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Abstract

The study of local and global instability and bifurcation phenomena is
crucial for many engineering applications in the field of solid mechanics.
In particular, interfaces within solid bodies are of great importance in the
bifurcation analysis, as they constitute localized zones in which discon-
tinuities or jumps in displacement, strain or stress may occur. Different
instability phenomena, heavily conditioned by the presence of interfaces,
were analyzed in the present thesis.

The first phenomenon that has been considered is the propagation of a
shear band, which is a localized shear deformation developing in a ductile
material. This shear band, assumed to be already present inside of a duc-
tile matrix material (obeying von Mises plasticity with linear hardening),
is modelled as a discontinuity interface following two different approaches.

In the first approach, the conditions describing the behavior of a layer
of material in which localized strain develop are introduced and imple-
mented in a finite element computer code. A shear deformation is simu-
lated by imposing appropriate displacement conditions on the boundaries
of the matrix material, in which the shear band is present and modelled
through an imperfect interface, having null thickness.

The second approach is based on a perturbative technique, developed
for a J2-deformation theory material, in which the shear band is mod-
eled as the emergence of a discontinuity surface for displacements at a
certain stage of a uniform deformation process, restricted to plane strain
conditions.

Both the approaches concur in showing that shear bands (differently
from cracks) propagate rectilinearly under shear loading and that a strong
stress concentration is expected to be present at the tip of the shear band,
two key features in the understanding of failure mechanisms of ductile
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materials [results of this study have been reported in (Bordignon et al.
2015)].

The second type of interface analyzed in the present thesis is a perfectly
frictionless sliding interface, subject to large deformations and assumed to
be present within a uniformly strained nonlinear elastic solid. This type of
interface may model lubricated sliding contact between soft solids, a topic
of interest in biomechanics and for the design of small-scale engineering
devices.

The analyzed problem is posed as follows. Two elastic nonlinear solids
are considered jointed through a frictionless and bilateral surface, so that
continuity of the normal component of the Cauchy traction holds across
the surface, but the tangential component is null. Moreover, the displace-
ment can develop only in a way that the bodies in contact do neither
detach, nor overlap. Surprisingly, this finite strain problem has not been
correctly formulated until now, so that this formulation has been devel-
oped in the thesis. The incremental equations are shown to be non-trivial
and different from previously (and erroneously) employed conditions. In
particular, an exclusion condition for bifurcation is derived to show that
previous formulations based on frictionless contact or ‘spring-type’ inter-
facial conditions are not able to predict bifurcations in tension, while ex-
periments (one of which, ad hoc designed, is reported) show that these
bifurcations are a reality and can be predicted when the correct sliding
interface model is used. Therefore, the presented approach introduces a
methodology for the determination of bifurcations and instabilities occur-
ring during lubricated sliding between soft bodies in contact [results of
this study have been reported in (Bigoni et al. 2018)].

Funding The author gratefully acknowledges financial support from the
ERC Advanced Grant ‘Instabilities and nonlocal multiscale modelling of
materials’ ERC-2013-ADG-340561-INSTABILITIES.
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Chapter 1

Mechanics of solids

1.1 Introduction
The basic concepts related to the solid body are introduced. In par-

ticular, the kinematics, the stress and strain concepts are provided with
the theories and the rules that govern the changes of field quantities dur-
ing the motion of the solid body from the reference configuration to the
current configuration underlining the difference between the spatial and
the material fields.

1.2 Kinematics
The kinematics of the bodies describe and study the configurations

that the bodies occupy during a motion in the three dimensional Euclidean
point space. A body is treated as a closed set of points occupying a
regular region B, called ’current’ configuration, of the three dimensional
Euclidean point space. The displacement of the points in the B region,
indicated with vector u, may be measured only with respect to reference
configurationB0. As reported in Bigoni (2012) "the choise of the reference
configuration is arbitrary, so even a configuration which has never been
occupied by the body can be chosen as reference. Obviously, the resulting
description of all fields must be independent of this choise". Points x (x0)
defined in reference or current configurations are called ’spatial’(material).

Nicola Bordignon 1



1.2. Kinematics

Figure 1.1: Deformation of a general body and in particular, deformation of an embed-
ded oriented line element from reference configuration B0 to the current configuration
B.

The displacement is defined as

u = x− x0 (1.1)

or, using the function g that represent a bijection mapping relating mate-
rial points to spatial points

u = g(x0)− x0. (1.2)

Considering two material points, x0 and x0 +w0w0, as shown in Fig. 1.1
in which w0 is a unit vector and w0 is a simple scalar multiplier, in spatial
configuration they are mapped forward to

x = g(x0) (1.3)

and
x+ ww = g(x0 + w0w0) (1.4)

Taking the Taylor series expansions of the function g, and its inverse g−1,
around x0 and x yield

ww = g(x0 + w0w0)− g(x0) = F (w0w0) +O(w2
0), (1.5)

w0w0 = g−1(x+ ww)− g−1(x) = F−1(ww) +O(w2), (1.6)

2



1.2. Kinematics

where F is the deformation gradient and F−1 its inverse. In other words,
F represents a gradient of a material field, whereas F−1 is the gradient of
a spatial field

F = ∂g(x0)
∂x0

F−1 = ∂g−1(x)
∂x

. (1.7)

1.2.1 Trasformation of oriented line elements

It is clear that the gradient F transforms the embedded material ori-
ented line element into a corresponding embedded spatial oriented line
element and viceversa. Immediatly, the transformation of oriented liene
elements can be derived in the modulus and in the orientation as follow

λ(x0,w0) = |Fw0|
1

λ(x,w) = |F−1w|, (1.8)

w0 = λ(x,w)F−1w w = Fw0
λ(x0,w0) , (1.9)

where λ represents the stretch at the material or spatial point relative to
the material or spatial direction.

1.2.2 Trasformation of oriented area elements

An element area A0 with normal n0 and described by the two vectors
v0 and w0 can be expressed in the material configuration

A0n0 = v0 ×w0. (1.10)

Applying the gradient of the material field the area element is transformed
in the spatial configuration as

An = Fv0 × Fw0. (1.11)

At this point, introducing the property related to the tensors and vectors
the Nanson’s rule of area transformation is derived

An = A0JF
−Tn0 (1.12)

where J = detF . Furthermore, Eq. (1.12) provides the transformation
laws of unit normal embedded surfaces and area elements shown in Fig. 1.2

n = F−Tn0

|F−Tn0|
, n0 = F Tn

|F Tn|
(1.13)
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1.3. Stress and motion in finite strain

and
A = J |F−Tn0|A0, A0 = J−1|F Tn|A. (1.14)

Figure 1.2: Deformation of a general area element A (straight red line) with normal n0
to a general surface (dashed blue line) from reference configuration B±0 to the current
configuration B±.

1.2.3 Trasformation of volume elements

Volume element V0 at a generic material point is transformed by the
deformation as

V0 = t0 · v0 ×w0 → F → V = Ft0 · Fv0 × Fw0 (1.15)

in which the vectors t0,v0 and w0 describe the volume element in the
reference configuration B0.

1.3 Stress and motion in finite strain

1.3.1 Stress

The concepts of stress are introduced to complete the treatment of
physical quantities that describe the mechanics of a generic solid body or
part of it, called P . In current configuration, the body part P and external

4



1.3. Stress and motion in finite strain

forces σ interact each other to achive an equilibrium state. These external
forces may act on surface Σ or at internal body points b.

This interaction leads to the creation of a contact forces distribution
inside the body part P , generating a stress field s. In detail, assuming
the so-called Cauchy hypothesis, traction s depends only on the position
x and on the unit normal n to the surface inside P at x in the spatial
configuration, namely

s = s(x,n). (1.16)

At this point, not taking into account the inertial body force but only the
volume forces b, the balance laws∫

∂P
s+

∫
∂P
b = 0, (1.17)

∫
∂P

(x− o)× s+
∫
∂P

(x− o)× b = 0, (1.18)

must be satisfied in body P and for any choice of the origin o. The Cauchy
theorem states that if σ and b are a system of forces for the body during
a motion, a necessary and sufficient condition to test the balance laws to
hold for any part of the body P is the existence of a spatial tensorial field
T , Cauchy stress tensor, such that

• The traction is a linear function of the unit normal n through the
Cauchy stress:

s(n) = Tn. (1.19)

• T satisfies the local equations of motion:

divT + b = 0. (1.20)

• The Cauchy stress tensor is symmetric:

T ∈ Sym. (1.21)

Stress represents the internal counterpart to forces applied by the external
environment to the body in its actual configuration and therefore, is a
spatial quantity. Using the Nanson’s formula it has been possible to derive
the following identity

Tnda = Sn0da0 (1.22)
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1.3. Stress and motion in finite strain

where
S = JTF−T (1.23)

is the first Piola-Kirchhoff stress tensor, while Sn0 is the nominal traction.
Introducing the so-called Kirchhoff stress, Eq. (1.23) can be rewritten in
this form

S = KF−T , (1.24)

in which is assumed
K = JT . (1.25)

The first Piola-Kirchhoff stress tensor is the transpose of the nominal stress
tensor

t = ST = F−1K (1.26)

the main feature of the first Piola-Kirchhoff stress is that Sn0 is a measure
of the surface force per unit area in the reference configuration. This means
that the first Piola-Kirchhoff stress satisfies∫

∂P
Tn =

∫
∂P0

Sn0 (1.27)

Introducing, in the reference configuration, the body forces b0 = Jb and
neglecting the inertial forces, the balance laws become∫

∂P0
Sn0 +

∫
P0
b0 = 0, (1.28)

and ∫
∂P0

(x− o)× Sn0 +
∫
P0

(x− o)× b0 = 0, (1.29)

so, neglecting the inertia, the translational equilibrium of spatial element
imposed on reference configuration is expressed in the following classical
way

DivS + b0 = 0. (1.30)

1.3.2 Motion

The definition of motion can be found in Bigoni (2012), in which the
motion is described as an ordered sequence of mappings of a reference
configuration into current configurations, ordered by the time t

x = g(x0, t) (1.31)

6



1.3. Stress and motion in finite strain

and
x0 = g−1(x, t). (1.32)

Therefore, it is possible to introduce the material ẋ and spatial v descrip-
tions of the velocity

ẋ(x0, t) = ∂g(x0, t)
∂t

(1.33)

and
v(x, t) = ẋ(g−1(x, t), t). (1.34)

The material ẍ and spatial a descriptions of the acceleration

ẍ(x0, t) = ∂2g(x0, t)
∂2t

(1.35)

and
a(x, t) = ẍ(g−1(x, t), t). (1.36)

Now, it is possible to introduced the following three time derivatives useful
in the following treatments

• The material time derivative of a material field A(x0, t), holding x0
fixed:

Ȧ(x0, t) = ∂A(x0, t)
∂t

. (1.37)

• The material time derivative of spatial field A(x, t):

Ȧ(x, t) = ∂A(g(x0, t), t)
∂t

∣∣∣∣
x0 = g−1(x, t)

. (1.38)

so that x0 is held fixed.

• The spatial time derivative of a spatial field A(x, t), holding x fixed:

A′(x, t) = ∂A(x, t)
∂t

. (1.39)

Others important and usefull definition is the gradient of the material and
spatial description of the velocity

Ḟ = Grad ẋ(x0, t), L(x, t) = gradv. (1.40)
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1.4. Constitutive equations

Observing that
ẋ(x0, t) = v(g(x0, t), t) (1.41)

taking the gradient with respect x0 and using the chian rule of differ-
entiation, the relation between the gradient of the material and spatial
description of the velocity is obtained

Ḟ = LF . (1.42)

For every material fibre, denoted by w0w0, employing Eq. (1.42) and
recalling that (w0w0)· = 0 because w0w0 is fixed, the rate of change
of the line element

(ww)· = Ḟ (w0w0) = L(ww). (1.43)

Starting from this equation, it may obtained

ẇ = (I −w ⊗w)LTw (1.44)

that provide the rate of change of a spatial oriented direction w. Anal-
ogously, the rate of change of the unit normal and tangent vectors to an
embedded area element

ṫ = (I − t⊗ t)LT t (1.45)

and
ṅ = −(I − n⊗ n)LTn (1.46)

in which the symbol ⊗ is the dyadic product.

1.4 Constitutive equations
In this section some useful material models are introduced to describe

the constitutive behaviors of the elastic and elasto-plastic materials like
rubbers and metals. The Neo-Hookean model will be describe introducing
the concept of incompressibility, it is a hyperelastic material model that
it is used for predicting the nonlinear stress-strain behavior of materials
undergoing large deformations. Another important constitutive model is
the Von Mises Criterion that permit to describe the relation between stress
and strain in ductile materials including the plasticity phenomena.

8



1.4. Constitutive equations

1.4.1 Incompressible isotropic elasticity and general formu-
lation of the constitutive equations

Incompressible isotropic elasticity represents one of the most important
constraint for the material model in the finite strain. The incompressibility
constraint in terms of the principal stretches can be define as

λ1λ2λ3 = 1. (1.47)

The formulation of the constitutive equation can be expressed using the
strain energy concept as reported in Bigoni (2012) to obtain the stresses

T i = −π + λi
∂W (λ1, λ2, λ3)

∂λi
, i = 1, 2, 3 (1.48)

in which π is a Lagrangean multiplier and W is the strain energy density
that relates the stress/strain measures. Several models are developed, the
Neo-Hookean elasticity and J2-Deformation theory of plasticity will be
analyzed.

1.4.2 Neo-Hookean materials

The strain energy density for the Neo-Hookean material is

W (λi) = µ0
2
(
λ2

1 + λ2
2 + λ2

3 − 3
)

(1.49)

where µ0 is a material parameter that represents the shear stiffness in
unstressed configuration.

Adding the incompressibility constraint, the Cauchy stress tensor be-
comes

T = −πI + µ0(B − I). (1.50)

where B is the left Cauchy-Green strain tensor and I is the identity ma-
trix. Starting from Eq. (1.47), in case of plane strain condition λ3 = 1 for
an incompressible material

λ1 = 1
λ2

= λ (1.51)

so, the left Cauchy-Green strain tensor B takes the following form

B = λ2v1 ⊗ v1 + 1
λ2 v2 ⊗ v2 + v3 ⊗ v3. (1.52)
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1.4. Constitutive equations

1.4.3 J2 Deformation theory of plasticity model

In this case a generalization of the hyperelastic finite strain model is
assumed as proposed by Hutchinson and Neale (1978). Its importance
stems from the fact that it can serve as Hill’s linear compariso solid for
elastc-plastic solids.

In particular, Hill (1958) has shown that for elastic-plastic solids and
for a pre-bifurcation state corrisponding to continued plastic loading, the
first possible bifurcation can be investigated for a solid, the so-called lin-
ear comparison solid, having moduli independent of rate quantities and
corresponding to the active moduli in the pre-bifurcation state.

The corresponding strain energy density in terms of logarithmic strains
is taken to be

W (εi) = K

N + 1

[2
3(ε2

1 + ε2
2 + ε2

3)
]N+1

2
(1.53)

and remembering for the incompressibility constraint that

ε1 + ε2 + ε3 = 0. (1.54)

where K is a constitutive stiffness parameter and N is an hardening ex-
ponent, subject to the restriction 0 < N < 1.
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Chapter 2

Imperfect interface model
for a thin soft layer

2.1 Introduction
A thin soft adhesive interphase is considered between dissimilar elas-

tic media. The material of the intermediate layer is modelled by elasto-
plastic pressure-sensitive constitutive law. An asymptotic procedure, to-
gether with a novel formulation of the deformation theory of plasticity for
pressure-sensitive materials, is used in order to derive nonlinear transmis-
sion conditions for the corresponding imperfect zero-thickness interface.
Here, Von Mises criterion is applied for the ductile material that is present
in the thin layer, as shown in Fig. 2.1. Therefore, a non-classical formu-
lation of this constitutive model is derived. The thickness of the layer
is small in comparison with the characteristic size of the all mechanical
system. The ductile material is assumed to be soft in comparison with the
two adherents and may exhibit a very general non-linear constitutive be-
haviour, including compressible plastic deformations, the only assumption
being that the material is isotropic. In general, employing an asymptotic
procedure, the ductile thin layer is replaced by an imperfect interface of
zero-thickness equipped with non-linear transmission conditions, Sonato
et al. (2015) for details. The transmission conditions, in plane strain, are
given by the continuity of tractions across the interface.

The imperfect interface model will be useful in Chapter 4 to describe
the behaviour of a shear band inside a ductile matrix from the point of

Nicola Bordignon 11



2.2. Definition of the problem

view of the incremental state of stresses. In fact, the incremental form of
the transmission conditions through the imperfect interface will result to
be equal to the classical incremental conditions that described the propa-
gation of a shear band.

2.2 Definition of the problem
The problem is formulated through mathematical laws that describe

the behavior of the materials that make up the structural system. In par-

Figure 2.1: A thin soft interphase is considered between dissimilar elastic media in the
real mechanic system and its transformation in an imperfect interface equipped by the
transmission conditions laws derived by the asymptotic procedure.

ticular, three different materials are considered that have a linear elastic
behavior described through the following laws of HOOKE:

σ
(l)
ij = 2µ(l)ε

(l)
ij + λ(l)ε

(l)
kkδij x ∈ Ωl l = 1, 2, 3 (2.1)

where σij , εij are the components of the stress and the deformation tensors,
while µ and λ represent the parameters of Lamé for the materials (l =

12



2.2. Definition of the problem

1, 2, 3). It is possible to refer to the parameters E, ν,G and K because
they depend on the parameters of Lamé through the following relations

E = µ(3λ+ 2µ)
λ+ µ

ν = λ

2(λ+ µ) G = µ, K = λ+ 2µ
3 (2.2)

The analysis of the problem is carried out assuming that the materials ad-
jacent to the imperfect interface are homogeneous, while the material with
which the imperfect interface is formed is non-homogeneous and therefore
the parameters µ and λ are a function of the vector position:

µ(2) = µ(2)(x) λ(2) = λ(2)(x) (2.3)

The equations of equilibrium and congruence for the system, neglecting
the forces of volume, are:

divσ(l) = 0 x ∈ Ωl l = 1, 2, 3 (2.4)

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂ui

)
(2.5)

where σ represents the stress tensor, ε represents the strain tensor and
uj , (j = 1, 2, 3), represent the components of the displacement vector.
Now, inserting the congruence equations (2.5) in the law of Hooke (2.1)
and then in the classical equilibrium equations we obtain the equations of
Navier-Lamé:

grad
(
(λ(l) + µ(l)) div

)
u(l) + (∇ · µ(l)∇)u(l) = 0 x ∈ Ωl (2.6)

In the formulation under examination the parameters of Lamé are constant
for the materials adjacent to the interface and therefore can be taken out
of the operators in the (2.6). Let’s assume that the imperfect interface
has a constant thickness of 2h on the x1 − x3 plane. The plans in which
the boundary conditions of the interface are defined are at x2 = ±h and
the following Transmission Conditions are satisfied along these planes

u(2) = u(1) σ(2)
y = σ(1)

y y = h (2.7)

u(2) = u(3) σ(2)
y = σ(3)

y y = −h (2.8)

A parameter ε is introduced that allows to rescale the geometric and me-
chanical characteristics of the interface:

13
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Figure 2.2: Rescaling operation of the variables of the real problem.

ε� 1 (2.9)

h = εh∗ (2.10)

E(2)(x) = εE∗(x) (2.11)

Furthermore, it is assumed that the parameters describing the behavior
of the various materials E∗(x) and E(l), (l = 1, 3) are of the same order of
magnitude and independent from the position vector within the interface
and that the following relation is valid for the Poisson module:

ν(2) = ν∗ <
1
2 (2.12)

The parameters of Lamé take on an asymptotic behavior due to the ε
parameter:

µ(x, εξ) = εµ∗(x, ξ) (2.13)

λ(x, ξ) = ελ∗(x, ξ) (2.14)

0 < µ(2)(x) = εµ∗(x), 0 < λ(2)(x) = ελ∗(x) (2.15)
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2.2. Definition of the problem

2.2.1 Derivation of the Transmission Conditions for the im-
perfect interface model

The Transmission Conditions are derived from the asymptotic anal-
ysis through the introduction of the parameter ε, which rediscovers the
independent variable x2 and the variables related to it. Let’s consider a
flat problem for a solid formed by two elastic materials joined by a con-
stant thickness intermediate polymeric adhesive Ωh = Ω+∪Ω−∪Ω, where
Ω± = {(x, y),±y ≥ h}, Ω = {(x, y), |y| ≤ h}. We assume that the inter-
mediate interface is non-homogeneous and isotropic, while the two elastic
materials are homogeneous and isotropic. For a solid body, neglecting the

Figure 2.3: Generic 2D solid body with an imperfect interface inside.

volume forces, the following relationships are valid

div σij = 0 (2.16)

εij = 1
2(∂ui
∂xj

+ ∂uj
∂xi

) (2.17)

σij = λ(trεij)Iij + 2µεij (2.18)

Considering the Plane Strain problem the (2.16) becomes

∂σxx
∂x

+ ∂σxy
∂y

= 0

∂σyx
∂x

+ ∂σyy
∂y

= 0

15



2.2. Definition of the problem

Substituting the (2.17) in the (2.18) we get(
σxx σxy
σyx σyy

)
=
(
λ(∂ux∂x + ∂uy

∂y ) + 2µ(∂ux∂x ) µ∂ux∂y + ∂uy
∂x

µ(∂ux∂y + ∂uy
∂x ) λ(∂ux∂x + ∂uy

∂y ) + 2µ∂uy∂y

)
(2.19)

Now the stress tensor σij results from the displacements ux, uy and apply-
ing to it the operator divσij determine

∂

∂x
(λ∂uy

∂y
+ ∂ux

∂x
(λ+ 2µ)) + ∂

∂y
(µ(∂ux

∂y
+ ∂uy

∂x
)) = 0 (2.20)

∂

∂x
(µ(∂uy

∂x
+ ∂ux

∂y
)) + ∂

∂y
(λ∂ux

∂x
+ ∂uy

∂y
(λ+ 2µ)) = 0 (2.21)

Collecting common factors and rewriting everything in matrix form yield(
(λ+ 2µ)D2

x + µD2
y (λ+ µ)DxDy

(λ+ µ)DxDy (λ+ 2µ)D2
y + µD2

x

)(
ux
uy

)
=
(

0
0

)
(2.22)

where

D2
x = ∂∂

∂x∂x
, Dx = ∂

∂x
, D2

y = ∂∂

∂y∂y
, Dy = ∂

∂y

Defining the operator L

L =
(

(λ+ 2µ)D2
x + µD2

y (λ+ µ)DxDy

(λ+ µ)DxDy (λ+ 2µ)D2
y + µD2

x

)
(2.23)

the equation of Navier-Lamé can be rewrite in the following way(
Lxx Lyx
Lyx Lyy

)(
ux
uy

)
=
(

0
0

)
(2.24)

Now, remembering the formulation of the problem and referring to the Eq.
(2.14) and the Eq. (2.13), it is possible through the asymptotic calculation
to define the new operator L∗

L∗ =
(

(ελ∗ + 2εµ∗)D2
x + µ∗

ε D
2
ξ (λ∗ + µ∗)DxDξ

(λ∗ + µ∗)DxDξ (λ∗ε + 2µ∗ε )D2
ξ + εµ∗D

2
x

)
(2.25)
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2.2. Definition of the problem

This operator can be rewritten as the sum of differential operators

L∗ = ε−1L0 + L1 + εL2 (2.26)

in which

L0 =
(

∂
∂ξµ∗

∂
∂ξ 0

0 ∂
∂ξ (λ∗ + 2µ∗) ∂∂ξ

)
(2.27)

L1 =
(

0 ∂
∂x(λ∗ + µ∗) ∂∂ξ

∂
∂x(λ∗ + µ∗) ∂∂ξ 0

)
(2.28)

L2 =
(

∂
∂x(λ∗ + 2µ∗) ∂

∂x 0
0 ∂

∂xµ∗
∂
∂x

)
(2.29)

Through mathematical passages similar to those just carried out, the re-
lationship between the stress vector and the displacement vector can be
written as follows

σy(x, y) = Mu(x, y) (2.30)

The M operator can be rewritten, always referring to the Eqs. (2.14)
and (2.13), through the asymptotic calculation as the sum of differential
operators in the following way

M∗ = ε−1M0 + M1 (2.31)

in which

M0 =
(
µ∗

∂
∂ξ 0

0 (λ∗ + 2µ∗) ∂∂ξ

)
(2.32)

M1 =
(

0 µ∗
∂
∂x

λ∗
∂
∂x 0

)
(2.33)

Considering the relationship between carrier displacements in the real
problem and rescaled

w(x, ξ) = u±(x, y) (2.34)

the solution is determined within the domain in the form of asymptotic
series

w(x, ξ) =
∞∑
k=0

εkwk(x, ξ) (2.35)

u±(x, y) =
∞∑
k=0

εku±k (x, y) (2.36)
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2.2. Definition of the problem

σ±(x, ξ) =
∞∑
k=0

εkσ±k (x, ξ) (2.37)

the following mathematical system is defined

(ε−1L0 + L1 + εL2)ε
(
w1x + ε−1w0x
w1y + ε−1w0y

)
=
(

0
0

)
(2.38)

At this point, the following equations can be obtained by developing the
components of the vector w0 :

L0
ε

(
w0x
w0y

)
=
(

0
0

)
(2.39)

u±0 (x,±0) = w0(x,±h0) (2.40)

From Eqs. (2.40) and (2.39) it is possible to determine the components of
the vector directly w0, indicating with:

A =
(
µ∗ 0
0 λ∗ + 2µ∗

)
(2.41)

∂

∂ξ
A(x, ξ) ∂

∂ξ
w0(x, ξ) = 0 (2.42)

integrating a first time

A(x, ξ) ∂
∂ξ
w0(x, ξ) = a(x) (2.43)

and then a second one gets:

w0(x, ξ) =
∫ ξ

−h0
A−1(x, t)a(x) dt+ b(x) (2.44)

From Eq. (2.44) it is noted that the tensile stress in the thin layer is
independent of ξ

σ(2)
y = A(x, ξ) ∂

∂ξ
w0(x, ξ) (2.45)

with σ
(2)
y constant along the vertical direction. It can therefore be con-

cluded that:
σ(2)
y = σ(1)

y = σ(3)
y (2.46)
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2.2. Definition of the problem

The vectors a(x) e b(x) can be easily determined by the boundary condi-
tions expressed in Eqs. (2.8) and considering the Eq. (2.30):

b(x) = u(3)(x) a(x) = σ(3)
y (x) (2.47)

from which we can see that the vector σ(3)
y (x) does not depend on the

variable ξ and therefore on the variable y in the real problem. Then:

w0(x, ξ) =
∫ ξ

−h0
A−1(x, t) dta(x) + b(x) (2.48)

It can be seen now that the A array contains constant terms that do not
vary within the thickness of the adhesive layer and are therefore indepen-
dent of the ξ variable. Integrating on the whole thickness and taking into
account the boundary conditions on the equalities of the displacements in
the real problem determine:

u(1)(x)− u(3)(x) =
∫ h

−h
A−1(x, t) dtσ(3)

y (x) (2.49)

At this point, it is possible to write the final conditions describing the
transmission of the stresses through the imperfect interface indicating with
the term jump the notation [[fx]] = f(y = h)− f(y = −h)

σ(1)
y (x) = σ(3)

y (x) (2.50)

so
[[σxy]] = 0 [[σyy]] = 0 (2.51)

Assuming also that the thickness of the interface is constant(
[[u1]]
[[u2]]

)
=
(
τ1 0
0 τ2

)(
σxy
σyy

)
(2.52)

in which
τ1 = 2h 1

µ
(2.53)

τ2 = 2h 1
λ+ 2µ (2.54)

and finally, in plane strain conditions,(
σxy
σyy

)
= 1

2h

(
µ 0
0 λ+ 2µ

)(
[[u1]]
[[u2]]

)
(2.55)
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2.3. Deformation Theory

2.3 Deformation Theory
Focusing on the parameters of Lamé it is possible to notice how these

are in function of the deformation field that affects the imperfect interface.
In particular, the following dependencies can be highlighted:

λ = λ(Jε1 , Je2) (2.56)

µ = µ(Jε1 , Je2) (2.57)

where Jε1 and Je2 respectively represent the invariant of the first order of the
deformation tensor and the second invariant of the tensor representing the
deviatoric part of the tensor of the deformations. In fact, the deformation
tensor can be written by adding together the volumetric part and the
deviatoric part in the following way:ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 =

εm 0 0
0 εm 0
0 0 εm

+

ε11 − εm ε12 ε13
ε21 ε22 − εm ε23
ε31 ε32 ε33 − εm


(2.58)

εij = εmI + eij (2.59)

where
εm = 1

3(ε11 + ε22 + ε33) (2.60)

I =

1 0 0
0 1 0
0 0 1

 (2.61)

In the same way the stress tensor can also be written adding together the
volumetric part and the deviatoric partσ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 =

σm 0 0
0 σm 0
0 0 σm

+

σ11 − σm σ12 σ13
σ21 σ22 − σm σ23
σ31 σ32 σ33 − σm


(2.62)

σij = σmI + sij (2.63)

where I always represents the identity matrix, while

σm = 1
3(σ11 + σ22 + σ33) (2.64)

20



2.3. Deformation Theory

Applying asymptotic calculation

εij = O1 εi2 = 1
2
∂ui
∂x2

+O1 i, j = 1, 3 ε22 = ∂u2
∂x2

(2.65)

and define the invariants
Jε1 = ε22, (2.66)

Je2 = 1
3ε

2
22 + ε2

12 + ε2
23. (2.67)

Using the Transmission Condition (2.55) is possible to write invariants in
terms of jump displacement components

Jε1 = 1
2h [[u2]], (2.68)

Je2 = 1
12h2 [[u2]]2 + 1

16h2 [[u1]]2 + 1
16h2 [[u3]]2. (2.69)

Let us now introduce the following hypotheses in order to identify the
plastic component that influences the parameters of Lamé and then adapt
them in the case of elasto-plastic constitutive models that describe the
behavior of the imperfect interface:

• Initially isotropic material

• The main axes of the plastic deformation tensor εpij are always coin-
cident with the stress tensor axes σpij

• The tensor constituted by the deviatoric part epij of the deformation
tensor is proportional to the tensor constituted by the deviatoric
part sij of the stress tensor.

It is possible to write

εij = εeij + εpij = (εem + εpm)I + eeij + epij , (2.70)

εeij = εemI + eeij . (2.71)

The plastic deformation can be rewritten by introducing two functions
φ1, φ2 that allow to describe the hardening behavior of the material com-
posing the interface:

εpij = φ1σmI + φ2sij , (2.72)
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2.3. Deformation Theory

εeij = sij
2G εem = σm

3K (2.73)

Replacing the Eqs. (2.72) and (2.73) in the Eq. (2.70), and remembering
the Eq. (2.2) relationship determines

εij =
(

1 + ν

E
+ φ2

)
sij +

(
1− 2ν
E

+ φ1

)
σmI (2.74)

Using the Eqs. (2.63), (2.70), (2.72) and (2.73) yield

εij =
(

1 + ν

E
+ φ2

)
σij −

(
3ν
E

+ φ2 − φ1

)
E

1− 2ν + φ1E
εmI (2.75)

then

σij =
(

E

1 + ν + Eφ2

)
εij +

(
E

1 + ν + Eφ2

)(
3ν + (φ2 − φ1)E

1− 2ν + Eφ1

)
εmI.

(2.76)
At this point, it is easy to determine the parameters of Lamé as a function
of φ1 and φ2

µ(φ2) = E

2(1 + ν + φ2E) , (2.77)

λ(φ1, φ2) = E
3ν + (φ2 − φ1)E

3(1 + ν + Eφ2)(1− 2ν + Eφ1) , (2.78)

λ(φ1, φ2) + 2µ(φ2) = E
3(1− ν) + (φ2 + 2φ1)E

3(1 + ν + Eφ2)(1− 2ν + Eφ1) . (2.79)

By imposing the necessary conditions for the developed deformation the-
ory to be valid within the imperfect interface

E > 0 − 1 < ν < 0.5, (2.80)

so
φ2 > 0 φ1 > −

1− 2ν
E

(φ2 − φ1) > −3ν
E
. (2.81)

We now define the functions φ1 and φ2 and to do this the relationships
between the invariants of the stress tensor and strain tensor are considered

Jε
p

1 = εpkk Jσ1 = σkk (2.82)
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Je
p

2 = 1
2e

p
ije

p
ij Js2 = 1

2sijsij (2.83)

from Eq. (2.72)
Jε

p

1 = 3φ1σm = Jσ1 φ1, (2.84)

Je
p

2 = 1
2φ

2
2sijsij = φ2

2J
s
2 . (2.85)

Therefore, in the case of multiaxial state of stress

φ1 = Jε
p

1
Jσ1

, (2.86)

φ2 =
√
Je

p

2
Js2

. (2.87)

2.3.1 Von Mises yield criterion

Suppose the imperfect interface behaves according to the Von Mises
criterion, the yield surface is described in the following relation

F (Js2) =
√
Js2 − ks (2.88)

According to the developed deformation theory, the tensor of plastic de-
formations can be written in the following form

εpij = φ2sij (2.89)

Furthermore, in the case of Von Mises material, φ1 = 0 and

φ2 = φ2(Je2) (2.90)

while the parameters of Lamé and the elastic constants take the following
form:

µ(φ2) = E

2(1 + ν + φ2E) , (2.91)

λ(φ2) = E
3ν + φ2E

3(1 + ν + Eφ2)(1− 2ν) , (2.92)

λ(φ2) + 2µ(φ2) = E
3(1− ν) + φ2E

3(1 + ν + Eφ2)(1− 2ν) , (2.93)
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2.3. Deformation Theory

G(φ2) = E

2(1 + ν + φ2E) , (2.94)

E(φ2) = 3E
3 + 2Eφ2

, (2.95)

ν(φ2) = 3ν + φ2E

3 + 2Eφ2
, (2.96)

K = E

3(1− 2ν) . (2.97)

For a material that has a linear hardening, the function ks in the Eq.
(2.88) is

ks =
√
Js2 = σx√

3
= Epεpx + σs√

3
(2.98)

Substituting εpx with the equivalent plastic deformation, which is defined
for a material at Von Mises as

εpx = 2√
3

√
Je

p

2 (2.99)

yields
ks = 2

3E
p
√
Je

p

2 + σs√
3

(2.100)

The function φ2 in the case of multiaxial stress state can be obtained
by rewriting the second invariant of the deviatoric part of the stress and
the strain and of the plastic deformation tensor according to the second
invariant of the deviatoric part of the total strain tensor

√
Js2 = E(2Ep

√
Je2 +

√
3σs)

3E + 2(1ν)Ep , (2.101)

√
Je

p

2 = 3E
√
Je2 −

√
3(1 + ν)σs

3E + 2(1ν)Ep . (2.102)

The functions φ1 e φ2 are
φ1 = 0 (2.103)

φ2 = 3E
√
Je2 −

√
3(1 + ν)σs

E(2Ep
√
Je2 +

√
3σs)

(2.104)
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Chapter 3

Incremental deformation
theory

3.1 Introduction
The mechanics of incremental deformations superimposed upon a given

strain allows the investigation of the response of a solid body subject to a
pre-stress different direction. Essentially, a boundary-value problem and
a set of solving incremental relationships have to be introduced. All the
equations take into account the presence of a given pre-stress state. As
pointed out by Biot, if we restrict attention to incremental deformation,
the circustances that lead to a specific distribution of pre-stress within
the body are not required to be known. Therefore, equations valid for any
material model are established. Biot developed the corresponding theory
in the monograph Mechanics of Incremental Deformation(1965). In the
following sections we will focus on elastic material, isotropic in the initial
state, for which explicit expressions for the stress are available at every
stage of deformation and incremental equationscan be obtained directly
from relative to finite strain. The mechanics of incremental deformations
received much attention in relation to the developments of numerical tech-
niques designed to solve nonlinear problems. On the other hand, from the
theoretical point of view, several works have been published concerning cri-
teria of stability and uniqueness of incremental boundary-value problems
(Hill, 1957, 1978; Rice 1977) that provide useful tools in understanding
the effective behaviour of loaded structures.
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3.2. Incremental constitutive equations for incompressible, plane strain elasticity

3.2 Incremental constitutive equations for incom-
pressible, plane strain elasticity

Biot has provided a general procedure for incremental elastic incom-
pressible constitutive equations. Starting from the relation between the
Cauchy stress T and the left Cauchy-Green strain tensor B for a isotropic
elastic solid the Biot constitutive equations can be obtain and in particular
for the case of Neo-Hookean material. Taking the material time derivative
of the Eq. (1.50), for the case of Mooney-Rivlin incompressible material
as reported in Bigoni (2012), that is a generalization of the Neo-Hookean
material model, yields

Ṫ = −Π̇I + β0Ḃ + β1
˙(B−1) + β̇0B + β̇1B

−1 (3.1)

in which
Ḃ = DB +BD +WB −BW (3.2)

and
˙B−1 = −B−1D −DB−1 +WB−1 −B−1W (3.3)

where W is the spin tensor and D is the Eulerian strain rate, while β0
and β1 are

β0 = 1
λ2

1 − λ2
2

[
(T1 − T3)λ2

1
λ2

1 − λ2
3
− (T2 − T3)λ2

2
λ2

2 − λ2
3

]
(3.4)

and
β1 = 1

λ2
1 − λ2

2

[
T1 − T3
λ2

1 − λ2
3
− T2 − T3
λ2

2 − λ2
3

]
(3.5)

Following the derivation in Bigoni (2012) and using the definition of Jau-
mann derivative the incremental costitutive equation valid for three-dimensional,
incompressible Cauchy elasticity become

T̂ + Π̇I = β0(DB +BD)− β1(B−1D +DB−1)+(
∂β0
∂λ1

λ̇1 + ∂β0
∂λ2

λ̇2

)
B +

(
∂β1
∂λ1

λ̇1 + ∂β1
∂λ2

λ̇2

)
B−1 (3.6)

in which βi are expressed as function of the principal stretches. Specialized
these formulations for the case of incremental plane strain deformations
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3.2. Incremental constitutive equations for incompressible, plane strain elasticity

superimposed on a generic state of homogeneous deformation means

diagB =
(
λ2

1, λ
2
2,

1
λ2

1λ
2
2

)
, Di3 = D3i = 0, i = 1, 2, 3, (3.7)

so the out-of-plane stress rate components can be derived as

T̂33 = −Π̇ +
[

1
λ2

1λ
2
2

(
λ2

1
∂β0
∂λ1
− λ2

2
∂β0
∂λ2

)
+ λ2

1λ
2
2

(
λ2

1
∂β1
∂λ1
− λ2

2
∂β1
∂λ2

)]
(
D11 +D22

2

)
. (3.8)

The incremental constitutive equations for plane strain incremental iso-
choric deformation superimposed on a given state of stress are

T̂12 = 2µD12

T̂11 − T̂22 = 2µ∗(D11 −D22)
D11 = −D22.

(3.9)

in which µ and µ∗ are two incremental moduli corresponding to shearing
parallel to and at 45◦ to the Eulerian principal axes. In detail, they can
expressed as functions of the principal stretches

µ = λ2
1 + λ2

2
2

(
β0 −

β1
λ2

1λ
2
2

)
, (3.10)

and

µ∗ = λ2
1 + λ2

2
2 β0 + λ2

1 − λ2
2

4

(
λ2

1
∂β0
∂λ1
− λ2

2
∂β0
∂λ2

)

− 1
λ2

1λ
2
2

[
λ2

1 + λ2
2

2 β1 + λ2
1 − λ2

2
4

(
λ2

1
∂β1
∂λ1
− λ2

2
∂β1
∂λ2

)]
. (3.11)

Furthermore, from the elastic energy of an elastic solid isotropic and de-
formed in plane strain conditions, λ3 = 1 and λ1 = 1/λ2 > 1, expressed
as a function of principal stretches it is possible to obtain

T1 − T2 = λ1
∂W

∂λ1
− λ2

∂W

∂λ2
(3.12)
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3.2. Incremental constitutive equations for incompressible, plane strain elasticity

and renaming λ = λ1 = 1/λ2 the following important and useful formula-
tion valid for plane strain incompressible hyperelasticity is obtained

T1 − T2 = λ
∂W

∂λ
. (3.13)

Using the definition of Jaumann derivative in the principal reference sys-
tem and taking the material-time derivative of the spectral representation
of the Cauchy stress, we have

T̂11 − T̂22 = Ṫ11 − Ṫ22, T̂12 = Ṫ12 + (T1 − T2)W12 (3.14)

and introducing the incremental representation of the unit vectors v1 and
v2 in the 1− 2 plane in terms of the incremental azimuthal angle θ

T̂11 − T̂22 = λ

2
d(T1 − T2)

dλ
(D11 −D22), T̂12 = (T1 − T2)λ

4 + 1
λ4 − 1D12.

(3.15)
Comparing the Eqs. (3.15) and Eq. (3.9) another useful description for
the two incremental moduli can be found

µ = λ4 + 1
λ4 − 1

T1 − T2
2 , µ∗ = λ

4
d(T1 − T2)

dλ
. (3.16)

At this point, assuming that the difference of the stress components T1−T2
can be represented in a Taylor series expansion near the condition of the
unstressed state

T1 − T2 ∼
d(T1 − T2)

dλ
|λ=1(λ− 1) (3.17)

that yields
µ∗
µ
∼ λ, (3.18)

showing that the material is incrementally isotropic at the unstressed state
λ1. The incremental constitutive equations for plane strain can be rewrit-
ten as

Ṡji = ṫij = Gijklvj,k + ṗδij , vi,i = 0, (3.19)

where vi is the velocity and δij is the Kronecker delta, and

ṗ = Ṫ1 + Ṫ2
2 (3.20)
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measures the in-plane hydrostatic stress rate as related to the Cauchy
stress rate. Tensor G is the elastic tensor

G1111 = µ∗ −
σ

2 − p, G1122 = −µ∗, G1112 = G1121 = 0, (3.21)

G2211 = −µ∗, G2222 = µ∗ + σ

2 − p, G2212 = G2221 = 0, (3.22)

G1212 = µ+ σ

2 , G1221 = G2112 = µ− p, G2121 = µ− σ

2 , (3.23)

with
σ = T1 − T2 (3.24)

and
p = T1 + T2

2 . (3.25)

At the end, the final form of the incremental constitutive equations are
derived in the useful form

ṫ11 = µ(2ξ − k − η)v1,1 + ṗ, (3.26)
ṫ22 = µ(2ξ + k − η)v2,2 + ṗ, (3.27)
ṫ12 = µ [(1 + k)v2,1 + (1− η)v1,2] , (3.28)
ṫ21 = µ [(1− η)v2,1 + (1− k)v1,2] , (3.29)

where
ξ = µ∗

µ
, η = p

µ
= T1 + T2

2µ , k = T1 − T2
2µ (3.30)

are non-dimensional parameters that represent the ratio between incre-
mental shear moduli, the dimensionless in-plane hydrostatic stress and
the in-plane deviatoric stress.

3.3 General solution for elastic layers
Following the procedure presented in Biot (1965) and Bigoni (2012) for

the mechanical problem related to the bifurcation of simple structures, the
general solution of an incremental quasi-static problem can be expressed
using a plane wave represetation

ψ = − 1
ic1

[
b1e

ic1Ω1x2 + b2e
ic1Ω2x2 + b3e

ic1Ω3x2 + b4e
ic1Ω4x2

]
f(c1x1)

(3.31)
where
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3.3. General solution for elastic layers

• c1 is the wavenumber of the bifurcated mode,

• Ωi are the four roots of the general solution that depend on the
regime in which the material is in terms of stress,

• f(c1x1) can be choose between:

eic1xi cos(c1x1) sin(c1x1). (3.32)

Furthermore, always starting from the definition of the stream function,
the components of the incremental displacement are defined as

v1 = ψ,2 v2 = ψ,1 . (3.33)

In this way, they assume the following form

v1 = (−b1Ω1e
ic1Ω1x2 − b2Ω2e

ic1Ω2x2 − b3Ω3e
ic1Ω3x2 − b4Ω4e

ic1Ω4x2)f(c1, x1)
(3.34)

v2 = −i
[
b1e

ic1Ω1x2 + b2e
ic1Ω2x2 + b3e

ic1Ω3x2 + b4e
ic1Ω4x2

]
f ′(c1, x1)

(3.35)
where a prime denotes differentiation with respect to the argument. For
example, if f(c1, x1) is assumed equal to eic1xi , the f ′(c1, x1) would be
equal to if(c1, x1). At this point, the incremental nominal stress can be
calculated using the constitutive equation to yield

ṫ11 = c1µ(2ξ − k − η)v̂1f
′ + ṗ,

ṫ22 = −c1µ(2ξ + k − η)v̂1f
′ + ṗ,

ṫ12 = µ [−c1(1 + k)v̂2 + (1− η)v̂1,2] f,
ṫ21 = µ [−c1(1− η)v̂2 + (1− k)v̂1,2] f,

(3.36)

where

v̂1 = −b1Ω1e
ic1Ω1x2 − b2Ω2e

ic1Ω2x2 − b3Ω3e
ic1Ω3x2 − b4Ω4e

ic1Ω4x2 (3.37)

v̂2 = −i
[
b1e

ic1Ω1x2 + b2e
ic1Ω2x2 + b3e

ic1Ω3x2 + b4e
ic1Ω4x2

]
(3.38)

v̂1,2 = −ic1
[
b1Ω2

1e
ic1Ω1x2 + b2Ω2

2e
ic1Ω2x2 + b3Ω2

3e
ic1Ω3x2 + b4Ω2

4e
ic1Ω4x2

]
(3.39)
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and, using the derivation proposed by Bigoni (2012) the rate of in-plane
mean stress

ṗ = −c1µ
[
(k + Λ)(Ω1b1e

ic1Ω1x2 + Ω3b3e
ic1Ω3x2)

+(k − Λ)(Ω2b2e
ic1Ω2x2 + Ω4b4e

ic1Ω4x2)
]
f ′. (3.40)

Remembering the relations between Ωi, the incremental nominal stress
become

ṫ11 =− c1µ{(2ξ − η + Λ)
[
Ω1b1e

ic1Ω1x2 + Ω3b3e
ic1Ω3x2

]
+ (2ξ − η − Λ)

[
Ω2b2e

ic1Ω2x2 + Ω4b4e
ic1Ω4x2

]
}f ′

(3.41)

ṫ22 =c1µ{(2ξ − η − Λ)
[
Ω1b1e

ic1Ω1x2 + Ω3b3e
ic1Ω3x2

]
+ (2ξ − η + Λ)

[
Ω2b2e

ic1Ω2x2 + Ω4b4e
ic1Ω4x2

] (3.42)

ṫ12 =ic1µ{(1 + k − (1− η)Ω2
1)
[
b1e

ic1Ω1x2 + b3e
ic1Ω3x2

]
+ (1 + k − (1− η)Ω2

2)
[
b2e

ic1Ω2x2 + b4e
ic1Ω4x2

]
}f

(3.43)

ṫ21 =ic1µ{(2ξ − η + Λ)
[
b1e

ic1Ω1x2 + b3e
ic1Ω3x2

]
+ (2ξ − η − Λ)

[
b2e

ic1Ω2x2 + b4e
ic1Ω4x2

]
}f

(3.44)

Now, analyzing the various mechanical problems and identifying the
correct incremental boundary conditions through the Eqs. (3.44), it is
always possible to determine the trivial response for bi with i = 1, 2, 3, 4.

Moreover, as reported before, c1 plays the role of the wave number
of the bifurcated field , whereas 2π/c1 represents the wavelenght of the
bifurcation field.

3.4 Uniqueness and stability criteria in plane strain
conditions and for incompressible elasticity

This section summeraizes the basic relations that are used to describe
and investigate the problem related tio the uniqueness of the static increm-
rntla boundary- vaklue problem explaine in the Hill’theory (1957). Taking
the appropriate specialization of the incremental equations that governe
the quasi-static incremental deformations and restricting the analysis to
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the case where incremental tractions ṡ are independent of the incremental
solutions of the incremtnal boundary-value problem

Div Ṡ + ḃ = 0, (3.45)

ẋ = ξ̇ on ∂Bx0 , (3.46)
Ṡn0 = ṡ0 on ∂Bσ0 . (3.47)

Suppose that there exist two different solutions for the same incremen-
tal boundary-value problem in terms of velocity fields , ẋ1 and ẋ2, and
in terms of corresponding stresses, Ṡ1 and Ṡ2. If ∆(·) = (·)1 − (·)2 de-
notes a difference of fields, it follows, considering that the body forces are
independent of the incremental solutions, that

Div ∆Ṡ = 0, (3.48)

∆ẋ = 0 on ∂Bx
0 , (3.49)

∆Ṡn0 = 0 on ∂Bσ
0 . (3.50)

Multiplying Eq. (3.48) by ∆Ṡ through the scalar product, integrating on
the total volume of the body B0 and applying the divergence theorem∫

∂B0
∆Ṡ ·∆Ḟ = 0. (3.51)

Hence, a sufficient condition that ensures uniqueness of the incrementla
problem is ∫

∂B0
∆Ṡ ·∆Ḟ > 0, (3.52)

for all pairs of distinct incremental displacement fields consistent with the
incremental boundary conditions. Consider now a loading path start-
ing from a configuration where the exclusion condition, derive in Eq.
(3.52) holds true and assuming that the integral becomes semi-definite,
this means not > but ≥ than zero, with equality holding for some ẋ 6= 0.
A bifurcation or limit load point has been encountered for some ẋ 6= 0
. This ẋ is termed an eigenmode, while thecritical configuration is a pri-
mary eigenstate, representing a bifurcation point on the deformation path.
Configurations that satisfy Ṡ ·∆Ḟ = 0 for some ẋ 6= 0 are called simply
eigenstates. In the following chapter, and in detail in the Appendix B, it
will present the effect of the introduction of an imperfect interface inside
an elastic solid at the point of view of the definition of the uniqueness and
stability criteria.
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Chapter 4

Models for a shear band in a
ductile material

Abstract A model of a shear band as a zero-thickness non-linear inter-
face is proposed and tested using finite element simulations. An imperfec-
tion approach is used in this model where a shear band that is assumed to
lie in a ductile matrix material (obeying von Mises plasticity with linear
hardening), is present from the beginning of loading and is considered to
be a zone in which yielding occurs before the rest of the matrix. This
approach is contrasted with a perturbative approach, developed for a J2-
deformation theory material, in which the shear band is modeled to emerge
at a certain stage of a uniform deformation. Both approaches concur in
showing that the shear bands (differently from cracks) propagate rectilin-
early under shear loading and that a strong stress concentration should
be expected to be present at the tip of the shear band, two key features
in the understanding of failure mechanisms of ductile materials.

4.1 Introduction
When a ductile material is brought to an extreme strain state through

a uniform loading process, the deformation may start to localize into thin
and planar bands, often arranged in regular lattice patterns. This phe-
nomenon is quite common and occurs in many materials over a broad
range of scales: from the kilometric scale in the earth crust (Kirby, 1985),
down to the nanoscale in metallic glass (Yang, 2005), see the examples
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4.1. Introduction

reported in Fig. 4.1.
After localization, unloading typically1 occurs in the material outside

the bands, while strain quickly evolves inside, possibly leading to final
fracture (as in the examples shown in Fig. 4.2, where the crack lattice
is the signature of the initial shear band network2) or to a progressive
accumulation of deformation bands (as for instance in the case of the
drinking straws, or of the iron meteorite, or of the uPVC sample shown in
Fig. 4.1, or in the well-known case of granular materials, where fracture
is usually absent and localization bands are made up of material at a
different relative density, Gajo et al. 2004).

It follows from the above discussion that as strain localization repre-
sents a prelude to failure of ductile materials, its mechanical understanding
paves the way to the innovative use of materials in extreme mechanical
conditions. For this reason shear bands have been the focus of a thorough
research effort. In particular, research initiated with pioneering works
by Hill (1962), Nadai (1950), Mandel (1962), Prager (1954) Rice (1977),
Thomas (1961) and developed –from theoretical point of view– into two
principal directions, namely, the dissection of the specific constitutive fea-
tures responsible for strain localization in different materials (for instance
as related to the microstructure, Bacigalupo and Gambarotta, 2013; Danas
and Ponte Castaneda, 2012; Tvergaard, 2014) and the struggle for the
overcoming of difficulties connected with numerical approaches (reviews
have been given by Needleman and Tvergaard, 1983; Petryk, 1997). Al-
though these problems are still not exhausted, surprisingly, the most im-
portant questions have only marginally been approached and are therefore
still awaiting explanation. These are as follows:

i.) Why are shear bands a preferred mode of failure for ductile ma-
terials? ii.) Why do shear bands propagate rectilinearly under mode II,
while cracks do not? iii.) How does a shear band interact with a crack or
with a rigid inclusion? iv.) Does a stress concentration exist at a shear

1For granular materials, there are cases in which unloading occurs inside the shear
band, as shown by Gajo et al. (2004).

2The proposed explanation for the crack patterns shown in Fig. 4.2 releases on
the fact that the fracture network has formed during the plastic evolution of a ductile
homogeneously deformed material. Other explanations may be related to bonding of
an external layer to a rigid substrate (Peron et al. 2013), or to surface instability
(Boulogne et al. 2015; Destrade and Merodio, 2011), or to instabilities occurring during
shear (Ciarletta et al. 2013; Destrade et al. 2008).
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Figure 4.1: Examples of strain localization. From left to right, starting from the upper
part: A merlon in the Finale Emilia castle failed (during the Emilia earthquake on May
20, 2012) in compression with a typical ‘X-shaped’ deformation band pattern (bricks are
to be understood here as the microstructure of a composite material). A sedimentary
rock with the signature of an ‘X-shaped’ localization band (infiltrated with a different
mineral after formation). A stone axe from a British Island (Museum of Edinburgh)
evidencing two parallel localization bands and another at a different orientation. A
runestone (Museum of Edinburgh) with several localized deformation bands, forming
angles of approximatively 45◦ between each other. A polished and etched section of an
iron meteorite showing several alternate bands of kamacite and taenite. Deformation
bands in a strip of unplasticized poly(vinyl chloride) (uPVC) pulled in tension and
eventually evolving into a necking. An initially regular hexagonal disposition of drinking
straws subject to uniform uniaxial strain has evolved into an ‘X-shaped’ localization
pattern. A fracture prevails on a regularly distributed network of cracks in a vault of
the Amiens dome. ‘X-shaped’ localization bands in a kaolin sample subject to vertical
compression and lateral confining pressure. A thin, isolated localization band in a
sedimentary layered rock (Silurian formation near Aberystwyth).
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Figure 4.2: Regular patterns of localized cracks as the signature of strain localization
lattices. From left to right: Dried mud; Lava cracked during solidification (near Amboy
crater); Bark of a maritime pine (Pinus pinaster); Cracks in a detail of a painting by J.
Provost (‘Saint Jean-Baptiste’, Valenciennes, Musée des Beaux Arts).

band tip? v.) How does a shear band behave under dynamic conditions?
The only systematic3 attempt to solve these problems seems to have

been a series of works by Bigoni and co-workers, based on the perturbative
approach to shear bands (Argani et al. 2014; 2013; Bigoni and Capuani,
2002; 2005; Piccolroaz et al. 2006). In fact problems (i.), (ii.), and (iv.)
were addressed in (Bigoni and Dal Corso, 2008 and Dal Corso and Bigoni,
2010), problem (iii.) in (Dal Corso et al. 2008; Bigoni et al. 2008; Dal
Corso and Bigoni, 2009), and (v.) in (Bigoni and Capuani, 2005).

The purpose of the present article is to present a model of a shear band
as a zero-thickness interface and to rigorously motivate this as the asymp-
totic behaviour of a thin layer of material, which is extremely compliant
in shear (Section 4.2). Once the shear band model has been developed,
it is used (in Section 4.3) to demonstrate two of the above-listed open
problems, namely (ii.) that a shear band grows rectilinearly under mode
II remote loading in a material deformed near to failure and (iv.) to es-
timate the stress concentration at the shear band tip. In particular, a
pre-existing shear band is considered to lie in a matrix as a thin zone
of material with properties identical to the matrix, but lower yield stress.

3Special problems of shear band propagation in geological materials have been ad-
dressed by Puzrin and Germanovich (2005) and Rice (1973).
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This is an imperfection, which remains neutral until the yield is reached in
the shear band.4 The present model is based on an imperfection approach
and shares similarities to that pursued by Abeyaratne and Triantafyllidis
(1981) and Hutchinson and Tvergaard (1981), so that it is essentially dif-
ferent from a perturbative approach, in which the perturbation is imposed
at a certain stage of a uniform deformation process.5

4.2 Asymptotic model for a thin layer of highly
compliant material embedded in a solid

A shear band, inside a solid block of dimension H, is modeled as a
thin layer of material (of semi-thickness h, with h/H � 1) yielding at a
uniaxial stress σ(s)

Y , which is lower than that of the surrounding matrix
σ

(m)
Y , Fig. 4.3. Except for the yield stress, the material inside and outside

the layer is described by the same elastoplastic model, namely, a von Mises
plasticity with associated flow rule and linear hardening, defined through
the elastic constants, denoted by the Young modulus E and Poisson’s ratio
ν, and the plastic modulus Ep, see Fig. 4.3b.

At the initial yielding, the material inside the layer (characterized by
a low hardening modulus Eep = EEp/(E + Ep)) is much more compliant
than the material outside (characterized by an elastic isotropic response
E).

For h/H � 1, the transmission conditions across the layer imply the
continuity of the tractions, t = [t21, t22]T , which can be expressed in the
asymptotic form

Jt21K = O(h), Jt22K = O(h), (4.1)

where J·K denotes the jump operator. The jump in displacements, JuK =
[Ju1K, Ju2K]T , across the layer is related to the tractions at its boundaries
through the asymptotic relations (Mishuris et al., 2013; Sonato et al.,

4A different approach to investigate shear band evolution is based on the exploitation
of phase-field models (Zheng and Li, 2009), which has been often used for brittle fracture
propagation (Miehe et al. 2010).

5To highlight the differences and the analogies between the two approaches, the incre-
mental strain field induced by the emergence of a shear band of finite length (modelled
as a sliding surface) is determined for a J2-deformation theory material and compared
with finite element simulations in which the shear band is modelled as a zero-thickness
layer of compliant material.
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Figure 4.3: (a) A shear band inside a ductile material modeled as a thin layer of highly
compliant material (Eep/E � 1) embedded in a material block characterized by a
dimension H, such that h/H � 1; both materials obey the same von Mises plasticity
model represented by the uniaxial stress behaviour reported in (b), but having a different
yield stress (lower inside than outside the shear band).

2015)

t21(Ju1K, Ju2K) = Ep
√

3Ju1K2 + 4Ju2K2 + 6hσ(s)
Y

(3E + 2(1 + ν)Ep)
√

3Ju1K2 + 4Ju2K2
EJu1K

2h +O(h),

(4.2)

t22(Ju1K, Ju2K) = (E + 2(1− ν)Ep)
√

3Ju1K2 + 4Ju2K2 + 8h(1− 2ν)σ(s)
Y

(1− 2ν)(3E + 2(1 + ν)Ep)
√

3Ju1K2 + 4Ju2K2
EJu2K

2h +

+O(h),
(4.3)

involving the semi-thickness h of the shear band, which enters the formula-
tion as a constitutive parameter for the zero-thickness interface model and
introduces a length scale. Note that, by neglecting the remainder O(h),
Eqs. (4.2) and (4.3) define nonlinear relationships between tractions and
jump in displacements.

The time derivative of Eqs. (4.2) and (4.3) yields the following asymp-
totic relation between incremental quantities

ṫ ∼
[1
h
K−1 +K0(Ju1K, Ju2K)

]
Ju̇K, (4.4)
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where the two stiffness matrices K−1 and K0 are given by

K−1 = E

2(3E + 2(1 + ν)Ep)

Ep 0

0 E + 2(1− ν)Ep
1− 2ν

 , (4.5)

K0 = 12Eσ(s)
Y

(3E + 2(1 + ν)Ep)(3Ju1K2 + 4Ju2K2)3/2

[
Ju2K2 −Ju1KJu2K

−Ju1KJu2K Ju1K2

]
,

(4.6)

Assuming now a perfectly plastic behaviour, Ep = 0, in the limit h/H → 0
the condition

Ju2K = 0 (4.7)
is obtained, so that the incremental transmission conditions (4.4) can be
approximated to the leading order as

ṫ ∼ 1
h
K−1Ju̇K. (4.8)

Therefore, when the material inside the layer is close to the perfect plas-
ticity condition, the incremental conditions assume the limit value

ṫ21 = 0, Ju̇2K = 0, (4.9)

which, together with the incremental version of eq. (4.1)2, namely,

Jṫ22K = 0, (4.10)

correspond to the incremental boundary conditions proposed in Bigoni
and Dal Corso (2008) to define a pre-existing shear band of null thickness.

The limit relations (4.9) and (4.10) motivate the use of the imperfect
interface approach (Mishuris, 2004; 2001; Mishuris and Ochsner, 2005;
2007; Mishuris and Kuhn, 2001; Antipov et al. 2001; Bigoni et al., 1998)
for the modelling of shear band growth in a ductile material. A compu-
tational model, in which the shear bands are modelled as interfaces, is
presented in the next section.

4.3 Numerical simulations
Two-dimensional plane-strain finite element simulations are presented

to show the effectiveness of the above-described asymptotic model for a
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thin and highly compliant layer in modelling a shear band embedded in a
ductile material. Specifically, we will show that the model predicts recti-
linear propagation of a shear band under simple shear boundary conditions
and it allows the investigation of the stress concentration at the shear band
tip.

The geometry and material properties of the model are shown in
Fig. 4.4, where a rectangular block of edges H and L ≥ H is subject to
boundary conditions consistent with a simple shear deformation, so that
the lower edge of the square domain is clamped, the vertical displacements
are constrained along the vertical edges and along the upper edge, where
a constant horizontal displacement u1 is prescribed. The domain is made
of a ductile material and contains a thin (h/H � 1) and highly compliant
(Eep/E � 1) layer of length H/2 and thickness 2h = 0.01 mm, which
models a shear band. The material constitutive behaviour is described
by an elastoplastic model based on linear isotropic elasticity (E = 200000
MPa, ν = 0.3) and von Mises plasticity with linear hardening (the plastic
modulus is denoted by Ep). The uniaxial yield stress σ(m)

Y for the matrix
material is equal to 500 MPa, whereas the layer is characterized by a lower
yield stress, namely, σ(s)

Y = 400 MPa.

Figure 4.4: Geometry of the model, material properties and boundary conditions (that
would correspond to a simple shear deformation in the absence of the shear band). The
horizontal displacement u1 is prescribed at the upper edge of the domain.
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The layer remains neutral until yielding, but, starting from that stress
level, it becomes a material inhomogeneity, being more compliant (because
its response is characterized by Eep) than the matrix (still in the elastic
regime and thus characterized by E). The layer can be representative
of a pre-existing shear band and can be treated with the zero-thickness
interface model, Eqs. (4.2) and (4.3). This zero-thickness interface was
implemented in the ABAQUS finite element software6 through cohesive
elements, equipped with the traction-separation laws, Eqs. (4.2) and (4.3),
by means of the user subroutine UMAT. An interface, embedded into
the cohesive elements, is characterized by two dimensions: a geometrical
and a constitutive thickness. The latter, 2h, exactly corresponds to the
constitutive thickness involved in the model for the interface (4.2) and
(4.3), while the former, denoted by 2hg, is related to the mesh dimension
in a way that the results become independent of this parameter, in the
sense that a mesh refinement yields results converging to a well-defined
solution.

We consider two situations. In the first, we assume that the plastic
modulus is Ep = 150000 MPa (both inside and outside the shear band), so
that the material is in a state far from a shear band instability (represented
by loss of ellipticity of the tangent constitutive operator, occurring at
Ep = 0) when at yield. In the second, we assume that the material is
prone to a shear band instability, though still in the elliptic regime, so that
Ep (both inside and outside the shear band) is selected to be ‘sufficiently
small’, namely, Ep = 300 MPa. The pre-existing shear band is therefore
employed as an imperfection triggering shear strain localization when the
material is still inside the region, but close to the boundary, of ellipticity.

4.3.1 Description of the numerical model

With reference to a square block (L = H = 10 mm) containing a pre-
existing shear band with constitutive thickness h = 0.005 mm, three differ-
ent meshes were used, differing in the geometrical thickness of the interface
representing the pre-existing shear band (see Fig. 4.5 where the shear band
is highlighted with a black line), namely, hg = {0.05; 0.005; 0.0005} mm
corresponding to coarse, fine, and ultra-fine meshes.

6ABAQUS Standard Ver. 6.13 has been used, available on the AMD Opteron cluster
Stimulus at UniTN.
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4.3. Numerical simulations

Figure 4.5: The three meshes used in the analysis to simulate a shear band (highlighted
in black) in a square solid block (L = H = 10 mm). The shear band is represented in
the three cases as an interface with the same constitutive thickness h = 0.005 mm, but
with decreasing geometric thickness hg; (a) coarse mesh (1918 nodes, 1874 elements, hg
= 0.05 mm); (b) fine mesh (32079 nodes, 31973 elements, hg = 0.005 mm); (c) ultra-fine
mesh (1488156 nodes, 1487866 elements, hg = 0.0005 mm)
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The three meshes were generated automatically using the mesh gener-
ator available in ABAQUS. In order to have increasing mesh refinement
from the exterior (upper and lower parts) to the interior (central part) of
the domain, where the shear band is located, and to ensure the appro-
priate element shape and size according to the geometrical thickness 2hg,
the domain was partitioned into rectangular subdomains with increasing
mesh seeding from the exterior to the interior. Afterwards, the meshes
were generated by employing a free meshing technique with quadrilateral
elements and the advancing front algorithm.

The interface that models the shear band is discretized using 4-node
two-dimensional cohesive elements (COH2D4), while the matrix material
is modelled using 4-node bilinear, reduced integration with hourglass con-
trol (CPE4R).

It is important to note that the constitutive thickness used for traction-
separation response is always equal to the actual size of the shear band
h = 0.005 mm, whereas the geometric thickness hg, defining the height
of the cohesive elements, is different for the three different meshes. Con-
sequently, all the three meshes used in the simulations correspond to the
same problem in terms of both material properties and geometrical dimen-
sions (although the geometric size of the interface is different), so that the
results have to be, and indeed will be shown to be, mesh independent.7

4.3.2 Numerical results

Results (obtained using the fine mesh, Fig. 4.5b) in terms of the shear
stress component σ12 at different stages of a deformation process for the
boundary value problem sketched in Fig. 4.4 are reported in Figs. 4.6 and
4.7.

In particular, Fig. 4.6 refers to a matrix with high plastic modulus,
Ep = 150000 MPa, so that the material is far from the shear band forma-
tion threshold. The upper limit of the contour levels was set to the value
σ12 = 500/

√
3 w 288.68 MPa, corresponding to the yielding stress of the

matrix material. As a result, the grey zone in the figure represents the
7Note that, in the case of null hardening, mesh dependency may occur in the simula-

tion of shear banding nucleation and propagation (Loret and Prevost, J.H., 1991; 1993;
Needleman, 1988). This numerical issue can be avoided by improving classical inelastic
models through the introduction of characteristic length-scales (Dal Corso and Willis,
2011; Lapovok et al. 2009).
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material at yielding, whereas the material outside the grey zone is still in
the elastic regime. Three stages of deformation are shown, corresponding
to: the initial yielding of the matrix material (left), the yielding zone oc-
cupying approximately one half of the space between the shear band tip
and the right edge of the domain (centre), and the yielding completely
linking the tip of the shear band to the boundary (right). Note that the
shear band, playing the role of a material imperfection, produces a stress
concentration at its tip. However, the region of high stress level rapidly
grows and diffuses in the whole domain. At the final stage, shown in
Fig. 4.6c, almost all the matrix material is close to yielding.

Fig. 4.7 refers to a matrix with low plastic modulus, Ep = 300 MPa,
so that the material is close (but still in the elliptic regime) to the shear
band formation threshold (Ep = 0). Three stages of deformation are
shown, from the condition of initial yielding of the matrix material near
the shear band tip (left), to an intermediate condition (centre), and finally
to the complete yielding of a narrow zone connecting the shear band tip
to the right boundary (right). In this case, where the material is prone
to shear band localization, the zone of high stress level departs from the
shear band tip and propagates towards the right. This propagation occurs
in a highly concentrated narrow layer, rectilinear, and parallel to the pre-
existing shear band. At the final stage of deformation, shown in Fig. 4.7c,
the layer of localized shear has reached the boundary of the block.

Results in terms of the shear strain component γ12, for both cases
of material far from, and close to shear band instability are reported in
Figs. 4.8 and 4.9, respectively. In particular, Fig. 4.8 shows contour plots of
the shear deformation γ12 for the case of a material far from the shear band
instability (Ep = 150000 MPa) at the same three stages of deformation as
those reported in Fig. 4.6. Although the tip of the shear band acts as a
strain raiser, the contour plots show that the level of shear deformation is
high and remains diffused in the whole domain.

Fig. 4.9 shows contour plots of the shear deformation γ12 for the case
of a material close to the shear band instability (Ep = 300 MPa), at the
same three stages of deformation as those reported in Fig. 4.7. It is noted
that the shear deformation is localized along a rectilinear path ahead of
the shear band tip, confirming results that will be reported later with the
perturbation approach (Section 4.4).

The shear deformation γ12 and the shear stress σ12 along the x-axis
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containing the pre-existing shear band for the case of a material close to
strain localization, Ep = 300 MPa, are shown in Fig. 4.10, upper and lower
parts, respectively. Results are reported for the three meshes, coarse, fine
and ultra-fine (Fig. 4.5) and at the same three stages of deformation as
those shown in Figs. 4.7 and 4.9. The results appear to be mesh indepen-
dent, meaning that the solution converges as the mesh is more and more
refined.

The deformation process reported in Figs. 4.7, 4.9, and 4.10 can be de-
scribed as follows. After an initial homogeneous elastic deformation (not
shown in the figure), in which the shear band remains neutral (since it
shares the same elastic properties with the matrix material), the stress
level reaches σ12 = 400/

√
3 w 230.9 MPa, corresponding to the yield-

ing of the material inside the shear band. Starting from this point, the
pre-existing shear band is activated, which is confirmed by a high shear
deformation γ12 and a stress level above the yield stress inside the layer,
−5 mm < x < 0 (left part of Fig. 4.10). The activated shear band induces
a strain localization and a stress concentration at its tip, thus generating
a zone of material at yield, which propagates to the right (central part of
Fig. 4.10) until collapse (right part of Fig. 4.10).

In order to appreciate the strain and stress concentration at the shear
band tip, a magnification of the results shown in Fig. 4.10 in the region
−0.2 mm < x < 0.2 mm is presented in Fig. 4.11. Due to the strong
localization produced by the shear band, only the ultra-fine mesh is able to
capture accurately the strain and stress raising (blue solid curve), whereas
the coarse and fine meshes smooth over the strain and stress levels (red
dotted and green dashed curves, respectively). The necessity of a ultra-
fine mesh to capture details of the stress/strain fields is well-known in
computational fracture mechanics, where special elements (quarter-point
or extended elements) have been introduced to avoid the use of these
ultra-fine meshes at corner points.

For the purpose of a comparison with an independent and fully nu-
merical representation of the shear band, a finite element simulation was
also been performed, using standard continuum elements (CPE4R) in-
stead of cohesive elements (COH2D4) inside the layer. This simulation
is important to assess the validity of the asymptotic model of the layer
presented in Sec. 4.2. In this simulation, reported in Fig. 4.12, the layer
representing the shear band is a ‘true’ layer of a given and finite thickness,
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thus influencing the results (while these are independent of the geometri-
cal thickness 2hg of the cohesive elements, when the constitutive thickness
2h is the same). Therefore, only the fine mesh, shown in Fig. 4.5b, was
used, as it corresponds to the correct size of the shear band. The coarse
mesh (Fig. 4.5a) and the ultra-fine mesh (Fig. 4.5c) would obviously pro-
duce different results, corresponding respectively to a thicker or thinner
layer. Results pertaining to the asymptotic model, implemented into the
traction-separation law for the cohesive elements COH2D, are also re-
ported in the figure (red solid curve) and are spot-on with the results
obtained with a fully numerical solution employing standard continuum
elements CPE4R (blue dashed curve).

A mesh of the same size as that previously called ‘fine’ was used to
perform a simulation of a rectangular block (H = 10 mm, L = 4H = 40
mm) made up of a material close to shear band instability (Ep = 300 MPa)
and containing a shear band (of length H/2 = 5 mm and constitutive
thickness 2h = 0.01 mm). Results are presented in Fig. 4.13. In parts (a)
and (b) (the latter is a detail of part a) of this figure the overall response
curve is shown of the block in terms of average shear stress σ̄12 = T/L (T
denotes the total shear reaction force at the upper edge of the block) and
average shear strain γ̄12 = u1/H. In part (c) of the figure contour plots of
the shear deformation γ12 are reported at different stages of deformation.
It is clear that the deformation is highly focused along a rectilinear path
emanating from the shear band tip, thus demonstrating the tendency of
the shear band towards rectilinear propagation under shear loading.

Finally, the incremental shear strain (divided by the mean incremental
shear strain) has been reported along the x-axis in Fig. 4.14, at the two
stages of deformation considered in Fig. 4.10 and referred there as (a) and
(c). These results, which have been obtained with the fine mesh, show that
a strong incremental strain concentration develops at the shear band tip
and becomes qualitatively similar to the square-root singularity found in
the perturbative approach.
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Figure 4.6: Contour plots of the shear stress σ12 for the case of material far from shear
band instability (Ep = 150000 MPa). The grey region corresponds to the material
at yielding σ12 ≥ 500/

√
3 w 288.68 MPa. Three different stages of deformation are

shown, corresponding to a prescribed displacement at the upper edge of the square
domain u1 = 0.037418 mm (a), u1 = 0.037518 mm (b), u1 = 0.037522 mm (c). The
displacements in the figures are amplified by a deformation scale factor of 25 and the
percentages refer to the final displacement.
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Figure 4.7: Contour plots of the shear stress σ12 for the case of material close to shear
band instability (Ep = 300 MPa). The grey region corresponds to the material at
yielding σ12 ≥ 500/

√
3. Three different stages of deformation are shown, corresponding

to a prescribed displacement at the upper edge of the square domain u1 = 0.0340 mm
(a), u1 = 0.0351 mm (b), u1 = 0.03623 mm (c). The displacements in the figures are
amplified by a deformation scale factor of 27.
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Figure 4.8: Contour plots of the shear deformation γ12 for the case of material far from
shear band instability (Ep = 150000 MPa). Three different stages of deformation are
shown, corresponding to a prescribed displacement at the upper edge of the square
domain u1 = 0.037418 mm (a), u1 = 0.037518 mm (b), u1 = 0.037522 mm (c). The
displacements in the figures are amplified by a deformation scale factor of 25.
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Figure 4.9: Contour plots of the shear deformation γ12 for the case of material close to
shear band instability (Ep = 300 MPa). Three different stages of deformation are shown,
corresponding to a prescribed displacement at the upper edge of the square domain
u1 = 0.0340 mm (a), u1 = 0.0351 mm (b), u1 = 0.03623 mm (c). The displacements in
the figures are amplified by a deformation scale factor of 27.
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Figure 4.10: Shear deformation γ12 (upper part) and shear stress σ12 (lower part) along
the x-axis containing the pre-existing shear band for the case of a material close to a
shear band instability Ep = 300 MPa. The black dotted line, in the bottom part of the
figure, indicates the yield stress level, lower inside the pre-existing shear band than that
in the outer domain. Three different stages of deformation are shown, corresponding
to a prescribed displacement at the upper edge of the square domain u1 = 0.0340 mm
(left), u1 = 0.0351 mm (center), u1 = 0.03623 mm (right).
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Figure 4.11: Shear and stress concentration at the shear band tip. Shear deformation
γ12 (upper part) and shear stress σ12 (lower part) along the x-axis containing the pre-
existing shear band for the case of a material close to a shear band instability Ep = 300
MPa. Three different stages of deformation are shown, corresponding to a prescribed
displacement at the upper edge of the square domain u1 = 0.0340 mm (left), u1 = 0.0351
mm (center), u1 = 0.03623 mm (right).
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Figure 4.12: Results of simulations performed with different idealizations for the shear
band: zero-thickness model (discretized with cohesive elements, COH2D) versus a true
layer description (discretized with CPE4R elements). Shear deformation γ12 (upper
part) and shear stress σ12 (lower part) along the horizontal line y = 0 containing the
pre-existing shear band for the case of a material close to a shear band instability
Ep = 300 MPa. Three different stages of deformation are shown, corresponding to a
prescribed displacement at the upper edge of the square domain u1 = 0.0340 mm (left),
u1 = 0.0351 mm (center), u1 = 0.03623 mm (right).
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Figure 4.13: Results for a rectangular domain (L = 40 mm, H = 10 mm) of material
close to shear band instability (Ep = 300 MPa) and containing a preexisting shear
band (of length H/2 = 5 mm and constitutive thickness 2h = 0.01 mm). (a) Overall
response curve of the block in terms of average shear stress σ̄12 = T/L, where T is
the total shear reaction force at the upper edge of the block, and average shear strain
γ̄12 = u1/H. (b) Magnification of the overall response curve σ̄12− γ̄12 around the stress
level corresponding to the yielding of the shear band. (c) Contour plots of the shear
deformation γ12 at different stages of deformation, corresponding to the points along
the overall response curve shown in part (b) of the figure. The deformation is highly
focused along a rectilinear path emanating from the shear band tip. The displacements
in the figures are amplified by a deformation scale factor of 50.
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Figure 4.14: The incremental shear strain γ̇12 (divided by the mean incremental shear
strain ˙̄γ12) along the x-axis at the two stages of deformation reported in in Fig. 4.10
and labeled there as (a) and (c). It is clear that a strong strain concentration develops
at the tip of the shear band, which becomes similar to the square-root singularity that
is found with the perturbative approach (Section 4.4 and Fig. 4.16.
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4.4 The perturbative vs the imperfection approach
With the perturbative approach, a perturbing agent acts at a certain

stage of uniform strain of an infinite body, while the material is subject
to a uniform prestress. Here the perturbing agent is a pre-existing shear
band, modelled as a planar slip surface, emerging at a certain stage of
a deformation path (Bigoni and Dal Corso, 2008), in contrast with the
imperfection approach in which the imperfection is present from the be-
ginning of the loading.

With reference to a x1–x2 coordinate system (inclined at 45◦ with re-
spect to the principal prestress axes xI–xII), where the incremental stress
ṫij and incremental strain ε̇ij are defined (i, j =1,2), the incremental or-
thotropic response under plane strain conditions (ε̇i3 = 0) for incompress-
ible materials (ε̇11 + ε̇22 = 0) can be expressed through the following
constitutive equations (Bigoni, 2012)8

ṫ11 = 2µε̇11 + ṗ, ṫ22 = −2µε̇11 + ṗ, ṫ12 = µ∗γ̇12, (4.11)

where ṗ is the incremental in-plane mean stress, while µ and µ∗ describe
the incremental shear stiffness, respectively, parallel and inclined at 45◦
with respect to prestress axes.

The assumption of a specific constitutive model leads to the definition
of the incremental stiffness moduli µ and µ∗. With reference to the J2–
deformation theory of plasticity (Bigoni and Dal Corso, 2008), particularly
suited to model the plastic branch of the constitutive response of ductile
metals, the in-plane deviatoric stress can be written as

tI − tII = kεI |εI |(N−1). (4.12)

In equation (4.12) k represents a stiffness coefficient and N ∈ (0, 1] is the
strain hardening exponent, describing perfect plasticity (null hardening)
in the limit N → 0 and linear elasticity in the limit N → 1. For the
J2–deformation theory, the relation between the two incremental shear
stiffness moduli can be obtained as

µ∗ = Nµ, (4.13)
8Note that the notation used here differs from that adopted in (Bigoni and Dal Corso,

2008), where the principal axes are denoted by x1 and x2 and the system inclined at
45◦ is denoted by x̂1 and x̂2.
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so that a very compliant response under shear (µ∗ � µ) is described in
the limit of perfect plasticity N → 0.

The perturbative approach (Bigoni and Dal Corso, 2008) can now be
exploited to investigate the growth of a shear band within a solid. To
this purpose, an incremental boundary value problem is formulated for
an infinite solid, containing a zero-thickness pre-existing shear band of
finite length 2l parallel to the x1 axis (see Fig. 4.15) and loaded at infinity
through a uniform shear deformation γ̇∞12 .
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45°

Figure 4.15: A perturbative approach to shear band growth: a pre-existing shear band,
modelled as a planar slip surface, acts at a certain stage of uniform deformation of an
infinite body obeying the J2–deformation theory of plasticity

The incremental boundary conditions introduced by the presence of a
pre-existing shear band can be described by the following equations:

ṫ21(x1, 0±) = 0, Jṫ22(x1, 0)K = 0, Ju̇2(x1, 0)K = 0, ∀|x1| < l. (4.14)

A stream function ψ(x1, x2) is now introduced, automatically satisfying
the incompressibility condition and defining the incremental displacements
u̇j as u̇1 = ψ,2, and u̇2 = −ψ,1. The incremental boundary value problem
is therefore solved as the sum of ψ◦(x1, x2), solution of the incremental ho-
mogeneous problem, and ψp(x1, x2), solution of the incremental perturbed
problem.

The incremental solution is reported in Fig. 4.16 for a low hardening
exponent, N = 0.01, as a contour plot (left) and as a graph (along the
x1-axis, right) of the incremental shear deformation γ̇12 (divided by the
applied remote shear γ̇∞12). Note that, similarly to the crack tip fields in
fracture mechanics, the incremental stress and deformation display square
root singularities at the tips of the pre-existing shear band. Evaluation of
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4.4. The perturbative vs the imperfection approach

the solution obtained from the perturbative approach analytically confirms
the conclusions drawn from the imperfection approach (see the numerical
simulations reported in Fig. 4.9 and 4.13), in particular:

• It can be noted from Fig. 4.16 (left) that the incremental deformation
is highly focussed along the x1 direction, confirming that the shear
band grows rectilinearly;

• The blow-up of the incremental deformation observed in the numer-
ical simulations near the shear band tip (Fig. 4.14) is substantiated
by the theoretical square-root singularity found in the incremental
solution (Fig. 4.16, right).
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Figure 4.16: Incremental shear strain near a shear band obtained through the pertur-
bative approach: level sets (left) and behaviour along the x1-axis (right).

We finally remark that, although the tendency towards rectilinear
propagation of a shear band has been substantiated through the use of
a von Mises plastic material, substantial changes are not expected when a
different yield criterion (for instance pressure-sensitive as Drucker-Prager)
is employed.
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Chapter 5

Sliding interface

Abstract Lubricated sliding contact between soft solids is an interesting
topic in biomechanics and for the design of small-scale engineering devices.
As a model of this mechanical set-up, two elastic nonlinear solids are con-
sidered jointed through a frictionless and bilateral surface, so that conti-
nuity of the normal component of the Cauchy traction holds across the
surface, but the tangential component is null. Moreover, the displacement
can develop only in a way that the bodies in contact do neither detach,
nor overlap. Surprisingly, this finite strain problem has not been correctly
formulated until now, so this formulation is the objective of the present pa-
per. The incremental equations are shown to be non-trivial and different
from previously (and erroneously) employed conditions. In particular, an
exclusion condition for bifurcation is derived to show that previous formu-
lations based on frictionless contact or ‘spring-type’ interfacial conditions
are not able to predict bifurcations in tension, while experiments—one of
which, ad hoc designed, is reported—show that these bifurcations are a re-
ality and become possible when the correct sliding interface model is used.
The presented results introduce a methodology for the determination of
bifurcations and instabilities occurring during lubricated sliding between
soft bodies in contact.

5.1 Introduction
Lubricated sliding along an interface between two deformable bod-

ies is typically characterized by very low friction and arises, for instance,
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in several biotribological systems (Dowson, 2012), such as the contact-
lens/cornea (Dunn et al., 2013) and the articular cartilage (Ateshian, 2009)
complexes, or in various engineering devices, such as windscreen wipers,
aquaplaning tires, and elastomeric seals (Stupkiewicz and Marciniszyn,
2009). These soft and slipping contacts are often characterized by large
elastic or viscoelastic deformations so that it is not obvious how to formu-
late the Reynolds equation to adequately model the fluid flow between two
contact surfaces that undergo large time-dependent deformations (Tem-
izer and Stupkiewicz, 2016). Moreover, a distinctive feature of lubricated
soft contacts is that they are capable of sustaining tensile contact tractions
during sliding, particularly in transient conditions, a phenomenon clearly
visible when a suction cup is moved on a lubricated substrate. Indeed, as
long as the pressure does not drop below the cavitation pressure, a soft
contact can be loaded in tension, possibly imposing large deformations in
a highly compliant solid. As an example of this situation, the sequence
of photos shown in Fig. 5.1 refers to an experiment (performed at the In-
stabilities Lab of the University of Trento) on tensile buckling involving
a sliding contact between two soft solids. This system has been designed
and realized to obtain a compliant sliding element, and thus to buckle in
tension, without using rigid parts such as rollers or sliding sleeves. In par-
ticular, a ‘T-shaped’ silicon rubber element is clamped at the lower end
and connected at the upper flat end to a silicon rubber suction cup, which
has been applied with a lubricant oil. The system is pulled in tension and
displays a tensile bifurcation in which the ‘T’ bends while the suction cup
slides along the upper flat end of the ‘T’. This bifurcation resembles that
analyzed in (Zaccaria et al. 2011), but involves here soft solids.

A bilateral and frictionless sliding contact condition has been often
employed to model the above-mentioned problems (for instance, in geo-
physics, Leroy and Triantafyllidis, 1996, or for sliding inclusions, Tsuchida
et al., 1986, or roll-bonding of metal sheets, Steif, 1990), where two bodies
in a current configuration share a common surface along which shear trac-
tion and normal separation/interpenetration must both vanish, but free
sliding is permitted.

Another model is based on a ‘spring-like’ interface, in which the incre-
mental nominal traction is related to the jump in the incremental displace-
ment across the interface (see Suo et al. 1992; Bigoni et al. 1997). This
model, in the limit of null tangential stiffness and null normal compliance
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Figure 5.1: A sequence of photos showing a tensile bifurcation involving sliding contact
between two soft solids. A silicon rubber suction cup is applied on a lubricant oil film
to the upper part of a ‘T-shaped’ silicon rubber (gray in the photo), clamped at the
lower end. The suction cup is pulled vertically, so that the straight configuration of the
‘T’ is a trivial equilibrium configuration (photo on the left) and a tensile bifurcation
occurs when this element starts bending (second photo from the left) and the suction
cup slips, as shown in the sequence of photos. Note that in this system rigid mechanical
devices such as rollers or sliding sleeves are avoided.

should reduce to the sliding interface model. While these models are el-
ementary within an infinitesimal theory, they become complex when the
bodies in contact suffer large displacement/strain (and may evidence bi-
furcations, as in the case of the soft materials involved in the experimental
set-up shown in Fig. 5.1). As a matter of fact, the freely sliding interface
model has never been even formulated so far and the ‘spring-like’ model
will be shown not to reduce to the freely sliding interface in the above-
mentioned limit of vanishing tangential stiffness and normal compliance.

The correct formulation for a sliding interface, together with the deriva-
tion of incremental conditions, are the focus of the present article: the
former turns out to be non-trivial and the latter corrects previously used
conditions, which are shown to lead to incorrect conclusions. Moreover, a
generalization of the Hill’s exclusion condition for bifurcation (Hill, 1957;
see Appendix B) to bodies containing interfaces, shows that the ‘spring-
like’ interface cannot explain bifurcations which can in fact be obtained
with the correct formulation of the sliding contact and which exist in re-
ality, as the above-mentioned experiment shows.
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The importance of the model derived in this paper is that it allows to
obtain analytical solutions for incremental bifurcations of deformed elastic
materials in contact with a frictionless planar interface. Several of these
solutions, which are important for applications, are obtained, while other
problems which do not admit an analytical solution are solved by employ-
ing the finite element method and a linear perturbation technique. The
obtained solutions show that sliding conditions strongly affect bifurcation
loads and promote tensile bifurcations (such as that visible in the experi-
ment reported in Fig. 5.1), which are shown to remain usually undetected
by employing previously used, but incorrect, conditions.

5.2 Sliding Interface Conditions

5.2.1 Problem formulation and kinematics of two bodies in
frictionless contact

The formulations described in Chapter. (1) are now introduced for
the specific mechanical system presented in Fig. 5.2, in which two nonlin-
ear elastic bodies (denoted by ‘+’ and ‘−’) are considered in plane-strain
conditions, jointed through a bilateral frictionless interface. Points in the
reference configurations B+

0 and B−0 are mapped to the current configura-
tions B+ and B− via the deformations g± : B±0 → B±, so that

x+ = g+(x+
0 , t), x− = g−(x−0 , t), (5.1)

where t denotes the time, the subscript ‘0’ is used to highlight the refer-
ential description. Therefore, the displacement vector u is related to the
deformation through

u± = g±(x±0 , t)− x
±
0 (5.2)

where ‘±’ denotes that the equation holds for both quantities ‘+’ and ‘−’.
The interface has the form of a regular surface Σ in the current con-

figuration and is the image of another regular surface Σ0 in the reference
configuration, where it admits the arc-length parameterization

x+
0 = x0(s+

0 ), (5.3)

so that, since the parameter s−0 can be expressed as function of s+
0 and

time, the following expression can be derived

x−0 = x0(s−0 ) = x0(s−0 (s+
0 , t)). (5.4)
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Figure 5.2: Deformation of two nonlinear elastic bodies under plane strain conditions
and jointed through a frictionless and bilateral interface. The interface constitutive law
enforces a bilateral constraint on the displacement (so that the two bodies can neither
detach, nor interpenetrate, during deformation) and continuity of the Cauchy traction,
but with the tangential component of the latter being null. A finite and unprescribed
sliding of the two bodies can occur across the interface.

The unit tangent vectors to the surface in the reference configuration,
Σ0, can be expressed as

t+0 = ∂x+
0

∂s+
0

1

|∂x
+
0

∂s+
0
|
, t−0 = ∂x−0

∂s−0

1

|∂x
−
0

∂s−0
|
. (5.5)

Note that a point x on the interface Σ in the current configuration
is the image of two different points x+

0 and x−0 on Σ0. This condition,
representing the fact that the two bodies in contact can neither detach nor
interpenetrate, can be expressed as x = x+ = x− so that

g+(x+
0 (s+

0 ), t) = g−(x−0 (s−0 (s+
0 , t)), t). (5.6)

The above condition defines the implicit dependence of s−0 on s+
0 (and
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time) that has already been exploited in Eq. (5.4). Introducing the defor-
mation gradient

F± = ∂g±

∂x±0
, (5.7)

taking the derivative of Eq. (5.6) with respect to s+
0 and applying the

chain rule of differentiation yields

F+∂x
+
0

∂s+
0

= F−
∂x−0
∂s−0

∂s−0
∂s+

0
, (5.8)

finally leading to the definition of the tangent vector t in the spatial con-
figuration on Σ at x

t = F+t+0
|F+t+0 |

= F−t−0
|F−t−0 |

. (5.9)

The unit normal at x on Σ can be obtained through the Nanson’s rule
of area transformation

A±n± = A±0 J
(
(F±)−Tn±0

)
, (5.10)

n± = A±0
A±

J
(
(F±)−Tn±0

)
, (5.11)

n± =
A±0
A±J((F±)−Tn±0 )
A±0
A±J |(F

±)−Tn±0 |
, (5.12)

so that
n = (F+)−Tn+

0
|(F+)−Tn+

0 |
= (F−)−Tn−0
|(F−)−Tn−0 |

. (5.13)

A simple illustration of a kinematics involving sliding between two
strained bodies is provided in Appendix 5.A. This can be useful to visualize
the constraints imposed by the previously derived equations.

5.2.2 Tractions along the sliding interface

The interface is assumed to maintain a frictionless sliding contact, so
that the normal component of the Cauchy traction has to be continuous
and the tangential component null. These conditions can be written as
follows

n · JT Kn = 0, t · T+n = t · T−n = 0, (5.14)
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where T is the Cauchy stress and JℵK = ℵ+ − ℵ− is the jump operator
of the quantity ℵ across Σ. On introduction of the first Piola–Kirchhoff
stress S = JTF−T (where J = detF ) and using the Nanson’s rule (5.11)
yields

T±n± = S±n±0
ι±

, (5.15)

where ι± = A±/A±0 is the ratio between the spatial and referential area
elements, so that Eqs. (5.14) can be transformed to

n ·
(
S+n+

0
ι+

− S
−n−0
ι−

)
= 0, t · S

+n+
0

ι+
= t · S

−n−0
ι−

= 0. (5.16)

5.2.3 Motion of two solids in frictionless contact

Before deriving the relations pertaining to the interface, the relations
Eqs. (1.45) and (1.46) are now rewritten for the specific mechanical system
presented in Fig. 4.3, which are standard for continua and still hold for
points at the left and right limit of Σ:

• The material time derivative, denoted by a superimposed dot, of the
tangent and normal unit vectors to the surfaces Σ at x are

ṅ± = −(I − n± ⊗ n±)(L±)Tn± (5.17)

and
ṫ
± = (I − t± ⊗ t±)L±t±, (5.18)

where I is the identity tensor, L± is the gradient of the spatial
description of velocity as reported in Chapter. (1) but now specific
for the ‘+’ and ‘−’ parts of the body

L±(x±, t) = gradv±, (5.19)

and v is the spatial description of the velocity of the two bodies

v±(x±, t) = ẋ±(x±0 (x±, t), t), (5.20)

where x±0 = x±0 (x±, t) denotes the inverse of x± = g±(x±0 , t).
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• The ratio between the deformed and the undeformed area elements
can be obtained from the Nanson’s rule, Eq. (5.11), as

ι± = J±
∣∣(F±)−Tn±0

∣∣, (5.21)

from which its material time derivative can be obtained in the form

˙ι± = ˙J±
∣∣(F±)−Tn±0

∣∣, (5.22)

˙ι± = ˙J±
∣∣(F±)−Tn±0

∣∣+ J± ˙∣∣(F±)−Tn±0
∣∣, (5.23)

and recalling that
˙ι± = Jtr(L), (5.24)

and also

˙∣∣(F±)−Tn±0
∣∣ = −(n± · (L±)Tn±)

∣∣(F±)−Tn0
∣∣, (5.25)

ι̇± = J±(trL± − n± ·L±n±)
∣∣(F±)−Tn±0

∣∣, (5.26)

finally
ι̇± = ι±(I − n± ⊗ n±) ·L±, (5.27)

as well as the following material time derivative( 1
ι±

) ·
= − trL± + n ·L±n

J±|(F±)−Tn±0 |
= − 1

ι±
(I − n± ⊗ n±) ·L±. (5.28)

A point on the sliding interface Σ has to be understood as the ‘super-
position’ of the two points, one belonging to the body B+ and the other
to the body B−, so that x+ = x− along Σ. Taking the time derivative of
the equation x+ = x− at fixed s+

0 , the velocities of the two points x+ and
x− can be related to each other through

ẋ+ = ẋ− + F−∂x
−
0

∂s−0
ṡ−0 . (5.29)

The time derivative at fixed s+
0 is in fact the material time derivative for

the ‘+’ part of the body, while it involves an additional term related to
the variation of s−0 for the ‘−’ part of the body.

Equations (5.5) and (5.9) show that F−∂x−0 /∂s
−
0 is parallel to the

tangent unit vector t, so that the scalar product of the unit normal n
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with both sides of Eq. (5.29) yields the continuity condition across the
interface Σ for the normal component of the velocity

JẋK ·n = 0, (5.30)

while the scalar product with the unit tangent t yields ṡ−0 , thus

ṡ−0 = (ẋ+ − ẋ−) · t

|F− ∂x
−
0

∂s−0
|
. (5.31)

The time derivative of Eqs. (5.9) and (5.13) at fixed s+
0 provides

ṫ
+ = ṫ

− + ∂t−

∂s−0
ṡ−0 , ṅ+ = ṅ− + ∂n−

∂s−0
ṡ−0 , (5.32)

which using Eqs. (5.18) and (5.17) lead to

∂t−

∂s−0
ṡ−0 = (I − t⊗ t)JLKt,

∂n−

∂s−0
ṡ−0 = −(I − n⊗ n)JLT Kn. (5.33)

The scalar product of Eqs. (5.33) with t and n yields

t · ∂t
−

∂s−0
ṡ−0 = 0, n · ∂t

−

∂s−0
ṡ−0 = JLntK, (5.34)

and
n · ∂n

−

∂s−0
ṡ−0 = 0, t · ∂n

−

∂s−0
ṡ−0 = −JLntK. (5.35)

The time derivative of Eq. (5.16)1 at fixed s+
0 allows to obtain

n · Ṡ
+
n+

0
ι+

− n · Ṡ
−
n−0
ι−

− ṡ−0
(
n · ∂S

−

∂s−0

n−0
ι−

+ n ·S−n−0
∂
(

1
ι−

)
∂s−0

+ n · S
−

ι−
∂n−0
∂s−0

)
= n · Tn JLttK, (5.36)

while the time derivative of Eq. (5.16)2 at fixed s+
0 leads to

t · Ṡ+
n+

0 = −ṫ ·S+n+
0 (5.37)
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and

t · Ṡ−n−0 = −ṫ− ·S−n−0 −ṡ
−
0
∂t−

∂s−0
·S−n−0 −ṡ

−
0 t
− · ∂S

−

∂s−0
n−0 −ṡ

−
0 t
− ·S−∂n

−
0

∂s−0
,

(5.38)
so that, using Eqs. (5.34), (5.35), and (5.18), the following expressions are
derived

t · Ṡ+
n+

0 = −L+
ntn ·S+n+

0 , (5.39)
and

t · Ṡ−n−0 = −L+
ntn · S−n−0 − ṡ

−
0 t
− · ∂S

−

∂s−0
n−0 − ṡ

−
0 t
− · S−∂n

−
0

∂s−0
. (5.40)

5.3 Planar Sliding Interface Conditions
The general interface conditions derived above are now simplified for

the special case of a planar sliding interface that is assumed to satisfy the
following conditions:

• the interface is planar both in the reference and in the current con-
figurations (but can incrementally assume any curvature), so that:

n = n+
0 = n−0 , t = t+0 = t−0 ,

∂n−0
∂s−0

= 0; (5.41)

• the Cauchy traction components are uniform at the interface and
satisfy:

T+
nn = T−nn, T+

nt = T−nt = 0; (5.42)

• a relative Lagrangian description is assumed in which the current
configuration is assumed as reference (so that F+ = F− = I and
ι+ = ι− = 1 and S± = T±).

It follows from the above assumptions that

∂
(

1
ι−

)
∂s−0

= 0, ∂S−

∂s−0
= 0. (5.43)

Now, introducing a reference system x1–x2 aligned parallel respectively
to the unit tangent t and normal n to the interface, the equations govern-
ing the rate problem across the above-introduced planar interface are the
following:
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• continuity of normal incremental displacements, from Eq. (5.30),

ẋ+
n (x1, 0) = ẋ−n (x1, 0) ; (5.44)

• continuity of incremental nominal shearing accross the interface,
from Eqs. (5.39) and (5.40),

Ṡ+
tn (x1, 0) = Ṡ−tn (x1, 0) ; (5.45)

• dependence of the incremental nominal shearing on the Cauchy stress
component orthogonal to the interface Tnn and incremental displace-
ment gradient mixed component Lnt, from Eq. (5.39),

Ṡ+
tn (x1, 0) = −αTnnLnt (x1, 0) , (5.46)

where α = 1;

• dependence of the jump in the incremental nominal stress orthogo-
nal to the interface on the Cauchy normal component Tnn and the
jump in the tangential component of the incremental displacement
gradient Ltt, from Eq. (5.36),

Ṡ+
nn (x1, 0)− Ṡ−nn (x1, 0) = αTnnJLtt (x1, 0)K. (5.47)

where, again, α = 1.

The parameter α has been introduced in the above equations to high-
light the difference with respect to the incorrect conditions sometimes
assumed at the interface (for instance by Steif, 1990)

Ṡ±tn(x1, 0) = 0, Ṡ+
nn = Ṡ−nn, (5.48)

which correspond to α = 0. Note that the only possibility to obtain a
coincidence between the correct α = 1 and the incorrect α = 0 conditions
is when the stress normal to the interface vanishes, namely, when Tnn = 0.

The ‘spring-type’ interfacial conditions used by Suo et al. (1992),
Bigoni et al. (1997) and Bigoni and Gei (2001) do not reduce (except
when Tnn = 0) to the correct frictionless sliding conditions (5.46) and
(5.47), in the limit when the stiffness tangential to the interface tends to
zero and the normal stiffness to infinity. In this limit case, the ‘spring-type’
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conditions reduce to the incorrect equations obtained with α = 0, so that
they cannot properly describe slip without friction, unless when Tnn = 0.
Note that the stress orthogonal to the interface, Tnn has been always
assumed to be null by Bigoni et al. (1997) and Bigoni and Gei (2001); all
bifurcation analyses reported in these papers are therefore different from
those considered in the present paper, where the transverse stress is never
null.

5.3.1 Plane strain bifurcation problems involving a planar
interface

In the following, a series of incremental bifurcation problems are solved,
involving two elastic nonlinear solids in contact through a sliding interface
aligned parallel to the x1–axis. This problem set-up is similar to various
situations analyzed in the literature (Ottenio et al., 2007; Dowaikh and
Ogden, 1991; Bigoni and Gei, 2001), with the variant that now the interfa-
cial condtions are different. It is important to highlight that the two solids
in contact may be characterized by different constitutive assumptions and
may be subject to a different state of prestress in the x1–direction. In fact,
the possibility that the two bodies may freely slide across the interface al-
lows to relax the usual compatibility restrictions.

The incremental constitutive equations are characterized by the pa-
rameters ξ,η and k, as shown in Chapter. (3), so that

Ṡ11 = µ(2ξ − k − η)L11 + ṗ, Ṡ22 = µ(2ξ + k − η)L22 + ṗ,

Ṡ21 = µ[(1 + k)L21 + (1− η)L12], Ṡ12 = µ[(1− η)L21 + (1− k)L12],
(5.49)

where ṗ plays the role of a Lagrangean multiplier, because the body is as-
sumed incompressible, Lkk = 0. For the sake of simplicity, a neo-Hookean
material behaviour is assumed, ξ = 1, so that the material always lies in
the elliptic imaginary (EI) regime and

− 1 < k < 1, Λ =
√

4ξ2 − 4ξ + k2 = |k|, (5.50)

together with additional definitions to be used later,

β1 =
√

1 + |k|
1− |k| β2 =

√
1− |k|
1− |k| , (5.51)
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and
Ω1 = iβ1, Ω2 = iβ2, Ω3 = −iβ1, Ω4 = −iβ2. (5.52)

Two elastic prestressed half-spaces in contact through a planar
sliding interface

Two elastic half-spaces are now considered in contact through a slid-
ing interface, planar in the current configuration, which is assumed as
reference configuration, see the inset in Fig. 5.3.

The upper (the lower) half-space x2 > 0 (x2 < 0) is denoted with ‘+’
(with ‘−’) and the incremental conditions at the interface are given by
Eqs. (5.44)–(5.47), plus the condition of exponential decay of the solution
in the limits x2 → ±∞. For simplicity the two half spaces are modelled
with the same material and subject to the same prestress, so that bifur-
cations are possible only due to the presence of the interface.

Employing the representation

v±1 = v̂±1 (x2)f(c1, x1), v±2 = v̂±2 (x2)f ′(c1, x1), (5.53)

f(c1, x1) = exp(ic1x1), f
′(c1, x1) = if(c1, x1), (5.54)

v̂±1 (x2) = −b±1 Ω±1 eic1Ω±1 x2−b±2 Ω±2 eic1Ω±2 x2−b±3 Ω±3 eic1Ω±3 x2−b±4 Ω±4 eic1Ω±4 x2 ,
(5.55)

v̂±2 (x2) = −i
[
b±1 e

ic1Ω±1 x2 + b±2 e
ic1x2 + b±3 e

ic1Ω±3 x2 + b±4 e
ic1Ω±4 x2

]
(5.56)

for the incremental displacements (Bigoni, 2012), where c1 is the wavenum-
ber of the bifurcated mode, the decaying condition implies

b−1 = b−2 = b+3 = b+4 = 0, (5.57)

so that the eigenvalue problem governing incremental bifurcations can be
written as

[
M
] 
b+1
b+2
b−3
b−4

 = 0, (5.58)

where the matrix [M ] is given by
1 1 −1 −1

2− η + Λ 2− η − Λ −2 + η − Λ −2 + η + Λ
2− η + Λ + Tnn

µ α 2− η − Λ + Tnn
µ α 0 0(

2− η − Λ + Tnn
µ α

)√
1+Λ
1−k

(
2− η + Λ + Tnn

µ α
)√

1−Λ
1−k

(
2− η − Λ + Tnn

µ α
)√

1+Λ
1−k

(
2− η + Λ + Tnn

µ α
)√

1−Λ
1−k

 .
(5.59)
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Non-trivial solutions of the system (5.58) are obtained when detM =
0, to be solved for the bifurcation stress. Note that matrix M does not
contain the wavenumber of the bifurcated mode, so that the critical load
for bifurcation is independent of the wavelength of the bifurcation mode
(even if the sliding interface is present).

The resulting bifurcation condition for a sliding interface (α = 1) can
be written as
√

1− Λ
(
Tnn
µ

+ 2− η + Λ
)2
−
√

1 + Λ
(
Tnn
µ

+ 2− η − Λ
)2

= 0. (5.60)

If, instead of the correct interface conditions, α = 1, one assumes the
incorrect condition α = 0, bifurcation corresponds to

√
1− Λ (2− η + Λ)2 −

√
1 + Λ (2− η − Λ)2 = 0. (5.61)

Using Eqs. (3.30) and for given values of longitudinal Ttt and transverse
Tnn prestresses, Eqs. (5.60) and (5.61) (which hold for a generic incom-
pressible material, subject to generic prestress conditions) can be solved.
Results are reported in Fig. 5.3 for a neo-Hookean material, ξ = 1, as-
suming both the correct condition α = 1 (on the left) and the incorrect
one α = 0 (on the right). The red and blue zones identify in the figure
the prestress combinations for which detM assumes positive and negative
values, respectively, so that the boundary between these zones (marked
with red lines) corresponds to bifurcation. The dashed lines represent fail-
ure of ellipticity, so that points situated beyond this line do not represent
states attainable through a smooth deformation path (because ellipticity
loss corresponds to the emergence of discontinuous solution).

Note that in the case of null prestress normal to the interface, Tnn = 0,
an interfacial bifurcation occurs for Ttt/µ ≈ −1.679, the same value which
gives the surface instability of a half space, which is unaffected by the
condition α = 1 or α = 0. This is the only situation in which the two
conditions provide the same bifurcation stress.

An interesting case occurs when only a tensile prestress orthogonal to
the interface Tnn is applied (and the transverse prestress is null, Ttt = 0),
where a tensile bifurcation occurs for Tnn/µ ≈ 1.679, which is absent
when the incorrect condition α = 0 is used or also if the modelling would
involve a perfectly bonded interface (in which case all bifurcations are
excluded within the limits of ellipticity). This simple example reveals the
importance of a correct definition of the interfacial conditions.
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Figure 5.3: Interfacial bifurcation of two elastic incompressible half-spaces (made up
of the same neo-Hookean material, subject to the same prestress) in contact through
a planar sliding interface in the Tnn−Ttt plane for a sliding interface α = 1 (left).
The incorrect condition α = 0 is also included for comparison (right). The points
corresponding to bifurcation are represented by red lines (at the boundary between the
red and blue zones), while the dashed lines correspond to failure of ellipticity. Note that
with α = 1 bifurcation in pure tension occurs (i.e. with Ttt = 0), which is excluded for
α = 0. Therefore, the (correct) sliding interface condition explains tensile bifurcation.
Note also that in this case bifurcations for both negative stresses Tnn and Ttt do not
occur (except in the domain of slightly negative Tnn).

A comparison between the correct α = 1 and incorrect α = 0 con-
ditions reveals a completely different bifurcation behaviour. In fact, for
positive Tnn bifurcation is possible in the correct case for negative, null
and slightly positive Ttt. These bifurcations do not occur in the incorrect
situation. Moreover in the latter situation there is a zone of bifurca-
tion occurring for negative Tnn which is excluded in the correct case. As
an example, in the special, but interesting, case of uniaxial compression
(Tnn < 0 with Ttt = 0), there is no bifurcation in the correct case α = 1,
while bifurcation occurs in the other case.

To better elucidate this situation, an exclusion condition of the Hill
(1957) type is derived in Appendix 5.B. For α = 0, this condition becomes
completely insensible to the presence of the sliding interface (and reduces
to the Hill’s condition obtained without consideration of any interface),
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5.3. Planar Sliding Interface Conditions

so that bifurcation is always excluded when both conditions Tnn ≥ 0 and
Ttt ≥ 0 hold true. Using the correct parameter α = 1, the exclusion
condition evidences a term pertaining to the interface, which allows the
bifurcation to occur for both positive Tnn and Ttt.

Elastic layer on an elastic half-space, in contact through a planar
sliding interface

An elastic layer (of current thickness H) is considered, connected to
an elastic half-space through a planar sliding interface, see the inset in
Fig. 5.4. Both the layer and the half-space are assumed to obey the same
neo-Hookean material model. The system is subject to a uniform biaxial
Cauchy prestress state with principal components Ttt and Tnn. A reference
system x1–x2 is introduced aligned parallel respectively to the unit tangent
t and normal n to the interface.

In addition to the incremental boundary conditions given by Eqs. (5.44)–
(5.47) at the sliding interface (x2 = 0), the decaying condition as x2 →
−∞, plus the condition holding at the free surface (x2 = H), have to
be enforced. The latter condition differs for dead or pressure loading as
follows:

• for dead loading,

Ṡ+
nn (x1, H) = Ṡ+

tn (x1, H) = 0; (5.62)

• for pressure loading,

Ṡ+
nn (x1, H) = −TnnLnn (x1, H) ,
Ṡ+
tn (x1, H) = −TnnLnt (x1, H) .

(5.63)

Imposing the above conditions, a linear homogeneous system is obtained
for the bifurcation stress Tnn/µ, when the longitudinal prestress is assumed
null (Ttt/µ = 0). The bifurcation stress is reported in Fig. 5.4 as a function
of the wavenumber of the bifurcated field, for both situations of dead
loading and pressure loading and for both correct and incorrect conditions,
respectively, α = 1 and α = 0.

For pressure loading, a tensile bifurcation is observed, which occurs for
both the correct (α = 1, left in the figure) and incorrect (α = 0, right in the
figure) conditions at the interface. A tensile bifurcation for dead loading

74



5.3. Planar Sliding Interface Conditions

is possible only when the correct condition α = 1 is employed, while
in the other case the Hill’s type condition (see Appendix 5.B) excludes
bifurcations for tensile Tnn and null Ttt. In any case, results are strongly
different for the correct and incorrect models of interface, showing once
again the importance of a correct modelling of interfacial conditions.

Figure 5.4: Bifurcation of a layer connected to an elastic incompressible half-space
through a sliding interface. Both layer and half-space are modelled with the same
neo-Hookean material and subject to the same prestress orthogonal to the interface.
Both dead and pressure loadings are considered for the two interfacial conditions α = 1
and α = 0 (the latter condition is incorrect and included only for comparison). The
normalized bifurcation stress Tnn/µ is reported versus the normalized wavenumber of
the bifurcated field c1H. Note that for dead load bifurcation in tension is possible only
when the correct interfacial condition, α = 1, is considered.

Two elastic layers

Two layers (one denoted by ‘+’ and the other by ‘−’), connected
through a planar sliding interface are considered, subject to transverse
and longitudinal prestresses Tnn and Ttt. The transverse stress is assumed
to be generated by either a dead, Eqs. (5.62), or a pressure, Eqs. (5.63),
loading (see the insets in Fig. 5.5). Now only the correct condition α = 1
is considered, as for α = 0 the Hill’s type condition excludes bifurcation
for positive dead loading Tnn and null transversal loading, see Appendix
5.B.

As in the case of a layer on a half-space (H−/H+ → ∞), see Sec-
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tion 5.3.1, compressive pressure loading, Tnn < 0, does not lead to buck-
ling, and tensile dead loading yields a bifurcation. The results forH−/H+ <
1 are included in Fig. 5.5 for illustration purposes only, as they correspond
to the respective results for the reciprocal value of H−/H+ > 1 upon ad-
equate rescaling of cH+.

Figure 5.5: Bifurcation of two elastic incompressible layers in contact through a sliding
interface. Both layers are modelled with the same neo-Hookean material and subject
to the same prestress orthogonal to the interface. The normalized bifurcation stress
Tnn/µ is reported versus the normalized wavenumber of the bifurcated field c1H

+, for
different values of the thickness ratio H−/H+.

5.4 Bifurcations in Complex Problems Involving
a Sliding Interface

A special feature characterizing the presence of sliding interfaces is the
appearance of tensile bifurcations, often excluded for other models of in-
terfaces (for instance in the perfectly bonded case). These bifurcations are
usually hard to be obtained analytically (the simple cases reported in the
previous section are of course exceptions), so that the aim of this section is
to use a finite-element method combined with a linear perturbation analy-
sis to analyze tensile bifurcations occurring under plane strain conditions
in a system of two elastic slender blocks and a hollow cylinder with an
internal coating, in both cases jointed through a sliding interface. The
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former mechanical system is related to the problem of buckling in tension
of two elastic rods (Zaccaria et al., 2011), while the latter is related to a
problem of coating detachment.

5.4.1 Finite-element treatment

A mixed formulation is adopted in order to implement incompressible
hyperelasticity in plane-strain conditions. Quadrilateral 8-node elements
are used with quadratic (serendipity) interpolation of displacements and
continuous bilinear interpolation of the pressure field that plays the role
of a Lagrange multiplier enforcing the incompressibility constraint using
the augmented Lagrangian method. Standard 3×3 Gaussian quadrature is
applied. As in the analytical examples studied in the previous section, the
constitutive response is modelled using the incompressible neo-Hookean
model.

The sliding interface is modeled as a frictionless bilateral interface in
the geometrically-exact finite-deformation setting. Quadratic interface el-
ements are used for that purpose with each surface represented by three
nodes, so that curved interfaces can be correctly represented. The closest-
point projection is used to determine the points that are in contact, and
the augmented Lagrangian method is used to enforce the bilateral (equal-
ity) constraint. Those aspects follow the standard concepts used in com-
putational contact mechanics (Wriggers, 2006), except that here bilateral
rather than unilateral contact is considered. The present implementation
employing interface elements is suitable for relatively small, but finite rel-
ative sliding. This is sufficient for the purpose of bifurcation analysis that
is carried out below.

The bifurcation analysis is performed using a linear perturbation tech-
nique. Specifically, a linear perturbation is applied in the deformed (pre-
stressed) base state that corresponds to a gradually increasing load, and
the bifurcation point is detected when the perturbation grows to infinity.

Implementation and computations have been performed using the Ace-
Gen/AceFEM system (Korelc, 2009). As a verification of the computa-
tional scheme, the problem of two elastic half-spaces (Section 5.3.1) and
the problem of a layer on an elastic half-space (Section 5.3.1) have been
analyzed, and a perfect agreement with the corresponding analytical so-
lutions has been obtained.
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5.4.2 Tensile bifurcation of two elastic slender blocks con-
nected through a sliding interface

As the first numerical example, bifurcation in tension is studied for
the problem of two identical elastic rectangular blocks jointed through a
frictionless bilateral-contact interface, see the inset in Fig. 5.6. The axial
displacements are constrained at one support and uniform axial displace-
ment is prescribed at the other support. Additionally, in each block, the
lateral displacement is constrained at one point in the middle of the sup-
port. In the base state, the rods are thus uniformly stretched, while the
bifurcation mode in tension involves bending of both blocks accompanied
by relative sliding at the interface, as shown in the inset of Fig. 5.6, where
the problem scheme, together with the undeformed mesh and the deformed
mesh at buckling are reported (the mesh used in the actual computations
was finer than that shown in Fig. 5.6 as an illustration).

The present problem is, in fact, a continuum counterpart of the prob-
lem, studied by Zaccaria et al. (2011), of tensile bifurcation of two in-
extensible elastic Euler–Bernoulli beams clamped at one end and jointed
through a slider. For that problem, the normalized critical tension force
Fcr has been found equal to 4FcrL

2/(π2B) = 0.58, where L denotes the
beam length and B the bending stiffness.

Figure 5.6 shows the normalized critical force as a function of the
initial length-to-height ratio, L0/H0. For consistency, the force has been
normalized using the current length L = λL0 and the bending stiffness
B = µH3/3 (per unit thickness) has been determined in terms of the
current height H = λ−1H0 and current incremental shear modulus µ =
µ0(λ2 + λ−2)/2, even though the critical stretch λ is close to unity (e.g.,
λ = 1.006 for L0/H0 = 4 and λ = 1.002 for L0/H0 = 8). The result in
Fig. 5.6 shows that for slender blocks the critical force agrees well with
the model of Zaccaria et al. (2011), which critical load is reported with a
red straight line. For thick blocks, the two models differ, for instance, by
20% at L0/H0 = 4.

5.4.3 Hollow cylinder with internal coating

A hollow cylinder is now considered with an internal coating and loaded
by a uniform external pressure. The cylinder and the coating interact
through a frictionless contact interface. The geometry is specified by the
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Figure 5.6: Two identical neo-Hookean rectangular blocks uniformly deformed in ten-
sion, jointed through a sliding interface. The blocks have initial length L0, width H0,
and shear modulus µ0 = µ+

0 = µ−0 . The bifurcation force Fcr is made dimensionless
through multiplication by the square of the current length L of the blocks and division
by the bending stiffness B (per unit thickness) of the blocks calculated with reference
to their current width L. Note that the bifurcation force tends, at increasing length of
the block, to the value calculated for two elastic rods in tension of shear stiffness µ0
(reported with a straight red line).

outer radius Ro, the inner radius Ri, and the coating thickness h that has
been assumed equal to h = 0.01Ro, see the inset in Fig. 5.7. The shear
moduli of the tube and coating are equal. The case where the coating is
absent is also investigated for comparison.

Figure 5.7 shows the critical pressure pcr normalized through division
by the shear modulus µ0 as a function of the inner-to-outer radius ratio,
Ri/Ro. As a reference, the critical load of a hollow cylinder without coat-
ing is also included. The bifurcation modes are reported in Fig. 5.8 for
the uncoated and in Fig. 5.9 for the coated case. In the case of coating,
two buckling modes are observed depending on the wall thickness. For
Ri/Ro greater than approximately 0.38, a global buckling mode occurs, as
illustrated in Fig. 5.9. This mode is also characteristic for the uncoated
hollow cylinder in the whole range of Ri/Ro. For the same ratio of Ri/Ro
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Figure 5.7: Bifurcation pressure pcr, made dimensionless through division by the shear
modulus µ0, for a cylinder with (blue line) and without (orange line) internal coating,
as a function of the ratio between the inner and outer radii of the cylinder, Ri/Ro. The
coating is connected to the cylinder with a sliding interface. Note the strong decrease
of the bifurcation pressure due to the presence of the coating.

and the same load p/µ0, the base state is identical for the cylinder with
coating and for the uncoated one. However, the critical load is different,
and, in the global-mode regime, the sliding interface reduces the critical
load by approximately 11%.

A local bifurcation mode is observed for the coated hollow cylinder
when Ri/Ro is less than approximately 0.38, as illustrated in Fig. 5.9.
In this buckling mode, the layer and the inner part of the tube deform
in a wave-like fashion, while the outer part of the tube remains intact.
This mode is thus similar to the buckling mode characteristic for the layer
resting on an elastic half-space, see Section 5.3.1, with the difference that
here the substrate is curved. In the local-mode regime, the critical load is
significantly reduced with respect to the uncoated cylinder (which buckles
in the global mode). For instance, for Ri/Ro = 0.1, the critical load is
reduced by 50%.

As a conclusion, the presence of a coating connected with a sliding
interface is detrimental to the stability of the system, so that the coat-
ing tends to slide and the bifurcation load is strongly lower than that
calculated in the case when the coating is absent.
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Figure 5.8: Bifurcation modes for a hollow cylinder (without coating) subjected to an
external pressure (dashed lines denote the undeformed configuration, solid lines denote
the bifurcation mode in the deformed configuration). The bifurcation modes correspond
to the loads indicated in Fig. 5.7, to which the letters are referred.

Figure 5.9: Bifurcation modes for a hollow cylinder with an internal coating jointed
through a sliding interface. The cylinder is subjected to an external pressure. Bifurca-
tion modes correspond to the loads indicated in Fig. 5.7, to which the letters are referred.
Note that an enlarged detail of the inner, coated surface is reported for each geometry
(dashed lines denote the undeformed configuration, solid lines denote the bifurcation
mode in the deformed configuration, the sliding interface is denoted in red).
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5.5 Experimental Evidence of Tensile Bifurcation
and Sliding Between Two Soft Solids in Con-
tact Through a Sliding Interface

As mentioned in the introduction, experiments have been designed and
realized (in the ‘Instabilities Lab’ of the University of Trento), showing
a tensile bifurcation which involves two soft solids connected through a
sliding interface, Fig. 5.10.

Figure 5.10: The set-up of an experiment showing a tensile bifurcation involving two
soft solids connected trough a sliding interface. A vertical displacement (rotations are
left free) is imposed to the head of a suction cup connected to a ‘T-shaped’ silicon
rubber element. A lubricant oil is applied, so that the suction cup can slide along the
upper edge of the ‘T’ element.

In particular, a ‘T-shaped’ silicon rubber element has been manufac-
tured with a ‘stem’ having rectangular cross section 10 mm × 30 mm
(RBSM from Misumi, with 7.4 MPa ultimate tensile strength) and an
upper end of dimensions 160 mm × 10 mm × 40 mm. Three different
lengths of the stem have been tested, namely, L1 = 210 mm, L2 = 180
mm, and L3 = 150 mm. The upper flat part of the ‘T’ has been attached
(through a lubricant oil, Omala S4WS 460) to a silicon rubber suction
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cup. The suction cup has been pulled in tension (by imposing a vertical
displacement at a velocity of 0.7 mm/s, with a uniaxial testing machine,
Messphysik midi 10). The load and displacement have been measured
respectively with a load cell (a MT1041, RC 20kg, from Metler Toledo)
and the potentiometric transducer inside the testing machine. Data have
been acquired with a system NI CompactDAQ, interfaced with Labview
(National Instruments).

The oil used at the suction cup contact allows the suction cup to slide
along the upper part of the ‘T’ element. Therefore, when the suction
cup is pulled, the system initially remains straight and the stem deforms
axially. However, at a sufficiently high load, a critical condition is reached
and the system buckles. Consequently, the stem of the ‘T’ element bends
and the suction cup slides along its upper flat end, see Fig. 5.1.

This is a simple experiment showing a tensile bifurcation of two soft
elastic materials (the ‘T’ element and the suction cup), when they are
connected through a sliding interface, a phenomenon which is predicted
by the model developed in the present paper, in particular by the use of
the correct interface conditions (5.44)–(5.47).

Note, however, that the oil does not allow a completely free sliding of
the suction cup, so that an initial relative movement at the suction cup–
rubber element interface requires the attainment of an initial force, which
suddenly decreases when the relative displacement increases and eventu-
ally becomes negligible, thus realizing the sliding interfacial conditions
analyzed in the present paper. This is evident in the load-displacement
curves, shown in Fig. 5.11, two for each tested length. The curves are
marked blue for L = 210 mm, green for L = 180 mm and red for L = 150
mm. The curves show a peak in the force, followed by steep softening and
the final attainment of a steady sliding state, where the junction behaves
as a sliding interface. The peak forces exhibit a significant scatter which
is related to the transition from sticking friction, through mixed lubrica-
tion at the onset of sliding, to hydrodynamic lubrication during developed
sliding, the latter exhibiting much smaller scatter.

The interest in the developed soft system is that it allows the realiza-
tion of an element buckling in tension, which is essentially similar to the
structural system designed by Zaccaria et al. (2011), but now obtained
without the use of rollers or other mechanical devices.
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5.5.1 Finite element simulations

Two-dimensional plane-stress finite element simulations have been per-
formed with Abaqus to validate the model of a sliding interface between
two soft materials against the experimental results presented in the pre-
vious section.

The geometry is shown in the inset of Fig. 5.11 and consists in a
rectangular block of edges B = 10 mm and L = {210, 180, 150} mm. The
lower edge of the elastic block is clamped, whereas the upper edge is in
contact with a rigid plane which can freely rotate and is connected to
an elastic spring which models the stiffness of the suction cup. Contact
conditions at the interface between the elastic block and the rigid plane
(shown as a red line in the inset of Fig. 5.11) are prescribed such that
a bilateral and frictionless interaction is realized. An initial imperfection
has been introduced, that consists in a rotation of the rigid plane by an
angle of 0.5◦. The rigid plane is modelled using a two-dimensional 2-node
rigid element (R2D2), while the rectangular block is modelled using 4-node
bilinear elements with reduced integration and hourglass control (CPS4R
element in Abaqus). The material of the elastic block is a neo-Hookean
hyperelastic material characterized by a shear modulus µ0 = 7 MPa. The
spring describing the suction cup is a linear elastic spring with stiffness
ks = 4.25 MPa. Displacement boundary conditions (vertical displacement
δ = 15 mm) are prescribed at the upper end of the elastic spring.

The results of the finite element simulations are shown in Fig. 5.11
as solid lines with markers. It is shown that the finite element model is
able to predict correctly the post-critical behaviour. The peak load is not
predicted by the model because the effects of the lubricant at the interface
(which produces an increase of the load before buckling) are not taken into
account.
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Figure 5.11: Experimental and simulated load–displacement curves of the structure
sketched in the inset for three different lengths of the vertical stem, L1 = 210 mm (red
lines), L2 = 180 mm (green lines) and L3 = 150 mm (blue lines). The model of sliding
interface correctly captures the post-critical behaviour, where the lubricated contact
realized a low friction sliding condition.
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Appendices

5.A An example of a finite kinematics involving
a sliding interface

To clarify the conditions imposed on the kinematics of finite friction-
less sliding between deformable bodies in contact, a simple illustration is
provided below. The two bodies in contact (identified with ‘+’ and ‘−’)
are assumed to be compressible and subject to a large strain of bending
and sliding defined by the motion

g±α =

√√√√r±
2

e − r±
2

i

h±0
x1 + r−

2
e + r−

2
i

2 cos
(
θ±+ − θ±−
l±0

x2 +
θ±+ + θ±−

2 + π

2 δα2

)

−
(
l−0

2θ−+
+ h−0

2

)
δα1, (5.64)

g±3 = x3 (5.65)

where:
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−

+ t, (5.66a)
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, (5.66d)
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i (t) = l−0

2θf
−

+ t
+ t

(
rf

+

i −
l−0

2θf
−

+

)
, (5.67c)

r+
e (t) = l−0

2θf
−

+ t
+ h+

0 + t

(
rf

+
e −

l−0

2θf
−

+
− h+

0

)
, (5.67d)

in which the suffix f indicates the value of the parameter in the final
configuration and t is a time-like, dimensionless, parameter governing the
motion. When t = 0 and t = 1 the initial and final dimensionless pa-
rameters are set in the way shown in Tables 5.A.1 and 5.A.2 to gener-
ate the results shown in Fig. 5.A.1, where the reference configuration B0
at t = 0 is reported together with three configurations corresponding to
t = {0.33, 0.66, 1}. It can be observed from the figure that two different
points, lying along the sides + and − of the surface in the reference config-
uration B0, move toward each other and momentarily coincide at t = 0.66,
to eventually separate again in the final configuration at t = 1.00.

Parameter h−0 l−0 θf
−
p θf

−
m rf

−

i rf
−
e

t = 0 1 3 - - - -
t = 1 - - π

8 −π
5 4 6

Table 5.A.1: Dimensionless parameters defining the initial (t = 0) and final (t = 1)
configurations of the two bodies in contact shown in Fig. 5.A.1.
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Parameter h+
0 l+0 θf

+
p θf

+
m rf

+

i rf
+
e

t = 0 2 5 - - - -
t = 1 - - π

3 −π
4 6 8

Table 5.A.2: Dimensionless parameters defining the initial (t = 0) and final (t = 1)
configurations of the two bodies in contact shown in Fig. 5.A.1.

Figure 5.A.1: A series of three deformations at various instants (the time-like, dimen-
sionless, parameter t = {0, 0.33, 0.66, 1} is an increasing ‘ordering’ parameter) showing
a finite kinematics involving bending and sliding of two blocks jointed through a sliding
bilateral interface. Two points located on the sliding interface but belonging to different
blocks, marked red and green, are shown in the reference configuration B0. These points
change the relative position, so that they momentarily coincide in the third sketch from
the left. The deformation g±α : B0 → B is given by equations (5.64) and (5.65) .

5.B An exclusion condition for bifurcation of two
solids in contact with a sliding interface

Following the Hill (1957) generalization of the Kirchhoff proof of unique-
ness of the linear theory of elasticity, two incremental solutions are postu-
lated, for the problem sketched in Fig. 5.B.1, ẋ±α , Ṡ

±
α (with α = 1, 2), so
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that the difference fields ∆ẋ±, ∆Ṡ± are in equilibrium with homogeneous
boundary conditions and null body forces.

Figure 5.B.1: Deformation of a solid containing a sliding interface. B0 and B denote
the reference and current configuration, respectively.

Integration of the equilibrium equations for both bodies yields∫
B±0

(
Div ∆Ṡ±

)
· ∆ẋ± =

∫
B±0

Div
(
∆Ṡ±T∆ẋ±

)
−
∫
B±0

∆Ṡ± · ∆Ḟ± = 0,

(5.68)
so that the divergence theorem provides∫

B±0

∆Ṡ± · ∆Ḟ± = ∓
∫

Σ±0
∆ẋ± · ∆Ṡ±n±0 . (5.69)

A sum of the two Eqs. (5.69) yields the following Hill’s type exclusion
condition for bifurcation∫
B0

∆Ṡ · ∆Ḟ > −
∫

Σ0

(
∆ẋ+ · ∆Ṡ+

n+
0 −∆ẋ− · ∆Ṡ−n−0

)
∀∆Ṡ±,∆ẋ±.

(5.70)
Before proceeding with the assumptions employed in the present arti-

cle, the exclusion condition (5.70) is specialized to the case of the ‘spring-
type’ interface introduced by Suo et al. (1992) and employed also by Bigoni
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et al. (1997). This interface is charaterized by: (i.) full continuity of the
nominal incremental tractions across the interface and (ii.) a linear inter-
facial constitutive law of the type

Ṡ
−
n−0 = HJẋK, (5.71)

where H is a constitutive tensor (note that in the notation of the present
paper and differently form Suo et al. (1992), it is n+

0 = n−0 ). Using the two
above conditions (i.) and (ii.) in equation (5.70), the exclusion condition
becomes∫

B0
∆Ṡ · ∆Ḟ +

∫
Σ0

J∆ẋK ·HJ∆ẋK > 0 ∀∆Ṡ±,∆ẋ±. (5.72)

Equation (5.72) shows that for a positive-definite interfacial tensor H
(in other words excluding softening interfaces) the term pertaining to the
interface is always positive. It may be easily concluded that:

When the incremental constitutive response of a solid is gov-
erned by a positive definite tensor (as for instance for a Mooney–
Rivlin material subject to non-negative principal stresses) bi-
furcation is always excluded for mixed boundary conditions of
dead loading and imposed displacements even in the presence
of positive-definite interfaces of the type introduced by Suo et
al. (1992).

For instance, in a case in which all principal stresses are positive or null
(as it happens in a tensile problem of the type experimentally investigated
in this paper) bifurcations are excluded. In order to substantiate the
above statement with an example, consider two elastic blocks made up of
Mooney–Rivlin material connected through a planar interface of the type
proposed by Suo et al. (1992) without softening. If these blocks will be
pulled in tension with a dead loading, the condition (5.72) excludes all
possible bifurcations. But the bifurcation will occur in reality, as the T-
problem shows. This bifurcation is found if the interface is replaced with
a sliding interface of the type described by equations (5.44)–(5.47).

The following assumptions are now introduced:

• a Lagrangean formulation is assumed with the current state taken
as reference, so that B0 ≡ B and Σ0 ≡ Σ;
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• plane strain deformation in the plane x1–x2 prevails;

• a planar interface is assumed, so that n+
0 = n−0 = n and t+0 = t−0 =

t;

• the material is prestressed by a uniform Cauchy stress with principal
components Ttt and Tnn;

• the constitutive equation of the material is incrementally linear

Ṡ = E[Ḟ ] for compressible material, (5.73)

Ṡ = E[Ḟ ] + ṗI for incompressible material. (5.74)

Then Eq. (5.70) becomes∫
B

∆Ṡ · ∆L > −
∫

Σ

(
∆v+

t ∆Ṡ+
tn + ∆v+

n ∆Ṡ+
nn −∆v−t ∆Ṡ−tn −∆v−n ∆Ṡ−nn

)
,

(5.75)
where v is the incremental displacement and L its gradient and repeated
indices are not summed.

Introducing the fourth-order elastic tensor E and using Eqs. (5.44) and
(5.45), Eq. (5.75) can be rewritten as∫

B
∆L ·E[∆L] > −

∫
Σ

((
∆v+

t −∆v−t
)

∆Ṡtn + ∆vn
(
∆Ṡ+

nn −∆Ṡ−nn
))
.

(5.76)
Finally, using Eqs. (5.46) and (5.47), the condition for excluding bifurca-
tion in an elastic solid containing a sliding interface becomes∫

B
gradv ·E[gradv]− αTnn

∫
Σ

(vnJvt,tK− JvtKvn,t) > 0, (5.77)

holding for all (not identically zero) continuous and piecewise continuously
twice differentiable velocity fields v satisfying homogeneous conditions on
the part of the boundary where incremental displacements are prescribed
and assuming arbitrary values on Σ, but with the normal component sat-
isfying v+

n = v−n .
The parameter α in Eq. (5.77) highlights the difference between the

correct interface conditions (α = 1) derived in the present work and the
incorrect interface conditions (α = 0) assumed by Steif (1990).
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In the special case in which Tnn = 0, Eq. (5.77) reduces to the Hill
exclusion condition ∫

B
gradv ·E[gradv] > 0, (5.78)

showing that for a positive definite incremental elastic tensor E the incre-
mental solution is unique, whenever the sliding interface is free of normal
prestress, otherwise bifurcation is not a-priori excluded. When the incor-
rect assumption α = 0 is made, condition (5.78) is obtained independently
of the value of Tnn, thus excluding bifurcation for positive definite E. Pos-
itive definiteness of E is equivalent to the requirement that the principal
prestresses T1, T2, and T3 (which enter in the definition of E) satisfy all
the inequalities T1 + T2 > 0, T1 + T3 > 0, T2 + T3 > 0 or, for uniaxial
tension T1 > 0 with T2 = T3 = 0 (Hill, 1967; Bigoni, 2012).
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Chapter 6

Conclusions

Two models for shear band propagation have been described, one in
which the shear band is represented through an imperfection embedded
in a material and another in which the shear band is viewed as a pertur-
bation which emerges during a homogeneous deformation process of an
infinite material. These two models may explain how shear bands tend
to propagate rectilinearly under continuous shear loading, a feature not
observed for fracture trajectories in brittle materials. In different words,
our results substantiate the fact that, while a crack propagates following a
maximum tensile stress criterion, a shear band grows according to a max-
imum Mises stress, a behaviour representing a basic micromechanism of
failure for ductile materials. The developed models for shear bands display
also a strong stress concentration at the shear band tip, which concurs to
shear band growth.

A problem involving sliding interfaces has been addressed by develop-
ing a new model for soft solids in sliding contact, an approach of interest in
various technologies, exemplified through the design and experimentation
on a soft device, which realizes a compliant slider. The derived incremen-
tal equations are not trivial and differ from previously (and erroneously)
employed interface conditions. A fundamental simplifying assumption in
the model is the bilaterality of the contact, which on the other hand is the
key to obtain analytical solutions for several bifurcation problems. Some
of these solutions have been obtained, which show that: (i.) the inter-
face plays a strong role in the definition of critical conditions, (ii.) the
interface promotes tensile bifurcations, one of which has been experimen-
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tally verified, which cannot be detected if previously used (and erroneous)
interfacial conditions are used.
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