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“It is imperfection - not perfection - that is the end result of the program written into that formidably 

complex engine that is the human brain, and of the influences exerted upon us by the environment and 

whoever takes care of us during the long years of our physical, psychological and intellectual 

development.”  

(Rita Levi-Montalcini) 
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Abstract 
 

Finding one’s way back to a safe refuge or recalling the best place to find food is essential to all animals 

including human beings. We engage in future actions based on past events. So how does our brain compute 

such important cognitive tasks? Is it an innate ability we have from birth that is hardwired into the blueprint 

of our brains? And what happens if for some reason we realize that we are unable to perform these cognitive 

abilities in old age or due to a neurological disorder? 

The hippocampus is the main area of the brain involved in memory and learning. Animal studies show 

evidence of its role in spatial navigation and memory. The complex network of spatial cells in the 

hippocampus, all participate in constructing a cognitive map in the brain, where an animal stores information 

about the external environment and uses it to engage in future actions. However, despite the importance in 

its function, the hippocampus is also one of the first areas of the brain to be affected by aging and other 

neurological disorders. 

The present thesis used the help of various animal models to answer three questions: first whether 

hippocampal function is present immediately at birth, second whether genes can regulate hippocampal 

activity and third whether a sensitive task such as reorientation can highlight hippocampal alteration caused 

by age. To answer the first question, we used the domestic chick that has the advantage of being tested after 

hatching. We show evidence that a change in environmental shape can alter hippocampal activity in naïve 

chicks, suggesting that hippocampal function is present already in early stages of life. Furthermore, we 

investigated if genes regulate hippocampal activity. We used a mouse model that carried one half of the 

Williams syndrome deletion, a disorder known for its hippocampal deficit. We show evidence that genes on 

the proximal deletion of Williams syndrome deletion, can alter reorientation and episodic memory, two 

hippocampal related functions. Finally, we aimed to find an appropriate task to highlight the allocentric 

difficulty that arises in age. We used aged animals of two species (mice and rats) and tested them in the 

reorientation paradigm. We show that this simple task has potential to be a better suited assay to evaluate 

hippocampal behavior.  
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Introduction 
 

Finding our way toward a food source or shelter and storing this information in our memory is of major 

importance to all animals. Given the importance of these abilities, it is essential to understand the neural 

mechanisms that are behind such cognitive capacities and how they change throughout our lives. There are 

various strategies an animal can implement to find a location: one is to keep track of their movement with 

respect to the external environment, updating the route while moving. This doesn’t require memorizing 

landmarks or other cues, but relies only on precision. However, the constant updating leads inevitably to 

errors and isn’t an efficient strategy to put in place when one loses its way. When an animal is disoriented 

and loses its bearings, it relies heavily on the geometric properties of the environment to recall a target 

location rather than non-geometric cues. This strategy called reorientation; has proved to be a widely 

conserved ability. Reorientation ‘s validity across animal species allows us to test spatial representations not 

only in different animals, but also at different time points in development. Navigation by boundary geometry 

depends on the correct firing of hippocampal place and boundary cells in rats, and is a sensitive task to 

measure physiological changes in hippocampal function. This is of main concern especially when spatial 

navigation and memory, both known to be dependent on hippocampal function, are compromised in age- 

related disorders, such as Alzheimer’s disease, or in neurodevelopmental disorders. The aim of my 

dissertation research was to use various animal models to investigate spatial cognition and memory in 

relation to hippocampal function at different ages starting from birth to old age. At birth, mammals such as 

rats or mice, classically used in behavioral testing, cannot be tested on any kind of behavioral paradigm 

including the reorientation task. To overcome this hurdle, we chose to use a precocial species such as the 

domestic chick, and measured hippocampal activity using a neural marker: c-Fos. Given the difficulty in 

testing adult chickens, we used a different animal model, well documented in literature in regard to 

hippocampal related aging: Rattus Norvegicus. We tested rats in adulthood and in old age on the same 

reorientation task to have a direct comparison of hippocampal ability in using geometry. We later extended 

the applicability of the reorientation task to a genetically modified mice model, with gene deletions that 

characterize hippocampal deficit. These mice carry one half of the WSCR (Williams syndrome critical region), 

and were tested not only in reorientation but also on episodic memory, two strictly related functions 

regulated by the hippocampus. We tested mice on two tasks to understand whether their specific deletion 

would alter one or more hippocampal functions. We show interesting findings on how various animal models, 

ranging from birds to mutant mice can provide suggesting evidence on hippocampal development and 

function.  
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The hippocampus and spatial cognition/navigation 
 

The curiosity to comprehend how we perceive our surrounding space has intrigued researchers and 

scientists throughout history. Important questions such as: how do we go from one place to another? How 

do we remember locations? Is this cognitive ability confined to only human beings? Is the perception of space 

an innate ability or is it acquired through experience and furthermore continue to puzzle scientists. The first 

scientific notion of how our brain navigates in the external world comes from Tolman’s experiments. He was 

the first to suggest that animals navigated forming internal representations of the external environment. 

Tolman conducted a series of experiments on rats in complex mazes, and observed that when given a choice 

they did not randomly chose to go left or right, but took a decision according to a structured map, a cognitive 

map based on previous trials in the maze (Tolman, 1948). The essential characteristic of a cognitive map 

according to Tolman was the ability to make short cuts along the way in order to take the shortest route 

toward the goal. In the late 70’s, John O’Keefe and Nadel further developed his idea by proposing the 

“cognitive map theory” (O’Keefe & Nadel, 1978). They suggested the mental representations Tolman was 

referring to were formed by a specific brain structure: the hippocampus. They thought the hippocampus of 

rodents represents the environment along with its locations, landmarks and contexts forming a map that 

animals used to navigate from one location to another and stored this information for the future (Bennett, 

1996).  

The role of the hippocampus has been analysed in human and non-human animals in its role in 

memory and spatial navigation. To further understand whether a cognitive map was present in other animal 

species, at first comparative neuroanatomists suggested behaviours such as homing, migration, and 

territoriality as evidence of cognitive based mapping. Therefore, it is safe to assume that species 

demonstrating these behaviours have a homologue to the mammalian hippocampus(O’Keefe & Nadel, 1978). 

The hippocampus is a highly conserved structure, and although may differ in anatomical organization, 

preserves the same function in mammals and non-mammals (Broglio et al., 2015). Lesion studies in birds, 

mammals and humans, all produce deficits in spatial tasks and spatial memory (Squire, 1992). Evidence from 

neuroanatomical studies show that a common brain structure called “pallium” evolved from fish, and 

specialized in forming map-like representations of space in mammals and birds (Broglio et al., 2015; Jarvis et 

al., 2005; Rodrıǵuez et al., 2002). In particular, the avian brain, although different in anatomy, has the most 

similarities in function to the mammalian brain. Similarly to rodents, chicks also show two types of spatial 

learning: hippocampus and non-hippocampus based (Mayer et al., 2016). Studies on chicks have shown they 

rely on boundary geometry to orient (allocentric) but are also capable of using non-geometric cues 

(egocentric) to find a goal location. In this scenario, the use of a precocial species such as the domestic chick 

(Gallus gallus domesticus) to investigate early hippocampal function is very useful. The evidence of 

homologies across species, gives the knowledge and tools to find useful neurobiological markers that can 
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allow us to mark hippocampal activity and enable the use of multiple animals as models to investigate 

hippocampal function. We can therefore overcome the limitations in testing only mammals to study human 

disorders, such as the inability to test immediately after birth for example. 

The hippocampus, as previously mentioned, engages in spatial representations in humans and non-

humans, but what remains to be clarified is how it actually forms these complex mental constructs. Generally 

speaking, an animal can implement various strategies to move from one location to another. One very simple 

way is to keep track of its self-motion along the way (Burgess, Maguire, & O’Keefe, 2002; Lee & Spelke, 2010). 

This mechanism requires no memory of the environment or other cues, but only precision in keeping track 

of its movement. The neural correlates of path integration in rodents lie in the entorhinal cortex, and keep 

track of the animal’s heading along a route. In more complex environments where one has to recall and go 

back to a target location this system is integrated by more sophisticated strategies. To remember a target 

corner for example, an animal can use the geometric shape of the environment (geometric information), or 

visual cues such as pattern walls or salient objects (non-geometric information). Lee and Spelke point out 

two distinct mechanisms that process spatial properties of the external environment: the first uses objects 

and patters, the other creates 3D layouts based on its geometric properties (Lee & Spelke, 2010). Experiments 

in disoriented animals all show that when an animal loses its reference points, it relies mainly on geometric 

rather than other types of non-geometric cues (Lee, 2017). 

The geometric layout of the environment is often a stable and constant type of information that 

animals rely upon especially when disoriented (Cheng & Newcombe, 2005; Gallistel, 1990). Cheng in the late 

80’s tested rats in an enclosed rectangular arena. The task was simple: after habituation and a few learning 

trials animals had to find food in a corner of the rectangular arena (Cheng, 1986). To aid their searches they 

could rely on features such as striped panels or odours. He observed that rats made rotational errors in their 

searches, meaning 180° rotation error from the correct corner. In a rectangular arena, with featural cues on 

the wall, rats searched in the correct corner and in the geometrically opposite corner, narrowing down their 

searches from 4 to 2 corners. However, they failed to narrow their searches from two to one corner in spite 

of distinctive panels and odours to help them. This lead Cheng to believe and develop the “geometric 

module”(Cheng & Newcombe, 2005). The validity of Cheng’s observations was later confirmed by similar 

experiments in both human children (Lee & Spelke, 2011) and non-human animals (Lee, Spelke, & 

Vallortigara, 2012; Lee et al., 2015; Sovrano, Bisazza, & Vallortigara, 2002) all show standing evidence that 

disoriented animals rely on the geometric shape of the environment, rather than other more salient cues to 

find the target location(Cheng & Newcombe, 2005). Not only can rats use geometry in a rectangular shaped 

arena, but can infer geometric properties from separate objects as in the case of Benhamou and Pouchet 

(Benhamou & Poucet, 1998). They tested rats in a circular swimming pool where cues were distinct landmarks 

sticking from the water. They observed that rats can use geometry from separate objects and as in 
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experiments in the rectangular arena, featural information is either ignored or used less. Like rats, other 

species such as the avian species, mostly chicks and pigeons, have also shown to prefer geometric based 

navigation. Chicks in a reference memory paradigm in a rectangular arena, in absence of featural cues use 

geometry. However, when features such as coloured panels were presented near the target, chicks used 

features. This shows that they can use both geometry and features to navigate (Vallortigara et al., 1990). 

Similar experiments have been conducted in human children and adults and what is interesting to observe is 

that spatial behaviour is modulated by development. As observed in animals, very young children (18-24 

months) use geometry of a rectangular room to concentrate searches of a hidden object in the correct corner 

and the diagonally opposite corner. However, experiments in human adults show that the geometric module 

is often substituted by egocentric based strategies. Wang and Spelke argue that this shift in behavioural 

preference in development might be due to the acquisition of spatial language that takes over the more 

innate ability of geometric based navigation (Wang & Spelke, 2002). 

Behavioural data from animals and humans have highlighted multiple neural structures that regulate spatial 

behaviour (Hartley et al., 2014; Lee & Spelke, 2010). The distinction between geometric cues and featural 

cues are mediated by separate brain structures. The hippocampus seems to be involved in processing layout 

geometry but not features such as colours or odours. Its role in spatial function is widely known thanks to 

the discovery of place cells in the hippocampus and grid, boundary and head-direction cells in the entorhinal 

cortex of rats (Hafting et al., 2005). Place cells in the rodent hippocampus create a cognitive map in the brain, 

a spatial representation that includes position of landmarks as well as distances and orientations estimated 

by the animal (Mizumori et al., 2008; Moser, Kropff, & Moser, 2008). When the external environment 

changes, place cells put together new pieces of information and update the old map, a mechanism called 

“remapping” (Lever et al. 2002; O’Keefe and Burgess, 1996). Research in rodents show evidence that place 

cells are sensitive to change of environmental shape. Lever and colleagues, 2002 placed rats in two unfamiliar 

environments in a circular and square shaped arena. Over days of exposure to the two environments, place 

cells fired in a different pattern showing to be sensitive to the change in shape of the arena (Lever et al., 

2002). Place cells in the hippocampus receive inputs from boundary cells in the entorhinal cortex, which are 

sensitive to sensory information about the distance of the animal from the walls of the environment (Lever, 

Burton, Jeewajee, O’Keefe, & Burgess, 2009). Moreover, objects if placed near to the walls of the arena and 

not inside activate place cells and head direction cells (Hartley et al., 2014; Lever et al., 2002). In fact, 

hippocampal lesions impair the ability to use geometric cues, but do not affect the use of objects in navigation 

(McGregor., 2004). Supporting the hippocampus is also the neighbouring entorhinal cortex, that participates 

in encoding geometric properties of the environment. Border cells, neurons inside the entorhinal cortex, 

along with boundary cells define the borders of the environment in relation to the inside locations (Stensola 

et al., 2012). Similar properties in hippocampal function were seen by Vallortigara, Sovrano and Pagani. They 

tested chicks restricted to one eye in a reorientation task. They concluded that when the right eye was closed, 
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(use of the left hemisphere) they relied mainly on featural cues. However, when the left eye was closed (use 

of the right hemisphere) they used geometry to navigate (Vallortigara, Pagni, & Sovrano, 2004). A Similar 

disassociation is seen also in humans: functional neuroimaging studies have shown right posterior 

hippocampus for geometry and right dorsal striatum for landmark related location (Doeller, King, & Burgess, 

2008). The hippocampus has a goal independent representation of space that depends on the firing of place 

cells. This type of learning provides an immediate association between a goal (an object) and its context 

(environment). In humans, spatial cognition is extended to a larger area of the brain called PPA, 

(parahippocamapal place area), which surrounds the hippocampus and is connected tightly to the limbic 

system. Behavioural data in humans is controversial on whether this area is restricted to only geometric 

properties or landmarks or both. However, lesions in this region lead to spatial deficits suggesting an overall 

important role in spatial representations and memory (Cheng & Newcombe, 2005). 

 

The hippocampus and long term memory: Episodic memory 

The hippocampal function is not limited to only spatial cognition but also to more complex functions 

such as recalling and retrieving long term memories (Eichenbaum, 2017; Nadel, Hoscheidt, & Ryan, 2012; 

Squire, 1992). The role of the hippocampus in memory started triggering researchers interest after the case 

of patient HM. Henry Molaison, better known as patient HM, suffered from major epileptic seizures. In 1953, 

HM got surgery where parts of the temporal lobes were removed in order to treat his epilepsy. The resection 

included the removal of major parts of the hippocampi. Although his seizure attacks reduced, surprisingly he 

was not able to form new memories or retain the most recent ones (Dossani, Missios, & Nanda, 2015). 

Similarly patients that lost parts of the temporal lobes also showed the same pattern, suggesting the 

hippocampus beeing essential in forming new memories (Dossani, Missios, and Nanda, 2015) and in 

retrieving old ones (Burgess et al., 2002). 

Recalling personal memories is an essential part of life, as they characterize each individual’s personal 

history. First defined by Tulvig, (Tulving & Thomson, 1973), episodic memory is the conscious recollection of 

what, where and when of a past event. This memory, along with semantic memory belongs to the class of 

long term memories. Thanks to behavioural findings in animals, this ability is now known to be present also 

in non-human animals. There is behavioural evidence that animal possess episodic-like memory (Dere et al, 

2005; Eacott, 2004; Roberts & Feeney, 2009; Templer & Hampton, 2013). Although the same definition by 

Tulvig cannot be applied to animals, several attempts in behavioural research have underlined a few 

prerequisites to define episodic memory in non-humans: the ability to spontaneously communicate their 

past, keep track of their own recent behaviour and finally conscious recollection like memory (Dere, 2005). 

Scrub jays can remember what they catch, where and when: they search first in sites that contain perishable 

food, such as worms, but only if the food has been stored there recently, but if days have gone by, jays search 
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directly in sites that contain non-perishable food, such as peanuts (Clayton & Dickinson, 1998; Nyblade et al., 

1998). Likewise, rodents, non-human primates, dolphins, pigeons, magpies, honeybees and many other 

animals possess this cognitive ability called episodic-like memory. Episodic like memory in animals like in 

humans has an evolutionary value because they recall facts of past events in order to decide and plan future 

events (Dere, 2005). From an experimental point of view, accessing episodic memory in animals has major 

applications. Brain injured individuals, Alzheimer’s disease patients and other disorders that selectively 

impair the hippocampus, all disrupt memory formation and retrieval (Small, Fratiglioni, Viitanen, Winblad, & 

Bäckman, 2000; Walker et al., 2011). Having an animal model which can be tested on this cognitive ability 

would highlight anatomical, physiological and molecular mechanisms that could not be possible through 

human studies.  

The neural correlates of memory, especially episodic memory lie in the hippocampus (Burgess et al., 

2002; Knierim, 2015). The anatomical and functional distinction of the hippocampus allows it to link together 

space and time. The hippocampus, being so largely connected to other brain areas, has an important role of 

binding together spatial and temporal information and creating complex contexts to which a specific memory 

is associated. To aid its complex function is also its anatomical differentiation: the posterior hippocampus is 

involved in retrieving detailed spatial relational information, whereas the anterior mainly involved in 

retrieving contexts and memory (Nadel et al., 2012; Strange et al., 2014). 

The hippocampus provides a spatio-temporal context where a certain memory’s what, where and 

when are stored and bind together. The formation of a cognitive map (spatial component) is essential to 

support episodic memory. In order to recall where you left your glasses last night, the hippocampus must 

distinguish countless other memories that include locations of your glasses. In order to do so, it assigns a 

context to a certain memory by manipulating the where and when. When the change of where and when 

crosses a threshold, then the hippocampus forms a new context. For example, if the configuration of 

furniture remains the same every time you walk into your office, then those factors will become indicators 

of the context (or “landmarks”), and hippocampal cells would likely map relative to the boundaries of your 

office. If, one day, the furniture configuration changes, the change would trigger the hippocampus to assign 

distinct context representations to the “old” vs. “new” office configurations. Additionally, if the office chair, 

changes locations continuously, it would be treated as an item to be mapped in the office context (Ekstrom, 

Ranganath, & Plant, 2017).  

The relationship between place cells (space) and time cells (time) provide the representation of a 

unique context for a memory and bind spatial and temporal components together. Time cells in the rat CA3 

region fire at specific time points as an animal experiences a predictable sequence of events, even when the 

animal remains in the same location (Macdonald, Lepage, Eden, & Eichenbaum, 2011). Moreover, just as 
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place cells remap when an animal is moved to a new spatial context, hippocampal time cells “retime” when 

the temporal structure of a task, or the current behavioural context is changed.  

The hippocampus as shown by neural data has an important role in binding information but also 

connecting different brain areas. The heavy workload of integration; the hippocampus requires constant 

production of new neurons to answer its highly demanding cognitive needs. In fact, evolution has provided 

this only structure in the entire brain the faculty of producing new neurons throughout adulthood. 

Surprisingly, extensive use of the hippocampus can increase the number of neurons and therefore produce 

an increase in volume. London taxi drivers, who use the hippocampus extensively on a daily basis, have an 

overall larger hippocampal volume compared to controls (Maguire et al., 2000). On the other hand, decrease 

of use causes neuronal death and shrinkage. This occurs in age – related disorders such as Alzheimer’s 

disease, dementia and mild cognitive impairment (Lithfous, Dufour, & Després, 2013). The neuronal plasticity 

that characterizes hippocampal function is also the cause of its vulnerability toward aversive stimuli such as 

stress, anxiety and aging.  

Hippocampal vulnerability and sensitivity to age related and genetic disorders 
 

“The plasticity of the hippocampus is the reason for its vulnerability” (McEwen, 1994). For decades it 

has been known that conditions such as ischemia, hypoglycemia, epileptic seizures, neurodegenerative 

disorders affect the hippocampus (Bartsch, 2012). Given the hippocamapal role in important cognitive 

functions such as memory and spatial navigation, damage to this small area, due to disease or simply 

physiological aging, can lead to severe deficits in cognitive function. Therefore, investigating the neural 

mechanisms that cause hippocampal degeneration and impairment are of keen importance. The longevity of 

our population goes hand in hand with an increase of neurodegenerative disorders such as: Alzheimer’s, 

Parkinson’s disease and senile dementia to name a few. All these disorders are characterized by a general 

death of neurons (neurodegeneration) in the central nervous system. In this scenario, the hippocampus is 

the most affected, leading to loss of memory as one of the most salient cognitive declines. In Alzheimer’s 

disease (AD) elderly individuals show a general difficulty in spatial navigation and memory, and this is often 

correlated with a structural alteration inside the hippocampal formation. Braak and colleagues showed 

pathological staging of AD starts in the entorhinal cortex and hippocampus and then spreads to other areas 

of the brain (Braak & Braak, 1995). This suggesting that a measure of early damage to the hippocampus could 

help diagnose the disorder before its clinical manifestations. 

The most obvious clinical signs of AD include loss of memory and inability to recall locations (Head & 

Isom, 2010). Elderly individuals acquire spatial information less and preferably take familiar routes and 

environments as a coping strategy to avoid errors (Lithfous et al., 2013). In a spatial task using a virtual 

environment, old individuals show preference in using an egocentric to allocentric strategy. This difficulty in 
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forming cognitive maps, and using hippocampus based strategies in aged individuals, is a reflection of 

structural changes inside the brain. Normal aging causes a general shrinkage of cortical structures, with the 

hippocampal formation being the most sensitive (Raz et al., 2005). Similar findings are present in aged 

animals. Lesion studies in rodents have shown that hippocampal lesions affect allocentric but not egocentric 

strategies, suggesting the hippocampus being involved in place learning rather that response learning. 

Mostly, animal models of normal and pathological aging have highlighted the neuropathological mechanisms 

of normal aging in AD disorder. Place cell specificity was reduced in old compared to young rats, suggesting 

an age-related difference in hippocampal neurons caused by aging. Moreover, as in old humans they show a 

tendency of using egocentric strategies rather than allocentric in a Morris water maze task (Barnes, Nadel, & 

Honig, 1980). Likewise, mutant mice models of AD disorder show a decline in spatial performance and a 

reduced place cell firing pattern (Chishti et al., 2001; Walker et al., 2011).  

A similar deficit in allocentric navigation is observed in a genetic and neurodevelopmental disorder 

called Williams syndrome (WS). What is interesting to observe, that although having a different etiology from 

AD, similar difficulties in spatial navigation and memory are observed in both disorders. WS is a rare genetic 

disorder caused by the deletion of around 20 genes on human chromosome 7 (Mervis et al., 2000). Affected 

patients show a very unique cognitive and behavioral phenotype, with relatively strong social and verbal skills 

but severe difficulties in visuo-spatial tasks.They fail in both egocentric (Bernardino et al., 2013) and 

allocentric spatial tasks (Ferrara & Landau, 2015; Lakusta, Dessalegn, & Landau, 2010). Bernardino and 

colleagues performed a screen based and 3D task to test whether WS patients could use their own body 

(egocentric) or external objects (allocentric) to correctly distinguish the position of an object in the 

environment. Results show that in both tasks there is a failure when compared to controls (Bernardino et al., 

2013). Allocentric navigation uses not only external references such as objects or landmarks, but also 

environmental geometry to orient. Lakusta and colleagues, 2010 showed that WS patients were not able to 

use the geometric properties of a rectangular arena to reorient, but can improve when a blue wall is added 

to the arena. This provides evidence that while incapable of using boundary geometry, they can improve 

when a visual landmark is added to the arena (Lakusta et al., 2010). While spatial memory is completely 

altered, object memory (physical properties) is relatively conserved in WS individuals. Vicari et al. 2005 

designed a task where one had to recall a succession of objects that were presented, and WS scored equally 

as their controls. However, in a visuo-spatial task where they were asked to recall the spatial collocation of 

an object, WS failed (Vicari, Bellucci, & Carlesimo, 2005). These results suggest a difficulty in linking together 

elements of complex memories such as episodic memories. Neural substrates of spatial representation seem 

to be affected by genetic deficit therefore causing impairment in behavioural tasks (Bostelmann et al., 

2017;Lakusta et al., 2010). MRI scans of WS patients show an overall smaller hippocampal volume compared 

to controls, suggesting the hippocampal formation strongly involved in their visuo-spatial deficit (Meyer-

Lindenberg, 2005).  
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Williams syndrome therefore, represents a good model to study hippocampal function as it contains 

an intrinsic deficit related to its gene deletion. In our work we try to provide a multidisciplinary approach 

using different animal models from the domestic chick to mutant mice models with selective hippocampal 

deficits, to study the development and physiological aging of the hippocampus. Our findings show 

alternatives to the extensive use of rodents in behavioural research, and extend the knowledge of how the 

conserved hippocampal function across animals, allows us to study human disorders such as aging and 

neurodevelopmental disorders not only in mammals but also other animal species.  
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Aims of the study 
 

The main aim of our study was to investigate spatial representations and memory and its neural correlates 

through development starting from birth to old age.  

Our first question was whether hippocampal mapping of spatial geometry is present immediately at 

birth or whether it requires prior experience to trigger its function. To test early hippocampal function, we 

used a precocial animal species: the domestic chick (Gallus gallus domesticus). We designed a simple 

behavioural paradigm (Chapter 1) to test whether a change in environmental shape (square vs. rectangle) 

can be detected by the hippocampus of new-born chicks. We later investigated hippocampal activation by 

measuring the quantity of c-Fos, an immediate early gene, activated and later transcribed into a protein when 

a neuron detects novelty. We chose the chick as the appropriate animal model, because unlike rodents it 

allows behavioural testing immediately after hatching. Given the difficulty in maintaining and testing adult 

chickens, they fail to be a good model to study hippocampal development in adulthood and senility.  

We later wanted to investigate whether two hippocampal functions, reorientation and episodic 

memory are regulated by genes. Reorientation is a well-established paradigm but what still remains to be 

understood is whether a particular set of missing genes can alter its behavioural outcome. Episodic memory 

on the other hand, has never been investigated in this disorder, therefore given its importance we aimed to 

investigate if this strictly related hippocampal function, is also altered in relation to gene manipulations. In 

order to do so, we used a disorder characterized by hippocampal deficit: Williams syndrome (WS). WS is a 

rare neurodevelopmental disorder, caused by a deletion of around 20 genes on chromosome 7. This disorder 

is a good model to study hippocampal deficit, because it allows us to understand the relationship between a 

selective gene deletion and hippocampal function (Chapter 2). We used a mutant mouse model that carries 

one half of the Williams syndrome critical region (Gtf2i-Limk1). This deletion reproduces many behavioural 

features of WS. However, there is no evidence whether it includes the typical deficit in spatial and memory 

tasks observed in clinical patients. We tested mutant mice in reorientation (in two conditions to test correct 

use of environmental geometry and use of landmark alone) and episodic-like memory in its three 

components “what”, “where” and “when”. We compared performance of genetically modified mice to 

controls in all conditions.  

Finally, we aimed to investigate the last stage of hippocampal development: aging (Chapter 3). There 

is evidence that aging causes difficulty in using allocentric strategies in both animals and humans (Barnes et 

al., 1980; Lithfous et al., 2013). Given the sensitivity of the hippocampus to aging, we aimed to investigate if 

a simple task such as reorientation could highlight deficit in function. Spatial tasks in animals such as Morris 

water maze, and Barnes maze aren’t able to isolate hippocampal function in relation to boundary based 

navigation. These tasks often risk overtraining animals that show good performance mainly because of 
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repetitive trials. In order to overcome this, we used the reorientation paradigm on two different species: 

mice (Mus Musculus) and rats (Rattus Norvegicus) on their ability to use geometry and landmark separately. 

We compared performance between old and young animals of each species.  

Chapter 1: Representation of environmental shape in the hippocampus of domestic chicks (Gallus gallus). 

The present knowledge on hippocampal function comes mostly from adult animals. There are few 

studies that investigate whether spatial representations are present already at birth or whether the 

hippocampus requires external input to function. There is evidence in rodents that border cells in the 

entorhinal cortex have adult like firing rates at 16-18 days after birth (Bjerknes, Moser, & Moser, 2014). 

However, there are no findings whether neurons inside the hippocampal formation have adult like firing at 

birth or in earlier stages of life. 

We decided to use the domestic chick (Gallus gallus domesticus) to investigate if a simple change in 

environmental shape can affect hippocampal activity. The avian brain represents a good alternative to study 

immediate function. Chicks, can be tested immediately after hatching and represent an alternative animal 

model to overcome the limitations of rodent testing, that become autonomous only a month after birth.  

Phylogenetically, the avian species share more similarities with mammals than other species. 

Mammals and birds share the same hippocampal functions such as spatial navigation and memory. 

Hippocampal lesions in birds impair large-scale navigation and cause impairments in the dry Morris water 

maze task. Moreover, chicks like rats are sensitive to environmental geometry (Mayer et al., 2016; Lee, 

Spelke, and Vallortigara, 2012). What remains controversial is the correspondence between structures: in 

rodents, the hippocampus is divided into distinct regions, but in birds, the same structure has a lamellar 

structure with neurons packed together but without any clear anatomical boundary. Some studies using 

molecular markers and immunohistochemistry  have underlined similarities in hippocampal regions between 

birds and mammals but they remain still incomplete(Gupta, Maurya, Saxena, & Sen, 2012).  

Given the similarities in function to the mammalian hippocampus, across species experiments allow 

neuroanatomical comparisons of the hippocampal formation to narrow the gap between the structural 

differences between the two species. In this scenario, based on the sensitivity to environmental shape 

present also in chicks, we wondered whether the chick hippocampus could detect a change in arena shape 

in its very early stages of life. We trained naïve chicks in a square-square apparatus and on test day replaced 

a square with a rectangle. We measured hippocampal activity by counting neurons that produced c-Fos, an 

immediate early gene that is produced when the hippocampus is stimulated by novelty and learning. Our 

results show that neurons in the chick hippocampus are activated by a change of shape. We provide further 

evidence of similarities between chick and mammalian hippocampus and show that hippocampal activity 

starts immediately at birth in the avian brain.  
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Chapter 2: Proximal deletion (Gtf2i-Limk1) in Williams syndrome affect reorientation and episodic like 

memory 

Williams syndrome (WS) is a rare neurodevelopmental disorder that affects around 1/7500 new-

borns. An error during meiosis gives rise to a deletion on chromosome 7. This deleted region, also called 

WSCR (Williams syndrome critical region) contains 26-28 missing genes characterizes these patients with a 

unique profile that includes specific physical, behavioural, and cognitive abnormalities along with structural 

deficits in the brain. Functional imaging studies point out an have an abnormal hippocampal structure in WS 

patients (Meyer-Lindenberg, 2005) Moreover, they also show a different activation pattern in hippocampus-

dependent learning and hippocampal physiology compared to controls. 

Some genes of the WSCR have been linked to visuo-spatial deficits: knockout mouse models for 

LIMK1 and CLN2 showed functional alterations of hippocampal formation (Gray et al., 2006).Their 

hippocampal deficit is observed not only in anatomical structure but it also corresponds to a behavioural 

deficit mainly in difficulty in viso-spatial tasks (Donnai & Karmiloff-Smith, 2000).). Moreover, hippocampal 

related behaviours, in particular verbal long-term memory and spatial navigation are impaired due to their 

inbred genetic deficit (Lakusta et al., 2010). These preclinical results strongly suggest involvement of the 

hippocampus in the pathophysiology of WS and make it a good model to study hippocampal related deficits.  

In our experiments we used a mouse model contained one half of the WSCR deletion (Gt2fi-Limk1). 

This model reproduces most of the clinical and behavioural aspects of Williams syndrome (Li et al., 2009). 

We investigated whether there is an effect of gene deletion on spatial reorientation and memory. We show 

evidence that the proximal deletion of the WSCR (Gt2fi-Limk1) is correlated to a deficit in hippocampal 

function that is seen in both behavioural tasks. In reorientation, mutant mice show failure in using geometry 

and landmark. In episodic memory they show a deficit in the temporal component (what+where), while 

conserve the what component. 

Chapter 3: Aging impairs boundary based navigation and landmark use in mice (Mus musculus) and rats 
(Rattus Norvegicus).  
 

Allocentric along with egocentric navigation are the two main strategies animals can use to find a 

target location. Adult animals preferably use an allocentric hippocampus based strategy following 

disorientation. In particular, the geometry of the external environment is a salient cue for animals’ navigation 

(Lee & Spelke, 2010).  

Aging however, causes difficulty in using allocentric strategies and behavioural tests in elderly 

individuals show a switch in preference toward other extra-hippocampal strategies. Likewise, animal studies 

with aged animals also show significant impairments in using allocentric strategies in Morris water maze tasks 

(Barnes et al., 1980; Fellini, Schachner, & Morellini, 2006). This behaviour is strongly related to a hippocampal 
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deficit that arises in age. Normal aging causes some significant changes in brain structure: especially the 

hippocampus.(Raz et al., 2005). 

We aimed to see if a simple behavioral task such as the reorientation paradigm could highlight 

hippocampal deficits. Therefore, we tested old animals of two different animal species: mice (Mus musculus) 

and rats (rattus norvegicus) on their ability to use environmental geometry and landmark to reorient. Given 

the sensitivity of boundary geometry to hippocampal function, we show how this sensitive task can be used 

to test hippocampus related behaviors in aged animals.  
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Chapter 1: Representation of environmental shape in the hippocampus of 

domestic chicks (Gallus gallus)1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
1. Mayer, U., Bhushan, R., Vallortigara, G., & Lee, S. A. (2017). Representation of environmental shape in the 
hippocampus of domestic chicks (Gallus gallus). Brain Structure and Function, 1–13. 
https://doi.org/10.1007/s00429-017-1 
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Abstract 
 

The hippocampus plays an important role in spatial encoding and memory across various vertebrate species. 

In rodents, hippocampal neurons are particularly sensitive to a change in environmental geometry. Given the 

similarities in function between the mammalian and avian hippocampi, we aimed to measure whether arenas 

varying in geometric shape (square and rectangle) can differentially activate hippocampal cells in the 

domestic chick (Gallus gallus domesticus). Chicks exposed to both a square and a rectangular arena exhibited 

a significantly higher neural activation (as measured by c-Fos expression) than those exposed twice to just 

the square or just the rectangle (both of which were significantly higher in activation than a one-environment 

control group). For the first time in an avian species, we show that exposure to two arenas of different 

geometric shape activates the hippocampus to a greater degree, suggesting a possible effect of spatial 

remapping. 
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Introduction 

Animal spatial navigation is mediated by internal ‘maps’ of the environment consisting of allocentric 

representations of locations and their spatial relationships (Tolman, 1948). The hippocampus (Hp) is a 

phylogenetically ancient part of the vertebrate brain (Butler & Hodos 2005). In all vertebrate groups, the 

hippocampal pallium homologue is involved in the use of map-like, relational representations of the 

environment that provide stable allocentric reference for flexible navigation (Rodríguez et al., 2002; Broglio 

et al., 2015). These similarities suggest a common evolutionary ancestry of the functional properties of the 

hippocampus, which are retained through the independent evolution of vertebrate lineages. Although the 

spatial mapping function of the hippocampus is shared across both mammals and non-mammals, the 

understanding of avian hippocampus at the neuronal level is very limited. In particular, because the avian 

hippocampus lacks a layered structure, the anatomical subdivisions that correspond to the mammalian 

hippocampal regions are still highly debated (Atoji et al., 2006; Gupta et al., 2012; Herold et al., 2014; 

Striedter 2016). Nevertheless, the question of how such seemingly different structures can contribute to 

similar functions makes it worthwhile to further investigate the avian hippocampus in ways that can be 

directly compared to its mammalian counterpart. 

In mammals, internal ‘maps’ of the environment are generated through a critical contribution of 

hippocampal place cells (O’Keefe & Dostrovsky 1971). These neurons fire when the animal passes through a 

specific part of its environment, a phenomenon that has been investigated in detail in hundreds of 

experiments over four decades (Barry & Burgess 2014; Moser et al., 2014). Spatial coding in mammals is 

heavily dependent on the inputs from spatial boundaries (Lee, 2017). Change in the environmental shape 

cause remapping of the hippocampal place cells to new preferred firing fields or activation of new cell 

populations (Muller & Kubie 1987; O’Keefe & Burgess 1996; Lever et al., 2002). Although the above studies 

on rodent measured neural activity using electrophysiology, environmental novelty can also be observed 

using immediate early genes (IEG’s) as neuronal activity markers (Kubik et al., 2007). IEG’s are rapidly 

expressed when neuronal activity increases and play an important role in memory consolidation (Lanahan 

and Worley 1998; Jones et al. 2001; Guzowski 2002; Barry & Commins 2011). The availability of this 

alternative measure of neural activity is especially important in the study of the avian hippocampal formation 

and how it represents multiple environments.   

Despite the structural differences, the hippocampus is crucial to spatial navigation in birds, just as it 

is in mammals (Bingman & Able 2002; Smulders 2006; Mayer et al., 2013). Hippocampal lesions in birds impair 

large-scale navigation (Bingman et al., 1985, 2005), disrupt orientation in the ‘dry Morris water maze’ 

(Watanabe & Bischof 2004; Watanabe et al., 2008) and interfere with the use of boundary geometry of the 

environment (Tommasi et al., 2003; Vargas et al., 2004; Bingman et al., 2006). In pigeons, hippocampal 

neurons comparable to place cells were found using electrophysiology, but their responses were not as 
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spatially selective as in rats (Hough & Bingman 2004; Siegel et al., 2005; Bingman & Sharp 2006). The 

importance of the avian hippocampus for spatial navigation has been further confirmed with IEG’s 

experiments (Smulders & DeVoogd 2000; Bischof et al., 2006; Mayer et al., 2010; Mayer & Bischof 2012). Our 

most recent study using IEG’s in domestic chicks trained in a standard reference memory task (Vallortigara 

et al., 1990), further confirmed hippocampal involvement in goal-based navigation by the shape of a 

rectangular arena (Mayer et al., 2016), suggesting similar sensitivity of avian hippocampus to the boundary 

space. Given the fundamental importance of boundary geometry for spatial orientation abilities across 

vertebrates, including domestic chicks (Vallortigara et al., 1990; Lee et al., 2012), in the present study we 

aimed to address whether the hippocampus of newly-hatched chicks would respond to a change in 

environmental shape in a way that is similar to remapping effects observed in the mammalian hippocampus. 

 
General Methods 

Rationale of the experimental design 

A standard procedure to map neuronal activity in brain sections is to quantify cells containing IEG 

products. The underlying assumption is usually that the experimental task should activate a greater number 

of cells in the region of interest of the experimental animals compared to the controls. However, the 

differences in neural coding associated with the differing environmental conditions can also involve 

variations in which neuronal populations, within the same region, are activated by two different experiences 

(Chaudhuri et al., 1997; Vazdarjanova & Guzowski 2004; Guzowski et al., 2005). Thus, the involvement of 

brain structures in which two different neural populations are activated in the control and experimental 

conditions might be overlooked, if the two populations are approximately of the same numerosity. 

Prior to the current study, a series of pilot experiments revealed equally high activity levels in the 

hippocampus of chicks that were habituated to visit a square-shaped arena over multiple days and then 

exposed either to a new rectangular arena or to an identical square environment to that seen in habituation. 

Both conditions elicited similar hippocampal activation, with no differences in activated cell counts between 

the two groups (unpublished results). These surprising results led us to hypothesize that distinct neural 

populations might be activated in the two conditions, but since they were of similar numerosity we could not 

detect the difference.  

To overcome this limitation, the design of the present experiment involved exposing different groups 

of chicks, either two times to the same shape environment or to two different environmental shapes. By 

considering the time course of c-Fos expression (an immediate early gene product with protein peak level 

between 1-2h after behaviourally induced activation), we expected to observe highest number of c-Fos 

activated cells in the group of chicks which were exposed to two different environmental shapes, because 

the two different experiences within a short period would activate different (potentially overlapping) 
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populations of neurons, both containing high level of c-Fos at 1-2h after exposure. On the contrary two 

repeated exposures to the same environmental shape within a short period would induce an overlap of 

neuronal populations (Guzowski et al., 2005) and therefore activate lower densities of cells.  

Subjects 

Thirty-four laboratory-hatched, male domestic chicks (Gallus gallus domesticus), of the Aviagen ROSS 

308 strain, were used. We excluded all female chicks from our study to avoid interference of female 

hormones on behaviour and brain activity. Fertilized eggs were obtained from a local commercial hatchery 

(Agricola Berica, Montegalda (VI), Italy) and incubated under standard conditions in darkness. After hatching, 

chicks were maintained individually in metal cages (22.5 x 40 x 30cm3) at room temperature of 30–32°C with 

LED illumination from above at a day/night cycle of 14h light and 10h dark. Chicks were deprived of food in 

the evening before each day of training.  After the training sessions chicks received food ad libitum for at 

least 4 h before it was removed again in preparation for the next day of training. Water was available ad 

libitum during the entire training period. All experiments were carried out in accordance with ethical 

guidelines current to European and Italian laws. The experimental procedures were licensed by the Ministero 

della Salute, Dipartimento Alimenti, Nutrizione e Sanità Pubblica Veterinaria (permit number 25587). 

Apparatus 

Chicks were trained to forage for mealworms in two square-shaped chambers (60cm x 60cm x 60cm) 

connected by a door (15cm x 15cm) that they had to walk through to get a mealworm (Tenebrio molitor 

larvae) (Fig.1). Only the first chamber (base arena) contained a water dish, which was positioned in the centre 

whereas the second chamber (experimental arena) was empty. The wall between the two arenas could slide 

vertically (max. 15cm). This way the door appeared in the centre of the wall when it was elevated and 

disappeared below the floor when the wall was slid down again. All inner surfaces were white and the arenas 

were homogeneously illuminated through a 10cm hole in the centre of the ceilings with a 40W warm light 

bulbs. The room outside of the arenas was dark. For the test phase, the experimental arena was replaced 

either with a new square shaped arena or a rectangular arena (L x W x H: 80cm x 45cm x 57.6cm). All arenas 

had identical overall area of the inner surfaces (21600cm2), thus the reflections of the light from the walls 

were balanced. The surface areas of the floors on which chicks could move around were also identical: 

3600cm2 (square: 60cm x 60cm; rectangle: 45cm x 80cm).  
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Figure 1: Schematic representation of the experimental setup and procedures. The base arena (square shaped) contains a water dish 

in the centre and is connected to the experimental arena. During habituation, chicks were trained to forage for mealworms by 

traversing between the base arena and an identical square-shaped arena, which were connected by a door opening which appeared 

in the centre of the wall when it was elevated. Chicks were repeatedly habituated to this procedure multiple times over multiple days 

(see ‘‘Methods’’ for details). On the morning of testing, chicks were placed in the base arena for 5 h, prior to the test session. For the 

test session, chicks were divided into four groups. The baseline group stayed in the base arena, where they received four worms with 

an interval of 1 min. One hour after receiving the last worm, the chicks were perfused. The other three groups performed two 

experimental trials with the following sequence: Trial 1: chicks entered the experimental arena, found a worm and stayed there for 1 

min; and then, they came back to the base arena, found another worm and stay there for 1 min. Trial 2: chicks entered the 

experimental arena, found a worm and stayed there for 1 min; and then, they came back to the base arena, found another worm and 

stayed there for 1 h until perfusion. The square–square (S– S) group visited a new square-shaped arena (identical to the one used 

during habituation) twice, both in trials 1 and 2. The rectangle– rectangle (R–R) group visited a rectangular arena twice, in both trials 
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1 and 2. The square–rectangle (S–R) group visited a square arena in the first trial and a rectangular one in the second trial. All arenas 

had identical inner wall and floor surface areas 

Habituation Training 

On the first day after hatching male chicks were placed in individual home cages with food and water 

provided ad libitum (see Subjects section for details). On day four, chicks were familiarized with the 

experimental environment. Each chick was individually placed in the base arena (which was not covered from 

above) with a water dish in the centre. They were allowed 5–10 min to explore the environment and find 

mealworms which were placed nearby. To encourage exploration, chicks were trained to walk through the 

door when it appeared, to the experimental arena, by placing a mealworm directly in front of the door in the 

new environment. The door was then closed and after one minute it was opened again to allow the chick to 

go back in the first arena and to find the next reward. This procedure was repeated at least three times with 

each chick. After the habituation training chicks were moved back to their home cages where they remained 

until the next day. Transport from the home cage to the experimental arena and back occurred in a closed, 

plastic box (32 cm long, 18 cm wide, 30 cm high).  

On the following three days, chicks underwent 6 daily sessions of habituation training (3 in the 

morning and 3 in the afternoon). One session contained 5 trials, in which the chicks needed to walk through 

the open door to find a reward in the experimental arena and when the door was opened again after one 

minute to walk back to the base arena to receive another worm. The arenas were now covered from above 

and the light in the experimental room was off. The worms were delivered at random positions through the 

central light bulb holes in the ceilings of the arenas when the chick was in the other arena. Between the 

sessions, the chick remained in the base arena, which contained a water dish in the centre. The intervals 

between each trial were 1min, between sessions 30min, and between morning and afternoon sessions 2h. 

On the fifth day of training, the morning session was carried out as usual. After the end of the morning session 

the chick remained in the base arena until the beginning of the test session, which was performed in the 

afternoon (no training session was performed in the afternoon of the test day). Chicks remained in the base 

arena continuously for 5h after the morning training session, before the test session began. This ensured that 

c-Fos expression due to brain activation in response to the base arena was at baseline by the time of perfusion 

after the test (Zangenehpour and Chaudhuri 2002). Thus, we did not expect our measures to be influenced 

by any activity associated with experiencing the base arena. 

Test Session for c-Fos Labelling 

Chicks were divided into four experimental groups. The test session was performed 5h after the 

morning session and consisted of two trials for each experimental group (except the baseline control group). 

The baseline group (n=10) was a control condition to measure hippocampal baseline activity. The chicks of 

this group remained in the base arena where they received four worms randomly placed in the environment 
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with a 1min interval between each worm. For the three experimental groups, which differed only in the shape 

of the experimental arena used during test, the chick went from the familiar base arena to the experimental 

arena and back twice, receiving four worms total. The second group (square-square: n=8) was exposed twice 

to a novel square shaped arena (the experimental arena). The inter-trial interval was 1 min. The third group 

of chicks (rectangle-rectangle: n=8) was exposed two times to a novel rectangular experimental arena, with 

the same procedure as the second group. The fourth experimental group (square-rectangle: n=8) was 

exposed to both the square and rectangular arenas. Thus, in the first trial, the experimental arena was a 

square. When the chick went back to the base arena, the square arena was replaced with the rectangular 

one for the second trial. After the second trial, the chicks remained in the base arena until perfusion. 

Immunohistochemistry 

Seventy minutes after the test session, subjects were overdosed with an intramuscular injection of 

0.8ml Ketamine/Xylazine Solution (1:1 Ketamine 10 mg/ml + Xylazine 2 mg/ml). The chicks were perfused 

transcardially with phosphate buffered saline (PBS; 0.1mol, pH=7.4, 0.9% sodium chloride, 4°C) and 

paraformaldehyde (4%PFA in PBS, 4°C). The skull with the brain was post-fixed in 4% PFA/PBS solution for 7 

days. For the removal of the brain from the skull procedures described in chick’s brain atlas Kuenzel & Masson 

(Kuenzel and Masson 1988) were applied to ensure that the coronal brain sections of all brains had the same 

orientation (45°). After removing the brains from the skull, the left and the right hemispheres were separated 

and processed separately. Each hemisphere was embedded in gelatine (7%) containing egg yellow, post-fixed 

for 48h in 4% PFA/PBS containing 20% sucrose at 4 °C, and further 48h in 30% sucrose in 0.4% PFA/ PBS. The 

brain hemispheres were frozen at -80°C covered with O.C.T (Tissue-Tek freezing medium). Four series of 

40m coronal sections were cut on a Cryostat (Leica CM1850 UV) at -20°C. The sections were collected only 

from the regions of interest A(nterior) 7.8 to A 5.4 (Kuenzel and Masson 1988). The sections of the first series 

were used for processing and labelling. The sections of the other series were kept as backup or for testing 

antibody specificity (processing without the primary antibody). Washing in PBS (3x5min) was performed 

between each of the following reaction steps. Endogenous peroxidase activity was depleted in 0.3% H2O2 in 

PBS for 20 min. After incubation with 3% normal goat serum (S-1000; Vector Laboratories, Burlingame, CA, 

USA) in PBS for 30 min, the sections were treated for 48h at 4°C with an anti-c-Fos antibody solution (1:2000; 

mouse monoclonal, E-8, sc-1669, Santa Cruz, CA, USA), followed by biotinylated anti-mouse in PBS (1:2000; 

BA-9200, made in goat; Vector Laboratories) for 60min at room temperature. The ABC kit was used for signal 

amplification (Vectastain Elite ABC Kit, PK 6100; Vector Laboratories) and VIP substrate kit for peroxidase (SK-

4600; Vector Laboratories) for visualisation of c-Fos-immunoreactive (-ir) neurons. Sections were serially 

mounted on gelatine-coated slides, dried at 50 °C, counterstained with methyl green (H-3402; Vector 

Laboratories) and cover slipped with Eukitt (FLUKA). 
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Brain analysis 

Brain sections were examined with a Zeiss microscope (objective: 

20x with a numerical aperture of 0.5) and a digital camera (Zeiss AxioCam 

MRc5). Contrast and exposure time of the camera were adjusted so that the 

image on the screen matched the view under the microscope (eyepiece 10x, 

overall magnification 200x). Successful immunostaining produces dark, 

purple-black stained nuclei, which can easily be discerned from background 

and non-activated cells, which were stained light green (see Fig.3). The 

imaging software ZEN (Zeiss) was used for counting of c-Fos-ir neurons on a 

computer screen. For this purpose, a counting grid (150 x 250 mm2), was 

positioned over the different sample areas (see below). Counting was 

performed blind to the experimental condition. Every activated c-Fos-ir cell 

within each sample area was marked on the screen using the ZEN software, 

which computed the total counts.  

To estimate labelled cell density within the hippocampus, five to 

eight sections of each hemisphere were selected from that part of 

hippocampus extending from A(nterior) 7.0 to A 6.0 (determined by the 

shape and anatomical organization matched to the atlas of Kuenzel and 

Masson, 1988). The hippocampus of each section was parsed into three 

subdivisions: the ventral hippocampus (HpVM), the neighbouring 

dorsomedial hippocampus (HpDM) and the dorsolateral hippocampus 

(HpDL) (Fig. 2a). For cell counting of each subdivision across the sampled 

sections, the counting grid was placed in a way such that it covered as 

many activated neurons as possible while keeping a minimum distance of 

20m to the edge of the brains section and the border of a neighbouring 

subdivision. Typical placements are schematically shown in Fig.2a. Labelled cell density was estimated also 

in the intermediate medial mesopallium (IMM) as control region. Here we relied on previous anatomical 

descriptions of this region (Ambalavanar et al. 1993). Five brain slices were selected from a region where the 

shape of IMM corresponded to what is depicted on plate A7.6 of the Kuenzel and Masson atlas. The counting 

grid was positioned inside the IMM according to the drawings (Ambalavanar et al. 1993), see also Fig.2b. 

 

 

 

Figure 2: Typical placements of counting 

enclosures (red rectangles) inside the 

three subdivision of hippocampus (a) 

and the intermediate medial 

mesopallium (b). Those drawings of the 

coronal sections were adapted from 

Kuenzel &Masson (1988). Hp 

hippocampus, HpVM ventro-medial 

hippocampus, HpDM dorso-medial 

hippocampus, HpDL dorso-lateral 

hippocampus, M Mesopallium, IMM 

intermediate medial mesopallium, N 

nidopallium 
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After completing the cell counts, the mean values (derived from the five sections) for the three 

subdivisions were calculated for each hemisphere and cell densities were standardized to 1mm2. Because no 

significant lateralization effect was found for any subdivision of the experimental groups, the measured 

values from the two hemispheres were pooled for further analysis. Cell counts pooled from the 3 Hp 

subdivisions were further averaged to estimate overall Hp activity. Thus, the overall estimate of hippocampal 

activity of an individual bird was based on an average from all 30-48 counted areas (15-24 from each 

hemisphere). The calculated neuronal activity in IMM for each individual chick was based on 10 counted 

areas (5 sections, 2 hemispheres). The resulting individual bird means were considered overall indicators for 

the number of c-Fos-ir neurons and were employed for further statistical analysis. 

 

Statistical Analysis 

Differences between groups in their Hp and IMM activation were tested with two independent 

univariate ANOVA’s. Because the Levene’s test for the Hp analysis revealed a significant violation of equality 

of variances and Kolmogorov–Smirnov test (K–S) showed that the distribution of residuals was significantly 

different from normality a logarithmic transformation (log(x+10)) was applied before running the statistical 

analysis. This procedure increased the equality of variances and normality of the residuals as follows: 

Levene’s test before log transformation: F (3.29)=7.022, p<0.01; Levene’s test after log transformation: 

F(3.29)=1.139, p=0.35; K-S before log-transformation: D(33)=0.164, p<0.03; K–S after log-transformation: 

D(33)=0.137, p=0.122. For the IMM violation of variances was not present (Levene’s test: F(3.29=0.574, 

p=0.64) and the residuals were normally distributed (K-S: D(33)=0.089, p=0.2) therefore no transformation 

was required. The post-hoc comparisons were carefully planned based on the a priori expectations derived 

from the pilot studies (see the section ‘Rationale of the experimental design’). For analyses of Hp activation, 

three independent t-tests (two-tailed) were carried out. First, based on our pilot study, we expected no 

significant differences to emerge from the second comparison between the two same-shape conditions, the 

square-square and rectangle-rectangle groups. Second, we expected lowest levels of activity in the baseline 

condition and planned to compare the baseline condition with one of the same-shape groups, the one which 

would show the second lowest activity level. The third planned comparison was between the square-

rectangle group (in which we expected highest levels of c-Fos-ir neurons) with one of the other groups that 

would show the second highest levels of activity.  

Results 
 

We processed all 34 brains, however during the staining procedure the hippocampus of one brain 

was damaged and could not be used for counting. This brain was excluded from further analysis resulting in 

n=7 for the square-rectangle group. In all animals, the hippocampal slices contained high numbers of stained 
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nuclei with exception of those from the baseline group in which hippocampus was often devoid of activation 

(Fig.3). The brains also showed some individual variability of c-Fos-ir cell distribution, although in most of the 

cases high number of activated cells were visible in the dorso-lateral Hp. Counts in the subdivisions confirmed 

this observation, showing highest numbers of c-Fos-ir neurons in the dorsal region; the trends between the 

groups, however, were similar in all subdivisions (Table 1). In all subdivisions, the highest densities of c-Fos-

ir 6 cells were present in the square-rectangle group, intermediate densities in the square-square and 

rectangle-rectangle group and the lowest in the baseline condition. For statistical analysis, the Hp 

subdivisions were lumped together (Fig.4a).  

The density of c-Fos-ir cells within Hp of the baseline group (mean ± s.e.m.: 161.6 ± 42.4 cells/mm2; 

n=10) was approximately 38% lower than in the square-square group (mean ± s.e.m.: 427.2 ± 85.9 cells/mm2; 

n=8). The density of c-Fos-ir cells was almost identical in the rectangle-rectangle group (mean ± s.e.m.: 433.9 

± 77 cells/mm2; n=8) compared to the square-square. The density of c-Fos-ir cells was highest in the square-

rectangle group (mean ± s.e.m.: 865.9 ± 188.9 cells/mm2; n=7) which was approximately 50 % higher than in 

the rectangle-rectangle group (Fig.4a). Statistical analysis revealed significant between group differences in 

the number c-Fos-ir cells in the Hp (ANOVA: F(3,29)=10,892, p<0.01). T-test planned comparisons revealed a 

significant difference between the baseline and the square-square condition (T(16)=-3,151; p<0.01), no 

significant difference between the square-square and the rectangle-rectangle group (T(14)=-0.179; p=0.86) 

and a significant difference between the rectangle-rectangle group and the square-rectangle group T(13)=-

2,189; p<0,05).  Differences between the groups were not present in the IMM: ANOVA: F(3,29)=0.051, 

p=0.98. 
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Figure 3: Photomicrographs of hippocampal activations, showing the dorso-lateral (HpDL), dorso-medial (HpDM) and ventral (HpV) 

parts of one exemplary coronal section from each group of chicks. c-Fos-ir cells are stained black after the immunohistochemical 

procedure. The non-activated cells are counterstained in green. B (base-arena control group), S–S (square–square group), R–R 

(rectangle– rectangle group), S–R (square– rectangle group) 

 

Table 1: Measured c-Fos-ir cell densities observed in all three hippocampal subdivisions (HpVM—ventro-medial hippocampus; 

HpDM—dorso-medial hippocampus; HpDL—dorso-lateral hip- pocampus) and in the intermediate medial mesopallium (IMM) for 

the different groups of chicks: B (base-arena control group), S–S (square–square group), R–R (rectangle–rectangle group), S–R 

(square–rectangle group) 

R–R 
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Figure 4: Measured c-Fos-ir cell densities in hippocampus (a) and intermediate medial mesopallium (b) in four groups of chicks: B 
(base-arena control group), S–S (square–square group), R–R (rectangle–rectangle group), S–R (square–rectangle group). Graph-plot: 
mean (black square), SEM (box) and SD (whisker) (*p\0.05; **p\0.01). Densities of c-Fos-ir neurons per mm2 are represented on the 
Y-axi 

Discussion 
 

The key finding of our study is that even in the earliest stages of life, hippocampal response of 

domestic chicks is strongly influenced by the geometric layout of environmental boundaries. The number of 

activated cells in the hippocampus did not differ between chicks exposed twice to an arena having a familiar 

square shape or a novel rectangular shape (both had higher activation than a control group exposed only to 

the base arena). However, if chicks were exposed to both environmental shapes in two consecutives trials, 

the number of c-Fos-ir cells was doubled. The effect was region-specific: no differences were present in IMM.  

An explanation of the increased number of cells in the square-rectangle group is that different 

populations of cells represented the environments of two shapes. Although our method does not allow us to 
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distinguish whether a given c-Fos-ir neuron was activated two times by two events occurring close together 

in time or only once. Presumably, two repeated exposures to same-shape arenas would induce highly 

overlapping activity of the neuronal network representing the shape. On the contrary, exposures to two test 

arenas differing in shape would cause mostly non-overlapping activation. Thus, the results confirmed this 

hypothesis by showing that the density of c-Fos-ir neurons in the square-rectangle group is almost twice as 

high compared to rectangle-rectangle group. This finding is consistent with studies of the mammalian 

hippocampus. IEG expression in CA1 of rats exposed either to two different environments or twice to the 

same environment, revealed that the repeated exposure group had a higher number of double-labelled cells 

expressing two activations at two different time points (Nakamura et al., 2010). Moreover, when mRNA of 

different IEGs visualised hippocampal activation at two time points, different environments induced 

responses in different populations of CA3 neurons (Vazdarjanova & Guzowski 2004). After two exploration 

sessions across three conditions for which the second environment was unchanged, slightly modified, or 

novel, the highest degree of overlap in activated neurons in the two sessions was found in animals exposed 

to the same environment twice; animals exposed to two different environments exhibited a low degree of 

overlap, and an intermediate degree of overlap was observed for the slightly modified environment. The 

recruitment of an entirely new ensemble in area CA3 of the hippocampus, suggests that at least this subfield 

clearly delineates between different. Future studies could capitalize on the evidence obtained here and 

further investigate this hypothesis, adapting for chicks the protocols developed for discriminating two time 

points in immediate early gene induction (Guzowski et al., 1999, 2005).  

The lack of differences between the square-square and rectangle-rectangle group might seem 

surprising, in which the chicks were familiar with the square but unfamiliar with the rectangular shape. IEG 

expression is known to be highest during early learning (Anokhin & Rose 1991) and to diminish following 

extended training (Kelly & Deadwyler 2002), and this is also the case for birds engaged in spatial learning 

tasks (Mayer et al., 2010). Thus, one might expect hippocampal c-Fos production in response to square (but 

not rectangular) arenas, to be reduced to a minimum after repeated habituation in the square. This was not 

the case, however: both square-square and rectangle-rectangle groups showed higher c-Fos-ir neurons 

density than the one-environment control group, but there was no difference in activation between them. 

Thus, the activity enhancement of the hippocampus was triggered by the change from the base arena (for 

which c-Fos expression was at baseline, see Methods) to the experimental arena, regardless of whether the 

shape of the experimental arena was familiar or novel. This would suggest two things: that the habituation 

to the square experimental arena during training did not reduce IEG expression and that the novelty of being 

in a rectangular environment for the first time did not induce hippocampal activation to a greater degree 

than to the square environment. At least one study with rats found no difference in the proportion of 

hippocampal cells displaying Arc mRNA between animals exposed to an environment for the first time or 

after nine daily sessions (Guzowski et al., 2006). Future studies are needed to understand the effect of 
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habituation over multiple days of exposure to the same environment. However, the lack of difference 

between the square-square and rectangle-rectangle group invites the interpretation of the higher activity in 

the square-rectangle group as a consequence of two different neural representations based on 

environmental shape, rather than simply on novelty. 

Why is hippocampal c-Fos expression increased when chicks visit experimental arenas of different 

shapes? Here we would like to consider if this activity can be related to remapping mechanisms comparable 

to those known in mammals (Fyhn et al., 2007; Moser et al., 2008; Barry et al., 2012). Remapping in mammals 

was first studied in electrophysiological recordings of hippocampal neurons. Hippocampal place cells ‘remap’ 

and alter, activate, or inactivate their preferred firing fields after changes of environmental shape (Muller & 

Kubie 1987; O’Keefe & Burgess 1996; Lever et al., 2002). Such changes in the firing of a single cell are of 

course dependent on the inputs that it receives within a given neuronal network. Therefore, given that at 

least a part of this network is within hippocampus, this area should contain different, potentially partially 

overlapping, populations of cells that respond to the different shapes. Our findings are consistent with 

studies in mammals which show that different hippocampal cells are activated by different environments 

(Vazdarjanova & Guzowski 2004; Guzowski et al., 2005; Barry & Commins 2011). Although we did not 

measure two time points independently, the two-fold increase in hippocampal activity in the square-

rectangle group is consistent with a largely non-overlapping representation of two neuronal populations of 

cells within the hippocampus of chicks. Thus, it is possible that remapping-like mechanisms exist also in birds 

to the extent that environmental differences induce a new pattern of neural activity in the hippocampus. 

Unfortunately, few studies have reported hippocampal place coding at the level of single cells in freely 

moving birds. Bingman and collaborators studied place-related responses in pigeons finding different 

location related activities, such as location cells, grid like cells, arena-off cells and path cells, which were not 

as specific as in mammals (Bingman & Sharp 2006). These effects are not necessarily a reflection of variations 

in biological organization, but may emerge as a consequence of testing procedures and behavioural 

differences (Bingman & Sharp 2006). The existence of some forms of location specific response in pigeons, 

together with the results from the present study, suggest that also remapping related activities might be 

present in bids.  

In conclusion, here we present the first evidence of hippocampal representation of environmental 

shape in birds. Our study adds to a series of experiments showing astonishing functional similarities between 

the mammalian and avian hippocampi (Colombo & Broadbent 2000; Vargas et al., 2004; Bingman & Sharp 

2006; Mayer et al., 2013, 2016). The results suggest functional similarities not only at the anatomical, but 

also at the neural level. Many questions remain, but the study opens doors for expanding knowledge of 

hippocampus across evolution. 
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Chapter 2: Proximal deletion of Williams syndrome critical region causes 

deficits in reorientation and episodic-like memory in Williams syndrome 

mouse model. 

 
Abstract 

Williams syndrome is a rare genetic disorder caused by a deletion of around 20 genes on chromosome 7. This 

deletion, also called Williams syndrome critical region (WSCR), generates a unique cognitive and behavioural 

profile characterized by severe visuo-spatial deficits and long term memories. Mouse models of this disorder 

provide the possibility of gaining deeper insight as to the connection between genetic modifications and 

cognitive-behavioral deficits. In this study, we aimed to better characterize a mouse model that had one half 

of the WSCR deleted. These mice also called PD mice (partially deleted mice) reproduce most of the 

phenotypes observed in WS patients including spatial and social deficit. To further understand the interaction 

between gene deletion and behaviour, we tested PD and wild type controls in the following behavioural 

tasks: reorientation (using boundary geometry, and landmark) and episodic-like memory. Our results provide 

evidence that PD mice reproduce also the spatial and memory deficit of clinical patients. In particular, we 

observed a failure in spatial tasks and an impairment in the temporal component of episodic memory. We 

conclude that the PD genetic deletion may be sufficient in causing a hippocampal deficit assessed through 

behavioural testing in mice models. These results provide suggestive evidence of the PD deletion (Gtfi2- 

Limk1) being related to hippocampal function and set the stage for a more detailed study on the effects of 

the PD deletion on the hippocampus.  
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Introduction 

 

Williams syndrome (WS) is a rare neurodevelopmental disorder that affects around 1/7500 new-

borns (Donnai & Karmiloff-Smith, 2000). An error during meiosis gives rise to a deletion on chromosome 

7q11.23. This deleted region, also called WSCR (Williams syndrome critical region), contains 26-28 missing 

genes (Donnai & Karmiloff-Smith, 2000). WS patients have a unique clinical and cognitive profile with some 

strong abilities (preservation of the language, facial recognition, social and interpersonal skills) and 

weaknesses (anxious behaviour in novel contexts and a severe deficit in spatial and memory tasks). Their 

altered behaviour, in particular their spatial deficit is associated to hippocampal abnormalities. WS patients 

show abnormal function and metabolism of the anterior hippocampal formation despite preserved volume 

and subtle altered morphology in compared to healthy controls. Furthermore, resting state cerebral blood 

flow was significantly reduced bilaterally in the hippocampal formation of WS patients in response to visual 

stimuli (Meyer-Lindenberg, 2005). 

Hippocampus related behaviours such as spatial navigation and memory are severely impaired in WS 

patients (Ferrara & Landau, 2015; Lakusta et al., 2010). WS individuals show an extensive visuo-spatial deficit 

(Gray et al., 2006; Tassabehji et al., 2005). Difficulty in recalling routes and the tendency to get lost in new 

unfamiliar environments has been often reported by WS family members (Farran, Blades, Boucher, & Tranter, 

2010). Navigation ability is altered in WS patients: Bernardino and colleagues performed a screen based and 

3D task to test whether patients could use their own body (egocentric) or external objects (allocentric) to 

correctly distinguish the position of an object in an environment. Results show that in both tasks there is an 

impairment compared to controls (Bernardino et al., 2013). Allocentric navigation uses not only external 

references such as objects or landmarks but is also particularly reliant on environmental geometry to orient 

(Lee, 2017). Lakusta and colleagues showed WS patients were not able to use the geometric properties of a 

rectangular arena to reorient, but can improve when a blue wall is added to the arena (Lakusta et al., 2010) 

suggesting that while geometry based navigation is impaired, feature use is spared.  

Not only spatial memory but other branches of memory including short and especially long term 

memory are also affected in WS patients (Vicari, Brizzolara, Carlesimo, Pezzini, & Volterra, 1996). However, 

most tasks assessed verbal and spatial memory (Rhodes, Riby, Fraser, & Campbell, 2011) and observed a 

general deficit mainly in long term-memory. More recently, Vicari et al designed a task where the subject 

had to recall a succession of presented objects, and WS scored equally as controls suggesting normal memory 

for recalling objects (physical properties). However, in a visuo-spatial task where they were asked to recall 

the spatial collocation of an object, WS patients failed (Vicari, Bellucci, & Carlesimo, 2005). These results 

suggest an overall difficulty in linking together what object they saw and where/which location it was 
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collocated. Given, the failure in Vicari’s task, we wondered whether this might lead to an overall difficulty in 

linking elements of complex memories such as long-term episodic memories.  

Episodic memory, first defined by Tulvig, is the conscious autobiographical recollection of what, 

where and when of a personal memory. This is an important branch of long-term memories, essential to all 

human beings (Tulving & Thomson, 1973) and animals (Dere et al., 2006; Templer & Hampton, 2013) as they 

encapsulate personal memories of the past that are imperative to plan future actions. Brain-injured amnesic 

individuals, i.e., with selective hippocampal lesions, or damage to the frontal lobes and diencephalic 

structures, such as the dorsomedial thalamus, and the mammillary bodies, cause severe deficits to mainly 

episodic memory while sparing semantic memory (Aggleton & Brown, 1999). Healthy aged individuals and 

variety of neuropsychiatric diseases including Alzheimer’s disease, all show an overall damage to recall and 

retrieve personal memories. (Small et al., 2000). Thus, there is a need for animal models of episodic memory, 

since animal studies have the advantage of underlying the anatomical, pharmacological, physiological, 

genetic and molecular mechanisms that aren’t possible in human studies.  

In this scenario, WS, given its clear genetic deletion and hippocampal abnormalities, allows us to 

investigate hippocampal function and the relationship between genotype and phenotype. Many mice models 

of WS have been designed from single gene to multiple gene knockouts. The first allows the study of a gene 

in both homozygous and heterozygous state, and leads to potential correlations between genotype and 

phenotype. Single knockout mouse models for LIMK1 (Meng et al., 2002) and CYLN2 (Hoogenraad et al., 

2002), two genes present on the WSCR, show abnormalities in hippocampal physiology and structure. Both 

mouse strains show reduced long term potentiation and learning impairments. In addition, hippocampal 

neurons of LIMK1 mice have a different pattern of dendritic spines with thinner necks and smaller heads 

compared to controls. However, Williams syndrome is a multigene deletion disorder, and therefore in order 

to understand the complexity, multiple gene knockouts are more reliable in reproducing more aspects of the 

disorder. Given the limitations of single knockouts, more recently multiple knockouts that include distal and 

proximal regions of the WSCR have been generated (Li et al., 2009). 

In the present study, we aimed to fill a gap in the literature using a mouse model that contained the 

proximal deletion of the WSCR (Gtf2i-Limk1). These mice reproduce abnormal social behaviour and anxiety 

seen in WS patients. However, there is no evidence whether they are impaired in spatial tasks and in complex 

memories such as episodic-like memory (Li et al., 2009; Osborne, 2010). Given the severe difficulty in visuo-

spatial tasks in WS patients, we wondered if the PD deletion could be linked to these specific deficits. 

Although single genes have been studied separately, there is no knowledge whether the interaction of more 

genes together, as that on the PD region could together trigger spatial impairment. Therefore, we aimed to 

investigate two hippocampal related behaviours: the capacity to successfully reorient using environmental 
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geometry and landmark (Cheng, 1986; Hartley et al., 2014; Lee et al., 2015) and the ability to recall episodic 

like memory (Dere et al., 2005; Eacott, 2004).  

General Methods 
 

Animals: Williams syndrome F0 mice were bought from Jackson Laboratories. This mutant mouse 

strain carries a deletion corresponding to the proximal half (G2fi-Limk1) of the WSCR on mouse Chromosome 

5G2 (figure 1). Two to five mice were housed per cage in a room with a 12 h light–dark cycle (lights on at 7 

AM, off at 7PM) with access to food and water ad libitum. Two weeks before testing animals were transferred 

into a ventilated cabinet and kept in the testing room until the end of the experiments. Each subject was 

tested in Experiment 1 followed by Experiment 2. After completing both experiments all mice were sacrificed. 

 

Figure 1: Williams’s syndrome genomic region in human and mouse. In red is the proximal deletion (Gtf2i-Limk1), that is 
deleted on chromosome 5 in the correspondent mouse model. Adapted from (Li et al., 2009). 

 

Experiment 1: Episodic-like memory 

We designed a three-step task to investigate the three elements of episodic-like memory in animals: 

“what”, “where” and “when”(Dere et al., 2005). This test is a modified version of the object recognition task, 

where given the natural curiosity of rodents to explore new objects we can test whether they can distinguish 

between old and new object. We manipulated the objects we used and their positions and after two trials 

we tested mice after 60’. This interval, used in other studies is sufficient for mice to “forget” the first seen 

position or object, but recall the most recent seen object or position. In this view the first object or position 

becomes novel and attracts the animal, that explores it more than the most recent object/position that 

becomes familiar and less attractive.  

Apparatus: Preliminary experiments using the object recognition task were used to find the most 

appropriate objects that were salient and distinguishable to animals. We used a squared arena (40 x 40 x 20 

cm) made of hard plastic, elevated 80 cm above the floor. One bright central light (round; diameter, 10 cm) 

illuminated the circular testing space from above. A camera was mounted on the ceiling and recorded animal 

behaviour.  
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Procedure: all animals were tested in the following order: Place test (where+when), object test 

(what), episodic memory test (where+what+when). Each test had two sample trials and one test trial. Each 

trial including the test trial lasted for 5 minutes. An interval of 60 minutes was maintained between sample 

and test trials. 

Place Test: (n=21 WT & 12 PD). This test aims to investigate the “where+when” component. In the 

first sample trial the animal explored an object placed in a corner of the arena, (old position); in the second 

sample trial an identical object was placed in opposite corner (new position) of the arena. Following a delay 

of 60 minutes after the two sample trials, the animal performed the test trial. During the test trial, both 

objects were placed in the arena in the same position of previous trials and the mouse explored them for 5 

minutes.  

Object test: (n=12 WT & 8 PD) This test aims to investigate the “what” component. In the first trial 

the animal was left free to explore two identical objects. In the second trial, objects were replaced with a 

pair of different objects in the same position. During the test trial, animals explored one object of the first 

trial (old object) and one object of the second trial (new object). 

Episodic Memory Test: (n=29 WT & 11 PD) In the last test we test all three components “what”, 

“where” and “when” of episodic-like memory. In the first sample trial the mouse explored two identical 

objects. In the second sample trial, the objects were replaced with a pair of different objects placed in the 

opposite side of the arena. After 60 minutes the mouse performed the test trial: the animal encounters one 

object of the first trial and one object of the second trial situated in the same position of the previous trials 

(called respectively “Old stationary” and “New stationary”), and one object of the first trial and one object of 

the second trial displaced in a different position (called respectively “Old Displaced” and “New Displaced”). 

Predictions: We predicted that wild type controls would spend more time with the “old object” and 

“old position” compared to more recent ones. On the other hand, we expected PD mice to show difficulty in 

recalling the older objects and positions due to their genetic deficit. 

Statistical analysis: All tests were recorded and coded offline using Ethovision 9.0. We considered 

exploration when the animal was in a 3cm range from the object. For each test, we recorded the time spent 

with the object in seconds and then calculated the proportion of time. For place and object test we used an 

independent t-test to compare behavior of PD and WT mice. We later investigated behavior of each group 

separately doing a paired t-test between the two dependent variables: old position vs new position in place 

test, old object vs new object in the object test. For episodic memory we did a multifactorial ANOVA with 

“old stationary”, “new stationary”, “new displaced” and “old displaced” as dependent variables and 

“genotype” as the independent variable.  
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In order to investigate the effect of genotype on behavior, a small number of mice were chosen and matched 

to control littermates for each test according to age and sex. We analyzed place and object test using 

independent t-tests, and episodic memory with multifactorial ANOVA.  

 

a 

 

Figure 2: Results of episodic memory testing in PD mice and control mice: a) place test b) object test c) Episodic memory. Error bars 
represent standard error of the mean SEM. * indicate p< 0.05 between means.  

 

Results wild type mice: Wild type animals show a tendency although not significant toward the old position 

compared to the new position (paired t-test: t (20) = 1.7, p=0.09), suggesting overall recall of where+when 

elements of episodic memory. In the object test, they show a significant preference for the old object 

compared to the new object (paired t-test: t (11) =2,5, p=0,029), and therefore correct memory for recalling 

objects. Their preference for the old object is significantly above chance (t-test against chance of 0, 50: t (11) 

=2,5, p=0,029). In the episodic memory test, we do not observe any statistical significance in exploration 

between objects. However, although not statistically significant, observing the means we do observe a 

preference toward the old displaced over the other objects. 

Results PD mice: In PD mice (figure 2a) we observe no statistical significance in exploration time between old 

and new position concerning place test (t (11) = -1,4, p=0,2). Likewise, PD mice show no significant preference 

b 

c 
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toward the “old object” in object test (t (7) = 1,1, p= 0.2) (figure 2b). In episodic memory we observe no 

significant difference in exploration between the four objects (figure2c).  

Results PD mice vs WT mice: In order to see whether genotype had an effect on behavior, we matched PD 

mice to control littermates and compared their behavior for place (n=10) object (n=7) and EM (n=11). 

Comparison between PD and control littermates showed no significant interaction for place test, suggesting 

a marginal difference between groups in recalling the old (t-test (t (18) = 1,9, p=0.064) and new position (t 

(18) =1,9, p=0.064). Comparison for object memory does not show difference between groups (t (12) =0,4, 

p=0,6), suggesting no difference between WT and PD mice. However, differences between PD and controls 

are seen in episodic-like memory test: we observed a difference in exploration between groups in exploring 

old displaced object (F (1,22) =4,6, p=0.04, η2=0.19) and new displaced object (F (1,20) = 4,5, p=0.046, 

η2=0.18). WT mice show a higher exploration of the old displaced object compared to PD mice (t (20) =2,1, 

p=0,04). PD mice on the other hand, show a preference for the new displaced object (t (20) =2,1, p=0,40). 

Interpretation and discussion experiment 1: Our task has the advantage of evaluating each component of 

episodic memory collapsed together and in isolation. We observe hypothesized results in control mice in all 

three tasks, indicating correct memory for what, where and when. In PD mice on the other hand, we observe 

a tendency toward the “New position” in place test (figure 2a) and “New displaced object” in the episodic 

memory test (figure 2c), suggesting difficulty in recalling where and when as they spend more time with the 

most recent object seen in the most recent position. However, the what component of memory is relatively 

spared. Although not significant, we see them spending more time with the “Old object” compared to the 

“New Object” in the object test (figure 2b). This result is consistent with clinical evidence from WS patients 

that show correct object memory (Landau, Hoffman, & Kurz, 2006; Vicari et al., 2005). Although inconclusive 

at the moment, we believe that future analysis perhaps with a larger sample size would improve and confirm 

our findings.  

 

Experiment 2: Reorientation  

Experiment 2 aimed to see whether mutant PD mice were able to use external environmental cues such as 

boundary layout (rectangular arena) or a landmark (striped wall) to map space, when they were not able to 

track their own egocentric movements due to disorientation.  

Apparatus: The experiments took place in a circular testing space surrounded by black curtains. One 

bright central light (round; diameter, 10 cm) illuminated the circular testing space from above. A camera was 

mounted on the ceiling and recorded animal behaviour. At the centre of the testing space was either a 

uniformly coloured white rectangular arena (40 x80x20 cm) or a square arena (40x40x20 cm) with three 

white walls and one striped black/white, featurally distinctive wall (stripe thickness, 4.5 cm). The arena was 
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filled with 5 mm of water. In each corner was a black box (8x8x 12 cm), with an opening (7.5 x 7.5 x4 cm) on 

one side. 

Procedure: We adapted this test according to (Lee et al., 2015). The mouse was removed individually 

from its home cage in a covered cylinder and transported to the testing arena within the same room. In 

boundary geometry goal corners (open refuges) were the correct corner and rotationally correct corner. In 

the landmark condition goal corners were either close to the striped wall or far from the striped wall. The 

mouse was released from the centre of the arena and allowed to explore the environment until it found 

either of the target holes and took refuge inside. After 60 s it was removed and disoriented for 30 s in the 

covered cylinder (0.3 rotations/s in one direction and then the other). Meanwhile, the arena was rotated 

90°with respect to the rest of the environment and the position of the experimenter, the target boxes were 

rinsed with water, and were closed shut. The mouse was released from the centre again and given 1 min to 

explore the arena. After 1 min, the mouse was removed from the testing arena, again using the covered 

cylinder, and placed back inside its home cage. Testing was conducted across 2 consecutive days (3trials/day) 

per condition (boundary geometry and landmark). Behavioural measures were coded offline using Ethovision 

9.0.  

Predictions: We expected wild type animals to use boundary geometry and landmark correctly; 

spending more time in the correct corners compared to the incorrect ones (Lee et al., 2015). We expected 

PD mice to fail in geometry (Lakusta et al., 2010)and landmark use (Ferrara & Landau, 2015), based on 

evidence from WS patients.  

Statistical analysis: All tests were recorded and coded offline using Ethovision 9.0. We considered 

exploration when the animal was in a 3cm range from the refuge. For each test, we recorded the time spent 

close to the refuge in seconds and then calculated the proportion of time. All data was analyzed using Excel 

and SPSS. We defined our dependent variable “accuracy” as proportion of time spent in the correct + 

geometrically correct corner for boundary condition, and correct + featurally equivalent corner for the 

landmark condition. First a univariate ANOVA with “accuracy” as a dependent variable and condition 

(boundary or landmark) and genotype (WT or PD) as independent variables, gave no statistically significant 

effects. We later analyzed each group WT and PD separately for each condition.  
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Figure 3: Reorientation using a) boundary geometry and b). * indicates comparison between open and close corners in a single 
group p<0,05. WT-wildtype, PD-proximal deletion mice 

 

Results Wild type mice: Adult mice (n=29) show correct use of geometry spending significantly more time in 

the correct corners compared to the incorrect corners (t (28) =2,03, p=0.05) (figure 3a). Likewise, they (n=23) 

also show correct use of landmark by spending more time in the correct corners compared to the incorrect 

ones (t (22) =2,09, p=0,047) (figure 3b).  

Results PD mice: PD mice show failure in both geometry (n=12) (t (11) = 0.8, p=0,4) and landmark use (n=13) 

(t (12) =0.64, p=0,9) (figure 3a, b). 

Results Wild type vs PD mice: Comparison with control littermates (n=12/group) showed no statistical 

difference in landmark condition (t (22) = 1,4, p=0,9). Likewise, no difference between groups was observed 

in geometry condition (t (22) =1,4, p=0,1).  

Discussion and Interpretation of Experiment 2: Unlike wild type mice, PD mice fail to successfully use 

boundary geometry and landmark to reorient. This is consistent with previous findings in WS patients, that 

show failure in using environmental shape to find a target corner(Lakusta et al., 2010). The comparison 
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between PD and WT littermates fails to show statistical difference in use of geometry. Therefore, we suggest 

that our results need to be further confirmed by increasing the sample size in order to provide statistical 

power to our findings.  

 

Conclusions and Discussion 

Williams syndrome mutant mice show a different behavioral pattern in both tasks compared to 

controls. Here we have shown evidence the PD mouse model represents also spatial deficit and memory 

impairment observed in clinical patients.  

In episodic memory, we observe an overall tendency of PD mice to go toward the more familiar 

position (“New position” figure 2a) and object (“New Displaced” figure 2c). Therefore, we cannot rule out 

the possibility that PD mice may have a familiarity preference, as they explore the position they recall and 

are more comfortable with due to their inbred anxiety and fearful nature. Anxious like behavior was observed 

in PD mice (Li et al., 2009), suggesting it as a possible cause of their familiarity preference. Likewise, WS 

patients manifest anxious behavior in unfamiliar situations (Gray et al., 2006) and tend to prefer well-known 

environments. We also show that while place memory is altered, object memory is relatively spared in PD 

mice. They show a small tendency, although not statistically significant, toward the “old object” which could 

suggest intact memory in recalling items (figure 2b). Correct memory for objects (physical properties of 

objects) is observed in Williams syndrome patients (Landau et al., 2006; Vicari et al., 2005), suggesting the 

memory for physical properties of objects isn’t impaired. Most difficulty in PD mice is seen when all three 

elements (what, where and when) of episodic memory are bound together, as seen in the incorrect 

preference toward the “New Displaced” object in the episodic memory test. This suggests that while separate 

elements of EM such as the “what” component is relatively conserved, the hippocampal function of binding 

and providing a spatio-temporal context seems to be affected.  

Hippocampal deficit of PD mice is seen also in experiment 2. The failure observed in both conditions 

(geometry and landmark) is inconsistent from findings in WS patients. Ferrara & Landau, 2015, show that 

increasing the size of the arena and highlighting the geometric properties (i.e. adding small lights) helps WS 

patients to use boundary geometry and in fact in this version show success in geometric navigation. We 

speculate whether this mechanism could apply also to mutant mice, that could succeed if the geometric 

properties were highlighted. A modified version of the reorientation paradigm of Lee, 2015 could be of help 

to aid PD mice’s searches in the correct corners. Based on (Lakusta et al., 2010) we expected PD mice to 

improve performance when a landmark such as a striped wall was introduced. Unlike our hypothesis, PD 

mice did not succeed in landmark use. Failure observed in PD mice could be due to an insufficient sample 

size. We expect to observe landmark success in PD mice by increasing the number of animals. 
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Allocentric spatial and episodic memory deficits are coherent with structural impairments observed 

in the hippocampal formation of patients (Meyer-Lindenberg, 2005). However, although brain skull 

morphometry tests show a smaller skull and brain volume in PD mice, no studies were performed on the 

hippocampal structure alone. The analysis of this structure and its connectivity can provide more evidence 

of a PD hippocampal deficit that is seen not only in behavior, but also in the anatomical structure. Moreover, 

given the difficulty in breeding these animals, often behavioral measures lacked power for statistical analysis. 

We aim to add more subjects in the future to confirm our observations.  

We suggest our interpretations should be taken with caution, given matches between PD and control 

mice do not show a significant difference in experiment 1 and 2 and further analysis should be carried out to 

confirm our findings. Our results however, suggest a genetic related deficit (GTf2i- Limk1) behind spatial 

navigation and memory. Single knockout gene models for Limk1 and CLIP2, two genes on the PD region have 

been associated with hippocampal dysfunction (Hoogenraad et al., 2002; Meng et al., 2002), in terms of 

reproducing anxious-like behavior and difficulty in spatial tasks. However, we show evidence that the 

interaction of more genes can cause deficit in hippocampal behavior. To further test our hypothesis, future 

studies on DD (distal deleted) mice should be carried out to isolate the spatial impairment to PD deletion 

alone. 
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Chapter 3: Boundary based navigation and landmark use in mice (Mus 

musculus) and rats (Rattus Norvegicus) are impaired by age. 
 

 

Abstract 

Normal aging produces an overall difficultly in performing spatial tasks. The large deficit in spatial navigation 

is supported by a significant decrease in hippocampal volume and function. However, in case of 

disorientation we wonder what strategy aged animals would put in place. Adult animals use allocentric 

strategies to find a target location. In particular, the geometric properties of the environment over shadow 

non-geometric cues following disorientation. In this study, we aimed to test whether this highly conserved 

cognitive function is altered by age. We used old animals of two species (mice and rats) and tested their 

ability to use geometry (hippocampus based) and landmark (extra hippocampus based) separately. Given the 

sensitivity of hippocampal place cells to boundary geometry, we hypothesized that a decline in hippocampal 

function can be assessed using a classical reorientation task. We show evidence of failure in using landmark 

and geometry in aged animals, consistent with the existing literature on an age related decline in the 

hippocampus. We suggest the reorientation task to be useful in underlying early deficits in the hippocampus 

and can be used in animal models of aging and age-related neurodegenerative diseases such as Alzheimer’s 

disease.  
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Introduction 

When an animal loses its sense of direction, it relies on external cues to find its way back toward a 

target location. To do so it can put in place two navigation strategies: egocentric and allocentric (Burgess, 

2006). An egocentric navigation, is for example keeping track of one’s movement constantly updating along 

the way. This however, has one main limitation: the accumulation of errors along the route and is inefficient 

when an animal loses its bearings. To recall a target corner of an arena animals mostly uses external cues 

such as landmarks and geometric properties of the environment to get back on track.  

Animals, following disorientation, use prevalently an allocentric hippocampus based strategy to find 

a key location. External geometric cues such as the shape of the environment, are preferred over non-

geometric cues to aid navigation. Cheng was the first to observe that rats navigated using the shape of a 

rectangular arena. His findings were replicated in other animals (Lee & Spelke, 2011; Lee et al., 2012; Sovrano 

et al., 2002) providing strong behavioural evidence for geometric based navigation. Navigating using lengths 

and distances seems to be an innate ability present in all animals. Rearing studies in fish and chicks, where 

animals were exposed to a circular arena at birth showed the same preference to geometry as those reared 

in a rectangular arena (Brown, Spetch, & Hurd, 2007; Chiandetti & Vallortigara, 2007).  

The neural correlates of geometric navigation lie in hippocampal place cells and entorhinal boundary 

cells. Place cells are sensitive to geometric boundaries and their firing depends solely on geometric shape 

rather than non- geometric cues (Keinath, Julian, Epstein, & Muzzio, 2017). Place cell function is strictly 

related to boundary cell input, that provide key information such as the distance from boundaries 

represented by the walls of the arena in an environmental setup (Lever et al., 2009). Boundary cells have 

adult like firing rates already in the early days of rat pups, supporting the innate ability of geometric based 

navigation (Bjerknes et al., 2014).  

Given the inbred ability to use lengths and distances of a rectangular arena, we wonder whether this 

cognitive ability remains unaltered throughout development until senility. Hippocampal function declines in 

age and so do place learning strategies. Allocentric navigation is often replaced by response learning 

egocentric strategies instead. The switch in preference is related to the structural deficits in the 

hippocampus, that are more vulnerable to the effect of aging than other brain structures. In a virtual analog 

of the Morris water maze, aged individuals took more time and retained less accurate knowledge of the 

hidden platform than younger individuals (Moffat, Kennedy, Rodrigue, & Raz, 2007; Moffat & Resnick, 2002). 

Moreover, when asked to navigate toward a target landmark, elderly individuals travelled longer distances 

to reach specific landmarks and acquired less knowledge about the spatial layout (Head & Isom, 2010). This 

suggests that elderly individuals have difficulty in the construction and use of hippocampal cognitive maps, 

and therefore use alternative strategies such as egocentric or path integration to navigate(Lithfous et al., 
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2013). Likewise, aged rats also show a reduced specificity for place learning and preference for egocentric 

strategies in a Barnes maze task (Barnes et al., 1980).  

In previous studies classical spatial assays in animals, such as Morris water maze, or Barnes Maze 

have been used to measure spatial behavior. These tasks although extensively used have some limitations 

especially in the interpretation of results. They require the use of a combination of multiple cues (such a 

various sources of distal cues around the room) and the extensive learning and lack of precision make these 

tests unideal for evaluating hippocampal function alone. Moreover, they fail to isolate the use of use of 

geometric cues from other sources of information. 

Therefore, we aimed to detect deficits in hippocampal place learning in aging using a shorter, simpler 

measure. The reorientation paradigm is a sensitive task to test the use of boundary geometry (hippocampal 

place and entorhinal boundary activity) and landmark (extra hippocampal activity) separately in a controlled 

space and isolated from all other cues. Deficits in hippocampal place learning might be elucidated by the 

reorientation task. In order to test this hypothesis, we tested two different animal species: mice and rats to 

evaluate how aging alters navigation strategies. Rodents are classical animal models used in testing, but show 

different behavioral patterns. In this scenario the use of both species can underline specie-differences, and 

given the possibility of genetic manipulations in mice, can provide insights on future lines of research that 

can investigate the genetic relationships between genes and boundary based geometry.  

 

General Methods 

We tested two animal species (mice and rats), in two age groups (young and old) on their ability to use 

boundary geometry (experiment 1) and landmark (experiment 2). 

Subjects 

Male Lister Hooded rats (Rattus norvegicus, Harlan Olac, Bicester,87 England) were housed in pairs 

with access to water and food ad libitum. They were held on a 8- 12-hr light/dark cycle; testing occurred 

during the light phase. Rats were food deprived 3-4 hours before testing to induce motivation towards 

reward. No animals dropped below 95% of 90 free-feeding weight. Animals were kept in the animal facility 

until the age of 24 months and the animals that survived were tested again.  

Mice were obtained from Jackson Laboratories (USA). Mice were housed in groups of 2–4 in standard 

Technoplast Type II cages, which were cleaned weekly and filled with fresh bedding, cardboard domes, and 

strips of paper (for enrichment). Mice were checked daily for their condition, weight, and visible injuries to 

ensure the absence of aggressive behaviours and general well-being. Animals were bred and kept in the 

animal facility in which the temperature was maintained at 21–23 °C. The mice were provided with a grid (13 



50 
 

x 25 mm) full of standard food pellets and a bottle of water (food and water checked daily), and put on a 12–

hr light/dark cycle (lights on from 7:00 a.m. to 8:00 p.m.). Two weeks before testing animals were transferred 

by means of a ventilated cabinet and kept in the testing room until the end of the experiments.  

Apparatus 

Rats: The arena was raised 86cm above the ground and surrounded by black curtains to avoid extra-

maze cues. A bright light 45Wwas suspended above the arena. Close to the light we placed a video camera 

to record all the experiments. Arenas (rectangular: 120 x 60cm; square: 85 x 85cm; height 50cm) were 

constructed from black medium-density fibreboard. The features were 0.5cm thick polyurethane panels, in 

alternating black and white stripes (thickness 10cm). In each corner of the arena was a white ceramic 

cylindrical feeder (diameter 8cm, height 4.2cm). Chocolate chips (Kellogg’s coco pops) were used as a reward. 

During disorientation, animals were placed inside a light-tight box (22 x 15 x 21cm).  

Mice: The experiments took place in a circular testing space surrounded by black curtains. One bright 

central light (round; diameter, 10 cm) illuminated the circular testing space from above. A camera was 

mounted on the ceiling and recorded animal behaviour. At the centre of the testing space was either a 

uniformly coloured white rectangular arena (40 x80x20 cm) or a square arena (40x40x20 cm) with three 

white walls and one striped black/white, featurally distinctive wall (stripe thickness, 4.5 cm). The arena was 

filled with 5 mm of water. In each corner was a black box, one of which had an opening on one side.  

Design 

Rats: Testing lasted two days, three trials per day. Goal corners and release points were chosen 

randomly. One day before testing, rats were provided with some chocolate chips in their cages. Before the 

first trial of each day, animals received a familiarization trial during which they were given three minutes to 

explore the arena and eat one chocolate chip placed at its centre. For each test trial, chocolate chips were 

added to one feeder. The animal was allowed to explore until it had eaten a piece of chocolate, at which 

point it was removed for 15s, before being placed back in to the arena from the same starting point. The 

animal was allowed to explore the arena until it had eaten a second piece of chocolate. This was to discourage 

the use of an alternation strategy, documented in rats as a method of foraging (Olton & Schlosberg, 1978). 

The animal was then disorientated for 30s by placing it in a dark, covered box and rotating the box. 

Disorientation involved clockwise and then anticlockwise rotations (at least 720° in each direction). During 

this time, the feeder containing chocolate was removed from the arena and replaced with an identical, but 

empty, feeder. The arena was cleaned with 15% ethanol and rotated 90° clockwise to counteract the use of 

possible uncontrolled extra-maze cues. The animal was placed back into the arena from a randomly selected 

wall and allowed to search for 60s. Behaviour was coded manually offline. When the animal was within 5cm 

range from the feeder it was considered inside the zone.  
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Mice: The mouse was removed individually from its home cage in a covered cylinder and transported 

to the testing arena within the same room. In boundary geometry condition goal corner and rotationally 

correct corner were rewarded. In the landmark condition correct and featurally correct corner were 

rewarded. The mouse was released from the centre of the arena and allowed to explore the environment 

until it found either of the target holes and took refuge inside. After 60 s it was removed and disoriented for 

30 s in the covered cylinder (0.3 rotations/s in one direction and then the other). Meanwhile, the arena was 

rotated 90°with respect to the rest of the environment and the position of the experimenter, the target boxes 

were rinsed with water, and were closed shut. The mouse was released from the centre again and given 1 

min to explore the arena. After 1 min, the mouse was removed from the testing arena, again using the 

covered cylinder, and placed back inside its home cage. Testing was conducted across 2 consecutive days 

(3trials/day) per condition (boundary geometry and landmark).  

Statistical analysis 

All tests were recorded and coded offline using Ethovision 9.0 for mice and manually for rats. We 

considered active exploration when the animal was in a 3cm range from the refuge or feeder. For each test, 

we recorded the time spent close to the refuge in seconds and then calculated the proportion of time. We 

defined our dependent variable “accuracy” as proportion of time spent in the correct + geometrically correct 

corner for boundary condition, and correct +featurally equivalent corner for the landmark condition. 

We analysed each animal species separately, because based on literature on rodent behavior we expected 

some difference in between mice and rats. We later analysed mice and rats separately for each condition. In 

each group we used a paired t-test to see statistical difference between correct and incorrect corners. Later 

we analysed the age effect comparing performance between old and young animals of each species 

separately by a univariate ANOVA with “accuracy” as a dependent variable and condition (boundary or 

landmark) and age (young or old) as independent variables.  

 

Results experiment 1: use of boundary geometry 

Experiment 1 tested the use of boundary geometry using a rectangular arena. We expected young animals 

to spend more time in the correct compared to the incorrect corners. We expected old animals to show 

failure in geometry due to a decline in hippocampal function caused by aging. 

Young animals: Young mice (29 mice aged 3-5months), spend significantly more time in the open 

compared to the closed corners (t (28) =2,03, p=0,05). Searches were significantly above chance of 0,50 (t 

(28) =2,06, p=0,05). Likewise, young rats (n= 5 aged 6 months) spend significantly more time in the correct 

(correct + geometrically correct corners) compared to the incorrect corners (paired t-test: t (26) =3,2, p=0,03) 

(figure 1a). Furthermore, to make sure searches of young rats were not random, we performed a t-test 
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against chance of 0,50 and found that searches in correct corners were significantly above chance (t (26) 

=3,25, p= 0,03).  

 

 

 

Figure 1: Experiment 1: geometry condition. a) geometry in young animals. b) geometry in old animals. Correct corners (correct + 
rotationally correct) incorrect corners (near+far). *p<0,05 

Old animals: Old mice (n=12) do not show a significance preference (t (11)=1,8, p=0,09) for the 

correct versus incorrect corners. Likewise, old rats (n=7) fail in using boundary geometry (t (30)=-0,52, 

p=0,09) to reorient (figure 1b). 

Young vs old: There was no statistical significance in searches between young and old mice. We 

compared performance of young and old rats and found a significant age affect. A univariate ANOVA showed 

an effect of age in boundary geometry F (1,56) =5,6, p= 0,021, η2 = 0,91. Young rats spent more time in in 

correct corners compared to old t (56) = 2,3, p=0,021.  

Discussion experiment 1: Our results replicate other findings that show correct use of geometry in 

adult rats and mice (Cheng & Newcombe, 2005; Lee et al., 2015; Sovrano et al., 2002). Unlike young animals, 

aged animals of both species (mice and rats) fail in geometric based navigation. We confirm previous findings 

in boundary geometry seen in old mice (Fellini et al., 2006). We show evidence for the first time, that also 

aged rats are impaired in using geometry. Previous tasks in rats showed an overall difficulty in using 

a. 

b. 
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allocentric strategies (Barnes et al., 1980) but none tested the reorientation paradigm in old rats. The overall 

deficit, namely in using hippocampal based navigation, is seen also in elderly individuals (Moffat & Resnick, 

2002). 

Results experiment 2: Use of landmark 

Experiment 2 tested the use of a visual landmark (striped wall) in reorientation. We observed no difference 

in behaviour when goals were close to the feature compared to far from the feature in both animal species. 

Therefore, we collapsed all trials together and averaged the proportion of time across trials.  

Young animals: Young mice (n=23) spend significantly more time in the open corners (correct and 

featurally equivalent compared to the incorrect corners (t (22) =2,09, p=0.04). Searches were significantly 

above a chance level of 0,50 (t (22) =2,09, p=0,04). Likewise, young rats (n=5) spend significantly more time 

in the correct corners (correct + featurally equivalent corner) compared to incorrect ones (t (20) =3,7, 

p=0,01). Searches in the correct corners were significantly above chance of 0,50 (t (20) =3,7, p=0,001) (figure 

2a). 

Old animals: Old mice (n=23) (t (22) = -0.5, p=0,59) and rats (n=8) (t(22)= -1,6, p=0,113)showed no 

statistical significance in searches between correct and incorrect corners (figure 2b).  

Young vs old: No age effect was seen between performance of young and old mice in landmark use. 

However, an age effect was seen between young and old rats: F (1, 43) = 10,2, p=0.03, η2 =0,193. Accuracy 

(correct corner + featurally equivalent) was significantly higher in young rats compared to old ones. An 

independent t-test showed young animals searched more in the correct and featurally equivalent corners 

than old rats (t (43) =0,5, p= 0,03). 

 

 

a. 
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Figure 2: Use of landmark to reorient. In experiment 2: landmark condition. a) landmark in young animals. b) landmark in old animals. 
Correct corners (correct + featurally correct) incorrect corners (near+ incorrect). *p<0,05 

 

Discussion experiment 2: Young rats and mice show success in using a landmark (striped wall) to 

navigate (figure 2a). Old animals on the other hand, show difficulty in using a landmark such as a striped wall 

to reorient. Unlike mice, where the effect isn’t significant, it is clearly seen in rats. In mice however, we can 

observe a trend toward the same direction and believe that an increase in sample size can give significant 

results. As observed in animals, a diminution in using landmark knowledge is also seen in elderly individuals 

(Head & Isom, 2010; Moffat et al., 2007) suggesting that the hippocampus along with other brain areas are 

altered by age.  

Conclusions and Discussion 

The overall failure in both geometry and landmark use made us wonder if age affected other abilities 

such as eyesight, that could interfere with performance. To rule out this possibility, we tested mice in the 

light and dark box. In this test, they show preference for the dark compartment because of their natural 

aversion toward bright lights, confirming no alteration in vision. Likewise, in rats we measured their attraction 

toward the striped walls by seeing the amount of time they spent close to the feature in each trial. We 

observe an overall attraction toward the striped wall but failure to use it as a spatial cue.  

In our experiments, we can observe a difference in behaviour in young vs old animals, mainly due to 

the effect of age. Moreover, our results suggest that spatial representations, particularly hippocampal 

boundary-based spatial mapping but also disoriented landmark use, are altered in two rodent species. 

Anatomical analysis could point out if there are differences in brain regions between mice and rats that could 

point out how aging differs in species.  

Because boundaries are crucial to hippocampal spatial representation (Lee, 2017), testing boundary 

geometry in aged animals could be an early indication of an age related impairment in the hippocampal 

formation. We show evidence that the reorientation paradigm has potential to be a useful behavioural 

b. 
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measure of hippocampal function, in terms of its capacity to use geometric cues. Unlike other spatial tasks 

in rodents, such as the Morris water maze or Barnes maze, this task evaluates geometric from non-geometric 

based navigation and isolates boundary based navigation from other strategies. Moreover, extensive learning 

and stress in the Morris water maze represent external factors that influence negatively animal’s behaviour. 

These limitations are overcome in the reorientation paradigm, that takes only two days of testing inducing 

the minimum stress to the animal. 

Given the wide literature of decline in spatial navigation in aging in animals (Lithfous et al., 2013), we 

decided to test aged animals of two species (mice and rats) to underline whether a different aging pattern 

might be present. Rats, in particular have long been used in behavioural studies, and given their long life span 

we decided to use them to investigate aging effects. Mice on the other hand, are less common in behavioural 

tests, but represent an equally important animal model. The sequencing of their genome makes them an 

essential tool to study genotype-phenotype relationships. There are many mutant mice models to study 

aging pathologies such as Alzheimer’s and we suggest that the reorientation task might be more appropriate 

to evaluate spatial decline than other more traditional tasks. Our task could be successfully implemented in 

mutant mice models as a behavioural measure of various stages of hippocampal decline.  

We suggest that an allocentric task, specific to hippocampal activity should be implemented in clinical 

use to evaluate early signs of spatial deficit. The geometric module is more difficult to test in humans as the 

acquisition of spatial language overrules geometric based navigation (Wang & Spelke, 2002). Nevertheless, 

future research, perhaps using a 3D virtual reality task, could highlight subtle alterations of hippocampal 

function. Testing navigation in humans is a challenge, mainly due to the acquisition of other abilities that 

interfere and fail to isolate the ability to use boundary geometry alone. To overcome these issues, virtual 

reality environments that are strictly controlled for external cues and interference can substitute 

experimental setups. This type of task in a clinical setup could be helpful in early diagnosis of disorders such 

as Alzheimer’s disease, where the onset of clinical manifestations arise long after the pathogenesis of the 

disorder. The window between beginning of the disorder to clinical diagnosis is critical and a specific 

behavioural task could be the key to an early diagnosis.  
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General Conclusions and Discussion 
 

The most innovative outcome of this dissertation is the successful use of different animal models to 

test different functions at specific age points of the hippocampus. The second interesting finding is the use 

of the reorientation task as a measure of hippocampal function, in particular the ability to use environmental 

geometry as an indicator of proper function of hippocampal neurons.  

Our results together show evidence that the hippocampus has adult-like activity starting already in 

early stages of life (chapter 1). Hippocampal response of domestic chicks is strongly influenced by the 

geometric layout of environmental boundaries. This suggests that a change of environmental shape can be 

detected by the hippocampus of naïve chicks. This experiment shows that the domestic chick can be a useful 

model to study early hippocampal function. It also increases our knowledge on the similarities in hippocampal 

function between birds and mammals (Gupta et al., 2012; Jarvis et al., 2005;Rodrıǵuez et al., 2002). The 

second most intriguing finding of this study is that a mechanism similar to “remapping” seen in rodents, 

(O’Keefe & Burgess, 1996) is also present in the avian species. This increases the similarities between the two 

species, especially in relation to place cells and their sensitivity to geometry (Keinath et al., 2017) that are 

possibly present also in birds. Future research in the direction of single cell recordings might evidence place 

like cells confirming our initial suppositions of their existence. We believe that our findings might lay the 

ground to future studies that could narrow the gap between avian and mammalian hippocampus and provide 

more ground on the use of the avian brain as a good model to study also mammalian disorders.  

The sensitivity to environmental shape is seen not only in chicks, but also in other animal species. We 

used the reorientation task as a measure of hippocampal sensitivity to geometry in genetically modified mice 

and aged rats. The reliability of geometric properties is a sensitive test to measure hippocampal deficit. 

Therefore, we used this task (chapter 2) in our mutant mouse model to investigate whether the selected 

gene deletion could interfere with hippocampal functions. We chose to use the PD mouse as a model to study 

hippocampal deficit and submitted mice to two behavioral tasks to evaluate different functions, regulated 

by the hippocampus. The PD deletion regulates two strictly related hippocampal functions: reorientation and 

episodic memory. Moreover, genes on this deletion (Gtf2i-Limk1) cause difficulty in using geometric cues and 

also difficulty in binding the temporal and spatial information of episodic memory. The results in our mice 

models, mimic the same behavioral deficit observed in WS patients in reorientation and memory (Lakusta et 

al., 2010; Landau et al., 2006; Vicari et al., 2005). We observe a specific deficit in the temporal component of 

episodic memory, suggesting that while memory for objects is preserved (what), what lacks is the capacity 

to collocate them in a spatio-temporal context (where). Their hippocampal deficit is reflected also in their 

difficulty in using environmental geometry of the rectangular arena (long vs. short arm) to recall correct 

corners. This is consistent with previous findings in WS patients, that show failure in using environmental 
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shape to find a target corner (Lakusta et al., 2010). We hypothesized, based on studies in clinical patients, 

that a landmark would improve performance. But on the contrary, no improvement was observed in mutant 

mice, showing repeated failure in all trials. Spatial and memory deficits are coherent with structural 

impairments observed in the hippocampal formation in patients (Meyer-Lindenberg, 2005) and single gene 

knockouts of the PD region (Hoogenraad et al., 2002; Meng et al., 2002). Anatomical and structural 

parameters of PD mice hippocampus, could help correlate the behavioral deficit to brain abnormalities in the 

future.  

Not only genetic alterations, but also age alters hippocampal function. The reorientation task is an 

instilled cognitive function in all animal species. We used this behavioral measure to evaluate hippocampal 

deterioration. We tested this hypothesis using young and aged animals (chapter 3). Young animals, both mice 

and rats, show correct use of boundary geometry and landmark use. However, old rats and mice show failure 

in both conditions over repeated trials. These results suggest that hippocampal allocentric ability is altered 

by age. We also show evidence of the validity of the reorientation paradigm, and suggest it as potential 

behavioral measure to evaluate hippocampal function. Moreover, we conclude that a similar deficit in 

function is observed in two species, suggesting that a similar deterioration might include also other non-

human animals and humans. The potential of this behavioral measure could develop into an important assay 

of early degeneration of the hippocampus. Neurodegenerative disorders such as Alzheimer’s disease start in 

this specific brain region and spread to other areas of the central nervous system. Therefore, we hope our 

findings could help the development of behavioral tasks to measure reorientation in aged individuals, as it 

could be an inexpensive and non-invasive measure for early diagnosis.  

In conclusion, although our findings in PD mouse models and aged animals are still inconclusive due 

to lack of animals, we show evidence of how important cognitive functions such as spatial navigation and 

memory are tightly related to intrinsic and physiological factors such as genes and senescence. We believe 

that an increase in sample size would provide more significant results and confirm the trends we observed 

in our behavioral assays.  
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Concluding Remarks 
 

This dissertation shows suggesting evidence of how various aspects of hippocampal function can be 

studied using different animal species.  

We highlight two key findings: first a “remapping” mechanism is present also in the avian brain, 

narrowing the gap between similarities of mammalian and avian hippocampus, second the reorientation task 

as a reliable behavioral measure to evaluate spatial memory in genetically modified mice and aged rats. This 

task could be applied to test hippocampal function in mice models of AD and set the ground for applications 

in clinical practice as a sensitive measure to evaluate hippocampal deterioration and early diagnosis in aged 

individuals, prone to develop neurodegenerative disorders. Finally, we also point out the PD mouse as a 

model to study hippocampal function in relationship to gene regulation. Further studies with this model 

would confirm the predictions we observed in our studies. 
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