UNIVERSITY OF TRENTO
DEPARTMENT OF MATHEMATICS

Doctoral School in Mathematics

PhD Thesis

Formal Proofs of Security for Privacy-Preserving
Blockchains and other Cryptographic Protocols

Advisor: Graduand:

Prof. Massimiliano Sala Riccardo Longo

First Reader: Second Reader

Prof. Massimo Bartoletti Prof. Andrea Bracciali

Academic Year 2016 - 2017

Formal Proofs of Security for Privacy-Preserving
Blockchains and other Cryptographic Protocols

Riccardo Longo

March 9th 2018

Contents

L

Introduction to Formal Proofs of Security|

|I1.1 Security of Cryptographic Protocols|
1.2 Simulator and Adversary: the General Structure of a Proofl . . .
I1.3 Attack Scenarios and Security Properties)
[1.3.1 Adversary Strength|
[1.3.2 Adversary Goal|
1.4 _The Protocols in this Thesis: a Motivationl.

(.42 Tokenizationl
(43 BIX Certificated
[1.4.4 Public Ledger for Sensitive Datal]
(1.4.5 Proof of Stake Protocol for Bitcoin Subchainsl
CE _Caveat]l - o o oo e e
2 Hard Problems and Cryptographic Assumptions|
2.1 Bilinear Groups and Dithe-Hellman Problems|
[2.1.1 Bilinear Maps|.
[2.1.2 Security Assumptions on Prime Order Bilinear Groups|. .
[2.1.3 Generic Security of Diffie-Hellman Assumptions|.
2.1.4 TInteractive Diffie-Hellmanl
2.2 Security of Cryptographic Primitives|
[2.2.1 Security of Digital Signatures and ECDSA|.
[2.2.2 Security of Hash Functions]
[2.2.3 Security of Symmetric Ciphers|
13 Multi-Authority Key-Policy Attribute Based Encryption|

3.1 Cryptography for the Cloud|

© 00 00 O U W W

13
13
13
14
15
17
18
18
20
21

23
23

3.2 Background: Access Structures and Linear Secret Sharing Schemes| 25

3.3 Multi-Authority Key-Policy Attribute-Based Encryption| 26
[3.3.1 Multi Authority KP-ABE Structure and Security] 27
3.3.2 The Schemel.o oo 28
............................ 29
.34 Remarksl. 0 o0 32

3.4 Collaborative Multi-Authority Key-Policy |
Attribute-Based Encryption| 0oL 34
[3.4.1 Collaborative Multi Authority KP-ABE Structure and Se- |

curlty| 34

8.4.2 The Schemel.o

CONTENTS

............................ 38

BAZ Remarks. 40

4 Format Preserving Tokenization Algorithm for Credit Cards| 43
MBI Tntroductionl. 43
4.2 Background: Requirements of the Standard| 45
4.3 Algorithm|o 46
4.4 Proof of Security|o 48
4.5 A practical example|o 52
[E5T Securlty] 52

.5.2 CIENCY| -« « v v v v e e e e e e e 52

[The BIX Protocol and Certificates: Decentralizing Certificate |
[_Authorities| 55
[5.1 Background: A description of BIX certificates| 57
E.l.l Bix Certification Infrastructure (BCI)| 57

[E12 The Chain of Certificates] 57

p.2 Chain Lengthening Attack Scenariol. 60
[5.3 Certificate Tampering| 63
5.4 id-Chain Alteringf. 0oL 66
GBS Remarks o oo 67
[6Public Ledger for Sensitive Data| 69
[6.1 Tntroductionl. 69
6.2 Masking Shards Protocoll 70
6.3 Block structurel oo 72
6.4 Security Model|o 74
6.4.1 Security against Outsiders and Service Providers| 74

ecurit ainst the File Keeper| 77

6.4.3 ecurity against other Users[. 81

G5 Remarks oo 81
[7__A Proof-of-Stake protocol for Consensus on Bitcoin subchains| 83
O Tnfroductionl. . . .« v v v v vt e e e 83
7.2 Background: Bitcoin and the blockchain| 85
7.3 Background: Subchains and consistency| 87
[7.4 A protocol for consensus on Bitcoin subchaingf. 89
7.4.1 efund policies| Lo 90

[75 Evaluation of the protocoll v v v v vt 92
|7.5.1 Basic properties of the protocol| 92

[7.5.2 Implementation in Bitcoin|. 101

[C6 DISCUSSION - - « « « v v oottt 103

Abstract

Cryptography is used to protect data and communications. The basic tools
are cryptographic primitives, whose security and efficiency are widely studied.
But in real-life applications these primitives are not used individually, but com-
bined inside complex protocols. The aim of this thesis is to analyse various
cryptographic protocols and assess their security in a formal way.

In chapter [1| the concept of formal proofs of security is introduced and the
main categorisation of attack scenarios and types of adversary are presented, and
the protocols analysed in the thesis are briefly introduced with some motivation.

In chapter [2] are presented the security assumptions used in the proofs of the
following chapters, distinguishing between the hardness of algebraic problems
and the strength of cryptographic primitives.

Once that the bases are given, the first protocols are analysed in chapter
where two Attribute Based Encryption schemes are proven secure. First con-
text and motivation are introduced, presenting settings of cloud encryption,
alongside the tools used to build ABE schemes. Then the first scheme, that
introduces multiple authorities in order to improve privacy, is explained in de-
tail and proven secure. Finally the second scheme is presented as a variation
of the first one, with the aim of improving the efficiency performing a round of
collaboration between the authorities.

The next protocol analysed is a tokenization algorithm for the protection of
credit cards. In chapter [4] the advantages of tokenization and the regulations
required by the banking industry are presented, and a practical algorithm is
proposed, and proven secure and compliant with the standard.

In chapter [5] the focus is on the BIX Protocol, that builds a chain of certifi-
cates in order to decentralize the role of certificate authorities. First the protocol
and the structure of the certificates are introduced, then two attack scenarios
are presented and the protocol is proven secure in these settings. Finally a
viable attack vector is analysed, and a mitigation approach is discussed.

In chapter [0] is presented an original approach on building a public ledger
with end-to-end encryption and a one-time-access property, that make it suit-
able to store sensitive data. Its security is studied in a variety of attack scenarios,
giving proofs based on standard algebraic assumptions.

The last protocol presented in chapter [7] uses a proof-of-stake system to
maintain the consistency of subchains built on top of the Bitcoin blockchain,
using only standard Bitcoin transactions. Particular emphasis is given to the
analysis of the refund policies employed, proving that the naive approach is
always ineffective whereas the chosen policy discourages attackers whose stake
falls below a threshold, that may be adjusted varying the protocol parameters.

Finally some conclusions are drawn in chapter

1

CONTENTS

Chapter 1

Introduction to Formal
Proofs of Security

Cryptographic protocols protect the exchanges of information that permeate
our lives. In the modern world countless scenarios need a secure way to com-
municate, each with its own requirements, giving birth to many new protocols.
The security of these protocols relies not only on the soundness of their building
blocks, but also on how all the primitives work together and the parameters
are chosen. To have a reasonable confidence in their security, these protocols
are analysed from a formal point of view, where carefully modelled attacks are
compared to well studied mathematical problems.

1.1 Security of Cryptographic Protocols

Information has been a valuable commodity since the dawn of history, but the
digital revolution has increased its role and importance to the point that a
great deal of our everyday activities revolves around information exchanges.
Given its primary role, the protection of such data interchange is of paramount
importance. Moreover the same technology that allows an easy distribution of
data, promotes wide diffusion of knowledge, and shortens the distance between
people also facilitates the collection of the same data, consents eavesdropping on
unprecedented scales and opens the door to a variety of intrusions and violations
of personal privacy.

To our rescue comes cryptography, the art of hiding messages from privy
eyes. Modern ciphers achieve great efficiency and effectiveness in protecting
the content of our communication, but in real life applications privacy is not
the only factor: in many scenarios authenticity and integrity are more relevant
than secrecy. For this purpose new primitives have been developed and then
combined into complex protocols. Thanks to these protocols we now can safely
connect our phone to a server on the other side of the world and purchase
anything from books to furniture, pay our taxes from the comfort of our homes,
receive over the air updates for our new “smart car”. It is obvious that all
these operations involve sensible exchanges of information: we do not want our
credit card number stolen, we do not want a identity thief to steal our personal
data, and we surely do not want malicious software to find its way into our car

4 CHAPTER 1. INTRODUCTION

compromising its functionality and security.

1.2 Simulator and Adversary: the General Struc-
ture of a Proof

In cryptography the security of a scheme usually relies on the hardness of a
particular mathematical problem. So, in a formal proof of security, the goal is
to model the possible attacks on the scheme and prove that a successful breach
implies the solution of a hard, well-known mathematical problem. Some security
parameters may be chosen in such a way that the problem that guarantees the
security becomes almost impossible to solve (in a reasonable time), and thus
the scheme becomes impenetrable.

More formally, the scheme is supposed secure if an Assumption holds on the
related mathematical problem. Generally an Assumption is that there is no
polynomial-time algorithm that solves a problem P with non-negligible proba-
bility. See Chapter [2] for some examples.

In a formal proof of security of a cryptographic scheme there are two parties
involved: a Challenger C that runs the algorithms of the protocol and an Ad-
versary A that tries to break the scheme making queries to C. In a query to C,
depending on the security model, A may request private keys, the encryption of
specific plaintexts, the decryption of some ciphertexts and so on. The goal of A
also depends on the security model, for example it may be to recover a key, to
forge a digital signature, to invert a hash function, or another similar purpose.

Hence, security proofs follow the following general path. Suppose there is
an Adversary A that breaks the scheme with non-negligible probability p;. A
Stmulator S is built in such a way that if A breaks the scheme then S solves P.
So, given an instance of P, S runs a challenger C that interacts with A, simu-
lating the scheme correctly with non-negligible probability ps. Thus S solves P
with non-negligible probability (usually pip2), contradicting the Assumption.

To summarize, a formal proof of security is a reduction from the problem
attack the scheme to the problem solve P. Typically P is a well-studied problem
so the assumption on its insolvability is accepted by the academic community.

1.3 Attack Scenarios and Security Properties

Evaluation and comparison between protocols from a functionality point of view
is often difficult, because the different purposes or the efficiency trade-offs. From
a security point of view instead we can evaluate protocols better in terms of the
assumptions they rely on and the attack scenarios they can endure.

In this section we focus on the main types of attack scenarios, giving an idea
of the level of security they refer to. In these scenarios an adversary interacts
with the protocol trying to circumvent the defences and gain information that
should not be revealed. Ideally a protocol should withstand a very powerful foe
without revealing anything useful. So the two primary aspects that characterize
a scenario are the strength of the adversary and its goal (i.e. which informations
it tries to obtain).

1.3. ATTACK SCENARIOS AND SECURITY PROPERTIES 5

1.3.1 Adversary Strength

When comparing the strength of the adversary in a security game, stronger
foe is preferable, since a scheme that resists a mighty opponent can fend off
attackers with less resources too, and obviously security is higher when fewer
adversaries can effectively attack.

The strength of an adversary is determined by its computational power and
the information it has access to (obtained either beforehand or interacting with
the protocol). In many scenarios however the adversary is given unlimited com-
putational power, so the distinction is based purely on the queries the attacker
can send to the protocol and the data at its disposal. Clearly more queries
mean more data to work on, and potentially more information leaked. So a
good protocol should keep private content safe even when a lot of side data has
been disclosed.

Ciphertext Only

In the weakest scenario the adversary has access to ciphertexts only, and tries
to deduce from them what it needs to reach its goal (see Section |1.3.2)).

This case models the most common situation in cryptography, where the
communication channel is insecure thus an outsider can observe every message
transmitted. In this case the interaction with the protocol is minimum. A
possible further classification may count the number of ciphertexts the adversary
can observe, modelling the case in which the encryption key changes after a
certain amount of messages have been encrypted.

Known Plaintext

The next step sees an adversary that has access to some extra information. In
this scenario the attack is performed with the additional knowledge of plaintext-
ciphertext pairs. As in the previous case the number of these pairs at disposal
may be considered as a sub-index of the strength of the adversary, where stronger
ones have access to more pairs.

The situation modelled here is one where there are a number of known
messages that will be encrypted and transmitted, or some data has been leaked.
For example during World War II it has been essential in breaking enigma
machine’s encryption the role played by the so called cribs, that relied on known
plaintexts such as ANX (an is German for to), EINS (one) and weather forecasts.
These words were widely present across various communications, and this helped
finding the encryption keys. Moreover various messages were sent using different
ciphers, so once the weaker encryptions were decrypted the cryptanalysts had
the plaintexts to help them find the keys.

Note that in this case the goal of the adversary cannot be the decryption
of any ciphertext, because the availability of plaintext-ciphertext pairs could
make this challenge trivial. So either the target is a ciphertext for which the
decryption is not already known, or something more general, e.g. to find the
encryption key.

6 CHAPTER 1. INTRODUCTION

Chosen Plaintext

In this case the adversary does not have more information in terms of quantity,
but does have more valuable information because this time can choose some
messages to be encrypted. The gain arises when there are some plaintexts that
are easier to work on or that generate weaker encryptions that expose the key
partially or totally.

Besides the usual discrimination in the number of queries allowed, there is
a further distinction: the possibility of adaptive choice. Adaptive means that
the attacker can chose some messages, see their encryption, choose some more
and so on. In this case the adversary can look for increasingly weaker plaintext
potentially leading to hindsights that can break the security. This procedure is
in contrast to a weaker adversary that has to choose the messages before having
access to any encryption.

To compare this model with a real-life scenario suppose that a spy has brief
access to an encryption machine so that a few ciphertexts can be produced
choosing the messages, or again suppose that some information is fed to the
enemy so that it is transmitted encrypted to the high quarters. Both these
cases have happened during World War II: a German spy was turned by the
British intelligence with the main purpose of having her wordy reports encrypted
with enigma machines, and a common practice to attack the naval codes was
to plant mines in specific coordinates selected so that their encryptions would
give the maximum help in recovering the keys.

Chosen Ciphertext

The strongest adversary has access to a very powerful tool: decryption queries.
This means that this attacker can observe a number of ciphertexts and then
request the decryption of some of them, obtaining the correspondent plaintext.

Again an adaptive adversary can make further queries after seeing some
decryptions, instead of choosing the ciphertexts to decrypt beforehand. This
means that smarter choices can be made, and the attack can be more effective
with fewer queries.

A real life situation that may correspond to this model could see a spy having
limited access to a decrypting machine to decipher some messages, or there is
access to some messages after they have been decrypted thanks to a bug or a
wiretap on an unencrypted internal line.

Note that in the case of asymmetric ciphers generally the adversary knows
the public key, therefore has access to free unlimited encryption queries (since
everyone that has the public key can compute the encryption by themself). This
means that the known plaintext and chosen plaintext settings have little sense,
therefore the need for a stronger adversary. However when the encryption is
randomized (like in many asymmetric schemes) weaker attackers still make sense
because the same plaintext can be encrypted into several different ciphertext.
So a free encrypt query is not useful to check if a given message is the decryption
of a certain ciphertext.

1.3.2 Adversary Goal

Concerning the goals of the adversary, the highest security comes when the goal
of the adversary is the easiest. The idea is that when even the simplest attacks

1.3. ATTACK SCENARIOS AND SECURITY PROPERTIES 7

can not be carried out then the protocol protects also against bigger threats.

In the hierarchy of the adversaries the stronger ones can do (and know)
everything the weaker ones can, likewise a hierarchy of goals will be presented
in the form of problems with decreasing difficulties. That is if an attacker can
solve the problem that gives the weakest security, then it can solve every other
problem. Vice versa an adversary that can not solve the problem related to the
highest security level can not solve the other ones, and if someone can solve it
is not necessary able to solve the lower ranking problems.

Basically the lowest problems are associated to the greatest disruption of
the security: if they are solved the system is utterly compromised, whereas data
could still be relatively safe even if a top-level problem can be solved.

Key Recovery

If an adversary is able to recover the master key of a protocol, then it is appar-
ent that the system is completely compromised. With the key it is possible to
encrypt and decrypt everything, thus the security is obliterated. So the basic re-
quirement is that an attacker is not able to recover the key observing encrypted
traffic, with optional access to other queries, as described in the previous sec-
tion 371

Note that some systems possess the so called forward secrecy property that
guarantee the privacy of past communications when long-term keys are com-
promised. This is achieved using session keys that are discarded after use.
Obviously this practice increases the security, but note that if an attacker can
consistently recover session keys then this feature cannot salvage the security of
the protocol.

This distinction is particularly important when the key can be compromised
via other means, e.g. stealing the password from an unsafe storage or directly
guessing it. In these cases forward secrecy can be useful because the key is not
leaked by the scheme itself, so one can assume that a good password management
can solve a breach, whereas if the protocol itself gives the key away to an attacker
strong enough then no password policy can help.

Plaintext Recovery

The next step of security has what is probably the most common purpose for an
adversary: decrypt the communication. This goal may be weakened by requiring
the recovery of only a few specific plaintexts or a certain category of them.

Note that it is not always necessary to recover the key in order to decrypt
the ciphertext. For example a stream cipher with short period uses the same
keystream to encrypt different ciphertexts, so a known plaintext attack can effec-
tively recover some messages without retrieving the actual key (the initialization
vector). As a further remark on forward secrecy this kind of attacks effectively
compromise the security despite the secrecy of the key, so it is important to
clearly distinguish between the security of key and data.

Ciphertext Distinguisher

The top level aims to guarantee that no information about the plaintext is leaked
once encrypted. In this case the adversary interacts with a challenger that is in

8 CHAPTER 1. INTRODUCTION

a state randomly chosen (there usually are two possible states), and the goal of
the attacker is to distinguish between the two states, thus determining in which
one the challenger is, hence the name. This state determines how the challenger
runs the protocol and responds to the queries.

For example the property called deniable encryption requires that the ci-
phertext is indistinguishable from random noise. In this case the challenger
may either be in the state encrypt normally or output random noise.

One of the most common distinguishing goals is to determine which of two
equal-length messages has actually been encrypted. That is the attacker knows
(or has directly chosen) two plaintexts, the challenger randomly selects one of
these two messages and encrypts it. This ciphertext is given to the adversary
that has to find out which plaintext is derived from.

Note that when the goal is to determine which state is correct among a finite
set of possibilities, then the adversary can always win by guessing. Moreover in
most cases the choice is limited between only two possibilities, so the attacker
has at least fifty percent of chance to win. However this obviously does not mean
that the protocol is insecure, but that the security estimate can not be measured
in a single test. In fact the idea is to repeat the security game a sufficient number
of times so that it is possible to estimate the winning probability of the adversary
and confront it with a random guess. So the protocol is deemed insecure if it
exists an attacker that has a sensible advantage in solving the challenge. That
is, in the case where the adversary has to distinguish between two states, the
probability of winning is:

L,
=—+e
P=5

where € is non-negligible (see Definition in function of a security parameter
k. This parameter is used to scale the size of the various elements involved (keys,
messages, ciphertexts, etc.) so that the security problem becomes increasingly
difficult.

For example the security of RSA protocol is based on the problem of integer
factorization, the security parameter k is the length of the key, and the difficulty

1
is sub-exponential in this parameter: ~ 20(#2)
So a protocol is secure against a distinguisher adversary if the advantage of
the attacker is a negligible function in the security parameter.

Definition 1.1 (Negligible Function). n(k) is a negligible function in k if, for
every ¢ and for every ~ there exists kg such that

1
In(k)| < ‘ckﬂ‘ Yk > ko. (1.1)

1.4 The Protocols in this Thesis: a Motivation

This section gives a general review of the protocols presented and analysed in
this thesis in the chapters 3] to[7] giving some motivation.

1.4.1 Attribute-Based Encryption

The first protocols, presented in chapter[3|fall in the category of Attribute-Based
Encryption. These schemes address security in a context of shared resources.

1.4. THE PROTOCOLS IN THIS THESIS: A MOTIVATION 9

That is files are used by multiple people and are therefore stored on a common
space, but the content should be encrypted to protect data at rest, and not
every user should be able to access every information, so keys should be carefully
managed.

With the recent boom of cloud solutions, the potential of usage in real-
life applications of these schemes is apparent, and justifies the great academic
interest in this topic.

The original schemes presented in sections and analyse in particular
a setting in which key management is distributed among multiple authorities, to
avoid a single point of failure and enhance the effectiveness of security controls.

The first scheme allows a variable number of independent authorities
to be involved in the scheme, and gives the encryptor the possibility to choose
the authorities to be considered trustworthy. Whereas the second scheme
fixes the set of authorities in advance and requires a collaboration round be-
tween them to combine their (independently chosen) parameters into a single
set. These constraints however allow users to combine the individual keys into
a single one and compress ciphertexts greatly, thus enhancing the efficiency
significantly.

Both schemes are proved secure against an adversary that tries to distinguish
between cipherte xts, having choice over the plaintexts (chosen-plaintext indis-
tinguishability or IND-CPA). The proofs proceed to reduce an attack to scheme
to the solution of an algebraic problem in the well-studied class of Diffie-Hellman
problems.

1.4.2 Tokenization

In chapter [d the proposed protocol addresses the security of credit card numbers.
With the rise of e-commerce and a general shift towards digital currency, credit
cards are used more than ever, but they are also more vulnerable due to the
easiness of exploitation and careless behaviours (such as photos where PAN
number is visible). To protect cardholders the tokenization process generates an
alternative card number (called token) with limited validity to be used instead
of the “proper” one.

The protocol explained in section respects every requirement of the PCI-
DSS industry standard and generates a token with the same format of a normal
PAN, thus ensuring compatibility with every payment system.

The protocol is proved secure against chosen-plaintext indistinguishability
attacks (IND-CPA). The proof reduces an attack to the protocol that suc-
cessfully recognises which of the chosen PANs has generated the output token,
to an attack to the symmetric cipher used for the tokenisation, specifically AES.

1.4.3 BIX Certificates

The next protocol, presented in chapter [5| proposes an alternative Public Key
Infrastructure (PKI) that decentralises the role of Certificate Authorities (CAs)
using a blockchain-like approach. PKI has a fundamental role in securing inter-
net navigation, but the current system based on CAs has significant limitations,
as exemplified by the numerous attacks and breaches in the recent years.

In the BIX protocol outlined in section [5.1] identity certificates are cross-
signed by users and stored in a blockchain-like data structure that ensures their

10 CHAPTER 1. INTRODUCTION

integrity and avoids a single point of failure.

The security analysis proves the impossibility of static tampering of the
certificates if the underlying cryptographic primitives (hash function and digital
signature) are secure. First an attack that extends the chain of certificates
without proper interaction with the protocol is reduced to an attack to a crypto
primitive (5.2)). Then a similar technique is used for an attack that meddles with
an internal certificate , combining the results it is clear that no external
attacker can alter the certificates. However in section [£.4] it is showed how
internal collusion could create alternative chain segments, and some mitigations
are suggested.

1.4.4 Public Ledger for Sensitive Data

In chapter [6] an original protocol offers a solution for a public storage with veri-
fiable integrity enhanced with strong privacy that makes it suitable for sensitive
data.

Personal data should always be protected from privy eyes, but nonetheless
it is widely used in a myriad of services and is necessarily shared with many
companies. Moreover many applications require data integrity and verifiabil-
ity (for example insurance companies despise tampering), that unfortunately is
rather difficult to achieve while preserving privacy. The protocol prosed in sec-
tion [6.2) builds a public ledger where integrity is publicly verifiable, but suitable
for sensitive data storage, since the content is encrypted end-to-end, that is the
owner may share its documents with any service provider, but no intermediary
can see any content. Moreover access to data is periodically revoked enhancing
privacy and control.

The security analysis considers various internal and external adversaries, and
proves the security reducing the attacks to solution of Diffie-Hellman problems

(6.

1.4.5 Proof of Stake Protocol for Bitcoin Subchains

The last protocol analysed in chapter [7] aims to preserve the consistency of sub-
chains built on top of the Bitcoin blockchain using a “proof-of-stake” consensus.

Bitcoin has gained great popularity and recognition, and the volume of re-
sources spent globally for its operation makes its blockchain very valuable. The
protocol explained in section runs a subchain (usable e.g. for smart con-
tracts) exploiting Bitcoin blockchain, and incentivises the consistency of the
updates using a proof of stake consensus to vote the next update and a refund
policy to encourage honesty.

The refund policy is the central subject of the security analysis made in
section[7.5} It is showed how naive solutions do not incentivise honest behaviour,
and is proved instead the effectiveness of a harsh policy that burns the refund
lest it refund a dishonest actor.

1.5 Caveat

Formal proofs of security give a concrete measure of the strength of a protocol,
showing that in a particular scenario it is impossible to perform a successful

1.5. CAVEAT 11

attack.

However these proofs are no silver bullet, in fact their results lean on as-
sumptions that may not hold or be disrupted in a near future (for example
quantum computers are supposed to be able to efficiently solve many classical
hard problems). Moreover real world attacks could escape the restrictions of the
model in which the protocol was proven, rendering the proof almost useless.

For example recently the KRACK attack on the WPA2 protocol that pro-
tects wifi communications [83] exploited a bug in the protocol to effectively
render the encryption useless, despite the protocol being proven secure. This
was possible because the attack scenario in the model did not cover the actions
used in the actual attack. That is, an implicit assumption was used but never
stated, and this caused the production of millions of devices that implement
a protocol now susceptible to attacks. Luckily a simple patch applied on the
client device is sufficient to prevent the attack, but this case remains an excellent
caveat that security is a very delicate matter.

Moreover even with carefully designed and proven protocols, problems may
arise in implementations: the history of security bugs is full of overflow and
boundary errors. And a new frontier of attacks on cryptography relies on side
channels, that is metrics such as power consumption, heat or ultrasound fre-
quencies are analysed to infer the computations performed by the encrypting
machine and thus reverse-engineering the key used. To contrast these tech-
niques, standard mathematical proofs are not helpful and various strategies are
adopted to mask the signals that may give away the keys.

Finally, as the saying goes, the problem often lies between the chair and the
keyboard, meaning that the weakest link in security is in most cases the end
user. From bad security practices to social engineering vulnerabilities, there
are multiple ways with which targeted attacks can bypass security protocols
completely.

However despair is never the solution, and the development of new schemes
may help to improve the security of world’s communications and data.

12

CHAPTER 1. INTRODUCTION

Chapter 2

Hard Problems and
Cryptographic Assumptions

The core principle of cryptography is to process plaintexts in such a way that
ciphertexts become next to impossible to unscramble (without the proper key).
In mathematics there are many functions that are fairly easy to compute but
very difficult to invert, so they are natural candidates to become the foundation
of cryptographic primitives.

As seen in the previous chapter, cryptographic protocols may be considered
secure if it is almost impossible for an attacker to bypass its defences and gain
access to information they are not entitled to know. In a formal proof of security
the goals and resources of an attacker are modelled in a game, then the proof
shows that attackers cannot win unless they are able to solve a difficult, well
studied mathematical problem.

In this chapter we present various problems that are considered hard to solve.
These problems will be the foundation of the security of the schemes examined
in this thesis.

2.1 Bilinear Groups and Diffie-Hellman Prob-
lems

Bilinear pairings are a powerful tool used to build many asymmetric encryption
schemes with interesting functionalities. Among these protocols we find many
Attribute-Based Encryption schemes. This section covers background informa-
tion necessary to understand the KP-ABFE schemes presented in Chapter [3]and
their security.

In particular, some mathematical notions about bilinear groups are given,
alongside the cryptographic assumptions that will be used.

2.1.1 Bilinear Maps

Pairing-based cryptography exploits the properties of bilinear pairings to add
new functionalities to encryption schemes difficult or impossible to achieve with
the classical primitives. Bilinear groups are the main environment for this type

13

14 CHAPTER 2. CRYPTOGRAPHIC ASSUMPTIONS

of cryptography. They are usually implemented with the group of points of an
elliptic curve over a finite field, while for the pairing the most common choices
are the Tate and Weil pairings, in their modified version so that e(g, g) # 1. For
a detailed analysis of these groups and the curves to use in an implementation
see [59]. The most used and studied types of bilinear groups are the ones with
prime order p.

Definition 2.1 (Pairing). Let G1, G2 be groups of the same prime order p. A
symmetric pairing is a bilinear map e such that e : G; x G; — Go has the
following properties:

e Bilinearity: Vg,h € G1,Va,b € Z,, e(g*, h®) = e(g, h)*.
e Non-degeneracy: for g generator of Gy, e(g,9) # lg,.

Definition 2.2 (Bilinear Group). G is a Bilinear group if the conditions above
hold and both the group operations in G; and Gs as well as the bilinear map e
are efficiently computable.

In the remainder of this section G; and G5 are understood.

2.1.2 Security Assumptions on Prime Order Bilinear Groups

Here are presented the various assumptions on bilinear groups that will be used
in the security proofs presented in this thesis. They are all variations of the
bilinear Diffie-Hellman assumption, which is the equivalent of the Diffie-Hellman
assumption for bilinear groups.

Decisional Bilinear Diffie-Hellman Assumption

The Decisional Bilinear Diffie-Hellman (BDH) assumption is the basilar assump-
tion used for proofs of indistinguishability in pairing-based cryptography. It has
been first introduced in [23] by Boneh and Franklin and then widely used in a
variety of proofs, including the one of the first concrete ABE scheme in [38]. It
is defined as follows.

Let a,b, s,z € Z, be chosen at random and g be a generator of the bilinear
group G;. The decisional Bilinear Diffie-Hellman (BDH) problem consists in
constructing an algorithm B(A = g%, B = ¢*, S = ¢°,T) — {0,1} to efficiently
distinguish between the tuples (4, B, S,e(g,9)**) and (A, B, S,e(g,9)*) out-
putting respectively 1 and 0. The advantage of B in this case is clearly written
as:

Advg = |Pr [B(A,B, S, e(g, g)™%) = 1] —Pr[B(A, B, S,e(g,9)%) = 1]

where the probability is taken over the random choice of the generator g, of
a,b,s,z in Z,, and the random bits possibly consumed by B to compute the
response.

Definition 2.3 (BDH Assumption). The decisional BDH assumption holds if
no probabilistic polynomial-time algorithm 5 has a non-negligible advantage in
solving the decisional BDH problem.

2.1. BILINEAR GROUPS AND DIFFIE-HELLMAN PROBLEMS 15

Augment Decisional Bilinear Diffie-Hellman Assumption

This assumption, introduced by Liang et al. in [51], is a variant of the basic
BDH in which the attacker knows one more element, so is slightly stronger. We
formally define it as follows.

Let a,b,s, 2 € Z, be exponents chosen at random, let g be a generator
of the bilinear group Gy, and let b # 0. The Augment Decisional Bilinear
Diffie-Hellman (ABDH) problem consists in constructing an efficient algorithm
B(A=g¢*,B=g"C=gt,5=g%Z) — {0,1} to distinguish between the tu-
ples (A4, B,C, S, e(g,9)%*) and (4, B,C, S,e(g,9)?). The advantage of B is de-
fined, following the standard convention, as:

Advs = |Pr [B(A, B,C. S, e(g.9)"") = 1] = Pr[B(A, B,C. 5, (9,9)°) = 1]

where the probability is taken over the random choice of the generator g, of
a,b,s,z in Z,, and the random bits possibly consumed by B to compute the
response.

Definition 2.4 (ABDH Assumption). The decisional ABDH assumption holds
if no probabilistic polynomial-time algorithm B has a non-negligible advantage
in solving the decisional ABDH problem.

In the next Section [2.1.3] we show an adaptation of these assumption to the
generic group model and we are able to prove a related security bound.

2.1.3 Generic Security of Diffie-Hellman Assumptions

In [22] Boneh et. al. stated and proved a theorem that gives a lower bound
on the advantage of a generic algorithm in solving a class of decisional Diffie-
Hellman problems. Despite a lower bound in generic groups does not imply a
lower bound in any specific group, it still provides evidence of soundness of the
assumptions. In this section, first the general Diffie-Hellman Exponent Problem
will be defined, then the lower bound will be stated, and finally it will be shown
how the problems introduced in Section [2.1.2] may be seen as particular cases
of the general problem.

General Diffie-Hellman Exponent Problem

Let p be a prime and let s,n be positive integers. Let P,Q € Z,[Xq,...,X,]°
be two s-tuples of n-variate polynomials over Z, and let f € Z,[X1,...,X,].

Let P = (p1,p2,...,ps) and @ = (q1,42,-.-,qs), we require that p; = ¢; = 1
Moreover define:

P(z1,...,zn) = (01(21,- 5 Tn)y -5 Ds (X1, -, Tn)) € (Zy)°.
And similarly for the s-tuple Q. Let Gi,Gs be groups of order p and let e :

G1 x G; — G2 be a non-degenerate bilinear map. Let g € Gy be a generator of
G; and set g2 = e(g,9) € Go . Let

H(xy, ... ap) = (g7, g@@m)) € Gf x G3,

16 CHAPTER 2. CRYPTOGRAPHIC ASSUMPTIONS

we say that an algorithm B that outputs b € {0,1} has advantage € in solving
the Decision (P, Q, f)-Diffie-Hellman problem in Gy if

’Pr [B (H(zl, e ,xn),gg(wl’”"m")) = O] — Pr(B(H(x1,...,2,),T)=0]| > ¢

where the probability is over the random choice of generator g € G4 , the random
choice of z1,...,x, in Z,, the random choice of T' € G2, and the random bits
consumed by B.

Definition 2.5 (Dependence on (P,Q)). Let P,Q € Z,[X1,...,X,]° be two
s-tuples of n-variate polynomials over Z,. We say that a polynomial f €
Zp[X1,...,X,] is dependent on the sets (P, Q) if there exist s> + s constants
{ai,j}f,j:p {br};_, such that

S S
f= Z a;i jpipj + Zkak
k=1

ij=1
We say that f is independent of (P, Q) if f is not dependent on (P, Q).

For a polynomial f € Zy[X1,...,X,]%, let df denote the total degree of f.
For a set P C Zy[X1,..., X,]° let dp = max{d; : f € P}.

Complexity Lower Bound in Generic Bilinear Groups

We state the following lower bound in the framework of the generic group model.
Consider two random encodings &, &; of the additive group Z,, i.e. injective
maps §o,&1 ¢ Zp, — {0,1}™. For i = 0,1 write G; = {{(x) : ¢ € Zp}. We
are given oracles to compute the induced group action on G, G2, and an oracle
to compute a non-degenerate bilinear map e : G; x G; — Gy. We refer to Gy
as a generic bilinear group. The following theorem gives a lower bound on the
advantage of a generic algorithm in solving the decision (P, @, f)-Diffie-Hellman
problem. We emphasize, however, that a lower bound in generic groups does
not imply a lower bound in any specific group.

Theorem 2.1 (Theorem A.2 of [22]). Let P,Q € Zy[X1,...,X,]° be two
s-tuples of n-variate polynomials over Z, and let f € Z,[Xy,...,X,]. Let
d = max(2dp,dg,dy). Let &,& and Gq1,Go be defined as above. If f is in-
dependent of (P, Q) then for any A that makes a total of at most q queries to
the oracles computing the group operation in Gi,Go and the bilinear pairing
e: Gy x G; = Gy we have:

1 +2s+2)°d
PrAG (P 20)) Q)), () =] — 5| < (152 E2
Where x1,...,xn,y are chosen uniformly at random from Z,, b is chosen uni-

formly at random from {0,1} and t, = f(x1,...,2n),t1—p = y.

Corollary 2.1 (Corollary A.3 of [22]). Let P,Q € Zy[X1,...,X,]® be two s-
tuples of n-variate polynomials over Z, and let f € Zy[X1,...,X,). Let d =
max(2dp,dqg,dy). If f is independent of (P, Q) then any A that has advantage
% in solving the decision (P, Q, f)-Diffie-Hellman Problem in a generic bilinear

group G must take time at least Q5 — s).

2.1. BILINEAR GROUPS AND DIFFIE-HELLMAN PROBLEMS 17

Using Corollary

We claim that the assumptions presented in Section follow from Corollary
giving the sets P, Q) that reduces them to the general bilinear Diffie-Hellman
problem:

e BDH in Gy : set P ={1l,y,w,2},Q = {1}, f = ywz.
e ABDHin Gy : set P={l,y,w,1,2},Q={1},f =y w =

It is easy to see that each f is independent to the respective sets P and
@, in fact multiplying any two polynomials in the sets P and then combining
them linearly does not give the polynomial f. To see this explicitly in the case
of ABDH, the complete list of terms that may be obtained combining any two
polynomials of P follows:

1 Y z
1aw7 — Yy, yw, —,wz, —, 2, Yz
w w w

Since there is no monomial in which y, w, and z appear together, it is apparent
that no linear combination of these terms may give ywz as result, thus f is
independent of P, Q.

Thus applying the Corollary a lower bound on the computational com-
plexity of these problems in the generic bilinear group is obtained.

2.1.4 Interactive Diffie-Hellman

Interactive assumptions are usually stronger than their static counterparts, since
the solver has more control over the parameters. This unfortunately means
that they give weaker security, but sometimes it is nearly impossible to reduce
highly interactive protocols to static assumptions, so interactive assumptions
are needed.

Interactive Decisional Diffie-Hellman Assumption

Let C be a challenger that chooses a, b, z € Z,, at random and g be a generator of
a group G of prime order p. The Interactive Decisional Diffie-Hellman (IBDDH)
problem consists in constructing an algorithm B(C) — {0, 1} that interacts with
the challenger in the following way:

e C gives to B the values A = g%, B = g%
e 3 chooses an exponent 0 # s € Z, and sends to the challenger S = B3,

e C flips a random coin r € {0,1} and answers with Z = §* = ¢ if r = 0,
Z =g*ifr=1,

e Bgiven A, B, S, Z outputs a guess r’ of r.
The advantage of B in this case is clearly written as:
Advg = ‘Pr [B(A,B, S,g%) = o} — Pr[B(A, B, S, %) = 0]

where the probability is taken over the random choice of the generator g, of
a,b,s,z in Z,, of r € {0,1}, and the random bits possibly consumed by B to
compute the response.

18 CHAPTER 2. CRYPTOGRAPHIC ASSUMPTIONS

Definition 2.6 (IDDH Assumption). The Interactive Decisional DH assump-
tion holds if no probabilistic polynomial-time algorithm 5 has a non-negligible
advantage in solving the decisional IDDH problem.

Note that an adversary that can solve the IDDH problem can solve the DH
problem simulating a IDDH problem and choosing s = 1, but the converse is
not true since it is not possible to adapt the DH challenge without knowing s.

2.2 Security of Cryptographic Primitives

Many high-level protocols use cryptographic primitives (such as ciphers) as
building blocks. Unfortunately the security of many of these primitives does
not directly derive from the hardness of a well known problem, so the assump-
tion becomes that these core components satisfy some fundamental properties.

In this section will be presented the main characteristics of the primitives
used in the protocols presented in this thesis, alongside the assumptions on their
security.

2.2.1 Security of Digital Signatures and ECDSA

To validate an action having a legal value we are usually requested to produce
our handwritten signature. Assuming that nobody is able to forge a signature
while anybody can verify its validity, this method is used to certify the corre-
spondence of the identities of who is taking the action and in the name of whom
the action is being taken.

In the digital word, handwritten signatures are substituted by digital sig-
natures that satisfy the same conditions seen above. With the name Digital
Signature Scheme we refer to any asymmetric cryptographic scheme for pro-
ducing and verifying digital signatures.

A Digital Signature Scheme consists of three algorithms:

o Key Generation - KeyGen(k) — (SK,PK): given a security parameter
generates a public key PK, that is published, and a secret key SK.

e Signing - Sign(m,SK) — s: given a message m and the secret key SK,
computes a digital signature s of m.

o Verifying - Ver(m, s,PK) — r: given a message m, a signature s and the
public key PK;, it outputs the result r € {True, False} that says whether or
not s is a valid signature of m computed by the secret key corresponding
to PK.

The previous algorithms usually require a source of random bits to operate
securely.

2.2. SECURITY OF CRYPTOGRAPHIC PRIMITIVES 19

A common security requirement for a Digital Signature Scheme is the diffi-
culty of forging a signature, modelled by the following game (commonly known
as an ezistential forgery).

Definition 2.7 (Digital Signature Security Game). Let DSS be a Digital Sig-
nature Scheme. Its security game, for an adversary A, proceeds as follows:

Setup. The challenger C runs the KeyGen algorithm, and gives to the adversary
the public key PK.

Query. The adversary issues signature queries for some messages m;, the chal-
lenger answers giving s; = Sign(m;, SK).

Challenge. The adversary selects a message m such that m # m; Vi, and tries
to compute a forged signature s. A wins if Ver(m, s, PK) = True.

Definition 2.8 (Security of a Digital Signature Scheme). A Digital Signature
Scheme DSS is said secure if there is no polynomial-time algorithm A (w.r.t.
) that wins the Digital Signature Security Game with non-negligible prob-
ability.

Ideally, a Digital Signature Scheme is designed in such a way that forging a
signature in the scheme is equivalent to solving a hard mathematical problem
Although this equivalence is usually assumed but not proved, we say that the
Digital Signature Scheme is based on that mathematical problem. Several Dig-
ital Signatures Schemes (e.g. [33]), are based on the discrete logarithm problem
(although other approaches exist, see e.g. [71], [72]). Among them, the El-
liptic Curve Digital Signature Algorithm (ECDSA), which uses elliptic curves,
is widespread. To the sake of easy reference we recall briefly how ECDSA is
designed [43].

Domain Parameters An elliptic curve E defined over a finite field F, is fixed
together with a rational point P € E(F;) having order n, and a cryptographic
hash function h [70]. Let O be the point at infinity of E.

Key Generation Any user A selects a random integer d in the interval
[2,n — 1]. Then his public key is Q = dP while d is his private key.

Signing To sign a message m (a binary string), a user A with key pair (Q, d)
selects a random integer k in the interval [2,n — 1] and accepts it if it is relatively
prime to n. Then A computes (z1,y1) = kP and converts x; in an integer Z;. In
the unlikely event that r = Z; mod n is 0, then another random integer k£ has
to be extracted. Otherwise, A proceeds to hash the message and to transform
the digest h(m) in a non-negative integer e using the standard conversion of the
binary representation. Then A computes the value s = k~!(e + dr) mod n. In
the unlikely event that s = 0, the value of £ must be randomly selected again,
else the pair (r, s) is output as A’s signature for the message m.

Verifying To verify the signature (r, s) with the public key @ for the message
m a user B proceeds as follows: first 7 and s are checked to be integers contained
in the interval [1,n — 1]. Then B computes the hash of the message h(m) and

20 CHAPTER 2. CRYPTOGRAPHIC ASSUMPTIONS

converts it to a non-negative integer e. Then the point of the elliptic curve
(z,y) = (es™! mod n)P + (rs™! mod n)Q is computed. If Q@ = O, then B
rejects the signature; otherwise z is converted into an integer Z and the signature
is accepted if and only if £ =7 mod n.

Note that if the signature (r, s) of the message m was actually produced by
the private key d, then s = k~(e + dr) mod n and so:

E=s'e+dr)=es ' +drs”! modn

and
kP = (z1,51) = (es”'+drs™" modn)P.

Clearly, if an attacker is able to solve the DLOG on E, then this adversary
can break the corresponding ECDSA. The converse is much less obvious. In
[68], the authors provide convincing evidence that the unforgeability of several
discrete logarithm-based signatures cannot be equivalent to the discrete loga-
rithm problem in the standard model. Their impossibility proofs apply to many
discrete logarithm-based signatures like ElGamal signatures and their exten-
sions, DSA, ECDSA and KCDSA, as well as standard generalizations of these.
However, their work does not explicitly lead to actual attacks. Assuming that
breaking the DLOG is the most efficient attack on ECDSA, then nowadays rec-
ommended key lengths start from 160 bits, with 256 bits being the length of the
signatures employed in the Bitcoin protocol.

2.2.2 Security of Hash Functions

Hash functions are somewhat the digital equivalent of a fingerprint: they com-
press a file in a digest that represents it, so that (ideally) no two different files
correspond to the same digest. Moreover it should be almost impossible to re-
construct the whole file from the digest, but at the same time it is easy to show
that a given file corresponds to a given digest.

A hash function H can be idealized as a function whose set of inputs is
the set of all possible binary strings, denoted by (IF3)*, while its set of possible
outputs is the set of all binary strings of given length (called digest). Real-life
hash functions have a finite input set, but it is so large that can be thought
of as infinite. For example, the hash functions used in the Bitcoin protocol are
SHA256, enjoying a digest length of 256 bits and with input string up to 264-bit
long, and RIPEMD-160, with 160-bit digests.

Cryptographic hash functions can need several security assumptions, how-
ever for the proofs presented in this thesis the following definitions are sufficient.

Definition 2.9 (Collision Problem for a Class of Inputs). Let » > 1. Let
h: (Fg)* — (F2)" be a hash function, and L C (F3)! be a class of inputs. The
collision problem for h and L consists in finding two different inputs m,, ms € L,
with my # mq, such that h(mi) = h(ms).

Definition 2.10 (Collision Resistance of Hash Functions). Let h be a hash
function. We say that h is collision resistant for a class of inputs L if there is no
polynomial-time algorithm B(h, L) — {m1, ma} that solves the Collision Prob-
lem for h and L with non-negligible probability. The complexity parameter
is the length of inputs [.

2.2. SECURITY OF CRYPTOGRAPHIC PRIMITIVES 21

For example, as shown in [66], SHA-256 has passed several statistical tests
designed to verify “the absence of any detectable correlation between input and
output, and the absence of any detectable bias due to single bit changes in the
input string”. Therefore, it can be considered collision-resistant.

2.2.3 Security of Symmetric Ciphers

Symmetric ciphers are the most important cryptographic primitive and the most
widely used in real-world applications. They provide a fast way to scramble data
so that only who possess a copy of the same key used to alter the message can
get any information out of it. In particular these ciphers are designed to be
extremely fast and to use very few resources, so they can be embedded in every
kind of device. This is the reason why in most protocols asymmetric encryption
is used to exchange the keys so symmetric ciphers can be used to actually encrypt
the bulk of data.

Unfortunately the design of these ciphers is not based on hard mathematical
problems, but instead they try to propagate the randomness of the key in order
to simulate a random function that would completely hide any information in
the output. So it is not feasible to prove their security, but it is only possible to
assess the randomness of the output with statistical tests and control that no
known cryptanalysis technique is effective.

For this reason their security has to be modelled and taken as an assumption
in order to prove the security of protocols that use symmetric ciphers as building
blocks.

For the proof of the tokenization algorithm presented in Chapter [4] we assume
that the cipher possess the Indistinguishability under Chosen Plaintext Attack
(IND-CPA) security property, that is formally defined as follows.

Definition 2.11 (IND-CPA). Let E(K,m) — ¢ be an encrypting function.
An Indistiguishability under Chosen Plaintext Attack (IND-CPA) game for E
between an adversary A and a challenger C proceeds as follows:

Phase I A chooses a plaintext m; and sends it to C, that responds with ¢; =
E(K,m;). This phase is repeated a polynomial number of times.

Challenge A chooses two plaintexts mg, m} (never chosen in Phase I) and
sends them to C, that selects v € {0,1} at random and computes ¢ =
E(K,m}). Then C sends c to A.

Phase IT Phase I is repeated (a polynomial number of times), with the obvious
restriction that 4 cannot choose m{ or mj.

Guess A guesses v € {0,1}, and wins if v/ = v.

We say that the advantage AdvZ of A winning the IND-CPA game for the
encrypting algorithm F is:

1
2

Advﬁ = ‘PT [V =v]-=
E is said to be secure in a IND-CPA scenario if there is no probabilistic

polynomial-time algorithm A that wins the CPA game with more than negligible
advantage.

22 CHAPTER 2. CRYPTOGRAPHIC ASSUMPTIONS

For example, in [75] the authors showed that AES-256 passed statistical tests
designed to verify the following properties:

e “the absence of any detectable correlation between plaintext/ciphertext
pairs and the absence of any detectable bias due to single bit changes to
a plaintext block”;

e “the absence of any detectable deviations from randomness”.

Therefore AES-256 can be considered to be IND-CPA secure.

Chapter 3

Multi-Authority Key-Policy
Attribute Based Encryption

Attribute-based encryption (ABE) addresses the problem of access control over
encrypted data stored in the cloud, providing efficient and expressive meth-
ods to protect shared data while maintaining the control on the accesses on a
fine-grained level. A multitude of different ABE schemes have been proposed,
designed to address various requirements. In particular there are a few systems
that use multiple authorities, but limited to the ciphertext-policy instance. In
this chapter two multi-authority key-policy ABE schemes will be shown.

This original work has been presented at the CAI conference: the first scheme
at the 6th edition held in Stuttgart, in September 2015, and published in the
proceedings [55]; the second scheme [56] at the 7h edition held in Kalamata, in
June 2017 and is under review for a publication in a special issue of the journal
Theoretical Computer Science. 1t is a joint work with Dr. Chiara Marcolla and
Prof. Massimiliano Sala. The graduand designed the protocols and proved their
security, while the co-authors helped refining the proofs and the paper and gave
the seminal idea for the collaborative variant of the protocol.

3.1 Cryptography for the Cloud

The key feature that makes the cloud so attracting nowadays is the great acces-
sibility it provides: users can access their data through the Internet from any-
where. Unfortunately, at the moment the protection offered for sensitive infor-
mation is questionable and access control is one of the greatest concerns. Illegal
access may come from outsiders or even from insiders without proper clearance.
One possible approach for this problem is to use Attribute-Based Encryption
(ABE) that provides cryptographically enhanced access control functionality to
encrypted data.

In Key Policy ABE (KP-ABE), each ciphertext is described by some at-
tributes (e.g. competence area), and for each user in the system a private key
is issued by an authority. This key specifies what it can access to, in the form
of a boolean formula over said attributes, reflecting the credential of its carrier.

23

24 CHAPTER 3. MA KP ABE

A user will be able to decrypt a ciphertext if the attributes associated with this
ciphertext satisfy the boolean formula associated to the user’s private key.

ABE developed from Identity Based Encryption, a scheme proposed by
Shamir [77] in 1985 with the first constructions obtained in 2001 by Boneh
and Franklin [23]. The use of bilinear groups, in particular the Tate and Weil
pairings on elliptic curves [23], was the winning strategy that finally allowed
to build schemes following the seminal idea of Shamir. Bilinear groups came
in nicely when a preliminary version of ABE was invented by Sahai and Wa-
ters [76] in 2005. Immediately afterwards, Goyal, Pandey, Sahai, and Waters
[38] formulated the two complementary forms of ABE that are nowadays stan-
dard: ciphertext-policy ABE and key-policy ABE. In a ciphertext-policy ABE
system, keys are associated with sets of attributes and ciphertexts are associ-
ated with access policies. In a KP-ABE system, the situation is reversed: keys
are associated with access policies and ciphertexts are associated with sets of
attributes.

Several developments in efficiency and generalizations have been obtained for
key-policy ABE, e.g. [7], [41], [67]. A first implementation of ciphertext-policy
ABE has been achieved by Bethencourt et al. [I8] in 2007 but the proofs of
security of the ciphertext-policy ABE remained unsatisfactory since they were
based on an assumption independent of the algebraic structure of the group
(the generic group model). It is only with the work of Waters [85] that the first
non-restricted ciphertext-policy ABE scheme was built with a security based on
variations of the DH assumption for bilinear groups.

Related to the schemes presented here is the construction for multiple au-
thorities (ciphertext-policy ABE) that have been proposed in [26], [27] and [50].
The approach of CP-ABE to multiple authorities is quite different, since the de-
centralization is not meant as a form of strengthening the control over accesses,
but rather as an effort to distribute the control over the attributes between mul-
tiple authorities. In fact in CP-ABE users are described by a set of attributes,
so in a decentralized environment different authorities are in charge of assigning
(or not) attributes out of a specific subset. The main challenge in this case is
to prevent collusion (that is effectively combining attributes of different users)
without a central authority.

Original constructions In this chapter two multi-authority KP-ABE schemes
are presented. In the first system, after the creation of an initial set of com-
mon parameters, the authorities may be set up in any moment and without any
coordination. A party can simply act as an ABE authority by creating public
parameters and issuing private keys to different users (assigning access policies
while doing so). A user can encrypt data under any set of attributes specifying
also a set of trusted authorities, so the encryptor maintains high control. Also,
the system does not require any central authority. This scheme has very short
single-authority keys, that compensate the need of multiple keys (one for au-
thority). Moreover, the pairing computations in the bilinear group are involved
only during the decryption phase, thus obtaining significant advantages in terms
of encryption times. Even if the authorities are collaborating, the existence of
just one non-cheating authority guarantees that no illegitimate party (including
authorities) has access to the encrypted data. The scheme is proven secure using
the classical bilinear Diffie-Hellman assumption.

3.2. BACKGROUND: ACCESS STRUCTURES AND LINEAR SECRET SHARING SCHEMES25

The second scheme aims to improve the efficiency of the first one, and in
particular to reduce the size of the keys and public parameters that reflect in
much shorter ciphertext and a great speed up of decryption. To achieve this
goal a round of collaboration between authorities is introduced. This means
that each authority processes the public parameters so a single set is required
and the individual private keys given to a user can be combined into one key.
So at the cost of less flexibility in the choice of authorities (every single one is
required to decrypt) there is a significant efficiency improvement. This scheme
is proven secure using a variation of the bilinear Diffie-Hellman assumption.

Organization This chapter is organized as follows. In Section [3.2] the main
mathematical tools used in the construction of the multi authority KP-ABE
schemes are presented. In Section the first multi authority KP-ABE scheme
is explained in detail and its security is proven under standard, non-interactive
assumptions in the selective set model. In Section the second scheme is
presented in full details, complete with the proof of security.

3.2 Background: Access Structures and Linear
Secret Sharing Schemes

In this section the definition and main properties of two fundamental blocks of
ABE schemes are reported: access structures and linear secret sharing schemes.
These tools are used to model the access policies and embed them in the encryp-
tion process in the vast majority of ABE constructions. See the cited references
for more details on these topics.

Access structures define who may and who may not access the data, listing
the sets of attributes that have clearance.

Definition 3.1 (Access Structure). An access structure A on a universe of
attributes U is the set of the subsets S C U that are authorized. That is, a set
of attributes S satisfies the policy described by the access structure A if and
only if § € A.

Access structures are used to describe a policy of access, that is the rules
that prescribe who may and may not access the information. If these rules are
constructed using only AND, OR and THRESHOLD operators on the attributes (a
(k,n) threshold operator specifies that k attributes are requested out of a set of
n specific attributes), then the access structure is monotonic.

Definition 3.2 (Monotonic Access Structure). An access structure A is said
monotonic if given Sy € S; C U it holds

SoeA=— S, €A

An interesting property is that monotonic access structures may be converted
into linear secret sharing schemes (LSSS). In this setting a secret is divided in
shares distributed between the parties of the LSSS, that are identified with the
attributes of the access structure. Then an access policy is satisfied if there are
enough parties to allow the reconstruction of the secret using the corresponding

26 CHAPTER 3. MA KP ABE

shares. This is equivalent to having enough attributes, note that the monotonic
property means that extra attributes do not jeopardize the satisfaction of the
policy.

A LSSS may be defined as follows (adapted from [13]).

Definition 3.3 (Linear Secret-Sharing Schemes (LSSS)). A secret-sharing scheme
IT over a set of parties P is called linear (over Z,) if

1. The shares for each party form a vector over Z,.

2. There exists a matrix M with [rows and n columns called the share-
generating matrix for II. For all ¢ € {1,...,1} M; (the i-th row of M) is
labeled via a function p, that associates it to the party p(¢). Considering
the vector v = (s,72,...,mn) € Zy, where s € Zj, is the secret to be shared,
and r; € Z,, with i € {2,...,n} are randomly chosen, then M¥ is the
vector of [shares of the secret s according to II. The share (Mv);, = M;¥
belongs to party p(i).

It is shown in [I3] that every linear secret sharing-scheme according to the
above definition also enjoys the linear reconstruction property, defined as follows:
suppose that II is an LSSS for the access structure A. Let S € A be any
authorized set, and let I C {1,...,1} be defined as I = {i : p(i) € S}. Then,
there exist constants w; € Zj,, with 7 € I such that, if \; are valid shares of any
secret s according to II, then

icl

Furthermore, it is shown in [I3] that these constants w; can be found in time
polynomial in the size of the share-generating matrix M.

Note that the vector (1,0,...,0) is the "target” vector for the linear secret
sharing scheme. Then, for any set of rows I in M, the target vector is in the
span of [if and only if I is an authorized set. This means that if I is not
authorized, then for any choice of ¢ € Z, there will exist a vector « such that
u; = ¢ and

Mi-©w=0 Viel (3.2)

In the first ABE schemes the access formulas are typically described in terms
of access trees, that represent boolean formulas on the attributes in a very
convenient and readable way. In the appendix of [50] a method to perform
a conversion from access trees to LSSS is presented, in [54] there is a more
comprehensive discussion on access tree conversion, and the authors propose an
algorithm that generates much smaller matrices which allow more efficiency in
ABE implementations.

See [38], [13] and for more details about LSSS and access structures.

3.3 Multi-Authority Key-Policy Attribute-Based
Encryption

This section is divided in three parts. First the definitions of Multi-Authority
Key-Policy ABE and of CPA selective security are presented. In the second part

3.3. MULTI-AUTHORITY KEY-POLICY ATTRIBUTE-BASED ENCRYPTION27

the first scheme is presented in detail and, finally, the security of this scheme is
proven under the classical BDH assumption in the selective set model.

A security parameter will be used to determine the size of the bilinear group
used in the construction, and therefore the order of complexity of the security
assumption. In practice first the parameter is chosen to achieve a certain security
level, then this value is used to compute the order that the bilinear group must
have, finally a suitable group is picked and used.

3.3.1 Multi Authority KP-ABE Structure and Security

In this scheme, after the common universe of attributes and bilinear group
are agreed, the authorities set up independently their master key and public
parameters. The master key is subsequently used to generate the private keys
requested by users. Users ask an authority for keys that embed a specific access
structure, and the authority issues the key only if it judges that the access
structure suits the user that requested it. Equivalently an authority evaluates
a user that requests a key, assigns an access structure, and gives to the user a
key that embeds it.

When someone wants to encrypt, it chooses a set of attributes that describes
the message (and thus determines which access structures may read it) and a set
of trusted authorities. The ciphertext is computed using the public parameters
of the chosen authorities, and may be decrypted only using a valid key for each
of these authorities. A key with embedded access structure A may be used to
decrypt a ciphertext that specifies a set of attributes S if and only if S € A,
that is the structure considers the set authorized.

Security Game

This scheme is secure under the classical BDH assumption in the selective set
model, in terms of chosen-plaintext indistinguishability. The security game is
formally defined as follows.

Let £ = (Setup, Encrypt, KeyGen, Decrypt) be a MA-KP-ABE scheme for a
message space M, a universe of authorities X and an access structure space G
and consider the following MA-KP-ABE experiment MA-KP-ABE-Exp 4 (A, U)
for an adversary A4, security parameter A\, and attribute universe U:

Init. The adversary declares the set of attributes S and the set of authorities
A C X that it wishes to be challenged upon. Moreover it selects the
honest authority kg € A.

Setup. The challenger runs the Setup algorithm, initializes the authorities and
gives to the adversary the public parameters.

Phase I. The adversary issues queries for private keys of any authority, but kg
answers only to queries that ask for keys related to access structures A;
such that S ¢ A; Vi. On the contrary the other authorities respond to
every query.

Challenge. The adversary submits two equal length messages m and m1. The
challenger flips a random coin b € {0, 1}, and encrypts my, with S for the
set of authorities A. The ciphertext is passed to the adversary.

28 CHAPTER 3. MA KP ABE

Phase II. Phase I is repeated.
Guess. The adversary outputs a guess b’ of b.

The experiment has result 1 if &’ = b, 0 otherwise.

Definition 3.4 (MA-KP-ABE Selective Security). The MA-KP-ABE scheme £
is CPA selective secure (or secure against chosen-plaintext attacks) for attribute
universe U if for all probabilistic polynomial-time adversaries A, there exists a
negligible function negl such that:

Pr[MA-KP-ABE-Exp 4 ¢(\, U) = 1] < % + negl(\).

3.3.2 The Scheme

The scheme plans a set X of independent authorities, each with their own pa-
rameters, and it sets up an encryption algorithm that lets the encryptor choose
a set A C X of authorities, and combines their public parameters in such a
way that an authorized key for each authority in A is required to successfully
decrypt.

The scheme consists of three randomized algorithms (Setup, KeyGen, Encrypt)
plus the decryption Decrypt. The techniques used are inspired from the scheme
of Goyal et al. in [38]. The scheme works in a bilinear group G; of prime or-
der p, and uses LSSS matrices to share secrets according to the various access
structures. Attributes are seen as elements of Z,,.

The description of the algorithms follows.

Setup(U, g,G1) = (PKg, MKy). Given the universe of attributes U and a gen-
erator g of Gy each authority sets up independently its parameters. For k € X
the Authority k chooses uniformly at random oy, € Z,, and z;; € Z, for each
i € U. Then the authority’s public parameters PK; and master key MK}, are:

PKi = (Ye = e(9,9)™* , {Tk.i = 9°*" }icv) (3.3)
MKy = (o, {zr,i ficv }) (3.4)

KeyGeny, (MK, (M, pr.)) — SKi. The key generation algorithm for the author-
ity k takes as input the master secret key MKy and an LSSS access structure
(My, pr), where My, is an | x n matrix on Z, and py, is a function which associates
rows of My, to attributes. It chooses uniformly at random a vector v, € Zj; such
that v;1 = a;. Then it computes the shares A\ ; = M}, ;9 for 1 <7 <[where
My, ; is the i-th row of Mj,. Then the private key SKj, is:

ki
SKk = {Kkﬂ‘ = gzk"’k(i) } (35)
1<i<l

Encrypt(m, S, {PKx}reca) — CT. The encryption algorithm takes as input the
public parameters, a set S of attributes and a message m to encrypt. It chooses
s € Z;, uniformly at random and then computes the ciphertext as:

CT = (S, C'=m- (H Yk> ACki = (Th,i)* }rea, ieS) (3.6)

kecA

3.3. MULTI-AUTHORITY KEY-POLICY ATTRIBUTE-BASED ENCRYPTION29

Decrypt(CT, {SKy}rea) — m’. The input is a ciphertext for a set of attributes
S and a set of authorities A and an authorized key for every authority cited
by the ciphertext. Let (Mj,pr) be the LSSS associated to the key k, and
suppose that S is authorized for each k € A. Thanks to the linear reconstruction
property (3.1)), the algorithm finds wy; € Zy, i € I, for each k € A such that

Z Ak,iWki = Q (3.7)

i€l

for appropriate subsets Iy C S and then proceeds to reconstruct the original
message computing:
. c’
keallicr, e(Bris Cr pyi)
S
m- (erA Yk)

Ak,i

= W
erA Hielk € (g e (D p (Tk,ﬂk(i))s>
. m: (erA e(gag)ak)s
- Ak, Wk, i
HkEA Hie]k € (g ke (D)) (ng’pk(i))S>
m- (erA e(gag)ak)s

B ki »)
erA Hiejk e (g7 g) 2k ppe (1) Zk,pp (1) SWh,i

m - e(g, g)S(ZkeA ak)

- ; ik
erAe(gyg)SZ’el"wk’ "

m - e(g’ g)s(ZkeA ak)
T (g gy Crea T

m

*

Where = follows from property 1)

3.3.3 Security

The scheme is proved secure under the BDH assumption (Definition in the
selective set security game [3.3.1] in which every authority but one is supposed
curious (or corrupted or breached) and then it will issue even keys that have
enough clearance for the target set of attributes, while the honest one issues
only unauthorized keys. Thus if at least one authority remains trustworthy the
scheme is secure.

The security is provided by the following theorem.

Theorem 3.1. If an adversary can break the scheme, then a simulator can be
constructed to play the Decisional BDH game with a non-negligible advantage.

Proof. Suppose there exists a polynomial-time adversary A, that can attack
the scheme in the Selective-Set model with advantage e. Then a simulator B
can be built that can play the Decisional BDH game with advantage €/2. The
simulation proceeds as follows.

30 CHAPTER 3. MA KP ABE

Init The simulator takes in a BDH challenge (¥ = (g,9% 9% 9°),Z). The
adversary chooses the challenge access structure S.

Setup The simulator chooses random ry € Z, for k € A\ {ko} and implicitly
sets a = —ryb for k € A\ {ko} and ag, = ab+ b3 ;. 4\ (4, T by computing:

Vi, = e(g.9)™ =e(g®¢") [(9™
ke A\{ko}

Yi =e(g,9)%" = e(gb,g_’"’“) Vk e A\ {ko}

Then it chooses zfm € Z, uniformly at random for each ¢ € U, k € A and

implicitly sets
/ o
- Zhi 1fz €S
bz, ifi¢gsS

Then it can publish the public parameters computing the remaining values as:

(g ifies
Ty = g% = ,
k, 9 {(gb>zk,i if ¢ ¢ S

Phase I In this phase the simulator answers private key queries. For the
queries made to the authority ko the simulator has to compute the Ky, ; values
of a key for an access structure (M, p) with dimension [x n that is not satisfied
by S. Therefore for the property of the LSSS it can find a vector @ € Zj
with u; = 1 fixed such that

M;i=0 Vi such that p(i) € S (3.8)

Then it chooses uniformly at random a vector v € Z; and implicitly sets the
shares of ok, = b(a + D pe A\ (1o} k) 38

)\ko,i = bZMi,j(Uj + (a + Z Ty — ’1)1)’&]')

j=1 ke A\ {ko}

Note that Ag,; = Y7, M; jw; where w; = b(vj+(a+D je A\ froy TR —V1)U;) thus
w1 = b(vr + (@ + PCpear roy Tk — V1)1) = ab+ 037\ 4y Th = ko SO the shares
are valid. Note also that from (3.8]) it follows that

n
Akg,i = bZMi,j'Uj Vi such that p(i) € S
j=1
Thus if 7 is such that p(i) € S the simulator can compute

n . wa
Tj=1Mi ;v Akg i

7
Kko = (gb) Fko.p(i) = g “kosp(@)

3.3. MULTI-AUTHORITY KEY-POLICY ATTRIBUTE-BASED ENCRYPTION31

Otherwise, if 4 is such that p(i) ¢ S the simulator computes

i1 My (vi+H (ke A\ {kg} Tk V1) 45) ST My gy
U 7
K}CU i=g *ko.p(3) (ga) “ko.p(3)

n
b0 Mi (v +(Ekea\{kg} Tk —v1)u5) baXT g M; juj
7

7
=g bzkom(i’) g bzkom(i)

Z;L:1 Al’i,jb(”jJr(EkeA\{ko} TR —v1)ujtauy)
bz’

=g “kg,p()
Akg,i
= gzkom(i)
Remembering that in this case zy,,,@i) = bz,’m (i) Finally for the queries to

the other authorities k¥ € A\ {ko}, the simulator chooses uniformly at random
a vector 1y € Zy; such that #; = —rp and implicitly sets the shares A; =
b7y Mty ; by computing

n n
D ALY b1 My itk

Ak,i
7 7 .
(g%) TR =g TRe® =gket) ifi€ S
Kii = sy vy by Mijthj Aooi
7 7 =
g CRe =g Re = gheli) ifi¢s

Challenge The adversary gives two messages myg, m to the simulator. It flips
a coin pu. It creates:

abs

C’:m“~Z;mM-e(g,g)

— mu . e(g’ g) (ab+b(2k6A\{k0} rk) H e(g, g)brk
keA\{ko}

Cri = (g) o0 = g**0) k€A, Q€S

Where the equality = holds if and only if the BDH challenge was a valid tuple
(i.e. Z is non-random).

Phase II During this phase the simulator acts exactly as in Phase I

Guess The adversary will eventually output a guess p’ of u. The simulator
then outputs 0 to guess that Z = e(g, g)*° if u/ = p; otherwise, it outputs 1 to
indicate that it believes that Z is a random group element in Go. In fact when
Z is not random the simulator B gives a perfect simulation so it holds:

g aos 1
Pr(B(7,Z = e(g.9)"") =0] = 5 +¢

On the contrary when Z is a random element R € Gy the message m, is
completely hidden from the adversary point of view, so:

PriB(,2 = R) =0 =

Therefore, B can play the decisional BDH game with non-negligible advantage 5.
O

32 CHAPTER 3. MA KP ABE

3.3.4 Remarks

This scheme gives a solution to the problem of faith in the authority, specifically
the concerns arisen by key escrow and clearance check. Key escrow is a setting
in which a party (in this case the authority) may obtain access to private keys
and thus it can decrypt any ciphertext. Normally the users have faith in the
authority and assume that it will not abuse its powers.

The problem arises when the application does not plan a predominant role
and there are trust issues selecting any third party that should manage the keys.
In this situation the authority is seen as honest but curious, in the sense that it
will provide correct keys to users (then it is not malicious) but will also try to
access data beyond its competence. It is clear that as long as a single authority
is the unique responsible to issuing the keys, there is no way to prevent key
escrow. Thus the need for multi-authority schemes arises.

Another problem addressed is more specific of KP-ABE. In this setting the
authority has to assign to each user an appropriate access structure that rep-
resents what the user can and cannot decrypt. Therefore, the authority has to
be trusted not only to give correct keys and to not violate the privacy, but also
to perform correct checks of the users’ clearance and to assign adequate access
structures accordingly.

Therefore, in addition to satisfying the requirements of not being malicious
and not being curious, the authority must also not have been breached, in the
sense that a user’s keys must embed access structures that faithfully represent
said user’s level of clearance, and that no one has access to keys with a higher
level of clearance than the one they are due.

In this case, to add multiple authorities to the scheme gives to the encryptor
the opportunity to request more guarantees about the legitimacy of the decryp-
tor’s clearance. In fact, each authority checks the users independently, so the
idea is to request that the decryption proceeds successfully only when a key for
each authority of a given set A is used. This means that the identity of the
user has been checked by every selected authority, and their choice models the
trust that the encryptor has in them. Note that if these authorities set up their
parameters independently and during encryption these parameters are bound
together irrevocably, then no authority can single-handedly decrypt any cipher-
text and thus key escrow is removed. So this MA-KP-ABE schemes guarantee
a protection against both breaches and curiosity.

This scheme has very short single-keys (just one element per row of the
access matrix) that compensates for the need of multiple single-keys (one for
cited authority) in the decryption. Ciphertexts are also quite short (the number
of elements is linear in the number of authorities times the number of attributes
under which it has been encrypted) thus the scheme is efficient under this aspect.
Moreover, there are no pairing computations involved during encryption and
this means significant advantages in terms of encryption times. Decryption
time is not constant in the number of pairings (e.g. as in the scheme presented
in [41] or the one in [85]) but requires), 4 [x pairings where A is the set of
authorities involved in encryption and [is the number of rows of the access
matrix of the key given by authority k, so to maintain the efficiency of the
scheme only a few authorities should be requested by the encryptor.

3.3. MULTI-AUTHORITY KEY-POLICY ATTRIBUTE-BASED ENCRYPTION33

Related Work

Taking a more historical perspective, the problem of multi-authority ABE is not
novel and a few solution have been proposed. The problem of building ABE sys-
tems with multiple authorities was proposed by Sahai and Waters. This problem
with the presence of a central authority was firstly considered by Chase [26] and
then improved by Chase and Chow [27], constructing simple-threshold schemes
in the case where attributes are divided in disjoint sets, each controlled by a
different authority. These schemes are also shown to be extensible from simple
threshold to KP-ABE, but retaining the partition of attributes and requiring
the involvement of every authority in the decryption. In those works the main
goal is to relieve the central authority of the burden of generating key material
for every user and add resiliency to the system. Multiple authorities manage
the attributes, so that each has less work and the whole system does not get
stuck if one is down. Another approach has been made by Lin et al. [52] where
a central authority is not needed but a parameter directly sets the efficiency
and number of users of the scheme.

More interesting results have been achieved for CP schemes, in which the
partition of the attributes makes more sense, for example [64]. The most recent
and interesting result may be found in [50], where Lewko and Waters propose a
scheme where there is no need for a central authority or coordination between
the authorities, each controlling disjoint sets of attributes. They used composite
bilinear groups and via Dual System Encryption (introduced by Waters [84] with
techniques developed with Lewko [49]) proved their scheme fully secure following
the example of Lewko et al. [48]. They allow the adversary to statically corrupt
authorities choosing also their master key. Note however that they did not
specifically address key escrow but only distributed workload.

To remark the difference of the scheme presented in this section, note that
a different setting is addressed. For example a situation that suits the scheme
proposed here, but not the one of Lewko and Waters is the following. Consider
a company that has branches dislocated on various parts of the world, each
checking its personnel and giving to each one an access policy (thus acting as
authorities). This scheme allows encryptions that may be decrypted by the man-
ager of the branch (simply use only one authority as in a classic ABE scheme)
but also more secure encryptions that require the identity of the decryptor to
be certified by more centres, basing the requirements on which branches are still
secure and/or where a user may actually authenticate itself.

Moreover, note also that although the scheme of [50] is proven fully se-
cure (against selective security), the construction is made in composite bilinear
groups. It is in fact compulsory when using Dual System encryption, but this
has drawbacks in terms of group size (integer factorization has to be avoided)
and the computations of pairings and group operations are much less efficient.
This fact leads to an alternative construction in prime order groups in the same
paper, that however is proven secure only in the weaker generic group and ran-
dom oracle model.

Implementation

A proof-of-concept of this protocol has been implemented in C using the PBC
library [58] that provides low-level routines for pairing-based cryptosystems,

34 CHAPTER 3. MA KP ABE

built on top of the GMP library [I] for arbitrary precision arithmetic over inte-
gers. The implementation has not been adequately tested in order to properly
assess its performance, however no obvious problem has been noticed. This
proof-of-concept demonstrates the practical viability of the proposed protocol,
however for a production-ready solution particular care should be used regard-
ing the heavy usage of random-generated parameters. In fact randomness is
always a delicate issue and proper sources should be employed. Moreover the
choice of the elliptic curve and bilinear group has heavy repercussions on both
the security and the efficiency of the protocol, so a rigorous analysis should be
performed in order to properly address this problem. Another problem to be
considered is the size of the attribute sets and access policy since the resource
usage scales quadratically in these dimensions.

3.4 Collaborative Multi-Authority Key-Policy
Attribute-Based Encryption

This section is divided in three parts. First Collaborative Multi-Authority Key-
Policy ABE and its CPA selective security are defined. In the second part the
scheme is presented in detail and, finally, a variant of the BDH assumption
(Definition is used to prove the security of this scheme in the selective set
model.

3.4.1 Collaborative Multi Authority KP-ABE Structure
and Security

In this scheme, the authorities set up independently their master keys and they
collaborate to create a common public key and some authority parameters that
will be used to generate secret keys. There is a minimum collaboration during
key generation, in the sense that authorities have to agree on the access policy to
assign to the user, or equivalently the user should ask for the same policy to every
authority. Note however that it is very reasonable that the same access policy is
assigned since it is strictly related to the specific user. Moreover note that even
if the policy of a user might contain sensitive data, it might be safely shared
between authorities since they are entitled to access this kind of information
anyway, and there is no randomness shared between authorities in doing so.
To encrypt, a user chooses a set of attributes that describes the message
(and thus determines which access structures give access to it). The ciphertext
is computed using the public key generated by the authorities in concert. When
someone wants to decrypt, they need a key for every authority and once they
obtains all the pieces they can merge and use them as a single key.
The formal definition of the scheme follows.

Let G; be a bilinear group (chosen accordingly to an implicit security pa-
rameter), g € Gy a generator of the group, and A an access structure on a
universe of attributes U.

Definition 3.5 (Collaborative Multi-authority KP-ABE). A collaborative multi-
authority Key-Policy ABE system for a message space M, a universe of au-

3.4. COLLABORATIVE MULTI-AUTHORITY KEY-POLICYATTRIBUTE-BASED ENCRYPTION35

thorities X, and an access structure space G is composed of the following four
algorithms:

Setup(U, g, G1)— (PKy, MK, AP). The setup algorithm for the authority k €
X takes as input the universe of attributes U and the bilinear group G
alongside its generator g. It outputs the public parameters PKg, the mas-
ter key MKy, and the authority parameters APy for that authority.

CollSetup(MK},, PKy, APy, PKW AP 5 (PKUH1) AP(AH1)) - The collaborative
part of setup asks the authority & € X to add their part to the final public
key and authority parameters. It takes as input the master key MKy for
that authority and the h-th step of construction of the public key PK(h)7
and of the authority parameters AP Tt outputs the next step of con-
struction of the public key PK"*1 and authority parameters AP (at
the first step, i.e. h = 0, they are simply initialized with the parameters of
the first authority). When h = z = | X| then PK(®) = PK and AP®) = AP
i.e. the public and authority parameters are completed once every author-
ity has contributed. At this point PK is distributed among all users, while
AP is shared only between authorities.

KeyGen, (MK, AP, (M, p)) — SKi. The key generation algorithm for the au-
thority k£ € X takes as input the master key MKy, of the authority and an
access structure A in the form of an LSSS (M, p). It outputs a decryption
key SKy for that access structure.

Encrypt(m, S, PK) — CT. The encryption algorithm takes as input the public
parameters PK, a message m € M and a set of attributes S C U. It
outputs the ciphertext CT associated with the attribute set .S.

Decrypt(CT, {SKx}kex) — m'. The decryption algorithm takes as input a ci-
phertext CT that was encrypted under a set S of attributes and a decryp-
tion key SKj, for every authority k € X. Let A be the access structure of
each key SKj. It outputs the message m' if and only if S € A.

The security game is defined as follows.

Definition 3.6 (CMA-KP-ABE Security Game). Take a CMA-KP-ABE scheme
& = (Setup, Encrypt, KeyGen, Decrypt) for a message space M, a universe of au-
thorities X and an access structure
space G and consider the following CMA-KP-ABE experiment
CMA-KP-ABE-Exp 4 ¢ (A, U) for an adversary A, security parameter A and at-
tribute universe U:

Init. The adversary declares the set of attributes S that it wishes to be chal-
lenged upon. Moreover it selects the honest authority kg € X.

Setup. The challenger runs the Setup and Collaborative Setup algorithms ini-
tializing the authorities, and gives to the adversary the individual public
key and the authority parameters of every authority, alongside all the
master keys of the non-honest authority and every collaboration step.

Phase I. The adversary issues queries for private keys generated by kg, however
the access structures A relative to these keys can not authorize the target
set, that is S ¢ A.

36 CHAPTER 3. MA KP ABE

Challenge. The adversary submits two equal length messages mg and my. The
challenger flips a random coin b € {0,1}, and encrypts m; with S. The
ciphertext is passed to the adversary.

Phase II. Phase I is repeated.
Guess. The adversary outputs a guess b’ of b.
The output of the experiment is 1 if ¥’ = b, 0 otherwise.

Definition 3.7 (CMA-KP-ABE Selective Security). The CMA-KP-ABE scheme
€ is CPA selective secure (or secure against chosen-plaintext attacks) for at-
tribute universe U if for all probabilistic polynomial-time adversaries A, there
exists a negligible function negl such that:

1
Pr[MA-KP-ABE-Exp 4 £ (A, U) = 1] < J + negl()).

3.4.2 The Scheme

This scheme plans a set X of authorities, each with their own parameters, that
collaborate to create a common public key and it sets up an encryption algorithm
that uses this public key so that an authorized key for each authority in X is
required to successfully decrypt.

The scheme consists of three randomized algorithms (Setup, KeyGen, Encrypt)
plus the collaborative step CollSetup and decryption Decrypt. The scheme works
in a bilinear group Gy of prime order p, and uses LSSS matrices to share secrets
according to the various access structures. Attributes are seen as elements of
L.

The description of the algorithms follows.

Setup(U, g, G1)— (PKy, MKy, AP%). Given the universe of attributes U and
a generator g of G; each authority sets up independently its parameters. For
k € X the Authority £ chooses uniformly at random oy, € Z,, and z;; € Z,
for each ¢ € U. Then the public parameters PKy, the master key MK, and the
authority parameters AP, are:
PKi, = (Vi = e(9,9) {Th.i = 9" }1err) (3.9)
MKy = (a, {zk,i}iev}) (3.10)

CollSetup(MKy,, PKy, APy, PKW AP 5 (PK+1) AP(H1)) The collabo-
rative construction of the public key proceeds as follows:

e if h = (0 then the authority k is the first to participate, then it simply sets
PK®") = PK;, AP = AP,

e if b > 0 then PK(" = (Y<h>, {T}’”} U), AP — ({V}’”} U), 50 it
1€ 1€

sets

YU Sy My g o (g0) Ty (V.(h))ﬁ VieU

2 ? 2

3.4. COLLABORATIVE MULTI-AUTHORITY KEY-POLICYATTRIBUTE-BASED ENCRYPTION37

Then it is easy to see that when the construction is complete (i.e. every
authority has contributed) the public key is:

PK® = PK = (Y = e(g, g)rex {T = gllkex "}) (3.12)
eU
@) _ Ap — - Teex =i
AP AP ({V‘Z g keX %k }iEU) (313)

KeyGen, (MK, AP, (M, p)) — SKk. The key generation algorithm for the
authority k takes as input the master key MKy, the public key PK and an LSSS
access structure (M, p), where M is an [x n matrix on Z, and p is a function
which associates rows of M to attributes. It chooses uniformly at random a
vector ¥y, € Z, such that vk 1 = ai. Then computes the shares Ay ; = My ;U
for 1 <4 <1 where My ; is the i-th row of M. Then the private key SKj, is:

SKk = {Kk‘,l = Vp?);)z = ngEX Zk,p(i) } (3.14)
1<l

Encrypt(m, S,PK) — CT. The encryption algorithm takes as input the public
key, a set S of attributes and a message m to encrypt. It chooses s € Z,
uniformly at random and then computes the ciphertext as:

CT=(S,C" =m-(Y)*,{Ci = (T1)* }ics) (3.15)

Decrypt(CT,{SKg}rex) — m’. Theinput is a ciphertext for a set of attributes
S and an authorized key for every authority. Let (M, p) be the LSSS associated
to the keys, and suppose that S is authorized. The algorithm finds w; € Zp,7 € I
such that
> Mwi=ar VkeX (3.16)
il
for an appropriate subset I C S. To simplify the notation let z; := [],cx 2k.i,
the algorithm then proceeds to reconstruct the original message computing:

C’/
m =
[Licr e(rex Kr,ir Coay)™
m - (e(g, g)>orex)"

2k.i W
Hie[e (HkGX gzp(i) , (gzp(i))s)

m:- e(gvg)s(zkex k)
6(979)321@(Dier Wikk,i

« mee(g g)Erexen)
e(g, g)*orex @)

*

Where = follows from the property 1)

Note that once the user has obtained the keys from every authority they can
multiply these all together and store only SK = {Ki =[lrex Kk»i}1<z'<l since
this is all they need to perform the decryption, so actually only a key of size [

is needed, hence the scheme is very efficient in terms of key-size.

38 CHAPTER 3. MA KP ABE

3.4.3 Security

The scheme is proved secure under the ABDH assumption in the selective set

security game described in Definition Recall that every authority but one is

supposed curious (or corrupted or breached) and then the attacker has access to

their master keys and so is able to issue even keys that have enough clearance for

the target set of attributes, while the honest authority issues only unauthorized

keys. Thus if at least one authority remains trustworthy the scheme is secure.
The security is provided by the following theorem.

Theorem 3.2. If an adversary can break the scheme, then a simulator can be
constructed to play the Decisional ABDH game with a non-negligible advantage.

Proof. Suppose there exists a polynomial-time adversary A, that can attack
the scheme in the Selective-Set model with advantage e. Then we claim that
a simulator B can be built that can play the Decisional ABDH game with
advantage €/2. The simulation proceeds as follows.

Init The simulator takes in a ABDH challenge 7 = (g, g% ¢, g%, ¢%), Z. The
adversary gives to the simulator the challenged set of attributes S, and chooses
the honest authority kg € X, where X is the set of authorities.

Setup The simulator chooses random 7, € Z,, for k € X \{ko}, sets ap, = —ry,
for k € X\ {ko} and implicitly sets a, = ab+ >";cx\ 10} Tk by computing:

Yio = €(g,9)™0 = e(g°, ¢")e(g, g)>+ex o) T (3.17)
Vi =elg,9)™ =elg,9)™™ Vke X\ {ko} (3.18)

Then it chooses z,’” € Zp uniformly at random for each ¢ € U, k € X and sets
the public parameters as:

N 519
Ty = g for k # ko (3.20)
And the authority parameters as:
1
Vit = grot €S (3.21)

(gb)*oi ifig¢S

Vi = gk for k # ko (3.22)

The simulator can now pass the master keys of the non-honest authorities, and
every public and authority parameter to the adversary.

Then it proceeds to simulate the collaborative steps of the scheme. To
formalize this let us introduce an ordering function ¢ : X — {j: 1 <j <|X|}
that simply specifies in which order the authorities collaborate (that is if (ko) =

3.4. COLLABORATIVE MULTI-AUTHORITY KEY-POLICYATTRIBUTE-BASED ENCRYPTION39

1 then the honest authority begins the collaboration). Then the collaborative
steps of the public parameters (for ¢ € U) are computed as:

(h) e(ga7gb)e(g’g)HkEan(k)>hTk if w(ko) <h
Y= Mt n e . (3.23)
e(g,g)” Hrexvi<h otherwise
g _ [hexvwznsin it i ¢ S A (ko) < (3.24)
’ QH’“EX:W’“)S"Z,’“*i otherwise ’
o
Weexwm<n ki if i d SAU(kn) < h
v _ (g;)% ifi¢ S AY(k) < (3.35)

gkexivsn . otherwise

Using the previously introduced notation z; := [[,c x 2} ;, for h = |X| we have
the complete public key:

Y =e¢(g.9)" (3.26)
2 ficS
rofo i o
g% ifi¢ S
1
27/; .f .
v, — gL ifieS (3.28)
gbzi if 1 ¢ S

Phase I In this phase the simulator answers to private key queries made to
the honest authority ko. The simulator has to compute the Ky, ; values of a
key for an access structure (M, p) with dimension [x n that is not satisfied by
S. Therefore for the property of an LSSS it can find a vector @ € Z; with
w1 = 1 such that

M;i=0 Vi such that p(i) € S (3.29)

Then it chooses uniformly at random a vector v € Zj and implicitly sets the
shares of ok, = ab+ 3 jc x\ (k) Tk S

Akoyi = ZMi,j(b”j + (ab+ Z T — bur)u;) (3.30)
i=1 ke X\{ko}
Note that Ag,i = 2271 M; jw; where wj = bvj + (ab + 35, x\ (ko) T — bV1)1;

thus wy = buy + (ab+ ZkeX\{ko} rp —buy)l =ab+ ZkeX\{ko} T = Qg, so the
shares are valid. Note also that from (3.29) it follows that

Akg,i = ZMi,jbvj + ZMi,juj(ab + Z e — bvy)
Jj=1 Jj=1 keX\{ko}

=b> M; v; Visuch that p(i) € S
j=1
Thus if ¢ is such that p(i) € S the simulator can compute

n v
Zi=1 Mijvj Mg,

Kko,i = (gb) (4 =g °r®

40 CHAPTER 3. MA KP ABE

Otherwise, if 4 is such that p(i) ¢ S the simulator computes

U My (v —vyuy) Yioq My juy i1 My juj Spex\{kg} "k
Py 27 1 P
Ki,i=9 p(3) (9%) p(3) (g?) p(3)
YT M, j(vj—viug) ab¥T 4 M, ju; i1 My juj TkeX\{kg} "k
bz/ . bz! bz’
=g p(4) g p(%) q p(%)
i1 M (bvi+(ab+ e x\ (ko) "k —PV1)Yy)
bz’
=g p(4)
Akq,i
=g Zp(i)

Where the last equality follows from z,;) = bz’p P
Note that the adversary has the master keys of the other authorities, so they
can create any other private key.

Challenge The adversary gives two messages mg, m1 to the simulator, that
flips a coin p and creates:
C'=my,-Z=m, e(g,9)" =m,Y*
Cri=(g°)0 =g™® ies

Where the equality = holds if and only if the ABDH challenge was a valid tuple
(i.e. Z is non-random).

Phase I During this phase the simulator acts exactly as in Phase L.

Guess The adversary will eventually output a guess p’ of p. The simulator
then outputs 0 to guess that Z = e(g, g)*® if ' = u; otherwise, they outputs 1
to indicate that they believes Z is a random group element in G,. In fact when
Z is not random the simulator B gives a perfect simulation so it holds:

1
Pr(B(7,Z = e(g,9)") =0] = 5 +e

On the contrary when Z is a random element R € Gy the message m,, is
completely hidden from the adversary point of view, so:

1

PrB(y,Z=R)=0] = 5
Therefore, B can play the decisional BDH game with non-negligible advantage
£, O

2

3.4.4 Remarks

This construction evolves from the previous scheme exploiting the collaboration
between authorities to improve the efficiency. This scheme needs fewer parame-
ters, since the collaboration permits to collapse the various public parameters in
a single public key, significantly reducing the length of ciphertexts. Moreover,
once all the single-keys have been obtained they may be collapsed into one:

YkeX Mk
SK = K; = [[Kii=gMexrem : (3.31)
kex 1<i<l

3.4. COLLABORATIVE MULTI-AUTHORITY KEY-POLICYATTRIBUTE-BASED ENCRYPTION41

This scheme requires that each authority uses the same LSSS matrix to
generate the single-key, but the assumption is not unreasonable since the matrix
is directly derived from the user’s clearance. So for the price of the collaboration
steps that weigh down the setup (a phase that has to be executed only once
when the scheme is used), and an additional parameter shared by authorities,
we obtain great improvement in the encryption, decryption and key-storage.

42

CHAPTER 3. MA KP ABE

Chapter 4

Format Preserving
Tokenization Algorithm for

Credit Cards

Credit cards are widely used in online shopping, and given the large amount of
threats that permeate the web their security is a major concern for millions of
people around the world. Tokenization allows users to make payments without
exposing the credit card directly, thus limiting the risks.

In this chapter an original tokenization algorithm is presented, that preserves
the format of the PAN and complies with the PCI standard, and its security is
proven.

This original work has been published in the Journal Applicable Algebra in
Engineering, Communication and Computing [5], a joint work with Dr. Ric-
cardo Aragona and Prof. Massimiliano Sala. The graduand proved the security
of the protocol, while the coauthors designed it and collaborated to translate
the proof to compliance with the industry standard.

4.1 Introduction

In recent years, credit cards have become one of the most popular payment
instruments. Their growing popularity has brought many companies to store
the card information of its customers to make simpler subsequent payments.
This need is shared by many other actors in the payment process. On the other
hand, credit card data are very sensitive information, and the theft of such data
is considered a serious threat.

Any company that stores credit card data aims to achieve the Payment Card
Industry Security Standard Council (PCI SSC) compliance. The PCI SSC is
an organization, founded by the largest payment card networks, which has de-
veloped several standards and recommendations. One of these is called the PCT
Data Security Standard (PCI DSS [79]) and its goal is to guarantee the security
of credit card data. PCI DSS requires that companies that handle payment
cards protect the data of the cardholder when these are stored, transmitted or

43

44 CHAPTER 4. TOKENIZATION

processed.

These stringent requirements led to consider a new method for storage and
transmission of the card information: instead of protecting the actual card
data, it is easier to remove them (when their storing is not requested) and
replace them with another value, called token. Tokens are alpha-numeric strings
representing the PAN (Primary Account Number) of a payment card, and may
have a similar format. In any case, from a token it must be infeasible (without
additional information) to recover the PAN from which it was generated. This
process is called tokenization. In [31], the authors present an interesting formal
cryptographic study of tokenization systems and their security.

In recent years, PCI SSC has drafted some guidelines to design a tokeniza-
tion solution [69] [78]. In [78], the following five types of tokens are described:
Authenticatable Irreversible Tokens, Non-Authenticatable Irreversible Tokens,
Reversible Cryptographic Tokens, Reversible Non-Cryptographic Tokens and Re-
versible Hybrid Tokens.

In particular, a reversible tokenization algorithm , i.e., providing the possibility
for entities using or producing tokens to obtain the original PAN from the token,
can be designed in three ways:

o Reversible Cryptographic, if it generates tokens from PANs using strong
cryptography. In particular, a mathematical relationship between PAN
and corresponding token exists. In this case, the PAN is never stored;
only the cryptographic key is (securely) stored.

e Reversible Non-Cryptographic, if obtaining a PAN from its token is only
by a data look-up in a dedicated server (called a Card Data Vault). In this
case, the token has no mathematical relationship with its associated PAN
and the only thing to be kept secret is the actual relationship between the
PAN and its token (e.g., a look-up table in the Card Data Vault).

e A reversible tokenization algorithm is called Hybrid if it contains some
features of both Reversible Cryptographic tokens and Reversible Non-
Cryptographic tokens. A typical situation of this type is when, although
there is a mathematical relationship between a token and its associated
PAN, a data look-up table must be used to retrieve the PAN from the
token.

The tokenization algorithm presented in this chapter is of the Reversible
Hybrid type, based on a block cipher with a secret key and (possibly public)
additional input. To fully appreciate the design and proposed proofs it is nec-
essary to analyse the PCI requirements in more detail.

The organization of this chapter is the following:

e In Section some PCI requirements for a tokenization algorithm ([69,
78]) are analysed.

e In Section the tokenization algorithm is described in detail;

e In Section [£.4] the security of the algorithm defined in Section is proven
in a very general scenario, which would imply that the algorithm satisfies
most requirements present in Section[4.2] More precisely, the tokenization
algorithm is proven IND-CPA secure.

4.2. BACKGROUND: REQUIREMENTS OF THE STANDARD 45

e In Section an instantiation of the algorithm is given, considering con-
crete cryptographic primitives and fixing PAN length, and security and
efficiency are analysed in this real-life application.

4.2 Background: Requirements of the Standard

In every industry the presence of a standard allows multiple parties to create
devices compatible one with another, and security standards guarantee that
some general measures are adopted and makes it easier to evaluate the safety
of products and services. Thus every innovation that seeks direct applications
in any industry should comply to the standard guidelines.

For this very reason the main requirements of PCI DSS for tokenization
algorithms are presented here. Note that the first two requirements are not
linked to security:

e Although tokens can enjoy a variety of formats, the most convenient is
probably the same format of the PAN itself, since in this case a token can
move inside a payment network and also be used as a payment token (for
a definition of a payment token see p. 13 in [34]). But trying to create a
token by a direct encryption of the PAN there are several problems, since
the output of the encryption may not have the correct format. Besides,
keep in mind that PCI requests the use of standard encryption algorithms,
and this rules out the creation of ad-hoc cryptographic primitives. So the
problem becomes designing algorithms that preserve the message format,
the so-called Format Preserving Encryption (FPE) [14]. In literature,
there are some interesting examples of algorithms that solve such problem
[15] 24, 40, 62, &0).

e It must be possible to obtain different tokens from a single PAN (even one
per transaction, if necessary), so the tokenization algorithm will require
additional inputs, such as, a transaction counter, an expiration date, etc.

Concerning security issues, there are many requirements that an algorithm
has to satisfy in order to meet PCI compliance. The main requests are:

Al “ the recovery of the original PAN must not be computationally feasible
knowing only the token or a number of tokens.” (p. 6 in [69]).
In other words, even if an attacker has managed to collect many tokens,
all coming from the same PAN, possibly even on a long period of time,
they must be computationally unable to retrieve the corresponding PAN.
This is a form of ciphertext-only attack.

A2 7 access to multiple token-to-PAN pairs should not allow the ability to pre-
dict or determine other PAN wvalues from knowledge of only tokens.” (p.
6 in [69] and GT4 in [78]).
This is a known-plaintext attack.

A3 7 Tokens should have no value if compromised or stolen, and should be
unusable to an attacker if a system storing only tokens is compromised”
(p. 6 in [69]).
Since this sentence comes immediately after A1l and A2, which aim at

46 CHAPTER 4. TOKENIZATION

preventing PAN recoveries, it is reasonable to take the goal of this rather
cryptic sentence to be the prevention of unauthorized token generation.
In other words, an attacker possessing many tokens (but not knowing the
corresponding PANs) must be unable to generate even one other valid
token. This condition is drastically different from A1, because here it is
not required for the attacker to be able to deduce any of the involved
PANS.

A4 7 Converting from a token produced under one cryptographic key to a token

produced under another cryptographic key should require an intermediate
PAN state—i.e., invocation of de-tokenization.” (GT 11 in [7§]).
Since the system presented here uses a block cipher with additional (pub-
lic) input, the interpretation could be that for an attacker that gets a
token obtained by a PAN, a secret key and an additional input, it must
be infeasible to compute any token corresponding to the same PAN (and
same additional input) but to a different key.

A* ” The recovery of the original PAN should be computationally infeasible
knowing only the token, a number of tokens, or a number of PAN/token
pairs” (GT 5 in [78]).

This is a repetition of A1 and A2.

To prove that this tokenization algorithm satisfies Al, A2 and A3,it will
be proven in Section [£.4] that it satisfies an even stronger condition, under the
assumption of the strength of the core primitive used to define it (a block cipher).
Requirement A4 requires a separate proof in Section [4.4

4.3 Algorithm

A card number is formed by three concatenated parts: the IIN (also called BIN),
that identifies the card Issuer, a numeric code, that identifies the account, and
a check digit. It is possible to assume to replace the IIN with another fixed code
(called a "token BIN” in [34], p. 14), which marks the resulting card number as
a token, so the first segment will be ignored in the description of the algorithm.
Also the check digit can be computed normally, so it can be discarded too in
the forthcoming formal description of the algorithm.

Assume that it is possible to invoke the encryption function of a block cipher
FE, just by sending a plaintext and obtaining a ciphertext, with a key that is
kept somewhere protected and that its knowledge is not needed. Let K denote
the keyspace of F and let K € K be a key, so that E can be seen as a function
E : K x (F3)™ — (F2)™ for some m € N. With K fixed, F is a permutation
acting on the set (F2)™ of the m-bit strings. With standard block ciphers
m = 64 or m = 128. Assume as usual that the set of its encryption functions
forms a random sample of the set of permutations acting on (Fy)™.
For strings an example of the notation used is |0110|2, where the index 2 denotes
that only symbols from {0, 1} are used, i.e. remainders of division by 2.

The tokenization algorithm processes two inputs: a numeric code coming
from the PAN and an additional input.

e The caption numeric code will denote a string of ¢ decimal digits, with
¢ € N any agreed number, and the set of numeric codes is formally defined

4.3. ALGORITHM 47

as P :={0,1,...,9}*. Nowadays 13 < ¢ < 19 for numeric codes coming
from PANs [34], but no limitation is needed. Note that P is in obvious
bijection with the integer set {a € N | 0 < a < 10°}, and so a numeric code
can also be seen as a non-negative integer, but care has to be taken to pass
from one representation to the other. Let [y]; denote the representation
(string) of a positive integer y < b® in base b with s digits, where the most
significant digits are on the left.

For example, [12]2, = |12]10, [12]3, = |012|10 and [13]5 = |[01101],.

Then any positive integer X such that X < 10 can be easily converted
to [X]¢, € P. A bar will be used to denote the conversion from a string
to a number, like |12]|19 = 12 and |01100|; = 12.

e The role of the additional input is to allow the presence of different tokens
corresponding to the same PAN. It can be anything, such as a transaction
counter or an integer denoting the current time. Formally, it will be
identified as a binary string of finite but arbitrary length (as for example
the binary representation of a transaction counter). Let U be the set
containing all these strings, so that any v € U is implicitly meant to be
an additional input.

Let n := [log,(10%)] be the maximum number of bits required to represent
a number with ¢ decimal digits. Since most of the block ciphers used in real life
applications have a block-size of at least 64 bits, and for the maximum length
of a PAN £ = 19 we have n = 64, it is safe to assume that £ is such that n < m.
The second ingredient of the algorithm is f, a public function

FiUXP —s (Fy)™ " (4.1)

In other words, given an additional input v € U and a numeric code X € P
coming from the PAN, f returns a string of m — n bits.

The requirement on f is to be collision-resistant, that is, it must be computa-
tionally infeasible to obtain two distinct pairs (X, u1) and (Xs,us) such that
flu, X1) = f(ug,X2). This requirement compels the image space to have a
size large enough to prevent brute-force collision attacks. So in the case of
PAN tokenization only block ciphers with block size of at least 128 bits can be
considered, in order to have an image space of dimension at least 64 bits.

The purposes of this function f are the followings:

e to pad the input of the tokenization algorithm to match the block size of
the cipher;

e to allow the creation of multiple different tokens from the same PAN using
the same key, useful for example to change token for each transaction.

The output of f could be seen as a tweak in the context of Tweakable Encryption
[63]. An example for this f could be a truncated version of a cryptographic hash
function.

The third ingredient of the tokenization algorithm is a database stored se-
curely somewhere that contains a look-up table of PAN-token pairs. Once that
a token is generated, it is inserted in the table. However, to generate a new
token, it is needed to access the database only via a function check that checks
if the token is already stored and returns either True or False accordingly.

48 CHAPTER 4. TOKENIZATION

One of the goals of a tokenization algorithm is to obtain an integer with
¢ decimal digits starting from another integer with the same length. Since
n = [logy(10%)] < m, only a fraction of the output of E has to be considered,
in particular the n least significant bits of the output, and then this string will
be converted back to an integer. However, given that 10! < 27", this integer
could have £ + 1 decimal digits. To solve this problem it is employed a method
known as Cycle Walking Cipher [20], designed to encrypt messages from a space
M using a block cipher that acts on a space M’ D M, and obtain ciphertexts
that are in M.

Now all the elements have been given to understand the algorithm.

The Tokenization Algorithm T (K, X, u) executes the following steps:

Lot= f(u,X)|| [X]]

2. ¢:= E(K,t)

3. if (¢ mod 2™) > 10, then ¢ := ¢ and go back to step 2

4. token := [¢ mod 2"]%,

5. if check(token) = True, then u :=u + 1 and go back to step 1
6. return token

The correctness of Algorithm T is obvious, so the focus is now on termina-
tion.

At Step 3 it checks if (¢ mod 2") > 10°. Since z — E(K,x) is a random
permutation, c¢ is expected to resemble a random binary string in (F3)™. There-
fore, the number (¢ mod 2") is a random integer in {0, ...,2" —1}. Recall that
2n=1 < 10¢ < 2". Therefore, the condition at Step 3 is met with probability
0<p= 2712;7}0[< 1. Going back to step 2 another pseudo-random number
is computed and the probability that the condition of Step 3 is not satisfied is
again p. Since the two events can be considered independent, due to the pseu-
dorandomness property of E, the probability of the joint event goes down to p?,
and so on. Therefore, the probability that the algorithm remains stuck at Step
3 is negligible.

At Step 5 the algorithm checks if the new token is already present in the
database. If that is the case, u is increased to u 4+ 1. Note that the number
of possible tokens is significantly greater than the number of tokens in use, so
the probability it happens is small. Moreover the algorithm remains stuck only
if f(u',X) = f(uv' +1,X) and the tokens generated from (@, X) are already in
the database for every u < @ < u/, but this happens very rarely thanks to the
collision resistance of f.

For a more detailed discussion of the probability to meet the conditions at
Step 3 and at Step 5, see the instantiation of the algorithm given in Section

4.4 Proof of Security

In this section the algorithm previously defined will be proven secure in an
Indistinguishability under a Chosen-Plaintext Attack scenario, under the con-
dition that its core encrypting algorithm is secure in the same scenario. This

4.4. PROOF OF SECURITY 49

will guarantee in particular the security requirements Al, A2 and A3 recalled
in Then A4 will be proven separately.

An IND-CPA game for a tokenization algorithm T is defined analogously
to the IND-CPA game for a symmetric cypher (see [2.11]), where messages are
replaced by numeric codes and additional inputs, while ciphertexts are replaced
by tokens. So the adversary chooses two code/additional input pairs and tries
to distinguish which of these corresponds to the token returned by C. The
adversary is also able to request other tokens (corresponding to a polynomial
number of pairs), that may be chosen adaptively.

Definition 4.1 (IND-CPA for a Tokenization Algorithm). Let T(K, X, u) —
token be a tokenization algorithm that takes as input a key K, a numeric code
X € P and an additional input v € U, and returns a token token. An Indis-
tiguishability under Chosen Plaintext Attack (IND-CPA) game for T between
an adversary A and a challenger C proceeds as follows:

Phase I A chooses (X;,u;) and sends it to C, that responds with token; =
T (K, X;,u;). This phase is repeated a polynomial number of times.

Challenge A chooses (X, uy), (X7, u}) (with (X§, uf) and (X7, u}) never cho-
sen in Phase I) and sends them to C, that selects v € {0,1} at random
and computes token = T(K, X, u}), which sends to A.

Phase IT Phase I is repeated, with the obvious restriction that A cannot choose
(X, ug) or (X7, ui).

Guess A guesses v/ € {0,1}, and wins if v/ = v.

The advantage Adv’j of A winning the IND-CPA game for the Tokenization
Algorithm T is:
1
Adv?y = ‘Pr [V =v] - 2‘
T is said to be secure in a IND-CPA scenario if there is no probabilistic
polynomial-time algorithm A4 that wins the IND-CPA game with more than
negligible advantage.

Theorem 4.1 (IND-CPA Security of Tokenization Algorithm). Let T be the
Tokenization Algorithm described in Section [[.3, and let E be the block cipher
used in Step 2 of T. If E is secure in an IND-CPA scenario then T is secure
in an IND-CPA scenario.

Proof. Let C be the challenger in the IND-CPA game for E, and A be an
algorithm that can win the IND-CPA game for 7" with more than negligible
advantage e. Then a simulator S can be built that plays the IND-CPA game
for F by simulating an IND-CPA game for T" and interacting with .A.

In the phases I and II S has to answer to tokenization queries (X;, u;) made
by A. The function f is publicly known, so S may compute t; := f(u;, X;) ||
[71]; and queries C for the encryption of ¢;, obtaining ¢; in response. If (¢;
mod 2") > 10!, then S queries again C, this time requiring the encryption of
c;, repeating this passage until C answers with ¢; such that (¢; mod 2") < 10°
(which will eventually happen since ¢ — E(K, ¢) is a random permutation). At
this point S answers to the query of A with token; := [¢; mod 2"]}.

50 CHAPTER 4. TOKENIZATION

Observe that the ¢;s, and hence the token;s, will be distinct with high
probability, since f is collision-resistant, even if the X;’s are identical, as long
as the pairs (X, u;)’s are distinct.

In the challenge phase, S receives from A two pairs (X, ug), (X7, u}). S com-
putes t7 = f(uj, X7) || [X*;]3 for j € {0,1} and submits them to C for the chal-
lenge phase of the IND-CPA game for E. C chooses at random v € {0, 1} and will
respond with the challenge ciphertext c. If (¢ mod 2") > 10!, S queries C requir-
ing the encryption of ¢, repeating this passage until token := (¢ mod 2") < 10°
(which will eventually happen since ¢ — E(K, ¢) is a random permutation). At
this point S sends token to A as the challenge token of the IND-CPA game for
T.

Eventually A will send to S its guess v/ for which code has been tokenized
into token. S then forwards this guess to C. It is clear that A guesses correctly
if and only if S guesses correctly since the simulation is seamless.

Note that during the Challenge phase S is not allowed to send to C messages
submitted during Phase I, and in Phase II § is not allowed to send to C the two
messages submitted in the Challenge phase. Since the same restriction applies to
the interaction between A and S, problems may arise only when S queries for the
re-encryption of ciphertexts to meet the condition (¢; mod 2") < 10¢. However
the number of queries is polynomial and the encryption function ¢ — E(K,c)
is a random permutation, so the probability of such a collision is negligible.

Finally, throughout the simulation Step 5 of the algorithm has been ignored,
always supposing that the check function outputs False (to be coherent the check
function has to only check the simulated tokens already generated by S).

In phases I and II, when check(token;) = True, S is able to follow the
algorithm properly adjusting u; and querying C.

For the challenge phase instead we have to hope that check(token) = False,
which happens with non-negligible probability pg, (this probability depends
on the number of queries ¢; made in Phase I). When check(token) = True,
we cannot simulate correctly, so & may directly guess randomly, and so the
probability of guessing is % in this case. Thus the advantage ¢’ of S is:

) 1 1\ 1
€= \Pu |5 T€ +(1—Pq1)§ ~35

which is non-negligible since € and p,, are non-negligible. Thus S has a non-
negligible advantage winning the IND-CPA game for FE. O

As explained in Chapter[2] an encryption algorithm which is IND-CPA secure
is also secure against a known-plaintext attack, and even more so against a
ciphertext-only attack. Similar results will now be shown for this tokenization
algorithm by proving some of the requirements presented in Section [4.2

Corollary 4.1 (A1-A2-A3). Let T be the Tokenization Algorithm described in
Section[[.3, and let E be the block cipher used in Step 2 of T. If E is secure in
an IND-CPA scenario then T satisfies A1, A2 and A3.

Proof. For each requirement, suppose that it is not met, then it is possible to
build an adversary that wins the IND-CPA game.

A1 If T does not satisfy Al then an attacker A can obtain a PAN from a token
with enough tokens corresponding to the same PAN. So suppose that A

4.4. PROOF OF SECURITY 51

has access to an algorithm B that takes in input a polynomial number N
of tokens and with a non-negligible probability outputs

e X if all the N tokens correspond to X;

e False, otherwise.

A tries the IND-CPA game for T' and chooses N —1 pairs (X, u;), with the
same X, and sends them to C, who responds with token; = T(K, X, u;).
Then A passes to the Challenge Phase and chooses u§ and (X7, u7), with
X7 # X and sends (X§,uf), with X = X, and (X7, u}) to C that selects
v € {0,1} at random and computes token = T'(K, X, u}). Then C sends
token to A.

Then A runs B passing as inputs {tokeni}lgiSN,l and token, obtaining
with non-negligible probability e either Xj = X or False. So B is able to
invert the tokenization if and only if ¥ = 0 and so A can guess v and win
the IND-CPA game with the same non-negligible probability e.

A2 If A2 does not hold, then A has access to an algorithm B that takes two
inputs (a polynomial number N of token-to-PAN pairs and a token), and
returns the PAN corresponding to the token with non-negligible probabil-
ity. Thanks to the conventions in Section the algorithm inputs can
be seen to be actually N pairs of type (X, token;) (plus the single token
token*) and the algorithm output to be the X* € P corresponding to
token™.

The adversary tries the IND-CPA game for T by choosing N random
(X;,u;) and obtaining from C their corresponding tokens token;.

Then A passes to the Challenge Phase and sends two random pairs:
(X§,ud) and (X7,u3). The Challenger returns the token token corre-
sponding to one of these.

Then A runs B passing as inputs the pairs (X;, token;) and token, ob-
taining with non-negligible probability the correct X € {X¢, X1}, that A
uses to guess v, thus winning the IND-CPA game.

A3 If A3 does not hold, then it may be assumed that A has access to an
algorithm B that takes as input a polynomial number IV of tokens and one
additional input »*, and that returns a pair (X, token*), where token* is
the token corresponding to (X, u*) with non-negligible probability.

The adversary tries the IND-CPA game for T" by choosing N random
(X, u;)’s and obtaining from C' their corresponding tokens token;’s. Then
A chooses a u* € U and passes it along with these tokens to B, obtaining
X and token*.

Then A passes to the Challenge Phase and sends the pair (X,u*) and
a random pair. The Challenger returns the token token corresponding
to one of these. The adversary easily wins the game just by checking if
token = token®.

O

Theorem 4.2 (A4 for Tokenization Algorithm). Let K, K* € K, X € P and
u € U. Knowing only u and the token token = T(K,X,u), it is possible to
compute token* = T(K™*, X, u) only with negligible probability.

52 CHAPTER 4. TOKENIZATION

Proof. The two tokens come directly from the encryption of the same string
M = f(u, X) || [X]% with two different keys, except when the unlikely condition
in Step 3 is met. So suppose that, with non-negligible probability, A is able to
compute E(K*, M) from E(K,M). This means that for a large portion of
the plaintext space the two encryption functions are closely correlated, since
from one it is possible to deduce the other without the need for decryption/re-
encryption. This contradicts the first assumption on F, that is, that the set of
its encryption function forms a random sample of the set of permutations acting

on (Fy)™. O

Remark 4.1. The requirement GT5 in [78] “The recovery of the original PAN
should be computationally infeasible knowing only the token, a number of tokens,
or a number of PAN /token pairs” directly follows from Al and A2.

Note that throughout the proofs prefixes are supposed independent from
the code to be tokenized, thus they might be selected at random from a set of
valid prefixes and still obtain valid tokens. In the context of PAN tokenization,
the prefix is the token BIN, that is in fact independent from the central digits
of the PAN and only used to route the token to the correct card issuer for
detokenization. Also in this model BINs has not been considered since they are
publicly available and it is not unreasonable to derive them from token BINs and
vice-versa, without altering the probability of succeeding in a sensible manner.

4.5 A practical example

Tokenization is a problem of practical interest, so to conclude the chapter an
example of an instantiation with concrete cryptographic primitives and fixed
length of the PAN is given, and its efficiency and security will be analysed.

Consider PANs with length ¢ = 16, so n = 54, take AES-256 as the cipher
E, and as the function f take SHA-256 truncated to 128 — 54 = 74 bits.

4.5.1 Security

As explained in Section [2.2.2) SHA-256 can be considered collision-resistant and
so it satisfies the purposes of the tokenization algorithm (see, for instance, Step
5 in Section . Again, as stated in Section AES-256 can be consid-
ered IND-CPA secure and so it satisfies the hypothesis of [4.1] and and the
randomness requirements of

4.5.2 Efficiency
The probability that the condition at Step 3 is met is

254 _ 1016
p= s ~ 0445 (4.2)

The distribution is geometric, so the expected value of the number of iterations
is:

By =» kp*~'(1-p) ~1.801 (4.3)
k=1

thus on average less than 2 executions of AES-256 are needed to get to Step 5.

4.5. A PRACTICAL EXAMPLE 53

To quantify the probability to meet the condition of Step 5 the size of the
database has to be estimated. A very generous upper bound (given the settings
that a PAN corresponds to a single client of a Bank) is 10° PANs and 10%
tokens per PAN (generating a new token for every transaction) for a total of
10'3 entries in the database. Considering that there are 106 —1 possible tokens,
the probability to meet the condition is:

1013

= ~0.001
1016 — 1

p

Again, the expected value of the number of iterations of the algorithm is:
oo
Ex =Y kp*~'(1 - p) = 1.001.
k=1

thus very rarely more than one execution of SHA-256 is needed.
Finally the expected value of the total number of executions of AES-256 is:

EHAE# ~ 1.803.

thus on average less than 2 executions of AES-256 are needed to get to Step 6,
making the algorithm very efficient.

54

CHAPTER 4. TOKENIZATION

Chapter 5

The BIX Protocol and
Certificates: Decentralizing
Certificate Authorities

Digital certificates are the very foundation of online security, assuring the in-
tegrity of digital communications. Nowadays however Internet relies on trusted
third parties to create and guarantee the validity of these certificates, and this
centralization may be hazardous in case of large-scale attacks.

In this chapter a distributed protocol is presented, that decentralizes the
role of certificate authorities, and its security will be proven in multiple attack
scenarios.

This original work has been presented at the NATO CCDCOE conference
CyCon held in Tallinn, in May-June 2017, and published in the proceedings [57].
It is a joint work with Dr. Federico Pintore, Dr. Giancarlo Rinaldo and Prof.
Massimiliano Sala. The graduand identified the attack scenarios and proved
the security of the protocol against static adversaries and collaborated with
the coauthors finding the viable attack. Moreover the coauthors helped in the
analysis of the protocol, refined and gave structure and substance to the paper.

Introduction

Blockchain is an emerging technology that is gaining widespread adoption to
solve a myriad of problems where the classic centralized approach can be sub-
stituted by decentralization. Indeed, centralized computations, albeit efficient,
are possible only if there is a Trusted Third Party (TTP) that everybody trusts.
Nowadays this is sometimes felt as a limitation and a possible vulnerability.
The general idea behind blockchain technology is that blocks containing in-
formation are created by nodes in the network, and that these blocks are both
public and cryptographically linked, so that an attacker should be unable to
modify them without the users noting the tampering. Also, the information
contained in any block comes from the users and any user signs his own in-
formation cryptographically. Some examples of blockchain applications can be

%)

56 CHAPTER 5. BIX

found in [86], [6], [35].

A very sensitive security aspect which is usually kept centralized is the is-
suing of digital certificates, which form the core of a Public Key Infrastructure
(PKI). A certificate associates at least a cryptographic public key to some iden-
tity and is digitally signed by a TTP. An example is given by X.509 certificates
[28], mostly containing RSA public keys, which are widely used in the Internet
for establishing secure transactions (e.g., an e-payment with an e-commerce site
like Amazon). Since every user of a PKI must trust the Certification Authority
(CA), which acts as a TTP, the identity of a web site is checked by verifying
the CA’s signature via the CA’s public key. Note that the identity checking is
often performed via a hierarchy of CA’s.

In a scenario of (possibly state-sponsored) large-scale cyber attacks, Certifi-
cate Authorities may become primary targets because of their strategic role in
guaranteeing authentication and security of most of the web resources. Unfor-
tunately, their role becomes a liability if they are compromised in the attack,
since it becomes impossible for the attacked infrastructure to distinguish fake
servers from real ones. Therefore, there is the need of a PKI protocol which is
more resilient to wide cyber attacks and which does not introduce single points
of failure, such as the CAs.

This is exactly the idea behind the so-called BIX certificates. The BIX
protocol aims to distribute the role of the CAs, while preserving the security
features. Indeed, the BIX protocol is designed with a blockchain-like structure
that provides integrity to data, showcasing the possibility of a distributed PKI. A
certificate is a block in a blockchain and a valid user interacting properly with the
protocol will be able to attach their certificate to the blockchain. The protocol
works with very few assumptions on the underlying network, but the original
paper by Sead Muftic [63] focuses on the innovative ideas and the technology
behind them, leaving formal proofs of security as a stimulating open research
problem. In this chapter, after a recapitulation of the BIX protocol, its security
is proven, providing suitable formal models of the threat scenarios.

To be more precise, the first attack scenario considered supposes that an
attacker tries to attach a new certificate to a pre-existing certificate chain without
interacting properly with the protocol. This is equivalent to having a malicious
user trying to forge a valid certificate for themself (or forge a certificate to
assume the identity of an innocent user). The second attack scenario considers
that an adversary tries to modify an existing chain of certificates, and distribute
it as a valid chain. Finally, an attack is identified where two colluding members
of the BIX community can alter an existing chain of certificates.

In Section [5.1] a sketch of Muftic’s scheme is provided, highlighting its char-
acteristics that are instrumental in its security.

In Section [5.2] and Section the threat scenarios and their actors are
formalized, stating their capabilities and goals, in order to build realistic models
of the attacks, suitable to undergo formal analyses.

In Section [5.4] an attack on the BIX protocol is shown, which can alter an
existing chain when two members of the BIX community collude.

Finally, in Section draw our conclusions investigating BIX protocol’s
resiliency against large-scale cyber attacks.

5.1. BACKGROUND: A DESCRIPTION OF BIX CERTIFICATES 57

5.1 Background: A description of BIX certifi-
cates

In this section BIX certificates are described, alongside the structure containing
them, called the BIX Certification Ledger (BCL). BIX certificates share many
similarities with X.509 certificates, for a detailed comparison see [63], Section
2.1; in this section only the characteristics instrumental for the security proofs
are highlighted.

5.1.1 Bix Certification Infrastructure (BCI)

Muftic bases his protocol on the BIX Certification Infrastructure (BCI), that
is the collection of all BIX certificates issued to BIX members. Because there
are no third parties involved, the entities managing certificates are BIX mem-
bers themselves. This means that members have two roles: as users of the
infrastructure and also as certifying and validation authorities. The BCI is a
public certificates ledger. It is a double-linked linear list of certificates without
branches. Each certificate points to the first previous certificate (“backward”
link) that belongs to the user that issued the certificate, and it also points to
the next certificate (“forward” link) that was issued by the user that owns this
certificate. The BCI starts with the Root Certificate, that is issued by the entity
initiating the BCI (equivalent to the genesis transaction in the Bitcoin system).
When the Root Certificate is generated, the first user may be registered and
their certificate will be issued by the BCI’s initiating entity. The last BIX mem-
ber who joined the system is added to the “tail” of the BIX Certification Ledger
and they will be the issuer of the next certificate. The BIX Certificates Ledger
can be traversed backwards (to reach the Root Certificate) and forward to find
the Issuer for the next certificate. The BCI requires as the operational prereq-
uisite a broadcast messaging system with instantaneous delivery of messages.
This system is not a third party, as it only passively distributes BIX certificates
and (for addressing purposes) verifies that the BIX Identifier of the new user is
unique. The same system is needed for distributed file storage [86]. In Muftic’s
implementation of the BCI, the secure IM protocol is used for this purpose[87].

5.1.2 The Chain of Certificates

The BCL collects all the BIX certificates filling a double-linked list, in which
every certificate is linked to the previous and the next. Let the BCL be a
“chain of certificates” CC comprised of n certificates, that may be considered a
sequence:

CC:coy...,Cp_1.

To simplify the notation, let A be a function returning the length of a chain,
that is A(CC) = n. Also, || denotes string concatenation.

Remark 5.1. The owner of the certificate ¢; has a double role: a user, with the
certificate ¢; that certificates their identity; a issuer, providing the certificate
¢i+1 to the next user. In this way there is no need of a CA (Certification
Authority).

58 CHAPTER 5. BIX

Header(H;)
Sequence number
Version, Date

Issuer(S;_1) Subject(S;) Next Subject(Si+1)
Bix ID of Si,1 Bix ID of Sl Bix ID of Si+1
Public key (PK;_1) | Public key (PK;) Public key (PK;4+1)
Issuer Signature Subject Signature Next Subject Signature

Backward cross-signature
Signature of (H;||h(S;—1)]|h(S;)) by SK;—1
Signature of (H;||h(S;—1)[|R(S;)) by SK;

Forward cross-signature
Signature of (H;||h(S;)||h(Si+1)) by SK;
Signature of (H;||h(S;)||h(Si+1)) by SK;q1

Table 5.1: Structure of a BIX certificate

To each certificate corresponds a user having a key-pair private key/public
key, denoted with SK; and PK;. The certificate cg is called the root certificate
and the certificate ¢,,_1 is called the tail certificate.

In this thesis a certificate ¢; for ¢ = 1,...,n — 2 is defined by the following
fields (and subfields), while the complete list can be found in [63]. Root and
tail certificates are described later on.

Header (H;) in this field there is general information such as timestamps and
protocol version, but the relevant information for the present analysis is
the Sequence number i, that is the identification number of the cer-
tificate that is also the position with respect to certificates of other BIX
members.

Subject (S;) The Subject contains the personal information that identifies
the i-th user (.9;), in particular

Subject BIX ID This is the unique global identifier of the user who
owns the certificate. In particular, all BIX ID’s contained in the
Subject fields of a valid chain are distinct.

Public key The cryptographic public key of the owner of the certifi-
cate PK;.

Subject signature It contains the signature over the Subject attributes via
the private key SK; associated to PK;.

Issuer (S;—1) The Issuer field enjoys the same attribute structure of the
Subject field, but it identifies the BIX member who certified 5;, i.e.,
it contains the Subject attributes of ¢;_1, which identifies S;_1 (the pre-
vious member in the BCI).

Issuer signature This field contains the signature over the Issuer attributes
created by the Issuer, that is, performed with the private key SK;_; asso-
ciated to PK;_1.

5.1. BACKGROUND: A DESCRIPTION OF BIX CERTIFICATES 59

Backward cross-signature The Backward Cross_Signature contains two
signatures, one created by the Issuer S;_; and the other created by the
Subject S;, over the same message: the concatenation of the Header H;,
the hash of the Issuer h(S;_1) and the hash of the Subject h(S;).

Note that this field guarantees validity of the Header and binding between
the Subject and the Issuer.

Next Subject (S;1+1) The Next_Subject field enjoys the same attribute struc-
ture of the Subject field, but it identifies the BIX member who is certified
by S;, i.e., it contains the Subject attributes of ¢;;1, which identifies .S; 1
(the next member in the BCI).

Next Subject signature This is the same field as Subject signature, except
it is created by the Next Subject over its own data, that is, performed
with the private key SK;;1 associated to PK;11.

Forward cross-signature The Forward Cross_Signature contains two sig-
natures, one created by the Subject S; and the other created by the Next
Subject S; 1, over the same message: the concatenation of the Header H;,
the hash of the Subject h(S;) and the hash of the Next Subject h(S;41).

Note that this field guarantees binding between the current user acting as
an issuer and the next user (to whom the next certificate ¢;11 is issued)

Concerning the special certificates:

e The certificate ¢y, called root certificate, has the same structure of a stan-
dard certificate, but the Issuer field and the Subject field contain the
same data. Indeed, the root user Sy is not a normal user but rather an
entity that initiates the specific BCL.

e Also the certificate ¢,,_1 is special. Although it has the same structure
of a standard certificate, some fields are not populated because the next
user is still unknown: Next_Subject , the Next_Subject signature, the
Forward Cross_Signature . However, note that it is regularly published
in the chain and considered valid by other users.

The last user that owns the last certificate, ¢, will then become the
issuer for the next certificate (see [5.1)).

In the BIX protocol a new user requests the issuing of a new certificate
through a query to the BIX community, which is processed only by the user
that owns the tail certificate of the chain. Furthermore, when two users want
to perform a secure communication/transaction they exchange their certificates
(contained in the same chain) and verify them.

1. Certification request.

(a) Let Bob be a new user, who will be S,,, that wants a certificate, so
registers himself to the system (BCI). The system provides him the
BIX-ID. Then, the user creates his private and public key, creates
and signs his Subject and sends both as a request to the system.
Since he does not know who is the last user, he sends his request to
every user of the BCL.

60 CHAPTER 5. BIX

(b) Let Alice be the owner of the tail certificate ¢,,—1, namely S, _1, so
she processes this request. That is, she fills the Issuer field and
the Issuer Signature field of ¢,, while creating also an intermediate
version of the Backward Cross_Signature field with her private key
SKy—1. That is, she signs (Hy||h(Sn—1)||R(Sn)) (where ”||” is con-
catenation of strings) and puts it into c¢;,.

(¢) At the same time, she updates her BIX certificate ¢,—1 filling the
Next_Subject field and the Next Subject Signature field using the
data of user S,,. Moreover, she creates an intermediate version of the
Forward _Cross_Signature field by signing it with her private key.
That is, she signs (Hn_1||h(5n_1)|\h(5n)) with SK,,_1.

(d) Now S,,_1 sends three certificates, cg, ¢,—1 and ¢, to the new user
Sy, through the system (BCI). Observe that the two certificates ¢, —1
and c¢,, are still incomplete and that ¢, will be the new tail certificate.

(e) User S,, (Bob) receives these certificates, completes the counter-
signature process by performing two digital signatures and adding
them, respectively, to the Forward Cross_Signature of ¢,_; and
the Backward_Cross_Signature of c,.

(f) User S, requests the chain CC and checks its integrity, by either
traversing it forwards from ¢y to ¢,_; or backwards from n — 1 to
0 using c¢,—1. If CC passes the integrity checks, he broadcasts ¢,
and ¢,.
At the same time, he stores CC locally for future use.

2. Certificate exchange.
When a user S; wants to perform a secure communication/transaction
with a second user S;, user S; checks the certificate c; in two steps:

(a) verifies the Subject signature, the Issuer signature and also the
Backward_Cross_Signature of the certificate c;.

(b) S; verifies that ¢; is in CC.

For further details about the BIX protocol see Section 3.3 of [63].

5.2 Chain Lengthening Attack Scenario

The first attack scenario considered supposes that an attacker tries to attach
a new certificate to a pre-existing certificate chain without interacting properly
with the last user of the chain. More precisely, the attacker A should not interact
with the owner of the last certificate in the chain according to the BIX protocol.

Definition 5.1 (Static Chain Lengthening (SCL) Game). In this game an ad-
versary A aims to add a certificate to the tail of a certificate chain CC.
It proceeds as follows:

e The challenger C builds a certificate chain CC according to the BIX proto-
col with root certificate ¢y, using a hash function h and a digital signature
scheme DSS.

e (C passes to A the complete chain CC together with h and DSS.

5.2. CHAIN LENGTHENING ATTACK SCENARIO 61

e C builds an honest verifier V that given a certificate ¢* and a certificate
chain CC*, outputs True if the root certificate of CC* is ¢y and c¢* is a
valid certificate of CC*, False otherwise.

e A tries to build a forged certificate chain CC’, A(CC") = n + 1, such that:

— CC’ truncated before the last certificate ¢/, is identical to CC, if the
Next_Subject and Forward Cross_Signature fields of the second-
to-last certificate of CC’ are not considered (i.e. CC’can be obtained
adding a certificate to CC and completing ¢, accordingly);

— user S,,_1 did not take part in the creation of ¢/, and so in particular
she did not perform the Forward Cross_Signature of ¢,,_; and the
Backward Cross_Signature of ¢} ;

— V(c/,CC") = True where ¢}, is the last certificate of CC'.

A wins the SCL game if CC is successfully lengthened, i.e. if A builds a CC’
that satisfies these last three points.

Definition 5.2 (Security against SCL). The BIX protocol is said secure against
static chain lengthening if there is no adversary A that in polynomial time wins
the SCL game [5.1] with non-negligible probability.

Theorem 5.1. Let A be an adversary that wins the SCL game with proba-
bility €, then a simulator S might be built that, with probability at least €, either
solves the Collision Problem [2.9, with L the set of all possible Subject fields,
or wins the Digital Signature Security game [2.7

Proof. Let DSS be the digital signature scheme and h the hash function used in
the BIX protocol, and L C (F5)! be the class of all possible Subject fields. We
will build a simulator S that simultaneously plays the Digital Signature Security
(DSS) game and tries to solve an instance of the Collision Problem for
L. Tt does so by simulating an instance of the SCL game and exploiting A.
It will be proven that if A wins the SCL game then either S finds a solution for
the Collision Problem or S wins the DSS game.

S starts taking as input an instance (h,L) of and a public key PK*
given by the DSS challenger (i.e., the output of the first phase of for the
scheme DSS). S then proceeds to build a certificate chain CC* following the
BIX protocol. S builds all but the last certificate normally, running the KeyGen
algorithm of the DSS to choose public keys for the Subject fields, so the cor-
responding secret keys are available to sign these certificates properly. Then
let n = A(CC*) > 2 (i.e. the number of certificates contained in CC*), ¢ its
root certificate and ¢} _; the last one. S sets the Subject of ¢),_;, that will be
denoted by S¥_,, such that its public key is PK*, then it queries the challenger
of the DSS game to obtain three valid signatures, respectively, on:

e the hash h(S}_;) of this subject,
o (H;_1[|h(S;_5)||h(S;_y)) for the Backward Cross_Signature of ¢},_;,

o (H;_l|h(S;_5)||h(S;_y)) for the Forward Cross_Signature of ¢j,_,,

62 CHAPTER 5. BIX

where H_, is the Header of ¢ _,, H_; is the Header of ¢_,, and h(S}_,)
is the hash of the Issuer of ¢}_;, that is the Subject of ¢} _,. In this way S
completes a certificate chain CC* of length n, that it passes to A.

A responds with a counterfeit chain CC’ of length \(CC) = n + 1. If CC’ is
not valid (the chains CC’ and CC* do not correspond up to the n-th certificate,
or an integrity check fails) then S discards this answer and gives up (S fails).

Otherwise, if the verifier outputs True, the chain CC’ is valid. Denote by
I the string (H||k(S;_1)||1(S},)) signed in the Backward Cross_Signature of
¢, (the last certificate of CC’) by the private key corresponding to PK*. There
are two cases:

e [’ is equal to a message for which S requested a signature.
Because of its bit-length, I’ may be equal to [§; := (H;;_,||h(S}_5)[|h(S5_1))
or I = (Hj_1||h(S;_5)||h(S}_1)), but not to h(S;_;). In either case,
" = 1§ or I’ = Iy, the equality implies that h(S]) = h(S}_;), but the
specification of the BIX protocols supposes that different certificates have
a different BIX ID in the Subject (and we know that CC’ is valid). So
S =8%_1 #S5!, because of the BIX ID’s, but they have the same hash

so 8 may submit (S}_;,S’) as a solution to the Collision Problem.

e [’ is different from all messages for which S requested a signature.
In the Backward Cross_Signature of ¢/, there is a signature s of I’ such
that Ver(l', s, PK*) = True (remember that PK* is the public key of the
Issuer of ¢/, and that CC’ is considered valid, so the signatures check
out), so § may submit (I’, s) as a winning answer of the challenge phase
of the DSS game.

So if § does not fail, it correctly solves the Collision Problem or wins the
DSS game, and since A is a polynomial-time algorithm, S is a polynomial-time
algorithm too, given that the other operations performed correspond to the
building of a certificate chain and this must be efficient. S might fail only if
the chain given by A is not valid (i.e. if A fails). Since the simulation of the
SCL game is always correct, A’s failure happens with probability 1 — ¢, then
the probability that S winsis 1 — (1 —€) =e. O

Corollary 5.1 (SCL Security). If the Digital Signature Scheme is secure (As-
sumption and the hash function is collision resistant for the class L (As-
sumption %, where L is the set of all possible Subject fields, then the BIX
protocol is secure against the Static Chain Lengthening.

Proof. Thanks to Theorem|[5.1] given a polynomial-time adversary that wins the
SCL game with non-negligible probability €, a polynomial-time simulator might
be built that with the same probability either solves the Collision Problem
or wins the Digital Signature Security game[2.7} So let C be the event ”solution
of the Collision Problem” and D be the event ”victory at the DSS game”. Then
the probability to solve at least one problem is:

¢ = P(C'V D) < P(C) + P(D) (5.1)

Note that the sum of two negligible quantities is itself negligible, so the fact that
€ is non-negligible implies that at least one of P(C) and P(D) is non-negligible,
and this means that Assumption [2.10| or Assumption [2.8is broken. O

5.3. CERTIFICATE TAMPERING 63

Let Alice be the user of the second-to-last certificate in the chain and Bob
the user of the last certificate. Note that the infeasibility of the attack above
guarantees also the non-repudiation property of the last certificate in the chain.
That is, if Alice tries to repudiate Bob (with an eye to issuing another certifi-
cate), then Bob might claim his righteous place showing a version of the chain
containing his certificate. This chain is then the proper one since no one can at-
tach its certificate to the tail of the certificate chain without properly interacting
with the protocol and being a legitimate user.

In the proof it is assumed (see Assumption that DSS is secure against
existential forgery, but to be precise this assumption can be mildly relaxed.
In fact in the proof the freedom of the attacker in the choice of the mes-
sage to be signed is limited. To be precise A has to forge a signature of
U= (H}||h(S,_1)||h(S])), where h(S},_,) is given by S, and even Hj, is not
completely controlled by A (the sequence number is given, and the other fields
should be given by the IM). So a large part of the string to be signed is beyond
the control of the forger, hence the challenge is not completely an existential
forgery but something in between an existential and a universal forgery, which
is a weaker assumption on the Digital Signature Scheme (DSS). However the
security of DSS against universal forgery is not sufficient for this proof, so the
stronger assumption has been used.

5.3 Certificate Tampering

In the second attack scenario considered, a malicious attacker tries to corrupt
a chain of certificates built upon a trusted root certificate, resulting in another
chain that may be re-distributed as a proper chain with same root but with
altered information.

The security against this attack would guarantee that no external attacker
can modify any certificate in the chain, including deleting or inserting a certifi-
cate in any non-ending point, as long as the root certificate is safe (no unau-
thorized usage), secure (cannot be broken) and public (anyone can check it). If
the security proved in the previous section is also considered, then a certificate
chain is also secure at the end point (no one can wrongfully insert themself at
the end or disavow the last certificate) achieving comprehensive security from
external attacks to the BIX protocol.

Definition 5.3 (Static Tampering with Subject (STS) Game). In this game
an adversary A aims to modify information contained in the Subject field of a
certificate ¢; contained in a certificate chain CC, with 1 <i <n—1, n = A\(CC).
It proceeds as follows:

e The challenger C builds a certificate chain CC with root certificate cg,
according to the BIX protocol and using a hash function h and a Digital
Signature Scheme DSS. Let n = A\(CC).

e (C passes to A the complete chain CC together with h and DSS.

e C builds an honest verifier V that, given a certificate ¢* and a certificate
chain CC*, outputs True if the root certificate of CC* is ¢y and c¢* is a
valid certificate of CC*, False otherwise.

64 CHAPTER 5. BIX

e A tries to build a forged certificate chain CC’ such that:

— exists 1 <i < n—1 such that Subject fields of ¢; and ¢} are different,
that is, S; # SI.

- V(d,CC") = True

A wins the STS game if he achieves the last two items, i.e. successfully builds
such a CC'.

Definition 5.4 (Security against STS). The BIX protocol is said secure against
Static Tampering with Subject if there is no adversary A that in polynomial time
wins the STS game [5.9] with non-negligible probability.

Theorem 5.2. Let A be an adversary that wins the STS game[5.3 with proba-
bility €, then a simulator S can be built that with probability at least < either
solves the collision problem[2.9, where L is the set of all possible Subject fields,
or wins the Digital Signature Security Game where n is the length of the

certificate chain that S gives to A.

Proof. Let DSS be the Digital Signature Scheme and h the hash function used
in the BIX protocol, and L C (F)! be the class of all possible Subject fields. A
simulator S will be built that simultaneously plays the digital signature security
(DSS) game[2.7)and tries to solve an instance of the collision problem [2.9]for L.
It does so by simulating an instance of the STS game [5.3| and exploiting A. It
will be proven that when A wins the STS game, at least one in n — 1 times S
is successful. To be more precise, if S does not find a solution for the collision
problem then S wins the DSS game.

S starts with taking as input an instance (h, L) of the Collision Problem

and a public key PK* given by the DSS challenger (i.e., the output of the first
phase of the Digital Signature Security Game for the scheme DSS).
S now proceeds to build a certificate chain CC following the BIX protocol, as
follows. First, S chooses n > 2 (possibly depending on the A’s requirements).
Then S selects 1 < kK < n—1 at random to be the index of a certificate ¢, in CC.
S builds the first k—1 certificates normally, running the KeyGen algorithm of the
DSS scheme to choose public keys for the Subject fields, so the corresponding
secret keys are available (to S) to sign these certificates properly. So co, ..., cr—3
are complete certificate and cx_o is a tail certificate. Then it sets the Subject
of c,_1 such that its public key is PK*, and a header Hj_;. It queries the
challenger of the DSS game to obtain three valid signatures, respectively, on:

e the hash h(Sk_1) of this subject,

o (Hy_1||h(Sk-2)||h(Sk—1)) for the Backward_Cross_Signature of ¢;_; (if
k>1),

o (Hg—2||h(Sk—2)||h(Sk—1)) for the Forward Cross_Signature of c;_o (if
kE>1),

where Hj_o is the Header of ¢x_o, Hj_1 is the Header of ¢x_1, h(Sk_2) is the
hash of the Issuer of ¢y—;. Then S builds the k£ + 1-th certificate, choosing
a Hjy and Sk, using again the KeyGen algorithm to sign Sk, querying the DSS
challenger for two valid signatures, respectively, on:

5.3. CERTIFICATE TAMPERING 65

o (Hp||h(Sk—1)||h(Sk)) for the Backward Cross_Signature of ¢,
o (Hi_1||h(Sk-1)||h(Sk)) for the Forward Cross_Signature of ¢jx_1,

where Hj, is the Header of ¢ and h(Sk) is the hash of the Subject of ¢;. Finally,
S completes the chain CC (following the protocol and choosing everything,
including the SK;’s), so that it has n certificates, and passes it to A.

A responds with a counterfeit chain CC’. A fails if and only if CC’ is not
valid, which happens when there is no 1 < i < n — 1 such that S, # S; or when
the integrity check of the verifier fails. In this situation, S discards CC’ and
gives up (S fails).

Otherwise, let 1 <4 <n — 1 be the first index for which S, # S,. Since k is
chosen at random we have that k = ¢ with probability ﬁ In this case there
are two possibilities:

o h(Sk) = h(S}), but Si # S for hypothesis, then S outputs the pair
(Sk, S}.) as a solution to the collision problem.

e Otherwise, it follows that Sy_; = S},_; and PK* is the public key of
the issuer of ¢,. Then in the Backward Cross_Signature of the cer-
tificate ¢, there is the digital signature s for which holds the relation
Ver ((H}||R(S},_1)||h(S})) , s, PK*) = True (remember that CC’ is consid-
ered valid, so the signatures check out). So & may submit

((HEI IR (Sk-1)IIh(S})),)

as a winning answer of the challenge phase of the DSS game, since it is
different from the messages S queried for signatures, that are

[h(Sk-1)s (Hr—1l|h(Sk—2)I[P(Sk-1)) , (Hr—2|[h(Sk—2)[|h(Sk-1)),
(Hi||h(Sk—1)[I1h(Sk)) » (Hr—1|[n(Sk—1)[|(Sk))] -

So S correctly solves the collision problem or wins the DSS game at least when
A wins and ¢ = k. The probability of this event is at least the probability of
the two cases and so it is

Note also that since A is a polynomial time algorithm, S is a polynomial time
algorithm too. O

Corollary 5.2 (STS Security). If the Digital Signature Scheme is secure (see
Assumption |2.8) and the hash function is collision resistant for the class L
(Assumption where L is the set of all possible Subject fields, then BIX
protocol is secure against the Static Tampering with Subject.

Proof. For the BIX protocol to be functional the length of the chain must be
polynomial. So, for the result of Theorem [5.2] given a polynomial time adversary
that wins the STS game with non-negligible probability €, a polynomial time
simulator might be built that with probability at least —<; either solves the
Collision Problem or wins the Digital Signature Security Game where
n is the length of the chain. So let C' be the event ”solution of the Collision

66 CHAPTER 5. BIX

Problem” and D be the event ”victory at the DSS game”. Then the probability
to solve at least one problem is:

€

— < P(CVvD)<P(C)+ P(D) (5.2)

Note that the sum of two negligible quantities is itself negligible, so the fact
that —<5 is non-negligible implies that at least one of P(C) and P(D) is non-
negligible, and this means that Assumption [2.10] or Assumption [2.8] is broken.

O

5.4 Mid-Chain Altering

The proofs of security in the previous two sections do not show the impreg-
nability of BIX to every attack. In this section an effective attack is presented,
where two non-consecutive members of the BIX community (i.e. whose BIX cer-
tificates are not next to each other in the chain) collude to create an alternate
version of the chain between their two certificates that is considered valid by the
members outside of that section, but that contains subjects chosen arbitrarily
by the two malicious users.

Let Alice and Bob (S;,S;) be two malicious colluding users, where the in-
dexes i, j of their certificates in the certificate chain are such that j > ¢+1 >4 >
0. Suppose that the chain is built properly up to the j-th certificate. The claim
is that, once Alice (S;) has received her certificate ¢;, she may collude with Bob
(S;) in order to change the information in the certificates ¢, with i < k < j in
such a way that every user S,,, with a certificate with index 0 < m < iorm > j
will consider correct the altered certificates (if they have not already obtained
the original certificates).

The first thing they do is to change the information in the Subject fields
Sk (i+1 <k <j—1) by generating private keys and the corresponding public
ones (and then they are able to sign everything). Then Alice (S;) changes her
certificate ¢; so that the fields Next_Subject and Forward Cross_Signature
link to the altered information and validate it, and similarly does Bob (S;) with
his fields Issuer and Backward Cross_Signature of c;.

At this point this altered version of the chain is considered valid by unsus-
pecting users. Moreover, Bob as last user is responsible to supply the certificates
in the chain to new users, so he may propagate the altered version, while older
users S, with 0 < m < ¢ will unwillingly authenticate altered certificates.
Indeed, when checking the integrity by traversing the chain either forward or
backward, they find no inconsistency as long as Alice points to the altered ver-
sion.

However, a chain of BIX certificates is a distributed ledger, like the public
blockchains of cryptocurrencies (see for example [65] or [35]). So there is an easy
mitigation to the highlighted threat scenario, that consists simply in distributing
the chain all over the network. In particular it is essential to avoid that a single
user is the sole depository of a portion of the chain, thus introducing a single
point of failure. So it is sufficient to slightly alter Muftic’s original protocol
by requiring that, when a new certificate is added to the chain, it has to be
broadcast to multiple nodes in the network (similar to full nodes of Bitcoin
network). Furthermore, when a user intends to start a communication with

5.5. REMARKS 67

another user, they have to request the whole chain (or a portion of it), obtaining
it from one of these full nodes randomly chosen. In this way, one has to collude
with the majority of the full nodes to reliably spread an altered version of the
chain.

Moreover note that if two different (but seemingly equally valid) versions
of a certificate are in circulation users can deal with the inconsistency either
trusting the older version (following the timestamp of the messaging system),
or having a more conservative approach and discard both versions. In the latter
case the legitimate user should re-enrol in the system.

5.5 Remarks

In this chapter the BIX certificates protocol proposed in [63] has been formally
analyzed from a security point of view. In particular the security against static
attacks that aim to corrupt a chain have been proven, reducing the security to
the choice of an adequate hash function and digital signature scheme.

The current BIX protocol is still incomplete for it to be considered a full
PKI. Possibly, the main lack is the absence of a procedure to revoke or to renew
certificates. This is an open problem and further research effort is needed.

However, the sy proofs given show how the BIX infrastructure is a reliable
structure for storing public identities in a distributed and decentralized way.
While a targeted attack to a CA can result in the issuing of malicious certificates
or revocation of valid ones, shattering every certificate it issued, in the case of a
cyber attack BIX certificates could still be trusted because no single entity could
be targeted and exploited to take down the entire system. Suppose that BIX
certificates are issued and distributed in peacetime, so that when an emergency
breaks out the infrastructure is ready to cope with possible attacks. Indeed,
the properties proven in this work guarantee the integrity of the information
contained in the certificate chain, so users can rely upon it even in the middle
of a cyber attack. In other words, it is true that a targeted offensive to the
owner of the last certificate would disrupt the protocol, preventing the issuing
of new certificates, nevertheless, if this user is taken down, the validity of existing
certificates will still hold.

It may seem that the BIX protocol relies on a Trusted Third Party, the
messaging system. However this system is not a third party, as highlighted
by Muftic [63], since it only passively broadcasts certificates and, for purely
addressing purposes, it verifies the uniqueness of BIX identifiers (in Muftic’s
construction the IM protocol is used [87]). So a PKI system based on the BIX
protocol is more resilient to a wide-scale cyber attack than the standard PKI
protocols based on CAs.

Regarding related research, the idea of using a public ledger for digital iden-
tities has prominent applications in the distribution of Bitcoin wallet addresses,
see for example [I9], but there are also applications that try to leverage the
functionalities of cryptocurrencies to improve PKI. For example, Matsumoto
and Reischuk [60] exploit smart contracts on Ethereum to deter misbehavior
of CAs and to incentive extended vigilance over CAs’ behavior. However, this
approach is not sufficient in case of a large-scale cyber attack, because the fi-
nancial losses that this solution enforces would affect the attacked CA and not
the attackers themselves.

68

CHAPTER 5. BIX

Chapter 6

Public Ledger for Sensitive
Data

The rise of Bitcoin has shown to the world the great potential of blockchain
technologies. Satoshi Nakamoto’s breakthrough allows to build publicly verifi-
able and almost immutable ledgers, but sometimes privacy has to be factored
in.

In this chapter is presented an original protocol that allows sensitive data to
be stored on a ledger where its integrity may be publicly verified, but its privacy
is preserved.

6.1 Introduction

Public ledgers based on blockchains are a great solution for storing public in-
formation and they guarantee immutability and accountability.

However serious problems may arise when they are used to store sensitive
data, such as health records. Moreover this kind of data often needs to be shared
between multiple service providers (such as healthcare insurance companies,
hospitals, pharmacies) possibly with warranties that this data is legit and not
been tampered with.

In order to deal with this kind of application an original protocol has been
developed that constructs a public ledger that securely and privately stores
sensitive information. The intent is to allow secure sharing of this data between
authorized parties, and integrate an end-to-end one-time access system that
provides full control over the usage of private data.

The approach used to achieve a one-time access system is based on the fact
that when a party gains access to a cleartext, it has the opportunity to copy
the data and store it locally. If this is the case, it is worthless to negate further
access to that cleartext, since that party already owns a copy. However it is often
expensive to maintain a local copy of the data, so the goal becomes to avoid
further access to the data unless a local copy has been made. More precisely
the aim is to guarantee that no party has access to information with size smaller
than the entire cleartext, that can grant further access to the data (e.g. a key).

So the idea is to encrypt the cleartext with a sort of one-time-pad scheme, in
this way the key has at least the same size of the cleartext, so storing it does not

69

70 CHAPTER 6. PUBLIC LEDGER FOR SENSITIVE DATA

give any advantage over storing the cleartext directly. To achieve practicality
the pad is stored encrypted on the ledger, so a smaller key is sufficient to recover
the original data. To maintain the one-time property the pad is periodically re-
encrypted so a new key is needed to access to the data again.

6.2 Masking Shards Protocol

In this protocol multiple users U; publish encrypted data on a public ledger
maintained by a file keeper F. To gain access to the encrypted data any service
provider P has to ask directly to the user for a decryption key to use in combi-
nation with the masking shards published on the ledger; thus the encryption is
effectively end-to-end. The file keeper periodically updates the masking shards,
so that older decryption keys become useless.

The ledger also has a constant section where encrypted data is actually
stored and the integrity is guaranteed via chains of hash digests.

Definition 6.1 (Updating Masking Shards Protocol). An Updating Masking
Shards Protocol for a file keeper F, a set of users {U;}1<i<n and a service
provider S proceeds along the following steps:

e [sets up the public ledger: a bilinear group G; of prime order p is chosen
according to a security parameter k, along with a generator g € G;. Let
e be the pairing and G be the target group of the same order p. F
chooses uniformly at random exponents u; € Zj, for 1 < i < I where I is
the maximum number of shards in a block, determined from the desired
block length |B| by the formula I = |B|/§ where § is the number of bits
required to represent an element of Go. Finally F' chooses a random time-
key s¢, € Z;, and publishes the initial masking shards:

ity = gitto 1<i<1T (6.1)
F securely saves the value s;, but can forget the exponents u,;.

e [periodically updates the shards. choosing a new time-key s;,,, € Z,
and computing

Stit1

Eitjpr — (61'7,5].) St 1 < 7 < I (62)

e Bach user U chooses two private exponents p;,v; € Z,, and publishes their
public key:

@ =g" (6.3)

e To publish an encrypted file on the ledger at a time ¢;, a user U; requests
an encryption token. F' takes the public key ¢; of the user and computes:

1

kl,O,tj = q;tj (6.4)

My

st

=g

6.2. MASKING SHARDS PROTOCOL 71

e Let b — 1 be the index of the last block in the ledger, thus the file will be
published in the b-th block. Let m; be the message (file) that U; wants
to encrypt, and I,0 its length. Then U; divides the message in pieces of
equal length ¢ (padding if necessary), and computes their digest through
a secure hash function h:

h(mp;) 1<i< (6.5)
Then U; chooses a random exponent k; € Z, and computes the encrypted
shards as:
Coi = M B e(et;, (kio,e,)™) 1<i< (6.6)
kypny

U; St . St .)

=my,; De(g"i,g "

= my; @ e(g, g)"

F inserts these encrypted shards and digests into the next block of the
static public chain.

e In addition to the encrypted shards U; computes the encapsulated key:

vikp
koie, = (ko) ™ (6.7)
ML vk
=(g™) ™
LY

Er

:g J

and F' inserts it in the updating ledger. U; can forget the exponent k;
once this key has been computed and given to F.

e Let i =b mod I. Then F computes the control shard:

b = e(€q,, k1) (6.8)
kpvy
uzSt; .g St)

uz k:bvl

=e(g
=e(g,9)

At this point the block is completed computing the hash digest of its
content.

e Once that at least one file has been published F' has to periodically update
not only the masking shards but also the encapsulated keys. The key
update is similar to the shard update:

Stj

kb,l,tj+1 = (kb,l,t_j)Stj+1 (6’9)
vk °tj
=(g°4)"t
vk
= g°tit

Where s;, , € Z, is the same time-key used to update the shards. Note
that s;, could and should be forgotten once the update has been com-
pleted.

72 CHAPTER 6. PUBLIC LEDGER FOR SENSITIVE DATA

e Let P be a service provider that needs access to the file my, and there-
fore asks for permission to the owner of the file U;. To grant a one-time
permission (or better permission until the next update) U; computes an
unlocked key valid for the current time ¢;. U; retrieves from the updating
ledger the encapsulated key k1, and computes:

u

kb2, = (kb,l,tj)# (6.10)
L
= (g tj)W

pikp
S¢ .
t.'/

=9
e With the unlocked key P can decrypt the encrypted shards computing:

mfm = Cp,i D e(Ei,tj7kb,2,tj) 1 <1< (6.11)

= my,; ® (g, 9)" M De(g" g)
= mp; @ e(g7g)uikbﬂl o 6(97 g)umzkb

6.3 Block structure

The file keeper collects encrypted data from the various users and organizes it
into blocks. The ledger has a variable part that contains at any time t:

e the masked shards and their index
(€it,1)1<i<r

e the encapsulated keys and the index of the block where the corresponding
encrypted pieces are stored

(kp,1,,0)p>1
All these elements are kept constantly updated. The other part is comprised of
constant blocks chained together. Each block B, contains:

e the encrypted shards of the file, the digests of the cleartext shards, and
their index:
(cb,0i, B(mp,), i)1<i<i,

the control shard ¢,

the hash of the previous block h(Bp_1)

the hash digest of the encrypted shards, the digests, the control shard and
the digest of the previous block:

dy = h(cpa||h(mp)] - [leb, 1, |[R(msp 1)l col[R(Bp-1)) (6.12)

> the signature of the user (owner of the data) on dy

6.3. BLOCK STRUCTURE 73

> a proof of work involving dp

> a signature made by a third party (or a group or multi-party signature)
on db

Note that by design the index of the masking shard associated to the control
piece covers the whole range 1 < ¢ < I. These pieces are needed to check the
integrity of the data stored in the updating part of the ledger (encapsulated
keys and masking shards). In fact let i = b mod I, then for every time t it
should hold:

b = e(&qe kb1t (6.13)
kpvy
gt)

ugkbvl

U3 St
)

e(g
=e(9,9)

The last three items in the list (marked with a > bullet) represent different
approaches to guarantee the immutability of the static block. These solutions
are optional and all have pros and cons to their adoption, the optimal choice is
probably a combination of the three.

The user signature would give proof of ownership of the data, on the other
hand without the signature the content remains fully anonymous to anyone
besides F', that can act as a proxy forwarding the access request of P to the
right user U;. To guarantee the end-to-end property of the protocol P should
have a public key known to (or retrievable by) every user. So when F forwards
a request by P to Uj, the user can encrypt the unlocked key with this public
key, so that only P can use it.

The proof of work would give increasingly stronger proof of integrity to
older data, in the sense that the more blocks are added to the ledger, the more
infeasible it gets to manipulate older data maintaining the consistency of the
chain.

The third party signature gives proof of integrity of the block, in alternative
or addition to the proof of work. The trade-off between these solutions is that
a signature gives instantaneous integrity evidence but relies on the honesty of
the signer (possibly mitigated with multi-party signatures), whereas a proof of
work is more expensive and provides sufficiently reliable security only for older
blocks, but does not rely on anyone’s honesty.

In alternative to the digest defined in a more efficient blockchain may
be built excluding the actual encrypted data from the blocks, retaining only
their digests. That is the bulk of data is stored in distributed databases, while
their hash is kept on the ledger to guarantee the integrity. This approach reduces
consistently the size of the blocks, that therefore can be more widely distributed.
This shrunk block would then contain:

e the hash digest of the encrypted shards of the file and the digests of the
cleartext shards:

dpo = h(cp

[h(mp)] - flew, [(ma, 1,)

e the control shard ¢,

74 CHAPTER 6. PUBLIC LEDGER FOR SENSITIVE DATA

e the hash of the previous block h(By_1)

e the hash digest of the previous data:

dp,1 = h(dp,ollcp||h(Bp-1))

6.4 Security Model

The goals of the protocol is to achieve the following security properties:

End-to-end encryption The file keeper must not be able to read the plaintext
message at any time.

One-time access A service provider should be able to read a plaintext message
at the time ¢ if and only if the file owner authorizes them with an unlocked
key for the time t.

6.4.1 Security against Outsiders and Service Providers

The security of the protocol will be proven in terms of chosen-plaintext indis-
tinguishability, the security game is formally defined as follows.

Definition 6.2 (Security Game). The security game for an updating masking
protocol proceeds as follows:

Init The adversary A chooses a number of users N that will encrypt files and
the maximum number of masking shards I.

Setup For each userU;, with 1 < < N the challenger C sets up a public key
qi, and takes the role of the file keeper by publishing the initial masking
shards €;+,, for 1 <@ < I.

Phase 0 The adversary may request updates of the masking shards ¢;,, for
1<i<I,0<j<n.

Commit The users commit to a key before creating a ciphertext by publishing
the encryption tokens k; o, and the encapsulated keys Ky 1,4, -

Phase 1 The adversary for each time n < j < n* may request updates of
the encapsulated keys kp,1¢;, and either the corresponding unlocked keys
kp,2,;, or the masking shards €; 4., but not both.

Challenge Let § be the number of bits required to represent an element of Go,
thus 6 = |e(g, g)|. For each 1 <[< N the adversary chooses two messages
my0,my,1 of length ;0 and sends them to the challenger that flips NV
random coins r; € {0,1} and publishes the encryption (¢, 1 <4 < I;) of
the message my r, .

Phase 2 Phase 1 is repeated for nx < j <n'.

!

Guess The adversary chooses an [such that 1 <[< N and outputs a guess T

of ry.

6.4. SECURITY MODEL 75

Definition 6.3 (Updating Masking Security). An Updating Masking protocol
with security parameter £ is CPA secure if for all probabilistic polynomial-time
adversaries A, there exists a negligible function ¢ such that:

Prirt =] < 5 +6(6) (6.14)

The scheme is proved secure under the BDH assumption (Definition [2.3]) in
the security game defined above.
The security is provided by the following theorem.

Theorem 6.1. If an adversary can break the scheme, then a simulator can be
constructed to play the decisional BDH game with non-negligible advantage.

Proof. Suppose there exists a polynomial-time adversary A, that can attack
the scheme in the Selective-Set model with advantage e. Then a simulator B
can be built that can play the Decisional BDH game with advantage €/2. The
simulation proceeds as follows.

Init The adversary chooses the number of users N and the maximum number
of masking shards I, the simulator takes in a BDH challenge g, A = ¢%, B =
gb7 C= gc’ T.

Setup The simulator chooses random pj,w;, py € Zy for 1 <1 < N, u} € Z,
for 1 <4 < I. Then it implicitly sets:

b
wy = b v = wie 1<I<N, u; = ule 1<i<I (6.15)
a

So it publishes the public keys of the users and the initial masking shards:

q=B" 1<I<N, Eigg =C%%% 1<i<I (6.16)
—_ gb,u; — gcu;sto
= g/tz — guisto

Phase 0 In this phase the simulator answers to update queries of the masking
shards. For each time 0 < j < n it chooses uniformly at random st; € Ly and
computes:

Eip, =CY 1<i<I (6.17)
— gcu;stj
= guist’j
Commit In this phase users commit to a key before creating a ciphertext, by
publishing their encryption tokens and encapsulated keys. Note that each user
may commit at a different time, but for simplicity we suppose that they commit
all together. Moreover from now on the indexes b and [will be identified, since
for the purposes of this proof only one encryption per user is considered.

76 CHAPTER 6. PUBLIC LEDGER FOR SENSITIVE DATA

To simulate the commitment B chooses uniformly at random k] € Z, and
implicitly sets k; := kl’a for 1 <1 < N. Furthermore it chooses s;, € Zj, then

it can compute:

/ ’
i ik
kio., = B, koii, =B 1<I<N (6.18)
buj bwjak]
= gstn =g @Sty
2] viky
= gstn =g St

Phase 1 In this phase the adversary for each time n < j < n* may request
updates of the encapsulated keys k1 ¢;, and either the corresponding unlocked
keys kp 2.+, or the masking shards ¢;;;, but not both. If the adversary asks for
the unlocked keys the simulator chooses at random 527, € Zp and implicitly sets
s; == s;,b. So it can compute ‘

wi k] kiu]
s/ o7

_ t; _ t;

kb,l,tj =g 7, kb,Q,tj =AY 1 S l S N (619)

bwpak] akjbu]
abs], bs)

= = J
viky kirg

=g tj =g 5tj

Otherwise, if the adversary asks for the masking shards, it chooses s;; € Z, and
computes

wi k] ,
kpae, =B 1<I<N, eig, = C"% 1<i<I (6.20)
bw;ak)
o a.let,l _ cuist,
=g J =g J
vikg
=g Sty = gui’stj

Challenge For each 1 <! < N the adversary sends two messages my g, m;,10f
length ;5. The simulator flips N random coins r; € {0,1} then creates the
ciphertexts as:

!’ 7 !
Chi =My © TR (6.21)
* kjbu)cu
= Mir,i o e(g’g)a oMt

=My, D e(g,g)kl’”“i 1<:<;, 1<I<N

where the equality = holds if and only if the BDH challenge was a valid tuple
(i.e. T is non-random).

Phase 2 During this phase the simulator acts exactly as in Phase 1.
Guess The adversary will eventually select a user [and output a guess rl’— of ry.

The simulator then outputs 0 to guess that T = e(g, g)**¢ if 7 = r7; otherwise,
it outputs 1 to indicate that it believes T is a random group element in Gs.

6.4. SECURITY MODEL 7

In fact when T is not random the simulator B gives a perfect simulation so it
holds:

— abc 1
Pr[B(y,T:e(g,g) b)=0]=§+e

On the contrary when T is a random element R € Gy the messages m,, are
completely hidden from the adversary point of view, so:

1
Pr(B(y,T=R)=0]= 3
Therefore, B can play the decisional BDH game with non-negligible advantage

5-
O

6.4.2 Security Against the File Keeper

In this section we prove the end to end privacy of the protocol testing its ro-
bustness in scenarios where the File Keeper itself tries to read the content of the
encrypted data stored on the ledger. The security of the protocol will again be
proven in terms of chosen-plaintext indistinguishability, but there is a distinction
between two scenarios.

In the first one the security will be proven using the standard Decisional
Bilinear Diffie Hellman Assumption, but the File Keeper is assumed to be not
malicious and that it takes over the role after shards initialization. That is the
protocol is initialized and then the relevant information is passed to the File
Keeper that subsequently fulfills its role following the protocol (but trying to
decrypt the files).

In the second scenario the File Keeper independently sets up the masking
shards and freely interacts with the users, but in this case the interactive as-
sumption IDDH defined in is necessary to prove the security.

The security game of the first scenario is formally defined as follows.

Definition 6.4 (Curious File Keeper Security Game). The security game for
the protocol with a curious File Keeper proceeds as follows:

Init The adversary A chooses a number of users N that will encrypt files and
the maximum number of masking shards I.

Setup For each userlU;, with 1 <[< N the challenger C sets up a public key
qi, and initializes the masking shards €;,, for 1 <1¢ < I, giving also sy,

to A.

Commit A asks the users commit to a key before creating a ciphertext giving
them encryption tokens ki g;, C responds publishing encapsulated keys
kb,l,tj .

Challenge Let 0 be the number of bits required to represent an element of Go,
thus 0 = |e(g, g)|. For each 1 <1 < N the adversary chooses two messages
my 0, my1 of length ;0 and sends them to the challenger that flips NV
random coins r; € {0,1} and publishes the encryption (cp;,1 <4 < I;) of
the message my , .

/

Guess The adversary chooses an [such that 1 <[< N and outputs a guess T

of ry.

78 CHAPTER 6. PUBLIC LEDGER FOR SENSITIVE DATA

Definition 6.5 (Security with a Curious File Keeper). An Updating Masking
protocol with security parameter £ is CPA secure with a Curious File Keeper
if for all probabilistic polynomial-time adversaries A, there exists a negligible
function ¢ such that:
1
Priv =11 < 5 +6(6) (6:22)
The security is provided by the following theorem.

Theorem 6.2. If an adversary can break the scheme, then a simulator can be
constructed to play the decisional BDH game with non-negligible advantage.

Proof. Suppose there exists a polynomial-time adversary A, that can attack
the scheme in the Selective-Set model with advantage €. Then a simulator B
can be built that can play the Decisional BDH game with advantage €/2. The
simulation proceeds as follows.

Init The adversary chooses the number of users N and the maximum number
of masking shards I, the simulator takes in a DBDH challenge g, A = g%, B = ¢°,
C=g°T.

Setup The simulator chooses random pj,w;, p € Zp for 1 <1 < N, u}, € Z,
for 1 <i <1, s, € Zp. Then it implicitly sets:

i = b v = —— 1<I<N, w; 1= uje 1<i<I (6.23)

So it publishes the public keys of the users and the initial masking shards:

@=B" 1<I<N, Eigg =C%% 1<i<I (6.24)
_ gbui _ gcu;sto
= gNz — guisto

Moreover the exponent s, is given to the adversary.

Commit In this phase the adversary asks the users to commit to a key before
creating a ciphertext, by giving them encryption tokens and obtaining encapsu-
lated keys in return. For every user [the adversary may choose a different time
t;, in which the commitment takes place. To formulate the query A chooses a
random exponent St5, and computes the encryption token:

krow, =4 (6.25)

6.4. SECURITY MODEL 79

To simulate the answer B chooses uniformly at random k; € Z, and implicitly
sets k; = k‘l’a for 1 <1 < N. Then it can compute:

wi k]
) 1<I<N (6.26)
buj wikja

= gsﬁjl

ko1,e;, = (Ko,

sLiy

uia

Challenge For each 1 <! < N the adversary sends two messages my o, my,10f
length ;5. The simulator flips N random coins r; € {0,1} then creates the
ciphertexts as:

Chyi =My i D Tvikik (6.27)

* ak)bucul
=My i ©e(g, g)* e

=My, @ e(g, g)kr 1<i<L, 1<I<N

Where the equality = holds if and only if the BDH challenge was a valid tuple
(i.e. T is non-random).

Guess The adversary will eventually select a user [and output a guess r;— of r1.
The simulator then outputs 0 to guess that T = e(g, g)** if 77 = r7; otherwise,
it outputs 1 to indicate that it believes T' is a random group element in Gs.
In fact when T is not random the simulator B gives a perfect simulation so it

holds: 1
Pr [B (gj’,T = e(g,g)abc) = O] =3 + €

On the contrary when 7' is a random element R € Gy the messages m,, are
completely hidden from the adversary point of view, so:

1
PriB(y,T=R)=0]= 3
Therefore, B can play the decisional BDH game with non-negligible advantage 5.

O

During the simulation in this proof the update of the masking shards and
encapsulated keys has not been explicitly considered because the adversary has
the role of the File Keeper, that is the party in charge of such operations, so
the simulator is not involved.

Note also that for the encryption in the challenge phase the simulator does
not use neither the masking shards nor the encapsulated key, so the update of
these elements is not strictly necessary (although the simulator should request
them even without using them just for the sake of a thorough simulation). This
is possible only because the simulator controls the initialization of the masking
shards, and this limits the possibilities for the attacker (e.g. choosing particular
values for s).

To consider a more powerful adversary and take account of possible interac-
tion the security game can be modified in this way:

80 CHAPTER 6. PUBLIC LEDGER FOR SENSITIVE DATA

e in the setup phase the simulator does not initialize the masking shards,
the adversary has complete control over them

e in the challenge phase the simulator asks for the updated version of the
masking shards and the encapsulated keys before computing the encryp-
tion, moreover the adversary may ask that the encryptions take place at
different times.

Now the security against this more powerful File Keeper can be given with
the following theorem.

Theorem 6.3. If an adversary taking the role of the file keeper can break the
scheme, then a simulator can be constructed to play the IDDH game with non-
negligible advantage.

Proof. The proofs is almost identical to the proof of Theorem [6.2] only the
following tweaks are necessary:

e the simulator starts initializing the IDDH challenge, obtaining the ele-
ments A = g% B = ¢";

e during the setup phase the simulator does not have to initialize the mask-
ing shards so it does not need the element C'

e during the challenge phase suppose that the adversary requests at time
t; the encryption of the user [, then the simulator asks the adversary
for the value of the updated masking shards gig; 1 <1 < 1T and the
updated encapsulated key k1 ¢;. Then the simulator B interacts with the
challenger C of the IDDH game sending the value

_1

S =kt (6.28)
bwky 1
= (g ")N
b
= gstj
1
=B

C answers with Z and B proceeds with the encryption computing

Chyi =My i D €(€i,tj7Zk£“£) (6.29)

)

° Ui St . ki
=My, @ e(gh™h, ZMM)

ab
* Ui St . SeoNklu
=myiDe <g o (g™) l’”)
ujak]bu,
=My, © elg, g)" M

= My © elg, g)uikum 1<i<I,

Where the equality = holds if and only if in the IDDH challenge the value
of the random coin tossed by C is 7 = 0. Note that the equalities = hold if
and only if the adversary followed the protocol acting as the File Keeper,
however the interaction with C is valid even if this is not the case, and
from the prospective of A the simulation has the same distribution of an
interaction with the real protocol.

6.5. REMARKS 81

The rest of the simulation is identical and the same considerations hold, thus B
has an advantage of § playing the IDDH. O

6.4.3 Security against other Users

In the previous sections the robustness of the protocol against outside attackers
and even against the file keeper has been proven. To complete the analysis are
now presented some considerations about the remaining party that participates
in the protocol: the users.

Hopefully a user interacting with the protocol gains no advantage in breaking
other users privacy. In fact a slight modification of the Theorem [6.1] gives this
guarantee.

Consider a setting in which the attacker interacts with the protocol as a
normal user (thus requests encryption tokens, publishes encapsulated keys and
ciphertexts), but then tries to distinguish the encryption of plaintexts of their
choice performed by other users. Starting from the security game of Defini-
tion phases 1 and 2 can be modified removing unlocked key queries but
adding queries for encryption tokens given a public key. After that the adver-
sary has given to the challenger an encapsulated key, the update of these keys
may be requested with queries just like any other key. In this way a (possibly
malicious) user is modelled, that interacts with the file keeper and can observe
the chain and its evolution.

The proof of the security in this scenario follows directly from the proof of
Theorem in fact without the need of simulating unlocked keys the simulator
can always choose s; freely, and thus can follow servilely the protocol when the
adversary requests encryption tokens and updates of the related keys.

6.5 Remarks

The protocol presented in this chapter expands the scope of distributed ledgers
to include the safe storage of sensitive data.

The approach used to achieve the one-time access property aims to a highly
efficient revocation. That is, the concept of masking shards is used to revoke
the access to every ciphertext updating only common elements. This means
that it is not necessary to update every block, but only the shards and the en-
capsulated keys, that are very much shorter than the actual data. Furthermore
this allows to check the integrity of the ciphertexts even before decryption, and
any observer can monitor the integrity of the ledger checking the coherence of
the hash digests in the static chain and verifying the control shards against the
data contained in the updating section.

Given the proofs of security against a curious file keeper, it follows that this
role is only busy updating shards and encapsulated keys, but is not depositary
of trust in a privacy sense. To further reduce the dependence on the file keeper,
the protocol can be modified in order to employ temporary file keepers, that are
only responsible to perform one update. The passage of responsibilities can be
done in multiple ways, e.g. choosing a random candidate in a given set, voting
the preferred successor. Anyway the current F' chooses a random s;, while the
exponent s;_1 is obtained from the previous file keeper in a safe and secure

82 CHAPTER 6. PUBLIC LEDGER FOR SENSITIVE DATA

way; once the update has been completed and a successor has been nominated
F passes on s;. Note that this method enforces the oblivion of old exponents,
preventing previous file keepers to reverse a revocation.

A final remark regards the frequency of revocation. As presented here the
protocol revokes every ciphertext at once, and while this might be convenient
in terms of revocation efficiency, not every application suits this approach, in
particular when it is not feasible to burden the user with frequent unlocking
of encapsulated keys to restore access to revoked files. An easy solution is to
employ different sets of encryption shards and dividing the updating section
of the ledger according to different frequencies of revocation. For example a
practical ledger could have a set of shards updated with medium frequency,
suitable for most of the regular files, a set reserved for quick revocation of very
sensitive files, and finally a set for long term accesses updated only in case of
necessity.

Implementation

This protocol has not been implemented yet, but an approach similar to that of
section [3.3.4] could be used to develop a proof-of-concept. Random generation of
keys and parameters would be once again a delicate aspect, alongside the choice
of parameters for the underlying algebraic structures. An extensive analysis
should also be necessary to choose the best method for block validation (digital
signature, or proof of work, or proof of stake, or other solutions) and tailor
the length of blocks and shards and the update frequency to the specific needs.
Finally the heavy usage of pairing computation could have a distinctive impact
on the performance of the protocol, making even more important the choice of
a bilinear group that allows fast-enough computations.

Chapter 7

A Proof-of-Stake protocol
for Consensus on Bitcoin
subchains

Although the transactions on the Bitcoin blockchain have the main purpose of
recording currency transfers, they can also carry a few bytes of metadata. A
sequence of transaction metadata forms a subchain of the Bitcoin blockchain,
and it can be used to store a tamper-proof execution trace of a smart contract.

In this chapter a consensus protocol is presented, based on Proof-of-Stake,
that incentives nodes to extend the subchain consistently. The security of the
protocol is analysed under many aspects and also with empirical methods, fur-
thermore it is shown how to exploit it as the basis for smart contracts on Bitcoin.

This is a joint work with Sebastian Podda, Stefano Lande, prof. Massimo
Bartoletti and prof. Massimiliano Sala, part of the work has been presented
at the 1st Workshop on Trusted Smart Contracts CyCon held in Malta, in
April 2017 [I0]. The graduand identified and proved the vulnerability of the
refund policy initially chosen and proposed alternatives. Then the graduand
collaborated closely with Sebastian Podda to analyse the various policies, to
develop and to prove the effectiveness of the harsh policy.

7.1 Introduction

Recently, cryptocurrencies like Bitcoin [65] have pushed forward the concept
of decentralization, by ensuring reliable interactions among mutually distrust-
ing nodes in the presence of a large number of colluding adversaries. These
cryptocurrencies leverage on a public data structure, called blockchain, where
they permanently store all the transactions exchanged by nodes. Adding new
blocks to the blockchain (called mining) requires to solve a moderately difficult
cryptographic puzzle. The first miner who solves the puzzle earns some vir-
tual currency (some fresh coins for the mined block, and a small fee for each
transaction included therein). In Bitcoin, miners must invert a hash function
whose complexity is adjusted dynamically in order to make the average time to

83

84 CHAPTER 7. POS PROTOCOL FOR SUBCHAIN CONSENSUS

solve the puzzle ~10 minutes. Instead, removing or modifying existing blocks is
computationally unfeasible: roughly, this would require an adversary with more
hashing power than the rest of all the other nodes. If modifying or removing
blocks were computationally easy, an attacker could perform a double-spending
attack where some amount of coins are paid to a merchant (by publishing a
suitable transaction in the blockchain) and then, after the item has been re-
ceived, the attacker removes the block containing the transaction. According to
the folklore, Bitcoin would resist to attacks unless the adversaries control the
majority of total computing power of the Bitcoin network. Even though some
vulnerabilities have been reported in the literature(see Section , in practice
Bitcoin has worked surprisingly well so far: indeed, the known successful attacks
to Bitcoin are standard hacks or frauds [39], unrelated to the Bitcoin protocol.

The idea of using the Bitcoin blockchain and its consensus protocol as foun-
dations for smart contracts (namely, decentralized applications beyond digi-
tal currency [81I]) has been explored by several recent works. For instance,
[4, @, [12], [I7), [45] [46, [47] propose protocols for secure multiparty computations
and fair lotteries; [29] implements decentralised authorization systems on Bit-
coin, [74] [82] allow users to log statements on the blockchain; [21] is a key-value
database with get/set operations; [30] extends Bitcoin with advanced financial
operations (like e.g., creation of virtual assets, payment of dividends, etc.), by
embedding its own messages in Bitcoin transactions.

Although the Bitcoin blockchain is primarily intended to trade currency,
its protocol allows clients to embed a few extra bytes as metadata in trans-
actions. Many platforms for smart contracts exploit these metadata to store
a persistent, timestamped and tamper-proof historical record of all their mes-
sages [2|[I1]. Usually, metadata are stored in OP_RETURN transactions [3], making
them meaningless to the Bitcoin network and unspendable. With this approach,
the sequence of platform-dependent messages forms a subchain, whose content
can only be interpreted by the nodes that execute the platform (referred as meta-
nodes, to distinguish them from Bitcoin nodes). However, since the platform
logic is separated from the Bitcoin logic, a meta-node can append to the sub-
chain transactions with metadata which are meaningless for the platform — or
even inconsistent with the intended execution of the smart contract. However,
it seems that none of the existing platforms use a secure protocol to establish if
their subchain is consistent. This is a serious issue, because it either limits the
expressiveness of the smart contracts supported by these platforms (which must
consider all messages as consistent, so basically losing the notion of state), or
degrades the security of contracts (because adversaries can manage to publish
inconsistent messages, so tampering with the execution of smart contracts).

Contributions The protocol presented here allows meta-nodes to maintain
a consistent subchain over the Bitcoin blockchain. The protocol is based on
Proof-of-Stake [16], [44], since extending the subchain must be endorsed with a
money deposit. Intuitively, a meta-node which publishes a consistent message
gets back its deposit once the message is confirmed by the rest of the network.
In particular, the protocol provides an economic incentive to honest meta-nodes,
while disincentivizing the dishonest ones.

Notably, this protocol can be implemented in Bitcoin by only using the so-

7.2. BACKGROUND: BITCOIN AND THE BLOCKCHAIN 85

called standard transactiondll

7.2 Background: Bitcoin and the blockchain

Bitcoin is a cryptocurrency and a digital open-source payment infrastructure
that has recently reached a market capitalization of over $90 billiond?] The Bit-
coin network is peer-to-peer, not controlled by any central authority [65]. Each
Bitcoin user owns one or more personal wallets, which consist of pairs of asym-
metric cryptographic keys: the public key uniquely identifies the user address,
while the private key is used to authorize payments. Transactions describe
transfers of bitcoins (I3), and the history of all transactions, which recorded on
a public, immutable and decentralised data structure called blockchain, deter-
mines how many bitcoins are contained in each address.

To explain how Bitcoin works, consider two transactions tg and t;, which
can be graphically represented as followsﬂ

to t
in: .- in: to
in-script: - - - in-script: sig; (o)
out-script(t, 0): verg(t,o) out-script(-«-): -+
value: vy value: vq

The transaction ty contains vol3, which can be redeemed by putting on the
blockchain a transaction (e.g., t1), whose in field is the cryptographic hash of
the whole ty (for simplicity, just displayed as to in the figure). To redeem to,
the in-script of t; must contain values making the out-script of to (a boolean
programmable function) evaluate to true. When this happens, the value of t; is
transferred to the new transaction tq, and tg is no longer redeemable. Similarly,
a new transaction can then redeem t; by satisfying its out-script.

In the example displayed above, the out-script of ty evaluates to true when
receiving a digital signature o on the redeeming transaction t, with a given key
pair k. Let verg(t, o) denote the signature verification, and sig, () the signature
of the enclosing transaction (t; in the example above), including all the parts
of the transaction except its in-script.

Now, assume that the blockchain contains ty, not yet redeemed, when some-
one tries to append t;. To validate this operation, the nodes of the Bitcoin
network check that v; < vy, and then they evaluate the out-script of ty, by
instantiating its formal parameters t and o, to t; and to the signature sig, (e),
respectively. The function very verifies that the signature is correct: therefore,
the out-script succeeds, and t; redeems tg.

Bitcoin transactions may be more general than the ones illustrated by the
previous example: their general form is displayed in Figure First, there
can be multiple inputs and outputs (denoted with array notation in the figure).

IThis is important, because non-standard transactions are discarded by nodes running the
official Bitcoin client.

2 Source: crypto-currency market capitalizations http://coinmarketcap.com, as of
October 2017

3in-script and out-script are respectively referred as scriptPubKey and scriptSig in the Bitcoin
documentation.

http://coinmarketcap.com

86 CHAPTER 7. POS PROTOCOL FOR SUBCHAIN CONSENSUS

t
in[0]: to[outo]

-

in-script[0]: Wy

out-script[0](th, Wo): So
value[0]: v

lockTime: n

Figure 7.1: General form of transactions.

Each output has an associated out-script and value, and can be redeemed inde-
pendently from others. Consequently, in fields must specify which output they
are redeeming (to[outo] in the figure). Similarly, a transaction with multiple in-
puts associates an in-script to each of them. To be valid, the sum of the values of
all the inputs must be greater or equal to the sum of the values of all outputs. In
its general form, the out-script is a program in a (not Turing-complete) scripting
language, featuring a limited set of logic, arithmetic, and cryptographic oper-
ators. Finally, the lockTime field specifies the earliest moment in time (block
number or UNIX timestamp) when the transaction can appear on the blockchain.

The Bitcoin network is populated by a large set nodes, called miners, which
collect transactions from clients, and are in charge of appending the valid ones to
the blockchain. To this purpose, each miner keeps a local copy of the blockchain,
and a set of unconfirmed transactions received by clients, which it groups into
blocks. The goal of miners is to add these blocks to the blockchain, in order to
get a revenue. Appending a new block B; to the blockchain requires miners to
solve a cryptographic puzzle, which involves the hash h(B;_1) of block B;_1, a
sequence of unconfirmed transactions (7;);, and some salt R. More precisely,
miners have to find a value of R such h(h(B;_1)||{T3):||R) < i, where the value p
is adjusted dynamically, depending on the current hashing power of the network,
to ensure that the average mining rate is of 1 block every 10 minutes. The goal
of miners is to win the “lottery” for publishing the next block, i.e. to solve the
cryptopuzzle before the others; when this happens, the miner receives a reward
in newly generated bitcoins, and a small fee for each transaction included in
the mined block. If a miner claims the solution of the current cryptopuzzle,
the others discard their attempts, update their local copies of the blockchain
with the new block B;, and start mining a new block on top of B;. In addition,
miners are asked to verify the validity of the transactions in B; by executing the
associated scripts. Although verifying transactions is not mandatory, miners are
incentivized to do that, because if in any moment a transaction is found invalid,
they lose the fee earned if the transaction was published in the blockchain.

If two or more miners solve a cryptopuzzle simultaneously, they create a fork
in the blockchain (i.e., two or more parallel valid branches). In the presence of
a fork, miners must choose a branch wherein carrying out the mining process;
roughly, this divergence is resolved once one of the branches becomes longer
than the others. When this happens, the other branches are discarded, and all
the orphan transactions contained therein are nullified.

7.3. BACKGROUND: SUBCHAINS AND CONSISTENCY 87

Overall, this protocol essentially implements a “Proof-of- Work” system [32].

7.3 Background: Subchains and consistency

Let {A,B,...} be a set of participants, who want to append messages a,b,...
to the subchain. A label is a pair containing a participant A and a message a,
written A :a. Subchains are finite sequences of labels, written A;:a;---A, :a,,
which are embedded in the Bitcoin blockchain. The intuition is that A; has
embedded the message a; in some transaction t; of the Bitcoin blockchain, then
A- has appended some transaction t; embedding a,, and so on. For a subchain
7, let n A :a be the subchain obtained by appending A :a to 7.

In general, labels can also have side effects on the Bitcoin blockchain: let
A:a(v — B) represent a label which also transfers vI3 from A to B. When this
message is on the subchain, it also acts as a standard currency transfer on the
Bitcoin blockchain, which makes v in a transaction of A redeemable by B.
When the value v is zero or immaterial, the notation is simplified to a instead
of a(v — B).

A crucial insight is that not all possible sequences of labels are valid sub-
chains: to define the consistent ones, subchains are interpreted as traces of
Labelled Transition Systems (LTS). Formally, an LTS is a tuple (Q, L, o, —),
where:

e () is a set of states (ranged over by ¢, ¢/, ...);

e L is a set of labels (in our case, of the form A :a);
® (o € @ is the initial state;

e —» C (@ x L xQ is a transition relation.

As usual, write ¢ ALN ¢ when (q,A :a,q') € —, and, given a subchain

n=~Ai:a;---A,:a,, the notation ¢ SN ¢’ is used whenever there exist qi,...,q,
such that:
Aj:ap Ag:az Anan /
q —— q1 —> = —> (4pn =(

The relation — is required to be deterministic, i.e. if q A, ¢ and ¢ LN q",
then it must be ¢’ = ¢”.

The intuition is that the subchain has a state (initially, o), and each message
updates the state according to the transition relation. More precisely, if the
subchain is in state ¢, then a message a sent by A makes the state evolve to ¢’
whenever ¢ LN ¢’ is a transition in the LTS.

Note that, for some state ¢ and label A :a, it may happen that no state ¢’
exists such that g A, ¢’. In this case, if ¢ is the current state of the subchain,
the goal is to make hard for a participant (possibly, an adversary trying to
tamper with the subchain) to append such message. Informally, a subchain
Ai:ay -+ A, za, is consistent if, starting from the initial state qq, it is possible
to find states ¢i,...,q, such that from each ¢; there is a transition labelled
Aifi:airr to giga.

Definition 7.1 (Subchain consistency). A subchain 7 is said consistent when-
ever there exists ¢ such that qg U q.

88 CHAPTER 7. POS PROTOCOL FOR SUBCHAIN CONSENSUS

Note that, if a subchain is consistent, then by determinism it follows that the
state ¢, exists and is unique. In other words, a consistent sequence of messages
uniquely identifies the state of the subchain.

Example 7.3.1. To illustrate consistency, consider a smart contract FACTORS,,
which rewards with 13 each participant who extends the subchain with a new
prime factor of n. The contract accepts two kinds of messages:

e send,, where p is a natural number;
e pay,(l — A), meaning that A receives a reward for the factor p;

The states of the contract can be represented as sets of triples (A, p,b), where
b is a boolean value indicating whether A has been rewarded for the factor p.
The initial state is . The transition relation of FACTORS,, is defined as follows:

A: send,,

o S S’, iff p is a prime factor of n, (B,p,b) € S for any B and b,
and 8" = SU{(A,p,0)};

o 5 L U2M) qr it (A, p,0) € S and S = (S\ {(A,p,0)}) U{(A,p,1)}.

Consider now the following subchains for FACTORS330, where F is the participant

who issues the contract, and M is an adversary:

1. g = A:send;; B:sends F:pay;i(1 - A) F:pays(1 — B)
2. 1y = A:send;; F:pay;1(1 —A) M:sendy;

3. g = M:sendaog F:payasg(l — M)

4. mqg = A:send;; F:payii(1 = M)

The subchain nq is consistent, because both A and B send new factors and get
their rewards. The subchains 7y and g are inconsistent, because 11 sent by M is
not fresh, and 229 is not a factor of 330. Finally, the subchain 7 is inconsistent,
because M gets the reward that should have gone to A. O

Similarly to Bitcoin, the aim is not guaranteeing that a subchain is always
consistent. Indeed, also in Bitcoin a miner could manage to append a block
with invalid transactions: in this case, as discussed in Section the Bitcoin
blockchain forks, and the other miners must choose which branch to follow.
However, honest miners will neglect the branch with invalid transactions, so
eventually (since honest miners detain the majority of computational power),
that branch will be abandoned by all miners.

For subchain consistency notion adopted is similar: it is assumed that an
adversary can append a label A:a such that g, 7B>, so making the subchain
inconsistent. However, upon receiving such label, honest nodes will discard
it. To formalise their behaviour, a function I' is defined below that, given a
subchain 7 (possibly inconsistent), filters all the invalid messages. Hence, I'(7)
is a consistent subchain.

Definition 7.2 (Branch pruning). The endofunction I' is inductively defined
on subchains as follows, where ¢ denotes the empty subchain:

. . ’ T'(n) A
T(e) = e F(nA:a):{F(n)A'a if 3g,¢' : qo —> q —— ¢q

I'(n) otherwise

74. A PROTOCOL FOR CONSENSUS ON BITCOIN SUBCHAINS 89

In order to model which labels can be appended to the subchain without
breaking its consistency, the auxiliary relation = is introduced below. Infor-
mally, given a consistent subchain 7, the relation 7 |= A :a holds whenever the
subchain n A :a is still consistent.

Definition 7.3 (Consistent update). A :a is a consistent update of a subchain
n, denoted with 7 = A :a, iff the subchain I'(n) A : a is consistent.

Example 7.3.2. Recall the subchain 1 = A :send;; F:pay;1(1 = A) M:
send;; from Example[7.3.1] Then B :send is a consistent update of 7, because
(1) B:sends = A:sendj; F:pay;i(1 — A) B:send, is consistent. O

7.4 A protocol for consensus on Bitcoin sub-
chains

Assume a network of mutually distrusted nodes N,N’,..., called meta-nodes
to distinguish them from the nodes of the Bitcoin network. Meta-nodes receive
messages from participants (also mutually distrusting) which want to extend the
subchain. The goal is to allow honest participants (i.e., those who follow the
protocol) to append consistent updates to the subchain, while disincentivizing
adversaries who attempt to make the subchain inconsistent.

To this purpose, this protocol is based on Proof-of-Stake (PoS) with the
assumption that the overall stake retained by honest participants is greater
than the stake of dishonest onesﬂ The stake is needed by meta-nodes, which
have to vote to approve messages sent by participants. These messages are
embedded into Bitcoin transactions, and called update requests. Let UR[A : a]
denote the update request issued by A to append the message a to the subchain.
In order to vote an update request, a meta-node must invest v3 on it, where v
is a constant specified by the protocol. An update request requires the vote of a
single meta-node. The protocol requires meta-nodes to vote a request UR[A : a]
only if A :a is a consistent update of the current subchain 7, ie. if n = A:
To incentivize meta-nodes to vote their update requests, participants pay them
a constant fee, which can be redeemed by meta-nodes when the update request
is appended to the subchain.

The protocol is defined in Figure[7.2] and is organised in stages. The protocol
ensures that ezactly one label A :a is appended to the subchain for each stage
i. This is implemented by appending a corresponding transaction UR;[A :a] to
the Bitcoin blockchain. To guarantee its uniqueness, the protocol exploits an
arbiter T, namely a distinguished node of the network which is assumed honest
(this hypothesis is discussed in Section . The main steps of the protocol
are now described.

At step 1 of the stage i of the protocol, a meta-node (say, N) votes an update

request (as detailed in Section [7.5.2)).

4Note that a similar hypothesis, but related to computational power rather than stake,
holds in Bitcoin, where honest miners are supposed to control more computational power
than dishonest ones.

5Tt is assumed that all meta-nodes agree on the Bitcoin blockchain; since 7 is a projection
of the blockchain, they also agree on 7.

90 CHAPTER 7. POS PROTOCOL FOR SUBCHAIN CONSENSUS

1. Upon receiving an update request URJA : a], a meta-node checks its
consistency, n = A:a. If so, it votes the request, and adds it to the
request pool;

2. when A expires, the arbiter signs all the well-formed URs in the re-
quest pool;

3. all requests signed by the arbiter are sent to the Bitcoin miners, to
be published on the blockchain. The first to be mined, indicated with
UR;, becomes the i-th label of the subchain.

Figure 7.2: Summary of a protocol stage i.

In order to do this, N must confirm some of the past C' updates (where
C > 1 is the cutoff window, a constant fixed by the protocol and described in
Section . To confirm an update, N uses the v3 to pay the meta-nodes
who respectively appended each chosen update UR; (with i — C' < j < 4) to the
subchain. The way to choose the updates UR; to be confirmed is called refund
policy and is deepened in Section After voting, N adds UR[A :a] to the
request pool, i.e. the set of all voted requests of the current stage (emptied at
the beginning of each stage). This voting step has a fixed duration A, specified
by the protocol (the choice of A is discussed in Section .

At step 2, which starts when A expires, the arbiter T signs all well-formed
request transactions, i.e., those respecting the format defined in Section [7.5.2}

At step 3, meta-nodes send the requests signed by T to the Bitcoin network.
The mechanism described in Section ensures that, at each stage ¢, exactly
one transaction, denoted UR;[A:a], is put on the Bitcoin blockchain. When this
happens, the label A :a is appended to the subchain.

Summarizing, the protocol depends on the parameters IT = (C, v, f,), which
are, respectively, the cutoff window size, the amount required to vote an update
request, the fee payed by the client, and the maximum transferable amount in
special updates in the form A :a(v — B) (where, by definition, v < 7).

7.4.1 Refund policies

A refund policy can be formally defined as a function © that, given a subchain
1 and the protocol parameters IT = (C,v, f,r), outputs a sequence of refunds

p' = (pi...pL), where:

° pj- represents, at each stage i of the protocol, the amount to pay to the
meta-nodes who voted UR,_;, for every j s.t. 1 < j < C (only updates
inside the current cutoff window can be refunded);

. Z]C:l pé = v+ f, that is the policy specifies how to split the vote and the
fee among the voters of the updates inside the cutoff window.

To enforce good behaviour, updates whose voters did not follow the prescribed
policy are considered not refundable. This means honest meta-nodes penalize
not only inconsistent labels, but also illegal refunds.

74. A PROTOCOL FOR CONSENSUS ON BITCOIN SUBCHAINS 91

Definition 7.4 (Refundable update). Let nl'*l be the subchain after the
completion of the k-th protocol stage, let UR;[A : a] be a published update,
and p? the refund made by its voter. Then, UR; is said refundable if and
only if it is consistent (p'U=Yl = A :a) and it follows the refund policy
(p? = Oy"-0=1),).

Thus, at each stage 4, it is possible to define the set of indexes of refundable
updates in the current cutoff window. Suppose that the subchain starts with C
predetermined and consistent updates UR_;,1 < i < C, then:

f={1<j<c} (7.1)
since all initial updates are considered refundable. Then, for i > 0:
¢ ={1<j<C:UR,_; is refundable according to O} (7.2)

Note that checking if the voter of the j-th update (with j <) has followed the

refund policy just requires to examine the updates with index k < j. Thus, this

check may depend only on £* and never on & that therefore is well-defined.
As an example, some possible refund policies are now presented.

newest-first This policy refunds only the newest refundable update in the
cutoff window (if any), the newest in general otherwise:

v+ f i & £DNG=min(E)
pi=Rv+f if&=0Aj=1 (7.3)
0 otherwise

oldest-first This policy refunds the oldest consistent update (if any), the oldest
in general otherwise (note that it coincides with the newest-first if C =
1):
v [iEE £ DA = max(€)
pj=qv+f &=0nj=C (7.4)
0 otherwise

Proof-of-Burn

To expand the possibilities for meta-nodes and increase the security of the pro-
tocol, as will be deepened in Section the sequence of refunds p can be
extended to include a special value pg. This value represents the amount that
should be paid to a pre-set fictional address (e.g. an all-zero address). Refund-
ing such an address effectively corresponds to burning the money sent, making
it unspendable.
With this enhancement, the policies previously defined can be improved,
removing the case ¢ = () and adding:
3 (2
%:{u+f if ¢ p 7.5)
0 otherwise

which can be interpreted as follows: if no update in the cutoff window is
refundable, burn vote and fee. The variants of the previous policies, after

92 CHAPTER 7. POS PROTOCOL FOR SUBCHAIN CONSENSUS

the inclusion of the Proof-of-Burn condition, are called newest-first-pburn
and oldest-first-pburn. This change avoids the (forced) confirmation of
a non-refundable update, that is allowed in the previous definitions of the
newest-first and oldest-first policies.

Now, recall that in Section the condition C' > 1 is provided. However,
the choice C' = 1 makes sense only if there is the possibility of burning the
vote. Vice versa, voters would have no other choice besides confirming the
previous update (refundable or not). Introducing the Proof-of-Burn, instead,
the following policy for C' =1 can be defined and used.

harsh policy This policy refunds the previous update if refundable, burns the
money otherwise:

, v+ f if & ={1} , v+ f i =0
Q — l — 7.6
A1 { 0 otherwise Po 0 otherwise (76)

7.5 Evaluation of the protocol

In this section the basic properties of the protocol will be shown and its secu-
rity evaluated, providing some experimental results. In particular, a real-world
attack scenario will be illustrated, and it will be investigated how the choice of
protocol parameters and refund policy can affect the protocol security.

It will also considered how possible attacks to Bitcoin may affect subchains
built on top of its blockchain.

7.5.1 Basic properties of the protocol

Now some basic properties of the protocol will be established. Hereafter, it will
be assumed that honest nodes control the majority of the total stake of the
network, denoted by S. Further, assume that the overall stake required to vote
pending update requests is greater than the overall stake of honest meta-nodes.

Adversary power An honest meta-node votes as many requests as is al-
lowed by its stake. Hence, if its stake is h, it votes h/v requests per stage.
Consequently, the rest of the network (which may include dishonest meta-nodes
not following the protocol) can vote at most (S — h)/v requestsﬂ Given these
assumptions this proposition follows:

Proposition 7.5.1. The probability that an honest meta-node with stake h
updates the subchain is at least h/S at each stage.

Since it is assumed that honest meta-nodes control the majority of the stake,
Proposition [7.5.1] also limits the capabilities of the adversary:

Proposition 7.5.2. If the global stake of honest meta-nodes is Sg, then dis-
honest ones update the subchain with probability at most (S — Sg)/S at each
stage.

6Note that assuming the ability of the adversary to delay some messages, thus reducing
the honest meta-nodes effective voting power (since their voted requests might not reach the
request pool), is equivalent to consider an adversary with a higher stake.

7.5. EVALUATION OF THE PROTOCOL 93

Although inconsistent updates are ignored by honest meta-nodes, their side
effects as standard Bitcoin transactions (i.e. trasfers of vB from A to B in
labels A :a(v — B)) cannot be revoked once they are included in the Bitcoin
blockchain.

Even though the goal of the protocol is to let meta-nodes get revenues pro-
portionate to their probability of updating the subchain (as defined in Proposi-
tion and Proposition , the adversary might exploit these side effects
to earn more than due by publishing inconsistent updates. Therefore, it will be
shown how the incentive system in the protocol reduces the feasibility of such
inconsistent updates.

According to Proposition[7.5.2} if M has stake m, and the other meta-nodes
are honest, then M has probability at most m/S of extending the subchain in
a given stage of the protocol. Since stages can be seen as independent events,
it follows that:

Proposition 7.5.3. The probability that an adversary with stake m saturates
a cutoff window with her updates only (consistent or not) is ¢, where C is the
cutoff window size, and u = m/S.

To simplify the terminology, hereafter a consistent update will be considered
to also be refundabld’]l

Now, assume that M manages to publish C consecutive updates (consis-
tent or inconsistent) starting from index j, with probability given by Proposi-
tion[7.5.3] M can use each update at index j < k < j + C to recover the vote v
and collect the fee f for the previous update at index k — 1, such that only the
last update at index j + C remains unrefunded.

In particular, if the protocol specifies a refund policy that does not admit the
Proof-of-Burn described in Section at least a honest update at index i >
j+C has to necessarily refund M of (v+ f)I3, since the cutoff window is saturated
with updates published by M only. Consequently, following this strategy the
attacker does not lose any deposit and possibly earns an additional extra revenue
r for each inconsistent update published, if any. This extra revenue r models
the case where M induces a victim A to publish an inconsistent update in the
form A:a(r — M).

Also note that, if M cannot manage to saturate the cutoff window immedi-
ately, the completion of the attack can be delayed by publishing at least one
inconsistent update every C ones on the subchain (to keep refunding vote and
fee to themself). The above behaviour of M (and all its variants) is called
self-compensation attack.

Finally, observe that the choice of the protocol parameters and, particularly,
the refund policy is crucial to force the honest strategy to be more profitable
than any dishonest one. To support this claim, in what follows it is shown a
dishonest strategy which exploits a variant of the attack, called the reversed
self-compensation attack, and it will be proven that it is always more profitable
than the honest strategy when the chosen refund policy is newest-first.

Reversed self-compensation attack Assume an adversary M that manages
to append two updates on the subchain, the first with index 4, and the second

"Publishing a consistent update that is not refundable does not break the consistency of the
subchain, but it causes the meta-node who voted the update to be (eventually) not refunded
for its effort. Therefore, this behaviour cannot be considered an attack.

94 CHAPTER 7. POS PROTOCOL FOR SUBCHAIN CONSENSUS

with index i +1 < j < i+ C. Suppose that the update at index i is consistent,
then the honest meta-node that publishes the update at index i + 1 refunds
(v + f)B to M (recall, the considered refund policy is newest-first). Now
M can use again these funds to publish a new inconsistent update at index 7,
refunding again the update at index ¢ (thus also violating the refund policy).
So M manages to earn the undeserved extra revenue r without losing neither v
nor f, therefore performing a special case of the self-compensation attack.

Now, consider a conservative strategy where the attacker M at first tries to
publish consistent updates only. When such an update is published, M switches
to trying to publish just one inconsistent update, and tries to do so until suc-
cess or the last consistent update published is beyond the cutoff window, then
reverses again to publishing consistent updates.

Let p be the probability M has in successfully publishing an update, and
suppose that the last update is a consistent update published by M. It will
be shown that the expected payoff ¢p that M earns following the described
dishonest strategy, is always greater than the expected payoff ¢ that would be
earned following the honest strategy. The analysis is limited to the subsequent
C' updates, since the two strategies coincide afterwards, and for C' > 2 (with
C = 1, meta-nodes have no choice besides refunding the last update, so an
inconsistent update is always more profitable than a consistent one). From the
hypothesis, it follows that:

c-1
¢p =pf+ Y p(l—p)' ' (f+r+pf(C—1-1) (7.7)

i=1

on = pfC (7.8)
Then, the gain M obtains by following the dishonest strategy is:

-1
¢D*¢H:Nf(lfc)+MZ(1*u)i71(f+r+Mf(C’fl—z‘))
o o |

=uf (Z(l _M)z—l(l—i—M(C— 1 —Z)) — (C— 1)) + ur Z(l _M)l—l

i=1

C—-1
= pr Z(l —p)! (7.9)

The result of eq. is justified by the following Claim Since 0 < p <
1, Vrs.t. r > 0 it follows that ¢p > ¢gy. This means that, indipendently
from the chosen protocol parameters II, a protocol that uses the refund pol-
icy newest-first admits at least one dishonest strategy which is always more
profitable than the honest one. Note also that a similar result can be obtained
for the oldest-first policy.

Claim 7.1. For C > 2, it holds:

Q

S0 W) A (€ -1 — i)~ (C—1) =0 (7.10)

i

7.5. EVALUATION OF THE PROTOCOL 95

Proof.

jz_::(l—u)i1(1+u(0—1—z’))_(c_1)

:g(l—u)i(ﬂru(c—?—z‘))_(c_l)

iy

= (ZC)) 1+ uC=2-1))—-(C-1)

:C—2 (02<)1+u —2_@')))_(0_1)

J=0 i=j

:C:—j(jg()]+1(jz=:2<; —2—i)>—(c_1)
002((0 +Cj jcz2<j>_(i(_u)j,cz_i(jil)(c_Q_i)

02) C2 ng_i = = i=J

S50 f(ﬁii)w—l—w)

:J—j]6§<() (]i)(c_l_”) (7.11)

From the following Claim [7.2} it follows that the coefficients of the polynomial
in Equation ([7.11]) are all zero, thus proving the above Claim O

Claim 7.2. Forn > 1, it holds:

S(()-(2)m+r-0)=0 1<ica @

=]

Proof. We prove it by induction over n. The base case is n = 1, therefore j = 1.

() (o) e

K2

96 CHAPTER 7. POS PROTOCOL FOR SUBCHAIN CONSENSUS

For the inductive step:

3 (6)-(T)ee-9)

i=j
n+1 . . n+1 .

1 1—1 1—1
= =1 n+1i> (>
;(() <J—1)() Z:; Jj—1
n . . n+1l ,.

) i—1 n+1 1—1
S0 () (756
z_;(() (J—1>() J ; J—1
_(n+1 Tf i—1
S\ e \j—1

i=j
To conclude, the results of the following Lemma [7.1] are needed. O

Lemma 7.1. Forn > 1 it holds:

(Z) :i:(;—i) l<ksn (7.14)

i=k

Proof. The proof is again by induction over m.The base case is n = 1, thus

k=1
()=1=-3() (715

For the inductive step:

(D)) s o

O

Trustworthiness of the arbiter The protocol uses an arbiter T to ensures
that exactly one transaction per stage is appended to the blockchain, and that
its choice is random as well. In order to simplify the description of the protocol,
the arbiter T has been assumed to behave honestly. However, the arbiter does
not play the role of a trusted authority: indeed, the update requests to be voted
are chosen by the meta-nodes, and once they are added to the request pool, the
arbiter is expected to sign all of them, without taking part on the validation nor
in the voting. Since everyone can inspect the request pool, any misbehaviour of
the arbiter can be detected by the meta-nodes, that can proceed to replace it.

7.5. EVALUATION OF THE PROTOCOL 97

Adversary strategy To analyse possible attacks, consider an adversary who
can craft any update (consistent or not), and controls one meta-node M with
stake ratio p = m/S, where u € [0; 1], m is the stake controlled by the adversary
and S is the total stake of the networkﬂ Suppose that each meta-node can vote
as many update requests as possible, spending all its stake, and that the network
is always saturated with pending updates, which globally amount to the entire
stake of honest meta-noded?

To evaluate its security, the protocol is modelled as a game, in which the
attacker M is a player that adopts a possibly dishonest strategy, thus trying to
publish either consistent or inconsistent updates. Conversely, the other play-
ers are the honest meta-nodes, that follow the protocol and therefore adopt a
honest strategy, trying to publish consistent updates only. Suppose also that
M follows an optimal strategy, i.e. at each protocol stage the choice whether to
vote a consistent or inconsistent update is made with the goal of maximizing
the revenue, given the current state of the subchain. Note that the current state
mainly depends on the content of the current cutoff window:

Proposition 7.5.4. The revenue of an update published by an adversary M,
at the protocol stage i, depends only on the state of the cutoff window in that
stage (i.e., n[(i_c)“'(i_l)]), on the protocol parameters II, on the refund policy
© and on the adversary ratio p.

To justify Proposition observe that, by definition of refund policy O,
no update with index j < ¢ — C' can be refunded, neither of the vote v nor the
fee f, in a protocol stage with index 7. Thus, no matter what M chooses at the
current stage, there is no additional revenue (but also no loss) for any update
outside the cutoff window.

Now, let G be a function that maps a subchain n** into a sequence of
labels s = o1 :: ... 2 0. A label o; can assume one of the following values:
Inc, which indicates an inconsistent update published by M; Con, which repre-
sents a consistent update published by M, and Ext, that denotes a (consistent)
external update published by the rest of the network, assumed to be honest.

Also, let sg = G(n[(’“’c)“'(kfl)}) be the sequence that represents the cutoff
window state at the stage k This sequence is used to generate two new sequences
sk = sk Con and s, = s& :: Inc that represent the possible continuations
of the chain if the adversary manages to publish the next update.

Now, let ¢ be a function that, given the protocol parameters IT and the refund
policy O, takes a sequence s as input and computes the a posteriori attacker
revenue associated to s. Moreover, let ¢ be a variation of the same function
that also takes in consideration the possible refunds given by C' subsequent Ext
updates (that necessarily follow the prescribed refund policy). This variation
models what happens when the attack terminates.

Through ¢ and ¢, and given the attacker ratio u, it is possible to define a
payoff function ®,; with depth d. Let s = 07 :: ... :: o be a sequence of length

8 Assuming a single adversary is not less general than having many non-colluding meta-
nodes which carry on individual attacks. Indeed, in this setting meta-nodes do not join their
funds to increase the stake ratio u.

9Note that saying the update queue is not always saturated is equivalent to model an
adversary with a stronger p: this because honest meta-nodes cannot spend all their stake in
a single protocol stage, i.e. reducing their actual power. Thus, studying this particular case
will not give any additional contribution to the analysis.

98 CHAPTER 7. POS PROTOCOL FOR SUBCHAIN CONSENSUS

N, and s’ = o9 :: ... :: on be the same sequence of s, where the first label is
elided. The payoff function is defined recursively as:

o(s) d=1

Remember that, for the Proposition the revenue of the current update
depends on the state of the cutoff window (and not on the full history of the
subchain).

{¢(s) + (1= p)Pg_1(s" :: Ext) + pmax(Py_1(s" :: Con), Py_1(s" :: Inc)) d>1

Definition 7.5 (Optimal choice). Given a sequence ssg that represents the
state of the current cutoff window, the optimal choice with depth d for an at-
tacker is to try to publish a consistent update if ®4(sk,,) > ®4(s5,.), an incon-
sistent one otherwise.

Consider an adversary that plans to meddle with the protocol for a limited
amount of time, say for d stages starting at the stage n. Then the optimal
strategy would be at each stage n < k < n+d — 1 to take the optimal choice
with depth n +d — k. In fact the optimal choice with depth d (i.e. the first
choice) considers every possible evolution of the protocol for the duration of the
attack, weighted for its probability to occur, and considers the best outcome at
every step, thus maximizes the revenue. Now consider an attacker that plans
to attack for an indefinite amount of stages, then the optimal strategy is not
well defined, but can be approximated by taking at each step the optimal choice
with fixed depth d, if d is high enough.

Analytic results In what follows, the results of the security analysis of the
protocol are shown, under the attack scenario in which the adversary adopts
an optimal strategy, and only for the harsh-policy, which provides the best
security performance among the policies shown in Section (according to
some simulated preliminary experiments shown in Figure he results are
summarized by the following:

Proposition 7.5.5. If the protocol uses the harsh-policy, an adversary with
stake ratio p that adopts an optimal strategy in pursuing an attack of arbitrary
length, remains necessarily honest if and only if p <1 —17/(v + f).

Proof. Note that, when the prescribed policy is the harsh-policy, any update
after Con necessarily refunds the vote and the fee to the adversary, independently
from its type. So this gain can be included in the revenue, having:

- ¢(_’C°n) =f

where the symbol ‘-’ indicates an indifference condition.
On the other side, the revenue for an inconsistent update can be quantified
in:

- ¢(Ext,Inc) =71 —v
- ¢(Inc,Inc) =r + f (vote and fee are self-refunded)

¢(Con, Inc) = r — v (the refund of f and v has already been counted for
Con)

7.5. EVALUATION OF THE PROTOCOL 99

Note that, when considering whether to publish an inconsistent update, a cutoff
that contains Con is equivalent to one with Ext. Finally, observe that computing
the revenue in this way gives ¢(—,Ext) = 0, and therefore ¢ = ¢.

Given these considerations, it is easy to see that in the terminal stages of
the attack the adversary is always encouraged to publish Con, since from the
condition v > r it follows that at least two consecutive Inc are required to
outdo the honest behaviour. Only exceptions are the rare cases in which a
streak of consecutive Inc reaches the end of the attack: in this situation the
adversary is obviously motivated to continue trying to publish Inc. But as soon
as an attempt to publish fails and an Ext insinuates itself in the sequence, the
adversary will become honest if the end is near enough.

On the contrary, at the early stages a high enough probability u could ensure
that, on average, a sufficient number of consecutive Inc will be published to
gain an advantage over a honest behaviour. But, if this is the case, note that
¢(Inc, Inc) > ¢(—, Inc) so if Inc is the optimal choice at the step k, then it is
the optimal choice at the step k — 1 too.

So any optimal strategy is either always honest, or starts completely dis-
honest (always tries to publish Inc) and becomes honest near the end. This
means that for the purposes of this analysis it is sufficient to consider the early
stages, when an Inc may still be more profitable than a Con. In this period the
adversary publishing an Inc will gain ¢(Ext, Inc) with probability 1 — p and
¢(Inc,Inc) with probability u, since p is the probability that the adversary
actually manages to publish an update.

So the adversary remains honest right from the start if and only if:

¢(—,Con) > (1 — u) - ¢(Ext, Inc) + u - ¢(Inc, Inc)
= f>r—v+(f+v)u
= fer-v+(f+vn

e e dtvor
H f+v
1— 7.17
= p<log (7.17)
O

The value of f is assumed to be strictly smaller than v, in order to incentivize
the participation of meta-nodes to the protocol. In fact, with f very close to (or
even greater than) v, clients have no evident benefit from delegating meta-nodes
to vote their updates (since the economical effort does not change significantly).
This is similar to provide a protocol with no fees, which is less attractive for
meta-nodes to participate in. However, a large participation to the protocol
reduces the possibility that single or colluding entities controls the majority of
the stake.

Under this assumption, the eq. shows that the security of the protocol
is essentially proportional to the ratio v/r: the higher this ratio, the more
convenient an honest behaviour becomes. Figure [7.3 finally illustrates how
the switch point (i.e., the min(u) such that ¢rne > deon) varies for different
combinations of v and r, with a small fixed fee (f = 0.013).

100 CHAPTER 7. POS PROTOCOL FOR SUBCHAIN CONSENSUS

Switch point for different v and r

Switch point

‘ 009 9101
Revenue (in BTC) Amount to vote (in BTC)

Figure 7.3: The plot shows how the switch point (the min(u) such that ¢rc >
¢con) varies for different combinations of v and r, when the refund policy is

harsh-policy and f is fixed to 0.0113.

Simulated revenue for the optimal strategy

T T T
honest behaviour
4 | | = = = harsh-policy ,)’y
¥
- — - — oldest-first-burn (C = 2) 4
154
— — oldest-first-burn (C = 3) .."/
’o\ sl oldest-first (C = 2) .,~/’/ .
[~ 5 _ R -
= 2 e oldest-first (C = 3) o - P
as] R -
A -
R N
= A
== R .
S/ °
<) 2 [S e
= R
= R A
G; R
Q .";/z)
D .
~ 1+ . {/ e -
| |

! ! !
0 0.2 0.4 0.6 0.8
Attacker stake ratio (u)

Figure 7.4: We simulated the revenue of an adversary M participates in sub-
chains of length 100 and uses the optimal strategy. Each curve represents the
revenue when p increases, and for a different refund policy. Protocol parameters

are fixed (f = 0.0113, » = 0.03B and v = 0.113), and the results are the mean
taken over 10000 iterations.

7.5. EVALUATION OF THE PROTOCOL 101

Security of the underlying Bitcoin blockchain So far only direct at-
tacks to the protocol have been considered, assuming the underlying Bitcoin
blockchain to be secure. However, although Bitcoin has been secure in practice
till now, some works have spotted some potential vulnerabilities of its proto-
col. These vulnerabilities could be exploited to execute Sybil attacks [8] and
selfish-mining attacks [36], which might also affect subchains built on top of the
Bitcoin blockchain.

In Sybil attacks on Bitcoin, honest nodes are induced to believe that the
network is populated by many distinct participants, which instead are controlled
by a single malicious entity. This attack is usually exploited to quickly propagate
malicious information on the network, and to disguise honest participants in a
consensus/reputation protocol, e.g. by overwhelming the network with votes
of the adversary. In the selfish-mining attack [36], small groups of colluding
miners manage to obtain a revenue larger than the one of honest miners. More
specifically, when a selfish-mining pool finds a new block, it keeps it hidden to
the rest of the network. In this way, selfish miners gain an advantage over honest
ones in mining the next block. This is equivalent to keep a private fork of the
blockchain, which is only known to the selfish-mining pool. Note that honest
miners still mine on the public branch of the blockchain, and their hash rate is
greater than selfish miners’ one. Since, in the presence of a fork, the Bitcoin
protocol requires to keep mining on the longest chain, selfish miners reveal their
private fork to the network just before being overcome by the honest miners.
Eyal and Sirer in [36] show that, under certain assumptions, this strategy gives
better revenues than honest mining: in the worst scenario (for the adversary),
the attack succeeds if the selfish-mining pool controls at least 1/3 of the total
hashing power. Rational miners are thus incentivized to join the selfish-mining
pool. Once the pool manages to control the majority of the hashing power,
the system loses its decentralized nature. Garay, Kiayias and Leonardos in [37]
essentially confirm these results: considering a core Bitcoin protocol, they prove
that if the hashing power v of honest miners exceeds the hashing power g of the
adversary pool by a factor A, then the ratio of adversary blocks in the blockchain
is bounded by 1/A (which is strictly greater than 3). Thus, as 8 (the adversary
pool size) approaches 1/2, they control the blockchain.

Although these attacks are mainly related to Bitcoin revenues, they can af-
fect the consistency of any subchain built on top of its blockchain. In particular,
suitably adapted versions of these attacks allow adversaries to cheat meta-nodes
about the current subchain state, forcing them to synchronize their local copy of
the Bitcoin blockchain with invalid forks that will be discarded by the network
in the future. To protect against such attacks, meta-nodes should consider only
l-confirmed transactions. Namely, if the last published blockchain block is B,,,
they consider only those transactions appearing in blocks B; with j < n — [.
This means that an attacker would have to mine at least [blocks to force the
revocation of a l-confirmed transaction. Rosenfeld [73] shows that, if an attacker
controls at most the 10% of the network hashing power, [= 6 is sufficient for
reducing the risk of revoking a transaction to less than 0.1%.

7.5.2 Implementation in Bitcoin

In this section it is shown how the protocol can be implemented in Bitcoin. A
label A:a(v — B) at position i of the subchain is implemented as the Bitcoin

102 CHAPTER 7. POS PROTOCOL FOR SUBCHAIN CONSENSUS

transaction UR;[A:a(v — B)] in Figure with the following outputs:

e the output of index 0 embeds the label A :a. This is implemented through
an unspendable OP_RETURN script [11]@

e the output of index 1 links the transaction to the previous element of the
subchain, pointed by in[2]. This link requires the arbiter signature. Note
that, since all the update requests in the same stage redeem the same
output, exactly one of them can be mined.

e the output of index 2 implements the incentive mechanism. The script re-
wards the meta-node N’ which has voted a preceding UR; in the subchain.
Meta-node N’ can redeem from this output «I3 plus the participant’s fee,
by providing his signature.

e the output of index 3 is only relevant for messages a(v — B) where v > 0.
Participant B can redeem v[3 from this output by providing his signature.

Genesis

in: .-
in-script: --- Genesis
out-script(t, o): verz(t,o)
value: 0.0001

UR;[A:a(v — B)]
in[0]: Fee;
in-script[0]: sig;(e)
in[1]: Stake;
in-script[0]: sigy (o)
in[2]: Confirm;_; (at index 1)
in-script[0]: sigy(e)
out-script[0](): OP_RETURN A:a
value[0]: 0
out-script[1](t, o): verr(t,o)
value[1]: 0.0001
out-script[2](t, o): very (t,o)
value[2]: v + fee —
out-script[3](t, o): vers(t,o)
value[3]: v
lockTime: n+ k

(a)

[]

[

t Tt T & T &t T

[3 3 o
g

[

UR

i+3

3
.

(b)

Figure 7.5: In (a), format of Bitcoin transactions used to implement the proto-
col. In (b), a subchain mantained through our protocol. Since UR; 5 contains
an inconsistent update, the meta-node which voted it is not rewarded.

All transactions specify a lockTime n + k, where n is the current Bitcoin
block number, and k is a positive constant. This ensures that a transaction can
be mined only after k blocks. In this way, even if a transaction is signed by the

10The OP_RETURN instruction allows to save 80 bytes metadata in a transaction; an out-
script containing OP_RETURN always evaluates to false, hence it is unspendable.

7.6. DISCUSSION 103

arbiter and sent to miners before the others, it has the same probability as the
others of being appended to the blockchain.

To initialise the subchain, the arbiter puts the Genesis transaction on the
Bitcoin blockchain. This transaction secures a small fraction of bitcoin, which
can be redeemed by UR; through the arbiter signature. This value is then
transferred to each subsequent update of the subchain (see Figure. At each
protocol stage, participants send incomplete UR transactions to the network.
These transactions contain only in[0] and out[0], specifying the fee and the
message for the subchain (including the value to be transferred). To vote,
meta-nodes add in[1], in[2] and out[2] to these transactions, to, respectively,
put the required v (from some transaction Stake;), declare they want extend
the last published update Confirm;_1, and specify the previous update to be
rewarded. All the in[1] fields in a stage of the protocol must be different, to
prevent attackers to vote more URs with the same funds.

7.6 Discussion

The protocol presented aims to reach consensus on subchains, i.e. chains of
platform-dependent messages embedded in the Bitcoin blockchain. The pro-
tocol incentivizes nodes to validate messages before appending them to the
subchain, making economically disadvantageous for an adversary to append in-
consistent messages. To confirm this intuition the security of the protocol has
been measured over different attack scenarios, showing that, under conservative
assumptions, its security is comparable to that of Bitcoin.

Performance of the protocol. As seen in Section [7.4] the protocol runs
in periods of duration A. Due to the mechanism for choosing the message
to append to the subchain from the request pool, the protocol can publish at
most one transaction per Bitcoin block. This means that a lower bound for
A is the Bitcoin block interval (~10mins). To monitor the arbiter behaviour
throughout protocol stages, all meta-nodes must share a coherent view of the
request pool. Then, A needs to be large enough to let each node synchronize the
request pool with the rest of the network. A possible approach to cope with this
issue is to make meta-nodes broadcast their voted updates, and to keep a list
of other ones (considering only those which satisfy the format of transactions,
as in Section [7.5.2)). More efficient approaches could exploit distributed shared
memories [25] 42].

Overcoming the metadata size limit. Asnoted in Section[7.5.2] OP_RETURN
unspendable scripts are used to embed metadata in Bitcoin transactions. Since
Bitcoin limits the size of such metadata to 80 bytes, this might not be enough
to store the data needed by platforms. To overcome this issue, one can use
distributed hash tables [61] maintained by meta-nodes. In this way, instead of
storing full message data in the blockchain, OP_RETURN scripts would contain
only the corresponding message digests. The unique identifier of the Bitcoin
transaction can be used as the key to retrieve the full message data from the
hash table.

104 CHAPTER 7. POS PROTOCOL FOR SUBCHAIN CONSENSUS

Smart contracts over subchains. The model of subchains defined in Sec-
tion based on LTSs, can be easily extended to model the computations of
smart contracts over the Bitcoin blockchains. A platform for smart contracts
could exploit this model to represent the state of a contract as the state of the
subchain, and model its possible state updates through the transition relation.

Implementing a platform for smart contracts would require a language for
expressing them. To bridge this language with the abstract model presented, one
can provide the language with an operational semantics, giving rise to an LTS
describing the computations. Note that the assumption to model computations
as a single LTS does not reduce the generality of the system, since a set of LT'Ss,
each one modelling a contract, can be encoded in one LTS as their parallel
composition. If the language is Turing-complete, an additional problem is the
potential non-termination. This issue has been dealt with in different ways by
different platforms. E.g., the approach followed by Ethereum [35] is to impose
a fee for each instruction executed by its virtual machine. If the fee does not
cover the cost of the whole computation, the execution terminates.

A usable platform must also allow to create new contracts at run-time. Since
in this model the LTS representing possible computations is fixed, it is necessary
to introduce a mechanism to “extend” it. To handle the publication of new
contracts, the protocol could be modified so that UR may contain its code,
and the unique identifier of the transaction also identifies the contract. In this
extended model, update requests would also contain the identifier of the contract
to be updated, so that meta-nodes can execute the corresponding code.

Chapter 8

Conclusions

The applications of cryptography in the digital world are very variegated, and
new protocols are proposed almost every day. In this jungle of possibilities it is
difficult to navigate and choose solutions that actually satisfy the application’s
requirements.

To help distinguishing between hot air and decent algorithms, proofs of
security are great allies. In fact a proof gives a minimum warranty on the effec-
tiveness of the protocol, with results based on hard logic instead of subjective
sensations.

The protocols presented in this thesis address different use cases and illus-
trate the diversity of applications and solutions. The proofs given show their
strength against powerful attackers in realistic scenarios, starting from well-
established assumptions on hard problems, either on famous algebraic problems
or widely used cryptographic primitives. Thanks to these qualities these schemes
become good candidates as real-life solutions.

A trait that can be found in all these protocols, although very different one
from the other, is the fragility of the equilibriums between assumptions, attack
scenario and the protocol. Very slight variations that may seem innocuous
may destroy a proof. An apparently equivalent solution in the description of
a protocol could force the use of a way stronger assumption or a much weaker
adversary, or even make the proof impossible. As the old saying goes, the devil
is in the details.

105

106 CHAPTER 8. CONCLUSIONS

Bibliography

[1]
2]

[3]

GMP library. https://gmplib.org/.

Making sense of blockchain smart contracts. http://www.coindesk.com/
making-sense-smart-contracts/. Last accessed 2017/01/14.

OP_RETURN statistics. http://opreturn.org/. Last accessed
2016/12/15.

M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Fair
two-party computations via Bitcoin deposits. In Financial Cryptography
Workshops, pages 105-121, 2014.

R. Aragona, R. Longo, and M. Sala. Several proofs of security for a to-
kenization algorithm. Applicable Algebra in Engineering, Communication
and Computing, pages 1-12, 2017.

M. Araoz and E. Ordano. Proof of existence. Online. Awvailable:
proofofexistence. com), 2013.

N. Attrapadung, J. Herranz, F. Laguillaumie, B. Libert, E. De Panafieu,
C. Rafols, et al. Attribute-based encryption schemes with constant-size
ciphertexts. Theoretical Computer Science, 422:15-38, 2012.

M. Babaioff, S. Dobzinski, S. Oren, and A. Zohar. On Bitcoin and red
balloons. In ACM Conference on Electronic Commerce (EC), pages 5673,
2012.

W. Banasik, S. Dziembowski, and D. Malinowski. Efficient zero-knowledge
contingent payments in cryptocurrencies without scripts. In ESORICS,
volume 9879 of LNCS, pages 261-280. Springer, 2016.

M. Bartoletti, S. Lande, and A. S. Podda. A proof-of-stake protocol for
consensus on Bitcoin subchains. In B. et al, editor, Financial Cryptogra-
phy and Data Security, pages 568-584, Cham, 2017. Springer International
Publishing.

M. Bartoletti and L. Pompianu. An analysis of Bitcoin OP_RETURN
metadata. In Financial Cryptography Workshops, 2017. Also available as
CoRR abs/1702.01024.

M. Bartoletti and R. Zunino. Constant-deposit multiparty lotteries on
Bitcoin. In Financial Cryptography Workshops, 2017. Also available as
IACR Cryptology ePrint Archive 955/2016.

107

https://gmplib.org/
http://www.coindesk.com/making-sense-smart-contracts/
http://www.coindesk.com/making-sense-smart-contracts/
http://opreturn.org/
proofofexistence.com

108

[13]

BIBLIOGRAPHY

A. Beimel. Secure schemes for secret sharing and key distribution. PhD
thesis, Technion-Israel Institute of technology, Faculty of computer science,
1996.

M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers. Format-Preserving
Encryption. Selected Areas in Cryptography — SAC 2009, LNCS 5867:295—
312, 2009.

M. Bellare, P. Rogaway, and T. Spies. The FFX mode of operation for
Format-Preserving Encryption (Draft 1.1). Manuscript (standards pro-
posal) submitted to NIST, 2010.

I. Bentov, A. Gabizon, and A. Mizrahi. Cryptocurrencies without proof of
work. In Financial Cryptography Workshops, volume 9604 of LNCS, pages
142-157. Springer, 2016.

I. Bentov and R. Kumaresan. How to use Bitcoin to design fair protocols.
In CRYPTO, volume 8617 of LNCS, pages 421-439. Springer, 2014.

J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based
encryption. In Proc. of SP 07, pages 321-334, 2007.

BitID. Bitid open protocol. Technical report, 2015. http://bitid.
bitcoin.blue/, Last Accessed 2017/03/14.

J. Black and P. Rogaway. Ciphers with Arbitrary Finite Domains. volume
LNCS 2271, pages 114-130. Springer, 2002.

Blockstore: Key-value store for name registration and data storage on the
Bitcoin blockchain. https://github.com/blockstack/blockstore, 2014.

D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption
with constant size ciphertext. In Proc. of EUROCRYPT 05, volume 3494
of LNCS, pages 440-456. 2005.

D. Boneh and M. Franklin. Identity-based encryption from the weil pairing.
In Advances in Cryptology—CRYPTO 2001, pages 213-229. Springer, 2001.

E. Brier, T. Peyrin, and J. Stern. BPS: a Format-Preserving Encryption
proposal. Manuscript (standards proposal) submitted to NIST, 2010.

M. Cai, A. Chervenak, and M. Frank. A peer-to-peer replica location
service based on a distributed hash table. In ACM/IEEE Conference on
High Performance Networking and Computing, page 56. IEEE Computer
Society, 2004.

M. Chase. Multi-authority attribute based encryption. In Theory of Cryp-
tography, pages 515-534. Springer, 2007.

M. Chase and S. S. Chow. Improving privacy and security in multi-
authority attribute-based encryption. In Proceedings of the 16th ACM con-
ference on Computer and communications security, pages 121-130. ACM,
2009.

http://bitid.bitcoin.blue/
http://bitid.bitcoin.blue/
https://github.com/blockstack/blockstore

BIBLIOGRAPHY 109

28]

D. Cooper and et al. Internet x.509 public key infrastructure certificate
and certificate revocation list (crl) profile. Technical report, IETF RFC
5280, 2008.

K. Crary and M. J. Sullivan. Peer-to-peer affine commitment using Bitcoin.
In ACM PLDI, pages 479-488, 2015.

R. Dermody, A. Krellenstein, O. Slama, and E. Wagner. Counter-
Party: Protocol specification. http://counterparty.io/docs/protocol_
specification/|, 2014.

S. Diaz-Santiago, L. M. Rodriguez-Henriquez, and D. Chakraborty. A
Cryptographic Study of Tokenization Systems. International Journal of
Information Security, 15(4):413-432, 2016.

C. Dwork and M. Naor. Pricing via processing or combatting junk mail.
In CRYPTO, volume 740 of LNCS, pages 139-147. Springer, 1993.

T. Elgamal. A public key cryptosystem and a signature scheme based on
discret e logaritmhs. IEEE Trans. on Inf. Th., 31(4):469-472, 1985.

EMVCo. Payment Tokenisation Specification - Technical Framework, Ver-
sion 1.0. Technical report, March 2014.

Ethereum Foundation. Ethereum project. Technical report, 2015. https:
//wuw .ethereum.org/, Last accessed 2017/03/14.

I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulner-
able. In Financial Cryptography and Data Security, volume 8437 of LNCS,
pages 436-454. Springer, 2014.

J. A. Garay, A. Kiayias, and N. Leonardos. The Bitcoin backbone protocol:
Analysis and applications. In EUROCRYPT, volume 9057 of LNCS, pages
281-310. Springer, 2015.

V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In Proc. of CCS 06, pages
89-98, 2006.

A. Hern. A history of Bitcoin hacks. The Guardian, march
2014. http://www.theguardian.com/technology/2014/mar/18/
history-of-bitcoin-hacks-alternative-currency Last accessed
2017/03/14.

V. T. Hoang, B. Morris, and P. Rogaway. An Enciphering Scheme Based on
a Card Shuffle. Advances in Cryptology — CRYPTO 2012, LNCS 7417:1-13,
2012.

S. Hohenberger and B. Waters. Attribute-based encryption with fast de-
cryption. In Proc. of PKC 13, volume 7778 of LNCS, pages 162-179. 2013.

S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized peer-to-
peer web cache. In PODC, pages 213-222. ACM, 2002.

http://counterparty.io/docs/protocol_specification/
http://counterparty.io/docs/protocol_specification/
https://www.ethereum.org/
https://www.ethereum.org/
http://www.theguardian.com/technology/2014/mar/18/history-of-bitcoin-hacks-alternative-currency
http://www.theguardian.com/technology/2014/mar/18/history-of-bitcoin-hacks-alternative-currency

110

[43]

[44]

[45]

[46]

BIBLIOGRAPHY

D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signa-
ture algorithm (ECDSA). Technical report, Certicom, 1998.

A. Kiayias, I. Konstantinou, A. Russell, B. David, and R. Oliynykov.
Ouroboros: A provably secure Proof-of-Stake blockchain protocol. TACR
Cryptology ePrint Archive, 2016:889, 2016.

A. Kiayias, H. Zhou, and V. Zikas. Fair and robust multi-party computation
using a global transaction ledger. In EUROCRYPT, pages 705-734, 2016.

R. Kumaresan and I. Bentov. How to use Bitcoin to incentivize correct

computations. In ACM CCS, pages 3041, 2014.

R. Kumaresan, T. Moran, and 1. Bentov. How to use Bitcoin to play
decentralized poker. In ACM CCS, pages 195-206, 2015.

A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully
secure functional encryption: Attribute-based encryption and (hierarchical)
inner product encryption. In Proc. of EUROCRYPT 10, volume 7881 of
LNCS, pages 62-91. 2010.

A. Lewko and B. Waters. New techniques for dual system encryption and
fully secure HIBE with short ciphertexts. In Theory of Cryptography, vol-
ume 5978 of LNCS, pages 455-479. 2010.

A. Lewko and B. Waters. Decentralizing attribute-based encryption. In
Proc. of EUROCRYPT 11, volume 6632 of LNCS, pages 568-588. 2011.

X. Liang, Z. Cao, H. Lin, and J. Shao. Attribute based proxy re-encryption
with delegating capabilities. In Proceedings of the 4th International Sympo-
sium on Information, Computer, and Communications Security, ASIACCS
'09, pages 276286, New York, NY, USA, 2009. ACM.

H. Lin, Z. Cao, X. Liang, and J. Shao. Secure threshold multi authority at-
tribute based encryption without a central authority. Information Sciences,
180(13):2618-2632, 2010.

M. Liskov, R. L. Rivest, and D. Wagner. Tweakable Block Ciphers. Journal
of Cryptology, 24(3):588-613, 2011.

Z. Liu and Z. Cao. On efficiently transferring the linear secret-sharing
scheme matrix in ciphertext-policy attribute-based encryption. IACR
Cryptology ePrint Archive, 2010.

R. Longo, C. Marcolla, and M. Sala. Key-policy multi-authority attribute-
based encryption. In Maletti A. (eds) Algebraic Informatics. CAI 2015.
Lecture Notes in Computer Science, vol 9270, pages 152—-164. Springer In-
ternational Publishing, 2015.

R. Longo, C. Marcolla, and M. Sala. Collaborative multi-authority key-
policy attribute-based encryption for shorter keys and parameters. Cryp-
tology ePrint Archive, Report 2016/262, 2016. https://eprint.iacr.
org/2016/262Laccepted and presented at CAI 2017 International Confer-
ence.

https://eprint.iacr.org/2016/262
https://eprint.iacr.org/2016/262

BIBLIOGRAPHY 111

[57]

[63]

[64]

R. Longo, F. Pintore, G. Rinaldo, and M. Sala. On the security of the
blockchain BIX protocol and certificates. In 9th International Conference
on Cyber Conflict: Defending the Core, CyCon, pages 217-232. NATO
CCD COE Publications, 2017.

B. Lynn. PBC library. https://crypto.stanford.edu/pbc/.

B. Lynn. On the implementation of pairing-based cryptosystems. PhD
thesis, Stanford University, 2007.

S. Matsumoto and R. M. Reischuk. TIkp: Turning a pki around with
blockchains. Cryptology ePrint Archive, Report 2016/1018, 2016. https:
//eprint.iacr.org/2016/1018|

P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
system based on the XOR metric. In Workshop on Peer-to-Peer Systems
(IPTPS), volume 2429 of LNCS, pages 53-65. Springer, 2002.

B. Morris, P. Rogaway, and T. Stegers. How to Encipher Messages on a
Small Domain. Advances in Cryptology — CRYPTO 2009, LNCS 5677:286—
302, 2009.

S. Muftic. Bix certificates: Cryptographic tokens for anonymous transac-
tions based on certificates public ledger. Ledger, 1:19-37, 2016.

S. Miller, S. Katzenbeisser, and C. Eckert. Distributed attribute-based
encryption. In Information Security and Cryptology—ICISC 2008, pages
20-36. Springer, 2009.

S. Nakamoto. Bitcoin: a peer-to-peer electronic cash system. https://
bitcoin.org/bitcoin.pdf, 2008.

NIST. Secure Hash Standard (SHS). FIPS PUB 180-4, 2015.

R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with
non-monotonic access structures. In Proc. of CCS 07, pages 195-203, 2007.

P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be
equivalent to discrete log. LNCS, 3788:11-20, 2005.

S. PCI. Information Supplement: PCI DSS Tokenization Guidelines, Ver-
sion 2.0. Technical report, August 2011.

B. Preneel. The state of cryptographic hash functions. LNCS, 1561:158—
182, 1999.

M. O. Rabin. Digital signatures and public-key functions as intractable
as factorization. Technical Report MIT/LCS/TR-212, MIT laboratory for
computer science, 01 1979.

R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120-126,
1978.

M. Rosenfeld. Analysis of hashrate-based double spending. CoRR,
abs/1402.2009, 2014.

https://crypto.stanford.edu/pbc/
https://eprint.iacr.org/2016/1018
https://eprint.iacr.org/2016/1018
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

112

[74]

[75]

BIBLIOGRAPHY

T. Ruffing, A. Kate, and D. Schréder. Liar, liar, coins on fire!: Penalizing
equivocation by loss of Bitcoins. In ACM CCS, pages 219-230, 2015.

A. Rukhin and et al. A Statistical Test Suite for the Validation of Random
and Pseudo Random Number Generators for Cryptographic Applications.
NIST Special Publication, 2010.

A. Sahai and B. Waters. Fuzzy identity-based encryption. In Advances in
Cryptology-EUROCRYPT 2005, pages 457-473. Springer, 2005.

A. Shamir. Identity-based cryptosystems and signature schemes. In Ad-
vances in cryptology, pages 47-53. Springer, 1985.

P. SSC. Tokenization Product Security Guidelines - Irreversible and Re-
versible Tokens, Version 1.0. Technical report, April 2015.

P. SSC. PCI DSS Requirements and Security Assessment Procedures, Ver-
sion 3.2. Technical report, April 2016.

E. Stefanov and E. Shi. Fastprp: Fast pseudo-random permutations for
small domains. Cryptology ePrint Archive, Report 2012/254, 2012. https:
//eprint.iacr.org/2012/254.

N. Szabo. Formalizing and securing relationships on public networks.
First Monday, 2(9), 1997. http://firstmonday.org/htbin/cgiwrap/
bin/ojs/index.php/fm/article/view/548.

A. Tomescu and S. Devadas. Catena: Efficient non-equivocation via Bit-
coin. In IEEE Symp. on Security and Privacy, 2017.

M. Vanhoef and F. Piessens. Key reinstallation attacks: Forcing nonce
reuse in WPA2. In Proceedings of the ACM Conference on Computer and
Communications Security, Dallas, TX, USA, volume 30, 2017.

B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE
under simple assumptions. In Proc. of CRYPTO 09, volume 5677 of LNCS,
pages 619-636. 2009.

B. Waters. Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization. In Proc. of PKC' 11, volume 6571
of LNCS, pages 53-70. 2011.

S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin. Storj: A peer-
to-peer cloud storage network. Technical report, 2014. http://storj.io/
storj.pdf Last accessed 2017/03/14.

XMPP Standards Foundation. Extensible messaging and presence pro-
tocol. Technical report, 2015. https://www.xmpp.org/| Last accessed
2017/03/14.

https://eprint.iacr.org/2012/254
https://eprint.iacr.org/2012/254
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548
http://storj.io/storj.pdf
http://storj.io/storj.pdf
https://www.xmpp.org/

	Introduction to Formal Proofs of Security
	Security of Cryptographic Protocols
	Simulator and Adversary: the General Structure of a Proof
	Attack Scenarios and Security Properties
	Adversary Strength
	Adversary Goal

	The Protocols in this Thesis: a Motivation
	Attribute-Based Encryption
	Tokenization
	BIX Certificates
	Public Ledger for Sensitive Data
	Proof of Stake Protocol for Bitcoin Subchains

	Caveat

	Hard Problems and Cryptographic Assumptions
	Bilinear Groups and Diffie-Hellman Problems
	Bilinear Maps
	Security Assumptions on Prime Order Bilinear Groups
	Generic Security of Diffie-Hellman Assumptions
	Interactive Diffie-Hellman

	Security of Cryptographic Primitives
	Security of Digital Signatures and ECDSA
	Security of Hash Functions
	Security of Symmetric Ciphers

	Multi-Authority Key-Policy Attribute Based Encryption
	Cryptography for the Cloud
	Background: Access Structures and Linear Secret Sharing Schemes
	Multi-Authority Key-Policy Attribute-Based Encryption
	Multi Authority KP-ABE Structure and Security
	The Scheme
	Security
	Remarks

	Collaborative Multi-Authority Key-Policy Attribute-Based Encryption
	Collaborative Multi Authority KP-ABE Structure and Security
	The Scheme
	Security
	Remarks

	Format Preserving Tokenization Algorithm for Credit Cards
	Introduction
	Background: Requirements of the Standard
	Algorithm
	Proof of Security
	A practical example
	Security
	Efficiency

	The BIX Protocol and Certificates: Decentralizing Certificate Authorities
	Background: A description of BIX certificates
	Bix Certification Infrastructure (BCI)
	The Chain of Certificates

	Chain Lengthening Attack Scenario
	Certificate Tampering
	Mid-Chain Altering
	Remarks

	Public Ledger for Sensitive Data
	Introduction
	Masking Shards Protocol
	Block structure
	Security Model
	Security against Outsiders and Service Providers
	Security Against the File Keeper
	Security against other Users

	Remarks

	A Proof-of-Stake protocol for Consensus on Bitcoin subchains
	Introduction
	Background: Bitcoin and the blockchain
	Background: Subchains and consistency
	A protocol for consensus on Bitcoin subchains
	Refund policies

	Evaluation of the protocol
	Basic properties of the protocol
	Implementation in Bitcoin

	Discussion

	Conclusions

