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Abstract

Systems biology investigates the interactions and relationships among the components of

biological systems to understand how they globally work. The metaphor “cells as com-

putations”, introduced by Regev and Shapiro, opened the realm of biological modelling to

concurrent languages. Their peculiar characteristics led to the development of many dif-

ferent bio-inspired languages that allow to abstract and study specific aspects of biological

systems. In this thesis we present a language based on the process calculi paradigm and

specifically designed to account for the complexity of signalling networks. We explore a

new design space for bio-inspired languages, with the aim to capture in an intuitive and

simple way the fundamental mechanisms governing protein-protein interactions. We de-

velop a formal framework for modelling, simulating and analysing biological systems. An

implementation of the framework is provided to enable in-silico experimentation.
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Chapter 1

Introduction

1.1 The context

Biology is the science of life and embraces many different disciplines and areas. One of

these is molecular biology, which aims at studying biology on a molecular level. Molecular

biology deals with the formation, structure, and function of macromolecules essential to

life (e.g., DNA, RNA and proteins) and hence overlaps with other areas of biology and

chemistry, particularly genetics and biochemistry.

In the last thirty years, the constant advances in technologies and experimental tech-

niques in molecular biology led to a massive increase in the data available to scientists.

The application of informatics to store, manage and analyse this enormous amount of data

results in what we call today bioinformatics. This first convergence between computing

and biology conducted scientists to a deeper comprehension of the basic mechanisms gov-

erning living organisms, leading to unthinkable achievements like the Human Genome

Project that sanctioned the beginning of the post-genomic era.

However, the advent of bioinformatics happened under the reductionist perspective,

and hence is impregnated of its methods, concepts and obviously its limits. The reduc-

tionist method studies biological systems by analysing in detail the structure of their

individual components (e.g., molecules and proteins) and from this determining the con-

nections between the different components. The method is based on the assumption that

the single components contain enough information to explain the complexity of a whole

system. Although effective, this assumption represent one of the main limits of the reduc-

tionist approach [106] because even having a complete network of connections between the

components, still we could not understand the overall behaviour of a system. Biological

systems are indeed extremely complex and can have emergent properties and behaviours

that cannot be explained or predicted by studying only the structure of their individual

components. As Kitano points out in [57] a complete system-level understanding requires

1



1.1. THE CONTEXT CHAPTER 1. INTRODUCTION

a shift in the notion of what to look for in biology. While the understanding of genes and

proteins continues to be important, the focus is on understanding the system’s structure

and dynamics. Although subverting the traditional reductionist approach, this system-

level perspective is not against it but throws the basis for a new paradigm that in the

last years has been identified with systems biology. An explicit and precise definition of

systems biology is difficult to give [57, 56, 110, 82, 52], or even still impossible, but we

can capture its main principles and goals in the words of Kirschner [56]:

“I would simply say that systems biology is the study of the behaviour of

complex biological organization and processes in terms of the molecular con-

stituents. It is built on molecular biology in its special concern for information

transfer, on physiology for its special concern with adaptive states of the cell and

organism, on developmental biology for the importance of defining a succession

of physiological states in that process, and on evolutionary biology and ecology

for the appreciation that all aspects of the organism are products of selection, a

selection we rarely understand on a molecular level. Systems biology attempts

all of this through quantitative measurement, modelling, reconstruction, and

theory.”

It is clear how systems biology is strongly inter-disciplinary and calls for the integration

and convergence of many different sciences and disciplines. Its domain indeed spreads from

several branches of biology to more distant disciplines, such as physics, mathematics,

statistics and informatics. The main role of these latter distant disciplines is to devise

adequate formal tools and concepts to describe and model efficiently biological systems,

analyse their properties, and reproduce and predict their behaviour through computer-

based simulations (e.g., [105, 66, 68, 70]), with the ultimate and challenging goal of

delineating the basis for a foundation theory of systems biology.

Systems biology gave hence the opportunity to propel a further step into the con-

vergence between informatics and biology already started years ago with bioinformatics,

resulting in a moment of incredible scientific ferment where various computational ap-

proaches have been proposed and equipped with supporting software tools (e.g., [96, 79,

40, 46, 49]). A computational model differs from a traditional mathematical one, be-

cause it is executable and not just simply solvable [37]. Execution means that we can

predict/describe the flow of control between species and reactions (e.g., not only the

time, but also the causality relation among the events that constitute the history of the

dynamics of the model).

In particular, the abstraction of molecules as parallel, interacting computational en-

tities, introduced in [98], opened the realm of concurrency theory to an unexpected field

2
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of application. This approach stresses the importance of concurrency and interaction be-

tween molecules as the main tools that drive the execution of biological processes and is at

the basis of emergent schools of thought like [92, 62]. Furthermore, it gave the opportunity

to reuse several theoretical results and analysis techniques developed for concurrent and

distributed systems into the realm of biological system, with the primary goal of bringing

new insights on their functioning.

One of the first examples of application of these concepts can be found in [96], where

a framework for modelling biological processes is developed around the π-calculus [73].

The π-calculus is probably the most famous representative of the process calculi family,

invented to specify and study the behaviour of concurrent software systems through an

hierarchy of formal specifications written in the same calculus more and more concrete

till the implementation on a specific architecture [71, 50]. The peculiarity of describing a

system at different levels of abstraction using the same calculus and the automatic gen-

eration of intermediate states by the semantics rather than the need of specifying all of

them since the beginning, make process calculi particularly suitable to model biological

systems. Process calculi are provided also with stochastic variants, primarily developed as

tools for analysing the performances of concurrent systems [91, 48]. Models constructed

with these stochastic calculi are usually Continuous Time Markov Chains (CTMC), the

same kind of stochastic processes used to directly simulate systems of biochemical re-

actions under certain physical considerations [43]. This further analogy allowed to use

stochastic simulation by means of Gillespie’s algorithm [42] also in the context of pro-

cess calculi, denoting them definitely as a powerful abstraction for the representation of

biological systems.

During the last years a number of process calculi have been developed for applications

in systems biology (e.g., [10, 97, 26, 90, 94, 18]). On top of these process calculi several

languages have been defined and frameworks for analysis and stochastic simulation have

been implemented (e.g., [85, 16, 76, 1]). Some of these new bio-inspired process calculi

differ from classical process calculi because they are devised from the beginning for biology

and aim at overcoming some expressivity limitations by developing new conceptual tools.

Motivated by the intention to take some significant step in this direction we started

three years ago by exploring a new design space for process calculi with the aim to capture

in an intuitive and simple way the fundamental mechanisms of biological modelling.

1.2 The problem

Modelling is an essential aspect in systems biology, as well as in many other scientific

activities. Quoting Von Neumann “The sciences do not try to explain, they hardly even

3
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try to interpret, they mainly make models”.

A model is a partial representation of reality and its main aim is to show which are

the necessary and sufficient characteristics of a system that allow to understand it. In

[82], Noble says that the power of a model lies in identifying what is essential, whereas a

complete representation would live us just as wise, or as ignorant, as before. Being the

process calculi approach strictly related with the modelling activity, one the first question

we have to ask ourselves when developing a new modelling language is: What do we expect

from our language?

The initial aim of this thesis work was to design a language, based on the process

calculi paradigm, for modelling and study signalling networks. The importance of being

able to represent in an effective way the relevant mechanistic details of signal transduction

systems is stressed also in [57] where Kitano states that “The most feasible application

of systems biology research is to create a detailed model of cell regulation, focused on

particular signal-transduction cascades and molecules to provide system-level insights into

mechanism-based drug discovery”.

The main problem we have to deal with when we model signalling networks is the

complexity of protein-protein interactions, i.e., the enormous number of possible post-

translational covalent modifications of proteins and the formation of protein complexes.

This problem is also called combinatorial explosion problem. Combinatorial explosion

usually arises because: proteins sometimes exist in different species with common func-

tionalities; proteins can present multiple conformational states (e.g., different combina-

tions in sites phosphorylation) and still present the same functionalities; proteins can

be part of different complexes and still present the same functionalities. In general, the

number of reactions of systems presenting these characteristics grows exponentially with

the number of protein species, protein domains and binding capabilities.

1.3 The contribution

The starting point of our work is Beta-binders [94, 30, 95]. In this formalism processes

are encapsulated into boxes with typed interfaces. Types represent the interaction capa-

bilities of the boxes. Beta-binders aims at enabling non-determinism of communication

by introducing the concept of compatibility [90], a notion that extends the key-lock no-

tion of complementarity between actions and co-actions typical of process calculi, i.e., the

precise matching between an input and an output over a given channel is always required.

The formalism is also provided with join and split operations, i.e. parametric rules that

drive the merging and splitting of boxes depending on their structure. In Beta-binders

the description of such operations is left as undetermined as possible, with the goal to
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accommodate possible distinct instances of the same macro-behaviour.

Recognizing that Beta-binders improves the abstract representation of biological in-

teractions and considering this improvement fundamentally important for a realistic and

effective representation of signalling pathways, we selected it as a basis for our work. Al-

though maintaining the basic principles characterizing the soul of Beta-binders, the result

of this work deviates substantially from it, hence justifying a different name for our new

language, the BlenX language. BlenX inherits from Beta-binders the basic abstraction of

biological entity (a process encapsulated into a box with interaction capabilities) and the

notion of communication by compatibility. However, many new features are introduced.

In BlenX we introduce the notion of event, a reformulation of the join and split operations

of Beta-binders. Moreover, we introduce complexes. A complex is a combination of two

or more proteins and molecules attached together along compatible surfaces. In BlenX

complexes are represented as graphs with boxes as nodes. Although similar to [26, 13],

our interpretation of complexes is substantially different in the way complexes can be

formed and modified. By extending the notion of compatibility, indeed, we enable also at

the level of complexes generation the kind of non-determinism already characterizing the

communication approach instantiated by Beta-binders.

The coarse-grained modelling level allowed by BlenX is also characterized by the pres-

ence of a general mechanism for encoding high-level operations as sequences of low-level

ones. The language is indeed enriched with priorities [19], a scheduling scheme that per-

mits to compose sequences of low-level operations atomically. Priorities are essential to

implement scenarios in which for example we want to describe atomically sequences of

modifications happening on a whole complex.

It is clear how an interesting question is whether and how those modifications and new

features affect the ability of BlenX to act as a computational device. Some first insights

to this question are given in this thesis. We show indeed that for a core subset of the

language termination is decidable. Moreover, we prove that by adding either priorities or

events to this core language, we obtain Turing equivalent languages.

The direct application of BlenX to biological modelling is accomplished by the presen-

tation of a stochastic variant of the language. Following [30], also in our extension the

speed of actions is provided with systems specifications assuming as underlying as un-

derlying theory the law of mass action. However, reducing a biological system model to

elementary steps is most of the times very complicated and often impracticable and hence

there are cases in which law of mass action is not applicable. Indeed, it is common to find

in models reactions that are abstractions of scenarios whose details are unknown. For

these reasons, we incorporate in the language also the possibility to associate to certain

classes of actions generic kinetic laws.

5



1.4. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

All the theoretical framework presented in this thesis is accompanied with the imple-

mentation of a framework for validation and simulation purposes: The Beta Workbench

(BWB). It is a collection of tools built on top of BlenX to model and simulate biological

systems.

Having in our hand this framework for the in-silico experimentation we first investigate

the modelling of signalling pathways, proposing general design patterns for the definition

of them. Then, we propose a framework for simulating the evolution of protein-protein

interaction networks where evolution proceeds through selection acting on the variance

generated by random mutation events, and individuals replicate in proportion to their

performance, referred to as fitness. Finally, we investigate the modelling of self-assembly,

providing general design patterns for modelling non-trivial structures like filaments, trees

and symmetric rings.

It is important to underline that the BlenX language is in continuous evolution and

several extensions are currently subject of other parallel works. Here we present only the

subset concerning my thesis work, the kernel part of BlenX, representing its heart.

1.4 Structure of the thesis

• Chapter 1 is this introduction;

• Chapter 2 gives basic preliminaries about biological systems, introduces process

calculi and presents an overview of the main process calculi applied or developed for

systems biology;

• Chapter 3 presents informally the BlenX language, providing an overview of its

main features;

• Chapter 4 gives a formal presentation of the BlenX language and its operational

semantics, and explores some theoretical properties regarding structural congruence

and its decidability and complexity;

• Chapter 5 shows that for a core subset of the language termination is decidable.

Moreover, it shows that by adding either global priorities or events to this core

language, we obtain Turing equivalent languages;

• Chapter 6 describes sBlenX, the stochastic extension of BlenX. Moreover, it presents

a stochastic abstract machine for sBlenX that, using results presented in Chapter 4,

compresses the system state space;

• Chapter 7 presents the Beta Workbench, a framework to run sBlenX models, and

describes the concrete syntax of the language;

6



CHAPTER 1. INTRODUCTION 1.5. RELATED PUBLICATIONS

• Chapter 8 investigates the modelling of signalling networks, providing models and

design patterns (of increasing complexity) of the well know MAPK cascade signalling

network;

• Chapter 9 describes a framework that allows the study of signalling networks evo-

lution. A case study based on the MAPK cascade is presented.

• Chapter 10 investigates the modelling of self-assembly in BlenX, providing models

and design patterns for the formation of non-trivial structures like filaments, trees

and symmetric rings;

• Chapter 11 concludes and summarises the thesis.

1.5 Related publications

Book Chapters
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L. Dematté, C. Priami, A. Romanel, O. Soyer. Evolving BlenX programs to simulate

the evolution of biological networks. Theoretical Computer Science 408(1):83-96,

2008.
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Chapter 2

Preliminaries

2.1 Biological systems

A cell is a microscopic structure containing nuclear and cytoplasmic material enclosed

by a semipermeable membrane and, in plants, a cell wall. It is meant to be the basic

structural unit of all organisms.

From a topological perspective, a cell can be seen as an architecture of physical mem-

brane bounded locations (i.e., compartments whose boundary are determined by mem-

branes). Each compartment is a container of substances and the role it plays in regulating

cell life depends on the substances that it contains. The content of compartments changes

over time as a result of cell regulation. Consequently, substances continuously migrate

from one location of the cell to another in response to internal and/or external stimuli.

An eukaryotic cell is made up of a plasma membrane that surrounds the internal sub-

compartments, the organelles. The interior, or lumen, of each organelle is enclosed by one

or more membranes and contains a unique set of proteins that characterizes the functions

of the organelle together with the membrane-bound proteins. The largest organelle is the

nucleus. The part outside the nucleus is called cytoplasm and it contains all the other

organelles. The aqueous part of the cytoplasm is called cytosol and it contains a large

number and variety of substances. These substances continuously produces a chemical

activity that allows a cell to grow, multiply, and do its daily tasks.

The main categories of cell substances are listed in the following.

Nucleic acids: the most important nucleic acid is surely the Deoxyribonucleic Acid,

the DNA. DNA codifies the blueprint for the complete biochemical machinery of the or-

ganism that carries it. It has a stable molecular structure and is meant as long-term

storage of the complete heritage of an organism. The other major nucleic acid present

in cells is the Ribonucleic Acid (RNA), which performs a multitude of cellular tasks in
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gene expression and reaction catalysis. The two main cellular processes involving DNA

are replication and transcription. Replication is the process of making a complete copy

of the DNA sequence and occurs whenever the cell divides. Transcriptions concerns the

decodification of the information that is stored in the DNA sequence: DNA is transcribed

into RNA while RNA is translated into proteins.

Proteins: they are essential parts of organisms and participate in almost every process

within cells. They perform several different tasks, like reaction catalysis and regulation,

transmission of signals, gene expression and regulation, membrane transport. Proteins

are polymers of amino acids, called polypeptides. The sequence of amino acids is usually

referred to as the protein’s primary structure and determines the protein’s three dimen-

sional structure and shape, which is the key of its functioning. This structure depends

on how the primary sequence folds around itself. Although the process of folding is still

poorly understood, several studies revealed some local regularities in the folding pattern,

called protein’s secondary structure. The secondary structure gives rise to elements called

structural motifs (or domains) that allow the proteins to interact with other molecules.

Besides local foldings, the overall three dimensional structure of a protein is called ter-

tiary structure. When proteins complex with other proteins or molecules, the obtained

structure is referred to as the quaternary structure. The way in which proteins function

is extremely interesting. When they interact or combine with other proteins or molecules,

they maintain their overall structure (their identity) but change their shape. The dif-

ferent three dimensional shapes that proteins can assume are also called conformational

states. For example, there are enzymes with active and inactive states; when active, these

enzymes can bind to substrates and catalyse the corresponding reaction. The conforma-

tional states and the binding capabilities of a protein define its behaviour and function.

Metabolites: a metabolite is an intermediate product of the metabolism. Metabolites

can be fuels and signalling molecules, cellular building blocks, nucleotides, carbohydrates,

lipids, hormones, vitamins, and various other molecules concerned with the vast range of

cellular tasks. Usually, metabolites can perform very specific tasks and their structure

and chemical properties are relatively simple if compared, for example, to proteins. We

can think as if they have single identities and states. Indeed, if a metabolite reacts it

becomes a different metabolite with a different identity and function.

2.1.1 Biochemical reactions

Cell substances interact continuously in thousands of different ways. Biochemists see

these systems as networks of coupled chemical reactions.
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An example of reaction is:

2A+B → 3C

MoleculesA andB are reactants, while C is the product. When in a system this reaction

happens, two molecules A and a molecule B will vanish, and three molecules C will appear.

Values 2 and 3 are known as stoichiometries, and they are usually natural numbers. A

molecule can be both consumed and produced in a single reaction. In particular, if a

chemical species occurs on both the left and the right hand side, it is referred to as

modifier. A reaction that can happen in both directions is known as reversible. Reversible

reactions are quit common in biology. They are written explicitly adding a reverse arrow

for the backward reaction:

2A+B ⇋ 3C

This notation is simply a shorthand for the two separate reaction processes taking

place.

Chemical kinetics is concerned with the time-evolution of a reaction system specified

by a set of coupled chemical reactions. In particular, it is concerned with the system

behaviour away from equilibrium. Although the reaction equations capture the key in-

teractions between substances, on their own they are not enough to determine the full

system dynamics. The rates at which each of the reactions occurs, together with the

initial concentration of the reacting molecules, are the missing information. The rate of

a reaction is a measure of how the concentration of the involved substances changes with

time. To better understand the crucial concept relating to the dependency between the

rate and the concentration, let us consider one single stage reaction in which one molecule

A reacts with a molecule B, giving one molecule of C.

A+B → C (2.1)

According to the collision theory, C is produced with a rate that is proportional to

the hits frequency of A and B. Let us imagine to have a certain number of molecules

B and only one molecule A in a container. The frequency of their hits is proportional

to the number of molecules B. Let us suppose now to introduce another molecule A. It

results that the number of molecules C doubles since the number of molecules A doubles.

In other words, the frequency at which molecules hit and consequently the rate at which

molecules collide, is proportional to the concentration of both A and B. This relation

is captured by the law of mass action, which states that the rate of a chemical reaction

is directly proportional to the product of the effective concentrations of each participating

11



2.1. BIOLOGICAL SYSTEMS CHAPTER 2. PRELIMINARIES

molecule. In our case we hence have:

rate =
d[C]

dt
= k[A][B]

where k is the basal rate and [A], [B] and [C] denote the concentration of molecules A,

B and C, respectively. In general, the rate is proportional to the concentration of the

reactants involved raised to the power of their stoichiometry. For example, given the

homogeneous1 reaction:

nA+mB → P (2.2)

the corresponding relation between the rate and the concentration is:

rate =
dP

dt
= k[A]n[B]m (2.3)

and the global order of the reaction corresponds to the sum of n and m.

2.1.2 Enzymatic catalysis

Enzymes play the important role of catalysing those biochemical reactions that make life

possible. Basically, enzymes bind to one or more ligands, called substrates, and convert

them into one or more chemically modified products. A simple enzymatic reaction is

considered in Fig 2.1. This mechanism is also called single substrate catalysed reaction.

The enzyme E and the substrate S encounter to form the enzyme-substrate intermediate

ES. This reaction can be reversed, but the formation of ES is favoured when many

substrates molecules are available. When S is bound, E sends a signal enabling the

modification of the substrate S into product P. Finally, the product P is released, and

the enzyme E regenerated.

P

E

S

ES
EP

E

Figure 2.1: Single substrate catalysed reaction.

1A reaction is said to be homogeneus if it does not summarize any hidden or intermediate reaction.
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More concisely we can write this reaction as:

E + S
r1−⇀↽−
r2
ES

r3−→ EP
r4−→ E + P

Note that only the first reaction is considered reversible. Indeed, many enzymatically

catalysed reactions are irreversible, meaning that under normal conditions the backward

reaction can be neglected.

Enzymatic catalysis is usually described by the Michelis-Menten kinetics. In this

setting the single substrate catalysed reaction is represented using the formulation:

E + S
r1−⇀↽−
r2
ES

r3−→ E + P

that abstracts from the presence of the intermediate EP. The Michaelis-Menten equation

describes the relationship between the rate of substrate conversion by an enzyme to the

concentration of the substrate:

r =
Vmax × [S]

Km + [S]

where,

Km =
r2 + r3
r1

and Vmax = k3 × [E]t

In this equation, r is the rate of conversion, Vmax is the maximum rate of conversion, [S]

is the substrate concentration, and Km is the Michaelis constant. The Michaelis constant

is equivalent to the substrate concentration at which the rate of conversion is half of Vmax.

Km approximates the affinity of enzyme for the substrate. A small Km indicates high

affinity, and a substrate with a smaller Km will approach Vmax more quickly. Very high

[S] values are required to approach Vmax, which is reached only when [S] is high enough

to saturate the enzyme. While the derivation is not shown in this discussion, Vmax is

equivalent to the product of the catalyst rate constant (k3) and the (total) concentration

of the enzyme.

Inhibitors are molecules that decrease the speed of enzymatic reactions. When an

inhibitor binds to an enzyme it can prevent a substrate from entering the active domain

of the enzyme or directly block the catalytic activity of the enzyme. The action of an

inhibitor can be either reversible or irreversible. A particular type of reversible inhibition,

named competitive inhibition, is sketched in Fig. 2.2. In this mechanism the substrate S

and the inhibitor I compete for the active domain of the enzyme E. Often, competitive

inhibitors strongly resemble the structure of the real substrate of the enzyme. Therefore,

the inhibitor occupies the active domain of the enzyme, and it prevents normal substrate

from binding and being catalysed. The biochemical representation of competitive inhibi-
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P

E

S

ES EP

E

I

EI

Figure 2.2: Competitive inhibition.

tion is:
E + S

r1−⇀↽−
r2
ES

r3−→ E + P

E + I
r5−⇀↽−
r6
EI

The derivation of the Michaelis-Menten equation is the same as for the uninhibited

mechanism except for an additional term in the expression that accounts for the total

enzyme concentration and for the new intermediate EI. The derived equation is:

r =
Vmax × [S]

Km + [S] +Km ×
r6
r5
× [I]

More complicated forms of enzymatic reactions are given by multi-substrate catalysed

reactions, where more substrates are involved in the process. A large group of these reac-

tions are the bisubstrate reactions, which have two substrates. For bisubstrate reactions

three basic reaction mechanisms have been discerned: the ordered sequential mechanism,

the random sequential mechanism and the ping pong mechanism. As an example, in the

first mechanism (see Fig. 2.3) the enzyme first binds both substrates and then proceeds

to the actual catalytic reaction step; the substrates can only bind in a given order.

2.1.3 Signalling networks

An important category of biological systems is the one involved in signal transduction.

Signal transduction networks, or shortly signalling networks, constitute the communica-

tion lines of a cell. A signalling network is any biological process that converts one kind of

signal or stimulus into another. In general, a signalling network results in a composition

or cascade of biochemical reactions that are carried out by proteins and linked through
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P1

S1

E

ES1

S2 ES1S2 EP1P2

EP2

P2

E

Figure 2.3: Ordered sequential bisubstrate enzymatic reaction.

second messengers. Biological signal transduction allows a cell or organism to sense its

environment and react accordingly. Typically, a signalling network has one (or more) in-

puts, represented by any environmental stimulus, and one (or more) outputs, represented

by an active protein. The types of signals that are transmitted are numerous: synaptic

signals transmitted by neurons, signals indicating the presence of harmful substances,

signals indicating to single cells that another cell is ready to mate, and signals transmit-

ted through hormones that convey a whole range of cellular instructions. An example of

signalling network is the MAPK cascade.

The MAPK cascade: The mitogen-activated protein kinase cascade (MAPK cascade)

is a series of three protein kinases2 which is responsible for the cell response to some

growth factors. In [51], a model of the MAPK cascade was presented and analysed using

Ordinary Differential Equations (ODEs); the cascade was shown to perform the function

of an ultra-sensitive switch and the response curves were shown to be steeply sigmoidal.

Fig. 2.4 presents schematically MAPK cascade as described in [51]. KKK denotes MAP-

KKK, KK denotes MAPKK and K denotes MAPK. The signal E1 transforms KKK to

KKKp, which in turn transforms KK to KKp to KKpp, which in turn transforms K to Kp

to Kpp. In particular, when an input E1 is added, the output of Kpp increases rapidly.

The transformations in the reverse direction are the result of the signal E2, the KKpase

and the Kpase. In particular, by removing the signal E1, the output level of Kpp reverts

back to zero. The formal model in [51] is built using 30 single reactions (see Tab. 2.1).

The set of reactions is used to derive a system of 25 mathematical equations (18 ODEs

plus 7 conservation equations).

2a kinase is a type of enzyme that transfers phosphate groups from high-energy donor molecules, such as ATP,
to specific substrates.
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Figure 2.4: MAPK cascade.

E1 +KKK
a1−⇀↽−
d1
E1 : KKK

k1−→ E1 +KKKp

E2 +KKKp
a2−⇀↽−
d2
E2 : KKKp

k2−→ E2 +KKK

KKKp+KK
a3−⇀↽−
d3

KKKp : KK
k3−→ KKKp+KKp

P2 +KKp
a4−⇀↽−
d4
P2 : KKp

k4−→ P2 +KK

KKKp+KKp
a5−⇀↽−
d5

KKKp : KKp
k5−→ KKKp+KKpp

P2 +KKpp
a6−⇀↽−
d6
P2 : KKpp

k6−→ P2 +KKp

KKpp+K
a7−⇀↽−
d7

KKpp : K
k7−→ KKpp+Kp

P1 +Kp
a8−⇀↽−
d8
P1 : Kp

k8−→ P1 +K

KKpp+Kp
a9−⇀↽−
d9

KKpp : Kp
k9−→ KKp+Kpp

P1 +Kpp
a10−−⇀↽−−
d10

P1 : Kpp
k10−−→ P1 +Kp

Table 2.1: MAPK cascade reaction set.

2.2 Stochastic simulation

Given a set of coupled chemical reactions describing a biological system, one of the most

immediate and natural analyses that can be performed on it is a simulation. The term

simulation is generally used to indicate the calculation of the system’s dynamics over time,

given an initial specific system configuration; for biological systems the initial configura-

tion corresponds usually to the initial concentration of molecules.

Biological systems can be simulated in different ways using different algorithms de-

pending on the assumptions made about the underlying kinetics. Once the kinetics have

been specified, these systems can be used directly to construct full dynamic simulations

of the system behaviour on a computer.

Usually, given a set of coupled chemical reactions, a set of ODEs is derived. The

usual assumption made for these models is that the system is well-stirred and at the ther-
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modynamic limit (i.e., system’s volume and molecules quantities approach infinite, while

keeping their ratio constant). Given these assumptions, ODEs models are deterministic:

given an initial configuration, their dynamics is univocally determined. However, the ther-

modynamic limit cannot be always assumed, because in many systems some molecules

quantity can be very low. In these cases, microscopic random effects arise, making the

system naturally stochastic. Chemical stochastic systems are usually represented by a

chemical master equation (CME) that describes the time evolution of the probability

distribution of the discrete molecule quantities (expressed by natural numbers). This

evolution is a Continuous Time Markov Chain (CTMC), of which any possible realisa-

tions can be generated through Monte Carlo sampling methods. The most famous of

these methods for coupled chemical reactions is the SSA algorithm of Gillespie [42, 43].

2.2.1 Gillespie algorithm

Gillespie designed an efficient way to simulate a trajectory of a set of coupled chemical

reactions. The algorithm he proposed is exactly consistent with the underlying princi-

ples behind the CME [42, 43]; it simulates a jump Markov process and is based on the

assumption that two events take place at the same time with zero probability.

In [43] a generic system of coupled chemical reactions is described as a vector S =

(S1, · · · , Sn), representing a well-stirred mixture of n ≥ 1 interacting molecular species,

confined in constant volume Ω and containingM ≥ 1 reaction channels (chemical reactions

described by stoichiometric equations) R = (R1, · · · , Rm). The dynamics of a system is

specified by a vector of random variables X(t) = (X1(t), · · · , Xn(t)), where Xi(t) is the

population of the species Si present in the system at time t. Given X(t) = x, for each

reaction channel Rj, there exists a function aj(x), called propensity function, defined as

the probability that a reaction Rj occurs in the next infinitesimal time interval [t, t+ dτ).

The function aj(x) is defined as aj(x) = cj×hj(x) and its result is denoted with propensity

value. Constant cj, for the corresponding channel Rj, represents the specific probability

rate constant and consists of a base rate determined empirically and dependent on the

specific type of reaction plus some environmental conditions. Function hj(x), instead,

returns the number of all the possible distinct reactions that can occur between molecules

on channel Rj, when the system is in state x. Vectors S, R, X(t) together with the

function aj(x), for each j ∈ {1, · · · ,m}, completely specify the system at time t.

Gillespie proposes two mathematically equivalent methods: the direct method (DM)

and the first reaction method (FRM). Gibson and Bruck [41] later achieved a significant

reduction in complexity with respect to the Gillespie algorithms, however the underly-

ing principles remain the same. Many other variants of the algorithm can be found in

literature [104].
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First Reaction Method (FRM)

At each step a random putative reaction time is calculated for each reaction and the one

with the shortest time is chosen and executed.

1. Set the initial number of molecules for each species in S

2. Set t← 0

3. Calculate the propensity value ai for each i ∈ {1, · · · ,m}

4. For each i ∈ {1, · · · ,m} generate a putative time τi in accordance with an

exponential distribution of parameter ai
5. Let τµ and µ be the fastest time τj and the corresponding reaction channel Rj

6. Update the number of molecules to reflect the execution of µ

7. Set t← t+ τµ

8. Return to step 3

Direct Method (DM)

Two separate calculations are considered: the selection of the reaction and the evaluation

of the time. The dynamics of the system is described by the following density function:

(1) P (j | x) = aj(x)/
∑m

i=1 ai(x), that is the probability that the next reaction is on

channel j; (2) P (τ | x) = (
∑m

i=1 ai(x))e
−τ(

∑m
i=1 ai(x)). The pseudo-code of the algorithm is

defined as follows:

1. Set the initial number of molecules for each species in S

2. Set t← 0

3. Calculate the propensity value ai for each i ∈ {1, · · · ,m}

4. Choose reaction channel µ in accordance with distribution (1)

5. Choose time τ in accordance with distribution (2)

6. Update the number of molecules to reflect the execution of µ

7. Set t← t+ τ

8. Return to step 3

Next Reaction Method (NRM)

The Next Reaction Method [41] of Gibson and Bruck builds on the FRM to achieve

a significant improvement in efficiency for typical biochemically reacting systems. An

improvement in complexity from O(m) to O(log m) of an individual reaction step is

gained, where m is the number of reaction channels in the system. The key modifications

are the following:
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• Reaction dependency graph: By using a reaction dependency graph, during the sim-

ulation the algorithm needs only to update those propensities which it knows could

have changed. Reaction dependency in biological pathways is typically much less

than m and hence the reaction dependency graph is sparse;

• Indexed priority queue: Reaction times are arranged in a indexed priority queue

[21]. The root holds the reaction with the faster time and the reactions further

from the root always have longer times than those closer. Reactions at the same

height are not ordered. The fastest reaction is selected in O(1). When the reaction

with the root time is executed, its propensity and those of the set of dependent

reactions changes, along with the corresponding times in the priority queue. Since it

is not necessary to maintain a horizontal ordering, the authors provide an algorithm

which applies pairwise exchanges of reaction times at adjacent heights in the tree

to maintain the tree’s invariant property. This has complexity proportional to the

number of reaction times that change multiplied by the height of the tree. Since

it has already been assumed that the average reaction dependency of the system is

sparse, the overall complexity of selecting a reaction becomes O(log m).

Another minor advantage is obtained by considering absolute times. By considering

reaction times relative to t0, thus absolute time, the NRM is able to re-use the putative

times of reactions whose propensities have been changed by the firing of the selected

reaction. In this way the NRM needs only to generate one random number per simulation

step, hence reducing the computational cost related with random numbers generation.

2.3 Process calculi in systems biology

Several approaches have been developed and used to model and study complex interac-

tion mechanisms in biological systems, mainly based on mathematical modelling, which

generally takes the form of a system of ordinary differential equations (ODEs) and for

which ODE solvers with various interfaces are available.

Besides classical mathematical approaches, other research lines focus in interpreting

and describing systems’ behaviour by relying on computational modelling. A computa-

tional model differs from a mathematical one, because it is executable and not just simply

solvable [37]. Execution means that we can predict/describe the flow of control between

molecules and reactions (e.g., not only the time, but also the causality relation among the

events that constitute the history of the dynamics of the model). In other words, the com-

putational modelling interpretation is similar to programming, the step by step behaviour

of a system, rather than describing only the outcome of the system or scripting some code
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to solve mathematical formulations of problems. Various computational approaches have

been proposed and equipped with supporting software tools (e.g., boolean networks [55],

Petri nets [46], Bayesian networks [40], graphical gaussian models [80], process calculi

[96], rule-based modelling [49]).

We consider in this thesis the process calculi paradigm, that we believe can pro-

vide an interesting abstraction to an executable philosophy of computational modelling.

Process calculi indeed have the ability of handling concurrency, execution causality, non-

determinism, stochastic behaviour and cooperation/competition for resources that are

usual features of computational approaches.

2.3.1 Overview of process calculi

Starting from the Calculus of Communicating Systems [71] (CCS), process calculi have

been defined to provide us with formal specifications of concurrent systems, i.e., compu-

tational entities executing their tasks in parallel and able to synchronise. The model of a

system S is typically given as a term that defines the possible behaviours of the various

components of S. Calculi are equipped with syntax-driven rules, the so-called operational

semantics [88]. These rules allow to infer the possible future of the system under analysis

and can be automatically implemented. For instance, they can specify that a certain

system P evolves into system Q, written P → Q. The basic entities of process calculi

are names, an abstract representation of the interaction capabilities of processes. Names

are used to build elementary computations, called actions and co-actions (complementary

actions). In the most basic view, like e.g., in CCS, an action is seen as an input or an

output over a channel. Input and output are complementary actions. The actual inter-

pretation of complementarity varies from one calculus to the other. The relevant fact to

be pointed out here is that complementary actions are those that parallel processes can

perform together to synchronise their (otherwise) independent behaviours. A process is

computational unit that evolves by performing actions (a, b, · · · ) and co-actions (e.g. a,

b, · · · ). The possible temporal order of the concurrent activities is specified by a limited

set of operators. Sequential ordering is rendered via the prefix operator written as an

infix dot. For instance the term a.b.P denotes a process that may execute the activity a,

then b, and then all the activities modelled by P . Two processes P and Q that run in

parallel are represented by the infix parallel composition operator | as in P | Q. Processes

P and Q can either evolve independently or synchronise over complementary actions. For

instance, the operational semantics of a.P | a.Q allows to infer the transition:

a.P | a.Q→ P | Q
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Another operator is the choice operator, written +. The process P + Q can proceed

either as the process P or the process Q, meaning that the two behaviours are mutually

exclusive. For instance, the operational semantics of a.P | a.Q + a.R allows to infer the

transitions:

a.P | (a.Q+ a.R)→ P | Q and a.P | (a.Q+ a.R)→ P | R

Another essential operator is the restriction. In basic calculi as CCS, this operator,

written (νa), is meant to limit the visibility of actions. For instance, is not possible

to infer a.P | (νa)a.Q → P | (νa)Q because a is a private resource of the right-hand

process of the parallel composition and the left-hand process cannot interact on it. This

fact guarantees, e.g., that the two processes R and S in (νa)(R | S) may interact over

a without any interference by the external world. In more sophisticated calculi, as the

π-calculus [73], the restriction operator ensures a relevant gain in expressiveness. As in

CCS, the view about complementarity is limited to input and output over channels. Over

CCS, however, the π-calculus allows to send channel names in interactions. This permits

the representation of mobile (i.e., dynamically changing) systems: receiving new names

means acquiring new interaction capabilities.

Infinite behaviours are usually obtained in process calculi by using operators like repli-

cation, denoted by !P , which allows one to create an unbounded number of parallel copies

of a process P , all placed at the same level. Other mechanisms to generate infinite be-

haviours are recursion and iteration [77].

Above we recalled only the fundamental operators which are common to various pro-

cess calculi [71, 73]. Each calculus then adopts some specific operators and has a specific

view about which activities must be considered complementary. A common feature of

process calculi is that their operational semantics allows to interpret process behaviours

as a graph, called transition system. The nodes of the graph represent processes, and

there is an arc between the two nodes P and Q if P can evolve to Q. For instance the

immediate future of P = a.P1 | a.P2 | a.P3 is drawn as:

P → P1 | P2 | a.P3 and P → a.P1 | P2 | P3

The depicted transitions highlight that both a.P1 and a.P3 can communicate with a.P2.

The evolution of the system depends upon the temporal order of the interaction. Since no

assumption can be made on this, both transitions are reported in the graph. Typically,

the language of any process calculus contains all the ingredients for the description of

concurrent systems: a system is described in terms of what it can do rather than of what

it is.
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The behaviour of a complex system is expressed in terms of the meaning of its com-

ponents. A model can be designed following a bottom-up approach: one defines the basic

operations that a system can perform, then the whole behaviour is obtained by compo-

sition of these basic building blocks. This property is called compositionality. Moreover,

the mathematical rules defining the operational semantics of process calculi allow to au-

tomatically generate the transition system of a given process by parsing the syntactic

structure of the process itself. So, process calculi are specification languages that can be

directly executed.

Process calculi are provided also with stochastic variants, primarily developed as tools

for analysing the performances of concurrent systems [91, 48]. In these variants, process

calculi are usually decorated with quantitative information representing the speed and

probability of actions; these information are used to derive a CTMC.

2.3.2 Process calculi abstractions

The abstraction introduced by Regev and Shapiro in [98] (see Tab. 2.2), opened the realm

of process calculi to the field of systems biology. A molecule is seen as a computation

unit, a process, with interaction capabilities abstracted as channels names. Molecules

interact/react through complementary capabilities as processes communicate on channels

with the same name (action and co-action). The change of a state after a communication

abstracts the dynamics of a molecule after a reaction.

Biology Process calculi

Molecule Process

Interaction capability Channel

Interaction Communication

Dynamics State change

Table 2.2: Process calculi abstraction for systems biology.

Stochastic extensions of process calculi, moreover, allows to describe the same kind of

stochastic processes used to directly simulate systems of coupled chemical reactions. This

analogy allowed to use stochastic simulation by means of SSA Gillespie’s algorithm also

in the context of process calculi, denoting them definitely as a powerful abstraction for

the representation of biological systems.

After the work of Regev and Shapiro [98] a number of process calculi have been adapted

or newly developed for applications in systems biology. We briefly introduce the main
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process calculi proposed in the last years. It is interesting to note that the various calculi

are developed to study a particular aspect, i.e., they abstract a specific (or a set of) char-

acteristic of a biological system. Indeed, an approach founded on language theory allows

to fast develop specific calculi that are hypothesis driven.

Biochemical π-calculus [96]: it is the first process calculus used to represent biological

systems. In biochemical π-calculus, complementary domains of interaction are repre-

sented by channel names and co-names; molecular complexes and cellular compartments

are rendered by the appropriate use of restrictions on channels; molecules interaction ca-

pabilities are represented by communication. Moreover, since the calculus is stochastic,

the behaviour of biological system can also be described and analysed quantitatively. Two

simulators for the biochemical stochastic π-calculus have been implemented: BioSPI [96]

and SPiM [85]; this simulators implement the DM of Gillespie. Moreover, interesting ap-

plications of biochemical π-calculus on real biological scenarios can be found in [67, 15, 61].

Performance Evaluation Process Algebra (PEPA) [48]: it is a formal language

for describing CTMC. PEPA allows to quantitatively model and analyse large pathway

systems. PEPA is supported by a large community and a lot of software tools for analy-

sis and stochastic simulations are available. Moreover, in [17] the authors show how the

combined use of PEPA and the probabilistic model checker PRISM [45] can be used to

describe, simulate and analyse biochemical signalling pathways. Recently, an extension

called Bio-PEPA [18] has been introduced. In this extension PEPA is modified to deal

with some features of biological models, such as stoichiometry and the use of generic ki-

netic laws. The language is provided with a complete set of tools for performing various

kinds of analyses [16].

BioAmbients [97]: it is a variant of Mobile Ambients [12] for systems biology and its

focus is on biological compartments. Localization of molecules in specific compartments

is extremely important in regulatory mechanisms and often a molecule can perform its

task only if is in the right compartment. Ambient can be nested and organized in hierar-

chical way and (like in π-calculus) biological entities interact by means of communication,

which can occur only between processes belonging to the same compartment, to parallel

compartments or to compartments one of which is contained in the other one. More-

over, new primitives for movement between compartments are present. The language is

equipped with a stochastic extension and a simulator, based on Gillespie’s algorithm and

implemented as part of the BioSPI project. Moreover, in [81, 20] results concerning the

applicability of Control Flow Analysis and Abstract Interpretation for the static analysis
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of BioAmbients models are presented.

Brane Calculi [10]: it is a calculus focused on biological membranes, which are not

considered only as containers, but are active entities. A system is viewed as a set of

nested membranes and a membrane as a set of actions. Brane Calculi primitives are in-

spired by membrane properties; membranes can merge, split, shift or act as channels. In

[27], an extension called Projective Brane Calculus is presented. The goal of the extension

is to refine Brane Calculi with directed actions, which tell whether an action is looking

inwards or outwards the membrane. This modification brings the calculus closer to bi-

ological membranes. Recently, to improve the consistency with biological characteristics

of membrane reactions, a new extension has been proposed in [28]. This extension uses a

generalized formalism for action activation with a receptor-ligand type channel construc-

tion that incorporates multiple association and a concept of affinity.

CCS-R [25]: it is a CCS-like process calculus which allows the management of reversibil-

ity. Reversibility is embedded in the syntax of the calculus, which is equipped with

memories that trace communications and backtrack them when needed. It is not clear

whether the main features of CCS-R are relevant for modelling biological systems, because

the fact that the system obtained after backtracking a reaction is the same as the initial

one is still debated.

The κ-calculus [27, 23]: it is a language of formal proteins. Proteins are modelled

by an identification name and by two multisets of domains, the first containing visible

domains and the second containing hidden domains. Domains are simply identified by

names. The authors propose complexation and activation as basic primitives of the cal-

culus. The activation operation has the effect of moving some domains from the visible

to the hidden state, and vice-versa. Complexation, instead, is used to form protein com-

plexes, represented as graphs built over proteins and their domains; bonds between nodes

are represented by means of shared names. Both operations are local and can be embed-

ded in bigger complexes. Both operations are described by reaction rules, while proteins

and complexes are combined together forming a solution. The language is equipped with

a clear and useful visual notation, where proteins are represented by boxes with domains

on their boundaries. The calculus is provided with an exact scalable stochastic simulator

[24], and a series of tools, part of [1], that allow different kind of analyses on κ-calculus

models. Moreover, [64] introduces the bioκ-calculus, a calculus for describing proteins

and cells which tries to unify primitives and concepts of Brane Calculi and κ-calculus.
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The π@ calculus [109]: it is an extension of the π-calculus, obtained by the addition

of polyadic synchronisation and priorities. The expressiveness of the calculus is shown

in [107] by providing encodings of bio-inspired formalisms like BioAmbients and Brane

calculi. The language is provided with a stochastic variant (the Sπ@) that is shown to be

able to model consistently several phenomena such as formation of molecular complexes,

hierarchical subdivision of the system into compartments, inter-compartment reactions,

dynamic reorganisation of compartment structure consistent with volume variation.

The continuous π-calculus [63]: it is process calculus for modelling behaviour and

variation in molecular systems. Processes are parallel combinations of species, where

species are very similar to π-calculus processes. Communication is through named chan-

nels, but there is no distinction between names and co-names. Any name can in principle

communicate with any other; an affinity matrix specifies whether any two names can

communicate and at what rate. The calculus is provided with an operational semantics

in terms of real vector spaces, that offers a fully modular and compositional method of

generating a set of ordinary differential equations (ODEs). The calculus is specifically

designed to study evolutionary properties of biological systems.

The attributed π-calculus [54]: it is an extension of the π-calculus with attributed

processes and attribute dependent synchronization. The calculus is parametrized with

a call-by-value λ-calculus, which defines possible values of attributes. The calculus is

provided with a non-deterministic and a stochastic semantics, where stochastic rates may

depend on attribute values.

Bigraphs [74]: they are conceived as a unifying framework for designing models of con-

current and mobile systems. These reactive systems are construed as a set of rewriting

rules together with an initial bigraph on which the rules operate. The main entities of

bigraphs are nodes and named edges; nodes are arranged in a tree structure, they have

prescribed arities telling how many edges must be incident to them, and edges can con-

nect arbitrarily many nodes. In [60], a stochastic version of bigraphs is presented, along

with some examples of their applicability in some biological domains.

The 3π calculus [11]: this calculus proposes an alternative form of location. Rather

than keeping locations abstract, 3π uses a 3D coordinate system (actually, a full 3D affine

transformation) as its set of locations. This provides great expressiveness for modelling

physical systems. A similar abstraction can be found in [53], where a spatial extension

of the π-calculus is considered. Processes are embedded into a vector space and move
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individually. Only processes that are sufficiently close can communicate.

Beta-binders [94]: In this formalism processes are encapsulated into boxes with typed

interfaces. Types represent the interaction capabilities of the boxes. Beta-binders aims at

enabling non-determinism of communication by introducing the concept of compatibility

[90], a notion that extends the key-lock notion of complementarity between actions and

co-actions typical of process calculi, i.e., the precise matching between an input and an

output over a given channel is always required. In Beta-binders, boxes have to be ready

to perform complementary actions (input/output) over one of their interfaces, and the

types of the involved interfaces have to be compatible. In this way, whichever notion of

type compatibility is assumed, the communication ability of boxes is mainly determined

by the types of their interfaces rather than by the actual naming of the relevant input

and output actions. An interesting research line regarding some possible notions of type

compatibility can be found in [89]. The formalism is also provided with join and split

operations, i.e. parametric rules that drive the merging and splitting of boxes depending

on their structure. In Beta-binders the description of such operations is left as undeter-

mined as possible, with the goal to accommodate possible distinct instances of the same

macro-behaviour. A stochastic extension of Beta-binders for quantitative experiments is

presented in [30].
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The BlenX language





Chapter 3

Informal presentation

BlenX is a language thought to deal with the complexity of protein-protein interaction. It

is inspired by Beta-binders and hence has a process calculi soul. Although maintaining

the basic principles characterizing Beta-binders, BlenX deviates substantially from it,

hence justifying a different name. BlenX inherits from Beta-binders the abstraction used

to represent biological substances (processes encapsulated into boxes with interfaces) and

the notion of communication based on compatibility. It is important to underline that one

important difference between BlenX and Beta-binders is that BlenX omits the restriction

operator in the description of processes. Its expressive power is recovered by using a set

of constructs that fit better in the biological context. These new features are:

• complexes: boxes can bind (and unbind) through interfaces to form (and break

down) graphs of boxes, called complexes. Bindings between interfaces are dedicated

links that allow enclosed processes to communicate in an exclusive way. Binding

and unbinding operations are obtained by extending the notion of compatibility of

Beta-binders;

• priorities: they provide a mechanism to encode high-level operations as sequences

of low-level ones. In BlenX, priorities are associated with actions and are represented

by positive natural numbers where one assumes that greater is the number, greater

the priority it represents. The priority protocol we implement is global, meaning

that actions with higher priority prevents the execution of all the actions with lower

priority.

• events: they represent a reformulation of the join and split operations of Beta-

binders. Intuitively events represent rules able to substitute sets of boxes with other

sets of boxes. Their use is essential in modelling the dynamics of networks in which

the presence of non elementary reactions makes difficult and not intuitive the use of
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the communication primitives;

• conditions: the execution of primitives can be prevented by conditions that check

the state of the box interfaces. They allow to condition the internal behaviour of

boxes depending on the actual configurations that box interfaces can assume.

The direct application of BlenX to biological modelling is accomplished by providing

a stochastic variant of BlenX. In such an extension, the language is decorated with quan-

titative information which are used to derive the speed and the probabilities associated

with actions, as usual in the stochastic setting.

3.1 BlenX on the road

BlenX represents a biological substance as a computational object, a box, composed by a

set of interfaces and an internal process. Interfaces are associated with structures, that

we call sorts, and are the places where a box can interact with other boxes; the internal

process, instead, codifies for the mechanism that transforms an interaction into a box

structure modification. In this setting, a protein can be represented as a box, its domains

by interfaces, and protein conformational states can be described by internal processes.

We use the following graphical notation of boxes:

B is the box and P is its internal process that describes its behaviour. Intuitively, P is

used to program proper replies to external signals caught by the interfaces (which are the

small squares on the border of the box). Sorts ∆1, ∆2 and ∆3 discriminate among allowed

and disallowed interactions, mimicking the interaction mechanism based on compatibility

described in [90]. The names x1, x2 and x3 are used by the process P to modify or to

interact through the associated sorts ∆1, ∆2 and ∆3, respectively. Process P is written

in a process calculi style; it has few primitives inspired by π-calculus, extended with

primitives inspired by molecular biology [2].

A BlenX system consists in a set of boxes, as depicted in Fig. 3.1, that run in parallel,

can interact and can be attached together through their interfaces (the black lines in

Fig. 3.1) forming complexes. The dynamics of a BlenX system emerges from the way in

which boxes interact and change and is described in terms of an operational semantics.

However, we postpone the formal description of BlenX and its dynamics to the next
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Figure 3.1: Example of BlenX system.

chapter and we put here the language on the road by considering the single substrate

catalysed reaction presented in Sec. 2.1.2. We will present three different implementations,

giving hence an overview of all the main features of BlenX.

Using complexes

Enzyme and substrate can be modelled in BlenX by the parallel composition of two boxes

E and S, written E ‖ S, representing the enzyme and the substrate, respectively:

The primitive x!sig, in the internal process of E, sends a signal sig through the

interface (x,∆E). Symbol ∗ indicates the replication operator (typical operator of process

calculi that allows for the generation of infinite behaviours) and assures that the process

sends a signal each time it is needed, i.e., each time the substrate and the enzyme interact.

The primitive y?sig, in the internal process of S, waits for a signal on the interface (y,∆S)

that enables the change of its sort in ∆P , by means of ch(y,∆P ) action.

Following the reaction description in Fig.3.1, in order to interact enzyme and substrate

have to bind, forming the enzyme-substrate intermediate. We assume the existence of a
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symmetric function α that, given a pair of sorts, returns a triple of values. For instance,

α(∆E,∆S) = (1, 1, 1) (3.1)

means that the sorts ∆E and ∆S, associated with the interfaces of the boxes E and S,

may bind, unbind and communicate, respectively; the three type of actions are enabled

over a certain pair of sorts only if the corresponding values are greater than zero. The

result of α(∆E,∆S) in (3.1) allows hence inferring the following reaction enabled in the

system E ‖ S:

The two boxes bind over their interfaces with sorts ∆E and ∆S, respectively, creating a

link that only they can use. Following Fig. 2.1, the reaction that leads to the intermediate

form enzyme-substrate can be reversed, namely the boxes E and S can unbind. This is

represented by the following pictorial reaction:

Their unbind is allowed because the corresponding value in the result of α(∆E,∆S)

in (3.1) is greater than zero. However, instead of breaking up the binding, the enzyme-

substrate complex can undergo certain modifications that lead to the release of the prod-

uct. This is modelled in BlenX as a communication over the link created between the two

interfaces through the binding, followed by a change in the sort of the interface (y,∆S).

In particular, the process ∗ x!sig can send a signal sig through the interface (x,∆E); the

process y?sig. ch(y,∆P ) can receive a signal from the interface (y,∆S) and subsequently

(“subsequently” is represented by an infix dot) enable the change primitive. Since the

box E can output and the box S can input, and they are bound over interfaces with a

communication compatibility (the third value in the triple results of α in (3.1)) greater

than zero, then a communication is possible; it leads to:
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Note that the internal process of the box E is not changed because the replication

operator ∗ allows to regenerate the output x!sig each time it is consumed.

The internal process ch(y,∆P ) of the box S ′ changes the sort of the interface (y,∆S)

from ∆S to ∆P , completing the transformation from substrate S to product P. This

transformation is described by the following reaction:

The process nil in the reaction products is the empty process. Note that more complex

behaviour can be specified for the resulting product P .

Looking back to Fig. 2.1, the last step of enzymatic catalysis is the release of the

product and the regeneration of the enzyme. The unbind of boxes E and P is guaranteed

by assuming:

α(∆E,∆P ) = (0, 2, 0) (3.2)

that prescribes that each time the types ∆E and ∆P are bound they have to unbind. The

zeros in the first and third positions mean that types ∆E and ∆P cannot bind and cannot

interact if they are bound. The α result (3.2) allows inferring the following reaction:

Note that in (3.2) we wrote the value 2 instead of 1. This introduces priorities and

means that this action has a priority which is higher than those with priority 1. The

mechanism of priorities will be explained formally and in more detail in the next chapters.

As usual, the behaviour of a BlenX system can be interpreted as a transition system. A

sketch of the transition system of the enzyme catalysis example is given in Fig.3.1, where

we assume to have an initial system that is the parallel composition of two enzymes and

two substrates, written E ‖ E ‖ S ‖ S. Note that the representation of the system

behaviour relies on the classical interleaved interpretation. From the initial configuration,

there are four different combinations according to which enzymes and substrates can bind

together and in each of the possible graph paths there are different ways to proceed. The

multiple arcs exiting from a node represent all the possible reactions that can happen in

that configuration, which can be independent or in competition. This reflects the real
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Figure 3.2: Example of BlenX system dynamics. Normal arrows represent the dynamics as-
sociated with single reactions, while dashed arrows represent the dynamics of more than one
reaction.

biological world, where, e.g., internal modifications of the structure of a complex are in

competition with some environmental solicitations that lead a complex to break. We will

see in the next chapter how the operational semantics of BlenX allows for the automatic

construction of such a transition system.

This representation of the enzymatic catalysis mechanism is pretty accurate. Further-

more, it is trivial to modify the system to introduce competitive inhibition. Indeed, it can

be obtained by adding to the previous BlenX system a box I representing the inhibitor,
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putting it in parallel with the existing enzymes and substrates. If we assume this box to

have an interface (x,∆I) and we update the α function definition by adding the relation

α(∆E,∆I) = (1, 1, 0), then we can infer the following dynamics:

The inhibitor I can bind to the enzyme E, hence preventing the creation of the inter-

mediate enzyme-substrate.

Using communication

In the previous example we have assumed that a communication between different boxes

can happen only thorugh formed links. This is true only if the α specification of the

corresponding interface sorts contains values for bind and unbind that are not both equal

to zero. As we will see more in detail in the next chapter, if an α specification is equal

to (0, 0, n) with n > 0, then binding and unbinding are not contemplated for the pair of

sorts and the boxes exposing them can communicate without the need of first creating a

link. To show this we consider a simplification of the enzyme activation example where

an interaction between and enzyme and a substrate leads to the release of the product

without the generation of intermediate complexes.

By specifying an affinity like the following:

α(∆E,∆S) = (0, 0, 1) (3.3)

we have that the initial system composed by an instance of an enzyme and a substrate

can evolve as follows:

The two boxes indeed can consume an intra-communication without creating the link.

Box S’ can then execute the change action and transform itself in the product:
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Using events

The primitives we described above work mainly with elementary reactions. In our setting,

with elementary reactions we identify those reactions that do not abstract any intermedi-

ate configuration with respect to a certain known biological mechanism. In the previous

example, indeed, the language primitives allowed us to model the reactions and the inter-

mediate configurations of enzyme activation in detail, by maintaining also the identity of

the single biological components. However, it is generally difficult to describe biological

systems only in terms of elementary reactions, because there are scenarios in which the

underlying biological mechanisms are not known with enough detail. In these cases, the

application of the primitives described above results difficult. Thus, to deal also with

these scenarios we introduce events.

Events implement a class of rewriting rules that substitute sets of boxes with other

sets of boxes. In order to better explain how events work, we consider again the previous

enzyme catalysis example and model it only by using events. In this setting, we can model

the enzyme, the substrate, the intermediate complexes and the product as different boxes:

The initial configuration of the system can be modelled by Ee ‖ Se. The binding

and the unbinding of the enzyme and the substrate can be modelled by two different

events. The first one substitutes the configuration Ee ‖ Se with ESe, meaning that a box

representing the enzyme and a box representing the substrate are substituted with a box

representing their complexation:

The other event does the inverse operation, substituting a box representing the com-

plex enzyme-substrate with a box representing the enzyme and a box representing the

substrate:
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Also events can be associated with priorities and here we assume all the considered

events to have the same priority 1. Having generated a box ESe we can describe the

transformation of the intermediate complex and the release of the product directly using

an event that substitutes the box ESe with the parallel composition of boxes Pe ‖ Es,

abstracting also from the reaction that in the previous model was associated with an

higher priority:

The use of events can be combined with complexes and communications. Specific

configurations of internal processes and interfaces can be used control the application of

events, so that they can be applied for example only after a certain number of reaction

have happened. The different modelling strategies, allow hence to switch between different

modelling abstraction levels, depending on the information and knowledge we have with

respect to the biological process under analysis.
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Chapter 4

Syntax and semantics

4.1 Syntax and notation

Let N be a countably infinite set of names (ranged over by x, y, n, x1, x
′, · · · ) and let T

be a finite set of sorts (ranged over by ∆, Γ, ∆′, ∆0, · · · ) such that T ∩ N = ∅.

A BlenX system, written (B,E, ξ), is a triple made up of a bio-process B, a composition

of events E and an environment ξ. We denote with S the set of all possible systems (ranged

over by S, S ′, S1, · · · ).

Tab.4.1 presents the complete syntax of the language. Hereafter, to simply the pre-

sentation, we will overload function names and symbols when unambiguous.

Bio-processes are generated by the non-terminal symbol B and with B we denote

the set of all possible bio-processes (ranged over by B, B′, B1, · · · ). A bio-process can

be either empty ( Nil ), a box ( I[P ]n ) or the parallel composition of bio-processes

( B0 ‖ B1 ). In the definition of box I[P ]n, I represents its interaction capabilities, P

is its internal engine, and n is used as an identifier to address the box at hand. Given a

bio-process B, the function Boxes(B) is used to extract the set of boxes composing B.

I is a non-empty string of interfaces of the form K(x, ∆)p, where K denotes the

state of the interface, which can be either free ( ⊕ ) or bound ( ⊗ ), the name x is

the subject of the interface, ∆ is a sort representing its structure, and p ∈ N is a value

(representing a priority) that will be explained in later sections. We sometimes use active

as synonymous of free, and complexed as synonymous of bound. The subject x of the

interface K(x, ∆)p of a box K(x, ∆)p I[P ]n is a binder for the free occurrences of x in

P . We write I = I1I2 or I = I1I2I3 to mean that I is given by the juxtaposition of

other interfaces. The metavariables I∗, I∗1 , · · · stay for either a sequence of interfaces or

the empty string, denoted with ǫ, and the above notation for juxtaposition is extended

to these metavariables in the natural way. We denote with I the set of all the possible

interface sequences. Moreover, the functions sub(I) and sorts(I) are used, respectively, to
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B ::= Bio-processes
Nil empty
I[P ]n box
B ‖ B composition

I ::= Interfaces
K(x,Γ)p interface
K(x,Γ)p I sequence

K ::= Interface states
⊕ free
⊗ bound

P ::= Processes
M capability
P |P composition

M ::= Capabilities
nil empty
∗〈C〉π. P replicated action
〈C〉π. P action
M +M choice

π ::= Prefixes
x?y input
x!y output
ch(x,Γ, p) change

C ::= Conditions
true true
(x,Γ) check sort
(x,K) check state
opu C unary operation
C opb C binary operation

E ::= Events
Nil empty
(B, ξ) ⊲p (B, ξ) event
E ‖ E composition

Table 4.1: BlenX syntax.
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extract from I the set of its subjects and the set of its sorts, and are defined in Tab. 4.2.

sub(K(x, ∆)p) = {x} sorts(K(x, ∆)p) = {∆}

sub(K(x, ∆)p I) = {x} ∪ sub(I) sorts(K(x, ∆)p I) = {∆} ∪ sorts(I)

Table 4.2: Functions collecting subjects and sorts of interfaces.

Definition 4.1.1. A box I[P ]n is well-formed if all the subjects and sorts of the interfaces

composing I are distinct.

The non-terminal symbol P generates processes and we denote with P the set of all

the possible processes (ranged over by P , P ′, P1, · · · ). A process can be either a capability

M , or the parallel composition of two processes ( P0 |P1 ). A capability can be either

the empty process ( nil ), or an action-guarded process ( 〈C〉π. P ), or the replication

of an action-guarded process ( ∗〈C〉π. P ), or the non-deterministic choice of capabilities

(M0 +M1 ). An action π can be either an input x?y, an output x!y or a change ch(x,Γ, p).

While the first two actions are well-known in process calculi, the last one is a peculiar of

BlenX and allows to change the sort associated with the interface with subject x (if any).

In particular, in ch(x,Γ, p) the name x refers to an interface subject, Γ is the sort we use

for the replacement and p is a natural number representing the priority associated with

the action. Guards of the shape 〈C〉π extend the usual notion of action prefix in process

calculi. The intuition behind process 〈C〉π is that the condition C is a control over the

execution of the prefix π. If C evaluates to true, then π can fire and P gets unblocked.

Unary and binary operators used in conditions are opu ∈ {¬} and opb ∈ {∧,∨}, while

atoms refer to interfaces via their unique subjects and check whether they have a given

sort (e.g. ∆) or whether they are in a given state (e.g. ⊗). Note that since the number

of interfaces and the description of an interface are finite and contain all the information

needed by the check, then atoms and conditions are decidable. Note that when C is equal

to true we recover the action prefixes of classical process calculi. With C we denote all

the possible conditions (ranged over by C, C ′, C1, · · · ).

Given a bio-process B, the definition of free names for B, denoted by fn(B), is given in

Tab. 4.3, along with the definition of bound names, denoted by bn(B). The set of names,

denoted by n(B), the definition of α-convertibility [99] and the definition of substitution(s)

[99] are extended consequently.

Boxes can be linked together through their interfaces to form complexes, which are

best thought of as graphs with boxes as nodes. The environment component ξ is used to

record these links; thus, a complete description of a set of complexes is given by a pair
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fn(Nil) = fn(nil) = ∅ bn(Nil) = bn(nil) = ∅

fn(I[P ]n) = fn(P ) \ sub(I) bn(I[P ]n) = bn(P ) ∪ sub(I)

fn(B0 ‖ B1) = fn(B0) ∪ fn(B1) bn(B0 ‖ B1) = bn(B0) ∪ bn(B1)

fn(P0 |P1) = fn(P0) ∪ fn(P1) bn(P0 |P1) = bn(P0) ∪ bn(P1)

fn(M0 +M1) = fn(M0) ∪ fn(M1) bn(M0 +M1) = bn(M0) ∪ bn(M1)

fn(∗〈C〉π. P ) = fn(π. P ) ∪ fn(C) bn(∗〈C〉π. P ) = bn(π. P )

fn(〈C〉π. P ) = fn(π. P ) ∪ fn(C) bn(〈C〉π. P ) = bn(π. P )

fn(x?y.P ) = {x} ∪ (fn(P ) \ {y}) bn(x?y.P ) = {y} ∪ bn(P )

fn(x!y.P ) = {x, y} ∪ fn(P ) bn(x!y.P ) = bn(P )

fn(ch(x,∆, p).P ) = {x} ∪ fn(P ) bn(ch(x,∆, p).P ) = bn(P )

fn(C1 ∧ C2) = fn(C1) ∪ fn(C2) bn(C1 ∧ C2) = ∅

fn(C1 ∨ C2) = fn(C1) ∪ fn(C2) bn(C1 ∨ C2) = ∅

fn((x,∆)) = fn((x, S)) = {x} bn((x,∆)) = bn((x, S)) = ∅

fn(true) = ∅ bn(true) = ∅

Table 4.3: Definition of free and bound names for bio-processes.

(B, ξ). In detail, ξ is a set of links of the shape {∆1n1,∆2n2}, meaning that the two boxes

addressed by n1 and n2 are linked together through the interfaces with sorts ∆1 and ∆2,

respectively.

Figure 4.1: Example of a complex.

As an example, Fig. 4.1 shows a complex formed by four boxes running in parallel

which contain processes P1, P2, P3, P4, and are addressed, respectively, by n1, n2, n3, and

n4. In the figure, each box has one or more complexed interfaces with associated values

∆1, ∆2, · · · . An environment representing the complex in Fig.4.1 is given by:

ξ1 = (∆1n1,∆3n3), (∆
′
3n3,∆

′
4n4), (∆4n4,∆2n2)

We denote with id(ξ) and id(B) the set of names used as identifiers in the environment
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ξ and bio-process B, respectively (see Tab. 4.4 for the formal definition). For instance,

referring to the example in the figure and its environment ξ1, we have that id(ξ1) =

{n1, n2, n3, n4}.

id(Nil) = ∅

id(I[P ]n) = {n}

id(B1 ‖ B2) = id(B1) ∪ id(B2)

id(∅) = ∅

id({{∆1n1,∆2n2}} ∪ ξ) = {n1, n2} ∪ id(ξ)

Table 4.4: Functions collecting boxes identifiers.

The non terminal symbol E generates a parallel composition of events. The set of all

possible events is denoted with E . An event can be either empty ( Nil ) or a substitution

denoted by (B1, ξ1) ⊲p (B2, ξ2) (where, like interfaces, p ∈ N is a value representing a

priority that will be explained in detail later). In the simplest case, events are used to

substitute bio-processes with other bio-processes. Besides this, the possibility to specify

explicitly the environment corresponding to a bio-processes, gives the ability to define

events that represent substitutions of complexes and subcomplexes. Given a bio-process

B and an environment ξ, the function CB defined in Tab.4.5 is used to collect the identity

of interfaces of boxes in B which are involved in bindings outside ξ, i.e., outside the

borders of B.

CB(Nil, ξ) = ∅

CB(B ‖ B′, ξ) = CB(B, ξ) ∪ CB(B′, ξ)

CB(I[P ]n, ξ) = CI(I, ξ, n)

CI(K(x, ∆)p I, ξ, n) = CI(K(x, ∆)p, ξ, n) ∪ CI(I, ξ, n)

CI(⊕(x, ∆)p, ξ, n) = ∅

CI(⊗(x, ∆)p, ξ, n) =

{
∆n if 6 ∃l ∈ ξ s.t. ∆n ∈ l
∅ otherwise

Table 4.5: Function CB for the description of the borders of complexes.

Hereafter, the typical post-fixed notations {a/b} and σ, used to represent substitutions

of the free occurrences of entities with other entities, are naturally extended to other

domains, e.g., to sets. For example, ξ{∆m/Γn} denotes the substitution of the occurrences
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of Γn with ∆m in ξ. Moreover, with 〈x/y〉 we denote a notion of substitution applied

only on boxes identifiers. When applied to a bio-process B (using the notation B〈x/y〉)

we obtain a bio-process in which all the boxes identifiers equal to y are substituted with

x. As we will see later, we require boxes to have all distinct identifiers, hence leading to

single identifiers substitutions.

Moreover, when applied to an environment ξ (using the notation ξ〈x/y〉) it substitutes

all the occurrences of the name y, present in the pairs Γy, with occurrences of x, obtaining

corresponding pairs Γx. As clarifying examples, consider the following substitutions:

(I[P ]n ‖ I
′[P ′ ]n′)〈y/n〉 = I[P ]y ‖ I

′[P ′ ]n′

ξ1〈n6/n3〉 = (∆1n1,∆3n6), (∆
′
3n6,∆

′
4n4), (∆4n4,∆2n2)

The language is also provided with a notion of structural congruence that identifies

syntactical different systems that intuitively represent the same system. In particular,

we provide notions of structural congruence for processes, bio-processes, complexes and

events, and use them to define the notion of structural congruence for systems.

Definition 4.1.2. Structural congruence on processes, denoted ≡p, is the smallest con-

gruence on processes that satisfies the axioms in Tab. 4.6(a).

Structural congruence on bio-processes, denoted ≡b, is the smallest congruence that

satisfies the axioms in Tab. 4.6(b).

Structural congruence on complexes, denoted ≡c, is the smallest congruence that sat-

isfies the axioms in Tab. 4.6(c).

Structural congruence on events, denoted ≡e, is the smallest congruence that satisfies

the axioms in Tab. 4.6(d).

Structural congruence on systems, denoted ≡, is the smallest congruence that satisfies

the axiom in Tab. 4.6(e).

Axioms in Tab. 4.6(a) describe, respectively, a rule that states that α-convertible

processes are structurally congruent, the monoidal axioms for parallel and choice com-

positions (i.e. operators | and + are commutative, associative and have identity element

nil), the commutativity and associativity of ∧ and ∨ boolean operators, and a rule stating

that replication ∗〈C〉π. P can proceed only after firing 〈C〉π.

Axioms in Tab. 4.6(b) contain, respectively, the monoidal axioms for parallel composi-

tion of bio-processes and a rule that declares that the actual ordering within a sequence of

interfaces is irrelevant, and states that the structural congruence of processes is reflected

at the level of boxes. Axioms in Tab. 4.6(c) describe, respectively, a rule that states that

the structural congruence of bio-processes is reflected at the level of complexes and a

rule declaring that two complexes are equivalent up-to renaming of boxes identifiers. Ax-
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a) axioms for processes

1. P =α P
′ ⇒ P ≡p P

′

2. P | nil ≡p P
3. P1 |P2 ≡p P2 |P1

4. P1 | (P2 |P3) ≡p (P1 |P2) |P3

5. M + nil ≡p M
6. M1 +M2 ≡p M2 +M1

7. M1 + (M2 +M3) ≡p (M1 +M2) +M3

8. C1 ∧ C2 ≡p C2 ∧ C1

9. C1 ∧ (C2 ∧ C3) ≡p (C1 ∧ C2) ∧ C3

10. C1 ∨ C2 ≡p C2 ∨ C1

11. C1 ∨ (C2 ∨ C3) ≡p (C1 ∨ C2) ∨ C3

12. ∗〈C〉π. P ≡p 〈C〉π. (P | ∗〈C〉π. P )

b) axioms for bio-processes

1. B ‖ Nil ≡b B
2. B1 ‖ B2 ≡b B2 ‖ B1

3. B1 ‖ (B2 ‖ B3) ≡b (B1 ‖ B2) ‖ B3

4. P1 ≡p P2 ⇒ I∗1I2I3I
∗
4 [P1 ]n ≡b I

∗
1I3I2I

∗
4 [P2 ]n

5. P1 ≡p P2 ∧ y /∈ fn(P2) ∪ sub(I∗)⇒
K(x, ∆)p I∗[P1 ]n ≡b K(y, ∆)p I∗[P2{y/x} ]n

c) axioms for complexes

1. B1 ≡b B2 ⇒ (B1, ξ) ≡c (B2, ξ)

2. x ∈ id(B) ∧ y /∈ id(B) ∪ id(ξ)⇒ (B, ξ) ≡c (B〈y/x〉, ξ〈y/x〉)

d) axioms for events

1. E ‖ Nil ≡e E
2. E1 ‖ E2 ≡e E2 ‖ E1

3. E1 ‖ (E2 ‖ E3) ≡e (E1 ‖ E2) ‖ E3

4. (B1, ξ1) ≡c (B
′
1, ξ

′
1)⇒ (B1, ξ1) ⊲p (B2, ξ2) ≡e (B

′
1, ξ

′
1) ⊲p (B2, ξ2)

5. (B2, ξ2) ≡c (B
′
2, ξ

′
2)⇒ (B1, ξ1) ⊲p (B2, ξ2) ≡e (B1, ξ1) ⊲p (B

′
2, ξ

′
2)

e) axioms for systems

1. (B1, ξ1) ≡c (B2, ξ2) ∧ E1 ≡e E2 ⇒ (B1, E1, ξ1) ≡ (B2, E2, ξ2)

Table 4.6: Structural congruence axioms.
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ioms in Tab. 4.6(d) describe, respectively, the monoidal axioms for parallel composition

of events, and rules stating that the structural congruence of bio-processes and complexes

is reflected at the level of events. Axiom in Tab. 4.6(e) state simply that the structural

congruence of complexes and events is reflected at the level of systems. Note that in rule

Tab. 4.6(c.2) a box identifier substitution has to be reflected also in the corresponding

environment.

Abbreviations: We denote with
∏n

i=1Bi a parallel composition of bio-processes as-

sociated on the right (e.g., B1 ‖ (B2 ‖ (B3 ‖ B4)) =
∏4

i=1Bi), with
∏n

i=1 Pi a parallel

composition of processes associated on the right (e.g., P1 | (P2 | (P3 | P4)) =
∏4

i=1 Pi), and

with
∑n

i=1〈Ci〉πi.Pi a choice process associated on the right (e.g.,〈C1〉π1.P1+(〈C2〉π2.P2+

(〈C2〉π2.P2 + 〈C4〉π4.P4))). Moreover, when C = true we simply write π.P and ∗π.P .

4.2 Static semantics

Once having the syntax of the language, the first mandatory question is whether all the

systems that can be generated by the syntax, hence belonging to S, can be considered

valid. The answer is straightforwardly no, because by permitting the specification of

complexes, we have to guarantee that the underline graph structure of these complexes is

represented consistently in the system definition. In particular, since the specification of

complexes is the result of the combination of a bio-process and an environment, we have

to guarantee that given a bio-process B and an environment ξ, there is no ambiguity in

interpreting from the environment how the boxes are linked together. Moreover, we want

to guarantee that there is no pending information both in B and ξ.

Given a system (B,E, ξ), we require it to be well-formed with respect to a set of

appropriate syntactical restrictions. We first require (a) all the boxes composing B to be

well-formed. An example of not valid B is:

B = ⊗(x1, ∆1)
p⊗(x1, ∆2)

p[P1 ]n1 ‖ ⊗(x2, ∆2)
p⊗(x3, ∆2)

p[P2 ]n2

where the interfaces of both the boxes have not distinct subjects and not distinct sorts,

respectively. Then we require (b) all the boxes identifiers in B to be distinct. An example

of invalid B is:

B = ⊗(x1, ∆1)
p[P1 ]n ‖ ⊗(x2, ∆2)

p[P2 ]n

where both the boxes have the same identifier. The environment ξ is valid only if (c)

each link component ∆x in the environment ξ appears only once in ξ and no self-links are
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present. For example, an invalid environment is:

ξ = {{∆n,Γn1}, {∆n,Γn2}, {∆n3,Γn4}}

Given valid B and ξ, we have to be sure that a series of requirement are satisfied by

the combination B and ξ. We require that (d) if ∆n appears in ξ then a box in B with

identifier n and complexed interface with sort ∆ exists. An example of invalid system

contains the following B and ξ:

B = ⊕(x1, ∆1)
p[P1 ]n1 ‖ ⊗(x2, ∆2)

p[P2 ]n2 ‖ ⊕(x4, ∆4)
p[P3 ]n3

ξ = {{∆1n1,∆2n2}, {∆2n2,∆3n3}}

Note that ∆3n3 is in ξ, but there is no box with n3 identifier in B. Moreover, ∆1n1

is in ξ but the corresponding interface of box ⊕(x1, ∆1)
p[P1 ]n1 in B is not signed as

complexed.

Similarly we require that (e) if a box in B with identifier x and complexed interface

with sort ∆ exists then the link component ∆x appears in the environment ξ. An example

of invalid system is:

B = ⊗(x1, ∆1)
p[P1 ]n1 ‖ ⊗(x2, ∆2)

p[P2 ]n2 ‖ ⊗(x4, ∆4)
p[P3 ]n3

ξ = {{∆4n4,∆2n2}, {∆2n2,∆3n3}}

Note that the combination of the previous requisites prevents also from the description

of systems with boxes interfaces having multiple links.

All the inconsistencies checked by the previous syntactical restrictions can rise also

at the level of events definition. When considering events, anyway, the main difference

with respect to the problems seen above, is that in the specification (B1, ξ1) ⊲p (B2, ξ2)

we do not require a complete correspondence between the bound interfaces present in the

bio-processes and the link components in the environments. This is because, as previously

informally described, events can be used to represent substitutions of subcomplexes. In

this cases, however, we have to guarantee that subcomplexes substitutions do not generate

hanging bounds. Thus, surely (f) for all the events (B, ξ) ⊲p (B′, ξ′) composing E,

conditions (a), (b), (c) and (d) have to hold for B and ξ, and for B′ and ξ′. Moreover (f)

for all the events (B, ξ) ⊲p (B
′, ξ′) composing E, the sorts of complexed interfaces in B

without a link component in ξ and the sorts of complexed interfaces in B′ without a link

component in ξ′ have to coincide.

All the conditions above are formalized by providing a simple proof system. The

axioms and inference rules characterizing our proof system are defined inductively on the
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structure of BlenX systems and are reported in Tab.4.7. Given a system S, if S satisfies the

judgement ⊢ S : ok, then it is well-formed. The main characteristic of the proof system,

is that it associates specific signatures to the bio-processes, interfaces and environments

composing a system, in order to collect all the information needed to prove the well-

formedness property. Depending on the syntactic category, signatures are different and

collect different information.

The well-formedness of interfaces is verified by judgements and rules (w1-3). These

rules verify that all the subjects and sorts of the interfaces of a box are distinct; they

generate a signature that is a set containing all the sorts of bound interfaces.

A well-formed bio-process B is associated with a signature (N,L), where N ⊂ N

contains the identifiers of all the boxes defined in B, and L contains a pair (∆, n) if

and only if an interface with sort ∆ is declared as bound in the box with identifier n.

Note that the notion of identifier substitution 〈y/x〉 can be easily extended to L. All the

judgements and rules guarantee that no boxes with identical identifiers are defined. Rule

(w4) says that the empty bio-process Nil is well-formed and has signature (∅, ∅). Rule

(w5) controls the well-formedness of boxes. A well-formed box I[P ]n is associated with a

signature ({n}, {(∆, n) | ∆ ∈ T }), where the first element is a set containing the identifier

of the box and the second element contains the sorts T ⊂ T of the bound interfaces in

I. The premise of rule (w5) controls the well-formedness of the interface I and generates

the signature T . Rule (w6) states that given two bio-processes B1 and B2, well-formed

with signatures (N1, L1) and (N2, L2) where N1 ∩ N2 = ∅, the bio-process obtained by

composing in parallel the two bio-processes is well-formed with signature (N1∪N2, L1∪L2).

Note that by controlling that the intersection of the two set of boxes identifiers is empty,

we guarantee that no boxes in B1 and B2 have the same identifier.

An environment is well-formed (w7-9) if it does not contain multiple link components

∆n. This guarantees that the environment is not ambiguous in terms of complex links

(i.e., we don’t have the specification of multiple links on the same interface) and that no

self-links are introduced. Parallel compositions of events are well-formed (w10-12) if: all

the single events are composed by well-formed bio-processes Bi and environments ξi (with

i = 1, 2); signatures (Ni, Li) and L
′
i, respectively of Bi and ξi, guarantee that all the link

components in L′
i are also in Li ; pending binding sorts of B1 and B2 coincide. The last

two conditions are verified by checking that L′
i ⊆ Li and that for each ∆ ∈ T we have

that the cardinalities of sets {(∆, n) ∈ L1 \ L
′
1 | n ∈ N} and {(∆, n) ∈ L2 \ L

′
2 | n ∈ N}

coincide, respectively. Notice that we do not require here equality because in events we

can also specify bio-processes representing subcomplexes. Equality is instead a requisite

in rule (w13), because we want to ensure that all the bindings specified in the environment

are be contained in the corresponding bio-processes, and vice-versa.
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(w1) ⊢i ⊕(x, ∆)p : ∅ (w2) ⊢i ⊗(x, ∆)p : {∆}

(w3)
⊢i K(x, ∆)p : T∧ ⊢i I : T ′

⊢i K(x, ∆)p I : T ∪ T ′
, x /∈ sub(I) and ∆ /∈ sorts(I)

(w4) ⊢b Nil : (∅, ∅)

(w5)
⊢i I : T

⊢b I[P ]n : ({n}, {(∆, n) | ∆ ∈ T})

(w6)
⊢b B1 : (N1, L1) ∧ ⊢b B2 : (N2, L2)

, N1 ∩N2 = ∅
⊢b B1 ‖ B2 : (N1 ∪N2, L1 ∪ L2)

(w7) ⊢en ∅ : ∅

(w8) ⊢en {∆1n1,∆2n2} : {(∆1, n1), (∆2, n2)} , n1 6= n2

(w9)
⊢en ξ1 : L1 ∧ ⊢en ξ2 : L2

, L1 ∩ L2 = ∅
⊢en ξ1 ∪ ξ2 : L1 ∪ L2

(w10) ⊢ev ∅ : ok (w11)
⊢ev E1 : ok ∧ ⊢ev E2 : ok

⊢ev E1 ‖ E2 : ok

(w12)
⊢b B1 : (N1, L1) ∧ ⊢b B2 : (N2, L2) ∧ ⊢en ξ1 : L′

1 ∧ ⊢en ξ2 : L′
2

⊢ev (B1, ξ1) ⊲p (B2, ξ2) : ok

provided L′
1 ⊆ L1, L

′
2 ⊆ L2, N1 6= ∅ and

∀ ∆ ∈ T . |{(∆, n) ∈ L1 \ L′
1 | n ∈ N}| = |{(∆, n) ∈ L2 \ L′

2 | n ∈ N}|

(w13)
⊢b B : (N,L) ∧ ⊢ev E : ok ∧ ⊢ ξ : L

⊢ (B,E, ξ) : ok

Table 4.7: Well-formedness proof system.

Definition 4.2.1. The set of well-formed BlenX systems is S = {S ∈ S | ⊢ S : ok}.

We show now that well-formedness condition is preserved by structural congruence.

We do it by first showing it on bio-processes, complexes and events. Intermediate lemmas

are also introduced.
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Lemma 4.2.2. Let B,B′ ∈ B s.t. B ≡b B
′. Then ⊢b B : (N,L) implies ⊢b B

′ : (N,L).

Proof Sketch. By induction on the length of the derivation B ≡b B
′. For the base cases

Tab. 4.6(b.4) and Tab. 4.6(b.5) it is enough to observe that the structural modifications

introduced by the axioms do not change the signature T generated by the rule premise

and the identifier of the box.

Lemma 4.2.3. Le B ∈ B s.t. ⊢b B : (N,L) and y /∈ id(B). Then ⊢b B〈y/x〉 :

(N{y/x}, L〈y/x〉).

Proof Sketch. By induction on the derivation ⊢b B : (N,L) and identifier substitution

definition.

Lemma 4.2.4. Le ξ be an environment s.t. ⊢en ξ : L and y /∈ id(ξ). Then ⊢en ξ〈y/x〉 :

L〈y/x〉.

Proof Sketch. By induction on the derivation ⊢en ξ : L and identifier substitution defini-

tion.

Lemma 4.2.5. Let (B, ξ), (B′, ξ′) be complexes such that (B, ξ) ≡c (B
′, ξ′). Then ⊢b B :

(N,L) and ⊢en ξ : L implies ⊢b B
′ : (N ′, L′) and ⊢en ξ

′ : L′.

Proof Sketch. By induction on the length of the derivation (B, ξ) ≡c (B
′, ξ′). The case

Tab. 4.6(c.1) follows by Lemma 4.2.2, while case Tab. 4.6(c.2) follows by Lemmas 4.2.3

and 4.2.4.

Lemma 4.2.6. Let E,E ′ ∈ E such that E ≡e E
′. Then ⊢b E : ok implies ⊢b E

′ : ok.

Proof Sketch. By induction on the length of the derivation E ≡e E
′ and by using the

Lemma 4.2.5.

All the previous Lemmas can be combined to show that given a well-formed system

S, we have that all the systems structurally congruent to S are also well-formed.

Theorem 4.2.7. Let S ∈ S and S ′ ∈ [S]≡. Then S
′ ∈ S.

Proof Sketch. From Lemmas 4.2.2, 4.2.5 and 4.2.6.

4.3 Species and complexes

In biology, a species is defined by a set of characteristic that are shared by all the com-

ponents of a species and only by them. Notions of species can be found starting from
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molecular level till to organisms level: in chemistry, a species defines an ensemble of chem-

ically identical molecular entities that can explore the same set of molecular energy levels

on a characteristic or delineated time scale; in proteomics, the meaning of species is used

to classify proteins with respect to their functions, structures, isoforms, post-translational

modifications; individuals belonging to a group of organisms having common characteris-

tics and capable of mating with one another define a species.

The development of a notion of species, therefore, is essential for classification purposes

at all the observational levels. In this thesis we are dealing with the dynamics of biological

systems, and hence our need and intuition is that a notion of species in this context has

to be related with the concept of dynamics. Besides the intrinsic interest in developing a

notion of species for dynamical systems, it is also evident how it can be useful in practice.

Indeed, it allows for example to move from an individual level view to a population level

view, hence giving the possibility to reduce the system state space and study the dynamics

of populations rather than of single individuals.

In BlenX boxes represent the basic abstraction that allow us to represent biological

entities and hence we are mainly interested in defining a notion of species over boxes. Our

idea is to provide a notion of species that relates boxes both in terms of their structure

and dynamics. It is clear that there are several choices, starting from a strict syntactic

equivalence, till to the development of a behavioural theory that relates boxes purely

in terms of their dynamics. Searching something in the middle, we finally decided to

base our notion of species on the notion of structural congruence, which we think relates

boxes both considering in an appropriate way their structure and their dynamics. We

think that a notion of species based on structural congruence is a good candidate because

theoretically permits to identify syntactical different boxes that intuitively represent the

same box and more practically, as we will show in this section, can be computed efficiently

in our case. Moreover, a notion of species based on structural congruence of boxes can

be naturally reflected at the level of complexes, where structural congruence can be itself

used to compare and classify complexes in terms of their components and their topologies.

In this section we develop on the structural congruence of boxes and complexes, show-

ing that the problem of deciding if two boxes or two complexes are structurally congruent

is a decidable and efficiently solvable, i.e., there is a procedure that works polynomially

in the size of the input. We start by developing on the structural congruence of processes,

passing then in a natural way to reason about the structural congruence of boxes and

finally develop on the structural congruence of complexes. All the reductions, procedures

and functions given in the section are presented in a constructive way, so that it results

easier to see how they can be implemented. Moreover, we state that all the results of

this section can be combined and used to prove that the general structural congruence of
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BlenX systems is decidable and efficiently solvable.

We think all the results of this section are important because shows how BlenX is

provided with a notion of structural congruence that can be really used for implementation

purposes. Indeed, this is not true in general for many other process calculi, where notions

of structural congruence are heavily used theoretically, but are very difficult to check or

even it is not know whether they are decidable [32, 33, 34, 35].

4.3.1 Structural congruence of processes

Here we show that for our processes P , the problem of deciding if two of them are

structurally congruent can be polynomially reduced to a tree isomorphism problem, hence

being not only decidable but also efficiently solvable [59].

Although our processes belong to the class of processes studied in [35], our notion of

structural congruence is slightly different with respect to the standard one and hence their

results cannot be applied directly. In [35], the main difficulty in showing the decidability

of structural congruence is the treatment of replication, which allows a process to grow

indefinitely without maintaining a precise structure in its number of subprocesses. The

structural axiom for replication used in this thesis, instead, allows a process to grow

indefinitely in its number of subprocesses maintaining a precise in-depth structure. As

shown in the following, this is one of the key ingredients on which the work of this section

is based.

We start by defining a function that recognizes and eliminates all the expanded repli-

cations of a given process P . As an example, consider the following process:

P = x?a. ( z?d. nil | ∗ x?a. (∗y?b. nil | z?c. nil) | y?b. ∗ y?e. nil )

We want a function that, applied on P , recognizes that the subprocess y?b. ∗ y?e. nil

is a one level expansion of the replication ∗y?e. nil, and compresses it. Then, the func-

tion has to recognize that the whole process is a one level expansion of the replication

∗x?a. (∗y?b. nil | z?c. nil), and has to return a process that does not contain expanded

replications.

This function, that we call Impl, is defined in Tab. 4.8 by induction on the structure

of P , where with ≡rep

p we identify a structural congruence relation that omits the rule for

the replication.

Definition 4.3.1. ≡rep

p is the smallest congruence relation on processes that satisfies all

the axioms in Tab. 4.6 but the last one, the axiom for replication.

In Tab. 4.8, moreover, the function Par(P ) extracts from P all the unguarded parallel

capabilities and, given a finite set of capabilities S, with
∏

S Pi we denote a process
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S1 | (S2 | ( · · · |Sn) · · · )) generated by the parallel composition of all the capabilities in S,

where
∏

S Pi = nil if S = ∅. Note that since processes have finite length, then the function

Impl surely ends. Moreover, Par(P ) and the generation of
∏

S Pi (given a finite set S)

have a complexity which is linear in the number of the unguarded parallel capabilities in

P (which is a finite number) and in the number of capabilities in S, respectively.

Impl (P ):
switch P

case P1 |P2 :
return Impl(P1) | Impl(P2)

case M1 +M2 :
return Impl(M1) + Impl(M2)

case nil :
return nil

case ∗〈C〉π. P ′ :
return ∗Impl(〈C〉π. P ′)

case 〈C〉π. P ′ :
if ∃P ′′ ∈ Par(Impl(P ′)) s.t.

P ′′ = 〈C ′〉π′.R ∧ 〈C〉π.Q ≡rep
p P ′′

with Q =
∏

Par(Impl(P ′))\P ′′ Pi

then
return 〈C〉π.Q

else
return 〈C〉π. Impl(P ′)

Table 4.8: Definition of function Impl.

The application Impl(P) propagates Impl recursively to all the subprocesses of P . For

each subprocess of the form 〈C〉π.P ′, the function controls if the recursive invocation

Impl(P ′) results in a process that contains an unguarded capability P ′′ = ∗〈C ′〉π′.R such

that 〈C〉π.Q ≡rep

p 〈C ′〉π′.R, with Q =
∏

Par(Impl(P ′))\P ′′ . If it is the case, this means that

the subterm 〈C ′〉π′.R corresponds to a replication expansion and hence 〈C〉π.P ′ can be

substituted with the imploded process 〈C〉π.Q. Obviously, the complexity of the control

depends on the number of parallel components of Impl(P ′) and on the complexity of

≡rep

p . In particular, note that if the congruence ≡rep

p is efficiently solvable, then also the

function Impl(P ) is efficiently solvable, i.e., the complexity is polynomial in the size of

P .

Lemma 4.3.2. Let P ∈ P. Then Impl(P ) ≡p P .
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Proof sketch. By induction on the structure of P . Every modification that the func-

tion Impl carries out on the structure of P comes from the recursive invocation of

Impl(〈C〉π.P ′). These rearrangements and modifications are equivalent to the application

of a sequence of axioms (a.1-3) and (a.12). These axioms are a subset of the structural

axioms of the congruence ≡p. Hence Impl(P ) ≡p P .

Now consider the subclass of guarded replication processes that does not contain ex-

panded replications. We call this subclass Prp.

Definition 4.3.3. Let Prp to be the subset of processes in P such that P ∈ Prp if and

only if P does not contain subterms ≡rep

p congruent to processes of the form 〈C〉π. (P | ∗

〈C〉π. P ).

Lemma 4.3.4. Let P ∈ P. Then Impl(P ) ∈ Prp.

Proof. Immediate from Impl definition.

Lemma 4.3.5. Let P,Q ∈ Prp. Then P ≡p Q iff P ≡rep

p Q.

Proof. (⇒) To show this implication we prove that in P ≡p Q the law (a.12) is never used.

Assume that P is obtainable from Q by applying, for some subterm of Q, the law (a.12).

This means that one of the two processes has a subterm in the form 〈C〉π.(R | ∗ 〈C〉π.R).

But the subterm 〈C〉π.(R | ∗〈C〉π.R) expands the replication ∗〈C〉π.R and this contradicts

our initial assumption that P ∈ Prp. Therefore, the law (a.12) is never used and the

implication is true.

(⇐) Since the structural axioms of the congruence ≡rep

p are a subset of the structural

axioms of the congruence ≡p then P ≡
rep

p Q implies P ≡p Q.

Lemma 4.3.6. Let P,Q ∈ P. Then P ≡p Q iff Impl(P ) ≡rep

p Impl(Q).

Proof. (⇒) Since Impl(P ) ≡p P ≡p Q ≡p Impl(Q) (using Lemma 4.3.2) we obtain

that Impl(P ) ≡p Impl(Q). Since the processes Impl(P ) and Impl(Q) does not contain

expanded replication, we have that Impl(P ) ≡p Impl(Q) (using Lemma 4.3.5) implies

Impl(P ) ≡rep

p Impl(Q).

(⇐) The structural laws of congruence ≡rep

p are a subset of the structural laws of the

congruence ≡p. For this reason Impl(P ) ≡rep

p Impl(Q) implies Impl(P ) ≡p Impl(Q).

For the Lemma 4.3.2 we have that P ≡p Impl(P ) ≡p Impl(Q) ≡p Q and therefore, for

transitivity, we have that P ≡p Q.

Having reduced ≡p to ≡rep

p , the next step is to show that ≡rep

p is decidable and

efficiently solvable. In order to do this we proceed similarly by reducing the problem
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of determining if two processes are ≡rep

p to a tree isomorphism problem. We start by

providing a polynomial procedure that, given a process, constructs a corresponding n-

ary tree representing its nameless tree representation. The main characteristics of this

procedure are:

a) following the De Bruijn indices approach [29], all the binders in the inputs and all

the bound names are substituted with integers representing the binding depth in the

process;

b) multiple composition of binary parallels and choice in processes and binary opera-

tions in conditions are compressed in a unique level;

c) empty processes in parallel and choice compositions are eliminated.

Before starting a formal presentation of the tree construction we give a small intuitive

example. Consider the process:

〈(x,∆)〉x?y.nil | 〈(x,∆)〉x?y.〈(y,∆)〉y?z.〈(z,∆)〉z!y.nil+ 〈true〉x?k.nil+ 〈(x,∆)〉y!z.nil

Its tree representation is reported in Fig.4.2; input binders are substitute with integers,

representing the in-depth binding, and all the binary operators are compressed.

Figure 4.2: Example of process tree representation.

Axioms and rules reported in Tab.4.9 and Tab.4.10 allow for the construction of pro-

cess tree representations. With ψ we indicate a sequence of binding names and natural

numbers, called also scope. We use the comma operator to extend a scope ψ by adding a

new binding on the right. Note that by extending we mean that the instances on the right

55



4.3. SPECIES AND COMPLEXES CHAPTER 4. SYNTAX AND SEMANTICS

overwrite instances on the left: if we have ψ = x : 3, x : 2, then ψ(x) = 2. Moreover, with

ψ̂(x) we indicate a function that returns ψ(x) if x ∈ dom(ψ) and returns x otherwise.

The empty scope is denoted by ∅. The set of all the possible scopes (ranged over by ψ,

ψ′, ψ1, · · · ) is denoted by Ψ.

The class of trees considered here are n-ary labeled trees. Tree nodes are denoted with

(label;T1, · · · , Tm), where label is a string and denotes the label associated with the node,

while T1, · · · , Tm are the immediate subtrees of the node. With (label) we denote a leaf.

The size of T is denoted with |T | and indicates the number of nodes composing the tree

T . Given a tree T , we denote with label(T ) the function that returns the label of its root

node.

Definition 4.3.7. Let T and T ′ be trees. We define T ≃ T ′ (T isomorphic to T ′) by

induction on the number of nodes in T and T ′ by defining that T ≃ T ′ holds if and only

if:

(a) |T | = |T ′| = 1 and label(T ) = label(T ′);

(b) T and T ′ are such that label(T ) = label(T ′) and both have the same number, m, of

immediate subtrees, and there is some ordering T1, . . . , Tm of the immediate subtrees of T

and some ordering T ′
1, . . . , T

′
m of the immediate subtrees of T ′ such that Ti ≃ T ′

i for all

1 ≤ i ≤ m.

Definition 4.3.8. Given a process P , an initial scope ψ and a natural number n, the tree

T we obtain by deriving ψ ⊢n P : T using the axioms and rules reported in Tab. 4.9 and

Tab. 4.10 is a nameless tree representation of P , and is denoted also by st(P )ψn .

It is clear that depending on ψ and n we obtain different tree representations. Since

the goal of the tree construction is to satisfy the points a), b) and c) previously mentioned,

all these representations are valid representations. When comparing tree representations

of different processes we will always specify the scopes and the numbers we use in their

generation.

Tab.4.9 refers to processes. Rules (t1-4) allow the compression in a unique level of

multiple parallel compositions. Note that in order to capture all the possible syntactical

constructions we need four rules in which we render explicit all the possible cases. Rules

(t5-6) allow the elimination of empty capabilities in parallel compositions. Rules (t7-12)

are similar to the previous ones and allow the compression in a unique level of multiple

choices with the elimination of empty capabilities. Rule (t13) introduces a node repre-

senting replication, while rule (t14) introduces a leaf representing the nil process. Rules

(t15-17), instead, are used to represent input, output and change capabilities. Note that

the first immediate node subtree introduced by all these three rules is a leaf containing a

nameless representation of the capability. Moreover, in order to propagate the nameless
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(t1)
ψ ⊢n P1 : (par;T1, · · · , Tm) ψ ⊢n P2 : T0 label(T0) 6∈ {par, nil}

ψ ⊢n P1 |P2 : (par;T1, · · · , Tm, T0)

(t2)
ψ ⊢n P1 : T0 ψ ⊢n P2 : (par;T1, · · · , Tm) label(T0) 6∈ {par, nil}

ψ ⊢n P1 |P2 : (par;T0, T1, · · · , Tm)

(t3)
ψ ⊢n P1 : (par;T1, · · · , Tm) ψ ⊢n P2 : (par;Tm+1, · · · , Tk)

ψ ⊢n P1 |P2 : (par;T1, · · · , Tk)

(t4)
ψ ⊢n P1 : T1 ψ ⊢n P2 : T2 label(T1) 6∈ {par, nil} label(T2) 6∈ {par, nil}

ψ ⊢n P1 |P2 : (par;T1, T2)

(t5)
ψ ⊢n Pi : Ti label(T2) = nil

, i = 1, 2
ψ ⊢n P1 |P2 : T1

(t6)
ψ ⊢n Pi : Ti label(T1) = nil

, i = 1, 2
ψ ⊢n P1 |P2 : T2

(t7)
ψ ⊢n M1 : (choice;T1, · · · , Tm) ψ ⊢n M2 : T0 label(T2) 6∈ {choice, nil}

ψ ⊢n M1 +M2 : (choice;T1, · · · , Tm, T0)

(t8)
ψ ⊢n M1 : T0 ψ ⊢n M2 : (choice;T1, · · · , Tm) label(T1) 6∈ {choice, nil}

ψ ⊢n M1 +M2 : (choice;T0, T1, · · · , Tm)

(t9)
ψ ⊢n M1 : (choice;T1, · · · , Tm) ψ ⊢n M2 : (choice;Tm+1, · · · , Tk)

ψ ⊢n M1 +M2 : (choice;T1, · · · , Tk)

(t10)
ψ ⊢n M1 : T1 ψ ⊢n M2 : T2 labe(T1) 6∈ {choice, nil} label(T2) 6∈ {choice, nil}

ψ ⊢n M1 +M2 : (choice;T1, T2)

(t11)
ψ ⊢n Mi : Ti label(T2) = nil

, i = 1, 2
ψ ⊢n M1 +M2 : T1

(t12)
ψ ⊢n Mi : Ti label(T1) = nil

, i = 1, 2
ψ ⊢n M1 +M2 : T2

(t13)
ψ ⊢n 〈C〉π. P : T

ψ ⊢n ∗〈C〉π. P : (rep;T )
(t14) ψ ⊢n nil : (nil)

(t15)
ψ ⊢n C : T1 ψ, x : n ⊢n+1 P : T2

ψ ⊢n 〈C〉x?y. P : (act; (ψ̂(x)?n), T1, T2)

(t16)
ψ ⊢n C : T1 ψ ⊢n P : T2

ψ ⊢n 〈C〉ch(x,∆, p). P : (act; (ψ̂(x)∆), T1, T2)

(t17)
ψ ⊢n C : T1 ψ ⊢n P : T2

ψ ⊢n 〈C〉x!y. P : (act; (ψ̂(x)!ψ̂(y)), T1, T2)

Table 4.9: Axioms and rules to generate nameless tree representations of processes.
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(t18)
ψ ⊢n C1 : (and;T1, · · · , Tm) ψ ⊢n C2 : T0 label(T0) 6= and

ψ ⊢n C1 ∧ C2 : (and;T1, · · · , Tm, T0)

(t19)
ψ ⊢n C1 : T0 ψ ⊢n C2 : (and;T1, · · · , Tm) label(T0) 6= and

ψ ⊢n C1 ∧ C2 : (and;T0, T1, · · · , Tm)

(t20)
ψ ⊢n C1 : (par;T1, · · · , Tm) ψ ⊢n C2 : (par;Tm+1, · · · , Tk)

ψ ⊢n C1 ∧ C2 : (and;T1, · · · , Tk)

(t21)
ψ ⊢n C1 : T1 ψ ⊢n C2 : T2 label(T1) 6= and label(T2) 6= and

ψ ⊢n C1 ∧ C2 : (and;T1, T2)

(22)
ψ ⊢n C1 : (and;T1, · · · , Tm) ψ ⊢n C2 : T0 label(T0) 6= or

ψ ⊢n C1 ∨ C2 : (or;T1, · · · , Tm, T0)

(t23)
ψ ⊢n C1 : T0 ψ ⊢n C2 : (and;T1, · · · , Tm) label(T0) 6= or

ψ ⊢n C1 ∨ C2 : (or;T0, T1, · · · , Tm)

(t24)
ψ ⊢n C1 : (par;T1, · · · , Tm) ψ ⊢n C2 : (par;Tm+1, · · · , Tk)

ψ ⊢n C1 ∨ C2 : (or;T1, · · · , Tk)

(t25)
ψ ⊢n C1 : T1 ψ ⊢n C2 : T2 label(T1) 6= or label(T2) 6= or

ψ ⊢n C1 ∨ C2 : (or;T1, T2)

(t26) ψ ⊢n (x,Γ) : (ψ̂(x)Γ) (t27) ψ ⊢n (x,K) : (ψ̂(x)K) (t28) ψ ⊢n true : (true)

Table 4.10: Axioms and rules to generate nameless tree representations of conditions.

representation in the guarded process P , the input invokes the construction of the subtree

corresponding to P by adding a new binding in the scope with actual binding depth size

and by increasing the binding depth. In this way, the binding variable y (which can be

change at hand by α-conversion) is abstractly represented by the number n indicating

the actual binding depth. Below, indeed, we prove that α-convertible processes have the

same tree representation. This fact simplifies our treatment of ≡rep

p in terms of trees

comparison.

Tab. 4.10 refers to conditions. Rules (t18-21) allow the compression in a unique level

of multiple and compositions. Rules (t22-25), instead, allow the compression in a unique

level of multiple or compositions. Finally, rules (t26-28) are used to represent atoms of

conditions.

Note that, given a process P , a ψ and an n, the three representation st(P )ψn is unique.

Lemma 4.3.9. Let C ∈ C, ψ ∈ Ψ and n ∈ N. Then ψ ⊢n C : T1 and ψ ⊢n C : T2 implies

58



CHAPTER 4. SYNTAX AND SEMANTICS 4.3. SPECIES AND COMPLEXES

T1 = T2.

Proof. By induction on the derivation of ψ ⊢n C : T1.

Lemma 4.3.10. Let P ∈ P, ψ ∈ Ψ and n ∈ N.Then ψ ⊢n P : T1 and ψ ⊢n P : T2 implies

T1 = T2.

Proof. By induction on the derivation of ψ ⊢n P : T1.

Now, we prove a series of Lemmas that allow to prove that tree representations are

equal up-to α-conversion of corresponding processes.

Lemma 4.3.11. Let C ∈ C, and ψ, ψ′ ∈ Ψ and x, y ∈ N . Then ψ(z) = ψ′(z) for each

z ∈ fn(C) implies st(C)ψn = st(C)ψ
′

n .

Proof. By induction on the structure of C. Case true is immediate. Since fn((x,∆)) =

fn((x,K)) = {x} then these two cases follow immediately from the fact that ψ(z) = ψ′(z)

for each z ∈ fn(C). Moreover, cases C1 ∧ C2 and C1 ∨ C2 follow immediately from the

inductive hypothesis and free name definition.

Lemma 4.3.12. Let P ∈ P, and ψ, ψ′ ∈ Ψ and x, y ∈ N . Then ψ(z) = ψ′(z) for each

z ∈ fn(P ) implies st(P )ψn = st(P )ψ
′

n .

Proof. By induction on the structure of P . Case nil is immediate while cases ∗〈C〉π.Q,

Q1 |Q2 and M1 +M2 follow immediately from the inductive hypothesis and free name

definition.

(case P = 〈C〉x?y.Q)

We have st(P )ψn = (ψ̂(x)?n;T1, T2) and st(P )
ψ′

n = (ψ̂′(x)?n;T ′
1, T

′
2) where T2 = st(Q)ψ,y:nn+1

and T ′
2 = st(Q)ψ

′,y:n
n+1 . By hypothesis ψ̂(x)?n = ψ̂′(x)?n because either ψ̂(x) = x = ψ̂′(x)

(in case x /∈ dom(ψ)) or ψ̂(x) = m = ψ̂′(x) with m ∈ N. Moreover, by Lemma 4.3.11,

T1 = T ′
1 and since (ψ, y : n)(z) = (ψ′, y : n)(z) for each z ∈ fn(Q), then by inductive

hypothesis T2 = T ′
2. Hence st(P )

ψ
n = st(P )ψ

′

n ;

(case P = 〈C〉x!y.Q)

We have that st(P )ψn = (ψ̂(x)!ψ̂(y);T1, T2) and st(P )
ψ′

n = (ψ̂′(x)!ψ̂(y);T ′
1, T

′
2) where T2 =

st(Q)ψn and T ′
2 = st(Q)ψ

′

n . By hypothesis we have ψ̂(x)!ψ̂(y) = ψ̂′(x)!ψ̂′(y) because either

ψ̂(x) = x = ψ̂′(x) (in case x /∈ dom(ψ)) or ψ̂(x) = m = ψ̂′(x) with m ∈ N; the same holds

for y. Moreover, by Lemma 4.3.11, T1 = T ′
1 and since fn(Q) ⊆ fn(P ), then by inductive

hypothesis T2 = T ′
2. Hence st(P )

ψ
n = st(P )ψ

′

n ;

(case P = 〈C〉ch(x,∆, p).Q)

We have that st(P )ψn = (ψ̂(x)∆;T1, T2) and st(P )
ψ′

n = (ψ̂′(x)∆;T ′
1, T

′
2) where T2 = st(Q)ψn

and T ′
2 = st(Q)ψ

′

n . By hypothesis ψ̂(x)∆ = ψ̂′(x)∆ because either ψ̂(x) = x = ψ̂′(x)
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(in case x /∈ dom(ψ)) or ψ̂(x) = m = ψ̂′(x) with m ∈ N. Moreover, by Lemma 4.3.11,

T1 = T ′
1 and since fn(Q) ⊆ fn(P ), then by inductive hypothesis T2 = T ′

2. Hence st(P )
ψ
n =

st(P )ψ
′

n .

Lemma 4.3.13. Let C ∈ C, and ψ, ψ′ ∈ Ψ and x, y ∈ N . Then ψ(z1) = ψ′(z1) for each

z1 ∈ fn(C) \ {x} and ψ(x) = ψ′(y) 6= ⊥ and y /∈ n(C) implies st(C)ψn = st(C{y/x})ψ
′

n .

Proof. By induction on the structure of C. Case true is immediate. Since fn((x,∆)) =

fn((x,K)) = {x}, and (x,∆){x/y} = (y,∆), and (x,K){x/y} = (y,K), then these two

cases follow immediately from the fact that ψ(x) = ψ′(y) 6= ⊥. Moreover, cases C1 ∧ C2

and C1 ∨ C2 follow immediately from the inductive hypothesis, free name definition and

substitution definition.

Lemma 4.3.14. Let P ∈ P, and ψ, ψ′ ∈ Ψ and x, y ∈ N . Then ψ(z1) = ψ′(z1) for each

z1 ∈ fn(P ) \ {x}, and ψ(x) = ψ′(y) 6= ⊥, and y /∈ n(P ) implies st(P )ψn = st(P{y/x})ψ
′

n .

Proof. By induction on the structure of P .

(case 〈C〉z?k.Q)

We know fn(P ) = fn(C) ∪ {z} ∪ (fn(Q) \ {k}). There are four subcases:

(z = x 6= k) We have P{y/x} = 〈C{y/x}〉y?k.Q{y/x}. Given the definition of free names we

know (ψ, k : n)(z1) = (ψ′, k : n)(z1) for each z1 ∈ fn(Q) \ {x}, and (ψ, k : n)(x) = (ψ′, k :

n)(y), and y /∈ n(Q); hence, by inductive hypothesis we have st(Q)ψ,k:nn+1 = st(Q{y/x})ψ
′,k:n

n+1 .

Moreover, by hypothesis and Lemma 4.3.13 we have st(C)ψn = st(C{y/x})ψ
′

n and by hy-

pothesis ψ̂(x)?ψ̂(k) = ψ̂′(y)?ψ̂′(k). Hence st(P )ψn = st(〈C{y/x}〉y?k.Q{y/x})ψ
′

n , that means

st(P )ψn = st(P{y/x})ψ
′

n by definition of substitution;

(z 6= x 6= k) We have P{y/x} = 〈C{y/x}〉z?k.Q{y/x}. Given the definition of free names we

know (ψ, k : n)(z1) = (ψ′, k : n)(z1) for each z1 ∈ fn(Q) \ {x}, and (ψ, k : n)(x) = (ψ′, k :

n)(y), and y /∈ n(Q); hence, by inductive hypothesis we have st(Q)ψ,k:nn+1 = st(Q{y/x})ψ
′,k:n

n+1 .

Moreover, by hypothesis and Lemma 4.3.13 we have st(C)ψn = st(C{y/x})ψ
′

n and by hy-

pothesis ψ̂(z)?ψ̂(k) = ψ̂′(z)?ψ̂′(k). Hence st(P )ψn = st(〈C{y/x}〉y?k.Q{y/x})ψ
′

n , that means

st(P )ψn = st(P{y/x})ψ
′

n by definition of substitution;

(z = x = k) We have P{y/x} = 〈C{y/x}〉y?k.Q. Given the definition of free names

we know (ψ, k : n)(z1) = (ψ′, k : n)(z1) for each z1 ∈ fn(Q), then by Lemma 4.3.12

we have st(Q)ψ,k:nn+1 = st(Q)ψ
′,k:n

n+1 . By hypothesis and Lemma 4.3.13 we have st(C)ψn =

st(C{y/x})ψ
′

n and by hypothesis ψ̂(x)?ψ̂(k) = ψ̂′(y)?ψ̂′(k). Hence we can derive st(P )ψn =

st(〈C{y/x}〉y?k.Q{y/x})ψ
′

n , that means st(P )ψn = st(P{y/x})ψ
′

n by definition of substitution;

(z 6= x = k) We have P{y/x} = 〈C{y/x}〉z?k.Q. Given the definition of free names

we know (ψ, k : n)(z1) = (ψ′, k : n)(z1) for each z1 ∈ fn(Q), then by Lemma 4.3.12

we have st(Q)ψ,k:nn+1 = st(Q)ψ
′,k:n

n+1 . By hypothesis and Lemma 4.3.13 we have st(C)ψn =
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st(C{y/x})ψ
′

n and by hypothesis ψ̂(z)?ψ̂(k) = ψ̂′(z)?ψ̂′(k). Hence we can derive st(P )ψn =

st(〈C{y/x}〉z?k.Q)ψ
′

n , that means st(P )ψn = st(P{y/x})ψ
′

n by definition of substitution.

The case nil is immediate, cases 〈C〉x?y.Q and 〈C〉ch(x,∆, p). Q can be proven simi-

larly to the previous case and all the other cases follow by names and free names definition,

substitution definition and inductive hypothesis.

Lemma 4.3.15. Let P1, P2 ∈ P, ψ ∈ Ψ and n ∈ N. Then P1 =α P2 implies st(P1)
ψ
n =

st(P2)
ψ
n .

Proof. By α-conversion definition, P2 can be obtained from P1 by a finite number of

changes of bound variables. We have hence processes P1 = P 1, P 2, P 3, · · · , Pm = P2

such that P i differs from P i+1 (with 1 ≤ i < m) only by a change of a bound variable.

Each of these changes corresponds to a replacement of a subterm 〈C〉x?y.Qi of P i by

〈C〉x?w.Qi{w/y} where w does not occur in P i+1. From a tree representation perspective,

instead, each of this changes corresponds to a replacement of a subtree st(〈C〉x?y.Qi)ψ
′

m

by st(〈C〉x?w.Qi{w/y})ψ
′

m in st(P i)ψn . Given the derivation of st(〈C〉x?y.Qi)ψ
′

m we know

st(Qi)ψ
′,y:m

m+1 and by considering ψ′, w : m we notice that (ψ′, y : m)(z) = (ψ′, w : m)(z)

for each z ∈ fn(Qi) \ {w}, and ψ(w) = ψ′(y) 6= ⊥; moreover we know w /∈ n(Qi). By

Lemma 4.3.14 we have that st(Qi)ψ
′,y:m

m+1 = st(Qi{w/y})ψ
′,y:m

m+1 and hence st(〈C〉x?y.Qi)ψ
′

m =

st(〈C〉x?w.Qi{w/y})ψ
′

m . This means that for each change of bound variable that leads

from P i to P i+1 there is no change in the structure of the corresponding st(P i)ψn . Hence

st(P 1)ψn = · · · = st(Pm)ψn , which means st(P1)
ψ
n = st(P2)

ψ
n .

Lemma 4.3.16. Let C1, C2 ∈ C. Then C1 ≡
rep

p C2 iff st(C1)
ψ
n ≃ st(C2)

ψ
n .

Proof. (⇒) By induction on the length of the derivation of C1 ≡
rep

p C2.

(case Tab. 4.6(a.8))

We have C1 = C ′
1 ∧ C

′
2 ≡p C

′
2 ∧ C

′
1 = C2. Depending on the last rule we apply to derive

st(C1)
ψ
n we can distinguish five subcases:

(case Tab. 4.10(t18)) We have that st(C ′
1∧C

′
2)
ψ
n = (and;T1, · · · , Tm, T0) where by the rule

premises ψ ⊢n C
′
1 : (and;T1, · · · , Tm) and ψ ⊢n C

′
2 : T0 and label(T0) 6= and. Note that

this means st(C ′
2 ∧ C

′
1)
ψ
n = (and;T0, T1, · · · , Tm) with ψ ⊢n C

′
1 : (and;T1, · · · , Tm) and

ψ ⊢n C2 : T0 and label(T0) 6= and. Note that st(C ′
1 ∧C

′
2)
ψ
n and st(C ′

2 ∧C
′
1)
ψ
n have identical

root labels and that there exists an ordering of their immediate subtrees such that they

exactly coincide. Hence the two trees are isomorphic;

All the other cases can be proven similarly

(case Tab. 4.6(a.9))

We have C1 = C ′
1 ∧ (C ′

2 ∧ C
′
3) ≡p (C

′
1 ∧ C

′
2) ∧ C

′
3 = C2. Depending on the rules we apply

to derive st(C ′
2 ∧ C

′
3)
ψ
n and st(C1)

ψ
n we can distinguish eight subcases:
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(case Tab. 4.10(t18-t19)) We have that st(C ′
1 ∧ (C

′
2 ∧C

′
3))

ψ
n = (and;T0, T1, · · · , Tm) where

by the rule premises ψ ⊢n C
′
1 : T0 and ψ ⊢n C

′
2 ∧ C

′
3 : (and;T1, · · · , Tm) and label(T0) 6=

and. Moreover we know ψ ⊢n C
′
2 : (and;T1, · · · , Tm−1) and ψ ⊢n C

′
3 : Tm with label(T3) 6=

and. This means ψ ⊢n C
′
1∧C

′
2 : (and;T0, T1, · · · , Tm−1) and ψ ⊢n C

′
3 : Tm and label(T3) 6=

and from which we have st((C ′
1 ∧ C

′
2) ∧ C

′
3)
ψ
n = (and;T0, T1, · · · , Tm). Note that st(C ′

1 ∧

(C ′
2 ∧ C

′
3))

ψ
n and st((C ′

1 ∧ C
′
2) ∧ C

′
3)
ψ
n are identical. Hence the two trees are isomorphic.

All the other cases can be proven similarly.

Cases Tab. 4.6(a.10-11) can be proven similarly to the previous cases. Note that

since ≡rep

p is a congruence, we have also to consider the implicit cases C1 ≡
rep

p C ′
1 ⇒

C1 ∧ C2 ≡
rep

p C ′
1 ∧ C2 and C1 ≡

rep

p C ′
1 ⇒ C1 ∨ C2 ≡

rep

p C ′
1 ∨ C2, and the equational cases

regarding reflexivity, symmetry and transitivity. All these cases follow immediately by

inductive hypothesis and by noticing that also the tree isomorphism ≃ is an equivalence

relation.

(⇐) By induction on the derivation of st(C1)
ψ
n . Most of the cases use implicitly the fact

that ≡rep

p is a congruence relation.

(case (and;T1, · · · , Tm))

Since st(C1)
ψ
n ≃ st(C2)

ψ
n , we have that st(C2)

ψ
n = (and;T ′

1, · · · , T
′
m) and that there exists

a permutation γ such that Ti ≃ T ′
γ(i), for 1 ≤ i ≤ m. Moreover, given the structure of the

derivation of st(C1)
ψ
n and st(C2)

ψ
n we know that C1 ≡

rep

p

∧m

i=1C
′
i and C2 ≡

rep

p

∧m

i=1C
′′
i

where st(C ′
i)
ψ
n = Ti, st(C

′′
i )
ψ
n = T ′

i and strings label(Ti) and label(Ti) are not equal to and.

By inductive hypothesis we have that C ′
i ≡

rep

p C ′′
γ(i), for 1 ≤ i ≤ m, from which we can

easily recover C1 ≡
rep

p C2.

Cases (a∆) and (aK) follow immediately from the fact that their tree representations

are identical and are nodes. Moreover, case (or;T1, · · · , Tm) can be proven similarly to

the and case.

Lemma 4.3.17. Let P1, P2 ∈ P. Then P1 ≡
rep

p P2 iff st(P1)
ψ
n ≃ st(P2)

ψ
n .

Proof. (⇒) By induction on the length of the derivation of P1 ≡
rep

p P2.

(case Tab. 4.6(a.1))

We have P1 =α P2. From Lemma 4.3.15 we have st(P1)
ψ
n = st(P2)

ψ
n and hence the two

trees are straightforwardly isomorphic.

(case Tab. 4.6(a.2))

We have P1 = Q1 | nil ≡p Q1 = P2. We have st(nil)ψn = (nil). The only rule we can apply

is Tab. 4.9(t5), obtaining st(Q1 | nil)
ψ
n = st(Q1)

ψ
n . Hence st(P1)

ψ
n = st(P2)

ψ
n .

(case Tab. 4.6(a.3))

We have P1 = Q1 |Q2 ≡p Q2 |Q1 = P2. Depending on the last rule we apply to derive

st(P1)
ψ
n we can distinguish five subcases:
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(case Tab. 4.9(t1)) We have that st(Q1 |Q2)
ψ
n = (par;T1, · · · , Tm, T0) where by the rule

premises ψ ⊢n Q1 : (par;T1, · · · , Tm) and ψ ⊢n Q2 : T0 and label(T0) 6∈ {par, nil}. Note

that this means st(Q2 |Q1)
ψ
n = (par;T0, T1, · · · , Tm) with ψ ⊢n Q1 : (par;T1, · · · , Tm) and

ψ ⊢n Q2 : T0 and label(T0) 6∈ {par, nil}. It is easy to see that st(Q1 |Q2)
ψ
n and st(Q2 |Q1)

ψ
n

have identical root labels and that there exists and ordering of their immediate subtrees

such that they exactly coincide. Hence the two trees are isomorphic;

(case Tab. 4.9(t5)) We have that Q2 = nil. Hence st(Q2)
ψ
n = (nil) from which we have

st(Q1 |Q2)
ψ
n = st(Q1)

ψ
n . This means st(Q2 |Q1)

ψ
n = st(Q1)

ψ
n , and hence st(P1)

ψ
n = st(P2)

ψ
n .

All the other subcases can be proven similarly to case Tab. 4.9(t1).

(case Tab. 4.6(a.4))

We have P1 = Q1 | (Q2 |Q3) ≡p (Q1 |Q2) |Q3 = P2. Depending on the rule we apply to

derive st(Q2 |Q3)
ψ
n and st(P1)

ψ
n we can distinguish twelve subcases:

(case Tab. 4.9(tr1-tr2)) We have that st(Q1 | (Q2 |Q3))
ψ
n = (par;T0, T1, · · · , Tm) where by

the rule premises ψ ⊢n Q1 : T0, ψ ⊢n Q2 |Q3 : (par;T1, · · · , Tm) and label(T0) 6= par.

Moreover, we have st(Q2)
ψ
n = (par : T1, · · · , Tm−1) and st(Q3)

ψ
n = Tm and label(Tm) 6∈

{par, nil}. Hence, we can derive ψ ⊢n Q1 |Q2 : (par;T0, T1, · · · , Tm−1) that combined

with ψ ⊢n Q3 : Tm and label(Tm) 6∈ {par, nil} allows to conclude st((Q1 |Q2) |Q3)
ψ
n =

(par;T1, · · · , Tm, T0). Note that st(Q1 | (Q2 |Q3))
ψ
n and st((Q1 |Q2) |Q3)

ψ
n are identical.

Hence the two trees are isomorphic.

All the other subcases can be proven similarly.

Cases Tab. 4.6(a.5-7) can be proven in a similar way. Moreover, since ≡rep

p is a con-

gruence, we have also to consider the implicit cases P1 ≡
rep

p P ′
1 ⇒ P1 |P2 ≡

rep

p P ′
1 |P2,

M1 ≡
rep

p M ′
1 ⇒ M1 +M2 ≡

rep

p M ′
1 +M2, C ≡

rep

p C ′ ∧ P ≡rep

p P ′ ⇒ 〈C〉π. P ≡rep

p

〈C ′〉π. P ′ and 〈C〉π. P ≡rep

p 〈C ′〉π′. P ′ ⇒ ∗〈C〉π. P ≡rep

p ∗〈C ′〉π′. P ′, and the equational

cases regarding reflexivity, symmetry and transitivity. All these cases follow by inductive

hypothesis, by considering the previous Lemma and by noticing that also the tree isomor-

phism ≃ is an equivalence relation.

(⇐) By induction on the derivation of st(P1)
ψ
n . Most of the cases use implicitly the fact

that ≡rep

p is a congruence relation.

(case (par;T1, · · · , Tm))

Since st(P1)
ψ
n ≃ st(P2)

ψ
n , we have that st(P2)

ψ
n = (par;T ′

1, · · · , T
′
m) and that there exists

a permutation γ such that Ti ≃ T ′
γ(i), for 1 ≤ i ≤ m. Moreover, given the structure of

the derivation of st(P1)
ψ
n and st(P2)

ψ
n we know that P1 ≡

rep

p

∏m

i=1Qi and P2 ≡
rep

p

∏m

i=1Ri

such that st(Qi)
ψ
n = Ti, st(Ri)

ψ
n = T ′

i and label(Ti) and strings label(Ti) are not equal to

par and nil. By inductive hypothesis we have that Qi ≡
rep

p Rγ(i), for 1 ≤ i ≤ m, from

which we can easily recover P1 ≡
rep

p P2;

(case (rep;T ))
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Since st(P1)
ψ
n ≃ st(P2)

ψ
n , we have that st(P2)

ψ
n = (rep : T ′) and that T ≃ T ′. Moreover,

given the structure of the derivation of st(P1)
ψ
n and st(P2)

ψ
n we know that P1 = ∗〈C〉π.Q

and P2 = ∗〈C ′〉π′. Q′ with st(〈C〉π.Q)ψn = T and st(〈C ′〉π′. Q′)ψn = T ′. By inductive

hypothesis we have 〈C〉π.Q ≡rep

p 〈C ′〉π′. Q′ and consequently P1 ≡
rep

p P2;

(case (act; (ψ̂(x)∆), T1, T2))

Since st(P1)
ψ
n ≃ st(P2)

ψ
n , we have that st(P2)

ψ
n = (act; (ψ̂(x)∆), T ′

1, T
′
2) and that T1 ≃

T ′
1 and T2 ≃ T ′

2. Given the derivations of st(P1)
ψ
n and st(P2)

ψ
n we know that P1 =

〈C〉ch(x,∆, p). Q and P2 = 〈C
′〉ch(x,∆, p). Q′ with st(C)ψn = T1, st(Q)

ψ
n = T2, st(C

′)ψn =

T ′
1 and st(Q′)ψn = T ′

2. By Lemma 4.3.16 we have C ≡rep

p C ′ and by inductive hypothesis

we have Q ≡rep

p Q′, from which it follows P1 ≡
rep

p P2;

(case (act; (a!b), T1, T2))

Since st(P1)
ψ
n ≃ st(P2)

ψ
n , we have that st(P2)

ψ
n = (act; (a!b), T ′

1, T
′
2) and that T1 ≃ T ′

1 and

T2 ≃ T ′
2. Given the derivations of st(P1)

ψ
n and st(P2)

ψ
n we know that P1 = 〈C〉x!y.Q and

P2 = 〈C ′〉x!y.Q′ with a = ψ̂(x), b = ψ̂(y), st(C)ψn = T1, st(Q)
ψ
n = T2, st(C

′)ψn = T ′
1 and

st(Q′)ψn = T ′
2. By Lemma 4.3.16 we have C ≡rep

p C ′ and by inductive hypothesis we have

Q ≡rep

p Q′, from which it immediately follows P1 ≡
rep

p P2;

(case (act; (a?n), T1, T2))

Since st(P1)
ψ
n ≃ st(P2)

ψ
n , we have that st(P2)

ψ
n = (act; (a?n), T ′

1, T
′
2) and that T1 ≃ T ′

1 and

T2 ≃ T ′
2. Given the derivations of st(P1)

ψ
n and st(P2)

ψ
n we know that P1 = 〈C〉x?y.Q

and P2 = 〈C ′〉x?z.Q′ with a = ψ̂(x), st(C)ψn = T1, st(Q)
ψ,y:n
n+1 = T2, st(C

′)ψn = T ′
1 and

st(Q′)ψ,z:nn+1 = T ′
2. By Lemma 4.3.16, we have C ≡rep

p C ′. Moreover, by Lemma 4.3.15,

we know that by considering the process P ′
1 = 〈C〉x?z.Q{z/y} =α P1, we have st(P1)

ψ
n =

st(P ′
1)
ψ
n , and hence st(P ′

1)
ψ
n ≃ st(P2)

ψ
n . From the premises of the two trees derivations

we obtain T2 = st(Q{z/y})ψ,z:nn+1 and as a consequence st(Q{z/y})ψ,z:nn+1 ≃ T ′
2. By inductive

hypothesis we obtain Q′ ≡rep

p Q{z/y} from which we recover P2 ≡
rep

p P ′
1. Since P1 =α P

′
1

then P1 ≡
rep

p P ′
1 and, by transitivity, P1 ≡

rep

p P2.

Case (choice;T1, · · · , Tm) can be proven similarly to (par;T1, · · · , Tm) and case (nil)

is easy.

Since the tree isomorphism problem is efficiently solvable [59], then by the Lemma 4.3.17

the congruence ≡rep

p is decidable and efficiently solvable, and hence the function Impl

works in polynomial time. Now, combining all the obtained results, we can show that the

congruence ≡p is efficiently solvable.

Theorem 4.3.18. ≡p is decidable and efficiently solvable.

Proof. Using Lemma 4.3.6 and Lemma 4.3.17 we know that ≡p is polynomially reducible

to a labeled tree isomorphism problems. Hence, given P, P ′ ∈ P , ψ ∈ Ψ and n ∈ N we
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have:

P ≡p P
′ ⇔ Impl(P ) ≡rep

p Impl(P ′)⇔ st(Impl(P ))ψn ≃ st(Impl(P ′))ψn

Since ≃ is an efficiently solvable problem, then ≡p is decidable and efficiently solvable.

4.3.2 Recognizing species

As previously said, we established a notion of species that relies on the definition of

structural congruence of boxes. We say that two boxes represent biological substances of

the same species only if they are structurally congruent up-to boxes identifiers.

Consider two boxes I[P ]x and I ′[P ′ ]x in S. Given P ≡p P
′, axiom Tab. 4.6(b.4)

states that the two boxes are structurally congruent only if I is a permutation of I ′

up-to renaming of interface subjects. The structural comparison between interfaces and

processes implemented by structural congruence can be described through a function

Species(I, P, I ′, P ′), defined by induction on the structure of processes and interfaces (see

Tab. 4.11).

Species (I, P, I ′, P ′):
switch (I, P, I ′, P ′)

case (ǫ, P, ǫ, P ′) :
if P ≡p P

′ then
return true

else
return false

case (ǫ, P, I ′, P ′) :
return false

case (I ′, P, ǫ, P ′) :
return false

case (⊕(x, ∆)p I∗, P, I ′, P ′) :
if I ′ = I∗1 K(y, ∆)p I∗2 ∧ z 6∈ fn(P |P ′) ∪ sub(I∗I∗1 I

∗
2 ) then

Species(I∗, P{z/x}, I∗1 I
∗
2 , P

′{z/y})

else
return false

Table 4.11: Definition of function Box.

Given interfaces I and I ′, then there are two different cases: (1) if a sort correspondence

between the first interface K(x, Γ)p of I and one interface K(y, Γ)p of I ′ exists, then the

function Species is recursively invoked on the boxes I1[P{z/x}] and I2[P
′{z/y}], where
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z 6∈ fn(P |P ′) ∪ sub(I∗I∗2I
∗
1 ). I1 is obtained from I deleting the interface K(x, Γ)p, while

I2 is obtained from I ′ deleting the interface K(y, Γ)p; (2) if no correspondence between

the first interface of I and one interface of I ′ exists, then the function returns false.

If during the recursive invocations only one of the interfaces I and I ′ results empty,

then the function returns false. If both I and I ′ are empty, then the function returns true

if P ≡p P
′, and false otherwise.

Definition 4.3.19. Given interfaces I1, I2 and processes P1, P2 we write I1[P1]n ∼s
I2[P2]m, and also I1[P1] ∼s I2[P2], iff Species(I1, P1, I2, P2) = true.

Lemma 4.3.20. I[P ]x ≡b I
′[P ′ ]x iff I[P ] ∼s I

′[P ′].

Definition 4.3.21. Let I1[P1 ]n1 and I2[P2 ]n2. Then I1[P1 ]n1 and I2[P2 ]n2 belong to the

same species only if I1[P1] ∼s I2[P2].

The problem of deciding whether two boxes belong to the same species or more gener-

ally whether they are structurally congruent, can be reduced to the structural congruence

of processes. Moreover, function Species provides a directly implementable method to

check whether two boxes describe entities of the same species.

4.3.3 Recognizing complexes

As said, the notion of species can be used at the level of complexes to check whether two

complexes are made up by the same number of boxes and whether they preserve links over

interfaces with identical sorts and over boxes belonging to the same species. Although

the described problem corresponds to check whether two complexes are structurally con-

gruent, it is easy to see that it can be rephrased in terms of a kind of graph isomorphism

problem.

Generally, a pair (B, ξ) is used to describe a set of complexes. However, since we want

to focus on the comparison of two complexes, we first introduce a relation on links that

allows to extract all the single complexes from the description (B, ξ).

Definition 4.3.22. Let ∼l be a binary relation over environment links that satisfies the

axiom: {n1,m1} 6= {n,m} ∧ {n1,m1} ∩ {n,m} 6= ∅ ⇒ {∆n,Γm} ∼l {∆1n1,Γ1m1}.

Moreover, let ∼c be the smallest transitive and symmetric relation over environment links

generated by ∼l.

Note that given ξ, we can use relation ∼c to partition ξ into equivalence classes con-

taining the links of the different complexes. In particular, given two links l and l′ we have

that l ∼c l
′ iff the two links connect boxes belonging to the same complex. Having the

link partition, we can use the identifiers information stored in the links to easily extract

66



CHAPTER 4. SYNTAX AND SEMANTICS 4.3. SPECIES AND COMPLEXES

from B the boxes composing the different complexes. Moreover, the relation ∼c gives also

a method to check whether a pair (B, ξ) represents a single complex or a set of complexes.

Definition 4.3.23. Let B and ξ such that ⊢b B : (N,C) and ⊢en ξ : C. We say that

(B, ξ) is a complex if and only if ∀l, l′ ∈ ξ we have l ∼c l
′, or equally (ξ/ ∼c) = {ξ}.

Definition 4.3.24. Let (B1, ξ1) and (B2, ξ2) be complexes. Then (B1, ξ1) and (B2, ξ2)

are isomorphic, (B1, ξ1) ∼= (B2, ξ2), iff there is a bijection ϕ between Boxes(B1) and

Boxes(B2) such that I[P ]n ∈ Boxes(B1) implies I ′[P ′ ]ϕ(n) ∈ Boxes(B2) and I[P ] ∼s
I ′[P ′], and such that {∆m,∆′m′} ∈ ξ1 iff {∆ϕ(m),∆′ϕ(m′)} ∈ ξ2.

Note that a notion of complexes enables to define a notion of isomorphism between

complexes. This definition rephrases the problem of checking whether two complexes are

structurally congruent and indeed the two problems are equivalent.

Theorem 4.3.25. (B, ξ) ≡c (B
′, ξ′) iff (B, ξ) ∼= (B′, ξ′).

Proof. (⇒) By induction on the length of the derivation (B, ξ) ≡c (B
′, ξ′).

(case Tab. 4.6(c.1))

From B ≡b B
′ we know that B ≡b

∏k

i=1 Ii[Pi ]ni
and B ≡b

∏k

i=1 I
′
i[P

′
i ]n′

i
such that for

each i we have Ii[Pi ]ni
≡b I

′
i[P

′
i ]ni

. But this means that for each I[P ]n ∈ Boxes(B)

there exists a corresponding structural congruent box I ′[P ′ ]n ∈ Boxes(B′), and vice-

versa. Moreover, we know ξ = ξ′. Hence, by considering the identity bijection ϕ (i.e.,

ϕ(n) = n for all n ∈ N ) we have that (B, ξ) ∼= (B′, ξ′);

(case Tab. 4.6(c.2))

We know that B ≡b I[P ]n |
∏k

i=1 Ii[Pi ]ni
and that B〈m/n〉 ≡b I[P ]m |

∏k

i=1 Ii[Pi ]ni
,

with m 6= n. Note that Boxes(B) \ {I[P ]n} is equal to Boxes(B
′) \ {I[P ]m}. Moreover,

environments ξ and ξ′ differ only in the links containing n. In particular, for each link

{∆n,∆′y} ∈ ξ containing n, there is a corresponding link {∆m,∆′y} ∈ ξ′, and vice-versa

(note that by well-formedness we are surem 6= y 6= n). Hence, by considering the bijection

ϕ such that ϕ(n) = m and ϕ(y) = y for all y ∈ N \ {n} it is (B, ξ) ∼= (B′, ξ′);

(⇐) From (B, ξ) ∼= (B′, ξ′) we know that B ≡b
∏k

i=1 Ii[Pi ]ni
and B′ ≡b

∏k

i=1 I
′
i[P

′
i ]n′

i
such

that for each i we have Species(I, P, I ′, P ′) = true and such that ϕ(ni) = n′
i. This means

that for each i we have Ii[Pi ]ϕ(ni) ≡b I
′
i[P

′
i ]n′

i
. Hence B′′ ≡b

∏k

i=1 Ii[Pi ]ϕ(ni) ≡b B
′ from

which follows (B′′, ξ′) ≡c (B
′, ξ′). Now consider a set of names {y1, · · · , yk} ∩ id(B

′′) = ∅.

We can build the sequence of relations:

(B′′, ξ′) ≡c (B〈y1, · · · , yk/ϕ(n1), · · · , ϕ(nk)〉, ξ〈y1, · · · , yk/ϕ(n1), · · · , ϕ(nk)〉

≡c (B〈n1, · · · , nk/y1, · · · , yk〉, ξ〈n1, · · · , nk/y1, · · · , yk〉 = (B, ξ)

and by transitivity derive (B, ξ) ≡c (B
′, ξ′).
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Having this results we can now focus on our complexes isomorphism problem. In

particular, the isomorphism interpretation allows us to deal with the implementation of

structural congruence for complexes in a more intuitive way.

The pseudocode of the algorithm is reported in Tab.4.12. The function Isomorphism

checks if the two input complexes are isomorphic and uses the function DFSmatching.

The function SetVisited sets a flag to remember that the box has been visited and

the function IsVisited checks whether a box has already been visited. Moreover, the

function CleanVisited resets all the flags.

Isomorphism ((B1, ξ1), (B2, ξ2)):
if |Boxes(B1)| 6= |Boxes(B2)| then

return false
if |ξ1| 6= |ξ2| then

return false
take I[P ]n in Boxes(B1);
for each I ′[P ′ ]n′ in Boxes(B2) do

if I[P ] ∼s I
′[P ′] then

CleanVisited((B1, ξ1))
CleanVisited((B2, ξ2))
res := DFSmatching((B1, ξ1),(B2, ξ2),I[P ]n,I

′[P ′ ]n′) ;
if res then

return true

return false;

DFSmatching ((B1, ξ1),(B2, ξ2),I1[P1 ]n1
,I2[P2 ]n2

):
if IsVisited(I1[P1 ]n1

) 6= IsVisited(I2[P2 ]n2
) then

return false
if IsVisited(I1[P1 ]n1

) then
return true

SetVisited(I1[P1 ]n1
);

SetVisited(I2[P2 ]n2
);

for each {∆n1,∆
′n′1} in ξ1 do

if ∃ {∆n2,∆
′n′2} in ξ2 s.t. I ′1[P

′
1] ∼s I

′
2[P

′
2]

with I ′1[P
′
1 ]n′

1
in Boxes(B1) and I

′
2[P

′
2 ]n′

2
in Boxes(B2)

then
res := DFSmatching((B1, ξ1),(B2, ξ2),I

′
1[P

′
1 ]n′

1
,I ′2[P

′
2 ]n′

2
);

if ¬ res then
return false;

else
return false;

return true;

Table 4.12: Pseudocode of the algorithm that verifies if two complexes are isomorphic.
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Note that since our problem is in nature equivalent to a graph isomorphism problem

we used a procedure based on the graph deep first search (DFS). We recall that in general

the graph isomorphism problem [59] defines the complexity class GI, which contains all

the problems equivalent to it [6]. No polynomial algorithm for the problems in GI has still

been found and it is not known if they are or not NP-complete. For the class of complexes

we consider, however, it results that the complexity of the comparison is polynomial in

the number and size of the complexes descriptions.

Theorem 4.3.26. (B, ξ) ≡c (B
′, ξ′) is efficiently solvable.

Proof sketch. We prove it by showing that Isomorphism((B, ξ), (B′, ξ′)) is polynomial

in the size of the complexes descriptions.

Consider two complexes (B, ξ) and (B′, ξ′). For establishing whether they are isomor-

phic, we first check if the number of boxes and links is the same. If it is the case, we

then choose two structurally congruent boxes in B and B′. If we chose randomly the box

I[P ]x for (B, ξ), then we have at most |Boxes(B)| possibilities for choosing the box for

(B′, ξ′). For each of these initial possibilities, the isomorphism problem results to be a

parallel visit of the two complexes. Indeed, due to the well-formedness property of boxes,

when in a box of (B, ξ) we choose a link for propagating the check, we have at most one

link with same sorts in the corresponding box of (B′, ξ′) that can connect the two boxes

with two other structural congruent boxes. If the parallel visit finishes correctly, then

the two complexes are isomorphic, otherwise we have to check another initial possibility.

Therefore, since the initial root possibilities are at most |Boxes(B′)| and the parallel visit

of the complexes has linear complexity in the number of complexes boxes, at the end we

have a polynomial complexity in the number of boxes links.

Note that if for all the initial choices in (B′, ξ′) the parallel visit is not successful, then

the two complexes are not isomorphic.

4.4 Reduction semantics

The dynamics of a system is formally specified by the reduction semantics reported in

Tab.4.13. It makes use of the structural congruence ≡ over BlenX systems defined in

Tab.4.6. Moreover, we assume a total function δ : N → N that associates priorities to

names.

Rule (r1) in Tab.4.13 says that two conditions have to be met for the firing of a

〈C〉ch(x,Γ, p) prefix within a box with interface I: the guarding expression C has to

evaluate to true in I, and I must have an interface with subject x. Under the above

hypotheses, and if Γ does not clash with the sorts of the other interfaces in I, then

69



4.4. REDUCTION SEMANTICS CHAPTER 4. SYNTAX AND SEMANTICS

(r1)
*C+I = true

(I[ 〈C〉ch(x,Γ, p).P +G |P1 ]n, E, ξ)−→p (I1[P |P1 ]n, E, ξ{Γn/∆n})

(c1) where I = K(x, ∆)p
′

I∗ and I1 = K(x, Γ)p
′

I∗ and Γ /∈ sorts(I∗)

(r2)
*C1+I = true * C2+I = true

(I[ 〈C1〉x!z.P1 +G1 | 〈C2〉x?y.P2 +G2 |P ]n, E, ξ)−→p (I[P1 |P2{z/y} |P ]n, E, ξ)

(c2) provided K(x, ∆)p ∈ I or (x /∈ sub(I) and δ(x) = p)

(r3) (I1[P1 ]n ‖ I2[P2 ]m, E, ξ)−→p (I
′
1[P1 ]n ‖ I

′
2[P2 ]m, E, ξ ∪ {{∆1n,∆2m}})

(c3) where Ii = ⊕(xi, ∆i)
pi I∗i and I ′i = ⊗(xi, ∆i)

pi I∗i for i = 1, 2

and provided αb(∆1,∆2) = p

(r4) (I1[P1 ]n ‖ I2[P2 ]m, E, ξ ∪ {{∆1n,∆2m}})−→p (I
′
1[P1 ]n ‖ I

′
2[P2 ]m, E, ξ)

(c4) where Ii = ⊗(xi, ∆i)
pi I∗i and I ′i = ⊕(xi, ∆i)

pi I∗i for i = 1, 2

and provided αu(∆1,∆2) = p

(r5)
*C1+I1 = true ∧ *C2+I2 = true

(I1[M1 |Q1 ]n ‖ I2[M2 |Q2 ]m, E, ξ)−→p (I1[R1 |Q1 ]n ‖ I2[R2{z/w} |Q2 ]m, E, ξ)

(c5) where M1 = 〈C1〉x1!z.R1 +M ′
1 and M2 = 〈C2〉x2?w.R2 +M ′

2 and

where Ii = K(xi, ∆i)
pi I∗i and z /∈ sub(Ii) for i = 1, 2 and provided

(K = ⊗ and αc(∆1,∆2) = p and {∆1n,∆2m} ∈ ξ) or

(K = ⊕ and αc(∆1,∆2) = p and αb(∆1,∆2) = αu(∆1,∆2) = 0)

(r6)
Map(CB(B1, ξ1),CB(B2, ξ2)) = σ id(ξ) ∩ id(ξ2) = ∅

(B1, (B1, ξ1) ⊲p (B2, ξ2) ‖ E, ξ1 ∪ ξ)−→p (B2, (B1, ξ1) ⊲p (B2, ξ2) ‖ E, ξ2 ∪ ξσ)

(r7)
(B,E, ξ)−→p (B

′, E, ξ′) ∧ (id(B) ∪ id(B′)) ∩ id(B1) = ∅

(B ‖ B1, E, ξ)−→p (B
′ ‖ B1, E, ξ

′)

(r8)
S1 ≡ S

′
1 S′

1−→p S
′
2 S′

2 ≡ S2

S1−→p S2

Table 4.13: Reduction semantics of BlenX.

the sort of x is turned to Γ. Since the interface x could be involved in a binding, the

environment is consistently updated by possibly refreshing the previous sort of x with Γ.

Here notice that the requirement about the freshness of Γ guarantees the freshness of Γn

in the updated environment.
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Parallel processes that perform complementary actions on the same channel inside the

same box (a process perform and input x?y and the other one an output x!z) can syn-

chronize and exchange a message. This communication is also called intra-communication

and is ruled by (r2). The value z flows from the process performing the output to the one

performing the input. The flow of information affects the future behaviour of the system

because all the free occurrences of y bound by the input place-holder are replaced in the

receiving process by the actual value z.

Change actions and intra-communications are referred as monomolecular actions.

Boxes can interact, through bimolecular reactions, in various ways: they can bind

together, unbind, or just communicate. These interactions are based on the existence of a

compatibility function, previously described and here formalized as a symmetric function

α : T 2 → N3 which returns a triple of values representing priorities associated with the

binding, unbinding and communication compatibilities of the two argument sorts. Values

in N+ represent priorities and we assume that higher is the value higher is the priority.

Moreover, with 0 we indicate that no priority is associated with the sort pair, meaning that

they are not compatible. We use αb(∆,Γ), αu(∆,Γ), and αc(∆,Γ) to mean, respectively,

the first, the second, and the third projection of α(∆,Γ).

Rules (r3) and (r4) describe the dynamics of binding and unbinding, respectively,

which can only take place if the binding/unbinding compatibilities of the values of the

involved interfaces is greater than zero. In both cases the modification of the binding

state of the relevant interfaces is reflected in the interface markers, which are changed

either from ⊕ to ⊗ or the other way round. Also, the link {∆1n1,∆2n2} recording the

actual binding is either added to the environment or removed from it. The third kind

of interaction between boxes is ruled by (r5). This involves an input and an output

action that can fire in two distinct boxes over interfaces with associated sorts ∆1 and ∆2.

Information flows from the box containing the sending action to the box enclosing the

receiving process. Note that the communication depends on the compatibility of ∆1 and

∆2 rather than on the fact that input and output actions occur over exactly the same

name. Indeed inter-communication is enabled only if αc(∆1,∆2) > 0, and only under the

proviso that either the two interfaces are already bound together or they are free and

both αb(∆1,∆2) and αu(∆1,∆2) are 0. If the communication happens between interfaces

that are not bound, we call it inter-communication, while if it happens between bound

interfaces, we call it complex-communication.

Given the system (B1, E, ξ1 ∪ ξ), rule (r6) defines reductions corresponding to the

occurrence of events of the shape (B1, ξ1) ⊲p (B2, ξ2) when there is no clash between

the names of ξ and those of ξ2. The application of the rule (r6) involves checking the

possibility of substituting B1 and the portion of environment ξ1 with the bio-process B2
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Map(a, b) =







∅ if a = ∅ and b = ∅

〈m/n〉 ⊎Map(S, S′) if ∃∆ ∈ T s.t. a = {∆n} ∪ S
and b = {∆m} ∪ S′

⊥ otherwise

Table 4.14: Function Map.

and the subenvironment ξ2. The function Map, defined in Tab. 4.14, serves this goal.

Recall from Sec. 4.1 that the function CB(Bj, ξj) allows the collection of data about

interfaces of boxes in Bj which are possibly involved in bindings outside ξj. Function Map

is applied to CB(B1, ξ1) and CB(B2, ξ2) to return a consistent mapping from the hanging

bindings of B1 over ξ1 to the hanging bindings of B2 over ξ2. When such a mapping exists,

Map returns a substitution that is applied to ξ to get a fully updated environment after

the substitution of B1 with B2.

Figure 4.3: Example of an event substituting a subpart of a complex.

Fig. 4.3 actually describes a reduction step of a BlenX system which can be inferred

by using (r6). In fact, naming Bj the box containing Pj (j = 1, . . . , 7) and setting:

ξ1 = {{∆′
3n3,∆

′
4n4}}

ξ2 = {{∆5n5,∆6n6}, {∆
′
6n6,∆7n7}}

E = {(B3 ‖ B4, ξ1) ⊲p (B5 ‖ B6 ‖ B7, ξ2)}

ξ = {{∆1n1,∆3n3}, {∆4n4,∆2n2}}

by (r6) we get:

(B3 ‖ B4, E, ξ1 ∪ ξ)→ (B5 ‖ B6 ‖ B7, E, ξ2 ∪ ξσ)

where σ = {∆3n5/∆3n3}, {∆4n7/∆4n4}.
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We conclude the description of the rules in Tab. 4.13 by just observing that, as usual in

reduction semantics, the rules (r7) and (r8) are meant to extend reductions over parallel

compositions and over structural re-shufflings.

Given the reduction semantics of BlenX we want now to show that it preserves well-

formedness of systems. We start by showing that for each reduction S →p S
′, there

exists a normalized derivation, where structural congruence is applied only in the last

derivation step. We will use then this result to show that if S is well-formed, then also S ′

is well-formed.

Definition 4.4.1. A normalized derivation of the reduction S−→p S
′ is of the following

form. The first rule applied is an instance of one of the axioms (r1), (r2), (r3), (r4),

(r5), (r6), where from a system (B,E, ξ) we obtain a system (B′, E, ξ′). The derivation

continues (in all the cases is similar) with the application of (r7), yielding (B′ ‖ B1, E, ξ
′).

The last rule applied in the derivation is (r8), so that S ≡ (B ‖ B1, E, ξ) and S
′ ≡ (B′ ‖

B1, E, ξ
′).

Proposition 4.4.2. If S ∈ S and S−→p S
′, then there exist B, I, I1, I

′
1, I2, I

′
2, P , P1,

P2, M1, M2, R1, R2, E and ξ, ξ1, ξ2 such that one of the following holds:

1) S ≡ S1 = (K(x, ∆)p I∗[ 〈C〉ch(x,Γ, p).P +M1 |P1 ]n ‖ B,E, ξ)

S ′ ≡ S ′
1 = (K(x, Γ)p I∗[P |P1 ]n ‖ B,E, ξ{Γn/∆n})

where * C+I = true and Tab. 4.13(c1)

2) S ≡ S1 = (I[ 〈C1〉x!z.P1 +G1 | 〈C2〉x?y.P2 +G2 |P ]n ‖ B,E, ξ)

S ′ ≡ S ′
1 = (I[P1 |P2{z/y} |P ]n ‖ B,E, ξ)

where * C1+I = *C2+I = true and Tab. 4.13(c2)

3) S ≡ S1 = (I1[P1 ]n ‖ I2[P2 ]m ‖ B,E, ξ)

S ′ ≡ S ′
1 = (I ′1[P1 ]n ‖ I

′
2[P2 ]m ‖ B,E, ξ ∪ {{∆1n,∆2m}})

where Tab. 4.13(c3)

4) S ≡ S1 = (I1[P1 ]n ‖ I2[P2 ]m ‖ B,E, ξ ∪ {{∆1n,∆2m}})

S ′ ≡ S ′
1 = (I1[P1 ]n ‖ I2[P2 ]m ‖ B,E, ξ)

where Tab. 4.13(c4)

5) S ≡ S1 = (I1[M1 |Q1 ]n ‖ I2[M2 |Q2 ]m ‖ B,E, ξ)

S ′ ≡ S ′
1 = (I1[R1 |Q1 ]n ‖ I2[R2{z/w} |Q2 ]m ‖ B,E, ξ)

where * C1+I = *C2+I = true and Tab. 4.13(c5)

6) S ≡ S1 = (B1 ‖ B, (B1, ξ1) ⊲p (B2, ξ2) ‖ E, ξ1 ∪ ξ)

S ′ ≡ S ′
1 = (B2 ‖ B, (B1, ξ1) ⊲p (B2, ξ2) ‖ E, ξ2 ∪ ξσ)

where Map(CB(B1, ξ1),CB(B2, ξ2)) = σ and id(ξ) ∩ id(ξ2) = ∅

Proof. We first show that if S−→p S
′ then there always exists a normalized derivation
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of S−→p S
′. For the derivations generated by the axioms (r1-5), the statement can be

proven by that the normalized derivation can be obtained by repeatedly apply one of the

derivation tree rearrangements presented below. In particular, starting from the top of

the derivation, we search a pattern where the rearrangements can be applied, we apply

the modification and then start again from the top of the derivation. This recursive

procedure is continued till the derivation reaches the normalized form. Note that the

procedure never increases the depth of derivation tree (which is finite), decreases the

number of rules (r7), and pushes down the application of the structural congruence;

this facts, combined with the kind of rearrangements we apply, make the normalization

procedure always terminating.

The tree rearrangements are:

(a) Two consecutive occurrences of the (r7) rule can be condensed into one. This is

achieved by exploiting the transitivity of ≡ and re-arranging derivations as it is

done below:

...

(B1, E1, ξ1)−→p (B2, E2, ξ2) ∧ (id(B1) ∪ id(B2)) ∩ id(B′) = ∅

(B3 = B1 ‖ B
′, E, ξ)−→p (B4 = B2 ‖ B

′, E′, ξ′) ∧ (id(B3) ∪ id(B4)) ∩ id(B′′) = ∅

S = (B3 ‖ B
′′, E, ξ)−→p (B4 ‖ B

′′, E′, ξ′) = S′

⇓
...

(B1, E1, ξ1)−→p (B2, E2, ξ2) ∧ (id(B1) ∪ id(B2)) ∩ id(B′ ‖ B′′) = ∅

S ≡ (B1 ‖ (B′ ‖ B′′), E1, ξ1)−→p (B2 ‖ (B′ ‖ B′′), E2, ξ2) ≡ S
′

S−→p S
′

(b) An occurrence of the (r8) rule followed by an occurrence of the (r7) rule can be

converted into an instance of (r7) followed by an instance of (r8):

(B,E, ξ) ≡

...

(B1, E1, ξ1)−→p (B2, E2, ξ2) ≡ (B′, E′, ξ′)

(B,E, ξ)−→p (B
′, E′, ξ′) ∧ (id(B) ∪ id(B′)) ∩ id(B′′) = ∅

S = (B ‖ B′′, E, ξ)−→p (B
′ ‖ B′′, E′, ξ′) = S′

⇓

S ≡ S′
1

...

(B1, E1, ξ1)−→p (B2, E2, ξ2) ∧ (id(B1) ∪ id(B2)) ∩ id(B′′) = ∅

S′
1 = (B1 ‖ B

′′, E1, ξ1)−→p (B2 ‖ B
′′, E2, ξ2) = S′

2 S′
2 ≡ S

′

S−→p S
′

where we are sure that (id(B1) ∪ id(B2)) ∩ id(B′′) = ∅ holds, because if the rule is
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applied starting from the top of the derivation. Indeed, since considered axioms does

not change boxes identifiers, by applying the rule starting from the top, we are sure

that no clashes are introduced by intermediate identifiers renaming;

(c) Two consecutive occurrences of the (r8) rule can be condensed into one. This is

achieved by exploiting the transitivity of ≡ and re-arranging derivations as it is

done below:

S ≡ S1

S1 ≡

...

S′
1−→p S

′
2 ≡ S2

S1−→p S2 S2 ≡ S
′

S−→p S
′

⇓

S ≡ S1 ≡ S
′
1

...

S′
1−→p S

′
2 S′

2 ≡ S2 ≡ S
′

S−→p S
′

Given this, cases 1, 2, 3, 4 and 5 corresponds to one of the possible distinct axioms driving

the normalized derivation of S−→p S
′.

Now consider a derivation generated by axiom (r6). We have that rearrangements (a)

and (c) are still valid, while rearrangement (b) is not valid in general. Indeed, note how

boxes in B2 can have names that can clash with the context surrounding the bio-process

B1; hence an application of rule (r8) in the derivation cannot be always moved down,

because there are cases in which we can generate clashes, making the condition of rule

(r7) no more valid. However, considering a derivation:

Map(CB(B1, ξ1),CB(B2, ξ2)) = σ ∧ id(ξ) ∩ id(ξ2) = ∅

(B1, E = (B1, ξ1) ⊲p (B2, ξ2) ‖ E
′, ξ ∪ ξ1)→ (B2, E = (B1, ξ1) ⊲p (B2, ξ2) ‖ E

′, ξ′ = ξ2 ∪ ξσ)

· · ·

S →p S
′

we can always consider a complex (B′
2, ξ

′
2) ≡c (B2, ξ2), such that all its boxes identifiers

are different to the one used in S, and transform the previous derivation by adding at the

beginning a step of rule (r8) in the following way:

Map(CB(B1, ξ1),CB(B
′
2, ξ

′
2)) = σ′ ∧ id(ξ) ∩ id(ξ′2) = ∅

(B1, E, ξ) ≡ (B1, (B1, ξ1) ⊲p (B′
2, ξ

′
2)||E

′, ξ ∪ ξ1)→ (B′
2, (B1, ξ1) ⊲p (B′

2, ξ
′
2)||E

′, ξ′2 ∪ ξσ
′) ≡ (B2, E, ξ

′)

(B1, E, ξ)→p (B2, E
′, ξ′)

· · ·

S →p S
′
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and then use the procedure explained before to obtain a normalized derivation of S →p S
′.

Note that we are sure that (B′
2, (B1, ξ1) ⊲p (B′

2, ξ
′
2) || E

′, ξ′2 ∪ ξσ
′) ≡ (B2, E, ξ2 ∪ ξσ),

because the substitutions taken by σ and σ′ on ξ regards identifiers of boxes present in

B2 and B′
2. Note, moreover, that by adding this initial derivation, we guarantee that

the axiom application does not produces a bio-process that can generate clashes in the

top-down rearrangement procedure.

Theorem 4.4.3. Let S ∈ S. Then S−→p S
′ implies S ′ ∈ S.

Proof. By Proposition 4.4.2 we can distinguish six cases, depending on the normalized

derivation corresponding to S−→p S
′.

(case 1)

By hypothesis we have S ≡ S1 and, by Theorem 4.2.7, we know S1 ∈ S. Thus, combining

it with the hypothesis, we have ⊢b K(x, ∆)p I∗[ 〈C〉ch(x,Γ, p).P +M1 |P1 ]n ‖ B : (N,L),

⊢ev E : ok and ⊢en ξ : L. Since the bio-process is well-formed, we have:

...

⊢i K(x, ∆)p : T ∧

...

⊢i I
∗ : T ′

⊢i K(x, ∆)p I∗ : T ∪ T ′

⊢b K(x, ∆)p I∗[ 〈C〉ch(x,Γ, p).P +M1 |P1 ]n : ({n}, {(∆′, n) | ∆′ ∈ T ∪ T ′}
︸ ︷︷ ︸

L
′

) ∧

...

⊢b B : (N ′, L′′)

⊢b K(x, ∆)p I∗[ 〈C〉ch(x,Γ, p).P +M1 |P1 ]n ‖ B : ({n} ∪N ′, L
′

∪ L′′
︸ ︷︷ ︸

L

)

where T ′ is equal ∅ if I∗ coincides with ǫ and where T = {∆} if S = ⊗ and T = ∅

otherwise. Considering that by hypothesis Γ /∈ sorts(I∗) we can derive:

...

⊢i K(x, Γ)p : T ′′ ∧

...

⊢i I
∗ : T ′

⊢i K(x, Γ)p I∗ : T ′′ ∪ T ′

⊢b K(x, Γ)p I∗[P |P1 ]n : ({n}, {(∆′, n) | ∆′ ∈ T ′′ ∪ T ′}
︸ ︷︷ ︸

L′′′

) ∧

...

⊢b B : (N ′, L′′)

⊢b K(x, Γ)p I∗[P |P1 ]n ‖ B : ({n} ∪N ′, L′′′ ∪ L′′
︸ ︷︷ ︸

L1

)

where all the side conditions of the applied rules are respected. At this point we can

distinguish between two cases:

(1) if S = ⊗ then the only difference between the signatures ({n} ∪ N ′, L) and ({n} ∪

N ′, L1) is that L
′ = {(∆, n)} ∪ L′′′′, while L′′′ = {(Γ, n)} ∪ L′′′′ (remember that by

well-formedness each pair in L′ and L′′′ compares only once); hence L = {(∆, n)}∪L2

while L1 = {(Γ, n)} ∪ L2, where L2 = L′′′′ ∪ L′′. Moreover, since ξ is well-formed,
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we know that each occurrence ∆′n′ in ξ is unique, meaning that there exists a

link such that ξ = {∆n,∆′n′} ∪ ξ′ where the occurrence ∆n is unique in all the

links of ξ. But this means that ξ{Γn/∆n} = {Γn,∆′n′} ∪ ξ′ and by considering that

⊢en ξ : L we immediately have that ⊢en ξ{Γn/∆n} : L1. Hence (K(x, Γ)p I∗[P |P1 ]n ‖

B,E, ξ{Γn/∆n}) = S ′
1 is well-formed and by Lemma 4.2.7 we finally obtain S ′ ∈ S;

(2) if S = ⊕ then both T and T ′′ are equal to ∅. Moreover, there is not a link component

∆n in ξ and hence ξ{Γn/∆n} = ξ. Therefore, it results that (K(x, Γ)p I∗[P |P1 ]n ‖

B,E, ξ{Γn/∆n}) = S ′
1 is well-formed and by Lemma 4.2.7 we have S ′ ∈ S.

(case 3)

By hypothesis we have S ≡ S1 and, by Theorem 4.2.7, we know that S1 ∈ S. Thus,

⊢b I1[P1 ]n ‖ I2[P2 ]m ‖ B : (N,L), ⊢ev E : ok and ⊢en ξ : L. Since the bio-process is

well-formed, we have:

...

⊢i ⊕(x1, ∆1)
p : ∅

...

⊢i I
∗
1 : T ′

1

⊢i ⊕(x1, ∆1)
p I∗1 : T ′

1

⊢b I1[P1 ]n1
: ({n1}, L1)

...

⊢i ⊕(x2, ∆2)
p : ∅

...

⊢i I
∗
2 : T ′

2

⊢i ⊕(x2, ∆2)
p I∗2 : T ′

2

⊢b I1[P1 ]n2
: ({n2}, L2)

⊢b I1[P1 ]n1
‖ I2[P2 ]n2

: ({n1, n2} : L1 ∪ L2)

...

⊢b B : (N ′, L′)

⊢b I1[P1 ]n1
‖ I2[P2 ]n2

‖ B : ({n1, n2} ∪N
′, L1 ∪ L2 ∪ L

′

︸ ︷︷ ︸

L

)

where T1 and T2 are equal to ∅ if I∗1 and I∗2 coincide to ǫ. We can now prove that

I ′1[P1 ]n ‖ I
′
2[P2 ]m ‖ B

′ is well-formed by constructing the following derivation:

...

⊢i ⊗(x1, ∆1)
p : {∆1}

...

⊢i I
∗
1 : T ′

1

⊢i ⊗(x1, ∆1)
p I∗1 : T1

⊢b I
′
1[P1 ]n1

: ({n1}, {(∆1, n1)} ∪ L1)

...

⊢i ⊗(x2, ∆2)
p : {∆2}

...

⊢i I
∗
2 : T2

⊢i ⊗(x2, ∆2)
p I∗2 : T2

⊢b I
′
2[P2 ]n2

: ({n2}, {(∆2, n2)} ∪ L2)

⊢b I
′
1[P1 ]n1

‖ I ′2[P2 ]n2
: ({n1, n2} : {(∆1, n1), (∆2, n2)} ∪ L1 ∪ L2)

...

⊢b B : (N ′, L′)

⊢b I
′
1[P1 ]n1

‖ I ′2[P2 ]n2
‖ B : ({n1, n2} ∪N

′, {(∆1, n1), (∆2, n2)} ∪ L1 ∪ L2 ∪ L
′)

where all the rule side conditions are respected and where, by reasoning on the well-

formedness of interfaces I1 and I2 and their differences with respect to I ′1 and I ′2, we

obtain {(∆1, n1), (∆2, n2)} ∩ (L1 ∪ L2 ∪ L
′) = ∅. The latter observation can be combined

with the fact that ⊢en ξ : L and that n1 6= n2 for constructing the following derivation:
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⊢en ξ : L ∧ ⊢en {∆1n1,∆2n2} : {(∆1, n1), (∆2, n2)}

⊢en ξ ∪ {{∆1n1,∆2n2}} : L ∪ {(∆1, n1), (∆2, n2)}

Hence (I ′1[P1 ]n ‖ I ′2[P2 ]m ‖ B,E, ξ ∪ {{∆1n,∆2m}}) = S ′
1 is well-formed and, since

S1 ≡ S ′, by using the Theorem 4.2.7 it results S ′ ∈ S.

(case 6)

By hypothesis and Lemma 4.2.7 we know that (B1 ‖ B, (B1, ξ1) ⊲p (B2, ξ2) ‖ E, ξ1 ∪ ξ)

is in S and hence ⊢b (B1 ‖ B, (B1, ξ1) ⊲p (B2, ξ2) ‖ E, ξ1 ∪ ξ) : (N,L), ⊢ev (B1, ξ1) ⊲p

(B2, ξ2) ‖ E : ok and ⊢en ξ : L. From this we know that the well-formedness derivations

of the three elements have the following forms:

...

⊢b B1 : (N1, L1) ∧

...

⊢b B : (N ′, L′)

⊢b B1 ‖ B : (N1 ∪N
′, L1 ∪ L

′)

and ...

⊢b B1 : (N1, L1) ∧

...

⊢b B2 : (N2, L2) ∧

...

⊢en ξ1 : L′
1 ∧

...

⊢en ξ2 : L′
2

⊢ev (B1, ξ1) ⊲p (B2, ξ2) : ok ∧

...

⊢ev E : ok

⊢ev (B1, ξ1) ⊲p (B2, ξ2) ‖ E : ok

and ...

⊢en ξ1 : L′
1 ∧

...

⊢en ξ : L
′′

⊢en ξ1 ∪ ξ : L
′
1 ∪ L

′′

Note that L′
1 ⊆ L1 and L′

2 ⊆ L2 and that for each ∆ ∈ T it is:

|{(∆, n) ∈ L1 \ L
′
1 | n ∈ N}| = |{(∆, n) ∈ L2 \ L

′
2 | n ∈ N}|

This means firstly that Map(CB(B1, ξ1),CB(B2, ξ2)) 6= ⊥, and hence that the function

returns a valid sequence σ (eventually empty) of identifier substitutions. Moreover, by

well-formedness of B1 and B2 we are sure that the single substitutions composing σ (if

any) are all different, i.e., σ = 〈x1, · · · , xn/y1, · · · , yn〉 is such that for each pairs (xi, xj) and

(yi, yj) (with i 6= j and i, j ∈ {1, · · · , n}) we have xi 6= xj and yi 6= yj. Hence, the

substitution σ is a bijection between the sets L1 \L
′
1 and L2 \L

′
2, meaning that L2 \L

′
2 =

{(∆, σ(n)) | (∆, n) ∈ L1 \ L
′
1}, and vice-versa (considering σ−1 = 〈y1, · · · , yn/x1, · · · , xn〉 the

inverse of the substitution).

From the fact that L1 ⊎ L
′ = L′

1 ⊎ L
′′ and L′

1 ⊆ L1 we have L′′ = (L1 \ L
′
1) ∪ L

′. This

indirectly means that each link {∆n,∆′n′} with n ∈ id(B1) and n
′ /∈ id(B1) is in ξ with
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n ∈ dom(σ).

Now we want to use all this facts to prove that S ′ is well-formed. By hypothe-

sis we know that the derivation (B1 ‖ B, (B1, ξ1) ⊲p (B2, ξ2) ‖ E, ξ1 ∪ ξ)−→p (B2 ‖

B, (B1, ξ1) ⊲p (B2, ξ2) ‖ E, ξ2 ∪ ξσ) is normalized and hence surely (id(B1) ∪ id(B2)) ∩

id(B) = ∅, guaranteeing ⊢b B2 ‖ B : (N2 ∪N
′, L2 ∪ L

′).

Now consider ξσ. By previous facts we have ξ = ξa ∪ ξb where ξa = {{∆n,∆
′n′} | n ∈

id(B1)}, ⊢en ξa : La and ⊢en ξb : Lb. This itself allows to observe that La = La′ ∪ La′′

where La′ = {(∆, n) | n ∈ id(B1)}. Hence La′ corresponds to L1 \ L
′
1 and L′ = La′′ ∪ Lb.

Now, by previous facts and by definition of substitution we can say that ξσ = ξaσ ∪

ξb = {{∆σ(n),∆′n′} | n ∈ id(B1)} ∪ ξb. Hence ⊢en ξaσ : La′′′ ∪ La′′ where La′′′ =

{(∆, σ(n)) | (∆, n) ∈ La′}. Since La′ corresponds to L1 \ L
′
1 then La′′′ corresponds to

L2 \ L
′
2 and hence ⊢en ξσ : (L2 \ L

′
2) ∪ (La′′ ∪ Lb) = (L2 \ L

′
2) ∪ L

′ from which follows

⊢en ξ2 ∪ ξσ : L′
2 ∪ (L2 \ L

′
2) ∪ L

′ = L2 ∪ L
′.

This means that (B2 ‖ B
′, (B1, ξ1) ⊲p (B2, ξ2) ‖ E, ξ2 ∪ ξσ) = S ′

1 is well-formed and

hence, since S1 ≡ S ′, by Lemma 4.2.7 we can conclude S ′ ∈ S.

(case 2)

This case is immediate by observing that an intra-communication does not change any

structural element involved in the well-formedness derivation.

(case 4)

This case is close to the (case 3) and can be proven similarly.

(case 5)

This case is immediate by observing that an inter-communication does not change any

structural element involved in the well-formedness derivation.

Given the reduction relation −→p over BlenX systems, we now give a constructive

method to generate a relation →, that is used to define the transition system (S,→).

The relation → considers priorities associated with reductions. In particular, since we

use a model of priorities which is global we have to ensure that given a system S, the

reductions of S with higher priority have the precedence with respect to the ones with

lower priority. Moreover, we do not consider reductions with priority zero.

Definition 4.4.4. Relation → ⊂ S × S is obtained with the following procedure:

→ = {(S, S ′) | S−→p S
′ ∧ p > 0 ∧ ∄p′ > p s.t. S−→p′ S

′′}

As usual, →+ indicates the transitive closure and →∗ the reflexive and transitive clo-

sure of →. Moreover, S →k S ′ with k ≥ 1 indicates that S ′ can be reached from S with k

transitions S →1 S1 →
2 · · · →k−1 Sk−1 →

k S ′. Moreover, we write S 6→ if there does not

exists S ′ such that S → S ′.
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Corollary 4.4.5. Let S ∈ S. Then S → S ′ implies S ′ ∈ S.

Proof. Immediate from Theorem 4.4.3 and Definition 4.4.4.
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Chapter 5

Expressive power

Some of the bio-inspired languages introduced in Chapt. 2 differ from classical process

calculi because they are devised from the beginning for biology and aim to overcome

some limitations by adding or deleting primitives and operators, and by developing new

conceptual tools. An interesting question is whether and how those modifications affect

the ability of these languages to act as computational devices. Some examples of these

investigations can be found in [7, 22, 14].

The main goal of this chapter is to investigate the computational power of BlenX.

Turing equivalence results for well-known process calculi like the π-calculus [72, 99] and

Mobile Ambients [8, 69] rely on encodings of Turing equivalent formalisms using some

high-powered features like restriction operator and name passing in combination with

operators like replication, recursion or recursive definitions. In BlenX, the restriction

operator is not present and replication is guarded by an action; hence none of the classic

results can be directly applied. For these reasons, we decided to start by first developing

on a core subset denoted by Bcore, which considers only primitives for communication.

By using the theory of well-structured transition systems [36], we show that for Bcore

the termination is decidable. Then we add specific features of BlenX and show that the

resulting languages are Turing equivalent. In particular, we prove that by adding either

priorities to Bcore (we denote this subset with Bpcore) or events (we denote this subset with

Becore) we obtain Turing equivalence. We show this by providing encodings of Random

Access Machines (RAMs), a well known Turing equivalent formalism, into Bpcore and Becore.

5.1 The core subset

Here we introduce Bcore, the core subset on which we base our investigation of the com-

putational power of BlenX. To render easier the presentation of our results we consider

both a simplified syntax and semantics with respect to the one of full BlenX. However, all
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is done in such a way that all the results we will show can be easily rephrased in terms of

the original syntax and semantics.

The syntax of Bcore is defined in the following way:

B ::= Nil | I[P ] | B ‖ B

I ::= ⊕(x, ∆) | ⊕(x, ∆) I

P ::= M | P |P

M ::= nil | π. P | ∗ π. P |M +M

π ::= x?y | x!y

We use here the same symbols and terminology we used for the full BlenX in Chapt. 4.

We confine the new interpretations of symbols and definitions only to this chapter.

With Bcore and Icore we denote the set of all the possible bio-processes and interfaces

of Bcore, respectively. Moreover, in this case the set of systems Score coincides with Bcore
because no complexes and events are considered. Note that since we do not consider here

complexes, we also avoid identifiers in the definition of boxes.

Definition 5.1.1. The function subt : Bcore → 2N is defined as follows

subt(I[P ]) = sub(I)

subt(B1 ‖ B2) = subt(B1) ∪ subt(B2)

Function subt(·) returns the total set of subjects present in all the boxes interfaces

composing a bio-process. We simplify the definition of well-formedness by simply saying

that a well-formed interface I is a non-empty string of interfaces where subjects and sorts

are all distinct and by stating the following definition.

Definition 5.1.2. Let B = I1[P1] ‖ · · · ‖ In[Pn] be a bio-process. We say that B is

well-formed if ∀i ∈ {1, ..., n} the interface Ii is well-formed.

We denote with Score the set of all well-formed systems. In particular, for the Bcore

subset we have that Score ⊂ Bcore. Definitions of free names for bio-processes and processes

result immediately by adapting the ones defined in Tab. 4.3.

The dynamics of a Bcore system is formally specified through the reduction semantics

in Tab. 5.1 which uses a notion of structural congruence ≡.

Definition 5.1.3. Structural congruence on processes, denoted ≡p, is the smallest con-

gruence on processes that satisfies the axioms in Tab. 5.1(a).

Structural congruence on bio-processes, denoted ≡b, is the smallest congruence that

satisfies the axioms in Tab. 5.1(b).
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Structural congruence over systems, denoted ≡, coincides with ≡b.

(intra) I[x!z. P1 +M1 |x?w.P2 +M2 |P3 ]−→ I[P1 |P2{z/w} |P3 ]

(inter)
P1 ≡p x!z.R1 +M1 |Q1 P2 ≡p y?w.R2 +M2 |Q2

I1[P1 ] ‖ I2[P2 ]−→ I1[R1 |Q1 ] ‖ I2[R2{z/w} |Q2 ]

where I1 = ⊕(x, ∆) I∗1 and I2 = ⊕(y, Γ) I∗2
and provided α(Γ,∆) > 0 and z 6∈ sub(I1) ∪ sub(I2)

(struct)
B1 ≡b B

′
1 B′

1−→B′
2 B′

2 ≡b B2

B1−→B2

(redex)
B−→B′

B ‖ B1−→B′ ‖ B1

a) axioms for processes

1. P =α P
′ ⇒ P ≡p P

′

2. P | nil ≡p P
3. P1 |P2 ≡p P2 |P1

4. P1 | (P2 |P3) ≡p (P1 |P2) |P3

5. M + nil ≡p M
6. M1 +M2 ≡p M2 +M1

7. M1 + (M2 +M3) ≡p (M1 +M2) +M3

8. ∗π. P ≡p π. (P | ∗π. P )

b) axioms for bio-processes

1. B ‖ Nil ≡b B
2. B1 ‖ B2 ≡b B2 ‖ B1

3. B1 ‖ (B2 ‖ B3) ≡b (B1 ‖ B2) ‖ B3

4. P1 ≡p P2 ⇒ I∗1I2I3I
∗
4 [P1 ] ≡b I

∗
1I3I2I

∗
4 [P2 ]

5. P1 ≡p P2 ∧ y /∈ fn(P2) ∪ sub(I∗)⇒
⊕(x, ∆)p I∗[P1 ] ≡b ⊕(y, ∆)p I∗[P2{y/x} ]

Table 5.1: Reduction semantics of Bcore.

It is evident how the reduction semantics in Tab. 4.13 is a simplification of the one

presented in Tab.4.13, that highlights only the behavioural aspects of the subset here

considered. Note that being not interested in complexes, here we assume to have a

compatibility function α : T 2 → N that, given a pair of sorts ∆ and Γ returns only a

value; if the resulting value is greater than zero, then inter-communications over interfaces

having sorts ∆ and Γ are allowed.
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All the results we proved in the previous chapter for the full BlenX are still valid for

the subset Bcore.

5.2 A decidability result

In this section we show that termination is decidable for the Bcore subset. With respect

to the methods used in this section, we take inspiration from [7, 8] in which decidability

results for π-calculus, Pure Mobile Ambients and Brane Calculi have been presented

and we rely on the theory of well-structured transition systems [36]. In particular, the

existence of an infinite computation starting from a given state is decidable for finitely

branching transition systems, provided that the set of states can be equipped with a well-

quasi-ordering. The main differences with the results contained in [7, 8] are that in our

language we have no static hierarchies of ambients and nested restrictions, but we have a

two level hierarchy of boxes and processes and a form of name-passing over finite sets of

names.

The decidability of termination for Bcore is proved by first providing an alternative

labelled transition semantics for a subset Ssafe of Bcore bio-processes, that we call safe,

and then by showing that there is a correspondence of this semantics with the reduction

semantics presented in Sec. 5.1. In particular, we show that it is always possible and easy

to transform a generic Bcore bio-process into an equivalent safe one and that a bio-process

admits an infinite computation according to the reduction semantics if and only if one of

its corresponding safe bio-processes admits an infinite sequence of τ transitions according

to the new labelled transition semantics.

Then, we define a quasi-ordering �b on bio-processes which is strongly compatible

with
τ
−→, we show that the relation �b is a well-quasi-ordering and finally we prove that

the termination of bio-processes in Ssafe is decidable.

5.2.1 Well-structured transition systems

Here we recall some basic definitions and results from [36, 47]. A quasi-ordering (qo) is a

reflexive and transitive relation.

Definition 5.2.1. A well-quasi-ordering (wqo) on a set X is a qo ≤ such that any infinite

sequence of elements x0, x1, x2, ... from X contains an increasing pair xi ≤ xj with i < j.

The set X is said to be well-quasi-ordered, or wqo for short.

Note that if ≤ is a wqo then any infinite sequence x0, x1, x2, . . . contains an infinite

increasing subsequence xi0 , xi1 , xi2 , . . . (with i0 ≤ i1 ≤ i2 ≤ . . . ). Thus well-quasi-orders

exclude the possibility of having infinite strictly decreasing sequences.
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Definition 5.2.2. A transition system is a tuple TS = (S,→) where S is a set of states

and →⊆ S × S is a set of transitions. If p, q ∈ S, then (p, q) ∈→ is usually written as

p→ q.

The set {s′ ∈ S | s → s′} of immediate successors of a state s ∈ S is denoted with

Succ(s). TS is finite branching if Succ(s) is finite for all s ∈ S.

Definition 5.2.3. A well-structured transition system with strong compatibility, denoted

with TS = (S,→,≤) is a transition system equipped with a qo ≤ on S such that the

following conditions hold:

• ≤ is a well-quasi-ordering

• ≤ is (upward) compatible with →, i.e., for all s1 ≤ t1 and all transitions s1 → s2,

there exists a state t2 such that t1 → t2 and s2 ≤ t2 (strong compatibility).

Our decidability result is based on the following theorem [36]:

Theorem 5.2.4. Let TS = (S,→,≤) be a finitely branching, well-structured transition

system with decidable ≤ and computable Succ. The existence of an infinite computation

starting from a state s ∈ S is decidable.

In order to prove that the qo we will define on bio-processes is a wqo, we need to

introduce some important results proved by Higman in [47]. First of all we recall that

given a set S, the set S∗ denotes the set of finite sequences of elements in S.

Definition 5.2.5. Let S be a set and ≤ a wqo over S. The relation ≤∗ over S
∗ is defined

as follows. Let t, u ∈ S∗, with t = t1...tm and u = u1...un. We have that t ≤∗ u iff there

exists an injection f from {1, ...,m} to {1, ..., n} such that ti ≤ uf(i) and i ≤ f(i) for

i = 1, ...,m.

Theorem 5.2.6. [Higman] Let S be a set and ≤ be a wqo over S. Then, the relation ≤∗

is a wqo over S∗.

Lemma 5.2.7. Let S be a finite set. Then equality is a wqo over S.

5.2.2 A labelled transition semantics for the core subset

Here we define a labelled transition semantics for Bcore (Tab. 5.2) to get rid of structural

congruence. Axioms and rules for processes are in the style of the transition semantics

reported in [99] (page 38) for the π-calculus, and hence some results there reported can

be reused.
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(pi in) x?w.P
x?y
−−→ P{y/w} (rep in) ∗ x?w.P

x?y
−−→ P{y/w} | ∗ x?w.P

(pi out) x!y. P
x!y
−−→ P (rep out) ∗ x!y. P

x!y
−−→ P | ∗ x!y. P

(l pi sum)
M0

θ
−→M ′

0

M0 +M1
θ
−→M ′

0

(l pi par)
P0

θ
−→ P ′

0

P0 |P1
θ
−→ P ′

0 |P1

(l intra)
P

x!y
−−→ P ′ Q

x?y
−−→ Q′

P |Q
τ
−→ P ′ |Q′

(bio out)
P

x!y
−−→ P ′

I[P ]
∆x!y
−−−→ I[P ′ ]

, provided y 6∈ sub(I) and ⊕(x, ∆) ∈ I

(bio in)
P

x?y
−−→ P ′

I[P ]
∆x?y
−−−→ I[P ′ ]

, provided y 6∈ sub(I) and ⊕(x, ∆) ∈ I

(pi bio)
P

τ
−→ P ′

I[P ]
τ
−→ I[P ′ ]

(l bio par)
B0

θ
−→ B′

0

B0 ‖ B1
θ
−→ B′

0 ‖ B1

(l inter)
B0

∆x!z
−−−→ B′

0 B1
Γy?z
−−−→ B′

1

B0 ‖ B1
τ
−→ B′

0 ‖ B
′
1

, provided α(∆,Γ) > 0

Table 5.2: Labelled transition semantics of Bcore (we omit the symmetric rules r pi sum, r pi par,
r intra, r bio par and r inter).

We use the meta-variable θ to range over x?y, x!y, ∆x?y, ∆x!y, and τ . The set of

names, n(θ), of θ is fn(θ) ∪ bn(θ). Table 5.3 contains the terminology and notation for

labels.

Note that the semantics we define is not equivalent to the one presented in Sect. 5.1,

because of the absence of rules for managing α-conversion. We do not explicitly consider

α-convertible bio-processes to get rid of the infinite names over intra-communication that

α-conversion introduces. This fact will be used to obtain the wqo over bio-processes.

However, we will show that there is a correspondence between the labelled transition

semantics over the safe subset of Bcore bio-processes and the reduction semantics over

Bcore bio-processes. Moreover, although the labelled transition semantics is not finite

branching, we will show that the transition systems constructed over safe bio-processes

by only considering
τ
−→ transitions are finite branching. This fact is essential to use the

theory of well-structured transition systems.

Safe bio-processes are introduced to guarantee that no behaviours are lost when we get
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θ kind fn(θ) bn(θ) n(θ)

x?y process input {x, y} ∅ {x, y}
x!y process output {x, y} ∅ {x, y}
∆x?y box input over ∆ {x, y} ∅ {x, y}
∆x!y box output over ∆ {x, y} ∅ {x, y}
τ internal ∅ ∅ ∅

Table 5.3: Terminology and notation for action labels.

rid of structural congruence. Suppose α(∆,∆) > 0 and consider the following bio-process:

B = ⊕(x, ∆)[ x!y.nil ] ‖ ⊕(x, ∆)⊕(y, Γ)[ x?z.z!k.nil | y?z.nil ]

To avoid captures in inter-communications, rule (inter) in Tab. 5.1 requires that y /∈

sub(⊕(x, ∆))∪ sub(⊕(x, ∆)⊕(y, Γ)), which in this case does not hold. Hence, in order to

consume the inter-communication we have to consider (one among infinitely many others)

the bio-process:

B′ = ⊕(x, ∆)[ x!y.nil ] ‖ ⊕(x, ∆)⊕(n, Γ)[ x?z.z!k.nil | n?z.nil ]

and derive the transition through the rule struct, i.e., structural law (b.5) in Tab. 5.1

implies B ≡b B
′. Safe bio-processes guarantee that we never need to apply the structural

law (b.5) in order to derive an inter-communication, simplifying the definition of our

labelled transition semantics.

Definition 5.2.8. The bio-process B is safe iff fn(B) ∩ subt(B) = ∅.

We denote with Ssafe ⊂ Score the set of safe well-formed bio-processes.

Lemma 5.2.9. Let B ∈ Score. There exists B′ ∈ Ssafe such that B ≡b B
′.

Proof. Immediate from the structural congruence rules reported in Tab. 5.1 (group b).

We denote with safe(B) ⊂ Ssafe the set of safe bio-processes structurally congruent to

a generic bio-process B ∈ Score. Given a bio-process B ∈ Score, the problem of finding an

equivalent safe bio-process B′, is decidable and efficiently solvable. Indeed, considering

the finite set fn(B) of free names in B and the number m of interfaces of B (both the set

and the value can be computed linearly in the size of B), a safe bio-process B′ structurally

congruent to B can be obtained simply by substituting all the interface subjects of B with

names contained in a set M ⊂ N such that M ∩ fn(B) = ∅ and |M | = m. The problem

of finding this set M is efficiently computable.
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Now, we show that the transition system (Ssafe,
τ
−→) is finite branching. In order to

do this we first have to show that the safe property of bio-processes is preserved over τ

transitions. However, some preliminary results are needed. The first result describes how,

given a transition P
θ
−→ P ′ over processes or a transition B

θ
−→ B′ over bio-processes, the

free names of P ′ and B′ are the finite set made up of the free names of P and B and the

names in θ.

Lemma 5.2.10. Let P, P ′ ∈ P. Suppose P
θ
−→ P ′, then

(a) if θ = x!y then x, y ∈ fn(P ) and fn(P ′) ⊆ fn(P )

(b) if θ = x?y then x ∈ fn(P ) and fn(P ′) ⊆ fn(P ) ∪ {y}

(c) if θ = τ then fn(P ′) ⊆ fn(P )

Proof. See [99], page 44.

Lemma 5.2.11. Let B,B′ ∈ Ssafe. Suppose B
θ
−→ B′. Then

(a) if θ = ∆x!y then y ∈ fn(B) and fn(B′) ⊆ fn(B)

(b) if θ = ∆x?y then fn(B′) ⊆ fn(B) ∪ {y}

(c) if θ = τ then fn(B′) ⊆ fn(B)

Proof. By induction on the inference of B
θ
−→ B′. We present only the most relevant cases.

The other cases can be proved similarly.

(a)

(Case bio out) We have B = I[P ] and B′ = I[P ′]. By definition we have fn(B) =

fn(P )\sub(I) and fn(B′) = fn(P ′)\sub(I). By hypothesis we have P
x!y
−→ P ′ and hence, by

Lemma 5.2.10, x, y ∈ fn(P ) and fn(P ′) ⊆ fn(P ). Therefore fn(P ′)\sub(I) ⊆ fn(P )\sub(I),

which means fn(B′) ⊆ fn(B). Moreover, since y ∈ fn(P ) and y 6∈ sub(I) we have y ∈ fn(B).

(Case l bio par) By definition fn(B0||B1) = fn(B0) ∪ fn(B1). By inductive hypothesis we

have y ∈ fn(B0) and fn(B′
0) ⊆ fn(B0). Therefore fn(B′

0) ∪ fn(B1) ⊆ fn(B0) ∪ fn(B1) which

means fn(B′) ⊆ fn(B). Moreover, since y ∈ fn(B0), we have y ∈ fn(B).

(b)

(Case bio in) We have B = I[P ] and B′ = I[P ′]. By definition we have fn(B) = fn(P ) \

sub(I) and fn(B′) = fn(P ′) \ sub(I). By hypothesis we have P
x?y
−−→ P ′ and hence, by

Lemma 5.2.10, x ∈ fn(P ) and fn(P ′) ⊆ (fn(P ) ∪ {y}). Therefore (fn(P ′) \ sub(I)) ⊆

(fn(P ) \ sub(I)) ∪ {y}, which means fn(B′) ⊆ fn(B) ∪ {y}.

(c)

(Case l inter) By definition fn(B0||B1) = fn(B0) ∪ fn(B1). By inductive hypothesis we
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have z ∈ fn(B0), fn(B
′
0) ⊆ fn(B0), and fn(B′

1) ⊆ fn(B1) ∪ {z}. Since z ∈ fn(B0) we have

fn(B0) ∪ fn(B1) ∪ {z} = fn(B0) ∪ fn(B1) and therefore fn(B′
0) ∪ fn(B′

1) ⊆ fn(B0) ∪ fn(B1),

which means fn(B′) ⊆ fn(B).

Lemma 5.2.12. Let B ∈ Ssafe. Then B
τ
−→ B′ implies B′ ∈ Ssafe.

Proof. By hypothesis we have fn(B) ∩ subt(B) = ∅. Since B ∈ Ssafe ⊂ Score and no

reduction rule can change an interface subject or sort we immediately have B′ ∈ Score
and subt(B) = subt(B

′). Moreover, by Lemma 5.2.11, we have fn(B′) ⊆ fn(B) and as a

consequence fn(B′) ∩ subt(B
′) = ∅. Hence the Lemma holds.

Now, we recall some results on image-finiteness of π-calculus processes, reported in

[99] (page 45) that are still valid for our processes.

Lemma 5.2.13. Let P ∈ P. Then

(1) There are only finitely many x such that P
x?z
−−→ P ′ for some z and P ′.

(2) There are only finitely many triples x, y, P ′ such that P
x!y
−→ P ′.

These results can be used to show that for any process P there are only finitely many

processes Q such that P
τ
−→ Q and that for any safe bio-process B there are only finitely

many safe bio-processes B′ such that B
τ
−→ B′.

Lemma 5.2.14. Let P ∈ P. Then the set Succ(P ) = {P ′ ∈ P | P
τ
−→ P ′} is finite.

Proof. By induction on the structure of P .

(Induction base) If P has the form nil, x?y.P ′, x!y.P ′, ∗x?y.P ′ or ∗x!y.P ′ it is simple to

see that no τ actions can be derived using the semantics rules. Hence, in this cases the

set is {P ′ ∈ P | P
τ
−→ P ′} = ∅.

(Case P =M0+M1) By inductive hypothesis the sets Succ(M0) and Succ(M1) are finite.

Since no intra-communications between processes M0 and M1 can be performed, then the

set {P ′ ∈ P | P
τ
−→ P ′} = Succ(M0) ∪ Succ(M1) is finite.

(Case P = P0 | P1) By inductive hypothesis the sets Succ(P0) and Succ(P1) are finite.

However, P0 and P1 are parallel processes and hence they can synchronize on inputs and

outputs actions and perform intra-communications, generating τ transitions. By Lemma

5.2.13, we obtain that the number of possible input and output in P0 and P1 on a channel

x is finite and hence only a finite number of τ actions (using (l intra) and (r intra) rules)

can be derived. Therefore, by inductive hypothesis and Lemma 5.2.13 the set Succ(P ) is

finite.

We extend results of Lemma 5.2.13 and Lemma 5.2.14 to bio-processes.
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Lemma 5.2.15. Let B ∈ Bcore. Then

(1) There are only finitely many pairs x,∆ such that B
∆x?z
−−−→ B′ for some z and B′.

(2) There are only finitely many tuples ∆, x, y, B′ such that B
∆x!y
−−→ B′.

Proof. By induction on the structure of B.

(1)

(Case Nil) No couple x,∆ such that B
∆x?z
−−−→ B′ for some z and B′ exists.

(Case I[P ]) For each subject x ∈ sub(I), we have (by Lemma 5.2.13) that there are only

finitely many x such that P
x?z
−−→ P ′ for some z and P ′ and hence only finitely many x

such that P
x?z
−−→ P ′ for some z 6∈ sub(I) and P ′. Since by definition I is well-formed

and the set of interfaces subjects sub(I) is finite, we obtain (by the application of rule

(bio in)) that there are only finitely many pairs ∆, x such that I[P ]
∆x?z
−−−→ I[P ′] for some

z and I[P ′].

(Case B || B′) By inductive hypothesis on B and B′ the Lemma follows immediately.

(2)

(Case Nil) No tuple ∆, x, y, B′ such that B
∆x!y
−−→ B′ exists.

(Case I[P ]) For each subject x ∈ sub(I), we have (by Lemma 5.2.13) that there are only

finitely many tuples x, y, P ′ such that P
x!y
−→ P ′ and hence there are only finitely many

tuples x, y, P ′ such that P
x!y
−→ P ′ and y 6∈ sub(I). Since by definition I is well-formed

and the set of interface subjects sub(I) is finite, we obtain (by the application of rule

(bio out)) that there are only finitely many tuples ∆, x, y, I[P ′] such that I[P ]
∆x!y
−−→ I[P ′].

(Case B || B′) By inductive hypothesis on B and B′ the Lemma follows immediately.

Lemma 5.2.16. Let B ∈ Ssafe. Then the set Succ(B) = {B′ ∈ Ssafe | B
τ
−→ B′} is finite.

Proof. By induction on the structure of B.

(Case Nil) In this case Succ(B) is obviously ∅.

(Case I[P ]) By Lemma 5.2.14 the set Succ(P ) is finite. It immediately follows (by appli-

cation of rule (pi bio)) that the set Succ(I[P ]) is finite.

(Case B0 || B1) By inductive hypothesis the sets Succ(B0) and Succ(B1) are finite. How-

ever, B0 and B1 are parallel bio-processes and hence they can synchronize on inputs and

outputs actions over compatible interfaces and perform inter-communications, generating

τ transitions. By Lemma 5.2.15, the number of possible input and output over compat-

ible interfaces between B0 and B1 is finite and hence only a finite number of τ actions

(using (l inter) and (r inter) rules) can be derived. Therefore, by inductive hypothesis

and Lemma 5.2.13, the set Succ(B) is finite.

Corollary 5.2.17. The transition system (Ssafe,
τ
−→) is finite branching.

Proof. Immediate by Lemma 5.2.16.
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To reason on the new labelled semantics we need to show its correspondence with

the reduction semantics. In particular, we show that the τ transition relation over safe

bio-processes and the reduction relation over bio-processes agree.

Lemma 5.2.18. Let B,B′ ∈ Ssafe. If B ≡b B
′ and B

τ
−→ B′′, then for some B′′′ ∈ Ssafe

we have that B′ τ
−→ B′′′ and B′′ ≡b B

′′′.

Proof. By induction on the length of the derivation B ≡b B
′.

Theorem 5.2.19. Let B ∈ Score and B′′ ∈ safe(B). Then B −→ B′ iff B′′ τ
−→ B′′′ and

B′′′ ∈ safe(B′).

Proof. (⇒)

Similarly to Lemma 4.4.2, if B −→ B′ then there exist bio-processes B0 ≡b B and B1 ≡b B
′

such that

B0 = I[ x!z. P1 +M1 | x?w. P2 +M2 |P3 ] ‖ B2

and B1 = I[P1 |P2{z/w} |P3 ] ‖ B2

or

B0 = ⊕(x, ∆) I∗1 [ x!z. R1 +M1 |Q1 ] ‖ ⊕(y, Γ) I
∗
2 [ y?w.R2 +M2 |Q2 ] ‖ B2

and B1 = I1[R1 |Q1 ] ‖ I2[R2{z/w} |Q2 ] ‖ B2

with α(Γ,∆) > 0 and in the second case z 6∈ sub(I∗1 ) ∪ {x} ∪ sub(I∗2 ) ∪ {y}. By Lemma

5.2.9, in both cases there exist safe bio-processes Bs
0 ≡b B0 and Bs

1 ≡b B1. In particular,

in the second case we have that Bs
0 is such that z 6∈ sub(I∗1 ) ∪ sub(I

∗
2 ) ∪ subt(B2) ∪ {x, y}.

It is easy to see that in both cases we can derive Bs
0

τ
−→ Bs

1. Moreover, Bs
0 ≡b B0 ≡b B

means that Bs
0 ∈ safe(B) and hence B′′ ≡b B

s
0. By Lemma 5.2.18, there exists B′′′ ∈ Ssafe

such that B′′′ ≡b B
s
1 and from B′′′ ≡b B

s
1 ≡b B1 ≡b B

′ we obtain B′′′ ∈ safe(B′).

(⇐)

It is enough to show that B
τ
−→ B′ implies B −→ B′. The proof is by induction on the

inference of B
τ
−→ B′.

(Case (l inter)) By hypothesis we know that B0
∆x!z
−−→ B′

0, B1
Γx?z
−−→ B′

1. Notice that :

1) if B0
∆x!z
−−→ B′

0 then B0 ≡b ⊕(x, ∆) I∗0 [ x!z.Q+M | R ] || B2,

B′
0 ≡b ⊕(x, ∆) I∗0 [ Q | R ] || B2 and z 6∈ sub(I∗0 ) ∪ {x}.

2) if B1
Γy?z
−−→ B′

1 then B1 ≡b ⊕(y, Γ) I
∗
1 [ y?w.T

′ +N | T ] || B3,

B′
1 ≡b ⊕(y, Γ) I

∗
1 [ T

′{z/w} | T ] || B3 and z 6∈ sub(I∗1 ) ∪ {y}.

Hence, the bio-process B0 || B1 is structurally congruent (≡b) to

⊕(x, ∆) I∗0 [ x!z.Q+M | R ] || ⊕(y, Γ) I∗1 [ y?w.T
′ +N | T ] || B2 || B3
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and by applying (inter) and (redex) rules of the reduction semantics we can derive the

transition

B0 || B1 −→ ⊕(x, ∆) I∗0 [ Q | R ] || ⊕(y, Γ) I∗1 [ T
′{z/w} | T ] || B2 || B3,

where the resulting bio-process is structurally congruent to B′
0 || B

′
1. By applying the

rule (struct) of the reduction semantics we are done.

(Case (pi bio)) By hypothesis we have P
τ
−→ P ′. Notice that if P

τ
−→ P ′ than P ≡p

x!z.Q + N | x?w.T ′ +M | R and P ′ ≡p Q | T
′{z/w} | R. By applying the (intra) rule of

the reduction semantics we can derive the transition I[P ] −→ I[ Q | T ′{z/w} | R ], where

the resulting bio-process is structurally congruent to I[P ′]. By applying the rule (struct)

of the reduction semantics we end the proof.

(Case (l bio par)) By inductive hypothesis we have B0
τ
−→ B′

0 implies B0 −→ B′
0 and hence,

by applying the rule (redex) of the reduction semantics we derive B0 || B1 −→ B′
0 || B1.

As consequence of Theorem 5.2.19, a bio-process B ∈ Score admits an infinite com-

putation according to the reduction semantics if and only if a corresponding bio-process

B′ ∈ safe(B) admits an infinite sequence of τ transitions according to the labelled tran-

sition semantics. In particular, B′ is terminating according to the labelled transition

semantics if an infinite sequence of τ transitions starting from B′ does not exists.

Corollary 5.2.20. Let B ∈ Score and B′ ∈ safe(B). The bio-process B terminates

according to the reduction semantics iff B′ terminates according to the labelled transition

semantics.

In the reminder of the chapter we consider only safe bio-processes in Ssafe.

5.2.3 Decidability of termination for the core subset

Here we show that the existence of an infinite computation over safe bio-processes is

computable in Bcore. We equip the labelled transition system (Ssafe,
τ
−→) with a qo �b

on bio-processes which turns out to be wqo compatible with
τ
−→. Then we show that

termination is decidable.

Definition 5.2.21. Let B ∈ Ssafe. The set of bio-processes reachable from B with a se-

quence of τ transitions is:

Deriv(B) = {B′ | B
τ
−→

∗
B′}

In order to define the qo �b, we first introduce a simplified structural congruence

relation which is compatible with
θ
−→. This relation captures only reordering of sums, the
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monoidal laws for the parallel composition of processes and bio-processes and reordering

of interfaces.

Definition 5.2.22. The ≡decp congruence relation over processes, is the smallest relation

which satisfies the laws a.2, a.3, a.4, a.5, a.6, a.7 in Tab. 5.1 and the ≡decb congruence

relation over bio-processes, is the smallest relation which satisfies the laws b.1, b.2, b.3.

Since ≡decp ⊂≡p and ≡
dec
b ⊂≡b all the previous results on safe bio-processes hold also for

the simplified structural congruence.

Lemma 5.2.23. Let B0, B1 ∈ Ssafe. If B0 ≡
dec
b B1 and B1

θ
−→ B′

1 then there exists B′
0

such that B0
θ
−→ B′

0 and B′
0 ≡

dec
b B′

1.

Proof. By induction on the length of the derivation B0 ≡
dec
b B1.

We can now introduce a quasi-order �b which will be proven to be a well-quasi-order.

Definition 5.2.24. Let B,B′ ∈ Ssafe. We define B �b B
′ iff there exist I1, . . . , In, P1, . . . ,

Pn, Q1, . . . , Qn, P
′
1, . . . , P

′
n such that B ≡decb

∏n

i=1 Ii[Pi], B
′ ≡decb

∏n

i=1 Ii[Qi] and Qi =

Pi | P
′
i for i = 1, . . . , n.

The �b relation is reflexive, transitive and strongly compatible with
θ
−→.

Theorem 5.2.25. Let B0, B
′
0, B1 ∈ Ssafe. If B0

θ
−→ B′

0 and B0 �b B1 then there exists B′
1

such that B1
θ
−→ B′

1 and B′
0 �b B

′
1.

Proof. By cases on the inference of
θ
−→. We present only one case because all the others

are similar.

(Case (bio out)) We have that B0 = I[P ]
∆x!y
−−→ I[P ′] = B′

0. By definition of �b we have

that there exists a process Q such that B1 ≡
dec
b I[P |Q]. By hypothesis we know that

P
x!y
−→ P ′ and hence, by applying the rules in Tab. 5.2, we can derive the transition

P |Q
x!y
−→ P ′|Q from which we have B1

∆x!y
−−→ I[P ′|Q] = B′

1. By �b definition it results

B′
0 �b B

′
1.

Corollary 5.2.26. �b is strongly compatible with
τ
−→.

We now introduce some auxiliary functions that will be used to prove that �b is a wqo.

The Sub function generates the set of all possible sequential and replicated sub-processes

of a given process.
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Definition 5.2.27. Let P ∈ P and Y ⊆ 2N be a finite set of names. The set of possible

sequential and replicated sub-processes of P over the set of names Y is defined as:

Sub(nil, Y ) = ∅

Sub(x!m.P, Y ) = {x!m.P} ∪ Sub(P, Y )

Sub(x?m.P, Y ) = {x?m.P} ∪ (
⋃

n∈Y Sub(P{n/m}, Y ))

Sub(M +N, Y ) = {M +N} ∪ Sub(M,Y ) ∪ Sub(N, Y )

Sub(P | Q, Y ) = Sub(P, Y ) ∪ Sub(Q, Y )

Sub(∗x!m.P, Y ) = {∗x!m.Y } ∪ Sub(P, Y )

Sub(∗x?m.P, Y ) = {∗x?m.P} ∪ (
⋃

n∈Y Sub(P{n/m}, Y ))

The set of processes generated by the application of the function Sub on a process P

and a finite set of names Y is finite.

Lemma 5.2.28. Let P ∈ P and Y ⊆ 2N be a finite set of names. Then Sub(P, Y ) is

finite.

Proof. By induction on the structure of P .

(case nil) The empty set is finite.

(case x!m.P ′) By inductive hypothesis Sub(P ′, Y ) is finite and hence by adding the element

x!m.P ′ the set is still finite.

(case x?m.P ′) By inductive hypothesis for all n ∈ Y the set Sub(P ′{n/m}, Y ) is finite.

Since Y is finite, then the union of a finite number of finite sets is a finite set. Moreover,

by adding the process x?m.P ′ this set remains finite.

(case M +N) By inductive hypothesis Sub(M,Y ) and Sub(N, Y ) are finite set and hence

their union with the set {M +N} results in a finite set.

The other cases are similar.

Corollary 5.2.29. Let P ∈ P. Then Sub(P, fn(P )) is finite.

Proof. From the fact that fn(P ) is a finite set of names and by Lemma 5.2.28.

Lemma 5.2.30. Let P, P ′ ∈ P. Then P ≡decp P ′ implies Sub(P, fn(P )) = Sub(P ′, fn(P ′)).

Proof. By induction on the length of the derivation P ≡decp P ′.

We now prove some useful properties of the function Sub.

Lemma 5.2.31. Let P ∈ P and Y, Y ′ ⊆ 2N . If Y ′ ⊆ Y then Sub(P, Y ′) ⊆ Sub(P, Y ).
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Proof. By induction on the structure of P .

(Case x?m.P ′) By inductive hypothesis for all n ∈ Y ′ we have that Sub(P ′{n/m}, Y ′) ⊆

Sub(P ′{n/m}, Y ). As a consequence, we obtain the condition
⋃

n∈Y ′ Sub(P ′{n/m}, Y ′) ⊆
⋃

n∈Y Sub(P
′{n/m}, Y ) and hence the Lemma holds.

The other cases are similar.

Lemma 5.2.32. Let P,Q ∈ P and Y, Y ′, Y ′′ ⊆ 2N . If Y ′ ⊆ Y ′′ and Sub(P, Y ′) ⊆

Sub(Q, Y ′′) then Sub(P, Y ′ ∪ Y ) ⊆ Sub(Q, Y ′′ ∪ Y ).

Proof. By induction on the structure of P .

(Case x!m.P ′) By definition Sub(x!m.P ′, Y ′) = {x!m.P ′} ∪ Sub(P ′, Y ′). By hypothesis

and Lemma 5.2.31 we have Sub(x!m.P ′, Y ′) ⊆ Sub(Q, Y ′′) ⊆ Sub(Q, Y ′′∪Y ) and therefore

x!m.P ′ ∈ Sub(Q, Y ′′ ∪ Y ). By definition of Sub function and by inductive hypothesis, we

can derive Sub(P ′, Y ′′ ∪ Y ) ⊆ Sub(Q, Y ′′ ∪ Y ) and hence the Lemma holds.

(Case x?m.P ′) By definition Sub(x?m.P ′, Y ′) = {x?m.P ′} ∪ (
⋃

n∈Y ′ Sub(P ′{n/m}, Y ′)).

By hypothesis and Lemma 5.2.31 Sub(x!m.P ′, Y ′) ⊆ Sub(Q, Y ′′) ⊆ Sub(Q, Y ′′ ∪ Y ) and

therefore x!m.P ′ ∈ Sub(Q, Y ′′ ∪ Y ). By definition of Sub function and by inductive

hypothesis, we can derive for all n ∈ Y ′′∪Y we have Sub(P ′{n/m}, Y ′′∪Y ) ⊆ Sub(Q, Y ′′∪

Y ) and hence the Lemma follows.

(Case P0|P1) By hypothesis and Sub function definition we have Sub(P0, Y
′) ⊆ Sub(Q, Y ′′)

and Sub(P1, Y
′) ⊆ Sub(Q, Y ′′). By inductive hypothesis we have Sub(P0, Y

′ ∪ Y ) ⊆

Sub(Q, Y ′′ ∪ Y ) and Sub(P1, Y
′ ∪ Y ) ⊆ Sub(Q, Y ′′ ∪ Y ) and therefore Sub(P0, Y

′ ∪ Y ) ∪

Sub(P1, Y
′ ∪ Y ) ⊆ Sub(Q, Y ′′ ∪ Y ). The Lemma follows.

The other cases are similar.

The Sub function definition and its properties can be extended to safe bio-processes.

In particular, we want to collect all the possible sequential and replicated sub-processes of

all the boxes internal processes, with associated the corresponding interfaces (sub-boxes).

Definition 5.2.33. Let B ∈ Ssafe and Y ⊆ 2N be a finite set of names. The set of

possible sub-boxes of B over the set of names Y is defined as:

Sub(Nil, Y ) = ∅

Sub(I[P ], Y ) = {I[P ′] | P ′ ∈ Sub(P, Y ∪ sub(I))}

Sub(B || B′, Y ) = Sub(B, Y ) ∪ Sub(B′, Y )

Lemma 5.2.34. Let B ∈ Ssafe and Y ⊆ 2N be a finite set of names. Then Sub(B, Y ) is

finite.
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Proof. By induction on the structure of B.

(case Nil) The empty set is finite.

(case I[P ]) From the fact that sub(I) is finite and by Lemma 5.2.28, we have that

Sub(P, Y ∪ sub(I)) is finite and hence the set {I[P ′] | P ′ ∈ Sub(P, Y ∪ sub(I))} is fi-

nite.

(case B || B′) By inductive hypothesis Sub(B, Y ) and Sub(B′, Y ) are finite sets and

therefore their union is finite.

Corollary 5.2.35. Let B ∈ Ssafe. Then Sub(B, fn(B)) is finite.

Proof. From the fact that fn(B) is a finite set of names and by Lemma 5.2.34.

Lemma 5.2.36. Let B,B′ ∈ Ssafe and B ≡
dec
b B′. Then Sub(B, fn(B)) = Sub(B′, fn(B′)).

Proof. By induction on the length of the derivation B ≡decp B′ and by using Lemma 5.2.30.

Lemma 5.2.37. Let B ∈ Ssafe and Y, Y
′ ⊆ 2N . If Y ′ ⊆ Y then Sub(B, Y ′) ⊆ Sub(B, Y ).

Proof. By induction on the structure of B.

(Case I[P ]) By Lemma 5.2.31 we have Sub(P, Y ′ ∪ sub(I)) ⊆ Sub(P, Y ∪ sub(I)). This

means {I[P ′] | P ′ ∈ Sub(P, Y ′ ∪ sub(I))} ⊆ {I[P ′] | P ′ ∈ Sub(P, Y ∪ sub(I))} and the

Lemma follows.

The other cases are similar.

Lemma 5.2.38. Let B,B′ ∈ Ssafe and Y, Y ′, Y ′′ ⊆ 2N . If Y ′ ⊆ Y ′′ and Sub(I[P ], Y ′) ⊆

Sub(I[P ′], Y ′′) then Sub(I[P ], Y ′ ∪ Y ) ⊆ Sub(I[P ′], Y ′′ ∪ Y ).

Proof. By hypothesis and Sub definition we have Sub(P, Y ′ ∪ sub(I)) ⊆ Sub(P ′, Y ′′ ∪

sub(I)). By Lemma 5.2.32 we have Sub(P, Y ′∪sub(I)∪Y ) ⊆ Sub(P ′, Y ′′∪sub(I)∪Y ). This

means {I[P ′′] | P ′′ ∈ Sub(P, Y ′ ∪ sub(I)∪ Y )} ⊆ {I[P ′′] | P ′ ∈ Sub(P ′, Y ′′ ∪ sub(I)∪ Y )},

which means Sub(I[P ], Y ′ ∪ Y ) ⊆ Sub(I[P ′], Y ′′ ∪ Y ).

To prove that �b is a wqo we need some preliminary results. The first result states

that, given a transition P
θ
−→ P ′ over processes and a transition B

θ
−→ B′ over bio-processes,

the set of possible sequential and replicated processes of P ′ over fn(P ′) and of B′ over

fn(B′) are delimited by the set of possible sequential and replicated processes of P over

fn(P ) and of B over fn(B) and the names in θ.

Lemma 5.2.39. Let P, P ′ ∈ P and Y ∈ 2N . Suppose P
θ
−→ P ′, then

(a) if θ = x!y then Sub(P ′, fn(P ′)) ⊆ Sub(P, fn(P ))
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(b) if θ = x?y then Sub(P ′, fn(P ′)) ⊆ Sub(P, fn(P ) ∪ {y})

(c) if θ = τ then Sub(P ′, fn(P ′)) ⊆ Sub(P, fn(P ))

Proof. For all the three statements the proof is by induction on the inference of P
θ
−→ P ′.

Cases (rep in) and (rep out) are similar to (pi in) and (pi out). The (pi par) cases are

similar for all the three statements and hence we provide the proof only for (a). The

(pi sum) cases are similar to the (pi par) ones.

(a)

(Case (pi out)) We have P = x!y.P ′ x!y
−→ P ′. By definition we have that Sub(P, fn(P )) =

{x!y.P ′} ∪ Sub(P ′, fn(P )). By Lemma 5.2.10 we know that fn(P ′) ⊆ fn(P ) and hence (by

Lemma 5.2.31) Sub(P ′, fn(P ′)) ⊆ Sub(P ′, fn(P )). As a consequence Sub(P ′, fn(P ′)) ⊆

Sub(P, fn(P )).

(Case (pi par)) By hypothesis we have P0
x!y
−→ P ′

0 and hence, by inductive hypothesis, we

obtain Sub(P ′
0, fn(P

′
0)) ⊆ Sub(P0, fn(P0)). By Lemma 5.2.10 we know fn(P ′

0) ⊆ fn(P0) and

hence by Lemma 5.2.32 Sub(P ′
0, fn(P

′
0)∪ fn(P1)) ⊆ Sub(P0, fn(P0)∪ fn(P1)). Moreover, by

Lemma 5.2.31 we obtain Sub(P1, fn(P
′
0)∪ fn(P1)) ⊆ Sub(P1, fn(P0)∪ fn(P1)). By definition

of the Sub function the Lemma follows.

(b)

(Case (pi in)) We have P = x?w.P ′ x?y
−−→ P ′{y/w}. By definition we have that Sub(P, fn(P )∪

{y}) = {x?w.P ′}∪ (
⋃

n∈fn(P )∪{y} Sub(P
′{n/w}, fn(P )∪{y}) and therefore contains the sub-

set Sub(P ′{y/w}, fn(P ) ∪ {y}). By Lemma 5.2.10 we know that fn(P ′{y/w}) ⊆ fn(P ) ∪ {y}

and hence (by Lemma 5.2.31) Sub(P ′{y/w}, fn(P ′{y/w})) ⊆ Sub(P ′{y/w}, fn(P )∪ {y}). The

Lemma follows.

(c)

(Case (l intra)) By hypothesis we have P0
x!z
−→ P ′

0 and P1
x?z
−−→ P ′

1. By (a) and (b) we

have that Sub(P ′
0, fn(P

′
0)) ⊆ Sub(P0, fn(P0)) and Sub(P

′
1, fn(P

′
1)) ⊆ Sub(P1, fn(P1) ∪ {z}).

By applying Lemma 5.2.10, Lemma 5.2.31 and Lemma 5.2.32 we obtain Sub(P ′
0, fn(P

′
0)∪

fn(P ′
1)) ⊆ Sub(P0, fn(P0)∪ fn(P1)) and Sub(P

′
1, fn(P

′
0)∪ fn(P

′
1)) ⊆ Sub(P1, fn(P0)∪ fn(P1))

and, by Sub function definition, the Lemma follows.

Lemma 5.2.40. Let B,B′ ∈ Ssafe. Suppose B
θ
−→ B′. Then

(a) if θ = ∆x!y then Sub(B′, fn(B′)) ⊆ Sub(B, fn(B))

(b) if θ = ∆x?y then Sub(B′, fn(B′)) ⊆ Sub(B, fn(B) ∪ {y})

(c) if θ = τ then Sub(B′, fn(B′)) ⊆ Sub(B, fn(B))

Proof. For all the three statements the proof is by cases on the derivation of B
θ
−→ B′. We

present only the most important cases. The other cases can be proved similarly.
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(a)

(Case (bio out)) By hypothesis we know that P
x!y
−→ P ′ and therefore by Lemma 5.2.39 we

have Sub(P ′, fn(P ′)) ⊆ Sub(P, fn(P )). By applying Lemma 5.2.32 we have Sub(P ′, fn(P ′)∪

sub(I)) ⊆ Sub(P, fn(P ) ∪ sub(I)). But this means that {I[P ′′]|P ′′ ∈ Sub(P ′, fn(P ′) ∪

sub(I))} ⊆ {I[P ′′]|P ′′ ∈ Sub(P, fn(P ) ∪ sub(I))} and hence {I[P ′′]|P ′′ ∈ Sub(P ′, (fn(P ′) \

sub(I)) ∪ sub(I))} ⊆ {I[P ′′]|P ′′ ∈ Sub(P, (fn(P ) \ sub(I)) ∪ sub(I))}. Thus, we have that

Sub(I[P ′], fn(P ′)\sub(I)) ⊆ Sub(I[P ], fn(P )\sub(I)), that leads to Sub(I[P ′], fn(I[P ′])) ⊆

Sub(I[P ], fn(I[P ])).

(Case (l bio par)) By hypothesis we have that B0
∆x?y
−−−→ B′

0. Similarly to Lemma 4.4.2, also

here there exists a normalized derivation such that B0 ≡
dec
b I[P ] ‖ B and B′

0 ≡
dec
b I[P ′] ‖ B

with I[P ]
∆x?y
−−−→ I[P ′]. From the previous case we know that Sub(I[P ′], fn(I[P ′])) ⊆

Sub(I[P ], fn(I[P ])). Moreover, from Lemma 5.2.10 we know fn(I[P ′]) ⊆ fn(I[P ]) and

hence, by Lemma 5.2.32, Sub(I[P ′], fn(I[P ′]) ∪ fn(B) ∪ fn(B1)) ⊆ Sub(I[P ], fn(I[P ]) ∪

fn(B) ∪ fn(B1)). Now, knowing that fn(B′
0) ∪ fn(B1) ⊆ fn(B0) ∪ fn(B1), we know, by

Lemma 5.2.31, that Sub(B, fn(B′
0) ∪ fn(B1)) ⊆ Sub(B, fn(B0) ∪ fn(B1)) and also that

Sub(B1, fn(B
′
0) ∪ fn(B1)) ⊆ Sub(B1, fn(B0) ∪ fn(B1)). But this means

Sub(I[P ′] ‖ B ‖ B1, fn(B
′
0) ∪ fn(B1)) ⊆ Sub(I[P ] ‖ B ‖ B1, fn(B0) ∪ fn(B1))

and by Lemma 5.2.36 we have Sub(B′
0 ‖ B1, fn(B

′
0 ‖ B1)) ⊆ Sub(B0 ‖ B1, fn(B0 ‖ B1)).

(b)

(Case (bio in)) By hypothesis we know that P
x?y
−−→ P ′ and therefore by Lemma 5.2.39

we have Sub(P ′, fn(P ′)) ⊆ Sub(P, fn(P ) ∪ {y}). By applying Lemma 5.2.32 we obtain

Sub(P ′, fn(P ′)∪ sub(I)) ⊆ Sub(P, fn(P )∪ sub(I)∪{y}). But this means that {I[P ′′]|P ′′ ∈

Sub(P ′, fn(P ′) ∪ sub(I))} ⊆ {I[P ′′]|P ′′ ∈ Sub(P, fn(P ) ∪ sub(I) ∪ {y})} and, similarly to

the previous case (bio out), the Lemma follows.

Now, we define a superset of the set of derivatives of a bio-process B, denoted with

PB. This set includes all the bio-processes whose possible sequential and replicated sub-

processes are contained in the corresponding elements of B.

Definition 5.2.41. Let B ∈ Ssafe. Then

PB = {B′ ∈ Ssafe | Sub(B
′, fn(B′)) ⊆ Sub(B, fn(B)) ∧ |Boxes(B′)| = |Boxes(B)|}

The following result describes how given a bio-process B and a bio-process B′ ∈ PB,

all the derivatives of B′ are contained in PB.

Lemma 5.2.42. Let B ∈ Ssafe and B′ ∈ PB. If B
′ τ
−→ B′′ then B′′ ∈ PB.

98



CHAPTER 5. EXPRESSIVE POWER 5.2. A DECIDABILITY RESULT

Proof. B′ ∈ PB implies Sub(B′, fn(B′)) ⊆ Sub(B, fn(B)). Since by hypothesis B′ τ
−→ B′′,

by Lemma 5.2.40 we have Sub(B′′, fn(B′′)) ⊆ Sub(B′, fn(B′)). Transitivity of ⊆ and

|Boxes(B′)| = |Boxes(B′′)| (immediate by semantics definition) prove Sub(B′′, fn(B′′)) ⊆

Sub(B, fn(B)), which means B′′ ∈ PB.

A consequence of this lemma is that all the derivatives of a bio-process B are contained

in PB.

Corollary 5.2.43. Let B ∈ Ssafe. Then Deriv(B) ⊆ PB.

Proof. Immediate from Lemma 5.2.42.

The following Lemma shows how a bio-process in PB can be rewritten (up-to ≡decb ) as

a parallel composition of boxes that are in relation with boxes in Sub(B, fn(B)).

Lemma 5.2.44. Let B ∈ Ssafe and B′ ∈ PB. Then we have that

B′ ≡decb

n∏

i=1

Ii[
m∏

j=1

Qi,j ]

with Ii[Qi,j ] ∈ Sub(B, fn(B)) for i = 1, ..., n and j = 1, . . . ,m.

Proof. Immediate from the bio-processes syntax and from the definition of Sub function.

In the following Lemma we define the relation =∗ over bio-processes according to Def.

5.2.5.

Lemma 5.2.45. Let B ∈ Ssafe and I[P1], ..., I[Pn], I
′[Q1], ..., I

′[Qm] in Sub(B, fn(B)). If

I[P1], ..., I[Pn] =∗ I
′[Q1], ..., I

′[Qm] then I[
∏n

i=1 Pi] �b I
′[
∏m

i=1Qi].

Proof. If I[P1], ..., I[Pn] =∗ I
′[Q1], ..., I

′[Qm] then there exists an injection f : {1, ..., n} →

{1, ...,m} such that I[Pi] = I ′[Qf(i)] and i = f(i), with i = 1, ..., n. The injection f corre-

sponds to the identity function of the set {1, ..., n} and hence for each i in {1, ..., n} we have

I[Pi] = I ′[Qi]. By ≡decb definition we can write I ′[
∏m

i=1Qi] ≡
dec
b I ′[

∏n

i=1Qi |
∏m

i=n+1Qi]

and by the equality result we have I ′[
∏m

i=1Qi] ≡
dec
b I ′[

∏n

i=1 Pi |
∏m

i=n+1Qi] (notice that

I = I ′), which means I[
∏n

i=1 Pi] �b I
′[
∏m

i=1Qi].

The following theorem shows that the qo �b is a wqo.

Theorem 5.2.46. Let B ∈ Ssafe. The relation �b is a wqo over PB.
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Proof. We take an infinite sequence B1, ..., Bj , ... such that Bi ∈ PB for i > 0. By Lemma

5.2.44, for any i we have that:

Bi ≡
dec
b

n∏

j=1

Ii,j[

mi,j∏

k=1

Pi,j,k]

Hence, each Bi can be seen as composed of n finite sequences:

Ii,1[Pi,1,1], . . . , Ii,1[Pi,1,mi,1
]

Ii,2[Pi,2,1], . . . , Ii,2[Pi,2,mi,2
]

· · ·

Ii,n[Pi,n,1], . . . , Ii,n[Pi,n,mi,n
]

Note that all the sequences are composed of elements from the finite set Sub(B, fn(B)).

Each sequence is hence an element of Sub(B, fn(B))∗ and hence we have n infinite se-

quences of elements in Sub(B, fn(B))∗. By Corollary 5.2.35 Sub(B, fn(B)) is finite, and

by applying Lemma 5.2.7 and Higman’s Theorem 5.2.6 we have that =∗ is a wqo over

Sub(B, fn(B))∗.

Now, we can extract an infinite subsequence from B1, ..., Bi, ... making the finite se-

quences Ii,1[Pi,1,1], . . . , Ii,1[Pi,1,mi,1
] increasing with respect to =∗; then, we continue by

extracting an infinite subsequence from the subsequence obtained previously, making the

finite sequences Ii,2[Pi,2,1], . . . , Ii,2[Pi,2,mi,2
] increasing also in this case with respect to =∗.

We continue for all the n subsequences.

We end up with an infinite subsequence Bn0 , ..., Bni
, ... (with n0 < · · · < ni < . . . )

of B1, ..., Bi, ... such that all the n finite sequences are ordered with respect to =∗. By

Lemma 5.2.45 we obtain:

In0,j[

mn0,j∏

l=1

Pn0,j,l] �b · · · �b Ini,j [

mni,j∏

l=1

Pni,j,l] �b · · · for j = 1, . . . , n

from which we finally obtain Bn0 �b · · · �b Bni
�b · · ·

The hypothesis of Theorem 5.2.4 are satisfied by the following theorem.

Theorem 5.2.47. Let B ∈ Ssafe. The transition system (Deriv(B),
τ
−→,�b) is a well-

structured transition system with decidable �b and computable Succ.

Proof. The relation �b has been proved strong compatible in Theorem 5.2.25. Moreover,

the fact that �b is a wqo on Deriv(B) is a consequence of Corollary 5.2.43 and Theorem

5.2.46.
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Given B,B′ ∈ Deriv(B), deciding whether B �b B
′ means to find a bijection between

boxes of B and B′ such that, for each correspondence (I[P ], I[P ′]), a subterm P ′′ of P ′

with P ′ ≡decp P | P ′′ exists. This is a decidable problem.

Corollary 5.2.48. Let B ∈ Ssafe. The termination of B is decidable.

5.3 Undecidability results

In this section we prove that termination is undecidable for Bpcore and Becore. We show

this by providing encodings of Random Access Machines (RAMs)[101], a well known

Turing-complete formalism, into Bpcore and Becore. First of all we recall the definition of

RAMs.

5.3.1 Random access machines

A Random Access Machine (RAM) is an abstract machine in the general class of register

machines. RAMs are a computational model based on finite programs acting on a finite

set of registers.

A RAM R is composed of a finite set of registers r1, · · · , rn and a sequence of indexed

instructions (1, I1), · · · , (m, Im). Registers store natural numbers, one for each register,

and can be updated (incremented or decremented) and tested for zero. In [75] it is shown

that the following two instructions are sufficient to model every recursive function:

• (i : Incr(rj)): adds 1 to the contents of register rj and goes to the next instruction;

• (i : DecJump(rj, s)): if the contents of the register rj is not zero, then decreases it

by 1 and goes to the next instruction, otherwise jumps to the instruction s.

The computation starts from the instruction indexed with the number 1 and it continues

by executing the other instructions in sequence, unless a jump instruction is encountered.

The execution stops when an instruction number higher than the length of the program

is reached.

The state of a RAM R is a tuple (j, k1, ..., kn) where j is the index of next instruction

to be executed and k1, ..., kn are the current contents of the registers. The execution is

defined by a transition relation among states

(j, k1, ..., kn)→R (j′, k′1, ..., k
′
n)

meaning that the state of the RAM changes from (j, k1, ..., kn) to (j′, k′1, ..., k
′
n), as a

consequence of the execution of the j-th instruction.
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A state (j, k1, ..., kn) is terminated if the program counter j is greater than the num-

ber of instructions m. We say that a RAM R terminates if its computation reaches a

terminated state.

5.3.2 Encoding with priorities

In this section we enrich Bcore by adding priorities and we show that the resulting language

turns out to be Turing equivalent by providing an encoding of RAMs into it. We call this

subset Bpcore. Priorities are a frequently used feature of many computational systems

and many process calculi have been enriched with some priority mechanism [9, 19, 87].

How priorities affect the expressive power of a language has been previously studied in

[87, 108]. As for the full BlenX we use a mechanism based on global priorities [5, 19]

where we assume the existence of a function δ : N → {0, 1, 2} that associates priorities to

communication channels and by limiting the compatibility function to α : T 2 → {0, 1, 2}

that associates priorities to sort pairs. Value 0 means that no communication is enabled,

while 1 and 2 represent priority levels. We concentrate on a two-level priority mechanism,

showing that it is enough to reach Turing completeness.

The key ingredient in this encoding is the combined use of choice and priorities; boxes

and sorts are used only to maintain a certain homogeneity and uniformity with respect

to this encoding and the one presented in the next section. Very recently, in [3] the

authors show an encoding of RAMs into a subset of CCS with replication and enriched

with priorities which is similar in the spirit to the one presented here.

Well-formedness conditions and structural congruence relations ≡p and ≡b remain

unchanged with respect to Sec. 5.1 and the reduction semantics for Bpcore is reported in

Tab. 5.4. Moreover, we denote with Sp the set of well-formed systems of Bpcore. Tab. 5.4

shows that intra-communications and inter-communications of priority 1 can be derived

only if no intra-communications and inter-communications with priority 2 are enabled.

It is important to note that the introduction of priorities causes the generation of

transition systems which are not well-structured. Indeed, since priorities remove certain

possibilities that would have existed without priorities, we are no longer able to define

a quasi-ordering over bio-processes (of the kind presented in Sec.5.2) that satisfies the

strong compatibility property.

Definition 5.3.1. A Bpcore transition system is referred to as (Sp,→), where Sp is the set

of well-formed systems and →⊆ Sp × Sp is the transition relation, constructed using the

transition relation
p
−→ ⊆ Sp × Sp (see Tab.5.4).

Consider a RAM R with program (1, I1), ..., (m, IM ) and state (j, k1, ..., kn). The en-

coding of the RAM is the bio-process B in Tab.5.5 where we assume δ(x) = 1 for all
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(intra) I[x!z. P1 +M1 |x?w.P2 +M2 |P3 ]
δ(x)
−−→ I[P1 |P2{z/w} |P3 ]

provided δ(x) > 0

(inter)
P1 ≡p x!z.R1 +M1 |Q1 P2 ≡p y?w.R2 +M2 |Q2

I1[P1 ] ‖ I2[P2 ]
α(Γ,∆)
−−−−→ I1[R1 |Q1 ] ‖ I2[R2{z/w} |Q2 ]

where I1 = ⊕(x, ∆) I∗1 and I2 = ⊕(y, Γ) I
∗
2

and provided α(Γ,∆) > 0 and z 6∈ sub(I1) ∪ sub(I2)

(struct)
B1 ≡b B

′
1 B′

1
p
−→B′

2 B′
2 ≡b B2

B1
p
−→B2

(redex)
B

p
−→B′

B ‖ B1
p
−→B′ ‖ B1

(priority)
B

p
−→B′ ∧ ∄B1 s.t. B

p1
−→B1 with p1 > p

B−→B

Table 5.4: Reduction semantics of Bpcore.

x ∈ N and:

α(∆1,∆2) =







2 if ∆1 = ∆2 = Testyesj for all j

1 if ∆1 = ∆2 6= Testyesj

0 otherwise

The encoding produces a system in Bpcore. This encoding is a parallel composition

of a switching box, which controls the activation of the instructions sequence, m boxes

encoding instructions and n boxes encoding registers. The two sorts of instructions are

encoded in different ways, but in both cases the encoding box is activated by performing

an inter-communication on the channel act with the switching box Switchj.

Each register rj is modelled with a box whose internal process structure depends on

the content of the register. A register can be incremented and tested for not zero value.

The number of parallel unguarded ty!e. nil processes present in the internal structure of

the box represents the content of the register.

The box encoding the instruction (i, Incr(rj)), after its activation, consumes an inter-

communication with the box encoding the register rj (through the interfaces of sorts

IRegj), representing a request for its increment. In the register box, these communica-

tions produces the replication of the process ty!e. nil, representing the increment of one,

while in the instruction box, the inter-communication produces the replication of the in-

ternal machinery and the consumption of an inter-communication with the switching box

(through the interfaces of sorts Ins) for the activation of instruction i+ 1.
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J(j, k1, ..., kn)K
p
R = Switchj || J(1, I1)K

p
R || · · · || J(m, Im)K

p
R ||

Jr1 = k1K
p
R || · · · || Jrn = knK

p
R

Switchj ,B ⊕(ins, Ins)⊕(i1, Ins1)⊕(i2, Ins2) · · · ⊕(im, Insm)

[ ∗ x?e. Switch | Switch | ij !e.nil ]

Switch ,P ins?type. (type!e. nil | (
∑m

l=1 insl?e. x!e. il!e. nil))

J(i, Incr(rj))K
p
R = ⊕(act, Insi)⊕(next, Ins)⊕(inc, IRegj)

[ ∗ x?e. Inci | Inci ]

Inci ,P act?e. inc!e. x!e. next!insi+1. nil

J(i,DecJump(rj , s))K
p
R = ⊕(act, Insi)⊕(next, Ins)⊕(ty, T est

yes
j )

⊕(tn, T est
no
j )[ ∗ x?e.DecJumpi | DecJumpi ]

DecJumpi ,P act?e. (ty?e.Deci + tn?e. Jumpi)

Deci ,P x!e. next!insi+1. nil

Jumpi ,P x!e. next!inss. nil

Jrj = lKpR = ⊕(ty, T est
yes
j )⊕(tn, T est

no
j )⊕(inc, IRegj)

[ ∗ inc?e. ty!e. nil | ∗ tn!e. nil | ty!e. nil | · · · | ty!e. nil
︸ ︷︷ ︸

l

]

Table 5.5: Encoding of RAMs with Bpcore.

The box encoding the instruction (i,DecJump(rj, s)), after its activation, presents an

alternative behaviour (encoded with the choice operator), which implements the mecha-

nism used for testing the content of the register rj. In particular, the content of the register

is tested with two alternative inter-communications on channels ty and tn through inter-

faces of sorts Testyesj and Testnoj , respectively. In the register box, outputs on channel ty,

if present, generate inter-communications with priority 2.

If the encoded register contains a value n > 0, then n parallel compositions of process

ty!e. nil are present and hence inter-communications on output ty!e have always precedence

with respect to the inter-communication that the process ∗tn!e. nil offers. In the register

box, the consumption of an immediate inter-communication deletes an instance of ty!e. nil

process in its internal structure, representing the decrement of one, while in the instruction

box, the consumption of an immediate inter-communication enables the process Deci,

which replicates its internal box machinery and performs an inter-communication with
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the switching box (through the interfaces of sorts Ins) for the activation of instruction

i+ 1.

If the encoded register contains the value 0, then no unguarded ty!e. nil processes are

present in the internal structure of the register box and hence the inter-communication

that the process ∗tn!e. nil offers can be consumed. This causes, in the instruction box, the

activation of the process Jumpi, which replicates its internal box machinery and performs

an inter-communication with the switching box for the activation of instruction s.

A formal proof of the encoding correctness follows.

Lemma 5.3.2. Let R be a RAM with program (1, I1), ..., (m, Im) and state (j, k1, ..., kn).

If (j, k1, ..., kn) →R (j′, k′1, ..., k
′
n), then there exists a well-formed system S ∈ Sp such

that J(j, k1, ..., kn)K
p
R →

+ S and S ≡b J(j′, k′1, ..., k
′
n)K

p
R.

Proof. The proof is by case analysis. There are three different cases: (i) Instruction Ij =

DecJump(rl, s) with rl content greater than zero; (ii) Instruction Ij = DecJump(rl, s)

with rl content equal to zero; (iii) Instruction Ij = Incr(rl). We only prove case (i),

because the other cases can be proved similarly.

(i) We consider the computation of J(j, k1, ..., kn)K
p
R. An inter-communication between

the component Switchj and the component J(j,DecJump(rl, s))K
p
R is consumed. In par-

ticular, the two boxes synchronize on output ij!e and input act?e through their interfaces

of sorts Insj. This causes the activation of the J(j,DecJump(rl, s))K
p
R component. Note

that, after the inter-communication, the components codifying for the other instructions,

the registers and the switching box are blocked.

The activation of the J(j,DecJump(rl, s))K
p
R box causes the enabling of a choice pro-

cess. This process is used for testing the content of the register rj, that is a choice

composition of two processes blocked on inputs ty?e and tn?e, bound to the interfaces

with sorts Testyesj and Testnoj , respectively. By hypothesis, the content of the regis-

ter rl is greater than 0 and hence the internal process structure of the box Jrl = klK
p
R

is a parallel composition of processes that contain at least one ty!e. nil processes. Two

types of inter-communications between the boxes encoding the instruction and the reg-

ister are enabled. One inter-communication through interfaces with sorts Testnoj and kj
inter-communications through interfaces with sorts Testyesj . However, since the inter-

communications through interfaces with sorts Testyesj have priority 2, they have prece-

dence with respect to the one through interfaces with sorts Testno. The consumption

of one of the immediate inter-communications deletes one of the kl ty!e. nil processes in

Jrl = klK
p
R, resulting (for all the possible inter-communications of this type) in a bio-process

structurally congruent to Jrl = kl − 1KgpR , and activates process Decj in the instruction

box.
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At this point, an intra-communication in the instruction box on channel x replicates

the internal machinery of the box and enables the process next!insj+1. nil. This produces

a synchronization between the instruction box and the switching box, which generates an

inter-communication on output next!insj+1 and input ins?type through interfaces of type

Ins.

The instruction box is now returned in its form J(j,DecJump(rl, s))K
p
R, while in the

switching box the process

(insj+1!e. nil | (
∑m

o=1 inso?e. x!e. io!e. nil))

is enabled. An intra-communication on channel insj+1 is consumed, the internal machin-

ery is replicated with an intra-communication on channel x and the switching box is now

structurally congruent to the box Switchj+1.

Lemma 5.3.3. Let R be a RAM with program (1, I1), ..., (m, Im) and state (j, k1, ..., kn).

If the system S = J(j, k1, ..., kn)K
p
R can produce a transition S → S1, then there ex-

ists a computation S → S1 → S2 → · · · → Sl such that Sl = J(j′, k′1, ..., k
′
n)K

p
R and

(j, k1, ..., kn)→R (j′, k′1, ..., k
′
n)

Proof. Consider the structure of the system S = J(j, k1, ..., kn)K
p
R. If the system S can

perform a first step S → S1, this corresponds to an inter-communication between the box

Switchj and the box encoding for the instruction (j, Ij), representing the activation of

the instruction box. The encoding definition ensures that the instruction (j, Ij) exists;

hence the instruction can be executed in the state (j, k1, ..., kn) of the RAM R, generating

a new state (j′, k′1, ..., k
′
n).

There are three cases: (i) instruction Ij = DecJump(rl, s) with rl content greater than

zero; (ii) instruction Ij = DecJump(rl, s) with rl content equal to zero; (iii) instruction

Ij = Incr(rl). In all the cases, it is possible to show that from the moment in which the

switch activates an instruction till the moment in which the switch is able to activate a

new instruction, the computation proceeds deterministically (up-to structural congruence

≡b). The encoding is hence deterministic up-to structural congruence. We prove only

case (iii), because all the other cases can be proved similarly.

(iii) By encoding definition we have that the structure of the instruction box is

J(j, Incr(rl))K
p
R = ⊕(act, Insj)⊕(next, Ins)⊕(inc, IRegl)

[ ∗x?e. Incj | act?e. inc!e. x!e. next!insj+1. nil ]

This box is the only one able to synchronize with the box Switchj for an inter-

communication through interfaces of sorts Insj. After the inter-communication we have
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that in S1 the box encoding the instruction j becomes structurally congruent to

B′ = ⊕(act, Insj)⊕(next, Ins)⊕(inc, IRegl)

[ ∗x?e. Incj | inc!e. x!e. next!insj+1. nil ]

At this point, the only possible action S1 → S2 is the inter-communication between

the box B′ and the box Jrl = kKpR through their interfaces of sorts IRegl on output inc!e

and input inc?e, respectively. After the inter-communication the box encoding for the

register rl becomes structurally congruent to

⊕(ty, T est
yes
l )⊕(tn, T est

no
l )⊕(inc, IRegl)

[ ∗ inc?e. ty!e. nil | ∗ tn!e. nil | V alk | ty!e. nil ]

which corresponds to the box Jrl = k + 1KpR. Instead the box encoding the instruction j

becomes structurally congruent to

B′′ = ⊕(act, Insj)⊕(next, Ins)⊕(inc, IRegl)

[ ∗ x?e. Incj | x!e. next!insj+1. nil ]

Now, the action S2 → S3 is the intra-communication of B′′ on channel x which becomes

a box B′′′ with internal structure ∗x?e. Incj | next!insj+1. nil, and the action S3 → S4 is

the inter-communication between the box B′′′ and the switching box. After the inter-

communication, the instruction box returns in its initial form J(j, Incr(rl))K
p
R and the

switching box starts a sequence of intra-communications which produces a box structurally

congruent to Switchj+1 and representing the sequence of actions S4 → S5 → S6. It is

easy to see that S6 is structurally congruent to J(j+1, k1, ..., kl−1, k+1, kl+1, ..., kn)K
p
R.

Lemma 5.3.2 and Lemma 5.3.3 give us the instruments for proving the undecidability

of termination for Bpcore systems.

Theorem 5.3.4. Let R be a RAM with a program (1, I1), ..., (m, Im) and an initial state

(j, k1, ..., kn). Then the computation of the RAM R terminates if and only if the compu-

tation of the system S = J(j, k1, ..., kn)K
p
R terminates.

Proof. (⇒) By hypothesis we have that the RAM R terminates. This means that the

computation of R reaches, in a number l of steps, a terminated state (j′, k′1, ..., k
′
n), i.e.,

a state with a program counter greater than the number of instructions. The proof is by

contradiction assuming that the system S does not terminate, which means we have an

infinite computation S → S1 → · · · → Si → · · · . By Lemma 5.3.2 we have that there

exists a well-formed system S ′ ∈ Sp such that S →∗ S ′ and S ′ ≡b J(j′, k′1, ..., k
′
n)K

p
R. By

assumption, S does not terminate and hence there exists S ′′ such that S ′ → S ′′. By

107



5.3. UNDECIDABILITY RESULTS CHAPTER 5. EXPRESSIVE POWER

Lemma 5.3.3 we have that there exists a computation S ′ → S ′′ → S2 → · · · → Sl such

that Sl = J(j′′, k′′1 , ..., k
′′
n)K

p
R and (j′, k′1, ..., k

′
n) →R (j′′, k′′1 , ..., k

′′
n). But this contradicts

our hypothesis, which states that (j′, k′1, ..., k
′
n) is a terminated state and therefore the

implication holds.

(⇐) By hypothesis we have that the system S terminates. This means that there ex-

ists a computation S →l S ′ such that S ′ 6→. The proof is by contradiction assum-

ing that the RAM R does not terminate. By applying Lemma 5.3.3 we have that

S ′ ≡b J(j′, k′1, ..., k
′
n)K

p
R and that (j, k1, ..., kn)→R · · · →R (j′, k′1, ..., k

′
n). By assumption we

have that (j′, k′1, ..., k
′
n)→R (j′′, k′′1 , ..., k

′′
n) and hence by Lemma 5.3.2 we have that there

exists a well-formed system S ′′ ∈ Sp such that S ′ →+ S ′′ and S ′′ ≡b J(j′′, k′′1 , ..., k
′′
m)K

p
R.

But this contradicts our hypothesis, which states that S ′ 6→ and therefore the implication

holds.

5.3.3 Encoding with events

In this section, we extend the Bcore language by adding events. We enrich the syntax of

Bcore by adding the syntactic category of events:

E ::= B ⊲ B

| E ‖ E

Note that with respect to to the full BlenX we limit the use of events by allowing only

the specification of events that do not involve complexes or sub-complexes. In particular

we will show in this section that events of the type:

I[P ] ⊲ I ′[P ′] ‖ I ′′[P ′′] and I[P ] ‖ I ′[P ′] ⊲ I ′′[P ′′]

are enough to recover Turing completeness.

A system becomes therefore a pair (B,E), where B is a bio-process and E is a par-

allel composition of events. We denote with Becore this extension and with Se the set of

well-formed systems of Becore. Well-formedness condition over systems extends the one

presented in Sec. 5.1 by simply stating that a system (B,E) is well-formed if B is well-

formed and all the bio-processes present in the events are well-formed. Note that also

in this case this is a simplification of the well-formedness condition of BlenX and that a

formal proof system can be constructed easily starting from Tab. 4.7.

The structural congruence and reduction semantics of Becore (Tab. 5.6) extend properly

the ones of Bcore. Note that both are obtained by adding rules for events that are similar

to the ones of full BlenX.
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(intra) (I[x!z. P1 +M1 |x?w.P2 +M2 |P3 ], E)−→ (I[P1 |P2{z/w} |P3 ], E)

(inter)
P1 ≡p x!z.R1 +M1 |Q1 P2 ≡p y?w.R2 +M2 |Q2

(I1[P1 ] ‖ I2[P2 ], E)−→ (I1[R1 |Q1 ] ‖ I2[R2{z/w} |Q2 ], E)

where I1 = ⊕(x, ∆) I∗1 and I2 = ⊕(y, Γ) I
∗
2

and provided α(Γ,∆) > 0 and z 6∈ sub(I1) ∪ sub(I2)

(event) (B,B ⊲ B′ ‖ E)−→ (B′, B ⊲ B′ ‖ E)

(redex)
(B,E)−→ (B′, E)

(B ‖ B1, E)−→ (B′ ‖ B1, E)
(struct)

S1 ≡b S
′
1 S′

1−→S′
2 S′

2 ≡b S2

S1−→S2

· · ·

c) axioms for events

1. E ‖ Nil ≡e E
2. E1 ‖ E2 ≡e E2 ‖ E1

3. E1 ‖ (E2 ‖ E3) ≡e (E1 ‖ E2) ‖ E3

4. B1 ≡b B
′
1 ⇒ B1 ⊲ B2 ≡e B

′
1 ⊲ B2

5. B2 ≡b B
′
2 ⇒ B1 ⊲ B2 ≡e B1 ⊲ B′

2

d) axioms for systems

1. B1 ≡b B2 ∧ E1 ≡e E2 ⇒ (B1, E1) ≡ (B2, E2)

Table 5.6: Reduction semantics of Becore.

Definition 5.3.5. A Becore transition system is referred to as (Se,→), where Se is the set

of well-formed systems and →⊆ Se × Se is the transition relation (see Tab.5.6) .

Consider a RAM R with program (1, I1), ..., (m, Im) and state (j, k1, ..., kn). The encod-

ing of the RAM is J(j, k1, ..., kn)K
e
R = (B,E) where the definition of B and E is reported in

Tab. 5.7 and the bio-process Switchj is equal to the one defined in the previous section.

We assume δ(x) = 1 for all x ∈ N and:

α(∆1,∆2) =

{

1 if ∆1 = ∆2

0 otherwise

The encoding produces a system S = (B,E) in Se. The bio-process B is a parallel

composition of a switching box, which controls the activation of the instructions sequence,

of m boxes encoding instructions and of n boxes encoding registers; the two types of
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instructions are encoded in different ways, but in both cases the encoding box is activated

by performing an inter-communication with the box Switchj. The composition of events

E contains a couple of events for each register which controls the transformation of a

register with content 0 to a register with content 1, and vice-versa.

The modelling of the register rj depends on its content. If the content of the register is

0, then the box B0
j is used; if the content of the register is greater than 0, then bio-process

Btest
j ‖ Bl

j is used.

The box encoding the instruction (i, Incr(rj)), after its activation, consumes an inter-

communication with the box encoding the register rj (through the interfaces of sorts

IRegj), representing a request for its increment; then the instruction box waits for an-

other inter-communication (through the interfaces of sorts IAckj) with the register box;

a kind of acknowledgement indicating that the increment has been executed. Finally,

after the acknowledgement, the box replicates its internal machinery and performs an

inter-communication with the switching box (through the interfaces of sorts Ins) for the

activation of instruction i+ 1. The behaviour of the register box depends on its content.

If the content is 0, after consuming the increment inter-communication, the box becomes

structurally congruent to the box Bsplit0
j , causing the activation of event ZeroToOnej .

This event substitutes Bsplit0
j with the bio-process Btest

j ‖ Bsplit1
j . After consuming the

acknowledgement inter-communication on the channel acki, the box becomes structurally

congruent to the box B1
j , indicating that the register has been correctly incremented.

Notice that when the event ZeroToOnej is enabled no other actions in the system are

enabled. This guarantees that the register transformation is achieved between the request

of the instruction and the acknowledgement of the register.

If the content is greater than zero, the increment inter-communication enables the

internal replication of the process Increment, representing the addition of 1 on the content

of the register. The corresponding acknowledgement is performed after the replication,

consuming the acknowledgement inter-communication on the channel acki.

The box encoding the instruction (i,DecJump(rj, s)), after its activation, consumes

first an inter-communication with the box encoding for the register rj, in order to test its

content (through the interfaces of sorts Testj). In particular, the instruction box receives

a name yes if the content of the register rj is greater than zero and receives the name no

otherwise. With the choice operator two alternative behaviours are encoded, depending

on the result of the testing communication. In case of yes name reception, the instruction

box consumes an inter-communication with the rj register box, representing a request for

its decrement (through the interface of sorts DRegj), then waits for an acknowledgement

indicating that the decrement has been executed (through the interfaces of sorts DAckj)

and finally replicates its internal machinery and performs an inter-communication with the
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B ,B Switchj ‖ J(1, I1)K
e
R ‖ · · · ‖ J(m, Im)K

e
R ‖ Jr1 = k1K

e
R ‖

· · · ‖ Jrn = knK
e
R

E ,E ZeroToOne1 ‖ OneToZero1 ‖ · · · ‖ ZeroToOnen ‖
OneToZeron

J(i, Incr(rj))K
e
R = ⊕(act, Insi)⊕(next, Ins)⊕(inc, IRegj)⊕(ack, IAckj)

[ ∗ x?e. Inci | Inci ]

Inci ,P act?e. inc!e. ack?e. x!e. next!insi+1. nil

J(i,DecJump(rj , s))K
e
R = ⊕(act, Insi)⊕(next, Ins)⊕(dec, DRegj)

⊕(ack, DAckj)⊕(test, Testj)
p[ ∗ x?e.DecJi | DecJi ]

DecJi ,P act?e. test?t. (t!e. nil | (yes?e.Deci + no?e. Jumpi))

Deci ,P dec!e. ack?e. x!e. next!insi+1. nil

Jumpi ,P x!e. next!inss. nil

Jrj = lKeR =

{
B0
j if l = 0

Btest
j ‖ Bl

j otherwise

B0
j ,B ⊕(test, Testj)⊕(inc, IRegj)⊕(acki, IAckj)

⊕(ackd, DAckj)[ inc?e. nil | ∗ test!no. nil ]

Btest
j ,B ⊕(test, Testj)[ ∗ test!yes. nil ]

Bl
j ,B ⊕(inc, IRegj)⊕(dec, DRegj)⊕(acki, IAckj)

⊕(ackd, DAckj)[ ∗ inc?e. Increment | AckLl | DecLl ]

DecLl ,P dec?e. nil | · · · | dec?e. nil
︸ ︷︷ ︸

l

AckLl ,P ackd!e. nil | · · · | ackd!e. nil
︸ ︷︷ ︸

l−1

Increment ,P ackd!e. nil | acki!e. dec?e. nil

ZeroToOnei ,E Bsplit0
j ⊲ Btest

j ‖ Bsplit1
j

OneToZeroi ,E Btest
j ‖ Bjoin1

j ⊲ Bjoin0
i

Bsplit0
j ,B ⊕(test, Testj)⊕(inc, IRegj)⊕(acki, IAckj)

⊕(ackd, DAckj)[ ∗ test!no. nil ]

Bjoin0
j ,B ⊕(test, Testj)⊕(inc, IRegj)⊕(acki, IAckj)

⊕(ackd, DAckj)[ ackd!e. inc?e. nil | ∗ test!no. nil ]

Bsplit1
j ,B ⊕(inc, IRegj)⊕(dec, DRegj)⊕(acki, IAckj)

⊕(ackd, DAckj)[ ∗ inc?e. Increment | acki!e.dec?e. nil ]

Bjoin1
j ,B ⊕(inc, IRegj)⊕(dec, DRegj)⊕(acki, IAckj)

⊕(ackd, DAckj)[ ∗ inc?e. Increment ]

Table 5.7: Encoding of RAMs with Becore.
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switching box (through the interfaces of sorts Ins) for the activation of instruction i+ 1.

Instead, in case of no name reception, the box simply replicates its internal machinery

and performs an inter-communication with the switching box (through the interfaces of

sorts Ins) for the activation of instruction s. The behaviour of the register box in the

case of decrement depends on its content.

If a decrement inter-communication is consumed by a box representing a register with

content 1, then the box becomes structurally congruent to the box Bjoin1
j . This box acti-

vates the event OneToZeroj , which substitutes the bio-process Btest
j ‖ Bjoin1

j with the box

Bjoin0
j . After consuming the acknowledgement inter-communication on the channel ackd,

the box becomes structurally congruent to the box B0
j , indicating that the register has

been correctly decremented. Notice that, also in this case, when the event OneToZeroj
is enabled no other actions in the system are enabled.

If a decrement inter-communication is consumed by a box representing a register with

content greater than zero, then the acknowledgement inter-communication is then con-

sumed, deleting an instance of the parallel processes composing the AckListl process and

hence representing the decrement of 1.

A formal proof of the encoding correctness follows.

Lemma 5.3.6. Let R be a RAM with program (1, I1), ..., (m, Im) and state (j, k1, ..., kn). If

(j, k1, ..., kn)→R (j′, k′1, ..., k
′
n), then there exists a system S such that J(j, k1, ..., kn)K

e
R →

+

S and S ≡ J(j′, k′1, ..., k
′
n)K

e
R.

Proof. The proof is by case analysis. There are five different cases: (i) Instruction Ij =

DecJump(rl, s) and rl value greater than one; (ii) Instruction Ij = DecJump(rl, s) and rl
value equal to one; (iii) Instruction Ij = DecJump(rl, s) and rl value equal to zero; (iv)

Instruction Ij = Incr(rl) and rl value greater than zero; (v) Instruction Ij = Incr(rl) and

rl value equal to zero. We prove only case (ii), because the other cases are similar.

(ii) We consider the computation of the system J(j, k1, ..., kn)K
e
R. As in Lemma 5.3.2 an

inter-communication between Switchj and J(j,DecJump(rl, s))K
e
R is the first consumed

action. The two boxes synchronize on output ij!e and input act?e through their inter-

faces of sorts Insj. This cause the activation of the J(j,DecJump(rl, s))K
e
R component.

Also in this case, after the inter-communication the components codifying for the other

instructions, the registers and the switching box are blocked.

We have that the content of the register is 1 and hence it is encoded by the bio-process

Btest
l ‖ B1

l . The activation of the J(j,DecJump(rl, s))K
e
R box causes the consumption of

an inter-communication between the box Btest
l and the instruction box; since the content

of the register is 1, then the instruction box receives the name yes, indicating that the

content of the register is greater than zero. After the inter-communication the instruc-

tion box performs another intra-communication with the register box, which causes the
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activation of the process Decj. This process synchronizes with the box B1
l , consumes

an inter-communication on output dec!e through interface of sorts DRegl and remains

blocked on input ack?e; after that inter-communication, the box B1
l becomes structurally

congruent to the box Bjoin1
l and the event OneToZerol becomes active. The execution of

the event substitutes the bio-process Btest
l ‖ Bjoin1

l with the box Bjoin0
l , which consumes an

intra-communication with the instruction box (on interfaces of sorts DAckl) and becomes

structurally congruent to Jrl = 0KeR. Moreover, the last inter-communication unblocks

the instruction box, which consumes an intra-communication on channel x, replicating

its internal machinery, and enables the process next!insj+1.nil. This produces a synchro-

nization between the instruction box and the switching box. Indeed, the boxes consume

an inter-communication on output next!insj+1 and input ins?type through interfaces of

sorts Ins.

The instruction box is now returned in its form J(j,DecJump(rl, s))K
e
R, while in the

switching box the process

(insj+1!e.nil | (
∑m

o=1 inso?e.x!e.io!e.nil))

is enabled. An intra-communication on channel insj+1 is consumed, the internal machin-

ery is replicated with an intra-communication on channel x and the switching box is now

structurally congruent to the box Switchj+1.

Lemma 5.3.7. Let R be a RAM with program (1, I1), ..., (m, Im) and state (j, k1, ..., kn).

If the system S = J(j, k1, ..., kn)K
e
R can produce a transition S → S1, then there ex-

ists a computation S → S1 → S2 → · · · → Sl such that Sl = J(j′, k′1, ..., k
′
n)K

e
R and

(j, k1, ..., kn)→R (j′, k′1, ..., k
′
n).

Proof. Consider the structure of the system S = J(j, k1, ..., kn)K
e
R. As in Lemma 5.3.3, if

the system S can perform a first step S → S1, this corresponds to an inter-communication

between the box Switchj and the box encoding for the instruction (j, Ij), representing the

activation of the instruction box. By encoding definition this means that the instruction

(j, Ij) exists; hence the instruction can be executed in the state (j, k1, ..., kn) of the RAM

R, generating a new state (j′, k′1, ..., k
′
n).

The proof is by case analysis. There are five different cases: (i) Instruction Ij =

DecJump(rl, s) and rl value greater than one; (ii) Instruction Ij = DecJump(rl, s) and rl
value equal to one; (iii) Instruction Ij = DecJump(rl, s) and rl value equal to zero; (iv)

Instruction Ij = Incr(rl) and rl value greater than zero; (v) Instruction Ij = Incr(rl) and

rl value equal to zero. In all the cases, it is possible to show that from the moment in

which the switch activates an instruction till the moment in which the switch is able to

activate a new instruction, the computation proceeds deterministically (up to structural

113



5.3. UNDECIDABILITY RESULTS CHAPTER 5. EXPRESSIVE POWER

congruence ≡). The encoding is hence deterministic up to structural congruence. We

prove only case (v), because the other cases can be proved similarly.

(v) By encoding definition we have that the structure of the instruction box is

J(j, Incr(rl))K
e
R = ⊕(act, Insj)⊕(next, Ins)⊕(inc, IRegl)⊕(ack, IAckl)

[ ∗ x?e. Incj | act?e. inc!e. ack?e. x!e. next!insj+1. nil ]

This box is the only able to synchronize with the box Switchj for an inter-communication

through interfaces of sorts Insj. After the communication we have that in S1 the box

encoding the instruction j becomes structurally congruent to

B′ = ⊕(act, Insj)⊕(next, Ins)⊕(inc, IRegl)⊕(ack, IAckl)

[ ∗ x?e. Incj | inc!e. ack?e. x!e. next!insj+1. nil ]

Now, the only possible action S1 → S2 is the inter-communication between the box B′

and the box Jrl = 0KeR through their interfaces of sorts IRegl on output inc!e and input

inc?e, respectively. After the inter-communication the instruction box remains blocked

on input ack?e over interface of sorts IAckl and the box encoding for the register rl
becomes structurally congruent to the box Bsplit0; the event ZeroToOnej is now active.

The execution of the event, which correspond to the action S2 → S3, substitutes in S2

the box Bsplit0
l with the bio-process Btest

l ‖ Bsplit1
l . At this point, the action S3 → S4 is

an inter-communication between the box Bsplit1
l and the instruction box; the register box

becomes structurally congruent to Jrl = 1KeR, while the instruction box is unblocked and

structurally congruent to

B′′ = ⊕(act, Insj)⊕(next, Ins)⊕(inc, IRegl)⊕(ack, IAckl)

[ ∗ x?e ∗ Incj | x!e ∗ next!insj+1. nil ]

Now, the action S4 → S5 is the intra-communication of B′′ on channel x which becomes

a box B′′′ with internal structure ∗x?e. Incj | next!insj+1. nil, and the action S5 → S6 is

the inter-communication between the box B′′′ and the switching box. After the inter-

communication, the instruction box returns in its initial form J(j, Incr(rl))K
e
R and the

switching box starts a sequence of intra-communications which produces a box structurally

congruent to Switchj+1 and representing the sequence of actions S6 → S7 → S8. It is

easy to see that S8 is structurally congruent to J(j + 1, k1, ..., kl−1, 1, kl+1, ..., kn)K
e
R.

Lemma 5.3.6 and Lemma 5.3.7 can now be used for proving the undecidability of termi-

nation for Becore systems.
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Theorem 5.3.8. Let R be a RAM with a program (1, I1), ..., (m, Im) and an initial state

(j, k1, ..., kn). The the computation of the RAM R terminates if and only if the computa-

tion of the system S = J(j, k1, ..., kn)K
e
R terminates.

Proof. The Theorem can be proved similarly to Theorem 5.3.4 and by using Lemma 5.3.6

and Lemma 5.3.7.

5.4 Discussion

The framework developed for Bcore, can be considered as a basis for a further development

that can enable us to reason about the decidability of other interesting problems like the

covering problem, i.e., decide, given two states s and t, whether starting from s it is

possible to reach a state t′ ≥ t. Moreover, we are confident that these decidability

results can be extended to Bcore enriched with complexes, change actions and conditions.

Moreover, the recent paper by Cardelli and Zavattaro [14], suggests us that we can obtain

Turing equivalence also by enriching the Bcore subset with complexes and a single type of

event that simply replicates a box; we plan to investigate this aspect in the future.

Conversely, due to the absence of restriction, to the static structure of boxes and

interfaces and to the fact that the set of names used in a system is finite, we feel that

a relation between Bcore and CCS exists. An encoding of Bcore into CCS, indeed, would

allow us to exploit results already proved for CCS.

Concluding, although this work allows us to conclude that BlenX is a Turing equivalent

language, we think that the obtained results represent also an investigation into how the

addition of global priorities affects the expressive power of a language and on the role that

some high-powered features like restriction operator play in Turing equivalence encodings.

Moreover, we think these results are a basis for further investigations and for a better

understanding of how different primitives and operators can be added, deleted or combined

to obtain classes of languages with different computational power.
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Chapter 6

Stochastic extension

In this chapter we introduce the stochastic extension of BlenX, that we call sBlenX. Con-

sidering the results of the previous chapter, sBlenX is obtained by first limiting BlenX to

two levels of priority and to simplified events that do not involve complexes and subcom-

plexes. The obtained language is then decorated with quantitative information which,

as usual in the stochastic setting [91, 48], are used to derive the speed and probabilities

associated with reactions.

We start by introducing the syntax of sBlenX, along with its operational semantics,

which is given in a SOS style. We continue by explaining how to compute the probability

of executing a certain high priority reaction or a certain low priority reaction. Since the

final goal is to provide efficient stochastic simulations of sBlenX system, we introduce then

a stochastic abstract machine that compresses the information of systems compressing

boxes of the same species and isomorphic complexes. We prove that the abstract machine

is correct with respect to the stochastic semantics of sBlenX and that it respects reaction

probabilities. We finally present a stochastic simulation algorithm, that works on the

stochastic abstract machine and that is based on the NRM (see Sec. 2.2).

6.1 Syntax and semantics

The syntaxes of BlenX and sBlenX are very similar. One of the main differences is that all

the values p ∈ N, representing priority values, are substituted with values r ∈ R≥0∪{∞},

representing both priorities and stochastic rates. Since sBlenX implements two levels of

priorities, we have that values in R≥0 represent lower priority values, while ∞ represents

the high priority value and is used to identify what we call immediate actions. Thus,

immediate actions have the precedence with respect to actions associated with rates in

R≥0. Note that, as usual, values in R≥0 represent single parameters defining exponential

distributions that drive the stochastic behaviour of actions. We recall that an exponential
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distribution with rate s has cumulative distribution function F (t) = 1 − e−st , where t

represents the time. The parameter s determines the shape of the curve. The greater

the s parameter, the faster F (t) approaches its asymptotic value. The probability of

performing an action with parameter s within time t is F (t) = 1− e−st, so s determines

the time t needed to obtain a probability near to 1. The probability density function is

f(t) = se−st.

The underlying kinetics assumed in sBlenX is the law of mass action (i.e., the rate of

a reaction is proportional to the product of the reactants species population). However,

generic kinetic laws (i.e., functions that approximate sequences of reactions) can be used.

Although the law of mass action is enough to model many biological scenarios, generic

kinetic laws are useful when it is difficult to derive certain information from the experi-

ments, e.g., the reaction rates of elementary steps, or when there are different time-scales

for the reactions.

In order to enable generic kinetic laws, we first need to extend the syntax with the new

syntactic category of functions. Functions describe mathematically a particular generic

kinetic law. Since generic kinetic laws are used to approximate sequences of reactions,

it is reasonable to confine their use only to the kind of reactions that in sBlenX (and

also in BlenX) are used to abstract coarse grained description, i.e., events and inter-

communications. Intra-communications, change actions, complexations, decomplexations

and complex-communications, can be immediate or governed only by the law of mass

action; they can be associated only with rates in R≥0 ∪ {∞}. Inter-communications can

be associated with rates in R≥0 ∪{∞} and functions. Events can be associated only with

∞ and functions.

· · · · · · · · · · · ·

I ::= Interfaces E ::= Events
K(x,Γ)r interface B ⊲h B event
K(x,Γ)r I sequence · · ·

π ::= Prefixes F ::= Functions
ch(x,Γ, r) change s real value
· · · |I[P ]| number of species

opm F unary operator
F bopm F binary operator

Table 6.1: sBlenX syntax.

Tab. 6.1 highlights the differences between the syntaxes of BlenX and sBlenX, where
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r ∈ R≥0 ∪ {∞}, s ∈ R≥0 and h ∈ {∞} ∪ F ; we use g to identify values in R≥0 ∪ {∞} ∪

F . The set F denotes all the possible functions generated by the symbol F , where we

assume opm ∈ {log, sqrt, exp,+,−} and bopm ∈ {+,−,×, /}. Note that in the definition

of interfaces and change actions, priorities are substituted with values in R≥0 ∪ {∞}.

Moreover, events are defined over values in {∞} ∪ F and have a form that reflects the

fact that here we consider the subset of BlenX where events cannot involve complexes or

sub-complexes. Like in Chapt. 5, indeed, we assume B1 ⊲h B2 to be an abbreviation of

(B1, ∅) ⊲h (B2, ∅). We denote with Ss all the possible systems that can be generated by

the syntax of sBlenX.

Given a function f ∈ F and a systems S ∈ Ss, we denote with *f+S the evaluation of

the function f in the system S. The evaluation computes the value of the mathematical

expression implemented by f where with |I[P ]| we denote the number of boxes I ′[P ′ ]n
in the bio-process of S such that I[P ] ∼s I

′[P ′].

In the stochastic setting, we assume a total function δs : N → R≥0 ∪ {∞}, used to

associate quantitative information to communication channels. Moreover, we assume a

stochastic compatibility function αs, that is a symmetric function:

αs : T 2 → (0, 0, (R≥0 ∪ {∞} ∪ F)) ∪ (R≥0 ∪ {∞})
3

Note that αs(∆,Γ) = (b, u, c) can contain a function in c (the only place in the triple

where a function can appear) only if b and u are equal to zero; this reflects the idea that

functions can be used as a compatibility value only to describe inter-communications.

As before, with 0 we indicate that the two sorts are not compatible. Moreover, we use

αsb(∆,Γ), α
s
u(∆,Γ), and α

s
c(∆,Γ) to mean, respectively, the first, the second, and the third

projection of αs(∆,Γ).

The definition of structural congruence and static semantics of BlenX can be easily

adapted for sBlenX just by replacing p with r or h in all the rules of Tab. 4.6 and of Tab. 4.7.

All the results obtained for BlenX are valid also for sBlenX. We overload symbols when

unambiguous.

Definition 6.1.1. The set of well-formed sBlenX systems, denoted with Ss, is the set

defined as Ss = {S ∈ Ss | ⊢ S : ok}.

Theorem 6.1.2. Let S ∈ Ss and S
′ ∈ [S]≡. Then S

′ ∈ Ss.

The dynamics of a sBlenX well-formed system is formally specified by the reduction

semantics reported in Tab. 6.2. Reduction rules rely on the structural congruence relation
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(s1)
*C+I = true

(I[ 〈C〉ch(x,Γ, r).P +G |P1 ]n, E, ξ)−→r (I1[P |P1 ]n, E, ξ{Γn/∆n})

where I = K(x,∆)r
′

I∗ and I1 = K(x,Γ)r
′

I∗ and Γ /∈ sorts(I∗)

(s2)
*C1+I = true * C2+I = true

(I[ 〈C1〉x!z.P1 +G1 | 〈C2〉x?y.P2 +G2 |P ]n, E, ξ)−→rateI(x) (I[P1 |P2{z/y} |P ]n, E, ξ)

(s3) (I1[P1 ]n ‖ I2[P2 ]m, E, ξ)−→r (I
′
1[P1 ]n ‖ I

′
2[P2 ]m, E, ξ ∪ {{∆1n,∆2m}})

where Ii = ⊕(xi,∆i)
ri I∗i and I ′i = ⊗(xi,∆i)

ri I∗i for i = 1, 2

and provided αsb(∆1,∆2) = r

(s4) (I1[P1 ]n ‖ I2[P2 ]m, E, ξ ∪ {{∆1n,∆2m}})−→r (I
′
1[P1 ]n ‖ I

′
2[P2 ]m, E, ξ)

where Ii = ⊗(xi,∆i)
ri I∗i and I ′i = ⊕(xi,∆i)

ri I∗i for i = 1, 2

and provided αsu(∆1,∆2) = r

(s5)
*C1+I1 = true * C2+I2 = true

(I1[M1 |Q1 ]n ‖ I2[M2 |Q2 ]m, E, ξ)−→g (I1[R1 |Q1 ]n ‖ I2[R2{z/w} |Q2 ]m, E, ξ)

where M1 = 〈C1〉x1!z.R1 +M ′
1 and M2 = 〈C2〉x2?w.R2 +M ′

2 and

where Ii = K(xi,∆i)
ri I∗i and z /∈ sub(Ii) for i = 1, 2 and provided

(K = ⊗ and αsc(∆1,∆2) = g and {∆1n,∆2m} ∈ ξ) or

(K = ⊕ and αsc(∆1,∆2) = g and αsb(∆1,∆2) = αsu(∆1,∆2) = 0)

(s6) (B1, B1 ⊲g B2 ‖ E, ξ)−→g (B2, B1 ⊲h B2 ‖ E, ξ)

(s7)
(B,E, ξ)−→g (B

′, E, ξ′) (id(B) ∪ id(B′)) ∩ id(B1) = ∅

(B ‖ B1, E, ξ)−→g (B
′ ‖ B1, E, ξ

′)

(s8)
S1 ≡ S

′
1 S′

1−→g S
′
2 S′

2 ≡ S2

S1−→g S2

Table 6.2: Reduction semantics of sBlenX.

over systems. The semantics, moreover, uses the following function:

rateI(x) =

{
r if ∃∆. K(x,∆)r ∈ I

δs(x) otherwise
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It is easy to see that the reduction rules in Tab.6.2 are very similar to the ones presented

in Tab.4.13. The main difference is in the axiom for events where we are sure that B1 is

not part of a complex and hence no modifications in the structure of ξ are taken.

Theorem 6.1.3. Let S ∈ Ss. Then S−→g S
′ implies S ′ ∈ Ss.

Following [85], we provide a measure to calculate the probability to perform a certain

reaction S−→g S
′. Since immediate actions have the precedence wirth respect to actions

with rate in R≥0 we distinguish the two cases. When we have an immediate reaction

S−→∞ S ′, we say that the probability of performing the reaction is given by 1/R0(S),

where R0(S) denotes the immediate apparent probability of S that is the total number

of immediate reactions that S can perform. When instead we have a stochastic reaction

S−→g S
′, with g ∈ R≥0∪F , we say that the probability of performing the reaction is given

by s/R1(S), where s is equal to g if g ∈ R≥0 or is equal to *g+S if g ∈ F and where

R1(S) denotes the stochastic apparent rate of S, i.e., the sum of the rates of all the active

stochastic reactions in S. In the following we describe how to calculate the values R0(S)

and R1(S), by considering separately each reaction type.

To simplify the treatment of the rest of the chapter we define a class of systems that

we call safe normal form systems. Given a system S ∈ Ss, with Ŝ we represent a safe

normal form system obtained from S.

Definition 6.1.4. Let S = (B,E, ξ) ∈ S. We say that S is in safe normal form if :

1) fn(B) ∩ subt(B) = ∅;

2) B =
∏n

i=1Bi with Bi = Ii[Pi]ni
for all i < n and Bn = Nil;

3) E =
∏n

i=1Ei with Ei = Bi ⊲hi B
′
i for all i < n and En = Nil.

Function subt (see Def. 5.1.1) allows to obtain the set containing all the subjects defined

in all the boxes composing a bio-process. Given a system S, a corresponding system Ŝ

is not unique. However, for all the possible rearrangements in safe normal form, the

following Lemma hold.

Proposition 6.1.5. Let S ∈ S. Then S ≡ Ŝ, for all Ŝ.

Given a system Ŝ = (B,E, ξ) ∈ S, we start by defining the immediate apparent

probability and the stochastic apparent rate for change actions, denoted by R0
change(B)

and R1
change(B), respectively. These values can be computed by inspecting the structure

of all the boxes composing B and finding all the change actions guarded by a condition

that evaluates to true with respect to the corresponding box interfaces:

Rm
change(Nil) = 0

Rm
change(B0 ‖ B1) = Rm

change(B0) +Rm
change(B1)

Rm
change(I[P ]n) =

∑

x∈sub(I)

Chmx (I, P )
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InI
x(P1 |P2) = InI

x(P1) + InI
x(P2) OutI,kx (P1 |P2) = OutI,kx (P1) +OutI,kx (P2)

InI
x(nil) = 0 OutI,kx (nil) = 0

InI
x(∗〈C〉π.P ) = InI

x(〈C〉π.P ) OutI,kx (∗〈C〉π.P ) = OutI,kx (〈C〉π.P )

InI
x(〈C〉π.P ) =







1 if * C+I = true
and InSub(π) = {x}

0 otherwise
OutI,kx (〈C〉π.P ) =







































1 if * C+I = true
and OutSub

ǫ(π) = {x}
and k = 0

1 if * C+I = true
and OutSub

I(π) = {x}
and k = 1

0 otherwise

InI
x(M1 +M2) = InI

x(M1) + InI
x(M2) OutI,kx (M1 +M2) = OutI,kx (M1) +OutI,kx (M2)

In∆n(Nil) = 0 Out∆n(Nil) = 0

In∆n(B1 ‖ B2) = In∆n(B1) + In∆n(B2) Out∆n(B1 ‖ B2) = Out∆n(B1) +Out∆n(B2)

In∆n(I[P ]n1
) =







InI
x(P ) if n = n1 and

∃x.⊗(x,∆)r ∈ I
0 otherwise

Out∆n(I[P ]n1
) =







OutI,1x (P ) if n = n1 and
∃x.⊗(x,∆)r ∈ I

0 otherwise

In∆(Nil) = 0 Out∆(Nil) = 0

In∆(B1 ‖ B2) = In∆(B1) + In∆(B2) Out∆(B1 ‖ B2) = Out∆(B1) +Out∆(B2)

In∆(I[P ]n) =

{

InI
x(P ) if ∃x.⊕(x,∆)r ∈ I

0 otherwise
Out∆(I[P ]n) =

{

OutI,1x (P ) if ∃x.⊕(x,∆)r ∈ I
0 otherwise

MixI
x(P1 |P2) = MixI

x(P1) +MixI
x(P2)

MixI
x(M) = InI

x(M)×OutI,0x (M)

Mix(∆,Γ)(Nil) = 0

Mix(∆,Γ)(B1 ‖ B2) = Mix(∆,Γ)(B1) +Mix(∆,Γ)(B2)

Mix(∆,Γ)(I[P ]n) = In∆(I[P ]n)×OutΓ(I[P ]n)

Chm
x (I, nil) = Chm

x (I, 〈C〉x?y.P ) = Chm
x (I, 〈C〉x!y.P ) = 0

Chm
x (I, P1 |P2) = Chm

x (I, P1) + Chm
x (I, P2)

Chm
x (I, ∗〈C〉π.P ) = Chm

x (I, 〈C〉π.P )

Chm
x (I,M1 +M2) = Chm

x (I,M1) + Chm
x (I,M2)

Chm
x (I, 〈C〉ch(y,Γ, r)) =



























r if x = y and I = I∗1 ⊕(x,∆)r
′

I∗2 and Γ /∈ sorts(I∗1 I
∗
2 )

and * C+I = true and r ∈ R≥0 and m = 1

1 if x = y and I = I∗1 ⊕(x,∆)r
′

I∗2 and Γ /∈ sorts(I∗1 I
∗
2 )

and * C+I = true and r = ∞ and m = 0

0 otherwise

Int∆(Nil) = 0 Sel(∆,Γ)(Nil) = 0

Int∆(B1 ‖ B2) = Int∆(B1) + Int∆(B2) Sel(∆,Γ)(B1 ‖ B2) = Sel(∆,Γ)(B1) + Sel(∆,Γ)(B2)

Int∆(I[P ]n) =

{

1 if ∃x. ⊕(x,∆)r ∈ I

0 otherwise
Sel(∆,Γ)(I[P ]n) =











1 if ∃x. ⊕(x,∆)r ∈ I

and ∃y. ⊕(y,Γ)r
′

∈ I

0 otherwise

Table 6.3: Counting functions.
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Function Chmx (I, P ) is defined in Tab.6.3. A similar procedure is used to compute the

immediate apparent probability and the stochastic apparent rate for intra-communications.

These values can be computed by inspecting the structure of all the boxes composing S

and finding all the combinations of inputs and outputs that can synchronize inside each

of the boxes:

Rm
intra(Nil) = 0

Rm
intra(B0 ‖ B1) = Rm

intra(B0) +Rm
intra(B1)

Rm
intra(I[P ]n) =

∑

x∈fn(P )







r × (InIx(P )×Out
I,0
x (P )−MixIx(P )) if m = 1 and r = rateI(x) ∈ R≥0

InIx(P )×Out
I,0
x (P )−MixIx(P ) if m = 0 and rateI(x) =∞

0 otherwise

The functions InIx(P ) and Out
I,k
x (P ) are defined in Tab.6.3 and are here invoked with

k = 0. They return the number of inputs and outputs on channel x in P guarded

only by conditions that evaluate to true, respectively, while MixIx(P ) returns the sum of

InIx(Mi)×Out
I,0
x (Mi) for each choiceMi in P . The definition of apparent rate, hence, takes

into account the fact that an input and an output in the same choice cannot generate an

intra-communication, by subtracting MixIx(P ) from the product of the number of inputs

and outputs on x. In the definition of these functions we use an utility function InSub(π)

that returns {x} if π = x?y and returns ∅ otherwise; similarly, we use an utility function

OutSubI(π) that returns {x} if π = x!y and y 6∈ sub(I) and returns ∅ otherwise; obviously,

for intra-communications the function OutSubI(π) is invoked with I = ǫ.

Given a system Ŝ = (B,E, ξ), the immediate apparent probability and the stochas-

tic apparent rate for complexations, denoted with R0
bind(B,℘2(T )) and R1

bind(B,℘2(T )),

respectively, are computed by the following function 1:

Rm
bind(B, ∅) = 0

Rm
bind(B, {{∆,Γ}} ∪ T

′) =

Rm
bind(B, T

′) +







αs
b(∆,Γ)× (Int∆(B)× IntΓ(B)− Sel(∆,Γ)(B))

if αs
b(∆,Γ) ∈ R≥0 and m = 1

Int∆(B)× IntΓ(B)− Sel(∆,Γ)(B)

if αs
b(∆,Γ) =∞ and m = 0

0 otherwise

The function Int∆(B), defined in Tab.6.3, returns the number of free interfaces with

sort ∆ in B, while Sel(∆,Γ)(P ) returns the number of boxes that have either an interface

with sort ∆ and an interface with sort Γ. The definition, hence, takes into account the

fact that a box cannot complex with himself.

Given a system Ŝ = (B,E, ξ), the immediate apparent probability and the stochastic

1with ℘2(T ) we denote the set {{∆,Γ} | {∆,Γ} ∈ ℘(T )} of subsets in the power set ℘(T ) with cardinality 2.
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apparent rate for unbindings, denoted with R0
unbind(B, ξ) and R

1
unbind(B, ξ), respectively,

are computed by the following function:

Rm
unbind(B, ∅) = 0

Rm
unbind(B, {{∆n,Γm}} ∪ ξ) =

Rm
unbind(B, ξ) +







αs
u(∆,Γ) if αs

u(∆,Γ) ∈ R≥0 and m = 1

1 if αs
u(∆,Γ) =∞ and m = 0

0 otherwise

Given a system Ŝ = (B,E, ξ), the immediate apparent probability and the stochastic

apparent rate for complex-communications, denoted withR0
complex(B, ξ) andR

1
complex(B, ξ),

respectively, are computed by the following function:

Rm
complex(B, ∅) = 0

Rm
complex(B, {{∆n,Γm}} ∪ ξ) =

Rm
complex(B, ξ) +







αs
c(∆,Γ)× (In∆n(B)×OutΓm(B) +Out∆n(B)× InΓm(B))

if αs
c(∆,Γ) ∈ R≥0 and m = 1

In∆n(B)×OutΓm(B) +Out∆n(B)× InΓm(B)

if αs
c(∆,Γ) =∞ and m = 0

0 otherwise

Note that for each link the number of possible complex-communications depends on

the number of combinations of inputs and outputs that the processes of the two involved

boxes have enabled. Given an interface Γ and a box identifier m, the functions OutΓm(B)

and InΓm(B), defined in Tab.6.3, return respectively the number of outputs and inputs

associated with the interface with sort Γ in the box with identifier m.

Given a system Ŝ, the immediate apparent probability and the stochastic apparent

rate for inter-communications, denoted with R0
inter(B, T

2) and R1
inter(B, T

2), respectively,

are computed by the following function:

Rm
inter(B, ∅) = 0

Rm
inter(B, {(∆,Γ)} ∪ T

′) =

Rm
inter(B, T

′) +







αs
c(∆,Γ)× (In∆(B)×OutΓ(B)−Mix(∆,Γ)(B))

if αs
b(∆,Γ) = αs

u(∆,Γ) = 0 and αs
c(∆,Γ) ∈ R≥0 and m = 1

*αs
c(∆,Γ) +S ×COMB

if αs
b(∆,Γ) = αs

u(∆,Γ) = 0 and αs
c(∆,Γ) ∈ F and m = 1

(In∆(B)×OutΓ(B)−Mix(∆,Γ)(B))

if αs
b(∆,Γ) = αs

u(∆,Γ) = 0 and αs
c(∆,Γ) =∞ and m = 0

0 otherwise
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Given a sort ∆, the functions In∆(B) and Out∆(B), defined in Tab.6.3, return the

number of inputs and outputs enabled on free interfaces of boxes in B and guarded only

by conditions that evaluate to true, respectively, while Mix(∆,Γ)(B) returns the sum of

In∆(I[P ]n) × OutΓ(I[P ]n) for each box in B. Note that when αsc(∆,Γ) ∈ F we have

that the associated apparent rate is not calculated by exploiting all the possible input

and output combinations. When ∆ 6= Γ, the value COMB corresponds to all the possible

combinations (X1, X2) of species in (Boxes(B)/ ∼s) such that X1 6= X2 and X1 has at

least an output on an interface with sort ∆ and X2 has at least an input on an interface

with sort Γ; When ∆ = Γ, instead, COMB corresponds to the number of species X in

(Boxes(B)/ ∼s) with cardinality of at least 2 and having at least an input and output

on an interface with sort ∆.

Finally, given a system Ŝ = (B,E, ξ), the immediate apparent probability and the

stochastic apparent rate for events, denoted with R0
event(Ŝ, B, ξ) and R1

event(Ŝ, B, ξ), re-

spectively, are computed with the following procedure:

Rm
event(Ŝ,Nil, ξ) = 0 Rm

event(Ŝ, E0 ‖ E1, ξ) = Rm
event(Ŝ, E0, ξ) +Rm

event(Ŝ, E1, ξ)

Rm
event(Ŝ, B1 ⊲h B2 ‖ E, ξ) =







*h+
Ŝ

if h ∈ F ∧ (B, ξ) ≡c (B1 ‖ B′, ξ′) and m = 1

1 if h =∞∧ (B, ξ) ≡c (B1 ‖ B
′, ξ′) and m = 0

0 otherwise

In all the cases, the stochastic interpretation of events does not rely on the law of mass

action. Events can be, indeed, only immediate or associated with functions describing

generic kinetic laws. Note that functions can be used to recover mass action kinetics for

events. Now, we can define formally the notions of immediate apparent probability and

stochastic apparent rate for a system.

Definition 6.1.6. Given a system Ŝ = (B,E, ξ) ∈ Ss, the immediate apparent rate of Ŝ,

denoted with R0(Ŝ), is computed by the following formula:

R0(Ŝ) = R0
change(B) +R0

intra(B) +R0
bind(B,℘2(T )) +R0

unbind(B, ξ)+

R0
complex(B, ξ) +R0

inter(B, T
2) +R0

event(Ŝ, E, ξ)

Moreover, the stochastic apparent rate of S, denoted with R1(Ŝ), is computed by the

following formula:

R1(Ŝ) = R1
change(B) +R1

intra(B) +R1
bind(B,℘2(T )) +R1

unbind(B, ξ) +

R1
complex(B, ξ) +R1

inter(B, T
2) +R1

event(Ŝ, E, ξ)

Definition 6.1.7. Let Ŝ ∈ Ss. The probability of performing the reaction Ŝ−→g S
′ is

given by g/R0(Ŝ) if g =∞, is given by g/R1(Ŝ) if g ∈ R≥0 and is given by *g +Ŝ /R
1(Ŝ)
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if g ∈ F .

Proposition 6.1.8. Let Ŝ, Ŝ ′ ∈ Ss. Ŝ ≡ Ŝ ′ implies Rm(Ŝ) = Rm(Ŝ ′) with m ∈ {0, 1}.

Proof. By induction on the length of the derivation Ŝ ≡ Ŝ ′.

6.2 A stochastic abstract machine

Having a stochastic interpretation of BlenX, we want now to simulate sBlenX systems by

means of the Gillespie algorithm. The specification of sBlenX systems, however, relies on

an individual-based interpretation, where each single substance is represented by a box.

The interpretation of different substances as single and distinct boxes, is not the most

efficient representation on which to implement the Gillespie approach. The one-to-one

correspondence between substances and boxes causes, indeed, an explosion of boxes due

to their populations. In other words, we will have many copies of the same box to represent

the instances of the same substance species. To overcome the multiple copies problem, it

makes sense to instantiate objects that represent species and to maintain for each of them

the information about its population. The same can be done for complexes. This is the

basic principle on which we ground the definition of the BlenX stochastic abstract machine.

The main idea is to define an abstract machine relying on a species-based interpretation,

where sBlenX systems are compressed by maintaining classes of structurally congruent

boxes and classes of structurally congruent(isomorphic) complexes.

We start by defining formally the abstract machine and proving its correctness with

respect to the sBlenX semantics. Then we show how the structure of the machine allows

for an efficient implementation of the Gillespie algorithm. A sBlenX system is simulated

by first encoding it into a corresponding term of a BlenX machine. Machine terms consist

of a set of species (ranged over by S, S′, · · · ), a set of complexes (ranged over by C, C′,

· · · ) and a set of reactions (ranged over by R, R′, · · · ). With S, C and R we identify all

the possible set of species, complexes and reactions, respectively.

Formally, a machine term M is a triple M = (S,C,R) and with M we identify all

the possible machine terms. A set S contains elements of the form (i, j, I, P ), where

i ∈ N represents a species identifier, j ∈ N represents the population of the species, and

I and P correspond to the interfaces and the internal process of the box identifying the

species, called also box species. The box species is the representative of the species, hence

representing all the boxes I ′[P ′]n such that I[P ] ∼s I
′[P ′].

A set C contains graph specifications of sBlenX complexes in the form (i, j, V, E), where

i represents the complex identifier, j the population of the complex and where V and E

represent the nodes and the edges of the complex, respectively. Set V contains elements
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of the form (i, k), where i is a node identifier and k is a species identifier. Set E, instead,

contains edges of the form {∆i1,Γi2} where i1 and i2 are node identifiers and ∆ and Γ

are sorts. The main difference between links and edges is that names are substituted

with natural numbers. However, the theory developed for links can be simply adapted for

edges. In particular, the relation∼c (defined in Def.4.3.22) can be used also in this context.

These graph specifications of sBlenX complexes are called machine complexes. Given box

species with identifiers 1, 2, 3 and 4, a machine complex is represented graphically as

depicted in Fig. 6.1. G denotes the set of all the possible machine complexes.
1

4

2

3

Figure 6.1: Visual representation of a machine complex. Node labels represent the identifiers of
the nodes. Edges labels contain the information about the binding; for example, the edge Γ3,Γ′2
says that the species associated with the node with identifier 3, and the species associated with
the node with identifier 2, are complexed through their interfaces of sorts Γ and Γ′, respectively.

A set R contains reactions, which can have one up-to four different forms. Each

reaction, indeed, can describe:

• an intra-communication if it has the the form (i, r, x, in, out,mix), where i is the

species identifier, r ∈ R>0 ∪ {∞} is the rate, x ∈ N is the communication channel

and and in, out,mix ∈ N allow to identify all the combinations of inputs and outputs

on that channel;

• a change if it has the form (i, x, change, type), where i is the species identifier, x ∈ N

is the subject of the change action, change ∈ R>0 is the sum of the rates of all the

change actions on x that the species i can perform and type ∈ {ch, chinf};

• a bind, unbind, complex-communication or inter-communication if it has the form

(i1, i2, g,∆1,∆2, k, type) where i1 and i2 are species identifiers, g ∈ R>0 ∪ {∞} ∪ F

is the rate constant, ∆1 and ∆2 are sorts, k identifies the number of instances of the

reaction and type ∈ {inter, complex, bind, unbind};

• an event if it has the form (i, N, h,N ′), where i is the event identifier, N,N ′ are

multisets of elements in N representing the identifiers of the box species involved in
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S⊞m
s (I, P ) =







(S ∪ {(k = |S|+ 1,m, I, P )}, {(k,m, I, P )}, k,R)
if ∄(i, j, I ′, P ′) ∈ S s.t. I[P ] ∼s I

′[P ′]
(S \ {(i, j, I ′, P ′)} ∪ {(i, j +m, I ′, P ′)}, ∅, i, ∅)

if ∃(i, j, I ′, P ′) ∈ S s.t. I[P ] ∼s I
′[P ′]

where R =
⋃

x∈fn(P ){(k, rateI(x), x, In
I
x(P ), Out

I,0
x (P ),MixIx(P )) |

rateI(x) 6= 0 and InIx(P )×Out
I,0
x (P )×MixIx(P ) > 0} ∪

⋃

x∈sub(I)({(k, x, Ch
1
x(I, P ), ch) | Ch

1
x(I, P ) > 0} ∪

{(k, x, Ch0x(I, P ), chinf) | Ch
0
x(I, P ) > 0})

S⊟s (I, P ) =







S \ {(i, j, I ′, P ′)} ∪ {(i, j − 1, I ′, P ′)}
if ∃(i, j, I ′, P ′) ∈ S s.t. j > 0 and I[P ] ∼s I

′[P ′]
⊥ otherwise

S⊞s({| (I, P ) |} ∪X) = S2 where (S1,S
′′, k,R1) = S⊞1

s (I, P ) and (S2,R2) = S1⊞sX

S⊞s∅ = S

C⊞c (V,E) =







C ∪ {(|C|+ 1, 1, V, E)}
if ∄(i, j, V ′, E′) ∈ C s.t. gBox(V,E) ≈ gBox(V ′, E′)

C \ {(i, j, V ′, E′)} ∪ {(i, j + 1, V ′, E′)}
if ∃(i, j, V ′, E′) ∈ C s.t. gBox(V,E) ≈ gBox(V ′, E′)

C⊟c (V,E) =







C \ {(i, j, V ′, E′)} ∪ {(i, j − 1, V ′, E′)}
if ∃(i, j, V ′, E′) ∈ C s.t. j > 0 and gBox(V,E) ≈ gBox(V ′, E′)

⊥ otherwise

Table 6.4: Operators for adding and subtracting species and complexes from sets of species and
complexes.

the event substitution2 and h ∈ {∞} ∪ F is the rate constant.

Given a well-formed sBlenX system S, the corresponding BlenX machine M = JŜK is

obtained by applying an encoding J·K on Ŝ. Before presenting formally the encoding J·K,

we first introduce some operators we will use in the rest of the chapter.

Tab. 6.4 defines operators for adding and subtracting species and complexes from sets

of species and complexes, respectively. Given a set S and a pair (I, P ), the operator

⊞m
s : S× (I ×P)→ S×S×N×R searches a pair (I ′, P ′) in S such that I[P ] ∼s I

′[P ′].

If the search is successful, the corresponding species population is increased by m

2Formally, a multiset over a set A is a map N : A → N, where N(a) denotes the multiplicity of the element
a ∈ A in the multiset N . We use also the explicit notation N = {| a, a, b, a, b, c, a, c |}.

128



CHAPTER 6. STOCHASTIC EXTENSION 6.2. A STOCHASTIC ABSTRACT MACHINE

and the quadruple (S′, ∅, k, ∅) is returned; S
′ is the updated set of species and k the

identifier of the species that has been modified. Otherwise, the quadruple (S ∪ {(k =

|S| + 1,m, I, P )}, {(k,m, I, P )}, k,R) is returned; the first element in the quadruple is

the species set with the new species added; the second element is a set containing only

the new species; the value k is the new species identifier; the last set R is a set containing

all the monomolecular actions that the species can perform. The set R is constructed

by first adding quadruples (k, rateI(x), x, In
I
x(P ), Out

I,0
x (P ),MixIx(P )) representing intra-

communications, where x is a free name in P , rateI(x) is the rate associated with the

communication and the last three values allow to infer the total number of possible intra-

communications over x that can happen in P . The set R is then updated with quadruples

(k, x, Ch1x(P ), ch) and (k, x, Ch0x(P ), chinf) representing change actions, where x is a sub-

ject of an interface in I and values Ch1x(P ) and Ch0x(P ) give information about the

propensity of the reaction. In the quadruples of both intra-communications and change

actions, the number k represents the identifier of the species that can perform the corre-

sponding actions.

Operator ⊟s : S× (I × P)→ S ∪ {⊥} is used to decrease by one the population of a

species that is already present. Indeed, the operation S⊟s (I, P ) is defined only when in

S exists a pair (I ′, P ′) such that I[P ] ∼s I
′[P ′] and such that its population counter j is

greater than zero.

Operator ⊞s generalises operator ⊞
m
s by adding a multiset of pairs (I, P ). It is based

on ⊞1
s and returns an updated set of species; no reactions are returned, because, as we

will see, the operator will be used in a context in which we are sure that no new species

are added.

Operators for sets of machine complexes are similar. Operator ⊞c : C×G→ C allows

to add a machine complex (V,E) to a set of machine complexes. As before, if the machine

complex is already present, then its population counter is increased by one, while if it is not

present, then a new machine complex is generated. Note that the presence of a machine

complex is verified by using the isomorphism relation ≈ on complexes introduced in

Def. 4.3.24. In particular, given two machine complexes, the check is done by transforming

the machine complexes into corresponding sBlenX complexes, through a function gBox.

As an example, given a machine complex:

(V,E) = ({(1, i1), (2, i2), (3, i3)}, {{∆11,∆22}, {∆
′
22,∆33}})

the function gBox(B, ξ) generates the corresponding sBlenX complex:

(I1[P1 ]x1 ‖ I1[P2 ]x2 ‖ I2[P3 ]x3 , {{∆1x1,∆2x2}, {∆
′
2x2,∆3x3}})
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S0 1b S1 = {(ik, i1−k, r,∆k,∆1−k, 1, bind) | (i0, j0, I0, P0) ∈ S0 ∧ (i1, j1, I1, P1) ∈ S1 ∧

⊕(x0,∆0)
r0 ∈ I0 ∧ ⊕(x1,∆1)

r1 ∈ I1 ∧ r = αs
b(∆0,∆1) 6= 0 ∧

((k = 0 if i0 ≤ i1) ∨ (k = 1 if i1 < i0))}

S0 1
C
u S1 = {(ik, im, r,∆k,∆m, 1, unbind) | (i0, j0, I0, P0) ∈ S0 ∧ (i1, j1, I1, P1) ∈ S1 ∧

⊗(x0,∆0)
r0 ∈ I0 ∧ ⊗(x1,∆1)

r1 ∈ I1 ∧ ((k = 0 if i0 ≤ i1) ∨ (k = 1 if i1 < i0)) ∧

g = αs
u(∆0,∆1) 6= 0 ∧ ∃({(l0, i0), (l1, i1)} ∪N, {{l0∆0, l1∆1}} ∪ V ) ∈ C}

S0 1
C
c S1 = {(i0, i1, r,∆0,∆1, k, complex) | (i0, j0, I0, P0) ∈ S0 ∧ (i1, j1, I1, P1) ∈ S1 ∧

⊗(x0,∆0)
r0 ∈ I0 ∧ ⊗(x1,∆1)

r1 ∈ I1 ∧ k = OutI1,1x1
(P1)× In

I2
x2
(P2) > 0

r = αs
c(∆0,∆1) 6= 0 ∧ ∃({(l0, i0), (l1, i1)} ∪N, {{l0∆0, l1∆1}} ∪ V ) ∈ C}

S0 1i S1 = {(i0, i1, g,∆0,∆1, k, inter) | (i0, j0, I0, P0) ∈ S0 ∧ (i1, j1, I1, P1) ∈ S1 ∧

⊕(x0,∆0)
r0 ∈ I0 ∧ ⊕(x1,∆1)

r1 ∈ I1 ∧ αs
b(∆0,∆1) = αs

u(∆0,∆1) = 0 ∧

g = αs
c(∆0,∆1) 6= 0 ∧ k = OutI1,1x1

(P1)× In
I2
x2
(P2) > 0}

Table 6.5: Operators for the generation of all the reactions that pairs of species can perform.

where (i1, j1, I1, P1), (i2, j2, I2, P2), (i3, j3, I3, P3) ∈ S and x ∈ N . Note that the uniqueness

of node identifiers guarantees the well-formedness of the sBlenX complex.

Operator ⊟c : C × G → C ∪ {⊥} is used to decrease the population of a machine

complex. The operation C⊟c (V,E) is defined only when in C there exists a pair (V ′, E ′)

such that gBox(V,E) is isomorphic to gBox(V ′, E ′) and such that its population counter

j is greater than zero.

Tab. 6.5 introduces some operators that allow the generation of sets containing, re-

spectively, all the bimolecular actions that two sets of species S0 and S1 can perform

together. Given two sets of species S0 and S1, the operator 1b: S× S→ R generates a

set containing tuples (i0, i1, r,∆0,∆1, 1, bind), representing bind reactions. In particular,

for each combination of species in the two sets, the operator adds a tuple for each pair of

interfaces, of the two species, that are not in bound state and that have associated sorts

that can bind with a compatibility greater than zero. Since the intersection of the two

species set can be different from ∅, then by ordering the tuple elements with respect to

identifier values, we avoid the generation of multiple copies of the same reaction.

Operator 1u: S ×C × S → R is similar and generates a set containing tuples repre-

senting unbind reactions. In particular, for each combination of species in the two sets,

the operator adds a tuple for each pair of interfaces, of the two species, that are in bound

state (and represent actually a link) and that have associated sorts that can unbind with

a compatibility greater than zero. Also in this case by ordering the tuple elements with
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respect to identifier values we avoid the generation of multiple copies of the same reaction.

Operator 1c: S×C×S→ R generates a set containing tuples that represent complex-

communications. For each combination of species in the two sets, the operator adds a

tuple for each pair of interfaces, of the two species, that are in bound state (and represent

actually a link) and that have associated sorts that can communicate with a compatibility

greater than zero. Moreover, the value k counts all the possible combinations of outputs

and inputs of the first and the second species, respectively; we require k to be greater

than zero. Note that in this way we implicitly establish an ordering in the tuple elements,

where we know that the first identifier always refer to the species that executes the output.

Operator 1i: S×S→ R generates a set with tuples representing inter-communications.

For each combination of species in the two sets, the operator adds a tuple for each pair

of interfaces, of the two species, that are not in bound state and that have associated

sorts that can communicate with a compatibility greater than 0. Since we are talking

about inter-communications we have to be sure that the corresponding sorts have value

0 associated with the binding and unbinding compatibilities. Moreover, also in this case

the value k counts all the possible combinations of outputs and inputs of the first and the

second species, respectively, which is required to be greater than zero.

The formal definition of the encoding function J·K, that produces a BlenX machine

term from a well-formed sBlenX system in safe normal form, is given in Tab. 6.6. The

encoding J·K uses an auxiliary encoding J·K1i for bio-processes, auxiliary encodings J·K2 and

J·K3 for complexes and an auxiliary encoding J·K4i for events.

Encoding J·K1i takes a bio-process B in safe normal form and a set of species S and

returns an updated set of species, a mapping µ from names to natural numbers and a

set of reactions representing all the monomolecular reactions that all the species in B

can perform. The mapping µ is a sequence of mappings [n 7→ i] from names to natural

numbers. With µ[y 7→ i] we extend a mapping on the right; instances on the right

overwrite instances on the left; the empty mapping is denoted by ∅. Consider for example

the bio-process:

B = ⊕(x,∆)r1 [ ch(x,Γ, s).nil ]n1 ‖ I2[ x?z.nil | x!y.nil ]n2 ‖ I2[ y?z.nil | y!y.nil ]n3

By applying the encoding J·K11 on B and an initial empty set of species we obtain:

JB, ∅K11 =

({(1, 1, I2, y?z.nil | y!y.nil), (2, 1, I2, x?z.nil | x!y.nil), (3, 1,⊕(x,∆)r1 , ch(x,Γ, s).nil)},

[n3 7→ 1][n2 7→ 2][n1 7→ 3], {(3, x, s, ch), (2, δs(x), x, 1, 1, 0), (1, δs(y), y, 1, 1, 0)})

where we assume δs(x) and δs(y) greater than 0. Note that since B is well-formed, we
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J(B,E, ξ)K = (S,C,R ∪R
′ ∪ (S 1b S) ∪ (S 1i S) ∪ (S 1

C
u S) ∪ (S 1

C
c S))

where (S′, µ,R′) = JB, ∅K11 and C = J(ξ/ ∼c), µK2

and (S,R) = JE,S′K41

JNil,SK1i = (∅, ∅, ∅)

JI[P ]y ‖ B,SK1i = (S′′, µ′[y 7→ k],R′ ∪R
′′)

where (S′, µ′,R′) = JB,SK1i and (S′′, k,R′′) = S
′ ⊞i

s (I, P )

J∅, µK2 = ∅

JO ∪ {o}, µK2 = JO,µK2 ⊞c Jo, µK3

J∅, µK3 = (∅, ∅)

Jξ ∪ {∆1n1,∆2n2}, µK3 = (V ∪ {(k1, µ(n1)), (k2, µ(n2))}, E ∪ {{∆1k1,∆2k2}})

where (V,E) = Jξ, µK3 and k1 = |V |+ 1 and k2 = |V |+ 2 and

JNil,SK4i = (∅, ∅)

JB0 ⊲h B1 ‖ E,SK4i = (S3,R ∪R1 ∪R2 ∪R3) where (S3,R3) = JE,S2K
4
i+1

and (S1, µ1,R1) = JB0,SK10 and (S2, µ2,R2) = JB1,S1K
1
0

and R = {(i, {| µ1(n) | n ∈ id(B0) |}, h, {| µ2(n) | n ∈ id(B1) |})}

Table 6.6: Encoding from sBlenX systems into BlenX machine terms.

are sure that in the mapping we have no overriding of associations. Indeed, all the boxes

identifiers are different.

Encoding J·K3 takes an environment ξ and a mapping µ and returns a machine complex

(V,E). From the information in the links composing ξ a set of nodes V and a set of edges

E are created. In particular, in creating nodes (i, k), node identifiers i are created by

enumerating them starting from 1, while species identifiers are obtained with the help of

the mapping. Consider for example the environment:

ξ = {{∆1n1,∆2n2}, {∆
′
1n1,∆2n2}, {∆

′
2n2,∆3n3}, {∆

′
3n3,∆

′
1n1}}

and the mapping:

µ = [n1 7→ 1][n2 7→ 2][n3 7→ 3]

By applying the encoding J·K3 on the elements ξ and µ we can obtain the following

tuple of elements:

Jξ, µK3 = ({(1, 1), (2, 3), (3, 2)}, {{∆11,∆23}, {∆
′
11,∆23}, {∆

′
23,∆32}, {∆

′
32,∆

′
11}})
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Note that the encoding works only if the mapping µ is defined over all the names

contained in ξ. Well-formedness of sBlenX systems guarantees the consistency of J·K3

application.

Encoding J·K2 takes a set of environments O and a mapping µ and returns a set of

machine complexes. In detail, encoding J·K2 applies the encoding J·K3 on each element

of O to generate a machine complex; using the operator ⊞c, all the generated machine

complexes are then combined to create the overall set of machine complexes.

Encoding J·K4i takes a composition of events E in safe normal form and a set of species

S, and returns an updated set of species and a set of reactions. Given an event B0 ⊲h B1 ‖

E, its encoding first uses encoding JB0,SK10 to add all the species defined in B0 to the set

of species S, obtaining an updated set of species S1; the operation returns also a mapping

µ1 and the setR1 of monomolecular reactions that the new species in B0 can perform. The

resulting S1 is then used in JB1,S1K
1
0 to repeat the previous operations on the second part

of the event. The operation, indeed, returns a set of species S2, a mapping µ2 and a set of

monomolecular reactionsR2. Note that by using J·K1k, with k = 0, we guarantee that all the

species we add have population zero or does not change the population of already present

species. This is essential, because species in events do not affect the number of species

present in the initial configuration of the system. Mappings µ1 and µ2 are then used to

generate the reaction {(i, {| µ1(n) | n ∈ id(B0) |}, h, {| µ2(n) | n ∈ id(B1) |})}, representing

the event. For each box in B0, the first multiset in the triple contains the corresponding

species identifiers. The last element in the tuple is, instead, the multiset regarding the

bio-process B1. We use multisets because more instances of the same species identifier can

be present. Finally, the encoding is inductively applied on JE,S2K
4
i+1, obtaining the last

sets S3 and R3 which are combined with all the other sets to obtain the returning pair

(S3,R∪R1 ∪R2 ∪R3). By starting from 1 and propagating a value for event identifiers

that is increased by one in each recursive invocation, we finally have different identifiers

for all the events. An example of event encoding follows:

E = ⊕(x,∆)r1 [ ch(x,Γ, s).nil ]n1 ⊲h I2[ x?z.nil | x!y.nil ]n2

By applying the encoding J·K41 on the elements E and the empty set of species we

obtain the following pair of elements:

JE, ∅K41 = ({(1, 0,⊕(x,∆)r1 , ch(x,Γ, r).nil), (2, 0, I2, x?z.nil | x!y.nil)},

{(1, x, s, ch), (2, δs(x), x, 1, 1, 0), (1, {| 1 |}, h, {| 2 |})})

All the presented auxiliary encodings are used by J·K to generate a BlenX machine term

from a sBlenX system in safe normal form. Given a system Ŝ = (B,E, ξ), the encoding
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first uses JB, ∅K11 to obtain a set S
′ containing all the species defined in B, a mapping

µ from box identifiers of B to species identifiers in S
′ and a set R

′ containing all the

monomolecular actions that all the species in B can perform. The mapping µ is then used

in J(ξ/ ∼c), µK2 to generate all the machine complexes corresponding to the complexes

specified by ξ; indeed, (ξ/ ∼c) returns a partition of ξ such that each of its elements

represent a different sBlenX complex. Moreover, since the encoded system is well-formed,

all the names in ξ have a corresponding mapping in µ and hence J(ξ/ ∼c), µK2 returns

a valid set C of machine complexes. Then, the sBlenX system encoding uses JE,S′K41 to

update S
′ with all the species defined in the events composing E, generating S, and to

collect all the monomolecular reactions that the new species in E can perform and all

the event reactions, generating the set R. Given the set of species S, the set of machine

complexes C and the set of all the monomolecular reaction and events R ∪ R
′, the last

step is to add to the set of all the bimolecular reactions. This is done by adding to R∪R′

all the sets generated by S 1b S, S 1
C

u S, S 1
C

c S and S 1i S. As an example, consider

the sBlenX system Ŝ = (B,E, ξ) with:

B = ⊗(x,∆)r[ x?y.nil+ x?z.nil | x!z.nil ]n1 ‖ ⊗(y,Γ)
r′ [ nil | y!z.nil ]n2 ‖

⊕(x,∆1)
r′′ [ x?z.nil | x!y.nil ]n3 ‖ ⊕(x,∆1)

r′′ [ x!y.nil | x?z.nil ]n4

E = I1[ nil ]n1 ⊲h ⊕(x,∆1)
r′′ [ x!y.nil ]n2

ξ = {{∆n1,Γn2}}

where we assume αs(∆,Γ) = (1.5, 1.5, 1.5) and αs(∆1,∆1) = (0, 0, 2.5); all the others

combinations are not compatible. By applying the encoding JŜK we obtain the following

BlenX machine term:

J(B,E, ξ)K = ({(1, 2,⊕(x,∆1)
r′′ , x!y.nil | x?z.nil), (4, 0, I1, nil), (5, 0,⊕(x,∆1)

r′′ , x!y.nil),

(3, 1,⊗(x,∆)r, x?y.nil+ x?z.nil | x!z.nil)}, (2, 1,⊗(y,Γ)r
′

, nil | y!z.nil)

{(1, 1, {(1, 3), (2, 2)}, {{∆1,Γ2}})}

{(3, x, δs(x), 2, 1, 0), (1, x, δs(x), 1, 1, 0), (1, {| 4 |}, h, {| 5),

(3, 2, 1.5,∆,Γ, 1, unbind), (2, 3, 1.5,∆,Γ, 2, complex),

(1, 1, 2.5,∆1,∆1, 2, inter), (5, 1, 2.5,∆1,∆1, 1, inter)})

There are 5 species, where the one with identifier 1 has population equal to 2 and

the ones belonging to events have population 0. Then there is a complex composed by

two nodes and one edge and a set of reactions containing two intra-communications, one

events, an unbind, a complex-communication and two inter-communications.

Given a machine term obtained from a well-formed sBlenX system in safe normal form,
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its dynamics is described by a series of rules that we introduce in the following. Each rule

describes how a machine term is modified to reflect the execution of one of its reactions.

Consider a term M = (S,C,R) and suppose (i, r, x, in, out,mix) ∈ R. The reaction

refers to an intra-communication on channel x that the species with identifier i can per-

form. If the identifier i refers to a species that is part of at least one machine complex,

then the dynamics of the intra-communication is described by the following rule:

(i, r, x, in, out,mix) ∈ R (i, j, I, P ) ∈ S

P ≡p 〈C1〉x!z.Q1 +M1 | 〈C2〉x?y.Q2 +M2 | Q3 * C1+I = *C2+I = true

S1 = S⊟s (I, P ) (S2,S3, k,R
′) = S1 ⊞

1
s (I,Q1 | Q2{z/y} | Q3)

C1 = (C⊟c ({(l, i)} ∪ V,E))⊞c ({(l, k)} ∪ V,E)

(m1)
M 7→r (S2,C1,R ∪R

′ ∪ (
⋃
S2 1

C1 S3))

where with
⋃
S2 1

C1 S3 we mean S2 1b S3 ∪ S2 1i S3 ∪ S2 1
C1
u S3 ∪ S2 1

C1
c S3.

The rule can be applied for all the combinations of elements Q1, M1, Q2, M2, Q3, C1,

C2, l, V and E that make the rule premises valid. Given the species (i, j, I, P ) ∈ S,

the rule states that for an enabled combination of input/output on x, expressed as P ≡p
〈C1〉x!z.Q1 + M1 | 〈C2〉x?y.Q2 + M2 | Q3 with conditions evaluating to true, we first

decrease the population of the species (I, P ) inS, obtainingS1, and then we add toS1 the

species (I,Q1 | Q2{z/y} | Q3), generated by executing the intra-communication, obtaining

S2. Moreover, we decrease the population of a complex ({(l, i)} ∪ V,E) containing a

node associated with species i, and add a new complex ({(l, k)} ∪ V,E) in which that

node is updated by substituting the association to i with an association to k, that is the

identifier of the new species. Finally, if S3 and R
′ are not ∅, this means that k is actually

a new species and hence we have to add R
′ to the set of reactions and generate all the

new bimolecular reactions that S3 can perform with all the other species in S2. Note

that if the species i is not part of a complex, then the operation C ⊟c ({(l, i)} ∪ V,E) is

not defined (returns ⊥) and hence the rule cannot be applied. Moreover, note that the

reaction is associated with the rate r contained in the selected tuple. More about the

quantitative aspects will be explained later.

If the identifier i refers to a species that is not part of any machine complex, then the

dynamics of the intra-communication is described by the rule:

(i, r, x, in, out,mix) ∈ R (i, j, I, P ) ∈ S ∄({(l, i)} ∪ V,E) ∈ C

P ≡p 〈C1〉x!z.Q1 +M1 | 〈C2〉x?y.Q2 +M2 | Q3 * C1+I = *C2+I = true

S1 = S⊟s (I, P ) (S2,S3, k,R
′) = S1 ⊞

1
s (I,Q1 | Q2{z/y} | Q3)

(m2)
M 7→r (S2,C,R ∪R

′ ∪ (
⋃

S2 1
C
S3))
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the explanation of which is similar to the previous one. The main difference is that no

modifications in the set of complexes are taken.

Now consider a reaction (i, x, change, type) ∈ R. The reaction refers to a change on x

that the species with identifier i can perform. If the identifier i refers to a species that is

part of at least one machine complex, then the dynamics of the reaction is described by

the rule:

(i, x, change, type) ∈ R (i, j, I, P ) ∈ S

P ≡p 〈C〉ch(x,Γ, r).Q1 +M1 | Q2 * C+I = true I = I∗1 ⊕(x,∆)r
′

I∗2 Γ /∈ sorts(I∗1 I
∗
2 )

S1 = S⊟s (I, P ) (S2,S3, k,R
′) = S1 ⊞

1
s (I

∗
1 ⊕(x,Γ)

r′ I∗2 , Q1 | Q2)

C1 = (C⊟c ({(l, i)} ∪ V, {{∆l,∆′l′}} ∪ E))⊞c ({(l, k)} ∪ V, {{Γl,∆′l′}} ∪ E)

(m3)
M 7→r (S2,C1,R ∪R

′ ∪ (
⋃

S2 1
C1 S3))

Given the species (i, j, I, P ) ∈ S, the rule states that for an enabled instance of change

on x in P , expressed as P ≡p 〈C〉ch(x,Γ, r).Q1+M1 | Q2 with condition evaluating to true

and such that Γ /∈ sorts(I∗1I
∗
2 ), we first decrease the population of the species (I, P ) in S,

obtaining S1, and then we add to S1 the species (I∗1 ⊕(x,Γ)
r′ I∗2 , Q1 | Q2), generated by

executing the change, obtaining S2. Moreover, as for intra-communications, we decrease

the population of a complex ({(l, i)} ∪ V, {{∆l,∆′l′}} ∪ E) containing a node associated

with species i, and add a new complex ({(l, k)}∪V, {{Γl,∆′l′}}∪E) in which that node is

updated by substituting the association to i with an association to k, that is the identifier

of the new species; note moreover, that the corresponding edge is modified accordingly.

Also in this case, if S3 and R
′ are not ∅, this means that k is actually a new species

and hence we have to add R
′ to the set of reactions and generate all the new bimolecular

reactions that S3 can perform with all the other species in S2.

If the identifier i refers to a species that is not part of any machine complex, then the

dynamics of the intra-communication is described by the rule:

(i, x, change, type) ∈ R (i, j, I, P ) ∈ S ∄({(l, i)} ∪ V,E) ∈ C

P ≡p 〈C〉ch(x,Γ, r).Q1 +M1 | Q3 * C+I = true I = I∗1 ⊕(x,∆)r
′

I∗2 Γ /∈ sorts(I∗1 I
∗
2 )

S1 = S⊟s (I, P ) (S2,S3, k,R
′) = S1 ⊞

1
s (I

∗
1 ⊕(x,Γ)

r′ I∗2 , Q1 | Q3)

(m4)
M 7→r (S2,C,R ∪R

′ ∪ (
⋃

S2 1
C
S3))

Now, suppose that a binding reaction (i1, i2, r,∆1,∆2, k, bind) is selected. We can

distinguish among five different cases: the species are part of different complexes (m5);

the species are part of the same complex (m6); only one of the two species is part of at

least one complex (m7-8); species i1 and i2 are not part of complexes (m9). We start from

136



CHAPTER 6. STOCHASTIC EXTENSION 6.2. A STOCHASTIC ABSTRACT MACHINE

case (m5), the dynamics of which is described by the following rule:

(i1, i2, r,∆1,∆2, 1, bind) ∈ R (i1, j1, I1, P1) ∈ S (i2, j2, I2, P2) ∈ S

S1 = S⊟s (I1, P1)⊟s (I2, P2)

I1 = I∗11⊕(x1,∆1)
r1 I∗12 (S2,S

′, k1,R
′) = S1 ⊞

1
s (I

∗
11⊗(x1,∆1)

r1 I∗12, P1)

I2 = I∗21⊕(x2,∆2)
r2 I∗22 (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I

∗
21⊗(x2,∆2)

r2 I∗22, P2)

C1 = (C⊟c (V
′ = {(l1, i1)} ∪ V1, E1))⊟c ({(l2, i2)} ∪ V2, E2)

(m5)
M 7→r (S3,C

′ = C1 ⊞c (V,E),R ∪R
′ ∪R

′′ ∪ (
⋃
S3 1

C
′

(S′ ∪S
′′)))

where,

V = {(l1, k1)} ∪ V1 ∪ {(l + |V
′|, i) | (l, i) ∈ {(l2, k2)} ∪ V2}

E = E1 ∪ {{∆1l1,∆2l2 + |V
′|}} ∪ {{∆1(l1 + |V

′|),∆2(l2 + |V
′|)} | {∆1l1,∆2l2} ∈ E2}

Given species (i1, j1, I1, P1) and (i2, j2, I2, P2) inS, the rule states that first we decrease

the population of the species (I1, P1) and (I2, P2) in S, obtaining S1. Then we add species

(I∗11⊗(x1,∆1)
r1 I∗12, P1) to S1, obtaining S2, and add species (I∗21⊗(x2,∆2)

r2 I∗22, P2) to

S2, obtaining S3. Note that the two species we add are obtained from (I1, P1) and

(I2, P2) by rendering complexed the state of the two interfaces involved in the binding.

Then, given two complexes that contain nodes associated with species i1 and i2, we de-

crease their population and use them to create a new complex that represents the result

of the binding. Note that to maintain a consistent graph representation we have first to

update nodes and edges of the second complex by adding to all the node identifiers a

value corresponding to the cardinality of the set of nodes of the first complex. A visual

example elucidating the complex creation is given in Fig. 6.2.
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Figure 6.2: Visual representation of the binding of two machine complexes. When the new edge
(the bold one on the right) is added, then the node enumeration of the second machine complex
is modified to maintain the consistency of the overall nodes enumeration. In particular, to each
node identifier we add the cardinality of the first complex.
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Now consider the case in which the complexation happens between nodes of the same

complex. This case is captured by the following rule:

(i1, i2, r,∆1,∆2, 1, bind) ∈ R (i1, j1, I1, P1) ∈ S (i2, j2, I2, P2) ∈ S

S1 = S⊟s (I1, P1)⊟s (I2, P2)

I1 = I∗11⊕(x1,∆1)
r1 I∗12 (S2,S

′, k1,R
′) = S1 ⊞

1
s (I

∗
11⊗(x1,∆1)

r1 I∗12, P1)

I2 = I∗21⊕(x2,∆2)
r2 I∗22 (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I

∗
21⊗(x2,∆2)

r2 I∗22, P2)

C1 = C⊟c (V = {(l1, i1)} ∪ {(l2, i2)} ∪ V
′, E)

(m6)
M 7→r (S3,C

′ = C1 ⊞c (V,E ∪ {{∆1l1,∆2l2)}},R ∪R
′ ∪R

′′ ∪ (
⋃

S3 1
C

′

(S′ ∪S
′′)))

Note that the rule is similar to the previous one. However, after all the updates on the

set of species that lead to S2, the operations on the set of complexes are a bit different.

In this case, indeed, only the population of a complex containing two nodes associate to

species i1 and i2, respectively, is decreased. The new complex that is added to the set C1

is obtained from the one that is decreased by simply adding a new edge.

The remaining cases differ only with respect to the update of complexes. In rule (m7)

only the first species identifier is part of a machine complex, while in rule (m8) only the

second species identifier is part of a machine complex. In the last rule (m9), instead,

two conditions assures that both species identifiers i1 and i2 are not part of any machine

complex. All the last tree rule are described by the following rules:

(i1, i2, r,∆1,∆2, 1, bind) ∈ R (i1, j1, I1, P1) ∈ S (i2, j2, I2, P2) ∈ S

S1 = S⊟s (I1, P1)⊟s (I2, P2)

I1 = I∗11⊕(x1,∆1)
r1 I∗12 (S2,S

′, k1,R
′) = S1 ⊞

1
s (I

∗
11⊗(x1,∆1)

r1 I∗12, P1)

I2 = I∗21⊕(x2,∆2)
r2 I∗22 (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I

∗
21⊗(x2,∆2)

r2 I∗22, P2)

C1 = C⊟c (V1 = {(l1, i1)} ∪ V1, E1) ∄({(l2, i2)} ∪ V2, E2) ∈ C

(m7)
M 7→r (S3,C

′ = C1 ⊞c (V1 ∪ {(|V1|+ 1, i2)}, E1 ∪ {{∆1l1,∆2(|V1|+ 1)}}),

R ∪R
′ ∪R

′′ ∪ (
⋃
S3 1

C
′

(S′ ∪S
′′)))

(i1, i2, r,∆1,∆2, 1, bind) ∈ R (i1, j1, I1, P1) ∈ S (i2, j2, I2, P2) ∈ S

S1 = S⊟s (I1, P1)⊟s (I2, P2)

I1 = I∗11⊕(x1,∆1)
r1 I∗12 (S2,S

′, k1,R
′) = S1 ⊞

1
s (I

∗
11⊗(x1,∆1)

r1 I∗12, P1)

I2 = I∗21⊕(x2,∆2)
r2 I∗22 (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I

∗
21⊗(x2,∆2)

r2 I∗22, P2)

∄({(l1, i1)} ∪ V1, E1) ∈ C C2 = C⊟c (V2 = {(l2, i2)} ∪ V
′, E2)

(m8)
M 7→r (S3,C

′ = C2 ⊞c (V2 ∪ {(|V2|+ 1, i1)}, E2 ∪ {{∆1(|V2|+ 1),∆2l2}}),

R ∪R
′ ∪R

′′ ∪ (
⋃
S3 1

C
′

(S′ ∪S
′′)))
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(i1, i2, r,∆1,∆2, 1, bind) ∈ R (i1, j1, I1, P1) ∈ S (i2, j2, I2, P2) ∈ S

S1 = S⊟s (I1, P1)⊟s (I2, P2)

I1 = I∗11⊕(x1,∆1)
r1 I∗12 (S2,S

′, k1,R
′) = S1 ⊞

1
s (I

∗
11⊗(x1,∆1)

r1 I∗12, P1)

I2 = I∗21⊕(x2,∆2)
r2 I∗22 (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I

∗
21⊗(x2,∆2)

r2 I∗22, P2)

∄({(l1, i1)} ∪ V1, E1) ∈ C ∄({(l2, i2)} ∪ V2, E2) ∈ C

(m9)
M 7→r (S3,C

′ = C⊞c ({(1, i1), (2, i2)}, {{∆11,∆22}}),

R ∪R
′ ∪R

′′ ∪ (
⋃

S3 1
C

′

(S′ ∪S
′′)))

We move now to the description of an unbind reaction (i1, i2, r,∆1,∆2, 1, unbind). We

can distinguish among three different cases: the unbind generates two complexes (m10);

the unbind generates one complex (m11); the unbind breaks a machine complex made up

of only one edge and hence no complexes are generated (m12). We start by presenting

the first case and the rule describing its dynamics:

(i1, i2, r,∆1,∆2, 1, unbind) ∈ R (i1, j1, I1, P1) ∈ S (i1, j2, I2, P2) ∈ S

S1 = S⊟s (I1, P1)⊟s (I2, P2)

I1 = I∗11⊗(x1,∆1)
r1 I∗12 (S2,S

′, k1,R
′) = S1 ⊞

1
s (I

∗
11⊕(x1,∆1)

r1 I∗12, P1)

I2 = I∗21⊗(x2,∆2)
r2 I∗22 (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I

∗
21⊕(x2,∆2)

r2 I∗22, P2)

C1 = C⊟c (V = {(l1, i1), (l2, i2)} ∪ V
′, {{∆1l1,∆2l2}} ∪ E) (E/ ∼c) = {E

′
1, E

′
2}

(m10)
M 7→r (S3,C

′ = C2 ⊞c (V1, E1)⊞c (V2, E2),R ∪R
′ ∪R

′′ ∪ (
⋃
S3 1

C
′

(S′ ∪S
′′)))

where,

(V1, E1) = Ξ(V ′
1{(l1, k1)/(l1, i1)}{(l2, k2)/(l2, i2)}, E

′
1) with V

′
1 = {(l, k) ∈ V | ∃{∆l,Γl′} ∈ E′

1}

(V2, E2) = Ξ(V ′
1{(l1, k1)/(l1, i1)}{(l2, k2)/(l2, i2)}, E

′
2) with V

′
2 = {(l, k) ∈ V | ∃{∆l,Γl′} ∈ E′

2}

Given species (i1, j1, I1, P1) and (i2, j2, I2, P2) inS, the rule states that we first decrease

the population of the species (I1, P1) and (I2, P2) in S, obtaining S1. Then we add species

(I∗11⊕(x1,∆1)
r1 I∗12, P1) to S1, obtaining S2, and add species (I∗21⊕(x2,∆2)

r2 I∗22, P2) to

S2, obtaining S3. Note that the two species we add are obtained from (I1, P1) and

(I2, P2) by rendering not complexed the state of the two interfaces involved in the un-

binding. Then, given a machine complex that contains nodes associated with species i1
and i2 and an edge {∆1l1,∆2l2}, we decrease its population and use the set of its edges

E, obtained by deleting the edge {∆1l1,∆2l2}, to generate the result of the unbinding.

Indeed, by using relation ∼c we can partition the set of edges E into equivalence classes.

Each class represents the edges of a machine complex. In this case we have two classes

E ′
1 and E

′
2, meaning that two machine complexes are generated by the unbind execution.

These two sets of edges are used to reconstruct the two machine complexes resulting
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from the unbind. In particular, we first create the set of nodes V ′
1 , that contains all the

nodes that are present in at least on edge in E ′
1, and use it to create the first complex

(V ′
1{(l1, k1)/(l1, i1)}{(l2, k2)/(l2, i2)}, E

′
1), where we apply proper substitutions of species identi-

fiers. Since the machine complex is obtained from a greater complex, then the enumeration

of its nodes does probably not respect the correct increasing enumeration from value 1. In

order to obtain a machine complex with a correct enumeration, we use a function Ξ, that

applied to a machine complex returns the same machine complex with nodes enumerated

starting from 1. This function can be implemented in several different ways. One is to

substitute step by step all the minimal node identifiers with a value that starts from 1

and that is increased by one after each substitution. The same sequence of operations is

taken on the second set of edges E2. The two resulting complexes are finally added to

the set of machine complexes C. A visual representation of the sequence of operations is

given in Fig. 6.3.

1
6

32

7

8

5

4

9

1
4

32

5

6

2

1

3

1
6

32

7

8

5

4

9

Figure 6.3: Visual representation of the unbinding of two machine complexes. After the unbind
we obtain two different machine complexes. The nodes enumeration of the two machine com-
plexes is not correct. Hence, function Ξ is used to obtain the two final machine complexes where
the enumeration of the nodes starts from one and is increasing.

The second unbind case occurs when the partitioning of the remaining edges contains

only an element, i.e., only one set of edges is generated by partitioning E with ∼c. This

means that the unbinding breaks the machine complex in a smaller complex and a single

box species. This case is captured by the following rule:

(i1, i2, r,∆1,∆2, k, unbind) ∈ R (i1, j1, I1, P1) ∈ S (i1, j2, I2, P2) ∈ S

S1 = S⊟s (I1, P1)⊟s (I2, P2)

I1 = I∗11⊗(x1,∆1)
r1 I∗12 (S2,S

′, k1,R
′) = S1 ⊞

1
s (I

∗
11⊕(x1,∆1)

r1 I∗12, P1)

I2 = I∗21⊗(x2,∆2)
r2 I∗22 (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I

∗
21⊕(x2,∆2)

r2 I∗22, P2)

C1 = C⊟c ({(l1, i1), (l2, i2)} ∪ V, {{∆1l1,∆2l2}} ∪ E) (E/ ∼c) = {E}
(m11)

M 7→r (S3,C
′ = C2 ⊞c (V1, E),R ∪R

′ ∪R
′′ ∪ (

⋃
S3 1

C
′

(S′ ∪S
′′)))
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where,

V1 = V ′
1{(l1, k1)/(l1, i1)}{(l2, k2)/(l2, i2)} with V

′
1 = {(l, k) ∈ V | ∃{∆l,Γl′} ∈ E}

The last unbinding case occurs when the partitioning of the remaining edges generates

the empty set. In this case, indeed, we have that the unbinding breaks up a machine

complex made of only two box species connected with only one link. The third case is

described by the following rule:

(i1, i2, r,∆1,∆2, k, unbind) ∈ R (i1, j1, I1, P1) ∈ S (i1, j2, I2, P2) ∈ S

S1 = S⊟s (I1, P1)⊟s (I2, P2)

I1 = I∗11⊗(x1,∆1)
r1 I∗12 (S2,S

′, k1,R
′) = S1 ⊞

1
s (I

∗
11⊕(x1,∆1)

r1 I∗12, P1)

I2 = I∗21⊗(x2,∆2)
r2 I∗22 (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I

∗
21⊕(x2,∆2)

r2 I∗22, P2)

C1 = C⊟c ({(l1, i1), (l2, i2)} ∪ V, {{∆1l1,∆2l2}} ∪ E) (E/ ∼c) = ∅
(m11)

M 7→r (S3,C
′ = C1,R ∪R

′ ∪R
′′ ∪ (

⋃
S3 1

C
′

(S′ ∪S
′′)))

Now we introduce the rule that describes the execution of a complex-communication

(i1, i2, r,∆,Γ, k, complex).

(i1, i2, r,∆1,∆2, k, complex) ∈ R (i1, j1, I1, P1) ∈ S (i1, j2, I2, P2) ∈ S

P1 ≡p 〈C1〉x1!z.P
′
1 +M1 | Q1 P2 ≡p 〈C2〉x2?y.P

′
2 +M2 | Q2 * C1+I1 = *C2+I2 = true

⊕(x1,∆1)
r1 ∈ I1 ⊕(x2,∆2)

r2 ∈ I2 z /∈ sub(I1) S1 = S⊟s (I1, P1)⊟s (I2, P2)

(S2,S
′, k1,R

′) = S1 ⊞
1
s (I1, P

′
1 | Q1) (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I2, P

′
2{z/y} | Q2)

C1 = C⊟c ({(l1, i1), (l2, i2)} ∪N,V = {{∆1l1,∆2l2}} ∪ V ′)

(m12)
M 7→r (S3,C

′ = C1 ⊞c ({(l1, k1), (l2, k2)} ∪N,V ),R ∪R
′ ∪R

′′ ∪ (
⋃

S3 1
C

′

(S′ ∪S
′′)))

Given the species (i1, j1, I1, P1) and (i2, j2, I2, P2) in S, the rule states that for a valid

output on x1 in P1, expressed as P1 ≡p 〈C1〉x1!z.P
′
1 + M1 | Q1 with C1 evaluating to

true and side condition z /∈ sub(I1), and each valid input on x2 in P2, expressed as

P2 ≡p 〈C2〉x2?y.P
′
2 +M2 | Q2 with C2 evaluating to true, we first decrease by one the

population of the species (I1, P1) and (I2, P2) in S, obtaining S1, and then we add to

S1 the species (I1, P
′
1 | Q1) and (I2, P

′
2{z/y} | Q2), generated by executing the inter-

communication, obtaining S2. Names x1 and x2 are the subjects of the sorts involved

in the complex-communication. Note that we assume z /∈ I2; this is guaranteed by the

fact the systems from which encodings are obtained are in safe normal form. Then,

we have to decrease the population of a machine complex ({(l1, i1), (l2, i2)} ∪ N, V =

{{∆1l1,∆2l2}} ∪ V
′). Note that the existence of the machine complex is a prerequisite
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for the execution of the action, because a complex-communication can be executed only

through existing bindings. If a machine complex of this form exists, then its population

is decreased by one and a new machine complex, where a proper substitution of species

identifiers on the involved nodes is made, is added to the set of machine complexes.

The set of rules describing the execution of inter-communications (i1, i2, r,∆,Γ, k, inter)

is given in the following:

(i1, i2, g,∆1,∆2, k, inter) ∈ R (i1, j1, I1, P1) ∈ S (i1, j2, I2, P2) ∈ S

P1 ≡p 〈C1〉x1!z.P
′
1 +M1 | Q1 P2 ≡p 〈C2〉x2?y.P

′
2 +M2 | Q2 * C1+I1 = *C2+I2 = true

⊕(x1,∆1)
r1 ∈ I1 ⊕(x2,∆2)

r2 ∈ I2 z /∈ sub(I1) S1 = S⊟s (I1, P1)⊟s (I2, P2)

(S2,S
′, k1,R

′) = S1 ⊞
1
s (I1, P

′
1 | Q1) (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I2, P

′
2{z/y} | Q2)

C1 = C⊟c ({(l1, i1), (l2, i2)} ∪N,V )
(m13)

M 7→g (S3,C
′ = C1 ⊞c ({(l1, k1), (l2, k2)} ∪N,V ),R ∪R

′ ∪R
′′ ∪ (

⋃
S3 1

C
′

(S′ ∪S
′′)))

(i1, i2, g,∆1,∆2, k, inter) ∈ R (i1, j1, I1, P1) ∈ S (i1, j2, I2, P2) ∈ S

P1 ≡p 〈C1〉x1!z.P
′
1 +M1 | Q1 P2 ≡p 〈C2〉x2?y.P

′
2 +M2 | Q2 * C1+I1 = *C2+I2 = true

⊕(x1,∆1)
r1 ∈ I1 ⊕(x2,∆2)

r2 ∈ I2 z /∈ sub(I1) S1 = S⊟s (I1, P1)⊟s (I2, P2)

(S2,S
′, k1,R

′) = S1 ⊞
1
s (I1, P

′
1 | Q1) (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I2, P

′
2{z/y} | Q2)

C1 = C⊟c ({(l1, i1)} ∪N1, V1) C2 = C1 ⊟c ({(l2, i2)} ∪N2, V2)
(m14)

M 7→g (S3,C
′ = C2 ⊞c ({(l1, k1)} ∪N1, V1)⊞c ({(l2, k2)} ∪N2, V2),

R ∪R
′ ∪R

′′ ∪ (
⋃

S3 1
C

′

(S′ ∪S
′′)))

(i1, i2, g,∆1,∆2, k, inter) ∈ R (i1, j1, I1, P1) ∈ S (i1, j2, I2, P2) ∈ S

P1 ≡p 〈C1〉x1!z.P
′
1 +M1 | Q1 P2 ≡p 〈C2〉x2?y.P

′
2 +M2 | Q2 * C1+I1 = *C2+I2 = true

⊕(x1,∆1)
r1 ∈ I1 ⊕(x2,∆2)

r2 ∈ I2 z /∈ sub(I1) S1 = S⊟s (I1, P1)⊟s (I2, P2)

(S2,S
′, k1,R

′) = S1 ⊞
1
s (I1, P

′
1 | Q1) (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I2, P

′
2{z/y} | Q2)

C1 = C⊟c ({(l1, i1)} ∪N1, V1) ∄({(l, i2)} ∪N,V ) ∈ C

(m15)
M 7→g (S3,C

′ = C1 ⊞c ({(l1, k1)} ∪N1, V1),R ∪R
′ ∪R

′′ ∪ (
⋃
S3 1

C
′

(S′ ∪S
′′)))

(i1, i2, g,∆1,∆2, k, inter) ∈ R (i1, j1, I1, P1) ∈ S (i1, j2, I2, P2) ∈ S

P1 ≡p 〈C1〉x1!z.P
′
1 +M1 | Q1 P2 ≡p 〈C2〉x2?y.P

′
2 +M2 | Q2 * C1+I1 = *C2+I2 = true

⊕(x1,∆1)
r1 ∈ I1 ⊕(x2,∆2)

r2 ∈ I2 z /∈ sub(I1) S1 = S⊟s (I1, P1)⊟s (I2, P2)

(S2,S
′, k1,R

′) = S1 ⊞
1
s (I1, P

′
1 | Q1) (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I2, P

′
2{z/y} | Q2)

∄({(l, i1)} ∪N,V ) ∈ C C1 = C⊟c ({(l2, i2)} ∪N2, V2)
(m16)

M 7→g (S3,C
′ = C1 ⊞c ({(l2, k2)} ∪N2, V2),R ∪R

′ ∪R
′′ ∪ (

⋃
S3 1

C
′

(S′ ∪S
′′)))
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(i1, i2, g,∆1,∆2, k, inter) ∈ R (i1, j1, I1, P1) ∈ S (i1, j2, I2, P2) ∈ S

P1 ≡p 〈C1〉x1!z.P
′
1 +M1 | Q1 P2 ≡p 〈C2〉x2?y.P

′
2 +M2 | Q2 * C1+I1 = *C2+I2 = true

⊕(x1,∆1)
r1 ∈ I1 ⊕(x2,∆2)

r2 ∈ I2 z /∈ sub(I1) S1 = S⊟s (I1, P1)⊟s (I2, P2)

(S2,S
′, k1,R

′) = S1 ⊞
1
s (I1, P

′
1 | Q1) (S3,S

′′, k2,R
′′) = S2 ⊞

1
s (I2, P

′
2{z/y} | Q2)

∄({(l, i1)} ∪N,V ) ∈ C ∄({(l, i2)} ∪N,V ) ∈ C

(m17)
M 7→g (S3,C,R ∪R

′ ∪R
′′ ∪ (

⋃
S3 1

C (S′ ∪S
′′)))

Given the species (i1, j1, I1, P1) and (i2, j2, I2, P2) in S, all the rules state that for

a valid output on x1 in P1, expressed as P1 ≡p 〈C1〉x1!z.P
′
1 + M1 | Q1 with C1 eval-

uating to true and side condition z /∈ sub(I1), and each input on x2 in P2, expressed

as P2 ≡p 〈C2〉x2?y.P
′
2 + M2 | Q2 with C2 evaluating to true, we first decrease by one

the population of the species (I1, P1) and (I2, P2) in S, obtaining S1, and then we add

to S1 the species (I1, P
′
1 | Q1) and (I2, P

′
2{z/y} | Q2) generated by executing the inter-

communication, obtaining S2. Note that x1 and x2 are the subjects of the sorts involved

in the inter-communication. Also in this case we assume z /∈ I2; this is guaranteed by the

fact the the systems from which encodings are obtained, are in safe normal form. More-

over, as for bind reactions, all the given rules distinguish between 5 different cases: the

communication happens in a single machine complex (m13); the communication happens

between two different machine complexes (m14); the communication happens between a

single species and a complex (m15-16); the communication happens between two single

species (m17).

The final rule we present describes the dynamics of events. Given an event of the form

(k,N, h,N ′), indeed, it has the form:

(k, {| i1, · · · , ik |}, h, {| ik+1, · · · , im |}) ∈ R {(i1, j1, I1, P1)} ∪ · · · ∪ {(im, jm, Im, Pm)} ⊆ S

S1 = S⊟s (I1, P1)⊟s · · ·⊟s (Ik, Pk) S2 = S1⊞s{| (Ik+1, Pk+1), · · · , (Im, Pm) |}
(m18)

M 7→h (S1,C,R)

The populations of all the species with identifiers in N are decreased by one, and

the populations of all the species with identifiers in N ′ are increased by one. Note that

the event is defined only if the populations of the species in N is such that the event

is enabled, i.e., the population of the species identified by elements in N is enough to

allow all the ⊟s operations. Moreover, since N and N ′ are multisets, the population of a

species can decrease or increase by values greater than 1, because more instances of the

same species identifier can appear both in N and N ′. Since event reactions are derived

from sBlenX events, then no complexes are involved and hence no modifications on the

set of the machine complexes are taken. Moreover, set R remains unchanged because we
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are sure that no new species are added by executing an event.

6.2.1 Correctness

To prove the correctness of our abstract machine, we follow the approach used in [85].

The correctness, indeed, is expressed in terms of the following properties: soundness,

completeness, termination and duration. Soundness ensures that the machine can only

perform valid execution steps. Completeness is a much stronger property, which ensures

that the machine can execute all possible behaviours of the language. Termination ensures

that the machine does not loop forever unnecessarily, and duration ensures that each

reduction in the machine takes the same amount of time as the corresponding reduction

in the language, and vice-versa.

We start presenting some auxiliary results.

Proposition 6.2.1. Let S = (B,E, ξ) ∈ S, JŜK = (S,C,R), I ∈ I and P ∈ P. Then

B ≡b I1[P1]n1 ‖ · · · ‖ Ik[Pk]nk
‖ B′ with Ii[Pi] ∼s I[P ] for all i = 1, · · · , k and such that

∄Ij[Pj]nj
∈ B′ with Ij[Pj ] ∼s I[P ] ⇐⇒ (i, k, I ′, P ′) ∈ S with I[P ] ∼s I

′[P ′].

Proof. By encoding J·K definition.

Definition 6.2.2. Let M and M
′ be machine terms. Then M

.
= M

′ iff M
′ = M up to

renaming of identifiers and substitution of box species.

When we say substitution of box species we mean that given a species (i, j, I, P ), we

can substitute I and P with corresponding I ′ and P ′ such that I ′[P ′] ∼s I[P ]. Moreover

if subjects of interfaces with same sorts in I and I ′ are different, we have to rename these

names also in all the monomolecular reactions referring to them.

Lemma 6.2.3. Let S, S ′ ∈ S. Then S ≡ S ′ ⇒ JŜK
.
= JŜ ′K.

Proof Sketch. By definition of ≡ it results that S and S ′, and hence also Ŝ and Ŝ ′, are

rearrangements of the same number of structurally congruent boxes (up-to box identifiers)

where links are preserved. This means that for each species (i, j, I, P ) in JŜK, there exists

a species (i′, j′, I ′, P ′) in JŜ ′K such that I[P ] ∼s I
′[P ′], and vice-versa. Moreover, for

each machine complex in JŜK, there exists a corresponding machine complex in JŜ ′K such

that the corresponding BlenX complexes are structurally congruent. Since there exists

a correspondence between the set of species and machine complexes of the two encoded

system, then the set of bimolecular reactions generated by the operators 1b, 1
C

u, 1
C

c and

1i are equal up-to species identifiers; species identifiers, although referring to the same

species can be different in the two sets. Moreover, for each species (i, j, I, P ) in JŜK and

its corresponding species in (i′, j′, I ′, P ′) in JŜ ′K, the sets of monomolecular reactions differ
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only by identifiers and names referring to interface subjects. Indeed, since by structural

congruence definition we can have that corresponding interfaces in I and I ′ can differ by

their subjects, then intra-communications on interface subjects and change actions can

differ with respect to the name they refer to.

By Def. 6.2.2 this means JŜK
.
= JŜ ′K.

Lemma 6.2.4. M
.
= M

′ and M 7→g M1 ⇒ ∃M
′
1 such that M′ 7→g M

′
1 and M1

.
= M

′
1.

Proof Sketch. Since M
.
= M

′, for each reaction in M that can generate a derivation

M 7→g M1, there exists a corresponding reaction in M
′ that can generate a reaction

M
′ 7→g M

′
1, for some M

′
1. Since the identifiers of the reactions in M and M

′ refer

respectively to identifiers of species (i, j, I, P ) and (i′, j′, I ′, P ′) in M and M
′ such that

I[P ] ∼s I
′[P ′], then each new pairs (I1, P1) and (I ′1, P

′
1) obtained from (I, P ) and (I ′, P ′),

by executing M 7→g M1 and M
′ 7→g M

′
1, are such that I1[P1] ∼s I

′
1[P

′
1]. The same holds

for the complexes generated by the reactions. Hence the species, complexes and reactions

generated by the two reactions are equal up-to renaming of identifiers and substitution

of box species. Since M
.
= M

′ and the elements added respect the
.
= definition, then it

holds M1
.
= M

′
1.

To prove soundness and completeness of the encoding we first introduce a relation ≤

between machine terms. Indeed, given the encoding of a sBlenX system, its dynamics

continues to add species, machine complexes and reactions, without deleting anything.

However, during the computation, many of these species and complexes have population

equal to 0 and hence also many reactions are not active. Relation ≤ relates machine terms

that differ only in the presence of reactions that are not active and cannot be executed.

Definition 6.2.5. Let M = (S,C,R) and M
′ = (S∪S′,C∪ C′,R∪R′) be two machine

terms. We say that M ≤ M
′ if and only if it holds that: (a) each species in S

′ has

population 0; (b) each complex in C
′ has population 0 and at least one node associated with

a species in S
′; (c) for each monomolecular reaction in R

′ the corresponding identifier

is in S
′ and each bimolecular reaction or event reaction in R

′ has at least one species

identifiers in S
′.

Lemma 6.2.6. M ≤M1 and M 7→g M
′ ⇒ ∃M′

1 s.t. M1 7→g M
′
1 with M

′ ≤M
′
1

Proof Sketch. It is enough to observe that all the reactions that are enabled in M are also

enabled in M1.

Lemma 6.2.7. M ≤M1 and M1 7→g M
′
1 ⇒ ∃M

′
1 s.t. M 7→g M

′ with M
′ ≤M

′
1

Proof Sketch. It is enough to observe that all the reactions in M
′ refer at least to a species

that has population 0 and hence no rule can be applied.
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Theorem 6.2.8 (Soundness). S →g S
′ with g 6= 0 ⇒ ∃M s.t. JŜK 7→g M with JŜ ′K ≤

.
=

M.

Proof Sketch. By Lemma 4.4.2 we can distinguish among 6 cases, depending on the axiom

driving the normalized derivation corresponding to S →g S
′.

(case 1)

We have S ≡ (K(x,∆)r I∗[ 〈C〉ch(x,Γ, r).P +G |P1 ]n ‖ B,E, ξ) with *C+I = true. By

encoding definition and using Lemma 6.2.3 we have that JŜK contains a species (i, j, I ′, P ′)

such that P ′ ≡ 〈C ′′〉ch(y,Γ, r).P ′′ +G′′ |P ′′
1 with K(y,∆)r ∈ I ′. We have two subcases.

If the box with identifier n is not part of any link in ξ then we can apply rule (m2) on

JŜK, generating a machine M where the population of the previous species is decreased

by 1 and the pair (I ′, P ′′ |P ′′
1 ) is added to the set of species. By encoding definition

and Lemma 6.2.3 we have that JŜ ′K contains a species (i′, j′, I2, P2) such that I2[P2] ∼s
I ′[P ′′ |P ′′

1 ]. In particular, since S ′ ≡ (K(x,Γ)r I∗[P |P1 ]n ‖ B,E, ξ), then the species

corresponding to (I ′, P ′′ |P ′′
1 ) has the same population both in M

′ and in JŜ ′K. Now, if

(i, j, I ′, P ′) was such that j > 1 then JŜ ′K has a corresponding species with cardinality

j − 1, which by encoding definition corresponds to the population of (i, j, I ′, P ′) in M
′.

In this case we have M
.
= JŜ ′K. If instead before the execution j = 1 then in M

′ the

species (i, j, I ′, P ′) has population 0, while in JŜ ′K this species is not present. This means

that from M
′ we can obtain a machine term M

′′ such that JŜ ′K ≤M
′′ .= M, which means

JŜ ′K ≤
.
= M.

If the box with identifier n is part of a link in ξ then we can apply rule (m1) on

JŜK, generating as before a machine M
′ where the population of the species (i, j, I ′, P ′)

is decreased by 1 and the pair (I ′, P ′′ |P ′′
1 ) is added to the set of species. Moreover,

JŜK contains the machine complex ({(l, i)} ∪ V,E) corresponding to the sBlenX complex

containing the box executing the change action. Its population is decreased by one and a

new complex ({(l, k)} ∪ V,E ′) is added to the set of complexes, where k is the identifier

of the species corresponding to the pair (I ′, P ′′ |P ′′
1 ) in M

′. If the population of both

the species and the complex before the execution is greater than 1 it results M′ .= JŜ ′K.

If instead the population of the species or the complex before the execution is equal to

1, then in M
′ they have population 0 and corresponding species and complexes are not

present in JŜ ′K. Hence it results JŜ ′K ≤
.
= M

′.

All the other cases are similar.

Corollary 6.2.9. S →g1 S1 →g2 S2 →g3 · · · →gn Sn with gi 6= 0 for all i = 1, · · · , n

⇒ ∃M1, · · · ,Mn s.t. JŜK 7→g1 M1 7→g2 M2 7→g3 · · · 7→gn Mn and JŜiK ≤
.
= Mi for all

i = 1, · · · , n.

Proof Sketch. It can be proved by using Lemma 6.2.6 and Theorem 6.2.8.
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Theorem 6.2.10 (Completeness). Let S ∈ S. JŜK 7→g M ⇒ ∃S ′ such that S−→g S
′ and

JŜ ′K ≤
.
= M.

Proof Sketch. By cases on the derivation of JŜK 7→g M.

(case m2)

By hypothesis, the machine term JŜK contains a species (i, j, I, P ) such that P ≡p
〈C1〉x?z.Q1 +M1 | 〈C2〉x!y.Q2 +M2 | Q3 with *C1+I = *C2+I = true. Moreover, we know

that the population of (i, j, I, P ) in M
′ is decreased by one and a pair (I,Q1 | Q2{z/y} | Q3)

is added to the set of species. By Prop. 6.2.1 we have that Ŝ has a bio-process structurally

congruent to I[P ]n ‖ B. By applying rules (s2), (s7) and (s8) of Tab. 6.2 we can hence

derive Ŝ →g S
′ such that the bio-process of S ′ is equal to I[Q1 | Q2{z/y} | Q3 ]n ‖ B.

Hence we can also derive S →g S
′. Note that by Prop. 6.2.1, JŜ ′K contains all the species

defined in B and a species corresponding to the box I[Q1 | Q2{z/y} | Q3 ]n, as JM̂ ′K. Now,

if in B there are other boxes belonging to the same species of I[P ]n, then the species

(i, j, I, P ) has population equal or greater than 0 in M
′ and a species corresponding to

(i, j, I, P ) is also present in JŜ ′K, with the same population. Hence JŜ ′K
.
= M

′. Instead,

if in B there are no other boxes belonging to the same species of I[P ]n, then the species

(i, j, I, P ) has population equal to 0 in M
′ and a species corresponding to (i, j, I, P ) is

not present in JŜ ′K. Hence JŜ ′K ≤
.
= M

′.

(case m5)

We know that JŜK contains species (i1, j1, I1, P1) and (i2, j2, I2, P2) and, by Prop. 6.2.1, S

is such that its bio-process is structurally congruent to I1[P1 ]n1 ‖ I2[P2 ]n2 ‖ B. Moreover,

by encoding definition, we know that the two species in Ŝ are part of two different machine

complexes (m1, k1, {(l1, i1)} ∪ V1, E1) and (m2, k2, {(l2, i2)} ∪ V2, E2) and hence we have

that n1 and n2 belong to links l1 and l2 in the environments of S such that l1 6∼c l2. By

hypothesis we know that I1 = I∗11⊕(x1,∆1)
r1 I∗12 and I2 = I∗21⊕(x2,∆2)

r2 I∗22, and since

(i1, i2, r,∆1,∆2, bind) is in JŜK, then by encoding definition it is αsb(∆1,∆2) 6= 0. Hence,

by using rules (s3), (s7) and (s8) we can derive Ŝ →r S
′ where the bio-process of S ′ sys-

tem is structurally congruent to I∗11⊗(x1,∆1)
r1 I∗12[P1 ]n1 ‖ I

∗
21⊕(x2,∆2)

r2 I∗22[P2 ]n2 ‖ B

and its environment is updated by adding the new link {∆1n1,∆2n2}. Note that we

can hence derive also S →r S
′. By encoding definition we know that JŜ ′K contains all

the species defined in B and species corresponding to boxes I∗11⊗(x1,∆1)
r1 I∗12[P1 ]n1 and

I∗21⊕(x2,∆2)
r2 I∗22[P2 ]n2 , as M

′. In the machine term M
′, moreover, the population of

the complexes (m1, k1, {(l1, i1)} ∪ V1, E1) and (m2, k2, {(l2, i2)} ∪ V2, E2) is decreased by

one and a new machine complex representing the binding of the two machine complexes

is added. By encoding definition, the new machine complex corresponds exactly to the

one that can be constructed from the set of links containing l1 and l2 that can now be

obtained by partitioning the environment of S ′ by means of ∼c. In S ′, indeed, it results
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l1 ∼c l2. In the partition, moreover, the number of set of links corresponding to machine

complexes (m1, k1, {(l1, i1)} ∪ V1, E1) and (m2, k2, {(l2, i2)} ∪ V2, E2) is decreased by one

with respect to Ŝ. As for the previous case, if none of the species and complexes involved

in the derivation assumes population 0, by encoding definition it results that the over-

all set of complexes and species in M
′ coincide with the one in JŜ ′K and hence we have

JŜ ′K
.
= M

′. Instead, if there are species and complexes that assume population 0 in M
′,

then by encoding definition the only difference between M
′ and JŜ ′K is that in JŜ ′K these

species and complexes are not present. Hence it results JŜ ′K ≤
.
= M

′.

All the other cases are similar.

Corollary 6.2.11. Let S ∈ S. JŜK 7→g1 M1 7→g2 M2 7→g3 · · · 7→gn Mn ⇒ ∃S1, S2, · · · , Sn
such that S →g1 S1 →g2 S2 →g3 · · · →gn Sn and JŜKi ≤

.
= Mi for all i = 1, · · · , n.

Proof Sketch. It can be proved by using Lemma 6.2.7 and Theorem 6.2.10.

Theorem 6.2.12 (Termination). Let S ∈ S. S 6→g with g 6= 0 ⇐⇒ JŜK 67→g.

Proof Sketch. (⇐) Let S = (B,E, ξ). Since by definition we have that if S 6→g with g 6= 0,

then the structure of B and ξ are such that operators ⊞c, 1b, 1
C

u, 1
C

c , 1i generate a set

of reactions where all the reactions refer to species with population equal to zero; Thus,

no rule can be applied on JŜK, resulting JŜK 67→g.

(⇒) By encoding definition JŜK 67→g implies that the only reactions present in the set of

JŜK reactions, are reactions referring to species with population 0 or to edges that are still

not present in any complex. If operators ⊞c, 1b, 1
C

u, 1
C

c , 1i do not generate reactions on

species that have population greater than zero this means, by operators definition, that in

Ŝ, and hence in S, the environment and all the boxes are such that they cannot generate

any derivation S →g S
′. Hence S 6→g.

To guarantee that our encoding preserves duration of reactions, we define also in this

setting a measure to calculate the probability to perform a certain reaction M →g M
′.

Also in this case we distinguish between two cases. When we have an immediate reaction

M−→∞ M
′, we say that the probability of performing the reaction is given by 1/R0(M),

where R0(M) denotes the immediate apparent probability of M, that is the total number

of immediate reactions that M can perform. When instead we have a stochastic reaction

M−→gM
′, with g ∈ R≥0 ∪ F , we say that the probability of performing the reaction is

given by s/R1(M), where s is equal to g if g ∈ R≥0 or is equal to *g+M if g ∈ F and

where R1(M) denotes the stochastic apparent rate of M, i.e., the sum of the rates of all

the stochastic reactions in M. Tab. 6.7 shows how to compute R0(M) and R1(M) by

considering separately each reaction type.
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M = (S,C,R)

R0
intra(M) =

∑

(i,x,∞,in,out,mix)∈R
PS(i)× (in× out−mix)

R1
intra(M) =

∑

(i,x,s,in,out,mix)∈R
PS(i)× s× (in× out−mix)

R0
change(M) =

∑

(i,x,∞,change)∈R
PS(i)× change

R1
change(M) =

∑

(i,x,s,change)∈R
PS(i)× s× change

R0
bind(M) =

∑

(i1,i2,∞,∆1,∆2,1,bind)∈R







PS(i1)× PS(i2) if i1 6= i2

PS(i1)× (PS(i2)− 1) if i1 = i2 ∧∆1 6= ∆2

PS(i1)× (PS(i2)− 1)

2
if i1 = i2 ∧∆1 = ∆2

R1
bind(M) =

∑

(i1,i2,s,∆1,∆2,1,bind)∈R







PS(i1)× PS(i2)× s if i1 6= i2

PS(i1)× (PS(i2)− 1)× s if i1 = i2 ∧∆1 6= ∆2

PS(i1)× (PS(i2)− 1)

2
× s if i1 = i2 ∧∆1 = ∆2

R0
unbind(M) =

∑

(i1,i2,∞,∆,Γ,1,unbind)∈R
EC(i1, i2,∆,Γ)

R1
unbind(M) =

∑

(i1,i2,s,∆,Γ,1,unbind)∈R
s× EC(i1, i2,∆,Γ)

R0
complex(M) =

∑

(i1,i2,∞,∆,Γ,k,complex)∈R
EC(i1, i2,∆,Γ)

R1
complex(M) =

∑

(i1,i2,s,∆,Γ,k,complex)∈R
s× k × EC(i1, i2,∆,Γ)

R0
inter(M) =

∑

(i1,i2,∞,∆1,∆2,k,inter)∈R







PS(i1)× PS(i2) if i1 6= i2

PS(i1)× (PS(i2)− 1) if i1 = i2 ∧∆1 6= ∆2

PS(i1)× (PS(i2)− 1)

2
if i1 = i2 ∧∆1 = ∆2

R1
inter(M) =

∑

(i1,i2,s,∆1,∆2,k,inter)∈R







PS(i1)× PS(i2)× s× k if i1 6= i2

PS(i1)× (PS(i2)− 1)× s× k if i1 = i2 ∧∆1 6= ∆2

PS(i1)× (PS(i2)− 1)

2
× s× k if i1 = i2 ∧∆1 = ∆2

R1
inter(M) =

∑

(i1,i2,f,∆,Γ,k,inter)∈R







*f+S if i1 6= i2 and PS(i1) > 0 and PS(i2) > 0

*f+S if i1 = i2 and PS(i1) > 1

0 otw

R1
event(M) =

∑

(k,N,f,N ′)∈R

{

*f+S if ∀i ∈ N it holds PS(i) ≥ N(i)

0 otw

R0
event(M) =

∑

(k,N,∞,N ′)∈R

{

1 if ∀i ∈ N it holds PS(i) ≥ N(i)

0 otw

Table 6.7: Immediate apparent probability and stochastic apparent rate.
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In Tab. 6.7, there are two functions that are heavily used. The first one is PS(i), that

given a set of species S and an identifier i returns the population associated with i in S;

if there is no species with identifier i, the function returns value 0. The other function

is EC(i1, i2,∆1,∆2), that given a set of complexes C takes two species identifiers and two

sorts and returns the total number of edges of machine complexes in C that connect nodes

associated with species i1 and i2 through sorts ∆1 and ∆2, respectively.

Note that the information saved in all the reactions are essential for a correct compu-

tation of immediate apparent probabilities and stochastic apparent rates.

Lemma 6.2.13. Let Ŝ = (B,E, ξ) ∈ S. Then we have R0
change(B) = R0

change(JŜK) and

R1
change(B) = R1

change(JŜK).

Proof Sketch. By function definition we have that given Ŝ = (B,E, ξ) with B = I1[P1]n1 ‖

I2[P2]n2 ‖ · · · ‖ Im[Pm]nm
‖ Nil it results:

R0
change(B) = Ch0x(I1, P1) + · · ·+ Ch0x(Im, Pm)

Moreover, we have that:

R0
change(JŜK) =

∑

(i,x,m,chinf)∈R

PS(i)×m

where the value m is computed for each species (i, j, I, P ) appearing in the reactions

considered by the sum, with function Ch0x(I, P ).

Note that by Prop. 6.2.1, for each Ch0x(I, P ) in R0
change(JŜK), there are PS(i) ele-

ments Ch0x(Ik, Pk) in R0
change(B), and vice-versa, such that Ik[Pk] ∼s I[P ]. Moreover,

by Prop. 6.1.8, Ch0x(Ik, Pk) = Ch0x(I, P ). Hence, the overall sum coincide and we have

R0
change(B) = R0

change(JŜK).

R1
change(B) = R1

change(JŜK) can be proved similarly.

Lemma 6.2.14. Let Ŝ = (B,E, ξ) ∈ S. Then R0
intra(B) = R0

intra(JŜK) and R1
intra(B) =

R1
intra(JŜK).

Proof Sketch. Similar to Lemma 6.2.13.

Lemma 6.2.15. Let Ŝ = (B,E, ξ) ∈ S and JŜK = (S,C,R). Then R0
bind(B,℘2(T )) =

R0
bind(JŜK) and R1

bind(B,℘2(T )) = R1
bind(JŜK).

Proof Sketch. By Prop. 6.2.1 and by observing that boxes belonging to the same species

preserve the number of interfaces and their sorts, it results that the number of combina-

tions of interfaces with sorts ∆ and Γ, computed in B by considering all the combinations
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of the two sorts on different boxes, and computed in S by considering pairs of species and

their populations, coincide. Since both R0
bind(B,℘2(T )) and R0

bind(R) are computed by

counting the number combinations with α(∆,Γ) =∞, then R0
bind(B,℘2(T )) = R0

bind(R).

Moreover, since both R1
bind(B,℘2(T )) and R

1
bind(JŜK) are computed by summing the val-

ues αsb(∆,Γ) corresponding to all the combinations with α(∆,Γ)sb > 0, then also in this

case we have R1
bind(B,℘2(T )) = R1

bind(JŜK).

Lemma 6.2.16. Let Ŝ = (B,E, ξ) ∈ S and JŜK = (S,C,R). Then R0
unbind(B, ξ) =

R0
unbind(JŜK) and R1

unbind(B, ξ) = R1
unbind(JŜK).

Proof Sketch. By encoding definition we have that the number of links in ξ connect-

ing sorts ∆ and Γ and the number of edges in machine complexes in C connecting

sorts ∆ and Γ, coincide. The value R0
unbind(B, ξ) is computed by simply summing the

number of links in ξ with unbind affinity equal to ∞. On the other hand, a reaction

(i1, i2,∞,∆1,∆2, 1, unbind) is in R only if αsb(∆1,∆2) = ∞. The value R0
unbind(JŜK) is

computed by summing, for each entry (i1, i2,∞,∆1,∆2, 1, unbind) in R, the number of

edges {∆1l1,∆2l2} connecting nodes with species identifiers i1 and i2, respectively. By

encoding definition, this calculation counts all the edges of all the machine complexes

with immediate unbind. Hence, since the total number of links and edges coincide, we

have R0
unbind(B, ξ) = R0

unbind(JŜK).

Similarly, the value R1
unbind(B, ξ) computes the sum of all the unbind compatibility

values of links in ξ with unbind affinity in R>0. A reaction (i1, i2, s,∆1,∆2, 1, unbind) is

in R only if αsb(∆1,∆2) = s ∈ R>0. The value R0
unbind(JŜK) is computed by summing,

for each entry (i1, i2, s,∆1,∆2, 1, unbind) in R, the unbind compatibility values s of edges

{∆1l1,∆2l2} connecting nodes with species identifiers i1 and i2, respectively. By encoding

definition, this calculation counts all the edges of all the machine complexes with unbind

compatibility in R>0. Hence, since the total number of links and edges coincide, we have

R1
unbind(B, ξ) = R1

unbind(JŜK).

Lemma 6.2.17. Let Ŝ = (B,E, ξ) ∈ S and JŜK = (S,C,R). Then R0
complex(B, ξ) =

R0
complex(JŜK) and R1

complex(B, ξ) = R1
complex(JŜK).

Proof Sketch. Similar to Lemma 6.2.16.

Lemma 6.2.18. Let Ŝ = (B,E, ξ) ∈ S and JŜK = (S,C,R). Then R0
inter(B, T

2) =

R0
inter(JŜK) and R1

inter(B, T
2) = R1

inter(JŜK).

Proof Sketch. Similar to Lemma 6.2.15.

Lemma 6.2.19. Let Ŝ = (B,E, ξ) ∈ S and JŜK = (S,C,R). Then R0
event(Ŝ, E, ξ) =

R0
event(JŜK) and R1

event(Ŝ, E, ξ) = R1
event(JŜK).
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Proof Sketch. By encoding definition there is a one-to-one correspondence between events

in Ŝ and events in JŜK. Both R0
event(Ŝ, E, ξ) and R

0
event(JŜK) count all the events having

rate ∞. By soundness and completeness of the encoding we know that if an event is

enabled in Ŝ then it is also enabled in JŜK. Hence R0
event(Ŝ, E, ξ) = R0

event(JŜK).

Similarly R1
event(Ŝ, E, ξ) and R1

event(JŜK) sum all the evaluations of the function of

all the events having rate expressed by a function. By Prop. 6.2.1 and the way in which

functions are evaluated, we know that the evaluation of a function f in Ŝ or in JŜK returns

the same value and hence also in this case R1
event(Ŝ, E, ξ) = R1

event(JŜK).

Definition 6.2.20. Given a system Ŝ ∈ Ss, the immediate apparent rate of JŜK =

(R,C,R), denoted with R0(JŜK), is computed by the following formula:

R0(JŜK) = R0
change(JŜK) +R0

intra(JŜK) +R0
bind(JŜK) +R0

unbind(JŜK)+

R0
complex(JŜK) +R0

inter(JŜK) +R0
event(JŜK)

Moreover, the stochastic apparent rate of Ŝ, denoted with R1(JŜK), is computed by the

following formula:

R1(JŜK) = R1
change(JŜK) +R1

intra(JŜK) +R1
bind(JŜK) +R1

unbind(JŜK)+

R1
complex(JŜK) +R1

inter(JŜK) +R1
event(JŜK)

Theorem 6.2.21 (Duration). Let S ∈ S. Then R0(Ŝ) = R0(JŜK) and R1(Ŝ) = R1(JŜK).

Proof Sketch. Follows directly from the previous lemmas.

6.3 Stochastic simulation

In this section we show how an extended version of the Gillespie algorithm can be imple-

mented on the BlenX abstract machine. The algorithm is performed on a BlenX machine

term by choosing, for each simulation step, the fastest reaction in the machine and mak-

ing the machine term to evolve accordingly. Obviously, since immediate reactions have

the precedence with respect to stochastic reactions, the Gillespie algorithm is extended

to deal with this aspect. Our algorithm is similar to the efficient variant of the Gillespie

algorithm proposed by Gibson and Bruck (see Chapt. 2).

Tab. 6.8 introduces the pseudo-code of the sBlenX stochastic simulation algorithm.

It takes a well-formed sBlenX system S and a limit time limitTime. The procedure

generates the machine term JŜK = (S,C,R) and then invokes the procedure InitEnv(),

which initializes the rest of simulation environment. Indeed, apart from containing the
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Simulation (S,limitTime):

let M = JŜK;

InitEnv();

actualTime : = 0;

print initial configuration;

while true do

if actualTime > limitTime then
quit the loop;

if R0(Ireact) > 0 then

choose react in Ireact with probability
R0

type({react})

R0(Ireact)
;

newTime := actualTime;

else
(react, newTime) = StochasticSelection();

if newTime := ∞ then
quit the loop;

AffectedSpecies = Execute(react);

if react not immediate then
UpdateTime(AffectedSpecies);

print actual configuration;

actualTime := newTime;

ComputeTime (react):
if R1

type({react}) = 0 then
return ∞;

rn := Random[0,...,1];

return
1

R1
type({react})

× log(
1

rn
);

Table 6.8: Pseudo-code of the stochastic simulation slgorithm.

sets characterizing the machine term, the simulation environment is made up also of a

collection of data-structures that allow for a more efficient implementation.

First of all the environment is initialized by creating a set of immediate reactions

Ireact and a set of stochastic reactions Sreact. In particular, the set R is partitioned in

two disjoint sets R1 ∪R2 = R such that R1 contains all the immediate reactions and R2

contains all the stochastic reactions (we use react, react′, react1, ... to range over elements

in R). Ireact and Sreact are initialized with R1 and R2, respectively.

153



6.3. STOCHASTIC SIMULATION CHAPTER 6. STOCHASTIC EXTENSION

Following the Gibson and Bruck implementation, also in our case we have an indexed

priority queue PQ. It is an indexed priority queue implemented as an heap. Elements

in PQ have associate a value time, that can be a real number of the value ∞, which is

assumed to be greater than all the real numbers. The queue holds elements ordered by

the time value.

Instead of having a dependency graph (as the Gibson and Bruck implementation)

we use a hash map HMap. Given the identifier i of a species, HMap(i) returns the set of

reactions in Sreact involving the species i. Each reaction in Sreact, moreover, is associated

univocally to an element in the indexed priority queue PQ and, on the other end, each

element in PQ is associated univocally with a reaction in Sreact. We assume to have

functions GetPQ and GetReact, that given a priority queue element pqElem or a reaction

in Sreact, return the corresponding reaction or the PQ element, respectively. Fig. 6.4

shows how HMap, Sreact and PQ are related.

1

2

i

j

k

.......
0.2

0.5 2.6

Figure 6.4: The data structures used by the simulation environment.

Procedure InitEnv() initializes all these data structures. The time value of each

element pqElem in PQ is initialized by invoking the function ComputeTime on the

reaction GetReact(pqElem). When a time value in the priority queue is modified, the

PQ is automatically reordered.

Then, the value actualTime is initialized to 0 and the simulation loop starts. If the

actualTime is greater than limitTime, then the simulation loop is terminated. If this is

not the case, the algorithm controls the presence of immediate actions. If R0(Ireact) is

greater than zero, then in the machine term there are immediate reactions that can be

executed. Since they have the precedence with respect to stochastic reactions, one of these

reactions in Ireact is chosen with a probability proportional to R0(Ireact); each immediate

reaction can be chosen with probability R0
type({react})/R

0(Ireact) (type indicates the type

of reaction react, in accordance with Tab. 6.7). In this case newTime, that is the simulation
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time after the execution of the reaction, is equal to actualTime; immediate actions take

time 0 to be executed.

If no immediate reactions are present, then a stochastic reaction is selected using the

function StochasticSelection(). This function simply takes the top element pqElem

in PQ, invokes GetReaction(pqElem), obtaining a reaction react in Sreact, and returns

the pair (react, time), where time is the time value associated with the selected pqElem;

this value is assigned to newTime. Note that the top element of PQ always refers to the

fastest reaction.

If the newTime, resulting from the stochastic selection, is equal to∞, this means that

all the elements in PQ have time value equal to ∞, which consequently means that all

the reactions in Sreact are not enabled. Hence, the simulation loop is terminated.

If we are still in the simulation loop, the selected reaction react, both if immediate or

stochastic, is executed by invoking the function Execute(react); it returns a set of species

identifiers affectedSpecies. Function Execute implements the machine dynamics rules of

the abstract machine presented in the previous section and returns the identifiers of the

species that are involved in the reaction. For example, consider react = (i, x, change, ch)

and suppose that species i is in at least one complex. Then rule:

(i, x, change, type) ∈ R (i, j, I, P ) ∈ S

P ≡p 〈C〉ch(x,Γ, r).Q1 +M1 | Q2 * C+I = true I = I∗1 ⊕(x,∆)r
′

I∗2 Γ /∈ sorts(I∗1 I
∗
2 )

S1 = S⊟s (I, P ) (S2,S3, k,R
′) = S1 ⊞s (I

∗
1 ⊕(x,Γ)

r′ I∗2 , Q1 | Q2)

C1 = (C⊟c ({(l, i)} ∪ V,E))⊞c ({(l, k)} ∪ V,E)

(m3)
M 7→r (S2,C1,R ∪R

′ ∪ (
⋃
S2 1

C1 S3))

is implemented by first selecting in P one of the possible enabled actions 〈C〉ch(x,Γ, r).Q1+

M1 | Q2 with uniform probability (among all the enabled change actions on x) and in

C a complex ({(l, i)} ∪ V,E) with uniform probability (among all the complexes, with

population greater thatn zero, having nodes referring to species i). The rule is applied

on the selected elements and the set affectedSpecies = {i, k} is returned. In implementing

the execution, moreover, when the new reactions are added to the machine reactions set,

also sets Ireact and Sreact are updated consequently adding to them the new immediate

and stochastic reactions, respectively.

If the executed reaction is not an immediate reaction, the set affectedSpecies is then

used as parameter in the invocation of UpdateTimes. For each species identifier i

contained in affectedSpecies, the procedure uses HMap(i) to obtain the set of reactions

involving species i and substitute the time values of the corresponding elements in PQ

with a value obtained from the sum of the actualTime and the value obtained with
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ComputeTime applied on the corresponding reaction. Note that since in affectedSpecies

we can have reactions referring to more than one species identifier, to avoid multiple cal-

culations we can restrict the substitution only for the time values lower or equal than the

actualTime; when is bigger, indeed, this means that its value has been already recom-

puted. The times corresponding to the reactions with identifiers not in affectedSpecies are

not recomputed. Indeed, since their apparent stochastic rates do not change, then there

is no need to recompute the corresponding reaction time; we can keep the one already in

the priority queue element.

After the update, the actualTime is substitued with the newTime, the actual machine

configuration is printed and the loop restarts. Note that the only case in which the

simulation loop does not terminate is when an infinite sequence of immediate reactions is

executed.

The main difference between our simulation algorithm and the various Gillespie’s im-

plementations, is that we have to deal with immediate reactions and with a number of

species, machine complexes and reactions that is dynamic, i.e., can change during the

simulation. This is why we preferred an hashmap instead of a dependency graph; modi-

fying dynamically a dependency graph can be computationally expensive. However, the

dynamical nature of our systems causes our algorithm to have an execution step complex-

ity which is a bit more expensive with respect to the Gibson and Bruck implementation.

The complexity of their algorithm, indeed, is O(log r), where r is the number of reactions

in the system.

Although a precise description of the complexity of our algorithm is outside the scope

of this thesis, we can say that the complexity of our simulation algorithm is O(f1(rimm)+

f2(s) + f3(c) + log rstoch), where rimm is the number of immediate reactions, s is the

number of species, c is the number of complexes and rstoch is the number of stochastic

reactions. With f1, f2 and f3, moreover, we indicate functions such thatO(f1(ri)) ≤ O(ri),

O(f2(s)) ≤ O(s) and O(f3(c)) ≤ O(c). Functions f1, f2 and f3 depend on how operators

on set of species, set of complexes and reactions are implemented and on which data-

structures we use to manage immediate reactions. The main goal regarding the simulation

algorithm was only to show that by compressing structural congruent boxes and complexes

we can simulate complex systems with dynamic number of species, complex and reactions,

using the same principles on which the NRM is based, hence obtaining exact and efficient

simulations.
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Chapter 7

The Beta Workbench

The Beta Workbench (BWB for short) is a set of tools to design, simulate and analyse mod-

els written in sBlenX; it is freely available for non commercial purposes at www.cosbi.eu.

The core of BWB is a command-line application that hosts three tools: the BWB sim-

ulator, the BWB CTMC generator and the BWB reactions generator. This application,

implemented in C++, takes as input three text files that represent a sBlenX system, passes

them to the compiler that translates these files into a runtime representation that is then

stored into a runtime environment. The BWB simulator is a stochastic simulation engine

and its runtime environment is the implementation of the stochastic abstract machine

and the simulation algorithm we introduced in the previous chapter. It is important to

underline that the last version of the BWB simulator implements also some extensions of

sBlenX that are not presented in this thesis.

The BWB reactions generator identifies all the complexes and species that could be

generated by the execution of a sBlenX system as a result of interactions and state changes,

without actually executing or simulating the model [65]. The output of the tool is a

description of the system as a list of box species and a list of reactions in which these

species are involved. These lists are abstracted as a digraph in which nodes represent

species and edges represent reactions. This graph can be reduced to avoid, whenever

possible, the presence of immediate reactions. The final result is an SBML description of

the original sBlenX system.

Around the core BWB, several tools have been developed to ease model writing and

interpretation of results. Examples are the BWB Designer and the BWB Plotter. The

BWB designer is a tool that allows to write sBlenX systems both in a textual and in a

graphical way. The two representations are interchangeable: the tool can parse and gen-

erate the graphical representation from any valid sBlenX system description, and generate

the textual representation from the graphical form. In particular, it is possible to draw

boxes, processes, interactions, events and to form complexes using graphs. The textual
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representation can then be used as input to the core BWB. The BWB Plotter, instead, is

a tool that can be used to perform some initial analysis of the simulation results. It is

able to display the reactions as both a graph (with some different layouts) and a reaction

list; it plots the variation of population of all or selected species and it can be used to see

how species and complexes are structured.

The logical arrangement of the computational blocks of BWB is depicted in Fig. 7.1.

Figure 7.1: The logical strucure of BWB.

My main thesis contribution with respect to the BWB concerns the implementation

of the stochastic simulation engine for sBlenX, its runtime environment and the CTMC

generator.

7.1 The concrete syntax

To simplify the writing of sBlenX systems, a concrete syntax for the language has been

defined. A BlenX program, i.e., a sBlenX system written in the concrete syntax, is made

of an optional declarations file for the declaration of user-defined constants and functions,

a sorts definition file that associates unique sorts to interfaces of boxes used by the

program and a program file, that contains the specification of the bio-processes, events

and complexes.

Before starting a more detailed presentation of the concrete syntax we show how

the enzyme activation examples we used throughout the previous chapters to introduce

BlenX and sBlenX are implemented in the concrete syntax. The complete code of the three
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examples is reported in Tab. 7.1. It gives an initial overview of how a BlenX program is

structured; each row represent a different program.

Program file Sorts file Declarations file

[steps = 1000]

<< BASERATE:inf >>

let E : bproc = #(x,DE)

[ rep x!().nil ];

let S : bproc = #(y,DS)

[ y?().ch(y,DP).nil ];

run 1 E || 100 S

{ DE, DS, DP }

%%

{ (DE,DS,

rate(ka),

rate(kb),

rate(kc)

),

(DE,DP,0,inf,0) }

let ka : const = 1.0;

let kb : const = 1.0;

let kc : const = 10.0;

[steps = 1000]

let E : bproc = #(x,DE)[nil];

let S : bproc = #(y,DS)[nil];

let P : bproc = #(y,DP)[nil];

let ES : bproc = #(y,DES)[nil];

when(E,S::rate(ka)) join(ES);

when(ES::rate(kb)) split(E,S);

when(ES::rate(kc)) split(E,P);

run 1 E || 100 S

{ DE, DS, DP, DES } let ka : const = 1.0;

let kb : const = 1.0;

let kc : const = 10.0;

[steps = 1000]

<< BASERATE:inf >>

let E : bproc = #(x,DE)

[ rep x!().nil ];

let S : bproc = #(y,DS)

[ y?().ch(y,DP).nil ];

run 1 E || 100 S

{ DE, DS, DP }

%%

{ (DE,DS,f1) }

let ka : const = 1.0;

let kb : const = 1.0;

let kc : const = 10.0;

let Km : const =

(kb + kc)/ka;

let VMax : const = 100;

let f1: function =

VMax*(|S|/(Km+|S|));

Table 7.1: Different programs implementing enzyme catalysis. Rows represent different programs
while columns represent different files.

Note how the program files contain the specification of the boxes and the events

specifying the enzyme activation example. Although following a programming language
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style, note how the concrete syntax is very close to the abstract one. One of the main

differences is that instead of specifying a bio-process, a parallel composition of events

and an environment, in the concrete syntax we first define a list of boxes and events

(and complexes as we will see later) and then in the end we use a specific keyword to

initialize the runtime environment with different populations of the defined boxes species

(and complexes). By looking at the second program, it is clear that we implemented only

specific classes of events and not the general classes of events characterizing sBlenX; this

has been done by considering the results we obtained in Chapt. 5 for the Becore subset.

Moreover, note how at the beginning of the file we specify the information about the

duration of the simulation (in this case 1000 simulation steps) and some global quantitative

information that will be explained later. The sorts files contain the list of all the sorts

used in the corresponding program files, along with the implementation of the α function;

it is implemented by listing all the sorts compatibilities. The declarations files contain

the definitions of constants, variables and functions that are used in the corresponding

program and sorts files to define rates and specify the number of initial boxes species.

The last thing we anticipate is that complexes are specified with an explicit construct

that allows directly the construction of graphs of boxes; this avoid the need to specify the

environment at the beginning, simplifying the usability of the language.

We conclude this brief introduction by showing in Fig.7.2 the simulation results we

obtained by running in the BWB simulator the three examples of Tab.7.1. Each graph

in Fig. 7.2 shows the variation of population in time of the box species representing

the substrate and the product. The figures show how the three programs implement

coherently the biological scenario of enzyme catalysis.
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(a) Example of simulation result of
the first program in Tab.7.1.
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(b) Example of simulation result of
the second program in Tab.7.1.
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(c) Example of simulation result
of the third program in Tab.7.1.

Figure 7.2: Simulation results of the enzyme catalysis programs.
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7.1.1 Rates, variables and functions

All the BlenX files share the syntax definition of identifiers, numbers and rates as reported

in Tab.7.2. Note that in the following sections, during the description of the programming

constructs, we prefix some qualifying words to Id in order to clarify the kind of identifier

that can occur in a given position. We will write boxId, sortId, funcId and varId to specify

the identifiers referring to boxes, sorts, functions and variables, respectively. Syntactically,

they are all equal to Id; the disambiguation is done by the BWB compiler, using a symbol

table. For examples, if an identifier Id is used in a function declaration, it will be stored

as a funcId in the symbol table.

Letter ::= [a− zA− Z]

Digit ::= [0− 9]

Exp ::= [Ee][+\−]?{Digit}

real1 ::= {Digit}+{Exp}

real2 ::= {Digit}∗.{Digit}+({Exp})?

real3 ::= {Digit}+.{Digit}∗({Exp})?

Real ::= real1 | real2 | real3

Decimal ::= {Digit}+

Id ::= ({Letter}| )({Letter}|{Digit}| )∗

number := Real | Decimal

rate := number | rate ( Id ) | inf

Table 7.2: Definition of identifiers, numbers and rates. For the regular expressions we use the
FLEX syntax.

7.1.2 The declarations file

A declarations file is a file with .decl extension that contains the definition of variables,

constants and functions (see Tab.7.3). Since these constructs are optional, it is possible

to skip the definition of the whole file. The declaration file has the syntax reported in

Tab. 7.3.

An expression is made up of operators and operands. The syntax for the expression

exp and the possible algebraic operators that can be used is given in the previous table.

An operand can be a number, an Id that refers to a constant or a variable (see below)

or a value |Id| that refers to the actual population of the box species identified by Id.

Operator precedence follows the common rules found in every programming language.

Operators + and − have the precedence when used as unary operators, while × and /
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have the precedence with respect to + and − when used as binary operators.

declarations ::= decList

decList ::= dec

| dec decList

dec ::= let Id : function = exp ;

| let Id : var = exp ;

| let Id : const = exp ;

exp ::= number

| Id

| | Id |
| log ( exp )

| sqrt ( exp )

| exp ( exp )

| pow ( exp , exp )

| exp+ exp

| exp− exp
| exp ∗ exp
| exp / exp

| −exp
| +exp

| ( exp )

Table 7.3: Declaration file BNF grammar.

A state variable or simply variable is an identifier that can assume real modifiable
values (Real value). The content of a variable is automatically updated when the defining
expression exp changes. After the variable identifier and the var keyword, the user has to
specify the expression used to control the value of the variable. Some examples of variable
declarations follows:

let v1 : var = 10 * |A|;

let mCycB : var = 2 * |X| * log(v1) init 0.1;

A constant is an identifier that assumes a value that cannot be changed at run-time
and specified through a constant expression (an expression that does not rely on any
variable or species population |Id| to be evaluated). As an extension, BlenX allows the
use of constant expressions. Examples of constant declarations and of constant expressions
follow:

let c1 : const = 1.0;

let pi : const = 3.14;

let c3 : const = (4.0/3.0) * pi * pow(c1, 3);

In the current version of BWB, functions are parameterless and always return a Real
value. As is, a function is only a named expression that can be used to evaluate a rate or
to update the content of a state variable. An example of function definition follows:
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let f1 : function = (k5s / alpha) / (pow((J5 / (m * alpha * |X|)), 4));

When a function is used to describe inter-communications, then we can use |1B| and

|2B| to identify the population of the boxes performing the inter-communication. In

particular, 1B identifies the box corresponding to the first sort in the compatibility de-

scription, while 2B corresponds to the second.

7.1.3 The sorts definition file

The sorts definition file is a file with .sorts extension that stores all the interface sorts

that can be used in the program file and in the definition of compatibilities. The BNF

grammar of the sorts file is given in Tab. 7.4.

affinities ::= { sortIdList }
| { sortbinderIdList }%%{ affinityList }

sortIdList ::= sortId
| bsortId, sortIdList

affinity ::= ( sortId, sortId, rate )
| ( sortId, sortId, funcId )
| ( sortId, sortId, rate, rate, rate )

affinityList := affinity

| affinity , affinityList

Table 7.4: Sorts file BNF grammar.

As shown in the previous chapters, compatibilities are a peculiar feature of BlenX and

are specified by the function α. Thus the sorts file allows the implementation of the

α function. By specifying any compatibility in a separate file we put any information

about boxes interaction information in a place that can be modified without altering the

program file. The utility of a separate description will be showed Chapt. 9.

A compatibility is a tuple of three or five elements. The first two elements are interface

sorts declared in the sortIdList, while the other elements can either be rate values or a

single function identifier. If the compatibility tuple contains a single rate value, then the

value is interpreted as the rate of inter-communications between interfaces with sorts equal

to the first and second sortId, respectively. If the compatibility tuple, instead, contains

three rate values, these values are interpreted as the rates for binding, unbinding and

complex-communication, respectively, between interfaces with sorts equal to the first and

second sortId, respectively. When the element after the two sortId values is a function

identifier, the expression associated with the function will be evaluated to yield a value,

then interpreted as the rate of the corresponding inter-communication. Note finally that
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for all the pairs of sorts that are not specified in the list, no compatibility is assumed.

7.1.4 The program file

The central part of a BlenX program is the program file. The program file has a .prog

extension and is generated by the BNF grammar in Tab. 7.5.

program ::= info 〈〈 rateDec 〉〉 decList run bp

| info decList run bp

info ::= [ steps = decimal ]
| [ steps = decimal, delta = number ]
| [ time = number ]

rateDec ::= Id : rate
| CHANGE : rate
| BASERATE : rate
| rateDec, rateDec

decList ::= dec
| dec decList

dec ::= let Id : pproc = process ;
| let Id : bproc = box ;
| let Id : complex = complex ;
| when ( cond ) verb ;

bp ::= Decimal Id
| bp || bp

Table 7.5: Program file BNF grammar.

A prog file is made up of a header info, an optional list of rate declarations (rateDec),

a list of declarations decList, the keyword run and a list of starting entities bp.

The info header contains any information used by the BWB simulator that will execute

the program. A stochastic simulation can be considered as a succession of timestamped

steps that are executed sequentially, in a non-decreasing time order. Thus, the duration of

a simulation can be specified as a time, intended as the maximum timestamp value that

the simulation clock will reach, or as a number of steps that the simulator will schedule

and execute. The delta parameter can be optionally specified to instruct the simulator

to record events only at a certain frequency.

The rateDec specifies the global rate associations for individual channel names or for

a particular class of actions that a program can perform. In addition, a special class

BASERATE can be used to set a common basic rate for all the actions that do not have
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an explicit rate set. The explicit declaration of a rate in the definition of an action has

the precedence on this global association. Note how global rate specifications for names

are used to recover the specification of the function δ.

The list of declarations decList follows. Each declaration is a small, self-contained piece

of code ended by a ‘;’. A declaration can be named, e.g., it can have an Id that designates

uniquely the declaration unit in the program, or it can be nameless. Declarations of boxes,

processes and complexes must be named1, while events are nameless.

7.1.5 Processes and boxes

Boxes and processes are generated by the BNF grammar reported in Tab. 7.6. Like for the

abstract syntax, the definition of a box specifies the interfaces and the internal process.

Each interface can be defined by specifying the rate associated with the subject or by

avoiding it; in the latter case it is assumed equal to zero. The absence of boxes identifiers

and of the environment (that specifies how boxes are bound together) is due to the fact

that in the concrete syntax we simplify the specification of the complexes by introducing a

proper language construct (see below). Once having the initial complexes, all the bindings,

unbindings and creation/deletion of complexes are managed automatically by the runtime

environment.

The concrete syntax of processes is very close to the abstract one. The main difference

is in the definition of the conditions guarding actions. First of all, the concrete syntax of

conditions relies on the well-know “if” statement. Moreover, we simplified the notation

by allowing the specification of conditions also on choices and not only on single actions.

Indeed, a condition on choices can be easily translated into a form in which the condition

is replicated on all the single elements composing the choice, hence recovering the abstract

syntax of conditions. Moreover, the true condition is simply omitted. Finally, atoms of

conditions can check the sort of the interface associated with a subject, the state of the

associated interface but also both the sort and the state together.

The replication operator ∗ is denoted with the keyword rep and in the specification of

inputs and outputs we can omit the subject if we are interested in pure synchronization.

Moreover, change actions can be defined by specifying a characteristic rate or by avoiding

it. If the rate of the change is not specified, then the action is associated with the rate

specified in the global declaration CHANGE, or if also this is not specified, with the

BASERATE. If no one of these rates is specified then an error occur.

Note that the separate processes definitions allow to simplify the writing and descrip-

tion of boxes and other processes. Each process definition can indeed be used to define

1Note that some language constructs, i.e., processes and sequences, can appear without a name throughout a
program; they must be named only when they appear as a declaration
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box ::= interfaces [ process ]

interfaces ::= # ( Id : rate, sortId )
| # ( Id, sortId )
| interfaces, interfaces

process ::= par
| choice

par ::= parElem
| choice | choice
| choice | par
| par | choice
| par | par
| ( par )

choice ::= choice
| choice+ choice
| ( choice )

choice ::= nil
| seq
| if condexp then sum endif

parElem ::= Id
| rep action . process

seq ::= action
| action . process

action ::= Id ! ( Id )
| Id ! ()
| Id ? ( Id )
| Id ? ()
| ch ( Id, sortId )
| ch ( rate, Id, sortId )

condexp ::= atom
| condexp and condexp
| condexp or condexp
| not condexp
| ( condexp )

atom ::= ( Id, sortId )
| ( Id, bound )
| ( Id, sortId, bound )

Table 7.6: Program file BNF grammar.
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other processes or the internal behaviour of a box. The scoping we assume is static and

we do not allow recursive definition. Recursive definitions can be recovered by using the

replication operator [99]. An example of processes and boxes definitions is reported below:

let KKKs1 : pproc = recv?().ch(p,kaseKKK).ch(recv,baseKKK).s0!();

let KKKs0 : pproc = recv?().ch(p,outKKK).ch(recv,activeKKK).s1!() ;

let KKK: bproc = #(p, kaseKKK), #(recv, baseKKK)

[ rep s0?().KKKs0 | rep s1?(). KKKs1 | KKKs0 | rep p!(plus).nil ];

This example implements a sort of state machine and is part of a program we will

introduce in the next modelling part of the thesis.

7.1.6 Complexes

In order to simplify the specification of complexes, the concrete syntax is provided with

a proper construct for the definition of complexes. A complex can be defined using the

BNF grammar reported in Tab. 7.7.

complex ::= { ( edgeList ) ; nodeList }

edgeList ::= edge
| edge, edgeList

edge ::= ( Id, Id, Id, Id )

nodeList ::= node
| node nodeList

node ::= Id : Id = ( complInterfaceList ) ;
| Id = Id ;

complInterfaceList ::= Id
| Id, complInterfaceList

Table 7.7: Definition of complexes

A complex is created by specifying directly the graph of boxes, i.e., the list of edges

(edgeList) and the list of nodes (nodeList). Each edge is a composition of 4 Ids. The first

and the third identifiers represent node names, while the others represent subject names.

Each node in the nodeList associates to a node name the corresponding box name and

specifies the subjects of the bound interfaces. As an example, let us consider the following

piece of code:
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let B1 : bproc = #(x,A0),#(y,A1)

[ x!(sig) ];

let B2 : bproc = #(x,A0),#(y,A1)

[ y!(sig) ];

let C : complex =

{

(

(Node0,y,Node1,x),(Node1,y,Node2,x),

(Node2,y,Node3,x),(Node3,y,Node0,x)

);

Node0:B1=(x,y);

Node1:B2=(x,y);

Node2=Node0;

Node3=Node1;

};

The complex C defines a complex with a structure equivalent to the one reported in

Figure 7.3. Note that by specifying all the initial complexes in this way there is no need to

specify the initial environment. It is generated and managed by the runtime environment

following the mechanisms described by the stochastic abstract machine of sBlenX.

Figure 7.3: Complex generated by the BlenX program.

7.1.7 Events

In the concrete syntax, an events specifies a statement, or a verb, to be executed with a

specified rate and/or when some conditions are satisfied. The current implementation of

events contains some extensions of sBlenX that are not part of this thesis. We introduce

here only the syntax of the class of events that are derived from the sBlenX events. The

complete concrete syntax of events is reported in Tab. 7.8.
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dec ::= ...
| when ( cond ) verb ;
| ...

cond ::= entityList : simStatus : inf
| entityList : simStatus : funcId
| entityList : simStatus :
| entityList :: inf
| entityList :: funcId
| : EvExpr :

entityList ::= boxId
| boxId, entityList

simStatus ::= time = Real
| steps = Decimal

verb ::= split ( boxId, boxId )
| join ( boxId )
| new ( Decimal )
| delete ( Decimal )
| new
| delete

Table 7.8: Events file BNF grammar.

In the concrete syntax, a single event is the composition of a condition cond and an

action verb. Events are used to express reactions that are enabled by global conditions

about the simulation status, expressed by cond. Conditions are used to trigger the exe-

cution of an event when some elements are present in the system, with a given rate, or at

a precise simulation time or simulation step. More precisely, a condition cond consists of

three parts: entityList, a list of boxes present in the system; an expression used to enable

or disable the event; a rate or rate function.

As an example, let us consider the following event:

when(A, B :: inf) join (C);

The boxes species involved in the event are A and B, as they appear in the entityList.

If in the current configuration of the system an instance of A and an instance B are

present, then the event can fire immediately.

The element simStatus specifies: a condition on simulation time, that will be satisfied

as soon as the simulation clock is greater or equal to the specified time; a conditions on

simulation steps, that will be satisfied as soon as the step count will exceed the number

specified in the simStatus. In both cases, the condition will remain true until the event is
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fired. So, events for which the condition specified is the number of steps or the execution

time are guaranteed to fire exactly once. For example, the event:

when(A : time = 3.0 : inf) delete;

will fire as soon as the simulation clock reaches 3.0, removing an instance of the box

species A form the system. Simulation time and simulation step conditions, although not

present in the abstract syntax of sBlenX, have been introduced because in a simulation

framework are essential to program perturbation of the systems and to observe how the

overall behaviour is affected (e.g., the knock-out of a gene at a given time).

Note that the number of Ids specified in the entityList depends on the event verb that

is used for the current event (see below).

An event can be immediate (form 1 and 4 in the BNF specification of cond) or its rate

can be described with a rate function (form 2 and 5 in the BNF specification of cond). Note

how rate functions allows to express complex expressions where the stochastic behaviour

associated with an event can depend on the population of other boxes species. For the

case in which rates are specified as functions (form 2 and 5 in the BNF specification of

cond), the function is evaluated and the resulting value is used directly to compute the

reaction rate. Form 3 and 6 assume that the event is immediate.

Events can split a box into two boxes, join two boxes into a single one, inject or remove

boxes into/from the system. These four classes of events correspond in the abstract syntax

to the following classes of events:

(split) I[P ]n ⊲h I
′[P ′ ]n′ ‖ I ′′[P ′′ ]n′′ or

I[P ]n ⊲h I
′[P ′ ]n′ ‖ Nil

(join) I ′[P ′ ]n′ ‖ I ′′[P ′′ ]n′′ ⊲h I[P ]n

(new) I[P ]n ⊲h I[P ]n1 ‖ · · · ‖ I[P ]nm

(delete) I[P ]n1 ‖ · · · ‖ I[P ]nm
⊲h Nil

Verbs and conditions have some dependencies: not all verbs can apply to all conditions.

The entityList in cond is used by the event to understand which species the event will

modify; at the same time, the verb dictates which action will take place. Indeed, a verb

specify how many entities will be present in the entityList : the split verb requires exactly

one entity to be specified in the condition list; the join verb requires exactly two entities

to be specified in the condition list; the new and delete verbs require exactly one entities

to be specified in the condition list.
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7.1.8 Templates

Templates, often referred to as generics or parametric processes, are a feature of many

programming languages that allows to use an extended grammar, whose corresponding

code can contain variable parts that are then instantiated later by the compiler with

respect to the base grammar.

In BlenX template code is specialized and instantiated at compile time using binder

identifiers that are passed as template arguments. Therefore, BlenX provides a grammar

for defining templates and code to instantiate and use them.

Template declaration

It is possible to define templates for processes, boxes and sequences. The BNF for template

declaration is reported in Tab. 7.9.

dec ::= ...

| template Id : pproc 〈〈 formList 〉〉 = process ;

| template Id : bproc 〈〈 formList 〉〉 = box ;

| let Id : bproc = Id 〈〈 invTempList 〉〉;

form ::= name Id
| rate Id
| pproc Id
| sort Id

formList ::= form
| form, formList

invTempElem ::= Id
| Id 〈〈 invTempList 〉〉

invTempList ::= invTempElem
| invTempElem, invTempList

parElem ::= ...
| Id 〈〈 invTempList 〉〉

bp ::= ...
| Decimal Id〈〈 invTempList 〉〉

Table 7.9: Definition of templates.

The declaration of a template bproc or pproc follows closely the declaration of their

standard counterparts, with the let keyword substituted by template, and an additional

list of template formal parameters enclosed by double angular parenthesis.

The template parameter formList is a comma-separated list of forms; each form de-
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clares a template argument made up of a keyword along name, pproc, sort followed by

an Id. The Id will be added to the environment of the object being defined, acting as a

place-holder for the object that will be used during parameter instantiation. For example,

in the following code:

template P : pproc << pproc P1, name N1, name N2, sort T1 >> =

x?().N1!().ch(N2, T1).P1;

There is no need to define the pproc P1, nor to insert the sort identifier T1 into the

sorts file: this piece of code will compile without errors, as the process P1 and the sort

identifier T1 are inserted into P ’s environment as template arguments. P will be treated

by the compiler as a pproc with four template arguments: a process, two names and an

interface sort.

Template instantiation

A declared template (pproc or bproc) is held in its symbol-table by the compiler in

order to satisfy any following invocations or instantiations of that template. A template

instantiation is a compile time procedure that substitutes the template formal parameters

with the actual parameter with which the template object will be used. For example, the

following code is a possible instantiation of the previous pproc template:

let NilProc : pproc = nil;

let B : bbproc = #(z, Z)

[ P<<NilProc, y, z, Z2>> | y?().nil ];

The code generate by the compiler, as the result of this instantiation, is equivalent to

the following hand-written code:

let NilProc : pproc = nil;

let B : bbproc = #(z, Z)

[ x?().y!().ch(z, Z2).NilProc | y?().nil ];

More precisely, a template is instantiated by using the Id of the template (pproc or

bproc) and providing it with a list invTempList of comma-separated template invocations

invTempElems, whose kind has to match the kind of the template formal parameters.

Note that templates do not increase the expressive power of the language, they only

make easier the writing of generic and reusable code.
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Chapter 8

Signalling networks

In this chapter we investigate the modelling of signalling networks.

We concentrate on a unique underlying example, the MAPK cascade (see Sect. 2.1.3),

and we use it to explain different modelling strategies for signalling networks. The mod-

elling session starts with the description of a design pattern that allows to model multiple

protein conformational states in a standard way. We then present a simplified model

of the MAPK cascade and then improve it in two different ways to obtain the detailed

MAPK cascade. All the models are implemented following some standard design patterns,

so that they can be reused and adapted to model other similar scenarios.

The correctness of our models is shown by comparing the simulation results of our

models against the ones presented in [86], where models of simplified and detailed MAPK

cascade have been implemented in π-calculus and simulated with SPiM.

We will refer to the model in [51] as the detailed model. However, for simplicity, we

start our presentation with a simplified version of the model where all the enzymatic

reactions:

E + S
a1−⇀↽−
d1
ES

k1−→ E + P

are substituted with simpler reactions of the form:

E + S
r1−→ E + P

For the simplified models we follow [86] and set all the reaction rates ri to a nominal

value of 0.05s−1 and initialize the system with two instances of E1, E2, KKPase and

KPase, 20 of KKK and 200 of KK and K. Detailed models are implemented with reaction

rates derived from [51], where all the ai reaction rates are equal to 1s−1 and all the di
and ki reaction rates are equal to 150s−1. Moreover, we initialize the system with one

instance of E1, E2 and KKPase, 120 of KPase, 3 of KKK and 1200 of KK and K.
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8.1 Protein conformational states

Here we give a design pattern to model conformational states of proteins.

Proteins are represented by boxes. Internal processes implement kinds of state ma-

chines where state changes are driven by the reception of external signals and messages.

A state of a box (and hence of the represented protein) is the combination of a certain

configuration of interfaces and internal process. Each state is implemented following a

common pattern. There is first an input action, followed by a sequence of immediate

change actions, followed by an output over the channel representing the destination state:

let P_state_i =

recv?().ch(inf,...). ... .state_j!();

It is clear that the sequence of immediate change actions updates the sorts of the

interfaces so that the resulting box coincides with the one representing the destination

state. Processes representing states can then be combined to define a box as follows:

let P_state_0 = x?(). ... .state_1!();

let P_state_1 = y?(). ... .state_2!();

let P_state_2 = x?(). ... .state_0!();

let B : bproc = #(x,state_0_sort1),#(y,state_0_sort2)

[

rep state_0?().P_state_0 |

rep state_1?().P_state_1 |

rep state_2?().P_state_2 |

P_state_0 |

...

];

After initializing the box species with the sorts corresponding to the one of the initial

state (in this case state 0), the internal process is created by guarding each process

representing a state with an input on the corresponding channel and then by composing

all these processes in parallel. Moreover, the process representing the initial state is also

composed in parallel. Note that other parallel processes, as we will see later, can be

present.

The process just described implements a kind of deterministic state machine because,

given a state, after receiving a signal, we can go only in one other state. Sometimes, this

is not enough and non-deterministic state machines are needed. With non-deterministic

we mean that after receiving an input, more and different states can be reached. A first

choice can be to condition the state change depending on the reception of a signal from

different channels:
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let P_state_i =

recv1?().ch(inf,...). ... .state_j1!() +

recv2?().ch(inf,...). ... .state_j2!() +

... +

recvM?().ch(inf,...). ... .state_jM!() +

;

Instead, if we assume that the inputs that guard state changes receive a name, then

the state change can depend on the received name, leading to the following description.

let P_state_i =

recv?(what).(

what!() |

x1?(). ... .state_j1!() +

x2?(). ... .state_j2!() +

... +

xM?(). ... .state_jM!()

);

Note that instead of consuming only an input, we consume an input and then, de-

pending on the content of the message, we consume an intra-communication that selects

one of many possible different state changes.

A visual representation of a box implemented as a state machine is given in Fig. 8.1.

The first implements a state machine with two states, where changes happen with the

reception of signals over a specified interface. The second implements a state machine

with three states where changes depend on the received name. The third implements a

more complicated state machine with two intermediate states.

B B

minus

plus

minus

plus

B

c

a

c
b

a

b

c c

Figure 8.1: Visual representation of three different state machine implementations. The upper
arrow means that a signal is received over that interface. Circles represent states and colours
identify different states. Arrows represent state changes and labels on arrows (if any) represent
the name that drives the state change.
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B2

B3

B1

recv

recv

recv out

out

out

Figure 8.2: Schematic representation of proteins sending and receiving signals.

8.2 A simplified model

Each protein composing the MAPK cascade is represented as a box. Protein domains are

divided into a set of sensing domains and a set of effecting domains. Sensing domains

are the places where a protein receives signals. Effecting domains are the places that a

protein uses to propagate signals. The internal structure codifies for the mechanism that

transforms an input signal into a protein conformational change, which can result in the

activation or deactivation of other domains. This description is inspired by the available

knowledge of protein structure and function (see for example [103]).

In this first model, a sensing domain is represented by an interface, and the mechanism

of message-passing (or simply synchronization in some cases) is used to implement the

reception of activation (e.g., phosphorylation) and deactivation (e.g., dephosphorylation)

signals sent to the protein. The effecting domain is instead used to communicate, and

hence to activate or inhibit other proteins. In this setting, a box receives signals from

sensing domains and send signals through effecting domains; a schematic representation

is given in Fig.8.2.

Following this schema and the state machine pattern introduced previously, KKK has

one sensing domain and one effecting domain and is activated after receiving a single

signal; it is implemented by the following pattern:

let KKKs1 : pproc = recv?().ch(p,kaseKKK).ch(recv,baseKKK).s0!();

let KKKs0 : pproc = recv?().ch(p,outKKK).ch(recv,activeKKK).s1!() ;

let KKK: bproc = #(p, kaseKKK), #(recv, baseKKK)

[ rep s0?().KKKs0 | rep s1?(). KKKs1 | KKKs0 | rep p!(plus).nil ];

let KKKp: bproc = #(p, outKKK), #(recv, activeKKK)

[ rep s0?().KKKs0 | rep s1?(). KKKs1 | KKKs1 | rep p!(plus).nil ];
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When KKK executes an inter-communication through the interface #(recv,baseKKK),

the action recv?() in KKK is consumed and immediately the actions #ch(p,outKKK)

and #ch(recv,activeKKK) are also consumed (we assume the global rate for the change

action to be set to inf ). The obtained box is structurally congruent to KKKp and hence

the protein has reached its active form, where the interfaces have associated the right

sorts. Now, if the box KKKp executes an inter-communication through the interface

#(recv,activeKKK), the reverse mechanism is executed and the protein returns back in

its inactive form KKK.

Note that, although not needed, we define also the active form KKKp. In this way

we will have the right name associated in the simulation output files. If we do not

define the active form, then in the output file the corresponding box species will be

present with a random name of the form Sn. In this way we can give a name to all the

protein conformational states we are interested in and render hence easier the output

interpretation.

KK requires two signals to be activated and hence the implementation pattern is

slightly different.

let KKs2 : pproc = recv?().ch(p,kaseKK).ch(recv,intKK).s1!();

let KKs1 : pproc = recv?(what).what!() |

( plus?().ch(p,outKK).ch(recv,activeKK).s2!() +

minus?().ch(recv,baseKK).s0!() );

let KKs0 : pproc = recv?().ch(recv,intKK).s1!().nil;

let KK: bproc = #(p, kaseKK), #(recv, baseKK)

[ rep s0?().KKs0 | rep s1?().KKs1 | rep s2?().KKs2 | KKs0 |

rep p!(plus).nil ];

let KKpp: bproc = #(p, outKK), #(recv, activeKK)

[ rep s0?().KKs0 | rep s1?().KKs1 | rep s2?().KKs2 | KKs2 |

rep p!(plus).nil ];

These three processes encode the state machine that allows to switch from the inactive

to the active state and back. After receiving the first signal (with an activation mechanism

similar to the one described for single signal activation), the process KKs1, representing an

intermediate configuration, is activated. This process presents a choice behaviour: when

a name minus is received, the process for the inactive state is enabled again; otherwise,

if a name plus is received, the active process KKs2 is enabled, leading the protein to

reach the conformational state represented by process KKpp, the active form. Protein K

is implemented in the same way.

Finally, signals E1 and E2 and phosphatases KKpase and Kpase are implemented in

the following ways:
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let E1: bproc = #(x, signalE1) [ rep x!().nil ];

let E2: bproc = #(x, signalE2)[ rep x!().nil ];

let KKpase: bproc = #(x, paseKK)[ rep x!(minus).nil ];

let Kpase: bproc = #(x, paseK) [ rep x!(minus).nil ];

They have no sensing domains and simply send signals continuously. Note that since

KKK can be only in active or inactive state, then activation and deactivation (through

E1 and E2, respectively) can be done by using pure synchronization.

At this point, we have to specify which active protein activates or inhibits each other

protein. This is done simply by specifying the compatibilities in the sorts file between the

right sorts in the following way:

{

baseK, intK, activeK, kaseK, outK,

baseKK, intKK, activeKK, kaseKK, outKK,

baseKKK, activeKKK, kaseKKK, outKKK,

signalE1, signalE2, paseP1, paseP2

}

%%

{

(signalE1,baseKKK,0.05),

(signalE2,activeKKK,0.05),

(outKKK,baseKK,0.05),

(outKKK,intKK,0.05),

(paseP2,intKK,0.05),

(paseP2,activeKK,0.05),

(outKK,baseK,0.05),

(outKK,intK,0.05),

(paseP1,activeK,0.05),

(paseP1,intK,0.05)

}

For example, note how signalE1 acts on the sort baseKKK, representing the sensing

domain of the inactive formKKK, while signalE2 acts on the sort activeKKK, representing

the sensing domain of the active form KKKp.

Finally, Fig. 8.3 reports simulation results for this model. Similar response profiles are

observed for the output of Kpp with respect to the detailed model presented in [51], despite

the differences in the simulation parameters, the system still behaves as an ultrasensitive

switch. As we will see later, however, average behaviour and standard deviation are

slightly different with respect to the detailed model. This is due to the fact that in the

simplified model the switch is more effective and presents less stochasticity.
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(a) Example of BWB simulation.
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(b) Average over 100 simulations.
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(c) Standard deviation over 100 simulations.

Figure 8.3: Simulation results of the MAPK cascade simplified model.

8.3 The detailed model

The detailed model is obtained by improving the previous simplified model. The first

modification we have to bring in the model is related to the compatibility values. A

detailed implementation of the kinetics:

E + S
a1−⇀↽−
d1
ES

k1−→ E + P

requires, indeed, the specification of binding, unbinding and complex-communication

rates. Following the implementation of the enzymatic reactions we saw in the previous
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chapters, we actually implement the kinetics:

E + S
a1−⇀↽−
d1
ES

k3−→ EP
∞
−→ E + P

which corresponds to the previous one, but that adds an immediate step in the end. Thus,

the new sorts file is:

{

baseK, intK, activeK, hiddenK, kaseK, outK,

baseKK, intKK, activeKK, hiddenKK, kaseKK, outKK,

baseKKK, activeKKK, hiddenKKK, kaseKKK, outKKK,

signalE1, signalE2, paseP1, paseP2, UNBIND, INERT

}%%

{

(signalE1,baseKKK,1,150,150),

(UNBIND,baseKKK,0,inf,0),

(signalE2,activeKKK,1,150,150),

(UNBIND,activeKKK,0,inf,0),

(outKKK,baseKK,1,150,150),

(UNBIND,baseKK,0,inf,0),

(outKKK,intKK,1,150,150),

(paseP2,intKK,1,150,150),

(UNBIND,intKK,0,inf,0),

(paseP2,activeKK,1,150,150),

(UNBIND,activeKK,0,inf,0),

(outKK,baseK,1,150,150),

(UNBIND,baseK,0,inf,0),

(outKK,intK,1,150,150),

(paseP1,intK,1,150,150),

(UNBIND,intK,0,inf,0),

(paseP1,activeK,1,150,150),

(UNBIND,activeK,0,inf,0)

}

The sort UNBIND is used to implement all the last immediate steps, while new sorts

hiddenKKK, hiddenKK and hiddenK are used to implement a mechanism that avoids the

creation of complexes that are not present in the original MAPK model.

Consider indeed a scenario in which we have KKKp, E2 and KK :
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where we omit interface subjects and where sorts are simplified by omitting the protein

name. Looking at the compatibilities specification, it results that the system admits a

configuration where the following complex can be formed:

This complex, however, is not contemplated in the MAPK model of [51] and hence, to

be coherent with the original model, we have to implement boxes avoiding the formation

of these intermediates. We implement this mechanism by using the “if” statement and

simplify the model by using templates. Consider again the protein KKKp; it can act both

as an enzyme and a substrate. What we want is that when E2 binds to KKKp, then the

other interface is not available. We want hence the formation of a complex:

where hiddenKKK and activeKK are not compatible. Moreover, we want the same be-

haviour when KKKp binds to KK :

where hiddenKKK and signalE2 are not compatible. This procedure is implemented by

the following template:

template cInter : pproc

<< name x, name y, name z, sort S, sort T >> =

if (x,bound) and (y,S) then

ch(y,T). if not(x,bound) then

ch(y,S).z!()

endif

endif;

and is used, for example, to implement KKKp in the following way:
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let KKKp: bproc = #(p, kaseKKK), #(recv, baseKKK)

[

KKKs1 | rep s0?().KKKs0 | rep s1?().KKKs1 |

rep c1?().cInter<< p, recv, c1, baseKKK, hiddenKKK >> |

cInter<< p, recv, c1, baseKKK, hiddenKKK >> |

rep c2?().cInter<< p, recv, c2, activeKKK, hiddenKKK >> |

cInter<< p, recv, c2, activeKKK, hiddenKKK >> |

rep c3?().cInter<< recv, p, c3, kaseKKK, hiddenKKK >> |

cInter<< recv, p, c3, kaseKKK, hiddenKKK >> |

rep c4?().cInter<< recv, p, c4, outKKK, hiddenKKK >> |

cInter<< recv, p, c4, outKKK, hiddenKKK >> |

...

];

The template cInter is instantiated for all the interfaces and for each sort they can

assume. Now, suppose E2 and KKKp to be bound and consider the previous definition

of KKKs1. We have that if the two boxes perform an inter-communication on the bound

interfaces, then they reach the following configuration:

This configuration leads to different possible executions. The correct one is when the

two boxes unbind, the sort of the hidden interface is set again to outKKK and finally the

state change ch(recv,baseKKK) is executed. An incorrect execution, instead, occurs when

first the action ch(recv,baseKKK) is executed, then the two boxes unbind and finally then

the sort of the hidden interface is updated with outKKK ; in the wrong execution we end

up with a box:

that does not represent any valid KKK state. For this reason we have to make the

sequence of actions deterministic, in a way that the process can proceed only with the

correct execution. We do this by rewriting the KKK states in the following way:
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let KKKs1 : pproc =

recv?().if (p,outKKK) then

ch(p,kaseKKK).ch(recv,baseKKK).s0!()

endif ;

let KKKs0 : pproc =

recv?().if (p,kaseKKK) then

ch(p,outKKK).ch(recv,activeKKK).s1!()

endif ;

Consider process KKKs1. After receiving the signal we are sure that the sort associated

with p is hiddenKKK and that it will be changed again to outKKK immediately after

the unbinding. Hence, to keep the correct order it is enough to guarantee that the state

change happens only once the sort of interface p is again outKKK. All the described

sequence is made up of immediate actions.

From the description, it is clear that the unbind reaction after the inter-communication,

i.e., the last immediate reaction in the enzymatic kinetics schema, is driven by the protein

that acts as an enzyme. All the proteins that act as enzyme, hence, are provided with a

parallel internal process that implements this template:

template signal : pproc

<< name x, name y, binder S>> =

rep init?().x!(y).ch(x,UNBIND).

if not(x,bound) then

init!().ch(x,S)

endif |

x!(y).ch(x,UNBIND).

if not(x,bound) then

init!().ch(x,S)

endif

;

It implements a recursive behaviour where the enzyme, after sending the signal,

changes the sort of the output interface with UNBIND, waits for the unbind (that by

the compatibility value is immediate) and then sets again the right sort. This template is

instantiated in all the proteins that act, or can act, as enzymes. Hence, it is instantiated

in all the proteins but K.

The complete code that uses templates is reported in Tab. 8.1 and Tab. 8.2. Note

that in the complete model we define a template for the implementation of KKK and

KK and K and all their intermediate and active states. This example shows the utility

of templates.

Moreover, simulation results are reported in Tab. 8.4. Note how the dynamics is in

accordance with the one reported in [51].
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[steps = 10000, delta = 0.001]

<<BASERATE: inf>>

template signal: pproc << name x, name y, binder S >> =

rep init?().x!(y).ch(x,UNBIND).if not(x,bound) then init!().ch(x,S) endif |

x!(y).ch(x,UNBIND).if not(x,bound) then init!().ch(x,S) endif ;

template cInter : pproc

<< name x, name y, name z, sort S, sort T >> =

if (x,bound) and (y,S) then

ch(y,T). if not(x,bound) then ch(y,S).z!() endif endif;

template Kn: bproc

<< sort S0, sort S1, sort S2, sort S3, sort S4, sort S5, sort S6, sort S7,

pproc P1, pproc P2, pproc P3, pproc P4 >> =

#(p, S6), #(recv, S7)

[ rep s0?().P1 | rep s1?().P2 | rep s2?().P3 | P4 |

rep c1?().cInter<< p, recv, c1, S0, S5 >> | cInter<< p, recv, c1, S0, S5 >> |

rep c2?().cInter<< p, recv, c2, S1, S5 >> | cInter<< p, recv, c2, S1, S5 >> |

rep c3?().cInter<< p, recv, c3, S2, S5 >> | cInter<< p, recv, c3, S2, S5 >> |

rep c4?().cInter<< recv, p, c4, S3, S5 >> | cInter<< recv, p, c4, S3, S5 >> |

rep c5?().cInter<< recv, p, c5, S4, S5 >> | cInter<< recv, p, c5, S4, S5 >> |

signal<< p, plus, S4 >> ];

let pNil : pproc = nil;

// Definition of signals and phosphatases

let E1: bproc = #(x, signalE1) [ signal<< x, plus, signalE1 >> ];

let E2: bproc = #(x, signalE2) [ signal<< x, plus, signalE2 >> ];

let P1: bproc = #(x, paseP1) [ signal<< x, minus, paseP1 >> ];

let P2: bproc = #(x, paseP2) [ signal<< x, minus, paseP2 >> ];

let KKKs1: pproc =

recv?().if not(recv,bound) and (p,outKKK) then

ch(p,kaseKKK).ch(recv,baseKKK).s0!() endif ;

let KKKs0: pproc =

recv?().if not(recv,bound) and (p,kaseKKK) then

ch(p,outKKK).ch(recv,activeKKK).s1!() endif ;

let KKK: bproc =

Kn<<baseKKK,INERT,activeKKK,kaseKKK,outKKK,hiddenKKK,kaseKKK,

baseKKK,KKKs0,KKKs1,pNil,KKKs0>>;

let KKKp: bproc =

Kn<<baseKKK,INERT,activeKKK,kaseKKK,outKKK,hiddenKKK,outKKK,

activeKKK,KKKs0,KKKs1,pNil,KKKs1>>;

Table 8.1: Complete code of the detailed MAPK cascade model (part 1).
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let KKs2 : pproc =

recv?().if (p,outKK) then ch(p,kaseKK).ch(recv, intKK).s1!() endif;

let KKs1 : pproc =

recv?(what).what!().nil |

(

plus?().if (p,kaseKK) then ch(p,outKK).ch(recv, activeKK).s2!() endif +

minus?().if (p,kaseKK) then ch(recv, baseKK).s0!() endif

);

let KKs0 : pproc =

recv?().if (p,kaseKK) then ch(recv,intKK).s1!() endif ;

let KK: bproc =

Kn<<baseKK,intKK,activeKK,kaseKK,outKK,hiddenKK,kaseKK,baseKK,KKs0,KKs1,

KKs2,KKs0>>;

let KKp: bproc =

Kn<<baseKK,intKK,activeKK,kaseKK,outKK,hiddenKK,kaseKK,intKK,KKs0,KKs1,

KKs2,KKs1>>;

let KKpp: bproc =

Kn<<baseKK,intKK,activeKK,kaseKK,outKK,hiddenKK,outKK,activeKK,KKs0,KKs1,

KKs2,KKs2>>;

let Ks2 : pproc =

recv?().if (p,outK) then ch(p,kaseK).ch(recv, intK).s1!() endif;

let Ks1 : pproc =

recv?(what).what!().nil |

(

plus?().if (p,kaseK) then ch(p,outK).ch(recv, activeK).s2!() endif +

minus?().if (p,kaseK) then ch(recv, baseK).s0!() endif

);

let Ks0 : pproc =

recv?().if (p,kaseK) then ch(recv,intK).s1!() endif ;

let K: bproc =

Kn<<baseK,intK,activeK,kaseK,outK,hiddenK,kaseK,baseK,Ks0,Ks1,Ks2,Ks0>>;

let Kp: bproc =

Kn<<baseK,intK,activeK,kaseK,outK,hiddenK,kaseK,intK,Ks0,Ks1,Ks2,Ks1>>;

let Kpp: bproc =

Kn<<baseK,intK,activeK,kaseK,outK,hiddenK,outK,activeK,Ks0,Ks1,Ks2,Ks2>>;

run 1 E1 || 1 E2 || 1200 K || 1200 KK || 3 KKK || 120 P1 || 1 P2

Table 8.2: Complete code of the detailed MAPK cascade model (part 2).

8.4 Using functions

The detailed MAPK cascade model can be obtained also by using functions with the sim-

plified model. By the Michelis-Menten formulation, indeed, we can represent an enzymatic

187



8.4. USING FUNCTIONS CHAPTER 8. SIGNALLING NETWORKS

0 5 10 15

0
20

0
40

0
60

0
80

0
10

00
12

00

Time

P
op

ul
at

io
n

Kpp
KKpp
KKKp

(a) Example of BWB simulation.
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(b) Average over 100 simulations.
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(c) Standard deviation over 100 simulations.

Figure 8.4: Simulation results of the MAPK cascade detailed model.

reaction:

E + S
a1−⇀↽−
d1
ES

k1−→ E + P

with a simplified reaction:

E+ S
r
−→ E+ P

where the rate k is determined by:

r =
k1 × |E| × |S|
a1 + k1
d1

+ |S|

188



CHAPTER 8. SIGNALLING NETWORKS 8.4. USING FUNCTIONS

Since all the enzymatic reactions in the detailed model have the same rates, then we

can instantiate a declarations file containing only the definition:

let f : function = (150 * |1B| * |2B|) / (300 + |2B|);

and substitute all the values 0.05 in the sort file of the simplified model with f . In this

way, the kinetics governing the communications are described by functions that implement

Michaelis-Menten kinetics. Note that we have to be sure that in the sorts file the order

of the pair of sorts reflects the fact that the first sorts refers to the box that performs the

output, while the second to the box that performs the input. In Tab. 8.5 we can see that

the dynamics of the detailed model is preserved.
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(a) Example of BWB simulation.
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(b) Average over 100 simulations.

0 5 10 15

0
10

0
20

0
30

0
40

0

Time

P
op

ul
at

io
n

Kpp
KKpp
KKKp

(c) Standard deviation over 100 simulations.

Figure 8.5: Simulation results of the MAPK cascade detailed model with functions.
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8.5 Composition of networks

Cellular functions, such as signal transductions, are carried out by modules made up of

many species of interacting proteins. Modules can be linked by crosstalks, i.e., protein

species in signal transduction are shared between different signal networks and responses

to a signal inducing condition can activate multiple responses, or can be linked by an

exchange of signals between their components.

Consider a program in which there are two independent signalling networks:

Suppose there exists a crosstalk between the two modules. Being independent, the

two networks contain one (or more) protein that belong to the same species but have

different names. Suppose for example that B and D represent the same protein species

and assume that in both models they are activated by a single signal. Having in mind

our design pattern for signalling networks, it is clear that to obtain the crosstalk effect

we simply have to delete one of the two boxes (e.g., D), and substitute in the sorts file all

the sorts regarding D with the corresponding sorts regarding B. In such a way we obtain

a new signalling network in which the crosstalk is present:

In a different scenario, suppose that all the protein species composing the two inde-

pendent signalling networks are different. Now, suppose we want to compose the two
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networks by adding some interactions between their components. Imagine that B sends

an activation signal to C and D and that D sends an activation signal to A:

This can be reproduced by updating the sorts file with new connections. Note that no

modifications are needed in the program file. Note also that if we use the design pattern

of the detailed model, it is enough to update the sorts file, because all the intermedi-

ate complexes are automatically generated during the execution. A similar procedure is

needed if we want to add a new protein species E that acts on one or both the networks:

In this case indeed it is enough to define the new protein species and to add the

corresponding compatibilities in the sorts file. All these simple examples show how the

interaction framework based on compatibility provides a certain compositionality in the

description of networks. It is indeed possible to develop different pieces of a model sepa-

rately and then put all together by working on the compatibilities definition.

It is important to observe that modularity and compositionality can be used only by

fixing right from the start a series of policies and design patterns. Obviously, they can

differ depending on the scenario and for that it is quite difficult to identify general imple-

mentation principles. However, general policies and design patterns are a good practice
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in all the programming languages; they indeed give a reusable solution to commonly oc-

curring problem design by providing a description of how to solve a problem that can be

used in many different situations.

8.6 Encoding space

In signalling networks the activity of proteins is heavily influenced by their location inside

the cell. From a topological perspective a cell can be seen as an architecture of physical

membrane-bounded locations, called also compartments. The spatial architecture of com-

partments, therefore, is an essential aspect of cellular biology which calls for an adequate

modelling support.

Here we show how space, and particularly compartments, can be handled in our sig-

nalling network BlenX design pattern. We concentrate here on the pattern of the simplified

model.

Compartments are usually arranged in a tree-like structure and only proteins belong-

ing to the same compartment can interact. In our compartment representation we rely

on a more general model of space in which we simply associate locations to proteins.

This association is obtained by stipulating a standard approach in representing protein

domains. Following the previously described design pattern, proteins are modelled in

BlenX as boxes and their domains as interfaces. Interaction capabilities of proteins are

determined by interfaces sorts and their compatibilities. By refining the interpretation of

sorts, we can limit the interaction capabilities of boxes and hence, indirectly, represent a

particular topological space arrangement. As an example, consider the space arrangement

in Fig. 8.6. There are two compartments A and B, one enclosed in the other, and the

presence of an enzyme E and a substrate S in both the compartments. Our aim is to avoid

A

B

Figure 8.6: Example of compartimetalized space.

any interaction between the enzyme in the inner compartment and the substrate in the

outer compartment, and vice-versa. In BlenX this can be achieved by simply duplicating
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the descriptions of the enzyme and the substrate in the following way:

let E_A : bproc = #(x,siteE_A) [ rep x!().nil ];

let E_B : bproc = #(x,siteE_B) [ rep x!().nil ];

let S_A : bproc = #(x,siteS_A) [ x?().ch(x,siteP_A).P ];

let S_B : bproc = #(x,siteS_B) [ x?().ch(x,siteP_B).P ];

and setting compatibilities:

{ siteE_A, siteE_B, siteS_A, siteS_B }

%%

{

(siteE_A, siteS_A, 0.05),

(siteE_B, siteS_B, 0.05)

}

We establish that each sort of each box in a program contains the information of the

location in which the boxes are placed in. In the example, indeed, box species of enzymes

and substrates initially located in different compartments, differ in the specification of the

location information contained in their sorts. Moreover, if the specification of the internal

process contains change actions, we have to guarantee that, depending on the location

of the protein, the sort is updated in the correct way, referring to the correct location.

Referring to the design pattern, it is evident how this requires, at a first instance, the

duplication of all the definitions of states and sorts in order to represent all the different

protein conformational states in the different locations.

In this setting, moving a protein from a location A to a location B entails intuitively

the update of all the sorts in the interfaces and in the internal process with the new

location information. Obviously, we cannot use classical process calculi name substitution

for this name, because sorts are not affected by it. Hence we extend the design pattern

of signalling networks by adding a mechanism for moving proteins from one location to

another. In doing this we always assume that the movement is generated by a sequence

of immediate actions enabled after the consumption of an inter-communication over a

special interface, used only for movement purposes.

Consider the space arrangement of Fig. 8.6 and imagine to initialize KKK (the version

used in the simplified MAPK cascade model) in A. To guarantee that KKK can move

across compartments A and B, we update the definition of the protein in the following

way:

let KKKs1_A : pproc = recv?().ch(p,kaseKKK_A).ch(recv,baseKKK_A).s0_A!() +

Move<<s0_A,s0_B,plus>>;

let KKKs0_A : pproc = recv?().ch(p,outKKK_A).ch(recv,activeKKK_A).s1_A!() +
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Move<<s1_A,s1_B,plus>>;

let KKKs1_B : pproc = recv?().ch(p,kaseKKK_B).ch(recv,baseKKK_B).s0_B!() +

Move<<s0_A,s0_B,plus>>;

let KKKs0_B : pproc = recv?().ch(p,outKKK_B).ch(recv,activeKKK_B).s1_B!() +

Move<<s1_A,s1_B,plus>>;

let KKK_A: bproc = #(p, kaseKKK_A), #(recv : inf, baseKKK_A), #(mov : inf, KKK_A)

[

rep s0_A?().KKKs0_A | rep s1_A?().KKKs1_A |

rep s0_B?().KKKs0_B | rep s1_B?().KKKs1_B |

KKKs0_A | rep p!(plus).nil |

];

where #(mov,KKK A) is the new interface used only for movements and the template

Move is defined in the following way:

template Move : pproc << name a, name b, name val >> =

mov?(what).( what!() | A?().a!().recv!(val) + B?().b!().recv!(val) );

With the consumption of the inter-communication through the interface with subject

mov, the box KKK A receives a name indicating the destination location. Being KKK A

placed in the location A, then the template Move first activates the state KKKs1 B, the

generator of the actual state in the destination location, and secondly executes the state

change performing an output on recv. This leads to KKK B.

For completeness, the definition of boxes KK and K (not shown) are obtained simi-

larly:

let KKs2_A : pproc = recv?().ch(p,kaseKK_A).ch(recv,intKK_A).s1_A!()+

Move<<s1_A,s1_B,plus>>;

let KKs1_A : pproc = recv?(what).what!() |

( plus?().ch(p,outKK_A).ch(recv,activeKK_A).s2_A!() +

minus?().ch(recv,baseKK_A).s0_A!() ) +

Move<<s0_A,s0_B,plus>>;

let KKs0_A : pproc = recv?().ch(recv,intKK_A).s1_A!() +

Move<<s1_A,s1_B,minus>>;

let KKs2_B : pproc = recv?().ch(p,kaseKK_B).ch(recv,intKK_B).s1_B!()+

Move<<s1_A,s1_B,plus>>;

let KKs1_B : pproc = recv?(what).what!() |

( plus?().ch(p,outKK_B).ch(recv,activeKK_B).s2_B!() +

minus?().ch(recv,baseKK_B).s0_B!() ) +

Move<<s0_A,s0_B,plus>>;

let KKs0_B : pproc = recv?().ch(recv,intKK_B).s1_B!() +

Move<<s1_A,s1_B,minus>>;
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let KK_A: bproc = #(p, kaseKK_A), #(recv, baseKK_A), #(mov, sort_A)

[

rep s0_A?().KKs0_A | rep s1_A?().KKs1_A | rep s2_A?().KKs2_A |

rep s0_B?().KKs0_B | rep s1_B?().KKs1_B | rep s2_B?().KKs2_B |

KKs0_A | rep p!(plus).nil

];

Note that the sort in charge of the movement has been set to sort A. This is due to

the fact that, depending on the sort, the movement of box species (see below) can be

more or less specific. Moreover, if we are interested in moving only a particular state of

the protein, then the implementation of the specific state, in the state machine pattern,

has to consider also the possibility to generate the movement.

The process of moving proteins around is usually called protein targeting or protein

sorting. Protein sorting can mainly happen through secretory pathways or through non-

secretory pathways following several different translocation phenomena. Following [93]

we classify all these phenomena into a single abstract translocation process. The abstract

translocation phenomenon can be seen as a door that can be opened by unlocking it

simultaneously with two different keys. Note how this mechanism allows protein sorting

to happen between any pair of locations. For example, consider the space arrangement:

L0

L1

L2
B1

A1

B2

A2

and assume that proteins B1 and B2 are the key proteins in inactive conformational state

that, once activated, allow the proteins A1 and A2 to translocate. When the two proteins

are active, they create a kind of tunnel:

L0

L1

L2

��

A2

195



8.6. ENCODING SPACE CHAPTER 8. SIGNALLING NETWORKS

that allows the translocations of A1 and A2. Note that this tunnel remains open until

one of the two proteins is deactivated; when open, it continuously translocates proteins

A1 and A2 at a specific rate.

In BlenX this mechanism is implemented by combining communication primitives and

events. Always referring to our previous definitions, assume that B1 and B2 correspond

both to KKK. What we want is that each time an instance of KKK is active both in L1

and in L2, then the tunnel is activated. This mechanism is implemented with the event:

when (KKKp_L1,KKKp_L2::inf) join(Tunnel_A1_L0_A2_L1);

where the box Tunnel A1 L0 A2 L1 is defined as follows:

let Tunnel_A1_L0_A2_L1 : pproc =

#(x1,T_L1),#(x2,T_L2),#(y1,activeKKK_L1),#(y2,activeKKK_L2)

[

rep x1!(L2).nil | rep x2!(L1).nil |

y?1().nil + y2?().nil

];

The sorts file contains the following compatibilities:

( T_L1, A1_L1, 1.0 ),

( T_L2, A2_L2, 1.0 )

where we assume a basal translocation rate of 1 and movement sorts for proteins A1

and A2 equal to A1 L1 and A2 L2, respectively. The tunnel is closed when the box

Tunnel A1 L0 A2 L1 receives a deactivation signal, representing the deactivation of one

of the two proteins. In particular, this is implemented through the following piece of code:

let Tunnel_A1_L0_A2_L1_close : pproc =

#(x1,T_L1),#(x2,T_L2),#(y1,activeKKK_L1),#(y2,activeKKK_L2)

[ rep x1!(L1).nil | rep x2!(L2).nil ];

when (Tunnel_A1_L0_A2_L1_close::inf) split (KKK_L1,KKK_L2);

Although translocations phenomena provide a great level of abstraction in modelling,

the movement and rearrangement of proteins across compartments, a simpler mechanism

can also be imagined and used in combination with it.

We can indeed imagine to represent transmembrane proteins and let them in charge

of moving substances across compartments. Transmembrane proteins are bound to mem-

branes spanning over both surfaces (integral proteins) or just residing on one side of the
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membrane (peripheral proteins). Also without explicitly representing membranes, trans-

membrane proteins can be modelled as special proteins that cannot move, but can send

activation and movement signals to the other proteins. The single critical case to de-

termine the location of a site (whether it is exposed either towards the outside of the

membrane or towards the inside of the membrane) is relative to integral protein. Indeed

the exposition of the sites of integral proteins determines the set of components that can

come in touch with the site due to the physical boundaries originated by the spatial hi-

erarchical structure of cells. An example is the integral transmembrane protein in the

following picture:

A

B C

Membrane

L0

L1

that has three domains: one directed towards the location L0 and two directed towards

the location L1. Following our design pattern, this protein can be implemented by the

following box:

let Integral_protein : bproc =

#(a,A_L0),#(b,B_L1),#(c,C_L1)

[ ... ];

The location information in the sort respects our design pattern and represents exactly

the situation of the previous picture. Note that the integral protein can still be designed

following our design pattern, but we have to set compatibilities and output messages

in such a way that the protein can send not only activation signals, but also movement

signals (e.g., domain A L0, once activated, can send to proteins in L0 movement messages

containing the message L1 ).

We want to conclude by discussing about the use of the presented space representation

also in combination with the detailed description of signalling networks. Indeed, the

detailed design pattern guarantees that while a box is complexed with some other box,

all the interfaces of the boxes that are not involved in the binding are changed to inactive

sorts. In this way, complexes cannot be involved in movements because they are only

intermediate entities emerging from the dynamics. Hence, also the detailed design pattern

can be easily updated to take into account spatial modelling aspects.
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Chapter 9

Evolutionary framework

Cross fertilization between biology and computer science dates back to the ’60s. Algo-

rithms and tools that mimic evolution are known from the pioneering work of Fogel in

1966 [38] on evolutionary algorithms. Evolutionary algorithms are inspired by evolution-

ary biology concepts, like inheritance, mutation, selection and crossover. These algorithms

have been applied to areas such as machine learning, optimization, search problems; how-

ever they soon lost their strict connection with biology and therefore brought advantages

only to computer science.

Recently there is an interest in using evolutionary approaches to study networks. Un-

derstanding how networks emerged during evolution can help us to understand their basic

properties, such as the role of complexity and the importance of topology and feedback

loops. Historically approaches to study evolution are commonly based on comparative

genomics or proteomics and on phylogenetic analysis [100, 4]. These studies compare net-

works from different organisms to infer how evolution affects the internal structure of the

network of interactions. In the last years alternative approaches emerged that simulate

evolution in silico, but differently from evolutionary algorithms, they mimic evolution in

a very close and precise way [102, 83, 84, 39]. Up to now, these approaches have used

ad-hoc tools and representations of network dynamics, usually based on mathematical

models, without exploiting the capability of the new computational and conceptual tools

of systems biology.

Here, we aim at blending evolution in silico with computational model based on sys-

tems biology oriented languages, rejuvenating the mutual enrichment between biology and

computer science. We develop a framework to allow the study of network evolution based

on the BWB. The great flexibility of BlenX in the definition of the structure of proteins

allows us to introduce primitives for mutations used to build domain-based interaction

and mutation models. Starting from the study of mutations at a biological level, we end

up with some interesting program modifications that permit us to mutate the BlenX rep-
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resentation of biological entities in a meaningful and automatic way. Moreover, network

dynamics can be easily modelled, and the interactions of emerged networks analysed. In

this chapter we describe the approach and we show the feasibility of the proposed solution

by implementing it. We discuss a case study for the application of the resulting tool.

9.1 The framework

We propose a framework for simulating the evolution of networks in silico. It is based on

the simplified design pattern for signalling networks presented in the previous chapter.

In order to simulate evolution by natural selection, we must be able to express popu-

lations of individuals, variability and fitness. A BlenX program represents an individual.

A population consists of a set of different BlenX programs, each representing an indi-

vidual composing the population. Evolution proceeds through selection acting on the

variance generated by random mutation events. Individuals replicate in proportion to

their performance, referred to as fitness.

This process can be modelled as shown in Tab. 9.1.

EvolutionAlgorithm ():
Population := GenerateInitialPopulation();
for i = 0 to generations do

for each Individual in Population do
output := Simulate(Individual);
fitnesses[Individual] := ComputeFitness(output);

NewPopulation := ReplicateAndMutate(fitnesses, Population);
Population := NewPopulation;

Table 9.1: Generic EvolutionAlgorithm.

This algorithm differs slightly from the generic evolutionary algorithms used in com-

puter science, being closer to real biological observations made for the asexual reproduc-

tion of organisms. Each individual in the population is codified using a BlenX program,

and the boxes in each program are the abstraction of all the entities present in that in-

dividual. The interaction among these entities result in the behaviour of the network we

want to study.

There are four main procedures in the algorithm:

• GenerateInitialPopulation: the initial population can be generated randomly,

from a predefined network configuration to be used as a starting point, or it can be
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a network with no interactions. All the individuals in the initial population can be

equal at the beginning, as they will be differentiated later by the mutation phase.

• Simulate: each individual in the population is simulated separately using the

BetaWB stochastic simulator.

• ComputeFitness: the output of the simulation is used to compute the fitness value

of the current individual. Note that the fitness value is problem-dependent; for an

example, refer to Sec. 9.3.

• ReplicateAndMutate: this is the most important part of the algorithm. Like in

a real environment, individuals with the highest fitness values are more likely to

survive, replicate and produce a progeny that resembles them, being not, however,

completely equal to them.

ReplicateAndMutate (fitnesses, Population):
for i = 0 to i < Population.Size do
Individual := ChooseOneIndividual(Population, fitnesses);
for each Protein in Individual.Proteins do

if Random() < DuplicationProbabily then
Protein2 := Protein.Duplicate();
Individual.Proteins.Add(Protein2);

for each Domain in Protein.Domains do
if Random() < MutationProbability then
MutationType := GetRandomMutation();
if IsMutationFeasible(Domain,MutationType) then
Domain2 := Individual.CompDomain(Domain,MutationType);
Individual.Mutate(Domain,Domain2,MutationType);

NewPopulation.Add(Individual);

return NewPopulation;

Table 9.2: The ReplicateAndMutate algorithm.

The ReplicateAndMutate algorithm (Tab. 9.2) creates a new population with

the same number of individuals of the current generation, using as a base the current

individuals. At each step it chooses one individual, with probability proportional to its

fitness (ChooseOneIndividual in the code above). This is achieved by constructing a

cumulative probability array a from the fitness array, generating a random number in the
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range 0...a[Population.Size], and then finding the index into which the random number

falls.

The selected individual will replicate and pass to the next generation. During the

replication, to each protein in the “genome” of the individual is given the chance to

mutate, according to a probability.

A mutation is selected among all the possible types by the GetRandomMutation

function, and this mutation is applied. Finally the individual, which can be either equal

to its predecessor or mutated, is added to the new population. We now define in more

detail the mutations that we consider in our framework.

9.1.1 Mutations

Here we consider the end-effects of point mutations occurring at the DNA level. These

mutations ultimately affect network dynamics. For example, mutations in a DNA se-

quence can change the protein amino-acid sequence, leading to changes in its tertiary

structure with implications on the affinity of this protein with other proteins or sub-

strates. Similarly, events at DNA level as gene duplication or domain shuffling can alter

network structure and dynamics.

A computer program which is used to mimic evolution of a species must implement

random mutations in individuals during the replication as well. Here, we can easily

implement these molecular processes using the domain and network model we discussed

in Sect. 8.2.

We will take as an example the three-proteins network represented in Fig. 9.1(a) and

we will illustrate how different mutations can be modelled in BlenX.

Duplication and deletion of proteins

Gene duplication at DNA level is implemented with a duplication of the box associated

with the protein the gene codifies for. The new box will have a similar internal process

and the same interface subjects, while interface sorts will be new but will have the same

compatibilities. This is achieved by copying the affinities of the original binder identifiers.

Duplication of sorts is needed because subsequent mutations on one of the interfaces of the

duplicated protein must not affect the original one. Furthermore, since the new protein is

a new distinct entity, it must not be structural equivalent to the original one. The same

considerations hold for the internal processes: duplication and deletion of domains may

lead to a modification of the internal structure (see next section); the internal processes

must be duplicated so that each box has its own, distinct internal behaviour. Following

the simplified design pattern, the boxes for the protein C:
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Figure 9.1: Different kinds of mutations: in (a) the initial configuration; in (b) duplication of
protein C followed by mutation of domain outC1 in (c). Finally, (d) displays how the internal
structure could change to accommodate the duplication of a domain.

let Cs0 : pproc = recv?(what). ... ;

let Cs1 : pproc = recv?(what). ... ;

let C : bproc = #(p,kaseC),#(recv,baseC)

[ Cs0 | rep s0?().Cs0 | rep s1?().Cs1 | rep p!(plus).nil ];

will be duplicated to:

let Cs0 : pproc = recv?(what). ... ;

let Cs1 : pproc = recv?(what). ... ;

let C : bproc = #(p,kaseC),#(recv,baseC)

[ Cs0 | rep s0?().Cs0 | rep s1?().Cs1 | rep p!(plus).nil ];
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let C1s0 : pproc = recv?(what). ... ;

let C1s1 : pproc = recv?(what). ... ;

let C1 : bproc = #(p,kaseC),#(recv,baseC)

[ C1s0 | rep s0?().C1s0 | rep s1?().C1s1 | rep p!(plus).nil ];

Deletion of a protein is accomplished by deleting the associated box, the internal

process it refers to and the appropriated entries in the sorts file.

Mutation of domains

Point mutations in DNA can change the protein amino-acid sequence, and consequently

lead to the mutation of a domain and to changes in the interaction capabilities of the

protein to which it belongs. In our formalism, this is achieved by changing the α function

on the two domains that take part in the interaction. More specifically, the mutation

on a domain can be a change of interaction, for which we modify the affinity adding a

number sampled from a normal distribution, an addition of an interaction between two

domains d1 and d2, modelled as the addition of a compatibility (d1, d2, x), with x > 0, and

finally a removal of an interaction between two domains d1 and d2 setting (d1, d2, 0). For

example, the mutation on domain outC1 that can be observed in Fig.9.1(c) is obtained

by changing the sorts file compatibility by changing (outC1, activeB, x), with x > 0, to

(outC1, activeB, 0) and adding (outC1, baseB, y), with y > 0; in this way the internal

process of C is now allowed to send a plus message when the B process is in an inactive

state, represented by the interface sort baseB.

Duplication and deletion of domains

Domain duplication or deletion is more complex as it involves not only interfaces or rates,

but requires also modification of the internal behaviour in response to stimuli.

Duplicating or removing domains can be easily done acting on the interfaces and on the

sorts file; however, for these domains to act as sensing or effecting domains in cooperation

or in antagonism with the existing ones, the internal process must also be changed. We

devised several possible modifications of the behaviour when a domain is added.

As an example, consider the case of a sensing domain: when a signal arrives -by

means of a ligand binding, or by phosphorylation of a residue- the internal process of the

protein changes bringing it to a different state. If that domain is duplicated, the internal

behaviour must be changed accordingly. The second domain may act concurrently with

the old domain, with the result that the activation of this second domain will bring the

protein in the same state as the old one, acting in parallel. This is the case, for example,
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of a receptor that can bind to two different signal molecules. Alternatively, the duplicated

domain can affect the capability of the protein to reach that state, and so must act in

coordination with the original one; this is the case of kinases that must be phosphorylated

twice to activate (double phosphorylation, as in Fig. 9.1(d)).

These mutations are obtained by manipulating the structure of the internal process

to transform their behaviour. In both cases, we assume that the internal process have

a standard structure, as described in Sec. 8.2. This process is built through parallel

composition of different processes, each representing a different state. The set of processes

in parallel is a set of mutually exclusive ones: at any given time only one of the processes

can be active (e.g. not blocked waiting for a communication). Moreover, each process

in the set enables another one by issuing a communication immediately before blocking

itself.

let Bs2 : pproc = 

    recv?().ch(p,kaseB).ch(recv,intB).s1!();

let Bs1 : pproc = 

    recv?(what).what!() | 

         plus?().ch(p,outB).ch(recv,activeB).s2!() +

         minus?().ch(recv,baseB).s0!() ;

let Bs0 : pproc = 

    recv?().ch(recv,intB).s1!().nil;

let Bs1 : pproc = 

    recv?().ch(p,kaseB).ch(recv,baseB).s0!();

let Bs0 : pproc = 

    recv?().ch(recv,activeB).s1!().nil;

Figure 9.2: Transformation for the modification of a sensing domain, introducing a new state.
In grey we highlight the modifications.

In the case of “cooperative” domains, where a signal on both is required to reach the

desired internal configuration, the transformation can be accomplished by substituting the

process codifying for the current active state with a new process, adjusting the channel

names used for the intra-communications and binder identifiers accordingly. In Fig. 9.2,

for example, it is shown how it is possible to manipulate an internal process to transform

a protein activated (or deactivated) by a single phosphorylation into a protein that is

activated (or deactivated) by a double phosphorylation, encoding an intermediate step of

“half-activation”.
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let Bs1 : pproc = 

    recv?().ch(p,kaseB).ch(recv,baseB).s0!();

let Bs0 : pproc = 

    recv?().ch(recv,activeB).s1!().nil;

Figure 9.3: Transformation for the modification of a sensing domain. In grey we highlight the
introduced actions.

The case of concurrent, or competitive domains, where each of the signals can lead to

the desired internal configuration, can be handled in a similar way; in this case however

the process representing the state is substituted with a different process (see Fig. 9.3).

Deletion of a domain requires to undo the steps done while duplicating it. This task

is accomplished again by transformation of the internal process, restoring the behaviour

to the original one.

9.1.2 Measure of fitness

When analyzing evolution of specific biological systems, one needs to consider the “fitness”

benefit of that system to the organism (i.e. to its reproductive success). While it is

usually complicated to define and measure such fitness contribution, network dynamics

can provide a good proxy in case of biological networks. As the concentrations of the

proteins involved in such networks will define the proper functioning of the network, how

these concentrations fit a specific time course would determine how well the network

“operates”.

Here, we include some common operations that can be performed on concentration

traces, and a way of finding entities based on their characteristics, such as the number

and binder identifiers, or their state. This is important in a language like BlenX where

the whole system, and all the entities that can appear in a simulation, are not specified in

the program but can be generated dynamically during the simulation. We will illustrate

later how fitness can be computed using the integration of a response.
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9.1.3 Constraints

We understand that with our framework it is possible to generate countless combinations,

interactions and mutations. Many interactions or mutation can be possible and make

sense from the point of view of a program syntax and semantics, but have little or no

sense from the biological perspective. We addressed this issue by providing a configurable

way of specifying constraints on mutations, their probability and which class, or type, of

protein or domain they can affect.

9.2 Implementation

We implemented our evolutionary framework using the BWB.

Each individual in our evolutionary framework is represented by a BlenX program. We

used the BWB simulator to execute the models and obtain their time courses; we built

a new tool to compute the fitness based on the simulator output files, and a new tool to

manipulate and mutate the BlenX programs, based on the BWB libraries.

The challenging part was to implement mutations of BlenX programs. The first three

kind of mutations introduced in Sec. 9.1 act on the sorts file. However, mutations of

the fourth kind (duplication and deletion of domains) lead to changes in the internal

behaviour. These changes are done directly on the program.

The BWB compiles the model Just in Time: the simulator takes the source code for

the model and compiles it into an Abstract Syntax Tree (AST). This tree is the object

model of the processes discussed in Sec. 9.1. Transformations discussed in that section

are implemented by manipulating and navigating in a programmatic way the AST. Our

libraries allow us to access the AST and write it to the disk, generating a new and perfectly

valid BlenX program.

9.3 Case study

We use this simplified MAPK cascade presented in Sec. 8.2 as a starting point for testing

our evolutionary framework. In particular, we want to analyse the evolution of a popula-

tion according to a fitness function which captures the essential behaviour of our MAPK

cascade model.

In detail, we generate an initial population of 500 individuals containing the network

shown in Fig.9.4a. We set up very general initial conditions, with a single kinase K, a

single phosphatase P1, an activation signal E1 and a deactivation signal E2; the model

lacks any interactions among entities. In other words, we consider an ancestral organism

that possessed all the base proteins but lacked a signalling system similar to the MAPK
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Figure 9.4: (a) Basic individual of the initial configuration. (b) Only signals E1 and E2 are
enabled. (c) A particular individual we obtained, with a two-level phosphorilation. (d) An
alternative evolution, with single phosphorilation kinases but a longer cascade.

cascade as observed today. The dynamic of each individual is then simulated; we run

each individual for 7000 simulation steps and we remove the signal E1 at the step 1500

using a time-triggered delete event. Using the output of the simulation, we then measure

for each individual the corresponding fitness.

The fitness function we implemented measures how rapidly the output of an active

kinase increases, how much the output of the same kinase persists after removing the

signal E1 before returning back to the initial condition. Let out = {n0, n1, ..., n7000} be

the tuple representing the active kinase K∗ dynamics in time of an individual, then the

fitness for out is formally computed by the following formula:

fitness(out) = µ+
(

∑e1
j=i1

nj

K∗
M × (e1− i1)

−
(

γ ×

∑e2
j=i2

nj

K∗
M × (e2− i2)

))

The two sums, that we denote respectively with A1 and A2, represent discrete integrals

and are normalised with respect to their possible maximum values (see Fig.9.5). The

values i1, e1, i2 and e2 are changeable parameters that define the boundaries for the com-

putation of the two discrete integrals present in the formula, and the value K∗
M represents

the maximum value for the K∗ response.
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(a) (b)

Figure 9.5: (a) Time course of the Kpp concentration over the simulation time, superimposed
to the integral areas for the fitness function we implemented. The fitness parameters are i1 = 0,
e1 = 2000, i2 = 5000 and e2 = 7000. (b) Time course of Kpp for a network with high fitness.

Moreover, µ represents the minimum fitness and γ controls the relative importance to

responding to a signal and turning the response off after its removal. The reported results

are for i1 = 0, e1 = 2000, i2 = 5000, e2 = 7000, K∗
M = 200, µ = 0.1 and γ = 0.75.

According to the algorithms presented in the previous section, the population is

evolved. In order to maintain a biological validity for the new individuals, possible mu-

tations are the one that satisfies the following constraints: (1) signals E1 and E2 cannot

be removed; (2) a kinase can only activate other kinases or itself; (3) kinases are specific

(e.g. they do not phosphorilate multiple proteins); (4) phosphatases are not specific but

can only deactivate kinases.

We iterated the evolution algorithm for 2000 generations, for different values of fitness

function parameters. We then inspected the generated models using the Plotter and

Designer tools introduced in Chapt. 7. The dynamic behaviour of one of the obtained

networks is shown in Fig.9.5(b); examples of obtained individuals are in Fig. 9.4. In

particular, we did not obtain individuals with a perfect MAPK cascade network, but

individuals in (c) and (d) have very good fitness values and show the two directions in

which evolution went to build an ultra-sensitive switch, namely forming longer cascades

with multiple kinases or having multiple phosphorylation sites. We did not obtain in our

runs individuals whose networks combined the two characteristics; we suspect that this

fact may be due to the fitness function, that reached its maximal values with the two

configurations in (c) and (d). As a final note, interactions within kinases and phospatases

shown in (c) and (d) are only an example: we obtained also individuals with very complex

relations (self-activations, “reverse” activations -where for example K activated KK and

KK activated K- and so on).
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Figure 9.6: Changes in fitness during a typical evolutionary simulation.

The variation of fitness during a simulation is depicted in Fig. 9.6. Note the “steps”

in the fitness. We observed this typical behaviour in almost all our runs. In the first

generations, individuals have to find the correct signal: the jump in (a) is realized when the

the activation signal E1 hits one of the kinases. In (b) instead we have the slow adaption

to the introduction of the deactivation signal: the presence of the signal allows the cascade

to be switched off, but reduces the gain of the switch in response to an activation signal.

The second jump, in (c), is where double phosphorylations or more kinases are added to

the cascade, allowing the network to re-gain the lost efficacy and react in a steep way to

the activation signal. The last phase, (d), is where more phosphatases are added in order

to switch off the response in a quicker way.
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Chapter 10

Self-assembly

The term self-assembly indicates a process in which disordered components form an or-

ganized structure or pattern only through local interactions among them, without an

external coordination. Debates of how complex structures and functions can emerge from

local interactions between simple components can be found in plenty of different fields

(e.g. nanotechnologies [31], robotics [58], molecular biology [44, 111], autonomous compu-

tation [78]). Here we concentrate on molecular self-assembly, the process through which

molecules assemble in complexes without guidance from an outside source. We are par-

ticularly interested in inter-molecular self-assembly (i.e., the ability of proteins to form

quaternary structures), a process which is crucial to the functioning of cells.

Conventional modelling approaches for molecular and systems biology (e.g., ODEs)

represent molecules and complexes by associating them with species identifiers or vari-

ables. This representation is extremely simple and effective. However there are modelling

scenarios in which it is not always feasible or even possible the explicit definition of all the

possible complexes acting in a biological system and all the possible reactions in which

they are involved. An example is self-assembly, a process in which small molecules combine

to produce large complexes like chains or graphs of molecules (e.g., actin polymerization

[2]).

The aim of this chapter is to show how the BlenX allows to model in an intuitive and

effective way non-trivial structures, like filaments, trees and symmetric rings and how to

introduce controls over their shapes.

10.1 Filaments and trees

An important feature of polymers is their structure. The simplest structure is a linear

chain, characterized by a single backbone with no branches. A related unbranching struc-

ture is a ring polymer. A branched polymer is composed of a main chain with one or
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more side chains. Examples of polymers are actin, DNA and microtubules.

We exploit here BlenX programming to model linear and branched polymerization

processes, namely the self-assembly of filaments and trees. Ring polymers are postponed

to the next section. For the sake of simplicity, the models presented in this section can

only grow, i.e., we do not consider reversible processes in which boxes can detach from

a filament. Although this is a simplification the programs presented give the flavor of

the BlenX potential. In all programs the only reactions associated with finite rates are

the bindings between boxes. All the other actions (e.g. intra-communications, changes,

complex-communications) are executed as immediate actions that manage the set of con-

formational changes caused by the formation of complexes. Conformational changes are

assumed to be atomic with the complexation because they are so fast that the time they

take to execute can be ignored.

10.1.1 Filaments

A polymerization process consists in the creation of big molecules starting from small

molecules that can bind together. We start by presenting a simple scenario in which

a box M, representing a monomer, can bind to boxes of its own species and generate

filaments of boxes. For simplicity, and for a fine control over the creation of the filaments,

we introduce also a seed box S. Its role is recruiting the first monomer and starting the

formation of a filament. The graphical intuition of the structures of boxes S and M is given

in the following picture:

Box S has only one interface, used to bind to a free monomer, while M is equipped

with two interfaces, the left one used to bind to the last box of a growing filament (can

be both a box S or M) and the right one used to bind to a free monomer. The dynamics

of the model is depicted in Fig. 10.1 (arrows decorated with a star represents more then

one step).

Notice that a filament can only grow on the right side. The seed S starts the creation

of the filament, while the growing process involves only the binding of M monomers. A

box M can accept the binding of another monomer on its right interface only if it is already

part of a growing filament, i.e., its left interface is bound to a filament.

We start with the definition of the two boxes, S and M:

212



CHAPTER 10. SELF-ASSEMBLY 10.1. FILAMENTS AND TREES

Figure 10.1: Example of filament formation.

let S : bproc = let M : bproc =

#(right,R) #(left,L), #(right,RI)

[ nil ]; [

if (left,bound) then

ch(right,R)

endif

];

The interfaces definition file lists all the structures appearing over the interfaces of our

boxes and specifies the compatibility (L,R,1,0,0). Due to the compatibility between L

and R, a monomer M can bind to the seed S. After the binding, the internal program of M

recognizes that something is bound to the left interface and changes the structure of the

right interface from RI (that stands for R inactive) into R. In this way, the right interface

of the bound M gets the capability to bind to the left interface of another free monomer

(see Figure 10.1).

10.1.2 Trees

Here we upgrade the previous program to create trees. We modify the monomer box M

adding a third interface, the branching interface. Like the right interface, the branching

one is activated via change actions only when M has something bound on its left interface.
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let M : bproc =

#(left,L), #(right,RI), #(branching,BI)

[ if (left,bound) then ch(right,R).ch(branching,B) endif ];

We add also a box T. It has two interfaces and its role is to bind to the branching

interface of a monomer in a filament and to start the formation of a branch. This species

is introduced because we want the rate of branches formation over filaments to be inde-

pendent from the number of free monomers in the model. T is defined as:

let T : bproc =

#(left,TL), #(right,TRI)

[ if (left,bound) then ch(right,TR) endif ];

Also for T, the internal program is instructed for changing the structure of the right

interface once the box gets bound on the left interface. For trees, we specify two ad-

ditional affinities: (B,TL,1,0,0) enables the complexation of a box M that is part of a

filament with a free box T; (L,TR,1,0,0) enables the complexation of a box T that is

bound to a monomer with a free monomer M. A possible run of this program with one box

S, three boxes M and one box T is depicted in Fig. 10.2.

Figure 10.2: Generation of a branching tree.
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10.1.3 Introducing controls

We introduce a program to build trees with constraints over the depth of the branches.

This programs shows how communication and immediate actions can be used to control

the shape of the self-assembling structures. The design patterns and ideas we introduce

can be used to model several similar kind of shape formation controls.

Each node of a tree can be associated with a branching depth level. A node has

branching depth level n if there are exactly n− 1 branches from the node to the root. A

tree has branching depth less than n if all its nodes have branching depth level smaller

than n.

We define a BlenX program that generates trees with branching depth less than five.

We do it by introducing a new design patter. For each box we partition the interfaces in

interaction interfaces and state interfaces, denoted by II and SI, respectively. Interac-

tion interfaces are used by a box to interact with other boxes, while the state interfaces are

used to store information regarding the box state. Note that storing information in the

interfaces simplifies the internal coding; indeed all the parallel processes can access this

information easily by managing and checking interface structures through change actions

and if statements. We call them interaction modifier process (IMP), state modifier process

(SMP) and messages receiver process (MRP).

The boxes involved in this model are monomers, branches and seeds. The BlenX

graphical and textual representation of monomers is:

let M : bproc =

#(right,RI), #(left,L),

#(branch,BI), #(depth,DU)

[ MD SMP | MD IMP | MD MRP ];

The only interface belonging to SI has subject depth and can be associated with five

different structures: DU, D1, D2, D3 and D4. Structure DU is used when the box is free,

while the others are used when the box is bound and represent the node branching depth

level. We refer to this interface as depth interface.

The interaction modifier process MD IMP changes the structure of the right interface

when the box binds on the left interface and changes the structure of the branching

interface depending on the structure of the depth interface. In particular, the structure

has to be changed in order to let the box branch only if the structure exposed on the

depth interface is one among D1, D2 and D3. Hence, MD IMP is defined as follows:

let MD_IMP : pproc =

if (left, bound) then ch(right,R) endif

| if not ((depth,D4) or (depth,DU)) then ch(branch,B) endif;
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We construct the messages receiver process MD MRP mechanically, composing in parallel
similar processes, one for each interface belonging to II:

let MD_MRP : pproc =

rep right?(channel).channel!()

| rep left?(channel).channel!()

| rep branch?(channel).channel!();

The last process composing the internal program is the state modifier process MD SMP.

Its role is to modify the structure associated with the depth interface in order to make it

represent the number of branches from the root to the current box. This task is performed

through an exchange of messages among the state modifier processes of different boxes.

Thus MD SMP is composed by two parallel processes, one receiving and using messages for

updating the state interfaces, and another sending messages to bound boxes and trigger

their update:

let MD_SMP : pproc =

MD_r_SMP | MD_s_SMP

MD r SMP defines a sequential process composed by an input on a channel called depth msg

which guards a sum of inputs over specified channels whose firing enables proper modifi-

cations of the depth interface:

let MD_r_SMP : pproc =

depth_msg?().(

d1?().ch(depth,D1)

+ d2?().ch(depth,D2)

+ d3?().ch(depth,D3)

+ d4?().ch(depth,D4)

);

The interacting partner of MD r SMP is:

let MD_s_SMP : pproc =

right!(depth_msg).(

if (depth,D1) then right!(d1) endif

+ if (depth,D2) then right!(d2) endif

+ if (depth,D3) then right!(d3) endif

+ if (depth,D4) then right!(d4) endif

)

| branch!(depth_msg).(

if (depth,D1) then branch!(d1) endif

+ if (depth,D2) then branch!(d2) endif

+ if (depth,D3) then branch!(d3) endif

);
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This process is composed by two parallel processes. The output on right can be consumed

only when the box binds to another box on the corresponding right interface. When

consumed, the output sends the name depth msg to MD MRP of the bound box, and it

is propagated inside the box by an output on depth msg without object. This output

synchronizes with the MD r SMP process of that box and enables a sum of input processes

on channels d1, d2, d3 and d4. The choice operator is resolved according to the next

message sent by MD s SMP and only one input is fired. The initial output of MD s SMP

enables a sum of mutually exclusive if, each one sending through the right interface a

different channel depending on the depth interface structure. MD MRP sends a message on

this channel that synchronizes with one of the inputs of MD s SMP causing the properly

update of the depth interface. Notice that this communication protocol propagates the

depth information to the newly attached box and is executed atomically with a sequence

of immediate actions.

The MD s SMP process performs a sequence of immediate actions on the branch inter-

face, similar to the ones described for the right interface, to propagate the depth infor-

mation also along the branches. In this case the depth D4 case is not considered because

a branch cannot grow from a monomer with branching depth equal to four.

Now we proceed with the description of the branching box T:

let T : bproc =

#(right,TRI), #(left,TL), #(depth,DU)

[ TD SMP | TD IMP | TD MRP ];

Also in this case the interfaces of the box are the same we introduced in the previous

section. The interaction modifier process TD IMP has only to change the right interface

structure when the box binds with another box on the left:

let TD_IMP : pproc =

if (left, bound) then ch(right,TR) endif;

The message receiver process TD MRP is defined mechanically following the pattern

previously described.

The state modifier process TD SMP propagates the depth information to the new fila-

ment nodes. In this case, given that it is a branch node, we increase the depth level and

we do not consider the depth level one (D1), because the branch node contributes to its

depth level and so it has at least depth level two:

let TD_SMP : pproc =
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depth_msg?().(

d1?().ch(depth,D2)

+ d2?().ch(depth,D3)

+ d3?().ch(depth,D4)

)

| right_site!(depth_msg).(

if (depth,D2) then right!(d2) endif

+ if (depth,D3) then right!(d3) endif

+ if (depth,D4) then right!(d4) endif

);

The seed box S does not have any state interface and its BlenX graphical and textual

description is:

let S : bproc =

#(right,R)

[ SD SMP | SD IMP | SD MRP ];

The interaction capabilities of this box never change and therefore the interaction

modifier process is the empty process nil. The state modifier process SD SMP has only

to propagate the initial depth information when a filament is started, i.e., the first box it

binds to is informed that its depth level is one:

let SD_SMP : pproc =

right!(depth_msg).right!(d1);

Fig. 10.3 shows an example of computation of the branching depth control program.

10.2 Rings

Here we investigate how BlenX can be used to model the formation of ring polymers. In

this section we do not make use of the previously defined design pattern because we want

to underline the flexibility of the language in allowing different programming styles. Here

we introduce also reversibility, an important characteristic of many biological processes

omitted in the previous modelling scenarios.

We start our ring modelling by pointing out an example that shows which are the

difficulties we have to face. Consider a scenario in which we have a population of boxes

A equipped with two distinct interfaces with structures L and R. If we specify a binding

affinity for L and R structures, initialize the system with an initial amount of boxes

A and run stochastic simulations, we can observe in the output of the simulations the

formation of various kinds of complexes as depicted in Fig.10.4. The figure reveals the
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Figure 10.3: Example of a tree generated with the branching depth control program. Notice
how at level four the monomer branching interfaces are inactive. The dots indicate the presence
of other boxes in the system.

difficulties we have in controlling the formation of non-trivial complexes by only acting on

the specification of interface capabilities (similar aspects and problems have been discussed

in [22] for the κ-calculus). In this section we define a model that generates rings of fixed

size avoiding the creation of long chains. We start without introducing reversibility and

then we extend the model in order to introduce this capability.

Assume to have an initial population of boxes A, each containing the same internal
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Figure 10.4: Examples of ring complexes.

program. Each box has an interface with structure L (left) and an interface with structure

R (right), which are compatible, i.e. (R,L,1,0,inf). Moreover, each box has an interface

used to store the information regarding the length of the chain to which the box belongs;

initially, the structure of that interface is S1:

Boxes A can bind together, forming chains that grow till they reach a size in which they

close, forming a ring. We consider the ring being the stable form. The size of the ring can

be controlled at programming level. As a characteristic of self-assembly, we want rings to

be only the result of local interaction between boxes, avoiding any global coordination.

Each box can be in one of these states: not bound to any other box; bound either

on the left or on the right; bound both on the left and on the right. Hence, the internal

program implements a state machine with the above three states. We start from the

design pattern introduce in Chapt. 8 and refine it. In this case, indeed, a state change is

controlled by the structure of the box interfaces. After any binding operation, the involved

boxes start a protocol made up of a sequence of immediate actions, through which they

exchange information (by using inter-communications) used to change the internal process

structure and their interface structures. The definition of A is:

let A : bproc =

#(left,L), #(right,R), #(num,S1)

[ Bound0 | rep b0?().Bound0 | rep b1?().Bound1 | rep b2?().Bound2 ];

220



CHAPTER 10. SELF-ASSEMBLY 10.2. RINGS

Processes Bound0, Bound1 and Bound2 implement the three different states of our

state machine. In order to implement a recursive behaviour, we use the replication oper-

ator. For example, entering the state Bound1 is implemented by performing an internal

communication on the channel b1.

The process Bound0 is defined by composing in parallel a sum of sequential processes

performing inputs on the left and right interfaces and a sum of sequential processes per-

forming outputs of the name one on the left and right interfaces:

let Bound0 : pproc =

left?(val).ch(right,RF).Set

+ right?(val).ch(left,LF).Set

| left!(one)

+ right!(one);

let Set : pproc =

val!() |

one?().ch(num,S2).b1!()

+ ...

+ n-1?().ch(num,SN).b1!();

After consuming the left input, the structure of the free right interface is changed

from R to RF (where RF stands for R final). Similarly, after consuming the right input, the

structure of the free left interface is changed from L to LF. Since RF is compatible only

with L, and LF is compatible only with R, this means that we allow the chains to grow

only by adding single boxes and not chains of boxes. Moreover, the non compatibility

of RF and LF avoids a chain to close in a ring. Both inputs enable the process Set that

changes the num interface according to the information received from the input. Notice

that the value N reflects the length of the self-assembly rings we are programming (e.g.

is equal to 3 in case of triangles) and that we cannot use it as a variable in the current

version of BlenX. In order to obtain a runnable code we have to substitute it with a name

respecting the actual size of rings we intend to create.

To better understand this mechanism, consider what happens when two initial boxes

bind together to form a chain of length two:
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After binding together, the two boxes start a sequence of immediate actions that lead

to the last complex depicted in the previous figure; each box has recorded in the structure

of its interfaces that belongs to a chain of length 2 and the left and right limits of the chain

have interface with structures LF and RF, respectively. Moreover, the two boxes are now in

the state encoded by the process Bound1 that embodies different controls composed with

the choice operator. The first control process manages the flow of information incoming

from the right interface, when its structure is RF:

if (right,RF) then

right?().ch(right,R).left!().b2!().SIC_right

endif

The if condition is satisfied when a free box binds on the right. After consuming the

right input, the process changes the right interface again into the structure R, propagates

a signal on the left, activates the process Bound2 and finally starts the process SIC right

that sends on the right the actual size of the chain and increments its own size:

let SIC_right : pproc =

if (num,S2) then x!(two).ch(num,S3) endif

+ ...

+ if (num,SN-1) then x!(n-1).ch(num,SN) endif;

where N is the size of the rings we want to create. Notice that also in this case we use names

to represent interface structures, and hence with n-1 we mean the name representing the

structure denoting size N-1 (e.g. if N is 4 then n-1 is three and SN-1 is S3). To better

understand this mechanism, consider the following graphical representation:
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A single box binds on the right side of a chain of length two. After the binding creation,

a sequence of immediate actions leads to the creation of the last complex depicted in the

figure. Notice that the box in the middle now runs the process Bound2, that the external

boxes run the process Bound1 and that all the three boxes record the information on the

length of the chain. This is obtained by creating a flow of immediate communications

from A2 to A passing through A1. In particular, using the second control process embodied

in the process Bound1, A1 changes its num interface after receiving a signal from the right

and restarting Bound1:

if (right,R) then

right?().b1!().IncreaseCounter

endif

The process IncreaseCounter changes the num interface with a structure that repre-

sents the actual size incremented by one:

let IncreaseCounter : pproc =

if (num,S2) then ch(num,S3) endif

+ ...

+ if (num,SN-1) then ch(num,SN) endif;

Specular control processes for the left interface are embodied in Bound1. Moreover,
other two control processes are part of Bound1 to control the growing of the chain on both
sides and to close the chain in a ring when it reaches the appropriate length. The process
controlling the right size has the form:

if (right,RF) and (num,SN) then ch(right,RC).

if (right,bound) then ch(right,R).b2!() endif

endif

If the right interface has structure RF and the num interface has structure N, then the

right structure is changed into RC and the process is blocked till the right interface is

bound. Since the process controlling the left side is specular, when the chain reaches a

length of N the right and left side interfaces assume structures RC and LC, respectively,

and remain blocked till they bind together. However, since the compatibility of these two

structures is defined as (RC,LC,inf,0,0)) they immediately close and the two blocked

processes can continue their execution, leading to a complex made up of structurally

equivalent boxes and hence representing a completely symmetric ring. As an example,

if N is equal to 3, when a chain of size 3 is formed it immediately closes in a symmetric

triangle:
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Note that although in the triangle formation the state Bound2 is not important, it becomes

essential in the formation of rings of size greater then three. Indeed, the process Bound2

has the structure

let Bound2 : pproc =

right?().left!().b2!() + left?().right!().b2!();

and is in charge to propagate signals from the left to the right and viceversa. Note that

in our actual implementation each signal received by a box in state Bound2 cause only

the change of the num interface with a structure corresponding to the increment of the

current one.

Consider the previous program with N equal to 4. By running 100 different stochastic

simulations with an initial population of 1000 boxes A we observe the average dynamics

and the standard deviation reported in Fig. 10.5.

The results show that given an initial population of boxes, we reach a final configu-

ration in which we have almost the same number of chains of size 3 and rings of size 4,

and certain number of chains of length 2. We would like instead the system to generate

as many rings as possible, because we assume rings be the only stable complex. In order

to achieve this behaviour, we have to encode reversibility in our program, i.e., chains of

size 2 and 3 can always disassembly.
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Figure 10.5: Average dynamics and standard deviation of 100 stochastic simulations regarding
the formation of rings of size 4. Each simulation takes in average around 2 seconds.

Adding reversibility

We add reversibility by allowing only the unbinding of boxes located at the left and right

sides of a chain. In order to implement this protocol we have first to modify the definition

of the process Bound1, because it is the state characterizing the boxes located at the sides

of a chain.

if (left,LF) then ch(r,right,RU).b1!() endif

+ if (right,RF) then ch(r,left,LU).b1!() endif

+ if (not (left,bound)) and (not (right,bound)) then

ch(left,L).ch(right,R).ch(num,S1).b0!()

endif

where r is a rate describing the speed of the reversible reaction. Each chain side can decide

to unbind by changing the structure of the bound interface (left interface for the right

side and viceversa). After executing the change action the box is immediately detached

from the chain, because pairs (LU,R,0,inf,0) and (RU,L,0,inf,0) are defined in the

compatibilities specification. After the unbinding, for both sides, the condition of the

third if becomes true and hence the interfaces and the internal programs of the unbound

boxes return back in the initial configuration (recall the recursive behaviour of box A):
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The last complex of the picture shows how the remaining chain also returns back

in a consistent configuration, where the boxes have the correct internal state and their

interfaces num have the correct structures. In order to obtain this result, we have to

modify the processes Bound1 and Bound2 as well. In particular, Bound2 becomes a sum

of processes, where one process controls the binding status of the right interface and

recognizes when there is an unbinding:

if not(right,bound) then

ch(right,RF).left!(dec).b1!().DecreaseCounter

endif

and another process does the same for the left interface (the DecreaseCounter process

is very similar to the IncreaseCounter one but decrements the structure of the num

interfaces). The process propagates on the left a name dec. This means that with

respect to the program without reversibility here we propagate in the complex not only a

signal, but names inc (increasing of one in the length) and dec (decreasing of one in the

length). All the processes in Bound1 and Bound2 in charge of capturing and processing the

communications are adapted accordingly. Indeed, in the Bound2 sum, we have a process

in charge to process and propagate an output from the right:

right?(act).left!(act).(

act!().b2!()

| inc?().IncreaseCounter + dec?().DecreaseCounter

)

and another for processing and propagating an output from the left. Notice that, de-

pending on the received name, the increasing or decreasing process is enabled and process

226



CHAPTER 10. SELF-ASSEMBLY 10.2. RINGS

Bound2 is enabled again. Similarly, Bound1 has an alternative in charge to process and

propagate an output from the right

if (right,R) then

right?(act).(

act!().b1!()

| inc?().IncreaseCounter + dec?().DecreaseCounter

)

endif

and another from the left interface. Also in this case, depending on the received name,

the increasing or decreasing process is enabled and the process Bound1, representing the

actual box state, is enabled again.

Also in this case we consider the previous program with N equal to 4 and we run

stochastic simulations with an initial population of 1000 boxes A. We can observe the

average dynamics and standard deviation in Fig. 10.6. Note that by adding reversibility

we have that the number of rings continue to increase, till no more rings can be formed.

Figure 10.6: Average dynamics and standard deviation of 100 stochastic simulations regarding
the formation of rings of size 4 with reversibility. Each simulation takes in average around 10
seconds.
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Chapter 11

Conclusions

In this thesis we presented BlenX, a modelling language specifically designed to account

for the complexity of protein-protein interactions.

BlenX is inspired by Beta-binders, a calculus explicitly thought to model biological

systems. As well as for Beta-binders, BlenX abstracts biological entities as boxes composed

by an internal process unit and a set of interfaces. Interfaces give boxes the capability

to interact among them. As in Beta-binders, boxes interactions are driven by a notion

of compatibility between interfaces. The four main features characterizing BlenX are the

notion of events, the ability of boxes to form complexes, the use of global priorities and

the presence of conditions.

The combination of these ingredients give to BlenX, and to its stochastic extension

sBlenX, noteworthy modelling capabilities. At a first glance the language allows to de-

scribe signalling networks at different levels of details. Beyond the classical representation

of proteins in active and inactive states, indeed, we can work on protein representations

that distinguish between sensing domains, effecting domains and internal structures. This

permits not only a detailed representation of proteins conformational states, but also a

more effective description of protein state changes (e.g., activation after reception of mul-

tiple signals). Beyond the representation of signalling networks, the language allows for

an effective description of other kind of scenarios characterized by a massive combinatorial

complexity. Among these we identified the modelling of self-assembly processes, in which

the number of possible protein complexes and combinations of protein modifications tends

to increase exponentially.

From a theoretical point of view, we studied the expressivity of different subsets of

BlenX. Using the theory of well structured transition systems, we showed that for a core

subset of the language (which considers only communication primitives) termination is

decidable. Moreover, we proved that by adding either global priorities or events to this

core language, we obtain Turing equivalent languages. The proof is through encodings of
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Random Access Machines (RAMs), a well known Turing equivalent formalism, into our

subsets of BlenX. Moreover, we provided efficient procedures for establishing whether two

boxes are structurally congruent and whether two graphs of boxes (two complexes) are

isomorphic.

In particular, these two last results allowed us to implement an efficient variant of the

Gillespie’s algorithm, the stochastic engine kernel of the Beta Workbench. This software

tool permitted us to test the language over several biological case studies, showing the

effectiveness of the approach.

We first investigated the modelling of signalling networks. We presented different

models and design patterns, of increasing complexity, of the MAPK cascade. We then

discussed how to manage the composition of different signalling networks models and

finally showed how to add spatial aspects to our design patterns.

Then, we proposed a framework for simulating the evolution of protein-protein inter-

action networks, where evolution of a population is implemented with an evolutionary

algorithm which works in four main parts and is iterated for a specified number of steps;

each iteration is called generation. Populations are represented by BlenX systems. The

algorithm firstly generates the initial population. Each individual in the population is

then simulated separately using the BWB stochastic simulator, and the outputs of the

simulations are used to compute the fitness values of the individuals. Like in a real envi-

ronment, individuals with the highest fitness values are more likely to survive, replicate

and produce a progeny that resembles them, being not, however, completely equal to

them. The different types of mutations we considered are based on real biological pro-

cesses where mutations can happen at DNA and protein level. Variability is achieved by

associating each of the considered mutations to a BlenX system modification.

The last investigation we presented is related with self-assembling structures. We

first explored design patterns for modelling non-trivial structures like filaments and trees,

showing also how to use immediate actions to control the shape of the forming structures.

We then show how to model symmetric rings, considering also reversible mechanisms.

Summing-up, the contribution of this thesis can be seen as an effort to push ahead the

application of informatics and particularly concurrency theory in the representation and

the study of biological systems, in a way that could lead, one day, to the development of

a formal foundation theory for systems biology.
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[59] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem: its struc-

tural complexity. Birkhäuser, 1993.
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