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Abstract

This work regards the use of high performance computing (HPC) meth-

ods for a new bioinformatics challenge: the analysis of Terabyte-size data

generated by the new ultra high throughput sequencing (UHTS) technology.

As in microarray or mass spectrometry cases, public repositories are

growing to store data from the next generation studies produced in labo-

ratories around the world. These can be used to access to a large number

of samples from experiments with different individuals, populations and

sequencing platforms. Also experimental data of scientific articles are pub-

lished in these stores, enabling to repeat and verify their results (repro-

ducibility).

An automatic downloader and analyzer system (D-Daemons architec-

ture) is proposed to interface to a public repository of sequence reads,

select all the experiments that match some research parameters, defined

by a user, download them and apply an analysis pipeline to evidence their

similarity or variability. A software pipeline based on this architecture and

operating in a HPC environment has been developed to analyze the down-

loaded UHTS files in the shortest time possible. A case study of the system

on “Colorectal Cancer (CRC) cell line” datasets and an aligner selection

in a SNP discovery task on three RNA-Seq datasets (Human Breast tissue

and of BT474 & MCF7 cell lines) are presented.
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Chapter 1

Introduction

1.1 The Context

High-Performance Computing (HPC) is the discipline of using supercom-

puters, computer clusters, and special purpose computational systems to

solve problems that require high processing capacity, and in particular

speed of calculation. HPC methods have been systematically employed

for the analysis of huge volumes of data generated in bioinformatics tasks.

In particular, the use of HPC has been the heart of the Human Genome

Project, i.e. the sequencing of the human genome (1990-2000), whose goal

was to determine the sequence of chemical base pairs defining the DNA.

HPC facilities based on supercomputers allowed to complete the sequenc-

ing and assembly of the about 3 billion bases of the genetic code.

This thesis regards the use of HPC methods for a new bioinformatics

challenge: the analysis of Terabyte-size data generated by the new ultra

high throughput sequencing (UHTS) technology.

1.2 Next generation sequencing

DNA sequencing methods are the keystones of basic biological research

and of most molecular medicine studies. They include all the sequencing

1



2 CHAPTER 1. INTRODUCTION

methods for revealing the order of the nucleotide bases (adenine, guanine,

cytosine, and thymine) in a molecule of DNA. The chemical sequencing

(also known as Maxam-Gilbert sequencing) introduced the first generation

of methods in 1977. Very soon the alternative technology of chain termi-

nator sequencing or Sanger sequencing was developed by Frederick Sanger,

Nobel Prize in 1980, allowing sequence length sequence length of 800-1000

nucleotide bases (or base pair long: bp) through several hours of chemical

reactions. Since the Sanger method is relatively simple and cheap, so it

is still widely used for small-scale experiments. In recent years, great ef-

forts have been spent to improve the efficiency of DNA sequencing. Next

generation sequencing (NGS) technologies have upgraded first with large

scale methods and more recently with a new group of methods (ultra high

throughput sequencing - UHTS) designed to parallelize the process and pro-

duce from thousands to billions of short reads at once, ranging from tens

to one-two hundred base pairs.

Different sequencing platforms are available. Solexa Illumina, SOLiD

and Roche 454 are the major of next generation sequencing technologies

used in UHTS studies.

Vendor Platform Read Length

Illumina Genome Analyzer IIx, IIe 35,50,75,100 bp

HiSeq 2000 35,50,100 bp

Roche 454 GS FLX 200-300 bp

454 GS FLX Titanium 400 bp

Applied Biosystem SOLiD 3 System 50 bp

SOLiD 4 System 50-100 bp

Helicos HeliScope 25-55 bp

Table 1.1: Example of read lengths in UHTS platforms.
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RNA-Seq analysis

The possibility to produce millions of sequences from a sample provides

different methods to better understand the pathways involved in biological

processes, e.g. the interactions between genes and proteins. Based on

modern sequencing methods, the UHTS transcriptome analysis allows a

low level survey of the produced gene activity in a cell. The transcriptome

is the set of all RNA (mRNA, rRNA, tRNA, ncRNA) (see Section 2.1)

molecules (also called “transcripts”) produced in a cell. While the genome

is roughly stable in cells, the transcriptome can vary during life due to a

number of factors. Because it includes all transcripted mRNA in the cell,

the transcriptome reflects the genes that are actively expressed at a one

given time. Transcriptomics examines the expression level of mRNAs in a

given cell population. RNA-Seq is an approach to study the transcriptome

level on a biological sample using UHTS technologies.

In general a RNA-Seq experiment includes the following steps. First,

one sample is sequenced by an UHTS machine. Then, the resulting short

reads have to be compared with a reference genome sequence of the sam-

ple’s species under investigation. In a reference genome, an organism is

described through chains of nucleotide bases which form each chromosome.

Each short read is compared to the chains in the reference genome. This

search tries to find regions in chromosome sequences where a short read’s

nucleotide base sequence matches. The comparison is performed by look-

ing at each nucleotide base in the reference genome with the succession of

bases in the short reads.

Chromosomes contain genes which are involved in protein synthesis.

The knowledge of all genes and their functions is still not complete for

the human genome (and in other species). However a large set of genes is

known and a map of them on a reference genome is available (see HG18
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[2]). The positions of genes on chromosomes sequences allow us to check

if a short read falls within these regions. If more than one short read falls

on the region corresponding to one gene, we can suppose that this gene is

expressed in the studied tissue, according to the association between the

messenger RNAs (sequenced in short reads) and the gene. The number of

short reads aligned over the coordinates of a gene gives a measure of the

expression level of this gene. A peak of several short reads over a gene

region shows that this gene is heavily expressed. Although the knowledge

of the entire human genome is incomplete, the RNA-Seq analysis can then

help to fill the gaps of knowledge, because pile of short reads in a position

of a chromosome where no known gene occurs can encourage to investigate

existence of a new element, while a short read stack over the boundaries

of a gene’s region addresses to rethink to the real distribution of this gene

in the chromosome at least in terms of individual variability. Furthermore,

this detailed knowledge can be used for functional genomics, replicating

in the UHTS framework all the signal evaluation until now provided in

high throughput by array technologies. This thesis aims to provide new

computational tools to automate the RNA-seq analysis in a wide range of

problems such as more briefly introduced in this section.

Software tools for UHTS studies

In parallel with the development of the UHTS technologies, several soft-

ware tools have been developed to organize data and control the alignment

of short reads to a reference genome. The first software was written and

sold by vendors of the sequencing machines. Very soon, the bioinformatics

community started to develop Open Source Software to replace and im-

prove vendors’ instruments. From a computer science point of view, the

final major task with RNA-Seq data is to align reads to a reference genome
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and to perform statistics of where, how and how many reads fall on genes

and chromosomes in genome. In a RNA-Seq experiment applied on human

tissue, million of reads can be sequenced and have to be aligned to a human

reference genome. Each read and the reference genome are considered as

strings of characters in the computer’s memory; each string is composed

by long combinations of four letters (A,C,G,T), which represent the four

nucleotide bases (A=adenine, C=cytosine, G=guanine and T=thymine).

While short reads have length of tens or hundreds of characters, a reference

genome is described by millions or billions of characters. For example, the

human reference genome HG18 ( [2]) has more than 3 billions of bases.

The alignment phase of short reads on a reference genome is translated in

a computer science task called string matching problem. The first step is

to find a place where one or several strings (short reads) are found within

a larger string (reference genome). Several string searching algorithms

[3] were developed in computer science. The first generation of sequence

alignment tools were based on hashing, but the enormous memory require-

ments for the hash table was a major drawback. The following generation

of alignment programs uses the Burrows Wheeler Transform (BWT) [3] to

efficiently align short sequencing reads against a large reference sequence

such as the human genome. Programs of the first generation include Eland

(a module within the Illumina software suit, provided as free source code

for Illumina’s machine buyers), SOAP [4] (freeware) or MAQ [5] (Open

Source code). Examples of new generation Open Source programs are

Bowtie [3] and BWA [6], while SOAP2 [7] is freeware.

After the alignment phase, an investigation to count how many reads

fall on the different chromosomes and genes is imperative to understand the

transcriptome activity of the sequenced tissue sample. We can indicate this

process as post-processing alignment phase. Typically, genes are divided

in zones called exons and introns. An exon is a DNA chain in a gene
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which takes part in the composition of the coding sequence used to build

a protein. An intron is a DNA section within a gene that is not translated

into a protein. Each gene has a variable number of introns and exons

(inside its interval on chromosome). Knowing how many reads fall into

exon zones allows one to understand the RNA splicing in a gene. This is a

mechanism in the transcription phase to create the final RNA code from the

gene’s DNA sequence, which will be used to produce a protein. Here, the

gene’s exons are recombined and joined together to produce the RNA code.

Another key goal is to find statistically significant peaks of short reads to

examine interesting zones on chromosomes. The expression level of a gene

can be weighed through the RPKM measure, i.e. reads per (kilo)base

per number of mapped reads. A single nucleotide polymorphism (SNP)

detection can be performed on mapped short reads. A SNP is a single

base pair mutation at a specific location of a gene or a DNA sequence on a

chromosome. It allows a measure of the genetic variation between samples,

specifically in a set of disease and normal samples from the same tissue.

Open Source programs as TopHat [8] and Erange [9] can perform some

of the previous analysis, given a set of aligned short reads. A complete

RNA-Seq experiment requires both an alignment and a post-processing

alignment phase. In almost all cases, more than one software has to be

applied to obtain a complete result.

Public repositories of UHTS data

The number of UHTS studies being conducted around the world by teams

of biologists and bioinformaticians is quickly increasing. Great scientific

advance is due to the increasing sharing of UHTS data. As for microar-

ray and proteomics data, public repositories for Ultra High Throughput

Sequencing data are growing in the web. They allow sharing data used in

UHTS studies to replicate results, to apply new techniques or to bench-
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mark software tools. One example of these new repositories is the Sequence

Read Archive (SRA) [10]. The National Center for Biotechnology Informa-

tion (NCBI) maintains the SRA as a repository for data from sequencing

projects that use the new massively parallel sequencing technologies. The

Sequence Read Archive will become more and more important as next gen-

eration sequencing technologies continue to improve and become even less

expensive. The SRA accepts and presents data from all current next gener-

ation sequencing platforms including 454, Illumina, SOLiD, HeliScope, and

Complete Genomics. Individual read lengths vary from around 25 bases

to more than 400 bases depending on the platform. Data can include se-

quence, quality scores, color values, and intensity graphs depending on the

platform involved.

1.3 A novel automated pipeline

Here goes a short introduction to the technical issues motivating the solu-

tion proposed in this thesis. The UHTS studies allow a better understand-

ing of the processes in transcriptome phases. In parallel to this technology

an interesting set of software has grown to analyze and archive raw se-

quences produced from the new parallel sequencing machines. A RNA-Seq

experiment can produce millions of short reads, which have to be aligned

on a reference genome. Two computer science problems can be found in

this task. The first is to archive and manage the short reads, because

these can require tens of gigabytes for just a single sample. The second

is to perform alignment and post-processing alignment procedures in the

most efficient way to increment the number of analyzed short reads and

to reduce the time to have a complete result. The main hurdle remains

the computational burden of a cycle of analysis, currently higher than one

week of computation with a large set of short reads on human data on a
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standard workstation.

The proposed solution is to select the state-of-art software in UHTS

studies, order them in a workflow and run it in a High Performance Com-

puting environment.

High Performance Computing is normally obtained by deploying envi-

ronments endowed with large numbers of CPUs, in which a serial software

can be split in several instances simultaneously run to reduce the compu-

tational time. Heavy computational tasks can be efficiently managed on

HPC systems, initially implemented through large machines with exotic

architectures. Modern HPC facilities are based on the concept of cluster

computing, that is a group of linked workstations (also called nodes) which

work together. The current multi-core architectures in CPU technology

further helps to add computing power within limited space, thus allowing

to a huge number of elaboration cores to be setup in the computing en-

vironment. In HPC facilities, a further key element is the queue system

that coordinates users and allows the distribution of users’ programs on

available computational nodes.

The UHTS software, especially for alignment of short reads, are devel-

oped to run on a single machine. Few of them can run on a multi-core

workstation, splitting their algorithms on several threads. While, this type

of parallelization guarantees a little speed-up, it can work on only one ma-

chine. To enable an efficient access to HPC environments, this software

has to run as a chain of software elements (pipeline) suited with the queue

system of environment. This pipeline can link together different tools and

distribute the workload on several nodes for heavy computational phases

(as alignment of short reads).
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1.4 Innovative Aspects

This thesis aims to combine state-of-art Open Source Software used in

RNA-Seq studies and to develop a new HPC-based platform that may

greatly accelerate the overall performance. Differences and causes of vari-

ability in the process have been considered to select the best elements for

a pipeline of software tools and to guarantee the following features:

1. This pipeline should reach the maximum productivity in the analysis

of up to 100 samples, each one consisting of millions of short reads.

2. The pipeline should be designed to operate on High Performance Fa-

cilities (HPC), as cluster computers, to parallelize and speed-up dif-

ferent steps. A particular attention has been dedicated at evaluating

and modifying software tools compatible with a HPC environment.

3. Standard measures, statistics and formats applied to raw sequences

and alignment results are considered.

4. Finally, the possibility to insert the proposed pipeline in an automatic

download system from the SRA repository is examined under the ar-

chitecture point-of-view.

1.5 Structure of the Thesis

The rest of this thesis is composed the following chapters:

Chapter 2 presents some basic definitions in UHTS and RNA-Seq con-

texts, describes analysis steps in a standard study and reports the

state-of-art Open Source Software used in an ultra high throughput

sequencing investigation;

Chapter 3 analyzes the technical goal of this work and explains the D-

Daemons solution;
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Chapter 4 gives some experimental results on components of an analysis

pipeline;

Chapter 5 presents the issue of reproducibility, providing two examples

of analysis through proteomics pipelines;

Chapter 6 provide a review of related work;

Chapter 7 summarizes the problem and solution and discusses possible

developments of the presented work.

Thesis is completed by a Reference section and Appendix listing the aca-

demic and technical papers produced in the context of the PhD study.



Chapter 2

State of the Art

2.1 Transcriptomics

In life forms the operations in a cell are driven by the proteins. These

are essential parts of organisms and participate in virtually every process

within cells. How the proteins work is the key to understand the evolu-

tion steps in a cell during its life cycle. This comprehension includes the

cell’s behaviors when a disease attacks an organism, in particular this in-

formation can help to understand serious diseases like cancers and tumors.

The proteins are complex objects and the study of their interactions is

not a simple task. The central dogma of the molecular biology shows an

alternative way to understand these processes in a cell. It states that in

synthesizing proteins, DNA is transcribed into mRNA, which is translated

into proteins. So, in place of investigating the proteins directly, it is pos-

sible to study the mRNA and the genes, where these chains of nucleotide

are transcribed, involved in the synthesis process.

The transcriptome is the set of all RNA molecules, including mRNA,

rRNA, tRNA 1, and non-coding RNA produced in one or a population of

cells. The term can be applied to the total set of transcripts in a given

organism, or to the specific subset of transcripts present in a particular

1Ribonucleic acid (RNA), Messenger ribonucleic acid (mRNA), Transfer ribonucleic acid (tRNA).

11
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cell type. Unlike the genome, which is roughly fixed for a given cell line

(excluding mutations), the transcriptome can vary with external environ-

mental conditions. Since it includes all mRNA transcripts in the cell, the

transcriptome reflects the genes that are being actively expressed at any

given time. Expression profiling is referred to studies of transcriptomics

where the expression level of mRNAs in a given cell population is exam-

ined; expression measures are generally provided through high throughput

techniques based on DNA microarray technology. The use of the new Ul-

tra High Throughput Sequencing technology allows determining the order

of the nucleotide bases (adenine, guanine, cytosine, and thymine) in RNA

molecules. The study of the transcriptome at the nucleotide level is known

as RNA-Seq.

Thanks to the deep coverage and base level resolution provided by next

generation sequencing instruments, RNA-Seq provides researchers with ef-

ficient ways to measure transcriptome data experimentally, allowing them

to get information such as how different alleles or alternative forms of a

gene are expressed, detecting post-transcriptional mutations or identify-

ing gene fusions. RNA-Seq is a technique that is quickly becoming new

reference in the study of diseases like cancer.

In a typical RNA-Seq experiment, the sequencing process generates mil-

lions of small chains of nucleotide bases. These sequences are long from

tens of bases to one or two hundreds bases. The length depends by the

specific sequencing platform (vendor). For example the Illumina platform

uses 35, 50, 75 and 100 bases and the Roche 454 ranges from 200 to 400

bases (see 1.1). These sequences are called short reads. The nucleotide

series have to be aligned on a reference genome, which is the set of the

known nucleotide sequences that compose the chromosomes. The position

of each gene is defined on the nucleotide chain of one chromosome, so it is

possible to count how many short reads fall over or close to one gene. By
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counting how many short reads from the RNA molecules of a sample cover-

age determinate positions on the chromosomes, we can gather information

on the expressed genes for this sample. We will use this oversimplified view

of the whole process to describe the bioinformatics tools of interest in this

context.

2.2 Advanced software tools

All ultra high throughput platforms save short read sequences as text

strings in large files. The letters used in these strings are usually “A,C,G,T”,

which represent the four nucleotide bases (A=adenine, C=cytosine, G=gua-

nine and T=thymine) or an alternative encoding defining the so-called

“color space”. Given this computing science point of view of the sequenc-

ing process, several software tool have been developed to manage sequenc-

ing experiments and to perform analyses, like alignment to the reference

genome (which is also encoded as a huge text file). After the previous

brief introduction on the transcriptomics, what follow is a description of

the state of the art software tools used in UHTS (and RNA-Seq) studies.

2.2.1 Erange

The Enhanced Read Analysis of Gene Expression (ERANGE) [9] is a set

of command-line Python scripts used to perform a RNA-Seq study. Each

Erange script performs a function and they can be called sequentially to

produce a complete analysis. The scripts save their analyses in a SQLite

flat file database. Erange is not an aligner and uses external software to

perform the alignment phase of short reads on reference genomes. The

supported aligners are Eland, included in the commercial software package

of the Illumina platform, and Bowtie, an open source aligner which will

be described in the next sections. The Erange software package makes it



14 CHAPTER 2. STATE OF THE ART

possible to:

• Assign reads that uniquely map on the genome to their site of origin.

• Select reads that match equally well to several sites (called multireads)

to their most likely site(s) of origin on the reference genome.

• Detect splice-crossing reads and assign them to their gene of origin.

• Organize reads that cluster together, but do not map to an already

known exon, into candidate exons or parts of exons.

• Calculate the prevalence of transcripts from each known or newly

proposed RNA, based on normalized counts of unique reads, spliced

reads and multireads.

Erange is the first software introducing a new normalized measure of tran-

scripted short reads on the reference genome: defined by the sensitivity of

a RNA-Seq sample/experiment as a function of both molar concentration

and transcript length. The Erange’s writers quantify transcript levels in

reads per kilobase of exon model per million mapped reads (RPKM). The

RPKM [9] measure of read density defines a sort of “molar” concentration

of a transcript in the starting sample by normalizing for RNA length and

for the total read number in the measurement. This facilitates comparison

of transcript levels both within and between samples and experiments.

2.2.2 Bowtie

Bowtie [3] is an open source alignment program for aligning short DNA se-

quence reads to large genomes. Bowtie uses a different and novel indexing

strategy to create an ultrafast, memory-efficient short read aligner geared

toward mammalian re-sequencing. Bowtie can sort out 35-base pair (bp)

reads at a rate of more than 25 million reads per CPU-hour, which is more
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than 35 times faster than previous aligners. This software is part of the

next generation of alignment programs because it is not based on hash-

table methods and it avoids their enormous memory requirements. Indeed

Bowtie employs a Burrows-Wheeler index, which guarantees a memory

footprint of only about 1.3 gigabytes (GB) for the human genome. This

smaller footprint allows Bowtie to run on a typical desktop computer with

2 GB of RAM. Moreover Bowtie can run on multiple processor cores si-

multaneously to achieve higher alignment speed.

The Burrows-Wheeler transform (BTW) is a reversible permutation of

the characters in a text. Although originally developed within the con-

text of data compression [3], BWT based indexing allows large texts to

be searched efficiently in a small memory footprint. It has been applied

to bioinformatics applications, including oligomer counting, whole-genome

alignment, tiling microarray probe design, and Smith-Waterman alignment

onto a human-sized reference [3].

In Bowtie, the BWT based index is built upon on the Ferragina and

Manzini [3] exact-matching algorithm. Here, the procedure is not simply

adopted as-is, because exact matching does not allow for sequencing errors

or genetic variations. The program introduces two novel extensions that

make the technique applicable to short read alignment: a quality-aware

backtracking algorithm that allows for mismatches and favors high-quality

alignments; and “double indexing”, a strategy to avoid excessive backtrack-

ing. The Bowtie’s policy allows for a small number of mismatches within

the high-quality end of each read, and it places an upper limit on the sum

of the quality values at mismatched alignment positions [3].

Bowtie can save alignment in the new standard SAM (Sequence Align-

ment/Map) format [11], which is used by other RNA-Seq software tools

(see [6] and [11]).
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2.2.3 BWA

The Burrows-Wheeler Alignment tool (BWA) [6] is the next generation

version of the software called MAQ [5], based on the hash table-based

methods, which is accurate, feature rich and fast enough to align short

reads from a single individual. BWA is a new read alignment package

that is based on backward search within BWT to efficiently align short

sequencing reads against a large reference sequence such as the human

genome, allowing mismatches and gaps. BWA supports both base space

reads, e.g. from Illumina sequencing machines, and color space reads from

AB SOLiD machines. Evaluations on both simulated and real data sug-

gest that BWA is approximately 10-20x faster than MAQ, while achieving

similar accuracy. In addition, BWA outputs alignment in the new stan-

dard SAM (Sequence Alignment/Map) format. Variant calling and other

downstream analyses after the alignment can be achieved with the open

source SAMtools software package [11].

2.2.4 Tophat

TopHat [8] is a free Open Source Software package which allows to discover

splice junction in RNA-Seq samples.

Splice junctions are locations on a DNA sequence at which “superflu-

ous” DNA is removed during the process of protein synthesis in higher

organisms [12]. This process is named splicing. The problem can be posed

to recognize, given a sequence of DNA, the boundaries between exons (the

parts of the DNA sequence that are retained after splicing) and introns

(the parts of the DNA sequence that are spliced out), which are called

“donor” and “acceptor sites”. This problem can also be redefined as to

find a classification rule: given a position in the middle of a window of

DNA sequence elements (nucleotides), decide whether this is an intron →
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exon boundary, exon → intron, or neither.

TopHat can identify splice sites “ab initio” by large-scale mapping of

RNA-Seq reads. It maps reads to splice sites in a mammalian genome at a

rate of ∼ 2.2 million reads per CPU hour, which is sufficient to process an

entire RNA-Seq experiment in less than a day on a standard desktop com-

puter. Rather than filtering out possible splice sites with a scoring scheme,

TopHat aligns all sites, relying on an efficient 2-bit-per-base encoding and

a data layout that effectively uses the cache on modern processors. This

strategy works well in practice because TopHat first maps non-junction

reads (those contained within exons) using Bowtie (described in 2.2.2).

TopHat, as Bowtie, can run in multithread fashion on multi-core CPU

architecture.

In discovering splice junctions, TopHat maps reads to the reference

genome in two phases. In the first one, the pipeline maps all reads to the

reference genome using Bowtie. All reads that do not map to the genome

are set aside as “initially unmapped reads”. Bowtie reports, for each read,

one or more alignment containing no more than a few mismatches (two,

by default) in the 5′-most s bases of the read. 2

The remaining portion of the read on the 3′ end may have additional

mismatches, provided that the Phred-quality-weighted Hamming distance

is less than a specified threshold (70 by default). This policy is based on

the empirical observation that the 5′ end of a read contains fewer sequenc-

ing errors than the 3′ end. (Hillier et al., 2008). TopHat allows Bowtie to

report more than one alignment for a read (default = 10), and suppresses

all alignments above this number. This policy allows so called “multireads”

from genes with multiple copies to be reported, but excludes alignments to

low-complexity sequence, to which failed reads often align. Low complexity

2The 5′ and 3′ (usually pronounced “five prime end” and “three prime end”) indicate the directionality

in molecular biology and biochemistry and refer to the end-to-end chemical orientation of a single strand

of nucleic acid. Single strands of DNA and RNA sequences are written in 5′ to 3′ direction.
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reads are not included in the set of the “initially unmapped reads” reads:

they are simply discarded. TopHat then assembles the mapped reads using

the assembly module in MAQ [5]. TopHat extracts the sequences for the

resulting islands of contiguous sequence from the sparse consensus, infer-

ring them to be putative exons. To generate the island sequences, Tophat

uses MAQ which produces a compact consensus file containing called bases

and the corresponding reference bases. The reference genome is used to

call the base. In order to capture this sequence along with donor and

acceptor sites from flanking introns, TopHat includes a small amount of

flanking sequence from the reference on both sides of each island (default

= 45 bp). To map reads to splice junctions, TopHat first enumerates all

canonical donor and acceptor sites within the island sequences (as well as

their reverse complements); next, it considers all pairings of these sites

that could form canonical (GTAG) introns between neighboring (but not

necessarily adjacent) islands. Each possible intron is checked against the

“initially unmapped reads” for reads that span the splice junctions, as de-

scribed below. By default, only potential introns longer than 70 bp and

shorter than 20000 bp are examined.

2.2.5 SAMtools

The SAM (Sequence Alignment/Map) is a generic format for storing large

nucleotide sequence alignments. The goals archived by this format are:

a. to save all the alignment information generated by various alignment

programs;

b. to be easily created by alignment programs or converted from existing

alignment formats;

c. to generate files of compact dimension;
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d. to allow most operations on the alignment without loading the whole

alignment into memory;

e. to index file by genomic position to efficiently retrieve all reads aligning

to a locus.

SAMtools [11] is a library and software package for parsing and manipu-

lating alignments in the SAM format. It also operates with BAM format,

which is the binary version of the SAM [13]. This library can convert from

other alignment formats, sort and merge alignments, call SNPs and show

alignments in a text-based viewer. In an alignment of the 112Gbp Illumina

GA data, SAMtools took about 10hours to convert from the MAQ format

and 40 minutes to index with less than 30MB memory.

2.2.6 Cufflinks

Cufflinks [14] is a program that assembles aligned RNA-Seq reads into

transcripts, estimates their abundances, and tests for differential expres-

sion and regulation transcriptome-wide. In RNA-Seq experiments, cDNA

fragments are sequenced and mapped back to genes and ideally, individual

transcripts. Properly normalized, the RNA-Seq fragment counts can be

used as a measure of relative abundance of transcripts, and Cufflinks mea-

sures transcript abundances in Fragments Per Kilobase of exon per Million

fragments mapped (FPKM), which is analogous to single-read “RPKM”.

The alternative splicing process involves RNA exons produced by tran-

scription of a gene, which can be reattached in various ways during the

RNA splicing phase. Different mRNAs are generated and all these can be

translated into different protein isoforms3. The result of this activity is

that a single gene can code for multiple proteins.

3Different forms of a protein produced from related genes or from alternative splicing of the same

gene.
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Cufflinks can estimate a transcript abundances. This task is performed

assigning fragments to individual transcripts, but it is not easy because

a read may align to numerous isoforms of the same gene. A statistical

model [15] is applied on sequencing experiments. This model generate a

likelihood to estimate the abundances of a set of transcripts given a set of

fragments.

Cufflinks takes as input a file of alignments in SAM format, and reports

transfrags in GTF (Gene transfer format [16]) format. Bowtie and TopHat

support the SAM design, so their output can be passed to this tool.

2.2.7 Crossbow

Crossbow [17] is Open Source Software for cloud-computing that combines

the aligner Bowtie and the single-nucleotide polymorphism (SNP) caller

SOAPsnp [18]. Crossbow is distributed with a set of scripts, which allow

to run this tool either on a local cluster or on a cluster rented through

Amazon’s Elastic Compute Cloud (EC2) [19] utility computing service 4.

SOAPsnp performs a SNP analysis. A single-nucleotide polymorphism

is a DNA sequence variation occurring when a single nucleotide, as A,

T, C, or G, in the genome (or other sequence), differs between members

of a species (or between paired chromosomes in an individual). These

variations in DNA sequences can manifest how individuals develop diseases

and respond to external agents.

By taking advantage of commodity processors available via cloud com-

puting services, Crossbow condenses over 1,000 hours of computation into

a few hours without requiring the user to own or operate a computer cluster

[17].

4Cloud Computing is a term in computer science used to indicate a modern view of the client-server

model, where elements are connected through the Internet network. This model involves the provision of

dynamically scalable and often virtualized resources as a service over the World Wide Web.
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2.2.8 Genome Browser

The UCSC Genome Browser website [20, 2] contains the reference sequence

and working draft assemblies for a large collection of reference genomes for

different species. It also provides a portal to the Encyclopedia of DNA El-

ements (ENCODE) project [21], which aims to provide a more biologically

informative representation of the human genome by using high-throughput

methods to identify and catalogue the functional elements encoded.

The Genome Browser section allows users to zoom and scroll over chro-

mosomes, showing the work of annotators worldwide. Moreover, the users

can upload and display their custom tracks on the available reference

genome. Users’ data have to be written as tab-separated files using one of

the formats supported like GFF, GTF, PSL, BED, bigBed, WIG, bigWig,

BAM, MAF, and microarray (BED15). Erange and TopHat can export

their results in Genome Browser compatible file formats.

Figure 2.1: Example of alignments in Genome Browser from RNA-Seq Cerebellum (hu-

man) Illumina 35bp sample [1] over the HG18 reference genome

2.2.9 Galaxy

Galaxy [22] allows experimental biologists with no programming experience

to locate and visualize genomic regions using intuitive graphical interfaces
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through a simple web browser. The system supports the integration of

genomic sequences, their alignments, and functional annotation. Moreover,

it allows users to gather and manipulate data from existing resources in

a variety of ways. Every action of the user is recorded and stored in a

history system. This mechanism allows users to run independent queries

on genomic data from different sources and then use Galaxy to combine or

refine them, perform calculations, or extract and visualize corresponding

sequences or alignments.

The framework is written in Python language [23] and the data storage

uses SQLite [24] a self-contained SQL database engine. Galaxy can also

be configured to run jobs on a HPC cluster. One of the key features of

Galaxy is its ability to obtain data directly from UCSC Table Browser. Any

dataset in Galaxy’s history can be displayed within UCSC Genome Browser

as long as its chromosome, start, and end columns (so called metadata) are

properly set and the corresponding genome assembly exists at the UCSC

Browser.

2.2.10 SRA

The National Center for Biotechnology Information (NCBI), the European

Bioinformatics Institute (EBI), and the DNA Data Bank of Japan (DDBJ)

are involved in the International Nucleotide Sequencing Database Collab-

oration [25]. This collaboration has set up the Sequence Read Archive

(SRA) [26, 27] to provide the scientific community with an archive for

next generation data sets.

The resulting Sequence Read Archive (SRA) is now accessible from the

NCBI [10, 26] , the European Bioinformatics Institute (EBI) [28] and from

the DNA Data Bank of Japan (DDBJ) [29]. The three SRAs will mir-

ror data and share an accession space, essentially providing a world-wide

archive.
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In November 2009, the SRAs collectively hosted about 11 Terabases of

biological sequence data. This included 170 full-length human genomes,

over 900 bacterial genomes, and 100 expression and epigenomics studies.

Over 90 published studies have been linked to SRA deposits. The archive

comprises platforms as 454, Illumina, SOLiD, Helicos, and others.

Most of the human genomes were produced by the 1000 Genomes Project

[30], which is using sequencing data to perform a deep analysis of ordi-

nary human variation in three healthy populations with the expectation

of detecting common human genetic variants (defined as frequency 1% or

higher). The goal of the 1000 Genomes Project is submitting reads to the

SRA in real time as they are produced, allowing investigators not associ-

ated with this project to direct access to its output.

The value of the SRAs to the scientific community will depend on the de-

gree to which data from investigations are deposited. Accordingly, NCBI,

EBI and DDBJ encourage researchers to consider depositing their data in

one of the SRAs.
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Chapter 3

An automatic downloader and

analyzer system

3.1 Problem

The chance to use the high accuracy information from the next genera-

tion sequencing technologies for a large number of samples is revolutionary

step for molecular biomedicine. It can open to the possibility to investi-

gate transcription events and gene dynamics through a numerical point of

view. On very large set of experiments statistic measures and mathemat-

ical models can be applied to describe biology events. Tasks of interest

could include the identification of signatures of disease in different indi-

viduals or the validation of models that can describe widespread features

between different populations. The relatively small number of studies can

be a constraint to this type of investigation. Fortunately, as in microar-

ray or mass spectrometry cases, public repositories are growing to store

data from the next generation studies produced in laboratories around the

world. A repository can be used to access to a large number of samples

from experiments with different individuals, populations and sequencing

platforms.

The existence of these repositories is an invaluable resource for biologists

25
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and bioinformaticians. But how much are these sites usable in practice? A

user has to connect to a repository, find his samples, download and process

them. The last two phases are relatively complex operations in the UHTS

case. First, as already described, the text files from a UHTS experiment

can weigh several gigabytes, so a considerable time is required to move data

from the repository to a local workstation. Second, the alignment phase

and other post processing analyses can take several days and weeks when

the number of short read files gets larger and the computational resource

is only a single workstation. A manual download and exploration can be

completed for a small amount of data files. Nevertheless, the possibility

to retrieve from a large deposit of samples is a crucial step to involve

investigations and comparisons between them.

The problem becomes how to manage the possible (few or many) heavy-

weight files (several gigabytes) from a public repository and to use them

in a comparison study in a reasonable time.

This thesis tries to find a solution to this task. An automatic down-

loader and analyzer system is proposed to interface to a public repository

of sequence reads, select all the experiments that match some research pa-

rameters, defined by a user, download them and apply an analysis pipeline

to evidence their similarity or variability. The system is indicated as “au-

tomatic”, because it can be scheduled after a period of time to find new

files in the repository, which correspond to the selection. To reduce the

waiting period, when the number of experiments is large, the solution in-

cludes the possibility to run the analysis pipeline on a high performance

computing environment. The elements in the pipeline have been chosen

from the state-of-the-art Open Source Software tools available in the UTHS

described in Chapter 2 field and suited to operate in a HPC system. The

public repository of next generation sequencing experiments chosen to op-

erate with the developed architecture is the Sequence Read Archive (SRA)
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also described in Chapter 2. This archive has been selected because it

stores a large number of sequencing trials and it is maintained by three

international bioinformatics institutes which guarantee high quality in the

recorded sequencing experiments.

3.2 Methods

The main goal is to build an automatic system that can process large

numerical sets of ultra high throughput experiments, generating results

that can be utilized to compare genomic attributes between samples.

The D-Daemon system is an automatic downloader and analyzer system

that interfaces to the NCBI SRA. This public repository actually includes a

huge number (11 Terabases) of high quality sequencing experiments. The

D-Daemon system allows to select a sample in NCBI SRA on the basis

of some user-defined parameters, downloaded and passed to an analysis

pipeline.

Once activated, the system can be scheduled to find new data in the

repository, corresponding to the user’s parameters. To reduce the waiting

time between harvesting of data and availability for biological analysis the

solution is designed to operate an analysis pipeline in a HPC environment.

The pipeline is composed by elements chosen from the state of the art

and Open Source Software tools in the UTHS research community. For

each experiment, the RPKM measure is calculated over all chromosomes.

The sequences aligned on the reference genome are translated in a Genome

Browser compliant file format for visualization. Finally the identification

of new gene isoforms is supported.

All the procedures are written in the Python language. This choice is

motivated by several reasons. Python is often used in bioinformatics field

to build analysis tools [8] and to develop software structure or used as
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a glue to links together two or more systems [31]. It allows a rapid and

efficient deployment of software infrastructure. Examples of bioinformatics

platforms in this language can be found in [32] and [33].

As illustrated in Figure 3.1, the D-Daemon solution is composed by

some steps that constitute the core procedures of the whole system. First

of all (1) a remote query is performed to the SRA repository to discover

the UTHS samples. (2) The files of each experiment are downloaded and

passed to the HPC pipeline (3). Three tools have been wrapped to enable

the possibility to run on the individual nodes of computer cluster infras-

tructure: Bowtie, Samtool and Cufflinks. From this analysis chain several

measures are generated to evaluate and compare the samples. In the fi-

nal step (4), outputs are formatted in HTML files to be published in a

website. Some metadata information on downloaded and processed exper-

iments is saved in a SQLite database. These metadata are used to look for

new experiments in the SRA archive. If new data are available, they are

downloaded, processed and published as described previously.
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Figure 3.1: System description.

3.3 The D-Daemons architecture

Two modules or services constitute the infrastructure (see Figure 3.2)

called D-Daemons architecture. The first is called web daemon (web-dae)

and it checks the SRA repository to select the experiments, downloads them

and registers their information in a SQLite database [24]. The web-dae also

sends the experiment toward the HPC facility, where another service man-

ages the HPC pipelines to process data. The web-dae withdraws the results

and moves them to a web server, where details, RPKM values and Genome

Browser files on the HG18 reference chromosomes are published for each

experiment. This service is deputed to re-check the repository to new

cases. The sample’s characteristics, as tissue, platform, number of bases

and others, are extracted from the Entrez cross-database search, which is

an integrated, text-based search and retrieval system used at NCBI for the
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major databases, including PubMed, Nucleotide and Protein Sequences,

Protein Structures, Complete Genomes, Taxonomy and the Sequence read

archive. The Entrez Programming Utilities [34] are tools that provide ac-

cess to Entrez data outside of the regular web query interface and may be

helpful for retrieving search results for future use in another environment.

One of these tools is used by the web daemon: the ESearch component.

ESearch searches and retrieves primary IDs. Each Entrez database refers

to the data records within it by an integer ID. This procedure accepts

two arguments: a “database”, which is the SRA, and a “search strategy”,

which can be one or a set of terms and phrases with or without boolean

operator (for example “illumina+AND+breast”). The output is a list of

ID experiments correlated with the search parameters. Given one or more

IDs, these are retrieves in text format from the Entrez search engine di-

rectly. In this phase the data are not downloaded: only the information

from the samples (tissue, platform, study, ecc.) are acquired.
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The Entrez cross-database search and the ESearch utility are common

gateway interface (CGI) scripts invoked from a uniform resource locator

(URL) of a web server; their task is to analyze the content of the requests

from clients (users through their web browsers), to determine an appropri-

ate document to send in response, and to return it to the clients. Therefore,

the web daemon utilizes Entrez and ESearch to perform a set of queries

to their URLs. For example, given a text search strings “T”, a first query

is performed to obtain the number of entries which match T. This is the

URL for this step:

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi

?db=sra&term=T&rettype=count

Parsing the output of the previous query, the number of entries, which will

be indicated as “totexps”, is archived. Another web query is submitted to

obtain the IDs of the corresponding entries:

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi

?db=sra&term=$1&retmax=$totexps

Finally, once captured the IDs list, indicated as “L”, the documentations of

each experiment is acquired through a loop that queries the Entrez search

engine for each element in the catalog L:

while ID in L:

do

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve

&db=sra&list uids=ID&dopt=full&format=text

done

As previous reported, only the notes about an experiment are stored in the

SQLite database, but this information is sufficient to distinct each sample

and to find their location in the SRA site. These records are listed by the

web daemon to identify new items in the NCBI archive.
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The second service is called the HPC daemon (HPC-dae) and it runs on

the HPC infrastructure, where it can interact with a queue system. The

HPC-dae is the software which coordinates how user programs (jobs) are

scheduled to be executed on the execution nodes. The service waits for

the sequence data from its counterpart, which has downloaded them from

the SRA. The HPC service passes the experiments to the HPC pipeline,

which processes them, checks when the analysis line is terminated and

returns the output to the web daemon. The HPC service can monitor

several HPC pipeline instances simultaneously and if this is considered

with the fact that each pipeline is executed on several nodes concurrently,

these attributes allow processing a huge number of ultra high throughput

samples.

The web and HPC services talk each other through a network socket,

which is an application programming interface (API) used to transmit data

on TCP/IP based networks. Computer networks use this protocol to trans-

mit information between machines. The TCP/IP defines a set communi-

cation channels called ports, identified by a number, where applications

and services can send, receive and listen data. For example, the port 80,

indicated as the HTTP port, is used by web browsers. For security reasons

a restricted set of TCP/IP port can be used only in a local area network.

Usually, the web servers and the HPC infrastructures are located in sepa-

rated networks checked by a firewall element, which monitors and permits

only communications on authorized ports. In the proposed system, the

TCP/IP port of the socket between services is user-defined, therefore the

suggested architecture can be installed in firewall network topologies easily.

Finally, the network socket is also used in transmissions when the daemons

run on the same workstation.



34 CHAPTER 3. AN AUTOMATIC DOWNLOADER AND ANALYZER SYSTEM

3.4 The HPC pipeline

The analysis pipe that processes the short read sequences in a UHTS exper-

iment is composed by three tools: Bowtie, Samtools and Cufflinks, already

presented in Chapter 2. They represent the state of the art in software

tools applied to the next generations sequencing analysis. Bowtie is used

to align the short reads on the reference genome. In the next chapter, a

comparative analysis between this tool and another aligner is presented;

the results motivate why Bowtie was chosen as the alignment engine of this

pipeline. SAMtools transforms the Bowtie outputs in bedGraph Track For-

mat [35] format files. The bedGraph type is extremely useful for visualizing

probability scores and transcriptome data in the UCSC Genome Browser.

The bedGraph is a line-oriented format and its four required fields are:

1. chrom: the name of the chromosome (e.g. chr3, chrY, chr5 random)

2. chromStart: the starting position of the feature in the chromosome

3. chromEnd: the ending position of the feature in the chromosome

4. data value: can be integer or real, positive or negative values.

Once these files are uploaded in the UCSC Genome Browser, the aligned

short reads are visualized as tracks over the chromosomes of a reference

genome. A binary version of the bedGraph file is also produced. This

version utilizes the bigWig [36] file format and it is used to upload very

large data in the UCSC Genome Browser. Therefore, through a bigWig

file it is possible to visualize a huge number of alignments on an entire

chromosome. The conversion between bedGraph and bigWig is archived by

a utility script called “bedGraphToBigWig”, downloadable from the UCSC

Genome Browser site directly. Within HPC-dae, the bedGraphToBigWig

converter is called in HPC pipeline after the generation of bedGraph files.
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SAMtools is also used to prepare the right input format to last module

of the chain automatically. Cufflinks performs RPKM computation of the

aligned sequences on genes. The RPKM measure [9] reflects the molar

concentration of a transcript in the starting sample by normalizing for

RNA length and for the total read number in the measurement. This

measure is becoming a standard in next generation experiments, because

it represents an objective measure allowing the comparison of the transcript

levels in different experiments. The Cufflinks statistical model (described

in Chapter 2, based on the methods in [15]) probabilistically assigns reads

to individual isoforms: this process can identify new isoforms, which are

reported in the result files.

All these software elements are not written to run in a HPC environment

natively. Therefore, some adaptations have been applied to make these

tools running in a efficient mode. In the Bowtie case, all the short reads

that compose an experiment are divided into a number of groups given

by the number of allocable execution nodes (it could be a workstation,

a CPU or single core in a multi-core processor, depending on the HPC

architecture). Each group of reads is assigned to one execution node, where

one Bowtie instance performs the alignment on the reference genome: in

this way each group of reads is processed in parallel. A different approach

is followed to parallelize SAMtools and Cufflinks. The aligned short reads

are divided on the basis of the chromosome of the reference genome onto

which they where aligned. 1 For each chromosome an instance of the two

tools is executed to generate the bedGraph and bigWig files, the RPKM

values and a little utility that publishes outcome to create the HTML pages

to publish these outcomes. It is possible to understand because the results

1For the UCSC HG18, used in this work, the number of chromosomes is 49. This number contains

the standard 22, X and Y chromosomes, while others are virtual chromosomes and hold the Mitochon-

drial DNA and the alternative haplotype sequences, i.e. groups of alleles of different genes, of the real

chromosomes.
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are presented separated by chromosome. These new functionalities in the

D-Daemons architecture to execute Bowtie, SAMtools and Cufflinks in a

HPC environment are added by ad hoc shell scripts called “wrappers”,

which set the stage for running the software pipeline on several execution

machines simultaneously.

3.5 SRA structure

The system queries the Sequence Read Archive (SRA) to find experiments

on the basis of a search key defined by the user. In case of a positive match,

the required samples are downloaded to be analyzed. Understand how

these steps are performed, a survey on the SRA’s structure has been nec-

essary. In the SRA archive the next generation data are classified through

a hierarchy. The organization is based on the following categories:

1. studies

2. experiments

3. samples

4. runs.

A study is a biological investigation where one ultra high throughput se-

quencing technology has been applied as analytic method. Most of these

investigations are linked to a publication on a biology o bioinformatics

journals. One study may be comprised of several experiments. An exper-

iment reports specifically what was sequenced and the procedure followed

used. It includes information about the source of the DNA, the sample, the

sequencing platform, and the processing of the data. The modern UHTS

platforms utilize procedures where a sample is sequenced through a series

of parallel pipelines, which are called “lines” or “runs”. In the SRA a
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run contains the short reads from each platform run. Each experiment

is composed of one or more sequencing it. In the future, some studies

will also have an associated analysis. These “analyses” may include as-

semblies of the short reads into genomic or transcript contigs, i.e. long

contiguous DNA sequences assembled from short sequencing (short reads),

and alignment to existing genomes or alignments onto other SRA data.

Records from each class have unique accession identifiers with a specific

three-letter prefix that indicates the type:

ERP or SRP for studies (example: SRP000727)

SRS for samples (example: SRS002671)

SRX for experiments (example: SRX003932)

SRR for runs (examples: SRR015321, SRR015322, SRR015323 ).

As mentioned in Chapter 2, the data in the SRA archive can be found

through Entrez cross-database search. The Entrez search is available di-

rectly from the SRA web portal [10] and it makes possible to select experi-

ments that match search strings entered by a user. For each entry returned

by a query a lot of information is returned. In general the following details

are produced for each experiment in the NCBI repository:

Accession: SRX003932

Title:

Experiment Design:

Submission: GEO

Study accession: SRP000727

Study Title: Alternative Isoform Regulation in Human

Tissue Transcriptomes
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Study Abstract:

Study Center: GEO

Study Center Project: Alternative Isoform Regulation in Human

Tissue Transcriptomes (ID=0)

Project name: Alternative Isoform Regulation in Human Tissue

Transcriptomes

Sample Accession: SRS002671

Sample Description: source: Human adipose tissue; description: RNA seq

Sample Common Name: Homo sapiens, (TaxonId=9606)

Sample Attributes: tissue=adipose

Sample Links: GEO web Link= http://www.ncbi.nlm.nih.gov

/geo/query/acc.cgi?acc=GSM325481

Library Name: adipose

Library Strategy: EST

Library Source: NON GENOMIC

Library Selection: cDNA

Library Layout: SINGLE

Platform Name: ILLUMINA

Processing: Base Space,

Quality score: , 0x0.0E0

Spot descriptor: 1) Application Read, Forward

Total: 7 runs, 27.8M spots, 888.1M bases

Run #1: SRR015321, 3851492 spots, 123247744 bases

Run #2: SRR015322, 3879376 spots, 124140032 bases

Run #3: · · · · · · · · ·
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The experiment’s unique accession identifier is also used to organize files

in the SRA’s FTP site. The root directory of this ftp repository is

ftp://ftp.ncbi.nlm.nih.gov/sra/static/

The files of each experiment are stored in directories under this ftp root

and these subdirectories have a name which is assembled by the experiment

identifier. The subdirectory path is composed by the first six letter of

the experiment identifier, the slash symbol and the complete experiment

identifier. For example the experiment called SRX003932 has its runs file

in the following sub directory:

SRX003/SRX003932

while the full path becomes:

ftp://ftp.ncbi.nlm.nih.gov/sra/static/SRX003/SRX003932/

This relatively simple encoding defines the structure of a huge amount

of biological knowledge, as 11 Terabases of sequencing data are included

in the Sequence Read Archive repository.

3.6 Integration in Galaxy

The Galaxy framework has been introduced in Chapter 2. It is an environ-

ment with an easy-to-use web interface where different software for UHTS

studies can be integrated and executed individually. Alternatively, the

software tools can be concatenated and run Each experiment is composed

of one or more sequencing it. together to combine a sequence of analysis

steps called “workflow”.

One characteristic of Galaxy is that it supports Perl and Python scripts.

The proposed web-dae service is also written in Python language, therefore

a Galaxy framework resulted an ideal candidate for a user interface.
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A set of D-Daemons tools has been developed to be included in the

tools panel of the Galaxy interface. These new elements are python scripts

which call the functions of web-dae component. Under a menu tool called

D-Daemons tools (see Figure 3.3) seven new entries are developed:

1. NCBI-SRA to SQLite DB This command queries the SRA reposi-

tory by a user defined research key and saves the result in a SQLite

database.

2. SQLite DB loader Given an existing database (produced in a previ-

ously query) this entry resubmits the user defined research key (saved

in the DB) and if new experiments are found they are saved in the

database.

3. NCBI-SRA Update to SQLite DB Given an existing database (pro-

duced in a previously query) this entry resubmits the user defined re-

search key (saved in the DB) and if new experiments are found they

are saved in the database.

4. SQLite DB status This command prints the status of experiments

saved in a DB. This view presents experiments by their SRA codes,

file directories and result links.

5. NCBI-SRA downloader This function downloads files of the exper-

iments in the DB..

6. HPC pipeline This function takes as input an user-selected experi-

ment from a database and communicates with the HPC daemon to be

processed in the HPC pipeline. Moreover, it is possible to analyze all

non yet processed experiments in a database.

7. SQLite DB saver This function saves the SQLite DB in the Galaxy

history to an external file.
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These SRA modules are based on some features of the web daemon and

they can be used a separately. A main feature in Galaxy is to build and ex-

ecute workflows of different tools. Thus, the presented Galaxy-like modules

of the D-Daemons system can be concatenated for new analysis workflows

(Figure 3.4).

Figure 3.3: The Galaxy main page and on the left the toolbar with the D-Daemons menu.
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Figure 3.4: A workflow based on elements of the D-Daemons architecture
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3.7 Test environment

The HPC pipeline has been developed in a Linux cluster environment com-

posed by 416 cores in 52 nodes, with a queue system based on the Sun Grid

Engine software [37] and a 10 Terabyte volume in a storage area network

to stock the input and output data. Different Linux workstations outside

the Linux cluster network have been used to implement the dual services

architecture between the cluster front end and a web server.

3.8 The CRC case study

The D-Daemons architecture has been tested on different analysis tasks.

Here a typical case study on cancer UHTS data is presented in details. In

the context of the EU FP7 project HIPERDART, in collaboration with

Istituto Catalao de Oncologia, a FBK [38] researcher needs to recover all

Colorectal Cancer Cell (CRC) lines in SRA. Through “Colorectal Cancer

cell line” query, all experiments stored in NCBI SRA were downloaded

and processed by the system. The Experiment features are shown in the

following table.

SRA experiment code SRA sample code Runs Spots Bases

SRX012945 SRS007122 2 19M 685.5M

SRX012946 SRS007123 2 18.3M 659.4M

What follows is an example of the output generated by the D-Daemons

system. The HTML pages where experiment results are published (in Fig-

ure 3.5 and Figure 3.6). The output is divided on the HG18 chromosomes.

In Figure 3.7 and Figure 3.8 outputs for each chromosome:

1. RPKM measure
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2. bedGraph file

3. bigWig file

4. Transcripts gtf (from Cufflinks)

5. Transcripts tmap (from Cufflinks)

6. UCSC Genome Browser track line (to load bigWig file in UCSC Genome

Browser)

7. link to open wigBig in the UCSC Genome Browser.

Figure 3.9 and Figure 3.10 present the RPKM values sorted from high

numbers to low numbers. The second column, produced by the Cufflinks

software, allows to identify possible “new junctions”.

Finally, in Figure 3.11 and Figure 3.12 aligned short reads (on HG18

chromosome 1) of the Colorectal Cancer cell line experiments are visualized

in the UCSC Genome Browser site [2]. Through the bigWig format [36],

it is possible to display alignments on the entire chromosome length.
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Figure 3.5: Main result page for experiment SRX012945.
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Figure 3.6: Main result page for experiment SRX012946.
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Figure 3.7: Chromosome 1 result page for experiment SRX012945.

Figure 3.8: Chromosome 1 result page for experiment SRX012946.
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Figure 3.9: RPKM values for Chromosome 1 experiment SRX012945.
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Figure 3.10: RPKM values for Chromosome 1 experiment SRX012946.
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Figure 3.11: Alignments on chromosome 1 for experiment SRX012945 visualized in the

UCSC Genome Browser.
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Figure 3.12: Alignments on chromosome 1 for experiment SRX012946 visualized in the

UCSC Genome Browser.



52 CHAPTER 3. AN AUTOMATIC DOWNLOADER AND ANALYZER SYSTEM



Chapter 4

Aligner selection in a NGS pipeline

4.1 Aligner comparison

This section describes the benchmarks, on a SNP discovery from RNA-seq

data, obtained with two recent Open Source Software currently popular in

next generation sequencing (NGS) experiments: Bowtie [3] and Bwa [6].

This work aims to compare two candidate alignment engines. The winner

will be inserted in the proposed HPC pipeline presented in the Chapter 3.

Moreover this exercise exemplifies how to control reproducibility in NGS

experiments in complex pipelines. The two aligners were tested on three

RNA-Seq datasets previously analyzed in the Wang study [1]. Data are

available from the NCBI Sequence Read Archive [10, 26] with accession

SRA002355.1. The dataset is formed by 32bp short reads produced by the

Illumina sequencing process of a Human Breast tissue and two cell lines

(BT474 & MCF7). Following are other attributes of the samples:

SRA signature Tissue/Cell Line Reads Lanes

SRX003922 BREAST 16120746 4

SRX003923 MCF7 16059515 4

SRX003935 BT747 18424533 7

53
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The human build HG18 from the UCSC Genome Bioinformatics site [20]

was used as reference genome. Our trials are focused to test the behaviors

of the two aligners in a parallel environment, where they can be executed

on several CPUs simultaneously and the main intention is to reduce the

alignment time. Here are compared time, memory usage and alignment

accuracy of Bowtie and Bwa executed in parallel mode (i.e. on more than

one CPUs).

The accuracy measures are performed taking in account the number

of uniquely mapped reads and of allowed mismatches and through a SNP

discovery analysis. Bowtie and Bwa do not include functions for this type

of analysis, so other two instruments have been used on their outputs to

perform the SNP detection: TopHat [8] has been applied on Bowtie output,

while SAMTool [11] has been run on the Bwa results.

The FBK [38] computing system has been used to perform these trial

estimations. The facility is composed by 416 cores in 52 nodes, each one

with 2 Intel Xeon Quadcore processors and RAM Memory ranging from

16 to 72 GB per nodes. The operating system installed on nodes is the

Scientific Linux distribution, which is developed by CERN and Fermi Lab.

A SGE [37] queue system governs users and their programs (called jobs)

on the cluster. The queue system schedules users’ jobs on available free

nodes to start their execution. This HPC infrastructure has allowed us to

complete tests using a number of processor cores from 1 to 256. Current

processors are based on multi-core architecture, where two or more CPUs

(called cores) have been condensed in the same die for increased perfor-

mance. Given this clarification, in the following the term “CPU” will be

used to indicate a “processor core”.

The two aligners are written to run on a single workstation and at best

they support to be forked in some threads always on a single machine.

Multithreading is not enough to run and operate efficiently in a parallel
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environment as a computer cluster. Modern cluster facilities are based

on distributed memory architectures, where each node views only its local

Random-access memory (RAM). Multiple threads can be applied in local

RAM memory space, so in a cluster environment multithread software can

use only one node at time.

Given these boundaries, to execute Bowtie and Bwa on two o more nodes

up to 256 cores at the same time, two ad hoc shell scripts (or “wrappers”)

were developed to make the aligners more compliant with the cluster’s

queue system. These wrappers allow Bowtie and Bwa to interact and run

in the cluster facility, implementing two methods to distribute the input

files/reads to multiple instances of the two aligners running on different

CPUs. How to allocate various occurrences of an aligner, share out the

input reads between them and rebuild the final output are the keystones

to implement the parallelization of Bowtie and Bwa. Two parallelization

strategies are put into action through the two wrappers.

The first method is based on some attributes of the Illumina sequencing

process. Here, the short reads are divided in 1−7 files, called lanes. These

files reflect the architecture of the Illumina system, where the sequencing

process runs over 7 pipelines (+1 for control). So, the tactic is to submit a

number of instances of one aligner which is equal to the number of lanes,

i.e. each single lane is assigned to one instance of Bowtie or Bwa to be

aligned. When computing of all instances is finished, their output is unified

in a single output file, which contains the alignment result of all short

reads from all lanes. This wrapper will be indicated as the separated lanes

method.

The second method does not consider the lane separation and it is based

on the number N of CPUs which one user wants to utilize. The procedure

considers all T reads from all the lanes, it divides them in N groups, where

each one contains an uniform quantity of short reads, [T/N ] (because in
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general N is not a factor of T ). These N groups are processed by N

copies of an aligner. As in the previous methods, when all instances have

finished, all the output files are combined in a unique file. This routine

will be marked as the merged lanes method.

The behaviors of the two aligners and the parallelization methods have

been tested recording the RAM memory usage and the computational time

to execute an alignment of the short reads from the BREAST, MCF7 and

BT747 samples. All trials involved in profile collation of performance in

time and memory RAM usage have been repeated four times; means and

standard deviations of these repetitions for each specimen are reported in

tables below.

Besides the computing performances quality of the results from the two

aligners were also inspected. Uniquely mapped reads and allowed mis-

matches have been quantified and SNP discovery has been applied on the

alignment files from the BREAST, MCF7 and BT747 samples. Consensus

building and downstream analysis was performed by SAMtools [11], a set of

utilities for the manipulation of mapped reads. SNPs were called from the

consensus sequence and then filtered in order to retain only high-quality

SNPs, based on the following inclusion criteria:

• Mapping quality > 25

• Read depth > 3

• SNPs do not fall within 10bp from a gap.

As reported above, the Bowtie output has to be used through Tophat to

produce a SNP output, so the mark “Bowtie/T” will denote the use of

both for this aim.

The graphs in Figure 4.1, Figure 4.3 and Figure 4.5 show times in sec-

onds spent by Bowtie and Bwa (curves in blue and red color respectively)
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with the merged lanes method varying the number of uses CPUs applied

to the three samples. Table 4.1, Table 4.3 and Table 4.5 report values of

these test conditions.

The graphs in Figure 4.2, Figure 4.4 and Figure 4.6 display times in

seconds spent by Bowtie and Bwa with the separated lanes method varying

the number of used CPUs applied to the lanes of Breast, BT474 and MCF7

samples. The column lane indicates the number of CPUs in charge of

aligning all lanes, for example the 3 value denotes that all lanes are equally

distributed and aligned on 3 CPUs. Table 4.2, Table 4.4 and Table 4.6

report precise numbers.

In Figure 4.7, Figure 4.8 and Figure 4.9 the progress of used RAM mem-

ory, expressed in Gigabyte (GB), by Bowtie and Bwa is shown changing

the involved CPUs number in the merged lanes method. In Table 4.7,

Table4.9 and Table 4.11 the corresponding numerical values are shown.

The separated lanes method and its RAM memory consumption is accu-

rately reported in Table 4.8, Table 4.10 and Table 4.12. Given the constant

values obtained, no graphs have been supplied for this method.

Counts of uniquely mapped reads, i.e., reads mapped exactly on the

reference genome, have been produced. Moreover, amounts of mismatches

reads, i.e., reads aligned on the reference genome with some errors, have

been computed considering 3 cases: 1 mistake, 2 mistakes, or 3 and more

mistakes. These values are presented in Figure 4.10 and Table 4.13 for

each aligner and sample. The SNP analysis is reported in the distribution

of single base mismatches in merged and separated lanes cases for the

Breast data in Figure 4.11, Figure 4.12, Figure 4.12 and Figure 4.13. As

a first example of application, in Figure 4.15 and Figure 4.16 the coverage

of aligned short reads produced by Bowtie and Bwa are focused on three

specific genes: SPARC, ATOX1 and G3BP1.
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Figure 4.1: Scalability comparison of Bowtie and BWA on merged lanes of Breast sample.

BWA BOWTIE

CPU mean sd mean sd

1 6021.75 251.97 1580.25 57.59

2 3138.38 117.48 847.12 35.63

4 1565.69 72.11 452.75 23.12

8 851.56 32.20 267.91 25.53

16 494.70 24.80 166.53 28.73

32 273.84 21.94 138.16 76.08

64 178.96 49.25 127.11 64.89

128 104.39 24.88 54.79 20.35

256 75.35 31.87 49.58 24.20

Table 4.1: Scalability (in seconds) on Breast sample with merged lanes.
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Figure 4.2: Scalability comparison of Bowtie and BWA on separated lanes of Breast

sample.

BWA BOWTIE

lane mean sd mean sd

1 6064.75 316.95 1351.00 49.89

2 3161.62 88.46 684.75 18.42

3 2109.75 61.49 467.75 27.49

4 1609.06 71.88 358.62 22.00

Table 4.2: Scalability (in seconds) on Breast sample with separated lanes.
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Figure 4.3: Scalability comparison of Bowtie and BWA on merged lanes of BT474 sample.

BWA BOWTIE

CPU mean sd mean sd

1 6704.00 183.54 1957.50 47.87

2 3427.50 168.54 1027.88 44.76

4 1806.69 110.85 542.44 20.71

8 929.53 34.60 307.88 6.85

16 518.50 32.06 189.70 14.65

32 283.84 8.86 110.62 4.76

64 169.73 12.62 87.32 18.18

128 94.72 2.95 54.90 4.26

256 62.59 1.11 41.72 5.22

Table 4.3: Scalability (in seconds) on BT474 sample with merged lanes.
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Figure 4.4: Scalability comparison of Bowtie and BWA on separated lanes of BT474

sample.

BWA BOWTIE

lane mean sd mean sd

1 6895.25 79.73 1819.00 80.91

2 3486.62 125.62 895.12 22.25

3 2349.67 77.84 596.17 5.94

4 1803.88 50.31 456.31 16.88

5 1476.75 58.70 374.25 15.88

6 1219.12 27.12 307.00 16.67

7 1034.61 53.56 263.68 11.06

Table 4.4: Scalability (in seconds) on BT474 sample with separated lanes.
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Figure 4.5: Scalability comparison of Bowtie and BWA on merged lanes of MCF7 sample.

BWA BOWTIE

CPU mean sd mean sd

1 6020.00 395.58 1561.75 92.88

2 3104.75 113.16 841.38 78.12

4 1583.81 70.62 464.56 69.81

8 863.59 45.14 271.50 47.87

16 476.59 56.13 190.89 48.52

32 270.40 38.32 160.72 45.41

64 163.40 40.38 70.22 20.50

128 87.01 7.80 62.08 21.64

256 59.08 3.12 37.17 2.57

Table 4.5: Scalability (in seconds) on MCF7 sample with merged lanes.
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Figure 4.6: Scalability comparison of Bowtie and BWA on separated lanes of MCF7

sample.
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BWA BOWTIE

lane mean sd mean sd

1 5812.00 178.94 1338.75 41.70

2 3096.38 76.93 696.00 18.71

3 1993.42 74.81 455.08 15.31

4 1534.75 113.87 353.69 13.33

Table 4.6: Scalability (in seconds) on MCF7 sample with separated lanes.

BWA BOWTIE

CPU mean sd mean sd

1 2.065 0.007 1.917 0.014

2 2.054 0.006 1.875 0.028

4 2.025 0.002 1.808 0.027

8 1.982 0.010 1.688 0.015

16 1.899 0.004 1.478 0.022

32 1.755 0.008 1.203 0.014

64 1.523 0.027 0.891 0.010

128 1.212 0.026 0.601 0.017

256 0.874 0.036 0.387 0.011

Table 4.7: Memory usage (in GB) on BT474 sample with merged lanes.
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Figure 4.7: Memory usage comparison of Bowtie and BWA on merged lanes of BT474

sample.

BWA BOWTIE

lane mean sd mean sd

1 2.156 0.011 2.245 0.001

2 2.156 0.010 2.245 0.001

3 2.151 0.004 2.245 0.001

4 2.150 0.003 2.244 0.001

5 2.149 0.005 2.243 0.002

6 2.149 0.003 2.243 0.001

7 2.149 0.002 2.244 0.001

Table 4.8: Memory usage (in GB) on BT474 sample with separated lanes.
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Figure 4.8: Memory usage comparison of Bowtie and BWA on merged lanes of MCF7

sample.

BWA BOWTIE

CPU mean sd mean sd

1 2.067 0.008 1.879 0.013

2 2.056 0.004 1.839 0.013

4 2.027 0.003 1.762 0.014

8 1.983 0.003 1.622 0.011

16 1.900 0.006 1.417 0.011

32 1.756 0.016 1.133 0.028

64 1.529 0.018 0.826 0.023

128 1.212 0.023 0.555 0.018

256 0.885 0.026 0.361 0.015

Table 4.9: Memory usage (in GB) on MCF7 sample with merged lanes.
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BWA BOWTIE

lane mean sd mean sd

1 2.156 0.002 2.242 0.001

2 2.157 0.008 2.241 0.002

3 2.154 0.004 2.242 0.001

4 2.151 0.003 2.243 0.001

Table 4.10: Memory usage (in GB) on MCF7 sample with separated lanes.

SRX003922−Breast−JL

CPUs

R
am

 M
em

or
y 

(G
B

)

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256

bwa
bowtie

Figure 4.9: Memory usage comparison of Bowtie and BWA on merged lanes of Breast

sample.
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BWA BOWTIE

CPU mean sd mean sd

1 2.061 0.007 1.876 0.008

2 2.050 0.008 1.825 0.010

4 2.025 0.004 1.748 0.020

8 1.978 0.006 1.619 0.011

16 1.902 0.006 1.409 0.016

32 1.755 0.015 1.135 0.015

64 1.538 0.011 0.826 0.014

128 1.214 0.016 0.557 0.005

256 0.888 0.025 0.366 0.014

Table 4.11: Memory usage (in GB) on Breast sample with merged lanes.

BWA BOWTIE

lane mean sd mean sd

1 2.154 0.003 2.242 0.001

2 2.153 0.001 2.242 0.000

3 2.154 0.002 2.242 0.001

4 2.152 0.002 2.242 0.001

Table 4.12: Memory usage (in GB) on Breast sample with separated lanes.
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Figure 4.10: Comparison of uniquely mapped reads stratified by the number of allowed

mismatches

total mapped mismatches + indels

0 1 2 3+

BREAST Bowtie/T 13528932 (83.92%) 8080879 3262783 2171598 13672

BWA 10730122 (66.56%) 7181244 2528362 1018399 2117

BT474 Bowtie/T 15627171 (84.82%) 9325662 3717151 2532107 52251

BWA 11694386 (63.47%) 7834663 2724955 1132370 2398

MCF7 Bowtie/T 14161929 (88.18%) 8696849 3171379 2282772 10929

BWA 10434523 (64.97%) 7320164 2211479 900663 2217

Table 4.13: Uniquely mapped reads and allowed mismatches. The total mapped reads

expressed as percentage of the overall number of raw reads in each dataset.
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Figure 4.11: Distribution of single base mismatches (merged lanes).
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Figure 4.12: Distribution of single base mismatches (merged lanes).
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Figure 4.13: Distribution of single base mismatches (separated lanes).
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Figure 4.14: Distribution of single base mismatches (separated lanes).
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Figure 4.15: Coverage of alignment with Bwa on SPARC, ATOX1 and G3BP1 genes.
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Figure 4.16: Coverage of alignment with Bowtie/Tophat on SPARC, ATOX1 and G3BP1

genes.
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4.2 Candidate selection

The first analysis regards the quality the joined output. In the paralleliza-

tion process the task was split in several sub processes, each one with its

input and output, but all outputs have to be joint together eventually. The

first result is that the two wrappers, used to parallelize Bowtie and Bwa,

return joint outputs that are indistinguishable from the outputs originate

by both aligners in “serial mode” (one CPU).

Two methods have been applied in this test suit to parallelize Bowtie and

Bwa on the cluster facility. The separated and merged lanes wrappers allow

to split and align short reads on several nodes simultaneously. They are

quite different: one uses the natural characteristic of the Illumina format

and submits one lane to one node directly. Contrariwise, the second counts

the sum of all reads from all lanes and divides them in several groups as

the number of used CPUs. While the separated lanes method is easier

to implement than other, it can use a number of CPUs/nodes equal to

the number of lanes, so a limit number of processors can be used: the

maximum is 7. On the other hand, the merged lanes procedure allows to

use a large number of CPUs and a high grade of parallelism can be archived.

As shown in Figure 4.1, Figure 4.3 and Figure 4.5 and Figure 4.2, Figure

4.4 and Figure 4.6 using a large number of processors the alignment time

decreases. We conclude that in cases where a great number of short reads

are included in lane files the merged lanes method is more suitable to speed

up investigations.

The RAM memory usage analysis shows that the merged method allo-

cate less memory than the separated one. While in separated approach the

RAM consumption is constant, in the other method the RAM utilization

decreases with the number of processors. Especially in Bowtie case, this

difference is remarkable. This memory reduction can help to limit overload



4.2. CANDIDATE SELECTION 77

in allocated nodes involved in alignment task.

In time and memory consuming experiments an advantage of Bowtie

with respect to Bwa was found on these variances. The differences in

computational time is manifest already with low number of CPUs in both

wrapper methods. Also in RAM memory probes this distinction exists and

Bowtie obtains best values than Bwa.

In quality analysis the comparison of the performance in Figure 4.10 and

4.13 show that Bowtie archives a bigger percentage of uniquely mapped

reads than Bwa.

In Figure 4.15 and Figure 4.16 the coverage of alignment from the two

aligners are presented. Similar profiles are found for Bwa and Bowtie for

genes of significant oncological interest. The SPARC gene is expressed

in normal breast and not in the BT474 & MCF7 breast cancer cell lines.

Moderate expression of genes ATOX1 and G3BP1 is found in BT474 &

MCF7 vs Breast. Neither of the latter two were previously associated with

breast cancer susceptibility.

Given its performance in computational time, RAM memory usage and

quality in SNP analysis, Bowtie was chosen as the candidate in the D-

Daemons architecture.
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Chapter 5

Pipelines for reproducibility

The pipeline structure proposed in this thesis for NGS has been motivated

by the need of controlling and improving reproducibility of analysis on

high throughput data. What follows are two examples where two analysis

pipelines have been developed to analyze proteomics data. These works

present two implementations focused to produce unbiased and reproducible

results.

5.1 A grid-enabled example

In [31] a grid-enabled pipeline with an ontology based environment for

proteomics spectra management and a machine learning platform for un-

biased predictive analysis is presented. Two existing software platforms

(MS-Analyzer and BioDCV), the emerging proteomics standards, and the

middleware and computing resources of the EGEE Biomed VO grid infras-

tructure1 are exploited. In the setup, BioDCV is accessed by the MSAna-

lyzer workflow as a web service, thus providing a complete grid environment

for proteomics data analysis.

The environment described in Figure 5.1 is structured in two systems

1A geographically distributed network of computational and storage resources connected through the

Internet.
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connected by a web service: an upstream one (MS-Analyzer), responsible

for managing and preprocessing the raw data produced by the spectrome-

ter, and a downstream one (BioDCV), responsible for performing classifi-

cation and feature ranking inside a complete validation methodology. Web

services, workflows, and grid middleware are used to build the infrastruc-

ture.

Internet web services are used to remotely integrate the main compo-

nents of the proposed environment. A web service is a software system

designed to support interoperable machine-to-machine interaction over a

network. This definition encompasses many different specifications; the

standard one is based on SOAP (Simple Object Access Protocol), using

messages formatted in XML and sent over the HTTP protocol.

MS-Analyzer uses a Service Oriented Architecture (SOA) and provides

a collection of specialized spectra management services, including spectra

preprocessing, spectra analysis (obtained by wrapping public available data

mining and visualization software tools), and data movement services. The

adoption of the SOA approach permits integration into the MS-Analyzer

of additional spectra management services (e.g. novel preprocessing tools)

and sophisticated, third party analysis tools such as the BioDCV service.

The predictive modeling portion of the proposed system is provided by

BioDCV, a platform for machine learning in high-throughput functional ge-

nomics. BioDCV fully supports complete validation [39] in order to control

selection bias effects, i.e. the generation of optimistic and not reproducible

results. For proteomics, it includes methods for baseline subtraction, spec-

tra alignment, peak clustering and peak assignment that were adapted from

existing R packages and concatenated to the complete validation system.

Since March 2006, BioDCV has been running as an external application in

the Egee Biomed VO, the virtual organization for the biomedical domain

of the EGEE project [40].
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Figure 5.1: The architecture of the MSAnalyzer and BioDCV tools.
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5.2 A Design Analysis Protocol

In [41] is described a method to identify predictive biomarkers of dis-

ease from high-throughput mass spectrometry (MS) data, which requires

a complex analysis path. Preprocessing and machine-learning modules

are pipelined, starting from raw spectra, to set up a predictive classifier

based on a shortlist of candidate features. As a machine-learning problem,

proteomic profiling on MS data needs caution like the microarray case.

The risk of overfitting and of selection bias effects is pervasive: not only

potential features easily outnumber samples by 103 times, but it is easy

to neglect information leakage effects during preprocessing from spectra

to peaks. The aim of this review is to explain how to build a general

purpose design analysis protocol (DAP) for predictive proteomic profiling.

The DAP can be used with alternative components, i.e. with different

preprocessing methods (peak clustering or wavelet based), classifiers e.g.

Support Vector Machine (SVM) or feature ranking methods recursive fea-

ture elimination (RFE) [39] or I-Relief. A procedure for assessing stability

and predictive value of the resulting biomarkers list is also provided.

The structure of a DAP pipeline for proteomic profiling is displayed in

Figure 5.2. The MS spectra are first passed to the preprocessing engine.

As soon as possible, we set apart a portion of the data for validation, and

then apply a pipeline of preprocessing modules to the development data.

Ideally, each step should be applied to spectra separately (dashed boxes

in Figure 5.2), i.e. preprocessing parameters should be used unmodified

during upstream analysis of validation (e.g. with AUC normalization).

The risk of information leakage is potentially high, thus the DAP im-

plements robust preprocessing methods. Therefore, the solution is to move

the preprocessing phase inside the pipeline directly.
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Figure 5.2: A workflow for proteomic profiling.
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Chapter 6

Comparison with existing

frameworks

In this section a review of environments for high throughput analysis in

genome research is presented to highlight differences and similarities with

the D-Daemons solution proposed in Chapter 3.

6.1 miRMaid

MicroRNAs (miRNAs) are short regulatory RNA molecules that are en-

coded in the genomes of animals, plants and viruses. The latest results in

the main mechanism of miRNA based regulation have led to a large set of

algorithms, websites and databases that provide different materials about

this biology data.

The miRBase website has become a central and highly useful website for

scientists that search information about specific miRNAs. Here, scientists

can also submit newly discovered miRNAs and details about sequences and

homologies in other species. The site includes the following data resources:

1. genomic contexts and evolutionary conservation of miRNAs;

2. prediction and validation of miRNA targets;
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3. biological functions and phenotypes of individual miRNAs;

All these miRNA functions are primarily available online as point-and-click

websites.

A typical analysis on miRNA (which uses an online repository like miR-

Base) requires manually downloading raw data files (if available), under-

standing the format and structure of the resource in question and finally,

writing of a script to parse the content and identifiers. A researcher has

to go through all these steps, and repeat them each time a resource is

updated. miRMaid [42] is a software framework designed to simplify the

previous manual steps, reduce errors, increase reproducibility of the sci-

entific results and make the data analysis less labor-intensive. It is built

in Ruby on Rails (RoR) [43], that allows rapid development of web ap-

plications. In the RoR framework, data is stored in a relational database

management system (SQLite, PostgreSQL and MySQL are currently sup-

ported in miRMaid). miRBase is the data source of the core miRMaid

architecture.

miRMaid system uses a RoR layer to expose miRBase data and func-

tions on the web as read-only “RESTful” resources. The RESTful protocol

exposes a function or a document with a specified URL, through a HTML

request to this URL it is possible to call or to retire the linked resource.

This structure allows to retire and call miRBase’s experiments or func-

tions making a simple HTML call to a specific url. Therefore, each data

model (i.e. Precursor) in miRMaid has resource URLs for listing all ob-

jects (/precursors) or a single object (/precursors/hsa-mir-21). Querying a

RESTful web service requires that a program is able to generate a HTTP

request to the URL that specifies the resource and then parse the response

document. Several programming languages and command-line interfaces

support these functions. miRMaid can generate HTML and XML docu-

ments for all resource URLs and FASTA files for data queries.
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The miRMaid solution presents some similarities with the D-Daemons

architecture. A public repository is used as data source: D-Daemons retries

experiments from the Sequence Read Archive, while miRMaid from the

miRBase site. The two solutions try to automatize and simplify long and

tedious manual steps required to perform an analysis procedure. Instead,

miRMaid does not implement an external analysis pipeline, because it uses

miRBase analysis procedures, and has not a GUI to call exposed functions

from miRBase site like in the D-Daemons architecture.

6.2 Metagenomic pipeline

In [44] a set of tools is presented to perform a metagenomic analysis.

Metagenomics is the study of genetic material recovered from environ-

mental samples directly. A model investigation is composed by a set of

steps:

1. Sequence the target sample;

2. Perform a quality control on generated reads;

3. Generate alignments;

4. Conduct a full taxonomic representation analysis (classification).

Software procedures have been developed to automize these phases in the

Galaxy framework [22]. Six tools have been organized in a Galaxy section

called “Metagenomic analyses” and are listed in Table 6.1.

This solution performs a metagenomic analysis in a web browser directly.

A user can upload his sequencing data in a Galaxy site and call each tool

to investigate its data. Moreover, the metagenomic procedures can be

concatenated in Galaxy workflow to build a pipeline which automatizes all

steps.
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Fetch taxonomic representation Fetches taxonomic information from NCBI

reference databases

Summarize taxonomy This utility computes a summary of all taxonomic

ranks.

Draw phylogeny This tool produces a graphical representation of

phylogenetic tree in PDF format.

Find diagnostic hits Produces lists of sequence reads to a particular set

of ranks

Find lowest diagnostic rank Identifies the lowest taxonomic rank for which

a metagenomic sequencing read is diagnostic.

Poisson two-sample text Tests if the number of reads between two taxa

is significantly different.

Table 6.1: Tools of the “Metagenomic analyses”.

The used reference databases are currently limited to NT and WGS

nucleotide sequence collections from NCBI.

The use of the Galaxy framework is similar in Metagenomic pipeline

and D-Daemons architecture and it provides a user friendly interface to

use procedures. In both cases, advanced workflows based on Galaxy tools

can be built to perform investigations. The Metagenomic solution uses the

NCBI public repository to retry taxonomic information. No HPC environ-

ments and databases are explicitly involved to manage experiments like in

D-Daemons architecture.

6.3 mGene.web

The mGene.web [45] system is a website which allows to perform the

genome-wide prediction of protein coding genes from eukaryotic DNA se-

quences. It provides a web interface to the mGene gene finding software

[45]. mGene is based on discriminative machine learning techniques and its
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high accuracy has been demonstrated in an international competition on

nematode genomes [45]. The web server mGene.web includes a convenient

interface to mGene for a use within the Galaxy framework ([22]), which

also offers handy access to existing genome annotation databases as well

as other computational tools.

The mGene.web system offers pretrained models for the recognition of

gene structures including untranslated regions in an increasing number of

organisms. For organisms in the list of pre-trained models, a FASTA file

with the DNA sequence is required as input and a GFF3 file containing

gene predictions is produced as output. In case one wishes to annotate a

genome for which no suitable pre-trained model exists, mGene.web calls

the mGene functions to train a new model. This phase takes a FASTA file

with the DNA and a GFF3 file with a set of known genes as input and

returns a trained mGene predictor object that can be used to predict genes

on given DNA sequences.

The web service uses a cluster with 84 AMD Opteron CPUs (2.2 GHz)

with 8GB of RAM per four CPUs. On this HPC facility the mGene training

and prediction tasks are split into several parallel sub-tasks in order to

reduce the waiting time for users.

The mGene.web offers a computational gene finding system with the

follows features:

1. high accuracy;

2. genome-wide predictions within a reasonable time;

3. easy to use even for researchers with no programming experience;

4. applicable to a large variety of newly sequenced organisms.

In a confront between this solution and the D-Daemons architecture

some comparable characteristics can be found. The two systems adopt the
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Galaxy framework to service a GUI for researchers with no programming

experience. The solutions allow to build workflows with their procedures

and other existing Galaxy tools. As in D-Daemons answer a HPC facility

is used to reduce waiting time in the heavy computational tasks (mGene

processes and HPC pipeline parallel jobs). In mGene.web no public repos-

itories or database system are used in its internal architecture.



Chapter 7

Conclusions

7.1 Overview

Public access sites are growing to allow exchanges of next generation se-

quencing data sets between research laboratories. This is a great goal con-

sidering that in general an UHTS experiment weights several gigabytes.

These public repositories give a great opportunity to get access to a large

numbers of experiments and use them in own research projects (see Section

3.1). The Sequence Read Archive (SRA) is the most notable, because it is

supported by three biology centers, the National Center for Biotechnology

Information (NCBI), the European Bioinformatics Institute (EBI) and the

DNA Dsata Bank of Japan (DDBJ), and it manages about 11 Terabases

of biological sequence data 1.

The SRA presents a search engine called Entrez cross-database search,

where a user can insert a research key and the system presents relative

archived experiments, then user can download them. All these operations

are manually and a user have to repeat them to search new data or update

previous queries. If the research rate increases, the previously manual steps

can take time and patience.

This dissertation has presented a system that can automatically process

1march 2010
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the steps requested to download data from the SRA repository. The D-

Daemons architecture can download experiments based on user research

key and this operation can be scheduled to retire new data. Second, it

processes them on a HPC pipeline and publishes RPKM measures, new

junction identification for each genes and compatible files to visualize the

aligned short reads on the HG18 chromosome positions in Genome Browser

site. These results allow to compare experiments from different biological

samples to identify variability and similarity in gene expression.

Several issues have been addressed to build the whole system. First,

a knowledge of the SRA architecture has been needed to build the auto-

matic procedures. A considerable amount of time has been spent to find

information on how the SRA is organized, where experiments are stored

and how the Entrez search engine [34] can be used in an automatic re-

trieve system. All these details have been applied in the development of

the D-Daemons architecture. Second, software for UHTS studies uses dif-

ferent file formats for its input and output. It introduces a complication if

your purpose is to concatenate these tools in an analysis pipeline. There-

fore, to build the HPC pipeline based on Bowtie, SAMtools and Cufflinks

(described in Chapter 2) some conversion operations have been applied to

make compatible the input and output between tools.

The integration of the D-Daemons architecture in the Galaxy framework

has been performed (see Chapter 3). A graphic user interface (GUI) helps

to command the D-Daemons procedures easily. This is an example that

shows how a visual interface can make useful a complicate system. This

is an important point in software architecture developed for usage in a

interdisciplinary environment. A GUI does not only help to use a program

or system, but also it reduce training time to acquire knowledge on a

instrument without the requisite to understand how all its parts run. Visual

frameworks, as Galaxy, provide features (for example the workflow design
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and execution) to hide complex architectures and present only the main

methods. In bioinformatics it has become a requirement, because it is an

example where software instruments can be used by biologists and doctors

with different computer science knowledge.

7.2 Innovative features

The D-Daemons architecture introduces some innovative features.

1. It is a service that automatically calls the NCBI Entrez tools, to in-

terrogate and retrieve experiments from the SRA public repository.

2. It is built in two components (web-dae and HPC-dae), which can be

installed on a HPC infrastructure, different machines or one worksta-

tion.

3. The communication between the two components it is based on a

TCP/IP socket layer that is compliant with firewalled local area net-

works.

4. The D-Daemons architecture does not depend by a particular queue

system; therefore it can be installed on HPC environment with differ-

ent resource manager software.

7.3 Improvements

Even though the proposed system provides a working solution and it is

indeed used in a research context, several enhancements can be introduced

to improve the efficiency and add new features.

Some elements in the HPC pipeline are not natively designed to work in

a parallel environment like a cluster facility. The workaround used in the

D-Daemons architecture is to use a software layer called wrapper to join the
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concurrent execution feature to these components. This method allows to

run these serial software with a good efficiency. Better performances can be

archived using tools developed to run in a HPC system natively. A software

written to take advantaged of several execution nodes can obtain a better

scalability when the number of machines increases than a wrapper version.

This upscaling is possible because parallel software can use special libraries

to divide and coordinate algorithms running on several CPUs of different

nodes. The synchronization of software instances is managed through ex-

changed messages on the network that joins the execution nodes. One of

these libraries is the Message Passing Interface (MPI). It is an application

programming interface (API) which implements the communications be-

tween software instances distributed on a network of computer nodes. One

element that consumes a huge execution time is the alignment phase of the

short reads. A decisive improvement could be the availability of a paral-

lel implementation of the Burrows-Wheeler Transform algorithm (used in

Bowtie and Bwa) based on the MPI library.

Second, the D-Daemons system is based on a flat file database that

makes searching for studies, experiments and sample tissues possible through

SQL queries. But if the data increases to several terabytes of experiments,

a special storage architectures have to be chosen. Storage area network

(SAN) and grid/cloud storage systems are examples of storage system that

can manage terabyte size of information. A SAN is a set of storage de-

vices that communicate and share data through a local area network. In a

grid/cloud storage system components are storage devices and also SANs

geographically distributed that expose the storage space through the Inter-

net network. A simple flat file database does not require to manage data

over these large storage architectures. A solution is to substitute the flat

file database with a database management system (DBMS), which supports

services to operate in SANs and cloud environments natively. A DBMS
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can list experiments over the storage devices and support fault-tolerant

functions to protect and backup data.

A DBMS can be also inserted in the D-Daemons architecture if the

system has to service a high number of users simultaneously. In a multi-

user environment the HPC-dae (see Chapter 3) is the element which has to

manage different requests from multiple web-dae instances. This feature

is already supported by the Python socket procedures [46] defining HPC-

dae. Contrariwise, the SQLite system originally available with Galaxy

manages different user requests locking the database when a user makes

a write operation and other users can only execute read operations. A

SQLite database is a file and the lock procedure is performed through

the operating system’s file locking support. This mode penalizes SQLite

performances in a high ratio of writes to reads and a heavy user load. As

an alternative, a DBMS is developed to support hundreds user transactions

without penalizing the performance and response time of whole system.

7.4 Future work

The experience with the Galaxy framework (see Chapter 3) has positively

confirmed the stability and validity of visual interfaces and workflows in the

application context. Their potential in making easy the interaction with

complex system to multidisciplinary users is convincing. Further software

applications in bioinformatics is expected to operate natively in these visual

interfaces and workflows environments: the D-Daemons architecture could

be further developed with user intentions in research.

Second, the software tools used in NGS typically run on workstations

and HPC facilities based on standard CPU architecture (Intel or AMD

processors). Recently, a new hardware platform to execute heavy compu-

tational tasks efficiently is introduced. This is indicated as general-purpose
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computing on graphics processing units (GPGPU) and it concerns the use

of the graphics processing unit (GPU) on the graphic cards, inside a work-

station or in a special enclosure. Modern graphical cards have GPUs with

a number of cores larger than in standard CPUs, a GPU has hundred

cores while the last CPU have only 4 cores (Quadcore processor) and all

GPU’s cores hold the space of a graphic card in a single workstation. This

increase in computational granularity can be used to accelerate parallel

software efficiently provided that enough local memory can be addressed

and managed. Moreover, to take advantage from the GPU hardware soft-

ware applications have to be rewritten with special libraries (as the CUDA

[47] or the OpenCL framework [48]). Examples of computational resources

based on GPUs can be found in several scientific tasks: high energy physic,

molecular dynamic, computational chemistry and others. Extension lists

are given with the GPGPU website [49] and, recently, at the “CUDA Bio-

Informatics and Life Sciences” dedicated resource [50]. The application

of the GPGPU technology to speedup algorithms in next generations se-

quencing, as a potential short read aligner for human reference genome,

should thus be seriously examined in the future.
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