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A new trend in the mechanical design of devices for advanced technologies, 
such as soft robotics and micro/nano mechanics, is the exploitation of 
structures undergoing large deflections, in an attempt of achieving superior 
performances. Within this framework, non-linear modelling becomes a 
fundamental tool for the design of compliant structures and deformable 
mechanism. Two structural systems are investigated, both based on the 
planar elastica and subject to movable and configurational constraints. These 
two structures disclose unforeseen behaviours when the values of the 
parameters defining the models are varied. The first structural system is an 
elastic rod constrained by a slowly rotating clamp, while the other end is 
loaded with a lumped mass weight. When this weight is lower than that 
corresponding to buckling, the edge of the rod describes a closed curve, 
behaving as an elastica compass. Differently, when the load is higher than 
that of buckling, a release of elastic energy is observed, leading to a snap-
back of the structure, so that the rod realizes an elastica catapult. The clamp 
in the above described structure is replaced by a frictionless and fixed sliding 
sleeve in the second system considered in this thesis.  The rod is subject to a 
sudden release from the underformed configuration, providing dynamic 
effects on the system. By means of the variational approach, the presence of 
a configurational force at the exit of the sliding sleeve is proven within the 
dynamical setting, extending previous results restricted to the quasi-static 
assumption. The configurational force is found to strongly affect the dynamics 
of the structure. In particular, two different behaviours are observed, in which 
the rod may either completely penetrate in ("injection") or be expelled from 
("ejection") the sliding sleeve. In both the above problems, the theoretical 
predictions are corroborated through the experimental validation on physical 
models, which have been ad hoc invented and designed. A new insight is 
obtained in the design of flexible devices, paving the way to applications in 
soft robotics. 
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Introduction

The Euler formula for the buckling of an elastic rod first ap-
peared in 1774 in his paper De Curvis Elasticis, presented as an
Appendix to the treatise on the calculus of variations Treatise
on Isoperimeters. Such a formula probably represents the great-
est example of how mathematics can be applied to mechanical
problems, so that, not only the value of the critical load for a
compressed rod was given, but also the equation describing the
configuration of an elastic rod subject to terminal loads. The
problem of flexural deformation of a rod caught the attention
of many of the brightest minds in the history of mechanics, in-
cluding Galileo and Bernoulli, so that its study might nowadays
appear out of date.

FIG. 1: Drawings of catapults by Leonardo Da Vinci
from Codex Atlanticus [11].

Nevertheless, a great number of recent scientific results show
that the study of the elastica is still worth. In particular, the

1



design of innovative devices for advanced applications is be-
ing driven by the need for compliant mechanisms, which are
usually inspired by nature [22, 23] and are part of a transition
from traditional robotics to soft-robotics, where the capability
of (large) deflections of structural systems is exploited in order
to maximize their performances [27, 32, 35]. In this scenario,
the development of non-linear mechanical models, as those de-
scribed by the Euler’s Elastica, becomes a fundamental tool in
the design of compliant devices and represents the main focus
of the present Ph.D. thesis, with the purpose of disclosing and
describe unforeseen mechanical response that can be exploited
in the design of innovative devices.

In the first part of the thesis 1, the development of basic me-
chanical model is addressed for the prediction of the behaviour
of highly flexible robot arms. The possibility of exploiting the
elastic deflection of rods was first considered by Leonardo da
Vinci [11], who in his Codex Atlanticus drew a series of "elas-
tic catapults", which yield a significant increase in the throwing
distance, through a release of inflexional elastic energy.

Inspired by da Vinci’s drawings, the mechanics of an elastic
rod clamped at one end and subject to a dead load at the other
is investigated (Chapter 2). Starting from the straight vertical
configuration, corresponding to a uniform tensile loading con-
dition, the clamp is slowly rotated so that the system displays a
sequence of deformed configurations in which the rod is bent.

When the dead load, provided by the weight of a lumped
mass, is lower than that corresponding to buckling of the struc-
ture in its straight configuration, the systems does not suffer
any instability and a continuous smooth sequence of deformed
configurations is obtained, with the edge of the rod describ-
ing a closed curve, similar to (but different from!) a circle, so

1C. Armanini, F. Dal Corso, D. Misseroni and D. Bigoni, "From the elastica
compass to the elastica catapult: an essay on the mechanics of soft robot arm".
In: Proceedings of the Royal Society A, (2017), 473,20160870. Cover paper.

2
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FIG. 2: The mechanical system considered in Part I. An elastic rod has at-
tached a lumped mass m at one end and is constrained at the other end by a
slowly rotating clamp, inclined at an angle α(t) (increasing function of time t)

with respect to the direction of the gravity.

that the structure behaves as an "elastica compass". When the
load is higher than that for buckling, the continued rotation of
the clamp leads to an unstable configuration (characterized by
a specific angle for the clamp inclination), so that the system
spontaneously displays a sudden release of elastic energy and
snaps to a non-adjacent configuration, in such a way that the
structure behaves as an "elastica catapult", perhaps resembling
the da Vinci’s drawings (see Fig. 3).

The critical values of the angle of the clamped end, cor-
responding to the snap-back instability, are defined from the
analysis of the quasi-static loading path described in a closed
form by means of Elliptic functions (Chapter 3), through an ex-
tension of results pioneered by Wang [38]. Moreover, the dy-
namic behaviour during the snap is investigated through an ad
hoc formulated numerical model, where the rod is reduced to a
non-linear spring governed by the equation of the elastica. The

3



FIG. 3: Superposition of a stroboscopic photo of the
considered structure during an experiment (realised
in the Instabilities Lab of the University of Trento)

and one of the da Vinci’s catapults.

set-up of a numerical technique is a complex problem, which
was analyzed from several points of view [16, 17, 19, 20, 28, 33],
but not still completely solved. In particular, the proposed ap-
proach is developed as an extension of a previous work [34],
which was conceived for pneumatic soft robot arms. The im-
plemented procedure is also supported by results from a classi-
cal finite element analysis, obtained with the software Abaqus
(Chapter 6). The presented solution represents a useful tool in
the design of a soft robot arm, whose performances are inves-
tigated in terms of the distances that can be reached and the
elastic energy that can be released from the catapult behaviour
(Chapter 5).

The second part of the thesis is devoted to the analysis of the
action of configurational forces on structural systems within a
dynamic setting. Configurational forces, which were first intro-
duced by Eshelby ([12] [13] [14] and [15]), arise when a structure
is free of changing his configuration. It has been demonstrated

4
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FIG. 4: Trajectories travelled by the loaded ends of three soft robot arms with
same bending stiffness B, subject to the same weight P but with differ in the
soft arm length. It is noted that the maximum distance is not attained by the

system having the maximum length.

( [6], [7]) that in statics they similiar forces arise when a perfectly
smooth sliding sleeve is applied to an end of an elastic rod.

In the second part of the thesis, the rotational clamp of the
first problem analyzed is replaced by a sliding sleeve, while
now the weight at the other end of the rod is assumed to be
instantaneously released at a certain instant of time from a fully
unloaded configuration. An extension of the numerical pro-
cedure used to describe the snap-back dynamics of the elas-
tic catapult is employed to analyze the dynamics of the rod
with the sliding sleeve. A spatial integration of the elastica
is performed to investigate the behaviour of such a non-linear
dynamical system, dependent on a configurational parameter,
namely, the length of the part of the rod outside the constraint.
The presence of a configurational force is demonstrated within
the dynamical setting (using a variational approach) and it is

5
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ℓ(t), represents the configurational parameter that rules the behaviour of the

system.

shown that this force coincides with that predicted within a
quasi-static approach [3]. It is shown that the configurational
force, generated at the end of the sliding sleeve, strongly affects
the mechanical response of the system. A non-dimensional pa-
rameter condensing the values of the mass, rod stiffness, and
the rod’s initial length is provided to characterize the transi-
tion from two possible behaviours, namely, one in which the
rod may completely penetrate in the sliding sleeve (called ‘in-
jection’) and another in which the rod is expelled from the slid-
ing sleeve (called ‘expulsion’).

In both the above problems the analytical and numerical
predictions are systematically corroborated through the exper-
imental validation on physical models, which have been ad hoc
invented and designed.

The obtained results show that the flexible devices addressed
in the present thesis, and systematically explored in terms of
mechanical performances, can be analytically and numerically
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The experimental set-up realised to investigate the
dynamical behaviour of the system described in

Part II
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described with a great accuracy. This concepts are ready to be
exploited in the design of innovative devices for advanced ap-
plications, as for example in soft robotics.
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Part I

From the elastica compass
to the elastica catapult
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1 Introduction

The design of innovative devices for advanced applications is
being driven by the need for compliant mechanisms, which are
usually inspired by nature [22, 23] and are part of a transition
from traditional robotics to soft-robotics [27, 32, 35]. Compli-
ant mechanisms require the development and use of non-linear
mechanical models such as the Kirchhoff rod [10] and Euler’s
elastica, which allow the description of large deflections in elas-
tic bars and the modelling of snake locomotion [9, 36], as well
as object manipulation [37, 40, 41], useful in robotic assistance
during surgery [7, 26] and for physical rehabilitation [29].

In this first part of the thesis, a basic mechanical model for a
soft robot arm is addressed through new theoretical, numerical,
and experimental developments. In particular, the deformable
mechanical system sketched in Fig. 10.1 is considered, in which
an elastic rod is clamped at one end and subject to a dead load at
the other. The load is provided by the weight of a mass predom-
inantly higher than that of the rod. The clamp rotates slowly so
that, starting from a configuration in which the rod is subject
to purely tensile axial load, the system quasi-statically evolves
in a number of elastic forms at varying clamp angle. When the
load is inferior to that corresponding to buckling of the straight
and uniformly compressed configuration, a whole quasi-static
360◦–rotation of the clamp is possible and the edge of the rod
describes a (smooth, convex and simple) closed curve, which
is theoretically solved using Euler’s elastica. In the case of a
rigid rod, this curve would be a circle, so that the mechanical
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Chapter 1. Introduction

system behaves as an ‘elastica compass’, thus tracing the curve
described by the elastica. However, when the load is higher
than which would lead to buckling for the straight rod, an un-
stable configuration is quasi-statically reached, at which the rod
suffers a snap-back instability and dynamically approaches an-
other configuration, so that the system behaves as an ‘elastica
catapult’. The description of the quasi-static path of the system
and the determination of the unstable configuration is solved
in an analytical form by means of elliptic functions through an
extension of results pioneered by Wang [38], who employed a
numerical integration procedure and provided asymptotic esti-
mates valid in some particular cases (very stiff and very com-
pliant rods, and nearly vertical equilibrium configurations).

In addition to the quasi-static solution, the dynamics of the
snap instability is addressed numerically. The set-up of a nu-
merical technique is a complex problem, which was analyzed
from several points of view, but not still completely solved [16,
17, 19, 20, 28, 33]. To this purpose, two approaches are pre-
sented, one is a standard use of a finite element software (Abaqus),
while the other is developed as a perfection of a technique intro-
duced for pneumatic soft robot arms [34]. The latter approach,
in which the elastic rod is reduced to a non-linear spring gov-
erned by the elastica, is elegant, but the kinematics is limited to
the first deformation mode and an axial deformation and vis-
cous damping have to be added to prevent spurious numerical
instabilities, issues which may be circumvented through the fi-
nite element approach.

Finally, the experimental validation of the elastic system was
performed using a mechanical setup specifically designed and
realized at the ‘Instabilities Lab’ of the University of Trento. Ex-
perimental results fully validate the theoretical modelling, thus
confirming that the elastica allows for solutions useful in the
kinematics of a soft robot arm. The performance of the robot

12



Chapter 1. Introduction

arm is also assessed in terms of (i.) the maximum and mini-
mum distances that can be reached without encountering loss
of stability of the configuration, and (ii.) the maximum energy
release that can be achieved when the system behaves as a cat-
apult. These results open the way to a rational design of de-
formable robot arms and, as a side development, may find also
application in the analysis of the pole vault dynamics and the
optimization of athletes’ performance [18], [21].
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2 Formulation

undeformed
configuration

y
y

x

α(t)

γ,B
gr

av
it

y

m

θ(s,t)

l

φ(t)
r(t)

s

x ψ(s,t)

FIG. 2.1: An elastic rod of length l, with bending stiffness B and linear mass
density γ, has attached a lumped mass m at one end and is constrained at
the other end by a slowly rotating clamp, inclined at an angle α(t) (increasing
function of time t) with respect to the direction of the gravity. The rotation
of the rod’s axis with respect to the undeformed (straight) configuration is
measured through the angle θ(s, t), with s being the curvilinear coordinate,
s ∈ [0, l]. The x̂ − ŷ and x − y reference systems are reported, both centered
at the clamp point, the former attached to the rotating clamp while the latter
fixed as the loading direction. The polar coordinates r − ϕ defining the rod’s

end position are also reported.
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Chapter 2. Formulation

An inextensible planar rod with bending stiffness B, total
length l, linear mass density γ, and straight in its undeformed
configuration, has a lumped mass m attached at one end while
the other end is constrained by a clamp having inclination α(t)
with respect to gravity direction, Fig. 2.1.

The clamp angle α(t) smoothly and slowly increases in time
t, so that a quasi-statically rotating clamp is realized. The rota-
tion of the rod’s axis with respect to the undeformed (straight)
configuration is denoted by θ(s, t), function of the time t and of
the curvilinear coordinate s ∈ [0, l], with s = 0 singling out the
position of the clamp, where θ(0, t) = 0, and s = l of the loaded
rod’s end.

With respect to the undeformed straight configuration, ‘frozen’
at the inclination angle α(t), the coordinates x̂(s, t) and ŷ(s, t)
measure the position of the rod’s axis in the rotating system,
and, due to the inextensibility condition, are connected to the
rotation field through the following differential relations [2]

x̂′(s, t) = cos θ(s, t),

ŷ′(s, t) = − sin θ(s, t),
(2.1)

where a prime denotes the derivative along the curvilinear
coordinate s. The position can be described through the coor-
dinates x(s, t) and y(s, t) (the former orthogonal and the latter
parallel, but with opposite direction, to the gravity), which are
connected with the positions x̂(s, t) and ŷ(s, t) through the fol-
lowing relationships

x(s, t) = −x̂(s, t) sin α(t) + ŷ(s, t) cos α(t),

y(s, t) = −x̂(s, t) cos α(t)− ŷ(s, t) sin α(t),
(2.2)

so that the kinematical constraint, equation (2.1), implies
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2.1. Total potential energy and the elastica equation

x′(s, t) = − sin [θ(s, t) + α(t)] ,

y′(s, t) = − cos [θ(s, t) + α(t)] .
(2.3)

During the rotation, the position of the clamp (s = 0) is con-
sidered fixed and taken as the origin of the reference systems

x(0, t) = y(0, t) = x̂(0, t) = ŷ(0, t) = 0. (2.4)

2.1 Total potential energy and the elastica equa-

tion

Denoting with g the gravitational acceleration, the rod is loaded
by the weight P due to the lumped mass m, so that P = mg, and
the rod distributed weight γg (the latter neglected in the quasi-
static analysis). Neglecting the rotational inertia of the lumped
mass and of the rod, the Lagrangian functional for the system is
given by

L(t) = T (t)− V(t) +

−
∫ l

0
Nx(s, t)

{
x′(s, t) + sin [θ(s, t) + α(t)]

}
ds+

−
∫ l

0
Ny(s, t)

{
y′(s, t) + cos [θ(s, t) + α(t)]

}
ds,

(2.5)

where

• Nx(s, t) and Ny(s, t), playing here the role of Lagrangian
multipliers, represent the internal forces along the x and y
directions;
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Chapter 2. Formulation

• T (t) is the kinetic energy of the system, given by

T (t) =
1

2
m[ẋ2(l, t)+ ẏ2(l, t)]+

1

2

∫ l

0
γ[ẋ2(s, t)+ ẏ2(s, t)]ds,

(2.6)

where ˙[·] denotes the time derivative;

• V(t) is the sum of the elastic energy stored within the rod
and the negative of the work done by the weight due to
the lumped mass P and that by the rod distributed weight
γg

V(t) = 1

2

∫ l

0
Bθ′(s, t)2ds + Py(l, t) +

∫ l

0
γgy(s, t)ds. (2.7)

The governing equations can be derived through the appli-
cation of the least action principle on the functional

A(t) =
∫ t∗

t0

L(t) dt, (2.8)

with t0 and t∗ being arbitrary initial and final instants of the
analysed time interval.

Reference is made to a perturbation in the fields {x(s, t), y(s, t),
θ(s, t)} by means of the small parameter ǫ and of the field varia-
tions {xvar(s, t), yvar(s, t), θvar(s, t)} satisfying the time and space
conditions

xvar(s, t) = yvar(s, t) = θvar(s, t) = 0, for t = t0 and t = t∗,

xvar(0, t) = yvar(0, t) = θvar(0, t) = 0, t ∈ [t0, t∗].
(2.9)
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2.1. Total potential energy and the elastica equation

Therefore, the minimum of the functional A(t), equation
(2.8), is obtained by imposing the following condition

∫ l

0

[
γẍ(s, t)− N′

x(s, t)
]

xvar(s, t)ds+

+
∫ l

0

{
γ [g + ÿ(s, t)]− N′

y(s, t)
}

yvar(s, t)ds+

+
∫ l

0
θvar(s, t)

{
Bθ′′(s, t)− Nx(s, t) cos[θ(s, t) + α(t)]+

+Ny(s, t) sin[θ(s, t) + α(t)]

}
ds+

+ [mẍ(l, t) + Nx(l, t)] xvar(l, t)+

+
[
mÿ(l, t) + P + Ny(l, t)

]
yvar(l, t)+

−Bθ′(l, t)θvar(l, t) = 0

(2.10)

providing finally the differential system





Bθ′′(s, t)− Nx(s, t) cos[θ(s, t) + α(t)] + Ny(s, t) sin[θ(s, t) + α(t)] = 0,

N′
x(s, t) = γẍ(s, t),

N′
y(s, t) = γ [g + ÿ(s, t)] ,

(2.11)
and the boundary conditions





θ′(l, t) = 0,

Nx(l, t) = −mẍ(l, t),

Ny(l, t) = −m [g + ÿ(l, t)] .

(2.12)

Equation (2.11)1 yield the differential equilibrium equation
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Chapter 2. Formulation

for the elastica, demonstrating that Nx and Ny are the internal
forces acting on the rod along the x and y directions.
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3 Quasi-static response

When quasi-static conditions prevail, neglecting the weight of
the rod γgl when compared to that of the lumped mass attached
at the end of the rod P, the acceleration of the rod’s axis can be
omitted:

ẍ(s, t) = ÿ(s, t) = 0, (3.1)

so that from the boundary conditions (2.12)2 and (2.12)3, and
the differential equations (2.11)2 and (2.11)3, the rod’s internal
forces result to be constant along the rod

Nx(s, t) = 0, Ny(s, t) = −P. (3.2)

Omitting in this chapter the dependence on time t, finally
the governing equation for the rotation field (2.11)1, comple-
mented with the boundary conditions, equation (2.12)1, reduces
to the elastica [2, 5]





Bθ′′(s)− P sin[θ(s) + α] = 0,

θ′(l) = 0,

θ(0) = 0.

(3.3)

In order to solve the differential problem (3.3), the symbol
λ2 = P/B and the auxiliary rotation ψ(s) = θ(s) + α − π , mea-
suring the inclination of the rod tangent with respect to the y
axis, (see Fig. 2.1), are introduced, so that the system (3.3) can
be rewritten as:
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Chapter 3. Quasi-static response





ψ′′(s) + λ2 sin ψ(s) = 0,

ψ(0) = α − π,

ψ′(l) = 0,

(3.4)

and therefore, integrating, the following differential equa-
tion is obtained

dψ

ds
= ±λ

√
2[cos ψ(s)− cos ψ(l)], (3.5)

where only a positive curvature is considered, since it is
found that the solution does not vary with the sign considered
in equation (3.5).

It is a standard expedient to introduce the following substi-
tutions:

k2 = sin2

(
ψ(l)

2

)
,

k2 sin2 σ(s) = sin2

(
ψ(s)

2

)
,

(3.6)

in order to obtain, through trigonometric formulae, the final
version of the differential problem:

λ
∫ s

0
ds =

∫ σ(s)

σ(0)

dσ√
1 − k2 sin2 σ

. (3.7)

3.1 Large displacement solution

In order to obtain the expression providing the relationship be-
tween the applied load P and the deformation of the rod, rep-
resented by the rotation at the loaded end,θ(l) = θl , equation
(3.7) must be integrated between s = 0 and s = l:

λl =
∫ σ(l)

σ(0)

dσ√
1 − k2 sin2 σ

(3.8)
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3.1. Large displacement solution

where:

• when s = 0, ψ(0) = α − π, so that from equation (3.6)2

σ(0) = arcsin

[
1

k
sin

(
α − π

2

)]
+ hπ = σ0 + hπ, (3.9)

with h = 1, 2, 3...

• when s = l, ψ(l) = θl − α − π, so that from (3.6)1

σ(l) =
2j + 1

2
π, (3.10)

with j = 1, 2, 3 . . .

and therefore, recalling that λ2 = P/B, separating the vari-
ables and integrating equation (3.8) yields:

P =
B

l2

[
(2n − 1)K(k) −K(σ0, k)

]2
. (3.11)

In equation (3.11), n = 1, 2, 3... is an integer representing the
n-th mode solution, while K(k) and K(σ0, k) are, respectively,
the complete and the incomplete elliptic integral of the first kind
of modulus k:

K(a, k) =
∫ a

0

dσ√
1 − k2 sin2 σ

, K(k) = K
(π

2
, k
)

. (3.12)

In the following, the analysis is mainly addressed to the de-
formation mode n = 1, because only the equilibrium configu-
rations related to this mode are stable [2], [24], as demonstrated
in section (3.3). However, (when existing) the unstable equilib-
rium configurations related to deformation mode with n 6= 1
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Chapter 3. Quasi-static response

will also be considered in the case P/Pcr > 4 to provide the
whole equilibrium paths of the system.

3.2 Displacement field

Considering equation (3.9), the integral on the right hand side
of equation (3.7) can always be rewritten as

∫ σ(s)

σ0+hπ

dσ√
1 − k2 sin2 σ

=
∫ σ(s)

0

dσ√
1 − k2 sin2 σ

−K(σ0, k)− 2hK(k),

(3.13)
which finally provides

σ(s) = Am(sλ +K(σ0, k) + hπ, k), (3.14)

where Am(·, k) denotes the Jacobi amplitude function of mod-
ulus k. Considering the definition (3.6)2, equation (3.14) yields
to the following relation

sin2 ψ(s)

2
= k2Sn [sλ +K(σ0, k), k] , (3.15)

where Sn(·, k) is the Jacobi sine amplitude function, defined
as

Sn(a, k) = sin[Am(a, k)]. (3.16)

Employing the identities cosψ = 1 − sin2 ψ/2 and sin ψ =
2 sin ψ/2

√
1 − sin2ψ/2, the following relations are found

cos ψ = 1 − 2k2Sn2 [sλ +K(σ0, k), k] ,

sin ψ = 2 k Sn [sλ +K(σ0, k), k] Dn [sλ +K(σ0, k), k] ,
(3.17)

where Dn(·, k) is the Jacobi elliptic function, defined as
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3.2. Displacement field

Dn(a, k) =
√

1 − k2Sn2(a, k). (3.18)

Finally, recalling that ψ(s) = θ(s) + α − π, equations (3.17)
can be introduced in equations (2.1) to obtain the differential
problem determining the deformed elastica:

x̂′(s) = + cos θ(s) = − cos α[1 − 2k2Sn2 [sλ +K(σ0, k), k]] +

− sin α {2 k Sn [sλ +K(σ0, k), k]} ,

ŷ′(s) = − sin θ(s) = − sin α[1 − 2k2Sn2 [sλ +K(σ0, k), k]] +

+ cos α {2 k Sn [sλ +K(σ0, k), k]} .
(3.19)

Considering the following integration rules

∂

∂σ
E(a, x) =

√
1 − k2 sin2 σ,

∂

∂σ
Am(a, x) = Dn(a, k),

∂

∂σ
Cn(a, x) = −Sn(a, k)Dn(a, k),

(3.20)

where E(·, x) is the incomplete elliptic integral of the second
kind of modulus k

E(a, x) =

a∫

0

√
1 − k2 sin2 σdσ, (3.21)

and Cn(·, k) is the Jacobi cosine amplitude function, defined
as

Cn(a, k) = cos[Am(a, k)], (3.22)
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Chapter 3. Quasi-static response

integration of the differential system (3.19) provides the po-
sition of the rod’s axis in the x̂ − ŷ reference system ([1], [25])

x̂(s) = − cos αA1(s)l + sin αA2(s)l,

ŷ(s) = − sin αA1(s)l − cos αA2(s)l,
(3.23)

where

A1(s) = − s

l
+

2

λl

{
E(Am(sλ +K(σ0, k), k), k) − E(σ0, k)

}
,

A2(s) = +
2k

λl

{
Cn(sλ +K(σ0, k), k) − Cn(K(σ0, k), k)

}
.

(3.24)
On the other hand, since in the quasi-static solution the only

applied load is the weight of the lumped mass P, having an
inclination β ≡ α, the position of the rod’s axis in the fixed x − y
reference system becomes

x(s) = −A2(s)l,

y(s) = +A1(s)l.
(3.25)

3.3 Stability of the solutions

The stability of the solutions can be evaluated by analysing the
second variation of the total potential energy, equation (2.7),
which, in the quasi-static analysis, can be written as follows

V
B

=
1

2

∫ l

0
θ′(s)2ds + λ2y(l)ds, (3.26)
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3.3. Stability of the solutions

where, from equation (2.3)2, the vertical displacement at the
free end of the beam can be evaluated as

y(l) = −
∫ l

0
cos [θ(s) + α] ds. (3.27)

Introducing a variation δθ(s) satisfying the boundary condi-
tions

δθ(0) = δθ′(l) = 0, (3.28)

and through integration by parts, the second variation of
V
B

can be evaluated as

δ2V
B

= −
∫ l

0

{
δθ′′(s)δ(s)θ(s)− λ2 cos [θ(s) + α] δθ2(s)

}
ds

(3.29)
for all admissible δθ(s). Finally, the stability criterion can be

applied

δ2V
{

> 0 stability

< 0 instabily
(3.30)

In order to treat conditions (3.29) and (3.30), the non-trivial
solutions of the Sturm-Liouville problem [8]





φ′′
n(s)− γnλ2 cos [θ(s) + α] φn(s) = 0,

φn(0) = 0,

φ′
n(l) = 0,

(3.31)

are considered, where φn(s) are the eigenfunctions associ-
ated to the eigenvalues γn with weight function

λ2 cos [θ(s) + α] . (3.32)

It is known [2] that

27



Chapter 3. Quasi-static response

• system (3.31) admits an infinite set of eigenvalues γn that
can be arranged in an increasing sequence γn+1 > γn ∀
integer n;

• when n → ∞, γn → ∞;

• the eigenfunctions φn(s) are orthogonal with weight func-
tion cos [θ(s) + α]

∫ l

0
φn(s)φm(s) cos

[
θ(s) + α

]
ds = 0 n 6= m (3.33)

These remarks define a norm and a weight orthogonality
condition, so that the system φn(s) with weight function (3.32)
can be used to give a (converging) Fourier series representation
to the function δθ(s) with Fourier coefficients Cn

δθ(s) ≃
∞

∑
n=1

Cnφn(s). (3.34)

The Fourier representation can be substituted in equation
(3.29) considering (3.31) to obtain

δ2V
B

=
∫ l

0

[
∞

∑
n=1

(γn − 1)Cnφn(s)λ
2 cos [θ(s) + α]

] [
∞

∑
m=1

Cmφm(s)

]
ds,

(3.35)
so that the stability criterion (3.30) implies

δ2V
B

=
∞

∑
n=1

C2
n

(
1 − 1

γn

) ∫ l

0
(φ′

n(s))
2ds

{
> 0 → γn > 1 ∪ γn < 0

< 0 → γn > 0 ∪ γn < 1
(3.36)

and therefore
{

γn 6∈ [0, 1] −→ stability

γn ∈ (0, 1) −→ instability
(3.37)
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3.3. Stability of the solutions

while the values γn = 0 and γn = 1 represent critical points.
In order to judge the stability of the deformed system, the

weight function cos [θ(s) + α] can be evaluated from equation
(3.15) as follows

cos[θ(s) + α] = −
{

1 − k2Sn [(2n + 1)s̃λl +K(σ0, k), k]
}

,
(3.38)

where the non-dimensional variable s̃ = s/l ∈ [0, 1] has
been introduced, while λ can be evaluated from 3.11

λ =
1

l

[
(2n − 1)K(k) −K(σ0, k)

]
. (3.39)

Introducing (3.39) and (3.38) in (3.31)1, the final expression
of the Sturm Liouville problem is obtained

φ′′
n(s̃) + φn(s̃)γn

[
(2n − 1)K(k) −K(σ0, k)

]2
+

+
{

1 − k2Sn
[
(2n + 1)s̃

[
(2n − 1)K(k) −K(σ0, k)

]
+K(σ0, k), k

]}

= 0,
(3.40)

so that for a given mode n and an inclination at rod’s end
θl , the smallest eigenvalue γm has to be determined as solution
of 3.40 with the boundary condition 3.312 and 3.313. Such a
problem can be solved with the numerical routine, based on the
bisection method, that was proposed by [24]. The boundary
conditions

φn(0) = 0, φ′
n(0) = 1, (3.41)

are considered in order to automatically remove the triv-
ial solution of the problem and interactions on γn can be per-
formed until the condition φ′

n(1) = 0 is attained. Through this
numerical procedure, it is found that:

• the first mode, n = 1, is always stable when P is lower
than the buckling load Pcr of the purely compressed clamped
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rod (α = π);

• when n = 1 and P ≥ Pcr, the elastica configurations are
stable only when α falls within a specific range of values
(as it is demonstrated in chapter 4);

• equilibrium configurations related to deformation modes
with n 6= 1 seem to be unstable, as suggested by ([2]) and
([25]); however, with the proposed numerical procedure,
it is not possible to directly demonstrate that this is true
far all the higher modes n 6= 1.
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4 The elastica compass
and the elastica catapult

Once the rotation θl is computed from the non-linear equation
(3.11) for a given load P and a clamp angle α, the rotation field
θ(s) is obtained from integration of equation (3.4) as the solu-
tion of the equation

cos2

(
θ(s) + α

2

)
= k2Sn2[sλ +K[σ0, k], k], (4.1)

With reference to the buckling load of the purely compressed
clamped rod (α = π), namely, Pcr = π2B/(4l2), the non-linear
equation 3.11, considering only the first mode n = 1, can be
rewritten as follows:

P

Pcr
=

4

π2

[
K(k)−K(σ0, k)

]2
. (4.2)

Equation (4.2) displays the two following different behaviours:

• when P ≤ Pcr, a unique value of the rotation at the loaded
end θl corresponds to a value of the clamp inclination α;

• when P > Pcr, more than one solution for the rotation at
the loaded end θl may exist when the clamp inclination α
falls within the interval (2π − αs, αs), with αs ∈ [π, 2π].

These two behaviours are highlighted in Fig. 4.1, where
the rotation (with respect to the vertical direction) θl + α of the
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Chapter 4. The elastica compass and the elastica catapult

loaded rod’s end is reported as a function of the clamp inclina-
tion α, solution of the non-linear equation (4.2).
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FIG. 4.1: Rotation of the loaded end of the rod θl + α versus clamp an-
gle α for different ratios P/Pcr, {0.5, 1, 3} (left part) and {5, 8, 9.161} (right
part), showing the possibility of multiple equilibrium configurations (when-
ever P > Pcr) for sets of value of the clamp inclination α. Stable configura-
tions are reported as continuous lines. Unstable equilibrium configurations
associated to the first (n = 1) and second (n = 2) mode are reported as
dashed and dotted lines, respectively. Deformed equilibrium configurations
for the loading condition P = 3Pcr are reported enclosed in green circles at
different clamp rotations, when only one equilibrium configuration is possi-
ble (α1 = π/4 and α3 = 7π/4) and when two equilibrium configurations are

possible (α2A = α2B = αs = 1.348π).

Six values of the ratio P/Pcr have been considered, namely,
{0.5, 1, 3} and {5, 8, 9.161} in the left and right parts of Fig. 4.1,
respectively. Uniqueness of the end rotation θl as a function of
α is displayed only when the load P does not exceed the critical
load Pcr (case P = 0.5Pcr), while more than one equilibrium con-
figuration may be found when P > Pcr for some set of values for
the clamp angle α. For instance, in the case P = 3Pcr (Fig. 4.1,
left), three equilibrium configurations (related to n = 1) are dis-
played for the clamp angle α within the interval (2π − αs, αs).
Note that when the equilibrium configuration is not unique,
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Chapter 4. The elastica compass and the elastica catapult

only two of the equilibrium configurations are stable (repre-
sented as continuous lines in the figure) while the others are
unstable (represented as discontinuous lines). The limit case
P = Pcr (Fig. 4.1, left) is also reported, for which a vertical tan-
gent is displayed at α = π, which defines the transition between
the two behaviours.

For completeness, it is observed that when P ≤ q2Pcr (q ∈
N), the non-linear equation (4.2) may admit solutions for n-th
mode, with n < q. For instance, when P ∈ [9, 16]Pcr , a total of
five equilibrium configurations may exist for the same value of
α (Fig. 4.1, right, case P = 9.161Pcr).

The uniqueness/non-uniqueness of the quasi-static solution
defines two qualitatively different mechanical responses for the
analysed elastic system. Indeed, considering a monotonic in-
crease of the clamp angle α from 0 to 2π:

• when P ≤ Pcr, the rotation θl changes continuously, so that
the end of the rod describes a (smooth, convex and sim-
ple) closed continuous curve. In this condition the system
behaves as an ‘elastica compass’;

• when P > Pcr, the rotation θl reaches a critical value (cor-
responding to the snap clamp inclination αs ∈ [π, 2π]),
for which a further increase in the clamp angle necessar-
ily yields a jump in the rotation θl . Such a jump involves
a release of elastic energy and a dynamic snap to another,
non-adjacent configuration. In this condition the system
behaves as an ‘elastica catapult’.

The clamp angle αs for which the snap-back instability oc-
curs has been numerically evaluated and is reported as a func-
tion of the load ratio P/Pcr in Fig. 4.2. It can be noted that
αs is always greater than π (limit value attained when P coin-
cides with the buckling load, P = Pcr) and is an increasing func-
tion of the applied load, so that as the applied load increases
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FIG. 4.2: Clamp inclination αs, for which snap-back is attained, as a function
of the load ratio P/Pcr. The theoretical prediction (continuous green line) is
compared to the numerical evaluation (squares and triangles) obtained from
the dynamic analysis (see Chapter 6) and the experimental data (circles) mea-

sured on the developed prototype (see Chapter 7).

the snap-back occurs ‘later’. Results from the dynamic analyses
(provided in Chapter 6) and from the experimental tests on the
developed physical prototype (described in Chapter 7) are also
reported in the figure. The agreement of the analytical predic-
tions with the results obtained from experimental tests and the
numerical simulations, taking into account of rod’s inertia and
extensibility, substantiates the assumptions (quasi-static condi-
tions and rod’s inextensibility) adopted in the analytical evalu-
ation of the snap-back angle αs.

4.0.1 Self intersection limit

In Fig. (4.2), the snap condition related to the load value Psi,
defining the limit condition of self-intersection is highlighted.
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Chapter 4. The elastica compass and the elastica catapult

It is found that, when P = Psi ≈ 9.161Pcr , the deformed config-
uration displays a self-contact point with the clamp at the verge
of the snap-back, αs ≈ 1.784π. Therefore, the load Psi defines
the lowest value of the load needed to achieve self-intersection
of the elastic rod during rotation of the clamp.

α π= 1.670 α π= 1.722 α α π= ≅ 1.745s α π= 1.746

P       P= 8 cr

α π= 1.670 α π= 1.750 α α π= ≅ 1.784s α π= 1.785

P              P= 9.161 cr

P         P= 12 cr

α π= 1.670 α π= 1.838 α α π= ≅ 1.849s α π= 1.850

snap - back

snap - back

snap - back

FIG. 4.3: A sequence of quasi-static configurations of the elastica catapult
(P/Pcr > 1) at increasing the clamp angle α for different values of P/Pcr

ending with snap in the equilibrium configuration. The self-intersection of
the rod occurring for P ≥ Psi is displayed. In particular, the limit case of
self-intersection is shown in the central sequence (P = Psi ≈ 9.161Pcr) while

self-intersection is shown in the lower sequence (P = 12Pcr).

Depending on the out-of-plane geometry of the rod, two be-
haviours can be attained in the case P > Psi:

• if the geometry permits self-intersection, the present solu-
tion holds and self-intersecting elastica are displayed,

• if the geometry does not permit self-intersection, a con-
tact point is formed within the configuration of the rod at
increasing the clamp rotation
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Chapter 4. The elastica compass and the elastica catapult

4.1 The elastica compass

Considering a fixed weight P, the quasi-static evolution of the
deformed configuration can be represented at varying the clamp
angle α using the kinematical description (3.23). The trajectory
travelled by the loaded end (playing the role of the pencil lead
of the ‘elastica compass’) can be traced evaluating the coordi-
nates (3.23) at the loaded end, s = l,at varying clamp inclination
α ∈ [0, 2π]. The quasi-static trajectories are reported in Fig. 4.4
for different values of the ratio P/Pcr.

α     α π3 = = 1.35s
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α             π2 = 1.15
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snap-back8.0

1

FIG. 4.4: ‘Pencil lead’ trajectories drawn by the elastica compass/catapult
within the dimensionless plane x/l–y/l for different values of P/Pcr. Sta-
ble configurations are reported as continuous lines. Unstable positions are
marked as discontinuous lines, dashed lines for the first mode and dotted
lines for the second mode. Deformed configurations of the elastic rod for spe-
cific end positions are reported in the circles on the left for the case P = 3Pcr.

It can be observed that the trajectories have the shape of
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4.1. The elastica compass

(smooth, convex and simple) closed curves in the case P < Pcr.
Furthermore, unstable positions for the rod’s end are reported
as discontinuous line in the case P > Pcr (as dashed and dotted
line for the first and second mode configurations, respectively),
so that the snap-back instability is initiated at the point where
the continuous line ends.

The position of the loaded end can also be described in a
polar reference system through the radius r =

√
x(l)2 + y(l)2

and the angle ϕ = 3π/2 − arctan [y(l)/x(l)], which result





r = l
√

A2
1(l) + A2

2(l),

ϕ =
3π

2
+ arctan

(
A2(l)

A1(l)

)
.

(4.3)

The polar coordinates r (made dimensionless through divi-
sion of the rod’s length l) and ϕ which describe the rod’s end
trajectory are reported in Fig. 4.5 at varying the clamp angle α
for different values of the ratio P/Pcr.

From Figs. 4.4 and 4.5 it can be observed that:

• the behaviour of the usual, namely, undeformable, com-
pass is recovered in the limit of vanishing P/Pcr, for which
the elastic rod behaves as a rigid bar, r(α) = l and ϕ(α) =
α;

• due to the inextensibility assumption, the loops drawn by
the elastica compass always lie inside the circle of radius
l, therefore r(α) ≤ l;

• for dead loads smaller than the buckling load, P < Pcr, the
loops drawn by the elastica compass are nearly circular
despite the large difference between ϕ and α. This is due
to the fact that the maximum percentage decrease in the
radius length is about 6%;
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FIG. 4.5: ‘Pencil lead’ position of the elastica compass/catapult described in
terms of the radius r (upper part) and the angle ϕ (lower part) as functions of
the clamp angle α for different load ratios P/Pcr, {0.1, 0.5, 1, 1.5, 3} (left part)
and {5, 8, 9.161} (right part). Unstable configurations are reported as discon-
tinuous lines, dashed and dotted for first and second mode configurations,

respectively.

• for dead loads larger than the buckling load, P > Pcr, the
polar coordinate ϕ is limited by the upper bound ϕmax(P/Pcr)
= max α ϕ(α, P/Pcr), described by the dashed curve re-
ported in Fig. 4.6 (left). Defining ϕs as the polar angle at
the verge of the snap-back instability, namely ϕs(P/Pcr) =
ϕ(αs(P/Pcr), P/Pcr) (reported as continuous curve), it is
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4.1. The elastica compass

observed that ϕs(P/Pcr) ≤ ϕmax(P/Pcr), where the equal-
ity holds for P/Pcr ≤ 8.3.
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FIG. 4.6: Maximum polar angle ϕmax (red/dashed line) and polar angle
at the verge of the snap-back instability ϕs (blue/continuous line) as func-
tions of the load ratio P/Pcr (left). The two polar angles coincide for the
range P/Pcr ≤ 8.3. Initial part of the trajectory (dashed lines) travelled
by the loaded end of three soft robot arms reported within the dimension-
less plane x

√
P/B–y

√
P/B. The three systems have the same bending stiff-

ness B, are subject to the same weight P, but differ in the soft arm length,
l = {3.405, 4.005, 4.605}

√
B/P (right). The deformed configurations of the

three systems are drawn (continuous line) for clamp inclinations α = {0.826,
0.997, 1.239}π, respectively, for which the hanged load lies along the polar
coordinate ϕ = π/4. The maximum radial distance rmax is attained with the

system having the length l = 4.005
√

B/P.

In Fig. 4.6 (right), three soft robot arms with the same bend-
ing stiffness B, subject to the same weight P, but differing in
the soft arm length, l = {3.405, 4.005, 4.605}

√
B/P are consid-

ered. Deformed configurations (continuous line) are reported
within the dimensionless plane x

√
P/B–y

√
P/B at clamp incli-

nations α = {0.826, 0.997, 1.239}π, for which the loaded ends
of all the three systems have the same polar coordinate ϕ =
π/4. The comparison of the radial coordinate of the loaded
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Chapter 4. The elastica compass and the elastica catapult

ends for the three cases highlights that the maximum radial dis-
tance rmax corresponds to that of the system with arm length
l = 4.005

√
B/P. This observation implies that lengthening of

the arm does not always provide an increase in the attained dis-
tance. This concept is further analyzed in Chapter (5).

Finally, the quasi-static analysis is completed by the eval-
uation of the reaction moment at the rotating clamp M(0) =
−P x(l), which can be computed through the displacement field
(3.23) as

M(0) = −A1(l)Pl. (4.4)

The reaction moment M(0) is reported in Fig. 4.7, showing
a change in sign at the snap-back, as a change in the sign of the
rod’s curvature occurs. This feature has been exploited to de-
tect the snap inclination αs from the results obtained with the
numerical and experimental investigations explained in Chap-
ters (6) and (7).
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FIG. 4.7: Reaction moment M(0) at the clamp at varying clamp angle α for
different values of the load ratio P/Pcr equal to {0.1, 0.5, 1, 1.5, 3} (upper part)
and to {5, 8, 9.161} (lower part). Moments evaluated at unstable configura-
tions are reported as discontinuous lines, dashed and dotted for first and sec-

ond mode configurations, respectively.
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5 Robot’s arm
performance and design

The performances of the soft robot arm are investigated in terms
of extremum distances that the loaded end can attain, which
represent fundamental quantities in the design of soft robot arm,
to achieve targeted positions for the hanged weight.

The maximum horizontal distance dx, the maximum height
dy, and the minimum radial distance rmin reached by the hanged
weight during the clamp rotation and before the possible snap-
back instability, are introduced as

dx = max
α

{−x(l)} , dy = max
α

{y(l)} , rmin = min
α

{r} ,

(5.1)
where α ∈ [0, π] for the elastica compass (P < Pcr) and

α ∈ [0, αs] for the elastica catapult (P > Pcr). Considering fixed
both the length l and the stiffness B and exploiting the kine-
matical description (3.25), the distances dx, dy, rmin have been
evaluated at varying load P and are reported in Fig. 5.1 (left),
together with the respective clamp rotations αx, αy and αr for
which these distances are attained, Fig. 5.1 (right). The distance
dh (also called ‘longest horizontal reach’ by [39]) is defined as
the horizontal distance attained by the weight when its vertical
coordinate vanishes (namely, the weight and the clamp are at
the same height):

dh = −x(l), subject to the condition y(l) = 0, (5.2)
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Chapter 5. Robot’s arm performance and design

and has been evaluated and reported in Fig. 5.1, together with
the respective angle αh.
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FIG. 5.1: Maximum horizontal distance dx , maximum height dy, and mini-
mum radial distance rmin (upper part) and corresponding angles αx, αy, and
αr (lower part) plotted as functions of the load ratio P/Pcr. The distance dh,
equation (5.2), called ‘longest horizontal reach’ [39], the related angle αh , and

the snap angle curve αs are also reported.

From Fig. 5.1, the following conclusions can be drawn at
varying the load P and considering constant both the length l
and the stiffness B.

• The maximum horizontal distance dx attains its maximum
value in the rigid limit (P/Pcr = 0), for which dx = l, and
is a decreasing function of the load P. The distance dx is
always attained for a clamp angle αx ∈ [π/2, π].
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• In the case of the elastica compass, the maximum height
corresponds to the robot arm length, dy = l, indepen-
dently of the load P ≤ Pcr and is attained for α = π.
In the case of the elastica catapult, the maximum height
dy decreases at increasing load P and is attained at the
verge of the snap-back instability, αy = αs. Moreover,
when P/Pcr > 7.464, the weight always remains below
the clamp before the occurrence of the snap-instability,
dy < 0. For such a load range, the longest reach dh cor-
responds only to unstable configurations (and therefore
cannot be attained).

• The minimum radial distance attains its minimum value
rmin = 0.104l for the load P/Pcr = 7.985. Moreover, when
P/Pcr > 5.665 the minimum distance is achieved for a
clamp rotation at the verge of instability (αr = αs).

• The distance dh is always smaller than or equal to the hor-
izontal distance dx, namely dh ≤ dx, where the equality
holds only in the case of vanishing load, P = 0. More-
over, the distance dh is defined only when P/Pcr < 7.464,
because otherwise the configurations are unstable at null
vertical coordinate, y(l) = 0.

It is worth to remark that the curves reported in Fig. 5.1
are plotted in a dimensionless plane, in which both axes are af-
fected by a change in the rod length l. Therefore, playing with
this length would permit to maximize the physical distances ef-
fectively reached by the loaded end when the hanged weight
P is kept constant (as well as the bending stiffness B). Such
maximum distances can be evaluated by seeking the load ratios
P/Pcr for which the following function attains a maximum

√
P

Pcr

dj(P/Pcr)

l
, j = x, y, h. (5.3)
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The numerical implementation of this procedure leads to the
following load ratios for which the soft arm displays the maxi-
mum possible distances

(
P

Pcr

)

dmax
x

→ ∞,

(
P

Pcr

)

dmax
y

= 1,

(
P

Pcr

)

dmax
h

= 2.585.

(5.4)
The evaluated load ratios correspond to specific arm lengths

l to be considered,

l =
π

2

√
P

Pcr

√
B

P
, (5.5)

for achieving the maximum distances, namely

dy

l
= 1,

dh

l
= 0.726, (5.6)

while the maximum distance dx is represented by the trivial
limit case of infinitely long arm, l → ∞. The maximum dis-
tances dy and dh can be evaluated in terms of the hanged load P
and the bending stiffness B as

dy = 1.571

√
B

P
, for l = 1.571

√
B

P
,

dh = 1.833

√
B

P
, for l = 2.525

√
B

P
,

(5.7)

attained for the following clamp inclinations

αy = π, αh = 1.072π. (5.8)

The maximum distances dy and dh and related clamp incli-
nation αy and αh are reported as spots in Fig. 5.1.

The optimization of the soft robot arm in terms of kinemat-
ics is completed by considering the maximum radial distance
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rmax(ϕ), defined as the maximization of the radial distance r for
a given polar angle ϕ (keeping fixed the applied load P and the
bending stiffness B). Following equation (5.3), the load ratio
P/Pcr for which the maximum radial distance rmax is achieved
can be found by seeking the maximum of the function

√
P

Pcr

r(P/Pcr, ϕ)

l
. (5.9)

Restricting the attention to the polar coordinate ϕ ranging
between π/4 and π, the optimal load ratio P/Pcr has been re-
ported in Fig. 5.2 (upper part, left) as the result of the maxi-
mization of equation (5.3). Under this loading condition, the
maximum radial distance rmax (normalized through division by
the length l) and the clamp inclination α (for which such a dis-
tance is attained) are evaluated at varying the angle ϕ in Fig.
5.2 (respectively, upper part, right, and lower part, left). Fur-
thermore, the arm length l and the maximum radial distance
rmax (made dimensionless through division by the constant pa-
rameters P and B) are provided in Fig. 5.2 (lower part, right).

It can be observed that:

• All the curves display a jump in their first derivative for
the value ϕ = 0.794π. For polar coordinates ϕ higher than
this value, the load ratio P/Pcr maximizing the radial dis-
tance corresponds to an angle equal to the maximum pos-
sible for that loading condition, ϕ = ϕmax (Fig. 5.2, upper
part, left);

• The maximum radial distance is never observed for loads
P smaller than the critical one Pcr and for clamp inclina-
tions α smaller than π;

• The results reported in Fig. 5.2 (lower part, right) repre-
sent an extension of the recent result by Wang [39] and
Batista [1], referred to the case of an hanged load located
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FIG. 5.2: Optimal load ratio P/Pcr as a function of the polar coordinate ϕ for
which equation (5.3) is maximized (upper part, left). Maximum radial dis-
tance rmax normalized through division by the length l (upper part, right) and
corresponding clamp inclination α (lower part, left) as functions of the angle
ϕ. Arm length l and the maximum radial distance rmax (made dimensionless
through division by the fixed parameters P and B) at varying the polar angle

ϕ (lower part, right).

along the horizontal axis x (at ϕ = π/2) and expressed by
the distance dh, see equation (5.7)2. On the other hand, in
the limit of ϕ = π, the value of the radial distance rmax

approaches the value of the length l, see equation (5.7)1.

• The curve reported in Fig. 5.2 (lower part, right) defines
the values of the optimal lengths l for which the maxi-
mum radial distance is attained. In other words, length-
ening does not always realize an increase in the achieved
distances so that, using words similar to Wang [39], short-
ening of rods may provide longer distances, a key concept in
the design of soft robot arms.
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An applicative example of kinematic performance design
towards the achievement of the maximum radial distance rmax,
for given load P and stiffness B, is reported in Fig. 4.6 (right)
for three soft robot arms differing only in their length. The de-
formed configurations, subject to the condition of loaded end
lying along the polar coordinate ϕ = π/4, are shown for the
three systems. It is observed that the maximum distance is at-
tained when the soft arm has the optimal length l = 4.005

√
B/P,

which value is provided by the curve reported in Fig. 5.2 (lower
part, right) for ϕ = π/4.

Finally, with reference to the strength, the design of the arm
cross section is ruled by the maximum bending moment Mmax

experienced along the elastic arm, s ∈ [0, l], at varying the clamp
inclination

Mmax = max
α,s∈[0,l]

M(s). (5.10)

For the considered load range, P/Pcr ∈ [0, 16], it is numeri-
cally found that the maximum bending moment always occurs
at the clamp (s = 0) for the clamp inclination α = αx, so that

Mmax = Pdx. (5.11)
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5.1 Energy release

In the case of the elastic catapult, when the clamp inclination
approaches the value αs, the snap-back instability induces a dy-
namic motion in the elastic system. Such a motion is due to the
energy release of the system, provided in terms of the release of
both elastic energy stored in the rod and the potential energy of
the hanged load.

With reference to the two stable equilibrium configurations
associated to the clamp rotation α ∈ [2π − αs, αs], the energy
difference ∆E can be computed as

∆E(P, α) =
B

2

∫ l

0
[[ θ′2(s) ]] ds + P [[ y(l) ]] (5.12)

where the symbol [[ · ]] denotes the jump of the relevant argument
evaluated for the configuration related to θl + α ∈ [0, π] and for
that related to θl + α ∈ [π, 2π]. Considering the kinematics at
equilibrium, equations (2.1), (3.6)1, and (3.23), the energy differ-
ence ∆E (made dimensionless through division by B/l) can be
re-written as

∆E(P, α) l

B
= [[ 2A1(l) + cos(θl + α) ]]

π2

4

P

Pcr
. (5.13)

Because of symmetry of the paths in Fig. 4.1, the following
relation for the energy difference holds

∆E(P, 2π − α) = −∆E(P, α), α ∈ [π, αs], (5.14)

so that
∆E(P, α = π) = 0, (5.15)

and therefore the clamp angle α = π represents the Maxwell
line for the system [2], [30], [31].

The energy difference ∆E(P, α) is reported in Fig. 5.3 (left
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5.1. Energy release

part) at varying the load ratio P/Pcr and the clamp angle α ∈
[π, αs]. It is observed that the maximum energy difference, maxα∆E(P, α)
is attained at the verge of the snap instability, namely, at the
clamp angle α = αs.

Therefore, the energy release ER occurring at the snap-back,
evaluated from the quasi-static solution, corresponds to the max-
imum energy difference possible for the elastic system,

ER(P) = ∆E(P, αs) (5.16)

which is reported as a function of the applied load P in Fig. 5.3
(right part).
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FIG. 5.3: Energy difference ∆E , equation (5.12), normalized through division
by B/l, as a function of the load ratio P/Pcr and the clamp inclination α (left
part). Energy release ER at snap-back (α = αs), equation (5.16), as a function

of the load ratio P/Pcr (right part).
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6 Snap-back dynamics

The dynamics of the rotating cantilever rod, occurring as a con-
sequence of the instability when the clamp is quasi-statically
rotating, is here investigated through two models:

1. a simplified model (called ‘massless rod model’) where
the rod’s inertia is neglected (because considered small
when compared to the inertia of the point mass m) and
regularizations are introduced through viscous damping
due to air drag acting on the mass and axial compliance
of the clamp constraint;

2. a finite element model (performed in Abaqus Ver 14.3),
in which the inertia of the rod is fully accounted for and
Rayleigh internal damping is present. A slightly differ-
ent version of model (i.), which will be presented below,
was proposed in the modelling of a tube-type manipula-
tor arm by Snyder and Wilson [34].

It is shown that both models provide useful insights in the
dynamics of the mechanical system after snap-back instability.
However, while model 2 is capable to describe the complete dy-
namic evolution of the system up to a wide range of loading pa-
rameters, the model 1 can predict the full dynamics only until
deformation modes higher than the first do not enter the solu-
tion (in other words, the massless rod model works correctly for
P/Pcr smaller than ≈ 2).
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Chapter 6. Snap-back dynamics

6.1 Massless rod model

In the model where the rod’s mass γ (as well as any rotational
inertia) is neglected, the dynamics of the whole system is char-
acterized only by the translational inertia of the lumped mass m
at the rod’s free end.

y

x

α(t)

R(t)

kc R(t)

m x(l,t) + c x(l,t)
...

m g + y(l,t) + c y(l,t)[ ]
...

β(t)

FIG. 6.1: Free-body diagram of the massless rod model: schemes of the mass-
less elastic rod (left) and the lumped mass (right). Regularization of the so-
lution obtained with this simplified model is achieved through the introduc-
tion of the viscous coefficient c due to air drag and the finite stiffness kc of the

clamp.

Within a dynamic framework, the force resultant acting at
the free end, R(t), has an inclination angle β(t) with respect to
the (straight) undeformed configuration (see Fig. 6.1)

R(t) =
√

Rx(t)2 + Ry(t)2,

β(t) = α(t) + arctan
Rx(t)

Ry(t)
.

(6.1)

The differential system governing the dynamic behaviour
of such a system is obtained imposing the II Newton’s law on
the mass, namely, that the components Rx(t) and Ry(t) of the

54



6.1. Massless rod model

resultant R(t)

Rx(t) = −R(t) sin[α(t) − β(t)],

Ry(t) = −R(t) cos[α(t)− β(t)],
(6.2)

should be given as the sum of the respective translational
inertia, the (linear) viscous damping force, and the dead load

Rx(t) = −mẍ(l, t)− cẋ(l, t),

Ry(t) = −m [g + ÿ(l, t)]− cẏ(l, t),
(6.3)

where c is the damping coefficient due to air drag.
Introducing the reference time T =

√
ml3/B and the follow-

ing dimensionless quantities

τ =
t

T
, ξ(τ) =

x(l, t)

l
, η(τ) =

y(l, t)

l
,

µ(τ) =
R(t) l2

B
, κc =

kcl3

B
, υ = c

√
l3

mB
, ζ =

gml2

B
,

(6.4)
a comparison of equations (6.2) with the differential equa-

tions (6.3) leads to the following non-dimensionalized differ-
ential system, governing the snap-back dynamics





d2ξ(τ)

dτ2
+ υ

dξ(τ)

dτ
= µ(τ) sin[α(τ)− β(τ)],

d2η(τ)

dτ2
+ υ

dη(τ)

dτ
+ ζ = µ(τ) cos [α(τ)− β(τ)] .

(6.5)

The rotation field of the rod’s axis is governed by the elastica

θ′′(s, τ)− µ(t) sin [θ(s, τ) + β(τ)] = 0, (6.6)
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Chapter 6. Snap-back dynamics

that is the same as for the quasi-static problem (3.3), but with
the two functions of time µ(τ) and β(τ) replacing now P and α,
respectively. Therefore, the integration in space for the dynamic
problem, equation (6.6), can be computed similarly to the quasi-
static case (Chapter 3) restricted to the first deformation mode,
n = 1. This integration yields the following relation between
the normalized resultant µ(τ), the rotation of the rod at the free
end θ(l, τ), and the resultant inclination β(τ)

µ(τ) =
[
K(h(τ)) −K(χ0(τ), h(τ))

]2
, (6.7)

where

h2(τ) = cos2

(
θ(l, τ) + β(τ)

2

)
,

χ0(τ) = − arcsin

[
1

h(τ)
cos

(
β(τ)

2

)]
.

(6.8)

On the other hand, the normalized displacements at the free
end, ξ(τ) and η(τ), follow from the displacement field for the
quasi-static problem, equation (3.25), considering now the axial
compliance of the system (neglected in the quasi-static calcula-
tions) introducing an axial spring of stiffness kc in the clamp,
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6.1. Massless rod model

ξ(τ) = −µ(τ) cos β(τ) cos α(τ)

κc
+

− 2h(τ)√
µ(τ)

{
Cn

[√
µ(τ) + K (χ0(τ), h(τ)) , h(τ)

]
+

−Cn [K(χ0(τ), h(τ)) , h(τ)]

}
,

η(τ) = −1 − µ(τ) cos β(τ) sin α(τ)

κc
+

+
2√
µ(τ)

{
E
[
am

(√
µ(τ) + K (χ0(τ), h(τ)) , h(τ)

)]
+

−E [K(χ0(τ), h(τ)), h(τ)]

}
.

(6.9)
The substitution of the expressions (6.7) and (6.9) for µ(τ),

ξ(τ), η(τ) in the differential equations (6.5) leads to a non-linear
second-order differential implicit system for the evolution of
the free end rotation θl(τ) and for the resultant inclination β(τ).
For given initial conditions and rotation law α(τ), the integra-
tion of the differential system (6.5) can finally be numerically
performed.

Initial conditions

In the present analysis, initial rest condition for the system and a
linear time evolution law for the clamp rotation are considered,
so that

α(t) = α0 + ω t, (6.10)
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Chapter 6. Snap-back dynamics

where α0 is the initial clamp rotation and ω is the clamp an-
gular velocity, and which can be rewritten in terms of dimen-
sionless time as

α(τ) = α0 + Ω τ, (6.11)

with Ω being the clamp angular velocity referred to the di-
mensionless time,

Ω = ω T. (6.12)

To avoid a trivial solution, the evolution of the system was
analysed starting at τ = 0 from an ‘almost’ undeformed state
for the rod, namely, the initial clamp inclination was set to be
α0 = 10−5.

The rest condition for the system at τ = 0 implies that ini-
tially the inclination β(0) coincides with the clamp inclination
α(0), so that the force resultant R(0) momentarily coincides with
the dead load P, and that the lumped mass has null velocity,

β(0) = α(0), µ(0) = ζ, ξ̇(0) = η̇(0) = 0. (6.13)

The four conditions (6.13) imply four initial conditions for
the resultant inclination β(τ) and the free end rotation θ(l, τ),

β(0) = α0, θl(, 0) = θl0, β̇(0) = β̇0, θ̇l(0) = θ̇l0,
(6.14)

where the values of θl0, β̇0, and θ̇l0 can be computed using
equation (6.7) and equation (6.9).

The evolution of the resultant inclination β(τ) and the free
end rotation θ(l, τ) are obtained from the numerical integration
of the non-linear differential implicit equations (6.5) through
the function NDSolve in Mathematica c© (ver. 10). Consider-
ing the clamp angular velocity ω = 0.014 rad/s and assum-
ing a small normalized damping coefficient υ = 0.069 and high
normalized axial stiffness κc = 310, the numerical integration
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6.2. Finite element analysis

has been performed at varying the normalized mass parameter,
namely for ζ = {1.157, 1.987, 2.818, 3.648, 4.478} corresponding
to P/Pcr = {0.469, 0.805, 1.142, 1.479, 1.815} and which are rep-
resentative of some of the experimental set-ups considered in
Chapter 7.

The massless model is able to capture reasonably well the
dynamics of the system for values of the normalized mass pa-
rameter ζ lower than 5,corresponding to P/Pcr < 2. For higher
values of ζ, the numerical integration fails to converge soon af-
ter the snap-back instability occurs, namely, the free end expe-
riences a very fast and large oscillation in its acceleration, and
the Mathematica solver reveals that the differential system be-
comes stiff. The encountered difficulty in the numerical treat-
ment is related to the fact that rod configuration is imposed to
assume the first quasi-static mode during the dynamics, a con-
dition which becomes not representative at values P/Pcr > 2.
Indeed, it is experimentally shown in Chapter 7 that for this
loading condition the dynamics of the rod is characterized by
both transverse and longitudinal oscillation, while the present
simplified model is reliable only when transverse oscillations
prevail in the dynamic response.

6.2 Finite element analysis

A finite element analysis of the system was performed in Abaqus
with the purpose to provide a full description of the dynamics
of the rod for every loading condition, thus overcoming the lim-
itations found with the simplified model. The rod is modelled
through 100 linear elastic planar beam elements, where the first
element has the external edge constrained by the rotating clamp
while the lumped mass m is attached on the external edge of the
final element. Introducing energy dissipation through Rayleigh
damping, large displacement analysis were performed through
the following two steps:
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Chapter 6. Snap-back dynamics

• Static – The gravitational force is applied in order to estab-
lish the deformed initial configuration. Here a quasi-static
deformation is produced by the weight of both the elastic
rod and the lumped mass (although the effect of the for-
mer is much smaller than the effect induced by the latter);

• Dynamic implicit – A slow rotation to the clamped end is
imposed as a boundary condition. The analysis takes into
account the inertial forces generated during the clamp ro-
tation.

Simulations were run considering geometry, material, in-
ertia and clamp angular velocity representative of the experi-
mental set-up described in the next Chapter. Rayleigh damp-
ing was set through the mass-proportional damping coefficient
A = 10−2 s−1 and the stiffness-proportional damping coeffi-
cient B = 5 × 10−3 s. Several low rotation velocities for the
clamp have been investigated (ω = {0.014, 0.06, 0.14} rad/sec),
basically showing no influence of small ω on the dynamics of
the system.
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7 Experiments vs
modelling

An experimental setup was designed and manufactured at the
Instabilities Lab of the University of Trento for the analysis of
the rotating clamped elastic rod (Fig. 7.1). A rack and pinion
actuator (Fig. 7.1c) was used to transform the linear motion
of an electromechanical testing machine (ELE Tritest 50 from
ELE International Ltd) into the rotation of the clamp at required
angular speeds (different low clamp velocities were tested in
the experiments, without noting substantial differences, so that
only results for ω = 0.014 rad/sec are reported). The angular
position of the rotating clamp was measured through a contact-
less rotary position sensor (NRH280DP/180/360). The moment
transmitted to the clamp was measured with a lever system con-
nected to a load cell (Leane DBBSN, RC 10kg), as evident from
Fig. 7.1c.

During the tests, the modulus of the acceleration of the lumped
mass, attached at the end of the beam

a(l, t) =
√

ẍ(l, t)2 + ÿ(l, t)2 (7.1)

was obtained mounting two miniaturized mono-axial ac-
celerometers (352A24, PCB piezotronics, 0.8 grams) perpendic-
ular to each other. All the data were acquired with a NI com-
pactRIO system interfaced with Labview 2013 (from National
Instruments).
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Chapter 7. Experiments vs modelling

Two rods were used, both made up of a solid polycarbon-
ate strip (white 2099 Makrolon UV from Bayer, E = 2350 MPa,
Poisson’s ratio ν = 0.37 and volumetric mass density ρ = 1180
kg/m3). One rod, 345 mm long, has a 25 × 3 mm cross section
and the other, 700 mm long, has a 25 × 2.85 mm cross section.
The masses attached at the end of the two rods were chosen
to produce the following values of P/Pcr = {0.469, 0.805, 1.142,
1.479, 1.815, 3.813, 5.405, 6.998, 7.795}.

FIG. 7.1: Experimental setup for the elastica compass and the elastica cata-
pult. (a) Global view of the experimental setup, (b) detail of the elastic rod,
and (c) rear view detail of the rack and pinion mechanism to impose clamp

rotation and from which the rotary position sensor is visible.

Results of experiments are shown in Figs. 4.2, 7.2, 7.3, and
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Chapter 7. Experiments vs modelling

7.4. In particular, in Fig. 4.2 the experimental points corre-
sponding to the snap angles have been recorded from a change
in sign of the moment measured at the clamp. The same mo-
ment M(0) is reported in Figs. 7.2 and 7.3 as a function of the
clamp rotation α for the case of the elastica compass (P/Pcr =
0.805, where a quasi-static path is followed, Fig. 7.2) and in the
case of the elastica catapult (P/Pcr = 1.142 and P/Pcr = 7.795,
where the dynamics prevails after snap-back, Fig. 7.3 upper
part on the left and on the right, respectively). In the case of the
elastica compass the acceleration a(l, t) was found to be negli-
gible (the maximum value was about 10−2 g), while in the case
of the elastica catapult the acceleration a(l, t) (reported in Fig.
7.3, lower part) was found to have a peak of about 0.6g and 55g
for P/Pcr = 1.142 and P/Pcr = 7.795, respectively. These peaks
in the acceleration were found to occur just after the snap-back
instability.
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FIG. 7.2: Comparison between the theoretically predicted and experimen-
tally measured values of the moment at the clamp M(0) at varying the clamp

angle α for the elastica compass, in the case P = 0.805Pcr.
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FIG. 7.3: Comparison between the theoretically predicted and experimen-
tally measured values of the moment at the clamp M(0) (upper part) and

of the total acceleration of the lumped mass a(l, t) =
√

ẍ(l, t)2 + ÿ(l, t)2

(lower part) at varying the clamp angle α for the elastica catapult in the cases
P = 1.142Pcr (left column) and P = 7.795Pcr (right column). The curves high-
light the presence of snap-back dynamics during the clamp rotation when the
angle αs is approached. In particular, a change in sign for the moment at the
clamp M(0) is observed as well as high acceleration of the rod’s end after the

snap-back phenomena.

Photos taken at different rotation angles are superimposed
in Fig. 7.4 for two cases in which the system behaves as an elas-
tica compass (figure a, P/Pcr = 0.805) and an elastica catapult
(figure b, P/Pcr = 7.795). In the latter case, the photo labelled
12 corresponds to the last photo taken before snap-back insta-
bility (α = 1.744π), while photos 13 and 14 are blurred because

64



Chapter 7. Experiments vs modelling

they were taken (using a NEX-5N Sony camera) during post-
snap dynamics. Note that the shutter speed was set on 1/20
s, which provides a measure of the velocity of the rod during
snap-back. In Fig. 7.4, the position of the attached lumped
mass is compared with the theoretically predicted rod’s end tra-
jectory (two theoretical predictions are reported, one for quasi-
static behaviour, yellow line, and the other for dynamic motion
with the massless model, dashed green line), showing a very
nice agreement.
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FIG. 7.4: Superimposed photos at different clamp angles α for (a) the elastica
compass, P/Pcr = 0.805, and (b) the elastica catapult, P/Pcr = 7.795. The
blurred images in the photo on the right were taken during the post-snap dy-
namics at 1/20 s shutter speed. The theoretical trajectory of the ‘pencil lead’,
obtained from the quasi-static analysis, is reported as continuous yellow line.
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8 Conclusions and main
scientific output

In the simplest set-up for a flexible robot arm, an elastic rod is
subject to a prescribed slow rotation at one end and to a con-
centrated mass in a gravity field at the other. Solving this sys-
tem through the elastica has evidenced a discriminating role for
the applied load. When the load is smaller than the buckling
load (for the straight configuration), the loaded end describes a
closed continuous curve (not far from an ellipse), while when it
is higher the continuous displacement of the loaded end termi-
nates in an unstable geometrical form, from which a snap-back
instability leads to a non-adjacent configuration. In the former
case the system behaves as an ‘elastica compass’ (so that the
loaded end of the arm would describe a circle if the rod would
be rigid), while in the latter case the system behaves as an ‘elas-
tica catapult’ (so that the mass would be thrown away if detach-
ment would be allowed). The dynamic motion after the snap in-
stability has been analyzed with a standard finite element pro-
gram and an ad hoc developed software. The quasi-static and
dynamical behaviours have been validated with a specifically
designed experimental set-up. Results show that the basic prob-
lem of soft robot arm addressed in the present thesis, and sys-
tematically explored in terms of mechanical performances, can
be analytically and numerically described with a great accuracy
and therefore is ready to exploitation in real devices.

The main results presented in the first part of the thesis have

67



Chapter 8. Conclusions and main scientific output

been summarised in the paper C. Armanini, F. Dal Corso, D.
Misseroni and D. Bigoni, "From the elastica compass to the elas-
tica catapult: an essay on the mechanics of soft robot arm". In:
Proceedings of the Royal Society A, (2017), 473,20160870. Cover pa-
per.
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Configurational forces
within a dynamic

framework
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9 Introduction

Configurational forces were introduced by Eshelby to explain
the motion, induced by mechanical or thermal loadings, of de-
fects within a solid body towards the achievement of an equilib-
rium configuration [12] [13] [14] and [15]. When movable con-
straints are considered in a structural system, similar forces are
generated, noticeable affecting the overall mechanical response
([4],[6]). The second part of this thesis is devoted to proving the
action of configurational forces on structural systems within a
dynamical framework.

A rod is considered constrained on one end by a friction-
less sliding sleeve with an inclination angle α and subject at the
other end to a dead load given by a lumped mass. From the
undeformed (rectilinear) configuration, the rod is suddenly re-
leased and a dynamic motion initiates due to the gravitational
field. During the motion, the length of the rod within the slid-
ing sleeve varies. Such a length represents a configurational pa-
rameter for the system and, through a variational approach, a
configurational force is proven to be generated at the exit of the
sliding constraint. In particular, it is found that this force co-
incides with that predicted within the quasi-static framework,
extending previous analysis [3].

Inspired by the massless rod model conceived for the snap-
back dynamics of the elastic catapult described in Part I (Chap-
ter 6), a numerical procedure is introduced to fully describe the
dynamical response of the system occurring after the sudden
release. A critical value of the dimensionless load parameter
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Chapter 9. Introduction

p, condensing both the values of the lumped mass, rod stiff-
ness and rod’ initial length, is found as a function of the sliding
sleeve inclination α, for which a transition between two differ-
ent behaviours occur. The two behaviours are characterized by
two opposite final stages, where the rod is finally injected or fi-
nally ejected. Two specific sets of pairs of dimensionless load
p and sliding sleeve inclination α are found to define the two
possible final stages. The theoretical results are fully validated
through experimental tests on a specific set-up realised at the
Instabilities Lab of the University of Trento.
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10 Formulation
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FIG. 10.1: An inextensible rod of total length l, bending stiffness B and linear
mass density γ is constrained by a frictionless sliding sleeve inclined by an
angle α. A lumped mass m is attached at the other end of the rod, providing
a weight P = mg. The part of the rod outside the sliding sleeve is measured
through ℓ(t), with ℓ0 = ℓ(t = 0) representing the length at the initial time
t = 0. The rotation of the rod’s axis with respect to the undeformed straight
configuration is measured through the rotation field θ(s, t), with s being the
curvilinear coordinate, s ∈ [0, l]. The reference systems x̂ - ŷ and x − y are
reported, both centered at the exit of the sliding sleeve. The configurational

force M2/2B is realized at the exit of the sliding sleeve.
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10.1 Kinematics

The kinematics of an inextensible elastic rod of length l, recti-
linear in its undeformed configuration, is described in the time
variable t and within the plane x − y through the curvilinear
coordinate s ∈ [0, l]. The primary kinematic field for the elastic
rod is the rotation θ(s, t), measuring the clockwise angle with re-
spect to the undeformed state, and from which the position field
can be evaluated, considering the inextensibility constraint, as

x(s, t) = x(0, t) +
∫ s

0
sin [θ(s, t) + α] ds,

y(s, t) = y(0, t) +
∫ s

0
cos [θ(s, t) + α] ds.

(10.1)

A frictionless sliding sleeve, with exit point centered at the
coordinate {x = y = 0} and inclined by an angle α with re-
spect to the y axis, is constraining the rod. The considered sys-
tem is therefore characterized by the configurational parameter
ℓ(t) ∈ [0, l] measuring the length of rod outside the constraint,
s ∈ [l − ℓ(t), l]. It follows that the sliding sleeve provides the
following kinematic constraint for value of the position field at
the curvilinear coordinate s = l − ℓ(t)

x
(
l − ℓ(t), t

)
= y

(
l − ℓ(t), t

)
= 0, (10.2)

and the rotation for the part of rod within the sliding sleeve

θ(s, t) = 0 s ∈ [0, l − ℓ(t)], (10.3)

so that the position fields x(s, t) and y(s, t), equations (10.1), re-
duce to
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x(s, t) =





−
(
l − ℓ(t)− s

)
sin α, s ∈ [0, l − ℓ(t)],

∫ s

l−ℓ(t)
sin [θ(s, t) + α] ds, s ∈ [l − ℓ(t), l],

(10.4)

y(s, t) =





−
(
l − ℓ(t)− s

)
cos α, s ∈ [0, l − ℓ(t)],

∫ s

l−ℓ(t)
cos [θ(s, t) + α] ds, s ∈ [l − ℓ(t), l].

(10.5)

A further reference system x̂ − ŷ is considered, obtained as
the counter-clockwise rotation of the system x − y by the angle
π/2− α, namely with the x̂ axis parallel to the sliding direction:

{
x̂(s, t)
ŷ(s, t)

}
=

[
sin α cos α

− cos α sin α

]{
x(s, t)
y(s, t)

}
. (10.6)

Within this reference system, the rod’s kinematics can be de-
scribed through the coordinates x̂(s, t) and ŷ(s, t) as

x̂(s, t) = x̂(0, t) +
∫ s

0
cos θ(s, t)ds,

ŷ(s, t) = ŷ(0, t)−
∫ s

0
sin θ(s, t)ds

(10.7)

so that equations (10.2) imply

x̂
(
s = l − ℓ(t), t

)
= ŷ

(
s = l − ℓ(t), t

)
= 0, (10.8)

and, from equations (10.4) and (10.5), the position fields x̂(s, t)
and ŷ(s, t) become
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x̂(s, t) =





−
(
l − ℓ(t)− s

)
s ∈ [0, l − ℓ(t)],

∫ s

l−ℓ(t)
cos θ(s, t)ds, s ∈ [l − ℓ(t), l],

(10.9)

ŷ(s, t) =





0, s ∈ [0, l − ℓ(t)],

−
∫ s

l−ℓ(t)
sin θ(s, t)ds, s ∈ [l − ℓ(t), l].

(10.10)

From the kinematics it follows that the velocity fields ẋ(s, t)
and ẏ(s, t) (where a dot represents the time derivative) for the
part of rod within the sliding sleeve are given by





ẋ(s, t) = ℓ̇(t) sin α,

ẏ(s, t) = ℓ̇(t) cos α,
s ∈ [0, l − ℓ(t)], (10.11)

or, equivalently





˙̂x(s, t) = ℓ̇(t),

˙̂y(s, t) = 0,
s ∈ [0, l − ℓ(t)]. (10.12)
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10.2 Lagrangian and governing equations from

variational approach

The Lagrangian functional L(t) for the considered system is
given by

L(t) = T (t)−V(t) +

−
∫ l

0
Nx(s, t)

{
x′(s, t)− sin [θ(s, t) + α]

}
ds+

−
∫ l

0
Ny(s, t)

{
y′(s, t)− cos [θ(s, t) + α]

}
ds,

(10.13)
where Nx(s) and Ny(s) are Lagrangian multipliers (represent-
ing the internal forces along the x and y directions). Consider-
ing that the elastic system has uniform distributed mass γ and
is bearing an external lumped mass m at the coordinate s = l,
neglecting the rotational inertia for both the rod and the exter-
nal mass, the kinetic energy T (t) of the system is given by

T (t) =
m[ẋ2(l, t) + ẏ2(l, t)]

2
+

+
1

2

∫ l

0
γ[ẋ2(s, t) + ẏ2(s, t)]ds.

(10.14)

The functional V(t) represents the potential energy given as
the sum of the elastic energy stored within the rod and the neg-
ative of the work done by the loads applied to the system. A
quadratic form in the curvature is assumed for the strain en-
ergy of the elastic rod, so that the moment at the coordinate s
is given by M(s, t) = Bθ′(s, t) where B is the bending stiffness.
Considering a gravitational field characterized by the accelera-
tion g in direction opposite to the y axis, the concentrated dead
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load P = mg is applied at the coordinate s = l while the uni-
form dead load γg is distributed all along the rod.

V(t) = B

2

∫ l

l−ℓ(t)
θ′(s, t)2ds + Py(l, t) +

∫ l

0
γgy(s, t)ds. (10.15)

Finally, the principle of least action can be applied to the
functional A defined as the integration in time of L(t)

A =
∫ t∗

t0

L(t) dt, (10.16)

with t0 and t∗ being arbitrary initial and final instants of the
analyzed time interval.

To perform the minimization of the functional A, the kine-
matic fields {x(s, t), y(s, t), θ(s, t)}, and the configurational pa-
rameter ℓ(t) are respectively perturbed by the variation fields
{ǫxvar(s, t), ǫyvar(s, t), ǫθvar(s, t), and ǫℓvar(t)} where ǫ is a small
quantity, and which are subject to the following conditions at
the initial and final time

xvar(s, t0) = yvar(s, t0) = θvar(s, t0) = ℓvar(t0) = 0,

xvar(s, t∗) = yvar(s, t∗) = θvar(s, t∗) = ℓvar(t∗) = 0.
(10.17)

The Taylor expansion of the kinematical constraint (10.3) at
the first order in the small parameter ǫ implies the following re-
lation between the variation in the rotation at the sliding sleeve
exit θvar(l − ℓ(t), t) and the variation in the configurational pa-
rameter ℓvar(t)

θvar(l − ℓ(t), t) = θ′
(
l − ℓ(t), t

)
ℓvar(t). (10.18)

Through integration by parts, it is shown that the minimiza-
tion of the functional A, equation (10.16), is equivalent to the
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annihilation of following quantity

∫ l

l−ℓ(t)

{
Bθ′′(s, t) + Nx(s, t) cos[θ(s, t) + α] +

−Ny(s, t) sin[θ(s, t) + α]

}
θvar(s, t)ds+

+
∫ l

l−ℓ(t)

{
N′

x(s, t)− γẍ(s, t)
}

xvar(s, t)ds+

+
∫ l

l−ℓ(t)

{
N′

y(s, t)− γ (ÿ(s, t) + g)
}

yvar(s, t)ds+

+
∫ l−ℓ(t)

0

{
N′

x(s, t)− γẍ(s, t)
}

xvar(s, t)ds+

+
∫ l−ℓ(t)

0

{
N′

y(s, t)− γ (ÿ(s, t) + g)
}

yvar(s, t)ds+

−{Nx(l, t) + mẍ(l, t)} xvar(l, t) +

−
{

Ny(l, t) + m (ÿ(l, t) + g)
}

yvar(l, t) +

+Nx(0, t)xvar(0, t) + Ny(0, t)yvar(0, t) +

+

{
B [θ′(l − ℓ(t), t)]2

2
− [[Nx(l − ℓ(t), t)]] sin α+

−[[Ny(l − ℓ(t), t)]] cos α

}
ℓvar(t) = 0,

(10.19)

for any variation field xvar(s, t), yvar(s, t), θvar(s, t), and ℓvar(t)
subject to the conditions (10.17) and (10.18). It is remarked that
the curvature field θ′(s, t), as well as the Lagrangian forces Nx(s, t)
and Ny(s, t), may have a spatial discontinuity at the sliding sleeve
exit s = l − ℓ(t). The rod’s curvature within the sliding sleeve is
null by definition so that the quantity θ′(l − ℓ(t), t) is meant to
be the rod’s curvature evaluated just outside the sliding sleeve
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exit, θ′(l − ℓ(t), t) = θ′(l − ℓ−(t), t). Furthermore, in equation
(10.19), the symbol [[·]] represents the jump of the relevant func-
tion at a specific point, namely

[[Nj(s), t)]] = lim
|δ|→0

[
Nj

(
s + |δ|, t

)
− Nj

(
s − |δ|, t

)]
, (10.20)

for j = x, y. From the minimization procedure, the equilib-
rium equations follow from equation (10.19) as, for the part of
rod inside the sliding sleeve s ∈ [0, l − ℓ(t)]





N′
x(s, t)− γẍ(s, t) = 0,

N′
y(s, t)− γ (ÿ(s, t) + g) = 0,

(10.21)

and as




Bθ′′(s, t) + Nx(s, t) cos[θ(s, t) + α]− Ny(s, t) sin[θ(s, t) + α] = 0,

N′
x(s, t)− γẍ(s, t) = 0,

N′
y(s, t)− γ (ÿ(s, t) + g) = 0.

(10.22)
for the part of rod outside the sliding sleeve s ∈ [l − ℓ(t), l].
The differential systems (10.21) and (10.22) are complemented
by the boundary conditions at the rod’s ends





Nx(0, t) = Ny(0, t) = 0,

Nx(l, t) = −mẍ(l, t),

Ny(l, t) = −m (ÿ(l, t) + g) ,

M(l, t) = 0,

(10.23)
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and by the interfacial boundary condition at the sliding sleeve
exit, s = l − ℓ(t),

M2(l − ℓ(t), t)

2B
= [[Nx(l − ℓ(t), t)]] sin α + [[Ny(l − ℓ(t), t)]] cos α,

(10.24)
where the constitutive relation

M(l − ℓ(t), t) = Bθ′(l − ℓ
−(t), t), (10.25)

has been used.

10.3 Presence of the configurational force in

dynamics

Considering that the internal force components Nx and Ny (along
the x and y axes) can be described in terms of the components
Nx̂ and Nŷ (along the x̂ and ŷ axes) through the following rota-
tion rule

Nx = Nx̂ sin α − Nŷ cos α,

Ny = Nx̂ cos α + Nŷ sin α,
(10.26)

the jump condition (10.24) at the sliding sleeve can be rewrit-
ten as

[[Nx̂(l − ℓ(t), t)]] =
M2(l − ℓ(t), t)

2B
, (10.27)

showing the presence of a non-null jump in the internal force
component Nx̂ at the sliding sleeve exit, with Nx̂ representing
the axial force at such a curvilinear coordinate. The presence
of a jump in the axial force at the sliding sleeve is the evidence
of a configurational force at this point. Therefore, such a force,
which is parallel to the sliding direction and equal to

M2(l − ℓ+(t), t)

2B
(10.28)

81



Chapter 10. Formulation

has always outward direction from the sliding sleeve constraint.
Finally, it is worth to note that the value of configurational force
within a dynamic setting coincides with that predicted under
the quasi-static assumption [3].
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11 The evolution of an
undeformed rod suddenly
released

The evolution of the system is here investigated under the as-
sumption of negligible rod’s inertia γ. Under this simplify-
ing assumption, the mass coordinates x(l, t) = xl(t), y(l, t) =
yl(t) and the configurational parameter ℓ(t) represent the three
fundamental kinematic quantities needed to describe the entire
evolution in time of the mechanical system, since the spatial in-
tegration can be independently performed in a closed form.

Indeed, when the rod’s inertia is neglected, the internal ac-
tions Nx(s, t) and Ny(s, t) become constant in space within the
two parts of the rod (inside and outside the sliding sleeve), in
particular, from the integration of the differential equations (10.21)1,
(10.21)2, (10.22)2, (10.22)3 considering the boundary conditions
(10.23), it follows that the part of the rod within the sliding
sleeve is unloaded

Nx(s, t) = Ny(s, t) = 0, s ∈
[
0, l − ℓ(t)

]
, (11.1)

while the part of rod outside the sliding sleeve has constant
internal force

Nx(s, t) = Nx(t),

Ny(s, t) = Ny(t),
s ∈

(
l − ℓ(t), l

]
, (11.2)
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where
Nx(t) = −mẍl(t),

Ny(t) = −m [g + ÿl(t)] .
(11.3)

Therefore, the differential equation (10.22)1 governing the
rotation field θ(s, t) has coefficients varying only in time and
can be rewritten as the elastica equation

Bθ′′(s, t) + R(t) sin[θ(s, t)− β(t)] = 0, s ∈ [l − ℓ(t), l],
(11.4)

where R(t) is the resultant force applied at the rod’s end,
s = l, and β(t) measures its clockwise inclination with respect
to the x̂ axis

R(t) =
√

N
2
x(t) + N

2
y(t),

tan β(t) =
Nx(t) cos α − Ny(t) sin α

Nx(t) sin α + Ny(t) cos α
.

(11.5)

Note that, considering relation (10.6), the resultant force R(t)
and its inclination β(t) can be also expressed in terms of the in-
ternal force components Nx̂ and Nŷ

R(t) =
√

N
2
x̂(t) + N

2
ŷ(t),

tan β(t) = −
N ŷ(t)

N x̂(t)
.

(11.6)

11.1 The closed-form spatial integration

Since the governing equation (11.4) has coefficients varying only
in time, the spatial integration of the elastica can be performed
independently from that in time and in function of the unknown
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values R(t) and β(t) in terms of elliptic integrals. The elastica
equation (11.4) is complemented by the boundary conditions of
null rotation at the sliding sleeve exit, θ(l − ℓ(t), t) = 0 and of
null moment at the rod’s end, θ′(l, t) = 0.

Following the analytical procedure seen in Part I, Chapter
3, the spatial integration of the differential equation (11.4) pro-
vides the relation between the resultant force R(t), the end rota-
tion θl(t), the resultant inclination β(t) and the external length
ℓ(t)

R(t) =
B

ℓ2(t)

[
K(k(t)) −K(m(t), k(t))

]2
, (11.7)

where K(k) and K(m, k) are, respectively, the complete and
incomplete integral of the first kind,

K(k) =

π/2∫

0

1√
1 − k2 sin2 φ

dφ,

K(a, k) =

a∫

0

1√
1 − k2 sin2 φ

dφ,

(11.8)

while k(t) and m(t) are parameters (varying in time) defined
as functions of the end’s rotation θl(t) and the load inclination
β(t) as follows

k(t) = sin

(
θl(t)− β(t)

2

)
,

m(t) = − arcsin

[
1

k(t)
sin

(
β(t)

2

)]
.

(11.9)
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Furthermore, the normalized position of the rod’s end can
be evaluated as

xl(t)

ℓ(t)
= A(t) sin[α + β(t)]− B(t) cos[α + β(t)],

yl(t)

ℓ(t)
= A(t) cos[α + β(t)] + B(t) sin[α + β(t)],

(11.10)

or, equivalently,

x̂l(t)

ℓ(t)
= A(t) cos β(t) + B(t) sin β(t),

ŷl(t)

ℓ(t)
= −A(t) sin β(t) + B(t) cos β(t),

(11.11)

where

A(t) = −1 + 2
E
(
k(t)

)
− E(m(t), k(t))

K(k(t)) −K(m(t), k(t))
,

B(t) = 2k(t)
Cn(K(k(t)), k(t)) − Cn(K(m(t), k(t)), k(t))

K(k(t)) −K(m(t), k(t))
,

(11.12)
where Cn(a, k) denotes the Jacobi cosine amplitude function

Cn(a, k) = cos[Am(a, k)], (11.13)

while E is the incomplete elliptic integral of the second kind,

E(a, k) =

a∫

0

√
1 − k2 sin2 φ dφ. (11.14)

It is worth remarking that the mass position, expressed through
the coordinates xl(t) and yl(t), or equivalently x̂l(t) and ŷl(t),
is fully defined by equations (11.10) and (11.11) as a function of
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the rod’s end rotation θl(t), the resultant force inclination β(t),
and the external length ℓ(t).
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12 The numerical
integration in time

The dynamics of the considered elastic system can be described
once the evolution in time for the three fundamental quantities
ℓ(t), θl(t), and β(t) is evaluated. The nonlinear system govern-
ing the dynamics is provided by





N x̂(t) = −m
[
g cos α + ¨̂xl(t)

]
− c(t) ˙̂xl(t),

N ŷ(t) = −m
[
g sin α + ¨̂yl(t)

]
− c(t) ˙̂yl(t),

N x̂(t) = −
[
N x̂(t)ŷl(t)− N ŷ(t)x̂l(t)

]2

2B
,

(12.1)

which is composed by two nonlinear differential equations
in time, representing the Newton’s second law for the lumped
mass along the x̂ and ŷ directions, plus a nonlinear equation,
representing the interfacial boundary condition, equation (10.27),
namely the axial equilibrium at the sliding sleeve exit in the
presence of the configurational force.

More specifically, while the first two equations govern the
system evolution, the third one provides an implicit relation for
the values assumed by the three functions ℓ(t), θl(t), and β(t)
at the same instant t, as for example ℓ(t) = ℓ(θl(t), β(t)).

It is remarked that the resultant component (11.3) acting on
the lumped mass are modified in equations (12.1)1 and (12.1)2

89



Chapter 12. The numerical integration in time

order to take into account of dissipative effects through the non-
constant parameter c(t) defining the linear damping, possibly
related to air drag.

Inspired by the usual definition assumed in the small am-
plitude dynamics of rods with fixed length, 1 the non-constant
parameter c(t) is considered as

c(t) = 2ζ

√
3mB

ℓ(t)3
, (12.3)

where ζ represents a constant damping ratio.
Within a large rotation setting, all the quantities involved in

the system (12.1) can be expressed as functions of the three pa-
rameters ℓ(t), θl(t), and β(t). In particular, the spatial integra-
tion of the elastica provides the positions x̂l(t) and ŷl(t) through
equation (11.11) while, considering equations (11.6) and (11.7),
the resultant force components can be written as





N x̂(t) = − B

ℓ2(t)

[
K(k(t)) −K(m(t), k(t))

]2
cos β(t),

N ŷ(t) = − B

ℓ2(t)

[
K(k(t)) −K(m(t), k(t))

]2
sin β(t).

(12.4)
Due to the strong nonlinearities of the system (12.1) and the

load components (12.4), the integration in time can be only per-
formed numerically.

1 In the small amplitude dynamics of a lumped mass attached at the free
end of a clamped rod of length L and stiffness B, it is usually assumed

c = 2ζ

√
3mB

L3
, (12.2)

expression that can be retrieved from the non-constant parameter c(t), equa-
tion (12.3), in the case when ℓ(t) = L.
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12.1 Initial conditions and small displacement

regime

The initial condition of undeformed (rectilinear) configuration
at rest is assumed for the rod so that the kinematics of the lumped
mass at the initial time is given by

x̂l(0) = ℓ0, ŷl(0) = ˙̂xl(0) = ˙̂yl(0) = 0, (12.5)

where ℓ0 is the length of the rod’s outer part at the initial
time, ℓ0 = ℓ(t = 0). Such evolutive problem, which starts from
the undeformed initial configuration, is consistent with treating
the dynamic problem under the assumption of negligible rod’s
inertia. 2 Moreover, because of the inextensibility assumption,
a stiffening of the differential system occurs whenever the rod
approaches the undeformed configuration, namely in the small
displacement regime. In order to overcome this numerical is-
sue, the integration is performed treating the small regime ap-
proximation of the nonlinear system for the time intervals when
the transversal displacement satisfies the following condition

| ŷl(t) |<
ℓ(t)

200
. (12.6)

Within the small rotation regime, the rod’s end position can
be computed as

x̂l(t) = ℓ(t),

ŷl(t) =
N ŷ(t)ℓ

3(t)

3B
,

(12.7)

2General initial conditions related to the presence of a non null curvature
at the sliding sleeve exit may lead to a jump in the deformed configuration at
the initial time. This would be the result of a sudden transfer of the configu-
rational force from the sliding sleeve to the point where the external mass is
located, s = l, and that could be more effectively modelled considering the
intrinsic motion of the rod.
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and the following moment inequality holds

N x̂(t)ŷl(t) ≪ N ŷ(t)x̂l(t), (12.8)

so that the nonlinear system (12.1), composed by two non-
linear differential equation and one nonlinear equation, can be
reduced to the following system composed by two nonlinear
differential equations





9B

2

ŷ2
l (t)

x̂4
l (t)

= m
[
g cos α + ¨̂xl(t)

]
+ c ˙̂xl(t),

3B
ŷl(t)

x̂3
l (t)

= −m
[
g sin α + ¨̂yl(t)

]
− c ˙̂yl(t).

(12.9)

It is remarked that due to the small rotation assumption, the
nonlinear system (12.9) is solved in terms of solely two inde-
pendent quantities x̂l(t) = ℓ(t) and ŷl(t), differently from solv-
ing the system (12.1), where ℓ(t) is not constrained to be equal
to x̂l(t). For this reason, the obtained numerical solution suf-
fers a discontinuity in ℓ(t̃) and ℓ̇(t̃) at all the times t̃ when the
numerical integration passes from treating the nonlinear sys-
tem (12.1) to its approximated version (12.9) and viceversa. In
particular, the integration starts considering the small rotation
regime, so that the external length is constrained to be equal to
the axial position, ℓ(t) = x̂l(t), and therefore its velocity is given
by ℓ̇(t) = ˙̂xl(t). When the small rotation condition (12.6) is no
longer satisfied, the field ℓ(t) returns to be unconstrained. The
value of ℓ(t̃) and the corresponding velocity ℓ̇(t̃) at the passage
time t̃ can be obtained from equation (12.1)3 and in its derivative
version in time. It follows that jumps in the external length ℓ(t̃)
and its velocity ℓ̇(t̃) are originated at all the times t̃ when the
numerical integration passes from treating the nonlinear sys-
tem (12.1) to its approximated version (12.9). Nevertheless, be-
cause the passage for the two solving systems is applied for the
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condition (12.6), it is numerically found that the jumps in the
mentioned quantities are always negligible, as shown below.
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12.1.1 Dimensionless parameters and numerical inte-
gration

Introducing the characteristic time T

T =

√
ℓ0

g
, (12.10)

a parametric analysis of the system evolution in the dimen-
sionless time variable τ = t/T can be investigated in terms of
the following normalized kinematical quantities

λ(τ) =
ℓ(τ)

ℓ0
, ξ̂(τ) =

x̂l(τ)

ℓ0
, η̂(τ) =

ŷl(τ)

ℓ0
, (12.11)

at varying the sliding sleeve inclination α and the normal-
ized load parameter p

p =
mgℓ2

0

B
, (12.12)

which condenses both the initial geometrical and loading con-
ditions.

In the dimensionless form of the equations of motion, the
non-constant parameter c(t) appears through the normalized
damping parameter υ(τ) = c(τ)T/m, which can be rewritten
in terms of the normalized load p and the normalized length
λ(τ) as

υ(τ) =
2
√

3ζ√
pλ3(τ)

. (12.13)

The numerical integration considers the dimensionless ver-
sion of the initial conditions (12.5),

ξ̂(0) = 1, η̂(0) = ˙̂ξ(0) = ˙̂η(0) = 0. (12.14)
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12.1. Initial conditions and small displacement regime

and is accomplished by means of the function NDSolve in
Mathematica (v. 11) considering the following options: MaxStepSize
→ 10−3, StartingStepSize→ 10−8, Method→ IndexReduction.

The jumps inherent to the adopted numerical strategies are
found to be negligible, in particular the following inequalities
are observed to hold for all the passage times τ̃

|ℓ(τ̃+)− ℓ(τ̃−)|
ℓ(τ̃−)

< 5 · 10−5,

|ℓ̇(τ̃+)− ℓ̇(τ̃−)|
ℓ̇(τ̃−)

< 10−2.

(12.15)

Moreover, the consistency of the numerical integration is as-
sessed comparing the increment in the total energy decrease
of the system V̇(τ) with the power dissipated by the damper

Πd(τ) = Bυ(t)p
√

ξ̇(τ)2 + η̇(τ)2/ℓ0. With reference to the op-

tions assumed in all the analyzed evolutions, negligible dis-
crepancies are always found between these two quantities, for
which the following condition for the normalized modulus of
their difference is satisfied

∣∣∣∣
V̇(τ)− Πd(τ)

V̇(τ)

∣∣∣∣ < 2 × 10−4. (12.16)
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13 Theoretical predictions
and definition of pcr

With reference to a non-null (initial) length ℓ0, the equilibrium
configuration has been disclosed from quasi-static analysis for
a specific pair of values p and α satisfying [3]

peq =

[
K

(
1

2

)
+K

(
arcsin

(
1√
2

sin
α

2

)
,

1

2

)]2

, (13.1)

representing the geometrical condition of orthogonality between
the rod’s end tangent and the applied load direction, and which
can be approximated for inclinations α ≃ 0 and α ≃ π/2 as

peq(α) ≈ K
(

1
2

) [
K

(
1
2

)
−
√

2α
]2

+ o(α),

peq(α) ≈ π − 2α + o(π − 2α)2.

(13.2)

Being this configuration unstable, it is expected that the dy-
namic effects originated from any perturbation applied to the
system will push towards the minimization or the maximiza-
tion of the external length λ(τ) at infinite time. Therefore, two
final configurations may be approached by the system, the com-
plete injection/ejection into/from the sliding sleeve constraint,
respectively corresponding to the lower and upper bounds of
the physically relevant set for the configurational parameter,
λ(τ) ∈ [0, λ̄] where λ̄ = l/ℓ0.
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Chapter 13. Theoretical predictions and definition of pcr

Although from the theoretical point of view, the transition
between these two opposite behaviours would occur for a di-
mensionless load ptr(α), its analytical definition becomes in gen-
eral impossible within a dynamic framework governed by strongly
nonlinear equations.

From the practical point of view, considering as initial state
the sudden release of the system from the undeformed state,
the limit value λ(τ → ∞) attained by the system for a specific
pair of values p and α can be disclosed introducing dissipative
effects 1 within the equations of motion, equations (12.1) and
(12.9).

In particular, two sets of value p are recognized as corre-
sponding to the final stages of complete injection and complete
ejection through numerical simulations as follows

p ∈
(

0, ptr(α)
)
→ injection,

p ∈
(

ptr(α), ∞
)
→ ejection.

(13.3)

The transition value p = ptr(α) is numerically evaluated
for a specific inclination angle α through the following itera-
tive method at increasing step number j. At the j-th step, the

transition value p = p
(j)
tr (α) is estimated as

p
(j)
tr (α) =

p
(j)
max,in(α) + p

(j)
min,out(α)

2
(13.4)

where p
(j)
max,in(α) and p

(j)
min,out(α) are respectively the highest load

for the rod injection and the lowest load for ejection known at
the step j. The iterative procedure is stopped at the step k and

1In absence of dissipation, the system always reaches the final stage of
complete ejection, because the finite energy of the system can not be con-
verted into kinetic energy only along the axial direction. This issue will be
analyzed more specifically in a future work.
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Chapter 13. Theoretical predictions and definition of pcr

the transition value is considered reached, ptr = p
(k)
tr when the

difference in the estimation with the previous step is negligible.
In the present analysis, this is considered to be given by

∣∣∣∣∣
p
(k)
tr − p

(k−1)
tr

p
(k−1)
tr

∣∣∣∣∣ < 5 × 10−4. (13.5)
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FIG. 13.1: Trajectories of the suddenly released mass within the dimensionless plane x/ℓ0 − y/ℓ0

for α = 15◦ (first line), α = 30◦ (second line) different values of the dimensionless load p =
{0.5, 0.999, 1.001, 1.5} pcr(α) where the load values are increased from the left to the right. The critical
dimensionless loads are numerically computed to be approximately ptr(α = 15◦) ≃ 9.87, ptr(α = 30◦) ≃
3.74. Deformed configurations are reported, attained at the dimensionless times τ1 = 0.2, τ2 = 2 and

τ3 = 3.
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FIG. 13.2: Trajectories of the suddenly released mass within the dimensionless plane x/ℓ0 − y/ℓ0

for α = 45◦ (first line) and α = 60◦ (second line) at different values of the dimensionless load
p = {0.5, 0.999, 1.001, 1.5} ptr(α) where the load values are increased from the left to the right. The
critical dimensionless loads are numerically computed to be approximately ptr(α = 45◦) ≃ 1.84 and
ptr(α = 60◦) ≃ 0.946. Deformed configurations are reported, attained at the dimensionless times τ1 = 0.2,

τ2 = 2 and τ3 = 3.



Chapter 13. Theoretical predictions and definition of pcr

The two regions corresponding to the rod’s injection or ejec-
tion are reported in Fig. 13.3, where the separating curve repre-
sented the critical value ptr(α).
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FIG. 13.3: Map of the regions identifying the pairs of dimensionless load p
and sliding sleeve inclination α for which injection (p < ptr, green region)
and ejection (p ≥ ptr , yellow region) occur when an undeformed rod at rest
is suddenly released. The transition between these two behaviours is defined
by the curve ptr(α). Experimental results are also reported (see Chapter 14).
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Chapter 13. Theoretical predictions and definition of pcr

To provide further insights about the system evolution, the
normalized external length λ(τ) = ℓ(t)/ℓ0 and its phase por-
trait is reported at varying the normalized load p and sliding
sleeve inclination α in Fig. 13.4.

It can be observed that:

• when p < ptr, the oscillations can be described as the
repetition of two stages. A decreasing amplitude stage
is followed by an increasing amplitude stage up to a re-
turn to ‘approximately’ the initial condition (from below).
As time increases, since dissipation is considered, the os-
cillations are reduced and the final injection of the rod is
attained.

• when p > ptr, when oscillations occur, these have in-
creasing amplitude in time towards the eventual complete
ejection of the rod from the sliding sleeve. At an initial
stage of the oscillations, the time derivative of the external
length changes repetitively sign. Oscillations may be ab-
sent during the entire system evolution when a very large
load p is imposed.
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FIG. 13.4: (Left part) Evolution in the dimensionless time τ is reported
for of the external length ℓ(τ) at different values of the sliding sleeve in-
clination, α = {15◦ , 30◦, 45◦ , 60◦} and values of the dimensionless load
p = {0.1, 0.5, 0.999, 1, 1.001, 1.5} ptr(α). (Right part) For the same values of
α, phase portrait of ℓ(τ), namely how the velocity ℓ̇(τ) varies with ℓ(τ), is

reported for p = {0.1, 0.999, 1, 1.001, 1.5} ptr(α).
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14 Experimental analysis

An experimental set up (Fig. 14.1) was designed and realised to
validate the theoretical predictions.

FIG. 14.1: The experimental set-up realised to investigate the dynamical be-
haviour of the considered structural system. Insets (a) and (b) report the de-
tails of the release mechanism and the sliding sleeve realization, respectively.
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Chapter 14. Experimental analysis

The sliding sleeve, which has an overall length of 825 mm, is
realised with 33 pairs of rollers (Fig. 14.1b). Each roller is made
up of a Steel cylinder of 20 mm diameter and 25 mm length,
containing two rollers bearings. In the previous work restricted
to the quasi-static case [3], it is proven that such a roller device
is capable of providing a configurational force predicted by the
theoretical model. In order to obtain the initial rectilinear (un-
deformed) condition, the rod is attached to a brake shoe system
(Fig. 14.1a) which is placed on a rigid support. The rigid sup-
port allows also to set the initial length of the beam outside the
sliding sleeve, ℓ0. Through a fishing wire, the brake shoe system
is connected to a thightner and a trigger, so that it can be eas-
ily controlled to obtain the sudden release of the rod. The whole
apparatus is mounted on a pneumatic optical table (Nexus from
ThorLabs), in order to prevent any spurious vibration.

Tests were performed using three different elastic rods, two
made up from polycarbonate (PC) strips (Young Modulus E =
2350 MPa and volumetric mass density ρ = 1180 kg/m3), while
one rod was made up from carbon fibre strips (E = 80148,
ρ = 1620 kg/m3). The PC rods are both 2.95 ± 0.05 mm thick
and 25 ± 0.05 mm wide, but differ in their length (550 mm and
800 mm). The carbon rod is 2.0 ± 0.05 mm thick, 25 mm wide
and 800 mm long. All the rods were shaped by cutting plain
sheets with an engraving machine (Roland EGX-600). A toler-
ance of 0.5 mm was kept between the rods and the rollers along
the channel. Moreover, at the beginning of each test, the rods
were sprayed with a lubricant oil (Ballistol by Klever) in order
to minimize the friction between the sliding sleeve. High frame-
rate movies (240 fps) are recorded during each test with a Sony
PXW-FS5 video camera, to fully capture the dynamic motion of
the rods. All photos are taken with a Sony Alpha 9 camera.
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FIG. 14.2: Results of the test obtained for p = 0.75pcr (upper part) and p =
1.1pcr (lower part) for α = 45◦. The experimental test confirm the transition

between the two possible behaviours theoretically predicted.
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Chapter 14. Experimental analysis

Several tests were performed at varying both the inclina-
tion angle α and the dimensionless load p, obtained varying
the lumped mass m and the initial lengths ℓ0. In Fig. (13.3)
all the performed tests are reported, identifying the pairs of di-
mensionless load p and sliding sleeve inclination α. Moreover,
in Fig. (14.2) the results of two test performed for α = 45◦ are
reported, showing the transition between the two possible be-
haviours, for which the rod approaches the final stage of com-
plete injection (when p = 0.75pcr ,upper part) or the final stage
of complete ejection (when p = 1.1pcr , lower part).

0.2
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- 0.1

0.1

0.3

0
0.2 0.4 0.6 0.8 1.0

α = 60° p            p= 0.75 cr

theoretical analysis
experiments

FIG. 14.3: Comparison between the trajectory travelled by the lumped mass
during an experimental test performed with the carbon rod and that pre-
dicted by the theoretical analysis, obtained for α = 60◦ and for a dimension-

less load p = 0.75pcr .

Finally, an ad hoc application was developed in Python in
order to process the videos acquired at high frame-rates. The
code exploits the OpenCV libraries, a tool-set dedicated to im-
age processing and machine learning applications. The devel-
oped program tracks the trajectory travelled by the lumped mass,
providing its position xl , yl as output at each frame. Fig. 14.3
shows an example of the comparison between the trajectory
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Chapter 14. Experimental analysis

travelled by the lumped mass during an experimental test per-
formed with the carbon rod and that predicted by the theoreti-
cal analysis, obtained for α = 60◦ and for a dimensionless load
p = 0.75pcr .

All the experiments were performed at the Instabilities Lab
of the University of Trento.
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15 Conclusion

The presence of configurational forces acting on elastic struc-
tures has been theoretically proven within a dynamic frame-
work, extending a previous proof restricted to the quasi-static
case [3]. The sudden release from the undeformed configura-
tion has been analyszed for a rod constrained by a frictionless
sliding sleeve and with a lumped mass applied to the other end.
A simplified model based on the spatial integration of the elas-
tica has been exploited to disclose the behaviour of the nonlin-
ear dynamical response, defining the evolution of the configura-
tional parameter corresponding to the length of the rod outside
the constraint. Through a variational approach, the presence of
a configurational force within the dynamical setting has been
proven to coincide with that predicted within the quasi-static
setting. It has been shown that the configurational force, gen-
erated at the exit of the sliding sleeve, dramatically affects the
mechanical response of the system, defining two different types
of evolution for the system, for which the rod approaches the
final stage of complete injection or the final stage of complete
ejection. The theoretical predictions have been validated with a
specifically designed experimental set-up.

The obtained results open new perspectives in the analysis
of the dynamic response of structural systems subject to config-
urational constraints and pave the way to the mechanical de-
sign of innovative flexible devices for advanced applications.
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Chapter 15. Conclusion

The results presented in the second part of the thesis are go-
ing to be soon submitted for publication in a peer-reviewed In-
ternational journal.
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