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So when I say that I know me, how can I know that?

What kind of spider understands arachnophobia?

I have my senses and my sense of having senses.

Do I guide them? Or they me?



Overview

The thesis is divided into three parts, each of which is described in the corre-

sponding section of this overview. Part I mainly serves as an introduction to

the contents of Part II and Part III which are, in turn, mutually independent.

Figure 1: Logical dependence of the parts of this thesis

Preliminaries Block ciphers are the main subject of this work and are in-

troduced in Chapter 1. After having described our model for the frameworks

of Substitution-Permutation Networks (SPN) and Feistel Networks (FN), at-

tention is given to the theme of security, with a particular focus on differential

(Chapter 2) and algebraic (Chapter 3) attacks. These are indeed the families

of cryptanalytic techniques the novel contributions of this work belong to.
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Differential cryptanalysis using alternative operations Chapter 4

and Chapter 5 deal with the following problem: is it possible that a block

cipher apparently immune to classical differential cryptanalysis can be at-

tacked considering a different operation on the message space? In [Ber92],

Berson introduced the modular difference to study the MD/SHA family of

hash functions. In [AS11], the authors tried to use a similar method to

cryptanalyse the block cipher PRESENT [BKL+07], featuring a bit-wise

round-key addition. Even though this attempt has been unsuccessful, the

idea of using alternative difference operations is for the first time taken into

consideration and used in block ciphers with a bit-wise key addition. More

recently, Calderini and Sala showed how to effectively compute alternative

operations on a vector space which can serve as message space for a block

cipher such that the resulting structure is still a vector space [CS17]. The

authors used those operations to mount a linearisation attack against a toy

cipher. Here we study similar operations in the differential context, inves-

tigating how alternative operations interact with the layers of an SPN, and

show how they influence the differential probabilities, when the difference

taken into consideration is different from the usual bit-wise addition modulo

two. In particular, in Chapter 4, we study constraints coming from the com-

bination of the bit-wise key addition with these operations, by introducing

and studying the key distribution table. Moreover, we study the differential

uniformity, with respect to other operations, of some non-linear permuta-

tions such as the classical cubic function. In Chapter 5 we designed a 15-bit

block cipher, which presents some similarities with the block ciphers PRINT-

cipher [KLPR10] and PRINCE [BCG+12], and represents an example of SPN

which is resistant against the classical differential attack, with XOR differ-

ences, but it is not resistant against a differential attack which makes use of

alternative difference coming from another operation defined on the message

space.

On the design of wave ciphers Round functions used as building blocks

for iterated block ciphers, both in the case of Substitution-Permutation Net-

works and Feistel Networks, are often obtained as the composition of dif-

ferent layers which provide confusion and diffusion, and key additions. The

ii



bijectivity of any encryption function, crucial in order to make the decryp-

tion possible, is guaranteed by the use of invertible layers or by the Feistel

structure. In Chapter 6 a new family of ciphers, called wave ciphers, is in-

troduced. In wave ciphers, round functions feature wave functions, which

are vectorial Boolean functions obtained as the composition of non-invertible

layers, where the confusion layer enlarges the message which returns to its

original size after the diffusion layer is applied. This is motivated by the

fact that relaxing the requirement that all the layers are invertible allows to

consider more functions which are optimal with regard to non-linearity. In

particular it allows to consider injective APN S-boxes even in cases where

no APN permutations have been found, e.g. the cases of a number of vari-

ables equals to four or eight, which are optimal for implementation needs.

In order to guarantee efficient decryption we propose to use wave functions

in Feistel Networks. With regard to security, in Chapter 7 we investigate

the immunity from some algebraic attacks. In particular, we focus on the

security from the group-theoretical attack described in [Pat99], where the

author designed a DES-like cipher, resistant to both linear and differential

cryptanalysis, whose encryption functions generate an imprimitive group,

and showed how the knowledge of this trapdoor can be turned into an effi-

cient attack to the cipher. In this work it is shown how to avoid that the

group generated by the round functions of a wave cipher acts imprimitively,

by giving conditions on the Boolean functions composing the layers of the

wave-shaped round functions.

iii



Short contents

I Preliminaries 1

1 Introduction to block ciphers 2

2 Differential cryptanalysis 17

3 Group theoretical security 37

II Differential cryptanalysis using alternative oper-
ations 44

4 Alternative operations for cryptanalysis 45

5 Designing a cipher 85

III On the design of wave ciphers 98

6 On wave functions 99

7 Group-theoretical study of wave ciphers 105

List of Figures 119

iv



List of Tables 121

Bibliography 122

v



Contents

I Preliminaries 1

1 Introduction to block ciphers 2

1.1 Block ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Perfect secrecy . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Iterated block ciphers . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Substitution-Permutation Networks . . . . . . . . . . . 6

1.2.2 PRESENT . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Feistel Networks . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 GOST 28147-89 . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Classical round functions . . . . . . . . . . . . . . . . . . . . . 13

1.4 Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Differential cryptanalysis 17

2.1 Description of the attack . . . . . . . . . . . . . . . . . . . . . 17

2.2 Classical differential cryptanalysis . . . . . . . . . . . . . . . . 19

2.3 The case of SPNs . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Resistance to classical differential cryptanalysis . . . . . . . . 28

2.4.1 Non-linearity notions for confusion layers . . . . . . . . 28

2.4.2 Known APN permutations . . . . . . . . . . . . . . . . 31

2.4.3 Other non-linearity notions . . . . . . . . . . . . . . . 32

2.4.4 Requirements on the diffusion layer . . . . . . . . . . . 34

vi



3 Group theoretical security 37

3.1 Algebraic security . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 The group generated by the round functions . . . . . . . . . . 38

3.3 Imprimitivity attack . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Resistance to imprimitivity attack . . . . . . . . . . . . . . . . 42

II Differential cryptanalysis using alternative oper-
ations 44

4 Alternative operations for cryptanalysis 45

4.1 Overview and motivation . . . . . . . . . . . . . . . . . . . . . 45

4.2 Differential cryptanalysis revised . . . . . . . . . . . . . . . . . 48

4.3 New operations on the message space . . . . . . . . . . . . . . 49

4.3.1 Efficiently-computable new operations . . . . . . . . . 50

4.4 Interaction with the key-addition layer . . . . . . . . . . . . . 54

4.4.1 Introducing a product . . . . . . . . . . . . . . . . . . 56

4.4.2 Assumptions on the weak keys . . . . . . . . . . . . . . 59

4.4.3 Assumptions on ◦-affinities . . . . . . . . . . . . . . . . 60

4.4.4 A more compact representation . . . . . . . . . . . . . 63

4.4.5 Differential probabilities and key-addition layer . . . . 67

4.5 Interaction with the confusion layer . . . . . . . . . . . . . . . 75

4.5.1 On the cubic function in odd dimension . . . . . . . . 80

5 Designing a cipher 85

5.1 Interaction with the diffusion layer . . . . . . . . . . . . . . . 85

5.1.1 Compatible diffusion layers . . . . . . . . . . . . . . . . 86

5.2 The case d = n− 2 . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Experiments on a small cipher . . . . . . . . . . . . . . . . . . 91

5.3.1 The operation ◦̂ . . . . . . . . . . . . . . . . . . . . . . 92

5.3.2 The target cipher . . . . . . . . . . . . . . . . . . . . . 93

5.3.3 Results and conclusions . . . . . . . . . . . . . . . . . 94

vii



III On the design of wave ciphers 98

6 On wave functions 99

6.1 Overview and motivation . . . . . . . . . . . . . . . . . . . . . 99

6.2 Wave ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Feistel Networks with wave functions . . . . . . . . . . 102

6.2.2 The group generated by the rounds of a wave cipher . . 104

7 Group-theoretical study of wave ciphers 105

7.1 Security reduction . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Conditions on SPN-like wave ciphers . . . . . . . . . . . . . . 111

7.2.1 A wave cipher with a 4x5 APN S-box . . . . . . . . . . 116

7.3 Conclusions and open problems . . . . . . . . . . . . . . . . . 119

List of Figures 119

List of Tables 121

Bibliography 122

viii



Notation

The following notation and terminology will be used throughout all this work.

Functions We use the postfix notation for every function evaluation, i.e.

if f is a function and x an element in the domain of f , we denote by xf the

evaluation of f in x. We denote by Im f the range of f and by Y f−1 the

pre-image of a set Y . A vectorial Boolean function is a function from (F2)n

to (F2)m, where n and m are integers, and F2 denotes the finite field with

two elements.

Vectors We denote by V a finite vector space over F2 of dimension n ∈ N.

We assume dim(V ) = n = s × b and write V = V1 ⊕ V2 ⊕ . . . ⊕ Vb, where

dim(Vj) = s for 1 ≤ j ≤ b, and ⊕ represents the direct sum of subspaces,

called bricks. When x ∈ V , for each 1 ≤ j ≤ b we denote by x[j] the s

components of x in the jth brick. The vector x[j] ∈ (F2)s is also called a

brick. The canonical basis for V is denoted by {e1, e2, . . . , en}. For each

1 ≤ j ≤ b the map πj : V → V denotes the canonical projection on Vj. The

Hamming weight of a vector x ∈ V , i.e. the number of non-zero coordinates

of x with respect to the canonical decomposition, is denoted by weight (x).

Each vector in V can be interpreted as a binary number, most significant

bit first, and then represented using the hexadecimal notation. For example,

(0, 0, 0, 1) = 1x and (1, 1, 1, 1) = Fx.

ix



Fields We denote by F2n the finite field with 2n elements. For each α ∈ F2n ,

the trace of α is defined as Tr(α)
def
= α + α2 + . . . + α2n−1

. The function

Tr : F2n → F2 is a linear function, where both F2n and F2 are viewed as

vector spaces over F2. Let us also recall that for each α ∈ F2n it holds

Tr(α) = Tr(α2).

Groups If G is any finite group acting on V , for each g ∈ G and v ∈ V
we denote the action of g on v as vg. The group is called an abelian group if

and only if g1g2 = g2g1 for each g1, g2 ∈ G; moreover G is 2-elementary if for

each g ∈ G it holds g2 = 1G, where 1G denotes the neutral element in the

group. The action of G on V is said to be transitive if for each v1, v2 ∈ V
there exixts g ∈ G such that v1g = v2. If for any v1, v2 such g is unique, the

action of G on V is said regular. If H ⊂ G, we denote H < G to mean that

H is a subgroup of G.

The identity matrix over F2 of size ` is denoted by 1`, and the zero matrix

F2 of size ` × h is denoted by 0`,h. The symmetric group acting on V , i.e.

the group of all the permutations on the space V , is denoted by Sym(V ).

The subgroup of Sym(V ) generated by the even permutations, i.e. the per-

mutations obtainable from an even number of two-element swaps, is called

the alternating group and is denoted by Alt(V ). The group of all the affine

permutations of (V,+), which is a primitive maximal subgroup of Sym(V ),

is denoted by AGL(V,+). The group of all the linear permutations of (V,+)

is denoted by GL(V,+). For any linear map λ ∈ GL(V,+) we denote by

Ker(λ) the kernel of λ. The group of the translations of V is denoted by

T+
def
= {σa | x 7→ x + a, a ∈ V } < Sym(V ). Sometimes, when it is important

to highlight the dimension of the vector space the translations are acting on,

we denote T+ by Tn.
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1
Introduction to block ciphers

In this first chapter the main subjects of this work, i.e. block ciphers, are

introduced. Some preliminary results are shown and the notations used along

the thesis are explained. This presentation as well as the one of Chapter 2

is inspired, among others, by the following references [Rij97, DR13, KR11,

LMM91].

1.1 Block ciphers

Block ciphers start to play a role in the security of the today’s communica-

tions between two parties whenever the parties agree on a secret and shared

key by means of whatever asymmetric cryptosystem. A block cipher is a

symmetric primitive which, taking as input a fixed-length block of a mes-

sage and a parameter called key, transforms the former into a string of the

same length n, in such a way that only authorised parties can access it.

More precisely, a block cipher is a set of permutations defined on a message

space M, each of which is indexed by the key parameter, called encryption

functions. The operation of transforming the message, also called plaintext,

into the output of the parametrised encryption function, called ciphertext, is

called encryption, whereas the reverse process is called decryption. In order

to describe a block cipher, it is required to define the process for obtaining

the encryption function once the key is chosen in the key space K. This

is done, according to the Kerckhoffs’s principle [Ker83], by making public
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Block ciphers

all the procedures and keeping secret only the key, since “it should not be a

problem if it [the cipher’s description] falls into enemy hands”. Moreover, for

the above-mentioned procedures, a relatively simple description is required,

and the following properties need to be satisfied:

efficiency there exists an efficiently computable procedure which, for any

message in the message space and any key in the key space, provides the

encryption of the given message with the current encryption function,

preferably on a wide range of platforms / devices. The same should

hold for the decryption process;

security the #K key-induced permutations should look like being chosen

uniformly at random in the set of all the possible permutations of the

message space, in such a way it is not possible, given a text, to predict

whether it is a ciphertext of a randomly-generated string of the same

length.

The second ideal requirement incidentally means that, parties not entitled

to access the encrypted data recover no information on the plaintext when

the ciphertext is given but the key used for the encryption is unknown. Such

parties are called attackers or cryptanalysts, usually depending on whether

one wants to put the accent on their bad or good intentions, respectively.

The following is a very general definition of block cipher.

Definition 1.1.1. LetM and K be non-empty sets. A block cipher Φ is an

injective function K → Sym(M). The set M is called the message space,

K the key space, and the permutation EK
def
= KΦ is called the encryption

function induced by the key K. The set {EK | K ∈ K} is called the set of

the encryption functions. It is common to identify

Φ ≡ KΦ = {EK | K ∈ K} ⊂ Sym(M).

1.1.1 Perfect secrecy

Is his seminal work [Sha49], Shannon gave a formal definition of security for

block ciphers, which basically requires that the security of the cryptosystem

3



Block ciphers

does not rely on assumptions on the computational capabilities of the adver-

sary, i.e. the cipher is unbreakable even if the computational power of the

adversary is not bounded. Before recalling Shannon’s definition of perfect

secrecy, let us consider the plaintext P and the key K as random variables.

Let us assume that a probability distribution PM on M is given, in such a

way we can denote by PM[P = p] the probability that the plaintext p ∈ M
occurs. Moreover, let us consider a probability distribution PK on K, inde-

pendent on P , such that PK[K = k] denotes the probability that the key

k ∈ K is chosen. Let us consider the random variable C : M× K → M
defined by (p, k)C = pEk, where M× K is equipped with the probability

distribution PM,K = PM × PK.

Definition 1.1.2. A block cipher Φ is said to have perfect secrecy if for each

p, c ∈M it holds

PM,K[P = p | C = c] = PM[P = p].

The notion of perfect secrecy means that the a posteriori distribution of the

plaintext P when the value of ciphertext C is known, is equal to the a priori

distribution of the plaintext, i.e. that an attacker obtains no more informa-

tion on the plaintext when the ciphertext is known.

The following characterisation of the perfect secrecy is due to Shannon.

Theorem 1.1.3. Let Φ be a block cipher and let us assume that #M = #K.

Then Φ has perfect secrecy if and only if for each p, c ∈ M there exists a

unique k ∈ K such that pEk = c and PK is uniform, i.e. for each k ∈ K it

holds PK[K = k] = 1/#K.

A well-known example of cipher with perfect secrecy is the one-time pad

[Mil82], which is however important only from a theoretical point of view,

since it is not easy to give a practical implementation of the cipher.
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Iterated block ciphers

1.2 Iterated block ciphers

In the second part of this work, Shannon introduced the concepts of confu-

sion and diffusion to guide the design of practical ciphers. Those are today

considered cardinal principles for obtaining the properties of security and

efficiency discussed before:

confusion the ciphertext statistics should depend on the plaintext statistics

in a manner too complicated to be exploited by the cryptanalyst;

diffusion the encryption spreads out of the influence of a single plaintext

digit over many ciphertext digits so as to hide the statistical structure

of the plaintext.

Since a cipher should not only be difficult to break, but it must also be

easy to use (i.e. to encrypt and decrypt when the secret key is known),

a very common approach for creating diffusion and confusion is to use a

product cipher, i.e., a cipher that can be implemented as a succession of simple

ciphers, each of which adds its modest share to the overall large amount

of diffusion and confusion [Mas88]. This idea leads to the definition of an

iterated cipher, which is the most common framework nowadays for block

ciphers. What follows is a general definition of iterated cipher.

Definition 1.2.1. The block cipher Φ = {EK | K ∈ K} is called an iterated

block cipher if there exists R ∈ N such that for each K ∈ K the encryption

function EK is the composition of R functions, i.e. EK = ε1,K ε2,K . . . εR,K .

For each 1 ≤ i ≤ R, the function εi,K is called the round function for the ith

round of the encryption function EK .

To provide efficiency, each round function is the composition of a public

component provided by the designers, and a private component derived from

the user-provided key by means of a public procedure known as key-schedule.

As we will discuss later in detail, each component of the cipher is designed

to fulfil its specific purpose. In this first informal description of the block ci-

phers’ fundamentals, we can describe the components of each round function,

also called layers, in this way:
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Iterated block ciphers

confusion layer is designed to provide the Shannon’s principle of confusion

by replacing certain blocks of bits of the state with other blocks of bits,

following a specific rule. The relation between the input and the output

of the confusion layer is designed to be as complex as possible, hence

look-up tables are usually required in implementation;

diffusion layer is designed to provide the Shannon’s principle of diffusion

by rearranging the bits of the block in such a way that a change in one

bit of the state affects as much bits as possible. Such a layer usually

operates simple manupulations on the bits of the block;

key-addition layer is the only layer of the cipher whose input is not public.

It makes all the bits of the block dependent on a user-selected key in

the manner intended by the designers of the cipher.

In the theory of modern iterated block ciphers, two frameworks are mainly

considered: Substitution-Permutation Networks (SPN) (see e.g. AES [DR13],

PRESENT [BKL+07], SERPENT [BAK98]) and Feistel Networks (FN) (see

e.g. DES [Pub77], Camelia [AIK+00], GOST [Dol10]). Figure 1.1 depicts the

more general framework of SPNs, FNs and their round functions; one can

note that inside the round function of an FN, a function called F-function is

applied to a half of the state. In both cases, the principles of confusion and

diffusion suggested by Shannon [Sha49] are implemented by considering each

round function / F-function as the composition of key-induced permutations

as well as non-linear confusion layers and linear diffusion layers, which are

invertible in the case of SPNs and preferably (but not necessarily) invertible

in the case of FNs. These two families are briefly discussed in the following

sections.

1.2.1 Substitution-Permutation Networks

The framework of SPNs has been widely studied in the last years, and nowa-

days is known especially as the basic structure of the current U.S. encryption

standard AES [DR13]. In an SPN the block is divided into multiple smaller

bricks, each brick becomes the input of a non-linear function (S-box), then

6



Iterated block ciphers

Figure 1.1: Round function of an SPN and of an FN

the bits of the block are mixed by means of a linear function. The key addi-

tion may occur before or after these two operations. The following definition

gives a mathematical description of SPNs in the model we will be using

throughout this work. In this case we are assuming M = V .

Definition 1.2.2. An R-round iterated cipher Φ is called a Substitution-

Permutation Network (SPN) if Φ is a family of encryption functions {EK |
K ∈ K} ⊂ Sym(V ) such that for each K ∈ K the map EK is the composition

of R round functions, i.e. EK = ε1,K ε2,K . . . εR,K , where εi,K = γλσki and

• γ ∈ Sym(V ) is a non-linear bricklayer transformation which acts in a

parallel way on each Vj, i.e.

(x1, x2, . . . , xn)γ =
(
(x1, . . . , xs)γ1, . . . , (xs(b−1)+1, . . . , xn)γb

)
.

The maps γj ∈ Sym(Vj) for each 1 ≤ j ≤ b are traditionally called

S-boxes ;

• λ ∈ Sym(V ) is a linear map;

• σki : V → V, x 7→ x + ki represents the key addition, where + is the

usual bit-wise XOR on F2. The round keys ki ∈ V are usually derived

from the master key K by means of a public algorithm, called key-

schedule. Using the terminology developed later in this work, we say

that the key addition defines a translation of ki to the vector x.

7



Iterated block ciphers

b b b b b bb b b b b b b b b b
γ

λ

σki

γ′ γ′ γ′ γ′

Figure 1.2: Example of 1-round encryption of an SPN

The function ρ
def
= γλ is called the generating function of the SPN. For each

1 ≤ r ≤ R we denote by E
(r)
K the composition of the first r round functions

of the encryption function EK . In particular EK = E
(R)
K . Figure 1.2 displays

the structure of a round function for an SPN.

For example, for the classical AES-128 cipher a 10-round encryption is

performed and 8-bit S-boxes are implemented. The state is arranged into a

4 × 4 matrix of bytes and the diffusion layer is a combination of ShiftRows

and MixColumns: in the former the last three rows of the state are shifted

cyclically, whereas in the latter a mixing operation which operates on the

columns of the state combining the four bytes in each column is applied

[DR13]. Instead PRESENT, briefly described also in Section 1.2.2, manip-

ulates 4-bit S-boxes; the diffusion is granted by a permutation matrix. The

designers have estimated that the iteration of 31 rounds gives a sufficient

margin of security to the cipher [BKL+07].

Remark 1.2.3. Notice that a bit-wise XOR addition is not the only possible

way to define a key-addition layer. In many modern ciphers, the key addi-

tion is performed e.g. by considering a modular addition. However, for the

purposes of this work, when studying SPNs, only key-addition layers induced

by the bit-wise sum modulo 2 will be considered. Moreover, Definition 1.2.2

does not include, for sake of simplicity, atypical rounds of the cipher, since

it is out of the scope of this work. However, it is worth mentioning that in

many ciphers the first and the last round, for efficiency and security reasons,

may be different from the others. For example, it is common that in the

first or in the last round only the key-addition layer is applied (whitening

8



Iterated block ciphers

x 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

xS Cx 5x 6x Bx 9x 0x Ax Dx 3x Ex Fx 8x 4x 7x 1x 2x

Figure 1.3: The S-box S of PRESENT

or post-whitening process) and in several ciphers the diffusion layer is not

applied in the last round.

Notice that, since every round function is composed by invertible layers,

the decryption can be performed by applying the inverse of the layers to the

ciphertext, in reverse order.

1.2.2 PRESENT

The block cipher PRESENT [BKL+07] has been designed in 2007, for the

purpose of being a lightweight cipher, i.e. a cipher suitable for hardware

implementation in low-power devices or constrained environments such as

RFID tags and sensor networks. It is an example of SPN and consists of 31

rounds. The block length is 64 bits and two key lengths of 80 and 128 bits

are supported. The encryption functions are induced by 32 round-keys, 31

of which are used in the standard rounds and the remaining one is used in

the last and atypical round for post-whitening. Typically the round function

is unique and is obtained as the composition of the following three layers:

addRoundKey the 64-bit round key, derived by the designed key-schedule

[BKL+07], is XOR-ed to the partial state;

sBoxlayer the 64-bit block is split into 16 4-dimensional bricks, each of these

is substituted in accordance with the S-box S ∈ Sym(F2)4 displayed in

Fig. 1.3;

pLayer with the convention that the left-most bit of the block is in position

0, and the right-most in position 63, for each 0 ≤ i ≤ 63 the bit of the

state in position i is moved to position P (i), where the permutation P

9
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Figure 1.4: A 2-round encryption of PRESENT

is defined as follows

P (i)
def
=

16× i mod 63 0 ≤ i < 63

63 i = 63.

Figure 1.4 displays the composition of two typical round functions of

PRESENT.

1.2.3 Feistel Networks

Besides SPNs, many modern ciphers and their precursors are based on the

framework of Feistel Networks, which became popular when the U.S. Federal

Government adopted the DES as the standard encryption algorithm for the

protection of sensitive, unclassified electronic government data. This cipher,

derived from the block cipher Lucifer designed by Horst Feistel and Don Cop-

persmith in 1973, has been withdrawn in the end of the nineties, mainly due

to its short key-length (56 bits). However, its study has highly influenced the

advancement of modern cryptography, both in the direction of understanding

the properties of FNs and developing new cryptanalytic techniques.

Similarly to SPNs, a 2n-bit Feistel Network consists of the repetition of

R rounds of an identical structure. This repeated structure is realised by

means of the so-called F -function and a swap operation. The F -function

maps a n-bit input into a n-bit output under the action of a set of round

10



Iterated block ciphers

F

xi,R

⊕
Ki

xi,R

⊕

F⊕
Ki+1

⊕

x(i+2),L′ x(i+2),R′

Figure 1.5: Example of 2-round encryption of a FN

keys. Such a function encrypts the right half of the state, which is then

XOR-ed to the remaining part of the message. The two halves of the current

state are then swapped and the round is repeated. Feistel Networks usually

include an atypical last round, where no swap is performed. An example of

2-round encryption of an FN is illustrated in Fig. 1.5.

Let us now describe more formally this procedure.

Definition 1.2.4. Let f : (F2)n → (F2)n be a vectorial Boolean function.

We denote by f the formal operator f : (F2)2n → (F2)2n

f
def
=

(
0n 1n
1n f

)
,

which for any (x1, x2) ∈ (F2)n× (F2)n acts as (x1, x2)f
def
= (x2, x1 +x2f). The

operator f̄ is called the Feistel operator induced by f .

The operator previously defined allows to give an algebraic description of

FNs, which are defined on the message space M = V × V .

Definition 1.2.5. An R-round iterated cipher Φ is called a Feistel Network

(FN) if Φ is a family of encryption functions {EK | K ∈ K} ⊂ Sym(V × V )

such that for each K ∈ K the map EK is the composition of R key-dependent

11
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Feistel operators, i.e. EK = ε1,K ε2,K . . . εR,K , where εi,K : V → V for

1 ≤ i ≤ R.

Feistel operators are usually designed in accordance to the Shannon’s

principles, i.e. contain layers providing confusion and diffusion. The key-

addition layers may be designed in several ways, more frequently they are

induced from the XOR or from a modular addition. Notice that, as in the

case of Definition 1.2.2, we do not include possible atypical rounds in the

definition of the cipher.

Remark 1.2.6. One advantage of the Feistel Network is that the decryp-

tion process is identical to encryption, provided the round keys are taken in

reverse order. Moreover, notice that a Feistel operator f̄ is always invertible,

regardless the invertibility of f , and it has the following inverse

f
−1

=

(
f 1n
1n 0n

)
.

It is indeed easy to check that

(x2, x1 + x2f)

(
f 1n
1n 0n

)
= (x1, x2).

The cipher presented in the following section is a FN with an easy de-

scription.

1.2.4 GOST 28147-89

Developed in the 1970s, the cryptosystem GOST has been kept secret since

the dissolution of the USSR, when it was declassified and it was released to

the public in 1994. The cipher was a soviet alternative to the U.S. standard

DES, with whom it shares a similar structure. It is a 64-bit FN with a key-

length of 256 bits. Each Feistel operator applies to the 32-bit right half of

the state a key-dependent F-function where confusion is provided by means

of a parallel layer made up by 4-bit S-boxes, diffusion is provided by a left

rotation of 11 bits, whereas the key is added to the state by means of an

addition modulo 232. The full description of the variant GOST 28147-89

may be found e.g. in [Dol10].
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1.3 Classical round functions

After having presented the main differences between SPNs and FNs, we intro-

duce the notion of classical round function, which allows to describe formally

both cipher families in a unified way, provided the round key is used as a

translation (i.e., the key addition is the usual XOR). The family of classical

round functions for iterated block ciphers of our model is large enough to

include the round functions of well-established SPNs e.g. AES, PRESENT,

SERPENT, and the F-function of FNs like Camelia. Notice that, for sake of

simplicity, atypical rounds are again not considered in this description.

Definition 1.3.1. For each k ∈ V , a classical round function induced by k

is a map εk ∈ Sym(V ) of the type εk = γλσk, where

• γ : V → V is a non-linear permutation (parallel S-box) which acts in a

parallel way on each Vj, i.e.

(x1, x2, . . . , xn)γ =
(
(x1, . . . , xs)γ1, . . . , (xs(b−1)+1, . . . , xn)γb

)
,

applying the S-box γj : Vj → Vj to the jth brick;

• λ ∈ Sym(V ) is a linear map,

• σk : V → V, x 7→ x+ k represents the addition with the round key k.

When used inside block ciphers, the round keys in V are derived by the

designer-provided key-scheduling function from the master key K ∈ K.

Since, as we will discuss later in detail, studying the role of the key-schedule

is out of the scope of this work, one can simply assume that round keys are

randomly-generated vectors in V .

It is important to recall here that, even though the terms “SPN” and

“FN” refer to a larger variety of ciphers (i.e. different key-addition or a differ-

ent arranging of the layers may be considered), for the purposes of this work

we choose to focus only on ciphers with a XOR-based key addition. For this

reason, saying SPN we refer to any cipher {EK | K ∈ K} ⊆ Sym(M) having

an SPN-like structure withM = V and having classical round functions on V

13
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as round functions, and saying FN to any cipher {EK | K ∈ K} ⊆ Sym(M)

having an FN-like structure with M = V × V and having classical round

functions on V as F-functions. Moreover, we assume that the Feistel oper-

ators defining an FN are of the type of εi,K , where εi,K is a classical round

function as in Definition 1.3.1. Hence, as in the case of SPNs, we refer to

ρ
def
= γλ by saying the generating function of the Feistel Network.

1.4 Cryptanalysis

When dealing with a new cryptosystem, one of the main issues is to define

how its security can be evaluated. A first classification of the security of

a block cipher, which was introduced in [Knu94a], can be made consider-

ing the possible outcomes of the attacks, here listed in ascending order of

dangerousness:

key recovery the attacker finds the secret key K used for the encryption;

global deduction the attacker finds a function which is equivalent to the

encryption function EK , without knowing the key K;

local deduction the attacker manages to encrypt or decrypt one message,

which he did not obtain from the legitimate sender;

information deduction the attacker recovers some bits of the key or of

the plaintext, which he did not get directly from the sender and which

he did not have before the attack;

distinguishing attack the attacker can effectively distinguish between two

black boxes, one containing the block cipher with a randomly chosen

encryption key and the other containing a randomly chosen permuta-

tion over the same space.

A second classification is usually done in terms of the capabilities of the

attacker to collect information. The aim of the attacker being to recover

(partial) information on the key, the following scenarios are considered:
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ciphertext-only the attacker has access to some ciphertexts, and has no

access to the corresponding plaintexts. This information is the easiest

an attacker can gain access to, since the attacker only needs to intercept

the messages of an encrypted conversation. However, today’s cipher are

very unlikely vulnerable to this kind of attack;

known-plaintext the attacker has access to a number of pairs of plaintexts

and the corresponding ciphertexts, encrypted with the unknown key;

chosen-plaintext the attacker has access to an encryption oracle which can

provide the encryption with the same key of a set of messages provided

by the attacker;

adaptive chosen-plaintext the attacker can behave several time as in the

chosen-plaintext scenario. After viewing and analysing the output of

the oracle, the attacker can make new queries;

related-key the attacker has access to the encryption of the same plain-

text using unknown keys which are related to the target key in some

mathematical way;

side-channel it is not an attack to the mathematical structure of the ci-

pher but rather to its implementation. The attacker exploit external

facts related to the encryption / decryption process, such as electric

noise, power consumption, computation time etc., to recover (partial)

information of the plaintext or on the key used.

The attacks are listed here in ascending order of data required to the at-

tacker, i.e. from the most practical to the most impractical. Since a proof of

the security of a block cipher from every attack can almost never be given,

focusing on rather impractical attacks, as the lasts in the list, gives a suffi-

ciently reasonable margin of safety.

To conclude, the success of a cryptanalytic attack can be measured in

terms of the effort required for the attack to be performed. In particular, we

focus is usually put on the following parameters:
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time complexity the time needed to perform an attack, measured in terms

of operations the attacker needs to perform;

memory complexity the storage needed to perform the attack;

data complexity the amount of data to obtain in order to perform the

attack.
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2
Differential cryptanalysis

In this chapter, the attack of differential cryptanalysis is described. Later

in this work, we generalise the attack to the case of alternative difference

operators.

2.1 Description of the attack

Differential cryptanalysis was publicly introduced by Biham and Shamir in

the beginning of the 90’s [BS91a] as a powerful tool to cryptanalyse some

cryptographic primitives, including mainly block ciphers. It is today known

that the IBM designers of DES were already aware of the differential attack

before it was published, and consequently designed the cipher in way to be

resistant against the attack. However, for a matter of national security, they

were asked by the NSA to keep the cryptanalytic technique secret. After

the attack was published, many block ciphers were cryptanalysed using this

method [BS91b, BS91c, BAB93, RP94]. The idea has later been widely

generalised and many variants have been introduced in recent years [Knu94b,

BBS99, Knu98]. We will refer to the Biham’s and Shamir’s attack by saying

the classical differential attack.

Informal description Let us recall that we denote by V a plaintext /

ciphertext space, where V = (F2)n. The classical differential cryptanalysis is

a chosen-plaintext attack, where the difference between plaintexts is fixed.

17



Description of the attack

For any x and y in V , the difference between x and y with respect to ∗ is

defined as diff(x, y)
def
= x ∗ y−1, where ∗ is any group operation on V , and

y−1 is the inverse of y with respect to ∗. In order a cipher to be secure

against the larger class of attacks, we expect its encryption functions to

destroy patterns in the plaintexts. For example, let P be a set of pairs P
def
=

{(x1, x2) | x1, x2 ∈ V, diff(x1, x2) = ∆}, where all the corresponding elements

in a pair have difference fixed to a given value ∆ ∈ V , i.e.

# {diff(x1, x2) | (x1, x2) ∈ P} = 1.

Let now E be an encryption function of the cipher and let C be the set

obtained by encrypting every pair in P with the same encryption function

E, i.e. C
def
= {(x1E, x2E) | (x1, x2) ∈ P}. Since the function E is an encryp-

tion function, we expect that it is not possible to predict the difference of

corresponding message in a pair after the encryption is performed (output

difference), i.e. we expect that

# {diff (y1, y2) | (y1, y2) ∈ C} = # {diff (x1E, x2E) | (x1, x2) ∈ P} ∼ #P.

Notice that, when P contains all the possible pairs having difference fixed

to ∆, then #P = 2n−1. If it happens that there exists a suitable differ-

ence ∆ ∈ V such that, even if the key is unknown, it is possible to predict

the difference after the encryption with a relatively high probability, then

the cipher is vulnerable to differential cryptanalysis. Stated differently, if

some differences propagate with unusually high or low probability during the

encryption process, this leads to a non-uniform distribution of the output

differences which may be used to show a non-random behavior of the cipher.

In order to attack an R-round iterated cipher, in the classical setting, the

cryptanalyst needs to choose an input difference ∆I which, after a partial

encryption of R − 1 rounds, corresponds to an output difference ∆O with a

significantly high probability p. Then he can proceed as follows:

• he generates a set of pairs P
def
= {x | x ∈ V 2} with the property that for

each x = (x1, x2) ∈ P it holds diff (x1, x2) = ∆I ;
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• he submit P to an encryption oracle, which encrypts each pair with a

target keyK, and obtains the set C
def
= {diff (x1EK , x2EK) | (x1, x2) ∈ P};

• for each pair in C he performs a partial decryption for each message of

the pair, trying to guess the round key used in the last round, and he

increments a counter every time for the selected round key the difference

of the partially decrypted messages equals the expected value ∆O;

• after the previous step is performed for all the round keys of interest, he

chooses the round key candidate with the highest value in its counter.

Assuming that if messages are partially decrypted with the wrong round

key then their differences are uniformly distributed, if the probability p is

sufficiently high the cryptanalyst succeeds in recovering some bits of the last

round key.

2.2 Classical differential cryptanalysis

Although differences can be computed with respect to every operation ∗ such

that (V, ∗) is a group, in general the difference taken into consideration de-

pends on the operation that is used to perform the key addition. In the case

of the SPNs, for example, this operation is usually the XOR, since the key

addition is performed by XOR-ing the round key bits with the bits of the

message. However, keeping in mind that the scope of this work is to crypt-

analyse an SPN using an operation different from the XOR, we will describe

classical differential cryptanalysis with respect to a general group operation

∗. In order to keep the notation lighter, when it is clear from the context,

we will not write explicitly the dependence on the operation ∗.

Let us consider Φ = {EK | K ∈ K} < Sym(V ) an R-round iterated block

cipher, let 1 ≤ r ≤ R and let ∗ be a group operation on V . Let us denote by

diff the difference operator induced by ∗.

Definition 2.2.1. A pair (∆I ,∆O) ∈ V 2 is called a differential. The elements

∆I and ∆O are called input difference and output difference, respectively.
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Actually we are not interested in the concept of the differential itself, but

rather in its probability.

Definition 2.2.2. Let f ∈ Sym(V ), and let (∆I ,∆O) ∈ V 2 be a differential.

The differential probability of the differential (∆I ,∆O) with respect to f and

to the operation ∗ is

p f∆I
(∆O)

def
=

# {x | x ∈ V, diff (xf, diff (x,∆I)f) = ∆O}
#V

,

which represents the probability that given any two messages with input

difference ∆I , i.e. x and diff (x,∆I), it holds that the corresponding output

difference is ∆O, i.e. diff (xf, diff (x,∆I)f) = ∆O, where x is uniformly

distributed on V . If p f∆I
(∆O) > 0 we say that the differential (∆I ,∆O) is

admissible over f . Moreover, if p f∆I
(∆O) = 1, we say that the differential

p f∆I
(∆O) is deterministic over f , and if p f∆I

(∆O) = 0 that the differential

(∆I ,∆O) is impossible over f .

Remark 2.2.3. Let f ∈ Sym(V ) and let (∆I ,∆O) be an admissible differ-

ential over f . Then, since f is bijective it holds

∆I = 0⇔ ∆O = 0.

Definition 2.2.4. Let f ∈ Sym(V ), (∆I ,∆O) ∈ V 2 be a differential, and let

x ∈ V . We say that the pair (x, diff (x,∆I)) follows the differential (∆I ,∆O)

with respect to f if diff (xf, diff (x,∆I)f) = ∆O.

As already mentioned, in a real case scenario, the key used for the en-

cryption is unknown to the attacker. For this reason, we need to extend

the notion of differential probability to the case when the function used is

unknown.

Definition 2.2.5. Let (∆I ,∆O) be a differential. The differential probability

of the differential (∆I ,∆O) with respect to Φ(r) is the expected value of the

differential probability of (∆I ,∆O) with respect to E
(r)
K , assuming that the

keys are uniformly distributed on K, i.e.

pΦ(r)

∆I
(∆O)

def
=
∑
K∈K

p
E

(r)
K

∆I
(∆O) · 1

#K
.
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When looking at a differential (∆I ,∆O) with the intention of studying its

differential probability with respect to Φ(r), we will also call (∆I ,∆O) an r-

round differential. If it is clear that (∆I ,∆O) denotes an r-round differential,

then pΦ(r)

∆I
(∆O) is also written simply as p∆I

(∆O).

Notice that, in the context of a differential attack, only plaintexts can be

chosen by the attacker, whereas the key used for the encryption in unknown.

In our definition of differential probabilities, however, we are assuming that

the plaintexts and the keys are independent and uniformly random. These

probabilities will be used to determine the best differential suitable to perform

the attack. Hence, we are tacitly assuming that, for a given differential

(∆I ,∆O), the differential probability for a chosen key equals its expected

value p∆I
(∆O). This hypothesis is known with the name of hypothesis of

stochastic equivalence [LMM91].

Definition 2.2.6. The best differential probability over Φ(r) is defined as

pmax
def
= max

∆I 6=0,∆O

pΦ(r)

∆I
(∆O).

Each differential (∆I ,∆O) such that pΦ(r)

∆I
(∆O) = pmax is called the best

differential over Φ(r).

The size of the value pmax reflects the security of the cipher in terms of

resistance against the standard differential attack. In particular, the cipher

Φ is secure with respect to the classical differential cryptanalysis if it is not

possible to detect a relevant bias in the distribution of all the possible r-

round differentials, when r is close to the actual number of rounds R of

the cipher. More precisely, we can assume that the cipher is secure if no

r-round differential (r close to R) has probability different enough from 2−n

so that it is possible to distinguish the set of parametrised permutations from

a random one. However, for a real-size cipher, the problem of determining

the best r-round differential cannot practically be solved. For this reason,

an approximation of this value is required.

Definition 2.2.7. Every sequence (∆0,∆1, . . . ,∆r) ∈ V r+1 is called an r-

round differential trail. Given a differential (∆I ,∆O), we denote by D(∆I ,∆O),r

the set of all the r-round differential trails from ∆I to ∆O.
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Definition 2.2.8. Let (∆0,∆1, . . . ,∆r) ∈ V r+1 be an r-round differential

trail, and let x ∈ V . We say that the pair (x, diff (x,∆0)) follows the differ-

ential trail (∆0,∆1, . . . ,∆r) with respect to Φ(r) if for each 1 ≤ i ≤ r it holds

diff
(
xE

(i)
K , diff (x+ ∆0)E

(i)
K

)
= ∆i.

A differential trail (∆0,∆1, . . . ,∆r) is hence a sequence of intermediate dif-

ferences at each round, starting and ending respectively at the extremities of

the r-round differential (∆0,∆r). As in the case of differentials, we are inter-

ested in the probability that a given differential trail holds, which is defined

as the probability that a pair follows the differential trail.

Definition 2.2.9. Let (∆0,∆1, . . . ,∆r) ∈ V r+1 be an r-round differential

trail, andK ∈ K be a key of the cipher. Then the probability of the differential

trail (∆0,∆1, . . . ,∆r) with respect to EK is

p(∆0,∆1,...,∆r),K
def
=

#
{
x | x ∈ V, ∀1 ≤ i ≤ r diff

(
xE

(i)
K , diff (x,∆0)E

(i)
K

)
= ∆i

}
#V

.

It should be clear that if a pair (x, diff (x,∆I)) follows an r-round dif-

ferential (∆I ,∆O), then it is uniquely determined an r-round differential

trail (∆0,∆1, . . . ,∆r) such that ∆0 = ∆I , ∆r = ∆O, and the difference of

the partial states at the stage i equals ∆i. Conversely, each pair following

an r−round differential trail (∆I ,∆1, . . . ,∆r−1,∆O) follows the differential

(∆I ,∆O). Hence the following result holds.

Proposition 2.2.10. Let (∆I ,∆O) be an r-round differential. For any en-

cryption function EK, it holds

p
E

(r)
K

∆I
(∆O) =

∑
(∆I ,∆1,...,∆r−1,∆O)
∈D(∆I ,∆O),r

p(∆I ,∆1,...,∆r−1,∆O),K .

The probability of a given r-round differential (∆I ,∆O) with respect to a

fixed key K is then obtained as the sum of the probabilities of all the possible

paths having length r + 1 and going from ∆I to ∆O. However, this result

does not simplify the problem of computing the probability of a differential
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for a fixed key. Indeed, the number of paths from ∆I to ∆O having length

r + 1, #D(∆I ,∆O),r, increases so rapidly with r that it is not possible to list

all of them. Therefore, computing the probability of an r-round differential

trail is still a difficult task, which can be simplified assuming the following

hypothesis.

Definition 2.2.11. An iterated block cipher Φ is called a Markov cipher if

the probability of an output difference of any encryption function, once the

input difference is given, is independent on the chosen message if the keys

are uniformly distributed in the key space.

In such an hypothesis the following result holds.

Proposition 2.2.12. Let us assume that Φ it is a Markov cipher. Then the

probability of an r-round differential trail (∆0,∆1, . . . ,∆r) with respect to the

key K is

p(∆0,∆1,...,∆r),K =
r−1∏
i=0

p
EKi+1

∆i
(∆i+1).

The Markov condition hence allows to calculate the probability of an

r-round differential trail as the product of probabilities for 1-round trails.

Under this assumption, the probability of Proposition 2.2.10, i.e. the proba-

bility of a given r-round differential (∆I ,∆O) for a fixed key, can be seen as

the sum of the probabilities with respect to the fixed key of all the r-round

differential trails from ∆I to ∆O, each of these is the product of 1-round

differential trails. Naturally it is not possible, in general, to verify that the

Markov condition holds. Nevertheless, it is believed that if the key-schedule

is not extremely bad designed, calculating the probability of a differential

by multiplying 1-round differential probabilities gives in general a reasonable

approximation for practical purposes [BS91a]. However, an attacker is not

interested in these key-dependent values in general, since the key used for

the encryption is unknown. The average of this values turns out to be a more

interesting marker.
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Definition 2.2.13. Let (∆0,∆1, . . . ,∆r) ∈ V r+1 be an r-round differential

trail. Then the probability of the differential trail (∆0,∆1, . . . ,∆r) with re-

spect to Φ(r) is

p(∆0,∆1,...,∆r) =
∑
K∈K

p(∆0,∆1,...,∆r),K ·
1

#K
.

The following intuitive result links the probability of an r-round differential

with the probability of all the r-round trails which compose the differential.

Theorem 2.2.14. Let (∆I ,∆O) be a differential. Then

pΦ(r)

∆I
(∆O) =

∑
(∆I ,∆1,...,∆r−1,∆O)

∈Dr,∆I ,∆O

p(∆I ,∆1,...,∆r−1,∆O).

These values are still out of reach for a real-size cipher, therefore nowa-

days the best methods to provide evidence that a given cipher is secure /

insecure with respect to the classical attack are based on the assumption

that it is possible to estimate the best (R − 1)-round differential (∆I ,∆O)

by determining several high-probability (R− 1)-differential trails from ∆I to

∆O.

2.3 The case of SPNs

As already mentioned is the previous chapter, a cipher which belongs to the

family of the SPNs is a set of encryption functions, each of which is the

composition of R round functions. Each of these round functions in turn is

the composition of three different layers: a confusion layer which is public

and XOR-non-linear, a diffusion layer which is public and XOR-linear, and a

key addition layer which acts as a XOR-translation of the round key derived

from the user-selected master key.

In an SPN, if differentials are computed with respect to the XOR, the input

difference to the key-addition layer always equals its output difference, since

for each x, k,∆ ∈ V , (x + k) + (x + ∆ + k) = ∆. This suggests, in the case

of the classical differential attack, to use the XOR as the operation inducing
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the difference operator, hence to consider diff (x, y)
def
= x+ y.

In this context, the following trivial result shows that affine maps admit

deterministic differentials.

Lemma 2.3.1. Let f ∈ AGL(V,+), and let A ∈ GL(V,+) and a ∈ V such

that xf = xA + a for each x ∈ V . Then for each ∆I ∈ V , (∆I ,∆IA) is the

only admissible differential over f . In particular if f ∈ Tn, then p f∆I
(∆I) = 1.

Proof. Let ∆I ∈ V , then for each x ∈ V it holds xf + (x+ ∆I)f = xA+ a+

(x+ ∆I)A+ a = xA+ a+ xA+ ∆IA+ a = ∆IA, hence for each ∆ ∈ V

p f∆I
(∆) =

1 if ∆ = ∆IA

0 if ∆ 6= ∆IA
.

In particular, if f is a translation, then A = 1n, hence the desired holds.

Rephrased in the language of SPNs, the previous result means that, when

studying the propagation of differentials through the layers of a SPN, diffu-

sion and key-addition layer have deterministic differentials, hence only the

confusion layer requires a probabilistic analysis.

Corollary 2.3.2. Let Φ be an SPN and let λ be its diffusion layer. To

each input difference ∆ ∈ V to the diffusion layer corresponds the output

difference ∆λ for each x ∈ V . Moreover, to each input difference ∆ to the

key-addition layer corresponds the output difference ∆ for each x ∈ V .

Remark 2.3.3. In the light of the previous result, the probability of any

1-round differential does not depend on the used round-key.

Under the assumption that Φ is a Markov SPN, Proposition 2.2.12 can be

restated. The probability of an r-round differential trail for a given key can

be expressed as the product of key-independent 1-round-trail probabilities.

In particular the probability of an r-round differential trail is independent

on the key used.
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Proposition 2.3.4. Let us assume that Φ is a Markov SPN. Then the prob-

ability of an r-round differential trail (∆0,∆1, . . . ,∆r) with respect to Φ(r)

is

p(∆0,∆1,...,∆r) =
r−1∏
i=0

p γ∆i
(∆i+1λ

−1).

Proof. Let us fix a key K ∈ K. Then

p(∆0,∆1,...,∆r),K =
r−1∏
i=0

p
EKi+1

∆i
(∆i+1)

by virtue of Proposition 2.2.12. The right side of the equation does not

depends of the actual value of the round key derived from the actual K

for Remark 2.3.3. Moveover, from Corollary 2.3.2, each round function of

an SPN sends the input difference ∆I to the output difference ∆O with

probability p if and only if the confusion layer γ sends ∆I to ∆Oλ
−1 with

probability p. Indeed, if this happens, then the diffusion layer sends ∆Oλ
−1

to ∆O with probability 1, and the key-addition layer keeps this difference

unchanged.

Since the confusion layer γ is a parallel map, then the probability of a

1-round differential can be expressed as the product of the probability that

the bricks of the difference pass through the corresponding S-boxes. In this

count, thanks to Remark 2.2.3, S-boxes entered with a zero difference can

be ignored. The latter are important in the context of a differential attack,

therefore they are worth a more formal definition.

Definition 2.3.5. Let (∆0,∆1, . . . ,∆r) be an r-round differential trail. Let

1 ≤ j ≤ b and let 1 ≤ ` ≤ r. The S-box γj is said to be active at the round `

with respect to (∆0,∆1, . . . ,∆r) if ∆`−1πj 6= 0, i.e. if the coordinates of the

j th brick of the input difference at the round (`− 1) is non-zero. If an S-box

is not active, then it is called non-active.

In the following corollary of Proposition 2.3.4, the probability of passing

through a non-active S-boxes is 1.
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Proposition 2.3.6. Let us assume that Φ is a Markov SPN. Then the prob-

ability of an r-round differential trail (∆0,∆1, . . . ,∆r) with respect to Φ(r)

is

p(∆0,∆1,...,∆r) =
r−1∏
i=0

b∏
j=1

p
γj

∆
[j]
i

(
(∆i+1λ

−1)[j]
)
.

In the light of the previous result, the complexity of computing the prob-

ability of a single trail is significantly reduced. In terms of memory, indeed,

this computation requires storing b matrices with 2s×2s entries, one for each

S-box, containing the data required to predict the output difference after

the S-box, once the input difference is given. It should be clear now that

the number of active S-boxes plays a crucial rule in determining the size of

the probability for a differential trail, and consequently in the success of a

differential attack: the higher this number, the lower the probability that a

given pair follows the differential trail.

Let us recall that in the following three cases the transaction from a

difference to another occurs with probability 1:

• when entering with a zero difference any S-box (entering a non-active

S-box),

• when passing through the diffusion layer,

• when passing through the key-addition layer.

Having noticed this, security from differential cryptanalysis, i.e. guaranteeing

that the probability of each (R− 1)-round differential is low enough that the

cipher cannot be distinguished from a random permutation, is based on the

fact that the differential probabilities induced by the S-boxes (i.e. the only

non-deterministic layers of the cipher in term of difference propagation) are

low. This is mainly possible in two ways:

• the differential probabilities of the S-boxes are low themselves,

• the diffusion layer activates many S-boxes.
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We will discuss these design goals in detail in the following sections, keep-

ing in mind that the success of a differential attack is due to a failure in a

good design of the confusion or of the diffusion layer, or maybe in their poor

interaction.

2.4 Resistance to classical differential crypt-

analysis

The problem of determining conditions on the layers of an SPN guaranteeing

that a given cipher is vulnerable to differential cryptanalysis is difficult. This

is due to the fact that security from differential attacks is based not only on

suitable properties of the layers, but also on the way they interact. In this

section and in the following ones, some of the most used design criteria for

diffusion and confusion layers will be explained. As already mentioned, we

will not focus on any key-schedule-related property, since we will assume that

all the round keys are randomly generated. It is worth to mention though

that also the key-scheduling function may affect, if bad designed, the security

of the cipher in terms of differential attack. However, including such a topic

would lead us out of the scope we have established for this work.

2.4.1 Non-linearity notions for confusion layers

The non-linearity of the confusion layer is a necessary condition for the secu-

rity of the cipher against the most common attacks, and by virtue of Lemma

2.3.1 is particularly crucial in the context of differential attacks. In order

to understand what is a good confusion layer with respect to differential

cryptanalysis, let us assume the most extreme hypothesis: all the encryption

functions are affine. Then in that case, fixing ∆ ∈ V and considering P the

set of pairs having a fixed difference ∆, i.e. P
def
= {(x, x + ∆) | x ∈ V }, after

encrypting all these pairs with an affine function E we obtain

#{x1E + x2E | (x1, x2) ∈ P} = 1.

Stated alternatively, the function ∂∆E : x 7→ xE + (x+ ∆)E in constant on

V . It is clear now that a possible way to measure the non-linearity of E is
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in terms of the number of values that the function ∂∆E assumes, for each

∆ ∈ V . Let us define this in a concrete way.

Definition 2.4.1. Let f : (F2)s → (F2)t be a vectorial Boolean function and

let u ∈ (F2)s. The derivative of f in the direction u, denoted by ∂u f , is the

function
∂u f : (F2)s → (F2)t

x 7→ xf + (x+ u)f.

As already noted, whenever f is linear, the derivatives in every direction are

constant. Hence, the more the derivatives of f are far from being constant,

the more we can assume that f is non-linear. In this sense, the following

definitions can give a first estimate of the non-linearity of f [Nyb93].

Definition 2.4.2. Let f : (F2)s → (F2)t, u ∈ (F2)s and v ∈ (F2)t. Let us

define

δf (u, v)
def
= #{x ∈ (F2)s | x ∂u f = v} = #

{
{v}(∂u f)−1

}
.

The values δf (u, v) previously defined can be stored in a table, which is

important to predict how differences propagate through the S-boxes.

Definition 2.4.3. Let f : (F2)s → (F2)t. The difference distribution table

(DDT) of f is the integer table DDTf ∈ Zs×t where

DDTf [u, v]
def
= δf (u, v).

Example 2.4.4. Figure 2.1 displays the DDT of the 4 × 4 S-box S of the

cipher PRESENT described in Section 1.2.2. As already noticed in Remark

2.2.3, since the considered S-box is invertible, x ∈ (F2)4 is a solution of

xS + (x + ∆)S = 0 if and only if ∆ = 0, hence the first row and the first

column of DDTS are null except for the entry 16 = #(F2)4 corresponding to

the input / output pair (0x, 0x). The remainder of the table reads as follows:

since DDTS[1x, 3x] = 4, it means that the equation xS + (x+ 1x)S = 3x ad-

mits four solutions in (F2)4, hence the probability that the output difference

to S is 3x given that its input difference is 1x is 1/4.
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0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 16 · · · · · · · · · · · · · · ·
1x · · · 4 · · · 4 · 4 · · · 4 · ·
2x · · · 2 · 4 2 · · · 2 · 2 2 2 ·
3x · 2 · 2 2 · 4 2 · · 2 2 · · · ·
4x · · · · · 4 2 2 · 2 2 · 2 · 2 ·
5x · 2 · · 2 · · · · 2 2 2 4 2 · ·
6x · · 2 · · · 2 · 2 · · 4 2 · · 4

7x · 4 2 · · · 2 · 2 · · · 2 · · 4

8x · · · 2 · · · 2 · 2 · 4 · 2 · 4

9x · · 2 · 4 · 2 · 2 · · · 2 · 4 ·
Ax · · 2 2 · 4 · · 2 · 2 · · 2 2 ·
Bx · 2 · · 2 · · · 4 2 2 2 · 2 · ·
Cx · · 2 · · 4 · 2 2 2 2 · · · 2 ·
Dx · 2 4 2 2 · · 2 · · 2 2 · · · ·
Ex · · 2 2 · · 2 2 2 2 · · 2 2 · ·
Fx · 4 · · 4 · · · · · · · · · 4 4

Figure 2.1: DDT of the S-box S of PRESENT

The DDT of an S-box is related to its differential probabilities as stated

in the following trivial result. Notice that, for sake of simplicity, differentials

have been defined as pairs of elements in the same set, and their probabil-

ity have been defined only with respect to a bijective function. However

Definition 2.2.2 can be easily generalised to the case of different sets and

non-bijective functions.

Lemma 2.4.5. Let f : (F2)s → (F2)t. Then for any ∆I ∈ (F2)s and ∆O ∈
(F2)t, the probability of the differential (∆I ,∆O) with respect to f is

p f∆I
(∆O) =

DDTf [∆I ,∆O]

2s
.
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Notice that, the number of non-zero element in a row DDTf [∆, ·] corre-

sponds to the number of different values that ∂∆f can assume. The following

definition is a way to use these numbers as an indicator for the non-linearity

of f .

Definition 2.4.6. Let f : (F2)s → (F2)t. The differential uniformity of f is

defined as

δ(f)
def
= max

u,v
u6=0

DDTf [u, v],

The function f is said to be δ-differentially uniform if δ = δ(f).

It is straightorward to notice the following properties:

• if x is a solution of xf + (x + ∆I)f = ∆O, also x + ∆I is a solution,

hence DDTf [∆I ,∆O] is always even, and so is δ(f);

• 2 ≤ δ(f) ≤ 2s;

• for each ∆I ∑
∆

DDTf [∆I ,∆] = 2s.

Since the lower the entries of DDTf [∆I , ·], the more the values ∂∆I
f assumes,

functions f which reach the lower bound δ(f) = 2 are optimal in terms of

non-linearity, in the sense of preventing difference propagation.

Definition 2.4.7. Let f : (F2)s → (F2)t. If δ(f) = 2, f is called almost-

perfect non-linear (APN).

2.4.2 Known APN permutations

APN functions could represent the best choice when designing the confusion

layer of a cipher. However, the problem of finding APN permutations seems

to be quite hard, specially in some cases which are the most relevant for the

applications. It has been for a long time conjectured that no permutation is

APN if the function has an even number of variables. This conjecture has

been proven false in 2010, when Dillon et al. [BDMW10] showed an example

of an APN permutation in 6 variables. However this is the only known exam-

ple so far of APN permutation taking as input an even number of variables,
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Name Exponent s Conditions Reference

quadratic function 2d
′
+ 1 1 ≤ d′ ≤ ` [Nyb93, Gol68]

gcd(d′, s) = 1

Kasami function 22d′ − 2d
′
+ 1 2 ≤ d′ ≤ ` [Kas71]

gcd(d′, s) = 1

Welsh function 2` + 3 [Dob99b, CCD00]

Niho function 2` + 2`/2 − 1 ` even [Dob99a, HX01]

2` + 2(3`+1)/2 − 1 ` odd

inverse function 2s − 2 [Nyb93, BD93]

Table 2.1: Known APN permutations of the type x 7→ xd on (F2)s, s = 2`+1

up to equivalence. It has been shown that no permutation in (F2)s is APN

when s = 4 [BL08, CSV17], and the problem is still open for s ≥ 8.

In the case s odd instead, APN permutations are known. In what follows

we will briefly recall the case of power functions, i.e. (F2)s-valued function

of the type of x 7→ xd, d ∈ N. It is known that an APN power function is a

permutation over (F2)s if and only if s is odd [Car10], hence let us focus on

the case s = 2` + 1. Table 2.1 collects some families of known APN power

functions in odd dimension which are bijective [Blo11].

2.4.3 Other non-linearity notions

In this section we will quickly discuss other non-linearity notions for Boolean

functions. Even if not necessarily related to differential attacks, they will be

used in the remainder of this work. The following definitions were introduced

in [CDVS09b] for the study of group-theoretical properties of ciphers.

The requirement of Definition 2.4.6 is essentially a condition on the pre-

images of the derivatives of f . However, alternative definitions focused on

the images of the derivatives of f may be given. The following one is an

example.
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Definition 2.4.8. Let f : (F2)s → (F2)t, and let δ ≥ 2. Then f is called

weakly δ-differentially uniform if δ is the least integer such that for each

u ∈ (F2)s \ {0} it holds

# Im(∂uf) >
2 s−1

δ
.

The adjective weak is justified by the following result [CDVS09b].

Proposition 2.4.9. Let f : (F2)s → (F2)t, and let δ ≥ 2. If f is δ-

differentially uniform, then f is weakly δ-differentially uniform.

Proof. Let u ∈ (F2)s, u 6= 0. From the definition of δ-differential uniformity

follows that for v ∈ (F2)t it holds #v(∂uf)−1 ≤ δ. Moreover

(F2)s =
⋃

v∈Im(∂uf)

v(∂uf)−1,

and from the hypothesis it follows

2s = #

 ⋃
v∈Im(∂uf)

v(∂uf)−1

 ≤ # Im(∂uf)δ.

Therefore

# Im(∂uf) ≥ 2s

δ
>

2s

δ
.

Another useful notion of non-linearity comes from the following consid-

eration. Let f ∈ Sym(F2)s be such that 0f = 0. If f is linear, every vecto-

rial subspace of (F2)s is sent to a subspace of (F2)s of the same dimension,

i.e. the dimension of subspace is invariant under f . When f is not linear,

the null space is mapped into itself, every 1-dimensional subspace {0, a} is

mapped into the 1-dimensional subspace {0, af}, whereas the 2-dimensional

subspace {0, a, b, a+ b} is mapped into a 2-dimensional subspace if an only if

af + bf = (a+ b)f . It should be clear that the bigger the dimension l < s of

the subspace, the more unlikely the image of the subspace under f is still a

vector subspace. The following definition [CDVS09b] is given in this sense.

Definition 2.4.10. Let f ∈ Sym(F2)s be such that 0f = 0 and let 0 < δ < s.

The function f is said to be δ-non-invariant if for any subspaces U, V ≤ (F2)s

such that Uf = V either U = V = (F2)s or dim(U) = dim(V ) < s− δ.
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Being δ-non-invariant then means that the largest proper subspace sent

by f into another subspace has co-dimension greater than δ.

Example 2.4.11. As an example, let us consider the so-called patched in-

version f ∈ Sym (F28), which maps every non-zero element into its multi-

plicative inverse. It is well known that a function which is equivalent to f , up

to a change of variable, is used as S-box in the AES. The patched inversion

is 4-differentially uniform on F28 [Nyb93], whereas it is known that, for each

u ∈ F28 , u 6= 0, it holds # Im(∂uf) = 27 − 1 > 26, hence f is weakly 2-

differentially uniform. On the other hand, it has been proven in [CDVS09b]

that f is 1-non-invariant.

2.4.4 Requirements on the diffusion layer

As we have discussed in previous sections, the confusion layer of an iterated

cipher, due mainly to efficiency reasons, is a local non-linear transformation,

i.e. any output bit depends on only a limited number of input bits. In

particular, it does not provide any interaction between the different bricks.

This role is played by the diffusion layer that, acting over all the bricks of

the block, spreads the information of a single bit also to bricks different to

the one the bit belongs to. In our setting, diffusion is always realised by

means of a linear map on V . The following definitions were given as minimal

requirement for diffusion in [CDVS09b], in the case of a bijective layer, and

were used to derive group-theoretical results on SPNs.

Let us recall that V = V1 ⊕ V2 ⊕ . . . ⊕ Vb, and that each s-dimensional

space Vj is called a brick.

Definition 2.4.12. A wall V ′ of V is a non-trivial and proper sum of bricks

of V , i.e. there exists ∅ 6= J ( {1, 2, . . . , b} such that V ′ = ⊕j∈JVj.

We say that a diffusion layer λ is proper if no wall of V is invariant under

λ, and that λ is strongly proper if no wall of V is mapped by λ into another

wall of V .

Definition 2.4.13. A linear transformation λ ∈ Sym(V ) is a proper diffusion

layer if for any wall V ′ =
⊕

j∈J Vj of V it holds V ′λ 6= V ′.
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Definition 2.4.14. A linear transformation λ ∈ Sym(V ) is a strongly proper

diffusion layer if for any ∅ 6= J1, J2 ( {1, 2, . . . , b} such that #J1 = #J2 it

holds (⊕
j∈J1

Vj

)
λ 6=

⊕
j∈J2

Vj.

It is clear that the condition in Definition 2.4.14 implies the one in Defi-

nition 2.4.13.

On the other hand, with an eye on the security with respect differential

attacks, following the approach of [DR13], the diffusion can be estimated in

terms of a lower bound on the number of the active S-box of any 1-round

differential trail (see Definition 2.2.7).

Definition 2.4.15. Let x ∈ V , x = (x[1], x[2], . . . , x[b]), with x[j] ∈ (F2)s

being the jth brick, for each 1 ≤ j ≤ b. The brick weight of x is defined as

weightb(x)
def
=
∑
x[j] 6=0

1.

Let now consider an iterated cipher Φ whose generating function is ρ =

γλ. Notice that, if (∆0,∆1, . . . ,∆r) is an r-round differential trail, the num-

ber of active S-boxes at the round ` with respect to (∆0,∆1, . . . ,∆r), defined

in Definition 2.3.5, is exactly weightb (∆`−1). In the context of evaluating

the diffusion properties of λ with respect to differential cryptanalysis, a con-

siderable measure is the minimum number of active bricks at the input and

output of ρ, called the branch number of λ, which basically provides a lower

bound for the minimum brick weight of any 1-round differential trail. To

formalise this, we need the following definition [DR13].

Definition 2.4.16. Let λ ∈ Sym(V ). The branch number of λ is defined as

min
x,y∈V
x 6=y

{weightb(x+ y) + weightb(xλ+ yλ)} .

The branch number always ranges between 2 and b + 1, and diffusion

layers whose branch number equals b+ 1, also called perfect diffusion layers,

can be constructed from MDS codes [DR13]. Intuitively, provided that the
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diffusion layer is (at least) proper, the larger the branch number, the less the

number of rounds the encryption needs to be iterated. On the other hand,

the counterpart for this is that layers with a larger branch number have

higher implementation costs. As an illustration for this, let us recall that

the proper diffusion layer of AES has branch number equal to five, and the

cipher, in its version with a 128-bit key, performs a 10-round encryption. On

the other hand, the permutation matrix of PRESENT has branch number

equal to two, due to the fact that, for example, the vector (1, 0, 0, . . . , 0) is

fixed. The encryption in this case is iterated for 31 round. The following

theorem, due to Daemen and Rijmen [DR13], relates the branch number of

λ to a bound on the number of active S-boxes in a differential trail.

Theorem 2.4.17. Let Φ be an iterated block cipher having generating func-

tion ρ = γλ. Then the number of active S-boxes in any 1-round differential

trail is lower bounded by the branch number of λ.
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3.1 Algebraic security

Besides statistical attacks, also algebraic attacks might represent serious

threats for block ciphers, as we elaborate further in the following chapters.

It is possible, indeed, to link some algebraic properties of the generating

function and some algebraic weaknesses of the corresponding cipher. In par-

ticular, in this work we will focus on group-theoretical attacks, which have

attracted the attention of some mathematicians and cryptographers in the

last forty years. The pioneers of the study of ciphers from a group-theoretical

point of view were Coppersmith and Grossman, which in 1975 considered a

set of functions which can be used to define a block cipher and, by studying

the permutation group generated by those, opened the way to a new branch

of research focused on group-theoretical properties which can reveal weak-

nesses of the cipher itself [CG75]. As it has been proved later in [KRS03], if

the group generated by the encryption functions is too small, then the cipher

is vulnerable to birthday-paradox attacks. Recently, in [CS17] the authors

proved that if such group is contained in an isomorphic image of the affine

group of the message space induced by a hidden sum, then it is possible

to embed a dangerous trapdoor on it. More relevant in [Pat99], Paterson

built a DES-like cipher whose encryption functions generate an imprimitive

group and showed how the knowledge of this trapdoor can be turned into

an efficient attack to the cipher. For this reason, a branch of research in
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symmetric cryptography is focused on showing that the group generated by

the encryption functions of a given cipher is primitive and not of affine type

[ACTT16, ACDVS14, ACS17, CDVS09a, CDVS09b, SW08, Wer92, Wer02,

Wer10].

The definition of the group under consideration presents some issues,

which we discuss in the following section.

3.2 The group generated by the round func-

tions

As already explained in Section 3.1, statistical attacks are just some of the

issues that can threaten block ciphers. Several researchers have shown in

recent years that also algebraic attacks can be effective. In this work, the fo-

cus is on a particular group-theoretical attack, described in [Pat99] and here

treated in Section 3.3, based on an undesirable property of the permutation

group generated by the round functions of a cipher, the imprimitivity.

Let us define now the target of the so-called imprimitivity attack: the

group generated by the round functions of the cipher.

Let Φ = {EK | K ∈ K} ⊆ Sym(M) be an R-round iterated block cipher.

We have stressed that the group generated by all encryption functions

Γ(Φ)
def
= 〈EK | K ∈ K〉 ≤ Sym(M)

can reveal weaknesses of the cipher. However, since Γ(Φ) is strictly related

to the key-scheduling procedure, which is not easy to describe in terms of

groups and their action, its algebraic study is not an easy task. For this

reason researchers classically focus on a group which is related to Γ(Φ) and

which, ignoring the effect of the key-schedule, is easier to study (for a recent

example of a key-schedule related study, see [BF17]). The latter can be

defined as follows: since each permutation EK is the composition of R round

functions ε1,K , ε2,K . . . , εR,K , for each 1 ≤ r ≤ R, it is possible to define the

group

Γr(Φ)
def
= 〈εr,K | K ∈ K〉,
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where all the possible round keys for the round r are considered. This lead

to the definition of the group

Γ∞(Φ)
def
= 〈Γr(Φ) | 1 ≤ r ≤ R〉,

which is called the group generated by the round functions of Φ, and trivially

contains the group generated by the encryption functions as a subgroup.

Example 3.2.1. Let us denote by Φ the block cipher PRESENT defined in

Section 1.2.2. As already mentioned, the problem of describing the group

Γ(Φ) is out of reach today. However, being ρ the generating function of

PRESENT, i.e. the composition of its confusion and diffusion layers, one can

easily prove that the group generated by the rounds of the cipher is Γ∞(Φ) =

〈ρ, T64〉. Indeed, the left-to-right inclusion is trivial due to the definition of

round function. On the other hand, when the null key is considered, we

obtain ρ ∈ Γ∞, hence also ρ−1 ∈ Γ∞, and consequently T64 < Γ∞. This

proves the right-to-left inclusion. The same description holds for a large class

of ciphers, called translation-based ciphers [CDVS09b], which also includes

the block ciphers AES and SERPENT and some lightweight ciphers.

3.3 Imprimitivity attack

Before describing the imprimitivity attack, let us recall some basic notions

from permutation group theory. Let G be a finite group acting on the

set M. We denote by vG = {vg | g ∈ G} the orbit of v ∈ M and by

Gv = {g ∈ G | vg = v} its stabiliser. A partition X of M is trivial if

X = {M} or X = {{v} | v ∈ M}, and G-invariant if for any X ∈ X and

g ∈ G it holds Xg ∈ X . Any non-trivial and G-invariant partition X of M
is called a block system. In particular any X ∈ X is called an imprimitivity

block. The group G is primitive in its action onM (or G acts primitively on

M) if G is transitive and there exists no block system. Otherwise, the group

G is imprimitive in its action on M (or G acts imprimitively on M).

We remind the following well-known results which will be useful in the

remainder of the work, and whose proofs may be found e.g. in [Cam99].
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Lemma 3.3.1. A block of imprimitivity is the orbit vH of a proper subgroup

H < G that properly contains the stabiliser Gv, for some v ∈M.

Lemma 3.3.2. If T is a transitive subgroup of G, then a block system for G

is also a block system for T .

Lemma 3.3.3. Let us assume that M is a finite vector space over F2 and

T its translation group, i.e. T = {σv | σv : M →M, x 7→ x + v, v ∈ M}.
Then

• T is 2-elementary, abelian and regular;

• T is transitive and imprimitive on M;

• for any proper and non-trivial subgroup U of (M,+), {U +v | v ∈M}
is a block system.

Description of the imprimitivity attack

When the group Γ∞(Φ) turns out to act imprimitively onM, then it is pos-

sible to individuate a non-trivial partition X of M which is invariant under

the action of Γ∞(Φ). Then an attacker can proceed as follows:

Preprocessing

• he chooses a random message (blue dots in Figure 3.1) in each imprim-

itivity block and encrypts it using a target encryption function EK ,

depending on the unknown key K ∈ K;

• for each selected message, he individuates which block its corresponding

ciphertext (red dots in Figure 3.1) belongs to.

Doing so, the attacker obtains a description of the way the target function

maps blocks into blocks (see Figure 3.1) by computing |X | encryptions.

Then the attacker, which has been given a target encrypted message y

(red dot in Figure 3.2), performs the following:
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Figure 3.1: Preprocessing of the imprimitivity attack

Figure 3.2: Imprimitivity attack

Attack

• he determines which block X ′ the target encrypted message belongs to;

• he individuates the corresponding imprimitivity block under the action

of EK , i.e. the block X such that XEK = X ′ (blue box in Figure 3.2);

• he searches by brute-force for all the meaningful messages in X.

It is now clear that the imprimitivity of the group allows to perform an attack

which requires much less than the |M| operations of a brute-force attack. For

this reason, it represents a serious flaw for the cipher Φ, and the primitivity
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of Γ∞(Φ) is a design goal. An example of a successful attack on a DES-like

cipher which makes use of this technique may be found e.g. in [Pat99].

3.4 Resistance to imprimitivity attack

In this section we provide some necessary conditions for the generating func-

tion of a cipher which make the group Γ∞ a primitive group. We will use

here the alternative definitions of non-linearity explained in Section 2.4.3.

The following result, proved in [CDVS09b] is valid for SPNs.

Theorem 3.4.1. Let Φ be an R-round SPN, and let ρ = γλ its generating

function. If λ is proper and there exists 1 ≤ δ < s such that for each

1 ≤ j ≤ b the S-box γj is

• weakly 2δ-differentially uniform,

• δ-non-invariant,

then Γ∞(Φ)) is primitive.

Equivalently, it has been proven in [ACTT16] that the second condition of

Theorem 3.4.1 can be weakened as long as the standard notion of differential

uniformity is used in the place of the weak one.

Theorem 3.4.2. Let Φ be an R-round SPN, and let ρ = γλ its generating

function. If λ is proper and there exists 1 ≤ δ < s such that for each

1 ≤ j ≤ b the S-box γj is

• 2δ-differentially uniform,

• (δ − 1)-non-invariant,

then Γ∞(Φ)) is primitive.

To conclude this introduction to group-theoretical security of block ci-

phers, we list in Table 3.1 all the results concerning the primitivity of estab-

lished block ciphers and the corresponding references.
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Cipher Γ∞ Reference

DES [Pub77] Alt(V ) [Wer92]

SERPENT [BAK98] Alt(V ) [Wer02]

AES [DR13] Alt(V ) [Wer10]

KASUMI [Spe07] Alt(V ) [SW15]

GOST-like [Dol10] Alt(V ) [ACS17]

PRESENT [BKL+07] Alt(V ) [ACTT16]

RECTANGLE [ZBL+15] Alt(V ) [ACTT16]

PRINTcipher [KLPR10] Alt(V ) [ACTT16]

Table 3.1: Ciphers whose group generated by the round functions is primi-

tive
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Part II

Differential cryptanalysis using

alternative operations
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4
Alternative operations for

cryptanalysis

In this part of the thesis the following problem is addressed: is it possible

that a block cipher apparently immune to classical differential cryptanalysis

can be attacked considering a different operation on the message space?

4.1 Overview and motivation

Differential cryptanalysis was introduced in the beginning of the 90’s [BS91a]

as a powerful statistical attack targeting first the block cipher DES and has

been already described in Chapter 2. The attack, which has later been gen-

eralised [Knu94b, BBS99, Knu98], takes advantage of non-uniform relations

between plaintext and corresponding ciphertext pairs. Designing ciphers

resistant to this attack and its generalisations has since then be of outstand-

ing importance. While, to follow the structure of many symmetric crypto-

graphic designs, the classical difference considered is the bit-wise addition

modulo two, in [Ber92] Berson introduces the modular difference to study

the MD/SHA family of hash functions. In [AS11], the authors try to use a

similar method to cryptanalyse the block cipher PRESENT [BKL+07], fea-

turing a bit-wise round-key addition. Even though this attempt has been

unsuccessful, the idea of using alternative difference operations is for the

first time taken into consideration and used in block ciphers with a bit-wise
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key addition.

The aim of this work is to show that block ciphers may have different

levels of resistance against differential attacks, depending on the additive

law that is considered on the message space. Even if it is not essential, all

the theory is developed on SPN-like ciphers.

Design principles

While bit-wise and modular differences have always been good natural can-

didates following the cipher’s structure, in this work we investigate the pos-

sibility of using other differences. The aim being, then, to determine some

operations which can weaken the security of well known ciphers. While given

a message set of 2n elements, the number of possible operations on this set is

huge, in this work we propose a particular set of difference possibly threat-

ening the security of key-alternating SPN block ciphers. Among the studied

criteria to define suitable operations, we focus on operations which can be

implemented relatively easily when defined over the basis elements. Such

operations, defined from elementary abelian regular groups of translations,

have been studied in the recent papers [CS17, BCS17]. In particular, to the

best of our knowledge, the first time such operations were described and em-

ployed for cryptographic purposes was in [CS17], where the authors provided

a description of a family of operations which are particularly suitable for im-

plementation, and designed a toy cipher whose encryption functions are linear

with respect to an alternative operation, which they called a hidden sum. In

this part of the thesis instead, similar operations are studied in the differen-

tial context. Constraints coming from the combination of the bit-wise key

addition with these operations are studied, and the notion of key distribution

table is introduced. The differential uniformity, with respect to other opera-

tions, of some non-linear permutations such as the classical cubic function is

studied. In particular we provide some conditions increasing the differential

uniformity of this function. As a second contribution we propose an example

of an SPN block cipher which is resistant against the classical differential

attack, with XOR differences, but it is not resistant against a differential
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attack which makes use of alternative differences coming from another oper-

ation defined on the message space. The designed experimental 15-bit block

cipher possesses a structure similar to the one of PRINTcipher [KLPR10],

with 3-bit S-boxes affine equivalent to the cubic function. The used linear

layer is compatible with the chosen alternative difference and is described

by a 15 × 15 matrix which presents some similarities with the permutation

matrices of the block cipher PRINCE [BCG+12]. A general structure for po-

tentially good diffusion layer is provided in this work, reducing the search for

candidates round function which would weaken the security of SPNs when

comparing our difference operation and the classical one.

Once showed how to define new operations ◦ on the message space, suf-

ficient conditions for ◦-difference propagation during the encryption process

are investigated. Based on the different component of SPN ciphers we search

for operations satisfying the following properties.

parallel confusion layer Although the operation ◦ might be a priori de-

fined on the whole message space V, studying differential properties of

a confusion layer seen as a function with 2n inputs may be impracti-

cal for standard-size ciphers. For this reason, in this work we choose

to focus on operations which are applied in parallel to the different

bricks, i.e. ◦ = (◦(1), ◦(2), . . . , ◦(b)), where for each 1 ≤ j ≤ b, ◦(j) is an

operation on (F2)s. This allows us to independently study each S-box.

linear diffusion layer To limit the impact on the ◦-differential probability

of a ◦-differential trail, we analyse only operations such that the diffu-

sion layer is linear with respect to both + and ◦. Indeed, if this is the

case, the diffusion layer requires no probabilistic analysis.

However, as the chosen operation is different from the XOR, used to add the

key at the different rounds of the cipher, differential probabilities have to

be introduced when studying the interaction between ◦-differences and the

key-addition layer. We show how to define a class of operations such that

◦-differences resulting from the key-addition layer do not depend on the state

considered. In particular, we prove that (x+ k) ◦ ((x ◦∆) + k) equals ∆ for

a subset of keys and does not depend on x for all keys. In this and in the
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following chapter we explain how these requirements can be met.

The theory of alternative operations for cryptographic purposes has been

developed in [CS17] and later in [BCS17], from which this work has drawn

inspiration. Part of this description includes contents of [CS17, BCS17,

CDVS06], sometimes stated and proved differently, according to the termi-

nology and the notation of differential cryptanalysis.

4.2 Differential cryptanalysis revised

When developing new SPNs, designers provide hints on the immunity of the

proposed cipher from standard statistical attacks, among which they cer-

tainly include differential cryptanalysis. Even if an exhaustive search for

high-probability differentials cannot be performed, they usually provide an

esteem of the probabilities of the best trails, assuming that these values can

accurately measure the resistance to differential attacks. This is classically

done with respect to the difference operator diff (x, y) = x + y, since this

makes deterministic the output difference of the key addition layer. Then,

once we are given an R-round SPN designed to be secure against differential

attacks, we can assume that no difference propagates during the encryption

process with a probability high enough to allow a distinguisher attack. In

other words, we believe that for each r-round differential (∆I ,∆O), when

r ∼ R, it holds p∆I
(∆O) ∼ 2−n. However, the fact that the key-addition

is XOR-based does not force an attacker to use the XOR as the operation

defining differentials. As a matter of fact, nothing guarantees that the differ-

ential probabilities computed with respect to the XOR are higher than those

computed with respect to different operations, and hence that the security

from XOR-based differential attacks implies the immunity from differential

attacks induced by whatever difference operator. Our goal is to introduce

another group operation, denoted with a circle, ◦ on the message space and

to show that an SPN secure in the classical sense can be distinguished from

a random permutation using the new operation considered.

Let ◦ be an additive group operation on V such that x ◦ x = 0 for each
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x ∈ V , different from the XOR. We aim at investigating whether it is possible

to perform a distinguishing attack against the cipher, where all the chosen

plaintext pairs are of the type (x, diff (x,∆)) for a given ∆ ∈ V , and where

the difference operator diff (x, y) = x ◦ y is different from the one induced

by the XOR. Since through all this chapter we will have to deal with differ-

entials, differential probabilities, differential trails etc. which are computed

with respect to different operations, we will denote the dependence on the

operation by adding a prefix “+-” if the differential is induced by the XOR

and “◦-” if the differential is induced by an operation circle.

In the remainder of this second part, we will explain in detail how to

build new additive laws on V and how to study the interaction between the

induced differentials and the layers of an SPN. We will provide a concrete ex-

ample of cipher whose +-differential probabilities do not lead to a successful

distinguishing attack, i.e. a cipher which is secure from differential crypt-

analysis in the standard context, but against which a differential attack can

be successfully performed by computing ◦-diffentials, where ◦ is an operation

tailored to fit the structure of the chosen SPN.

4.3 New operations on the message space

Let us recall that we denote by T+ the group of translations on V , i.e.

T+ = {σa | a ∈ V, x 7→ x+ a} ,

and let us stress again that the translation σk acts on a vector x in the same

way the key addition layer acts on the message x, i.e. xσk = x + k. In

order to represent the key addition by means of an action of the translation

group on the message space, let us recall that T+ is 2-elementary, abelian

and regular (see Lemma 3.3.3). Moreover, the operation + on V can be seen

as the action of T+ on V , i.e.

∀a, b ∈ V a+ b = aσb.
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Our goal is to define alternative operations on the vector space V by means

of other 2-elementary abelian regular groups which can play the role of

translation groups. Indeed, given any 2-elementary abelian regular subgroup

T < Sym(V ), we can represent T = {τa | a ∈ V }, where for a given a ∈ V ,

τa is the unique element in T which maps 0 into a. Then, if we define

∀a, b ∈ V a ◦ b def
= aτb,

we obtain that (V, ◦) is an additive group and ◦ induces a vector space

structure on V , whose corresponding group of translations is T◦ = T . The

proof of this fact is straightforward. Indeed, given a, b, c ∈ V the following

conditions hold.

• ◦ is abelian: a ◦ b = aτb = 0τaτb = 0τbτa = bτa = b ◦ a;

• 0 is the neutral element with respect to ◦: 0 ◦ a = 0τa = a;

• a is the inverse of a: a ◦ a = aτa = 0(τa)
2 = 0;

• ◦ is associative:

(a ◦ b) ◦ c = aτbτc = 0τaτbτc = 0τbτcτa = (b ◦ c) ◦ a = a ◦ (b ◦ c).

Moreover, (V, ◦) is a vector space over F2, which is isomorphic to (V,+). How-

ever, this construction is too general and far from being practically usable.

Indeed, even assuming that we are given a basis of (V, ◦) and a procedure to

compute the coefficient of each vector in the given basis, the computation of

a ◦ b for each a, b ∈ V requires at least the storage of the n × 2n values of

the translations defining the basis. For this reason, let us define a class of

operations for which a ◦ b can be computed in polynomial time.

4.3.1 Efficiently-computable new operations

Alternative operations can be defined by means of elementary abelian regular

subgroups of permutations. However, this hypothesis is too general to be use-

ful in practice, since the computation of a◦b for each a, b ∈ V requires at least

the storage of n 2n-valued functions. For this reason it becomes necessary to
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individuate a smaller subgroup of Sym(V ) which contains elementary abelian

regular groups inducing operations that are efficiently computable. In this

section we develop the procedure which led us to select some particular set

of alternative operations. In particular, based on the result, firstly showed

in [CS17], that operations defined from elementary abelian and regular sub-

groups T◦ < AGL(V,+) can be easily computed, we focus on such groups

and show a practical method to construct the corresponding operations.

Setting 1. The operation ◦ is induced by a translation group T◦ which is

elementary, abelian and regular, and such that T◦ < AGL(V,+).

Les us assume that T◦ < AGL(V,+) is elementary, abelian and regular,

and let ◦ be the corresponding operation induced. Then, given a ∈ V , the

translation τa is an affine map with respect to +, which means that there

exists a +-linear map (i.e. a matrix) Ma depending on a, and a +-translation

σb for some b ∈ V such that τa = Maσb. In addition, since 0τa = a, we obtain

b = a and so

∀a ∈ V ∃Ma ∈ GL(V,+) τa = Maσa.

In the light of this, in what follows we will denote with Ma the matrix defining

τa. The following result shows how + interacts with an operation ◦ induced

by an elementary abelian regular subgroup of the affine group. In particular,

it shows that ◦ is not distributive over +.

Proposition 4.3.1. Let T◦ < AGL(V,+) an elementary abelian regular

group. For each a, b, c ∈ V it holds

(a+ b) ◦ c = a ◦ c+ b ◦ c+ c.

Proof. Let a, b, c ∈ V . Then

(a+ b) ◦ c = (a+ b)Mc + c

= (aMc + c) + (bMc + c) + c

= a ◦ c+ b ◦ c+ c,

hence the statement is proven.

This result has, as a consequence, that a◦b can be computed in polynomial

time.
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Corollary 4.3.2. For each a, b ∈ V , if a =
∑n

i=1 ξiei, with ξi ∈ F2, it holds

a ◦ b =


∑

ξi 6=0 b ◦ ei if weight(a) is odd,(∑
ξi 6=0 b ◦ ei

)
+ b if weight(a) is even.

Proof. Let a, b, c, d ∈ V . Using Proposition 4.3.1 we obtain

(a+ b+ c) ◦ d = a ◦ d+ (b+ c) ◦ d+ d

= a ◦ d+ b ◦ d+ c ◦ d+ d+ d

= a ◦ b+ b ◦ d+ c ◦ d.

Using this fact and the result of Proposition 4.3.1, the proof of the corollary

is straightforward.

Proposition 4.3.3. Let T◦ be as in Setting 1. The map a 7→ Ma is an

homorphism between (V, ◦) and GL(V,+) equipped with the matrix multipli-

cation.

Proof. Let a, b, x ∈ V . It holds

x ◦ (a ◦ b) = xMa◦b + (a ◦ b)
= xMa◦b + aMb + b

and

(x ◦ a) ◦ b = (xMa + a) ◦ b
= (xMa + a)Mb + b

= xMaMb + aMb + b.

Being ◦ associative, the desired result is proven.

Corollary 4.3.4. The set {Ma | a ∈ V } is a commutative subgroup of

GL(V,+) and every element has order 2.

Example 4.3.5. Let us show an operation which is built from a 2-elementary

abelian and regular subgroup of AGL(V,+), which is different from the XOR.
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Let us assume n = 3, hence V = (F2)3. In order to describe the operation,

let us show all the matrices Ma, with a ∈ V :

M0x =

1 0 0

0 1 0

0 0 1

M1x =

0 1 1

1 0 1

0 0 1

M2x =

0 1 1

0 1 0

1 1 0

M3x =

1 0 0

1 0 1

1 1 0



M4x =

1 0 0

1 0 1

1 1 0

M5x =

0 1 1

0 1 0

1 1 0

M6x =

0 1 1

1 0 1

0 0 1

M7x =

1 0 0

0 1 0

0 0 1

 .

It is an easy (but tedious) task to verify that

{1x, 2x, 6x} = {(0, 0, 1), (0, 1, 0), (1, 1, 0)}

is a basis for (V, ◦). However, on the other hand

e1 ◦ e2 = (0, 0, 1) ◦ (0, 1, 0)

= (0, 0, 1)M2x + (0, 1, 0)

= (0, 0, 1)

0 1 1

0 1 0

1 1 0

+ (0, 1, 0)

= (1, 1, 0) + (0, 1, 0)

= (1, 0, 0)

= e3,

therefore the canonical basis is not a basis for (V, ◦).

As we have just shown, we do not have a “canonical” basis for (V, ◦) in

general. This does not represent a major issue since, by means of Corol-

lary 4.3.2, we can always compute a ◦ b by moving the problem in (V,+),

where we always know a basis. However, in the following sections, we will

refine the hypotheses on T◦ in order to obtain operations which are suitable

for performing a differential attack against an SPN, and simultaneously we

will determine conditions which ensure that the canonical basis is always a

basis for (V, ◦).
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4.4 Interaction with the key-addition layer

Let now ◦ be an operation as in Setting 1 and let us assume we want to

use it for a differential attack. The classical differential attack exploits the

property, as well as others, that each +-difference is maintained the same

after the round key is XORed. This is never the case when considering ◦-
differences. Indeed, for each pair of messages x and x◦∆ having ◦-difference

fixed to ∆, after the addition with the round key k we get

(x+ k) ◦ ((x ◦∆) + k). (4.1)

It is easy to show that Eq. (4.1) = ∆ for each x, k ∈ V if and only if + = ◦.
However, it may be possible that for some weak key k ∈ V it holds x+k = x◦k
for each x ∈ V . Then, in that case, every occurrence of “+k” in Eq. (4.1)

can be replaced by “◦k”, and hence the output difference to the key-addition

layer becomes (x ◦ k) ◦ ((x ◦ ∆) ◦ k) = ∆, which is exactly what happens

in the classical attack when differences pass through the key-addition layer.

Let us give a formal definition of the (possibly empty) set of weak keys.

Definition 4.4.1. Let ◦ be any operation on V . A vector k ∈ V is called a

weak key if for each x ∈ V it holds x+ k = x ◦ k. The set

W◦
def
= {k | k ∈ V, k is a weak key}

is called the set of the weak keys.

In this context, the following result is helpful. The proof may be found

in [CDVS06].

Theorem 4.4.2. Let T◦ be as in Setting 1. Then T◦ ∩ T+ 6= ∅.

As a consequence of this theorem, if the translations defining ◦ are +-

affinities, then weak keys exist. The proof for this fact relies on the following

lemma.

Lemma 4.4.3. Let T◦ be as in Setting 1. For each a ∈ V , σa ∈ T◦ if and

only if a ∈ W◦.
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Proof. Let a ∈ V . If σa ∈ T◦, there exists b ∈ V such that σa = τb, and

a = 0σa = 0τb = b, hence σa = τa. This proves a ∈ W◦. Conversely, if

a ∈ W◦, then σa = τa ∈ T◦.

Theorem 4.4.4. Let T◦ be as in Setting 1. Then W◦ is a non-trivial vector

subspace of (V,+) and (V, ◦).

Proof. Let a ∈ V . From Theorem 4.4.2 and from Lemma 4.4.3

∅ 6= {a | a ∈ V, σa ∈ T◦ ∩ T+} = W◦,

which concludes the proof.

The following result gives a bound on the dimension of the weak-key

space, and it is due to Calderini [CS17].

Theorem 4.4.5. Let T◦ be as in Setting 1 and let us assume T◦ 6= T+. Then

0 < dim(W◦) ≤ n− 2.

Proof. Let us assume by contradiction that W◦ = Span{a1, a2, . . . , an−1},
and let a in V \W◦. Let b ∈ V and let us write b =

∑n−1
i=1 ξiai + ξna, where

ξi ∈ F2 for 1 ≤ i ≤ n. Let us recall that, since for each 1 ≤ i ≤ n− 1 it holds

ai + a = ai ◦ a = aiMa + a, then ai = aiMa. Furthermore a ◦ a = 0, hence

aMa = a. Therefore

b ◦ a =

(
n−1∑
i=1

ξiai + ξna

)
◦ a

=

(
n−1∑
i=1

ξiai + ξna

)
Ma + a

=
n−1∑
i=1

ξiaiMa + ξnaMa + a

=
n−1∑
i=1

ξiai + ξna+ a

= b+ a.

This proves that a ∈ W◦, which is a contradiction.
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Example 4.4.6. Let us recall the operation defined in Example 4.3.5. In

the light of the previous result, for this operation the weak-key subspace is

1-dimensional. The non-trivial weak key for ◦ is (1, 1, 1), as it can be noticed

from M7x = 13, which means that W◦ = {(0, 0, 0), (1, 1, 1)}.

The important role of W◦ is now disclosed: whenever k is a weak key,

the key-addition layer σk behaves as a translation layer with respect to ◦-
differences. However, in the general case, when k is not a weak key, the

value of Eq. (4.1) is different from ∆, hence differential probabilities have

to be introduced when studying the interaction between ◦-differences and

the key-addition layer. With an eye on using ◦ to perform a differential

attack, we can reasonably assert that the attack can succeed if we manage to

weaken enough the non-linearity of the confusion layer. It is straightforward

to notice that the larger the set of the weak keys, the more the operation

◦ is similar to +. For this reason we may be tempted to assume that a

successful attack relies on considering an operation ◦ such that dim(W◦) is

very little compared to n. On the other hand, for such an operation, the

probabilities induced by the key-addition layer are lower that those induced

by an operation with a larger weak-key set, since it happens more often that

the output difference of the key-addition layer depends on the message and

on the key, as well as on the input difference. The success of a differential

attack using a different operation relies then, among other things, on finding

the correct balance between n and dim(W◦). In order to understand that,

we need a more practical way to represent the matrices described in Section

4.3.1, which will be explained in Section 4.4.2. Before doing this, let us define

a further operation which simplifies computations involving ◦ and +.

4.4.1 Introducing a product

Let us recall that the operation ◦, as shown in Proposition 4.3.1, is not

distributive over +. Since our goal is to determine the value of Eq. (4.1),

let us introduce an operation on V which is induced by both + and ◦ and

helps in understanding their interaction. Although the following operation

depends on ◦, we do not explicitly write its dependance to keep the notation

lighter.
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Definition 4.4.7. Let ◦ be an operation as in Setting 1. For each a, b ∈ V
let us define

a · b def
= a+ b+ a ◦ b.

The operation · is called the dot product induced by ◦.

Remark 4.4.8. The following facts are straightforward:

• the dot product · is abelian,

• for each a ∈ V , a · a = 0,

• if a ∈ W◦ or b ∈ W◦, then a · b = 0. In particular for each a ∈ V ,

a · 0 = 0.

The importance of the dot product is established by the following result,

whose straightforward proof which follows is intended to show in an easy way

to the reader how all the previously defined operations combine together.

Theorem 4.4.9. Let ◦ be an operation as in Setting 1 and let · be the dot

product induced. Then · is distributive over +, i.e. (V,+, ·) is an F2-algebra.

Proof. Let a, b, c ∈ V . First of all · is associative. Indeed

(a · b) · c = (a+ b+ a ◦ b) · c
= a+ b+ a ◦ b+ c+ (a+ b+ a ◦ b) ◦ c
= a+ b+ c+ a ◦ b+ a ◦ c+ b ◦ c+ a ◦ b ◦ c
= a+ b+ c+ b ◦ c+ a ◦ (b+ c+ b ◦ c)
= a · (b+ c+ b ◦ c)
= a · (b · c).

Moreover,

(a+ b) · c = a+ b+ c+ (a+ b) ◦ c
= a+ b+ c+ a ◦ c+ b ◦ c+ c

= a+ c+ a ◦ c+ b+ c+ b ◦ c
= a · c+ b · c,

hence · is distributive over + and therefore (V,+, ·) is an F2-algebra.
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Now that the dot product has been introduced, we can rewrite Eq. (4.1)

in a different way. This will lead to the definition of new hypotheses on T◦

which will make the operation ◦ more suitable for a differential attack.

Theorem 4.4.10. Let ◦ be an operation as in Setting 1. Then for each

x, k,∆ ∈ V

(x+ k) ◦ ((x ◦∆) + k) = ∆ + k ·∆ + k ·∆ · x. (4.2)

Proof. The proof directly follows using the distributivity of · over +. Indeed,

let x, k,∆ ∈ V . Then

(x+ k) ◦ ((x ◦∆) + k) = (x+ k) ◦ (x+ ∆ + x ·∆ + k)

= x+ k + x+ ∆ + x ·∆ + k

+(x+ k) · (x+ ∆ + x ·∆ + k)

= ∆ + x ·∆ + x · x+ x ·∆ + x · x ·∆
+x · k + k · x+ k ·∆ + k ·∆ · x+ k · k

= ∆ + k ·∆ + k ·∆ · x.

We have rewritten the output difference of the key-addition layer in a way

it does not depend explicitly on ◦. However it still depends on x and k. What

we gained is that we can derive an interpretation of the dot product that will

allow to simplify Eq. (4.2). Before doing this by refining our assumptions,

let us show a result which will be helpful in the following sections.

Lemma 4.4.11. Let ◦ be an operation as in Setting 1. Then for each a, b ∈ V
it holds σa·b = σaτbσaτb.

Proof. Let a, b ∈ V . First of all let us notice that τbσaτb = τ−1
b σaτb ∈ T+ since

T◦ < AGL(V,+) = NSym(V )(T+), and consequently σaτbσaτb ∈ T+. From

0σaτbσaτb = a ◦ b+ a+ b = a · b

the desired holds.
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4.4.2 Assumptions on the weak keys

We showed that W◦ is a non-trivial vector space, i.e. every operation as in

Setting 1 admits weak keys. For reasons that will be clearer later, we want

to set the position of the weak keys in the block. For this reason, we assume

that W◦ is generated by a given set of vectors. Even if this set might be

chosen arbitrarily, we will assume from now on that W◦ is generated by the

last d vector of the canonical basis, since this will force the matrices defining

the operation to have a precise block form.

In what follows, we denote by d the dimension of the weak-key space, i.e.

d
def
= dim(W◦).

Setting 2. The operation ◦ satisfies the hypotheses of Setting 1 and, if d =

dim(W◦), then W◦ = Span{en−d+1, . . . , en}.

Under this hypothesis, the matrices defining ◦ are into the block form

showed in the following result.

Theorem 4.4.12. Let ◦ be as in Setting 2. Then, for each a ∈ V there exist

Πa ∈ GL
(
(F2)n−d,+

)
and Σa ∈ (F2)(n−d)×d such that

Ma =

(
Πa Σa

0
d,n−d 1d

)
.

Proof. Let a ∈ V , and let i ∈ {n− d+ 1, . . . , n}. Since ◦ is abelian and ei is

a weak key it holds

a+ ei = a ◦ ei = ei ◦ a = eiMa + a,

hence eiMa = ei, which means that the i th row of Ma is ei.

Understanding the dot product

Let us fix a, b ∈ V and see in detail what the dot product represents. Since

V = W⊥ ⊕ W , we can write a = (ā, ã), with ā ∈ (F2)n−d and ã ∈ (F2)d.
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Then

a · b = aMb + b+ a+ b

= (ā, ã)

(
Πb Σb

0
d,n−d 1d

)
+ a

= (āΠb, āΣb + ã) + a

= (āΠb + ā, āΣb) , (4.3)

which does not depend on ã, the component of a in the space of weak keys.

4.4.3 Assumptions on ◦-affinities

Let us come back now to our main concern regarding the key-addition layer,

i.e. the fact that its output difference depends on the message, on the key,

and on the input difference, as displayed in Theorem 4.4.10. It is clear that

we significantly reduce the impact of the key-addition layer on ◦-differential

probabilities if, for example, we succeed in finding suitable hypotheses which

make the value of Eq. (4.1) independent on the message x. This is obtain-

able, by virtue of Lemma 2.3.1 (mutatis mutantis), by forcing the XOR-

translations to behave as “◦-affinities”. Indeed, writing

(x+ k) ◦ ((x ◦∆) + k) = (xσk) ◦ ((x ◦∆)σk),

if σk = fkτT for a “◦-linear function” fk and some T ∈ V , we obtain

(x+ k) ◦ ((x ◦∆) + k) = (xσk) ◦ ((x ◦∆)σk)

= xfk ◦ T ◦ ((x ◦∆)fk ◦ T )

= xfk ◦ T ◦ xfk ◦∆fk ◦ T
= ∆fk,

which does not depend on x anymore. In order to do this, a precise definition

of ◦-affinities is required. Let us recall that AGL(V,+), i.e. the group of all

the +-affinities, can be seen as the normaliser in the symmetric group of the

+-translation group, i.e. AGL(V,+) = NSym(V )(T+). In a similar way, let us

define

AGL(V, ◦) def
= NSym(V )(T◦)
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as the group of the ◦-affine functions. The stabiliser of 0 in AGL(V, ◦) rep-

resents the subgroup of all the ◦-linear functions, i.e.

GL(V, ◦) def
= AGL(V, ◦)0.

The following important result [CS17] is a description of the matrices

defining an operation ◦ such that the +-translations behave like ◦-affinities.

Theorem 4.4.13. Let T◦ be as in Setting 2. If T+ < AGL(V, ◦), then for

each a ∈ V there exists a matrix Σa ∈ (F2) (n−d)×d such that

Ma =

(
1n−d Σa

0
d,n−d 1d

)
.

Proof. Let a ∈ V . Since T◦ satisfies the hypotheses of Setting 2, from The-

orem 4.4.12 there exist Πa ∈ GL
(
(F2)n−d,+

)
and Σa ∈ (F2)(n−d)×d such

that

Ma =

(
Πa Σa

0
d,n−d 1d

)
.

Moreover, from T+ < AGL(V, ◦) we obtain the T+ normalises T◦, which

means that for each b ∈ V

σa·b = σ−1
a τ−1

b σaτb ∈ T◦,

and, from Lemma 4.4.3, this is equivalent to saying that a · b ∈ W◦. From

this and from Eq. (4.3),
(
b̄Πa + b̄, b̄Σa

)
∈ W◦, which implies b̄Πa + b̄ = 0.

The conclusion yields from the generality of b.

Setting 3. The operation ◦ is as in Setting 2 and T+ < AGL(V, ◦).

Operations as in Setting 3 are also known as effective hidden sums [BCS17].

Remark 4.4.14. Notice that in Theorem 4.4.13 we also proved that, if the

hypotheses of Setting 3 hold, for each x, y ∈ V , x · y is a weak key. In

particular, from Remark 4.4.8 follows that every triple dot product is null,

i.e. a · b · c = 0 for each a, b, c ∈ V . The opposite implication also applies,

i.e. if a · b · c = 0 for each c ∈ V , then a · b ∈ W◦.
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In the previous hypothesis, the vectors {ei}ni=1 are a basis for both (V,+)

and (V, ◦), and this is basically granted from the fact that for each a, b ∈ V
it holds a · b ∈ W◦ = Span{en−d+1, . . . , en}. Indeed, let us consider a ∈ V

and let us decompose

a = ξ1e1 + ξ2e2 + . . . ξnen. (4.4)

In order to determine the coefficients of the decomposition of a with respect

to ◦ and to the canonical basis, we can proceed as follows: let us write the

first two addends of Eq. (4.4) as ξ1e1 + ξ2e2 = ξ1e1 ◦ ξ2e2 + ξ1e1 · ξ2e2. Since

ξ1e1 ·ξ2e2 ∈ W◦, we can equivalently write ξ1e1 +ξ2e2 = ξ1e1 ◦ξ2e2 ◦ξ1e1 ·ξ2e2,

where ξ1e1 · ξ2e2 = ξ′wiew1 for some n− d+ 1 ≤ w1 ≤ n and ξ′wi ∈ F2. We can

then rewrite Eq. (4.4) as

a = (ξ1e1 ◦ ξ2e2 ◦ ξ′w1
ew1) + ξ3e3 + . . . ξnen.

One can proceed in the same way until for all the non-weak vector of the

canonical basis, every occurrence of + is replaced by ◦, obtaining

a = ξ′1e1 ◦ ξ′2e2 ◦ . . . ξ′nen. (4.5)

Notice that, the coefficients ξ′i in Eq. (4.5) satisfy the following:

• if 1 ≤ i ≤ n− d, then ξ′i = ξi;

• if n − d + 1 ≤ i ≤ n, then ξ′i = µi, where µi’s are the coefficient of

a ◦ e1 ◦ e2 ◦ . . . ◦ en−d.

From this fact, an algorithm which computes the coefficients of a with re-

spect to ◦ and the canonical basis can be easily derived.

Let us now show that, if the dimension of the space is sufficiently small,

operations as in Setting 2 satisfy the hypotheses of Setting 3. This result

still holds in a more general setting. A more general version can be found in

[CS17].

Theorem 4.4.15. Let ◦ be as in Setting 2. If n ≤ 6, then T+ < AGL(V, ◦).
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Proof. Let us assume T+ 6< AGL(V, ◦). Then, by Remark 4.4.14 there exist

x, y, z ∈ V such that x ·y ·z 6= 0. Let us show that x, y, z, x ·y, x ·z, y ·z, x ·y ·z
are linearly independent. Let ξi ∈ F2 for 1 ≤ i ≤ 7 such that

ξ1x+ ξ2y + ξ3z + ξ4x · y + ξ5x · z + ξ6y · y + ξ7x · y · z = 0.

By multiplying each member of the previous equation by y · z we obtain

ξ1x · y · z = 0, which implies ξ1 = 0. In the same way, by multiplying by

x · z we prove ξ2 = 0. Proceeding in this way one proves that ξi = 0 for each

1 ≤ i ≤ 7.

If Φ is an n-bit cipher this result may seems insignificant, since for sure

n >> 6. However, operations ◦ can also be defined only on some bricks of

the block, as we will show later. In this case, it does make sense to consider

operations defined on smaller spaces, for example of the same size of the

S-boxes. Consequently, Theorem 4.4.15 can be applied when considering e.g.

ciphers having 3 or 4-bit S-boxes.

4.4.4 A more compact representation

In this section we will present a compact way to represent operations satis-

fying our last assumption, described also in [BCS17]. From this, some useful

properties will be derived. As shown in Theorem 4.4.13, an operation as in

Setting 3 is such that the matrices Mei for each 1 ≤ i ≤ n are in a precise

block form. Let us denote by bi,j the last d components of the j-th row of

Mei in such a way that we can represent

Mei =

(
1n−d Σei

0
d,n−d 1d

)
=

 1n−d

bi,1
...

bi,n−d

0
d,n−d 1d

 .

Notice that, by the assumption W◦ = Span{en−d+1, . . . , en} we have Σei = 0

for each n−d+ 1 ≤ i ≤ n. This incidentally implies that only n−d matrices

have to be stored in order to compute ◦. In the light of these considerations,

an operation as in Setting 3 is defined when the matrices Σe1 ,Σe2 , . . . ,Σen−d
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are given. Interpreting each row of Σei as an element of the finite field F2d ,

we can easily represent all the Σeis in a matrix in (F2d)
(n−d)×(n−d) as follows:

(Σe1 ,Σe2 , . . . ,Σen−d) =


b1,1 b1,2 · · · b1,n−d

b2,1 b2,2 · · · b2,n−d

...
...

. . .
...

bn−d,1 bn−d,2 · · · bn−d,n−d

 . (4.6)

We say that the matrix in Eq. (4.6) defines the operation ◦.

Remark 4.4.16. Let us highlight some properties of the elements bi,j :

• from the fact that T◦ is 2-elementary, for each 1 ≤ i ≤ n − d it holds

ei ◦ ei = 0, which means bi,i = 0;

• since for each 1 ≤ i, j ≤ n− d we have ei ◦ ej = ej ◦ ei, then bi,j = bj,i.

The following theorem is a characterisation of the operations satisfying

the hypotheses of Setting 3.

Theorem 4.4.17. Let ◦ be an operation as in Setting 1, and let d = dim(W◦) ≤
n − 2. A matrix Θ ∈ F(n−d)×(n−d)

2d
defines an operation ◦ such that T+ <

AGL(V, ◦) and W◦ = Span{en−d+1, . . . , en} (i.e. an operation as in Setting 3)

if and only if Θ is zero-diagonal, symmetric and no F2-linear combination of

columns of Θ is the null vector.

Proof. Part of this result has already been proven in Theorem 4.4.13. Indeed,

if we assume that the hypotheses of Setting 3 hold, then for each 1 ≤ i ≤ n−d
we can write

Mei =

(
1n−d Σei

0
d,n−d 1d

)
,

hence Θ is the matrix built as in Eq. (4.6), whose columns are filled with

the rows of the matrices Σei ’s. From Remark 4.4.16 it follows that Θ is

zero-diagonal and symmetric. Moreover, let us assume that an F2-linear

combination of columns of Θ is the null vector. Without loss of generality,
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let us assume Σe1 + Σe2 = 0. From this it follows that

Me1◦e2 = Me1Me2 =

(
1n−d Σe1

0
d,n−d 1d

)(
1n−d Σe2

0
d,n−d 1d

)

=

(
1n−d Σe1 + Σe2

0
d,n−d 1d

)
= 1n,

which implies e1 ◦ e2 = w, for some w ∈ W◦, i.e. e1 = e2 ◦ w = e2 + w. This

proves that e1 + e2 ∈ W◦, which is a contradiction.

In the light of the previous result, the following definition comes naturally.

Definition 4.4.18. A matrix Θ◦ ∈ F(n−d)×(n−d)

2d
is called the defining matrix

of an operation ◦ as in Setting 3 if

Θ◦ =


0 b2,1 · · · bn−d,1

b2,1 0 · · · bn−d,2

...
...

. . .
...

bn−d,1 bn−d,2 · · · 0

 (4.7)

and no F2-linear combination of columns of Θ◦ is the null vector. In this case,

the operation ◦ is defined by letting Σei = Θ◦[·, i] for each 1 ≤ i ≤ n− d.

In the following result (see also [BCS17]) we prove a more precise lower

bound for the dimension of the weak-key space, improving consequently what

already proven in Theorem 4.4.2 and Theorem 4.4.5. Although the minimal

hypotheses are those of Setting 1, we prove the result in the case that matter

for our purposes, i.e. the one of Setting 3. The proof relies on the following

lemma, whose proof may be found e.g. in [MMMM13].

Lemma 4.4.19. There is no symmetric zero-diagonal invertible matrix of

odd dimension over the field F2.

Theorem 4.4.20. Let ◦ be an operation as in Setting 3, and let us assume

T◦ 6= T+. Then

2− (n mod 2) ≤ dim (W◦) ≤ n− 2.
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Proof. The upper bound has been proved in more general hypotheses in

Theorem 4.4.5. Let us now assume n even and assume by contradiction

that d = 1. Then, if Θ is the defining matrix of the operation, Θ is a

matrix in (F2)(n−1)×(n−1) which is symmetric and zero-diagonal. Notice also

that the condition on the F2-linear combinations of columns of Θ given in

Theorem 4.4.17, in the case d = 1 is equivalent to saying that Θ is invertible.

The previous lemma leads to the desired contradiction.

The cases of n = 3, n = 4, and other small values

The problem of counting the operations as in Setting 3 having a given size n

and a given compatible weak-key space dimension d is equivalent to counting

all the possible matrices like in Theorem 4.4.17, i.e. all the possible defining

matrices. This task is demanding, and it has partially treated in the seminal

works [CS17, BCS17]. However a complete description of these operations

can be easily given if the space size is small. With an eye on considering

operations having the size of classical small S-boxes, let us focus on the case

n ∈ {3, 4}.

n=3

Example 4.4.21. Due to Theorem 4.4.20, d = 1 is the only value which

is admissible with n = 3. In this case, a matrix Θ is the defining matrix

of an operation with n = 3 and d = 1 if and only if Θ ∈ (F2)(2×2) and it

is symmetric, zero-diagonal, and non-singular. Only one matrix in (F2)(2×2)

meets these requirements. Such a matrix is

Θ =

(
0 1

1 0

)
.

The submatrices Σe1 and Σe2 of the matrices Me1 and Me2 can be read in

the first and in the second column of Θ, i.e. the operation is defined by the

following matrices

Me1 =

 1 0 0

0 1 1

0 0 1

 , Me2 =

 1 0 1

0 1 0

0 0 1

 , Me3 = 13 .
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Since it will be helpful in the remainder of the work, let us reserve the symbol

� for the previously defined operation.

n=4

Example 4.4.22. In this case, again for Theorem 4.4.20, d = 2 is the only

admissible value. A defining matrix is of the form(
0 α

α 0

)
,

where α is non-null in the field F22 . Since it can be chosen if three different

ways, we obtain that three operations as in Setting 3 can be considered when

n = 4. Those are defined by the three lists below:Me1 =

 12

0 0

0 1

02 12

 , Me2 =

 12

0 1

0 0

02 12

 , Me3 = Me4 = 14

 ,
Me1 =

 12

0 0

1 0

02 12

 , Me2 =

 12

1 0

0 0

02 12

 , Me3 = Me4 = 14

 ,
Me1 =

 12

0 0

1 1

02 12

 , Me2 =

 12

1 1

0 0

02 12

 , Me3 = Me4 = 14

 .
More in general For n ∈ {5, 6, 7} the number of the operations as in

Setting 3 has been computed in [BCS17] using the software MAGMA. A

summary of the results obtained is displayed in Tab. 4.1. For n = 8 only

partial results are known.

4.4.5 Differential probabilities and key-addition layer

In this section we will study how differential probabilities may vary as a func-

tion of the operation which is used to compute differentials. In order to keep
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n d number of operations as in Setting 3

3 1 1

4 2 3

1 28

5 2 42

3 7

2 3969

6 3 462

4 15

1 13888

2 937440

7 3 254968

4 3990

5 31

2 unknown

3 unknown

8 4 unknown

5 32500

6 63

Table 4.1: Number of operations for small values of n and d.

the notation light, from now on, by saying an operation we will be referring

to an operation satisfying the hypotheses of Setting 3.

Let us recall that a+ b = a ◦ b+ a · b = a ◦ b ◦ a · b. By definition of · we

can say that a · b represents the error committed when confusing a ◦ b with

a+ b. This consideration justifies the following definition.

Definition 4.4.23. Let ◦ be an operation as in Setting 3. Let us define the

set of errors

U◦
def
= {a · b | a, b ∈ V },

i.e. the set of all the possible dot products in V . Each element in U◦ is called

an error.
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Remark 4.4.24. As we already noticed in Remark 4.4.14, every error is a

weak key. Hence U◦ ⊆ W◦. Therefore, for each x, y ∈ V there exists ux,y ∈ U◦
such that

x+ y = x ◦ y + ux,y, (4.8)

with ux,y = x · y = (0, x̃Σy). It is easy to notice that U◦ is composed of all

the possible vectors w ∈ W◦ whose last d-components are all the possible

F2-linear combinations of the rows of the matrices Σy for each y ∈ V , i.e.

U◦ =


0, . . . , 0︸ ︷︷ ︸

n−d

,
∑
ξj∈F2

(
ξj

(∑
µi∈F2

µiΣei

)
[j, ·]

) .

Example 4.4.25. In Fig. 4.1, + and the operation � defined in Exam-

ple 4.4.21 are compared. Notice that W� = {0, e3} = {0x, 1x}, and so the

first two rows and columns in the tables are equal. Different entries are em-

phasised. Moreover, since U� ⊆ W�, it also holds U� = W�, and consequently,

if x + y 6= x � y, then from Eq. (4.8) it follows x + y = x � y + 1x, as it can

be seen in Fig. 4.1.

We can then restate Theorem 4.4.10 in the light of the newer hypotheses

on ◦, showing that in the hypotheses of Setting 3, as expected, the output

◦-difference after the key-addition layer does not depend on the message x.

Theorem 4.4.26. Let ◦ be an operation as in Setting 3. Then for each

x, k,∆ ∈ V

(x+ k) ◦ ((x ◦∆) + k) = ∆ + k ·∆ ∈ ∆ + U◦. (4.9)

Proof. The proof comes directly from Theorem 4.4.10, where the triple prod-

uct in Eq. (4.2) vanishes for Remark 4.4.14.

Remark 4.4.27. It is worth noting here that the expected output difference

after the key-addition layer, given in input a difference ∆, can be either ∆

or ∆ plus an error, which depends on ∆ and on the key k used. Hence,

the larger the number #U◦ − 1 of non-null errors, the less the effect of the

key-addition layer can be controlled.
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+ 0x 1x 2x 3x 4x 5x 6x 7x

0x 0x 1x 2x 3x 4x 5x 6x 7x

1x 1x 0x 3x 2x 5x 4x 7x 6x

2x 2x 3x 0x 1x 6x 7x 4x 5x

3x 3x 2x 1x 0x 7x 6x 5x 4x

4x 4x 5x 6x 7x 0x 1x 2x 3x

5x 5x 4x 7x 6x 1x 0x 3x 2x

6x 6x 7x 4x 5x 2x 3x 0x 1x

7x 7x 6x 5x 4x 3x 2x 1x 0x

� 0x 1x 2x 3x 4x 5x 6x 7x

0x 0x 1x 2x 3x 4x 5x 6x 7x

1x 1x 0x 3x 2x 5x 4x 7x 6x

2x 2x 3x 0x 1x 7x 6x 5x 4x

3x 3x 2x 1x 0x 6x 7x 4x 5x

4x 4x 5x 7x 6x 0x 1x 3x 2x

5x 5x 4x 6x 7x 1x 0x 2x 3x

6x 6x 7x 5x 4x 3x 2x 0x 1x

7x 7x 6x 4x 5x 2x 3x 1x 0x

Figure 4.1: Comparison between operation + and �
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In order to keep track of the bias introduced by the key-addition layer

with respect to ◦-differences, let us store in a table all the information which

are required to predict how ◦-differences pass through the key-addition layer.

While the DDT is a bi-dimensional table based on the confusion layer, gath-

ering information on the number of messages following a differential, Theo-

rem 4.4.26 states that we can construct an equivalent table, for operations

in Setting 3, gathering information on the number of keys following a differ-

ential.

Definition 4.4.28. Let ◦ be an operation as in Setting 3. The key distribu-

tion table (KDT) of ◦ is the integer table ∈ Zn×n where

KDT◦[∆I ,∆O]
def
= #{k ∈ (F2)n | ∆I + k ·∆I = ∆O}.

The key distribution table can be read in the following way: whenever

the input difference is in the weak-key space, i.e. ∆I ∈ W◦, then, no matter

the key considered, the output difference after the key-addition layer is ∆I

with probability 1. This is because, if ∆I ∈ W◦, then

(x+ k) ◦ ((x ◦∆I) + k) = ∆I + k ·∆I = ∆I

for each k, since the error corresponding to k and ∆I is always null. If

∆I /∈ W◦, the output difference equals ∆I + k ·∆I . The error may be zero,

leading to the output difference ∆I (this is always the case e.g. when k ∈ W◦),
or may be different from zero, leading to ∆I + u for some u ∈ U◦.

Example 4.4.29. We computed the key distribution table of the operation

� defined in Example 4.4.21. Since, as shown in Example 4.4.25, U� = W� =

{0x, 1x}, then considering e.g. the �-difference ∆I = 2x, the �-difference after

key-addition layer may be either ∆O = 2x = 2x + 0x or ∆O = 3x = 2x + 1x.

Each event happens with probability 1/2, as it can be noticed in Fig. 4.2.

Example 4.4.30. Let n = 5, d = 2, and let us consider the operation ◦
having the following defining matrix

Θ =

0 a b

a 0 a

b a 0

 ,

where a = (1, 1) and b = (1, 0). The table KDT◦ is displayed in Fig. 4.3.
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Interaction with the key-addition layer

0x 1x 2x 3x 4x 5x 6x 7x

0x 8 · · · · · · ·
1x · 8 · · · · · ·
2x · · 4 4 · · · ·
3x · · 4 4 · · · ·
4x · · · · 4 4 · ·
5x · · · · 4 4 · ·
6x · · · · · · 4 4

7x · · · · · · 4 4

Figure 4.2: Key distribution table of �

The tables displayed in the two previous examples are symmetric. This

is a general rule, as showed in the following result.

Theorem 4.4.31. For each operation ◦ as in Setting 3, the table KDT◦ is

symmetric.

Proof. Let us fix ∆1,∆2, k ∈ V and suppose that ∆1 + k ·∆1 = ∆2. Then

∆2 + k ·∆2 = ∆1 + k ·∆1 + k · (∆1 + k ·∆1)

= ∆1 + k ·∆1 + k ·∆1 + k · k ·∆1

= ∆1,

therefore KDT[∆1,∆2] = KDT[∆2,∆1].

Notice that the symmetry of the key-distribution table is based on the fact

that triple products are always null, i.e. it crucially depends on the hypothe-

ses of Setting 3.

It is worth noting that the number of non-zero entries in a key distri-

bution table is an important feature in terms of understanding differential

weaknesses of the cipher. Indeed, the less they are, the more the key-addition

layer effect on ◦-differences can be controlled. We will consider in the next

chapter a particular case which seems the most convenient for this purpose.

In order to compute this number in general, the following result is helpful.
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Theorem 4.4.32. Let ◦ be an operation as in Setting 3. For each a ∈ V it

holds Rank(Σa) ≤ min(n− d− 1, d).

Proof. If a ∈ W◦ there is nothing to prove. If not, then a = (ā, ã), with

ā 6= 0. Since 0 = a ◦ a = aMa + a, it follows a(Ma + 1n) = 0. This implies,

from the description of Ma given in Theorem 4.4.13, that

a ∈ Ker

(
0 Σa

0 0

)
.

Therefore ā ∈ Ker(Σa). From this it follows

Rank(Σa) = dim(Im(Σa)) = n− d− dim(Ker(Σa)) ≤ n− d− 1.

Now, if n−d−1 ≤ d, then the result holds. If not, then d < n−d−1 < n−d,

whence Rank(Σa) ≤ d = min(n− d− 1, d).

Theorem 4.4.33. Let ◦ be an operation as in Setting 3. The number of non-

zero entries in each row of the key distribution table KDT◦ is upper bounded

by 2 min(n−d−1,d).

Proof. Given a fixed ∆ ∈ V , the number of non-zero entries in the row

KDT[∆, ·] depends on the values of k · ∆, for each k ∈ V . Since k · ∆ =

k̄Σ∆ ∈ Im(Σ∆), and dim(Im(Σ∆)) = Rank(Σ∆) ≤ min(n − d − 1, d) for

Theorem 4.4.32, the desired holds.

Remark 4.4.34. Notice that the upper bound reaches its minimum value,

i.e. 2, if d = 1 or d = n− 2.

Corollary 4.4.35. Let ◦ be an operation as in Setting 3 and let ∆I ∈ V .

Then, for each ∆O ∈ V it holds

KDT◦[∆I ,∆O] ∈
{

0, 2n−Rank(Σ∆I )
}
.

Proof. Let ∆O ∈ V such that KDT[∆I ,∆O] 6= 0. Two keys k1, k2 ∈ V are

such that k1 ·∆I = k2 ·∆I = ∆O if k̄1 and k̄2 are in the same class modulo

Ker(Σ∆I
). Recalling that the value of k · ∆ does not depend on the last d
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bits of k, then KDT◦[∆I ,∆O] is the number of elements contained in each

class modulo Ker(Σ∆I
) multiplied by 2d. Therefore

KDT◦[∆I ,∆O] = 2d 2 dim(Ker(Σ∆I ))

= 2d 2n−d−Rank(Σ∆I )

= 2n−Rank(Σ∆I ).

Example 4.4.36. Notice that, in general, the set of errors is not a vector

space. Indeed, let us consider the following operation having n = 8 and d = 4

and defined by the defining matrix

Θ =


(0, 0, 0, 0) (0, 0, 0, 1) (1, 0, 0, 1) (1, 0, 1, 1)

(0, 0, 0, 1) (0, 0, 0, 0) (1, 1, 1, 1) (0, 1, 1, 1)

(1, 0, 0, 1) (1, 1, 1, 1) (0, 0, 0, 0) (1, 0, 0, 1)

(1, 0, 1, 1) (0, 1, 1, 1) (1, 0, 0, 1) (0, 0, 0, 0)

 .

Computing all the possible dot products, one can notice that #U◦ = 15,

hence U◦ is not a vector space. However, n = 8 is the first value for which

this happens.

4.5 Interaction with the confusion layer

While in classical differential cryptanalysis differential probabilities are only

induced by the confusion layer, in the previous section we illustrate that,

with new operations, probabilities are also added by the key-addition layer.

For the probability of a ◦-differential to be larger than the probability of a

+-differential, we should either have trails with larger probabilities and / or

more trails. The first goal can only be achieved if the values in the DDT of

the S-box computed with respect to ◦ are larger that those in the classical

DDT computed with respect to the XOR. In the following section we show

through several examples that this is possible. Before doing so, let us notice

that the difference distribution table of a vectorial Boolean function can be

defined more in general, considering differences induced by whatever opera-

tion whose group of translations is elementary, abelian, and regular (XOR
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included).

Let ◦ be an operation as in Setting 1. Proceeding in the same way of Sec-

tion 2.4.1, the derivative of a vectorial Boolean function f : (F2)n → (F2)n

in the direction u ∈ (F2)n with respect to the operation ◦, denoted by ∂◦u f is

the function
∂◦u f : (F2)n → (F2)n

x 7→ xf ◦ (x ◦ u)f.

Then, the difference distribution table (DDT◦) of f with respect to the opera-

tion ◦ is the integer table DDT◦f ∈ Zn×n defined for u ∈ (F2)n and v ∈ (F2)n

as

DDT◦f [u, v]
def
= δ◦f (u, v),

where

δ◦f (u, v)
def
= #{x ∈ (F2)n | x ∂◦u f = v}.

The differential uniformity of f with respect to ◦ is defined as

δ◦(f)
def
= max

u,v
u6=0

DDT◦f [u, v],

and the function f is said to be δ-differentially uniform with respect to ◦ if

δ = δ◦(f).

In the following examples it is shown how the non-linearity of vectorial

Boolean functions used as S-boxes for famous block ciphers may change when

differentials are computed with respect to another operation.

Example 4.5.1. Let us consider the following S-box γ′ : (F2)3 → (F2)3

which is affinely equivalent to the power function x 7→ x3:

x 0x 1x 2x 3x 4x 5x 6x 7x

x γ′ 0x 6x 2x 1x 5x 7x 4x 3x

.

We have computed the difference distribution table of γ′ with respect to +

and to the operation � defined in Example 4.4.21. The given function is well-

known to be APN with respect to + [Nyb93]. However, this property does

not hold when looking at �-differences. As can be noticed in Fig. 4.4, where

the difference distribution tables of γ′ with respect to + and � respectively

are displayed, γ′ is 8-differentially uniform with respect to �.
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+ 0x 1x 2x 3x 4x 5x 6x 7x

0x 8 · · · · · · ·
1x · · 2 2 · · 2 2

2x · 2 2 · 2 · · 2

3x · 2 · 2 2 · 2 ·
4x · 2 2 · · 2 2 ·
5x · 2 · 2 · 2 · 2

6x · · · · 2 2 2 2

7x · · 2 2 2 2 · ·

� 0x 1x 2x 3x 4x 5x 6x 7x

0x 8 · · · · · · ·
1x · · · 4 · · 4 ·
2x · · 4 · · · · 4

3x · 4 · · · 4 · ·
4x · 4 · · · 4 · ·
5x · · 4 · · · · 4

6x · · · · 8 · · ·
7x · · · 4 · · 4 ·

Figure 4.4: Difference distribution table of γ′ : x 7→ x3 over (F2)3 defined in

Example 4.5.1 with respect to + and �
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Example 4.5.2. The S-box S2 of the cipher SERPENT [BAK98] is 4-

differentially uniform with respect to +. However, if differentials are com-

puted with respect to the operation ◦ defined in Example 4.4.22 obtained

considering α = (0, 1), we obtain that S2 is a 10-differentially uniform func-

tion with respect to the given operation ◦. The complete DDTs of S2 with

respect to + and ◦ are displayed in Fig. 4.5.

In general, the following bound holds.

Theorem 4.5.3. Let ◦ an operation as in Setting 3. Let γ : (F2)n → (F2)n

a vectorial Boolean function and let us assume that γ is δ+-differentially

uniform and δ◦-differentially uniform with respect to + and ◦, respectively.

Then we have the following relation between δ+ and δ◦:

δ◦ ≤ min
(
δ+ (#U◦)

2 , 2n
)
.

In particular for ∆I 6= 0, we have

max
∆O

DDT◦γ[∆I ,∆O] ≤

min (δ+#U◦, 2
n) ∆I ∈ W◦

min
(
δ+ (#U◦)

2 , 2n
)

∆I /∈ W◦.

Proof. Let ∆I ,∆O ∈ V . We are interested in the number of solutions of the

following equation:

xγ ◦ (x ◦∆I)γ = ∆O. (4.10)

Rewriting Eq. (4.10) introducing the dot products, we obtain

xγ + (x+ ∆I + u)γ = ∆O + w, (4.11)

where u = ux,∆I
= x · ∆I , w = wx,∆I

= xγ · (x ◦ ∆I)γ, and u,w ∈ U◦.

For any possible choice of u,w ∈ U◦, Eq. (4.11) admits at most δ solutions,

hence δ◦γ(∆I ,∆O) ≤ δ+ (#U◦)
2 In particular, if ∆I ∈ W◦, then u = 0, and

consequently we derive δ◦γ(∆I ,∆O) ≤ δ+#U◦. The proof is then concluded.

The bound of the previous result can be quite loose though, especially

when #U◦ is large or when #U◦ in not a subspace. However, in the case

described in the following section, and more in general for small values of n
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+ 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 16 · · · · · · · · · · · · · · ·
1x · · · · · 2 · 2 · · 2 2 2 · 4 2

2x · · · 4 · 4 · · · 4 · · · · · 4

3x · 4 2 · · · 2 · · 2 · · 2 · 2 2

4x · · · · · · 4 · · · 4 4 · 4 · ·
5x · 4 · 2 2 2 2 · 2 · · · 2 · · ·
6x · · 2 2 2 2 · · 2 2 · · · · 2 2

7x · · · · 4 2 · 2 · · 2 2 2 · · 2

8x · · · 2 · 2 · 4 · 2 · · · 4 · 2

9x · · · 2 · · · 2 4 2 2 2 2 · · ·
Ax · · 2 · 2 · 4 · 2 · 4 · · · 2 ·
Bx · 4 · · 2 · 2 · 2 2 · · 2 · · 2

Cx · · 2 · 2 · · · 2 · · 4 · 4 2 ·
Dx · 4 2 2 · 2 2 · · · · · 2 · 2 ·
Ex · · 2 · 2 · · 4 2 · · · · 4 2 ·
Fx · · 4 2 · · · 2 · 2 2 2 2 · · ·

◦ 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 16 · · · · · · · · · · · · · · ·
1x · · · · 2 · · 2 · · · 4 2 · · 6

2x · · · 4 · 4 · · · 4 · · · · 4 ·
3x · 4 2 · · · · 2 2 · · · 2 · · 4

4x · 4 · · · · · 4 · · · 4 4 · · ·
5x · · · 2 · 4 2 · · 2 4 · · 2 · ·
6x · · 2 · 10 · · · 2 · · · · · · 2

7x · · · 2 · · 2 · · 2 4 · · 2 4 ·
8x · · · · 2 · · 2 6 · · 2 4 · · ·
9x · · · 4 · · 4 · · 2 2 · · 2 2 ·
Ax · 4 2 · · · · 2 4 · · 2 · · · 2

Bx · · · · · 4 4 · · 2 2 · · 2 2 ·
Cx · 4 4 · · · · · 2 · · 2 2 · · 2

Dx · · · 2 · 4 2 · · · 2 · · 4 2 ·
Ex · · 6 · 2 · · 4 · · · 2 2 · · ·
Fx · · · 2 · · 2 · · 4 2 · · 4 2 ·

Figure 4.5: Difference distribution table of the S-box S2 of SERPENT with

respect to + and ◦
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compatible with the dimension of a real-life S-box, it is tight in most of the

cases.

Although we did not reach a deep knowledge in the interaction between a

general confusion layer and any operation ◦, since it depends on the complex

interaction between the two additive operations on the vector space + and

◦ and the finite field addition and multiplication, we achieved some partial

results which can be helpful in order to understand, for example, how we

obtained the S-box of Example 4.5.1.

4.5.1 On the cubic function in odd dimension

Let us recall that, when interpreting x ∈ F2n as a vector in (F2)n and, vice

versa, a vector x ∈ (F2)n as an element of the finite field F2n , we are tac-

itly fixing a bijective correspondence Ψ : (F2)n → F2n . For example, when

considering x ∈ (F2)n and writing e.g. Tr (x), we mean (Tr (xΨ)) Ψ−1, where

Tr denote the trace over F2. Analogously, if y ∈ (F2)n such that y 6= 0,

then x/y denotes
(
xΨ (yΨ)−1)Ψ−1. The aim of this section is to illustrate

that, depending on the way we identify (F2)n and F2n , we can transform

an APN permutation into a permutation with higher differential uniformity

with respect to another operation. For this reason, let us assume n odd and

let us study the power function x 7→ x3 on F2n . Recall that such a map is

a permutation when n is odd and it is APN with respect to the XOR [Nyb93].

Following the classical proof used to derive the differential properties of the

cubic function, we aim at determining the number of solutions of the equation

x3 ◦ (x ◦∆I)
3 = ∆O (4.12)

for each ∆I ,∆O ∈ (F2)n and for each operation ◦. As already said, the

interaction between all the operations defined is complex, hence let us focus

on the case which matters more for our purposes (see Remark 4.4.34), i.e.

the case of operations ◦ such that d = n−2. Recall that for such operations,

by Remark 4.4.24, it holds #U◦ = 2. Let us only focus on the case where ∆I

is the non-null error. The next result shows that if U◦ is the 1-dimensional
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space spanned by ∆I and Eq. (4.12) admits at least four solution for some

∆O (which at the same time means that x 7→ x3 is δ-differentially uniform

with respect to ◦, with δ ≥ 4), then Tr(1/∆I) = 0. Also note that according

to Theorem 4.5.3, max∆O
DDT◦[∆I ,∆O] ≤ 4 in the case where ∆I ∈ U◦,

∆I 6= 0.

Proposition 4.5.4. Let ◦ be an operation as in Setting 3 and such that

d = n− 2. Let ∆I ∈ V \ {0} such that U◦ = Span{∆I}. If

max
∆O

DDT◦[∆I ,∆O] > 2,

then Tr(1/∆I) = 0. Equivalently, if Tr(1/∆I) = 1, then the equation x3 ◦
(x ◦∆I)

3 = ∆O admits at most 2 solutions for each ∆O.

Proof. Since U◦ ⊆ W◦, ∆I is also a weak vector, hence Eq. (4.12) can be

written as

x3 + (x+ ∆I)
3 = ∆O + w, (4.13)

where w = εx3,(x+∆I)3 ∈ W◦, according to Remark 4.4.24. Moreover, notice

that when Eq. (4.13) holds, then(
x

∆I

)2

+
x

∆I

= 1 +
∆O + w

∆3
I

,

which, by means of a change of variable, can be written as

x2 + x = 1 +
∆O + w

∆3
I

.

This implies, since n is odd, that

Tr

(
∆O + w

∆3
I

)
= 1. (4.14)

Let us now assume that Eq. (4.13) admits four solutions x1, x2, x1 + ∆I and

x2 +∆I . This means that there exist w1, w2 ∈ U◦ such that x3
1 +(x1 +∆I)

3 =

∆O +w1 and x3
2 + (x2 + ∆I)

3 = ∆O +w2. Notice that w1 6= w2. Indeed, if we

assume w1 = w2, then Eq. (4.13), and consequently Eq. (4.12), admits four

solutions, running counter to the fact that x 7→ x3 is APN. Since wi ∈ U◦,
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we can assume without loss of generality that w1 = 0 and w2 = ∆I . From

Eq. (4.14) we obtain

Tr

(
∆O + w1

∆3
I

)
= Tr

(
∆O + w2

∆3
I

)
= 1,

which implies

Tr

(
∆O

∆3
I

)
= 1 and Tr

(
∆I

∆3
I

)
= Tr

(
1

∆2
I

)
= Tr

(
1

∆I

)
= 0.

We proved that, if we want Eq.(4.13) to admit at least four solutions, which

would mean that x 7→ x3 is at least 4-differentially uniform with respect to

an operation ◦ such that d = n− 2, then we have to choose Ψ in such a way

that Tr ((uΨ)−1) = 0, where u is the non-null error in U◦. Notice that this

argument can be generalised to other APN quadratic functions and illustrate

that differential uniformity with respect to another operation is influenced

by the chosen correspondence Ψ.

Remark 4.5.5. We can also show that in the case where U◦ = {0, α} and

∆I /∈ W◦, some necessary conditions for 8-differential uniformity are

Tr

(
α

∆3
I

)
= Tr

(
α

(∆I + α)3

)
= 0.

Indeed, proceeding as in Proposition 4.5.4, in this case we obtain that x is a

solution of Eq.(4.12) if and only if(
x

∆I

)2

+
x

∆I

= 1 +
∆O + w

(∆I + u)3
,

where u = ux,∆I
and w = wx3,(x+∆I)3 , which implies

Tr

(
∆O + w

(∆I + u)3

)
= 1. (4.15)

Reasoning as in Proposition 4.5.4, if Eq.(4.12) admits eight solution of the

kind xi, xi+ ∆I for 1 ≤ i ≤ 4, then the corresponding (ui, wi) ∈ {0, α}2 must
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be all different. The four cases are given in the following table:

Case u w Condition

1 0 0 Tr

(
∆O

∆3
I

)
= 1

2 0 α Tr

(
∆O + α

(∆I + α)3

)
= 1

3 α 0 Tr

(
∆O

(∆I + α)3

)
= 1

4 α α Tr

(
(∆O + α)

(∆I + α)3

)
= 1

If the conditions in the four cases of the table are fulfilled, combining to-

gether Case 1 and Case 2, and Case 3 and Case 4, we obtain some necessary

conditions for max∆O
DDT◦ [∆I ,∆O] = 8:

Tr

(
α

∆3
I

)
= Tr

(
α

(∆I + α)3

)
= 0.

The method described above has been used to build the S-box γ′ of Exam-

ple 4.5.1, where we choose Ψ with the property Tr ((e3Ψ)−1) = 0. Moreover,

in this case, we computationally proved, using MAGMA, the following result

on x 7→ x3 on (F2)3.

Proposition 4.5.6. The function x 7→ x3 on (F2)3 is APN with respect to

� if and only if Ψ is such that Tr ((e3Ψ)−1) = 1 and it is 8-differentially

uniform with respect to � in the other case.

In this chapter we have defined the hypotheses which make operations

coming from alternative group of translations suitable for a differential at-

tack. As recalled in Section 1.2.1, three different layers define the round

functions of a SPN block cipher. In this chapter, we provided properties

selecting a subset of operations with a particular behavior with respect to

the key-addition and the confusion layer, considered singularly. We have

noticed that the magnitude of differential probabilities with respect to a dif-

ferent additive law on the message space may depend on a wise choice of

the parameters n and d which define the operation. In particular, in Theo-

rem 4.5.3 we proved that, if the size of U◦ is too small, we have less chances

to significantly weaken the non-linearity of the Boolean function considered.
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Even if the size U◦ depends on the relation between n and d, it is easy to

prove that U◦ is small when d ∼ n − 2 or d ∼ 1, i.e. when d is closer to

its lower or upper bound (see Theorem 4.4.5). On the other hand, by virtue

of Theorem 4.4.33, the cases d ∼ n − 2 or d ∼ 1 look the most convenient

since they allow ◦-differences to pass through the key-addition layer with the

highest probabilities. It may seems that a choice of n and d which is good

for the confusion layer is bad for the key-addition layer, and vice versa. This

should not surprise anyone: when n ∼ d, almost every vector is weak, i.e.

the operation + and ◦ are similar. In this case, since the confusion layer is

usually designed to maximise the non-linearity with respect to the XOR, we

cannot expect from an operation similar to + to induce differential probabil-

ities significantly different than the one induced by the XOR. However, all

the keys which are weak pass unharmed through the key-addition layer. The

same holds in the case d ∼ 1. Indeed, even if few vectors are weak, the size

of U◦ is small, hence no advantages in terms of non-linearity are obtained.

In the next chapter we will show how to find the correct balance between

n and d. Even if the previous considerations are correct, we are not taking

into account yet the hypothesis that the confusion layer is a parallel map.

Moreover, the choice of the parameter is also conditioned by another crucial

point which has been so far completely neglected: the impact of the diffu-

sion layer on ◦-differential probabilities. Indeed, to define an SPN with an

a priori weaker resistance to ◦-differential attack than +-differential attack,

we should also select an appropriate diffusion layer. The next chapter fo-

cuses on these aspects. In particular, in Section 5.1, we present some general

properties of the diffusion layer.
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Designing a cipher

Our goal in this section is to first design an operation ◦, and then a cipher

that can be attacked using ◦-differentials. The attack can be successful if the

operation interacts with the layers of the chosen cipher in such a way that

◦ induces differential probabilities which are high enough to allow a distin-

guishing attack. However, if we want to show that our attack is meaningful,

we have also to show that such an attack fails it the attacker tries to use

ordinary differentials. Before putting things together, the way the diffusion

layer impacts on ◦-differential probabilities requires a careful study.

5.1 Interaction with the diffusion layer

In the previous chapter we refined our assumptions on operations ◦ in order

to obtain a higher differential uniformity of the S-boxes with respect to ◦
and possibly high probabilities induced by the key-addition layer. However,

we did not consider so far how ◦-differences propagate through the diffusion

layer, which is, in our model, a +-linear map. Notice that the role of the

diffusion layer, in the sense of keeping the cipher safe from differential at-

tacks, is to spread the differences as fast and as far as possible in the block,

i.e. to quickly activate as many S-boxes as possible. However, the diffusion

layer does not have a direct role in terms of differential probability when

differentials are computed with respect to the XOR, since it is a XOR-linear

map, and consequently each +-differential is deterministic over the diffusion
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layer. On the other hand though, in the case of ◦-differentials, a cryptana-

lyst willing to predict the output difference of the diffusion layer λ, given the

input ◦-difference ∆, needs to determine the distribution of the elements of

the kind of

xλ ◦ (x ◦∆)λ. (5.1)

knowing that, in general, λ is not linear with respect to ◦. The cryptanalyst

has to take into consideration that the n-bit linear map is then a huge ◦-non-

linear function with 2n inputs, which will make further analysis non-trivial.

Indeed, writing Eq. (5.1) in terms of the dot product, we obtain

xλ ◦ (x ◦∆)λ = ∆λ+ (x ·∆)λ+ xλ ·∆λ+ xλ · (x ·∆)λ,

which clearly depends on x ∈ (F2)n. This should be enough to convince the

reader that a successful attack with respect to an alternative operation ◦
may rely on the linearity of the diffusion layer also with respect to ◦.

5.1.1 Compatible diffusion layers

For the reason explained above, from now on we focus on operations ◦ and

on ciphers whose diffusion layer is an invertible matrix which is also ◦-linear.

Let us give a name to these functions.

Definition 5.1.1. Let ◦ be an operation as in Setting 3. We denote the

group of the homomorphisms of (V,+, ·) by H◦
def
= Hom(V,+, ·). A matrix λ ∈

(F2)n×n is said to be compatible with the operation ◦ if λ ∈ H◦. Equivalently,

when λ is compatible with ◦, we also say that ◦ is compatible with λ.

Is not hard to prove that every map λ ∈ H◦ is linear with respect to +

and ◦, i.e. H◦ = GL(V,+) ∩GL(V, ◦).

Proposition 5.1.2. Let ◦ be an operation as in Setting 3 and let λ ∈ (F2)n×n

be compatible with ◦. Then λ ∈ GL(V, ◦).

Proof. Let a, b ∈ V . Then (a ◦ b)λ = aλ+ bλ+ (a · b)λ. Moreover, since λ is

compatible with ◦, (a · b)λ = aλ · bλ, hence it follows

(a ◦ b)λ = aλ+ bλ+ aλ · bλ = aλ ◦ bλ.
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The following result is useful to give a description of H◦.

Theorem 5.1.3. Let ◦ be an operation as in Setting 3, and let W◦ and U◦

be the weak-keys subspace and the set of errors respectively. Then, for each

λ ∈ H◦ it holds W◦λ = W◦ and U◦λ = U◦.

Proof. Let λ ∈ H◦ and let us prove that W◦λ = W◦. Let a ∈ W◦ and let

b ∈ V . Then

aλ ◦ bλ = (a ◦ b)λ = (a+ b)λ = aλ+ bλ,

which proves, being λ invertible, that aλ ∈ W◦, and consequently W◦λ = W◦.

On the other hand, if a ∈ U◦, then a = b · c for some b, c ∈ V . Then

aλ = (b · c)λ = bλ · cλ, hence aλ ∈ U◦.

The previous result is important since it gives a precise structure to the

matrices in H◦.

Lemma 5.1.4. Let ◦ be an operation. If λ ∈ (F2)n×n is compatible with ◦,
then for each a ∈ V it holds Maλ = λMaλ.

Proof. Let a, b ∈ V . Then, by Proposition 5.1.2, (b ◦ a)λ = bλ ◦ aλ, which

means that (bMa + a)λ = bλMaλ + aλ, i.e. bMaλ = bλMaλ. From the

generality of b, the desired follows.

Theorem 5.1.5. Let ◦ be an operation. If λ ∈ (F2)n×n is compatible with ◦,
then

λ =

(
A B

0
d,n−d D

)
,

where A ∈ GL
(
(F2)n−d,+

)
, D ∈ GL

(
(F2)d,+

)
, B ∈ (F2)(n−d)×d, and for

each a ∈ V it holds ΣaD = AΣaλ.

Proof. Let us write λ into the block form

λ =

(
A B

C D

)
.

Since, from Theorem 5.1.3, W◦λ = W◦ andW◦ is spanned by the last d vectors

of the canonical basis, it holds C = 0
d,n−d , and consequently A and D are
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invertible. Furthermore, for Lemma 5.1.4, for a ∈ V it holds Maλ = λMaλ.

This means that(
1n Σa

0
d,n−d 1d

)(
A B

0 D

)
=

(
A B

0 D

)(
1n Σaλ

0
d,n−d 1d

)
,

and consequently (
A B + ΣaD

0 D

)
=

(
A AΣaλ +B

0 D

)
.

It follows that

ΣaD = AΣaλ. (5.2)

Remark 5.1.6. Notice that λ is compatible with ◦ if the condition of

Eq. (5.2) is satisfied, regardless the choice of the matrix B. Indeed, when λ

is invertible, being an homomorphism of (V,+, ·) means that (a ·b)λ = aλ ·bλ
for each a and b, and such a condition relates only to weak vectors, which

are not influenced by B.

Theorem 5.1.5 and the previous lemma have been first proved and used

in [BCS17] to derive a polynomial-time algorithm which takes as input a

matrix λ ∈ (F2)n×n and returns an operation ◦ as in Setting 3 compatible

with λ. As an application, the authors show an example of operation which

is compatible with the diffusion layer of PRESENT. However, the output of

this algorithm is a huge1 class of operations which are too general for our

purpose. The main reason why we do not use here this algorithm is that

we experimentally noticed the best results in terms of the ratio between the

◦-differential uniformity and the +-differential uniformity of the confusion

layer when n is small. For this reason, we claim that the best operations for

a differential attack are obtained as a concatenation of smaller operations,

having the size of the S-boxes. We refer to these by saying parallel operations.

It is not clear if the output of the algorithm presented in [BCS17] contains

parallel operations. Since our main scope is to weaken the non-linearity

1In the case of PRESENT, the algorithm computes 22360 operations compatible with

the diffusion layer.
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of the confusion layer, we decide to prioritise the choice of the operation,

and consequently to focus on the opposite problem, i.e. given a convenient

parallel operation ◦, determine diffusion layers which are compatible with

◦. In the light of this, notice that Theorem 5.1.5 might impose a restriction

on the size of the weak-key space. For example, when d is such that n − d
exceeds the size of the S-boxes, the zero block in λ may prevent the layer

from having good diffusion properties. In the following section, we address

this problem in a case that, as we will show, represents the right compromise

between the dimension of the space and of the weak-key space, i.e. d = n−2.

5.2 The case d = n− 2

As we have seen in the previous chapter, unlike the standard differential

attack where only the confusion layer induces differential probabilities, in

the case of the attack with respect to different operations we also have to

consider the issues coming from the key-addition layer. In light of this, the

case where ◦-differential probabilities are the highest possible, in the sense

of Theorem 4.4.33, deserves particular attention. Let ◦ be any operation

such that d = dim(W◦) = n − 2. As we have shown in Section 4.4.4, every

operation with such hypotheses is individuated by a defining matrix of the

kind

Θ =

(
0 b

b 0

)
,

where b is any non-null vector in (F2)n−2. Consequently it holds

Me1 =

 12

0

b

0n−2,2 1n−2

 , Me2 =

 12

b

0

0n−2,2 1n−2

 ,

and Mei = 1n for each 3 ≤ i ≤ n. Notice that, in this case, U◦ is a subspace

and from Remark 4.4.24 it holds U◦ = Span{u}, where u = (0, 0, b) ∈ (F2)n.

Consequently, since U◦ contains only one non-null error, the output differ-

ence of the key-addition layer, when the input difference ∆ is given, is ∆ or

∆ + u, each one with probability 1/2. As we showed, as far as ◦-differential

passing through the key-addition layer and the corresponding probabilities
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are concerned, this is the best result we can obtain.

Let us now provide a characterisation of the matrices compatible with an

operation ◦ such that d = n − 2, i.e. a description of H◦. In the last part

of the chapter, this result will be useful for selecting a diffusion layer for the

illustration of our attack against a particular instance of SPN.

Theorem 5.2.1. Let ◦ be an operation as in Setting 3 and such that dim(W◦) =

n− 2, and let u = (0, 0, b) ∈ (F2)n be the generator of U◦. Let λ ∈ (F2)n×n.

The following are equivalent:

(i) λ is compatible with ◦;

(ii) there exist A ∈ GL ((F2)2,+), D ∈ GL ((F2)n−2,+), and B ∈ (F2)2×(n−2),

such that

λ =

(
A B

0n−2,2 D

)
and bD = b.

Proof. Firstly, from Theorem 5.1.5, λ decomposes into the block form

λ =

(
A B

0n−2,2 D

)
,

where A ∈ GL ((F2)2,+), D ∈ GL ((F2)n−2,+), B ∈ (F2)2×(n−d). From

Theorem 5.1.3, since U◦ = {0, u}, one obtains uλ = u, and hence bD = D.

Conversely, let us assume (ii) and prove that given x, y ∈ V it holds (x·y)λ =

xλ · yλ. If x ∈ W◦, then also xλ ∈ W◦, hence there is nothing to prove. For

the same reason (x · y)λ = xλ · yλ if and only if

((x1, x2, 0, . . . , 0) · (y1, y2, 0, . . . , 0))λ = (x1, x2, 0, . . . , 0)λ · (x1, x2, 0, . . . , 0)λ,

thus it is sufficient to consider the case x = e1 and y = e2. It is easy to check

that both the products e1 · e2 and e1λ · e2λ equal u, hence from uλ = u the

desired holds.

From Theorem 5.2.1 it also follows that the number of matrices compat-

ible with an operation ◦ of size n and such that d = n− 2 can be counted.
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Corollary 5.2.2. Let ◦ be an operation as in Setting 3 and such that dim(W◦) =

n− 2. Then

#H◦ = 3 · 23(n−2) ·# GL
(
(F2)n−3,+

)
,

where # GL ((F2)n−3,+) =
∏n−4

j=0 (2n−3 − 2j).

Notice that in the present case, as we could have noticed by looking at the

table in Fig. 4.1, also the problem of counting the number of all the possible

operations is trivial. Since the number of operations equals the number of

all the possible defining matrices, it is straightforward that, when d = n− 2,

there exist 2n−2 − 1 alternative operations as is Assumpion 3 different from

the XOR.

5.3 Experiments on a small cipher

In this section we design a small cipher and we perform some experiments on

it, in order to show that the differential attack with an alternative operation

can be effective. Before doing this, it is worth spending some words on why

we decided for a small-size cipher and not for a standard one. As we already

pointed out in Section 4.5, having trails with larger probabilities with respect

to the operation ◦ than with respect to + represents a necessary condition

for the success of the distinguishing attack. However, this is not sufficient. In

fact, let us consider again Example 4.5.1. From one hand it is true that the

entries in DDT◦ are significantly larger of those in DDT+. The counterpart

is that the number of non-null entries in DDT+ is larger than those of DDT◦,

which means that, in the second case, for a given differential there may be

many more +-differential trails, even if with a lower probability. This might

result in a differential whose differential probability, obtained as the sum of

the probabilities of all its differential trails, is higher in the case of + than in

the one of ◦. In this sense, the role of the diffusion layer is crucial, since the

probability of any differential is the sum of the probabilities of all the trails

which compose the differential, and the number of such trails depends on the

good diffusion properties of the linear layer. It should be clear that, if we

want to prove that a given cipher is secure in the standard setting and not in

the one of ◦-differentials, a comparison between the best +-differential trail
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and the best ◦-differential trail may be rather inconclusive. For this reason,

we believe that the only possible approach is to perform an exhaustive search

for all the differentials, and to compare the values of the best +-differential

and of the best ◦-differential. The choice of a standard size for the block

would make these computations unfeasible.

From now on let us assume n = 15 and let us write V = ⊕5
i=1(F2)3, i.e.

let us assume V is decomposed as the sum of five 3-dimensional bricks. We

will design shortly a 15-bit SPN having five identical 3-bit S-boxes. Before

doing this, let us describe the operation ◦̂ we will be using for the attack.

5.3.1 The operation ◦̂

One particular operation between those discussed in Section 5.2 deserves

attention, i.e. the one obtained when b = (1, 0, . . . , 0) ∈ (F2)13, which is

defined by the matrices

Me1 =

 12

0 0 . . . 0

1 0 . . . 0

013,2 113

 , Me2 =

 12

1 0 . . . 0

0 0 . . . 0

013,2 113

 ,

and Mei = 115 for 3 ≤ i ≤ 15. The reason why we focus on this operation

is that ◦̂ is a parallel operation with respect to the message space decom-

position V = ⊕5
i=1(F2)3. In particular, it acts as the operation � defined

in Example 4.4.21 on the first brick, and as + on the remaining ones, i.e.

◦̂ = (�,+,+,+,+). For example, if x, y ∈ V

(x1, x2, x3, x4, . . . , x15)◦̂(y1, y2, y3, y4, . . . , y15)

= ((x1, x2, x3) � (y1, y2, y3), x4 + y4, . . . , x15 + y15).

In the case of the operation ◦̂, Theorem 5.2.1 becomes as follows.

Theorem 5.3.1. Let λ ∈ (F2)15×15. The following are equivalent:

(i) λ ∈ H◦̂;
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λ =



1 0 1 0 1 0 0 0 1 0 1 0 1 0 1

0 1 1 0 1 0 1 0 0 0 1 0 1 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 1 0 1 0 1 1 0 1 0

0 0 1 1 1 0 0 0 0 0 0 1 0 1 0

0 0 1 0 0 1 0 0 1 0 1 0 1 1 0

0 0 0 0 1 0 0 0 1 1 1 0 0 1 1

0 0 1 1 1 0 1 1 0 0 1 0 1 1 1

0 0 1 1 1 0 1 0 0 1 1 1 1 1 0

0 0 1 1 0 0 0 0 0 1 1 1 0 0 1

0 0 0 0 0 1 1 1 0 1 0 0 1 0 1

0 0 0 0 1 0 0 0 0 1 0 0 1 1 1

0 0 1 1 1 0 0 1 1 1 0 1 1 1 1

0 0 0 1 1 1 0 0 0 0 1 0 1 0 0



Figure 5.1: A diffusion layer compatible with ◦̂

(ii) there exist A ∈ GL ((F2)2,+), D ′ ∈ GL ((F2)12,+), B ∈ (F2)2×13 and

B ′ ∈ (F2)12×1 such that

λ =

 A B

013,2

1 01,12

B ′ D ′

 .

Example 5.3.2. From Theorem 5.3.1, the 15×15 binary matrix λ displayed

in Fig. 5.1 is compatible with ◦̂. Notice that, when used with a parallel

confusion layer featuring 3-bit S-boxes, the zero block 013,2 does not represent

a weakness.

5.3.2 The target cipher

Let us consider the R-round SPN defined by classical round functions of the

type εi,K = γλσki , where γ acts on every brick as the S-box γ′ defined in
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Figure 5.2: 1-round encryption of the 15-bit target cipher

Example 4.5.1 and λ is the matrix of Fig. 5.1. In Fig 5.2 a 1-round encryption

of our target cipher is displayed. Recalling that the operation � is suitable

for attacking the cubic S-box of Example 4.5.1, which we have chosen as

S-box for our cipher, and that the operation ◦̂ behaves as the XOR from the

4th bit of the block onwards, we are basically performing an attack against

the first S-box of the cipher, whose differential properties with respect to ◦̂
are weaker, as already shown in Example 4.5.1. On the other hand, recall

that the values in the DDT�γ′ need to be rescaled, due to the effect of the

further �-differential probabilities induced by the key-addition layer. What

we show next is that the magnitude difference between the entries of the two

DDTs is sufficiently large for a distinguishing attack, despite the effect of the

key-addition.

5.3.3 Results and conclusions

For the cipher of Section 5.3.2, we have performed experiments to study

its resistance to differential cryptanalysis. Note that only the resistance

to differential cryptanalysis is considered and we do not claim any other

resistance criteria for the security of this small cipher.

Setting the attack We did not specify yet how we generate the key used

for the attack. As it has been discussed in [DR07] and [BG10], the proba-
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bility of a differential trail may depend on the choice of the master key used

to encrypt the messages. In order to take this fact into account, we generate

a key-schedule by selecting the round keys ki’s uniformly at random in V ,

for each master key, i.e. we are considering the cipher as a long-key cipher.

Moreover, in our computation we considered 211 possible key-schedule sam-

ples, in order to have a good estimate of the expected differential probability

of the best differential on r rounds of the cipher. We computed by means

of an exhaustive search all the possible differentials, for each possible key

assignment, and furthermore considered the average of the obtained results.

Let us now discuss the results obtained when r = 5.

A simulation of the attack on 5 rounds The experimental computa-

tions show that the best 5-round differential (∆I+ ,∆O+) = (0007x, 1301x)

occurs with probability 2−14.567 where the difference taken into consideration

is the classical +-difference. Using the operation ◦̂ of Section 5.3.1 instead,

the best 5-round differential is (∆I◦̂ ,∆O◦̂) = (3000x, 019Dx) with probability

2−14.296. Let now DIST be an algorithm intended to distinguish the 5-round

cipher from a random permutation, and let ORACLE be an encryption oracle.

Consider the following games.

Procedure 1 Game 1

1: DIST computes P
def
= [(x, x+ ∆I+)| x ∈ V ]

2: ORACLE select uniformly at random α ∈ {0, 1}
3: if α = 1 then

4: ORACLE picks a random key K and returns

C
def
= [aEK + bEK | (a, b) ∈ P ]

5: else ORACLE returns a list C of #P elements chosen uniformly at random

in V

6: if ∆O+ ∈ C then

7: DIST returns 1

8: else DIST returns 0

We can compute the maximal success probability of the distinguishing attack

as the probability that at least one pair (x, x + ∆I+) or (x, x◦̂∆I◦̂) follows
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Procedure 2 Game 2

1: DIST computes P
def
= [(x, x◦̂∆I◦̂)| x ∈ V ]

2: ORACLE select uniformly at random α ∈ {0, 1}
3: if α = 1 then

4: ORACLE picks a random key K and returns

C
def
= [aEK ◦̂ bEK | (a, b) ∈ P ]

5: else ORACLE returns a list C of #P elements chosen uniformly at random

in V

6: if ∆O◦̂ ∈ C then

7: DIST returns 1

8: else DIST returns 0

the differential, assuming that, when using the full codebook, differentials

are binomially distributed over the keys [DR07]. Hence, letting the success

probability of the algorithm DIST with respect to Game 1 and Game 2 be

defined respectively as

S iDIST
def
= P(DIST = 1| α = 1), i ∈ {1, 2},

we obtain that if S1
DIST > 1/2 or S2

DIST > 1/2, then DIST manages to distin-

guish the 5-round cipher from a random permutation using +-differences or

◦̂-differences, respectively. With the probabilities previously given, we find

that in more than 50% of the cases the differential is not fulfilled for the

+-difference and we can conclude that a basic distinguishing attack does not

succeed. In the same setting using the ◦̂-differences, the differential appears

at least once for about 56% of the keys.

Consequently this represents an example of a small cipher which looks

like a classically secure SPN, and for which considering an operation dif-

ferent from the one used for the key-addition produces a successful distin-

guishing attack. This may also be rephrased in another way: a designer

may be tempted to claim that a 5-round encryption is sufficient to grant

security from differential cryptanalysis to the cipher. The designer would

not be wrong since we proved that, considering only classical differences, the

96



Experiments on a small cipher

distinguishing attack fails. However, a cryptanalyst using ◦̂-differentials may

succeed in breaking the 5-round cipher. Therefore, an R-round encryption

with R > 5 is required to provide security with respect to the differential

attack with a more general class of operations.

While at the time of writing the impact of the key addition is well un-

derstood, the question of searching large-scale diffusion layers and of under-

standing the impact of the new operations on the differential uniformity of

classical S-boxes remains open.

In conclusion, we proved that a cipher which appears to be secure with

respect to the classical differential attack may be actually weak with respect

to a differential attack where the difference used comes from another group

operation on the message space. We essentially showed that, depending

on the operation considered, a cipher can have different levels of resistance

against differential attacks. Considering the class of effectively computable

operations introduced in [CS17], we studied the interaction between the latter

and the layers of a SPN, and designed operations which made our differential

attack possible. We finally provided an example of a 15-bit SPN which cannot

be distinguished from a random permutation in the classical context, whereas

a distinguishing attack succeeds when considering ◦̂-differences, where ◦̂ is

an operation built ad hoc for the purpose.
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Part III

On the design of wave ciphers
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6
On wave functions

The last part of this thesis is devoted to the design and the study of the alge-

braic security of wave ciphers, a family of Feistel Networks which is described

in this chapter.

6.1 Overview and motivation

Let us recall that we are considering two families of symmetric cryptosystems,

namely Substitution-Permutation Networks and Feistel Networks, which are

obtained as a composition of several round functions. Each round function

is a key-dependent permutation of the plaintext space, designed in a way

to provide both confusion and diffusion. Confusion is provided by means of

a non-linear layer which applies vectorial Boolean functions, called S-boxes,

whereas a linear map, called diffusion layer, provides diffusion. In order to

perform decryption, invertible layers and the Feistel structure are used in

SPN and FN, respectively. In the framework of SPNs decryption is per-

formed applying in reverse order the inverse of each layer of the cipher. In

the case of FNs, it is the Feistel structure itself to guarantee a fast decryption.

It is well-established that the non-linearity of the confusion layer is a cru-

cial parameter for the security of the cipher. In particular, in order to prevent

statistical attacks (e.g. differential [BS91a] and linear [Mat93] cryptanaly-

sis), block ciphers’ designers are interested in invertible S-boxes reaching the
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best possible differential uniformity, which is two. Functions satisfying such

property, i.e. almost-perfect non-linear functions (see Definition 2.4.7), are

extensively studied. However, as recalled in Section 2.4.2, no APN permu-

tation is known in the cases s ∈ {4, 8}, which for implementation needs

represent the optimal sizes of an S-box. For this reason, in this part of the

thesis we focus on defining a new framework for block ciphers, whose S-boxes

are not bijective, and consequently can be APN functions with s inputs, s

even. More precisely, we focus on injective confusion layers which enlarge

the message, and on surjective diffusion layers which reduce the message to

its original size. By appending a key addition to these, we obtain a gener-

alised round function which we call a wave function. Consequently a wave

cipher is a block cipher featuring wave functions in its structure. In order

to guarantee an efficient decryption, we propose to use wave functions inside

an FN-like framework. As far as the security of wave ciphers is concerned,

we focus on a group-theoretical analysis, giving sufficient conditions for the

primitivity of the group generated by the round functions (see Chapter 3).

Recall that the cryptanalysts’ interest into the imprimitivity of the group

generated by the round functions of a block cipher arises from the study

performed by Paterson [Pat99], who showed how the imprimitivity of the

group can be exploited to construct a trapdoor that may be hard to detect.

In particular, he gave an example of a DES-like cipher, which can be easily

broken since its round functions generate an imprimitive group, but which

is resistant to both linear and differential cryptanalysis. In this part, we

show that ciphers having such a wave structure are provably secure, under

some cryptographic assumptions, with respect to the imprimitivity attack

described in Section 3.3. It is worth mentioning here that, in order to prove

the security of a given wave cipher with respect to other classical statistical

attacks (e.g. linear and differential cryptanalysis), it is needed to analyse the

single instance under consideration.

6.2 Wave ciphers

The aim of this section is to define ciphers whose inner layers are not nec-

essarily invertible, which allow to use APN vectorial Boolean functions as
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Figure 6.1: Wave functions

S-boxes, even when the S-box input size is four or eight. We focus on the

case of wave-shaped round functions, which feature a first layer which en-

larges the state, a second which reduces its size, and a key addition. These

round functions are employed in the place of classical round functions for

both SPNs and FNs. To do so, let us define an auxiliary space W = (F2)m,

with n ≤ m such that dim(W ) = m = bt and W = W1⊕W2⊕ . . .⊕Wb. The

subspaces Wjs are also called bricks of W .

What follows is a generalisation of the concept of classical round function

given in Definition 1.3.1.

Definition 6.2.1. For each k ∈ V , a wave function induced by k is a map

εk : V → V of the type εk = γλσk, where

• γ : V → W is an injective non-linear transformation (parallel S-box)

which acts in a parallel way on each Vj, i.e.

(x1, x2, . . . , xn)γ =
(
(x1, . . . , xs)γ1, . . . , (xs(b−1)+1, . . . , xn)γb

)
.

The maps γj : Vj → Wj are called S-boxes;

• λ : W → V is a surjective linear map;

• σk : V → V, x 7→ x+ k is the round key addition.

Figure 6.1 depicts the composition of two consecutive wave functions.
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Notice that, in general, we do not require that a wave function is invert-

ible. However, if it is necessary, the following result gives a condition on

the confusion and diffusion layers which ensures that a wave function is a

permutation.

Lemma 6.2.2. Let εk = γλσk be a wave function. The following are equiv-

alent:

(i) {a+ b | a, b ∈ Im γ} ∩Kerλ = {0};

(ii) εk ∈ Sym(V ).

Proof. Let us assume (i). Let x1, x2 ∈ V such that x1εk = x2εk. Then

(x1γ + x2γ)λ = 0, so x1γ + x2γ ∈ {a + b | a, b ∈ Im γ} ∩ Kerλ = {0}, and

hence x1γ = x2γ. Since γ is injective, it follows x1 = x2. Conversely, let

x ∈ {a + b | a, b ∈ Im γ} ∩ Kerλ. Then there exist x1, x2 ∈ V such that

x = x1γ + x2γ and xλ = 0, that is x1γλ = x2γλ. Therefore x1εk = x2εk and

hence x1 = x2, which implies x = 0.

Remark 6.2.3. Notice that it always holds 0 ∈ {a+ b | a, b ∈ Im γ}∩Kerλ.

Moreover, notice that if we assume that 0γ = 0, then the first condition of

the previous lemma implies that Im γ ∩Kerλ = {0}.

6.2.1 Feistel Networks with wave functions

Since our goal is to use the previously defined wave functions inside a cipher,

we now define a wave cipher as an FN whose F-function is a wave function.

Feistel Network’s straightforward decryption encourages this choice.

Before defining wave ciphers, we generalise the security requirement of

proper and strongly proper diffusion layers (see Definition 2.4.13 and Defini-

tion 2.4.14) to the case of surjective maps. Let us also recall that a wall of

V (resp. W) is any non-trivial and proper sum of bricks of V (resp. W ).

Definition 6.2.4. A surjective linear transformation λ : W −→ V is a proper

diffusion layer if for each wall W ′ =
⊕

j∈JWj of W and V ′ =
⊕

j∈J Vj of V ,

where ∅ 6= J ⊂ {1, . . . , b}, it holds

V ′λ−1 6⊂ W ′ + Kerλ.
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In other terms, if π : W −→ W/Kerλ is the canonical projection of W onto

W/Ker(λ), and λ̂ : W/Kerλ→ V is such that w + Kerλ 7→ wλ, λ is proper

in the sense of Definition 6.2.4 if there exists no wall W ′ =
⊕

j∈JWj of W

and V ′ =
⊕

j∈J Vj of V such that W ′πλ̂ = V ′, i.e. no wall of W is sent by

πλ̂ into a wall of V .

We are now ready to give the definition of a wave cipher, which involves

the notion of Feistel operator already explained in Definition 1.2.4.

Definition 6.2.5. An R-round wave cipher Φ is a family of encryption func-

tions {EK | K ∈ K} ⊆ Sym(V × V ) such that for each K ∈ K the map EK

is the composition of R functions. More precisely EK = ε1,K ε2,K . . . εR,K ,

where εi,K = γλσki is an n-bit wave function such that

• λ is a proper diffusion layer, in the sense of Definition 6.2.4,

• the key-schedule K → V R, K 7→ (k1, k2, . . . , kR), is surjective with

respect to any brick.

The function ρ
def
= γλ is called the generating function of the wave cipher.

Let us notice that the ciphers previously introduced are FNs featuring a

wave function as F-function. Indeed, given (x1, x2) ∈ V × V one has

(x1, x2)εi,K = (x1, x2)

(
0n 1n
1n εi,K

)
= (x2, x1 + x2εi,K),

where the operator εi,K induces the Feistel structure, as shown in Figure 6.2.

Moreover εi,K is invertible with the following inverse

εi,K
−1 =

(
εi,K 1n
1n 0n

)
.

Note that, as for any FN, the inverse εi,K
−1 of the round function εi,K does

not involve the inverse of the wave function εi,K .
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Figure 6.2: Feistel structure of wave ciphers

6.2.2 The group generated by the rounds of a wave

cipher

Let T(0,n)
def
= {σ(0,k) | (x1, x2) 7→ (x1, x2 + k)} < Sym(V × V ). Let ρ be

the generating function of a wave cipher Φ, and ρ the corresponding Feistel

operator

ρ =

(
0n 1n
1n ρ

)
.

Then εi,K = ρ σ(0,ki), and so 〈T(0,n), ρ 〉 is the group generated by the round

functions of the wave cipher Φ.

Remark 6.2.6. It is worth noting here that 〈T(0,n), ρ 〉 is well defined even

if ρ is not a permutation. However, the strategy we adopt in the following

chapter to prove the primitivity of the group under consideration requires

the assumption that ρ is invertible.

The study of the group 〈T(0,n), ρ 〉 previously defined is the subject of the

next chapter, where we determine conditions ensuring that such a group is

primitive.
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wave ciphers

In this last chapter, we first show a group-theoretical result which, as con-

sequence, links the primitivity for a Substitution-Permutation Network and

the primitivity for a Feistel Network having respectively round functions and

F-functions with the same structure. By exploiting this result we prove that

the group generated by the round functions of a wave cipher is primitive

under some reasonable cryptographic assumptions on the underlying wave

functions.

7.1 Security reduction

Let us consider the group generated by the rounds of an FN which uses as

F-functions the round functions of a primitive SPN. Here we prove a group-

theoretical result which implies the primitivity of the group under consider-

ation. In particular this result is used to show that the group generated by

the round functions of a wave cipher with an invertible generating function

is primitive if the group1 generated by the round functions of an SPN-like

cipher having as round functions the same wave functions is primitive, as

depicted in Fig. 7.1.

1Note that the hypothesis that the wave functions are invertible allows to consider this

group.
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Figure 7.1: FN to SPN reduction

Let us recall that

• Tn = {σk | x 7→ x+ k} < Sym(V ),

• T(0,n) = {σ(0,k) | (x1, x2) 7→ (x1, x2 + k)} < Sym(V × V ),

and let us define

• T(n,0)
def
= {σ(k,0) | (x1, x2) 7→ (x1 + k, x2)} < Sym(V × V ),

• T(n,n)
def
= {σ(k1,k2) | (x1, x2) 7→ (x1 + k1, x2 + k2)} < Sym(V × V ).

Notice that Tn ∼= T(0,n)
∼= T(n,0) < T(n,n).

Let ρ be any element in Sym(V ), ρ be the corresponding Feistel operator,

and let Γ
def
= 〈T(0,n), ρ 〉. Since we aim at characterising imprimitivity blocks

for Γ using Lemma 3.3.2 and Lemma 3.3.3, we need to individuate a transitive

subgroup of Γ. For this reason, the following alternative presentation of Γ is

useful.
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Lemma 7.1.1. Γ = 〈T(n,n), ρ 〉.

Proof. Obviously Γ = 〈T(0,n), ρ 〉 < 〈T(n,n), ρ 〉. On the other hand, given

x1, x2, k ∈ V one has

(x1, x2)ρσ(0,k) =(x1, x2)

(
0n 1n
1n ρ

)
σ(0,k)

=(x2, x1 + x2ρ+ k)

=(x1 + k, x2)

(
0n 1n
1n ρ

)
=(x1, x2)σ(k,0)ρ.

Hence for each k ∈ V it holds ρσ(0,k) = σ(k,0)ρ, and consequently σ(k,0) ∈ Γ.

Therefore for each k1, k2 ∈ V , σ(k1,k2) = σ(k1,0)σ(0,k2) ∈ Γ.

Being T(n,n) a transitive subgroup of Γ and noticing that the subgroups

of T(n,n) are of the form {σu : u ∈ U}, where U is a subgroup of V × V , we

obtain the following.

Lemma 7.1.2. If Γ is imprimivitive in its action on V × V , then a block

system is made of the cosets of a subgroup of V × V , i.e. it is

{U + v | v ∈ V × V },

where U is a non-trivial and proper subgroup of V × V .

Proof. See Lemma 3.3.2 and Lemma 3.3.3.

According to Lemma 7.1.2, in order to prove that Γ is primitive it is

sufficient to prove that no subgroup of V × V is a block. The following

theorem, known as Goursat’s Lemma [Gou89], characterises the subgroups

of the direct product of two groups in terms of suitable sections of the direct

factors (see also [Pet09]). We apply this result to the additive group V × V .

Theorem 7.1.3. Let G1 and G2 be two groups. There exists a bijection

between

1. the set of all subgroups of the direct product G1 ×G2, and
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2. the set of all triples (A/B,C/D, ψ), where

• A is a subgroup of G1,

• C is a subgroup of G2,

• B is a normal subgroup of A,

• D is a normal subgroup of C, and

• ψ : A/B → C/D is a group isomorphism.

In this bijection, each subgroup of G1 ×G2 can be uniquely written as

Uψ = {(a, c) ∈ A× C : (a+B)ψ = c+D}.

Note that the isomorphism ψ : A/B → C/D is induced by a homomorphism

ϕ : A→ C such that (a+B)ψ = aϕ+D for any a ∈ A, and Bϕ ≤ D. Such

homomorphism is not unique.

Lemma 7.1.4. In the above notation, given any homomorphism ϕ inducing

ψ, we have

Uψ = {(a, aϕ+ d) : a ∈ A, d ∈ D}. (7.1)

Proof. Note first that the right-hand side of Eq. (7.1) is contained in Uψ,

since for a ∈ A and d ∈ D we have (a + B)ψ = aϕ + D = aϕ + d + D,

that is, (a, aϕ + d) ∈ Uψ. Moreover Uψ is contained in the right-hand side

of Eq. (7.1). Indeed, if (a, c) ∈ Uψ we have aϕ + D = (a + B)ψ = c + D, so

that c = aϕ+ d for some d ∈ D.

This is our main result of this section.

Theorem 7.1.5. Let ρ ∈ Sym(V ) \ AGL(V ), let ρ be the corresponding

Feistel operator, and denote by Γ = 〈Tn, ρ 〉 and by Γ =
〈
T(0,n), ρ

〉
. If Γ is

primitive on V , then Γ is primitive on V × V .

Before proving Theorem 7.1.5, we show how this group-theoretical result can

be helpful to us. Let Φ = {EK | K ∈ K} ⊆ Sym(V ×V ) be an R-round wave

cipher. Denoting by ρ
def
= γλ its generating function, one has, as shown in
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Section 6.2.2, that Γ∞(Φ) = 〈T(0,n), ρ 〉 is the group generated by the round

functions of the wave cipher Φ. Moreover, 〈Tn, ρ 〉 is the group generated by

the wave-shaped round functions of an SPN-like cipher whose round functions

are εi,K = ρ σki . Therefore, from Theorem 7.1.5, next result directly follows.

Corollary 7.1.6. Let Φ be a wave cipher, let ρ ∈ Sym(V ) its generating

function and ρ the Feistel operator induced by ρ. If 〈Tn, ρ 〉 is primitive on

V , then Γ∞(Φ) = 〈T(0,n), ρ 〉 is primitive on V × V .

Proof of Theorem 7.1.5. Let us suppose that Γ =
〈
T(0,n), ρ

〉
=
〈
T(n,n), ρ

〉
is

imprimitive, so there exists a non-trivial and proper subgroup U of V ×V =

(F2)n × (F2)n such that {U + (v1, v2) | (v1, v2) ∈ V × V } is a block system.

In particular,

Uρ = U + (v1, v2) (7.2)

for some (v1, v2) ∈ V × V . Since (0, 0)ρ = (0, 0ρ), we can assume v1 = 0

and v2 = 0ρ. With reference to Lemma 7.1.4 and its notation, we have

U = {(a, aϕ+ d) | a ∈ A, d ∈ D}, and by Eq. (7.2), for any a ∈ A and d ∈ D
there exist x ∈ A and y ∈ D such that

(a, aϕ+ d)

(
0n 1n
1n ρ

)
= (x, xϕ+ y + 0ρ),

that is

(aϕ+ d, a+ (aϕ+ d)ρ) = (x, xϕ+ y + 0ρ).

Hence, it holds x = aϕ + d, and considering a = 0, we obtain D ≤ A.

Otherwise, considering d = 0, we obtain Aϕ ≤ A. Similarly, we have

Uρ−1 = U + (v′1, v
′
2) (7.3)

for some (v′1, v
′
2) ∈ V × V . Since ρ−1 =

(
ρ 1n
1n 0n

)
, we can consider v′1 = 0ρ

and v′2 = 0. In this case, for any a ∈ A and d ∈ D there exist x ∈ A and

y ∈ D such that

(aρ+ aϕ+ d, a) = (x+ 0ρ, xϕ+ y).

Hence we have x = aρ+ aϕ+ d+ 0ρ. Substituting x = aϕ+ d in xϕ+ y and

being ϕ a homomorphism, it holds y = a + aρϕ + aϕ2 + dϕ + 0ρϕ. Then,
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considering a = 0, we obtain y = dϕ, and thus Dϕ ≤ D. Now, in the general

case, letting (v1, v2) ∈ V × V it holds

(U + (v1, v2))ρ = U + (v′1, v
′
2) (7.4)

for some (v′1, v
′
2) ∈ V × V . By definition of ρ, we can take v′1 = v2 and

v′2 = v1 + v2ρ. By Lemma 7.1.4 and by Eq. (7.4), for any a ∈ A and d ∈ D
there exist x ∈ A and y ∈ D such that

(a+ v1, aϕ+ d+ v2)

(
0n 1n
1n ρ

)
= (x+ v2, xϕ+ y + v1 + v2ρ),

that is,

(aϕ+ d+ v2, a+ v1 + (aϕ+ d+ v2)ρ) = (x+ v2, xϕ+ y + v1 + v2ρ),

hence we have x = aϕ+ d. Substituting x = aϕ+ d in xϕ+ y + v1 + v2ρ,

a+ v1 + (aϕ+ d+ v2)ρ+ aϕ2 + v1 + v2ρ = y + dϕ.

Then, considering a = 0, we obtain (d+ v2)ρ = y+dϕ+ v2ρ. Since Dϕ ≤ D,

then y + dϕ ∈ D and so

(D + v2)ρ = D + v2ρ.

Note that we obtain the equality since ρ is a permutation. If D 6= {0}, (F2)n,

then we proved that the imprimitivity of Γ implies the imprimitivity of Γ. To

complete the proof, it remains to consider the cases D = (F2)n and D = {0}.
[D = (F2)n] We proved that D ≤ A, and from the hypotheses holds that

D ≤ C and ψ is an isomorphism between A/B and C/D. Since D = (F2)n,

we have D = C = A = B = (F2)n, which contradicts that U is a proper

subgroup of V × V .

[D = {0}] First, note that in this case Bϕ = {0}. Moreover, by Lemma

7.1.4,

U = {(a, aϕ) | a ∈ A},

and by Eq. (7.4) for any a ∈ A there exists x ∈ A such that

(aϕ+ v2, a+ v1 + (aϕ+ v2)ρ) = (x+ v2, xϕ+ v1 + v2ρ).
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Proceedings as before, it holds

a+ aϕ2 = (aϕ+ v2)ρ+ v2ρ. (7.5)

Note that for any a ∈ B ≤ A, aϕ = 0 and so we obtain a + v2ρ = v2ρ for

any a ∈ B, that is, B = {0}. Therefore, if D = {0}, also B = {0} and so

ϕ = ψ is an isomorphism between A and C. Moreover, since Aϕ is contained

in both A and C, then A = C and ϕ is an automorphism of A. If A = {0},
then A = C = D = B = {0}, which contradicts that U is non-trivial. If A

is a proper subgroup of (F2)n, then by Eq. (7.5) and since both a+ aϕ2 and

aϕ belong to A we have

(A+ v2)ρ = A+ v2ρ,

and so Γ is imprimitive. If A = (F2)n, in Eq. (7.5) we can consider v2 = 0

since aϕ+ v2 is an element of A = (F2)n, so we have

(aϕ)ρ = a+ aϕ2 + 0ρ.

Since the function x+ xϕ2 is linear, we proved that ρ ∈ AGL(V ), which is a

contradiction.

7.2 Conditions on SPN-like wave ciphers

In the light of Theorem 7.1.5, given a wave cipher Φ whose generating func-

tion ρ is invertible, we obtain that the group Γ∞(Φ) is primitive if we manage

to prove that the group 〈Tn, ρ 〉 is primitive. The latter represents the group

generated by the rounds of an SPN-like cipher featuring wave functions in

the place of classical round functions. Although for such a cipher it may be

difficult to compute the computational inverse of the encryption functions,

since it has an SPN structure with non-invertible layers, we can still study

its theoretical properties. In this section we underline which properties of

the generating function ρ guarantee that 〈Tn, ρ 〉 is primitive. From now on

let us assume that ρ ∈ Sym(V ).

Let ρ = γλ be the generating function of a wave cipher. From now on we

also assume that γ maps 0 to 0, since it is always possible to add 0γ to the
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round key of the previous round. Then, since λ is linear, it holds 0ρ = 0.

In the following, we give a generalisation of Definition 2.4.10, which is a

condition in our second main theorem. Let us recall that, as in Section 6.2,

V = V1 ⊕ V2 ⊕ . . .⊕ Vb and W = W1 ⊕W2 ⊕ . . .⊕Wb, with Vj = (F2)s and

Wj = (F2)t for each 1 ≤ j ≤ b.

Definition 7.2.1. Let 1 ≤ j ≤ b, γj : Vj → Wj be an S-box such that

0γj = 0, and λ : W → V be a surjective linear map. Given 0 ≤ δ < s, γj

is δ-non-invariant with respect to λ if for any proper subspaces V ′ < Vj and

W ′ < Wj such that V ′γj + Kerλ ∩Wj = W ′, then dim(W ′) < s− δ.

Notice that if 0 ≤ δ < δ′ < s and γj is δ′-non-invariant with respect to λ,

then it is also δ-non-invariant with respect to λ.

Lemma 7.2.2. Let ρ = γλ ∈ Sym(V ) be the generating function of a wave

cipher. Then 〈Tn, ρ 〉 is imprimitive if and only if there exists a proper and

non-trivial subgroup U of V such that (u+ v)γ + vγ ∈ Uλ−1, for any u ∈ U
and v ∈ V . In this case, {U + v | v ∈ V } is a block system for 〈Tn, ρ 〉.

Proof. Since Tn ≤ 〈Tn, ρ 〉, if 〈Tn, ρ 〉 is imprimitive, then {U + v | v ∈ V } is

a block system, for some proper and non-trivial subgroup U of V . Let v ∈ V ,

then (U + v)ρ = U + vρ = U + vγλ. Therefore for any u ∈ U and v ∈ V it

holds (u+ v)γλ+ vγλ ∈ U and, since λ is linear, (u+ v)γ + vγ ∈ Uλ−1.

The following is the main result of this section.

Theorem 7.2.3. Let ρ = γλ ∈ Sym(V ) be the generating function of a wave

cipher Φ. If

(i) there exists 1 ≤ δ < s such that for each 1 ≤ j ≤ b the S-box γj is

• 2δ-differentially uniform,

• δ-non-invariant with respect to λ,

(ii) Kerλ =
⊕b

j=1 Kerλ ∩Wj (λ has a parallel kernel),

then 〈Tn, ρ〉 is primitive (and so it is Γ∞(Φ)).
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Proof. Suppose that 〈Tn, ρ〉 is imprimitive. For Lemma 7.2.2, a block system

is of the form {U + v | v ∈ V }, for any proper and non-trivial subgroup U of

V . Since U is an imprimitivity block and ρ ∈ 〈Tn, ρ〉, Uρ = U + v for some

v ∈ V . Moreover, since 0ρ = 0, we obtain U + v = U , and consequently

Uρ = Uγλ = U. Moreover

Uγ + Kerλ = Uλ−1 ⊆ W, (7.6)

and so Uγ + Kerλ is a subspace of W . For 1 ≤ j ≤ b, let πj : V −→ Vj

be the j-th projection with respect to the decomposition V = V1 ⊕ . . .⊕ Vb,
and I

def
= { j | j ∈ {1, . . . , b}, Uπj 6= {0}}. Then two cases are possible: either

U ∩ Vj = Vj for each j ∈ I, or there exists j ∈ I such that U ∩ Vj 6= Vj.

In the first case U =
⊕

j∈I Vj is a wall. From Eq. (7.6) it holds(⊕
j∈I

Vj

)
γ + Kerλ =

(⊕
j∈I

Vj

)
λ−1. (7.7)

Since γ is a parallel transformation, we have(⊕
j∈I

Vj

)
γ ⊂

⊕
j∈I

Wj. (7.8)

Thus, from Eq. (7.7) and Eq. (7.8) it follows that(⊕
j∈I

Vj

)
λ−1 ⊂

⊕
j∈I

Wj + Kerλ,

which is a contradiction since λ is proper, in the sense of Definition 6.2.4.

In the second case, let us assume there exists j ∈ I such that U ∩Vj 6= Vj.

From Eq. (7.6) we have

(Uγ + Kerλ) ∩Wj = Uλ−1 ∩Wj, (7.9)

where, since both γ and Ker(λ) are parallel by definition of γ and for (ii),

(Uγ+Kerλ)∩Wj = Uγ∩Wj+Kerλ∩Wj = (U ∩Vj)γj+Kerλ∩Wj. (7.10)
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Indeed, let u = (u1γ1, u2γ2, . . . , ubγb) ∈ Uγ, v = (v1, v2, . . . , vb) ∈ Kerλ,

and let us assume that w
def
= uγ + v ∈ (Uγ + Kerλ) ∩ Wj, hence w =

(0, . . . , 0, wj, 0, . . . , 0). For l 6= j we obtain ulγl = vl, hence vl ∈ Im γl ∩
(Kerλ∩Wl). From Remark 6.2.3 and since Kerλ is parallel, we have Im γl ∩
(Kerλ ∩Wl) = {0}, therefore vl = ul = 0. Thus, Eq. (7.9) and Eq. (7.10)

imply that

(U ∩ Vj)γj + Kerλ ∩Wj = Uλ−1 ∩Wj,

and, since γj is δ-non-invariant with respect to λ, then

dim (Uλ−1 ∩Wj) < s− δ. (7.11)

Furthermore, let u ∈ U such that uj
def
= uπj 6= 0 and vj ∈ Vj. Since 〈Tn, ρ 〉 is

imprimitive, by Lemma 7.2.2 it follows that (u+vj)γ+vjγ ∈ Uλ−1. Moreover

uγ ∈ Uγ ⊂ Uλ−1, and so uγ + (u + vj)γ + vjγ ∈ Uλ−1, whose components

are null, except possibly for those of the j-th brick, i.e.

ujγj + (uj + vj)γj + vjγj ∈ Uλ−1 ∩Wj, (7.12)

which implies that Im(γ̂juj ) + ujγj ⊂ Uλ−1 ∩Wj. Being γj 2δ-differentially

uniform, it is also weakly 2δ-differentially uniform, and since uj 6= 0 we obtain

2s−δ−1 < | Im(γ̂juj )| ≤ |Uλ
−1 ∩Wj|,

therefore dim(Uλ−1 ∩Wj) ≥ s− d, which contradicts Eq. (7.11).

Notice that in the proof of Theorem 7.2.3 we actually exploited that every

S-box is weakly 2δ-differentially uniform. Hence, we also proved the more

general following result.

Theorem 7.2.4. Let ρ = γλ ∈ Sym(V ) be the generating function of a wave

cipher Φ. If

(i) there exists 1 ≤ δ < s such that for each 1 ≤ j ≤ b the S-box γj is

• weakly 2δ-differentially uniform,

• δ-non-invariant with respect to λ,

(ii) Kerλ =
⊕b

j=1 Kerλ ∩Wj (λ has a parallel kernel),
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then 〈Tn, ρ〉 is primitive (and so it is Γ∞(Φ)).

The hypothesis of each S-box being δ-non-invariant with respect to λ in

Theorem 7.2.3 can be weakened by adding a reasonable requirement on the

diffusion layer. However, for this result does not exist an alternative version

using the weak differential uniformity.

Theorem 7.2.5. Let ρ = γλ ∈ Sym(V ) be the generating function of a wave

cipher Φ. If

(i) there exists 1 ≤ δ < s such that for each 1 ≤ j ≤ b the S-box γj is

• 2δ-differentially uniform,

• (δ − 1)-non-invariant with respect to λ,

(ii) Kerλ =
⊕b

j=1 Kerλ ∩Wj,

(iii) for each 1 ≤ j ≤ b dim(Kerλ ∩Wj) < s− δ,

then 〈Tn, ρ〉 is primitive (and so it is Γ∞(Φ)).

Proof. The proof proceeds exactly as that of Theorem 7.2.3. In this slightly

different setting induced from a further requirement on λ, we can conclude

that U ∩ Vj 6= {0}. Indeed, being

(U ∩ Vj)γj + Kerλ ∩Wj = Uλ−1 ∩Wj,

and having dim(Uλ−1∩Wj) ≥ s−δ and dim(Kerλ∩Wj) < s−δ, there must

be a non-zero element in (U ∩ Vj)γj, and consequently a non-zero element

z ∈ U ∩Vj. Then, reasoning as before, using Lemma 7.2.2 one can prove that

Im(γ̂jz) ⊂ Uλ−1 ∩Wj and | Im(γ̂jz)| ≥ 2s−δ. Moreover, 0 /∈ Im(γ̂jz), since

z 6= 0 and γj is injective. Hence

|Uλ−1 ∩Wj| ≥ 2s−δ + 1,

and therefore dim(Uλ−1 ∩Wj) ≥ s − δ + 1. The hypothesis of (δ − 1)-non-

invariance of γj leads to a contradiction, hence the desired holds.
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x 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

xγ1 0x 1Fx 9x Cx Fx 1Cx 12x 14x 2x 1x 19x 11x Ax 4x 7x 1Ax

Figure 7.2: A 4x5 APN S-box

7.2.1 A wave cipher with a 4x5 APN S-box

Let us now assume n = 16, m = 20, s = 4, t = 5 and b = 4. The function

γ1 : (F2)4 → (F2)5 displayed in Figure 7.2 represents an example of a 4x5

injective function, which is APN, as it can be noted looking at its DDT

displayed in Table 7.3. With an eye on using this function as an S-box

for a wave function, and on using Theorem 7.2.5 to prove the primitivity

of the corresponding group, one has to verify that there exists a diffusion

layer satisfying the hypothesis of Lemma 6.2.2. It holds Im(γ1) ⊂ (F2)5;

moreover it is easy to check that |{a + b | a, b ∈ Im(γ1)}| = 31, and the

missing vector in (F2)5 is ξ
def
= 17x. Assuming that we want to design a 16-

bit generating function for a wave cipher whose confusion layer γ applies 4

copies of the S-box γ1 and whose diffusion layer features a parallel kernel,

it is sufficient to determine a proper diffusion layer λ such that Kerλ =

SpanF2
{(ξ, 0, 0, 0), (0, ξ, 0, 0), (0, 0, ξ, 0), (0, 0, 0, ξ)}, where 0 here denotes the

zero vector in (F2)5. The matrix displayed in Figure 7.4 is an example of

such a layer. The hypothesis (i) of Lemma 6.2.2 is satisfied, hence all the

produced wave functions are bijective, and the given diffusion layer features

a parallel kernel, i.e.

Kerλ =
b⊕

j=1

Kerλ ∩Wj.

Moreover, we checked using MAGMA that γ1 is 0-non-invariant with respect

to Kerλ. Consequently, the hypotheses of Theorem 7.2.5 are satisfied with

δ = 1, and hence the obtained generating function ρ = γλ is such that the

group 〈Tn, ρ〉 is primitive. Then Theorem 7.1.5 implies that the group Γ∞(Φ)

generated by the rounds of a wave cipher having γλ as generating function

is primitive.
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λ
def
=



0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0

0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0

1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0

1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1

0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1

1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1

0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0

0 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0

0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1

1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1

0 0 1 1 1 1 1 0 1 0 1 0 0 1 0 1

0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0

1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 0

1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0

0 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0

1 0 1 0 1 1 0 1 0 1 0 1 1 1 0 1

0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0



Figure 7.4: An example of 20× 16 proper diffusion layer with parallel kernel
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7.3 Conclusions and open problems

In this part of the thesis we proposed a new family of ciphers, called wave

ciphers, whose round functions are the composition of layers not all invert-

ible. Round functions of a wave cipher are wave functions, bijective functions

obtained as the composition of injective non-linear confusion layers enlarging

the message, surjective linear diffusion layers reducing the message size, and

a key addition. Relaxing the requirement that the S-boxes are permutations

allowed to consider APN functions to build confusion layers. In particular

we gave an example of 4 × 5 APN function which can be used as S-box in

a wave cipher. We proposed to use wave functions as F-functions of Feis-

tel Networks, where computing inverse functions is not required in order to

perform decryption. With regard to their security we showed that, under

the assumption that the generating function is invertible, and under suitable

non-linearity properties of the Boolean functions involved, the group gener-

ated by the round functions of a wave ciphers acts primitively.

Several problems arise from this new construction, such as determining con-

ditions on the wave functions to ensure that the group generated by the

round functions of a wave cipher is the alternating or the symmetric group,

or studying the resistance of instances of wave ciphers with respect to other

statistical attacks, for example studying the impact of differential and linear

cryptanalysis on the wave-shaped structure. Moreover, to the best of our

knowledge, s × t APN functions with s < t are not very much investigated

in literature. Finally note that, in order to prove that Γ∞(Φ) = 〈T(0,n), ρ 〉 is

primitive, we adopted the strategy of considering an SPN-like cipher having

as round functions the same wave functions of Φ, and we used Theorem 7.1.5

to deduce the primitivity of Γ∞(Φ) from the primitivity of 〈Tn, ρ〉. This

forced us to suppose ρ ∈ Sym(V ). However, the bijectivity of ρ is not re-

quired to define a wave cipher. More importantly, computer simulations lead

us to think that non-invertible generating functions provide better levels of

non-linearity and consequently better resistance to differential attacks. For

this reason, one of our interests is to prove the same result in more general

hypotheses on ρ.

119



List of Figures

1 Logical dependence of the parts of this thesis . . . . . . . . . . i

1.1 Round function of an SPN and of an FN . . . . . . . . . . . . 7

1.2 Example of 1-round encryption of an SPN . . . . . . . . . . . 8

1.3 The S-box S of PRESENT . . . . . . . . . . . . . . . . . . . . 9

1.4 A 2-round encryption of PRESENT . . . . . . . . . . . . . . . 10

1.5 Example of 2-round encryption of a FN . . . . . . . . . . . . . 11

2.1 DDT of the S-box S of PRESENT . . . . . . . . . . . . . . . 30

3.1 Preprocessing of the imprimitivity attack . . . . . . . . . . . . 41

3.2 Imprimitivity attack . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Comparison between operation + and � . . . . . . . . . . . . 70

4.2 Key distribution table of � . . . . . . . . . . . . . . . . . . . . 72

4.3 Key distribution table for the 5-bit operation defined in Ex-

ample 4.4.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Difference distribution table of γ′ : x 7→ x3 over (F2)3 defined

in Example 4.5.1 with respect to + and � . . . . . . . . . . . . 77

4.5 Difference distribution table of the S-box S2 of SERPENT

with respect to + and ◦ . . . . . . . . . . . . . . . . . . . . . 79

5.1 A diffusion layer compatible with ◦̂ . . . . . . . . . . . . . . . 93

120



List of Figures List of Figures

5.2 1-round encryption of the 15-bit target cipher . . . . . . . . . 94

6.1 Wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Feistel structure of wave ciphers . . . . . . . . . . . . . . . . . 104

7.1 FN to SPN reduction . . . . . . . . . . . . . . . . . . . . . . . 106

7.2 A 4x5 APN S-box . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Difference distribution table of the S-box γ1 defined in Section

7.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4 An example of 20×16 proper diffusion layer with parallel kernel118

121



List of Tables

2.1 Known APN permutations of the type x 7→ xd on (F2)s, s =

2`+ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Ciphers whose group generated by the round functions is prim-

itive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Number of operations for small values of n and d. . . . . . . . 68

122



Bibliography

[ACDVS14] R. Aragona, A. Caranti, F. Dalla Volta, and M. Sala. On the

group generated by the round functions of translation based

ciphers over arbitrary finite fields. Finite Fields and Their Ap-

plications, 25:293–305, 2014.

[ACS17] R. Aragona, A. Caranti, and M. Sala. The group generated by

the round functions of a GOST-like cipher. Annali di Matem-

atica Pura ed Applicata (1923-), 196(1):1–17, 2017.

[ACTT16] R. Aragona, M. Calderini, A. Tortora, and M. Tota. Primitivity

of PRESENT and other lightweight ciphers. Journal of Algebra

and Its Applications, page 1850115, 2016.

[AIK+00] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Naka-

jima, and T. Tokita. Camellia: A 128-bit block cipher suitable

for multiple platforms-design and analysis. In Selected Areas in

Cryptography, volume 2012, pages 39–56. Springer, 2000.

[AS11] F. Abazari and B. Sadeghian. Cryptanalysis with ternary dif-

ference: Applied to block cipher PRESENT. Cryptology ePrint

Archive, Report 2011/022, 2011.

123



Bibliography Bibliography

[BAB93] I. Ben-Aroya and E. Biham. Differential cryptanalysis of Lu-

cifer. In Advances in Cryptology CRYPTO, volume 93, pages

187–199. Springer, 1993.

[BAK98] E. Biham, R. Anderson, and L. Knudsen. Serpent: A new block

cipher proposal. In Fast Software Encryption, pages 222–238.

Springer, 1998.

[BBS99] E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skip-

jack reduced to 31 rounds using impossible differentials. In In-

ternational Conference on the Theory and Applications of Cryp-

tographic Techniques, pages 12–23. Springer, 1999.

[BCG+12] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Kneze-
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