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Abstract

The aim of this thesis is to study renormalization of Wick polynomials
of quantum Boson fields in locally covariant algebraic quantum field the-
ory in curved spacetime. Vector fields are described as sections of natural
vector bundles over globally hyperbolic spacetimes and quantized in a lo-
cally covariant framework through the known functorial machinery in terms
of local ∗-algebras. These quantized fields may be defined on spacetimes
with given classical background fields, also sections of natural vector bun-
dles: The most obvious one is the metric of the spacetime itself, but we
encompass also the case of generic spacetime tensors as background fields.
In our framework also physical quantities like the mass of the field or the
coupling to the curvature are viewed as background fields. Wick powers of
the quantized vector field are then axiomatically defined imposing in partic-
ular local covariance, scaling properties and smooth dependence on smooth
perturbation of the background fields. A general classification theorem is
established for finite renormalization terms (or counterterms) arising when
comparing different solutions satisfying the defining axioms of Wick pow-
ers. The result is then specialized to the case of spacetime tensor fields. In
particular, the case of a vector Klein-Gordon field and the case of a scalar
field renormalized together with its derivatives are discussed as examples. In
each case, a more precise statement about the structure of the counterterms
is proved. The finite renormalization terms turn out to be finite-order poly-
nomials tensorially and locally constructed with the backgrounds fields and
their covariant derivatives whose coefficients are locally smooth functions of
polynomial scalar invariants constructed from the so-called marginal subset
of the background fields. Our main technical tools are based on the Peetre-
Slovák theorem characterizing differential operators and on the classification
of smooth invariants on representations of reductive Lie groups.

This thesis is mostly based on the paper [KMM17], which was submitted
to Annales Henri Poincaré for publication.





“Because in the end, you won’t remember the time you spent working in the
office or mowing your lawn. Climb that goddamn mountain”

—Jack Kerouac
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Overview

This thesis presents some results about renormalization of Wick polynomials of Bo-
son fields in locally covariant algebraic quantum field theory in curved spacetime.
Wick polynomials and time-ordered products of Wick polynomial are the build-
ing blocks for perturbative renormalization of quantum fields, both in Minkowski
spacetime and in curved spacetime, where the metric is considered as a given ex-
ternal classical field. Taking the Klein-Gordon scalar field operator ϕ(x) as an
example, the Wick powers ϕk(x) have the physical interpretation of products of k
factors ϕ evaluated at the same point x. But these products are not well-defined
in general because they correspond to products of distributions at a given point and
this notion is not well-defined. To overcome this problem, in Minkowskian QFT,
Wick polynomials are defined exploiting the standard normal ordering prescription:
Using Fourier transform, all quantum fields are written in term of creation and
annihilation operators, a∗ and a, and then normal ordered product of operators is
defined by

:aa∗: = a∗a, :a∗a: = a∗a, :aa: = aa, :a∗a∗: = a∗a∗.

obviously extended to products of many operators (e.g. :aa∗a: = a∗aa). In
Minkowski spacetime the normal order prescription written in terms of creation
and annihilation operators is equivalent to the standard vacuum subtraction pro-
cedure, i.e.

:ϕ2(x): = lim
y→x

ϕ(x)ϕ(y)− 〈0|ϕ(x)ϕ(y)|0〉I

extended to higher powers with the well-known Wick rule, where |0〉 is Minkowski
vacuum. But in a general curved spacetime we also do not have a proper vacuum
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Overview

state at our disposal. The best we can do is to replace the Poincaré vacuum |0〉
with a generic Hadamard state ω, i.e.

:ϕ2(x): = lim
y→x

ϕ(x)ϕ(y)− ω(ϕ(x)ϕ(y))I.

This is a good definition because, using the language of Algebraic QFT (AQFT),
for any Hadamard state ω, the singularity structure of (more precisely the wave-
front set of) ω(ϕ(x)ϕ(y)) is under sufficient control so that we can find a dis-
tribution H(x, y) that is independent of ω (as long as it remains Hadamard)
such that the difference ω(ϕ(x)ϕ(y)) − H(x, y) is regular enough to properly
define the Wick square by ϕ2(x) := limy→x ϕ(x)ϕ(y) − H(x, y)I, and so on for
higher Wick powers (this is known as the Hadamard parametrix regularization
method [HW01, HW02, BF00]). In any case, even such a procedures do not lead
to a unique definition. The constructed Wick powers (or also more generally time
ordered products of Wick powers) may be still affected by (finite) ambiguities, pop-
ularly called finite-renormalization terms (or counterterms). Within the divergence
subtraction paradigm their nature is obvious: depending on how the regulariza-
tion is carried out, ∞−∞ could be any number. A given Wick product ϕk(x),
interpreted as a distributional kernel evaluated at x, can always be be redefined by
adding similar counter terms of lower order multiplied with coefficients depending
on x: ϕk(x) =

∑
l<k Cl(x)ϕl(x). The structure of these coefficients Cl can be

fixed by imposing some further physical constraints. The renormalization of Wick
powers of scalar fields has been studied in detail in [HW01, KM16].

This work deals with the classification of Wick polynomials (study of the
renormalization counterterms) of a rather general locally covariant bosonic vector-
valued quantum field, in the presence of rather general classical background fields.
The constant parameters that usually defining a quantum field, like the mass and
coupling constants, are included in among the classical background fields (and
may be restricted to be constants).

Our general settings is the following: We consider a quantum field over a
time-oriented globally-hyperbolic spacetime (M,g) of dimension n. In general,
in addition to the quantum field, there are some classical assigned background
fields on M . They influence the evolution of the quantum field, for example
because they may be present in the equation of motion of the quantum field.
The first necessary background field is the metric itself g, however further tensor
fields may enter the theory. Background fields are described as sections b of
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a suitable bundle BM → M (actually a natural bundle [KMS93] since we are
working with the locally covariant framework [BFV03] of AQFT and so we have to
deal with all bundles of background fields simultaneously and coherently for every
globally-hyperbolic spacetime). With (M,b) we denote a background geometry, i.e.
a spacetime M equipped with background fields b.

On the other hand, quantum fields, always in the framework of locally covariant
AQFT [BFV03], are viewed as as distribution valued in a suitable algebra of ob-
servables W(M,b), i.e. if D(V ∗M) is the space of compactly supported smooth
section of the dual natural bundle V ∗M , A quantum V -field is an assignment
A(M,b) of an algebra-valued distribution

A(M,b) : D(V ∗M)→W(M,b)

which respects the inclusions and isomorphisms induced by isometries. We also
have two further requirement regarding quantum fields: We assume a suitable
commutation relation between fields which characterize them as proper Boson fields
and we assume that quantum fields scale homogeneously under physical scaling,
i.e. under the dilatation of all background fields (possibly with different weights).

In this general settings we state a set of axioms that Wick powers have to sat-
isfy, namely behaviour of Low Powers, Scaling, Kinematic Completeness, Commutator
Expansion, and Smoothness. Starting form this set of axioms we proved our first
result: If we consider two families of Wick powers {Ãk}k=1,2,... and {Ak}k=1,2,...

of the same quantum V -field A the the following formula holds:

˜Ab1 · · ·Abk(x) = Ab1 · · ·Abk(x) +

k−1∑
l=0

(
k

l

)
Ck−l[M,b](b1···bk−l(x)Ab1 · · ·Abl)(x)

where {Ck}k=1,2,... is family of smooth locally-covariant symmetric V -tensor fields
of order k. Moreover Ck, for k = 1, 2, . . ., are differential operators of locally
bounded order. The last result is proved exploiting an important result of differential
geometry, the Peetre-Slovák theorem [Slo88]. This result was firstly used in [KM16]
in the study of renormalization of scalar fields and it permit to avoid analyticity
requirements previously used in [HW01, HW02].

After this very general result we specialize a bit our model considering the
case when both the dynamical and background fields are spacetime tensors. In
this framework we proved the main result of this work. It precisely characterizes
the form of the differential operator coefficients Ck in the general finite renormal-
ization formula. These coefficients must be linear combinations of tensor valued
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polynomials, covariantly constructed out of the curvature tensors, the background
field tensors and all of their covariant derivatives. The number of independent
terms and the degrees of these polynomials are a priori bounded, with the bound
determined by the scaling dimension of the Wick power and the ranks of the
tensors involved. The coefficients of these polynomials are locally (in a precise
sense) smooth functions (no longer just polynomial) of finitely many polynomial
scalars covariantly constructed out of the subset of the background fields. Cru-
cially these finiteness results hold only when all background fields are admissible.
Here a background tensor field is admissible if its physical scaling weight and its
tensor rank satisfy an inequality. Those background fields that saturate the in-
equality are called marginal and only they are allowed to appear non-polynomially
in the finite renormalization terms. We stress that, despite the admissibility is a
technical mathematical condition necessary in our proofs, all physical models of
major interest satisfies it (in particular some examples are discussed at the end of
Chapter 4). To achieve this result we used some important mathematical results:
the Thomas replacement theorem and results from the classical invariant theory of
the general linear and (Lorentzian) orthogonal groups (the notion of local smooth
dependence on a set of polynomial invariants was actually born out of the neces-
sity of dealing with the complicated orbit structure for the action of the orthogonal
group on background tensors).

It is remarkable that all these results are written to encompass the case in
which the bundle of dynamical fields is actually a direct sum of vector bundles:
This means that we can renormalize quantum fields that are actually n-tuples of
fields.

Finally, we use our main result in the study of some physically relevant models:
the vector Klein-Gordon field, also with a tensorial coupling to the scalar curvature,
and the scalar Klein-Gordon field with its first derivative.

Now that we have presented the main topics we are going to deal with, we
briefly summarized how the thesis is organized.

In Chapter 1 we introduce all geometric structure we need in the subsequent
parts of the thesis: We recall the notion of spacetime and in particular of globally
hyperbolic spcaetime. Then, just to fix notation, we introduce the concept of vector
bundle and of jet bundle, and important object that we use extensively in the whole
thesis. After that we outline the key properties of Green hyperbolic operators,
introducing also the notion of propagator. Finally, after a brief discussion on the
basic concept of category theory, we introduce the most important geometric object
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of this thesis: The background geometries.
In Chapter 2 we discuss the problem of normal ordering in Algebraic QFT. We

firstly present the problem of normal ordering al Minkowskian QFT and, after a
brief introduction of Algebraic QFT, we discuss the problem of ambiguities in the
definition of Wick polynomials in a general curved spacetime, motivating then the
whole work.

Chapter 3 is devoted to present all technical results that we use to study the
renormalization of quantum Boson fields: the most important one is surely the
Peetre-Slovák theorem: after having discussed it we prove some results about phys-
ical scaling, we present some results from the classical invariant theory of the
general linear and (Lorentzian) orthogonal groups and finally we introduce the
Thomas replacement theorem.

The Chapter 4 is the core of the thesis. We introduce Wick powers from an
axiomatic viewpoint and we prove the general renormalization formula. After that
we consider a tensor Boson field and we prove that the coefficients of the formula
are linear combinations of tensor valued polynomials, covariantly constructed out
of the curvature tensors, the background field tensors and all of their covariant
derivatives. Finally we consider three physically motivated applications of the
previous result.
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1Geometric structures

T his chapter is devoted to introducing all geometric structures that we use
in this work. In the first sections we briefly recall the notion of globally

hyperbolic spacetime and we introduce the notions of vector and jet bundles. Then,
after having recalled some basic ideas from category theory, we introduce the
concept of background geometries, one of our main building blocks.
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1.1 Spacetimes

1.1 Spacetimes

In this section we present our general geometric setting by recalling some well-
known notions about spacetimes.

In this thesis, a spacetime (M,g) is a Hausdorff, second countable, connected,
smooth n-dimensional manifold M endowed with a smooth Lorentzian metric g

with signature (− + · · ·+). With standard notation, TM and T ∗M denote the
tangent and cotangent bundle of M respectively (TpM and T ∗pM denote the fibre
at p ∈ M of TM and T ∗M respectively). For a spacetime (M,g) we also require
a key property, the global hyperbolicity, which is essential in the formulation of
physical theories (see for e.g. [BD15], [DMP17]). To properly define this concept we
recall some standard notions of Lorentzian geometry.

Definition 1.1. Given a spacetime (M,g), we say that a vector v ∈ TpM is

• timelike if and only if g(v, v) < 0,

• lightlike if and only if g(v, v) = 0,

• spacelike if and only if g(v, v) > 0.

A vector is called causal if it is either timelike or lightlike.

For a fixed p ∈M it is possible to construct a two-folded light cone Vp ⊆ TpM \{0}
made of all causal vectors and we have the freedom to call future-directed the non-
zero vectors lying in one of the two-folds. If such choice can be made smoothly
varying p ∈M , we say that (M,g) is time orientable.

Definition 1.2. Let I be an interval. A piecewise smooth curve γ : I → M is
timelike (lightlike, spacelike) if, for every t ∈ I , the tangent vector to the curve at
γ(t) is timelike (respectively lightlike, spacelike). The curve γ is causal if, for every
t ∈ I , the tangent vector to the curve at γ(t) is causal and every tangent vector
has the same time orientation.

A curve, usually denoted by γ, will be henceforth supposed to be piecewise
smooth. We can now define the causal structure of a spacetime (M,g). By I+(p)

we denote the chronological future of a point p ∈M , i.e.

I+(p) = {q ∈M | ∃ γ future directed timelike curve s.t. γ(0) = p, γ(1) = q} ,

while J+(p) denotes the causal future of a point p ∈M , i.e.

J+(p) = {p}∪{q ∈M | ∃ γ future directed causal curve s.t. γ(0) = p, γ(1) = q} .

9



Chapter 1 · Geometric structures

Similarly, we define the chronological past I−(p) and the causal past J−(p) of a
point p ∈ M by employing past directed timelike and causal curves, respectively.
These definitions can be extended to a general subset Ω ⊂M by setting

I±(Ω) =
⋃
p∈Ω

I±(p), J±(Ω) =
⋃
p∈Ω

J±(p);

additionally, we define I(Ω) = I+(Ω) ∪ I−(Ω) and J(Ω) = J+(Ω) ∪ J−(Ω). We
say that a subset Ω is achronal if I+(Ω)∩Ω = ∅, i.e. a set such that every timelike
curve meets it at most once. If Ω is a closed achronal subset, we define its future
domain of dependence as

D+(Ω) = {p ∈M | every past inextensible causal curve through p intersects Ω} .

Finally, we can define D−(Ω) analogously and set D(Ω) = D+(Ω) ∪ D−(Ω).
Above a past inextensible causal curve is a causal curve which cannot be extended
into a larger causal curve.

Definition 1.3. A Cauchy surface is a closed achronal set Σ ⊂M with D(Σ) = M .
A spacetime M is called globally hyperbolic if it contains a Cauchy surface.

It is possible to obtain a more practical characterization of globally hyperbolic
spacetimes establishing also the existence of smooth Cauchy surfaces [BD15, Thm.
3.1.4], [BS05]:

Theorem 1.1. Let (M,g) be any time-oriented spacetime. The following two statements
are equivalent:

1. (M,g) is globally hyperbolic;

2. (M,g) is isometric to R × Σ with metric g = −βdt ⊗ dt + ht, where t ∈ R,
β ∈ C∞(M) is strictly positive, whereas ht is a smooth Riemannian metric on Σ

depending smoothly on t. Furthermore each {t}×Σ is a smooth spacelike Cauchy
surface onM .

To conclude, in the following, with spacetime we always refer to a time-oriented
globally hyperbolic spacetime.
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R

Σt′

Σt

Figure 1.1: Two smooth Cauchy surfaces.

1.2 Vector bundles and jets

In this sections we briefly recall some well-know notions of differential geometry,
concerning vector and jet bundles, with the main purpose to fix notations. We also
introduce the definition and useful identities for the symmetrized contraction of
sections of a vector bundle: This symmetrized contraction will be useful for giving
index-free versions of our results.

With VM → M (or simply with VM ) we denote a smooth real vector bundle
over a manifold M whose fibres Vp are isomorphic to a given Ra. We shall make
use of the auxiliary tensor bundles V ⊗kM → M and V ∗⊗lM → M , which are
bundles of tensor products of k copies of the bundle VM and l copies of the
dual bundle V ∗M respectively. In the following, we also consider two special sub-
bundles, namely those of the fully symmetrized contravariant and covariant tensor
products, defined by

V ⊗kM ⊃ SkVM = V �kM , V ∗⊗lM ⊃ SlV ∗M = V ∗�lM

where we denoted with � the symmetrized tensor product. We recall [Pro07,
Lem.9.1.1] that fully symmetric tensors of order k are spanned by decomposable
tensors of the form v�k. We will take advantage of the following spaces of smooth
sections:

• E (X) := Γ(X) the space of smooth sections of the bundle X ;

11



Chapter 1 · Geometric structures

• D(X) the space of smooth and compactly supported sections of the bundle
X ;

where X is a generic vector bundle. Obviously E (X) ⊃ D(X).

Remark 1.1. In the following, we will consider bundles which are constructed as
direct sum, i.e.,

VM =
N⊕
i=1

WiM

for some vector bundles WiM → M . We stress that, in this case, using the
distributivity of the tensor product with respect to the direct sum, we have

V ⊗kM =
⊕
|P |=k

N⊗
i=1

W⊗pii M, SkVM =
⊕
|P |=k

N⊗
i=1

SpiWiM

where P = (p1, . . . , pN ) is a multi-index and |P | = p1 + · · · + pN . It is straight-
forward to write the analogous decomposition for V ∗⊗lM and SlV ∗M . Moreover,
if the bundle VM has the introduced direct sum structure, we will often take ad-
vantage of the identification: If E (VM) 3 f =

⊕
i fi we identify fi '

⊕
k δ

k
i fk.

With this identification we can substitute the direct sum with a standard sum:

f =
∑
i

fi.

In the whole thesis, we always use remarks to specialize our results to the case of
a bundle constructed as a direct sum.

Remark 1.2. In the sequel, we sometimes write tensors in components. We use two
type of indices: We use the notation with Greek indices for sections of a generic
tensor bundle (for example, vµ1···µk denotes a section of V ⊗kM ) and Latin indices
for spacetime tensors, i.e., section of tensor products of TM and T ∗M bundles
(for example ta1···ak denotes a section of T⊗kM ).

We can now introduce the contraction product between symmetric tensor
fields. As we said, the following product is very useful to greatly simplify the
notation in our results.

Definition 1.4. The l-contraction product of symmetric sections

·l : E (SlV ∗M)× E (SkVM) −→ E (Sk−lVM) with k ≥ l,

12



1.2 Vector bundles and jets

is defined pointwise on decomposable tensors g�l∈ E (SlV ∗M), f�k∈ E (SkVM)

by (
g�l ·l f�k

)
:=

(
k

l

)
〈g, f〉l f�k−l.

and extended by linearity.

We can now prove some technical results, about the just introduced contraction
product, that will be very useful in the subsequent part.

Proposition 1.2. Let k, l, s > 0 be such that l ≤ k and s ≤ k − l. For h ∈
E (SsV ∗M), g ∈ E (SlV ∗M) and f ∈ E (SkVM) it holds

h ·s (g ·l f) = g ·l (h ·s f) (1.1)

Proof. It is immediate using the definition. It is sufficient to prove the result for
decomposable tensors and then use linearity to extend the proof to general tensors.
We consider h�s ∈ E (SsV ∗M), g�l ∈ E (SlV ∗M), f�k ∈ E (SkVM). Thus

h�s ·s
(
g�l ·l f�k

)
= h�s ·s

((
k

l

)
〈g, f〉l f�k−l

)
=

(
k − l
s

)(
k

l

)
〈h, f〉s 〈g, f〉l f�k−l−s

=

(
k

s

)(
k − s
l

)
〈h, f〉s 〈g, f〉l f�k−l−s

= g�l ·l
(
h�s ·s f�k

)
.

In the following, we often use the shorthand notation fk := f�k.

Proposition 1.3. Let g ∈ E (V ∗M), fi ∈ E (VM) and pi ≥ 1 for i = 1, . . . N . The
following relations hold

(a) g ·1
(
gl−1 ·l−1 f

k
i

)
= lgl ·l fk,

(b) g ·1
(
fp1

1 � · · · � f
pN
N

)
=

N∑
l=1

fp1
1 � · · · �

(
g ·1 fpll

)
� · · · � fpNN ,

(c) gl ·l
(
fp1

1 � · · · � f
pN
N

)
=

=
∑
|Q|=l
qi≤pi

(
N∏
i=1

(
pi
qi

))(
gl ·l

(
f q11 � · · · � f

qN
N

))
fp1−q1

1 �· · ·�fpN−qNN .
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Moreover, if Q = (q1, . . . , qN ) and P = (p1, . . . , pN ) are multi-indices such that
|Q| = |P | = l, hQ ∈ E

(
�Ni=1S

qiWiM
)
and fi ∈ E (WiM), then

(d) hQ ·l
(
fp1

1 � · · · � f
pN
N

)
= 0 if P 6= Q.

Proof. Relation (a) follows immediately from the definition of contraction product.
We prove relation (b). It is sufficient to prove the relation for the product f1 � f2

and then the relation (b) follows immediately using the obtained result recursively.
Defining f = f1 + f2 we obtain

g ·1 f2 = 2〈g, f〉 � f = 2 (〈g, f1〉+ 〈g, f2〉)� (f1 + f2)

= g ·1 f2
1 + 2〈g, f1〉 � f2 + 2〈g, f2〉 � f1 + g ·1 f2

2

= g ·1 f2
1 + 2(g ·1 f1)� f2 + 2(g ·1 f2)� f1 + g ·1 f2

2

but we also have

g ·1 f2 = g ·1
(
f2

1 + 2f1 � f2 + f2
2

)
= g ·1 f2

1 + 2g ·1 (f1 � f2) + g ·1 f2
2

and then
g ·1 (f1 � f2) = (g ·1 f1)� f2 + f1 � (g ·1 f2).

We now prove relation (c). Applying recursively relation (a) and recalling that ·1
acts as a derivation (relation (b)), we have, for qi ≤ pi,

gl ·l (fp1
1 � · · · � f

pN
N

)
=

=
1

l!
g ·1 (· · · g·1︸ ︷︷ ︸

l−times

(
fp1

1 � · · · � f
pN
N

))

=
1

l!

∑
|Q|=l

(
l

Q

) N⊙
i=1

g ·1 (· · · g·1︸ ︷︷ ︸
qi−times

fp1
i )

=
∑
|Q|=l

N⊙
i=1

gqi ·qi f
pi
i

=
∑
|Q|=l

(
N∏
i=1

(
pi
qi

)
gqi ·qi f

qi
i

)
fp1−q1

1 � . . .� fpN−qNN

=
∑
|Q|=l

(
N∏
i=1

(
pi
qi

))(
gl ·l

(
f q11 � . . .� f

qN
N

))
fp1−q1

1 � . . .� fpN−qNN
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1.2 Vector bundles and jets

where the last equality holds because, if f =
∑

i fi,

gl ·l f l =

(∑
i

〈g, fi〉

)l
=
∑
|P |=l

(
l

P

)∏
i

〈g, fi〉pi =
∑
|P |=l

(
l

P

)∏
i

gpi ·pi f
pi
i

but also

gl ·l f l =
∑
|P |=l

(
l

P

)
gl ·l

(
fp1

1 � . . .� f
pN
N

)
.

Finally, we have to prove relation (d). Define h =
∑

i hi and f =
∑

i fi where
hi, fi ∈ E (WiM). Then

hl ·l f l =

(∑
i

〈hi, fi〉

)l
=
∑
|P |=l

(
l

P

)∏
i

〈hi, fi〉pi

=
∑
|P |=l

∑
|Q|=l

δPQ

(
l

P

)∏
i

〈hi, fi〉pi ,

but also

hl ·l f l =
∑
|P |=l

∑
|Q|=l

(
l

P

)(
l

Q

)(
hq11 � · · · � h

qN
N

)
·l
(
fp1

1 � . . .� f
pN
N

)
.

Thus (
hq11 � · · · � h

qN
N

)
·l
(
fp1

1 � . . .� f
pN
N

)
= 0, if P 6= Q

and, since hQ is a linear combination of hq11 � · · · � h
qN
N , we have concluded the

proof.

Finally, we can introduce a geometric structure that we use extensively in this
work: jet bundles. We only recall some basic notions: A complete reference for this
subject is [KMS93]. Naively, given a bundle E →M and a section f : M → E, the
jet of f at a point p ∈M collects the information about the coordinate derivatives
of f at p up to some order. The collection of all jets then forms the jet bundle
associated to E.

Definition 1.5. Consider a pair of smooth manifolds M , E and the class of smooth
functions f : M → E, in particular E may be a bundle with base M and in this
case the relevant set of functions f is that of smooth sections.
The germ of f at p ∈M is the equivalence class [f ]p of smooth functions (sections)
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M → E that are equal to f on some neighbourhood of p. The r-jet of f at
p ∈M , denoted by jrpf , is the equivalence class [f ]rp of smooth functions (sections)
M → E that have the same Taylor expansion at p as f to order r with respect
to fixed local coordinate systems in M and E (this property being independent
from the choice of the coordinate patch). When E → M is a smooth bundle,
JrE → M denotes the set of r-jets varying the point in the base, itself a smooth
bundle. Finally, if ψ ∈ Γ(E) is a smooth section, the r-jet extension of ψ, denoted
with jrψ ∈ Γ(JrE), is the section of JrE which collects the r−jets of ψ over each
point p ∈M .

A fiber (JrE)p at p ∈ M is diffeomorphic to Ep × Rsr where Ep is the fiber of
E at p and sr is the number of all (symmetrized) partial derivatives up to order r
with respect to any local chart on the base around p. The notion of jet extension
gives rise to the definition of local adapted coordinates on jet bundles.

Definition 1.6. Let (xa, vi) be a local adapted coordinate chart on a bundle E →
M , where xa are local coordinates on an open domain U ⊆ M and (xa, vi) are
trivializing coordinates on the fibers over the open domain Z ⊆ E projecting
onto U . This charts extends to an adapted coordinates chart (xa, viA) on the
jet bundle JrE defined as follows. Its domain is Zr ⊆ JrE is diffeomorphic to
Z × Rsr . Moreover

viA (jrψ(p)) = ∂Av
i (jrψ(p)) =

∂

∂xa1
· · · ∂

∂xal
vi (jrψ(p))

for any section ψ of the bundle E and where A = a1 · · · al is a multi-index of size
|A| = l with l = 0, 1, . . . , r.

1.3 Green hyperbolic operators

The dynamics of most important and physically relevant fields is ruled by wave-like
equations: Generally we have a partial differential equation and we want to solve an
initial value problem. We have already introduced globally hyperbolic spacetimes,
which have a geometric structure suitable to assign initial data, now we outline
the key properties of a class of partial differential equations which encompass all
physical models that we treat in the following. In this section we mainly follow
[BD15, Section 3.2].

Definition 1.7. Let F, F ′ be two vector bundles of rank k and k′, with typical fiber
V and V ′ respectively, over the same manifoldM . A linear map L : Γ(F )→ Γ(F ′)
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1.3 Green hyperbolic operators

is a linear partial differential operator of order at most s ∈ N0 if for all p ∈M
there exist

• A coordinate neighbourhood (U, φ) centred in p;

• Local trivializations (U,ψ) and (U,ψ′) of F and F ′ respectively;

• A collection of smooth maps AI : U → Hom(V, V ′) labelled by multi-
indices;

for which, given any f ∈ Γ(F ), on U one have

Lf =
∑
|I|≤s

AI∂
If.

Notice that here we are implicitly using both the coordinate chart φ and the triv-
ialization ψ, ψ′. Moreover, if I = (I0, . . . , In−1), we used the notation ∂I =∏n−1
µ=0 ∂

Iµ
µ , where ∂0, . . . , ∂n−1 are the partial derivatives with respect to the coor-

dinates coming from the chart (U, φ). Furthermore, L is of order s ∈ N0 if it is of
order at most s, but not of order at most s− 1.

Since this definition is very general, we need to introduce a class of linear par-
tial differential operators more suitable to study initial value problems in quantum
field theory.

Definition 1.8. Let F, F ′ be two vector bundles of rank k and k′ over the same
manifold M and let L : Γ(F )→ Γ(F ′) be any linear partial differential operator of
order s. We call principal symbol of L the map σL : T ∗M → Hom(F, F ′) locally
defined as follows: For p ∈ M , mimicking Definition 1.7, consider a coordinate
chart around p and local trivializations of F and F ′ and, for all ζ ∈ T ∗pM , set

σL(ζ) =
∑
|I|=s

AI(p)ζ
I ,

where ζI =
∏n−1
µ=0 ζ

Iµ
µ and ζµ are the components of ζ with respect to the chosen

chart. Furthermore, given a Lorentzian manifold (M, g), we call a second order
linear partial differential operator P : Γ(F ) → Γ(F ′) normally hyperbolic if
σP (ζ) = g(ζ, ζ) idFp for all p ∈M and all ζ ∈ T ∗pM .

We can write a normally hyperbolic operator P in local coordinates to better
understand its structure. Let p ∈M and (U, φ) be a chart centered in p where the

17
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vector bundle F is trivial. There exist both A and Aµ, µ = 0, . . . , n − 1, smooth
maps from U to End(V ) (where V is the typical fiber of F ) such that, for any
f ∈ Γ(F ), on U one has

Pf = gab idV ∂a∂bf +Aa∂af +Af. (1.2)

From this expression we can notice that normally hyperbolic operators provide
a generalization the usual d’Alembert operator constructed out with covariant
derivatives �g = gµν∇µ∇ν , since (1.2) locally agrees, up to lower order terms
in the derivatives, with the local expression of d’Alembert operator. It is important
to recall that, over a globally hyperbolic spacetime, initial values problems for a
normally hyperbolic operator P admit unique solution [BD15, Prop. 3.2.9].

We are now in position to introduce Green operators, or propagators, some of
the most important objects in field theory, which permit to characterize the smooth
solutions of the equation Pf = 0 [BD15, Lemma 3.2.14]. Before that, we need an
auxiliary definition.

Definition 1.9. Let (M, g) be a globally hyperbolic spacetime. and F be a vector
bundle over M . We call

1. Γfc(F ) ⊂ Γ(F ) the subset of smooth and future compact sections of F , that
is f ∈ Γfc(F ) if supp f ∩ J+(p) is compact for all p ∈M ;

2. Γpc(F ) ⊂ Γ(F ) the subset of smooth and past compact sections of F , that is
f ∈ Γpc(F ) if supp f ∩ J−(p) is compact for all p ∈M ;

3. Γtc(F ) = Γfc(F )∩Γpc(F ) the space of smooth and timelike compact sections
of F .

Definition 1.10. Let (M, g) be a globally hyperbolic spacetime and consider a
vector bundle F over M . Furthermore, let L : Γ(F ) → Γ(F ) be a linear partial
differential operator. We call retarded (+) and advanced (−) Green operators
two linear maps

E+ : Γpc(F )→ Γ(F ), E− : Γfc(F )→ Γ(F )

Fulfilling the properties listed below

1. For any f ∈ Γpc(F ), it holds LE+f = f = E+Lf and supp (E+f) ⊂
J+(supp f);
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2. For any f ∈ Γfc(F ), it holds LE−f = f = E−Lf and supp (E−f) ⊂
J−(supp f).

The operator E = E− − E+ : Γtc(F ) → Γ(F ) will be referred to as advanced-
minus-retarded operator or causal propagator. A linear partial differential oper-
ator admitting both E+ and E− will be called Green hyperbolic.

1.4 Category theory

The main purpose of this thesis is to investigate the renormalization of a quantum
Boson field in a generic curved spacetime. Defining a quantum field in a General
Relativity settings we have to take into account the diffeomorphism-invariance of
this theory and then we have to construct locally covariant quantum fields. A
modern and complete definition of locally covariant quantum field theory was
firstly given by the authors of [BFV03]. To give a precise mathematical meaning
to this definition of locally covariant quantum field theory, we need the language
of category theory, of which we recall the fundamental concepts. We recall only the
basic definitions that we use in the following, for further details the reader can
refers to the standard monograph [ML98].

Definition 1.11. A category C consists of

1. A class of obj(C) of objects;

2. A class of morphism hom(C) between objects. Each morphism connects two
objects (a source object and a target object) together. If f is a morphism with
source object A and target object B, we write f : A→ B;

3. A notion of composition of these morphisms. If g : A→ B and f : B → C

are two morphisms, they can be composed, resulting in a morphism f ◦ g :

A→ C .

Composition of morphism is required to be associative, i.e. if g : A→ B, f : B →
C and h : C → D are three morphisms then

h ◦ (f ◦ g) = (h ◦ f) ◦ g.

Moreover, it is required that for every object A, there exists a morphism idA called
the identity morphism for A, such that for every morphism f : A → B and every
morphism g : C → A, we have

idA ◦ g = g, and f ◦ idA = f
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which means that the identity morphism idA leaves all morphisms starting from A

invariant upon composition.

One of the most basic example of category is Set: Objects of Set are sets
while the morphism are maps between sets. In the subsequent part of this chapter
we will introduce other categories related to the geometry of the spacetime.

Definition 1.12. Given two categories C and D, a covariant functor F : C→ D is
a map which maps objects to objects, A 7→ F (A) ∈ obj(D) for every A ∈ obj(C),
and morphisms to morphisms, (f : A → B) 7→ (F (f) : F (A) → F (B)) ∈
hom(D) for every morphism f : A→ B in hom(C), such that:

1. For every object A in C, F (idA) = idF (A);

2. For all morphisms f : A→ B and g : B → C , F (g ◦ f) = F (g) ◦ F (f).

In other words, functors are structure-preserving maps between categories.

1.5 Background geometries

In the whole thesis, our general settings is the following: We consider a quantum
field over a time-oriented globally-hyperbolic spacetime (M,g) of dimension n. In
addition to the quantum field, there are some classical assigned background fields
on M . They influence the evolution of the quantum field, for example because
they may be present in the equation of motion of the quantum field. The first
necessary background field is the metric itself g, however further tensor fields may
enter the theory. Background fields are described as sections b of a suitable bundle
BM → M . In this section we introduce all mathematical structures we need to
appropriately describe background fields in a locally covariant framework [BFV03],
i.e. we have to deal with all bundles of background fields simultaneously and
coherently for every globally-hyperbolic spacetime. We will also take advantage of
the elementary notions of category theory introduced in the previous section.

Definition 1.13. A bundle E → M is said to be dimensionful if it is equipped
with a smooth action of the multiplicative group R+ := (0,+∞)

R+ × E 3 (λ, e) 7→ eλ ∈ E,

called scaling. It is assumed that every bundle diffeomorphism E 3 e 7→ eλ ∈ E
leaves fixed each fiber of E (so that the λ-parametrized family of these restrictions
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1.5 Background geometries

to a given fiber defines a group representation of R+ in terms of fiber diffeomor-
phisms).
A dimensionful bundle is said to be dimensionless if the action is chosen to be
everywhere trivial.

Remark 1.3. Every vector bundle or a cone sub-bundle of a vector bundle (a cone
is a subset of a vector space that is invariant under multiplication by positive real
numbers, e.g., the cone of metrics of Lorentzian signature in the vector space of
symmetric 2-tensors) can be viewed as dimensionful, since it can be equipped with
a well-defined multiplication by scalars with some fixed power p ∈ R on its fibers:
t 7→ λpt.

Remark 1.4. The definition applies also when a scaling action is not defined. In this
case the standard scaling action is assumed to be the trivial one, i.e., the bundles
are supposed to be dimensionless.

We can now introduce some categories that we will use in the following:

• Man is a category of smooth manifolds. Here objects are connected smooth
manifolds M of fixed dimension n and morphisms are smooth embeddings
χ : M →M ′.

• Bndl is a category of dimensionful smooth bundles. Here objects πE : E →
M are smooth bundles over a smooth base of fixed dimension n. Since a
smooth bundle is locally trivializable, its typical fiber is diffeomorphic to a
fixed manifold F with possibly some additional structures (e.g., a vector space
structure) compatible with the smooth structure. Morphisms are smooth
maps ξ : E → E′ that are both

(i) fiber preserving: πE′ ◦ ξ = χξ ◦πE for uniquely associated smooth maps
χξ : M →M ′ and preserving the additional structure of the fiber if any,

(ii) equivariant with respect to scaling: ξ(e)λ = ξ(eλ) for λ ∈ R+ and
e ∈ E.

Definition 1.14. A natural (dimensionful) bundle is a functor H : Man → Bndl

such that, using the notation HM := H(M) for every M ∈ Man, a morphism
χ : M → M ′ has an associated morphism Hχ : HM → HM ′ with πHM ′ ◦Hχ =

χ ◦ πHM and Hχ is a local diffeomorphism (a diffeomorphism onto its image).

Given a morphism χ : M → M ′ and exploiting the fact that Hχ is a local dif-
feomorphism, it is possible to construct a pullback action on sections of the
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associated bundles

χ∗ : E (HM ′)→ E (HM)

which is completely defined by requiring that

h′ ◦ χ = Hχ ◦ (χ∗h′) for h′ ∈ E (HM ′). (1.3)

Since the morphism Hχ is equivariant, the scaling commutes with the pull-back,
i.e.,

χ∗(h′λ) = (χ∗h′)λ with λ ∈ R+.

Furthermore, exploiting the compactness of the support of the elements of D(HM),
also a natural push-forward map χ∗ : D(HM)→ D(HM ′) arises immediately. It
is defined as follows

(χ∗f) (p′) = Hχ|χ−1(p′)f(χ−1(p′)) , (1.4)

for f ∈ D(HM) and p′ ∈ χ(M) and the right-hand side is extended to the zero
function for p′ 6∈ χ(M). Finally, if H,H ′ : Man → Bndl are natural bundles, the
duals H∗, H ′∗, the direct sum H ⊕ H ′ and tensor product H ⊗ H ′ also define
natural bundles.

Dealing with a general framework of relativistic quantum field theory, a relevant
natural bundle, denoted by B : Man→ Bndl, is1

BM = S̊2T ∗M
K⊕
j=1

(
T ∗⊗ljM

)
(1.5)

where S̊2T ∗M ⊂ S2T ∗M is the bundle of Lorentzian metrics over M and some
choice of tensor powers lj . We will later use BM as the bundle of background
fields for a model of quantum fields. Scalar fields in particular are admitted when
ki = li = 0.

As previously observed, the bundles (1.5) are naturally dimensionful. The sec-
tions of these type of bundles represent the non-quantized fields of definite type
assigned in every spacetime simultaneously and coherently. Let us state a pair
of precise definitions adding some further relevant details concerning the effective
action of R+.

1It is of course possible to add also tensor powers of tangent bundle without any changes in the
subsequent part.
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(M,g) (M,λ−2g)

Physical scaling

p
q p

q

Figure 1.2: Pictorial view of the action of physical scaling on metric tensor.

Definition 1.15. Let B : Man → Bndl be the natural bundle of the form (1.5),
with fixed lj . A background field is a section b : M → BM . A pair (M,b) is
a background geometry, provided the section b = (g, t1, . . . , tK) is such that
(M,g) is a time-oriented globally hyperbolic spacetime. The action of R+ on the
bundles of the form (1.5) is such that, for every background field,

(g, t1, . . . , tK) 7−→
(
λ−2g, λs1t1, . . . , λ

sKtK
)
,

(g, t1, . . . , tK) ∈ E (BM) λ ∈ R+ ,
(1.6)

for given reals si independent from the section and M . Each such transformation
is called physical scaling transformation.

Definition 1.16. Referring to the natural bundle B : Man→ Bndl of the form (1.5),
we define the following associated categories:

(a) BkgG is the category of background geometries, having time-oriented
background geometries as objects and morphisms given by smooth embed-
dings χ : M →M ′ that preserve the background fields, χ∗b′ = b on M , the
time orientation, and causality (every causal curve between χ(p) and χ(q)

in M ′ is the χ-image of a causal curve between p and q in M ).

(b) BkgG+ is the category of oriented background geometries having ori-
ented and time-oriented background geometries as objects and morphisms
as in BkgG, but also required to preserve the spacetime orientation.

Remark 1.5. The group of physical scaling transformations acts on the above cat-
egories mapping (M,b) 7→ (M,bλ), for any λ ∈ R+. By equivariance of the
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pullback of background fields, physical scalings actually act as functors, BkgG→
BkgG and BkgG+ → BkgG+ respectively.

Finally, for future convenience, we introduce various local coordinates systems
on BM and JrBM together with the description of a particular class of diffeo-
morphisms called coordinate scalings. Let (xa) be local coordinates on the open set
U ⊆M and let (xa, gab, . . . , (tj)a1...alj

, . . .) be corresponding adapted local coor-
dinates on Z ⊆ BM where by definition Z projects onto U and, more strongly,
each fiber BMx is completely included in Z if x ∈ U .

• Covariant coordinates. According to Definition 1.6, the chart (xa) on U

induces corresponding adapted local coordinates on JrBM called covariant
coordinates(
xa, gab,A, (tj)a1...alj ,A

)
on the afore-mentioned domain Zr ⊆ JrBM,

where only n(n + 1)/2 metric components are considered because gab is a
symmetric tensor.

• Contravariant coordinates. Since Lorentzian metrics are non-degenerate,
they admit an inverse denoted, using a standard notation, with gab. We
correspondingly obtain induced coordinates gabA on jets of the inverse-metric
bundle. Using the notation gAB = ga1b1 · · · galbl , for |A| = |B| = l, we
define the following functions:

g = |det gab| , gab,A = gABgabB , (tj)
a1...alj ,A = gAB(tj)

a1...alj
B ,

where we have chosen fully contravariant coordinates for tensor bundles. We
have then obtained the set of local contravariant coordinates(

xa, gab,A, (tj)
a1...alj ,A

)
on Zr ⊆ JrBM.

• Rescaled contravariant coordinates. We can obtain another coordinate
set by a suitable rescaling of the previous one: We introduce a factor of the
form gα, with α ∈ R, to rescale the coordinates (n is the dimension of M ):(
xa, g, g−

1
n gab, g

1
n

+ 1
n
|A|gab,A, g

lj
n

+
sj
2n

+ 1
n
|A|(tj)

a1...alj ,A
)

on Zr ⊆ JrBM.

It should be noticed that the coordinates g and g−
1
n gab are functionally

independent only up to the identity g−1 =
∣∣det gab

∣∣. So one of the co-

ordinates g−
1
n gab is (implicitly) omitted and replaced by g. The relevance
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of the rescaled contravariant coordinates consists of the fact since sj is the
(physical) scaling degree of tj these coordinates without the coordinate g,(

xa, g−
1
n gab, g

1
n

+ 1
n
|A|gab,A, g

lj
n

+
sj
2n

+ 1
n
|A|(tj)

a1...alj ,A
)

are invariant under physical scaling.

• Curvature coordinates. Since we have a Lorentzian metric g, we can al-
ways define the Levi-Civita connection ∇ and the Riemann tensor R. By
well-known formulas, we can also regroup the second order jet coordinates
of the metric into the components of the Christoffel symbols Γabc and the
components of the fully covariant Riemann tensor R̄abcd. An alternative way
to regroup the components of the Riemann tensor is into the following fully
contravariant tensor S, with components

S̄abcd := gaa
′
gbb
′
R̄

(c d)
a′ b′ .

We denote by Γabc,A the components of the ∂A coordinate derivatives of
Γabc, by S̄abcd,A the components of the symmetrized contravariant ∇A =

∇(a1 · · · ∇al) derivatives of S, with (t̄j)
a1...alj ,A the components of the sym-

metrized contravariant derivatives of (tj)
a1...alj . It is possible to prove

that [AT94, AT96] that(
xa, gab,Γ

a
(bc,A), S̄

ab(cd,A), (t̄j)
a1...alj ,A

)
defines a complete coordinate system on Zr ⊆ JrBM , which we call curva-
ture coordinates.

• Rescaled curvature coordinates. Analogously to rescaled contravariant
coordinates, we can rescale the curvature coordinates obtaining a new coor-
dinate system(

xa, g, g−
1
n gab,Γ

a
(bc,A), g

3
n

+ 1
n
|A|S̄ab(cd,A), g

lj
n

+
sj
2n

+ 1
n
|A|(t̄j)

a1...alj ,A
)
.

As before, removing g form the set of rescaled curvature coordinates we find
a set of coordinates which is fixed under physical scaling (since sj is the
scaling degrees of tj ).
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Definition 1.17. We call a diffeomorphism M →M a coordinate scaling around
of p ∈ M if, in a neighborhood of p whose closure is included in the domain
U ⊆M of local coordinates (xa) centered at p itself, it acts as

xa 7−→ µ−1xa (a = 1, . . . , n)

for some µ > 0, and smoothly extends to the identity before reaching the boundary
of U . More precisely, defining t := − lnµ, the class of coordinate scaling around
p is represented by the one-parameter group of diffeomorphisms {φt}t∈R of the
whole M leaving p fixed generated by the globally defined vector field Xa =

−hxa ∂
∂xa , where h ∈ D(M) vanishes before reaching the boundary of U and

attains the constant value 1 in a neighborhood of p.

We stress that, unlike physical scaling, these transformation are induced by diffeo-
morphisms of M .
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2Normal ordering and
AQFT

I n this chapter we present the problem of normal ordering in AQFT. Firstly we
show why the normal ordering procedure is necessary, analysing a brief example

from Minkowskian QFT. Then we show why there does not exists a unique normal
ordering prescription in curved spacetime, motivating then the whole thesis. In
the last section we introduce some further ideas of locally covariant AQFT.
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2.1 Normal ordering and Wick polynomials

2.1 Normal ordering and Wick polynomials

In general, in a quantum field theory, several physically relevant observables (like
the stress-energy tensor) are constructed with products of fields at the same space-
time point. For this reason, field powers and polynomials have to be defined
properly. We start analysing this problem in the standard (Minkowskian) theory of
quantum fields (see for e.g. [PS95]). We take a massive scalar Klein-Gordon field
ϕ(x) in a 4-dimensional (Minkowski) spacetime as an example to explain the prob-
lem, but also observables constructed with other kind of fields present the same
issue. First of all we recall that in standard Minkowskian QFT, quantum fields
are operators (more precisely operator valued distributions) on a suitable Hilbert
space. Exploiting spatial Fourier transform, the quantum field ϕ(x) is then written
in terms of creation and annihilation operators, a and a∗, which act on a Fock
space, i.e.

ϕ(x) =

∫
d3k

(
√

2π)3

1√
2k0

(
ake
−ik·x + a∗ke

ik·x
)

(2.1)

where k is the 3-momentum of the field and where k0 =
√
k2 +m2 with m

the mass of the field. Then, we can naively try to define the most basic field
polynomial, namely ϕ2, in the following way

ϕ2(x) := lim
y→x

ϕ(x)ϕ(y). (2.2)

But, with this definition, the squared field is not a well-defined object because its
vacuum expectation value "blow-up". Indeed, using (2.1), we obtain

ϕ(x)ϕ(y) =

=

∫
d3k

(
√

2π)3

d3k′

(
√

2π)3

1

2
√
k0k′0

(
ake
−ik·x + a∗ke

ik·x
)(

ak′e
−ik′·y + a∗k′e

ik′·y
)

=

∫
d3k

(
√

2π)3

d3k′

(
√

2π)3

1

2
√
k0k′0

(
akak′e

−ik·xe−ik
′·y + aka

∗
k′e
−ik·xeik

′·y

+a∗kak′e
ik·xe−ik

′·y + a∗ka
∗
k′e

ik·xeik
′·y
)

(2.3)

and if we compute the expectation value of ϕ2(x) on the Minkowski vacuum |0〉

〈0|ϕ2(x)|0〉 =

∫
d3k

(2π)3

1

2
√
k2 +m2

−→∞
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and the ϕ2(x), defined with (2.2), is not a well-defined object. In Minkowskian
QFT this problem is solved exploiting the so-called normal ordering prescription: all
observables are written in term of creation and annihilation operators and then all
creation operators have to be written to the left of all annihilation operators. In
other words, the normal ordered product, denoted by :·:, of a and a∗ is defined by

:aa∗: = a∗a, :a∗a: = a∗a, :aa: = aa, :a∗a∗: = a∗a∗. (2.4)

Using this prescription, there are no more divergences in the vacuum expectation
value of the squared field and the expectation value of such kind of objects is now
meaningful:

:ϕ(x)ϕ(y): =

∫
d3k

(
√

2π)3

d3k′

(
√

2π)3

1

2
√
k0k′0

(
akak′e

−ik·xe−ik
′·y + a∗k′ake

−ik·xeik
′·y

+a∗kak′e
ik·xe−ik

′·y + a∗ka
∗
k′e

ik·xeik
′·y
)

(2.5)

and if we now define the normal ordered squared field as

:ϕ2(x): = lim
y→x

:ϕ(x)ϕ(y):

we obtain
〈0| :ϕ2(x): |0〉 = 0.

This procedure can be obviously extended to define higher powers of ϕ(x). From
this example we can therefore see how a prescription like normal ordering is es-
sential to properly define important observables of quantum field theories.

Remark 2.1. Since, in general, we are interested in theories defined in the general
framework of a curved spacetime and since, for this reason, we do not have the
global Fourier transform at our disposal, we have to re-write the normal ordering
prescription (2.4) in position space. Comparing equations (2.3) and (2.5) it is easy
to show that

:ϕ(x)ϕ(y): = ϕ(x)ϕ(y)−
∫

d3k

(
√

2π)3

d3k′

(
√

2π)3

1

2
√
k0k′0

[ak, a
∗
k′ ] e

−ik·xeik
′·y

where [·, ·] is the standard commutator of operators. Since

[ak, a
∗
k′ ] = δ(k− k′)I
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we have

:ϕ(x)ϕ(y): = ϕ(x)ϕ(y)−
∫

d3k

(2π)3

1

2k0
e−ik·(x−y) I

= ϕ(x)ϕ(y)− 〈0|ϕ(x)ϕ(y)|0〉I

and we finally obtain the expression of the normal ordered product of fields in
position space

:ϕ2(x): = lim
y→x

ϕ(x)ϕ(y)− 〈0|ϕ(x)ϕ(y)|0〉I

which is a meaningful object. As we have shown in this brief example, the standard
normal ordering prescription, in Minkowski spacetime, is equivalent to the well-
known divergence subtraction method [KM15, Sec. 5.3.1]. In the next sections, we
show how this divergence substraction method can be used in a generic curved
spacetime.

An observable which is a polynomial in the field, with factors involving prod-
ucts of fields evaluated at the same spacetime point, is called Wick polynomial.
The most basic Wick polynomials are Wick powers, namely k-times product of
the field at the same point.

Now, we have to translate these ideas in the general framework of locally co-
variant algebraic quantum field theory (AQFT) on curved spacetimes. To do that,
we start introducing some general concepts of AQFT.

2.2 Algebraic Quantum Field Theory

In this section we introduce the general ideas of algebraic quantum field theory.
A complete and recent reference on this topic is [BDFY15]. In particular, in this
section we mainly refer to [KM15]. We start recalling a basic definition.

Definition 2.1. A collection A of elements is called a unital (associative) ∗-algebra
if A is endowed with a (associative) product operation endowing it with an alge-
bra structure and if there exists I ∈ A such that aI = Ia = a for all a ∈ A.
Furthermore it is also assigned ∗ : A → A such that

1. (a+ λb)∗ = a∗ + λb∗ for all a, b ∈ A and for all λ ∈ C,

2. (ab)∗ = b∗a∗ for all a, b ∈ A,

3. a∗∗ = a for all a ∈ A.
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Chapter 2 · Normal ordering and AQFT

A set G ⊂ A is said to generate the algebra A, and the elements of G are said
generators of A, if each element of A is a finite complex linear combination of
products of elements of G.

The algebraic formulation of quantum theories was first introduced by Haag in
[Haa96]. In this framework there is no preferred Hilbert space but observables are
viewed as abstract self-adjoint objects. These observables generate a ∗-algebra (or
a C∗-algebra in some formulations). In other words, the ∗-algebra of observables
is not defined simply as some concrete set of operators on a Hilbert space, but
it is defined abstractly using more basic objects. In this very general framework,
also the notion of quantum state is generalized introducing the notion of quantum
algebraic state.

Definition 2.2. Given an unital ∗-algebra A, an algebraic state ω over A is a
C-linear map ω : A → C which is positive and normalized, i.e.

ω(a∗a) ≥ 0 for all a ∈ A, ω(I) = 1.

Given a ∗-algebra and an algebraic state on it, it is possible to recover the
standard interpretation of quantum theories via the Gelfand-Naimark-Segal (GNS)
construction. In the following, L (V ) will denote the linear space of linear opera-
tors on the vector space V .

Definition 2.3. Let A be a complex algebra and let D be a dense linear subspace
of a Hilbert space H.

1. An algebra homomorphism π : A → L (D) (i.e. a linear and product
preserving map) is called representation of A on H with domain D. If A is
furthermore unital, a representation is also required to satisfy π(I) = I .

2. If finally A is a ∗-algebra, a ∗-representation of A on H with domain D is
a representation which satisfies

π(a)† �D= π(a∗) ∀a ∈ A

where † denotes the Hermitian adjoint operation in H.

Having a ∗-algebra and an algebraic state on it, the standard interpretation of
quantum theories can be recovered via the well-know GNS construction.

Theorem 2.1 (GNS construction). If A is a complex unital ∗-algebra and ω : A → C
is a state, the following facts holds.
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2.2 Algebraic Quantum Field Theory

1. There is a quadrupole (Hω,Dω, πω,Ψω) where,:

(i) Hω is a complex Hilbert space;

(ii) Dω ⊂ Hω is a dense subspace;

(iii) πω : A → L (Dω) a ∗-representation of A on Hω with domain Dω ;

(iv) πω(A)Ψωω = Hω ;

(v) ω(a) = 〈Ψωω|πω(a)Ψωω〉 for every a ∈ A.

2. If (H′ω,D′ω, π′ω,Ψ′ω) satisfies (i)-(v), then there is U : Hω → H′ω surjective and
isometric such that:

UΨω = Ψ′ω, UDω = D′ω, Uπω(a)U−1 = π′ω(a) if a ∈ A.

Proof. See [KM15, Thm. 5.1.13].

After this brief abstract introduction about the basic concepts of AQFT, we
can define, as an example, a ∗-algebra A(M) which encodes the properties of a
massive vector Klein-Gordon field A on a globally hyperbolic spacetime M . We
recall that, classically, a (covariant) vector KG field is a vector field, i.e. a section of
D(T ∗M), which fulfils the equation of motion

PAa(x) = (−�g +m2 + ξR)Aa(x) = 0

where �g := gab∇a∇b and where ξ ∈ R is the coupling to the scalar curvature R.
We recall that the KG operator P is Green hyperbolic (Definition 1.10).

Definition 2.4 (CCR algebra). The CCR algebra of the quantum field A over
M is the unital ∗-algebra presented by the following generators and relations.
The generators consist of (smeared abstract) field operators, A(f), labelled by
functions f ∈ D(T ∗M) (the identity I is of course included in the construction of
the corresponding freely generated algebra). These generators satisfy the following
relations:

• R-linearity: A(af + bg) = aA(f) + bA(g) if f, g ∈ D(T ∗M) and a, b ∈ R

• Hermiticity: A(f)∗ = A(f) for f ∈ D(T ∗M)

• Klein-Gordon: A
(
(−�g +m2 + ξR)f

)
= 0 for f ∈ D(T ∗M)

• Commutation relations: [A(f), A(g)] = iE(f, g)I for f, g ∈ D(T ∗M)
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Chapter 2 · Normal ordering and AQFT

where E(·, ·) is the causal propagator (i.e. the advanced-minus-retarded funda-
mental solution defined in Def. 1.10).

The Hermitian elements of A(M) are the elementary observables of the free
theory of vector KG field A. However, this algebra is not sufficient to fully de-
scribe the physics of a quantum vector KG field: for example it does not include
observables like the stress-energy tensor of A or basic interaction terms, because
these observables involves products of fields evaluated at the same spacetime point
(i.e. Wick polynomials), like AaAb(x) (interpreted as a symmetric tensor product
of fields). This observable, smeared with a test function f ∈ D(S2T ∗M), could be
formally defined as

A2(f) =

∫
M
Aa(x)Ab(y)fab(x)δ(x, y) dg (2.6)

but this object is not an element of the algebra A(M). So, since this algebra is
too small to describe important observables, we have to enlarge it, and, at the
same time, we aim to give a precise mathematical meaning to (2.6). To do this, we
have to properly define Wick polynomials generalizing the divergence subtraction
method outlined in Remark 2.1. The problem, if we want to develop a completely
covariant theory valid on generic curved spacetimes, is that, in general, it is not
possible to assign a physically distinguishable state to each spacetime (like the
Poincaré vacuum in Minkowski spacetime). The key observation to overcome this
problem is that it is possible to select a type of divergence in common with all
physically relevant states in every spacetime. These states which mimic the type of
divergence of Minkowski vacuum are called Hadamard states. A good reference
for Hadamard states of scalar fields is [KM15], while the vector fields case was
firstly studied in [SV01]. We do not present a complete analysis on Hadamard
states, because it would be outside the aims of this work, but in the next section
we show the basic ideas behind extending the algebra using those kind of states
(or, more precisely, their singularity).

2.3 Normal ordering in AQFT

In this section we show how the Hadamard singularity can be used to properly
define Wick polynomials in AQFT on curved spacetime. To explain the procedure
we take as example a scalar Klein-Gordon field ϕ in a four dimensional spacetime,
but the same ideas are also applicable for a vector field. Since this is a well-known
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2.3 Normal ordering in AQFT

topic in AQFT, we summarize only the main ideas. For a detailed discussion on
this topic we refer to [KM15, Sec. 5.3.2] and the references therein. What we
are going to present is called Hadamard parametrix regularization method, firstly
studied in [HW01, HW02, BF00].

We start recalling some basic notions of Lorentzian geometry, necessary to
properly introduce Hadamard states from a geometric viewpoint.

Definition 2.5. If (M,g) is a spacetime, an open set C ⊂ M is said a normal
convex neighbourhood if there is an open set W ⊂ TM with the form W =

{(q, v) | q ∈ C, v ∈ Sq} where Sq ∈ TqM is a star-shaped open neighborhoodbof
the origin such that

exp |W : (q, v) 7→ expq v

is a diffeomorphism onto C × C . Moreover, with σ(x, y) we indicate the squared
geodesic distance of x from y. It is defined as

σ(x, y) := gx
(
exp−1

x y, exp−1
x y

)
.

The squared geodesic distance σ(x, y) turns out to be smoothly defined on
C × C if C is a convex normal neighbourhood where we also have σ(x, y) =

σ(y, x).
In a convex neighbourhood C of a spacetime (M,g) it is possible to define a

local solution (up to smooth terms) of the Klein-Gordon equation, also known as a
parametrix. This function (or more precisely, class of functions) has essentially the
same short distance singularity of the two point function of Minkowski vacuum.
In a convex neighbourhood C of a four dimensional spacetime the Hadamard
parametrix has the form

Hε(x, y) =
1

4π2

u(x, y)

σε(x, y)
+ v(x, y) log

(
σε(x, y)

λ2

)
(2.7)

where x, y ∈ C , λ > 0 is a length scale and T is a local time coordinate increasing
towards the future such that

σε(x, y) := σ(x, y) + 2iε (T (x)− T (y)) + ε2.

The cut in the complex domain of the log function is assumed along the negative
axis in (2.7). The coefficients u, v are determined by recursive differential equations
(se for e.g. [Mor03, App. A]). This parametrix distributionally satisfies Klein-
Gordon equation in both argument up to jointly smooth functions of x and y.
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Chapter 2 · Normal ordering and AQFT

Remark 2.2. The Hadamard parametrix 2.7 is constructed using only local geomet-
ric data and the parameters defining the equation of motion but does not refers to
particular states, which are global objects.

Definition 2.6. If ω : A(M)→ C is a state, its n-point function is defined as

ωn(f1, . . . , fn) := ω (ϕ(f1) · · ·ϕ(fn))

where f1, . . . , fn ∈ D(M).

Definition 2.7. If (M,g) is a four dimensional spacetime, we say that a state ω
on A(M) and its two-point function ω2 are Hadamard if ω2 ∈ D ′(M ×M) and
every point of M admits an open normal neighbourhood C where

ω2(x, y)−H0+(x, y) = w(x, y) for some w ∈ E (C × C).

Here 0+ indicates the standard weak distributional limit as ε→ 0+.

We are now in position to define the expectation values of Wick powers :ϕk:(f)

with respect to Hadamard state ω. As it should be clear from the previous anal-
ysis, all of that can be done simultaneously for all Hadamard state (i.e. without
considering a reference state) because the only important aspect is the singular-
ity, which is the same for all Hadamard states. First, define for smooth functions
f1, . . . , fk ∈ D(M) supported in a convex normal neighbourhood C

:ϕ(f1) · · ·ϕ(fk):H =

∫
Mn

:ϕ(x1) · · ·ϕ(xk):H f1(x1) · · · fk(xk) dg(x1, . . . , xk)

where the completely symmetrized formal kernels :ϕ(x1) · · ·ϕ(xk):H are defined
recursively by

:ϕ(x1):H = ϕ(x1)

:ϕ(x1)ϕ(x2):H = ϕ(x1)ϕ(x2)−H0+(x1, x2)

...

:ϕ(x1) · · ·ϕ(xk+1):H = :ϕ(x1) · · ·ϕ(xk):H ϕ(xk+1)

−
k∑
l=1

:ϕ(x1) · · · ϕ̃(xl) · · ·ϕ(xk):H H0+(xl, xk + 1)

where the element with ·̃ is removed. It is possible to show [KM15, Sec. 5.3.2]
that the expectation value ω(:ϕ(x1) · · ·ϕ(xk):H) is smooth and thus we are in
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2.4 Locally covariant AQFT

position to define the expectation values of Wick powers for f ∈ D(M) such that
its support is included in C

ω
(

:ϕk:H(f)
)

=

∫
Mn

ω (:ϕ(x1) · · ·ϕ(xk):H) f(x1)δ(x1, . . . , xk) dg(x1, . . . , xk).

Now this is a good definition, but it is affected by several ambiguities due to
the construction of the parametrix Hε, which means that there is not a unique
definition of Wick powers. The goal of the next chapters is to study and classify
these ambiguities (i.e. study the renormalization) for a generic boson quantum field
using a locally covariant framework.

Remark 2.3. Using the ideas discussed in this section and some tools from Microlo-
cal Analysis (see, for e.g. [KM15, Sec 5.3.3]) it is possible to extend the original
algebra A(M) to an extended algebraW(M) which includes also Wick polynomi-
als. In the rest of this thesis, we consider an extended algebraW without regarding
how it has been constructed.

Remark 2.4. It is possible to perform the same analysis discussed in this section
also for vector fields. A good reference for Hadamard state for these kind of fields
is [SV01]. A more explicit construction of Hadamard parametrix for vector fields
can be found, for e.g., in [BF16].

2.4 Locally covariant AQFT

In the previous sections we worked in a fixed spacetime, but now we can remove
this constraint and show how the previous ideas can be set up in a locally covariant
framework [BFV03]. The introduced formalism permits us to describe the net of
algebras of local quantum observables on our background geometries (cf. Section
1.5). We explicitly only deal with BkgG, but everything we say can be trivially
re-adapted to BkgG+.

Definition 2.8. A net of algebras (of local quantum observables) W is an
assignment of a complex unital ∗-algebra W(M,b) to every background geome-
try (M,b) in BkgG together with an assignment of an injective unital ∗-algebra
homomorphism ιχ : W(M,b) → W(M ′,b′) to every morphism in BkgG, re-
specting compositions and associating identities to identities. In other words
W : BkgG → Alg is a functor from the category of background geometries into
the category of (complex) unital ∗-algebras whose morphisms are injective unital
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Chapter 2 · Normal ordering and AQFT

∗-algebra homomorphisms. Further, we require thatW respects (i) scaling and (ii)
the time slice axiom, as described below.

(i) Physical scaling transformations (M,b) 7→ (M,bλ) are represented in terms
of ∗-algebra isomorphisms σλ : W(M,b) → W(M,bλ) such that σ1 =

id and σλ ◦ σλ′ = σλλ′ . Varying (M,b), scaling transformations must
commute with embeddings, i.e., they act as natural isomorphisms σλ : W →
Wλ between the ∗-algebra valued functorsW andWλ, the latter defined by
Wλ(M,b) =W(M,bλ).

(ii) Given a morphism χ : M →M ′ between the background geometries (M,b)

and (M ′,b′), if the image χ(M) ⊆ M ′ contains a Cauchy surface for
(M ′,g′), then the induced ∗-homomorphism ιχ : W(M,b) → W(M ′,b′)

is a ∗-isomorphism.

We refer to a similar functor W : BkgG+ → Alg with analogous properties as a
net of algebras as well.

Remark 2.5. The unit of every algebra W(M,b) will be simply denoted by 1 in
place of a cumbersome notation 1(M,b).

Remark 2.6. The scaling axiom is necessary because we will be required to com-
pare local algebras defined on a given manifold which are identified by scaling
transformations. These algebras must be viewed as distinct since their background
fields are different. Therefore to compare them we need to assume that there is an
isomorphism σλ identifying them. In more physically minded presentations this
structure is not discussed and the said identification is hidden in the formalism.

The time slice axiom has a consequence which will play a fundamental role in
the sequel, in particular for the application of the Peetre-Slovák.

Proposition 2.2. Referring to Definition 2.8 consider (M,b) , (M,b′) ∈ BkgG (resp.
BkgG+) such that b = b′ with identical temporal orientation outside a compact region
K ⊆M . There exists a unital ∗-algebra isomorphism

τ : W(M,b)→W(M,b′)

such that τ |W(N,b|N ) : W(N,b|N )→W(N,b′|N ) is the identity for every (N,b|N ) ∈
BkgG (resp. BkgG+) satisfying N ∩ J+

(M,b)(K) = ∅.
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Proof. J+
(M,g)(K) = J+

(M,g′)(K) since these sets are made of the union of the
future-directed causal curves, defined with respect to the corresponding metrics,
emanating from K itself. These sets are therefore made of the union of K and
of the part external to K of all future-directed causal curves emanating from the
frontier ∂K . However g|∂K = g′|∂K because the metrics are smooth and co-
incide outside K , thus these curves do not depend on the chosen metric. In
globally hyperbolic spacetimes J+

(M,g)(K) is always closed for K compact, so

∆ := M \ J+
(M,g)(K) = M \ J+

(M,g′)(K) equipped with g|∆ = g′|∆ is a smooth
spacetime. (∆,g|∆) is a (time-oriented with respect to the assigned temporal ori-
entation of (M,g)) globally-hyperbolic spacetime so that (∆,b|∆) ∈ BkgG (resp.
BkgG+) : it is sufficient to observe that a Cauchy surface Σ of (M,g) in the
past of K with respect to a factorization M = R × Σ is a Cauchy surface for
(∆,g|∆). Let us denote by χ∆ and χ′∆ respectively the embeddings of ∆ into
(M,g) and (M,g′) Def.2.8 entails that they correspond to associated embeddings
of unital ∗-algebras ıχ∆ : W(∆,b|∆) → W(M,b) and ıχ′∆ : W(∆,b|∆) →
W(M,b′). Since ∆ includes Cauchy surfaces in the past of K which are also
simultaneously a Cauchy surfaces for (M,g) and (M,g′) respectively, in view of
(ii) in Def.2.8, ıχ∆ and ıχ′∆ must be unital ∗-algebra isomorphisms and hence
τ := ıχ′∆ ◦ ı

−1
χ∆

: W(M,b) → W(M,b′) is a well defined unital ∗-algebra iso-
morphism. Finally consider (N,b|N ) ∈ BkgG satisfying N ∩ J(M,g)+(K) = ∅.
Since b(x) = b′(x) if x ∈ N , we have (N,b|N ) = (N,b′|N ) (so that in partic-
ular W(N,b|N ) = W(N,b′|N )) and thus the (co-domain restrictions of) space-
time embeddings χN : N → N ⊆ M and χ′N : N → N ⊆ M are nothing
but the identity maps and consequently ıχN = ıχ′N = idW(N,b|N ) due to (i) in
Def.2.8. On the other hand we know that χN = χ∆|N and χ′N = χ′∆|N . Since
the overall assignment of injective unital ∗-algebra homomorphisms to spacetime
embeddings respects compositions and associates identities to identities, collect-
ing the obtained identities we also have ıχ∆ |W(N,b|N ) = ıχM = idW(N,b|N ) and
ıχ′∆ |W(N,b′|N ) = idχ′M = idW(N,b′|N ) = idW(N,b|N ). Inserting into the definition
of τ |N :W(N,b|N )→W(N,b′|N ) =W(N,b|N ) we have

τ |W(N,b|N ) = ı′χN ◦ ı
−1
χN

= idW(N,b|N ) ◦ idW(N,b|N ) = idW(N,b|N )

concluding the proof.

Remark 2.7. There is an analogous but different unital ∗-algebra isomorphism
constructed relying upon J−(M,g)(K) instead of J+

(M,g)(K). The results established
in this paper do not depend on the choice of one of these isomorphisms.
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Quantum fields

We have so far discussed all the mathematical structures we need to describe
background fields and the abstract notion of a net of quantum observables. At this
abstract level we may introduce the definition of quantum fields as special elements
of the algebras of observables W(M,b).

Definition 2.9. Fix a net of local quantum observables W as in Definition 2.8
and a natural vector bundle V . A quantum V -field is an assignment Φ(M,b) of
an algebra-valued distribution

Φ(M,b) : D(V ∗M)→W(M,b)

to each background geometry (M,b) ∈ BkgG, where it is also supposed that
for all background geometry (M,b) and f ∈ D(V ∗M) the quantum field is self-
adjoint,

Φ(M,b)(f) = Φ(M,b)(f)∗ .

The given definition does not yet assume any particular relation between
Φ(M,b) and Φ(M ′,b′) when (M,b) and (M ′,b′) are connected by a morphism
χ of BkgG. A quantum field Φ is said to be locally covariant when each pair of
Φ(M,b) and Φ(M ′,b′) is in fact connected according to a natural rule arising from
the definition of a natural bundle, translating into the mathematical language the
ideas of locality and general covariance.

Definition 2.10. A quantum V -field Φ (Definition 2.9) with respect to the net of
local quantum observables W as in Definition 2.8 is said to be locally covariant
if satisfies the following identity for each morphism χ : (M,b) → (M ′,b′) where
b = χ∗b′,

ιχ
(
Φ(M,b)(f)

)
= Φ(M ′,b′) (χ∗f) , ∀f ∈ D(V ∗M). (2.8)

where χ∗ is the push-forward with respect to a natural bundle, as in (1.4).

In the following, we require that the field Φ has a definite scaling degree
dΦ ∈ R with respect to the action of physical scaling. However, when Φ has
multiple components, different components of a V -field can be grouped together
by their scaling degree, giving rise to the decomposition of the field bundle as
in Remark 1.1. Then the role of the scaling degree is played by a globally di-
agonalizable endomorphism dφ : VM → VM , whose eigen-subspaces constitute
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2.4 Locally covariant AQFT

the bundle decomposition VM =
⊕N

i=1WiM and whose eigenvalues correspond
to the weights of these field sub-bundles. Alternatively, once this field bundle de-
composition is known, the endomorphism dΦ can be identified with its eigenvalues
(dΦ1 , . . . , dΦN ). Informally written, the relation between the scaling of background
fields and Φ means that, for every (g, t) ∈ Γ(BM),

(g, t1, . . . , tN ) 7−→
(
λ−2g, λs1t1, . . . , λ

sN tN
)

=⇒ Φ 7−→ λdΦΦ . (2.9)

To formulate a precise statement valid also for V -fields exploiting our formalism
we need a precise scaling procedure based on the isomorphism σλ introduced in
Definition 2.8. If Φ is a quantum V -field, we can define the rescaled quantum
V -field SλΦ as

(SλΦ)(M,b)(f) = σ−1
λ (Φ(M,bλ)(λ

nf)) , λ ∈ R+ , (2.10)

where n is the dimension of the spacetime M and σλ is the algebra isomor-
phism introduced in Definition 2.8. It should be clear here that both Φ(M,b) and
(SλΦ)(M,b) are element of the same algebraW(M,b) due to the presence of σ−1

λ

in the second case. The factor λn just compensates the scaling of the volume form
dg 7→ λ−ndg when g 7→ λ−2g. A mathematically rigorous version of (2.9) is now

(SλΦ)(M,b)(f) = λdΦΦ(M,b)(f) , (M,b) ∈ BkgG , f ∈ D(VM) , λ ∈ R+ .

Remark 2.8. As usual, it is convenient to think of the algebra-valued distribution
Φ as a formal point-like field Φµ(x) smeared with a test section f ∈ D(V ∗M). In
the sequel, we will make extensive use of the case when V is replaced by SkV ∗M .
Then we may write the formal point-like field Φµ1···µk(x) smeared with a test
section f ∈ D(SkV ∗M) as

Φ(M,b)(f) =

∫
M

Φµ1···µk(x)fµ1···µk(x) dg(x) ,

where dg(x) is the volume form induced by the metric g on M .
Similarly, if C is any function that maps a background geometry b to a distribution
on a certain space of test functions C(M,b) : D(SkVM) → R, it is heuristically
convenient to use the distributional notation

C(M,b)(f) :=

∫
M
C[M,b]µ1···µk(x)fµ1···µk(x) dg(x) , f ∈ D(SkV ∗M), (2.11)

where the formal c-number field C[M,b]a1···ak(x) may not be smooth. Such a
function C will be named a c-number SkV -field. If the sections C[M,b] are
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smooth for every (M,b) (i.e., C[M,b] ∈ E (SkV ∗M)), C is said to be a smooth
c-number SkV -field. From now on we systematically identify C(M,b)(f) with the
corresponding trivial element, a so called c-number, C(M,b)(f)1 of W(M,b). In
this sense a c-number SkV -field is a sub-case of a quantum SkV -field and, for
instance, the scaling action (2.10) applies to these particular quantum fields as well.
If in addition C satisfies the identity

C(M,χ∗b′)(f) = C(M ′,b′)(χ∗f) , (2.12)

for every background morphism χ : (M,b) → (M ′,b′) (so b = χ∗b′) and every
test section f ∈ D(SkV ∗M), then C defines a locally covariant c-number SkV -
field. Using the definitions of pull-back and push forward, i.e.

χ∗ : E (SkV ∗M ′)→ E (SkV ∗M) χ∗ : D(SkVM)→ D(SkVM ′),

it is easy to prove that if C is described by C[M,b] ∈ E (SkV ∗M) for every choice
of (M,b) by means of (2.11), then (2.12) is equivalent to

C[M,χ∗b′](x) =
(
χ∗C[M ′,b′]

)
(x) , (2.13)

for every background morphism χ : (M,b) → (M ′,b′) (with b = χ∗b′) and
x ∈M .
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3Technical results

I n this chapter we introduce all technical tools that we need in our analysis. We
aim to present all the results in the clearest possible way, without reporting some

cumbersome proofs, for which we refer to the literature. The chapter is divided
in four section: Firstly we introduce the most important result, the Peetre-Slovák
theorem. Then we prove some results about physical scaling and we present some
results of invariant theory and the Thomas replacement theorem.
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3.1 Peetre-Slovák theorem

3.1 Peetre-Slovák theorem

In this section we introduce the Peetre-Slovák theorem, an important result of dif-
ferential geometry which is also a key result for our analysis of renormalization of
Wick powers. We introduce only some basic concepts, namely differential operator
of (globally and locally) bounded order and compactly supported variation of sec-
tions, and then we state the Peetre-Slovák theorem. For further details the reader
can refer to the standard monographs [KMS93, Slo88].

Let E → M be a smooth bundle. We recall that the afore-mentioned r-jet
extension of sections acts as a map jr : Γ(E) 3 ψ 7→ jrψ ∈ Γ(JrE).

Definition 3.1. Let E → M and F → M be smooth bundles over the same base
M . Consider a map D : Γ(E)→ Γ(F ).

1. D is a differential operator of globally bounded order if there exists an
integer r ≥ 0, the order, and a smooth map

d : JrE → F ,

which leaves fixed the base of the transformed point (πF ◦ d = πJrE ) such
that for any section ψ ∈ Γ(E) we have an associated section of the form

D[ψ] = d ◦ jrψ .

2. D is a differential operator of locally bounded order if it satisfies a similar
condition locally. Namely, if for every y ∈ M and every ψ0 ∈ Γ(E), there
exists

• a neighborhood U ⊆M of y with compact closure;

• an integer r ≥ 0;

• an open neighborhood Zr ⊆ Jr(E) of jrψ0(U) projecting onto U ;

• a smooth function d : Zr → F which leaves fixed the base of the trans-
formed point

such that

D[ψ](x) = d ◦ jrψ(x)

for all x ∈ U and all ψ ∈ Γ(E) with jrψ(U) ⊆ Zr .
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A differential operator D transforms sections ψ to sections D[ψ] with the con-
straint that the value D[ψ](x) of the transformed section attained at a point
x ∈ M depends only on the value of the initial section ψ at the same point x
together with the values of its M -derivatives at x up to a certain order r, the jet
jrxψ evaluated at the said x. A natural question is how to characterize these type
of local transformations of sections among the whole class of maps Γ(E)→ Γ(F ).
An answer is provided by some results known as Peetre-Slovák’s theorem, of which
we state two versions (there is a third more complete version we do not consider
here [KMS93, Slo88]).

Theorem 3.1 (Linear Peetre’s Theorem). Let E →M and F →M be vector bundles
over the same base M and Ψ: Γ(E) → Γ(F ) a map such that Ψ[ψ](x) ∈ F depends
only on the germ of ψ at x for every ψ ∈ Γ(E) and x ∈ M . If Ψ is linear with
respect to the natural vector space structures of Γ(E) and Γ(F ), then Ψ is a differential
operator of locally bounded order.

In other words, if Ψ is linear, even if the values Ψ[ψ](x) potentially depends on
the germ of ψ around every considered x ∈ M , actually they only depend on
the jet of ψ at x as it is proper of differential operators. This noticeable result
for a function Ψ: E → F , can be made stronger keeping the requirement of
dependence on the germ but relaxing the linearity hypothesis (thus also dropping
the vector space structure of the fibers of E and F ) and replacing linearity for
a suitable regularity condition. This alternate condition demands regularity of Ψ

when it acts on certain smooth families of sections ψs parametrized by s ∈ Rn

we go to introduce with the help of an auxiliary bundle used to specify the joint-
smoothness of these families. Given a smooth bundle E → M and the standard
projection π : Rn × M 3 (s, x) 7→ x ∈ M , we define an associated smooth
bundle, called the pullback bundle, p : π∗E → Rn ×M whose canonical fiber
is isomorphic to that of E and the base is Rn ×M . As a set, π∗E = Rn × E
with canonical projection onto its base given by p : π∗E 3 (s, e) → (s, πE(e)) ∈
Rn ×M . The smooth differentiable structure of π∗E is defined accordingly. The
smooth projection q : π∗E 3 (s, e) 7→ e ∈ E restricts to fiber diffeomorphisms
q|p−1(s,x) : p−1(s, x)→ π−1

E (x). This way the following diagram is commutative,

π∗E E

Rn ×M M

..................................................................................................... ............
q

.......................................................................
.....
.......
.....

p

.......................................................................
.....
.......
.....

πE

.............................................................................. ............
π
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and can be used to abstractly define π∗E taking advantage of a certain universal
property of the triple (π∗E, p, q). It is now clear that a smooth section σ ∈ Γ(π∗E)

uniquely defines a Rn-parametrized jointly-smooth family of sections {ψs}s∈Rn ⊆
Γ(E), where ψs(x) := q ◦ σ(s, x) for (s, x) ∈ Rn ×M . This observation justifies
the following definition.

Definition 3.2. Given smooth bundle E →M and the associated pullback bundle
π∗E → Rn×M , σ ∈ Γ(π∗E) is called smooth n-dimensional family of sections
of E. If furthermore there exists a compact subset K ⊆ M such that σ(s, x) =

σ(s′, x) if x 6∈ K and s, s′ ∈ Rn, then σ is said to be a smooth compactly
supported n-dimensional variation.

We are in a position to state the relevant definition about the necessary regularity
required in Peetre-Slovák’s Theorem [KMS93, Slo88].

Definition 3.3. Given smooth bundles E →M and F →M , a map Ψ: Γ(E)→
Γ(F ) is regular if it maps smooth n-dimensional families of sections to smooth
n-dimensional families of sections for every natural n. Ψ is weakly regular
(cf. [KM16, Apx.A]) if it maps smooth compactly supported n-dimensional vari-
ations to smooth compactly supported n-dimensional variations for every natural
n.

Finally, having introduced all definitions that we need, we are now able to state the
main result of this section.

Theorem 3.2 (Peetre-Slovák’s Theorem). Let E → M and F → M be smooth
bundles over the same base M and Ψ: Γ(E)→ Γ(F ) a map such that, Ψ[ψ](x) ∈ F
depends only on the germ of ψ at x for every ψ ∈ Γ(E) and x ∈ M . If Ψ is weakly
regular, then it is a differential operator of locally bounded order.

3.2 Some technical results about physical scaling

In this section we generalize some results from [KM16, Sec.2.4] in order to consider
the case of a tensor valued function. Physical scaling will be used together with the
notion of homogeneous and almost homogeneous scaling degree. Since these notions
are quite abstract we can present them into a general inductive definition [KM16,
Def.2.3].
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Definition 3.4. Consider a linear representation ρ : R+ → GL(W ) of the multi-
plicative group R+ on a vector space W whose action is indicated by W 3 F 7→
Fλ := ρ(λ)F ∈W , for every λ ∈ R+.

(a) An element F ∈W is said to have homogeneous degree k ∈ R if

Fλ = λkF, for all λ ∈ R+.

(b) An element F ∈ W is said to have almost homogeneous degree k ∈ R
and order l ∈ N if l ≥ 0 is an integer such that (with the sum over j is
omitted when l = 0)

Fλ = λkF + λk
l∑

j=1

(
logj λ

)
Gj , for all λ ∈ R+,

and for some Gj ∈ W depending on F , which have respectively almost ho-
mogeneous degree k and order l−j. An element that is almost homogeneous
of order l = 0 is homogeneous by definition.

We are now in position to present several technical results about physical scaling.
We prove all results except the next general lemma proved in [KM16, Lem. 2.5].

Lemma 3.3. Referring to Definition 3.4, consider a pair of vector spaces W,W ′ en-
dowed with corresponding representations of R+. Concerning (b) below, assume also
that there exists a product W ×W ′ → V such that (i) V admits a representation of
R+ and (ii) the map W ×W ′ → V is equivariant: FλF ′λ = (FF ′)λ for F ∈ W ,
F ′ ∈W ′ and λ ∈ R+. The following facts hold.

(a) A linear combination of two elements F, F ′ ∈ W of almost homogeneous degree
k and order l is of almost homogeneous degree k and order l.

(b) A product of an element F ∈ W , of almost homogeneous degree k and order l,
and an element F ′ ∈ W ′, of almost homogeneous degree k′ and order l′, has
almost homogeneous degree k + k′ and order l + l′.

We recall that in Section 1.5 we have defined the bundle of background fields as

BM = S̊2T ∗M ⊕

 K⊕
j=1

T ∗⊗ljM

 (3.1)
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and that the physical scaling transformation on the sections of Γ(BM) is given by

BM 3 (p,g(p), tj(p)) 7−→
(
p, λ−2g(p), λsjtj(p)

)
∈ BM,

where λ ∈ R+ defines the scaling transformation. This (globally defined) represen-
tation of the multiplicative group R+ can be written in local coordinates

xa 7→ xa, gab 7→ λ−2gab, (tj)a1...alj
7→ λsj (tj)a1...alj

.

This transformation lifts to a transformation of the jet bundle JrBM . In local
coordinates

xa 7→ xa, gab,A 7→ λ−2gab,A, (tj)a1...alj ,A
7→ λsj (tj)a1...alj ,A

.

We stress that, with respect to Definition 3.4, we are interested in the case W =

C∞
(
JrBM,SkV ∗M

)
, as we will see in the next chapter. Moreover, since we

have to consider also smaller domains Zr ⊆ JrBM (with Zr not invariant under
physical scaling), it is more convenient to consider the infinitesimal version of these
transformations, which are effected by the following vector field1

e = −2gab,A∂
ab,A + sj(tj)a1...alj ,A

∂
a1...alj ,A,

in the sense that the induced action on tensor functions on JrBM satisfies

d

dλ

∣∣∣∣
λ=1

Fλ = LeF, (3.2)

where Le is the Lie derivative, F ∈ W and Fλ ∈ W is the transformation under
physical scaling of F . We stress that, since the physical scaling transformation is
globally defined, the vector field e is globally defined on JrBM .

Lemma 3.4. A smooth function F : JrBM → SkV ∗M that has almost homogeneous
degree k and order l when the action F → Fλ is the one induced by physical scaling
transformations, satisfies

(Le − k)l+1 F = 0.

1We use the following notation

∂ab,A :=
∂

∂gab,A
∂
a1...alj

,A
:=

∂

∂(tj)a1...alj ,A

and an analogous one for contravariant coordinates.
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Proof. If F is an almost homogeneous function of degree k and order l, using
equation (3.2), we obtain

(Le − k)F = G(l−1),

where G(l−1) is an almost homogeneous function of degree k and order l − 1. If
we repeat this operation l we obtain an homogeneous function G(0) of degree k:

(Le − k)l F = G(0).

Since, for all homogeneous function B, we have (Le − k)B = 0 the proof is
concluded.

Thanks to this result, we can give an infinitesimal definition of homogeneous
and almost homogeneous function. This definition is very useful since we have to
consider function defined on a subset Zr ⊆ JrBM which is not invariant under
physical scaling.

Definition 3.5. A smooth function F : Zr ⊆ JrBM → SkV ∗M , where Zr is
an open subset which may coincide with all of JrBM , is said to have almost
homogeneous degree k ∈ R and order l ∈ N (with l ≥ 0) under physical
scalings if it satisfies the identity

(Le − k)l+1 F = 0.

If l = 0, F is said to have homogeneous degree k ∈ R.

In the contravariant coordinates (xa, gab,A, (tj)
a1...alj ,A), defined in Section 1.5,

finite and infinitesimal physical scalings take the form

xa 7→ xa, g 7→ λ−2ng, gab,A 7→ λ2+2|A|gab,A,

(tj)
a1...alj ,A 7→ λsj+2|A|(tj)

a1...alj ,A

e = (2 + 2|A|) gab,A∂ab,A + (sj + 2|A|) (tj)
a1...alj ,A∂a1...alj ,A

(3.3)

where, as remarked previously, we use g as coordinate in place of one of the gab.
Since e is everywhere non zero its integral curves form a foliation of JrBM and
hence of Zr . Moreover, since Leg−

1
2n = g−

1
2n , g restricts to a global coordinate

on each orbit of e and then the level sets of g form another foliation of JrBM ,
transverse to the integral curves of e. For this reason it is convenient to study the
structure of almost homogeneous function in rescaled coordinates:

54



3.2 Some technical results about physical scaling

Integral curves of e

Level sets of g

(
xa, g, g−

1
n gab, g

1
n

+ 1
n
|A|gab,A, g

lj
n

+
sj
2n

+ 1
n
|A|(tj)

a1...alj ,A
)
.

Note that each of these functions but g is invariant under physical scaling. In our
notation, we mean that the coordinates g and g−

1
n gab are functionally independent

only up to the identity g = |det gab|.

Lemma 3.5. Suppose that Zr ⊆ JrBM is an open set equipped with any of the in-
troduced coordinate system in Section 1.5, and F : Zr → SkV ∗M is a smooth function
that has almost homogeneous degree k and order l with respect to physical scaling. Then
there exist uniquely defined homogeneous of degree 0 functions Bj : Zr → SkV ∗M ,
for j = 0, 1, . . . , l, such that

F = g−
k
2n

l∑
j=0

logj
(
g−

1
2n

)
Bj .

In particular, using rescaled contravariant coordinates, each Bj can be taken indepen-
dent of g and written in the form

Bj = Bj

(
xa, g−

1
n gab, g

1
n

+ 1
n
|A|gab,A, g

lj
n

+
sj
2n

+ 1
n
|A|(tj)

a1...alj ,A
)
.

Before proving this Lemma we need some technical results.

Lemma 3.6. In the hypotheses of Lemma 3.5, if we define, for l ≥ 0,

G := g
k
2nF, Bl :=

1

l!
LleG, Gl−1 = G−

(
logl g−

1
2n

)
Bl
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we have

(a) Ll+1
e G = 0, (b) LeBl = 0, (c) LleGl−1 = 0

Proof. Proof of (a). Since F is almost homogeneous of degree k and order l we
have

0 = (Le − k)l+1 F = (Le − k)l+1 g−
k
2nG = (Le − k)l

(
g−

k
2nLeG

)
= (Le − k)l−1 (Le − k)

(
g−

k
2nLeG

)
= · · · = g−

k
2nLl+1

e G

and we have concluded the proof of point (a).

Proof of (b). It follows immediately from point (a).

Proof of (c). First of all notice that Lle logl g−
1

2n = l!. So, by direct computation,

LleGl−1 = LleG− Lle
[
logl

(
g−

1
2n

)
Bl

]
= LleG− Ll−1

e

[(
Le logl g−

1
2n

)
Bl + logl

(
g−

1
2n

)
LeBl

]
= LleG− Ll−1

e

[(
Le logl g−

1
2n

)
Bl

]
...

= LleG−
(
Lle logl g−

1
2n

)
Bl

= LleG− l!Bl
= 0

and the proof is concluded.

Proof of Lemma 3.5. We can define Gl = g
k
2nF and proceed recursively using the

relation

Gl−1 = Gl −
(

logl g−
1

2n

)
Bl, Bl =

1

l!
LleGl

where Bl is invariant under physical scaling as proved in Lemma 3.6. Proceeding
to the next step we find

Gl−2 = Gl−1 −
(

logl−1 g−
1

2n

)
Bl−1

= Gl −
(

logl g−
1

2n

)
Bl −

(
logl−1 g−

1
2n

)
Bl−1
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where Bl−1 is again invariant under physical scaling since, using again the Lemma
3.6, we have LeBl−1 = 0. We can go on until l = 0 obtaining

G−1 = Gl −
l∑

j=0

logj
(
g−

1
2n

)
Bj .

where Bj is invariant under physical scaling for all j. But by definition G−1 =

G0−B0 = 0: Thus Gl<0 = Bl<0 = 0 and the procedure stops. Using the definition
of Gl we have

F = g−
k
2n

l∑
j=0

logj
(
g−

1
2n

)
Bj

where all Bj are invariant under physical scaling. In particular, if we use rescaled
coordinates (all invariant under physical scaling except g) we can take Bj indepen-
dent form g and so we have concluded the proof.

3.3 Invariant theory

The goal of this section is to state and prove the Equivariance Lemma 3.14, which
generalizes some results proven in [KM16, Sec.2.6]. This Lemma is used in the
proof of our main Theorem 4.3 to characterize all smooth GL(n)-equivariant
(resp. GL+(n)-equivariant, if we restrict ourselves to transformations that preserve
spacetime orientation) tensor-valued maps that depend on a Lorentzian metric and
any number of tensorial arguments.

The main difference with the previous weaker [KM16, Lem.2.8] is the allowed
dependence on other tensors besides the metric. As a result of this generalization,
the final characterization is a bit more complicated. In particular, while any such
equivariant map is still polynomial in the metric g, its inverse g−1 and possibly the
Levi-Civita tensor ε(g), it may depend on the additional tensor arguments z in two
different ways. First, being tensor-valued, any such equivariant may be polynomially
and covariantly constructed from g, g−1, ε(g) and the tensor components of z, but
the coefficients in these polynomial will be allowed to depend in an essentially
arbitrary smooth way on invariant scalar polynomials built out of g, g−1, ε(g) and
of the tensor components of z.

The precise statements and proofs of these results depend on some fundamen-
tal notions and facts from classical invariant theory of the GL(n) and O(1, n− 1)

(resp. GL+(n) and SO(1, n − 1) in the oriented case) groups. Invariant theory,
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which studies invariants of linear representations of groups and other related top-
ics) is a highly developed subject (we will only mention [Pro07] and [GW09] as an
introduction to the literature), but the majority of the literature, especially at the
introductory level, focuses on polynomial invariants on representations of complex
algebraic groups. Thus, it is not always easy to locate some (even classical) results
in the context of real Lie groups and smooth (rather than polynomial) invariants.
For the convenience of the reader, we summarize the relevant notions and results
below and, when possible, try to provide reasonably concise and elementary proofs
that are not easy to extract from the literature. For some of the more technical
proofs, which are not strictly relevant to develop this thesis, we refer the reader
directly to [KMM17].

In the following, we will use the one point space ∗ ∼= R0 with the trivial action
of GL(n) of any of its subgroup thereon.

Definition 3.6. Let X and Y be spaces carrying actions of the group G, resp.
ρ

(X)
u : X → X and ρ

(Y )
u : Y → Y for u ∈ G. A map f : X → Y is said to be

equivariant if it commutes with the action of G:

f ◦ ρ(X)
u = ρ(Y )

u ◦ f, for every u ∈ G.

In the special case Y = R carrying the trivial representation, an equivariant map
f : X → R is called a (scalar) invariant. We denote the space of all scalar
invariants by SX . When X is a vector space, we denote the subspace of (scalar)
polynomial invariants by PX ⊆ SX . The subspace PkX ⊂ PX consists of all
homogeneous polynomials of degree k.

With the above definitions, it is easy to establish a relation between scalar
invariants and equivariant maps for linear group representations. We recall that if
Y is a finite dimensional vector space with a linear representation ρ of the group
G, the contragradient (dual) representation ρ∗ of G on the dual space Y ∗ is defined
by ρ∗u = ρtu−1 for every u ∈ G, where ·t indicates the transposition operation.

Proposition 3.7. Let X and Y be finite dimensional vector spaces with linear rep-
resentations of the group G, and denote by Y ∗ the linear dual of Y equipped with
the contragradient representation of G. If f : X → Y is an equivariant map, then
f∗(x, y∗) := y∗ · f(x) is a scalar invariant f∗ : X×Y ∗ → R. If h : X×Y ∗ → R is
a scalar invariant, then ∂h

∂y∗ |y∗=0 : X → Y is an equivariant map. Moreover, for any

equivariant map f : X → Y , ∂f
∗

∂y∗ |y∗=0 = f .
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Proof. We denote with, for every u ∈ G, ρXu , ρYu , ρY
∗

u the representation of G on
X , Y , Y ∗ respectively (where ρY

∗
u is the dual representation). Then, if f : X → Y

is an equivariant map, we have

f∗
(
ρXu x, ρ

Y ∗
u y∗

)
= (ρY

∗
u y∗)·f

(
ρXu x

)
= (ρY

∗
u y∗)·ρYu f (x) = y∗ ·f(x) = f∗(x, y∗)

and f∗ is a scalar invariant. Moreover, if h : X × Y ∗ → R is a scalar invariant, i.e.

h
(
ρXu x, ρ

Y ∗
u y∗

)
= h (x, y∗)

then we have

ρY
∗

u

∂h

∂y∗

∣∣∣∣
y∗=0

(
ρXu x

)
=

∂h

∂y∗

∣∣∣∣
y∗=0

(x)

and using the definition of contragradient representation

∂h

∂y∗

∣∣∣∣
y∗=0

(
ρXu x

)
= ρYu

∂h

∂y∗

∣∣∣∣
y∗=0

(x)

which means that the function ∂h
∂y∗ |y∗=0 : X → Y is an equivariant map.

Definition 3.7. Let Mp
n be the space of p-multilinear forms on Rn and consider

the natural linear action of GL(n) thereon. Denote by Mp
n
∗ the dual of Mp

n , with
the contragradient GL(n) representation on it. Let T be a finite-dimensional real
vector space carrying a representation of GL(n).

1. If T , with respect to some linear embedding T ↪→ Mp
n ⊗M q

n
∗, is invariant

under the action of GL(n), and if (the representation carried by) T is the
restriction of the action of GL(n) on Mp

n ⊗M q
n
∗, then T is called tensor

representation of GL(n). We call (p, q) the (covariant, contravariant)
tensor rank of T and p+ q the total tensor rank of T .

2. If T is as in 1., but the action of GL(n) 3 u 7→ ρ(u) on T is given by
a tensor representation up to a multiplication by |detu|s, then T is called
tensor density representation of GL(n). We call s the tensor weight of T .

3. Denote by η ∈M2
n is the standard Minkowski metric (signature (−+ · · ·+)),

and by ε ∈Mn
n the standard antisymmetric Levi-Civita tensor. The orthog-

onal subgroup O(1, n− 1) ⊂ GL(n) (resp. SO(1, n− 1) ⊂ GL+(n)) is the
stabilizer subgroup of η under the action on M2

n . A tensor (density) representa-
tion of the orthogonal group is a restriction of a tensor density representation
of the general linear group.
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Remark 3.1. Clearly, since for any u ∈ O(1, n − 1), |detu| = 1 and (u−1)T =

ηuη−1 in the fundamental representation, the restriction of any two tensor density
representations of GL(n) to O(1, n − 1) or SO(1, n − 1) are linearly equivalent
as long as their total tensor rank is the same. So it is sufficient to talk only about
tensor (rather than tensor density) representations of these subgroups.

Remark 3.2. Below, some results about a group G and its representations require
as a hypothesis that G be reductive. There are several different flavors of reduc-
tive groups (cf. [Pro07, Sec.7.3]), not all of them being equivalent, with different
ones serving as natural hypotheses for different results. The general property that
they share is that each representation from a certain class is completely reducible
(i.e., no reducible but indecomposable representations may occur). For the sake
of uniformity, we specialize all results stated below to linearly reductive groups,
even if the original result could be stated under looser hypotheses. First, note that
a real (complex) algebraic group is a subgroup of GL(n;R) (GL(n;C)), for some
n, that is also a real (complex) algebraic subvariety (it is defined by polynomial
equations). A real (complex) linearly reductive group G is a real (complex) algebraic
group such that each real (complex) finite dimensional rational representation of
G is completely reducible. Here polynomial and rational mean with respect to the
matrix elements of the embedding of G into GL(n;R) (GL(n;C)). Obviously,
any real algebraic group gives rise to a complex algebraic group, its complexi-
fication, simply by extending the defining polynomial equations from GL(n;R)

to GL(n;C). A priori, the property of being reductive is different for a real al-
gebraic group and its complexification. Fortunately, we only need to appeal to
such hypotheses for the real orthogonal groups O(1, n− 1) := O(1, n− 1;R) and
SO(1, n−1) := SO(1, n−1;R), both of which are known to be linearly reductive,
and so are their complexifications O(1, n− 1;C) and SO(1, n− 1;C) (see [Pro07,
Sec.7.3.2], [RS90, Sec.5.2]). Unless explicitly mentioned, below we always refer to
real groups and their representations on real vector spaces.

Definition 3.8. Let Ln ⊂ M2
n denote the space of Lorentzian bilinear forms

(non-degenerate, with signature (−+ · · ·+)), and let it inherit the natural action
of GL(n) (resp. GL+(n)). Let Z =

⊕
i Zi and T =

⊕
j Tj be finite sums of

tensor density representations of GL(n) (resp. GL+(n)). We will refer to a smooth
equivariant map

τ : Ln × Z → T (3.4)

as a GL(n)-equivariant tensor density (resp. GL+(n)-equivariant tensor den-
sities). The space of GL(n)-equivariant tensor densities will be denoted by EZ,T .
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The space of GL+(n)-equivariant tensor densities will be denoted by ẼZ,T . In the
special case when T = R carries the trivial representation, we call SZ := EZ,R
(resp. S̃Z := ẼZ,R) the space of scalar invariants.

Definition 3.9. Let Z =
⊕

i Zi and T =
⊕

j Tj be finite sums of tensor represen-
tations of O(1, n − 1) (resp. SO(1, n − 1)). We will refer to a smooth equivariant
map

τ : Z → T (3.5)

as the space of O(1, n − 1)-isotropic tensors (resp. SO(1, n − 1)-isotropic ten-
sors). The space of O(1, n − 1)-isotropic tensors will be denoted by IZ,T . The
space of SO(1, n− 1)-isotropic tensors will be denoted by ĨZ,T .

Proposition 3.8. With the notation of Definitions 3.8 and 3.9, the space of equivariant
tensor densities EZ,T (resp. ẼZ,T ) is isomorphic to the space of isotropic tensors IZ,T
(resp. ĨZ,T ).

Proof. Let η ∈ Ln ∼= GL(n)/O(1, n − 1) ∼= GL+(n)/SO(1, n − 1), where the
orthogonal group is interpreted as the stabilizer subgroup of η. The equivariance
of τ : Ln × Z → T implies that τ(η, uz) = uτ(η, z), whenever u ∈ GL(n) and
u · η = η, meaning that τ(η,−) : Z → T is O(1, n − 1) (resp. SO(1, n − 1))
equivariant. On the other hand, since any Ln 3 g = ug · η for some ug ∈ GL(n),
the knowledge of τ(η,−) uniquely determines the equivariant extension τ(g, z) :=

ugτ(η, u−1
g z). Clearly, this correspondence is bijective.

For the fundamental representations of O(1, n − 1) and SO(1, n − 1), homo-
geneous polynomials, invariant linear functionals and isotropic tensors all have a
very explicit description. We give this description below in several different ver-
sions, related as follows. Any polynomial on a vector space that is invariant under
the action of a linear representation can be written as a sum of invariant homo-
geneous polynomials. Any invariant homogeneous polynomial of degree p is also
naturally a linear functional on a p-fold symmetric tensor product of the original
representation and vice-versa. By duality, the adjoint of a linear functional on a
p-fold tensor product representation defines an equivariant map from ∗ to the dual
of the p-fold tensor product representation.

Proposition 3.9. Let Mp
n and η be as in Definition 3.9, let V p = (Rn)p be the space

of (v1, . . . , vp) of p-copies of vectors in the fundamental representation of O(1, n− 1)

(or SO(1, n−1)), and let T =
⊕

j Tj be a finite sum of tensor representations of ranks
pj of O(1, n− 1) (or SO(1, n− 1)).
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1. Polynomials p(v1, · · · , vp) ∈ PV p invariant under the simultaneous action of
O(1, n − 1) on its arguments are generated by the contractions ηabvai v

b
j , with

i, j = 1, . . . , p.
Polynomials p(v1, · · · , vp) ∈ PV p invariant under the simultaneous action of
SO(1, n − 1) on its arguments are generated by the contractions ηabvai v

b
j and

εa1···apv
a1
i1
· · · vapip , with i, j, ik = 1, . . . , p.

2. The isotropic tensors Ipn are linear combinations of tensor products of copies of ηab
with arbitrarily permuted indices.
The isotropic tensors Ĩpn are spanned by tensor products of ηab and εa1···an with
arbitrarily permuted indices.

3. All O(1, n − 1)-invariant linear functionals on Mp
n are spanned by arbitrary

complete contractions of a tensor ta1···ap ∈M
p
n with copies of ηab, in an arbitrary

order of indices.
All SO(1, n− 1)-invariant linear functionals on Mp

n are spanned by arbitrary
complete contractions of a tensor ta1···ap ∈M

p
n with copies of ηab and εa1···an , in

an arbitrary order of indices.

4. All degree k homogeneous polynomial scalar O(1, n − 1)-invariants p(t) ∈ PkT
on T are spanned by complete contractions of tensor products

(tj1)a1
1···a1

pj1

· · · (tjk)ak1 ···akpjk
(3.6)

with copies of ηab, when t =
⊕

j tj .
All degree k homogeneous polynomial scalar SO(1, n−1)-invariants p(t) ∈ PkT
on T are spanned by complete contractions of tensor products (3.6) with copies of
ηab and εa1···an .

Proof. See [KMM17, App. C, Prop. C.3]

Before stating and proving our Equivariance Lemma 3.14, we need the following
fundamental results from invariant theory.

Proposition 3.10 (Hilbert [Pro07, Sec.14.1], [Mic08, §7.2]). Let G be a linearly reduc-
tive group with a rational representation on a finite dimensional vector space Z . Then
the algebra of polynomial scalar G-invariants on Z is finitely generated.

Definition 3.10. Let G be a linearly reductive group with a rational representation
on a finite dimensional vector space Z and let pi ∈ C∞(Z), i = 1, . . . , NZ , be a
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generating set for the algebra of polynomial scalar G-invariants (Proposition 3.10).
A smooth function σ ∈ C∞(Z) is said to be stably G-invariant if it is constant
along each joint level set of the invariant polynomials pi, i = 1, . . . NZ .

Clearly, any function that is stably G-invariant is also G-invariant, but the con-
verse is not always true. Also, it is easy to see that the definition is independent
of the choice of the generating polynomials pi. The stability in this definition is
meant with respect to complexification, since upon replacing G with its complexi-
fication the orbits become larger, while the invariant polynomials remain the same,
in a way that invariant polynomials do completely separate all closed orbits, which
erases the difference between G-invariant and stably G-invariant functions. In
Section 4.2.2, we discuss the action of O(1, n − 1) on the subspace of symmetric
forms in M2

n (in this case, the action coincides with that of SO(1, n− 1)). There,
we give an explicit list of a generating set of scalar invariant polynomials and also
discuss the structure of the orbits. That case also gives an explicit example of the
difference between G-invariant and stably G-invariant functions, because invariant
polynomials do not separate closed orbits on symmetric bilinear forms.

The following results seem to be close to the state of the art in characterizing
the smooth scalar invariants that apply to our cases of interest. Unfortunately,
we actually require a somewhat strengthened version of these results (though see
also [Sto08] for more recent work), which we state below in Proposition 3.13, but
whose proof we do not discuss (Remark 3.3).

Proposition 3.11 (Luna [Lun76], [Mic08, §7.14] [KMS93, §26.3]). Let G be a linearly
reductive group with a rational representation on a finite dimensional vector space Z
and let pi ∈ PZ , i = 1, . . . , NZ , be a generating set for the algebra of polynomial
scalar G-invariants (Proposition 3.10). Then a smooth stably G-invariant function
σ ∈ C∞(Z) can always be written as σ = Σ(p1, . . . , pNZ ) where Σ is a smooth
function of its arguments.

Though, as indicated above, the statement of Luna’s theorem can be found in
several references, as far as we know, a proof is available only in the original refer-
ence [Lun76], written in French. However, the more recent result on the structure
of invariants of finite Ck differentiability [Rum98] does use a proof that is logically
similar to Luna’s.

Proposition 3.12 (Richardson [Ric73, Thms.2.3,4.1]). Let G be a linearly reductive
group with a linearly reductive complexification and a rational representation on a fi-
nite dimensional vector space Z . Let pi ∈ C∞(Z), i = 1, . . . , NZ , be homogeneous
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polynomials generating the algebra of polynomial scalar G-invariants on Z (Proposi-
tion 3.10). Then, there exists a p0 = P (p1, . . . , pNZ ) polynomial in its arguments and,
with Z0 = p−1

0 (0), a partition Z \Z0 =
⋃
j Zj into finite union of disjoint connected

open subsets (Zj) where each Zj is stable under the action of G and, for each j and for
any two points z1, z2 ∈ Zj the stabilizer subgroups Gz1 , Gz2 ⊆ G are conjugate in G.

The following definition is rather technical, but is necessary to precisely capture
the difference between the behavior of smooth invariants and polynomial invariants
(or analytic, or even stable smooth invariants).

Definition 3.11. Let Z be a finite dimensional vector space, pi ∈ C∞(Z), i =

1, . . . , NZ , be a set of homogeneous polynomials on Z , and p0 = P (p1, . . . , pNZ )

a polynomial in its arguments. With Z0 = p−1
0 (0), consider a partition Z \ Z0 =⋃rZ

j=1 Zj into pairwise disjoint open sets Zj , for some rZ < ∞. We say that a
function σ ∈ C∞(Z) is locally a smooth function of the polynomials pi with
respect to the partition (Zj) if there exist Σj ∈ C∞(RNZ ), j = 1, . . . , rZ , such
that σ = Σj(p1, . . . , pNZ ) on Zj . We say that σ is a function of the pi (globally)
if we can choose Σj = Σi, for i, j = 1, . . . , rZ . We write σ = [Σ]Z(p1, . . . , pNZ ).

Proposition 3.13 (extended Luna-Richardson). Let G be a linearly reductive group
with a linearly reductive complexification and a rational representation on a finite
dimensional vector space Z . Also, let pi ∈ PZ , i = 1, . . . , NZ , be homogeneous
polynomials generating the algebra of polynomial scalar G-invariants on Z (Proposi-
tion 3.10). Then, there exists a p0 = P (p1, . . . , pNZ ) polynomial in its arguments
and, with Z0 = p−1

0 (0), a partition Z \ Z0 =
⋃rZ
j=1 Zj into pairwise disjoint open

G-invariant sets, such that any G-invariant function σ ∈ C∞(Z) is locally a smooth
function σ = [Σ]Z(p1, . . . , pNZ ) of the polynomials pi with respect to the partition
(Zj) (Definition 3.11).

Remark 3.3. The proof of Proposition 3.13 follows from combining the details of
the proofs of Propositions 3.11 and 3.12, which can be found in the original refer-
ences [Lun76] and [Ric73] respectively. Discussing a complete proof goes beyond
the scope of the current work and will be discussed elsewhere.

Combining the results presented so far allows us to finally formulate the main
Equivariance Lemma that is needed in the proof of our main Theorem 4.3.

Lemma 3.14 (Equivariance). Consider finite sums of tensor density representations
Z =

⊕
j Zj and T =

⊕
j Tj of GL(n) (resp. GL+(n)), and its natural action

on Ln. Recall also (Definitions 3.8, 3.9) the notion of invariant scalars (SZ , S̃Z ⊂
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C∞(Ln × Z)), equivariant tensors (EZ,T , ẼZ,T ⊂ C∞(Ln × Z;T )) and isotropic
tensors (IZ,T , ĨZ,T ⊂ C∞(Z;T )), as well as their characterizations (Propositions 3.7,
3.8 and 3.9)

1. There exist diagonalizable intertwiners sZ : Z → Z and sT : T → T such that
(u, z) 7→ |detu|−sZ (u · z) and (u, t) 7→ |detu|−sT (u · t), for u ∈ GL(n),
z ∈ Z and t ∈ T , define tensor representations ( i.e., with density weight zero)
on Z and T . Denoting these tensor representations by Z ′ and T ′, we have EZ,T ∼=
EZ′,T ′ (resp. EZ,T ∼= EZ′,T ′ ).

2. When Z carries a tensor representation and p ∈ SZ (resp. S̃Z ) such that p(g, z)
is polynomial in z, then p is a covariantly constructed scalar that is polynomial
in the tensor components of g, g−1 and z (resp. of g, g−1, ε(g) and z).

3. There is a finite number of invariants pi ∈ SZ (resp. S̃Z ), i = 1, . . . , NZ , such
that each pi(g, z) is a homogeneous polynomial in z and each σ ∈ SZ (resp. S̃Z )
is locally a smooth function σ = [Σ]Z(p1, . . . , pNZ ) of the invariant polynomials
pi, i = 1, . . . , NZ , as in Proposition 3.13.

4. There is a finite number of equivariant tensors qj ∈ EZ,T (resp. ĨZ,T ), j =

1, . . . , NZ,T , whose components are homogeneous polynomials on Z , such that

each τ ∈ IZ,T (resp. ẼZ,T ) is of the form τ =
∑NZ,T

j=1 σjqj with σj ∈ SZ
(resp. S̃Z ).

Proof. After we establish point 1, we can without loss of generality assume that Z
and T consist of direct sums of only tensor representations.

1. By hypotheses, both Z and T reduce to a sum of tensor density represen-
tations. This means that there exist diagonalizable intertwiners sZ : Z → Z and
sT : T → T such that (u, z) 7→ |detu|−sZ (u · z) and (u, t) 7→ |detu|−sT (u · t),
for u ∈ GL(n), z ∈ Z and t ∈ T , define tensor representations on Z and T . Let
us refer to the corresponding representations as Z ′ and T ′. If τ : Ln × Z → T is
an equivariant map with respect to the tensor density representations on Z and T ,
then

τ ′(g, z′) = |det g|−sT τ(g, |det g|sZ z′) (3.7)

defines an equivariant map τ ′ : Ln × Z ′ → T ′ with respect to the corresponding
tensor representations. Clearly, this operation can be reversed.

2. Recall that, in our notation, SZ ∼= EZ,R (resp. S̃Z ∼= ẼZ,R) where R car-
ries the trivial representation. Then, by Proposition 3.8, we have the isomorphism
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SZ = IZ,R (resp. S̃Z = ĨZ,R). Under this isomorphism, an invariant p(g, z) is
polynomial in z iff the corresponding pη(z) = p(g = η, z) is polynomial. More-
over, by the classification Proposition 3.9, any such polynomial pη(z) consists of a
complete contraction of products of the tensor components of z with copies of η
(and also ε in the oriented case). Recalling the details of the restriction of tensor
representations to the orthogonal subgroup (Remark 3.1), the invariant extension
p(g, z) of pη(z) clearly constitutes the same complete contraction of products of
the tensor components of z, but with every occurrence of η replaced by either gab
(when contracting two contravariant indices), gab (when contracting two covariant
indices) or ∂taba (when contracting a covariant and a contravariant index). Respec-
tively, a contraction with ε is replaced by a contraction with ε(g) with its indices
appropriately raised or lowered by g. Thus, we arrive at the desired conclusion
about the polynomiality of p(g, z) in g, g−1 (and resp. ε(g)).

3. Recall the isomorphism SZ ∼= IZ,R (resp. S̃Z ∼= ĨZ,R) from point 2. Then,
the desired conclusion follows from Proposition 3.13, noting that O(1, n − 1)

(resp. SO(1, n − 1)) is a linearly reductive Lie group (and so is its complexifica-
tion, cf. Remark 3.2) and any tensor representation (Definition 3.7) is obviously
rational. The finiteness of the number of generating invariant polynomials pi ul-
timately follows from Hilbert’s theorem (Proposition 3.10), which can obviously be
chosen to be homogeneous.

4. It follows from Proposition 3.7 that any equivariant τ ∈ EZ,T (resp. ẼZ,T ),
can be written as a gradient τ(g, z) = ∂

∂t∗σ(g, z, t∗)
∣∣
t∗=0

, for some invariant
σ ∈ SZ×T ∗ (resp. S̃Z×T ∗ ) that is linear in the t∗ arguments. On the other hand,
point 3 implies that

σ = [Σ]Z×T ∗(p1, . . . , pNZ , Q1, . . . , QNZ,T )

is locally a smooth function of the invariants polynomial on Z × T ∗, split into the
pi that do not depend on the T ∗, and the Qi that depend on the T ∗ only linearly.
By combining the chain rule with the notion of local dependence on polynomials
(Definition 3.11), we get

τ(g, z) =
∂

∂t∗
[Σ]Z(p1, . . . , pNZ , Q1, . . . QNZ )

∣∣∣∣
t∗=0

=

NZ,T∑
j=1

[
∂

∂Qj
Σ

]
(p1, . . . , pNZ , Q1, . . . , QNZ )

∣∣∣∣
Qj=0

∂Qj
∂t∗

∣∣∣∣
t∗=0
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and thus

τ(g, z) =

NZ,T∑
j=1

σj(g, z)qj(g, z),

with the obvious definitions for σj and qj . This concludes the proof.

3.4 Thomas replacement theorem

In this section we present a version of the Thomas Replacement Theorem 3.15,
which basically states that any non-linear differential operator that depends on a
Lorentzian (or pseudo-Riemannian) metric and a finite number of any kind of other
tensor fields while itself transforming as a tensor field under diffeomorphisms must
be expressible as a function of the covariant derivatives of the Riemann curvature
and the other tensor arguments. This is a rather old result, with versions of it
going back to the work of Thomas [Tho34] and in some form even to earlier
works of Christoffel [Chr69]. However, it has since then taken on a folk nature,
making it difficult to find precise references that state the result in a form most
convenient for our applications, give a complete proof, with modern notation and
terminology, that is concise and without an overabundance of formalism. If one
omits at least some of the above conditions, the result of Theorem 3.15 can be
found in [Sch54, §III.7], [KMS93, §§28.14,33.10], and [Slo92, Thm.3]. Thus, in this
section we present a modern version of Thomas Replacement Theorem, using our
notations. For the details about this technical result, and also for the proof, we
refer to [KMM17] (since the proof is not strictly relevant in the development of this
thesis).

Let BM →M be a natural bundle of the form

BM = S2T ∗M ⊕ T⊗k1M ⊕ · · · ⊕ T⊗kNM, (3.8)

where T⊗kM is the bundle of (k, 0)-tensors2. Consider the curvature coordinates
introduced in Section 1.5 on JrBM ,(

xa, gab,Γ
a
(bc,A), S̄

ab(cd,A), ta1···ak1
,A, . . . ta1···akN ,A

)
, (3.9)

where the multi-indices A = a1 · · · a|A| range through the sizes |A| = 1, . . . , r. All
coordinates, other than (xa,Γa(bc,A)), correspond to components of tensor densities
(Definition 3.7) transforming under GL(n), where GL(n) is interpreted as the

2It is possible to consider the bundle of (k, l)-tensors without changes in the result.
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quotient of Diffx(M), the subgroup of diffeomorphisms fixing the point x ∈ M ,
by the subgroup of diffeomorphisms with vanishing Jacobian at x.

Theorem 3.15. Let F : Z ′rx ⊆ JrBM → T ∗⊗lM be a smooth bundle map that is
defined on a Diff(M)-invariant domain Z ′rx and is Diff(M)-equivariant, given by

Fa1···al = Fa1···al(x, g,Γ, S, t) (3.10)

in adapted coordinates (3.9) on a chart Zrx ⊆ Z ′rx . That is, given a diffeomorphism
χ : M → M , we have χ∗ ◦ F = F ◦ prχ∗, where on the left χ∗ is the pullback
along χ acting on the tensor bundle T ∗⊗lM , while on the right prχ∗ is the r-jet
prolongation of the pullback along χ acting on the bundle BM of background fields.
Then, when restricted to a chart Zrx ⊆ Z ′rx covered by adapted coordinates (3.9), F must
be expressible as

Fa1···al = Ga1···al(g, S, t), (3.11)

where the functionG is equivariant with respect to the action ofGL(n) on its arguments
and the action of GL(n) on the fibers of T ∗⊗lM .

Proof. See [KMM17, App. B].

To conclude this section, we present an easy example to explain the idea exploited
in the proof of the previous theorem. In the hypothesis of Theorem 3.15, consider
a function Fa1···al(x

a, T ) which depends only on coordinates (xa) and on some
other tensors T (we do not write the indices for simplicity). If we consider the
translations subset of Diff(M), i.e. if we consider the class of diffeomorphism

xa 7→ xa + ta

for some vectors ta (such that xa+ta is still in the domain of the local chart). Since
the Jacobian matrix of these transformation is the identity matrix, the Diff(M)-
equivariance of F becomes

Fa1···al(x
a + ta, T ) = Fa1···al(x

a, T )

for every vector ta, which mean that the function F cannot depend on the coor-
dinates (xa). The same procedure, with a different choice of the relevant class of
diffeomorphisms, can be re-adapted to prove that coordinates Γ disappear from
the functional form of F .
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4
Wick powers of Boson

fields and their
renormalization

T his chapter is the real core of this thesis: We study the renormalization of
Wick powers of boson fields. Firstly we develop a very general model: We

prove a renormalization formula for a generic Boson field and then we show that
the coefficients in this formula are polynomials when we consider generic space-
time tensors as background fields. In the last section we present three physically
motivated models.
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4.1 Wick powers of quantum Boson fields

We are now in position to discuss the core of the present thesis: In this section
we study the renormalization Wick powers of a generic quantum Boson field. To
begin, we outline the general setting in which we study the problem.

General settings. Our general setting is the following:

1. We start with a bundle VM which is constructed as a direct sum of vector
bundles

VM =
N⊕
i=1

WiM. (4.1)

2. We consider a locally covariant quantum V -field

A(M,b) : D(VM)→W(M,b)

and we characterize it as a quantum Boson field in the following way. We
assume that the commutator of two V -fields [A(M,b)(f), A(M,b)(g)] is a c-
number, i.e.,

[A(M,b)(f), A(M,b)(g)] = C(M,b)(f ⊗ g)1, (4.2)

where C(M,b) ∈ D ′(VM × VM) is a distribution with some suitable prop-
erties (e.g., for Boson fields it vanishes for spacelike separated arguments).
Thus, Schwartz’ kernel theorem implies that a unique continuous linear map
∆(M,b) : D(VM)→ D ′(VM) exists such that [∆(M,b)(g)](f) = C(M,b)(f⊗
g). We require moreover that ∆(M,b)(g) is regular in the sense that

∆(M,b) : D(VM)→ E (V ∗M), (4.3)

where we used the fact that E (V ∗M) ⊂ D ′(VM). There are many ways to
implement this requirement in practical cases, for example our assumption
holds when the dynamics of the field A is ruled by any hyperbolic field equa-
tion in view of the theorem of propagation of singularities. More generally it
holds when some microlocal spectrum (cf. [KM15], [BF09, Ch.4]) hypothesis
on the wavefront set of n-point functions is assumed with respect to relevant
classes of states even in the absence of a field equation1.

1Using the language of Microlocal Analysis, (4.3) is valid when WF (C(M,b)) 63 (x, y, px, py)

with either px = 0 or py = 0 and this is guaranteed as soon as some standard microlocal spectrum
condition on C(M,b) is valid, in particular if C(M,b) is a bisolution of a hyperbolic field equation.
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If we use explicitly the decomposition (4.1) the map ∆(M,b) can be seen as a
direct sum of maps

∆(M,b) =
N⊕
l=1

N∑
j=1

∆lj
(M,b),

where ∆lj
(M,b) : D(WjM)→ E (W ∗l M).

3. Since we assumed a bundle constructed as in (4.1), the V -field A(M,b) can be
written as a N -tuple of Wi-fields

A(M,b) =
(
(A1)(M,b), . . . , (AN )(M,b)

)
.

We assume that each Wi-field (Ai)(M,b) scales homogeneously under physi-
cal scaling with degree dAi ∈ R, i.e., for every λ ∈ R+

(SλAi)(M,b)(f) = λdAi (Ai)(M,b)(f) , (M,b) ∈ BkgG , f ∈ D(WiM) .

We will say that the V -field A(M,b) scales homogeneously with degree

RN 3 dA = (dA1 , . . . dAN )

under physical scaling.

4. We then consider the Wick powers Ak of A. These quantum fields Ak have
the physical interpretation of products of k factors A evaluated at the same
point x. Formally, assuming a geometric background (M,b) has been fixed,

Akµ1...µk
(x) = (Aµ1 · · ·Aµk)(x) .

It is worth stressing that these quantum fields are not elements of the sub
unital ∗-algebra generated by 1 and by elements A(f) since these elements
are associated with kernels formally evaluated at different points of space-
time, i.e., they are linear combinations of objects Aµ1(x1) · · ·Aµk(xk). Thus
Wick powers need a specific definition which, as is well-known, involves some
renormalization procedure.
Finally, we stress that, using the decomposition introduced in Remark 1.1, the
Wick powers Ak can be written as a sum

Ak(f) =
∑
|P |=k

(
k

P

)
Ak
(
fp1

1 � · · · � f
pN
N

)
=:

∑
|P |=k

(
k

P

)
AP
(
fp1

1 , · · · , fpNN
)
, (4.4)
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4.1 Wick powers of quantum Boson fields

M

BM

K

b0

bs

Figure 4.1: We consider compactly supported variations of background fields.

where P = (p1, . . . , pN ) is a multi-index and
(
k
P

)
= k!∏N

i=1 pi!
. The last

equality is intended as a definition.

We assume an axiomatic viewpoint stating five axioms regarding Wick pow-
ers. These do not determine them, but determine the degrees of freedom due to
the different possible choice of renormalization procedures and classify the finite
renormalization counterterms. Regarding the 5th requirement in the definition
below, for clarity we recall the notion of a compactly supported variation from
Definition 3.2. If (M,b) is a background geometry, the jointly smooth function
B = bs(x) with s ∈ Rm and x ∈ M defines a smooth m-dimensional (m ≥ 0

integer) family of smooth compactly supported variations of b if bs(x) = b(x) for
x ∈M and bs(x) = bs′(x) for s, s′ ∈ Rn and x 6∈ K for a fixed compact K ⊆M
depending on the family. According to Proposition 2.2, we can identify each al-
gebra W(M,bs) with W(M,b) by means of the unital ∗-algebra isomorphism

τs : W(M,b)→W(M,bs) , (4.5)

which reduces to the identity on every spacetime (N,gs|N ) if N ∩J+
(M,g)(K) = ∅.

Definition 4.1 (Wick powers for general Boson fields). Consider a net of algebras
W on the category of background geometries BkgG (resp. BkgG+) and a locally-
covariant quantum V -field A (Definition 2.10) with A(M,b) : D(VM)→W(M,b)

for every (M,b) ∈ BkgG (resp. BkgG+).
A class of Wick powers {Ak} of A, for k = 0, 1, 2, . . . is a family of symmetric
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Chapter 4 · Wick powers of Boson fields and their renormalization

locally-covariant quantum SkV -fields, so that each k defines an assignment of
algebra-valued distribution

Ak(M,b) : D(SkVM)→W(M,b)

to every (M,b) ∈ BkgG (resp. BkgG+) respecting (2.8), satisfying the following
requirements.

1. Low powers. A0 = 1, the unit c-number field, A1 = A, the V -field.

2. Scaling. With respect to the decomposition (4.4), each component AP of
the Wick power Ak is almost homogeneous of degree 〈P,dA〉 = p1dA1 +

· · · pNdAN , with respect to the action of physical scalings Sλ in (2.10); that
is, there exists an integer l ≥ 0 and quantum k-tensor fields Bj such that

SλA
P = λ〈P,dA〉AP + λ〈P,dA〉

l∑
j=1

(
logj λ

)
Bj ,

where each Bj is itself almost homogeneous of degree 〈P,dA〉 and order
l − j. (Every degree is supposed to be independent from the choice of the
background geometry).

3. Kinematic completeness. For any (M,b), an element a ∈ W(M,b) satis-
fies

[a,A(M,b)(f)] = 0 for every f ∈ D(VM)

iff a = α1, with α ∈ C and 1 the unit element of the algebra.

4. Commutator expansion. Each Wick power Ak also satisfies the following
properties2: For every f ∈ D(SkVM), g ∈ D(VM)[

Ak(M,b)(f), A(M,b)(g)
]

= iAk−1
(M,b)(∆(M,b)(g) ·1 f), (4.6)

where ∆(M,b) : D(VM)→ E (V ∗M) is a given map.

5. Smoothness. If (M,b) ∈ BkgG (resp. BkgG+), we require that there exist
a class of states S(M,b) onW(M,b) such that if ω ∈ S(M,b), the expectation

values ω ◦ τ−1
s

(
Ak(M,bs)

(f)
)

(with f ∈ D(SkVM)) can be written as

ω ◦ τ−1
s

(
Ak(M,bs)

(f)
)

=

∫
M
ωµ1···µk(s, x)fµ1···µk(x) dg(x),

2We recall that there is a factor k hidden in the contraction product.
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4.1 Wick powers of quantum Boson fields

for some jointly smooth kernels

Rm ×M 3 (s, x) 7→ ωµ1···µk(s, x) ∈ R,

for every smooth m-parameter family of compactly supported variations bs
of b on M and τs : W(M,b) → W(M,bs) defined as in (4.5) and every
integer m ≥ 0.

Remark 4.1. While the first four axioms are standard requirements, we would like
to comment briefly the last axiom. We require that any Wick powers has smooth
expectation value both with respect to x, the coordinate on spacetime manifold,
and s, the parameter that labels the variations of b. The smoothness with respect
to x reflect the physical idea that a renormalized observable is smooth since we
have removed all singularities in the renormalization procedure. The joint smooth-
ness in (x, s) is a version of the parametrized microlocal spectrum condition that was
introduced in [KM16, Def.3.5(iv)], as a substitute for the old analyticity condition
of Hollands and Wald [HW01].

Remark 4.2. In components, i.e., with respect to equation (4.4), the commutator
expansion axiom, for j ∈ 1, . . . , N and a multi-index P , becomes[

Ap1
1 · · ·A

pN
N

(
fp1

1 , · · · , fpNN
)
, Aj(gj)

]
=

i
N∑
l=1

Ap1
1 · · ·A

pl−1
l · · ·ApNN

(
fp1

1 , · · · , (∆lj(gj) ·1 fpll ), · · · , fpNN
)
.

(4.7)

To show this, fixing a background geometry (M,b), consider gj ∈ (W ∗M)j and
f =

∑
j fl with fl ∈ WlM , where we have used the identification introduced in

Remark 1.1, i.e., gj = (0, . . . , gj , . . . , 0) and fj = (0, . . . , fj , . . . , 0). We recall that

Ap1
1 · · ·A

pN
N

(
fp1

1 , · · · , fpNN
)

:= Ak
(
fp1

1 � · · · � f
pN
N

)
,

then, using Proposition 1.3,[
Ap1

1 · · ·A
pN
N (fp1

1 , · · · , fpNN
)
, Aj(gj)

]
=

=
[
Ak
(
fp1

1 � · · · � f
pN
N

)
, A(gj)

]
= iAk−1

(
N∑
l=1

∆lj(gj) ·1
(
fp1

1 � · · · � f
pN
N

))

= i

N∑
l=1

Ak−1
(
fp1

1 � · · · �
(

∆lj(gj) ·1 fpll
)
� · · · � fpNN

)
,

which by definition is equal to (4.7).
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Chapter 4 · Wick powers of Boson fields and their renormalization

General renormalization formula for Wick products of Boson fields

We are now ready to prove a general renormalization formula for Wick powers of
Boson fields. If {Ãk}k=1,2,... and {Ak}k=1,2,... are two families of Wick powers of
the same quantum V -field A, our task is now to find a formula relating these two
pairs of Wick powers relying on the fact that both classes satisfy the above set of
general axioms. The following theorem is a generalization of [KM16, Lem.3.3]

Theorem 4.1. Let {Ãk}k=1,2,... and {Ak}k=1,2,... be two families of Wick powers
(Definition 4.1) of the same locally-covariant quantum V -field A (Definition 2.10) of
homogeneous scaling degree dA ∈ RN . Then there exists a family of smooth locally-
covariant c-number SkV -fields {Ck}k=1,2,..., where C1 = 0, such that, for every k =

1, 2, . . .,

Ãk(M,b)(f) = Ak(M,b)(f) +

k−1∑
l=0

Al(M,b) (Ck−l[M,b] ·k−l f) , (4.8)

where (M,b) ∈ BkgG (resp. BkgG+) and f ∈ D(SkV ∗M). In components equation
(4.8) turns out to be

ÃP(M,b)

(
fp1

1 , . . . fpNN
)

=

AP(M,b)

(
fp1

1 , . . . fpNN
)

+

k−1∑
l=0

∑
|Q|=l
qi≤pi

(
N∏
i=1

(
pi
qi

))
AQ(M,b)

((
CP−Qk−l [M,b] ·k−l fP−Q

)
f q11 , . . . , f qNN

)
(4.9)

where Q = (q1, . . . , qN ), P = (p1, . . . , pN ) are multi-indices and Ck =
∑
|Q|=k C

Q
k .

Finally, for every fixedM ∈Man,

(i) the map
Γ(BM) 3 b 7→ Ck[M,b] ∈ E (SkV ∗M)

is a differential operator of locally bounded order. Regarding components of the
coefficients CQk [M,b] ∈ E (

⊙N
i=1 S

qiW ∗i M);

(ii) each CQk [M,b] scales almost homogeneously of degree 〈Q,dA〉 under the physical
scaling transformation on b.
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4.1 Wick powers of quantum Boson fields

Proof. In the first part of the proof we write A(f) in place of A(M,b)(f) and we
adopt similar notations for the other involved fields, for the sake of notational
simplicity. For all k, the difference

Ãk(f)−Ak(f) = Dk(f), f ∈ D(SkVM)

defines, by construction, a symmetric locally-covariant quantum V ⊗k-field of order
k, in particular is self-adjoint. Using the commutator expansion (4.6) in Axiom 4,
it is easy to show that

[Dk(f), A(g)] = iDk−1 (∆(g) ·1 f) . (4.10)

Dk(f) is an element of the algebra W(M,b) and we go to prove that it can be
expanded as a linear combination of element of the form Al.
We proceed by induction in k. The thesis holds for k = 1 and C1 = 0 since,
using again the first axiom, D1(f) = 0 for all f ∈ D(V ∗M). Suppose now that
(4.8) holds for k − 1 with respect to some functions Ci : Γ(BM) → E (SiV ∗M),
i = 1, 2, . . . , k − 1, that satisfy all the desired properties. We intend to establish
the validity of the thesis also for i = k. Consider the Wick polynomial, for f ∈
D(SkVM),

Wk(f) :=
k−1∑
l=1

Al(Ck−l[M,b] ·k−l f).

We stress that the sections Ck−1[M,b], Ck−2[M,b], . . . , C1[M,b] appearing in
the sum, by hypotheses are smooth and have all the desired properties stated in
the theorem. Writing Ck−1 in place of Ck−1[M,b], we have:

[Dk(f)− Wk(f), A(g)] =

= iDk−1(∆(g) ·1 f)−
k−1∑
l=1

[
Al(Ck−l ·k−l f), A(g)

]
= i

k−2∑
l=0

Al (Ck−1−l ·k−1−l ∆(g) ·1 f)−
k−1∑
l=1

iAl−1(∆(g) ·1 Ck−l ·k−l f)

= i

k−1∑
l=1

Al−1 (Ck−l ·k−l ∆(g) ·1 f)−Al−1 (∆(g) ·1 Ck−l ·k−l f) = 0,

where we have used Proposition 1.2. Thus, we can conclude that [Dk(f) −
Wk(f), A(g)] = 0 for any test function g. Due to Axiom 3 we must therefore
have

Dk(f)−Wk(f) = Ck(f)1, (4.11)
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Chapter 4 · Wick powers of Boson fields and their renormalization

where Ck(f) is real and must define a locally-covariant c-number SkV -field since
it is difference of that type of fields. Using the smoothness axiom we have

ω (Dk(f)−Wk(f)) = Ck(f) ,

where the left-hand side is a distribution with smooth kernel. Therefore there
is a corresponding smooth section Ck[M,b] ∈ E (SkV ∗M) generating the right-
hand side. The covariance requirement immediately implies that the value of the
smooth section Ck[M,b] at any point x ∈M depends only on the germ around x
for every fixed manifold M , using smaller and smaller neighborhoods M ′ 3 x with
M ′ ⊆M viewed as background geometries on their own right when equipped with
the restriction of b to M ′ and using the inclusion map χ : M ′ 3 x′ 7→ x′ ∈ M as
embeddings. More strongly, if we consider any m-parameter family of compactly
supported smooth deformation B = bs(x) of b = b0, then the same argument
tells us that Ck[M,bs](x) is also jointly smooth in (s, x). Thus the map Ck[M, ·] is
weakly regular and Peetre-Slovák theorem implies that Γ(BM) 3 b 7→ Ck[M,b] ∈
E (SkV ∗M) is a differential operator of locally bounded order. Summing up, we
have proved that

Ãk(f)−Ak(f) = Dk(f) = Wk(f) + Ck(f)1 =

k−1∑
l=0

Al (Ck−l ·k−l f) ,

where all coefficients Cl[M,b] from l = 0 to l = k have all properties stated in
the thesis, but the scaling property which must be still established for Ck only.
Choosing as test function f = fp1

1 � · · · � f
pN
N and using relation (c) and (d) from

Proposition 1.3, we obtain immediately the formula (4.9).

Thanks to the scaling property of AP and ÃP , CQk is a linear combination of
products of terms with almost homogeneous degree that add up to 〈Q,dA〉. Thus,
by Lemma 3.3, CQk itself has almost homogeneous degree 〈Q,dA〉, and thus

SλC
Q
k 1 = λ〈Q,dA〉CQk 1 + λ〈Q,dA〉

l∑
j=1

(
logj λ

)
BQ
j ,

where Sλ is the action of physical scalings on fields here applied to a c-number
field, with BQ

j some other quantum fields of almost homogeneous degree 〈Q,dA〉.
Using again the kinematic completeness of A, we find that BQ

j = FQj 1 are also
c-number fields. Now, exploiting the definition of Sλ as in (2.10), we find that

80



4.2 Tensor fields and renormalization of Wick powers

SλC
Q
k 1 = CQk 1, and similarly for the FQj . Therefore, we find that for every

x ∈M ,

CQk [M,bλ](x) = λ〈Q,dA〉Ck[M,b](x) + λ〈Q,dA〉
l∑

j=1

(
logj λ

)
FQj [M,b](x),

is an almost homogeneous element of degree 〈Q,dA〉 of the vector space of maps
Γ(BM) → E (�Ni=1S

qiW ∗i M) under the action F [M,b] 7→ F [M,bλ]. The proof
is concluded.

We have finally obtained a general formula, (4.8), that classifies all finite renormal-
izations counter-terms of Wick powers of a generic locally-covariant Boson vector
field A, where the coefficients Ck[M,b] depend on the type of vector bundle VM
and the nature of background fields b of the field A. For this reason, in order to
study in detail these coefficients, we have to consider physically relevant models.

4.2 Tensor fields and renormalization of Wick powers

In this section we consider a class of physically relevant models and we study in
detail the renormalization counter-terms Ck introduced in the last section. We
choose as bundles

VM =
N⊕
i=1

T ∗⊗kiM, BM = S̊2T ∗M ⊕

 K⊕
j=1

T ∗⊗ljM


which means that we are considering as fields an N -tuple of tensor fields with
different tensor ranks

A = (A1, . . . , AN ) Ai : D(T⊗kiM) −→W(M,b) (4.12)

and we will say that A has tensor rank k = (k1, . . . , kN ). As background fields we
consider the metric g together with other (covariant) tensor fields tj of rank lj

(g, t1, . . . , tK) , g ∈ E (S̊2T ∗M), tj ∈ E (T ∗⊗ljM).

Regarding physical scaling, we assume the most general situation, i.e.,

Ai 7−→ λdAiAi (g, t1, . . . , tK) 7−→
(
λ−2g, λs1t1, . . . , λ

sKtK
)

λ ∈ R+

under physical scaling transformation, where sj ∈ R for j = 1, . . . ,K . We require
also another property of the background fields, encoded in the following
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Chapter 4 · Wick powers of Boson fields and their renormalization

Definition 4.2. A background field tj is called admissible if its rank lj and its
degree under physical scaling sj fulfill the following condition

lj + sj ≥ 0.

If the above relation is an equality, then we also call tj marginal. By convention,
let us order the background fields such that each tj for j = 1, . . . ,K0 ≤ K is
marginal and collectively denote them by z = (t1, . . . , tK0). To emphasize their
distinction from other background fields, we will also use the notation zj = tj .

Remark 4.3. We have chosen to all dynamical and background tensor fields to
be purely covariant, i.e., to be sections of powers of the cotangent bundle T ∗M .
This choice is motivated purely by convenience and the desire not to complicated
our notation even further. Our main results, Theorems 4.1 and 4.3, hold in easily
adapted forms also for contravariant or mixed tensors, as well as for tensors of
symmetric, antisymmetric, or any other symmetry type. One does have to note
that, in the definition of admissible and marginal background fields (Definition 4.2),
the tensor rank lj must be taken to be the number of covariant tensor indices minus
the number of contravariant indices of tj .

Lemma 4.2. Consider an admissible background field tj . Then all its rescaled coor-
dinates have positive or null scaling weight under coordinate scaling. In particular the
rescaled coordinates scale as

g
lj
n

+
sj
2n

+ 1
n
|A|(t̄j)

a1...alj ,A 7−→ µlj+sj+|A|g
lj
n

+
sj
2n

+ 1
n
|A|(t̄j)

a1...alj ,A

Proof. Under coordinate scaling we have the following rescaling

(t̄j)
a1...alj ,A 7→ µ−lj−|A|(t̄j)

a1...alj ,A g 7→ µ2ng.

Then the result follows immediately.

We are finally ready to state and prove our main result, which generalizes
Theorem 3.1 of [KM16].

Theorem 4.3. Let {Ãk}k=1,2,... and {Ãk}k=1,2,... be two families of Wick powers
(Definition 4.1) of the same locally-covariant quantum V -field A of homogeneous scaling
degree dA ∈ RN and tensor rank k (same as in Theorem 4.1), where the natural
vector bundle V =

⊕N
i=1Wi is the N -tuple introduced in (4.12). Assume also that

all background fields b, sections of the bundle BM (Definition 1.15), are admissible
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4.2 Tensor fields and renormalization of Wick powers

(Definition 4.2). Recall also from Theorem 4.1 the renormalization coefficients Ck,
k = 1, 2, . . . (with C1 = 0) appearing in (4.8) when comparing two families of Wick
powers of A. Finally, recall the notation Rabcd for the Riemann tensor, ∇a for the
Levi-Civita connection of gab, and εa1···an for the associated Levi-Civita tensor.

Then following facts hold:

(a) If Q = (q1, . . . , qN ) is a multi-index with |Q| = k such that 〈Q,dA + k〉 =∑N
i=1 qi(dAi + ki) < 0, then the corresponding component CQk of the renormal-

ization coefficient Ck vanishes.

(b) If A is locally covariant with respect to the categoryBkgG (Definition 1.16), then
for every background geometry (M,b), every x ∈ M and each k = 1, 2, . . .,
the renormalization coefficients Ck are given by differential operators of globally
bounded order

Ck[M,b](x) = Ck

(
gab(x), Rabcd(x), . . . ,∇e1 · · · ∇ehRabcd(x), . . .

. . . (tj)a1···alj (x), . . . ,∇e1 · · · ∇er(tj)a1···alj (x), . . .
)
,

where Ck(· · ·) is a tensor field covariantly constructed from its arguments, whose
structure is described in more detail below.

(c) If A is locally covariant with respect to the category BkgG+ (Definition 1.16),
then for every background geometry (M,b), every x ∈M and each k = 1, 2, . . .,
the renormalization coefficients Ck are given by differential operators of globally
bounded order

Ck[M,b](x) = Ck

(
gab(x), εa1···an , Rabcd(x), . . . ,∇e1 · · · ∇ehRabcd(x), . . .

. . . (tj)a1···alj (x), . . . ,∇e1 · · · ∇er(tj)a1···alj (x), . . .
)
,

where Ck(· · ·) is a tensor field covariantly constructed from its arguments, whose
structure is described in more detail below.

In both (b) and (c), by covariantly constructed we mean that the Ck are equivari-
ant functions of their tensorial arguments, at each x ∈M , in the sense of Lemma 3.14.
That is, each Ck(. . .) is a linear combination of finitely many covariantly constructed
tensors that are polynomial in gab, gab and the rest of the tensorial arguments, with
scalar coefficients that are smooth functions depending locally (Definition 3.11) on finitely
many polynomial scalars covariantly constructed from the tensor fields z, which consist
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Chapter 4 · Wick powers of Boson fields and their renormalization

of those background tensors tj that are marginal according to Definition 4.2. Moreover,
the functional form of the Ck(· · ·) does not depend on (M,b).

Finally, each Ck can be written as Ck =
∑
|Q|=k C

Q
k with respect to the multi-

plet decomposition V =
⊕N

i=1Wi, where Q is a multi-index and where each CQk is
homogeneous degree under physical scaling. More precisely, it scales as

CQk 7→ λ〈Q,dA〉CQk ,

when its arguments are rescaled according to

(tj)a1···alj 7→ λsj (tj)a1···alj , gab 7→ λ2gab ,

εa1···an 7→ λnεa1···an , Rabcd 7→ λ−2Rabcd

(the covariant derivatives are fixed under rescaling). These scaling properties fix the
upper bound on the differential and polynomial order of CQk .

Remark 4.4. Before going on to the proof, how it resembles and differs from the
proof of Theorem 3.1 of [KM16], which proved a similar result but only for scalar
dynamical and background fields. Generally speaking, the structure of the two
proofs are similar, which are broken down into roughly the same number of steps,
roughly in the same sequence. In both cases, we start out by knowing that the
renormalization coefficients Ck[M,b] are differential operators of locally bounded
order. Hence, each Ck is given by a smooth function defined on the jet bundle
JrBM of the background fields, at least when applied to sections b whose jets fall
into some open neighborhood in the jet bundle. The remaining steps gradually fix
the structure of the Ck more and more rigidly, while also expanding its domain
of definition on JrBM , ultimately extending it to the entire jet bundle and thus
showing that it is of globally bounded differential order. The structure of Ck is
first restricted by appealing to its properties under physical scaling, using results
from Section 3.2. One immediate difference in the new proof is the need to keep
track of different (both physical and coordinate) scaling weights for the different
components of the Ck. Next, the structure of the Ck is further restricted by its
local covariance, meaning that it commutes with diffeomorphisms. The results
from Section 3.4, provide the necessary tools for that, which essentially consist of
a strengthened version of the Thomas Replacement Theorem reported in [KM16,
Prop.2.6]. Finally, local covariance is once again used to fix the final form of the
Ck, by using the results of Section 3.3, which essentially strengthen the classifi-
cation of equivariant and isotropic tensors reported in [KM16, Prop.2.7, Lem.2.8].
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4.2 Tensor fields and renormalization of Wick powers

These supporting results needed to be strengthened, compared to the ones used
in [KM16], because of the transition from only scalar dynamical and background
fields to tensorial ones.

Proof. We already know that, from the Peetre-Slovák theorem (see Section 3.1), the
coefficients CQk define a differential operator

Γ(BM) 3 b 7→ CQk [M,b] ∈ E

(
N⊙
i=1

SqiT ∗⊗kiM

)
⊆ Γ

(
N⊙
i=1

SqiT ∗⊗kiM

)

of locally bounded order as established in Theorem 4.1. The rest of the proof is
broken down into five steps, which are described in more detail below.

1. Physical scaling. We now take advantage from almost homogeneity under
physical scaling of the components of the coefficients CQk to find their functional
form. Consider a Lorentzian manifold M endowed with a metric g0, as well as
a point y ∈ M and an open neighborhood of U of y with compact closure. We
also assume that g0 restricted to U is flat. Consider also a coordinate system
(xd) on U centered at y. These coordinates induce adapted local coordinates on
Zr ⊆ JrBM , which we write as(

xa, g, gab, g
ab,A, (t1)a1...al1 ,A, . . . , (tK)a1...alK ,A

)
.

Recall that the coordinates (g, gab) are functionally independent up to the identity
|det gab| = g. We already know that b 7→ CQk [M,b](x) is a differential operator
of locally bounded order, thus for g0, y and U (defined as above), there exists and
integer r ≥ 0 such that CQk is a differential operator on U of local order r when
acting on sections of BM close to b0 := (g0, tj = 0)3. In other words, there exists
a neighbourhood Zr1 ⊆ Zr ⊆ JrBM of jryb0, projecting onto U , and a function

FQk : Zr1 −→
(
�Ni=1S

qiT ∗⊗kiM
)

(
xa, g, gab,A, (tj)

a1...alj ,A
)
7−→ FQk

(
xa, g, gab,A, (tj)

a1...alj ,A
)
,

3We stress that the flatness assumption on g0 is not a strong requirement because the flat metric
is only the section with respect to which we consider variations. At the moment we can consider
only metrics in a neighbourhood of g0 but we will gradually enlarge it to the whole set of Lorentzian
metrics. A similar argument is also valid for all tj , which at the moment have to be close to the
sections tj = 0.
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such that
CQk [M,b](x) = FQk (jrb(x)) , (4.13)

for any section b ∈ Γ(BM |U ) such that jrb(U) ⊆ Zr1 . Without loss of generality,
but possibly shrinking the domain of Fk, we chose it such that

Zr1 ' U ×W r
1

(
g, gab,A, (tj)

a1...alj
,A
)

(xa)

.......................................................... ........
....

.............................................
.....
.......
.....

.

At the moment, we are very far from arguing that Zr1 = JrBM especially because,
using the Peetre-Slovák theorem we only know that the order of the differential op-
erator Ck is locally bounded and a finite global bound may not exist. During the
proof we will gradually enlarge the domain Zr1 to eventually cover all of JrBM
while maintaining the identity (4.13). The differential order r of CQk may increase
in the process, but will remain finite. These extensions will be labeled by an in-
creasing index j in Zrj . Presently j = 1.

Theorem 4.1 implies that CQk and hence the function FQk scales almost homoge-
neously with degree 〈Q,dA〉 under physical scaling of the background fields. Thus,
thanks to Lemma 3.4 and Lemma 3.5, there exists an integer l > 0 and function
Bj on Zr1 , for h = 0, . . . , l, such that

FQk = g−
〈Q,dA〉

2n

l∑
h=0

logh
(
g−

1
2n

)
Bh, (4.14)

where each Bh is invariant under the action of physical scaling. Therefore, adopt-
ing rescaled coordinates (which are invariant under physical scaling), Bh cannot
depend on g and can be written as

Bh = Bh

(
xd, g−

1
n gab, g

1
n

+ 1
n
|A|gab,A, . . . , g

lj
n

+
sj
2n

+ 1
n
|A|(tj)

a1...alj ,A, . . .

)
.

We now extend the domain Zr1 to a larger domain Zr2 ⊆ JrBM . We define Zr2 to
be the smallest domain invariant under physical scaling and containing Zr1 . That
is, we can write it as

Zr2 ' R+ × U ×W r
2

(
g−

1
n gab, g

1
n+ 1

n |A|gab,A, g
lj
n +

sj
2n+ 1

n |A|(tj)
a1...alj

,A
)

(g)
(
xd
)

............................................................... ........
....

.............................................
.....
.......
.....

.............................................
.....
.......
.....

.
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Up to now, we know that the identity (4.13) holds only when the germ of b at x ∈M
projects onto one of the jets in the domain Zr1 ∈ JrBM , but the function FQk , via
formula (4.14), has a unique extension to Zr2 that scales almost homogeneously
and agrees with FQk on Zr1 . The identity (4.13) must remain valid also for germs
at x that projects onto Zr2 since any element of b′ ∈ Zr2 , using the action of
physical scaling, can be brought back to b ∈ Zr1 , i.e., b′ = bλ for some λ > 0.
Since CQk [M,b] scales almost homogeneously and is already defined on Zr2 , we
conclude that it must coincide there with the unique extension of FQk .

2. Diffeomorphism covariance. We consider now the covariance properties of
the coefficient CQk under diffeomorphisms. In the previous paragraph, we fixed a
point y ∈ M and a fixed background geometry b0. But, since that choice was
arbitrary, all the same results are also valid for any other choice of y′ ∈ M , open
neighborhood U ′ ⊆M of y′ and background geometry b′0, so long as b′0 = χ∗b0

on U ′, where

χ : M →M is some diffeomorphism such that χ(y′) = y.

The Peetre-Slovák theorem gives us a differential operator of order r′ on a domain
Z ′r
′

2 ⊆ Jr
′
BM . The diffeomorphism covariance of CQk then implies that the order

may be chosen the same, r = r′.
We now extend the domain Zr2 to a larger domain Zr3 ⊆ JrBM . We define Zr3
to be the smallest domain invariant under Diff(M) and containing Zr2 . Since the
coefficient CQk is Diff(M)-covariant, the function FQk is itself Diff(M)-covariant
on Zr3 . The case of orientation preserving diffeomorphisms Diff+(M) is strictly
analogous.
Now we can use Thomas replacement theorem (Theorem 3.15) in order to remove
the dependence of FQk on some of the coordinates on Zr3 . We apply Theorem 3.15
separately to the various functions Bh appearing in (4.14), obtaining

g−
〈Q,dA〉

2n Bh

(
xa, g−

1
n gab, g

1
n

+ 1
n
|A|gab,A, g

lj
n

+
sj
2n

+ 1
n
|A|(tj)

a1...alj ,A
)

= g−
〈Q,dA〉

2n Gh

(
g−

1
n gab, g

3
n

+ 1
n
|A|S̄ab(cd,A), g

lj
n

+
sj
2n

+ 1
n
|A|(t̄j)

a1...alj ,A
)
,

where each g−
〈Q,dA〉

2n Gj is equivariant under the action of GL(n) (respectively
GL+(n)). In particular, Gj does not depend on the coordinates (xa) and (Γa(bc,A)).
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Since Zr3 is Diff(M)U -invariant it has the structure:

Zr3 ' U × Ln × Rγ ×W r
3

(xa) (gab)
(

Γa
(bc,A)

) (
g

3
n+ 1

n |A|S̄ab(cd,A), g
lj
n +

sj
2n+ 1

n |A|(t̄j)
a1...alj

,A
)

..........................................................
.....
.......
.....

..........................................................
.....
.......
.....

......................................................
.....
.......
.....

.......................................................................... ........
....

.

The second factor describes the metrics at a fixed point p ∈ U and coincides
with the full set Ln of non-degenerate bilinear forms on Rn with Lorentzian signa-
ture. This is because the fiber action of the subgroup of Diff(M) which leaves
p fixed is the action of the whole GL(n) which, in turn, acts transitively on
Ln. W r

3 contains at least the point with all components g
3
n

+ 1
n
|A|S̄ab(cd,A) and

g
lj
n

+
sj
2n

+ 1
n
|A|(t̄j)

a1...alj ,A vanishing (in particular because g0 is flat on U ). W r
3 is

invariant under the said natural action of the whole GL(n). The same argument
applies to Diff+(M) and GL(n)+.

3. Covariance under coordinate scaling. Now we use the equivariance of the
function FQk under the action of a subgroup of GL(n) (respectively GL+(n)),
the subgroup of coordinate scaling.4 We can rewrite the set of coordinates over
Ln ×W r

3 (the remaining coordinates xa and Γa(bc,A) of Zr3 do not appear in the

explicit form of FQk as already established) as(
g, g−

1
n gab, z

j , qi
)

Here the coordinates are grouped together along with the following idea: The coor-
dinates (g−

1
n gab, z

j) have weight 0 under coordinate scaling (i.e., zj , j = 1, . . . ,mz ,
are precisely the rescaled components of those undifferentiated coordinates of the
background fields ti satisfying li + si = 0, or precisely the components of the
marginal background fields z, Definition 4.2), g transforms as g → µ2ng and all
remaining coordinates, here denoted by qi, i = 1, . . . ,mq , have positive weight
(di > 0) under coordinate scalings. There are no coordinates with negative weight
(Lemma 4.2).
Let us recall that FQk is a (

⊙N
i=1 S

qiT ∗⊗kiM)-valued function and that the vector
k = (k1, . . . , kN ) is constructed with the tensor ranks ki. Then the general dif-
feomorphism equivariance of the function FQk specialized to coordinate scalings

4This part of the proof is analogous to part 4. of the proof of Theorem 3.1 in [KM16]. Unfortu-
nately, that earlier argument contained an error when eliminating logarithmic terms from Fk . This
error has been corrected in the current argument, which should also be considered retroactively
inserted into the proof given in [KM16].
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(centered at some base point (xa), which could be arbitrary within the domain of
definition of FQk ), implies the identity

FQk

(
g, g−

1
n gab, z

j , qi
)

=

= µ−〈Q,k〉FQk

(
µ2ng, g−

1
n gab, z

j , µdiqi
)

= g−
〈Q,dA〉

2n

l−1∑
h=0

µ−〈Q,dA+k〉 logh
(
µ−1g−

1
2n

)
Gh

(
g−

1
n gab, z

j , µdiqi
)

(4.15)

for any point in Zr3 and any µ > 0. As we mentioned in the previous part, the
limit (g−

1
n gab, z

j , 0) of the argument of the functions Gh as µ→ 0, belongs to the
domain of the function Gh, which is smooth there. Therefore we have the Taylor
expansions

Gh

(
g−

1
n gab, z

j , qi
)

=
∑
|I|<Nq

Gh,I

(
g−

1
n gab, z

j
)
qI +O

(
qNq
)
,

around (g, g−
1
n gab, z

j , 0), where I = i1 · · · imq is a multi-index with respect to the
coordinates (qi), the coefficients Gh,I are smooth, and Nq > 0 is an integer such
that

〈d, I〉 =

mq∑
j=1

djij > 〈Q,dA + k〉 for all I such that |I| ≥ Nq .

This choice guarantees that each error term O(qNq) is mapped to O(µ〈Q,dA+k〉+1)

under the substitution qi 7→ µdiqi as µ→ 0. Thus we obtain

FQk

(
g, g−

1
n gab, z

j , qi
)

=

= g−
〈Q,dA〉

2n

l−1∑
h=0

µ−〈Q,dA+k〉 logh
(
µ−1g−

1
2n

)
Gh

(
g−

1
n gab, z

j , µdiqi
)

= g−
〈Q,dA〉

2n

l−1∑
h=0

∑
|I|<Nq

µ〈d,I〉−〈Q,dA+k〉 logh
(
µ−1g−

1
2n

)
Gh,I

(
g−

1
n gab, z

j
)
qI

+ µ−〈Q,dA+k〉O
(
µ〈Q,dA+k〉+1

)
.

(4.16)

Now, if we take the limit µ → 0, the left-hand side of (4.16) does not change,
being independent of µ, and in particular remains bounded. Hence, for equality
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to hold, any term on the right-hand side of (4.16) that independently goes to ∞ as
µ → 0 must vanish. That is, the coefficient of each µp logh µ term with p < 0 or
p = 0, h > 0 must be zero. Actually taking the µ→ 0 limit on the right-hand side
of (4.16) we obtain the identity

FQk

(
g, g−

1
n gab, z

j , qi
)

=
∑

〈d,I〉=〈Q,dA+k〉

g−
〈Q,dA〉

2n G0,I

(
g−

1
n gab, z

j
)
qI . (4.17)

All terms 〈d, I〉 > 〈Q,dA + k〉 were set to zero by the limit, which by consistency
means that they had zero coefficients to being with. Notice that this identity
implies that the function FQk scales homogeneously with degree 〈Q,dA〉 (that is, it
has almost homogeneous order zero). This sum could conceivably be empty, if it
happens that 〈Q,dA + k〉 < 0 (recall that di > 0), which can only happen if some
of the combinations dAi + ki < 0. In that case, FQk = 0 and the corresponding
component CQk of the renormalization coefficient Ck vanishes, which proves part
(a) of the theorem.

We can now enlarge again the domain of the function FQk along the fibers,
where the identity (4.13) holds, from Zr3 to Zr4 ⊆ JrBM . The new domain is
isomorphic to

Zr4 ' U × Ln × W4 × Rγ ×Rmq

(xa)
(
g−

1
n gab

)(
zj
) (

Γa
(bc,A)

) (
g

3
n+ 1

n |A|S̄ab(cd,A), g
lj
n +

sj
2n+ 1

n |A|(t̄j)
a1...alj

,A
)

︸ ︷︷ ︸
lj+sj+2|A|>0

..........................................................
.....
.......
.....

......................................................
.....
.......
.....

..........................................................
.....
.......
.....

......................................................
.....
.......
.....

................................................................................. ........
....

The function FQk extends uniquely to Zr4 as a covariant function under coordinate
scaling. Essentially we have enlarged the factor W r

3 to W4 ×Rmq . We can do that
because all the (qi) coordinates have positive weight under coordinate scaling, so
that their domain can be extended to all of Rmq . The range of the (zj) coordinates
is limited to W4 ⊂ Rmz because these coordinates are invariant under coordinate
scaling. Note that the dependence of FQk on the Rδ factor in Zr4 is polynomial and
remember that FQk does not depend on the factor U × Rγ (see previous part).

4. Global definition. It is now the moment to expand the domain Zr4 to all
JrBM , for an appropriate choice of r. In (4.17), a generic qI is of the form∏

|A|,|B|

(
S̄ab(cd,A)

)pS,|A| (
(t̄j)

a1···alj ,B
)pj,|B|

,
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where all the p-exponents are non-negative integer numbers and pj,0 = 0 if lj +

sj = 0. The constraint 〈d, I〉 = 〈Q,dA + k〉 in (4.17) can be written explicitly as

〈Q,dA + k〉 =
∑
|A|,|B|

(2 + |A|)pS,|A| + (sj + lj + |B|)pj,|B|.

By the admissibility of the background fields (Definition 4.2), we have sj + lj ≥
0. Hence, the coefficients of the p-exponents are non-negative and grow linearly
with |A| and |B. Thus, there exists a bound on the maximum values of |A|, |B|
with non-zero p-exponents. Let rk be the maximum number of derivatives of the
curvature or background tensors for which the p-exponents are non-zero. Note
that rk depends only on the structure of the bundle BM and k, and not on the
chosen domain Zr4 . Then we can set r = rk in all the previous parts of the proof,
i.e., we end up with a domain

Zrk4 ⊆ J
rkBM, Zrk4 = U × Ln ×W4 × Rδ.

We can now extend one last time the domain Zrk4 keeping the order of Fk glob-
ally bounded. The factor Ln is already maximal since it contains all Lorentzian
metrics. At the beginning of the proof we chose as the initial domain Zr1 a neigh-
bourhood of the point jry(g0, tj = 0) ∈ JrBM . Recall that we later split the
coordinates on JrBM into two groups, the q-coordinates, identified by positive
scaling weights (sj + lj > 0), and the z-coordinates, identified by zero scaling
weights (sj + lj = 0), the components of the marginal tensor fields z (Defini-
tion 4.2). What was essential for the subsequent arguments was that, for each
allowed value of the z-coordinates, (z, q = 0) was also contained in Zr1 , because
q ◦ jry(g0, tj = 0) = 0. However, the condition z(y) = z ◦ jry(g0, tj = 0) = 0 did
not play a significant role. Thus, the entire proof would work without any changes
had we chosen different background fields tj such that still q ◦ jry(g0, tj) = 0, but
z(y) = z ◦ jry(g0, tj) assuming an arbitrary value. Then, having a priori fixed
r = rk, the functions Fk on different Zr1 domains would necessarily agree on
overlaps (since they are merely local expressions of the globally defined differential
operator Ck) and the union of all the Zr1 domains would cover arbitrary values of
the z-coordinates. Thus, having already performed the extension of the domain
into the q-coordinates, we can set W 4 = Rmq in Zr4 . In other words we can set

Zr4 = Zrk4 = π−1 (U) (4.18)

for some open neighborhood U ⊂M of y ∈M , where π : JrkBM →M .
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The union of all those open sets U , when y varies in M , completely covers
M . Thus, the corresponding domains Zr4 completely cover JrkBM . Thus, the
globally defined differential operator Ck is of globally bounded order at most rk
and its components CQk : JrkBM →

⊗N
i=1 S

qiT ∗⊗kiM have the form (4.13) when
restricted to a domain of the form Zrk4 with the functions FQk satisfying (4.17).

5. GL(n)-equivariance. In this last point, we intend to give a precise form of the
function FQk exploiting their GL(n)-equivariance. From the previous discussion
we know that the function FQk satisfying (4.13), is defined on the domain Zrk4 '
U × Rγ × Z4, but it depends only on the coordinates corresponding to the factor
Z4 = Ln × Rmz × Rmq . We also know the following:

1. the dependence is polynomial with respect to the standard coordinates on
the Rmq factor;

2. the coefficients g−
〈Q,dA〉

2n G0,I(g
− 1
n gab, z

j) of these polynomials depend only
on Ln × Rmz .

Each factor in Z4 carries a tensor density representation of GL(n) (resp. GL+(n))
arising from the action of the subgroup of Diff(M) (resp. Diff+(M)) which leaves
fixed a given point of U . More precisely, if u ∈ GL(n):

1. on Ln the action is given by (u,g) 7→ |detu|−
2
n u⊗2g;

2. on Rmz , which corresponds to the rescaled components g
lj
n

+
sj
2n (t̄j)

a1···alj ,
j = 1, . . . ,K0, of the marginal background tensor fields z = (t1, . . . tK0)

(Definition 4.2), the action is given by (u, tj) 7→ |detu|
lj
n

+
sj
2n u⊗ljtj ;

3. on Rmq , which corresponds to the components g
lj
n

+
sj
2n

+ 1
n
|A|(t̄j)

a1···alj ,A, for
lj + sj + 2|A| > 0, and g

3
n

+ 1
n
|A|S̄ab(cd,A), for |A| ≥ 0, also decomposes into

a direct sum of corresponding tensor density representations

Rmq =
⊕
α

Rα,

where Rα carries a tensor density representation of rank nα;

4. the fibers of the bundle where the functions FQk : Z4 →
⊗N

i=1 S
qiT ∗⊗kiM

take their values also carry a representation of GL(n) (resp. GL+(n)), which
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obviously decomposes into a direct sum of tensor density representations,
which we will denote by

T =
⊕
β

Tβ,

where Tβ has rank nβ .

Note also that, the homogeneous polynomials Pδ of degree δ on Rmq carry the
representation

(uP ) (ρ) := P
(
u−1ρ

)
, for any u ∈ GL(n), P ∈ Pδ, ρ ∈ Rmq .

This representation on polynomials is made up of direct sums of symmetric tensor
powers of Rmq and hence itself also decomposes into a direct sum of tensor density
representations

Pδ =
⊕
γ

Sδγ ,

where Sδγ has rank nδγ .

From the above remarks, it is easy to see that the equivariance of the functions
FQk (see Proposition 3.7 for the relation between invariant and equivariant func-
tions) and the linear independence of the monomials qI on Rmq implies that the
polynomial coefficients in (4.17) are themselves smooth equivariant maps

G0 : Ln × Rmz → T ⊗ P〈Q,k〉 =
⊕
β,γ

Tβ ⊗ S〈Q,k〉γ . (4.19)

Indeed, in the third part of the proof we have reduced the function FQk in the

form (4.17): The coefficients G0, evaluated at (g−
1
n gab, z

j) ∈ Ln × Rmz , give a
polynomial which is then evaluated at q ∈ Rmq . But, in view of the above remarks,
we have

g−
kdA
2n G0

(
g−

1
n gab, z

j
)

=
∑
β,γ

G̃β,γ(gab, z
j),

G̃β,γ : Ln × Rmz → Tβ ⊗ S〈Q,k〉γ

and thus we can write

FQk

(
g−

1
n gab, z

j , qi
)

=
∑
β,γ

G̃β,γ(gab, z
j)(qi).
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Since the function FQk is equivariant under the action of GL(n) the maps G̃β,γ
must be equivariant. Indeed, for any (gab, z

j , qi) ∈ Z4 we have

FQk (ugab, uz
j , uqi) =

∑
β,γ

G̃β,γ(ugab, uz
j)(uqi)

=
∑
β,γ

(
u⊗nβ ⊗ u⊗n

〈Q,k〉
γ

)
G̃β,γ(gab, z

j)(uqi)

=
∑
β,γ

u⊗nβ G̃β,γ(gab, z
j)(u−1uqi)

=

⊕
β

u⊗nβ

FQk (gab, z
j , qi)

= u⊗〈Q,k〉FQk (gab, z
j , qi)

where we have denoted symbolically with u the action of GL(n) on the arguments
of FQk .

Now, since the components G̃β,γ are equivariant tensor densities (Definition 3.8),
we can invoke the classification Lemma 3.14 to conclude that each G̃β,γ is, up to
an overall power of g = |det gab|, a tensor of appropriate rank built covariantly out
of gab, gab, εa1···an(g) and the tensor components of z, t

a1···alj
j , for j = 1, . . . ,K0.

To be more precise, each G̃β,γ is a finite linear combination of Tβ ⊗ S
〈Q,k〉
γ terms,

each built from a tensor product of finitely many aforementioned ingredients (pos-
sibly repeating) followed by any number of index contractions or permutations,
with coefficients being smooth functions of all possible polynomial scalar invariants
covariantly constructed from the same ingredients,

G̃β,γ = gαβ,γ
∑
m

cmβ,γ(gab, ε
a1···an(g), . . . , t

a1···alj
j , . . .)

Pmβ,γ(gab, ε
a1···an(g), . . . , t

a1···alj
j , . . .) .

Lemma 3.14 also tells us that, in each case, there are only finitely many algebraically
independent polynomial scalar invariants that the coefficients cmβ,γ can depend on
and there are only finitely many tensor valued polynomials Pmβ,γ that are linearly
independent up to a redefinition of the cmβ,γ coefficients. The dependence on ε(g)

is allowed only in the GL(n)+ case. Also, note that for the contractions G0,Iq
I

to remain equivariant, all the explicit appearances of powers of g = |det gab| must
cancel.
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Finally, combining the above conclusions with (4.17), we can say that

FQk = FQk

(
gab, gab, ε

a1···an(g), . . . , (zj)a1···alj , . . . ; g
ab,

εa1···an(g), . . . , Sab(cd,A), . . . , (tj)a1···alj ,A, . . .
)
, (4.20)

where the dependence on the second group of arguments is purely polynomial,
while the dependence on first group of arguments is smooth with respect to finite
set of algebraically independent scalar polynomial invariants that can be formed
from them by tensor products and contractions. Recall that we have used the
notation zj = tj , for j = 1, . . . ,K0, that is for those background tensor fields
such that are marginal, satisfying sj + lj = 0. This completes the proof.

After the proof of this very general model, we can move on to some more
physically relevant models.

4.2.1 Vector Klein-Gordon field

We now consider a specific quantum vector field in order to investigate in detail
the form of the coefficients Ck in (4.8): We focus on the vector Klein-Gordon
field. The classical configurations of the vector KG field over an oriented globally
hyperbolic spacetime (M,g) are smooth 1-forms, i.e., sections of the cotangent
bundle T ∗M , namely A ∈ E (T ∗M). The vector KG equation, where we include
also a coupling term with the curvature R, reads

−�gA+m2A+ ξRA = 0 (4.21)

where m2 and ξ are here smooth real-valued functions on M (they can be constant
functions, but in general we admit that m2 and ξ can vary on the spacetime). When
passing to the quantum formulation, the locally-covariant quantum vector KG
field, indicated by the same symbol A, is defined as in Definition 2.10 with k = 1

and VM = T ∗M . Moreover we have the following requirements.

(a) The net of local quantum observables W including the vector KG field is as
in Definition 2.8 is fixed according to equation (4.21), which suggests that the
natural bundle of background fields is the one completely defined by

BM = S̊2T ∗M ⊕ R⊕ R, (4.22)
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so that the sections M → BM are triples b = (g,m2, ξ). (The metric g

affects the theory because it enters �g, R (also derived) and even the Levi-
Civita tensor ε in case one deals with the category of background geometries
BkgG+ instead of BkgG).

(b) The natural vector bundle is completely fixed by requiring

VM = T ∗M

and the morphism Vχ, whose associated pushforward on test sections is ex-
ploited to define the notion of local covariance as in Definition 2.10, is noth-
ing but the natural lift of the embeddings χ : M →M ′ to the corresponding
tangent bundles.

(c) To fix the physical scaling of background fields, i.e. to fix dA, sm2 , sξ such
that

Aa 7→ λdAAa, m2 7→ λsm2m2, ξ 7→ λsξξ

under physical scaling, we consider the lagrangian density of vector KG field,
i.e.

LA =
1

2
(∇aAb −∇bAa) (∇aAb −∇bAa) +

(
m2 + ξR

)
AbA

b.

where we supposed ~ = c = 1 and we require that the action of vector
KG field is a physically dimensionless quantity, which mean that it must
be invariant under physical scaling. Recalling that, under physical scaling,
dg 7→ λ−ndg where n is the spacetime dimension, we obtain the following
system of equation

2dA + 4− n = 0

2dA + sm2 + 2− n = 0

2dA + sξ + 4− n = 0

=⇒


dA = n−4

2

sm2 = 2

sξ = 0

which means that

Aa 7→ λ
n−4

2 Aa

when g 7→ λ−2g, m2 7→ λ2m2 and ξ 7→ ξ according to (1.6). We recall that
the presence of covariant derivatives do not change this rescaling behaviour
as the coordinates are dimensionless.

96



4.2 Tensor fields and renormalization of Wick powers

(d) We stress that all background fields of this model are scalars of non-negative
physical scaling weight and hence are admissible according to Definition 4.2.

Remark 4.5.
(1) The quantum vector KG field, in addition to the requirements in Defini-

tion 2.10, it is also supposed to verify (4.21) in a distributional sense for every
background geometry

A(M,b)

(
(−�g +m2 + ξR)f

)
= 0 ∀f ∈ D(T ∗M) . (4.23)

Though this fact does not play any role in our work, it implies several relevant
facts which are mentioned in the some of subsequent remarks. Moreover, exactly as
does the Klein-Gordon equation for the scalar field, this equation of motion plays a
crucial role in the construction of an explicit algebra of Wick polynomials [HW01].

(2) It is well-known [BD15, Sec.3.3.1] that the KG operator P = −�+m2 + ξR

is Green hyperbolic (Definition 1.10) for every choices of the involved given smooth
functions (m2 may attain non-positive values in particular) and thus the retarded
and advanced Green operators of P exist. In particular the function ∆(M,b) dis-
cussed in (4) Remark 4.2 in this case is the causal propagator of the KG equa-
tion [BD15, Sec.3.3.1]. As a consequence of the standard properties of the causal
propagator, we also have that [A(M,b)(f), A(M,b)(g)] = 0 when the supports of f
and g are causally disjoint.

(3) As is well-known, exactly as for the scalar field (e.g., see [BD15, Sec.3.3.1]),
the statement of the time-slice axiom for the locally covariant vector field A can
be sharpened, based on the properties of the causal propagator of equation of
motion (4.23). Namely, if O is an open neighborhood of any Cauchy surface
of (M,g) and f ∈ D(T ∗M), then A(M,b)(f) = A(M,b)(h) for a suitable h ∈
D(T ∗M), depending on f , whose support is contained in O.

(4) When defining the Wick products Ak(M,b)(f), the class of states S(M,b)

appearing in the smoothness requirement in Definition 4.1 should be naturally in-
terpreted as consisting of the extensions of Hadamard states [SV01] from the unital
∗-subalgebra W0,(M,b) ⊂ W(M,b) to the whole ambient algebra, where W0(M,b) is
generated by 1 and products of elements A(M,b)(f).

Remark 4.6. We would like to stress why we do not analyse in detail the most
obvious example of vector field, namely the Proca field. It is possible to show that
the propagator of Proca equation is not continuous in the limit m2 → 0 [SS17, Cor.
3.3]. The propagator is used to construct the map τs of Axiom 5 (Definition 4.1),
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Chapter 4 · Wick powers of Boson fields and their renormalization

where we require smooth dependence on background fields for arbitrary compactly
supported variations (i.e. the mass can vanish): The construction can be done with
the same techniques used in [Wal94, Chapter 3] for KG field. The zero-mass limit
problem of the propagator is an evidence that the Proca field case is delicate and
it deserves particular attention: For this reason we preferred not to include it in
this thesis and we decided to study it in a dedicated future work.

Remark 4.7. It is worth stressing that the case of vanishing mass m = 0, even if
the spacetime is Minkowski one, does not correspond to the quantization of the
electromagnetic field (within Lorenz-gauge choice). Indeed, we are dealing here
with the algebraic approach and, in a given spacetime, the (Weyl) ∗-algebra of
vector KG field is well defined for every choice of the function m2 which may
also attain negative values, because its definition only relies on the fact that the
spacetime is globally hyperbolic and on the nature of the operator P = −� +

m2 + ξR which is Green hyperbolic. The existence of Hadamard states playing
a role in requirement 5 can be proved with a standard deformation argument even
in Minkowski spacetime for m2 ≤ 0 constantly: It is enough smoothly change
the function m2 in the past of a Cauchy surface Σ until it becomes a constant
function with value m2

0 > 0 in the past a second Cauchy surface Σ′ in the past
of Σ in Minkowski spacetime. Next, in the past of Σ′ one may construct the
standard Poincaré-invariant vacuum for (constant) squared mass m2

0 > 0 and spin-
1 particles. This state can be viewed as a state over the algebra in the future of
Σ when taking advantage of time slice axiom and it remains Hadamard in view
of the known singularity propagation property of Hadamard states. Obviously, for
the algebra of fields in the future of Σ, the constructed state is not the Poincaré-
invariant vacuum which cannot be defined if m2 < 0 (constantly) and the problem
with negative-norm states would immediately arise for m2 = 0 (usually removed by
means of the Gupta-Bleuler treatment which also lower to 2 the physical degrees
of freedom of particles associated to the field from the 3 degrees of freedom of
massive spin-1 particles). This way also the m2 ≤ 0 theory in Minkowski spacetime
admits Hadamard states, but none of them is a Poincaré-invariant vacuum. In
other words, for m2 = 0, our vector KG field field does not describe photons. In
the algebraic approach, photons are described by including gauge invariance into
the algebra of fields from scratch which is a more complicated procedure than the
one we are discussing [Hol08, FR12]. Using some delicate adiabatic changes of
mass procedures similar to the ones pointed out above it is however possible, at
least for the scalar field, transform vacua states into vacua states with different
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4.2 Tensor fields and renormalization of Wick powers

masses [DHP17, DD16, DG17].

Remark 4.8. It is worth commenting on the existence of prescriptions of Wick
polynomials that are smooth in m2, including at m2 = 0. For that, it is important
to recall the precise form of the smoothness axiom (Definition 4.1, Axiom 5) and
that the main candidate for such a construction is point splitting regularized with
a Hadamard parametrix. That is, in the simplest k = 2 case, what we must check
is the joint smoothness of the integral kernel ωab(s, x) in the expression

lim
y→x

ω ◦ τ−1
s

(
Aa (M,bs)(x)Ab (M,bs)(y)−Hab (M,bs)(x, y)

)
= ωab(s, x), (4.24)

where Hab (M,bs)(x, y) is the Hadamard parametrix and ω is any Hadamard state
on the algebra W(M,b0), with b0 = (g0,m

2 = m2
0, ξ = ξ0) and bs a compactly

supported variation thereof. It is well-known that, already on (even dimensional)
Minkowski space with m2 = m2

0 constant, the Hadamard parametrix contains
terms proportional to log(µ2σ(x, y)), where σ(x, y) is the squared geodesic dis-
tance and µ2 is an arbitrary dimensionful constant. On the other hand, the Wight-
man 2-point function ωm2(Aa(x)Ab(y)), where ωm2 is the Fock vacuum, also
contains terms proportional to log(m2σ(x, y)). Thus, we expect the point split
regularization

lim
y→x

ωm2
0
(Aa(x)Ab(y)−Hab(x, y)) (4.25)

to exist, because of the cancellation of singular σ(x, y)-dependent terms, and to
contain terms proportional to logm2

0/µ
2. Thus, at first glance, it might seem

that the desired smoothness property in (4.24) would not hold because of a log-
arithmic singularity encountered as m2 varies from m2

0 to 0 as a function of
s. However, a careful comparison of (4.24) and (4.25) reveals that they are not
analogous expressions. In particular, one can never represent the family ωm2 of
Fock vacua as ωm2

0
◦ τ−1

s for some fixed constant m2
0 and an s-dependent com-

pactly supported variation thereof, because the difference m2 − m2
0 would not

be compactly supported. In reality, with ω fixed in (4.24), the difference between
Aa (M,b0)(x)Ab (M,b0)(y) and τ−1

s (Aa (M,bs)(x)Ab (M,bs)(y)) can be expressed us-
ing advanced and retarded propagators for the vector KG operators on (M,b0)

and (M,bs), with the latter depending smoothly on the difference m2(s, x)−m2
0,

as we argue briefly in the following paragraph. The conclusion of the above dis-
cussion is casually implied in the discussion of Section 5.2 of [HW02].

To argue that the retarded propagator with mass m2(s, x) has smooth depen-
dence on the difference m2(s, x) − m2

0, when it has compact support, we will
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refer to some results from [DHP17]. More precisely, we can express the retarded
propagator ∆R

m2 in terms of the retarded propagator ∆R
m2

0
and an operator Rm2

0

(Lemma 3.10 in [DHP17]), where Rm2
0

= [1 + ∆R
m2

0
(m2 −m2

0)]−1 (Proposition 3.8
in [DHP17]). This comes down to the perturbative expression, cf. Equation (43)
in [DHP17],

∆R
m2 =

∑
n≥0

[
−∆R

m2
0

(
m2 −m2

0

)]n
∆R
m2

0
.

Lemma B.1 of [DHP17] uses the support properties of ∆R
m2

0
to show that the above

series, together with all of its functional derivatives with respect to the difference
m2 −m2

0, converges when m2
0 = 0 and the background spacetime is Minkowski.

It is plausible that the same proof generalizes to more general globally hyperbolic
spacetimes, and even when m2 −m2

0 is not compactly supported.

Explicit form of counterterms. With the concrete case of the vector KG field,
Theorem 4.1 can be sharpened to give a more explicit expression for the renormal-
ization coefficients Ck. In terms of algebra valued distributions, equation (4.8) can
be rewritten as

˜Ab1 · · ·Abk(x) = Ab1 · · ·Abk(x) +
k−1∑
l=0

(
k

l

)
Ck−l[M,b](b1···bk−l(x)Ab1 · · ·Abl)(x)

(4.26)
with Ck[M,b]b1···bk(x) ∈ (T ∗x )⊗kM fully symmetric. Using Theorem 4.3 we can
immediately obtain a precise form of the symmetric covariant k-tensor fields
Ck[M,b]. For example, if we choose n = 4 and k = 2 we obtain for all
f ∈ D(S2T ∗M)

Ã2
(M,b)(f)

=

A2
(M,b)(f)

+

1
((
y1m

2g + y2Rg + y3Ric + y4�ξg + y5∇2ξ + y6g(∇ξ)2 + y7(∇ξ)�2
)
·2 f
)

which can be written in terms of distributional fields, omitting for simplicity explicit
x-dependence, as

ÃaAb = AaAb +
(
y1gabm

2 + y2gabR+ y3Rab

+ y4gab�ξ + y5∇(a∇b)ξ + y6gab∇cξ∇cξ + y7∇(aξ∇b)ξ
)
,
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4.2 Tensor fields and renormalization of Wick powers

where yj(x) := Yj(ξ(x)) and Yj , for j = 1, . . . , 7, are dimensionless smooth
functions which do not depend on the chosen spacetime. Obviously, in concrete
physical theories the final values of some background fields like m2 and ξ are taken
to be everywhere constant. In this case all derivatives of these fields disappear. In
particular

ÃaAb = AaAb +
(
y1gabm

2 + y2gabR+ y3Rab
)
,

where the yj := Yj(ξ) turn out to be true renormalization constants independent
form the chosen spacetime.

4.2.2 Vector Klein-Gordon field with tensor curvature coupling

It is possible to complicate a bit the previous example by adding a non-trivial
background field. We consider a tensorial coupling to the scalar curvature in the
vector KG equation, i.e.,

−�gAa +m2Aa +RξbaAb = 0. (4.27)

Lowering the upper index of the coupling tensor, ξab = gacξ
c
b , we have a fully

covariant background 2-tensor field. We will take ξab to be symmetric, both for
simplicity and because only symmetric tensorial coefficients are compatible with
the existence of a Lagrangian density for (4.27). Then, the bundle of background
field is now completely defined by

BM = S̊2T ∗M ⊕ R⊕ S2T ∗M (4.28)

and the sections M → BM are triples b = (g,m2, ξ). The background field ξ is
marginal5 since the tensor index lM = 2 and the physical scaling weight sM = −2,
hence satisfying lM + sM = 0. Clearly, ξab is the only marginal background field.
All other hypotheses remain invariant with respect to the previous example.

To apply our main Theorem 4.3, we first need to analyze the structure of the
scalar polynomial invariants on the fibers of S2T ∗M under the action of O(1, n−
1) (or SO(1, n− 1)) and the separability of closed orbits by these invariants. As is
well known [Pro07, Sec.11.8], a generating set of the polynomial invariants is given
by the contractions(

tr ξ = ξaa , tr ξ
2 = ξbaξ

a
b , . . . , tr ξ

n = ξa2
a1
ξa3
a2
· · · ξa1

an

)
, (4.29)

5In the Lagrangian density, the curvature coupling term becomes RgadgbcξacAbAd
√
−g.
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Chapter 4 · Wick powers of Boson fields and their renormalization

which, as indicated, can be interpreted as traces of successive powers of ξba, in-
terpreted as n-dimensional endomorphisms (or n × n matrices). All higher order
contractions are algebraically dependent due to the Cayley-Hamilton identity. The
result obtained in Theorem 4.3 applied to this case when, for example, we choose
n = 4 and k = 2 gives, omitting the x-dependence for simplicity,

ÃaAb = AaAb +
(
y1gabm

2 + y2gabR+ y3Rab + y4m
2ξab + y5ξabR+Bξ

)
,

with all terms that vanish when the background fields are constant collected in

Bξ = y6gab�ξ
c
c + y7∇(a∇b)ξcc + y8gab∇cξdd∇cξdd + y9gcd∇(aξ

cd∇b)ξcc
+ y10

(
∇(a∇b)ξcd

)
ξcd + y11∇(aξ

cd∇b)ξcd + y12gab (�ξcd) ξ
cd

+ y13gab∇cξde∇cξde + y14ξab�ξ
c
c + y15ξab∇cξdd∇cξdd + y16�ξab

+ y17ξab (�ξcd) ξ
cd + y18ξab∇cξde∇cξde + y19ξcd∇(aξ

cd∇b)ξcc
+ y20ξcdξef∇(aξ

ef∇b)ξcd ,

where the yi are locally smooth functions of our invariant scalars (4.29) in the sense
of Definition 3.11 and Proposition 3.13.

Now, we analyse in detail the structure of the coefficients yi. In general, illus-
trating the phenomenon discussed in Section 3.3, our invariant polynomials do not
separate the closed orbits of O(1, n− 1) (or SO(1, n− 1)) acting on the fibers of
S2T ∗M . For instance, given an orthonormal basis v0

a, . . . , v
3
a with v0 timelike and

the rest spacelike, the following symmetric tensors with distinct λ0, . . . , λ4 cannot
be distinguished by invariant polynomials

ξ = −λ0v
0
av

0
b + λ1v

1
av

1
b + λ2v

2
av

2
b + λ3v

3
av

3
b

ξ′ = −λ1v
0
av

0
b + λ0v

1
av

1
b + λ2v

2
av

2
b + λ3v

3
av

3
b

even though they belong to different orbits. The orbits are distinct because any
linear transformation mapping ξ to ξ′ must exchange the λ0- and λ1-eigenvectors,
hence exchanging a spacelike vector with a timelike vector, which cannot be
done by any element of O(1, n − 1). Other examples of this kind can be con-
structed by looking at the complete classification of the orbit types of symmetric
2-tensors [SKM+03, Sec.5.1]. On the other hand, invariant polynomials do distin-
guish the orbit of ξ from the orbit of any other point in a sufficiently small neigh-
borhood, because the case of distinct eigenvalues allows us to choose the eigenvec-
tors smoothly under small variations, and small variations of timelike (spacelike)
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4.2 Tensor fields and renormalization of Wick powers

vectors remain timelike (spacelike). Thus, the subsets where invariant polynomials
can locally distinguish orbits must be separated by a “barrier” (the Z0 subset of
Proposition 3.13). Since any continuous path from ξ to ξ′ must pass through some
tensor with degenerate eigenvalues, we can take Z0 to consist of all tensors with
at least two equal eigenvalues. The open sets Zj of Proposition 3.13 can then be
identified with the connected components of Z \ Z0, where Z is a generic fiber of
S2T ∗M .

The reason why the set Z0 ⊂ Z and the partition Z \Z0 =
⋃
j Zj is consistent

with Proposition 3.13 is that Z0 is actually the zero-set of an invariant polynomial
p0(ξ) = disc(ξ), known as the matrix discriminant. It is defined by requiring
that, for diagonalizable tensors with eigenvalues λi, it takes the value

disc (ξ) =
∏
i<j

(λi − λj)2 ,

which can be shown to coincide with the polynomial disc (ξ) = det
(
tr ξi+j−2

)n
i,j=1

[Par02, Lem.1]. In the n = 4 case, it has the explicit form

disc (ξ) = det


tr I tr ξ tr ξ2 tr ξ3

tr ξ tr ξ2 tr ξ3 tr ξ4

tr ξ2 tr ξ3 tr ξ4 tr ξ5

tr ξ3 tr ξ4 tr ξ5 tr ξ6

 ,

where we recall that tr ξ5, tr ξ6 are algebraically dependent on lower order con-
tractions due to the Cayley-Hamilton identity. Thus, the coefficients yi are locally
smooth functions (Definition 3.11) of the scalar polynomials invariants (4.29), i.e.,

yi(x) = [Yi]S2T ∗M (tr ξ(x), tr ξ2(x), tr ξ3(x), tr ξ4(x)) ,

for i = 1, . . . , 20, with respect to the partition Z \ Z0 =
⋃
j Zj indicated above,

with Z a generic fiber of S2T ∗M .

4.2.3 Scalar field with derivative

We now consider the renormalization of Wick powers of a scalar field with its
first derivative. The classical configurations of the scalar KG field over an ori-
ented globally hyperbolic spacetime (M,g) are smooth real-valued functions, i.e.,
sections of the bundle T ∗⊗0M = M × R, namely ϕ ∈ E (T ∗⊗0M) = C∞(M).
Similarly to the previous case we have the following equation of motion

−�gϕ+m2ϕ+ ξRϕ = 0, (4.30)
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where m2 and ξ are smooth real-valued functions on M (they can be constant
functions, but in general we admit that m2 and ξ can vary on the spacetime).
Since we want to consider renormalization of a scalar field with its first derivative,
we construct the field Φ as the pair of fields

Φ = (ϕ,∇aϕ) .

When passing to the quantum formulation, the locally-covariant quantum field Φ,
denoted by the same symbol Φ, is defined as in Definition 2.10, with the following
details.

(a) As in the previous case, the net of local quantum observables W including
the scalar field, as in Definition 2.8, is fixed according to equation (4.30),
which suggests that the natural bundle of background fields is the one com-
pletely defined by

BM = S̊2T ∗M ⊕ (M × R)⊕ (M × R), (4.31)

so that the sections M → BM are triples b = (g,m2, ξ).

(b) The natural vector bundle is completely fixed by requiring

VM = (M × R)⊕ T ∗M

and the morphism Vχ, whose associated pushforward on test sections is ex-
ploited to define the notion of local covariance as in Definition 2.10, is noth-
ing but the natural lift of the embeddings χ : M →M ′ to the corresponding
tangent bundles.

(c) To fix physical scaling of background fields it is possible to proceed with the
same strategy of Section 4.2.1. Therefore, according to its mass dimension6,
the physical scaling degree of the field Φ is

dΦ =

(
n− 2

2
,
n− 2

2

)
,

when g 7→ λ−2g, m2 7→ λ2m2 and ξ 7→ ξ according to (1.6). We recall that
the presence of covariant derivatives do not change this rescaling behaviour
as the coordinates are dimensionless.

6E.g., assuming that both the terms summed in the Lagrangian density of the scalar fieldm2ϕ2√g
and ∇aϕ∇aϕ

√
g are dimensionless in natural ~ = c = 1 units.
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4.2 Tensor fields and renormalization of Wick powers

(d) We stress that all background fields of this model are scalars of non-negative
physical scaling weight and hence are admissible according to Definition 4.2.

For this specific model, using Theorem 4.1 and Theorem 4.3, we can immedi-
ately obtain a renormalization formula and a precise form of the renormalization
counter-terms. For example, if we choose n = 4 and k = 2 we obtain, in terms
algebra valued distributions and for brevity omitting the all dependence on the
spacetime point x,

ϕ̃2

ϕ̃∇aϕ

˜∇(aϕ∇b)ϕ

 =


ϕ2

ϕ∇aϕ

∇(aϕ∇b)ϕ

+


α1m

2 + α2R+Aξ,m2

β1∇aR+Bξ,m2

gab
(
γ1(m2)2 + γ2m

2R+ γ3R
2
)

+
(
γ4m

2 + γ5�
)
Rab + Cξ,m2


where all α-, β-, and γ-coefficients are smooth functions of ξ and

Aξ,m2 = α3∇aξ∇aξ + α4�ξ ,

Bξ,m2 = β2∇am2 + β3m
2∇aξ + β4R∇aξ + β5Rab∇bξ

+ β6(∇bξ∇bξ)∇aξ + β7�ξ∇aξ + β8∇bξ∇(b∇a)ξ + β9∇a�ξ ,

Cξ,m2 = γ6∇(aξ∇b)m2 + γ7m
2∇(aξ∇b)ξ + γ8R∇aξ∇bξ + γ9Rab∇cξ∇cξ

+ γ10Rc(a∇b)ξ∇cξ + γ11gab∇cξ∇cm2 + γ12gabm
2∇cξ∇cξ

+ γ13gabR∇cξ∇cξ + γ14gabR
bc∇bξ∇cξ + γ15∇(a∇b)m2

+ γ16m
2∇(a∇b)ξ + γ17�ξ∇(a∇b)ξ + γ18R∇(a∇b)ξ + γ19Rab�ξ

+ γ20gab�m
2 + γ21gabm

2�ξ + γ22gab(�ξ)
2 + γ23gabR�ξ

+ γ24∇(aξ∇b)�ξ + γ25∇(a∇b)�ξ + γ26gab∇cξ∇c�ξ + γ27gab�
2ξ

are terms which depend on covariant derivatives of ξ and m2. Thus, if we choose
constant values for m2 and ξ:

ϕ̃2

ϕ̃∇aϕ

˜∇(aϕ∇b)ϕ

 =


ϕ2

ϕ∇aϕ

∇(aϕ∇b)ϕ



+


α1m

2 + α2R

β1∇aR

gab
(
γ1(m2)2 + γ2m

2R+ γ3R
2
)

+
(
γ4m

2 + γ5�
)
Rab
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Also, if we wanted to maintain the Leibniz rule ∇aϕ2 = 2ϕ∇aϕ (cf. [HW05]),
we would have to require 2β1 = α2, with the further requirements 2β2 = α1,
2β3 = α′1, 2β4 = α′2, 2β6 = α′3, 2β7 = α′4, 2β8 = 2α3 and 2β9 = α4 (where ′

denotes d
dξ ) for other coefficients in the case of non-constant m2 and ξ.

Remark 4.9. Following the same ideas of this section, it is possible to renormalize
a scalar field with derivatives of arbitrary order. If we construct the (m+ 1)-tuple

(ϕ,∇a1ϕ,∇a1∇a2ϕ, . . . ,∇a1 · · · ∇amϕ) ,

i.e., if we choose as bundle of dynamical fields

VM =

m⊕
i=0

T ∗⊗iM,

we can use Theorem 4.1 and Theorem 4.3 as we did in this section to obtain a
renormalization formula with all renormalization counter-terms. With the same
idea it is possible to renormalize any tensor fields with an arbitrary number of
derivatives.
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In this thesis, we studied in detail Wick powers renormalization of Boson fields
in the framework of locally covariant algebraic quantum field theory in globally
hyperbolic curved spacetimes. The obtained result is very general and satisfactory,
since it simultaneously encompasses a relevant number of physical cases.

We defined a general Boson field as a section of an arbitrary natural vector
bundle of a spacetime (where naturality means the existence of a well defined
transformation law of the fibers induced from diffeomorphisms of the spacetime).
Besides the metric, the spacetime is also allowed to carry some arbitrary classi-
cal background fields (pictured as sections of natural vector bundles as well). In
particular, the mass and other parameters have been viewed as such background
fields.

We defined Wick powers axiomatically (Definition 4.1). Our list of axioms
simply generalizes the axioms exploited for the scalar field in [KM16] which, in
turn, descend from those introduced in [HW01] (with the crucial difference that the
"analytic dependence" axiom in [HW01] was here replaced by a weaker "smooth
dependence" axiom).

Our main result consists of a classification of all possible finite renormalization
counterterms of Wick powers, which refer to the ambiguities in their axiomatic
definition. As a matter of fact, the result provides a first rigorous and complete
classification for non-scalar Boson fields. Part of our main result (Theorem 4.1), by
an application of the Peetre-Slovák theorem, reduces finite renormalization terms
of a k-th Wick power to a linear combination of Wick powers of lower order with
coefficients Ck that result to be differential operators locally depending on the
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background fields of fixed physical scaling weight and transform covariantly under
diffeomorphisms. The rest of our main result (Theorem 4.3) is specialized to the
case where both the dynamical and background fields are spacetime tensors by an
application of a generalized version of Thomas Replacement theorem (Section 3.4)
and some fundamental results from smooth classical invariant theory of the or-
thogonal group O(1;n−1) or SO(1;n−1) (Section 3.3). This way, the coefficients
Ck turn out to be linear combinations of finitely many tensor polynomials covari-
antly constructed out of the curvature, the background tensor fields, and all of their
covariant derivatives. This finiteness result crucially depends on an admissibility
criterion for all the background fields (Definition 4.2), which relates the physical
scaling weight of a background field with its tensor rank by means of a certain in-
equality. The structure of these tensor polynomials is controlled by their physical
scaling weights. It is possible that, for a given tensor type and scaling weight, the
list of such polynomials is empty, meaning that the corresponding component of
Ck vanishes. This is the result (a) of Theorem 4.3, which, in the simplest cases, tell
us that a vector field A of tensor rank 1 with scaling degree dA < −1 (or a scalar
field with scaling degree less then 0) does not admit renormalization counterterms
(all of them are identically zero). This result can be viewed as the counterpart for
dynamical fields of the admissibility condition of background fields: Wick powers
have non-vanishing renormalization counterterms only if the sum of the scaling
degree of the quantum field and of its tensor rank is greater or equal to zero, i.e.
dA + k ≥ 0. The case of a n-tuple of fields is a bit more complicated but it is
explained by the precise statement (a) of Theorem 4.3, as we already said.

The strongest departure from the results of [KM16] is in the structure of the co-
efficients in front of these polynomial terms. These coefficients are actually allowed
to depend smoothly (and not just polynomially as in [KM16]) on the background
fields, but into a quite restricted way. In practice, they are permitted to locally
be smooth functions only of a finite number of scalar polynomial invariants con-
structed covariantly from the subset of marginal background fields (those that satu-
rate the admissibility inequality). The notion of local smooth dependence on these
scalar invariants (cf. Definition 3.11 and Proposition 3.13) can be made precise only
by looking at the structure of the orbits of the action of O(1;n−1) or SO(1;n−1)

on the marginal background tensor fields. In the scalar Klein-Gordon case consid-
ered [KM16], the only marginal background field was the scalar curvature coupling
ξ. We next illustrated our results in detail with two physically relevant examples,
checking in particular that they satisfy all the admissibility hypotheses: the vector
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Klein-Gordon field Aa (Section 4.2.1), possibly coupled to the curvature through a
tensor background field ξab (Section 4.2.2), and the case of Klein Gordon scalar
field ϕ accompanied by its spacetime derivative ∇aϕ (Section 4.2.3).

A number of open issues remains. A theorem of existence for Wick polynomials
should be established: We did not prove that there exist a prescription to define
them that satisfies our axioms. This task should be accomplished using existing
tools and results, since the standard Hadamard parametrix regularization method
[HW02] is suitable for vector fields too, as discussed in Section 4.2.1. The main
problem is to check that our "smooth dependence" axiom is actually satisfied by
this method. Moreover, the constructed formalism should be so enlarged to cover
the more delicate case of the Proca field. Here, the main problem is that the zero
mass limit m2 → 0 is known not to be smooth (see [SS17] for a careful recent
discussion), whereas one of our axioms for Wick powers requires regularity exactly
at the zero value of the mass. Some related remarks about subtleties with regular
mass dependence appear in Remark 4.8.

The last, and probably more important, open issue concerns the generaliza-
tion of our results to more general kinds of fields: other kinds of Boson fields (for
instance non-tensorial fields like connections) but also to fermionic fields (for in-
stance Dirac spinor fields). The latter is probably the most important and urgent
case: a strategy to study this case seems to be very similar to the one of this thesis.
First, one needs to introduce an additional geometric structure, the spin structure,
to properly describe spinors on a general curved spacetime in the framework of
locally covariant AQFT (see for e.g. [San08]). Then, using an antisymmetric ver-
sion of the contraction product defined in Def. 1.4, should be possible to establish
a spinorial version of Theorem 4.3. After that, to generalize Theorem 4.3 to, for
example, Dirac spinor fields, an intermediate step is an extension of Thomas re-
placement theorem to spinors. With these remarks we just intend to suggest to
the reader that, on the one hand, extensions of our results to other quantum fields
are possible by building on the ground work that we have already laid, on the
other hand they would deserve an entire new work. A different and much more
difficult extension would regard the renormalization of time ordered products (of
Wick powers), relying on existing well-established results [HW01, HW02, HW05],
which are however currently available only for the scalar case. Another difficult
but interesting problem is the extension of our formalism to gauge fields: This is an
almost entire new problem (for example gauge fields are described using a graded
algebra) which for sure deserves attention.
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