Attr Attr+Val Attr Attr+Val

FST 14.2% 17.0% 24.4% 27.4% 28.9% 33.6% 36.4% 39.9%
FST++ 13.4% 16.2% 20.1% 23.1% 28.3% 32.9% 33.3% 37.2%
CRF 11.7% 14.2% 21.3% 23.5% 24.3% 28.2% 31.0% 34.2%

FST+++Imp. 11.1% 13.3% 17.9% 20.3% 24.3% 27.8% 28.7% 32.2%
CRF+Imp. 11.1% 13.2% 19.0% 21.1% 22.7% 26.3% 28.3% 31.4%

Table 6.21: Overall improvement achieved during our research work, FST and CRF base-

lines are shown together with improvement of the FST baseline (FST++) and results

achieved with the best joint models, FST+++Imp. and CRF+Imp., taking all improve-

ments into account.

28.9% 33.6% 36.4% 39.9% concept error rates on MEDIA and Italian corpora, respectively,

to the best re-ranking models described in this work, with concept error rates 22.7% 26.3%

28.3% 31.4% on the same tasks, resulting in relative improvements of 21.5%, 21.7%, 22.3%

and 21.3%.

In order to show how much results can be further improved, we provide Oracle Error

Rates (OER) of our joint models, for both attribute name and attribute name&values

extraction, on both Text and Speech input and for all corpora. The Oracle Error Rate in

this case is computed over hypotheses, i.e. the best hypothesis is taken among the m-best

used in classification. This is different from how oracle is usually computed, i.e. aligning

a graph with the reference, as it was done for OER over words computed on ASR lattices

in previous section.

In Table 6.22 oracle error rates are given on the Italian corpus, over increasing number

101



6.3. RESULTS DESCRIPTION CHAPTER 6. EXPERIMENTAL RESULTS

LUNA-IT FST+++Imp. CRF+Imp.

Text Input Speech Input Text Input Speech Input
n-best size Attr Attr+Val Attr Attr+Val Attr Attr+Val Attr Attr+Val

10-best 11.5% 13.3% 21.5% 24.2% 13.7% 15.0% 21.0% 23.1%
16-best 10.7% 12.6% 20.6% 23.6% 12.9% 14.1% 20.2% 22.3%
32-best 9.7% 11.6% 19.0% 22.0% 11.8% 12.9% 18.7% 20.6%
64-best 9.0% 10.8% 18.3% 21.2% 10.7% 11.8% 17.9% 19.8%

Table 6.22: Oracle Error Rates (OER) over increasing n-best list size for the Italian test

set on both Text and Speech input and for both attribute name (Attr) and attribute value

extarction (Attr+Val)

MEDIA FST+++Imp. CRF+Imp.

Text Input Speech Input Text Input Speech Input
n-best size Attr Attr+Val Attr Attr+Val Attr Attr+Val Attr Attr+Val

10-best 6.2% 7.9% 18.8% 21.7% 6.6% 8.1% 18.0% 20.6%
16-best 5.8% 7.4% 18.2% 21.0% 6.2% 7.6% 17.4% 20.0%
32-best 5.5% 7.1% 17.6% 20.3% 5.8% 7.2% 16.8% 19.3%
64-best 5.1% 6.5% 17.1% 19.7% 5.5% 6.8% 16.3% 18.7%

Table 6.23: Oracle Error Rates (OER) over increasing n-best list size for the French

MEDIA test set on both Text and Speech input and for both attribute name (Attr) and

attribute value extarction (Attr+Val)

of hypotheses. In the same way, we provide OER on MEDIA in Table 6.23. Oracles on the

Polish corpus are depicted in Table 6.24, only using 10-best hypotheses for classification.

Finally, SLU oracles for lattices of the Italian test set are reported in Table 6.25.

Despite the good results achieved, the oracles in these tables show that further large

improvements can be achieved, a lot of work is still needed to reach satisfactory results.

In particular, Table 6.25 shows that oracles on lattices are slightly worst than oracles on

ASR 1-best, this means that more hypotheses should be generated in order to capture the

most correct in the m-best list. Combining the ASR lattice word space with SLU model

semantic space results in a huge SLU search space. Eventually 1.000 hypotheses are not

sufficient to include the most correct ones. Another explenation is that a more restrictive

semantic inconsistency metric should be defined on such noisy input.

102



CHAPTER 6. EXPERIMENTAL RESULTS 6.3. RESULTS DESCRIPTION

POLISH Text Input(CER) Speech Input(CER)
Model Attr Attr+Val Attr Attr+Val

FST Re-ranking 11.2% 15.3% 48.3% 52.3%
CRF Re-ranking 13.3% 15.9% 45.4% 47.4%

Table 6.24: Oracle Error Rates (OER) on the POLISH corpus test set on both Text and

Speech input for attribute name (Attr) and attribute value (Attr+Val) extraction for the

two re-ranking models described in this work, “FST Re-ranking” and “CRF Re-ranking”

LUNA-IT Speech 1-Best Input(CER) Speech Lattice Input(CER)
n-best size Attr Attr+Val Attr Attr+Val

10-best 21.5% 24.2% 22.1% 24.9%
16-best 20.6% 23.6% 21.8% 24.6%
32-best 19.0% 22.0% 19.9% 22.7%
64-best 18.3% 21.2% 18.9% 21.4%

Table 6.25: Oracle Error Rates (OER) on the Italian test set using ASR 1-best (Speech

1-Best Input) and ASR lattice (Speech Lattice Input) speech input.

6.3.8 Comparison with State-Of-The-Art

As a final models comparison, needed to show where our work is placed with respect to

the state-of-the-art, we have reported performances of all the best SLU models used in

the last decade for SLU. This comparison is made on the MEDIA task since it is the

only corpus on which all the reported models have been tested. In the comparison are

included all the models described in Section 3.3, in particular we provide results for the

Stochastic Finite State Transducer model (FST), for the SVM baseline model (SVM), for

the CRF baseline model (CRFbaseline) used in our joint models based on discriminative re-

ranking (FST Re-ranking and CRF Re-ranking). Additionally we have taken results from

[38] for the best CRF model (CRFSOA) on MEDIA in the literature, for the Maximum

Entropy model (MEMM, called “log-lin” in [38]), for the Statistical Machine Translation

(SMT) model and for the models combination approach based on ROVER (defined in

[34]). Finally we have taken results from [55] for the Dynamic Bayesian Network model

(DBN). All these results are listed in Table 6.26.

These results show that our joint models, in particular CRF Re-ranking, result to

be the best models for SLU on this task. We are aware that several results among those

depicted in Table 6.26 have been significantly improved. Nevertheless, most results shown

in this work are still state-of-the-art.

103



6.4. OPEN ISSUES CHAPTER 6. EXPERIMENTAL RESULTS

MEDIA Text Input Speech Input

Att Att+Val Att Att+Val

CRFSOA 11.8 16.2 24.6 29.8

CRFbaseline 11.7 14.2 24.3 28.2

SVM 13.4 15.9 25.8 29.7

MEMM 15.0 19.3 27.8 33.5

FST 13.4 16.2 28.3 32.9

SMT 19.2 23.3 29.2 35.2

DBN 15.5 17.4 29.1 32.8

weighted ROVER 11.0 15.0 23.8 28.9

FST Re-ranking 11.1 13.3 24.3 27.8

CRF Re-ranking 11.1 13.2 22.7 26.3

Table 6.26: Comparison of results achieved with the best joint models described in this

work and the best State-Of-The-Art models used in the last decade for SLU. The com-

parison is made on MEDIA, since results are available for all models only on this corpus.

For CRF are shown both the best result achieved in the literature (CRFSOA) and our

baseline CRFbaseline obtained using the tool CRF++ (http://crfpp.sourceforge.net/)

6.4 Open Issues

There are two open issues that we have not been able to exaustively investigate during

our research work:

• Semantic Composition

• Context Sensitive Validation

The first deals with the composition of semantic constituents annotated by the SLU

model to build more complex semantic structures. In the LUNA project the only anno-

tated semantic structures are frames like in the FrameNet corpus [3]. This impose using

frames for the semantic composition module. Nevertheless, as we stated in Section 3.2,

semantic roles are instantiated by words realizing syntactic constituents, as well as seman-

tic constituents used for SLU tasks. In other words semantic roles are different names for

the same information. As consequence, we don’t expect to achieve improvements using an

integrated representation based on both semantic roles and semantic constituents coming

from a specific SLU task. It is more intuitive instead, using semantic roles annotation

as an additional features in the re-ranking models. This can be done by simply using a

104



CHAPTER 6. EXPERIMENTAL RESULTS 6.4. OPEN ISSUES

tree representation of frames like the one in Figure 4.3, together with our semantic trees.

Each instance for the re-ranking model is thus made of four different structures, two for

each hypothesis: the semantic tree used in all previous models plus the tree representa-

tion of the frames instantiated in the corresponding sentence. With such instances the

generalized form of the re-ranking kernel is used, as explained in Section 4.4.

Since frames are information at a turn level, they can bring in the model explicit

information of how to distinguish between different types of turns, like for example dialog

acts. We have performed some experiments using these settings and we have found out

that the performance is exactly the same of our best re-ranking models, i.e. using frame

information doesn’t provide additional information useful to improve the SLU task. Our

a priori intuition still holds, but most probably, on a simple task like the one modeled

by the Italian corpus, the model can learn implicitly differences between different kind of

turns, without the need of additional information.

Given these findings, semantic composition in the Italian corpus is yielded by merging

a posteriori the attribute value annotation produced by our SLU model with the frame

information produced by the system described in [22], that has been implemented for the

same Italian task.

Additionally we have tried some more experiments towards the intergration of seman-

tic and syntactic features. We have followed the same approach used in many cases in the

Semantic Role Labeling task, i.e. we have annotated syntactic parse trees with semantic

constituents taken from the SLU model output. The annotation is performed percolat-

ing semantic tags from pre-terminal nodes to the node covering the entire surface form

instantiating the concept. For example, using the same input sentence of Section 3.2:

“Buongiorno ho un problema con la stampante da stamattina non riesco piu’ a

stamapare”

(“Good morning I have a problem with my printer since this morning I cannot print

any more”) resulting in the following SLU interpretation:

null{Buongiorno ho} ProblemHardware.type{un problema} Periph-

eral.type{con la stampante} Time.relative{da stamattina} Hard-

wareOperation.negate{non} null{riesco piu’ a} HardwareOpera-

tion.operationType{stampare}

the structure integrating syntactic and semantic features for this SLU interpretation is

shown in figure 6.3. As for structures shown in Section 4.3, several different variants of this

structure have been tested, e.g. adding also values extracted from surface forms, BIO-like

105



6.4. OPEN ISSUES CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.3: An example of structure intergrating syntactic and semantic features taken

from the LUNA Italian corpus

markers etc. Even if they are interesting from an estetical point of view, the use of this

structure didn’t bring any improvement to the re-ranking models described in previous

sections. This is due to the fact that the structure shown here are much more complex

than those used previously. The higher level of generalization brought by POS tags

and syntactic constituents doesn’t provide additinal information, in contrast it can add

ambiguity. Features capturing relevant information contain longest paths and in general

bigger substructures, thus they are more sparse and more difficult to match in noisy input

like speech transcriptions. Simpler structures like those shown in Section 4.3 provides

more compact information about words-concepts dependiencies, where the surface form

is the most important level and sufficient generalization is yielded by the simpler categories

used in the SLU models. Further studies can be conducted applying sophisticated features

selection techniques, e.g. [18], or reverse features engineering, like in [75].

Regarding Context Sensitive Validation (CSV), this has been integrated also in the

system described in [22]. Since CSV is performed at dialog level, the context to validate

the current interpretation must be provided by the dialog manager, this go beyond the

purpose of this dissertation, where we have focused mainly on SLU models. Nevertheless

is worth discussing some ideas that can be studied in future works.

Dialog context can be taken into account in SLU models exploiting again the gen-

eralized re-ranking kernel. The context in this case would be the interpretation of the

106



CHAPTER 6. EXPERIMENTAL RESULTS 6.4. OPEN ISSUES

previous dialog turn, added as feature for the re-ranking model, like it has been done with

frame information explained above. The training for such model is carried out in one step

using two consecutive turns for each instance. Classification phase is performed in two

steps using two different re-ranking models: the first is the “normal” classification step

performed for all the experiments described in this chapter. The second is carried out with

the model trained taking dialog context into account and using the best interpretation

from the first step as context. Note that this approach can be generalized using more than

one dialog turn as context, additionally also more structures for each turn can be used,

the generalized re-ranking kernel can take many structures into account. Nevertheless, a

trade-off between accuracy and computational cost should be studied as well.

107



6.4. OPEN ISSUES CHAPTER 6. EXPERIMENTAL RESULTS

108



Chapter 7

SLU in Spoken Dialog Systems

In this chapter we sescribe the Spoken Dialog System (SDS) we have developed during our

research work. The system integrates the joint models for SLU based on discriminative

re-ranking described in previous chapter. Our SDS is an evolution of a call routing

application and it is based on the Italian corpus acquired in the European project LUNA:

problem solving in the domain of hardware/software repairing (see Section 6.1).

The goal of a call routing application is to determine the type of the call from the user

utterance and transfer the call to an appropriate destination. Even though at first glance

it may seem that a dialog is not really necessary to accomplish this, it is an important part

of such an application since it might not be possible to correctly guess the type of the call

at the first turn. This might happen due to ambiguity of input or failure of the system to

understand the user correctly [35]. Call routing has been investigated e.g. in [35, 13, 32].

Most of the work in call routing has focused on classifiers and their performance. None

of the works in the field report evaluation of the effect of the dialog on this task. In this

work we took also these aspects into account.

A call routing application, a Help Desk for hardware and software-related problems,

was developed as the Italian Spoken Dialogue System Prototype for the LUNA Project.

The goal of the system is to identify the type of the user problem as one belonging to

one of the 10 possible scenarios, identifying problem classes. Upon successful completion

of the dialogue, the call is forwarded to the appropriate human operator able to provide

further assistance. The system also summarizes call-type and all the relevant information

acquired during the dialog, e.g. acquiring the brand of hardware, turns out to be useful

to give a positive feedback to the users on the successful understanding of the kind of

hardware involved in the problem. An example dialogue (translated in English) can be

seen on Figure 7.

109



7.1. DIALOGUE SYSTEM ARCHITECTURE SLU in SDS

SYSTEM: Welcome to LUNA. Good day, I am Paola. How may I help you?

USER: Eh, Sorry. I have a problem with the printer.

ASR And I am sorry a problem with the printer

SLU

Concept Value Conf

conjugation and 0.725

problem a problem 0.731

computer componentHardware with the printer 0.718

CTC Label: C1 Printer Problem; Confidence: 1

DM

1 Infer subclass C1 Printer Problem

2 Inferred Class == CTC Label

3 CLASS LABEL AND PROBLEM STATEMENT

4 MOVE TO NEXT TURN

SYSTEM: Can you please tell me what’s the brand of your printer ?

... ...

SYSTEM: Thank you, wait in line.

An operator will assist you with your Lexmark printer problem!

Figure 7.1: Example dialogue translated to English

7.1 Dialogue System Architecture

A typical interaction with the system is initiated by a phone call that arrives at a telephony

server. This routes the call to a VXML platform. Since the VXML standard is based on

the web infrastructure, a VXML platform can issue HTTP requests that can be served

by a web server just like any HTML page. This allows us to organize the processing

modules of the dialogue system (SLU, DM, VXML generator) as web services that are

invoked by the HTTP request. As a consequence, each system turn of a dialogue is a

separate, stateless request. State information is passed through the dialog exploiting

usual mechanisms of web applications, i.e. web sessions. Even more, all the information

used in any system module are stored in a database, making it persistent the dialog state.

The architecture implements a ‘fat pipeline’ paradigm: each speech, language and DM

module has access to the database for rescoring and modeling (e.g. time series intra and

inter dialogues) and for retrieving at any moment all the dialog state information. At the

implementation level, this balances a lightweight communication protocol downstream

with data flowing laterally towards and from the database. Further details about dialog

state persistency are described in [95].

The overall architecture of the system is shown in Figure 7.2. The architecture is

based on the Loquendo VoxN@uta Platform1. We adopted state-of-the-art ASR and TTS

technologies provided by the Italian Loquendo partner of the LUNA project2. Since we

used our joint models described in previous chapters, also the SLU module is state-of-the-

1http://www.loquendo.com/en/technology/voxnauta platform.htm
2http://www.loquendo.com/en/

110



SLU in SDS 7.2. SPOKEN LANGUAGE UNDERSTANDING

Figure 7.2: A general diagram of re-ranking framework showing the entire chain of pro-

cessing, from speech input to the SLU interpretation

art. While for the other components we adopted tradictional solutions: a simple sentence

classifier for call-type classification; a rule-based dialog manager, integrating also the

language generation module, implemented as an expert system in CLIPS3.

7.2 Spoken Language Understanding

The SLU Module of the SDS consists of two components operating in parallel. Concept

tagging is complemented with user call-type classification, and the results of both compo-

nents are passed to DM to decide the next move. Automatic concept tagging is performed

exploiting the joint model based on discriminative re-ranking described in previous chap-

ters.

3http://clipsrules.sourceforge.net/

111



7.3. DIALOGUE MANAGEMENT SLU in SDS

7.2.1 Call-Type Classification

Since the goal of the system is to classify the call as belonging to one of the ten possible

scenarios, SLU concept attribute values and segmentation are also complemented with

user goal prediction. These user goals are extracted from the caller responses to the

opening prompt. A BoosTexter [84] based utterance classifier is build to operate on ASR

hypotheses in parallel to SLU concept segmentation. The class label provided by the

classifier and its confidence are used further for the decision by the DM.

The call-type classifier was trained on first utterances of the LUNA Italian Wizard of

Oz corpus. The first turn of each dialog in this corpus is the one where, in most cases,

the user states clearly the problem. So it is the most meaningful to discriminate between

the different problem classes. In the other turns few additional information are provided

to the system, unless the user is asked to state again the problem. Due to the nature of

the task - the classification of documents in the same domain - the most distinguishing

features are hardware types such as keyboard, mouse, etc.; thus, unigram model had

comparable performance to the bigram and trigram feature models. The best performing

unigram model, having 93.8% accuracy on the test set, was chosen to be used for call-

type classification within the spoken dialogue system prototype. The above performance

is measured on manual transcriptions, since the model has been trained to be used in the

SDS, evaluation on ASR output is a more reliable measure of the model accuracy, which

turned out to be 90.8%.

The problem class identifier provided by the call-type classifier is used together with

automatic concept annotation provided by the SLU joint model to decide next dialog

move. With reference to Figure 7, as it can be seen the user states a printer prob-

lem. The statement is supported by an explicit proble statement (“a problem”) and by

a “hardware-component” concept realized by the surface form “with the printer”. For

the same turn the classifier predict a “Printer-Problem”. Since in this particular case,

the SLU model and the call-type classifier agree on the same problem class, the system

accept the prediction and move to the next dialog step.

7.3 Dialogue Management

Dialogue management follows an Information State Update approach [53]. First, the

following information is retrieved from the database:

• ASR recognition results of last user turn;

• confidence and other thresholds;

112



SLU in SDS 7.4. EXPERIMENTS AND RESULTS

• SLU concept attribute-value pairs;

• classifier results for the problem class if available (first turn only), which include problem
class label and confidence of this label, as mentioned in section 7.2.1;

• all open questions for the current dialogue from the database;

• application information already provided by the user, including their grounding status
(‘explicitly-verified’ by a clarification question, ‘implicitly-accepted’ by virtue of being
above a heuristically set threshold, and ‘under-verification’ for ongoing clarification ques-
tions);

• user rejections in verification questions and ‘noinput’ / ‘nomatch’ events of the entire
dialogue;

• ‘noinput’ and other events are summarized to produce counts that can serve as ‘success
metrics’ of the ongoing dialogue.

Given this information, the DM employs a ‘dialogue move engine’ to determine the

system action and response. This is accomplished using several sets of forward chaining

inference rules: SLU rules match the user utterance to open questions. This may re-

sult in the decision to verify the application parameter in question (e.g. problem class,

hardware brand), and the action is verbalized by language generation rules (which are

part of the DM in this system). If the parameter is accepted, application dependent

task rules determine the next parameter to be acquired, resulting in the generation of an

appropriate request. Typical dialogue moves available to the system are those that are

needed for the application domain, for example forward looking moves such as ‘question-

parameter’, to acquire a new parameter, ‘confirm-parameter’, for parameter confirma-

tion, and ‘request-repeat’, to ask again a paramter in case ‘question-parameter’ failure,

and backward looking moves such as ‘accept-parameter-implicitly’ (by the system) or

‘answer-question-parameter’ (by the user). The dialogue is initially open to a wide range

of user utterances in response to “How may I help you?” prompt and becomes more

constrained afterwards.

7.4 Experiments and Results

The system was tested by 50 volunteer callers (3 calls each), and the collected calls were

transcribed and annotated. We have selected a 100 dialogues subset (only dialogues

containing all required metrics are included) that was used in assessing the system per-

formance.

113



7.4. EXPERIMENTS AND RESULTS SLU in SDS

Metric All T1 T2 T3
Av. Dial. Dur. (sec) 40.29 36.54 42.93 45.90
Av. Turn. Dur. (sec) 7.90 8.08 7.87 7.40
Av. # of Turns 5.10 4.52 5.45 6.20
Av. # of Tasks 1 1 1 1

Table 7.1: General dialogue and utterance level metrics

7.4.1 General Dialogue Statistics

The average duration of the 100 dialogues is 40.29 seconds, with 5.10 turns per dialogue in

average. In the scenarios covered by the prototype there is 1 task per dialogue by design

(excluding transfer to the operator request, which was never encountered).

The dialogues were categorized with respect to the way the dialogue was ended:

• T1 – the call was routed with correct attribute values

• T2 – the call was routed with incorrect attribute values

• T3 – the call was transferred to the operator

As can be seen in Table 7.1, successful dialogues (T1) have the least number of turns

on average and the shortest dialogue duration. Dialogues in T3 category are the opposite

situation, they have the longest average duration and contain the highest average number

of turns. The average turn duration exhibits the reverse tendency compared to average

dialogue duration and number of turns. This observation is to be expected since success-

ful dialogues contain fewer turns with more interaction. The general dialogue statistics

confirm that the length of the dialogue is indicative of its success.

7.4.2 Task Success

The task is considered completed successfully in case it was routed to the appropriate

destination, i.e. both problem class and the hardware brand attribute should be correct.

However, from the point of view of the user, on a longer term, the task can be considered

successful also in case of transfer to the operator. The task success values presented are

given for both cases: T – success only refers to call routing with correct attributes; T* –

success also includes transfer to the operator.

[95] measure task success as the ratio of completed tasks to tasks requested, such that

the completed task is the requested task. Tradictional Precision, Recall and F-Measure

on the other hand (P , R, F1 respectively), allow to measure task success in a way that

114



SLU in SDS 7.4. EXPERIMENTS AND RESULTS

P R F1 TSR
T 0.52 0.46 0.49 0.47
T* 0.57 0.56 0.56 0.57

Table 7.2: Task Success as Precision (P), Recall (R) and F-Measure (F1); and Task

Success Rate (TSR)

also takes into account mismatches between requested and completed task types. The

resulting overall task success in terms of P , R, & F1 and Task Success Rate is presented

in Table 7.2.

Regarding task failure, in the majority of cases (28 out of 43, i.e. 65.12%; not shown

in Table 7.2), a task was not completed successfully (call routings with wrong hardware

brand attribute) because the system received a brand name that was not covered by the

grammar. Misrecognition was not among the main reasons contributing to the ‘failed’

task category in case of routing with incorrect attributes or in case of transfer to the

operator.

Overall, the task success could be greatly improved by increasing the coverage of

the grammars used in the system. However, better ASR is not the only factor affecting

successful call routing; classifier performance and dialogue also play an important role.

In Section 7.4.4 we present an evaluation of the classifier in detecting call type as well as

the performance increase we gain from dialogue.

7.4.3 Task Success as Perceived by the User

The user also responded to a questionnaire following the dialogue. One of the questions

of this questionnaire, “How well do you think the system understood your problem”, was

intended to measure the caller subjective perception of the task success. The callers scored

the system on a 1-5 Likert scale. The results of the mapping of these subjective evaluation

scores to the three task completion types described in Section 7.4.1 are presented in Table

7.3. As can be seen, call routing with the correct attribute value was judged as better

understanding (average score 4.44) compared to the other two task completion types (T2 –

3.20 and T3 – 1.70). Moreover, there is a significant correlation between user judgements

and task completion types: Spearman r(98) = 0.56, p < 0.05.

7.4.4 Call-type Classification vs. Dialogue

Since our system performs call-type classification on ASR interpretations of user utter-

ances, we can assess the performance gained by implementing the whole dialogue system

115



7.4. EXPERIMENTS AND RESULTS SLU in SDS

Score T3 T2 T1 Total
5 0.10 (1) 0.27 (12) 0.63 (29) 0.42 (42)
4 0.00 (0) 0.11 (5) 0.22 (10) 0.15 (15)
3 0.10 (1) 0.30 (13) 0.11 (5) 0.19 (19)
2 0.10 (1) 0.18 (8) 0.04 (2) 0.11 (11)
1 0.70 (7) 0.14 (6) 0.00 (0) 0.13 (13)

# of Scores 0.10 (10) 0.44 (44) 0.46 (46) 1.00 (100)
Av. Score 1.70 3.20 4.44 3.62

Table 7.3: Subjective task success assessment normalized by task completion type (counts

given in parentheses)

Problem Class Classifier Dialogue
C1 Printer 0.89 0.94
C5 Keyboard 0.67 1.00
C9 CD-ROM 0.94 1.00
... ... ...
Accuracy (all classes) 0.79 0.94
Weighted Av. Acc. 0.79 0.94

Table 7.4: Classifier vs. Dialogue performance (accuracy) on determining the problem

class

pipeline versus just the call-type classifier. Table 7.4 provides the call-type classification

accuracy for classifier and the dialogue system as a whole. The values for dialogue contain

cases for all dialogue completion types in which the system was able to determine the prob-

lem class correctly. As can be seen from the table, there is an important improvement in

performance on call-type classification when dialogue is used. Even though only 100 dia-

logues were used, the results are statistically significant: χ2(1, N = 200) = 9.63, p < 0.05.

To assess the performance we gain by using dialogue even further, we measured the

oracle accuracy of the classifier. Dialogue performance on detecting call category (0.94)

turned out to be higher than 6-best oracle accuracy of the classifier (0.93). This means

that even an oracle that always chooses correctly from the 6 best hypotheses would not

be better than our dialogue system.

116



Chapter 8

Conclusions

In this document we have described the study, the implementation and the evaluation

of several models for Spoken Language Understanding. The problem has been modeled

as semantic parsing, going from utterance transcriptions, both manual, using annotated

corpora, and automatic, generated by Automatic Speech Recognizers, to semantic struc-

tures, based either on flat attrivute value representation or on semantic trees, designed

for the specific tasks described in this work.

We proposed a solution integrating SLU models with different characteristics, i.e.

Stochastic Finite State Transducers and Conditional Random Fields, via discriminative

re-ranking of SLU hypotheses, based on Support Vector Machines and sophisticated kernel

methods designed for Natural Language Processing tasks. We have integrated in our joint

models two different strategies to select more correct hypotheses: Re-Rank Selection and

a new Hypotheses Selection Criterion, which provide significant improvements.

The proposed solution results to be very effective, with respect to both indivudual

SLU models and another models combination approach used in SLU based on ROVER.

A comprehensive evaluation has been performed on four different corpora in four different

languages, representing the most significant tasks for Spoken Language Understanding.

Results show that our solution outperforms in most cases the best state-of-the-art models

on the same tasks.

Additionally, we have performed an evaluation on the Italian task using ASR word

lattices as input. The increased noise in the search space resulting from the combination

of lattices with an SLU model, prevents the joint models to be effective, showing that

additional information is needed to better assess SLU hypotheses kept for re-ranking.

The main characteristics of our joint models are the ability to put together charac-

teristics of the combined models, representing the meaningful information in complex

117



CHAPTER 8. CONCLUSIONS

structures which allow to capture arbitrary long-distance dependencies between words

and concepts.

We have integrated the proposed models in a Spoken Dialog System in Italian for the

domain of hardware/software problem solving. We also presented evaluation results of the

system on task success, comparing objective and subjective assessments of the dialogs.

We quantified the effect of dialogue on call routing and found a significant improvement

compared to routing based on call classification alone.

There are several interesting aspects that should be addressed in order to give a better

understanding and possibly a better model performance on the re-ranking approach:

• Dependency of performance from ASR Word Error Rate (WER). WER can be

varieted using different scale factors for the language model and different insertion

penalties in the ASR system.

• Dependency of performance from Lattices Oracle Error Rate.

• Dependency of performance from kernel structures: many structures have been de-

signed and evaluated. Nevertheless there are further structures that can better

capture meaningful features for the SLU tasks, e.g. integrated syntactic seman-

tic structures, on which sophisticated features selection and features engineering

tequiniques are needed.

• Dependency of performance on the Re-rank Selection training approach: thresholds

training is very fast and relatively effective, but in some cases training a new linear

classifier may result in more accurate final SLU result.

Oracle Error Rates of SLU models described in this work underline that a lot of work

is still needed in order to reach satisfactory results in an absolute scale.

118



Chapter 9

Acknowledgements

Reaching the end of this Ph.D. required all my energy and all my motivation during more

than three years. Even if at first I was completely lost, finally I succeded, I found a

research line that is very complex but very interesting.

Although it is the completion of a very important step, completing a Ph.D. doesn’t

mean reaching the end, is just the opposite: it is the training before starting something

else, scientific research in most cases. This is what I think to have learned and what I

would like to do in the future.

There are many people I should thank for having reached this result. First my advisor,

he always believed in me and gave me the opportunity to get “the highest study degree”. I

thank also my “unofficial co-advisor”, Alessandro Moschitti, he helped me a lot to improve

my technical skills.

A very special thank to my girlfriend, Anne, who has been always close to me, even

more during the most difficult periods of my Ph.D. If we can compare the Ph.D. to

a journey across the ocean, if we can compare difficulties and problems involved in a

Ph.D. to a storm, then my girlfriend has been the lighthouse that guided me to reach the

destination, without getting lost. Most of the energy and motivation I needed to complete

successfully this experience came from our love, from our common goal to live together

the rest of our lives.

Another special thank to all my family, especially my parents, they always gave me

support. Since they don’t speak English, I write the acknowledgement for them in Italian

to make them understand:

“Un ringraziamento speciale va ai miei genitori, che oltre ad avermi aiutato economi-

119



CHAPTER 9. ACKNOWLEDGEMENTS

camente durante gli studi, mi son sempre stati vicini anche durante il dottorato. Tanta

gratitudine va a mia madre, che è sempre stata per me come un’ amica. Sono molto grato

anche a mio padre, che, tra le altre cose, seppur involontariamente, mi ha dato l’ ispi-

razione: Mio padre è un ottimo giardiniere, ed uno dei tanti giorni in cui sono andato con

lui per aiutarlo, durante la mia adolescenza, mi disse: <<è molto importante saper

lavorare con gli alberi>>. Aveva perfettamente ragione.”

I want to thank also the people in my group in the LSI lab and in the ADAMACH

project, many of them have been more than colleagues, they have been good friends. In

particular Silvia Quarteroni and Alexei Ivanov.

The list of people to thank is very long, I cannot thank them all one to one, so I thank

everybody I met during these 3.5 years of Ph.D.

Thank you everybody!

“Non importa quante anse ha un fiume, alla fine di un giusto corso ogni acqua trova

il suo mare”

120



Bibliography

[1] Giuseppe Riccardi Alexandros Potamianos, Shrikanth Narayanan. Adaptive cate-

gorical understanding for spoken dialog systems. IEEE Transactions on Speech and

Audio, 13(3):321–329, 2005.

[2] James F. Allen. Natural Language Processing. John Wiley and Sons Ltd. Chichester,

UK, 2003.

[3] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley FrameNet

project. In Proceedings of COLING-ACL ’98, pages 86–90, 1998.

[4] Oliver Bender, Klaus Macherey, Franz-Josef Och, and Hermann Ney. Comparison of

alignment templates and maximum entropy models for natural language understand-

ing. In Conference of the European Chapter of the Association for Computational

Linguistics, pages 11–18, Budapest, Hungary, April 2003.

[5] Steven Bethard, Zhiyong Lu, James H. Martin, and Lawrence Hunter. Semantic role

labeling for protein transport predicates hacioglu. In In HLT/NAACL-03, 2003.

[6] Jeff A. Bilmes and Katrin Kirchhoff. Factored language models and generalized par-

allel backoff. In NAACL ’03: Proceedings of the 2003 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics on Human Language

Technology, pages 4–6, Morristown, NJ, USA, 2003. Association for Computational

Linguistics.

[7] Enrico Bocchieri, Giuseppe Riccardi, and Jayanth Anantharaman. The 1994 att atis

chronus recognizer, 1994.

[8] Hélène Bonneau-Maynard, Christelle Ayache, F. Bechet, A Denis, A Kuhn, Fabrice

Lefèvre, D. Mostefa, M. Qugnard, S. Rosset, and J. Servan, S. Vilaneau. Results

of the french evalda-media evaluation campaign for literal understanding. In LREC,

pages 2054–2059, Genoa, Italy, May 2006.

121



BIBLIOGRAPHY BIBLIOGRAPHY

[9] Hélène Bonneau-Maynard, Sophie Rosset, Christelle Ayache, Anne Kuhn, and

Djamel Mostefa. Semantic annotation of the french media dialog corpus. In ISCA

Eurospeech, Lisboa, Portugal, 2005.

[10] N. Cancedda, E. Gaussier, C. Goutte, and J. M. Renders. Word sequence kernels. J.

Mach. Learn. Res., 3, 2003.

[11] X. Carreras and Lluis Marquez. Introduction to the conll-2005 shared task: Semantic

role labeling, 2005.

[12] S. F. Chen and J. Goodman. An empirical study of smoothing techniques for language

modeling. In Technical Report of Computer Science Group, Harvard, USA, 1998.

[13] J. Chu-Carroll and B. Carpenter. Dialogue management in vector-based call routing.

In Proc. of the Annual Meeting of the ACL, Montreal, 1998.

[14] M. Collins and N. Duffy. New Ranking Algorithms for Parsing and Tagging: Kernels

over Discrete structures, and the voted perceptron. In Proceedings of the Association

for Computational Linguistics, pages 263–270, 2002.

[15] Michael Collins. Discriminative reranking for natural language parsing. In ICML,

pages 175–182, 2000.

[16] Michael Collins. Ranking algorithms for named-entity extraction: Boosting and the

voted perceptron. In Proceedings of the Association for Computational Linguistics,

pages 489–496, 2002.

[17] Michael Collins and Nigel Duffy. Convolution kernels for natural language. In Ad-

vances in Neural Information Processing Systems 14, pages 625–632. MIT Press,

2001.

[18] Michael Collins and Terry Koo. Discriminative re-ranking for natural language pars-

ing. Computational Linguistic (CL), 31(1).

[19] Michael Collins and Terry Koo. Discriminative reranking for natural language pars-

ing. In Computational Linguistics, pages 175–182. Morgan Kaufmann, 2003.

[20] CoNLL-2000. Results of the CoNLL-2000 Shared Task on Chunking.

http://www.cnts.ua.ac.be/conll2000/chunking/.

122



BIBLIOGRAPHY BIBLIOGRAPHY

[21] Bonaventura Coppola, Alessandro Moschitti, and Daniele Pighin. Generalized frame-

work for syntax-based relation mining. In ICDM, pages 153–162. IEEE Computer

Society, 2008.

[22] Bonaventura Coppola, Alessandro Moschitti, and Giuseppe Riccardi. Shallow se-

mantic parsing for spoken language understanding. In NAACL ’09: Proceedings of

Human Language Technologies: The 2009 Annual Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics, Companion Volume:

Short Papers, pages 85–88, Morristown, NJ, USA, 2009. Association for Computa-

tional Linguistics.

[23] Bonaventura Coppola, Alessandro Moschitti, and Sara Tonelli Giuseppe Riccardi.

Automatic framenet-based annotation of conversational speech. In Proceedins of the

IEEE Workshop on Human Language Technology, 2008.

[24] Aron Culotta and Jeffrey Sorensen. Dependency Tree Kernels for Relation Extrac-

tion. In Proceedings of ACL’04, 2004.

[25] Chad Cumby and Dan Roth. Kernel Methods for Relational Learning. In Proceedings

of ICML 2003, 2003.

[26] D.A. Dahl, M. Bates, M. Brown, W. Fisher, K. Hunicke-Smith, D. Pallett, C. Pao,

A. Rudnicky, and E. Shriberg. Expanding the scope of the atis task: the atis-3

corpus. In Proceedings of Human Language Technologies, page 4348, 1994.

[27] Marco Dinarelli, Alessandro Moschitti, and Giuseppe Riccardi. Concept segmenta-

tion and labeling for conversational speech. In Interspeech, Brighton, U.K., 2009.

[28] Marco Dinarelli, Alessandro Moschitti, and Giuseppe Riccardi. Re-ranking mod-

els based on small training data for spoken language understanding. In Confer-

ence of Empirical Methods for Natural Language Processing, pages 11–18, Singa-

pore,Singapore, August 2009.

[29] Marco Dinarelli, Alessandro Moschitti, and Giuseppe Riccardi. Re-ranking models

for spoken language understanding. In Conference of the European Chapter of the

Association of Computational Linguistics, pages 202–210, Athens,Greece, April 2009.

[30] Marco Dinarelli, Silvia Quarteroni, Sara Tonelli, Alessandro Moschitti, and Giuseppe

Riccardi. Annotating spoken dialogs: from speech segments to dialog acts and frame

semantics. In Proceedings of SRSL 2009 Workshop of EACL, Athens, Greece, 2009.

123



BIBLIOGRAPHY BIBLIOGRAPHY

[31] Marco Dinarelli, Evgeny Stepanov, Sebastian Varges, and Giuseppe Riccardi. The

luna spoken dialog system: Beyond utterance classification. In International Con-

ference on Acoustic, Speech and Signal Processing, Dallas, Texeas, U.S.A., 2010.

[32] K. Evanini, D. Suenderman, and R. Pieraccini. Call classification for automated

troubleshooting on large corpora. In Proc. of ASRU 2007, Kyoto, Japan, 2007.

[33] Charles J. Fillmore. The case for case. Universals in Linguistic Theory, 88(1), 1968.

[34] J. G. Fiscus. A post-processing system to yield reduced word error rates: Recogniser

output voting error reduction (ROVER). In Proceedings 1997 IEEE Workshop on

Automatic Speech Recognition and Understanding (ASRU), pages 347–352, Santa

Barbara, CA, December 1997.

[35] A. L. Gorin, G. Riccardi, and J. H. Wright. How may i help you? Speech Commun.,

23(1-2):113–127, 1997.

[36] Narendra Gupta, Gokhan Tur, Dilek Hakkani-Tur, Srinivas Bangalore, Giuseppe

Riccardi, and Mazin Gilbert. The att spoken language understanding system. IEEE

Transaction on Audio, Speech and Language Processing, 14(1):213–222, 2006.

[37] Stefan Hahn, Patrick Lehnen, Georg Heigold, and Hermann Ney. Optimizing crfs

for slu tasks in various languages using modified training criteria. In Interspeech,

Brighton, U.K., 2009.

[38] Stefan Hahn, Patrick Lehnen, and Hermann Ney. System combination for spoken

language understanding. In Interspeech, pages 236–239, Brisbane, Australia, 2008.

[39] Stefan Hahn, Patrick Lehnen, Christian Raymond, and Hermann Ney. A comparison

of various methods for concept tagging for spoken language understanding. In Pro-

ceedings of the Sixth International Conference on Language Resources and Evaluation

(LREC), Marrakech, Morocco, May 2008.

[40] Timothy J. Hazen, Theresa Burianek, Joseph Polifroni, and Stephanie Seneff. Recog-

nition confidence scoring for use in speech understanding systems. In Computer

Speech and Language, pages 49–67, 2000.

[41] Y. He and S. Young. Semantic processing using the hidden vector state model.

Computer Speech and Language, 19:85–106, 2005.

124



BIBLIOGRAPHY BIBLIOGRAPHY

[42] Gang Ji and Jeff Bilmes. Backoff model training using partially observed data:

Application to dialog act tagging. In Proceedings of the Human Language Technology

Conference of the NAACL, Main Conference, pages 280–287, New York City, USA,

June 2006. Association for Computational Linguistics.

[43] Richard Johansson and Pierre Nugues. Dependency-based semantic role labeling of

PropBank. In Proceedings of the 2008 Conference on Empirical Methods in Natural

Language Processing, pages 69–78, 2008.

[44] Richard Johansson and Pierre Nugues. Dependency-based syntactic–semantic analy-

sis with PropBank and NomBank. In CoNLL 2008: Proceedings of the Twelfth Con-

ference on Natural Language Learning, pages 183–187, Manchester, United Kingdom,

2008.

[45] Richard Johansson and Pierre Nugues. The effect of syntactic representation on

semantic role labeling. In Proceedings of the 22nd International Conference on Com-

putational Linguistics (Coling 2008), pages 393–400, Manchester, United Kingdom,

August 18-22 2008.

[46] Sameer Pradhan Kadri, Sameer Pradhan, Kadri Hacioglu, Wayne Ward, James H.

Martin, and Daniel Jurafsky. Semantic role parsing: Adding semantic structure to

unstructured text. In In ICDM, pages 629–632, 2003.

[47] Taku Kudo. Crf++ toolkit. http://crfpp.sourceforge.net/, 2005.

[48] Taku Kudo and Yuji Matsumoto. Chunking with support vector machines. In

NAACL ’01: Second meeting of the North American Chapter of the Association for

Computational Linguistics on Language technologies 2001, pages 1–8, Morristown,

NJ, USA, 2001. Association for Computational Linguistics.

[49] Taku Kudo and Yuji Matsumoto. Fast methods for kernel-based text analysis. In

Proceedings of ACL’03, 2003.

[50] Taku Kudo, Jun Suzuki, and Hideki Isozaki. Boosting-based parse reranking with

subtree features. In Proceedings of ACL’05, 2005.

[51] Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto. Applying conditional random

fields to japanese morphological analysis. In Dekang Lin and Dekai Wu, editors, Pro-

ceedings of EMNLP 2004, pages 230–237, Barcelona, Spain, July 2004. Association

for Computational Linguistics.

125



BIBLIOGRAPHY BIBLIOGRAPHY

[52] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Proba-

bilistic models for segmenting and labeling sequence data. In Proceedings of the

Eighteenth International Conference on Machine Learning (ICML), pages 282–289,

Williamstown, MA, USA, June 2001.

[53] S. Larsson and D. Traum. Information state and dialogue management in the trindi

dialogue move engine toolkit. Natural Language Engineering, 6(3-4):323–340, 2000.

[54] Fabrice Lefèvre. A dbn-based multi-level stochastic spoken language understanding

system. In IEEE Spoken Language Technology Workshop, pages 82–85, December

2006.

[55] Fabrice Lefèvre. Dynamic bayesian networks and discriminative classifiers for multi-

stage semantic interpretation. In Proceedings of the International Conference on

Acoustics, Speech and Signal Processing (ICASSP), volume 4, pages 13–16, Honolulu,

HI, USA, April 2007.

[56] Patrick Lehnen, Stefan Hahn, Hermann Ney, and Agnieszka Mykowiecka. Large-scale

polish slu. In Interspeech, 2009.

[57] E. Levin and R. Pieraccini. Concept-based spontaneous speech understanding

system. In 4th European Conf. on Speech Communication and Technology (EU-

ROSPEECH), volume 2, pages 555–558, Madrid, Spain, September 1995.

[58] Klaus Macherey, Oliver Bender, and Hermann Ney. Applications of statistical ma-

chine translation approaches to spoken language understanding. Computer Speech

and Language, 17(4):803–818, 2009.

[59] Krzysztof Marasek and Ryszard Gubrynowicz. Design and Data Collection for Spo-

ken Polish Dialogs Database. In Proc. of the Sixth Int. Conf. on Language Resources

and Evaluation (LREC), Marrakech, Morocco, May 2008.

[60] Llúıs Màrquez, Xavier Carreras, Kenneth C. Litkowski, and Suzanne Stevenson.

Semantic role labeling: an introduction to the special issue. Comput. Linguist.,

34(2):145–159, 2008.

[61] Arne Mauser, Richard Zens, Evgeny Matusov, Saša Hasan, and Hermann Ney. The

RWTH statistical machine translation system for the IWSLT 2006 evaluation. In

International Workshop on Spoken Language Translation, pages 103–110, Kyoto,

Japan, November 2006. Best Paper Award.

126



BIBLIOGRAPHY BIBLIOGRAPHY

[62] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[63] M. Mohri, F. Pereira, and M. Riley. Weighted finite-state transducers in speech

recognition. Computer, Speech and Language, 16(1):69–88, 2002.

[64] Renato De Mori. Spoken Dialogues with Computers. Academic Press, Inc., Orlando,

FL, USA, 1997.

[65] Alessandro Moschitti. Efficient Convolution Kernels for Dependency and Constituent

Syntactic Trees. In Proceedings of ECML 2006, pages 318–329, Berlin, Germany,

2006.

[66] Alessandro Moschitti. Kernel methods, syntax and semantics for relational text

categorization. In Proceeding of CIKM ’08, NY, USA, 2008.

[67] Alessandro Moschitti, Daniele Pighin, and Roberto Basili. Semantic role labeling via

tree kernel joint inference. In Proceedings of CoNLL-X, New York City, 2006.

[68] Alessandro Moschitti, Daniele Pighin, and Roberto Basili. Tree kernels for semantic

role labeling. Computational Linguistics, 34(2):193–224, 2008.

[69] Alessandro Moschitti and Silvia Quarteroni. Kernels on linguistic structures for

answer extraction. In Proceedings of ACL-08: HLT, Short Papers, Columbus, Ohio,

2008.

[70] Alessandro Moschitti, Silvia Quarteroni, Roberto Basili, and Suresh Manandhar.

Exploiting syntactic and shallow semantic kernels for question/answer classification.

In Proceedings of ACL’07, Prague, Czech Republic, 2007.

[71] Agnieszka Mykowiecka, Krzysztof Marasek, Magorzata Marciniak, Joanna Rabiega-

Winiewska, and Ryszard Gubrynowicz. Annotated corpus of Polish spoken dialogues.

In Human Language Technology. Challenges of the Information Society. Third Lan-

guage and Technology Conference, LTC 2007, Poznan, Poland, October 5-7, 2007,

Revised Selected Papers, LNCS 5603, pages 50–62. Springer, 2009.

[72] NIST. Speech recognition scoring toolkit (SCTK).

http://www.nist.gov/speech/tools/.

[73] F.J. Och. Yet another small maxent toolkit. http://www-i6.informatik.rwth-

aachen.de/web/Software/YASMET.html, 2002.

127



BIBLIOGRAPHY BIBLIOGRAPHY

[74] Martha Palmer, Daniel Gildea, and Paul Kingsbury. The proposition bank: An

annotated corpus of semantic roles. Comput. Linguist., 31(1):71–106, 2005.

[75] Daniele Pighin and Alessandro Moschitti. Reverse engineering of tree kernel feature

spaces. In EMNLP09: Empirical Methods of Natural Language Processing, Singapore,

08/2009 2009.

[76] M.J.D. Powell. A fast algorithm for nonlinearly constrained optimization calcula-

tions. In G.A. Watson, editor, Proceedings of the Biennial Conference on Numerical

Analysis, pages 144–157, Dundee, UK, June 1977. Lecture Notes in Mathematics,

Vol. 630. Berlin, Heidelberg, New York: Springer 1978.

[77] S. Quarteroni, G. Riccardi, and M. Dinarelli. What’s in an ontology for spoken

language understanding. In Proc. of Interspeech 2009, Brighton, U.K., 2009.

[78] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications

in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[79] Lance Ramshaw and Mitchell Marcus. Text chunking using transformationbased

learning. In Proceedings of the 3rd Workshop on Very Large Corpora, pages 84–94,

Cambridge, MA, USA, June 1995.

[80] Christian Raymond, Frdric Bchet, Renato De Mori, and Graldine Damnati. On the

use of finite state transducers for semantic interpretation. Speech Communication,

48(3-4):288–304, March-April 2006.

[81] Christian Raymond and Giuseppe Riccardi. Generative and discriminative algorithms

for spoken language understanding. In Interspeech, pages 1605–1608, Antwerp, Bel-

gium, August 2007.

[82] Ruhi Sarikaya, Yuqing Gao, Michael Picheny, and Hakan Erdogan. Semantic confi-

dence measurement for spoken dialogue systems. IEEE Trans. on SAP, 13:534–545,

2005.

[83] Roger C. Schank and Robert P. Abelson. Scripts, plans, goals and understanding:

An inquiry into human knowledge structures. Psychology Press, Oxford, England,

1977.

[84] R.E. Schapire and Y. Singer. Boostexter: A boosting-based system for text catego-

rization. Machine Learning, 39(2/3):135–168, 2000.

128



BIBLIOGRAPHY BIBLIOGRAPHY

[85] Stephanie Seneff. Tina: a natural language system for spoken language applications.

Comput. Linguist., 18(1):61–86, 1992.

[86] Christophe Servan, Christian Raymond, Frdric Bchet, and Pascal Nocra. Conceptual

decoding from word lattices: application to the spoken dialogue corpus media. In

Proceedings of the International Conference on Spoken Language Processing, Pitts-

burgh, USA, 2006.

[87] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.

Cambridge University Press, 2004.

[88] Libin Shen, Anoop Sarkar, and Aravind K. Joshi. Using LTAG Based Features in

Parse Reranking. In Proceedings of EMNLP’06, 2003.

[89] Libin Shen, Anoop Sarkar, and Franz J. Och. Discriminative reranking for machine

translation. In HLT-NAACL, pages 177–184, 2004.

[90] A. Stolcke. Srilm: an extensible language modeling toolkit. In Proceedings of

SLP2002, Denver, USA, 2002.

[91] Hsuan tien Lin, Chih jen Lin, and Ruby C. Weng. A note on platts probabilistic

outputs for support vector machines. Technical report, 2003.

[92] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-

rich part-of-speech tagging with a cyclic dependency network. In NAACL ’03: Pro-

ceedings of the 2003 Conference of the North American Chapter of the Association

for Computational Linguistics on Human Language Technology, pages 173–180, Mor-

ristown, NJ, USA, 2003. Association for Computational Linguistics.

[93] Kristina Toutanova, Penka Markova, and Christopher Manning. The Leaf Path

Projection View of Parse Trees: Exploring String Kernels for HPSG Parse Selection.

In Proceedings of EMNLP 2004, 2004.

[94] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley and Sons, 1998.

[95] S. Varges, G. Riccardi, and S. Quarteroni. Persistent information state in a data-

centric architecture. In Proc. of SIGDial 2008, Columbus, USA, 2008.

[96] Geoffrey Zweig and Stuart Russell. Speech recognition with dynamic bayesian net-

works. Technical report, 1998.

129




