
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

University of Trento
Department of Information Engineering and Computer Science

Modeling and Reasoning about
Contextual Requirements:

Goal-based Framework

RAIAN ALI

Advisor:

Prof. Paolo Giorgini

Università degli Studi di Trento

March 2010

Abstract

Most of requirements engineering (RE) research ignores, or presumes a uni-
form nature of, the context in which the system operates. This assumption
is no longer valid in emerging computing paradigms, such as Ambient, Per-
vasive and Ubiquitous Computing, where it is essential to monitor and adapt
to an inherently varying context. There is a strong relationship between re-
quirements and context. Context might be considered to determine the set of
requirements relevant to a system, to derive the alternatives the system can
adopt to reach these requirements, and to assess the quality of each alterna-
tive. A RE framework that explicitly captures and analyzes this relationship
is still missing.

Before influencing the behavior of software, context influences the behavior
of users. It influences users’ goals and their choices to reach these goals.
Capturing this latest influence is essential for a software developed to meet
users’ requirements in different contexts. In this thesis, we propose a goal-
oriented RE modeling and reasoning framework for systems operating in and
reflecting varying contexts. To this end, we develop a conceptual modeling
language, the contextual goal model, that captures the relationship between
context and requirements at the goal level and provides constructs to analyze
context. We develop a set of reasoning mechanisms to analyze contextual
goal models addressing various problems: the consistency of context, the
derivation of requirements in different contexts, the detection of conflicts
between requirements happening as a consequence of changes in the context
they lead to, and the derivation of a set of requirements that leads to a system
developed with minimum costs and operable in all of the analyzed contexts.
We develop a formal framework, CASE tool, and methodological process to
assist analysts in using our modeling and reasoning RE framework.

We evaluate our proposed RE framework by applying it on two systems:
smart home for patient with dementia and museum-guide mobile information
system. Our contribution to RE research is a RE framework specialized for
emerging computing paradigms that weave together software and context. It
allows us to overcome the limitation of existing RE frameworks that ignore,
or presume a uniform nature of, the context in which the system operates.

Keywords [Requirements Engineering, Context Analysis, Goal Modeling,
Reasoning about Contextual Requirements]

i

Acknowledgments

I would like to thank my advisor Paolo Giorgini who has offered me a
continuous and excellent guidance during my PhD study. I would like also to
thank all members of the Tropos research group at the University of Trento
for all their feedback and for the very useful scientific discussions and in par-
ticular John Mylopoulos and my colleagues Fabiano Dalpiaz, Sameh Abdel-
Naby, Alberto Griggio, Andres Franzen, Amit Chopra, Vitor Souza, Yudis
Asnar, and Nauman Qureshi. Special thanks are due to Bashar Nuseibeh
for all the support he gave to me when I was a visiting research student at
the Open University. Special thanks are also due to my PhD examination
committee (Jaelson Castor, Oscar Pastor, and Yijun Yu) for the very useful
comments about my thesis. I am also thankful for the academic staff of my
bachelors study at the University of Latakia and in particular to Nasser A.
Nasser for encouraging my interest in research. I also thank visiting profes-
sors at the University of Trento who gave useful feedbacks about my research
(Eric Yu, Haris Mouratidis, Andrea Omicini, and Alex Borgida).

ii

Contents

1 Introduction 1
1.1 Research Baseline . 3
1.2 Research Question . 6
1.3 Contribution of the Thesis . 8
1.4 Structure of the Thesis . 9
1.5 Published Work . 10

2 State of the Art 12
2.1 Context-Awareness . 12

2.1.1 Context definition . 12
2.1.2 Context dimensions . 14
2.1.3 Context Modeling . 18

2.2 Goal-oriented Requirements Engineering 20
2.2.1 Main concepts . 20
2.2.2 Main motivations . 22
2.2.3 Ongoing research . 23

2.3 Requirements Driven Variability 27
2.3.1 Goal-based variability . 27
2.3.2 Problem Frames variability 29
2.3.3 Feature models variability 30

2.4 Chapter Summary . 32

3 Contextual Goal Model 33
3.1 Weaving Requirements with Context 33
3.2 Running Example . 35
3.3 Tropos Goal Model: Overview . 36
3.4 Context in Requirements . 38
3.5 Weaving Context with Goals . 40
3.6 Contextual Goal Model: Variation Points 42
3.7 Context Influence on Goals: A Classification 44
3.8 Contextual Goal Model: Context Analysis 45
3.9 Discussion . 50
3.10 Chapter Summary . 53

iii

4 Reasoning about Contextual Goal Models 55
4.1 Reasoning about Consistency . 56

4.1.1 Running example . 56
4.1.2 Reasoning about context consistency 57
4.1.3 Conflict analysis . 64

4.2 Reasoning about Variants Derivation 70
4.2.1 Running example . 71
4.2.2 Deriving variants for varying contexts 72
4.2.3 Deriving variants for minimum costs 76

4.3 Chapter Summary . 81

5 Automated Support Tool and Methodological Process 83
5.1 RE-Context: Automated Support Tool 83

5.1.1 Architecture . 83
5.1.2 Functionality . 84
5.1.3 Input Format . 88

5.2 Methodological Process . 93
5.3 Chapter Summary . 97

6 Evaluation 98
6.1 Smart Home System . 98

6.1.1 Contextual Goal Model of Smart Home 101
6.2 Museum-guide System . 109

6.2.1 Contextual Goal Model of Museum Guide 112
6.3 Evaluation Results . 120

6.3.1 Analysts feedback and observations 122
6.3.2 Reasoning results . 127
6.3.3 Performance analysis . 130

6.4 Chapter Summary . 132

7 Conclusions and Future work 133
7.1 Summary of The Thesis . 133
7.2 Generality of The Approach . 135

7.2.1 Running example . 136
7.2.2 Contextual feature model 137

7.3 Towards a Unified Framework for Contextual Requirements 139
7.3.1 Integrated model for contextual requirements 140
7.3.2 Benefitting from the integration: an example 141

7.4 Future Work . 143

Bibliography 147

iv

Chapter 1

Introduction

The recent advances in computing and communication technologies such as
sensor systems, positioning systems, mobile devices, and so on, have led to
the emergence of computing paradigms such as ambient intelligence, per-
vasive, ubiquitous and context-aware computing. A core element of these
emerging paradigms is context. The notion of context has been used in
different ways and in different computer science disciplines such as artificial
intelligence, natural language processing, and recently mobile and ubiquitous
computing. Since requirements are user needs that could vary according to
the environment the users are in, we refer by context to the reification of
such environment [1].

Context has a strong influence on system requirements: it can be a fac-
tor in deciding requirements to meet, choosing among possible ways to meet
the requirements, and assessing the quality of each of these ways. On the
other hand, the system itself may cause changes in the context as a result of
meeting its requirements. However, in spite of the mutual influence between
context and requirements, context is either ignored or presumed uniform in
RE literature and is considered mainly during the later stages of software
development (Architecture [2], Runtime Adaptation [3], HCI [4], Services
[5]). A RE framework for modeling and analyzing the requirements of sys-
tems reflecting their context is still missing.

Requirements can be contextual. Weaving together computing and hu-
man‘s living environment implies the awareness of the varying states of such
environment and how variations in the environment states influence the com-
puting system. We advocate that the environment influences users’ decisions
first: it influences what they require, the possible ways they achieve their
requirements through, and the quality of each way. The designed software
needs to reflect users adaptation to their environment as a preliminary step
to derive what functionalities to execute. For example, in a smart email sys-

1

tem, the network bandwidth and the computing device capabilities influence
the system decision of downloading high/low quality image or video attach-
ments. However, there is even an earlier adaptation to the environment that
is user adaptation. For example, usually users do not need to see emails with
attachments when they are driving, in a meeting rooms, or using mobile
phones with small screens. The system has to reflect user intentions to read
emails first before deciding whether to download high quality or compressed
attachments.

Context has been used in different ways in computer science literature.
It has been used in natural language processing, communication, and image
processing to name few. Recently, the notion of context has become common
in emerging computing paradigms such as Pervasive, Ubiquitous, Ambient
Computing. Although this notion tends to have a common sense in this
community, there are several definitions of it. The definition we are going
to develop in this thesis is close to the one given in [1] where context is
considered as the reification of the environment. The environment is defined
as whatever in the world provides a surrounding in which the system is
supposed to operate. This definition emphasizes the world that is broadly
accepted as a core element in requirements engineering literature [6, 7, 8].

Software systems are means to reach user requirements and they are not
requirements per se [6, 9, 10]. One important source of requirements is the
stakeholders’ goals and their variant choices to reach them. Context has
influence at this level, the goal level, deciding what goals to reach and how to
reach them. For example, in a health care institute for people with dementia,
a caregiver may have the goal to “involve the patient in social activities” (G1)
whenever “the patient is feeling bored and it has been long time since his last
social activity” (C1). The caregiver can satisfy goal G1 both by “taking the
patient for a trip in the city” (G1.1) or “asking a relative or an old friend of
the patient to come” (G1.2). Goal G1.1 is adoptable only if “the city is not
crowded” (C1.1), since people with dementia usually get anxious in crowded
places. Goal G1.2 is adoptable only if “the patient has relatives or friends
that can come" (C1.2). The requirements model of a software that supports
people with dementia should reflect the caregiver goals G1, G1.1, and G1.2,
the rationale G1.1 ∨ G1.2 → G1 and adaptation to contexts: (i) if C1 ∧ C1.1

then G1.1, and (ii) if C1 ∧ C1.2 then G1.2.
Goal models have been proposed in the RE literature (i* [11], Tropos

[12, 13], and KAOS [14]) to represent high level goals and possible alternatives
to satisfy them besides the quality of each alternative through the notion of
softgoals. Moreover, goal models have been used to represent the rationale
of both humans and software systems [15], and they have been shown helpful
for adaptive systems engineering in particular [16, 17].

2

This thesis addresses the problem of modeling and analyzing requirements
for systems operating in and reflecting varying contexts. It proposes a goal-
based modeling language to express the requirements at an early level, the in-
tentional level, that makes explicit the why of requirements [14]. Besides the
why of requirements, capturing the relationship between context and goals
makes explicit the where/when of requirements as well. The requirements
are complete if they sufficiently establish the goals they are refining [18, 19].
Considering systems reflecting their varying contexts, the requirements are
complete if they sufficiently establish their goals in those varying contexts.
In other words, we make explicit the influence of the world variability on
goals and goal refinements.

1.1 Research Baseline

The work in this thesis is, mainly, based on the following baselines:

• Context is a partial state of the world. The world is whatever provides a
surrounding in which an actor, possibly the system, lives. The relevance
of the parts of the world depends on the decisions and actions an actor
takes.

Example 1. Lets us consider a smart home system (actor) that
is responsible of managing home on behalf of habitants. One of the
objectives of a smart home is the refreshment of air inside home. The
decision about the activation of this objective depends on the context.
In a context like “humidity inside home is high or windows have not
been opened for long time”, the system may decide to refresh the air.
Such context describes, partially, the world. The world elements rel-
evant to this decision are the humidity level and the windows state.
The system may open the windows in order to refresh air or may,
alternatively, turn a ventilator on. The decision about the adoptable
alternative depends on the context in turn. In a context like “it is sunny
and not windy outside” the system may open the windows, otherwise
it may turn the ventilator on. The action of opening the windows may
change the context in turn. The windows become opened and the light
level may become high.

• Requirements can be contextual. Context can influence the user re-
quirements, the alternatives to meet them, and the quality of each
alternative. This implies that the software has to reflect user ratio-
nale concerning what requirements to meet, and how to meet them, in

3

different contexts. This reflection is essential for a valid software that
meets user expectations in different contexts.

Example 2. Let us consider a promotion staff in a shopping mall
who is responsible of promoting a product by giving free samples of it
to customers. The staff activates the promotion of the product to a
customer in a context like “the customer looks interested in the prod-
uct”. A staff may give a sample in two ways: giving a physical sample
directly to the customer, or giving a code to the customer to use it
for getting the sample through a dedicated machine in the mall. Con-
text may help to decide which of these two alternatives is adoptable.
The first alternative is adoptable in a context like “customer has no
experience in using automated machines and staff still has samples of
the product”. The second alternative is adoptable in a context like
“user knows how to use automated machines or there is no free sample
with staff anymore”. The quality of each of these two alternatives de-
pends on the context. The second alternative, from the perspective of
a quality measure like “customer comfort”, is good if a context like “one
of the dedicated machines is free and close enough to the customer’s
location” holds, otherwise it is a poor quality alternative. A system de-
signed to autonomously manage the promotion process should reflect
this rationale of a promotion staff. It may, for example, direct staff to
give samples to customers or may send code to customers through SMS
depending on the context.

• Variants are the cornerstone for adaptability. A system with one vari-
ant can not be adaptable. From the perspective of requirements, adapt-
ability is a selection between variants to meet user requirements. Adapt-
ability to context is the selection of variants that fit to context.

Example 3. Let us consider a museum guide system designed to
assist visitors during their visit and ensure, at the same time, the ad-
herence of museum rules. One of the requirements of the system is
to keep people far enough from the pieces of art and prevent them of
touching these pieces. If the system has only one way to meet this
requirements, such as frequent reminder through public speakers, then
the consideration of context has little sense. It may, at the most, in-
fluence the activation of the reminder that itself implies variability, i.e.
to activate or not to activate. The system may have another variant
to meet this requirement such as the light based alarm. The selection
between these two variants can be based on the context. For example,

4

the main requirement is activated in a context like “there is a visitor
who touched or he is so closed to a piece of art”. The light-based alarm
can be adopted in a context like “there is an audio presentation in the
room of the piece of art”, while the voice-based alarm can be used in
the other contexts.

• Software is a means to reach humans’ goals. The seminal works by
[18, 14, 10], emphasized the importance of knowing the goals behind
software systems and answering the question “why do we need a soft-
ware”. In other words, software is not a goal by itself, rather it is a
means for reaching some human’ goals. Humans’ goals and the way
through which they reach these goals can be influenced by the context.
Consequently, software is not necessarily uniform in reaching human
goals but can be context-dependent. Software has to reflect the ratio-
nal of human in deciding what goals to reach and which way to reach
them in different contexts. This reflection is preliminary to derive a
useful functionalities to execute.

Example 4. Let us consider a caregiver for people with dementia
problems. One of the goals of a caregiver is to maintain the safety of
the patient in case of anxiety attacks. This goal of a cargiver becomes
active when the context “symptoms of anxiety are clear” holds. The
caregiver may have two alternatives to deal with such anxiety and keep
the patient safe. The first one is by calming the patient down that
is adoptable when the context “anxiety seems to be moderate or the
patient dementia stage is still basic” holds. The second one is by pre-
venting the patient from getting out by closing entrances and calling
other colleagues to help in giving medication. This second alternative
is adoptable when the context “the patient is extremely anxious and his
dementia disease is severe” holds. A smart home, as a software system,
is a means to reach the caregiver goals. The smart home has to reflect
the goals of caregiver and the way through which he reaches these goals
in different contexts. Smart home may calm the patient down, in the
correspondent context, by playing relaxation music. Alternatively, it
may actuate motors to close and lock the entrances, and issue a public
speaker message to call caregivers to give medication.

• Context needs a systematic way to be correctly specified. The specifi-
cation of context means the specification of the way an actor, possibly
the system, can verify if it holds. Context is a state of the world that
is the case. A state of the world may not be visible per se but could

5

be an abstraction of visible facts in the world. Discovering these facts
and the way through which they are composed to verify the truth of
a state of the world may be complex. This complexity necessitates a
systematic way to specify a context correctly.

Example 5. A context like C1=“the customer is interested in the
product” is relevant when deciding if a product has to be promoted
to a customer. However, this context is not visible per se, rather it is
derived from visible facts in the environment. Facts that indicate this
context can be multiple and the logical composition of these facts to
derive the truth value of such context can also be complex. One of
the different ways to derive C1 can be through the context C1.1= “the
customer’s behavior indicates interest in the product”, or the context
C1.2=“his purchase history indicates interest in the product”. In turn
C1.1 is not monitorable per se but can be derived from some facts such
as “he is watching the product for long time” and “he does not watch
much other products that are of the same category”.

1.2 Research Question

In several emerging computing paradigms, such as Pervasive, Ubiquitous,
and Ambient computing, requirements are not absolute but can be context-
dependent. Context may influence requirements in different ways. It may
activate a set of requirements, make adoptable a set of alternatives to meet
the activated requirements, and influence the quality of each of such alter-
natives. On the other hand, the system may cause changes in the context as
a consequence of meeting its requirements. Therefore the influence between
context and software is mutual.

A requirements engineering framework for systems operating in and re-
flecting varying contexts is missing. In most requirements engineering re-
search, context is either ignored or presumed uniform. The assumption of
uniform context is obviously not valid when we weave software with a hu-
man’s living context. Systems are now expected to reflect varying contexts
they may operate in. This thesis aims to develop a requirements engineering
framework that weaves requirements with context. It, mainly, addresses the
following questions:

• Context may influence the requirements and be influenced by the func-
tionalities that the system may follow to meet its requirements. This
raises the question:

6

– How can we capture the relationship between requirements and con-
text?. In other words, how can we model the mutual influence
between requirements and context?.

• The specification of context is not always a trivial task. Some com-
plex, or unclear, contexts may require a systematic way to reach their
specification correctly. This raises another research question that this
thesis deals with:

– How can we systematically identify the way an actor (possibly the
system) can judge if a context holds? In other words, how can
we materialize context by discovering visible facts in the system
environment that the context reifies?

• A contextual-requirements model may include complex specification of
(several) context(s). Such specification may be a subject of modeling
errors that make it inconsistent. This raises another main question of
this thesis:

– How can we check the consistency of a context specification?

• The system, for meeting its requirements, may carry out a set func-
tionalities that lead to changes in the context. The changes of the
context may lead to conflicts among the different functionalities that
the system may execute to reach its set of requirements. This raises
the question:

– How can we check a designed contextual requirements model to
detect and assess the severity of conflicts, manifested via changes
on the context, between different system functionalities?

• Systems, at runtime, need to monitor their context and adapt them-
selves to its current state. This means that the system has to choose
amongst variants to meet its requirements. In other words, the system
needs to make a meta-computation to derive useful functionalities to
execute in each different context. This rises the question:

– How can we specify a way to adapt the requirements model to
multiple contexts and allow the system to autonomously do this
adaptation?

7

• Having numerous variants is desirable for reaching higher degree of
flexibility that allows, amongst other things, the system to adapt to
multiple contexts. From the other side, supporting a large number of
variants can be problematic in terms of extra time and costs needed
to establish them. In other words, there is often a tradeoff between
flexibility and feasibility. This raises the question:

– how can we reason about a designed contextual requirements model,
that contains a large number of variants, to elicit those variants
allowing the system to meet its requirements in all considered con-
texts with minimum development costs?

1.3 Contribution of the Thesis

In literature, there is a gap between variability of context and requirements.
In this thesis, we try to reduce this gap and allow for expressing of and reason-
ing about requirements for varying contexts. More precisely, the contribution
of this thesis is:

• Conceptual modeling language for representing contextual requirements:
we propose the contextual goal model to capture context-based vari-
ability in requirements at the goal level. We identify a set of variation
points at Tropos goal model where context may intervene to decide the
adoptable alternatives for satisfying a goal. We also propose a set of
modeling constructs to analyze context. This analysis helps to discover
the information that the system needs to capture from its environment
and how this information is composed to judge if an analyzed context
holds.

• Reasoning techniques: we develop two reasoning techniques concerning
the requirements derivation for varying contexts. The first one concerns
the automatic derivation of goal model variants that reflect context and
user priorities at runtime. The second is for processing a contextual
goal model to extract the variants leading to a system developed with
minimal costs and operable in all considered contexts. This reasoning
is useful at design time to decide the core requirements the system
has to meet when there are budget or timing constraints. We develop
another two automated reasoning techniques to detect design errors in a
contextual goal model. More concretely, we check it for the consistency
of context specification and for the conflicts caused by changes in the
context the satisfaction of goals leads to.

8

• Logical framework and CASE tool: we formalize our proposed con-
textual model and use off-the-shelf reasoners as a part of implement-
ing our reasoning mechanisms. We develop a prototype tool, called
RE-Context, that incorporates the formalism and the reasoning mech-
anisms. We propose a methodological process to construct and reason
about contextual goal models. We also apply our process on two con-
textual goals models of two context-dependent systems and report the
obtained results.

1.4 Structure of the Thesis

The thesis is structured as follows:

• Chapter 2 presents an overview of the state of the art of the research
question of this thesis.

• Chapter 3 proposes the contextual goal model to express requirements
for varying contexts. The chapter starts with the main principles of
weaving together requirements and context. It overviews Tropos goal
modeling and its main constructs. We then motivate the integration
between context and goals. A set of variation points of Tropos goal
model is defined. The variation points are classified based on the se-
mantic of the relation between context and goal model on each of them.
A set of modeling constructs to analyze context is proposed. These
constructs are motivated by the need to analyze contexts and discover
ways to verify them based on visible facts in the environment. An anal-
ogy between context analysis and goal analysis is discussed. A general
discussion about our proposed model is presented.

• Chapter 4 proposes a set of reasoning techniques about our proposed
contextual goal model. The first category of reasoning techniques ad-
dresses the problem of detecting modeling errors in a designed contex-
tual goal model. It checks the context specified for each variant of a
contextual goal model to decide if it is consistent. We give a classifica-
tion and semantics for the inconsistency of contexts. We also check each
variant of the goal model for conflicting changes on the context caused
by that variant executable tasks. The other category of reasoning tech-
niques addresses the problem of deriving the variants of a contextual
goal model at design time and runtime. For the design time, we de-
velop a reasoning technique to decide the variants the system-to-be has
to support to enable it of reaching stakeholder’s goals in all considered

9

contexts with minimum development costs. The other reasoning tech-
nique addresses the runtime derivation of the contextual goal model
variants that fit to a monitored context and user prioritization.

• Chapter 5 proposes a logical framework and CASE tool to support
our reasoning mechanisms. We translate our contextual goal model into
Datalog that enables us to derive all the alternatives for the satisfaction
of a goal. We translate context specification into a Boolean formula as
a step to use SAT solver for verifying context consistency. A prototype
CASE tool, called RE-Context, is developed to support the four kinds
of reasoning that are proposed in Chapter 4. A methodological process
that is followed to construct and reason about contextual goal models
is also proposed.

• Chapter 6 describes the results we got by applying our framework on
two case studies. We explain the application of our proposed framework
on two systems: a smart home for patients with dementia problems,
and a museum-guide mobile information system. We report the results
we got in terms of developed models, reasoning results, qualitative
feedbacks reported by software engineers, performance analysis of our
developed CASE tool.

• Chapter 7 concludes the thesis and presents a set of problems as direc-
tions for a future work. We discuss the generality of our approach ap-
plying its principles on another variability model that is Feature Model.
We also present an initial work towards an integrated RE framework
for contextual requirements. We outline a set of problems concerning
the RE of system operating in and reflecting varying contexts such as:
viewpoints in context specification, contextual security requirements,
optimizing monitoring requirements, and lifelong adaption to context.

1.5 Published Work
• Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Location-based Software Modeling

and Analysis: Tropos-based Approach. In the Proceedings of the 27th International
Conference on Conceptual Modeling (ER 08), Springer LNCS 5231, Pages 169-182.
Barcelona, Spain. October 20-23, 2008.

• Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Location-based Variability for Mo-
bile Information Systems. In the Proceedings Of the 20th International Conference
on Advanced Information Systems Engineering (CAiSE 08), Springer LNCS 5074,
Pages 575-578. Montpellier, France. June 16-17, 2008.

10

• Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A Goal Modeling Framework for
Self-Contextualizable Software. In the Proceedings of the 14th International Con-
ference on Exploring Modeling Methods in Systems Analysis and Design (EMM-
SAD09), Springer LNBIP 29. Pages 326-338. Amsterdam, The Netherlands, 8-9
June, 2009.

• Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Modeling and Analyzing Location-
based Requirements: Goal-oriented Approach. International Journal of Computer
Science and Software Technology (IJCSST). Vol. 2, Nr. 2, July-December (2009).

• Raian Ali, Fabiano Dalpiaz and Paolo Giorgini. Modeling and Analyzing Variability
for Mobile Information Systems. In proceedings of the International Conference on
Computational Science and Its Applications (ICCSA 2008), Springer LNCS 5073,
Pages 291-306. Perugia, Italy, June 30th - July 3rd, 2008.

• Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Goal-based Self-Contextualization.
In the Forum of the 21st International Conference on Advanced Information Systems
(CAiSE 09 - Forum). CEUR-WS Vol-453, Pages 37-42 .Amsterdam, the Nether-
lands, 8-12 June, 2009.

• Raian Ali, Yijun Yu, Ruzanna Chitchyan, Armstrong Nhlabatsi, and Paolo Giorgini.
Towards a Unified Framework for Contextual Variability in Requirements. In the
proceedings of the 3rd International Workshop on Software Product Management
(IWSPM09), In conjunction with 17th IEEE International Requirements Engineer-
ing Conference (RE09). Atlanta, Georgia, USA. September 1, 2009.

• Raian Ali, Ruzanna Chitchyan, and Paolo Giorgini. Context for Goal-level Prod-
uct Line Derivation. In Proceedings of 3rd International Workshop on Dynamic
Software Product Lines (DSPL09) co-located with the 13th International Software
Product Line Conference (SPLC09). San Francisco, California, USA.August 24 -
28, 2009.

• Raian Ali, Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, John Mylopoulos,
and Vitor E. Silva Souza. The Evolution of Tropos: Contexts, Commitments and
Adaptivity. In the proceedings of the 4th International i* Workshop, co-located with
the 22nd International Conference on Advanced Information Systems Engineering
(CAiSE 10). Hammamet, Tunisia, 07-08 June, 2010.

• Fabiano Dalpiaz, Raian Ali, Yudistira Asnar, Volha Bryl, Paolo Giorgini. Applying
Tropos to Socio-Technical System Design and Runtime Configuration. In the Pro-
ceedings of the 9th WOA workshop, From Objects to Agents (Dagli Oggetti Agli
Agenti), ISBN 978-88-6122. Palermo, Italy, 17-18 Novembre 2008.

• Raian Ali, Sameh Abdel-Naby, Antonio Mana, Antonio Munoz and Paolo Giorgini.
Agent Oriented AmI Engineering. In the Proceedings of the Ambient Intelligence
Developments Conference (AmI.D07), Springer ISBN: 978-2-287-78543-6, Pages
166-179. Sophia Antipolis, French Riviera, France, September 17-19, 2007.

• Sameh Abdel-Naby, Paolo Giorgini, and Raian Ali. Towards Integrating Agents with
Objects Tracing Systems in AmI. In the 5th European Workshop on Multi-Agent
Systems (EUMAS’07), Hammamet, Tunisia. December 13-14, 2007.

11

Chapter 2

State of the Art

2.1 Context-Awareness

The advances in information and communication technology has led to new
computing paradigms such as Ambient Intelligence [20, 21], Pervasive Com-
puting [22, 23], Ubiquitous Computing [24, 25], Context-Aware systems [26,
27], and so on. The target computing systems in these paradigms are able to
reach users’ requirements transparently and avoid them the explicit interac-
tion with computers. In other words, the main motivation in these paradigms
is decoupling user from computing devices [28]. Users should get their needs
met without an explicit request to a computing system. These computing
paradigms are the application area for which our modeling and reasoning
framework is designed. A core element in these paradigms is context. In this
section, we review the literature and discuss several definitions of context,
show different classification of contextual information, and finally we outline
different approaches concerning context modeling.

2.1.1 Context definition

Context has been defined in different computer science disciplines such as
artificial intelligence (for a survey see [29]). It has also been defined in
the literature of context-aware computing in variant ways. Here we outline
several definitions of context and then we make an observation about the
common characteristics of context.

• One of the earliest work that explicitly considered context and con-
text aware computing is the work by Schilit et al. [30, 31]. In that
work context has been considered in terms of attributes of elements in
the physical environment. The work emphasizes that context is more

12

than a physical location that the user is in. It may also includes differ-
ent changing factors such as lighting, noise level, network connectivity,
communication costs, communication bandwidth. Context can also re-
fer to the social environment of a user such as whether he is with his
manager or with a co-worker, and so on. However, in this work, context
is defined by examples. Although it gives intuition to what context is,
this approach makes it difficult to judge precisely if an information is
a part of context.

• Dey [32], observed that defining context by examples or by giving syn-
onyms to it (such as situation or environment) does not help to decide
what context is. The work also made another observation about several
other definitions that defined context based of the kind of the targeted
applications. Dey gives a definition of context that refers to the world
relevant to the interaction between humans and computing: “Context
is any information that can be used to characterize the situation of an
entity.” An entity is defined as “a person, place, or object that is con-
sidered relevant to the interaction between a user and an application,
including the user and applications themselves”. In [33], Dey et.al, ex-
tend this definition by giving examples about the dimensions of context:
“context is typically the location, identity, and state of people, groups,
and computational and physical objects”.

This definition emphasizes that context is what is relevant to an in-
teraction between the users and an application. However, these is also
another limitation for context. Context may influence the users’ needs
before influencing their interaction with applications. The application
has to reflect the influence of context on users in order to derive use-
ful execution course. In [32], Dey also gives a definition of context-
awareness as following: “A system is context-aware if it uses context
to provide relevant information and/or services to the user, where rel-
evancy depends on the user’s task”.

• In [34], Chen observed that context has two main aspects that are
the characteristics of the surrounding of an application that strongly
influence the behavior of that application, and the surrounding that is
relevant but not critical. Context is defined as “the set of environmental
states and settings that either determines an applications behavior or
in which an application event occurs and is interesting to the user”.
Based on this, the authors classifies context awareness computing in
two kinds:

13

– Active context awareness: where the application monitors context
and adapts its behavior when a change in the context occurs.

– Passive context awareness: where the application monitors changes
in the context and presents them to the user like presenting an in-
formation about a close restaurant.

• Finkelstien et al. [1], give another definition of the context. The def-
inition emphasizes the uncontrollable nature of the context. Context
is defined as the reification of the environment. The environment is
defined as whatever in the world provides a surrounding in which the
machine is supposed to operate. Alternative definition of the environ-
ment is whatever over which we have no control. The context in this
work tends to be a technical context such as the network bandwidth,
display characteristics, the spatia-relations between devices, and so on.

• Yau et al [35, 36], define context as “any detectable attribute of a device,
its interaction with external devices, and/or its surrounding environ-
ment”. The context considered here is that describing a computing
device such as the battery level, the geographical location, the history
of interaction of this device with other and so on. The same work de-
fine context-awareness as “the ability of a device to detect its current
contexts and changes in any contextual data”. Again, the adaptability
to context is limited to the one that concerns the technical environment
of a computing device.

2.1.2 Context dimensions

Contextual information can be classified into different dimensions. Krogstie
et el. [37, 38], observed that mobility is strongly related to changes in the
context. The changes in the context could potentially affect the objectives
and the tasks of mobile information systems. In the same works, Krogstie et
al. classify context information as follows:

• The spatio-temporal context: it describes aspects related to time and
space. It contains attributes like time, location, direction, speed and
track.

• The environment context: it captures the entities that surround the
user, for example, physical objects, services, temperature, light, hu-
midity, and noise.

14

• The personal context: it describes the user state. It consists of the
physiological and the mental contexts. The physiological context may
contain information like pulse, blood pressure and weight, as well as
personal abilities and preferences, while the mental context may include
elements such as mood, expertise, anger, and stress.

• The task context: it describes what the user is doing. The task context
may be described with explicit goals or the tasks and task breakdown
structures.

• The social context: it describes the social aspects of the user con-
text. It may, for instance, contain information about friends, neighbors,
coworkers and relatives. The role that the user plays is an important
aspect of the social context. A role may describe the user’s status in
this role and the tasks that the user may perform. The term social mo-
bility refers to the ways in which individuals can move across different
social contexts and social roles and still be supported by technology
and services.

• The information context: it describes the information space that is
available at a given time.

In [39], Henricksen et.al, context has been divided based on changeability
into two main categories:

• Static context: it refers to a property that is fixed regarding one entity,
like for example: device type.

• Dynamic context: that refers to the context that changes over time
such as wheatear, temperature, user mood and so on. The dynamic
context is further subdivided into three categories:

– Sensed context: it is the context that can be captured by sen-
sors such as location, temperature degree, humidity level, blood
pressure, and so on.

– Derived context: it is the context that can be derived using a
derivation function. An example of the derived context is the “Is
Located Near” relationship. An object is located near to another
one is derived from two sensed location contexts which are the
coordination parameters.

– Profile context: this context covers information supplied by users.
For example, user name, organization, and the name of people
user is working with and so on.

15

Schmidt et al. [40, 41], uses 3-D model to view context, the dimensions
of this model:

1. Self: e.g. device state, physiological, cognitive

2. Environment: the physical and the social environment.

3. Activity: the behavior and task being done.

The work also provides another hierarchial categorization of context. The
two root categories are:

• Human factors: these factors are related to a human as individuals, as
social environment, and as activities they are doing.

• Physical environment factors: these factors concern the physical condi-
tions, infrastructure, location of the system. Conditions, for example,
are further classified into dimensions like: light, pressure, accelerations,
audio, temperature, humidity and so on. The dimension light is in turn
characterized by dimensions such as level, flickering, color, wave length,
and so on.

In his PhD thesis [42], Shilit has classified context information into:

• Physical objects: the main entity that context information are centered
around is a physical object. It can be a human or an artefact. Examples
of this kind are: mobile phone, windows, furniture, user and so on.

• Conditions and states: some objects have dynamic state, such as users
who might be busy, sleeping, driving and so on, and mobile phone
which may be off, on, busy, and so on. Some other objects has a static
state and does not make part of a variable context such as furniture.
Obviously the decision between dynamic and static states is to a large
extent a design decision.

• Spatial relations: each object occupies a space and exists in a location.
The location may be presented as coordinates in a system or presence in
a containing place. For example, two objects may have spatial relation
such as “close to”, “on”, “inside” and so on.

• Phenomena: it is an emerging state of the world that makes part of the
context. Such a state is not attached to a specific object. For example,
“noisy”, “financial crisis”, and so on.

16

• Ways and means: it concerns the ways to achieve tasks. For example,
the ways through which a user can get instructions about the use of
an information terminal in an airport, or the ways user can make the
check-in through.

• Customizations: it is user, or a user group, given commands or pref-
erences. For example, “do not allow calls during meeting”, “turn the
mobile phone to silent during meeting” and so on.

Zimmermann et al. [43], classified contextual information into:

• Individuality context: it concerns properties and attributes describing
an entity. An entity can be natural, human, group, and artificial.

• Activity context: it concerns the tasks an entity is involved in.

• Spatio-temporal context: it refers to the time and the location of an
entity.

• Relations context: concerns any possible relations an entity may estab-
lish with other entities.

We emphasize that the definition of context and its dimensions depend
on the application area. Taking business process modeling and execution
as another domain that addressed contextualization, the considered context
is different from that of mobile, pervasive, context-aware computing. For
example, Rosemann et al. [44, 45], classify context with regards to its relation
to a business process into four kinds:

• Immediate context: this context includes the elements of the organiza-
tion that are beyond the pure control flow and facilitate the execution
of a process directly. For example, the kind of data required, the source
of data, the organizations resources that are in charge with the next
activity and so on.

• Internal context: refers to the elements of the organization that have
indirect influence on the business process. For example, norms and
values, concerns and interests, strategy, structure and culture and so
on.

• External context: it refers to elements that are in a system wider than
the organization and not under the control of the organization and that
have influence on the business process. For example, it includes cate-
gories of context elements related to suppliers, competitors, investors
and customers.

17

• Environment context: this context refers to those elements in the world
that are outside the business network but still have influence on it. For
example, the weather factor may influence the organization activities as
the call volume may need to be increased during the storm season. Time
of the day, week, month, and year may also influence the activities, for
example, on Saturday many people make shopping, so more products
has to be available in the store.

From the above definitions, we could outline the following characteristics
of context:

• Context is a surrounding for an entity : in all the definition, we see
that context is seen as a surrounding of an actor. This actor could be
a person or a machine i.e., the context-aware system. This means that
a context is seen from some perspective and not given as an absolute
concept.

• Context is not fully controllable: context refers to what is in the world
and that is not under the full control of an actor. The actor is supposed
to reflect to the uncontrollable changes in context, as possible. The
elements in the world that are fully controlled by an entity are not part
of the context but part of the actor itself.

• Context influences certain decisions and actions: context has influence
the decisions and the actions an actor needs to take. The actor that
observes context will reflect the changes in that context. Those parts
of the world that do not influence the choices or the actions of an actor,
are not part of the context and do not need to be observed.

• Context has a subjective nature: following the previous point, what
makes an element in the world of an actor part of the context is the
decision that actor needs to take.

• Context has a volatile nature: the elements in the world that are uni-
form are not part of the context. An actor does not need to observe
them when it takes a decision. One main idea of context-awareness is
the variable nature of the world an actor lives in and that influence
that actor’s decisions.

2.1.3 Context Modeling

Various modeling approaches for representing context have been proposed
(for a survey see [46, 47]). Henricksen et al. [39], propose an object-oriented

18

representation of context information in pervasive computing. They extend
Entity-Relationship diagrams with constructs to allow for more expressive-
ness in capturing context information. The association entities-entities and
entities-attributes are classified into static and dynamic. The dynamic as-
sociation is classified into sensed, profiled, and derived. An example of a
static association is that between a mobile device and its type. An example
of sensed association is that between a person and its location (location is
sensed). An example of profiled association is that between a person and
his supervisor or his device. An example of derived association is that the
spatio-relation between two entities that can be derived from their locations.

The associations between entities-entities and entities-attributes are clas-
sified according to their structure into four kinds. The simple association that
happens when an entity, which owns an association, does not participate in
it more than once. For example, the device has one device type. An associ-
ation is composite if it is not simple and this kind includes the other three
kinds of associations. The collection association means that an entity can be
associated simultaneously with multiple attributes values and/or other enti-
ties. For example, a person may be sitting with more than one friend at the
same time. The alternative association refers to an association between an
entity and a number of other entities/attirbutes, where at one moment there
is only one active association. For example, the relation between a TV and
channel. The temporal association is the same as alternative associations
but attached to a time interval. For example, a person may be doing activity
within a certain time. In [48], Henricksen et al. use the Object-Role Model
(ORM [49]) instead of ER model for the purpose of efficient formalization
and transformation to logical models.

Another approach in modeling context uses ontologies. CONON is an
example of this category of context modeling techniques proposed by Wang
et al. [50, 51]. The main idea of this ontological approach is by proposing a
general ontology (upper ontology) for context and then specializing it for a
specific application (domain-specific ontology). The upper ontology captures
concepts that are common in a large variety of context-aware applications
such as person, activity, location, and computing entities. This ontology
is then specialized for each application. For example if we talk about smart
home for health care, then the persons could be the patient and the caregiver,
the location can be “bed”, “kitchen”, “garden” and so on, the devices can be
the “DVD player”, “TV”, “cellular phone”, and the activity can be “sleeping”,
“watching TV”, “taking medicine” and so on. In this work, the Web Ontology
Language (OWL [52]) is used as a formalization that allows for automated
reasoning. To this end, reasoning rules has to be defined. For example, to
conclude a situation like “patient is taking a shower” some predicates has

19

to hold such as “patient is in the bathroom”, “bathroom doors are closed”,
“water heater is on”, and so on.

Another example of ontology-based context modeling is CoBrA [53]. It
provides a set of classes common in pervasive computing such as the place,
agent, activity, location. These classes are refined into subclasses as well.
For example the place is specialized into campus, building, restroom, room
and so on and the class agent that can be a person, a software agent, a role
and so on. The ontology proposes also a set of attributes related to each
class. For example an agent could have a name, address, intends to perform
and so on. An activity could have attributes such as starting time, end time,
location, ..etc. Similar to CONON, CoBrA is formalized and reasoned about
using OWL.

Several other approaches for modeling context exists. CMP is a UML
Context Modeling Profile for Mobile Distributed Systems proposed by Si-
mons in [54]. It provides a UML profile tailored for contextual information.
To this end it proposes specialized classes that help for better capturing and
visualizing of contextual information. It uses Object Constraint Language
(OCL [55]) to assert the right usage of the proposed constructs and associa-
tions. In [56], a context is considered as atomic situation and the ontology
proposed is for hierarchial representation of a compound/complex situations.
Description logic (DL) reasoner over OWL are used for different purposes
such as consistency checking of an ontology and knowledge inferring.

2.2 Goal-oriented Requirements Engineering

In this section, we briefly discuss goal-oriented requirements engineering
(GORE) research. We outline the main concepts and key ideas behind
GORE. We list the main motivation of GORE and we finally review a variety
of ongoing research in GORE.

2.2.1 Main concepts

Although different approaches in requirements engineering used goal model-
ing in different ways, a set of concepts is almost core in all of them. Here we
review a list of the main GORE concept:

The concept of goal: the main concept in GORE is goals. Goals have
been defined in multiple places in the literature of requirements engineering.
In [57], Darimont and Lamsweerde define goal as “an objective the composite
system should meet”. Anton [58], defines goals as “the high level objectives
of the business, organization, or system. They capture why the system is

20

needed and guide decisions at various levels within the enterprise”. Plihon
et al. [59], consider goal as a synonym of intention and define it as “a future
system state or behavior to avoid, maintain, attain, cease, etc.”. Rolland
et al. [60], refines the last definition into “a goal is something that some
stakeholder hopes to achieve in the future.”. Bresciani et al. [12], define goal
as “representation of actors’ strategic interests” where actor is defined as “an
entity that has strategic goals and intentionality within the system or the
organizational settings”. Pohl et al. [61], define goals as “the objectives an
actor wants to achieve when requesting a certain service”, while an actor or
user type “represents a set of users that have some common characteristics
with respects of why and how they use the system”.

The concept of softgoals: a category of goals is called softgoals and
defined by Mylopoulos et al. [15] as “goals that do not have a clear-cut
criterion for their satisfaction. We will say that softgoals are satisficed when
there is sufficient positive and little negative evidence for this claim, and that
they are unsatisficeable when there is sufficient negative evidence and little
positive support for their satisficeability”. Often, softgoals are treated as
quality measures to differentiate between multiple strategies to reach goals.
They also can be used to express user preferences over those strategies as
done in [62].

The owners of goals: goals does not exist as separate entities. They
are owned by an (intentional) entity. Dardenne et al. [14], classify goals with
regard to the ownership dimension into: private that an individual agent
owns, and system that are the goals of a system as whole. Similarly, Pohl
et al. [61], classify goals into business goals and personal goals. There is no
explicit classification of goals based on ownership in Tropos GORE method-
ology [12]. Tropos projects a system/organization as a set of interdependent
actors and associate goals to them. There is no explicit notion of a whole
system or individual actors goals.

The source of goals: identifying or eliciting goals can be done through
ways such as scenarios, use cases, interviews, corporate mission statements,
policy statements, an so on [63, 64]. Eliciting goals via scenarios is one of
the intensively studied techniques. Scenarios help for identifying goals and
the different ways through which they may be implemented or reached [65].
Use cases may be considered as implementation of stakeholders goals [66].
However, as observed by Constantine et al. [67], although use cases can be
goal driven, but the focus is on those goals concerning the direct interaction
between a user and a system. In other words, there could be goals that are
not directly related to that interaction.

The refinement of goals: goals are not executable, they tend to be in-
terests or intentions. Goals may be ultimately reached by a set or alternative

21

sets of executable processes [12, 14]. The refinement is AND/OR refinement.
When we refine a goal through AND-Decomposition into subgoals, this means
that reaching all subgoals implies the achievement of the refined one. When
we refine a goal into a set of goals through an OR-Decomposition, this means
that reaching one of these subgoals is enough to reach the refined goals. The
refinement through OR creates a space of alternatives to reach the root ana-
lyzed goal, i.e. variability. An anatomy to the elements of a goal statement
that can be refined through OR to give a space of alternative is explained in
[68].

2.2.2 Main motivations

The main reason for goal-oriented requirements engineering is to explicitly
capture the “Why” in requirements. Requirements are, first of all, user’s
requisites over the world and are not a set of software functionalities. A
software is a means to reach user goals. The starting point of software devel-
opment has to be at the level of stakeholders’ strategic goals. The analysis
of such goals may indicate a need and possibility for a software that helps
to reach such goals. Consequently, goals allow for a rationale for software
functionalities and answer the basic question “why do we need a software”. In
what follows, we list a set of main motivations for goal-oriented requirements
engineering [9, 10]:

1. Requirements acquisition: goals guide and give rationale to what a
software has to execute. Analyzing goals by asking questions such as,
“why”, “how”, “how else”, “how good is”, helps to reveal stakeholders’
requirements. Moreover, stakeholders become aware of the space of
possible solutions to reach their goals instead of committing, in less
comprehensive way, to a certain technology without discovering what
the other possibilities are.

2. Positioning requirements in the organizational domain: goals allow us
to bridge the gap between software and the organization it is intended
to operate in. Goal-based requirements analysis helps to derive a soft-
ware that addresses certain problems in an organization. It overcomes
the limitation of other approaches, such as object oriented analysis,
that start immediately by studying what the system has to do, but do
not justify why it has to do that.

3. Explaining and clarifying requirements: goal models, in general, allow
for refinement of high level goals by asking how, and how else, and
how good each alternative is. This incremental and iterative process

22

helps stakeholders to clarify their potentially ambiguous requirements.
Moreover, this refinement explains the requirements to stakeholders by
answering their questions such as “why do we need to do this”, and
“how do we reach this” and so on.

4. Managing conflicts: stakeholders are different in their interests and
priorities of these interests. This may lead to conflicts about what
requirements to reach and how, and how well, to reach them. Even
a single stakeholder may have conflicts between a set of requirements.
Goals allow for a natural, high level, abstraction that may be exploited
to manage those conflicts. For example, achieving a goal may deny
the achievement of another. Moreover, a way to reach a goal can be
assessed differently by different stakeholders.

5. Tracking the design: goals and the refinement of goals lead to several
design options. In other words, the system may implement a subset
of these options. Goals can be used to assess if the design or even
the final system is correctly specified/developed. Goals provide a cri-
teria to evaluate and track the system at later stages. For example, in
autonomic computing, the final system may switch between different
execution course to keep user goals satisfied.

6. Avoiding irrelevant requirements: goals provide a criteria for software
pertinence. A software functionality is pertinent if it is a part of reach-
ing a goal of stakeholder, otherwise its implementation is not justified.

7. Isolating stable from volatile aspects in requirements: goals tend to be
persistent or stable while software, as a way to reach goals, are subject
of evolvement or changes. The ways to reach goals may be influenced
by the environment in which the system will operate while goals may
be stable. In other words, we may have a goal that needs to be reached
in different environments while the way to reach it may be different in
each of them.

2.2.3 Ongoing research

Besides the well established research on goal modeling such as goal elicitation,
goal refinement, obstacle analysis, goals and scenarios, and so on (for a survey
see [69]), recent research has addressed new areas where goal modeling can be
useful for. In what following, we briefly review these new research directions
in goal modeling:

23

• Security modeling and analysis [70, 71, 72]: this research focuses on the
security requirements at a level higher than the software, the organi-
zational level. It provides modeling concepts that stand for high level
security requirements and trust requirements between actors (inten-
tional entities) and their implementation. i*/Tropos has been shown a
suitable abstraction for an organizational system, especially the early
requirements phase where actors depend on each other for goal to be
achieved, tasks to be executed, or resources to be furnished. Secure Tro-
pos extends i*/Tropos with concepts to catch security and trust require-
ments between those actors. While security in traditional i*/Tropos
and goal oriented analysis in general is left vague or at most treated as
a softgoal; Secure Tropos treats security requirements as a first class
entity at this early level of analysis. To this end, Secure Tropos pro-
vides modeling concepts for the entitlement between actors and their
capabilities. To model the transfer of entitlement and responsibilities
between actor and the expectation of an actor about the other actors,
Secure Tropos provides the delegation, trust, distrust relations. Secure
Tropos engineering framework also provides an automated reasoning.
One main purpose of the reasoning is to verify the consistency between
security and trust entitlement. Secure Tropos uses Datalog to formalize
and reason about its models.

• Risk analysis [73, 74, 75]: goal models have been shown very useful to
capture and analyze the objectives of stakeholders and identify and jus-
tify the requirements of a software system. However, capturing these
objectives and analyzing them has to take into consideration any unex-
pected or uncertain situation that might be an obstacle when reaching
stakeholder objectives. Goal-Risk framework addresses the last ques-
tion. It extends goal model with constructs to capture uncertain events
and their impact on the goals achievement. The negative impacts in-
troduce risks that face the goal achievement. Goal-Risk framework also
deals with the treatment of a potential risk. It analyzes the possible
treatments in terms of possible actions performed to uncertain events of
negative impact. An automated reasoning about the Goal-Risk model
is then developed. It allows the analyst of a software system to detect
important properties about the designed system regarding what risks
are there and how they are treated.

• Automated design [76, 77, 78]: this research provides automated sup-
port to explore the space of alternatives during the requirements anal-
ysis and design of an information system and find an optimal or good

24

enough set of delegations between actors and assignment of goals to
them. To this end, the research exploits artificial intelligence plan-
ning techniques to generate all the possible design structures. Having
the alternative design structures generated, they might be then evalu-
ated against the local strategies of system actors. The evaluation part
exploits ideas from game theory. The reason for such choice is that
each actor has its own strategic interests and try, first of all, to maxi-
mize their local utilities. The evaluation of alternative design structure
might seek for the one that is good enough for the maximum number of
those actors. A prototype tool (P-Tool) is designed to implement the
approach and support the analyst in selecting a good enough design-
structure alternative.

• Normative i* modeling [79, 80, 81]: when eliciting the requirements, the
analyst needs to consider the laws and regulation of the organization
where the designed system will operate. This research aims at gener-
ating a set of requirements for a new system that are complaint with a
given law. To this end, this research develops a conceptual framework
that extends goal models with concepts from the legal domain and their
relations to goal model concepts. It also provides a systematic process
to generate a set of requirements that are compliant with a collection
of legal prescriptions and addresses the problem to solve at the same
time. Therefore, the proposed Normative i* framework allows for cap-
turing laws at an early level of analysis, the intentional level, where an
early impact of laws occurs.

• Goal-oriented testing [82, 83, 84]: the purpose of testing a software
system is to be sure that the system that has been developed, or is
being developed, is good enough. A main question that concerns the
decision about a good enough software is: does the software fulfill its
requirements?. This research adopts testing as a software development
activity that involves a main source of requirements, the goals. Goal-
Oriented Software Testing (GOST), is a testing methodology through
which the analyst can derive test cases from requirements captured
by goal models, and design specifications. GOST is based on Tropos
agent-oriented software engineering (AOSE) methodology and targeted
for MAS as implementation technology. Briefly, GOST contributes
to existing AOSE methodologies by providing: (i) a testing process
model, which complements the development methodology by drawing
a connection between goals and test cases and (ii) a systematic way
for deriving test cases from goal analysis.

25

• Commitments and goal models [85, 86]: i* emphasizes the social na-
ture of requirements fulfillment that actors often depend on others to
achieve their goals. However, the notion of dependencies in i* is an
intentional one, not social. An actor may depend on another for some
goal; however that in itself does not amount to any social expectation
that the latter will fulfill the goal. More precisely, i* gives no account
of which dependencies are legitimate from a social perspective.

For example, Alice is new to Trento and depends on Barbara, her only
acquaintance in the city, to show her around the city; Barbara may
also know that Alice depends on her. However, unless Barbara actu-
ally commits (via an explicit act of communication) to showing Alice
around the city, we (as the society, the observer) do not form the legit-
imate expectation that Barbara will show Alice around Trento. Until
Barbara actually commits to Alice for showing her around the city,
the dependency exists only in the minds of the actors. When Barbara
commits to Alice, there exists an objective and verifiable relation be-
tween her and Alice. This objectivity is a key aspect of being social
in systems involving autonomous and heterogeneous actors. Moreover,
even if Alice somehow knew that Barbara has the goal of showing her
around the city (because, maybe it was mentioned in Barbara’s TODO
list that Alice happened to read), that does not amount to any legiti-
mate expectation that Barbara will actually do so. Barbara may not
act upon her goals, or she may simply change her mind. People and
organizations want commitments from each other to guard precisely
against such uncertainties: one does not have to care what another’s
goals are as long as the latter has committed to the former for a state of
the world corresponding to that goal. We often mention loose coupling
as highly desirable among system components; with commitments, we
get the loosest possible coupling among actors.

The centrality of commitments has long been known to multiagent sys-
tems researchers [87]. This research seeks to apply the results there to
requirements engineering. It formalizes the notion of how an agent may
exploit commitments to fulfill its goals, and vice versa . In doing so,
we have completely done away with dependencies as they are concep-
tualized in i*. Replacing dependencies with commitments is critical to
keeping goal-oriented requirements modeling relevant to the engineer-
ing of open systems.

26

2.3 Requirements Driven Variability

2.3.1 Goal-based variability

Goal models allows for analyzing goals and identifying different ways to reach
them. This motivates several research questions concerning the acquisition
of the space of alternatives to goal satisfaction and the selection amongst
them either at design time or at runtime. Starting with goals gives rational
to the adjustment of the system in terms of switching between plans guided
by stakeholder goals. In other words, the variability is in the actions to reach
the goals that are, often, stable. In what follows, we review some research
directions that are using goals in the requirements acquisition and design of
high-variability software:

• Designing self-adaptive systems [88, 89, 90, 91]: self-adaptive systems
is characterized by autonomy in reaching their objective at runtime.
This implies a repository of plans the system supports and has the
ability to choose between in different environments. A software engi-
neering methodology for building self-adaptive systems is developed.
The methodology allows to define and to model the autonomous diag-
nosis and decision making going to be done at runtime. In order to
design self-* systems, one of the major dimensions to consider is the
dynamic environment in which the system lives.

Tropos4AS (Tropos for self-adaptive systems) is in extended version
of Tropos proposed in this thread of research. Tropos4AS supports
software engineers in developing self-adaptive systems, incorporating
principles from goal-oriented requirements engineering, environment
modeling and the BDI agent architecture. More precisely, Tropos4AS
extends Tropos by constructs to model environment conditions and
capture their influence on the behavior of a software agent. It also ex-
tends Tropos goal model by constructs that capture the failure in one
of its alternatives along with the recovery activities. It uses the alter-
natives to goal satisfaction to generate alternative configurations that
will be implemented in the system-to-be. The main result of Tropos4AS
is the systematic transformation of design model into implementation.
Therefore, the system at runtime will use the design time models as a
reference that guide its behavior.

• Architectures for self-reconfigurable socio-technical systems [92, 93]:
A Socio-Technical System (STS) is an interplay of humans, organiza-
tions and technical systems. STSs are a type of distributed systems

27

where a number of autonomous and intentional actors interact in or-
der to achieve the respective objectives. STSs are characterized by
dynamism, unpredictability and weak controllability. The operational
environment is subject to sudden and unexpected changes, actors may
join and leave the system at will, social dependencies between actors
are at risk because of actors’ autonomy, and actors may fail in achieving
their goals. The interests of the actors can be supported technologi-
cally by introducing a software architecture that monitors the actors
behavior, diagnoses failures against correct behavioral models, and re-
acts to failures via compensation actions. This research proposes an
architecture intended to make STSs self-reconfigurable. The architec-
ture becomes an integral component of an STS; the goal model itself
serves as a description of correct behavior. The architecture observes
the actions performed by participating actors, compares the monitored
data against goal models, and enacts reconfigurations in response to
failures.

The algorithms the architecture exploits are based on the specializa-
tion of the Belief-Desire-Intention paradigm. An agent participating in
an STS behaves correctly if, whenever a goal is activated, it will select
and execute a plan that eventually leads to the achievement of that
goal. Failures occur if the agent does not follow the plan correctly, if
the agent does not execute anything, or if a dependee does not bring
about the dependum for the depender. Reconfiguration actions take
into account the autonomy and uncontrollability of the participants:
the architecture can (i) perform some real action by controlling actu-
ators; (ii) remind or suggest actions to actors; and (iii) assign some
responsibilities to external agents.

• Acquiring variability in fulfilling requirements [94, 68]: for supporting
high-variability the system is supposed to have relatively large num-
ber of alternatives. The work discusses a systematic way to generate
these alternatives at the goal level. More specifically, it discusses how
to generate alternatives through OR-decomposing a goal. A semantic
anatomy of what is OR-decomposed is given. A goal can be associ-
ated with a set of concerns and the OR decomposition can consider
each of these concerns (Agentive, Dative, Objective, Factitive, Process,
Locational, Temporal, Conditional, Extent).

For example, the Agentive concern refers to the agents that are in
charge with reaching the goals, the Dative concern refers to the agents
who will be affected by the fulfillment of a goal, the Objective concerns

28

refers to the objects that will be affected by the activities done to reach
the goal, the Locational concern refers to the spatial locations where
the activity to reach the goal is established, and the Temporal concerns
refers to the time in which such activities are perform.

• Goal-driven software customization [95, 62]: this work complements
the previous one. While goal models allows for a space of alternatives
to reach goals, a criteria to customize the goal model is needed. This
research allows for customizing goal models based on two dimensions.
The first one is the skills of user that may be required for each of the
tasks (leaf goals) of goal model, and the user’s preferences that may
rank goal satisfaction alternatives differently.

To illustrate the customization based on user skills, let us consider the
example of conveying information to a user. For example, to show in-
formation to a user interactively through his PDA, this requires a skill
like knowing well about how to use touch screen and respond to inter-
active presentation techniques. If user does not have these skills the
information can be delivered as a video-like presentation. To illustrate
the user preferences dimension in ranking the alternatives, let us take
the information delivery process by an assistance staff in a shopping
mall to a customer. This process can be done remotely or in person.
Remote calling is positive from the perspective of staff comfort and
negative from the perspective of the quality of information delivery
as whole. Delivering information in person is as opposite to remote
calling for the last two quality measures (staff comfort, and quality of
information). If the mall adminstration appreciates staff comfort more
than the quality of delivered information, then remote calling will be
adopted and vice versa.

2.3.2 Problem Frames variability

Problem Frames is a requirements engineering approach that is for analyz-
ing software problems and their context [96]. This approach adopts three
descriptions to characterize a problem. The first one is W: the description of
the context (context here refers to known domain properties of the world).
The second is R: which is the required domain properties. The third one
is S: the specification of what the software (machine) has to do to reach
R. Problem Frames do support a kind of variability through the notion of
variant frames. A variant frame is a variant of a basic problem frame where
additional problem domain is added, or the control characteristics of a shared

29

phenomenon are changed. This allows for variability when the problem does
not fit to the basic frame.

Salifu et al. [97, 98], investigate the use of problem descriptions to rep-
resent and analyze variability in context-aware software. The work recog-
nizes the link between requirements and context as a basic step in designing
context-aware systems. The work applies Problem Frames approach to ana-
lyze different specifications that can satisfy the core requirements under dif-
ferent contexts. The problem description captures the relationship between
contexts, requirements, and the specification (machine). For each different
context there could be a different problem description. This leads to identifi-
cation of variant problems that are variations of the original problem that are
adapted for a particular context. A context-aware system is a composition
of the specifications to the variant problem.

The specification of the system in this way allows it to be adaptive to the
context. A context change that violates the requirement triggers a switching
action to an alternative specification for restoring the satisfaction of require-
ments. In other words, the requirements has to be always satisfied, and when
the monitoring systems observes a failure in meeting the requirements be-
cause of changes in the context the current configuration fits to, this will lead
to looking for alternative problem variants that fits to the new context.

2.3.3 Feature models variability

Software product line variability modeling, mainly feature models [99, 100],
concerns modeling a variety of possible configurations of the software func-
tionalities to allow for a systematic way of tailoring a product upon stake-
holder choices. Features are characteristics of the system, and feature model
represents the variability of these characteristics for configuring a family of
software products. However, there is still a gap between each variant and
the context where it can, or has to, be adopted. Speaking in terms of feature
modeling, context can determine if a feature is mandatory or optional or
even redundant. For example, for an email editing system, encryption could
be an optional feature if the system is to operate within one organization
where staff members trust each other. On the other hand, such feature could
be mandatory if the editor is for users who will write emails from a public
network.

Modeling and analyzing variability in software product lines is a broad
topic and for the purpose of this thesis we focus on two directions: the
feature variability and context, and the integration between goal-modeling
approaches and features:

30

• Feature variability and context: in product lines engineering, con-
text can be a main factor in deciding what product variants to de-
rive. In other words, context influences the need for, the applicabil-
ity and the appropriateness of, each variant. We use the term self-
contextualizability to denote a system ability to adapt to context in
order to keep its objectives satisfied. Self-contextualizable product line
is a product line that incorporates the reasoning needed to derive prod-
uct variants fitting to their contexts. Consequently, the relation be-
tween products variants and context has to be explicitly captured and
reasoned on to derive contextualized products. Context influences the
set of features to be included in a software product variant. Consid-
ering context at the design time can model a feature as mandatory or
optional, whilst at the runtime context needs to be considered when
switching to an alternative feature. Feature models can be enriched
with context towards more systematic derivation of software variants.
A recent work by Hartmann et al. [101] studies the relation between
context and features to support the engineering of software supply
chains. Context can determine if a feature is mandatory or optional or
even redundant.

• Goals and features integration: goal models are used as an intentional
ontology that fits well with the early requirements analysis phases.
They support analysis of different alternatives for satisfying user needs.
As proposed in [102], a goal model is a good starting point for fea-
ture model construction as it justifies feature configurations in terms of
stakeholder goals. In this thesis, we advocate a perspective on a goal
model as a core domain model: it acts as the source of all stakeholder-
related variability. Goal models justify existence of all functional re-
quirements (hard goals) and quality measures (soft goals) of a software
system in terms of stakeholder intentions. Thus, variability in inten-
tions is a primer source of system variability. Of course, goals are not
the sole source of system variability - they pertain to variability of the
problem domain. Technical solutions devised to satisfy these goals will
add their own variability dimensions. The latter however, are meaning-
less without the former, as a system will be useful only if it is addressing
some set of stakeholder needs. Recent work has emerged on the rela-
tion between goal models and feature models. For example, Antonio
et al. [103], develop IStarLPS framework that adopt i* framework for
software product lines. It provides a systematic way to identify fea-
ture from i* goal models towards more comprehensive requirements
engineering for software product lines.

31

2.4 Chapter Summary

In this chapter, we have reviewed the state of the art of several research ar-
eas related to this thesis. We have reviewed several definitions of context in
context-aware computing and discussed several classifications of contextual
information and several modeling techniques for representing context. We
have reviewed the main concepts and motivations in goal-oriented require-
ments engineering and a variety of ongoing research. Finally, we discussed
main-stream requirements engineering approaches in capturing and manag-
ing system variability together with context.

32

Chapter 3

Contextual Goal Model

In this chapter, we propose contextual goal models to capture the relation
between variants for goal salification and context. As we have introduced in
Chapter 1, context may have influence on human’s goals and their choices to
reach such goals. The relationship between context and goals is essential for
software developed to meet users needs in different contexts. Software has to
reflect user adaptation to context, while reaching his goals, to derive a set of
functionalities to execute. We explain the principles our modeling is based
on, give an overview of Tropos goal modeling, and then propose an extension
to it:

• we define a set of variation points on Tropos goal model where context
might intervene to decide applicable alternatives for goal satisfaction.

• we define a set of constructs to analyze context. This analysis is for
discovering the information that a system needs to capture of its envi-
ronment to judge if an analyzed context holds.

3.1 Weaving Requirements with Context

Most RE literature ignores, or presumes a uniform nature of, the context in
which the system operates. However, new advances in communication, com-
puting, and sensing technologies have introduced novel fields and applications
areas where this assumption is not anymore valid. For example, applications
for ambient intelligence introduce an inherent relation and mutual influence
between varying contexts and requirements. Requirements and the system
actions to meet them could change according to the varying context. The
context, in turn, may change as consequence of the actions the system takes.
In order to weave requirements with contexts, we need to support:

33

1. a way to represent variability of the system, or in other words an explicit
representation of variants the system can use to adapt its behavior to
the changes of the context. For example, possible variants for circulat-
ing the air inside the smart home can be: (i) opening the windows and
(ii) turning the ventilator on;

2. an explicit association between variants and contexts, to allow for a
systematic derivation of variants adoptable in each context. For ex-
ample, if the “humidity level inside home is high” (context), we need
to circulate the air. Opening the windows to circulate air (variant) is
adoptable if “it is good weather outside” (context) otherwise ventilator
could be turned on;

3. an explicit representation of the influence of context on the quality of
each variant. A variant can be evaluated against a set of quality mea-
sures and this evaluation can be context dependent. For example, the
variant of opening the windows to circulate air inside home may be
evaluated negatively against a quality measure like “patient feels more
privacy”, but only in certain contexts such as “patient is sleeping”;

4. a systematic analysis of context. An analysis to discover the informa-
tion necessary to identify a certain context is needed. For example,
“patient is interested in the current TV program” is a context that we
may need further analysis to judge if it holds. To this end, we may
check if other two contexts “the patient is sitting/lying in front of the
TV” and “the patient is not doing any other significant activity but
watching the TV” hold, and so on.

5. an explicit representation of the influence of requirements over the con-
text. This helps to analyze and reason about the problematic interplay
between system’s behaviors and changes of the environment. For exam-
ple, “circulating the air by opening the windows” and “locking external
doors and windows to protect home against robbery” leads to a conflict
preventing the satisfaction of both requirements together.

Context may influence not only the system, but also the user. This means
that the system has to adapt its behavior to context taking into account the
ways users themselves may adopt to reach their requirements in different
contexts. Goal modeling, that is a mainstream approach in requirements
engineering, is very effective to represent users goals and analyze alternative
ways for their satisfaction besides the qualities of these alternatives (soft-
goals [10]). Goal models can be used to capture the adaptability to context

34

at the intentional level as a preliminary and essential step for the software
adaptation to varying contexts.

3.2 Running Example

In this section, we briefly explain an example of a system operating in and
reflecting varying contexts and we use it to explain our proposed conceptual
model, the contextual goal model. We consider a mobile information system
for promoting products to customers inside shopping malls. The customers
and sales staff are provided with PDAs as a communication and interaction
device. The system can satisfy its main goal “promoting a product to a
customer” through different execution courses. The adopted execution course
depends on the context that may include the characteristic of customers,
products, sales staff and other elements in the shopping mall.

To initiate the promotion process, a certain initial context has to hold:
the customer is inside the mall building and he may accept an interaction for
the promotion of a product. This context activate the need to reach the main
goal of the system that is the useful promotion of the products to interested
customers to increase their sales. The system at runtime has to monitor such
context to decide upon when to activate the promotion of a product.

Promotion can be done through several alternatives and each alternative
may require a valid context. One of these alternatives is cross-selling. Pro-
moting a product, by cross-selling it, requires that the product complements
or it is usually sold together with a product already chosen or bought by the
customer. If this context holds, the system has to show a demo to persuade
the customer and then to display the place where the customer can pick up
the product from.

Another alternative to promote a product is by offering a discount on it.
To promote by offering a discount, the system has to monitor if the product
needs to be finished soon and if the customer is interested in the product
through analyzing his sales history or current behavior inside the mall. If
such context holds, the system generates and gives a discount code for the
customer to provide at the cash desk and benefit from the discount.

Some products can be promoted by giving a free samples of them to
customers. To promote by offering a free sample of a product, the system
has to monitor if the product is new to the customer. “product is new to
a customer” is a description of context which may mean that the customer
never bought the product, the product is newly released, or the product is
local to the mall region while the customer lives in a different region where
the product is not local in.

35

Adopting the alternative of promotion by free sample, the system has to
decide the way to deliver the sample to the customer. Assigning the delivery
task to a sales staff is adoptable when the sales staff is close to and speaks a
language in common with the customer, and knows well about the product.
Delivering the sample by self-service machine requires that the customer
knows how to use such kind of machines, and the machine has a short queue,
and it is not so far from the customer.

If delivering the free sample by a sales staff is adopted, the system has
to notify and guide the sales staff to meet the customer. If delivering the
sample by machine is adopted, the software has to explain about the product,
get customer confirmation, give an authentication code to the customer to
provide to the self-service machine, and guide the customer to arrive to such
machine. Guidance to the machine can be done by showing a map and the
path on it if the machine is close or the path is simple. Otherwise, the system
has to trace the customer and direct him step by step.

3.3 Tropos Goal Model: Overview

Goal analysis represents a paradigmatic shift with respect to object-oriented
analysis. While object-oriented analysis fits well to the late stages of require-
ment analysis; goal-oriented analysis is more natural for the earlier stages
where the organizational goals are analyzed to identify and justify software
requirements and position them within the organizational system [15]. Goal
analysis justifies the developed system by relating it to users strategic goals.
In other words, goal analysis answers the question “why is a software needed”.

Here we illustrate the main concepts of Tropos goal modeling that will
be used in the rest of the thesis:

• Actor: an entity that has strategic goals and intentionality within
the system or the organizational settings. For example, a customer
represents a human actor, while customer mobile information system
represents a system actor.

• Goal: represents an actor’s strategic interest that has clear-cut def-
inition and clear-cut criteria to judge if it is satisfied. For example,
“customers get connected to the mall network” is a goal that we know
when it is satisfied and we have specific ways to satisfy it.

• Task: is an executable process that represents a way of doing some-
thing. For example, “show a demo about the use of information termi-
nals in the mall through user’s PDA” is an executable process that is
a way to convey information about the use of terminals to customers.

36

• Softgoal: represents actor’s strategic interest that has no clear-cut
definition and/or no clear-cut criteria to judge if it is satisfied. Softgoals
are typically used to model non-functional requirements. For example,
“customer is more comfortable” is a goal that we do not know exactly
how it can be measured or satisfied.

Tropos allows the above concepts to be related via a set of relationships:

• Contribution to softgoals: certain goals/tasks can contribute posi-
tively/negatively to softgoals “satisficing”. For example, the automated
wireless connection of the customer’s PDA to the mall network con-
tributes positively to the softgoal “customer is more comfortable”.

• Dependency: occurs between two actors and indicates that one actor
depends on the other in order to attain a goal, execute a task. The
former actor is called the depender, while the latter is called the de-
pendee. The object around which the dependency is based is called
dependum. For example, the customer might depend on the sales staff
for reaching the goal “get informed about a product” or executing a
task like “getting a sample of a product”.

• Means-end: goals can be finally reached by means of executable pro-
cesses (tasks), i.e., a task is a way of reach a goal. For example, the
tasks “show the path to the nearest information terminal“ and “trace
and guide customer to the nearest terminal” are means to reach the
goal “customer arrives to the terminal”.

• Decomposition: goals and tasks can be refined through AND- or
OR-decomposition. If a goal G (a task T) is AND-decomposed into
subgoals G1, G2, ..., Gn (Subtasks T1, T2, ..., Tn) then if all of the sub-
goals (subtasks) are satisfied (executed) so is the goal G (the task T).
If a goal G (a task T) is OR-decomposed into subgoals G1, G2, ..., Gn

(Subtasks T1, T2, ..., Tn) then if at least one of the subgoals (subtasks)
are satisfied (executed) so is the goal G (the task T).

In Fig. 3.1, we show a partial Tropos goal model of the running example
of promotion information system to clarify our goal analysis main concepts.
Tropos goal analysis projects the system as a set of interdependent actors,
each having its own strategic interests (goals). Goals are analyzed iteratively
and in a top-down way, to identify the more specific sub-goals needed for
satisfying the upper-level goals. Goals can be ultimately satisfied by means
of executable processes (tasks).

37

M all
W ebsite

get product
identifier

provide information to customer

provide answerestablish network
connection

get answer through
website

query mall
database

and

customer types
product ID

or
read RFID tag

read barcode

--

Goal Task

Actor

Actor
boundary

Softgoal

Means-ends
link

Decomposition
link

Dependency
link

Legend

establish wireless
connection

establish wired
connection

easy connection

reliable
connection +/-

Contribution link

+

--

+

or

Custom er
IS

Figure 3.1: Tropos goal model example

Actors (Customer IS and Mall Website) have a set of top-level goals
(provide information to customer), which are iteratively decomposed into
subgoals by AND-Decomposition (all subgoals should be achieved to fulfil the
top goal) and OR-Decomposition (at least one subgoal should be achieved
to fulfil the top goal). The goal provide information to customer is AND-
Decomposed into establish network connection, get product identifier, and
provide answer ; the goal provide answer is OR-Decomposed into query mall
database and get answer through website. Goals are finally satisfied by means
of executable tasks; the goal “get product identifier” can be reached by one
of the tasks “read RFID tag”, “read barcode”, “let customer type product ID”.

A dependency indicates that an actor (depender) depends on another
actor (dependee) to attain a goal or to execute a task: the actor Customer IS
depends on the actor Mall Website for achieving the goal get answer through
website. Soft-goals are qualitative objectives for whose satisfaction there is no
clear cut criteria (easy connection is a rather vague objective), and they can
be contributed either positively or negatively by goals and tasks: establish
wireless connection contributes positively to easy connection, while establish
wired connection contributes negatively to easy connection.

3.4 Context in Requirements

Context has been defined in multiple computer science disciplines especially
in artificial intelligence (for a survey see [29]). It has been also defined in the
literature of emerging computing paradigms, such as ubiquitous, adaptive,
and mobile systems [32, 1, 37], that our requirements engineering framework
is developed for. A specific definition of context strongly depends on the
domain it is used in. For example, in a context sensitive search engines, a
user may search the term “java” that could mean a programming language

38

or an island. To disambiguate the searched term, the engine may look to
the context that can be the query history. If the user asked recently for
the term “cgi programming”, then most probably he is looking for the Java
programming language [104]. In the rest of this section, we adapt a definition
of context from the perspective of requirements engineering, namely goal-
oriented requirements engineering.

As broadly accepted, software is a means to meet user requirements [6,
9, 15, 8]. Software is developed to solve a problem in the users world and to
help them to reach their goals. In line with this view of requirements, Tropos
requirements analysis projects a system, either organizational or software, as
a set of interdependent actors. Each actor has goals which are partial states
of the world an actor attempts to reach. Tropos goal analysis represents
alternative sets of tasks that an actor may execute trying to reach its goals.
In other words, tasks are not required per se, but are means to reach goals.
Actors are autonomous in deciding what goals to reach, how, and how well
to reach them. We here give a definition of actor, adapted from [12], that is
going to be the observer of a context:

Definition 1 (Actor). An actor is an entity that has goals and can decide
autonomously how to achieve them.

An actor can be of different types such as human actors, software actors,
or organizational actors. The main characteristic of an actor is the autonomy
in deciding the way to reach its goals. This includes the ability to decide what
goals to reach, how, and how well to reach them. For example, a sales staff is
a human actor that may have the goal of conveying appropriately information
about products to customers. The sales staff has the ability to decide when
to activate this goal and what to do to reach it. The staff may reach such
goal by making a phone call to the customer or by delivering information
to him in person and the decision between these two options is left to the
sales staff himself. The decision taken by an actor depends on the state of a
portion of the world such actor lives in. We call such a state as context:

Definition 2 (Context). A context is a partial state of the world that is
relevant to an actor’s goals.

The decision about the parts of the world that are relevant to an actor
decisions is of subjective nature. An actor does not observe the world for
the purpose of observation per se. An actor does that for better decision
about what goals to reach and what actions to do to reach them. Therefore,
such decision is influenced by properties over the world that an actor needs
to observe. For example, “customer is interested in a product” is relevant

39

for a sales staff when deciding whether to promote a product to a customer.
The same context is irrelevant when a sales staff needs to decide whether
to announce some new offers via speakers. Moreover, there could be always
viewpoints about that parts of the world that are relevant to a decision. For
example, to decide the adoptability of conveying information to a customer
via an information terminal in the shopping mall, one sales staff attempts to
verify the context “customer is very close to one free terminal” and another
sales staff may attempt to verify “visitor is close to a terminal or to a map
showing the locations of terminals in the mall”.

Context is inherently partial and of a volatile nature. Actors may have
partial view of the state of the world. They may not be interested or capable
to capture all the information that fully capture such a state. A state of the
world may be partitioned into dimensions such as spatio-temporal, personal,
tasks, social as proposed in [37]. This partitioning is a way of facilitating
the way a state of the world can be described and captured. The world is
volatile and could be in different states. A partial state of the world that
is static does not influence the decisions of an actor. For example, if the
promotion information system operates in a geographic area where shopping
malls do not provide information offices, then the system does not need to
observe if there are such offices when deciding the way to convey information
to a customer. The decision is made once while developing the system and
applied in all shopping malls the system will operate in.

3.5 Weaving Context with Goals

Context has a strong influence on system requirements: it can be a factor in
deciding what requirements to meet, choosing among possible ways to meet
the requirements, and assessing the quality of each of these ways. On the
other hand, the system itself may cause changes in the context as a conse-
quence of meeting its requirements. However, in spite of the mutual influence
between context and requirements, context is either ignored or presumed uni-
form in RE literature. A RE model for systems reflecting their context is still
missing. An early analysis of the mutual influence between requirements and
context may improve the quality of the software and reduce the probability
of revising the design during the development process. Since requirements
are expressions of stakeholder’s needs, that is originated by their goals, also
context should be analyzed along this dimension.

As we mentioned in the previous section, goal analysis answers the ques-
tion “why is the software needed”. We may judge the usefulness and the
completeness of the software in terms of its establishment of users goals.

40

Capturing the relation with context at this level, the goal level, is preliminary
and basic step for a final developed system operating and reflecting varying
contexts. It answers a bigger question that is: “why and where/when is a
software needed”.

Context influences user intentions and choices before the software itself.
Software has to reflect user adaptation to context for deriving useful function-
alities to execute. Goal models, that is a mainstream approach in require-
ments engineering, represent an intentional ontology that captures users goals
and the variant ways to satisfy these goals, together with the quality of each
variant through the notion of softgoals [10]. Consequently, goal models have
the potential to capture the adaptability to context at the intentional level
as a preliminary and essential step for the software adaptation to varying
contexts.

Goal analysis allows for different variants (alternatives) to satisfy a goal,
but does not specify explicitly when each variant can be adopted. Supporting
variants without specifying when to follow each of them raises the question
“why does the system support several variants and not just one?". On the
other side, the consideration of different contexts the software has to adapt
to, without supporting variants raises the question “what can the system do
if context changes?". Analyzing different variants for satisfying a goal, and
specifying the relation between each variant and the corresponding context
help for justifying both the variants and context, and for having a well-defined
requirements for varying contexts.

Example 6. For a promotion system inside shopping malls, a sales staff
may have a goal like “product is promoted” activated in a context like “cus-
tomer is not in a hurry and there is enough time to promote the product”.
The sales staff, and depending on the context can choose variant ways to
reach this goal. If the context “customer does not know about the product or
the product is local to some region the customer is not from” holds, the sales
staff may give a sample of the product. From the other hand, if the context
“the product complements another one that the customer has” holds, the sales
staff may cross-sell the product. A promotion information system has to re-
flect the goal and the rationale and the adaptation of the sales staff when
promoting a product. In other words, one source of software adaptation is
the human’s one.

Example 7. For a tour guide, if a context like “tourist has not had lunch
today and time is around lunch hour” holds, the tour guide will try to reach
a goal like “find a place for tourist to eat”. Moreover, the context “tourist
is vegetarian” will limit the list of restaurants from which the guide would
choose. A mobile information system, playing the role of tour guide, has to

41

reflect the guide goals, rationale, and adaptation to context. This reflection
is preliminary before executing useful functionality like showing the map to
a suitable restaurant and translating the menu.

3.6 Contextual Goal Model: Variation Points

We propose to integrate goal model, as an early requirements model, and
context in order to capture the relationship between the goal model variants
and context. A goal model variant is an And-tree (i.e., deterministic tree)
of the goal model hierarchy and represent one alternative to satisfy root
goals. We need to specify the relation between each goal model variant and
context. In other words, we need to specify the context in which the variant
is needed, the context in which the variant can be adopted, and the context
in which the variant is good enough from the perspective of each softgoal.
Enumerating the variants of a goal model and specifying the context for each
of them separately is a hard task for two main reasons:

1. the potentially huge number of goal model variants, i.e., specifying con-
text for each enumerated variant could be extremely time consuming.

2. when a variant contains a large number of nodes, it will be hard for the
analyst to comprehend it and, consequently, specifies the context for it
in one step.

Fig. 3.2 represents a goal model for the promotion information system
explained in Section 3.2. The system is intended to interact with customers
and sales staff, through their PDAs, in order to meet the root goal “promote
products to customers”. The goal model represents the multiple alternatives
that the system may adopt to reach such goal. To make the model contextual,
we need to explicitly represent the relation between these alternatives and
context. Contexts, labeled by C1..C13 in the figure, can be related to the
following variation points at Tropos goal models:

1. OR-Decomposition: the adoptability of each sub-goal (sub-task) in an
OR-decomposition may require a specific context. For example, “pro-
moting the product by cross-selling” can be adopted when the prod-
uct can be used with another product the customer already has (C2),
while “promoting by offering discount” is adopted when product is dis-
countable and interesting to the customer (C3), and “promoting by free
sample” can be adopted when product is free sampled and new to the
customer (C4). The alternative “get free sample from a machine” can

42

by offering discount on [p] to [c]

promote product [p] to customer
[c] in mall [m]

by giving free sample of [p] to
[c]

by cross-selling [p] to [c]

deliver [p] sample to [c]
by sales staff [ss]

[c] gets [p] sample of machine
[mc]

[c] arrives to [mc]

or

show [p] demo to
persuade [c]

show [p] place to
[c]

make & show [p]
discount to [c]

make & give [p]
discount code to [c]

discount [p] to [c]

and

or

[c] knows about
[p] [c] allowed to get [p]

sample from[mc]

show [p] features to [c]

and

[c] confirms [p] sample
offer

get [c] confirmation by voice
recognition get [c] confirmation

by clicking

generate & give
authentication code

on [p] to [c] trace& instruct
[c] to [mc]

show path to [mc]on [m]
map

persuade and inform [c]
about [p]

and

guide [ss] to [c] place

and

[ss] delivers [p] sample
to [c]

notify [ss] by
vibration

notify [ss] by
voice command

show [c] place to
[ss]

show [c] picture
to [ss]

and
[ss] is notified [ss] meets [c]

less disturbance

SalesStaff
IS

C1

C2 C4

C7

C5

C9 C10

C8

C3

C6

Custom erIS

C11 ¬C11

C12

C13 --

+

Figure 3.2: A goal model annotated with contexts at its variation points.

be adopted when customer has experience with such machines and can
reach the machine and start to use it in a little time (C5).

2. Means-end : goals can be ultimately satisfied by means of specific ex-
ecutable processes (tasks). The adoptability of each task may require
a specific context. For example, “get customer confirmation by voice
recognition” can be adopted when the customer place is not noisy, and
the system is trained enough on the customer voice (C7), while the al-
ternative “get customer confirmation by clicking” can be adopted when
the customer has a good level of expertise with regards to using tech-
nology and a good control on his fingers, and the used device has a
touch screen (C8). The task “show path to sample machine on the mall
e-ma” is adopted when customer can arrive easily to that machine (C9),
while “trace and instruct customer to sample machine” task is adopted
when the path is complex (C10). The task “notify by vibration” can be
adopted when sales staff is using his PDA for calling (C11), while “notify
by headphone voice command” is adopted in the other case (¬C11).

3. Actors dependency : a certain context may be required for an actor to
attain a goal/get a task executed by delegating it to another actor. For
example, the customer information system can satisfy the goal “deliver

43

a sample of the product to customer by sales staff” by delegating it to
the sales staff information system, when the corresponding sales staff
has the ability and time to explain sufficiently about the product to
customer (C6).

4. Root goals: root goals may be activated only in certain contexts. For
example, to activate the goal “promote product to customer in mall”,
the customer has to be inside the mall building and may accept getting
promotion of the product (C1).

5. AND-Decomposed goal/task : the satisfaction (execution) of a sub-goal
(sub-task) in an And-decomposition might be needed only in certain
contexts; i.e., some sub-goals (sub-tasks) are not always mandatory
to fulfil the top-level goal (task). For example, the sub-task “show
customer current place to sales staff” is not needed if the customer
stays around and can be seen directly by the sales staff (C12).

6. Contribution to soft-goals: softgoals are qualitative objectives, i.e.,
there is no clear-cut criteria for their satisfaction. Softgoals can be
contributed either positively or negatively by goals and tasks. The
contributions to softgoals can also vary from one context to another.
For example, a goal like “establish wireless connection” contributes dif-
ferently to the softgoal “reliable connection” according to the distance
between the customer’s device and the wireless access point. A task like
“get customer confirmation by voice recognition” contribute negatively
to the softgoal “less disturbance” when there are other people around
the customer and it is so quite (C13)

3.7 Context Influence on Goals: A Classification

For systems living in and reflecting varying contexts, there is a strong impact
of context on the set of requirements to derive. Context might decide what
requirements to meet, how and how well they can be met. Based on its
impact on requirements, we classify context in three kinds, each of these
kinds is represented at a set of variation points of our proposed contextual
goal model:

1. Activation context, when the context makes it necessary to achieve
(execute) a set of goals (tasks). In our contextual goal model, activation
contexts are those contexts at the variation points (i) root goal and (ii)
And-decomposition. They decide if a goal has to be reached or a task

44

has to be executed. The activation context of a goal model variant
is the conjunction of the contexts at the variation points of these two
kinds.

2. Required context, when the context is necessary to adopt a certain
way for achieving (executing) a set of activated goals (tasks). The con-
texts that are at the variation points (i) Or-decomposition, (ii) Means-
end, and (iii) Actors dependency are required contexts. They are re-
quired to make applicable a variant of the goal model. The required
context of a goal model variant is the conjunction of contexts at the
variation points of these three kinds.

3. Quality context: when the context influences the quality of a variant
of the goal model. Only the contexts at the variation point Contribution
to softgoals are quality contexts. Contributions (links) to softgoals are,
indeed, used in Tropos to capture the impact of a goal/task to a quality
(i.e., softgoal).

In the rest of this thesis, we refer by the context of a goal model
variant to the conjunction of activation and required contexts of that vari-
ant. Fig. 3.3 shows two goal model variants (from Fig. 3.2) and the contexts
associated to them. The classification of context into these three categories
allows us, amongst other things, to answer questions like: in a given context,
does the system need to meet some requirements? what are the possible ways
to meet them? and what is the quality of each of such ways? Moreover, in
Chapter 4, we show how we can exploit contextual goal models to analyze
and reason about different properties of the system at an early stage of the
development.

3.8 Contextual Goal Model: Context Analysis

Similar to goals, context may need to be analyzed. On the one hand, gaol
analysis allows for a systematic way in discovering alternative set of tasks
an actor may execute trying to reach a goal. On the other hand, context
analysis should allow for a systematic way in discovering alternative sets of
facts an actor may verify trying to judge if a context applies.

We specify context as a formula of world predicates. The EBNF of this
formula is as shown in Code 1. We classify world predicates, based on their
verifiability by an actor, into two kinds, facts and statements:

Definition 3 (Fact). A world predicate F is a fact for an actor A iff F can
be verified by A.

45

promote product [p] to
customer [c] in mall [m]

by giving free sample
of [p] to [c]

deliver [p] sample to [c]
by sales staff [ss]

guide [ss] to [c] place

and

[ss] delivers [p] sample
to [c]

notify [ss] by
vibration

show [c] place to
[ss]

show [c] picture
to [ss]

and
[ss] is notified [ss] meets [c]

SalesStaff
IS

C4
C6

C11

C12

Custom erIS
C1

guide [ss] to [c] place

and

[ss] delivers [p] sample
to [c]

notify [ss] by
voice command

NULL
show [c] picture

to [ss]

and
[ss] is notified [ss] meets [c]

SalesStaff
IS

¬C11

¬C12

promote product [p] to
customer [c] in mall [m]

by giving free sample
of [p] to [c]

deliver [p] sample to [c]
by sales staff [ss]

C4 C6

Custom erIS
C1

Variant 1:

Activation Context= C1 C12
Required Context= C4 C6 C11
The context of Variant 1= C1 C12 C4 C6 C11

Variant 2:

Activation Context= C1 ¬C12
Required Context= C4 C6 ¬C11
The context of Variant 2 = C1 ¬C12 C4 C6 ¬C11

Figure 3.3: Goal model variants and their contexts

Code 1 The EBNF of world predicates formula
Formula :- World_Predicate | (Formula) | Formula AND Formula | Formula OR
Formula

Definition 4 (Statement). A world predicate S is a statement for an actor
A iff S can not be verified by A.

An actor has a clear way to verify a fact. It has the ability to capture
the necessary data and compute the truth value of a fact. A fact is not a
subject of viewpoints. In other words, when a fact is true for an actor it will
be also true for others. For example, a world predicate such as “customer
recently bought the product from the mall” is a fact. To verify this fact, the

46

Customer IS system actor can check the purchase history of the customer
since a number x of days ago. A world predicate such as “two products,
p1 and p2, are usually sold together” is also a fact. The system can check
the sales record of all customers and check if the two products p1 and p2 are
often sold together. “Product is not in the shopping cart of the customer” is
a world predicate that is a fact the system can verify using an RFID reader
in the cart and check if the product (identified by its RFID tag) is in the
cart of the customer.

Some world predicates are not verifiable by an actor. We call such pred-
icates statements. A world predicate can not be verified by an actor for
reasons such as:

• the lack of information: an actor may be unable to verify a world pred-
icate because of the inability to capture the information necessary to
verify it. For example, “customer does not know about a new product”
is a statement from the perspective of an actor such as the sales staff in
a shopping mall. The staff can not obtain all the information needed
to verify this statement. The staff can not monitor if a customer has
read about the product somewhere on the web or has been told about
it by a friend.

• the abstract (soft) nature: some world predicates are abstract by nature
and do not have clear criteria to be evaluated against. For example
“customer is interested in a product” is a world predicate that an actor,
such as a sales staff, has no precise way to judge if it holds and be
certain of the judgement. It is a concept that refers to a customer’s
mood that there is no way to verify it by an actor rather than the
visitor himself.

Some decisions that an actor takes may depend on contexts specifiable
by means of only facts, while some other decisions may depend on contexts
that include also statements. For example, to decide if to promote a product
via offering a discount, the system (Customer IS system) has to judge if the
context C3 applies. This includes deciding the truth of the world predicate
wp=“customer is interested in the product”. Such world predicate is a state-
ment that the system can not verify. However, this statement can be refined
into a formula of facts and other statements. For example, the refinement
could consider the behavior of the customer in the mall and his purchase
history. If customer is in the product area for long time examining it or if he
is coming to the product area often and touch the product, then the system
may judge that wp holds, i.e., judge that the customer tends to be inter-

47

ested in the product. We call the relation between such a formula of word
predicates and a refined statement Support, and we define it as following:

Definition 5 (Support). A statement S is supported by a formula of world
predicates ϕ iff ϕ provides enough evidence in support of S.

In an iterative way, a statement could be ultimately refined to a formula
of facts that supports it. That is to say, the relation support is transitive. If
a formula ϕ1 supports a statement S1 and S1 ∧ϕ2 supports S2, then ϕ1 ∧ϕ2

supports S2. However, refining a statement to a formula of facts is not
always possible. We may have statements that could be unrefinable to facts.
For example, “visitor did not visit any other shopping malls during the last
month” is a world predicate that can not be verified by a sales staff for the
lack of information. Moreover, the staff would not be able to find a formula
of facts that he can verify to support such a statement. In our contextual
goal model, we allow only for contexts that are specified by means of facts
and/or statements that are supported by facts. We call the kind of statements
and contexts that we deal with as monitorable statements and monitorable
contexts and we define them as follows:

Definition 6 (Monitorable Statements). A statement S is monitorable iff
there exists a formula of facts ϕ that supports S.

Definition 7 (Monitorable context). A context C is monitorable iff C can
be specified by a formula of facts and monitorable statements

A monitorable context, specified by a world predicate formula ϕ, applies
if all the facts in ϕ and all the formulae of facts that support the statements
in ϕ are true.

Context analysis aims to discover if a context is monitorable and to find
the formula of facts that specifies it. Context analysis starts with specifying
a world predicate formula that represents a context. This formula may con-
tain both facts and statements. For example, taking the context C1 of the
contextual goal model shown in Fig 3.2, this context can be specified as a
formula of world predicates C1 = wp1 ∧ wp2 where wp1=“customer is inside
the mall building” and wp2= “customer may accept getting promotion of the
product”. Obviously, the world predicate wp1 is a fact that the system can
verify on the base of obtainable data (position of the customer can be ob-
tained through a positioning system) while wp2 is a statement and we need
to find if it is refinable into a formula of facts.

To see if a context is monitorable, the statements in the formula that
specifies that context need to be refined into formulae of facts that support

48

them. A statement can be analyzed iteratively to ultimately discover a for-
mula of facts that an actor can visualize in the world and that gives evidence
in support of the analyzed statement. In Fig. 3.4, we analyze the context C1.
In this figure, statements are represented as shadowed rectangles and facts
as parallelograms. The relation support is represented as curved filled-in ar-
row, and the and, or, implication logical operators are represented as black
triangles, white triangles, filled-in arrows, respectively.

FactStatment Support
Legend

- = (f1 f2 f3) f4 f5 f6 supports wp2
- C1 applies if wp1

And Or Imply

C1

wp1= customer
[c] is inside the

mall
wp2= customer [c] may accept
getting promotion of product [p]

w1= [c] is not in a
hurry

w2= there is still time to
accomplish promotion

w3= [c] does not
have [p]

f6= [p] is
not in cart

of [c]

f5= [c] did not
buy [p] from
[m] recently

f4= still early
for the mall
closing time

w4= [c] does not
have to work

w5= [c]
behaves in a

calm way

f2= [c] is
retired

f1= it is
holiday in [m]

region
f3= [c] walks

slowly

Figure 3.4: The context analysis for C1

As we mentioned earlier, we consider the relation support as a transitive
relation. For example, as shown in Fig. 3.4, the formula w1∧w2∧w3 supports
the statement wp2, the formula f5 ∧ f6 supports the statement w3, then the
formula w1 ∧ w2 ∧ f5 ∧ f6 supports the statement wp2. Consequently, a
statement may be refined iteratively to reach the level of facts. In the same
figure, we show the formula of facts that supports the statement wp2. The
Customer IS system actor can verify this formula to judge if wp2 applies.

Analyzing context helps the analyst to discover what data the system has
to collect of the world. The analysis allows us to identify the facts that has
to be verified. These facts are verifiable on the base of data an actor can
collect of the world. For example, taking the facts of the context analysis
shown of Fig. 3.4, an analyst could develop a data conceptual model, shown
in Fig. 3.5, that the promotion system has to implement and maintain in
order to verify facts, judge if the analyzed contexts apply, and take decisions
at the corresponding variation point of the goal model.

49

Custom er

+retired

M all

+closing_time

RegionDay_Of_YearProduct

Position

+x
+y
+floor

Is_At

+at_Time

Cart

exist_in

is_holiday

contain

is_using

Bought

+at_Time

sell

in

Figure 3.5: The conceptual model of data needed to verify C1 facts

To illustrate our proposed constructs to analyze context, we show more
examples of context analysis and their corresponding data models in Fig. 3.6.

The analogy between goal and context analysis is shown in Fig. 3.7. Goal
analysis provides constructs to hierarchically analyze goals and discover alter-
native sets of tasks that can be used to achieve such goals. Context analysis
provides constructs to hierarchically analyze contexts and discover alterna-
tive sets of facts the system has to verify to judge if a certain context holds.

3.9 Discussion

The decomposition of the system into the functional part captured by goal
model and the monitoring part that is captured by context analysis, and the
association between variation points of goal model and the analyzed context
allow for a systematic contextualization of the system at the goal level of
abstraction. Contextualization can be done at two different times:

• contextualization at deployment time: when deploying the system to
one specific environment, and when we know a priori some contexts
that never change in that environment, we can consequently exclude
the support of the goal model variants that their contexts never apply at
that environment. For example, if the software is going to be deployed
in a mall where the noise level is always high due to the nature of
that mall (for instance, the mall is located in an open area, or the
mall sells products of a specific nature), the context C7 will never,
or rarely, hold and therefore the deployed software for that mall can
exclude the functionality of voice recognition as a way of interaction
with customers.

50

[c] is Interested in
[p]

[c] behaviorally
Interested in [p]

[p] historically
interested of [r]

[c] often
comes to [p]

area

[c] holds [p]
recently for
long time

[c] buys
periodically

[p]
[c] buys usually
of [p] category

end season
of [p] in [m]
region [r]

[p] has to be
finished

few pieces
of [p]

remained

C3
M all Store

ProductRegion

has

exist_in

contains

+quantity

End_Season

+start_date
+end_date

Custom er Position

+x
+y
+floor

in

Category

belongs_to

Area

Is_At

+at_Time

Bought

+at_Time

Touched

+start_time
+end_time

located_at

[ss] is
close to [c]

[ss] & [c] speak
a language in

common

[ss] is
expert

about [p]

[c] is
regular

customer

[ss] knows
enough
about [p]

[c] is not
regular

customer

[ss] is free

C6

sales staff [ss] can explain
sufficiently about product [p]

to customer [c]

[ss] knows [p]
sufficiently with respect

to [p]

[c] and [ss] can
easily and rapidly

meet
[p] and [ss] can
communicate M all

Sale_Staff Product

Custom er

Is_At

+at_Time

Know

+level Bought

+atTime

Position

+x
+y
+floor

in

SS_Is_At

+at_TimeLanguage

speak

speak

Custom er

ProductCart contain

is_using
Bought

+at_Time complement[p] has a common use
with a product [rp]

[p] complements
[rp] functionality

[p], [rp] usually
sold together

[c] already has [rp]

[c] bought
recently [rp]

[rp] in the
cart of [c]

product to promote [p] can give more
value to a related product [rp] that [c]

already has

C2

Figure 3.6: Examples of context analysis and elicited data models.

• contextualization at runtime: some other contexts are highly variable
and should be monitored at runtime to know what variant to adopt.
Consequently, the software has to monitor context, by collecting data of
its environment and verifying the formulae of facts that specify contexts
assigned to the variation points, and then adopt a suitable goal model
variant. For example, the distance between customer and the self-
service machine is a context which has always different values, and
whether the software has to guide the customer to the machine using the
alternative “trace and instruct customer to machine”, or “show path to
machine on the mall map” depends on the actual value of this variable
distance.

51

how to
reach

how to
judge

whattodo whattoverify

contexttojudgegoaltoreach

whyto
verify

why
to
do

Figure 3.7: The analogy between Goal and Context Analysis

The hierarchical context analysis has the potential to make a context
(i) more understandable for the stakeholders, (ii) easily modifiable as it is
not given as one monolithic block, and (iii) more reusable as parts of the
statement analysis hierarchy can be also used for other variation points or
other stakeholders context specifications. Specifying for each fact the related
fragments of the data conceptual model is useful for purpose of tracking.
For example, if for some reason, a group of stakeholders decided to drop, to
alter, or to reuse one alternative, statement, or fact, we still can track which
fragments in the conceptual data model could be influenced.

Example 8. A certain mall administration could decide that to promote
by offering discount, it is not required that “few pieces of the product left”,
and it is, instead, required that the fact “[p] sales < 60 percent of the average
sales of [p] in this period last years” is true. In this new context specification
(C3′), one part of C3 is deleted, one is reused, and another is added as shown
in Fig. 3.8a. Removing the fact “few pieces of product[p] remained”, leads to
remove the corresponding data conceptual model fragments (the class store,
and the association class contain). To verify the new fact, the system needs
the sales records that are already represented in the data model fragment
MC3. Therefore, the new data conceptual model for C3′ will be like shown
in Fig. 3.8b.

In this thesis, we presume that it is always possible to specify the context
for each alternative way to meet the requirements. However, in some cases,
it could be hard to specify the relation between the alternatives and context
at one step for two main reasons:

• some specifications require validation based on the actual operation of
the system.

• not every validated relation remains infinitely valid.

52

(A) (B)

[c] is Interested in
[p]

[c] behaviorally
Interested in [p]

[p] historically
interested of [r]

[c] often
comes to [p]

area

[c] holds [p]
recently for
long time

[c] buys
periodically

[p]
[c] buys usually
of [p] category

end season
of [p] in [m]
region [r]

[p] has to be
finished

C3

[p] sales <= 80% of
the avg sales of [p]
in this period last

years

M all

ProductRegion

exist_in

End_Season

+start_date
+end_date

Custom er Position

+x
+y
+floor

in

Category

belongs_to

Area

Is_At

+at_Time

Bought

+at_Time

Touched

+start_time
+end_time

located_at

Figure 3.8: A modified context C ′
3 and its data model.

Consequently, a lifelong contextualization is needed. A possible future
work direction could concern developing mechanisms to maximize the au-
tonomous contextualization of requirements continuously. This will allow
the system to learn from its experience in certain environment and optimize
the way it meets its requirements in. For example, certain people/cultures
consider a sales staff coming on person to promote a product as irritating
behavior, while some others appreciate it. A system after operating for a pe-
riod of time in one environment should know how successful each alternative
way to promote a product was and contextualize itself autonomously.

3.10 Chapter Summary

In this chapter, we explained our proposed conceptual model. We have mo-
tivated the importance of considering context at the goal level as a basic
step for software adaptation to context. We have discussed a set of variation
points on Tropos goal model where context may intervene to take a context-
based decision. We have showed the motivation beyond the variation points
that is essentially avoiding the enumeration of all the goal model variants
and specifying context for each of them separately. We have classified the
semantics of the variation points through classifying context into three cat-
egories, each category is associated to a set of variation points: activation,
required, quality contexts.

One main contribution of this thesis is the context analysis. Context
analysis provides a set of constructs that allow for a systematic way of ana-
lyzing context and discovering ways to judge if it holds. In other words, this
analysis is to discover what is visible in the environment and that leads to
judge if a context holds. The motivation behind context analysis is similar
to that of goal analysis. While goals are state of the world to reach, context

53

is state of the world that is the case. We analyze goals to discover possi-
ble executable process to reach them, while we analyze context to discover
possible monitorable facts to judge if it holds.

54

Chapter 4

Reasoning about Contextual Goal
Models

In this chapter, we develop the following reasoning techniques about contex-
tual goal models:

• Reasoning about consistency: to verify the consistency of a de-
signed contextual goal model, we develop two analysis techniques:

– Reasoning about context consistency : we check the consistency
of contexts specified at a contextual goal model. Contexts, both
the individuals which are specified at the variation points and the
accumulative, such as activation and required contexts, are repre-
sented as formulae of world predicates. The logical relations be-
tween the variables (world predicates) of that formula may make
it inconsistent (unsatisfiable). We process the variants of a con-
textual goal model to detect the set of variants unadoptable due
to inconsistency of their contexts and explain different semantics
of such an inconsistency.

– Reasoning about conflicts : we check each variant of a contextual
goal model for conflicts between its executable processes (tasks).
The conflicts we detect, are those manifested via inconsistent
changes on the context that the execution of tasks leads to.

• Reasoning about variants derivation: to automate the derivation
of a contextual goal model variants, we develop two analysis techniques:

– Variants derivation for varying contexts: this technique concerns
the automatic derivation of goal model variants that reflect con-
text and user priorities at runtime.

55

– Variant derivation for minimum-cost system: this technique con-
cerns processing a contextual goal model to extract the variants
leading to a system developed with minimal costs and still able
to meet users goals in all considered contexts. This reasoning is
useful at design time to decide the core requirements the system
has to meet when there are budget or timing constraints.

4.1 Reasoning about Consistency

In this section, we develop reasoning about the consistency of contexts speci-
fied for goal model variants, and reasoning about the harmful interplay among
tasks manifested on context. In fact, the earlier we reason about the system,
the better we discover and manage errors leading to a final system different
from what stakeholder intended. Considering that goal models fit well to the
early stages of the software development [15], the consistency analysis at the
goal level represents an early step towards a final system correctly developed.

4.1.1 Running example

We take a running example of a smart home system for people with demen-
tia1. A smart home is a ubiquitous computing scenario where computing is
integrated with our living environment. In smart homes, context is moni-
tored as an implicit input. This input influences what objectives the system
needs to meet and how it meets them. Smart homes are used in areas like
elderly support, health care, and entertainment.

We consider here a smart home designed for patients with dementia, a
variant of the scenario described in [105] and used in the EU sponsored
Serenity project2. The smart home supports some daily tasks that the patient
might forget to do, such as eating, circulating the air inside the home, taking
medicines. Besides their memory impediments, patients with dementia suffer
from anxiety attacks. The smart home should manage such situations by
making the patient aware of the anxiety attack, or by preventing him from
getting out of the house in an unusual way. The home then needs to calm
the patient down, and call the caregiver to come and administer a treatment.
The smart home supports also some other general tasks, such as preventing
a potential robbery of the home (e.g., it can give the illusion that the home
is lived in when the patient is out).

1In Chapter 6, we will process the entire model of the Smart Home
2The Serenity project focuses on System Engineering for Security and Dependability,

and involves 15 European R&D partners. Website: http://www.serenity-project.org/

56

Context influences, and is influenced by, the smart home requirements.
For instance, in the context “patient is anxious, behaving in an unusual way,
and is on the way to get out the home” the smart home is required to ensure
certain exit procedure. In the context “the patient is moderately anxious and
his dementia disease is not severe” the smart home could just give an alert as
a way to ensure the exit procedure. In the context “patient is very anxious
and his dementia is severe” then the smart home could lock the outer doors
and windows. This last alternative could cause changes in the smart home
environment. The external doors and windows are locked, and there could
be less light inside home.

Technology plays a crucial role in smart homes. Environmental sensors
allow for the gathering of information concerning temperature, humidity, the
level of light, magnetic fields (also installable on doors and windows to check
whether they are open or closed), electrical current. Motion sensors can iden-
tify if something or somebody is moving in a certain area, whereas accelera-
tors allow to detect sudden movements such as falls. RFID tags can be used
as an authentication mechanism by recognizing people and objects transpar-
ently. Medical sensors gather information concerning a person’s health: pulse
oxymeters detect saturation level and heart rate, while smart-shirts provide
even more accurate information (EKG, respiration, temperature, . . .). Cam-
eras serve a wide variety of purposes such as people tracking.

In Fig. 4.1, we present a partial goal model for the smart home system.
We are going to use it as a running example for explaining the reasoning tech-
niques we propose in this section. The description of the contexts annotated
at this goal model is shown in Table 4.1. We show an example of context
analysis in Fig. 4.2 and in Fig. 4.3 we show the model of data that the smart
home system has to collect to verify the facts of the analyzed context.

4.1.2 Reasoning about context consistency

Context analysis allows us to refine contexts at the variation points of the
goal model and discover formulae of facts that specify them (for an example
see Fig. 4.2). We remind here that only monitorable contexts are allowed in
our contextual goal model, i.e., the contexts that are refinable to formulae of
facts. The formula of an accumulative context, such as the context of a goal
model variant, is the conjunction of the formulae of those individual contexts
at each relevant variation points 3. A formula expressing a context could be
inconsistent which could be a modeling error to fix.

In order to check the consistency of a formula specifying a context, we

3We have defined the classification of variation points in Chapter 3. See also Fig. 3.3

57

G1: enforce routine exit
procedure

G4: patient is
alerted G5: patient is

prevented from
exiting

G10: calm the
patient

1 and

or

G3: home is
protected against

robbery

and

G6: give Illusion of
being lived in

G7: act against
potential robbery

T2: switch on lights
at patient location

T1: alert via
voice

message

T3: lock balcony
door, windows &
main entrance T4: call

caregiver
by phone

G8: actuate the
home G9: notify caregiver

T7: turn on
calm music

T5: call caregiver by
public call

T10: turn on/off
light iteratively

police is notified

G11: prevent robber
from entering

G12:
assistance

comes

T14: lock
doors

and

and

T11: phone
police

T12: turn all
lights on

and

T13: turn on
security cameras

G0: home is managed
for safety of patient

G2: refresh air inside
home

2

T8:open
windows

T9: turn on air
ventilator

5
3

87

9 10

T6: give warm
light color

make
relaxation

effects
or

4

12

SG1:patient
privacy

SG2: energy
spent wisely

+

+

+

11
--

6

5

0

Neighbor
Smart
home

13

Patient
Caregiving

System

SG3: less
noise

--+

G13: police
comes

G14: a
neighbor
comes

or

Figure 4.1: Partial contextual goal model for Smart Home system.

wp2= patient is anxious

w2=moving without
target

f4= moving
randomly

f5= back
& forth

w1=physiological
anxiety

f2= sweating
abnormally

w3=can not sleep

w4= trying to sleep w5= not
sleeping

f5= lying in bed
most of time f6= lying on sofa

most of time f7= moves
often

f8= irregular
breathing

f3= pounding
heart

f1= shortness
of breath

wp1= patient
at home

1

- = (f1 f2 f3) f4 f5 ((f5 f6) f7 f8) supports wp2
- 1 applies if wp1 FactStatment Support

Legend
And Or Imply

Figure 4.2: The context analysis of ϕ1.

58

Description Technology
ϕ0 Home is lived in, and the patient is expected

to have some dementia problem, and there
is no awaken caregiver or healthy relative at
home.

Database (info about
home and patient),
RFID tags (caregiver
and relative)

ϕ1 Patient is anxious and he is at home. Smart-shirt or oxymeter,
camera with motion
recognition

ϕ2 Humidity level in the house is too high,
or home windows and doors haven’t been
opened for long time.

Humidity sensor, mag-
netic sensor (open-close),
database

ϕ3 The patient dementia disease is not in an ad-
vanced stage and he is moderately anxious.

Database (disease sta-
tus), smart-shirt (anxi-
ety)

ϕ4 The patient suffers of advanced dementia, or
he seems to be extremely anxious

Database, smart-shirt

ϕ5 It is sunny and not very windy. Barometer and wind sen-
sor

ϕ6 The patient is outside home. GPS or RFID
ϕ7 The patient is outside home since long time

and it is night time.
GPS/RFID, database,
digital clock

ϕ8 A person is trying to get into the yard in a
suspicious way (e.g., enter from a place dif-
ferent from the main gate).

Surveillance camera

ϕ9 The phone is free and the caregiver is not
using his phone for a call.

Information from tele-
phony company, phone
busy sensor

ϕ10 It is not night time. Digital clock
ϕ11 The light level at patient location is too low

or too high.
Light sensor

ϕ12 It is too dark inside home. Light sensor
ϕ13 The neighbor is healthy, is at home, and can

see or reach easily the patient home.
Database (health status
and house location),
GPS/RFID (neighbor
position)

Table 4.1: The description of contexts specified at the contextual goal model of
Figure 4.1.

59

Patient

+normal pulse

Respiration

+inhalation_time
+exhalation_time

Position

+x
+y

Bed

Sofa

Is_at_time

+time

Heart_rate

+rate
+at_time

Sweating

+level
+at_time

Figure 4.3: The data needed to verify ϕ1 facts.

also need to take into consideration all possible contradictions among the
variables (world predicates) of that formula. For example, in Figure 4.1 we
have ϕ7 = wp7.1 ∧wp7.2 where wp7.1 =“patient is outside home for long time”
and wp7.2=“it is night time”, and ϕ10 = wp10.1 where wp10.1 = “it is not night
time”. In this example, ϕ7 → ¬ϕ10 because wp7.1 → ¬wp10.1, so any goal
model variant that whose context includes ϕ7∧ϕ10 will be inapplicable. The
logical relations between world predicates formulae (contexts) can be absolute
or dependent on the characteristics of the system operational environment:

1. Absolute relations hold wherever the system operates. For example,
given the three world predicates wp1= “caregiver [c] has never worked
in another institute”, wp2= “patient [p] is in the institute for the first
day” and wp3= “caregiver [c] was assigned to patient [p] some date
before today”, then wp1 → ¬(wp2 ∧ wp3) holds in whatever institute
the system operates in.

2. Operational environment dependent relations are true in a particu-
lar environment where the system operates without any guarantee
that such relations hold in other operational environments. For ex-
ample, lets us consider the two world predicates wp1 = “the tempera-
ture is less than 15 degrees at the patient’s location” and wp2 =“patient
is at home”. If in one institute, the heating system keeps tempera-
ture above 20 degrees then wp1 → ¬wp2 holds always in that insti-
tute. Moreover, the operational environment itself may assure that
some world predicates are always true or always false. Therefore, we
have to consider a special kind of environment dependent relations:
Env → world_predicates_formula. For example, if the system oper-
ates in an institute for patients with severe dementia exclusively, then
the implication Env → ¬wp3 where wp3 =“patient has basic dementia”
always holds.

60

We apply SAT-based techniques [106] to check if a formula, expressing a
context, is consistent under a set of assumptions. Given a formula and a set of
assumed logical relations between its variables4, a SAT-solver checks if there
exists a truth assignment for all variables that makes the conjunction of the
formula and the logical relations formula satisfiable. The context specified
by a formula is consistent iff such assignment exists. The pseudo-code of the
algorithm (CheckSAT) is reported in Figure 4.4.

Input: context ϕ
Output: ⊥ (�) if ϕ is inconsistent/consistent
1: ξ := get_logical_relations(ξ)
2: if Is_Satisfiable(ϕ ∧ ξ) then
3: return �
4: else
5: return ⊥
6: end if

Figure 4.4: Checking context consistency under assumptions (CheckSAT)

Obviously, the context at each variation point has to be consistent, other-
wise it is a modeling error to fix. The accumulative contexts, such as activa-
tion and required contexts for goal model variants, could also be inconsistent.
However, the inconsistency of these accumulative contexts does not always
indicate a modeling error and fixing or accepting such an inconsistency is
an analyst’s decision. The compact form of goal models integrates a large
number of variants and may, as a side-effect, include variants that are not
practically needed and their context inconsistency is acceptable. Moreover,
the semantic of context inconsistency depends on the kind of accumulative
context in which it happens. In what follows, we illustrate the above ideas
via examples taken from the contextual goal model of Figure 4.1.

Example 9. The inconsistency of the activation context of a goal model
variant means that the variant is not needed. The variant shown in Figure 4.5
has an inconsistent activation context because of the contradiction between
ϕ1 = wp1.1 ∧ wp1.2, where wp1.1=“patient is inside home”, wp1.2=“patient
feels anxious”, and ϕ7 = wp7.1 ∧ wp7.2, where wp7.1= “patient is outside the
home area for long time” and wp7.2= “it is night time”. In this example, the
variant is practically inapplicable and the context inconsistency is acceptable.
Indeed, giving illusion of being lived in to protect home from robbery is
needed when patient is outside, whereas treating his anxiety is needed when
he is in the home area. However, given that these two requirements are not

4In this thesis, we suppose that the relations between variables are manually provided.

61

needed at the same time, the designers could accept the mentioned context
inconsistency. In some other cases, inconsistency of activation contexts has
to be fixed. Let us suppose that ϕ0 is modified to ϕ′

0 that adds the fact
“patient is at home”. Therefore, ϕ′

0 ∧ϕ7 is inconsistent and G8=“give illusion
of being lived in” will never be activated. In such case, the designers would
decide to fix the inconsistency treating it as a modeling error.

G0: home is managed for
safety of patient

G1: enforce routine
exit procedure

G3: home is protected
against robbery

1 ~ 2

G4: patient is
alerted G6: give Illusion of

being lived in

T2: switch on lights at
patient location T10: turn on/off

light iteratively

3 7 ~ 8

0

The Activation Context of V1 = 0 1 ~ 2 7 ~ 8
The Required Context of V1 = 3
The Context of V1 = 0 1 ~ 2 7 ~ 8 3

1 = (wp1.1:patient inside home) (wp1.2: patient is anxious)
7 = (wp7.1:patient outside home for long time) (wp7.2: it is night)

The contradictions between contexts: wp1.1 ~ wp7.1

The Activation Context of V1 is inconsistent

V1: Goal Model Variant

Figure 4.5: A variant with an inconsistent activation context

Example 10. The inconsistency of the required context of a goal model
variant that has a consistent activation context means that the variant can
be activated but it is unadoptable in any context. In other words, a set of
requirements could be activated but a certain way (variant) to meet them is
unadoptable. Figure 4.6 shows an example of inconsistent required context.
In this example, the administration of the health care institute decides that
calling caregiver through institute speakers requires that patient has extreme
anxiety, while in the other cases caregiver could be called by phone. There-
fore, ϕ9 is modified into ϕ′

9 that adds the fact “patient anxiety is moderate”
which make ϕ′

9 ∧ ϕ4 inconsistent. In this new specification, the context re-
quired for calling caregiver by phone never holds and designers would decide
to fix the inconsistency.

Example 11. The inconsistency of the context of a goal model variant,
when its activation and required contexts are consistent separately, means
that the variant could be activated and adopted but never adopted in the
context where it is activated. Figure 4.7 shows an example of a goal model
variant with inconsistent context of this kind. In this example, the institute
assigns a caregiver to each patient except for night time. This creates a
contradiction between ϕ0 and ϕ10 and make the context of the variant V3

inconsistent. If T5 does not appear in other goal model variants with a

62

G0: home is managed for
safety of patient

G1: enforce routine
exit procedure

G3: home is protected
against robbery

1 ~ 2

G5: patient is
prevented from exiting

4 ~ 7 ~ 8

0

The Activation Context of V2 = 0 1 ~ 2 ~ 7 ~ 8
The Required Context of V2 = 4 9`
The Context of V2 = 0 1 ~ 2 ~ 7 ~ 8 4 9`

4 = (wp4.1: severe dementia) (wp4.2: extreme anxiety)
9 ' = (wp9.1: the home phone is free) (wp9.2: caregiver

phone is not being used) (wp9.3: moderate anxiety).

The contradictions between contexts: wp9.3 ~wp4.2

The Activation Context of V2 is consistent
The Required Context of V2 is inconsistent

V2: Goal Model Variant

G10: calm the
patient

and

T3: lock balcony
door, windows &
main entrance T4: call

caregiver
by phone

G9: notify caregiver

T7: turn on
calm music

9`

make
relaxation

effects

G8: actuate the
home

Figure 4.6: A variant with an inconsistent required context

consistent context, one design decision could exclude it from the implemented
system.

G0: home is managed for
safety of patient

G1: enforce routine
exit procedure

G3: home is protected
against robbery

1 ~ 2

G5: patient is
prevented from exiting

4 ~ 7 ~ 8

0
The Activation Context of V3 = 0 1 ~ 2 ~ 7 ~ 8
The Required Context of V3 = 4 10
The Context of V3 = 0 1 ~ 2 ~ 7 ~ 8 4 10

0 = (wp0.1: home is lived in) (wp0.2: patient has dementia)
(wp0.3: no awaken relative) (wp0.4: no caregiver)

10=(wp10.1 : it is not night time)

In one institute, caregivers are assigned to patients except for night
time. This implies the following contradiction:
wp10.1 ~wp0.4

The Activation Context of V3 is consistent
The Required Context of V3 is consistent
The Context of V3 is inconsistent

V3: Goal Model Variant

G10: calm the
patient

and

T3: lock balcony
door, windows &
main entrance T5: call caregiver

by public call

G9: notify caregiver

T7: turn on
calm music

10

make
relaxation

effects

G8: actuate the
home

Figure 4.7: A variant with an inconsistent context

Example 12. The inconsistency in quality contexts happens when the
conjunction of a context of one contribution to a softgoal and a context of
a goal model variant in which this contribution exists is inconsistent. For
example, the administration of some institutes could consider calling care-
givers through the institute speakers has a negative impact on the softgoal
“less noise” at the night hours while the impact is ignorable at the day hours.
The negative contribution from T5 to SG3 in Fig. 4.1 will be preconditioned
by the context ϕ=“it is night time”. Since T5 requires day hours time then

63

ϕ10 → ¬ϕ and, therefore, there will be no contribution between T5 to SG3

and the designers could just remove this contribution from the model.

4.1.3 Conflict analysis

Adaptability to context indicates a high degree of autonomy and flexibility
that the system has for achieving users’ goals in a variety of contexts. How-
ever, the system itself might lead to different changes over the context as
a consequence of the tasks it executes to meet users’ goals. These changes
could be inconsistent and originate conflicts preventing the right achievement
of user’s goals. Understanding conflicts is preliminary for their resolution and
requires to answer questions like:

• Why does a conflict occur? In other words, what are the conflicting
tasks and the goals behind them?

• What is the context in which a conflict occurs?

• Is there any alternative to avoid the conflict?

• What are the core conflicts that the system, at certain context, can not
avoid? In other words, which conflicts are severe?

Most conflicts manifest themselves on a subject that is an object in the
environment where the system operates [107]. In this thesis, we focus on two
kinds of conflicts:

• Conflicting changes: this conflict happens when two or more system ex-
ecutable processes (tasks in a goal model) try simultaneously to change
an object in the system environment into different states. For exam-
ple, the task T8: “open windows to circulate air” and the task T3: “lock
balcony door, windows, and main entrance to prevent patient of getting
out” aim to change an object, that is the windows, into two different
states, “closed” and “open” respectively. If these two tasks execute in
parallel, a conflicting change occurs.

• Exclusive possessing: this conflict happens when two or more exe-
cutable processes need an exclusive possessing of an environment ob-
ject. For example, both tasks T11: “phone police” and T4: “call care-
giver by phone” need an exclusive possession of the landline phone in
the patient’s home. If these two tasks execute in parallel, an exclusive
possessing conflict occurs.

64

Detecting conflicts

To analyze the two kinds of conflicts that we have mentioned, we need to
enrich contextual goal models with two kinds of information:

• The effect of tasks execution on the system operational environment:
we need to specify explicitly the influence of tasks execution on the
objects in the system environment. For each object that the system
interacts with, we need to define if the execution of a task changes
the state of that object or requires an exclusive possession on it. In
Figure 4.8, we show the influence of some of Figure 4.1 tasks on the
patient’s home objects.

Object States
 External Doors Balcony {open, closed, locked}

Main Entrance

Windows Living room {open, closed, locked}
Bed room

Lights Living Room

{on, off, medium} Bed Room

Balcony

Siren, Security camera, Ventilator {on, off}

Task Object State Exclusive

T1 Home speakers true

T5 Institute speakers true

T2 Lights {on}

T3 External doors {locked}
 Windows {locked}
T4

Landline
 true

T11 true
T8 Windows {open}

T5 Institute network false

Figure 4.8: Objects in the patient’s home (a), and the tasks impact on them (b)

• The sequence/parallelism operators between tasks: we need to specify if
two tasks, in each goal model variant, execute in parallel or in sequence.
Specifying this information for each pair of tasks is obviously hard
and time consuming activity. For this reason, we adopt the extension
to goal model proposed in [108] where business process operators are
introduced aiming at filling the gap between stakeholder goals and the
business process to reach these goals. Out of these operators, we use
the parallelism and sequencing operators to derive if two tasks may
execute simultaneously. In Figure 4.9, we annotate the smart home
contextual goal model, shown in Figure 4.1, with these two kinds of
operators.

The algorithm reported in Figure 4.10 processes a contextual goal model
and enriches its variants with information concerning adoptability and con-
flicts. The algorithm extracts the goal model variants having consistent con-
texts (Line 2-3). The goal model variants with inconsistent contexts are

65

G1: enforce routine exit
procedure

G4: patient is
alerted G5: patient is

prevented from
exiting

G10: calm the
patient

1 ||

or

G3: home is
protected against

robbery

||

G6: give Illusion of
being lived in

G7: act against
potential robbery

T2: switch on lights
at patient location

T1: alert via
voice

message

T3: lock balcony
door, windows &
main entrance T4: call

caregiver
by phone

G8: actuate the
home G9: notify caregiver

T7: turn on
calm music

T5: call caregiver by
public call

T10: turn on/off
light iteratively

police is notified

G11: prevent robber
from entering

G12:
assistance

comes

T14: lock
doors

||

||

T11: phone
police

T12: turn all
lights on

;
T13: turn on

security cameras

G0: home is managed
for safety of patient

G2: refresh air inside
home

2

T8:open
windows

T9: turn on air
ventilator

5
3

87

9 10

T6: give warm
light color

make
relaxation

effects
or

4

12

SG1:patient
privacy

SG2: energy
spent wisely

+

+

+

11

--

6

5

0

Neighbor
Smart
home

13

Patient
Caregiving

System

SG3: less
noise

--+

G13: police
comes G14: a

neighbor
comes

or

Figure 4.9: Goal model annotated with parallelism (||) and sequence (;) opera-
tors

excluded from further processing as they are unadoptable. Then each vari-
ant is checked for conflicts between its tasks (Line 6–14). The set of tasks
belonging to each variant are extracted (Line 6) and partitioned based on
the parallel execution (Line 10). Each partition of tasks is checked to know
if it includes tasks changing an object in the system environment into dif-
ferent states (Line 11) or to exclusively posses it (Line 12). Each variant is
enriched with information about conflicts happening between its tasks (Line
13). Consequently, by this reasoning we detect not only the conflicts between
tasks but we also know the goals behind the tasks originating the conflicts
and the context in which such conflicts happen.

Detecting core conflicts

Conflicts in one goal model variant can be resolved by adopting another
variant that is conflict-free and applicable in all the contexts where the con-
flicting one is applicable. In some cases, there could be no such conflict-free
variant and a resolution has to be crucially provided. In this section, we
develop reasoning to discover when a conflict belongs to this kind, i.e. when
it is core. We first give some basic definitions and then develop an algorithm
processing a contextual goal model to detect core conflicts.

66

Input: S: the set of all goal model variants
Output: S enriched by adoptability and conflicts information
1: for all V ∈ S do
2: if CheckSAT (V.context) = ⊥ then
3: V.adoptability := ⊥
4: else
5: V.adoptability := �
6: T := V.set_of_tasks
7: V.conflict_set := ∅
8: while |T | > 1 do
9: ti := pop_element_of(T)

10: Tti‖ := {tj : tj ∈ T ∧ in_parallel(ti, tj)}
11: Tti‖conflicting_changes := {(ti, tj , o, ti.o.state, tj .o.state) : tj ∈

Tti‖ ∧ o ∈ Environment Objects ∧ ti.o.state 	= tj .o.state}
12: Tti‖execlusive_possession := {(ti, tj , o, “exclusive”) : tj ∈

Tti‖ ∧ o ∈ Environment Objects ∧ ti.o.exclusive ∧
tj .o.exclusive}

13: V.conflict_set := V.conflict_set ∪ Tti‖conflicting_changes ∪
Tti‖execlusive_possession

14: end while
15: end if
16: end for
17: return S

Figure 4.10: Detecting conflicts in contextual goal models

Definition 8 (Core variant). A variant Vi with a context specified by a for-
mula ϕi is core iff ϕi is consistent and � variant Vj with a context specified
by a consistent formula ϕj: (ϕi → ϕj) ∧ ¬(ϕj → ϕi).

From this definition, any variant that is not core has a set of core variants
applicable in all contexts where it is itself applicable, but not vise versa. A
reason for keeping non-core variants is that at certain context they might
assure better quality5. The core variants are grouped on the base of the
equivalence, either direct or under assumptions, of their contexts to construct
core groups of variants.

Definition 9 (Core groups set). A core groups set is a set of core variants
partitioned on the base of context equivalence.

Definition 10 (Core group of variants). A core group of variants is an
element of a core groups set.

5The selection of non-core variants to keep is out of the scope of this thesis.

67

Example 13. In Figure 4.11, we show two partial goal model variants
{V1, V2}. These two variants are two ways for satisfying the goal G5 each in
a specific context. The contexts of these two model variants are consistent
and V1.context → V2.context ∧ ¬(V2.context → V1.context). This means
that V1 is not core since there is the variant V2 that can replace V1 in all the
contexts where V1 is applicable.

G5: patient is prevented
from exiting

G10: calm the
patient

T3: lock balcony door,
windows & main

entrance

T4: call
caregiver by

phone

G8: actuate the
home

G9: notify
caregiver

9

T6: give warm
light color

manage light
and music

11

..

and

Variant: V1
V1.context= 9 11

Variant: V2
V2.context= 9

G5: patient is prevented from
exiting

G10: calm the
patient

T3: lock balcony door,
windows & main

entrance

T4: call
caregiver by

phone

G8: actuate the
home

G9: notify
caregiver

9

T7: turn on
calm music

manage light
and music

..

and

Figure 4.11: An example of a variant (V1) that is not core

Having a conflict-free variant in a core group of variants means that any
conflict in the other variants in the same group is not core. If all the variants
in a core group of variants have conflicts, then we face a core conflict and
a resolution has to be crucially provided for one, at least, of the variants in
that group.

Definition 11 (Conflictual core group of variants). A conflictual core group
of variants is a core group of variants that does not include any conflict-free
variant.

The algorithm reported in Figure 4.12 extracts the core groups of vari-
ants in conflict from a contextual goal model. It calls the algorithm shown in
Figure 4.10 to enrich each variant with information about adoptability and
conflicts occurring in it (Line 1). The algorithm excludes the unadoptable
variants, i.e., the variants with inconsistent contexts, as they are obviously
not core (Line 2). The algorithm then extracts the core groups of variants
(Line 4–11). To this end, the algorithm partitions the set of variants based
on context equivalence (Line 6). The algorithm CheckSAT, shown in Fig-
ure 4.4, can be also used to check the equivalence between boolean formulae
expressing contexts. Given the logical relations (implications) (ξ) between

68

Input: S: all goal model variants set
Output: S′′:the set of all core groups of variants with conflict
1: S′ := Detect_Conflict(S)
2: S′ := S′ \ {V ∈ S : V.adoptability = ⊥}
3: S′′ := ∅
4: while |S′| > 0 do
5: V := pop_element(S′)
6: temp := {V } ∪ {V ′ ∈ S′ : CheckSAT (¬(V.context ↔

V ′.context)) = ⊥}
{i.e. Check if V.context ↔ V’.context}

7: S′ := S′ \ temp
8: if � V ′ ∈ S′ : V.context → V ′.context then
9: S′′ := S′′ ∪ {temp}

10: end if
11: end while
12: for all U ∈ S′′ do
13: if ∃V ∈ U : V.conflict_set = ∅ then
14: S′′ := S′′ \ U
15: end if
16: end for
17: return S′′

Figure 4.12: Extracting the conflictual core groups of variants

the variables of two formulae ϕ1 and ϕ2 then ϕ1 → ϕ2 iff ¬(ϕ1 → ϕ2) is
inconsistent under the assumptions ξ. Then the algorithm checks if each
group is core (Line 8) and keeps it for further processing if it is like that
(Line 9). The algorithm then checks each core group of variants to decide if
it contains at least one conflict-free variant. If this occurred, then the group
is not conflictual and it is excluded from the output set (Line 12–16).

Example 14. As shown in Figure 4.13, the assumption is that the subgoals
of the root goal “home is managed for patient safety” are not dependent on
each other and may need to be reached in parallel when their corresponding
contexts hold (notice the notation ‖). The variant V1 includes a conflict
between the tasks T3 and T8 manifested on the environment object “windows”.
Each of these two tasks changes the state of this object differently as we
specified in Figure 4.8. The variant V2 can replace V1 in all of its contexts
since V1.context → V2.context which means that V1 and its conflict are not
core. An example of a core conflict is that occurring in V3 because of the
exclusive use of the environment object “phone” between the two tasks T4 and
T11 and the absence of variants that are adoptable whenever V3 is adoptable
and that are conflict free.

69

T8:open
windows

5

G1: enforce routine
exit procedure

G5: patient is
prevented from

exiting

1

T3: lock balcony
door, windows &
main entrance

G8: actuate the
home

G0: home is managed
for safety of patient

G2: refresh air
inside home

T9: turn on air
ventilator

2

4

0

G1: enforce routine
exit procedure

G5: patient is
prevented from

exiting

1
G3: protect home
against robbery

G7: act against
potential robbery

T4: call
caregiver
by phone

G9: notify caregiver
police is notified

G12: request
assistance

T11: phone
police

and

G0: home is managed
for safety of patient

8

9

4

0

G1: enforce routine
exit procedure

G5: patient is
prevented from

exiting

1

T3: lock balcony
door, windows &
main entrance

G8: actuate the
home

G0: home is managed
for safety of patient

G2: refresh air
inside home

2

4

0

.

...

.

.

.

Variant: V1 Variant: V2 Variant: V3

.

|| ||
||

Figure 4.13: Non-core variant with conflict (V1), its conflict-free alternative (V2),
and variant with core conflict (V3)

4.2 Reasoning about Variants Derivation

A goal model hierarchy is a compact form that may incorporate a huge
number of variants for goal satisfaction. A variant for goal satisfaction is
an And-tree of the goal model hierarchy, i.e. a deterministic way to goal
satisfaction. Choosing between these variants is a question that arises at two
different stages:

• Design time: it is often desirable that software systems are provided
with alternatives to reach users’ needs. Having alternatives is desired
for various reasons such as increasing the system ability to recover
from errors by adopting alternative solutions and increasing the system
variability to enable it to work in different contexts, and so on. From
the other hand, developing a large number of variants could lead to
various problems. For example, it could lead to more development
costs, or it might lead to redundancy in software functionalities. In this
thesis, we deal with the management of variants to get a system with
a number of variants enabling it to reach user goals in all considered
contexts and developed with minimum costs.

• Runtime: the introduction of variants to reach user requirements ne-
cessities a systematic selection between these variants at runtime as
well. In this thesis, we focus on the selection between variants accord-
ing to the context and user priorities. User priorities are expressed
over softgoals, and the variant adopted is the one adoptable in the
current context and that contributes more positively to the prioritized
softgoals.

70

4.2.1 Running example

In this thesis, we use a case study of a museum-guide mobile information sys-
tem developed within the Laboratory of Mobile Application (LaMA6) at the
University of Trento7. The system is expected to enforce the museum rules
by notifying visitors to what they should do in the right moment. Moreover,
the system has to figure out if the visitor is interested in a certain piece of
art and convey suitable information related to that piece of art. Visitors and
museum staff are provided with PDAs as communication and explanation
devices. The system consists basically of two components: the monitoring
component that captures context, and the functional component that carries
out actions reflecting each monitored context.

To initiate the process of conveying information about a piece of art to
a visitor, the system has to monitor if the visitor is interested in it. This
information can be inferred, for instance, if the visitor has been standing in
front of the piece of art for long time. If so, the system has to look for the
best way to convey information to the visitor. The delivery of information
can be done via information terminals, the PDA the visitor has, or a staff
member. For each of the possible ways to convey information, the system is
supposed to do certain tasks. For example, to use terminals the visitor must
be informed about the existence of such a service, guided to it, and informed
about the way to use it. To get information through a staff member, the
system has to notify the staff member and establish a call with the visitor,
or guide the staff to the visitor’s place to give information in person.

Concerning the relationship between context and requirements, context
can influence decisions about:

• Requirements to meet: if the context “visitor is not interested in a
piece of art” applies, the mobile information system does not need to
activate the information delivery process. Moreover, if the context
“visitor is familiar with the use of terminals and knows one of the
languages the terminals support” applies, then informing the visitor
about the way of using such terminals is not required and the system
has only to inform the visitor about the existence of the service and
guide him to a free terminal.

• Ways to meet requirements: the system could have two variants
to convey information about a piece of art via PDAs: video-based and
interactive. Each variant could require a valid context. For example,

6http://lama.disi.unitn.it/
7In Chapter 6, we will process the entire model of the mobile information system

71

conveying information via an interactive presentation requires that a
context like “visitor has good experience in using PDAs” applies.

• Quality of each way: considering staff comfort as a quality measure;
conveying information to visitors on person is less comfortable for a
staff when a context like “visitor is far away from the staff” applies.

In Fig. 4.14, we show a partial goal model of the museum guide system,
and in table 4.2, we give a brief description of the contexts annotated at its
variation points.

4.2.2 Deriving variants for varying contexts

Goal models support variants to goal satisfaction. The selection of the vari-
ants to include in the system-to-be is a design decision that could be based
on different criteria. For example, the decision could be based on minimizing
the development costs as we propose in the next section. However, if we want
the system to be flexible and highly variable, the developed system should
support multiple variants to goal satisfaction [109]. When the system is sup-
ported by multiple variants, it may find more than one applicable variant
at certain contexts at runtime. Therefore, the system will need a criteria to
decide what variant to adopt. One criteria could be the user’s prioritization
over the variants. Asking users to specify their prioritization over the goal
model variants directly has two main difficulties:

• the potentially huge number of model variants, i.e., specifying prioriti-
zations over the enumerated variants could be extremely time consum-
ing.

• when the variants contain a large number of nodes, it could be hard for
users to comprehend the variants and the differences between them.

Instead of asking users to provide prioritization over the variants them-
selves, prioritization can be expressed over the quality measures, i.e., soft-
goals. Users can express prioritization on softgoals and bypass the large
number of goal model variants. Besides avoiding us dealing with the large
number of enumerated variants, softgoals allow users to express prioritiza-
tion using their own terms. For example, users can easily state that “more
comfort” has high priority while “less disturbance” is not such important.
The quality contexts of a variant are those between each softgoal and that
variant. The truth value of quality contexts determines the quality of each

72

visitor [v] gets informed
about a piece of art [p] in

museum [m]

[v] gets info
through [m] staff

[s]

prepare [p]
detailed

information

prepare [p]
brief simple
information

or

[v] gets info via his/
her PDA

Visitor
Assista

nce
System

C1

[v] gets info. via
terminal [t]

Staff
Assista

nce
System

[p] info suitable to
[v] is prepared [p] info is

presented to
[v]

and

[p] info is
presented to
[v] via video

[v] info is
presented to [v]

interactively

staff is more
comfortable

visitor well
informed

[v] gets info through
[m] staff [s]

[s] is alerted
[s] gives [p]
info to [v]

and

[s] gives [p] info to
[v] by call

[s] gives [p] info to
[v] in person

make video
call between

[s] and [v]

make voice
call between

[s] and [v]
direct [s] to
[v] place

show [v]
picture

direct [s]
to [v]
place

and

send [s] a
voice

command

or[s] is alerted through
public call

[s] is alerted through
[s]

or

make a call
through speakers
in [s] current room

[s] is alerted
via ringing

tone and SMS

and
[v] know how to

use [t]

[v] arrives to
[t]

show demo to
[v] how to use [t]

[v] is notified for the
service through [v]

PDA

direct [v] to [t]
place

send [v] a
voice

command alert [v] via PDA
vibration and

SMS

+ +

--

+

C2

C4 C6C5

¬C9

C7

visitor is assisted

visitor [v] follows museum
[m] process and rules

and

[v] accomplishes
registration

[v] is out of museum
by closing time

[v] is notified
before closing

time

and

C0

C10

C9[v] is
notified to
not enter

[v] is notified
to get out

C12

and

C3

calm museum

--

+--

C13

C8

C14

C11
C15

Figure 4.14: Partial contextual goal model for the Museum-guide system

variant. In other words, a variant can be of different qualities in different
contexts.

We adopt an approach similar to the one proposed in [92] to specify
prioritization over softgoals. We consider binary contributions to softgoals
(positive or negative). Stakeholders can specify the priority of each softgoal
by selecting an integer in the range [0,n]. Priority 0 corresponds to “the
user does not care about the softgoal”, priority n means “the user considers
the soft-goal very important”. The priority of a variant is computed by the
formula:

73

Description
C0 the visitor has to be inside the museum area including parking

places and the public square in front of museum, and moreover,
the visitor should have accepted the autonomous assistance by
the mobile information system

C1 the visitor is interested in getting explanation about the piece
of art, and he is in the gallery building

C2 closing time is approaching
C3 visitor has entered the museum building
C4 terminal is free and close to the visitor and he/she is able to use

and interact with it
C5 the piece of the art information are not so complicated, and the

visitor has the ability and the knowledge to use PDAs
C6 the visitor is not able to use PDA and not familiar with termi-

nals, or that the visitor is classified as an important visitor
C7 the visitor is on the way to enter the museum building
C8 the visitor is still inside the museum building and is not walking

towards the exit
C9 the visitor puts the headphones on, and is not talking to some-

body or using his PDA for a call
C10 there is a staff that is free and talks a language common to

the visitor, and knows enough about the considered piece of art
comparing to the visitor knowledge

C11 the room does not include audio art contents
C12 staff is not calling
C13 staff is not calling and not putting the headphone on
C14 if the visitor is close to the staff
C15 the staff’s PDA is not being used for a call

Table 4.2: The descriptions of context specified at the contextual goal model of
Fig 4.14

priority(v) =
∑

sg∈v

percentPos(v, sg)× priority(sg)

−
∑

sg∈v

percentNeg(v, sg) × priority(sg)

The function percentPos(v, sg) (percentNeg(v, sg)) refers to the percent-
age of the positive (negative) contributions with respect to the total number

74

of contributions from the variant v to the softgoal sg. We use the percent-
age to uniformly deal with softgoals with disparate numbers of contribution
links. Every contribution link is treated as an evidence about the positive or
negative satisfaction of a softgoal. Consequently, the derivation of goal model
variants for a given context and user prioritization is a two steps process that
the system follows at runtime:

1. Deriving the variants applicable in the current context : the truth values
of contexts at the variation points decide the set of goal model variants
that are applicable. As we have shown earlier, context analysis allows
us to discover a formula of facts that specifies a context (see Fig. 4.2).
The system, at runtime, has to monitor the environment and collect
data (Fig. 4.3) and compute the truth value of the formulae of facts at
each variation point of the goal model. This, in turn, filters the space
of goal model variants leaving those that are applicable in the current
context.

2. Ranking the applicable variants based on user’s prioritization: at cer-
tain contexts, there could be more than one applicable goal model vari-
ant. In other words, there could be more than one variant to meet the
same requirements. To select between them, user prioritization could
be considered by the system at runtime. To this end, users are asked,
at design time, to prioritize the set of softgoals. The system computes
the value of contextual contributions and the priority of each applicable
variant according to the formulae above. The adopted variant is the
one with the highest priority, i.e., the one that better contributes to
the highly prioritized softgoals.

Example 15. Suppose that the current context allows for the two model
variants partially shown in Fig. 4.15. The system has the possibility to
guide a staff to meet a visitor in person (variant V ′) and the possibility to
establish a call between them so as to communicate remotely (variant V ′′).
Delivering information in person to a visitor contributes negatively to the
softgoal “staff feels more comfortable”, as the staff is not close to the visitor
(presuming that C14 is false), and positively to the softgoal “visitor is well-
informed”. The second alternative variant, delivering the information by a
remote call, contributes conversely to the two mentioned softgoals. If the
museum adminstration gives staff comfort a priority higher than the quality
of information delivered to visitors, then the variant V ′ would be adopted,
and vice versa.

75

[v] gets info through
[m] staff [s]

[s] is alerted
and

send [s] a
voice

command

[s] is alerted through
[s]

staff is more
comfortable

visitor well
informed

[s] gives [p]
info to [v]

[s] gives [p] info to
[v] in person

direct [s] to
[v] place

show [v]
picture

direct [s]
to [v]
place

and

--

+
staff is more
comfortable

visitor well
informed

[s] gives [p]
info to [v]

[s] gives [p] info to
[v] by call

make video
call between

[s] and [v]

-- +

[v] gets info through
[m] staff [s]

[s] is alerted
and

send [s] a
voice

command

[s] is alerted through
[s]

Staff
Assista

nce
System

Staff
Assista

nce
System

..Variant: Variant:

Figure 4.15: Variants of different qualities

4.2.3 Deriving variants for minimum costs

In the previous section, we have studied the derivation of goal model variants
for a given context and user priorities. Such reasoning is of high importance
for systems that support multiple goal model variants and where more than
one variant is adoptable in certain contexts. On the other side, and for rea-
sons such as budget and timing constraints, we may want a system developed
with minimum costs sacrificing the quality and flexibility gained by support-
ing the whole set of goal model variants. In other words, the system has to
support a set of variants that is enough to meet users’ goals in all considered
contexts and developed with minimum costs. To this end, we have devel-
oped a reasoning in three steps to be used at design time: (i) we exclude the
variants that are unadoptable because of unsatisfiability in their contexts;
(ii) we exclude the variants that can be always replaced by others; (iii) and
finally, we reason about the remaining variants to extract those leading to a
system developed with minimum costs and that is able to meet user goals in
all analyzed contexts.

Deriving the unadoptable goal model variants

A goal model variant can be unadoptable as a consequence to the incon-
sistency of its context. We need to check such inconsistency early to save
costs and fix errors given that unadoptable variants may lead to software
parts that are never used or incorrectly specified. As we have shown in Sec-
tion 4.1.2, inconsistency sometimes originates from the compact form of goal
model hierarchy. The compact form of goal models could lead to a huge
number of variants, that some of them are indeed unadoptable and their
contexts inconsistency can be accepted. I.e. inconsistency is not always a

76

modeling error and a design decision has to be taken either to fix it or to
accept the exclusion of a variant. Here we give another example of a variant
with inconsistent context.

Example 16. The variant shown in Fig. 4.16 has an unsatisfiable context
due to the contradiction between C7 (“the visitor is on the way to enter
the museum shortly before the closing time”), and C1 (“the visitor is in the
gallery building and interested in getting explanation about a piece of art”).
A design decision has to be taken to accept this kind of unsatisfiability, i.e.
to confirm that the model variant is indeed not needed, or to modify the
model and fix it. In fact, and in this particular example, the unsatisfiability
is not a modeling error but it is a side-effect of the goal model hierarchy.
This hierarchy compactly represents a large number of variants in one model
and it, at the same time, may include variants that are never applicable. The
tasks of the unadoptable variants, such as the variant of our example, could
appear in other variants with satisfiable contexts and, therefore, these tasks
are not necessarily unusable if implemented in the final system. A task could
be implemented in the system-to-be if it appears in, at least, one goal model
variant with a satisfiable context.

visitor [v] gets informed
about a piece of art [p] in

museum [m]

Visitor
Assista

nce
System

C1

[v] gets info. via
terminal [t]

and
[v] know how to

use [t]
[v] arrives to

[t]

show demo to
[v] how to use [t]

[v] is notified for the
service through [v]

PDA

direct [v] to [t]
place

send [v] a
voice

command

C2

C7 & ¬C8

visitor is assisted

visitor [v] follows museum
[m] process and rules

and

[v] accomplishes
registration

[v] is out of museum
by closing time

[v] is notified
before closing

time

and

C0

C9[v] is
notified to
not enter

C3

C4

Figure 4.16: Goal model variant with an inconsistent context

Deriving the (non-)core goal model variants

Core requirements are system requisites that can not be bargained on. There
could be different perspectives to categorize requirements into core and non-
core. Concerning a system supported by variants to operate in and reflect
varying contexts, the variants having no alternative variants at certain con-
texts are core. Discovering core variants is useful for several reasons. It helps

77

to know the parts of the system that are critical and whose failure can not
be remedied by adopting other variants at certain contexts. Also, it helps
to know the part of the system that needs to be developed first and can not
be delayed to get a system operable in all considered contexts. The latter
reason is the focus of this thesis.

In Section 4.1.3, we have given the definition of Core Variants and Core
Group of Variants. We have also developed a reasoning about a contextual
goal model that leads to derive them. A reason for keeping the non-core
variants is that, in some contexts, they could lead to better satisfaction
of quality measures than the core variants, i.e. better satisfaction of the
softgoals. The discovery of these core groups of variants can give the analyst
more information of the requirements that need more attention and more
priority when there is a need to implement the core part of the system first
because of timing or budget constraints. Moreover, these core groups of
variants can be further processed to select a variant from each group seeking
for a system developed with minimal costs. Here, we give another example
of the non-core variants taken from the museum guide system:

Example 17. In Fig 4.17, we show two partial contextual goal model
variants {V1, V2} each including a different set of tasks to implement. Both
contexts of the two variants are satisfiable and V2.context → V1.context ∧
¬(V1.context → V2.context). This means that V2 is non-core since there is
always the variant V1 that can replace it in all considered contexts. In the
space of these two partial variants, the task “send [s] a voice command” and
“make voice call between [s] and [v]” are non-core, while the tasks “[s] is
alerted via ringing tone and SMS”, “show [v] picture”, and “direct [v] to [s]
place” are core and essential to implement in order to achieve the goal “[v]
gets info through [m] staff [s]” in all considered contexts.

Staff
Assista

nce
System

[v] gets info through
[m] staff [s]

[s] is alerted [s] gives [p]
info to [v]

and

[s] gives [p] info to
[v] in person

direct [s] to
[v] place

show [v]
picture

direct [s]
to [v]
place

and

[s] is alerted through
[s]

[s] is alerted
via ringing

tone and SMS

C12

[v] gets info through
[m] staff [s]

[s] is alerted [s] gives [p]
info to [v]

[s] gives [p] info to
[v] by call

make voice
call between

[s] and [v]

send [s] a
voice

command

[s] is alerted through
[s]

C13

C15

Variant: V1
V1.context = C12

Variant: V2
V2.context = C13 & C15

Staff
Assista

nce
System

..

and

Figure 4.17: Non-core variant (V2)

78

Deriving the variants for minimal costs system

Developing a system that supports multiple variants to reach its requirements
is desirable for several reasons such as flexibility and fault tolerance. In a
previous section, we have shown how such approach can accommodate the
priorities of different users. For different reasons, such as timing and budget
constraints, we may be required to develop just an operable system, i.e. a
system that operates in all considered contexts. In this section, we develop
the final step of the reasoning about a contextual goal model to derive a
subset of its leaf tasks that leads to a system able to operate in all considered
contexts and developed with minimum costs. These tasks may not implement
the whole set of goal model variants, but those that are implemented will
allow the system to reach its goals in all considered contexts.

Costs are not related to goals but to tasks as tasks represent executable
processes while goals are just desires of an actor. Each task needs certain
development resources (equipments, programmers, software packages, and so
on). Each of these resources has a cost. We need to specify the resources
needed for each task development and the costs of each resource to enable our
target reasoning. A resource may be a part of the development of multiple
tasks which means that the development costs of tasks may overlap. For
example, both of the tasks “direct visitor to terminal location” and “direct
staff to visitor location” need almost the same resources. They both need a
positioning system, communication system, and preparing a digital map of
the museum. The development of the two tasks “piece of art information is
presented to visitor via video” and “piece of art information is presented to
visitor interactively” share the resources of gathering data about the pieces
of art and preparing pictures, videos, and audio explanation to be presented,
and programming the presentation.

Defining the resources needed for each task and the costs of these resources
is the basic step to decide which tasks to develop. The second step is getting
the core groups of variants of the contextual goal model (we have already
explained this reasoning). Then we need to identify a subset of tasks that
implements, at least, one variant of each core group of variants targeting for
a minimal total cost.

Definition 12 (Operable set of tasks). S is an operable set of tasks for a
core groups set CS iff for each CG ∈ CS, ∃v ∈ CG ∧ v.tasks ⊆ S

Definition 13 (Min-cost set of tasks). S is a min-cost set of tasks iff S is
an operable set of tasks and � another operable set of tasks S ′ with lower
development costs.

79

A naive approach to extract a min-cost set of tasks can be to compute
the cartesian product of the core groups of variants and then selecting the
combination of variants of minimum cost. Such approach is obviously time
consuming and suffers of exponential blow-up. Moreover, our experiments
evidenced that it can not deal even with small-medium size goal models.
Thus, we need to replace the naive approach with an optimized algorithm.
We can significantly reduce the complexity of our reasoning by exploiting
the nature of the problem as shown in the algorithm reported in Fig. 4.18.
First, the algorithm calculates the set of tasks that are mandatory for all
possible combinations of variants (Lines 1–4). A task is mandatory if it
is included in all the variants of, at least, one core group of variants. To
reduce the number of core groups of variants to be involved in the cartesian
product, the algorithm makes two processing and produces a reduced core
groups set. A core group that includes, at least, a variant implementable
using a subset of the mandatory tasks will be excluded (Line 5–9). Some
core groups of variants become equivalent after excluding the mandatory
tasks of the variants belonging to them and we unify such equivalent groups
to reduce the number of core groups that will be included in the forthcoming
cartesian product (Line 10–11). The rest of the algorithm deal with the
cartesian product of the core groups of variants belonging to the reduced
core groups set (S) and returns the min-cost set of tasks (Lines 12–14).

Example 18. In Fig. 4.19, we show a part of the goal model shown
in Fig. 4.14. We provide estimations for the costs of each task development
aside. We show the set of variants after excluding the non-core variants as we
explained in the last section. The remaining variants are grouped based on
context equivalence to create core groups of variants. The relation between
tasks based on the shared resources are reported. Include(T1, T2): the work
done to gather simple information of the pieces of art is included in that
needed for gathering more detailed information. Intersect(T3, T4, A): the
interactive presentation (T4) includes videos (the resource A) that are also
needed for video-based presentation (T3). Intersect(T3, T5, B), Intersect(T4,
T5, B): all these tasks need a server and PDA for communication (the re-
source B). Intersect (T4, T8, C): we presume that T8 is interactive which
means that both of T8 and T4 require PDA with touch screen and the cor-
responding programming packages for getting user input in this way (the
resource C). After this specification, we show the set of tasks to develop and
the variant that are implemented on them and the final minimized costs.

80

Input: S: core groups set
Output: T : a min-cost set of tasks for S

1: MT := ∅ {MT stands for mandatory tasks}
2: for all CG ∈ S do
3: MT := MT ∪ {⋂{v.tasks : v ∈ CG}}
4: end for

5: for all CG ∈ S do
6: if ∃v ∈ CG : v.tasks ⊆ MT then
7: S := S \ {CG}
8: end if
9: end for

10: S := Exclude_Mandatory_Tasks(S,MT)
11: S := UnifyEquivalent(S)

12: P := {{S.CG1.variants} × . . . × {S.CGn.variants}}
13: mincost := p ∈ P : costs(p.tasks ∪ MT) is minimum
14: return mincost.tasks ∪ MT

Figure 4.18: Extracting the min-cost set of tasks.

4.3 Chapter Summary

In this chapter, we have proposed a set or reasoning mechanisms to detect
modeling errors in a contextual goal model and to manage the derivation
process variants to goal satisfaction. The validation was to discover incon-
sistency in the contexts of each variant and for discovering cases when the
parallel execution of two executable processes in one variant can lead to a
conflict. We have provided reasoning to support the derivation of variants at
design and runtime. For design time, we developed a reasoning that allows
the derivation of variants ensuring a system valid in all considered context
and developed with minimum costs. For runtime derivation, we developed a
reasoning for choosing the variants adoptable in a given context and compli-
ant with user priorities.

81

G1: visitor [v] gets informed
about a piece of art [p] in

museum [m]

G3: [v] gets info
through [m] staff

[s]

T2: prepare
[p] detailed
informationT1: prepare

[p] brief simple
information

or
G2: [v] gets info
via his/her PDA

Visitor
Assista

nce
System

Staff
Assista

nce
System

G4: [p] info suitable to
[v] is prepared G5: [p] info

is presented
to [v]

and

T3: [p] info is
presented to
[v] via video

T4: [v] info is
presented to [v]

interactively

G3: [v] gets info
through [m] staff [s]

G6: [s] is alerted
and

T6: send [s] a
voice command

G9: [s] is alerted
through public call

G8: [s] is alerted
through [s]

or

T7: make a call
through speakers

in [s] room

T5: [s] is alerted
via ringing tone

and SMS

C6C5
C10

C12
C13

C11

SG2: staff is more
comfortable

SG1: visitor
well informed

G7: [s] gives
[p] info to [v]

G11: [s] gives [p]
info to [v] by call

G10: [s] gives [p]
info to [v] in person

T10: make video
call between [s] and

[v]

T11: make voice
call between [s]

and [v]

direct [s] to
[v] place

T8: show
[v] picture

T9: direct
[s] to [v]
place

and

or

+ +

--

+C14

C15

The non-core
variant

The variants
excluding the

non-core variants
The core groups of

variants The cost relations The min-cost core requirements

NV1= {T6, T10}
NV2= {T6, T11}
Both can be
replaced by V2
due to the
implications:
C13 C12 and
the trivial C15
true.

V1= {T1, T3}
V2= {T1, T4}
V3= {T2, T3}
V4= {T2, T4}
V5= {T5, T8, T9}
V6= {T7, T8, T9}

Core1= {V1, V2, V3, V4}
Core2= {V5}
Core3= {V6}

Cost(T1,30), Cost(T2,40), Cost(T3,60),
Cost (T4,80), Cost(T5,25),
Cost(T6,35), Cost(T7,50), Cost
(T8,30), Cost (T9,50),
Cost (T10,50), Cost (T11, 30).

The tasks to develop=
{T1, T4, T5, T7, T8, T9}

Costs= 215

The variants implemented:
 { V2, V5, V6}

Include(T2, T1), Intersect(T3, T4, 40),
Intersect (T3, T5, 20), Intersect(T4, T5,
20), Intersect (T4, T9, 30)
Cost of developing all tasks= 340

Figure 4.19: Example for minimum-cost variants extraction.

82

Chapter 5

Automated Support Tool and
Methodological Process

In this chapter, we develop an automated support tool and a methodological
process to help analysts for constructing and reasoning about contextual goal
models. RE-Context is the tool we developed in order to provide automated
reasoning about contextual goal models. The tool is a prototype: the algo-
rithms proposed in this thesis are fully implemented, but it does not provide
a graphical user interface yet. Moreover, some of the algorithms are naively
implemented; these algorithms can certainly be improved and optimized.
Throughout this chapter we provide a detailed description of RE-Context.
First, we describe its architecture, showing how it integrates with state-of-
the-art reasoning tools. Second, we describe how the algorithms proposed
in this thesis are implemented. Third, we explain the input format that the
tool requires. We finally show a systematic analysis process to capture and
reason about contextual goal models.

5.1 RE-Context: Automated Support Tool

5.1.1 Architecture

We describe here the logical architecture of RE-Context. Figure 5.1 presents
a schema depicting the structure of RE-Context. It’s easy to notice that
RE-Context is not a monolithic program, but it is rather a combined system
that brings together three main components: a Java program, DLV1 and
MathSat42.

1http://www.dbai.tuwien.ac.at/proj/dlv/
2http://mathsat4.disi.unitn.it/

83

Figure 5.1: Logical architecture of RE-Context.

The core part of RE-Context is developed using Java. The Java program
includes many algorithms and exploits the functionalities of the automated
reasoning tools DLV and mathsat in order to carry out its functions. In par-
ticular, the Java code of RE-Context uses two wrappers to effectively interact
with the automated reasoning tools: the DLV-Wrapper3 and a mathsat Java
wrapper provided by the authors of mathsat.

Let’s examine more in detail how DLV and mathsat are used in RE-
Context:

• DLV is used for variants generation and to compute the minimum de-
velopment cost. During variants generation DLV computes not only
the set of tasks and contexts for every variant, but also contribution to
soft-goals and conflicts regarding the usage of resources.

• MathSat is used to perform checks concerning context, namely to iden-
tify inconsistent variant (if the context formula is inconsistent), to de-
tect equivalent contexts, and to verify implications between contexts.

5.1.2 Functionality

In this section, we describe the functionalities that RE-Context provides.
Figure 5.2 summarizes the main steps that RE-Context carries out; the dia-
gram shows the activities connected by input/output flows.

Variants generation. The first step that should be carried out is the
generation of the variants starting from a contextual goal model. In order
to carry out this activity, RE-Context interacts with both mathsat and dlv.
First, the mathsat environment should be initialized; initialization takes place
just once. Then, the mathsat rules that represent relations between contexts
—e.g. implications, equivalences, negated implications—are loaded from file
ass.msat. Then, the contextual goal model and a set of auxiliary rules are

3http://www.mat.unical.it/wrapper/index.html

84

Figure 5.2: The algorithms in RE-Context linked by input/output flows.

loaded from two files in the DLV format: vargen.dlv and rules.dlv. The
rules are used to identify conflicts, to propagate information about sequenc-
ing of goals top-down, to compute contribution to soft-goals. After these
loading activities are completed, DLV is executed in order to derive all ex-
isting variants. DLV outputs all the models that satisfy a set of rules and
constraints; here, every model is a variant. DLV is executed from Java using
the DLV-Wrapper interface: this allows for iterating through the models in
a simple way. Every model is examined and the information describing the
variant is stored to memory; the retrieved information consists of the tasks,
the contexts, the conflicts, and the contributions.

Variants sorting. The generated variants are sorted based on the num-
ber of tasks (from the smallest to the biggest). The sorting is executed using
Java sorting operations on collections. This step is performed in order to
boost the performance of the tool when dealing with inconsistent variants.
Indeed, if a smaller variant is inconsistent, then also a superset of that vari-
ant (i.e., a variant including all the tasks of the inconsistent variant) will
be inconsistent. In such a way, it is possible to mark as inconsistent all
the supersets of that variant. The ordering is necessary to maximize the
effectiveness of this strategy. Suppose we have three variants (let’s consider
only tasks here) V1 = {t1, t2, t3, t4}, V2 = {t1, t2, t3}, V3 = {t1, t2} and there
is an inconsistency V3 context. Without ordering, this would require three
consistency checks; with ordering, one consistency check would be sufficient.

85

Inconsistent variants removal. This activity identifies the inconsis-
tent variants and removes them from the set of adoptable goal model variants.
Variants removal is not mandatory: as shown earlier in the thesis, inconsis-
tencies might be fixed by the analyst and inconsistency check repeated. The
inconsistency of one variant is verified via mathsat: all the contexts of the
considered variant are put together as a conjunction and the SAT solver is
run to verify if there is a model (truth assignment) for that formula. If there
is a model, then the variant is consistent; otherwise, it is inconsistent. The
set of variants is analyzed iteratively and exploiting the principle described
before: if an inconsistency is found, all the following variants are compared
to the current one on the basis of the tasks that compose the variant. If a
variant is a superset of an inconsistent variant, it is marked as inconsistent
as well. While iterating through the set, if a variant is already marked as
inconsistent it needn’t be examined using mathsat. During the inconsistency
identification process, RE-Context can be configured to discover the kind
of context the inconsistency occurs in. After inconsistency identification is
completed, inconsistent variants are removed from the set of variants.

Ranking variants. An activity that is performed after removing in-
consistent variants is to compute the variant having the highest priority,
i.e., the best contribution to the prioritized soft-goals. This activity is quite
simple and consists of a sequential scanning of all the consistent variants.
The auxiliary DLV rules allow for the computation of the contribution to a
single soft-goal; RE-Context exploits Java to compute the weighted sum of
the contributions and compare the value for the current variant against the
maximum value obtained so far.

Core groups identification. Starting from the consistent set of variants
it is possible to define the core groups of variants. The algorithm implemented
in RE-Context is based on three sequential steps.

1. syntactic grouping consists of scanning all the variants and grouping
them into sets according to their syntactic equivalence. By syntactic
equivalence we mean that their contexts are exactly the same, namely
the two sets of contexts contain the same elements. This first iteration
allows for a first grouping without the execution of external tools (which
are slower).

2. semantic grouping is intended to reduce the number of core groups
by performing equivalence checks using mathsat. The core groups ob-
tained after syntactic grouping are compared one to another by check-
ing the equivalence of their first variants. For instance, let context(CG1)
= {c1, c2} and context(CG2) = {c1, c3}; let the contexts be c1 =

86

a ∧ b, c2 = b ∧ c, c3 = d; let the following relation between variable
hold (b ∧ c) ↔ d. This assumed relation can be absolute or depen-
dent on the operational environment of the system as we have already
explained in Chapter 4. The context of core group CG1 and CG2 are
not syntactically equivalent, but they are equivalent under the assumed
relations.

3. non-core variants removal is in charge of removing those core groups
that are non-core ones. This check is performed by RE-Context by
invoking mathsat. The algorithm works by iterating through all core
groups and checking the implications between their context to filter
those that can be replaced by others in all considered contexts.

Core conflicts identification. In our framework, conflicts are defined
with respect to the usage of resources. The conflicts of each individual variant
have already been computed by DLV during variants generation. Therefore,
the identification of core conflicts reduces to the analysis of every core group
and check if all variants in that core group have a conflict. If it is the case,
that core group is conflictual. If there is at least one conflict-free variant,
that core group is not conflictual.

Minimal development cost computation. The purpose of this activ-
ity is to find a set of tasks that allows for a system operable in all analyzed
context and developed with minimum costs. This corresponds to implement-
ing, at least, one variant from each core group; so, the naive algorithm tries all
combinations of variants. Clearly, this approach is very expensive computa-
tionally. RE-Context applies some optimization techniques that significantly
improve the performance in practice. The algorithm proceeds in three steps:

1. all core groups are sequentially scanned in order to define shared tasks.
Shared tasks are those tasks that are mandatory for a core group,
regardless of the chosen variant. For instance, if CG1 = {V1, V2},
V1 = {t1, t2, t3, t4}, and V2 = {t1, t3, t5, t6}, the set of shared tasks for
this core set is {t1, t3}. The shared tasks of all core groups are added
to a set which represents the set of tasks that have to be necessarily
implemented.

2. All the core groups are scanned and, for every variant, the overall shared
tasks are removed. If there is a variant with zero tasks remained then
the core group is removed from further processing.

3. The naive algorithm (pick one variant per core set) is now applied
to the reduced set of core groups. In theory, the computation might

87

be still very hard; in practice, we have noticed that the preprocessing
dramatically speeds up the process. We exploit DLV to generate all
possible combinations of the variants in the remained core groups.

5.1.3 Input Format

We describe here the input format for RE-Context, which allows for spec-
ifying a contextual goal model, information about task development costs
and resource conflicts, contexts and relations between contexts. The input
format expresses this information in a very low-level; nevertheless it is not
difficult to generate a graphical editor and implement a translation engine.

The first chunk of input information to be encoded regards the contex-
tual goal model. We provide below the guidelines that show how different
constructs can be mapped to the RE-Context format. The input format for
contextual goal models is DLV based, therefore it consist of a set of inference
rules of the type head :- tail. Given that we exploit disjunctive datalog, head
is a disjunction of predicates and atoms separated by the “v” symbol, whereas
tail is a conjunction of predicates and atoms separated by the “,” symbol.

Goal activation ach(g1) :- c(1).

Goal activation is represented by a single rule which says that, if the
context is true, then the goal should be achieved. When executing variants
generation, this rule requires also to assume that the activation context is
true. Anyway, an activation context set to false would produce no variant at
all.

And-
decomposition

achFrom(g2,g1) :- ach(g1).
achFrom(g3,g1) v -c(1,s) :-
ach(g1).
c(1,s) :- achFrom(g3,g1).
achFrom(g4,g1) v -c(2,s) :-
ach(g1).
c(2,s) :- achFrom(g4,g1).

Contextual AND-decomposition is mapped to more than one rule. In
particular, a non-contextual branch requires one rule, whereas a contextual
branch requires two rules. In the example, the non-contextual branch from
g1 to g2 is represented by the first rule, which states that if g1 should be
achieved, then g2 also has to be achieved. The binary predicate achFrom
replaces the unary predicate ach to keep track of the goal tree structure.
The contextual branch from g1 to g3 is represented by the second and third
rules. The second rule states that, if g1 has to be achieved, then either g3

88

must be achieved or the activation context c1 must be false. The third rule
says that if g3 must be achieved, then the activation context c1 must be true.

Or-
decomposition

achFrom(g2,g1) v
achFrom(g3,g1) v
achFrom(g4,g1) :- ach(g1).
c(1,r) :- achFrom(g3,g1).
c(2,r) :- achFrom(g4,g1).

Contextual OR-decomposition is modeled via two types of rules. One
rule deals with non-contextual decomposition: the first rule in the example
states that, if g1 must be achieved, then one among g2, g3 and g4 must
be achieved. Then, every contextual branch needs a clause saying that the
associated context should be true. The second rule says that if g3 has to be
achieved, then the required context c1 must be true.

Means-end
todoFrom(t1,g1) v tod-
oFrom(t2,g1) :- ach(g1).
c(1,r) :- todoFrom(t2,g1).

Means-end decomposition is represented similarly to OR-decomposition.
The only difference is the usage of the predicate todoFrom instead of achFrom.
The reason for using this predicate is that RE-Context deals with tasks while
performing the forthcoming reasoning, therefore the tool can filter the pred-
icates of interest and get rid of auxiliary ones.

Dependency
c(1,s) :- ach(g1).
achFrom(g2,g1) :- ach(g1).
achFrom(g3,g1) :- ach(g1).

Contextual dependencies from one actor to another one is modeled in a
simple way. Indeed, contextual dependencies become a further constraint.
In the example, the first rule states that if g1 has to be achieved, then the
activation context c1 must be true. The delegated goal is then decomposed
as a non-delegated goal.

Contribution

softgoal(sg1,4).
contrib(t1,sg1,pos) :- c(1,r).
contrib(t1,sg1,neg) :- c(2,r).
contrib(t2,sg1,pos).

The modeling of contribution to soft-goals requires additional information

89

about soft-goals. Indeed, every soft-goal should be given a weight from 1 to
5, where 5 means that the soft-goal is very important. The first rule in
the example says that sg1 has priority 4. Contextual contribution is shown
in the second and third rule: the contribution of t1 to sg1 is positive if
context c1 holds; the same contribution is negative if c2 holds. Non-contextual
contribution is represented as in the fourth rule, saying that the contribution
from t2 to sg1 is always positive.

Sequentiality
and parallelism

sequence(g2,g3).
parallel(g3,g4).

Sequentiality and parallelism constraints between goals and tasks are rep-
resented in the input format of RE-Context using two binary predicates: se-
quence and parallel, respectively. In the example, the first rule says that g2

and g3 should be executed sequentially; more precisely, that g2 should precede
g3. The second rule says that g3 and g4 are to be executed in parallel.

A second piece of information that is represented using datalog rules is
that concerning the usage of resources. RE-Context supports two main types
of information concerning resource usage:

1. Exclusive possession: this kind of information permits to express when
a certain resource cannot be used by more than one task in parallel.
For example, the following code says that resource x cannot be used
simultaneously and that tasks t1 and t2 require it. If t1 and t2 are in
parallel, then this will produce a conflict; otherwise there will be no
conflict.

resource(x).
requires(t1,x).
requires(t2,x).
exclusiveUsage(x).

2. Conflicting changes: this conflict arises when two tasks change the
status of a resource to different values in parallel. In the following
example, resource x is being changed by parallel tasks t1 and t2. The
first task changes its value to v1, the second task to v2.

resource(x).
changes(t1,x,v1).
changes(t2,x,v2).
parallel(t1,t2).

90

actuationConflict(R,G1,G2) :- resource(R), changes(G1,R,V1), changes(G2,R,V2),
G1!=G2, V1!=V2, todo(G1), todo(G2), not sequence(G1,G2), not sequence(G2,G1).
exclusivePossession(R,G1,G2) :- resource(R), exclusiveUsage(R), requires(G1,R),
requires(G2,R), G1!=G2, todo(G1), todo(G2), not sequence(G1,G2), not se-
quence(G2,G1).
parallel(A,B) :- parallel(B,A).
parallel(A,C) :- parallel(A,B), parallel(B,C).
sequence(A,C) :- sequence(A,B), sequence(B,C).
sequence(A,B) :- achFrom(A,C), achFrom(B,D), sequence(C,D), not parallel(A,B).
sequence(A,B) :- todoFrom(A,C), todoFrom(B,D), sequence(C,D), not parallel(A,B).
sequence(A,B) :- achFrom(A,C), todoFrom(B,D), sequence(C,D), not parallel(A,B).
sequence(A,B) :- todoFrom(A,C), achFrom(B,D), sequence(C,D), not parallel(A,B).
contribTo(S,V,pos) :- softgoal(S,Priority), � int(Priority), Priority!=0, �int(V),
�int(V1), V1=�countTask : contrib(Task,S1,pos), todo(Task), S1=S, �int(V2),
V2=�countGoal : contrib(Goal,S2,pos), ach(Goal), S2=S, �int(V3), V3=V1+V2,
V=V3*Priority.
contribTo(S,V,neg) :- softgoal(S,Priority), �int(Priority), Priority!=0, �int(V),
�int(V1), V1=�countTask : contrib(Task,S1,neg), todo(Task), S1=S, �int(V2),
V2=�countGoal : contrib(Goal,S2,neg), ach(Goal), S2=S, �int(V3), V3=V1+V2,
V=V3*Priority.
ach(G) :- achFrom(G,_).
todo(T) :- todoFrom(T,_).

Table 5.1: Auxiliary datalog rules that preprocess the RE-Context input.

A third chunk of information represented using datalog is that expressing
development costs. The cost of a task depends on the development resources
that are needed to implement that task: humans, computers, rooms, soft-
ware tools, and so on. Some development resources are in common to more
than one task; therefore, the input for RE-Context is based on the cost of
development resources. In the example below, task t1 is split into the devel-
opment resources a and b; task t2 is split into b and c. Hence, the two tasks
share the development resource b. The cost of a is 10, the cost of b is 20, the
cost of c is 30.

todoGroup(a) :- todo(t1).
todoGroup(b) :- todo(t1).
todoGroup(b) :- todo(t2).
todoGroup(c) :- todo(t2).
cost(a,10) :- todoGroup(a).
cost(b,20) :- todoGroup(b).
cost(c,30) :- todoGroup(c).

A number of auxiliary datalog predicates is necessary to preprocess the
input before it is examined by RE-Context. These auxiliary rules are shown

91

in Table 5.1 and described below:

• The first two rules are ternary predicates that indicate actuation and
exclusive possession conflicts, respectively. The rules are expressed in
such a way that the requires and changes predicates are considered only
if the corresponding task should be done.

• The second set of rules propagates top-down information concerning
parallelism and sequentiality: (i) parallelism is symmetric; (ii) paral-
lelism is transitive; (iii) sequentiality is transitive; (iv) two goals A and
B are sequential if their parent goals are sequential and the there is
no explicit parallelism between A and B; the following three rules are
variants of the previous one where A and B can be any combination of
tasks and goals.

• The third set of rules derives the positive and negative contribution to
a softgoal for a given variant. We need two predicates since DLV does
not support negative values.

• The last set of rules defines the unary predicates ach and todo from
the binary predicates achFrom and todoFrom, respectively. The unary
predicates are used in the other sets of rules and by RE-Context.

Apart from all the information expressed using the datalog syntax, there
is some input information which is expressed using the mathsat syntax. First,
RE-Context needs a file that contains the mapping from the symbolic context
names (the c predicate) in Datalog to the actual context definition in terms
of formulas over facts. For instance, the following code says that context c0

is defined as the formula a ∧ b; c1 as c ∧ (d ∨ e); c2 as d ∧ e.

c(0) FORMULA a AND b
c(1) FORMULA c AND (d OR e)
c(2) FORMULA d AND e

The last piece of input information for RE-Context is a mathsat file which
defines relations between context facts. The following example defines four
facts (a, b, c, d) and defines a formula with two relations between such facts:
a → ¬d, c → d.

VAR a,b,c,d: BOOLEAN FORMULA
(a → NOT d) AND
(c → d)

92

5.2 Methodological Process

In this section, we explain a methodological process to follow for constructing
a contextual goal model for a system operating in and reflecting multiple
contexts. The overall picture is depicted in the activity diagram in Figure 5.3.
Four macro-activities are identified: goal analysis, context analysis, reasoning
about contextual goal models, and identifying monitoring requirements.

Context Analysis

Goal
Model

Contextual variation
points identification Context refinementGoal Analysis Contexts relations

specification

[Goal model
refinement needed]

Reasoning about Contextual Goal Models

Context consistency Conflicts detection Contextual goal
model validation

[Inconsistencies
or conflicts]

Monitoring Requirements Identification

Data to collect
identification

Monitoring
equipment

identification

Figure 5.3: Analysis process for contextual goal modeling

1. Goal analysis: in this activity, high level goals are defined and ana-
lyzed. Goals can be iteratively identified through scenarios [60]. More-
over, an intentional variability taxonomy [68] can guide variability ac-
quisition when refining a goal/task to discover alternative ways of reach-
ing/executing it. Each refinement step is followed by a context analysis.

2. Context analysis: this activity weaves goal modeling with context
aiming to link the requirements, at the goal level, to the context in
which they are activated and adoptable. Context analysis activity is
composed of:

93

(a) Contextual variation points identification: for each variation point
at the goal model, a decision has to be taken on whether context
plays a role in the selection of variants at that point. In other
words, the analyst has to decide if a variation point is contex-
tual or context independent. When a contextual variation point
is identified, a high level description of the correspondent con-
text has to be made. As a result of this activity, the contextual
variation points at the goal model are annotated as shown in Fig-
ures 4.1, 4.14 and the contexts associated with them are described
as shown in Tables 4.1, 4.2.

(b) Context refinement : in this activity, the contexts at each contex-
tual variation point are analyzed. The analysis is for identifying
the way the contexts can be verified through. In other words, it
is to define the facts of the environment the system has to cap-
ture and the way these facts are composed to judge if an analyzed
context holds, as shown in the example of Figure 4.2. Moreover,
in this activity, the analyst has to deal with different views of
different stakeholders about the analyzed contexts. Stakeholder
may define context differently, and even in contradictory ways. In
case of inconsistency between stakeholder on context refinement,
the analyst has to look for reconciliation among them through a
consensus session.

(c) Specifying logical relations between contexts: after the refinement
of each context, the logical relations (implications and contradic-
tions) between it and the previously refined contexts need to be
specified. These relations are essential for the forthcoming reason-
ing about contextual goal models. In some cases, defining these
relations at the higher level of context analysis is possible, i.e.
defining that the context C1 at the variation point VP1 is con-
tradicted with C2 at VP2, as we could do in our case study. For
larger contexts, we may need to specify these relations at a more
fine-grained levels such as the facts level. We still do not provide
an automated support for the specification of these relations and
presume that this activity is done manually.

3. Reasoning about contextual goal models: this activity is sup-
ported by our developed automated reasoning tool (RE-Context). The
tool allows reasoning about contextual goal models for different reasons.
It analyzes a contextual goal model in order to detect inconsistency in
contexts specified on it and potential conflicts among its executable

94

processes (tasks). Moreover, the automated reasoning tool allows us to
validate whether the model reflects stakeholders’ requirements. To this
end, this reasoning derives and shows to stakeholders the goal model
variants that reflect a given context and user priorities. Here we detail
the three kind of reasoning done in this activity:

(a) Reasoning about context consistency : this reasoning is to check if
a context can eventually hold. First, it has to be done for the con-
texts defined at each variation point. If a context of this kind is in-
consistent, the analyst must either fix the inconsistency or remove
the context and mark the variation point as context-independent.
The inconsistency of accumulative contexts of goal model variants
are subject to design decisions as we have explained in Chapter 4.
When an inconsistency in this kind of context is discovered, the
tool asks the analyst to decide whether to fix the inconsistency
or accept it and therefore exclude the correspondent goal model
variant. When an inconsistency in one goal model variant is ac-
cepted, the tool (RE-Context) excludes the rest of variants that
include the one being examined and mark their inconsistency as
accepted as well.

(b) Reasoning about conflicts : in order to to enable the automated
discovery of conflicts in a contextual goal model, the analyst has
to enrich the model with further information. This information in-
cludes: (i) the objects in the system environment and the impact
of the execution of goal model tasks on them, and (ii) the se-
quence/parallel operators between goals/tasks in And-decomposi
tions. Adding this information, RE-Context is able to detect con-
flicts and classify them into two categories: Core and Non-Core.
The analyst needs to resolve core conflicts crucially as this kind
of conflicts leads to situations where there is no way to meet some
requirements correctly.

(c) Validating contextual goal models: this reasoning is to ensure that
the contextual goal model reflects stakeholder’ expectation of the
system in different contexts and in compliance with their priories.
To this end, the the analyst can ask stakeholder to give a context
and then show them the correspondent goal model variants. Al-
ternatively, the analyst may ask stakeholder to derive the variant
in a given context and compare it with the one obtained by our
automated analysis. This test might be done for the whole goal
model or parts of it. Moreover, user prioritization might be con-

95

sidered to select between goal model variants when more than one
is adoptable in a given context. User prioritization can be speci-
fied over softgoals as proposed in [92, 62] and as we have shown
in Chapter 4.

The reasoning about contextual goal model can be done iteratively to
facilitate the correction of discovered errors. Whenever a new refine-
ment of goal/context is done, we can start with the above reasoning
techniques. With regards to the reasoning for conflicts, it may be hard
to decide the interaction between goal model variants and the objects in
the system environment until we reach the tasks level. For this reason,
we suggest to analyze parts of the goal model that have high probabil-
ity of being in conflict first. We refine such parts until the tasks level
and then we run the conflict analysis reasoning on them.

4. Identifying monitoring requirements: after context analysis and
reasoning terminate, the analyst can identify the monitoring require-
ments. Monitoring requirements are fundamental to develop a con-
textual MobIS. We identify these requirements in terms of the data
to collect from the system environment and the equipments needed to
collect them.

(a) Identifying the data to collect : by analyzing the facts obtained by
context analysis, the analyst can identify the data needed to verify
them as shown in Fig 3.5, 4.3. We suggest to keep track of the
relation between each facts and the fragment of the data concep-
tual model needed to verify it. This link is important to promote
reusability and modifiability of the contextual goal model. In
case a part of the context refinement is reused/modified, we will
be able to identify which fragments of the data model are to be
reused/modified. Moreover, we have used class diagrams to rep-
resent the data conceptual model in this thesis. Recently, some
other models have been proposed to represent the data to monitor
in context-aware systems, e.g., the models proposed in [50, 56, 48].
The analyst may select one of these models instead of class dia-
grams if needed.

(b) Identifying the monitoring equipments: for systems operating in
and reflecting varying context it might be essential to specify the
equipments to install and to use in order to enable data collection.
This activity is for the specification of equipments needed to cap-
ture the data identified in the previous activity. For example, the

96

analyst needs to specify the kinds of sensors to use, the topology
of sensor distribution, the interval of data sensing, and so on. To
achieve such specification, expertise in new technology is needed.
In Table 4.1, we have given a brief description of the equipments
needed for each of the contexts at the goal model. However, such
specification of equipments becomes more precise after knowing
the data to monitor in the environment, i.e, after the previous
activity.

5.3 Chapter Summary

In this chapter we have described our automated support tool (RE-Context)
and showed an analysis process to construct a contextual goal model. We
have described the architecture and the functionality of our tool and ex-
plained what input it needs to do the target reasoning explained in Chap-
ter 4. We have finally showed the process to capture contextual goal model
and reason about them using the automated support too. The analysis pro-
cess is iterative to allow the analysts for fixing modeling errors and validating
the model. We also explained the models that should be the result of each
of the discussed activities in our proposed process.

97

Chapter 6

Evaluation

In this chapter, we apply our modeling and reasoning framework on two
scenarios of systems operating in and reflecting varying contexts. The first
one concerns a smart home for people with dementia problems and the second
concerns a museum-guide to assist visitors inside a museum. To this end, we
have organized two lab sessions and invited a group of requirements analysts
to apply our framework. The analysts have modeled the requirements of
the two systems, smart home and museum-guide, using our contextual goal
model. We show the outcome of the sessions in terms of the developed models
developed and observation and feedback made by communicating with the
participating analysts. We also report the outcome of applying our reasoning
mechanisms on the developed models. We finally show the performance of
our reasoning algorithms with respect the size of goal models and discuss its
scalability.

6.1 Smart Home System

We consider a smart home system designed to support the life of people with
dementia problems located at the campus of a health care institute. This
system is a variation of the system described in [105] and studied as a part
of the Serenity project1. The system is designed to assist the daily life of
patients and provide continuous care about them ensuring their safety and
comfort. To this end, smart home has to act in response to the context and
may need to communicate with different parties: the caregivers in the health
care institute, the police center, and the Medical Emergency Rescue Center
(MERC). The smart home is mainly responsible of fulfilling the following
categories of requirements on behalf of a caregiver:

1http://www.serenity-project.org/

98

• Ensuring healthy environment inside home: patients with de-
mentia suffer from severe problems with memory and thinking. As a
consequence of these problems, a patient with dementia may forget to
keep the home environment healthy. For example, he may forget to
refresh the air regularly, adjust the temperature, turn the oven off after
using it, turn the electricity off when getting out, and so on. Smart
home has to act autonomously on behalf of a caregiver to keep the
environment of the home healthy.

• Managing anxiety attacks: people with dementia may suffer also
from sudden anxiety or panic attacks and they may behave in an un-
usual way. A caregiver has to calm the patient down and prevent him
of hurting himself. Smart home has to monitor the patient for anxiety
attack symptoms and act on behalf of a caregiver when such symptoms
become apparent. If the symptoms indicate a moderate anxiety, then
the smart home may just try to make the patient aware of himself and
his movements. In case of severe anxiety, smart home has to prevent
patient of getting out to protect him. It also has to calm the patient
down by play a relaxation music and adjust the light level and colors
to create a peaceful environment for the patient. At the same time,
smart home has to call a caregiver to come and treat the patient.

• Communicating with caregivers: smart home is required to notify
and guide the caregiver to the patient’s place when needed. The way
used to notify a caregiver and to guide him to a patient’s place has
to consider the context of both the caregiver and the patient. Smart
home has also to provide a caregiver with real time information about
the patient’s situation while he is on the way to the patient’s place.
The information that the caregiver should get, while walking toward a
patient’s place, has also to include the medical profile of the patient.
This will help caregivers to estimate the severity of the problem and
ask for additional help if needed.

• Familiarizing patients with coming guests: people with dementia
may get agitated when they have guests and meet people even if they
already know them. A caregiver may act to avoid such agitation by
introducing the guests to patients before they arrive. A smart home
will be responsible of this objective, i.e., it has to familiarize patients
with guests coming to visit them after some time. One way to do
such familiarization could be by showing a video or pictures about the
guests coming or about some previous meeting the patients had with
them sometime ago.

99

• Protecting home against potential robbers: as for any home,
protecting against robbery is an objective that the smart home could
be responsible of. Smart home has to give illusion that the home is
lived in when the patient is out. This would help to prevent a robber
of getting inside home. From the other hand, smart home has to act
against any potential robber when he is inside the home area. Smart
home has to monitor always the home area and figure out if a person
is there in a suspicious way. If such occurs, smart home has to call and
communicate with police.

• Communicating with police: smart home, when needed, has to
communicate with and help police to protect home for different reasons
such as robbery. Smart home has to notify police and enable police
men of monitoring the home remotely. It may turn light and security
cameras on and give control to police men. It also has to check when
police men arrive home and allow them to enter quickly.

• Entertaining patients and involving them in social activities:
patients may feel lonely and need to be entertained and socialized. A
caregiver may do this by arranging a meeting between the patient and
his relatives regularly. Alternatively, the caregiver may accompany the
patient to social events organized at the health care institute or in the
city. A caregiver may entertain patients by several ways such as playing
films or selecting a TV channel showing a program of interest to the
patient. Smart home has to do the activities a human caregiver may
make to socialize and entertain a patient.

• Rescuing patients in emergency cases: in case of severe health
problems, such as falling down suddenly, a caregiver may call the
MERC to come and rescue the patient. MERC has to be notified
and guided to the patient’s home. In the mean time, MERC has to
be informed about the current situation of the patient and his medical
record. Upon arrival, a caregiver will open external doors to MERC
and facilitate their entering to the patient’s home. A smart home will
act on behalf of a caregiver reflecting his objectives and rationale in
case of severe health problems with patients.

Context plays a major role in deciding what requirements a caregiver has
to meet and the way through which he may meet them. A caregiver that is
assigned to a patient with dementia will keep watching the relevant contexts
and take decision based on them. For example, a caregiver will try to socialize
a patient when a context like “the patient is feeling bored and a long time

100

passed since his last social activity” holds. Caregiver will decide the right
way to socialize a patient taking context into account. He may suggest the
patient to go to a social event in the city with a friend of him if a context like
“patient used to like going with a friend to such kind of social events and the
event is not crowded” holds, as people with dementia get agitated of crowded
places. The caregiver may, alternatively, organize the patient’s attendance of
a social event held at the institute if a context like “there is a social event in
the next few days that matches with the patient’s interest and profile” holds.
The smart home has to reflect this rationale of a caregiver when socializing
a patient.

6.1.1 Contextual Goal Model of Smart Home

To apply our modeling and reasoning framework, we have invited a group
of five requirements analysts to participate in an evaluation session. All the
participants have good experience in goal modeling and ubiquitous comput-
ing systems. We explained to them our framework including the conceptual
model and the reasoning techniques. A domain expert with a practical ex-
perience in a smart-home owned by ITEA2 has explained the scenario to all
participants and answered their questions along the session. The participants
were asked to model the smart home requirements using our contextual goal
model. In this section, we outline the models developed collaboratively dur-
ing the session, while the results of the reasoning techniques and the feedback
gotten form this experiment will be reported in Section. 6.3.

Fig. 6.1, represents the contextual goal model of the Smart Home for
patient with dementia problems. The model projects the system as a set
of interdependent actors that together establish the main goal of the sys-
tem about patients care giving. The description of contexts specified at this
model is listed in Fig. 6.2. The last figure also contains the logical rela-
tions between these contexts. These logical relations will be used for the
forthcoming reasoning.

The main actors of the contextual goal model of smart home system are
the following:

• Caregiving system actor: this system actor is responsible for the
support of daily life of patients when they are at home. It gives care
to them ensuring their safety and comfort. It maintains a healthy
environment at home, and we take the goal “fresh air inside home” as
an example of this category of goals. It also manages anxiety attacks

2ITEA is the Social Housing Agency of the Province of Trento. www.itea.tn.it

101

G2: enforce routine exit
procedure

G7: patient is
alerted G8: patient is

prevented from
exiting

G13:: calm
the patient

1
and

or

G4: home is
protected against

robbery

and

G9: give Illusion
of being lived in

G10: act against
potential robbery

T2: switch on lights
at patient location

T1: alert via
voice

message

T3: lock external
doors and windows

G11: actuate the
home

G12: caregiver
comes to care the
patient for anxiety

T5: turn on
calm music

T8: turn on/off
light iteratively

enable police to
see home

G14: prevent robber
from entering G15: assistance is

given to protect
home

T9: lock all doors
and windows

and

and

T28: phone
police

T29: turn all
lights on

and

T30: turn on and send
security cameras stream to

police

G1: home is actuated
for safety of patient

G3: Temperature
to be managed

2

T6: open
windows

T7: turn on
air ventilator

7
5

10
9

T4: give warm
light color

make
relaxation

effects
or

6

23

SG1:patient
privacy

SG2: energy
spent wisely

+

+

+

11

--

8

7

Care giving
System

G0: the patient is
cared for

G1: home is
actuated for safety

of patient
G2: rescue

patient in case of
medical alert

Health
Care

Institute
system

G2: rescue patient in
case of medical alert

G31: medical centre
is notified G33: rescue team

is supported while
arriving home

T36:
emergency

rescue called

and
G34: detailed
info presented

in-house

show patient
relevant info on

TV screen

T38: text
description

T37: snapshots of
the patient before

falling down

MERC
Support
System

G32: MERC team finds
ambulance to comeand

G5: patient is
entertained

G6: patient is reminded
of someone coming

G5: patient is
entertained

G6: patient is reminded
of someone coming

G18: provide
entertainment
inside home G19: involve

patient in social
event

or

T20: call
caregiver by

phone

G22: nnotify
caregiver

T21: call caregiver
by public call

19 20

SG3: less
noise

--+

G12: caregiver comes to care
the patient for anxiety

G28: police
knows about
the situation

G24: direct caregiver to
patient home

T23: trace
and direct
via audioT22: give

the address
and map

G25: caregiver knows about the
patient situation while going there

Police
Support
SystemG15: assistance is

given to protect
home

G30: police is
supported to enter the

home
G29: police can

act to protect
home on the way

remote control is
given to police

T31: on
speakers

T32:
electricity

T33:
cameras

and

and

Caregiver
assistance

System

T24: show multiple
snapshots of patient T25: give access

to home cam

G26: knows about the
current situation

G27: knows about the
patient

G16: patient
attention is drawn

G17: some info
about the guest is

shown

T10: speaker
message

T12: on TV
screen

T11: headphone
message T13: on PC

slideshow

G20: social
event with a

friend
G21: institute

social meetings

inform friend to
arrange

T16: post
letter T17: email

and

or

inform institute staff
about the patient need

T18: inform
caregiver by

email T19: email event
administrative to
count patient in

and

show
entertaining film

T43: TV
program

T14: login institute
film directory

T15: show film
on home TV

and

or

and

and

3
4

13 1412

15
16 17

18

21
22

T40:
unlock All

doors

T39: do RFID
authentication

open doors for
MERC upon

arrival
and

T35: unlock all
doors and
windows

T34: do RFID
authentication

open doors for
police

and

25

24

MERC

medical info provided
on the way

T41: show video
for the moment

before falling down

T42: show
patient medical

record

andor

G23: caregiver is supported
while going patient home

and

...

...

0

T26: SMS basic
info

T27: tell
detailed info

via audio

SG4:
comfortable

SG5:
informative

-- +

--
+

Figure 6.1: A contextual goal model for Smart Home.

both moderate and sever ones. This last goal may require a caregiver
to come at home. To this end, this actor may depend on another
system actor “caregiver assistance system” to reach the goal “caregiver

102

Context Description Logical Relations
 Home is lived in and the patient is expected to have some dementia

problems and there is no awaken caregiver or healthy relative at home.

 Patient is anxious and he is inside home
 Humidity level in the house is too high or home windows and doors

have not been opened for long time.

 Patient is feeling bored and long time passed without any
entertainment activity and he is inside home.

 There is somebody to visit the patient and the patient usually gets
anxious when meeting people suddenly.

 The patient dementia disease is not in an advanced stage and he is
moderately anxious.

 The patient suffers from an advanced dementia or he seems to be
extremely anxious

 It is sunny and not very windy day
 The patient is outside home.

 The patient is outside home since long time and it is night time. ¬ (v 3 v v)

 A person is trying to get into the yard in a suspicious way
 The light level at the patient location is too low or too high.
 The patient puts the headphones on.
 Patient is in the living room or in a place where he/she can notice if the

TV is On.

 Patient is working on the PC or in a place where he/she can notice if
something is being shown on PC.

 A TV program that can be interesting to patient is being shown on some
supported channel.

 The patient would like to attend a forthcoming event with a friend.
 There is a social event in the institute that can be of interest to patient.
 Friend has provided an email address and is checking his email regularly.
 The phone is free and the caregiver is not using his/her phone for a call.
 It is not night time.
 Caregiver is familiar with the institute campus or knows where the

patient home well.

 Caregiver rarely reached patient home or a home close to it and not
familiar with institute campus yet.

 The lights are off.
 The patient health turns bad and s/he has fallen down.
 The MERC is reachable and online.

Figure 6.2: The descriptions of contexts specified at Fig. 6.1 and some logical
relations between them.

comes to treat the patient for anxiety”. This system actor also acts on
behalf of a caregiver to protect home from robbery. It gives illusion
that the home is lived in to confuse potential robbers and acts when
a robber comes inside the home area. A part of the actions, that
this actor does in the last context, is the communication with police.
This actor depends on another actor that is “police support system”
to reach the goal “assistance comes to protect the home”. Finally, this
actor is responsible of socializing the patient, entertaining him, and
familiarizing him with guests coming after short time.

103

• Caregiver assistance system actor: this system actor is responsi-
ble of communicating with and assisting caregiver to reach a patient’s
home. To this end, this actor notifies the caregiver in a context-
dependent manner. For example, it may use the public speakers of
the institute in the context “it is not late in the night”, or by phoning
him in the context “the home phone is free and the caregiver is not
calling using his phone”. It also guides the caregiver to a patient home
in context-dependent way. If the caregiver is familiar with the campus
and the patient, this actor will just give the address, otherwise it will
trace and direct the caregiver step by step until arrival. This actor is
also responsible of providing a caregiver, while coming to a patient’s
place, with real time information about the patient’s situation and with
his profile. This information is to save the time of a caregiver and help
him to take better decisions.

• Police support system actor: this system actor is responsible of
communicating and assisting police to come to a patient’s home when
needed. For example, protecting the home against robbery or some
other emergency situations such as fire. The system has to inform police
about the situation by calling them and turning the home lights and
cameras on to enable police men of checking the situation remotely. The
actor has to give control on electricity, cameras, and speakers to police
in order to remotely act and protect home while coming. Moreover,
this actor will authenticate police men when they arrive and let them
enter to home to accomplish their task.

• MERC support system actor: this system actor is to communicate
and facilitate the task of MERC for rescuing patients who got a severe
health problems. This actor has to inform and guide MERC to patient’s
place. It also has to provide information to them while coming and
while they are inside home. This information will be helpful to better
understand the health problem of the patient and to act in a timely
fashion.

The contextual goal model captures also the quality of goal model variants
through their contributions to softgoals. For example, from the perspective
of a quality measure such as “less noisy institute”, calling caregiver by phone
is assessed positively while calling him by speakers is assessed negatively.
Some of these contributions are not always absolute but can be contextual.
For example, opening the windows to refresh the air inside home is assessed
positively from the perspective of the quality measure “patient privacy” when
a context like “patient is outside home” holds. The value of this contextual

104

contribution is computed at runtime and the system computes it based on
monitoring the current location of the patient.

An example of the context analysis that has been done when developing
the contextual goal model of smart home is shown in Fig. 6.3. It concerns the
context φ16=“patient would like to attend a forthcoming social event with a
friend”. Obviously, this context is not monitorable as it is but the system
may derive it from some facts visible in the environment. The system may
check if the patient is interested in the friend and the event and if patient
would like to attend the event together with that friend. Each of these
subcontexts need also further analysis to reach ways to verify them. For
example, patient could be interested in a friend if he often reviews pictures
and videos of himself with that friend, reviews that friend’s social network
profile, or exchanges emails and SMSs with him. All of these information
can be monitored by the system and they can give evidence to the context
analyzed.

[p] and [f] like to see each
other in their own occasions

In [f] occasions [p] & [f] accompany
each other usually in
institute occasions

[p] & [f] attends
[o3] often

Institute event
[o3] in the next

days
[f] videos

[f] pictures

exchanged
emails with [f]

[f] social
network profile

patient [p] would like to attend a
forthcoming event with a friend [f]

16

[p] likes to meet [f] in a
forthcoming occasion[p] is interested in [f]

[p] is trying to communicate
with [f]

[p] is reviewing often [f]
related information

[p] sends
emails to [f] [p] sends

SMS to [f]

[p] and [f] usually like to meet in a
public occasion

[p] occasion [o1] is in
the next few days

[p] usually invites
[f] to [o1]

[f] attends [p]
own occasions

often

[p] attends [f]
own occasions

often

[f] usually
invites [p] to

[o2]

[f] occasion [o2] is
in the next few

days

In [p] occasions

Figure 6.3: A context analysis example from Smart Home (ϕ16)

By analyzing the leaf facts of the context analysis shown in Fig. 6.3, we
could elicit the conceptual data model shown in Fig. 6.4. The truth values
of facts are computed based on these data. For example, the fact “patient
sends emails to a friend regularly” is computed, mainly, based on the data of
the class “Exchanged_Emails” that the system updates whenever a patient

105

writes an email. The process of verifying the root context ϕ16, is based on
collecting the data shown Fig. 6.4. The system has to collect such data and
verify the leaf facts and propagate the computed truth values in a bottom-up
way to judge if the analyzed context holds.

Patient
Friend

+blog
+pics_folder
+videos_folder
+email_address
+mobile_phone_no

Friend_Occasion

+date

Patient_Occasion

+date
organized

invitees

organized

attendants

Public_Occasion

+date

accomompanied

attendants

inviteesSent_SMS

+destanation_phone_no

Exchanged_Emails

+destination adress
+date

Opened_Folders

+folder_name

Figure 6.4: Data elicited by context analysis shown in Fig. 6.3

To analyze the contextual goal model for conflicts occurring among its
tasks, we need to enrich it with two more other information that are (i)
the parallelism and sequence operators between its nodes, and (ii) the influ-
ence of tasks on the home objects as we have explained in Chapter 4. In
Fig. 6.5, we present the contextual goal model of smart home enriched with
parallelism and sequence operators. The parallelism operator is graphically
represented as (‖) and the sequence operator as (;). A top-down propagation
of these operators will decide if two leaf tasks need to execute in parallel or
in sequence. The specification of these operators at the higher levels of goal
model hierarchy helps us to avoid the specification directly at the tasks level
which is, generally, more hard and time consuming job.

With regards to the specification of parallelism and sequence operators,
we remark here that the operators may cross-cut several decompositions and
they are not necessarily specifiable directly at the subgoals (subtasks) of a
single AND-decomposition. In other words, the specification of these opera-
tors at higher levels may not be always possible and we may need to specify
them at more fine-grained levels of the goal model hierarchy. Although, this
will not change our way of formalizing the model, it requires more manual
specification of these operators. We would need more automated support to
reduce the size of input provided manually by analyst. This input is essential
to enable our target reasoning about conflicts.

106

G2: enforce routine exit
procedure

G7: patient is
alerted G8: patient is

prevented from
exiting

G13:: calm
the patient

1 ||

or

G4: home is
protected against

robbery

||

G9: give Illusion
of being lived in

G10: act against
potential robbery

T2: switch on lights
at patient location

T1: alert via
voice

message

T3: lock external
doors and windows

G11: actuate the
home

G12: caregiver
comes to care the
patient for anxiety

T5: turn on
calm music

T8: turn on/off
light iteratively

enable police to
see home

G14: prevent robber
from entering G15: assistance is

given to protect
home

T9: lock all doors
and windows

||

||

T28: phone
police

T29: turn all
lights on

;

T30: turn on and send
security cameras stream to

police

G1: home is actuated
for safety of patient

G3: Temperature
to be managed

2

T6: open
windows

T7: turn on
air ventilator

7
5

10
9

T4: give warm
light color

make
relaxation

effects
or

6

23

SG1:patient
privacy

SG2: energy
spent wisely

+

+

+

11
--

8

7

Care giving
System

G0: the patient is
cared for

G1: home is
actuated for safety

of patient
G2: rescue

patient in case of
medical alert

Health
Care

Institute
system

G2: rescue patient in
case of medical alert

G31: medical centre
is notified G33: rescue team

is supported while
arriving home

T36:
emergency

rescue called

;
G34: detailed
info presented

in-house

show patient
relevant info on

TV screen

T38: text
description

T37: snapshots of
the patient before

falling down

MERC
Support
System

G32: MERC team finds
ambulance to come||

G5: patient is
entertained

G6: patient is reminded
of someone coming

G5: patient is
entertained

G6: patient is reminded
of someone coming

G18: provide
entertainment
inside home G19: involve

patient in social
event

or

T20: call
caregiver by

phone

G22: nnotify
caregiver

T21: call caregiver
by public call

19 20

SG3: less
noise

--+

G12: caregiver comes to care
the patient for anxiety

G28: police
knows about
the situation

G24: direct caregiver to
patient home

T23: trace
and direct
via audioT22: give

the address
and map

G25: caregiver knows about the
patient situation while going there

Police
Support
SystemG15: assistance is

given to protect
home

G30: police is
supported to enter the

home
G29: police can

act to protect
home on the way

remote control is
given to police

T31: on
speakers

T32:
electricity

T33:
cameras

||

;

Caregiver
assistance

System

T24: show multiple
snapshots of patient T25: give access

to home cam

G26: knows about the
current situation

G27: knows about the
patient

G16: patient
attention is drawn

G17: some info
about the guest is

shown

T10: speaker
message

T12: on TV
screen

T11: headphone
message T13: on PC

slideshow

G20: social
event with a

friend
G21: institute

social meetings

inform friend to
arrange

T16: post
letter T17: email

;

or

inform institute staff
about the patient need

T18: inform
caregiver by

email T19: email event
administrative to
count patient in

||

show
entertaining film

T43: TV
program

T14: login institute
film directory

T15: show film
on home TV

;

or

;

;

3
4

13 1412

15
16 17

18

21
22

T40:
unlock All

doors

T39: do RFID
authentication

open doors for
MERC upon

arrival
;

T35: unlock all
doors and
windows

T34: do RFID
authentication

open doors for
police

;

25

24

MERC

medical info provided
on the way

T41: show video
for the moment

before falling down

T42: show
patient medical

record

;or

G23: caregiver is supported
while going patient home

||

...

...

0

T26: SMS basic
info

T27: tell
detailed info

via audio

SG4:
comfortable

SG5:
informative

-- +

--
+

Figure 6.5: The contextual goal model of Smart Home annotated with parallel
and sequence operators

107

The other information needed to enable the reasoning about conflicts con-
cerns the influence of tasks on the system environment objects. The objects of
patient’s home and the influences of the leaf tasks of the goal model on them
are listed in Fig. 6.6. For example, taking the object “external windows”,
there are four tasks that may change its state. T3= “lock external doors and
windows” will turn the state of the windows into “locked”. The task T6=
“open windows” will change the state of windows into “opened“. The task
T9= “lock all doors and windows” will turn this state into “locked” and the
task T35= “unlock all doors and windows” will turn it into “unlocked”. Obvi-
ously, when T3 and T6 need to execute simultaneously, a conflict manifested
on the object “external windows” will occur.

Environment Object Tasks Vs. State changes /Exclusive possession of objects

Landline phone T20.ex, T28.ex, T36.ex,
External doors T3.locked , T9.locekd, T35.unlocked , T40.unlocked
Internal Doors T9.locekd, T35.unlocked, T40.unlocked
External Windows T3.locked, T6.opened, T9.locekd, T35.unlocked
Internal windows T6.opened, T9.locked, T35.unlocked
TV Screen T12.ex, T15.ex, T41.ex, T42.ex
Home speakers T1.ex, T5.ex, T10.ex
Home lights T2.on, T4.on.warm, T8.on, T8.off , T29.on
Ventilator T7.on
Patient PDA Audio T11.ex
PC Screen T13.ex
Institute speakers T21.ex
Caregiver PDA Audio T27.ex, T23.ex
Caregiver PDA Screen T22.ex, T24.ex, T25.ex, T26.ex.

Figure 6.6: The influence of Smart Home tasks on patient’s home objects.

The changes over the context captured in Fig. 6.6 are those concerning
the physical effect that the tasks of goal model lead to. Capturing this
influence is enough for the kinds of conflicts that we address in this thesis, the
conflicting changes and the exclusive possessing. However, the changes over
the context themselves may be indirect and need further analysis. In other
words, an analysis is needed to verify if a change did occur. For example, if
the purpose of the tasks of showing a movie on the TV of a smart home is to
relax a patient, then a diagnosis of the context “patient feels relaxed” has to
be made. The diagnosis will need a set of visible facts that allow it to judge
if this context holds. We may be able to use our context analysis constructs
to make this analysis. However, this diagnosis and the mechanisms that the
system may use in case of failures in changing the context are out of the
scope of this thesis.

A partial description of the resources needed for developing each leaf task
in the contextual goal model of smart home and the correspondent costs
are shown in Fig. 6.7. This specification is essential for the reasoning that

108

concerns the development of minimum cost system that is operable in all
considered contexts. Tasks may share the same development resources which
means that a task may take benefit from the development of the others to
reduce the total costs. For example, both tasks T42 =“showing medical record
of patient on TV” and T12 = “show guests information on TV” share the
resources of TV and the database management system. They, however, differ
in the acquisition and manipulation of patient and guests data respectively.

We remark that we have considered only the costs of developing a task.
Another interesting cost can be that related to the operation of a task. For
example, the task T12 = “show guests information on TV” requires iterative
job done by human operator to insert the data of new guests during the life
of the system. Although the reasoning we proposed may cope with such new
information, as it is a cost as well, we have not done this in this thesis. The
estimation of operational costs of a task is not simple to decide. Consider, for
instance, the operational costs of the same task T12. One of the dimensions
to consider when specifying it is the time. We may say, this task costs an
employee salary per day. If the system is presumed to live for a number of
years, then we can estimate simply the total operational cost of this task.
However, this is a simplistic approach since systems usually are maintained
over the time and the assumption of certain numbers of year is not often
realistic.

6.2 Museum-guide System

In this section, we study a museum guide context-dependent system. The
description of the system is provided by the Laboratory of Mobile Applica-
tion (LaMA3) at University of Trento. The main objective of the system
is to assist visitors inside museums and ensure the compliance of visitors’
behavior with the rules of the museum they are visiting. To this end, the
system is supposed to act on behalf of a museum staff and take actions in
the right context. The system is intended to communicate with three par-
ties that are the visitor, the assistance staff, and the rule enforcement staff.
The main communication device is PDAs held by these three parties. The
museum-guide is mainly responsible of fulfilling the following categories of
requirements:

• Supporting the museum rules: visitor behavior inside the museum
has to respect several rules. Some pieces of art should not be pictured,
and the system has to act as a rule enforcement staff to ensure that

3http://lama.disi.unitn.it/

109

The tasks groups based on cost
equivalence

Group name Cost Resource Description

T1, T5, T10 TA: Communicate via home
speakers

Cost(TA, 100)
(A,40) + (B,60)

A: installing speakers
B: programming commands

T2, T4. T8, T29 TB: Actuating home lights Cost(TB, 100)
(C,40) + (D, 60)

C: Installing actuators
D: programming commands

T3, T6, T9, T35, T40 TC: Actuating home doors
and windows

Cost(TC, 120)
(E,60) + (F, 60)

E: doors/windows actuator
F: programming commands

T17, T18, T19 TD: Emailing Cost(TD, 40)

T20, T28, T36 TE: Phoning Cost(TE, 50)

T22, T26, T38 TF: SMS sending Cost(TF, 40)

T34, T39 TG: RFID authentication Cost (TG, 90)

T33, T25, T30 TH: Control on cameras Cost(TH,160)
(J,80)+(K,60)+(G,20)

J: installing commanded cameras
K: programming commanded behavior
G: giving control to other party

T31 Control on Speakers Cost(T31, 60)
(A,40) +(G,20)

T32 Control on electricity Cost(T32, 120)
(H, 40)+(I,60)+(G,20)

H: actuator on electricity switches
I: programming commands

T7 Actuating ventilator Cost(T7, 100)
(L,60) + (M,40)

L: installing commanded ventilator
M: programming commands

T23 Positioning and directing
system

Cost(T23, 140)

T27, T11 TI: Sending audio message Cost(TI,60)

T37, T24 TJ: taking and sending
snapshots to PDA

Cost(Tj, 110)
(J,80)+(N,30)

N: sending snapshots

T14 Media server login Cost(T14, 15)

T15 Loading and showing video Cost(T15, 15)

T42 Showing medical record of
patient on TV

Cost(T42, 100)
(DB, 60) + (DBM1,
20)+(TV,20)

DB: DBMS
TV: communicating information to TV
DBM1: data manipulation

T12

show guest info on patient
TV screen

Cost (T12, 100)
(DB,60)+(DBM2,20)
(TV,20)

DBM2: guest data manipulation

T16: Printing and sending via
post a letter

Cost(T16,20)

T41

show TV video for the
moment before falling
down to police on TV

Cost(T41,100)
(J,80), (TV,20)

T13

show guest info on patient
PC

Cost (T13, 100)
(DB,60)+(DBM2,20)
(PC,20)

PC: communicating info via patient PC.

T21 Call caregiver by public
speakers

Cost(T21, 15)

T43 Switching on TV Cost(T43, 20)

Figure 6.7: A partial description of the resources needed for Smart Home tasks
development and their estimated costs.

visitors do not take pictures when it is not allowed. Moreover, some
pieces of art should not be touched by visitors, and the system is also
expected to enforce such a rule. In both cases, the system has to make
the visitor aware of the rule when it is applied. It has also to act

110

to prevent potential violation of these rules and to communicate and
provide information to the rule enforcement staff if a violation has been
made. Some other general rules, such as being out of the museum by
the closing time, has to be supported by the system.

• Informing visitors about pieces of art: the system is expected to
deliver information about pieces of art to visitors when they tend to be
interested in that. The museum contains several information terminals
that the visitor may use to get information. The system may inform the
visitor about that and guide him to the nearest terminal. There will be
also a number of assistance staff that can be asked for information. The
system may communicate and arrange a meeting between a free staff
and the visitor. Also, the system may deliver appropriate information
using the visitor’s PDA. Each of these choices of delivering information
has to be applied in the right context.

• Communicating with rules enforcement staff : when a violation
of a museum rule is made by a visitor, the system has to inform the rules
enforcement staff and facilitate his interaction with that visitor. The
system has to send relevant information about the visitor to the rule
enforcement staff such as his profile and his current location. Moreover,
the system has to provide a proof that the visitor has violated the rules.
For example, it can be a picture or a video showing the visitor picturing
or touching a piece of art when this is not allowed. The picture can be
printed via dedicated printer the staff can pick it from. Alternatively,
the system may send a digital picture to staff’s PDA.

• Communicating with assistance staff : the system is not supposed
to completely replace assistance staff but to assist their work towards
more comfort for them and visitors at the same time. In certain con-
texts, visitor would need a direct help from assistance staff and the
system has to facilitate this task. The system is required to notify staff
in a way that is context dependent. For example, there could be differ-
ent ways for notification such as SMS, voice call, and museum speakers.
Each of these ways is applicable in a certain context.

• Advertising museum special events: the museum adminstration
organizes regularly special events as part of the museum cultural activ-
ities. The museum includes a theater and may allow for different kinds
of cultural events such as concerts, movies, and plays. The museum-
guide system is supposed to advertise such events to visitors who are
potentially interested. Moreover, the system is required to assist the

111

reservation of visitors who are willing to attend one event. This reser-
vation includes the specification of seats to them and their payment.
The system has to support payment in two methods: online payment,
and cash payment at a dedicated desk.

• Obtaining visitors feedback: besides the traditional guest book and
the dedicated post box that the museums traditionally use, the admin-
stration of the museum is interested in getting visitors feedback through
the system as a new mean. The system is required to get visitors feed-
back about the services provided at the museum and their opinion
about the exhibited pieces of art. The system has to provide visitors
with comfortable way of providing their feedback and encourage them
to give it.

The system is required to autonomously decide the requirements to meet
and the way to meet them taking into account the context. For example,
delivering information to a visitor can be done through a terminal, his PDA,
or an assistance staff. The information terminals may be used in a context
like “there is a free terminal close to the visitor and he is able to use it”. The
visitor’s PDA may be used in a context like “the information of the piece
of art is not complicated and the visitor has the ability and the knowledge
to use PDAs and new technology”. Alternatively, the information can be
delivered to a visitor through an assistance staff in a context like “the visitor
is not able to use PDA and not familiar with terminals and the visitor is
classified as an important visitor”. The system has to always monitor the
context and decide upon what alternative to follow and, consequently, what
functionalities to execute.

6.2.1 Contextual Goal Model of Museum Guide

We have organized a seminar and invited four requirements analysts with a
good expertise in goal modeling and mobile information systems scenarios
that the museum-guide system belongs to. We have explained our RE frame-
work to them and answered their related questions. We have then invited
an expert in mobile application from the Laboratory of Mobile Application
(LaMA4) at University of Trento to describe the museum-guide system sce-
nario to requirements analysts. Then, we asked the requirements analysts
to use our framework for modeling the museum-guide system requirements.
Together with the domain expert, we have answered the questions the ana-
lysts have raised during the session. In this section, we outline the contextual

4http://lama.disi.unitn.it/

112

goal model developed during the session, while the results of the reasoning
techniques and the feedback gotten form participated requirements analysts
will be reported in Section. 6.3.

In Fig. 6.8, we show a contextual goal model for the museum-guide system
developed during the session we organized. The model is annotated with
contexts at some variation points. The description of these contexts and a
set of logical relations between them are reported in Fig. 6.9. The main goal
of the system is “visitor is assisted to make a useful and rules-compliant visit”.
The three system actors that collaboratively reach this root goal are:

• Visitor guide system actor: this actor is the main actor of the
museum-guide system. It takes the initiative to assist visitors, to en-
force the museum rules, promote special events organized at museum,
and obtain visitors feedbacks. For example, this actor enforces the rule
that prevents taking pictures of some pieces of art where picturing is
not allowed. To this end, the actor issues a reminder, that concerns
the rule, to a visitor when he enters a room that contains non-pictured
pieces of art. The actor blocks the camera of the PDA given to the vis-
itor by the museum when he is inside such rooms. When a visitor uses
another device to take a picture of a piece of art, this system actor will
take a set of actions. It will take several snapshots of the visitor taking
a picture and send them to the rules enforcement staff system actor.
This later system actor will help a rule enforcement staff to come and
handle with the visitor who violated the rules. Similar scenario will be
repeated concerning visitors who touched pieces of art when that is not
allowed.

• Rules enforcement staff system actor: this system actor is respon-
sible of communicating and facilitating the job of rules enforcement staff
in handling with visitors who violated some of the museum rules. It en-
ables the staff of getting an evidence about the violation of rules that
this actor got already from the visitor guide system actor described
above. This evidence is in form of several snapshots of a visitor taking
a picture of a piece of art, or touching it, when it is not allowed. This
snapshot may be in form of printed images or digital images. After
that, this actor will give the necessary information about the visitor
who violated the rules such as his profile, his current location, and his
picture.

• Assistance staff system actor: this actor is responsible of commu-
nicating with and facilitating the work of assistance staff in order to
help visitors. For example, the assistance staff may need to explain to

113

[v] gets informed about a
piece of art [p] in museum

[m]

[v] gets info
through [m] staff

[s]

T19: prepare
[p] detailed
information

T20: prepare
[p] brief simple

information

or

[v] gets info via
his/her PDA

Visitor
guide

System

[v] gets info. via
terminal [t]

Staff
Assistance

System

[p] info suitable to [v]
is prepared

[p] info is
presented to

[v]

and

T21: [p] info is
presented to
[v] via video

T22: [p] info is
presented to [v]

interactively

SG5: staff
comfort

SG4: visitor
well informed

[v] gets info through
[m] staff [s]

[s] is alerted
[s] gives [p]
info to [v]

and

[s] gives [p] info to
[v] by call

[s] gives [p] info to [v]
in person

T50: make video
call between [s] and

[v]

T51: make voice
call between [s]

and [v]
direct [s] to
[v] place

T48: show [v]
picture T49: direct [s]

to [v] place

and

T46: send
[s] a voice
command

or[s] is alerted through
public call

[s] is alerted through
[s]

or

T47: make a call
through speakers
in [s] current room

T45: [s] is alerted
via ringing tone

and SMS

and

[v] know how to
use [t]

[v] arrives to
[t]

T18: show demo to
[v] how to use [t]

[v] is notified for the
service through [v]

PDA

T17: direct [v]
to [t] place

T15: send
[v] a voice
command

T16: alert [v] via
PDA vibration

and SMS

+

+

--

+

C1

C11 C13C12

visitor [v] is assisted to make
useful and rules-compliant visit

[v] follows museum [m]
rules

and

[v] is out of museum by
closing time

[v] is notified
before closing

time

and

C0

T1: [v] is notified
to not enter via

SMS
T2: [v] is notified

to get out via SMS

C16

and

SG1: calm
museum

--

+

--

C17

C18

C15
C19

[v] / touch
pieces

T4: By
headphone

voice Message

provide [rs]with
inofmration

T5: block
camera

T6: release
lock

T3: notify
by SMS

T8: send
snapshot

to [rs]

T7: take
multiple

snapshots

[v] is
informed

manage PDA
Camera

enforce rules

T9: get and send
room information

to [rs]

rule enforcement staff
[rs] is aware

[rs] comes to
enforce rule

[v] is assisted to attend
special l event

provide
feedback

Delegation to
Rules

Enforcement
Staff

[v] is assisted to attend
special l event

provide
feedback

Analysed
below

[v] is notified

online payment

accomplish
payment

seat
reservation

payment at
desk museum

services pieces of art

T26: available
seats are
shown

T25: find a free
place for [v]

automatic seats
selection interactive

[v] selects seat
by PDA visual

dialogue

[v] input is
obtained

T27: touch
screen input T28: typing

or

T29: [v]
choose by

voice dialogue

T23: send
a voice

mail
T24: send

SMS

accomplish
e-payment

T31: connect to
web-service

T30: prompt [v] to
accept e-payment

T32:
update

database
T33: send
confirmati
on SMS

T34: guide to
payment desk

T35: show map
to payment desk

Rules
Enforcement

Staff

Analysed
below

T10: get and
send [v] ID to

[rs]
and

and

or

or

and

and

and

and

and

rules staff [rs] comes to
enforce rules

have
evidence [rs] is assisted with

necessary info.

and

T40: print
snapshot

T41: digital image
to be shown on

PDA

SG7: wise
consumption of papers

SG6: more
visible image

--
+

+

+ direct [rs] to
[v] place

T43: show
[v] picture

T44: direct [rs]
to [v] place

and

[rs] reaches
[v]

[rs] knows about
[v]

and

T42: show [v]
basic profile

info

T36: leave a voice
message

Rank

T38: voice
recognition

T39:
typing

T37: type
comment

SG1: calm
museum

--

SG2: visitor
comfort

+ --

+

or

SG3:
understandable

feedback

--

+--

+

..

...

C2
C3

C1

C25

C6

C4 C5

C7

C8 C9

C10

C14

C20 C21 C22
C23

C24

C26

Figure 6.8: The contextual goal model for the Museum-guide.

a visitor about a piece of art in, or a service provided by, the museum.
This system actor will notify the assistance staff by varying ways. The
adoptability of each way can be context-dependent. For example, send-
ing a voice command to a staff is adoptable when the staff is not calling
and he is putting his headphones on. While sending a ringing tone and
SMS, as a way of notifying a staff, is adoptable when the staff is not
calling. This actor is also responsible of facilitating the communication
between staff and visitors. This communication can be done either on

114

Context Description Relations with
the rest

C0 The visitor has to be inside the museum area including parking places and the public square in
front of museum. Moreover, the visitor should be registered to and have accepted the
autonomous assistance by the museum-guide mobile information system.

C1 There is a special event at the same day that could be of interest of the visitor, and still there
are places.

C2 Visitor is inside the gallery building and he is interested in getting explanation of a piece of art. C2 ¬C3
C2 ¬C4

C3 Museum closing time is approaching. C3 ¬C25
C3 ¬C26

C4 Visitor is still outside the museum and on the way to enter the museum. C4 ¬ (C5 v C25
v C26 v C6 v C10
v C8 v C9)

C5 Visitor is still inside the museum, and far away from the exit. C25 C5
C26 C5

C6 Visi gallery contains non-pictured/ non-touchable pieces of
arts and visitor has just entered the gallery.

C7 Headphones are plugged-in and user puts them on, and does not listen to other audio contents
or calling.

C8 There is non-pictured piece of art close to the visitor. C8 ¬C9
C9 There is no non-pictured piece of art close to the visitor.
C10 A picture for a non-pictured piece of art has been taken by the visitor or a piece of art has been

touched where not allowed.

C11 There is a free terminal close to the visitor and he/she is able to use it.
C12 The information of the piece of art is not so complicated and the visitor has the ability and the

knowledge to use PDAs and new technology.
C12 C20

C13 The visitor is not able to use PDA and not familiar with terminals and that the visitor is classified
as important visitor.

C13 ¬C20

C14 There is a staff that is free and talks a language common to the visitor and knows enough about
the considered piece of art comparing to the visitor knowledge.

C15 The room, where the visitor is, does not include audio art contents.
C16 Staff assistance is not calling. C17 C16

C19 C16
C17 Staff assistance is not calling and is putting the headphone on.
C18 Visitor is close to assistance staff.
C19 Staff is not using PDA for calling and information is relatively simple.
C20 Visitor has good experience using PDA and new technology.
C21 It is not noisy around the visitor.
C22 Visitor has provided his card info and accepted e-payment in the registration process and the

event accepts payment using the kind of card provided.
C22 ¬ C23

C23 Visitor has not provided his card info and accepted e-payment in the registration process, or
the event does not accept payment using the kind of card provided.

C24 The PDA screen is small or visitor cannot recognize pictures on PDA screens.
C25 Visitor is still inside the museum and has used one of the museum services and far away from

the exit

C26 Visitor is still inside the museum and has been showing much interest in a piece of art and far
away from the exit

Figure 6.9: The descriptions of contexts specified at Fig. 6.8 and a set of logical
relations between them.

person or remotely in a context dependent way. To facilitate meeting
on person, this system actor will send to staff the picture of the visitor
and direct him to the visitor’s location. To facilitate the remote com-
munication, this actor may establish a video or voice call between staff
and visitor.

115

Besides capturing the variants to satisfy the main goal of the system, the
contextual goal model captures the quality of these variants from the per-
spective of certain quality measures (softgoals). It also captures the influence
of context on the assessment of such measures through the notion of contex-
tual contribution that we have proposed. In other words, the quality of each
variant is not always absolute but may vary according to the context. For
example, the assistant staff may be informed and guided to meet a visitor on
person or to give information to him remotely. The alternative of giving infor-
mation on person (G45) has a good quality from the perspective of a quality
measure such as “staff comfort” in certain contexts like “staff and visitor are
close to each other”. The system can choose between the variants, that are
applicable in a certain context, based on their qualities. Consequently, the
system has to instantiate the values of the contextual contributions based on
the monitored context and then rank the alternatives of goal model based
on the contributions each alternative gives to the set of softgoals as we have
explained in Chapter 4.

Concerning the context analysis, it was necessary to make such analysis
for certain contexts while in some other cases the definition of context was
straightforward. For example, the context C22=“assistance staff is not calling
and is not putting the headphone on” is a straightforward context that is
a conjunction of its two facts. Some other contexts can not be verified in
straightforward way and may need further analysis to get ways to verify them.
For example, the context C2=“visitor is inside the gallery building and he is
interested in getting explanation about a piece of art” is not monitorable by
itself but it is an abstraction of other visible facts. An analysis is needed to
discover and agree on the set of facts that gives a truth value to such high
level context. Fig. 6.10 reports the analysis we have came up with to identify
the variant ways to judge if C2 holds.

The analysis shown in Fig. 6.10 refines hierarchically the context C2 to-
wards a formula of facts that specifies it. In other words, the analysis is done
in top-down way from non-visible descriptions of the world (statements) into
visible ones (facts). For example, the context “visitor is interested in a piece
of art” is a statement that can be decomposed to more specific statements
such as “he is behaviorally interested” and “he is historically interested”. The
first substatement can get support from visible facts such as “visitor usually
asks for information about pieces of art of the same profile as the piece of
art under discussion” and “visitor has attended the opening of the gallery
that contains the piece of art”. The second substatment can be supported
by means of some other visible facts such as “visitor is looking at the piece
of art for a long time” and “visitor had a look recently so often at the piece
of art”. We remark here that the truth of these facts does not give a com-

116

plete evidence to the refined statements. However, when we transform the
context hierarchy into a boolean formula we assume this complete evidence.
We may need to enrich our context analysis model with probabilistic and/or
weighted “Support” relation between a world predicate formula and a refined
statement and we leave this enrichment for a future work.

w2=there is still time to accomplish
explanation about [p] to [v]

w8= [v] historically
interested in [p]

w3= [p] is
interesting to [v]

w9= [v] behaviorally
Interested in [p]

w4= [v] does not
already know about [p]

wp2= visitor [v] is interested in getting
explanation of piece of art [p] in museum [m]

w5= [v] is not in a
hurry

f14= [v] never
got info of [p]
by [m] means

w6= [v] does not
have to work

w7= [v] behaves
in calm way

f5= [v] is
retired

f4= It is a
holiday in [m]

region

f7=[v]
walks
slowly

f8= > 30
minutes until
[m] closes

f11= [v]
attended [p]

gallery opening
f9= [v] often asks
about pieces of
the same artist

as [p]
f10 = [v] often asks about

pieces belong to the
same art genre as [p]

f15= [p] was
created after
[v] last visit

f6= still early
to [v] visit
slot end

f12= [v] looks
at [p] for long

time

f13= [v] had a
look so often

on [p]

w1= [v] is in a place where
[p] can be still of interest

f1= [v] place
is close [p]

room
f2= [v] is in
the corridor
of [p] floor

f3= [v] is in the
same room of

[p]

C2

wp1= visitor is
inside the

gallery building

Figure 6.10: A Context analysis example from Museum-guide.

The context analysis helped us to systematically identify the data that
the system has to collect of its environment. The leafs of the context anal-
ysis hierarchy are facts that are world predicates verifiable by an actor (the
museum-guide system). The computation of the truth values of these pred-
icates requires the system to collect data of its environment. For example,
and taking the leaf facts of the statement w3=“piece of art is interesting
to a visitor” of Fig. 6.10, we could elicit the data conceptual model shown
in Fig. 6.11. A fact like “visitor looks at a piece of art for a long time” is
computable based on the classes “Visitor”, “Piece_of_Art” and “Looks_at”.
Using the terms of database systems, we may look at this fact as a view over
the three mentioned classes.

Conflicts analysis, that we have explained in the last chapter, needs the
specification of parallelism and sequence operators between the tasks of goal
model. The specification of these operators at the higher levels of goal model
hierarchy would lead to a fewer number of specifications in comparison to this

117

Visitor Piece_of_Art

Artist Art_Genre

Asks

+when

made_by

Gallery

Opening_event

attended

part_of

hadLooks_at

+starts_time
+stop_time

belong_to

Figure 6.11: Data needed to judge the truth of w3 of Fig. 6.10

number when we directly specify these operators at the level of leaf tasks.
Moreover, it could be also hard to specify these operators directly at the level
of leaf tasks without knowing the top level goals that are reached by those
tasks. In Fig. 6.12, we show the contextual goal model of Fig. 6.8 enriched by
the parallelism and sequence operators. The propagation of these operators
at the higher level of the goal model hierarchy will decide if two leaf tasks
execute in parallel or in sequence. Such information is essential to decide if
there could be a conflict of the kinds we consider in this thesis.

Here we give an example to explain the meaning and the usefulness of
specifying parallelism and sequence operators at goal models. The parallelism
operator between the two goals G1 and G2 means that the two goals are
independent. In other words, this operator means that reaching any of them
does not depend on reaching the other. It also means that this operator
applies between any node of G1 hierarchy and any node of G2 hierarchy as
well. However, it is not always possible to specify this between each two
goals/tasks in one AND-decomposition. In this case, we will need to go into
the lower level and specify these operators. In the worst case, we would
arrive until the leaf tasks level to be able of specifying them. Saying that G1

and G2 can be reached in parallel and they are independent means that this
apply on any leaf task from the hierarchy of the G1 with any leaf task from
the hierarchy of G2 and we avoid the enumeration of those pairs of tasks to
specify the parallel/sequence operators.

The other information that we need to capture to enable the reason-
ing about conflicts concerns the impact of the leaf tasks of the contextual
goal model on the objects in the system environment. This information is
essential to judge if a conflict occurs. Two tasks executing in parallel are
conflicting if they change the same object into two different states or each
one of them needs and exclusive possession of one object. For example, both

118

[v] gets informed about a
piece of art [p] in museum

[m]

[v] gets info
through [m] staff

[s]

T19: prepare
[p] detailed
information

T20: prepare
[p] brief simple

information

or

[v] gets info via
his/her PDA

Visitor
guide

System

[v] gets info. via
terminal [t]

Staff
Assistance

System

[p] info suitable to [v]
is prepared

[p] info is
presented to

[v]

;

T21: [p] info is
presented to
[v] via video

T22: [p] info is
presented to [v]

interactively

SG5: staff
comfort

SG4: visitor
well informed

[v] gets info through
[m] staff [s]

[s] is alerted
[s] gives [p]
info to [v]

;

[s] gives [p] info to
[v] by call

[s] gives [p] info to [v]
in person

T50: make video
call between [s] and

[v]

T51: make voice
call between [s]

and [v]
direct [s] to
[v] place

T48: show [v]
picture T49: direct [s]

to [v] place

;

T46: send
[s] a voice
command

or[s] is alerted through
public call

[s] is alerted through
[s]

or

T47: make a call
through speakers
in [s] current room

T45: [s] is alerted
via ringing tone

and SMS

;

[v] know how to
use [t]

[v] arrives to
[t]

T18: show demo to
[v] how to use [t]

[v] is notified for the
service through [v]

PDA

T17: direct [v]
to [t] place

T15: send
[v] a voice
command

T16: alert [v] via
PDA vibration

and SMS

+

+

--

+

C1

C11 C13C12

visitor [v] is assisted to make
useful and rules-compliant visit

[v] follows museum [m]
rules

||

[v] is out of museum by
closing time

[v] is notified
before closing

time

||

C0

T1: [v] is notified
to not enter via

SMS
T2: [v] is notified

to get out via SMS

C16

||

SG1: calm
museum

--

+

--

C17

C18

C15
C19

[v] / touch
pieces

T4: By
headphone

voice Message

provide [rs]with
inofmration

T5: block
camera

T6: release
lock

T3: notify
by SMS

T8: send
snapshot

to [rs]

T7: take
multiple

snapshots

[v] is
informed

manage PDA
Camera

enforce rules

T9: get and send
room information

to [rs]

rule enforcement staff
[rs] is aware

[rs] comes to
enforce rule

[v] is assisted to attend
special l event

provide
feedback

Delegation to
Rules

Enforcement
Staff

[v] is assisted to attend
special l event

provide
feedback

Analysed
below

[v] is notified

online payment

accomplish
payment

seat
reservation

payment at
desk museum

services pieces of art

T26: available
seats are
shown

T25: find a free
place for [v]

automatic seats
selection interactive

[v] selects seat
by PDA visual

dialogue

[v] input is
obtained

T27: touch
screen input T28: typing

or

T29: [v]
choose by

voice dialogue

T23: send
a voice

mail
T24: send

SMS

accomplish
e-payment

T31: connect to
web-service

T30: prompt [v] to
accept e-payment

T32:
update

database
T33: send
confirmati
on SMS

T34: guide to
payment desk

T35: show map
to payment desk

Rules
Enforcement

Staff

Analysed
below

T10: get and
send [v] ID to

[rs]
;

||

or

or

;

||

;

;

;

rules staff [rs] comes to
enforce rules

have
evidence [rs] is assisted with

necessary info.

;

T40: print
snapshot

T41: digital image
to be shown on

PDA

SG7: wise
consumption of papers

SG6: more
visible image

--
+

+

+ direct [rs] to
[v] place

T43: show
[v] picture

T44: direct [rs]
to [v] place

and

[rs] reaches
[v]

[rs] knows about
[v]

;

T42: show [v]
basic profile

info

T36: leave a voice
message

Rank

T38: voice
recognition

T39:
typing

T37: type
comment

SG1: calm
museum

--

SG2: visitor
comfort

+ --

+
or

SG3:
understandable

feedback

--

+--

+

..

...

C2
C3

C1

C25

C6

C4 C5

C7

C8 C9

C10

C14

C20 C21 C22
C23

C24

C26

Figure 6.12: The contextual goal model of Museum-guide annotated with parallel
and sequence operators.

tasks T33=“choose a seat by voice dialogue with visitor” and T55= “make a
voice call between visitor and staff” need an exclusive possession on the mi-
crophone of a visitor’s PDA. If these two tasks execute in parallel, a conflict
would occur. In Fig. 6.13, we show the impact of the leaf tasks of the contex-
tual goal model shown in Fig. 6.8 on the objects in the museum environment.
Differently from the smart home system described on the previous section,
where tasks had impact on a living environment objects such as windows

119

and lights, the impact of tasks in the museum guide scenario is mainly on
communication devices that are the visitors’ and staff PDAs.

Environment Object Tasks Vs. State changes /Exclusive possession over objects

Visitor PDA screen T17.ex, T18.ex, T21.ex, T22.ex, T26.ex, T27.ex, T28.ex, T30.ex,
T34.ex, T35.ex, T37.ex, T39.ex, T50.ex

Visitor PDA camera T5.block, T6.unblocked
Visitor PDA audio T4.ex, T15.ex, T22.ex, T29.ex, T34.ex, T36.ex, T38.ex, T49.ex,

T51.ex
Visitor PDA microphone T29.ex, T36.ex, T38.ex, T50.ex, T51.ex
Visitor PDA Vibration T16.on,
Visitor PDA keyboard T28.ex, T37.ex, T39.ex
Snapshot camera T7.ex
Rules staff PDA screen T8.ex, T9.ex, T10.ex, T41.ex, T42.ex, T43.ex, T44.ex
Assistance Staff PDA screen T45.ex, T48.ex, T49.ex, T50.ex
Assistance Staff PDA audio T45.ex, T46.ex, T49.ex, T50.ex, T51.ex
Assistance Staff PDA microphone T50.ex, T51.ex

Figure 6.13: The influence of Museum-guide tasks on museum environment ob-
jects.

The reasoning about derivation of contextual goal model variants that
lead to a system developed with minimum costs needs two information. These
two information are the logical relations between contexts and the resources
needed for developing each leaf fact. In Fig. 6.9, we have already showed a set
of logical relations between contexts that are specified at museum-guide goal
model. These relations are essential to decide the core groups of variants.
In other words, to exclude those variants (i) that are unadoptable due to
context inconsistency and (ii) those that can be replaceable by other variants
in all contexts due to entailments between contexts as we have explained in
Chapter 4. The second information concerns the resources needed for the
development of each leaf task in the contextual goals model. As we mentioned
earlier, tasks may share the same development resources. This influences the
total costs of developing a set of tasks. In Fig. 6.14, we show estimation of
the resources and costs related to each leaf task of the contextual goal model
shown in Fig. 6.8.

6.3 Evaluation Results

To evaluate our modeling and reasoning RE framework, we have organized
two lab sessions involving a group of requirements analysts that applied our
framework on two systems scenarios. Each lab session concerned one of the
systems described in this chapter: the smart home system and the museum-
guide system. The requirements analysts, who participated in the sessions,
have already a good expertise in goal modeling and they are familiar with
emerging computing paradigms scenarios such as ubiquitous computing and

120

The tasks groups
based on cost
equivalence

Group name Cost Resource Description

T1, T2, T3, T9, T10,
T16, T24, T33, T45

Ta: send notification via
SMS

Cost (Ta, 40)
(A,30) +(B,10)

A: communication Server
B: programming notification via SMS

T4, T15, T23, T46 Tb: send notification via
voice message

Cost(Tb, 40)
(A,30)+(C,10)

C: programming notification via voice

T57 Tc: send public speakers
message

Cost(Tc, 60)
(A,30)+(C,10)+(D,20)

D: installing speakers for notifications

T42, T43, T48, Td: showing visitor info on
PDA extracted from the
developed database

Cost (Td, 120)
(DB,60)+(E,60)

DB: having DBMS
E: manipulating data.

T25, T26, T32 Te: processing Database of
seats

Cost(Te, 90)
(DB,60)+(F,30)

F: manipulating seats information

T37, T39 Tf: getting via typing and
storing comments in
database

Cost(Tf, 80)
(DB,60)+(G,10)+(HH,10)

G: getting input via typing
programming
HH: manipulating comments storage

T36 Tff: getting via voice and
storing comments in
database

Cost(Tf, 80)
(DB,60)+(GG,10)+(HH,10)

GG: getting input via voice
programming

T28, T30 Tg: on PDA local HCI. Cost(tg, 10)
(G,10)

G: getting user input via typing.

T17, T34, T44, T49 Th: directing interactively Cost(Th, 120)
(H,45)+(I,75)

I: installing positioning equipments
and getting a person position
H: interactive communication
programming

T21 Ti: piece info shown via
video

Cost(Ti, 20)
(J,20)

J: programming a video

T22 Tj: piece information are
shown interactively

(Tj, 140)
(H,45)+(II,75)+(J,20)

II: manipulating piece information for
interactive display.

T19 Tk: detailed info about
piece of art are prepared
and stored.

Cost(Tk, 120)
(DB,60)+ (JJ,30)+(K,30)

JJ: gathering and storing basic info.
K: gathering and storing advanced
info.

T20 Tl: brief info about piece of
art

Cost(Tl, 90)
(DB,60)+ (JJ,30)

T5, T6 Tm: Block/unblock Camera Cost(Tm, 10)

T7 Tn: snapshots Cost(Tn, 30)

T29, T38 Tp: Voice recognition Cost(Tp, 80)

T50 Tq:Video call Cost (Tq, 70)
(L,40)+(M,30)

L: connecting and voice call
M: video calling

T51 Tr: Voice call Cost(Tr, 40)
(L,40)

T31 Ts: Connect to Web
Service

Cost(Ts, 20)

T18 Tt: Demo about terminals Cost(Tt, 15)

T35 Tu: Map to payment desk Cost(Tu, 10)

T8, T41 Tv: send snapshot Cost(Tv, 40)

Figure 6.14: A partial description of the resources needed for Museum-guide
tasks development and their estimated costs.

121

mobile information systems. We have explained to them our framework
and answered their questions about it. In each session, we have asked the
analysts to model requirements using our contextual goal model. During
the development of the models, a domain expert was present to answer the
analysts’ questions related to the systems being modeled.

We classify the obtained results into three categories. The first one con-
cerns the quality of our framework from the perspective of practitioners.
This evaluation is based on our observations, and interviews with partic-
ipated analysts, that we have done in both of the two lab sessions. The
second category concerns the results we got when applying our reasoning on
the contextual goal models developed by the analysts. This evaluation is to
estimate how important these techniques are in practice. The third one con-
cerns the performance of our developed tool that implements our proposed
reasoning mechanism. This evaluation is to estimate the scalability of our
tool with respect to the size of processed models.

6.3.1 Analysts feedback and observations

During each of our organized lab sessions, we have observed the attitude
of analysts when using our framework and documented the questions they
asked frequently besides the common difficulties they used to face. After
each session, we have interviewed the participated requirements analysts to
get their feedback about our framework and to confirm our observations that
we made during the sessions. The observations we made, and the feedback
we got, were helpful to evaluate our framework from the perspective of prac-
titioners acceptance and efficacy of use. In this regard, the main obtained
results are the following:

• The proposed extension to goal model is easy to understand:
the main extension to the goal model, that we have proposed, concerns
the identification of variation points at goal model and the modeling
constructs for analyzing contexts. The analysts easily understood this
extension and applied it in the right way. Moreover, the additional
constructs, that are needed to enable the reasoning about contextual
goal models such as conflict and costs, were also easy to understand
and the analysts have used them in a straightforward way.

• The framework provides a useful systematic way to analyze
contexts: this systematic way is of high importance especially when
a group of analysts specify, and/or need to agree on the specification
of, one context. It allows for a step by step refinement of high level

122

contexts that are not monitorable/verifiable per se. The goal of this
refinement is the discovery of visible facts that an actor, possibly the
system, may capture of its environment to verify if the refined context
holds. Besides the systematic refinement of contexts, context analysis
constructs showed very useful way for the communication between an-
alysts. For example, when an analyst had to give the specification of
one context in terms of a formula of facts, it was hard to explain why
the set of facts is relevant and why they must be composed in that
given way to judge if the analyzed context holds. Doing the hierarchial
context analysis, his rationale when analyzing context became clear to
all other participants.

• The relation between goals and context is strong in certain
systems: in the systems we have dealt with during the lab sessions,
that are the smart home and the museum guide systems, the analysts
could recognize the relation between goals and context and the impor-
tance of this relation. The analysts confirmed to us that goal models is
a right abstraction level for considering certain contexts especially the
contexts that influence human’s decisions. The reason is that the con-
text influences such human’s decisions before the software itself and
goal model can represent an actor intentions and rationale. Captur-
ing this influence is preliminary as it allows software to reflect human
adaptation to context and, consequently, derive useful functionalities
to execute. From the other hand, some other contexts, such as the
bandwidth of the network and the indexing mechanisms supported by
a DBMS, should be defined at later stages of the development, possi-
bly the design, and goal models may not be the right abstraction level
to capture them. Moreover, our proposed conceptual model is mainly
suitable for the requirements of a kind of systems that operates in and
reflects varying contexts. Other systems, that are inherently invariable
when operating in different contexts, will not need our proposed mod-
eling and reasoning. For example, a system to register students in a
faculty often follows a uniform process that is not a subject to contexts
changes.

• Context analysis is needed for certain contexts: during the ses-
sions, the analysts did not need to use context analysis for simple
contexts and it was possible to specify them at the level of facts di-
rectly. In such cases, there was an immediate agreement between the
analysts on how such simple contexts can be verified. For example,
in the smart home system and concerning the contexts ϕ20=“it is not

123

night time” and ϕ9=“the patient is outside for long time and it is night
time”, there was an immediate agreement between the analysts that
these two contexts are directly based on verifiable facts and there is
no need to analyze them further. Other contexts, included a straight-
forward parts and parts that needed further analysis. For example, in
the smart home system, the context ϕ3=“the patient is feeling bored
and long time passed without an entertainment activity and patient
is at home” included a straightforward part that is “long time passed
without attending an entertainment activity and patient is at home”
and a part that needs analysis “patient is feeling bored”. The analysis
is needed to identify and agree on facts, verifiable pieces of information,
that give evidence to such a context.

• Context analysis could be a subject to viewpoints: for some
complex contexts, there have been disagreements (viewpoints) between
the analysts concerning the correct refinement of a context. For exam-
ple, in the museum guide system and concerning the context C2=“visitor
is inside the gallery building and he is intersted in getting explanation
about a piece of art”, there were viewpoints about the way the state-
ment “the piece of art is interesting to the visitor” can be supported by
facts. Some analysts stated that new pieces of art should be interesting
to a visitor regardless his profile. Other analysts stated that a piece of
art is interesting to a visitor if he has shown interest in similar pieces of
art previously regardless if the one under discussion is new or old one.
In some other cases, it was debatable if a certain context is a statement
or a fact. For example, in the museum guide system and concerning
the context C11=“there is a free terminal close to the visitor and he is
able to use it”, some analysts considered being close to a terminal as
a fact while others considered it as a statement. The reason for the
latest opinion is that considering something close or far from a person
depends on different factors such as age and physical ability of that
person. Therefore, and as a result of the above two observations, new
policies to manage such situations are still required. One of our future
work directions concerns the detection of mismatches between different
analysts’ viewpoints, the assessment of the severity of this mismatch,
and the resolution policies.

• Context analysis could be more expressive: in other words, other
modeling constructs could be needed for more expressiveness of our pro-
posed context analysis. One of the possible extensions to our context
analysis could be the temporal relations between contexts. For exam-

124

ple, in the smart home system and concerning the statement “patient
did not succeed to sleep”, the analysts wanted to decompose this into
two statements “patient recently tried to sleep”, “patient is now not
sleeping” and model that the first statement should have occurred be-
fore the second. Our modeling constructs do not explicitly capture this
last information. Obviously, this information is important for the sys-
tem at runtime to decide the truth of a context and require us more
work to model and reason about it. Moreover, a weighted “support” re-
lation is needed to decide the extent to which a statement is true when
the supporting world predicates formula is true. For example, the fact
“walking slowly” gives high evidence to the statement “customer is not
in a hurry” while the fact “is still early to the closing time” gives lower
evidence to it.

• The specification of user prioritization is limited: we have pro-
posed the specification of user priorities as ranks given to softgoals.
Sofgoals are used as quality measures of the goal model variants. In a
certain context there could be more than one applicable variant and we
rank them based on their contributions to softgoals. The variant that
better contributes to the highly ranked softgoals is preferred. While
this way avoids us handling with the variants themselves, that may be
hard task when we have a large number of variants, it is somehow lim-
ited. For example, two variants that have no contributions to softgoals
will be ranked equally. Another criteria to rank variants can be the
history of the system with each variant. In other words, the priorities
of users are not always specifiable at one step. Rather, we may need
the system to learn over the time and decide the variants the user may
give high priority. To this end, new concepts could be needed and our
model may need further enrichment to capture them. For instance, we
may need concepts to capture what the system has to monitor to judge
the users attitude against each variant. Such information may allow
the system to evaluate the priorities of variants continually during the
actual operation of the system.

• The size of input, provided manually, to enable reasoning may
become big: the proposed reasoning for variants derivation in its two
kinds has reasonably small size input provided by analysts. Variants
derivation for a given context and user priorities requires a manual
ranking of softgoals. This ranking involves manual specification of the
priority of each softgoal once. The variant derivation for system de-
veloped with minimum costs requires the analyst to provide the de-

125

velopment costs of each task once. From the other side, the input
required for reasoning about contextual goal model consistency may
become big. We presumed that the logical relations between contexts
(facts and statements) are manually provided. We also presumed that
the parallelism and sequence operators between goal model nodes are
provided by the analyst. These operators may not be specifiable at
each AND-Decomposition immediately as it was the case in the sys-
tems we dealt with. In some cases, we may need to go more steps down
in sub-hierarchies of an AND-decomposed nodes in order to be able
of specifying these relations. This obviously will increase the number
of specifications needed to be provided by the analysts. Consequently,
more techniques and automated support are needed to help analysts
and reduce the size of input they need to provide.

• There are more kinds of conflicts to consider: we have consid-
ered a fairly simple kind of conflicts. It concerns the conflicting changes
on the state, and the exclusive possession of, shared objects between
two executable processes (tasks). Our objective was not to study and
develop through detection of all kinds of possible conflicts and prob-
lematic interactions between tasks that are manifested on context. The
objective was to explain the importance of discovering the goals behind
the conflicts, the context in which a conflict happens, the alternatives
the system may adopt to avoid a conflict, and the quality of those al-
ternatives. The analysts agreed on the importance of this reasoning
as a way to explain conflict and provide useful information for better
resolution decisions. Obviously, many other kinds of conflicts may ex-
ist such as the cyclic stimulation between two variants caused by the
changes in the context that each variant leads to.

• There are other kinds of costs to consider: we have considered
the costs of resources needed for developing each task in the goal model.
We have used this information to derive the less expensive set of tasks
implementing a set of variants that allow the system to operate in all
considered contexts. However, there could be different kinds of costs
to consider when we do this activity. The cost of a task does not only
mean the cost of developing it but may also include the costs of the
operation of this task. For example, suppose we have two tasks for
delivering confirmation about a visitor’s reservation for a special event
in the museum. The first one is by sending e-copy and reservation
number via bluetooth, WiFi, or SMS to his PDA. The other is by
printing the reservation document on a dedicated printer. The first

126

option is more expensive as the programming needed is more complex.
From the other hand, the costs of printing over the time will make the
second task more expensive. The analysts have made this observation
and we would need modeling and reasoning about costs that is more
thorough than the one proposed in this thesis.

• The contextual contribution is, sometimes, hard to put as a
binary decision: context may have different influences on require-
ments. It may influence the set of requirements relevant to a system,
the set of possible ways to reach them, and the quality of each of such
ways. We have adopted goal model to represent requirements and vari-
ants ways to reach them and the qualities of each of such ways. The
concept of softgoals can be used to represent the quality of each way
of reaching goals. The influence of context on the quality of each way
to meet goals was captured through the concept of contextual contri-
bution to softgoals. In other words, the quality of each way to meet
goals is not absolute but context dependent. However, we considered
the influence of context on contributions to softgoals as binary, i.e.,
positive or negative. This could be hard assumption in some cases. For
example, the distance between a person using his PDA to connect to
WiFi and the connection access point decides how reliable the connec-
tion is. Such distance does not influence the reliability of a connection
in binary way. In other words, the quality measure “connection reliabil-
ity” will be assessed more positively/negatively based on the distance
between the visitor’s PDA and the connection access point. We would
need ways to model and reason about more detailed relation between
context and contributions to softgoals in the contextual goal models.

6.3.2 Reasoning results

Each of the groups, who participated in our organized lab sessions, has de-
livered a contextual goal model for the system studied at that session. We
got a contextual goal model for the smart home system and another one for
the museum-guide system. We have formalized these two contextual goal
models and run our automated reasoning support tool and got the results
of the reasoning proposed in this thesis. In this regard, Fig. 6.15 reports
different categories of information. We report the time needed to construct
and formalize the contextual goal model, the size of goal model, the results
of applying the reasoning mechanisms on it. We report this information for
both of Smart home and Museum guide systems in the same figure.

127

Factor Description Smart Home
System

Museum guide
System

TD time to develop the graphical
model (in hours)

14 16

TF time to formalize the model &
fix inconsistencies (in hours)

6 7.5

NA Number of actors 5 3
NG Number of goals 35 41
NT Number of tasks 50 51
NSG Number of softgoals 5 7
NVP Number of variation points 25 26
V Number of variants 25560 324000
IV Number of variants with

inconsistent contexts
11556 322612

I Number of iterations needed to
fix/accept all context
inconsistencies

27 40

NCV Number of non-core variants 1908 192
CGV Number of core groups of

variants
192 84

Results of Reasoning about minimum development costs

TC Total cost of developing all

tasks each one separately
3595 2845

SC The shared costs between all
tasks

1820 2045

AAC The costs of developing all
alternatives of goal model

1775 800

MC The cost of developing the set
of tasks that lead to a system
operating in all considered
contexts.

1185 525

Results of reasoning about conflicts

NC Number of conflicts 29 121
VwC Number of variants with

conflicts
13789 1224

CCGV Number of conflictual core
groups of variants

184 36

Figure 6.15: A report of reasoning results on both Smart home and Museum-
guide systems.

128

• Development time: as shown in Fig. 6.15, we divide the time needed
to construct the contextual goal model into two parts. The first one
concerns the development of the conceptual graphical model (TD). This
includes modeling the goal model, the variation points, context anal-
ysis, development costs, parallelism and sequence operators, tasks in-
fluence on the system environment objects, and the logical relations
between contexts. The second one concerns the time needed for the
formalization of the contextual goal model (TF). We formalize it using
Datalog, and formalize the context analysis hierarchies as boolean for-
mulae (formulae of facts). We still do not have an automated translator
of the graphical models into formal representation. Moreover, the sec-
ond time includes the time needed to decide about fixing or accepting
context inconsistency as our developed automated support tool inter-
acts with analysts and this requires time to take the right decision as
we have explained in Chapter 5.

• Size of goal model: the size of goal model is reported in Fig. 6.15 in
terms of the number of nodes (goals (NG), softgols (NSG), tasks (NT),
and actors (NA)). Moreover, the number of variation points (NVP) and
the number of goal model variants (V) are main factors in deciding the
complexity of goal model. For example, a goal model with only AND-
Decomposition does not allow for variants to goal satisfaction. Actually,
such a goal model has only one variant. This makes the reasoning we
propose for variants derivation (for given context and user priorities,
and for minimum developments cost system) meaningless. It also limits
the importance of reasoning about conflicts and context consistency
since they will concern only a single variant. We also report the number
of variants that are non-core (NCV), i.e. those replaceable by others
in all considered contexts, and the number of core groups of variants
(CGV). These measures are indicators to the size of input the reasoning
about costs and conflict will deal with.

• Reasoning about context inconsistency: our automated support
tool is designed to interact with analysts when detecting a context in-
consistency. When an inconsistency in a context of a variant is detected,
the tool asks the analysts to decide about accepting it or modifying the
model and repeating the consistency check. When the inconsistency of
a goal model variant context is accepted by analyst, the tool accepts the
inconsistency of contexts of the other goal model variants that include
the discussed one. This is for reducing the number of interactions with
analyst as we have explained in Chapter 5. The number of iterations
(I) where the tool interacts with analyst is also reported.

129

• Reasoning about costs: the other category of information that we
report in Fig. 6.15 concerns the results of our developed reasoning about
costs. We report four information in this regard. The first one con-
cerns the sum of development costs of each task separately without
considering the shared resources (TC). The second concerns the sum of
shared resources between all tasks (SC). Having these two information
enables us to estimate the ratio of shared resource of the total costs
of developing the tasks separately. The third information concerns the
costs, considering the shared resources, of the development of all tasks
(AAC), i.e., implementing all goal model variants. The forth infor-
mation concern the cost of developing a set of tasks that allows for a
system operable in all considered contexts with minimum cost (MC).
However, our reasoning finds this set of tasks as well and the figure
reports only the cost of developing the tasks belonging to this set.

• Reasoning about conflicts: the last category of information reported
in Fig. 6.15 concerns the results of reasoning about conflicts. We re-
port the number of conflicts that may happens between the tasks of a
contextual goal model (NC). We report this number since the same con-
flict may occur in multiple goal model variants and it, therefore, gives
an indicator about how many conflicts we need to fix if we wanted a
conflict-free goal model. The other information we give concerns the
number of variants with conflicts (VwC). This number indicates how
many variants are affected by the set of conflicting tasks. The last
information is about the number of conflictual core groups of variants
(CCGV). In other words, the number of cases in which the resolution
can not be done by adopting a conflict-free alternative and, therefore,
a resolution strategy has to be provided.

6.3.3 Performance analysis

We have developed a CASE support tool, called RE-Context, to implement
our proposed reasoning about contextual goal model. In order to assess the
performance of RE-Context, we installed it on a machine with two CPUs
AMD Athlon(tm) 64 X2 Dual Core Processor 5000+ and 4 GB of RAM.
Fig. 6.16 reports the results of the performance analysis with respect to the
time needed (in milliseconds) to perform reasoning. The first two columns
represent the size of the goal model as number of nodes (goals plus tasks)
and number of variants; then, the table reports the time needed to derive all
variants (T_Deriv), to identify inconsistency (T_Inc), to get the core groups
of variants (T_CGV). The graph on the right-hand side depicts the results

130

shown in the table: the “x”-axis represents logarithmically the number of
variants, the “y”-axis represents logarithmically the computation time needed.
The collected data shows that the time needed for computation is growing
exponentially with the increase of the problem size. Anyhow, given that the
reasoning is performed at design-time, the tool scales quite well in the test
cases (it takes less than 16 minutes with 648.000 variants).

The time to compute the conflictual core groups of variant is negligible
in comparison to the time needed to compute the core groups of variants
themselves. Also, we do not present the results for deriving variants under
given context and user prioritization over softgoals, as the computational
cost is negligible. Moreover, the algorithm we have developed to derive vari-
ants for a system developed with minimum-cost led to a negligible time as
well. The naive algorithm that takes the cartesian products of core groups of
variants and find the combination with minimum costs was highly expensive.
Our minimum-costs variant derivation algorithm was developed to exploit
the nature of the problem we deal with and reduce the complexity of the
naive approach.

To get large goal model sizes, we adopted an approach similar to the one
adopted in [110] and cloned the original goal model that we have developed
for the smart home system. RE-Context needed 40 minutes for a goal model
of 100,000 variants. As shown in Fig. 6.16, the derivation of goal model vari-
ants and the inconsistency check scale quite well, whereas the identification
of core groups of variants has scaling limitations for large-scale goal mod-
els. The number of nodes is not a critical factor for scalability, whereas the
number of variants and the relations between contexts are crucial. Since our
proposed reasoning is done at design time, time is not a critical problem for
medium size goal models. However, we still need optimization of the algo-
rithms used to minimize the complexity when dealing with very large scale
goal models.

To deal with scalability problems for very large goal models, we might
benefit of two technique. The first is the iterative check the model during
construction. We can reason about consistency and conflicts while construct-
ing the goal model instead of treating the entire final goal model at once.
The second is by using divide and conquer techniques. Computing the core
groups of variants could be complex due to the high number of invoking SAT
solver. A way to reduce this complexity, is by dividing the model into parts,
reasoning about each part separately, and then combining the results. For
example, for an AND-decomposed goal, we can compute the core groups of
variants of each subgoal and then combine the results by a simple cartesian
product.

131

Size of goal m odel T_Derive T_Inc T_CG V
NN NV
18 3 62 3 5

30 12 79 18 10

42 108 273 53 288

49 540 582 195 3826

64 2565 1224 1351 23076

79 4275 2484 2009 59221

90 15300 7553 3926 100339

90 25560 10424 12006 1819126

150 104976 21861 63868 2348941

Legend
NN: the number of nodes in the processed m odel.
NV: the num ber of variants in the processed model.
T_Derive: time to derive all variants (in ms).
T_Inc: time to get all variants with inconsistent context.
T_CG V: time to get the core groups of variants.

Figure 6.16: Tabular and Graphical representation of the performance of RE-
Context.

6.4 Chapter Summary

In this chapter, we have applied our proposed modeling and reasoning frame-
work on two systems intended to operate in and reflect varying context. The
first one concerns a Smart Home for patients with dementia problems and
the second concerns a Museum-guide system. We have organized a lab ses-
sion for each of these two systems inviting a group of requirements analysts
to apply our framework. The sessions enabled us to evaluate our proposed
modeling and reasoning framework. We have reported the feedback we got
from the analysts and the observation we made during the sessions. This
included the limitations of our approach and the areas that need further re-
search. Moreover, we have applied our reasoning mechanisms on the model
developed during the sessions and reported the results. We have also showed
and discussed the performance of our developed automated support tool to
test its scalability for different goal model sizes.

132

Chapter 7

Conclusions and Future work

The advances of computing, sensors, and communication technology helped
the realization of new computing paradigms such as Ambient, Ubiquitous
and Pervasive computing. These paradigms weave computing systems with
a human’s living environment to transparently meet his needs [111]. A core
element of these emerging paradigms is a varying context. Context plays
a major role in requirements. It can influence the set of requirements rel-
evant to a system, what alternatives the system can adopt to meet these
requirements, and how good each alternative is.

Most RE research ignores the variable nature of software systems context
and an RE approach tailored to systems living in and reflecting varying
contexts is crucially needed. This thesis aimed to develop a RE modeling
and reasoning framework that reduces the gap between requirements and
context. It uses goal model for requirements analysis and provides constructs
to capture the relationships between goal models and context. In this way, we
answer the When/Where of requirements besides the Why that traditional
goal modeling answers.

7.1 Summary of The Thesis

In this thesis, we have proposed a RE framework for modeling and analyzing
requirements of systems living in and reflecting varying context. We adopted
Tropos goal model as an intentional ontology that captures the variant ways
to satisfy stakeholders’ goals and the qualities of each of such ways. Context
has influence on stakeholders’ goals and choices to meet such goals. Captur-
ing this influence is essential for a final software that meets user requirements
in multiple contexts. Software has to reflect humans’ adaptation to context,
when reaching their goals, in order to derive suitable functionalities to exe-
cute.

133

We suggested to weave between goal model variants and the context in
which the system may operate. To this end, we defined a set of variation
points at Tropos goal models. At these points, context may intervene to take
a decision about the variant to adopt. Specifying context at the variation
points avoids us the enumeration of the whole set of goal model variants
and the specification of context for each variant separately. Obviously, the
specification of context for enumerated variants is time consuming, hard,
and error-prone process and the use of variation points is a way to make
such process more efficient.

Context plays a major role in the derivation of applicable goal model
variants. It may be a factor in activating a variant, i.e., certain contexts
could make necessary to meet a set of goals and execute a set of tasks.
From the other hand, certain contexts may have to hold to make a variant
adoptable. In other words, adopting a certain way to reach the activated
goals and execute the activated tasks may require a certain context to hold.
The goodness of each variant, from the perspective of a quality measure
(softgoal), is not always absolute. It, however, can be context-dependent. In
certain contexts, a variant may be of good quality and in others may not be.

Context has been classified into three types: Activation, Required, and
Quality contexts. Each of these types is represented at different set of goal
model variation points. The activation context of a goal model variant is the
conjunction of contexts specified at the variation points of the types (i) Root
goals and (ii) AND-Decomposition. The required context of a goal model
variant is the conjunction of contexts at the variation points of the types (i)
OR-Decomposition, (ii) Means-end, and (iii) Actors dependency. The quality
contexts are those specified at the contributions link between the nodes of a
variant and softgoals.

The categorization of context into these categories (Activation, Required,
and Quality) allows us, amongst other things, to query the model and answer
various questions such as: in a certain context, are there any requirements to
meet? Is there any possible way to meet the activated requirements? what
is the quality of each of such ways. In other words, it allows for a systematic
derivation of the goal model variants in multiple contexts.

Context is analyzed through a hierarchial analysis using a set of modeling
constructs that we have proposed. This analysis allows for a systematic iden-
tification of the facts in the environment to monitor and the way these facts
are composed to judge if an analyzed context holds. The context analysis is
analogous to goal analysis. While goal analysis allows us to systematically
identify alternative sets of tasks that the system may execute to reach the an-
alyzed goals; context analysis allows us to systematically identify alternative
sets of facts to monitor in order to judge if a context holds.

134

A set of mechanisms for reasoning about contextual goal models have been
developed. The reasoning mechanisms proposed fall into two categories. The
first one is to detect errors the model may contain, i.e., the consistency of
the model. The errors we have been interested in are those concerning the
consistency of contexts specified for goal model variants and the conflicts
between goal model executable processes (tasks) manifested via conflicting
changes on context. The second category of reasoning mechanisms concerns
the systematic derivation of goal model variants. The derivation we have
been interested in is that for deriving the variants fitting to given context
and user priorities at runtime, and that for deriving, at design time, the
variants leading to a system developed with minimum costs and operable in
all analyzed contexts.

We have developed a prototype CASE tool, called RE-Context, that es-
tablishes the reasoning algorithms we have developed. We have formalized
contextual goal models using Datalog to generate the variants to goal satisfac-
tion. Datalog has been also used to perform several other utilities reasoning
such as generating the variants with conflicts between their tasks and gen-
erating the variants developed with minimum costs. We have transformed
context hierarchy into a boolean formula and used SAT-Solver to reason
about the consistency of contexts. We have developed techniques that ex-
ploits the nature of our model and gave guidelines to reduce the complexity
and enhance the scalability when reasoning about very large models.

We have applied our modeling and reasoning RE framework on two sys-
tems intended to operate in and reflect varying contexts. The first system is
a Smart Home for enhancing the life of people with dementia. The second is
a Museum-guide for assisting visitors of a museum and ensuring the visitors’
behaviors against the museum rules. The framework was evaluated based on
these two systems and the evaluation results have been discussed .

7.2 Generality of The Approach

Although we have proposed a RE framework that is goal-oriented, we remark
that most of the concepts and mechanisms included in this thesis are, poten-
tially, re-usable in and capable of being integrated with other RE modeling
approaches. In principle, models that allow for variants could be contex-
tualizable and our proposed framework has a chance of being adapted and
re-used for them. Moreover, the context analysis proposed in this thesis is
not necessarily restricted to contexts specified at goal models. Rather, it is
usable to analyze contexts regardless the variability model that we need to
contextualize. In this section, we briefly discuss a version of our modeling
framework applied on a variability model that is Feature Model [100, 99].

135

Feature models capture the commonality and variability of a family of
(software) products. The main building block of feature models is feature.
A feature represents a system characteristic at certain level of abstraction
from the perspective of certain stakeholder. For example, feature model may
include features understandable by non experts, or those understandable by
designers, programmers, and so on. A feature model captures the mandatory
and the optional features that a final product may include. It represents
a space of variant configurations of features towards establishing the root
feature. Each variant represents a possible software product variation.

7.2.1 Running example

Let us consider a software development company that wants to develop a
software for visitors in shopping centers. The software is going to communi-
cate with visitors through their PDAs to assist them when they need help, to
ensure the adherence of a shop rules, and to facilitate the obtaining of their
feedback about the quality of services/products offered at a shopping center.
The company wants to build the software in way that makes it systemati-
cally customizable to different users, PDAs, shopping centers and so on. For
this reason, the design has to consider multiple variants of the system-to-be,
multiple contexts in which the system may operate, and the relation between
variants and context.

The functionality of giving announcement to visitors concerning parking
rules, such as parking in inappropriate places or parking when closing time
is approaching, is needed for those shopping centers that have dedicated
parking places. Alarming visitors about parking in an appropriate place is
critical when there are, usually, few free places for staff/handicaps to park
in. Otherwise this functionality is not so critical. Notifying visitors about
closing time approaching is needed if the parking place closes at certain time.
Such notification is not needed if there is no closing time restriction for the
parking place dedicated to the shopping center and the parking is opened all
the time.

The system aims to enable visitors for searching and getting explanations
about products in a shopping center. Such features are the core of the system
and should be applicable for any shopping center. Searching a product can
be done by typing the code of the product if the products of the shopping
center are categorized and coded. Otherwise, searching the product can be
done interactively via clicking, if the used PDA has a touch screen, or via
voice recognition when visitor is able to train the system on his voice. Giving
explanation about searched products can be done via video presentation or
via images and texts.

136

Obtaining visitors’ feedback is a feature that some shopping centers may
ask for. Obtaining feedbacks can be done via different interaction methods.
A visitor can leave a voice message using his PDA as a recorder. A visitor can
be shown an option box to rank a service he used or a product he purchased.
Alternatively, the visitor may type his feedback as a text in case his PDA
has comfortable keyboard.

7.2.2 Contextual feature model

Following principles similar to those explained in this thesis, we may enrich
feature models with the context dimension. Enriching feature models with an
explicit notion of context allows us to systematically derive product variants
for multiple contexts. However, context is only one criteria to reduce the
space of variants that a feature model represents. It reduces the space of
variants towards more systematic decision about what features to support.
Other criteria, such as costs, may help us to systematically reduce the space
alternative even more. Moreover, context may allow us to answer several
important questions such as: what are the possible variants of a product in
a given context? what are the features that are mandatory, not needed, or
optional in a given context?.

The model shown in Fig. 7.1 represents a classical feature model where
context is not represented explicitly. The model reflects the PDA shop as-
sistant system described in the previous section. It represents the possible
configurations of the system in terms of mandatory, optional, alternative fea-
tures and their possible composition to establish the root feature “PDA shop
assistant”.

OR

PDA Shop Assistant

Search

Present Information

Feed back obtaining

click based voice recognition

Interactive Product code typing

XOR

Video presentaton Image & text

XOR

Voice
message

Option box
ranking

Text message
typing

Parking
management

Closing timeParking in
inappropriate place

OR

enquiries

OR

XOR

Optional

Mandatory

Or

Alternatives

Figure 7.1: Shops assistant Feature Model.

137

The feature model shown in Fig. 7.1 does not contain an explicit notion of
the context. This could make it, especially for systems intended to operate in
varying contexts, less expressive and make the process of product derivation
less systematic. For example, the feature “parking management” may be use-
less in a context like “the shop does not have a dedicated parking place”. The
feature “alarm about parking in inappropriate place” may become optional
in a context like “there are often a plenty of places to park in”. The feature
“alarm about closing time” become useless if the context “the parking place
does not close” holds. Moreover, context may influence the adoptability of
each sub-feature in OR and XOR decomposition. The feature “click-based” is
adoptable if the context “user’s PDA has a touch screen”. Figure 7.2 shows
a contextual feature model that captures the relation between feature model
variants and context. We give the description of the contexts annotated on
it in Table. 7.1.

OR

PDA Shop Assistant

C1

Search

Present Information

Feed back obtaining

click based voice recognition

Interactive Product code typing

XOR

Video presentaton Image & text

XOR

Voice message

Option box
ranking

Text message
typing

Parking
management

Closing timeParking in
inappropriate place

OR
C2 C3 C4

C5

C6 C7

C8

enquiries

Figure 7.2: Contextual Feature Model example.

Our proposed context analysis can be similarly used to analyze contexts
specified at a contextual feature model. The constructs we have proposed are
not restricted to goal model as we have already mentioned. The reasoning
for context consistency, the derivation of variants for a given context, and the
minimum cost variants derivation are reusable in an almost straightforward
way. The reasoning for conflicts needs the enrichment of feature model with
parallelism and sequence operators and the effect of leaf features on the
objects in the system environment. The derivation of variants that reflect the
stakeholder priorities may be doable by enriching feature models with more
modeling constructs such as softgoals. However, although this is theoretically
feasible, further research is needed to establish it.

138

Description
C1 the shop has a dedicated parking place
C2 the number of people who use the parking place is often high

and staff/handicaps may not easily find parking place
C3 there is often free parking places
C4 the parking place closes at certain hours
C5 the products in the shop are categorized and given codes
C6 the PDA used has touch screen
C7 user has good expertise in new technology and knows how to

train system on his voice and shop is, usually, not noisy
C8 PDA has comfortable keyboard

Table 7.1: Fig. 7.2 contexts descriptions.

7.3 Towards a Unified Framework for Contextual Require-
ments

In emerging computing paradigms, such as pervasive, ubiquitous, and ambi-
ent computing, context is a main factor in determining what requirements
to meet, what options are possible to meet them, and how good each option
is. This impact of context is on both the users and the system. From the
other hand, the system execution may involve interaction with context. This
interaction may cause changes in the context in order to meet requirements.
We have studied such mutual influence between context and requirements
at the goal level as an early and essential step toward system operating in
and reflecting varying contexts. However, recent works have also addressed
relatively similar problem at different abstraction levels using different RE
approaches. Here we resume our proposed contextual goal model besides two
other works that treated the role of context in requirements:

• Contextual goal models: the goal-based analysis elicits different al-
ternatives to satisfy a goal, but it does not explicitly specify which
alternative should be used for a particular case or context. Supporting
alternatives without specifying when to follow each of them raises the
question “why does the system support several alternatives”. On the
other hand, the consideration of different contexts that the software
has to adapt to without supporting alternatives leads to the question
“what can the system do if the context changes?”. Our proposed con-
textual goal model aims to reduce the gap between the variability in
requirements and that in the context. Context is a main factor in de-

139

ciding the requirements to satisfy, how and how well to satisfy them.
Context influences the requirements early at the goal level, as it influ-
ences human intentions and choices that are a main source of software
requirements.

• Contextual feature models: features are characteristics of the sys-
tem, and feature model represents the variability of these characteristics
for configuring a family of software products. Context influences the
set of features to be included in a software product variant. Consid-
ering context at the design time can model a feature as mandatory or
optional, whilst at the runtime context needs to be considered when
switching to an alternative feature. As we have shown in the last sec-
tion, feature models can be enriched with context towards more sys-
tematic derivation of software variants. A recent work by Hartmann et
al. [101] studies the relation between context and features to support
the engineering of software supply chains. This work is in line with our
work on the relation between context and variability at the goal level
and our last section discussion.

• Monitoring and switching problems in context: Salifu et al. [97]
apply Problem Frames approach to analyze different specifications that
can satisfy the core requirements, under different contexts. The rela-
tionship between contexts, requirements, and the specification (ma-
chine) are represented by a problem description. Alternative problem
descriptions corresponding to different contexts are elicited to identify
variant problems. Variant problems are variations of the original prob-
lem adapted for a particular context. The specifications to the variant
problem are then composed into a context-aware system. A change in
context that violates the requirement triggers a switching action to an
alternative specification for restoring the satisfaction of requirements.
Here there is a clear distinction between the system and the world per-
ceived as its context. The way that the system modifies the context is
clearly described.

7.3.1 Integrated model for contextual requirements

Each of the resumed RE approaches covers different aspects of the relation-
ship between requirements and contexts. Goal models capture stakeholder
needs and intentions [10] at a time when variability of features in a product
line-to-be has not been conceptualized. Relating goals to solution-oriented
features leads to a requirement traceability problem [102].

140

Problem Frames approach makes explicit the distinction between the Re-
quirements (R), the World (W), and the Specification (S). They are related
by the entailment relation W, S � R. Problems Frames approach captures
such a structural relation of a problem more explicitly than both goal models
and feature models [112]. However, the Problem Frames approach has the
notion of a “variant problem”, but it does not natively support a hierarchy
of variability as goal and feature modeling approaches do.

Besides its role of giving a rationale to features in the solution space and
constraining, at the intentional level, the variability in problem frames, goal
modeling can also represent quality requirements as softgoals that cannot
have a clear-cut satisfaction criterion. The different requirements alterna-
tives may contribute differently to reaching these softgoals. Moreover, user
preferences over alternatives might be expressed by prioritizing the quality
measures, i.e. softgoals [62, 92]. In Fig 7.3, we summarize the contribution
that each of these approaches can provide to the others, and their relations
with context.

XOR OR

Context

and

-

+
-+

Variability rationale

at the intentional

level and quality

measures for

assessing variants

Variability rationale at the system

characteristics level

Clear problem

structure that

allows for more

detailed analysis

of the goal level

variability

Clear problem structure that allows for more

detailed analysis of the system level variability

Context is observed and

actuated by the machine

Context influences the selection of

products to derive

Context influences

the adoptability of

goal satisfaction

alternatives & their

 qualities.

Justifying features by

stakeholder

intentions and

relating them to

quality measures

Traceability of

goals at the

system level

Problem Fram es (PF)

G oal M odels

Feature M odels

d:{opened. closed}

b:{turn on, turn off}

a

b c

d

Figure 7.3: Contextual requirements: unified framework

7.3.2 Benefitting from the integration: an example

The integration of the three mentioned approaches has the potential for bet-
ter expression of and reasoning about the requirements of systems living in
and reflecting varying contexts. For instance such problems as conflicts be-
tween the system requirements on sharing the context objects can be detected

141

and resolved early on. To illustrate this, in Fig 7.4, we sketch an example of
a “smart home” an automated adaptable living environment that supports
patients with dementia as we explained in Chapter 4.

In this sketch the system might need to communicate with the caregiver
and patients’ relatives (see goal model in Fig.7.4a). Since such communi-
cation can be required for different goals that are not alternatives, it may
happen at the same time and for different intentions (e.g., to manage the
patient’s anxiety, and to arrange a social meeting). One way to establish the
communication is by making a phone call (shown in Fig.7.4b). If phone is to
be used for all communications, this may cause a conflict on this shared re-
source. Such a conflict can be easily detected when problem frames are used
to depict the interaction between the system and its environment (Fig.7.4c).

Care for patient

Ensure health
Involve patient in

social life

and

and

less
disturbance

C1

C2

C3

--+

Know patient
locationManage anxiety

or
Attend

entertainment
events

Meet relatives

and

Notify relativesBook meeting
place

and

Calm down the
patientNotify caregiver

or

Track patientNotify relatives

C1= patient is exhibiting anxiety symptoms at home
C2= patient is outside for long time unexpectedly

OR

Search

Email SMS

Offline Online
OR

Public
speakers

Phone
call

XOR

aa: RN!{dial(relativeNumber)}
bb: RN!{Notify}
cc:Phone!{idle, dialing, ringing, busy,
connected}
dd:R!{Notified, Unnotified}

Caregiver notifier

Relative notifier

Caregiver

Phone

Relative

Notify
caregiver

Notify
relative

C3= (9 AM < Time < 11 PM)

a:CN!{dial(caregiverNumber)}
b:CN!{Notify}
c:Phone!{idle, dialing, ringing, busy,
connected}
d:CG!{Notified, Unnotified}

A: Goal Model

B: Feature Model C: Problem Frames

Figure 7.4: Modeling requirements via the unified framework.

Based on this example, we show how each of the three discussed ap-
proaches contributes to detection and resolution of such a conflict.

• Problem frames have a clear distinction between the physical environ-
ment elements (e.g., phone) and the way the system interacts with

142

them. This clear distinction helps the detection of potential conflicts
on a shared element (i.e. exclusive use of the phone). Worth noting
is that in order to ascertain that sharing of a resource does lead to a
conflict, we need to model the behavior of the shared resource.

• Feature models support representation of system alternative solutions
that may help to avoid the detected conflict (simultaneous use of phone
to contact the caregiver and patient’s relatives). E.g., relative could
normally be contacted via an SMS instead of establishing a voice call.

• Goal model holds the upper level goals that the system alternatives
of the feature model are meant to satisfy. Knowing the goals behind
each feature is essential to get better conflict resolution. E.g., if the
goal of calling a caregiver is to save the patient from extreme anxiety,
and calling relative is for informing him/her about the next scheduled
meeting, then the resolution policy could be postponing the call to the
relatives.

• Context can determine if a conflict might ever happen. For instance,
if the call to the relatives is made to find out if the patient is visiting
them in the context "the patient is away from Smart Home for a long
time", and the call to caregiver is to treat the patient in the context
"the patient is exhibiting anxious behavior inside the home", then there
will be no conflict as the two contexts stimulating the two calls could
never hold together (we assume that only one patient lives in each smart
home). Moreover, context might decide the adoptability of alternatives.
E.g. if issuing a public call for a caregiver through the healthcare
institute speakers is adoptable only during the day, then this alternative
might not be always possible as a way to resolve the conflict on using
the phone.

The integrated information provided by the three approaches is invaluable
in customizing a software. For instance, knowing the details of goals for which
the communication is needed, we can choose to always use email/SMS for
meeting arrangement, always use public speakers for calling caregivers at day
time, and always prioritize calls to caregiver in the night time over that calls
to relatives.

7.4 Future Work

For the future work, we are interested in addressing the limitations of our
approach mentioned earlier (see Chapter 6) and other problems such as:

143

• Thorough reasoning about harmful requirements interplay man-
ifested on context: the mutual influence between context and sys-
tem requirements necessitates an analysis to discover cases in which
this influence is problematic. In this thesis, we addressed only one kind
of such problems that concerned the object sharing conflicts. Other
problems may arise because of such a mutual influence. One of the
problems is the cyclic activation of requirements as a consequence of
the changes on context the meeting of these requirements leads to. An-
other problems could be the denial of adoptability of some alternatives
as a consequence of context changes the other alternatives lead to.

Example 19. in a smart home, the system may have to keep two goals
satisfied: entertaining habitant and refreshing the air inside home. If
the humidity level inside home is above a certain level, the smart home
may open the windows to circulate air. This action will, at daytime,
increase the light level inside. If, at that moment, the smart home
system is showing an entertaining program on TV, decreasing the light
level is desirable and the system would close the windows. The smart
home will, in a cyclic way, close and open the windows trying to meet
the two goals which is obviously problematic. Detecting such harmful
interplay, the goals behind them, the other alternatives the system has,
the reconciliation between quality and operability, need an analysis
wider than the one we have developed in this thesis.

• Reasoning about context and monitoring requirements: the
system at runtime should collect different environmental data that are
needed to verify facts and judge if certain contexts hold. Upon moni-
toring context the system needs to adapt to it by adopting a suitable
requirements variant. This raises new category of requirements that
can be called Monitoring Requirements: what data the system has to
capture of its environment and the way these data are logically com-
posed to describe high level contexts. Monitoring requirements them-
selves need an analysis that is as complex as the one needed for the
functional and non-functional requirements. In this thesis, we have pro-
vided a reasoning about the consistency of context specification. An
example of other important reasoning mechanisms to develop is that of
finding the set of information to monitor (monitoring alternative) with
less costs (in time and monitoring equipments) that leads to verify a
given context.

Example 20. in a museum-guide mobile information system, the
system may give explanation about a piece of art if the visitor is inside

144

the room of the piece and is interested in that piece. As a part of the
process of showing information, the system may readjust the screen
settings into night mode if the level of light is low. Consequently, the
functionality of readjusting the screen into the night mode is accumu-
latively preconditioned by the context C = C1 ∧ C2 ∧ C3 where C1=
“visitor is in the piece of art room”, C2= “he is interested in the piece of
art”, C3= “the light level at visitor’s location is low”. If in one museum,
the light level in the pieces of arts rooms is low, to conserve them or for
decorating reasons, then C1 → C3 and C can be reduced into C1 ∧ C2.
Therefore, there is no need to install light sensors inside the rooms.
Suppose that another functionality is preconditioned by C‘ = C1 ∨C3,
then under the same assumption C1 → C3 we can reduce C‘ into C3.

• Managing viewpoints of context: besides the potential inconsis-
tency between different stakeholders specifications of requirements, that
is well studied in the literature (e.g., [113]), the context specification
itself might be debatable. We need to manage multiple perspectives
(viewpoints) of context since different stakeholders might specify con-
text differently or even in contradictory ways. Categorizing, detecting,
and managing, such differences in viewpoints are necessary to have well
specified requirements.

Example 21. considering a context like “it is good weather outside”
as a precondition of opening the windows to circulate air inside home,
two stakeholder may have different specification for it. One stakeholder
may say “weather is good if the temperature is above 15 degrees and
it is not windy”, another may say “weather is good if it is sunny and
not windy”. Considering another context like “tourist is interested in
attending a cultural event”, one stakeholder may say “he is interested
if the event conveys new information to the tourist”, another may say
“if the event presents something related to the tourist’s culture”. Man-
aging these viewpoints in context specification and inventing policies
to reconcile between them is a challenge to be addressed in our future
research.

• Lifelong adaptation to context: the system has to monitor context
at runtime and adapt to it. However, it is desired that the system has a
degree of autonomy to evolve over the time and decide how to enhance
the way it satisfies user’s requirements since not all decisions can be
fully specified by designers at design time. In other words, the system
after operating in one environment for a period of time, has to know

145

what requirements and what alternatives fit better to this particular
environment.

Example 22. considering a system for managing promotion of prod-
ucts inside shopping malls, for some people/cultures the gender of sales
staff is a factor in the success of the promotion in person. We may de-
sign a system that has the ability to continually adapt itself to the
context it operates in. Deciding the gender of sales staff to select for
promoting a certain product for certain visitor’s profile in a certain so-
ciety is a decision hard to be taken at one step. Moreover, the same
society may see changes in traditions and attitude over time. This mo-
tivates us to enable the system to support a lifelong contextualization
ability.

• Context and security requirements: most of security requirements
approaches (such as Secure Tropos [114]) deal with security require-
ments that are context-independent. In some cases, context can influ-
ence security requirements and we would need to do research in context-
dependent security requirements.

Example 23. taking the museum-guide system that we studied in
this thesis, in an emergency situation (such as fire), a visitor will allow
a rescue team to know his location and other data needed to guide him
to a safe area, while in a normal situation a visitor would have more
restricted security concerns.

• Improving the automated support: as we mentioned earlier, the
automated support developed in this thesis needs optimization. More-
over, other activities that are still manually done needs further au-
tomation. For example, in this thesis we presumed that the relations
between world predicates formulae i.e., contradictions and implications,
are manually given by the analysts. These relations are important to
check the consistency of, and the entailments between, the contexts of
goal model variants. Moreover, such relations are used as assumptions
to optimize the monitoring requirements as we have described in a pre-
vious future work point. Defining these relations for small size systems
could be doable manually. For larger systems, this manual specifica-
tion could be error-prone and time consuming. We aim at facilitating
this task by automatic discovery of potential relations between contexts
and deriving new relations based on the manually specified ones. In
other words, we aim to minimize the effort of analysts and ensure the
correctness of contexts relations themselves.

146

Bibliography

[1] A. Finkelstein and A. Savigni. A framework for requirements engineering for context-
aware services. In Proceedings of the 1st International Workshop From Software
Requirements to Architectures (STRAW 01), 2001.

[2] J. Kramer and J. Magee. Self-managed systems: an architectural challenge. Future
of Software Engineering, 2007. FOSE’07, pages 259–268, 2007.

[3] P. Oreizy, N. Medvidovic, and R. N. Taylor. Runtime software adaptation: Frame-
work, approaches, and styles. In Companion of the 30th international Conference
on Software Engineering (ICSE Companion ’08), pages 899–910, 2008.

[4] A. Schmidt. Implicit human computer interaction through context. Personal and
Ubiquitous Computing, 4(2):191–199, 2000.

[5] S.B. Mokhtar, D. Preuveneers, N. Georgantas, V. Issarny, and Y. Berbers. Easy:
Efficient semantic service discovery in pervasive computing environments with qos
and context support. The Journal of Systems & Software, 81(5):785–808, 2008.

[6] M. Jackson. Problem Frames: Analyzing and structuring software development prob-
lems. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2000.

[7] P. Zave and M. Jackson. Four dark corners of requirements engineering. ACM
Transactions on Software Engineering and Methodology (TOSEM), 6(1):1–30, 1997.

[8] I. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the core ontology and problem
in requirements engineering. In Proceedings of the 2008 16th IEEE International
Requirements Engineering Conference, pages 71–80. IEEE Computer Society, 2008.

[9] A. Van Lamsweerde et al. Goal-oriented requirements engineering: A guided tour.
Proceedings of the Fifth IEEE International Symposium on Requirements Engineer-
ing RE 01, page 249, 2001.

[10] E. Yu and J. Mylopoulos. Why goal-oriented requirements engineering. In Proceed-
ings of the 4th International Workshop on Requirements Engineering: Foundations
of Software Quality, pages 15–22, 1998.

[11] E.S.K. Yu. Modelling strategic relationships for process reengineering. Ph.D. Thesis,
University of Toronto, 1995.

[12] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems, 8(3):203–236, 2004.

[13] J. Castro, M. Kolp, and J. Mylopoulos. Towards requirements-driven information
systems engineering: The tropos project. Information Systems, 27(6):365–389, 2002.

147

[14] A. Dardenne, A. Van Lamsweerde, and S. Fickas. Goal-directed requirements ac-
quisition. Sci. Comput. Program., 20(1-2):3–50, 1993.

[15] J. Mylopoulos, L. Chung, and E. Yu. From object-oriented to goal-oriented require-
ments analysis. Commun. ACM, 42(1):31–37, 1999.

[16] S. Fickas and M.S. Feather. Requirements monitoring in dynamic environments. In
Proceedings of the Second IEEE International Symposium on Requirements Engi-
neering, page 140. IEEE Computer Society., 1995.

[17] D. Sykes, W. Heaven, J. Magee, and J. Kramer. From goals to components: a
combined approach to self-management. In Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-managing systems, pages
1–8, 2008.

[18] K. Yue. What does it mean to say that a specification is complete? In Proceedings of
the Fourth International Workshop on Software Specification and Design IWSSD-4,
1987.

[19] A. Van Lamsweerde. Requirements engineering in the year 00: a research per-
spective. Proceedings of the 22nd international conference on Software engineering
(ICSE 00), pages 5–19, 2000.

[20] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and JC Burgelman. Scenarios
for ambient intelligence in 2010. The IST Advisory Group (ISTAG).

[21] PL Emiliani and C. Stephanidis. Universal access to ambient intelligence environ-
ments: Opportunities and challenges for people with disabilities. IBM Journal of
Research and Development, 44(3):605, 2005.

[22] D. Saha and A. Mukherjee. Pervasive computing: a paradigm for the 21st century.
Computer, 36(3):25–31, 2003.

[23] M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Personal
Communications, page 11, 2001.

[24] G.D. Abowd and E.D. Mynatt. Charting past, present, and future research in ubiq-
uitous computing. ACM Transactions on Computer-Human Interaction (TOCHI),
7(1):29–58, 2000.

[25] M. Weiser. Some computer science issues in ubiquitous computing. Commun. ACM,
36(7):75–84, 1993.

[26] G.D. Abowd, M. Ebling, G. Hung, H. Lei, and H. Gellersen. Context-aware com-
puting. IEEE Pervasive Computing, 1(3):22–23, 2002.

[27] P. Dourish. Seeking a foundation for context-aware computing. Human-Computer
Interaction, 16(2):229–241, 2001.

[28] J. Hong, E. Suh, and S.J. Kim. Context-aware systems: A literature review and
classification. Expert Systems with Applications, 36(4):8509–8522, 2009.

[29] P. Brezillon. Context in Artificial Intelligence: I. A survey of the literature. Com-
puters and artificial intelligence, 18:321–340, 1999.

[30] B. Schilit, N. Adams, R. Want, et al. Context-aware computing applications. Pro-
ceedings of the workshop on mobile computing systems and applications, pages 85–90,
1994.

148

[31] B.N. Schilit and M.M. Theimer. Disseminating active map information to mobile
hosts. IEEE network, 8(5):22–32, 1994.

[32] A.K. Dey. Understanding and using context. Personal and ubiquitous computing,
5(1):4–7, 2001.

[33] A.K. Dey, G.D. Abowd, and D. Salber. A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications. Hum.-Comput.
Interact., 16(2):97–166, 2001.

[34] G. Chen and D. Kotz. A survey of context-aware mobile computing research. Tech-
nical report, Dartmouth, TR2000-381, 2000.

[35] S.S. Yau, Y. Wang, and F. Karim. Development of situation-aware application
software for ubiquitous computing environments. In Proceedings of the 26th Annual
International Computer Software and Applications Conference. COMPSAC 2002,
pages 233–238, 2002.

[36] S.S. Yau and F. Karim. Reconfigurable context-sensitive middleware for ADS ap-
plications in mobile ad hoc network environments. Proceedings of the International
Symposium on Autonomous Decentralized Systems (ISADS 2001), pages 319–326,
2001.

[37] J. Krogstie, K. Lyytinen, A.L. Opdahl, B. Pernici, K. Siau, and K. Smolander.
Research areas and challenges for mobile information systems. International Journal
of Mobile Communications, 2(3):220–234, 2004.

[38] J. Krogstie. Requirements engineering for mobile information systems. In Proceed-
ings of the Seventh International Workshop on Requirements Engineering: Founda-
tions for Software Quality (REFSQ’01), 2001.

[39] K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling Context Information in
Pervasive Computing Systems. In Proceedings of the First International Conference
on Pervasive Computing, page 180, 2002.

[40] A. Schmidt, K.A. Aidoo, A. Takaluoma, U. Tuomela, K. Van Laerhoven, and
W. Van de Velde. Advanced interaction in context. Proceedings of the 1st interna-
tional symposium on Handheld and Ubiquitous Computing, pages 89–101, 1999.

[41] A. Schmidt, M. Beigl, and H.W. Gellersen. There is more to context than location.
Computers & Graphics, 23(6):893–901, 1999.

[42] W.N. Schilit. A System Architecture for Context-Aware Mobile Computing. PhD
thesis, Columbia University, 1995.

[43] A. Zimmermann, A. Lorenz, and R. Oppermann. An operational definition of con-
text. In the Proceedings of the Sixth International and Interdisciplinary Conference
on Modeling and Using Context (CONTEXT 07), LNCS 4635:558–572, 2007.

[44] M. Rosemann, J.C. Recker, C. Flender, and P.D. Ansell. Understanding context-
awareness in business process design. In Proceedings of the 17th Australasian Con-
ference on Information Systems, 2006.

[45] M. Rosemann, J.C. Recker, and C. Flender. Contextualisation of business processes.
International Journal of Business Process Integration and Management, 3(1):47–60,
2008.

149

[46] T. Strang and C. Linnhoff-Popien. A Context Modeling Survey. In In the Proceed-
ings of the Workshop on Advanced Context Modelling, Reasoning and Management,
(UbiComp 2004), 2004.

[47] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-aware systems.
International Journal of Ad Hoc and Ubiquitous Computing, 2(4):263–277, 2007.

[48] K. Henricksen and J. Indulska. A software engineering framework for context-aware
pervasive computing. In Proceedings of the Second IEEE International Conference
on Pervasive Computing and Communications (PerCom 04), page 77, 2004.

[49] T.A. Halpin. Information modeling and relational databases. Morgan Kaufmann
Publishers, 2001.

[50] H.W. Xiao, Q.Z. Da, G. Tao, and K.P. Hung. Ontology based context modeling and
reasoning using owl. In In the Proceedings of the Second IEEE Annual Conference
on Pervasive Computing and Communications Workshops (PERCOMW 04), pages
18–22. IEEE Computer Society, 2004.

[51] T. Gu, X.H. Wang, H.K. Pung, and D.Q. Zhang. An ontology-based context model
in intelligent environments. Proceedings of Communication Networks and Distributed
Systems Modeling and Simulation Conference, 2004.

[52] S. Bechhofer, F. Van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F.
Patel-Schneider, L.A. Stein, et al. OWL web ontology language reference. W3C
recommendation, 10:2006–01, 2004.

[53] H. Chen, T. Finin, and A. Joshi. Using OWL in a pervasive computing broker. In
the Proceeding of the 3rd Workshop on Ontologies in Agent Systems, page 9, 2003.

[54] C. Simons. CMP: a UML context modeling profile for mobile distributed systems.
Hawaii International Conference on System Sciences, 40(10):4848, 2007.

[55] Object management group. OCL 2.0 Specification, ptc/2005-06-06.

[56] S.S. Yau and J. Liu. Hierarchical situation modeling and reasoning for pervasive
computing. Proceedings of 3rd Workshop on Software Technologies for Future Em-
bedded and Ubiquitous Systems (SEUS), pages 5–10, 2006.

[57] R. Darimont and A. van Lamsweerde. Formal refinement patterns for goal-driven
requirements elaboration. SIGSOFT Softw. Eng. Notes, 21(6):179–190, 1996.

[58] A.I. Anton. Goal-based requirements analysis. Proceedings of the Second Interna-
tional Conference on Requirements Engineering (RE 96), pages 136–144, 1996.

[59] V. Plihon, J. Ralyté, A. Benjamen, N.A.M. Maiden, A. Sutcliffe, E. Dubois, and
P. Heymans. A reuse-oriented approach for the construction of scenario based meth-
ods. In the Proceedings of the International Conference on Software Process (ICSP
98), pages 14–17, 1998.

[60] C. Rolland, C. Souveyet, and C.B. Achour. Guiding goal modeling using scenarios.
IEEE Transactions on Software Engineering, 24(12):1055–1071, 1998.

[61] K. Pohl and P. Haumer. Modelling contextual information about scenarios. Pro-
ceedings of the Third International Workshop on Requirements Engineering: Foun-
dations of Software Quality REFSQ, 97:187–204, 1997.

150

[62] B. Hui, S. Liaskos, and J. Mylopoulos. Requirements analysis for customizable soft-
ware: A goals-skills-preferences framework. In Proceedings of the 11th IEEE Inter-
national Conference on Requirements Engineering, pages 117–126. IEEE Computer
Society, 2003.

[63] A.I. Anton. Goal identification and refinement in the specification of software-based
information systems. PhD thesis, Georgia Institute of Technology Atlanta, GA,
USA, 1997.

[64] A. Van Lamsweerde, R. Darimont, and P. Massonet. Goal-directed elaboration of
requirements for a meeting scheduler: problems and lessons learnt. Proceedings of
the Second IEEE International Symposium on Requirements Engineering, page 194,
1995.

[65] C. Rolland, C. Souveyet, and C.B. Achour. Guiding goal modeling using scenarios.
IEEE Transaction on Software Engineering, 24(12):1055, 1998.

[66] A. Cockburn. Writing Effective Use Cases. Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 2000.

[67] L.L. Constantine and L.A.D. Lockwood. Software for use. Addison-Wesley Reading,
MA, 1999.

[68] L. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and J. Mylopoulos. On goal-based
variability acquisition and analysis. In Proceedings of the 14th IEEE International
Requirements Engineering Conference (RE’06), pages 76–85, 2006.

[69] A. Lapouchnian. Goal-oriented requirements engineering: An overview of the current
research. Technical report, Toronto University, 2005.

[70] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modeling security require-
ments through ownership, permission and delegation. Proceedings of the 13th IEEE
International Requirements Engineering Conference (RE’05), 5:167–176, 2005.

[71] P. Giorgini, F. Massacci, J. Mtlopoulos, and N. Zannone. Modeling social and
individual trust in requirements engineering methodologies. In Proceedings of iTrust
05, pages 161–176, 2005.

[72] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Detecting conflicts of in-
terest. Proceedings of the 14th IEEE International Requirements Engineering Con-
ference (RE’06), 6:315–318, 2006.

[73] Y. Asnar and P. Giorgini. Ensuring dependability in socio-technical system by risk
analysis. Proceedings of the 6th European Dependable Computing Conference, 2006.

[74] Y. Asnar, P. Giorgini, F. Massacci, and N. Zannone. From trust to dependability
through risk analysis. Proceedings of the 2nd International Conference on AReS.,
2007.

[75] Y. Asnar, P. Giorgini, F. Massacci, A. Saidane, R. Bonato, V. Meduri, and C. Ric-
cucci. Secure and dependable patterns in organizations: An empirical approach.
Proceedings of the 15th IEEE International Requirements Engineering Conference
(RE 07), pages 287–292, 2007.

[76] V. Bryl, F. Massacci, J. Mylopoulos, and N. Zannone. Designing security require-
ments models through planning. In the proceeding of the 18th Conference on Ad-
vanced Information Systems Engineering (CAiSE 06), 4001:33, 2006.

151

[77] V. Bryl, P. Giorgini, and J. Mylopoulos. Designing cooperative is: Exploring and
evaluating alternatives. In Proceedings of the 14th International Conference on Co-
operative Information Systems (CoopIS 06), 4275:533–550, 2006.

[78] V. Bryl and P. Giorgini. Self-configuring socio-technical systems: Redesign at run-
time. In Proceedings of International Conference on Self-Organization and Au-
tonomous Systems in Computing and Communications (SOAS 06), 2006.

[79] A. Siena. Engineering normative requirements. Proceedings of the First International
Conference on Research Challenges in Information Science, RCIS, pages 439–444,
2007.

[80] A. Siena, N. Maiden, J. Lockerbie, K. Karlsen, A. Perini, and A. Susi. Exploring
the effectiveness of normative i* modelling: Results from a case study on food chain
traceability. In the Proceedings of the 20th International Conference on Advanced
Information Systems Engineering (CAiSE 08), 2008.

[81] A. Siena, J. Mylopoulos, A. Perini, and A. Susi. Designing law-compliant software
requirements. In the proceedings of the 28th International Conference on Conceptual
Modeling (ER 09), 2009.

[82] D.C. Nguyen, A. Perini, and P. Tonella. A goal-oriented software testing methodol-
ogy. In the proceedings of the 8th International Workshop on Agent-Oriented Soft-
ware Engineering, AOSE 07, LNCS 4951:58–72, 2008.

[83] C.D. Nguyen, A. Perini, and P. Tonella. Automated continuous testing of multi-
agent systems. The fifth European Workshop on Multi-Agent Systems, 2007.

[84] C.D. Nguyen, A. Perini, and P. Tonella. Ontology-based test generation for mul-
tiagent systems. In the Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems (AAMAS 08), pages 1315–1320, 2008.

[85] A. K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Modeling and reasoning
about service-oriented applications via goals and commitments. In Proceedings of
the 22nd International Conference on Advanced Information Systems Engineering
(CAiSE), 2010.

[86] A. K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Reasoning about agents
and protocols via goals and commitments. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS)., 2010.

[87] M.P. Singh. Agent communication languages: Rethinking the principles. IEEE
computer, 31(12):40–47, 1998.

[88] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. High variability design for
software agents: Extending tropos. ACM Transactions on Autonomous and Adaptive
Systems (TAAS), 2(4):16, 2007.

[89] M. Morandini, L. Penserini, and A. Perini. Towards goal-oriented development of
self-adaptive systems. In the proceedings of the 2008 Workshop on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS 08), pages 9–16, 2008.

[90] M. Morandini, L. Penserini, and A. Perini. Modelling self-adaptivity: A goal-
oriented approach. In the Proceedings of the 2nd IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, 2008. short paper.

152

[91] M. Morandini, F. Migeon, M. Gleizes, C. Maurel, L. Penserini, and A. Perini. A
goal-oriented approach for modelling self-organising mas. In the Proceedings of the
10th International Workshop on Engineering Societies in the Agents’ World (ESAW
2009), 5881, November 2009.

[92] Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. An architecture for
requirements-driven self-reconfiguration. In In the Proceedings of the 21st Inter-
national Conference on Advanced Information Systems Engineering (CAiSE 09),
pages 246–260, 2009.

[93] F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Software self-reconfiguration: a BDI-
based approach. In the Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems, 2:1159–1160, 2009.

[94] S. Liaskos, L. Jiang, A. Lapouchnian, Y. Wang, Y. Yu, J.C.S. do Prado Leite, and
J. Mylopoulos. Exploring the Dimensions of Variability: a Requirements Engineering
Perspective. In the proceedings of the First International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS 07), page 17, 2007.

[95] S. Liaskos, S. McIlraith, and J. Mylopoulos. Representing and reasoning with pref-
erence requirements using goals. Technical report, Dept. of Computer Science, Uni-
versity of Toronto, 2006. ftp://ftp.cs.toronto.edu/pub/reports/csrg/542.

[96] M. Jackson. Problem Frames: Analyzing and structuring software development prob-
lems. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2000.

[97] M. Salifu, Y. Yu, and B. Nuseibeh. Specifying monitoring and switching problems in
context. In In the Proceedings of the 15th International Conference on Requirements
Engineering (RE 07), pages 211–220, 2007.

[98] M. Salifu, B. Nuseibeh, L. Rapanotti, and T. Tun. Using problem descriptions
to represent variability for context-aware applications. In the proceedings of the
First International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS 07), 2007.

[99] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, 2005.

[100] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moon-
hang Huh. Form: A feature-oriented reuse method with domain-specific reference
architectures. Ann. Softw. Eng., 5:143–168, 1998.

[101] H. Hartmann and T. Trew. Using feature diagrams with context variability to model
multiple product lines for software supply chains. In the Proceedings of the 2008 12th
International Software Product Line Conference (SPLC 08), pages 12–21, 2008.

[102] Y. Yu, J.C.S. do Prado Leite, A. Lapouchnian, and J. Mylopoulos. Configuring
features with stakeholder goals. In In the Proceedings of the 2008 ACM symposium
on Applied computing, pages 645–649. ACM New York, NY, USA, 2008.

[103] S. António, J. Araújo, and C. Silva. Adapting the i* framework for software prod-
uct lines. ER ’09: Proceedings of the ER 2009 Workshops (CoMoL, ETheCoM,
FP-UML, MOST-ONISW, QoIS, RIGiM, SeCoGIS) on Advances in Conceptual
Modeling - Challenging Perspectives, pages 286–295, 2009.

153

[104] X. Shen, B. Tan, and C.X. Zhai. Context-sensitive information retrieval using im-
plicit feedback. In the Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval, page 50, 2005.

[105] S. Campadello, L. Compagna, D. Gidoin, S. Holtmanns, V. Meduri, J.-C. Pazzaglia,
M. Seguran, and R. Thomas. Serenity deliverable a7.d1.1. scenario selection and
definition. Technical report, 2006.

[106] A. Biere, M.J.H. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Sat-
isfiability., volume 185 of Frontiers in Artificial Intelligence and Applications. IOS
Press, February 2009.

[107] A. Nhlabatsi, R. Laney, and B. Nuseibeh. Feature interaction: the security threat
from within software systems. Progress in Informatics, (5):75–89, 2008.

[108] A. Lapouchnian, Y. Yu, and J. Mylopoulos. Requirements-driven design and config-
uration management of business processes. In Proceedings of the 5th International
Conference on Business Process Management (BPM 2007), volume LNCS Vol. 4714,
pages 246–261. Springer-Verlag, 2007.

[109] Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and J.C.S.P. Leite. From goals
to high-variability software design. In In the Proceedings of the 17th International
Symposium on Methodologies for Intelligent Systems (ISMIS’08), page 1. Springer,
2008.

[110] Y. Wang, S.A. McIlraith, Y. Yu, and J. Mylopoulos. An automated approach
to monitoring and diagnosing requirements. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, pages
293–302. ACM New York, NY, USA, 2007.

[111] W. Mark. The computer for the twenty-first century. Scientific American, 265(3):94–
104, 1991.

[112] A. Classen, P. Heymans, R. Laney, B. Nuseibeh, and T.T. Tun. On the structure of
problem variability: From feature diagrams to problem frames. In the proceedings
of the First International Workshop on Variability Modelling of Software-intensive
Systems (VaMoS 07), page 109, 2007.

[113] B. Nuseibeh, J. Kramer, and A. Finkelstein. Expressing the relationships between
multiple views in requirements specification. In Proceedings of the 15th international
conference on Software Engineering, pages 187–196. IEEE Computer Society Press
Los Alamitos, CA, USA, 1993.

[114] H. Mouratidis and P. Giorgini. Secure tropos: A security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowledge
Engineering, 17(2):285–309, 2007.

154

	Introduction
	Research Baseline
	Research Question
	Contribution of the Thesis
	Structure of the Thesis
	Published Work

	State of the Art
	Context-Awareness
	Context definition
	Context dimensions
	Context Modeling

	Goal-oriented Requirements Engineering
	Main concepts
	Main motivations
	Ongoing research

	Requirements Driven Variability
	Goal-based variability
	Problem Frames variability
	Feature models variability

	Chapter Summary

	Contextual Goal Model
	Weaving Requirements with Context
	Running Example
	Tropos Goal Model: Overview
	Context in Requirements
	Weaving Context with Goals
	Contextual Goal Model: Variation Points
	Context Influence on Goals: A Classification
	Contextual Goal Model: Context Analysis
	Discussion
	Chapter Summary

	Reasoning about Contextual Goal Models
	Reasoning about Consistency
	Running example
	Reasoning about context consistency
	Conflict analysis

	Reasoning about Variants Derivation
	Running example
	Deriving variants for varying contexts
	Deriving variants for minimum costs

	Chapter Summary

	Automated Support Tool and Methodological Process
	RE-Context: Automated Support Tool
	Architecture
	Functionality
	Input Format

	Methodological Process
	Chapter Summary

	Evaluation
	Smart Home System
	Contextual Goal Model of Smart Home

	Museum-guide System
	Contextual Goal Model of Museum Guide

	Evaluation Results
	Analysts feedback and observations
	Reasoning results
	Performance analysis

	Chapter Summary

	Conclusions and Future work
	Summary of The Thesis
	Generality of The Approach
	Running example
	Contextual feature model

	Towards a Unified Framework for Contextual Requirements
	Integrated model for contextual requirements
	Benefitting from the integration: an example

	Future Work

	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

