
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School

Towards Uncovering the True Use
of Unlabeled Data in Machine

Learning

Emanuele Sansone

Advisor

Prof. Francesco G. B. De Natale

Università degli Studi di Trento

March 2018

Abstract

Knowing how to exploit unlabeled data is a fundamental problem in machine learning.
This dissertation provides contributions in different contexts, including semi-supervised
learning, positive unlabeled learning and representation learning. In particular, we ask
(i) whether is possible to learn a classifier in the context of limited data, (ii) whether
is possible to scale existing models for positive unlabeled learning, and (iii) whether is
possible to train a deep generative model with a single minimization problem.

Semi-supervised learning, positive unlabeled learning, unsupervised learn-
ing, deep generative models, feedforward neural networks, Plummer autoen-
coders.

Acknowledgements

I have been thinking for long time whether to write the acknowledgements in this
dissertation, since I believe that this is somehow out of my nature. Finally, I have decided
to do that, because I consider this as an opportunity to thank explicitly the people that
have been around me in these four years.

First and foremost, I want to thank Francesco De Natale, my advisor, for giving me
the freedom to choose the topic that I like and never putting pressure on me. This
is not as beautiful as it sounds, because I believe that freedom comes at the cost of
higher responsibility. Therefore, I thank Francesco for giving the chance of improving my
personal skills. Furthermore, I have to be grateful for his availability and his capability
to listen to me and providing useful feedbacks. This has been a real lesson for me.

I want to thank also Nicola Conci, because he has been the first person to propose me
to do the PhD and I cannot forget that.

I thank people from the MediaLab group for the working atmosphere and for being
patient with me, especially when I had to run many simulations on GPU. I imagine that
this has been quite annoying for them.

I thank Quoc-Tin Phan, Lam Thi Ngoc Tran and Duc-Tien Dang-Nguyen, my friends,
for the time spent together and the long discussions we had in this long period. For sure,
I will miss them.

Finally, I want to thank my family (my father, my mother, my sister and Lolly). If
I’m here today, it’s due to them.

Contents

1 Introduction 1

2 Semi-Supervised Learning with Limited Data 3
2.1 Background . 3
2.2 Related Work . 5
2.3 Proposed Solution . 6

2.3.1 Variational Approximation . 8
2.3.2 Posterior Inference and Prediction 9

2.4 Experiments . 10
2.4.1 Semi-Supervised Clustering . 11
2.4.2 Semi-Supervised Classification . 14
2.4.3 Subgroup Discovery in Breast Cancer 15

3 Scalability in Positive Unlabeled Learning 17
3.1 Background . 17
3.2 Related Work . 18

3.2.1 Comparison with One-Class Classification 19
3.2.2 Comparison with Semi-Supervised Learning 20
3.2.3 Theoretical Studies about PU learning 21

3.3 PU Learning Formulation . 23
3.4 Proposed Solution . 26

3.4.1 QP Subproblem . 26
3.4.2 Optimality Conditions . 29
3.4.3 Working Set Selection . 30
3.4.4 Function Cache and Bias Update 31
3.4.5 Initialization . 32
3.4.6 Theoretical Analysis . 34

3.5 Experiments . 41

i

4 Deep Generative Models 47
4.1 Background . 47
4.2 Related work . 48
4.3 Proposed Solution . 51
4.4 Experiments . 54

4.4.1 Grid dataset . 55
4.4.2 Low dimensional embedding dataset 56
4.4.3 Stacked-MNIST . 57

5 Conclusions and Future Directions 61

Bibliography 63

A Supplementary Material for Chapter 3 71
A.1 Proof of the Representer Theorem . 71
A.2 PU Learning Formulation . 72

A.2.1 Derivation of the Primal Problem 72
A.2.2 Derivation of the Dual Problem . 73

A.3 Proof of Lemma 1 . 74

B Supplementary Material for Chapter 4 77
B.1 Proof of Lemma 5 . 77
B.2 Proof of Theorem 1 . 78
B.3 Experiments on Grid Dataset . 82
B.4 Experiments on Low Dimensional Embedding Dataset 82
B.5 Experiments on Stacked-MNIST . 83

List of Tables

2.1 Experimental datasets. 10
2.2 Results on breast cancer dataset evaluated in terms of IGP measure. Clus-

ters are ordered by decreasing IGP value. 15

3.1 Equations and Conditions Used to Solve the Four QP Subproblems. 28
3.2 Characteristics of datasets (small scale datasets on the left and large scale

datasets on the right). 41
3.3 Comparative results (F-measure) on different small-scale datasets and on

different values of hyperparameters using the linear kernel. 20% of positive
examples are labeled, while the remaining are unlabeled. 42

3.4 Comparative results (F-measure) on different small-scale datasets and on
different values of hyperparameters using the Gaussian kernel (scale param-
eter equal to 1). 20% of positive examples are labeled, while the remaining
are unlabeled. 42

4.1 Test log-likelihood (LL) for different models on grid dataset. 54
4.2 Test log-likelihood (LL) for different models on low dimensional embedding

dataset. 56
4.3 Average number of training iterations per second for different models on

Stacked-MNIST. 58

B.1 Network architectures. 83
B.2 Network architectures. 85
B.3 Test log-likelihood (LL) for different models on low dimensional embedding

dataset. 85
B.4 Network architectures. 86

iii

List of Figures

2.1 Representation of the supervised MFA model as a directed acyclic graph. . 7
2.2 Experimental results for semi-supervised clustering (the higher the better). 12
2.3 Estimated labels for semi-supervised clustering on CAKE dataset (87 labels

per class) . 13
2.4 Estimated labels for semi-supervised clustering on TOES dataset (87 labels

per class) . 13
2.5 Experimental results for semi-supervised classification (the lower the better). 14

3.1 (a) plot of training time over iterations, (b) learning curve expressed in
terms of objective function. 33

3.2 Subdivision of the feasible region in the plane defined by the variables
σi and σj. The red solid line represents the feasible region including the
equality constraint in (3.8). 34

3.3 Example of transitions performed by a minimization step of Algorithm 1 for
different locations of σ̄µ,ν (highlighted by blue points) and for sufficiently
large number of iterations. 39

3.4 Comparative results on (a)-(g) Statlog (shuttle) and (h)-(q) MNIST datasets
using the linear kernel (λ = 0.01). Each plot shows the training time
against different number of unlabeled samples (100 positive samples) as
well as the generalization performance on the test set. 43

3.5 Comparative results on (a) Bank-marketing, (b) Adult and (c)-(l) Poker-
hand datasets using the linear kernel (λ = 0.01). Each plot shows the
training time against different number of unlabeled samples (100 positive
samples) as well as the generalization performance on the test set. 43

3.6 Comparative results on (a)-(g) Statlog (shuttle) and (h)-(q) MNIST datasets
using the Gaussian kernel (λ = 0.01 and scale parameter equal to 1). Each
plot shows the training time against different number of unlabeled samples
(100 positive samples) as well as the generalization performance on the test
set. 44

v

3.7 Comparative results on (a) Bank-marketing, (b) Adult and (c)-(l) Poker-
hand datasets using the Gaussian kernel (λ = 0.01 and scale parameter
equal to 1). Each plot shows the training time against different number
of unlabeled samples (100 positive samples) as well as the generalization
performance on the test set. 44

4.1 Visualization of the encoding and decoding functions with associated den-
sities. 51

4.2 Visualization of generated data from different models on grid dataset. . . . 55
4.3 Detection of mode collapse through classification of generated samples on

the low dimensional embedding dataset. The x-axis of each plot represents
modes (classes), while the y-axis counts the number of generated samples
for a given mode. 57

4.4 Visualization of generated samples from different models on Stacked-MNIST.
The first column of each plot contains true samples. 58

4.5 Conditional generation of samples. The first column of each plot contains
true samples, while the other columns are obtained by generating samples
from the latent codes associated to true data and perturbing the latent
representation with additive isotropic Gaussian noise (0.01 element variance). 59

A.1 Inequality constraints of the QP subproblem (3.8) for a given sample xi.
The coloured area corresponds to the feasible region. 75

B.1 Grid dataset. 84
B.2 Stacked-MNIST dataset. 84

Chapter 1

Introduction

This manuscript consists of a collection of works from multiple areas of machine learning,
including semi-supervised learning, positive unlabeled learning and representation learn-
ing. The main goal is to provide insights on the exploitation of unlabeled data to improve
performance in classification tasks. From a wider perspective, this is closely related to
the understanding of how humans are able to process the whole amount of information
from their sensory inputs, to learn new concepts and make decisions. This is indeed one
of the essential steps to pursue general artificial intelligence.

Each chapter provides an answer to a different aspect of the same problem. The
presentation of each work follows the chronological order of the doctoral study, which
corresponds also to an increasing level of contribution towards achieving general artificial
intelligence. In particular, we provide an answer to the following research questions:

1. Chapter 2. How is it possible to learn in the context of limited data?

2. Chapter 3. Is it possible to exploit unlabeled data for improving one class classifiers
and how is it possible to scale?

3. Chapter 4. Is it possible to convert the traditional mini-max problem of generative
adversarial networks into a single minimization problem?

Answering to the first question can be beneficial to applications where data collection
is very expensive. Consider for example the problem in medicine/biology of identifying
connections between genetic profiles of patients and tumoral pathologies, for which it is
difficult to collect a large number of clinical samples. Chapter 2 proposes a fully-Bayesian
model capable to exploit the information provided by class labels together with statistical
information extracted by clusters. This allows to cope with the limited amount of data
and allows to boost the classification/clustering performance. The model is also applied

2 Introduction

to a challenging real-world problem of subgroup discovery in breast cancer, identifying
highly promising subgroups.

Chapter 3 considers the problem of positive unlabeled learning, where supervision is
given only for a single class of interest. This arises from applications like retrieval, outlier
detection and open set recognition. We propose an algorithm that reduces the computa-
tional complexity of existing solutions, without sacrificing the generalization performance.
We prove theoretically that the algorithm converges to the same solution obtained by
state-of-the-art methods. As a consequence, the algorithm can be applied to a larger
variety of real-world problems involving positive unlabeled learning.

Chapter 4 considers the problem of unsupervised learning, analyzing how to estimate
a probability density function in high-dimensional feature spaces. The problem is formu-
lated as the minimization of a novel cost function, which enables for (i) stable training and
(ii) for convergence to optimal solutions. The proposed theory is validated through exper-
imental comparisons against several methods from the families of generative adversarial
networks and autoencoder-based models.

We conclude this dissertation with some final remarks on future research directions.

Chapter 2

Semi-Supervised Learning with
Limited Data

We propose a novel parametric Bayesian model for the problem of semi-supervised classi-
fication and clustering. Standard approaches of semi-supervised classification can recog-
nize classes but cannot find groups of data. On the other hand, semi-supervised clustering
techniques are able to discover groups of data but cannot find the associations between
clusters and classes. The proposed model can classify and cluster samples simultaneously,
allowing the analysis of data in the presence of an unknown number of classes and/or an ar-
bitrary number of clusters per class. Experiments on synthetic and real world data show
that the proposed model compares favourably to state-of-the-art approaches for semi-
supervised clustering and that the discovered clusters can help to enhance classification
performance, even in cases where the cluster and the low density separation assumptions
do not hold. We finally show that when applied to a challenging real-world problem of
subgroup discovery in breast cancer, the method is capable of maximally exploiting the
limited information available and identifying highly promising subgroups.

2.1 Background

Semi-supervised learning (SSL) is a well-known area of machine learning. The main
idea is to exploit both unlabeled data to increase predictive performance of supervised
models. This is motivated by the fact that labeled data are usually expensive to collect
and unlabeled data may aid to learning. The SSL field encompasses both semi-supervised
classification and semi-supervised clustering [1]. In the former case, the goal is predicting
the labels of unlabeled data based on few observed labeled samples, and smoothness
assumptions are typically used in developing methods. The latter task aims at finding

4 Semi-Supervised Learning with Limited Data

clusters in data subject to some given supervised constraints, defined usually as must-
and cannot-link between instances.

Discriminative approaches, like Semi-Supervised SVM [2] or Laplacian SVM [3], pro-
vide among the best performance in semi-supervised classification. This is because they
focus on minimizing an objective function based on classification error, by directly learn-
ing the mapping function between the sample and the class space. As a drawback, they
cannot provide precise information about intra-class variabilities, since they do not esti-
mate the class-conditional densities. On the other hand, generative approaches learn the
joint probability density function over inputs and labels and, while usually not as accurate
in classification [1], allow one to model both inter- and intra-class structures.

Concerning semi-supervised clustering, existing algorithms are able to discover the
patterns of input data, but they strongly rely on the assumption that clusters have a
direct correspondence with the structure of classes, the so-called cluster assumption [1].
However, there are many real-world situations where this assumption does not hold [4].
In fact, if labeled classes split up in different sub-clusters or if several classes cannot be
distinguished leading to one larger cluster, then all existing approaches fail. As we will see
later on in the experiments, the cluster assumption is also not guaranteed when feature
dimensionality reduction is applied to the data.

Existing SSL approaches typically focus on either classification or clustering. How-
ever, many real-world applications requires to jointly address both tasks by classifying
data and identifying groups within each class. Medicine is a paradigmatic example of this
requirement. Many diseases are characterized by symptoms for which the discrimination
between healthy and pathological cases is often hard, due to the lack of complete under-
standing of the pathology. Moreover, since the signs of each disease may assume multiple
forms, discriminating between the healthy and pathological conditions is not sufficient,
and identifying also the different forms of the disease becomes crucial [5].

Based on all these considerations, we introduce a unified generative framework based
on a mixture of factor analysers that jointly performs classification and reveals the hid-
den structure of data by estimating the modes and the factors of the class-conditional
densities.1 The framework only relies on the manifold assumption [1] and is thus able to
deal with cases where the cluster assumption is not valid. Experiments on synthetic and
real world data show that the proposed model compares favourably to state-of-the-art
approaches for semi-supervised clustering and that the discovered clusters can help to
enhance classification performance. We show also that the proposed model is designed to
exploit maximally the limited available information and that it is particularly suited to
applications where the collection of new data is very expensive, like in the case of breast

1Code available at https://github.com/emsansone/Classtering

Related Work 5

cancer samples.

2.2 Related Work

Some other works based on finite mixture models are similar to ours, but differ in the kind
of assumptions made. The work in [6] proposes a Gaussian mixture model that integrates
the information about the presence/absence of labels to perform new class discovery. The
model assumes that each cluster has a distribution over labels, but no information about
the correspondences between classes and clusters is added to the generative model, thus
making it dependent on the cluster assumption. In the experimental section we will
see that this assumption is quite limiting for many cases. The work in [7] proposes a
finite mixture model for semisupervised classification. In their generative model, labeled
samples are conditioned on unlabeled ones in order to ensure that, during the inference
stage, the propagation of labels through the unlabeled samples respects the smoothness
assumption. The authors apply the method also to the unsupervised learning setting,
in particular to perform density estimation. Nevertheless, the experimental evaluation
highlights the limitations of the method in this kind of setting, where the results are
frequently worse than performance obtained by standard unsupervised techniques. In
the context of semi-supervised clustering, the works in [8, 9, 10, 11] have addressed the
problem of constraint propagation proposing solutions that fulfill both the contraints and
the smoothness requirement. Like the other works in semi-supervised classification, they
haven’t considered that the problem of label/constraint propagation may be due to the
violation of the cluster assumption. The recent work in [12] is probably the closest to ours.
The method introduces a finite mixture model able to deal with an arbitrary number of
clusters and classes. The learning is performed by optimizing an objective characterized
by the log-likelihood function weighted by a term penalizing the violation of the must-
and cannot-link constraints. Furthermore, a hard assignment between clusters and classes
determines a partitioning of the feature space in which the majority of the constraints is
satisfied. In our approach, instead, the assignment between clusters and classes is soft.
This is essential for modelling the uncertainty of assignment due to the small amount of
supervised information. Furthermore, the method is tested on datasets characterized by
only few dozens of features.

The authors in [13] have recently proposed a unified framework that combines deep
neural networks with generative models. The neural network learns an embedding of data
and the generative models performs classification based on this new representation. The
combination of these two parts is obtained by definining a single probabilistic graphical
model that achieves good classification performance even when compared to discriminative

6 Semi-Supervised Learning with Limited Data

approaches. Nevertheless, the framework is not designed to perform clustering and is
based on the assumption that there exists a data representation for which the cluster
assumption is valid. Furthermore, the use of a deep neural network requires generally
large datasets for training, besides having to choose the proper architecture, making the
framework not suitable to applications with limited number of samples.

2.3 Proposed Solution

We start by introducing a fully-supervised model and then extend it to the semi-supervised
case. Given a set of i.i.d. observations Y = {yn}Nn=1, where yn ∈ Rd, and the respective
set of labels C = {cn}Nn=1, where cn specifies that yn belongs to one among K prede-
fined classes, the goal is to learn the underlying distribution generating the observations,
namely the class-conditional densities. In particular, if we assume that the densities can
be approximated by a Gaussian mixture and that high-dimensional data vectors lie ap-
proximately on a lower dimensional subspace, then we can model the data distribution as
a mixture of factor analysers (MFA).

In the MFA model, if a factor analyser sn is given (sn is an indicator variable identifying
one among S factors), then each sample yn is described through the following linear elation

yn = Λsnxn + µsn + ξ

where xn ∈ Rk is a latent vector distributed according to a Gaussian density with zero-
mean and covariance equal to the identity matrix, Λsn ∈ Rd×k and µsn ∈ Rd are respec-
tively the factor loading matrix and the bias of factor analyser sn, and ξ ∈ Rd is the
noise distributed according to a normal density with diagonal covariance matrix defined
by Ψ. From this, it is not difficult to show that each sample yn can be generated by
sampling a Gaussian density with mean value equal to µsn and covariance matrix equal
to ΛsnΛT

sn
+ Ψ [14]. As a consequence, the MFA model can be equivalently interpreted

as a Gaussian mixture. In this case, the vector of the mixing proportions is defined by
the latent vector π ∈ [0, 1]S.

It is worth noting that Λsn incorporates information about the local dimensionality
of component sn, while Ψ models the variability of data inside that component, namely
the noise variance. Parameters µsn and Λsn are treated as random variables, such that
inference is performed by averaging over the ensemble of models and therefore model
complexity is automatically taken into account.

The MFA model is an unsupervised method that simultaneously addresses the problem
of clustering and the problem of local dimensionality reduction. Supervision can be in-
corporated into this model by introducing for each sample yn a pair of independent latent

Proposed Solution 7

yn In

xn cn

Ψ π

βs

α∗m∗

γ∗q∗

Λs µs µ∗,ν∗

νsa∗, b∗

N +N ′

S

S

Figure 2.1: Representation of the supervised MFA model as a directed acyclic graph.

variables In .= (sn, ln), where sn is the above-mentioned cluster indicator, while ln is the
class indicator.2 In takes into account all S ×K possible combinations between the two
indicators. It is worth saying that these combinations are not equally probable. In fact,
if we assume that a cluster is associated more likely to one class, then some combinations
of clusters and classes tend to appear more often than others. The mixing proportions for
variable ln are therefore defined by the set of random vectors B = {βs}Ss=1, where each
K-dimensional βs is governed by a Dirichlet prior. This means that estimating the dis-
tribution over B is equivalent to learning the probabilistic associations between clusters
and classes.

The complete set of conditional distributions and priors of our model is summarized
by the following relations:

p(xn) .= N (0, I)
p(cn|In) .= δ(cn − ln)

p(βs|γ∗q∗) .= Dir(γ∗q∗)
p(π|α∗m∗) .= Dir(α∗m∗)

p(Λs|νs) .=
k∏
j=1
N (0, I/νs(j))

p(In|π, {βs}Ss=1) .= π(sn)βsn(ln)
p(µs|µ∗,ν∗) .= N (µ∗, diag(ν∗)−1)

2In our case, there is no distinction between ln and cn. Nevertheless, we keep these two variables separate.
This is helpful for modelling scenarios with multiple and/or noisy labels. In these cases, ln is the hidden true
label, while cn is the label provided by the annotator.

8 Semi-Supervised Learning with Limited Data

p(νs|a∗, b∗) .=
k∏
j=1

Gamma(νs(j)|a∗, b∗)

where I is the identity matrix, δ(·) is the delta function and νs is a k-dimensional vector
whose elements govern the columns of Λs. The mechanism known as automatic rele-
vance determination (ARD) is used to improve the task of dimensionality reduction [15].
a∗, b∗,Ψ,µ∗,ν∗, γ∗q∗ are the hyperparameters of the model. In Figure 2.1, we show the
graphical representation of our probabilistic model.

In the next two sections, we see how to apply this probabilistic graphical model to the
semi-supervised scenario. In particular, a variational approximation of the log-likelihood
function over input data and labels is derived in order to make inference computationally
tractable. The unlabeled data are therefore taken into account by simply adding their
contribution to the estimated lower bound. Then, we show how to predict the labels of
unseen data.

2.3.1 Variational Approximation

By defining H .= {xn, In} as the set of hidden variables and Θ .= {π, {βs,Λs,µs,νs}Ss=1}
as the set of parameters, we can express the log-likelihood function over Y and C as

ln p(Y,C) = ln
∫
dΘp(Θ)

∫
dHp(Y,C,H|Θ)

and by exploiting the conditional dependencies defined by the probabilistic graphical
model we obtain that

ln p(Y ,C)=ln
∫
dΘp(Θ)

N∏
n=1

S∑
sn=1

K∑
ln=1

p(In|Θ)p(cn|In)
∫
dxnp(xn)p(yn|Θ,xn, In,Ψ) (2.1)

Since the integrals in (2.1) are computationally and analytically intractable, we employ a
standard approach to solve the Bayesian integration based on the variational approxima-
tion [16]. In practice, by introducing some auxiliary distributions for both the parameters
and the hidden variables and by applying the Jensen’s inequality, it is possible to obtain
a lower bound on the log-likelihood over Y and C, namely

ln p(Y,C) ≥
∫
dπq(π) ln p(π|α

∗m∗)
q(π) +

S∑
s=1

∫
dβsq(βs) ln p(βs|γ

∗q∗)
q(βs)

+
S∑
s=1

∫
dνsq(νs)

[
ln p(νs|a

∗, b∗)
q(νs)

+
∫
dΛ̃sq(Λ̃s) ln p(Λ̃s|νs,µ∗,ν∗)

q(Λ̃s)

]

+
N∑
n=1

S∑
sn=1

K∑
ln=1

q(In)
[∫

dπq(π)
∫
dβsnq(βsn) ln p(In|π,βsn)

q(In)

Proposed Solution 9

+
∫
dxnq(xn|In) ln p(xn)

q(xn|In) + ln p(cn|In)
∫
dΛ̃snq(Λ̃sn)

∫
dxnq(xn|In)

· ln p(yn|Λ̃sn ,xn, In,Ψ)
]
.= F

(
Q
)

(2.2)

where Q is the set of all auxiliary distributions, namely q(π), {q(βs), q(νs), q(Λ̃s)}Ss=1,
{q(In), q(xn|In)}Nn=1, and Λ̃s represents the concatenation between Λs and µs. By max-
imizing the functional F , the lower bound is guaranteed to monotonically increase [17]
and can be used as an approximation of the log-likelihood function over Y and C. Fur-
thermore, the functional F is used to compare models with different number of factor
analysers in order to perform automatic model selection and choose the proper value of
S.

The model can be further extended to perform semi-supervised classification by intro-
ducing the set of unlabeled observations Y ′ = {y′m}N

′
m=1 and by averaging over all possible

labels. The extended log-likelihood function is therefore approximated following the same
procedure in (2.2), namely

ln p(Y, Y ′, C) ≥F
(
Q
)

+
N ′∑
m=1

S∑
sm=1

K∑
lm=1

q(Im)
[∫

dπq(π)
∫
dβsmq(βsm) ln p(Im|π,βsm)

q(Im)

+
∫
dxmq(xm|Im) ln p(xm)

q(xm|Im) +
∫
dΛ̃smq(Λ̃sm)

∫
dxmq(xm|Im)

· ln p(y′m|Λ̃sm ,xm, Im,Ψ)
]

(2.3)

which is equivalent to (2.2) except for the last three addends, that represent the contri-
bution of unlabeled samples to the the lower bound.

2.3.2 Posterior Inference and Prediction

Posteriors over parameters and hidden variables are estimated by optimizing the func-
tional in (2.3). The optimization is performed by taking the functional derivatives of (2.3)
with respect to all auxiliary distributions q(·) and equating them to zero. Similarly, the
hyperparameters of the model are estimated by simply taking the derivatives of the lower
bound in (2.3) with respect to a∗, b∗,Ψ,µ∗,ν∗, γ∗q∗. This operation is equivalent to
performing a maximum likelihood estimation, where the true log-likelihood function is
replaced by its lower bound. Iterative updates of the auxiliary distributions and of the
hyperparameters guarantee to monotonically and maximally increase the lower bound
in (2.3), as shown in [17].

After the optimization is completed, the model can be used to predict the labels of
new observed samples. In fact, if we define D = Y ∪ Y ′ as the set of data used for

10 Semi-Supervised Learning with Limited Data

Table 2.1: Experimental datasets.

Datasets G50C CAKE TOES IRIS USPS ISOLET
Classes 2 2 2 3 3 2
Features 50 2 2 4 256 617
Instances 550 1000 1000 150 1918 3119

training the model and Y ′′ = {y′′j }Mj=1 as the set of test data, then the new labels can
be estimated by maximizing the log-likelihood function conditioned on D and C. During
the maximization, ln p(Y ′′|D,C) can be approximated by replacing the true parameter
posterior with the estimated auxiliary distribution over the parameters, namely

ln p(Y ′′|D,C) = ln
∫
dΘp(Θ|D,C)

∫
dHp(Y ′′,H|Θ, D,C)

≈ ln
∫
dΘq(Θ)

∫
dHp(Y ′′,H|Θ, D, C) (2.4)

Integrals in (2.4) are computationally intractable. Similarly to the (2.2) and (2.3) cases,
we thus look for a tractable lower bound on ln p(Y ′′|D,C)

ln p(Y ′′|D,C) ≥
M∑
j=1

S∑
sj=1

K∑
lj=1

q(Ij)
[∫

dπq(π)
∫
dβsj

q(βsj
) ln

p(Ij|π,βsj
)

q(Ij)

+
∫
dxjq(xj|Ij) ln p(xj)

q(xj|Ij)

+
∫
dΛ̃sj

q(Λ̃sj
)
∫
dxjq(xj|Ij) ln p(y′′j |Λ̃sj

,xj, Ij,Ψ)
]

(2.5)

Note that (2.5) is similar to the last three addends of (2.3). In this case, we are only inter-
ested in estimating the labels of test data and this is performed by taking the functional
derivatives of (2.5) with respect to q(Ij) for j = 1, . . . ,M .

2.4 Experiments

In order to assess the performance of the proposed model and compare it with state-
of-the-art approaches, we performed experiments on three artificial and three real world
datasets. Table 2.1 summarizes their properties.

The first synthetic dataset, G50C, is inspired by [18]. Data are generated from two
standard normal densities located in a 50-dimensional space, such that the Bayes error is
5%. In this case, each class is represented by only one Gaussian. In the second dataset,
CAKE, data are uniformly distributed according to a two-dimensional round shape. Two

Experiments 11

orthogonal decision functions are used to discriminate between the two classes in order
to make them non-linearly separable. The Gaussian and the cluster assumptions do not
hold in this case. The third dataset, TOES, represents the case where class-conditional
densities are characterised by multiple clusters. Samples are drawn independently from a
two-dimensional density composed by five Gaussians, two for the first class and three for
the second class. The two classes have the same prior, resulting into a balanced number
of samples per class. The different number of clusters per class is useful to analyse
how unlabeled data influence the decision boundary. Figures 2.3(a) and 2.4(a) show the
representation of the CAKE and the TOES datasets respectively.

The real world datasets consist of two-class and multi-class problems from the UCI
repository. The IRIS dataset contains data belonging to three different classes of iris
plants. One of the three classes is not linearly separable from the others. The second
real world data set, USPS, represents a well-known benchmark for hadwritten digits
recognition. In our experiments, we only used samples belonging to the categories of digits
3, 8 and 9, which are among the most difficult classes to recognize [19]. In order to deal
with real-valued vectors, normalized histograms are used as feature descriptors. Finally,
the ISOLET dataset contains high-dimensional data for the spoken letter recognition task.
In our case, the first three subsets of the whole collection were considered. Similarly to [3],
we decided to classify the first 13 letters of the English alphabet from the last 13.

For the USPS and ISOLET datasets, we first apply a state-of-the-art technique for
unsupervised dimensionality reduction, called t-SNE [20]. The motivation for the choice
of t-SNE relies on the capability of visualizing high-dimensional datasets in a two or
three-dimensional map without loosing too much information about the local and the
global structure of data. Compared to other existing techniques, like Sammon mapping,
Isomap and Locally Linear Embedding, t-SNE provides significantly better performance,
especially in the data visualization task.

2.4.1 Semi-Supervised Clustering

For each dataset, the number of labeled instances is varied between 0 and 90 samples
per class. For each of these configurations, 20 different datasets are generated by random
sampling. To adhere to the problem of semi-supervised clustering, labeled samples are
then converted into a balanced number of must- and cannot-link constraints following
the same procedure of [21]. Performance is measured in terms of the normalized mutual
information (NMI) using the true labels as gold standard.

We compare our method, called Classtering (CLSST for short), with four state-of-the-
art approaches. The first method proposed in [22] is based on the integration of supervised
constraints into a Gaussian mixture model (CGMM). The second method (MCCC) is the

12 Semi-Supervised Learning with Limited Data

Number of labels
0 20 40 60 80 100

N
M

I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CLSST

CGMM

MCCC

MPCK

SKMS

(a) G50C

Number of labels
0 20 40 60 80 100

N
M

I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CLSST

CGMM

MCCC

MPCK

SKMS

(b) CAKE

Number of labels
0 20 40 60 80 100

N
M

I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CLSST

CGMM

MCCC

MPCK

SKMS

(c) TOES

Number of labels
0 10 20 30 40 50

N
M

I

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CLSST

CGMM

MCCC

MPCK

SKMS

(d) IRIS

Number of labels
0 20 40 60 80 100

N
M

I

0

0.05

0.1

0.15

0.2

0.25

CLSST

CGMM

MCCC

MPCK

SKMS

(e) USPS

Number of labels
0 20 40 60 80 100

N
M

I

0

0.05

0.1

0.15

0.2

0.25

0.3

CLSST

CGMM

MCCC

MPCK

SKMS

(f) ISOLET

Figure 2.2: Experimental results for semi-supervised clustering (the higher the better).

recent work proposed in [23], where the problem is formulated as a matrix completion task.
The third method in [24] is based on an extension of the k-means algorithm (MPCK),
where constraints and metric learning are incorporated into the objective function to
enhance the performance. The last method is the semi-supervised kernel mean shift
(SKMS) proposed in [21], where data are first mapped into a higher dimensional space
and then clustered by the mean shift algorithm.

For all competitors, the parameters are chosen from a finite grid set such that the best
performance are always considered. In particular, the tradeoff parameter C for MCCC is
chosen from the set {0.1, 1, 10, 100, 1000}, while the regularization parameter γ of SKMS
is chosen from the range {10, 100, 1000}. It is important to mention that the number
of clusters for MCCC, MPCK and CGMM is equal to four in CAKE and five in TOES,
while it is chosen to be equal to the number of classes in all other datasets, as done
in [21, 22, 24, 23]. It is also worth noting that our algorithm does not require to set
any parameter manually, since all hyperparameters are learnt automatically during the
training procedure.3 Figure 2.2 shows the results obtained over all datasets. CLSST
clearly outperforms all competitors in all cases, except for the G50C dataset. In this
case, the data are generated from a distribution of two Gaussians with identity covariance

3Except for the dimensionality of the latent variables xn, which is always set to a low value (k = 2 for G50C,
CAKE and TOES and k = 3 for IRIS, USPS and ISOLET).

Experiments 13

(a) Labels (b) MCCC (c) MPCK (d) CGMM (e) SKMS (f) CLSST

Figure 2.3: Estimated labels for semi-supervised clustering on CAKE dataset (87 labels per
class)

(a) Labels (b) MCCC (c) MPCK (d) CGMM (e) SKMS (f) CLSST

Figure 2.4: Estimated labels for semi-supervised clustering on TOES dataset (87 labels per
class)

matrices. Authors in [25] prove mathematically that the k-means algorithm is equivalent
to performing an EM algorithm on a mixture of Gaussians under the assumption of
identity covariance matrices and uniform mixture priors, which clearly motivates why
MPCK, that is k-means-based, achieves very good performance. The gap with respect
to the results obtained by CLSST on G50C are mainly due to the fact that, while in
CLSST the parameters of the Gaussians are assumed to be random variables, in MPCK
it is assumed that there only exists a unique combination of true parameters. It is worth
mentioning that CLSST and CGMM are both algorithms based on Gaussian mixtures.
In fact, when considering cases characterized by one cluster per class, namely the G50C
and the IRIS datasets, the performance of both methods are almost equivalent. When
the cluster assumption does not hold, viz in the CAKE dataset, it is clearly visible that
all methods, except CLSST, fail. The same holds when considering multiple clusters per
class, i.e. the TOES dataset. A representative example of the results obtained on CAKE
and TOES can be visualized more intuitively in Figure 2.3 and Figure 2.4. A thorough
analysis of the results obtained on the USPS and the ISOLET datasets performed by data
visualization indicates that in both cases we have a superposition of two effects, namely
the absence of validity of the cluster assumption and the presence of multiple clusters per
class, which explains why results are qualitatively similar to those obtained on the CAKE
and the TOES datasets.

14 Semi-Supervised Learning with Limited Data

Number of labels
0 10 20 30 40 50 60 70

M
e

a
n

 e
rr

o
r

ra
te

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

CLSST
LDS
LapSVM

(a) G50C

Number of labels
0 10 20 30 40 50 60 70

M
e

a
n

 e
rr

o
r

ra
te

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

CLSST
LDS
LapSVM

(b) CAKE

Number of labels
0 10 20 30 40 50 60 70

M
e

a
n

 e
rr

o
r

ra
te

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

CLSST
LDS
LapSVM

(c) TOES

Number of labels
0 5 10 15 20 25 30 35 40

M
e

a
n

 e
rr

o
r

ra
te

0

0.05

0.1

0.15

0.2

0.25

CLSST
LDS
LapSVM

(d) IRIS

Number of labels
0 10 20 30 40 50 60 70

M
e

a
n

 e
rr

o
r

ra
te

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

CLSST
LDS
LapSVM

(e) USPS

Number of labels
0 10 20 30 40 50 60 70

M
e

a
n

 e
rr

o
r

ra
te

0.25

0.3

0.35

0.4

0.45

0.5

CLSST
LDS
LapSVM

(f) ISOLET

Figure 2.5: Experimental results for semi-supervised classification (the lower the better).

2.4.2 Semi-Supervised Classification

For each dataset, 5-fold cross-validation is used to split data into training and test parts.
For each training split, the number of labeled instances is varied between 0 and 70 sam-
ples per class. 10 different datasets are then generated by random sampling. In these
experiments, we provide estimates of the generalization error. Performance are measured
in terms of the error rate, since all datasets have a balanced number of samples per class.

Our method is compared against two state-of-the-art approaches. The first method
[26] is based on the low-density separation assumption (LDS), which is the equivalent
supervised form of the cluster assumption. A nearest-neighbor graph is used to compute
the kernel matrix of an SVM. The second method proposed in [3] is an extension of the
SVM framework, namely the Laplacian SVM (LapSVM). In particular, a penalty term is
added to the objective function to take into account the marginal distribution of unlabeled
data.

For each training dataset, hyperparameters for the two competitors are selected from
a finite grid using an inner 3-fold cross-validation procedure. For LDS, ρ and C are
respectively chosen from {1, 2, 4, 8} and {0.1, 1, 10, 100}. In LapSVM, γA and γI are
chosen from the same range, namely {0.005, 0.045, 05}. The σ value is chosen for both
methods in the range {0.1, 1, 10} in a transductive setting on the entire training set.

Experiments 15

Table 2.2: Results on breast cancer dataset evaluated in terms of IGP measure. Clusters are
ordered by decreasing IGP value.

Cluster 1 2 3 4 5 6 7 8 9 10
[27] 0.824 0.810 0.728 0.709 0.687 0.646 0.602 0.582 0.507 0.448

CLSST∗ 0.927 0.864 0.790 0.687 0.684 0.679 0.678 0.600 0.597 0.557
CLSST+ 0.912 0.838 0.793 0.773 0.762 0.583 0.575 - - -
CLSST∗: fixed number of components S.
CLSST+: variable number of components S.

Figure 2.5 shows the results obtained over all data sets.
CLSST outperforms all other approaches in almost all cases, except for the G50C and

the CAKE datasets. G50C is in fact the perfect scenario for approaches relying on the
low density separation assumption, as it was previously seen in the clustering setting for
the methods based on the cluster assumption. This motivates why LDS provides good
performance even when the number of labeled samples is small.

In the CAKE dataset, CLSST performs slightly worse than LapSVM. This is due to
the fact that the Gaussian mixture density is not able to fit properly with the uniform
distribution of unlabeled samples. The bias decreases as the number of labeled samples
increases. In contrast, LapSVM is able to control the negative effect of the unlabeled
samples even when the number of labeled data is small by assigning a higher value to the
classification error term in the objective function. In all other cases, it is evident that
CLSST achieves better performance than its competitors. This can be explained by the
fact that our model is really flexible in estimating the class-conditional densities and the
gained information about these distributions provides an effective way to fully exploit the
unlabeled samples and increase the classification accuracy.

2.4.3 Subgroup Discovery in Breast Cancer

We finally tested our algorithm on a challenging real-world problem consisting in the iden-
tification of subgroups in breast cancer samples. A recent extensive study [27] analysed
about 2,000 clinically annotated primary breast cancers collected from various sources
and identified 10 novel subgroups with varying degrees of confidence. The authors used a
subset of 997 samples as discovery set to identify clusters, and the remaining 995 ones as
validation set to evaluate robustness of the detected clusters. Clustering was done with a
joint latent variable model [28] on a set of 754 gene expression profiles. Reproducibility
of clustering was measured in terms of in-group proportion (IGP) [29], which is the pro-
portion of samples in a group whose nearest neighbours are also in the same group, after

16 Semi-Supervised Learning with Limited Data

assigning samples in the validation set to the clusters in the discovery set.
Characterizing tumors in terms of subclasses is a crucial step in order to understand

their behaviour and variability, and there is extensive literature addressing this task and
proposing various classication schemes. Five “intrinsic” subtypes of human breast tumors
have been identified in early studies [30] and termed Luminal A, Luminal B, HER2-
Enriched (HER2-E), Basal-like and normal. The PAM50 gene is typically used [31] for
gene expression-based subtyping in these five groups. Most of the 10 clusters identified
in [27] contain samples belonging to multiple subtypes.

What we investigate here is whether incorporating intrinsic subtype classification as
class labeling can produce a clustering with improved generalization capability, as mea-
sured by IGP. We first reduce data to 50 features using PCA in order to alleviate the
problem of redundant features and then apply CLSST to discover the clusters. In this par-
ticular setting, the algorithm discovers seven groups achieving an averaged IGP of 74.8%,
with a minimum value of 57.5% and a maximum of 91.2%. After this, we investigate a
second setting, where we run CLSST by fixing the number of clusters to ten, in order to
have a fair comparison with the results reported in [28]. In this second configuration, the
obtained IGP scores range from a minimum of 55.7% to a maximum of 92.7% with a mean
value equal to 70.6%. In both settings, the performance are better than those obtained
in [28], where the IGP values span from a minimum of 44.8% to a maximum of 82.4%
with a mean value equal to 65.4%. The performance improvement is on average greater
than 5%, indicating that our algorithm successfully exploits the supervised information
in performing group discovery. Table 2.2 reports the complete set of results for [28] and
for CLSST in the two settings, with clusters ordered by decreasing IGP value.

With this study we are not claiming that the clusters we found are more biologically
relevant than those identified by the original method, as this would require in-depth
analyses and extensive validations, which are out of the scope of this work. Nonetheless,
we believe that the obtained results are promising and highlight the potential of the
method in discovering structure in data.

Chapter 3

Scalability in Positive Unlabeled
Learning

Positive unlabeled (PU) learning is useful in various practical situations, where there
is a need to learn a classifier for a class of interest from an unlabeled data set, which
may contain anomalies as well as samples from unknown classes. The learning task can
be formulated as an optimization problem under the framework of statistical learning
theory. Recent studies have theoretically analyzed its properties and generalization per-
formance, nevertheless, little effort has been made to consider the problem of scalability,
especially when large sets of unlabeled data are available. In this work we propose a
novel scalable PU learning algorithm (USMO – Unlabeled data in Sequential Minimal
Optimization) that is theoretically proven to provide the optimal solution, while showing
superior computational and memory performance. Experimental evaluation confirms the
theoretical evidence and shows that the proposed method can be successfully applied to
a large variety of real-world problems involving PU learning.

3.1 Background

PU learning refers to the task of learning a binary classifier from only positive and un-
labeled data [32]. This classification problem arises in various practical situations, such
as:

• Retrieval [33], where the goal is to find samples in an unlabeled data set similar to
user-provided ones.

• Inlier-based outlier detection [34], where the goal is to detect outliers from an unla-
beled data set, based on inlier samples.

18 Scalability in Positive Unlabeled Learning

• One-vs-rest classification [35], where the negative class is too diverse, thus being
difficult to collect and label enough negative samples.

• Open set recognition [36], where testing classes are unknown at training time and
the exploitation of unlabeled data may help learning more robust concepts.

Naive approaches are proposed to address PU learning. In particular, it is possible
to distinguish between solutions that heuristically identify reliable negative samples from
unlabeled data and use them to train a standard binary classifier, and solutions based on
binary classifiers using all unlabeled data as negative. The former are heavily dependent
on heuristics, while the latter suffer the problem of wrong label assignment.

The recent works in [37] and [38] formulate PU learning as an optimization problem
under the framework of statistical learning theory [39]. Both works theoretically analyse
the problem, deriving generalization error bounds and studying the optimality of the
obtained solutions. Even though these methods are theoretically grounded, they are
not scalable. In this work we present a method that provides better scalability, while
maintaining the optimality of the above approaches for what concerns the generalization.
In particular, starting from the formulation of the convex optimization problem in [38],
we derive an algorithm that requires significantly lower memory and computation, while
being proven to converge to the optimal solution.

3.2 Related Work

PU learning is well known in the machine learning community, as it is used in a variety
of tasks such as matrix completion [40], multi-view learning [41], and semi-supervised
learning [42]. It is also applied in data mining to classify data streams [43] or time
series [44] and to detect events, like co-occurrences, in graphs [45].

PU learning approaches can be classified in two broad categories, according to the use
of unlabeled data: two-stage and single-stage approaches. The former extract a set of
reliable negative samples from unlabeled data and use them, together with the available
positive data, to train a binary classifier [46, 47, 48, 49]. This first step is heuristic and
strongly influences the final result. The latter regard all unlabeled data as negative
samples. Positive and negative data are then used to train different classifiers based on
SVM [50, 32], neural networks [51] or kernel density estimators [52]. These approaches
suffer the problem of wrong label assignment, whose effect depends on the proportion
of positive samples in the unlabeled dataset. We will see later, in the discussion about
theoretical studies of PU learning, how critical this issue is. For the moment, we focus
on analyzing the relations of PU learning with one-class classification (OCC) and semi-

Related Work 19

supervised learning, which allows us drawing some clear boundaries between these tasks
and highlighting the novelty of this work.

3.2.1 Comparison with One-Class Classification

The main goal of OCC is to estimate the support of data distribution, which is extremely
useful in unsupervised learning, especially in high-dimensional feature spaces, where it is
very difficult to perform density estimation. OCC is applied to many real-world problems,
such as anomaly/novelty detection (see [53] for a recent survey and definition of anomaly
detection and [54, 55] for novelty detection). Other possible applications of OCC include
author verification in text documents [56], document retrieval [33], and collaborative
filtering in social networks [57].

Authors of [58, 59] are among the first to develop OCC algorithms.1 In particular,
[58] proposes a classifier that finds the hyperplane separating data from the origin with
the maximum margin, while [59] proposes a classifier that finds the mimimum radius
hypersphere enclosing data. Despite the difference between these two approaches, [58]
proves that, for translation-invariant kernels such as the Gaussian kernel, they obtain
the same solutions. Extensions of these two pioneering works, falling in the category of
kernel methods, were proposed a few years later. [61] modifies the model of [58] by
incorporating a small training set of anomalies and using the centroid of such set as the
reference point to find the hyperplane. [62] proposes a strategy to automatically select the
hyperparameters defined in [59] to increase the usability of the framework. Rather than
repelling samples from a specific point, as in [58, 61], [63] suggests a strategy to attract
samples towards the centroid, solving a linear programming problem that minimizes the
average output of the target function computed on the training samples. Authors in [64]
propose a similar strategy based on linear programming, where data are represented
in a similarity/dissimilarity space. The framework is well suited for OCC applications
involving strings, graphs or shapes. Solutions different from kernel methods are also
proposed. To mention a few, [65] proposes a neural network-based approach, where
the goal is to learn the identity function. New samples are fed into the network and
tested against their corresponding outputs. The test sample is considered as part of the
class of interest only when the input and the output of the network are similar. [66]
proposes a one-class nearest neighbour, where a test sample is accepted as a member of
the target class only when the distance from its neighbours is comparable to their local
density. It is worth noting that most of the works in OCC focus on increasing
classification performance, rather than improving scalability. This is arguably
motivated by the fact that it is usually difficult to collect large amounts of training samples

1More precisely, the term OCC was coined in 1996 [60].

20 Scalability in Positive Unlabeled Learning

for the concept/class of interest. Solutions to improve classification performance rely on
classical strategies such as ensemble methods [67], bagging [68] or boosting [69]. Authors
in [70] argue that existing one-class classifiers fail when dealing with mixture distributions.
Accordingly, they propose a multi-class classifier exploiting the supervised information of
all classes of interest to refine support estimation.

A promising solution to improve OCC consists of exploiting unlabeled data, which are
in general largely available. As discussed in [52], standard OCC algorithms are not de-
signed to use unlabeled data, thus making the implicit assumption that they are uniformly
distributed over the support of nominal distribution, which does not hold in general. The
recent work in [71] proves that, under some simple conditions,2 large amounts of unla-
beled data can boost OCC even compared to fully supervised approaches. Furthermore,
unlabeled data allow building OCC classifiers in the context of open set recognition [36],
where it is essential to learn robust concepts/functions. Since the primary goal of PU
learning is to exploit this unsupervised information, it can be regarded as a general-
ization of OCC [72], in the sense that it can manage unlabeled data coming from more
general distributions than the uniform one.

3.2.2 Comparison with Semi-Supervised Learning

The idea of exploiting unlabeled data in semi-supervised learning was originally proposed
in [73]. Earlier studies do not thoroughly explain why unlabeled data can be beneficial.
Authors of [74] are among the first to analyze this aspect from a generative perspective. In
particular, they assume that data are distributed according to a mixture of Gaussians and
show that the class posterior distribution can be decomposed in two terms, one depending
on the class labels and the other on the mixture components. The two terms can be
estimated using labeled and unlabeled data, respectively, thus improving the performance
of the learnt classifier. [75] extends this analysis assuming that data can be correctly
described by a more general class of parametric models. The authors show that if both
the class posterior distribution and the data prior distribution are dependent on model
parameters, unlabeled examples can be exploited to learn a better set of parameters.
Thus, the key idea of semi-supervised learning is to exploit the distributional information
contained in unlabeled samples.

Many approaches have been proposed. The work in [1] provides a taxonomy of semi-
supervised learning algorithms. In particular, it is possible to distinguish five types of
approaches: generative approaches (see, e.g., [76]) exploit unlabeled data to better es-
timate the class-conditional densities and infer the unknown labels based on the learnt
model; low-density separation methods (see, e.g., [26]) look for decision boundaries that

2The conditions are based on class prior and size of positive (class of interest) and negative (the rest) data.

Related Work 21

correctly classify labeled data and are placed in regions with few unlabeled samples (the
so called low-density regions); graph-based methods (see, e.g., [3]) exploit unlabeled data
to build a similarity graph and then propagate labels based on smoothness assumptions;
dimensionality reduction methods (see, e.g., [13]) use unlabeled samples for represen-
tation learning and then perform classification on the learnt feature representation; and
disagreement-based methods (discussed in [77]) exploit the disagreement among multiple
base learners to learn more robust ensemble classifiers.

The scalability issue is largely studied in the context of semi-supervised learning. For
example, the work in [78] proposes a framework to solve a mixed-integer programming
problem, which runs multiple times the SVM algorithm. State-of-art implementations of
SVMs (see, e.g., LIBSVM [79]) are based mainly on decomposition methods [80], like our
proposed approach. Other semi-supervised approaches use approximations of the fitness
function to simplify the optimization problem (see [81, 82]).

Both semi-supervised and PU learning exploit unlabeled data to learn better classi-
fiers. Nevertheless, substantial differences hold that make semi-supervised learning not
applicable to PU learning tasks. An important aspect is that most semi-supervised learn-
ing algorithms assume that unlabeled data originated from a set of known classes (closed
set environment), thus not coping with the presence of unknown classes in training and
test sets (open set environment). To the best of our knowledge, only few works (see [83])
propose semi-supervised methods able to handle such situations. Another even more rel-
evant aspect is that semi-supervised learning cannot learn a classifier when only
one known class is present, since it requires at least two known classes to calculate
the decision boundary. On the contrary, recent works show that it is possible to apply PU
learning to solve semi-supervised learning tasks, even in the case of open set environment
[42, 71].

3.2.3 Theoretical Studies about PU learning

Inspired by the seminal work [84] and by the first studies on OCC [59, 58], the work in
[85] and its successive extension [86] are the first to define and theoretically analyze the
problem of PU learning. In particular, they propose a framework based on the statisti-
cal query model [84] to theoretically assess the classification performance and to derive
algorithms based on decision trees. The authors study the problem of learning functions
characterized by monotonic conjuctions, which are particularly useful in text classification,
where documents can be represented as binary vectors that model the presence/absence
of words from an available dictionary. Instead of considering binary features, [87] pro-
poses a Naive-Bayes classifier for categorical features in noisy environments. The work
assumes the attribute independence, which eases the estimate of class-conditional densi-

22 Scalability in Positive Unlabeled Learning

ties in high-dimensional spaces, but is limiting as compared to discriminative approaches,
directly focusing on classification and not requiring density estimations [88].

As already mentioned at the beginning of this section, PU learning studies can be
roughly classified in two-stage and single stage approaches. The former are based on
heuristics to select a set of reliable negative samples from the unlabeled data and are not
theoretically grounded, while the latter are subject to the problem of wrong label assign-
ment. In order to understand how this issue is critical, let consider the theoretical result
of consistency presented in [52]. 3 For any set of classifiers F of Vapnik-Chervonenkis
(VC) dimension V and any δ > 0, there exists a constant c such that the following bounds
hold with probability 1− δ:

FNR(f)− FNR(f ∗) ≤ cεn,

FPR(f)− FPR(f ∗) ≤ c

1− π (εn + εp)

where FPR,FNR are the false positive/negative rates, f ∈ F is the function obtained
by the above-mentioned strategy, f ∗ ∈ F is the optimal function having access to the
ground truth, π is the positive class prior, ε· =

√
V log(·)−log(δ)

· and p and n are the number
of positive and unlabeled samples, respectively. In particular, if one considers a simple
scenario where the feature space is R100 and V = 101 (in the case of linear classifiers), it
is possible to learn a classifier such that, with probability of 90%, the performance does
not deviate from the optimal values for more than 10% (which is equivalent to setting
δ, εp, εn = 0.1). This is guaranteed when both positive and unlabeled sets consist of at least
105 training samples each. This is impractical in real world applications, since collecting
and labelling so many data is very expensive. The effect of wrong label assignment is
even more evident for larger values of positive class prior.

Recently, [37, 38] proposed two frameworks based on the statistical learning the-
ory [39]. These works are free from heuristics, do not suffer the problem of wrong label
assignment, and provide theoretical bounds on the generalization error. Another theoret-
ical work is the one in [40], which specifically addresses the matrix completion problem,
motivated by applications like recovering friendship relations in social networks based
on few observed connections. This work however is unable to deal with the more gen-
eral problem of binary PU learning, and formulates the optimization problem using the
squared loss, which is known to be subobtimal according to the theoretical findings in
[37, 38]. Overall, the analysis of the literature in the field makes evident the lack of
theoretically-grounded PU learning approaches with good scalability proper-
ties.

3It is rewritten to be more consistent with the notation in this paper.

PU Learning Formulation 23

3.3 PU Learning Formulation

Assume that we are given a training dataset Db = {(xi, yi) : xi ∈ X, yi ∈ Y }mi=1, where
X ⊆ Rd, Y = {−1, 1} and each pair of samples in Db is drawn independently from the
same unknown joint distribution P defined over X and Y . The goal is to learn a function
f that maps the input space X into the class set Y , known as the binary classification
problem. According to statistical learning theory [39], the function f can be learnt by
minimizing the risk functional R, namely

R(f) =
∑
y∈Y

∫
`(f(x), y)P(x, y)dx

=π
∫
`(f(x), 1)P(x|y = 1)dx + (1− π)

∫
`(f(x),−1)P(x|y = −1)dx (3.1)

where π is the positive class prior and ` is a loss function measuring the disagreement
between the prediction and the ground truth for sample x, viz. f(x) and y, respectively.

In PU learning, the training set is split into two parts: a set of samples Dp = {xi ∈
X}pi=1 drawn from the positive class and a set of unlabeled samples Dn = {xi ∈ X}ni=1

drawn from both positive and negative classes. The goal is the same of the binary clas-
sification problem, but this time the supervised information is available only for one
class. The learning problem can be still formulated as a risk minimization. In fact, since
P(x) = πP(x|y = 1) + (1− π)P(x|y = −1), (3.1) can be rewritten in the following way:

R(f)=π
∫
`(f(x), 1)P(x|y = 1)dx

+ (1− π)
∫
`(f(x),−1)P(x)− πP(x|y = 1)

1− π dx

= π
∫

˜̀(f(x), 1)P(x|y = 1)dx+
∫
`(f(x),−1)P(x)dx (3.2)

where ˜̀(f(x), 1) = `(f(x), 1)− `(f(x),−1) is called the composite loss [38].
The risk functional in (3.2) cannot be minimized since the distributions are unknown.

In practice, one considers the empirical risk functional in place of (3.2), where expectation
integrals are replaced with the empirical mean estimates computed over the available
training data, namely

Remp(f) = π

p

∑
xi∈Dp

˜̀(f(xi), 1) + 1
n

∑
xi∈Dn

`(f(xi),−1) (3.3)

The minimization of Remp is in general an ill-posed problem. A regularization term is
usually added to Remp to restrict the solution space and to penalize complex solutions.
The learning problem is then stated as an optimization task:

f ∗ = arg min
f∈Hk

{
Remp(f) + λ‖f‖2

Hk

}
(3.4)

24 Scalability in Positive Unlabeled Learning

where λ is a positive real parameter weighting the relative importance of the regularizer
with respect to the empirical risk and ‖·‖Hk

is the norm associated with the function space
Hk. In this case, Hk refers to the Reproducing Kernel Hilbert Space (RKHS) associated
with its Mercer kernel k : X ×X → R.4 We can then enunciate the representer theorem
for PU learning (proof in Supplementary Material):

Representer Theorem 1. Given the training set D = Dp ∪Dn and the Mercer kernel
k associated with the RKHS Hk, any minimizer f ∗ ∈ Hk of (3.4) admits the following
representation

f ∗(x) =
∑

xi∈D
αik(x,xi)

where αi ∈ R for all i.

This theorem shows that it is possible to learn functions defined on possibly-infinite
dimensional spaces, i.e., the ones induced by the kernel k, but depending only on a
finite number of parameters αi. Thus, training focuses on learning such restricted set
of parameters. Another important aspect is that the representer theorem does not say
anything about the uniqueness of the solution, as it only says that every minimum solution
has the same parametric form. In other words, different solutions have different values of
parameters. The uniqueness of the solution is guaranteed only when the empirical risk
functional in (3.4) is convex. A proper selection of the loss function is then necessary to
fulfill this condition. Authors in [38] analysed the properties of loss functions for the PU
learning problem, showing that a necessary condition for convexity is that the composite
loss function in (3.3) is affine. This requirement is satisfied by some loss functions, such
as the squared loss, the modified Huber loss, the logistic loss, the perceptron loss, and
the double Hinge loss. The latter ensures the best generalization performance [38]. 5

Moreover, the comparison with non-convex loss functions [37, 38] suggests to use the
double Hinge loss for the PU learning problem, with a twofold advantage: ensuring that
the obtained solution is globally optimal, and allowing the use of convex optimization
theory to perform a more efficient training.

These considerations, together with the result stated by the representer theorem, allow
us rewriting problem (3.4) in an equivalent parametric form. In particular, defining
α ∈ R(p+n) as the vector of alpha values, ξ ∈ Rn as the vector of slack variables, K ∈
R(p+n)×(p+n) as the Gram matrix computed using the training set D, and considering,
without loss of generality, target functions in the form f(x) = ∑

i αik(x,xi) + β, where β
is the bias of f , it is possible to derive the following optimization problem (derivation in

4For an overview of RKHS and their properties, see the work in [89]
5Double Hinge loss can be considered as the equivalent of Hinge loss function for the binary classification

problem.

PU Learning Formulation 25

Supplementary Material):

min
α,ξ,β

{
−c11̃TKα− c11̃T1β + c21Tnξ + 1

2α
TKα

}
s.t. ξ � 0n,

ξ � UKα+ β1n,

ξ � 1
21n + 1

2UKα+ β

2 1n (3.5)

where 1̃ = [1, . . . , 1, 0, . . . , 0]T is a vector of size p + n with p non-zero entries, 1 and 1n
are all-ones vectors of size p + n and n, respectively, U is a n× (p + n) matrix obtained
through the concatenation of a n × p null matrix and an identity matrix of size n, � is
an element-wise operator, c1 = π

2λp and c2 = 1
2λn .

The equivalent dual problem of (3.5) is more compactly expressed as:

min
σ,δ

{1
2σ

TUKUTσ − c11̃TKUTσ − 1
21Tnδ

}
s.t. 1T

[
c11̃−UTσ

]
= 0,

σ + 1
2δ � c21n,

σ − 1
2δ � 0n,

0n � δ � c21n (3.6)

where σ, δ ∈ Rn and are related to the Lagrange multipliers introduced during the deriva-
tion of the dual formulation (see Supplementary Material for details).

Due to linearity of constraints in (3.5), Slater’s condition is trivially satisfied6, thus
strong duality holds. This means that (3.6) can be solved in place of (3.5) to get the primal
solution. The optimal α can be obtained from one of the stationarity conditions used
during the Lagrangian formulation (details in Supplementary Material), namely using the
following relation

α = c11̃−UTσ (3.7)

Note that the bias β has to be considered separately, since problem (3.6) does not give
any information on how to compute it (this will be discussed in the next section).

It is to be pointed out that (3.6) is a quadratic programming (QP) problem that can be
solved by existing numerical QP optimization libraries. Nevertheless, it is memory ineffi-
cient, as it requires storing the Gram matrix, which scales quadratically with the number
of training samples. Thus, modern computers cannot manage to solve (3.6) even for a

6See, e.g., [90]

26 Scalability in Positive Unlabeled Learning

few thousands samples. A question therefore arises: is it possible to efficiently find
an exact solution to problem (3.6) without storing the whole Gram matrix?

3.4 Proposed Solution

In order to avoid the storage problem, we propose an iterative algorithm that converts
problem (3.6) into a sequence of smaller QP subproblems associated to subsets of training
samples (working sets), which require the computation and temporary storage of much
smaller Gram matrices. Regarding the speed of convergence, we observe experimentally
that the runtime scales sub-quadratically with the size of the training set (see the ex-
perimental section for a thorough discussion). As a consequence, our algorithm finds the
exact optimal solution with a lower computational complexity. Each iteration of USMO
is made of three steps: selection of the working set S, computation of the Gram matrix
for samples associated to indices in S, solution of a QP subproblem, where only terms
depending on S are considered. Details are provided in Algorithm 1. It is to be mentioned
that in principle this strategy allows decreasing the storage requirement at the expense
of a heavier computation. In fact, the same samples may be selected multiple times over
iterations, thus requiring recomputing matrices KSS,KSP and KSS̄. We will see later
how to deal with this inefficiency. Another important aspect is that at each iteration only
few parameters are updated (those indexed by the working set S, namely σkS and δkS),
while the others are kept fixed. Here, we consider a working set of size two, as this allows
solving the QP subproblem (3.8) analytically, without the need for further optimization.
This is discussed in the next subsection.

3.4.1 QP Subproblem

We start by considering the following Lemma (proof in Supplementary Material):

Lemma 1. Given S = {i, j}, any optimal solution σ∗S = [σ∗i σ∗j]T , δ∗S = [δ∗i δ∗j]T of the QP
subproblem (3.8) has to satisfy the following condition: ∀u : xu ∈ S ∧ 0 ≤ δ∗u ≤ c2 either
σ∗u = c2 − δ∗u

2 or σ∗u = δ∗u
2 .

This tells us that the optimal solution (σ∗S, δ∗S) assumes a specific form and can be
calculated by searching in a smaller space. In particular, four subspaces can be identified
for search :

Case 1: σki = c2 −
δki
2 ∧ σkj = c2 −

δkj
2 ∧ 0 ≤ δki , δ

k
j ≤ c2,

Case 2: σki = c2 −
δki
2 ∧ σkj =

δkj
2 ∧ 0 ≤ δki , δ

k
j ≤ c2,

Proposed Solution 27

Algorithm 1 General USMO algorithm
1: k ← 1.
2: Initialize (σ1, δ1).
3: while (σk, δk) is not a stationary point of (3.6) do
4: Select the working set S ⊂ U = {u : xu ∈ Dn} with |S| = 2.
5: Compute KSS , KSP and KSS̄ where P = {u : xu ∈ Dp} and S̄ = U\S.
6: Solve

min
σk

S ,δ
k
S

{1
2(σkS)TKSSσ

k
S + eTσkS −

1
21TδkS

}
s.t. 1TσkS = c1p− 1Tσk

S̄
,

σkS + 1
2δ

k
S � c21,

σkS −
1
2δ

k
S � 0,

0 � δkS � c21 (3.8)

where
e = KSS̄σ

k
S̄
− c1KSP1p

and

K̃ =

KPP KPS KPS̄

KSP KSS KSS̄

KS̄P KS̄S KS̄S̄

 , σ̃k =
[
σkS
σk
S̄

]
, δ̃k =

[
δkS
δk
S̄

]

K̃, σ̃k and δ̃k are permutations of K,σk and δk, respectively. In general, KVW is used
to denote a matrix containing rows of K indexed by elements in set V and columns of K
indexed by elements in set W .

7: (σk+1
S , δk+1

S)← (σkS , δkS).
8: k ← k + 1.
9: end while

28 Scalability in Positive Unlabeled Learning

Table 3.1: Equations and Conditions Used to Solve the Four QP Subproblems.

Case Equations
1 σkj=(ak(k(xi,xi)− k(xi,xj)) + e1 − e2)η
2 σkj=(ak(k(xi,xi)− k(xi,xj)) + e1 − e2 + 2)/η
3 σkj=(ak(k(xi,xi)− k(xi,xj)) + e1 − e2 − 2)/η
4 σkj=(ak(k(xi,xi)− k(xi,xj)) + e1 − e2)/η

Case Conditions
1 max{c2/2, ak − c2} ≤ σkj ≤ min{c2, a

k − c2/2}
2 max{0, ak − c2} ≤ σkj ≤ min{c2/2, ak − c2/2}
3 max{c2/2, ak − c2/2} ≤ σkj ≤ min{c2, a

k}
4 max{0, ak − c2/2} ≤ σkj ≤ min{c2/2, ak}

Note: ak = c1p− 1Tσk
S̄
, e = [e1, e2]T and

η = k(xi,xi) + k(xj ,xj)− 2k(xi,xj).

Case 3: σki = δki
2 ∧ σkj = c2 −

δkj
2 ∧ 0 ≤ δki , δ

k
j ≤ c2,

Case 4: σki = δki
2 ∧ σkj =

δkj
2 ∧ 0 ≤ δki , δ

k
j ≤ c2 (3.9)

Then, in order to solve the QP subproblem (3.8), one can solve four optimization sub-
problems, where the objective function is the same as (3.8), but the inequality constraints
of (3.8) are simplified to (3.9). Each of these subproblems can be expressed as an op-
timization of just one variable, by exploiting the equality constraints of both (3.8)
and (3.9). It can therefore be solved analytically, without the need for further optimiza-
tion. Table 3.1 reports the equations used to solve the four subproblems (we omit the
derivation, which is straightforward), where σkj is computed for all four cases. All other
variables, namely σki , δki and δkj , can be obtained in a second phase by simply exploiting
the equality constraints in (3.8) and (3.9).

These equations do not guarantee that the inequalities in (3.9) are satisfied. To verify
this, one can rewrite these inequalities as equivalent conditions of only σkj (by exploiting
the equality constraints in (3.8) and (3.9)), and check σkj against them, as soon as all σkj
are available. If these conditions are violated, a proper clipping is applied to σkj to restore
feasibility. Table 3.1 summarizes the checking conditions.

Finally, the minimizer of the QP subproblem (3.8) can be obtained by retaining only
the solution with the lowest level of objective. At each iteration, the output of the
algorithm is both optimal and feasible for the QP subproblem (3.8). The question now
is: when is it also optimal for the problem (3.6)?

Proposed Solution 29

3.4.2 Optimality Conditions

A problem of any optimization algorithm is to determine the stop condition. In Algo-
rithm 1, the search of the solution is stopped as soon as some stationarity conditions
are met. These conditions, called Karush-Kuhn-Tucker (KKT) conditions, represent the
certificates of optimality for the obtained solution. In case of (3.6) they are both neces-
sary and sufficient conditions, since the objective is convex and the constraints are affine
functions [91]. More in detail, an optimal solution has to satisfy the following relations:

∂F (σ, δ)
∂σu

− β = −λu + µu,

∂F (σ, δ)
∂δu

= −λu2 −
µu
2 − ξu + ηu,

λu
(
σu + δu

2 − c2
)

= 0,

µu
(δu

2 − σu
)

= 0,

ξu
(
δu − c2

)
= 0,

ηuδu = 0,
λu, µu, ξu, ηu ≥ 0 (3.10)

and this is valid for any component of the optimal solution, namely ∀u : xu ∈ Dn. In (3.10)
F (σ, δ) is used as an abbreviation of the objective function of (3.6), while β, λu, µu, ξu, ηu
are the Lagrange multipliers introduced to deal with the constraints in (3.6). These
conditions can be rewritten more compactly as:

0 ≤ δu<c2 ∧ σu=
δu
2 ⇒

∂F (σ, δ)
∂σu

−β ≥ 1 ⇒ f(xu) ≤ −1,

0 ≤ δu<c2 ∧ σu=c2−
δu
2 ⇒

∂F (σ, δ)
∂σu

−β ≤ −1 ⇒ f(xu) ≥ 1,

δu=c2 ∧ σu=
c2

2 ⇒ −1 ≤ ∂F (σ, δ)
∂σu

−β ≤ 1 ⇒ −1 ≤ f(xu) ≤ 1 (3.11)

In order to derive both (3.10) and (3.11), one can follow a strategy similar to the proof
of Lemma 1. It is easy to verify that ∂F (σ,δ)

∂σu
= −f(xu) + β. Thus, (3.11) provides

also conditions on the target function f . From now on, we will refer to (3.11) as the
optimality conditions, to distinguish from approximate conditions used to deal with
numerical approximations of calculators. To this aim, the τ−optimality conditions are
introduced, namely:

0 ≤ δu<c2 ∧ σu=
δu
2 ⇒

∂F (σ, δ)
∂σu

−β ≥ 1− τ

2 ⇒ f(xu) ≤ −1 + τ

2 ,

30 Scalability in Positive Unlabeled Learning

0 ≤ δu<c2 ∧ σu=c2−
δu
2 ⇒

∂F (σ, δ)
∂σu

−β ≤ −1+τ2 ⇒ f(xu) ≥ 1−τ2 ,

δu=c2 ∧ σu=
c2

2 ⇒ −1−τ2≤
∂F (σ, δ)
∂σu

−β≤1+τ2 ⇒ −1−τ2 ≤ f(xu) ≤ 1+τ2 (3.12)

where τ is a real-positive scalar used to perturb the optimality conditions.
By introducing the sets D1(σ, δ) =

{
xu ∈ Dn : 0 ≤ δu < c2 ∧ σu = δu

2

}
, D2(σ, δ) ={

xu ∈ Dn : 0 ≤ δu < c2 ∧ σu = c2− δu

2

}
and D3(σ, δ) =

{
xu ∈ Dn : 0 < δu ≤ c2 ∧

(
σu =

δu

2 ∨ σu = c2 − δu

2

)}
and the quantities mmax

1 (σ, δ) = maxxu∈D1 f(xu), mmin
2 (σ, δ) =

minxu∈D2 f(xu), mmin
3 (σ, δ) = minxu∈D3 f(xU) and mmax

3 (σ, δ) = maxxu∈D3 f(xu), called
the most critical values, it is possible to rewrite conditions (3.12) in the following
equivalent way:

mmax
1 (σ, δ)−mmin

3 (σ, δ) ≤ τ,

mmax
3 (σ, δ)−mmin

2 (σ, δ) ≤ τ,

mmax
1 (σ, δ)−mmin

2 (σ, δ) + 2 ≤ τ (3.13)

Apart from being written more compactly than (3.12), conditions (3.13) have the advan-
tage that they can be computed without knowing the bias β. Due to the dependence on
σ and δ, mmax

1 , mmin
2 , mmin

3 mmax
3 need to be tracked and computed at each iteration in

order to check τ− optimality and to decide whether to stop the algorithm.

3.4.3 Working Set Selection

A natural choice for selecting the working set is to look for pairs violating the τ− opti-
mality conditions. In particular,

Definition 1. Any pair (xi,xj) from Dn is a violating pair, if and only if it satisfies
the following relations:

xi ∈ D1,xj ∈ D3 ⇒ f(xi)− f(xj) > τ,

xi ∈ D3,xj ∈ D1 ⇒ f(xi)− f(xj) < −τ,
xi ∈ D2,xj ∈ D3 ⇒ f(xi)− f(xj) < −τ,
xi ∈ D3,xj ∈ D2 ⇒ f(xi)− f(xj) > τ,

xi ∈ D1,xj ∈ D2 ⇒ f(xi)− f(xj) + 2 > τ,

xi ∈ D2,xj ∈ D1 ⇒ f(xi)− f(xj)− 2 < −τ (3.14)

Conditions (3.13) are not satisfied as long as violating pairs are found. Therefore, the
algorithm keeps looking for violating pairs and use them to improve the objective function
until τ−optimality is reached.

Proposed Solution 31

The search of violating pairs as well as the computation of the most critical values
go hand in hand in the optimization and follow two different approaches. The former
consists of finding violating pairs and computing the most critical values based only on
a subset of samples called the non-bound set, namely D−n = (D1 ∩ D3) ∪ (D2 ∩ D3),
7 while the latter consists of looking for violating pairs based on the whole set Dn by
scanning all samples one by one. In this second approach, the most critical values are
updated using the non-bound set together with the current examined sample. Only when
all samples are examined, it is possible to check conditions (3.13), since the most critical
values correspond to the original definition. The algorithm keeps using the first approach
until τ−optimality for the non-bound set is reached, after that the second approach is
used. This process is repeated until the τ−optimality for the whole set Dn is achieved.
On the one hand, checking these conditions only on the non-bound set is very efficient but
does not ensure the global τ optimality; on the other hand, the use of the whole unlabeled
set is much more expensive, while ensuring the global τ optimality

The motivation of having two different approaches for selecting the violating pairs and
computing the most critical values is to enhance efficiency in computation. This will be
clarified in the next subsection.

3.4.4 Function Cache and Bias Update

Recall that each iteration of the USMO algorithm is composed by three main operations,
namely: the working set selection, the resolution of the associated QP subproblem, and
the update of the most critical values based on the obtained solution. It is interesting
to note that all these operations require to compute the target function f(xu) for all xu
belonging either to the non-bound set or to the whole set Dn, depending on the approach
selected by that iteration. In fact, the stage of working set selection requires to evaluate
conditions in (3.14) for pairs of samples depending on f ; the equations used to solve the
QP subproblem, shown in Table 3.1, depend on vector e = KSS̄σ

k
S̄
−c1KSP1p+KSSσ

k−1
S −

KSSσ
k−1
S = −[f(xi) − β, f(xj) − β]T −KSSσ

k−1
S , which is also influenced by f ; finally,

the computation of the most critical values requires to evaluate the target function f .
Therefore, it is necessary to define a strategy that limits the number of times the target
function is evaluated at each iteration. This can be achieved by considering the fact that
the algorithm performs most of the iterations on samples in the non-bound set, while
the whole set is used mainly to check if τ−optimality is reached, and then the values
of the target function for those samples can be stored in a cache, called the function
cache. Since usually |D−n | � |Dn|, storing f(xu) for all xu ∈ D−n is a cheap operation,

7The term non-bound comes from the fact that 0 < δu < c2 for all xu ∈ Dn.

32 Scalability in Positive Unlabeled Learning

which allows to save a huge amount of computation, thus increasing the computational
efficiency.

At each iteration the function cache has to be updated in order to take into account
the changes occured at some of the entries of vectors σ and δ, or equivalently at some of
the entries of α . By defining Fk(xu) as the function cache for sample xu at iteration k,
it is possible to perform the update operation using the following relation:

Fk(xu) =Fk−1(xu) + (αki − αk−1
u)k(xi,xu) + (αkj − αk−1

j)k(xj,xu) (3.15)

Since all operations at each iteration are invariant with respect to β (because they require
to evaluate differences between target function values), β can be computed at the end
of the algorithm, namely when τ−optimality is reached. By exploiting the fact that the
inequalities in (3.11) become simply equalities for samples in the non-bound set, meaning
that the target function evaluated at those samples can assume only two values, 1 or -1,8

it is possible to compute β for each of these samples in the following way:

βu =
{ −1−F(xu), ∀xu ∈ D1 ∩D3

1−F(xu), ∀xu ∈ D2 ∩D3
(3.16)

The final β can be computed by averaging of (3.16) over all samples in the non-bound
set, in order to reduce the effect of wrong label assignment.

3.4.5 Initialization

As previously mentioned, the proposed algorithm is characterized by iterations focusing
either on the whole training data set or on a smaller set of non-bound samples. The
formers are computationally more expensive, not only because a larger amount of samples
is involved in the optimization, but also because the algorithm has to perform many
evaluation operations, which can be skipped in the latter case, thanks to the exploitation
of the function cache. An example of this is provided in Figure 3.1: the chart on the left
plots the time required by the algorithm to complete the corresponding set of iterations.
Peaks correspond to cases where the whole training data set is considered, while valleys
represent the cases where iterations are performed over the non-bound samples. The chart
on the right plots the overall objective score vs. the different sets of iterations. Jumps
are associated with cases where all training samples are involved in the optimization.
As soon as the algorithm approaches convergence, the contribution of the first kind of
iterations becomes less and less relevant. Therefore, the selection of a good starting
point is important to limit the number of iterations requested over the whole unlabeled

8The same principle holds for conditions (3.12), but in this case the inequalities are defined over arbitrary
small intervals centered at 1 and -1 rather than being equalities.

Proposed Solution 33

Iterations
0 10 20 30 40 50 60

T
im

e
 (

s
e

c
s
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a)

Iterations
0 10 20 30 40 50 60

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

71.5

72

72.5

73

73.5

74

(b)

Figure 3.1: (a) plot of training time over iterations, (b) learning curve expressed in terms of
objective function.

dataset. Given the convex nature of the problem, any suboptimal solution achievable
with a low complexity can be used as a starting point. In our method, we propose the
following heuristic procedure. Labeled samples are used to train a one-class SVM [92],
that is in turn used to rank the unlabeled samples according to their value of estimated
target function. From this ordered list it is possible to identify groups of samples that can
be associated with the cases in (3.11). In particular, we identify five groups of samples
corresponding to the following five cases:

δ(1)
u = 0 ∧ σ(1)

u = 0,

0 < δ(2)
u < c2 ∧ σu = δ(2)

u

2 ,

δ(3)
u = c2 ∧ σ(3)

u = c2

2 ,

0 < δ(4)
u < c2 ∧ σ(4)

u = c2 −
δu
2 ,

δ(5)
u = 0 ∧ σ(5)

u = c2 (3.17)

The size of each group as well as the initial parameters for cases in (3.17) can be computed
by solving an optimization problem, whose objective function is defined starting from
the equality constraint in (3.6). In particular, by defining n1, n2, n3, n4, n5 as the sizes
of the groups for the different cases and by assuming that n1 = (1 − π)an, n2 = bn,
n3 = (1 − a − b − c)n, n4 = cn, n5 = πan, where a, b, c ∈ R+, and that the parameters
for the second and the fourth cases in (3.17), namely σ(2)

u and σ(4)
u , are the same, the

optimization problem can be formulated in the following way:

min
σ

(2)
u ,σ

(4)
u ,

a,b,c

{
c1p− bnσ(2)

u − cnσ(4)
u − c2n

[
πa+ 1− a− b− c

2

]}2

s.t. 0 ≤ a+ b+ c ≤ 1− 1
n
,

34 Scalability in Positive Unlabeled Learning

σj

σi

c2

c2c2

2

c2

2

A

B

C D

E

F G

H

I

R1

R2 R3

R4

σj = ak − σi

Figure 3.2: Subdivision of the feasible region in the plane defined by the variables σi and σj .
The red solid line represents the feasible region including the equality constraint in (3.8).

max
{ 1
πn

,
1

(1− π)n

}
≤ a ≤ min

{ 1
1− π ,

1
π

}
,

1
n
≤ b, c ≤ log(n)

n
,

0 < σ(2)
u <

c2

2 ∧
c2

2 < σ(4)
u < c2 (3.18)

where the constraints in (3.18) can be obtained by imposing n1 + n2 + n3 + n4 + n5 = n

and 1 ≤ n2, n3, n4, n5 ≤ n. Furthermore, we decide to have some upper bounds for b and
c to limit the size of the initial non-bound set.

In practice, after ranking the unlabeled samples through the one-class SVM and solving
the optimization problem in (3.18), the initial solution is obtained by assigning to each
sample the value of parameters corresponding to the case that sample belongs to. For
example, if the samples are ranked in ascending order, then the first n1 samples in the
list have σu = 0 and δu = 0, the next n2 samples have σu = σ(2)

u and δu = 2σu and the
others follow the same strategy.

3.4.6 Theoretical Analysis

In this section, we present the main theoretical result, namely, we prove that Algorithm 1
converges to a τ−optimal solution.

It is important to recall that each iteration of USMO requires to solve an optimization
subproblem, that depends on a single variable. In particular, if xi and xj correspond
to the selected pair of points at one iteration, then the solution space corresponds to a
line lying in the two-dimensional plane defined by the variables σi and σj. The feasible
region in that plane can be subdivided into four parts, as defined according to Figure 3.2.
These regions are considered closed sets, therefore including boundary points, like edges
and corners. To consider only the interior of any set U , we use the notation int U . Based

Proposed Solution 35

on these considerations, it is possible to prove the following lemma.

Lemma 2. Let the vector z′ = [σ′; δ′] be in the feasible set of (3.6) and (xi,xj) be a
violating pair at point z′. Let also z∗ = [σ∗; δ∗] be the solution obtained after applying
one iteration of the Algorithm 1 using the working set S = {i, j} and starting from z′.
Then, the following results hold:

(a) z∗ 6= z′,

(b) After the minimization step, (xi,xj) is no more a violating pair,
(c) (σ∗i ,σ∗j) ∈ int R1 ∪ int R3 ⇒ fz∗(xj)−fz∗(xi) = 0,
(d) (σ∗i ,σ∗j) ∈ int R2 ⇒ fz∗(xj)−fz∗(xi) = 2,
(e) (σ∗i ,σ∗j) ∈ int R4 ⇒ fz∗(xj)−fz∗(xi) = −2,
(f) (σ∗i ,σ∗j) ∈ BE ⇒ 0 ≤ fz∗(xj)−fz∗(xi) ≤ 2,
(g) (σ∗i ,σ∗j) ∈ DE ⇒ 0 ≤ fz∗(xj)−fz∗(xi) ≤ 2,
(h) (σ∗i ,σ∗j) ∈ EF ⇒ −2 ≤ fz∗(xj)−fz∗(xi) ≤ 0,
(i) (σ∗i ,σ∗j) ∈ EH ⇒ −2 ≤ fz∗(xj)−fz∗(xi) ≤ 0,
(l) (σ∗i ,σ∗j) ∈ AB ∪DI ⇒ fz∗(xj)−fz∗(xi) ≥ 0,
(m) (σ∗i ,σ∗j) ∈ AF ∪HI ⇒ fz∗(xj)−fz∗(xi) ≤ 0,
(n) (σ∗i ,σ∗j) ∈ BC ∪ CD ⇒ fz∗(xj)−fz∗(xi) ≥ 2,
(o) (σ∗i ,σ∗j) ∈ FG ∪GH ⇒ fz∗(xj)−fz∗(xi) ≤ −2,

(p) F (σ′, δ′)− F (σ∗, δ∗) > τ

2
√

2
‖σ′ − σ∗‖2

where fz∗ represents the target function with coefficients αi computed according to (3.7)
using z∗ (see Figure 3.2).

Proof. Note that the feasible region for the QP subproblem (3.8) is a portion of line with
negative slope lying on the plane defined by variables σi and σj (see Figure 3.2). Thus,
any point (σi, σj) on this line can be expressed using the following relationship:

σi = σ′i + t,

σj = σ′j − t (3.19)

where t ∈ R. In particular, if t = 0, then (σi, σj) ≡ (σ′i, σ′j) and, if t = t∗, then (σi, σj) ≡
(σ∗i , σ∗j).

Considering (3.19) and the fact that δxi
=2σi ∧ δj=2σj when (σi, σj) ∈ R1, δxi

=2σi ∧
δj=2c2 − 2σj when (σi, σj) ∈ R2, δxi

=c2 − 2σi ∧ δj=c2 − 2σj when (σi, σj) ∈ R3 and
δxi

=c2 − 2σi ∧ δj=2σj when (σi, σj) ∈ R4, it is possible to rewrite the objective in (3.8)

36 Scalability in Positive Unlabeled Learning

as a function of t, namely:

φ(t) =1
2(σ′i + t)2k(xi,xi) + 1

2(σ′j − t)2k(xj,xj)

+ (σ′i + t)(σ′j − t)k(xi,xj) + hz(t) (3.20)

where hz is a function defined in the following way:

hz(t)=

(e1−1)(σ′i+t)+(e2−1)(σ′j−t), (σi,σj)∈R1,

(e1−1)(σ′i+t)+(e2+1)(σ′j−t)−c2, (σi,σj)∈R2,

(e1+1)(σ′i+t)+(e2+1)(σ′j−t)−2c2,(σi,σj)∈R3,

(e1+1)(σ′i+t)+(e2−1)(σ′j−t)−c2, (σi,σj)∈R4

Note that d2φ(t)
dt2

= k(xi,xi) + k(xj,xj) − 2k(xi,xj) ≥ 0 (k is a Mercer kernel), meaning
that (3.20) is convex.

If (σ∗i , σ∗j) ∈ int R1, then (σ∗i , σ∗j) is the minimum and dφ(t∗)
dt

= 0. Since dφ(t∗)
dt

=
fz∗(xj) − fz∗(xi) = 0, the first and the second conditions in (3.14), which are the only
possibilities to have a violating pair, are not satisfied. Therefore, (xi,xj) is not violating
at point z∗, but it is violating at z′, implying that z∗ 6= z′. The same situation holds for
(σ∗i , σ∗j) ∈ int R3 and this proves statement (c). 9 Statements (d) and (e) can be proven
in the same way, considering that the admissible conditions to have a violating pair are
the first, the fourth and the fifth conditions for the former case and the second, the third
and the sixth ones for the latter case.

If (σ∗i ,σ∗j) ∈ BE, there are two possibilities to compute the derivative depending
on the position of (σ′i,σ′j), namely approaching (σ∗i ,σ∗j) from the bottom or from the
top of the constraint line. In the first case, the derivative is identified by dφ(t∗)

dt−
, while

in the second case by dφ(t∗)
dt+

. Since (σ∗i ,σ∗j) is the minimum and due to the convex-
ity of function φ(t), dφ(t∗)

dt−
≥ 0 and dφ(t∗)

dt+
≤ 0. Furthermore, it is easy to verify that

dφ(t∗)
dt−

= fz∗(xj)−fz∗(xi) and dφ(t∗)
dt+

= fz∗(xj)−fz∗(xi) − 2. By combining these results,
we obtain that 0 ≤ fz∗(xj)−fz∗(xi) ≤ 2. This, compared with the first condition in (3.14),
guarantees that (xi,xj) is not a violating pair at z∗ and therefore that z∗ 6= z′. The same
strategy can be applied to derive statements (g)-(o).

For the sake of notation compactness, we use φ′(t) to identify both the classical and
the directional derivatives of φ(t), viz. dφ(t)

dt
, dφ(t∗)

dt−
and dφ(t∗)

dt+
, respectively. Therefore, it

is possible to show that φ(t) = φ(0) + φ′(0)t+ φ′′(0)
2 t2. Furthermore, due to the convexity

of φ(t), we have that

φ′(0) < 0⇒ tq ≥ t∗ > 0,
φ′(0) > 0⇒ tq ≤ t∗ < 0 (3.21)

9In this case, the admissible conditions for violation are the second and the third conditions in (3.14).

Proposed Solution 37

where tq = − φ′(0)
φ′′(0) is the unconstrained minimum of φ(t). From all these considerations,

we can derive the following relation:

φ(t∗) ≤ φ(0) + φ′(0)
2 t∗ (3.22)

In fact, if φ′′(0) = 0, then (3.22) trivially holds. If φ′′(0) > 0, then

φ(t∗)− φ(0) = φ′(0)
2 t∗

(
2tq − t∗
tq

)
≤ φ′(0)

2 t∗ (3.23)

where the last inequality of (3.23) is valid because
(

2tq−t∗
tq

)
≥ 1, by simply applying (3.21).

Note also that (3.19) can be used to derive the following result, namely:

‖σ′ − σ∗‖2 = |t∗|
√

2 (3.24)

By combining (3.23) and (3.24) and considering that conditions (3.14) can be compactly
rewritten as |φ′(0)| > τ , we obtain that

φ(0)− φ(t∗) ≥ −φ
′(0)
2 t∗ = |φ

′(0)|
2 |t∗|

>
τ

2 |t
∗| = τ

2
√

2
‖σ′ − σ∗‖2 (3.25)

Finally, statement (p) is obtained from (3.25), by taking into account that φ(t∗) =
F (σ∗, δ∗) and φ(0) = F (σ′, δ′).

Lemma 2 states that each iteration of Algorithm 1 generates a solution that is τ−optimal
for the indices in the working set S.

The convergence of USMO to a τ−optimal solution can be proven by contradiction
by assuming that the algorithm proceeds indefinitely. This is equivalent to assume that
(xik ,xjk) is violating ∀k ≥ 0, where (ik, jk) represents the pair of indices selected at
iteration k.

Since {F (σk, δk)} is a decreasing sequence (due to the fact that zk 6= zk+1 ∀k ≥ 010 and
that the algorithm minimizes the objective function at each iteration) and bounded below
(due to the existence of an unknown global optimum), it is convergent. By exploiting this
fact and by considering that 2

√
2

τ
[F (σk, δk) − F (σk+l, δk+l)] > ‖σk−σk+l‖2, ∀k, l ≥ 0,

which can be obtained from (p) of Lemma 2 by applying l times the triangle inequality,
it is possible to conclude that {σk} is a Cauchy sequence. Therefore, since the sequence
lies also in a closed feasible set, it is convergent. In other words, we have that σk → σ̄ for
k →∞, meaning that Algorithm 1 produces a convergent sequence of points. Now,
it is important to understand if this sequence converges to a τ−optimal solution.

10Statement (a) of Lemma 2.

38 Scalability in Positive Unlabeled Learning

First of all, let us define the set of indices that are encountered/selected by the algo-
rithm infinitely many times:

I∞ = {(µ, ν) : ∃{kt} ⊂ {k}, (ikt , jkt) = (µ, ν),∀t ∈ N} (3.26)

{kt} is therefore a subsequence of {k}. It is also important to mention that since the
number of iterations is infinite and the number of samples is finite, I∞ cannot be an
empty set. Based on this consideration, we define vµν as the vector, whose elements are
the entries at position µ and ν of a general vector v, and provide the following lemma.

Lemma 3. Assume (µ, ν) ∈ I∞ and let {kt} be the sequence of indices for which (ikt , jkt) =
(µ, ν). Then,

(a) ∀ε > 0,∃t̂ > 0 : ∀t ≥ t̂, ‖σkt
µν − σ̄µν‖ < ε and ‖σkt+1

µν − σ̄µν‖ < ε,

(b) fσkt (xµ)−fσkt (xν) > τ ⇒ fσ̄(xµ)−fσ̄(xν) ≥ τ,

(c) fσkt (xµ)−fσkt (xν) < −τ ⇒ fσ̄(xµ)−fσ̄(xν) ≤ −τ,
(d) fσkt (xµ)−fσkt (xν) > τ−2⇒ fσ̄(xµ)−fσ̄(xν) ≥ τ−2,
(e) fσkt (xµ)−fσkt (xν) < −τ+2⇒ fσ̄(xµ)−fσ̄(xν) ≤ −τ+2

where fσkt , fσ̄ represent the target function with coefficients αi computed according to (3.7)
using σkt and σ̄, respectively.

Proof. Since {σk} is convergent and {kt}, {kt + 1} are subsequences of {k}, {σkt} and
{σkt+1} are also convergent sequences. In other words, ∃t̂ > 0 such that ‖σkt−σ̄‖ < ε and
‖σkt+1−σ̄‖ < ε. Furthemore, ‖σkt−σ̄‖ ≥ ‖σkt

µν−σ̄µν‖ and ‖σkt+1−σ̄‖ ≥ ‖σkt+1
µν −σ̄µν‖.

By combining these two results, we obtain statement (a).
Concerning statement (b), we have that fσkt (xµ)−fσkt (xν)>τ . Furthermore, from

convergence of {σkt} and continuity of f , we obtain that ∀ε > 0, ∃t̃ ≥ t̂: ∀t ≥ t̃,
−ε ≤ fσkt (xµ) − fσ̄(xµ) ≤ ε and −ε ≤ fσkt (xν) − fσ̄(xν) ≤ ε, meaning that both
{fσkt (xµ)} and {fσkt (xν)} are convergent. Therefore, fσkt (xµ) − fσkt (xν) > τ can be
rewritten as

fσkt (xµ)−fσkt (xν) + fσ̄(xµ)−fσ̄(xµ) + fσ̄(xν)−fσ̄(xν) > τ

and by applying the information about the convergence of both {fσkt (xµ)} and {fσkt (xν)},
we get that

fσ̄(xµ)− fσ̄(xν) > τ − 2ε

which is valid ∀ε > 0 and therefore proves statement (b). All other statements, namely
(c)-(e), can be proven using the same approach.

Proposed Solution 39

σ
kt
ν

σ
kt
µ

c2

2

c2

2

A

B

F

E

Figure 3.3: Example of transitions performed by a minimization step of Algorithm 1 for different
locations of σ̄µ,ν (highlighted by blue points) and for sufficiently large number of iterations.

Lemma 3 states some conditions about the final target function and also states that
the sequence output by Algorithm 1, after a sufficiently large number of iterations, is
enclosed in a ball centered at σ̄. This aspect is shown in Figure 3.3 for R1 and for
different possible locations of σ̄µ,ν . The same picture shows also the possible transitions
that may happen at each iteration. In particular, we see that for σ̄µ,ν lying on corners
and edges, different kinds of transitions exist. In fact, we find transitions from border to
border, transitions from border to inner points and viceversa, and transitions from inner
points to inner points. These are indetified as bd→ bd, bd→ int, int→ bd and int→ int,
respectively. Note that for σ̄µ,ν not lying on borders, int→ int is the only available kind
of transition. Based on these considerations, it is possible to prove the following lemma.

Lemma 4. Let (µ, ν), {kt}, t̂ and ε be defined according to Lemma 3. Then, ∃t̄ ≥ t̂ such
that ∀t ≥ t̄ and for sequence {kt} the only allowed transitions are int→ bd and bd→ bd.

Proof. Consider region R1 and (σ̄µ, σ̄ν) ∈ int R1. Then, the only admissible type of
transitions for this case is int→ int. Therefore, based on statement (c) of Lemma 2 (and
thanks also to statement (a) of Lemma 3), we obtain that ∀t ≥ t̄, fσkt+1(xµ)−fσkt+1(xν) =
0. By exploiting this fact, the continuity of f and the convergence of {σkt+1}, it is possible
to show that

fσ̄(xµ)− fσ̄(xν) = 0 (3.27)

Furthermore, since (xµ,xν) is a violating pair at all iterations and ∀t ≥ t̄, σkt
µν ∈ int R1

(due to statement (a) of Lemma 3), (xµ,xν) has to satisfy conditions (b) or (c) of
Lemma 3. These conditions are in contradiction with (3.27), meaning that the int→ int

transition is not allowed in this case.
Consider now region R1 and (σ̄µ, σ̄ν) ∈ E, or equivalently (σ̄µ, σ̄ν) ∈ A. This time,

the potential transitions are bd→ bd, bd→ int, int→ bd and int→ int. Nevertheless, it
is always possible to define a subsequence containing only either int → int or bd → int

40 Scalability in Positive Unlabeled Learning

and obtain therefore conclusions similar to the previous case. In fact, both int→ int and
bd→ int are not allowed transitions.

The same results can be obtained in a similar way for other edges, corners of R1 as
well as for points in R3, upon selection of the proper conditions in Lemma 2.

Consider now region R2 and (σ̄µ, σ̄ν) ∈ int R2. The only admissible transition in this
case is int → int. From statement (d) of Lemma 2, we have that ∀t≥t̄, fσkt+1(xµ) −
fσkt+1(xν) = −2 and, from the continuity of f and the convergence of {σkt+1}, it is
possible to show that

fσ̄(xµ)− fσ̄(xν) = −2 (3.28)

Furthermore, since (xµ,xν) is a violating pair at all iterations and ∀t ≥ t̄, σkt
µν ∈ int R2,

(xµ,xν) has to satisfy conditions (b) or (d) of Lemma 3. These conditions are in contra-
diction with (3.28), meaning that the int→ int transition is not valid.

For all corners and edges of R2, as well as for all points in R4, it is possible to show that
int→ int and bd→ int are not valid transitions. The proof is similar to the previous cases.
Therefore, the only admissible transitions after a sufficiently large number of iterations
are int→ bd and bd→ bd.

It is interesting to note that each transition int→ bd increases the number of compo-
nents of σ belonging to borders of the four regions, by one or two, while each transition
bd → bd leaves it unchanged. Since this number is bounded by n, transition int → bd

cannot appear infinitely many times. Therefore, ∃t∗ ≥ t̄, ∀t ≥ t∗, bd → bd is the only
valid transition.

Note that bd→ bd may happen only when (σ̄µ, σ̄ν) is located at some specific corners
of the feasible region, namely corners A or E for region R1, corners B or C for region
R2, corners E or I for region R3 and corners F or H for region R4. For all cases, it
is possible to define a subsequence that goes only from a vertical to a horizontal border
and a subsequence that goes only from a horizontal to a vertical border. Without loss
of generality, we can consider a specific case, namely (σ̄µ, σ̄ν) ∈ A. Note that for the
first subsequence, fσkt+1(xµ) − fσkt+1(xν) < −τ , since (xµ,xν) has to be a violating
pair in order not to stop the iterations and therefore, from statement (c) of Lemma 3,
fσ̄(xµ) − fσ̄(xν) < −τ . For the second subsequence, fσkt+1(xµ) − fσkt+1(xν) > τ and
consequently fσ̄(xµ)−fσ̄(xν) > τ . This leads to a contradiction which holds ∀(µ, ν) ∈ I∞.
Therefore, the assumption that Algorithm 1 proceeds indefinitely is not verified. In other
words, there exists an iteration at which the algorithm stops because a τ−optimal solution
is obtained.

Experiments 41

Table 3.2: Characteristics of datasets (small scale datasets on the left and large scale datasets
on the right).

Datasets # Instances # Features Datasets # Instances # Features
Australian 690 42 Bank-marketing 28000 20

Clean1 476 166 Adult 32562 123
Diabetes 768 8 Statlog (shuttle) 43500 9

Heart 270 9 Mnist 60000 784
Heart-statlog 270 13 Poker-hand 1000000 10

House 232 16
House-votes 435 16
Ionosphere 351 33

Isolet 600 51
Krvskp 3196 36

Liverdisorders 345 6
Spectf 349 44

3.5 Experiments

In this section, comprehensive evaluations are presented to demonstrate the effectiveness
of the proposed approach. USMO is compared with [38] and [37]. The three methods
have been implemented in MATLAB, to ensure fair comparison. 11 The method in [38]
solves problem (3.6) using the MATLAB built-in function quadprog, combined with the
second-order primal-dual interior point algorithm [93], while the method in [37] solves
problem (3.4) with the ramp loss function using the quadprog function combined with the
concave-convex procedure [94]. Experiments were run on a PC with 16 2.40 GHz cores
and 64GB RAM. A collection of 17 real-world datasets from the UCI repository was
used, 12 of which contain hundreds or thousands of samples, while the remaining 5 are
significantly bigger. Table 3.2 shows some of their statistics.

Since USMO and [38] solve the same optimization problem, we first verify that both
achieve the same solution. We consider the F-measure in a transductive setting, to
assess the generalization performance on all small-scale datasets and under different con-
figurations of hyper-parameters and kernel functions. In particular, we consider different
values of λ, viz. 0.0001, 0.001, 0.01, 0.1, using linear and Gaussian kernels. 12 In these
experiments, only 20% of positive samples are labeled. Tables 3.3-3.4 show the results

11USMO source code is available at https://github.com/emsansone/USMO.
12The positive class prior π is set to the class proportion in the training datasets. Methods like [95, 52, 96] can

be used to estimate it.

42 Scalability in Positive Unlabeled Learning

Table 3.3: Comparative results (F-measure) on different small-scale datasets and on different
values of hyperparameters using the linear kernel. 20% of positive examples are labeled, while
the remaining are unlabeled.

λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1
Datasets Init [37] [38] USMO Init [37] [38] USMO Init [37] [38] USMO Init [37] [38] USMO
Australian 61.8 61.5 67.9 68.3 61.8 68.8 67.7 67.6 61.8 63.4 69.0 69.3 61.8 58.5 70.0 70.2

Clean1 60.6 81.6 70.5 70.2 63.8 76.2 65.5 65.6 64.6 81.9 73.3 73.0 66.2 80.4 77.9 75.6
Diabetes 41.8 73.3 70.0 70.1 41.4 71.5 71.2 71.1 37.6 77.9 78.0 79.3 6.5 82.3 82.3 82.3

Heart 46.8 60.8 60.1 59.4 49.0 63.4 60.7 60.0 57.2 64.9 66.0 66.0 75.6 75.6 75.6 75.6
Heart-statlog 63.3 65.1 54.5 54.5 63.8 58.1 55.4 55.2 66.9 61.2 53.8 53.8 75.6 67.5 61.7 60.2

House 49.0 57.9 59.9 59.9 49.8 66.7 59.0 59.0 49.8 57.9 57.4 56.8 58.4 51.8 64.6 64.0
House-votes 59.3 51.6 59.6 59.6 60.0 56.6 60.0 59.9 66.9 59.3 57.1 57.2 71.8 51.3 61.7 62.0
Ionosphere 19.3 59.9 65.1 65.1 19.3 74.9 71.5 72.0 19.3 71.9 72.6 73.7 22.3 75.5 75.2 75.2

Isolet 98.3 77.1 91.8 93.7 98.1 78.0 93.3 93.3 98.1 81.1 94.7 94.7 98.0 86.8 95.5 95.5
Krvskp 57.0 78.4 81.1 81.1 57.3 78.7 79.6 79.9 61.1 75.8 82.9 82.9 68.8 75.0 80.6 80.6

Liverdisorders 54.5 56.0 55.7 56.0 60.0 58.1 63.9 63.4 69.0 68.8 68.8 68.8 68.8 68.8 68.8 68.8
Spectf 56.4 58.0 73.5 73.5 60.4 66.3 72.9 72.3 58.1 79.9 80.6 80.6 79.2 81.1 81.1 81.1
Avg. 55.7±18.1 65.1±10.0 67.5±10.9 67.6±11.3 57.0±18.1 68.1±7.9 68.4±10.4 68.3±10.6 59.2±18.9 70.3±8.9 71.2±11.9 71.3±12.1 62.7±24.9 71.2±11.9 74.6±9.9 74.3±10.0

Table 3.4: Comparative results (F-measure) on different small-scale datasets and on different
values of hyperparameters using the Gaussian kernel (scale parameter equal to 1). 20% of
positive examples are labeled, while the remaining are unlabeled.

λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.1
Datasets Init [37] [38] USMO Init [37] [38] USMO Init [37] [38] USMO Init [37] [38] USMO
Australian 67.0 64.2 64.2 64.7 67.0 64.2 70.6 70.6 67.0 57.2 59.4 59.4 67.0 0.0 0.0 0.0

Clean1 28.7 80.1 77.6 77.6 44.0 80.6 81.7 81.7 78.3 78.0 76.6 76.6 76.4 76.4 76.4 76.4
Diabetes 58.8 74.1 70.0 70.0 58.4 71.3 71.2 70.6 52.6 80.7 80.1 80.1 0.0 82.3 82.3 82.3

Heart 46.5 66.7 58.9 58.9 47.7 64.1 59.8 59.8 63.8 70.3 70.9 70.9 75.6 75.6 75.6 75.6
Heart-statlog 30.7 70.3 53.5 53.5 31.5 65.1 56.7 56.7 49.6 60.6 56.4 56.4 75.6 75.6 75.6 75.6

House 38.5 63.9 56.5 56.5 37.1 68.8 61.1 60.1 28.2 59.1 56.8 54.2 74.0 74.0 74.0 74.0
House-votes 64.2 29.7 61.2 61.2 64.1 54.3 59.2 59.4 67.4 61.1 57.5 57.5 71.8 71.8 71.8 71.8
Ionosphere 55.6 52.6 65.3 65.3 56.3 68.2 74.3 74.1 58.4 58.7 65.7 65.7 72.7 74.2 74.2 74.2

Isolet 0.0 73.3 75.3 75.3 0.0 73.8 75.7 75.7 0.0 74.1 76.4 76.4 0.0 73.3 75.9 75.9
Krvskp 52.0 73.9 82.4 82.5 59.4 77.2 84.3 84.1 44.2 73.2 73.2 73.2 73.2 73.2 73.2 73.2

Liverdisorders 44.3 60.6 57.0 56.2 49.5 63.7 62.2 62.5 68.8 68.8 68.8 68.8 68.8 68.8 68.8 68.8
Spectf 61.5 38.0 74.0 74.0 80.0 62.4 72.9 72.1 69.0 81.1 81.1 81.1 81.1 81.1 81.1 81.1
Avg. 45.7±19.1 62.3±15.2 66.3±9.4 66.3±9.5 49.6±20.5 67.8±7.2 69.2±9.2 68.9±9.2 53.9±21.7 68.6±9.0 68.6±9.3 68.4±9.6 61.4±28.9 68.9±22.0 69.1±22.1 69.1±22.1

Experiments 43

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

85

90

95

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(a) Statlog 1/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(b) Statlog 2/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(c) Statlog 3/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

82

84

86

88

90

92

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(d) Statlog 4/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(e) Statlog 5/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(f) Statlog 6/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(g) Statlog 7/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

92

94

96

98

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(h) MNIST 0/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

96

97

98

99

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(i) MNIST 1/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(j) MNIST 2/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(k) MNIST 3/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(l) MNIST 4/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

88

90

92

94

96

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(m) MNIST 5/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

85

90

95

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(n) MNIST 6/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(o) MNIST 7/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

85

90

95

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(p) MNIST 8/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

88

90

92

94

96

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(q) MNIST 9/all

Figure 3.4: Comparative results on (a)-(g) Statlog (shuttle) and (h)-(q) MNIST datasets using
the linear kernel (λ = 0.01). Each plot shows the training time against different number of
unlabeled samples (100 positive samples) as well as the generalization performance on the test
set.

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

82

84

86

88

90

92

94

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(a) Bank 1/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

88.6

88.8

89

89.2

89.4

89.6

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(b) Adult 1/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

40

45

50

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(c) POKER 0/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

50

55

60

65

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(d) POKER 1/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

88

90

92

94

96
F

-S
c
o

re
 (

:)
[40]
[39]
USMO

(e) POKER 2/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(f) POKER 3/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(g) POKER 4/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(h) POKER 5/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(i) POKER 6/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(j) POKER 7/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(k) POKER 8/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100
F

-S
c
o

re
 (

:)

[40]
[39]
USMO

(l) POKER 9/all

Figure 3.5: Comparative results on (a) Bank-marketing, (b) Adult and (c)-(l) Poker-hand
datasets using the linear kernel (λ = 0.01). Each plot shows the training time against different
number of unlabeled samples (100 positive samples) as well as the generalization performance
on the test set.

for linear and Gaussian kernels, respectively. Both algorithms achieve almost identical
performance, with small differences due to numerical approximations. This fact confirms
the results of the theoretical analysis of previous subsection, according to which USMO

44 Scalability in Positive Unlabeled Learning

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

85

90

95

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(a) Statlog 1/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(b) Statlog 2/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(c) Statlog 3/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

86

88

90

92

94

96

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(d) Statlog 4/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

88

90

92

94

96

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(e) Statlog 5/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(f) Statlog 6/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(g) Statlog 7/all

0 5000 10000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

86

88

90

92

94

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(h) MNIST 0/all

0 5000 10000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

84

86

88

90

92

94

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(i) MNIST 1/all

0 5000 10000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

86

88

90

92

94

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(j) MNIST 2/all

0 5000 10000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

86

88

90

92

94

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(k) MNIST 3/all

0 5000 10000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

86

88

90

92

94

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(l) MNIST 4/all

0 5000 10000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

85

90

95

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(m) MNIST 5/all

0 5000 10000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

85

90

95

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(n) MNIST 6/all

0 5000 10000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

86

88

90

92

94

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(o) MNIST 7/all

0 5000 10000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

86

88

90

92

94

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(p) MNIST 8/all

0 5000 10000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

86

88

90

92

94

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(q) MNIST 9/all

Figure 3.6: Comparative results on (a)-(g) Statlog (shuttle) and (h)-(q) MNIST datasets using
the Gaussian kernel (λ = 0.01 and scale parameter equal to 1). Each plot shows the training time
against different number of unlabeled samples (100 positive samples) as well as the generalization
performance on the test set.

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

84

86

88

90

92

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(a) Bank 1/all

0 5000 10000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

80

85

90

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(b) Adult 1/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

45

50

55

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(c) POKER 0/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

64

66

68

70

72

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(d) POKER 1/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

88

90

92

94

96

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(e) POKER 2/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(f) POKER 3/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(g) POKER 4/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(h) POKER 5/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(i) POKER 6/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(j) POKER 7/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(k) POKER 8/all

0 2000 4000 6000

unlab. samples

10
0

10
5

10
10

T
ra

in
in

g
 t
im

e
 (

s
e
c
)

(-
)

90

92

94

96

98

100

F
-S

c
o

re
 (

:)

[40]
[39]
USMO

(l) POKER 9/all

Figure 3.7: Comparative results on (a) Bank-marketing, (b) Adult and (c)-(l) Poker-hand
datasets using the Gaussian kernel (λ = 0.01 and scale parameter equal to 1). Each plot
shows the training time against different number of unlabeled samples (100 positive samples) as
well as the generalization performance on the test set.

is guaranteed to converge to the same value of objective function obtained by [38]. In Ta-
bles 3.3 -3.4, we report the baseline performance obtained by applying only our proposed
initialization (called Init).

Experiments 45

Note that ramp loss [37] achieves on average inferior performance compared to USMO
and [38]. Furthermore, it is influenced by the starting point due to a non-convex objective
function, thus making double Hinge loss preferable in practical applications.

Secondly, we investigate the complexity of USMO with respect to [37, 38]. As
to the storage requirements, USMO behaves linearly instead of quadratically as [37, 38].
Concerning the computational complexity, it can be easily found that each iteration has, in
the worst case (i.e., an iteration over the whole unlabeled dataset), a complexity O(|Dn|).
As to the number of iterations, it is difficult to determine a theoretical limit and it has been
experimentally observed over a large and variate set of tests that it is possible to establish
a linear upper bound with very low slope (less than 40 iterations for 6000 samples).
Therefore, we can state that a quadratic dependence represents a very conservative upper
limit for the complexity of USMO. In particular, we measured the processing time of
all methods for an increasing number of unlabeled samples and with different kernel
functions. Figures 3.4 and 3.5 show elapsed time and generalization performance with
the linear kernel, while Figures 3.6 and 3.7 show the results achieved with a Gaussian
kernel. In most cases, and especially for linear kernel, USMO outperforms all competitors.
For Gaussian kernel and few unlabeled samples USMO may require higher computation
than ramp loss [37], however, its performance consistently increases with the number
of unlabeled samples and its lower storage requirements allow using it also when other
methods run out of memory (see results for MNIST in Figure 3.6).

46 Scalability in Positive Unlabeled Learning

Chapter 4

Deep Generative Models

Performing density estimation in high-dimensional feature spaces is a well-known problem
in machine learning. This work shows that it is possible to formulate the optimization
problem as a minimization and use the representational power of neural networks to
learn very complex densities. A theoretical bound on the estimation error is given when
dealing with finite number of samples. The proposed theory is corroborated by extensive
experiments on different datasets and compared against several existing approaches from
the families of generative adversarial networks and autoencoder-based models.

4.1 Background

Deep generative models, like autoregressive models [97], generative adversarial networks [98]
and variational autoencoders [99], represent very promising research directions for solving
the problem of density estimation. Each of these families have their own limitations. The
performance of existing autoregressive models based on recurrent neural networks degrade
as the number of features (e.g the resolution of images) in data grows. Generative ad-
versarial networks are difficult to train due to the mini-max nature of the optimization
problem and therefore it becomes difficult to ensure global convergence of algorithms
without making very hard assumptions, like having networks with infinite capacity. The
performance of variational autoencoders are strongly dependent on the choice of posterior
density with direct consequence on the quality of the learnt density.

In this work, we show that it is possible to cast the problem of density estimation as a
minimization problem, thus overcoming the difficulties encountered during the mini-max
optimization in generative adversarial networks. This allows to exploit existing optimiza-
tion routines for neural networks and converge to global optimal solutions. Furthemore,
we provide finite-sample bounds on the estimation error of the true density. The whole
framework is validated through extensive experimental analysis on a variety of synthetic

48 Deep Generative Models

and real-world datasets by comparing the proposed model against several state-of-the-art
methods, including generative adversarial networks, adversarial autoencoders and varia-
tional autoencoders.

4.2 Related work

The most promising research directions for generative models are autoregressive models,
generative adversarial networks (GANs) and variational autoencoders (VAEs).

Autoregressive models [97] convert the problem of density estimation into a sequence
problem based on the fact that the unknown density function can be expressed as a
product of conditional distributions. Recurrent neural networks [100] are generally used
to learn these conditional distributions. The main drawback is due to the difficulty of
recurrent neural networks in catching long-term dependencies. Therefore, performance
tend to degrade as the length of the sequences increase. Another limitation of these
models is the absence of a latent representation of data.

Generative adversarial networks [98] cast the problem of density estimation as a mini-
max game between two neural networks, namely a discriminator, that tries to distinguish
between true and generated samples, and a generator, that tries to produce samples similar
to the true ones, to fool the discriminator. They have the reputation of being difficult
to train and also require careful design of network architectures [101]. Some of the most
known issues are (i) the problem of vanishing gradients [102], which happens when the
output of the discriminator is saturated, because true and generated data are perfectly
classified, and no more gradient information is provided to the generator, (ii) the problem
of mode collapse [103], which happens when the samples from the generator collapse to
a single point corresponding to the maximum output value of the discriminator, and (iii)
the problem of instability associated with the failure of convergence, which is due to the
intrinsic nature of the mini-max problem.

Plethora of solutions exist in the literature and therefore we focus only on the most
relevant ones. To solve the problem of vanishing gradients, the original paper of GANs [98]
proposes to use a different objective for the generator, called the − logD alternative. The
improved version from the same authors [104] proposes another objective for the generator
which is based on feature matching, namely comparing the mean statistics of true and
generated data on features extracted by the discriminator. The work of [105] incorporates
multiple discriminators into the original framework, to ensure that gradient continually
flows. Arjowski et al. [102] analyzes the problem of vanishing gradients from a theoretical
perspective and provides a solution, which consists of adding instance noise during training
to increase the attraction force between the generated and the true data manifold.

Related work 49

To solve the problem of mode collapse and more generally the problem of instability,
authors in [106] introduce a regularizer in the optimization objective, that acts as a form
of consensus between the discriminator and the generator and favors the convergence of
training. Nevertheless, only local convergence is guaranteed. Metz et al. [103] propose an
unrolled optimization of the discriminator. The update of the generator is computed by
backpropagating the gradient through multiple updates of the discriminator and generated
samples are not any more attracted to a single data point. Zhao et al. [107] formulate the
problem differently. In particular, they consider the discriminator as an energy function,
assigning low scores to samples on true data manifold and high scores to samples on
generated manifold, and use an autoencoder as discriminator network. The authors show
experimentally that the proposed model leads to better stability during training. The work
of [108] considers the application of image generation and introduce a sort of curriculum
in the training of GANs. A progressive growing of the network capacity and of the image
resolution allows to stabilize the training. Their model is able to generate images at a
very high resolution. Nevertheless, the method is heavily based on heuristics and more
research effort is required in order to formalize the approach and generalize it to other
domains.

GANs can be formulated also as a divergence minimization problem. The seminal
paper of Goodfellow et al. [98] shows that, under the assumption of optimal discriminator,
the generator objective is equivalent to computing the Jensen Shannon divergence between
the true and the generated density. Authors [109] extend the analysis to a broader families
of divergences, called f−divergences. They compare the different measures from this
class and then provide some experimental insights on which divergence to choose for
natural images. The work of [110] defines some pathological examples, for which many
divergences, including the Jensen Shannon, yield to suboptimal solutions for the generator,
and therefore propose to use the Wasserstein distance. A heuristic based on weight
clipping is used to constrain the critic1 to lie in the class of 1−Lipschitz functions. The
follow-up paper of [111] substitute this heuristic with a gradient penalty.

Another research direction for GANs consists on using integral probability metrics [112]
as optimization objective. In particular, the maximum mean discrepancy [113] can be used
to measure the distance between pX and qX and train the generator network. The general
problem is formulated in the following way:

inf
g∈G

sup
f∈F

{
Ex∼pX [f(x)]− Ex∼qX [f(x)]

}
In generative moment matching networks [114, 115] F is a RKHS, which is induced by the
Gaussian kernel. One drawback of these models is due to the fact that no maximization

1Namely, the discriminator in the traditional formulation of GANs.

50 Deep Generative Models

is performed over F and the resulting solutions are suboptimal. Another limitation is
due to the fact that the similarity scores associated with the kernel function are directly
computed in the sample space. Therefore, the performance degrade as the dimensionality
of the feature space increases [116]. The work of [117] introduces an encoding function
to represent data in a more compact way and distances are computed in the latent rep-
resentation, thus solving the problem of dimensionality. Authors [118] propose to extend
the maximum mean discrepancy and include also covariance statistics to ensure better
stability.

A common drawback of GANs is the lack of a latent representation of data. Au-
thors [119] add an autoencoder network to the original framework for reconstructing part
of the latent code. The identical works of [120] and [121] propose to add an encoding
function together with the generator and perform an adversarial game to ensure that the
joint density on the input/output of the generator agrees with the joint density of the
input/output of the encoder. They prove that the optimal solution is achieved when the
generator and the encoder are invertible. In practice, they fail to guarantee the conver-
gence to that solution due to the adversarial nature of the game. Authors [122] extend
the previous works by explicitly imposing the invertibility condition. They achieve this
by adding a term to the generator objective that computes the reconstruction error on
the latent space. Adversarial autoencoders [123] are similar to these approaches with the
only differences that the estimation of the reconstruction error is performed in the sample
space, while the adversarial game is performed only in the latent space.

It is important to mention that all of these works are based on a mini-max problem,
while our method solves a simple minimization problem, for which it is possible to achieve
global convergence.

The most related work to ours is the one proposed by [124]. The authors optimize a
similar objective and use the extended version of the Plummer kernel. The computation
of distances is performed directly in the sample space and performance degrade as the
number of features increases. Another drawback is that their model does not allow to
infer a latent representation of data.

Variational autoencoders [99] represent another family of implicit generative models.
The framework is based on maximizing the log-likelihood of training data. In order to
efficiently sample from the prior and therefore estimate the log-likelihood, the authors
introduce an inference network which gives information about the most likely regions in
the latent space to sample from. Nevertheless, the performance of the model are strongly
dependent on the capability of the inference network to approximate the true posterior
density. For this reason, the work of [125] proposes an adversarial game to enforce this
condition.

Proposed Solution 51

x∼

pX(x)
f(·) z ∼

qZ(z)
l

pZ(z)

g(·) y∼

qY(y)

Figure 4.1: Visualization of the encoding and decoding functions with associated densities.

4.3 Proposed Solution

This section deals with the problem of density estimation. The goal is to estimate the
unknown density function pX(x), whose support is defined by Ωx ⊂ Rd.

We start by providing the overall idea of learning the density underlying the training
data, then we formulate the optimization problem used in our approach and finally we
analyze the properties of the objective function and provide a bound on the estimation
error.

We consider two continuous functions f : Ωx → Ωz and g : Ωz → Ωx, where Ωz ⊆ Rh

and h is equal to the intrinsic dimensionality of Ωx. Furthermore, we consider that
g(f(x)) = x for every x ∈ Ωx, namely that g is the left inverse for f on domain Ωx. In
this work, f and g are neural networks parameterized by vectors γ and θ, respectively. f is
called the encoding function, taking a random input x with density pX(x) and producing a
random vector z with density qZ(z), while g is the decoding function taking z as input and
producing the random vector y distributed according to qY(y). Note that, pX(x) = qY(y),
since y = g(z) = g(f(x)) = x for every x ∈ Ωx. This is already a density estimator, but
it has the drawback that in general qZ(z) and qY(y) cannot be written in closed form.
Now, define pZ(z) an arbitrary density with support Ωz, that has a closed form. Our goal
is to guarantee that qZ(z) = pZ(z) on the whole support, while maintaining g(f(x)) = x
for every x ∈ Ωx. This allows us to use the decoding function as a generator and produce
samples distributed according to pX(x). Therefore, the problem of density estimation
in a high-dimensional feature space is converted into a problem of estimation in a lower
dimensional vector space, thus overcoming the curse of dimensionality. Figure 4.1 provides
a graphical interpretation for these concepts.

The objective of our minimization problem is defined as follows:

L(f, g) =
∫

Ωx
‖x− g(f(x))‖2pX(x)dx + λ

∫
Ωz

∫
Ωz
φ(z)φ(z′)k(z, z′)dzdz′ (4.1)

where φ(z)=pZ(z)−qZ(z), k(·, ·) is a positive definite kernel and λ > 0 is a regularization
parameter used to normalize the two addends.

Note that the first term in (4.1) reaches its global minimum when the encoding and
the decoding functions are invertible on support Ωx, while the second term in (4.1) is

52 Deep Generative Models

globally optimal when qZ(z) equals pZ(z) (see Lemma 5). Therefore, the global minimum
of (4.1) satisfies our initial requirements and the optimal solution corresponds to the case
where qX(x) = pX(x).

The following lemma proves that the global minimum of the second term in (4.1) is
achieved when qZ(z) equals pZ(z) (proof in the supplementary material).
Lemma 5. Given k : Ωz × Ωz → R a symmetric positive definite kernel, then:

(a) there exists a unique Hilbert space H of real-valued functions over Ωz, for which k
is a reproducing kernel. H is therefore a Reproducing kernel Hilbert Space (RKHS).

(b) For all ` ∈ H ∫
Ωz

∫
Ωz
φ(z)φ(z′)k(z, z′)dzdz′ = MMD2(pZ, qZ)

where
MMD(pZ, qZ) .= sup

‖`‖H≤1

{
Ez∼pZ [`(z)]− Ez∼qZ [`(z)]

}
is the maximum mean discrepancy between pZ(z) and qZ(z).

(c) Let H be defined as in (b), then MMD(pZ, qZ) = 0 if and only if pZ(z) = qZ(z).
The choice of the kernel function is of fundamental importance. In fact, authors in [126]

have proved that gradient-based algorithms converge uniformly to the global solution of
the second term in (4.1), only for few choices of kernel function, e.g. the Plummer kernel,
which is defined as k(z, z′) = 1/(

√
‖z− z′‖2 + ε)β, ε > 0 is an arbitrary small parameter

used to avoid the singularity of k at z = z′ and β = h−2. 2 The Gaussian kernel does not
satisfy this property and therefore cannot be used to directly minimize the second term
in (4.1). Practically speaking, no local minima are present in the function space when
considering the Plummer kernel, whereas for other kernels the problem of local minima
may arise. In reality, local minima are present when considering the parameter space
of neural networks. Nevertheless, it is theoretically shown that for sufficiently powerful
networks almost all local minima are global minima [127].

The result of [126] holds also for our objective, since the first addend in (4.1) is not
affected by the kernel choice. We use the extended version of the Plummer kernel (β = 1),
which has the same above-mentioned properties but leads to faster convergence [124].

It is important to mention that the integrals in (4.1) cannot be computed exactly
since pX(x) is unknown and qZ(z) is not defined explicitly. As a consequence, we use the
unbiased estimate of (4.1) as a surrogate for optimization, namely:

L̂(f, g)= 1
N

∑
xi∈Dx

‖xi−g(f(xi))‖2 + λ

 1
N(N − 1)

∑
zi∈Dz

∑
zj∈Dz
j 6=i

k(zi, zj)

2See Sec. 3 in [126].

Proposed Solution 53

− 2
N(N − 1)

∑
zi∈Dz

∑
zj∈Df

z
j 6=i

k(zi, zj) + 1
N(N − 1)

∑
zi∈Df

z

∑
zj∈Df

z
j 6=i

k(zi, zj)
 (4.2)

where Dx={xi}Ni=1, Dz={zi}Ni=1 and Dfz ={f(xi)}Ni=1 are two finite set of samples drawn
from pX(x), pZ(z) and qZ(z), respectively. Note that the first term in (4.2) corresponds
to the reconstruction error on training data. Therefore, our model can be considered as
an autoencoder. Based on this fact and on the chosen kernel, we refer to our model as
Plummer autoencoder (PAE).

The following theorem provides a lower bound for the objective in (4.2) and a proba-
bilistic bound on the estimation error between L̂(f, g) and L(f, g) (proof in the supple-
mentary material).

Theorem 1. Given the objective in (4.2), Ωz a compact set, Ωx = [−M,M]d, where
M ∈ R+, and a symmetric, continuous and positive definite kernel k : Ωz × Ωz → R,
where 0 ≤ k(z, z′) ≤ K for all z, z′ ∈ Ωz and K = k(z, z).

(a) There exists k̃ : Ωz × Ωz → R such that k(z, z′) =
∫

Ωz k̃(z,u)k̃(z′,u)du.

(b) The objective in (4.2) is equivalent to

L̃(f, g) = 1
N

∑
xi∈Dx

‖xi−g(f(xi))‖2

+ λ

 N

N−1

∫
Ωz

(
pZ,̃k(u)−qZ,̃k(u)

)2
du− 2K

N−1 + 2
N(N−1)

∑
zi∈Dz
z′i∈D

f
z

k(zi,z′i)

where pZ,̃k(u) = 1
N

∑
zi∈Dz k̃(zi,u) and qZ,̃k(u) = 1

N

∑
z′i∈D

f
z
k̃(z′i,u) are the kernel

density approximations of pZ(u) and q(u), respectively.

(c) Then, for any s, t > 0

Pr
{
|L̂ − L| > t+ λs

}
≤2 exp

{
− Nt2

8M4d2

}
+ 2 exp

{
−bN/2cs

2

8K2

}

Statement (b) of Theorem 1 provides an equivalent formulation of the objective in (4.2).
This highlights the fact that3 L̃(f, g) is always greater than − 2λK

N−1 and therefore greater
than zero when N is large.

Note that the most influential terms in L̃(f, g) are the reconstruction error and the
integral term, since the last addend decays faster to zero as the number of samples in-
creases. Therefore, the model learns to reconstruct the traning data with low error and

3When the second and the last addend in L̃(f, g) are zero.

54 Deep Generative Models

Table 4.1: Test log-likelihood (LL) for different models on grid dataset.

Method PAE CouGAN WGAN BiGAN VEEGAN VAE AAE AVB-AC
LL -4.8±0.4 -4.5±0.2 -4.1±0.1 -103.4±98.9 -26.9±6.8 -5.5±0.2 -7.5±0.4 -7.5±0.8

learns to match qZ,̃k(z) with pZ,̃k(z). Consequently, we can state that for sufficiently large
N our model generalizes.

Statement (c) provides a probabilistic bound on the estimation error between L̂(f, g)
and L(f, g). The bound consists of two terms which both vanish when N is large. The
first one, due to the reconstruction error term, depends also on the number of features d
and on the side lengthM of the hypercube Ωx, while the second one, due to the estimation
of the second integral in (4.1), depends on the maximum value of the kernel function K.

In Algorithm 2, we provide the complete procedure of PAE. Note that this requires to
minimize only a single objective function.

Algorithm 2 PAE, our proposed algorithm. All experiments in the paper used the default
values ε = 0.0001, η = 0.0001, β1 = 0.5, β2 = 0.9

Input: N mini-batch size, η learning rate.
Input: γ0 inital parameter vector for f , θ0 initial parameter vector for g.
repeat
Sample {xi}Ni=1 ∼ pX(x) a batch from training data.
Sample {zi}Ni=1 ∼ pZ(z) a batch from prior samples.
gγ ← ∇γL̂(f,g).
gθ ← ∇θL̂(f,g).
γ ← γ − η ·Adam(γ, gγ , β1, β2).
θ ← θ − η ·Adam(θ, gθ, β1, β2).

until γ,θ have not converged

4.4 Experiments

Our proposed solution is compared against 7 methods, namely Coulomb GAN (CouGAN) [124],
which is the most closely related method, the improved version of Wasserstein GAN
(WGAN) [111], Bidirectional GAN (BiGAN) [120], Variational Encoder Enhancement to
GANs (VEEGAN) [122], Variational Autoencoders (VAE) [99], Adversarial Autoencoders
(AAE) [123] and Adversarial Variational Bayes with Adaptive Contrast (AVB-AC) [125].
Note that the first four competitors belong to the family of generative adversarial net-
works, while the last three are generative models based on autoencoders. We make a huge

Experiments 55

(a) True Data (b) PAE (c) CouGAN

(d) WGAN (e) BiGAN (f) VEEGAN

(g) VAE (h) AAE (i) AVB-AC

Figure 4.2: Visualization of generated data from different models on grid dataset.

effort in implementing and comparing all approaches on different synthetic and real-world
datasets. The code to replicate all experiments, including the ones for the competi-
tors are available at https://github.com/TRENTO-AI/PAE. Note that in all experiments
pZ(z) = U([−1, 1]h).

4.4.1 Grid dataset

We start by comparing the approaches on a two-dimensional dataset consisting of 25
isotropic Gaussians placed according to a grid (see Figure 4.2(a)), and call it the grid
dataset [128]. The training dataset contains 500 samples generated from the true density.

Following the methodology of other works (see for example [128, 124]), we choose

56 Deep Generative Models

Table 4.2: Test log-likelihood (LL) for different models on low dimensional embedding dataset.

Method PAE CouGAN WGAN BiGAN VEEGAN VAE AAE AVB-AC
LL 1224.4±76.3 Failure 848.9±534.4 -3940.3±3519.4 -7457806.0±4036262.3 -320.1±1081.6 1025.9±177.1 -965.4±1196.9

fully connected MLPs with two hidden layers (128 neurons each) in encoder, decoder and
discriminator networks and set h = 2. All models are trained for two million iterations
using Adam optimizer.

In our model, λ is chosen from the range {0.1, 1, 10} to obtain the lowest value of
objective at the end of training.4 For other models, we strictly follow the details of
the original papers. It is important to mention that we observe poor performance in
VEEGAN and better results are obtained by applying batch normalization to all hidden
layers (results without batch normalization and details of simulations are available in the
supplementary material).

Models are evaluated qualitatively by visual inspecting generated samples and quanti-
tatively by computing the log-likelihood on test data. To compute log-likelihood, we first
apply kernel density estimation using a Gaussian kernel on 105 generated samples5 and
then evaluate the log-likelihood on 104 test samples from the true distribution. Results
are averaged over 10 repetitions.

Figure 4.2 shows samples generated by all models, while Table 4.1 provides quantitative
results. It is immediate to see that BiGAN is affected by mode collapse, while AAE and
AVB-AC generate very noisy samples. VEEGAN achieves very low performance in terms
of log-likelihood since it assigns high prior to only few modes. Our model, VAE and
CouGAN compare favourably with WGAN, which in turn obtain the best performance.

4.4.2 Low dimensional embedding dataset

The second dataset consists of ten 10D isotropic Gaussians embedded in a 1000 dimen-
sional vector space and call it the low dimensional embedding dataset. We generate 500
samples from the true density to train all models.

The methodology is similar to the one used with previous dataset.6 The main difference
is in the evaluation. Due to the difficulty of visualizing samples in high dimensions, we
propose to use a classifier7 to count the number of samples generated by the models for

4In this set of experiments, λ = 10.
5Bandwidth is selected from a subset of values obtained from the interval [10−3, 101.5] by sampling 10 values

equally spaced in logarithmic scale.
6In this set of experiments, λ = 1.
7Consisting of a MLP with two hidden layers of 256 and 128 neurons each and trained on an infinitely large

dataset sampled from the true density for 1000 iterations and using Adam with learning rate equal to 0.001.

Experiments 57

(a) PAE (b) WGAN (c) BiGAN (d) VEEGAN

(e) VAE (f) AAE (g) AVB-AC

Figure 4.3: Detection of mode collapse through classification of generated samples on the low
dimensional embedding dataset. The x-axis of each plot represents modes (classes), while the
y-axis counts the number of generated samples for a given mode.

each mode. This evaluation procedure allows to only detect the presence of mode collapse.
It is important to mention that this procedure can be fooled by specific pathological cases,
like memorization of training samples. Therefore, we use log-likelihood on test data to
assess the quality of the learnt distribution. The other differences are in the use of batch
normalization for BiGAN and AAE, which lead to better performance. We experience
high instability when training CouGAN and also convergence failures.

Figure 4.3 shows the histograms of generated samples obtained by all models. Note
that BiGAN and VEEGAN are affected by mode collapse. Table 4.2 provides log-
likelihood scores. Our model achieves the best performance, meaning that it is able
to better estimate the underlying true density.

4.4.3 Stacked-MNIST

The third dataset is created by stacking random digits from the MNIST dataset on top
of each other to produce colored images [122]. This creates a ground truth density with
1000 classes.

The methodology is similar to the one of previous dataset.8 We use the MLP network
from [129] as encoder, decoder and discriminator networks (see supplementary material
for further details and simulations). We train all models up to 1000 epochs with batch

8In this set of experiments, λ = 0.1.

58 Deep Generative Models

(a) PAE (b) CouGAN (c) WGAN (d) BiGAN

(e) VEEGAN (f) VAE (g) AAE (h) AVB-AC

Figure 4.4: Visualization of generated samples from different models on Stacked-MNIST. The
first column of each plot contains true samples.

Table 4.3: Average number of training iterations per second for different models on Stacked-
MNIST.

Method PAE CouGAN WGAN BiGAN VEEGAN VAE AAE AVB-AC
iters/secs 40.4 29.0 7.1 14.7 15.3 48.4 10.4 25.8

size equal to 128. We visualize both generated samples and nearest neighbors in the latent
space, to understand the quality of the learnt representation and see whether semantic
consistency is preserved in the neighborhood of samples. Similarly to the previous case,
we use batch normalization for BiGAN, VEEGAN and AAE.

Figure 4.4 shows the generated samples of each model. Note that BiGAN and VEE-
GAN fail to learn the true distribution, while VAE and AVB-AC suffer from mode collapse.
CouGAN seems to generate more diverse samples, but with very strong artifacts. Only
PAE, AAE and WGAN are able to learn a good approximation of the true density. Fig-
ure 4.5 shows nearest neighbors for true data. It is worth to mention that AAE does not
preserve semantic consistency in the representation. In fact, for a small perturbation of
the latent representation the output image can completely change its semantic content.
Instead our model is capable to fulfill this property. Finally, Table 4.3 shows an indicative
measure of the training rates achieved by all methods. It is quite evident that AAE and

Experiments 59

(a) PAE (b) BiGAN (c) VEEGAN

(d) VAE (e) AAE (f) AVB-AC

Figure 4.5: Conditional generation of samples. The first column of each plot contains true
samples, while the other columns are obtained by generating samples from the latent codes
associated to true data and perturbing the latent representation with additive isotropic Gaussian
noise (0.01 element variance).

our method outperform the other approaches in terms of training speed.

60 Deep Generative Models

Chapter 5

Conclusions and Future Directions

This dissertation focuses on the exploitation of unlabeled data in machine learning. We
have shown how to learn a semi-supervised model in the context of limited data, we have
improved the scalability of existing frameworks for positive unlabeled learning and finally
we have provided a new formulation for the problem of density estimation in unsupervised
learning, improving the stability and the efficiency of training in deep generative models.
The code of all proposed algorithms is available online to guarantee the reproducibility
of the experiments.

We believe that the research introduced in this dissertation represents an initial step
towards achieving general artificial intelligence. We think that understanding how to ex-
ploit unlabeled data for learning, more specifically solving the problem of unsupervised
learning, represents a milestone for this long-term goal: firstly because we believe that
supervised information (provided in the form of class labels) is also originated from an
unsupervised process, and secondly because the amount of unlabeled data is largely avail-
able. Future research will continue to investigate this topic. In particular, we will answer
to the two following questions:

1. Is it possible to learn motor skills in robots in a completely unsupervised way (with-
out reward functions)?

2. Is it possible to develop a natural language between agents with unsupervised learn-
ing?

Bibliography

[1] O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning. The MIT Press, 2010.

[2] K. P. Bennett and A. Demiriz. Semi-Supervised Support Vector Machines. In Advances in Neural Infor-
mation Processing Systems, pages 368–374, 1999.

[3] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold Regularization: A Geometric Framework for Learning
from Labeled and Unlabeled Examples. Journal of Machine Learning Research, 7:2399–2434, 2006.

[4] I. Färber, S. Günnemann, H-P Kriegel, P. Kröger, E. Müller, E. Schubert, T. Seidl, and A. Zimek. On
Using Class-Labels in Evaluation of Clusterings. InMULTICLUST: International Workshop on Discovering,
Summarizing and Using Multiple Clusterings, page 1, 2010.

[5] V. Moskvina, N. Craddock, P. Holmans, et al. Gene-Wide Analyses of Genome-Wide Association Data
Sets: Evidence for Multiple Common Risk Alleles for Schizophrenia and Bipolar Disorder and for Overlap
in Genetic Risk. Molecular Psychiatry, 14:252–260, 2009.

[6] D. J. Miller and J. Browning. A Mixture Model and EM-based Algorithm for Class Discovery, Robust
Classification, and Outlier Rejection in Mixed Labeled/Unlabeled Data Sets. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25:1468–1483, 2003.

[7] D. J. Miller, J. Raghuram, G. Kesidis, and C. M. Collins. Improved Generative Semisupervised Learning
Based on Finely Grained Component-Conditional Class Labeling. Neural Computation, 24:1926–1966, 2012.

[8] M. H. C. Law, A. P. Topchy, and A. K. Jain. Model-based Clustering With Probabilistic Constraints. In
SIAM International Conference on Data Mining, pages 641–645, 2005.

[9] Z. Lu. Semi-Supervised Clustering with Pairwise Constraints: A Discriminative Approach. In International
Conference on Artificial Intelligence and Statistics, pages 299–306, 2007.

[10] Z. Li, J. Liu, and X. Tang. Pairwise Constraint Propagation by Semidefinite Programming for Semi-
Supervised Classification. In International Conference on Machine Learning, pages 576–583, 2008.

[11] M. S. Baghshah and S. B. Shouraki. Semi-Supervised Metric Learning Using Pairwise Constraints. In
International Joint Conference on Artificial Intelligence, pages 1217–1222, 2009.

[12] J. Raghuram, D. J. Miller, and G. Kesidis. Instance-Level Constraint-Based Semisupervised Learning With
Imposed Space-Partitioning. IEEE Transactions on Neural Networks and Learning Systems, 25:1520–1537,
2014.

[13] D. P. Kingma, S. Mohamed, D. J. Rezende, and M.Welling. Semi-Supervised Learning with Deep Generative
Models. In Advances in Neural Information Processing Systems, pages 3581–3589, 2014.

[14] Z. Ghahramani and M. J. Beal. Variational Inference for Bayesian Mixtures of Factor Analysers. In Advances
in Neural Information Processing Systems, pages 449–455, 1999.

[15] C. M. Bishop. Variational Principal Components. In International Conference on Artificial Neural Networks,
pages 509–514, 1999.

63

64 Bibliography

[16] H. Attias. Inferring Parameters and Structure of Latent Variable Models by Variational Bayes. In Uncer-
tainty in Artificial Intelligence, pages 21–30, 1999.

[17] M. J. Beal. Variational Algorithms for Approximate Bayesian Inference. Ph. D. Thesis, 2003.

[18] Y. Grandvalet and Y. Bengio. Semi-Supervised Learning by Entropy Minimization. In Advances in Neural
Information Processing Systems, pages 529–536, 2005.

[19] M. Diem, S. Fiel, A. Garz, M. Keglevic, F. Kleber, and R. Sablatnig. ICDAR 2013 Competition on
Handwritten Digit Recognition (HDRC 2013). In International Conference on Document Analysis and
Recognition, pages 1422–1427, 2013.

[20] L. Van der Maaten and G. Hinton. Visualizing Data Using t-SNE. Journal of Machine Learning Research,
9:2579–2605, 2008.

[21] S. Anand, S. Mittal, O. Tuzel, and P. Meer. Semi-Supervised Kernel Mean Shift Clustering. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 36:1201–1215, 2014.

[22] N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall. Computing Gaussian Mixture Models with EM Using
Equivalence Constraints. In Advances in Neural Information Processing Systems, pages 465–472, 2004.

[23] S. Yi, L. Zhang, R. Jin, Q. Qian, and A. Jain. Semi-Supervised Clustering by Input Pattern Assisted
Pairwise Similarity Matrix Completion. In International Conference on Machine Learning, pages 1400–
1408, 2013.

[24] M. Bilenko, S. Basu, and R. Mooney. Integrating Constraints and Metric Learning in Semi-Supervised
Clustering. In International Conference on Machine Learning, page 11, 2004.

[25] S. Basu, A. Banerjee, and R. Mooney. Semi-Supervised Clustering by Seeding. In International Conference
on Machine Learning, pages 27–34, 2002.

[26] O. Chapelle and A. Zien. Semi-Supervised Classification by Low Density Separation. In International
Conference on Artificial Intelligence and Statistics, pages 57–64, 2005.

[27] C. Curtis, S. Shah, S-F Chin, et al. The Genomic and Transcriptomic Architecture of 2,000 Breast Tumours
Reveals Novel Subgroups. Nature, 486:346–352, 2012.

[28] R. Shen, A. Olshen, and M. Ladanyi. Integrative Clustering of Multiple Genomic Data Types Using a Joint
Latent Variable Model with Application to Breast and Lung Cancer Subtype Analysis. Bioinformatics,
25:2906–2912, 2009.

[29] A. Kapp and R. Tibshirani. Are Clusters Found in One Dataset Present in Another Dataset? Biostatistics,
8:9–31, 2007.

[30] C. Perou, T. Sørlie, M. Eisen, et al. Molecular Portraits of Human Breast Tumours. Nature, 406:747–752,
2000.

[31] J. Parker, M. Mullins, M. Cheang, et al. Supervised Risk Predictor of Breast Cancer Based on Intrinsic
Subtypes. Journal of Clinical Oncology, 27:1160–1167, 2009.

[32] C. Elkan and K. Noto. Learning Classifiers from Only Positive and Unlabeled Data. In International
Conference on Knowledge Discovery and Data Mining, pages 213–220, 2008.

[33] T. Onoda, H. Murata, and S. Yamada. One Class Support Vector Machine Based Non-Relevance Feedback
Document Retrieval. In IEEE International Joint Conference on Neural Networks, pages 552–557, 2005.

[34] S. Hido, Y. Tsuboi, H. Kashima, M. Sugiyama, and T. Kanamori. Inlier-Based Outlier Detection via Direct
Density Ratio Estimation. In IEEE International Conference on Data Mining, pages 223–232, 2008.

[35] W. Li, Q. Guo, and C. Elkan. A Positive and Unlabeled Learning Algorithm for One-Class Classification
of Remote-Sensing Data. IEEE Transactions on Geoscience and Remote Sensing, 49:717–725, 2011.

Bibliography 65

[36] W. J. Scheirer, A. De R. Rocha, A. Sapkota, and T. E. Boult. Toward Open Set Recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35:1757–1772, 2013.

[37] M. C. Du Plessis, G. Niu, and M. Sugiyama. Analysis of Learning from Positive and Unlabeled Data. In
Advances in Neural Information Processing Systems, pages 703–711, 2014.

[38] M. C. Du Plessis, G. Niu, and M. Sugiyama. Convex Formulation for Learning from Positive and Unlabeled
Data. In International Conference on Machine Learning, pages 1386–1394, 2015.

[39] V. N. Vapnik. An Overview of Statistical Learning Theory. IEEE Transactions on Neural Networks, pages
988–999, 1999.

[40] C. J. Hsieh, N. Natarajan, and I. S. Dhillon. PU Learning for Matrix Completion. In International
Conference on Machine Learning, pages 2445–2453, 2015.

[41] J. T. Zhou, S. J. Pan, Q. Mao, and I. W. Tsang. Multi-View Positive and Unlabeled Learning. In Asian
Conference on Machine Learning, pages 555–570, 2012.

[42] T. Sakai, M. C. Du Plessis, G. Niu, and M. Sugiyama. Beyond the Low-Density Separation Principle: A
Novel Approach to Semi-Supervised Learning. 2016.

[43] X. Li, S. Y. Philip, B. Liu, and S. K. Ng. Positive Unlabeled Learning for Data Stream Classification. In
SIAM International Conference on Data Mining, pages 257–268, 2009.

[44] M. N. Nguyen, X. L. Li, and S. K. Ng. Positive Unlabeled Leaning for Time Series Classification. In
International Joint Conference on Artificial Intelligence, pages 1421–1426, 2011.

[45] J. Silva and R. Willett. Hypergraph-Based Anomaly Detection of High-Dimensional Co-Occurrences. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31:563–569, 2009.

[46] B. Liu, W. S. Lee, P. S. Yu, and X. Li. Partially Supervised Classification of Text Documents. In Interna-
tional Conference on Machine Learning, pages 387–394, 2002.

[47] H. Yu, J. Han, and K. C. C. Chang. PEBL: Positive Example Based Learning for Web Page Classification
Using SVM. In International Conference on Knowledge Discovery and Data Mining, pages 239–248, 2002.

[48] X. Li and B. Liu. Learning to Classify Texts Using Positive and Unlabeled Data. In International Joint
Conference on Artificial Intelligence, pages 587–592, 2003.

[49] H. Yu. Single-Class Classification with Mapping Convergence. Machine Learning, 61:49–69, 2005.

[50] B. Liu, Y Dai, X. Li, W. S. Lee, and P. S. Yu. Building Text Classifiers Using Positive and Unlabeled
Examples. In IEEE International Conference on Data Mining, pages 179–186, 2003.

[51] A. Skabar. Single-Class Classifier Learning Using Neural Networks: An Application to the Prediction of
Mineral Deposits. In International Conference on Machine Learning and Cybernetics, pages 2127–2132,
2003.

[52] G. Blanchard, G. Lee, and C. Scott. Semi-Supervised Novelty Detection. Journal of Machine Learning
Research, 11:2973–3009, 2010.

[53] J. Kittler, W. Christmas, T. De Campos, D. Windridge, F. Yan, J. Illingworth, and M. Osman. Domain
Anomaly Detection in Machine Perception: A System Architecture and Taxonomy. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36:845–859, 2014.

[54] M. Markou and S. Singh. Novelty Detection: A ReviewâĂŤPart 1: Statistical Approaches. Signal processing,
83:2481–2497, 2003.

[55] M. Markou and S. Singh. Novelty Detection: A ReviewâĂŤPart 2: Neural Network Based Approaches.
Signal processing, 83:2499–2521, 2003.

66 Bibliography

[56] M. Koppel and J. Schler. Authorship Verification as a One-Class Classification Problem. In International
Conference on Machine Learning, page 62, 2004.

[57] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-Class Collaborative Filtering.
In IEEE International Conference on Data Mining, pages 502–511, 2008.

[58] B. Schölkopf, R. Williamson, A. J. Smola, and J. Shawe-Taylor. SV Estimation of a DistributionâĂŹs
Support. In Advances in Neural Information Processing Systems, 1999.

[59] D. M. J. Tax and R. P. W. Duin. Support Vector Domain Description. Pattern Recognition Letters,
20:1191–1199, 1999.

[60] M. M. Moya and D. R. Hush. Network Constraints and Multi-Objective Optimization for One-Class Clas-
sification. Neural Networks, 9:463–474, 1996.

[61] B. Schölkopf, J. C. Platt, and A. J. Smola. Kernel Method for Percentile Feature Extraction. Technical
report, Microsoft Research, 2000.

[62] D. M. J. Tax and R. P. W. Duin. Uniform Object Generation for Optimizing One-Class Classifiers. Journal
of Machine Learning Research, 2:155–173, 2001.

[63] C. Campbell and K. P. Bennett. A Linear Programming Approach to Novelty Detection. In Advances in
Neural Information Processing Systems, pages 395–401, 2001.

[64] E. Pekalska, D. Tax, and R. P. W. Duin. One-Class LP Classifiers for Dissimilarity Representations. In
Advances in Neural Information Processing Systems, pages 761–768, 2002.

[65] L. M. Manevitz and M. Yousef. One-Class SVMs for Document Classification. Journal of Machine Learning
Research, 2:139–154, 2001.

[66] D. M. J. Tax. One-Class Classification. PhD thesis, Delft University of Technology, 2001.

[67] D. M. J. Tax and R. P. W. Duin. Combining One-Class Classifiers. In International Workshop on Multiple
Classifier Systems, pages 299–308, 2001.

[68] A. D. Shieh and D. F. Kamm. Ensembles of One Class Support Vector Machines. In International Workshop
on Multiple Classifier Systems, pages 181–190, 2009.

[69] G. Ratsch, S. Mika, B. Schölkopf, and K. R. Müller. Constructing Boosting Algorithms from SVMs: An
Application to One-Class Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24:1184–1199, 2002.

[70] V. Jumutc and J. A. K. Suykens. Multi-Class Supervised Novelty Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36:2510–2523, 2014.

[71] G. Niu, M. C. Du Plessis, T. Sakai, Y. Ma, and M. Sugiyama. Theoretical Comparisons of Positive-
Unlabeled Learning Against Positive-Negative Learning. In Advances in Neural Information Processing
Systems, pages 1199–1207, 2016.

[72] S. S. Khan and M. G. Madden. One-Class Classification: Taxonomy of Study and Review of Techniques.
The Knowledge Engineering Review, 29:345–374, 2014.

[73] B. M. Shahshahani and D. A. Landgrebe. The Effect of Unlabeled Samples in Reducing the Small Sample
Size Problem and Mitigating the Hughes Phenomenon. IEEE Transactions on Geoscience and Remote
Sensing, 32:1087–1095, 1994.

[74] D. J. Miller and H. S. Uyar. A Mixture of Experts Classifier with Learning Based on Both Labelled and
Unlabelled Data. In Advances in Neural Information Processing Systems, pages 571–577, 1997.

[75] T. Zhang and F. Oles. The Value of Unlabeled Data for Classification Problems. In International Conference
on Machine Learning, pages 1191–1198, 2000.

Bibliography 67

[76] E. Sansone, A. Passerini, and F. G. B. De Natale. Classtering: Joint Classification and Clustering with
Mixture of Factor Analysers. In European Conference on Aritificial Intelligence, pages 1089–1095, 2016.

[77] Z. H. Zhou and M. Li. Semi-Supervised Learning by Disagreement. Knowledge and Information Systems,
24:415–439, 2010.

[78] Y. F. Li, I. W. Tsang, J. T. Kwok, and Z. H. Zhou. Convex and Scalable Weakly Labeled SVMs. Journal
of Machine Learning Research, 14:2151–2188, 2013.

[79] C. C. Chang and C. J. Lin. LIBSVM: A Library for Support Vector Machines. ACM Transactions on
Intelligent Systems and Technology, 2:27, 2011.

[80] P. H. Chen, R. E. Fan, and C. J. Lin. A Study on SMO-Type Decomposition Methods for Support Vector
Machines. IEEE Transactions on Neural Networks, 17:893–908, 2006.

[81] R. Fergus, Y. Weiss, and A. Torralba. Semi-Supervised Learning in Gigantic Image Collections. In Advances
in Neural Information Processing Systems, pages 522–530, 2009.

[82] A. Talwalkar, S. Kumar, and H. Rowley. Large-Scale Manifold Learning. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8, 2008.

[83] Q. Da, Y. Yu, and Z. H. Zhou. Learning with Augmented Class by Exploiting Unlabeled Data. In AAAI
Conference on Artificial Intelligence, pages 1760–1766, 2014.

[84] M. Kearns. Efficient Noise-Tolerant Learning from Statistical Queries. Journal of the ACM, 45:983–1006,
1998.

[85] F. De Comité, F. Denis, R. Gilleron, and F. Letouzey. Positive and Unlabeled Examples Help Learning. In
International Conference on Algorithmic Learning Theory, pages 219–230, 1999.

[86] F. Letouzey, F. Denis, and R. Gilleron. Learning from Positive and Unlabeled Examples. In International
Conference on Algorithmic Learning Theory, pages 71–85, 2000.

[87] J. He, Y. Zhang, X. Li, and Y. Wang. Naive Bayes Classifier for Positive Unlabeled Learning with Uncer-
tainty. In SIAM International Conference on Data Mining, pages 361–372, 2010.

[88] A. Jordan. On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive
Bayes. In Advances in Neural Information Processing Systems, pages 841–848, 2002.

[89] N. Aronszajn. Theory of Reproducing Kernels. Transactions of the American Mathematical Society, pages
337–404, 1950.

[90] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[91] M. A. Hanson. Invexity and the Kuhn–Tucker Theorem. Journal of Mathematical Analysis and Applications,
236:594–604, 1999.

[92] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the Support of
a High-Dimensional Distribution. Neural Computation, pages 1443–1471, 2001.

[93] S. Mehrotra. On the Implementation of a Primal-Dual Interior Point Method. SIAM Journal on Optimiza-
tion, 2:575–601, 1992.

[94] A. L. Yuille and A. Rangarajan. The Concave-Convex Procedure (CCCP). In Advances in Neural Infor-
mation Processing Systems, pages 1033–1040, 2002.

[95] W. S. Lee and B. Liu. Learning with Positive and Unlabeled Examples Using Weighted Logistic Regression.
In International Conference on Machine Learning, pages 448–455, 2003.

[96] M. C. Du Plessis, G. Niu, and M. Sugiyama. Class-Prior Estimation for Learning from Positive and
Unlabeled Data. In Asian Conference on Machine Learning, 2015.

68 Bibliography

[97] H. Larochelle and I. Murray. The Neural Autoregressive Distribution Estimator. In International Conference
on Artificial Intelligence and Statistics, pages 29–37, 2011.

[98] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative Adversarial Nets. In Advances in Neural Information Processing Systems, pages 2672–2680,
2014.

[99] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In International Conference on Learning
Representations, 2013.

[100] A. Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel Recurrent Neural Networks. In International
Conference on Machine Learning, pages 1747–1756, 2016.

[101] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional gen-
erative adversarial networks. 2015.

[102] M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks. In
International Conference on Learning Representations, 2017.

[103] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled Generative Adversarial Networks. In Interna-
tional Conference on Learning Representations, 2017.

[104] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, and X. Chen. Improved
Techniques for Training GANs. In Advances in Neural Information Processing Systems, pages 2234–2242,
2016.

[105] I. Durugkar, I. Gemp, and S. Mahadevan. Generative Multi-Adversarial Networks. In International Con-
ference on Learning Representations, 2017.

[106] L. Mescheder, S. Nowozin, and A. Geiger. The Numerics of GANs. In Advances in Neural Information
Processing Systems, pages 1823–1833, 2017.

[107] J. Zhao, M. Mathieu, and Y. A. LeCun. Energy-Based Generative Adversarial Network. In International
Conference on Learning Representations, 2017.

[108] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive Growing of GANs for Improved Quality, Stability,
and Variation. In International Conference on Learning Representations, 2018.

[109] S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training Generative Neural Samplers Using Variational
Divergence Minimization. In Advances in Neural Information Processing System, pages 271–279, 2016.

[110] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein Generative Adversarial Networks. In International
Conference on Machine Learning, pages 214–223, 2017.

[111] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved Training of Wasserstein
GANs. In Advances in Neural Information Processing Systems, pages 5769–5779, 2017.

[112] A. Müller. Integral Probability Metrics and Their Generating Classes of Functions. Advances in Applied
Probability, 29(2):429–443, 1997.

[113] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola. A Kernel Method for the Two Sample
Problem. Technical report, Max Planck Institute for Biological Cybernetics, 2008.

[114] Y. Li, K. Swersky, and R. Zemel. Generative Moment Matching Networks. In International Conference on
Machine Learning, pages 1718–1727, 2015.

[115] G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training Generative Neural Networks via Maximum Mean
Discrepancy Optimization. In Uncertainty in Artificial Intelligence, pages 258–267, 2015.

[116] A. Ramdas, S. J. Reddi, B. Poczos, A. Singh, and L. Wasserman. On the Decreasing Power of Kernel and
Distance Based Nonparametric Hypothesis Tests in High Dimensions. In AAAI Conference on Artificial
Intelligence, pages 3571–3577, 2015.

Bibliography 69

[117] C. L. Li, W. C. Chang, Y. Cheng, Y. Yang, and B. Póczos. MMD GAN: Towards Deeper Understanding
of Moment Matching Network. In Advances in Neural Information Processing Systems, pages 2200–2210,
2017.

[118] Y. Mroueh, T. Sercu, and V. Goel. McGan: Mean and Covariance Feature Matching GAN. In International
Conference on Machine Learning, pages 2527–2535, 2017.

[119] X. Chen, X.Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. InfoGAN: Interpretable
Representation Learning by Information Maximizing Generative Adversarial Nets. In Advances in Neural
Information Processing Systems, pages 2172–2180, 2016.

[120] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial Feature Learning. In International Conference on
Learning Representations, 2017.

[121] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro, and A. Courville. Adversarially
Learned Inference. In International Conference on Learning Representations, 2017.

[122] A. Srivastava, L. Valkoz, C. Russell, M. U. Gutmann, and C. Sutton. VEEGAN: Reducing Mode Collapse
in GANs Using Implicit Variational Learning. In Advances in Neural Information Processing Systems, pages
3310–3320, 2017.

[123] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. Adversarial Autoencoders. In International
Conference on Learning Representations, 2013.

[124] T. Unterthiner, B. Nessler, G. Klambauer, M. Heusel, H. Ramsauer, and S. Hochreiter. Coulomb GANs:
Provably Optimal Nash Equilibria via Potential Fields. In International Conference on Learning Represen-
tations, 2018.

[125] L. Mescheder, S. Nowozin, and A. Geiger. Adversarial Variational Bayes: Unifying Variational Autoencoders
and Generative Adversarial Networks. In International Conference on Machine Learning, pages 2391–2400,
2017.

[126] S. Hochreiter and K. Obermayer. Optimal Kernels for Unsupervised Learning. In IEEE International Joint
Conference on Neural Networks, pages 1895–1899, 2005.

[127] Q. Nguyen and M. Hein. The Loss Surface of Deep and Wide Neural Networks. In International Conference
on Machine Learning, pages 2603–2612, 2016.

[128] J. H. Lim and J. C. Ye. Geometric Gan. 2017.

[129] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep, Big, Simple Neural Nets for
Handwritten Digit Recognition. Neural Computation, 22:3207–3220, 2010.

[130] B. Schölkopf, R. Herbrich, and A. J. Smola. A Generalized Representer Theorem. In Computational
Learning Theory, pages 416–426, 2001.

[131] W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

Appendix A

Supplementary Material for
Chapter 3

A.1 Proof of the Representer Theorem

Representer Theorem 2. Given the training set D = Dp ∪Dn and the Mercer kernel
k associated with the RKHS Hk, any minimizer f ∗ ∈ Hk of (3.4) admits the following
representation

f ∗(x) =
∑

xi∈D
αik(x,xi)

where αi ∈ R for all i.

Proof. Similarly to [130], define Φ as the set, whose elements are the representers of the
training dataset D = Dp ∪ Dn, namely Ψ =

{
ϕxi
∈ Hk|i : xi ∈ D

}
. Be HΨ the linear

subspace of Hk spanned by the elements in Ψ and H̄Ψ its orthogonal complement, such
that Hk = HΨ ⊕ H̄Ψ:

HΨ =
{
g ∈ Hk|g =

∑
xi∈D

αiϕxi
, αi ∈ R

}

H̄Ψ =
{
h ∈ Hk|〈h, g〉Hk

= 0,∀g ∈ HΨ
}

Therefore, any function f ∈ Hk can be decomposed in two orthogonal components, namely
f = f ∗ + f⊥ where f ∗ ∈ HΨ and f⊥ ∈ H̄Ψ. Evaluating the function f at the training
point xj is performed by exploiting the previous properties, viz.

f(xj) = 〈ϕxj
, f ∗ + f⊥〉Hk

= 〈ϕxj
, f ∗〉Hk

= 〈ϕxj
,
∑
xi∈D

αiϕxi
〉Hk

72 Supplementary Material for Chapter 3

=
∑
xi∈D

αi〈ϕxj
, ϕxi
〉Hk

=
∑
xi∈D

αik(xj,xi)

=
∑
xi∈D

αik(xi,xj)

where the first and second equalities are due to the reproducing property of RKHS and
orthogonality, respectively. The third and the fourth equalities are simple application of
the inner product properties. The fifth equality holds by the definition of reproducing
kernel, while the last one is valid thanks to the simmetry of any Mercer kernel. This
relation highlights the fact that the evaluation of any function f at any training point xj
is independent of f⊥. Consequently, since Remp(f) is a functional of f evaluated at all
samples of the training dataset, we have that Remp(f) is also independent of f⊥. In other
words, Remp(f) = Remp(f ∗). Furthermore, thanks to the orthogonality property, one can
express the regularization term in (3.4) in the following way:

‖f‖2
Hk

= ‖f ∗ + f⊥‖2
Hk

= ‖f ∗‖2
Hk

+ ‖f⊥‖2
Hk

The objective function in (3.4) can be therefore lower bounded in the following way:

Remp(f) + λ‖f‖2
Hk

=Remp(f ∗) + λ‖f ∗‖2
Hk

+ λ‖f⊥‖2
Hk

≥Remp(f ∗) + λ‖f ∗‖2
Hk

which is valid for any f ∈ Hk. f ∗ is therefore the minimizer of (3.4) and it assumes the
following form:

f ∗(x) =
∑
xi∈D

αi〈ϕxi
, ϕx〉Hk

=
∑
xi∈D

αik(xi,x)

This concludes the proof.

A.2 PU Learning Formulation

A.2.1 Derivation of the Primal Problem

By taking into account the definition of the double Hinge loss function and its composite
loss, namely `(x, y) = max{−xy,max{0, 1

2 −
xy
2 }} and ˜̀(x, y) = −xy, we can express the

empirical risk functional (3.3) in the following way:

−π
p

∑
xi∈Dp

f(xi) + 1
n

∑
xi∈Dn

max
{
f(xi),max

{
0, 1

2 + f(xi)
2

}}
(A.1)

Appendices 73

and by exploiting the result stated by the representer theorem, the optimization prob-
lem (3.4) becomes:

min
α,ξ,β

{
−c1

∑
xi∈Dp

 ∑
xj∈D

αjk(xi,xj) + β

+ c2
∑
xi∈Dn

ξi + 1
2
∑
xi∈D

∑
xj∈D

αiαjk(xi,xj)
}

s.t. ξi ≥ 0,
ξi ≥

∑
xj∈D

αjk(xi,xj) + β,

ξi ≥
1
2 + 1

2

 ∑
xj∈D

αjk(xi,xj) + β

 (A.2)

where c1 = π
2λp , c2 = 1

2λn and ξi is the slack variable associated with sample xi ∈ Dn.
Notice that slack variables are used to make the objective function differentiable.

Finally, by using vector notation, (A.2) can be rewritten in a more compact form:

min
α,ξ,β

{
−c11̃TKα− c11̃T1β + c21Tnξ + 1

2α
TKα

}
s.t. ξ � 0n,

ξ � UKα+ β1n,

ξ � 1
21n + 1

2UKα+ β

2 1n

A.2.2 Derivation of the Dual Problem

The Lagrangian function for problem (3.5) is defined as follows:

L(α, ξ, β,β,γ, δ) = 1
2α

TKα− c11̃TKα− c11̃T1β + c21Tnξ

− ηTξ + γT
(
UKα+ β1n − ξ

)
+ δT

(
1
21n + 1

2UKα+ β

2 1n − ξ
)

where η � 0n,γ � 0n and δ � 0n are vectors of size u containing the Lagrange multipliers
associated to the constraints of the primal problem. By taking the derivatives of L with
respect to α, ξ, β and equating them to zero, we obtain the following relations:

∂L
∂α

= 0n ⇒ α = c11̃−UTγ − 1
2UTδ,

∂L
∂β

= 0 ⇒ c11̃T1− γT1n − 1
2δ

T1n = 0

⇒ 1T
(
c11̃−UTγ − 1

2UTδ

)
= 0,

∂L
∂ξ

= 0n ⇒ c21n − η − γ − δ = 0n ∧ η,γ, δ � 0n
⇒ γ + δ � c21n ∧ 0n � γ, δ � c21n

74 Supplementary Material for Chapter 3

which are then used to build the Lagrange dual function and consequently derive the
following Lagrange dual problem:

max
γ,δ

{
−1

2

(
γ + 1

2δ
)T

UKUT

(
γ + 1

2δ
)

+ c11̃TKUT

(
γ + 1

2δ
)

+ 1
21Tnδ

}

s.t. 1T
[
c11̃−UT

(
γ + 1

2δ
)]

= 0,

γ + δ � c21n,
0n � γ, δ � c21n

(3.6) can be finally derived by defining σ = γ + 1
2δ and rewriting it as a minimization

problem.

A.3 Proof of Lemma 1

Lemma 6. Given S = {i, j}, any optimal solution σ∗S = [σ∗i σ∗j]T , δ∗S = [δ∗i δ∗j]T of the QP
subproblem (3.8) has to satisfy the following condition: ∀u : xu ∈ S ∧ 0 ≤ δ∗u ≤ c2 either
σ∗u = c2 − δ∗u

2 or σ∗u = δ∗u
2 .

Proof. By introducing the following notation, namely

σkS =
σki
σkj

 , δkS =
δki
δkj

 ,KSS =
k(xi,xi) k(xi,xj)
k(xj,xi) k(xj,xj)

 , e =
e1

e2

the objective function of the QP subproblem (3.8) evaluated at (σkS, δkS) can be rewritten
as:

F (σki , σkj)− δki
2 −

δkj
2 (A.3)

where

F (σki , σkj) =1
2
[
σki σkj

] k(xi,xi) k(xi,xj)
k(xj,xi) k(xj,xj)

 σki
σkj

+
[
e1 e2

] σki
σkj

and the constraints of (3.8) at (σkS, δkS) are therefore:

σki + σkj = ak,

σki + δki
2 ≤ c2 ∧ σkj +

δkj
2 ≤ c2,

σki −
δki
2 ≥ 0 ∧ σkj −

δkj
2 ≥ 0,

0 ≤ δki , δ
k
j ≤ c2 (A.4)

Appendices 75

δ
k

i

σ
k

i

c2

c2

c2

2

0

Figure A.1: Inequality constraints of the QP subproblem (3.8) for a given sample xi. The
coloured area corresponds to the feasible region.

where ak = c1p− 1Tσk
S̄
is a constant scalar for iteration k.

Since (σ∗S, δ∗S) is an optimal solution of (3.8), it has to satisfy the Karush-Kuhn-
Tucker (KKT) conditions. In particular, the stationarity conditions can be expressed in
the following way:

∂L
∂σki

=
∂F (σ∗i , σ∗j)

σki
+ β + λi − µi = 0,

∂L
∂σkj

=
∂F (σ∗i , σ∗j)

σkj
+ β + λj − µj = 0,

∂L
∂δki

=−1
2 + λi

2 + µi
2 + ξi − ηi = 0,

∂L
∂δkj

=−1
2 + λj

2 + µj
2 + ξj − ηj = 0 (A.5)

where L is the Lagrange dual function obtained from the QP subproblem and β,λi,λj,µi,µj,ξi,
ξj,ηi,ηj are its Lagrange multipliers, namely:

L =F (σ∗i , σ∗j)−
δ∗i
2 −

δ∗j
2 + β(σ∗i + σ∗j − ak)

+ λi(σ∗i + δ∗i
2 − c2) + λj(σ∗j +

δ∗j
2 − c2)

− µi(σ∗i −
δ∗i
2)− µj(σ∗j −

δ∗j
2)

+ ξi(δ∗i − c2) + ξj(δ∗j − c2)− ηiδ∗i − ηjδ∗j

Now, focus on terms associated with sample xi and specifically on its inequality con-
straints in (A.4). Based on them, it is possible to distinguish the following four cases

76 Supplementary Material for Chapter 3

(Figure A.1 helps to understand this):

0 ≤ δki < c2 ∧
δki
2 < σki < c2 −

δki
2 , (A.6)

0 ≤ δki < c2 ∧ σki = c2 −
δki
2 , (A.7)

0 ≤ δki < c2 ∧ σki = δki
2 , (A.8)

δki = c2 ∧ σki = δki
2 (A.9)

By considering the KKT complementary slackness conditions together with (A.5), we can
derive the following statements:

Case (A.6)⇒ λi = 0, µi = 0, ξi = 0, ηi ≥ 0

⇒
∂F (σ∗i , σ∗j)

σki
+ β = 0 ∧ ηi = −1

2 ,

Case (A.7)⇒ λi ≥ 0, µi = 0, ξi = 0, ηi ≥ 0

⇒
∂F (σ∗i , σ∗j)

σki
+ β ≤ −1 ∧ λi ≥ 1 ∧ ηi ≥ 0,

Case (A.8)⇒ λi = 0, µi ≥ 0, ξi = 0, ηi ≥ 0

⇒
∂F (σ∗i , σ∗j)

σki
+ β ≥ 1 ∧ µi ≥ 1 ∧ ηi ≥ 0,

Case (A.9)⇒ λi ≥ 0, µi ≥ 0, ξi ≥ 0, ηi = 0,

⇒ −1 ≤
∂F (σ∗i , σ∗j)

σki
+ β ≤ 1 ∧ −1 ≤ λi, µi ≤ 1 (A.10)

The first statement in (A.10) is clearly a contradiction, implying that condition (A.6) is
not valid for KKT. In other words, any optimal solution (σ∗i , δ∗i) does not satisfy con-
dition (A.6), but only conditions (A.7)-(A.9). This fact is valid ∀xu ∈ S due to the
symmetry of the QP subproblem (3.8), which concludes the proof.

Appendix B

Supplementary Material for
Chapter 4

B.1 Proof of Lemma 5

Lemma 7. (Lemma 5 restated) Given k : Ωz × Ωz → R a symmetric positive definite
kernel, then:

(a) there exists a unique Hilbert space H of real-valued functions over Ωz, for which k
is a reproducing kernel. H is therefore a Reproducing kernel Hilbert Space (RKHS).

(b) For all h ∈ H ∫
Ωz

∫
Ωz
φ(z)φ(z′)k(z,z′)dzdz′ = MMD2(pZ, qZ)

where
MMD(pZ, qZ) .= sup

‖h‖H≤1

{
Ez∼pZ [h(z)]− Ez∼qZ [h(z)]

}
is the maximum mean discrepancy between pZ(z) and qZ(z).

(c) Let H be defined as in (b), then MMD(pZ, qZ) = 0 if and only if pZ(z) = qZ(z).

Proof. (a) follows directly from the Moore-Aronszajn theorem [89].
Now we prove statement (b). For the sake of notation compactness, define J

.=∫
Ωz

∫
Ωz φ(z)φ(z′)k(z,z′)dzdz′. Therefore,

J =
∫

Ωz

∫
Ωz
pZ(z)pZ(z′)k(z,z′)dzdz′ −

∫
Ωz

∫
Ωz
pZ(z)q(z′)k(z,z′)dzdz′

−
∫

Ωz

∫
Ωz
pZ(z′)qZ(z)k(z,z′)dzdz′ +

∫
Ωz

∫
Ωz
q(z′)qZ(z)k(z,z′)dzdz′

=
∫

Ωz

∫
Ωz
pZ(z)pZ(z′)〈r(z), r(z′)〉Hdzdz′ −

∫
Ωz

∫
Ωz
pZ(z)q(z′)〈r(z), r(z′)〉Hdzdz′

78 Supplementary Material for Chapter 4

−
∫

Ωz

∫
Ωz
pZ(z′)qZ(z)〈r(z), r(z′)〉Hdzdz′ +

∫
Ωz

∫
Ωz
q(z′)qZ(z)〈r(z), r(z′)〉Hdzdz′

= 〈Ez∼pZ [r(z)], Ez′∼pZ [r(z′)])〉H − 〈Ez∼pZ [r(z)], Ez′∼q[r(z′)])〉H
− 〈Ez′∼pZ [r(z′)], Ez∼q[r(z)])〉H + 〈Ez′∼q[r(z′)], Ez∼q[r(z)])〉H (B.1)

Note that the second equality in (B.1) follows from the fact that k(z,z′) = 〈r(z), r(z′)〉H
for a unique r ∈ H,1 where 〈·,·〉H is the inner product of H. If we define µpZ

.= Ez∼pZ [r(z)]
and µq .= Ez∼q[r(z)],2 then (B.1) can be rewritten in the following way:

J = 〈µpZ ,µpZ〉H − 〈µpZ ,µq〉H − 〈µpZ ,µq〉H + 〈µq,µq〉H
= 〈µpZ − µq,µpZ − µq〉H
= ‖µpZ − µq‖2

H (B.2)

Notice that

‖µpZ−µq‖H =
〈
µpZ − µq,

µpZ − µq
‖µpZ − µq‖H

〉
H

= sup
‖h‖H≤1

{
〈µpZ − µq, h〉H

}
= sup
‖h‖H≤1

{
Ez∼pZ [〈r(z), h〉H]− Ez∼q[〈r(z), h〉H]

}
= sup
‖h‖H≤1

{
Ez∼pZ [h(z)]− Ez∼q[h(z)]

}
= MMD(pZ, qZ)

Substituting this result into (B.2) concludes the proof of the statement.
Statement (c) is equivalent to Theorem 3 in [113].

B.2 Proof of Theorem 1

Theorem 2. (Theorem 1 restated) Given the objective in (4.2), Ωz a compact set,
Ωx = [−M,M]d, where M ∈ R+, and a symmetric, continuous and positive definite
kernel k : Ωz × Ωz → R, where 0 ≤ k(z,z′) ≤ K for all z,z′ ∈ Ωz and K = k(z,z).

(a) There exists k̃ : Ωz × Ωz → R such that k(z,z′) =
∫

Ωz k̃(z,u)k̃(z′,u)du.

(b) The objective in (4.2) is equivalent to

L̃(f, g) = 1
N

∑
xi∈Dx

‖xi−g(f(xi))‖2+

1This is a classical result due to the Riesz representation theorem.
2Their existence can be guaranteed assuming that ‖µpZ ‖2

H < ∞ and ‖µq‖2
H < ∞. In other words,

Ez,z′∼pZ [k(z,z′)] < ∞ and Ez,z′∼q[k(z,z′)] < ∞.

Appendices 79

+ λ

 N

N−1

∫
Ωz

(
pZ,̃k(u)−qZ,̃k(u)

)2
du− 2K

N−1 + 2
N(N−1)

∑
zi∈Dz
z′i∈D

f
z

k(zi,z′i)

where pZ,̃k(u) = 1
N

∑
zi∈Dz k̃(zi,u) and qZ,̃k(u) = 1

N

∑
z′i∈D

f
z
k̃(z′i,u) are the kernel

density approximations of pZ(u) and q(u), respectively.

(c) Then, for any s, t > 0

Pr
{
|L̂ − L| > t+ λs

}
≤2 exp

{
− Nt2

8M4d2

}
+ 2 exp

{
−bN/2cs

2

8K2

}

Proof. Property (a) can be proved using the Mercer’s theorem (see Theorem 1 in [126]).
Now we prove property (b):

L̂(f,g) = 1
N

∑
xi∈Dx

‖xi−g(f(xi))‖2 + +λ
 1
N(N−1)

∑
zi∈Dz

∑
zj∈Dz
j 6=i

k(zi,zj)

− 2
N(N−1)

∑
zi∈Dz

∑
zj∈Df

z
j 6=i

k(zi,zj) + 1
N(N−1)

∑
zi∈Df

z

∑
zj∈Df

z
j 6=i

k(zi,zj)

= 1
N

∑
xi∈Dx

‖xi−g(f(xi))‖2 + λ
N

N−1

 1
N2

∑
zi∈Dz

∑
zj∈Dz
j 6=i

k(zi,zj)

− 2
N2

∑
zi∈Dz

∑
zj∈Df

z
j 6=i

k(zi,zj) + 1
N2

∑
zi∈Df

z

∑
zj∈Df

z
j 6=i

k(zi,zj)

= 1
N

∑
xi∈Dx

‖xi−g(f(xi))‖2 + λ
N

N−1

 1
N2

∑
zi∈Dz

∑
zj∈Dz

k(zi,zj)

− 2
N2

∑
zi∈Dz

∑
zj∈Df

z

k(zi,zj) + 1
N2

∑
zi∈Df

z

∑
zj∈Df

z

k(zi,zj)

− 1
N2

∑
zi∈Dz

k(zi,zi) + 2
N2

∑
zi∈Dz
z′i∈D

f
z

k(zi,z′i)−
1
N2

∑
zi∈Df

z

k(zi,zi)

= 1
N

∑
xi∈Dx

‖xi−g(f(xi))‖2 + λ
N

N−1

 1
N2

∑
zi∈Dz

∑
zj∈Dz

k(zi,zj)

− 2
N2

∑
zi∈Dz

∑
zj∈Df

z

k(zi,zj) + 1
N2

∑
zi∈Df

z

∑
zj∈Df

z

k(zi,zj)

80 Supplementary Material for Chapter 4

− 2K
N

+ 2
N2

∑
zi∈Dz
z′i∈D

f
z

k(zi,z′i)

= 1
N

∑
xi∈Dx

‖xi−g(f(xi))‖2 + λ
N

N−1

 1
N2

∑
zi∈Dz

∑
zj∈Dz

∫
Ωz
k̃(zi,u)k̃(zj,u)du

− 2
N2

∑
zi∈Dz

∑
zj∈Df

z

∫
Ωz
k̃(zi,u)k̃(zj,u)du + 1

N2

∑
zi∈Df

z

∑
zj∈Df

z

∫
Ωz
k̃(zi,u)k̃(zj,u)du

− 2K
N

+ 2
N2

∑
zi∈Dz
z′i∈D

f
z

k(zi,z′i)

= 1
N

∑
xi∈Dx

‖xi−g(f(xi))‖2 + λ
N

N−1

∫

Ωz

{
1
N2

∑
zi∈Dz

∑
zj∈Dz

k̃(zi,u)k̃(zj,u)

− 2
N2

∑
zi∈Dz

∑
zj∈Df

z

k̃(zi,u)k̃(zj,u) + 1
N2

∑
zi∈Df

z

∑
zj∈Df

z

k̃(zi,u)k̃(zj,u)
}
du

− 2K
N

+ 2
N2

∑
zi∈Dz
z′i∈D

f
z

k(zi,z′i)

= 1
N

∑
xi∈Dx

‖xi−g(f(xi))‖2 + λ
N

N−1

∫

Ωz

{
1
N2

∑
zi∈Dz

k̃(zi,u)
∑

zj∈Dz

k̃(zj,u)

− 2
N2

∑
zi∈Dz

k̃(zi,u)
∑

zj∈Df
z

k̃(zj,u) + 1
N2

∑
zi∈Df

z

k̃(zi,u)
∑

zj∈Df
z

k̃(zj,u)
}
du

− 2K
N

+ 2
N2

∑
zi∈Dz
z′i∈D

f
z

k(zi,z′i)

= 1
N

∑
xi∈Dx

‖xi−g(f(xi))‖2 + λ
N

N−1

∫

Ωz

{
1
N

∑
zi∈Dz

k̃(zi,u)

− 1
N

∑
zj∈Df

z

k̃(zj,u)
}2

du− 2K
N

+ 2
N2

∑
zi∈Dz
z′i∈D

f
z

k(zi,z′i)

= 1
N

∑
xi∈Dx

‖xi−g(f(xi))‖2 + λ

 N

N−1

∫
Ωz

{
1
N

∑
zi∈Dz

k̃(zi,u)

− 1
N

∑
zj∈Df

z

k̃(zj,u)
}2

du− 2K
N−1 + 2

N(N−1)
∑

zi∈Dz
z′i∈D

f
z

k(zi,z′i)

Appendices 81

= L̃(f, g)

To prove property (c), we first derive the statistical bounds for the two addends in (4.2),
and then combine these results in the final bound.

Consider the reconstruction error term in (4.2) and define ξx
.= ‖x−g(f(x))‖2. Note

that Ωx = [−M,M]d and therefore ξx is bounded in the interval [0, 4M2d]. By considering
ξx a random variable, we can apply the Hoeffding’s inequality [see Theorem 2 in [131]] to
obtain the following statistical bound:

Pr
{∣∣∣∣∣ 1
N

∑
x∈Dx

ξx−
∫

Ωx
ξxpX(x)dx

∣∣∣∣∣ ≥ t

}
≤ 2 exp

{
−2N2t2

(4M2d)2N

}

= 2 exp
{
− Nt2

8M4d2

}
(B.3)

where t is an arbitrary small positive constant.
Note that the second addend in (4.2) is equivalent to the empirical unbiased estimate

of MMD2(pZ, qZ) [113]. We refer to it as M̂MD
2
(pZ, qZ). Based on this observation, we

can reuse the statistical bound provided in Theorem 14 of [113], which is valid for any
bounded positive definite kernel, namely:

Pr
{∣∣∣∣∣M̂MD

2
(pZ, qZ)−MMD2(pZ, qZ)

∣∣∣∣∣ > s

}
≤ 2 exp

{
−bN/2cs

2

8K2

}
(B.4)

By combining (B.3) and (B.4), we obtain the following aggregated bound:

Pr
{∣∣∣∣∣ 1
N

∑
x∈Dx

ξx−
∫

Ωx
ξxpX(x)dx

∣∣∣∣∣ ≥ t

}
+

+Pr
{∣∣∣∣∣M̂MD

2
(pZ, qZ)−MMD2(pZ, qZ)

∣∣∣∣∣ > s

}
≤

≤ 2 exp
{
− Nt2

8M4d2

}
+ 2 exp

{
−bN/2cs

2

8K2

}
(B.5)

Note that the sum of the two probalities in (B.5) can be lower-bounded in the following
way:

Pr
{∣∣∣∣∣ 1
N

∑
x∈Dx

ξx−
∫

Ωx
ξxpX(x)dx

∣∣∣∣∣ ≥ t

}
+

+Pr
{∣∣∣∣∣M̂MD

2
(pZ, qZ)−MMD2(pZ, qZ)

∣∣∣∣∣ > s

}
≥

≥ Pr
{∣∣∣∣∣ 1
N

∑
x∈Dx

ξx−
∫

Ωx
ξxpX(x)dx

∣∣∣∣∣ ≥ t ∪

82 Supplementary Material for Chapter 4

∪ λ
∣∣∣∣∣M̂MD

2
(pZ, qZ)−MMD2(pZ, qZ)

∣∣∣∣∣ > λs
]}
≥

≥ Pr
{∣∣∣∣∣ 1
N

∑
x∈Dx

ξx−
∫

Ωx
ξxpX(x)dx

∣∣∣∣∣+
+ λ

∣∣∣∣∣M̂MD
2
(pZ, qZ)−MMD2(pZ, qZ)

∣∣∣∣∣ > λs+ t

}
≥

≥ Pr
{∣∣∣∣∣ 1
N

∑
x∈Dx

ξx−
∫

Ωx
ξxpX(x)dx+

+ λM̂MD
2
(pZ, qZ)−λMMD2(pZ, qZ)

∣∣∣∣∣ > λs+ t

}
=

= Pr
{
|L̂ − L| > λs+ t

}
(B.6)

where the first inequality in (B.6) is obtained by applying the union bound and by in-
troducing λ; the second inequality is obtained by replacing the union operator with the
addition; the third inequality is obtained by exploiting the triangle inequality; the last
equality follows from Lemma 5.

By combining (B.6) with (B.5), we get statement (c).

B.3 Experiments on Grid Dataset

Table B.1 provides the details of the network architectures. Hyperbolic tangent activations
are used as output activations of encoders, while the outputs of decoders/generators are
linear. For all methods, we use ReLU hidden activations. CouGAN uses ELU [124], but
we provide also results with ReLU. Furthermore, we show results of VEEGAN with and
without batch normalization (BN). See Figure B.1.

B.4 Experiments on Low Dimensional Embedding Dataset

Table B.2 provides the details of the network architectures. Hyperbolic tangent activations
are used as output activations of encoders, while the outputs of decoders/generators are
linear. For all methods, we use ReLU hidden activations. CouGAN uses ELU [124], but
we provide also results with ReLU. Furthermore, we report results of BiGAN, VEEGAN
and AAE with and without batch normalization (BN). See Table B.3.

Appendices 83

Table B.1: Network architectures.

Method Network Neurons per layer

PAE
Encoder 2,128,128,2
Decoder 2,128,128,2

Discriminator -

CouGAN
Encoder -
Decoder 2,128,128,2

Discriminator 2,128,128,1

WGAN
Encoder -
Decoder 2,128,128,2

Discriminator 2,128,128,1

BiGAN
Encoder 2,128,128,2
Decoder 2,128,128,2

Discriminator 4,128,128,1

VEEGAN
Encoder 2,128,128,254
Decoder 254+1,128,128,2

Discriminator 256,128,128,1

VAE
Encoder 2,128,128,4
Decoder 2,128,128,2

Discriminator -

AAE
Encoder 2,128,128,2
Decoder 2,128,128,2

Discriminator 2,128,128,1

AVB-AC
Encoder 2+64,128,128,2
Decoder 2,128,128,2

Discriminator 4,128,128,1

B.5 Experiments on Stacked-MNIST

Table B.4 provides the details of the network architectures. Hyperbolic tangent activations
are used as output activations of encoders, while the outputs of decoders/generators are
sigmoid (standard logistic activations). For all methods, we use ReLU hidden activations.
CouGAN uses ELU [124], but we provide also results with ReLU. Furthermore, we report
results of BiGAN, VEEGAN and AAE with and without batch normalization (BN). See
Figure B.2.

84 Supplementary Material for Chapter 4

(a) CouGAN (ReLU) (b) CouGAN (ELU)

(c) VEEGAN w BN (d) VEEGAN w/o BN

Figure B.1: Grid dataset.

(a) CouGAN (ReLU) (b) CouGAN (ELU) (c) BiGAN w BN (d) BiGAN w/o BN

(e) VEEGAN w BN (f) VEEGAN w/o BN (g) AAE w BN (h) AAE w/o BN

Figure B.2: Stacked-MNIST dataset.

Appendices 85

Table B.2: Network architectures.

Method Network Neurons per layer

PAE
Encoder 1000,128,128,10
Decoder 10,128,128,1000

Discriminator -

CouGAN
Encoder -
Decoder 10,128,128,1000

Discriminator 1000,128,128,1

WGAN
Encoder -
Decoder 10,128,128,1000

Discriminator 1000,128,128,1

BiGAN
Encoder 1000,128,128,10
Decoder 1000,128,128,10

Discriminator 1010,128,128,1

VEEGAN
Encoder 1000,128,128,10
Decoder 10+1,128,128,1000

Discriminator 1010,128,128,1

VAE
Encoder 1000,128,128,20
Decoder 10,128,128,1000

Discriminator -

AAE
Encoder 1000,128,128,10
Decoder 10,128,128,1000

Discriminator 10,128,128,1

AVB-AC
Encoder 1000+64,128,128,10
Decoder 10,128,128,1000

Discriminator 1010,128,128,1

Table B.3: Test log-likelihood (LL) for different models on low dimensional embedding dataset.

Method LL
CouGAN (ELU) Failure
CouGAN (ReLU) Failure
BiGAN w BN -3940.3±3519.4
BiGAN w/o BN -55528.9±45685.8
VEEGAN w BN -157286274.0±1036296.3
VEEGAN w/o BN -7457806.0±4036262.3
AAE w BN 1025.9±177.1
AAE w/o BN -44627.7±39387.2

86 Supplementary Material for Chapter 4

Table B.4: Network architectures.

Method Network Neurons per layer

PAE
Encoder 2352,2500,2000,1500,1000,500,10
Decoder 10,500,1000,1500,2000,2500,2352

Discriminator -

CouGAN
Encoder -
Decoder 10,500,1000,1500,2000,2500,2352

Discriminator 2352,2500,2000,1500,1000,500,1

WGAN
Encoder -
Decoder 10,500,1000,1500,2000,2500,2352

Discriminator 2352,2500,2000,1500,1000,500,1

BiGAN
Encoder 2352,2500,2000,1500,1000,500,10
Decoder 10,500,1000,1500,2000,2500,2352

Discriminator 2362,2500,2000,1500,1000,500,1

VEEGAN
Encoder 2352+1,2500,2000,1500,1000,500,10
Decoder 10,500,1000,1500,2000,2500,2352

Discriminator 2362,2500,2000,1500,1000,500,1

VAE
Encoder 2352,2500,2000,1500,1000,500,20
Decoder 10,500,1000,1500,2000,2500,2352

Discriminator -

AAE
Encoder 2352,2500,2000,1500,1000,500,10
Decoder 10,500,1000,1500,2000,2500,2352

Discriminator 10,2500,2000,1500,1000,500,1

AVB-AC
Encoder 2352+64,2500,2000,1500,1000,500,10
Decoder 10,500,1000,1500,2000,2500,2352

Discriminator 2362,2500,2000,1500,1000,500,1

