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Abstract

Modern organizations collect massive amounts of data, both internally (from their employ-

ees and processes) and externally (from customers, suppliers, partners). The increasing

availability of these large datasets was made possible thanks to the increasing storage and

processing capability. Therefore, from a technical perspective, organizations are now in a

position to exploit these diverse datasets to create new data-driven businesses or optimiz-

ing existing processes (real-time customization, predictive analytics, etc.). However, this

kind of data often contains very sensitive information that, if leaked or misused, can lead

to privacy violations.

Privacy is becoming increasingly relevant for organization and businesses, due to strong

regulatory frameworks (e.g., the EU General Data Protection Regulation GDPR, the

Health Insurance Portability and Accountability Act HIPAA) and the increasing aware-

ness of citizens about personal data issues. Privacy breaches and failure to meet privacy

requirements can have a tremendous impact on companies (e.g., reputation loss, non-

compliance fines, legal actions). Privacy violation threats are not exclusively caused by

external actors gaining access due to security gaps. Privacy breaches can also be originated

by internal actors, sometimes even by trusted and authorized ones. As a consequence, most

organizations prefer to strongly limit (even internally) the sharing and dissemination of

data, thereby making most of the information unavailable to decision-makers, and thus

preventing the organization from fully exploit the power of these new data sources.

In order to unlock this potential, while controlling the privacy risk, it is necessary to

develop novel data sharing and access control mechanisms able to support risk-based deci-

sion making and weigh the advantages of information against privacy considerations. To

achieve this, access control decisions must be based on an (dynamically assessed) estima-

tion of expected cost and benefits compared to the risk, and not (as in traditional access

control systems) on a predefined policy that statically defines what accesses are allowed

and denied.

In Risk-based access control for each access request, the corresponding risk is estimated

and if the risk is lower than a given threshold (possibly related to the trustworthiness of

the requester), then access is granted or denied. The aim is to be more permissive than in

traditional access control systems by allowing for a better exploitation of data. Although

existing risk-based access control models provide an important step towards a better man-

agement and exploitation of data, they have a number of drawbacks which limit their

e↵ectiveness. In particular, most of the existing risk-based systems only support binary

access decisions: the outcome is “allowed” or “denied”, whereas in real life we often

have exceptions based on additional conditions (e.g., “ I cannot provide this information,

unless you sign the following non-disclosure agreement.” or “ I cannot disclose this data,



because they contain personal identifiable information, but I can disclose an anonymized

version of the data.”). In other words, the system should be able to propose risk mitigation

measures to reduce the risk (e.g., disclose partial or anonymized version of the requested

data) instead of denying risky access requests. Alternatively, it should be able to propose

appropriate trust enhancement measures (e.g., stronger authentication), and once they

are accepted/fulfilled by the requester, more information can be shared.

The aim of this thesis is to propose and validate a novel privacy enhancing access

control approach o↵ering adaptive and fine-grained access control for sensitive data-sets.

This approach enhances access to data, but it also mitigates privacy threats originated by

authorized internal actors. More in detail:

1. We demonstrate the relevance and evaluate the impact of authorized actors threats.

To this aim, we developed a privacy threats identification methodology EPIC (Evaluating

Privacy violation rIsk in Cyber security systems) and apply EPIC in a cybersecurity

use case where very sensitive information is used.

2. We present the privacy-aware risk-based access control framework that supports ac-

cess control in dynamic contexts through trust enhancement mechanisms and privacy

risk mitigation strategies. This allows us to strike a balance between the privacy risk

and the trustworthiness of the data request. If the privacy risk is too large compared to

the trust level, then the framework can identify adaptive strategies that can decrease

the privacy risk (e.g., by removing/obfuscating part of the data through anonymiza-

tion) and/or increase the trust level (e.g., by asking for additional obligations to the

requester).

3. We show how the privacy-aware risk-based approach can be integrated to existing

access control models such as RBAC and ABAC and that it can be realized using a

declarative policy language with a number of advantages including usability, flexibility,

and scalability.

4. We evaluate our approach using several industrial relevant use cases, elaborated to

meet the requirements of the industrial partner (SAP) of this industrial doctorate.
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Chapter 1

Introduction

Data, including personal information, is an increasingly valuable asset for modern busi-

nesses and organizations. Indeed the amount of data collected by 2020 is expected to

exceed 44 billion of gigabytes worldwide [71] and the European Commission estimates

the European data market value to reach e 739 billion [72] by the same year. If care-

fully handled this data can enable organizations to understand and react with precision

to customers and stakeholders needs, providing tangible competitive advantages in the

marketplace.

However, the sensitive and personal nature of data is also increasing the burden for

companies, which are subject to strict regulation for collection, processing and sharing

data. In addition to the possible fines and sanctions prescribed by data protection laws

(e.g., in the Europe fines can reach 20 million euros or 4% of the global annual turnover

for companies failing to meet the EU General Data Protection Regulation GDPR require-

ments [57]), privacy breaches can have also a huge impact on companies reputation and

relationships with partners, clients, and employees, which has the potential to dramati-

cally increase the bill.

Therefore, companies must conduct thoroughly privacy threat investigations and eval-

uation to identify and remediate to any gaps with respect to applicable regulations and

agreements. This kind of process is, however, complex and expensive mainly due to the

lack of appropriate guides and tools [97].

Furthermore, privacy breaches are not only originated by external attackers, they can

also be originated by internal actors. In fact, an important number of data breaches

(around 30%) is originated by trusted and authorized actors [32]. The severity of these

threats and the lack of appropriate access and usage control mechanisms is pushing most

organizations to strongly limit access and exploitation of data, even internally, making a

large part of the information unavailable, and reducing the potential exploitation.

These issues create a strong need for new access control models able to dynamically

evaluate these threats and to take access flexible decisions based on the best trade-o↵
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between expected risks and benefits.

The aim of this thesis is to motivate, design, implement and validate a novel privacy-

aware risk-based access control model capable to balance the risk and benefits when eval-

uating access requests. Our model also proposes the application of adaptive adjustment

strategies to lower the risk or provide trustworthiness guarantees (i.e. guarantees that the

granted access will not be misused). These operations aim to increase the flexibility of the

access control process and enhance exploitability of the data while maintaining control

over privacy risk.

To identify and evaluate privacy threat scenarios, we also develop and validate a

methodology for evaluating privacy violation risk (EPIC). For practical reasons our method-

ology is designed in the context of cybersecurity, however, it can be adapted to conduct

a privacy threat evaluation in other contexts.

The research presented in this thesis was done partially in the context of the SECENTIS

Project 1 (The European Industrial Doctorate on Security and Trust of Next Generation

Enterprise Information Systems), financed by the European Union grant 317387, under

FP7-PEOPLE-2012-ITN and held in collaboration between the Fondazione Bruno Kessler,

SAP Security Research at Labs France, and the University of Trento. As in the scope of

the industrial doctorate, the research has been strongly based on industrial needs.

1.1 Objectives and research challenges

This thesis aims to achieve two main goals: i) Identify and study data breaches and

privacy threats by providing tools to systematically conduct a privacy violation threat

evaluation process in an enterprise setting. ii) Develop and validate solutions to mitigate

the identified privacy violation breaches in this environment while preserving data avail-

ability and utility. To accomplish these goals, we address the following research questions

(RQ), with associated challenges (Cs).

RQ.1 How can we carry a privacy violation threat evaluation in a meticulous but practi-

cal way? Which aspects should be considered, and which parties (e.g., stakeholders,

experts) should be involved in the process?

Cs.1 E�ciently evaluating threats scenarios is a complex and time-consuming task [50],

due to various factors, mainly: There is a very large number of heterogeneous as-

pects to be considered (e.g., the system’s architecture, data flows, nature of the

data, human and organizational factors). This kind of information might not always

be available and must be discovered (e.g., some procedures are very specific to a

certain type of organizations and they can be di↵erent or non existent in others)

and investigated (e.g., collected through interviews, extracted from diverse types of
1www.secentis.eu
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documentation) for the threat evaluation purpose, and therefore several aspects can

be overlooked. In addition, such process requires the setting up teams of several

experts [120] with di↵erent skills and backgrounds, which results in challenging and

costly projects.

RQ.2 How to evaluate privacy threats risk? Which metrics to use at the organization

level? How can we balance the privacy risk with the best exploitation of data?

Cs.2 Despite the existence of several formal privacy metrics proposed to estimate the

likelihood of an adversary of learning a private sensitive information when getting

access to a given dataset, none of them in isolation seems appropriate to measure

the general privacy violation the risk incurred by an organization when processing

sensitive data. The reason is that the validity of these metrics often dependents on

specific assumptions on the considered adversary and/or data sharing model (some

examples are provided in [15, 56]), while enterprise systems (i.e., cybersecurity sys-

tem, enterprise resource planning) have many di↵erent components that process and

store heterogeneous data, complex architecture and data flows, and interactions (in-

cluding data access) with users with di↵erent roles. Therefore none of the existing

privacy metrics can be used in isolation to measure the general privacy violation

risks involved in running such systems. This complexity calls for a principled but

more high-level approach to privacy threat assessment. The prioritization of privacy

threats is yet another challenging aspect of threat evaluation. Similarly to secu-

rity threats, the mitigation of privacy threats often requires costly operations to be

implemented [97] and it is crucial for the organization to prioritize its action plan

according to the urgency of the threats to handle. Threat prioritization is not a

trivial task and it needs to be carefully conducted to avoid misleading misconcep-

tions. Indeed organizations generally tend to underestimate or miss-identify threats

(security and privacy threats) involving insider threats [45], which is very dangerous

the organization since these threats are real, represent an important percentage of

the overall number of threats, and they are quite di�cult to identify and handle. For

example, the US State of Cybercrime Survey reported in 2014, that around 1/3 of

the total number of incidents registers that year were perpetrated by insiders and

had more damaging impacts than external attacks [32] (slightly di↵erent numbers

were reported in 2017 [33]).

RQ.3 How to mitigate the data breaches and privacy violation threats coming from

insider authorized actors without hindering their capability to fulfill their business

tasks, which need data access?

Cs.3 Unauthorized access to data through external attacks can usually be handled by

addressing the security and/or organizational controls and eliminating the leakages
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at the origin of the privacy threats [73]. Although this might be a challenging task

addressing threats coming from authorized access can be even more challenging. For

this kind of actors, we need to apply the data minimization principle when granting

access to the data but this is not an easy task since we need to evaluate the access

needs and risks both which can depend on a number of factors (e.g., trustworthiness

of a requester, security context of the query) that can not be accurately assessed

o↵-line and need to be re-assessed for each access.

RQ.4 How to accurately measure trust and risk in the context of a privacy-aware risk-

based access control?

Cs.4 Quantitative risk and trust values are well known to be very hard to compute [16,

111]. Indeed the diversity of risk scenarios, the intangible nature of trust, and the

limited amount of historical data for incidents makes an accurate quantitative assess-

ment extremely di�cult. In a very restricted context, a fairly accurate qualitative

assessment based on domain knowledge and privacy expertise can be however this

kind of assessment is not suited for access control where we need a real-time assess-

ment for diverse types of access requests.

RQ.5 How to evaluate the feasibility e�ciency of our solution performance, impact on

data quality and on privacy improvement of the privacy-aware risk-based access

control system?

Cs.5 While evaluating the performance might be a relatively easy task, it is much

harder to assess the impact of our solution on the quality of data (or data utility)

and evaluate the improvement it brings in terms of privacy and this is mainly due

to the lack of appropriate metrics for both aspects. Indeed the utility and privacy

is a very hard concept to quantify in a general context (for the reasons explained in

Cs.2 ).

1.2 Contributions

The contributions made by this thesis to address the aforementioned research questions

and challenges can be summarized as follows:

1. We provide a methodology for Evaluating Privacy violation rIsk in Cyber-security

systems (EPIC). It is a four-steps methodology designed to guide a privacy expert,

with the collaboration of security experts from the organization running the system,

to the identification of the main privacy threats, and to the assignment of a privacy

violation risk value to each of them. EPIC supports both qualitative and quantitative

risk values. The resulting evaluation can be used to prioritize mitigation actions to
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achieve legal compliance as explained in point a) above. Since the training, and more

generally trust, in a specific personnel role, is not considered until mitigation task

prioritization, the evaluation is useful for point b) as well. Finally, addressing also

point c) above. This contribution is detailed in Chapter 3 and addresses (RQ.1 )

and (Cs.1 )

2. We provide (in EPIC) a way to assess the priority of a privacy threat by considering

the trustworthiness of the adversary together with the privacy violation risk. This

overview (privacy threats details, risk, and priority ) helps planning and elaborating

the activities necessary to mitigate the risk of the identified privacy threats. This

contribution is also detailed in Chapter 3 and addresses (RQ.2 ) and (Cs.2 )

3. We develop a novel access control model where access decisions are based on a tread-

o↵ between the request’s trust with risk. Risk and trust are computed at run-time

taking into consideration a diverse number of factors to support access control in

dynamic contexts. When the risk is too large compared to the trust level, we propose

adaptive adjustment strategies that can decrease the risk and/or increase the trust

level to enhance the flexibility of the model while maintaining an acceptable level of

protection. The general model is described in Chapter 4 and addresses (RQ.3 )

and (Cs.3 ).

4. To support diverse data usage scenarios we propose two di↵erent privacy-aware im-

plementations of the general risk-based model in the context of privacy. The first

model in (Chapter 5) is based on syntactic anonymity metrics. The second (in

Chapter 6) is based on di↵erential privacy. In each model, we provide concrete

and understandable risk and trust assessment models to evaluate access, as well as

adjustment strategy to enforce the access decision. Both models were implemented

and evaluated using relevant case studies. This contribution addresses RQ.4 ) and

(Cs.4 ).

5. We provide in Chapter 5 and Chapter 6 relevant industrial case studies against

which we assess the performance and utility of the privacy-aware risk-based access

control model. Moreover, in Chapter 7, we will use the privacy threat evaluation

methodology, EPIC, to assess our model from the privacy perspective. Indeed EPIC

can be used to compare di↵erent systems in terms of privacy implications, it can

also be used to evaluate the impact of a privacy-preserving solution implemented in

a system by comparing the variation of the risk levels of privacy threats identified

in a cybersecurity system before and after the adoption of the privacy-preserving

solution. These contributions address (RQ.5 ) and (Cs.5 )
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1.3 Structure of the thesis

Figure 1.1 describes the di↵erent steps followed during the thesis. It also indicates in

which chapters of this dissertation we report each step. In Chapter 2 we discuss the

main related work in the areas of privacy threat assessment and risk- and privacy-based

access control. The work reported in this chapter is orthogonal to di↵erent steps of

Figure 1.1.

Figure 1.1: Structure of the thesis

In Chapter 3 we try to identify and study di↵erent privacy threat scenarios in the infor-

mation system of an organization (step A). Since this is a di�cult enough task, we chose to

focus on the cybersecurity systems a vital component of every organization’s information

system. To this end, we develop and validate “EPIC” a privacy threat identification and

evaluation methodology for cybersecurity systems. In Chapter 4 we design and evaluate

a novel access control model that combines trust with risk and supports access control in

dynamic contexts through trust enhancement mechanisms and risk mitigation strategies

(step B). We adapt this trust and risk-based access control model to the context of privacy

and propose a privacy-aware risk-based access control In Chapter 5. This privacy-aware

model uses syntactic anonymity metrics to assess the privacy risk. Another category of

privacy metrics equally interesting exists in the literature, the di↵erential private met-
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Chapter 2

Related Work

The research areas most directly related to the work presented in this dissertation are

i) privacy and security threat assessment (Section 2.1); ii)context-aware and risk-based

access control systems (Section 2.2); and privacy-preserving access control (Section2.3).

In this chapter, we will present an overview of the related work each of these three areas

and discuss similarities and di↵erences with our work.

2.1 Privacy threat identification and evaluation

A lot of research has been conducted in the last decades on the identification of pri-

vacy threats related to the use of technology, on mitigation techniques, and on methods

to evaluate the risk of privacy violations. We can distinguish two main categories of

approaches:

(a) Formal approaches addressing specific privacy problems, proposing privacy enhancing

methods and metrics to quantitatively evaluate the resulting level of privacy.

(b) Methodological approaches for privacy threat identification and assessment.

Research has been focused on general personal data collected as part of di↵erent ap-

plications including e-health, geo-location apps, social networks, finance, marketing but

we are not aware of any research addressing specifically the evaluation of privacy risks in

deploying cybersecurity systems.

In the following we will briefly report on the main e↵orts regarding both categories

mentioned above. However, regarding the formal approaches and the related proposed

privacy metrics we will motivate why we decided not to follow this route for evaluat-

ing privacy risk violation in cybersecurity systems. Instead, we will illustrate how our

proposed methodology relates to the more qualitative privacy threat assessments of the

second category, and how it was inspired by work done on security threat assessment.
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2.1.1 Privacy metrics

Various privacy metrics have been proposed in the literature to estimate the likelihood

of an adversary of learning a private sensitive information when getting access to a given

dataset (i.e., obtaining the identity of an individual and associated sensitive information).

For example, since anonymity prevents privacy violations, several metrics have been pro-

posed to quantify the level of anonymity of a dataset [40, 92, 99]. Extensions of these

metrics have been proposed to evaluate anonymity in di↵erent data sharing contexts in-

cluding location-based service requests [19]. However, their value is somehow limited by

the problem of evaluating the adversary’s knowledge which can determine which infor-

mation can actually re-identify individuals. When identification cannot be successfully

prevented, various sensitive data obfuscation techniques and related privacy metrics have

been proposed. Some metrics measure the distortion or generalization applied to the

data, and hence the probability of the adversary to infer the actual sensitive information.

Other metrics are based on the notion of indistinguishability with di↵erential privacy met-

rics [55] being an example. A quite comprehensive list of the privacy metrics that have

been proposed in the literature can be found in [160]. Finally, there are valuable attempts

to provide guidance in the application of privacy enhancing technologies (PET), often

related to the above-mentioned metrics [15, 56].

Some of these metrics (and related PETs) may be applied also in the context of cy-

bersecurity systems; For example, some anonymity metrics may be used to evaluate how

anonymous is a dataset of security alert logs, and some di↵erential privacy notions may

be used to measure the probability of privacy leak in releasing a statistically perturbed

Web site access log. However, none of them in isolation seems appropriate to measure the

general privacy violation risks involved in running a cybersecurity system. This is partly

due to the fact that the validity of these metrics is dependent on specific assumptions on

the considered data sharing model while typical cybersecurity systems have many di↵er-

ent components that process and store data, complex architecture and data flows, and

data access by users with di↵erent roles. This complexity calls for a principled but more

high-level approach to privacy threat assessment.

2.1.2 Security threat assessment methodologies

Before considering privacy assessment methodologies we briefly report some methodolo-

gies adopted for security risk assessment since this is a related and more established field

of investigation. Security threat analysis is a common step in the secure software de-

velopment life-cycle. In the literature, we find several tools and methodologies such as

the OCTAVE method [30], ISRAM [82], and the Common Vulnerability Scoring System

(CVSS) [107] only to cite a few. Among the most widely used, the STRIDE model was
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proposed by Microsoft [69] as a security threat identification process, used to assist en-

gineers to consider security aspects during the development of a software product. This

process starts by analyzing the information flow within a system and then modeling sys-

tem’s components using Data Flow Diagrams (DFD); a list of possible security threats

is identified for each of the components. STRIDE classifies security threats into six cat-

egories (Spoofing, Tempering with data, Repudiation, Information disclosure, Denial of

service, and Elevation of privileges). This model-based analysis has inspired the method-

ology that we are proposing. Indeed, we extend the DFD notation to better model the

system components and focus on the privacy threat identification for each component.

STRIDE is often used with the threat evaluation model DREAD to assess security risks

[145]. DREAD proposes to rate security threats by computing a score based on five cri-

teria (Damage, Reproducibility, Exploitability, A↵ected users, and Discoverability). This

score implicitly expresses the likelihood and severity aspects of a security threat. A similar

approach is proposed in our methodology for privacy violation risk assessment.

2.1.3 Privacy threat assessment methodologies

The first approaches to privacy assessment were mostly in the form of checklists with the

goal of demonstrating legal compliance [42]. Privacy impact assessment (PIA) method-

ologies emerged later-on to refine these approaches. Several definitions have been given

to PIA (see [73, 75, 130]). David Wright in [161] defines PIA as a methodology for as-

sessing the impacts on privacy of a project, and for taking remediation actions to avoid

or minimize negative impacts. Several governmental bodies such as the CNIL (France),

NIST (USA), ICO (UK) and the EU Art.29 Working Party have proposed various PIA

methodologies [44, 57, 73, 118]. These guidelines although very useful to understand the

goals of the assessment, do not guide an organization through the specific steps that

should be performed. Among the works that contribute in this direction, Oetzel and

Spiekermann present a seven steps methodology to support a complete PIA analysis and

systematically match the threats and the appropriate countermeasure [120]. However,

their approach only considers the impact of a privacy threat and not the probability of

occurrence of the threat, which may lead to an incorrect overall risk estimation. Another

aspect that has a relevant impact on the e↵ectiveness of the guidelines is their special-

ization for a given sector. The methodologies mentioned above are designed for a generic

privacy assessment, and consequently, they may not be straightforwardly implemented

when addressing the problem in a specific context. Indeed, the development of sector-

specific PIAs is mentioned among the priorities in recent EU recommendations [57]. We

found very few sector-specific approaches, among which a PIA framework for RFID based

applications [46], and a PIA template for smart-grid and smart-metering systems [149].
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EPIC is not intended to be a complete PIA methodology, rather it focuses on the

systematical analysis of technical aspects of CSS and their implications on privacy. Some

non-technical aspects are also considered (intervenability, consent, etc.) but they are only

evaluated when they can have an impact on the privacy risk. For example, as we show

in the following, lack of compliance with existing regulations influences the impact of a

privacy risk and hence should evaluate. Still, EPIC is not intended to provide a system-

atical analysis of these non-technical aspects.

To the best of our knowledge, the only work in the literature that analyses the problem

of privacy violations in cybersecurity systems is a survey paper by Toch et al. [152] (co-

authored by some of the authors of this paper). The survey proposes a new categorization

of cybersecurity systems that help the privacy analysts to identify the personal data that

these systems may expose to unauthorized parties. Our work builds on this categorization

but takes the proposed analysis to a deeper and more operational level with the main goal

of evaluating and comparing the risk of the identified privacy threats. Our methodology

considers also aspects like the adversary knowledge, the capability to access the data,

amount of data leaked, number of users involved, and other factors that determine the

impact of a privacy threat. With respect to the survey that considered also cybersecurity

systems for new ecosystems like mobile and IoT systems, we focus on organizational cy-

bersecurity systems and test our proposed methods in a case study involving the systems

of a large organization.

Besides PIA, other privacy assessment approaches adopted a requirement engineering

perspective to promote the privacy by design principles [48,50,98,119]. Among them, the

closest to our proposal, despite not being specific to cybersecurity systems, is probably

LINDDUN, a privacy threat analysis framework for software-based systems proposed by

Deng et al. [50] and based on the STRIDE model [69]. Privacy threats in LINDDUN are

identified through potential misuse scenarios (i.e., scenarios in which an adversary can

violate privacy requirements upon accessing the data). Unfortunately, the processes of

identification and analysis of misuse scenarios are not specified by the methodology but

rely on the expertise of the analysts. LINDDUN does not provide a risk evaluation support

either. On the contrary, in our approach, we consider as a threat any data disclosure that

can reveal sensitive information about a respondent. Our methodology is specialized for

cybersecurity systems and hence the identification of threats is well guided by security

and privacy factors (e.g., adversaries’ capabilities and knowledge, types of exposed data).

We also propose a domain-specific risk assessment model evaluating the likelihood and

severity of a threat.
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2.2 Risk-based access control

Several approaches have been recently proposed to address the limitations of traditional

access control models in terms of lack of flexibility, inability to handle contextual infor-

mation, evaluation of the trustworthiness of users and in managing access risk.

Among these approaches, we first consider the idea of context awareness. Context-

aware access control models (see, e.g. [1, 17, 22]) propose the use of contextual and envi-

ronmental information (e.g. Spatio-Temporal information) to achieve fine-grained access

control. Although these models do not evoke an explicit notion of access risk, the re-

quest’s context and environment can provide relevant information that could be used to

assess the access risk. In our risk-based access control model (presented in Chapter 4) we

also consider contextual information when evaluation the access request, but, instead of

statically including the contextual condition in the policy we use contextual information

as a parameter to compute the trustworthiness of a request, i.e., we indirectly use this

information to balance risk.

In addition to context awareness, other works propose to increase the access control

flexibility by taking in consideration operational need. McGraw [104] (and later Kan-

dala et al. [81]) presents a Risk-Adaptable Access Control (RAdAC) mechanism that

determines access decision based on a computation of security risk and operational need.

Multiple factors are used to determine the risk and operational need for every request (e.g.

user trustworthiness, the sensitivity of the information requested, user role and privileges,

level of uncertainty and history of access decisions). This model allows adapting the deci-

sion thresholds such that operational needs may outweigh security risk when appropriate,

but it does not itself specify any risk model. In our model (see Chapter 4) we also propose

dynamic risk thresholds considering business needs among other factors. We include these

factors in the trustworthiness of the request following this reasoning: if a requester needs

to access a resource to accomplish a business task the likelihood the access is misused is

lower and the request is more trustworthy. In addition, our approach provides (according

to the organization preferences) the possibility to enhance this trustworthiness level and

allow more permissive access when this is required. These trust enhancement strategies

require the fulfillment of obligations providing assurances that the access will not be mis-

used (e.g., monitoring of the access) and to mitigate potential misuse impacts (e.g., create

a back of a modified data).

More dynamic approaches take both risk and trust in consideration in risk-aware access

control (e.g. [34, 35, 37, 52, 144]), In these models each access request or permission acti-

vation, the corresponding risk is estimated and if the risk is less than a threshold (often

13



CHAPTER 2. RELATED WORK

associated with trust) then access is guaranteed, otherwise, it is denied. Cheng et al. [37],

following the multi-level-security paradigm, compute risk and trust thresholds from the

sensitivity labels of the resource and clearance level of the users. They also consider what

we define a trust enhancement mechanism that provides users with a limited amount of

tokens, which allow them to access resources with a risk higher than their trust level. The

details on how this mechanism can be applied in real cases are not provided. In another

work, Chen et al. [34] introduced an abstract model which allows role activation based

on a risk evaluation compared to predefined risk thresholds. Trust values are considered,

and they have an impact on the risk calculation (decrease the risk). If the risk is too high,

the model includes mitigation strategies, indicated as (system) obligations. The paper

does not specify how to compute the risk thresholds, trust, and the structure and impact

of obligations. In a derived model [35], mitigation strategies have been explicitly defined

in terms of user obligations in addition to system obligation. A user obligation describes

some actions that have to be fulfilled by the user to get access. Although the model does

not consider explicitly trust, it introduces the concept of diligence score, which measured

the diligence of the user to fulfill the obligations (as in behavioral trust model) and impact

the risk estimation.

Following the original Chen et al. [34] model, these papers consider trust as part of

the risk value. As a consequence: i) trust enhancement and risk mitigation strategies

are mixed, and it becomes di�cult to find an optimal set of strategies to increase access,

keeping risk under control, ii) trust thresholds become dependent on the risk scenario,

decreasing the flexibility in presence of multiple risk factors. Our model solves these issues

by clearly separating trust aspects from risk.

These approaches o↵er an important improvement in terms of flexibility compared to

traditional systems, however, these models still rely on the binary answers “allow” and

“deny”. Our model proposes a third outcome which is a partial access according to the

trust and risk levels. This access can be limited in time (e.g., accessing the resource for

one hour) or (in the case of data) granted to partial or anonymity views of the requested

data. This can provide limited but useful access with a lower risk. In addition, the above

approaches do not provide a concrete way to assess the risk and trust, nor concrete risk

mitigation strategies. In this thesis in Chapter 5 and Chapter 6 we provide a concrete risk

assessment models, in the context of data privacy, leveraging well-established privacy met-

rics such as k-anonymity and di↵erential privacy. We also propose to use anonymization

techniques to enforce the risk mitigation prior to granting access.
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2.3 Privacy-preserving access control

In Chapter5 and Chapter6 we propose two privacy-aware access control models aiming to

preserve privacy when querying a sensitive dataset, Indeed, privacy issues are lately re-

ceiving growing attention and several access-control-based privacy-preserving approaches

have been proposed in the literature. These works can be classified into two categories:

(a) Approches to preserving the privacy of requesters: These approaches aime to protect

(hide) the identity of data requesters [7,78] and/or ensure the confidentiality of their

request [29, 165,166] when access control is evaluated and the responce is sent back

(b) Approaches to preserving the privacy of data-owner: These approaches aim to protect

the privacy of respondents/data-owner when granting access to a sensitive data by

applying one or several of the following principles “anonymity”, “pseudonymity”,

“unlinkability”, “linkability”, “undetectability”, “unobservability”

The work presented in this thesis is more related to approaches in category b). In this

category we identified two interesting types of privacy-preserving access control “policy-

based model” and “risk-based models”

Policy-based privacy-preserving access control In this category, some works propose to

extend existing access control models by adding conditions and obligation to enforce pri-

vacy paradises such as access purpose, limitation of use, quality of data etc. For instance

Martino et al. introduce in [101] a family of models (P-RBAC) Privacy-aware Role Based

Access Control models that extend the RBAC model by adding privacy-sensitive data

permission granted according to the purpose of access and in return of obligations to be

fulfilled. Byun et Li proposed an access framework for privacy-preserving access control

systems [27, 28] based on the notion of purpose. Intended purposes are associated with

data in order to regulate data accesses and play in a certain way the role of privacy poli-

cies. Access purposes are the requester purposes to access an data item so when an access

to a data item is requested, the access purpose is checked against the intended purposes

for the data item. These approaches o↵er a good support for expressing privacy-related

organizational policies and allow the enforcement of these policies within an access control

module. However, they don’t o↵er privacy concrete privacy guarantees (e.g., guarantees

that the data will not be misused, re-used for other purposes after release) nor they can

guarantee the enforcement of the privacy-preserving obligations. In addition similarly

to traditional access control, these approaches increase the rigidity of the access control

system by adding (often non-negotiable) privacy constraints which limited furthermore

the availability of the data.
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Unlike these approaches, we use a formal guarantee for privacy using syntactic anonymity

metrics(see [40,92,99] for review) in the model presented in Chapter 5; where access risk

is computer and mitigated to meet the required privacy level. And using di↵erential pri-

vacy (see [43,54] for review) in the model presented in Chapter 6. In the latter, we do not

explicitly compute the risk, since it is very hard to estimate risk for a data set generated

by a di↵erentially private mechanism [103]. However, after mitigation our access control

system guarantees the release of (✏) data [90].

Other works propose to consider users privacy preferences when controlling access to

their data or when this data is used. This would be achieved through privacy policies and

adequate architecture to enforce them, along with access control, in several scenarios (e.g.,

a third party handling the data, secondary applications re-purpose or re-use the data).

Ardagna et al. (in [4–6]) present a privacy-aware framework that integrates access control

policies together with privacy policies regulating how personal identifiable information

should be handled by the requester. These policies are established during a negotiation

between di↵erent parties and partially enforced by each of them, which requires apriori

knowledge of the requester or a complex dialog between parties. A similar approach is

based on the concept of sticky policies [125], in this framework, privacy policies, expressing

users preferences for data handling, are attached to the data, enabling to improve control

over the usage of personal information and to define usage constraints and obligations as

data travels across multiple parties (e.g., in the cloud). These policies are enforced at

data consumer’s level.

These approaches are very interesting in the context where the data-owners have some

control over thier which is often the case when the data is directly collected (the data-

owner provides the data to the data handler). However they are not adequate when data

is indirectly collected and the user has no control over it (or sometimes has no knowledge

this data is collected), which is often the case in several organizations IT systems e.g.,

client management and human resource systems (example described in Chapter 6), cy-

bersecurity systems (example described in Chapter 5). Our approach instead is not based

on data owner’s preferences but establishes and enforces quantitative privacy thresholds

to guarantee the privacy of respondents. We developed these thresholds considering the

urgency of the context (need-to-know) and some considerations legal requirements on

privacy and labor regulation (in the context of employees data).

Besides both approaches presented above assume the requester is trusted (up to a cer-

tain degree) since they partially delegate the privacy policy enforcement to them. In our

model, we actually assess the trustworthiness of the requester as part of the access con-

trol assessment. If a need for a more permissive access can be justified we propose trust

enhancement techniques to allow this access in return of fulfillment of certain obligations.

These approaches also present the traditional access control flexibility issue, o↵ering only

a binary all-or-nothing response since they do not consider anonymization, nor other risk
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mitigation strategies. In our model, we propose to use anonymization (among other tech-

niques) as risk mitigation strategy with the goal to increase the flexibility

Risk-based privacy preserving access control To the best of our knowledge, risk-based ap-

proaches to privacy-preserving access control have been barely explored in the literature.

In [156, 157] Ulltveit-Moe et al. propose to assess the likelihood of privacy violations in

intrusion detection systems (IDS) based on information entropy in network information

flow. Then, they use this measure to di↵erentiate between rules (IDS rules) with a high

likelihood of privacy violation and rules with low ones. They also propose to modify

rules with high privacy violation likelihoods or restrict access to sensitive data (on strict

need-to-know approach) and use anonymization to implement these restrictions. When

this information is accessed by security agents ( human agents) to monitor the IDS alerts.

This approach proposes to set two profiles of users according to the expertise level: the

first profile allows monitoring tasks using anonymized data the second consists of security

experts, with clearance to perform necessary privacy-sensitive operations to investigate

attacks. However Ulltveit-Moe et al. do not elaborate how this access control is imple-

mented, or how it behaves according to the likelihood of violation. The entropy-based pri-

vacy leakage metric they propose is very interesting, however, the violation likelihood/risk

needs to be computed o↵-line for each rule (prior to the access control) based on already

existing information in the IDS alarm database which might lead to assessment mistakes

depending on the database. Moreover, this model clearly increases the privacy protection

but it might be di�cult to apply in realistic cases in the context of cybersecurity because

the risk mitigation relies on anonymizing the entire (source) dataset beforehand, resulting

in either low privacy or low utility.

Indeed privacy is a big issue in these cybersecurity systems (and generally in cybersecu-

rity) since network log and security log data used to monitor the information system and

detect security threats often contain very sensitive data. In Chapter 5 in Section 5.5 we

also tackle privacy violation scenarios threat detection systems (TDS). In our approach,

similarly to Ulltveit-Moe et al ’s approach, we aim to optimize the application of the need-

to-know principle. However, unlike them, we o↵er adaptive adjustment strategies, that

according to the priorities of the context, allows to mitigate the risk or provide trustwor-

thiness guarantees that the granted access will not be misused. These operations aim to

increase the flexibility of the access control process and enhance exploitability of the data

while maintaining control over privacy risk Besides our model that can be integrated to

well established access control models such as RBAC (example in Section 5.3) as ABAC

(example in Section 5.5)
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In the same context specific anonymization techniques for logs where proposed in [112].

We implemented several of the proposed anonymization techniques in a prototype of our

privacy-aware access control model (described in Section5.6), and, although based on

k-anonymity, our framework can include other privacy measures by changing the risk

function. More specifically, entropy-based privacy metrics can be easily integrated with

k-anonymity approach, as shown in [87].

18





Chapter 3

Threat scenario and mitigation

strategies

In this chapter, we would like to investigate (identify, evaluate and prioritize)

the privacy threats in data-driven systems. This analysis aims to understand the

implication of insider authorized actors in potential privacy threats. It will also

help assess the impact of these threats and select the most appropriate mitigation

strategies. As an example of data-driven systems, we chose to focus on Cyber

Security Systems (CSSs).

CSSs play a fundamental role in guaranteeing data confidentiality, integrity, and

availability. Modern CSSs relay more and more on big amounts of data collected

by sensors (e.g., agent installed in end-user machines) deployed all over the net-

work or the information system to protect. The data are, then, sent to central

nodes (e.g., IDS Intrusion Detection Systems, SIEM Security Information and

Event Management) to undergo di↵erent kinds of analysis. This centralized

way of monitoring allows for having a wide perspective of what is happening

on the information system than other (isolated) security products. Therefore, it

enables better identification and faster reaction to increasingly complex cyber-

security threats. However, while processing the data, CSSs can intentionally or

unintentionally expose personal information to people that can misuse them. For

this reason, privacy implications of a CSS should be carefully evaluated. This

is a challenging task mainly because modern CSSs have complex architectures

and components. Moreover, data processed by CSSs can be exposed to di↵erent

actors, both internal and external to the organization.

Consequently, we needed to develop a new methodology, specifically designed the

evaluate privacy violation risk in cyber-security systems. Di↵erently, from other

general purpose guidelines, our methodology (called EPIC) is an operational
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methodology aimed at guiding security and privacy experts with step-by-step in-

structions from modeling data exposure in the CSS to the systematical identi-

fication of privacy threats and evaluation of their associated privacy violation

risk.

3.1 Introduction

Privacy policy makers and data protection authorities all over the world are considering

the impact on privacy of the large amount of identifiable sensitive data that are being

collected and processed by public and private organizations. This is mainly the result of

the adoption of new technologies like mobile and pervasive systems, social networks, and

big data analytics, but also the evolution of technologies applied in surveillance and cy-

bersecurity systems. An example of regulation activity motivated by these concerns is the

EU General Data Protection Regulation, adopted in May 2016 [150]. While regulations

di↵er in di↵erent countries, some general principles are shared; for example, user informed

consent remains a pillar, and de-identification, despite the limits of anonymization tech-

niques, is still considered a mean to avoid or, at least, mitigate privacy violation risk [66].

Another shared recommendation to organizations deploying complex automated processes

handling large amounts of personal data is to systematically and thoroughly analyze how

the process a↵ects the privacy of the individuals involved and evaluate the risks in order

to identify appropriate mitigation actions. This analysis is often called Privacy Impact

Assessment (PIA) and it is, in some cases, a legal obligation as a necessary element in a

privacy by design approach. However, its value goes beyond the design phase since it is

also highly valuable when evaluating the compliance of already existing systems as well

as when comparing the privacy risks of alternative systems.

Several documents exist guiding the experts in privacy impact assessments, but they

usually consist of high-level guidelines instead of step-by-step instructions, partly moti-

vated by the fact that they are sector independent. Therefore, the importance of de-

signing sectoral PIA methodologies emerges in recent documents by EU data protection

authorities [57]. In most cases, the interest is currently focused on sectors like healthcare,

e-commerce, finance, and insurance, and less attention is paid to cybersecurity systems.

These systems handle large amounts of sensitive information as, for example, the data

obtained by monitoring employees personal computers, mobile phones, and the whole

organization network tra�c [57]. In the last decade, cybersecurity systems have been

increasing their strategic role for the protection of the IT infrastructure of industries and

organizations. The wide adoption of digital technologies to control even critical infras-

tructure and the extension of organizational IT systems to include mobile and IoT devices

have increased the attack surface and the impact that cyber attacks can have. This led to
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a significant increase in the complexity of cybersecurity systems in terms of components,

architecture, amount of data being analyzed, and personnel involved in managing the

systems.

The role of CSS with respect to privacy is twofold. On one side, CSS are an essential

tool to prevent privacy violation, e.g., by avoiding unauthorized access to data. On

the other hand, CSS often process a large amount of personal data, e.g., by monitoring

network tra�c, and hence they can pose a privacy threat. For example, consider a security

administrator that discovers the sexual orientation of a colleague while reading email logs

during the investigation for a security incident. In general, privacy leaks from CSS can

lead to discrimination in the workplace a↵ecting both the relationships among colleagues

and between the employee and the management, including e↵ects on professional carrier.

Privacy leaks from CSS can also a↵ect external subjects, e.g., customers, with e↵ects

similar to the ones resulting from the release of private data through di↵erent channels.

This includes unsolicited advertising, and even more serious problems like identity theft,

blackmailing, and physical assaults. These consequences have an indirect impact on the

organization running the CSS which is responsible for properly handling private data.

An accurate evaluation of privacy violation risks in a cybersecurity system is important

for at least three reasons:

a) it identifies the gaps with respect to the applicable regulation, so that appropriate

remediation actions can be taken to achieve compliance;

b) it shows the responsibility of personnel like security, system, and network administra-

tors in terms of personal data access, suggesting role-specific training and screening;

c) it highlights data collection practices that may make employees worry about their

privacy and as a result, it can be an incentive for them to circumvent some of the cyber-

security mechanisms.

In the following, we present the EPIC (Evaluating Privacy violation rIsk in Cyber-

security systems) methodology. EPIC is composed of four steps designed to guide a

privacy expert, with the collaboration of security experts from the organization running

the system, to the identification of the main privacy threats, and to the assignment of a

privacy violation risk value to each of them. The proposed methodology supports both

qualitative and quantitative risk values, the latter being preferable when it is possible to

quantitatively assess how much a privacy threat would impact on the organization, for

example in terms of monetary loss. The resulting evaluation can be used to prioritize mit-

igation actions to achieve legal compliance as explained in point a) above. Since training,

and more generally trust, in a specific personnel role, is not considered until mitigation

task prioritization, the evaluation is useful for point b) as well. Finally, our methodology

can be used to compare di↵erent cybersecurity systems in terms of privacy implications,

and possibly to design new cybersecurity systems that can e↵ectively combine built-in
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privacy preserving features with protection from cyber attacks, addressing also point c)

above. The methodology is illustrated through a running example and then applied in

a use case considering the actual cybersecurity system of a large academic organization

managing over 15,000 hosts. In the last part of this chapter, we will analyze the re-

sults obtained from the use case and discuss adequate mitigation strategies for di↵erent

categories of threats.

This Chapter is structured as follows. We describe our privacy violation risk evaluation

methodology and explain its three first steps n Section 3.2. Section 3.3 is dedicated to the

fourth step of the methodology dealing with the assignment of risk values and prioritizing

mitigation actions, and Section 3.4 to the application of the methodology to the selected

use case. in Section 3.5 we will discuss possible threat mitigation strategies for each

di↵erent categories of adversaries involved in the identified threats. We will conclude

with a discussion in Section 3.6.

3.2 Methodology

3.2.1 Overview

The EPIC methodology is organized into four steps as illustrated in Figure 3.1. The whole

process requires the participation of a team, involving members with di↵erent expertise,

namely privacy, and security, as well as personnel of the organization in which the CSS

is deployed.

Security experts of the team have a major role in Step 2 while privacy experts take

the lead in Step 3 and Step 4. Step 1 (modeling the CSS) and Step 2 (identifying data

exposures) require the collaboration of personnel of the organization in which the CSS is

deployed. Indeed, information about the actual configuration of the CSS, the processes

involved, as well as about the structure of the organization including users, system, net-

work and security personnel must be acquired. In the following we use the term expert

to refer to a person that contribute to the analysis following the methodology.

The results of obtained at the fourth step of this methodology can be used to compare

the privacy level in di↵erent cybersecurity products. It can also be used to initiate a pri-

vacy threat mitigation phase where privacy enhancing solutions are selected, or developed,

and implemented to lower the privacy violation risk of identified threats

3.2.2 EPIC First Step: Model the cybersecurity system

The first step of the methodology aims to model the specific CSS under investigation.

This step is particularly relevant for two reasons. First, we can expect that some of

the experts involved in the privacy threat modeling process do not have the required
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Figure 3.1: Methodology organization in four steps.

knowledge about the system. For example, privacy experts are not expected to know

which are the components of the CSS, how data flow in the system and which actors

are involved. Second, an explicit system description helps the experts to collaborate and

prevents misunderstandings among them. In our use case, this step was completed by

members of our team supported by system and security administrators from the institution

running the CSS. Modeling a CSS as part of Step 1 must include the following aspects.
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• System aspects: overall architecture and control processes.

• Data aspects: data flow, data type, and data storage.

• Functional aspects: users, roles, and functional processes.

A well-known formalism to represent data and functional aspects is Data Flow Diagram

(DFD) [36]. This formalism allows us to represent five types of elements (see Figure 3.2):

data flow is denoted with a full arrow, entities are denoted with a rectangle, storage

with parallel line segments and functional processes (i.e., processes implementing the

main system functionalities) with a circle. Finally, a double circle is used to represent a

complex process i.e., a single component that represents several functional processes.

Figure 3.2: Elements of the traditional data flow diagram (DFD)

In this contribution, we extend DFD (and we call it DFD+) to also account for

system aspects and hence to better detect situations in which data is exposed to an

actor. We introduce four additional graphical symbols (see examples in Figure 3.3); a

box represents a hardware component, an arrow with a small circle represents a physical

channel connecting hardware components, a dashed arrow represents control flow and a

dashed circle represents a control process that implements IT controls such as maintenance

and security.

Figure 3.3: Elements of the extended data flow diagram (DFD+)
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In Example 1 we illustrate DFD+ and its use in CSS modeling as required by Step 1.

example 1. Figure 3.4 describes an application level firewall. Data flows from the source

entity Network to the destination entity Security administrator. Channel C1 shows how

data flows from Network to the Firewall hardware component. C1 is marked as a physical

channel and it is associated with a label (Network Tra�c) that represents the type of

data; in this case, it is the portion of network tra�c that should be checked by the CSS.

The logical destination of C1 is the Tra�c Filtering process. Upon detecting a security

threat, this process sends the threat description to the data storage DS1. Note the di↵erent

representation of C2 with respect to C1 due to the fact that C2 is a logical channel.

From DS1 data flows through the physical channel C3 to another hardware component,

Remote Console, where threat reports are organized for visualization by process P2. Then,

P2 sends this information through physical channel C4 to the security administrator who

is the destination entity and the main actor interacting with the CSS.

In this diagram we also model a secondary actor system administrator interacting with

the hardware machine hosting the CSS (Firewall). The aim of the interaction is Admin-

istration and Maintenance and indeed CP1 is marked with a dashed circle representing

a control process. Similarly, the dashed arrows represent a control flow. Another control

process (CP2) allows the security administrator to manage data storage DS1.

Figure 3.4: CSS modeling with DFD+ (running example).

3.2.3 EPIC Second Step: Identify data exposure

The aim of the second step is to systematically identify all possible data exposures, i.e.,

situations in which data is disclosed to a potential adversary. A data exposure (or ex-

posure for short) is identified by the component that is leaking data and by the adversary

that can access that data; it is also characterized by other attributes that we specify in

this section. Component refers to channels, processes and data storages identified in
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Step 1. The term adversary refers to an actor identified in Step 1 as a subject normally

interacting with the CSS or other people, which can either be external adversaries (e.g.,

a hacker violating a machine and accessing a data storage) or internal ones (e.g., a net-

work administrator or other employees). An adversaries table (Table 3.1) containing a

list of adversaries, each associated with a brief description, needs to be identified at the

beginning of this step. In Table 3.1 we report this list considering our running example.

Table 3.1: Adversaries (running example)

Adversary Description

Security administrator Their main tasks are to perform monitoring and investigation as well as

the maintenance and configuration of the data storage (e.g. add, modify

roles and privileges).

System administrator Their tasks include maintenance of the system hosting the Firewall (e.g.,

troubleshooting, installing updates software/firmware)

Network administrator Their main task is to ensure the correct functioning of the network (rout-

ing, DNS, etc.).

Other internal adversaries Individuals attempting a nonauthorized access from inside the organiza-

tion network.

External adversaries Individuals attempting a non authorized access from outside the organi-

zation network.

While the organization management and owner, in principle, may also be an adversary,

they usually do not have direct access to the system and the risk of them violating privacy

can be easily evaluated by combining the risks computed for the operators that have

direct access, since they are the ones that can take order from them. Moreover, the risk

assessment is performed on their behalf and in their interest. This is similar to IT security

threat modeling: system owners are usually not considered as potential attackers of their

own system.

Step 2 also requires, for each component specified in the model, to identify the set of

adversaries that can acquire data from that component. More specifically the aim is to

identify the adversaries that:

• can access data transiting along a channel (either logical or physical) ;

• can read data from a data storage;

• can obtain data from a process, for example by observing the process output or

altering the process behavior.

Clearly, di↵erent adversaries need di↵erent e↵orts to obtain data from a component.

For example in the DFD depicted in Figure 3.4, the Security Administrator has the

credentials to access data storage DS1, hence the e↵ort is negligible. Vice versa, an

external adversary needs to violate a number of security systems and resources are required
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to accomplish this task (economical, computational, knowledge). In principle, external

adversaries may also obtain data from internal adversaries, and more generally adversaries

may collude with each other. However, as in security threat analysis, we first assume that

adversaries do not collude. The likelihood that an internal actor shares data with external

adversaries is related to the organization policies, legal agreements, and in general to the

level of trust in that actor.

We model the di↵erence in the e↵ort required to obtain data from a component through

the likelihood of access (La) parameter, that, intuitively, is inversely proportional to the

e↵ort required to access to the component. The likelihood of access only takes into account

the technical di�culties that a given adversary has to face to access a component; it does

not depend on the willingness of the adversary to maliciously access that component or,

in other words, the trust we have on the specific person or in personnel acting under a

specific role (e.g., network administrators). These aspects are considered in Step 4.

We use the following five values for the likelihood of access:

• Negligible: it is technically very di�cult for the adversary to access the component

and it is highly unlikely that access can be obtained with a reasonable e↵ort;

• Low : it is technically di�cult for the adversary to access the component and a

significant e↵ort is required;

• Medium: it is technically possible for the adversary to access the component, but

this requires moderate e↵ort;

• High: it is technically easy for the adversary to access the component with a limited

e↵ort;

• Authorized : the adversary is authorized to access the component, hence no e↵ort is

required.

The likelihood of access depends on the security mechanisms (e.g., access control,

encryption) implemented to protect that component. For this reason, for each component,

we list the security mechanisms, together with their details, including, for example, which

users are authorized to access through an access policy (enforced by access control system).

This is called the components security table (see for example Table 3.2).

It is also clear that di↵erent exposures have di↵erent magnitudes and results in leaking

di↵erent amount of data. To estimate the exposure magnitude di↵erent approaches

should be used, depending on the type of component.

• Exposure magnitude in data storage. The amount of information incoming in the

data storage, as well as the retention period of this information, can help estimating

the exposure magnitude. For example, if we know that approximately 1, 000 logs

28



3.2. METHODOLOGY

Table 3.2: Components security (running example)

Component Authorized users Security

Certified

Security mechanisms

DS1 Security administrator YES Encryption, access control, authentication,

firewall, NIDS

C3 None YES Firewall, NIDS, private network

P2 Security administrator NO Access control, authentication, firewall, NIDS

are recorded in a data storage daily and that retention period is 30 days, we can

conclude that the data storage contains about 30, 000 logs.

• Exposure magnitude in channels. When data is exposed through a channel, we should

take into account the data throughput (how much data is transmitted in the unit of

time) along the channel and an estimation of how long the adversary can listen to

the channel.

• Exposure magnitude in processes. Similarly to channels, we should take into account

how much data the adversary can access. This may depend on how long the adversary

can access the process.

The results of Step 2 are reported in the data exposures table (for example Table 3.3)

that lists, for each combination of components and adversaries, the likelihood of accessing

data from that component by that adversary together with the exposure magnitude.

Example 2 illustrates an instance of this process and the result is shown in Table 3.3

where a brief motivation is also reported for each row. These notes are very important to

communicate with collaborators on the analysis (e.g., security expert) and they are also

useful if the analysis has to be repeated again in the future. The motivation field is used

in most of the other tables we present in our methodology, especially when the assessment

relies on the expert’s subjective judgment.

Note that the two leftmost columns of Table 3.3 are derived from previous tables

(i.e., adversaries table and components security table) while the four columns on the

right include new content. Henceforth we use the following notation: a double line (like

between “Adversary” and “Exp.” in Table 3.3) distinguishes the previous content (on the

left) from the new one (on the right).

At the end of Step 2 all exposures with a negligible likelihood of access are cleared

(e.g., those highlighted in Table 3.3), while the remaining ones are further investigated in

Step 3.

example 2. This example continues from Example 1 and presents the components security

and data exposures tables for three components: DS1, C3 and P2.

From the CSS model, we know that the security administrator can access DS1 and

we report this information in the components security table (Table 3.2). In this example,
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it is relevant to know that the security of DS1 has been certified, which means that a

specific auditing, possibly including penetration attacks, has been performed. We report

this information in the table. Finally, we list the security mechanism adopted to protect

DS1: encryption, access control, authentication, firewall and NIDS. No user is authorized

to access channel C3, whose security has been certified and that is protected by a firewall,

an NIDS, and a private network. Finally, the security administrator can access P2,

whose security has not been certified. This component is protected by access control,

authentication, firewall and NIDS.

Based on the results of the components security table, we now show how to create the

data exposures table considering four adversaries: security administrator, system adminis-

trator, network administrator and external adversary. The result is reported in Table 3.3.

Since the security administrator has access to the data storage DS1, the likelihood of

access is reported as authorized. Instead, the system administrator is not authorized to

access DS1 but has access to the physical machine hosting this component. By cracking

data encryption (note in the components security table that DS1 does implement encryp-

tion), the system administrator can obtain data from DS1, hence we associated this a

medium likelihood of access. The e↵ort required by the external adversary is even higher,

as he needs to elude the security protections of the network (firewall, NIDS) to gain access

to the machine hosting DS1, then bypass the authorization and access control mecha-

nisms and decrypt the data. These security mechanisms have been certified (as reported

in Table 3.2) and hence the likelihood of access by the external adversary is marked as

negligible. The likelihood of access by a network administrator is also negligible. Indeed,

since DS1 is well configured and security tested, this adversary has to elude all the security

mechanisms and make a considerable e↵ort in order to gain access to data from DS1.

Regarding C3, no user is authorized to access. Since the component’s security is cer-

tified, we can assign negligible likelihood of access to external adversary. In this case the

security administrator needs basically the same e↵ort as an external adversary to access

C3, so it is also marked as negligible. The same does not hold for the system administra-

tor, who administers the firewall machine and hence can listen to channel C3 with high

likelihood of access. The network administrator has access to the network equipment and

can attempt to listen to channel C3, thus the likelihood of access is considered high.

Considering the list of security mechanisms protecting process P3, an unauthorized

access attempt from either system administrator, network administrator, or external ad-

versary is very unlikely; however, since these mechanisms were not certified we assign low

(instead of negligible) likelihood of access to these adversaries for P3. The likelihood of

access for the security administrator is authorized as he is allowed to observe the output

of P3 as part of his security monitoring tasks.
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Table 3.3: Data exposures (running example)

Cp. Adversary Exp. L

a

Exp. Magn. Motivation

D
S
1:

T
h
re
at

L
og

Security

admin.

Exp1 Authorized Important

⇡ 100k rec

Administrator of the DS (see DFD)

System ad-

min.

Exp2 Medium Same as above Can Access Mchine But data is En-

crypted

Network

admin.

Exp3 Negligible Same as above A Network admin. has to elude the net-

work protection bypass authentication

and AC mechanisms and the data is en-

crypted

Ext. adver-

sary

Exp4 Negligible Same as above The adversary has to elude the net-

work protection bypass authentication

and AC mechanisms and the data is en-

crypted

C
3:

ap
p
li
ca
ti
on

le
ve
l

th
re
at
s

Security

admin.

Exp5 Negligible Limited

⇡ 20k rec

Need to bypass network protection

System ad-

min.

Exp6 High Same as above Can Compromise the machine hosting

the Firewall and listen to channel C3

Network

admin.

Exp7 High Same as above Have access to the Network equipment

and can listen to channel C3

Ext. adver-

sary

Exp8 Negligible Very limited 
5k rec

The adversary has to elude the network

protection, bypass authentication and

AC mechanisms

P
2
:
T
h
re
at

M
on

it
or
in
g Security

admin.

Exp9 Authorized Limited

⇡ 30k rec

Can observe the output of process P2

System ad-

min.

Exp10 Low Same as above Should not be able to access, but secu-

rity has not been tested

Network

admin.

Exp11 Low Same as above Same as above

Ext. adver-

sary

Exp12 Low Same as above Same as above

3.2.4 EPIC Third Step: Identify privacy threats

The objective of Step 3 is to determine whether data leaked in each exposure identified

in Step 2 can potentially lead to a privacy violation. In order to assess this, we need

to take into account what type of data is actually exposed. A given component can

expose heterogeneous data. For instance, DS1 in Example 2 exposes some log records

that only contain the IP address of a user as well as others that also include the file

being transmitted by that user. Another example is reported in Figure 3.5, showing the

user interface of an application-level firewall (PAN-OS 6.1). The upper part of the figure

shows results from security threat detection based on URLs filtering while the lower part
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Table 3.4: Attributes description (running example)

Name Description Domain Example

IP(out-dst) The destination IP address of outgoing tra�c IP addresses 216.58.205.195

IP(in-src) The source IP address of incoming tra�c IP addresses 192.30.253.112

IP(in-dst) The destination IP address of incoming tra�c IP addresses 132.133.56.45

File A file being transmitted String of bytes

report results from threat detection based on file filtering and the two tables have di↵erent

attributes.

Figure 3.5: PAN-OS 6.1 interface to the logs (from Palo Alto Networks live community video tutorials)

We refer to each data type being exposed as a data content, each composed by a

set of attributes. The attributes description table (for example Table 3.4). lists all

attributes exposed in each data content and reports their name, description, domain and

some example values. Table 3.4 shows the attributes description table for our running

example.

We then associate each exposure (i.e., component and adversary) with the data contents

it exposes. This is reported in the data content identification table (for example

Table 3.5). that presents, for each pair of component and adversary derived from the

data exposure table, the likelihood of access (as previously evaluated) and the list of

data contents exposed by that component to that adversary. Table 3.5 shows an example

reporting some selected exposures from Table 3.3. Note that in Table 3.5 each data

content is exposed by each considered component to each considered adversary. This is

not always the case as it can happen that two components expose di↵erent data contents

and that a component exposes di↵erent data contents to di↵erent adversaries.

We then evaluate whether a combination of exposure and data content represents

a privacy threat by analyzing how the adversary can discover the association between a
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Table 3.5: Data content identification (running example)

Exposure
Data content

Exposure Component Adversary L

a

Exp1
DS1. threat

log
Security ad-

ministrator
Authorized

dc1: IP(out-dst)

dc2: IP(in-src), IP(in-dst)

dc3 : IP(in-src), IP(in-dst), File

Exp7
C3.

application

level threats

Network ad-

ministrator
High

dc1: IP(out-dst)

dc2: IP(in-src), IP(in-dst)

dc3 : IP(in-src), IP(in-dst), File

Exp12
P2. threat

monitoring

Ext.

adversary
Low

dc1: IP(out-dst)

dc2: IP(in-src), IP(in-dst)

dc3: IP(in-src), IP(in-dst), File

sensitive information and an identified respondent. This is clearly related to the semantics

of the data being exposed and on the knowledge accessible to the adversary. We first

classify the attributes according to the following definitions.

• Potentially Sensitive Information (PSI): attribute or set of attributes that can

be considered as sensitive. I.e., the combined values of the attributes in each of these

sets reveal sensitive information about the data respondent.

• Identifier (ID): attribute or set of attributes that uniquely identifies a respondent

in a data-set.

• Quasi-Identifier (QID): attribute or set of attributes that, combined with other

information (including adversary’s background knowledge), can be used to identify

the respondent in a data-set (or to restrict the set of candidate respondents).

The recognition of QIDs and the related assumptions about background knowledge,

also required by most anonymization techniques, is one of the most di�cult tasks in

privacy protection [20]; however, it becomes more feasible when considering a restricted

domain with specific types of data content and adversaries, like the one we are consider-

ing. Table 3.6 shows an example of the data content attributes analysis table that

reports the attributes classification for each data content and also describes the expected

adversary’s background knowledge. The privacy expert is also expected to motivate or

comment the classification of each attribute. These motivations should be reported in

the tables delivered at each step. However for sake of brevity, in this chapter, we will not

report the motivations in the tables but we report them in the text.

example 3. In Table 3.6, the attribute IP(out-dst), contained in data content dc1, is

classified as a PSI attribute . In fact IP(out-dst) is the destination IP address of outgoing

tra�c/request (see Table 3.4); this address can reveal sensitive information about the
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Table 3.6: Data content attributes analysis (running example)

Data content ID
QID

PSI
Attribute Bg. Kowledge

dc1: IP(out-dst) None None None IP(out-dst)

dc2: IP(in-src), IP(in-dst) None IP(in-dst) List associating IP-

addresses with user-names

IP(in-src)

dc3 : IP(in-src), IP(in-

dst), file

None IP(in-dst),

file

List associating IP-

addresses with user-names

IP(in-src), file

respondent who sent the request e.g., in case of HTTP tra�c this attribute will reveal the

domain name of the web page visited by the respondent. dc1 contains neither ID attributes

nor QID attributes because IP(out-dst) does not provide any information about the data

respondent in the organization that initiated the communication.

Data content dc2 contains no ID attributes and a QID attribute IP(in-dst) that refers

to the destination IP address of incoming tra�c (see Table 3.4). It is the IP address of a

respondent receiving a request or most likely an answer to a request. IP(in-dst) can be used

to re-identify a respondent if the adversary has background knowledge allowing them to

associate an IP address with a user-name. dc2 also contains the PSI attribute IP(in-src).

Similarly to IP(out-dst), IP(in-src) indicates the IP address of a machine answering to a

respondent’s request that could be the domain name of a privacy-sensitive website that the

respondent is visiting.

Data content dc3 and dc2 have two attributes in common: IP(in-dst) classified as QID

and IP(in-src) classified as PSI. dc3 contains, in addition, the attribute file classified as

QID because it might contain information that can be used to re-identify a respondent

e.g., name and surname. file is also considered as a PSI attribute since files are very

likely to reveal sensitive information about the respondents health, a purchase, financial

information.

Each combination of exposure and data content is considered a privacy threat if that

data content contains PSI attributes and at least an ID attribute or a QID attribute.

For example, the combination of Exposure Exp 1 and dc2 (see Table 3.5) is a privacy

threat (if the adversary has the necessary background information), because dc2 contains

IP(in-src), which is a QID and IP(in-dst), which is a PSI.

If for a given combination of exposure and data content, that data content has no ID

nor QID attributes or if it has no PSI attributes, that combination can be cleared as

it is not a privacy threat. For example, {Exp1, dc1}, {Exp7, dc1}, and {Exp12, dc1},
highlighted in Table 3.5, are cleared. In fact dc1 (as shown in Table 3.6) is composed

solely by IP addresses of external machines and contains no ID or QID attributes.
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3.3 EPIC Fourth Step: Evaluate and prioritize privacy threat

risk

In this section, we describe the fourth step of our methodology aimed at measuring the

risk of each privacy threat identified in Step 3. Following a common approach in the field

of IT security, we compute the privacy violation risk as the combination of likelihood of

occurrence of a privacy violation L and its impact I. In the following we first describe

how to measure privacy violation likelihood (Section 3.3.1), its impact (Section 3.3.2) and

then we show how to measure risk (Section 3.3.3). Finally, we show how to prioritize risk

mitigation actions (Section 3.3.4).

3.3.1 Privacy violation likelihood

The privacy violation likelihood represents the likelihood that the privacy of any

respondent is violated due to the disclosure of a given data content in given data exposure.

It depends on two factors: the likelihood of access (specified for each data exposure in

the third step) and the likelihood that, from the exposed information, the adversary can

successfully complete the privacy attack.

In order to complete a privacy attack, the adversary needs to associate the sensitive

information with the respondent’s identity. While in general, this association task may

not be trivial, in the domain that we are considering sensitive attributes most of the time

appear in data logs together with identifying or quasi-identifying information (e.g., IP,

MAC address, UID). Since in this step, we are only considering data contents that contain

PSI (the others have been cleared in Step 3), the likelihood of successfully completing the

privacy attack corresponds to the re-identification likelihood i.e., the likelihood that

the data respondent is re-identified.

We define this likelihood with a qualitative scale, established mainly by analyzing the

ID and QID set of attributes identified in the data content in the previous step and

evaluating which background knowledge the considered adversary may actually have. We

provide the following guidelines and examples to assign re-identification likelihood values

(c is the data content):

• Certain. Data respondents’ identity is explicitly reported in c. Consider, for example,

a company that assigns to each employee an email address in the form name.surname

and assume that each record in c contains the senders’ email address for outgoing

email. In this case, each log record in c is explicitly identified.

• High. The adversary can discover the data respondents’ identity because (i) the

explicit identity is part of many records in c or (ii) c contains quasi-identifying in-

formation and the adversary has access to the background information that allows
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him, with limited e↵ort, to re-identify the respondents. As an example for case (i),

consider a company in which users can choose their email addresses; c contains the

senders’ email address of outgoing emails. In most of the cases, the email address

will be in the form name.surname, so the data respondent can be often identified.

As an example for case (ii), consider that c contains the source IP address of out-

going HTTP connections, the adversary is the network administrator and he has

background information to map an IP address to the corresponding user’s name.

• Medium. The adversary can discover the data respondents’ identity because (i) the

explicit identity is seldom part of c or (ii) c contains quasi-identifying information and

the adversary can use it, together with background information so that, sometimes

and possibly with an e↵ort, he can re-identify the respondent. As an example for

case (i), consider that c contains the name of a file being transmitted; it is possible,

though rare, that the file name contains the sender’s identity like in the case of a file

named name surname CV. As an example for case (ii) consider that c includes the

timestamp of outgoing HTTP connection; the adversary has access to the physical

entrance/exit logs for the building, so he can infer when a person was in the building,

and hence, in some cases, he can find the identity of the data respondent or at least

restrict the set of possible respondents to a few individuals.

• Low. Explicit identity is not part of c but c contains quasi-identifiers that the ad-

versary can seldom or with a significant e↵ort exploit to discover the respondent’s

identity. Consider this example: c contains the source IP address of outgoing HTTP

connection. The adversary is the system administrator that, generally, does not

know the association between IP addresses and employees identities. However, when

a system administrator is asked for help desk support, he can become aware of a

static IP address associated with a given employee, hence being able to re-identify

the data respondent.

• Negligible. Explicit identity is not part of c and any quasi-identifying information in c,

if any, can only be used to re-identify a respondent by using background information

that is unlikely to be available to the adversary. Consider the case in which c contains

the source IP address of outgoing HTTP connections. An external adversary does

not know which user is associated with each IP address, so he cannot re-identify data

respondents, especially if the address is dynamic or masked by a gateway.

The qualitative values for re-identification likelihood and likelihood of access are com-

bined to obtain a qualitative value for the privacy violation likelihood, which is measured

with a 5-values scale from negligible to very-high. Table 3.7 shows how to compute privacy

violation likelihood given re-identification likelihood and the likelihood of access. The in-

tuition behind Table 3.7 is that the two input likelihoods are combined with an operation
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Table 3.7: Likelihood matrix defining privacy violation likelihood as a combination of likelihood of access

and re-identification likelihood

R
e-
id
en

ti
fi
ca

ti
o
n

li
k
el
ih
o
o
d

Certain Negligible Medium High Very-High Very-High

High Negligible Low Medium High Very-High

Medium Negligible Low Medium Medium High

Low Negligible Low Low Low Medium

Negligible Negligible Negligible Negligible Negligible Negligible

Negligible Low Medium High Authorized

Likelihood of Access

similar to a product. For example, if one of the two input likelihoods is negligible (this is

intuitively analogous to a zero probability), then the output likelihood is also negligible.

The privacy violation likelihood table (see for example Table 3.8) lists all privacy

threats and for each of them it reports the likelihood of access (La) (derived from Step 3),

the re-identification likelihood (Lrid), that is evaluated according to the five qualitative

values defined above, the motivations behind this evaluation and, finally, the value of the

privacy violation likelihood (L) , which is computed according to the likelihood matrix

(see Table 3.7).

example 4. Table 3.8 is the privacy violation likelihood table for the privacy threats

identified in the running example in Section 3.2.4.

The likelihood of access reported in this table was computed in Step 2 (see Table 3.3).

Values for the re-identification likelihood were defined according to the following reasoning.

Let’s first consider data content dc2, including the IP addresses that an adversary can use

to re-identify a respondent if he can associate it with the user-name (either directly or,

for example, by first associating the IP address to the o�ce number and then to the

user-name). As observed above, security administrator can know this association in some

cases, so the re-identification likelihood is medium. The network administrator has access

to the full list associating IP-addressed and user-names, so the re-identification likelihood

is high. Finally, external adversary cannot associate the IP-address to the user-name, so

in this case, the re-identification likelihood is negligible.

Let’s now consider data content dc3. Also, in this case, the IP-address is part of the

data content, so, for each adversary, the re-identification likelihood is at least as high as

with dc2. However, dc3 also contains a file (i.e., file name, file content, etc.) that can

sometimes be an explicit identifier or a quasi-identifier. For the security administrator,

who is an internal adversary, the file can often identify the user. For example the security

administrator can re-identify the user even if the file is a document signed with the first
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Table 3.8: Privacy violation likelihood (running example)

Exposure Data content L

a

L

rid

L

Exp1: DS1

Security administrator

dc2 Authorized Medium High

dc3 Authorized High Very-High

Exp2: C3

Network administrator

dc2 High High High

dc3 High High High

Exp3: P2

External adversary

dc2 Low Negligible Negligible

dc3 Low Medium Low

name only; this is possible because the security administrator knows that there is only one

person with that name, or because, from the context, the adversary recognizes the file as

coming from a given o�ce, where there is a single person with that name. For this reason,

the re-identification likelihood is set to high for security administrator. Instead, external

adversary can only re-identify the issuer when the full name is reported in the file and, in

some cases, this might not even be enough, for example for very common full names. For

this reason, the re-identification likelihood is set to medium for this adversary.

3.3.2 Privacy violation impact severity

A privacy violation has a negative impact on the responsible organization. We model this

by assigning an impact severity (I) value to each privacy threat. The value depends

on three impact factors, defined in the following (Section 3.3.2). Impact severity can be

assessed both qualitatively (Section 3.3.2) and quantitatively (Section 3.3.2).

Impact Factors.

To provide an impact severity assessment with as much accuracy as possible we first need

to identify the consequences of a privacy violation, that we call impact factors. They are

summarized in the following list:

• Non-compliance (IC). If data content is exposed in a non-compliant way (e.g., re-

spondent was not informed), then the organization might incur a certain cost in the

form of e.g., non-compliance fines, respondents compensation for loss of their privacy,

remediation measures to address the privacy issues that led to the unlawful leakage.

• Failure to meet business agreements (IB). The organization might have agreements

with end-users or other organizations that imply penalties in case of privacy viola-

tions. For example, privacy protection could be part of a service level agreement and

the service provider may be subject to specific penalties in case of privacy loss.

• Reputation Loss (IR). A privacy violation can have an impact on the organization

reputation, that is a commercially valuable asset. Indeed, reputation loss can “erode
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the ability of businesses to successfully retain their markets, maximize shareholders

value, raise finance and manage debts, and remain independent” [89].

In the following, we discuss how to assign a qualitative or quantitative value to each

factor. In both cases, there are three aspects that should be taken into account and that

we collectively call violation magnitude.

i) The e↵ect of the privacy violation on the respondent. While the e↵ect of the privacy

violation on the respondent does not have a direct impact on the organization, it is

relevant for the evaluation of the three impact factors listed above. For example, if the

privacy violation discloses a person’s sexual orientation and this results in the person

being sentenced (homosexuality is still illegal in some countries), then the reputation loss

for the organization will be higher than in the case of a privacy violation that has limited

impact on the data respondent.

ii) The number of respondents. It can be assessed based on the exposure magnitude (see

Section 3.2.3) and an estimation of how exposed data is distributed among individuals.

iii) Nature of respondents. There are some categories whose privacy should be particu-

larly protected (e.g., minors, social minorities) or individuals for whom a privacy violation

can have worse e↵ects than for others (e.g., a politician, a CEO).

By considering these thee aspects the expert assigns a qualitative value to the violation

magnitude in the scale: Very limited, Limited, Medium, Important and Very important.

Impact Severity: Qualitative Assessment.

With this form of assessment a privacy expert and an organization representative jointly

evaluate the severity of each impact factor for each privacy threat and assign a qualitative

severity level to each factor on a 5-levels severity scale (Low, Med-low, Med, Med-high and

High). This evaluation takes into consideration di↵erent aspects for each of the three

factors. For example, the non-compliance severity will depend on the measures the or-

ganizations deployed in order to be compliant with the regulation or the lack of these

measures. It also depends on the violation magnitude; indeed, in case a compensation to

the violation victims is required, the non-compliance severity will scale linearly with the

number of respondents a↵ected. The reputation loss impact may depend on the adver-

sary, on the data handled by the organization, on insu�cient organizational and technical

control, and most importantly by the number of individuals a↵ected. Indeed, reputation

loss is likely to scale with the privacy violation magnitude, not only in terms of number of

respondents a↵ected, but also in terms of the nature of these respondent (e.g., a privacy

violation for a social minority, a celebrity or a political figure will certainly have more

reputation impact than other leakages). Finally, the impact of non-fulfillment of business

agreements depends on the kind of data leaked and on the agreements themselves. An ex-

ample business agreement may be an SLA (service level agreement) with a cloud provider.
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Table 3.9: Qualitative privacy violation impact (running example)

Exposure Data cont. Th
Violation

magn.

I

C

I

B

I

R

I

Exp1: DS1

Sec. admin
dc2 Th1 Important Low Low Low Low

Exp7: C3

Net. admin
dc2 Th2 Very-

Limited

Med-high Low Med-low Med-high

Exp7: C3

Net. admin
dc3 Th3 Very-

Limited

High Low High High

Exp12: P2

Ext. adver.
dc3 Th4 Limited High Low Med-

high

High

SLAs usually specify a minimum level of data security and privacy. In case of failure to

meet those requirements penalty fees should be paid to the client as compensation.

After evaluating the impact factors, impact severity is computed as the maximum

severity level of the three factors: I = max(IC , IB, IR). In fact, the five severity levels

intuitively represent significantly di↵erent range of values (possibly even di↵erent orders

of magnitude). Thus, the overall impact severity will most likely preserve the range of

values of the highest severity among the considered impact factors.

The results are reported in the qualitative privacy violation impact table (see

for example Table 3.9) that reports, for each privacy threat, the violation magnitude, the

qualitative values of each impact factor and the resulting qualitative impact severity.

example 5. Table 3.9 reports the qualitative privacy violation impact table for a subset

of the privacy threats reported in Example 4.

In the first row, impact severity is low. Indeed, in threat Th1 users are informed that

the IP addresses (both local and remote) are collected for security purposes and might

be processed by the security administrator. For this reason, and because several measures

were taken to avoid privacy violations, the non-compliance impact factor (IC) is evaluated

as low. IB is low because the organization has no business agreements to fulfill. IR is

also low because the impact of this violation on reputation is minimal since a security

administrator is somehow expected to access information about user IP addresses.

Impact severity of Th2 is med-high. Considering Th2, non-compliance impact factor

is quite severe because respondents are not informed that the adversary can access exposed

data (actually, network administrator is not expected to access exposed data). However,

violation magnitude is very limited, because there are few respondents for the exposed

data. This mitigates IC that is evaluated as med-high. IB is low because the organization

has no business agreements. The impact on organization’s reputation I is estimated med-

low because the violation magnitude is very limited and exposed data does not contain
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particularly sensitive information (see Table 3.6 for dc2).

Threat Th3 is similar to Th2 with the di↵erence that in this case, the adversary can

also access files, which in turn can contain any type of data, including those particularly

protected by existing regulations, e.g., health-related information. For this reason both IC
and IR are high, and consequently impact severity is also high.

In threat Th4 a non-authorized person (i.e., an external adversary) has access to cd3

that include files. Hence, similarly to Th3, IC is high and consequently impact severity

is high.

Impact Severity: Quantitative Assessment.

Another approach to assess impact severity is to quantitatively estimate the economic cost

deriving from a privacy violation. We consider the same three factors as in the qualitative

approach but in this case, we associate each of them with an estimation of the economic

loss.

For example, non-compliance cost includes: (i) the fines that the organization has to

pay, (ii) the cost of remediation actions (both organizational and technical), and (iii) the

compensation to pay to each a↵ected respondent times the number of respondents.

The reputation loss costs are caused by the loss of trust and the degradation of the

relationship between the organization and its partners, employees, investors, customers

and potential future customers. It can be reflected on several levels e.g., turnover of

existing customers, diminished customer acquisition, cumulative abnormal stock returns,

decline of equity value [96]. It can also include the costs of e↵orts to control the incident

disclosure and reputation repair.

The failure to meet business agreements cost depends on the existing business agree-

ments and their nature.

In the case of a quantitative assessment, we compute impact severity of a privacy threat

as the sum of the costs associated to each impact factor: I = IC + IR + IB.

The results are reported in the quantitative privacy violation impact table that

is analogous to the qualitative privacy violation impact table (Table 3.9) with the only

di↵erences that impact factors and impact severity are reported as quantitative values.

3.3.3 Privacy violation risk

As mentioned in the beginning of this section, privacy violation risk depends on the

privacy violation likelihood and impact severity. If impact severity is assessed quantita-

tively, then we can compute a quantitative privacy violation risk. Otherwise, we provide

a qualitative privacy violation risk assessment.
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Table 3.10: Risk matrix defining qualitative privacy violation risk as a combination of privacy violation

likelihood and impact severity.

Im
p
a
ct

se
v
er

it
y

High Low Medium High High High

Med-High Low Medium Medium High High

Med. Low Low Medium Medium High

Med-Low Low Low Low Medium Medium

Low Low Low Low Low Medium

Negligible Low Medium High Very-High

Privacy violation likelihood

Table 3.11: Qualitative privacy violation risk

Th Exposure Data content L I R

Th1 Exp1: DS1, Security admin. dc2 High Low Low

Th2 Exp2: C3, Network admin. dc2 High Med-low Medium

Th3 Exp2: C3, Network admin. dc4 High High High

Th4 Exp3: P2, External adversary dc4 Low High Medium

Qualitative Evaluation

We define the qualitative privacy violation risk with three levels: low, medium and

high. We combine privacy violation likelihood and impact severity levels according to the

risk matrix (see Table 3.10). The idea behind this risk matrix (in Table 3.10) is that

when privacy violation likelihood is negligible, then we can exclude that the adversary

can successfully complete the attack, so the risk is low. If the privacy violation likelihood

is low, then risk is obtained by decreasing the value of the impact severity (e.g., impact

severity high results in a medium risk). Similarly, if the privacy violation likelihood is

medium, then risk is obtained by slightly decreasing the value of the impact severity (e.g.,

medium-high impact severity results in a medium risk but high impact severity results in

high risk). A high value of privacy violation likelihood implies that the values of impact

severity map to the same value of risk, with the exception ofmedium-low andmedium-high

that are “rounded up” to medium and high risk values, respectively. Finally, a very-high

privacy violation likelihood results in risk values that are higher than those of the impact

severity (e.g., medium impact severity maps to high risk).

The qualitative privacy violation risk table (see for example Table 3.11) reports,

for each privacy threat, the values of privacy violation likelihood and impact severity (that

were previously computed), together with the qualitative risk value that is computed based

on Table 3.10.
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Quantitative Evaluation

In the quantitative approach, we need to convert the qualitative measure of privacy vi-

olation likelihood into a numerical value. We propose the following association: Very-

High= 1, High= 0.75, Medium= 0.5, Low= 0.25 and Negligible= 0. Then, for each

privacy threat, we compute the quantitative privacy violation risk R as the product of

the privacy violation likelihood and of impact severity: R = L · I
The results are then reported in the quantitative privacy violation risk table

that is analogous to the qualitative privacy violation risk table (Table 3.11) with the

di↵erence that quantitative values are reported for the privacy violation likelihood, for

impact severity and risk.

3.3.4 Risk mitigation actions prioritization

In the fourth step, after assessing the risk values, we are now interested in defining in

which order the privacy threats should be addressed with mitigation actions. We model

this order with a priority value, a scale of integer values from 1 to 12 where 1 represents

the highest priority.

The priority of a privacy threat depends on two factors: its privacy violation risk and

the trustworthiness of the adversary involved in that privacy threat. Several definitions

of trust have been proposed in the literature (see [106] for a survey). In this paper we

consider the trust in an adversary as the organization’s level of confidence about the

actor not attempting to gain non-authorized data access or misusing the data to violate

privacy.

This level should be assessed by taking into consideration several aspects, including le-

gal agreements, specific training on handling personal data, personal characteristics (such

as morality, skills, and behavior [67]), and organizational procedures (e.g., motivational

practices and reward systems). Regarding legal agreements, note that employees with

access to the system usually have to sign such agreements as part of their contract. In

EPIC, the knowledge about these agreements is part of the domain knowledge acquired

as input for the whole methodology (see Figure 3.1).

Human factors are receiving increasing attention in the security field. Indeed actors

trust assessment is often included in risk management processes. Some approaches discuss

the trust level as a part of the risk computation [151] whereas others use this level as

an independent indicator to balance the risk at the decision making stage [12]. It has

been observed that the first approach tends to underestimate or hide the risks involving

insider threats [45]. Actually, insiders have a big potential to create threats intentionally

(by attempting malicious actions) or unintentionally (through lack of experience and

awareness). For this reason the EPIC methodology adopts the second approach, and we

do not consider adversary trustworthiness as a factor in the evaluation of privacy violation
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risk. The trustworthiness is rather used to define a priority value.

This approach has a twofold e↵ect. On one side, it provides an e↵ective priority

classification of threats to act upon. On the other side, it provides an explicit classification

of risk that also takes into account the adversaries’ trustworthiness. This risk estimation

will be useful in the process of deciding and designing what kind of training an actor

should have in preparation to fill a high-risk position and what kind of profiles to select

when hiring.

We consider the following four levels of trust.

• Fully trusted: Adversaries are fully trusted if they are trained to deal with personal

data at the CSS level. Their activities with data are monitored by logging mecha-

nisms and they are accountable for any personal data leakage. They often have very

high privileges allowing them full access to data.

• Trusted: Trusted adversaries are also trained to deal with personal data and their

activity is monitored. However, they have less responsibility in case of privacy leakage

and have restricted access to the sensitive data.

• Moderately trusted: Actors are moderately trusted if they are trusted at the orga-

nization level, however, they are not specifically trained to deal with sensitive and

personal information at the CSS level. These actors have often high privileges (e.g.,

administration privileges). They are responsible and accountable for any abuse of

their privileges.

• Untrusted: Adversaries are considered as untrusted if they have no training on how

to deal with private information and no authorizations to access the data.

We propose to use the priority distribution defined by the priority matrix (see Ta-

ble 3.12) to combine privacy violation risk and adversary’s trustworthiness in order obtain

each threat priority. This matrix is designed to give more weight to the risk than to the

trust. Priority of threats with the same risk level decreases (i.e., gets higher values) con-

versely to the trust level. In most of the cases, a privacy threat with a lower privacy

violation risk than another is associated with a lower priority, with some exceptions. For

example, a privacy threat with medium risk and untrusted adversary is associated with a

priority higher than a privacy threat with high risk and fully trusted adversary.

The results of this procedure are reported in the prioritized privacy threats table

(see for example Table 3.13) that indicates, for each privacy threat, its associated privacy

violation risk (previously computed), the adversary trust and the resulting priority value.

Adversaries that are not fully trusted may also be at risk of sharing data with exter-

nal adversaries or colluding with other adversaries. While dealing with collusion is not

explicitly taken into account by EPIC, the likelihood of this scenario can be reduced by

remediation actions that include specific legal obligations, and organizational measures
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Table 3.12: Priority matrix defining priority as a combination of privacy violation risk and adversary

trust

Adversary trust

Untrusted Moderately Trusted Trusted Fully Trusted

Privacy

violation risk

High 1 2 3 5

Medium 4 6 7 9

Low 8 10 11 12

like preventing the use of personal external storage or the use of any personal device in

the CSS control room.

Table 3.13: Prioritized privacy violation threats (running example).

Th. Exposure Data content R Adversary trust Priority

Th1 Exp1: DS1, Sec. admin. dc2 Low Fully Trusted 12

Th2 Exp2: C3, Net. admin. dc2 Medium Moderately trusted 6

Th3 Exp2: C3, Net. admin. dc3 High Moderately trusted 2

Th4 Exp3: P2, Ext. adversary dc3 Medium Untrusted 4

example 6. Table 3.13 illustrates the priority of threats considered in the previous section.

The first threat Th1 has a low risk level. The adversary is the security administrator that

is fully trusted to access and process the data content dc2 because they are highly trained

to deal with personal data and assume high responsibilities for any potential leakage or

misuse of this data. For these reasons, this threat has the lowest possible priority (12).

In the second and third rows (i.e., Th2 and Th3) the adversary is moderately trusted.

Network administrators are trusted within the organization, but they are not authorized

to access dc2 or dc3 nor specifically trained to deal with any private information collected

by the CSS. Consequently, Th2 and Th3 have priority levels 6 and 2, respectively.

In the last threat the adversary is external and hence untrusted. Since risk is medium,

according to Table 3.13 priority is 4.

3.4 Case Study

In this section, we present a real case study used to validate our methodology. This use

case considers the cybersecurity system protecting the network of an academic institution

including over 15,000 hosts. We also report some of the results and findings after applying

EPIC to our use case (The full analysis can be fund in [102]).
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Figure 3.6: Architecture of the University’s Cyber Security System

3.4.1 Case Study description

Figure 3.6 depicts the architecture of a university campus network along with its Cyber

Security Systems (CCSs). From here on we will refer to the ensemble of these cybersecurity

systems as UCSS (i.e., University Cyber Security System). The university network is

divided into di↵erent network segments located in three geographic areas and connected

among themselves by four main routing devices (R1, . . . , R4).

This network is protected in total by six types of cybersecurity systems: (1) Netflow

network collector (in short Netflow), (2) Network Intrusion Detection Systems (NIDS),

(3) application-level firewall, (4) Security Information and Event Management System

(SIEM), (5) cloud antivirus and (6) security mechanisms built into the routers and in

particular (i) Firewall at IP level and (ii) Virtual Private Network VPN (from now on,

we will refer to this ensemble of mechanisms as router).

To identify and assess the privacy impact of UCSS, we run the four steps of the EPIC

methodology for each of these six cybersecurity systems.

The Netflow is a hardware device configured to collect network packet headers. This

data is mainly used to detect network anomalies e.g., performance degradation, tra�c

congestion, abnormal latency. In our architecture (Figure 3.6), we have a Netflow is

46



3.4. CASE STUDY

connected to each router and covering the whole network.

The NIDS are deployed in each network segment for monitoring the network tra�c

and they raise an alert when suspicious patterns are detected. Each NIDS is equipped

with a remote console where alert logs are collected and a human analyst can access this

data for investigation and forensic tasks

Firewall at application level is used to detect threats such as web attacks, exploitation

techniques, malware infections, etc. (Figure 3.6 shows a single firewall connected to R2

but there is actually a firewall for each router). To this end, the firewall is able to process

a large spectrum of data types such as executables, PDFs, emails, multimedia files etc.

The firewall can be also configured to decrypt SSL tra�c going to any external websites

and it acts as a forward proxy. Like the other cybersecurity devices, the firewall is also

equipped with a remote console to allow the security team to monitor the security events

and investigate threats.

The events and threats collected by Netflow, NIDS, application level firewall and

routers are sent to the SIEM for further analysis, which is considered the mastermind

of UCSS. Thanks to its capabilities such as data aggregation, event correlation, and ad-

vanced forensic analytics, this system provides a view on the big picture of potential

attacks running under the network and that the other CSS cannot detect separately. The

SIEM has a remote console allowing interaction between the system and human agents.

The Cloud antivirus is based on a technology that uses a lightweight software compo-

nent on the protected host while o✏oading the majority of data analysis to the antivirus

provider’s infrastructure. The goal of the software agent is to identify suspicious files

and send them to the network cloud where multiple antiviruses and behavioral detection

engines are applied simultaneously for improving detection rate. Cloud antivirus can also

use a “retrospective detection” where the cloud detection engine re-scan all files already

checked when a new threat is identified. Such technique can improve the detection speed.

The router as mentioned above can perform tra�c filtering based on predefined net-

working ACLs (access control lists). ACLs indicate which tra�c to allow or block based

on IP addresses and port numbers. Blocked tra�c can be used to investigate network

attacks and incidents. Routers also allow to create and use VPNs however this security

mechanism does not collect any data thus it will not be considered in our analysis.

3.4.2 Summary of the results and findings

In this section, we summarize and discuss the important results obtained after running

the 4 steps methodology to the use case presented in the previous section.

In the first step we modeled the seven CSSs mentioned in Section 3.4.1 using the

extended data flow diagram DFD+ (as explained in Section 3.2.2). in Figure 3.7 we show

an example of DFD+ modeling the SIEM.
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Figure 3.7: Modeling UCSS SIEM component with DFD+

In the second step, we identify 350 exposures. In Table 3.1 we report a reference list

of adversaries for a cybersecurity environment that can be personalized for the specific

CSS and organization being considered. In the UCSS use case, we added the following

adversaries:

a) Security operator : in UCSS the security team is composed of a security administrator

and four security operators; the operators have the same tasks but fewer privileges than

the security administrator ;

b) Network user : this adversary role applies to any individual with approved access to

the university’s network.

For each exposure, we computed the likelihood of access La. This assessment takes

into consideration the adversaries and security mechanisms protecting each component

(see Section 3.2.3). Among the identified exposures 60 had non-negligible likelihood of

access including 38 exposures involving authorized actors. The rest of the exposures were

cleared.

As mentioned in Section 3.2.4 the data leaked in each exposure is composed of het-

erogeneous types of records (i.e., records with di↵erent attributes). We call each type of

records a data content.In the third step we identified 39 di↵erent data contents, composed

of di↵erent combinations the attributes described in Table 3.14 1. We also identified 1200

privacy violation threats. In average 60% of the total number of threats involve authorized

users. No threats were cleared during this step.

The analysis carried in the fourth step reveals that most authorized users threats have

elevated risk levels. In Table 3.15 we report a subset of the results obtained by analyzing

the SIEM (depicted in Figure 3.7 ).In this sample, we selected high-risk threats and we
1The exposures we identified actually leak other privacy neutral attributes (i.e., neither IDs, nor QIDs, nor PSIs),

however for sake of brevity we don’t report them in this table.
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Table 3.14: UCSS attributes description

Name Description Domain Example values

IP int IP adress (source or destination) of a

machin in the local network

IP Address 192.168.100.32

IP ext External IP adress (source or destination) IP Address 8.8.8.8

URL visited sites urls and parameters if any URL www.sitename.com/

search?s=parameter

file meta. File name, size, author creation time etc. name.pdf, 504kb,

2017-06-06 12:07:10

file A file being transmitted String of bytes

email header Email Object, Sender and Reciver adresses smtp header from: to: date: sub-

ject: etc.

email cont. Email Object, Sender and Reciver adresses

app. name name of the application and protocol used name, protocol,

etc.

Thunderbird 52.1.1,

smtp

can see that several threats were originated by authorized users (i.e., Security operator

and Security admin). Even after taking into consideration the trustworthiness of these

authorized users (acquired through training and legal commitment), the priority levels of

threats evolving them is still quite important. Which means this kind of threats should

not be overlooked when planning for mitigation solutions.

Table 3.15: Privacy violation risk and prioritization (SIEM)

Threat
Risk Trust Priority

Exposuer Data content

P3: Security operator IP int, IP ext, URL Medium Trusted 7

L

a

: authorized IP int, IP ext, URL, http content High Trusted 3

P3: Security admin IP int, IP ext, URL High Fully Trusted 5

L

a

: authorized IP int, IP ext, URL, http content High Fully Trusted 5

C1.3: Network admin. IP int, IP ext, URL High Moderatly Trusted 2

L

a

: high IP int, IP ext, URL, http content High Moderatly Trusted 2

DS1: Security admin. IP int, IP ext, file metadata High Fully Trusted 5

L

a

: authorized

DS1: System admin. IP int, IP ext, file metadata Medium Moderatly Trusted 6

L

a

: mediun

The identification and evaluation of these threats in UCSS has a high value for the

academic institution, not only to better understand the privacy implications of the de-

ployed CSS and possibly mitigate the threats but also to comply with regulation. For

example, the new EU General Data Protection Regulation2 (GDPR) requires to keep de-

2Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural

persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive
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tailed “Records of personal data processing activities” (article 30), and the EPIC’s threat

analysis was an excellent tool to isolate this information for the CSS.

The prioritization is a further step with a central role in guiding the mitigation actions

for the identified privacy violation threats. Considering the UCSS use case, this step

of the EPIC methodology highlighted two benefits. First, it forced the trust analysis of

the di↵erent actors considered as adversaries, identifying the higher reliability of security

operators with respect to system and network administrators because of their di↵erent

training and expertise. Second, considering only trust, Th2 would be considered at highest

priority, while considering only risk Th1, Th3, and Th4 would be considered before Th2.

Only the balanced evaluation of the combination of the two factors suggests the non-trivial

priority order reported in Table 3.12.

3.5 Threat mitigation strategies

A natural follow-up to the EPIC analysis would be to guide through the selection and

implementation of privacy protection solutions, including organizational and legal in-

terventions. Regarding technical solutions, despite there are several privacy enhancing

techniques that could be applied in this domain, a careful evaluation is required specifi-

cally for preserving data quality and computational e�ciency in order not to impact on

security protection. Indeed, some existing privacy enhancing techniques have been shown

to reliably protect privacy, however, they often severely a↵ect the quality of data and

come with a substantial computational overhead.

Moreover, the type of selected solution strongly depends on the nature of the actors

involved or originating the threat. Indeed the results of Analyses (presented in Section 3.4)

allowed us to identify two categories of threats: a) unauthorized actors threats and b)

authorized actors threats.

Unauthorized actors as the name indicates are actors who have no authorizations to

access the data from a given components. These actors gain access by attacking the CSS

of the network in which the CSS is deployed. The Unauthorized actors can be external

attackers but can also be insiders i.e., companies employees, network and IT personnel

etc. To address this kind of threats we need to eliminate the data leakage. This can be

achieved through the reinforcement of the network security to fix the security breaches

that lead to the leakage. In other cases where insiders are involved, we could think about

addressing the privilege assignments and privilege abuses. Data obfuscation mechanisms

such as encryption can also be used to mitigate non-authorized actors threats.

However, these solutions are not applicable to the threats originated by authorized

users since these users need to access the data in order to accomplish their daily business

tasks. Indeed to mitigate authorized actor threats one possible solution is to minimize the

95/46/EC (General Data Protection Regulation).

50



3.6. CHAPTER CONCLUSIONS

data leakage by e�ciently applying the need-to-know principle when releasing the data.

To do so anonymization techniques can be used to lower the granularity of identifying or

sensitive information. Which will clearly lower the privacy risk but it will also impact the

utility of the data and it is also expected to have a certain computational overhead. Thus

this kind of solution needs to be carefully used. Another solution would be to increase

our confidence the authorized actor will not miss-use the accessed data or in other words

increase the actor’s trust. This trust level can be increased through privacy training, the

signature of legal agreements, monitoring etc.

These privacy protection measures (e.g., anonymization, trust enhancement) can be

applied o↵-line. However in order to mitigate the negative impact, mentioned earlier, they

are better applied at run-time, request by request during the access control phase where

the privacy risk can be assessed more accurately by taking into consideration a number

of factors, often known at run-time only, such as the access history of the requester, the

security context of the query etc.

3.6 Chapter conclusions

In this chapter we presented “EPIC”, a methodology to identify and evaluate privacy vi-

olation threats resulting from the deployment of an organizational cybersecurity system.

The methodology guides a privacy expert, with the collaboration of the organization’s

security team, through four steps of analysis namely “modeling the cybersecurity sys-

tem”, “identifying data exposures”, “identifying privacy threats” and “evaluating and

prioritizing privacy threats”.

We refined and validated the methodology by applying it to the actual cybersecurity

system of a large academic institution. In Section 3.4 we provide a description of this

CSS and briefly report the end results of the analysis (the full application of EPIC can

be found in [102]).

Two contrasting needs emerged while designing the EPIC methodology: on one side,

in order to increase the accuracy of privacy violation risk assessment a larger number of

aspects needs to be modeled and deep evaluations by privacy experts need to be performed.

On the other side, the methodology should be practical: the experts should be able

to apply it to real systems with a reasonable e↵ort and time. Balancing these needs

required us to omit some details or special cases that add complexity to the process,

while not always a↵ecting the evaluation result in the specific context of privacy in CSS.

For example, in a first attempt to model privacy violation, we explicitly took into account

“linking information” i.e., attributes that can associate several pieces of information to

the same individual. Consider for instance a data log that reports a given sensitive

information associated with pseudo-id 123; another log contains the association between

pseudo-id 123 and respondent’s identity. By accessing these two logs the adversary can
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violate the respondent’s privacy through the “linking information” i.e., pseudo-id 123.

EPIC does not explicitly provide guidance to the experts for analyzing this re-identifying

method since in our case study, this form of reasoning never disclosed additional privacy

threats while adding complexity. Despite we believe that our use case is representative of

a large class of CSS, there may be cases that require a more detailed analysis, including

linking. Actually, linking information is captured by our formal model as a special case

of quasi-identifier (see our definition of quasi-identifier) and can be considered in Steps

3 and 4 of EPIC. More generally, a technically deeper analysis on specific aspects can

be conducted as a second phase assessment or as part of the remediation for particular

privacy threats and system components.

The privacy risk assessment resulting from the methodology can be used to compare

cybersecurity systems in terms of privacy preservation. By considering the trustworthiness

of the adversary together with the privacy violation risk, the methodology also provides

a prioritization of the activities necessary to mitigate the risk of the identified privacy

threats. This overview obtained (characteristics of the threat: adversary, component,

data, risk, and priority) helps starting the elaboration of a mitigation plan.

For example, one important finding after applying the methodology to this use case

(in Section 3.4) is that an important number of threats was originated by insider au-

thorized actors. These threats have elevated privacy violation risk levels and important

priorities. Privacy enhancing techniques such as encryption and security reinforcement

(applied alone) can be good solutions to mitigate unauthorized access privacy threats (ac-

cess achieved by unauthorized actors), but they are not applicable in case of authorized

access. Therefore other solutions need to be proposed to address these type of threats

mainly by decreasing the amount of data accessed by authorized actors. This kind of so-

lutions, e.g., anonymization, impacts the quality of data thus the level of anonymization

should be decided carefully depending on the privacy risk.

In this optic, we propose a privacy-aware risk-based access control system, where the

privacy risk is assessed at run-time for each request. If this risk is higher than the request’s

trust, several strategies can be applied to lower the risk and/or enhance the trust. In the

remaining chapters of this thesis, we will provide more details about this approach.
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Chapter 4

Trust- and Risk-based access control

Access control mechanisms are fundamental mechanisms in computer security

used to ensure that only authenticated and authorized users can perform allowed

actions on given resources under given circumstances. The rapid evolution and

diversification in today’s ICT landscape brought various challenges for access

control. Indeed this new environment requires a high level of data availability

and calls for more flexible access evaluation. In fact, in commonly used access

control systems (e.g., RBAC, MAC), it is current practice to grant all-or-nothing

access. Although this approach supports privacy and confidentiality, it lacks

flexibility and limits data exploitation and availability. Vigorous studies have

been conducted to dress these challenges. Among the proposed solutions risk-

aware access control approaches received increasing attention during the last

years. These systems grant or deny access to resources based on the notion of

risk. It has many advantages compared to classic approaches, allowing for more

flexibility, and ultimately supporting for a better exploitation of data.

In this chapter we propose a novel trust- and risk-based access control frame-

work supporting run-time trust and risk assessment. For each request, access

is evaluated based on a combination of these trust and risk values. Di↵erently,

from existing models, our framework supports access control in dynamic contexts

through trust enhancement mechanisms and risk mitigation strategies. This al-

lows striking a balance between the risk associated with a data request and the

trustworthiness of the requester. If the risk is too large compared to the trust

level, then the framework can identify adaptive strategies leading to a decrease

of the risk (e.g., by removing/obfuscation part of the data through anonymiza-

tion) or to increase the trust level (e.g., by asking for additional obligations to

the requester). We outline a modular architecture to realize our model, and we

describe how these strategies can be actually realized in a realistic use case.

54



4.1. INTRODUCTION

4.1 Introduction

The increase in the amount of data generated by today’s digital society is astonishing.

According to IDC estimate [71], the global volume of digital data will double every two

years, reaching 44 trillion gigabytes by 2020. The availability of such large and diverse

datasets (big data) enables the creation of new data-based businesses or optimizing exist-

ing process (real-time customization, predictive analytics, etc.).

Yet, organization and companies are often unable to exploit the full potential of this

data (e.g., providing access to analysts, sharing with and accessing partners data). Indeed

this data often contain confidential and sensitive information and providing access to

this information carries multiple risks of intentional or accidental misuse [1]. Moreover

currently used access-control mechanisms have major limitations for handling complex

data sharing scenario while managing potential security and legal risks. Already few

years ago, the JASON MITRE report [121] indicated that the inflexibility of (still-used)

access control mechanisms is a major obstacle when dealing with diverse data sources in

a dynamic environment. Therefore the success key of any organization is to find the right

balance between providing Flexibility while providing essential information and ensuring

the confidentiality of the data.

To overcome this problem, access control systems must weigh the risks of the incoming

requests. Then access decisions must be based on an estimation of expected cost and

benefits, and not (as in traditional access control systems) on a predefined policy that

statically defines what accesses are allowed and denied. In such approaches, referred to as

risk-based access control, for each access request, the corresponding risk is estimated and if

the risk is less than a threshold then access is guaranteed, otherwise, it is denied. Although

existing risk-based access control models provide an important step towards a better

management and exploitation of data, they have a number of drawbacks which limit their

e↵ectiveness. In particular, most of the existing risk-based systems only support binary

access decisions: the outcome is allowed or denied. Whereas in real-life we often need to

handle exceptions based on additional conditions. For instance, the access to sensitive

medical data (e.g., by a non-treating doctor) should be allowed in a situation of emergency

in return the doctor should sign non-disclosure agreements. In other words, if the risk

is higher than a certain threshold, the system should be able to propose appropriate

risk mitigation measures instead of denting any risky access. This way it enhances the

exploitation of the data while maintaining an acceptable risk level.

In this Chapter, we propose a novel access control framework that combines trust with

risk and supports access control in dynamic contexts through. This allows us to strike a

balance between the risk and the trustworthiness when evaluating a data request. If the

risk is too large compared to the trust level, then the framework can identify adaptive

adjustment strategies that can decrease the risk (e.g., by removing part of the data)
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and/or increase the trust level (e.g., by asking for additional obligations to the requester)

to increase the exploitability of the data instead of denying every “risky” request.

Our framework enjoys a number of features:

1. it explicitly models trust and risk, which are the key factors of any business decision;

2. it increases the flexibility of existing risk-based access control, by introducing trust.

3. it provides an understandable way to implement and enforce risk and trust adjust-

ment operations both prior to and after issuing the access decision;

4. it supports complex authorization scenarios by simply changing the configuration

(trust and risk configuration modules, and corresponding mitigation/enhancement

strategies).

5. it can be realized using a declarative policy language with a number of advantages

including usability, flexibility, and scalability. As we will see in Section 4.4 the

architecture and the policy structure1 we propose can be readily implemented as an

extension of a well-known declarative authorization language XACML.

With motivating use case, we will illustrate how the framework can work in practice, ad-

dressing access control requirements in a natural way, that would otherwise need complex

authorization structure and calibration.

In the next section (Section 4.2) we describe the selected use case. In Section 4.3 we

introduce our trust- and risk-based access control model and discuss approaches to trust

and risk evaluation and adjustment. In Section 4.4 we provide an architectural view of our

access control framework. In Section 4.6 we show how the proposed framework addresses

the requirements of our use case, and we conclude in Section 4.7 with some final remarks.

4.2 Use Case

Consider a company with an ERP system with a Human Resource (HR) Management

module, enabled with the proposed trust and risk-based access control system (see Fig-

ure 4.1). By using the ERP functionalities corporate user Alice can generate an HR

report containing a list of employees with their location and salaries. The report contains

sensitive information and personal data, typically subject to strict regulations, such as

European Directive on Data Protection 95/46/EC that, among other terms, prevents Eu-

ropean citizens personal information to be transferred outside EU countries (with some

exceptions that we do not consider here). and the company has strict rules for accessing

the data such as security measures to minimize the disclosure risk when data are moved
1In Chapter5 Section 5.7 we will present a sample of XACML attribute-based policies implementing privacy-aware

risk-based authorizations described in 4.1
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Figure 4.1: Use Case: Alice accessing an HR report with personal data covered by EU Directive on Data

Protection 95/46/EC.

outside the company. The risk scenario considered is the leakage of the salary information

associated with a specific employee (re-identification risk). To ensure compliance with EU

data protection laws, additional restrictions must be applied if data are accessed outside

EU. Data Controllers (i.e., the entities responsible for the personal data collection and

management processes, in this case, the company) have the legal obligation to adhere to

the directive but at the same time, Alice must be able to access the report.

In her daily business, Alice may access the report using multiple devices: her o�ce

PC at corporate premises, a corporate smartphone, and her own smartphone. Access,

in mobility, su↵ers from a high level of risk, since it is more exposed to external attacks

and, depending on the geographical location, di↵erent rules may apply. A conservative

approach, easily implementable with traditional access control systems, would imply a

security policy like that:

• if Alice is on premises, then access is granted

• if Alice is in mobility, access is denied as the security and compliance risks could be

too high

Basically, access is limited to corporate premises, where full data can be viewed whereas

outside no information is available and no reports can be produced. Even though this

approach could seem simplistic, many real-life access control systems o↵er a similar level

of functionality [153].

Ideally, Alice would like to get a wider access to the data, and perform her business

tasks (e.g., reporting) also in mobility, using di↵erent devices in multiple locations, but

still keeping security risk under control, as summarized in Table 4.1.

In the next sections, In the next sections, we will show how these scenarios can be
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Table 4.1: Possible usage scenarios, comprising di↵erent devices and locations, and expected utility (i.e.,

type of reports needed) and security levels

Scenario Expected

# Device Location Administration Utility Security

1 PC on premises corporate full access no restriction

2 Smartphone EU corporate grouped by country medium risk

3 Smartphone EU personal grouped by region minimal risk

4 Smartphone no EU - no access no access

realized in our framework. We will present our trust- and risk-based access control model

and show how these scenarios can be realized in our framework.

4.3 Trust- and Risk-based access control model

In this section, we provide a general description of our trust- and risk-based access con-

trol model. We will also discuss the risk and trust models, assessment and adjustment

strategies.

4.3.1 Risk-based authorization model

The framework evaluates access decisions using the trust and risk values associated with

the access request. An access request issued by subject u to carry out action a (e.g.,

read or write) on resource obj (e.g., a file) in context C is modeled as a quadruple

req = (u, a, obj, C). For instance, a request issued by user Alice to read file HR-report.xlsx

from her corporate cell phone during her presence in the company’s premises is repre-

sented by req0 = (Alice, read,HR-report.xlsx, corporate cell phone, on premises). Let ⇧

be the access control policy of the organization. We write ⇧(req) = granted to denote

that req is granted access by ⇧, and ⇧(req) = denied to denote that req is explicitly

denied by ⇧. Some access control models, do not explicitly deny access in these models

⇧(req) 6= granted ⌘ ⇧(req) = denied. However this approach is clearly more restrictive,

and since we would to gain as much flexibility as possible we will only use this formu-

lation (Auth⇧(req) = deny if ⇧(req) 6= granted) when the access control does not allow

otherwise.

Auth⇧(req) =

8
>><

>>:

deny if ⇧(req) = denied

�(req) if T (req)�R(req) < 0

grant otherwise

(4.1)
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Policy ⇧ can be extended so to take into account the risk R(req) and the trustworthi-

ness T (req) of the request req as shown in Eq. 4.1 above If the authorization is not denied

by ⇧, the request is evaluated by comparing the risk R(req) with the trustworthiness

T (req). T (req) plays the role of a risk threshold (in practice, the maximum amount of

risk that a requester can take in a certain context). If T � R access is granted, otherwise it

cannot be granted as is. In the latter case, instead of denying access, the system may iden-

tify and propose an adjustment strategy � whose application meets the condition T � R.

Adjustment strategies can be either (i) risk mitigating, i.e. mitigation strategies whose

application decreases the risk R or (ii) trust enhancing, i.e. mitigation strategies whose

application increases the trustworthiness T . An example of risk mitigating strategies the

imposition of obligations of the handling of data e.g., retention period restricted to 2

hours. An example of trust enhancing strategies are the (temporary) privilege escalation

and provision of an additional, stronger proofs of identity (e.g. a two-factor authentica-

tion). In the next chapter (Chapter 5) we will present policy sample and describe how

di↵erent elements of Eq. 4.1 are implemented in the policy.

4.3.2 Modeling Trust

Trust is a wide concept, and di↵erent definitions have been proposed in literature [76].

To our scope, we can use the definition by McKnight and Chervany [105], which better

related to the concepts of utility and risk attitude. 2

Trust is the extent to which one party is willing to depend on something or

somebody in a given situation with a feeling of relative security, even though

negative consequences are possible.

In our case, we consider trust expressing the level of confidence the resource controller

has that a user u will not misuse the resource he/she wants to access. We expect this level

to depend on the user u (identity, role, and previous behavior) and in the given context

C (e.g., the device or system environment he is using).

Trust values are assigned in various ways depending on the specific use cases. For exam-

ple in reputation models, trust assessments from other entities are combined to compose a

trust evaluation, or in behavioral trust, a value is assigned based on the historical records

of transactions [76]. Trust can be also derived from assessing a set of trust indicators such

as security metrics (e.g., level of authentication) and from trust assertions (e.g. stamp of

approval) issued by trusted entities (i.e., certification authorities).

From the risk-based system point of view, the identity of the requester heavily depends

on the e↵ectiveness of the authentication mechanism employed. To take into account this,

the trustworthiness of user u in context C, say Te↵ (u, C), should take into account the

2A popular used definition is from Gambetta [61], which stresses the reliability aspects of trust. For a discussion see [76].
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possibility that the authentication is not carried out correctly (e.g., an identity theft

scenario). This situation can be modeled in our framework by replacing T (u, C) with

Teff (u, C) in Eq. 4.1, where

Teff (u) = T (u)(1� Pit) + T (u0 6= u)Pit (4.2)

where T (u0 6= u) is the Trust associated to any, not specified, other user that is not u, in

practice it should be zero or negligible and Pit is the probability of an identity theft. Pit

represents the strength of the authentication mechanisms.

4.3.3 Modeling Risk

Risk is defined by the likelihood and the impact of the occurrence of one or more a series

of failure scenarios s 2 S (also called risk scenarios). Although di↵erent quantitative risk

methodologies exist, see [31] and references therein, for independent scenarios as risk can

be computed by:

R(obj, p) =
X

s2S(C)

P (s)I(s)

where S is the set of possible failure scenarios related to the access of p in the context

C, P (s) is the probability of occurrence of the failure scenario s, and I(s) the associated

impact (often measured as monetary cost).

The risk exposure can be decreased implementing a set of controls and mechanisms,

and in this case, we refer it as residual risk. In addition, temporary risk mitigation strate-

gies can be applied to further reduce the risk. In case of access control, they include

for example, decreasing the probability of failure, by obfuscating (part of) the data (e.g.,

anonymization) or imposing usage control restrictions (e.g., data retention period); or

decreasing the impact, by insurance.

Eq. 4.1 implies that trust and risk are measured in the same units. Ideally, risk should

be measured in monetary units (since the impact is the cost of occurrence of a certain

scenario), and, accordingly, trust should have the same units, as in the previous exam-

ple for financial transactions. Unfortunately, estimating risk in information systems is

much less consolidated practice, due to: i) the limited availability of historical data on

failure scenarios, which makes di�cult to estimate the corresponding probabilities. ii) the

di�culty to estimate the impact of a failure to protect intangible digital assets.3

To overcome these problems, existing risk-based access control systems use various

approaches: they estimate these values from the parameters of traditional (non-risk based)

access control models (e.g., see [37] for multi-level security models), they use relative
3For these reasons, so far, most of the risk assessments for information system are qualitative, where probability and

impacts are classified in broad categories and no explicit numerical values are assigned (e.g., in many application of ISO

27005:2011 [74]).
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Figure 4.2: Architecture of the trust- and risk-based privacy-aware access control framework.

measures for both trust and risk (in practice they normalize these quantities in the interval

[0, 1], see [13]), or they use heuristics for estimating these numbers from qualitative risk

assessments [31].

In the sequel, to demonstrate our approach, we will consider a single risk factor related

to data privacy (re-identification risk). This allows us to compare trust, normalized in

the interval [0, 1], directly with the probability of the risk scenario. The model can clearly

include any other security risk factors, as far as a quantitative risk estimation is possible,

for example, deriving risk values from the rating of the Common Vulnerability Scoring

System (CVSS) [68].

4.4 Architecture

In this section, we present an abstract architecture for our trust- and risk-based access

control framework, and we explain the di↵erent steps of the data request evaluation work-

flow. Figure 4.2 depicts the four main modules of our framework:

Risk-Based Access Control Module. This module is the entry point of the frame-

work. It intercepts each data request to perform the access evaluation. Access will

be fully grant, partial/conditionally grant, or denied (see Eq. 4.1) following a risk-

based approach were the request risk and trustworthiness are assessed and compared,
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possibly after applying the adequate adjustment strategy (set of operations aiming

to lower risk and/or enhance trust).

This module is composed of three main components inspired by the XACML stan-

dard reference architecture4(PEP, PEP, and PIP), which we adapted to the risk-based

authorization model that requires more complex operations, such as risk and trust

assessment and adjustment. We call the modified components respectively RBA-EP

(Risk-Based Authorization - Evaluation Point), RBA-DP (Risk-Based Authorization

- Decision Point), and (Risk-Based Authorization - Information Point).

Risk Estimation module. This module is used to assess the level of risk, based on the

data requested, context and criteria defined in the risk estimator configuration. To

estimate risk, this module can require additional information about requester and

context from the RBA-IP.

Trust Estimation module. This module is used to assess the trust level of a request.

In particular based on user attributes like role, and past behavior. Trust computa-

tion can also take into account context attributes, for instance, in our case, access

context (purposes) e.g., access is requested for maintenance of a pattern, and security

context e.g., access is requested during a security alert.

Trust and Risk Adjustment module. This module is activated by the Risk-Based Ac-

cess Control module (more precisely by the RBA-EP) to adjust risk and/or trust levels,

when the access risk to the requested resource exceeds the trust level, in such a case,

two possible options are available:

• Decrease Risk: if this option is selected this module, first, produces an estimation

of the minimal transformation level to be applied in order to meet the required

risk level (e.g., the minimal level of obfuscation, generalization). Then, the

optimal risk mitigation operations are applied (e.g., access restrictions and usage

control operations, which decrease risk but minimize the information loss).

• Enhance Trust: the trustworthiness estimation can be increased in return for

the execution of certain operations. Before granting access to the resource (e.g.,

second-factor authentication) at the moment of the access (e.g., monitoring or

notifications) or when specific events occur after granting access; for example, in
4In the XACML3.0 (eXtensible Access Control Markup Language) standard [58] the PDP is the point that evaluates an

access request against an authorization policy and issues an access decision and the PEP Policy Enforcement Point is the

point that intercepts user’s request call the PDP for an access decision then enforce this decision by allowing or denying

the access. The PIP is the point that can be called to provide additional information about the resource, requester or

environment.
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usage control, we may prescribe the deletion of a resource after that a retention

period expires.

In Figure 4.3, we illustrate the interactions between di↵erent modules of the framework

during the request evaluation and decision enforcement: First, the Risk-Based Access

Control module, more precisely the RBA-EP, extracts the request target (i.e., resource,

subject/requester and environment/context attributes) and sends the information to the

RBA-DP for evaluation. The RBA-DP checks if there are any access policies/rules matching

this target in the Policy Repository. During the matching, the RBA-IP can be called to

resolve or provide more information about some attribute. If the matching fails (e.g.,

missing or unknown attributes) or if the target matches a policy denying the access to the

specific target (Blacklisted Target), a deny response is sent to the requester. If a match

is found and the policy does not explicitly deny access, we need to compare the risk and

trust levels to check if we should grant access or if we need to apply adjustments to these

levels (see 4.3.1 (Eq.4.1)). To this aim, the Risk-Based Access Control module calls the

Risk Estimation Module to determine the risk level of the request and the Trust Estimation

Module to determine the requester and context trust. Then, Trust and Risk Mitigation

Module enters into play to increase trust and/or reduce risk, if necessary, before granting

partial or conditional access to the resource. In the next chapter (Chapter 5) we will

provide a sample of risk-based policy and more description of the evaluation process in

the context of privacy.

4.5 Trust and Risk adjustment Strategies.

4.5.1 Risk Mitigation.

Risk can be mitigated by decreasing/limiting access to the resource. A possible way is

to limit the quantity of data accessed e.g., by removing confidential data. In the context

of data privacy, anonymization (see [41]) is a commonly used practice to reduce privacy

risks, by obfuscating partially or completely, the personally identifiable information in a

dataset. Other techniques can be used to lower the sensitivity of the data by increasing

the granularity of the sensitive information. We will further discuss these techniques in

the next chapter (Chapter 5, where we will focus on privacy risks.

4.5.2 Trust Enhancement.

Enhancing the trust results in raising the risk threshold and adopting a more permissive

evaluation. In return, proofs and/or guarantees limiting possible misuse scenarios must

be provided; for instance by asking the user to provide a stronger authentication to limit

the likelihood of an identity theft and temporarily increase the trust of a user Tuser, which
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Figure 4.3: Sequence of interactions in the trust- and risk-based access control framework.
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Table 4.2: Trust values in di↵erent contexts C

Context T (u,C)

C1: On premise 1.0

C2: Mobility (secure) 0.5

C3: Mobility (standard) 0.1

C4: Mobility (outside EU) 0.0

impacts the trust value according to Eq. 4.2. We can also provide restricted access to a

resource for a determined amount of time, then delete the resource (data), this represents

a change in the context and, accordingly, it increases Tcontext impacting the request trust

value as well.

4.5.3 Trust and risk adjustment by obligation.

Trust and risk adjustment strategies can be implemented in the form of access and usage

control obligations.

Obligations are actions or operations that must be carried out as result of an autho-

rization decision. In the standard XACML architecture [115], obligations are defined as

parts of policies and included in authorization responses created by the PDP; they are

enforced by the PEP on behalf of the subject issuing the authorization request. Besides

their application as an outcome of the authorization decisions, obligations may also be

applied during or after the consumption of a requested resource or the execution of a

requested operation [2, 114]: for example, a policy may state a specific retention period

for any copy of a resource whose access was granted to the requester. In these cases, a

trusted component must exist that is able to operate in real time as a PEP. This situation

is generally referred as Usage Control (UC) [136]. UC models and mechanisms have been

proposed to address confidentiality and privacy requirements [5], and applied to both the

cloud and the mobile environments [51, 129].

AC/UC policy definitions may comprise a broader set of directives, regulating runtime

aspects originated from an authorized access; for example, a policy may prescribe to mon-

itor the location where a mobile user consumes a resource and to react with a deletion

obligation in case the user leaves the country. Such capabilities are particularly useful to

achieve compliance with directives (law requirements or corporate policies): for example,

data privacy regulations introduced in Section 4.5 impose the application of certain prin-

ciples and UC can enforce automatically some aspects [155].

Therefore, the usage of obligations, when their enforcement is guaranteed, can be

considered as a means to enhance a request’s trust estimation in our proposed system.

65



CHAPTER 4. TRUST- AND RISK-BASED ACCESS CONTROL

In fact, it can be assumed that prescriptions specified by a security policy are applied

and that they can regulate how resources or operations are used, thus ensuring their

compliance. For instance, in our use case (Section 4.2) the trust level could change with

the context as shown in Table 4.2. For the sake of simplicity we assume that trust

is independent from the specific user, i.e., T (u, C) = T (u0, C) for all contexts C and

users u and u0. In the for the most trusted environment (On-premise) we can thus have

T (u, C1) = 1. C2 refers a context of mobility inside the EU territories where the request is

issued from a secure device (e.g., a corporate smartphone or laptop). In addition, in this

environment, potential UC/AC obligations enforcement can be guaranteed. This context

has a trust level T (u, C1) = 0, 5. In C2 access is requested in mobility within EU from

a non-certified device (e.g., a personal smartphone). The security level of this device

is not verified and UC/AC obligations enforcement cannot be guaranteed. Therefore

T (u, C1) = 0.1 whereas for requests coming from outside the EU that cannot be trusted

and thus T (u, C4) = 0.

4.6 Application to the use case

We now show how our framework can support the scenarios introduced in Section 4.2 and

achieve the expected utility and security levels (see Table 4.1). In all scenarios considered,

we assume user Alice requests access to the data-view v presented in Table 4.3.

Table 4.3: HR report: original view

Name Job Location Salary

Timothy Lulic Senior Developer London 74200

Alice Salamon Support London 45000

Perry Coda Junior Developer London 52000

Tom Torreira Admin Milan 28000

Ron Savic Senior Developer Rome 66000

Omer Regini Senior Developer Shanghai 47000

Bob Eramo Support Macau 18000

Amber Mesb Admin Bangalore 30000

Elise Moisander Admin Bangalore 31000

We will now describe the evaluation results of this access request req(Alice, read, v, C)

in four di↵erent contexts C 2 {C1, C2, C3, C4} introduced in our use case (Section 4.2).

In Table 4.4 we report the initial request trust and risk ( T ⌘ TC and R ⌘ R(v, read, C))

for each of the four scenarios (i.e., each of the foure contexts C). we also report the

adjustment strategies applied in each scenario, the trust and risk values after adjustment

(T 0 ⌘ T 0
C and R0 ⌘ R0(v, read, C)), and finally the access decision.
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Table 4.4: Trust and Risk adjustment strategies applied to the request req(Alice, read, v, C)

Context T R Adjustment T

0
R

0 Decision

C1 1.0 1 None needed - - Allow

C2 0.5 1

Prevent sharing,

Delete after 2 hours,

Generalize to country level

0.75 0.75 Allow

C3 0.1 1
Generalize to regional level

Decrease the sensitivity
0.1 0.1 Allow

C4 0.0 1 None possible - - Deny

Scenario #1: Access from business environment. In the first scenario, Alice asks for the

HR report from a business environment. The Risk Estimation module is called to estimate

the access risk associated with the request req1 = (Alice, read, v, C1) set: R(v, read, C1) =

1, since the report contains personal data with an elevate likelihood of re-identifying

individuals as well as learning a sensitive information (i.e., salary) about them. Alice

is a trusted actor and she authorized by a security policy to perform this operation,

therefore we will consider her from here on, for simplicity sake, we will consider her fully

trusted and consider the context trust as request trust T (Alice, C) = TC . The Trust

Estimation module, in turn, computes the trust associated to the context where the

request is originated: TC1 = 1, since Alice is in her o�ce. Therefore, Auth(req1) = Allow

and access is granted with no need to apply any adjustment operation.

Scenario #2: Access, in mobility, from EU using corporate smartphone. Since the request

is performed in mobility TC2 = 0.5 and while R(v, read, C2) = 1. The Trust and Risk

Adjustment module then triggers the trust enhancement and risk mitigation strategies.

Specific AC/UC obligations are thus assigned to the report (e.g., do not share, delete after

2 hours, only usable in EU) to be enforced by an obligation enforcement engine deployed

on the corporate smartphone. The application of these measures increases the trust in

the context to T 0
C2

= 0.75. To decrease risk, generalizing the report to country level (by

obfuscating the identity of the employees) allows to reduce the re-identification risk to

0.755. Therefore, Auth(req02) = Allow (req02 = (Alice, read, v2, C2)) and Alice receives

the generalized view (v2) of Table 4.5.

Scenario #3: Access, in mobility, from EU using personal smartphone. This scenario

is similar to the previous one, with the notable exception that now no trust enhancing

measures can be enforced on the mobile phone. Therefore, the Trust and Risk Adjustment

5risk in this example was assessed based on the re-identification risk and the sensitivity of the information that will be

further explained in Chapter 5, in the next chapter (Chapter 5) we will provide more details about how we compute this

risk using well-known privacy metrics such as k-anonymity
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Table 4.5: HR report v2: anonymized (country level).

Name Job Location Salary

*** *** UK 74200

*** *** UK 45000

*** *** Italy 52000

*** *** Italy 28000

*** *** Italy 66000

*** *** China 47000

*** *** China 18000

*** *** India 30000

*** *** India 31000

module can only apply the risk mitigation strategy. By generalizing the report to regional

level and decreasing the granularity/sensitivity of the salaries to salary ranges the risk is

mitigated to 0.1. The trust of the request considering the context C3, is TC3 = 0.1 (see

Table 4.1 access though personal smartphone), and thus after adjustment Auth(req03) =

Allow (req03 = (Alice, read, v3, C3)). The report (data view v3) received by Alice in this

scenario is given in Table 4.6.

Table 4.6: HR report v3: anonymized (region level) and salary ranges.

Name Job Location Salary

*** *** EMEA [71k-90k]

*** *** EMEA [31k-50k]

*** *** EMEA [51k-70k]

*** *** EMEA [10k-30k]

*** *** EMEA [51k-70k]

*** *** APAC [31k-50k]

*** *** APAC [10k-30k]

*** *** APAC [10k-30k]

*** *** APAC [31k-50k]

Scenario #4: Access in mobility from outside EU with personal smartphone. In this

case, the risk of violating the regulations is maximum. This means that the trust in the

environment is 0, no mitigation strategies may be adopted and therefore TC4 = 0 (request

from outside EU), R(v, read, C3) = 1, and thus for the request req4 = (Alice, read, v, C4)

the decision is Auth(req4) = Deny.
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4.7 Chapter conclusions

Motivated by the need to balance the advantages of big data availability, and stringent

security and confidentiality requirements, novel access control paradigms are emerging.

Risk plays a central role, and access control decisions can mimic the business decision

process, where risk is assessed relatively to trust. In this chapter, we proposed a novel

access control framework based on these two factors (trust and risk) and showed that it

can address complex authorization requirements by dynamically applying strategies for

risk mitigation and trust enhancement. The possibility to play with both risk and trust

at the same time and its application to a real use case are the main novelties of our work.

Our approach, although promising still faces a number of open issues. In particular, the

overall approach (as for any quantitative risk model) relies on the numerical estimation

of risk and trust which are di�cult to compute [16, 111]. Indeed, the diversity of risk

scenarios, the intangible nature of trust, and the limited amount of historical data for

incidents makes an accurate quantitative assessment extremely di�cult.

In The next chapter, we will adapt our risk-based access control approach to the context

of data privacy. Moreover, we will propose to measure the trust and risk values using some

domain-specific heuristics. Using these heuristics we will show how it is possible to derive

sound relative estimation (i.e., using dimensionless units) for trust and risk (for a specific

usage scenario).
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Chapter 5

Privacy-aware risk-based access

control

Several risk-based access control models were recently proposed to address flexi-

bility issues in traditional access control models. However, very little attention

was given to privacy. For instance, if we take the case of querying databases

containing personal and sensitive information, the current practice is to adopt

restrictive approaches, reluctant to take any risks, to avoid the disclosure of

any sensitive information. These approaches ensure privacy but they o↵er very

limited access to the data, which does not fit any more in the new data-driven

environment where companies and organizations evolve.

These issues can be addressed using the risk-based access control approach we

propose in the previous chapter. In fact our model enhances data exploitation

by adopting a flexible risk management, however, our model (more specifically

the risk assessment model and risk and trust adjustment strategies) needs to be

adapted to the context of data privacy.

In this privacy-aware model, we propose to assess the privacy risk using well-

known privacy metrics. Indeed there are two main categories of approaches to

assess and handle data privacy in the literature, the “ syntactic approaches” and

“ di↵erential privacy”. Each category has several advantages and a number of

issues, but both categories are equally interesting for us since they cover two

di↵erent areas. Syntactic metrics are more suited in the context of Privacy-

Preserving Data Publishing (PPDP) whereas di↵erential privacy is typically used

for Privacy-Preserving Data Mining (PPDM).

In this chapter, we will focus on a privacy-aware risk-based access control model

using syntactic anonymity for privacy risk assessment and mitigation (a model

using di↵erential privacy will be discussed in another chapter). We will design
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two frameworks following this model, the first implemented on top of a role-based

access control model (RBAC) and the second using the attribute-based access

control (ABAC). Then we will show how the two frameworks can simultaneously

address both the privacy and the utility requirements in two di↵erent industrial

case studies. The experimental results presented at the end of this chapter prove

that this approach leads to meaningful results, and real-time performance, within

both case studies.

5.1 Introduction

Increasingly sophisticated analytic tools invade modern workplaces. These tools collect a

large verity of data on employees, partners and clients to di↵erent purposes spanning from

workforce intelligence (e.g., optimized recruiting, talent management, turnover impact as-

sessment) to cybersecurity (e.g., next-generation firewalls, security information and event

management systems ). Although extremely useful, sometimes, vital to the organization,

these tools often raise numerous ethical privacy issues [26] since the data collected often

contain sensitive and personal information. Therefore access should be limited to the

data relevant to the task at hand as mandated by data protection regulations. To this

end, data need to be pre-processed to eliminate or obfuscate the sensitive information.

Additional security/accountability measures may be also applied to reduce the privacy

risk, such as logging the access to the personal data or imposing deletion obligations.

Anonymization is a commonly used practice to reduce privacy risk, obfuscating, in

part or completely, the personal identifiable information in a dataset. Anonymization

methods include [41]: suppressing part of or entire records; generalizing the data, i.e.,

recoding variables into broader classes (e.g., releasing only the first two digits of the zip

code) or rounding/clustering numerical data; replacing identifiers with random values

(e.g., replacing a real name with a randomly chosen one).

Anonymization increases protection, by lowering the privacy risk, and enables a wider

exploitation of the data. However, anonymization techniques should be carefully applied

since they clearly impact the quality (utility) of the data. Accordingly, di↵erent level

of anonymization should be considered depending on a number of factors, often known

at run-time only, such as the trustworthiness of the requester or security context of the

query.

In this Chapter, we propose and demonstrate a privacy-aware risk-based access control

framework, which addresses the concerns described above. This framework is an adap-

tation of the risk-based access control model proposed in the previous chapter, to the

privacy context. In our framework, access-control decisions are based on the privacy risk

level associated with a data access request. This risk level is dynamically evaluated using

widely used privacy metrics (e.g., k-anonymity). and (if needed) anonymization is applied
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on the specific resulting data set.

The inclusion of on-the-fly anonymization allows for extending access to the data, still

preserving privacy below the maximum tolerable risk. Risk thresholds can be adapted

to the trustworthiness of the requester role, so a single access control framework can

support multiple data access use cases, ranging from sharing data among a restricted

(highly trusted) group to public release (low trust value). Besides trust enhancement

strategies can be applied to o↵er further flexibility in very delicate contexts (e.g., a security

emergency, medical emergency) in return further guarantees should be supplied to ensure

the leaked data will not be misused.

In addition to its flexibility, the proposed approach has a number of other advantages:

1. it provides a simple framework to address the, often conflicting, privacy and utility

requirements;

2. it allows to easily set the risk and trust levels, and configure the adjustment strategy

to meet the priorities of the organization (e.g., optimize utility or performance goals).

3. it can be easily integrated to widely used access control systems such as RBAC and

ABAC.

To evaluate the feasibility and e↵ectiveness of this approach we selected two cases

studies namely “HR information disclosure” and “Privacy aware threat investigation”.

We developed two prototypes based on a slightly di↵erent version of the framework and

run a set of experiments on each implementation.

In the first case study, we simulate the behavior of our framework in a scenario of an

employee survey results dissemination. Then we assess the performance and impacts on

the utility of a first version of the prototype by running a number of queries against the

Adult DataSet from the UCI Machine Learning Repository, a publicly available dataset

that is widely used by the research community. The experimental results were encouraging

and confirm the feasibility of our proposed approach.

The second cases study (Privacy aware threat investigation) addresses the exploitation

of employees network and system logs in the context of cybersecurity. In fact, due to the

increasing complexity and variety of attacks, modern Threat Detection Systems (TDS)

are becoming more sophisticated and data-intensive. They leverage the correlation of

security events from several logs (collected from di↵erent sources in the organization’s

information system) to detect and prevent cyber attacks [123,168]. This is typically done

in two main steps: an automatic pattern or anomaly detection phase which highlights

suspicious events followed by a detailed investigation carried out by a human expert who

must decide whether the anomalous pattern corresponds to an actual attack. In this

second phase, the expert must often inspect the raw data (log files) that triggered the

alert.
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Although the security investigation can constitute a legitimate purpose for their pro-

cessing of the log data, whenever they contain sensitive or personal information (e.g., user

ids, IP addresses, logins) access must be restricted on need-to-know bases. Therefore data

must be anonymized to obfuscate those elements that are not strictly necessary for the

task at hand. However, the application of anonymization techniques can deteriorate the

quality or utility of the data. Although some analytics can still be run on anonymized log

data [87], in many cases the anonymization a↵ects the quality of results and, ultimately,

decreases the ability to detect and react to cyber threats. By using our framework to

control the data leakages, we do not require an a priori risk mitigation measure anymore,

i.e., o↵-line, anonymization of the data sources. The automatic pattern detection phase

uses the original data set, and anonymization is applied only if a subsequent, human-based

analysis is needed on the resulting data.

In the next section (Section 5.2), we present the privacy-aware model. Section 5.3

we will describe the HR information disclosure case study and show how the framework

can be combined with an RBAC access control model and applied to this case study. In

Section 5.4 we report some preliminary results of the performance and impact on data

quality of this model. In Section 5.5 we describe the second case study (i.e.,Privacy aware

threat investigation) . In this second case study, our model is implemented on top of an

attribute-based access control model. Section 5.6 discusses the results of an experimental

evaluation of the proposed approach in terms of performance, scalability, and data utility

(after anonymization). We describe in Section 5.7 how risk- based authorizations can be

expressed through attribute-based policies and we provide some policy examples Lastly,

we conclude in Section 5.8 with some final remarks.

5.2 Privacy-aware risk-based access control

In the privacy-aware risk-based access control we propose the access requests are assessed

according to the authorization function we defined Eq. 4.1 the last chapter (Chapter 4).

Auth⇧(req) =

8
>><

>>:

deny if ⇧(req) = denied

�(req) if T (req)�R(req) < 0

grant otherwise

We will, however, introduce and use a risk model R, a trust model T , and a set of trust

and risk adjustment strategies � specific to the context of data privacy. In the following

sections, we will start by introducing privacy concepts that will be used in risk assessment

and mitigation. Then we will refine the risk and trust model based on these concepts.

finally, we will discuss some privacy preserving adjustment techniques.
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5.2.1 Risk Model

As mentioned in the previous chapter, risk can be expressed in terms the likelihood of

the occurrence of certain (negative) events system and the (negative) impact of these

events [60]. In this chapter, we focus on the risk associated with privacy breaches in

information systems. Privacy breaches are often associated with individual identifiability,

used in most data protection privacy laws (e.g., the EU data protection directive [59],

the Health Insurance Portability and Accountability Act (HIPAA) [141]). To prevent

individual identifiability the regulation requires that disclosed information (alone or in

combination with reasonably available information from other sources or auxiliary infor-

mation [116]) guarantee a certain level of anonymity i.e., it should not allow an intruder

to identify individuals in a dataset (identity disclosure) or to learn private/sensitive infor-

mation about individuals (attribute disclosure) with a very high probability or confidence

(see [148,158]).

To quantify the level of anonymity of a respondent in a dataset, various syntactic

anonymity metrics have been proposed in the literature (see [21, 43] for a review), the

most popular being k-anonymity [134], `-diversity [99], and t-closeness [93]. These metrics

di↵er in a number of ways, but they all express the risk of disclosing personal-identifiable

information when granting access to a given dataset.

Assuming a data represented as a relational table, called private table, where each

record in the table is relative to a specific respondent, the above anonymity metrics propose

to classify attributes (columns) in the table as follows:

• Identifiers. These are data attributes that can uniquely identify individuals. Exam-

ples of identifiers are the Social Security Number, the passport number, the complete

name.

• Quasi-identifiers (QIs) or key attributes [47]. These are the attributes that, when

combined, can be used to identify an individual. Examples of QIs are the postal

code, age, job function, gender, etc.

• Sensitive attributes. These attributes contain intrinsically sensitive information about

an individual (e.g., diseases, political or religious views, income) or business (e.g.,

salary figures, restricted financial data or sensitive survey answers).

The k-anonymity condition requires that every combination of QIs is shared by at least

k records in the dataset. A large k value indicates that the dataset has a low identity

privacy risk, because, at best, an attacker has a probability 1/k to re-identify a record

(i.e., associate the sensitive attribute of a record to the identity of a respondent). Consider

now a table with a group of k records sharing the same combination of quasi-identifiers

have the same sensitive attribute. Even if the attacker is unable to re-identify the record,
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he can discover the sensitive information (attribute disclosure). The `-diversity metrics

was introduced to capture this type of risk. It requires that for every combination of key

attributes there should be at least ` values for each confidential attribute. Although the

`-diversity condition prevents the attacker from inferring exactly the sensitive attributes,

he may still learn a considerable amount of probabilistic information: if the distribution

of confidential attributes within a group sharing the same key attributes is very dissimilar

from the distribution over the whole set, an attacker may increase his knowledge on

sensitive attributes (skewness attack, see [93] for details). To overcome the problem,

t-closeness estimates this risk by computing the distance between the distribution of

confidential attributes within the group and in the entire dataset. These measures provide

a quantitative assessment of the di↵erent risks associated to data release, and each of them

(or a combination thereof) can be applied to estimate privacy risk depending on the use

case at hand.

In this chapter, we will use k-anonymity as anonymity metrics to present our ideas,

but it must be emphasized that the approach can easily be adapted to use alternative

metrics (including `-diversity and t-closeness).

In presence of identifiers the re-identification likelihood (Lid) is clearly maximum (i.e.,

Lid = 1), but even if identifiers are removed, the combination of QIs can lead to the

identification of individuals and this implies a high risk. The k-anonymity condition

requires that every combination of QIs is shared by at least k records in the dataset. A

large k value indicates that the dataset has a low re-identification risk because an attacker

has a probability Lid = 1/k to re-identify a data entry (i.e., associate the sensitive attribute

of a record to the identity of a User). Therefore, the (re-identification) risk related to a

k-anonymous data-view v is:

R(v) = Lid(v)⇥ I(v)

where I is the impact associated with the identification of the respondents in the dataset.

The severity of the impact is often evaluated in terms of monetary cost but it can also

be assessed by assigning severity levels (e.g., spanning from minimal to critical). In this

paper we will evaluate the impact in the interval [0, 1], where 0 is minimal impact and 1

is maximal impacts. For the sake of simplicity, we will set the impact I = 1 and consider

the risk R(v) = Lid(v) this will allow us to normalize the risk and the trust values to [0, 1]

(as we discuss in the previous chapter).

5.2.2 Trust Model

In a general context we defined the trustworthiness as the confidence we have that a

requester will not misuse the resource they are granted access to (see Chapter 4, Section 4.3

for more details). In our framework trust plays the role of a risk threshold: trusted users
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are allowed to take large risks.1

We will use this definition as well in the context of data privacy, the risk threshold

should be set to ensure a requester will not use the data leaked to violate the privacy

of a respondent. Consequently, the trustworthiness of a request should reflect the set of

parameters that will ensure a requester/an access context is not violating privacy.

Among these parameters we can name for requester (Tuser(u)): requester behavior

(with precedent accesses), requester seniority in a position and rank in a hierarchy2, her

experience and training in dealing with private data. The requester competence and tasks

are also a very important parameter to take into consideration. Indeed Following the data

minimization policy, the requester should have enough trust to access the resources (data)

needed to the fulfill a set tasks she is expected to fulfill according to her role/competence.

In the two use cases Sections 5.3 and 5.5 we will see some examples of how we assess Tuser

taking into consideration these parameters.

Regarding the request’s context trust (Tcontext(C)): This trust value should (among

others) reflect the level of safety of the environment in which the data will be released.

This could depend on the device used to request access, the communication protocols

etc. In addition, the urgency of the context the data is requested in (e.g., a cybersecurity

emergency, medical emergency) can justify the need to access (or access more) data.

Therefore in such contexts, the request trust is expected to be higher, and this is justified

by a stronger need-to-know requirement.

For example the case study “Privacy-aware threat investigation” Section 5.5,we con-

sider two main tasks namely “Perform Maintenance and Improvement tasks” and “Re-

act to a Security Incident”. The first task is expected to be regularly carried, and it

is not linked to a security alert thus the access context is a noAlert context with a

Tcontext(noAlert)). The task “React to a Security Incident”, instead,o be fulfilled in the

context of Alert when a security threat of anomaly is found. This context has the trust

level Tcontext(Alert)). It is easy to see that the two contexts have di↵erent access require-

ments. Indeed, in the latter, the need to react to a security threat overcomes the privacy

requirements. The request could be granted access to sensitive data and therefore can be

given a higher level of trust Tcontext(Alert) � Tcontext(noAlert).

To compute the request trustworthiness (total trust value) we can use the approach for

multi-dimensions trust computation proposed in [95], where the total trust is computed

as a weighted sum of trust factor values.

T =
nX

i=1

Wi ⇥ Ti(�i)

where �i, Ti(), and Wi is a trust factor, a trust function and the weight of the i-th trust

1See [76] for a survey of di↵erent approaches to defining trust.
2See [45,117] for a review on trust factors in the organizational context.

77



CHAPTER 5. PRIVACY-AWARE RISK-BASED ACCESS CONTROL

factor for i = 1, . . . , n respectively, subject to the constraint
nP

i=1
Wi = 1. In our case,

n = 2 and we can express our total trust value as:

T (q) = W ⇥ Tuser(u) + (1�W )⇥ Tcontext(c)

5.2.3 Trust and Risk adjustment strategies

We presented the general idea of trust and risk adjustment in the previous chapter (Chap-

ter 4 in Section 4.5) as well as some techniques used to decrease risk level and/or increase

trust. In the following, we will provide more detailed about risk mitigation and trust

enhancement that could be used in the context of data privacy. we will also discuss the

e↵ects of some of these techniques.

Risk mitigation. A possible way to decrease the privacy risk is anonymization (this en-

ables to lower the likelihood of re-identification of respondents in a dataset). Anonymiza-

tion can be achieved through obfuscating, in part or completely, the personal identifiable

information in a dataset. Anonymization methods include [41]:

• Suppression: Removal of certain records or part of these records (columns, tuples,

etc., such name/last name column);

• Generalization: Recoding data into broader classes (e.g., releasing only the first two

digits of the zip code or replacing towns with country or regions) or by rounding/-

clustering numerical data;

Besides anonymization other operation can be applied to the data, before its release, to

reduce the privacy risk. Among these operations we can mention:

• Data perturbation: can be partial (e.g., for instance in IP addresses we can pertur-

bation the machine address and preserve the network address) or total. It can be

achieved through randomization or noise addition

• Pseudonymization: is a technique where identifying information are replaced by one

or more artificial values or pseudonyms. Real information and pseudonyms can have

a one-to-one mapping or in a more sophisticated way, the identifying information can

have several pseudonyms to avoid linking several records to the same individual (same

pseudonym). Pseudonymization can also be static meaning that the pseudonyms are

set for the whole lifetime of a data set, or dynamic in which case pseudonyms are

cyclically replaced after a period of time.

The risk mitigation operations (mentioned above) has an important computational

overhead (besides other e↵ects that we will discuss later) and therefore they are usually
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run o✏ine. However new technologies and products proposed more recently would facil-

itate the implementation of an on-the-fly, flexible privacy risk mitigation. Among these

products, we can find the in-memory databases combined with column-store optimized

algorithms provided by SAP Hana that can be easily integrated with new data-intensive

business applications.

Trust enhancement. As mentioned in the previous chapter, trust enhancement will result

in increasing the risk threshold and consequently exposing more data (more sensitive

data). Therefore trust enhancement operations in the context of privacy need to ensure

that the exposed data is processed in compliance the legal requirements. For instance,

logging and monitoring access might be used to enhance “user trust” (Tuser). Usage control

operations controlling the retention period and ensuring the deletion of data can be used

to enhance the “context trust” (Tcontext). The “context trust” can also be enhanced by

informing respondents that their data will be logged and processed, specifying the access

purpose to them, and if needed requesting their consent.

Adjustment strategies selection. It must be noted that adjustment strategies normally

bring some negative side e↵ects. For example, anonymization degrades data quality and

this may a↵ect its utility. Privilege escalation can increase the complexity of the secu-

rity governance. Thus to identify the best adjustment strategy it is necessary to strike

a balance between the advantages brought by the application of the strategy and the

associated side e↵ects.

For instance, if we focus on data access and privacy risk and limit the adjustment

strategies to anonymization, then we can find an optimal anonymization strategy �̂, among

all the possible anonymization strategies, that allows for data access reducing risk (so

fulfilling Eq. 4.1) and, at the same time, maximizing the utility after application of the

strategy. This can be expressed as a utility-privacy optimization problem:

�̂ = argmax
�

U(obj0)

s.t. req0 = �(req) and R(req0)  T (req0)

where obj0 denotes the resource in the request generated by the adjustment strategy,

i.e. req0 = (u0, a0, obj0, C 0).

In practice, the number of mitigation strategies is often very limited. The optimiza-

tion problem is therefore reduced to testing a small set of anonymization strategies and

estimating (either on the basis of numerical thresholds or expert assessment) if the utility

of the result is su�cient for the business task under consideration. If this is not the case,

trust enhancement mechanism can be triggered.
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5.3 HR information disclosure

In this section we propose a privacy-aware risk-based access control designed on top the

RBAC model, to manage privacy preserving HR information release in a corporate envi-

ronment. First we will present an case study describing the specificity of this environment.

Then we will describe the Privacy-aware Risk-based RBAC framework and show how our

framework can address issues described in the case study.

5.3.1 Employee survey use case

Employee surveys are a widely used instrument for organizations to assess job satisfac-

tion, quality of management, people motivation, etc. Considering the possible sensitiv-

ity of data, surveys should be anonymous, meaning that the organization and manage-

ment should not be able to identify how a specific employee responded. Usually, the

organization—say, a large company—conducting the survey outsources the data collec-

tion to a third-party. When processing the data, the third-party has access to individual-

level information, whereas the same data is not accessible to the company. To protect

the anonymity of the survey, the company can access the data under the condition that

(i) identifiers are removed and (ii) the number of respondents is larger than a certain

threshold (usually between 10 and 25). Di↵erent splits of data can be requested (e.g., per

organization, per job profile, etc.), but data are accessible only if the query results contains

a number of respondents that is larger than the fixed threshold. On top of that, addi-

tional access control rule can be enforced, e.g., a manager would only see data referring

to his/her team or department (provided that conditions (i) and (ii) are also fulfilled); an

employee would be allowed to see overall (company results) only. As an example, consider

a question like “Do you respect your manager as a competent professional?” with a five

points scale (1 to 5). A manager could see the response of his/her team if at least, say, 10

people answered to it. If the manager decides to refine the analysis asking for data related

to the people in his/her team AND with a “developer” role, again the response should be

made available only if at least 10 respondents with that role answered to the question.3

Current systems typically do not provide any data if the number of respondents is below

the defined thresholds (for the specific role). In other words, in order to avoid the risk

of disclosing too much information, an overly conservative approach is taken and risky

queries are not permitted altogether. Ideally, the access control system should be able to

provide the largest possible amount of information (still preserving anonymity) for any

query. In practice, in presence of queries that might cause anonymity issues (i.e., not

enough respondents, or more generally, too small a result set), the system should be able

3In real surveys single records are actually never shown, but just percentages, in this example it would be something

like 10% answered 1, 25% answered 2, etc. Since the number of respondents is known, in practice, for one question, this

equivalent of getting the data with no identifiers.
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to quantify the disclosure risk associated with the query and compare it with whatever

risk level has been set as the acceptable threshold. If the threshold is exceeded, the system

could apply, for example, a “generalization” operation (making the query less specific),

thus increasing the cardinality of the result set and reducing the risk of disclosing the

identity of respondents. Of course, applying such an operation would not yield the exact

data set the user asked for, but this method would: 1) provide some relevant (i.e., as close

as possible to the original query) information to the user, and 2) preserve anonymity

according to some pre-defined disclosure-risk levels (possibly linked to the requestor trust

or role). In the next sections,we discuss how to implement such a system using risk-based

access control, and anonymization mitigation strategies.

5.3.2 Privacy-aware Risk-based RBAC model

In this section we show how we can integrate our Privacy-aware risk-based approach in a

Role-Based Access Control (RBAC) model. This integration is inspired by the Risk-Aware

Role-Based Access Control (R2BAC) that has been introduced in [34,35].

Risk-Aware Role-Based Access Control. The R2BAC model consists of the following com-

ponents:

• a set of users U ;

• a set of permissions P , usually representing action-object pairs;

• a set of access requests Q, modeled as pairs of the form (u, p) for u 2 U and p 2 P ;

• a set of risk mitigation methods M, i.e., actions that are required to be executed to

mitigate risk;

• a function � mapping permissions into risk mitigation strategies, i.e., lists of the form

[(l0,M0), (l1,M1), . . . , (ln�1,Mn�1), (ln,Mn)], where 0 = l0 < l1 < · · · < ln�1 < ln  1

and Mi 2M for i = 0, . . . , n;

• a set of states ⌃, i.e., tuples of the form (U, P, �, ⇡) where ⇡ abstracts further specific

features of the state; for instance, in the Risk-Aware Role-Based Access Control

(R2BAC) model [34], ⇡ comprises the set of roles R, the user-role assignment relation

UA ✓ U⇥R, the role-permission assignment relation PA ✓ P⇥R, the role hierarchy

⌫✓ R⇥R.

• a Risk function: risk : Q⇥�! [0..1] such that risk(q, �) denotes the risk associated

to granting q in state �;
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• an Authorization function Auth : Q⇥�! D⇥2M with D = {allow, deny} such that

if q = (u, p) and �(p) = [(l0,M0), . . . , (ln,Mn)], and � the current state, then

Auth(q, �) =

(
(di,Mi) if risk(q, �) 2 [li, li+1), i < n,

(dn,Mn) otherwise

where di 2 D. Intuitively, if the risk associated with access request (u, p) is l,

then Auth returns an authorization decision and a set of risk mitigation methods

corresponding to the interval containing l.

Privacy-aware Risk-based RBAC. In this paragraph we describe our Privacy-aware Risk-

based RBAC framework, we highlight the main di↵erences with chen and cramptons

model [34], and show how our model can be mapped to the general risk-based model

presented in Section 4.3. Let V be a set of database views (or virtual tables). If v is a view,

then |v| denotes the anonymity of v according to some given metrics (e.g. k-anonymity).

The higher is the value of |v|, the smaller is the risk to disclose sensitive information by

releasing v. Thus, for instance, we can define the (privacy) risk of disclosing p to be 1/|v|
and the (privacy) risk of disclosing v to u in � = (U,V , �, ⇡) to be

risk�(u, v) =

(
1 if not granted⇡(u, v)

1/|v| otherwise
(5.1)

where granted⇡(u, v) holds if and only if u is granted access to v according to ⇡. For

instance, if ⇡ is an RBAC policy (U,R, P, UA,RA,⌫), then granted⇡(u, v) holds if and

only if there exist r, r0 2 R such that (u, r) 2 UA, r ⌫ r0, and (p, r0) 2 PA. Note that

the p 2 P is the permission to perform an action a on a data-view v (p = (a, v)). In this

chapter we are only interested in the action read from the view v: For simplicity sake,

from here on, we will use v to represent both the data-view an the permission (read, v).

When the risk associated to the disclosure of a certain view v 2 V is greater than

the maximal accepted risk t, we can use obligations for obfuscating or redacting the view

and thus bring the risk below t. In this paper we consider k-anonymization functions

�k : V ! V for k 2 N as risk mitigation methods, but functions based on other metrics

can be used as well. Clearly |�k(v)| � k for all v 2 V . We then consider risk mitigation

strategies of the form �(v) = [(0, ◆), (t,�d1/te(.))], where ◆ : V ! V is the identity function

(i.e., such that ◆(v) = v for all v 2 V) and the following authorization decision function:

Auth�(u, v) =

(
(allow,�d1/te(·)) if risk(u, v) � t

(allow, ◆) if risk(u, v) < t
(5.2)

Auth always grants access but yields an anonymized version of the requested view if the

risk is greater that the maximal accepted risk t. In other words, if user u asks to access
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v, then access to v is granted unconditionally if risk(u, v) < t, otherwise an anonymized

version of v, say �d1/te(v), is computed and returned to u.

This authorization function is easy to map with the general risk-based access control

authorization formula (presented in Chapter 4 in Eq. 4.1). The main di↵erence is that in

Eq. 5.2 we do have a deny outcome. As discussed in Section 4.3 in RBAC it is not possible

to explicitly deny access through the access policy (unlike other models e.g., attribut based

access control ABAC, ACLs). However access is denied if it is not explicitly granted by

a policy. following this traditional approach we can add a third case to Eq. 5.2 where

Auth�(u, v) = (deny) if not granted⇡(u, v). In this case there is no need to compute the

request risk if it is not granted by the policy. Which may o↵er a high level of protection

but restricts access to a predefined set of users.

example 7. To illustrate assume Alice asks for a view v1 such that |v1| = 4 and that

�(v1) = [(0, ◆), (t,�d1/te(.))] with t = 0.1, i.e. �(v1) = [(0, ◆), (0.1,�10(.))]. It is easy to see

that risk(Alice, v1) = 0.25 and that Auth((Alice, v1), �) = �10(v1). Alice then asks for

a view v2 such that |v2| = 20 and that �(v2) = �(v1) = [(0, ◆), (t,�d1/te(.))] with t = 0.1,

i.e. �(v2) = [(0, ◆), (0.1,�10(.))]. It is easy to see that now risk(Alice, v2) = 0.05 and

therefore that Auth((Alice, v2), �) = ◆(v1) = v1.

The following results state that the risk of disclosing the view returned by our autho-

rization decision function is never greater than the maximum accepted risk.

In many situations of practical interest, we want the risk threshold t to depend on the

trustworthiness trust(u, v) of the query q = (u, v). With trust : U ⇥R⇥ P ! (0..1] is a

function that assigns a trust value to users. In the context of RBAC, roles correspond to

job functions, it is natural to assign trust to roles and to derive the trust of a user from

the trust assigned to the roles assigned to that user in the following way:

trust(u) = max{trust(r0) : (p, r0) 2 PA and 9r ⌫ r0 s.t. (u, r) 2 UA}.

5.3.3 Application of the model

We now show how our privacy-aware risk-based RBAC model can be used to support

the case study of Section 5.3.1. This will be done by setting appropriate values to the

parameters occurring in the definition of the risk function (5.1).

For sake of simplicity we consider a small company, with 8 employees and one manager.

The company runs an employee survey, with one single question with answer ranging in

a five points scale (from 1 to 5) (sensitive attribute, cf. Section 5.2.1), and collecting

user names4 (the identifiers), as well as the job title and the location of the o�ce (the

quasi-identifiers). The actual dataset is in Table 5.1(a).
4In real cases they are typically user IDs
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Table 5.1: The Employee Survey Example

(a) Original dataset

Survey Administrator view

|v
all

| = 1

Name Job Location Answer

Timothy SeniorDeveloper Houston 4

Alice Support Houston 5

Perry JuniorDeveloper Rome 5

Tom Admin Rome 3

Ron SeniorDeveloper London 4

Omer JuniorDeveloper London 4

Bob Support Houston 5

Amber Admin Houston 3

(b) Anonymized version: identifiers and quasi-

identifiers are suppressed

Employee View

|v
supp

| = 8

Name Job Location Answer

*** *** *** 4

*** *** *** 5

*** *** *** 5

*** *** *** 3

*** *** *** 4

*** *** *** 4

*** *** *** 5

*** *** *** 3

The outsourcing company collecting the data is considered fully trusted and will there-

fore have access to all the information. We model this by setting the trust of the admin

role to 1, i.e. trust(admin) = 1. Thus, an administrator can access the original dataset,

say vall with anonymity |vall| = 1 (i.e., all distinct values, see Table 5.1(a)). If we set the

trust value of the manager role to 0.35, i.e. trust(manager) = 0.35 (corresponding to ac-

cess views with anonymity k � 3), than a manager cannot access vall as is, since 1 > 0.35

and some anonymization, as risk mitigation strategy, must be carried out on the data to

decrease the risk. For example, if we suppress the identifier attribute (Name) and the

quasi-identifiers (Job and Location), we obtain the view vsupp shown in Table 5.1(b). The

view vsupp corresponds to an anonymity level |vsupp| = 8 and since 0.125 < 0.35, access

is granted to the manager.5 The manager can also ask for more granular views of the

Table 5.2: Views of the employee survey for the Rome location

(a) Before generalization.

View: Location=Rome, |v
Rome

| = 2

Name Job Location Answer

*** *** Rome 5

*** *** Rome 3

(b) After generalization

View: Location=Rome

Anoymized |v
EMEA

| = 4

Name Job Location Answer

*** *** EMEA 5

*** *** EMEA 3

*** *** EMEA 4

*** *** EMEA 4

results. For example, if she wants to know the distribution of the answers in one location,

say Houston, |vHoust| = 4, the risk 0.25 < 0.35 is still smaller than the trust. On the other
5In real surveys the result will appear as a report like: 37.5% answered 5, 37.5% answered 4 and 25% answered 3. For a

single question this is equivalent to the view in Table 5.1(b).
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hand, if she asks for the result in Rome, |vRome| = 2, then the risk associated with the view

for the manager is 0.5 > 0.35 and the access is granted only if appropriate anonymiza-

tion is performed. In this case, location could be generalized from Rome to EMEA (so

including London workforce), as shown in Table 5.2(b). The resulting view has anonimity

|vEMEA| = 4 and since the risk 0.25 is smaller than the trust (trust(manager) = 0.35),

then the manager is allowed to see the view.

Table 5.3: Views of the employee survey for Rome and JuniorDeveloper

(a) Before generalization of location and job

Loc=Rome AND Job=JuniorDeveloper

|v
Rome+JuniorDeveloper

| = 1

Name Job Location Answer

*** JuniorDeveloper Rome 5

(b) After generalization of location and job

View Loc=Rome AND Job=JuniorDeveloper

Anonymized |v
EMEA+Dev

| = 3

Name Job Location Answer

*** Dev EMEA 5

*** Dev EMEA 4

*** Dev EMEA 4

Similarly, if the manager wants to see the results per location and per job func-

tion (say in Rome for JuniorDeveloper only, see Table 5.3(a)), the anonymity level is

low, |vRome+JuniorDeveloper| = 1, and the associated risk is greater than 0.35. Again, in-

stead of simply denying access, the system can perform generalization on both the quasi-

identifiers, Job (generalized to the job family developer) and Location, thereby increasing

the anonymity (|vEMEA+Dev| = 3) and decreasing the risk (risk(manager, vEMEA+Dev) =

0.33) to an acceptable level for a manager (see Table 5.3(b)).

Finally, employees should have access to the global results only. The trust value is

therefore set to trust(employee) = 0.125 and the only view permitted is with suppression

of all identifiers and quasi-identifiers, which has |vsupp| = 8, see Table 5.3(b).

5.4 Feasibility evaluation using the employee survey use case

This section documents the results of an initial evaluation of our approach. The two

questions we investigate are (A) whether the approach described in this paper can be

realized in practice and (B) whether the performance that can be expected under typical

workloads matches the needs of real-time (more precisely: online) operation.

In order to address question A, we realized a prototype system that we have used to
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run sample scenarios. We use the same prototype also to study the response time under

several representative conditions (queries of varying complexity, di↵erent levels of user

trust and therefore, di↵erent loads for the anonymizer module).

In the following, we first describe our prototype implementation, then we present the

dataset we used for the evaluation and outline the results of the experiments we run on

that dataset.

5.4.1 Prototype Implementation

In order to evaluate the practical feasibility of our approach, we developed a proof-of-

concept implementation of our framework that we used to run the experiments described

in the following.

Our prototype is implemented in Java 7 and uses MySQL Server version 5.6.20 to store

the dataset. The Risk Aware Access Control module mimics a typical XACML data flow,

providing a basic implementation of the PDP, the PEP, and the PIP functionality as well

as a set of authorization policies. The Risk Mitigation module is implemented using the

ARX6 anonymization framework [85]. The ARX toolkit o↵ers a Java API supporting data

de-identification. ARX is capable of altering input data in a way that guarantees minimal

information loss while ensuring that the transformed data adheres to well-defined privacy

criteria, expressed in such metrics as k-anonymity, `-diversity, t-closeness, etc. ARX

also o↵ers several reporting features allowing to collect metrics such as execution time,

information loss, etc. We evaluated other available anonymization libraries (e.g., Cornell

Anonymization Toolkit7, University of Texas Anonymisation Toolbox8). We eventually

adopted ARX because we found it easy to integrate and considering that it is a well-

documented, actively developed, and well maintained project.

5.4.2 Dataset

To test the performance of our framework, we used a dataset that is widely used in

the research community, namely the Adult Data Set 9 from the UCI Machine Learning

Repository. This dataset contains 32561 records from the US Census dataset with 15

demographic and employment-related variables. We removed records with missing values,

ending with 30, 162 usable records, and we reduced the number of fields to nine, as shown

in Table 5.4.

The choice of the identifiers, QIs and sensitive attribute set, typically, depends on the

specific domain. QIs should include the attributes a possible attacker is likely to have

6http://arx.deidentifier.org/overview/
7http://anony-toolkit.sourceforge.net/
8http://cs.utdallas.edu/dspl/cgi-bin/toolbox/index.php
9Available at http://archive.ics.uci.edu/ml/datasets/Adult
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access to (e.g., using a phonebook or a census database), whereas sensitive attributes

depend on the application the anonymized data are used for.

Generally speaking increasing the number of QIs increases the risk, or results in strong

anonymization impacting the usefulness of the resulting view. In our experiments we set

QI ⌘ {AGE,NATIVE-COUNTRY}. In the census data, the SALARY-CLASS attribute

is typically chosen as a sensitive attribute. We also classified RACE as a sensitive attribute

because of its discriminatory nature.

Table 5.4: Summary of the dataset columns, number of distinct values, and nature of each column

UCI Adult Dataset

Attribute Values Nature

AGE 72 QI

NATIVE-COUNTRY 41 QI

EDUCATION 16 not Sensitive

OCCUPATION 14 not Sensitive

WORKCLASS 7 not Sensitive

MARITAL-STATUS 7 not Sensitive

GENDER 2 not Sensitive

RACE 5 Sensitive

SALARY-CLASS 2 Sensitive

[17,99]

[17,59]

[17,39]

[17,29]

[17, 24] ...

[30,39]

(...)

[40,59]

[40,49]

(...)

[50,59]

(...)

[60,99]

(...)

(...)

A5

A4

A3

A2

A1

Figure 5.1: Generalization hierarchy for the attribute AGE [17, 99]. Level A1: Age is generalized in 5

year range. Level A2 in 10 year range. Level A3 in 20 years. Level A4 in 40 year range. In level A5 the

age is fully generalized. Age is not generalized in level A0 (not shown).

QIs will be generalized according to the generalisation scheme of Figure 5.1 (for the

attribute AGE) and Figure 5.2 (for the attribute NATIVE-COUNTRY).
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(***)

US

US

US

Out-of-US

AmExUS

NAmExUS SAm

As

As

Eu

Eu

NC4

NC3

NC2

NC1

Figure 5.2: Generalization hierarchy for the attribute NATIVE-COUNTRY: Level NC1: NATIVE-

COUNTRY is generalized to US (United States), AmExUS (America Excluding United States), Asia

(As), or Europe (Eu). Level NC2: NAmExUS (North America Excluding United States) and SAm are

generalized to AmExUS (America Excluding United States). Level NC3: All countries excluding United

States are generalized to Out-of-US. Level NC4: native countries are suppressed. Level NC0: native

countries are not generalized (not shown).

5.4.3 Experiment and Results

In order to evaluate the performance of our tool, including the computational overhead

caused by the anonymization engine, we used a number of queries of increasing complexity

in terms of the size of the returned views and the disclosure risk. The queries are given

in Table 5.5 and the corresponding size and anonymity level of the views returned by our

tool are reported in Table 5.6. In the following we will indicate both the queries and the

corresponding views as Q1, Q2, Q3, Q4.

For our experiments, we want to investigate the impact of risk mitigation, anonymiza-

tion, on (i) the performance of the access control system and (ii) the quality of the

resulting data. For case (i) we focus on the views with the largest sizes (namely, Q1 and

Q2, with more than 20,000 tuples each as shown in Table 5.6). For case (ii) we focus

on the views with the highest risk profiles (namely, Q1, Q3, and Q4, with the lowest

possible anonymity), whose computation is significantly a↵ected by anonymization. We

consider five risk thresholds trust i.e. users/role with di↵erent trustworthiness level, as

shown in Table 5.7, and each experiment is run 100 times to average out the variance

of the response time. In Figure 5.3 we report the results of the experiments for the four

queries, panels Q1, Q2, Q3, and Q4, respectively, for the five di↵erent trustworthiness

levels. Figure 5.4 shows the (possible) impact of generalization on the data accuracy,

as measured by the Precision metric (Prec) [147], which counts the average number of

generalization steps performed on the generalization trees (cf. Figure 5.1 and Figure 5.2).

For Q1, we observe that the anonymization process increases significantly the response

time. Indeed the query is carried our by the most trusted user (trust = 1), with no

anonymization needed, takes on average 8ms (see Figure 5.3.Q1, horizontally striped bar
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Table 5.5: Queries

Q1: Data about male respondents

SELECT * FROM ADULT

WHERE SEX = ‘‘Male’’;

Q2: Data about adults between 30 and 75 years old born in the United States

SELECT * FROM ADULT

WHERE AGE BETWEEN 30 AND 75

AND NATIVE-COUNTRY = ‘‘United-States’’;

Q3: Data about adults between 30 and 35 years old working in the private sector and originally

from the american continent excluding United States

SELECT * FROM ADULT

WHERE WORKCLASS = ‘‘Private’’

AND AGE BETWEEN 30 AND 35

AND NATIVE-COUNTRY IN

(<America Excluding the United-States>);

Q4: Data about adults without-pay

SELECT * FROM ADULT

WHERE WORKCLASS = ‘‘Without-pay’’

Table 5.6: Size and disclosure risk level of the views returned in response to the queries

Query Size Anonimity Risk level

Q1 20,380 1 High

Q2 19,392 32 Low

Q3 215 1 High

Q4 14 1 High

Table 5.7: User roles and trustworthiness

User Name Role Trustworthiness

Alice SuperUser 1

Megha Admin 0.52

Dana SeniorDataAnalyst 0.1

Frida JuniorDataAnalyst 0.028

Eliyes IT 0.015

corresponding to trust = 1). By decreasing the trustworthiness of the requester the view

must be anonymized and the average response time increases to 27ms (cf. Figure 5.3.Q1,

horizontally striped bar corresponding to trust = 0.52). This time di↵erence is entirely

due to the anonymization time (19 ms, as shown in Figure 5.3.Q1, diagonally striped bar
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Figure 5.3: Average total response time (horizontal striped bars) and average anonymisation time (diag-

onally striped bars) for the four views and di↵erent trust levels.

corresponding to trust = 0.52). Decreasing further the trust level results in additional

anonymization. Also the attribute NATIVE-COUNTRY (NC) gets anonymized (cf. Fig-

ure 5.4.Q1), but this does not significantly a↵ect the response time (see Figure 5.3.Q1).

We can observe a similar behavior in the other queries (see Figure 5.3.Q2, Q3, and

Q4), with an increase of response time when anoymization takes place and no significant

variations in performance for di↵erent levels of anonymization. For instance, for Q2 we

have a view with an already high level of anonymity (k = 32), and a small anonymization

(a single level of generalization for the Age attribute, see Figure 5.4.Q2 for trust = 0.015)

still significantly impacts the performance. In case of Q3 we see that, despite di↵erent

combinations of anonymization strategies for di↵erent values of trust (Figure 5.4.Q3), the

response time is not a↵ected (Figure 5.3.Q3), except for trust = 1 where we have no

anonymization. We should note that for Q3 (as well as Q4) the di↵erence in the average

response time with and without anonymization is relevant (trust = 1 has response time of

0.16ms, and trust = 0.52 of 1.6 ms) but these views have few tuples and these times are
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Figure 5.4: Generalization levels for the four views. Horizontal striped bar shows PREC metric (see

text), diagonally striped bar the level of generalization for Age attribute and dotted bar the level of

generalization for Native Country attribute. A.D. stands for Access Denied.

small in absolute value, with large fluctuations, as shown by the high standard deviations.

Q4 is characterized by a low cardinality and (consequently) by high anonymity. Ex-

cept for the maximum trust value the data are strongly anonymized and for low trust

levels trust = 0.28 and trust = 0.015 access is denied in spite of the anonymization, see

Figure 5.4.Q4. Note that in these cases, the anonymization engine tries to minimize the

risk (anonymization time is not zero, see Figure 5.3.Q4), but due to the low cardinality

no solution is found.

From these experiments, we observe that when anonymization is applied the response

time increases significantly, but, even in the worst cases, the increase is far less than one

order of magnitude with no impact on the real-time response of the system. Moreover,

the application of di↵erent anonymization strategies have no impact on the response time.

The experiments were carried out using a MacBook Air, operating system OS X 10.8.5,

processor 1.3GHz Intel Core i5, memory 8GB 1600Mhz DDR3 and flash storage 120GB.
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5.5 Privacy aware threat investigation

Modern intrusion detection systems at application-level (called Threat Detection System,

TDS, herein)10, collect security information on the application stack and correlate it with

context information to detect potential threats. Usually, a TDS first collects application-

level log files from various sources, enriches the data gathered from logs with contextual

information (e.g., time and location), and finally stores the resulting data in a database.

The events data are then automatically analyzed on a periodic basis against pre-defined

threat patterns to detect potential anomalies and attacks. A pattern represents a com-

bination of suspicious log events that could indicate a threat. Often it is defined as a

set of filters applied to the event database and compared with some thresholds. If the

threshold is exceeded, then an alert is triggered. For instance, the ensemble of events

indicating a Failed Login initiated by the same source (e.g., Terminal) may indicate that

a Brute Force Attack is underway if the number of attempts exceeds, say, 20 attempts in

less than 10 minutes. When an alert is raised a human operator is asked to step in in

order to evaluate if the alert corresponds to an actual threat and when this is the case to

undertake appropriate countermeasures. To carry out his task, the operator may require

access to the details of the data that triggered the alert. The operator should be granted

access to sensitive data if this is strictly necessary to carry out her task and the severity

of the problem justifies it.

Figure 5.5 illustrates the architecture of the system as well as the di↵erent users in-

volved in the process. In Table 5.8 we provide an example of user/roles interacting with

the TDS and the corresponding access authorizations required to execute their tasks.

Table 5.8: Roles

Operator Classify alerts and report patterns anomalies His/Her tasks

require access to pattern detection results (events/log data re-

lated to the suspicious pattern) in case of alerts.

Administrator Has all Operator tasks and privileges. They can also Inves-

tigate alerts, Create or Reconfigure patterns. He/She should

have access the detection results and events data related to the

patterns.

Advanced

Administrator

Has all Administrator tasks and privileges. Can also grant

exceptional access to the data by attributing higher trust level

to an Operator or an Administrator.

Although log files may contain personal information (e.g. names, IP addresses) inves-

tigation can constitute a legitimate purpose for their processing. Yet access to sensitive

10We refer to these systems as TDS, to distinguish them from network-level intrusion detection systems (often called

IDS or SIEM). We base our description on the SAP Enterprise Threat Detection, but the analysis can be applied to other

solutions, including IDS. For a comparison between application- and network-level intrusion detection systems, see [79].
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Figure 5.5: Business Roles and System Landscape

data should be done according to the data minimization principle, i.e. that access to

personal information should be limited to what is directly relevant and necessary to ac-

complish the specified purpose. This is usually achieved in TDS by carrying out some

(pseudo-)anonymization before analyzing the event data, such as replacing real user name

or IDs with pseudonyms.

Still, with the increasing variety and complexity of collected log files, a full anonymiza-

tion of the log dataset before processing could, on one hand, provide a good privacy

protection, but also significantly impact the performance of the system, both in terms

of the utility (the quality of results of the pattern detection phase, or the information

available to the operator for the manual inspection) and processing time (anonymization

on large data set could be time-consuming, and on data stream re-run regularly)

To address this challenge, a more dynamic approach is needed: instead of anonymiz-

ing the complete event data-base beforehand, whenever a user performs an operation

accessing event tables, we have to apply specific anonymization methods which reduce

the privacy risk but preserving the most relevant information for that operation. In prac-

tice, the anonymization process should be customized for each operation (to preserve the

information useful for completing the task) and for each type of users, which can have

di↵erent levels of access to the data. In the next section, we will propose a framework

that to realize this scenario.
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5.6 Experimental Evaluation

In this section wi will use the second case study described in Section 5.5 to assess the

performance of our approach (described in Section 5.2). The TDS is expected to provide

accurate real-time results, therefore we investigate the impact of our approach on the

functioning of the TDS, in particular, whether the expected Performance and Utility

matches the accuracy and real-time requirements.

More in details, as mentioned in Section 5.5, the TDS allows to detect potential attack

patterns automatically, and then if additional investigations are needed, a human oper-

ator can browse the log data of the events corresponding to a given pattern for manual

inspection.

Ideally, the operator should be able to perform the manual investigation (i.e., decide

if the detected threat is a false or true positive). Some investigations can be conducted

on data where the personal information are anonymized (or in any case, where the re-

identification risk is low). If the operator does not have su�cient information to decide,

he/she should be granted access to less anonymized (riskier) data, or in other words get

higher access privileges (trust enhancement) acquiring administrator rights, or directly

involving an administrator.

Accordingly, we need to check:

• Utility. Does the model allow a low trusted operator (i.e., small risk threshold) to

perform the investigation in most cases, and relying on trust enhancement for the

remaining cases?

• Performance. Does the additional anonymization step impact real-time performance?

Before addressing these questions (see Section 5.6.6), we need to describe our prototype

implementation (Section 5.6.1), the data set and its attributes classification from a privacy

risk perspective (Section 5.6.2), the selection of typical patterns used for the validation

(Sect. 5.6.3), the utility measure (Sect. 5.6.5) and the trust level setting (Section 5.6.4).

5.6.1 Prototype Implementation

Our prototype is implemented in Java 8 and uses SAP HANA Database. It is composed

of 3 main modules:

• The Risk Aware Access Control module: mimics a typical XACML data flow, pro-

viding an implementation of the PDP, the PEP, and the PIP functionality as well as

a set of authorization policies.

• The Risk Estimation module: evaluates the privacy risk using pre-configured criteria

(privacy metrics, anonymization technique, identifying information). It compares
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Table 5.9: An extract of the Log dataset columns, privacy classification of each column and anonymization

technique to be applied

Log Events data set

Attribute Type Anonymization

EventID Non-Sensitive

Timestamp Sensitive

UserId (Origin) Identifier Suppression

UserId (Target) Identifier Suppression

SystemId (Origin) QI Generalization

SystemId (Target) QI Generalization

Hostname (Origin) QI Generalization

IPAddress (Origin) QI Truncation

MACAddress (Origin) QI Truncation

TransactionName Sensitive

TargetResource Sensitive

the privacy risk to the request trustworthiness level, then produces an estimation of

the minimal anonymization to be applied in order to meet this level.

• The Trust & Risk Adjustment module: we implemented the Risk Adjustment Com-

ponent to perform anonymization. It uses ARX [86] a Java anonymization framework

implementing well-established privacy anonymization algorithms and privacy metrics

such as k-anonymity, `-diversity, t-closeness, etc. (the Trust Adjustment Component

was not implemented in this version of the prototype.)

5.6.2 Data Set and privacy classification

To test the performance of our framework in the TDS use case, we used a dataset con-

taining around 1bn record of log data collected from SAP systems deployed in a test

environment 11. The logs dataset is composed of 20 fields (in Table 5.9 we present a

summary of the most important fields)

As described in Section 5.2.1, to assess the privacy risk of releasing a dataset, we first

need to formalize our assumptions on the attributes that can be used to re-identify the

entry, or, in other words, classify the attributes in terms of identifiers, QIs, and sensitive

attributes. This classification, typically, depends on the specific domain. QIs should

include the attributes a possible attacker is likely to have access to from other sources,

whereas sensitive attributes depend on the application the anonymized data are used for.

For example, in our experiments, we set (obviously) User ID as an identifier and the IP

address as a quasi-identifier. Similarly, we assume that the Transaction name (the called

function) cannot provide any help for re-identification, therefore we consider it a sensitive

11For an analysis of the performance of the model on a benchmark dataset see 5.4.
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Table 5.10: Queries: Resulting views Size and Risk level

Query Corresponding Pattern View Size Risk Level

Q1 Brute Force Attack Large (50550) Very High (k = 2)

Q2 Security Configuration Changed Large (40300) Medium (k = 7)

Q3 Blacklisted Function Called Medium (14500) Very High (k = 1)

Q4 Table Dropped or Altered Small (228) Medium (k = 6)

Q5 User Assigned to Admin Group Very Small (12) Very High (k = 1)

attribute (and no anonymization will be applied). Table 5.9 provides an example of this

classification, and, for identifiers and quasi-identifiers, the corresponding anonymization

methods applied.
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Figure 5.6: The generalization hierarchy for host names is organized as following: l1 and l2 are a location

based generalization by country then by continent. in level l3 host names are totally obfuscated and

entirely revealed at the level l0.

5.6.3 Pattern detection and investigation

In our experiments, we focus on 5 typical Patterns with di↵erent complexity in terms of

the size of the returned data-views and the privacy risk. Two di↵erent kinds of queries are

used during each phase respectively Detection Queries and Investigation Queries. The

selected queries {Q1 ... Q5} described in Table 5.10 are all Investigation Queries. An

Investigation Query is a “SELECT *” extracting all the details of the events corresponding

to certain pattern.

5.6.4 Roles and Trustworthiness levels

We have 3 roles Operator, Administrator and an Advanced administrator with increasing

access requirements (to fulfill their tasks), therefore increasing privacy clearances, (i.e.,

larger risk tolerance). Usually, for k-anonymity, k values in the range 3�10 are considered
medium risk, k > 10 low risk, and for k  2 the risk is very high (clearly, for k = 1 the
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Table 5.11: Users/Roles Privacy clearances and Trustworthiness levels

Role
Access

Requirement

Privacy

Clearance

Trust Level

(Risk Threshold)

Operator Low Minimal (k > 10) T

u

2 [0.05, 0.1[

Administrator Medium Medium (k > 2) T

u

2 [0.1, 0.5[

Advanced administrator High Maximum (k  2) T

u

2 [0.5, 1]

risk is the maximum, no anonymity) [122] . Therefore we propose the parameter setting

described in Table 5.11, where for sake of simplicity we have considered a single trust

factor T = Tu (i.e. we set W = 1 in Eq. 5.2.2).

5.6.5 Utility Evaluation

The e↵ect of anonymization in terms of utility is a widely discussed issue in the liter-

ature several generic metrics have been proposed to quantify the “damage” caused by

anonymization (see [63] for a review). However, these metrics do not make any assump-

tion on the usage of the data (so-called syntactic metrics), limiting their applicability on

realistic use-cases.

Other approaches propose to assess the accuracy loss (Utility loss) of a system (i.e.,

IDS in [88], Classifier in [24]) by comparing the results of certain operations run on

original then anonymized dataset using use case related criteria ( i.e., in the context of a

TDS the comparison criteria can be the number of False positives). Although interesting

for our context, this approach cannot be applied in our use case, since it assumes that

the analysis is run directly on anonymized data, whereas, in our use case, the pattern

detection is performed on clear data, and the anonymization is applied only on the results

(data-view).

We propose a method combining both approaches and that would include an evalua-

tion:

• From Syntactic standpoint: The information loss caused by the anonymization, we

use the precision metric that allows us to estimate the precision degradation of QIs

based on the level of generalization with respect to the generalization tree depth (e.g.,

for the generalization tree 5.6 if we allow access to continent instead of host-names

we used the 3rd level generalization out of 4 possible levels so dp(hostnames) = 3/4 =

75% precision degradation for host-names ).

• From Functional standpoint: The e↵ect of this loss on our use case. During the in-

vestigation phase, the operator, mostly, bases their analysis on a subset of attributes,

which are di↵erent for each attack pattern. Thus we will assign a utility coe�cient uc

to di↵erent attributes based on the relevance of the attribute to the pattern/query.
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Combining the two approaches we compute the utility degradation of a data-view v as

Ud(v) =
X

ai2A

ucai ⇥ dp(ai) (5.3)

with A = {a1..ai} the set of attributes in the data set. We also set the precision degrada-

tion of the identifiers to dp(identifiers) = 1 as they will be totally suppressed after the

anonymization.

5.6.6 Results and Analysis

For our experiments, we want to investigate: (i) Performance: the impact of on-the-fly

anonymization (as risk mitigation strategy) on the performance (response time). (ii)

Utility: we would like to investigate if the quality of resulting data is generally enough to

fulfill the expected tasks for every user/role for various pattern investigation.

In order to evaluate these aspects we run several experiments considering 5 pat-

terns and 7 users/role with di↵erent trustworthiness level, t = {0.055, 0.083} Operators,

t = {0.12, 0.15, 0.45} Administrators, and t = {0.9, 1} Advanced Administrators. The

corresponding size and anonymity level of the views returned by the queries (correspond-

ing to the selected patterns) are reported in Table 5.10. In the rest of this section we will

indicate both the queries and the corresponding views as Q1, Q2, Q3, Q4 and Q5.

Performance and scalability To evaluate the performance of our tool, including the com-

putational overhead caused by the anonymization, we run queries Q1, Q2, Q4, and Q5

(described in Table 5.10) using our access control prototype experiment, 100 times for

each query to average out the variance of the response time. In Figure 5.7 we report the

results of the experiments for the four queries for the 6 trustworthiness levels.

For Q1, we observe that the anonymization process increases significantly the response

time. In fact when the query is carried out by the most trusted user (t = 0.9), with no

anonymization needed, the response time on average is less than 15ms (see Figure 5.7.Q1,

the diagonally striped bar corresponding to t = 0.9). By decreasing the trustworthiness

of the requester the view must be anonymized and the average response time increases

to 150ms in the worst case (cf. Figure 5.7.Q1, the diagonally striped bar corresponding

to t = 0.055). This time di↵erence is entirely due to the anonymization time (130 ms, as

shown in Figure 5.7, Q1, horizontal striped bars corresponding to t = 0.055). Increasing

the trust level decreases the needed anonymization, but it slightly a↵ects anonymization

time. We can observe a similar behavior in the other queries (see Figure 5.7, Q2, Q4, and

Q5), with an increase of response time when anonymization takes place and no significant

variations in performance for di↵erent levels of anonymization. For instance, for Q2 and

Q4 we have two views with an already medium level of anonymity (respectively k = 7
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Figure 5.7: Average anonymisation time (horizontal striped bars) and average total response time (diag-

onally striped bars) for Q1, Q2, Q4, and Q5 (data-views) and 6 di↵erent users (trust levels).

and k = 6),the anonymization (when needed) still impacts the performance in the same

scale then Q1 and Q5 with very low anonymity level (respectively k = 2 and k = 1).

From these experiments, we observe that when anonymization is applied the response

time increases, but, even in the worst cases, the increase is far less than one order of

magnitude, and, basically, it has no impact on the real-time response of the system.

Moreover, the application of di↵erent levels of anonymization (di↵erent k in our case) has

a small impact. We will investigate in the next paragraph the e↵ect of the data-view size

on the Anonymization and Response time.

Let us analyze the behavior of the anonymization time increasing the size of the dataset.

Typically patterns run in the limited time window (e.g., 10 to 30 minutes) producing

small-sized data-views (i.e., in the range of 10� 103). To investigate the scalability of our

approach, in Figure 5.8, we report the average anonymization time variation for 5 di↵erent

data-view {Q1 to Q5} (with 5 di↵erent sizes see Table 5.10) and a low trustworthiness

level (t = 0.055, so anonymization is always applied). As mentioned above, the worst

case (around 5 · 104 records) takes less than 150ms, and a linear extrapolation of the

data allows as to estimate the anonymization time for a 105 data view (so, 100 times the

typical size) around 200ms, which it can be safely considered as a real-time response for

our use case.
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Figure 5.8: Average anonymization time variation according to data-view sizes ( for trustworthiness

t = 0.055).

Figure 5.9: Utility degradation by trust level for di↵erent queries

Utility: Trustworthiness levels (i.e., risk threshold) should be set to allow the best a

trade-o↵ between data exploitation and privacy protection. In our use case we set our

trustworthiness levels respecting a conventional distribution of privacy risk levels pre-

sented in Table 5.11, and we would like to investigate the convenience of this repartition

by answering the following question: Do these trustworthiness levels provide enough data

(or data with enough utility) to allow each user/role to fulfill their tasks described in

Table 5.8. In Figure 5.9, we report the utility degradation according to the six selected

trustworthiness levels, representing the 3 roles (reported on the top of the figure). We
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can observe that the utility degradation (obviously) decreases as we increase the trust

level, with the limiting case of t = 1 with no utility loss (and no anonymization) for the

Advanced Administrator. For most of the patterns (4 over 5, so except Q5), the Op-

erator role has a maximum utility loss of 30%, showing that the specific anonymization

transformations applied are strongly decreasing the risk, and limiting the impact on the

utility. That should allow performing the analysis on the anonymized data, without the

need to enhance the trust level (so no need to get Admin rights).

In the case of Q5, the anonymization is not able to significantly decreases the risk,

without largely impacting the utility. In fact, the Operator is left with no information

(utility degradation = 1), and to analyze the result an increase of the acceptable risk

threshold (trust level) is needed. Enhancing trust (i.e. assigning Admin rights to the

Operator) could reduce the utility degradation in the 30% � 40% range, likely allowing

the assessment of the pattern result. We should note, that Q5 is particularly hard to

anonymize, because it has fewer events (around 10), and, since k-anonymity is a measure

of indistinguishability, it needs strong anonymization.

Figure 5.9 also shows that in most cases increasing the trust level for Administrator or

even Advanced Administrator (except of course for t = 1, where we have no anonymiza-

tion) the impact on utility degradation is moderate: for example Q1 and Q4 are almost

flat in the Administrator zone, similarly Q2 has a first drop, and stays flat in the Adminis-

trator and Advanced Administrator parts. In other words, increasing the risk thresholds,

we could take more risk, but we do not gain much in terms of the utility. This counter-

intuitive e↵ect is mostly due to the di�culty to find an anonymization strategy able to

equalize the risk threshold. As mentioned in Section 5.2.3, in practical cases the number

of possible anonymization strategies is limited, and to fulfill the condition of Eq. 4.1 the

final risk may be quite below the risk thresholds (trust values). In practice, in many

cases, even increasing the risk thresholds (trust values), it is not possible to find a more

optimal (from the utility point of view) anonymization strategy. In Figure 5.9 we show

the utility loss for four patterns both showing the risk thresholds (dotted lines) and the

actual risk achieved after the anonymization. In the ideal case, the two curves should

be the same, meaning that we could always find a transformation that equalizes actual

risk and risk thresholds (trust), but in practice, we see that we are often far from this

optimal condition. For example, for pattern Q2, with risk thresholds t = 0.15, t = 0.45

(Administrator role) and t = 0.9 (Advanced Administrator), indicated with red circles, we

have the same value of utility degradation. In fact, the anonymization strategy found for

t = 0.15 case, corresponds to an actual risk of 0.14 (square dots with a circle in Figure 5.9,

upper-right panel), so quite close to the threshold. Increasing the thresholds to t = 0.45

and t = 0.9 (round dots with a circle in the figure), no better strategies were found, so

the same anonymization strategy is applied, and clearly, the final risk is still 0.14 (and

utility is the same), well below the thresholds. Similar e↵ects are also present in the other
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patterns.

The experimental analysis shows that adapting the anonymization to the specific pat-

terns, we can mostly preserve enough information for the investigation, keeping the privacy

risk low. In cases where this is not su�cient, typically characterized by small data set,

the trust enhancement strategy can support the access to less-anonymized data.

5.7 Policy Implementation

In this section, we present a possible way of expressing the authorizations model, described

in Section 4.3 in Eq.4.1, through risk-based policies.

Since we based the access control model and architecture on a modified version of

XACML’s architecture, we will also propose an extended version of XACML’s language

to implement our policies (attribute based policies).

The Policy sample we present in this section will implement the authorizations pre-

sented in the use case “privacy aware threat investigation” introduced in Section 5.3. We

propose to organize policies according to patterns, i.e., each policy expresses the autho-

rizations required to run and investigate a pattern. This choice allows for a flexible policy

management (addition, modification, and deletion), in fact, new patterns are often added

and old once updated or removed from the system and each of these operations requires

an update of the policies. Hence if we dedicate a policy for each pattern, when an existing

pattern is modified or a new one is created, we just need to revise the policy expressing

the authorizations required by the pattern or create a new policy.

The proposed policies have a similar structure as described in Example 5.1. In this

policy example, we express the authorizations required by the pattern detecting Brute

Force Attacks.

1 <!�� Bru t f o r c e a t t a ck po l i c y ��>
2 <Pol i cy Po l i cy Id=” b r u t f o r c e a t t a c k p o l i c y ” RuleCombiningAlgId=”permit�ov e r r i d e s ”>

3 <Target> . . . </Target>

4 <Rule RuleId=” deny a l l ” E f f e c t=”Deny”>

5 <!�� Deny ac c e s s f o r the po l i c y Target ��>
6 . . .

7 <Rule RuleId=” a l l ow t r u s t h i g h e r t h a n r i s k ” E f f e c t=”Permit”>

8 <!�� Allow acc e s s i f t rus t>=r i s k ��>
9 . . . </Rule>

10 <Rule RuleId=” ad j u s t r i s k h i g h e r t h a n t r u s t ” E f f e c t=”Permit”>

11 <!�� Adjust Trust or Risk Values i f t rus t<r i s k ��>
12 . . . </Rule>

13 <Rule RuleId=” e x c e p t i o n a l r u l e 1 ” E f f e c t=”Permit”>

14 <!�� op t i ona l ��>
15 <Target> <!�� except ion ’ s t a r g e t ��> </Target>

16 </Rule>

17 </Pol icy>

Listing 5.1: Risk-Based Policy Sample: Brute Force Attack Pattern

Each policy is composed by a main target and three rules expressing the three pos-

sible outcomes of the access evaluation, i.e., deny, grant, or apply an adjustment strategy
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� (see Eq 4.1 in Section 4.3 ). Rules will apply to the same target defined as the policy

target. We use the combination algorithm permit-overrides to select the rule to enforce,

in case more then one rule is applicable (i.e., rule’s target matches the request’s target

and the rule’s conditions are satisfied by the request). The algorithm permit-overrides

enforces the first rule that permits access (allows access) once the obligations defined by

the rule are enforced (see [58] for more details). If no rules permit access that the first

rule denying access will be enforced. Some patterns may require additional exceptional

rules (i.e., break the glass rules) usually more permissive and with a more specific target.

For instance, for very critical patterns (e.g., a denial of service attack) we can allow a

super administrator to access the data for investigation without trust assessment despite

the risk level (see Example 5.6).

The main target describes which subjects (requesters), which resources and what ac-

tions the policy applies to. In example (Example 5.1), for instance, the policy applies to

any requester with any role known to the risk-based access control system ROLE:ANY

(see Example 5.2). The targeted resource is the table containing the logs TABLE:LOGS

and the targeted action is ACTION:READ access. The policy target should also specify

the context of the access which can express for instance the access purpose e.g., running

or investigating the pattern PATTERN:BF-ATTACK. It could be also used to describe

the security context e.g., alert or logged event. The policy target (or main target) can be

refined within the rules. For instance, the exceptional rule target (Example 5.6) refers to

the group of subject with the role of ROLE:SUPER ADMIN which is more specific than

ROLE:ANY, it also narrows the context and make the rule only applicable in case of a

security alert SEC CONTEXT:ALERT.
1 <Target>

2 <AnyOf> <AllOf> <Match MatchId=” s t r i ng�equal ”>

3 <Attr ibuteValue DataType=” s t r i n g ”>ROLE:ANY</Attr ibuteValue>

4 <Attr ibuteDes ignator Att r ibute Id=” subject�r o l e ” Category=” sub j e c t ” . . . / >

5 </Match> </AllOf> </AnyOf>

6 <AnyOf> <AllOf> <Match MatchId=” s t r i ng�equal ”>

7 <Attr ibuteValue DataType=” s t r i n g ”>TABLE:LOGS</Attr ibuteValue>

8 <Attr ibuteDes ignator Att r ibute Id=” resource�id ” Category=” re sou r c e ” . . . / >

9 </Match> </AllOf> </AnyOf>

10 <AnyOf> <AllOf> <Match MatchId=” s t r i ng�equal ”>

11 <Attr ibuteValue DataType=” s t r i n g ”>ACTION:READ</Attr ibuteValue>

12 <Attr ibuteDes ignator Att r ibute Id=” act ion�id ” Category=” ac t i on ” . . . / >

13 </Match> </AllOf> </AnyOf>

14 <AnyOf> <AllOf> <Match MatchId=” s t r i ng�equal ”>

15 <Attr ibuteValue DataType=” s t r i n g ”>PATTERN:BF�ATTACK</Attr ibuteValue>

16 <Attr ibuteDes ignator Att r ibute Id=”pattern�id ” Category=”environment” . . . / >

17 </Match> </AllOf> </AnyOf>

18 </Target>

Listing 5.2: Policy main target

The first rule, Deny Rule in the Policy (Example 5.3) does not specify the target,

hence, inherits the policy’s target. This rule does not have any conditions or obligation

its aim is to guarantee that the access is denied if none of the other rules allow it (e.g., the
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conditions of other rules were not satisfied or errors occurred during the rules evaluation).

1 <Rule RuleId=” deny a l l ” E f f e c t=”Deny”>

2 <!�� Deny any acc e s s to a l l Roles / Sub jec t s in the Target ��>
3 </Rule>

Listing 5.3: Deny Rule

The Adjust Rule (in Example 5.4) applies to the policies target as well. It expresses the

second outcome in Eq. 4.1, where an adjustment strategy � is required to be applied before

granting access. The condition of application of this rule (in Line 3), is that the trust is

lower than the risk level. To check this condition, we need, first, to compute the trust and

risk values, which as indicated in Section 4.4, is the task of the RBA-IP, however we need

to indicate to the RBA-IP where to possibly find the information, e.g., we define that

the request-trust can be computed using the TrustAssessmentModule (Line 8) and the

request-risk can be computed by the RiskAssessmentModule (Line 15). In case of failure

to compute the trust level, minimum trust level T = 0 will be assigned to the request, and

if the failure occurs in the risk computation, we will assign to the request maximum risk

level R = 1. If the condition of Adjust Rule is fulfilled then access cannot be granted to the

resource, unless an adjustment phase is successfully carried. The adjustment strategies

for each pattern are expressed through obligations (see Example 5.7, 5.8, or 5.9.).

1 <Rule RuleId=” ad j u s t t r u s t l ow e r t h a n r i s k ” E f f e c t=”Permit”>

2 <!�� Ajust Trust or Risk Values i f t r u s t < r i s k ��>
3 <Condition><!�� app l i c ab l e i f t r u s t i s lower than r i s k ��>
4 <Apply FunctionId=”double�greate r�than�or�equal ”>

5 <Apply FunctionId=” func t i on : or ”> <!�� compute the t r u s t or t r u s t =0 ��>
6 <!�� c a l l TrustAssessmentModule to compute the t r u s t ��>
7 <Apply FunctionId=” func t i on : double�one�and�only ”>

8 <Attr ibuteDes ignator Category=” request�t r u s t ” Att r ibute Id=” t ru s t ” I s s u e r=”

TrustAssessmentModule”/>

9 </Apply>

10 <AttibuteValue>0</Attr ibuteValue>

11 </Apply>

12 <Apply FunctionId=” func t i on : or ”> <!�� compute r i s k or r i s k =1 ��>
13 <!�� c a l l RiskAssessmentModule to compute r i s k ��>
14 <Apply FunctionId=” func t i on : double�one�and�only ”>

15 <Attr ibuteDes ignator Category=” request�r i s k ” Att r ibute Id=” r i s k ” I s s u e r=”

RiskAssessmentModule”/>

16 </Apply>

17 <AttibuteValue>1</Attr ibuteValue>

18 </Apply>

19 </Apply>

20 </Condition>

21 <Obl igat ionExpres s ions>

22 <!��Adjustment S t r a t e g i e s��>
23 </Obl igat ionExpres s ions>

24 </Rule>

Listing 5.4: Adjust Rule

The Allow Rule (see Example 5.5) expresses the last out come of evaluation in the

authorization model (Eq.4.1). Similarly to the Deny Rule and Adjust Rule, this third

rule, has the same target as the policy. According to Allow Rule, access to the requested

data is fully granted if the trustworthiness level of the request is higher than its risk level.
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Table 5.12: Obligation Types

at-decision Obligations Are similar to the classic XACML3.0 obli-

gations they are actions to be enforced at

the same time then the access decision e.g.,

sending notifications, logging session details.

These obligations fulfillment do not influence

the access decision

pre-decision Obligations Are actions to be enforced before enforcing the

access decision to a resource e.g., anonymiza-

tion, encryption, requesting a stronger au-

thentication. The success or failure to fulfill

these obligations can influence the access de-

cision

post-decision Obligations Are actions expected to be enforced after en-

forcing the access decision e.g., deletion of the

data

The trust and risk levels assessment is expressed the same way as the Adjust Rule in

Example 5.4 (Lines 4 to 18 ).

1 <Rule RuleId=” a l l ow t r u s t h i g h e r t h a n o r e q u a l s r i s k ” E f f e c t=”Permit”>

2 <!�� Allow acc e s s i f t r u s t >= r i s k ��>
3 <Condition><!�� app l i c ab l e i f t r u s t i s h igher than or equa l s r i s k ��>
4 <Apply FunctionId=”double�greate r�than�or�equal ”>

5 <!�� compute and compare t r u s t and r i s k l e v e l s ��>
6 </Apply>

7 </Condition>

8 </Rule>

Listing 5.5: Allow Rule

Obligations, in the XACML standard, are enforced by the PEP immediately after

granting or denying access, e.g., allowing access to a user Alice with the obligation to

log Alice’s actions during the access session. However, our authorization model needs, in

some cases to enforce certain actions before granting access, such as transformations on

data, and other actions during the consumption of the data. Thus we propose to use two

other types pre-decision and post-decision obligations categories. These new obligation

categories were inspired by [163]. In Table 5.12 we provide a description for each category,

we also provide an implementation example in Examples 5.7, 5.8 and 5.9.

We discussed in Section 5.6.5 possible ways to dynamically select the mitigation strate-

gies based on utility, but we are not including the implementation in this paper.

1 <Rule RuleId=” e x c e p t i o n a l r u l e 1 ” E f f e c t=”Permit”>

2 <Target>

3 <AnyOf> <AllOf> <Match MatchId=” s t r i ng�equal ”>

4 <Attr ibuteValue DataType=” s t r i n g ”>ROLE:SEC ADMIN</Attr ibuteValue>
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5 <Attr ibuteDes ignator Att r ibute Id=” subject�r o l e ” Category=” sub j e c t ” . . . / >

6 <AnyOf> <AllOf> <Match MatchId=” s t r i ng�equal ”>

7 <Attr ibuteValue DataType=” s t r i n g ”>SEC CONTEXT:ALERT</Attr ibuteValue>

8 <Attr ibuteDes ignator Att r ibute Id=”pattern�id ” Category=”environment” . . . / >

9 </Match> </AllOf> </AnyOf>

10 </Target>

11 </Rule>

Listing 5.6: Exceptional rule allowing the super admin to access without risk and trust assessment

1 <Obl igat ionExpres s ion Obl iga t ion Id=”system : log ” ObligationType=”at�ac c e s s ” Fu l f i l lOn=Permit>

2 <!�� Temporairly Grant h igher t r u s t l e v e l ��>
3 <!�� Log the ac c e s s r eque s t and ac c e s s s e s s i o n ��>
4 </Obl igat ionExpress ion>

Listing 5.7: at-access Obligations

1 <Obl igat ionExpres s ion Obl iga t ion Id=”system : anonymize” ObligationType=”pre�ac c e s s ” Fu l f i l lOn=

Permit>

2 <Attr ibuteAss ignmentExpress ion><!��compute r equ i r ed anonymity l e v e l��>
3 <Attr ibuteDes ignator Att r ibute Id=” opt imal k ” I s s u e r=”TrustAndRiskAjustementModule” />

4 </Attr ibuteAss ignmentExpress ion>

5 <Attr ibuteAss ignmentExpress ion><!�� apply anonymization ��>
6 <Attr ibuteDes ignator Att r ibute Id=”anonymizer : k�anonymity” I s s u e r=”

TrustAndRiskAjustementModule” />

7 </Attr ibuteAss ignmentExpress ion>

8 </Obl igat ionExpress ion>

Listing 5.8: pre-access Obligations

1 <Obl igat ionExpres s ion Obl iga t ion Id=”remote�rba�ep : data�d e l e t i o n ” ObligationType=”post�ac c e s s ”

Fu l f i l lOn=Permit>

2 <Attr ibuteAss ignmentExpress ion><!�� Enhance Trust��>
3 <Attr ibuteDes ignator Att r ibute Id=”enhanced�t rus t�l e v e l ” I s s u e r=”

TrustAndRiskAjustementModule”/>

4 </Attr ibuteAss ignmentExpress ion>

5 <Attr ibuteAss ignmentExpress ion><!�� f i x a c c e s s time window��>
6 <Attr ibuteDes ignator Att r ibute Id=”time�window” I s s u e r=”TrustAndRiskAjustementModule”/>

7 </Attr ibuteAss ignmentExpress ion>

8 <Attr ibuteAss ignmentExpress ion><!�� de l e t e data��>
9 <Attr ibuteDes ignator Att r ibute Id=” ac t i on : data�d e l e t i o n ”/>

10 </Attr ibuteAss ignmentExpress ion>

11 </Obl igat ionExpress ion>

Listing 5.9: post-access Obligations

5.8 Chapter conclusions

Nowadays preserving privacy is a major concern in every organization. Software market

leader seeks to develop a new e�cient solution to address privacy and security issues and

provide innovative products o↵ering the best tread-o↵ between privacy preserving and

data exploitation.

In this chapter, we propose a privacy-aware risk-based access control model able to

address these issues and support a flexible access control in privacy demanding scenar-

ios. In our model, we propose to manage the privacy-risk using the concept syntactic

anonymity. This category of privacy metrics is designed to ensure privacy-protection in
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data publishing [43]. Although these metrics have received a fair amount of cretinism,

they are still widely used. For instance, when publicly releasing sensitive datasets, using

such metrics will clearly lower privacy risk compared to releasing actual data values. In

addition syntactic anonymity is preferred in some cases since it provides better quality of

data than most noise addition techniques like di↵erential privacy.

We focus (in this chapter) on re-identification risk assessed using a well known metric

k-anonymity. However, the approach is not bound to these choices and it can be readily

adapted to alternative syntactic metrics (e.g., `-diversity, t-closeness). It can also integrate

the concept of di↵erential privacy to which we will dedicate the next chapter (Chapter 6).

When the privacy risk is too large, the framework can apply privacy preserving ad-

justment strategies (risk mitigation and trust enhancement strategies) to increase the

exploitation of the data while ensuring an acceptable risk level. As an example of privacy

risk mitigation, we propose to apply on-the-fly anonymization, instead of denying access

to any “risky” information, The level of anonymization is dynamically assessed (for each

data request) to enhance the availability of information while respecting a privacy level

desired by the organization. Current anonymization techniques are typically computa-

tionally intensive [84, 164] and their applicability is limited to o↵-line scenarios or small

size datasets, diminishing their business impacts, not allowing the usage by more advanced

applications, such as real-time analytics and on-demand data services. In practice, with

current technologies, querying a large database and extracting an anonymized dataset in

real-time is not possible, and most anonymization processes are run o↵-line (i.e., as batch

processes). However new recent technologies (such as in-memory databases combined

with column-store optimized algorithms) would facilitate the implementation of run-time

data anonymization, allowing our model to be easily integrated with new data-intensive

business applications.

In the experimental sections of this chapter, we show how the framework can simulta-

neously address both the privacy and the utility requirements within di↵erent industrial

use cases. Indeed the obtained results show that the framework leads to meaningful results

and real-time performance.
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Chapter 6

Di↵erential privacy based access

control

Syntactic anonymity heuristics propose to alter identifying attributes to grantee

certain level of anonymity. Although this approach presents some weaknesses,

it is still widely applied especially when publicly releasing sensitive data-sets.

Another privacy-preserving approach, the di↵erential privacy, have been lately

proposed as an alternative to syntactic anonymity. Di↵erential privacy is a

formal mathematical framework allowing to guarantee a certain level of privacy

when analyzing or releasing statistical data.

In this chapter we propose a di↵erent version of the privacy-aware risk-based

access control model, based on di↵erential privacy and more suitable to preserve

privacy in the context of data mining. The model allows for data access at dif-

ferent privacy levels, generating an anonymized data set according to the privacy

clearance of each request. The architecture also supports re-negotiation of the

privacy level, in return for fulfilling a set of risk and trust adjustment strategies

expressed through Access and Usage Control Obligations. We also show, how the

model can address the privacy and utility requirements, in an human-resource

motivated use-case with a classification task. The model provides a flexible ac-

cess control, improving data availability while guaranteeing a certain level of

privacy.

6.1 Introduction

In Chapter 4 we proposed a novel access control model aiming, like most risk-based, to

bring more flexibility, replacing (or integrating) pre-defined access control policies, with

access decisions based on the risk estimation of specific requests. Our model evaluates each

request using a user/role dependent risk and risk thresholds which can be set considering
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the trustworthiness of a requester or a request’s context. Our approach goes beyond the

binary access decision (allow, deny) supported by most risk-based models, and we propose

a third option, which is to adjust the trust and risk levels allowing for restricted, partial

and/or monitored access to the data instead of denying risky requests.

This approach requires domain-specific risk assessment heuristics. In Chapter 5 we

propose to explore how to apply the approach in the context of data privacy. Therefore we

develop a privacy-aware adaptation of our framework using syntactic anonymity metrics

(e.g., k-anonymity) to assess the risk (i.e., privacy-risk) and privacy-related factors to

assess trust. Although widely used in practice, k-anonymity and the related family of

syntactic privacy metrics [43]), is susceptible to various attacks (e.g., [62]), and, in the last

10 years, another formal approach has been proposed to provide strong privacy guarantee:

di↵erential privacy [54].

In this chapter, we propose a privacy-aware risk-based access control model, which uses

di↵erential privacy to reduce the data disclosure risk. The model, in case the access to

raw data is not permitted, is able to provide a di↵erential private data set, according to

the privacy clearance of the user, which plays the role of the trust in the previous model.

This allows for a more flexible access, improving data availability, and at the same time,

guaranteeing a formal level of privacy.

The main contributions of this chapter are as follows:

1. We propose a privacy-aware risk-based access control model that evaluates access

and clearance decisions based on a privacy-preserving approach.

2. We propose to use a di↵erentially private algorithm to enforce these decisions, re-

specting the adequate privacy level.

3. We define an architecture for our access control system, which integrates a classic

policy-based access control, and also supports mechanisms for (temporarily) increas-

ing privacy clearance.

4. We implement a proof-of-concept prototype and run preliminary experiments, to

evaluate the utility of the data, using a simple classification task, and the performance

of the system.

In the next section (Section 6.2), we provide a motivating use case for our work. In

Section 6.3, we give a short overview on Di↵erential Privacy. In Section 6.4, we introduce

our privacy-aware access control model. Section 6.5 is dedicated to the description of the

architecture of the access control framework. In Section 6.6, we describe the experimental

evaluation and discuss the main results. We conclude, in Section 6.7,with some final

remarks.
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Table 6.1: Usage scenarios, comprising di↵erent actors (data requesters), security levels, and expected

utility (i.e., type of reports needed)

# Role Operation Risk Utility

1 HR manager HR view (int.) Low Risk full access

2 HR manager HR view (ext.) Medium Risk aggregated

3 HR developer Testing data Medium-High Risk anonymized

4 HR Benchmarking Benchmark High Risk anonymized

6.2 Use Case

Human Resource (HR) data are becoming increasingly important for the management

of the company workforce. Whereas traditionally, they were mostly accessed in tabular

form from the HR department and people managers, there is nowadays a large number

of additional analytics and functionalities to improve HR key processes [100, 142] (e.g.,

talent discovery, compensation process, training), and, correspondingly, there is an in-

creased need for access to HR data, reports and analytics, involving multiple actors in the

company. At the same time, HR data contain sensitive and personal information, which

is subject to, often complex, data protection regulations, and data access should carefully

manage.

For example, an HR manager can have a full view of the HR information for her/his

department, but an aggregated view for the HR data from other departments. In some

cases, for example, employee survey results for collecting employee feedback, a certain level

of anonymity is needed even for the data within the department. Legal framework, such

as the European data protection regulations [59], can additionally impose geographical

constraints on access and transfer of personal information.

HR data are also needed for the testing phase in the development of HR applications.

In this case, the data should not contain personal information, but they should be realistic

enough to allow for significant testing. So, an in-house developer may have access in a

controlled environment to an anonymized version of the data. If the development task is

outsourced to an external company, an even stronger anonymized is likely needed.

HR data (e.g., compensation and health care cost data) are also sometimes shared

with external parties for benchmarking purpose (see e.g. Bureau of Labor Statistics

(BLS) [132]). and, for that scope, they need a high level of privacy guarantees to be

released.

The requirements of these illustrative examples can be summarized as in Table 4.1.

These scenarios show how a rather complex access control framework should be set up

to address the privacy requirements. Currently, in most cases, these requirements are

addressed with a mix of specific configurations of traditional access control systems (e.g,

RBAC systems for the HR manager use-case), usage of specific anonymization tools (e.g.,
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for releasing data for application testing or benchmarking services), and, often, relying

on human-based processes. In the next sections, we will show how these scenarios can be

realized.

6.3 Background on Di↵erential Privacy

Di↵erential privacy [54] is a privacy framework devised for providing a formal, strong

privacy guarantee. Whereas, traditionally, privacy-preserving data publishing was based

on syntactic privacy [43] mechanisms, where, for example, it is imposed as condition that

a record being indistinguishable from k other records [135] (equivalence group), or the

sensitive values to be well distributed within the equivalence groups [92, 99], di↵erential

privacy takes another approach, requiring that the answer to any query being probabilis-

tically indistinguishable if a particular record is present in the database or not. In other

words, an adversary cannot learn (almost) anything about an individual record, since

the output does not (almost) change, whether that specific record is present or absent

in the data set. Following [113], we can define di↵erential privacy, in the context of

privacy-preserving data publishing, as:

definition 6.3.1. A randomized algorithm K satisfies ✏-di↵erential privacy if for all

pairs of data sets D,D0, di↵ering for at most one record (D ⇠ D0), and for all possi-

ble anonymized data sets D̂, we have that:

Pr [K(D) = D̂]  e✏ ⇥ Pr [K(D) = D̂]

where the probability is computed over the randomness of K, and the parameter ✏ > 0

sets the bound of the privacy guarantee, with low values of ✏ providing stronger privacy.

The mechanism for providing di↵erential privacy (called ✏-di↵erentially private san-

itizer) is typically based on noise addition. There are two approaches: interactive and

non-interactive. Historically, di↵erential privacy was devised for the interactive model [54]:

a user sends a set of queries to a database, and the database owner, to assure privacy,

adds some random perturbation to the query answer (e.g., adding Laplace noise with

variance related to ✏ parameter). Although the interactive framework is mostly used, it

has some drawbacks [146], e.g., after a limited number of queries the noise level should

be increased, highly impacting the utility.

In the non-interactive model (see [91, 94, 113, 146]), the database owner anonymizes

the original raw data, and then releases the anonymized version, providing the user a

greater flexibility for data analysis, and basically no limitation in terms of queries. Indeed

this model allows producing data-views meeting a certain level of privacy and utility.

However, it is important to mention that this assumption does not take multiple releases

in consideration, and the utility is estimated considering a generic assumption on what
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the data will be used for (e.g., assuming that the data will be used analysis relies mostly

on the counts of certain attributes).

We will be using the latter model in this chapter. In particular for deriving di↵erential

private data set for our evaluation (see Section. 6.6), we follow the approach of [113].

The method considers the raw data, and it computes the contingency tables, counting the

number of records sharing a combination of attributes. Then, it probabilistically (using an

exponential mechanism) generates a generalized contingency table (generalizing attribute

values in wider classes). Then, it applies Laplacian noise to the generalized contingency

table. The generalization step allows increasing the counts for the cells, resulting in

lowering the utility-impact of the noise addition. Synthetic data can be produced from

the generalized and randomized contingency table. The resulting data set, generated by

a ✏-di↵erential privacy mechanisms, can be safely used for any data analysis (we will test

it on a classification task, as in [113]).

6.4 Di↵erential privacy based access control model

In this section, we provide a general description of our di↵erential privacy based model.

The privacy-aware risk-based access control model presented in this chapter can generally

be mapped to the general model presented in Chapter 4. However, unlike the model

based on syntactic anonymity (presented in Chapter 5), it is harder to quantitatively

assess the privacy-risk (before mitigation) using di↵erential privacy since this privacy

metric quantifies the privacy guarantee provided by a release mechanism, and it uses

added noise to achieve this measure.

Therefore, to assess the privacy-risk in this model, we propose a qualitative risk measure

based on the sensitivity of the data requested and the presence of identifying attributes.

The application of di↵erential privacy requires a limited number of queries and a knowl-

edge about these queries, this makes easier the task of assessing the privacy-risk. We

consider here a risk domain of 5 qualitative risk levels L = {l1: Very-Low, l2: Low, l3:

Medium, l4: High, l5: Very-High}. Note that the number of levels can vary depending on

the use-cases and risk policies, with no major di↵erences for the access control model. In

Table 6.2 we map a required privacy clearance interval (T1 . . . T5) with each of risk levels

based on a tread-o↵ between the expected utility (see Table 6.1) and the privacy goals of

the company. In the last column (of Table 6.2) we report the required level of sanitization

✏i corresponding to the clearance Ti.

The authorizations in our model can be built as an extension of the traditional policy-

based authorizations, such as XACML model [115]. Generally speaking, the model pro-

ceeds as follows: The policy determines the clearance level/interval (depending on its

risk level) required to access a given dataset (data resulting from a given query). When-

ever a user/role issues a request, the access control model checks if his/her request has
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Table 6.2: Mapping between privacy risk, required privacy clearance and equivalent level of sanitization

Privacy-risk
Privacy

Requirement

Needed

sanitization

l1 : Very-Low risk T1 ⇡ 0 none (✏1 ⇡ +1)

l2 : Low risk T2 = [0.01, 1[ ✏2 ]1, 10]

l3 : Medium risk T3 = [1, 10[ ✏3 2 ]0.1, 1]

l4 : High risk T4 = [10, 20[ ✏4 2 ]0.05, 0.1]

l5 : Vary-High risk T5 = [20,+1[ ✏5  0.05

the adequate privacy clearance (with respect to the clearance level/interval of the issued

query).

Di↵erently from the classic policy-based access control, the system, in addition of a

allow or deny decision, can deny access to the data set in the raw version, but still, provide

the user with an anonymized version of the data.

More formally, each access query req = (u, v)1 is characterized by a privacy clearance

T✏ which depends on user u and context information C (e.g., within the corporate network

users may have a larger clearance); a required clearance level T assessed depending on

the risk level risk of the dataset v resulting from the query.

The query req with a risk = li will be evaluated by the function Auth(req) defined as

follows:

Auth(req) =

8
>><

>>:

grant if T✏ 2 Ti

adjust�i if T✏  Ti

deny if denied⇧

(6.1)

T✏ the privacy clearance of the request, expresses the trust we have that a query

will not violate privacy it plays the role of trust parameter used in the general model

(Chapter 4 Section 4.3). T✏ ⌘ T✏(u, C) depends on user u and context information C

(e.g., within the corporate network users may have a larger clearance)

Note that the privacy clearance parameter T✏, here, plays a role similar to the privacy

budget [126] typically used for di↵erential privacy models. But, in our case, we only

consider accessing disjoint sets of data, so each user/role can spend all his/her budget for

a single request, and he/she has access to data at the same, or lower, level as the pri-

vacy clearance. This is similar to the security clearance parameter in multi-level security

models.

Therefore, a user u (say the people manager of the department) with a trust clear-

ance T✏(people manager) is granted access to an dataset v (say the HR data of a de-

1In most cases the dependency between u and v is mediated by roles and/or permissions that should also be considered

in the evaluation of the query. However for the sake for simplicity, we do not consider roles, and focused only on read access,

for an extension of this model including roles, we can follow the lines of access control risk models as described in [14,34].
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partment risk = li) if the access control policy of the dataset ⇧ includes user u and

T✏(ppl manager) 2 Ti the clearance required by v.

If the query clearance is not su�cient T✏  Ti we propose to apply the adjustment

strategy �i. An adjustment strategy �i can be predefined for each risk level li2, to mitigate

the risk (e.g. by sanitizing the data) and/or increase the privacy the same way we propose

to enhance trust in the general model (in Chapter 4 Section 4.3).

If we chose to provide a sanitized version of the data (say for the people managers

of other departments), in this case, the system retrieves the privacy clearance value, T✏,

associated to the user/request, and it applies the di↵erentially private sanitizer to the

original data to obtain a data set of di↵erential privacy ✏ = 1/T✏
3.

Adding this option of providing sanitized data can increase the flexibility and, ulti-

mately, the access to data. On the other hand, especially for large privacy clearances,

T✏, the high level of sanitization (very small ✏) can severely impact the utility, making

the data not usable. To this aim, we foresee mechanisms to (temporarily) increase the

privacy clearance to meet the expected utility, for example asking the user to fulfill some

obligations (as we proposed in Chapter 4). The architecture described in Section. 6.5 can

support this privacy clearance enhancement (trust enhancement) functionality, but, we

do not discuss them in details in this study, focusing more on data sanitization for risk

mitigation.

Finally Access can be denied if the policy denies4 ⇧(req) = denied. Of course, this

implies that for the first two outcomes (allow and adjust) the request was not denied by

the policy.

6.5 Architecture

In this section we present an abstract architecture for our privacy-aware Risk-based access

control framework based on di↵erential privacy. We will also highlight the main modi-

fications with respect to the architecture of the general model presented in Chapter 4

Section 4.4 The architecture, depicted in Figure 6.1, is composed of three main modules:

Privacy-Aware Access Control Module is the entry point of the system, through

which users can submit requests to retrieve data from the underlying database. This

module evaluates the access request, and it grants access to (original or sanitized

version of) the requested data or denies access.

For this scope, the Privacy-Aware Access Control Module assesses the data request

2The possibility of dynamically selecting an adjustment strategy was also discussed in Chapter 5
3Note that the system may have already in the cache the anonymized data set, if it had received the same data request

at the same privacy clearance. In this case, there is no need to re-anonymize the data, and it uses the already produced

data set, improving performance and security.
4explicitly or implicitly as discussed in Chapter 4
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Figure 6.1: Architecture of the Privacy-Aware Risk-Based Access Control framework (Based on di↵eren-

tial privacy)

against an access policy to determine whether the requester has the needed au-

thorizations to access the resource (requested data-view) and, also, to evaluate the

privacy clearance (as discussed in Section. 6.4). Then, the decision is enforced by

calling the Privacy Enforcement Module or renegotiate by calling the Privacy Clearance

Enhancement Module.

The Privacy-Aware Access Control Module is based the on the XACML (eXtensible

Access Control Markup Language) standard [115]. XACML is a declarative fine-

grained, access control policy language. The standard also provides an access control

architecture and a description of the access evaluation process (data-flows, access

request, access decision etc.)

In this module Access Control is realized internally using a PEP-PDP 5 pair. A

PIP (Policy Information Point) is used to provide additional information needed to

evaluate the request and estimate its privacy clearance (e.g., in our use case if the

requester is a manager, we would like to know her/his department in order to de-

fine her/his privacy clearance, if the requested data contains information about his

department this queries clearance will be higher than the clearances of queries re-

questing data about other departments)

5In XACML the PDP is the point that evaluates an access request against an authorizations policy and issues an access

decision and the PEP Policy Enforcement Point is the point that intercepts user’s request, it calls the PDP for an access

decision then it enforces the decision by allowing or denying the access.
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Privacy Enforcement Module. After evaluation of the access request, the Privacy En-

forcement Module receives a data view (non-anonymized version) and a privacy clear-

ance value. The role of this module is applying data sanitization algorithms, and

generating an anonymized version of this data view, according to the privacy clear-

ance.

Privacy Clearance Enhancement Module. The privacy clearance defined by the

Privacy-Aware Access Control Module can be re-negotiated to a higher level in some

cases (for example if the utility of the anonymized data is not su�cient) to allow

more flexibility. The user can ask (temporally) for a higher clearance, in exchange,

for example, of fulfilling some obligations to mitigate the additional risk. These oper-

ations are typically expressed as access and usage control obligations (see Chapter 4),

for example imposing deletion of a resource after that a retention period expires, or

providing stronger authentication credentials.

It is easy to see that the Privacy-Aware Access Control Module is also risk-based in this ar-

chitecture and can be mapped to the Risk-based access control module in the general archi-

tecture presented in Chapter 4, Figure 4.2. The Privacy Clearance Negotiation Moduleplays

the role of Trust Enhancer aiming to provide the requester/request with higher privacy

clearance to reach the required clearance to execute a query. The Data sanitizer in the

Privacy enforcement Module allows enforcing the selected risk mitigation strategy. Com-

bined together the Privacy Clearance Negotiation Module and Privacy enforcement Module

can be mapped to the Trust and Risk adjustment module in the general model Figure 4.2.

No Risk estimation or Trust estimation modules are included in our architecture (Fig-

ure 6.1) since the version of the model presented in this chapter do not support dynamic

risk and trust (trust is substituted by the privacy clearance in this chapter) assessment.

Indeed the risk and privacy clearance are pre-computed and can be extracted respectively

from the Policy repository and Attributes repository (represented in Figure 6.1). Of course,

these modules can be integrated into our architecture if we will include dynamic risk and

privacy clearance assessment in a modified version of this di↵erential privacy based model

as we will discuss later in this chapter.

6.6 Experimental Evaluation

In order to evaluate the practical feasibility of our approach, we developed a proof-

of-concept implementation of the framework, to assess: i) the impact of our privacy-

preserving access control on the data quality. To this aim, we defined a simple classifica-

tion task, and test the performance using data sanitized at di↵erent privacy clearances. ii)
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to evaluate the impact of the enforcement of di↵erent privacy clearance levels (anonymiza-

tion by applying di↵erential privacy) on the performance of our access control system, in

terms of response time.

To address these questions, we implemented a prototype of our Privacy Enforcement

Module as described in Section. 6.5. As data sanitizer we used “Di↵Gen” a Di↵erentially-

private anonymization algorithm based on Generalization, proposed and implemented by

Mohammed et al. in [113].

Di↵Gen anonymizes the raw data by probabilistically generalizing the attributes. More

in details, starting from the most general state (one-single group), a set of specializations

are randomly selected, using an exponential mechanism with a predefined scoring func-

tion (e.g. a utility-based function assessing the information gain for each specialization).

Then, the algorithm computes the contingency tables, counting the number of records

sharing a combination of attributes, and, it applies Laplacian noise, with variance ✏, to

the generalized contingency table. Synthetic data can be then produced from the gener-

alized and randomized contingency table (see in [113] for details). The resulting data set,

generated by a ✏-di↵erential privacy mechanisms, can be safely used for any data analysis.

In Table 6.3 we represent di↵erent scenarios introduced in our use case in Section. 6.2.

We also map each scenario with the query’s risk level and required privacy clearance T 6.

Table 6.3: Example of risk and privacy clearance levels for di↵erent access scenarios introduced in the

use case Section. 6.2.

# Role Operation Risk level
Required

(clearance)

1 HR manager HR view (int.) Low Risk T2 = [0.01, 1[

2 HR manager HR view (ext.) Medium Risk T3 = [1, 10[

3 HR developer Testing data High Risk T4 = [10, 20[

4 HR Benchmarking Benchmark Very-High Risk T5 = [20,+1[

For our test, we use the Adult Data Set 7 from the UCI Machine Learning Repository.

This dataset contains 45K records from the US Census dataset with 15 demographic

and employment-related variables (6 numerical, 8 categorical, and 1 binary class column

representing two income levels,  50K or > 50K). The Experiments were conducted on

an Intel Core i5 2.6GHz PC with 8GB RAM.

Data Quality To evaluate the impact of anonymization on the Utility of data we pro-

pose to assess its impact on the accuracy of a simple classifier trained and tested using

anonymized data at di↵erent clearance levels (shown in Table 6.3).

We use as (binary) class attribute the income level,  50K or > 50K, and as classifier

6the full mapping between the risk levels and required privacy clearances can be found in Table 6.2
7Available at http://archive.ics.uci.edu/ml/datasets/Adult
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the well-known C4.5 Algorithm [133]. Each anonymized data set is split in two. First

part of the data (2/3) is used as training data to build a classifier, and the remaining data

(1/3) is used as test data to measure the classification accuracy.

Figure 6.2: Classifier Accuracy for di↵erent privacy clearance T
✏

in di↵erent intervals T . Each data point

represent the average over 100 runs (parameters of Di↵Gen: number of specialization of specialization

N

s

= 10, and scoring function u = Max).

In Figure. 6.2, we report the accuracy of classifiers for di↵erent privacy clearances.

We can observe that for queries with Very-High Risk risk level, requiring a large privacy

clearance T✏ 2 T5 (where we sanitize the data to obtain small values of ✏ = 1/T✏), the

accuracy is highly impacted.

In fact, with ✏ = 0.01, the attributes are almost fully generalized, and the accuracy is

close to the case where all the attributes (but the class attribute, of course) are removed.

Still, the accuracy level of ' 75% could be enough for many benchmarking tasks.

The accuracy goes up, as expected, for when lower privacy clearance values are re-

quired. Privacy clearance in the range T4 = [10, 20[, still considered reasonably safe in

practical cases, allows producing data able to provide an accuracy close to 80%, which

it could be su�cient as testing data for development, and to have a general view for a

manager on other department analytics.

Privacy clearance > 1 (manager view on own team data, in our use case), gives levels

of accuracy close to the raw data ' 85%.

Performance We estimate the computational overhead caused by the sanitization. From

these experiments, we observe that the time for performing the sanitization can be easily
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of the order of seconds, see Figure. 6.3. The e↵ect of the required privacy clearance (and

the epsilon for the required level of sanitization) on the performance (time) is limited.

Figure 6.3: Anonymization time for di↵erent privacy clearance T
✏

. Each data point represent the average

over 100 runs (parameters of Di↵Gen: number of specialization of specialization N

s

= 10, and scoring

function u = Max).

Despite being preliminary results, it is clear that for reaching real-time performance

(as it is possible for k-anonymity algorithms, see Chapter 4), it is needed to include some

optimization, for example in terms of caching or testing other algorithms for generating

di↵erential private data set.

6.7 Chapter conclusions

In this chapter, we proposed a novel privacy-aware access control model, based on di↵er-

ential privacy. The model allows for data access at di↵erent privacy levels, generating a

sanitized data set according to the privacy clearance of the request. This model is com-

plementary to the one based on syntactic anonymity (to which we devoted the previous

chapter), indeed although di↵erential privacy was originally devised for privacy-preserving

data mining (so to answer a limited number of specific queries), it is becoming popular

also for privacy-preserving data publishing (so to produce anonymized dataset) [167], as

in our case. As we have shown, here, using a risk-based access control model in combina-

tion with di↵erential privacy, we are able to provide a flexible access control mechanism

producing su�ciently accurate data for a classification task, and, at the same time, with
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a formal guarantee of the privacy level.

To evaluate our approach we developed a proof-of-concept prototype. A first exper-

imental analysis, considering an HR related use case, and a benchmarking dataset, in-

dicates that the model can address complex privacy and utility requirements. Indeed,

in our use case, we propose to integrate di↵erential privacy within a privacy-aware risk-

based access control model to prevent classification model from violating the privacy of

individuals in the training data while ensuring a decent level of accuracy to allow di↵erent

actors to exploit the results of this analysis.

This approach still presents a number of open issues to be solved for a practical usage.

For example, the performance of the current implementation is not a real-time perfor-

mance, therefore di↵erent algorithms and optimization strategies for the anonymization

need to be investigated.In addition, whereas in previous models we used the concept of

privacy risk, which has a clear business interpretation, here we used the ✏ parameter of

di↵erential privacy. In future works, we would like to relate the two approaches, including

explicitly privacy-risk assessment and adjustment mechanisms based on the concepts of

di↵erential identifiability [90] and interactive di↵erential privacy [54].
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Chapter 7

Evaluation of the Privacy-aware

Risk-based access control model

Using EPIC

In this chapter, we propose to evaluate our privacy-aware risk-based access con-

trol approach from privacy enhancement perspective using the EPIC method-

ology. We apply EPIC to identify and evaluate privacy threats originated by

authorized insider actors for two cybersecurity systems (CSS): a) a “classic

TDS” and b) the same TDS equipped with our privacy-aware access control

“privacy-aware TDS”. Then comparing the risk level of insider privacy threats

(i.e., privacy threats originated by authorized insider actors) identified in both

CSS.

The results of this evaluation show that the privacy violation risk of privacy

threats for several actors is significantly mitigated after the implementation of

our privacy-aware risk-based access control system.

7.1 Introduction

Threat Detection Systems TDS (described in Chapter 5, Section 5.5) are CSS (cyberse-

curity systems) used by organizations to monitor their information systems and detect

security threats and anomalies. A TDS collects and processes security information from

several entities deployed in the organization’s network (e.g., routers, end-user machines,

other CSS). Human agents (security experts) constantly interact with the TDS to ac-

complish several tasks e.g., monitoring security events, investigating alerts, maintaining

improving the threat detection. The data collected by TDS and accessible by the agents

often contain private information about individuals in the organization (e.g., employees,
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collaborators, clients). Therefore a TDS can be the source of several privacy violation

threats that the organization should identify, evaluate, and mitigate. These privacy vio-

lation threats include threats originated the security agents, who are authorized to access

data but can abuse their access privileges, not respect the purposes of accessing data, and

violate privacy.

In Chapter 5, we propose a privacy-aware risk-based access control system as a solution

to mitigate this category of threats. In this chapter, we evaluate our privacy-aware risk-

based access control system from the privacy perspective and highlight its mitigatory

impact on threats identified for a TDS deployed in a testing environment (as described

in Section 5.5).

To identify the privacy threats, and evaluate the impact of our solution on these threats,

we will use the methodology EPIC (described in Section 4)). As a reminder, EPIC

(Evaluating privacy risk in cybersecurity systems) is a four-step methodology used to

identify, evaluate and prioritize privacy violation threats in CSS. In addition, EPIC can

also be used to compare two CSS from the privacy perspective or a CSS before and after

the adoption of a privacy-enhancing feature. Consequently, the methodology can also be

used to evaluate a given privacy-enhancing solution by assessing the privacy improvement

brought by the adoption of this solution.

Since the evaluation carried in this chapter aims at studying the impact of our privacy-

aware risk-based access control on the privacy threats originated by authorized actors,

we will only focus on the aspects of the TDS related to these actors and components

equipped with the access control system. Moreover there will be no need to go through

the threat prioritization (last part of EPIC Step 4 Section 3.3.4), since we are not expecting

the privacy-aware risk-based access control to have an impact threat priority level (from

adversaries trust perspective), we are rather interested in observing its mitigatory impact

on the risk level.

The remaining of this chapter will be structured as follows: In Section 7.2, we will apply

the EPIC analysis to the Threats Detection System “TDS” (described in Section 5.5). in

Section7.3 e will apply the EPIC analysis to the “Privacy-aware TDS” and highlight the

we will summarize, comment the results and conclude in Section 7.4

7.2 Privacy evaluation: TDS

In this section, we report the main results of privacy threat analysis of the TDS. The

privacy threat analysis is achieved through the application of the evaluation methodology

EPIC presented in chapter 3.
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7.2.1 EPIC Step 1 (TDS)

The aim of this first step “Model the cybersecurity system” (described in 3.2.2) is to un-

derstand the cybersecurity system architecture, its data flows, and its functional aspects.

For this scope, we model the TDS using an extended data-flow diagram DFD+ (the dif-

ferent elements of DFD are described in Figure 3.2 . The elements added by the extended

version DFD+ are described in Figure 3.3).

Figure 7.1: DFD+ model (TDS)

Figure 7.1 depicts di↵erent components and data flows in the TDS. Security informa-

tion and events are constantly collected by di↵erent security (e.g., intrusion detection,

firewalls) and networking (e.g., routers, servers) components, deployed in the information

system. This information is sent to the TDS through the channel C1 and it goes through a

pattern matching executed by the process P2 to detect attacks and malfunctioning alerts

(that needs to be further investigated) as well as suspicious events (that needs to be mon-

itored to prevent other attacks and anomalies). After transiting through the channels

C2 and C3, alerts and events are respectively stored in the storage DS1 and DS2. The

logs can be retrieved from the data storage through channels C2.1 to the process P2 and

C3.1 to P3 The process P3 enables the three actors (i.e., Operator, Administrator and

Advanced administrator) to investigate the alerts logged by the TDS. Data is delivered

to the actors through C2.1.1, C2.1.2 and C2.1.3. The process P3 allows the actors to

monitor suspicious events delivered through C3.1.1, C3.1.2 and C3.1.3.
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7.2.2 EPIC Step 2 (TDS)

The aim of the second step “Identify data exposure” is to identify and evaluate possible

data exposures, i.e., situations in which data is disclosed to a potential adversary (see

Section 3.2.3 for more details about this step).

Table 7.1: Adversaries table (TDS)

Adversary Description

Operator Classify alerts and report patterns anomalies His/Her tasks require access to

pattern detection results (events/log data related to the suspicious pattern) in

case of alerts.

Administrator Has all Operator tasks and privileges. They can also Investigate alerts, Create

or Reconfigure patterns. He/She should have access the detection results and

events data related to the patterns.

Advanced

administrator

Has all Administrator tasks and privileges. Can also grant exceptional access to

the data by attributing higher trust level to an Operator or an Administrator.

As explained in the introduction we will mostly focus on aspects of the analysis re-

lated to authorized actors. We first identify di↵erent actors/adversaries interacting with

the TDS. In Table 7.1 we report a list of authorized adversaries (these adversaries have

been first introduced in Section 5.5). After that, we study di↵erent security mechanisms

protecting of components identified in step 1 (depicted in Figure 7.1). Actors, in our

case, have authorized interacts only with processes P2 and P3 (these interactions are

controlled by an access control system). In Table 7.2 we report the security mechanisms

protecting these two processes.

Table 7.2: Components security table (TDS)

Component Authorized users Security mechanisms

P2

Advanced admin.,

Administrator,

Operator

Access control, authentication, network security

P3 same as above Access control, authentication, network security

Once we have the description of adversaries and components, we can now establish the

list of exposures and assess their magnitudes and the likelihoods of access. We report the

results of this assessment in Table 7.3.

We identify three exposures for each for each component: Exp1, Exp2, and Exp3 at the

level of process P2 and Exp4, Exp5, and Exp6 at the level of process P3. As mentioned

earlier, actors are authorized to access the data from processes P2 and P3 consequently

the likelihood of access La = Authorised for all six exposures in Table 7.3. The magnitude

of exposure in a process is assessed considering the number and frequency of access for

each actor and the amount of data available to access i.e., amount of data collected
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Table 7.3: Data exposures table (TDS)

Component Adversary Exposure L

a

Exposure magnitude

P2: Alert

investigation

Advanced admin. Exp1 Authorized Important

Administrator ExP3 Authorized Important

Operator Exp3 Authorized Important

P3: Events

monitoring

Advanced admin. Exp4 Authorized Very-Important

Administrator Exp5 Authorized Very-Important

Operator Exp6 Authorized Very-Important

daily, retention time (see Section 3.2.4 for more details). All our actors in our case have

unlimited access the data both for alert investigation (P2 ) and event monitoring (P3 ).

In addition, our threat detection system o↵ers the possibility to collect a huge amount

of data which companies store for an extended amount of time. For example, our data

security events data set has over 1bn entry collected in a testing environment in a period

shorter then a month this amount can be way bigger in production environment e.g., an

organization with 1000 employees will process in average 3.5 terabytes of security data

monthly [65].

7.2.3 EPIC Step 3 (TDS)

After identifying the exposures in the previous steps, we now assess whether these expo-

sures (summarized in Table 7.3) represent privacy threats or not (see Section 3.2.4 for

mode details about Step 3 “Identify privacy threats”). To do so we need to take into

account which attributes and which types of data are actually exposed, thus we start by

listing and describing these data attributes.

For example, the TDS we have been studying (SAP ETD) logs and uses over 40

attributes related to security events. However, not all of these attributes are interesting

for us (e.g., meta-data of filters and patterns, processing time stamps, log type), therefore

we dismissed these attributes during the analysis. Some of these attributes are also privacy

neutral (i.e., not identifiers, not QIDs, nor sensitive), and, for the sake of brevity, we do

not mention these attributes either during the analysis. In Table 7.4 we report a sample

of relevant attributes, and we provide a description and an example of each attribute.

In the example given in Section 3.2.3, we explained the data leaked in each exposure is

composed of heterogeneous types of records (i.e., records with di↵erent attributes). Our

TDS, however, can correlate di↵erent events from several types of logs (and other sources)

to generates unified logs that are as homogeneous and rich as possible. Nonetheless, the

data views exposed through processes P2 and P3 have di↵erent structure (i.e., di↵erent

attributes) depending on the pattern (anomalies and security threat patterns described

in Section 5.5) generating the alerts to investigate or the events to monitor. Therefore,
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Table 7.4: Attributes description table (TDS)

Name Description Domain Example

Timestamp Event (log entry) timestamp DD.MM.YYYY

hh:mm:ss

07.10.2015 18:39:36

UserID pseudo-anonymised user identifier Alphanumeric

pseudo

DG70W98CY1

SysID (origin) Identifier of the system originating a re-

quest (client or server)

Alphanumeric

code

MAIL/X009

SysID (target) Identifier of the system targeted a re-

quest (client or server)

Alphanumeric

code

ERP/E113

Hostname Machin ID (often organized by geo-

location)

Alphanumeric

code

ITA-Trento-ND0606

IP (origin) IP adress (source) of a machine in the

internal or external network

IP Address 91.218.36.178

IP (target) IP adress (destination) of a machine in

the internal or external network

IP Address 239.121.10.177

PrivilegeName Name describing a given privilege (ac-

tion, transaction)

action-

TransactionName

create-FS-45 (create

an outgoing payment)

TransactionName Technical name of a specific business

transaction

Alphanumeric

code

FS-45 - outgoing pay-

ments

File(metadata) File name, download path, size, author

creation time etc.

path\name.pdf, 504kb,

2017-06-06 12:07:10

File(content) A file being downloaded String of bytes

Email(header) Email Object, Sender and Reciver

adresses

smtp header from: to: date: sub-

ject: etc.

Email(content) Content of an Email(textual) and at-

tachments

URL (path) visited sites urls and parameters if any URL https://youtube.

com/watch?=mmtgs

in our analysis, di↵erent data contents will be defined for each used pattern. For sake of

brevet, we will only report some of the most commonly used patterns.

In Table 7.51 we describe the patterns that we will be used and the data attributes

collected and (can be exposed) by each pattern. A data content will be associated to each

pattern or more exactly to the data exposed by a pattern (e.g., dc1 will be associated to

Brute force attack pattern and will expose the following attributes IP (origin), IP (tar-

get), UserID, Hostname, and Timestamp).

As required by the EPIC methodology, we continue our analysis by classifying the

attributes of each data content as identifying (ID), quasi-identifying (QID), or potentially

1Note that this Table 7.5 does not belong to the list of tables used for EPIC (see Figure 3.1). We use this table in this

use case for clarity proposes.
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Table 7.5: Data contents patterns association, description of the patterns, and attributes used by each

pattern (TDS)

Data

content
Pattern Name Pattern description Attributes collected

dc1 Brute force attack

Event : failed login attempt

Alert : 20 failed login attempts in

less than 10 minutes

IP (origin); IP (target); UserID;

Hostname; Timestamp

dc2
Irregular

transactions

Event : failing transaction

Alert : successful transaction after

failure or Blacklisted transaction

IP (origin); IP (target); UserID;

Hostname; SystemID (target);

TransactionName;

PrivilegeName; Timestamp

dc3 Blacklisted URL
Alert (and Event): request to

access a blacklisted URL

IP (origin); IP (target); UserID;

Hostname; SystemID (origin);

Timestamp; URL

dc4
Multiple downloads

by one user (Files)

Event : a file is downloaded to a

monitored system

Alert : file size or files number exceeds

the allowed threshold

IP (origin); IP (target); UserID;

Hostname; SystemID (origin);

File(metadata); File(content);

Timestamp

dc5
Multiple downloads

by one user (Emails)

Alert (and Event): email size or

number exceeds the allowed threshold

IP (origin); IP (target); UserID;

Hostname; SystemID (origin);

Email(header); Email(content);

Timestamp

sensitive information (PSI). When an attribute is classified as QID we indicate which

background knowledge may lead to re-identification when joined with the attribute value.

Results are reported in Table 7.6.

Finally, in Table 7.7 we show which data contents are exposed by each component. 5

data contents have been identified for of the processes P2 and P3 since the two processes

mostly use the same patterns (in our use case), the data contents exposed are similar

for both of them. In addition all adversaries (Advanced administrator ,Administrator,

and Operator) have access to all data contents. In this step, no privacy threat (i.e., a

combination of exposure and data content) will be cleared and all identified threats will

be further assessed in the next section.

7.2.4 EPIC Step 4 (TDS)

EPIC’s fourth step “Evaluate and prioritize privacy threat risk” aims at evaluating and

prioritizing the identified privacy threats (see Section 3.3 for more details about this

step). In this chapter, however, we will omit the very last part of Step 4 “the threat

prioritization” since we are only interested in comparing the privacy risk before and after

adopting the privacy-aware risk-based access control model as a privacy risk mitigation

solution.

As defined by EPIC, we start this step by evaluating privacy violation likelihood of
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Table 7.6: Data content attributes analysis table (TDS)

Data

content
ID

QID
PSI

Attribute Bg. Kowledge

dc1 None IP (origin); UserID;

Hostname

List associating IP-addresses or UserIDs or

Hostnames with user-names

IP (target);

Timestamp

dc2 None

IP (origin);

UserID;

Hostname;

PrivilegeName

List associating IP-addresses or UserIDs or

Hostnames with user-names.

Knowledge about privilege-users assignment

(especially for very particular privileges)

IP (target);

SystemID (target);

TransactionName;

Timestamp

dc3 None

IP (origin); UserID;

Hostname;

SystemID (origin)

URL

List associating IP-addresses or UserIDs or

Hostnames with user-names

IP (target);

Timestamp; URL

dc4 None

IP (origin); UserID;

Hostname;

SystemID (origin)

File(metadata);

File(content)

List associating IP-addresses or UserIDs or

Hostnames with user-names

IP (target);

File(metadata);

File(content)

dc5 None

IP (origin); UserID;

Hostname;

SystemID (origin);

Email(header);

Email(content)

List associating IP-addresses or UserIDs or

Hostnames with user-names

IP (target);

Email(header);

Email(content)

Table 7.7: Data content identification table (TDS)

Exposure
Data content

Exp. Component Adversary L

a

Exp1
P2. Alert

Investigation

Advanced

administrator
Authorized dc1, dc2, dc3, dc4, and dc5

Exp2 P2. Administrator Authorized Same data contents as above

Exp3 P2. Operator Authorized Same data contents as above

Exp4
P3. Event

Monitoring

Advanced

administrator
Authorized dc1, dc2, dc3, dc4, and dc5

Exp5 P3. Administrator Authorized Same data contents as above

Exp6 P3. Operator Authorized Same data contents as above

privacy violation threats (see Table 7.8), then impact severity of these violations (see

Table 7.9), and finally we evaluate the privacy violation risk (Table 7.10) as the combina-

tion of privacy violation likelihood and impact severity using the risk matrix presented in

Section 3.3.3 in Table 3.10. In the following, we provide some details on how these values

were obtained.
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Table 7.8: Privacy violation likelihood table (TDS)

Exposure
Data

content
L

a

L

rid

Th L

Exp1: P2

Advanced admin.

dc3 Authorized Medium Th1 High

dc2 Authorized High Th2 Very High

dc3 Authorized High Th3 Very High

Exp2: P2

Administrator

dc4 Authorized High Th9 Very High

dc5 Authorized Certain Th10 Very High

Exp3: P2

Operator

dc4 Authorized High Th14 Very High

dc5 Authorized Certain Th15 Very High

Exp1: P3

Advanced admin.

dc3 Authorized Medium Th16 High

dc2 Authorized High Th17 Very High

dc3 Authorized High Th18 Very High

Exp2: P3

Administrator

dc4 Authorized High Th24 Very High

dc5 Authorized Certain Th25 Very High

Exp3: P3

Operator

dc4 Authorized High Th29 Very High

dc5 Authorized Certain Th30 Very High

In threats Th1, Th2, and Th3 data contents dc1, dc2, and dc3 are (respectively)

exposed (in Exp1) at the level of process P2 (Alert investigation) to the adversary

Advanced administrator (Exp1) who has a likelihood of access La = Authorized (see

Table 7.8). In Th1, the data content dc1 contains (among others) the QID attribut

IP(origin) that can be used by the adversary to reidentify the records with a medium

likelihood (Lrid = medium). Indeed the Alert investigation is not supposed to access in-

formation mapping the IP(origin) and the identity of respondents. He/She can however

easily gain this information a long exercising his/her security tasks. Th2 and Th3 have a

re-identification likelihood Lrid = High. In addition to the QID IP(origin) data content

dc2 and dc3 (exposed by Th2 and Th3) contain the QID attributes PrivilegeName and

SystemID (origin) (see Table 7.6) which can increase the likelihood of re-identification

especially since the Alert investigation has a fairly high capacity of obtaining this infor-

mation especially for particular Privileges (e.g., high-level privileges often assigned to very

few people) and Systems(e.g., very old or very new systems are easy to single out).

The impact of Th1 and Th2 is low (see Table7.9). The violation magnitude of these

threats is quite limited (respectively limited and very-limited) because there are very few

alerts related to dc1 and dc2 (they are mostly collected as events) in addition data at-

tributes in these two data contents are not very sensitive (mostly internal IP addresses and

work related information) therefore in the context of a security alert both non-compliance

impact IC and reputation Loss impact IR2 have low levels. Th3 however has an important
2In this evaluation, we do not have data to evaluate the impact of privacy violation in terms of business agreements

(failure to meet business agreements). Therefore, and for sake of simplicity, we will assume the company has no privacy

business agreements to comply with, and we will not consider the impact factor IB
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Table 7.9: Qualitative privacy violation impact table (TDS)

Exposure
Data

content
Th

Violation

magn.

I

C

I

R

I

Exp1: P2

Advanced

admin.

dc1 Th1 Limited Low Low Low

dc2 Th2 Very-limited Low Low Low

dc3 Th3 Important Low Medium Medium

Exp2: P2

Admin.

dc4 Th9 Medium Med-high Med-high Med-high

dc5 Th10 Limited Med-high Med-high Med-high

Exp3: P2

Operator

dc4 Th14 Medium High High High

dc5 Th15 Limited High High High

Exp4: P3

Advanced

admin.

dc1 Th16 Medium Low Low Low

dc2 Th17 Medium Low Med-low Med-low

dc3 Th18 Important Low Medium Medium

Exp5: P3

Admin.

dc4 Th24 Medium High High High

dc5 Th25 Limited High High High

Exp6: P3

Operator

dc4 Th29 Medium High High High

dc5 Th30 Limited High High High

magnitude of violation and dc3 contains URLs which might leak important information

about respondents. This reflects on Th3 risk level R = high (see Table 7.17).

In threats Th16, Th17, and Th18 the same data contents dc1, dc2, and dc3 are ex-

posed (in Exp4) to the same adversary (Alert investigation) in an other context (event

monitoring ) from process P3. Overall these threats slightly higher risk (with respect to

Th1, Th2, and Th3. see Table 7.17). In fact, the magnitude of violation in this context

(Event monitoring) is more important for all three threats because generally more data

is collected as events (the number of events is higher than the number of alerts) and this

a↵ects more respondents. In addition access to some sensitive data might not be always

justifiable (in the public opinion) if there is no real need (security alerts) and if this access

is used to violate privacy the impact on reputation can be important (e.g., in the case of

Th18). (e.g., in the case of Th18).

Th9, Th10, Th14 and Th15 describe the threats of exposing data contents dc4 (in

Th9 and Th14) and dc5 (Th10 and Th15) by the process P2 to two di↵erent actors

(Administrator and Operator). The above threats, all, have very high likelihoods of re-

identification Lrid = high or Lrid = certain (see Table 7.8) which overall leads to very

high likelihoods of violation (L). This is due to the fact that both data contents exposed in

these threats (dc4 and dc5) leak very strong QIDs (highly identifying attributes/attribute

combinations e.g., Email(header), Files(meta) and Files(content) see Table 7.6). These

threats have average magnitude of violation (limited to medium) because, although very

sensitive dc4 and dc5 are not collected very .

Th24, Th25, Th29, and Th30 are threats identified at the level of P3. They expose data
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Table 7.10: Qualitative privacy violation risk table (TDS)

Th Exposure Data content L I R

Th1 Exp1: P2 Advanced admin. dc1 High Low Low

Th2 Exp1: P2 Advanced admin. dc2 Very-high Low Medium

Th3 Exp1: P2 Advanced admin. dc3 Very-high Medium High

Th9 Exp2: P2, Administrator dc4 Very-high Med-high High

Th10 Exp2: P2, Administrator dc5 Very-high Med-high High

Th14 Exp3: P2, Operator dc4 Very-high High High

Th15 Exp3: P2, Operator dc5 Very-high High High

Th16 Exp4: P3 Advanced admin. dc1 High Low Low

Th17 Exp4: P3 Advanced admin. dc2 Very-high Med-Low Medium

Th18 Exp4: P3 Advanced admin. dc3 Very-high Medium High

Th24 Exp5: P3, administrator dc4 Very-high High High

Th25 Exp5: P3, administrator dc5 Very-high High High

Th29 Exp6: P3, Operator dc4 Very-high High High

Th30 Exp6: P3, Operator dc5 Very-high High High

contents dc4 and dc5 to the actors Administrator and Operator in the context of event

monitoring. Similarly to Th9 and Th10, Th24 and Th25 have very high likelihoods of

violation (L see Table 7.8) since they expose the same data contents (dc4 and dc5). Despite

also having the same magnitude of violation, Th24 and Th25 have higher overall impact

severity (I see Table 7.9) for when involving the actor Administrator (with respect to Th9

and Th10). This increase of the impact severity is due to the lack of appropriateness in

the decision of granting these two actors (with average levels of trust) access to this very

sensitive data (in dc4 and dc5) without a real need for this leakage, both from compliance

and reputational standpoint. We can observe the same trends with threats Th29 and Th30

involving the actor Operator which have similar privacy violation likelihood that Th14

and Th15 (threats involving the same actor and exposing the same data contents dc4 and

dc5 in a di↵erent context). The impact severity level changes were not very observable

in this case because the impact levels are already at their highest level see Table 7.9,

however, a quantitative assessment would probably reveal slightly higher values.

7.3 Privacy evaluation: Privacy-aware TDS

In this section, we apply the EPIC methodology on a TDS equipped with the privacy-

aware risk-based access control system (we refer to this TDS as “Privacy-aware TDS”).

We will then compare these results with the results obtained in the last section (reporting

the EPIC analysis of the TDS without privacy-aware risk-based access control system

“classic TDS”) to assess the privacy improvements.
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7.3.1 EPIC Step 1 (Privacy-aware TDS)

The architecture of the TDS (components, and actors interacting with the system) is not

a↵ected by the adoption of the privacy-aware risk-based access control system. Therefore

we will use the DFD+ diagram modeling depicted in Figure 7.1) for the rest of the analysis.

7.3.2 EPIC Step 2 (Privacy-aware TDS)

The adversaries interacting with the Privacy-aware TDS are the same adversaries identi-

fied in Table 7.1, they also have the same description and tasks.

Table 7.11: Components security table (Privacy-aware TDS)

Component Authorized users Security mechanisms

P2

Operator,

Administrator,

Advanced Admin.

Privacy-aware risk-based access control,

authentication,

network security

P3 same as above same as above

The security mechanisms implemented to protect processes P2 and P3 3 of the privacy-

aware TDS (reported in Table7.11) are similar to the mechanisms identified for the classic

TDS (reported in the previous section Table7.2) with the exception, of course, of the

privacy-aware risk-based access control equipping the privacy-aware TDS.

Table 7.12: Data exposures table (TDS)

Component Adversary Exposure L

a

Exposure magnitude

P2: Alert

investigation

Advanced admin. Exp1 Authorized Important

Administrator Exp2 Authorized Important

Operator Exp3 Authorized Medium

P3: Events

monitoring

Advanced admin. Exp4 Authorized Very-Important

Administrator Exp5 Authorized Important

Operator Exp6 Authorized Limited

The adoption of the privacy-aware risk-based access control (in the Privacy-aware

TDS) does not a↵ect the likelihood of access (La) of the identified exposures, as reported

in Table 7.12 (with respect to the one reported in Table 7.3). The magnitude of exposure,

however, will slightly decrease especially in P3 and for the adversaries Administrator and

Operator, since this process (Events monitoring) does not have the same emergency level

than P2 (Alert investigation), in addition, it can be carried on using partially obfuscated

data. If needed the Administrator and Operator, according to their trust levels, can re-

quest additional data in return for fulfilling trust enhancement obligations. The Advanced
3Similarly to the previous section, Section 7.2 we are only interested in studying processes P2 and P3 since they are the

only component with which authorized actors interact through an access control system
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administrator is expected to have a very high trust level, and his ability to access even

very risky data will be very little a↵ected by the new access control system.

7.3.3 EPIC Step 3 (Privacy-aware TDS)

After identifying the exposures in the previous steps, we now assess whether these expo-

sures (summarized in Table 7.3) represent privacy threats or not (see Section 3.2.4 for

mode details about Step 3 “Identify privacy threats”).

Table 7.13: Data contents patterns association, description of the patterns, and attributes used by each

pattern (Privacy-aware TDS)

Data

content
Pattern Name Pattern description Attributes collected

dc4.1
Multiple downloads

by one user (Files)

Alert : file size or files number exceeds

the allowed threshold

IP (origin); IP (target); UserID;

Hostname; SystemID (origin);

File(metadata); File(content);

Timestamp

dc4.2
Multiple downloads

by one user (Files)

Event : a file is downloaded to a

monitored system

IP (origin); IP (target); UserID;

Hostname; SystemID (origin);

File(metadata);

Timestamp

dc5.1
Multiple downloads

by one user (Emails)

Alert : email size or

number exceeds the allowed threshold

IP (origin); IP (target); UserID;

Hostname; SystemID (origin);

Email(header); Email(content);

Timestamp

dc5.2
Multiple downloads

by one user (Emails)

Event : email size or

number exceeds the allowed threshold

IP (origin); IP (target); UserID;

Hostname; SystemID (origin);

Email(header);

Timestamp

The attributes exposed by the privacy-aware TDS are the same attributes exposed by

the classic TDS. A list of the most relevant attributes is reported and described Table 7.4.

In addition, the new access control system introduces dc4.1, dc4.2, dc5.1 and dc5.2.

These are sub-contents respectively of dc4 and dc5 (see Table 7.5). dc4.2 and dc5.2 are

sub-contents from which we remove the most sensitive attributes Email(content) and File

(content). dc4.1 and dc5.1 have exactly the same attributes than dc4 and dc5. The access

control system, now, distinguishes between data contents, released for event monitoring

(i.e., dc4.2, dc5.2), and data contents released for alert investigation (i.e., dc4.1 and dc5.1)

for the attack patterns “Multiple downloads by one user (Emails)” and “Multiple down-

loads by one user (files)”(see Table 7.13). Indeed, the actors (see Table 7.1) do not need to

see the Email(content) and File (content) when monitoring events for these two patterns,

so there is no need to take a risk in this context, especially when the request does not

have high-level of trust (e.g., low trust user, low trust device).
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The data contents exposed by each exposure is also slightly modified by the adoption

of the privacy-aware risk-based access control systems for some of the actors, as reported

in Table 7.14. Indeed, only the Advanced administrator will still be able to access all

data contents (list in Table 7.13) from both processes P2 and P3. For the Administrator

and Operator, data contents dc4.1 and dc5.1 are only accessible through P2 to investigate

alerts, whereas event monitoring tasks (in P3 ) only expose the “sub-contents” dc4.2 and

dc5.2, which, we will later see, has a lower risk level than dc4.1 and dc5.1 when exposed

to these adversaries.

Table 7.14: Data content identification table (Privacy-aware TDS)

Exposure
Data content

Exp. Component Adversary L

a

Exp1
P2. Alert

Investigation

Advanced

administrator
Authorized dc1, dc2, dc3, dc4.1, and dc5.1

Exp2 P2. Administrator Authorized Same data contents as above

Exp3 P2. Operator Authorized Same data contents as above

Exp4
P3. Event

Monitoring

Advanced

administrator
Authorized dc1, dc2, dc3, dc4.2, and dc5.2

Exp5 P3. Administrator Authorized Same data contents as above

Exp6 P3. Operator Authorized Same data contents as above

7.3.4 EPIC Step 4 (Privacy-aware TDS)

Threats Th1, Th2, and Th3 (threats identified at the level of process P2 ) risk levels

were not a↵ected by the adoption of the privacy-aware risk-based access control solution

(observable by comparing Tables 7.10 and 7.17). This can be explained by the fact

that adversary (or adversaries with this role Advanced administrator) usually has a very

high trust level and the fact that the context requires a more permissive access to data

to react to a potential security emergency. Therefore our access control system will

not take restrictive decisions regarding requests issued by this adversary in this context.

Consequently the re-identifiability (observable through Lrid see Tables 7.8 and 7.15), the

violation magnitude, and the sensitivity (see Tables 7.9 and 7.16) of the data remain

the same for these threats, whether we use our privacy-aware risk-based access control

solution or not.

For similar threats Th16, Th17, and Th18 (threats exposing data contents dc1, dc2,

and dc3 to the same adversary Advanced administrator in a di↵erent context “event

monitoring”) the overall risk level slightly dropped for the privacy-aware TDS using our

access control approach (see Tables 7.10 and 7.17). Although the adversary (Advanced

administrator) is very trusted, some of the data (the most sensitive) will only be released
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Table 7.15: Privacy violation likelihood table (Privacy-aware TDS)

Exposure
Data

content
L

a

L

rid

Th L

Exp1: P2

Advanced admin.

dc3 Authorized Medium Th1 High

dc2 Authorized High Th2 Very High

dc3 Authorized High Th3 Very High

Exp2: P2

Administrator

dc4.1 Authorized Medium Th9 High

dc5.1 Authorized High Th10 Very High

Exp3: P2

Operator

dc4.1 Authorized Medium Th14 High

dc5.1 Authorized High Th15 Very High

Exp1: P3

Advanced admin.

dc3 Authorized Medium Th16 Medium

dc2 Authorized High Th17 High

dc3 Authorized High Th18 High

Exp2: P3

Administrator

dc4.2 Authorized High Th24 Medium

dc5.2 Authorized Certain Th25 High

Exp3: P3

Operator

dc4.2 Authorized High Th29 Negligible

dc5.2 Authorized Certain Th30 Medium

Table 7.16: Qualitative privacy violation impact table (Privacy-aware TDS)

Exposure
Data

content
Th

Violation

magn.

I

C

I

R

I

Exp1: P2

Advanced

admin.

dc1 Th1 Limited Low Low Low

dc2 Th2 Very-limited Low Low Low

dc3 Th3 Important Low Medium Medium

Exp2: P2

Admin.

dc4.1 Th9 Very-limited Medium Medium Med-high

dc5.1 Th10 Very-limited Medium Medium Med-high

Exp3: P2

Operator

dc4.1 Th14 Very-limited Med-High Med-High High

dc5.1 Th15 Very-limited Med-High Med-High High

Exp4: P3

Advanced

admin.

dc1 Th16 Medium Low Low Low

dc2 Th17 Medium Low Med-low Med-low

dc3 Th18 Important Low Medium Medium

Exp5: P3

Admin.

dc4.2 Th24 Medium Med-low Med-low High

dc5.2 Th25 Limited Med-low Med-low High

Exp6: P3

Operator

dc4.2 Th29 Medium Medium Med-low High

dc5.2 Th30 Limited Medium Med-low High

with some adjustments (e.g., anonymization to lower the risk, monitored access to enhance

trust).

Threats Th9, Th10, Th14 and Th15 expose data contents dc4.1 (in Th9 and Th14)

and dc5.1 (Th10 and Th15) by the process P2 (in the context of alert investigation) to

two di↵erent actors (Administrator and Operator). The likelihood of re-identification Lrid

dropped significantly for both involved actors (Administrator and Operator) from {high,
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certain} to {medium, high} which makes the overall likelihood of violation L drop (in

an observable way for Th9 and Th14, see di↵erence between Table 7.8 and Table 7.15).

This decrease is due to the fact that our privacy-aware risk-based access control system is

expected, even in this context, to enforce anonymization (more or less strong anonymiza-

tion depending on the trust of the actor/requester) on dc4.1 and dc5.1, before releasing

the information, because these data contents are very easily re-identifiable (they con-

tain attributes like Email(header)) and very sensitive (contain sensitive information e.g.,

Email(content) and File(content)). The magnitude of violation decreases as well and it

becomes very-limited for all four threats, in fact, as mentioned earlier, the adoption of our

access control system divided dc4 and dc5 (see Table 7.5) to “sub-contents” dc4.1, dc5.1

only exposed in case of alerts and dc4.2 and dc5.2 exposed as events. dc4.2 and dc5.2

contain less sensitive attributes (see Table 7.13), but have higher number of records with

leave dc4.1 and dc5.1 with a limited number of records. This also reflected on the impact

severity of the threats, which dropped from (see Tables 7.9 and 7.16) med-high to medium

for Th9 and Th14 (threats involving the actor Administrator) and from high to med-high

Th10 and Th15 (threats involving the actor Operator) the operator accessing this very

sensitive data (even in a security context) is still problematic and have high impacts on

both compliance and reputation the data accessed was used to violate privacy. The overall

risk for these threats

Th24, Th25, Th29, and Th30 are threats identified at the level of P3. They now

expose data contents dc4.2 and dc5.2 (instead of dc4 and dc5 see Tables 7.7 and 7.14) to

the actors Administrator and Operator in the context of event monitoring. As mentioned

earlier dc4.2 and dc5.2 are sub-sets of dc4 and dc5 and containing less QIDs and sensitive

attributes (e.g., no File(content) in dc4.2 and no Email(content) in dc5). These attributes

are not supposed to be accessed in the context of event monitoring, and if really needed

the Administrator and Operator have to fulfill trust enhancement actions to be granted

access. These changes in the data contents in addition to anonymization applied to high

risk views of dc4.2 and dc5.2, drastically decrease the likelihood of re-identification Lrid and

the overall privacy violation likelihood L of these threats (see Tables 7.8 and 7.15). The

magnitude of the violation does not observably decrease (since the quantity of data is still

very important and contains some sensitive information e.g., Email(header), File(meta)

that can still be used to violate privacy). Nonetheless, impact factors IC and IR and

the overall I decrease significantly. Consequently, the adoption of our privacy-aware risk-

based access control system decreased significantly the over all risk for threats Th24,

Th25, Th29, and Th30 (see Tables 7.10 and 7.17)
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Table 7.17: Qualitative privacy violation risk table (Privacy-aware TDS)

Th Exposure Data content L I R

Th1 Exp1: P2 Advanced admin. dc1 High Low Low

Th2 Exp1: P2 Advanced admin. dc2 Very-high Low Medium

Th3 Exp1: P2 Advanced admin. dc3 Very-high Medium High

Th9 Exp2: P2, Administrator dc4 High Medium High

Th10 Exp2: P2, Administrator dc5 Very-high Medium Medium

Th14 Exp3: P2, Operator dc4 High Med-high High

Th15 Exp3: P2, Operator dc5 Very-high Med-high High

Th16 Exp4: P3 Advanced admin. dc1 Medium Low Low

Th17 Exp4: P3 Advanced admin. dc2 High Med-Low Medium

Th18 Exp4: P3 Advanced admin. dc3 High Medium Medium

Th24 Exp5: P3, administrator dc4.2 Medium Med-Low Low

Th25 Exp5: P3, administrator dc5.2 High Med-Low Medium

Th29 Exp6: P3, Operator dc4.2 Negligible Medium Low

Th30 Exp6: P3, Operator dc5.2 Medium Medium Medium

7.4 Chapter conclusions

In this chapter, we evaluated the privacy-aware access control approach from the privacy

perspective by using the EPIC methodology (described in Chapter 3). To this scope, we

applied the methodology to identify and evaluate privacy threats originated by authorized

insider actors for two cybersecurity systems: a) a “classic TDS” and a the same TDS

equipped with our privacy-aware access control “privacy-aware TDS”. Then, we compared

the risk values of threats identified in both systems.

The overall mitigatory impact of our approach (privacy-aware access control approach)

on authorized insider threats’ privacy risk level can be seen by comparing Table 7.10 and

Table 7.17. Integrating our approach within a privacy-aware TDS results in a significant

decrease of the risk levels of threats where sensitive data was accessed in contexts where

there no “strong” need to access it. Thus, it reinforces the application of the data min-

imization principle and grants access on real need-to-know bases. The adoption of our

approach did not have an observable impact on threats when data are accessed for analyz-

ing a security alert. Indeed in this context, the security needs outweigh the sensitivity of

the data and legitimize access especially for trusted actors. At a more granular level, our

privacy-aware access control approach decreases the magnitude of exposures even in this

context, by 1) decreasing the magnitude of violation by decreasing access to sensitive data

contents 2) decreasing the likelihood of re-identification by limiting access to identifying

attributes (e.g., through anonymization) and consequently the total privacy-violation like-

lihood. 3) mitigating the impact of privacy violations from both legal (non-compliance

impact factor) and reputational (reputation loss impact factor) aspects. these impacts
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are more observable for categories of actors with low trust level (i.e., Operators).

One of the aspects that we did not consider in this evaluation the impact of our

access control models on privacy threats involving access to data in a non-trusted context

(e.g., from a personal mobile). This is mainly because this scenario is very unlikely in

the context of corporate cybersecurity. It is indeed rare that a company allows security

agents to carry on critical security tasks, such as attack investigation, and forensic from

a personal laptop or even a corporate mobile. However, if this scenario was to be, our

methodology (EPIC) would model these two situations (i.e., access from a trusted device

and access from a non-trusted device) as two di↵erent data flows (in the DFD+ at Step1

see 3.2.2) through di↵erent components with di↵erent security mechanisms (see Table 3.1)

and involving two di↵erent actors (see Table 3.2) with di↵erent trust level. This way we

can also capture the impact of using our privacy-aware risk-based access control in these

scenarios.
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Chapter 8

Industrial Impact

This thesis is part of a the European Industrial Doctorate on SECurity and

Trust of Next Generation ENTerprise Information Systems (SECENTIS)

held in collaboration with the industrial partner SAP. Therefore this work is

partly motivated by industrial applications. In this Chapter, we discuss the im-

pact of our work in terms of possible migration to industry, standardization

bodies, and open source communities.

8.1 Introduction

Businesses are increasingly leveraging data to provide their customers with more e�-

cient, more customized and faster services and products. (as epitomized by the famed

Economist’s article: Worlds most valuable resource is no longer oil, but data ). In fact, by

collecting and analyzing more data, companies are now in the position to improve their

products, which, in turn, can attract more users, and generating even more data, and so

on.

The access to massive and granular data can provide a company a competitive advan-

tage, but it also imposes significant burden on the management and governance of this

(often) confidential data. This is particular true, when we deal with personal data, which

are highly regulated, and the desirable utility of data access should be carefully balance

with the privacy risk. As a consequence, companies need processes and technologies to

carefully assess and control privacy risk, and, if needed apply risk mitigation measures to

limit the risk exposure.

As the market leader in enterprise software applications, SAP is also working to address

these concerns. Indeed, SAP is focusing on developing novel applications, which fully

exploit the competitive advantage (in terms of performance) of cutting-edge technologies

such as HANA its in-memory database. At the same time, SAP supports its customers

to comply with data protection regulations and the increasing privacy awareness of their
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users, especially in the light of the new European data protection regulation (GDPR).

Therefore both research axes covered by the thesis (privacy threat assessment and risk-

aware access control as a privacy-enhancing solution) are relevant for the software industry

as well as for SAP. More in details, threat modeling is considered one the key element of

SAP secure development lifecycle, and although originally focusing on security threats, it

is including more and more data protection aspects. Indeed privacy threat identification

and evaluation is one of the requirements of the new GDPR regulation, for all organiza-

tions dealing with personal data (which is almost the case of all modern organizations).

The methodology described in Chapters (REF) provides a valuable instrument for privacy

threat modeling and assessment of risk, which fits the SAP risk-based approach for secure

software development.

The balance between data access and privacy is also of primary importance for SAP and

SAP customers. classic access control systems (currently used) can cope with most of the

existing business scenarios, but they can do that at the price of using complex and ad-hoc

security policies, and in perspective more flexible and intuitive access controls systems

are desirable. The business decision process is driven by risk assessment, accordingly,

it appears natural considering access control system based on risk evaluation. In this

context, the examples presented here represent a significant playground for testing novel

access control methods on SAP technologies. Indeed using our privacy-aware risk-based

access control allows for optimizing the trade-o↵ between privacy and data exploitation.

We also showed how a calibrated application of anonymization can be used to reduce the

risk. SAP has a relatively long history in research on anonymization [154], and, more

recently, it has been releasing anonymization capabilities in its products [137].

In this chapter, we will emphasize the relevance of this thesis work in the industrial en-

vironment and particularly for our industrial partner SAP. In Section 8.2 we will describe

more in detail to some usage scenarios concerning both “EPIC” and the privacy-aware

risk-based access control. In Section 8.3 we will discuss existing standardized relevant to

this thesis and in Section 8.4 we will present some open source tools used in our research.

8.2 Industrial Use cases

8.2.1 Processes and automation for privacy impact assessment

Preserving users privacy has become a major concern for every organizations and busi-

nesses in the last decade. Indeed an IBM report [96] estimates a $4 million average cost of

a privacy breach in 2016. In 2018, the European Unions General Data Protection Regula-

tion (GDPR) will introduce fines of to 20 million euros or 4% of annual worldwide turnover

for companies failing to meet the GDPR requirements [57]. A recent research [97] reveals

that an organization expect to spend over one and a quarter million euros (e1,360,567 or
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$1,432,176) in order to achieve full compliance. This amount is obviously well below the

possible cost of non-compliance, however, it is also a strong call for methods and tools to

support privacy threat modeling and risk assessment for GDPR compliance.

Risk management is of primary importance at SAP. At global level, SAP has estab-

lished comprehensive internal control and risk management structures that enable the

company to identify and analyze risks early, and take appropriate actions [139] This sys-

tem has numerous control mechanisms and it is an important element of SAP corporate

decision-making process; it is therefore implemented as an integral part of SAPs business

processes across the entire SAP group and SAP’s business. The risk-based approach is

also at the core of SAP security. Starting from 2012, SAP established a threat model-

ing process and it is now a standard component in SAPs Secure Software Development

Lifecycle. Originally based on the STRIDE threats list [124], it is increasingly integrating

new threats, and especially privacy threats.

The increasing complexity and specialization of software systems (and corresponding

privacy threats) calls for more sector-specific threat assessment. In this context, the EPIC

methodology, described in Chapter 3, provides a strong guidance for the adaptation and

extension of privacy threat models specific for cybersecurity systems. SAP is largely

investing for keeping its track record of safeguarding businesses against security and pri-

vacy threats, continuously innovating the security features of its product portfolio, but

also releasing specific security products such as SAP Enterprise Threat Detection (SAP

ETD), SAP Governance, Risk and Compliance solution (GRC), SAP Identity Manage-

ment. The secure development of all cybersecurity products needs a careful and specific

threat modeling, and the large presence of personal data, such as log-entries (SAP ETD)

or identity information (SAP Identity Management), give a predominant role to specific

privacy threats.

Lastly, we have to mention that structured approach of EPIC methodology makes

it particularly suitable for being implemented as a tool to increase the automation of

the whole process, along the lines of the customization of SAP GRC for privacy impact

assessment, which was recently pioneered by SAP Security Research [3, 49].

8.2.2 Privacy preserving threat detection

As described in the use-cases, presented in Chapter 5, Section 5.5, the risk-based access

control model could be applied to enhance data access for threat detection systems.

SAP has a solution to analyze security log files for detecting possible intrusions, SAP

Enterprise Threat Detection (SAP ETD) [140]. This product was originally prototyped

by SAP Security Research, which has still a strict interaction with the product team.

Accordingly, it is not surprising that our research has been conducted in close interaction

with the product team.
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SAP ETD collects application level security-relevant log data from SAP and non-SAP

systems and analyzes the collected information in real-time in order to automatically

detect attack patterns and generate alerts.

The logs often contain personal information (e.g., user-ids, IPs) together with informa-

tion on the behavior of users (which, in case of employees, is strictly regulated by labor

laws). The current version of ETD uses a pseudo-anonymization of User IDs as basic pri-

vacy enhancement technique to fulfill the data minimization requirement. This method

provides privacy protection, but in complex scenarios, it may su↵er from the existence

of several identifiers and other elements that could be combined to re-identify or infer

information about users (e.g., MAC and IP addresses, Terminal IDs, Timestamps).

In our research, we proposed a model permitting to devise a privacy-preserving access

to logs (see Figure 8.1), keeping risk under control, and, at the same time, limiting the

impact on the utility, as we showed in [110] testing our approach with real data from ETD

infrastructure. In the same context, we also proposed tailored anonymization techniques

applicable to security log-files.

Figure 8.1: Single domain log files sharing

The results were presented to SAP DKOM event, which is the main SAP development

community event, gathering representatives from a broad range of SAP development

teams.

Furthermore, the ETD system is in premises solution: a company running an SAP

ecosystem and the threat detection system, collects and use internal anonymized data to

fulfill the privacy requirement described above, but the data stay within the same com-

pany, or in other words, they remain in the same trusted domain (see Figure 8.1). On the

other hand, the access to logs from multiple domains (say, di↵erent companies/organiza-

tions) can help to detect more complex attacks, but it also increases tremendously the

requirements from data protection and privacy point of view. Our research can support
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the implementation of multi-trust domain logs access (as depicted in Figure 8.2), it could

be realized in our model by setting di↵erent trust levels (i.e., di↵erent risk threshold) based

in the trust relationship between the parties, for instance, a long-term partner organiza-

tion may be more willing to share data (so high trust threshold), whereas other parties

may have stronger privacy requirements and choose a more conservative approach. The

usage of obligations, as proposed in Chapter 4 can increase the flexibility of the solution,

allowing for handling more complex scenarios, such as considering geographical locations

(geographies are extremely relevant for applicability of privacy laws).

Figure 8.2: Miltiple-trust domain log files sharing

Although Threat Detection Systems are the prominent application example in the

thesis, we should note that the model could be applied to other solutions, for example, to

address complex authorization scenarios for Human Resource solutions (see the example

use-case described in Chapter 6) or more general reporting use-cases, including mobile

solutions (see the example use-case described in Chapter 4).

Lastly, a key element of our research is the usage of anonymization for reducing the

risk and increasing the access of the data. Due to its relevance for multiple business cases,

anonymization has considerably been investigated by SAP Security Research, both in the

context of k-anonymity family models [154] and di↵erential privacy models, and SAP o↵ers

multiple solutions with anonymization features: SAP TDMS [138], Anonymization Service

for SAP Cloud Platform [137], and the above-mentioned SAP ETD. Our solution can

leverage the features of SAP technologies, indeed, in many cases, querying a large database

and extracting an anonymized dataset in real-time is very hard, and most anonymization

processes are run o↵-line (i.e., as a batch process). However, exploiting the e�ciency of in-

memory databases, combined with column-store optimized algorithms as provided by SAP

Hana would facilitate the implementation of an on-the-fly, flexible Privacy Risk Aware

Access Control model that can be easily integrated with new data-intensive business
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applications.

8.3 Standardization Bodies

There are no standards yet for privacy-aware and risk-Based access control systems. How-

ever, during the conception of our Risk-Based Access Control framework, as well as the

implementation of prototypes we took reference from several well-known standards such

as: the eXtensible Access Control Markup Language (XACML). XACML is an OASIS

standard for fine-grained authorization management. XACML defines both an attribute-

based policy language, and the architecture and dataflow model describing how to evaluate

access requests and enforce access decisions according to the rules defined in policies. 5

In particular, our architecture (see Figure 4.2), is reminiscent of XACML proposal, and

part of our results may be considered as an extension of the standards.

In addition, there are standards for security risk, such as the ISO/IEC 27000 family, and

an access control based on risk estimation could be beneficial for implementing security

control and mitigation measures for those standards.

8.4 Open-source Software

To the best of our knowledge no open source implementation, of any kind risk aware

access control system, has been proposed yet (neither as a proprietary solution). However,

several open source implementations of di↵erent models of access control system have been

proposed. The most interesting propositions for as were “balana API” by Wso2 [162],

HerasAF [53], and “ALFA” [11] a free closed source API by axiomatics.

For the implementation of the privacy-aware and risk-based Access control system we

used open source Privacy Enhancement libraries available such as the java anonymization

toolkit ARX [128]
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Chapter 9

Conclusions and Future work

9.1 Conclusions

In this dissertation, we motivated, designed, implemented, and validated a novel privacy-

aware risk-based access control model.

We develop and validate EPIC (Evaluating Privacy violation rIsk in Cyber-security

systems), a privacy threat identification and evaluation methodology for cybersecurity

systems. Since it is very di�cult to follow a unique methodology to carry a privacy threat

assessment in a general context [161] we chose to focus assessing privacy threats in cyber

cybersecurity systems. This choice was motivated by the two facts a) these systems are a

vital component of any information system; b) current cybersecurity products collect huge

quantities of sensitive information and become increasingly invasive which makes a privacy

threat assessment on these systems a very interesting and useful exercise. We use EPIC

to study di↵erent privacy threat scenarios in the cybersecurity systems of an organization

and emphasize the importance of dealing with insider privacy violation threats since the

threats have high risk and priority levels.

We propose, implement, and evaluate a novel access control model that integrating

trust with risk and supports a flexible access control in dynamic contexts. trust and risk

adjustment strategies are applied prior to access, in parallel with the resource consumption

to ensure an acceptable level of risk.

We adapt this trust and risk-based access control model to the context of privacy and

propose a privacy-aware risk-based access control.In this model, we provide a concrete way

to quantitatively estimation of privacy risk based on a category of metrics called “syntactic

anonymity metrics”. To evaluate the feasibility and e↵ectiveness of this approach we

selected two case studies namely “HR information disclosure” and “Privacy aware threat

investigation”. We developed two prototypes based on a slightly di↵erent version of the

framework and run a set of experiments on each implementation. The obtained results

show that the framework leads to meaningful results and real-time performance for both
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case studies.

We propose a second version of the privacy-aware risk-based access control using an-

other category of privacy metrics, equally interesting “the di↵erential privacy” metrics.

This di↵erential privacy based model allows for data access at di↵erent privacy levels,

generating a sanitized data set according to the privacy clearance (trustworthiness) of

a request. A first experimental analysis, considering an HR related use case, and a

benchmarking dataset, indicates that the model can address complex privacy and utility

requirements. Indeed, in our use case, we use this model to prevent classification model

from violating the privacy of individuals in the training data while ensuring a decent

level of accuracy to allow di↵erent actors to exploit the results of this analyses. The

performance of this model, however, did not meet the real-time requirements and several

improvements are still to be added to reach this goal.

We evaluate the privacy-aware access control approach impact on privacy by using the

EPIC methodology. We do so by comparing the privacy violation risk of di↵erent threats

identified in threat detection system (TDS), before and after integrating our privacy-

aware access control to the TDS. The evaluation results show the mitigatory impact of

our model on the threats originated by insider authorized actors.

Since this work is part of SECENTIS the European Industrial Doctorate on Security

and Trust of Next Generation Enterprise Information Systems the Chapter 8 of this

thesis was dedicated to discussing the industrial impact of the Ph.D. thesis.

9.2 Future work

Some aspects of the work presented in the thesis could be further developed as future

work. For instance in Chapter 6, we present a “di↵erential privacy based” privacy-aware

risk-based access control model; di↵erentially private mechanisms su↵er from privacy

protection degradation [80] (i.e., privacy guarantees are lower) when the dataset is queried

multiple times (by the same user, or several users if we consider a collusion scenario [43]).

It would be interesting to develop metrics assessing this degradation in our model but

also explore how our model can mitigate (if not reverse) this degradation when evaluating

access decision for multiple queries.

The model we proposed (in Chapter 6) does not support yet this kind of scenarios

and doesn’t consider queries history. Although this might be su�cient for some cases

(similar to the case study used to assess this model Section 6.2), in the majority of cases

users are allowed to query the dataset multiple times. Therefore, more investigations and

modifications are needed to make this model compatible with such scenarios.

Moreover, several possible future research directions can also be explored based on the

work done in this thesis.We will describe three of them in this section: i) Improve the
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trust and risk assessment (in Section 9.3).ii) a cryptographically enforced privacy-aware

risk-based access control a distributed access control handling new software architectures

and usage scenarios (in Section 9.4). iii) Develop privacy metrics and privacy manage-

ment tools enabling the data-owner to be more involved in the access control process(in

Section 9.5).

9.3 Improve the Trust and Risk Assessment

In Chapter 5 and Chapter 6, we show how it is possible, using some heuristics, to derive

sound relative estimation (i.e., using dimensionless units) for trust and risk, in some

specific usage scenarios. However a general approach applicable to multiple use cases is

still missing.

Ideally, we should estimate trust and risk in terms of monetary value, which has sev-

eral advantages: 1) it provides a common unit of measure to combine risk and trust

factors of very di↵erent nature (e.g., security risk, compliance risk, privacy risk or trust

from reputation systems, trust-factors, behavioral analysis), 2) it is easy to understand

for non-technical experts 3) it can be easily combined with risk mitigation and trust

enhancement strategies that have a clear monetary value (e.g., insurance, certifications,

legal contracts, trusted devices).

Regarding the Risk assessment, in the short term, we would like to validate our risk-

based access control model on other use cases, where some, quantitative methods are,

even partially, available (ideally using monetary values). In this respect, it is particularly

interesting to investigate emerging cyber-insurance models (building on techniques derived

by the financial sector, e.g. Value-at-risk, Monte-Carlo simulations) to compute the values

of cyber-risk and hence the cost of insurance premiums [143].

In terms of Trust assessment, as hinted in Chapter 5 we would also like to investigate

the impact of authentication mechanisms on trust. This assessment is particularly relevant

in cloud ecosystems such as the example presented in 9.4. Based on this estimated (i.e.,

probability of authentication success [83]) we should be able to significantly improve the

trust assessment and implement optimal trust enhancement strategies. These strategies

could include a combination of multiple authentication methods according to the risk

associated with the request.

151



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.4 Cryptographically Enforced privacy-aware risk-based access

control

The risk-based access control model we present in Chapter 4 (as well as the privacy-aware

access risk-based control model in Chapters 5 and 6), is operating under the assumption

that the party storing the data (and handling the risk-based access control process) is

“fully” trusted. However, in more and more frequent cases this assumption does not hold

anymore.

Let’s consider, for instance, an e-Health service that monitors the health status of

elderly people patients su↵ering from cognitive troubles. This monitoring is based on

behavioral analyses using data collected in the patient’s home. The service detects be-

havioral anomalies that can endanger the health of the patient (e.g., missing a prescribed

medication for several days) and sends evaluation reports to the treating physician. It also

allows family members to check on the patient. finally, the serves can detect emergency

situations (e.g. potential fire hazard, the patient fell, wrong medication) and send alerts

for quick interventions (e.g. to emergency services, firefighters).

Figure 9.1: Smart-Home Behavioral Analysis Systems

Technically speaking, the service relies on a pervasive sensing infrastructure is deployed

in each monitored home. The sensing devices unobtrusively capture the interaction of the

inhabitant/patient with his/her surrounding environment. These raw measurements are

then sent to a gateway, combined, analyzed and translated humanly readable information

(e.g. temperature in a room, open/closed doors/repositories, manipulations of objects)

called events. An event is represented by the type, the status and the time-stamps at

which the event occurred. Due to the huge amount of data produced by the system,

the gateway periodically (according to a user-defined time interval) transmits collected
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data (i.e., events, ADLs, and anomalies) to a external storage hosted by a cloud service

provider CSP. Data can then be queried and analyzed by authorized actors. Figure 9.1

illustrates a high-level architecture of the service as well as di↵erent actors interacting

with (this model was inspired by a similar model proposed in [131]).

It is easy to see that this e-Health service is very privacy-invasive (i.e., permanent mon-

itoring), and the kind of data it collects and processes is very sensitive (e.g., health, habits,

and preferences etc.). It is, therefore, very important to preserve the confidentiality of this

data and to carefully control access requests, respecting data minimization principle and

data owners privacy preferences. For instance, the CSP, although semi-trusted, should

not be able to see the data. this confidentiality requirement could be satisfied by storing

the data encrypted. However, it is not very convenient to retrieve and decrypt all the

data each time an actor requests access. Ideally, actors should be able to query the data

while revealing a minimum amount of information to the CSP. Di↵erent actors should

also have access to di↵erent amount (or granularity) of the data depending on their roles

(e.g., family members, doctor, firefighters), data owner preferences(e.g., notify only the

designated a next of kin, change doctors), and the context of access (e.g., the security

level of the device used, geographical location).

Some of requirements identified in this example can be fulfilled using cryptographic

access control models(see [64, 159]). Along these e↵orts, the framework will protect the

confidentiality of the data from unauthorized accesses (including the CSP) by encrypting

the data at the data owner level, before sending the encrypted version to be stored. The

selected encryption schemes should allow executing a set of search queries as well as some

operation such as risk estimation and mitigation operations. Search-able data storage

Moreover, this framework will also provide a flexible access to authorized actors (e.g.,

doctors, emergency services) to fulfill their health-care tasks, while protecting the data

owner’s privacy Attribute Based Encryption. This second feature will be implemented

through risk-based approach ensuring the enforcement of the minimization principle and

maintaining the privacy risk under an acceptable threshold. Finally, risk mitigation ac-

tions such as data anonymization can be performed at the CSP level (en encrypted data)

using homomorphic encryption schemes.

Search-able data storage As mentioned earlier this feature task is to ensure the confi-

dentiality of the data (from non-authorized actors including the CSP hosting the data)

and at the same time allow authorized users to run search queries over this encrypted

data. Several encryption schemes have been proposed in the literature to enable queries

over encrypted data (see [23] for review) Most of these works focus on a specific category

of queries (e.g., word search queries, number comparison queries). However, as suggested
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in [127] some of these cryptosystems can be combined and used to encrypt and store

several version of the data in a way that covers the category of queries needed by the

actors. After encryption, the encrypted data-set, with this new schema, is stored at a

cloud storage. Each user/application (authorized to query the data) is equipped with a

proxy that translates the data requests and answers to enable querying the encrypted

data-set. This “new” data-set is stored in a cloud storage with a new schema (pseud

anonymity table and column names).

Privacy-aware access control The privacy-aware risk-based access control process, pro-

posed in this framework can be executed in three main operations:

• Identity/attributes management. The identity and attributes management consists of

collecting, updating, and suppressing authorized actors attributes. These attributes

can describe the actor him/her self (e.g., role, name), it can describe the device/net-

work used to send the access request, it can also describe the context of the request

(e.g., geographical location, time of the request). This operation aims to control the

integrity and availability of information useful for the other two operations (i.e., priv-

ilege management and ). In fact, a subset of the attributes will be used to generate

decryption keys that will allow the actors to access the data, another subset will be

used during the access evaluation to assess the access risk.

• Privileges management. As its name indicates, privilege management, is the en-

semble of steps allowing to assign, update, and revoke privileges to/from an actor.

A privilege in our context is the ability to decrypt data attributes and access the

message in clear. Which means privileged actors will possess a decryption key, and

managing privileges comes back to managing the actors key (i.e., encrypting data

and generating decryption keys) Di↵erent actors will have di↵erent privileges, and

consequently di↵erent keys. However, we would also like the encryption to be done

on a unique version (i.e., not an encrypted version for each user) and we would like

it done by a unique key (possessed by the data owner). Attribute-based encryption

or ABE presented in [64, 77], o↵ers a natural solution to this situation. In fact this

encryption model allows i) to generate a master key held at the data owner and used

to encrypt the data, ii) to generate several user keys (using the data owner’s master

key), and iii) to define an access structure/policy and a set of attributes describing

which key can decrypt which data. It is possible to express authorizations through

attribute-based object-centric policies using Cipher-text attribute-based encryption

(CP-ABE [18,70]). A policy ⇡o 2 Pi is used for the encryption for each object o 2 O

( with Pi the set of all policies defined by a data owner and O the set of objects

possessed by the data owner). Each policy ⇡o uses a set of attributes A⇡ to describe

set of privileged users U⇤ can decrypt the data and in which set of contexts C⇤ the
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privilege applies.

⇡o  
_

u2U⇤
c2C⇤

⇣ ^

au2A0
u

au ^
^

ac2A0
c

ac
⌘

With A0
u ✓ Au a subset of a user’s attributes and A0

c ✓ Ac a subset of a context’s

attributes. Indeed each user u 2 U is grated a user key generated using set attributes

Au that describes c and a set of attributes Ac describing a context c 2 C where the

key can be used. Each key describes the user and context according to the description

function:

D(key) =
^

au2Au

au ^
^

ac2Ac

ac

The decryption privilege applies for a user u in the context c i↵ ⇡o ⌘ D(u)^⇡o ⌘ D(c)

• Access evaluation and enforcement. Similarly to the model presented in Chap-

ter 4 4.1, in this step the access control system, decides to grant access or not to the

encrypted resource the requester based on the privacy risk (sensitivity and likelihood

of re-identification of the requested data-view) and the trust of the request.

Risk and Trust evaluation and Adjustment Since the data is stored encrypted at the

CSP level. The CSP should be able to provide a way to estimate the privacy risk.

If we take the case of k-anonymity based re-identification risk the estimation of k the

cardinality of a data-view (as described in Section 4.3.3) is based on a comparison of

QIDs and can be computed using searchable encryiption [127]. For more elaborate risk

evaluation over encrypted data, some work is still to be done by exploring the possibilities

of using homomorphic encryption algorithms to compute over encrypted data (see [38,

39]). Same for data anonymization (as risk mitigation strategy) we would like to develop

anonymization algorithms that could be executed over homomorphically encrypted data

so the CSP can execute the adequate anonymization corresponding to the risk and trust

level of a request and return an anonymized version of the data when needed, still without

discovering the content of the data.

9.5 Data-owner centric privacy management

The third direction is to develop privacy metrics and privacy management tools based

on a “crowdsourced” perception of privacy and enabling data-owners to be more involved

controlling access to their data.

The idea is to provide data owners with tools to monitor their privacy and be able to

grant (or deny access) to their data in a privacy-preserving way when this is possible. It
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Figure 9.2: Privacy radar

also can be used to enforce data-owners privacy preferences when a third-party is handling

access to their data. This can be achieved through the classification of the requested data

into categories (e.g., Activism, Business, Health, Law, Politics, Relationships, Religion).

Then we assess the privacy sensitivity of the data in each category (as shown in Figure 9.2).

Figure 9.3: Privacy Lexicon: distributions of

words by category

Figure 9.4: Privacy Lexicon: distributions of

words by sensitivity level

These two operations will be carried using a crowdsourced privacy lexicon labeling a set

of words with sensitivity and category tags (as inspired by sentiment analyses approach).
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The access is then evaluated based on these sensitivity levels assessed against a sensitivity

threshold set by the data-owner (or based on her/his preferences).

The first step toward this, is to build the privacy lexicon. We already started this

operation using amazon mechanical turk [25] and we collected a first batch of 1030 words

classified according to 12 categories and a sensitivity range between 0 to 4 (0 being

the least sensitive and 4 the most sensitive). We are currently trying to enrich this

privacy lexicon using lexicon extension techniques and will be soon releasing for public

use. Figure 9.3 and 9.4 describe some characteristics of our lexicon in terms of categories

and privacy sensitivity.
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