
Doctoral School in Environmental Engineering

On the effects of hydrological uncertainty
in assessing the impacts of climate change

on water resources

Mauricio Zambrano-Bigiarini

March 2010





Doctoral thesis in Environmental Engineering, XXII cycle

Faculty of Engineering, University of Trento

Academic year 2009/2010

Advisor: Alberto Bellin,

Department of Civil and Environmental Engineering,
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Abstract

This dissertation focuses on the assessment of projected changes on water resources by the end of
this century (2071-2100), considering an ensemble of high resolution future climate scenarios, the
effects of hydrological parameterisation, and the bias of the hydrological model in representing
different streamflow magnitudes.

Quantification of the impacts of climate change on water resources will depend on the emission
scenario, climate model, downscaling technique and impact model used to drive the impact study.
In particular, hydrological impact studies involve important decisions (e.g., model structure, pa-
rameterisation, input data) whose effects are reflected into the final impacts. As a result, quantifi-
cation of impacts of climate change have to be seen as a ”cascade of uncertainty”, in which decisions
taken in every step of the assessment process convey uncertainties that are unavoidably prop-
agated to subsequent levels. At the other hand, uncertainties in projections of climate models
and those involved in the quantification of their hydrological response limit the understanding of
those future impacts and hamper the assessment of mitigation policies.

The Soil and Water Assessment Tool (SWAT) hydrological model was set up for daily simulations
of the western part of the Ebro River basin (∼ 42000 km2) in Spain, during the control period
01/Jan/1961 to 31/Dec/1990, and two subcatchments were selected for testing the methodology
proposed in this dissertation. A sensitivity analysis with Latin Hypercube One-factor-At-a-Time
(LH-OAT) was carried out in order to identify parameters with a high effect on simulated stream-
flows. Then, an uncertainty analysis was carried out using the Generalized Likelihood Uncer-
tainty Estimation (GLUE) methodology, in order to select parameter sets that can be considered
as acceptable simulators of the system, adopting a re-scaled Nash-Sutcliffe efficiency as ”less for-
mal” likelihood, and a cut-off threshold equal to zero to discriminate between behavioural and
non-behavioural simulators. Afterwards, a Latin Hypercube (LH) sampling strategy was imple-
mented within GLUE, in order to reduce the number of model runs required to obtain a good
exploration of the parameter space. The 95% of the cumulative distribution of each predicted out-
put, weighted by the re-scaled likelihood of each behavioural parameter set, was used to compute
the predictive uncertainty bounds, both during the control and future scenarios.

Bias-corrected daily time series of precipitation and air temperature, for the future period 2071-
2100, were derived from an ensemble of six high-resolution climate change scenarios, selected
from the EU FP5 PRUDENCE project. Long-term averages of precipitation and air temperature
fields were computed for the control period, and projected anomalies for the future scenarios
were computed as well, in an annual, seasonal and monthly basis, including expected changes for
different elevation bands within the basin. The same bias-corrected time series were then used
to drive daily hydrological simulations during the future period on the two selected catchments.
For each climate scenario, a number of simulations equal to the number of behavioural parameter
sets obtained during the uncertainty analysis was carried out. Resulting streamflows were used
to compute daily flow duration curves (FDCs) to provide a qualitative assessment of the relative
importance of uncertainties coming from the choice of the driving RCM and from hydrological
parameterisation. In addition, streamflows derived from running each climate scenario with its
corresponding behavioural parameter sets, were used to compute empirical cumulative density
functions (ECDFs) of three selected percentiles, representing different flow magnitudes, in order
to provide a quantitative assessment of the projected changes in streamflows.

We observed that the hydrological parametric uncertainty was larger than the uncertainty com-
ing from the driving RCM, during the complete future period and each one of the four seasons,
for the two selected catchments. However, this result can not be generalised, because it is condi-
tional to decisions taken during the uncertainty analysis and to the ensemble of RCMs considered.
Empirical CDFs computed for projected values of low (Q5), medium (Q50) and high (Q95) flows
show that there is a general projected decrease in all the streamflow magnitudes, but bias in the
representation of the streamflows during the control period 1961-1990 hamper the assessment of
reliable quantitative projections for low and medium flows, whereas projected decreases for high
flows range from 0 to 60%, depending on the catchment and the climate scenario considered.
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”The aim of science is to seek
the simplest explanation of
complex facts...
seek simplicity and distrust it”.

(A. N. Whitehead) 1
Introduction

This chapter provides a brief introduction about the context and motivation of the present disser-
tation. Section 1.1 describes projected changes in climate and their links with expected hydrolog-
ical impacts. Section 1.2 provides an overview about the current approaches used for assessing
the hydrological impacts of climate change. The aforementioned topics are covered in detail in
further chapters. The research aim and its specific objectives are presented in section 1.3. Finally,
section 1.4 presents an outline of the present dissertation.

1.1 Climate Change

Global mean surface temperatures have risen by 0.74◦C ± 0.18◦C over the last 100 years (1906-
2005) and eleven of the last twelve years (1995-2006) are among the 12 warmest years since 1850,
as mentioned in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate
Change (IPCC) (Trenberth et al., 2007). The warming of our climate system seems unequivocal
(Bates et al., 2008), and it may lead to changes in the overall Earth’s hydrological cycle, in partic-
ular, changes in regional water availability and frequency/intensity of extreme events (Trenberth
et al., 2007). Such hydrological changes will have implications of societal importance, from agri-
cultural productivity and energy production to flood control, highlighting the necessity of a better
understanding about how those changes in global climate will affect local water resources (Xu,
1999).

Changes are undergoing globally, but mitigation policies have to been applied locally. In Europe,
the mean annual temperatures are likely to increase more than the global mean, with the largest
warming in summer for the Mediterranean area, and in particular, the highest summer tempera-
tures are expected to increase more than the average for central and southern Europe (Christensen
et al., 2007a). In the Mediterranean area, annual precipitation is very likely to decrease, whereas
the annual number of precipitation days is very likely to decrease as well (Christensen et al., 2007a).
Consequently, significant hydrological changes are expected for southern Europe, in particular, a
likely decrease in annual runoff, by 0 to 23% up to 2020s and by 6 to 36% up to 2070s; accompa-
nied with a decrease by up to 80% of low summer flows, making the risk of drought particularly
important. Moreover, projected increase of water withdrawals in southern Europe would amplify
the risks associated to climate change, being the Mediterranean (Spain and Portugal) the region
more exposed to drought risk (Alcamo et al., 2007).

Nowadays, climate models are the best available tools for quantifying the global climate response
to different future development scenarios of our society, represented by different atmospheric
concentrations of carbon dioxide and other trace gases. Climate models use well-known physical
principles to simulate the interactions among atmosphere, oceans, land surface and ice, through
different numerical schemes and/or different parameterisations. Up to now, the assessment of
potential impacts of climate change has generally relied on data from Atmosphere-Ocean Gen-
eral Circulation Models (AOGCM), which are dynamical three-dimensional representation of the
atmosphere, land surface, oceans and sea ice processes, with a spatial resolution not suitable for
accurately reproducing precipitation and temperature fields, especially in areas of complex topog-
raphy and land use distribution (Christensen et al., 2007b), hampering their direct application into
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hydrological impact assessment. To overcome these limitations, spatial and temporal downscal-
ing techniques are carried out for limited areas and run for shorter periods, aiming at producing
climate information with a spatial resolution finer than the large-scale GCM outputs.

1.2 Hydrological Impacts of Climate Change

Once the climatological fields have been downscaled, conceptual rainfall-runoff models have been
-to date- the preferred tools of many climate-change researchers worldwide to assess the likely
impacts of climate change (e.g. Arnell, 2003a; Booij, 2005; Gosain et al., 2006; Thodsen, 2007; Graham
et al., 2007a; Steele-Dunne et al., 2008; Abbaspour et al., 2009; Chiew et al., 2009), in spite of their known
limitations, related to parameter identifiability, equifinality and predictive uncertainty (e.g. John-
ston and Pilgrim, 1976; Sorooshian and Dracup, 1980; Sorooshian et al., 1983; Sorooshian and Gupta,
1983; Kuczera, 1983; Hornberger et al., 1985; Duan et al., 1992; Beven and Binley, 1992; Freer et al., 1996;
Seibert, 1997; Beven and Freer, 2001; Beven, 2006). The main reasons for this preference are: (i) rela-
tive low data-requirements, (ii) computation time suited for long-term hydrological simulations,
and (iii) a large amount of models are available, already calibrated and verified during years of
application to water management and related problems.

According to Xu (1999), the assessment of the hydrological impacts of climate change can be car-
ried out with different approaches, among them: using hypothetical scenarios as input to hy-
drological models, direct use of GCM-derived hydrological output, coupling General Circulation
Models (GCMs) and macroscale hydrological models, and downscaling GCM climate outputs to
drive a hydrological model, the later being the approach adopted in this dissertation.

1.2.1 Aquaterra Project

Driven by the precautionary principle and anticipating risks caused by upcoming priority threats,
the 6th EU RTD Framework Programme started, in June of 2004, the Aquaterra project (http://www.eu-
aquaterra.de/). This European project aimed at providing the scientific basis for an improved
river basin management, enhanced soil and groundwater monitoring programs and the early
identification and forecasting of impacts on water quantity and quality during this century; through
a better understanding of the river-sediment-soil-groundwater system as a whole, by integrating
both natural and socio-economics aspects at different temporal and spatial scales. This should be
applicable to European contexts facing modifications or changes due to climate change, land use
change and pollution of soil and water. The Aquaterra project consisted of several sub-projects
with different specific objectives, which integrates the key biogeochemical, climatic and hydrolog-
ical processes over relevant scales in time and space. In particular, this dissertation was carried out
within the work package C3 COMPUTE, which had to collect and organise results from different
work packages in order to provide a quantitative assessment of the likely hydrological impacts of
climate change on the Ebro River basin.

1.2.2 Uncertainty in Hydrological Impacts of Climate Change

Hydrology is a highly uncertain science, in which complex dynamics of many hydrological pro-
cesses, physical domains that evolve in time, data scarcity, and measurement errors hamper the
theoretical treatment of the phenomenon under study. Uncertainty, ignorance, error, and risk are
defined in different ways by different authors (see Refsgaard et al., 2007; Walker et al., 2003). We
want to emphasise the difference between ignorance and uncertainty, in which the former repre-
sents a lack of awareness regarding imperfect knowledge, and the latter stands for a degree of
confidence in the possible outcomes. The uncertainty treatment adopted in this dissertation corre-
spond to the general definition given by Walker et al. (2003), in which uncertainty is ”any deviation
from the unachievable ideal of completely deterministic knowledge of the real system”. In this way, un-
certainty is an unavoidable fact when dealing with real catchments, and hydrologists and water
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1.3. RESEARCH AIM

management agencies have to get use to include it into their every-day decisions.

Projected impacts of climate change will depend on the combination of emissions scenarios, cli-
mate forcings, and impact model used to assess the local impacts (Viner, 2003; Olesen et al., 2007).
In particular, quantification of impacts of climate change should be seen as a ”cascade of uncer-
tainty” (New and Hulme, 2000; Mearns et al., 2001; Schneider, 2002; Viner, 2003; Giorgi, 2005; Wilby,
2005), in which decisions taken in every step of the assessment process, going from emissions sce-
nario to projected impacts, convey uncertainties that are unavoidably propagated to subsequent
levels. So far, most of the studies providing an assessment of the impacts of climate change on
water resources have relied on a single hydrological model, i.e, a unique combination of model
structure and parameter set, overlooking the relative importance of hydrological uncertainties
into the final impacts. Comparatively, only few quantitative studies have looked at the propa-
gation of the aforementioned uncertainties into the final hydrological impacts (e.g. Jakeman et al.,
1993; Wilby, 2005; Dibike and Coulibaly, 2005; Cameron, 2006; Wilby and Harris, 2006; Prudhomme and
Davies, 2009a,b).

Most of the studies indicate that the greatest source in the cascade of uncertainty is the GCM
chosen to drive the simulations (e.g. Wilby and Harris, 2006; Graham et al., 2007b; Prudhomme and
Davies, 2009b), whereas some few claim that the relative importance of the uncertainty may be
dependent on the scale of the study (Abbaspour et al., 2009), with hydrological model uncertainty
being larger and uncertainties due to emissions scenarios becoming smaller as the scale of the
study increases. This dissertation attempt to provide new insights about the relative magnitudes
of uncertainties derived from the driving climate model and hydrological parameterisation, and
its implications for hydrological impact assessment.

1.3 Research Aim

To develop a methodology that allows the probabilistic assessment of the likely impacts of cli-
mate change on surface water resources of the Ebro River basin (NE Spain), taking into account
uncertainties coming from the driving climate scenario and from hydrological parameterisation.

Specific objectives are:

• To select a modelling approach that allows the assessment of the hydrological impacts of
climate change on the chosen study area.

• To implement a suitable hydrological model that allows the integration of all the available
data within an uncertainty framework, aiming at the probabilistic assessment of the hydro-
logical impacts of climate change.

• To carry out an uncertainty analysis of the streamflows computed by the hydrological model
during the control period 1961-1990, in order to select parameter sets that lead to reliable
predictive uncertainty bounds.

• To select an ensemble of future climate scenarios that can be used as drivers of the hydro-
logical simulations during the future period 2071-2100.

• To provide an assessment of the projected changes in climate (precipitation and air temper-
ature) expected on the study area by the end of this century.

• To assess the likely impacts of climate change on water resources of the study area by the
end of this century (2071-2100), taking into account possible bias of the hydrological model
in representing the catchment response.

3



CHAPTER 1. INTRODUCTION

1.4 Outline of the Dissertation

Each chapter of this dissertation was though to be an independent readable unit, and notwith-
standing a great deal of effort was put in avoiding repetition among them, some overlapping was
unavoidable. The rest of the dissertation is organised as follow: Chapter 2 describes the study area
and the procedure used to select data to be used in the hydrological simulations; Chapter 3 de-
scribes the implementation of a semi-distributed modelling approach on the north-western part of
Ebro River basin, and the uncertainty analysis carried out for the predicted streamflows; Chapter
4 presents projected changes for precipitation and temperature fields on the Ebro River basin by
the end of this century (2071-2100), based on bias-corrected daily precipitation and temperature
fields, downscaled from an ensemble of six regional climate models; Chapter 5 presents projected
changes for streamflows in two selected subcatchments of the Ebro River basin by the end of this
century (2071-2100), considering the effects of hydrological parameterisation and the bias of the
hydrological model in representing different streamflow magnitudes; and the last chapter pro-
vides a discussion of the main findings, and further research needed in this area. In order to save
paper, all the Appendixes are not available in the printed copies of this dissertation, but only
in the electronic version of this document.
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”A journey of a thousand miles
begins with a single step”.

(Lao Tse) 2
Study Area and Data Selection

This chapter provides a description of the study area selected in this dissertation to analyse the
hydrological impacts of climate change, and a summary of the data collection/selection stage used
to set up the hydrological model in Chapter 3.

2.1 Study Area

The Ebro River basin is located between latitudes 40.5◦N - 43◦N and longitudes 4.5◦W - 2◦E at the
north-eastern part of Iberian Peninsula, with a total area of 85362 km2, 502 belonging to France, 445
belonging to Andorra and all the rest located in Spain. Its natural limits are: the Vasco-Cantabrian
and Pyrenean mountains range by the north, the Iberian System by the south-east and the Coastal-
Catalan mountain range by the east (http://www.chebro.es/cuencaDescripcion.htm). The Ebro
River basin is the largest basin of Spain (17.3% of the total peninsular Spanish territory) and it
was selected as a case study within the FP6 EU Aquaterra project (http://www.eu-aquaterra.de/)
because this basin achieved a good balance between data availability, climatic situation represen-
tativeness, size, functioning conditions and pollution profile. It is drained by the Ebro River, with
a total length of 910 km, flowing by a roughly plain central valley from the Cantabrian Moun-
tains to its delta in the Mediterranean sea (direction NW to SE). During its path, it collects water
from the Cantabrian and Pyrenean mountain ranges by its left bank and from the Iberian system
by the right one. Elevations in the left bank of the basin are higher than in the right one, giv-
ing place to higher annual precipitation and consequently higher availability of water resources.
The total length of the rivers within this basin is ∼12000 km, with ∼50000 km2 belonging to its
left bank and 30000 km2 to the right one. Northwestern rivers are strongly influenced by the
ocean, but snow retention in their heads defines a pluvial-nival regime. Going to the southeast,
the nival and Atlantic influence disappears and the Mediterranean one starts, giving place to
a pluvial-Mediterranean regime. Population living within this basin is around 3019176 inhabi-
tants1, which is mainly concentrated in the central valley. The total water resources are estimated
in 18200 Mm3/year for the period 1940-1986, comparatively high and important with respect to
other watersheds in the Iberian Peninsula, whereas the estimated total water demand comprises
6310 Mm3/year for agriculture, 414 Mm3/year for industrial use, and 313 Mm3/year for drinking
water supply (http://oph.chebro.es/DatosBasicosCHE.html).

Figure 2.1 shows the location of the Ebro River basin and the study area selected for the hydro-
logical simulations. Topography exerts a continental effect over the Mediterranean climate in a
large area of the basin, with a clear semi-arid condition in its centre. Precipitations are scarce,
with exception of the northern mountain ranges and the northern part of the Iberian one, mainly
concentrated during the spring and autumn. Precipitation, besides its scarcity, presents a strong
inter-monthly and inter-annual variability, with long periods without any precipitation, specially
in wintertime and at the end of autumn. Mean annual precipitation on the entire basin is 622
mm/year, from 1920 to 2002, and the minimum and maximum annual precipitations are 452 and
840 mm/year, respectively, being 3813 mm/year the individual observed maximum, at station
P9269I in 1964/65 (Ministerio del Medio Ambiente y Confederación Hidrográfica del Ebro, 2007). Mean

1 I.N.E. 2005
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CHAPTER 2. STUDY AREA AND DATA SELECTION

FIGURE 2.1: Ebro River basin, in the north-western part of Spain, and the red polygon shows the extent of
the study area selected for the hydrological simulations, with a total area of 42000 km2 (see
section 3.3).

annual temperature is ∼12◦C, over the period 1961-1990, and the mean winter minimum and
summer maximum temperatures are∼5◦C and∼20◦C respectively, for the same period. Potential
evapotranspiration is estimated in 700 mm/year (http://www.chebro.es/).

Within the Ebro River basin there are three large groundwater areas: pyreneian, alluvial and
iberian. The pyreneain aquifers are karstic, with many springs with a highly variable flow, cover-
ing from the Pyreneian mountain range to the headwaters of the Ebro River, through the Basque
and Cantabrian mountains. The alluvial aquifers are located following the course of the most im-
portant rivers, and they are strongly related to the surface rivers, varying its behaviour according
to the season, with a medium to high regulation capacity, and a weekly-based response to infiltra-
tion recharges. The Iberian aquifers cover from La Demanda Mountains to the Puertos de Beceite,
to finally connect the Coastal-Catalan range. The presence of several layers of karstificated lime-
stones, mixed with low hydraulic conductivity loam, makes them to be considered as multilayer
aquifers (http://www.chebro.es/cuencaGeoMedio.htm).

A more detailed description about the climate, hydrology and hydrogeological units is provided
by Zambrano-Bigiarini et al. (2007).

2.2 Data Selection

2.2.1 Topography

A digital elevation model (DEM) with 20x20 m of spatial resolution was provided by the Con-
federación Hidrográfica del Ebro [Hydrological Confederation of Ebro River] (CHE), the public
office responsible for the administration and control the Ebro River basin. This DEM is depicted
in Figure 2.2 and it was used in section 3.3 to derive the spatial parameters required by the hy-
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drological model. Elevations within the basin range from 0 to 3394 m.a.s.l., with a mean value of
∼760 m.a.s.l. and 75% of the basin below the 1010 m.a.s.l. As watershed delineation and stream
network extraction is affected by DEM resolution (e.g. Wang et al., 2000; Defourny et al., 1999), we
tried different spatial resolutions (100x100m, 80x80m and 60x60m) up to find the coarsest resolu-
tion that allowed the correct identification of the drainage network, catchment borders, reservoirs
and withdrawals that had to be included in the hydrological simulations, by using an automated
procedure implemented in the AVSWAT-X GIS interface (Di Luzio et al., 2002a, 2004). The final
resolution used for the hydrological simulations was 60x60m, and the same resolution was auto-
matically set by AVSWAT-X as the cell size for the land use and soil maps. Additional information
about the effect of input data resolution on hydrologic simulations might be found in Chaubey
et al., 2005; Di Luzio et al., 2005; Kumar and Merwade, 2009; Peschel et al., 2006; Geza and Mccray, 2008;
Cotter et al., 2003; Le Coz et al., 2009; Bosch et al., 2004; Cochrane and Flanagan, 2005; Wang and Melesse,
2006, and Chaplot et al., 2005.

FIGURE 2.2: Digital elevation model (DEM) of the Ebro River basin, with a spatial resolution of 20x20 m.

2.2.2 Land Use

The land use cover was downloaded from the CHE website (http://oph.chebro.es/ContenidoCartoApoyo.
htm), with information for the years 1984, 1991 and 1995, at a 1:100000 scale. The land use cover
corresponding to the year 1984 (field ’USOS84’) was selected as representative of the historical
period considered for the hydrological simulations (1961-1990), as shown in Figure 2.3. For all
the cells in which the land use identifier was missing, i.e. without a value in the field ’USOS84’,
a pasture land use was assigned, based on visual comparison with current satellite land covers
provided by Google Earth (http://earth.google.com/). The five major land covers within the area
are: pasture (64.2%), forest (24.8%), agriculture (8.9%), rocks (1.7%) and urban areas (0.4%). The
full list of land use classes is presented in Table 2.1.
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TABLE 2.1: Land uses on the Ebro River basin, based on information for the year 1984 at 1:100000 scale,
with the eight classes identified.

GRID Value LandCover % Basin Area Original Name A84
1 Rocks 1.69 Roquedo 20
2 Forest 24.83 Bosques 13, 14, 15, 16, 17
3 Pasture 64.21 Praderas 1, 2, 3, 10, 11, 12, 16, 18, 19,

20, 24, 25, 26, 27, 31
4 Urban 0.35 Suelo Artificial 28, 29, 30
5 Water 0.04 Lagos Interiores 21
6 Agriculture 8.88 Regadı́os 4, 4a, 4b, 4c, 5, 5b, 5c, 6, 6b,

6c, 7, 7a, 7b, 7c, 8, 9, 9b, 9c
7 Coastal Lakes 0.02 Lagunas Costeras 22
8 Marshlands 0.00 Marismas 23

FIGURE 2.3: Land uses on the Ebro River basin, based on information for the year 1984 at 1:100000 scale.

2.2.3 Soil Types

Information about the soil types was provided by the Oficina de Planificación Hidrológica [Hydro-
logical Planning Office] of the CHE, in March 2009 (Confederación Hidrográfica del Ebro & Ministerio
de Medio Ambiente y Medio Rural y Marino, 2009) as an under-construction shapefile (’geoebrop’)
created by merging Arc Info files from http://oph.chebro.es/ContenidoCartoGeologia.htm. This
information was used for defining the initial soil properties required for the hydrological simula-
tions. The original 150 lithological classes were first aggregated into 23 major classes, as shown in
Figure 2.4, and described in Table 2.2.
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TABLE 2.2: Original 150 soil classes for the Ebro River basin, provided by the Oficina de Planificación
Hidrológica (OPH) (Confederación Hidrográfica del Ebro & Ministerio de Medio Ambiente y Medio
Rural y Marino, 2009) and the 23 aggregated classes.

VALUE Aggregated Class Original IDDOM’s ID

1 Arcillas 315, 7347, 7348, 7349, 7358
2 Arenas 451
3 Arenas y otros 310, 360, 370, 990, 1010, 1040, 7212, 7213, 7224
4 Areniscas 100, 110, 330, 400, 540, 660, 661, 721, 722, 723,

7236
5 Brechas 210, 491
6 Calcarenitas, margas y cal-

izas arenosas
622

7 Calizas 3, 6, 121, 123, 230, 240, 250, 260, 280, 312, 316,
320, 340, 341, 350, 410, 421, 440, 470, 490, 620,
650, 651, 752, 753, 754, 758, 970, 7513

8 Cantos 910, 920, 940, 950, 980
9 Conglomerados 311, 711, 713, 714, 716, 900, 7113, 7123, 7124,

7134, 7136, 7145, 7146, 7147, 7148, 7149, 7179,
7248

10 Cuarcitas y pizarras 1, 4, 10
11 Dolomias 120, 200, 290, 621
12 Facies lagunares con sales

potasicas
662

13 Flysch: Areniscas y lutitas en
facies turbiditicas

630

14 Grauvacas y pizarras. Areni-
tas, pelitas y conglomerados

5

15 Gravas 930, 960, 1030
16 Intercalaciones de calizas la-

custres y lignitos
611

17 Limolitas y Limos 313, 728, 1060, 7246
18 Lutitas 7, 122, 380, 610, 733, 734, 7313, 7335, 7346, 7359
19 Margas 130, 220, 270, 314, 342, 422, 441, 450, 460, 480,

530, 640, 641, 743, 7446, 7449, 7456
20 Megabrechas carbonatadas,

ofitas, pizarras ampeliticas,
rocas filonianas, rocas meta-
morficas, Sales, serie mixta
detritico-terrigena

2, 140, 430, 631, 1050, 3000, 4000

24 Rocas Intrusivas 2000
26 Rocas volcanicas 5000
29 Yesos 761, 763, 7623, 7636, 7646, 7656
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FIGURE 2.4: Soil classes on the Ebro River basin, provided by the Oficina de Planificación Hidrológica
[Hydrological Planning Office] of the CHE (Confederación Hidrográfica del Ebro & Ministerio de
Medio Ambiente y Medio Rural y Marino, 2009).

2.2.4 Reservoirs and Infrastructures

Within the study area there are numerous infrastructures that severely modify the natural flow
regime. These infrastructures are summarized by Zambrano-Bigiarini et al. (2008), and comprise
more than 45 reservoirs with a capacity larger than 1 Mm3 (http://oph.chebro.es/DatosBasicosCHE.
html), equivalent to a total regulation capacity of 4055 Mm3; 380 hydropower plants; 90 fish farms;
and 51 main irrigation systems, spread over ∼10% of the total area of Ebro River basin up to year
2004. Among all the water uses, the influence of reservoirs on the hydrological regime is one
often difficult to predict, even in the presence of a good data record, because their behaviour
change on a daily/weekly/monthly basis according to variations in the relationship between wa-
ter availability and demand. Daily stored volumes and releases for reservoirs were downloaded
from the web site of the Centro de Estudios y Experimentación de Obras Públicas (CEDEX) [Cen-
tre of Studies and Experimentation of Public Works] (http://hercules.cedex.es/anuarioaforos/),
for the period 01/Jan/1961 - 31/Dec/1990. Notwithstanding the simulation of reservoirs is not
presented in this dissertation, additional reservoir information was collected in early stages of
this work, in order to allow a further representation of these infrastructures in the hydrologi-
cal simulations. In this context, daily data of water depth and stored volume were downloaded
from the web site Sistema Automático de Información Hidrológica y de Comunicación Fónica de
la Cuenca Hidrográfica del Ebro (SAIH) [Automatic Hydrologic Information System of the Ebro
Basin] (http://195.55.247.237/saihebro/index.php), for the period Sep/20032 - Dec/2008, and this
information was used for reconstructing the curve of stored volume versus surface area of some
test reservoirs. These curves might be used in further studies for calibrating the feeding catch-
ment to each reservoir, by using the water balance equation of each reservoir to compute its daily

2Available information starts on September 1st, 2003
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inflows, and then using those inflows as the outflows of the corresponding feeding catchment.

FIGURE 2.5: Main reservoirs, hydropower plants and fish farms existing on the Ebro River basin.

2.2.5 Weather and Streamflow Data

Time series and spatial location of monthly precipitation, temperature, and computed poten-
tial evapotranspiration were downloaded from http://oph.chebro.es/ContenidoClimatologicoD.
htm, for the period Oct/1940 - Sep/1991. However, in order to provide the hydrological model
with the required daily data of precipitation and air temperature, daily precipitation in 1569 rain
gauges and daily mean temperature in 859 stations were provided in April/2008 by the OPH, for
the period 1900-2004. At the other hand, daily streamflows in 318 stream gauges, for the water
years Oct/1912 - Sep/2004, were collected from the website of the CHE (http://oph.chebro.es/
documentacion/CaudalEA/CaudalEA.htm) for stations located in the main course of rivers, and
from the OPH for those stations measuring reservoir deliveries. These data are summarized by
Zambrano-Bigiarini et al. (2007).

Additionally, in order to provide the hydrological model with the required maximum/minimum
daily temperature, hourly data in 34 stations of the HidroEbro database (stations 0016A, 0034C,
0076, 0149D, 0158O, 0162C, 0189E, 0200E, 0208, 0222, 0321, 0341, 0367, 0421E, 1014, 1024E, 1082,
1109, 1111, 2030, 2331, 3013, 3168C, 8368U, 8500A, 9091O, 9170, 9263D, 9381I, 9390, 9434, 9771C,
9898, 9981A) were provided in April 2008 by the OPH, for the period 01/Jan/2003 - 16/Oct/2006.
These hourly data were used to derive monthly relationships between the maximum/minimum
daily temperature and the daily mean temperature, as described in section 3.3.4.
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FIGURE 2.6: Gauging networks on the Ebro River basin, showing the spatial location of stations measuring
streamflow (red squares), precipitation and temperature (green boxes) and only precipitation
(blue circles).

2.2.5.1 Selection of Gauging Stations

The large amount of collected time series vary in length and quality, with many missing values un-
evenly distributed in space and time. In order to reduce the amount of information to be managed
during the hydrological simulations, and to avoid the use of non-representative gauges, only sta-
tions with a long-data record, i.e., an amount of daily information above a given threshold, were
selected for the simulations. The threshold for each gauging type was selected trying to meet a
balance between the number of stations with a long-data record, and the number of stations nec-
essary to (i) describe the spatial variability of the meteorological fields, in the case of precipitation
and air temperature gauging stations, and (ii) to calibrate and validate the hydrological model
in some representative points, in the case of stream gauges. In particular, for the control period
01/Jan/1961 - 31/Dec/1990, we plotted different desired threshold values, representing the per-
centage of days with no- missing values in each station, versus the number of gauging stations in
which the percentage of days with non-missing values was above the desired threshold, as shown
in Figure 2.7. Based on the previous plots, we selected a threshold of 70% for precipitation, 65%
for temperature and 65% for streamflow, resulting in 349, 146 and 182 gauging stations of pre-
cipitation, temperature and streamflow, respectively. The complete list of stations is reported in
the Appendix A, and a summary with the distribution of days with information per year in each
station is depicted in Figure 2.8.
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FIGURE 2.7: Desired minimum percentage of days with information in the gauging stations, during the
control period 01/Jan/1961 - 31/Dec/1990, versus the number of stations satisfying that cri-
terion. Vertical lines show the selected thresholds of 70%, 65% and 65% of days with infor-
mation for precipitation, temperature and stream gauges, respectively.
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FIGURE 2.8: Days with information per year in the selected gauges, during the period Jan/1961-Dec/1990,
considering only those stations with more than 70%, 65% and 65% of days with information
for precipitation, temperature and stream gauges, respectively.
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”To know one’s ignorance
is the best part of knowledge”

(Lao Tse) 3
Hydrological Modelling (1961-1990)

This chapter describes the implementation of a semi-distributed modelling approach on the north-
western part of Ebro River basin, and the uncertainty analysis carried out for the streamflows pre-
dicted with the hydrological simulations. Section 3.1 provides a brief introduction about concep-
tual rainfall-runoff modelling, parameter identifiability, equifinality, sensitivity and uncertainty
analysis, in order to provide the required background for this chapter. In section 3.2 the selected
hydrological model, Soil and Water Assessment Tool (SWAT), is described along with its set up in
a 42000 km2 catchment area in the Northern Spain, in order to carry out daily simulations during
the control period 1961 - 1990. In section 3.4, a Latin-Hypercube One-factor-At-a-Time (LH-OAT)
sensitivity analysis method is used to identify parameters with the highest impact on simulated
streamflows; whereas the Generalized Likelihood Uncertainty Estimation (GLUE) methodology
was used, in combination with a Latin Hypercube (LH) sampling, to carry out the uncertainty
analysis and to select parameter sets that better represent the catchment behaviour during the
calibration period 1962-1980. Parameter sets deemed as good simulators of the catchment during
calibration were then tested during the verification period 1981-1990. The large number of sim-
ulations required to assess the combined effect of uncertainties in hydrological parameterisation
and driving climate scenario, in the next chapters of this dissertation, leads to consider only two
study catchments for testing the proposed methodology, and similar approaches can then be used
for the entire area, already set up. Finally, section 3.6 presents the results and a brief summary of
the main findings, at the end of this chapter.

3.1 Introduction

3.1.1 Conceptual Rainfall-Runoff Modelling

Hydrological models have been increasingly used during the last decades (tightly tied to the de-
velopment of computer power) for a variety of purposes, including water resources assessment
and management, flood forecasting, runoff estimation in ungauged basins, impact assessment
of land use and climate change, point and diffuse pollution assessment, support to policy mak-
ing, and better understanding of some hydrological process. Hydrological models are simpli-
fied representations of interlinked complex processes undergoing in real catchments, in which
the hydrological cycle is represented through a mathematical formulation of the most relevant
and well-known physical process. The resulting set of equations are embedded into a com-
puter code, and some parameters are used to characterize properties of the catchment that are
constant under some circumstances (Wheater, 2008). The characteristics and data requirements
of each model will depend on the particular aim that led to its development. Therefore, they
could be grouped in different ways: deterministic/stochastic, surface runoff/groundwater; water-
quantity/water-quality; metric (black/box)/parametric/mechanistic (physically-based) (Wagener
et al., 2004; Wheater, 2008); lumped/distributed/semi-distributed, or many combinations among
them. In principle, the modelling approach should be decided according to the spatio-temporal
scale of the problem, model and data availability, the objective of modelling task, and the type
of catchment. Although the choice of the modelling approach is a very interesting and in some
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cases a controversial topic, this is not the main focus of the present dissertation. Despite the fact
that the physical laws governing the hydrological cycle involve complex relationships, evidence
indicates that the information content in a rainfall-runoff record is sufficient to support models
of only very limited complexity (Jakeman and Hornberger, 1993). Conceptual rainfall-runoff mod-
els are relatively simple and easy to use tools in which the model structure is specified prior to
any modelling being undertaken, and at least one of the model parameters does not have a di-
rect physical interpretation, in the sense of being independently measurable; hence it have to be
estimated through calibration against observed data (Wheater, 2008; Wagener et al., 2004).

3.1.2 Parameter Identifiability, Uniqueness and Equifinality

Some parameters used in conceptual models to represent the hydrological properties of the catch-
ments do not have direct physical meaning and are usually estimated by a trial-an-error (calibra-
tion) procedure (Wheater, 2008; Wagener et al., 2004), using one or more goodness-of-fit between
observed and simulated values within the catchment. Even though computer power has been con-
tinuously increasing during the last decades, the exploration of the high-dimensional parameter
space is undermined by several well-known problems (e.g. Johnston and Pilgrim, 1976; Sorooshian
and Dracup, 1980; Sorooshian et al., 1983; Sorooshian and Gupta, 1983; Kuczera, 1983; Hornberger et al.,
1985; Duan et al., 1992; Beven and Binley, 1992; Uhlenbrook et al., 1999): (a) more than one main
convergence region; (b) multiple local optima on the objective function surface; (c) rough and
non-convex response surface (d) non-linear interaction and interdependence of parameters; (e) se-
lection of the objective function used to measure the agreement between observed and simulated
values; (f) interactions between boundaries of different parameter values; (e) saddle points, where
first derivatives vanish, but minima are not reached; (g) different scales for different parameters;
(h) non-informative data (Yapo et al., 1996), and (i) bias, autocorrelation and heteroscedasticity
in the residuals (Sorooshian and Dracup, 1980; Feyen et al., 2007). One important consequence of
the aforementioned problems is the impossibility to find a unique best parameter set, i.e., many
parameter sets might provide equally good fit to the observations (for a given performance cri-
terion) (e.g. Beven and Binley, 1992; Duan et al., 1992; Freer et al., 1996; Seibert, 1997), leading to a
non-identifiability and equifinality (Beven, 2006), arising from over-parametrized models, data limi-
tations, and structural flaws in the conceptualization of the system. According to Wheater (2008),
two major limitations for hydrological modelling arise from equifinality: (a) if parameters can
not be uniquely defined, they can not be associated to catchment characteristics; hampering the
application in ungauged catchments; and (b) if physical significance of parameters is ambiguous,
representation of catchment change can be difficult to achieve.

3.1.3 Sensitivity Analysis and Calibration Techniques

Over-parameterisation of complex models is a well-known concern in hydrological modelling and
it may turn into a challenge the assessment of the parameter values to be used for a given mod-
elling task. The number of parameters involved in hydrological simulations will depend on the
selected modelling approach and the spatial detail used for describing catchment’s characteristics.
Sensitivity analyses are valuable tools for identifying parameters with a high impact on model out-
puts, and for testing the selected model structure; allowing a better planning of future field mea-
surements (Sieber and Uhlenbrook, 2005). The correct identification of sensitive parameters allows to
reduce the amount of parameters subject to calibration. A short overview of existing methods for
sensitivity analysis and their role in the model-building process is given by Campolongo et al. 2000;
Sieber and Uhlenbrook 2005; Francos et al. 2003, and a full review can be found in Saltelli et al. (2000).
Random One-factor-At-a-Time (OAT) (Morris, 1991) is a local sensitivity method integrated into a
global one, where only one parameter is modified between two successive model runs, to obtain
the partial effect of each parameter, allowing the unambiguous attribution of changes in model
outputs to such a parameter (Holvoet et al., 2005). Considering P parameters this analysis involves
P+1 model runs to obtain the partial effect of each parameter. The partial effects obtained through
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this method may depend on the nominal values chosen for the remaining parameters, and hence
this procedure is repeated with several random sets of nominal values of the parameters, allowing
the final effect of each parameter be obtained as the average of the partial effects (van Griensven
et al., 2006). The random sampling underlying the OAT procedure can lead to a significant com-
putational cost. Latin-Hypercube (LH) sampling (McKay et al., 1979) is an efficient technique to
perform random sampling without requiring too many runs as the normal Monte-Carlo approach,
in which each parameter range is divided into N strata with the same 1/N probability of occurrence
(uniform distributions within parameter ranges leads to N equal intervals). For each parameter,
only one random value is generated from each stratum. van Griensven et al. (2006) developed an
efficient Latin-Hypercube One-factor-At-a-Time (LH-OAT) method, used in the present disserta-
tion. This approach combines the efficiency of LH sampling (ensuring that the full range of all
the parameters has been sampled) with the OAT sensitivity analysis, by taking the LH samples as
initial points for the OAT analysis, with a total of N(p+ 1) required runs, where N is the number
of strata used for each parameter, and P is the number of parameters under consideration. At the
end of the analysis, LH-OAT provides a ranking of parameter sensitivity based on the final effects.

After a decision has been taken about which model parameters have to be estimated, a calibration
procedure has to be selected for carrying out the parameter estimation. A great deal of research has
been devoted to the development of calibration procedures, ranging from semi-intuitive/manual
(Janssen and Heuberger, 1995) to fully automatic methods (e.g. Duan et al., 1992; Cooper et al., 1997;
Franchini et al., 1998; Madsen et al., 2002; van Griensven and Bauwens, 2003; Vrugt et al., 2003a; Lin
and Radcliffe, 2006; Vrugt et al., 2006; Kuczera et al., 2006; Zhang et al., 2009a); the former are very
time-consuming processes that depends on the modeller’s accumulated experience; and the latter
are much faster and objective approaches, in the sense that explicit rules for changing the param-
eters are included in the algorithms implemented for carrying out the automatic search. Early
developments in automated calibration methods were focused mainly on the selection of a single-
objective index/criteria for measuring the distance between observed and simulated values, and
the selection of an automatic optimization algorithm to find the parameter set that minimize that
index/criteria within a pre-defined model structure (Freer et al., 1996; Yapo et al., 1998).

Automatic calibration procedures require the selection of an objective function to measure how
close simulated values are to observations, and its quantitative assessment is used to provide an
evaluation of the predictive capabilities of the model (Legates and McCabe Jr., 1999). Despite the
Pearson’s product-moment correlation coefficient r and its square, the coefficient of determination
R2, are over-sensitive to outliers and are insensitive to additive and proportional differences be-
tween observed and simulated values (Willmott, 1981, 1984; Legates and McCabe Jr., 1999), they are
commonly used to assess the ”goodness-of-fit” of hydrological models. To circumvent problems
associated to correlation-based measures, some relatively new descriptive statistics have been pro-
posed, for looking at the agreement between observed and simulated values with an emphasis on
different aspects of the hydrological response. Among the previously mentioned statistics, some
widely used are: the Nash-Sutcliffe efficiency NSeff (Nash and Sutcliffe, 1970), the percent bias
PBIAS (Yapo et al., 1996), the index of agreement d (Willmott, 1981, 1984), the coefficient of persis-
tence P (Kitanidis and Bras, 1980), the ratio of the root mean squared error to the standard deviation
of the observations RSR (Moriasi et al., 2007), and the weighted coefficient of determination bR2

(Krause et al., 2005). For a given number of observations, n, the aforementioned goodness-of-fit are
defined in equations 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 as follow:
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in which Oi and Si correspond to the observed and simulated values at time step i, O is the arith-
metic mean of all the observations, and b is the slope of the linear regression between observations
and simulations.

The NSeff measures the fraction of the variance of the observed flows explained by the model,
its optimal value is 1.0, and values less than 0 indicates unacceptable performance, because the
mean of the observed values is a better predictor than the simulations. Although the NSeff is an
improvement over the coefficient of determination for evaluation purposes, it is markedly sen-
sitive to extreme values, as is R2 (Legates and McCabe Jr., 1999). The index of agreement d is a
measure of the degree to which model predictions are error free, it varies between 0.0 and 1.0, the
latter indicating a perfect agreement, and a the former representing a variety of complete disagree-
ments. The PBIAS measures the tendency of the simulated variable to be larger or smaller than
the corresponding observed value, its optimal value is 0.0, positive values indicate a tendency to
over-estimation whereas negative values indicate a tendency to under-estimation. The coefficient
of persistence P is commonly used for real-time forecasting models, it compares the predictions
of the model with predictions obtained in a Wiener process (a linear increment of variance with
time), where the best estimation for a future value is given by the last measurement, its optimal
value is 1.0 and lower values indicates lower performance. The ratio of the RMSE to the standard
deviation of the observations RSR standardizes RMSE using the observations, it varies from an
optimal value of 0 (which means RMSE=0) to a large positive value. The bR2 is an error index
designed for dealing with systematic under- or over-predictions, where the coefficient of determi-
nation is weighted by the slope of the linear regression between observations and simulations, it
varies from an optimal value of 1 to zero.

Legates and McCabe Jr. (1999) examined the use of goodness-of-fit measures for validation assess-
ment of hydrological models, and they concluded that reporting a single goodness-of-fit measure
is inappropriate for assessing the predictive capabilities of a model, because they are but single
tools in assessing model performance. Legates and McCabe Jr. (1999) and Krause et al. (2005) also
encouraged the use of absolute error measures (e.g., mean absolute error MAE and/or root mean
squared error RMSE) in the units of the simulated variable, along with additional statistics and
graphical tools (Willmott, 1984; Willmott et al., 1985), in order to gain insights about systematic
problems in the model. Moriasi et al. (2007) reviewed reported ranges for the previously described
statistics, and recommended the use of the NSeff , the PBIAS and RSR, along with graphical tech-
niques for model evaluation, and suggested that streamflow simulations can be deemed accept-
able when NSeff > 0.5, RSR < 0.7 and −25% ≤ PBIAS ≤ +25%, ME, MAE, RMSE, are close to
zero; and d, P, R2 and bR2 are close to 1.

However, practical experience with the calibration of hydrological models suggests that single-
objective functions, no matter how carefully chosen, are often unable to properly capture all the
main characteristics of the observed data, and therefore, parameter sets obtained with such single-
objective calibration methods are seldom deemed acceptable by practitioners (Yapo et al., 1998;
Vrugt et al., 2003b). Furthermore, multi-objective (e.g. Yapo et al., 1998; Boyle et al., 2000; Wagener
et al., 2001; Seibert and McDonnell, 2002; Engeland et al., 2006; van Griensven and Bauwens, 2003;
Bekele and Nicklow, 2007; Pokhrel et al., 2008) and/or multi-site (e.g. Zhang et al., 2008; Cao et al., 2006)
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optimization strategies might be needed to adequately represent the trade-offs among the different
incommensurable and often conflicting objectives, and to better understand the limitations of the
selected model structure (Vrugt et al., 2003b).

Notwithstanding automatic calibration procedures are able to find parameter sets that reproduce
reasonably well -according to one or more goodness-of-fit criterion- the observations, a good fit
between observed and simulated streamflows might be obtained with different and even unre-
alistic concepts (e.g. Uhlenbrook et al., 1999; Mroczkowski et al., 1997), and therefore a good fit only
ensures that the model under evaluation is one of many possible representations of the real system.
Additionally, parameter optimization might result in biased parameter values, where errors in the
estimated parameters are compensated with errors in the model structure (e.g. Refsgaard et al.,
2006), leading to fit the noise in the target signal instead of capturing the underlying physical pro-
cess. Consequently, model predictions should be presented as ranges or probability distributions
instead of single best predictions (Freer et al., 1996; Beven and Binley, 1992; Uhlenbrook and Sieber,
2005; Refsgaard et al., 2007). Moreover, Wheater et al. (2008) states that ”it will soon no longer be ad-
equate to present a simulation output as a single best estimate, with no attempt to specify the associated
confidence intervals”.

Recently, Yilmaz et al. (2008) suggested a diagnostic approach to model evaluation which abandon
the classical approach to find parameter sets that optimize some aggregated measure of model
performance, whereas it propose the use of signature patterns present in data to identify model
inadequacies. The use of such signatures; related to the overall water balance, vertical soil mois-
ture redistribution, long-term baseflow behaviour, and timing of flows at fine time scales; can
help to avoid achieving better model performance due to wrong reasons, and to assist a semi-
automated approach to detect model flaws, for resolving the failures through modifications to the
corresponding model component/parameter group. Some of the signatures and concepts pro-
posed by Yilmaz et al. (2008) are used during the uncertainty analysis of this dissertation (section
3.4.2).

3.1.4 Uncertainty in Hydrological Modelling

In contrast to other sciences in which it is possible to obtain an exact solution for the phenomenon
under study, hydrology is a highly uncertain science, in which complex dynamics of many hydro-
logical processes, physical domains that evolve in time, data scarcity, and errors in measurements
hamper the theoretical treatment of the aforementioned problems. Uncertainty, ignorance, error,
risk and other related terms widely used in hydrology are defined in a different way by different
authors. Brief definitions and taxonomies can be found in Refsgaard et al. (2007), whereas Walker
et al. (2003) provides a conceptual basis for the treatment of uncertainty in policy-making and
other model-based activities. We want to emphasise the difference between ignorance and uncer-
tainty, in which the former represents a lack of awareness regarding imperfect knowledge, and
the latter stands for a degree of confidence in the possible outcomes. The uncertainty treatment
adopted in this dissertation correspond to the general definition given by Walker et al. (2003), in
which uncertainty is ”any deviation from the unachievable ideal of completely deterministic knowledge of
the real system”. In this way, uncertainty is an unavoidable fact when dealing with real catchments,
and hydrologists have to get use to include it into their every-day decisions.

3.1.4.1 Sources and Nature of Uncertainty

The sources of uncertainty can be identified under the umbrella of different -and not always
consistent- classification schemes (Matott et al., 2009). In this dissertation we adopted the fol-
lowing main sources of uncertainty: (a) input data (e.g. Vrugt et al., 2008; Ajami et al., 2007; Kuczera
et al., 2006), used to drive hydrological simulations; (b) model parameter values, used to represent
some features of the real system, within the selected model structure; and (c) model structure or
conceptual model (e.g Smith et al., 2008a; Beven et al., 2008; Ajami et al., 2007; Refsgaard et al., 2006;
Butts et al., 2004; Wagener et al., 2003; Sorooshian and Gupta, 1985), used as a simplified representa-
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tion of the real system under study. However, some authors identify additional sources: modeller
uncertainty (Linkov and Burmistrov, 2003), initial system state uncertainty (Beck, 1987), context and
technical uncertainty (Refsgaard et al., 2007), and outcome uncertainty (Walker et al., 2003).

According to Matott et al. (2009), uncertainty may also be classified as reducible or irreducible, de-
pending on its nature1. Reducible uncertainty comes from imperfect knowledge, conceptualiza-
tions, data, etc., and can be reduced by more studies; whereas irreducible uncertainty originates
in the natural variability of the phenomenon under study (e.g, rainfall, streamflows). The quest
for a reasonably good representation of the real catchments is often affected by both types of un-
certainty.

3.1.4.2 Uncertainty Assessment

Hydrological predictions are commonly used to support the introduction of a new environmental
regulation policy, to design mitigation plans for climate change impacts, etc. Therefore, quan-
tification of the reliability of hydrological predictions has a societal importance. Uncertainty
assessment is a research topic with an increasing number of contributions in the recent years.
Methodologies for uncertainty assessment are numerous, ranging from objective/analytical ap-
proaches (e.g., error propagation equations, sensitivity analysis, inverse modelling) to subjective
judgements (e.g., expert elicitation, extended peer-review). Refsgaard et al. (2007) provides a brief
review of 14 methodologies used in uncertainty assessment and characterization, within a frame-
work tailored to the role of uncertainty in model-assisted water management practices. Recently,
Matott et al. (2009) provided a summary of concepts related to characterization, quantification and
propagation of uncertainty in integrated environmental models, presented a list of relevant tools,
and gave some guidelines for both practitioners and tool developers.

3.1.4.3 Generalized Likelihood Uncertainty Estimation (GLUE)

In a way of providing a realistic assessment of the uncertainties in model predictions, coming from
imperfect knowledge about model structure, parameter sets and forcing data, Beven and Binley
(1992) proposed the Generalized Likelihood Uncertainty Estimation (GLUE), an uncertainty anal-
ysis methodology developed as an extension of the Generalized Sensitivity Analysis (Beven, 2006)
of Hornberger, Spear and Young (Whitehead and Young, 1979; Hornberger and Spear, 1981; Young,
1983), to assess the confidence in model predictions of complex real-world applications (Beven
et al., 2008), where new block of data are not always informative for formal likelihood measures
(Beven et al., 2007). From that point on, GLUE has been widely used in hydrological applications
(e.g Freer et al., 1996; Beven and Freer, 2001; Beven, 2006; Blasone et al., 2008a; Yang et al., 2008). Beven
and Binley (1992) argue that ”prior to the introduction of any quantitative or qualitative information to
a modelling exercise, any model/parameter set combination that predict the variable or variables of interest
must be considered equally likely simulator of the system”.

The GLUE methodology rejects the idea of a unique ”best” representation of real system in favour
of all the possible acceptable (or ”behavioural” in the GLUE terminology) model structures and
parameter sets within model structures (Beven, 2006; Beven et al., 2000), on the basis of available
data and knowledge. The selection of behavioural parameters is made on the basis of a perfor-
mance cut-off threshold, whereas the distribution of model predictions are computed using a ”less
formal” likelihood function. Simulators that performs below the cut-off threshold are assigned a
likelihood of zero, whereas all the simulators with a performance higher than the cut-off threshold
are retained as acceptable representations of the system, and hence used to compute the predictive
uncertainty. The selection of both the cut-off threshold and the less formal likelihood is modeller’s
dependent, and expresses his/her understanding of the uncertainties involved in the modelling
process. The GLUE methodology can be summarized as follow:

1Walker et al. (2003) refers to the reducible uncertainty as epistemic, and to the irreducible uncertainty as stochastic or
ontological.
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1. Selection of a prior probability distribution for each parameter within each model structure
under consideration.

2. Definition of a methodology for sampling the parameter space.

3. Formal definition of a likelihood measure or set of likelihood measures, for assessing the
goodness-of-fit between observed and simulated values.

4. Performance assessment of each simulator, using the likelihood function.

5. Selection of behavioural parameter sets, using a cut-off threshold.

6. Rescaling the likelihood of the behavioural parameter sets, such they sum to 1.

7. Compute predictive uncertainty, by using quantiles of the cumulative distribution of each
predicted output, weighted by its corresponding likelihood.

GLUE uses the term likelihood as a fuzzy concept that represent the degree of confidence of the
modeller in each parameter set within a particular model structure, instead of using the restricted
sense of maximum likelihood theory, which assumes errors with zero mean and normally dis-
tributed (Beven and Binley, 1992). Requirements for the chosen likelihood measure are: (i) it should
be zero for all the simulators that do not represent the real behaviour of the system, and (ii) it
should increases monotonically for better representations of the system (Beven and Binley, 1992).
Following Freer et al. (1996), results presented in this study make use of the following likelihood
measure:

L[θi|Y ] =

(
1− σ2i

σ2obs

)N

; σ2i < σ2obs
�� ��3.7

where L[θi|Y ] is the likelihood of the θi model conditioned on the Y set of observations, σ2i is
the error variance associated to the θi model, σ2obs is the variance of the observations during the
analysis period, and N is a shape parameter. The higher the value of N the higher will be the
weight associated with better simulations. When N is equal to 1, equation 3.7 is equivalent to
the Nash-Sutcliffe efficiency criterion (Nash and Sutcliffe, 1970). Other likelihood measures are
discussed in Smith et al. (2008b); Beven and Freer (2001); Beven et al. (2000), and Beven and Binley
(1992). Consequently, predicted uncertainties obtained with GLUE will be conditional to the data
used as input, to the selected model structure, to the models parameter sets evaluated through the
sampling strategy, and to the less formal likelihood measure used to assess the model performance.
Therefore, all of these decisions have to be made explicit to the end users, in order to allow them
to decide if those choices are in agreement with the objectives of the modelling study (Beven, 2001;
Beven et al., 2008).

The subjective decisions (”less formal” likelihood and behavioural threshold) required to imple-
ment the GLUE methodology have been the focus of some recent debate (Montanari, 2005; Man-
tovan and Todini, 2006; Beven et al., 2007; Mantovan et al., 2007; Beven et al., 2008; Stedinger et al.,
2008). In this dissertation, we subscribe what expressed by Beven et al. (2007): ”the use of a formal
Bayes likelihood function is essentially a special case of GLUE where the user is prepared to make strong
assumptions about the nature of the errors”. We also support that a correct estimation of the nature of
the errors in real hydrological problems is undermined by ”(unknown) input errors that are processed
non-linearly through hydrological models that are subject to model structure errors” (Beven et al., 2008),
limiting the correct application of a formal Bayesian approach. Moreover, making such strong
assumptions can yield to an apparent sensation of having the right result when those assump-
tions might not be fulfilled (Beven et al., 2007). Consequently, we chose the GLUE methodology
as a framework for assessing the uncertainty in the model predictions subject to our imperfect
knowledge, and to assist in the identification of conceptual model inadequacies and errors in the
data used to drive the simulations. Recently, Vrugt et al. (2009a), including the discussion given by
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Beven (2009) and Vrugt et al. (2009b), showed that formal Bayesian methods and GLUE can lead
to very similar values of total predictive uncertainty, even when they are based on completely
different error representation approaches.

3.2 Model Description (SWAT)

Among the plethora of hydrological models available (see Singh and Frevert, 2006; Wagener et al.,
2004; Singh and Frevert, 2001; Singh, 1995), the Soil and Water Assessment Tool (SWAT) version
2005, (Arnold et al., 1998; Arnold and Fohrer, 2005), was selected for carrying out the hydrologi-
cal simulations, for the following four reasons. Firstly, the hydrological modules of SWAT have
been used for assessing water quantity and quality evolution in a wide range of spatial scales (e.g.
Arnold et al., 2005; Cao et al., 2006; Fontaine et al., 2002; Schuol et al., 2008a; Zhang et al., 2009b), cli-
mates (e.g. Van Liew and Garbrecht, 2003) and hydrogeologic conditions (e.g. Mapfumo et al., 2004;
Arnold et al., 2005; Abbaspour et al., 2007; Gosain et al., 2005; Wu and Johnston, 2007; Thomson et al.,
2005; Krysanova et al., 2007) worldwide (e.g. Abbaspour et al., 2009; Setegn et al., 2009; Schuol et al.,
2008b; Ndomba et al., 2008; Yang et al., 2007; Arnold et al., 1999; Borah and Bera, 2004). A compre-
hensive review of SWAT model applications, strengths and weaknesses can be found on Gassman
et al. (2007). Secondly, its GIS interface allows the modeller a relatively fast implementation of the
data involved in the simulation of a large river basin, and it is computationally efficient to operate
on a large scale in a reasonable time. Thirdly, its inputs are commonly available from government
agencies. Fourthly, the source code of its hydrological routines have been recoded into Fortran 90
(Arnold and Fohrer, 2005), are well documented and freely available on the web, allowing further
customization for tackling particular needs (e.g. Holvoet et al., 2008; Haverkamp et al., 2005; Eckhardt
et al., 2002; Sophocleous et al., 1999; Krysanova et al., 1998). An advantage of SWAT is its modular
structure, where different process (water quality, sediments, pesticides, etc.) can be activated or
excluded during the simulations, depending on the amount of available data.

SWAT is a public domain (http://www.brc.tamus.edu/swat), basin scale, physically based, con-
ceptual, continuous-time model that operates on a daily time step. SWAT integrates more than 30
years of model developments, within the US Department of Agriculture’s (USDA) Agricultural
Research Service (ARS) (Arnold and Fohrer, 2005) into a single model, developed to support water
managers in assessing the impacts of climate and management practices on water supplies, sedi-
ments, non-point source loadings, and pesticide contamination in ungauged watersheds and large
complex river basins, with varying soils, land use and management conditions over long periods
of time (Arnold et al., 1998; Neitsch et al., 2005a). Upland model components of the latest version
(2005) include weather, hydrology, erosion/sedimentation, soil temperature, plant growth, nutri-
ents, pesticides, agricultural management, sediment and nutrient loadings from urban areas, bac-
teria growth/die-off, and modified dormancy calculations for tropical areas. Stream process allow
for routing of water, sediment, nutrient and organic chemicals in the main channel and transport
of bacteria from land areas to the stream network. Pond/reservoir components include water
balance (considering inflow, outflow, rainfall on the surface, evaporation, seepage from the reser-
voir bottom, and diversions), routing, sediment settling, and simplified nutrient and pesticide
transformation algorithms. Water diversion into, out of, or within the basin might be modelled
to represent irrigation, water supply and other withdrawals from the system (Arnold and Fohrer,
2005; Neitsch et al., 2005a).

In SWAT, the spatial hetereogeneity of the study area is represented by dividing the main basin
into a large number of subbasins or subwatersheds connected by a stream network. Each subbasin
is further subdivided into several homogeneous Hydrological Response Units (HRUs), unique
combinations of land use and soil type, based on threshold percentages thereof (Arnold et al., 1998;
Neitsch et al., 2005a,b). Subdividing the main catchment into HRUs allows the model to reflect
differences in evapotranspiration and other hydrologic conditions for different land cover/crops
and soils, increasing the accuracy of load computations (Fitzhugh and Mackay, 2000) and providing
a much better physical description of the water balance (Neitsch et al., 2005a) . Alternatively, for

22

http://www.brc.tamus.edu/swat
http://www.brc.tamus.edu/swat
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studies involving large spatial or long-term scales, a single HRU can be used for characterizing
each subcatchmet, with the dominant land use, soil type and management combination. Soil water
content, surface runoff, nutrient cycle, sediment yield, crop growth and management practices are
simulated for each HRU and then aggregated for the subbasin by a weighted average (Abbaspour
et al., 2007). Computed flow, sediment yield and nutrient loading obtained for each subbasin
are then routed through the river network to the watershed outlet, using the variable storage or
Muskingum method, both of them variations of the kinematic wave model (Neitsch et al., 2005a).

The water balance in each HRU is computed in four storages: snow, soil profile, shallow aquifer,
and deep aquifer, including canopy interception of precipitation; partitioning of precipitation,
snowmelt water, and irrigation water between surface runoff and infiltration; redistribution of
water within the soil profile, and return flow from shallow aquifers, as depicted in Figure 3.1.
Surface runoff from daily rainfall is estimated using a modified SCS curve number method, which
takes into account the antecedent moisture condition; or the Green-Ampt infiltration equation,
which requires measured or generated sub-daily precipitation inputs. Potential evapotranspira-
tion can be computed with the Hargreaves (Hargreaves et al., 1985), Priestey-Taylor (Priestey and J.,
1972) or Penman-Monteith (Monteith, 1965) method depending on the available data2, or it can be
read from daily potential evapotranspiration (PET) values computed by a different method. Peak
runoff predictions are computed with a modified rational formula, whereas the concentration time
of the watershed is estimated using Manning’s formula, considering both overland and channel
flow. Up to ten elevation bands can be used for representing orographic precipitation and/or
snowmelt, based on the routines developed by Fontaine et al. (2002). Snow melts on days when the
average between the snowpack and maximum air temperature exceeds a threshold value, allow-
ing for seasonal variations, and melted snow is treated as rainfall for the computation of runoff
and percolation.

FIGURE 3.1: Schematic representation of the hydrologic cycle in SWAT. After Neitsch et al. (2005a), with
permission.

Water in the soil can flows under saturated or unsaturated conditions, and SWAT directly sim-
ulates saturated flow only, assuming that water is uniformly distributed within each layer. This

2Hargreaves method requires air temperature only; the Priestey-Taylor method additionally requires solar radiation
and relative humidity; whereas the Penman-Monteith requires wind speed as well.
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assumption eliminates the need to model the saturated flow in the horizontal direction (Neitsch
et al., 2005a). The soil profile might be divided into multiple layers in which infiltration, evapora-
tion, plant uptake, lateral flow, and vertical redistribution process to other layers can take place.
A storage routing is used to compute redistribution of water between layers in the soil profile.
Saturated flow occurs when the water content of a soil layer surpasses the field capacity of that
layer, and the water in excess is available for percolation, lateral flow or tile flow drainage, unless
the temperature of the soil layer is below 0◦C, in which case no water movement is computed3.
Unsaturated flow between layers is indirectly simulated with the depth distribution of plant wa-
ter uptake and the depth distribution of soil water evaporation (Neitsch et al., 2005a). Lateral flow
is simulated through the kinematic storage model for subsurface flow developed by Sloan et al.
(1983) and summarized by Sloan and Morre (1984). Percolation from each soil layer in the root
zone is allowed when the water content of that layer exceeds its field capacity and the layer below
is not saturated (Neitsch et al., 2005a). Percolation from the bottom of the soil profile recharges the
shallow aquifer, which is conceptualized as an unconfined aquifer that contributes to flow in the
main channel or reach of the subbasin (Neitsch et al., 2005a). The deep aquifer is a confined one,
and water entering to it is considered a loss that contributes to streamflow somewhere outside the
main watershed (Arnold et al., 1993).

A complete description of the model components and their associated equations can be found in
Arnold et al. (1998) and Neitsch et al. (2005a).

3.3 Model Setup

Data required for this study were compiled from different sources as described in section 2.2. Ap-
plication of SWAT to the Ebro River basin requires topographic, soil, land use, and climate data,
as well as streamflow data for calibration, verification, and uncertainty analysis. Discretization of
the main basin into subbasins and HRUs requires several input files in ASCII format. Each subba-
sin requires six files to specify the subbasin (.sub), weather (.wgn), water use (.wus), water quality
(.swq), main channel (.rte), and impoundments (.pnd) parameters; whereas each HRU requires
five files to describe soil (.sol), groundwater (.gw), management (.mgt), topography and water
cycle (.hru), and chemistry (.chm) main properties. All the previous files can be input manually,
but this is a very time-consuming and prone-to-error task.

Nowadays there are three main GIS interfaces available to speed up the creation of the input
files required by SWAT, all of them developed for the c© Windows operative system: (a) Arc-
SWAT (Olivera et al., 2006; Winchell et al., 2007), ESRI ArcGIS extension that works over c© ArcGIS-
ArcView 9.x; (b) AVSWAT-X (Di Luzio et al., 2002b,a, 2004), ESRI ArcView extension that works
over c© Arc-View 3.x; and (c) MWSWAT (George and Leon, 2007), free and open source inter-
face that works over MapWindow. We tried MWSWAT in 2008, but it was unable to handle an
area of 41000 km2 with a spatial resolution of 60 x 60 m. Finally, we chose AVSWAT-X (http:
//swatmodel.tamu.edu/software/avswat) because it was fast and stable for setting up initial pa-
rameters values and generating the corresponding ASCII input files required for the hydrological
simulations, from the available map layers.

3.3.1 Conceptual Model

An adequate representation of the water availability in a catchment strongly affected by anthro-
pogenic disturbances, as the Ebro River basin, not only requires that the main hydrological pro-
cess be ”well” represented, but also needs the main abstractions, reservoirs, and water transfers
be considered in the hydrological modelling task; which implies to collect, analyse and simplify
its main spatio-temporal features before they can be included into the hydrological model. In or-
der to spend the available time in developing and testing the proposed methodology instead of

3Daily average soil temperature is simulated as a function of the maximum and minimum air temperature.
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collecting and analysing raw data, only the western part of the Ebro River basin, shown in Figures
2.1 and 3.2, was selected as study area for the hydrological simulations, with a total area of 42000
km2. Elevations within this western area range from 185 to 2875 m.a.s.l., with an average elevation
of 790 m.a.s.l., and 50% of the area below 770 m.a.s.l.

The size, scale, and number of subbasins used in the SWAT simulations may impact the modelling
process and its subsequent results (Jha et al., 2004). Tripathi et al. (2006) showed that the number
and size of sub-watersheds used in SWAT do not appreciably affect runoff, but it has a significant
effect on the water balance components. Jha et al. (2004) also concluded that the number of sub-
watersheds has very little effect on streamflow, but they found that the opposite result is verified
for sediment, nitrate, and inorganic phosphorus. In principle, the use of subbasins in a simula-
tion is beneficial when different areas within the main basin are different enough in properties to
impact its hydrological behaviour (Neitsch et al., 2005a), but the larger the number of subbasins
the larger the input data preparation effort and the subsequent computational evaluation (Tripathi
et al., 2006). Additional information about the effect of watershed delineation on SWAT outputs
can be found in Jha et al., 2004; Tripathi et al., 2006; Arabi et al., 2006; Muleta et al., 2007; Fitzhugh
and Mackay, 2000; Binger et al., 1997. The DEM described in section 2.2.1 was used to divide the
study area into 120 subcatchments, as shown in Figure 3.2, taking into account: (a) the original
watershed subdivision provided by CHE, in which water balances are computed for planning pur-
poses; (b) the presence of gauging stations with long-term data; and (c) the existence of important
withdrawals/infrastructures (e.g. reservoirs, channels). The resulting catchment boundaries and
drainage network were in close visual agreement with the corresponding vectorial maps avail-
able at the the CHE website . The total and accumulated drainage area; overland field slope and
length; and channels dimensions, slope and length were derived with the AVSWAT-X GIS inter-
face (Di Luzio et al., 2002b,a, 2004) for each sub-watershed, and this information was used at a
sub-watershed level.

Climate change projections are now based on multi-model ensembles to span as much as possible
the possible range of uncertainties associated to the likely future climate (e.g. Tebaldi and Knutti,
2007; Meehl et al., 2007; Christensen et al., 2007b; Giorgi and Mearns, 2003). At the other hand, calibra-
tion and uncertainty analysis of any hydrological model involves a large number of runs, in order
to examine the performance of different parameter sets in representing the target observed values.
Consequently, the propagation of the uncertainties coming from hydrological parameterisation
into the ensemble of likely future climates leads to a very large number of runs of the hydrological
model4, considering both the historical period and the future scenarios. In this way, to test the
feasibility of the developed methodology, two test catchments were first selected within the study
area, in order to allow similar approaches be applied afterwards on the remaining subbasins. The
selected subcatchments were chosen since they represent two different climatic conditions of the
Ebro River basin, and because they have an amount of data that is enough for implementing the
hydrological simulations, as shown in Table 3.1. The location of the selected catchments, and the
main elements involved in the hydrological simulations are shown in Figure 3.2. The selected
subcatchments were:

1. Sub-basin 090: It correspond to the Ega River basin, located in the central part of the study
area, with 1004 m of elevation range (420 to 1424 m.a.s.l.). The mean annual precipita-
tion is 817.5 mm year−1, computed with the values observed during the control period
01/Jan/1961 - 31/Dec/1990 in the four raingauges located within this catchment (P9175,
P9176, P9095, P9177U). It is representative of catchments with an intermediate climatologi-
cal regime.

2. Sub-basin 115: It corresponds to the Homino River basin, located in the north-eastern part
of the catchment, with 680 m of elevation range (570 to 1250 m.a.s.l.). The mean annual pre-
cipitation is 543.0 mm year−1, computed with the values observed during the control period

4which depends on the uncertainty analysis procedure and the amount of climate models considered for the future
scenarios.
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01/Jan/1961 - 31/Dec/1990 in the two raingauges located within this catchment (P9034,
P9037). It represents catchments with a clear semi-arid condition.

TABLE 3.1: Main characteristics of the two selected subcatchments, including ID in the SWAT project,
draining area, elevation range, streamgauge station name, period with streamflow data, the
number of days with missing data, the mean annual streamflow (Q) and the mean annual
precipitation (P ) of each catchment, the latter two computed for the control period 1961-1990.

Subb. ID
Draining

Area
Elevation

Range
Station

ID

Q
Station
Name

Period with Q
Data

N◦ missing
daily Q

data
Q P

[km2] [m.a.s.l.] [m3/s] [mm]

90 808.07 420-1424 Q071
Ega en
Estella

1931-2002 7 12.51 817.5

115 1040.34 570-1250 Q093
Oca en

Oña
1959-2002 480 5.03 542.9

FIGURE 3.2: Map of the study area showing the location of the 120 sub-catchments adopted in the present
dissertation. The red circles indicate the location of the two subwatersheds selected for car-
rying out the hydrological simulations during the control and future scenarios.

In this dissertation the subbasins were characterized by the dominant land use and soil type com-
bination, instead of considering several HRUs for each subbasin. This decision was taken in order
to: (a) obtain the simplest yet realistic description of the catchment that allows a reasonably good
representation of the flows thereof, or in other words, to obtain a parsimonious structure for each
subcatchment, in order to reduce the number of parameters involved in the further stages of cal-
ibration and uncertainty analysis; and (b) to reduce the time needed for carrying out the large
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amount of simulations involved in the uncertainty analysis and future climate scenarios.

According to the document ”Caracterización de las Alteraciones del Régimen Hidrológico Sufridas
en las estaciones de Aforos de la Cuenca del Ebro” [Characterization of the Disturbances to the
Hydrological Regime on the Streamflow Stations of the Ebro Basin] (CHE, 2008) gauging stations
located at the outlet of the selected catchments (Q071 and Q093) are only slightly modified by
withdrawals, hence no consumptive use was incorporated in the simulations of their correspond-
ing catchments.

3.3.2 Land Use

The available land use cover was described in section 2.2.2, and Table 3.2 presents the six major
land use classes identified within the study area and the corresponding names used in SWAT.

TABLE 3.2: Land uses within the study area and adopted for the hydrological simulations, based on infor-
mation for the year 1984 at 1:100000 scale

GRID Value SWAT ID SWAT LandCover/Plant Class % Study Area Original Name
1 SPAS Summer Pasture 0.91 Roquedo
2 FRST Forest-Mixed 26.12 Bosques
3 PAST Pasture 64.48 Praderas
4 URML Urban, Medium Density 0.42 Suelo Artificial
5 WATR Water 0.038 Lagos Interiores
6 AGRL Agricultural Land-Generic 8.04 Regadı́os

3.3.3 Soil Types

The original soil cover information was described in section 2.2.3. Each one of the 23 major soil
classes was ”assimilated” to one available in the SWAT soil database, as included in the SWAT
Editor v.2.1.4, in order to have a rough initial estimation of the soil properties, but considering only
one layer for each soil class, as shown in Table 3.3. This simplified assimilation responds to the
following two criteria: (a) this classification should give an idea about the spatial distribution of
the major soil classes within the study area; (b) the values of most important effective parameters
of each soil class will be provided by the calibration procedure in a further stage.

TABLE 3.3: Soil classes within the study area and adopted for the hydrological simulations with SWAT
2005.

VALUE Adopted NAME Adopted Fitted Original
STMUID S5ID Class IDDOM’s ID

1 VT023 LIVINGSTON VT0018 Arcillas 315, 7347, 7348, 7349, 7358
2 VT027 DUANE NY0034 Arenas 451
3 VT002 POOTATUCK CT0064 Arenas y otros 310, 360, 370, 990, 1010, 1040,

7212, 7213, 7224
4 VT025 STETSON ME0021 Areniscas 100, 110, 330, 400, 540, 660, 661,

721, 722, 723, 7236
5 VT002 HERO CT0047 Brechas 210, 491
6 AL253 HUMPHREYS TN0026 Calcarenitas, mar-

gas y calizas
arenosas

622

7 VT065 HADLEY MA0022 Calizas 3, 6, 121, 123, 230, 240, 250, 260,
280, 312, 316, 320, 340, 341, 350,
410, 421, 440, 470, 490, 620, 650,
651, 752, 753, 754, 758, 970, 7513

8 VT081 MACHIAS ME0033 Cantos 910, 920, 940, 950, 980
Continued on next page. . .
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Table 3.3 – Continued

VALUE Adopted NAME Adopted Fitted Original
STMUID S5ID Class IDDOM’s ID

9 AL003 BODINE TN0064 Conglomerados 311, 711, 713, 714, 716, 900, 7113,
7123, 7124, 7134, 7136, 7145,
7146, 7147, 7148, 7149, 7179,
7248

10 VT016 MIDDLEBURY NY0045 Cuarcitas y pizarras 1, 4, 10
11 VT059 NINIGRET CT0018 Dolomias 120, 200, 290, 621
12 VT082 ONDAWA ME0010 Facies lagunares

con sales potasicas
662

13 VT072 NICHOLVILLE NY0099 Flysch: Areniscas y
lutitas en facies tur-
biditicas

630

14 VT004 BERKSHIRE MA0030 Grauvacas y
pizarras. Aren-
itas, pelitas y
conglomerados

5

15 VTPIT PITS NY0029 Gravas 930, 960, 1030
16 VT033 MELROSE ME0034 Intercalaciones de

calizas lacustres y
lignitos

611

17 VT079 HOWLAND ME0005 Limolitas y Limos 313, 728, 1060, 7246
18 VT082 CHARLES ME0082 Lutitas 7, 122, 380, 610, 733, 734, 7313,

7335, 7346, 7359
19 VT068 MOOSILAUKE NH0043 Margas 130, 220, 270, 314, 342, 422, 441,

450, 460, 480, 530, 640, 641, 743,
7446, 7449, 7456

20 VT082 LOVEWELL ME0081 Megabrechas car-
bonatadas, ofitas,
pizarras ampeliti-
cas, rocas filonianas,
rocas metamorficas,
Sales, serie mixta
detritico-terrigena

2, 140, 430, 631, 1050, 3000, 4000

24 VT096 ROCK OUT-
CROP

DC0015 Rocas Intrusivas 2000

26 VT088 OAKVILLE MI0038 Rocas volcanicas 5000
29 VT007 RIPPOWAM CT0065 Yesos 761, 763, 7623, 7636, 7646, 7656

3.3.4 Daily Maximum and Minimum Temperature on Gauging Stations

As described in section 3.2, computation of ETP requires -at least- measurements of air tempera-
ture, and in particular, SWAT requires daily maximum and minimum air temperature in all the
selected temperature stations, data that were not available during the control period 1961-1990.
However, as mentioned in section 2.2.5, hourly data were available in the HidroEbro database,
were provided by the (OPH) in April 2008, for the period 01/Jan/2003 - 16/Oct/2006 in 34 sta-
tions within the Ebro River basin and surroundings (stations 0016A, 0034C, 0076, 0149D, 0158O,
0162C, 0189E, 0200E, 0208, 0222, 0321, 0341, 0367, 0421E, 1014, 1024E, 1082, 1109, 1111, 2030, 2331,
3013, 3168C, 8368U, 8500A, 9091O, 9170, 9263D, 9381I, 9390, 9434, 9771C, 9898, 9981A). These
hourly data were used to compute multivariate monthly linear relationships between daily maxi-
mum/minimum temperature and elevation and daily mean temperature. The resulting regression
equations for the daily minimum and maximum temperature are as follows:

Tmin = am + bm · Elevation+ cm · Tmean

�� ��3.8

Tmax = am + bm · Elevation+ cm · Tmean

�� ��3.9

The computed coefficients am, bm and cm of the linear regressions (3.8) and (eq:Tmax) are shown
in Tables 3.3a and 3.3b. A leave-one-out cross validation procedure was used for testing the
goodness-of-fit between the values computed with these relationships and the observed ones.
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TABLE 3.3: Monthly values of the coefficients a, b and c for the relationship between minimum and maxi-
mum daily temperature with mean daily temperature

(A) Minimum daily temperature

Month a b c
Jan -3.573 -0.001 1.031
Feb -3.263 -0.002 0.985
Mar -3.621 -0.002 0.959
Apr 0.351 -0.004 0.687
May 2.330 -0.004 0.624
Jun 2.496 -0.005 0.696
Jul 3.250 -0.006 0.699

Aug 2.771 -0.005 0.713
Sep -0.746 -0.004 0.858
Oct -1.345 -0.002 0.873
Nov -3.903 -0.001 1.050
Dec -3.727 -0.000 1.074

(B) Maximum daily temperature.

Month a b c
Jan 4.981 0.000 0.864
Feb 3.762 0.002 1.019
Mar 3.996 0.003 1.049
Apr 0.174 0.004 1.305
May -1.460 0.004 1.349
Jun -1.754 0.005 1.290
Jul -2.548 0.005 1.292

Aug -1.970 0.005 1.277
Sep 0.889 0.005 1.169
Oct 1.631 0.003 1.146
Nov 5.287 0.001 0.877
Dec 5.306 -0.000 0.803

The indexes used for measuring the goodness-of-fit were: the mean error (ME), the mean absolute
error (MAE), the root mean squared error (RMSE), the normalised5 RMSE (NRMSE), the percent
bias (PBIAS, Yapo et al., 1996), the Nash-Sutcliffe efficiency (NSeff , Nash and Sutcliffe, 1970), the
index of agreement (d, Willmott, 1981, 1984), the coefficient of persistence (P, Kitanidis and Bras,
1980), the Pearson’s product-moment coefficient of correlation (r) and the coefficient of determi-
nation (R2), most of them discussed in Moriasi et al. (2007). Tables 3.4 and 3.5 summarize the
overall performance (aggregating the results of the 34 stations for all the available days) for Tmax

and Tmin, respectively. The mean Nash-Sutcliffe efficiency larger than 0.75 indicates that the sim-
ulated values were close enough to the observed ones, whereas a mean error of 0.00 and a percent
bias of 0.00% for all the months, for both Tmax and Tmin, indicate that the computed values are
unbiased.

TABLE 3.4: Monthly goodness-of-fit for Tmin obtained with the monthly relationships, using a leave-one-
out cross validation for all the 34 stations and all the days within the time period

Index Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean
ME, [◦C] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAE, [◦C] 1.51 1.64 1.85 1.75 1.76 1.75 1.53 1.67 1.74 1.58 1.49 1.35 1.64
RMSE, [◦C] 1.83 1.99 2.25 2.15 2.18 2.17 1.92 2.05 2.15 1.95 1.81 1.64 2.01
RMSEnorm, [%] 5.20 6.70 6.60 8.70 8.70 7.70 8.20 8.40 8.20 7.40 6.20 6.10 7.34
PBIAS, [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NSeff, [-] 0.86 0.81 0.80 0.70 0.68 0.68 0.76 0.75 0.76 0.81 0.85 0.87 0.78
d, [-] 0.96 0.94 0.94 0.90 0.90 0.90 0.93 0.92 0.93 0.95 0.96 0.96 0.93
P, [-] 0.65 0.49 0.54 0.33 0.31 -0.01 0.16 0.13 0.13 0.52 0.61 0.67 0.38
r, [-] 0.93 0.90 0.89 0.83 0.82 0.82 0.87 0.87 0.87 0.90 0.92 0.94 0.88
R2, [-] 0.86 0.81 0.80 0.70 0.68 0.68 0.76 0.75 0.76 0.81 0.85 0.87 0.78

Equations 3.8 and 3.9 were used afterwards for generating the daily time series of maximum
and minimum air temperature in each one of the 146 temperature gauging stations selected for
the hydrological simulations (see section 2.2.5.1), both during the control period 01/Jan/1961 -
31/Dec/1990 and the future time slice 01/Jan/2071 - 31/Dec/2100.

5Normalized by the difference between the maximum and minimum observed value.
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TABLE 3.5: Monthly goodness-of-fit for Tmax obtained with the monthly relationships, using a leave-one-
out cross validation for all the 34 stations and all the days within the time period

Index Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean
ME, [◦C] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAE, [◦C] 2.02 2.11 1.98 1.65 1.57 1.57 1.47 1.58 1.80 1.75 1.96 1.74 1.77
RMSE, [◦C] 2.51 2.59 2.43 2.03 1.93 1.94 1.80 1.93 2.25 2.17 2.43 2.19 2.18
RMSEnorm, [%] 8.10 8.80 8.90 7.20 6.70 7.90 7.20 7.70 8.40 8.30 10.00 8.10 8.11
PBIAS, [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NSeff, [-] 0.68 0.64 0.74 0.81 0.85 0.83 0.86 0.82 0.70 0.79 0.63 0.68 0.75
d, [-] 0.90 0.88 0.92 0.94 0.96 0.95 0.96 0.95 0.91 0.94 0.88 0.90 0.92
P, [-] 0.25 0.20 0.52 0.71 0.74 0.67 0.65 0.57 0.45 0.59 0.22 0.32 0.49
r, [-] 0.82 0.80 0.86 0.90 0.92 0.91 0.93 0.91 0.84 0.89 0.79 0.82 0.87
R2, [-] 0.68 0.64 0.74 0.81 0.85 0.83 0.86 0.82 0.70 0.79 0.63 0.68 0.75

3.3.5 Mean Daily Precipitation on Subbasins

Precipitation is a key driver of the hydrological cycle, and should be accurately reproduced in
simulations, since a wrong representation of the precipitation volumes over a catchment might
lead to significant errors in reproducing observations. Moulin et al. (2009) analysed the influence
of mean areal precipitation estimation errors on the flood hydrographs computed by two lumped
conceptual rainfall-runoff models, for three small to medium-size catchments (60 to 3200 km2) and
concluded that a large part of the rainfall-runoff modelling errors can be explained by uncertainty
in rainfall estimates, especially in the case of smaller catchments; whereas Kuczera and Williams
(1992) found that the 90% prediction interval of the 100-year design flood increased by about
100% when uncertainty in the calibration event rainfall was taken into account.

SWAT uses the gauging station closest to the centroid of each subcatchment as representative of
the daily precipitation over it, even if within the subcatchment were more than one raingauge.
In order to avoid loosing precipitation information, due to the fact that the hydrological model
described in section 3.3.1 has 120 main subcatchments but we had information on 349 raingauges
with -at least- 70% of days with information within the control period 1961-1990, we used the hy-
droTSM6 R (R Development Core Team, 2009) package, developed by the author of this dissertation
throughout his Ph.D programme, for computing the mean daily precipitation for each subcatch-
ment, based on information of the neighbouring stations. A local block inverse distance weighted
(LBIDW) procedure, with a weight of 2, was implemented. Figure 3.3 depicts an example for a
single day, and this procedure can be summarized as follow:

1. All the subbcatchments within the study area are sampled using a squared grid with cells of
1 km2.

2. All the stations with a measured value in the current day are used of the analysis, whereas
all the other are discarded (only for the current day).

3. For each cell, an interpolated value of precipitation is computed using the LBIDW, consid-
ering only the closest 10 neighbouring stations within a maximum searching radius of 50
km.

4. For each subcatchment, the mean daily precipitation is computed, averaging over all the
precipitation values of the cells belonging to each subcatchment.

This procedure was applied for each day within both the control period 01/Jan/1961 to 31/
Dec/1990 and the future scenarios 01/Jan/2071 - 31/Dec/2100. The resulting time series of mean

6in particular, the hydrokrige function, a wrapper to some geostatistical functions of the gstat (Pebesma, 2004) and
automap (Hiemstra et al., 2008) packages of R.
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daily precipitation were assigned to one fictitious station for each subcatchment, located in the
spatial centroid thereof and at elevation computed with the same LBIDW procedure applied to
the elevations of the raingauges. Preliminary hydrological simulations (not shown here) for sub-
catchment 90 (see Table 3.1) during the control period revealed that computed streamflows driven
by the LBIDW interpolated precipitations were much closer to the observed ones than those com-
puted by simulations driven by the use of a single raingauge.

Notwithstanding the use of the LBIDW algorithm improved the quality of the precipitation drivers
used in SWAT, we observed that the computed daily values not always provide a realistic estimate
of the total volume of precipitation entering to each catchment. In particular, preliminary simu-
lations (not presented here) showed that the daily values computed for subcatchment 90 under-
estimated the precipitation volume that allowed the reproduction of the observed streamflows in
the catchment. This underestimation was due to the fact that all the four raingauges within this
subcatchment (P9175, P9176, P9177U and P9095) were located within elevations ranging from 600
to 785 m.a.s.l., whereas the elevations within the catchment arrive up to 1424 m.a.s.l., leading to an
underestimation of the precipitation values at high elevations. For overcoming this drawback, a
precipitation lapse rate was computed based on annual precipitation derived from 71 raingauges
located in a buffer area of 75 km around the catchment border, and within elevations ranging
from 300 to 1223 m.a.s.l. The computed lapse rate was 0.522 ± 0.136 mm m−1, which was found
statistically significant at α = 0.1% (p-value < 0.001).

FIGURE 3.3: Example of the block inverse distance weighted (LBIDW) computation of the mean daily
precipitation over the study area, for the 18-Oct-1961. The left figure shows the interpolated
values in each cell of 1 km2, whereas the right figure shows the mean values over each sub-
catchment. Crosses represent raingauges.
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3.3.6 Selected Model Options

Section 3.2 described the options available in SWAT for setting up different model structures, in-
cluding different runoff, evapotranspiration, snow accumulation, snowmelting, and flow routing
algorithms. Among them, we selected the modified SCS curve number for computing runoff,
due to the absence of subdaily rainfall data; the Priestey-Taylor method for computing the ETP,
based on preliminary comparisons of the monthly ETP provided by the CHE office (http://oph.
chebro.es/ContenidoClimatologicoD.htm) with those computed with Hargreaves and Priestey-
Taylor methods; and the the Muskingum procedure for the routing through the channel network.
For a comparison among the 3 different ETP methods, the 2 routing procedures, and 3 snowfall
and melt algorithms included in SWAT2005, in a context of calibration and uncertainty, see Zhang
et al. (2009b).

3.4 Sensitivity and Uncertainty Analysis

3.4.1 Sensitivity Analysis

As mentioned in section 3.1.3, sensitivity analysis allows to identify those parameters that exerts
a strong influence on the model outputs. The sensitivity analysis in the present dissertation was
divided in two stages: (i) an automatic procedure for a preliminary identification of the most sensi-
tive parameters; (ii) a manual analysis of the sensitive parameters identified during the automatic
approach.

The automatic analysis was carried out with the Latin Hypercube One-factor-At-a-Time (LH-OAT)
algorithm described by van Griensven et al. (2006) and included in the AVSWAT-X GIS interface
(Di Luzio et al., 2002b,a, 2004) for SWAT2005. Parameter values can be modified in a lumped way
(over the entire catchment) or in a distributed one (for selected subbasins and/or HRUs), and
we changed them in a lumped way. Parameters can be modified by replacement, by addition of
an absolute change, or by a multiplication of a relative change within the predefined parameter
ranges (see van Griensven and Meixner, 2003; van Griensven et al., 2006). Currently, the implemented
procedure is not able to analyse the sensitivity of all the parameters used in SWAT, instead, it
analyses the behaviour of a pre-defined set of 27 parameters, most of them included in sensitivity
analyses and calibration procedures of other studies (e.g. Lenhart et al., 2002; Francos et al., 2003;
White and Chaubey, 2005; Kannan et al., 2007; Holvoet et al., 2005; Muleta and Nicklow, 2005; Eckhardt
and Arnold, 2001; Abbaspour et al., 2007; Zhang et al., 2009b). Preliminary trials (not shown here)
made clear that the final sensitivity for each parameter depends on the number of strata used in
the LH sampling, so different number of strata (10, 100, 300, 700, 1000) were tried until finding a
stabilization of the final sensitivity ranking, which was found after 1000 strata for subcatchments
090 and 115. The final rankings for the two selected catchments are presented in Table 3.6.

The results of the automatic sensitivity analysis were used just as a guideline in the selection of the
parameters with a high impact on the streamflows simulated by the model, because no automatic
routine can replace the understanding of the physical effects of parameters in the response of
complex hydrological models (Abbaspour et al., 2007). The sixteen parameters shown in Table
3.6 where then subject to a ”manual” sensitivity analysis, in which the value of each parameter
was changed within its physical range, while keeping all the others constant, in order to visually
observe the effects of those changes in the simulated streamflows. Abbaspour et al. (2007) suggests
using five simulations for each parameter, dividing the physical range in equal strata, and using
the midpoint of each interval as representative of it.

After the sensitivity analysis, 10 parameters were selected for the uncertainty analysis described in
the next section. Most of those parameters has been previously identified as sensitive parameters
of the SWAT model (e.g. Kannan et al., 2007; Holvoet et al., 2005; Muleta and Nicklow, 2005; van
Griensven et al., 2006).
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TABLE 3.6: Parameters selected as significant after the automatic sensitivity analysis, including a short
description, the extension of files in which they are located, the option used for carrying out
the changes, the parameter range, and the final ranking after the sensitivity analysis.

Ranking
Parameter Short Description Location Change Option Range Sub090 Sub115
CN2 Initial SCS CN II value *.mgt relative [-50, 50] 1 1
RCHRG DP Deep aquifer percolation factor *.gw absolute [0, 1] 2 2
GWQMN Threshold water depth in the

shallow aquifer for flow, [mm]
*.gw absolute [0, 5000] 3 3

SLOPE Average slope steepness, [m/m] *.hru relative [-50, 50] 4 4
SOL K Saturated hydraulic conductiv-

ity, [mm/hr]
*.sol relative [-50, 50] 5 5

GW REVAP Groundwater ”revap” coefficient *.gw absolute [0.02, 0.2] 6 6
ESCO Soil evaporation compensation

factor
*.hru absolute [0, 1] 7 7

SOL AWC Available water capacity, [mm
H2O/mm soil]

*.sol relative [-50, 50] 8 8

SOL Z Soil depth, [mm] *.sol relative [-50, 50] 9 9
REVAVMN Threshold water depth in the

shallow aquifer for ”revap”,
[mm]

*.gw absolute [0, 500] 10 10

SURLAG Surface runoff lag time, [days] *.bsn absolute [0, 10] 11 11
ALPHA BF Baseflow alpha factor, [days] *.gw absolute [0, 1] 12 13
SMTMP Snowmelt base temperature,

[◦C]
*.bsn absolute [0, 5] 13 12

SOL ALB Moist soil albedo *.sol absolute [0, 1] 14 15
TIMP Snowpack temperature lag fac-

tor
*.bsn absolute [0.01, 1] 15 14

GW DELAY Groundwater delay time, [days] *.gw absolute [0, 100] 16 17

3.4.2 Uncertainty Analysis

The hydrological SWAT model was calibrated and validated based on daily discharges for the
period 01/Jan/1961 - 31/Dec/1990 at the outlet of the two selected catchments. An attempt was
made in order to maintain the number of calibration parameter as small as possible, because ac-
cording to Jakeman and Hornberger (1993) ”only a handful of parameters can be reliably estimated from
rainfall-runoff data”. The final 10 parameters used during the calibration and uncertainty analysis
are schematically presented in Figure 3.4. These parameters are briefly summarized next, and a
detailed description can be found in Neitsch et al. (2005a,b):

• CN2: Initial Soil Conservation Service (SCS) runoff curve number for moisture condition II.
The SCS curve number is a function of the soil’s permeability, land use and antecedent soil
water conditions.

• RCHRG DP: Deep aquifer percolation fraction. The amount of water that will be diverted
from the shallow aquifer to percolate into the deep aquifer (out of the main catchment). The
value for RCHRG DP should be between 0.0 and 1.0

• GWQMN: Threshold depth of water in the shallow aquifer required for return flow to occur,
[mm H2O]. Groundwater flow to the reach is allowed only if the depth of water in the shal-
low aquifer is equal to or greater than GWQMN. The value for GWQMN should be between
0 and 5000 [mm H2O].

• SOL K: Saturated hydraulic conductivity, [mm/hr]. It relates soil water flow rate (flux den-
sity) to the hydraulic gradient, and is a measure of the ease of water movement through the
soil.
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• GW REVAP: Groundwater ”revap” coefficient. This process is significant in watersheds
where the saturated zone is not very far below the surface or where deep-rooted plants are
growing. GW REVAP can vary between 0 and 1, with low values indicating that the move-
ment of water from the shallow aquifer to the root zone is restricted, whereas high values
indicates that the rate of transfer from the shallow aquifer to the root zone approaches the
rate of potential evapotranspiration. According to Neitsch et al. (2005a) its value should be
between 0.02 and 0.2.

• SOL AWC: Available water capacity of the soil layer [mm H20/mm soil]. The plant available
water is calculated by subtracting the fraction of water present at permanent wilting point
from that present at field capacity. AWC= FC - WP, where AWC is the plant available water
content, FC is the water content at field capacity and WP is the water content at permanent
wilting point.

• SOL Z: Depth from soil surface to bottom of a layer, [mm]. Since all the sub-catchments
were conceptualized as single layer units, SOL Z is equal to SOLZMX, the maximum rooting
depth of soil profile [mm]. If no SOLZMX is specified, the model assumes the roots can
develop throughout the entire depth of the soil profile.

• REVAPMN: Threshold depth of water in the shallow aquifer for ”revap” or percolation to
the deep aquifer to occur, [mm H20].

• ALPHA BF: Baseflow alpha factor, [days]. The baseflow recession constant is a direct index
of groundwater flow response to changes in recharge. Values vary from 0.1-0.3 for catch-
ments with slow response to recharge, to 0.9-1.0 for catchments with a rapid response.

• GW DELAY: Groundwater delay time, [days]. It represents the lag between that water exits
the soil profile and enters the shallow aquifer.

FIGURE 3.4: Main parameters related to the water balance components in SWAT 2005 (after MRC, 2006,
with permission).
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3.4.2.1 Sampling Strategy

One of the major shortcomings of the GLUE methodology is the time needed to obtain a number
of parameter sets that provides a good characterization of the likelihood response in the model
space. The traditional GLUE methodology uses uniform prior distributions of each parameter
with a simple random sampling strategy, which is very easy to implement but unlikely to densely
sample the high-dimensional parameter space in the region where the high likelihood parameter
sets are found (Beven et al., 2000). Therefore, we implemented a Latin Hypercube (LH) sampling
strategy, which allows an efficient exploration of the model response to different parameter sets.
This sampling strategy can be summarized as follow: (i) equi-probable subdivision, in which the
range of each parameter is subdivided in N strata with the same probability of occurrence 1/N; (ii)
stratified sampling, where a single parameter value is sampled within each interval; (iii) random
pairing, in which N parameter sets are created from randomly pairing the samples of each strata.
Non informative uniform prior distributions for each parameter were chosen due to the absence
of prior knowledge of the individual probability distributions.

3.4.2.2 Methodology

As mentioned in section 3.3.1, in this dissertation subbasins were characterized by the dominant
land use and soil combination, with a single layer through the soil profile, in order to keep the
complexity of the analysis at a practical limit for the propagation of the hydrological uncertainties
into the projected climate impacts. If this simple configuration can be deemed acceptable will
depend on the results of the uncertainty analysis.

The efficiency of the uncertainty analysis is a crucial issue when dealing with computationally
intensive, complex, long-term and large-scale hydrological models, in particular when the results
of the analysis will be used to propagate hydrological uncertainties into the projected impacts of
climate change. Therefore, the uncertainty analysis used in this dissertation was implemented in
three stages:

1. Exploration of the surface response and derivation of a prior large parameters range. The
complete physical range of each parameter is used to explore the surface response, using
a Latin Hypercube sampling with a few runs (300), and to select a prior large range for
each parameter, a range large enough for encompassing good simulators of the system, but
smaller than the physical one;

2. Derivation of a reduced parameters range. The GLUE methodology is used with a Latin
Hypercube sampling within the large range defined in the previous step, using 2000 strata
and uniform distributions for each parameter. The Nash-Sutcliffe efficiency, described in
equation 3.7 with a shape factor N equal to 1, is used as ”less formal” likelihood, in order
to select the behavioural parameter sets. A cut-off threshold equal to zero is used to dis-
criminate between behavioural and non-behavioural parameter sets, in order to consider as
acceptable simulators of the system all the parameter sets leading to a NSeff performance
better than using the mean of the observed values. A new reduced range for each one of the
10 selected parameters is obtained from the 95% of their cumulative distribution, weighted
by their corresponding re-scaled likelihood;

3. Derivation of predictive uncertainty. GLUE is used with a Latin Hypercube sampling
within the previously defined reduced range, using 2000 strata and uniform distributions for
each parameter. Behavioural parameter sets are then selected with the same criteria of the
previous step. Predictive uncertainty is computed by using the 95% of the cumulative dis-
tribution of each predicted output, weighted by the re-scaled likelihood of each behavioural
parameter set. It is worth to mention that uncertainty bounds are not confidence bounds in
the formal statistical sense, because they are quantiles of the model predictions and not nec-
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essarily have to include a given percentage of the observations (Beven and Freer, 2001; Blasone
et al., 2008b).

The aforementioned procedure was carried out by using a combination of algorithms included
in the SWAT-CUP software (Abbaspour et al., 2008; Abbaspour, 2008), which provides a suite of
stand-alone tools able to interoperate via standardized I/O procedures, allowing to change the 10
selected parameters in a lumped way for each subcatchment.

TABLE 3.7: Parameters used in the uncertainty analysis, including a short description, the extension of
files in which they are located, the prior large range used to reduce the size of the parameter
space, and the reduced range used to compute the predictive uncertainty

Prior Large Range Reduced Range
Parameter Short Description Location Sub090 Sub115 Sub090 Sub115
CN2 Initial SCS CN II value *.mgt U[30, 95] U[25, 95] U[31, 77.3] U[28.64, 71.03]
RCHRG DP Deep aquifer percolation factor *.gw U[0, 0.3] U[0.01, 0.9] U[0, 0.293] U[0.15, 0.86]
GWQMN Threshold water depth in the

shallow aquifer for flow, [mm]
*.gw U[0, 100] U[0, 200] U[2.5, 97] U[12, 199]

SOL K Saturated hydraulic conductiv-
ity, [mm/hr]

*.sol U[10, 1000] U[0.1, 500] U[15, 256] U[6.1, 152.5]

GW REVAP Groundwater ”revap” coefficient *.gw U[0, 0.3] U[0, 0.2] U[0, 0.295] U[0.017, 0.19]
SOL AWC Available water capacity, [mm

H2O/mm soil]
*.sol U[0, 0.35] U[0.05, 0.5] U[0.05, 0.342] U[0.077, 0.429]

SOL Z Soil depth, [mm] *.sol U[200, 2000] U[10, 2500] U[251, 1958] U[224, 2493]
REVAVMN Threshold water depth in the

shallow aquifer for ”revap”,
[mm]

*.gw U[1, 400] U[1, 400] U[10, 391] U[40, 389]

ALPHA BF Baseflow alpha factor, [days] *.gw U[0, 0.9] U[0, 0.9] U[0.028, 0.88] U[0.045, 0.87]
GW DELAY Groundwater delay time, [days] *.gw U[0, 50] U[0, 100] U[2.5, 49] U[12.8, 98.6]

In order to get rid of the unknown initial conditions of the system, the first year (1961) was used
as a warm-up period for all the simulations.

For calibration, usually half of the observed data record is used to be compared against the simu-
lated values, whereas the other half is used to perform an assessment of the predictive capabilities
of the model (frequently referred as ”validation”). Yapo et al. (1996) studied the sensitivity of the
Shuffled Complex Evolution global optimization algorithm (Duan et al., 1992, 1994) to the input
data used for the calibration, and concluded that at least 8 years of data are required to obtain re-
sults relatively insensitive to the length of the selected period, and that the use of the wettest data
period greatly reduced the uncertainty in the parameter values. In this dissertation we decided to
use 19 years for the calibration (01/Jan/1962 - 31/Dec/1980) and the last ten years (01/Jan/1981
- 31/Dec/1990) for verification, because exploratory data analysis revealed a decreasing trend in
the daily streamflows of subcatchment 090, with mean daily values of 15.8, 12.5 and 9.2 m3s−1

for the first, second and third decade of the observation record, respectively; whereas in subcatch-
ment 115 the wettest year was measured in 1978. Therefore, we decided to use the first 19 years to
capture as much as possible the observed variability, but preserving a reasonably long verification
period.

3.4.2.3 Performance Evaluation

In order to use the behavioural parameter sets found during the uncertainty analysis in the prop-
agation of the hydrological uncertainty into the projected impacts of climate change, the uncer-
tainty associated to the behavioural parameter sets is carefully examined during the 10 years used
for verification (01/Jan/1981 - 31/Dec/1990).

Based on previous recommendations (Legates and McCabe Jr., 1999; Krause et al., 2005; Moriasi et al.,
2007), a combination of graphical techniques and error index statistics was used for evaluating
the goodness-of-fit between the simulated and observed values, both during the calibration and
verification period. The used index statistics are briefly described in section 3.1.3: the mean er-
ror (ME), the mean absolute error (MAE), the root mean squared error (RMSE), the percent bias
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(PBIAS, Yapo et al., 1996), the Nash-Sutcliffe efficiency (NSeff, Nash and Sutcliffe, 1970), the index of
agreement (d, Willmott, 1981, 1984; Willmott et al., 1985), the coefficient of persistence (P, Kitanidis
and Bras, 1980), the ratio of the root mean squared error to the standard deviation of the observa-
tions (RSR, Moriasi et al., 2007), the coefficient of determination (R2), and the weighted coefficient
of determination (bR2, Krause et al., 2005). In particular, according to Yilmaz et al. (2008), indices
related to the long-term water balance, as PBIAS, are very sensitive to climatic variability of evap-
otranspiration, and almost insensitive to process operating at shorter time scales, therefore PBIAS
is expected to be most sensitive to parameters controlling evapotranspiration.

Regarding the uncertainty in the simulated outputs, coming from the direct effect of hydrologi-
cal parameterisation but also implicitly from uncertainties in input data and model structure, we
used the 95% of predictive uncertainty (95PPU), computed at the 2.5% and 97.5% of the cumula-
tive distribution of every simulated streamflow. Two main indexes, proposed by Abbaspour et al.
(2009, 2007), were used to quantify the performance of the uncertainty analysis: (i) the P-factor,
which represents the percentage of observed data embraced by the 95PPU; and (ii) the R-factor,
which measures how wide the uncertainty bounds are with respect to the variability of the ob-
servations, computed as the average width of the 95PPU divided by the standard deviation of
the observations. Ideally, i.e., with a combination of model structure and parameter values that
perfectly represents the catchment under study, and in absence of measurement errors and other
additional sources of uncertainty, all the simulated values should be in a perfect match with the
observations, leading to a P-factor equal to 1, and an R-factor equal to zero. However, in real-world
applications we aim at encompassing as much observations as possible within the 95PPU (P-factor
→ 1) while keeping the width of the uncertainty bounds as small as possible (R-factor → 0), in
order to avoid obtaining a good bracketing of observations at expense of uncertainty bounds too
wide to be informative for the decision-making process. In this dissertation, a minimum P-factor
close to or higher than 0.75 during the the calibration and verification period will be considered
as acceptable. Regarding the width of the uncertainty bounds, Abbaspour et al. (2009); Schuol et al.
(2008a) and Abbaspour (2008), argue that an R-factor close to or smaller than 1 can be deemed ac-
ceptable. There is an implicit assumption: parameter sets classified as behavioural during the
calibration period will be behavioural also during the verification one, i.e., errors in the prediction
period will be similar to those observed during the calibration one (Beven, 2006). Therefore, any
significant change in the P-factor and/or R-factor is carefully examined.

3.5 Results

3.5.1 Parameter Distributions

Figures 3.5 and 3.6 show, for subcatchments 090 and 115 respectively, dotty plots with the values
of each one of the 10 aggregated parameters defined in section 3.4.2 versus their corresponding
Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970), where the parameter values were obtained from
a Latin Hypercube sampling of the prior large range defined in Table 3.7, using 2000 strata for sub-
catchment 090 (Ega River) and 300 strata for subcatchment 115 (Homino River). They show that
most of the sampled parameters are associated to NSeff lower than zero, which is expected due
to the sampling procedure that covered almost the complete physical range of each parameter.
However, the proportion of parameter values with a NSeff lower than zero is much higher in sub-
catchmetn 115 than in 090. At the other hand, in both catchments there are only two parameters
with a strong influence on the predicted streamflows: the initial Soil Conservation Service (SCS)
runoff curve number for moisture condition II (CN2), and the saturated hydraulic conductivity
of the soil profile (SOL K), whereas the remaining eight parameters present NSeff greater than
zero all along their complete range. Parameter sets with a NSeff higher than zero were selected as
behavioural (1948 for subcatchment 090 and 1464 for subcatchment 115), and their corresponding
NSeff were rescaled such they sum to 1, in order to be used as ”less formal” likelihood. The 95%
of the cumulative distribution of each one of the 10 selected parameters, weighted by their corre-
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sponding likelihood, was used as prior reduced range for computing the predictive uncertainties
with GLUE in the next step.

FIGURE 3.5: Dotty plots with the values of the 10 aggregated parameters of subcatchment 090 (Ega River)
versus their corresponding Nash-Sutcliffe efficiency, obtained from a Latin Hypercube sam-
pling of the prior large range, using 2000 strata. The red line shows the cut-off threshold used
to select the prior reduced range.

FIGURE 3.6: Dotty plots with the values of the 10 aggregated parameters of subcatchment 115 (Homino
River) versus their corresponding Nash-Sutcliffe efficiency, obtained from a Latin Hypercube
sampling of the prior large range, using 300 strata. The red line shows the cut-off threshold
used to select the prior reduced range for computing the predictive uncertainties obtained
with GLUE.

The resulting reduced ranges for each parameter were used as prior uniform distributions in a
GLUE procedure with a Latin Hypercube sampling with 2000 strata for both catchments, in order
to obtain the predictive uncertainties. Figures 3.7 and 3.8 present, for subcatchments 090 and 115
respectively, dotty plots with the values of each one of the 10 aggregated parameters defined in
section 3.4.2 versus their corresponding Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970). The fig-
ures show that the use of the reduced range obtained at the end of the previous stage, significantly
increased the amount of parameter values with a NSeff higher than zero in both catchments, but
this proportion was much higher in subcatchment 090 than in subcatchment 115, what may be
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a preliminary indication of the existence of structural problems in the conceptualization of sub-
catchment 115 and/or data errors that have not been considered. Again, in both catchments there
are only few parameters with a strong influence in the predicted streamflows: in subcathcment
090 they are the initial Soil Conservation Service (SCS) runoff curve number for moisture condi-
tion II (CN2), and the saturated hydraulic conductivity of the soil profile (SOL K), whereas in the
subcatchment with more semi-arid regime (115) two additional parameter are needed to explain
the slow response of the catchment: (a) the deep aquifer percolation factor (RCHRG DP), which
controls the fraction of water that is lost from the shallow aquifer to recharge the deep aquifer
(out of the catchment); and (b) the groundwater delay time GW DELAY,which represents the lag
between the water exit the soil profile and enters to the shallow aquifer. As can be seen in Fig-
ure 3.4, the CN2 controls the partitioning of precipitation into runoff and infiltration, SOL K takes
part in the production of lateral flow and percolation to the shallow aquifer; whereas GW DELAY
affects the slope of the recession curve, and RCHRG DP control the losses of the system. The
remaining parameters present NSeff greater than zero all along their analysed range, and their
interactions contribute to partially compensate by deficiencies in the simplified representation of
the catchment.

FIGURE 3.7: Dotty plots with the values of the 10 aggregated parameters of subcatchment 090 (Ega River)
versus their corresponding Nash-Sutcliffe efficiency, obtained from a Latin Hypercube sam-
pling of the prior reduced range, using 2000 strata. The red line shows the cut-off threshold
used to select the behavioural parameter sets of GLUE.

FIGURE 3.8: Dotty plots with the values of the 10 aggregated parameters of subcatchment 115 (Homino
River) versus their corresponding Nash-Sutcliffe efficiency, obtained from a Latin Hypercube
sampling of the prior reduced range, using 2000 strata. The red line shows the cut-off thresh-
old used to select the behavioural parameter sets of GLUE.
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Tables 3.8 and 3.9 show the correlation matrix of the parameter values used in the application of
GLUE with the reduced parameter ranges of subcatchment 090 and 115, respectively. The corre-
lations between all the parameters were very small, and none of them was statistically significant
at α = 10% (p-values were larger than 0.1). Table 3.8 shows that in subcatchment 090 (Ega, River),
three parameters were statistically correlated to the NSeff (at α = 0.1%, p-value < 0.001), with
the highest correlations corresponding to CN2 and SOL K ; whereas for subcatchment 115, six
parameters were found statistically correlated to the NSeff (at α = 0.1%, p-value < 0.001), with
the highest correlations corresponding to RCHRG DP, SOL K, CN2, GW DELAY and SOL Z. The
previous results are in partial agreement with the sensitivity analysis summarized in Table 3.6.
Differences between the relative sensitivity of each parameter obtained by these two procedures
are very likely due to: (i) the way in which parameters were changed, because in the sensitivity
analysis carried out with LH-OAT some parameters were changed in a relative way with respect
to their initial values obtained from the GIS analysis, whereas in the GLUE procedure all the pa-
rameters were changed in an absolute way within the reduced range; and (ii) the LH-OAT was
carried out with 1000 strata for each parameter, whereas the GLUE procedure used 2000.

TABLE 3.8: Correlation matrix of the parameter values used in the application of GLUE with the reduced
parameter ranges of subcatchment 090 (Ega River). Numbers in blue (and with an asterisk for
the B&W version) are those statistically significant (p-value < 2e-16). GW DELAY was found
statistically significant at α = 0.1% (p-value < 0.001).

Aggregated Parameter
CN2.mgt 1.00
RCHRG DP.gw 0.03 1.00
GWQMN.gw -0.01 -0.03 1.00
GW REVAP.gw -0.02 0.02 0.01 1.00
REVAPMN.gw -0.01 0.03 -0.03 0.03 1.00
SOL K.sol 0.03 0.01 -0.01 0.01 -0.00 1.00
SOL Z.sol 0.02 0.03 -0.05 0.02 0.01 0.03 1.00
GW DELAY.gw 0.02 0.02 -0.03 -0.04 -0.00 -0.01 -0.04 1.00
ALPHA BF.gw 0.02 0.02 0.04 0.02 -0.01 -0.00 0.02 -0.01 1.00
SOL AWC.sol 0.03 -0.01 0.00 -0.01 0.00 0.05 -0.01 0.04 -0.01 1.00
NSeff -0.22∗ -0.01 0.01 -0.00 -0.00 -0.88∗ 0.08∗ 0.06 -0.02 -0.03 1.00

TABLE 3.9: Correlation matrix of the parameter values used in the application of GLUE with the reduced
parameter ranges of subcatchment 115 (Homino River). Numbers in blue (and with an asterisk
for the B&W version) are those statistically significant (p-value < 2e-16).

Aggregated Parameter
CN2.mgt 1.00
RCHRG DP.gw -0.04 1.00
GWQMN.gw -0.00 -0.00 1.00
GW REVAP.gw 0.03 -0.01 -0.03 1.00
REVAPMN.gw 0.01 0.02 0.00 -0.00 1.00
SOL K.sol 0.02 -0.01 -0.01 0.02 -0.00 1.00
SOL Z.sol 0.00 0.00 -0.01 -0.01 0.02 -0.02 1.00
GW DELAY.gw 0.02 0.00 -0.01 0.00 -0.01 -0.02 -0.02 1.00
ALPHA BF.gw 0.01 0.00 -0.00 0.00 -0.01 -0.04 -0.01 0.02 1.00
SOL AWC.sol -0.02 0.01 0.03 -0.01 0.04 0.06 0.02 -0.02 0.01 1.00
NSeff -0.22∗ 0.40∗ -0.00 -0.02 0.02 -0.39∗ 0.17∗ 0.22∗ -0.03 -0.10∗ 1.00

3.5.2 Future Streamflows and Predictive Uncertainty

During the implementation of the GLUE procedure with the reduced parameter ranges, 1948
and 1464 parameter sets were selected as behavioural for subcatchments 090 (Ega River) and 115
(Homino River), respectively, considering a NSeff equal to zero as cut-off threshold. Afterwards,
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the NSeff were rescaled such they sum to 1, in order to be used as ”less formal” likelihood. The
predictive uncertainties were finally computed as the 95% of the cumulative distribution of each
predicted streamflow, weighted by the likelihood of the corresponding behavioural parameter set.

Figures 3.9 and 3.10 show the results of the daily and monthly uncertainty analysis carried out
in subcatchments 090 (Ega River) and 115 (Homino River), respectively. The shaded area repre-
sent the 95% of predictive uncertainty (95PPU), whereas black dotted lines correspond to the ob-
served discharges at the basin outlet. Tables 3.10 and 3.11 present daily and monthly summaries,
respectively, with the P-factor and R-factor obtained during the uncertainty analysis carried out
with GLUE. Additionally, some goodness-of-fit measures between observations and values simu-
lated with the parameter set with the highest NSeff are also presented, just to look at how close
those ”best” simulated values match the observations. It is worth mentioning that in both catch-
ments, the parameter set that achieved the highest NSeff during calibration was not the same that
achieved the highest efficiency during the verification period, emphasizing the importance of not
considering only one single ”best” simulation, but considering several acceptable simulators of the
system. Moreover, when comparing observations to a single ”best” simulation, the goodness-of-
fit used to measure the performance of the simulations may indicate different behaviours during
calibration and verification periods (e.g., the PBIAS in subcatchment 090 indicated a slight un-
derestimation of the streamflows by the model during calibration, whereas it indicates a clear
over-estimation during the calibration period), making less reliable predictions with such ”best”
parameter set outside the calibration period.

Regarding the daily simulations, it is possible to observe that for both catchments the selected
behavioural parameter sets led to uncertainty bounds that bracket most of the observations, both
during calibration and verification period, as shown by P-factors larger than 0.73 and 0.9 in sub-
catchment 090 (Ega River) and 115 (Homino River), respectively. However, the relative magnitude
of the uncertainty bounds for both catchments are very different, as evident in their corresponding
R-factors. In subcatchment 090, the R-factor in calibration was 0.95 < 1, what is deemed accept-
able according to what mentioned in section 3.4.2.3, and it increased up to 1.36 during verification
period, which is expected due to the forcing of the system with input data not used during the
calibration. The increment in the average width of the uncertainty bounds during the verification
period (i.e. larger R-factors), led to bracketing more observations than during calibration, what
explains the larger P-factor during the verification step. At the other hand, subcatchment 115 is
characterized by large R-factors (greater than 1 and close to 2) both in calibration and verifica-
tion periods, but with P-factors still very close to one, i.e., bracketing most of the observations.
In contrast to what was observed in subcatchment 090, the P-factor in subcatchment 115 was
slightly smaller during verification, which was accompanied by an increase in the R-factor. The
aforementioned change from calibration to verification period might be explained by the differ-
ences in streamflows from December 1981 to May 1982, where predicted streamflows are far from
the corresponding observations, leading to a decrease in P-factor, along with uncertainty bounds
much wider than the ones that should embrace the observations for that period, leading to an
increase in the R-factor. The previous difference can only be attributed to measurement errors in
precipitation, because the local water authority (CHE) confirmed that they did not experience any
measurement problem on streamflows during that period.

The large R-factors obtained in subcatchment 115 during calibration and verification seems to con-
firm what was observed in section 3.5.1, regarding possible deficiencies in the conceptualization
of subcatchment 115. If those inadequacies are enough for deciding to change the current model
structure used for that catchment, will depend on the acceptance criteria adopted by the decision-
makers, because notwithstanding the uncertainties are large (i.e., wide uncertainty bounds), they
still embrace most of the observations; what is completely different to a situation with large un-
certainties and few observations within the uncertainty bounds.

Regarding the monthly results, their behaviour is quite similar to the daily ones, as can be seen
comparing their corresponding P-factors and R-factors, but with an obvious improvement in all
the goodness-of-fit between observations and values simulated with the parameter sets that led
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to the highest NSeff , due to the smoothing effect of aggregating from daily to monthly scale.

Consequently, results involving percentage of observations embraced by the uncertainty bounds
during the calibration and verification period lead to consider as ”acceptable” the behavioural
parameter sets selected for both catchments, but being wary about the wide of the uncertainty
bounds in subcatchment 115. In particular, behavioural parameter sets selected during the uncer-
tainty analysis will be used during the future scenarios, to propagate the parametric uncertainty
of hydrological conceptualization into the projected impacts of climate change.

It is worth mentioning that three different approaches could be used to decrease the large R-
factors obtained for subcatchment 115: (i) choosing a higher NSeff at the end of the third step of
the proposed methodology, in order to select parameter sets with a performance higher than the
cut-off threshold currently used (NSeff equal to zero), which leads to a fewer parameter sets to be
used during verification; (ii) in the second step of the methodology, to select the reduced range for
each parameter from narrower percentages of their likelihood-weighted cumulative distribution
(90%, 85%, 70% or less, instead of the 95% currently used); and (iii) to increase the value of N in
equation 3.7 in the three steps of the methodology, to reduce the relative weight associated with
poor models. However, the three previously mentioned ways for decreasing the width of the
uncertainty bounds, introduce an additional bias related to the expertise and judgement of the
modeller, that we tried to avoid.

Finally, we want to emphasize that prediction limits obtained with GLUE are highly dependent on
decisions taken by the modeller: what model structure(s) is(are) used to represent the catchment
behaviour (not analysed here), what input data are used to drive the hydrological simulations
(not explicitly analysed in this dissertation), which and how many parameters are selected for the
uncertainty analysis, what parameter ranges are sampled for each parameter, which likelihood
measure is used to assess the performance of different parameter sets, the threshold selected to
discriminate between behavioural and non-behavioural simulators, and the way in which all the
previous choices are combined, what is in agreement with previous studies (e.g. Beven, 2001; Beven
and Freer, 2001; Montanari, 2005).

TABLE 3.10: Summary of the daily uncertainty analysis carried out with GLUE. Goodness-of-fit between
observations and values simulated with the parameter set with the highest NSeff are also
presented for both the calibration (CAL, 01/Jan/1962 - 31/Dec/1980, and the verification
period (VAL, 01/Jan/1981 - 31/Dec/1990.

Subb ID Period ME MAE RMSE PBIAS RSR P d NSeff R2 bR2 P-factor R-factor
[m3/s] [m3/s] [m3/s] [%] [-] [-] [-] [-] [-] [-] [-] [-]

090 (Ega) CAL -0.32 5.44 9.77 -2.3 0.57 -0.27 0.89 0.67 0.67 0.52 0.73 0.95
090 (Ega) VAL 2.05 4.02 6.56 22.3 0.60 0.47 0.91 0.64 0.74 0.70 0.79 1.36

115 (Homino) CAL 0.18 2.12 4.15 3.0 0.62 -0.37 0.86 0.61 0.62 0.48 0.94 1.43
115 (Homino) VAL 1.45 2.19 3.96 38.7 0.87 -2.05 0.82 0.24 0.52 0.49 0.90 1.83

TABLE 3.11: Summary of the monthly uncertainty analysis carried out with GLUE. Goodness-of-fit be-
tween observations and values simulated with the parameter set with the highest NSeff are
also presented for both the calibration (CAL, 01/Jan/1962 - 31/Dec/1980, and the verification
period (VAL, 01/Jan/1981 - 31/Dec/1990.

Subb ID Period ME MAE RMSE PBIAS RSR P d NSeff R2 bR2 P-factor R-factor
[m3/s] [m3/s] [m3/s] [%] [-] [-] [-] [-] [-] [-] [-] [-]

090 (Ega) CAL -0.33 3.23 4.68 -2.4 0.39 0.83 0.96 0.85 0.85 0.78 0.72 0.86
090 (Ega) VAL 2.06 2.69 3.94 22.3 0.49 0.68 0.95 0.76 0.90 0.75 0.75 1.23

115 (Homino) CAL 0.17 1.73 2.57 2.9 0.49 0.63 0.92 0.76 0.77 0.68 0.95 1.56
115 (Homino) VAL 1.44 1.81 2.61 38.5 0.72 0.33 0.88 0.48 0.70 0.61 0.88 1.94
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FIGURE 3.9: 95PPU (shaded area) obtained with GLUE during both the calibration (01/Jan/1962 -
31/Dec/1980) and verification period (01/Jan/1981 - 31/Dec/1990). The black dotted line
correspond to the observed discharges at the basin outlet.

FIGURE 3.10: 95PPU (shaded area) obtained with GLUE during both the calibration (01/Jan/1962 -
31/Dec/1980) and verification period (01/Jan/1981 - 31/Dec/1990). The black dotted line
correspond to the observed discharges at the basin outlet.
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3.5.3 Efficiency of the Sampling Strategy

In order to assess the efficiency of the implemented sampling strategy, we also tried the classi-
cal GLUE approach -with uniform Monte Carlo sampling- for the reduced parameter ranges of
subcachment 090, during the calibration period, and with different number of simulations (not
shown here). We run 7000, 10000, 12000, 15000, 17000 and 20000 simulations; leading to 6777,
9670, 11605, 14521, 16464, and 19375 behavioural parameter sets; and the same P-factor equal to
0.74 and R-factor equal to 1.01 were obtained for all the experiments. The previous results confirm
the efficiency of the implemented LH sampling strategy, because only a small improvement in the
amount of observations bracketed by the uncertainty bounds (the R-factor changed from 0.73 to
0.74) was obtained by using a much larger number of simulations with the classical approach, but
this improvement was obtained at expense of wider uncertainty bounds (R-factor changed from
0.95 to 1.01).

3.5.4 Predictive Uncertainty in Flow Duration Curves (FDCs)

Additionally to the widely used uncertainty bounds for the time series of simulated and observed
values, we also present uncertainty bounds for the flow duration curves (FDC) of the two selected
catchments, both during calibration and verification period. The upper and lower uncertainty
bounds in the FDC space are computed as the FDC of the upper and lower uncertainty bounds
obtained for the streamflow time series at the end of the GLUE analysis, respectively.

We included a comparison of observed and simulated FDCs, because FDCs are simple, yet com-
prehensive, graphical representations of the observed variability of streamflows in a catchment
(Vogel and Fennessey, 1994), and because they are useful for conveying hydrological information
to decision makers (Vogel and Fennessey, 1995). A flow duration curve summarizes the relation-
ship between the magnitude and frequency of streamflows, allowing to identify the percentage of
time that a given streamflow magnitude was equalled or exceeded during a certain observational
period, but ignoring the autocorrelation structure of the corresponding time series (Vogel and Fen-
nessey, 1994, 1995). To characterize the information content of a FDC we followed the criterion
proposed by Yilmaz et al. (2008), where the curve is divided into three segments corresponding
to different flow magnitudes: (i) a high-flow portion (0 - 0.2 exceedance probability), that repre-
sents the catchment response to large precipitation events; (ii) a medium-flow portion (0.2 - 0.7
exceedance probability), representing flows controlled by moderate precipitation events coupled
to medium-term baseflow; and (iii) a low-flow segment (0.7 - 1.0 exceedance probability) repre-
senting a catchment response dominated by long-term baseflow during extended dry periods.
Yilmaz et al. (2008) also proposed to use the change in the slope of the medium segment of the
FDC as a signature related to soil moisture redistribution. However, due to the fact that we are
not providing a single ”best” simulation for comparison with the observed time series, we decided
to use the uncertainty bounds in the FDC space to better understand if the relationship between
magnitude and frequency of streamflows are captured by the behavioural parameter sets, which
in turn will be used to assess the projected impacts of climate change.

Figures 3.11, 3.12, 3.13 and 3.14 show the daily and monthly FDCs and their corresponding un-
certainty bounds for both, the calibration and verification period. FDCs are presented in normal
and logarithmic7 scales in order to better appreciate the uncertainty bounds in all the range of
streamflow magnitudes.

Looking at the daily FDCs of subcatchment 090 (Ega River) plotted with the normal scale in Figure
3.11, it is possible to observe that almost all the observed streamflows are within the uncertainty
bounds for both, the calibration and verification period, with a slight tendency to over-estimation
of high and medium flows. However, when looking at the plots in logarithmic scales, we observe
that the high flows (exceedance probability smaller than 0.2) fall in the middle of the uncertainty
bounds during calibration, while are over-estimated during verification, but always within the

7(Removing all the zero flows.
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uncertainty bounds. During calibration, medium-flows (0.2 - 0.7 exceedance probability) are over-
estimated up to exceedance probability close to 0.45 - 0.50, and from that point on they fall in the
middle of the uncertainty bounds, with a similar behaviour during verification. Low flows (ex-
ceedance probability larger than 0.7) are generally underestimated during calibration, and more-
over, streamflow smaller than ∼ 3 m3 s−1 are outside the uncertainty bounds, whereas during
verification the underestimation is much less important and all the streamflows are within the
uncertainty bounds. In this way, large relative uncertainties are associated to the estimation of
low flows, but their absolute importance is small when compared to the magnitude of the uncer-
tainties associated to medium and high flows. A very similar pattern to the aforementioned was
observed in the monthly streamflows presented in Figure 3.12.

Observing the daily FDCs of subcatchment 115 (Homino River) plotted with the normal scale in
Figure 3.13, it is possible to notice that all the observed streamflows are within the uncertainty
bounds for both, the calibration and verification period, with a slight tendency to over-estimation
of high and medium flows (exceedance probability smaller than 0.7) during verification. Looking
at the plots in logarithmic scales, we observe that the low flows (exceedance probability higher
than 0.7) are under-estimated both during calibration and verification, but they are always within
the uncertainty bounds, which is due to the wide uncertainty bounds of this catchment. Again,
the larger relative uncertainties correspond to the estimation of the low flows, but their absolute
importance is small when compared to the magnitude of the uncertainties associated to medium
and high flows. A very similar pattern to the aforementioned one can be observed in the monthly
streamflows presented in Figure 3.14.

A point worthy of mention is that both subcatchments underwent a general relative under-estimation
of low-flows, as shown by the logarithmic plots in Figures 3.11, 3.12, 3.13 and 3.14, which is a con-
sequence of the use of the Nash-Sutcliffe efficiency as ”less formal” likelihood, because this measure
gives more importance to differences in high and medium flows than differences in low flows, due
to the use of square differences thereof (see eq. 3.1).

45



CHAPTER 3. HYDROLOGICAL MODELLING (1961-1990)

FIGURE 3.11: Daily FDCs for subcatchment 090 (Ega River) and their corresponding uncertainty bounds
for both, the calibration (1962-1980) and verification (1981-1990) period. The two FDCs in
the upper part are plotted with a normal scale for streamflows, whereas the two figures in
the lower panel are plotted with a logarithmic scale (removing all the zero flows).

FIGURE 3.12: Monthly FDCs for subcatchment 090 (Ega River) and their corresponding uncertainty
bounds for both, the calibration (1962-1980) and verification (1981-1990) period. The two
FDCs in the upper part are plotted with a normal scale for streamflows, whereas the two
figures in the lower panel are plotted with a logarithmic scale (removing all the zero flows).
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FIGURE 3.13: Daily FDCs for subcatchment 115 (Homino River) and their corresponding uncertainty
bounds for both, the calibration (1962-1980) and verification (1981-1990) period. The two
FDCs in the upper part are plotted with a normal scale for streamflows, whereas the two
figures in the lower panel are plotted with a logarithmic scale (removing all the zero flows).

FIGURE 3.14: Monthly FDCs for subcatchment 115 (Homino River) and their corresponding uncertainty
bounds for both, the calibration (1962-1980) and verification (1981-1990) period. The two
FDCs in the upper part are plotted with a normal scale for streamflows, whereas the two
figures in the lower panel are plotted with a logarithmic scale (removing all the zero flows).
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3.6 Summary and Conclusions

The Soil and Water Assessment Tool (SWAT) hydrological model was set up for daily simulations
of the western part of the Ebro River basin (∼ 42000 km2) in Spain, during the control period
01/Jan/1961 to 31/Dec/1990. Two subcatchments (090, Ega River and 115, Homino River) were
selected for testing the methodology proposed to assess the effect of hydrological parameteri-
sation on predicted streamflows. A sensitivity analysis with Latin Hypercube One-factor-At-a-
Time (LH-OAT) was carried out in order to identify parameters with a high impact on simulated
streamflows. Uncertainty analysis was then carried out using the Generalized Likelihood Uncer-
tainty Estimation (GLUE) methodology, in order to select parameter sets that can be considered
as acceptable simulators of the system, adopting a re-scaled NSeff as ”less formal” likelihood, and
a cut-off threshold equal to zero to discriminate between behavioural and non-behavioural sim-
ulators. Afterwards, a Latin Hypercube (LH) sampling strategy was implemented within GLUE
in order to reduce the number of model runs required to obtain enough parameter sets with a
performance higher than the selected cut-off threshold, while keeping a good exploration of the
parameter space. The NSeff efficiency of the parameter sets selected as behavioural (1948 for sub-
catchment 090 and 1464 for subcatchment 115) were then rescaled such they sum to 1, in order to
be used as ”less formal” likelihood. The 95% of the cumulative distribution of each predicted out-
put, weighted by the re-scaled likelihood of each behavioural parameter set, was used to compute
the predictive uncertainty bounds. The main conclusions can be summarized as follow:

• The LH-OAT sensitivity analysis proved to be useful in identifying parameters that exert
a significant control of the hydrological response of the catchments. However, when the
simplest conceptualization of the catchment is used, i.e., a single homogeneous unit char-
acterized by the same effective parameters all over its spatial domain, we suggest to use an
absolute method for changing the parameters (instead of a relative one), because it leads to
a final ranking representative of the real importance of each effective parameter.

• The three-steps methodology developed for carrying out the uncertainty analysis proved to
be useful in finding a region of the parameter space where parameter sets with high like-
lihood values are found. Additionally, a comparison between dotty plots, with the value
of each parameter against the corresponding efficiency measure, obtained after simulations
with the large and reduced parameter ranges, can provide a first qualitative insight about
the uncertainties involved in the representation of the catchment behaviour.

• Results of the GLUE analysis indicated that two main parameters dominate the fast response
of both catchments: (i) the initial SCS curve number for moisture condition II (CN2), which
controls the partitioning of precipitation into runoff and infiltration; and (ii) the saturated
hydraulic conductivity (SOL K), which takes part in the production of lateral flow and per-
colation to the shallow aquifer. In the case of the subcachment with more semi arid regime
(115, Homino River) two additional parameters are necessary to explain the slow catchment
response: (a) the deep aquifer percolation factor (RCHRG DP), which controls the fraction
of water that is lost from the shallow aquifer to recharge the deep aquifer (out of the catch-
ment); and (b) the groundwater delay time (GW DELAY), which represents the lag between
the water exit the soil profile and enters to the shallow aquifer, affecting the slope of the
recession curve. The remaining parameters present NSeff greater than zero all along the re-
duced range used for the analysis, and their interactions contribute to partially compensate
by deficiencies in the simplified representation of the catchment.

• The 95% of predictive uncertainty (95PPU) for streamflows, computed with the GLUE proce-
dure using a LH sampling with 2000 strata within the reduced parameter ranges, led to good
bracketing of observations, both during the calibration (1962-1980) and verification(1981-
1990) period, as shown by P-factors larger than 0.73 for subcatchment 090 (Ega River),
and larger than 0.9 for subcatchment 115 (Homino River). Consequently, those results are
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deemed acceptable for assessing the projected impacts of climate change during the future
scenarios.

• The relative magnitude of the uncertainty bounds for the two selected catchments were very
different, as shown by their corresponding R-factors: 0.95 and 1.36 for subcatchment 090 in
calibration and verification, respectively; whereas for subcatchment 115 they were 1.43 and
1.83 in both calibration and verification, respectively. If the wide uncertainty bounds for sub-
catchment 115 are enough for deciding to change the current model structure used to repre-
sent the catchment, will depend on the acceptance criteria adopted by the decision-makers,
because notwithstanding the uncertainties are large, they embrace most of the observations;
what is completely different to a situation with large uncertainties and few observations
within the uncertainty bounds.

• Three different approaches could be used to decrease the large R-factors obtained for sub-
catchment 115: (i) choosing a higher NSeff to select the parameter sets used to compute
the predictive uncertainty; (ii) selecting the reduced range for each parameter from nar-
rower percentages of their likelihood-weighted cumulative distribution (90%, 85%, 70% or
less, instead of the 95% currently used); and (iii) increasing the value of the shape factor N,
to reduce the relative weight associated with poor models. However, the three previously
mentioned ways for decreasing the width of the uncertainty bounds, introduce an additional
bias related to the expertise and judgement of the modeller, that we tried to avoid.

• The LH sampling strategy, implemented to carry out the GLUE procedure, proved to be
much more efficient than the classical Monte-Carlo approach, because the uncertainty bounds
obtained with the LH sampling using 2000 strata were comparable to results obtained with
5000, 10000, 12000, 17000 and 20000 runs with uniform Monte-Carlo sampling.

• Flow-duration curves (FDC) were used as a graphical representation of the magnitude and
frequency of the observed streamflows in the two test catchments. Uncertainty bounds for
the daily and monthly FDC of both catchments were computed as the FDC of the upper and
lower uncertainty bounds obtained for the streamflow time series at the end of the GLUE
analysis, respectively.

• Simulated daily and monthly FDCs, of the two analysed subcatchments, were almost com-
pletely within their respective uncertainty bounds, with a slight tendency to over-estimation
of high and medium flows, and a clear under-estimation of low flows. The aforementioned
over- and under-estimation are consequence of using the Nash-Sutcliffe efficiency as ”less
formal” likelihood.

• FDCs plotted with logarithmic scale were useful to visualize the relative importance of un-
certainties, observing that the larger relative uncertainties correspond to the estimation of
low flows, but their absolute importance is small when compared to the magnitude of the
uncertainties associated to medium and high flows.

• In both catchments, the parameter set that achieved the highest NSeff during calibration
was not the same that achieved the highest efficiency during the verification period, empha-
sizing the importance of considering a set of acceptable simulators of the system, rather than
a single ”best” estimate. Moreover, when comparing observations to a single ”best” simula-
tion, the goodness-of-fit used to measure the performance of the simulations may indicate
different behaviours for calibration and verification periods, making less reliable predictions
with such ”best” parameter set outside the calibration period.

• Finally, we want to emphasize that prediction limits obtained with GLUE are highly depen-
dent on decisions taken by the modeller: what model structure(s) is(are) used to represent
the catchment behaviour (not analysed here), what input data are used to drive the hydro-
logical simulations (not explicitly dealt in this dissertation), which and how many parame-
ters are selected for the uncertainty analysis, what parameter ranges are sampled for each
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parameter, which likelihood measure is used to assess the performance of different param-
eter sets, the threshold selected to discriminate between behavioural and non-behavioural
simulators, and the way in which all the previous choices are combined, as expressed by
other authors (e.g. Beven, 2001; Beven and Freer, 2001; Montanari, 2005).

• The fact that many combinations of model structure and parameter sets were deemed as ac-
ceptable simulators of the two catchments under study, only means that we could not reject a
larger number of them based on the available data and knowledge. Additional information
(amount and/or type of data) is needed to exclude some of them under the same acceptance
criteria used here. Uncertainty arising from equifinality may be though as a decision-making
problem subject to imperfect knowledge and limited data, but we want to emphasize that
those limitations, when made explicit to the final users, may lead to better decisions than
those taken on the basis of a single ”best” simulation during the control period, which is
expected to perform equally well under unknown future conditions.
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”To know the road ahead,
ask those coming back”.

(Chinese proverb) 4
Projected Changes in Climate (2071-2100)

This chapter presents projected changes for precipitation and air temperature fields on the Ebro
River basin by the end of this century (2071-2100). Firstly, section 4.1 presents a brief introduction
about expected changes in climate for the Mediterranean area, climate models, future climate
scenarios, and downscaling techniques, in order to set the framework for the remaining sections
of this chapter. Section 4.2 describes the ensemble of six climate change scenarios, selected from
the EU FP5 PRUDENCE project to sample the space of possible future climates, along with the
downscaling technique adopted for passing the climate signal from the grid-scale of the RCM
outputs to the point-scale of the gauging stations selected to drive the hydrological simulations
in the next chapter. Section 4.3 presents the long-term averages of precipitation and temperature
fields for the control period 1961-1990, whereas the anomalies expected for the future period 2071-
2100 are presented in an annual, seasonal and monthly basis, including a short discussion about
expected changes for different altitudes within the basin. Finally, the main results are summarized
and discussed in section 4.4 at the end of this chapter.

4.1 Introduction

4.1.1 Overview

Changes in water resources are intimately linked with changes in atmospheric temperature and
precipitation. Observed records of global average air and ocean temperatures, melting of snow
and ice, and global sea level makes unequivocal the warming of our climate system (Bates et al.,
2008), which may lead to an intensification of the hydrological cycle (Huntington, 2006). Global
mean surface temperatures have risen by 0.74◦C ± 0.18◦C over the last 100 years (1906-2005) and
eleven of the last twelve years (1995-2006) are among the 12 warmest years since 1850, as men-
tioned in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change
(IPCC) (Trenberth et al., 2007). This updated 100-year linear trend is larger than the 0.6◦C ± 0.2
given nine years ago in the Third Assessment Report (TAR) for 1901-2000, and the rate of warm-
ing over the last 50 years is nearly twice that for the last 100 years (0.13◦C ± 0.03◦C vs. 0.07◦C
± 0.02◦C per decade). Warming is occurring in both land and ocean domains leading to changes
in the overall Earth’s hydrological cycle, with an increase in the number of droughts and heavy
rainfall events and a decrease in the amount of ice on Earth expected for the future (Trenberth et al.,
2007).

According to the AR4, mean annual temperatures in Europe are likely to increase more than the
global mean, with the largest warming in summer for the Mediterranean area, and in particular,
the highest summer temperatures are expected to increase more than the average for central and
southern Europe (Christensen et al., 2007a). In the Mediterranean area, annual precipitation is very
likely to decrease, whereas the annual number of precipitation days is very likely to decrease as
well, leading to a likely increase in the risk of summer drought for this area (Christensen et al.,
2007a).
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4.1.2 Future Climate Scenarios

Climate system is highly complex and non-linear, and in particular due to the intrinsic stochas-
tic component of the future forcings (both natural and anthropogenic), and the unknown initial
state of the climate system, it is nearly impossible to exactly predict how climate will evolve in
the future (Giorgi, 2005). Notwithstanding their limitations, climate models are the best available
tools for quantifying the global climate response to different future development scenarios of our
society, represented by different atmospheric concentrations of carbon dioxide and other trace
gases. Climate models use well-known physical principles to simulate the interactions among
atmosphere, oceans, land surface and ice, through different numerical schemes and/or differ-
ent parameterisations. They balance, or almost balance, incoming and outgoing energy, and any
inconsistency reveals a change of the Earth’s average temperature. However, since it is practi-
cally impossible for a climate model to describe all the climate processes, no matter how complex
the model is, different climate models make different choices about what processes to include
and how to parametrize them (Tebaldi and Knutti, 2007). Climate models could be grouped into
Simple Climate Models (SCMs), Earth-System Models of Intermediate Complexity (EMICs) and
Atmosphere-Ocean General Circulation Models (AOGCM) (Solomon et al., 2007).

Up to now, the assessment of potential impacts of climate change has generally relied on data
from AOGCM, which are dynamical three-dimensional representations of the atmosphere, land
surface, oceans, sea ice, and simple chemistry processes, that explicitly account for the effects
of anthropogenic and natural forcings (Giorgi, 2005). AOGCM simulations are subject to three
major sources of uncertainty: model configuration, internal model variability and the stochastic
nature of the future natural forcings (Giorgi, 2005). Spatial resolution of AOGCMs (∼ few hun-
dred kilometres) is not enough for accurately reproducing regional climate patterns. Therefore,
regionalization or downscaling techniques (Giorgi and Mearns, 1991) are applied to the AOGCM
outputs for providing fine resolution climate variables suitable for impact studies. In particular,
regional climate models (RCMs) use large-scale and lateral boundary conditions from the general
circulation model (GCM) to produce higher resolution outputs.

As mentioned in the AR4, there is increasing confidence that the increment in atmospheric green-
house gas concentrations will lead to an increment of the global temperature; however, there is
much less confidence about the quantification of the regional response of climate. As no method
yet exists of providing confident predictions of climate change at the regional scale (IPCC DDC,
2010), climate scenarios are used as an alternative approach to identify the sensitivity of a system
to climate change, and to help policy makers decide on appropriate policy responses. In this dis-
sertation, a ”climate scenario” is used as ”a plausible future climate that has been constructed for explicit
use in investigating the potential consequences of anthropogenic climate change” (Mearns et al., 2001).
The main objective of using scenarios is not to be considered as ”predictions” of the future climate,
but to explore some of the uncertainties arising from incomplete knowledge about the effect of
increased atmospheric concentrations of greenhouse gases on global climate, in order to take in-
formed decisions under a wide range of possible futures. Recently, Moss et al. (2010) describes a
new parallel process for creating plausible scenarios for climate change research, aiming at im-
proving society’s understanding of plausible climate and socio-economic futures. The IPCC has
proposed 40 ”plausible” scenarios of future emissions (Nakićenović et al., 2000), which are consid-
ered ”equally valid”, without an assignment of quantitative or qualitative likelihoods (see Schnei-
der, 2002). These emissions scenarios are grouped into four major families, representing a different
storyline of socio-economic, demographic and technological evolutions of our society. Emissions
from six of these scenarios (A1T, A1F1, A1B, A2, B1, and B2) have been used to derive scenarios of
future concentrations of greenhouse gases, which in turn are used to obtain projections of climate
response, usually by running transient simulations of AOGCMs (Giorgi, 2005).

At the other hand, all the previously mentioned uncertainties involved in climate modelling have
lead to a widely accepted need of probabilistic assessment of climate change at the regional scale
(e.g. Reilly et al., 2001; Räisänen and Palmer, 2001; Webster et al., 2003; Dessai, 2003; Giorgi, 2005),
and to the use of multi-model ensembles to better estimate of the probability of climate change, in
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particular at regional scales, because no singe model provides a ”true” representation of the future
climate (Tebaldi, 2004). Wilby and Harris (2006) highlight that impact assessments based on single
GCM may lead to inappropriate planning or adaptation responses.

So far, the use of multiple GCMs and emissions scenarios to drive hydrological impact studies has
been adopted by researchers worldwide, but the use of multiple fine resolution RCM outputs has
been limited to Europe (Fowler et al., 2007). In this context, the EU Fifth Framework Programme
(FP5) PRUDENCE project (Prediction of Regional scenarios and Uncertainties for Defining Euro-
peaN Climate change risks and Effects, Christensen et al., 2007b; Christensen and Christensen, 2007)
provided a set high resolution climate change scenarios for Europe, where eight RCMs were dy-
namically downscaled from four high resolution Atmospheric General Circulation Models, both
during a control period (1961-1990) and a future time-slice at the end of this century (2070/71-
2100), representing a stationary climate over the selected 30-years period. Most of the PRUDENCE
experiments assumed the SRES (Special Report on Emissions Scenarios, Nakićenović et al., 2000) A2
emissions scenario, but some also assumed the B2 scenario. A description of the experimental set-
up of the PRUDENCE project is provided by Christensen and Christensen (2007), whereas Jacob et al.
(2007) provides an assessment about how the systematic biases vary across the different models,
and Déqué et al. (2007) discusses the uncertainties in model projections of the PRUDENCE experi-
ment.

4.1.3 Downscaling Techniques

As mentioned in the previous section, AOGCMs have a spatial resolution of a few hundred kilo-
metres (∼300 km or ∼2.5◦), which is not enough for accurately reproducing regional climate pat-
terns, in particular, spatial patterns of precipitation (Salathé, 2003) and its daily variability (Bürger
and Chen, 2005), especially in areas of complex topography and land use distribution (Christensen
et al., 2007b) (within the Ebro River basin, elevations range from sea-level to more than 3400
m.a.s.l.), making them unsuitable for a direct application as drivers of hydrological impacts stud-
ies (e.g. Prudhomme et al., 2002; Wilby et al., 1999). To overcome these limitations, in recent decades a
great deal of research has been focused on the development of spatial and temporal ”downscaling”
techniques, which are carried out for limited areas and run for shorter periods, mainly oriented to
better reproduce temperature and precipitation fields (e.g. Xu, 1999; Wilby et al., 2000; Schoof and
Pryor, 2001; Salathé, 2003, 2005; Wood et al., 2004; Bürger and Chen, 2005; Dibike and Coulibaly, 2005;
Prudhomme, 2006; Burton et al., 2010).

Downscaling techniques can be roughly classified as (i) empirical/statistical methods, where sta-
tistical techniques are used to formulate empirical relationships between GCM climate outputs
and local climate; and (ii) dynamical downscaling, where a higher resolution regional climate
model (RCM) or limited-area model (LAM) is nested to a GCM, using large-scale and lateral
boundary conditions from the GCM to produce higher resolution outputs (typically at ∼0.5 lati-
tude and longitude). The advantages and limitations of these two approaches have been exten-
sively discussed in literature (e.g. Wilby and Wigley, 1997; Murphy, 1999, 2000), as well as their
impacts on the resulting future climate scenarios (e.g. Hellström et al., 2001; Wood et al., 2004;
Schmidli et al., 2006, 2007). Mearns et al. (2003) and Giorgi (2006) review scenarios derived from
regional climate models, whereas Fowler et al. (2007) provides an exhaustive and updated analysis
of downscaling techniques with focus in hydrological applications.
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4.2 Methodology

4.2.1 Selection of Future Climate Scenarios

The use of ensembles of climate models is essential when moving towards probabilistic climate
change impact, for incorporating the uncertainties derived from model parameterisation into cli-
mate change impact studies. In the present dissertation, climate change scenarios for the entire
Ebro River basin were provided by a research group of the Newcastle University (Bovolo et al.,
2009), where an ensemble of six RCMs was selected from the red set of the EU FP5 PRUDENCE
project, described in Table 4.1, which includes RCM outputs (∼50x50 km) from the Danish Meteo-
rological Institute (DMI), the Swedish Meteorological and Hydrological Institute (SMHI), the UK’s
Hadley Centre, and from MétéoFrance. The six RCMs are run with boundary conditions from
what may be considered as two different GCMs: the atmosphere-only HadAM3H (Buonomo et al.,
2007; Gordon et al., 2000; Pope et al., 2000) and the atmosphere-ocean ECHAM4/OPYC (Roeckner
et al., 1996), because the HadRM3P and ARPEGE RCM simulations derive boundary conditions
from HadAM3P and the coupled AOGCM HadCM3, respectively, whereas the HadAM3H and
HadAM3P GCMs are dynamically downscaled to an intermediate resolution from the HadCM3
coupled AOGCM and therefore are closely related.

The climate scenarios adopted in this dissertation only include projections using the medium-high
SRES A2 emissions scenario, because: (i) recent observations seems to indicate that the increase in
global mean surface temperature is in agreement with the highest projections given by the IPCC,
likely because the climate system is responding faster than model projections (Rahmstorf et al.,
2007), and (ii) the climate change signal derived from the SRES B2 scenario is weaker than the one
from A2, and can be scaled from that (Déqué et al., 2005).

The selected climate scenarios have been previously described in the following Aquaterra deliv-
erables: Fowler et al. (2005), Blenkinsop and Fowler (2005), Bovolo et al. (2008) and Bovolo et al. (2009).

TABLE 4.1: Climate change scenarios used in this dissertation, with corresponding GCM and RCM. Table
also shows originating institution (INST, where DMI: Danish Meteorological Institute, HC:
Hadley Centre for Climate Prediction and Research, SMHI: Swedish Meteorological and Hy-
drological Institute), model dates for the control (CTRL) and future (SCEN) scenarios, and
model file names used by PRUDENCE and Aquaterra. Source: Adapted from Bovolo et al.
(2009).

RCM INST GCM
Days
in a

Month
CTRL SCEN

PRUDENCE
Acronym

CTRL

PRUDENCE
Acronym
A2 SCEN

Aquaterra
Acronym
A2 SCEN

HIRAM DMI HadAM3H A2 30 1961 1990 2071 2100 HC1 HS1 HIRAM H
HIRAM DMI ECHAM4/OPYCA2 30 1961-1990 2071-2100 ecctrl ecscA2 HIRAM E

HadRM3P HC HadAM3P A2 30 1961-1990 2070-2100 adeha adhfa HAD P H
RCAO SMHI HadAM3H A2 30 1961-1990 2071-2100 HCCTL HCA2 RCAO H
RCAO SMHI ECHAM4/OPYCA2 30 1961-1990 2071-2100 MPICTL MPIA2 RCAO E

Arpége
Météo
France

Observed
SST/HadCM3 A2

normal
days

1961-1990 2071-2100 DA9 DE6 ARPEGE H

4.2.2 Downscaling RCM outputs

Notwithstanding the spatial resolution of RCM outputs is much higher than the one of the driv-
ing GCMs, further correction is usually required to overcome biased representation of observed
climate (e.g., too many low-intensity rain events), mainly due to problems in conceptualization,
discreatization and spatial averaging within grid cells (Teutschbein and Seibert, 2010). Bias in RCM
outputs may lead to unreliable representation of streamflows in hydrological simulations (e.g.
Bergström et al., 2001). Nowadays, there are many methodologies for modifying RCM outputs, in
order to be further used in hydrological simulations. Teutschbein and Seibert (2010) provides a brief
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summary of bias-correction techniques usually applied to precipitation and temperature variables
derived from RCMs.

In this dissertation, a simple bias-correction method was used to downscale daily precipitation
and air temperature fields from the grid-cell scale of the RCM outputs to the point scale of the
gauging stations. Figures 4.1 and 4.2 shows the location of the precipitation and temperature
stations, respectively, used in the present dissertation, along with the RCM grid cells covering
Ebro River basin. The bias-correction method applied in the present study uses monthly correction
factors to modify both the absolute magnitude and the seasonality of the modelled values, based
on the difference between observed values on the gauging stations and the RCM values given by
the relevant grid-cell during the control period 1961-1990 (see Fowler and Kilsby, 2007), in order to
allow the simulated monthly means to match the observed monthly averages during the control
period. Under the assumption that the same model biases which apply during the control climate
will apply in the future, the computed bias-correction factors are then applied to the future daily
time series given by the RCM outputs, additively in the case of temperature and multiplicatively
for precipitation (see Fowler and Kilsby, 2007), to obtain future precipitation and temperature fields,
which in turn are used as input to the hydrological model. This procedure was applied to the six
Regional Climate Models (RCMs), described in Table 4.1, for the 2070/71 - 2100 time-slice and the
same medium-high SRES A2 emissions scenario.

In order to apply the bias-corrected method using monthly mean statistics, the observed data
record must be sufficiently long to allow the derivation of representative statistics for the 30-years
time period. Furthermore, the period of observations should be well represented in the control
period of the models (Bovolo et al., 2008). In this way, daily time series of the 349 precipitation
gauging stations and the 146 temperature stations described in section 2.2.5.1, were provided to
the Newcastle research group, for the period January/1961 to December/1990. Only the stations
with more than 70% of valid precipitation data and 65% of temperature data during that 30-years
period were considered, as described in section 2.2.5.1. All the missing values were filled in by
spatial interpolation, using a modified version of the inverse distance weighted (IDW) algorithm,
where the spatial distance between the station with the missing data and the one with a known
value is replaced by the Pearson’s product-moment coefficient of correlation between their daily
time series, following the work of Teegavarapu and Chandramouli (2005), but using for the interpo-
lations only the 4 closest stations (close in terms of the coefficient of correlation between the daily
time series) to each target station, instead of all the available stations. A leave-one-out cross vali-
dation procedure was used for assessing the goodness-of-fit between the interpolated values and
the observed ones, with good results, as shown by overall1 mean errors of 0.011 [mm/day] and
0.30 [◦C/day] for precipitation and temperature, respectively, and overall mean Nash-Sutcliffe
efficiencies of 0.57 for precipitation and 0.91 for temperature.

The bias-corrected time series of daily precipitation and air temperature obtained by the afore-
mentioned procedure are used in the present chapter to assess the projected changes in climate on
the Ebro River basin by the end of this century, and will be used in the next chapter as drivers of
the hydrological simulations during the future climate scenarios.

4.2.3 Computation of Anomalies

Anomalies for precipitation and temperature fields of the Ebro River basin were computed as the
difference between mean projected values for the climate scenarios (Jan/2071 - Dec/2100) and
the mean values observed during the control period (Jan/1961 - Dec/1990, referred as ”CTRL”
hereafter), and they can be viewed as expected values about which various uncertainties exist.

Long-term annual, seasonal and monthly mean values of precipitation and air temperature dur-
ing the CTRL period were computed by processing daily data from the selected 349 and 146 gaug-
ing stations of precipitation and air temperature (see section 2.2.5.1), respectively, removing all
the missing values from the computation. Accordingly, long-term annual, seasonal and monthly

1considering all the gauging stations and all the days with data during the 30-years period
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mean values of precipitation and air temperature for the future scenarios were computed in the
same way, but using the bias-corrected daily values downscaled from the RCM outputs for each
one of the gauging stations. Finally, annual, seasonal and monthly anomalies were computed
by subtracting the bias-corrected values projected by each RCM to the corresponding long-term
mean during the control period. For precipitation, the previous difference is further divided by
the long-term mean of the CTRL period, in order to obtain the relative change, which -by multiply-
ing by 100- is used to obtain the percentage of change discusses along this chapter. By properly
adding the anomaly value to the corresponding long-term mean values of precipitation and air
temperature, it is possible to obtain the projected values by each one of the RCMs described in
Table 4.1.

However, values obtained by arithmetically averaging over observed values in the gauging sta-
tions does not take into account neither their spatial distribution nor the clustering effect of un-
evenly distributed stations. In a way of partially overcoming the previous difficulty and to avoid
biased averages, in this chapter the annual, seasonal and monthly log-term mean values of pre-
cipitation and temperature were also computed by using two different methods of spatial interpo-
lation: inverse distance weighted (IDW) and ordinary kriging (OK), over the same squared grid
of 1 km2. Anomaly maps derived from the ordinary kriging interpolations are presented along
this chapter, in order to better represent the spatial variation of the projected changes in climate
for the Ebro River basin. All the spatial interpolations presented in this chapter were computed in
the following way:

1. Long-term averages of annual, seasonal and monthly values of precipitation/temperature
during the CTRL period in each one the gauging stations are computed, and then used as
input to the OK/IDW procedure.

2. A squared grid with cells of 1 km2 is computed to sample the Ebro River basin, and then is
used as spatial domain to obtain the interpolated values.

3. The hydrokrige function of the R (R Development Core Team, 2009) package hydroTSM2 is used
to compute the interpolated values in each cell of the spatial domain. This R package was de-
veloped by the author of this dissertation during his Ph.D, and in particular, the hydrokrige
function is a wrapper to the R packages gstat (Pebesma, 2004) and automap (Hiemstra et al.,
2008), and it allows to automatically test four different variogram models (spherical, expo-
nential, gaussian and Matern with M. Stein’s parametrization) and to select the one that best
fit the annual/seasonal/monthly data and its corresponding nugget, sill and range parame-
ters.

4. Step 1 to 3 are repeated for each one of the six climate scenarios described in Table 4.1
(Jan/2071 - Dec/2100), using the corresponding bias-corrected daily values in each one of
the gauging stations, to obtain the mean annual/seasonal/monthly interpolated values in
each one of the cells belonging to the spatial domain defined in step 2.

5. Annual/seasonal/monthly anomalies are obtained for each cell of the spatial domain by
subtracting the values obtained in step 4 from those computed in step 3. For precipitation,
the previous difference is further divided by the value computed in step 3, to obtain the
relative change with respect to the CTRL period, which -by multiplying by 100- is used to
obtain the percentage of change.

2see Appendix D
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4.3 Results

Projected changes in air temperature and precipitation are complex processes that exhibit sig-
nificant spatial and temporal variation that can not be fully displayed in a single chart/map.
Therefore, values of the annual/seasonal/monthly anomalies for the future period 2071 - 2100
are presented in tables, whereas the most relevant spatial aspects of those changes are depicted in
anomaly maps specially designed to reflect those changes.

4.3.1 Control Period (1961-1990): Precipitation and Temperature

Before looking at the changes in climate, knowledge about its historical behaviour is needed for a
better understanding about the significance of the ongoing changes. The amount of stations used
during this preliminary analysis was selected following the criterion mentioned in the section
2.2.5.1, with gauging stations with at least 70% and 65% of precipitation and temperature data,
respectively, during the control period 1961-1990, leading to the 349 and 146 selected stations of
precipitation and temperature, respectively (see Appendix A, for detail of the selected stations).

The mean annual precipitation over the Ebro River basin computed by averaging the mean annual
values of the 349 precipitation stations considered in the analysis is ∼609 [mm/year] (see Table
4.2). When this mean annual precipitation is computed by averaging the IDW interpolated values
of all the squared cells of 1km2 within the basin, this value decreases to 545.4 [mm/year] (see Table
4.2 and Figure 4.3). Similarly, the mean annual temperature over the Ebro River basin is 12.2◦C
when computed averaging the values of the 146 temperature gauging stations considered in the
analysis, but this value slightly increases up to 12.7◦C when computed averaging over the IDW
values of all the cells belonging to the study area, as shown in Table 4.2 and Figure 4.3. It is also
worth to mention that the mean values computed by the two methods of spatial interpolation did
not present significant differences, which is very likely due to the smoothing effect of interpolating
over such a large area.

TABLE 4.2: Mean annual and seasonal precipitation and temperature on the Ebro River basin, during the
CTRL period 1961 - 1990. Values on the left are computed averaging over the corresponding
annual and seasonal values at the gauging stations; values on the centre, are obtained with
IDW interpolation, and values on the right are computed using OK interpolation; the latter
two, computed over the same squared cells of 1km2.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Stations IDW OK Stations IDW OK

Annual 608.9 545.4 544.6 12.2 12.7 12.7
DJF 144.5 126.9 126.6 4.8 5.3 5.3
MAM 171.0 156.3 156.3 10.7 11.2 11.1
JJA 121.4 109.0 109.5 20.5 21.0 20.9
SON 170.9 152.1 151.5 13.1 13.6 13.5

TABLE 4.3: Mean monthly temperature on the Ebro River basin, during the CTRL period 1961 - 1990.
Values on the first row are computed averaging over the corresponding gauging stations; val-
ues on the middle row are obtained with IDW interpolation, and values on the lower row are
computed using OK interpolation; the latter two, computed over the same squared cells of
1km2.

Mean Monthly Temperature, [◦C]
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Stations 4.1 5.6 7.8 10.2 14.1 18.3 21.8 21.3 18.3 13.3 7.8 4.6
IDW 4.6 6.1 8.3 10.7 14.6 18.9 22.3 21.8 18.8 13.8 8.2 5.0
OK 4.6 6.1 8.2 10.7 14.5 18.7 22.2 21.7 18.6 13.7 8.2 5.1
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TABLE 4.4: Average monthly precipitation on the Ebro River basin, during the CTRL period 1961 - 1990.
Values on the first row are computed averaging over the corresponding gauging stations; val-
ues on the middle row are obtained with IDW interpolation, and values on the lower row are
computed using OK interpolation; the latter two, computed over the same squared cells of
1km2

Monthly Precipitation, [mm]
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Stations 48.6 44.3 43.8 61.0 66.2 53.0 30.2 38.3 47.6 56.6 66.6 52.9
IDW 42.7 39.3 39.8 56.0 60.5 48.4 26.9 33.7 42.8 50.5 58.9 46.0
OK 42.6 39.2 39.8 56.0 60.5 48.5 27.0 33.8 42.6 50.4 58.5 45.8

FIGURE 4.3: Spatial distribution of the mean annual temperature and precipitation during the control
period 1961-1990, computed using ordinary kriging with cells of 1 km2 and 10 nearest neigh-
bours. Black crosses represent the location of the gauging stations.

Figure 4.3 shows that the north and north-western part of the catchment present the highest val-
ues of mean annual precipitation and the coldest mean annual temperatures, whereas the central
valley is much drier and hotter.

Figure 4.4 shows that the spatial distribution of mean seasonal temperature changes significantly
along the year, but for each season the highest temperatures are concentrated in the central valley,
and they decrease with increasing distances to it. At the other hand, the spatial distribution of
the mean seasonal precipitation looks very similar for spring (MAM) and autumn (SON), with the
wettest areas in the north and north-western parts of the catchment; whereas during winter (DJF)
the dry areas in the central valley occupy a much larger area than during spring and autumn; and
finally, during summer (JJA) the high precipitation values are concentrated in some few places of
the northern part of the catchment.

4.3.2 Future Scenarios (2071-2100): Anomalies in Precipitation and Temperature

Due to the large amount of meteorological information analysed in this dissertation, only the
anomalies of bias-corrected annual/seasonal/monthly projected values of precipitation and air
temperature are presented. Projected values of bias-corrected annual/ seasonal/monthly mean
temperature and precipitation over the entire Ebro River basin can be found in the Appendix B
for the six future climate scenarios described in Table 4.1.
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FIGURE 4.4: Spatial distribution of the mean seasonal temperature and precipitation during the control
period 1961-1990, computed using ordinary kriging with cells of 1 km2 and 10 nearest neigh-
bours

61



CHAPTER 4. PROJECTED CHANGES IN CLIMATE (2071-2100)

4.3.2.1 Annual and Seasonal Anomalies

The anomalies of bias-corrected mean annual and seasonal precipitation and air temperature over
the entire Ebro River basin during the future period 2071 - 2100 are presented in Tables 4.5, 4.6, 4.7
and Figure 4.5, for the 6 RCMs described in Table 4.1.

TABLE 4.5: Anomalies of mean annual and seasonal precipitation and temperature on the Ebro River
basin, for 6 RCMs during 2071 - 2100 with respect to the the CTRL period 1961 - 1990. Values
computed averaging over the corresponding gauging stations.

Anomaly of Mean Precipitation, [%] Anomaly of Mean Temperature, [◦C]
RCM Annual DJF MAM JJA SON Annual DJF MAM JJA SON
DMI.HS1 -3.76 21.24 -14.07 -31.63 4.01 4.20 3.28 3.26 5.56 4.41
DMI.ecscA2 -6.00 15.26 -20.10 -16.44 -3.04 5.55 4.06 5.18 7.18 5.47
HC.adhfa -8.79 11.49 -14.81 -40.38 12.80 4.60 3.43 3.58 6.24 4.82
CNRM.DE6 -14.72 9.20 -21.62 -40.12 -9.66 4.05 2.95 3.70 5.24 3.98
SMHI.HCA2 -7.02 14.02 -12.79 -45.28 7.12 4.30 3.13 3.23 6.27 4.25
SMHI.MPIA2 -21.78 -2.75 -35.10 -35.29 -16.69 6.27 4.18 6.21 8.79 5.54
Average -10.34 11.41 -19.75 -34.86 -0.91 4.83 3.51 4.19 6.54 4.75

TABLE 4.6: Anomalies of the mean annual and seasonal precipitation and temperature on the Ebro River
basin, for the CTRL period 1961 - 1990 and for 6 RCMs during 2071 - 2100. Values computed
averaging the IDW interpolated values in squared cells of 1km2

Anomaly of Mean Precipitation, [%] Anomaly of Mean Temperature, [◦C]
RCM Annual DJF MAM JJA SON Annual DJF MAM JJA SON
DMI.HS1 -3.56 22.40 -14.83 -31.18 4.98 4.17 3.26 3.24 5.50 4.37
DMI.ecscA2 -4.98 17.50 -19.60 -14.75 -2.24 5.48 4.01 5.11 7.09 5.42
HC.adhfa -7.62 13.00 -14.36 -39.54 15.52 4.56 3.37 3.53 6.21 4.78
CNRM.DE6 -14.54 10.06 -21.89 -40.27 -8.78 4.03 2.96 3.64 5.22 3.97
SMHI.HCA2 -6.56 14.53 -12.48 -45.10 8.52 4.28 3.13 3.22 6.24 4.21
SMHI.MPIA2 -20.92 -1.03 -33.39 -34.81 -16.42 6.24 4.14 6.19 8.71 5.52
Average -9.69 12.74 -19.42 -34.28 0.26 4.80 3.48 4.16 6.50 4.71

TABLE 4.7: Anomalies of mean annual and seasonal precipitation and temperature on the Ebro River
basin, for the CTRL period 1961 - 1990 and for 6 RCMs during 2071 - 2100. Values computed
averaging the OK interpolated values in squared cells of 1km2

Anomaly of Mean Precipitation, [%] Anomaly of Mean Temperature, [◦C]
RCM Annual DJF MAM JJA SON Annual DJF MAM JJA SON
DMI.HS1 -3.54 22.63 -14.77 -30.56 4.70 4.19 3.28 3.27 5.53 4.37
DMI.ecscA2 -4.87 18.00 -19.41 -14.22 -2.59 5.48 4.01 5.12 7.09 5.41
HC.adhfa -7.36 13.34 -14.08 -39.18 15.65 4.56 3.39 3.55 6.22 4.77
CNRM.DE6 -14.54 10.28 -21.93 -40.01 -8.89 4.04 2.97 3.66 5.26 3.97
SMHI.HCA2 -6.63 14.77 -12.47 -45.06 8.25 4.29 3.14 3.24 6.26 4.20
SMHI.MPIA2 -20.88 -0.80 -33.43 -34.30 -16.34 6.23 4.14 6.19 8.70 5.50
Average -9.64 13.04 -19.35 -33.89 0.13 4.80 3.49 4.17 6.51 4.70

All the RCMs predict an increase in the mean annual temperature and a decrease in the mean
annual precipitation with respect to the control period (see Tables 4.5, 4.6, 4.7, and Figure 4.5). In
particular, the decrease of mean annual precipitation ranges from ∼-4 to ∼-22%, with an average
decrease of ∼-10% (when computed over the gauging stations); whereas the increase in mean
annual temperature ranges from ∼+4 to ∼+6◦C, with an average increase +4.8◦C. Among all the
RCMs, the RCAO E (SMHI.MPIA2) projects the largest decrease in mean annual precipitation
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CHAPTER 4. PROJECTED CHANGES IN CLIMATE (2071-2100)

(∼-22%) and the largest increase in mean annual temperature (∼+6.3◦C); whereas the HIRAM H
(DMI.HS1) projects the smallest decrease in mean annual precipitation (∼-4%) and ARPEGE H
projects the smallest increase in mean annual temperature ( ∼+4.1◦C).

Figure 4.6 shows maps with the spatial distribution of anomalies of the bias-corrected mean an-
nual precipitation and temperature for the 6 RCMs described in Table 4.1, computed using ordi-
nary kriging interpolation with cells of 1km2.

FIGURE 4.6: Spatial distribution of the anomalies of bias-corrected mean annual temperature and precip-
itation with respect to the control period 1961-1990, computed using ordinary kriging with
cells of 1 km2 and 10 nearest neighbours.

Figure 4.6 show that the RCAO E (SMHI.MPIA2) and HIRAM E (DMI.ecscA2) will undergo the
highest increments in mean annual temperature, with the largest differences for the northern
and south-western parts of the catchment (where the highest elevations are located), pattern
shared with the other 4 RCMs. At the other hand, projected changes in mean annual precipi-
tation present significant differences among the RCMs, with RCAO E (SMHI.MPIA2) being the
driest RCM (see Tables 4.5, 4.6 and 4.7), projecting larger decreases in the northern and western
part of the catchment, whereas the HIRAM H (DMI.HS1), HIRAM E (DMI.ecscA2) and HAD H
(HC.adhfa) are the least dry, but they do not share a clear spatial pattern for the projected changes.
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4.3. RESULTS

Looking at the seasonal distribution of the meteorological patterns, Tables 4.5, 4.6, 4.7, and Figure
4.5 show that all the RCMs project an increase in the mean seasonal temperature and a decrease
in the mean seasonal precipitation, being winter (DJF) the only exception, because all the RCMs
project an increase in the seasonal precipitation. In particular, for precipitation all the RCMs pre-
dicts a decrease during the spring (ranging from -13% to -35%, with and average value of -20%)
and summer seasons (from -16% to -45%, with an average value of -35%). Regarding the temper-
ature field, all the RCMs predicts an increase of all the seasonal temperatures, with the largest
increase during summer (ranging from 5.2◦C to 8.8◦C, and average value of 6.5◦C) and the low-
est increase during winter (ranging from 3.0◦C to 4.2◦C, with an average value of 3.5◦C), which
seems to confirm previous results (e.g. Bürger et al., 2007).

Figures 4.7, 4.8, 4.9, and 4.10 show maps with the spatial distribution of the anomalies of bias-
corrected mean seasonal precipitation and temperature for the 6 RCMs described in Table 4.1,
computed using ordinary kriging interpolation with cells of 1km2.

FIGURE 4.7: Spatial distribution of the anomalies of mean winter (DJF) temperature and precipitation with
respect to the control period 1961-1990, computed using ordinary kriging with cells of 1 km2.

Figure 4.7 shows that during the winter season (DJF) there is an average increment of the mean
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seasonal temperature of +∼3.5◦C and an average increment of the mean seasonal precipitation of
+∼11%. The RCAO E (SMHI.MPIA2) and HIRAM E (DMI.ecscA2) are the warmest RCMs, but
sharing similar spatial distribution of the annomalies of mean seasonal temperature with the other
RCMs, with larger increases for the northern and southern regions of the catchment. At the other
hand, projected changes in mean seasonal precipitation present significant differences among the
RCMs, with RCAO E (SMHI.MPIA2) being the driest (the only one with a global decrease in
this season, see Tables 4.5, 4.6 and 4.7), projecting larger decreases in the northern and north-
western part of the catchment, whereas HIRAM H (DMI.HS1) is the wettest, projecting the largest
increments for the same northern area. At the same time, ARPEGE H (CNRM.DE6) projects larger
decreases in mean winter precipitation for the southern part of the basin.

FIGURE 4.8: Spatial distribution of the anomalies of mean spring (MAM) temperature and precipitation
with respect to the control period 1961-1990, computed using ordinary kriging with cells of 1
km2.

Figure 4.8 shows that during the spring season (MAM) there is an average increment of the mean
seasonal temperature of +∼4.2◦C and an average decrease of the mean seasonal precipitation
of ∼-20%. The RCAO E (SMHI.MPIA2) and HIRAM E (DMI.ecscA2) are, again, the warmest
RCMs, but with all the RCMs projecting similar spatial distribution of the anomalies of mean sea-
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4.3. RESULTS

sonal temperature, with larger increases for the northern and southern regions of the catchment.
At the other hand, projected changes in mean seasonal precipitation present differences among
the RCMS, but these differences are less evident than during the winter season. The RCAO E
(SMHI.MPIA2) is again the driest RCM (see tables 4.5, 4.6 and 4.7), projecting larger decreases
in the northern and north-western part of the catchment, whereas the RCAO H (SMHI.HCA2),
HIRAM H (DMI.HS1) and HAD H (HC.adhfa) are the least dry RCMs, sharing similar spatial
patterns, in which the largest decrease is projected for the central and southern valleys.

FIGURE 4.9: Spatial distribution of the anomalies of mean summer (JJA) temperature and precipitation
with respect to the control period 1961-1990, computed using ordinary kriging with cells of 1
km2.

Figure 4.9 shows that the summer season (JJA) is expected to undergo the most severe changes
in mean seasonal precipitation and air temperature (see Figure 4.14), with an average increment
of the mean seasonal temperature of +∼6.5◦C and an average decrease of the mean seasonal pre-
cipitation of ∼-35%. The RCAO E (SMHI.MPIA2) and HIRAM E (DMI.ecscA2) are, again, the
warmest RCMs, but this time RCAO H (SMHI.HCA2) and HAD H (HC.adhfa) are closer to the 2
previously mentioned RCMs than during winter and spring. Again, all the RCMs project larger in-
creases in the mean seasonal temperature for the northern and southern regions of the catchment.
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At the other hand, projected changes in mean seasonal precipitation present differences among
the RCMs much larger than during winter and spring. This time the driest RCMs are RCAO H
(SMHI.HCA2) and ARPEGE H (CNRM.DE6) (see Tables 4.5, 4.6 and 4.7), projecting an almost
uniform decrease all over the basin; whereas the HIRAM E (DMI.ecscA2) projects the smallest
decreases for the catchment (∼ −14%), and RCAO E (SMHI.MPIA2) and HIRAM H (DMI.HS1)
presenting similar spatial patterns, with the largest decrease for the north-western part of the
basin.

FIGURE 4.10: Spatial distribution of the anomalies of mean autumn (SON) temperature and precipitation
with respect to the control period 1961-1990, computed using ordinary kriging with cells of
1 km2.

Figure 4.10 shows that during the autumn season (SON) there is an expected average increment of
the mean seasonal temperature of +∼4.8◦C and a highly uncertain decrease of the mean seasonal
precipitation of -∼1%. The RCAO E (SMHI.MPIA2) and HIRAM E (DMI.ecscA2) are, again, the
warmest RCMs, but this time HAD H (HC.adhfa) is the only RCM close to the previous 2 RCMs.
Again, all the RCMs project larger increases in the mean seasonal temperature for the northern
and southern regions of the catchment. At the other hand, projected changes in mean seasonal
precipitation present the largest differences among the RCMs of all the seasons (see Tables 4.5,
4.6 and 4.7). ARPEGE H (CNRM.DE6 ), RCAO E (SMHI.MPIA2) and HIRAM E (DMI.ecscA2)
project a general decrease during this season (without a clear spatial pattern); whereas RCAO H
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(SMHI.HCA2), HIRAM H (DMI.HS1) and HAD H (HC.adhfa) project a general increase in the
seasonal precipitation, with different spatial patterns, but sharing the larger projected increases
for the southern part of the basin.

4.3.2.2 Monthly Anomalies

The anomalies of bias-corrected mean monthly precipitation over the entire Ebro River basin
during the future period 2071 - 2100 are presented in Tables 4.8, 4.9 and 4.10 for the six RCMs
described in Table 4.1. Projected values of monthly mean precipitation and temperature can be
found in the Appendix B.

TABLE 4.8: Anomalies of mean monthly precipitation, [%], on the Ebro River basin, for 6 RCMs during
2071 - 2100 with respect to the CTRL period 1961 - 1990. Values computed averaging over the
349 gauging stations of precipitation.

Anomalies of Monthly Mean Precipitation, [%]
RCM Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
DMI.HS1 31.97 9.82 -0.25 -4.48 -32.06 -28.29 -40.67 -29.13 12.31 -1.61 2.86 24.28
DMI.ecscA2 17.58 -0.94 4.78 -30.30 -27.15 -21.38 -25.43 -2.52 3.77 -23.59 9.56 28.14
HC.adhfa 11.68 15.26 26.23 -27.48 -30.29 -37.84 -45.32 -39.99 -13.27 12.23 31.94 9.54
CNRM.DE6 20.71 17.23 -11.01 -11.32 -38.14 -42.23 -43.86 -34.27 -10.18 -5.75 -12.61 -9.66
SMHI.HCA2 18.25 8.97 3.60 4.22 -39.33 -33.00 -49.65 -58.82 30.80 -9.05 3.92 17.19
SMHI.MPIA2 11.62 -20.00 -23.99 -38.75 -39.09 -42.73 -44.44 -17.78 -9.78 -25.09 -14.50 3.74
Average 18.64 5.06 -0.11 -18.02 -34.34 -34.24 -41.56 -30.42 2.28 -8.81 3.53 12.21

TABLE 4.9: Anomalies of mean monthly precipitation, [%], on the Ebro River basin, for 6 RCMs during
2071 - 2100 with respect to the CTRL period 1961 - 1990. Values computed averaging the IDW
interpolated values in squared cells of 1km2.

Anomalies of IDW Monthly Mean Precipitation, [%]
RCM Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
DMI.HS1 33.05 10.08 -0.66 -5.52 -32.76 -28.36 -40.34 -27.95 14.38 -1.06 3.32 26.34
DMI.ecscA2 19.81 0.02 6.04 -30.30 -26.57 -21.32 -22.90 1.12 6.41 -23.58 9.80 31.54
HC.adhfa 11.03 15.91 28.62 -28.03 -29.96 -36.21 -44.71 -40.20 -9.75 15.85 33.63 13.44
CNRM.DE6 20.37 20.14 -11.40 -11.98 -37.97 -41.87 -44.20 -34.86 -10.64 -4.02 -11.50 -9.59
SMHI.HCA2 17.66 8.87 3.99 4.23 -38.78 -32.28 -49.74 -59.81 31.86 -9.49 7.03 19.36
SMHI.MPIA2 14.23 -18.27 -21.75 -38.26 -36.55 -41.15 -44.32 -18.15 -8.30 -23.94 -15.87 4.62
Average 19.36 6.12 0.81 -18.31 -33.77 -33.53 -41.04 -29.97 3.99 -7.71 4.40 14.28

TABLE 4.10: Anomalies of mean monthly precipitation, [%], on the Ebro River basin, for 6 RCMs during
2071 - 2100 with respect to the CTRL period 1961 - 1990. Values computed averaging the OK
interpolated values in squared cells of 1km2.

Anomalies of OK Monthly Mean Precipitation, [%]
RCM Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
DMI.HS1 33.36 10.34 -0.68 -5.62 -32.50 -27.77 -39.57 -27.55 14.02 -1.34 3.23 26.59
DMI.ecscA2 20.19 0.52 6.27 -30.36 -26.12 -20.90 -21.49 1.37 6.07 -23.71 9.71 32.34
HC.adhfa 11.23 16.03 28.80 -27.82 -29.45 -35.50 -44.28 -40.36 -10.04 15.98 33.82 14.18
CNRM.DE6 20.63 20.30 -11.44 -12.17 -38.01 -41.52 -43.88 -34.68 -10.84 -3.93 -11.54 -9.34
SMHI.HCA2 17.73 9.30 3.93 4.02 -38.42 -32.27 -49.47 -59.84 31.50 -9.70 7.09 19.67
SMHI.MPIA2 14.27 -18.10 -21.76 -38.40 -36.62 -40.82 -43.71 -17.32 -8.30 -23.67 -15.83 5.04
Average 19.57 6.40 0.85 -18.39 -33.52 -33.13 -40.40 -29.73 3.73 -7.73 4.41 14.74
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The anomalies of bias-corrected monthly mean temperature over the entire Ebro River basin dur-
ing the future period 2071-2100 are presented in tables 4.11, 4.12 and 4.13 for the 6 RCMs described
in Table 4.1.

TABLE 4.11: Anomalies of monthly mean temperature, [◦C], on the Ebro River basin, for 6 RCMs during
2071 - 2100 with respect to the CTRL period 1961 - 1990. Values computed averaging over the
146 gauging stations of temperature.

Anomalies of Monthly Mean Temperature, [◦C]
RCM Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
DMI.HS1 3.3 3.1 2.4 3.0 4.3 5.1 5.3 6.2 5.3 4.4 3.5 3.5
DMI.ecscA2 3.9 4.5 4.0 5.3 6.2 5.9 7.8 7.8 6.6 5.3 4.5 3.8
HC.adhfa 3.4 3.4 2.7 3.6 4.4 5.7 6.4 6.7 6.4 4.1 3.9 3.6
CNRM.DE6 3.5 2.8 3.2 3.4 4.5 5.1 5.5 5.1 4.4 3.8 3.7 2.7
SMHI.HCA2 3.1 3.0 2.4 3.0 4.3 5.3 6.4 7.1 5.3 4.1 3.3 3.4
SMHI.MPIA2 4.2 4.4 5.2 6.4 7.1 7.7 9.2 9.4 7.1 5.2 4.3 4.2
Average 3.6 3.5 3.3 4.1 5.2 5.8 6.7 7.1 5.8 4.5 3.9 3.5

TABLE 4.12: Anomalies of monthly mean temperature, [◦C], on the Ebro River basin, for the CTRL period
1961-1990 and for 6 RCMs during 2071-2100. Values computed averaging the IDW interpo-
lated values in squared cells of 1km2

Anomalies of IDW Monthly Mean Temperature, [◦C]
RCM Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
DMI.HS1 3.2 3.1 2.4 3.0 4.3 5.1 5.2 6.1 5.3 4.3 3.4 3.5
DMI.ecscA2 3.9 4.4 4.0 5.2 6.1 5.9 7.7 7.7 6.5 5.2 4.4 3.8
HC.adhfa 3.3 3.4 2.6 3.5 4.4 5.7 6.3 6.6 6.4 4.1 3.8 3.5
CNRM.DE6 3.5 2.8 3.2 3.3 4.5 5.0 5.4 5.1 4.4 3.8 3.7 2.7
SMHI.HCA2 3.1 3.0 2.4 3.0 4.4 5.3 6.4 7.0 5.2 4.0 3.3 3.4
SMHI.MPIA2 4.2 4.3 5.1 6.4 7.1 7.7 9.1 9.3 7.1 5.1 4.3 4.1
Average 3.5 3.5 3.3 4.1 5.1 5.8 6.7 7.0 5.8 4.4 3.8 3.5

TABLE 4.13: Anomalies of monthly mean temperature, [◦C], on the Ebro River basin, for the CTRL period
1961-1990 and for 6 RCMs during 2071-2100. Values computed averaging the OK interpo-
lated values in squared cells of 1km2

Anomalies of OK Monthly Mean Temperature, [◦C]
RCM Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
DMI.HS1 3.2 3.2 2.5 3.0 4.3 5.1 5.2 6.2 5.3 4.4 3.4 3.5
DMI.ecscA2 3.9 4.4 4.0 5.3 6.2 5.9 7.6 7.7 6.5 5.2 4.4 3.8
HC.adhfa 3.3 3.4 2.6 3.6 4.5 5.7 6.3 6.6 6.4 4.1 3.8 3.5
CNRM.DE6 3.5 2.8 3.2 3.3 4.5 5.1 5.5 5.1 4.4 3.8 3.7 2.7
SMHI.HCA2 3.1 3.0 2.4 2.9 4.4 5.3 6.4 7.0 5.2 4.0 3.3 3.4
SMHI.MPIA2 4.2 4.4 5.1 6.4 7.1 7.7 9.1 9.3 7.1 5.1 4.3 4.1
Average 3.5 3.5 3.3 4.1 5.2 5.8 6.7 7.0 5.8 4.4 3.8 3.5

Figure 4.11, show a visual summary of the anomalies of the bias-corrected monthly mean precip-
itation and air temperature presented in Tables 4.8, 4.9 and 4.10. This figure shows that almost
all the RCMs project an increase in the monthly mean precipitation during December and Jan-
uary, with the largest average increase during January (from +12% to +32%, with an average value of
+19%) and a decrease from April to August, with the largest decrease in July (from -25% to -50%,
with an average value of -42%) and almost no change during March (average value of +1%). For
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the monthly mean temperature, all the RCMs projects an increase in the monthly mean temperature
all along the year, with the largest increase for August (ranging from +5.1◦C to +9.4◦C, with an
average value of +7.1◦C) and the lowest increase for March (ranging from +2.4◦C to +5.2◦C, and
average value of +3.3◦C).

4.3.3 Changes with Elevation

Due to the high spatial heterogeneity showed by the spatial distribution of the projected changes
in annual/seasonal/monthly mean precipitation and air temperature discussed in the previous
section 4.3.2, here we analyse how those changes are distributed along four different elevation
bands, representing the first, second and third quartiles of elevation provided by a DEM of 1 km2

resolution, in a way of providing practical guidelines about the spatial location in which those
changes are likely to happen.

4.3.3.1 Control Period

TABLE 4.14: Elevation bands used for analysing the projected changes in temperature and precipitation
on the Ebro River basin. Elevation values of 421, 694, 1019 and 3312 [m.a.s.l.] represent
the minimum, first quartile, median, third quartile and maximum values of the elevations
provided by a DEM of 1km2 resolution.

Elevation Range, [m.a.s.l.] ID
Precipitation

Stations
Temperature

Stations
0-421 Low 103 57

422-694 Med.Low 117 38
695-1019 Med.High 81 36
1020-3312 High 48 15

TABLE 4.15: Mean annual and seasonal precipitation and air temperature on the Ebro River basin, during
the CTRL period 1961 - 1990. Values on are computed averaging over the corresponding
gauging stations.

Elev. Band Mean Precipitation, [mm] Mean Temperature, [◦C]
Annual DJF MAM JJA SON Annual DJF MAM JJA SON

Low 388.0 78.6 113.3 76.2 119.5 14.0 6.1 12.8 22.8 14.8
Med.Low 571.6 142.8 164.4 107.3 155.7 12.4 5.1 10.9 20.4 13.3
Med.High 743.3 182.5 205.0 150.3 204.0 10.7 3.6 8.9 18.6 11.7
High 947.3 225.9 253.4 204.1 262.3 8.4 2.0 6.4 15.9 9.4
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4.3. RESULTS

FIGURE 4.12: Mean seasonal temperature and precipitation for different elevation bands on the Ebro
River basin, during the CTRL period 1961-1990. Values computed averaging over the 146
and 349 gauging stations of temperature and precipitation, respectively.

Table 4.15 and Figure 4.12 confirm the well known fact that annual and mean seasonal precip-
itation increase with increasing elevation values, whereas annual and seasonal values of air
temperature decreases with higher elevations.

4.3.3.2 Anomalies

The anomalies of bias-corrected mean annual precipitation and air temperature over each one of
the four elevation bands described in Table 4.14 for the entire Ebro River basin during the future
period 2071 - 2100 are presented in Table 4.16 for the 6 RCMs described in Table 4.1. Projected
values of annual/seasonal/monthly bias-corrected mean air temperature and precipitation for
each band can be found in Appendix B.2, for the 6 RCMs described in Table 4.1.

TABLE 4.16: Anomalies of bias-corrected mean annual precipitation and air temperature for different ele-
vation bands on the Ebro River basin, for the 6 RCMs during 2071 - 2100. Values computed
averaging over the 349 and 146 gauging stations of precipitation and temperature, respec-
tively.

Anomalies of Mean Precipitation, [%] Anomalies of Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 -4.27 -3.29 -3.89 -3.83 4.08 4.07 4.37 4.60
DMI.ecscA2 -1.54 -6.40 -6.62 -8.49 5.35 5.47 5.73 6.05
HC.adhfa -6.14 -6.96 -8.97 -13.56 4.52 4.44 4.71 5.02
CNRM.DE6 -11.75 -16.14 -14.28 -15.82 4.09 3.82 4.12 4.32
SMHI.HCA2 -3.17 -7.00 -7.82 -9.40 4.23 4.18 4.39 4.62
SMHI.MPIA2 -15.95 -22.55 -22.63 -24.64 6.13 6.21 6.39 6.67
Average -7.13 -10.39 -10.70 -12.62 4.73 4.70 4.95 5.21
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FIGURE 4.13: Anomalies of bias-corrected mean annual precipitation and temperature for different ele-
vation bands on the Ebro River basin, for the RCMs during 2071-2100. Values computed
averaging over the 349 and 146 gauging stations of precipitation and temperature, respec-
tively.

Table 4.16 and Figure 4.13 show that the mean annual temperature expect larger increments for
higher elevations, whereas mean annual precipitation expect larger decreases with higher eleva-
tion values.

Tables 4.17, 4.18, 4.19, 4.20 present the anomalies of bias-corrected mean seasonal precipitation
and air temperature over each one of the four elevation bands described in Table 4.14 for the
entire Ebro River basin during the future period 2071 - 2100 and for the 6 RCMs described in Table
4.1. Projected seasonal bias-corrected mean air temperature and precipitation for each band can
be found on tables B.11, B.12, B.13, B.14 (Appendix B.2), for the 6 RCMs described in Table 4.1.

TABLE 4.17: Anomalies of bias-corrected mean winter (DJF) precipitation and air temperature for differ-
ent elevation bands on the Ebro River basin, for the 6 RCMs during 2071 - 2100. Values
computed averaging over the 349 and 146 gauging stations of precipitation and temperature,
respectively.

Anomalies of Mean Precipitation, [%] Anomalies of Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 16.16 24.90 20.18 20.85 3.20 3.19 3.38 3.53
DMI.ecscA2 24.15 16.23 12.69 10.65 3.93 4.01 4.19 4.40
HC.adhfa 17.95 12.08 12.37 4.58 3.23 3.38 3.60 3.92
CNRM.DE6 22.43 5.97 9.18 4.33 3.03 2.81 2.95 3.03
SMHI.HCA2 11.16 15.49 13.78 14.24 3.09 3.05 3.19 3.30
SMHI.MPIA2 9.74 -4.70 -5.24 -5.68 4.09 4.13 4.26 4.45
Average 16.93 11.66 10.49 8.16 3.43 3.43 3.60 3.77
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TABLE 4.18: Anomalies of bias-corrected mean spring (MAM) precipitation and air temperature for dif-
ferent elevation bands on the Ebro River basin, for the 6 RCMs during 2071 - 2100. Values
computed averaging over the 349 and 146 gauging stations of precipitation and temperature,
respectively.

Anomalies of Mean Precipitation, [%] Anomalies of Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 -19.44 -14.59 -12.86 -9.75 3.06 3.17 3.55 3.57
DMI.ecscA2 -19.47 -20.93 -19.62 -20.04 4.82 5.18 5.54 5.68
HC.adhfa -16.09 -13.16 -14.68 -16.36 3.32 3.47 3.90 4.09
CNRM.DE6 -22.05 -22.55 -20.38 -21.42 3.54 3.44 4.01 4.25
SMHI.HCA2 -12.93 -12.18 -12.76 -13.66 3.10 3.13 3.45 3.46
SMHI.MPIA2 -23.93 -35.50 -38.21 -40.94 5.92 6.24 6.50 6.56
Average -18.98 -19.82 -19.75 -20.36 3.96 4.10 4.49 4.60

TABLE 4.19: Bias-corrected anomalies of mean summer (JJA) precipitation and air temperature for dif-
ferent elevation bands on the Ebro River basin, for the 6 RCMs during 2071 - 2100. Values
computed averaging over the 349 and 146 gauging stations of precipitation and temperature,
respectively.

Anomalies of Mean Precipitation, [%] Anomalies of Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 -31.14 -33.38 -30.28 -31.48 5.26 5.45 5.91 6.10
DMI.ecscA2 -9.80 -19.43 -15.25 -19.40 6.83 7.12 7.52 7.83
HC.adhfa -42.41 -38.38 -38.24 -43.97 6.22 6.03 6.36 6.51
CNRM.DE6 -40.46 -44.08 -39.02 -36.15 5.20 5.02 5.43 5.44
SMHI.HCA2 -42.52 -46.25 -44.60 -47.09 6.03 6.23 6.50 6.72
SMHI.MPIA2 -33.23 -37.40 -33.15 -36.87 8.46 8.78 9.06 9.43
Average -33.26 -36.49 -33.42 -35.83 6.33 6.44 6.80 7.01

TABLE 4.20: Bias-corrected anomalies of mean autumn (SON) precipitation and air temperature for dif-
ferent elevation bands on the Ebro River basin, for the 6 RCMs during 2071 - 2100. Values
computed averaging over the 349 and 146 gauging stations of precipitation and temperature,
respectively.

Anomalies of Mean Precipitation, [%] Anomalies of Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 12.22 2.58 1.88 0.86 4.25 4.34 4.56 4.87
DMI.ecscA2 3.18 -3.30 -5.11 -6.01 5.29 5.45 5.60 5.94
HC.adhfa 20.50 14.81 9.55 6.67 4.72 4.76 4.89 5.21
CNRM.DE6 -6.17 -9.93 -10.53 -11.54 4.01 3.86 3.99 4.18
SMHI.HCA2 20.61 4.11 3.88 2.52 4.15 4.19 4.31 4.64
SMHI.MPIA2 -15.63 -16.73 -16.76 -17.58 5.44 5.51 5.60 5.84
Average 5.78 -1.41 -2.85 -4.18 4.64 4.69 4.82 5.11

Figure 4.14, shows a visual summary of the anomalies of the bias-corrected mean seasonal pre-
cipitation and air temperature presented in Tables 4.17, 4.18, 4.19, 4.20 for the 6 RCMs described
in Table 4.1, during the future period 2071-2100.

75



CHAPTER 4. PROJECTED CHANGES IN CLIMATE (2071-2100)

F
IG

U
R

E
4.14:A

nom
alies

ofbias-corrected
m

ean
seasonalprecipitation

and
tem

perature
for

differentelevation
bands

on
the

Ebro
R

iver
basin,for

the
6

R
C

M
s

during
2071-2100.V

alues
com

puted
averaging

over
the

349
and

146
gauging

stations
ofprecipitation

and
tem

perature,respectively.

76



4.3. RESULTS

During winter (DJF), there is almost no difference in the mean seasonal temperature between Low
and Med.Low elevations, but there is an increase thereof from Med.Low to High elevations; whereas
for mean seasonal precipitation, almost all the RCMs project larger increments with lower elevations,
with the exception of RCAO E, (SMHI.MPIA2) which projects a uniform decrease from Med.Low
to High elevations.

For spring (MAM), the mean seasonal temperature increases with increasing elevation values; whereas
almost all the RCMs do not present significant differences in projected changes in precipitation among
different elevation ranges, with the exception of RCAO E (SMHI.MPIA2) and HIRAM H (DMI.HS1)
which project larger and smaller changes with increasing elevation values, respectively.

The summer season presents larger increments in mean seasonal temperature with increasing elevations,
with the exception of the HAD H (HC.adhfa) and ARPEGE H (CNRM.DE6), which project larger
increases in Low elevations than in Med.Low ones; whereas the mean seasonal precipitation does
not present a clear dependence on elevation values, but with the highest drops for Med.Low and High
elevations (see Table 4.19).

Finally, during autumn (SON) all the RCMs project larger increments in mean seasonal temperatures
with increasing elevations. At the other hand, this is the season with the most contradictory projec-
tions for mean seasonal precipitation, because RCAO H (SMHI.HCA2), HIRAM H (DMI.HS1) and
HAD H (HC.adhfa) project an increase in this seasonal value; whereas RCAO E (SMHI.MPIA2),
HIRAM E (DMI.ecscA) and ARPEGE H (CNRM.DE6) project a decrease thereof, with larger drops
for higher elevations. When looking an explanation on the monthly projected anomalies (see Ta-
bles 4.29, 4.30, 4.31), it can be seen that during September the monthly precipitation is expected
to increase for Low and Med.Low elevations and to decrease for Med.High and High elevations;
during October the monthly precipitation is expected to decrease, with larger decreases for higher
elevations; and during November, this monthly value is expected to increase, with the larger in-
creases for lower elevations.

The anomalies of bias-corrected mean monthly precipitation and air temperature over each one of
the four elevation bands described in Table 4.14 for the entire Ebro River basin during the future
period 2071 - 2100 are presented in tables 4.21 to 4.32, for the 6 RCMs described in Table 4.1.
Monthly projections for each elevation band can be found in in tables B.15, to B.26 (Appendix
B.2).

TABLE 4.21: Bias-corrected anomalies of mean January (JAN) precipitation and temperature for different
elevation bands on the Ebro River basin, for the 6 RCMs during 2071-2100. Values computed
averaging over the 349 and 146 gauging stations of precipitation and temperature, respec-
tively.

Mean Precipitation, [%] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 23.16 36.62 32.13 31.04 3.22 3.17 3.38 3.44
DMI.ecscA2 33.14 16.87 14.80 10.97 3.82 3.91 4.09 4.16
HC.adhfa 2.45 13.70 14.77 11.19 3.19 3.38 3.60 3.88
CNRM.DE6 51.79 9.18 24.27 10.91 3.54 3.32 3.47 3.39
SMHI.HCA2 11.39 17.77 19.88 21.87 3.07 3.02 3.16 3.16
SMHI.MPIA2 31.94 9.50 8.13 4.64 4.12 4.19 4.32 4.39
Average 25.65 17.27 19.00 15.10 3.50 3.50 3.67 3.74
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TABLE 4.22: Bias-corrected anomalies of mean February (FEB) precipitation and temperature for different
elevation bands on the Ebro River basin, for the 6 RCMs during 2071-2100. Values computed
averaging over the 349 and 146 gauging stations of precipitation and temperature, respec-
tively.

Mean Precipitation, [%] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 -2.22 14.96 9.32 11.44 3.04 3.03 3.31 3.43
DMI.ecscA2 -0.32 -1.04 -1.91 0.09 4.24 4.43 4.69 4.94
HC.adhfa 6.04 20.77 18.23 9.37 3.22 3.32 3.61 3.79
CNRM.DE6 35.59 17.61 11.77 10.59 2.85 2.63 2.92 3.03
SMHI.HCA2 -0.36 12.55 8.74 10.66 2.98 2.88 3.08 3.11
SMHI.MPIA2 -3.29 -23.75 -23.37 -21.87 4.21 4.36 4.57 4.77
Average 5.91 6.85 3.80 3.38 3.42 3.44 3.70 3.84

TABLE 4.23: Bias-corrected anomalies of mean march (MAR) precipitation and temperature for different
elevation bands on the Ebro River basin, for the 6 RCMs during 2071-2100. Values computed
averaging over the 349 and 146 gauging stations of precipitation and temperature, respec-
tively.

Mean Precipitation, [%] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 -7.78 1.76 -0.30 3.43 2.36 2.33 2.62 2.66
DMI.ecscA2 11.64 5.60 1.91 1.06 3.73 4.04 4.26 4.45
HC.adhfa 33.97 30.69 23.03 16.02 2.42 2.66 2.96 3.24
CNRM.DE6 -11.00 -12.54 -9.76 -10.18 3.02 3.01 3.48 3.75
SMHI.HCA2 3.59 6.36 1.84 1.42 2.35 2.21 2.50 2.51
SMHI.MPIA2 -16.98 -22.30 -27.09 -28.96 4.90 5.25 5.40 5.58
Average 2.24 1.60 -1.73 -2.87 3.13 3.25 3.54 3.70

TABLE 4.24: Bias-corrected anomalies of mean April (APR) precipitation and temperature for different el-
evation bands on the Ebro River basin, for the 6 RCMs during 2071-2100. Values computed
averaging over the 349 and 146 gauging stations of precipitation and temperature, respec-
tively.

Mean Precipitation, [%] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 -8.39 -5.31 -3.42 -0.86 2.77 2.99 3.30 3.34
DMI.ecscA2 -33.78 -31.18 -28.63 -27.86 4.94 5.35 5.69 5.82
HC.adhfa -31.03 -26.14 -28.70 -24.57 3.28 3.54 3.98 4.20
CNRM.DE6 -9.49 -13.75 -10.02 -10.87 3.18 3.13 3.64 4.00
SMHI.HCA2 7.24 2.23 3.96 4.96 2.78 2.97 3.20 3.27
SMHI.MPIA2 -32.24 -39.76 -40.35 -41.05 6.10 6.43 6.65 6.68
Average -17.95 -18.99 -17.86 -16.71 3.84 4.07 4.41 4.55
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TABLE 4.25: Bias-corrected anomalies of mean may (MAY) precipitation and temperature for different el-
evation bands on the Ebro River basin, for the 6 RCMs during 2071-2100. Values computed
averaging over the 349 and 146 gauging stations of precipitation and temperature, respec-
tively.

Mean Precipitation, [%] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 -35.71 -35.61 -30.29 -25.64 4.03 4.28 4.70 4.69
DMI.ecscA2 -25.60 -29.97 -25.84 -26.27 5.77 6.26 6.63 6.73
HC.adhfa -32.82 -32.05 -27.23 -29.22 4.25 4.31 4.73 4.79
CNRM.DE6 -39.26 -38.50 -37.34 -37.58 4.42 4.28 4.86 4.99
SMHI.HCA2 -39.83 -39.89 -38.40 -39.23 4.15 4.29 4.61 4.57
SMHI.MPIA2 -20.94 -40.84 -43.79 -48.24 6.76 7.14 7.41 7.40
Average -32.36 -36.14 -33.81 -34.36 4.90 5.09 5.49 5.53

TABLE 4.26: Bias-corrected anomalies of mean June (JUN) precipitation and temperature for different el-
evation bands on the Ebro River basin, for the 6 RCMs during 2071-2100. Values computed
averaging over the 349 and 146 gauging stations of precipitation and temperature, respec-
tively.

Mean Precipitation, [%] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 -31.61 -29.83 -26.22 -25.82 4.82 5.05 5.48 5.54
DMI.ecscA2 -19.88 -25.77 -19.95 -18.50 5.66 5.87 6.25 6.37
HC.adhfa -37.55 -36.93 -37.03 -40.47 5.62 5.48 5.81 5.85
CNRM.DE6 -44.12 -44.83 -41.32 -38.06 5.16 4.74 5.22 5.09
SMHI.HCA2 -26.54 -34.04 -33.68 -36.59 5.07 5.27 5.49 5.51
SMHI.MPIA2 -39.70 -41.47 -42.29 -47.84 7.46 7.68 7.99 8.14
Average -33.23 -35.48 -33.41 -34.54 5.63 5.68 6.04 6.08

TABLE 4.27: Bias-corrected anomalies of mean July (JUL) precipitation and temperature for different el-
evation bands on the Ebro River basin, for the 6 RCMs during 2071-2100. Values computed
averaging over the 349 and 146 gauging stations of precipitation and temperature, respec-
tively.

Mean Precipitation, [%] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 -40.73 -42.41 -39.65 -39.86 5.02 5.13 5.61 5.72
DMI.ecscA2 -23.69 -27.36 -23.12 -27.00 7.41 7.71 8.14 8.46
HC.adhfa -47.08 -44.17 -43.05 -48.17 6.39 6.15 6.48 6.56
CNRM.DE6 -41.14 -49.51 -43.31 -39.82 5.41 5.28 5.73 5.72
SMHI.HCA2 -50.67 -51.14 -48.32 -48.89 6.15 6.33 6.62 6.77
SMHI.MPIA2 -46.77 -46.31 -41.42 -44.42 8.78 9.19 9.53 9.96
Average -41.68 -43.48 -39.81 -41.36 6.53 6.63 7.02 7.20
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TABLE 4.28: Bias-corrected anomalies of mean August (AUG) precipitation and temperature for different
elevation bands on the Ebro River basin, for the 6 RCMs during 2071-2100. Values computed
averaging over the 349 and 146 gauging stations of precipitation and temperature, respec-
tively.

Mean Precipitation, [%] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 -24.15 -31.46 -28.13 -31.45 5.89 6.12 6.62 7.05
DMI.ecscA2 13.97 -4.37 -2.16 -13.97 7.38 7.71 8.15 8.66
HC.adhfa -46.41 -35.98 -35.91 -44.81 6.62 6.40 6.78 7.10
CNRM.DE6 -34.70 -38.87 -32.26 -30.52 4.99 4.99 5.31 5.52
SMHI.HCA2 -60.36 -59.74 -56.71 -58.96 6.81 7.02 7.39 7.89
SMHI.MPIA2 -14.95 -24.80 -13.54 -16.30 9.10 9.40 9.64 10.19
Average -27.76 -32.54 -28.12 -32.67 6.80 6.94 7.32 7.73

TABLE 4.29: Bias-corrected anomalies of mean September (SEP) precipitation and temperature for dif-
ferent elevation bands on the Ebro River basin, for the 6 RCMs during 2071-2100. Values
computed averaging over the 349 and 146 gauging stations of precipitation and temperature,
respectively.

Mean Precipitation, [%] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 27.78 11.27 7.88 2.28 4.98 5.27 5.65 5.96
DMI.ecscA2 27.21 0.09 -3.10 -8.33 6.26 6.60 6.86 7.24
HC.adhfa -7.07 -9.94 -15.74 -21.46 6.29 6.38 6.54 6.85
CNRM.DE6 -9.19 -11.74 -9.93 -9.49 4.32 4.26 4.49 4.57
SMHI.HCA2 41.67 29.49 27.72 24.53 5.07 5.23 5.45 5.80
SMHI.MPIA2 0.88 -11.94 -11.42 -16.52 6.89 7.07 7.22 7.42
Average 13.55 1.20 -0.77 -4.83 5.64 5.80 6.03 6.31

TABLE 4.30: Bias-corrected anomalies of mean October (OCT) precipitation and temperature for different
elevation bands on the Ebro River basin, for the 6 RCMs during 2071-2100. Values computed
averaging over the 349 and 146 gauging stations of precipitation and temperature, respec-
tively.

Mean Precipitation, [%] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 -2.65 -1.31 -2.06 -0.33 4.25 4.28 4.57 4.72
DMI.ecscA2 -19.13 -25.27 -25.96 -22.66 5.05 5.30 5.51 5.69
HC.adhfa 26.64 13.71 3.52 6.49 3.96 4.08 4.27 4.39
CNRM.DE6 -1.94 -5.90 -7.12 -7.72 3.81 3.70 3.89 3.97
SMHI.HCA2 -6.35 -11.56 -9.73 -7.30 4.01 3.96 4.17 4.32
SMHI.MPIA2 -22.03 -23.37 -27.82 -27.22 5.01 5.14 5.30 5.42
Average -4.24 -8.95 -11.53 -9.79 4.35 4.41 4.62 4.75
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TABLE 4.31: Bias-corrected anomalies of mean November (NOV) precipitation and temperature for dif-
ferent elevation bands on the Ebro River basin, for the 6 RCMs during 2071-2100. Values
computed averaging over the 349 and 146 gauging stations of precipitation and temperature,
respectively.

Mean Precipitation, [%] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 13.00 0.18 1.04 0.82 3.39 3.39 3.59 3.72
DMI.ecscA2 3.73 12.26 10.50 9.16 4.42 4.39 4.55 4.66
HC.adhfa 39.89 31.48 31.55 26.53 3.79 3.75 3.97 4.16
CNRM.DE6 -7.72 -12.02 -13.72 -16.08 3.77 3.54 3.70 3.79
SMHI.HCA2 28.71 0.56 -1.17 -4.93 3.25 3.31 3.45 3.60
SMHI.MPIA2 -24.46 -14.43 -11.37 -10.50 4.29 4.24 4.39 4.47
Average 8.86 3.01 2.81 0.83 3.82 3.77 3.94 4.07

TABLE 4.32: Bias-corrected anomalies of mean December (DEC) precipitation and temperature for dif-
ferent elevation bands on the Ebro River basin, for the 6 RCMs during 2071-2100. Values
computed averaging over the 349 and 146 gauging stations of precipitation and temperature,
respectively.

Mean Precipitation, [%] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
DMI.HS1 31.07 24.28 21.57 22.82 3.47 3.42 3.57 3.73
DMI.ecscA2 38.22 30.91 24.79 20.83 3.82 3.74 3.88 4.11
HC.adhfa 42.17 3.80 7.00 -2.85 3.44 3.55 3.76 4.17
CNRM.DE6 -15.07 -8.83 -8.44 -8.51 2.84 2.59 2.64 2.76
SMHI.HCA2 24.79 17.55 15.30 13.48 3.33 3.31 3.44 3.65
SMHI.MPIA2 5.71 2.78 3.70 3.76 4.21 4.07 4.17 4.38
Average 21.15 11.75 10.65 8.26 3.52 3.45 3.58 3.80

4.4 Summary and Conclusions

Bias-corrected daily time series of precipitation and air temperature were derived from an ensem-
ble of six climate change scenarios, selected from the EU FP5 PRUDENCE project. Long-term
averages of precipitation and air temperature fields were computed for the control period 1961 -
1990, and projected anomalies for the future period 2071 - 2100 were computed as well, in an an-
nual, seasonal and monthly basis, including expected changes for different elevation bands within
the basin. The main findings of this chapter can be summarized as follow:

• All the RCMs predict an increase in the mean annual temperature (Average3 value of 4.8◦C)
and a decrease in the mean annual precipitation (average value of -∼10%) with respect to
the control period (e.g. Table 4.5 and Figure 4.5), and those changes are stronger at increas-
ing elevation values (see Table 4.16 and Figure 4.13).

• Among all the RCMs, the RCAO E (SMHI.MPIA2) is the most severe in terms of annual
values, because it projects the largest decrease in mean annual precipitation (average value
of -∼22%) and the largest increase in mean annual temperature (average value of∼+6.3◦C);
whereas ARPEGE H (CNRM.DE6) projects the smallest increase in mean annual tempera-
ture (∼+4.0◦C) and HIRAM H (DMI.HS1), is the least dry (∼-4%). In this way, climate sce-

3average computed with the values of the 6 RCMs presented in Table 4.1
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narios derived from the two different GCMs used in this dissertation provided the extreme
expected changes in annual precipitation and temperature by the end of this century.

• About the spatial distribution of the annual changes, all the RCMs present a similar pattern
for the mean annual temperature, projecting the largest increments for higher elevation val-
ues (northern and south-western parts of the basin). At the other hand, projected changes in
mean annual precipitation present significant differences in their spatial distribution among
the RCMs, but the RCAO E (SMHI.MPIA2) is the single RCM projecting a general decrease
almost all over the basin, with larger decreases for higher elevations.

• Regarding seasonal projections, all the RCMs predicts an increase of all the seasonal tem-
peratures, with the largest increase during summer (average value of ∼+6.5◦C) and the
lowest increase during winter (average value of ∼+3.5◦C), which seems to confirm previ-
ous results (e.g. Bürger et al., 2007). Regarding projected changes in seasonal precipitation,
all the RCMs predicts a decrease of the mean precipitation during spring (average value of
∼-20%) and summer (average value of ∼-35%) seasons; almost all the models predict an in-
crease during winter (average value of ∼+10%) and contradictory projections are projected
for the autumn season.

• During the winter (DJF), there is an expected average increment of the mean seasonal tem-
perature of +∼3.5◦C and an average increment of the mean seasonal precipitation of +∼11%.
The RCAO E (SMHI.MPIA2) and HIRAM E (DMI.ecscA2) are the warmest RCMs, sharing
similar spatial distribution of the anomalies of bias-corrected mean seasonal temperature
(see Figure 4.7), with almost no difference between low and medium-low elevations, but
with an increase from medium-low to high elevations (larger increments are projected for
the northern and southern regions of the basin). At the other hand, projected changes in
mean seasonal precipitation present significant differences among the RCMs, with almost
all the RCMs projecting larger increments with lower elevations (see Table 4.17), with the excep-
tion of RCAO E, (SMHI.MPIA2), which projects a uniform decrease from Med.Low to High
elevations (∼-5%) .

• For the spring season (MAM) there is an average increment of the mean seasonal tempera-
ture of +∼4.2◦C and an average decrease of the mean seasonal precipitation of ∼-20%. The
RCAO E (SMHI.MPIA2) and HIRAM E (DMI.ecscA2) are, again, the warmest RCMs, pro-
jecting larger increments for increasing elevation values (northern and southern regions of
the catchment). At the other hand, the RCAO E (SMHI.MPIA2) is again the driest RCM (e.g.
Table 4.5 and Figure 4.8), projecting larger decreases with increasing elevations (see Table
4.18), whereas the other RCMs present significant differences in the spatial distribution of
projected changes of mean seasonal precipitation, but these differences are less evident than
during the winter season, and with the elevation value exerting only a small influence on
this change.

• The summer season is expected to undergo the most severe changes in the mean seasonal
precipitation and air temperature (see Figure 4.14), with an average increment of the mean
seasonal temperature of +∼6.5◦C and an average decrease of the mean seasonal precipitation
of ∼-35%, with almost all the RCMs projecting larger increments in mean seasonal temper-
ature for increasing elevation values; whereas differences in RCMs indicate that the mean
seasonal precipitation does not present a clear dependence on the elevation values (see Ta-
ble 4.19). The RCAO E (SMHI.MPIA2) and HIRAM E (DMI.ecscA2) are, again, the warmest
RCMs (see Table 4.5 and Figure 4.9), but this time RCAO H (SMHI.HCA2) and HAD H
(HC.adhfa) are closer to the 2 previously mentioned RCMs than during winter and spring.
The driest RCMs are RCAO H (SMHI.HCA2) and ARPEGE H (CNRM.DE6) (see Figure 4.9
and Table 4.5), projecting an almost uniform decrease all over the basin ( ∼-45% and ∼-40%,
respectively); whereas the HIRAM E (DMI.ecscA2) projects the smallest decreases in mean
seasonal precipitation for the catchment ( ∼-14%), without a clear dependence on elevation.
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• Finally, during autumn (SON) there is an expected average increment of the mean sea-
sonal temperature of +∼4.8◦C and a highly uncertain decrease of the mean seasonal pre-
cipitation of -∼1%. All the RCMs project larger increments in mean seasonal tempera-
ture with increasing elevations (northern and southern regions of the basin). At the other
hand, there are contradictory projections for mean seasonal precipitation, because RCAO H
(SMHI.HCA2), HIRAM H (DMI.HS1) and HAD H (HC.adhfa) project an increase in this
seasonal value, but with smaller increments with increasing elevations; whereas RCAO E
(SMHI.MPIA2), HIRAM E (DMI.ecscA) and ARPEGE H (CNRM.DE6) project a decrease
thereof, with larger drops for higher elevations. When looking a possible explanation on
the corresponding monthly anomalies (see Tables 4.29, 4.30, 4.31), it can be seen that during
September the average monthly precipitation is expected to increase for Low and Med.Low
elevations, and to decrease for Med.High and High elevations; during October the average
monthly precipitation is expected to decrease, with larger decreases for higher elevations
(excluding the High elevations); and during November, this monthly average value is ex-
pected to increase, with the larger increases for lower elevations.

• Looking at the projected changes on monthly values, almost all the RCMs project an increase
in the monthly mean precipitation during December and January (see 4.11), with the largest
average increase during January (+∼19%) and a decrease from April to August, with the largest
average decrease in July (-∼42%) and almost no change during March (average value of +1%).
For the monthly mean temperature, all the RCMs projects an increase in the monthly mean
temperature all along the year, with the largest average increase during August (+∼7.1◦C) and
the lowest average increase for March (+∼3.3◦C).

• Areas located in higher elevation are expected to suffer large increments in the annual and
seasonal air temperature, and the larger decreases in annual and mean seasonal precipitation
when compared to lower elevation zones, situation that may have a strong impact on the
future climatological regime of the Ebro River basin, due to its likely effects on glaciers and
snow-pack located in the northern part of the basin.

• An advice to any further study regarding impacts of climate change on this area is to look
carefully to the expected changes for the autumn (SON), because this is the season with the
most contradictory projections for the expected changes in seasonal precipitation.

• The seasonal changes on the meteorological driving forces, mentioned in section 4.4, may
have important effects on the water availability of the Ebro River basin, because the pro-
jected increments in mean temperature and decreases in mean precipitation are concen-
trated in seasons characterized by intense irrigation activities, and a hydrological modelling
work that incorporates the impacts of these meteorological drivers on agriculture and en-
ergy should prove be very useful for decision makers aiming at avoiding a future crisis in
those strategic sectors.

• This chapter showed that the chosen future climate scenarios provided very different pro-
jections of bias-corrected annual/seasonal/monthly temperature and precipitation fields,
even under the same emissions scenario (the medium-high SRES A2 in this dissertation).
RCAO E (SMHI.MPIA2) is the most severe RCM in terms of projected annual anomalies.
However, when moving into seasonal and monthly projections, considering different ele-
vation bands within the catchment, it is possible to observe that different combinations of
projected changes in temperature and precipitation fields can lead to choose a different RCM
as the most severe for the particular objective of a specific project. Moreover, extreme pro-
jected changes were given by climate scenarios that used boundary conditions from the two
different GCMs used in the present dissertation. This proves that the use of ensembles of
RCMs, driven by different GCMs, should be a mandatory step in any hydrological study
aiming at having a better assessment of the full range of likely changes in climate.
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• By no means it should be thought that the future changes in climate expected for the Ebro
River basin will certainly lie between the ranges given in this dissertation. Additional uncer-
tainties (reliability of SRES scenarios, skill of the GCM/RCM to provide a realistic response
to a emission forcing that have been never observed before, downscaling technique, small
number of driving GCMs considered in this dissertation as boundary conditions of the fu-
ture scenarios, unforeseen natural phenomena, etc.) sum additional degrees of freedom to
an already complex issue. It can only be claimed that we explored some possible scenar-
ios of future climate, with the best information we had at this moment, and that the results
provided here correspond to the best projections we could make based on our imperfect
knowledge about a very complex, heterogeneous and non-linear problem.
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”Doubt is not a pleasant condition,
but certainty is absurd one.”

(Voltaire) 5
Hydrological Impacts of Climate Change

(2071-2100)

This chapter presents projected changes on water resources for two selected subcatchments of
the Ebro River basin by the end of this century (2071-2100), considering an ensemble of high-
resolution future climate scenarios, the effects of hydrological parameterisation, and the bias of the
hydrological model in representing different streamflow magnitudes. Section 5.1 gives a brief in-
troduction about expected changes in water resources for the Mediterranean area, methodologies
for assessment of hydrological impacts of climate change, and the cascade of uncertainty involved
in the quantification of the hydrological impacts of climate change, in order to set the background
for the remaining sections of this chapter. Section 5.2 describes the methodology developed to
assess the hydrological impacts of climate change subject to hydrological parametric uncertainty,
including: (i) the six climate change scenarios used to sample the space of possible future climates;
(ii) the downscaling technique adopted for passing the climate signal from the grid-scale of the
RCM outputs to the point-scale of the gauging stations used in the hydrological simulations, (iii)
the parameter sets used to obtain ensembles of projected streamflows for each climate scenario;
(iv) the use of flow duration curves (FDCs) to qualitatively assess the relative importance of the
uncertainties coming from hydrological parameterisation and from the driving climate scenario;
and (v) the use of three percentiles (Q5, Q50 and Q95) to quantitatively assess projected changes
in streamflows, taking into account possible bias of the hydrological model in representing some
streamflow magnitudes. Section 5.3 presents projected changes in the overall and seasonal stream-
flows by the end of this century. Finally, a summary with the main results is included in section
5.4, at the end of this chapter.

5.1 Introduction

5.1.1 Overview

Changes in regional water availability and frequency/intensity of extreme events will be among
the most significant impacts of climate change on our society. Such hydrological changes will
have implications on important aspects of our every-day life, from agricultural productivity and
energy production to flood control, highlighting the necessity of a better understanding about how
those changes in global climate will affect local water resources (Xu, 1999). According to Fourth
Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) almost all
Europe is deemed to be negatively affected by future impacts of climate change, including a higher
risk of floods, droughts and erosion (Alcamo et al., 2007). In particular, southern Europe is likely
to suffer a decrease in annual runoff, by 0 to 23% up to 2020s and by 6 to 36% up to 2070s (A2 and
B2 scenarios and two different climate models), accompanied with a decrease by up to 80% of low
summer flows, making the risk of drought particularly important. Moreover, projected increase
of water withdrawals in southern Europe would amplify the risks associated to climate change,
being the Mediterranean (Spain and Portugal) the region more exposed to drought risk (Alcamo
et al., 2007).
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5.1.2 Methodologies for Assessing the Hydrological Impacts of Climate Change

Quantification of climate changes impacts on water resources is important to evaluate its effects
on the balance between demand and availability of all the socially valued water uses (Kundzewicz
et al., 2007), and it is necessary to design and implement long-term adaptation and mitigation poli-
cies. A traditional way to conceptualise and investigate how the allocation of water resources will
evolve under changes in water availability and water uses has been through the use of hydrolog-
ical and/or hydrogeological models. Hydrological models represent basins behaviour through a
mathematical formulation of the most relevant and well-known physical process. The characteris-
tics and data requirements of each model will depend on the particular modelling task, thus they
could be grouped in different ways: deterministic/stochastic, surface runoff/groundwater; water-
quantity/water-quality; metric (black/box)/parametric (conceptual)/mechanistic (physically-based)
(Wagener et al., 2004; Wheater, 2008); lumped/distributed/semi-distributed, or many combinations
among them. However, passing the signal of climate change from climate models to hydrological
models is not an easy task, as meteorological variables from climate models are often affected by
systematic errors (Graham et al., 2007a).

Nowadays, climate models are the only available tools for quantifying the global climate response
to different future development scenarios of our society, represented by different atmospheric
concentrations of carbon dioxide and other trace gases. Climate models use well-known physi-
cal principles to simulate the interactions among atmosphere, oceans, land surface and ice. Up
to now, the assessment of potential impacts of climate change has generally relied on data from
Atmosphere-Ocean General Circulation Models (AOGCM), with a spatial resolution of a few hun-
dred kilometres (∼300 km or ∼2.5◦), which is not enough for reproducing spatial patterns of pre-
cipitation (Salathé, 2003) and its daily variability (Bürger and Chen, 2005), especially in areas of
complex topography and land use distribution (Christensen et al., 2007b), making them unsuitable
for a direct application as drivers of hydrological impacts studies (Prudhomme et al., 2002). To over-
come these limitations, spatial and temporal downscaling techniques are carried out for limited
areas and run for shorter periods, mainly oriented to better reproduce temperature and precipita-
tion fields (e.g. Fowler et al., 2007; Prudhomme, 2006; Dibike and Coulibaly, 2005; Salathé, 2005, 2003;
Wood et al., 2004; Prudhomme et al., 2002; Wilby et al., 2000, 1999; Xu, 1999).

Once the climatological fields have been downscaled, conceptual rainfall-runoff models, whether
lumped (e.g. Mimikou et al., 2000; Pilling and Jones, 2002; Arnell, 2003a; Thodsen, 2007; Chiew et al.,
2009) or semi-distributed (e.g. Andréasson et al., 2004; Thomson et al., 2005; Arheimer et al., 2005;
Booij, 2005; Gosain et al., 2006; Graham et al., 2007b; Steele-Dunne et al., 2008; Abbaspour et al., 2009)
have been -to date- the preferred tools of many climate-change researchers worldwide to assess
the likely impacts of climate change, in spite of their known limitations, related to parameter
identifiability, equifinality and predictive uncertainty (see section 3.1.2). The main reasons for
this preference are: (i) relative low data-requirements, (ii) computation time suited for long-term
hydrological simulations, and (iii) a large amount of models are available, already calibrated and
verified during years of application to water management and related problems.

An early review of techniques used for assessing the effects of climate change on water resources
is provided by Leavesley (1994), whereas an updated review can be found in Praskievicz and Chang
(2009), with focus on the hydrological impacts of climate change and urban development. Fol-
lowing Xu (1999), the assessment of the hydrological impacts of climate change can be carried out
with four different approaches, which are briefly summarised next.

Using hypothetical scenarios as input to hydrological models

Different climate models may give different values of climate variables for the same period, there-
fore they do not provide a single estimate that could be used as a reliable projection for hydrolog-
ical planning. Consequently, many hydrologists have used hypothetical climate change scenarios
for hydrological impact assessments, based on ”double CO2” conditions. In the simplest form,
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average annual changes in precipitation and temperature using either GCM outputs, projected
historical trends, or personal estimates (typically 4T = +1◦C, +2◦C and +4◦C and 4P = ±10%,
±20%) are used to define the hypothetical scenarios.

Direct use of GCM-derived hydrological output

Notwithstanding General Circulation Models (GCMs) were developed to predict the average
synoptic-scale, and general circulation patterns of the atmosphere, not to be directly used in the
assessment of the hydrological response to climate change, some studies have used GCM-derived
outputs to predict the impact of future climate change on macroscale watersheds. However, the
very simple representation of the complex hydrologic cycle within a GCM (most of them do not
include any water routing within the land phase) leads to very low predictive capabilities thereof.

Coupling GCMs and macroscale hydrological models

Some studies have coupled meteorological fields given as output of GCMs (e.g., precipitation and
temperature) to directly drive a hydrological model for a large river basin (e.g. Arnell, 1999), lead-
ing to a better representation of the observed flow regime than using the GCM runoff. However,
due to the coarse spatial resolution of GCMs, they are not able to solve process occurring at smaller
scales.

Downscaling GCM climate outputs to drive a hydrological model

As mentioned in section 4.2.2, since there is a gap between the coarse spatial resolution of GCM
outputs and the smallest spatial resolution needed for hydrological impact studies, in recent
decades a great deal of research has been focused on the development of ”downscaling” techniques
(e.g. Xu, 1999; Wilby et al., 1999; Murphy, 1999; Prudhomme et al., 2002; Wood et al., 2004; Salathé, 2005;
Kay et al., 2006; Graham et al., 2007b,a; Burton et al., 2010), aiming at producing climate information
with a spatial resolution finer than the large-scale GCM outputs. Downscaling techniques can
be roughly classified as (i) empirical/statistical methods, where statistical techniques are used to
formulate empirical relationships between GCM climate outputs and local climate; and (ii) dy-
namical downscaling, where a higher resolution regional climate model (RCM) or limited-area
model (LAM) is nested to a GCM, and it uses large-scale and lateral boundary conditions from
the GCM to produce higher resolution outputs. An exhaustive and updated review of downscal-
ing techniques with focus in hydrological applications is provided by Fowler et al. (2007). This is
the approach used in the present dissertation for assessing the likely impacts of climate change on
water resources of the Ebro River basin.

Teutschbein and Seibert (2010) provides a review of hydrological impact studies based on RCM out-
puts, pointing out that inter-model variability and bias in the representation of observed climate
may have important consequences in the final impacts, emphasizing that multi-model approaches
along with appropriate bias-correction procedures should be preferred to impact studies based on
a single RCM. They also confirmed previous results (e.g. Giorgi et al., 1994; Hagemann et al., 2004)
regarding that raw RCM-simulated runoff are often error-prone.

5.1.3 Uncertainty in Impacts of Climate Change

Since the TAR (IPCC, 2001) there has been a significant progress in better understanding the phys-
ical process involved in the climate change, in model climate simulation, and methods of analysis
and evaluation of climate feedbacks (Randall et al., 2007). However, the Working Group II in the
AR4 of the IPCC mentioned that there are still major uncertainties in how much the hydrological
characteristics of a basin will change (Kundzewicz et al., 2007), what implies that planners usually
have to take decisions based on a wide range of predicted changes, from different models of un-
known relative quality. A clear representation of all the uncertainties involved in the assessment
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process is fundamental to provide useful and technically-based advice to policy makers, in order
to devise suitable strategies of mitigation and risk reduction (Reilly et al., 2001), for then selecting
the best possible choice based on the current knowledge.

Projected impacts of climate change will depend on the combination of emissions scenarios, cli-
mate forcings, and impact model used to assess the local impacts (Viner, 2003; Olesen et al., 2007).
The assessment process begins with the selection of one or more emissions scenarios, normally
adopted from the Special Report on Emissions Scenarios (SRES, Nakićenović et al., 2000), which
are derived from four main storylines (A1, A2, B1, B2) describing different socio-economic, de-
mographic and technological evolutions of our society, which have to be treated as being equally
plausible (Schneider, 2002; Viner, 2003). Emissions are then converted to concentrations of green-
house gases by gas-cycle models, and scenarios of future concentrations are then used to derive
projections of climate response, usually through complex coupled atmosphere-ocean General Cir-
culation Models (AOGCM). To overcome limitations related to spatial resolution of AOGCM, spa-
tial and/or temporal downscaling techniques are carried out for limited areas and run for shorter
periods, with the purpose of better reproducing temperature and precipitation fields. Finally,
downscaled climate fields are used to drive impact models, and to obtain projected impacts and
their corresponding predictive uncertainties. In particular, hydrological impact studies involve
important decisions which effects are reflected into the final impacts. Firstly, the modeller select
one or more model structure(s) to represent the main physical process undergoing in the catch-
ment; secondly, one or many parameter sets are used to describe some effective properties of the
catchment within the adopted model structure(s); then, parameter values are obtained by using
one or more goodness-of-fit measure selected by the modeller, for comparing observed and sim-
ulated values during a user-defined calibration period, with or without explicit consideration of
errors in the input data used to drive the simulations. As a result, quantification of impacts of cli-
mate change have to be seen as a ”cascade of uncertainty” (New and Hulme, 2000; Mearns et al., 2001;
Schneider, 2002; Viner, 2003; Giorgi, 2005; Wilby, 2005), as shown in Figure 5.1, in which decisions
taken in every step of the assessment process, going from emissions scenario to projected impacts,
convey uncertainties that are unavoidably propagated to subsequent levels.

In the last decades, a great deal of research has been focused on uncertainty in climate-change sce-
narios (e.g. New and Hulme, 2000; Allen et al., 2001; Lambert and Boer, 2001; Wigley and Raper, 2001;
Webster et al., 2003; Arnell, 2003b; Arnell et al., 2003, 2004; Zierl and Bugmann, 2005; Rowell, 2006;
Prudhomme and Davies, 2007; Lenderink et al., 2007; Maurer, 2007; Moss et al., 2010), the use of en-
sembles in impact assessment (e.g. Giorgi and Mearns, 2003; Murphy et al., 2004; Tebaldi et al., 2005;
Hewitt, 2005; Christensen et al., 2007b; Collins, 2007; Meehl et al., 2007; Tebaldi and Knutti, 2007; Mau-
rer, 2007; Groves et al., 2008; Bormann et al., 2009; Manning et al., 2009; Halenka et al., 2009; Sankara-
subramanian et al., 2009; Fowler and Ekström, 2009), downscaling from global climate changes to
regional scales (e.g. Xu, 1999; Murphy, 1999; Wilby et al., 2000; Prudhomme et al., 2002; Wood et al.,
2004; Salathé, 2005; Kay et al., 2006; Graham et al., 2007b,a; Burton et al., 2010), as well as in hydro-
logical impacts of climate change (e.g. Christensen et al., 2004; Payne et al., 2004; Arnell, 2005; Booij,
2005; Dibike and Coulibaly, 2005; Bürger et al., 2007; Graham et al., 2007b; Steele-Dunne et al., 2008;
Chiew et al., 2009; Peng and Xu, 2009; Abbaspour et al., 2009). However, most of the studies pro-
viding an assessment of the impacts of climate change on water resources have used one single
hydrological model, i.e, a unique combination of model structure and parameter set, to quantify
the future streamflows, overlooking the relative importance of hydrological uncertainties into the
final impacts. Comparatively, only few quantitative studies have looked at the propagation of the
aforementioned uncertainties into the final hydrological impacts (e.g. Jakeman et al., 1993; Wilby,
2005; Dibike and Coulibaly, 2005; Zierl and Bugmann, 2005; Horton et al., 2006; Cameron, 2006; Wilby
and Harris, 2006; Graham et al., 2007b,a; Prudhomme and Davies, 2009a,b), being the work of Kay et al.
(2009) the one that compared the largest number of uncertainty sources of which the author of this
dissertation is aware.

Most of the studies comparing uncertainties coming from different future climate scenarios with
those coming from hydrological parameterisation indicate that the greatest source in the cascade
of uncertainty is the GCM chosen to drive the simulations (e.g. Wilby and Harris, 2006; Prudhomme
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FIGURE 5.1: Schematic representation of the ”cascade of uncertainty” involved in the quantification of hy-
drological impacts of climate change. Modified after Viner (2003).

and Davies, 2009a,b; Kay et al., 2009). Caballero et al. (2007) ordered the sources of uncertainty, related
to hydrological impacts of climate change, in decreasing order as follow: emissions scenarios, cli-
mate model parameterization, downscaling, and hydrological model parameterisation, without
giving an explicit reason for that, whereas Wilby and Harris (2006) suggested the following decreas-
ing order: GCM, downscaling, hydrological model structure, hydrological parameterisation, and
emission scenario. Prudhomme and Davies (2009b) claim that the largest source of uncertainty in fu-
ture streamflows is the driving GCM, with uncertainties coming from downscaling and emissions
scenario being similar in magnitude, but generally smaller than the uncertainty coming from the
driving GCM. Prudhomme and Davies (2009b) also claim that hydrological modelling uncertainty
can be neglected when it is smaller than GCM variability for baseline flows, but it may be signif-
icant otherwise. Kay et al. (2009) suggest that uncertainties related to the representation of future
climate are generally larger than those related to hydrological modelling or emissions, however,
they also mention that the effect of hydrological parameterisation may be under-represented in
their study, because the uncertainty coming from equifinality was not considered. As far as the
author of this dissertation is aware, Abbaspour et al. (2009) were the first in arguing that the rela-
tive importance of the uncertainty may be dependent on the scale of the study, with hydrological
model uncertainty being larger and uncertainties due to emissions scenarios becoming smaller
as the scale of the study increases. This dissertation attempt to provide new insights about the
relative magnitudes of uncertainties derived from the driving climate model and hydrological
parameterisation, and its implications for hydrological impact assessment.
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5.2 Methodology

This chapter focuses in two steps of the ”cascade of uncertainty” involved in the quantifications of
the hydrological impacts of climate change: (i) the hydrological parameterisation used to repre-
sent the catchment response to a given climatological forcing, and (ii) its interaction with different
climate change scenarios, used to sample the space of future climates expected by the end of this
century. The Generalised Likelihood Uncertainty Estimation (GLUE) methodology is used to se-
lect parameters sets that can be considered as acceptable simulators of the system, based on a
user-defined percentage of observations bracketed by the predictive uncertainty bounds derived
from using those parameters sets during independent calibration and verification stages within
the control period 1961-1990. Afterwards, the same parameter sets selected during the uncertainty
analysis of the control period are used to represent the catchment response to different scenarios
of future climate. Finally, the bias-corrected daily time series derived from each climate scenario
are run with the behavioural parameter sets selected for each catchment, and then they are used
to produce probabilistic projections of future streamflows, taking into account bias of the hydro-
logical modelling in the representation of river flows of different magnitudes and for different
seasons.

The approach developed in this dissertation differs from previous studies related to propagation
of hydrological parametric uncertainty into projections of hydrological impacts of climate change,
as (a) it allows to select parameter sets to be used in hydrological simulations of future scenarios
based on an objective criterion, i.e, a user-defined minimum percentage of observations embraced
by the uncertainty bounds; (b) it presents an assessment of the streamflow magnitudes that are
better/worse represented by the hydrological model; and (c) it provides probabilistic information
about projected seasonal changes in low, medium and high streamflows, taking into account the
bias of the hydrological model in representing the catchment response.

The developed framework to obtain probabilistic projections of future river flows involved four
steps, described in the following sections: (i) selection of an ensemble of six future climate-change
scenarios for the Ebro River basin, which is used to sample the space of possible future climate in
the basin; (ii) downscaling the future climate scenarios from the RCM grid scale to the point scale,
in order to be used by the hydrological model; (iii) selection of the parameters sets to be consid-
ered as acceptable simulators of the system during the control period, by using the Generalised
Likelihood Uncertainty Estimation (GLUE) methodology; and (iv) computation of probabilistic
projections of future streamflows, by using flow values derived from running each climate sce-
nario with all the behavioural parameter sets selected for each one of the selected catchments.

5.2.1 Selection of Climate Scenarios and Downscaling of RCM Outputs

It is widely accepted that the assessment of projected impacts of climate change on water resources
requires the use of multi-model ensembles to better estimate the likely changes in climate, in
particular at regional scales, because no singe model provides a ”true” representation of the future
climate (Tebaldi, 2004). The climate scenarios used in this dissertation to sample the space of future
possible climates on the Ebro River basin were already described in section 4.2.1, along with the
downscaling technique used to pass from the grid-scale of the RCM outputs to the point scale of
the gauging stations used to drive the hydrological simulations on the two selected catchments,
described in section 3.3.1. Therefore, a brief summary is presented here just for completeness.

An ensemble of six climate scenarios were selected from the red set of the EU FP5 PRUDENCE
project, described in Table 4.1, corresponding to six different RCMs run with boundary condi-
tions taken from what can be considered two different GCMs: the atmosphere-only HadAM3H
(Buonomo et al., 2007; Gordon et al., 2000; Pope et al., 2000) and the atmosphere-ocean ECHAM4/OPYC
(Roeckner et al., 1996), under the same medium-high SRES A2 emissions scenario.

Section 4.2.2 describes the simple bias-correction method used to downscale daily precipitation
and air temperature fields from the grid-cell scale of the RCM outputs to the point scale of the
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gauging stations selected in section 2.2.5.1, in order to allow the simulated monthly means to
match the observed monthly averages during the control period. The bias-corrected daily time
series of precipitation and temperature where then used to drive the hydrological simulations on
two selected catchments (see section 3.3.1), during the future period 2071-2100, in order to assess
the likely impacts of climate change on the water resources of both catchments.

5.2.2 Hydrological Parameterisation

Chapter 3 described the set up of the hydrological model, and the uncertainty analysis carried out
in order to select the parameter sets that are used in this chapter to describe the catchment response
to different climate forcings. Therefore, they are briefly summarized next just for completeness.

In section 3.3, the Soil and Water Assessment Tool (SWAT) hydrological model was set up on the
western part of the Ebro River basin (NE Spain, ∼ 42000 km2), in order to carry out daily sim-
ulations of river flows during the control period 01/Jan/1961 - 31/Dec/1990. Afterwards, two
subcatchments (090, Ega River and 115, Homino River) were selected in section 3.3.1 to test the
proposed methodology, aiming at assessing the impact of hydrological parameterisation on the
predicted streamflows. A sensitivity analysis with Latin Hypercube One-factor-At-a-Time (LH-
OAT) was carried out in section 3.4.1, in order to identify parameters with a high impact on sim-
ulated streamflows. In section 3.4.2, the Generalized Likelihood Uncertainty Estimation (GLUE)
methodology, was applied to select parameter sets that can be considered as acceptable simulators
of the catchment response, using a re-scaled Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) as
”less formal” likelihood, and a cut-off threshold equal to zero to discriminate between behavioural
and non-behavioural simulators. A Latin Hypercube (LH) sampling strategy was implemented
within GLUE in order to efficiently sample the parameter space. Parameter sets that led to pre-
dictive uncertainty bounds that encompass a number of observations close to or larger than 75%
during independent calibration and verification stages were selected as acceptable simulators of
the two test catchments, and are used in this chapter to derive the uncertainties coming from hy-
drological parameterisation for each one the six climate scenarios briefly described in the previous
section 5.2.1. An important assumption that may modify the results presented in this chapter is
that both the land use and soil properties will remain constant on the two selected catchments
during the future scenarios. The consequences of no fulfilment of that assumption were not ex-
plored due to time constrains, and because it is not the main focus of the present dissertation, but
it should be explored when significant changes in land cover and/or soil types can be expected
for the study catchments.

For each one of the climate scenarios defined in section 5.2.1, an ensemble of projected streamflows
for the future period was obtained, by running the hydrological model with all the behavioural
parameter sets obtained in section 3.5.1 for each subcatchment, while driven by the bias-corrected
daily climatological forcings derived from each scenario.

5.2.3 Flow Duration Curves (FDCs) for Assessing Relative Uncertainties

The relative importance of the uncertainty coming from the driving RCM and from hydrologi-
cal parameterisation is strongly related to the methodology used to carry out this comparison.
Most of the studies that have compared the relative importance of these two uncertainty sources
have been based on an arbitrary number of ”near-optimal” parameter sets (e.g. Wilby and Harris,
2006; Prudhomme and Davies, 2009b). Those parameter sets are usually selected because they pro-
vide values of some efficiency measure (e.g., Nash-Sutcliffe efficiency) higher than a pre-defined
threshold for some calibration period, and because they are ”stable” under different (dry/wet)
evaluation periods. However, there is no explicit attempt to look at how well the ensemble of
predicted streamflows represents different streamflow magnitudes or different seasons (e.g., the
percentage of observations that are within the predictive uncertainty bounds derived from the
selected parameter sets), i.e., overlooking -in advance- the importance of hydrological parametric
uncertainty.
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Flow duration curves (FDCs) were described in section 3.5.4, and they were selected to assess the
relative importance of these two uncertainty sources because they are simple, yet comprehensive,
graphical representations of the streamflow variability of a catchment (Vogel and Fennessey, 1994),
and because they are useful for conveying hydrological information to decision makers (Vogel and
Fennessey, 1995). To characterize the information content of a FDC we applied the same criteria de-
scribed in section 3.5.4, where the curve is divided into three segments corresponding to different
flow magnitudes: (i) a high-flow portion (0 - 0.2 exceedance probability), that represents the catch-
ment response to large precipitation events; (ii) a medium-flow portion (0.2 - 0.7 exceedance prob-
ability), representing flows controlled by moderate precipitation events coupled to medium-term
baseflow; and (iii) a low-flow segment (0.7 - 1.0 exceedance probability) representing a catchment
response dominated by long-term baseflow during extended dry periods.

To compare the relative importance of the uncertainty derived from hydrological parameterisation
with the one derived from the driving RCM, we plotted 29-years daily FDCs for each one of
the climate scenarios defined in section 5.2.1, along with their corresponding uncertainty bounds
derived from hydrological parameterisation. The last twenty nine years of the control period
1961-1990 and of the future scenarios 2071-2100 were used to compute the FDCs, because the first
year was used as spin-up for all the hydrological simulations, and it was decided to use the same
29-years base for all the FDCs, including the one corresponding to the observed values.

For each future climate scenario, a single FDC was considered as representative of the ensemble
of projected streamflows obtained by running the hydrological model with all the behavioural
parameter sets of each subcatchment (see Section 3.5.1). This representative FDC was obtained by
computing the 29-years daily FDC corresponding to the median of the streamflows projected for
each scenario. Following what described in section 3.4.2.3, uncertainty coming from hydrological
parameterisation in the FDC space was represented by the 95% of predictive uncertainty (95PPU)
of each scenario, which was computed as the 29-years daily FDC of the streamflows correspond-
ing to the 2.5% and 97.5% of the cumulative distribution of every simulated streamflow. In this
way, one figure is obtained for each future scenario, with the 29-years daily FDC representing
the stremaflows derived from each scenario, and the uncertainty bounds corresponding to hydro-
logical parameterisation. This figures only allow to visualise the magnitude of the hydrological
uncertainty for different streamflows magnitudes projected for each scenario. Finally, in order to
facilitate the comparison of the uncertainties coming from the driving climate scenario and from
hydrological parameterisation for different streamflow magnitudes, a single figure was prepared
for each subcatchment, which is described in Section 5.3.1.1.

5.2.4 Computation of ECDF for Q5, Q50, Q95

The FDCs with the corresponding uncertainty bounds, derived from hydrological parameterisa-
tion, allow to have a qualitative idea about the relative importance of uncertainties coming from
hydrological parameterisation and from the choice of driving RCM. However, in order to provide
a quantitative assessment of the projected changes in streamflows by different climate change sce-
narios, we computed empirical cumulative density functions (ECDF) for 3 different percentiles1,
that represent different stramflow magnitudes: (i) Q5, representing low flows; (ii) Q50, represent-
ing medium flows, and (iii) Q95, standing for high flows.

The procedure used for computing the ECDF for Q5, Q50 and Q95 for the six climate scenarios
described in Table 4.1 is as follow:

1. Run the same climate scenario with all the behavioural parameter sets obtained in section
3.5.1 (1948 for subcatchment 090, and 1464 for subcatchment 115);

2. Compute the Q5, Q50, and Q95 percentile corresponding to each behavioural parameter set,
from the daily streamflow values obtained for the period 2072-2100 with each RCM, and

1Here we adopted the definition used by most of the statistical softwares, in particular R (R Development Core Team,
2009), knowing that other authors use a different meaning.
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3. Compute the ECDF of the Q5, Q50 and Q95 percentiles, by weighting the analysed per-
centile by the re-scaled likelihood of the corresponding behavioural parameter set obtained
in section 3.5.1.

5.3 Results

5.3.1 Relative Uncertainties: Hydrological Parameterisation vs Driving RCM

5.3.1.1 Overall Impacts

Appendix C presents, for the two selected catchments, 29-years daily flow duration curves (FDCs)
for the control period and each one of the six future climate scenarios described in Table 4.1, along
with the corresponding 95% of predictive uncertainty (95PPU) derived from hydrological param-
eterisation. In order to facilitate the comparison of the uncertainties coming from the driving
climate scenario and from hydrological parameterisation for different streamflow magnitudes, a
single figure was prepared for each subcatchment. This figure contains six FDCs representing
the median streamflows derived from each future scenario, and the vertical distance between the
outermost FDCs represent the magnitude of the uncertainty coming from the driving RCM for
a given streamflow value. The same figure contains an overall uncertainty bound, obtained by
overlapping the 95PPU of the six future climate scenarios, and the vertical distance between the
upper and lower uncertainty bounds represents the magnitude of the uncertainty coming from
hydrological parameterisation for a given streamflow value.

Figures 5.2 and 5.3 show 29-years flow duration curves (FDCs) and the overall uncertainty bounds
corresponding to hydrological parameterisation, for subcatchments 090 (Ega River) and 115 (Homino
River), respectively. They show that for both catchments the hydrological parametric uncertainty
is larger than the uncertainty coming from the driving RCM, because the overall hydrological un-
certainty bounds (shaded area in the figures of this chapter), obtained from running the climato-
logical fields derived from each one of the six RCMs with the behavioural parameter sets obtained
for each subcatchment in section 3.4.2, encompass the median of the streamflow projections of the
six considered RCMs, all along the range of streamflow magnitudes. However, this result can not
be generalised, because it is conditional to decisions taken during the uncertainty analysis and
to the ensemble of RCMs considered. In particular, the wide uncertainty bounds obtained for
both catchments result from running the hydrological model with a single model structure (de-
scribed in section 3.3.1), with the behavioural parameter sets selected during he GLUE analysis
(1948 and 1464 for subcatchments 090 and 115, respectively), using the Nash-Sutcliffe efficiency as
”less formal” likelihood with a shape factor N equal to one, and a cut-off threshold equal to zero to
separate behavioural from non-behavioural parameter sets. The choice the cut-off threshold equal
to zero (the minimum acceptable value) can be criticized as the main factor affecting the width of
the uncertainty bounds; however, it was defined at the beginning of the uncertainty analysis (see
section 3.4.2) to be used in combination with the criterion of considering as acceptable simulators
of the systems under study all the parameter sets that lead to uncertainty bounds that embrace a
percentage observations close to or greater than 75% during the control period. Choosing a higher
cut-off threshold obviously will decrease the width of the uncertainty bounds corresponding to
hydrological parameterisation, but it will do it so at expense of a smaller number of observa-
tions embraced by the uncertainty bounds, at least within the same model structure and criterion
adopted for exploring the parameter space (see section 3.4.2.2) in the present dissertation. There-
fore, we claim that decisions about the efficiency measure to be used as ”less formal” likelihood and
the cut-off threshold used to separate behavioural from non-behavioural parameter sets, have to
be taken during the uncertainty analysis of the control period, in a dialogue between the modeller
and the decision-maker, taking into account the objectives of the study along with data and model
availability.

The previous finding is opposed to what has been previously claimed by Prudhomme and Davies
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(2009b) and Wilby and Harris (2006), both of whom put uncertainties due to hydrological model
parameters as less important than those derived from the choice of the driving GCM, even if Prud-
homme and Davies (2009b) warned that their results are site-specific and that this statement cannot
be generalised. However, both of the aforementioned studies rely in hydrological simulations car-
ried out with a subset of the ”best” and more stable parameter sets obtained during calibration
and evaluation periods, without making any explicit analysis about neither how wide (or narrow)
the uncertainty bounds provided by the selected parameter sets are, nor the skill of the hydrolog-
ical model to represent different flow magnitudes, data both very informative to decision makers.
Additionally, parameter sets in previous studies were selected based on their Nash-Sutcliffe ef-
ficiency index (Nash and Sutcliffe, 1970), which is know to be biased towards high flows, what
would be observed if an uncertainty analysis were provided for those simulations. Consequently,
it is not surprising that hydrological parametric uncertainty obtained with parameter sets with
similar high Nash-Sutcliffe efficiencies be smaller than the one related to the choice of driving
GCM, because those parameter sets are expected to produce a similar catchment response.

FIGURE 5.2: 29-years flow duration curve (FDC) for subcatchment 090 (Ega River). Left side shows the
FDC with a normal vertical scale, and figure on the right show the FDC with logarithmic
vertical scale (removing zero values). Black continuous line is the observed FDC during the
period 1962-1990, grey dotted line represent the median of the GLUE simulations for the same
control period, and coloured dotted lines show the median of the simulations corresponding
to different climate scenarios during the period 2072-2100. Shaded area represent the overall
uncertainty due to the hydrological parameterisation adopted for GLUE simulations.

FDCs plotted with normal scale in Figures 5.2 and 5.3 also show that the absolute hydrological
parametric uncertainty is larger for high flows than for low ones, whereas the corresponding FDCs
plotted with logarithmic scales show that the relative uncertainties are larger for low flows than
for high ones.

Comparison of the FDCs corresponding to observed discharges during the control period 1962-
1990 (labelled as ”OBS” with black continuous line) with the FDCs corresponding to the median of
the simulated streamflows (labelled as ”CTRL” with grey dotted line) obtained for the same con-
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trol period with the behavioural parameter sets (1948 for subcatchment 090 and 1464 for subcatch-
ment 115) selected during the uncertainty analysis described in section 3.4.2, show that the median
of the hydrological simulations, for the two selected catchments, provides a good representation
of high flows, a slight over-estimation of medium flows, and a relative large under-estimation
of low flows, which is not surprising due to the use of the Nash-Sutcliffe efficiency as ”less for-
mal” likelihood to select the behavioural parameter sets. The previously mentioned systematic
bias are expected to remain during the future scenarios, and it is integrated into interpretations of
projected impacts of climate change hereafter.

Projected changes in the overall hydrological regime of the two selected catchments depend on
the magnitude of river flows under consideration. For subcatchment 090 (Ega River), the one
with more humid regime, the highest flows (exceedance probability lower than 0.1) are expected
to decrease; medium-high and medium flows (exceedance probability between 01 - 0.5) present
contradictory projections depending on the driving RCM; and medium-low and low flows (ex-
ceedance probability higher than 0.5) are expected to decrease, with the largest relative decrease
for the lower river flows. At the other hand, subcatchment 115, the one with more semi-arid
regime, expect a general decrease of streamflows in the full range of magnitudes, and again the
larger relative decreases are expected for the lower river flows. If the relative under-estimation of
the low flows during the control period is taken into account, the large decrease is less dramatic,
but still important. A probabilistic quantification of the projected changes in seasonal streamflows
is given in the next section 5.3.1.2.

FIGURE 5.3: 29-years flow duration curve (FDC) for subcatchment 115 (Homino River). Left side shows
the FDC with a normal vertical scale, and figure on the right show the FDC with logarithmic
vertical scale (removing zero values). Black continuous line is the observed FDC during the
period 1962-1990, grey dotted line represent the median of the GLUE simulations for the same
control period, and coloured dotted lines show the median of the simulations corresponding
to different climate scenarios during the period 2072-2100. Shaded area represent the overall
uncertainty due to the hydrological parameterisation adopted for GLUE simulations.

Regarding the differences due to the driving RCM, the smallest decreases in the overall stream-
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flows are projected for simulations driven by the DMI.HS1 RCM, whereas the largest decreases
are expected for simulations driven by SMHI.MPIA2, which correspond to simulations driven by
the two different GCMs used to provide boundary conditions to all the selected RCMs (see section
4.2.1). The previous projected changes are in full agreement with projections for annual precip-
itation and temperature, as can be seen in Table 4.6 in Chapter 4, where SMHI.MPIA2 projected
the largest decrease in annual precipitation (-21%) and the largest increase in mean annual tem-
perature (+ 6.24 ◦C), whereas DMI.HS1 RCM projected the lower decrease in annual precipitation
(-4%) and one of the lower increases in mean annual temperature (+4.19 ◦C).

5.3.1.2 Seasonal Impacts

Figures 5.4 and 5.5 show, for subcatchment 090 (Ega River) and 115 (Homino River), respectively,
29-years seasonal FDCs and their overall uncertainty bounds corresponding to hydrological pa-
rameterisation. They show that for both catchments the hydrological parametric uncertainty in
all the seasons is larger than the uncertainty coming from the driving RCM, because the overall
hydrological uncertainty bounds encompass the median of the seasonal streamflow projections of
the six RCMs considered, all along the range of streamflow magnitudes. Again, this result can not
be generalised, because it is conditional to decisions taken during the uncertainty analysis and to
the ensemble of RCMs considered.

A probabilistic quantification of the projected changes in streamflows is given -when deemed
suitable- in the next paragraphs, considering the fifth percentile (Q5, value which marks off the
lowest 5 per cent of the observations) as representative of low flows, the 50th percentile (Q50, the
value below which the 50% percent of observations fall) as representative of medium flows, and
the 95th percentile (Q95) as representative of high flows.

a) Winter (DJF)

During winter, FDCs plotted with normal scale in Figures 5.4 and 5.5 show that the absolute
hydrological parametric uncertainty is larger for high flows than for low ones, whereas the corre-
sponding FDCs plotted with logarithmic scales show that the relative uncertainties are important
for all streamflow magnitudes, but the lower the river flow magnitude the higher the relative
importance.

Comparison of the FDCs corresponding to observed winter discharges during the control period
(labelled as ”OBS” with black continuous line) with the FDCs corresponding to the median of
the simulated streamflows (labelled as ”CTRL” with grey dotted line), show (Figures C.3 and
C.4 in Appendix C present a clearer view) that the median of the hydrological simulations pro-
vides a good representation of high flows in subcatchment 115, whereas they are slightly under-
estimated in subcatchment 090. Medium flows are over-estimated for both catchments, and low
flows are consistently over-estimated in subcatchment 090, whereas in subcatchment 115 they are
over-estimated up to an exceedance probability equal to 0.95, and under-estimated for larger ex-
ceedances.

Projected changes in the winter regime of the two selected catchments depend on the magnitude
of river flows under consideration. The two analysed catchments expect a general decrease of
high flows. Medium flows are expected to increase for subcatchment 090 (Ega River) and present
contradictory projections for subcatchment 115 (Homino River). Low flows are expected to in-
crease in subcatchment 090, whereas they present contradictory projections for subcachment 115
up to an exceedance probability equal to 0.95, and a general projected decrease of the lowest flows
(exceedance probability higher than 0.95).

Regarding differences due to the driving RCM, the smallest drops in seasonal high flows and the
larger increments of medium and low flows are projected for simulations driven by the DMI.HS1
RCM, whereas the larger drops in high flows and the lower increments in medium and low flows
correspond to simulations driven by SMHI.MPIA2, with the only exception of the lowest flows
(exceedance probability larger than 0.97) which present the largest drops for simulations driven
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by HC.adhfa. The previous projected changes present a general agreement with projections for
winter precipitation and temperature, as can be seen in Table 4.6 in Chapter 4, where SMHI.MPIA2
was the only RCM projecting a decrease of the winter precipitation (-1 %), and it projected the
largest increase in mean winter temperature (+4.14 ◦C), whereas DMI.HS1 RCM projected the
largest increase in winter precipitation (+22%) and one of the lowest increases in mean winter
temperature (+3.26 ◦C).

b) Spring (MAM)

During spring, FDCs plotted with normal scale in Figures 5.4 and 5.5 show that the absolute hy-
drological parametric uncertainty is larger for high flows than for low ones in both catchments,
whereas the corresponding FDCs plotted with logarithmic scales show that the relative uncer-
tainties are important for all streamflow magnitudes, but the lower the river flow magnitude the
higher the relative importance.

Comparison of the FDCs corresponding to observed spring discharges during the control period
(labelled as ”OBS” with black continuous line) with the FDCs corresponding to the median of
the simulated streamflows (labelled as ”CTRL” with grey dotted line), show (Figures C.5 and C.6
in Appendix C present a clearer view) that the median of the hydrological simulations, provides
a fairly good representation of all the streamflow magnitudes in both catchments, because both
lines are practically indistinguishable.

A general decrease in spring flows is expected for the two selected catchments, which do not
depend on the magnitude of river flows under consideration, but with larger projected relative
decreases for subcatchment 115.

Regarding differences due to the driving RCM, the smallest drops in spring streamflows are pro-
jected for simulations driven by the DMI.HS1 RCM, whereas the larger drops correspond to sim-
ulations driven by SMHI.MPIA2. The previous projected changes present a general agreement
with projections for seasonal precipitation and temperature, as can be seen in Table 4.6 in Chapter
4, where SMHI.MPIA2 projected the largest decrease of spring precipitation (-33 %), and projected
the largest increase in mean spring temperature (+6.2 ◦C), whereas DMI.HS1 RCM projected one
of the lowest drops in seasonal precipitation (-15%) and one of the lowest increases in mean spring
temperature (+3.24 ◦C).

c) Summer (JJA)

During summer, FDCs plotted with normal scale in Figures 5.4 and 5.5 show that the absolute
hydrological parametric uncertainty is only important for high flows in both catchments, because
there is a general agreement among the projections of the six future scenarios that medium and
low flows will be less than 1 m3/s in both catchments. The FDCs plotted with logarithmic scales
show that the relative uncertainties are equally large for all the streamflow magnitudes.

Comparison of the FDCs corresponding to observed summer discharges during the control pe-
riod (labelled as ”OBS” with black continuous line) with the FDCs corresponding to the median
of the simulated streamflows (labelled as ”CTRL” with grey dotted line), show (Figures C.7 and
C.8 in Appendix C present a clearer view) different behaviours in each catchment. Ega River (sub-
catchment 090) shows a good representation of the highest flows (exceedance probability lower
than 0.05), whereas medium-high flows present a slight over-estimation, and medium and low
flows are generally under-estimated. At the other hand, the subcatchment with more semi-arid
regime (115, Homino River), shows a good representation of high and medium flows, and a slight
under-estimation of low flows.

Projected changes for the summer season in the two selected catchments do not depend on the
magnitude of river flows under consideration, because both catchments expect a general large
decrease of summer flows.

Regarding differences due to the driving RCM, the smallest drops in summer streamflows are
projected for simulations driven by the SMHI.HCA2 and DMI.HS1 RCMs, whereas the larger
drops are -in general- derived from simulations driven by SMHI.MPIA2. The previous changes
projected by different climate scenarios do not present a clear relationship with projections for the
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corresponding seasonal precipitation and temperature, what can be due to spatial variations of the
climatological fields. Table 4.6 in Chapter 4, shows that SMHI.MPIA2 projects the largest increase
in summer mean temperature (+8.72 ◦C), and one of the largest decreases in mean summer pre-
cipitation (-35 %), but the latter is 10% lower than the highest decrease projected by SMHI.HCA2
(-45%). At he the other hand, DMI.HS1 projects one of the lowest increases in mean summer tem-
perature (+5.5◦C) and one of the lowest projected decreases in mean summer temperature (-35 %),
whereas SMHI.MPIA2 projects one of the highest increases in mean summer temperature (+6.25
◦C).

d) Autumn (SON)

During autumn, FDCs plotted with normal scale in Figures 5.4 and 5.5 show that the absolute
hydrological parametric uncertainty is larger for high flows than for low ones, whereas the corre-
sponding FDCs plotted with logarithmic scales show that the relative uncertainties are important
for all streamflow magnitudes.

Comparison of the FDCs corresponding to observed autumn discharges during the control period
(labelled as ”OBS” with black continuous line) with the FDCs corresponding to the median of the
simulated streamflows (labelled as ”CTRL” with grey dotted line), show (Figures C.9 and C.10 in
Appendix C present a clearer view) that the median of the hydrological simulations, only provides
a good representation of the highest flows in both catchments, whereas high and medium flows
(exceedance probability between 0.05 and 0.5) are over-estimated, and medium-low and low flows
(exceedance probability larger than 0.5) are under-estimated for both catchments.

Projected changes in the autumn regime of the two selected catchments depend on the magnitude
of river flows and the catchment under consideration. In the Ega River (sucatchment 090), the
seasonal high and medium-high flows (exceedance probability lower than 0.1) present contradic-
tory projections, the medium-high and medium flows (exceedance probability between 0.10 and
0.4) expect a general increase, whereas medium-low to low flows (exceedance probability larger
than 0.4) expect a general decrease. At the other hand, the Homino River (subcatchment 115)
present contradictory projections for high and medium-high flows (exceedance probability lower
than 0.3), whereas the medium-low and low flows (exceedance probability higher than 0.3) expect
a general decrease.

Regarding differences due to the driving RCM, there is not a clear patter during autumn, what
may be due the contradictory projections for autumn precipitation given by the six RCMs pre-
sented in Table 4.6. In general, lower values of seasonal streamflows are given by simulations
driven by SMHI.MPIA2, whereas the higher values of streamflows are given by simulations driven
by HC.adhfa (high and medium-high flows) and DMI.HS1 (medium and low flows), what is
in partial agreement with the largest increase in mean seasonal temperature (+5.52 ◦C) and the
largest decrease in mean seasonal precipitation (-16%) given by SMHI.MPIA2.
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5.3.2 Projected Changes in Q5, Q50 and Q95

5.3.2.1 Overall Impacts

Figures 5.6 and 5.7 provide information about projected changes for different flow magnitudes in
the two selected catchments: Q5, representing low flows, in the left hand side; Q50, represent-
ing medium flows, in the centre; and Q95, standing for high flows, at the right hand side of the
figures. Vertical black dotted lines represent the observed value of the three analysed percentiles
during the 29-years control period 1962-1990 (the first year 1961 was excluded from the analysis
because it was used as spin-up period for the hydrological simulations, and we decided to use the
same 29-years basis for all the analysis). Coloured continuous lines represent the weighted ECDF
of the Q5, Q50 and Q95 percentiles for the six climate scenarios described in Table 4.1, computed
according to the procedure described in section 5.2.4. In addition, the grey continuous line repre-
sent the weighted ECDF corresponding to simulations during the 29-years of the control period,
which is presented in order to provide an estimation of the bias associated to the computation of
streamflows of different magnitudes when using the hydrological model with the behavioural pa-
rameter sets selected for each one of the two selected catchments. A grey horizontal line is drawn
for a value of the ECDF equal to 0.5, in order to easily visualize the value of Q50 for the weighted
ECDF of each one of the analysed scenarios, which corresponds to the median of the hydrological
simulations carried out for each scenario, using the behavioural parameter sets selected for each
catchment in the uncertainty analysis described in section 3.4.2.

FIGURE 5.6: Empirical cumulative density function (ECDF) of streamflows in subcatchment 090 (Ega
River). From left to right, figures represent the ECDF of low (Q5 percentile), medium (Q50
percentile), and high flows (Q95 percentile).

Looking at the left hand side of Figures 5.6 and 5.7, we can see that for both catchments the hy-
drological model introduced a large bias towards under-estimation of low flows (Q5) during the
control period (depicted by a grey ECDF), because the observed Q5 is larger than ∼97% of the
simulated Q5 for subcatchment 090, and larger than ∼75% of the simulated Q5 for subcatchment
115. However, still considering the under-estimation of Q5 by the hydrological simulations, it
is possible to observe a slight projected reduction for low flows, because the medians of the Q5
for the six RCMs are lower than the median of the Q5 of the hydrological simulations during the
control period, with the smallest reductions projected by simulations driven by DMI.HS1, and the
largest reductions associated to simulations driven by SMHI.SMPIA2 in both catchments, repre-
senting conditions from the two different GCMs used to drive the selected RCMs. Larger relative
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decreases are projected for the subcatchment with more semi-arid regime (115, Homino River), as
depicted by the horizontal distance between the median Q5 during the control period and the me-
dian Q5 corresponding to each one of the future scenarios, along the horizontal line representing
an accumulated probability of 0.5. Consequently, we are only able to make a qualitative assess-
ment about ”small” projected decreases in low flows (Q5) for both catchments, an any quantitative
assessment must be interpreted taking into account the bias due to the hydrological modelling.

FIGURE 5.7: Empirical cumulative density function (ECDF) of streamflows in subcatchment 115 (Homino
River). From left to right, figures represent the ECDF of low (Q5 percentile), medium (Q50
percentile), and high flows (Q95 percentile).

Regarding medium flows (Q50), it is observed that for both catchments the hydrological model
introduced a bias towards over-estimation of medium flows (Q50) during the control period (de-
picted by the grey ECDF), because the observed Q50 is smaller than∼87% of the simulated Q50
for subcatchment 090, and smaller than ∼70% of the simulated Q5 for subcatchment 115. How-
ever, still considering the over-estimation of Q50 by the hydrological simulations, it is possible to
observe a clear reduction projected for medium flows, because the medians of the Q50 for the six
RCMs are lower than the median of the Q50 corresponding to the hydrological simulations dur-
ing the control period, with the smallest reductions projected by simulations driven by DMI.HS1,
and the largest reductions associated to simulations driven by SMHI.SMPIA2 in both catchments,
representing conditions from the two different GCMs used to drive the selected RCMs. Relative
projected decreases are similar for both subcatchments, as depicted by the horizontal distance be-
tween the median Q50 during the control period and the median Q50 corresponding to each one
of the future scenarios, along the horizontal line representing an accumulated probability of 0.5.
Again, we are only able to make a qualitative assessment about a projected decrease in medium
flows (Q50) for both catchments, an any quantitative assessment must be interpreted under the
umbrella of the bias due to the hydrological modelling.

Finally, looking at the right hand side of Figures 5.6 and 5.7, we can see that for both catchments
the hydrological model reproduced almost perfectly the high flows (Q95) during the control pe-
riod (depicted by a grey ECDF), because the observed Q95 is practically equal to the simulated
Q95. It is possible to observe a general projected reduction of high flows, because the medians
of the Q95 for the six RCMs are lower than the median of the Q95 corresponding to the simula-
tions during the control period, with the smallest reductions projected by simulations driven by
HC.adhfa and DMI.HS1 in subcatchment 090, and by simulations driven by HC.adhfa in subcatch-
ment 115, whereas the largest reductions are associated to simulations driven by SMHI.SMPIA2 in
both catchments, representing conditions from the two different GCMs used to drive the selected
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RCMs. Projected decreases of high flows range from 0 to 40 % for subcatchment 090, and from 10
to 60% for subcatchment 115.

It is worth to mention that it is not surprising than low flows (Q5) have been under-estimated,
the medium flows (Q50) have been slightly over-estimated, and the high flows of the overall time
series have been perfectly reproduced by the hydrological simulations. The previous bias are
a consequence of using the Nash-Sutcliffe efficiency as ”less formal” likelihood for selecting the
behavioural parameter sets in the GLUE procedure, because it is well know that this goodness-
of-fit measure is biased towards high flows, due to the use of the squared of the residuals. The
previously mentioned point makes very clear the importance of the criteria used to select the ”less
formal” likelihood in the GLUE procedure. We emphasize that the goodness-of-fit measure used
during the uncertainty analysis have to reflect the objective of the modelling study, i.e., the
use of a Nash-Sutcliffe efficiency may be very well suited to flood impact studies, whereas other
goodness-of-fit not based on the use of the squared residuals (e.g. the modified index of agreement
proposed by Legates and McCabe Jr., 1999, or the modified Nash-Sutcliffe efficiency proposed by
Krause et al., 2005) may be better suited to low-flow impact studies, what is a well know fact in
hydrology but hardly ever applied to studies regarding hydrological impacts of climate change.

5.3.2.2 Seasonal Impacts

Figures 5.8, 5.10, 5.12, and 5.14 show projected seasonal changes for low (Q5), medium (Q50)
and high flows (Q95) in subcatchment 090 (Ega River), whereas Figures 5.9, 5.11, 5.13, and 5.15
depict the same changes for subcatchment 115 (Homino River). Again, vertical black dotted lines
represent the observed value of the three analysed percentiles during the 29-years control period
1962-1990 (excluding the year 1961 from the analysis). Coloured continuous lines represent the
weighted ECDFs of the Q5, Q50 and Q95 percentiles for the six climate scenarios described in
Table 4.1, computed according to the procedure described in section 5.2.4. In addition, the grey
continuous line represent the weighted ECDF corresponding to simulations during the 29-years
of the control period, which is presented in order to provide an estimation of the bias associated to
the computed streamflows of different magnitudes when using the hydrological model with the
behavioural parameter sets selected for each one of the two selected catchments. A grey horizontal
line is drawn for a value of the ECDF equal to 0.5, in order to easily visualize the value of Q50 for
the weighted ECDF of each one of the analysed scenarios, which corresponds to the median of the
hydrological simulations carried out for each scenario. This analysis is identical to the one carried
out for the overall values in the previous section 5.3.2.1, and only the projected seasonal changes
for Q50 will be discussed, as representative of the expected changes for each season, and similar
analysis can be made for the seasonal Q5 and Q95.

a) Winter (DJF)

The two analysed catchments presents a large bias in the estimation of the winter Q50, in partic-
ular, practically all the simulated values of winter Q50 for subcatchment 090 are larger than the
observed Q50 during the control period, and almost 95% of the simulated Q50 for subcatchment
115 are larger than its corresponding observed Q50. When considering as simulated winter Q50
the value obtained by the median of the Q50 computed with the behavioural parameter sets dur-
ing the control period, the over-estimation in the seasonal Q50 correspond to ∼70% and ∼60%
for subcatchments 090 and 115, respectively. Consequently, projected changes for these winter
medium with respect to the observed winter Q50 must be interpreted with care. The increase in
Q50 for subcatchment 090 ranges from ∼7% (DMI.HS1) to ∼85% (SMHI.MPIA2), but this is very
likely due to the 70% of over-estimation intrinsic to the hydrological simulations rather than to
climate change. At the other hand, projected changes in Q50 for subcatchment 115 range from
∼-60% (SMHI.MPIA2) to ∼+60% (DMI.HS1), so when the 60% of overestimation due to hydro-
logical modelling is taken into account, the more likely projected change for winter flows in this
catchment is a decrease, that may range from 0 to 120%, but this can only be confirmed by further
simulations tailored to better represent winter flows. The only clear pattern is that the simulations
driven by DMI.HS1 and SMHI.MPIA2 encompass the simulation driven by the other climate sce-
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narios.

FIGURE 5.8: Empirical cumulative density function (ECDF) of winter (DJF) flows in subcatchment 090
(Ega River). From left to right, figures represent the ECDF of low (Q5 percentile), medium
(Q50 percentile), and high winter flows (Q95 percentile).

FIGURE 5.9: Empirical cumulative density function (ECDF) of winter (DJF) flows in subcatchment 115
(Homino River). From left to right, figures represent the ECDF of low (Q5 percentile),
medium (Q50 percentile), and high winter flows (Q95 percentile).

b) Spring (MAM)

For the two analysed catchments the hydrological model provides a fairly good representation of
the spring Q50, in particular for subcatchment 115, where the median of the simulated values of
spring Q50 is practically equal to the observed Q50 during the control period, whereas subcatch-
ment 090 presents a slight bias towards over-estimation, because 65% of the simulated Q50 for this
catchment are larger than its corresponding observed Q50. When considering as simulated spring
Q50 the value obtained by the median of the Q50 computed with the behavioural parameter sets
during the control period, the over-estimation in the seasonal Q50 is ∼7% for subcatchments 090
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and may be neglected for subcatchment 115. Consequently, projected changes for these spring
medium flows with respect to the observed spring Q50 can be considered reliable (within the set
of assumptions adopted in this dissertation). There is a general projected decrease in spring Q50
for both subcatchments, ranging from ∼-14% (DMI.HS1) to ∼-64% (SMHI.MPIA2) for subcatch-
ment 090, and from ∼-28% (DMI.HS1) to ∼-80% (SMHI.MPIA2). Again, simulations driven by
DMI.HS1 and SMHI.MPIA2 encompass the simulation driven by the other climate scenarios.

FIGURE 5.10: Empirical cumulative density function (ECDF) of spring (MAM) flows in subcatchment 090
(Ega River). From left to right, figures represent the ECDF of low spring flows (Q5 per-
centile), medium spring flows (Q50 percentile), and high spring flows (Q95 percentile).

FIGURE 5.11: Empirical cumulative density function (ECDF) of spring (MAM) flows in subcatchment
115 (Homino River). From left to right, figures represent the ECDF of low (Q5 percentile),
medium (Q50 percentile), and high spring flows (Q95 percentile).
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c) Summer (JJA)

The two analysed catchments expect a general decrease of summer Q50 flows, but with different
skill of the hydrological model. In particular, hydrological simulations in subcatchment 115 pro-
vide a fairly good representation of the summer Q50, because the median of the simulated values
is very close to the observed Q50 during the control period, whereas subcatchment 090 presents
a bias towards under-estimation, because almost 80% of the simulated Q50 for this catchment are
lower than its corresponding observed Q50. When considering as simulated summer Q50 the
value obtained by the median of the Q50 computed with the behavioural parameter sets during
the control period, the under-estimation in the seasonal Q50 correspond to ∼45% and ∼10% for
subcatchments 090 and 115, respectively. Consequently, projected changes for summer medium
flows with respect to the observed Q50 must be interpreted with care for subcatchment 090, and
can be considered as reliable for subcatchment 115 (within the set of assumptions adopted in this
dissertation). The projected decrease in the seasonal Q50 for subcatchment 090, with respect to
the Q50 observed during the control period, ranges from ∼-75% (DMI.HS1/SMHI.HCA2) to ∼-
95% (SMHI.MPIA2), but an important part of this projected decrease is due to the 45% of under-
estimation intrinsic to the hydrological simulations rather than to climate change. At the other
hand, projected changes in Q50 for subcatchment 115 (Homino River, with a more arid regime)
range from∼-60% (DMI.HS1/SMHI.HCA2) to∼-90% (SMHI.MPIA2), so still considering the 10%
of under-estimation due to hydrological modelling, the more likely change for summer flows in
this catchment is a general decrease. This time, simulations of the climate scenarios are encom-
passed by simulations driven by DMI.HS1/SMHI.HCA2 and SMHI.MPIA2.

d) Autumn (SON)

The two analysed catchments expect a general decrease of autumn Q50 flows, but with different
skill of the hydrological model. In particular, hydrological simulations in subcatchment 115 pro-
vide a fairly good representation of the autumn Q50, where the median of the simulated values of
summer Q50 is practically equal to the observed Q50 during the control period, whereas subcatch-
ment 090 presents a slight bias towards under-estimation, because almost 65% of the simulated
Q50 for this catchment are lower than its corresponding observed Q50. When considering as sim-
ulated autumn Q50 the value obtained by the median of the Q50 computed with the behavioural
parameter sets during the control period, the under-estimation in the seasonal Q50 correspond to
∼15% for subcatchments 090 and can be neglected for subcatchment 115. Consequently, projected
changes for autumn medium flows with respect to the observed Q50 must be interpreted with
some care for subcatchment 090, and can be considered as reliable for subcatchment 115 (within
the set of assumptions adopted in this dissertation). The projected decrease in the seasonal Q50 for
subcatchment 090, with respect to the Q50 observed during the control period, ranges from∼-40%
(DMI.HS1) to ∼-60% (SMHI.MPIA2/HC.adhfa), so still considering the 15% of under-estimation
due to hydrological modelling, the more likely change for autumn flows in this catchment is a
general decrease. At the other hand, projected changes in seasonal Q50 for subcatchment 115
(Homino River) range from ∼-40% (DMI.HS1) to ∼-73% (SMHI.MPIA2). Climate scenarios are
encompassed by simulations driven by DMI.HS1 and SMHI.MPIA2.
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FIGURE 5.12: Empirical cumulative density function (ECDF) of summer (JJA) flows in subcatchment 090
(Ega River). From left to right, figures represent the ECDF of low (Q5 percentile), medium
(Q50 percentile), and high winter flows (Q95 percentile).

FIGURE 5.13: Empirical cumulative density function (ECDF) of summer (JJA) flows in subcatchment 115
(Homino River). From left to right, figures represent the ECDF of low (Q5 percentile),
medium (Q50 percentile), and high summer flows (Q95 percentile).
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FIGURE 5.14: Empirical cumulative density function (ECDF) of autumn (SON) flows in subcatchment 115
(Homino River). From left to right, figures represent the ECDF of low autumn flows (Q5 per-
centile), medium autumn flows (Q50 percentile), and high autumn flows (Q95 percentile).

FIGURE 5.15: Empirical cumulative density function (ECDF) of autumn (SON) flows in subcatchment
115 (Homino River). From left to right, figures represent the ECDF of low (Q5 percentile),
medium (Q50 percentile), and high autumn flows (Q95 percentile).

It is worth to mention that the bias observed for the estimation of low and medium flows by
the hydrological model, discussed during the analysis of the overall time series in section 5.3.2.1,
was not observed during the seasonal analysis. The reason for not observing a clear pattern for
the bias in the estimation of seasonal values rely in the fact that the goodness-of-fit used during
the uncertainty analysis considered the time series during the control period as a whole, without
making any distinction for seasonal values.

108



5.4. SUMMARY AND CONCLUSIONS

5.4 Summary and Conclusions

Bias-corrected daily time series of precipitation and air temperature were derived from an en-
semble of six climate change scenarios, selected from the EU FP5 PRUDENCE project, and were
then used to drive daily hydrological simulations for the period 2071-2100 on two selected sub-
catchments of the Ebro River basin (090, Ega River and 115, Homino River). For each climate
scenario, a number of simulations equal to the number of behavioural parameter sets obtained
during the uncertainty analysis (see Chapter 3) was carried out. Resulting streamflows were used
to compute 29-years daily flow duration curves (FDCs) to provide a qualitative assessment of the
relative importance of uncertainties coming from the choice of the driving RCM and from hy-
drological parameterisation. Also, streamflows derived from each climate scenario were used to
compute empirical cumulative density functions (ECDFs) of three selected percentiles, represent-
ing different flow magnitudes: Q5 (low flows), Q50 (medium flows) and Q95 (high flows), in order
to provide a quantitative assessment of the projected changes in streamflows. The main findings
of this chapter can be summarized as follow:

• In the two analysed catchments the hydrological parametric uncertainty was larger than
the uncertainty coming from the driving RCM, both during the complete future period and
for each one of the four seasons. However, this result can not be generalised, because it
is conditional to decisions taken during the uncertainty analysis and to the ensemble of
RCMs considered. We argue that the decision about the efficiency measure to be used as
”less formal” likelihood and the cut-off threshold used to separate behavioural from non-
behavioural parameter sets must be taken during the uncertainty analysis of the control
period, in a dialogue between the modeller and the decision-maker, taking into account the
objectives of the study along with data and model availability.

• FDCs in normal and logarithmic scales were used to assess the relative importance of the
uncertainties for different streamflow magnitudes. In general, the absolute hydrological
parametric uncertainty is larger for high flows than for low ones, whereas the relative un-
certainties are larger for low flows than for high ones.

• Comparison of the observed and simulated FDCs during the control period 1962-1990 show
that the median of the hydrological simulations, for the two selected catchments, provides a
good representation of high flows, a slight over-estimation of medium flows, and a relative
large under-estimation of low flows, what is not surprising due to the use of the Nash-
Sutcliffe efficiency as ”less formal” likelihood to select the behavioural parameter sets. These
bias remained during the future scenarios, and were considered in the interpretation of pro-
jected impacts of climate change.

• Projected changes in the overall hydrological regime of the two selected catchments may
depend on the magnitude of river flows under consideration. For subcatchment 090 (Ega
River), the one with more humid regime, the highest flows are expected to decrease; medium-
high and medium flows present contradictory projections depending on the driving RCM;
and medium-low and low flows are expected to decrease, with the largest relative decrease
for the lower river flows. At the other hand, subcatchment 115, the one with more semi-
arid regime, expect a general decrease of streamflows in the full range of magnitudes, and
again the larger relative decreases are expected for the lower river flows. If the relative
under-estimation of the low flows during the control period is taken into account, the large
decrease is less dramatic, but still important.

• Regarding the differences due to the driving RCM, the smallest decreases in the overall
streamflows are projected for simulations driven by the DMI.HS1 RCM, whereas the largest
decreases are expected for simulations driven by SMHI.MPIA2. The previous projected
changes are in full agreement with projections for annual precipitation and temperature,
where SMHI.MPIA2 projected the largest decrease in annual precipitation (-21%) and the
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largest increase in mean annual temperature (+ 6.24 ◦C), whereas DMI.HS1 RCM projected
the lower decrease in annual precipitation (-4%) and one of the lower increases in mean
annual temperature (+4.19 ◦C). The two aforementioned RCMs represent conditions from
the two different GCMs considered is the future climate scenarios. In this way, climate sce-
narios derived from the two different GCMs used in this dissertation provided the extreme
expected changes in streamflows by the end of this century.

• For both catchments the hydrological model introduced a large bias towards under-estimation
of low flows (Q5) during the control period. Consequently, we are only able to make a qual-
itative assessment about ”small” projected decreases in low flows (Q5) for both catchments,
with the smallest reductions projected by simulations driven by DMI.HS1, and the largest
reductions associated to simulations driven by SMHI.SMPIA2 in both catchments.

• Regarding medium flows (Q50), for both catchments the hydrological model introduced a
bias towards over-estimation of medium flows (Q50) during the control period. Again, we
are only able to make a qualitative assessment about a projected decrease of medium flows
(Q50) for both catchments, with the smallest reductions projected by simulations driven by
DMI.HS1, and the largest reductions associated to simulations driven by SMHI.SMPIA2 in
both catchments

• The hydrological model reproduced almost perfectly the high flows (Q95) of both catch-
ments during the control period. A general projected reduction of high flows is expected for
both catchments, with the smallest reductions projected by simulations driven by HC.adhfa
and DMI.HS1 in subcatchment 090, and by simulations driven by HC.adhfa in subcatchment
115; whereas the largest reductions are associated to simulations driven by SMHI.SMPIA2
in both catchments. Projected decreases range from 0 to 40 % for subcatchment 090, and
from 10 to 60% for subcatchment 115.

• It is not surprising the under-estimation of low flows, the slight over-estimation of medium
flows, and the fairly good representation of high flows of the overall time series by the hy-
drological model. The previous bias are a consequence of using the Nash-Sutcliffe efficiency
as ”less formal” likelihood for selecting the behavioural parameter sets in the GLUE proce-
dure. We emphasize that the goodness-of-fit measure used during the uncertainty analysis
have to reflect the objective of the modelling study, i.e., the use of a Nash-Sutcliffe effi-
ciency may be very well suited to flood impact studies, whereas other goodness-of-fit may
be better suited to low-flow impact studies, what is a well know fact in hydrological mod-
elling but hardly ever applied to studies regarding hydrological impacts of climate change.

• The aforementioned pattern for the bias in the estimation of different streamflow magni-
tudes was not observed during the seasonal analysis, because the goodness-of-fit used dur-
ing the uncertainty analysis considered the time series as a whole, without taking into ac-
count seasonal differences.

• During winter (DJF), in both catchments the absolute hydrological parametric uncertainty
is larger for high flows than for low ones, whereas the relative uncertainties are important
for all streamflow magnitudes. Comparison of the observed and simulated FDCs during
the control period 1962-1990 shows that the median of the hydrological simulations, pro-
vides a general good representation of the high seasonal flows in both catchments, whereas
medium an low flows are generally over-estimated for both catchments. Projected changes
in the winter regime of the two selected catchments depend on the magnitude of river flows
under consideration. The two analysed catchments expect a general decrease of high flows.
Medium flows are expected to increase for subcatchment 090 and present contradictory pro-
jections for subcatchment 115. Low flows are expected to increase in subcatchment 090,
whereas they present contradictory projections for subcachment 115. The smallest drops in
high flows and the larger increments in medium and low flows are projected for simulations
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driven by the DMI.HS1 RCM, whereas the larger drops in high flows and the lower incre-
ments in medium and low flow correspond to simulations driven by SMHI.MPIA2. The
previous projected changes present a general agreement with projections for winter precip-
itation and temperature.

• During winter (DJF) there is a large bias in the estimation of Q50 for both catchments. The
increase in Q50 for subcatchment 090 ranges from∼7% (DMI.HS1) to∼85% (SMHI.MPIA2),
but this is very likely due to the 70% of over-estimation intrinsic to the hydrological simu-
lations rather than to climate change. At the other hand, projected changes in Q50 for sub-
catchment 115 ranges from ∼-60% (SMHI.MPIA2) to ∼+60% (DMI.HS1), so when the 60%
of overestimation due to hydrological modelling is taken into account, the more likely pro-
jected change for winter flows in this catchment is a decrease, that may range from 0 to 120%,
but this can only be confirmed by further simulations tailored to better represent winter
flows. The only clear pattern is that the simulations driven by DMI.HS1 and SMHI.MPIA2
encompass the simulations driven by the other climate scenarios.

• During spring (MAM) the absolute hydrological parametric uncertainty is larger for high
flows than for low ones in both catchments, whereas the relative uncertainties are impor-
tant for all streamflow magnitudes in both catchments. Comparison of the observed and
simulated FDCs during the control period 1962-1990 shows that the median of the hydro-
logical simulations provides a fairly good representation of all the streamflow magnitudes
in both catchments. A general decrease is expected for spring flows of the two selected
catchments, which do not depend on the magnitude of river flows under consideration. The
smallest drops in spring streamflows are projected for simulations driven by the DMI.HS1
RCM, whereas the larger drops correspond to simulations driven by SMHI.MPIA2, what is
in general agreement with projections for seasonal precipitation and temperature.

• During spring (MAM), for the two analysed catchments the hydrological model provides
a fairly good representation of Q50. There is a general projected decrease in spring Q50
for both subcatchments, ranging from ∼-14% (DMI.HS1) to ∼-64% (SMHI.MPIA2) for sub-
catchment 090, and from ∼-28% (DMI.HS1) to ∼-80% (SMHI.MPIA2) for subcatchment 115.
Again, simulations driven by DMI.HS1 and SMHI.MPIA2 encompass the simulations driven
by the other climate scenarios.

• During summer (JJA), the absolute hydrological parametric uncertainty is only important for
high flows in both catchments, because there is a general agreement among the projections
of the six scenarios that medium and low flows will be less than 1 m3/s in both catchments,
whereas the relative uncertainties are equally large for all the streamflow magnitudes. Com-
parison of the observed and simulated FDCs during the control period 1962-1990 shows
different behaviours for each catchment. Subcatchment 090 shows a general good represen-
tation of high flows, whereas medium and low flows are generally under-estimated. At the
other hand, subcatchment 115 shows a good representation of high and medium flows and a
slight under-estimation of low flows. A general decrease is expected for summer flows of the
two selected catchments, which do not depend on the magnitude of river flows under con-
sideration. The smallest drops in summer streamflows are projected for simulations driven
by the SMHI.HCA2 and DMI.HS1 RCMs, whereas the larger drops are -in general- derived
from simulations driven by SMHI.MPIA2. The previous changes projected by different cli-
mate scenarios do not present a clear relationship with projections for the corresponding
seasonal precipitation and temperature, what may be due to spatial variations of the clima-
tological fields.

• During summer (JJA), the two analysed catchments expect a general decrease of summer
Q50 flows, but with different skill of the hydrological model. The projected decrease in
the seasonal Q50 for subcatchment 090, with respect to the Q50 observed during the con-
trol period, ranges from ∼-75% (DMI.HS1/SMHI.HCA2) to ∼-95% (SMHI.MPIA2), but an
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important part of this projected decrease is due to the 45% of under-estimation intrinsic to
the hydrological simulations rather than to climate change. At the other hand, projected
changes in Q50 for subcatchment 115 range from ∼-60% (DMI.HS1/SMHI.HCA2) to ∼-90%
(SMHI.MPIA2), so still considering the 10% of under-estimation due to hydrological mod-
elling, the more likely change for summer flows in this catchment is a general decrease.
The simulations of the six climate scenarios are encompassed by simulations driven by
DMI.HS1/SMHI.HCA2 and SMHI.MPIA2.

• During autumn (SON), the absolute hydrological parametric uncertainty is larger for high
flows than for low ones, whereas the relative uncertainties are important for all streamflow
magnitudes. Comparison of the observed and simulated FDCs during the control period
1962-1990 shows that the median of the hydrological simulations only provides a good rep-
resentation of the highest flows in both catchments, whereas high and medium flows are
over-estimated, and medium-low and low flows are under-estimated for both catchments.
Projected changes in the autumn regime of the two selected catchments depend on the mag-
nitude of river flows and the catchment under consideration. In sucatchment 090, the sea-
sonal highest flows present contradictory projections, the medium-high flows expect a gen-
eral increase, whereas medium-low to low flows expect a general decrease. At the other
hand, subcatchment 115 present contradictory projections for high and medium-high flows,
whereas the medium-low and low flows expect a general decrease. There is not a clear
pattern related to differences due to the driving RCM, what may be due the contradictory
projections for autumn precipitation given by the six RCMs.

• The two analysed catchments expect a general decrease of autumn (SON) Q50 flows, but
with different skill of the hydrological model. The projected decrease in the seasonal Q50
for subcatchment 090 ranges from ∼-40% (DMI.HS1) to ∼-60% (SMHI.MPIA2/HC.adhfa),
so still considering the 15% of under-estimation due to hydrological modelling, the more
likely change for autumn flows in this catchment is a general decrease. At the other hand,
projected changes in seasonal Q50 for subcatchment 115 (Homino River) range from ∼-40%
(DMI.HS1) to ∼-73% (SMHI.MPIA2). Climate scenarios are encompassed by simulations
driven by DMI.HS1 and SMHI.MPIA2.

• The bias of the hydrological model in representing some seasonal river flows or flows with
a certain magnitude may be comparable to the projected changes in those flows (e.g., the ob-
served Q5 in subcatchment 090, Ega River, is larger than 97% of the corresponding simulated
values during the control period), hampering a correct interpretation of projected changes
in future streamflows.

• Following what mentioned at the end of the previous chapter, by no means it should be
thought that the hydrological impacts of climate change expected for the two selected catch-
ments will certainly lie between the specific ranges given in this chapter. Additional uncer-
tainties (reliability of SRES scenarios, skill of the GCM/RCM to provide a realistic response
to a emission forcing that have been never observed before, small number of driving GCMs
considered in this dissertation as boundary conditions of the future scenarios, downscaling
technique, unforeseen natural phenomena, unconsidered changes in land use and/or soil
properties, consideration of different hydrological model structures, errors in input data,
etc.) add additional complexity to the cascade of uncertainty involved in the impact assess-
ment. However, it can be claimed that we explored some possible scenarios of future climate,
with the best information available at this moment, and that the projected hydrological im-
pacts provided in this chapter correspond to the best projections we can make based on our
imperfect knowledge of this challenging topic.
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”Live as if you were to die tomorrow.
Learn as if you were to live forever.”

(Mahatma Gandhi) 6
Discussion

Projected changes in water resources due to climate change are often used to design mitigation
plans, to determine if a new infrastructure should or should not be constructed, and to decide
the destination of important amount of funds that could be spent in dealing with other impor-
tant problem. Therefore, quantification of the reliability of hydrological predictions has a societal
importance, and the correct understanding, treatment and communication of the uncertainties
involved in the assessment of the likely impacts of climate change, not only must not be underes-
timated, but it has to be undertaken with a major responsibility.

This dissertation developed a framework to provide probabilistic projections of future river flows,
taking into account uncertainties coming from the hydrological parameterisation used to represent
the catchment response to a given climatological forcing, and its interactions with different climate
change scenarios used to sample the space of future climates expected by the end of this century.
The approach developed in this dissertation differs from previous studies related to propagation
of hydrological parametric uncertainty into projections of hydrological impacts of climate change,
as (a) it allows to select parameter sets to be used in hydrological simulations of future scenarios
based on an objective criteria, i.e, a user-defined minimum percentage of observations embraced
by the uncertainty bounds; (b) it presents an assessment of the streamflow magnitudes that are
better/worse represented by the hydrological model; and (c) it provides probabilistic information
about projected seasonal changes in low, medium and high streamflows, taking into account the
bias of the hydrological model in representing the catchment response.

This chapter provides a discussion of the main findings already presented in previous chapters,
and some advice for further research in this area.

6.1 Uncertainty analysis during control period (1961-1990)

• Results of the GLUE analysis indicated that two main parameters dominate the fast response
of the two selected catchments (CN2, SOL K), and two additional parameters are necessary
to explain the slow catchment response (RCHRG DP, GW DELAY). However, experimental
simulations carried out with only five parameters did not provide uncertainty bounds able
to encompass more than 75% of the observations during the control period, making evident
that the other parameters -notwithstanding are not well identified- help to partially com-
pensate by equifinallity problems derived from the simple structure adopted to represent
the catchment behaviour.

• A clear definition of what is considered as an ”unacceptable high” value of predictive un-
certainty have to be made at the beginning of the modelling study, between the final user
and the modeller. That definition may be used latter to assess the predictive capabilities of
the hydrological model, and it may be considered as an objective criterion for rejecting the
conceptual model structure adopted, to review the quality of the input data, or to decide
changing the goodness-of-fit used to measure how close simulated values are from observa-
tions. We propose to use a priori overall/annual/seasonal values of P-factor and R-factor for
this purpose.
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• FDCs plotted with logarithmic scale proved to be useful to visualize the relative importance
of uncertainties for different streamflow magnitudes. In particular, the use of the Nash-
Sutcliffe efficiency to measure the goodness-of-fit between simulations and observed values
led to obtain larger relative uncertainties for the estimation of low flows, but with an small
absolute importance when compared to the magnitude of the uncertainties associated to
medium and high flows. This could be deemed acceptable for a flood impact study, but it
may not be well suited for making projections regarding hydrological droughts.

• In the two selected catchments, the parameter set that achieved the highest NSeff during cal-
ibration was not the same that achieved the highest efficiency during the verification period,
emphasizing the importance of not considering one single ”best” simulation, but considering
several acceptable simulators of the system.

• The fact that many combinations of model structure and parameter sets may be deemed
as acceptable simulators of the two catchments under study, only means that we could not
reject a larger number of them based on the available data, criteria of acceptance, and knowl-
edge. Additional data are needed to discard some of them. Uncertainty arising from equi-
finallity may be though as a decision-making problem subject to imperfect knowledge and
limited data, but we claim that those limitations, when made explicit to the final users, may
lead to better decisions than those taken on the basis of a single ”best” simulation during the
control period, which is expected to perform equally well under unknown future conditions.

• The previous point put in evidence the importance of collecting data, and to look for its qual-
ity, because even a hypothetical perfect model, without data is nothing more than numbers
and beautiful plots.

• We want to emphasize that prediction limits obtained with GLUE are highly dependent on
decisions taken by the modeller, mainly: what model structure(s) is(are) used to represent
the catchment behaviour (not analysed here), what input data are used to drive the hydro-
logical simulations (not explicitly dealt in this dissertation), which and how many parame-
ters are selected for the uncertainty analysis, what parameter ranges are sampled for each
parameter, which likelihood measure is used to assess the performance of different param-
eter sets, the threshold selected to discriminate between behavioural and non-behavioural
simulators, and the way in which all the previous choices are combined, as expressed by
other authors (e.g. Beven and Freer, 2001; Montanari, 2005).

6.2 Projected changes in climate (2071-2100)

• The seasonal changes on the meteorological driving forces may have important effects on
the water availability of the Ebro River basin, because the predicted increments in mean
temperature and decreases in mean precipitation are concentrated during seasons charac-
terized by intense irrigation activities, and a hydrological modelling work that incorporates
the impacts of these meteorological drivers on agriculture and energy should prove be very
useful for decision makers aiming at avoiding a future crisis in those strategic sectors.

• The use of a multi-model ensemble of six RCMs allowed to take into account uncertainties
coming from numerical schemes and parameterisation used by different climate models.
However, the small number of RCMs considered in this dissertation, and in particular the
use of only two GCMs to provide boundary conditions for the future climate scenarios,
should not be considered as a representative sample of the complete range of expected future
climates on the basin. However, the use of such ensemble of high resolution RCMs is an
advance over studies based on GCM outputs, and it includes the best available data we had
at the moment.
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• The chosen future climate scenarios provided very different projections of bias-corrected
annual, seasonal and monthly temperature and precipitation fields, even under the same
emissions scenario (the medium-high SRES A2 in this dissertation). However, extreme pro-
jected changes were given by climate scenarios that used boundary conditions from the two
different GCMs used in this dissertation. This proves that the use of ensemble of future cli-
mate scenarios, driven by different GCMs, should be a mandatory step in any hydrological
study aiming at providing a better assessment of the full range of likely changes in climate.

• By no means it should be thought that the future changes in climate expected for the Ebro
River basin will certainly lie between the ranges given in this dissertation. Additional uncer-
tainties (reliability of SRES scenarios, skill of the GCM/RCM to provide a realistic response
to a emission forcing that have been never observed before, small number of driving GCMs
considered in this dissertation as boundary conditions of the future scenarios, unforeseen
natural phenomena, etc.) sum additional degrees of freedom to an already complex issue.
It can only be claimed that we explored some possible scenarios of future climate, with the
best information we had at this moment, and that the results provided here correspond to
the best projections we could make based on our imperfect knowledge about a very com-
plex, heterogeneous and non-linear problem.

6.3 Hydrological impacts of climate change (2071-2100)

Bias-corrected daily time series of precipitation and temperature were derived from an ensem-
ble of six climate change scenarios, selected from the EU FP5 PRUDENCE project, and were then
used to drive daily hydrological simulations for the period 2071-2100 on two selected subcatch-
ments of the Ebro River basin (090, Ega River and 115, Homino River). For each climate scenario,
a number of simulations equal to the number of behavioural parameter sets obtained during the
uncertainty analysis of the control period was carried out. Resulting streamflows were used to
compute 29-years daily flow duration curves (FDCs) to provide a qualitative assessment of the
relative importance of uncertainties coming from the choice of the driving RCM and from hydro-
logical parameterisation. Also, streamflows derived from running each climate scenario with its
corresponding behavioural parameter sets, were used to compute empirical cumulative density
functions (ECDFs) of three selected percentiles, representing different flow magnitudes: Q5 (low
flows), Q50 (medium flows) and Q95 (high flows), in order to provide a quantitative assessment
of the projected changes in streamflows.

• The proposed framework allowed to explore the relative importance of hydrological param-
eterisation and the choice of driving climate model into the final impacts. We observed that
the hydrological parametric uncertainty was larger than the uncertainty coming from the
driving RCM during the complete future period and for each one of the four seasons, for
the two selected catchments. However, this result can not be generalised, because it is con-
ditional to decisions taken during the uncertainty analysis and to the ensemble of future
climate scenarios considered.

• The proposed framework allowed to provide meaningful estimates of future hydrological
impacts of climate change, taking into account the likely bias existing in the hydrological
model for representing the catchment response, bias that might be even comparable in mag-
nitude to the projected changes for some months/seasons/streamflow magnitudes.

• We claim that the decision about which parameter sets have to be included in an uncertainty
analysis, carried out to explore the relative importance of the different sources of uncertainty,
should not be taken in an arbitrary way, i.e., selecting a fix amount of parameter sets or a
pre-defined cut-off value of some efficiency measure, without providing an assessment of
the predictive capabilities of those parameter sets during the control period, and without
providing an assessment of the range of streamflows best represented by those parameter
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sets. Monthly and/or seasonal projections of hydrological impacts of climate change are
usually interpreted as being equally skilful during all the months/seasons, and this disser-
tation showed that a large bias may be found in projections for some months/seasons, and
those bias have to be made explicit to the decision-maker.

• The larger decreases in the overall streamflows are expected for simulations driven by SMHI.MPIA2
(RCAO E), whereas the smallest decreases are projected for simulations driven by the DMI.HS1
(HIRAM H) RCM, changes that are in full agreement with projections for annual values of
precipitation and air temperature. In this way, extreme projections for the overall stream-
flows are derived from climate change scenarios driven by the two different GCMs consid-
ered in this dissertation.

• ECDFs computed for projected values of low (Q5), medium (Q50) and high (Q95) flows
show that, for the two selected catchments, there is a general projected decrease in all the
streamflow magnitudes, but bias in the representation of the streamflows during the control
period 1961-1990 hamper the assessment of reliable quantitative projections for low and
medium flow, whereas projected decreases for high flow range from 0 to 60%, depending on
the catchment and the climate scenario considered.

• ECDFs computed for projected seasonal medium flow values (Q50) show that for the two
selected catchments there is a general projected decrease for all the seasons, with seasonal
projections limited by bias of different magnitudes for each season. In particular, projec-
tions for summer flows are really severe, still considering the bias in the representation of
medium-low and low flows, with projected decreases ranging from 60% to 90% for the catch-
ment better represented by the hydrological model (115, Homino River), leading to projected
seasonal river flows smaller than 1 m3/s. Projected decreases in summer flows may lead to
several problems related to water availability, in particular, they may have strong implica-
tions for drinking water, irrigation and hydro-electrical supply.

• By no means it should be thought that the hydrological impacts of climate change expected
for the two selected catchments will certainly lie between the specific ranges given in this
dissertation. Additional uncertainties (reliability of SRES scenarios, skill of the GCM/RCM
to provide a realistic response to a emission forcing that have been never observed before,
small number of driving GCMs considered in this dissertation as boundary conditions of
the future scenarios, performance of the downscaling technique, unforeseen natural phe-
nomena, unconsidered changes in land use and/or soil properties, consideration of different
hydrological model structures, errors in input data, etc.) add additional complexity to the
cascade of uncertainty involved in the impact assessment. However, it can be claimed that
we explored some possible scenarios of future climate, with the best information available
at this moment, and that the projected hydrological impacts provided in this chapter cor-
respond to the best projections we can make based on our imperfect knowledge about this
challenging topic.

6.4 Further Research

• Although the simple bias-correction method, used in this dissertation to downscale from the
grid-scale of the RCM outputs to the point-scale of the gauging stations used as input to the
hydrological simulations, is able to reproduce the observed monthly climate statistics, it fails
to rectify some differences between simulated and observed climate, in particular observed
variability and interdependencies between precipitation and temperature (e.g., frequency of
wet-warm and wet-cold winters) (Fowler et al., 2007). Therefore, more robust methods may
be explored to force simulated climate to match the observed one, e.g., the quantile-based
approach (Wood et al., 2004) may be used to force the probability distribution of the output
precipitation and temperature fields during the control period to match the corresponding
observed distributions.
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• The use of ensemble of climate models is essential when trying to provide a probabilistic
assessment of the likely impacts of climate change. Notwithstanding the ensemble of future
climate scenarios used in the present dissertation allowed to take into account uncertain-
ties derived from model parameterisation and numerical schemes used by different climate
models, the reduced number (two) of GCMs used as boundary conditions of the selected
climate scenarios, only provides a small sample of the likely scenarios of future climate.
Therefore, projects as ENSEMBLES (Hewitt, 2005), that aim at providing a larger number of
high resolution future climate scenarios represent a step forward towards better sampling
the space of likely future climates.

• This dissertation only dealt with expected changes on water availability for the Ebro River
basin by the end of this century. However, changes in the evolution of water demand, which
is expected to increase, may intensify the foreseen problems associated to summer droughts.
Thus, integrated studies that take into account both, projections in water availability and
water demand may prove be very useful for assessing the final real effect of alternative
mitigation policies.

• Within the complex cascade of uncertainty involved in the assessment of hydrological im-
pacts of climate change, this dissertation only explored uncertainties coming from hydro-
logical paramterisation and driving climate scenario, due to time constrains. However, the
analysis developed here can be embedded into a general quantitative framework for assess-
ing the likely impacts of climate change, as the one proposed by Wilby and Harris (2006).

• Streamflows projected by different climate scenarios were considered as equally likely in the
computation of the ECDFs of future streamflows. However, it widely accepted that different
climate models represent the observed climate with different levels of accuracy, and it seems
logical to use the skill of the climate model in representing the observed climate to weight
the future streamflows derived from each climate model. Therefore, it may be worthy to
explore an adaptation to the framework proposed by Rojas et al. (2008), in which streamflows
computed with the GLUE methodology are combined by using Bayesian Model Averaging,
using the skill of each climate model in reproducing the observed climate during the control
period as the weight to be applied to streamflows derived from each climate scenario.
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A
Selected Gauging Stations

This Appendix present the gauging stations used in the present dissertation.

A.1 Precipitation

TABLE A.1: Precipitation gauging stations selected for the analysis, with more than 70% of days with
information within the control period 01/Jan/1661-31/Dec/1990

N◦ ID Data N◦ % Data Easting, [m] Northing, [m] Elevation CHE BASIN NAMEs
in CTRL in CTRL (ED 50, Z30N) (ED 50, Z30N) [m.a.s.l.]

1 P9001 9281 0.85 407235.94 4761652.30 855 EBRO
2 P9008X 10926 1.00 430755.90 4763101.71 858 EBRO
3 P9012 10041 0.92 422553.49 4760474.64 850 EBRO
4 P9015 10045 0.92 415115.36 4745044.05 740 EBRO
5 P9019 10014 0.91 423070.09 4739829.28 716 EBRO
6 P9027 10864 0.99 428594.66 4735882.73 1025 RUDRON
7 P9034 9478 0.86 448757.76 4721019.98 990 HOMINO
8 P9037 9710 0.89 466184.21 4731061.70 598 HOMINO
9 P9041 10776 0.98 453311.97 4754458.00 595 NELA
10 P9044 9741 0.89 459162.26 4754914.26 595 NELA
11 P9048 10712 0.98 467937.31 4765541.18 693 NELA
12 P9056 10397 0.95 473042.49 4751822.60 645 JEREA
13 P9060 8005 0.73 481221.38 4741338.15 697 PURON
14 P9063O 10541 0.96 494737.71 4748779.53 575 OMECILLO
15 P9063U 8128 0.74 500522.07 4743780.32 674 OMECILLO
16 P9064A 10773 0.98 501340.27 4738443.95 620 OMECILLO
17 P9064 10957 1.00 500976.74 4738906.59 566 OMECILLO
18 P9064I 9039 0.82 496002.65 4739709.69 500 OMECILLO
19 P9065I 10314 0.94 496135.25 4733139.31 473 EBRO
20 P9069A 8766 0.80 505779.39 4727156.48 475 BAYAS
21 P9069 10926 1.00 503641.60 4725180.88 520 EBRO
22 P9072 9099 0.83 513957.42 4756102.52 618 BAYAS
23 P9072D 8828 0.81 515709.45 4752898.16 652 BAYAS
24 P9072H 9192 0.84 508524.71 4751867.52 606 BAYAS
25 P9072I 9131 0.83 507394.59 4748627.25 604 BAYAS
26 P9072J 9195 0.84 502041.52 4748407.65 710 BAYAS
27 P9073I 9039 0.82 552382.11 4741881.86 674 ZADORRA
28 P9074C 9161 0.84 549566.42 4751331.58 638 ZADORRA
29 P9074 8077 0.74 550248.86 4744827.43 605 ZADORRA
30 P9076 10915 1.00 531848.61 4753170.00 570 ZADORRA
31 P9077E 9679 0.88 528012.67 4765461.70 559 ZADORRA
32 P9078 8919 0.81 530185.80 4760134.17 600 ZADORRA
33 P9080C 8919 0.81 527197.62 4754167.98 546 ZADORRA
34 P9080 10926 1.00 528480.54 4756332.54 540 ZADORRA
35 P9083 10896 0.99 528147.75 4743529.37 547 ZADORRA
36 P9085I 9045 0.82 531179.12 4740827.85 575 ZADORRA
37 P9086 9635 0.88 530662.90 4744558.08 515 ZADORRA
38 P9087 7829 0.71 528212.31 4744393.36 521 ZADORRA
39 P9091I 8765 0.80 522520.69 4749678.13 517 ZADORRA
40 P9092 9172 0.84 516036.31 4748827.06 550 ZADORRA
41 P9093 8462 0.77 516326.85 4741085.13 495 ZADORRA
42 P9094U 10520 0.96 510416.60 4730153.98 467 ZADORRA
43 P9095 10926 1.00 535451.71 4722463.61 785 EGA
44 P9095E 8857 0.81 537365.55 4730678.96 774 ZADORRA
45 P9103 10957 1.00 523432.98 4721394.63 744 INGLARES
Continued on next page. . .
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Table A.1 – Continued

N◦ ID Data N◦ % Data Easting, [m] Northing, [m] Elevation CHE BASIN NAMEs
in CTRL in CTRL (ED 50, Z30N) (ED 50, Z30N) [m.a.s.l.]

46 P9103I 8910 0.81 517761.10 4721963.86 578 INGLARES
47 P9103X 9050 0.83 509857.80 4723274.49 459 EBRO
48 P9105 10791 0.98 483360.05 4685964.84 960 TIRON
49 P9107 10776 0.98 484276.55 4696573.22 770 TIRON
50 P9118E 8646 0.79 505728.00 4706674.98 540 TIRON
51 P9121 10804 0.99 512151.16 4713715.95 479 TIRON
52 P9131I 8676 0.79 508811.46 4668153.84 900 NAJERILLA
53 P9136 10896 0.99 510567.23 4675558.67 1020 NAJERILLA
54 P9139 7949 0.72 522787.24 4688974.03 690 NAJERILLA
55 P9145A 10926 1.00 529384.08 4703464.97 430 EBRO
56 P9145 10835 0.99 529041.86 4703401.84 437 EBRO
57 P9155 8126 0.74 531584.24 4666029.17 1103 IREGUA
58 P9160 8430 0.77 548849.26 4701754.22 370 EBRO
59 P9164 10927 1.00 547362.87 4681755.85 717 LEZA
60 P9168 8369 0.76 562215.61 4683136.47 898 LEZA
61 P9170 10946 1.00 555027.80 4700227.03 352 EBRO
62 P9174 9071 0.83 578022.20 4690944.77 310 EBRO
63 P9175 10957 1.00 533986.97 4719340.77 756 EGA
64 P9176 10929 1.00 541207.53 4719472.44 740 EGA
65 P9177U 8208 0.75 549331.01 4727144.79 600 EGA
66 P9182I 8160 0.74 574801.98 4715989.67 572 EGA
67 P9185 8943 0.82 545254.62 4656912.02 1223 CIDACOS
68 P9198 10741 0.98 703136.38 4735971.44 1160 ARAGON (TRAMO SUPERIOR)
69 P9199A 8247 0.75 701851.89 4728523.82 950 ARAGON (TRAMO SUPERIOR)
70 P9199 9987 0.91 699742.53 4725838.34 1000 ARAGON (TRAMO SUPERIOR)
71 P9200 10897 0.99 704628.75 4722430.34 920 ARAGON (TRAMO SUPERIOR)
72 P9205 8004 0.73 694779.50 4728105.05 1040 ARAGON (TRAMO SUPERIOR)
73 P9207 9678 0.88 684127.01 4734666.59 860 ARAGON (TRAMO SUPERIOR)
74 P9210 10866 0.99 685835.65 4717610.32 690 ARAGON (TRAMO SUPERIOR)
75 P9215 9990 0.91 665056.82 4718597.70 510 ARAGON (TRAMO SUPERIOR)
76 P9223 10774 0.98 648334.28 4720133.60 515 IRATI
77 P9224 10376 0.95 646380.79 4717654.12 455 IRATI
78 P9228 8125 0.74 649926.62 4761029.71 820 IRATI
79 P9236 10342 0.94 646633.25 4751853.94 1047 IRATI
80 P9236E 7915 0.72 648292.59 4748556.40 1060 IRATI
81 P9246 8766 0.80 626316.19 4692544.43 340 ARAGON (AGUAS ABAJO YESA)
82 P9247 8549 0.78 619302.81 4690600.95 348 ARAGON (AGUAS ABAJO YESA)
83 P9252 10806 0.99 610583.18 4705113.03 395 ARAGON (AGUAS ABAJO YESA)
84 P9255 9009 0.82 611004.81 4688613.33 304 ARAGON (AGUAS ABAJO YESA)
85 P9257E 8280 0.76 620598.39 4757827.62 615 ARGA
86 P9262 9526 0.87 611480.01 4741535.65 442 ARGA
87 P9269 10255 0.94 566824.30 4748886.38 525 ARGA
88 P9279 9256 0.84 586298.70 4728154.89 475 ARGA
89 P9290 10806 0.99 594537.23 4656997.81 438 ALHAMA
90 P9293 9188 0.84 603208.30 4670878.18 300 ALHAMA
91 P9301 10684 0.97 608518.94 4646246.52 410 QUEILES
92 P9305 10805 0.99 628741.72 4648559.02 242 EBRO
93 P9309 9831 0.90 614928.93 4628577.41 594 HUECHA
94 P9311A 8254 0.75 621393.53 4632602.51 448 HUECHA
95 P9311 8979 0.82 621789.34 4632393.29 448 HUECHA
96 P9317 9622 0.88 649619.49 4680258.91 484 ARBA
97 P9318 7760 0.71 656647.47 4676585.40 463 ARBA
98 P9322 9466 0.86 669963.73 4695011.72 760 ARBA
99 P9329 10074 0.92 653679.61 4691641.43 601 ARBA
100 P9330 10926 1.00 642292.20 4683254.18 442 ARBA
101 P9331F 8675 0.79 643318.72 4672227.99 360 ARBA
102 P9333 9100 0.83 646773.26 4666127.53 321 ARBA
103 P9348 8212 0.75 569421.83 4579627.73 783 JALON
104 P9350A 8890 0.81 579125.03 4574113.71 700 JALON
105 P9353 10198 0.93 586237.86 4578296.88 730 JALON
106 P9354 10773 0.98 586710.22 4571825.34 680 JALON
107 P9356E 8094 0.74 603280.14 4526731.36 1180 PIEDRA
108 P9356I 8248 0.75 600698.53 4527219.99 1147 PIEDRA
109 P9359 8160 0.74 614381.27 4550430.34 1108 PIEDRA
110 P9360 10898 0.99 606255.04 4558851.96 820 PIEDRA
111 P9370 8523 0.78 606050.08 4572914.61 678 JALON
112 P9371 10713 0.98 607751.35 4575839.19 570 JALON
113 P9372 10957 1.00 644929.82 4479801.61 1023 JILOCA
114 P9375 8825 0.81 642199.75 4491995.71 983 JILOCA
115 P9377 7973 0.73 626569.77 4510529.80 1196 JILOCA
116 P9380 9284 0.85 651128.96 4522497.22 1141 JILOCA
117 P9381 8854 0.81 642874.90 4525263.63 932 JILOCA
Continued on next page. . .
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Table A.1 – Continued

N◦ ID Data N◦ % Data Easting, [m] Northing, [m] Elevation CHE BASIN NAMEs
in CTRL in CTRL (ED 50, Z30N) (ED 50, Z30N) [m.a.s.l.]

118 P9388 8798 0.80 637989.77 4544698.24 793 JILOCA
119 P9390 10957 1.00 633427.76 4552788.84 779 JILOCA
120 P9392 9773 0.89 621263.44 4557574.33 842 JILOCA
121 P9399 10807 0.99 593734.78 4602356.65 1050 JALON
122 P9400 7729 0.70 602289.09 4597044.06 950 JALON
123 P9401 7910 0.72 601604.01 4591358.62 752 JALON
124 P9405E 8126 0.74 626904.76 4592221.50 460 JALON
125 P9408 9160 0.84 611204.35 4600754.40 631 ARANDA
126 P9414 9163 0.84 623065.94 4599620.74 482 ARANDA
127 P9416A 10107 0.92 632727.50 4596090.03 377 JALON
128 P9420 10529 0.96 629883.44 4590454.26 460 JALON
129 P9421 10501 0.96 649697.79 4571738.94 681 JALON
130 P9422 10835 0.99 640959.70 4577086.76 830 JALON
131 P9424E 8065 0.74 657463.77 4578536.87 660 JALON
132 P9425 10440 0.95 635133.07 4586508.96 510 JALON
133 P9425F 8068 0.74 639985.81 4584163.88 598 JALON
134 P9425I 8461 0.77 649140.04 4585272.25 496 JALON
135 P9426 10836 0.99 652928.26 4585197.01 531 JALON
136 P9427A 8221 0.75 634456.53 4592913.46 380 JALON
137 P9427 8612 0.79 635381.44 4593085.00 370 JALON
138 P9428 10807 0.99 645444.08 4590010.18 435 JALON
139 P9433O 9496 0.87 653781.12 4625605.65 235 EBRO
140 P9434 10957 1.00 665849.88 4614241.49 247 EBRO
141 P9440E 8139 0.74 642286.18 4561563.31 866 HUERVA
142 P9443 10656 0.97 660633.51 4587647.26 460 HUERVA
143 P9446 10772 0.98 718417.16 4739248.04 1285 GALLEGO
144 P9446E 9526 0.87 718562.05 4741136.32 1460 GALLEGO
145 P9451 10772 0.98 726344.97 4738237.47 1660 GALLEGO
146 P9452 10745 0.98 720535.23 4734189.27 1091 GALLEGO
147 P9460 10926 1.00 716824.35 4710851.11 790 GALLEGO
148 P9463 7946 0.72 713861.05 4701712.53 780 GALLEGO
149 P9470E 7822 0.71 698504.41 4706136.70 920 GALLEGO
150 P9474 8857 0.81 686090.82 4695206.22 589 GALLEGO
151 P9476 8945 0.82 681538.24 4691629.43 696 GALLEGO
152 P9477 10651 0.97 689844.36 4687589.81 745 GALLEGO
153 P9478 8553 0.78 690578.63 4682485.47 582 GALLEGO
154 P9480 9156 0.84 688778.61 4670953.91 475 GALLEGO
155 P9481 10795 0.98 684090.64 4662279.91 400 GALLEGO
156 P9484 10957 1.00 699658.48 4686504.12 760 GALLEGO
157 P9485 9617 0.88 695842.41 4687754.82 790 GALLEGO
158 P9487 10569 0.96 699659.57 4675977.05 469 GALLEGO
159 P9489 10803 0.99 692654.20 4664422.05 413 GALLEGO
160 P9491 9709 0.89 699581.87 4655970.85 390 GALLEGO
161 P9492 10772 0.98 686242.09 4649526.78 335 GALLEGO
162 P9495 10379 0.95 694761.53 4638704.86 298 GALLEGO
163 P9495F 7945 0.72 698549.50 4630258.97 415 GALLEGO
164 P9496 8705 0.79 680460.91 4646815.63 387 GALLEGO
165 P9497 8401 0.77 696726.05 4625177.09 473 GALLEGO
166 P9497E 7950 0.73 685301.49 4633452.22 280 GALLEGO
167 P9498 9638 0.88 681138.22 4626493.54 243 GALLEGO
168 P9499 10957 1.00 682093.53 4621641.38 225 GALLEGO
169 P9503U 8187 0.75 697479.94 4598559.86 195 GINEL
170 P9507 10619 0.97 715179.53 4613421.59 432 EBRO
171 P9509 9228 0.84 701910.85 4601059.37 172 EBRO
172 P9510A 10807 0.99 706293.08 4596244.57 161 EBRO
173 P9521 10136 0.93 709877.51 4574245.98 273 AGUAS VIVAS
174 P9522 10807 0.99 720360.94 4577118.68 153 EBRO
175 P9523 10866 0.99 721889.09 4575096.83 143 EBRO
176 P9528 10682 0.97 673532.21 4526445.59 970 MARTIN
177 P9532 10898 0.99 689781.51 4516723.79 1206 MARTIN
178 P9539 7797 0.71 696253.48 4541458.65 541 MARTIN
179 P9541 10348 0.94 703884.91 4523395.12 1019 MARTIN
180 P9542 9070 0.83 708976.12 4538105.89 668 MARTIN
181 P9544 9345 0.85 709274.58 4555492.12 342 MARTIN
182 P9548 10622 0.97 718951.01 4566734.40 209 MARTIN
183 P9553 10193 0.93 738176.91 4571907.45 187 EBRO
184 P9559 10864 0.99 726300.38 4517195.06 583 GUADALOPE
185 P9562 8460 0.77 745224.09 4500662.51 990 GUADALOPE
186 P9567E 8674 0.79 720151.67 4529788.93 632 GUADALOPE
187 P9571 10186 0.93 743404.63 4532311.13 611 GUADALOPE
188 P9572 8430 0.77 736769.07 4549199.04 360 GUADALOPE
189 P9573 8617 0.79 740952.01 4548501.81 325 GUADALOPE
Continued on next page. . .
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Table A.1 – Continued

N◦ ID Data N◦ % Data Easting, [m] Northing, [m] Elevation CHE BASIN NAMEs
in CTRL in CTRL (ED 50, Z30N) (ED 50, Z30N) [m.a.s.l.]

190 P9575 9547 0.87 730453.90 4611611.00 466 EBRO
191 P9576 9254 0.84 732526.61 4604113.03 491 EBRO
192 P9577E 8065 0.74 746883.86 4598723.77 263 EBRO
193 P9578 10866 0.99 755162.45 4599660.53 292 EBRO
194 P9579 10774 0.98 772251.04 4589814.16 321 EBRO
195 P9585 9498 0.87 906833.31 4698752.80 1704 SEGRE
196 P9601U 7760 0.71 880457.73 4724593.35 1720 SEGRE
197 P9605 7760 0.71 875431.08 4718161.57 1500 SEGRE
198 P9619 9435 0.86 867279.56 4699100.82 692 SEGRE
199 P9621 10957 1.00 862114.88 4695150.07 642 SEGRE
200 P9635 10957 1.00 857411.84 4682473.53 540 SEGRE
201 P9638 10836 0.99 855931.20 4668077.50 480 SEGRE
202 P9647 10864 0.99 866204.38 4638194.86 448 SEGRE
203 P9649 8156 0.74 848072.44 4650305.40 360 SEGRE
204 P9650 8065 0.74 835842.48 4646222.35 320 SEGRE
205 P9657 10347 0.94 838326.77 4727420.40 940 NOGUERA PALLARESA
206 P9669 10434 0.95 848642.09 4729416.62 1100 NOGUERA PALLARESA
207 P9675 10834 0.99 846137.95 4713671.70 850 NOGUERA PALLARESA
208 P9684 9861 0.90 834517.13 4699249.94 790 NOGUERA PALLARESA
209 P9688 9131 0.83 828730.88 4714002.49 2120 NOGUERA PALLARESA
210 P9689 10957 1.00 828154.38 4709244.50 1270 NOGUERA PALLARESA
211 P9690 10714 0.98 826886.13 4702599.10 1020 NOGUERA PALLARESA
212 P9695 10898 0.99 824387.22 4692743.55 660 NOGUERA PALLARESA
213 P9696A 10319 0.94 827672.43 4685290.61 550 NOGUERA PALLARESA
214 P9700 10865 0.99 822814.39 4676532.82 425 NOGUERA PALLARESA
215 P9701E 7918 0.72 823105.86 4674691.27 415 NOGUERA PALLARESA
216 P9703E 7822 0.71 836866.01 4674161.06 797 NOGUERA PALLARESA
217 P9704 10866 0.99 822360.99 4668845.17 380 NOGUERA PALLARESA
218 P9708 10867 0.99 822458.79 4662666.77 399 NOGUERA PALLARESA
219 P9710 10926 1.00 818369.28 4640812.39 245 SEGRE
220 P9713 10684 0.97 840588.09 4634420.03 349 SEGRE
221 P9717 9986 0.91 855920.58 4622117.38 540 SEGRE
222 P9718 8230 0.75 851406.21 4622914.95 478 SEGRE
223 P9726 10410 0.95 846129.97 4603455.74 660 SEGRE
224 P9729 10743 0.98 821966.29 4614266.65 268 SEGRE
225 P9734 9713 0.89 806480.62 4717005.05 1093 NOGUERA RIBAGORZANA
226 P9736 10835 0.99 805020.74 4707544.19 960 NOGUERA RIBAGORZANA
227 P9738 9911 0.91 814808.87 4717346.48 1280 NOGUERA RIBAGORZANA
228 P9741 8521 0.78 812988.72 4713090.92 1096 NOGUERA RIBAGORZANA
229 P9744A 7822 0.71 809282.06 4707453.79 1000 NOGUERA RIBAGORZANA
230 P9745 10926 1.00 807571.64 4701597.83 845 NOGUERA RIBAGORZANA
231 P9749 8610 0.79 808690.08 4692343.13 717 NOGUERA RIBAGORZANA
232 P9760E 8280 0.76 797094.96 4642890.21 315 NOGUERA RIBAGORZANA
233 P9766 10957 1.00 830551.61 4602105.82 386 SEGRE
234 P9766E 8035 0.73 827839.02 4606556.95 321 SEGRE
235 P9768 10073 0.92 818956.94 4606806.86 264 SEGRE
236 P9770E 10926 1.00 804070.80 4614042.57 150 SEGRE
237 P9771 8093 0.74 801497.48 4614026.73 199 SEGRE
238 P9771E 9257 0.84 803707.91 4614398.05 150 SEGRE
239 P9772 8553 0.78 830089.20 4588823.00 665 SEGRE
240 P9773 10408 0.95 812443.42 4595302.32 377 SEGRE
241 P9777 8185 0.75 796946.14 4586552.99 397 SEGRE
242 P9780E 8738 0.80 793515.64 4598802.95 170 SEGRE
243 P9782 10957 1.00 762454.77 4725397.91 1150 CINCA
244 P9783 9473 0.86 767804.95 4730391.55 1920 CINCA
245 P9784 10957 1.00 763356.34 4729880.93 1200 CINCA
246 P9784E 9831 0.90 762849.33 4728224.25 1050 CINCA
247 P9787 10166 0.93 774394.49 4720576.87 1124 CINCA
248 P9789A 10101 0.92 773471.70 4720818.53 1422 CINCA
249 P9789 9934 0.91 774237.88 4723382.42 1000 CINCA
250 P9790 10641 0.97 770933.31 4718587.07 1100 CINCA
251 P9791 10623 0.97 770318.81 4719706.30 1306 CINCA
252 P9792 10531 0.96 767448.61 4716567.37 1000 CINCA
253 P9793 10049 0.92 767772.52 4719422.23 1218 CINCA
254 P9794 10499 0.96 764380.65 4719755.64 760 CINCA
255 P9796 8094 0.74 762535.34 4715422.29 700 CINCA
256 P9804 10726 0.98 750385.25 4714109.11 1143 CINCA
257 P9805E 9892 0.90 757357.17 4709050.37 963 CINCA
258 P9807 9679 0.88 760049.45 4703682.51 699 CINCA
259 P9808 10440 0.95 758182.51 4700956.54 589 CINCA
260 P9813 10624 0.97 732125.39 4722616.98 1333 CINCA
261 P9814 10803 0.99 736904.26 4723612.50 1053 CINCA
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A.1. PRECIPITATION

Table A.1 – Continued

N◦ ID Data N◦ % Data Easting, [m] Northing, [m] Elevation CHE BASIN NAMEs
in CTRL in CTRL (ED 50, Z30N) (ED 50, Z30N) [m.a.s.l.]

262 P9814E 9162 0.84 734506.51 4721677.93 1113 CINCA
263 P9815 10957 1.00 736105.06 4720960.04 1005 CINCA
264 P9815E 8890 0.81 732488.83 4713117.13 1033 CINCA
265 P9815I 10471 0.96 736795.45 4718111.29 863 CINCA
266 P9816 10198 0.93 735962.96 4713048.83 1103 CINCA
267 P9817 10772 0.98 736556.59 4709023.17 770 CINCA
268 P9817I 10259 0.94 738435.69 4707543.03 767 CINCA
269 P9818E 10834 0.99 740800.37 4707253.73 738 CINCA
270 P9818I 10167 0.93 741263.48 4707084.44 740 CINCA
271 P9819E 9831 0.90 745690.33 4708629.03 870 CINCA
272 P9820E 10561 0.96 744369.70 4704567.33 812 CINCA
273 P9821E 10376 0.95 748082.38 4701146.35 1040 CINCA
274 P9821I 9319 0.85 750513.10 4707379.95 915 CINCA
275 P9822 10927 1.00 752215.98 4703920.02 643 CINCA
276 P9823 9824 0.90 752462.38 4702168.26 716 CINCA
277 P9824I 10044 0.92 753893.29 4699316.56 666 CINCA
278 P9824O 10135 0.93 750126.90 4695813.91 775 CINCA
279 P9829 9838 0.90 763900.85 4690141.65 504 CINCA
280 P9833 10804 0.99 767032.47 4671662.78 425 CINCA
281 P9840 8879 0.81 786477.84 4721034.29 1100 ESERA
282 P9841 9437 0.86 784803.30 4716206.43 930 ESERA
283 P9842 8521 0.78 784918.57 4715624.02 928 ESERA
284 P9843 10835 0.99 782486.58 4708541.19 816 ESERA
285 P9849 10804 0.99 777108.98 4680826.39 498 ESERA
286 P9862 10906 0.99 747411.13 4673417.49 625 VERO
287 P9864 10772 0.98 749226.62 4666902.81 465 VERO
288 P9869E 8646 0.79 761890.35 4650341.21 382 CINCA
289 P9874 10956 1.00 748009.27 4649780.64 480 CINCA
290 P9875 10957 1.00 749582.45 4637790.88 400 CINCA
291 P9878 10469 0.95 768960.51 4629167.35 340 CINCA
292 P9878E 7913 0.72 759534.30 4623197.23 186 CINCA
293 P9886 9771 0.89 742104.10 4667396.08 539 ALCANADRE
294 P9894 9709 0.89 736220.25 4630634.36 281 ALCANADRE
295 P9895 10227 0.93 717471.40 4685613.61 990 FLUMEN
296 P9896 10547 0.96 718310.21 4678538.03 720 FLUMEN
297 P9897 8249 0.75 714191.98 4678133.48 680 FLUMEN
298 P9898 10915 1.00 721151.39 4662570.85 541 FLUMEN
299 P9900 9651 0.88 711352.02 4682524.35 726 ISUELA
300 P9901B 9434 0.86 712184.43 4668594.19 475 ISUELA
301 P9904I 8035 0.73 720632.68 4648197.38 335 FLUMEN
302 P9906E 7884 0.72 716084.34 4640122.89 350 FLUMEN
303 P9907E 10562 0.96 722158.64 4645095.64 340 FLUMEN
304 P9907I 10222 0.93 727763.58 4641444.32 365 FLUMEN
305 P9908 8217 0.75 721648.26 4628129.31 369 FLUMEN
306 P9910 10957 1.00 732032.00 4620832.30 356 FLUMEN
307 P9913 10803 0.99 776498.66 4644685.77 471 CINCA
308 P9914 8583 0.78 788741.13 4636490.07 282 CINCA
309 P9914E 8189 0.75 781046.65 4639395.61 318 CINCA
310 P9914I 7825 0.71 786928.79 4639599.34 361 CINCA
311 P9915 8796 0.80 773874.84 4639703.09 285 CINCA
312 P9916 10499 0.96 783768.22 4633695.04 262 CINCA
313 P9918 9434 0.86 780362.89 4630934.32 218 CINCA
314 P9920 9889 0.90 789109.20 4622817.17 250 CINCA
315 P9920E 8916 0.81 773776.34 4628423.56 234 CINCA
316 P9920I 8669 0.79 773868.73 4628427.10 225 CINCA
317 P9921 10526 0.96 790689.46 4620965.49 320 SEGRE
318 P9927 7976 0.73 768513.78 4524814.40 560 MATARRANA
319 P9932 10957 1.00 764447.04 4523741.13 620 MATARRANA
320 P9941 10286 0.94 760544.98 4549079.80 359 MATARRANA
321 P9942 9391 0.86 763685.94 4557283.74 304 MATARRANA
322 P9943 9744 0.89 766815.24 4562400.76 242 MATARRANA
323 P9947 10045 0.92 780675.59 4564341.88 363 MATARRANA
324 P9948 10957 1.00 786139.51 4557727.04 442 EBRO
325 P9949 8998 0.82 792252.09 4563190.22 486 EBRO
326 P9950 10590 0.97 791943.41 4572631.77 76 EBRO
327 P9951A 10839 0.99 797262.57 4570282.77 42 EBRO
328 P9951 10865 0.99 796229.13 4570456.91 56 EBRO
329 P9952 10896 0.99 806787.66 4584460.25 520 EBRO
330 P9953 9734 0.89 807391.89 4576791.22 336 EBRO
331 P9953E 8766 0.80 799199.92 4565140.40 69 EBRO
332 P9961 10866 0.99 812467.31 4573144.82 357 MONTSANT
333 P9968 8615 0.79 809648.06 4556584.33 110 EBRO
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Table A.1 – Continued

N◦ ID Data N◦ % Data Easting, [m] Northing, [m] Elevation CHE BASIN NAMEs
in CTRL in CTRL (ED 50, Z30N) (ED 50, Z30N) [m.a.s.l.]

334 P9971 10804 0.99 813653.72 4550389.10 310 EBRO
335 P9972 10783 0.98 805538.71 4551436.56 34 EBRO
336 P9973 10929 1.00 805278.67 4549818.95 30 EBRO
337 P9974 10409 0.95 803023.89 4550034.32 25 EBRO
338 P9975 10890 0.99 802543.91 4545225.28 180 EBRO
339 P9979 8278 0.76 784737.33 4514765.53 340 EBRO
340 P9979E 8463 0.77 794091.93 4534748.29 12 EBRO
341 P9981A 10957 1.00 794466.24 4524784.59 48 EBRO
342 P9984 10329 0.94 793159.37 4506197.23 167 EBRO
343 P9985 10288 0.94 795355.65 4513080.65 79 EBRO
344 P9987 10851 0.99 802317.77 4512990.66 8 EBRO
345 P9990 9825 0.90 817566.00 4734970.00 0
346 P9991 10681 0.97 811050.97 4735849.00 940
347 P9993I 8888 0.81 805398.07 4738409.74 890
348 P9997E 8010 0.73 621155.88 4545758.05 1043 GALLOCANTA
349 P9998 10775 0.98 631680.07 4535759.57 1018 GALLOCANTA

A.2 Temperature

TABLE A.2: Temperature gauging stations selected for the analysis, with more than 65% of days with
information within the control period 01/Jan/1661-31/Dec/1990

N◦ ID Data N◦ % Data Easting, [m] Northing, [m] Elevation CHE BASIN NAMEs
in CTRL in CTRL (ED 50, Z30N) (ED 50, Z30N) [m.a.s.l.]

1 T9001 9226 0.84 407235.94 4761652.30 855 EBRO
2 T9019 8563 0.78 423070.09 4739829.28 716 EBRO
3 T9041 7286 0.67 453311.97 4754458.00 595 NELA
4 T9044 8887 0.81 459162.26 4754914.26 595 NELA
5 T9069 10760 0.98 503641.60 4725180.88 520 EBRO
6 T9069A 8766 0.80 505779.39 4727156.48 475 BAYAS
7 T9076 8274 0.76 531848.61 4753170.00 570 ZADORRA
8 T9080 8591 0.78 528480.54 4756332.54 540 ZADORRA
9 T9087 7787 0.71 528212.31 4744393.36 521 ZADORRA
10 T9105 10422 0.95 483360.05 4685964.84 960 TIRON
11 T9107 10558 0.96 484276.55 4696573.22 770 TIRON
12 T9121 10644 0.97 512151.16 4713715.95 479 TIRON
13 T9131I 8614 0.79 508811.46 4668153.84 900 NAJERILLA
14 T9136 10680 0.97 510567.23 4675558.67 1020 NAJERILLA
15 T9145 8751 0.80 529041.86 4703401.84 437 EBRO
16 T9145A 10914 1.00 529384.08 4703464.97 430 EBRO
17 T9170 10957 1.00 555027.80 4700227.03 352 EBRO
18 T9174 9425 0.86 578022.20 4690944.77 310 EBRO
19 T9194O 7418 0.68 594731.90 4676713.09 285 EBRO
20 T9198 10644 0.97 703136.38 4735971.44 1160 ARAGON (TRAMO SUPERIOR)
21 T9201 7548 0.69 700794.44 4722565.23 885 ARAGON (TRAMO SUPERIOR)
22 T9204 7297 0.67 696060.12 4719064.64 855 ARAGON (TRAMO SUPERIOR)
23 T9205 7877 0.72 694779.50 4728105.05 1040 ARAGON (TRAMO SUPERIOR)
24 T9206 7509 0.69 690754.63 4710427.35 820 ARAGON (TRAMO SUPERIOR)
25 T9206E 7750 0.71 688972.83 4712971.83 762 ARAGON (TRAMO SUPERIOR)
26 T9208 7508 0.69 690554.56 4730981.97 980 ARAGON (TRAMO SUPERIOR)
27 T9210E 7364 0.67 680587.50 4714168.96 595 ARAGON (TRAMO SUPERIOR)
28 T9212 7135 0.65 677641.57 4735577.14 820 ARAGON (TRAMO SUPERIOR)
29 T9215 9985 0.91 665056.82 4718597.70 510 ARAGON (TRAMO SUPERIOR)
30 T9219I 7598 0.69 662259.09 4726093.46 580 ARAGON (TRAMO SUPERIOR)
31 T9220 7547 0.69 662706.99 4721566.91 495 ARAGON (TRAMO SUPERIOR)
32 T9223 10836 0.99 648334.28 4720133.60 515 IRATI
33 T9224 10341 0.94 646380.79 4717654.12 455 IRATI
34 T9236E 7825 0.71 648292.59 4748556.40 1060 IRATI
35 T9246 10957 1.00 626316.19 4692544.43 340 ARAGON (AGUAS ABAJO YESA)
36 T9248 7350 0.67 619463.47 4687888.54 354 ARAGON (AGUAS ABAJO YESA)
37 T9252 10938 1.00 610583.18 4705113.03 395 ARAGON (AGUAS ABAJO YESA)
38 T9255 10670 0.97 611004.81 4688613.33 304 ARAGON (AGUAS ABAJO YESA)
39 T9257E 8381 0.77 620598.39 4757827.62 615 ARGA
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A.2. TEMPERATURE

Table A.2 – Continued

N◦ ID Data N◦ % Data Easting, [m] Northing, [m] Elevation CHE BASIN NAMEs
in CTRL in CTRL (ED 50, Z30N) (ED 50, Z30N) [m.a.s.l.]

40 T9262 10900 0.99 611480.01 4741535.65 442 ARGA
41 T9269 10120 0.92 566824.30 4748886.38 525 ARGA
42 T9279 9360 0.85 586298.70 4728154.89 475 ARGA
43 T9283 7905 0.72 606445.45 4673795.50 268 EBRO
44 T9301 10941 1.00 608518.94 4646246.52 410 QUEILES
45 T9305 9585 0.88 628741.72 4648559.02 242 EBRO
46 T9311B 7446 0.68 621396.16 4632448.29 448 HUECHA
47 T9322 8736 0.80 669963.73 4695011.72 760 ARBA
48 T9331F 9068 0.83 643318.72 4672227.99 360 ARBA
49 T9333 8246 0.75 646773.26 4666127.53 321 ARBA
50 T9350A 9254 0.84 579125.03 4574113.71 700 JALON
51 T9371 10510 0.96 607751.35 4575839.19 570 JALON
52 T9375 8624 0.79 642199.75 4491995.71 983 JILOCA
53 T9381 7387 0.67 642874.90 4525263.63 932 JILOCA
54 T9388 9137 0.83 637989.77 4544698.24 793 JILOCA
55 T9390 10954 1.00 633427.76 4552788.84 779 JILOCA
56 T9425I 8425 0.77 649140.04 4585272.25 496 JALON
57 T9433O 8034 0.73 653781.12 4625605.65 235 EBRO
58 T9434 10888 0.99 665849.88 4614241.49 247 EBRO
59 T9443E 7514 0.69 676504.05 4612952.65 233 HUERVA
60 T9446 8935 0.81 718417.16 4739248.04 1285 GALLEGO
61 T9448E 7240 0.66 719753.28 4735152.51 1170 GALLEGO
62 T9451 9670 0.88 726344.97 4738237.47 1660 GALLEGO
63 T9454A 7124 0.65 719932.63 4723053.30 855 GALLEGO
64 T9455 7265 0.66 725273.58 4722205.71 1132 GALLEGO
65 T9460 10925 1.00 716824.35 4710851.11 790 GALLEGO
66 T9461 7425 0.68 723488.60 4707479.87 910 GALLEGO
67 T9470E 7732 0.71 698504.41 4706136.70 920 GALLEGO
68 T9470I 7195 0.66 692971.63 4707061.79 940 GALLEGO
69 T9481 10668 0.97 684090.64 4662279.91 400 GALLEGO
70 T9489 10712 0.98 692654.20 4664422.05 413 GALLEGO
71 T9491 9579 0.87 699581.87 4655970.85 390 GALLEGO
72 T9492 7522 0.69 686242.09 4649526.78 335 GALLEGO
73 T9495 8914 0.81 694761.53 4638704.86 298 GALLEGO
74 T9495F 7731 0.71 698549.50 4630258.97 415 GALLEGO
75 T9522E 7329 0.67 721948.44 4573153.73 140 EBRO
76 T9523 10879 0.99 721889.09 4575096.83 143 EBRO
77 T9544 7849 0.72 709274.58 4555492.12 342 MARTIN
78 T9562 8459 0.77 745224.09 4500662.51 990 GUADALOPE
79 T9573 8611 0.79 740952.01 4548501.81 325 GUADALOPE
80 T9575 7728 0.70 730453.90 4611611.00 466 EBRO
81 T9585 7950 0.73 906833.31 4698752.80 1704 SEGRE
82 T9619 8274 0.76 867279.56 4699100.82 692 SEGRE
83 T9621 10957 1.00 862114.88 4695150.07 642 SEGRE
84 T9638 10785 0.98 855931.20 4668077.50 480 SEGRE
85 T9649 9284 0.85 848072.44 4650305.40 360 SEGRE
86 T9650 7896 0.72 835842.48 4646222.35 320 SEGRE
87 T9657 8187 0.75 838326.77 4727420.40 940 NOGUERA PALLARESA
88 T9669 8186 0.75 848642.09 4729416.62 1100 NOGUERA PALLARESA
89 T9675 10775 0.98 846137.95 4713671.70 850 NOGUERA PALLARESA
90 T9688 8989 0.82 828730.88 4714002.49 2120 NOGUERA PALLARESA
91 T9689 10957 1.00 828154.38 4709244.50 1270 NOGUERA PALLARESA
92 T9690 10712 0.98 826886.13 4702599.10 1020 NOGUERA PALLARESA
93 T9695 10869 0.99 824387.22 4692743.55 660 NOGUERA PALLARESA
94 T9696A 10349 0.94 827672.43 4685290.61 550 NOGUERA PALLARESA
95 T9700 10804 0.99 822814.39 4676532.82 425 NOGUERA PALLARESA
96 T9704 10898 0.99 822360.99 4668845.17 380 NOGUERA PALLARESA
97 T9708 10877 0.99 822458.79 4662666.77 399 NOGUERA PALLARESA
98 T9710 10622 0.97 818369.28 4640812.39 245 SEGRE
99 T9713 7407 0.68 840588.09 4634420.03 349 SEGRE
100 T9720 7670 0.70 844725.03 4619157.89 375 SEGRE
101 T9729 10742 0.98 821966.29 4614266.65 268 SEGRE
102 T9729A 7184 0.66 823929.73 4615993.30 250 SEGRE
103 T9734 8097 0.74 806480.62 4717005.05 1093 NOGUERA RIBAGORZANA
104 T9736 9373 0.85 805020.74 4707544.19 960 NOGUERA RIBAGORZANA
105 T9738 7937 0.72 814808.87 4717346.48 1280 NOGUERA RIBAGORZANA
106 T9744A 7422 0.68 809282.06 4707453.79 1000 NOGUERA RIBAGORZANA
107 T9745 9285 0.85 807571.64 4701597.83 845 NOGUERA RIBAGORZANA
108 T9749 7561 0.69 808690.08 4692343.13 717 NOGUERA RIBAGORZANA
109 T9760E 8232 0.75 797094.96 4642890.21 315 NOGUERA RIBAGORZANA
110 T9767 7336 0.67 822425.26 4604024.98 304 SEGRE
111 T9770 7292 0.67 802741.22 4613677.35 221 SEGRE
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N◦ ID Data N◦ % Data Easting, [m] Northing, [m] Elevation CHE BASIN NAMEs
in CTRL in CTRL (ED 50, Z30N) (ED 50, Z30N) [m.a.s.l.]

112 T9770E 10951 1.00 804070.80 4614042.57 150 SEGRE
113 T9771 7277 0.66 801497.48 4614026.73 199 SEGRE
114 T9772 7599 0.69 830089.20 4588823.00 665 SEGRE
115 T9822 8857 0.81 752215.98 4703920.02 643 CINCA
116 T9829 9923 0.91 763900.85 4690141.65 504 CINCA
117 T9833 10712 0.98 767032.47 4671662.78 425 CINCA
118 T9841 7503 0.69 784803.30 4716206.43 930 ESERA
119 T9842 8579 0.78 784918.57 4715624.02 928 ESERA
120 T9843 10528 0.96 782486.58 4708541.19 816 ESERA
121 T9849 10804 0.99 777108.98 4680826.39 498 ESERA
122 T9878E 7366 0.67 759534.30 4623197.23 186 CINCA
123 T9885 7129 0.65 733599.86 4677022.17 650 ALCANADRE
124 T9895 9799 0.89 717471.40 4685613.61 990 FLUMEN
125 T9897 7519 0.69 714191.98 4678133.48 680 FLUMEN
126 T9898 10897 0.99 721151.39 4662570.85 541 FLUMEN
127 T9904I 7666 0.70 720632.68 4648197.38 335 FLUMEN
128 T9907I 10175 0.93 727763.58 4641444.32 365 FLUMEN
129 T9910 10804 0.99 732032.00 4620832.30 356 FLUMEN
130 T9911 7289 0.67 756901.56 4618531.16 215 ALCANADRE
131 T9914 7768 0.71 788741.13 4636490.07 282 CINCA
132 T9915 8779 0.80 773874.84 4639703.09 285 CINCA
133 T9918 9489 0.87 780362.89 4630934.32 218 CINCA
134 T9923 7153 0.65 783603.13 4617437.38 265 CINCA
135 T9941 9888 0.90 760544.98 4549079.80 359 MATARRANA
136 T9951 10764 0.98 796229.13 4570456.91 56 EBRO
137 T9951A 10894 0.99 797262.57 4570282.77 42 EBRO
138 T9961 8665 0.79 812467.31 4573144.82 357 MONTSANT
139 T9967 7243 0.66 814482.95 4554503.89 230 MONTSANT
140 T9968 8250 0.75 809648.06 4556584.33 110 EBRO
141 T9971 10850 0.99 813653.72 4550389.10 310 EBRO
142 T9981A 10771 0.98 794466.24 4524784.59 48 EBRO
143 T9990 9855 0.90 817566.00 4734970.00 0
144 T9991 10834 0.99 811050.97 4735849.00 940
145 T9993I 8888 0.81 805398.07 4738409.74 890
146 T9998 7860 0.72 631680.07 4535759.57 1018 GALLOCANTA

A.3 Streamflow

TABLE A.3: Streamflow gauging stations selected for the analysis, with more than 65% of days with infor-
mation within the control period 01/Jan/1661-31/Dec/1990

N◦ ID Data N◦ % Data Easting, [m] Northing, [m] CHE BASIN NAMEs
in CTRL in CTRL (ED 50, Z30N) (ED 50, Z30N)

1 q001 10950 1.00 503750.00 4726339.00 EBRO
2 q002 10950 1.00 607902.00 4670804.00 EBRO
3 q003 10574 0.96 586644.00 4692045.00 EGA
4 q004 10950 1.00 598901.00 4685628.00 ARGA
5 q005 10825 0.99 611221.00 4689020.00 ARAGON (AGUAS ABAJO YESA)
6 q006 10914 1.00 545858.00 4719917.00 EGA
7 q007 10542 0.96 586579.00 4572511.00 JALON
8 q008 9582 0.88 601319.00 4561596.00 PIEDRA
9 q009 10409 0.95 617175.00 4581867.00 JALON
10 q010 10950 1.00 632826.00 4551974.00 JILOCA
11 q011 10950 1.00 676533.00 4614247.00 EBRO
12 q012 10762 0.98 685725.00 4671825.00 GALLEGO
13 q013 10605 0.97 776307.00 4678241.00 ESERA
14 q015 10950 1.00 741168.00 4549056.00 GUADALOPE
15 q017 9735 0.89 779339.00 4602598.00 CINCA
16 q018 10900 0.99 700817.00 4717118.00 ARAGON (TRAMO SUPERIOR)
17 q019 8101 0.74 802266.19 4743764.00 -
18 q020 9758 0.89 903828.00 4711283.00 SEGRE
19 q021 10262 0.94 905987.00 4708819.00 SEGRE
20 q022 9391 0.86 866536.00 4699087.00 SEGRE
Continued on next page. . .
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A.3. STREAMFLOW

Table A.3 – Continued

N◦ ID Data N◦ % Data Easting, [m] Northing, [m] CHE BASIN NAMEs
in CTRL in CTRL (ED 50, Z30N) (ED 50, Z30N)

21 q023 9395 0.86 867444.00 4698760.00 SEGRE
22 q024 10220 0.93 803594.00 4614488.00 SEGRE
23 q025 10915 1.00 785454.00 4594800.00 SEGRE
24 q026 10950 1.00 413877.00 4758537.00 EBRO
25 q027 10721 0.98 797039.00 4524278.00 EBRO
26 q030 10740 0.98 722311.00 4513402.00 GUADALOPE
27 q032 8395 0.77 738321.00 4643896.00 ALCANADRE
28 q033 8395 0.77 738512.00 4644293.00 ALCANADRE
29 q034 10873 0.99 507822.00 4667930.00 NAJERILLA
30 q035 10662 0.97 528765.00 4664016.00 IREGUA
31 q036 10950 1.00 539186.00 4685361.00 IREGUA
32 q038 10429 0.95 526047.00 4705367.00 NAJERILLA
33 q039 10669 0.97 527231.00 4669025.00 IREGUA
34 q040 10851 0.99 753313.00 4703003.00 CINCA
35 q041 10813 0.99 646619.00 4532671.00 JILOCA
36 q042 10857 0.99 643199.00 4531928.00 JILOCA
37 q043 10854 0.99 564246.00 4652197.00 ALHAMA
38 q044 10883 0.99 555320.00 4661829.00 CIDACOS
39 q046 9179 0.84 751189.00 4678726.00 VERO
40 q047 10369 0.95 780464.00 4677088.00 ISABENA
41 q048 10704 0.98 518412.00 4678452.00 NAJERILLA
42 q049 10918 1.00 587585.19 4639991.00 ALHAMA
43 q050 10915 1.00 502460.00 4709966.00 TIRON
44 q051 10950 1.00 758499.00 4701828.00 CINCA
45 q052 10817 0.99 768746.00 4524361.00 MATARRANA
46 q055 8450 0.77 618695.00 4567865.00 JILOCA
47 q057 9855 0.90 585145.00 4582454.00 JALON
48 q058 10950 1.00 555463.00 4561056.00 JALON
49 q059 10872 0.99 685574.00 4682474.00 GALLEGO
50 q062 9687 0.88 681568.00 4725166.00 ARAGON (TRAMO SUPERIOR)
51 q063 10942 1.00 663000.00 4722000.00 ARAGON (TRAMO SUPERIOR)
52 q064 10790 0.98 650702.00 4730926.00 IRATI
53 q065 10764 0.98 639939.00 4720644.00 IRATI
54 q066 10816 0.99 642407.00 4756508.00 IRATI
55 q067 10365 0.95 613868.00 4749492.00 ARGA
56 q068 8970 0.82 598988.00 4743135.00 ARGA
57 q069 8494 0.78 599073.00 4738504.00 ARGA
58 q070 9269 0.85 578011.44 4727397.50 EGA
59 q071 10950 1.00 579083.00 4724990.00 EGA
60 q073 10846 0.99 643344.00 4712744.00 ARAGON (AGUAS ABAJO YESA)
61 q074 10950 1.00 508565.00 4725201.00 ZADORRA
62 q075 10449 0.95 509604.00 4725577.00 ZADORRA
63 q078 10950 1.00 611419.00 4717013.00 ARAGON (AGUAS ABAJO YESA)
64 q079 10950 1.00 628101.00 4736883.00 IRATI
65 q080 9957 0.91 678169.00 4748074.00 ARAGON (TRAMO SUPERIOR)
66 q083 10364 0.95 855163.00 4668850.00 SEGRE
67 q085 8122 0.74 585083.94 4735622.50 ARGA
68 q086 10950 1.00 610830.00 4717489.00 ARAGON (AGUAS ABAJO YESA)
69 q087 7482 0.68 651824.00 4621939.00 JALON
70 q088 9746 0.89 703113.00 4500242.00 GUADALOPE
71 q090 10220 0.93 601030.00 4637100.00 QUEILES
72 q091 9371 0.85 739160.00 4663736.00 ALCANADRE
73 q092 9582 0.88 465581.84 4742488.50 NELA
74 q093 10477 0.96 465605.00 4731645.00 HOMINO
75 q095 8943 0.82 759376.00 4657956.00 VERO
76 q096 10761 0.98 816451.00 4634016.00 SEGRE
77 q097 10920 1.00 797069.00 4642522.00 NOGUERA RIBAGORZANA
78 q100 10944 1.00 717321.00 4526852.00 GUADALOPE
79 q101 10950 1.00 646828.00 4719928.00 IRATI
80 q102 10265 0.94 833074.13 4689398.00 NOGUERA PALLARESA
81 q103 7969 0.73 821833.00 4644519.00 SEGRE
82 q104 7970 0.73 828440.00 4647751.00 SEGRE
83 q105 10713 0.98 660814.00 4588056.00 HUERVA
84 q106 10585 0.97 726779.00 4517766.00 GUADALOPE
85 q109 7703 0.70 764231.00 4524156.00 MATARRANA
86 q110 10880 0.99 764084.00 4521342.00 MATARRANA
87 q111 10430 0.95 858548.00 4684601.00 SEGRE
88 q112 10950 1.00 719782.00 4578748.00 EBRO
89 q113 10950 1.00 763049.00 4521618.00 MATARRANA
90 q114 7791 0.71 847890.63 4650210.50 SEGRE
91 q115 10128 0.92 805381.00 4673284.00 NOGUERA RIBAGORZANA
92 q116 9459 0.86 814974.38 4718349.00 NOGUERA RIBAGORZANA
Continued on next page. . .
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APPENDIX A. SELECTED GAUGING STATIONS

Table A.3 – Continued

N◦ ID Data N◦ % Data Easting, [m] Northing, [m] CHE BASIN NAMEs
in CTRL in CTRL (ED 50, Z30N) (ED 50, Z30N)

93 q117 10493 0.96 815265.63 4717547.50 NOGUERA RIBAGORZANA
94 q118 10950 1.00 694203.92 4540492.77 MARTIN
95 q120 10917 1.00 565478.00 4696449.00 EBRO
96 q121 10663 0.97 797636.69 4570260.50 EBRO
97 q122 10950 1.00 676498.21 4545071.81 AGUAS VIVAS
98 q123 10585 0.97 693373.00 4697534.00 GALLEGO
99 q124 10950 1.00 660496.00 4573702.00 HUERVA
100 q125 10919 1.00 600731.00 4569241.00 PIEDRA
101 q126 10770 0.98 600483.00 4575511.00 JALON
102 q127 10009 0.91 693539.00 4536469.00 MARTIN
103 q130 9947 0.91 805382.00 4711766.00 NOGUERA RIBAGORZANA
104 q131 9947 0.91 808913.50 4706979.50 NOGUERA RIBAGORZANA
105 q135 8283 0.76 855407.00 4720486.00 NOGUERA PALLARESA
106 q136 8852 0.81 801221.50 4707329.50 NOGUERA RIBAGORZANA
107 q137 10251 0.94 808017.00 4701188.00 NOGUERA RIBAGORZANA
108 q138 10919 1.00 681509.00 4555757.00 AGUAS VIVAS
109 q139 10942 1.00 581895.00 4658733.00 ALHAMA
110 q142 10950 1.00 531356.00 4661174.00 IREGUA
111 q143 9840 0.90 817457.56 4735108.00 -
112 q144 10353 0.94 848683.00 4729299.00 NOGUERA PALLARESA
113 q145 9102 0.83 785007.00 4720109.00 ESERA
114 q146 10532 0.96 828362.00 4685745.00 NOGUERA PALLARESA
115 q147 10795 0.98 574058.00 4573689.00 JALON
116 q148 9734 0.89 855408.00 4677290.00 SEGRE
117 q149 10950 1.00 538703.00 4703909.00 EBRO
118 q150 10465 0.95 588002.00 4733510.00 ARGA
119 q151 10521 0.96 587166.00 4733748.00 ARGA
120 q152 9713 0.89 621226.00 4758784.00 ARGA
121 q153 9320 0.85 775723.00 4537187.00 MATARRANA
122 q154 8229 0.75 755368.81 4514293.50 MATARRANA
123 q155 8237 0.75 649237.00 4680494.00 ARBA
124 q157 7281 0.67 497343.00 4679139.00 TIRON
125 q158 7626 0.70 482615.00 4694425.00 TIRON
126 q159 8485 0.77 615391.00 4744456.00 ARGA
127 q161 9490 0.87 478589.00 4737110.00 EBRO
128 q162 9398 0.86 619613.00 4653288.00 EBRO
129 q166 8607 0.79 470572.00 4737909.00 JEREA
130 q171 9217 0.84 774640.00 4723554.00 CINCA
131 q172 9217 0.84 762660.00 4715281.00 CINCA
132 q181 8512 0.78 827165.44 4684944.00 NOGUERA PALLARESA
133 q182 7939 0.72 817801.06 4635182.00 SEGRE
134 q183 8852 0.81 809747.00 4621140.00 SEGRE
135 q196 8487 0.78 737270.00 4724039.00 CINCA
136 q198 8336 0.76 855348.00 4720604.00 NOGUERA PALLARESA
137 Q801 10916 1.00 414344.53 4758210.50 EBRO
138 Q802 10949 1.00 797607.19 4570947.50 EBRO
139 Q803 9569 0.87 773989.38 4585107.50 EBRO
140 Q804 7757 0.71 787729.19 4571660.50 EBRO
141 Q809 10850 0.99 507355.06 4667519.50 NAJERILLA
142 Q811 10920 1.00 527073.63 4669289.00 IREGUA
143 Q812 9581 0.87 600792.31 4568764.50 PIEDRA
144 Q814 10493 0.96 660188.94 4573367.00 HUERVA
145 Q815 10585 0.97 681948.63 4561422.00 AGUAS VIVAS
146 Q816 10126 0.92 704415.13 4574277.50 AGUAS VIVAS
147 Q817 10217 0.93 694097.81 4539719.50 MARTIN
148 Q818 10949 1.00 726561.31 4517337.00 GUADALOPE
149 Q819 9954 0.91 735250.00 4550190.00 GUADALOPE
150 Q820 10311 0.94 718065.69 4528405.00 GUADALOPE
151 Q821 10583 0.97 764339.13 4523632.00 MATARRANA
152 Q827 10219 0.93 531397.63 4753098.00 ZADORRA
153 Q828 10220 0.93 528204.63 4756206.00 ZADORRA
154 Q829 10920 1.00 649104.06 4719975.50 IRATI
155 Q830 10948 1.00 586751.50 4728942.00 ARGA
156 Q831 10828 0.99 650307.25 4760953.00 IRATI
157 Q832 10865 0.99 716753.56 4736208.50 GALLEGO
158 Q833 10948 1.00 718728.88 4740999.50 GALLEGO
159 Q834 10950 1.00 726043.00 4737604.00 GALLEGO
160 Q835 7380 0.67 720013.50 4729060.00 GALLEGO
161 Q836 10778 0.98 686488.63 4694973.00 GALLEGO
162 Q837 10801 0.99 685561.31 4672672.00 GALLEGO
163 Q838 10950 1.00 692342.88 4664274.50 GALLEGO
164 Q845 10950 1.00 762630.63 4725465.00 CINCA
Continued on next page. . .
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A.3. STREAMFLOW

Table A.3 – Continued

N◦ ID Data N◦ % Data Easting, [m] Northing, [m] CHE BASIN NAMEs
in CTRL in CTRL (ED 50, Z30N) (ED 50, Z30N)

165 Q846 7392 0.68 764790.06 4689698.00 CINCA
166 Q847 8852 0.81 767340.00 4671826.00 CINCA
167 Q848 10950 1.00 773781.44 4669077.50 ESERA
168 Q849 10896 0.99 771044.44 4718532.00 CINCA
169 Q850 10950 1.00 808680.06 4692912.50 NOGUERA RIBAGORZANA
170 Q851 9214 0.84 799316.13 4653672.50 NOGUERA RIBAGORZANA
171 Q852 10647 0.97 797130.50 4643060.50 NOGUERA RIBAGORZANA
172 Q853 10585 0.97 821239.50 4731694.00 -
173 Q854 10585 0.97 826530.69 4716900.50 NOGUERA PALLARESA
174 Q856 10924 1.00 835288.75 4730690.50 NOGUERA PALLARESA
175 Q857 10919 1.00 840031.63 4722261.00 NOGUERA PALLARESA
176 Q858 10865 0.99 823258.81 4677372.00 NOGUERA PALLARESA
177 Q859 10947 1.00 822367.19 4662716.50 NOGUERA PALLARESA
178 Q860 10918 1.00 822539.38 4647039.00 NOGUERA PALLARESA
179 Q861 10950 1.00 818545.19 4640772.50 SEGRE
180 Q862 10950 1.00 855248.25 4669157.00 SEGRE
181 Q863 10311 0.94 816386.38 4722163.00 NOGUERA RIBAGORZANA
182 Q864 7757 0.71 785910.44 4720647.00 ESERA
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B
Projected Values of Annual, Seasonal and Monthly

Precipitation and Temperature

B.1 Entire Ebro River basin

This Appendix present annual, seasonal and monthly projected values of precipitation and air
temperature for the entire Ebro River basin during the control period 1961-1990 and the six future
climate scenarios (2071-2100) described in Table 4.1.

B.1.1 Annual and Seasonal Projections

TABLE B.1: Annual and seasonal mean precipitation and temperature on the Ebro River basin, for the
CTRL period 1961-1990 and for 6 RCMs during 2071-2100. Values computed averaging over
the 349 and 146 gauging stations of precipitation and temperature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Annual DJF MAM JJA SON Annual DJF MAM JJA SON
CTRL 608.9 144.5 171.0 121.4 170.9 12.2 4.8 10.7 20.5 13.1
DMI.HS1 586.0 175.2 146.9 83.0 177.7 16.4 8.1 13.9 26.0 17.5
DMI.ecscA2 572.4 166.6 136.6 101.5 165.7 17.8 8.8 15.9 27.6 18.6
HC.adhfa 555.4 161.1 145.6 72.4 192.8 16.8 8.2 14.3 26.7 17.9
CNRM.DE6 519.3 157.8 134.0 72.7 154.4 16.3 7.7 14.4 25.7 17.1
SMHI.HCA2 566.2 164.8 149.1 66.4 183.0 16.5 7.9 13.9 26.7 17.3
SMHI.MPIA2 476.3 140.5 111.0 78.6 142.4 18.5 9.0 16.9 29.2 18.6
RCMs.Average 546.0 161.0 137.2 79.1 169.3 17.0 8.3 14.9 27.0 17.8

TABLE B.2: Annual and seasonal mean precipitation and temperature on the Ebro River basin, for the
CTRL period 1961-1990 and for 6 RCMs during 2071-2100. Values computed averaging the
IDW interpolated values in squared cells of 1km2

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Annual DJF MAM JJA SON Annual DJF MAM JJA SON
CTRL 545.3 126.9 156.2 108.9 152.2 12.7 5.3 11.2 21.0 13.6
DMI.HS1 525.9 155.3 133.1 75.0 159.8 16.9 8.5 14.5 26.5 17.9
DMI.ecscA2 518.2 149.1 125.6 92.8 148.8 18.2 9.3 16.3 28.1 19.0
HC.adhfa 503.8 143.4 133.8 65.9 175.9 17.3 8.7 14.7 27.2 18.4
CNRM.DE6 466.1 139.6 122.0 65.0 138.9 16.8 8.2 14.9 26.2 17.5
SMHI.HCA2 509.6 145.3 136.7 59.8 165.2 17.0 8.4 14.4 27.2 17.8
SMHI.MPIA2 431.3 125.6 104.1 71.0 127.2 19.0 9.4 17.4 29.7 19.1
RCMs.Average 492.5 143.0 125.9 71.6 152.6 17.5 8.8 15.4 27.5 18.3
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APPENDIX B. PROJECTED VALUES OF ANNUAL, SEASONAL AND MONTHLY
PRECIPITATION AND TEMPERATURE

TABLE B.3: Annual and seasonal mean precipitation and temperature on the Ebro River basin, for the
CTRL period 1961-1990 and for 6 RCMs during 2071-2100. Values computed averaging the
OK interpolated values in squared cells of 1km2

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Annual DJF MAM JJA SON Annual DJF MAM JJA SON
CTRL 544.6 126.5 156.3 109.4 151.6 12.7 5.3 11.1 20.9 13.5
DMI.HS1 525.3 155.1 133.2 76.0 158.7 16.9 8.6 14.4 26.4 17.9
DMI.ecscA2 518.1 149.3 125.9 93.9 147.7 18.2 9.3 16.3 28.0 18.9
HC.adhfa 504.5 143.4 134.3 66.5 175.4 17.2 8.7 14.7 27.1 18.3
CNRM.DE6 465.4 139.5 122.0 65.6 138.1 16.7 8.3 14.8 26.1 17.5
SMHI.HCA2 508.5 145.2 136.8 60.1 164.1 17.0 8.4 14.4 27.1 17.7
SMHI.MPIA2 430.9 125.5 104.0 71.9 126.8 18.9 9.4 17.3 29.6 19.0
RCMs.Average 492.1 143.0 126.0 72.3 151.8 17.5 8.8 15.3 27.4 18.2

B.1.2 Monthly Projections

The monthly precipitation over the entire Ebro River basin during the future period 2071-2100 are
presented in tables B.4, B.5 and B.6 for the 6 RCMs described in Table 4.1.

TABLE B.4: Monthly mean precipitation, [mm], on the Ebro River basin, for the CTRL period 1961-1990
and for 6 RCMs during 2071-2100. Values computed averaging over the 349 gauging stations
of precipitation.

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
CTRL 48.6 44.3 43.8 61.0 66.2 53.0 30.2 38.3 47.6 56.6 66.6 52.9
DMI.HS1 64.1 48.6 43.7 58.3 44.9 38.0 17.9 27.1 53.5 55.7 68.5 65.7
DMI.ecscA2 57.1 43.9 45.9 42.5 48.2 41.6 22.5 37.3 49.4 43.3 73.0 67.7
HC.adhfa 54.2 51.0 55.3 44.3 46.1 32.9 16.5 23.0 41.3 63.5 87.9 57.9
CNRM.DE6 58.6 51.9 39.0 54.1 40.9 30.6 16.9 25.2 42.8 53.4 58.2 47.7
SMHI.HCA2 57.4 48.2 45.4 63.6 40.1 35.5 15.2 15.8 62.3 51.5 69.2 61.9
SMHI.MPIA2 54.2 35.4 33.3 37.4 40.3 30.3 16.8 31.5 43.0 42.4 57.0 54.8
RCMs.Average 57.6 46.5 43.7 50.0 43.4 34.8 17.6 26.6 48.7 51.6 69.0 59.3

TABLE B.5: Monthly mean precipitation, [mm], on the Ebro River basin, for the CTRL period 1961-1990
and for 6 RCMs during 2071-2100. Values computed averaging the IDW interpolated values
in squared cells of 1km2

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
CTRL 42.7 39.3 39.7 56.0 60.5 48.3 26.9 33.7 42.8 50.6 58.9 46.0
DMI.HS1 56.8 43.2 39.5 52.9 40.7 34.6 16.0 24.3 49.0 50.0 60.8 58.1
DMI.ecscA2 51.1 39.3 42.1 39.0 44.4 38.0 20.7 34.1 45.5 38.6 64.6 60.5
HC.adhfa 47.4 45.5 51.1 40.3 42.4 30.8 14.9 20.2 38.6 58.6 78.7 52.2
CNRM.DE6 51.4 47.2 35.2 49.3 37.5 28.1 15.0 22.0 38.3 48.5 52.1 41.6
SMHI.HCA2 50.2 42.7 41.3 58.3 37.1 32.7 13.5 13.5 56.4 45.8 63.0 54.9
SMHI.MPIA2 48.8 32.1 31.1 34.6 38.4 28.4 15.0 27.6 39.3 38.5 49.5 48.1
RCMs.Average 50.9 41.7 40.1 45.7 40.1 32.1 15.8 23.6 44.5 46.7 61.5 52.6
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B.1. ENTIRE EBRO RIVER BASIN

TABLE B.6: Monthly mean precipitation, [mm], on the Ebro River basin, for the CTRL period 1961-1990
and for 6 RCMs during 2071-2100. Values computed averaging the OK interpolated values in
squared cells of 1km2

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
CTRL 42.6 39.2 39.8 56.0 60.5 48.5 27.0 33.8 42.6 50.5 58.5 45.8
DMI.HS1 56.8 43.3 39.5 52.8 40.9 35.0 16.3 24.5 48.6 49.8 60.4 57.9
DMI.ecscA2 51.2 39.4 42.3 39.0 44.7 38.4 21.2 34.3 45.2 38.5 64.1 60.6
HC.adhfa 47.4 45.5 51.3 40.4 42.7 31.3 15.0 20.2 38.4 58.6 78.2 52.3
CNRM.DE6 51.4 47.2 35.2 49.2 37.5 28.4 15.1 22.1 38.0 48.5 51.7 41.5
SMHI.HCA2 50.1 42.9 41.4 58.2 37.3 32.9 13.6 13.6 56.1 45.6 62.6 54.8
SMHI.MPIA2 48.7 32.1 31.1 34.5 38.4 28.7 15.2 28.0 39.1 38.6 49.2 48.1
RCMs.Average 50.9 41.7 40.1 45.7 40.2 32.4 16.1 23.8 44.2 46.6 61.0 52.5

The monthly mean temperature over the entire Ebro River basin during the future period 2071-
2100 are presented in tables B.7, B.8 and B.9 for the 6 RCMs described in Table 4.1.

TABLE B.7: Monthly mean temperature, [◦C], on the Ebro River basin, for the CTRL period 1961-1990
and for 6 RCMs during 2071-2100. Values computed averaging over the 146 gauging stations
of temperature.

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
CTRL 4.1 5.6 7.8 10.2 14.1 18.3 21.8 21.3 18.3 13.3 7.8 4.6
DMI.HS1 7.3 8.7 10.2 13.2 18.4 23.4 27.1 27.5 23.6 17.7 11.3 8.1
DMI.ecscA2 8.0 10.1 11.8 15.5 20.3 24.3 29.6 29.1 24.8 18.6 12.3 8.4
HC.adhfa 7.5 9.0 10.5 13.8 18.5 24.0 28.2 27.9 24.7 17.4 11.7 8.2
CNRM.DE6 7.5 8.4 11.0 13.6 18.6 23.4 27.3 26.4 22.6 17.1 11.5 7.3
SMHI.HCA2 7.2 8.6 10.1 13.2 18.4 23.6 28.2 28.4 23.5 17.4 11.1 8.0
SMHI.MPIA2 8.3 10.0 12.9 16.6 21.1 26.0 31.0 30.7 25.3 18.4 12.1 8.7
RCMs.Average 7.6 9.1 11.1 14.3 19.2 24.1 28.6 28.3 24.1 17.8 11.7 8.1

TABLE B.8: Monthly mean temperature, [◦C], on the Ebro River basin, for the CTRL period 1961-1990
and for 6 RCMs during 2071-2100. Values computed averaging the IDW interpolated values
in squared cells of 1km2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
CTRL 4.6 6.1 8.3 10.7 14.6 18.9 22.3 21.8 18.8 13.8 8.2 5.0
DMI.HS1 7.8 9.3 10.7 13.7 18.9 23.9 27.6 28.0 24.0 18.1 11.7 8.5
DMI.ecscA2 8.5 10.5 12.2 16.0 20.7 24.7 30.0 29.5 25.3 19.0 12.7 8.8
HC.adhfa 7.9 9.5 10.9 14.3 19.0 24.5 28.7 28.4 25.1 17.9 12.1 8.6
CNRM.DE6 8.1 8.9 11.5 14.0 19.1 23.9 27.8 26.9 23.1 17.6 11.9 7.8
SMHI.HCA2 7.7 9.1 10.7 13.7 18.9 24.2 28.7 28.8 24.0 17.8 11.6 8.4
SMHI.MPIA2 8.8 10.5 13.4 17.1 21.7 26.5 31.4 31.1 25.8 18.9 12.5 9.2
RCMs.Average 8.1 9.6 11.6 14.8 19.7 24.6 29.0 28.8 24.6 18.2 12.1 8.6
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TABLE B.9: Monthly mean temperature, [◦C], on the Ebro River basin, for the CTRL period 1961-1990
and for 6 RCMs during 2071-2100. Values computed averaging the OK interpolated values in
squared cells of 1km2

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
CTRL 4.6 6.1 8.2 10.7 14.5 18.7 22.2 21.7 18.7 13.7 8.2 5.1
DMI.HS1 7.9 9.3 10.7 13.7 18.8 23.8 27.5 27.9 23.9 18.1 11.7 8.6
DMI.ecscA2 8.5 10.5 12.2 15.9 20.6 24.6 29.9 29.4 25.2 18.9 12.7 8.9
HC.adhfa 8.0 9.5 10.9 14.2 18.9 24.4 28.5 28.3 25.0 17.8 12.1 8.6
CNRM.DE6 8.1 8.9 11.4 14.0 19.0 23.8 27.7 26.8 23.0 17.5 11.9 7.8
SMHI.HCA2 7.7 9.1 10.6 13.6 18.9 24.0 28.6 28.7 23.9 17.7 11.5 8.4
SMHI.MPIA2 8.8 10.5 13.4 17.0 21.6 26.4 31.3 31.0 25.7 18.8 12.5 9.2
RCMs.Average 8.2 9.6 11.5 14.8 19.6 24.5 28.9 28.7 24.5 18.2 12.1 8.6
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B.2 Ebro River basin, by elevation bands

This Appendix presents bias-corrected mean annual/seasonal/monthly precipitation and air tem-
perature over each one of the four elevation bands described in Table 4.14 for the entire Ebro River
basin, during the future period 2071-2100, for the six future climate scenarios described in Table
4.1.

B.2.1 Annual and Seasonal Projections

TABLE B.10: Bias-corrected mean annual precipitation and temperature for different elevation bands, on
the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-2100. Val-
ues computed averaging over the 349 and 146 gauging stations of precipitation and temper-
ature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 388.0 571.6 743.3 947.3 14.0 12.4 10.7 8.4
DMI.HS1 371.5 552.8 714.4 911.0 18.1 16.5 15.1 13.0
DMI.ecscA2 382.0 535.1 694.1 866.9 19.4 17.9 16.4 14.4
HC.adhfa 364.2 531.9 676.6 818.9 18.5 16.9 15.4 13.4
CNRM.DE6 342.4 479.4 637.2 797.5 18.1 16.3 14.8 12.7
SMHI.HCA2 375.7 531.6 685.2 858.3 18.3 16.6 15.1 13.0
SMHI.MPIA2 326.1 442.8 575.1 713.9 20.2 18.7 17.1 15.1
RCMs.Average 360.3 512.2 663.7 827.7 18.8 17.1 15.6 13.6

TABLE B.11: Bias-corrected mean winter (DJF) precipitation and temperature for different elevation
bands, on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-
2100. Values computed averaging over the 349 and 146 gauging stations of precipitation and
temperature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 78.6 142.8 182.5 225.9 6.1 5.1 3.6 2.0
DMI.HS1 91.3 178.4 219.4 273.0 9.3 8.3 7.0 5.5
DMI.ecscA2 97.5 166.0 205.7 249.9 10.0 9.1 7.8 6.4
HC.adhfa 92.7 160.1 205.1 236.2 9.3 8.5 7.2 5.9
CNRM.DE6 96.2 151.4 199.3 235.6 9.1 7.9 6.5 5.0
SMHI.HCA2 87.3 165.0 207.7 258.0 9.2 8.1 6.8 5.3
SMHI.MPIA2 86.2 136.1 173.0 213.0 10.2 9.2 7.8 6.4
RCMs.Average 91.9 159.5 201.7 244.3 9.5 8.5 7.2 5.8
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TABLE B.12: Bias-corrected mean spring (MAM) precipitation and temperature for different elevation
bands, on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-
2100. Values computed averaging over the 349 and 146 gauging stations of precipitation and
temperature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 113.3 164.4 205.0 253.4 12.8 10.9 8.9 6.4
DMI.HS1 91.3 140.4 178.7 228.7 15.8 14.1 12.4 10.0
DMI.ecscA2 91.2 130.0 164.8 202.6 17.6 16.1 14.4 12.1
HC.adhfa 95.1 142.7 174.9 211.9 16.1 14.4 12.8 10.5
CNRM.DE6 88.3 127.3 163.2 199.1 16.3 14.4 12.9 10.7
SMHI.HCA2 98.6 144.3 178.9 218.8 15.9 14.1 12.3 9.9
SMHI.MPIA2 86.2 106.0 126.7 149.7 18.7 17.2 15.3 13.0
RCMs.Average 91.8 131.8 164.5 201.8 16.7 15.0 13.3 11.0

TABLE B.13: Bias-corrected mean summer (JJA) precipitation and temperature for different elevation
bands, on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-
2100. Values computed averaging over the 349 and 146 gauging stations of precipitation and
temperature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 76.2 107.3 150.3 204.1 22.8 20.4 18.6 15.9
DMI.HS1 52.5 71.5 104.8 139.9 28.1 25.9 24.5 22.0
DMI.ecscA2 68.7 86.4 127.4 164.5 29.7 27.6 26.1 23.7
HC.adhfa 43.9 66.1 92.8 114.4 29.1 26.5 25.0 22.4
CNRM.DE6 45.4 60.0 91.7 130.4 28.0 25.5 24.0 21.3
SMHI.HCA2 43.8 57.7 83.3 108.0 28.9 26.7 25.1 22.6
SMHI.MPIA2 50.9 67.2 100.5 128.9 31.3 29.2 27.7 25.3
RCMs.Average 50.8 68.1 100.1 131.0 29.2 26.9 25.4 22.9

TABLE B.14: Bias-corrected mean autumn (SON) precipitation and temperature for different elevation
bands, on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-
2100. Values computed averaging over the 349 and 146 gauging stations of precipitation and
temperature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 119.5 155.7 204.0 262.3 14.8 13.3 11.7 9.4
DMI.HS1 134.1 159.7 207.9 264.6 19.1 17.6 16.2 14.3
DMI.ecscA2 123.3 150.5 193.6 246.6 20.1 18.8 17.2 15.4
HC.adhfa 144.0 178.7 223.5 279.8 19.5 18.1 16.5 14.6
CNRM.DE6 112.1 140.2 182.5 232.0 18.8 17.2 15.6 13.6
SMHI.HCA2 144.1 162.1 211.9 268.9 19.0 17.5 16.0 14.1
SMHI.MPIA2 100.8 129.6 169.8 216.2 20.3 18.8 17.2 15.3
RCMs.Average 126.4 153.5 198.2 251.3 19.5 18.0 16.5 14.5
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B.2.2 Monthly Projections

TABLE B.15: Bias-corrected mean January (JAN) precipitation and temperature for different elevation
bands on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-
2100. Values computed averaging over the 349 and 146 gauging stations of precipitation and
temperature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 26.2 48.5 60.8 76.2 5.3 4.3 2.9 1.7
DMI.HS1 32.2 66.2 80.3 99.8 8.5 7.5 6.3 5.1
DMI.ecscA2 34.8 56.7 69.8 84.6 9.1 8.2 7.0 5.8
HC.adhfa 26.8 55.1 69.8 84.7 8.4 7.7 6.5 5.5
CNRM.DE6 39.7 52.9 75.5 84.5 8.8 7.6 6.4 5.0
SMHI.HCA2 29.1 57.1 72.9 92.9 8.3 7.3 6.1 4.8
SMHI.MPIA2 34.5 53.1 65.7 79.7 9.4 8.5 7.3 6.0
RCMs.Average 32.9 56.8 72.3 87.7 8.8 7.8 6.6 5.4

TABLE B.16: Bias-corrected mean February (FEB) precipitation and temperature for different elevation
bands on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-
2100. Values computed averaging over the 349 and 146 gauging stations of precipitation and
temperature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 23.7 43.8 56.7 68.5 7.2 6.0 4.1 2.1
DMI.HS1 23.2 50.3 62.0 76.3 10.2 9.0 7.4 5.5
DMI.ecscA2 23.7 43.3 55.6 68.6 11.4 10.4 8.8 7.0
HC.adhfa 25.2 52.9 67.0 74.9 10.4 9.3 7.7 5.9
CNRM.DE6 32.2 51.5 63.4 75.7 10.0 8.6 7.1 5.1
SMHI.HCA2 23.7 49.3 61.7 75.8 10.2 8.8 7.2 5.2
SMHI.MPIA2 23.0 33.4 43.5 53.5 11.4 10.3 8.7 6.9
RCMs.Average 25.2 46.8 58.9 70.8 10.6 9.4 7.8 5.9

TABLE B.17: Bias-corrected mean March (MAR) precipitation and temperature for different elevation
bands on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-
2100. Values computed averaging over the 349 and 146 gauging stations of precipitation and
temperature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 27.3 43.8 53.3 62.9 9.6 8.1 6.1 3.8
DMI.HS1 25.2 44.6 53.2 65.0 12.0 10.4 8.7 6.5
DMI.ecscA2 30.5 46.3 54.4 63.5 13.4 12.1 10.4 8.2
HC.adhfa 36.6 57.3 65.6 72.9 12.1 10.8 9.1 7.0
CNRM.DE6 24.3 38.3 48.1 56.5 12.7 11.1 9.6 7.5
SMHI.HCA2 28.3 46.6 54.3 63.8 12.0 10.3 8.6 6.3
SMHI.MPIA2 22.7 34.1 38.9 44.7 14.5 13.3 11.5 9.4
RCMs.Average 27.9 44.5 52.4 61.1 12.8 11.3 9.6 7.5
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TABLE B.18: Bias-corrected mean April (APR) precipitation and temperature for different elevation bands
on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-2100.
Values computed averaging over the 349 and 146 gauging stations of precipitation and tem-
perature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 39.5 60.0 73.4 88.8 12.3 10.4 8.4 5.9
DMI.HS1 36.2 56.8 70.9 88.0 15.1 13.4 11.7 9.3
DMI.ecscA2 26.2 41.3 52.4 64.0 17.3 15.8 14.1 11.7
HC.adhfa 27.3 44.3 52.3 67.0 15.6 14.0 12.4 10.1
CNRM.DE6 35.8 51.7 66.1 79.1 15.5 13.6 12.0 9.9
SMHI.HCA2 42.4 61.3 76.3 93.2 15.1 13.4 11.6 9.2
SMHI.MPIA2 26.8 36.1 43.8 52.3 18.4 16.9 15.0 12.6
RCMs.Average 32.4 48.6 60.3 73.9 16.2 14.5 12.8 10.5

TABLE B.19: Bias-corrected mean may (MAY) precipitation and temperature for different elevation bands
on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-2100.
Values computed averaging over the 349 and 146 gauging stations of precipitation and tem-
perature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 46.4 60.6 78.3 101.7 16.4 14.2 12.1 9.6
DMI.HS1 29.8 39.0 54.6 75.6 20.4 18.5 16.8 14.3
DMI.ecscA2 34.5 42.4 58.1 75.0 22.1 20.5 18.7 16.3
HC.adhfa 31.2 41.1 57.0 72.0 20.6 18.5 16.8 14.4
CNRM.DE6 28.2 37.2 49.0 63.5 20.8 18.5 17.0 14.6
SMHI.HCA2 27.9 36.4 48.2 61.8 20.5 18.5 16.7 14.1
SMHI.MPIA2 36.7 35.8 44.0 52.7 23.1 21.3 19.5 17.0
RCMs.Average 31.4 38.7 51.8 66.8 21.3 19.3 17.6 15.1

TABLE B.20: Bias-corrected mean June (JUN) precipitation and temperature for different elevation bands
on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-2100.
Values computed averaging over the 349 and 146 gauging stations of precipitation and tem-
perature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 35.6 47.6 64.9 83.0 20.8 18.3 16.3 13.7
DMI.HS1 24.3 33.4 47.9 61.6 25.6 23.4 21.8 19.2
DMI.ecscA2 28.5 35.4 52.0 67.6 26.4 24.2 22.6 20.0
HC.adhfa 22.2 30.0 40.9 49.4 26.4 23.8 22.1 19.5
CNRM.DE6 19.9 26.3 38.1 51.4 26.0 23.1 21.5 18.8
SMHI.HCA2 26.1 31.4 43.1 52.6 25.9 23.6 21.8 19.2
SMHI.MPIA2 21.4 27.9 37.5 43.3 28.3 26.0 24.3 21.8
RCMs.Average 23.7 30.7 43.2 54.3 26.4 24.0 22.4 19.8
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TABLE B.21: Bias-corrected mean July (JUL) precipitation and temperature for different elevation bands
on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-2100.
Values computed averaging over the 349 and 146 gauging stations of precipitation and tem-
perature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 16.1 25.9 38.8 56.3 24.2 21.7 20.0 17.2
DMI.HS1 9.5 14.9 23.4 33.8 29.2 26.9 25.6 22.9
DMI.ecscA2 12.3 18.8 29.8 41.1 31.6 29.5 28.1 25.7
HC.adhfa 8.5 14.5 22.1 29.2 30.6 27.9 26.4 23.8
CNRM.DE6 9.5 13.1 22.0 33.9 29.6 27.0 25.7 22.9
SMHI.HCA2 7.9 12.7 20.0 28.8 30.4 28.1 26.6 24.0
SMHI.MPIA2 8.6 13.9 22.7 31.3 33.0 30.9 29.5 27.2
RCMs.Average 9.4 14.7 23.3 33.0 30.8 28.4 27.0 24.4

TABLE B.22: Bias-corrected mean August (AUG) precipitation and temperature for different elevation
bands on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-
2100. Values computed averaging over the 349 and 146 gauging stations of precipitation and
temperature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 24.5 33.7 46.6 64.9 23.6 21.3 19.5 16.7
DMI.HS1 18.6 23.1 33.5 44.5 29.5 27.4 26.1 23.8
DMI.ecscA2 27.9 32.2 45.6 55.8 30.9 29.0 27.7 25.4
HC.adhfa 13.1 21.6 29.9 35.8 30.2 27.7 26.3 23.8
CNRM.DE6 16.0 20.6 31.6 45.1 28.6 26.3 24.8 22.2
SMHI.HCA2 9.7 13.6 20.2 26.6 30.4 28.3 26.9 24.6
SMHI.MPIA2 20.8 25.4 40.3 54.3 32.7 30.7 29.2 26.9
RCMs.Average 17.7 22.7 33.5 43.7 30.4 28.2 26.8 24.5

TABLE B.23: Bias-corrected mean September (SEP) precipitation and temperature for different elevation
bands on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-
2100. Values computed averaging over the 349 and 146 gauging stations of precipitation and
temperature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 37.6 40.6 55.4 73.2 20.3 18.4 16.6 14.0
DMI.HS1 48.1 45.2 59.8 74.8 25.3 23.7 22.2 19.9
DMI.ecscA2 47.9 40.7 53.7 67.1 26.6 25.0 23.4 21.2
HC.adhfa 35.0 36.6 46.7 57.5 26.6 24.8 23.1 20.8
CNRM.DE6 34.2 35.9 49.9 66.2 24.7 22.7 21.0 18.6
SMHI.HCA2 53.3 52.6 70.8 91.1 25.4 23.6 22.0 19.8
SMHI.MPIA2 38.0 35.8 49.1 61.1 27.2 25.5 23.8 21.4
RCMs.Average 42.7 41.1 55.0 69.6 26.0 24.2 22.6 20.3
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TABLE B.24: Bias-corrected mean October (OCT) precipitation and temperature for different elevation
bands on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-
2100. Values computed averaging over the 349 and 146 gauging stations of precipitation and
temperature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 41.5 51.4 66.7 84.8 15.1 13.6 11.7 9.5
DMI.HS1 40.4 50.7 65.3 84.5 19.3 17.8 16.3 14.3
DMI.ecscA2 33.6 38.4 49.4 65.6 20.1 18.9 17.2 15.2
HC.adhfa 52.6 58.4 69.1 90.3 19.1 17.6 16.0 13.9
CNRM.DE6 40.7 48.3 62.0 78.3 18.9 17.3 15.6 13.5
SMHI.HCA2 38.9 45.4 60.2 78.6 19.1 17.5 15.9 13.9
SMHI.MPIA2 32.4 39.4 48.2 61.7 20.1 18.7 17.0 15.0
RCMs.Average 39.8 46.8 59.0 76.5 19.4 18.0 16.3 14.3

TABLE B.25: Bias-corrected mean november (NOV) precipitation and temperature for different elevation
bands on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-
2100. Values computed averaging over the 349 and 146 gauging stations of precipitation and
temperature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 40.3 63.7 81.9 104.4 9.1 8.0 6.6 4.9
DMI.HS1 45.6 63.8 82.8 105.2 12.5 11.4 10.2 8.7
DMI.ecscA2 41.9 71.5 90.5 113.9 13.6 12.4 11.1 9.6
HC.adhfa 56.4 83.7 107.8 132.0 12.9 11.8 10.5 9.1
CNRM.DE6 37.2 56.0 70.7 87.6 12.9 11.6 10.3 8.7
SMHI.HCA2 51.9 64.0 81.0 99.2 12.4 11.3 10.0 8.6
SMHI.MPIA2 30.5 54.5 72.6 93.4 13.4 12.3 11.0 9.4
RCMs.Average 43.9 65.6 84.2 105.2 13.0 11.8 10.5 9.0

TABLE B.26: Bias-corrected mean december (DEC) precipitation and temperature for different elevation
bands on the Ebro River basin, for the CTRL period 1961-1990 and for 6 RCMs during 2071-
2100. Values computed averaging over the 349 and 146 gauging stations of precipitation and
temperature, respectively.

Mean Precipitation, [mm] Mean Temperature, [◦C]
Scenario Low Med.Low Med.High High Low Med.Low Med.High High
CTRL 29.1 52.0 66.4 82.8 5.6 4.9 3.5 2.2
DMI.HS1 38.2 64.7 80.7 101.7 9.1 8.3 7.1 6.0
DMI.ecscA2 40.3 68.1 82.9 100.1 9.5 8.6 7.4 6.3
HC.adhfa 41.4 54.0 71.1 80.5 9.1 8.4 7.3 6.4
CNRM.DE6 24.8 47.4 60.8 75.8 8.5 7.5 6.2 5.0
SMHI.HCA2 36.4 61.2 76.6 94.0 9.0 8.2 7.0 5.9
SMHI.MPIA2 30.8 53.5 68.9 85.9 9.8 8.9 7.7 6.6
RCMs.Average 35.3 58.2 73.5 89.7 9.2 8.3 7.1 6.0
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C
Detailed Plots of Hydrological Impacts

This Appendix presents 29-years daily flow duration curves (FDCs) for the control period and
each one of the six future climate scenarios described in Table 4.1, along with the corresponding
95% of predictive uncertainty (95PPU) derived from hydrological parameterisation. An individual
figure is used for each for each scenario, in order to look a the individual uncertainties derived
from hydrological parameterisation.

C.1 Overall Impacts
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C.1. OVERALL IMPACTS
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hydroTSM-package Time Series Management and Interpolation for Hydrological Mod-
elling.

Description

Functions for time series management and interpolation for hydrological modelling. So far, it works
only with daily/monthly/annual/seasonal time series.
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Details

Package: hydroTSM
Type: Package
Version: 0.1.6
Date: 2009-12-01
License: LGPL-2
LazyLoad: yes

Author(s)

Mauricio Zambrano-Bigiarini

Maintainer: Mauricio Zambrano-Bigiarini <mauricio.zambrano@ing.unitn.it>

Examples

## Loading temperature data ##
data(EbroTEMPts)

## Ex1) Graphical correlation between the ts of daily temperature of the first
## 3 stations in 'EbroTEMPts'
hydropairs(EbroTEMPts[,2:4])

# Ex2) Annual values of temperature at the station "T9105", stored in EbroTEMPts.
sname2ts(EbroTEMPts, sname="T9105", dates=1, var.type="Temperature", tstep.out="annual")

# Ex3) Monthly and annual plots
sname2plot(EbroTEMPts, sname="T9105", var.type="Temperature", dates=1, pfreq="ma")

## Ex4) IDW interpolation and plot

## Loading the gis data
data(EbroTEMPgis)

## Loading the shapefile with the subcatchments
data(EbroSubcatch)

## Projection for the Subcatchments file
require(sp)
p4s <- CRS("+proj=utm +zone=30 +ellps=intl +units=m +no_defs")

## Selecting the first day of 'EbroTEMPts' for all the stations
x.ts <- as.numeric(EbroTEMPts[1, 2:ncol(EbroTEMPts)])

## Setting the name of the stations
names(x.ts) <- colnames(EbroTEMPts[1,2:ncol(EbroTEMPts)])



4 annualfunction

# Computing the interpolated values and plotting them
# Probably you will need to resize your window
## Not run:
x.idw <- hydrokrige(x.ts= x.ts, x.gis=EbroTEMPgis,

X="EAST_ED50" , Y="NORTH_ED50" , sname="ID",
bname= "CHE_BASIN_NAME", elevation="ELEVATION",
IDW.type= "both",
SubCatchments.fname= EbroSubcatch,
p4s= p4s,
cell.size= 1000,
ColorRamp= "Temperature",
col.nintv= 40, col.at= "auto")

## End(Not run)

annualfunction Annual Function

Description

Generic function for applying any R function to ALL the values in ’x’ belonging to a given year

Usage

annualfunction(x, FUN, na.rm = TRUE, ...)

## Default S3 method:
annualfunction(x, FUN, na.rm = TRUE, ...)

## S3 method for class 'data.frame':
annualfunction(x, FUN, na.rm = TRUE, dates, date.fmt = "%Y-%m-%d",

verbose = TRUE, ...)

Arguments

x Daily, monthly or annual ’zoo’ or ’data.frame’ object

FUN Function that will be applied to ALL the values in ’x’ belonging to each weather
season of the year (e.g., Fun can be some of c(’mean’, ’max’, ’min’, ’sd’))

na.rm Logical. Should missing values be removed?.
-) TRUE : the annual values are computed considering only those values differ-
ent from NA
-) FALSE: if there is AT LEAST one NA within a year, the annual values are
NA

dates "numeric", "factor", "Date" indicating how to obtain the dates correponding to
the ’sname’ station.
If ’dates’ is a number, it indicates the index of the column in ’x’ that stores the
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dates
If ’dates’ is a factor, it have to be converted into ’Date’ class, using the date
format specified by ’date.fmt’
If ’dates’ is already of Date class, the code verifies that the number of days in
’dates’ be equal to the number of element in ’x’

date.fmt character indicating the format in which the dates are stored in ’dates’, e.g. "%Y-
%m-%d" ONLY required when class(dates)=="factor" or "numeric"

verbose Logical; if TRUE, progress messages are printed

... further arguments passed to or from other methods

Note

’FUN’ is first applied to all the values of ’x’ belonging to the same year and then it is applied to
all the previously computed annual values to get the final result. Its final value will depend on the
smapling frequency of ’x’ and the type of fucntion provided by ’FUN’ (e.g., ’mean’ or ’max’)

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

monthlyfunction, daily2annual, monthly2annual

Examples

## Loading temperature data ##
data(EbroTEMPts)
x <- EbroTEMPts[,2]
dates <- EbroTEMPts[,1]

## From 'character' to 'Date' class
dates <- as.Date(dates)

## From 'numeric' to 'zoo' class
x <- vector2zoo(x, dates)

## Daily to Monthly
daily2monthly(x, FUN=mean, na.rm=TRUE)

## Annual Mean values of temperature
annualfunction(x, FUN=mean, na.rm=TRUE)
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daily2annual Daily -> Annual

Description

Generic function for transforming a DAILY/MONTHLY regular time series into an ANNUAL one

Usage

daily2annual(x, ...)

## Default S3 method:
daily2annual(x, FUN, na.rm = TRUE, out.fmt = "%Y", ...)

## S3 method for class 'data.frame':
daily2annual(x, FUN, na.rm = TRUE, out.fmt = "%Y", dates,

date.fmt = "%Y-%m-%d", out.type = "data.frame", verbose = TRUE, ...)

Arguments

x Daily zoo object which values will be converted into an Annual one.

FUN Function that have to be applied for transforming from Daily/Monthly to Annual
time step (e.g., For precipitation FUN=sum and for temperature and flow ts,
FUN=mean) (e.g., For precipitation FUN=sum and for temperature and flow ts,
FUN=mean)

na.rm Logical. Should missing values be removed?
-) TRUE : the monthly and annual values are computed considering only those
values different from NA
-) FALSE: if there is AT LEAST one NA within a year, the annual values are
NA

out.fmt Character indicating the format for the output time series. Possible values are:
-) "%Y" : only the year will be used for the time. Default option. (e.g., "1961"
"1962"...)
-) "%Y-%m-%d": a complete date format will be used for the time. Default
option. (e.g., "1961" "1962"...)

dates "numeric", "factor", "Date" indicating how to obtain the dates for correponding
to the ’sname’ station
If ’dates’ is a number, it indicates the index of the column in ’x’ that stores the
dates
If ’dates’ is a factor, it have to be converted into ’Date’ class, using the date
format specified by ’date.fmt’
If ’dates’ is already of Date class, the code verifies that the number of days in
’dates’ be equal to the number of element in ’x’

date.fmt character indicating the format in which the dates are stored in ’dates’, e.g. "%Y-
%m-%d". ONLY required when class(dates)=="factor" or "numeric"
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out.type Character that defines the desired type of output. Valid values are:
-) "data.frame": a data.frame, with as many columns as stations are included in
’x’, and an additional column indicating the Year
-) "db" : a data.frame, with 3 colums will be produced.
The first column will store the Year
The second column will store the ID of the station,
The third column will contain the seasonal value corresponding to that year and
that

verbose logical; if TRUE, progress messages are printed

... further arguments passed to or from other methods.

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

vector2zoo, as.Date, daily2monthly, monthly2annual

Examples

## Loading temperature data ##
data(EbroTEMPts)
x <- EbroTEMPts[,2]
dates <- EbroTEMPts[,1]

## From 'character' to 'Date' class
dates <- as.Date(dates)

## From 'numeric' to 'zoo' class
x <- vector2zoo(x, dates)

## Daily to Monthly
daily2monthly(x, FUN=mean, na.rm=TRUE)

## Monthly to Annual
monthly2annual(x, FUN=mean, na.rm=TRUE)

daily2monthly Daily -> Monthly

Description

Generic function for transforming a DAILY regular time series into a Monthly one
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Usage

daily2monthly(x, ...)

## Default S3 method:
daily2monthly(x, FUN, na.rm = TRUE, ...)

## S3 method for class 'data.frame':
daily2monthly(x, FUN, na.rm = TRUE, dates, date.fmt = "%Y-%m-%d",

out.type = "data.frame", verbose = TRUE, ...)

Arguments

x Daily zoo object to be converted into a Monthly one.

FUN Function that have to be applied for transforming from Daily to Annual time
step. (e.g., For precipitation FUN=sum and for temperature and flow ts, FUN=mean)
(e.g., For precipitation FUN=sum and for temperature and flow ts, FUN=mean)
ONLY needed when ’var.type’ is missing

na.rm Logical. Should missing values be removed?
-) TRUE : the monthly and annual values are computed considering only those
values different from NA
-) FALSE: if there is AT LEAST one NA within a year, the monthly values are
NA

dates "numeric", "factor", "Date" indicating how to obtain the dates for correponding
to the ’sname’ station
If ’dates’ is a number, it indicates the index of the column in ’x’ that stores the
dates
If ’dates’ is a factor, it have to be converted into ’Date’ class, using the date
format specified by ’date.fmt’
If ’dates’ is already of Date class, the code verifies that the number of days in
’dates’ be equal to the number of element in ’x’

date.fmt character indicating the format in which the dates are stored in ’dates’, e.g. "%Y-
%m-%d". ONLY required when class(dates)=="factor" or "numeric"

out.type Character that defines the desired type of output. Valid values are:
-) "data.frame": a data.frame, with as many columns as stations are included in
’x’
-) "db" : a data.frame, with 4 colums will be produced.
The first column stores the ID of the station,
The second column stores the Year
The third column stores the Month
The fourth colum stores the numerical values corresponding to the year and
month specified in the two previous fields.

verbose logical; if TRUE, progress messages are printed

... further arguments passed to or from other methods.
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Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

vector2zoo, as.Date, daily2annual

Examples

## Loading temperature data ##
data(EbroTEMPts)
x <- EbroTEMPts[,2]
dates <- EbroTEMPts[,1]

## From 'character' to 'Date' class
dates <- as.Date(dates)

## From 'numeric' to 'zoo' class
x <- vector2zoo(x, dates)

## Daily to Monthly
daily2monthly(x, FUN=mean, na.rm=TRUE)

dip Days in Period

Description

Given any starting and ending dates, it generates:
1) a vector with all the days between the two dates, OR
2) the amount of days between the two dates

Usage

dip(from, to, date.fmt = "%Y-%m-%d", out.type = "seq")

Arguments

from Character indicating the starting date for computing the number of days. It
MUST have the date format specified by ’date.fmt’

to Character indicating the ending date for computing the number of days. It
MUST have the date format specified by ’date.fmt’

date.fmt Character indicating the date format in which you provide ’from’ and ’to’ (e.g.,
"%d-%m-%Y")
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out.type Character indicating the type of result that is given by this function. Valid values
are:
-) type= "seq" => a vectorial sequence with all the days within the given time
period
-) type= "nmbr" => the number of days in the vectorial sequence with all the
days within the given time period

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

mip

Examples

## Sequence of daily dates between "1961-01-01" and "1961-12-31" ##
dip("1961-01-01", "1961-12-31")

## Number of days between "1961-01-01" and "1965-06-30", with the date format "%d-%m-%Y"
dip("01-01-1961", "30-06-1965", date.fmt= "%d-%m-%Y", out.type = "nmbr")

diy Days in Year

Description

Given a numeric value of a year, it generates: 1) a vector with all the days (dates) within the year,
OR 2) the amount of days in the year

Usage

diy(year, out.type = "seq")

Arguments

year numeric, the year for which the sequence of days will be generated

out.type Character indicating the type of result that is given by this function. Valid values
are: -) type= "seq" => a vectorial sequence with all the days within the given
year -) type= "nmbr" => the number of days in the vectorial sequence with all
the days within the given year

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>
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See Also

dip, mip

Examples

## Sequence of daily dates for the year 1961
diy(1961)

## Computing the number of days between in 1961
diy(1961, out.type = "nmbr")

dm2seasonal Daily/Monthly -> Seasonal Values

Description

Generic function for computing seasonal values for every year of a daily/monthly zoo object

Usage

dm2seasonal(x, ...)

## Default S3 method:
dm2seasonal(x, season, FUN, na.rm = TRUE, ...)

## S3 method for class 'data.frame':
dm2seasonal(x, season, FUN, na.rm = TRUE, dates, date.fmt = "%Y-%m-%d",

out.type = "data.frame", ...)

Arguments

x object of type ’zoo’ or ’data.frame’, with daily or monthly frequency

season character, indicating the weather season to be used for selecting the data. Valid
values are:
-) "DJF": December, January, February
-) "MAM": March, April, May
-) "JJA": June, July, August
-) "SON": September, October, November

FUN Function that will be applied to ALL the values of ’x’ belonging to the given
weather season

na.rm Logical. Should missing values be removed? -) TRUE : the seasonal values are
computed considering only those values different from NA -) FALSE: if there is
AT LEAST one NA within a weather season, the corresponding seasonal values
are NA
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dates "numeric", "factor", "Date" indicating how to obtain the dates correponding to
each row of ’x’ If ’dates’ is a number, it indicates the index of the column in ’x’
that stores the dates
If ’dates’ is a factor, it have to be converted into ’Date’ class, using the date
format specified by ’date.fmt’
If ’dates’ is already of Date class, the code verifies that the number of days in
’dates’ be equal to the number of elements in ’x’

date.fmt character indicating the format in which the dates are stored in ’dates’, e.g. "%Y-
%m-%d" ONLY required when class(dates)=="factor" or "numeric"

out.type Character that defines the desired type of output. Possible values are -) "data.frame":
a data.frame, with as many columns as stations are included in ’x’
-) "db" : a data.frame, with 4 colums will be produced.
The first column stores the ID of the station The second column stores the Year,
The third column stores the season,
The fourth column contains the sesonal value corresponding to the year specified
in the second column

... further arguments passed to or from other methods.

Note

-) FUN is applied over all the vlaues of ’x’ belonging to each season, so, the results of htis function
depends on the frequency sampling of ’x’ and the type of function given by ’FUN’
-) For any year, the FUN value for the summer season (DJF), is computed considering only January
and February, and the value of December is used for computing the summer value of the next year.

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

time2season, daily2monthly, daily2annual, monthly2annual

Examples

## Loading temperature data ##
data(EbroTEMPts)
x <- EbroTEMPts[,2]
dates <- EbroTEMPts[,1]

## From 'character' to 'Date' class
dates <- as.Date(dates)

## From 'numeric' to 'zoo' class
x <- vector2zoo(x, dates)

## Annual Mean values of temperature during the summer season (DJF) in station 'x'
dm2seasonal(x, FUN=mean, season="DJF")

## Annual Mean values of temperature during the summer season (DJF),
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## for the first 3 stations in 'EbroTEMPts'
dm2seasonal(EbroTEMPts[,1:4], FUN=mean, season="DJF", dates=1)

dmc Double-Mass Curve

Description

Monthly Double-Mass Curve for daily precipitation or streamflow data. From daily time series, in
a data.frame, it computes the monthly mean double-mass curves (Homogeneity test)

Usage

## S3 method for class 'data.frame':
dmc(x, target, dates, date.fmt, var.type, FUN, na.rm = TRUE,

method = "pearson", use = "pairwise.complete.obs",
main = "Monthly Double-Mass Curve",
screen = c(ceiling(sqrt(ncol(x) - 1)), (ncol(x) - 1) -

ceiling(sqrt(ncol(x) - 1))),
xlab = "Target Station", ylab = "Reference Station",
col = "blue", print.out = "both", ...)

Arguments

x variable of type ’zoo’ or ’data.frame’

target "character" with the ID of the target station, It has to correspond to some of
the column names in ’x’. It also can take tha value "all", in which case the
double-mass curve is computed for all the stations in ’x’

dates "numeric", "factor", "Date" indicating how to obtain the dates for correponding
to the ’sname’ station
If ’dates’ is a number, it indicates the index of the column in ’x’ that stores the
dates
If ’dates’ is a factor, it have to be converted into ’Date’ class, using the date
format specified by ’date.fmt’
If ’dates’ is already of Date class, the following line verifies that the number of
days in ’dates’ be equal to the number of element in the time series correspond-
ing to the ’st.name’ station

date.fmt character indicating the format in which the dates are stored in ’dates’. ONLY
required when class(dates)=="factor" or "numeric"

var.type character representing the type of variable being plotted
ONLY for determining the function used for computing the monthly values
when ’FUN’ is missing. Valid values are:
-) "Precipitation" => FUN = sum
-) "Flow" => FUN = mean



14 dmc

FUN Function that have to be applied for transforming from Daily to Annual time
step. (e.g., For precipitation FUN=sum and for temperature and flow ts, FUN=mean)
(e.g., For precipitation FUN=sum and for temperature and flow ts, FUN=mean)
ONLY needed when ’var.type’ is missing.

na.rm Logical. Should missing values be removed?.
-) TRUE : the annual values are computed considering only those values differ-
ent from NA
-) FALSE: if there is AT LEAST one NA within a year, the annual values are
NA

method See ’?cor’. a character string indicating which correlation coefficient (or covari-
ance) is to be computed. Valid values are: ’"pearson"’, (default), ’"kendall"’, or
’"spearman"’, can be abbreviated

use See ’?cor’. an optional character string giving a method for computing covari-
ances in the presence of missing values. This must be (an abbreviation of) one of
the strings: c(’"everything"’, ’"all.obs"’, ’"complete.obs"’, ’"na.or.complete"’,
or ’"pairwise.complete.obs"’)

main See ’?plot’. An overall title for the plot: see ’title’.

screen

xlab See ’?plot’. A title for the x axis: see ’title’.

ylab See ’?plot’. A title for the y axis: see ’title’.

col See ’?plot.default’. The colors for lines and points. Multiple colors can be
specified so that each point can be given its own color. If there are fewer colors
than points they are recycled in the standard fashion. Lines will all be plotted in
the first colour specified.

print.out character. Valid values are:
-) "data.frame" : a data.frame with the results (monthly values in the reference
and target stations, and cumulative values in reference and target stations) are
pinted out
-) "plot" : only the plot with the double-mass curve is printeed out, NO data.frame
-) "both" : a data.frame with the results and a plot is printed out. Equivalent to
’print.out’ = "data.frame" + "both"

...

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

Examples

## Loading temperature data ##
data(EbroQts)
x <- EbroQts[,2]
dates <- EbroQts[,1]

## From 'character' to 'Date' class
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dates <- as.Date(dates)

## From 'numeric' to 'zoo' class
x <- vector2zoo(x, dates)

drawxaxis Hydrological ’X’ Axis

Description

It draws an X axies with daily, monthly, or annual time marks

Usage

drawxaxis(x, tick.tstep = "months", lab.tstep = "months")

Arguments

x time series that will be plotted using the X axis that will be draw class(x) must
be ’ts’ or ’zoo’

tick.tstep Character indicating the time step that have to be used for putting the ticks ont
he time axis. Possible values are: ’days’, ’months’, ’years’

lab.tstep Character indicating the time step that have to be used for putting the labels ont
he time axis. Possible values are: ’days’, ’months’, ’years’

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

Examples

data(EbroTEMPts)

## Daily values of temperature at the station "T9105", stored in EbroTEMPts.
x <-sname2ts(EbroTEMPts, sname="T9105", dates=1, var.type="Temperature", tstep.out="daily")

## Plotting the daily ts without an 'x' axis
plot.zoo(x, xaxt = "n" )

## Draws monthly ticks in the X axis, but labels only in years
drawxaxis(x, tick.tstep="months", lab.tstep="years")
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drty.dcs2zoo Downscaled Climate Scenario to Zoo

Description

Reads the 360-days-in-a-year Downscaled Climate information on a single Station and generates a
new time series with 365/366 values per year

Usage

drty.dcs2zoo(drty, var.type = "Precipitation", has360dpy = TRUE,
file.ext = "out", from = "1961-01-01", to = "1990-12-31",
date.fmt = "%Y-%m-%d", write2disk = TRUE,
out.fname = paste(drty, "/", var.type, "-Downscaled.csv", sep = ""),
verbose = TRUE)

Arguments

drty Character indicating the directory where are located all the files that will be
read. It HAS to finish with a "/". It is very important that this directory does
not contain any subdirectory with the same extension of the data files (ex, files
’*.out’ and a subdirectory ’Temp.out’), because it’ll try to read also the directory
itself as a file

var.type string representing the type of variable being analysed. Used for determining
how to assign the vlaues to the missing dates when ’has360dpy’ = TRUE Valid
values are: -) "Precipitation": A zero value is assigned, for "almost" preserving
the mean monthly value -) "Temperature" : The mean monthly value is assigned,
for preserving the mean monthly value

has360dpy Logical. If true (default) mean that the GCM used for generating the file uses
360 days oper year instead of the 365/366. Valid values are: "Precipitation",
"Temperature"

file.ext Character indicating the extension of the files that will be read, without the dot
(e.g., for out daily files is "out")

from Character indicating the starting date for the values stored in all the files that
will be read. It HAs to be in the format indicated by ’date.fmt’

to Character indicating the ending date for the values stored in all the files that will
be read. It HAs to be in the format indicated by ’date.fmt’

date.fmt Character indicating the date format in which you provide ’from’ and ’to’, e.g.
"

write2disk Logical. Indicates if the output have to be written into a CSV file, default=TRUE

out.fname Character with the filename (with path) of the output file. Only needed if ’write2disk’=TRUE

verbose logical; if TRUE, progress messages are printed
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Details

This procedure reads the downscaled data of precipitation or temperature in a gauging station, in
which all the years have 360 days (30 days in each month, including Febraury)and generates a new
time series (zoo object) with 365/366 days, in which the new values are generates in the following
way:

1) The first 90 original values are equally distributed among Jan, Feb, and March, and if the year
is leap, a new value is added to February 29, with the procedure indicated below 2) May, Jul, Ago,
Oct, Dic: the value corresponding to the 31 day is equal to the MEAN value of all the corresponding
values within the month when the analysed time series is Temperature, and with a ZERO value when
the analysed time series is Precipitation, in order of preserving the mean values in each month

The Starting date used by this algorithm is the 1st of January of the year specified in the first row of
the file. The Ending date used by this algorithm is the 31th of December of the year specified in the
last row of the file

Note

All the files that will be read HAVE TO have values within the time window defined by ’from’ and
’to’, and this procedure DO NOT VERIFY any inconsistence related to this

Author(s)

Mauricio Zambrano-Bigiarini

See Also

dcs2zoo

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

dwi Days with Information

Description

This function generates a table indicating the number of days with information (<>NA’s) within a
zoo object, aggregated by: Year, Month or Month per Year
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Usage

dwi(x, ...)

## Default S3 method:
dwi(x, out.unit = "years", from = range(time(x))[1], to = range(time(x))[2],

date.fmt = "%Y-%m-%d", ...)

## S3 method for class 'data.frame':
dwi(x, out.unit = "years", from, to, date.fmt = "%Y-%m-%d", dates = 1,

verbose = TRUE, ...)

Arguments

x variable of type ’zoo’

out.unit aggregation time for the computation of the amount of days with info. Valid
values are:
-) "month": monthly;
-) "year" : annual;
-) "mpy" : month per year

from Character indicating the starting date for the values stored in all the files that
will be read. It HAs to be in the format indicated by ’date.fmt’

to Character indicating the ending date for the values stored in all the files that will
be read. It HAs to be in the format indicated by ’date.fmt’

date.fmt Character indicating the date format in which you provide ’from’ and ’to’, e.g.
"%d-%m-%Y"

dates "numeric", "factor", "Date" indicating how to obtain the dates for correponding
to the ’sname’ station
If ’dates’ is a number, it indicates the index of the column in ’x’ that stores the
dates
If ’dates’ is a factor, it have to be converted into ’Date’ class, using the date
format specified by ’date.fmt’
If ’dates’ is already of Date class, the code verifies that the number of days in
’dates’ be equal to the number of element in ’x’

verbose logical; if TRUE, progress messages are printed

... further arguments passed to or from other methods.

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

matrixplot
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Examples

## Loading temperature data ##
data(EbroTEMPts)

## Selecting the first station (the 1st column stores the dates)
x <- EbroTEMPts[,2]
dates <- EbroTEMPts[,1]

## From 'character' to 'Date' class
dates <- as.Date(dates)

## From 'numeric' to 'zoo' class
x <- vector2zoo(x, dates)

## Days with information per year
dwi(x)

## Days with information per month per year at station 'x'
dwi(x, out.unit="mpy")

## Days with information per month per year in the 4 first stations of 'EbroTEMPts'
a <- dwi(EbroTEMPts[,1:5], out.unit="years", dates=1)

## Plotting the amount of days with information per year in each station
matrixplot(a, var.type="Days")

EbroDEM1000m Digital Elevation Model (DEM) of the Ebro River Basin (Spain)

Description

Digital Elevation Model of the Ebro River Basin (Spain), with cells of 1000x1000 [m]

Usage

EbroDEM1000m

Format

’SpatialGridDataFrame’

Details

Provided by the Confederacion Hidrografica del Ebro (CHE), 2008

Source

Confederacion Hidrografica del Ebro (CHE), 2008
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EbroPPgis Ebro Spatial Precipitation

Description

Spatial location of the 349 stations of Daily Precipitation on the Ebro River Basin, Spain, with more
than 70

Usage

EbroPPgis

Format

A data.frame with 7 fields: "ID", "STATION_NAME", "EAST_ED50", "NORTH_ED50", "ELE-
VATION", "CHE_BASIN_ID", "CHE_BASIN_NAME"

Details

Provided by the Confederacion Hidrografica del Ebro (CHE), 2008

Source

Confederacion Hidrografica del Ebro (CHE), 2008

EbroPPts Ebro Daily Precipitation ts

Description

Daily Precipitation time series on 349 stations of the Ebro River Basin, Spain, with more than 70

Usage

EbroPPts

Format

A data.frame with 349 time series

Details

Provided by the Confederacion Hidrografica del Ebro (CHE), 2008

Source

Confederacion Hidrografica del Ebro (CHE), 2008
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EbroQgis Ebro Spatial Streamflows

Description

Spatial location of the 182 stations of Daily Streamflows on the Ebro River Basin, Spain, with more
than 65

Usage

EbroQgis

Format

A data.frame with 10 fields: "ID", "CHE_BASIN_NAME", "STATION_NAME", "DATE_INI",
"DATE_FIN", "Qmonthly_mean_m3s", "Qannual_mean_hm3s", "BASIN_ID", "EAST_ED50", "NORTH_ED50"

Details

Provided by the Confederacion Hidrografica del Ebro (CHE), 2008

Source

Confederacion Hidrografica del Ebro (CHE), 2008

EbroQts Ebro Daily Streamflows ts

Description

Daily streamflow time series on 182 stations of the Ebro River Basin, Spain, with more than 65

Usage

EbroQts

Format

A data.frame with 146 time series

Details

Provided by the Confederacion Hidrografica del Ebro (CHE), 2008

Source

Confederacion Hidrografica del Ebro (CHE), 2008
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EbroSubcatch Subcatchments of first order on the Ebro River Basin (Spain)

Description

Shapefile wit the 37 subcatchments of first order on the Ebro River Basin (Spain)

Usage

EbroSubcatch

Format

Spatial object

Details

Provided by the Confederacion Hidrografica del Ebro (CHE), 2008

Source

Confederacion Hidrografica del Ebro (CHE), 2008

EbroTEMPgis Ebro Spatial Temperature

Description

Spatial location of the 146 stations of Daily Temperature on the Ebro River Basin, Spain, with more
than 65

Usage

EbroTEMPgis

Format

A data.frame with 7 fields: "ID", "STATION_NAME", "EAST_ED50", "NORTH_ED50", "ELE-
VATION", "CHE_BASIN_ID", "CHE_BASIN_NAME"

Details

Provided by the Confederacion Hidrografica del Ebro (CHE), 2008

Source

Confederacion Hidrografica del Ebro (CHE), 2008
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EbroTEMPts Ebro Daily Temperature ts

Description

Daily temperature time series on 146 stations of the Ebro River Basin, Spain, with more than 65

Usage

EbroTEMPts

Format

A data.frame with 146 time series

Details

Provided by the Confederacion Hidrografica del Ebro (CHE), 2008

Source

Confederacion Hidrografica del Ebro (CHE), 2008

fdc Flow duration curve

Description

Computes and plots the Flow Duration Curve in the original time units of ’x’ and also gives the
probability of exceedence of each element. If ’x’ is a data.frame

Usage

fdc(x, ...)

## Default S3 method:
fdc(x, plot = TRUE, col = "black", main = "Flow Duration Curve",

xlab = "% Time flow equalled or exceeded", ylab = "Q, [m3/s]",
pch = 1, lty = 1, cex = 0.6, verbose=TRUE, ...)

## S3 method for class 'data.frame':
fdc(x, plot = TRUE, col = palette("default")[1:ncol(x)],

main = "Flow Duration Curve",
leg.txt = paste("Q", 1:ncol(x), sep = ""),
xlab = "% Time flow equalled or exceeded", ylab = "Q, [m3/s]",
pch = 1:ncol(x), lty = 1:ncol(x), cex = rep(0.6, ncol(x)),
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verbose=TRUE, ...)

## S3 method for class 'matrix':
fdc(x, plot = TRUE, col = palette("default")[1:ncol(x)],

main = "Flow Duration Curve",
leg.txt = paste("Q", 1:ncol(x), sep = ""),
xlab = "% Time flow equalled or exceeded", ylab = "Q, [m3/s]",
pch = 1:ncol(x), lty = 1:ncol(x), cex = rep(0.6, ncol(x)),
verbose=TRUE, ...)

Arguments

x ’numeric, ’matrix’ or ’data.frame’ whose columns contains the values of the ts
that be used for computing the flow duration curves.

plot logical. Indicates if the flow duration curve should be plotted or not
col See ’?plot.default’. The colors for lines and points. Multiple colors can be

specified so that each point can be given its own color. If there are fewer colors
than points they are recycled in the standard fashion. Lines will all be plotted in
the first colour specified.

main See ’?plot’. An overall title for the plot: see ’title’.
leg.txt

xlab See ’?plot’. A title for the x axis: see ’title’.
ylab See ’?plot’. A title for the y axis: see ’title’.
pch See ’?plot.default’. A vector of plotting characters or symbols: see ’points’.
lty See ’?plot.default’. The line type, see ’par’.
cex See ’?plot.default’. A numerical vector giving the amount by which plotting

characters and symbols should be scaled relative to the default. This works as
a multiple of ’par("cex")’. ’NULL’ and ’NA’ are equivalent to ’1.0’. Note that
this does not affect annotation

verbose logical; if TRUE, progress messages are printed
... further arguments passed to or from other methods

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

Examples

## Loading temperature data ##
data(EbroQts)

# Getting the daily values of the station 1 (the first column stores the dates)
x <- EbroQts[,2]

## Daily Flow Duration Curve
fdc(x)
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fillin Fill In

Description

Fills in all the ’NA’ values in ’x’ with the corrensponding values in ’sim’.

Usage

fillin(x, ...)
## Default S3 method:
fillin(x, sim, ...)
## S3 method for class 'matrix':
fillin(x, sim, ...)
## S3 method for class 'data.frame':
fillin(x, sim, ...)

Arguments

x ’numeric’, data.frame’ or ’matrix’ in which some values are ’NA’

sim ’numeric’, ’data.frame’ or ’matrix’, with the same dimension of ’x’, that con-
tains the values that will be used for filling in the ’NA’ values in ’x’

... further arguments passed to or from other methods.

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

Examples

obs <- c(1, NA, 3, 4, NA, 5)
sim <- rep(2, 6)

## Filling in the missing values in 'x' with the corresponding values in 'sim'
fillin(x=obs, sim)

gists2spt Time Series and GIS Info -> (pseudo)Spatio-temporal Object



26 gists2spt

Description

Given a data.frame (x.gis) with the spatial coordinates of a set of gauging stations, and a set of mea-
surements in that stations (x.ts) this function adds the measurements in ’x.ts’ to the corresponding
stations in ’x.gis’, even if they are not in the same order.
If ’X’ and ’Y are given, the resulting object will be a ’SpatialPointsDataFrame’ with coordinates
given by the ’X’ and ’Y’ fields
If ’p4s’ is given, the resulting object will be projected according to the specification provided by
’p4s’

Usage

gists2spt(x.ts, x.gis, sname, bname, X, Y, elevation,
catchment.name="all", na.rm=TRUE, p4s)

Arguments

x.ts numeric or data.frame with the measured value at each station for a given time.
Each value of ’x.ts’ has to have as name (names(x)) the ID of the station.
1) CAN contain as many stations as you want, e.g., all the stations in the your
database, but
2) AT LEAST, HAVE TO contain some stationsof ’x.gis’

x.gis ’data.frame’ with the spatial information (GIS) for the gauging stations. The
names of each station, stored in the field ’sname’, have to be equal to the corre-
sponding ID used in ’x.ts’
1) It MAY contain as many stations as you want, e.g., all the stations in your
database, but
2) AT LEAST, it HAVE TO contain the location of some stations in ’x.ts’
The MINIMUM fields that HAVE TO be present in this file, and their corre-
sponding colum index are those described by: X , Y , sname , bname , elevation

sname character, field name in ’x.gis’ that stores the name of the stations (have to start
by a letter)

bname OPTIONAL. character, field name in ’x.gis’ that stores the name of the subcatch-
ment in ’x.gis’ that will be analysed ONLY necessary when ’catchment.name’
is not "all"

X character, field name in ’x.gis’ that stores the EAST coordinate of the stations.
The expected name is ’x’, but if the value provided by the user is different, a
new ’x’ field is created and is used as the esting coordinate of ’x.gis’

Y character, field name in ’x.gis’ that stores the NORTH coordinate of the sta-
tions.The expected name is ’y’, but if the value provided by the user is different,
a new ’y’ field is created and is used as the northing coordinate of ’x.gis’

elevation OPTIONAL. character, field name in the shapefile ’SubCatchments.fname’ that
stores the elevation of the stations (m.a.s.l.).

catchment.name
name of the catchment that will be analized. Posble values are:
-)"all" : ALL the stations in the ’x.gis’ will be used
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-)other string: ONLY those stations in ’x.gis’ with a ’BASIN_NAME’ field
value == ’catchment.name’ will be used

p4s Character with information about the projection of the GIS files, usually created
by the CRS function of the ’sp’ package

na.rm a logical value indicating whether ’NA’ values should be stripped before deliv-
ering the resulting object.

Value

SpatialPixelsDataFrame If ’p4s’ is given, the returning object will be a ’SpatialPointsDataFrame’,
if not, it will be a ’data.frame’

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

References

Applied Spatial Data Analysis with R. Series: Use R. Bivand, Roger S., Pebesma, Edzer J., Gomez-
Rubio, Virgilio. 2008. ISBN: 978-0-387-78170-9
http://r-spatial.sourceforge.net/gallery/

See Also

krige, spplot

Examples

## Loading the ts data
data(EbroTEMPts)
## Loading the gis data
data(EbroTEMPgis)
## Loading the shapefile with the subcatchments
data(EbroSubcatch)

## Projection for the Subcatchments file
require(sp)

p4s <- CRS("+proj=utm +zone=30 +ellps=intl +units=m +no_defs")

## Field name in 'x.gis' with the ID of the station
sname <- "ID"
## Field name in 'x.gis'with the name of the catchment to which each station belongs
bname <- "CHE_BASIN_NAME"
## Field name in 'x.gis' with the Easting spatial coordinate
X <- "EAST_ED50"
## Field name in 'x.gis' with the Northing spatial coordinate
Y <- "NORTH_ED50"
## Field name in 'x.gis' with the Elevation
elevation <- "ELEVATION"
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## Putting the measurements of the first row of 'EbroTEMPts' into their corresponding
## spatial location given by 'x.gis'
x.spt <- gists2spt(x.ts=EbroTEMPts[1,], x.gis=EbroTEMPgis, X=X, Y=Y,

elevation=elevation, sname=sname, bname=bname)

hydrokrige Krige for Hydrological Time Series

Description

Automatic interpolation for hydrological ts, with optional plot.
The (Block) Inverse Distance Weighted (IDW) interpolation is a wrapper to the ’idw’ function of
the ’gstat’ package (so, requires the ’gstat’ package).
The automatic kriging (OK and KED have been tested) is a wrapper to the ’autoKrige’ function of
the ’automap’ package (so, requires the ’automap’ package).

Usage

hydrokrige(x.ts, x.gis, ...)

## Default S3 method:
hydrokrige(x.ts, x.gis, X= "x", Y= "y", sname, bname,

elevation, predictors, catchment.name = "all", IDW.type="cells",
formula, SubCatchments.fname, IDvar = NULL, p4s, cell.size = 1000,
grid.type = "regular", nmin = 0, nmax = Inf, maxdist = Inf,
ColorRamp = "PCPAnomaly", sp.plot = TRUE, col.nintv = 10,
col.at = "auto", main, stations.plot = FALSE, stations.offset,
arrow.plot = FALSE, arrow.offset, arrow.scale,
scalebar.plot = FALSE, sb.offset, sb.scale, verbose = TRUE, ...)

## S3 method for class 'data.frame':
hydrokrige(x.ts, x.gis, X= "x", Y= "y", sname, bname,

elevation, predictors, catchment.name = "all", IDW.type = "block",
formula, SubCatchments.fname, IDvar= "SUBBASIN", p4s, cell.size = 1000,
grid.type = "regular", nmin = 0, nmax = Inf, maxdist = Inf,
ColorRamp = "PCPAnomaly", sp.plot = FALSE, col.nintv = 10,
col.at = "auto", main, stations.plot = FALSE, stations.offset,
arrow.plot = FALSE, arrow.offset, arrow.scale,
scalebar.plot = FALSE, sb.offset, sb.scale,
verbose = TRUE,
dates, from, to, date.fmt = "%Y-%m-%d", write2disk = TRUE,
fname = paste(ColorRamp, "by_Subcatch.csv", sep = ""), ...)

Arguments

x.ts numeric or data.frame with the measured value at each station. Each value of
’x.ts’ has to have as name (names(x)) the ID of the station.
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1) CAN contain as many stations as you want, e.g., all the stations in the your
database
2) AT LEAST, HAVE to contain the stations that will be used for the interpola-
tions

When ’x.ts’ is a data.frame, the structure of this file is the following: -) 1st
column: its name of HAS TO BE ’Date’, ans it HAS TO contain the dates
corresponding to the values of the stations stored in the other columns
-) 2nd...Nth column: The name of the columns is used as the ID of each station
-starting with a letter!!- , and all the row values of each column have to contain
the measured values by the station.

x.gis ’data.frame’ with the spatial information (GIS) for the gauging stations. The
names of each station, stored in the field ’NAME’, have to be equal to the cor-
responding ID used in ’x.ts’
1) It MAY contain as many stations as you want, e.g., all the stations in your
database
2) AT LEAST, it HAVE to contain the location of those stations that will be used
for the interpolations
The MINIMUM fields that Have to be present in this file, and their correspond-
ing column index are those described by: X , Y , sname , bname , elevation

X character, field name in ’x.gis’ that stores the EAST coordinate of the stations

Y character, field name in ’x.gis’ that stores the NORTH coordinate of the stations

sname character, field name in ’x.gis’ that stores the name of the stations (have to start
by a letter)

bname OPTIONAL. character, field name in ’x.gis’ that stores the name of the subcatch-
ment in ’x.gis’ that will be analysed ONLY necessary when ’catchment.name’
is not "all"

elevation OPTIONAL. character, field name in the shapefile ’SubCatchments.fname’ that
stores the elevation of the stations (m.a.s.l.).

predictors OPTIONAL. SpatialGridDataFrame object, with prediction/simulation locations.
Must not contain NA’s. Usually, a digital elevation model (DEM) read with the
’readGDAL’ function of the ’rgdal’ package.
See the ’newdata’ argument in ’gstat::?krige’.
It should contain attribute columns with the independent variables (if present)
and (if locations is a formula) the coordinates with names as defined in ’loca-
tions
If ’predictors’ is missing, the grid to be used as prediction/simulation loca-
tions is generated from sampling the polygon specified by the user in ’Sub-
Catchments.fname’, according to the arguments provided by ’cells.size’ and
’grid.type’

catchment.name
name of the catchment that will be analized. Posble values are:
-)"all" : ALL the stations in the ’x.gis’ will be used
-)other string: ONLY those stations in ’x.gis’ with a ’BASIN_NAME’ field
value == ’catchment.name’ will be used .
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IDW.type Character, indicating the type of plot required by the user. When ’x.ts’ is a
data.frame, the ONLY possible value is ’block’. For all the other cases, possible
values are:
-) "cells" : the interpolated values are shown by each cell individually
-) "block" : the interpolated values are show by each catchment, where the value
for each catchment is computed as the mean value over all the cells that belong
to each subcatchment
-) "both" : "cells" and "block" are plotted in the same window

formula OPTIONAL. Formula to be used in case of ordinary kriging or kriging with
external drift. Requieres the ’automap’ package. All the variables to be used
within ’formula’ has to be present both in ’x.gis’ and ’predictors’. See the ’for-
mula’ argument in ’?gstat::krige’.
’formula’ defines the dependent variable as a linear model of independent vari-
ables; suppose the dependent variable has name ’z’, for ordinary and simple
kriging use the formula ’z~1’; for simple kriging also define ’beta’ (see below);
for universal kriging, suppose ’z’ is linearly dependent on ’x’ and ’y’, use the
formula ’z~x+y

SubCatchments.fname
It can be:
1) Character with the filename (with path) of the shapefile with all the subcatch-
ments within the Catchment. It HAS TO BE of ’polygon’ type
2) Spatial object resulting from reading the shapefile with all the subcatchments
within the Catchment

IDvar (from ’?readShapePoly’) a character string the name of a column in the ’Sub-
Catchments.shp’ shapefile DBF containing the ID values of the shapes - the
values will be converted to a character vector

p4s Character with information about the projection of the GIS files, usually created
by the ’CRS’ function of the ’sp’ package

cell.size Size of the cells to be used in the regular interpolation grid, [m]
grid.type See ’?sp::spsmaple’. Character, indicating the yype of grid to be computed over

the area defined by ’SubCatchments.shp’
Valid values are: -) ’regular’ : for regular (systematically aligned) sampling;
Default option
-) ’random’ : for completely spatial random;
-) ’stratified’ : for stratified random (one single random location in each "cell"
-) ’nonaligned’ : for nonaligned systematic sampling (nx random y coordinates,
ny random x coordinates);
-) ’hexagonal’ : for sampling on a hexagonal lattice;
-) ’clustered’ : for clustered sampling

nmin OPTIONAL. See ’?gstat::krige’. For local interpolation: if the number of near-
est observations within distance maxdist is less than ’nmin’, a missing value will
be generated; see ’maxdist’. By default ’nmin=0’

nmax OPTIONAL. See ’?gstat::krige’. For local interpolation: the number of nearest
observations that should be used for a kriging prediction, where nearest is de-
fined in terms of the space of the spatial locations. By default, all observations
are used
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maxdist OPTIONAL. See ’?gstat::krige’. For local interpolation: only observations
within a distance of Max.Dist from the prediction location are used for pre-
diction or simulation; if combined with ’nmax’, both criteria apply. By default,
all observations are used

ColorRamp Function defining the colour ramp to be used for plotting the maps OR character
representing the colours to be used in the plot. In the latter case, valid values are:
c(’Precipitation’, ’Temperature’, ’PCPAnomaly’, ’PCPAnomaly2’, ’TEMPAnomaly’,
’TEMPAnomaly2’, ’TEMPAnomaly3’)

sp.plot Logical, indicating if the interpolated values have to be ploted or not

col.nintv integer, number of colors that have to be used for plotting the interpolated values

col.at Specify at which interpolated values colours change. Valid values are:
-) "R" : uses the default setting of ’spplot’
-) "auto": default option.
at <- seq(min, max,length.out=col.nintv)
min <- floor( min(idw["var1.pred"]@data, na.rm=TRUE ) )
max <- ceiling( max(idw["var1.pred"]@data, na.rm=TRUE) )
-) numeric: vector of reals giving the exact values in which the colors have to
change. Useful when the user desires the same color for the same value when
comparing to maps with different range of values

main Character with the title to be used for the plot
stations.plot

Logical, indicating if the gauging stations, defined by ’gis.fname’ have to be
plotted

stations.offset
2D list with the numeric coordinates in which the label with the amount of gaug-
ing stations have to be plotted. e.g., stations.offset = c(450000, 4600000)

arrow.plot Logical, indicating if a North Arrow have to be plotted

arrow.offset 2D list with the numeric coordinates in which the North Arrow have to be plot-
ted. e.g., arrow.offset = c(690000,4760000)

arrow.scale Scale (in the map units) to be used for plotting the North Arrow, e.g., scale =
20000

scalebar.plot
Logical, indicating if a Scale Bar have to be plotted

sb.offset 2D list with the numeric coordinates in which the North Arrow have to be plot-
ted. e.g., sb.offset = c(400000,4490000)

sb.scale Scale (in the map units) to be used for plotting the Scale Bar, e.g., scale =
100000, means that the scale bar will have a length of 100km

verbose logical; if TRUE, progress messages are printed

dates "numeric", "factor", "Date" indicating how to obtain the dates corresponding to
each row of ’x’ If ’dates’ is a number, it indicates the index of the column in ’x’
that stores the dates
If ’dates’ is a factor, it have to be converted into ’Date’ class, using the date
format specified by ’date.fmt’
If ’dates’ is already of Date class, the code verifies that the number of days in
’dates’ be equal to the number of elements in ’x’
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from Character indicating the starting date for the values stored in all the files that
will be read. It HAS TO be in the format indicated by ’date.fmt’

to Character indicating the ending date for the values stored in all the files that will
be read. It HAS TO be in the format indicated by ’date.fmt’

date.fmt character indicating the format in which the dates are stored in ’dates’, Default
value is "%Y-%m-%d"

write2disk Logical. Indicates if we want to write the output into a CSV file, default=TRUE
fname OPTIONAL. Character with the filename of the output file. Only needed when

’write2disk’=TRUE
... further arguments passed to or from other methods.

Details

The automatic kriging is carried out using a variogram generated automatically with the ’autofit-
Variogram’ function of the ’automap’ package.

Value

When ’IDW.type’ is ’cells’ or ’both’:

Cells SpatialPixelsDataFrame. The slot ’data’ has two variables: ’var1.pred’ and
’var1.var’ with the predictions and its variances, respectively

When ’IDW.type’ is ’block’ or ’both, the following element is added:

Block SpatialPolygonsDataFrame. The slot ’data’ has four variables: ’x’, ’y’ with the
easting and northing coordinate of the centroid of the catchments specified by
’SubCatchments.fname’ , and ’var1.pred’ and ’var1.var’ with the predictions and
its variances, respectively

Note

IMPORTANT: It is you responsibility to check the validity of the fitted variogram !!.

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

References

N.A.C. Cressie, 1993, Statistics for Spatial Data, Wiley.
Applied Spatial Data Analysis with R. Series: Use R. Bivand, Roger S., Pebesma, Edzer J., Gomez-
Rubio, Virgilio. 2008. ISBN: 978-0-387-78170-9
Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences,
30: 683-691
http://www.gstat.org/
http://r-spatial.sourceforge.net/gallery/
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See Also

krige, autoKrige, readShapePoly,spsample

Examples

## Loading the ts data
data(EbroTEMPts)
## Loading the gis data
data(EbroTEMPgis)
## Loading the shapefile with the subcatchments
data(EbroSubcatch)

## Projection for the Subcatchments file
require(sp)

# European Datum 50, Zone 30N
p4s <- CRS("+proj=utm +zone=30 +ellps=intl +units=m +no_defs")

## Field name in 'x.gis' with the ID of the station
sname <- "ID"
## Field name in 'x.gis'with the name of the catchment to which each station belongs
bname <- "CHE_BASIN_NAME"
## Field name in 'x.gis' with the Easting spatial coordinate
X <- "EAST_ED50"
## Field name in 'x.gis' with the Northing spatial coordinate
Y <- "NORTH_ED50"
## Field name in 'x.gis' with the Elevation
elevation <- "ELEVATION"

# Definition of the Arrow
arrow.offset = c(900000,4750000)
arrow.scale = 20000
# Definition of the scale bar
sb.offset = c(400000,4480000)
sb.scale = 100000

# Offset for writing the amount of stations used
stations.offset = c(450000, 4600000)

# Computing the number of stations
nstations <- nrow(EbroTEMPgis)

## Selecting the first day of 'EbroTEMPts' for all the stations
x.ts <- as.numeric(EbroTEMPts[1, 2:ncol(EbroTEMPts)])

## Setting the name of the stations
names(x.ts) <- colnames(EbroTEMPts[1,2:ncol(EbroTEMPts)])

ColorRamp= "Temperature"

nmax= 50
main <- paste("IDW Daily Mean Temperature on the Ebro. Stations=", nstations, sep="")



34 hydrokrige

## IDW interpolation and plot
# Probably you will need to resize your window
x.idw <- hydrokrige(x.ts= x.ts, x.gis=EbroTEMPgis,

X=X, Y=Y, sname=sname, bname=bname, elevation=elevation,
IDW.type= "both",
SubCatchments.fname= EbroSubcatch,
p4s= p4s,
cell.size= 1000,
ColorRamp= ColorRamp,
col.nintv= 40, col.at= "auto",

stations.plot=TRUE, stations.offset= stations.offset,
arrow.plot= TRUE, arrow.offset= arrow.offset, arrow.scale= arrow.scale,
scalebar.plot= TRUE, sb.offset= sb.offset, sb.scale= sb.scale)

## Not run:
## Ordinary Kriging interpolation and plot
# Probably you will need to resize your window
main <- "OK Daily Mean Temperature on the Ebro"
x.ok <- hydrokrige(x.ts= x.ts, x.gis=EbroTEMPgis,

X=X, Y=Y, sname=sname, bname=bname, elevation=elevation,
IDW.type= "both", formula=value~1,
SubCatchments.fname= EbroSubcatch,
p4s= p4s,
cell.size= 1000,
ColorRamp= ColorRamp,
col.nintv= 40, col.at= "auto",
arrow.plot= TRUE, arrow.offset= arrow.offset, arrow.scale= arrow.scale,
scalebar.plot= TRUE, sb.offset= sb.offset, sb.scale= sb.scale)

## Kriging with External Drift interpolation and plot
# Probably you will need to resize your window
main <- "KED Daily Mean Temperature on the Ebro"

#Loading the DEM
data(EbroDEM1000m)

#Giving a meaningful name to the predictor
EbroDEM1000m$ELEVATION <- EbroDEM1000m$band1

# Saving memory
EbroDEM1000m$band1 <- NULL

# Computing the KED
x.ked <- hydrokrige(x.ts= x.ts, x.gis=EbroTEMPgis,

X=X, Y=Y, sname=sname, bname=bname, elevation=elevation,
IDW.type= "cells", formula=value~ELEVATION,
SubCatchments.fname= EbroSubcatch,
p4s= p4s,
predictors=EbroDEM1000m,
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cell.size= 4000,
ColorRamp= ColorRamp,
col.nintv= 40, col.at= "auto",
arrow.plot= TRUE, arrow.offset= arrow.offset, arrow.scale= arrow.scale,
scalebar.plot= TRUE, sb.offset= sb.offset, sb.scale= sb.scale)

## Block IDW interpolation and plot of 'EbroTEMPts' during 3 days
dates <- EbroTEMPts[, 1]
EbroTEMPts <- EbroTEMPts[, 2:ncol(EbroTEMPts)]
\dontrun{
x.idw <- hydrokrige(x.ts= EbroTEMPts, x.gis=EbroTEMPgis,

X=X, Y=Y, sname=sname, bname=bname, elevation=elevation,
IDW.type= "cells", #'both'
SubCatchments.fname= EbroSubcatch,
p4s= p4s,
cell.size= 1000,
ColorRamp= ColorRamp,
sp.plot= TRUE,
col.nintv= 40, col.at= "auto",
arrow.plot= TRUE, arrow.offset= arrow.offset, arrow.scale= arrow.scale,
scalebar.plot= TRUE, sb.offset= sb.offset, sb.scale= sb.scale,

dates=dates, from="1961-01-10", to="1961-01-13")
}

## End(Not run)

hydropairs Visual Correlation Matrix

Description

Visualization of a Correlation Matrix.

Usage

hydropairs(x, dec = 3, use = "pairwise.complete.obs", method = "pearson",...)

Arguments

x numeric vector, matrix or data frame
dec decimal places to be used for showing the correlation values
use See ’?cor’ an optional character string giving a method for computing covari-

ances in the presence of missing values. This must be (an abbreviation of) one
of the strings ’"everything"’, ’"all.obs"’, ’"complete.obs"’, ’"na.or.complete"’,
or ’"pairwise.complete.obs"’.

method See ’?cor’ a character string indicating which correlation coefficient (or covari-
ance) is to be computed. One of ’"pearson"’ (default), ’"kendall"’, or ’"spear-
man"’, can be abbreviated

... further arguments passed to or from other methods.
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Value

On top the (absolute) value of the correlation plus the result of the cor.test as points

On botttom the bivariate scatterplots, with a fitted line

On diagonal histograms (from ’?pairs’)

Note

Original idea taken from: http://addictedtor.free.fr/graphiques/graphcode.php?graph=137
Histogram panel was taken from the R help of the original ’pairs’ function

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

cor, pairs

Examples

## Loading temperature data ##
data(EbroTEMPts)

## Annual Mean values of temperature during the summer season (DJF) for the first
## 3 stations in 'EbroTEMPts'
hydropairs(EbroTEMPts[,2:4])

hydroplot Station Plot and hdydroplot

Description

Given a data.frame whose columns contains the time series (without missing dates) of several gaug-
ing stations, it takes the name of one gauging station and plots 9 graphs (see ’hydroplot’ description)

Usage

hydroplot(x, sname = "X", elevation = "", var.type = "Precipitation",
FUN, na.rm = TRUE, var.unit = "mm", main, win.len1 = 365 * 1,
win.len2 = 365 * 3, ptype = "ts+boxplot+hist", pfreq = "dma",
tick.tstep= "months", lab.tstep= "years")

sname2plot(x, sname, elevation = "", var.type = "Precipitation",
FUN, na.rm = TRUE, var.unit = "mm", main, win.len1 = 365 * 1,
win.len2 = 365 * 3, ptype = "ts+boxplot+hist", pfreq = "dma",
dates, date.fmt = "%Y-%m-%d", tick.tstep= "months", lab.tstep= "years")



hydroplot 37

Arguments

x data.frame whose columns contains the time series (without missing values) for
several gauging stations.

sname character with the name of the station whose values will be ploted. This name
MUST eixst as column name in ’x’

dates "numeric", "factor", "Date" indicating how to obtain the dates correponding to
the ’sname’ station.
If ’dates’ is a number, it indicates the index of the column in ’x’ that stores the
dates
If ’dates’ is a factor, it have to be converted into ’Date’ class, using the date
format specified by ’date.fmt’
If ’dates’ is already of Date class, the code verifies that the number of days in
’dates’ be equal to the number of element in ’x’

date.fmt Character indicating format in which the dates are stored in ’dates’, e.g, "%Y-
%m-%d" ONLY required when class(dates)=="factor" or "numeric"

elevation Character representing the elevation of the meteorological station, only for putting
it on the plot ONLY used for labelling the title

var.type character representing the type of variable being plotted. Used for determining
the function used for computing the Monthly and Annual values when ’FUN’ is
missing. Valid values are:
-) "Precipitation" => FUN = sum
-) "Temperature" => FUN = mean
-) "Flow" => FUN = mean

FUN ONLY required when ’var.type’ is missing. Function that have to be applied for
transforming from daily to monthly or annual time step (e.g., For precipitation
FUN=sum and for temperature and flow ts, FUN=mean)

na.rm Logical. Should missing values be removed?
-) TRUE : the annual values are computed considering only those values differ-
ent from NA
-) FALSE: if there is AT LEAST one NA within a year, the annual values are
NA

var.unit Character representing the measurement unit of the variable being plotted. ONLY
used for labelling the axes. (e.g., "mm" for precipitation, "C" for temperature,
and "m3/s" for flow.)

main Character representing the main title of the plot. If the user did not provide a
title, this is created automatically as: main= paste(var.type, "at", st.name, sep="
"),

win.len1 number of days for being used in the computation of the first moving average

win.len2 number of days for being used in the computation of the second moving average

ptype Character indicating the type of plot that will be plotted. Valid values are:
-) ptype= "ts" => only time series
-) ptype= "ts+boxplot" => only time series + boxplot
-) ptype= "ts+hist" => only time series + histogram
-) ptype= "ts+boxplot+hist" => time series + boxplot + histogram
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pfreq Character indicating how many plots are desired by the user. Valid values are:
-) ’dma’: Daily, Monthly and Annual values are plotted
-) ’ma’ : Monthly and Annual values are plotted
-) ’dm’ : Daily and Monthly values are plotted

tick.tstep string indicating the time step that have to be used for putting the ticks ont he
time axis. Valid values are:
-) ’days’,
-) ’months’,
-) ’years’

lab.tstep string indicating the time step that have to be used for putting the labels ont he
time axis. Valid values are:
-) ’days’
-) ’months’
-) ’years’

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

hydroplot, sname2ts

Examples

## Loading temperature data ##
data(EbroTEMPts)

## Plot of the monthly and annual values of temperature at station "T9105",
## stored in EbroTEMPts.
sname2plot(EbroTEMPts, sname="T9105", var.type="Temperature", dates=1, pfreq="ma")

hypsometricc Hypsometric Curve

Description

Computes and plots the hypsometric curve corresponding to the data provided by a digital elevation
model (DEM)

Usage

hypsometricc(x, main="Hypsometric Curve",
xlab="Basin Area Lower than Elevation, [%]",
ylab="Elevation, [m.a.s.l.]", col="blue",...)
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Arguments

x Object of class ’SpatialGridDataFrame’ with the elevations of the catchment.
Possibly, a raster file already read with the ’readGDAL’ function.

main See ’?plot’. An overall title for the plot: see ’title’.

xlab See ’?plot’. A title for the x axis: see ’title’.

ylab See ’?plot’. A title for the y axis: see ’title’.

col See ’?plot.default’. The colors for lines and points.

... further arguments passed to or from other methods

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

Examples

## Not run:
require(rgdal)
data(EbroDEM1000m)
dem <- EbroDEM1000m
hypsometricc(dem)
require(sp)
spplot(dem, scales=list(draw=TRUE, y=list(rot=90)))

## End(Not run)

interpol1 Interpolation

Description

Interpolates the value at the station "s" on the day "i", using all the other gauging stations.

Usage

interpol1(x.ts.catch, cc, i, s, method = "cc-neighs", n.neighs)

Arguments

x.ts.catch data.frame with the time series of all the stations involved in the computations.
The name of each column in ’x.ts.catch’ have to correspond to the names of the
gauging station. ’x.ts.catch’ doesn’t need to have a column with Dates or any
other thing, ONLY the time series (with some missing values)

cc Matrix with the coefficient of correlation among all the time series in ’x.ts.catch’.
This value can be computed within this procedure, but it is a waste of time, be-
cause it is a unique value for all the iterations, so it only needs to be computed
ONE time
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i counter corresponding to the day that it is being interpolated, so, it corresponds
to the position of the row of ’x.ts.catch’ that is is being used for the computation

s counter corresponding to the station in which the interpolation is being com-
puted, so, it corresponds to the position of the column of ’x.ts.catch’ that is
receiving the computations

method Character with the name of the method that will be used for the interpolations.
Valid values are:
-) "cc-normal": normal coefficient correlation method, where all the stations
with values are used for computing the interoplated value in the target station
-) "cc-neighs": modified coefficient correlation method, where only a number of
stations (provided by the user) with the highest coefficient of correlation with the
target station are used for computing the interoplated value in the target station

n.neighs Integer with the number of neighbors, with valid values (NON-’NA’), that will
be considered on the computation of the interpolated values. ONLY required
when ’mehtod’= "cc-neighs"

Details

Given a data.frame whose columns contains the time series (without missing dates) of several gaug-
ing stations, it interpolates the value at the station "s" on the day "i", using all the other gauging
stations.
The interpolation method is a modified IDW, where the Pearson’s product-momenet coefficient of
correlation between the time series of all teh stations is used instead of the spatial distance, follow-
ing the paper of Teegavarapu and Chandramouli 2005 (See ’references’)

Two methods can be used for carrying out interpolations:
1) "cc-normal": normal coefficient correlation method, where all the stations are used
2) "cc-neighs": modified coefficient correlation method, where only the stations with the highest
coefficient of correlation with the target station are used

Note

The overall performance of this method was better than the overall performance of the traditional
IDW, considering 146 stations of temperature and 349 stations of precipitation with daily data dur-
ing 30 years.
This was assessed with a posterior cross-validation for each station (comparing the observed with
the interpolated values)

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

References

Teegavarapu R.S.V., Chandramouli V. 2005. Improved weighting methods, deterministic and stochas-
tic data-driven models for estimation of missing precipitation records. Journal of Hydrology, 312
(1-4), pp. 191-206.
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Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

istdx Inverse Standarization

Description

This function back transforms a standarized vector/matrix into their original values, i.e., re-scales
all the values in the [0,1] interval to the original range of values z = re-scale(x) = x*[ xmax - xmin
] + xmin

Usage

istdx(x, ...)
## Default S3 method:
istdx(x, xmin, xrange, ...)

Arguments

x standarized vector or matriz to be re-scaled, all the values have to be in the range
[0,1]

xmin numeric with the minimum value(s) in the original ’x’
-) if ’z’ is a vector, ’xmin’ has to be a real
-) if ’z’ is a matrix/data.frame, ’xmin’ has to be a vector, with the minimum
values for each column of the original ’x’. In this case, the vector of minimums
can be otained as: xmin <- apply(x, 2, min, na.rm=TRUE)

xrange numeric with the range of value(s) in the original ’x’
-) if ’z’ is a vector, ’xrange’ has to be a real
-) if ’z’ is a matrix/data.frame, ’xrange’ has to be a vector, with the range of
values for each column of the original ’x’. In this case, the vector of ranges can
be otained as:
xrange <- apply(x, 2,range, na.rm=TRUE)
xrange <- apply(xrange, 2, diff, na.rm=TRUE)

... further arguments passed to or from other methods

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

stdx
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Examples

## Loading temperature data ##
data(EbroTEMPts)

x <- EbroTEMPts[,2]
dates <- EbroTEMPts[,1]

## From 'character' to 'Date' class
dates <- as.Date(dates)

## From 'numeric' to 'zoo' class
x <- vector2zoo(x, dates)

## Computing xmin and the range of 'x'
xmin <- min(x, na.rm=TRUE)
r <- diff(range(x, na.rm=TRUE))

## Standarized variable
s <- stdx(x)

## Inverse of the standarized variable
si <- istdx(s, xmin, xrange=r)

## 'si' and 'x' should be the same
summary(x-si)

###########
### Standarizing a subset of the stations 9 to 12 in 'EbroTEMPts'
n <- EbroTEMPts[1:70,10:13]
xmin <- apply(n, 2, min, na.rm=TRUE)
xrange <- apply(n, 2, range, na.rm=TRUE)
xrange <- apply(xrange, 2, diff, na.rm=TRUE)

## Standarized variable
s <- stdx(as.matrix(n))

## Inverse of the standarized variable
si <- istdx(s, xmin, xrange)

## 'si' and 'n' should be the same
summary(n - si)

izoo2rzoo Irregular Zoo -> Regular Zoo

Description

This function takes a time series of (very likely) irregular (with missing dates) daily time series and
then transforms it into a variable regulary spaced, filling the voids with some value (by default: NA)
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Usage

izoo2rzoo(x, date.fmt = "%Y-%m-%d", from = range(time(x))[1],
to = range(time(x))[2], tstep = "day")

Arguments

x time series of type zoo (very likely with some missing days)

date.fmt character indicating the format in which the dates are stored in ’dates’, e.g. "%Y-
%m-%d" ONLY required when class(dates)=="factor" or "numeric"

from Character indicating the starting date for the values stored in all the files that
will be read. It HAS to be in the format indicated by ’date.fmt’

to Character indicating the ending date for the values stored in all the files that will
be read. It HAS to be in the format indicated by ’date.fmt’

tstep time step in which are stored the values of ’x’

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

vector2zoo

Examples

x <- 1:9

## February 29th is missing:
dates <- c("1964-02-25", "1964-02-26", "1964-02-27", "1964-02-28",

"1964-03-01", "1964-03-02", "1964-03-03", "1964-03-04", "1964-03-05")

## From 'character' to 'Date' class
dates <- as.Date(dates)

## From 'numeric' to 'zoo' class
x <- vector2zoo(x, dates) #Feb 29th is still missing

## Feb 29th is added to 'y' with a missing value
y <- izoo2rzoo(x, from=dates[1], to=dates[length(dates)])

ma Moving Average

Description

Generic function for computing a Moving (sliding) Average of ts
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Usage

ma(x, ...)

## Default S3 method:
ma(x, win.len, FUN = mean, ...)

## S3 method for class 'zoo':
ma(x, win.len, FUN = mean, ...)

Arguments

x ts or zoo object with n elements

win.len number of terms that will be considered in the mean. It have to be odd

FUN Function that have to be applied for computing the moving average. Usually,
FUN MUST be ’mean’

... further arguments passed to or from other methods.

Value

a vector with the moving average termns. The length of the resulting vector is the same of ’x’, but
the first and last (win.len-1)/2 elements will be NA.

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

Examples

## Loading temperature data ##
data(EbroQts)
x <- EbroQts[,2]
dates <- EbroQts[,1]

## From 'character' to 'Date' class
dates <- as.Date(dates)

## From 'numeric' to 'zoo' class
x <- vector2zoo(x, dates)

## Daily to Monthly ts
m <- daily2monthly(x, FUN=mean, na.rm=FALSE)

# Plotting the monthly values
plot(m)

## Plotting the annual moving average in station 'x'
lines(ma(m, win.len=12), col="blue")
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matrixplot Plot Days with Information

Description

Plots a color matrix representing the amount of days with information in a set of gauging stations

Usage

matrixplot(x, ColorRamp, ncolors = 70, main = "", var.type="Days", ...)

Arguments

x ’matrix’, with the amount of days with information in each station
-) The rows represent the gauging stations
-) The columns represetn the years, and they stores the amount of days with
information in each station

ColorRamp OPTIONAL. Gives the possibility to the user to pass a personalized color ramp
for ploting. When ColorRamp is missing, the color ramp is created according to
the value of ’var.type’

ncolors Number of color intervals that will be used for differentiating from 0 to 366 days
with information

main Main title for the plot

var.type ONLY used when ColorRamp is missing. Character representing the type of
variable being plotted. Used for determining the color ramp to be used for plot-
ting the values in ’x’. Valid values are:
c(’Days’, ’Precipitation’, ’Temperature’, ’PCPAnomaly’, ’TEMPAnomaly’, ’TEM-
PAnomaly2’, ’TEMPAnomaly3’)

... further arguments passed to levelplot or from other methods

Note

Adapted (and thank you very much) from: http://www2.warwick.ac.uk/fac/sci/moac/
currentstudents/peter_cock/r/matrix_contour/

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

dwi
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Examples

## Loading temperature data ##
data(EbroTEMPts)

## Selecting the first station (the 1st column stores the dates)
x <- EbroTEMPts[,2]
dates <- EbroTEMPts[,1]

## From 'character' to 'Date' class
dates <- as.Date(dates)

## From 'numeric' to 'zoo' class
x <- vector2zoo(x, dates)

## Total number of days with information per month at station 'x'
dwi(x, out.unit="months")

## Mean number of months with information at station 'x'
dpm <- c(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)
dwi(x, out.unit="months") / dpm

## Days with information per month per year in the first 4 stations in 'EbroTEMPts'
m <- dwi(EbroTEMPts[,1:5], out.unit="months", dates=1)

## Plotting the amount of days with information per month in each station
matrixplot(m/dpm, var.type="Days")

mip Months in Period

Description

Given any starting and ending dates, it generates: 1) a vector with all the months between the two
dates, OR 2) the amount of months between the two dates

Usage

mip(from, to, date.fmt = "%Y-%m-%d", out.type = "seq")

Arguments

from Character indicating the starting date for the values stored in all the files that
will be read. It HAs to be in the format indicated by ’date.fmt’

to Character indicating the ending date for the values stored in all the files that will
be read. It HAs to be in the format indicated by ’date.fmt’

date.fmt character indicating the format in which the dates are stored in ’dates’, e.g. "%Y-
%m-%d"
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out.type character indicating the type of result that is given by this function. Valid values
are:
-) type= "seq" => a vectorial sequence with all the months within the given year
-) type= "nmbr" => the number of days in the vectorial sequence with all the
months within the given year

Author(s)

Mauricio Zambrano-Bigiarini

See Also

dip, diy

Examples

# Sequence of monthly dates between "1961-01-01" and "1961-12-31" ##
mip("1961-01-01", "1961-12-31")

## Computing the number of months between "1961-01-01" and "1965-06-30",
## with the date format "%d-%m-%Y" ##
mip("01-01-1961", "30-06-1965", date.fmt= "%d-%m-%Y", out.type = "nmbr")

monthlyfunction Monthly Function

Description

Generic function for applying any R function to ALL the values in ’x’ belonging to a given month

Usage

monthlyfunction(x, ...)

## Default S3 method:
monthlyfunction(x, FUN, na.rm = TRUE, ...)

## S3 method for class 'data.frame':
monthlyfunction(x, FUN, na.rm = TRUE, dates, date.fmt = "%Y-%m-%d",

out.type = "data.frame", verbose = TRUE, ...)

Arguments

x Object of type ’zoo’, ’matrix’ or ’data.frame’. Can be a daily or monthly object.

FUN Function that will be applied to ALL the values in ’x’ belonging to each one
of the 12 months of the year (e.g., Fun can be some of c(’mean’, ’max’, ’min’,
’sd’))
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na.rm Logical. Should missing values be removed?
-) TRUE : the monthly values and FUN are computed considering only those
values in ’x’ different from NA
-) FALSE: if there is AT LEAST one NA within a month, the corresponing
monthly and FUN values are NA

dates "numeric", "factor", "Date" indicating how to obtain the dates correponding to
the ’sname’ station.
If ’dates’ is a number, it indicates the index of the column in ’x’ that stores the
dates
If ’dates’ is a factor, it have to be converted into ’Date’ class, using the date
format specified by ’date.fmt’
If ’dates’ is already of Date class, the code verifies that the number of days in
’dates’ be equal to the number of element in ’x’

date.fmt Character indicating format in which the dates are stored in ’dates’, e.g, "%Y-
%m-%d" ONLY required when class(dates)=="factor" or "numeric"

out.type Character defining the desired type of output. Valid values are:
-) "data.frame": a data.frame, with 12 columns representing the months, and as
many rows as stations are included in ’x’
-) "db" : a data.frame, with 4 colums will be produced. Useful for a posterior
boxplot
The first column will store the ID of the station,
The second column will store the year,
The third column will store month,
The fourth column will contain the seasonal value corresponding to that year
and that station.

verbose Logical; if TRUE, progress messages are printed

... further arguments passed to or from other methods

Note

Due to the fact that ’FUN’ is applied over all the elements in ’x’ belongng to a given weather season,
its result will depend on the smapling frequency of ’x’ and the type of fucntion provided by ’FUN’
(e.g., ’mean’ or ’max’)

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

annualfunction, daily2monthly

Examples

## Loading temperature data ##
data(EbroTEMPts)
x <- EbroTEMPts[,2]
dates <- EbroTEMPts[,1]
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## From 'character' to 'Date' class
dates <- as.Date(dates)

## From 'numeric' to 'zoo' class
x <- vector2zoo(x, dates)

## Daily to Monthly
m <- daily2monthly(x, FUN=mean, na.rm=TRUE)

## Monthly Mean values of temperature
monthlyfunction(x, FUN=mean, na.rm=TRUE)

## Boxplot of monthly values
cmonth <- format(time(m), "%b")
months <- factor(cmonth, levels=unique(cmonth), ordered=TRUE)
boxplot(coredata(m)~months)

## Monthly mean values of temperature in the first 2 stations of 'EbroTEMPts'
## Not run:
m <- monthlyfunction.data.frame(EbroTEMPts[,2:3], FUN=mean, dates=1, var.type="Temperature", out.type="db")
m$Month <- factor(m$Month, levels=month.abb)
## boxplot of the monthly values in both stations
boxplot(Value ~ Month, m, col="lightyellow")

## End(Not run)

mspplot Multiple spplot

Description

Plots several maps of interpolated values in the same plot

Usage

mspplot(x, SubCatchments.fname, IDvar = NULL, p4s, var.type = "Precipitation",
sp.plot = TRUE, col.nintv = 10, col.at = "auto", ColorRamp, main,
stations.plot = FALSE, stations.gis, X, Y,

arrow.plot = FALSE, arrow.offset, arrow.scale,
scalebar.plot = FALSE, sb.offset, sb.scale,

verbose = TRUE)

Arguments

x
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SubCatchments.fname
Character with the filename (with path) of the shapefile with all the Subcatch-
ments within the Catchment. It has to be of ’polygon’ type

IDvar (from ?readShapePoly) a character string the name of a column in the ’Sub-
Catchments.shp’ shapefile DBF containing the ID values of the shapes - the
values will be converted to a character vector

p4s Character with information about the projection of the GIS files, usually created
by the CRS function of the ’sp’ package

var.type Character defining the colors to be used for plotting the maps. Valid values are:
c(’Precipitation’, ’Temperature’, ’PCPAnomaly’, ’PCPAnomaly2’, ’TEMPAnomaly’,
’TEMPAnomaly2’, ’TEMPAnomaly3’)

sp.plot Logical, indicating if the interpolated values have to be ploted or not
col.nintv integer, number of colors that have to be used for plotting the interpolated values
col.at Specify at which interpolated values colours change. Valid values are:

-) "R" : uses the default setting of ’spplot’
-) "auto": default option.
at <- seq(min, max,length.out=col.nintv)
min <- floor( min(idw["var1.pred"]@data, na.rm=TRUE ) )
max <- ceiling( max(idw["var1.pred"]@data, na.rm=TRUE) )
-) numeric: vector of reals giving the exact values in which the colors have to
change. Useful when the user desires the same color for the same value when
comparing to maps with different range of values

ColorRamp Function defining the color ramp to be used for plotting the maps. It is used
when ’var.type’ is missing.

main Character with the title to be used for the plot
stations.plot

Logical, indicating if the gauging stations, defined by ’gis.fname’ have to be
plotted

stations.gis OPTIONAL. ’data.frame’ with the stations that will be added to the plot. ONLY
required when ’stations.plot’ == TRUE

X OPTIONAL. character, field name in ’x.gis’ that stores the easting coordinate of
the stations. ONLY required when ’stations.plot’ == TRUE

Y OPTIONAL. character, field name in ’x.gis’ that stores the northing coordinate
of the stations. ONLY required when ’stations.plot’ == TRUE

arrow.plot Logical, indicating if a North Arrow have to be plotted
arrow.offset OPTIONAL. 2D list with the numeric coordinates in which the North Arrow

have to be plotted. e.g., arrow.offset = c(690000,4760000). ONLY required
when ’arrow.plot’ == TRUE

arrow.scale OPTIONAL. Scale (in the map units) to be used for plotting the North Arrow,
e.g., scale = 20000. ONLY required when ’arrow.plot’ == TRUE

scalebar.plot
Logical, indicating if a Scale Bar have to be plotted

sb.offset OPTIONAL. 2D list with the numeric coordinates in which the North Arrow
have to be plotted. e.g., sb.offset = c(400000,4490000). ONLY required when
’scalebar.plot’ == TRUE
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sb.scale OPTIONAL. Scale (in the map units) to be used for plotting the Scale Bar, e.g.,
scale = 100000, means that the scale bar will have a length of 100km. ONLY
required when ’scalebar.plot’ == TRUE

verbose logical; if TRUE, progress messages are printed

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

References

Applied Spatial Data Analysis with R. Series: Use R. Bivand, Roger S., Pebesma, Edzer J., Gomez-
Rubio, Virgilio. 2008. ISBN: 978-0-387-78170-9
http://r-spatial.sourceforge.net/gallery/

See Also

spplot, krige

Examples

## Loading the ts data
data(EbroTEMPts)
## Loading the gis data
data(EbroTEMPgis)
## Loading the shapefile with the subcatchments
data(EbroSubcatch)

## Projection for the Subcatchments file
require(sp)

p4s <- CRS("+proj=utm +zone=30 +ellps=intl +units=m +no_defs")

## Field name in 'x.gis' with the ID of the station
sname <- "ID"
## Field name in 'x.gis'with the name of the catchment to which each station belongs
bname <- "CHE_BASIN_NAME"
## Field name in 'x.gis' with the Easting spatial coordinate
X <- "EAST_ED50"
## Field name in 'x.gis' with the Northing spatial coordinate
Y <- "NORTH_ED50"
## Field name in 'x.gis' with the Elevation
elevation <- "ELEVATION"

# Definition of the Arrow
arrow.offset = c(900000,4750000)
arrow.scale = 20000
# Definition of the scale bar
sb.offset = c(400000,4480000)
sb.scale = 100000

# Character the Time Window being analyzed



52 mspplot

Time.Window.stg <- "1961-01-01"

# Character for the plot title
TimePeriod.stg <- "CTRL: "

# Computing the number of stations
nstations <- nrow(EbroTEMPgis)

## Selecting the first day in 1961 of 'EbroTEMPts' for all the stations
x.ts <- as.numeric(EbroTEMPts[1, 2:ncol(EbroTEMPts)])

## Setting the name of the stations
names(x.ts) <- colnames(EbroTEMPts[ ,2:ncol(EbroTEMPts)])

## Title of the plot
main <- paste("IDW Annual Mean Temperature on the Ebro, ", TimePeriod.stg,

Time.Window.stg, ". Stations=", nstations, sep="")

## IDW interpolation and plot
x.idw <- hydrokrige(x.ts= x.ts, x.gis=EbroTEMPgis,

X=X, Y=Y, sname=sname, bname=bname, elevation=elevation,
catchment.name= "all",
IDW.type= "cells", #'both'
SubCatchments.fname= EbroSubcatch,
p4s= p4s,
cell.size= 3000,
nmax= 50,
ColorRamp= "Temperature",
col.nintv= 40, col.at= "auto",
main= main,
arrow.plot= TRUE, arrow.offset= arrow.offset, arrow.scale= arrow.scale,
scalebar.plot= TRUE, sb.offset= sb.offset, sb.scale= sb.scale,
verbose=TRUE)

## Storing the interpolated values
x.idw@data["Jan1961"] <- x.idw@data["var1.pred"]
x.idw@data["var1.pred"] <- NULL
x.idw@data["var1.var"] <- NULL

## Selecting the first of July 1961 of 'EbroTEMPts' for all the stations
x.ts <- as.numeric(EbroTEMPts[366, 2:ncol(EbroTEMPts)])

## Setting the name of the stations
names(x.ts) <- colnames(EbroTEMPts[ , 2:ncol(EbroTEMPts)])

## IDW interpolation and plot
x.idw2 <- hydrokrige(x.ts= x.ts, x.gis=EbroTEMPgis,

X=X, Y=Y, sname=sname, bname=bname, elevation=elevation,
catchment.name= "all",
IDW.type= "cells", #'both'
SubCatchments.fname= EbroSubcatch,
p4s= p4s,
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cell.size= 3000,
nmax= 50,
ColorRamp= "Temperature",
sp.plot= TRUE,
col.nintv= 40, col.at= "auto",
main= main,
arrow.plot= TRUE, arrow.offset= arrow.offset,
arrow.scale= arrow.scale,
scalebar.plot= TRUE, sb.offset= sb.offset,
sb.scale= sb.scale,
verbose=TRUE)

x.idw@data["Jan1962"] <- x.idw2@data["var1.pred"]

## Plotting in the same graph the 2 interpolated fileds
mspplot(x=x.idw, #x.gis.fname,

SubCatchments.fname=EbroSubcatch,
IDvar=NULL, p4s,

var.type="Temperature",
sp.plot=TRUE, col.nintv=50,

col.at="auto",
main="IDW Annual Mean Precipitation on the Ebro River Basin, [mm/year]",
stations.plot=FALSE,

arrow.plot=TRUE, arrow.offset=c(900000,4750000), arrow.scale=20000,
scalebar.plot=TRUE, sb.offset=c(400000,4480000), sb.scale=100000,
verbose=TRUE)

plotbands Plot a ts with simulated values and two confidence bands

Description

Plot a ts with simulated values and two confidence bands. Optionally can also add an observed time
series.

Usage

plotbands(x, lband, uband, obs, x.col= "blue", bands.col="lemonchiffon",
obs.col="red", main="Confidence Bands for 'x'", xlab="Time",
tick.tstep= "months", lab.tstep= "years", ...)

Arguments

x ts or ’zoo’ object with the simulated values

lband ts or ’zoo’ object with the values of the lower band

uband ts or ’zoo’ object with the values of the upper band

obs OPTIONAL. ts or ’zoo’ object with the values of the observed values

x.col color to be used for plotting the ’x’ ts
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bands.col color to be used for filling th area between the lower and upper band
obs.col OPTIONAL. color to be used for plotting the observed ts
main an overall title for the plot: see ’title’
xlab a title for the x axis: see ’title’
tick.tstep string indicating the time step that have to be used for putting the ticks ont he

time axis. Possible values are: ’days’, ’months’, ’years’
lab.tstep string indicating the time step that have to be used for putting the labels ont he

time axis. Possible values are: ’days’, ’months’, ’years’
... further arguments passed to levelplot or from other methods

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

rm1stchar Remove First Character

Description

Deletes the first characther of each element of ’x’

Usage

rm1stchar(snames, start.col = 1)

Arguments

snames vector of character, where each element represents the name of a single gauging
station

start.col numeric, indicating the index of the colum in which the renaming process should
start

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

substr

Examples

## Loading temperature data ##
data(EbroTEMPts)

names <- colnames(EbroTEMPts)
rm1stchar(names)
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seasonalfunction Seasonal Function

Description

Generic function for applying any R function to all the values of ’x’ that belongs to a given weather
sesason.

Usage

seasonalfunction(x, ...)

## Default S3 method:
seasonalfunction(x, FUN, na.rm = TRUE, ...)

## S3 method for class 'data.frame':
seasonalfunction(x, FUN, na.rm = TRUE, dates, date.fmt = "%Y-%m-%d",

out.type = "data.frame", verbose = TRUE, ...)

Arguments

x Daily or monthly object of type ’zoo’ or ’data.frame’

FUN Function that will be applied to ALL the values in ’x’ belonging to each one of
the 4 weather seasons. (e.g., Fun can be some of c(’mean’, ’max’, ’min’, ’sd’))

na.rm Logical. Should missing values be removed? -) TRUE : the monthly values are
computed considering only those values in ’x’ different from NA -) FALSE: if
there is AT LEAST one NA within a month, the FUN and monthly values are
NA

dates "numeric", "factor", "Date" indicating how to obtain the dates for correponding
to the ’sname’ station
If ’dates’ is a number, it indicates the index of the column in ’x’ that stores the
dates
If ’dates’ is a factor, it have to be converted into ’Date’ class, using the date
format specified by ’date.fmt’
If ’dates’ is already of Date class, the code verifies that the number of days in
’dates’ be equal to the number of element in ’x’

date.fmt character indicating the format in which the dates are stored in ’dates’, e.g. "%Y-
%m-%d". ONLY required when class(dates)=="factor" or "numeric"

out.type Character defining the desired type of output. Valid values are:
-) "data.frame": a data.frame, with 4columns representing the weather seasons,
and as many rows as stations are included in ’x’
-) "db" : a data.frame, with 4 colums will be produced. Useful for a posterior
boxplot
The first column will store the ID of the station,
The second column will store the Year,
The third column will store the season,
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The fourth column will contain the seasonal value corresponding to that year
and that station.

verbose Logical; if TRUE, progress messages are printed

... further arguments passed to or from other methods

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

sfreq Hydrological Sampling Frequency

Description

Sampling Frequency of an hydrological ts/zoo object.

This function generates a table indicating the number of days with information (<>NA’s) within a
data.frame

Usage

sfreq(x, min.year = 1800)

Arguments

x variable of type ’zoo’ or ’ts’, with AT LEAST 2 elements, AND with a daily,
monthly or annual sampling frequency.

min.year integer used for a correct identification of the sampling fequency when ’x’ is
an annual zoo (e.g.: time(x) = "1961") => the minimum possible years starts in
’min.year’

Value

Possible values are:
-) ’daily’ : indicating that the sampling freqeuncy in ’x’ is daily
-) ’monthly’ : indicating that the sampling freqeuncy in ’x’ is monthly
-) ’annual’ : indicating that the sampling freqeuncy in ’x’ is annual

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>
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Examples

## Loading temperature data ##
data(EbroTEMPts)
x <- EbroTEMPts[,2]
dates <- EbroTEMPts[,1]

## From 'character' to 'Date' class
dates <- as.Date(dates)

## From 'numeric' to 'zoo' class
d <- vector2zoo(x, dates)

## Daily to Monthly
m <- daily2monthly(d, FUN=mean, na.rm=TRUE)

## Daily to Annual
a <- daily2annual(d, FUN=mean, na.rm=TRUE)

sfreq(d)
sfreq(m)
sfreq(a)

smry Summary

Description

Extended summary function, with 13 summary statistics for numeric objects

Usage

smry(x, ...)

## Default S3 method:
smry(x, na.rm = TRUE, digits = 2,...)

## S3 method for class 'matrix':
smry(x, na.rm = TRUE, digits = 2,...)

## S3 method for class 'data.frame':
smry(x, na.rm = TRUE, digits = 2,...)

Arguments

x a numeric object, vector, matrix or data.frame, for which a summary is desired.

na.rm a logical value indicating whether ’NA’ values should be stripped before the
computation proceeds.
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digits numeric, with the amount of decimal places to be included in the result

... further arguments passed to or from other methods.

Value

Computed summary statistics are:

Min Minimum

1stQ First quartile (lower-hinge)

Mean Mean value

Median Median

3rdQ Third quartile ( upper-hinge

Max Maximum of the input values.

IQR Interquartile Range of the ’x’ values. ’IQR(x) = quantile(x,3/4) - quantile(x,1/4)’

sd Standard deviation of the values in ’x’. It uses denominator ’n-1’.

cv Coefficient of variation ( cv= sd / |mean| )

skewness Skewness (using e1071 package)

kurtosis Kurtosis (using e1071 package)

n total number of data in ’x’

NA’s amount of missing values in ’x’

Note

Skewness and Kurtosis are computed with the e1071 package

Author(s)

Mauricio Zambrano-Bigiarini <mauricio.zambrano@ing.unitn.it>

See Also

summary, fivenum, IQR, sd, skewness, kurtosis

Examples

## Loading temperature data ##
data(EbroTEMPts)

## Summary of daily temperature values for the first 3 stations in 'EbroTEMPts'
smry(EbroTEMPts[,2:4])
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sname2ts Station Name -> Time Series

Description

This function takes a data.frame whose columns contains the time series (without missing dates)
of several gauging stations, it takes the name of one gauging station and extracts a time series with
daily, monthly or annual time step

Usage

sname2ts(x, sname, dates, date.fmt = "%Y-%m-%d", var.type,
tstep.out = "daily", FUN, na.rm = TRUE)

Arguments

x data.frame containing the complete (without missing dates) times series of all
the stations.
It can also contain 1 column with the dates of the measurements, or they can be
provided in a separated way

sname string representing the name of the station, which have to correspond with one
column name in ’x’

dates "numeric", "factor", "Date" indicating how to obtain the dates correponding to
the ’sname’ station.
If ’dates’ is a number, it indicates the index of the column in ’x’ that stores the
dates
If ’dates’ is a factor, it have to be converted into ’Date’ class, using the date
format specified by ’date.fmt’
If ’dates’ is already of Date class, the code verifies that the number of days in
’dates’ be equal to the number of element in ’x’

date.fmt Character indicating format in which the dates are stored in ’dates’, e.g, "%Y-
%m-%d". ONLY required when class(dates)=="factor" or "numeric"

var.type character representing the type of variable being plotted. Used for determining
the function used for computing the monthly or/and annual values when ’FUN’
is missing. Valid values are:
-) "Precipitation" => FUN = sum
-) "Temperature" => FUN = mean
-) "Flow" => FUN = mean

tstep.out character that defines the time step of the desired output time series. Valid val-
ues are:
-) "daily" : daily time series
-) "monthly": monthly time series
-) "annual" : annual time series
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FUN ONLY required when ’var.type’ is missing and ’tstep’ is in c(’monthly’, ’an-
nual’) Function that have to be applied for transforming from daily to monthly
or annual time step (e.g., For precipitation FUN=sum and for temperature and
flow ts, FUN=mean)

na.rm Logical. Should missing values be removed?
-) TRUE : the annual values are computed considering only those values differ-
ent from NA
-) FALSE: if there is AT LEAST one NA within a year, the annual values are
NA

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

Examples

## Loading temperature data ##
data(EbroTEMPts)

## Annual values of temperature at the station "T9105", stored in EbroTEMPts.
sname2ts(EbroTEMPts, sname="T9105", dates=1, var.type="Temperature", tstep.out="annual")

stdx Standarization

Description

Standarizes a vector or matrix, i.e., scales all the values in a way that the transformed values will be
within the range [0,1].

Usage

stdx(x, ...)

Arguments

x vector, matrix or data.frame to be scaled

... further arguments passed to or from other methods

Details

z =
x− xmin

xmax − xmin
z = scale(x) = [x− xmin]/[xmax− xmin]

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>
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See Also

scale

Examples

## Loading temperature data ##
data(EbroTEMPts)

stdx(as.matrix(EbroTEMPts[1:70,10:13]))

subset.zoo Subset

Description

Extracts from a zoo object, all the values belonging to a given month, year or weather season

Usage

extractzoo(x, trgt, ...)

Arguments

x ’zoo’ object

trgt numeric or character indicating elements to extract from ’x’. Valid values are:
1) integer from 1 to 12: ’trgt’ is considered as a month, and all the vaues in ’x’
belonging to the month specified by ’trgt’ will be extracted (1=JAN, 2=FEB,....,
12=DEC)
2) integer > 12: ’trgt’ is considered as a year, and all the values in ’x’ belonging
to the year specified by ’trgt’ will be extracted
3) character: ’trgt’ is considered as a weather season, and all the values in ’x’
belonging to the season specified by ’trgt’ will be extracted. Valid values are:
-) "DJF": December, January, February
-) "MAM": March, April, May
-) "JJA": June, July, August
-) "SON": September, October, November

... further arguments passed to or from other methods

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

See Also

time2season, daily2annual, daily2monthly
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Examples

### Loading temperature data ##
data(EbroTEMPts)

## Annual values of temperature at the station "T9105", stored in EbroTEMPts.
x <- sname2ts(EbroTEMPts,sname="T9105",dates=1,var.type="Temperature", tstep.out="daily")

## Extracting all the values belonging to February (FEb=2)
extractzoo(x, trgt=2)

## Extracting all the values belonging to the year 1970
extractzoo(x, trgt=1970)

## Extracting all the values belonging to the autumn
extractzoo(x, trgt="SON")

time2season Time character -> Seasonal character

Description

This function transforms a vector of dates into a vector of seasons (summer, winter, autumm,
spring), considering that:

-) winter = DJF: December, January, February
-) spring = MAM: March, April, May
-) summer = JJA: June, July, August
-) autumm = SON: September, October, November

Usage

time2season(x, out.fmt = "months")

Arguments

x vector with the dates that have to be transformed. class(x) must be "Date"

out.fmt format of the output seasons. Possible values are:
-) ’seasons’ => "winter", "spring", "summer", autumm"
-) ’months’ => "DJF", "MAM", "JJA", SON"

Value

vector with the wheater season to which each date in ’x’ belongs

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>
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See Also

dip

Examples

## Sequence of daily dates between "1961-01-01" and "1961-12-31" ##
t <- dip("1961-01-01", "1961-12-31")
time2season(t)

## Sequence of monthly dates between "1961-01-01" and "1961-12-31" ##
t <- mip("1961-01-01", "1961-12-31")
time2season(t)
time2season(t, out.fmt="seasons")

vector2zoo Vector -> Zoo

Description

Transform a numericl vectorial and its corresponding dates into a ’zoo’ variable, for being used by
other procedures of this library

Usage

vector2zoo(x, dates, date.fmt = "%Y-%m-%d")

Arguments

x numeric vector
dates vector with the dates corresponding to each elemnt of ’x’
date.fmt Character indicating format in which the dates are stored in ’dates’, e.g, "%Y-

%m-%d" ONLY required when class(dates)=="factor" or "numeric"

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

Examples

## Loading temperature data ##
data(EbroQts)
x <- EbroQts[,2]
dates <- EbroQts[,1]

## From 'character' to 'Date' class
dates <- as.Date(dates)

## From 'numeric' to 'zoo' class
x <- vector2zoo(x, dates)
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zoo2RHtest Hydrological Sampling Frequency

Description

It creates the input file to the ’RHtest_dlyPrcp.r’ script, used for testing the homogeneity of clima-
tological time series (http://ccma.seos.uvic.ca)

This function generates a table indicating the number of days with information (<>NA’s) within a
data.frame

Usage

zoo2RHtest(x, fname="pcp.txt", tstep.out="daily", dec=".", na="-999.0")

Arguments

x time series that will be written. class(x) must be ’zoo’

fname filename of the precipitation time series

tstep.out Character indicating the time step that have to be used for writting ’x’ into the
output file

dec the string to use for decimal points in numeric or complex columns: must be a
single character.

na the string to use for missing values in the data

Author(s)

Mauricio Zambrano-Bigiarini, <mauricio.zambrano@ing.unitn.it>

References

http://ccma.seos.uvic.ca

Examples

## Loading precipitation data ##
data(EbroPPts)

# station ID
sname <- "P9056"

#Getting the monthly ts
pcp.m <- sname2ts(EbroPPts, sname, dates=1, tstep.out="monthly", FUN=sum, na.rm=FALSE)

# From zoo to the input format required by 'FindU.dlyPrcp' function
zoo2RHtest(x=pcp.m, fname="pcp-monthly.txt", tstep.out="monthly", na="-999.0")

## Not run:
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# Homogeneity analysis
FindU.dlyPrcp(InSeries="pcp-monthly.txt", output="pcp-monthly", MissingValueCode="-999.0", GUI=FALSE, pthr=0, Mq=10, p.lev=0.95, Iadj=10000)

## End(Not run)
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hydroGOF-package Goodnes of Fit

Description

Both statistical and graphical model evaluation techniques for assessing the goodnes-of-fit between
observed and simulated values, for being used during the calibration, validation, and application of
hydrological models.
Missing values in observed and/or simulated values can removed before the computations.

Quantitative statistics included are: Mean Error (me), Mean Absolute Error (mae), Root Mean
Square Error (rms), Normalized Root Mean Square Error (nrms), Pearson Correltation coefficient
(r.Pearson), Spearman Correltation coefficient (r.Spearman), Coefficient of Determination (R2),
Ratio of Standard Deviations (rSD), Nash-Sutcliffe efficiency (NSeff), Modified Nash-Sutcliffe
efficiency (NSeff1), Index of Agreement (d), Persistence Index (PI), Percent Bias (pbias) and the
coef. of determination multiplied by the slope of the linear regresion between ’sim’ and ’obs’ (bR2)

Details

Package: hydroGOF
Type: Package
Version: 0.1.3
Date: 2009-12-01
License: LGPL-2
LazyLoad: yes

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

Maintainer: Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

References

Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000), Toward Improved Calibration of Hydrologic
Models: Combining the Strengths of Manual and Automatic Methods, Water Resour. Res., 36(12),
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3663–3674

Krause, P., Boyle, D. P., and Base, F.: Comparison of different efficiency criteria for hydrological
model assessment, Adv. Geosci., 5, 89–97, 2005

Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in
Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233–241

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007. Model
evaluation guidelines for systematic quantification of accuracy in watershed simulations
Transactions of the ASABE. 50(3):885-900

Kitanidis, P. K., and R. L. Bras (1980), Real-Time Forecasting With a Conceptual Hydrologic Model
2. Applications and Results, Water Resour. Res., 16(6), 1034–1044

J.E. Nash and J.V. Sutcliffe, River flow forecasting through conceptual models. Part 1: a discussion
of principles, J. Hydrol. 10 (1970), pp. 282–290

Yapo P. O., Gupta H. V., Sorooshian S., 1996. Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23–48

Examples

sim <- 2:11
obs <- 1:10
## Not run:
ggof(sim, obs)

## End(Not run)

br2 br2

Description

Coefficient of determination (r2) multiplied by the slope of the regression line between ’sim’ and
’obs’, with treatment of missing values.

Usage

br2(sim, obs)

Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values
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Details

br2 =| b | R2, | b |≤ 1; br2 =| b | R2, | b |> 1

A model that sistematically over or underpredicts all the time will still result in "good" ’r2’ (close to
1), even if allpredctions were wrong (Krause et al., 2005). The ’br2’ coefficient allows accounting
for the discrepancy ibn the magnitude of two signals (depicted by ’b’) as well as their dynamics
(depicted by ’r2’)

Note

The missing values in ’obs’ and ’sim’ are removed before the computation proceeds, and only those
positions with non-missing values in ’obs’ and ’sim’ are considered in the computation

The slope ’b’ is computed as the coefficient of the linear regression between ’sim’ and ’obs’, forcing
the intercept be equal to zero.

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

References

Krause, P., Boyle, D. P., and Base, F.: Comparison of different efficiency criteria for hydrological
model assessment, Adv. Geosci., 5, 89-97, 2005

See Also

gof, cor, lm

Examples

sim <- 1:10
obs <- 1:10
br2(sim, obs)

sim <- 2:11
obs <- 1:10
br2(sim, obs)
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ggof Graphical Goodness of Fit

Description

Graphical comparision bewtween two vectors (numeric, ts or zoo), with several numerical goodness
of fit printed as a legend.
Missing values in observed and/or simulated values can removed before the computations.

Usage

ggof(sim, obs, dates, date.fmt = "%Y-%m-%d", var.names = c("Obs", "Sim"),
var.units = c("m3/s", "m3/s"), main, xlab = "Time", ylab = "",
ftype = "o", pt.style = "ts", ts.col = c("black", "blue"),
ts.lwd = c(1, 1), ts.lty = c(1, 2), ts.pch = c(1, 9), ts.cex = c(0.6, 0.6),
tick.tstep = "months", lab.tstep = "years", leg.gof = TRUE, digits=2,
leg.cex=1, FUN, na.rm = TRUE, cal.ini=NA, val.ini=NA)

Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values

dates ’character’, ’factor", ’Date’ indicating how to obtain the dates for the correpond-
ing values in the ’sim’ and ’obs’ time series
If ’dates’ is a factor, it have to be converted into ’Date’ class, using the date
format specified by ’date.fmt’
If ’dates’ is already of Date class, the following line verifies that the number of
days in ’dates’ be equal to the number of element in the time series correspond-
ing to the ’st.name’ station

date.fmt OPTIONAL. Character indicating the format in which the dates entered are
stored in ’dates’, ’cal.ini’ and ’val.ini’. Default value is "%Y-%m-%d"
ONLY required when class(dates)== "character" or "factor" or when ’cal.ini’ or
’val.ini’ is provided.

var.names string representing the type of variable being plotted (e.g., "Precipitation", "Tem-
perature", "Flow",...). ONLY used for labelling the axes

var.units string representing the measurement unit of the variable being plotted (e.g.,
"mm" for precipitation, "C" for temperature, "m3/s" for flow,...). ONLY used
for labelling the axes

main string representing the main title of the plot

xlab label for the ’x’ axis

ylab label for the ’y’ axis
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ftype string indicating how many plots are desired by the user. Valid values are: -) ’o’
: only the original ’sim’ and ’obs’ time series are plotted
-) ’dm’ : it assumes that ’sim’ and ’obs’ are daily time series and Daily and
Monthly values are plotted
-) ’ma’ : it assumes that ’sim’ and ’obs’ are monthly time series and Monthly
and Annual values are plotted
-) ’dma’: it assumes that ’sim’ and ’obs’ are daily time series and Daily, Monthly
and Annual values are plotted

pt.style Character indicating if the 2 ts have to be plotted as lines or bars. When ’ftype’
is NOT ’o’, it only applies for the annual values. Valid values are:
-) "ts" : (default) each ts is ploted as a lines along the ’x’ axis
-) "bar": the 2 series are plotted as a barplot.

ts.col vector with the colors of ’sim’ and ’obs’

ts.lwd vector with the line width of sim’ and ’obs’

ts.lty vector with the line type of sim’ and ’obs’

ts.pch vector with the type of symbol for ’x’ and ’y’. (e.g., 1: whithe circle; 9: white
rhombus with a cross inside)

ts.cex vector with the values controlling the size of text and symbols of ’x’ and ’y’
with respect to the default

tick.tstep string indicating the time step that have to be used for putting the ticks ont he
time axis. Valid values are:
-) ’days’,
-) ’months’,
-) ’years’

lab.tstep string indicating the time step that have to be used for putting the labels ont he
time axis. Valid values are:
-) ’days’,
-) ’months’,
-) ’years’

leg.gof logical, indicating if several numerical goodness of fit have to be computed be-
tween ’sim’ and ’obs’, and ploted as a legend on the graph. If leg.gof=TRUE,
then ’x’ is considered as observed and ’y’ as simulated values (for some gof
functions this is important).

digits OPTIONAL, only used when ’leg.gof=TRUE’. Decimal places used for round-
ing the goodness-of-fit indexes.

leg.cex OPTIONAL. ONLY used when ’leg.gof’ is TRUE. Character expansion factor
*relative* to current ’par("cex")’. Used for text, and provides the default for
’pt.cex’ and ’title.cex’. Default value = 1

FUN OPTIONAL, ONLY required when ’ftype’ is in c(’dm’, ’ma’, ’dma’). Function
that have to be applied for transforming from daily to monthly or annual time
step (e.g., for precipitation FUN MUST be "sum", for temperature and flow time
series, FUN MUST be "mean")



ggof 7

na.rm Logical. ONLY matters when ’step.out’ is "monthly’ or ’annual’
-) TRUE : the annual mean value is computed considering only those values
different from NA
-) FALSE: if there is AT LEAST one NA within a year, the monthly mean value
is NA

cal.ini OPTIONAL. Character with the date in which the calibration period started.
ONLY used for drawing a vertical red line at this date.

val.ini OPTIONAL. Character with the date in which the validation period started.
ONLY used for drawing a vertical red line at this date.

Details

Plots observed and simulated alues in the same graph.

If ’leg.cex’ is TRUE, it computes It computes the numerical values of:
’me’, ’mae’, ’rms’, ’nrms’, ’r.Pearson’, ’r.Spearman’, ’r2’, ’rSD’, ’NSeff’, ’NSeff1’, ’d’, ’PI’,
’PBIAS’, ’r.Pearson’, ’r.Spearman’

Value

me Mean Error

mae Mean Absolute Error

rms Root Mean Square Error

nrms Normalized Root Mean Square Error

r.Pearson Pearson Correltation coefficient ( -1 <= r <= 1 )

r.Spearman Spearman Correltation coefficient ( -1 <= r <= 1 )

R2 Coefficient of Determination ( 0 <= R2 <= 1 ).
Gives the proportion of the variance of one variable that is predictable from the
other variable

rSD Ratio of Standard Deviations, rSD = SD(sim) / SD(obs)

NSeff Nash-Sutcliffe Efficiency ( -Inf <= NSeff <= 1 )

NSeff1 Modified Nash-Sutcliffe Efficiency

d Index of Agreement ( 0 <= d <= 1 )

PI Persistence Index ( 0 <= PI <= 1 )

PBIAS Percent Bias ( -1 <= PBIAS <= 1 )

bR2 r2 multiplied by the coefficient of the regression line between ’sim’ and ’obs’
( 0 <= bR2 <= 1 )

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>
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References

Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in
Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233–241.

Krause P., Boyle D.P., and B\"ase F., Comparison of different efficiency criteria for hydrological
model assessment, Advances in Geosciences 5 (2005), pp. 89–97

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007. Model
evaluation guidelines for systematic quantification of accuracy in watershed simulations
Transactions of the ASABE. 50(3):885-900

Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000), Toward Improved Calibration of Hydrologic
Models: Combining the Strengths of Manual and Automatic Methods, Water Resour. Res., 36(12),
3663–3674

Kitanidis, P. K., and R. L. Bras (1980), Real-Time Forecasting With a Conceptual Hydrologic Model
2. Applications and Results, Water Resour. Res., 16(6), 1034–1044

J.E. Nash and J.V. Sutcliffe, River flow forecasting through conceptual models. Part 1: a discussion
of principles, J. Hydrol. 10 (1970), pp. 282–290

Yapo P. O., Gupta H. V., Sorooshian S., 1996. Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23–48

See Also

gof, plot2

Examples

sim <- 2:11
obs <- 1:10
## Not run:
ggof(sim, obs)

## End(Not run)

gof Numerical Goodness of Fit

Description

Numerical goodness of fit between ’sim and ’obs’, with treatment of missing values. Several per-
formance indexes for comparing two vectors, matrix or data.frames
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Usage

gof(sim, obs, do.spearman = FALSE, na.rm = TRUE, digits=2, ...)

Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values

do.spearman logical. Indicates if the Spearman correltation have to be computed. The default
is FALSE

na.rm a logical value indicating whether ’NA’ values should be stripped before the
computation proceeds.

digits decimal places used for rounding the goodness-of-fit indexes.

... further arguments passed to or from other methods.

Value

me Mean Error

mae Mean Absolute Error

rms Root Mean Square Error

nrms Normalized Root Mean Square Error

r.Pearson Pearson Correltation coefficient ( -1 <= r <= 1 )

r.Spearman Spearman Correltation coefficient ( -1 <= r <= 1 )

R2 Coefficient of Determination ( 0 <= R2 <= 1 ).
Gives the proportion of the variance of one variable that is predictable from the
other variable

rSD Ratio of Standard Deviations, rSD = SD(sim) / SD(obs)

NSeff Nash-Sutcliffe Efficiency ( -Inf <= NSeff <= 1 )

NSeff1 Modified Nash-Sutcliffe Efficiency

d Index of Agreement ( 0 <= d <= 1 )

PI Persistence Index ( 0 <= PI <= 1 )

PBIAS Percent Bias ( -1 <= PBIAS <= 1 )

bR2 R2 multiplied by the coefficient of the regression line between ’sim’ and ’obs’
( 0 <= bR2 <= 1 )

Note

Missing values in ’obs’ and/or ’sim’ can be removed before the computations, depndeing on the
value of ’na.rm’.

Although ’r.Pearson’ and ’r2’ have been widely used for model evaluation, these statistics are over-
sensitive to outliers and insensitive to additive and proportional differences between model predic-
tions and measured data (Legates and McCabe, 1999)



10 gof

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

References

Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in
Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233–241.

Krause P., Boyle D.P., and B\"ase F., Comparison of different efficiency criteria for hydrological
model assessment, Advances in Geosciences 5 (2005), pp. 89–97

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007. Model
evaluation guidelines for systematic quantification of accuracy in watershed simulations
Transactions of the ASABE. 50(3):885-900

Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000), Toward Improved Calibration of Hydrologic
Models: Combining the Strengths of Manual and Automatic Methods, Water Resour. Res., 36(12),
3663–3674

Kitanidis, P. K., and R. L. Bras (1980), Real-Time Forecasting With a Conceptual Hydrologic Model
2. Applications and Results, Water Resour. Res., 16(6), 1034–1044

J.E. Nash and J.V. Sutcliffe, River flow forecasting through conceptual models. Part 1: a discussion
of principles, J. Hydrol. 10 (1970), pp. 282–290

Yapo P. O., Gupta H. V., Sorooshian S., 1996. Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23–48

See Also

me, mae, rms, nrms, rSD, NSeff, NSeff1, IoA, PI, pbias, br2

Examples

sim <- 1:10
obs <- 1:10
gof(sim, obs)

sim <- 2:11
obs <- 1:10
gof(sim, obs)
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IoA Index of Agreement

Description

This function computes the Index of Agreement between ’sim’ and ’obs, with treatment of missing
values.

If ’x’ is a matrix or a data frame, a vector of the Index of Agreement of the columns is returned.

Usage

IoA(sim, obs, ...)

Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values

... further arguments passed to or from other methods.

Details

d =
1−∑N

i=1 (Oi − Si)
2

∑N
i=1

∣∣Si − Ō
∣∣+
∣∣Oi − Ō

∣∣

The Index of Agreement (d) developed by Willmott (1981) as a standardized measure of the degree
of model prediction error and varies between 0 and 1. A value of 1 indicates a perfect match, and 0
indicates no agreement at all (Willmott, 1981).

The index of agreement can detect additive and proportional differences in the observed and sim-
ulated means and variances; however, it is overly sensitive to extreme values due to the squared
differences (Legates and McCabe, 1999).

Note

The missing values in ’obs’ and ’sim’ are removed before the computation proceeds, and only those
positions with non-missing values in ’obs’ and ’sim’ are considered in the computation.

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>
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References

Willmott, C.J. 1981. On the validation of models. Physical Geography, 2, 184–194

Willmott, C. J. (1984). On the evaluation of model performance in physical geography. Spatial
Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460

Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in
Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233–241

Examples

sim <- 1:10
obs <- 1:10
IoA(sim, obs)

sim <- 2:11
obs <- 1:10
IoA(sim, obs)

mae.data.frame Mean Absolute Error

Description

Mean Absolute Error between ’sim’ and ’obs’, in the same units of ’sim’ and ’obs’, with treatment
of missing values.

Usage

mae(sim, obs, na.rm = TRUE, ...)

Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values

na.rm a logical value indicating whether ’NA’ values should be stripped before the
computation proceeds.

... further arguments passed to or from other methods.

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

References

http://en.wikipedia.org/wiki/Mean_absolute_error
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See Also

me

Examples

sim <- 1:10
obs <- 1:10
mae(sim, obs)

sim <- 2:11
obs <- 1:10
mae(sim, obs)

me Mean Error

Description

Mean Error between ’sim’ and ’obs’, in the same units of ’sim’ and ’obs’, with treatment of missing
values.

Usage

me(sim, obs, na.rm = TRUE, ...)

Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values

na.rm a logical value indicating whether ’NA’ values should be stripped before the
computation proceeds.

... further arguments passed to or from other methods.

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

See Also

mae
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Examples

sim <- 1:10
obs <- 1:10
me(sim, obs)

sim <- 2:11
obs <- 1:10
me(sim, obs)

nrms Normalized Root Mean Square Error

Description

Normalized Root Mean Square Error between ’sim’ and ’obs’, with treatment of missing values.

Usage

nrms(sim, obs, na.rm = TRUE, ...)

Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values

na.rm a logical value indicating whether ’NA’ values should be stripped before the
computation proceeds.

... further arguments passed to or from other methods.

Details

nrms = 100

√
1
N

∑N
i=1 (Si −Oi)

2

Omax −Omin

Note

The result is given in percentage (%)

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

See Also

rms
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Examples

sim <- 1:10
obs <- 1:10
nrms(sim, obs)

sim <- 2:11
obs <- 1:10
nrms(sim, obs)

NSeff Nash-Sutcliffe Efficiency

Description

Nash-Sutcliffe efficiency between ’sim’ and ’obs’, with treatment of missing values.

Usage

NSeff(sim, obs, ...)

Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values

... further arguments passed to or from other methods.

Details

NSeff = 1−
∑N

i=1 (Si −Oi)
2

∑N
i=1

(
Oi − Ō

)2

The Nash-Sutcliffe efficiency (NSeff) is a normalized statistic that determines the relative mag-
nitude of the residual variance ("noise") compared to the measured data variance ("information")
(Nash and Sutcliffe, 1970). NSeff indicates how well the plot of observed versus simulated data fits
the 1:1 line.

Nash-Sutcliffe efficiencies range from -Inf to 1. Essentially, the closer to 1, the more accurate the
model is.

-) NSeff = 1, corresponds to a perfect match of modeled to the observed data.
-) NSeff = 0, indicates that the model predictions are as accurate as the mean of the observed data,
-) -Inf < NSeff < 0, indicates that the observed mean is better predictor than the model.

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>
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References

Nash, J. E. and J. V. Sutcliffe (1970), River flow forecasting through conceptual models part I -A
discussion of principles, Journal of Hydrology, 10 (3), 282-290.

http://en.wikipedia.org/wiki/Nash%E2%80%93Sutcliffe_model_efficiency_
coefficient

See Also

NSeff1

Examples

sim <- 1:10
obs <- 1:10
NSeff(sim, obs)

sim <- 2:11
obs <- 1:10
NSeff(sim, obs)

NSeff1 Modified Nash-Sutcliffe Efficiency

Description

Modified Nash-Sutcliffe Efficiency between ’sim’ and ’obs’, with treatment of missing values.

Usage

NSeff1(sim, obs, ...)

Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values

... further arguments passed to or from other methods.

Details

NSeff = 1−
∑N

i=1 |Si −Oi|∑N
i=1

∣∣Oi − Ō
∣∣

The modified NSeff is not inflated by the squared values of the differences, because the squares are
replaced by absolute values.
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Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

References

Legates, D. R., and G. J. McCabe Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in
Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241.

See Also

NSeff

Examples

sim <- 1:10
obs <- 1:10
NSeff1(sim, obs)

sim <- 2:11
obs <- 1:10
NSeff1(sim, obs)

pbias Percent Bias

Description

Percent Bias between ’sim’ and ’obs’, with treatment of missing values.

Usage

pbias(sim, obs, ...)

Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values
obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values
... further arguments passed to or from other methods.

Details

PBIAS = 100

∑N
i=1 (Si −Oi)∑N

i=1 Oi

Percent bias (PBIAS) measures the average tendency of the simulated values to be larger or smaller
than their observed ones.

The optimal value of PBIAS is 0.0, with low-magnitude values indicating accurate model simula-
tion. Positive values indicate overestimation bias, whereas negative values indicate model underes-
timation bias
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Note

The result is given in percentage (%)

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

References

Yapo P. O., Gupta H. V., Sorooshian S., 1996. Automatic calibration of conceptual rainfall-runoff
models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48.

Examples

sim <- 1:10
obs <- 1:10
pbias(sim, obs)

sim <- 2:11
obs <- 1:10
pbias(sim, obs)

PI Persistence Index

Description

Persistence Index between ’sim’ and ’obs’, with treatment of missing values.

Usage

PI(sim, obs, ...)

Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values

... further arguments passed to or from other methods.

Details

PI = 1−
∑N

i=2 (Si −Oi)
2

∑N−1
i=1 (Oi+1 −Oi)

2

Persistence Index (Kitadinis and Bras, 1980; Corradini et al., 1986) is used to compare the model
performance against a simple model using the observed value of the previous day as the prediction
for the current day.



plot2 19

The coefficient of persistence compare the predictions of the model with the predictions obtained
by assuming that the process is a Wiener process (variance increasing linearly with time), in which
case, the best estimate for the future is given by the latest measurement (Kitadinis and Bras, 1980).

Persistence model efficiency (PI) is a normalized model evaluation statistic that quantifies the rela-
tive magnitude of the residual variance (noise) to the variance of the errors obtained by the use of a
simple persistence model (Moriasi et al., 2007).

Value

PI ranges from 0 to 1, with PME = 1 being the optimal value and it should be larger than 0.0 to
indicate a minimally acceptable model performance.

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

References

Kitanidis, P.K., and Bras, R.L. 1980. Real-time forecasting with a conceptual hydrologic model. 2.
Applications and results. Water Resources Research, Vol. 16, No. 6, pp. 1034:1044.

Moriasi, D. N. et al. (2007). Model Evaluation Guidelines for Systematic Quantification of Accu-
racy in Watershed Simulations. Transactions of the ASABE, 50:(3), 885-900

Examples

sim <- 1:10
obs <- 1:10
PI(sim, obs)

sim <- 2:11
obs <- 1:10
PI(sim, obs)

plot2 Plot 2 Time Series

Description

Plot 2 Time Series

Usage

plot2(x, y, plot.type = "single", var.names = c("Observed", "Simulated"),
var.units = c("", ""), main, tick.tstep = "months", lab.tstep = "years",
ts.col = c("black", "blue"), ts.lwd= c(1,2), ts.lty=c(1,9),
ts.pch = c(1, 2), ts.cex = c(0.6, 0.6), xlab = "Year", ylab = "Observed",
pt.style = "ts", add = FALSE, leg.gof = FALSE, digits=2, leg.cex = 1,
cal.ini=NA, val.ini=NA, date.fmt="%Y-%m-%d")
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Arguments

x time series that will be plotted. class(x) must be ’ts’ or ’zoo’. If leg.gof=TRUE,
then ’x’ is considered as observed (for some gof functions this is important)

y time series that will be plotted. class(x) must be ’ts’ or ’zoo’. If leg.gof=TRUE,
then ’y’ is considered as simulated values (for some gof functions this is impor-
tant)

plot.type character that indicates if the 2 ts have to be ploted in the same window or in
two different vertical ones. Valid values are:
-) "single" : (default) superimposes the 2 ts on a single plot
-) "multiple": plots the 2 series on 2 multiple vertical plots

var.names character vector with the types (names) of variables being plotted, (e.g, "Precip-
itation", "Temperature" or "Flow"). ONLY used for labelling the axes

var.units character representing the measurement unit of the variable being plotted, e.g.,
"mm" for precipitation, "C" for temperature, and "m3/s" for flow.

main an overall title for the plot: see ’title’

tick.tstep string indicating the time step that have to be used for putting the ticks ont he
time axis. Valid values are:
-) ’days’,
-) ’months’,
-) ’years’

lab.tstep string indicating the time step that have to be used for putting the labels ont he
time axis. Valid values are:
-) ’days’
-) ’months’
-) ’years’

ts.col vector with the colors of ’x’ and ’y’

ts.lwd vector with the line width of ’x’ and ’y’

ts.lty vector with the line type of ’x’ and ’y’

ts.pch vector with the type of symbol for ’x’ and ’y’. (e.g.: 1: whithe circle; 9: white
rhombus with a cross inside)

ts.cex vector with the values controlling the size of text and symbols of ’x’ and ’y’
with respect to the default

xlab label for the ’x’ axis

ylab label for the ’y’ axis

pt.style Character that indicates if the 2 ts have to be plotted as lines or bars. Valid values
are:
-) "ts" : (default) each ts is ploted as a lines along the ’x’ axis
-) "bar": the 2 series are plotted as a barplot.

add logical indicating if other plots will be added in further calls to this function.
-) ’add=FALSE’ => the plot and the legend are plotted on the same graph
-) ’add=TRUE’ => the legend is plotted in a new graph, usually when called
from another function (e.g.: ’ggof’)
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leg.gof logical, indicating if several numerical goodness of fit have to be computed be-
tween ’sim’ and ’obs’, and ploted as a legend on the graph. If leg.gof=TRUE
(default value), then ’x’ is considered as observed and ’y’ as simulated values
(for some gof functions this is important). This legend is ONLY plotted when
’plot.type’ is ’single’

digits OPTIONAL, only used when ’leg.gof=TRUE’. Decimal places used for round-
ing the goodness-of-fit indexes.

leg.cex OPTIONAL. ONLY used when ’leg.gof’ is TRUE. Character expansion factor
*relative* to current ’par("cex")’. Used for text, and provides the default for
’pt.cex’ and ’title.cex’. Default value = 1

cal.ini OPTIONAL. Character with the date in which the calibration period started.
ONLY used for drawing a vertical red line at this date.

val.ini OPTIONAL. Character with the date in which the validation period started.
ONLY used for drawing a vertical red line at this date.

date.fmt OPTIONAL. Character indicating the format in which the dates entered are
stored in ’cal.ini’ and ’val.ini’. Default value is "%Y-%m-%d"
ONLY required when ’cal.ini’ or ’val.ini’ is provided.

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

See Also

ggof

Examples

sim <- 2:11
obs <- 1:10
## Not run:
plot2(sim, obs)

## End(Not run)

rms Root Mean Square Error

Description

Root Mean Square (RMS) Error between ’sim’ and ’obs’, in the same units of ’sim’ and ’obs’, with
treatment of missing values.

Usage

rms(sim, obs, na.rm = TRUE, ...)
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Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values

na.rm a logical value indicating whether ’NA’ values should be stripped before the
computation proceeds.

... further arguments passed to or from other methods.

Details

rms =

√√√√ 1

N

N∑

i=1

(Si −Oi)
2

Value

RMS gives the standard deviation of the model prediction error. A samller value indicates better
model performance.

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

References

http://en.wikipedia.org/wiki/Root_mean_square_deviation

See Also

nrms, ssq

Examples

sim <- 1:10
obs <- 1:10
rms(sim, obs)

sim <- 2:11
obs <- 1:10
rms(sim, obs)
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rSD Ratio of Standard Deviations

Description

Ratio of Standard Deviations between ’sim’ and ’obs’, with treatment of missing values.

Usage

rSD(sim, obs, na.rm = TRUE, ...)

Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values

na.rm a logical value indicating whether ’NA’ values should be stripped before the
computation proceeds.

... further arguments passed to or from other methods.

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

See Also

sd

Examples

sim <- 1:10
obs <- 1:10
rSD(sim, obs)

sim <- 2:11
obs <- 1:10
rSD(sim, obs)
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ssq Sum of the Squared Residuals

Description

Sum of the Squared Residuals between ’sim’ and ’obs’, with treatment of missing values. Its units
are the squared measurement units of ’sim’ and ’obs’

Usage

ssq(sim, obs, ...)

## Default S3 method:
ssq(sim, obs, na.rm = TRUE, ...)

Arguments

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values

na.rm a logical value indicating whether ’NA’ values should be stripped before the
computation proceeds.

... further arguments passed to or from other methods.

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

Examples

sim <- 1:10
obs <- 1:10
ssq(sim, obs)

sim <- 2:11
obs <- 1:10
ssq(sim, obs)
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valid.indexes Validation of Indexes

Description

Identify the indexes that are valid (not missing) simulataneously in ’obs’ and ’sim’.

Usage

valid.indexes(obs, sim)

Arguments

obs ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with observed values

sim ’numeric’, ’vector’, ’matrix’ or ’data.frame’ with simulated values

Note

This function is used for the treatment of missing values.

Author(s)

Mauricio Zambrano Bigiarini <mauricio.zambrano@ing.unitn.it>

Examples

sim <- 1:5
obs <- c(1, NA, 3, NA, 5)
valid.indexes(sim, obs)
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