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A mia madre
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non è mica da questi particolari che si giudica un giocatore,

un giocatore lo vedi dal coraggio,
dall’altruismo e dalla fantasia.
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Abstract

Radar sounders are spaceborne electromagnetic sensors specifically designed for subsurface
investigations. They operate in the HF/VHF part of the electromagnetic spectrum and are
widely employed for applications such as monitoring changes to the polar ice sheets of the
Earth and for the study of planetary bodies (e.g. Mars) from satellite.
Radar sounding of planetary bodies is a relatively young discipline both in terms of sys-
tem design and data processing architectures. As a result of the current state of the art
in system design, the data recorded by radar sounders are typically affected by artifacts,
such as off-nadir surface clutter, which hinders its interpretation by scientists. On top of
that, the analysis of the very large of amount of data produced by such systems is typically
performed manually by experts thus inherently subjective and time-consuming. Therefore
the development of automatic high-level processing strategies for reliable, objective and
fast extraction of information is needed. Accordingly, this thesis work deals with different
aspects of radar sounding namely system design, low-level and high-level processing.
The thesis provides three main novel contributions to the state of the art. First, we present
a study on system design, performance assessment and 3D electromagnetic simulations of
a radar sounding system specifically tailored for detecting lava tubes under the Moon sur-
face. Lava tubes are considered to be important and useful structures. By having a stable
temperature and by providing protection against cosmic ray radiation and micrometeorites
impacts, they could potentially serve as natural shelter for human outposts on the Moon.
The results presented in this thesis show that a multi-frequency radar sounder is the best
option for effectively sound most of the lava tube dimension expected from the literature
and that they show unique electromagnetic signature which can be used for their detec-
tion.
The second novel contribution is focused on low-level processing and consists in a bio-
inspired clutter detection model based on bats echolocation. Very relevant analogies occur
between a bat and radar sounder such as the nadir acquisition geometry. The math-
ematical model proposed in this thesis adapts the bats frequency diversity strategy (i.e.
multi-frequency approach) to solve clutter ambiguities to the radar sounding case. The
proposed bio-inspired clutter detection model has been tested and validated on experimen-
tal data acquired over Mars. The experimental results showed that the method is able to
discriminate in a precise way the radar echoes arising from subsurface targets with respect
to off-nadir surface clutter ones.
The third novel contribution of this thesis goes in the direction of high-level processing and
in particular of automatic data analysis for accurate and fast extraction of relevant infor-
mation from radar sounding data. To this extent, we propose a novel automatic method
for retrieving the spatial position and radiometric properties of the subsurface layers based
on Hidden Markov Models for radar response modeling and the Viterbi Algorithm for the
inference step. Furthermore, a novel radargram enhancement and denoising technique has
been developed to support the detection step. The effectiveness of the technique has been
demonstrated on different radargrams acquired over the North Pole of Mars pointing out
its superiority with respect to current state of the art techniques.
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Introduction

This chapter presents an introduction to the PhD thesis work. We briefly introduce the
framework where this work has been developed by providing an overview of the problems
affecting radar sounder systems. This allows us to highlight and discuss the motivation,
the objectives and the novel contributions of this thesis. Finally, the structure of the
document is reported.

Background

Radar remote sensing acquires information about a given target or phenomenon without
making physical contact with the object. This technique is employed in numerous fields
such as Earth Sciences, military, intelligence, commercial, economic, planning, and hu-
manitarian applications. In this thesis, we focus on remote sensing radars for planetary
exploration. These type of radars are mainly used for mapping and understanding the
geophysical characteristics of celestial bodies other than Earth.
Planetary radars falls into two categories namely imaging radars and sounding radars.
The planetary imaging radars category typically includes synthetic aperture and altimeter
radar instruments, such as the ones flewn on-board the Magellan and Cassini spacecraft,
which were able to penetrate the thick clouds of Venus and Titan respectively providing
important information regarding their surface morphology. In contrast to imaging radars,
sounding radars are unique instruments being able to acquire data about a given planet
subsurface. Their low operating frequency allows them to penetrate hundreds of meters,
or even kilometers, below the surface. In this thesis we focus our attention on the latter
ones.
The first radar sounder flown was ALSE (Apollo Lunar Sounder Experiment) on board
Apollo 17. Other sounder instruments flown are MARSIS (Mars Advanced Radar for Sub-
Surface and Ionosphere Sounding) on board the European Space Agency’s Mars Express
probe and SHARAD (Mars SHAllow RADar sounder) on JPL’s Mars Reconnaissance
Orbiter (MRO). They are currently operational. A radar sounder was also deployed on
the Japanese probe SELENE which investigated the Moon subsurface. Due to their low
operating frequency (MHz range), this type of instruments have capability of penetration
in icy, arid and rocky (i.e. basaltic) environment such as volcanic regions.
There are mounting evidence that ice can be found throughout the Solar System[1], from
Mercury, to the far reaches of the Oort cloud and comets. Some solar system bodies
surface regions are believed to be composed almost entirely of ice such as Saturn’s moon
Enceladus and Jupiter’s moon Europa. Ice also occurs in the form of polar caps such
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as the North and South Polar Layered Deposit of Mars, as revealed by MARSIS and
SHARAD instruments, and may persist inside the coldest and darkest craters of different
planetary bodies such as Ceres [2]. These observation greatly renewed the interest for
radar sounders as subsurface exploration systems. In this context, the approved Jupiter
Icy Moons Explorer (JUICE) mission of the European Space Agency (ESA) will carry on-
board the Radar for Icy Moon Exploration (RIME). RIME is a radar sounder specifically
designed for studying the subsurface of the icy moons Ganymede, Europa and Callisto.
Another target of interested resulting from recent evidences are the lava tubes under the
Moon surface. Gravitometric observations by the GRAIL spacecraft suggest the presence
of lunar lava tubes with widths in the order of a kilometer. Such structures can remain
stable with a ceiling that is about 2 meters thick. Lava tubes at least 500 m underground
can theoretically remain stable with widths up to 5 km [3]. The potential for global lava
tubes mapping gravimeters is very limited. In order to accurately detect lava tubes it
is necessary to perform direct subsurface measurements of the shallow lunar subsurface
which can be achieved by the means of a radar sounder.
It is therefore clear that radar sounders can play an important role in advancing our
knowledge regarding the past and future of the Solar System. However, this type of
instruments are affected by a number of unwanted nuisances which limits their data in-
terpretation. These nuisance are mainly the result of the current state of the art in system
design, low-level and high-level processing. In the context of low-level processing, one of
the most important problem is clutter. In a single given acquisition, planetary sounders
antennas (which are typically dipoles for mechanical reasons) are always pointed toward
nadir direction with respect to the surface and illuminate large surface and subsurface
regions. The very large antenna footprint implies that off-nadir surface reflections (i.e.
surface clutter) of the transmitted signal can be disguised for echoes coming from the in-
terior of the target area. This causes a serious issue in terms of data interpretation. With
regard to high-level processing, a crucial issue is that the data analysis is still carried out
by visual inspection by planetary geophysicists thus is inherently subjective. Accordingly,
it is mandatory to develop advanced high-level processing techniques that can automati-
cally analyze and extract information from the data for properly supporting the scientific
community. Automatic data analysis assumes a particular importance also considering
that the past radar sounding sounding missions to the Moon and Mars provided a huge
amount of data and the same data volume is expected by future missions.
This thesis focuses on radar sounding system design and the subsequent low-level and
high-level processing in order to overcome the aforementioned shortcomings. The first
novel contribution is related to a new type of multi-frequency radar sounding systems en-
visioned for lava tube exploration on the Moon. The second novel contribution consists in
a low-level processing method for clutter detection based on bats echolocation. It is inter-
esting to notice that the proposed method for low-level processing is intertwined with novel
concepts of radar sounder system design. For instance, a clutter detection method oper-
ating on frequency diversity (i.e. low-level processing) would required a multi-frequency
radar sounder system. Finally, we propose a high-level processing technique for reliable
and fast radar sounder data extraction.
The objectives and novel contributions of this thesis are further elaborated in the next
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section of this chapter.

Objectives and Novel Contributions of the Thesis

The work presented in this thesis is aimed at investigating and defining novel strategies
in system design, low-level and high-level processing for radar sounders. In greater detail,
the novel contribution of the thesis are as follows:

1. System design: A study on a multi-frequency radar system specifically designed for
detecting lava tubes under the Moon surface.

2. Low-level processing : A bio-inspired clutter detection model based on bats echolo-
cation

3. High-level processing : A technique for the automatic enhancement and detection of
layering in radar sounder data

In the following subsections the main objectives and novelties for each contribution of the
thesis will be briefly described.

A Multi-Frequency Radar Sounder for Lava Tubes Detection on the Moon

As stated before, lunar lava tubes are subsurface structures which are potential candi-
dates for future human outposts on the Moon. Recently, remote sensing observations of
the Moon based on optical cameras and gravitational field mapping have detected fea-
tures that can be directly related to the presence of lava tubes. However, the potential
for global lava tubes mapping using these types of sensors is very limited. In order to
accurately detect lava tubes it is necessary to perform direct subsurface measurements of
the shallow lunar subsurface. Unfortunately, past Moon radar sounder missions were not
focused on the detection of lava tubes and thus had limited capability to detect them. In
this thesis, a novel study is carried out to determine the optimal type of orbiting radar
instrument that would be needed to detect the majority of lunar lava tubes, based on their
expected properties. To define this instrument, a performance assessment versus differ-
ent parameters of the radar sounder and an electromagnetic signature analysis (based on
3D electromagnetic simulations) are developed to determine the possibility to detect lava
tubes having different sizes from orbit. The results show that a multi-frequency radar
sounder in the MHz range is the best option to accurately detect most of the lava tubes
dimension which are expected from the structural stability analysis recently published in
the literature. In particular, the main driving factors limiting the radar sounder penetra-
tion capabilities are the frequency-dependent attenuation of the Moon basalt substrate
and its roughness. Moreover, the electromagnetic simulations show that phase inversion
due to subsurface dielectric transitions is a very effective feature to differentiate lava tube
echoes from off-nadir surface clutter.
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A Bat Inspired Model for Clutter Reduction in Radar Sounder Systems

Due to the radar sounders wide antenna beam, off-nadir surface reflections (i.e. clutter) of
the transmitted signal can compete with echoes coming from the subsurface thus masking
them. Different strategies have been adopted for clutter mitigation. However, none
of them proved to be the final solution for this specific problem. In this context, we
took inspiration from bats to study effective cletter detection strategies. Bats are very
well known for their ability in discriminating between a prey and unwanted clutter (e.g.
foliage) by effectively employing their sonar. According to recent studies, big brown
bats can discriminate clutter by transmitting two different carrier frequencies. Most
interestingly, there are many striking analogies between the characteristics of the bat
sonar and the one of a radar sounder. Among the most important ones, they share
the same nadir acquisition geometry and transmitted signal type (i.e. linear frequency
modulation). In this thesis, we explore the feasibility of exploiting frequency diversity for
the purpose of clutter discrimination in radar sounding by mimicking unique bats signal
processing strategies. Accordingly, we propose a frequency diversity clutter reduction
method based on specific mathematical conditions that, if verified, allows to perform the
disambiguation between the clutter and the subsurface signal. These analytic conditions
depend on factors such as difference in central carrier frequencies, surface roughness and
subsurface material properties. One of the main strength of the proposed technique is
that it does not rely on any a-priori information such a digital elevation model of the
surface that is not always available. The method performances have been evaluated on
Mars experimental data acquired by SHARAD proving its effectiveness. In particular the
results obtained on radargrams of icy and volcanic region of Mars, which where previously
analyzed by time-consuming analysis conducted by planetary geophysicists, proved that
the method can effectively discriminate between genuine subsurface reflections and off-
nadir surface clutter thus paving the way for a new generation of multi-frequency radar
sounders with clutter discrimination capabilities.

An Automatic Enhancement and Detection Technique of Layering in Radar
Sounder Data

The analysis of the very large amount of data produced by radar sounders requires the
development of automatic techniques for an objective, accurate and fast extraction of
relevant information from radargrams. A typical example of application of automatic
techniques is the extraction of relevant information regarding subsurface layering (i.e.
stratification) in icy regions. From the geophysical point of view, the analysis of subsurface
layering is particular important. Through layering analysis is it possible to obtain valuable
information about past climate of a planetary body. Recent work on automatic techniques
for layering extraction from radargrams showed promising results but the accuracy is still
lower to the one of an expert human annotator.
In this thesis, we propose a novel technique for the automatic detection of layer boundaries
based on a local scale Hidden Markov Model (HMM), which models the radar response
in the presence of a layer boundary, and the Viterbi Algorithm, which performs the
inference step. The proposed technique is based on a divide and conquer strategy that
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executes the Viterbi algorithm using the observation data and the HMM to infer the most
likely layer boundary location within a small radargram portion. Finally, a detection
strategy is defined to chain together the inferred local layer locations. Furthermore, a
novel radargram enhancement and denoising technique tailored to support the detection
step is presented. The effectiveness of the proposed technique has been confirmed by
testing it on different radargrams acquired by SHARAD (SHAllow RADar) over the North
Pole of Mars. The results obtained point out the superiority of the proposed method in
retrieving the position of each layer boundary (and thus of the related intensity and
geometric properties) with respect to the state-of-the-art techniques.

Thesis Organization

The present Chapter provided a brief overview on planetary remote sensing with radar
sounders. In addition, it introduced the motivation, the objectives and the novel con-
tributions of this thesis. The rest of this dissertation is organized in five main chapters.
Chapter 1 illustrates the fundamentals and the background notions useful for understand-
ing the thesis. Chapter 2 presents the proposed approach for designing a multi-frequency
radar sounder for lava tubes detection on the Moon. Chapter 3 describes the bat-inspired
low-level processing model for clutter detection in radar sounder systems while Chapter
4 presents the novel high-level processing technique for automatic enhacement and de-
tection of layering in radar sounder data. In each chapter an introduction to the specific
topic and a review of the related state-of-the-art is provided. Finally, in the last chapter
the conclusions of the thesis are drawn and proposals for future research developments
are discussed.
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Chapter 1

Fundamentals and Background

In this chapter we review the fundamentals of radar, planetary radar sounding and elec-
tromagnetic waves propagation in media. This provides the basic concepts and definition
needed in the next chapters of the thesis.

1.1 Radar Basics and Historical Overview

The principle on which radar operates is similar to the familiar principle of sounds wave
reflection like the echoes inside a cave. By knowing the speed of sound, it is possible to
estimate the distance of the reflecting objects. Radar uses electromagnetic energy pulses
in the same fashion. The radar transmits electromagnetic energy which is then reflected
by the target. Only a small portion of the energy returns to the receiver. The return
energy is called echo from the target. By knowing the velocity of the electromagnetic
wave in a given medium is it possible to determine the target distance. A radar system
consists of a transmitter producing electromagnetic waves in the radio or microwaves do-
main, a transmitting antenna, a receiving antenna (often the same antenna is used for
transmitting and receiving), a receiver and a processing block to determine properties of
the object(s).
Nowadays radar systems are used for a broad variety of very different applications span-
ning from air traffic monitoring to the study of planetary bodies (see Fig 1.1).
The main advantages of a radar sensor are the following:

• Day and night operation both in lightness or darkness over a long range.

• Capability of operations in all weather conditions, in fog and rain to even penetrate
walls or layers of snow.

• Detection and tracking of moving objects.

• Unmanned operations.

The history of radar as an effective instrument for remote sensing and astronomy can be
seen as the summation of many developments and scientific discovery. The following list
summarizes the most important scientific milestones toward the development of modern
planetary imaging and sounding radars [4]:
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(a) (b)

Figure 1.1: Radar Systems are used in many different applications ranging from (a) air traffic
control to (b) exploration of planetary bodies.

• 1865: James Clerk Maxwell presents his “Theory of the Electromagnetic Field”
(description of the electromagnetic waves and their propagation). Maxwell demon-
strated that electric and magnetic fields travel through space in the form of waves,
and at the constant speed of light.

• 1886: Heinrich Rudolf Hertz discovered electromagnetic waves, thus demonstrating
the Maxwell theory.In his 1887 experiment he found that electromagnetic waves
propagates through different types of materials. He also found that the nature of
electromagnetic waves is similar to visible light. They can be reflected, refracted,
and polarized.

• 1897: Guglielmo Marconi achieved the first long distance transmission of electro-
magnetic waves. Moreover, he noticed radio waves were being reflected back to the
transmitter by objects in radio beacon experiments he conducted in 1899.

• 1900: Nicola Tesla suggested that the reflection of electromagnetic waves could be
used for detecting of moving metallic objects.

• 1904: Christian Hülsmeyer invented the ”telemobiloscope” for a traffic monitoring
on the water in poor visibility. He gave a public demonstrations in Germany and
the Netherlands of the use of radio echoes to detect ships so that collisions could be
avoided. This was the first radar practical test.

• 1935: Robert Watson-Watt discovered that radio waves can be used to detect air-
craft at a distance. He proposed the first radar concept.

• 1946: Radio astronomy and radar astronomy are introduced as disciplines.

• 1952: Carl Wiley discovered the technique of Doppler Beam Sharpening as a mean
of improving the spatial resolution of long wavelength imaging radar. This technique
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is often referred as synthetic aperture radar. It allows a small antenna to achieve
the same resolution of a much larger one by exploiting the Doppler shift induced on
the radar echo by a moving platform.

• 1961: Jet Propulsion Laboratory is able to record a radar echo from the Venus
Surface. This marks the start of radar observation of planetary bodies in the Solar
System.

• 1962: Waite and Schmidt demonstrated that low-frequency radars were able to
measure the thickness and other features of polar glaciers.

• 1972: For the first time, low frequency electromagnetic waves are used to probe the
interior of a planetary body. The Apollo Lunar Sounder Experiment used radar to
study the Moon’s interior revealing structures beneath the Moon’s surface.

• 1973: British scientists in Antarctica confirmed through airborne ground penetrat-
ing radar campaign the existence of a vast sub-glacial lake known as lake Vostok.
This is the 16th largest lake in the world by surface area and it is covered by more
than 3 kilometer-thick ice cap.

• 1978: First spaceborne satellite imaging radar. Seasat satellite flew a microwave
altimeter, a multi-beam scatterometer and a synthetic aperture radar. Its primary
goal was to study the Earth’s oceans.

• 1990: The Magellan probe to Venus became the first interplanetary synthetic aper-
ture radar. It provided high resolution detail of the Venus surface.

• 1993: By measuring the displacement of the Earth’s surface caused by an earth-
quake in California, Didier Massonnet proved the feasibility of interferometry with
spacebourne radars.

• 1993-2017: Cassini radar made important discoveries on Saturn’s moon Titan. It
proved the existence of oceans and lakes of liquid methane on Titan’s surface.

• 2005-2018: MARSIS became the first radar sounder to be deployed in orbit around
Mars and has been collecting data ever since. It provided strong evidence for a former
ocean on Mars. The radar is still operative.

• 2006-2018: SHARAD radar sounder, which is currently orbiting and operating
around Mars, provided strong and multiple evidence of water ice deposits both at
polar and mid-latitudes regions of Mars.

By analyzing this radar historical overview in the perspective of this thesis dissertation
on radar sounding, we can highlight the following. The work by Waite et al. [5] in 1962
on electromagnetic waves measurements of the electrical characteristics and thickness
of ice at high and ultra-high frequencies in both polar areas, set the starting point for
electromagnetic sounding of Earth’s subsurface. Until 1972, electromagnetic probing of
the subsurface was merely confined to terrestrial application mainly in icy regions. We
denote this research field as terrestrial radar sounding. The successful results of the
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Apollo Lunar Sounder Experiment [6] in 1972 paved the way for planetary exploration of
subsurface bodies. This experiment marked the start of planetary radar sounding. In the
next section of this chapter we analyze in more detail the background of radar sounding
both in terms of underlying physical principles and acquisition process.

1.2 Radar Sounding

1.2.1 Overview

Figure 1.2: The radar sounding main goal is to acquire the signal coming from the nadir
surface and subsurface regions (points A and B). Due to the large antenna footprint, the echo
trace contains unwanted reflections coming from the antenna footprint sides (points C and D).
A radar sensor measures time intervals occurring between the signal transmission and reception
and not absolute distances. This implies that reflections from points C and D can be disguised
as subsurface signal. In fact, in a radar system distance is inferred from time delay by knowing
the wave speed in the medium.

Planetary sounders are spacebourne radars which are widely employed for geophys-
ical exploration of celestial bodies around the solar system. In order to investigate the
subsurface of a given target, a planetary radar sounder transmits pulsed electromagnetic
radiation in the HF/VHF electromagnetic band (e.g. 1 MHz to 300 MHz) and, as it trav-
els through the subsurface, each dielectric discontinuity in the ground material results
in part of the signal being reflected towards it. These signal reflections (i.e. echoes) are
subsequently recorded by the sensor thus forming an echo trace for each given acquisition
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(Fig. 1.2). By analyzing these echo traces it is possible to obtain crucial information on
the subsurface structure and composition. This is achieved by studying (i) the change of
propagation velocity induced by the medium, (ii) the waves attenuation in the medium
and (iii) the amount of reflected energy at the interface between two subsurface media. By
stacking together subsequent echo traces a bidimensional image (denoted as radargram
)(Fig. 1.3) is formed where one axis represents depth and the other one the position of
the sensor along its ground track. Due to the wide antenna beam pattern of a planetary
radar sounder, echoes coming from off-nadir reflections of the surface can compete with
echoes coming from the subsurface thus masking them (Fig. 1.2 and 1.3).
Radar sounders have been successfully employed to probe the subsurface of Mars[7, 8]
and the Moon [9, 6]. As an example, by using radar sounder data scientists were able to
confirm the presence of nearly pure water ice within the South Polar Layer Deposits of
Mars [10] and to observe its accumulation and erosion [11]. Moreover, the recent evidence
supporting the thesis that there could be liquid water under the ice surface of celestial
bodies such as the Galilean moons of Jupiter [12] greatly renewed the interest for such
remote sensing systems. Similar sensors mounted on aircrafts are widely used for moni-
toring Earth’s ice sheets. As an example, airbourne radar sounders data provided strong
evidences of subsurface lakes in Antarctica that led to the discovery and further investi-
gation of Lake Vostok [13, 14]. Even if the underlying physical principles for retreving
the subsurface properties are similar, airbourne sounders differ from planetary ones due
to the very different acquisition geometry and the mechanical constraints.
The rest of this section is organized as follows. In Subsection 1.2.2 we discuss the funda-
mental physical principle of electromagnetic wave propagation in media. Then in Subsec-
tion 1.2.3 the radar sounder acquisition process is discussed along with the radar equation
for radar sounding where we apply the principles discussed in 1.2.2). The rest of the
subsections discuss important quantities for radar sounding namely geometric resolution
(1.2.4), signal to noise ratio (1.2.5) and clutter contribution (1.2.6).

1.2.2 Concepts of Eletromagnetic Waves Propagation relevant to Radar Sound-
ing

Electromagnetic Plane Waves Propagation in Lossy Media

In this section we develop a basic physical understanding of plane wave propagation in
lossy media. This is required in order to understand the underlying principles behind radar
sounding and to define important quantities such as the attenuation constant which will
be recalled throughout the thesis.
In the phasor domain we define a time-varying electric E(x, y, z; t) and magnetic field
H(x, y, z; t), where t is the time variable and x, y, z the cartesian coordinates as following
[15]:

E(x, y, z; t) = R[Ẽ(x, y, z)ejωt] (1.1)

where ω is the angular frequency [rad/s] which can be expressed as ω = 2πf where f [Hz]
is the electromagnetic wave frequency. Similar definition applies to H . In the phasor
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Figure 1.3: (a) Orbit trace of the SHallow RADar [7] acquisition 243101 projected over Mars
South Pole region of Promethei Lingula. S1 represents a region where the instrument detects
subsurface layered deposits while C1 is an example of ambiguous return due to off-nadir reflec-
tions from the crater rim (b) SHARAD radargram of acquisition 243101. From the image we can
notice that there are many ambiguous returns which cause difficulties in the data interpretation.

domain, we can write Maxwell equations in the following way:

∇ · Ẽ = 0 (1.2)

∇× Ẽ = −jωµH̃ (1.3)

∇ · H̃ = 0 (1.4)

∇× H̃ = jωεcẼ (1.5)

where Ẽ and H̃ are the vector phasors for the electric and magnetic field respectively,
and µ is the magnetic permeability. We define εc as the complex permittivity equal to:

εc = ε− j σ
ω

= ε
′
− jε

′′
(1.6)

We define the relative permittivity (i.e. dielectric constant) εr and permability µr as
follows:

εr = ε/ε0 (1.7)

µr = µ/µ0 (1.8)
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Figure 1.4: Electromagnetic waves propagation in a lossy media. In this example, the electric
E and magnetic field H are attenuated as they propagate inside the dielectric box.

where ε0 and µ0 are the permittivity and permeability of vacuum respectively. The ho-

mogeneous wave equation for Ẽ resulting from manipulating (1.3) and (1.5) is equal to:

∇2Ẽ + ω2µεcẼ = 0 (1.9)

Without loosing in generality, we assume the electric field phasor to be equal to Ẽ =

Ẽx(z)x̂. This corresponds to a uniform plane wave traveling in the z direction. Accord-
ingly, (1.9) reduces to:

d2Ẽx(z)

dz2
+ ω2µεcẼx(z) = 0 (1.10)

The solution to (1.10) is formed by two terms, one describing a wave traveling in the
positive z direction and one in the negative z direction. We consider only the former one
(see Fig. 1.4) therefore the solution is equal to:

Ẽ(z) = Ex0e
−
√
−ωµεczx̂ = Ex0e

−αze−jβzx̂ (1.11)

where Ex0 is the electric field amplitude.
We define α as the medium’s attenuation constant and β as the phase constant defined
as:

α = ω

{
µε
′

2

√
1 + (

ε
′′

ε
′ )

2 − 1

}1/2

(1.12)

β = ω

{
µε
′

2

√
1 + (

ε
′′

ε
′ )

2 + 1

}1/2

(1.13)
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In radar sounding, we are interested in the power of the electric field rather than in the
amplitude. In this case, the time-average value of the Poynting vector which defines the
power density S is equal to:

S =
1

2|η|
|Ẽ(z)|2=

1

2|η|
|Ex0|2e−2αz (1.14)

where η =
√
µ/εc is the characteristic impedance of the transmission medium. From

(1.14) it is clear that the attenuation constant α plays an important role in determining
the energy dissipation experienced by the electromagnetic wave as it travels through a
given medium being the power density exponentially dependent on it. The penetration
depth in a given medium is typically assumed to be equal to 1/2α. Losses in a medium are
typicall expressed as [dB/m]. We define as the loss tangent tan δ the following quantity:

tan δ =
ε
′′

ε
′ =

σ

2πfε
(1.15)

The loss tangent represents the material inherent dissipation of electromagnetic energy. In
radar sounding we tipically deal with subsurface mediums which are considered low-loss
dielectric and non-magnetic. Accordingly, by assuming tan δ << 1 (i.e. low-loss dieletric)
and µr = 1 (i.e. non-magnetic media), (1.12) reduces to:

α ≈ πf
√
ε0µ0

√
εr tan δ (1.16)

Therefore the attenuation in a given medium depends on the wave electromagnetic fre-
quency f and the loss tangent tan δ. Moreover, the radio wave propagation velocity in the
medium depends on εr while the radio wave absorption on tan δ. The wave propagation
velocity in a given medium is equal to:

c =
1
√
µε

=
c0√
εr

(1.17)

where c0 is the speed of the light and µr = 1. The loss tangent value typically depends
on the medium temperature and the frequency on the propagating electromagnetic wave,
while the value of εr generally depends on the density and chemical composition of the
medium [16].

Reflection and Refraction at a Plane Boundary

In the previous section, we discussed the fundamental physical principles of electromag-
netic waves propagation in a physical media. In this section, we discuss the physical
phenomena that occur when an electromagnetic wave impinges on a plane boundary
which acts a separation between two different mediums. In general, the electromagnetic
energy impinging on a plane interface results in two components (see Fig. 1.5). The
first component is reflected by the surface while the second one is transmitted through
the interface. By defining as Ei the incident electromagnetic field, the following equation
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Figure 1.5: Ray representation of wave reflection and transmission at (a) normal incidence and
(b) oblique incidence, and (c) wavefront representation of oblique incidence. Image from [15].

holds (under no interface absorption assumption):

Ei = Et +Er (1.18)

where Et and Er are respectively the electric field transmitted and reflected component.
We define the reflection coefficient Γ a[15]:

Γ =
Er

Ei

(1.19)

The transmission coefficient T is equal to:

T =
Et

Ei

(1.20)

By combining (1.18), (1.19) and (1.20), the following relation between Γ and T holds:

T = 1− Γ (1.21)

By using results from the Snell’s law, the reflection coefficient Γ⊥,ij and Γ‖,ij between
the i-th and j-th medium for perpendicular and parallel polarization respectively can be
computed as:

Γ⊥,ij =
ηj cos θinc − ηi cos θt
ηj cos θinc + ηi cos θt

(1.22)

Γ‖,ij =
ηj cos θt − ηi cos θinc
ηj cos θt + ηi cos θinc

(1.23)

where θinc is the incidence angle with respect to the surface normal of the impinging
electromagnetic wave, θt the transmission angle into the medium and ηj the characteristic
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impedance of the j-th medium. The following relation between θt and θinc is valid:

sin θt =
√
µiεi/µjεj sin θinc (1.24)

A very important quantity in radar sounding is the value of the reflection coefficient
Γij at normal incidence (i.e. θinc = θt = 0) which is defined as:

Γij =
ηj − ηi
ηj + ηi

(1.25)

At normal incidence, the reflection coefficient is independent from polarization of the
electromagnetic wave. As stated in section 1.2.2, in many radar sounding practical cases
µr = 1 and tan δ << 1. Under this assumption, the reflection coefficient at normal
incidence reduces to:

Γij =
1−

√
εr,j/εr,i

1 +
√
εr,j/εr,i

(1.26)

We will seldom refer to this expression in the following sections and chapters of this thesis.
The reflectivity (i.e. power of the reflection coefficient) is equal to Γ2

i,j while transmissivity

(i.e. power of the transmission coefficient) can be written as 1− Γ2
i,j.

1.2.3 Acquisition Process and Radar Equation for Sounding

Figure 1.6: Radar Sounding Acquisition geometry (a) 3D view and (b) section view

In the previous section, we discussed the basic principles of electromagnetic waves
propagation in a given medium. In this section we combine the previously discussed theory
with geometry of acquisition and radar parameters to formulate the radar equation for
radar sounding. This is needed in order to evaluate the expected echo power received by
the radar from the subsurface. Radar sounders are nadir looking systems which acquire
relevant information regarding the subsurface from orbit. The sensor orbit height denoted
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as h is typically between 25 km and 500 km. The power density S1 [W/m2] impinging on
a given surface is equal to (see Fig. 1.6):

S1 =
PtG

4πh2
, (1.27)

where Pt is the radar transmitted power and G the antenna gain. The denominator is
denoted as geometric spreading losses, which accounts for the fact that the radar trans-
mitted energy spreads over a sphere of radius h. Part of this energy is intercepted and
scattered back to the radar by the illuminated surface and subsurface. To quantify the
target equivalent area we denote as σ0(θi) the radar backscatter coefficient and as Aill the
illuminated area. The backscatter coefficient describes the ability of given target to reflect
the intercepted energy toward the radar. Different electromagnetic models are available
in the literature for the value of σ0. An overview of the different model for the backscatter
coefficient relevant to radar remote sensing of planetary surfaces is presented in [16]. A
common and simple assumption is that σ0 = |Γ|2 where Γ is defined as in (1.25).
The echo power received by the radar denoted as Pr is equal to [17]:

Pr = S1σ
0Aill

Aeff
4πh2

=
PtG

2λ2σ0Aill
(4π)3h4

(1.28)

where we denote with Aeff = λ2G/4π the effective area of the antenna and with λ the
wavelength of the transmitted wave. The formulation of (1.28) only explicits the echo
power expected from the surface taking into account (i) the radar transmission parameters
(i.e. Pt and G), (ii) the surface backscattering properties and geometry (i.e. σ0 and Aill)
(iii) the reception properties of the system (i.e. Aeff ), (iv) and the two-way geometry
spreading losses.
In radar sounding, we are more interested in estimating the echo power coming from the
subsurface from a given dielectric interface positioned at an arbitrary depth zi, where
i is the interface index. To model this, we introduce in the radar equation the notions
discussed in 1.2.2 on EM waves propagation in lossy media and reflection and refraction at
a plane boundary. Accordingly, the power received by the radar from a given subsurface
interface j denoted as Pss,j is equal to:

Pss,j =
PtG

2λ2Γ2
j,j+1Aill

∏j−1
i=0 (1− Γ2

i,i+1)2e−4αzj

(4π)3(h+ zj)4
(1.29)

where α is the attenuation constant of (1.16) and Γ is described in (1.25). The product
symbol takes into account all the two-way transmissivities previously defined in 1.2.2.

1.2.4 Geometric Resolution

Radar sounder capability of discriminating different targets is expressed by three differ-
ent quantities namely along-track, across-track and range resolution. The radar range
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resolution is equal to:

Rr =
c0

2B
√
εr

(1.30)

where f0 is the radar carrier frequency and B the radar signal bandwidth. The range
resolution is typically in the order of meters and depends on both the signal bandwidth
and the subsurface dielectric constant of the medium under investigation. The along-track
resolution is computed as:

Rat =
λh

2Ls
(1.31)

In radar sounding, it is assumed that the length of the synthetic aperture is equal to
Ls =

√
λh/2 [18], which corresponds to a resolution equal to Rat =

√
λh/2 (i.e. unfocused

processing). Usually, the along-track resolution is in the order of hundred metres. The
across track resolution is equal to the pulse-limited diameter [17]:

Ract = 2
√
c0h/B (1.32)

The across-track resolution is the main limitation of a radar sounder. Its large value is
dictated by the fact that, for mechanical reasons due to the deployment in space, a dipole
antenna is usually adopted, resulting in a very large footprint. The large dimensions
of the footprint and the fact that no synthetic aperture can be formed in the direction
perpendicular to the S/C motion, result in an across-track resolution in the order of
thousand meters.

1.2.5 Signal to Noise Ratio and Processing Gains

In section 1.2.3 we discussed the different terms affecting the echo power received by
the radar. An important factor affecting the radar sounder capability in detecting the
surface and subsurface echo is the noise contribution induced by the electronics and the
surrounding environment, which leads to the definition of the signal to noise ratio denoted
as SNR.
In planetary radar sounder the galactic noise temperature Tg is many order of magnitude
greater than the noise temperature Te induced by the electronics. Therefore we can assume
that the overall noise temperature T = Te + Tg can be approximated as T ' Tg. The
overall noise power Pn is equal to:

Pn = kbTB (1.33)

where kb is the Boltzmann constant. The signal to noise ratio SNRj for the j − th
subsurface interface is equal to:

SNRj =
Pss,j
Pn

=
PtG

2λ2Γ2
j,j+1Aill

∏j−1
i=0 (1− Γ2

i,i+1)2e−4αzj

(4π)3(h+ zj)4kbTB
(1.34)

Radar sounders typically transmits linear frequency modulated pulses(i.e. chirp). By
applying a particular processing after signal reception denoted as range compression, this
type of waveform allows to increase the SNR by a factor equal to Gr and denoted as range
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compression gain. This factor is equal to

Gr = B · Ts (1.35)

where Ts is the transmitted pulse width. The synthetic aperture processing described in
1.2.4 not only is beneficial for the along-track resolution but it also increase the SNR by
a factor determined by the azimuth compression gain denoted as Gaz which is equal to:

Gaz =
Ls

vs PRI
=

√
2λh

vs
PRF (1.36)

where PRF =
4vs
λ

sin θc is the minimum pulse repetition frequency of the radar required

for sampling the Doppler spectrum, and vs is the orbital velocity. For the definition of the
clutter angle θc the reader can refer to the next section. The SNR including processing
gain and denoted as SNRg,j is equal to

SNRg,j = SNRj Gaz Gr (1.37)

1.2.6 Surface Clutter and Signal to Clutter Ratio

Figure 1.7: Clutter Geometry scheme

In a single given acquisition, planetary sounders antennas (which are assumed to be
dipoles due to mechanical reasons) are always pointed toward nadir direction with respect
to the surface and illuminate large surface and subsurface regions. The very large antenna
footprint implies that off-nadir surface reflections (i.e. surface clutter) of the transmitted
signal can be disguised for echoes coming from the interior of the target area. This causes
a serious issue in terms of data interpretation. The clutter main driving factors are the
surface characteristics such as roughness and electromagnetic backscattering properties.
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In this section a mathematical model is provided for evaluating the clutter contribution.
The clutter slant range Rc with respect to a given suburface interface j is given by (see
Fig. 1.7):

Rc = h+ zj
√
εr,j (1.38)

As a result of the azimuth radar focusing, the equivalent clutter area is given by [19]:

Ac =
√

2λh
c0

B sin(θc)
. (1.39)

This area corresponds to the one such that the illuminated points have zero Doppler. The
clutter angle θc is equal to

θc = cos−1(h/Rc). (1.40)

The clutter echo power Pc is equal to

Pc =
PtG

2λ2σ0
s(θc)Ac

(4π)3R4
c

, (1.41)

The signal to clutter ratio denoted as SCRj is defined as:

SCRj =
Aill
Ac

Γ2
j,j+1

∏j−1
i=0 (1− Γ2

i,i+1)2

σ0
s(θc)

e−4αzj (1.42)

The dominant parameters which mainly drive the value of the SCR are the clutter angle θc
(which controls the value of σ0) and the attenuation term e−4αzj . Another factor affecting
SCR is the sensor height h. By lowering it, the SCR increases due to the direct increase
of θc.

1.2.7 Conclusions

In this section, we provided the basic concepts and definition needed in the next chapters
of the thesis.
Section 1.1 and 1.2.1 provided a general overview on radar and radar sounding and pre-
sented an historical overview to put this thesis work into context.
Section 1.2.2 highlighted fundamentals electromagnetic waves propagation concepts rel-
evant to radar sounding. Particular emphasis was placed on concepts such as reflection
and refraction at a plane boundary and attenuation in a given media. Sections from 1.2.3
to 1.2.6 were devoted to the description of the high-level equations (e.g.,related to reso-
lution) needed by the radar system engineer for dimensioning a radar sounder, evaluate
its acquisition geometry and performance.



Chapter 2

A Multi-Frequency Radar Sounder
for Lava Tubes Detection on the
Moon: Design, Performance
Assessment and Simulations

Lunar lava tubes are subsurface caves which have attracted special interest as they would
be suitable shelters for future human outposts on the Moon. Recent evidence from optical
images and gravitational anomalies have brought quasi-conclusive proof of their existence,
but such investigative means have very limited potential for global mapping of lava tubes.
In this chapter1, we investigate the design requirement and feasibility of a radar sounder
system specifically conceived for detecting subsurface Moon lava tubes from orbit. This is
done by conducting a complete performance assessment and by simulating the electromag-
netic signatures of lava tubes using a coherent 3D simulator. The results show that radar
sounding of lava tubes is feasible with good performance margins in terms of signal-to-
noise and signal-to-clutter ratio, and that a dual-frequency radar sounder operating would
be able to detect a vast majority of lunar lavatubes. The electromagnetic simulations show
that lava tubes display an unique signature characterized by a signal phase inversion on
the roof echo. The analysis is provided for different acquisition geometries with respect to
the position of the sounded lava tube. This analysis confirms that orbiting multi-frequency
radar sounder can detect and map in a reliable and unambiguous way the majority of
Moon lava tubes.

2.1 Introduction

In the last years, there has been a renewed interest in the exploration of the Moon. Our
satellite is a potential strategic outpost with significant raw materials reserves [20]. Lunar
lava tubes are considered to be one of the main candidates for a future human outpost

1Part of this chapter appears in:
L. Carrer, C. Gerekos and L. Bruzzone, “A Multi-Frequency Radar Sounder for Lava Tubes Detection on the
Moon: Design, Performance Assessment and Simulations” in Planetary and Space Science. 2018, In press
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Figure 2.1: (a) Example of terrestrial lava tube located at Beauty Cave at Craters of the Moon
National Monument, Idaho, US c©Becky Wright (b) Mare Tranquillitatis Pit Crater on the
Moon. This pit may provide access to a still-open and uncollapsed lava tubes. The pit depth is
estimated to be 100 m with width ranging from 100 m to 115 m across. c©NASA/GSFC/Arizona
State University

[21]. Lava tubes are natural subsurface conduits which are the result of volcanic activity
[22]. They are formed when the upper part of the lava stream cools down and crusts while
the lower part of it continues to flow, which results in the formation of an empty cave.

Moon lava tubes are considered to be important and useful structures since they can
offer shelter against meteorite impacts, radiation [23] and strong thermal variations taking
place on the Moon surface [21]. Recent studies based on gravity measurements [3, 24] and
experimental evidence based on terrain mapping camera [25, 26] suggest the hypothesis
that there is an abundance of lava tubes on the Moon and their dimensions are consistently
larger than the ones found on the Earth. The main reason for their large size, is that the
Moon gravity is considerably lower than the terrestrial one.

A complete map of the lava tubes dimension and location will provide important infor-
mation in view of the exploration and colonization of the Moon. However, the mapping of
lava tubes with optical camera has limitations. This is due to the fact that lava tubes are
essentially subsurface structures. Radar observations at 70-cm wavelength of the region
near Bessel crater in Mare Serenitatis show dark-radar lineaments. This can be interpeted
as locally deeper regolith filling voids which might be collapsed portions of once-subsurface
lava tubes [27]. Unfortunately, radar waves at centimeter scale cannot penetrate through
the regolith.

Planetary radar sounders instruments are particularly suitable for revealing the pres-
ence of lava tubes concealed under the Moon surface. Their signal wavelength is in the
order of metres. As stated in the introduction of this Thesis, these types of instruments
are capable of transmitting pulsed electromagnetic energy and recording any reflection
generated by dielectric discontinuities in the target terrain. In particular, by analysing
the electromagnetic characteristic of the echo signals generated from both the Moon sur-
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face and subsurface, it is possible to understand the physical composition of the lava tube
(e.g., whether it is empty or not), its size and shape and the nature of the material forming
the lava tube roof and floor.

Two radar sounding missions already probed the Moon surface, NASA’s Apollo lunar
radar sounder experiment (ALSE) and JAXA’s LRS instrument onboard the Kaguya
spacecraft [28, 29] but they were not specifically designed for lava tubes detection. Very
recently, an intact lava tube was detected in the data acquired by the Lunar Radar Sounder
(LRS) [30]. On the one hand, this confirms the potentiality of sounders to detect lava
tubes, but on the other hand, LRS has not been specifically designed for the detecting
them. Thus, due to its very low spatial resolution (due to a relatively small carrier
frequency), it can only detect very large lava tubes. A recent paper has nevertheless
highlighted the possibility of detecting lava tubes of sub-resolution size (LRS resolution
is 75m)[31]. However, in the paper there are two different interpretation of the lava tube
detection results namely (i) the lava tube roof echo is buried in the surface response or (ii)
the lava tube echo floor is buried in the roof radar echo. A dedicated, higher-frequency
radar, however, would be able to make more conclusive detections of such small and
shallow tubes, which are of special importance since they are easier to explore either by
manned or unmanned missions.

Sood et al. [32] highlighted the scientific value of a radar sounder mission specifically
designed for lava tubes detection. However, they did not provide an assessment analysis
on how an hypothetical sounder system will be able to perform for this specific task and
how to interpret the returning data. The studies performed on terrestrial lava tubes
with ground penetrating radar [33, 34, 35] are of marginal relevance in terms of system
design for the planetary radar sounding case. This is due to the very different acquisition
geometry and very different radar system technological implementations.

This thesis chapter addresses the problem of detecting lava tubes on the Moon from
orbit by using radar sounders. To this extent, the main goals of this paper are (i) the
understanding of the design requirements that the sounding system should have for effec-
tive lava tube sounding, (ii) a performance assessment as function of the radar, geometric
and terrain parameters and (iii) extensive simulations and analysis of the lunar lava tubes
electromagnetic responses. The evaluation of the electromagnetic signatures is needed for
providing a better understanding of the potential recorded data and thus greatly aiding its
scientific interpretation. In our analysis, the allowed lava tube sizes are the ones provided
in the recently published structural stability analysis based on gravity measurements pre-
sented by Blair et al. [3], which also envelopes the lava tube sizes provided by Coombs et
al. [36].

The remainder of this chapter is organized as following. Section 2.2 introduces the
acquisition geometry and the subsurface structure assumptions. This serves as a basis for
the performance analysis and lava tubes detectability results of Section 2.3. Section 2.4
presents the lava tubes electromagnetic signature analysis for different scenarios. Finally,
Section 2.5 addresses the conclusions of this thesis chapter.
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2.2 Radar Sounding Acquisition Geometry and Subsurface Struc-
ture Assumptions

In this section, we introduce the radar sounding geometry and the main assumptions
regarding the Moon’s lava tubes structure. This forms the basis for the next sections of
the chapter.

Let us consider a radar sensor with carrier frequency assumed to be in the range
between 1 MHz to 100 MHz positioned at certain height h from the surface as shown in Fig.
2.2. We define a coordinate reference system composed by three orthogonal axes which are
denoted as (i) along-track (i.e., in the direction of the sensor movement), (ii) across-track
(i.e., in the direction orthogonal to the sensor movement) and (iii) height/depth direction
(which is perpendicular to the other ones previously defined).

We consider the surface substrate to be covered by a regolith layer with average thick-
ness denoted as rt. We assume the base of the regolith (i.e., the interface between the
regolith and the substrate) to be rough. The slope of this rugged base is poorly con-
strained in the literature. The best piece of evidence available for estimating its order of
magnitude (at least in Maria regions) is an optical image of the regolith base on Rima
Hadley at Apollo 15 landing site [37] and the pit rims features exposing layered walls
of basalt below the regolith [38]. Such optical clues suggest that the regolith base relief
is in the order of metres. This is also suggested by the earth-based radar mapping ob-
servations at 70-cm wavelength scale [27]. Due to this uncertainty, we follow the same
approach described in [39], where the base of the regolith roughness is assumed to be of
the same magnitude as the one measured by the Lunar Orbiter Laser Altimeter (LOLA)
[40]. A given lava tube is geometrically described by (i) its depth, denoted as hr, (ii) its
width, denoted as w, and (iii) its height, which is set equal to w/3. These assumptions
are based on the structural analysis of Blair et al. [3]. The work by Coombs et al. [36]
on lunar rilles suggests lava tubes of dimension far smaller than the possible maximum
dimension specified by Blair et al.[3]. In any case, the numbers given in [36] are covered
by the provided lava tube dimensions in [3] and therefore included in our analysis.

The length of a lava tube is not specified and it is assumed to be in the order of
kilometres [21, 36]. For what pertains the surface and subsurface materials we denote as
ε1, ε2 and ε4 the real part of the dielectric constant of the regolith, the lava tube roof,
and lava tube floor (i.e., cave bottom), respectively. The dielectric constant of the cave
interior ε3 is assumed to be the one of vacuum and is thus equal to 1.

2.3 Radar Sounder Design and Lava Tubes Detectability Anal-
ysis

In this section we study the requirements on the parameters of a radar sounder for de-
tecting lava tubes and perform an analysis of the expected performances and detection
capabilities.
In subsection 2.3.1, we assess the regolith contribution to echo power losses. In subsection
2.3.2 the model for the echo power received by the lava tube is presented. Subsections
2.3.3 and 2.3.4 are devoted to the assessment of the signal-to-noise ratio (SNR) and signal-
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Figure 2.2: Radar sounder acquisition and terrain geometry

to-clutter ratio (SCR), respectively. Finally, subsection 2.3.5 illustrates the results on the
lava tube detectability by combining the analyses presented in the previous sections of
this chapter. The final assessment provides information on whether a lava tube with given
width and depth of the roof can be detected as a function of the probing central frequency.

2.3.1 Regolith Scattering Assessment

Radar sounders propagation losses are classified in three different types namely (i) geo-
metric losses due to the radial distance between the target and the sensor, (ii) attenuation
losses induced by the terrain electric properties, and (iii) scattering losses due to hetero-
geneous inclusions in an otherwise homogeneous medium. In this section we investigate
the impact of lunar regolith on both the attenuation and scattering losses, as well as on
the dispersion of wide bandwidth waveforms.

Lunar surface is covered by a mantling layer composed of fragmented heterogeneous
material denoted as regolith. Its average thickness is estimated to be 5 metres in Maria
regions and 12 metres in Highland regions [41]. Being formed by an ensemble of objects
(e.g., rocks) of various sizes and shapes, they could potentially give rise to volume scatter-
ing phenomena. In general, for longer wavelength the scattering mechanism is dominated
by the base of the regolith, whereas, for shorter ones, scattering on and within the re-
golith is an important factor contributing to losses [16]. Let us analyse a scenario of a
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regolith with thickness rt = 8.5 m (i.e., global average over the Moon surface) and rock
inclusion modelled as dielectric spheres of radius comprised between 0.6λ/(2π

√
ε1) and

10λ/(2π
√
ε1) where ε1 = 2.7 is the average dielectric constant of the soil enclosing the

rocks [41, 42]. According to Mie’s theory [18], this particular range of radius size is the
one that gives the highest backscattering values and, in turn, the greatest losses (i.e., less
electromagnetic energy propagates below the regolith).

We assume the volume rock population N(dr)[1/m
4] as function of the rock diameter

dr to be the one that has been measured by the Surveyor missions [16]. The number of
rocks by unit area is equal to [16]

Nr = rt

∫ 10λ/(π
√
ε1)

0.6λ/(π
√
ε1)

N(dr) ddr. (2.1)

From the results reported on Fig. 2.3 we can infer that, even in a worst case scenario,
the number of rocks comprised in the regolith by unit area having a size comparable to
the incident wavelength is negligible over the entire frequency range of interest typical of
radar sounding. The only exception to the general trend of Fig. 2.3 is the one inferred
from Surveyor 7 data, which highlights marginal volume scattering effects for sounding
frequencies higher than 80 MHz. However, recent discoveries suggest that the highest
concentration of lava tubes lies in the Mare regions [38, 26]. The Surveyor 7 sampling
site was located in the Highland plains region near Tycho crater, thus, in our case, of less
significance when compared to Mare regions data where all the other Surveyor sampling
sites were located.

Another potential contribution to echo power loss results from voids inclusion in the
regolith material. The Maxwell-Garnett mixing model describes dielectric constant of the
solid/pore filling mixture εm at different depths in the following way [43]:

εm(z) = ε1
1 + 2Ω(z)ξ

1− Ω(z)ξ
(2.2)

ξ =
εi − ε1
εi + 2ε1

(2.3)

where εi is the dielectric constant of the inclusion assumed to be vacuum (i.e. εi = 1).
The model of the decline of porosity Ω as function of the depth z due to the lithostatic
pressure is equal to [44]:

Ω(z) = Ω(0)e−z/K (2.4)

where Ω(0) is the surface porosity and K is a decay constant. Ω(z) and Ω(0) are porosity
percentage divided by 100. The decay constant for the Moon is equal to K = 6.5 Km [44].
In this case, the two-way transmission coefficient between the regolith and the substrate
Treg is equal to;

Treg(z) = (1− Γ2
reg(z))2 (2.5)
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where Γreg is the porous base of the regolith reflection coefficient defined as:

Γreg(z) =
1−

√
ε2/εm(z)

1 +
√
ε2/εm(z)

(2.6)

The real part of the permittivity and the loss tangent decrease when increasing the
porosity. This implies that the reflection coefficient Γreg(z) increases or decreases with
the porosity depending on the value of ε1 and ε2. By assuming 2.5 ≤ ε1 ≤ 4 and
4 ≤ ε2 ≤ 8 [41, 42], the resulting decrease or increase of the transmission coefficient
Treg is smaller than 1 dB and thus negligible. The total two-way radar signal attenuation

Lreg = 0.18
√
εm(z) tan δ z [dB/MHz] [45], where tan δ is the loss tangent, decreases as

function of the porosity and the depth. Its variation can be considered negligible at low
frequencies (e.g., 10 MHz). At 100 MHz, considering worst case parameters, there is a
reduction in total signal attenuation up to 5dB as shown in Fig. 2.4). The values assumed
for the loss tangent (i.e. 0.01 to 0.03) are in the upper range of the ones measured for
the Moon basaltic material in our frequency range [46] and thus should be considered as
worst case.
The waveform dispersion in the regolith is related to the frequency dependence of ε1 and
tan δ. If the phase of the signal is a linear function of frequency (i.e., linear phase con-
dition), there is no dispersion (i.e. temporal smearing) of the radar signal and thus no
distortion. In the frequency range 1 MHz to 100 MHz, the tangent loss is always much
smaller than one [47] and the real part of the dielectric constant has very small variations
with frequency [47]. Under this assumptions of low-loss dielectric [18], linear phase con-
dition of the signal in the regolith is met and thus there is no waveform dispersion.
According to the above analysis, we consider volume scattering, voids inclusions and sig-
nal phase dispersion effects negligible and thus in the following we will only take into
account the regolith geometric and attenuation losses.

Figure 2.3: Number of rocks [1/m2] contributing to volume scattering as function of the carrier
frequency f0 and the Surveyor sampling site
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Figure 2.4: Example of normalized variation of the transmission coefficient and attenuation as
function versus the regolith porosity percentage, εi = 1, ε1 = 4, ε2 = 8, tan δ = 0.03, f0 = 100
MHz

2.3.2 Lava Tube Floor Echo Power

The radar echoes of interests are those arising from the lava tube roof and floor. The
radar echo undergoing the most attenuation is the one generated by the lava tube floor.
Accordingly, we model the echo power received from it as function of the radar and
surface/subsurface parameters. The echo power density Si [W/m2] measured at the radar
antenna (without considering the terrain attenuation and backscattering) is equal to:

S1 =
PtG

2λ2

(4π)3R4
e

, (2.7)

where Pt is the radar transmitted power, G the antenna gain and Re the effective radar
distance to the target, which is equal to:

Re = h+ rt/
√
ε1 + hr/

√
ε2 + w/3. (2.8)

The effective radar distance is the one from the radar to the floor of the lava tube and
it depends on the regolith depth rt, the depth of lava tube roof hr and the lava tube
height (which is assumed equal to w/3, where w is the width of the lava tube). The
effective distance is reduced in both the regolith and lava tube roof medium according to
the decrease in velocity of the electromagnetic wave.

The echo power density Si is reduced by the two-way attenuation the transmitted



Radar Sounder Design and Lava Tubes Detectability Analysis 29

pulse experiences as it travels through both the regolith and lava tube roof such that:

S2 = S1e
−2αf0(

√
ε2hr+

√
ε1rt), (2.9)

where α = 2π/c0 tan δ is the two-way attenuation constant. We assume the loss tangent
tan δ to be equal for both the regolith and the lava tube roof.

At each interface (i.e., dielectric contrast between different materials) part of the en-
ergy is reflected toward the radar and part of it continues to travel downwards into the
target terrain. Therefore the power density S2 is further reduced by the various interfaces
reflections such that:

S3 = S2 T
2
01ρ12T

2
12T

2
23, (2.10)

where the transmission coefficient Tij between the i-th and j-th medium is equal to Tij =
1 − Γij.The Fresnel reflection coefficient at normal incidence denoted as Γij defined as
follows:

Γij =

∣∣∣∣∣1−
√
εj/εi

1 +
√
εj/εi

∣∣∣∣∣
2

. (2.11)

The transmission factors are related to the vacuum-regolith, regolith-roof and roof-cave
interfaces.
The regolith-roof interface is the one between the regolith and the substrate.
As discussed in Section 2.2, this interface is rough. Accordingly, let ρ12 be the two-way
rough surface transmission power loss with respect to the specular return [48, 49, 50]:

ρ12 = J2
0 (
ψ2

2
)e−ψ

2

(2.12)

where J0(.) is the zero-order modified Bessel function and ψ is the RMS phase variation
induced by the rough surface on the transmitted signal which is equal to:

ψ =
4πσb
λ

(
√
ε2 − 1) (2.13)

The RMS variation of surface height σb is referred to the base of the regolith. As already
stated in Section 2.2, the base of the regolith roughness is assumed to be of the same
magnitude as that measured by LOLA [40]. Therefore σb can be computed from the
surface slope derived from LOLA data.
To retrieve the lava tube floor echo power Pf [W ], the power density S3 is multiplied by
radar cross-section of the lava tube floor as follows:

Pf = S3 σ
0
f (0)Af , (2.14)

where Af = min{w,
√

2λh} ·
√

2λh is the equivalent area of the lava tube floor. If the
lava tube width is greater than the first Fresnel diameter, we consider a rectangular area
formed by the latter. The length of the lava tube is assumed to be in the order of
kilometres [21], thus it is appropriate to consider only the contribution of the coherent
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part of the scattered field given by the first Fresnel diameter. We denote as σ0
f (0) the

backscattering cross-section normalized to unit area defined as follows [51]:

σ0
f (θ) =

CfΓ34

2

1

[cos4(θ) + Cf sin2(θ)]3/2
. (2.15)

Hagfor’s model is particularly appropriate because it has been already applied and vali-
dated on Moon data. The value of the constant Cf = 1/s2

f can be computed assuming

the reference slope to be equal to sf = tan−1(
σf
w

). There is no available data regarding

the rms value of the floor height distribution σf . We know from terrestrial lava tubes that
the floor relief can vary from relatively smooth to very rough and knobby [21]. Moreover,
this variability occurs at scales considerably smaller than the lava tube cross-sectional
dimension. Assuming that the tube height is equal to w/3, and assuming a Gaussian
distribution for the floor height variation inside the lava tube, we can safely constraint
the rms height such that 4σf = w/3. This, in turn, provides the value of the reference

slope assumed equal to sf = tan−1(
1

12
) = 0.0831 rad.

2.3.3 Signal to Noise Ratio (SNR)

The signal-to-noise ratio is expressed with reference to the power scattered by the floor
of the lava tube as follows [52]:

SNR =
Pf
Pn

=
PtG

2λ2σ0
f (0)Af

(4π)3(h+ rt + hr/
√
ε1 + w/3)4

T 2
01ρ12T

2
12T

2
23e
−2αf0(

√
ε2hr+

√
ε1rt)

kbTe(f0)B
,

(2.16)

where the noise power is equal to Pn = kbTe(f0)B, kb is the Boltzmann constant and Te(f0)
is the frequency dependent galactic noise temperature[53]. It is clear from equation (2.16)
that the attenuation term and, in turn, the depth of lava tube roof hr play a major role
in the SNR performance of the radar system. Another important factor affecting the
SNR is the two-way rough surface transmission term ρ12 ∼ e−f

2
0 . We constrain the value

of σb by considering the average range of slope values for Highlands and Maria region
provided in [38]. The derived average values of σb are 0.6 m and 2.2 m for the Maria and
Highlands regions respectively. The analysis of the two-way rough surface transmission
losses of equation (2.12) shows that the frequency range 80 MHz to 100 MHz is particularly
affected by the roughness of the base of the regolith in both Maria and Highlands regions
(see Fig. 2.5).
The range compression gain is equal to

Gr = B · Ts, (2.17)
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where Ts is the transmitted pulse width. The azimuth compression gain is equal to

Gaz =
Ls

vs PRI
=

√
2λh

vs
PRF, (2.18)

where PRF =
4vs
λ

sin θc is the minimum pulse repetition frequency of the radar required

for sampling the Doppler spectrum, and vs is the orbital velocity. For the definition of
the clutter angle θc the reader can refer to the next section.

Figure 2.5: Two-Way rough surface transmission losses with respect to specular return induced
by the regolith base as function of both its RMS variation of the height and the central frequency.
Due to lack of knowledge regarding the roughness of the regolith base, range of plausible RMS
height values for the Maria Region and the Highlands Region were calculated assuming that
the base of the regolith roughness is of the same magnitude as that of the lunar surface which
is constrained by LOLA [40]. In this example, the value of the substrate dielectric constant is
assumed equal to ε2 = 6
.

2.3.4 Clutter Model and Signal-to-Clutter Ratio (SCR)

In radar sounding, clutter is defined as off-nadir echoes coming from the surface which
may mask the echoes of interest coming from the subsurface. This generates ambiguities
and may hinder data interpretation. The clutter slant range (see Fig. 2.6) with respect
to the lava tube floor is equal to:

Rc = h+ rt
√
ε1 + hr

√
ε2 + w/3. (2.19)
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Figure 2.6: Illustration of the Clutter Geometry

As a result of the azimuth radar focusing, the equivalent clutter area is given by [19]:

Ac =
√

2λh
c0

B sin(θc)
. (2.20)

This area corresponds to the one such that the illuminated points have zero Doppler. The
clutter angle θc is equal to

θc = cos−1(h/Rc). (2.21)

The clutter echo power Pc is equal to

Pc =
PtG

2λ2σ0
s(θc)Ac

(4π)3R4
c

, (2.22)

where the surface back-scattering coefficient is expressed as for the Hagfor’s model:

σ0
s(θ) =

CsΓ01

2

1

[cos4(θ) + Cs sin2(θ)]3/2
, (2.23)

where Cs = 1/s(λ)2 and s(λ) = s0 (λ/λ0)H−1 is the frequency dependent RMS slope
of the surface [54], H is the surface Hurst exponent and s0 the reference RMS slope.
The reference wavelength and slopes are assumed equal to λ0 = 17 m and s0 ≤ 25 deg
respectively [40]. The value of the Hurst exponent can be assumed in the range 0.7 ≤
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H ≤ 1 [40]. The signal to clutter ratio denoted as SCR is defined as:

SCR =
Pf
Pc

=(
h+ rt

√
ε1 + hr

√
ε2 + w/3

h+ rt/
√
ε1 + hr/

√
ε2 + w/3

)4
σ0
f (0)

σ0
s(θc)

T 2
01ρ12T

2
12T

2
23

Af
Ac

e−2αf0(
√
ε2hr+

√
ε1rt).

(2.24)

The dominant parameters which mainly drive the value of the SCR are the clutter angle θc
(which controls the value of σ0) and the attenuation terms e−2αf0

√
ε2hr and ρ12 ∼ e−f

2
0 . For

a fixed f0, the sounding of large lava tubes (in terms of width) is less affected by clutter
when compared to small lava tubes. As w increases (note that the lava tube height is
assumed equal to w/3), the clutter angle increases and thus σ0

s decreases. This results
in an improvement of the SCR. Another factor affecting SCR is the sensor height h. By
lowering it, the SCR increases due to the direct increase of θc.

In equation (2.24) the most difficult term to analyse is the one accounting for the
surface and subsurface backscattering, which we denote as ∆σ0 = σ0

f (0)/σ0
s(θc).

Assuming a worst case scenario such that ε2 = 8 and ε3 = 4, Fig. 2.7 shows that,
even if for small surface slopes and small clutter angles θc, the clutter backscattering
contribution (i.e., σ0

s) does not considerably degrade the SCR performance. Therefore we
can conclude that the dominant factor for SCR degradation is the subsurface attenuation
and the relief at the base of the regolith.

Figure 2.7: Worst case analysis for the back-scattering ratio ∆σ0 = σ0
f (0)/σ0

s(θc) [dB] between
the subsurface and surface versus the clutter angle θc and the surface RMS slope s. The dashed
lines are constraining the values of the clutter angle θc as function of the S/C height h, the lava
tube roof hr and the lava tube width w. The analysis is performed for the lava tube of width
w = 125 which is the one resulting in the smallest clutter angles thus considered worst case.
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2.3.5 Lava Tubes Detectability

The analyses presented in sections 2.3.3 and 2.3.4 highlight that the main driving factor
affecting the radar performance is the substrate attenuation on the radar signal which
mainly depends on the depth of the lava tube roof hr, the central frequency f0 and the
RMS variation of surface heights of the regolith-substrate interface σb for fixed subsur-
face properties in terms of complex dielectric constant. The lava tube width w plays a
secondary role in terms of SCR and SNR when compared to the depth of lava tube roof.
Fig. 2.8 shows the maximum depth at which a lava tube can be detected for different
carrier frequencies as function of tan δ and σb. As expected, the maximum detectable
depth of the lava tube roof is strongly dependent on f0. Fig. 2.8 (b) shows that the base
of the regolith roughness strongly impacts performance in the range 80 MHz to 100 MHz.
Performances have been evaluated considering radar system parameters based on previ-
ous Moon radar sounding missions [29]. Accordingly, the transmitted power is set equal
to Pt = 800 W, the antenna gain is equal to G = 1 dB, the pulse repetition frequency
PRF = 500 Hz, the pulse width Ts = 100µs and the S/C height equal to h = 25 km.
For what regards the Moon surface parameters, we assume a representative and rather
challenging scenario, from the attenuation point of view, such that H = 0.8, s0 = 2.5 deg,
ε1 = 2.7, ε2 = 4, ε4 = 4, tan δ = 0.01, rt = 8.5 m and σb = 0.6 m. These values are in
line with what discussed in the previous sections [41, 42, 40]. Fig. 2.9 shows the results
regarding SNR, SCR and detection matrix for three different carrier frequencies namely
10 MHz, 50 MHz and 100 MHz. The detection matrix is displayed in the same fashion as
the structural stability one presented in [3]. The lava tubes dimension we consider feasible
and for which detectability is provided are the stable and quasi-stable configurations for
both the lithostatic and Poisson stress state in the material models as in [3]. Accordingly,
performance for unstable lava tubes were not computed.

A lava-tube is considered detectable if, for a specific combination of lava tube roof
depth hr and lava tube width w, all of the following conditions holds true: (i) SCR > 0
(ii) SNR > 10 dB, (iii) hr greater than two times the range resolution defined as in
Section 1.2.4, (iv) w greater than the along-track resolution defined as in Section 1.2.4.
It is clear from Fig. 2.9 that for f0 = 10 MHz only very large lava tubes can detected.
These large lava tubes are detected with very solid performances in terms of SNR. On
the other hand, for a frequency f0 = 100 MHz, small lava tubes can be detected and with
a lower SNR when compared to the 10 MHz sounding case. Finally, the f0 = 50 MHz
sounding frequency is suitable for detecting medium size lava tubes. Therefore there is
a clear correlation between the sounding central frequency and the dimension of the lava
tubes that can be detected with it.

By further analysing the results of Fig. 2.9 we can highlight a general scheme in
terms of lava tubes detection as function of their width w and lava tube roof depth
hr. With reference to Fig. 2.10, the area of feasible lava tube detection presented in
blue is constrained by three different sub-bands. Each sub-band thickness depends on
certain radar performance factors which are mainly affected by the selected radar central
frequency f0.

As a conclusion, it is therefore clear that a multi-frequency radar sounder will allow
to map the vast majority of all the feasible and potential lava tube dimensions. This
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can be done by selecting at least two frequencies, one from the lower and one from the
upper part of the 1 to 100 MHz frequency range. As an example, Fig. 2.11 shows that a
radar sounder with lower carrier frequency equal to 10 MHz and higher one of 100 MHz is
potentially able to detect the vast majority of the allowed (in terms of structural stability)
lava tubes sizes if tan δ = 0.01. However, to take margin against the basalt surface relief
and loss tangent variation which has a major impact on performance (see Fig. 2.8 (b)),
a central frequency in the range 60 to 65 MHz is a more reasonable choice (see Fig. 2.11
(c)). for detecting small lava tubes under the 50 % fractional bandwidth assumption.

(a) (b)

Figure 2.8: (a) Maximum detectable depth of lava tube roof hr versus the carrier frequency f0

for different values of (a) loss tangent and (b) basalt substrate RMS variation of surface heights.
The depth of lava tube roof is discretized according to the structural stability matrix of [3].

2.4 Lava Tubes Electromagnetic Signatures

This section is devoted to the analysis of the electromagnetic signature of lava tubes
of different dimensions, in the frequency range of 1 MHz to 100 MHz identified in the
previous section. We investigate the radar returns resulting from a range of lava tubes
geometries using of a multi-layer coherent simulator. Lava tubes echoes are generated for
different radar central frequencies and different crossing angles assuming to transmit with
a linear chirp weighted by an Hann window. Range-compression is then applied to the
simulated data. The crossing angle is defined as the angle at which the spacecraft ground
trace intersects the line perpendicular to the lava tube axis. The coherent simulator allows
us to analyse both the received signals power and the phase information.

Although the simulator works with interfaces represented by 3D surfaces, it is possible
to simulate 3D volumes by cladding two properly-chosen surfaces together, as shown in
Fig. 2.12. Lava tubes are modelled in this fashion, where one surface containing an open
half-cylinder is clad to a flat surface underneath, thus adding a ground to the lava tube.
It is worth noting that a minor issue arises when modelling the tubes this way. Because
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Figure 2.9: SNR, SCR and detectability matrix for (a) f0 = 10 MHz (b) f0 = 50 MHz and (c)
f0 = 100 MHz assuming loss tangent equal to tan δ = 0.01 and RMS height variation of basalt
substrate equal to σb = 0.6 m.

the simulator processes the subsurface layers in an iterative way, a reflection is generated
by the layer containing the open half-cylinder, but this feature is easily recognizable in
the resulting radargram and does not endanger the general picture of the simulation. For
what pertains the subsurface geoelectrical properties, we assume the medium between the
lunar surface and the lava tube roof to be basalt with real part of the dielectric constant
equal to εr,1 = 4 and tangent loss equal to tan δ1 = 0.01. The lava tube floor is described
by a dielectric constant equal to εr,3 = 4. We consider the space between the lava tube
roof and floor as empty such that εr,2 = 1.

The rest of this section is organized as follows. In section 2.4.1 we investigate the
electromagnetic signature of lava tubes of different sizes assuming an ideal geometry such
that the lunar surface is flat and the lava tubes are modelled with perfect geometric shapes.
This is done in order to establish clear reference cases for the lava tubes electromagnetic
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Figure 2.10: General scheme of lava tube detection versus the lava tube width and the roof
height. The area of feasible lava tube detection is depicted in blue. The size of this area is
bounded by three smaller sub-bands which size depends on the value of the radar parameters.
The radar central frequency is the main factor affecting the size of these sub-bands. In terms
of central frequency f0, (i) the red band increase is proportional to ∼ exp(f2

0 ) due to basalt
substrate roughness,(ii) the green band decreases as ∼ f0 due to the larger exploitable bandwidth
and thus improved range resolution and (iii) the yellow band decrease as ∼ 1/

√
f0 as across-track

resolution is dictated by the first Fresnel zone.

responses. Then, in section 2.4.2, we present simulations of more realistic scenarios. This
is done by modelling irregular lava tubes and a lunar surface characterized by the presence
of craters and significant roughness.

2.4.1 Lava Tubes Electromagnetic Signatures : Ideal Geometry

We investigated four lava tubes of different sizes selected on the basis on the structural
stability analysis of [3]. The simulations on the selected cases where performed at two
different combinations of central frequencies and bandwidths : (i) f0,1 = 10 MHz and a
bandwidth B1 = 5 MHz, and (ii) f0,2 = 100 MHz and B2 = 50 MHz. The simulations were
performed for the following four scenarios : (a) perpendicular (to the lava tube axis), (b)
centred parallel, (c) off-centre parallel, and (d) oblique with an angle of 45◦, all of which
are represented schematically in Fig. 2.12. The radar altitude was set to h = 100 km for
all runs, and the radar peak power to P = 800 W. The footprints considered have a radius
equal to twice the pulse-limited zone radius of each instrument, that is, A1 = 4897 m and
A2 = 1549 m. The investigated cases, covering different lava tubes sizes, are summarized
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Figure 2.11: Examples of detectable lava tubes by combining the sounding at two different
carrier frequencies. (a) tan δ = 0.01, σb = 0.6 m, lower frequency equal to 10 MHz, higher
frequency equal to 100 MHz (b) tan δ = 0.02, σb = 0.6, lower frequency equal to 10 MHz, higher
frequency equal to 100 MHz (c) tan δ = 0.02, σb = 0.6 m, lower frequency equal to 10 MHz,
higher frequency equal to 60 MHz.

in Table 2.4.1.
In order to establish a series of clear reference cases, the lava tubes are modelled

with perfect linearity and curvature. The lunar surface is modelled as flat. To avoid
ray-tracing artifacts, some minimal roughness was added to every interface by adding a
surface modelled as fractional Brownian motion with a Hurst’s coefficient H = 0.1 and a
topothesy T = 0.26 m.

Experimental results show that the lava tubes signatures for the parallel and oblique
crossing cases are composed of two vertically-aligned ensembles of hyperbolas (see Fig.
2.13). The upper and lower features correspond to the lava tube roof and the floor,
respectively. The two hyperbolas brightness is similar. The finer characteristics of these
signatures strongly depend on the probing central frequency and associated bandwidth.
For lava tubes sounded with the 100 MHz radar, the signatures are usually very clear
and reduce to two simple hyperbolas corresponding to the roof and to the floor (see Fig.
2.13). For the 10 MHz central frequency case, each of the two traces is rather made of
one bright hyperbola and some dimmer, more chaotic echoes underneath as shown, for
example, in Fig. 2.13. We interpret the brighter hyperbola of the upper trace as generated
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Figure 2.12: Illustration of the different acquisition geometries considered in the simulations
(top), along with an example of simulated radargram for a perpendicular crossing direction
(bottom), where key features of the terrain are cross-references with features on the radargram
: A. surface, B. tube apex, C. tube walls, D. central portion of the floor, E. remainder of the
floor, F. parasitic subsurface resulting from the terrain modelling (disregarded in the analysis).

by the apex of the tube (the centre of the floor for the lower part of the signature), and
the more random pattern beneath it, from the tube walls (from off-nadir floor portions).
These diffuse radar returns are less prevalent in the 100 MHz radar case due to the higher
subsurface attenuation. The above-mentioned features are summarized in Fig. 2.12.

The only noticeable difference between the two crossing scenarios is that the features
are spatially more stretched in the oblique crossing case when compared to the parallel
one (see Fig. 2.13). The stretching factor is equal to cos θ−1, where θ is the angle between
the spacecraft ground trace direction and the line perpendicular to the lava tube axis.

In the parallel crossing case, the roof and floor appear as two parallel lines (see Fig.
2.16). Similarly to the previous case, there are some diffuse spurious reflections, which
are more prominent in the 10 MHz case. The 100 MHz radargrams simply display two
lines, as those off-nadir subsurface echoes are much more strongly attenuated than in
the 10 MHz case. There are no significant differences between a centred crossing and an
off-centre crossing except from a slight variation of the relative power levels of the tube
and floor echoes.
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Figure 2.13: Electromagnetic signature of a lava tube of width w = 4000 m and roof height
hr = 200 as seen by the 10 MHz central frequency radar for (a) perpendicular and (b) oblique
crossing. The phase radargrams highlights the phase inversion between the reflection of the roof
and the bottom of the lava tube.

Our simulations highlight the very important feature of phase inversion, which can be
observed in the radargrams of every detectable tube irrespective of the crossing direction
(see Fig. 2.13 to Fig. 2.16). Indeed, the roof echo presents a 180◦ phase shift with
respect to the surface echo. This is expected from a wave traveling from a medium 1 to a
medium 2 characterized by ε1 > ε2 (i.e. roof medium to vacuum interface). To retrieve the
subsurface phase component resulting from the interface reflection, the path-length phase
contribution should be subtracted from the overall echo signal phase. In our simulations,
we can perform this compensation in a deterministic way since we can exploit the a-priori
information in the digital elevation model. In practice, phase inversion resulting from the
interface reflection can be separated from the phase change due to path-length difference
in a similar fashion as it is performed in ground penetrating radar (GPR) phase-based
techniques for ground profiling [55, 56, 57, 58]. Radar sounder illuminates wider surface
areas with respect to GPR, therefore the surface topography phase contribution shall be
taken into account when compensating for the path length. Fortunately, high resolution
DEM of the Moon are available, thus both clutter returns detection [59] and subsequent
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topography phase contribution correction can be performed if needed.
Another important issue is the phase noise induced by the galatic noise. To address this
issue, we performed Monte Carlo simulations (about 5000 trials for each step of SNR) by
injecting random gaussian noise into the signal and computing the absolute phase error
induced by the noise. The simulations of Fig. 2.14 show that with an SNR equal or
greater than 10 dB the absolute phase error can be considered acceptable. As it will be
presented in the next subsection, phase inversion is a key feature for the differentiation of
legitimate lava tubes echoes from the ones generated by off-nadir surface clutter.

Figure 2.14: Mean and standard deviation of absolute phase error induced on the echo signal
by galactic noise versus SNR.

The simulated electromagnetic signatures largely confirmed the conclusions of the
performance analysis. Large lava tubes buried several hundreds of metres below the
surface were only visible in the radargram with the 10 MHz carrier frequency instrument.
On the other hand, the detection of shallow lava tubes was unambiguous only with the
100 MHz radar. On a few cases related to very shallow lava tubes, discrepancies appear
between the simulation and the performance analysis. For instance, the upper hyperbola
of the w = 1250 m, hr = 50 m lava tube cannot be distinguished from the surface response
using the 10MHz radar. This is due to the fact that the range resolution computation
does not take into account the elongation of the surface response over many range cells.
Accordingly, the radar echoes originating from the roof of very shallow lava tubes may
be buried in the surface echo. This depends on the lunar surface and radar antenna
characteristics.
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Tube Size Width[m] Height[m] Roof Height [m]

Very Large 4000 1333 200

Large 3000 1000 20

Medium 1250 416 50

Small 500 167 5

Table 2.1: Dimensions of the four cases of lava tubes analysed in this study. Tube height is
always equal to one-third of the tube diameter according to the stability analysis of [3]

2.4.2 Lava Tubes Electromagnetic Signatures : Impact of Lunar Topography

The simulations presented in the previous section were performed assuming a flat lunar
surface. This allowed to characterize the radar electromagnetic signature of lava tubes in
an ideal scenario. In this section, we analyse the effect of lunar topography on the lava
tubes electromagnetic signatures. We consider three test scenarios namely (i) a reference
case with no roughness, (ii) a case with a cratered surface and (iii) a case with a rough
cratered surface and rough subsurface.

We performed the simulations of the above test scenarios considering a lava tube with
width equal to w = 2000 m, and roof height equal to hr = 75 m. The radar central
frequency has been set equal to f0 = 80 MHz and the associated bandwidth equal to
B = 40 MHz. Compared to the previous experiments, we selected a different central
frequency in order to provide additional data.

In the lunar mare region, craters are the surface features which are mainly responsi-
ble for subsurface clutter. They are very likely to produce signatures composed of two
vertically-aligned hyperbolas, which can be mistaken as lava tubes. The cratered surface
simulation was run using a digital elevation model (DEM) including three craters of dif-
ferent sizes (see Fig. 2.17 (a)). On the one hand, the discrimination of crater signatures
from the lava tube ones based on the power signature is very difficult due to the wide
range of shapes craters and lava tubes can take. On the other hand, the signal phase
information offers a very strong differentiating criterion. Experimental results show that,
whereas hyperbolas of the crater signature display the same phase, those from a lava
tube show a clear phase inversion on its upper hyperbola (see Fig. 2.17 (c)) allowing to
discriminate between clutter and lava tubes echoes.

For the rough cratered surface and rough subsurface case, a fBm terrain with H = 0.78,
T = 20.6 m, resulting in a RMS slope of s(∆x) = 2.5◦ at ∆x = 17 m, was superimposed
to the DEM of the previous simulation. The fractal modelling of the surface is a reason-
able representation of the lunar mare terrains [40], in which lava tubes have the highest
probability of being found. A similar roughness has been applied to the lava tube roof
and floor. Setting and results are shown in Fig. 2.18

In this simulation, we observe that the roof has an average peak power of -80 dB while
the floor as an average power of -90 dB. These values are largely consistent with the
findings of the performance analysis. The reference case yielded a peak power of about
-75 dB for both the floor and the roof of the lava tube. The subsurface roughness as
the effect of slightly distorting the lava tube signature with respect to the reference case.
Nevertheless, the lava tube radar response can still be interpreted as two vertically-aligned
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Figure 2.15: Electromagnetic signature of a lava tube of width w = 500 m and roof height
hr = 5 m as seen by the 100 MHz central frequency radar for perpendicular crossing. The phase
radargrams highlights the phase inversion between the reflection of the roof and the bottom of
the lava tube.

traces. More importantly, the surface roughness does not affect the phase information of
the lava tube signals preserving the phase inversion mechanism. The response of the
craters, although buried in the surface response, also indicates a negligible perturbation
of the phase response.

The main conclusion from this analysis is that, even for surface presenting both rough-
ness and clutter sources consistent with those typical of the lunar surface, the findings
from the previous section still hold. The mechanism of phase inversion proved to be rather
robust with respect to surface topography allowing to discriminate lava tubes from off-
nadir surface clutter. In the case of clutter sources which are not located in the cross-track
direction of the spacecraft, frequency analysis could also be used to discriminate between
a nadir subsurface return (zero Doppler shift) and a an off-nadir clutter return (non-zero
Doppler shift). Moreover clutter can be removed by performing clutter simulations as
in [59] by taking advantage of the availability of the digital elevation model. Phase in-
version, Doppler analysis and clutter simulations could thus be used in conjunction to
further improve the reliability of lava tube detection.
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Figure 2.16: Electromagnetic signature of a lava tube of width w = 4000 m and roof height
hr = 1333 m as seen by the 10 MHz central frequency radar for (a) center parallel and (b)
off-centre parallel crossing.

2.5 Discussion and Conclusions

Recent evidence based on gravity measurements and optical camera surveys suggest that
there is a large number of lava tubes concealed under the Moon surface. In this thesis
chapter, we investigated the feasibility of sounding lunar lava tubes of different dimen-
sions from space with an instrument specifically dedicated for this task. By combining a
theoretical performance analysis and comprehensive 3D electromagnetic simulations, we
assessed the detectability of a wide range of lunar lava tubes.

The results show that a multi-frequency sounder in the MHz range is the best op-
tion to satisfactorily detect most of the lava tubes dimension which are expected from
structural stability analysis recently presented in the literature. The main driving factors
affecting the radar sounding performance are the attenuation of the basalt substrate (i.e.
the value of the loss tangent) and its roughness (i.e. base of the regolith relief). The
relief of the regolith/substrate interface is estimated to be in the order of meters. Our
analysis shows that radar sounding at central frequencies between 80 MHz and 100 MHz
can be considerably affected by it depending on the actual heights variation of the relief.
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Figure 2.17: (a) Three-dimensional representation of the DEM used in this simulation (inset :
zoom on the tube part). (b) Ground track of the probe (red line) along with two examples of
footprint, the initial one and the final one (red circles), superimposed on the relevant features
of the DEM. (c) Simulated radargram.

In this frequency range, sounding of lava tubes in the Moon highlands regions appears
very unlikely whereas it is feasible in the the Maria region. Accordingly, a possible choice
of the ranges of the two central frequencies which allow to sound the majority of lava tube
dimensions is between 10 and 15 MHz for large lava tubes and between 60 and 65 MHz for
small lava tubes sounding taking into account the 50% fractional bandwidth assumption.
Regarding the technological readiness level of the proposed system, the fractional band-
width of 50% can represent a surmountable challenge for the matching network design
especially for frequencies in the lower range. The assumption on radiated power is based
on the Lunar Radar Sounder transmitted power. The duty cycle in the LRS case is about
0.4%. The very low duty cycle was dictated by the 25% efficiency of the amplifiers. Please
note that this configuration does not reflect the current state of the art in HF amplifiers.
LRS has been developed more than 10 years ago. Modern amplifiers can reach 50% effi-
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Figure 2.18: (a) Three-dimensional representation of the DEM used in this simulation (inset
: zoom on the tube part). (b) ground track of the probe (red line) along with two examples of
footprint, the initial one and the final one (red circles), superimposed on the relevant features
of the DEM. (c) Simulated radargram.

ciency. In our case, the duty cycle is 5%, which is a reasonable and technological feasible
value nowadays.
We simulated ideal radar signatures by analysing four lava tubes with representative di-
mensions. The simulations were performed at two different radar central frequency namely
10 MHz and 63 MHz.
Experimental results show that lava tube signatures (i.e., radar echoes) are composed
of two vertically-aligned ensembles hyperbolas, one for the lava tube roof and one for its
floor, each made of one bright hyperbola overhanging some more chaotic, dimmer returns.
The radar echo from the lava tube roof shows a phase shift of 180◦ with respect to both
the surface and the lava tube floor returns. This constitutes a very strong criterion to
differentiate lava tube echoes from clutter (which do not show such phase inversion). The
lava tube echoes structure and phase inversion mechanism hold even in the presence of
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surface roughness such as that characterizing the lunar mare region of the moon. This
is an important result as lunar mares are the main candidate regions for the subsurface
presence of lava tubes.

As a final consideration, this study suffer from a certain number of limitations. The
theoretical calculation of the range resolution estimation neglects the surface response
that elongates over many different range bins depending on the surface characteristics an
the actual radar antenna pattern. This could cause an overestimation of the detectability
of the shallowest tubes. This effect has been detected in the simulations where lava
tubes with sizes on the edge of detectability in the performance analysis could not be
distinguished from the surface echo. The simulator itself has a limitation as well regarding
whether or not the actual lunar surface topography is considered. As a coherent-only
algorithm, it is forced to neglect any electromagnetic interaction at scales smaller to that
of the DEM used, which in this case has a resolution of 118 m. This may have limited
the amount of diffuse scattering in the simulated radargrams.
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Chapter 3

A Bat Inspired Model for Clutter
Detection in Radar Sounder Systems

As stated in the introductory part of this thesis, acquired data by radar sounders are
often affected by unwanted artifacts which hinder the data interpretation conducted by
geophysicists. Bats possess a remarkable ability in discriminating between a prey, such
as a quick-moving insect, and unwanted clutter (e.g. foliage) by effectively employing
their bio-sonar perfected in million years of evolution. Striking analogies occur between
the characteristics of bats sonar and the one of a radar sounder. In this chapter1, we
propose an adaptation of the unique bat clutter discrimination capability to radar sounding
by devising a novel clutter detection model. The proposed bio-inspired strategy proves
its effectiveness on Mars experimental data and paves the way for a new generation of
sounders which eases the data interpretation by planetary scientists.

3.1 Introduction

Radar sounders are spacebourne sensors which exploit the interaction between electro-
magnetic waves and matter to probe the subsurface of celestial bodies. Bats are unique
animals whose million years evolution has resulted in the refinement of a bio-sonar which
is fundamental for hunting preys. Their bio-sonar performances are still unmatched by
human-made radar and sonar systems.
These two apparently different fields of science sharing ties with electromagnetism for
planetary exploration and biology offer inspiration to open up new ways of dealing with
ambiguities in radar geophysical exploration of planetary bodies. As stated in Chapter
1.2.1, in a single given acquisition, planetary sounders antennas (which are assumed to be
dipoles due to mechanical reasons) are always pointed toward nadir direction with respect
to the surface and illuminate large surface and subsurface regions. The very large antenna
footprint implies that off-nadir surface reflections (i.e. surface clutter) of the transmitted
signal can be disguised for echoes coming from the interior of the target area. This causes

1Part of this chapter appears in:
L. Carrer and L. Bruzzone, “Solving for Ambiguities in Radar Geophysical Exploration of Planetary Bodies by
Mimicking Bats Echolocation,” in Nature Communications, 8.1 (2017): 2248
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Figure 3.1: Similarity between (a) bats and (b) radar sounders acquisition geometry. In the bat
case, side clutter echoes are coming from foliage while in the radar sounder case are coming from
surface features. For both cases, the target of interested is always located in nadir direction.

a serious issue in terms of data interpretation. The clutter main driving factors are the
surface characteristics such as roughness and electromagnetic backscattering properties.
The most popular approach to clutter identification is to simulate the ambiguous echo
signals produced by the surface and then compare them with the experimental data [60].
This approach requires the availability of a digital elevation model of the surface, which
should be acquired by other instruments (e.g. a laser altimeter), with a sufficient resolu-
tion to give accurate results. Unfortunately, very often a surface digital elevation model
is not available or it has an insufficient resolution with respect to the radar wavelength.
Different attempts have been made to find a distinctive domain (i.e. an electromagnetic
property of the signal) where disambiguation between clutter and subsurface signal can
be performed. Recent papers proposed to detect clutter by focusing on the antenna
pattern[61], the polarization[62] and interferometric diversity [63]. The approach based
on antenna pattern diversity consists in deploying two different antennas. The primary
antenna points towards nadir direction, whereas the secondary antenna illuminates sur-
face regions to the sides of the main one. The signal received by the secondary antenna
is assumed to contain only off-nadir surface clutter and therefore it is subtracted from
the signal acquired by the primary antenna thus achieving clutter reduction. Polariza-
tion can be exploited for solving clutter ambiguities by transmitting circularly polarized
waves. Nadir and subsurface reflections invert the sense of polarization once, whereas the
off-nadir clutter reflections result in a double bounce. By projecting the received signal
onto a suitable feature space, it is in principle feasible to distinguish the off-nadir reflec-
tions from the subsurface ones. The interferometric strategy consists in measuring the
phase difference between the echoes received by two spatially separated antennas. The
expected phase distribution for the nadir subsurface echoes differs from the one of the
clutter thus making discrimination possible. However, none of the aforementioned strate-
gies has proven to be the final solution to this specific problem. Moreover, the methods
based on polarization and interferometry have never been tested on actual experimental
data acquired from space.
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Different animal species, such as dolphins and bats, rely on echolocation for foraging and
navigation[64]. Their bio-sonars characteristics and processing scheme share many sim-
ilarities with the strategies being adopted in radar sounders design and operations. As
an example, some bat species transmit linear frequency modulated signals [65] and adapt
the time between each signal transmission according to the target distance [66]. When
hunting preys, bats usually fly in complex environments such as canopies of forests. This
suggests that their sonar system should be capable of dealing with unwanted echoes com-
ing from the surroundings [67, 68, 69]. Moreover, big brown bats need to face a given prey
with their mouth. This implies that their targets will always be oriented toward nadir
direction. It is therefore clear that a radar sounder and a big brown bat share a similar
acquisition geometry (Fig. 3.1) even if in very different scenarios. Bates et al. [67] made
a major step forward in unveiling the processing scheme of big brown bats (Eptesicus
Fuscus) that is associated with their remarkable clutter mitigation performance. The
main concept behind the Eptesicus Fuscus clutter reduction technique is to exploit fre-
quency diversity. Big brown bats modulate two different harmonics over the same linear
frequency modulated signal. The pattern beam-width (i.e. spatial distribution of the
transmitted energy) is frequency dependent and narrower for the higher harmonic with
respect to the fundamental one. Moreover, the signal attenuation due to atmospheric
effects is frequency dependent too. By performing the ratio of the echo power between
the two harmonics big brown bats can predict the echo direction of arrival and range.
In the present study, we successfully adapt and implement the Eptesicus Fuscus clutter
mitigation mechanism to radar geophysical exploration of planetary bodies. We develop
a clutter detection model inspired by the bats processing strategy and tailored to the
specific case of radar subsurface sounding. This results in a model that provides simple
physical conditions for which clutter ambiguities can be resolved. We then apply the
proposed bio-inspired model to experimental data acquired over different regions of Mars
to assess the effectiveness of the presented approach.

3.2 Proposed Clutter Detection Method

3.2.1 Physical Analogies Between Bats Bio-Sonar and Radar Sounding

We analyze the Eptesicus Fuscus clutter mitigation strategy to find and study the differ-
ence and analogies with radar sounding. We argue that it is possible to adapt the bat
clutter mitigation technique to the radar sounding case. The main obvious difference is
that bats emit ultrasound waves while radars electromagnetic (EM) waves. Nevertheless,
the two domains share many similarities such as interference, diffraction and refraction
phenomena. A clear analogy, which is very relevant for this work, is the one between the
bats sonar equation and the sounder radar equation. With reference to the big brown
bat, the sonar equation that relates the echo power received (denoted as Pb,n) as function
of the off-nadir angle θ and n-th harmonic fn, n = 1, 2, is as follows [70]:

Pb,n(θ) =
Pcall Gtr(θ, fn) Aear σ

0
b (θ, fn)At e

−2αb(fn)d

(4π)2d4
(3.1)
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Figure 3.2: (a) Visualization of bats acquisition geometry assuming multi-harmonic signal
transmission. The bats exploits a combination of atmospheric attenuation and antenna pattern
diversity to distinguish clutter echoes coming from foliage. (b) Acquisition geometry for radar
sounders assuming multi-harmonic transmission. The echo strength reduction in the subsurface
depends on the transmitted frequency.

where Pcall is the power of the sonar call transmitted by the bat, d is the target (e.g.
insect) distance from the bat and Gtr(θ, fn) is the gain of the transmitting antenna. It
depends on the shape of the bats nose or mouth. Aear is the area of the receiving antenna
(i.e. bat’s ear) and σ0

b (θ, fn) is the acoustic cross-section of the target. It indicates the
target (e.g. a moth) capability of reflecting the transmitted energy back to the bat per
unit area. This quantity depends on factors such as the shape and material of the target.
At is the target area, a large target reflects more energy back to the bat. Finally, αb(fn)
is the atmospheric attenuation constant which greatly affects the amount of echo power
received by the bat and sensibly increases with frequency [71]. The relevant parameters
of the above equation are sketched in Fig. 3.2 (a).
The bats multi-harmonic scheme is reflected by modeling in the radar equation the trans-
mission being performed at two different harmonics namely f1 and f2. Both harmonics
modulate the same chirp signal (i.e. linear frequency modulated) with equal bandwidth
and pulse-width. This is consistent with the bats transmission scheme presented in Bates
et al. [67]. From the radar system point of view, a higher central frequency would allow
to exploit a larger bandwidth when compared to a lower one. Therefore, in order to have
similar bandwidths at both harmonics, the higher harmonics bandwidth shall be selected
to be less or equal the maximum allowable fractional bandwidth of the lower one. The
echo power received from the surface at a given off-nadir angle θ and at the n-th harmonic
(n = 1, 2) harmonic fn is given by the radar equation [17] and it is equal to:

Ps,n(θ) =
Pt G(θ, fn) Ae σ

0
s(θ, fn)Aill

(4π)2d4
(3.2)

where Pt is the radar transmitted power, G(θ, fn) is the antenna gain, Ae = G(θ, fn)c2/(4πf 2
n)

is the antenna aperture where c is the speed of the light, σ0
s(θ, fn) is the surface backscat-

tering coefficient, Aill is the illuminated area and d is the distance between the radar
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antenna and an arbitrary point of the surface. The surface backscattering coefficient
measures the ability of a given surface to reflect electromagnetic energy. The foremen-
tioned quantities are visually described in Fig. 3.2 (b). By comparing equation (3.1)
and equation (3.2) it is clear that the resulting echo power in the two cases depends on
similar quantities. The main difference is that in the radar case there is no exponential
attenuation of the echo power due to the atmospheric effect as in the bat case. This is
expected because in planetary radar sounder the medium between the radar antenna and
the surface is assumed to be vacuum. In practice, several celestial bodies such as the
Earth do possess an atmosphere. To this extent, the ionosphere is a particularly impor-
tant region with regards to radio signal propagation and radio communications in general
[72]. Its properties govern the ways in which radar signals, particularly in the HF/VHF
bands, propagate and distorts. The main degrading effects of ionosphere interaction with
the radar signal are echoes resolution and peak power losses. An additional delay is also
induced to the radar echo. These effects can be compensated by using radar processing
techniques [73] for ionosphere distortion compensation. As stated in the introduction, the
main goal of a radar sounder is to investigate the subsurface rather than the surface. In
this case, the echo power at the n-th harmonic is described by:

Pss,n(θ) =
Pt G(θ, fn) Ae σ

0
ss(θ, fn) Aill

(4π)2(d+ z)4
(1− Γ2

01(0))2e−2 fn α z (3.3)

where α is the subsurface two-way attenuation factor (see (1.12)), z is the depth into
the ground, Γ01 is the Fresnel reflection coefficient between the first medium and the sec-
ond one (see (1.22)), σ0

ss(θ, fn) is the subsurface back-scattering coefficient and z is the
ground penetration depth. The subsurface attenuation is function of the ground mate-
rial electrical conductivity and relative permittivity. By analyzing the expression of the
subsurface echo power presented in (3.3), we notice that there is a similarity between
the atmospheric attenuation term in the bat case and the subsurface attenuation in the
radar case. This represents a further relevant analogy which plays an important role in
the definition of the bio-inspired ambiguities detection model described in the next section.

3.2.2 Bio-inspired Ambiguities Detection

Big brown bats adopt a combination of path attenuation difference and antenna pattern
diversity [67] to distinguish foliage clutter. We can better understand the bat processing
by analyzing the ratio of the echo power received at the two different harmonics [see
equation (3.1)], which is equal to:

∆Pb(θ, d) =
Pb,1(θ, d)

Pb,2(θ, d)
=
Gtr(θ, f1) σ0

b (θ, f1)

Gtr(θ, f2) σ0
b (θ, f2)

e−2(αb(f1)−αb(f2))d (3.4)

This power ratio is only function of the frequency dependent parameters such as at-
tenuation and sonar cross-section of the target. This remarkable property implies that
computing the echoes power ratio between different harmonics is a simple clutter dis-
crimination strategy because it discards many physical parameters affecting the echoes
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Figure 3.3: Visual Examples on how bats and radar sounders are able to disambiguate clutter
on the power return at different harmonics. (a) For the bat case, Pb,1 and Pb,2 are the echo
power received as a function of the distance at the two different harmonics. Points A and B are
referred to Fig. 3.2 (a). (b) For the radar sounder case, P1 and P2 are the echo power received
as a function of the distance at the two different harmonics. Points A to E are referred to Figure
3.2 (b).

intensity such as the power of the sonar call. It is interesting to note that the power ratio
∆Pb(θ, d) defines a polar plot as function of the distance d and the angle θ. Except for
the antenna gain, the other parameters such as attenuation are physical quantities not
under the control of the bat. By analyzing the experimental results of Bates et al.[67] we
can infer that echolocation evolution [74, 75] shaped the bat’s antenna gain at different
harmonics to result in a functional and wise representation of the power ratio ∆Pb(θ, d).
Accordingly, it has very different values for nadir direction (i.e. target position) with
respect to off-nadir direction. A potential ambiguous return can be identified by simply
comparing the power ratios [Fig. 3.3 (a)] of the different received echoes and verifying if
the power ratio of a potential echo coming from nadir direction is greater than the one of
an echo originated from a different angular direction such that:

∆Pb(0, d1) < ∆Pb(θ, d2) (3.5)

where d1 represents the distance between the bat and the target and d2 the distance be-
tween the bat and the ambiguous return (e.g. foliage). Please note that in this paper by
convention the power ratio definition is reversed if compared to the experimental results
of Bates et al.[67].
In planetary radar sounders, the antenna type (i.e. dipole) excludes the possibility of hav-
ing two antenna patterns with very different beam-widths. According to this, we assume
that G2(θ, f1) ' G2(θ, f2). On the other hand, the radar sounder signal experiences a
greater attenuation in the nadir direction with respect to a bat signal due to the presence
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of the subsurface. It is important to note that both antennas are pointed toward nadir
direction. Following the bat clutter mitigation strategy, we define the surface echo power
ratio ∆Ps(θ) as follows:

∆Ps(θ) =
Ps,1(θ)

Ps,2(θ)
=
f 2

2 σ
0
s(θ, f1)

f 2
1 σ

0
s(θ, f2)

(3.6)

The subsurface echo power ratio Pss(θ, z) is equal to:

∆Pss(θ, z) =
Pss,1(θ, z)

Pss,2(θ, z)
=
f 2

2 σ
0
ss(θ, f1)

f 2
1 σ

0
ss(θ, f2)

e−2(f1−f2)αz (3.7)

The result of equation (3.7) is similar to the surface echo power ratio of equation (3.6) but
it has an additional dependence on the subsurface attenuation. The exponential scaling
factor is always positive since we consider that f1 < f2.
Being the surface and subsurface natural terrains, we describe the backscattering coeffi-
cients assuming a fractal model [76, 77]. We derive the surface and subsurface echo power
ratio for the nadir-looking case (i.e. θ = 0) which are respectively equal to:

∆Ps(0) = (
f2

f1

)2/Hs (3.8)

∆Pss(0, z) = (
f2

f1

)2/Hsse−2(f1−f2)αz (3.9)

where Hs and Hss are the Hurst exponents of the surface and subsurface respectively. The
value of the Hurst exponent is related to the terrain roughness. If the following condition
is verified, then the subsurface echo signal can be always discriminated from clutter:

∆Pss(0, z) > ∆Ps(0) ≥ ∆Ps(θ) (3.10)

This inequality is inferred from the big brown bat clutter cancellation scheme previously
described with the obvious addition of the subsurface return. An illustration describing
how ambiguity can be resolved in the radar sounding case is shown in Fig. 3.3 (b).
In order to apply the disambiguation condition, it is useful to locate the surface echo
return. In general, this can be easily done for each echo trace as it is the return with
the highest intensity[78]. The reader can notice that when compared to the bat case
of equation (3.5), the condition is inverted. In the radar case, an higher attenuation
difference among the two harmonics in the nadir direction is useful for improving clutter
detection. In the bat case, the validity of the disambiguation condition of equation (3.5)
has been experimentally verified. In the case of the radar sounder, to verify the limits
of validity of the above disambiguation condition, first we need to analyze the inequality
∆Pss(0, z) > ∆Ps(0). This is equal to:

f2 − f1

ln(f2/f1)
>
Hss −Hs

HssHs

1

αz
(3.11)
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Equation (3.11) allows the selection of radar sounder harmonics in terms of (i) sur-
face/subsurface geometrical parameters (i.e. Hs and Hss), (ii) dielectric properties of
the subsurface (i.e., α), and (iii) penetration depth z. If we consider fixed the aforemen-
tioned listed parameters, then the model performance in detecting ambiguities increases
as the two harmonics separation increases. This is because the difference in power ratio
of the subsurface with respect to the surface is equal to:

∆Pss(0, z)/∆Ps(0) = (f2/f1)2che2α(f2−f1)z (3.12)

where ch = (Hs −Hss)/HssHs. Equation (3.12) provides an indication of the model sen-
sitivity.
The dielectric properties of the subsurface play an important role in ambiguity detec-
tion performance. High subsurface attenuation scenarios resulting in larger values of
α provide better clutter disambiguation performance both in terms of sensitivity (i.e.
∆Pss(0, z)/∆Ps(0)) and minimum penetration depth (see equation (3.11)) when com-
pared to low attenuation ones. The hypothesis that the surface echo power ratio from
nadir direction is greater than the one from off-nadir direction (i.e. ∆Ps(0) ≥ ∆Ps(θ)) can
be proven according to physical considerations. If we assume f2 > f1 in a confined range
of frequencies typical of an orbital radar sounder, then it is always true that the power
ratio ∆Ps(θ)/∆Ps(0) will diminish for an increasing off-nadir angle θ. This is because
the lower harmonic f1 always perceives a smoother surface compared to f2. This results
in a stronger backscattering at f1 for small off-nadir angles when compared to f2. On
the other hand, the backscattered power at f1 decays faster than the return at f2 as the
off-nadir angle increases. Thus the result is a reduction of the ratio ∆Ps(θ)/∆Ps(0) as
θ increases. This hypothesis is supported by considering the frequency dependent root
mean square slope s(f2, f1) of a given surface defined as follows [54]

s(f2, f1) = s0 (
f2

f1

)p 0 ≤ p ≤ 1, f2 > f1 (3.13)

where the reference slope is denoted as s0. It is clear from equation (3.13) that surface
roughness increases as f2 increases for a fixed f1. Being the slope an indicator of a given
surface roughness, this proves our hypothesis that ∆Ps(0) ≥ ∆Ps(θ). Large facets of
sloping terrains are among the main contributors to clutter echoes which could be typically
mistaken as subsurface reflections. The value of θ of the surface and subsurface back-
scattering function is affected by the local slope of this type of features. This phenomenon
could improve or degrade the disambiguation performance depending on the actual value
of the feature surface slope and thus is strictly scenario dependent. In general, the value
of θ in the nadir region should be smaller than the one in the off-nadir region. This is
required to fully preserve the validity of the disambiguation condition on clutter and is
mathematically expressed as:

cos−1(d̂n · n̂n) 6 cos−1(d̂o · n̂o) (3.14)

where d̂n and d̂o are the distance versors pointing from any generic nadir and off-nadir
surface locations to the radar respectively (Fig. 3.4). Similarly, we denote as n̂n and n̂o
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the local surface normal to any given nadir and off-nadir surface point respectively, and as
(·) the dot product. Indeed, the local value of the surface normal is directly connected to
the value of the local surface slope. The experimental results presented in the following
section show that the local surface slope does not have a major impact on the model
performance and the condition of equation (3.14) is in the majority of cases verified.

Figure 3.4: Geometry Scheme for the Local Surface Slope Analysis. The figure versor definitions
is the following: d̂n and d̂n are the distance versors pointing from any generic nadir and off-nadir
surface location to the radar respectively. Similarly, n̂n and n̂o are the local surface normal (i.e.
the versor perpendicular to the local surface orientation) to any given nadir and off-nadir surface
point respectively.

3.3 Experimental Results

We analyzed the effectiveness of the devised bio-inspired model to discriminate clutter
features which can be disguised as subsurface structures by using real radar sounder
data acquired over Mars. We verified the validity of the proposed model by analyzing
radargrams under three different hypothesis: (a) clutter signal only (b) subsurface signal
only and (c) mixed case where both clutter and subsurface signals are present. In order
to test the proposed model for different surface and subsurface conditions, we selected
three regions of Mars namely the South Polar (SP), the Deuteronilus Mensae (DM) and
the Amazonis Quadrangle (AQ). The SP and DM regions are icy regions [10, 79]. The
AQ is a volcanic region and its subsurface is mainly composed by dry sediments[80].
The subsurface only and clutter only hypotheses have been tested on all the datasets.
The mixed case hypothesis has been validated on the AQ and DM datasets, as the SP
dataset did not provide sufficient statistical data for the mixed case. This because in
the SP region the subsurface structures are in locations where the surface topography is
relatively smooth and does not generate clutter.
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3.3.1 Data Overview and Pre Processing

The experiments for the different datasets were performed on the Shallow Radar (SHARAD)[81]
Reduced Data Records (RDR). The SHARAD RDR records consist of radar received
echoes that have undergone basic radar processing. They are correlated with the auxil-
iary information needed to locate the observation in space and time and compensated for
the ionosphere effect [73, 82] resulting from the interaction between the radar signal and
the martian ionosphere plasma[83]. Among the available datasets from planetary sounder
instruments, the SHARAD ones are the only that allows to have both a reasonable har-
monic separation and the same acquisition geometry which is required by the proposed
model.
Being SHARAD a single frequency channel system, the two harmonics and the associated
bandwidths were retrieved by dividing the radar bandwidth into two non-overlapping sub-
bands [84] (Fig. 3.5). Accordingly, we obtained two linear frequency modulated signals
of bandwidth 5 MHz centered at f1 = 17.5 MHz and f2 = 22.5 MHz, respectively. The

Figure 3.5: Working Principle of dividing the radar bandwidth into two sub-bandwidths

data has been processed according to the following procedure for denoising and validation
purposes.
Let us define as R(x, y) the SHARAD full-bandwidth radargram (see Fig. 3.6). Each
value of this bidimensional function represents an echo intensity. The Cartesian coor-
dinate x denotes depth while the y coordinate denotes the position of the sensor along
the orbit trace. As a result of dividing the signal bandwidth into two sub-bandwidths,
we obtain the ”low-frequency” radargram denoted as RL(x, y) and the ”high-frequency”
radargram denoted as RH(x, y). For each sub-bandwidth we apply a 128 points moving
average in the y direction and a 5 points moving average in the x direction. This is needed
for increasing the signal to noise ratio. Then we compute the statistical noise power for
each echo trace. In radar sounding noise samples are always available within each given
range line leading or trailing the actual surface and subsurface signal. We exploit this
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property to compute the statistical mean of noise power for the lower sub-bandwidth
namely NPM1(y) . Then the threshold T is computed as:

T (y) = K ·NPM1(y) (3.15)

K is an arbitrary constant defining the threshold level which is experimentally set to 1.7
for all the dataset. The threshold is computed over the lower harmonic signal since it is
expected to have a greater SNR especially for higher penetration depths with respects to
the signal acquired at the higher harmonic. All the samples of each sub-bandwidth below
the threshold are discarded from the processing. Then the power ratio RL(x, y)/RH(x, y)is
performed only on the peaks of each echo trace which is averaged with its two neighboring
samples in order to deal with sensor resolution uncertainty. The bi-dimensional power
ratio is subsequently averaged with a 3 x 3 averaging filter. The surface return is located
for each given y. Then the disambiguation condition is applied to each echo trace for all
the processed samples after the surface return. Each feature (e.g. clutter or subsurface)
is represented by many echo samples allowing to compute mean and standard deviation
of the power ratio. Each sample is declared as clutter or no clutter and the final decision
is taken by majority rule. For each analyzed radargram ambiguous and real subsurface
returns were labeled for validation purposes by detecting them with a specific clutter echo
simulator [85]. We defined an ambiguous return as a geological-like structure having a
contiguous extent in both horizontal (i.e. along-track) and vertical (i.e. depth) direction.
For each echo ambiguous return, the equivalent depth is estimated by considering the
difference between the vertical value of its coordinates centroid and the estimated position
of the surface echo. We limited the analysis to the first 1000 m of subsurface depth
according to the nominal penetration capability of the SHARAD instrument.

3.3.2 Results on Clutter Only Hypothesis

In the clutter only hypothesis, we verified whether the surface echo power ratio [i.e.
∆Ps(0)] is greater or equal than the off-nadir surface power ratio [i.e. ∆Ps(θ)] according
to the the proposed bio-inspired model. The results are analyzed in terms of the clutter
detection ratio which has been defined as the number of clutter feature correctly classified
as clutter [i.e. ∆Ps(0) > ∆Ps(θ)] over the total number of clutter features detected at
each given depth. The experimental results for the three datasets (Fig. 3.7) show that
the clutter detection ratio is satisfactory and nearly constant as a function of the clutter
equivalent depth (i.e. the free space depth scaled by the expected value of the dielectric
constant for the region under investigation). Moreover, the clutter detection ratio it is
similar for the different Mars regions under consideration. The SP and AQ regions exhibit
deeper clutter features than the DM region (Fig. 3.7) due to the higher roughness of the
surface as confirmed by the Mars laser altimetry data[86]. Interestingly, the values and
the behavior of ∆Ps versus the depth are similar among the different investigated regions
(Fig. 3.8).

Fig. 3.9 shows an example of results obtained in the SP region for the clutter only
hypothesis. The example illustrates how the disambiguation condition effectively dis-
criminates the clutter generated by different craters which can be mistaken as subsurface
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Figure 3.6: Processing Pipeline for denoising and evaluation purposes.

features. In this specific case, the value of ∆Ps(0) is equal to 3.1 dB. This value is in
agreement with our model [equation (3.8))] for a surface having an Hurst exponent equal
to Hs = 0.7, which corresponds to what is reported in the literature [87]. In the example,
the values of ∆Ps(θ) are provided as a function of depth. We analyzed the effects of the
craters local slopes on the angle θ by computing the theoretical value of ∆Ps(θ) and then
comparing it with the experimental results shown in the example. The comparison (Fig.
3.10) shows that there is good agreement between the model and the surface power ratio
values, and that the off-nadir reflections surface slope result in a larger θ when compared
to the nadir surface reflection.

3.3.3 Results on Subsurface Signal Only Hypothesis

In the case of subsurface signal only, we verified the validity of left-hand side of the
disambiguation condition [i.e. ∆Pss(0, z) > ∆Ps(0)]. Similarly to the clutter only case,
we defined the detection ratio as the number of subsurface features correctly classified
as subsurface versus the total number of detected features at each given depth. In the
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Figure 3.7: Clutter detection ratio, which is defined as the number of clutter feature correctly
classified as clutter over the total number of clutter features detected at each given depth, and
related mean absolute deviation vs the equivalent penetration depth for the different datasets.
The maximum equivalent clutter depth depends on the surface roughness. The rougher the
surface the higher the measured maximum equivalent clutter depth for a given dataset.

SP region, the subsurface stratigraphy allowed to compute the detection ratio from 50 to
750 m depth. Even though some subsurface structures are present from 750 m to 1000
m, the SNR for both harmonics was too low for performing meaningful analysis. The
experimental results show that the subsurface detection ratio increases as a function of
the equivalent subsurface depth and reaches values larger than 0.8 for depths greater than
400 m (Fig. 3.11). The explanation for this is that, for small depths, the attenuation
difference between f1 and f2 is not sufficient to effectively discriminate the subsurface
signal thus resulting in a small detection ratio. As the depth increases, the attenuation
difference increases resulting in an improved detection ratio. This is line with what
estimated by the proposed model [equation (3.12)], which predicts that for low depths
the SP region represents a challenging case in terms of disambiguation performance since
icy subsurface materials have low losses in the MHz range. For the DM data set, the
measured average equivalent depth of the reflectors is equal to 450 m. The subsurface
detection ratio is about 0.72. The average detection ratio for the AQ data set is of about
0.8 for subsurface features located at equivalent depths of 100 m. For the DM and AQ
datasets, the clustering of subsurface features around a specific depth is in agreement with
the geophysical analyses reported in the literature [80, 10]. The comparative analysis of
the subsurface detection ratios (Fig. 3.11) confirms that in SHARAD data the subsurface
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Figure 3.8: Mean values of the surface power ratio ∆Ps for the considered datasets. It is
interesting to note that we obtain very similar curves for different datasets.

attenuation plays a major role in determining the performance of the method [equation
(3.12)]. The AQ dataset provided solid disambiguation performance for low penetration
depths when compared to the results of the SP region. This is expected being AQ a
volcanic terrain with an higher two-way attenuation factor with respect to the other two
subsets. The DM dataset results are in agreement with the ones of SP. This is also
expected since the two regions shares very similar subsurface material properties. The
comparison between the theoretical values of ∆Pss(z)/∆Ps(0) of equation (3.12) and the
experimental values of the subsurface power ratios for the various data sets shows that
there is good agreement between the model and the expected geoelectrical properties of
the subsurface (Fig. 3.12). For the AQ dataset, the model prediction is in agreement
with the experimental data for values of tangent loss and dielectric constant consistent
with those expected on a volcanic region [80]. Similar conclusions on model agreement
can be done for the SP and the DM datasets using typical geolectrical values for these icy
regions[10, 79].

3.3.4 Results on Mixed Case Hypothesis

In the mixed case hypothesis, we verified the validity of the combined disambiguation
condition ∆Pss(0, z) > ∆Ps(0) ≥ ∆Ps(θ). The experimental results show that the results
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obtained for the other two hypothesis are generalized by the mixed case. For the DM
dataset, the measured average power ratios are equal to ∆Ps(0) = 1.86 + /−0.53 dB ,
∆Pss(0, z ∼ 100m) = 3.72 + /−0.58 dB and ∆Ps(θ) = 0.59 + /−0.55 dB thus confirming
the validity of the disambiguation condition. For the AQ dataset, we measured average
power ratios equal to ∆Ps(0) = 0.51+/−0.42 dB, ∆Pss(0, z ∼ 450m) = 2.24+/−0.66 dB
and ∆Ps(θ) = −0.34 + /−0.27 dB, once again confirming the disambiguation condition
validity. Fig. 3.13 shows an example of mixed case hypothesis result for the DM region.
By applying the disambiguation condition, the subsurface feature located at about 550
m depth is correctly detected. The ambiguous reflections arising from different geological
structures satisfy equation (3.10) and thus are correctly classified as clutter. The value
of ∆Ps(0) is equal to 2.6 dB which, according to our model, corresponds to Hs = 0.84.
Similarly to the previous discussed experiment, this value is in agreement with the liter-
ature. Another example of mixed case hypothesis result is provided in Fig. 3.14. This
SHARAD radargram, acquired in the Phoenix [88] landing site region in the northern
plains of Mars, has been already interpreted by Putzig et al.[89]. In their work, they
highlighted the presence of a shallow subsurface layer [marked in Fig. 3.14 (a)] which can
correspond to a relatively deep base of ground ice (ε = 3.15) or to ice-free sediments (e.g.
lava flows with ε = 8). The presence of the mapped subsurface layer is accurately detected
by the proposed method (Fig. 3.14 (c)) along with the discrimination of a clutter return
located at about 300 m depth.

3.3.5 Considerations on Harmonics Separation

Despite the small harmonic ratio of the considered data (i.e. f2/f1 = 1.29) dictated by the
lack of planetary radar sounder systems with larger harmonic ratios, the disambiguation
condition provided satisfactory results for the different tested hypotheses, except for low
depths in the SP dataset. Obviously, a small harmonic separation makes the model
more prone to detection errors due to additive random noise and terrain back-scattered
power variations. As stated, the proposed bio-inspired model predicts that the sensitivity
and, in turns, the ambiguity solving accuracy increases by increasing the two harmonics
separation. In practice, a trade-off exists between the maximum achievable harmonics
separation and the frequency-dependent scattering properties of the target surface. If the
harmonic separation is selected too large, then scattering properties of the surface may
be not comparable at the two different frequencies (i.e. different scattering regimes). An
example of the improvement in method sensitivity by varying the harmonic ratio f2/f1 is
shown in Figures 3.15 and 3.16. The plots have been obtained considering typical Mars
geoeletrical values [90, 91] and assuming f1 = 17.5 MHz and f2 variable.

3.4 Conclusions

Recent studies revealed how big brown bats can effectively discriminate between a given
prey and unwanted clutter coming from their sonar scene background. In this study, we
proved that this really powerful and relatively simple processing strategy can be mathe-
matically modeled and adapted to radars for geophysical exploration of planetary bodies
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thus improving the scientific interpretation of the acquired data. This has been achieved
by observing and modeling many interesting parallelisms between the two apparently
distant fields of biology and applied electromagnetism for planetary exploration. As a
result, this work opens up for a new way of dealing with ambiguous returns in planetary
subsurface probing radars without the need of having an additional sensor paired with it
to produce a 3D surface model for correct data interpretation. The proposed bio-inspired
model has been tested on real Mars experimental data and provided high detection rate
(except for low penetration depths in the South Polar region case) despite the small har-
monic separation dictated by limited existing data sets. The measured values of surface
and subsurface power ratios are in good agreement with the proposed theoretical model.
As expected, the model provides better clutter detection performance for high attenua-
tion rates of the subsurface medium. The experimental results confirm that the fractal
assumption on the back-scattering coefficient is effective in modeling complex scenarios
such as reflections from crater rims and hills sides, which are the main features contribut-
ing to subsurface clutter. Moreover, the experimental results show that the change in
the local surface slope induced by this type of features is well within the model theoret-
ical assumption for the validity of the disambiguation condition. Beside the clutter and
subsurface disambiguation capability, which is the core result of this paper, the proposed
general approach can be useful to characterize the roughness of a given surface and sub-
surface terrain. This can be achieved by relating it to the change in surface and subsurface
echo power ratio versus wavelength.
As a final remark, we point out that the proposed clutter detection model should be used
to design radar sounder systems defined to have a sufficient large harmonic separation
for optimizing performances. In the bat case, the harmonic ratio is equal to f2/f1 = 2
thus sensibly higher than in our performed experiments. This could possibly explain the
greater clutter detection accuracy reported for bat tests when compared to our results.
The average clutter detection ratio in the bat case is 0.95 which is 0.19±0.01 higher than
in our case.
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Figure 3.9: Example of the bio-inspired model results for a portion of the SHARAD radargram
0263001. The radargram is acquired over South Polar Region near Promethei Rupes and contains
only clutter features that resemble subsurface echoes. The disambiguation condition on clutter
∆Ps(0) ≥ ∆Ps(θ) is verified allowing the clutter discrimination to be effectively performed. (a)
SHARAD radargram 0263001. The dashed orange box is the region under investigation. Main
off-nadir clutter reflector regions are marked with letters from A to C (b) Clutter simulation
confirming that the reflections are generated by surface features only. In this case, the clutter
is generated by different craters walls. (c) Upper plot depicts echo traces (average over the
investigated region) for the full signal and the harmonics decomposition. The lower plot shows
the mean and standard deviation of power ratios for main reflectors. The number of echo traces
considered for deriving the statistics is equal to 500. The equivalent depth in the subsurface
medium has been computed from time delay assuming ε = 3.1.
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Figure 3.10: Model theoretical value versus the angle θ for ∆Ps(θ) (black line) and comparison
with the experimental data (average value). The model parameters for ∆Psθ) are f1 = 17.5
MHz, f2 = 22.5MHz and Hs = 0.7. The results show that the clutter returns of radargram
0263001 (Fig. 3.9), generated from different craters, correspond to large local slopes relative
to the radar sounder. The clutter return of point C, compared to the one of point B, has a
smaller local slope with respect to the radar even if it appears at a larger subsurface depth
in the radargram. To disambiguate clutter it is sufficient that the nadir surface power ratio is
greater than any other clutter reflection coming from off-nadir.
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Figure 3.11: (a) Subsurface detection ratio, defined as the number of subsurface features
correctly classified as subsurface versus the total number of detected features, at each given
subsurface depth. The plot highlights the difference in subsurface detection ratio performance
between a volcanic and an icy region due to the different subsurface attenuation values. (b)
Typical radargram for the AQ region. The subsurface stratigraphy is such that the features are
clustered around an average equivalent depths of 100 m. (c) Typical radargram for the DM
region. The subsurface features are clustered around an average equivalent depth of 450 m. (d)
Typical radargram for the SP region. The typical subsurface layering structure of this region
allows the computation of statistics to be performed from 50 to 750 m depth.
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Figure 3.12: ∆Pss/∆Ps(0) model predictions (see equation (3.12)) and comparison with the
experimental results for the different datasets assuming ch ∼ 0. The disambiguation condition on
subsurface signal predicts that ∆Pss(z)/∆Ps(0) > 0. For the AQ dataset we obtain subsurface
power ratio values that are in agreement with the proposed model assuming a tangent loss of
9.5 · 10−3 and ε = 4 for the subsurface material. The DM dataset data is divided into two
different classes, namely high attenuation and low attenuation. The experimental data are in
agreement with the proposed model assuming an icy subsurface with tan δ = 3.5·10−3 for the high
attenuation scenario and tan δ = 1.4 · 10−3 for the low attenuation scenario and ε = 3.1 for both
cases. For the SP region, the model predicts the experimental data assuming tan δ = 3.2 · 10−3

and ε = 3.1. The DM and SP results are consistent with the fact that both regions have similar
subsurface properties (i.e. icy regions).
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Figure 3.13: Example of the bio-inspired model results for a portion of the SHARAD radar-
gram 0716902. The radargram is acquired over Deuteronilus Mensae and contains both clutter
and subsurface features. The disambiguation condition ∆Pss(0, z) > ∆Ps(0) ≥ ∆Ps(θ) is veri-
fied allowing the discrimination of clutter to be accurately performed (a) SHARAD radargram
0716902. The dashed orange box is the region under investigation. Off-nadir clutter reflections
are marked with letters from A to C (b) Clutter simulation confirming that the reflections
marked as A, B and C are generated by surface features only and that in the experimental
data there is a legitimate subsurface reflection (c) Echo Traces (average over the investigated
region) for the full and split bandwidth SHARAD signal (upper plot) and mean and standard
deviation of power ratios for main reflectors (lower plot). The number of echo traces considered
for deriving the statistics is equal to 700. The equivalent depth in the subsurface medium is
computed from time delay assuming ε = 3.1.
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Figure 3.14: Example of the bio-inspired model results for a portion of the SHARAD radargram
1290301. This radargram has been previously analyzed by Putzig et al. [89] and it is acquired
over the Green Valley of Vastitas Borealis and contains both clutter and subsurface features. The
disambiguation condition ∆Pss(0, z) > ∆Ps(0) ≥ ∆Ps(θ) is verified allowing the discrimination
of clutter to be accurately performed and confirming the presence of a very shallow subsurface
interface below the Phoenix landing site region. (a) SHARAD radargram 1290301. The dashed
orange box is the region under investigation. The dashed orange line highlights a very shallow
subsurface reflection mapped by Putzig et al. [89] using the same SHARAD observation (b)
In this case, clutter simulation highlights a clear clutter reflection at about 300 m depths but
overestimates clutter in the shallow subsurface (c) Echo Traces (average over the investigated
region) for the full and split bandwidth SHARAD signal (upper plot) and mean and standard
deviation of power ratios for main reflectors (lower plot). The number of echo traces considered
for deriving the statistics is equal to 400. The equivalent depth in the subsurface medium is
computed from time delay assuming ε = 8.
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Figure 3.15: Values of ∆Pss(0, z)/∆Ps(0) for a representative example of the Mars surface
(e.g. Deuteronilus Mensae) assuming tangent loss equal to tanδ = 0.006 and real part of the
dielectric constant of the subsurface medium equal to ε1 = 3.1. From the figure, it is clear that
the method sensitivity improves by increasing the harmonics ratios (i.e. f2/f1).

Figure 3.16: Value of ∆Ps(0) /∆Ps(θ) for a representative example of the Mars surface(e.g.
Deuteronilus Mensae). The plot has been computed assuming topothesy equal to T = 10−4 m
and Hurst exponent equal to Hs = 0.85. From the figure, it is clear that the method sensitivity
improves for larger harmonics ratios (i.e. f2/f1).
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Chapter 4

Automatic Enhancement and
Detection of Layering in Radar
Sounder Data Based on a Local
Scale Hidden Markov Model and the
Viterbi Algorithm

Radar sounders instruments produce a very large amount data. Very often these data are
manually analyzed by planetary geophysicists. This is a very time-consuming operation
and inherently subjective limits the scientific return of the data. In this context, automatic
techniques can greatly support the planetary scientific community, ensuring reliable, con-
sistent and fast extraction of information from the data. In this chapter 1, we propose
a novel technique for the automatic detection of layer boundaries based on a local scale
Hidden Markov Model (HMM), which model the radar response in the presence of a layer
boundary, and the Viterbi Algorithm (which performs the inference step). The proposed
technique is based on a divide and conquer strategy that executes the Viterbi algorithm
using the observation data and the HMM to infer the most likely layer boundary loca-
tion within a small radargram portion. Finally, a detection strategy is defined to chain
together the inferred local layer locations. Furthermore, a novel radargram enhancement
and denoising technique tailored to support the detection step is presented. The effective-
ness of the proposed technique has been confirmed by testing it on different radargrams
acquired by SHARAD (SHAllow RADar) over the North Pole of Mars. The results ob-
tained point out the superiority of the proposed method in retrieving the position of each
layer boundary (and thus of the related intensity and geometric properties) with respect to
the state-of-the-art techniques.

1Part of this chapter appears in:
L. Carrer and L. Bruzzone, “Automatic Enhancement and Detection of Layering in Radar Sounder Data Based
on a Local Scale Hidden Markov Model and the Viterbi Algorithm,” in IEEE Transactions on Geoscience and
Remote Sensing, 55.2, 2017, pp. 962-977.
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4.1 Introduction

The large amount of data produced by planetary radar sounder instruments requires the
development of automatic techniques for extracting relevant information from the acquired
data in an efficient, objective and accurate way. However, the automatic extraction of
information from radargrams produced by planetary sounders is a challenging task. This
is due to (i) the very heterogeneous characteristics of the subsurface, (ii) the very long
acquisitions distances both in the down-range and azimuth direction and (iii) the weak
subsurface backscattered signal measured by the radar receiver resulting in a low signal to
noise ratio. Planetary radargrams possess substantial differences when compared to other
sounding instruments. In GPR (Ground Penetrating Radar), the number of subsurface
layers is usually small and the azimuth and depth extension of the radargrams are small
too. In ice sheets sounding of the Earth poles, the number of layers and the azimuth
extension of the radargram is greater than in GPR and comparable to the planetary case.
However, the SNR in ice sheets sounding is consistently higher than in the planetary
case due to a higher radiated power and lower platform distance from the ground. It is
clear from the above analysis that planetary radargrams have differences, when compared
to other data products, which should be taken into account in the design of the data
processing techniques. In this paper, we propose an automatic method for retrieving the
spatial position and the radiometric properties of the subsurface layers in radargrams. The
method do not rely on any specific geometric assumptions about the subsurface. Being
the data acquired from planetary bodies inherently noisy, we adopt a statistical approach
to the detection, which has the advantage of performing inference by explicitly modelling
the spatial and radiometric uncertainty of the data induced by noise. In particular, we
propose an approach based on a local scale Hidden Markov Model (HMM) and the Viterbi
Algorithm (VA) for locating each of the target features. In this context, our approach
addresses the critical issue of the literature algorithms which are characterized by a high
computational complexity that scales with respect to both the state dimension and the
number of targets. This issue is crucial in radargrams acquired by orbiting planetary
sounders that are very large and usually contain a high number of layer boundaries in the
subsurface. To avoid inconsistencies and false alarms in the detection procedure, we also
propose a novel adaptive denoising and enhancement technique acting as a pre-processing
step. This technique adaptively exploits the implicit information in the radargram signal
samples to estimate the conditional density distributions of both noise and signal plus
noise which are then used in the framework of the radar detection theory. The retrieved
statistical information is combined with observations on the sensor deviations (e.g. accu-
racy) to produce a denoised radargram enhancing the subsurface layering with respect to
noise and unwanted artefacts of the signal (e.g. side lobes). The denoising performances
are determined statistically in terms of false alarm rate and detection probability.

This chapter is organized as follows. Section 4.1 introduces the background and the
state-of-the-art along with the description of the sounder acquisition geometry and ref-
erence system. Section 4.2 presents the proposed pre-processing technique as well as the
detection algorithm based on the local scale HMM and the VA. The experimental results
obtained on SHARAD radargrams are presented in section 4.3, where they are also com-
pared with those obtained by a recent state-of the-art-technique. Section 4.4 addresses
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the conclusions of this chapter of the thesis.

State of The Art

In planetary radar sounders, the development of techniques for the identification and
extraction of layers in radargrams is still at an early stage. The first attempt at detecting
shallow linear features in SHARAD radargrams has been made by Freeman et al. [92].
The authors proposed a technique based on a combination of high-pass and low-pass
filtering, matched filter and thresholding, under the assumption of having a flat (or quasi-
flat) layering structure in order to apply the matched filter to highlight the horizontal
features. The output of the method is a binary image showing the layering structure.
However no information on the layer boundaries (e.g, geometric structure and radiometric
characteristics) can be retrieved. In order to overcome these issues, Ferro et al. [93]
proposed a method that exploits the BM3D [94] as a pre-processing denoising step and
the Steger filter [95] for line detection. This method directly estimates the position of
each layer with subpixel precision without relying on specific geometric assumptions. For
each detected linear feature, it can retrieve the mean depth, the mean intensity and the
relative mean contrast along with the layer distribution (i.e. number of features and
density of layers) with a high overall accuracy. However, the method is designed for
detecting mainly horizontal linear features in the radargrams, thus suffering the presence
of local irregularities in the layering that would require more degrees of freedom in terms
of feature detection. The method also leaves room for improvement in terms of false alarm
and detection rate. In general, statistical models for multiple layer boundaries detection
have been employed in related fields such as ground penetrating radar (GPR) and ice
sheets sounding. In GPR, Smock et al. [96, 97] efficiently retrieved the layer boundaries
using the VA by making an analogy between a radargram and a trellis. One of the main
drawbacks of the VA is that it assumes that the most likely hidden sequence of states
always starts from the first time step (i.e. first azimuth position). This assumption does
not hold true for radargrams since a layer boundary could span only a small subset of
the trellis. Smock proposed a solution to this problem by outlining a property of the VA
named reciprocal pointer chains (RPC). This property consists in running the VA twice
for each radargram. First, the algorithm runs from the foremost left to the foremost right
azimuth position and then it starts from the foremost right to the foremost left position.
If the left to right and right to left retrieved optimal states go exactly through the same
path they form an RPC. Then an additional iterative step is performed for each layer
boundary in order to refine the layer boundary position. It is important to note that in
GPR the acquisition setup is very different from that of a planetary radar sounder. In
Smock’s setup, an antenna array is deployed in the across-track direction. This allows
the acquisition of an entire radargram for each along-track position of the sensor. In
turns, the performance of the VA can be improved from an acquisition to another by
modifying the transition matrix of the algorithm at each along track position according
to the results obtained from previous measurements. The RPC method runs the VA
in a global fashion over the entire radargram. The pre-processing used by the authors
is tailored specifically to the GPR case, where the spacing between layers is sensibly
larger than in the sounder planetary case. Thus it is not straightforward to adapt the
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method to be used with sounders data. In [98] the authors proposed a multi-target
method that exploits the lateral continuity of the layer boundaries by first detecting and
tracking for each radar scan the time of delay of backscattered pulses coming from the
subsurface and then relating the neighbouring ones by assuming a first order Markov
Model. To overcome the issue of limited performances of the above-mentioned technique
when multiple targets have closely spaced delays, Nicoli et al. [99] proposed a method
denoted as Multi-target VA that proved to have good performances for a very limited
number of layer boundaries. Indeed, the algorithm complexity increases exponentially
with the number of layers. In ice sheets sounding, Crandall et al. [100] proposed a
method based on a statistical graphical model for finding layer boundaries under certain
specific assumptions. The method models the radargram as a first-order Markov Random
Field and then performs inference by applying the VA to each row of the radargram.
Lee et al. [101] applied a probabilistic framework similar to the one in [100] but using a
Markov-Chain Monte Carlo method rather than the VA to infer the position of the layer
boundaries. These methods have been tested only on a limited number of layer boundaries
(i.e. only surface and bedrock interfaces) and their computational complexity makes their
application unfeasible to our problem. Regarding the number of detected layers, in ice
sheets sounding most of the methods presented in the literature focus on the detection of
the surface, the basal and the echo-free zone interfaces [102, 103, 104]. Recently, in ice
sheets sounding several attempts have been made to extract the complete stratigraphy of
the ice subsurface in an automatic or semi-automatic way [105, 106]. In this paper we focus
only on automatic methods. Panton [107] proposed an automatic technique for tracing
internal layers of a radargram, which is based on a combination of a high-pass filtering
(denoising preprocessing step) adapted to process data having layers with different slope
conditions. The actual tracing layer procedure is based on an active contour model (i.e.
snakes). Before the tracing layer procedure takes place, the operator needs to manually
specify the initial seeding points for initiating the integration procedure. The method is
not effective in radargrams showing a missing or complex stratigraphy. Sime et al. [108]
proposed a fast automated method for deriving dip angles of englacial radar reflectors.
It exploits a preprocessing step based on incoherent averaging and thresholding. A local
threshold is exploited for obtaining a binary image from the radargram on which short
coherent layer segments are identified. Each coherent layer is selected and labeled on the
basis of its logical values between adjacent image bins. Then the properties of the layer
object such as position and angle are measured. As a final step the dip information is
gathered together by location. Very recently, MacGregor et al. [109] proposed a method
for automated radio stratigraphy of the Greenland Ice Sheet. The method is divided
into three parts that trace and date reflections and normalize and grid age volume. The
tracing reflection algorithm exploits the phase information contained in a coherent radar
acquisition to derive the horizontal phase gradient of the englacial reflections and in turns
the reflection morphology. The authors also propose an alternative method based on
Doppler centroid for the same purpose. Then, by applying one of the two strategies, the
radar data are integrated according to the information derived in the previous processing
step. However, the above-described automatic methods are not suitable for planetary
radar sounding applications due to the low SNR resulting in a highly disrupted structure
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of the radargrams.

4.2 Proposed Automatic Enhancement and Detection Technique

Figure 4.1: Block Diagram of the Proposed Technique. The layer detection block applies
iteratively the VA and the detection logic stage to produce each layer.

The block diagram of the proposed automatic detection technique is depicted in Fig.
4.1. In the first processing step the noise and signal plus noise sample values conditional
distributions are computed from the radargram. This allows one to perform an adaptive
processing and filtering of the radargram by estimating the probabilities of false alarm
and detection. The enhancement technique highlights the structure of the radargram by
taking into account both the threshold derived from the previous step and the radar range
accuracy. The enhanced radargram, which is the output of the pre-processing unit, is then
given as an input to the layer detection module where the candidate features are identified
by the combination of the HMM and the VA and validated according to a given strategy
(i.e. detection logic). In this paper, the term detection has the meaning of finding the
pixel coordinates of each layer boundary. An ensemble of pixel coordinates forms a vector
which is representative of the position of the layer. The pixel coordinates can be converted
to actual absolute distance values by knowing the parameters of the sensor and the orbit
of the spacecraft. Moreover, the technique extracts the radiometric property of each layer
(i.e. statistics of pixel intensity along the layer). This layer detection procedure can be
exploited for further high level processing.

4.2.1 Proposed Radargram Pre-Processing Technique

This section presents a novel technique for enhancing the layering structure of the radar-
gram that has several important properties. The technique is propaedeutic to the de-
tection procedure which will be described in the next subsection. Le us define a given
radargram as a 2D function R(x, y) where each value of this function is a power sample
of the radar returned signal. The Cartesian coordinate x represents the range direction
while y is the along-track (i.e. azimuth) position of the sensor for a given acquisition. As
a first step, an incoherent averaging of the radargram (i.e. moving average) is performed
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Figure 4.2: Radargram subdivision into noise region NR(x, y) and signal plus noise region
SR(x, y).

in the azimuth direction according to the following equation:

RAV (x, y) =
1

NAV

y−NAV −1∑
i=y

R(x, y) (4.1)

This allows preserving the signal and reducing the noise under the assumption that the
layering structure is flat at a horizontal scale equal or greater than the averaging length
NAV . Note that this can be considered as a multi-look processing in the azimuth direction.
After incoherent averaging the statistical properties of the radargram are analyzed. As
the radar sounder receiver starts recording earlier than the actual surface and subsurface
signals arrival times, for each pulse repetition interval (i.e. range line) the radar acquires
a significant number of noise samples. It follows that for each radargram we can always
define a region containing only noise and a region where the signal is superimposed to the
noise. The existence of a signal free region is exploited to estimate adaptively the noise
distribution. From such an estimate, it is possible to use the Neyman-Pearson decision
strategy [110] to discriminate samples associated with signal from those only affected by
noise. In such framework, a target is detected if:

ps(ν)/pn(ν) > Th (4.2)

where ps(ν) and pn(ν) are the signal plus noise and noise samples conditional density
functions respectively, v is the generic echo sample intensity, and Th a given threshold
value. For each given radargram, the technique computes the above distributions in an
empirical way according to the following procedure. Let NR(x, y) be a sub-region of
RAV (x, y) containing only noise pixels and SR(x, y) be a sub-region containing the signal
pixels that are superimposed over the noise ones (see Fig. 4.2). Under the reasonable
assumption that thermal noise is independent from one range line to another, pn(ν) is
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estimated by extracting a significant amount of samples from NR(x, y). The same pro-
cedure is used for computing ps(ν) by using samples in SR(x, y). For a fixed probability
of false alarm (denoted as PFA), the threshold Th is computed by numerically inverting
the following equation:

PFA =

∫ +∞

Th

pn(ν) (4.3)

PD =

∫ +∞

Th

ps(ν) (4.4)

The detection probability is useful for checking whether the technique is providing a
sufficient detection rate for the selected probability of false alarm. For each range line
(i.e. fixed azimuth position), the local maxima exceeding the threshold Th are detected
and retained as potentially associated with a layer whereas the other samples are set
to zero. These local maxima are computed under the assumption that they must be
separated by a number of samples greater than the range resolution. After this step, the
radargram has the following representation:

Rp(x, y) = RAV (x, y)δ(x, y) (4.5)

δ(x, y) =

{
1 x = xi, y = yi
0 elsewhere

}
(4.6)

where δ(x, y) is a binary mask and (xi, yi) is the position of the i − th local maxima
for which RAV (x, y) > Th, and xi − xi−i > Rr where Rr is the range resolution. From
the radar point of view, a layer boundary is a distributed target that, depending on its
thickness, may persist for a certain number of contiguous range samples. The application
of (4.5) has the effect of representing each layer boundary with a single pixel in the
range direction thus removing its thickness information. This is needed in order to avoid
multiple detection of the same layer in the actual layer detection procedure. Note that,
the peak detected point range accuracy depends on the range accuracy ∆Rr. According
to theory [111, 112], this quantity depends on the Signal to Noise Ratio after incoherent
or coherent signal integration:

∆Rr =
Rr√
SNR

(4.7)

For a given layer boundary, the peak detected sample sequence in the azimuth direction
may have a discontinuous behaviour due to the measurement uncertainty described above.
This is of course against the expected physical behaviour of the interface. The continuity of
the boundary layer can be improved in the azimuth direction by performing the following
convolution between Rp(x, y) and the following window function denoted as rect2Υ(x):

rect2Υ(x) =

{
1 xi −Υ ≤ x ≤ xi + Υ
0 elsewhere

}
(4.8)

The length of the rectangular function rect2Υ(x) in the range direction is computed taking
into account the radar range accuracy ∆Rr and the range spatial sampling frequency fr.
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Its value Υ (i.e. half-width size of the function) is equal to:

Υ = d∆Rr

2fr
e (4.9)

where d.e is the ceil operator. According to this we model the uncertainty on the tracked
point position by taking into account points in its neighbourhood in the range direction.
The number of neighbouring points being considered depends of the range accuracy of the
system. We can derive a lower bound for the validity of equation (4.9) by stating that, in
order to avoid the overlapping of previously detected points induced by the rectangular
function, the condition ∆Rr < Rr must be satisfied.It can be proven that this inequality
holds true only if the SNR is greater than 0, which is in general easily satisfied by all the
detected points. To further enhance the layer continuity a convolution with a gaussian
low-pass filter of size [2Υ + 1, 2Υ + 1] is performed. Replacing the actual radargram

with its enhanced representation denoted as R̂(x, y) has two main advantages in terms
of detection based on the VA. First, it avoids multiple tracking of the same layer. This
may occur when a layer is particularly thick and can be interpreted by the VA as multiple
adjacent paths. This problem has been observed in the application of K-best disjoint
paths to GPR radargrams [97]. With our approach, once a layer has been tracked, it can
be easily removed from the observation matrix since its thickness is predicted as equal
to 2Υ. The second advantage of the proposed enhanced representation is to simplify the
tracking of close layers by enhancing their separation. When two layers are very close,
the VA could mistakenly interpret them as one layer. This issue is particularly evident
when a weak layer is very close to a stronger one. In this case VA starts tracking the
weaker layer but then it locks to the stronger one thus interpreting the two as a single
entity. A false layer could also be caused by the summation of the side-lobes of the radar
response of very close layers. On the other hand, with this approach the information
on the layer boundary thickness is lost but can be retrieved after the layer boundaries
tracking procedure. Note that the presented technique has a general validity and can be
applied to any type of radargram for which a signal free region exists. In the case this
region is not available, the method can be applied with the modification that the decision
on the threshold value should be manually selected.

4.2.2 Combination of the HMM and the VA for Layer Boundaries Detection:
Proposed Concept

This section presents the proposed layer boundaries detection method. In our approach,
the layer boundaries within the radargram are detected by inference. For this particular
task we take advantage of the VA [113]. The rationale behind the adoption the VA is that

the enhanced radargram R̂(x, y), due to its sampled nature, can be modelled as a trellis
of size Nx×Nywhere each pixel range position x is mapped into a specific state and each
azimuth position y is mapped into a time step of the trellis graph. The function values
of R̂(x, y) are pixel intensities corresponding to the echo signal power samples which
are mapped according to a specific rule into an observation vector for each time step.
By all means, in the context of HMMs, the VA allows to find the optimal state sequence
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associated with a given observation sequence. However, as mentioned before, in planetary
radargrams both the very dense as well as fragmented layer structure and the very long
azimuth acquisition represent a challenge in terms of VA applicability. This results in a
very high computational complexity and in possible incorrect results when the radargram
is considered as a whole in the inference process. Thus to overcome these limitations, a
divide and conquer approach is proposed to infer the position of layer boundaries. This
strategy consists in applying an appropriate HMM to small blocks of the radargram, which
locally models the radar response in the presence of a layer boundary, and the VA. This
is done by selecting only a limited number of rows and columns for each computation.
First, the seeding points needed for starting VA iterations are retrieved and stored for
each azimuth position according to the local maxima detection procedure described in the
previous section. Then, the algorithm sequentially scans each range line and initializes the
VA by setting as initial state the seed under investigation. The seeding strategy addresses
the issue of the VA regarding the layer boundaries spanning only a small portion of the
radargram. The best path is computed by considering only a small subset of states (i.e.
range extension of the block) surrounding the one of the seed. Starting from the position
of the seed, the number of azimuth positions (i.e. time steps) spanned by the algorithm
is assumed to be equal to an arbitrary minimum detectable line length. Then the method
checks whether the best path computed for the given azimuth span can be identified as
a layer boundary. This is done by verifying if the intensity of the pixels included in the
best path are above or below a given threshold. If the computed block is considered to be
a layer, the algorithm proceeds to analyse the following block by assuming as a starting
point the last estimated state within the best path (thus the subset of states is centred on
this point) from the previous computation and repeats the same procedure performed for
the first block. The algorithm stops when the threshold condition on the current block is
not verified or when it reaches the last possible azimuth position of the radargram. Thus
the overall layer boundary is defined as the chaining of the best paths for each block.
Once a layer has been tracked, it is removed from the enhanced radargram R̂. Since it is
expected that a layer generates a tracking seed for each azimuth position, once the layer
position has been computed for its entire azimuth extension, the corresponding seeds are
removed from the data. Then the entire process of finding the best path through the
trellis for each layer starts again on a subsequent azimuth position only after all the seeds
for the previous one have been explored according to the explained procedure.

4.2.3 Combination of the HMM and the VA for Layer Boundaries Detection:
Proposed Algorithm

Let us formalize the description of the proposed technique. We first define the underlying
HMM by adopting the notation presented in [114]. The main model parameters are:

• L(ζ): Total number of time steps.

• 2Λ + 1: Number of hidden states in the model.

• S = {s1, s2, .., s2Λ+1}: Set of states.

• Q = {q1, q2, .., qL(ζ)}: State sequence.
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Figure 4.3: Illustration of the tracking procedure for a single layer boundary. Triangles represent
an hypothetical retrieved best path states.

• qt: State at time t. Where t locally corresponds (i.e. within the radargram sub-
block) to the azimuth variable y.

• Ot: Observation vector at time t.

The parameters Λ and L(ζ) are integer numbers that will be further discussed later
throughout this section. In this context, the hidden states correspond to a layer being
present at each of the range positions within the radargram sub-block under analysis. In
other words, in the model there are 2Λ + 1 hidden states and the i − th hidden state
corresponds to a layer which is positioned at a ground depth corresponding to the i− th
range pixel within the sub-block. The observation vector Ot contains pixel intensities
extracted from the radargram according to a specific rule that will be explained later in
this section. The initial state distribution is defined as:

π = {πj} = P [q1 = sj], 1 ≤ j ≤ 2Λ + 1 (4.10)

The state transition probability distribution is defined as:

A = {aij} = P [qt+1 = sj|qt = si], 1 ≤ i, j ≤ 2Λ + 1 (4.11)

The state transition probability is defined as the probability that a layer boundary is
at a range position at step t given that the same layer boundary was at a particular range
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position at step t− 1. The continuous emission probability densities are defined as:

B = {bj(Ot)} = P (Ot|qt = sj), 1 ≤ j ≤ 2Λ + 1 (4.12)

The model parameters A and B are properly initialized for the dataset under consideration
and then recomputed by using the Baum-Welch algorithm [114]. For a more in depth
discussion regarding the actual definition of the emission probability densities, the state
transition probability distribution and the re-estimation procedure the reader shall refer
to the experimental section (see Section 4.3.3). The method requires a minimum amount
of human-aided training. For a given set of radargrams acquired by a sensor, the training
is performed only once on a representative subset in terms of layer slopes variability and
intensity. Then the method runs in a completely automatic way when a new radargram
acquired by the same sensor has to be analysed. Moreover, the layers vertical shape in the
radargram tends to be similar between different sensors, thus the training performed on
a sensor could be suitable on datasets acquired by a different one. Note that, if the real
sensor data is not available, the training can be easily performed on simulated data. Let
us now focus on the proposed local VA implementation. The method is divided into the
following seven parts. The illustrations of the whole modified Viterbi tracking procedure
for a given single layer and multiple layers are shown in Fig. 4.3 and Fig. 4.4, respectively.

Figure 4.4: Illustration of the tracking procedure for a multiple layer boundary. The numbers
denoted in brackets next to the initial seed represent the order in which the algorithm tracks
the layer boundaries.
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Index Settings

The seed function Ω(yc, k) contains a variable number of k seeds seeds (i.e. initial tracking
points) for each azimuth pixel index yc = 1, 2, ..., Ny− l+ 1. The variable yc indicates the
current azimuth position where the method is starting the computation for retrieving a
given layer location. Moreover, l is the minimum azimuth extension of the layer boundary
detected by the method. The seeds are retrieved by the operation of (4.5). The radargram
is segmented along the azimuth direction y in sub-blocks of length L(ζ). For each block,
the azimuth computation bounds are defined as:

y1(ζ) ≤ y ≤ y2(ζ) (4.13)

where ζ is the index stating which block of the radargram is being processed:

ζ = 1, 2, ...dNy − yc
l − 1

e (4.14)

For each ζ , the azimuth index bounds y1(z) and y2(z) are computed as:

y1(ζ) =

{
yc ζ = 1

y2(ζ − 1) ζ > 1
(4.15)

y2(ζ) = min{ζ(l − 1) + yc, Ny} (4.16)

The initial range pixel coordinate for the ζ − th computation is equal to:

χ{ζ} =

{
Ω(yc, k) ζ = 1

χL(ζ−1)(ζ − 1) ζ > 1
(4.17)

This means that, for the first block, the states under computation are centred on the
k − th tracked point at azimuth position yc, while for ζ > 1 they are centred on the last
range pixel coordinate belonging to the sub-block optimal state path. The range interval
considered for the zeta− th computation is the following:

χ{ζ} − Λ ≤ x ≤ χ{ζ} + Λ (4.18)

The state bound is selected according to the layer boundary variation rate along the
azimuth direction. From (4.18) it is trivial to demonstrate that, for each given z, the
number of states being processed is always equal to 2Λ + 1. In the unlikely event that
χ{ζ} is less than Λ pixels from the top or bottom edge of the radargram, one can pad with
zero intensity pixels the bottom and/or the top edge of the related part of the radargram.



Proposed Automatic Enhancement and Detection Technique 85

VA Initialization

Let the probability of the partial best path to a state j at time t be defined as δt(j) and
let ϕt(j) be the back-pointers matrix. The initial probability is set as:

δ1(j) = {πj} =

{
1 j = Λ + 1

0 elsewhere
(4.19)

This means that, due to (4.18),the most likely state at t = 1 is always the one geometrically
centered in the sub-block (see also Fig. 4.3).The back pointers matrix for the first time
step is set to ϕ1(j) = 0.

VA Iteration

The induction part of the VA is computed according to the following equations:

δt(j) = max
1≤i≤2Λ+1

[δt−1(j)aij]bj(Ot),

2 ≤ t ≤ L(ζ), 1 ≤ j ≤ 2Λ + 1
(4.20)

The observation vector is defined as:

Ot =[R̂(χ{ζ} − Λ, y1(ζ) + t− 1), ..., R̂(χ{ζ}, y1(ζ) + t− 1), ...,

R̂(χ{ζ} + Λ, y1(ζ) + t− 1)]
(4.21)

For each along-track position (i.e. time step), the observation vector Ot contains the

intensity values extracted from the enhanced radargram R̂ belonging to the range cut
defined by the bound of (4.18). Thus its size is equal to 2Λ + 1. The back pointer matrix
is computed as:

ϕt(j) = max
1≤i≤2Λ+1

[δt−1(j)aij],

2 ≤ t ≤ L(ζ), 1 ≤ j ≤ 2Λ + 1
(4.22)

Termination

The algorithm is terminated when the last azimuth position of the block under investiga-
tion has been considered in the recursive computation such that:

q?L(ζ) = arg max
1≤i≤2Λ+1

[δL(ζ)(i)] (4.23)

Optimal State Sequence

The optimal state sequence is retrieved by back-tracing:

q?t = ϕt+1(q?t+1), t = L(ζ)− 1, L(ζ)− 2, .., 1 (4.24)
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The VA notation is expressed in a local (i.e. within the sub-block) coordinate frame.
For retrieving the actual range pixel coordinates belonging to the optimal path, the fol-
lowing coordinate transformation can be performed:

χt(z) = (χ{ζ} − Λ− 1) + q?t (4.25)

The pixel intensities for the z-th block are stored in a matrix denoted as I{ζ}. The
coordinates of each pixel of the detected layer are stored as following. Each column of
the matrix represents a pair of coordinates (x, y):

P {z} =

[
χ1(ζ) χ2(ζ) ... χL(ζ)

y1(ζ) y1(ζ) + 1 ... y2(ζ)

]
(4.26)

Detected Layer Boundary (Detection Logic)

In this context, a drawback of the VA is that it cannot discriminate between noise pixels
and signal pixels. This implies that if a layer has an azimuth extent smaller than the size
of the radargram, and no stop condition is implemented, the VA algorithm will continue
to chain blocks containing noise. Moreover, noise spikes in the NR(x, y) radargram re-
gion may generate false layer boundaries. To overcome these issues, the discrimination
between subsurface features and noise in the tracked layer boundary is done according to
the following criterion. Let IT be the set containing the elements of I{ζ} exceeding the
threshold value Th, i.e.,

IT = {I{ζ} > Th} (4.27)

A layer boundary block is considered detected if the following condition holds:

|IT |
L(ζ)

> 0.5 (4.28)

where |IT | is the set cardinality of IT . According to (4.28), a simple majority rule is
adopted. The detected layer is defined as the chaining of blocks defined in (4.26) for
which the condition in (4.28) is verified (i.e. [P {1}P {2}...P {r}]. The associated layer
boundary amplitude vector (which describes the radiometric properties) can be derived
as [I{1}I{2}...I{r}]. The index r ≤ max(ζ) denoted the last block for which condition
(4.28) is true. The overall azimuth extent of the layer boundary is equal to y1(ζ = 1) ≤
y ≤ y2(ζ = r).

Layer removal from the observation matrix and update of the seed vector

As a final step the tracked layer is removed from the enhanced radargram all the pixel
coordinates specified in [P {1}P {2}...P {r}] and the adjacent ones in the range direction
having distance smaller than Λ. The seed vector is also updated removing all the seeds
sharing the same coordinates with the retrieved layer position vector. This implies that
the layers tracking order is dictated by the seeding strategy. The layers must be tracked
sequentially left to right or right to left (with respect to the azimuth direction). The
only tracking order that can be switched holding the same solution is the one when two
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Table 4.1: Parameters of the considered SHARAD radargrams
Parameter Value

Along Track Resolution 450 m

Across Track Resolution 3 Km

Sampling Frequency 26.667 MHz

Along Track Sampling 115 m

Range Resolution (ice) 10 m

Pixel Intensity Range of Values [0-255]

layers start from different depths of the same azimuth position (i.e. top/bottom order).
This seven step method is repeated for each azimuth position y until the azimuth position
y = Ny−l+1 has been reached. Finally, we derive the numerical value of the upper bound
of the estimation error induced by segmentation. The decision whether a block contains
a layer or not is taken according to (4.28). Thus if a layer spans an azimuth extent that
is not a multiple of L(ζ) then the actual length may be under or over estimated. In both
cases, the upper bound of this error is equal to L(ζ)/2, thus smaller values of l should be
preferred for reducing the error.

4.3 Experimental Results

This section presents the results obtained by the proposed technique applied to the real
data set described in subsection 4.3.1. The other sub-sections are devoted to the qual-
itative and the quantitative analysis of the results obtained by applying the radargram
pre-processing method described in section 4.2.1 and the layer detection technique de-
scribed in sections 4.2.2 and 4.2.3.

4.3.1 Dataset Description

The considered dataset are radargrams obtained by the SHARAD instrument over the
north polar layered deposits of Mars. In this paper, for comparison purposes, the same
radargrams employed in [93] (see Fig. 4.5) are considered for evaluation. As already
stated in [93], only the upper part of the radargrams is considered, which corresponds to
a densely layered shallow subsurface. These areas can be automatically detected in a pre-
processing phase by using the classification technique presented in [102]. The considered
radargrams present a very limited amount of surface clutter thus the detection of layer
boundaries is not ambiguous with respect to it. The main parameters of the radargrams
are summarized in Table 4.1.

4.3.2 Proposed Method: Pre-Processing

This section presents the results obtained by the proposed denoising and enhancement
technique over the data set under investigation. The value of NAV [see (4.1)] has been
set equal to 8 for the whole dataset. This value of NAV has been chosen in order to
guarantee an average PD ≥ 0.95 with a PFA = 10−3 for all the radargrams. The value
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(a)

(b)

(c)

(d)

Figure 4.5: SHARAD radargrams considered in the experiments: (a) 52050100, (b) 528401000,
(c) 1049190200 , and (d)1591701000. Figures from [93].



Experimental Results 89

of the threshold Th is computed according to (4.3) by fixing PFA = 10−3 after computing
the conditional empirical noise distribution pn(ν). The noise region within the radargram
is automatically located by using the technique for the first return detection presented in
[115]. For each range line, the technique finds the position of the first sample which is
statistically different from the background noise thus allowing to isolate the radargram
region above the surface layer. For the given data set the amount of samples extracted
from the noise part of the radargram for computing the noise distribution is in the order
of 104.According to the analysis carried out in [32], the layers of the NPLD region of
Mars can be classified into four categories. Being only the densely layered upper part of
the radargram considered, only strong layers (SL) and weak layers (WL) are taken into
account. Accordingly, the parameter Υ has been fixed by considering an SNR value equal
to:

SNR = 10 log10(
√
NAV

SNR(SL) + SNR(WL)

2
) ' 17dB (4.29)

where SNR(SL) and SNR(WL) are the average SNR expressed in linear scale for strong
layers and weak layers as in [115] and

√
NAV is the SNR gain due to incoherent averaging

for both layer types. Considering the bandwidth and sampling frequency in Table I, the
computation of (11) results in Υ = 1 and thus the rectangular function of (10) has a
width equal to 3 samples. It follows that the size of the Gaussian filter is 3 x 3. Fig.
4.6 shows a comparison between R̂(x, y) and the original radargram. Fig. 4.7 presents
an example of an enhanced range line. The figures show that the method proved to be
efficient in denoising the radargram and enhancing the underlying layering structure by
showing features that are not easy to observe by visual inspection (see the example in Fig.
4.6). The effectiveness of denoising depends on the selected probability of false alarm.
If the PFA increases more details are in the image but at the cost of having more false
alarms and vice-versa. In some regions, the radargram representation of the layers is
still fragmented. This is expected due to the low signal to noise ratio. This issue is not
of major concern since the proposed detection procedure based on the modified VA can
reconstruct the layer azimuth continuity for small gaps induced by low SNR.

4.3.3 HMM Model Design and Parameters Tuning

The distribution of the observation vectors describing the typical signature of a layer for
each state j is modeled as multivariate Gaussian distributions. This is justified by the fact
that the last step of the pre-processing technique filters the radargram with a Gaussian
filter. The continuous emission probability densities are given by:

bj(Ot) = N (Ot,µj,Σj) (4.30)

where µj and Σj are the mean vector and covariance matrix, respectively. The state
bound Λ has been experimentally set to 3. The estimation of the parameters of the
multivariate normal distribution was performed by acquiring from different denoised and
enhanced radargrams about 105 realizations of the vector Ot belonging to each state j.
The parameters of the Gaussian distribution (i.e., µj,Σj ) were computed by maximum
likelihood estimation. The mean observation vectors µj are shown in Fig. 4.8. By as-
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Figure 4.6: (a) Original Radargram 528401000 (b) Radargram obtained by the proposed de-
noising and enhancement technique PFA = 10−3. Gray levels represent pixel intensity.

suming Λ = 3 the size of the observation vector is 7. In Fig. 4.8 one can see that the
mean vectors are shifted replicas of each other. To give an example, the mean observation
vector of state 4 has a symmetric triangular shape which represents a layer perfectly cen-
tered in a given down-range cut within the current radargram sub-block being processed.
The state transition probability distribution is initialized with the following triangular
function (a similar definition is given in [98]) :

aij =

(1− |i− j|
σv

)
1

σv
|i− j|≤ σv

0 |i− j|> σv

(4.31)

where σv is an application dependent scalar value (expressed in number of pixels) that
models the lateral continuity of the layer boundary. This parameter is set to σv = 4,
which has experimentally proven to be the most appropriate value for the data set under
consideration. Then the model parameters A and B are recomputed by the Baum-Welch
procedure according to the equations given in [114]. Due to the fact that the state
conditioned emission probabilities are modeled as multivariate Gaussian distributions,
the related equations given in [114] were implemented for re-estimating the mean vector
and covariance matrix for each state taking into account multiple observation sequences.
The re-estimated values of aij are shown in Fig. 4.9. The dataset used for training is
very large and made up of 103 layers handpicked by an expert operator along with their
trajectories. The training procedure is performed only once and the method runs in a
completely automatic way when a new inputs radargram is processed. The training set
is selected such that is representative in terms of slope variability and pixel intensity of
the entire dataset. If a real training set cannot be defined, the training procedure could
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Figure 4.7: Example of an enhanced range line (red continuous) compared to the original range
trace with no incoherent averaging (dashed black line). The in between layer boundary signal
is greatly reduced in the enhanced case. In the plot Th is set automatically by the algorithm to
100.

be easily performed on simulated radargrams that reproduce the physical properties of
the layers. It is worth nothing that, due to the almost invariant physical properties of a
layer in the range direction, a training performed over a dataset is likely to be suitable
for application over a different dataset.

Figure 4.8: Mean Vectors µj of the multivariate Gaussian distribution for each state j. The
mean vectors were estimated by a Maximum Likelihood algorithm on the training data.
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Figure 4.9: Re-estimated values aij of the state transition probability distribution according to
the Baum-Welch algorithm.

4.3.4 Layer Boundaries Detection with the Combination of the HMM/VA

The R̂ matrix obtained by the pre-processing step, the emission probability densities and
the state transition probability distribution are the main inputs to the layer boundaries
detection technique. The minimum layer extension l is set equal to 10 pixels in accordance
with [93]. Layer boundaries showing an inclination greater than 45 degrees are discarded
because features with high slopes have high probability of being false alarms due to
limitations in the focusing processor applied to the data [93]. The detection and false
alarm rates are evaluated by comparing the detected layer boundaries with the same
subsurface reference maps used in [93]. A layer is counted as a correct detection if for
each range line its position deviation from the given subsurface reference layer is within
the range resolution of the sensor. For this particular data set, a layer is counted as
detection if it lies within +1/-1 pixels from the actual position of the subsurface reference
map. A layer is considered as a false alarm if it does not match this criterion. The
margin value has been computed according to equation (4.9) which indeed takes into
account the sensor resolution. Our approach exhibits a sharp increase in detection rate
equal to 11% + /−1.5% when compared to the considered reference method (see Table
4.2 and Fig. 4.10). The number of false alarms is also significantly decreased. The
improved performances can be largely explained by the fact that the proposed technique
has a denoising step that better preserves the finer details of the data. The results on the
number of detected, missed and false alarms versus the layer length are in accordance with
the above consideration since, with respect to [93], there is an increase in the detection of
shorter layers (see Fig. 4.11). Short layers are usually associated with finer details of the
radargram. This behavior is observed on all the radargrams of the considered data-set.
In fact, the BM3D filter used in [93] may generate unwanted artifacts that affect the
quality of the radargram by masking finer details for low values of SNR. The property of
the modified VA of getting through noise garbles allows a better reconstruction (i.e. less
fragmentation) of the overall azimuth extension of the layer boundary thus acting as a
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(a)

(b)

Figure 4.10: Detection results obtained by the proposed technique on SHARAD radargrams (a)
52050100, (b) 528401000. In the radargram 52050100 part of the surface layer is not detected
due to the constraint on the maximum slope. This is of no concern since we are interested in
the detection of the subsurface.
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sort of regularization step. This is especially evident in noisy regions of the radargram
(see Fig. 4.12). Another important feature of the proposed technique is that it tracks the
layer boundaries pixel-by-pixel allowing a better representation of the layer variation when
compared with the results of [93]. We performed simulations in order to assess whether the
concatenated solution computed by the proposed method is the actual optimal state path
solution. Studies have proven that the truncation of VA causes a negligible degradation
(see [113]). If the truncation depth (line length in this context) is large enough then the
effect on performance is negligible. To investigate this effect, we performed simulations
consisting in computing the best path over a synthetic radargram with a number of time
steps equal to 2500 (similar to a typical full radargram extent in the azimuth direction).
The computed best path is compared with the best path computed as the concatenation of
blocks for different truncation lengths L and for a varying SNR. The synthetic radargram
has been modeled as a single layer over Rayleigh background noise according to [115] which
results in the exponential distribution when the intensity is retrieved. We performed a
Monte Carlo simulation with 200 runs for each combination of SNR and L values. The
truncation error is computed as the number of times over the number of runs in which
the truncated path differs at least by one retrieved state from the best path computed
over the full layer. The results reported in Fig. 4.13 show that the truncation error is
negligible. This is especially true considering that in the radargrams under consideration
the SNR is about 17 dB. Regarding the computational complexity, the overall technique
average running time required for processing a full radargram is less than 30 seconds on
a workstation with 8 GB of RAM and an Intel Core i5-4590 processor with 3.3 GHz clock
frequency. This is half the computational time required by the technique in [93]. Note that
the computational complexity of the overall algorithm is bounded by the complexity of
the VA, which is sharply reduced by the strategy outlined in Section 4.2.2 and 4.3.3. The
number of states explored with our technique for each computation is equal to 2Λ+1. The
nominal VA computational complexity is polynomial and equal to O(NLNyN

2
x), where NL

is the number of layer boundaries in the radargram. In our method, the subdivision of
the radargram along the azimuth direction in blocks neither reduces nor increases the
computation complexity. On the other hand, the proposed method reduces the number
of states evaluated for each computation. Accordingly, the computational complexity of
the proposed method is:

O(NLNy(2Λ + 1) + oh) (4.32)

The parameter oh ≈= 4NPfalΛ
2 is the computation overhead of the method, where Npfa

is the overall number of false alarms. This undesired computation overhead is due to
the fact that the seed vector may contain noise spikes exceeding the threshold Th. Thus
before discarding the “noise layer”, the modified VA computes an optimal local state path
with azimuth extend equal to l. The computational complexity reduction of the proposed
technique compared to a näıve VA implementation is equal to:

4NLNyΛ
2 + oh

NLNyN2
x

≈ (
2Λ

Nx

)2 (4.33)
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Table 4.2: Comparison of correct detection and false alarms obtained by the proposed technique
and the considered reference technique

Proposed Technique
Reference Technique
Ferro et al. (2013)

Radargram
Identifier

Number
of Lines

Detected
Lines

False
Alarms

Detected
Lines

False
Alarms

52051000 777 722 27 636 63

528401000 768 705 37 601 52

1041902000 694 663 33 591 78

1591701000 754 690 31 610 48

Being Λ in the order of 10, the number of rows of the radargram Nx (i.e. possible states)
in the order of 4 ·103, NL ≈ 700, and Ny in the order of 103 we can assume oh contribution
negligible. According to (4.33), the average decrease in computational complexity with
respect to näıve VA implementation is very sharp and in the order of 105 operations.

4.4 Conclusions

In this chapter, a novel automatic technique for retrieving the position and the radiomet-
ric properties of layer boundaries in radargrams acquired by radar sounders data has been
presented. The technique is based on a statistical approach that detects the spatial posi-
tion of the layer boundaries by using an inference procedure. This approach is particularly
suitable to the analysis of data having a low SNR (e.g. planetary data). The radargram is
modelled as a trellis and its parameters (e.g, pixel intensity and depth) are mapped into
the relevant parameters of a HMM. In order to infer the layer boundaries position, the VA
is applied to the underlying HMM. However, when low SNR radargrams are considered,
the application of the VA algorithm is not trivial due to the radargrams fragmented and
dense layering structure. Thus, we proposed a modification of the algorithm based on
a divide and conquer strategy where the radargram is split into blocks on which both
the inference and the discrimination between noise and layer boundaries are performed.
The proposed technique has substantial advantages in terms of computational complexity
when compared to the standard VA, even if the retrieved state path may not represent the
optimal state path provided by the optimal VA implementation. However, as discussed
in the paper and empirically assessed, the discrepancy in the computed path between
our technique and original VA is negligible for this type of application. In this work, we
have also proposed a novel pre-processing technique for the denoising and enhancement
of radargrams. The proposed technique takes into account the main variables affecting
a radar acquisition and unwanted artifacts to produce an enhanced representation of the
radargram which is propaedeutic to the subsequent detection steps. The combination of
the proposed denoising and structure enhancement with the detection step performed by
the modified VA resulted in a higher probability of detection and lower false alarm rate
when compared to a recent literature technique. It is worth nothing that the detection
of the proposed method is performed on a pixel-by-pixel basis. Accordingly, the azimuth
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(a)

(b)

Figure 4.11: Histogram representing the number of detected, missed and false layers vs
their length obtained by the proposed technique on SHARAD radargrams (a) 52050100, (b)
528401000. The Histogram bin quantization of the layer length is equal to 10 (i.e. equal to the
line quantization step l) which is slightly different from the bin quantization of [93] that is equal
to 5. Nevertheless, the results are still comparable. The last bin of the histogram contains all
the lines with length equal or greater than 195 as in [93].
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(a)

(b)

Figure 4.12: Layer Detection performances comparison between the proposed and the state-of-
the-art method [93]. (a) Proposed Method (Weak Layers); (b) Method in [93] (Weak Layers).
The detected layers are depicted in red overlapped on a false color amplitude representation of a
portion of the Radargram 528401000. Black Arrows show example of areas where the proposed
method improves the layer continuity.
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Figure 4.13: VA Truncation Error as function of SNR and line length

variations of the layer boundaries are better retrieved from the radargram, when compared
to previously developed methods for planetary data. As a result of the inherent property
of VA of getting through noise garbles, the method also partially acts as a regularization
step of the noisy data.



Conclusions

This chapter concludes the thesis by presenting a general discussion of the work described
and by providing a summary of the novel contributions illustrated in the document. Fi-
nally, possible future developments of the proposed research work are presented.

Summary and Discussion

Radar sounders are very valuable systems for subsurface investigation. In this thesis,
we investigated three different aspects of radar sounding namely (i) system design, (ii)
low-level processing and (iii) high level processing.
For each aspect, we presented a main novel contributions to the radar sounding state
of the literature. The first part of thesis (Chapter 2), which represents the contribution
related to system design, has been devoted to the investigation of the design require-
ments, performance assessment and 3D electromagnetic simulations of a radar sounder
specifically designed for detecting Moon lava tubes from orbit. The results show that a
multi-frequency radar sounder is the best option for effectively sounding lava tubes in
the Maria region of the Moon. According to planetary studies, Lunar Marias are the
most likely regions for the putative presence of lava tubes. The possible range for the
selection of the probing two central frequencies, which allow to sound most of the lava
tube dimension hypothesized in the literature, is between 10 and 15 MHz for the low
carrier frequency and between 60 and 65 MHz for the high carrier frequency. The basalt
substrate roughness which is in the order of meters along with its thickness are the two
main driving factors for the radar performance thus severely limiting sounding at frequen-
cies above 80 MHz. The objective of the 3D electromagnetic simulations was focused in
understanding the typical electromagnetic response of a lava tube considering different
geometric configuration for the acquisition scenario The results of the electromagnetic
simulation highlighted the fact that lava tubes display a unique signature consisting in
a phase inversion that can be exploited for their identification. This signature remains
clearly detectable even in the presence of off-nadir surface clutter, which does not exhibits
the same mechanism of inversion of the phase.
Off-nadir surface clutter is arguably one of the main issue affecting radar sounding. It
hinders radar sounders recorded data interpretation by planetary geophysicists. To this
extent, in the second novel contribution focused on low-level processing (Chapter 3), we
proposed an adaptation of the unique bat clutter discrimination capability to radar sound-
ing by devising novel clutter detection model based on a frequency diversity approach.
We proved that the bats powerful and relatively simple processing strategy can be math-
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ematically modeled and adapted to radar sounding as there are many striking analogies
between a radar and a bat such as the nadir acquisition geometry. The method allows
the prediction of the radar performance to be tailored as a function of the transmitted
frequencies and of the surface and subsurface characteristics. The proposed bio-inspired
model has been tested on SHARAD data acquired over Mars and has been validated on
different regions characterized by diverse subsurface geoelectrical properties such as icy
and arid areas. The experimental results showed that the proposed method can obtain
in an immediate and reliable way a clear discrimination of the subsurface signal from
the off-nadir clutter and that the model is in good agreement with the observations (e.g.
expected values of the surface and subsurface power ratios). Compared to traditional
studies manually performed by geophysicists, in our case the discrimination is performed
in an automatic way and without relying on a digital elevation model of the surface which
is not always available in the planetary case.
It is worthy nothing that, there is a clear synergy between the results of the system de-
sign study and the low-level processing one. The bio-inspired clutter detection method
can be easily applied to the multi-frequency radar sounder for lava tube detection. This
synergistic approach paves the way for a new generation of radar sounders which eases
the data interpretation by planetary scientists.
The proposed approach for low-level processing eases the data interpretation but it does
not provide high-level information regarding the detected geological structure. There is
still a lack in the literature of high-level processing techniques for the automatic analysis
and extraction of features from radar sounder data. As a consequence, most of the radar
sounder data analysis is performed manually by experts and thus is inherently subjective
and time-consuming. Accordingly, the third novel contribution presented in Chapter 4
focuses on high-level processing and in particular on the automatic and reliable extraction
of high-level information from radargrams. Specifically, we proposed a technique for the
automatic detection of layer boundaries in radar sounding data. The analysis of the ice
stratification (i.e. layering) performed by geophysicists is particularly important since
can be used for dating purposes and for the understanding of the past climate of a given
geographical area. Our proposed approach to the automatic detection of layering is based
on a local scale Hidden Markov Model (HMM), which model the radar response in the
presence of a layer boundary, and the Viterbi Algorithm, which performs the inference
step. This approach has the advantage of performing inference by explicitly modeling the
spatial and radiometric uncertainty of the data induced by noise. Furthermore, a novel
radargram enhancement and denoising technique tailored to support the detection step is
presented. The effectiveness of the proposed technique has been confirmed by testing it
on different radargrams acquired by SHARAD over the North Pole of Mars which show
subsurface stratification. The results obtained point out the superiority of the proposed
method in retrieving the position of each layer boundary and its characteristics with re-
spect to the state-of-the-art techniques. The proposed technique can be included in a
basic processing chain for radar sounding data. In this way, it is possible to generate
high-level products that can be distributed along with radargrams.
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Future Developments

The possible future developments of this thesis are briefly discussed in this section. A
natural development for the multi-frequency radar sounder work is to analyse Moon radar
sounding data recorded by the Lunar Radar Sounder(LRS) instrument and verify whether
there are evidence of the lava tubes electromagnetic signatures presented in this paper.
This can be done by taking into account the inherent limitation of LRS in terms of lava
tubes detection capability being the system not specifically designed for this task.
For the bio-inspired clutter detection model, several engineering aspects can be further
investigated such as the optimal probing frequency selection for clutter discrimination
as function of a particular acquisition scenario. A potential test case for the model
application is the lava tube sounding described in the first part of the thesis. To this
extent, we can envision an holistic approach where the different contributions of this thesis
(i.e. system design, low-level and high-level processing) are combined to form a processing
chain for a potential future sounding mission based on a multi-frequency radar. In fact,
the approach for the automatic layering detection based on a local scale Hidden Markov
Model and the Viterbi algorithm can be easily adapted to other applications and thus
offers the opportunity to expand this particular work in the direction of recognizing other
type of features than layering such as lava tubes typical electromagnetic signatures.
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