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Università degli Studi di Verona

Prof. Dr. Claudia d’Amato
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Abstract

Semantic Image Interpretation (SII) is the process of generating a structured description

of the content of an input image. This description is encoded as a labelled direct graph

where nodes correspond to objects in the image and edges to semantic relations between

objects. Such a detailed structure allows a more accurate searching and retrieval of im-

ages. In this thesis, we propose two well-founded methods for SII. Both methods exploit

background knowledge, in the form of logical constraints of a knowledge base, about the

domain of the images. The first method formalizes the SII as the extraction of a partial

model of a knowledge base. Partial models are built with a clustering and reasoning algo-

rithm that considers both low-level and semantic features of images. The second method

uses the framework Logic Tensor Networks to build the labelled direct graph of an im-

age. This framework is able to learn from data in presence of the logical constraints of

the knowledge base. Therefore, the graph construction is performed by predicting the la-

bels of the nodes and the relations according to the logical constraints and the features

of the objects in the image. These methods improve the state-of-the-art by introducing

two well-founded methodologies that integrate low-level and semantic features of images

with logical knowledge. Indeed, other methods, do not deal with low-level features or use

only statistical knowledge coming from training sets or corpora. Moreover, the second

method overcomes the performance of the state-of-the-art on the standard task of visual

relationship detection.

Keywords

[Knowledge Representation, Computer Vision, Machine Learning, Information Extrac-
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Chapter 1

Introduction

The universe of digital data is huge, growing exponentially and digital images follow this

trend as well. Thousands of pictures for every single user, or organization, are stored

in social networks, web sites, repositories, hard drives, personal computers, smartphones

and other devices. This big amount of pictures convey a huge quantity of information

about, for example, the tourist preferences of a group of users (holiday pictures posted on

social media), how a plot of land changes during the years (pictures taken from satellites

or drones), the market trend for a commercial product (pictures containing diagrams and

reports of an enterprise) and the movements of a person (or group) in a particular place

at a given hour (pictures taken from video surveillance cameras). Given a single picture,

a person is able to understand the contained information with a relative small amount of

time. However, as the number of picture is huge, automatic tools that analyse and extract

the information conveyed by pictures, in an effective and efficient manner, are necessary.

The content of an image can be analysed with different levels of granularity, where

each level describes the image with, more (or less) details. In the first level the analysis

returns a coarse description of the whole image without entering into details. For example,

the image can be classified with some labels that describe the global scene depicted in the

image, such as “countryside”, “green”, “person”, “horse”. These labels can be obtained

by analysing metadata or descriptions associated to the images, or by performing the so-

called scene classification. However, the labels are associated to the whole image without

the possibility to link the labels to regions in the image. In a second level of image analysis

this linking is performed. Here the analysis focuses on discovering (and localizing) objects

(with their labels of classification) in the image. Moreover, it is possible to discover some

attributes of the localized objects, such as, the color, the shape, the age (if the object

is a person), etc. In this manner, it is possible to know what are the objects in the
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CHAPTER 1. INTRODUCTION

scene and where they are. Examples of this kind of analysis are: (i) the object detection

that localizes objects within bounding boxes (a rectangle around the object); (ii) the

semantic segmentation that associates every pixel a set of labels describing the object

which the pixel belongs to. At this level of analysis, for example, it is possible to have

the labels “countryside” and “green” that describe the whole image plus two bounding

boxes classified with “person” and “horse”, respectively. However, to achieve a complete

understanding of the scene, it is also necessary to discover some relations between the

objects. In a third level of analysis of the image content, a detailed labelling of the

objects in the scene, with their attributes, and the relations between them is performed.

At this level, some background knowledge is of great help as it allows for reasoning about

the visual objects in the scene. This reasoning improves the results of the analysis. For

example, if the image analysis discovers that a person rides a horse then it is possible

to infer that the contrary is false (the relation ride is antisymmetric). We can also infer

that there are some animals in the image (horses are animals), that the person is on the

horse, the horse is under the person and is carrying him/her. At this level, the analysis

of the image content is very detailed and it is possible to organize the discovered objects,

attributes and relations within a structure. For example, the objects (and attributes)

can be nodes of a graph and the relations between objects can be the edges between

the corresponding nodes. A fourth level of analysis performs some high-level reasoning

on the image objects and relations to infer what is happening in the scene, that is,

what are the main events and the participants. This level refines the previous level by

extracting higher-level information from the structured description of the image content.

For example, the graph returned by the third level could contain only the relation “on”

between a person and a horse. Hence, the fourth level predicts the event “riding” as

the most plausible event with the person and the horse as participants. This prediction

can be encoded in the graph by adding, for example, a node labelled with “riding event”

with two edges joining the person and horse nodes. These edges are labelled with the

roles of the participants at the event, for example the subject and object of the event.

The Semantic Image Interpretation (SII) [51, 71] is the task of extracting such a detailed

structure of the image content.

The SII enables a set of applications on an image content that a coarse image descrip-

tion (such that the one of the first layer) does not allow. Here we list some examples:

Accurate Image Retrieval A structured description of an image content that links the

nodes of the structure with regions of the image allows the retrieval of portions of

images according to a given query. For example, in a forensic application, such a

structured description can retrieve all the (bounding boxes of) people with a weapon
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CHAPTER 1. INTRODUCTION

in their hand shot during a riot.

Complex Image Querying A structured image description can be easily converted into

a RDF graph [41]. This allows us to perform structured queries on images by using

Semantic Web languages, such as SPARQL [30]. These queries can have a certain

complexity, for example they can be the join of two simpler queries: we want to

retrieve all (and only) the images showing a person riding a horse and in the middle

of some buildings.

Robot Interaction A robot moving in an environment can find many configurations of

objects and these objects enable the robot to perform a set of actions on them. For

example, a cup on a table can be grasped but without hitting the table.

Visual Question Answering Such a structured image description can be inspected in

order to answer natural language questions about the image content. For example, a

question could be “Is there anyone riding an animal?”, with answer “Yes, a person”

and the involved bounding boxes.

Image/Video Captioning A structured description of an image can be easily converted

(with a language generator model) into a natural language caption. This can be

applied also to videos as they are a sequence of images (the frames).

The aim of this thesis is to study new algorithms and techniques in order to give

an important contribution to the SII problem. However, the semantic interpretation of

images presents some aspects that make the problem challenging:

Relational Domain The domain of images is relational, that is, the data (the labelled

bounding boxes) are linked together through relations. For example, the pair of

bounding boxes containing a person and a horse can be related through many

predicates: (person, ride, horse), (person, on, horse), (horse, under, person) and

(horse, carry, person).

Hybrid Domain The objects of this domain can be described with both semantic and

numeric features. The semantic features are the labels describing the types of ob-

jects, for example, “person” and “horse”. The numeric features can be, for example,

the bounding box coordinates or the visual features extracted with Computer Vi-

sion techniques. The same holds also for the relations between objects. A relation is

described with a set of labels (for example, “ride” and “on”) and with numeric fea-

tures, such as, the intersection area between the bounding boxes or their geometric

distance.
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Background Knowledge This domain can be described with some background knowl-

edge about the input image. When a SII system analyses a picture, some important

knowledge can be taken into account. For example, the fact that usually horses

are ridden by people and horses do not ride. Moreover, background knowledge can

impose constraints (such as, implication or mutual negation) between predicates: if

a person rides a horse then the person is on the horse and, automatically, it cannot

be under the horse.

1.1 Contributions

In this thesis we present two well-founded methods, with relative evaluation, to solve the

SII problem. The first method extracts the structured description of an image content

by combining an unsupervised algorithm with standard logical reasoning on the back-

ground knowledge. The second method learns and predicts this structured description

in a supervised manner. The background knowledge imposes logical constraints on such

predictions. The contributions of these methods involve the following SII aspects:

C1 Integration of Numeric and Symbolic Features Both methods deal with the

numeric features coming from a low-level analysis of images and the semantic fea-

tures used to describe the image content.

C2 Dealing with Uncertainty The low-level analysis of images returns data with un-

certainty. For example, an object detector could not be sure about the classification

of some objects in the image. Both methods address the uncertainty of the data.

C3 Integration of Logical Background Knowledge Both methods exploit background

knowledge that can be found, encoded as logical constraints, in knowledge bases.

Logical knowledge is very powerful as it expresses, with a standard logical language,

many information and constraints about the domain of the images.

The improvement with respect to the state-of-the-art is that both systems integrate the

above contributions. Indeed, the works that mainly deal with relational domains and

uncertainty (Machine Learning-based approaches) do not use background knowledge in

form of logical constraints. The only background knowledge used is knowledge about

the statistical dependencies between labels of objects and predicates. This statistical

knowledge is less expressive than logical knowledge and, in some works, is tailored to a

training set. On the other hand, the works that deal with logical knowledge (logical-
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based approaches) hardly deal with the uncertainty coming from a low-level analysis of

the image.

1.2 Structure of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2 This chapter provides the definition of the problem.

Chapter 3 This chapter provides the state-of-the-art on SII ranging from works on object

detection to works on the construction of the graph that describes the image content.

The background notions necessary to understand the thesis are not explained here

but at the beginning of every chapter.

Chapter 4 This chapter provides a theoretical framework for SII that is used for imple-

menting the first SII algorithm of the thesis. This chapter represents Contributions

C3.

Chapter 5 This chapter provides the first (unsupervised) algorithm that mixes low-level

and semantic features for SII. The chapter also describes the datasets used for the

evaluation, the exploited knowledge bases, and finally the evaluation. This chapter

represents Contributions C1, C2, C3.

Chapter 6 This chapter presents Logic Tensor Networks. This is a new framework

that learns from data in presence of logical constraints. This chapter represents

Contributions C1, C2, C3.

Chapter 7 This chapter provides how the SII problem has been encoded with Logic

Tensor Networks. It also discusses some technical aspects of Logic Tensor Networks

that emerge on the application to SII. This chapter represents Contributions C1,

C2, C3.

Chapter 8 This chapter provides the evaluation of Logic Tensor Networks to SII. The

chapter describes in details the considered datasets (and their statistics) and knowl-

edge bases, the performed experiments, the obtained results along with a comparison

with methods of the state-of-the-art. This chapter represents Contributions C1, C2,

C3.

Chapter 9 This chapter deepens chapter 3 by comparing in details the algorithms pre-

sented in the thesis with similar methods of the state-of-the-art.
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1.3. PUBLICATIONS CHAPTER 1. INTRODUCTION

Chapter 10 This chapter provides a discussion of the presented algorithms. It summa-

rizes the results of the thesis, discusses limitations and possible research directions.

Appendix A This appendix describes a demo that implements a SII system according

to the algorithms developed in the thesis. Some screenshots are provided to show

the output of the system.

1.3 Publications

The core publications supporting the present thesis are listed below:

• Ivan Donadello, Luciano Serafini, and Artur S. d’Avila Garcez. Logic tensor net-

works for semantic image interpretation. In Carles Sierra, editor, Proceedings of the

Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,

Melbourne, Australia, August 19-25, 2017, pages 1596–1602. ijcai.org, 2017

• Luciano Serafini, Ivan Donadello, and Artur S. d’Avila Garcez. Learning and reason-

ing in logic tensor networks: theory and application to semantic image interpretation.

In Ahmed Seffah, Birgit Penzenstadler, Carina Alves, and Xin Peng, editors, Pro-

ceedings of the Symposium on Applied Computing, SAC 2017, Marrakech, Morocco,

April 3-7, 2017, pages 125–130. ACM, 2017

• Ivan Donadello and Luciano Serafini. Integration of numeric and symbolic informa-

tion for semantic image interpretation. Intelligenza Artificiale, 10(1):33–47, 2016

• Ivan Donadello. Ontology based semantic image interpretation. In Elena Bellodi and

Alessio Bonfietti, editors, Proceedings of the Doctoral Consortium (DC) co-located

with the 14th Conference of the Italian Association for Artificial Intelligence (AI*IA

2015), Ferrara, Italy, September 23-24, 2015., volume 1485 of CEUR Workshop

Proceedings, pages 19–24. CEUR-WS.org, 2015

• Ivan Donadello and Luciano Serafini. Mixing low-level and semantic features for

image interpretation - A framework and a simple case study. In Lourdes Agapito,

Michael M. Bronstein, and Carsten Rother, editors, Computer Vision - ECCV 2014

Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part II,

volume 8926 of Lecture Notes in Computer Science, pages 283–298. Springer, 2014
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1.4 Artefacts

The core artefacts supporting the present thesis are listed below (in ascending order of

publications):

A1 The knowledge bases and the datasets for the experiments in [27]: https://dkm.

fbk.eu/technologies/knowpic.

A2 The source code for the paper in [92]: https://gitlab.fbk.eu/donadello/LTN_

ACM_SAC17/.

A3 The source code for the paper in [28]: https://gitlab.fbk.eu/donadello/LTN_

IJCAI17.

A4 A demo that performs the semantic interpretation of an input image provided by the

user. The demo first recognizes the objects in the image with an object detector

and then classifies the semantic relationships between them.
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Chapter 2

The Problem

Semantic Image Interpretation (SII) is the task of generating a structured description

of the content of images [51, 71, 55]. SII is much more than image classification [56],

that is, the description of image content with a set of labels, SII aims at detecting the

objects in images, their types, attributes and the relations between them. SII produces a

semantically rich structure (for example, a logical model of a logical theory) that is both

human understandable and processable by machines. Before defining the properties of

such a structure we define what is the input of a SII system. As inputs we consider a

background knowledge and a semantically labelled picture. To better explain our proposal,

we use the simple running example of Figure 2.1.

The first input is the background (logical) knowledge. In recent years, it became

clear that background knowledge about image context and content plays a key role in

SII [103, 110]. Examples of useful background knowledge are: knowledge about objects

qualities, for example, color, shape, relative size; knowledge about topological and spatial

properties of objects, for example, the context where objects usually appear, the relative

position, where an object is likely to be; relational knowledge, for example, the parts of

complex objects or which objects can perform a certain action; taxonomical knowledge,

that is, hierarchies of object types. As background knowledge we consider knowledge bases

encoded with a logical language, for example First-Order Logic [8] or Description Logic

[5]. In Figure 2.1, the background logical knowledge is represented with Description Logic

and lists knowledge about the parts of objects, if some objects can ride or be ridden and a

hierarchy of object types. The logical language of a knowledge base is characterized by a

signature Σ that is a set containing non-logical symbols, such as, symbols for predicates,

functions and constants. Knowledge bases are nowadays largely available in the form of

RDF resources and OWL ontologies, with the spread of the Semantic Web and Linked

9
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Open Data. Examples of available logical knowledge are WordNet [34], YAGO [66],

ConceptNet [100], Cyc [59] and DBpedia [3].
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Figure 2.1: A semantically labelled picture and a Description Logic knowledge base that

encodes the background knowledge.

The other input of a SII system is the picture to analyse. We assume that the picture

has been preprocessed with a low-level analysis for having some proposals of the main

objects in the image. This analysis is performed with the semantic segmentation [64] or

with the object detection [36]. Semantic segmentation assigns every pixel in the image

a set of labels with a weight: the labels describe the object that the pixel belong to

(for example, a horse, a person or a head), the weights are the confidence scores of the

semantic segmentation tool about the returned labels. Object detection (see Chapter

3), instead, detects objects in the image and represents them with bounding boxes: a

rectangle around the detected object with a set of labels and weights. The labels describe

the type of object in the bounding box and the weights are the confidence scores of the

returned labels. Notice that, these labelled regions of pixels can be further processed by

the SII system for a refinement. For example, the refinement could change the labels of

some pixels or the coordinates of a bounding box. The other input of a SII is a semantically

labelled picture:

10
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Definition 1 (Semantically Labelled Picture). Let S = {s1, . . . , sn} be a set of segments

(a segment is a set of contiguous pixels) returned by a low-level analysis of picture P,

and let Σ the signature of a logical language. A semantically labelled picture is a pair

P = 〈S, L〉, where L is a function that associates each segment s ∈ S a set L(s) ⊆ Σ×(0, 1]

of weighted labels 〈l, w〉.

In this thesis we adopt the object detection as low-level technique of analysis of the

input image because it is pretty forward to extract proposals for the objects. The labels

associated to the bounding boxes are taken from the signature Σ used to specify the

background knowledge. The semantically labelled picture of Figure 2.1 contains bounding

boxes for the main objects in the image but some are missing. For example, there is no

bounding box containing the whole person, neither for the grass, the sky and the trees in

background. Notice that, if we search, at this stage, for a picture containing a person that

is riding a horse, the picture will not be returned. The goal of SII is to build a semantic

structure that contains also the presence of the non-recognized person and the fact that

he is riding the recognized horse.

Given an input image, we define the structured description of the image content as a

labelled direct graph with nodes and edges. A labelled node corresponds to segments of

the input image containing an object. The labels of the node describe the corresponding

object in the image: they can be attributes of the object (for example, “brown”) or clas-

sification labels (for example, “horse”). A labelled direct edge starts from a subject node,

ends in a object node and its labels (for example, “ride”) describe a relation between the

corresponding objects in the image. This graph is also called scene graph [55]. Moreover,

nodes of the graph need to be aligned (that is, linked with) with the segments in the input

image. That is, for every node of the graph, a SII system has to return the corresponding

pixels in the image. This is necessary for the accurate image retrieval and visual question

answering tasks mentioned in the previous chapter. We call this data structure seman-

tically interpreted picture. Figure 2.2 shows the semantically interpreted picture of the

running example.

It is worth to discuss which is the level of detail (or granularity) the SII has to account

for. The input knowledge base can contain information ranging from general objects and

their relations to very detailed properties of objects, such as the possible texture of clothes

dressed by people. For example, a very detailed knowledge base could contain information

that distinguishes pois texture from others. However, recognizing such low-level details

of an image could affect the effectiveness of a SII system, as these details can be affected

by noise (for example, deformation of the tiny circles) that falsify the statements in the

knowledge base. Our choice is to apply the semantics at a proper level of detail. Therefore,

11
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we left the detection of some objects and and their properties (for example, the shape,

the material or the texture) to robust Computer Vision techniques, such as the object

detection, that learn the semantics of some objects and their properties. Whereas the

information contained in the knowledge base is used to discover relations between objects

or to refine the output of the Computer Vision analysis. For example, the knowledge base

could correct a detected pois texture on a horse.
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Figure 2.2: A semantically interpreted picture: the output of SII. The labels inside the

nodes are identifiers.

The main challenge in developing a system for SII for building a semantically inter-

preted picture is bridging the so called semantic gap [51], which is the lack of a direct

correspondence between the low-level features of an image and the high-level semantic

concepts that a user adopts to interpret the picture. To address this problem the follow-

ing research questions need to be posed:

1. what is an effective encoding for dealing with both low-level and semantic features

of the image?

2. How can a SII system change (or discard) the proposals of an object detector if they

disagree with other proposals?

3. How can a SII system infer the presence of some objects (or relations) with only few

information coming from a low-level image analysis?

4. How can a SII system label (or discard) the nodes and edges of a semantically

interpreted picture such that the labelling satisfies the information of a knowledge

base?

12



Chapter 3

State of the Art

The previous chapter defines the Semantic Image Interpretation as the procedure of con-

structing a labelled graph, also called semantically interpreted picture or scene graph [55],

that describes the semantic content of an input image. The labelled nodes represent ob-

jects in the image, the labelled edges represent semantic relations between objects. This

review lists the main works that construct such a graph. These works are between two Ar-

tificial Intelligence communities: the Computer Vision and the Knowledge Representation

community. These works can be divided into three groups:

Object Detection This group does not properly contain SII works but the main ap-

proaches necessary for extracting the basic components of a SII labelled graph: the

nodes, that is, the objects in the image.

Visual Relationship Detection This group lists important works that build a labelled

SII graph by predicting a set of visual relationships. A visual relationship is a

relation between two objects in the image. In literature, a visual relationship is

described as a triple 〈subject, predicate, object〉 where subject is the label of the

node with an outgoing edge e, predicate is the label of the edge e and object is the

label of the node receiving the edge e. If we refer to the running example of Figure

2.2, examples of visual relationships are: 〈Person, ride,Horse〉, 〈Leg, partOf,Person〉
and 〈Muzzle, partOf,Horse〉. The main idea underlying this set of works is to consider

two nodes in the scene graph, and classify them according to a set of relationships.

This approach performs a local choice by classifying, each time, the relationships

between only two objects in the input image.

Direct Graph Construction The works in this group construct the scene graph as a

whole structure and not by classifying its parts separately. Here a prediction (of a

13
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labelled node or edge) takes into account also the surrounding nodes, that is, the

contextual information.

3.1 Object Detection

Object detection provides the labelled nodes of a scene graph. That is, the main objects

that can be found in a picture. The literature on object detection is huge and a detailed

review is out of the scope of this presentation. For this reason, we list the most relevant

works. A first processing of object detection is given by the extraction of the object

proposals. These are a set of non classified bounding boxes that may potentially contain an

object. There is a huge literature on object proposal methods and comprehensive surveys

can be found in [49, 14]. Most of the object proposal works can be divided in two groups:

(i) those based on grouping super-pixels (for example, Selective Search [106], Constrained

Parametric Min-Cuts (CPMC) [13], Multiscale Combinatorial Grouping (MCG) [76]) and

(ii) those based on sliding windows (for example, objectness in windows [1], EdgeBoxes

[115]). Object proposal methods can be adopted as image preprocessing tools for object

detectors. These take the input proposals and classify (or discard) them with some labels

[46, 114, 104, 45, 101, 21, 58, 36, 37].

The real improvement of object detection performance is due to the use of Deep Learn-

ing techniques. These approaches are the state-of-the-art of object detection. OverFeat

[93] gives one of the first improvements on object detection with deep learning. It is

based on a multi-scale sliding window implemented with a Convolutional Neural Network

(CNN) [56]. Regions with CNN features or R-CNN [37] uses object proposals computed

with Selective Search. Here, a CNN extracts features for every proposal, these features

are then processed by Support Vector Machines to classify each proposal. This method

reached almost the 50% of improvement on the PASCAL VOC challenge [33] on object

detection. A drawback of the method is the speed: for every proposal a CNN forward

pass is performed for feature extraction. Fast R-CNN [36] overcomes this issue by first

computing a convolutional feature map for the whole image. Then, it classifies each ob-

ject proposal using a feature vector extracted from the feature map. The classification is

performed with a set of fully connected layers that compute a softmax probability over

the object classes. Faster R-CNN [83] is a further evolution of the previous works. It

substitutes the use of object proposal algorithms with a Region Proposal Network (RPN)

that computes the proposals starting from the feature map computed by the CNN. This

proposals are then classified as in Fast R-CNN. YOLO [79] and SSD [63] have a sim-

pler, but effective, architecture: a single CNN on the whole image detects and classifies

14
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the bounding boxes. Other works are the so-called part-based models. They leverage the

part-whole relation between whole objects and their parts to improve the object detection

[17, 32, 35, 38, 32, 70]. We review some of them in the related work in Chapter 9.

3.2 Visual Relationship Detection

In [87] the notion of visual phrase is proposed as a prototype of visual relationship.

The difference is that a visual phrase is associated to only a single bounding box that

contains both subject and object. The work shows that the detection of visual phrases

improves the detection of the single subjects and objects. The approach is based on

training an object detector for every possible triple 〈subject, predicate, object〉. This

suffers of scalability issues as the number of categories for the subjects/objects and the

predicates grows. Closely related to the visual relationship detection is the visual semantic

role labelling [42, 85, 108]. This task extracts from pictures a set of tuples such as:

〈predicate, {〈role1, label1〉, . . . , 〈roleN , labelN〉}〉, where the roles represent some entities

involved by the predicate such as agent, source, tool or place. A visual relationship is

a tuple with only the subject and the object as roles. In [42] the authors propose a

dataset and baselines based on object detection and regression of bounding boxes of roles

involved in a predicate. The roles are limited to subject (performing the action), object

and instrument/tool. A limitation is that the role of subject is assigned only to people.

Many works exploit deep learning techniques [88] for visual relationship detection.

For example, in [24] the visual relationships are detected with a novel (and designed

specifically) Deep Relational Network that exploits the statistical dependencies between

relationships and the involved objects. In [61] the use of a deep reinforcement learning

framework to detect visual relationships and attributes of objects is exploited. The au-

thors of [60] propose a message passing algorithm to share information (and reasoning)

among neural networks that encode the subject, the object and the predicate of a visual

relationship. In [112] the visual relationship detection is related to the similarity of the

subject and object in the same vector space. Indeed, the difference between the embed-

ding vectors of the subject and the object gives information on the relationship between

them.

The visual relationship detection can be improved by exploiting some background

knowledge about the domain [78, 65, 6, 113, 73]. In [78] the background knowledge

consists in logical constraints between the visual relationships (for example, implication

or mutual exclusivity). The visual relationships are predicted with a Neural Network

that maps, in the same embedding space, both visual information and constraints. In [65]
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a visual relationship is predicted with a score that combines the background knowledge

with the visual information. The former is a pre-trained word embedding (word2vec)

[67] of the subject and object labels, such that similar triples are close in the embedding

space. The latter consists in the visual features of the union of the subject and object

bounding boxes (computed with a CNN). The work in [6] combines background knowledge

with visual information in the same manner of [65]. The difference is that the considered

knowledge is statistical information about the triples in the training set. For example,

the likelihood that a wheel is part of a car. This knowledge is learnt with statistical link

prediction methods [72]. In [109] the background knowledge (taken from the training set

and Wikipedia documents) is encoded as a probability distribution of a relationship given

the labels of the subject and the object. During the training phase, this knowledge drives

the learning of a fully connected neural network that predicts visual relationships. Other

approaches encode background knowledge with visual features in probabilistic graphical

models. In [113, 73], visual features are combined with knowledge gathered from datasets,

web resources or annotators, about object labels, properties (for example, shape, colour,

size) and affordances, using a Markov Logic Network (MLN) [84]. This allows for querying

of the MLN and thus to predict visual relationships in unseen images. Due to the specific

knowledge-base schema adopted, the effectiveness of MLNs in this domain is evaluated

only for Horn clauses, although the language of MLNs is more general.

3.3 Direct Graph Construction

Several works build a semantically interpreted picture by considering its labelled graph

as a whole and not only its single components (the visual relationships). Indeed, the

surrounding context can help the recognition of both objects and relations between them.

For example, suppose we have bounding boxes for a horse, grass and a person (this last

one with a low score). The presence of a horse and grass increases the likelihood to

have a person that rides (or walks with) the horse that is on the grass. The first works

that follow this intuition come from the Knowledge Representation community and they

formalize the labelled graph of the SII as an interpretation of a logical language. Indeed,

the scene graph is a set of logical statements in a logical language, for example, Horse(h1),

Person(p1), ride(p1, h1). The scene graph is built with logical reasoning. The first work

that formalizes the SII graph construction as a reasoning task in First-Order Logic (FOL)

is in [82]. This approach assumes that the basic objects in the picture, along with their

spatial relations, are already identified by some low-level image analysis (for example,

from the object detection). Then, with logical reasoning on these basic facts, the complete
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description of the image content is derived. However, such a complete description cannot

be obtained for a picture. In [89] the picture is represented with the notion of partial model

of a knowledge base. The generation of a semantically interpreted picture is performed

with pure logical reasoning but low-level features of the image are not considered. In

[71] the low-level image features are included in a Description Logic (DL) [5] knowledge

base along with DL axioms. These axioms represent the connection between semantic

types and low-level features (via data properties and concrete domains). For example,

the standard dimension of a plate is formalized with a constraint on the data property

size of the concept of plate. The graph construction is derived via deductive reasoning

and a notion of preference between partial models is considered. However, writing axioms

that map low-level features in concepts and relations could suffer of scalability (high

engineering effort) as the number of concepts and relations grows and dealing with the

noise coming from object detectors could be problematic. A different approach to the

scene graph construction is based on abductive reasoning [74]. This technique infers

the preferred partial model (explanation) starting from the observations coming from a

low-level image processing (object and spatial relation detection). The preferred partial

model of an image is the one that contains more evidence and less hypotheses. However,

the method requires a set of DL rules for defining the abducible space, which need to be

manually crafted. Other logic-based approaches use fuzzy DL to deal with the uncertainty

coming from the object detection [50, 2]. These approaches limit themselves to spatial

relations or to refine the labels of the detected objects. In [50] the authors proposed a

fuzzy DL ontology of spatial relations and an algorithm for building scene graphs. The

scene graph is constructed starting from some basic objects in the scene, then, through

logical reasoning, semantic relations between objects (or new objects) are inferred. This

method is extended in [2] where morphological reasoning [29] is applied to the objects

discovered by the low-level image analysis.

Other methods for global SII graph construction are based on the minimization of an

energy [19, 57, 17, 15] or a loss [31, 107] functions. For example, these methods start

from a complete graph whose nodes and edges need to be labelled or discarded. These

methods are mainly adopted by the Computer Vision community. In [19] the scene graph

is built through energy minimization of a graphical model. Here the graph describes the

spatial layout of an indoor scene. However, the relations between objects do not encode an

explicit semantics of 〈subject, predicate, object〉 but rather they are spatial configuration

of objects in an indoor space. In [57] the graph is encoded with a Conditional Random

Field [54] and its best labelling (nodes are objects and attributes, edges relationships)

is found through energy minimization. Potentials are defined by combining the object
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detection score with geometric relations between objects and with text priors on the

types of objects. Also in [17] the scene graph is encoded with a CRF but it is limited to

the part-whole relation. Indeed, the nodes are whole objects and their parts, the edges are

(implicitly) labelled with the part-whole relation. The aim is to leverage the par-whole

relation to improve object detection performance. In [15] the energy function of the CRF

combines visual information coming from the object detection with logical constraints of

a DL knowledge base about the domain. In [31] the graph is predicted by finding the

maximum spanning tree, according to a scoring function, from a complete weighted graph

of the bounding boxes. The edges are labelled with spatial relationships defined with

rules. The other relations (such as, driving, riding, playing, using, sitting, wearing) are

predicted with a conditional probability on the subject, object and the spatial relation.

However, this kind of prediction can introduce ambiguity: a person next to a dog can

play with it or simply walking it. In addition, the approach is limited to five 2D-spatial

relationships (for instance, relations such as behind or front-of are not considered) with

effort for defining the rules. In [107] the score of the scene graph is maximized with an

iterative message passing algorithm. For each iteration, the information about the nodes

(labels and features) is passed for maximizing the likelihood of the relationships. The

information about the relationships is passed for maximizing the likelihood of the nodes

until a given number of iterations has reached. In this manner, the prediction of a single

element (node or relation) takes into account the information of the other elements.
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Chapter 4

Semantic Image Interpretation as a

Ranking of Partial Models

In this chapter, a formal, and logic-based framework for Semantic Image Interpretation

(SII) is described. The first observation is that an image is a partial view of the world.

That is, the scene in a image can be cluttered and some objects cannot be visible or

satisfy our background knowledge. For example, due to occlusions we can see only one

leg of a person riding a horse. However, we are able to reason about this partial view,

find an explanation to the lack of the other leg of the person and deduce that the partial

view satisfies our background knowledge. With this intuition we formalize a semantically

interpreted picture as a partial model of an input knowledge base, see Figure 2.2, that is,

a logical interpretation whose completion satisfies the knowledge base. Moreover, many

partial models exist for an input image, thus there is the need to find the one that best

matches the image content. This is formalized with a cost function that assigns a cost to

partial models. This function measures the (dis)agreement between the low-level features

of our input image and the high-level semantic features contained in the partial model.

Therefore, a semantically interpreted picture is a partial model that minimizes a cost

function. As input, we assume to have a semantically labelled picture and a Description

Logic knowledge base. The single segments of the input picture are labelled with the

symbols in the signature Σ of the knowledge base, see Definition 1 and Figure 2.1.

The following section provides an overview of Description Logics. The next section

defines our theoretical framework to SII, that is, the searching of a partial model that

minimizes a cost function. All the explanations take into account the running example in

Figure 2.1.
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4.1 An Overview of Description Logics

Description Logics (DLs) [5] are one of the main formalisms for knowledge representa-

tion. DL languages have been widely used, from the middle of the ’80s, for knowledge

representation [5] and ontology engineering [39]. Moreover, they are an important under-

pinning for the OWL web ontology language as the World Wide Web Consortium (W3C)

standardized.

DLs stemmed from early days of knowledge representation formalisms (late ’70s, early

’80s) such as semantic networks and frame-based systems. The former are graph-based

formalisms for representing the meaning of sentences. The latter are data structures used

to divide knowledge into substructures by representing “stereotyped situations”. They

can be considered as antecedents of object-oriented languages. Both are comprehensi-

ble and intuitively readable but they lack of a formal semantics. DLs were developed

to overcome these limitations by providing (i) a clear semantics and (ii) inference tech-

niques. The DLs formal semantics provides an unambiguous meaning to sentences of

the DL language and allows a common grounding for humans and interoperability be-

tween humans and machines. Moreover, semantics makes possible to define a correct and

complete logical deduction for inferring new information from facts of a knowledge base.

This feature distinguishes DLs from other representation languages, such as the Unified

Modelling Language (UML) [11] and the Entity-Relationship model language [16]. The

process of computing inferences is called reasoning, and a computationally efficient rea-

soning algorithm is an important feature of a DL. This is one of the reasons about the

existence of many description logics: the higher the expressivity of the language the higher

the computational cost for reasoning. The best balance between them depends on the

application. In the following we describe: (i) the syntax (with basic modelling notions),

(ii) the semantics of a particular, and highly expressive, DL: SROIQ [48], and (iii) a

brief overview of reasoning in DLs.

4.1.1 Syntax of Description Logics

All DLs provide the basic building blocks for modelling entity types and relationships

between entities in a domain of interest. We start with the notion of signature Σ =

ΣI ] ΣC ] ΣR, or vocabulary, of a DL that is the set union of three finite and disjoint

sets of symbols: the individual names ΣI , the concept names ΣC and the role names

ΣR. Individual names represent single individuals of our domain whereas concept names

represent the types of the individuals, which extensively correspond to the set of indi-

viduals of such a type. Role names represent binary relationships between individuals.
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In the standard translation of DL in FOL [12] individual names correspond to constants,

concepts correspond to unary predicates and roles to binary predicates. If we want to

model the scene in a picture, for example the one in Figure 2.1, we use two individual

names, john, furia ∈ ΣI , for representing the person and the horse, the concept names

Horse,Person ∈ ΣC to represent their types and the role name ride ∈ ΣR to represent

the relation of a person riding a horse. In this presentation, we focus on the syntax of

one of the most expressive DLs: SROIQ [48]. Its high expressiveness is determinant for

reasoning in a domain such as image interpretation. Indeed, in SII, some roles can be

transitive (S) such as the role right of. Some roles can include others (R), for example the

role on includes the role ride. There can be the presence of nominals (O), for example a

trained object detector could detect the presence of the individual Barack Obama. A role

can be the inverse of another one (I), for example the role right of is the inverse of left of.

Finally, concept and role names can be related through qualified number restrictions (Q),

for example we know a priori that horses have exactly four legs. A SROIQ concept is

an expression defined by the following grammar:

C,D := A | ¬C | C uD | C tD | > | ⊥ | ∃R.C | ∀R.C |
(≥ n)R.C | (≤ n)R.C | ∃R.Self | {a1, ..., an}

with A ∈ ΣC , R ∈ ΣR, and n is a non-negative integer. We assume that ΣR is closed

under inverse role, that is, if R ∈ ΣR then R− (the inverse of R, see Table 4.1) is in ΣR. In

addition, ΣR contains also the universal role U that always relates all pairs of individuals.

We briefly describe the grammar:

• every concept name A ∈ ΣC is a concept expression;

• if C,D are concept expressions then also the negation ¬C is a concept expression.

For example, the concept Male can be defined as ¬Female. The disjunction C uD
of two concepts is a concept expression. For example, the expression HorseuBrown
defines the concept of horses that have have brown fur. The conjunction C tD of

two concepts is a concept expression. For example, the expression Horse t Person

defines a concept (such as Animal in our picture domain) that includes people and

horses.

• > (top concept) and ⊥ (bottom concept) are concept expressions. They are syntactic

sugars for the concept expressions C t ¬C and C u ¬C, respectively.

• If R ∈ ΣR and C is a concept expression, then the existential quantification ∃R.C
is a concept expression. For example, the expression ∃hasPart.Tail indicates all the
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entities with a tail. The universal quantification ∀R.C is also a concept expression.

For example, the expression ∀eat.(Grass t Vegetable) indicates all the entities that

eat only grass or vegetables, such as horses.

• if R ∈ ΣR, n is a non-negative integer and C is a concept expression, then ∃R.Self
(self restriction), (≥ n)R.C (at-least restriction), (≤ n)R.C (at-most restriction)

and (= n)R.C (exact restriction) are also concept expressions. The latter three are

also known as qualified number restrictions, or cardinality constraints, and impose

a constraint on the cardinality of the quantifier. For example, the expression (=

4)hasPart.Leg indicates all the entities with exactly four legs, that is the quadrupeds.

• {a1, ..., an} (nominal concepts) is a concept expression for every finite set {a1, ..., an} ⊆
ΣI of individual names, for example, {john, furia}.

As DLs are formal languages it is possible to create statements called axioms. The axioms

state information about our domain and are collected into three sets: assertional axioms

(ABox A), terminological axioms (TBox T ) and relational axioms (RBox R). A DLs

knowledge base KB is the union of these sets of axioms. ABox axioms encode factual

knowledge about individuals, such as, the (negated) concept assertions :

Person(john),¬Horse(john),¬Person(furia),Horse(furia),

stating that the individual name john is an instance of the concept Person and not an

instance of Horse. The individual name furia is an instance of Horse and not of Person.

The (negated) role assertions describe relations between the individuals, such as, the

individual john is riding the individual furia and not vice versa:

ride(john, furia),¬ride(furia, john).

ABox axioms state also the equality or not between individual names. This is necessary

due to the fact that in DL a single individual of the domain can be represented by many

individual names. For example, the individual inequality assertion julia 6≈ john states that

Julia and John are different individuals, whereas the individual equality assertion johnny ≈
john states that Johnny and John are the same individual. On the other hand, the axioms

in the TBox assert relationships between concepts, such as the concept inclusion. For

example:

Horse v Animal

states that all the individuals of type horse are also animals. The concept equivalence

states that two concepts have the same individuals:

Human ≡ Person.
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TBox axioms define concepts in terms of set theoretic combinations of other concepts,

according to a specific DL syntax, see the grammar of SROIQ defined above. Finally,

RBox axioms encode properties of roles such as the role inclusion. For example:

ride v on

states that every pair of individuals related with the ride role are also related with on.

The role equivalence axiom states that two roles have the same pairs of individuals, for

example above ≡ over. Another RBox axiom is the complex role inclusion that relates

roles through their composition and inclusion. For example, it is possible to concatenate

the carry and hasPart roles to state that every time a subject carries an object then the

subject carries also the parts of the object:

carry ◦ hasPart v carry

Finally, the role disjointness axioms state that two different roles cannot share pairs of

individuals. For example, it is not possible that John is on and below the horse at the

same time: Disjoint(on, below). The defined axioms can be resumed in the following

table:

ABox axioms TBox axioms

C(a) concept assertions C v D concept inclusion

¬C(a) negated concept assertions C ≡ D concept equivalence

R(a, b) role assertions

¬R(a, b) negated role assertions

a ≈ b individual equality

a 6≈ b individual inequality

RBox axioms

R v S role inclusion

R ≡ S role equivalence

R ◦ S v Q complex role inclusion

Disjoint(R,S) role disjointness

4.1.2 Semantics of Description Logics

The syntax of a DL describes only the correct syntactic statements that can be expressed

in that DL but it does not state anything about the meaning of these statements. The

semantics of DLs provides a formal meaning for DLs concept expressions and axioms.

The central notion of DLs semantics is the definition of interpretation, that allows us to

compute the set theoretic meaning of the complex concept expressions and the truth value
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(true or false) of an axiom. An interpretation I of Σ is a pair 〈∆I , ·I〉, where ∆I is a

non-empty set, called the interpretation domain, that can be conceived as the collection of

individuals, or things, that exist in the “world” that I represents. The function ·I , called

interpretation function, grounds the symbols in the signature Σ (individuals, concepts

and roles) in the elements of ∆I according to the following rules:

• individual names are interpreted as elements of the domain, formally ·I : ΣI → ∆I ;

• concept names are interpreted as subsets of the domain, formally ·I : ΣC → 2∆I ;

• role names are interpreted as binary relations, formally ·I : ΣR → 2∆I×∆I ;

An interpretation is a complete abstract description of the state of the world in terms of

existing objects (that is, the elements of ∆I), object types (that is, the interpretations

via ·I of the symbols in ΣC) and relations between objects (that is, the interpretations of

the symbols in ΣR). By now, the defined interpretation determines only the semantics of

the symbols in the signature Σ. However, to compute the truth value of a DLs axiom it is

necessary to extend the interpretation function ·I also to complex (SROIQ) concepts and

roles. This extension is rather intuitive, for example the interpretation of Horse u Brown

(see above) is the intersection of the interpretation of Horse and Brown, see Table 4.1. We

can now define the truth value (true or false) of an axiom according to an interpretation.

An axiom φ is satisfied by I (or is true under I), in symbols I |= φ, if the corresponding

condition in Table 4.2 is met. If I satisfies all the axioms in a knowledge base KB, in

symbols I |= KB, we say that I is a model for KB. We say that KB is consistent (or

satisfiable) if it is satisfied by at least one model. An axiom φ is a logical consequence of

KB (or KB entails φ, in symbols KB |= φ) if φ is true in every model of KB. The axioms

of the knowledge base are constraints on the states of the world. For instance, the axiom

Horse v (= 4)hasPart.Leg states that every horse has exactly four legs. This implies that

worlds where horses have only three or five legs are impossible.

4.1.3 Reasoning in Description Logics

Semantics provides a meaning to a KB symbols and defines what a logical consequence

between axioms is, but it does not state how to compute (if possible) the entailments. This

computation is called reasoning and one great advantage of DLs is that many reasoning

tasks are decidable. We describe some important reasoning tasks:

Knowledge Base Satisfiability A knowledge base KB is satisfiable if there exists an

interpretation I that satisfies all the axioms in KB, in symbols I |= KB. This task
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Syntax Semantics

Individuals:

Individual name a aI

Concepts:

Atomic concept A AI

Intersection C uD CI ∩DI

Union C tD CI ∪DI

Complement ¬C ∆I \ CI

Top concept > ∆I

Bottom concept ⊥ ∅
Existential restriction ∃R.C {d ∈ ∆I | for some 〈d, d′〉 ∈ RI , d′ ∈ CI}
Universal restriction ∀R.C {d ∈ ∆I | for all 〈d, d′〉 ∈ RI , d′ ∈ CI}
At-least restriction (≥ n)R.C {d ∈ ∆I | #{d′ ∈ CI | 〈d, d′〉 ∈ RI} ≥ n}
At-most restriction (≤ n)R.C {d ∈ ∆I | #{d′ ∈ CI | 〈d, d′〉 ∈ RI} ≤ n}
Exact restriction (= n)R.C {d ∈ ∆I | #{d′ ∈ CI | 〈d, d′〉 ∈ RI} = n}
Local reflexivity ∃R.Self {d ∈ ∆I |〈d, d〉 ∈ RI}
Nominal {a1 . . . an} {aI . . . aIn}
Roles:

Atomic role R RI

Inverse role R− {〈a, b〉 ∈ ∆I ×∆I |〈b, a〉 ∈ RI}
Universal role U ∆I ×∆I

Table 4.1: Syntax and semantics of SROIQ constructors with a, b ∈ ΣI , A ∈ ΣC is a

concept name, C and D are concept expressions, R ∈ ΣR and #S is the cardinality of

the set S.
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Syntax Semantics

ABox axioms:

Concept assertion C(a) aI ∈ CI

Negated concept assertion ¬C(a) aI 6∈ CI

Role assertion R(a, b) 〈aI , bI〉 ∈ RI

Negated role assertion ¬R(a, b) 〈aI , bI〉 6∈ RI

Individual equality a ≈ b aI = bI

Individual inequality a 6≈ b aI 6= bI

TBox axioms:

Concept inclusion C v D CI ⊆ DI

Concept equivalence C ≡ D CI = DI

RBox axioms:

Role inclusion R v S RI ⊆ SI

Role equivalence R ≡ S RI = SI

Complex role inclusion R1 ◦R2 v S RI1 ◦RI2 ⊆ S

Role disjointness Disjoint(R, S) RI ∩ SI = ∅

Table 4.2: Syntax and semantics of SROIQ axioms with a, b ∈ ΣI , C and D are concept

expressions and R ∈ ΣR.
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checks the existence (yes or not) of a model for KB. Checking knowledge bases

consistency is very important as they model information of the real world that

cannot be contradictory. Indeed, in most of the cases, contradictory axioms have

no benefits and could be very dangerous, for example in applications for managing

power plant systems. This reasoning task will be used in our first SII algorithm for

checking the existence of a partial model describing a picture. Indeed, we want to

discard interpretations that contradict the knowledge base axioms. For example,

interpretations where horses have more than four legs.

Axiom Entailment A DL knowledge base KB entails an axiom φ if φ is true in every

model of KB. The reasoning task here is to check if KB |= φ or not. This task allows

a user to “logically query” a knowledge base by checking if a new input axiom is

true or not.

Concept Satisfiability A concept C ∈ ΣC is satisfiable, with respect to KB, if there

exists a model I of KB that maps C to a nonempty set: CI 6= ∅. Concept satisfia-

bility can be reduced to axiom entailment by checking whether KB |= C v ⊥, and

thus it is a decision problem with yes or not as answer.

All these tasks are decidable in DLs and there exist sound and complete decision proce-

dures to compute the reasoning. These procedures are implemented in optimized tools

called reasoners that are freely available, such as FaCT++ [105], HermiT [94], Pellet [96]

and RacerPro [43]. The reasoning paradigm underlying these tools is the tableau method

[5] that tries to construct models of a given knowledge base. If this succeeds, the knowl-

edge base is satisfiable, if the construction necessarily fails then there is unsatisfiability.

4.2 Semantic Image Interpretation as a Partial Mod-

els Ranking

In this section we provide a formal (logic-based) framework for defining a semantically

interpreted picture. The inputs of our framework are a semantically labelled picture P ,

that can be computed with an object detector (for example Fast R-CNN [36]) and a DL

knowledge base KB with signature Σ. The symbols in Σ are used as labels for the object

detector.

We start from the assumption that an image is a partial view of the world. For

example, in Figure 2.2 only one leg of the person is visible due to occlusions. Therefore,

a formal representation of the content of an image should be a partial view of a model of
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KB. This view can be considered as an interpretation of the language of KB, but it does

not necessarily satisfy all the axioms of KB. Indeed, the claim that a person has two legs

is not satisfied in the picture but it is satisfied in the real world, supposing to be in a

normal situation. Thus, if we formalize the world as a model of our knowledge base KB,

we formalize the picture with the notion of partial model1 Ip of KB, see Figure 4.1.

Real World
formalized by−−−−−−−−−−→ Model I of KB

partial view
x x⊆

Picture −−−−−−−−−−→
formalized by

Partial Model Ip of KB

Figure 4.1: The world is formalized with a model of KB and the partial view of the world

contained in the picture is formalized with a partial model of KB.

Definition 2 (Extension of an Interpretation). Let I and I ′ be two interpretations of the

signatures Σ and Σ′ respectively, with Σ ⊆ Σ′; I ′ is an extension of I, or equivalently I ′

extends I, in symbols I ′ ⊇ I,if ∆I ⊆ ∆I
′
, aI = aI

′
, CI = CI

′ ∩∆I RI = RI
′ ∩∆I×∆I,

for all a ∈ ΣI , C ∈ ΣC and R ∈ ΣR.

Definition 3 (Partial Model). Let KB a knowledge base, Ip is a partial model for KB,

in symbols Ip |=p KB, if there is a model I of KB (I |= KB) that extends Ip.

Following the intuition about partial models we define the semantic image interpreta-

tion as the computation of a partial model Ip = 〈∆Ip , ·Ip〉 of KB. Thus, the construction

of a structured representation of the semantic content of an image consists in a method

for creating the individuals (the nodes) of ∆Ip , assigning them a type and linking to-

gether (the edges) according to ·Ip . Having this graph describing the image content is

not enough. We need also the information about the object detection. For example, in

an information retrieval system it could be also necessary to return the single bounding

boxes. So, we need a link between the elements of our partial model and their corre-

sponding bounding boxes. This consideration leads to the following formal definition of

a semantically interpreted picture.

Definition 4 (Semantically Interpreted Picture). Given a knowledge base KB with signa-

ture Σ and a semantically labelled picture P = 〈S, L〉, a semantically interpreted picture

is a triple S = (P , Ip,G) where:

1Our definition slightly differs from the one of [89].
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• Ip = 〈∆Ip , ·Ip〉 is a partial model of KB;

• G ⊆ ∆Ip × S is a left-total2 relation called grounding relation.

The grounding of every d ∈ ∆Ip, denoted by G(d), is the set {s ∈ S | 〈d, s〉 ∈ G}.

Figure 2.2 shows a semantically labelled picture that describes our running example.

The partial model contains a person riding a horse with four legs, a muzzle and a tail,

whereas the person has a visible leg, a visible arm and a face. The grounding of the parts

and the horse are the corresponding initial bounding boxes, whereas the grounding of the

person is the union of the bounding boxes associated to its parts. Note that the above

definition can be stated also for the more expressive First-Order Logic. We focus on the

SROIQ DL [48] due to its high expressivity (see above) and its decidability. Indeed,

the computation of a partial model Ip requires the use of a reasoning tool for checking if

Ip |=p KB (knowledge base satisfiability), see Section 4.1.3.

The picture content can be described by many partial models. Figure 4.2 shows the

original partial model of our running example (above) and three partial models (below).

That is, these partial models satisfy the constraints of KB in our running example (Fig-

ure 2.1) but do not encode the real content of the picture, they contain some errors or

miss some information. Indeed, partial model A contains almost all the original nodes

corresponding to objects but it misses many relations between objects. Partial model B

contains correct relations but it misses many nodes and some nodes have wrong labels (the

nodes a1, f1 and l5). Finally, partial model C contains all the nodes, many correct relations

but with additional errors (there is, for example, a partOf relation between a Leg and an

Arm). However, Definition 4 does not provide any criterion to select the partial model

that better describes the content of a picture. We need a criterion to decide whether a

partial model is a good explanation of the picture content. A criterion for the selection of

a partial model could be the comparison with an original partial model of the picture, also

known as ground truth GT. A method of comparison is a function that returns a score S
(or cost L ) of similarity (or dissimilarity) between a partial model and the ground truth.

This function enables us to rank the partial models and to return the best one, that is, the

one that best matches the image content. Such a function can take into account the num-

ber of correct labelled triples 〈subject node− relation−object node〉 in the partial model

graph. For instance, the partial model A contains the triples 〈person p1− ride− horse h1〉
and 〈leg l5 − partOf − person p1〉. Examples of ranking functions consider the fraction

2Every logical individual is associated to at least one bounding box. A bounding box can have no

connection with a logical individual, this allows the framework to handle, and possibly discard, false

positive bounding boxes of the semantically labelled picture.
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p1person f1

face
a1

arm

l5

leg

partOf

h1horse

t1

tail

l1

leg

l2

leg

l3

leg

l4

leg

m1

muzzle

ride

partOf

p1person

a1

arm

l5

leg

partOf

f1

face

h1horse

t1

tail

l1

leg

l2

leg

l3

leg

l4

leg

ride

p1person f1

leg
a1

leg

l5

face

partOf

h1horse

l2

leg

l4

leg

partOf

ride

p1person f1

face
a1

arm

l5

leg

partOf

h1horse

t1

tail

l1

leg

l2

leg

l3

leg

l4

leg

m1

muzzle

ride

partOf

Partial model A Partial model B Partial model C

Figure 4.2: The original partial model of Figure 2.2 (above) and three partial models of

the same input picture (below). For presentation purposes the edges without labels are

implicitly labelled with partOf.

of correct triples in a partial model according to the ground truth GT or the fraction of

retrieved triples of the GT. These functions are also known as precision and recall :

Sprec =
|partial model correct triples|
|partial model triples|

, Srec =
|partial model correct triples|

|correct GT triples|
.

These functions consider different aspects of the partial models and thus return different

rankings. If we consider Sprec, the ranking, with scores, is A (1.0), C (0.75), B (0.5). On

the other hand, the ranking with Srec is C (0.9), B (0.3), A (0.2). The difference in the

ranking position of partial model A is due to the fact that this partial model has only

few but correct triples. We introduce a loss function LKB that measures the “distance”

between the partial model and the image content in order to perform a ranking of partial

models and choosing the best one. The most plausible partial model I∗p is the partial
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model that minimizes LKB:

(I∗p ,G∗) = argmin
Ip|=pKB
G⊆∆Ip×S

LKB(P , Ip,G). (4.1)

LKB measures the (dis)agreement between low-level image features of P and high-level

semantic features contained in Ip, with respect to the low-level/high-level mapping G.

The higher LKB(P , Ip,G) the less the agreement between Ip and P . For instance, if the

element d ∈ ∆Ip of Ip is grounded to the segment s (G(d) = {s}) then LKB is lower when

Ip assigns to d the types that correspond to the labels of s with higher weights. Similarly,

LKB penalizes the partial models that satisfy R(d, d′) when the low-level features of G(d)

and G(d′) are in disagreement with the relation R. For example, LKB penalizes the models

that satisfy close(d, d′) when the relative distance between G(d) and G(d′) is high. As can

be seen from the above examples, the definition of LKB heavily depends on the semantics

expressed by KB and on the picture content. Thus, a partial model is a good explanation

of the picture content if it minimizes LKB. It is worth to notice that the number of

partial models can be huge according to the complexity of the image, that is, the number

of segments of the input labelled picture. Therefore, it is infeasible to explore the whole

search space of partial models in order to minimize LKB. There is the need of algorithms

that find the pair (I∗p ,G∗) in scalable manner. For example, in the next chapter, the

proposed algorithm has polynomial time complexity according to the input image.

Definition 5 (Semantic Image Interpretation Problem). Given a knowledge base KB, a

semantically labelled picture P and a loss function LKB, the semantic image interpretation

problem is finding a partial model Ip and a grounding G that minimize LKB(P , Ip,G).

However, finding a partial model that minimizes L cannot be performed by using the

ground truth because an original partial model is not always available. Indeed, the task of

SII is to predict partial models from new images. Therefore, we need an a priori definition

of the loss function that is independent from a ground truth. In the next chapter we define

the loss function as a combination of clustering metrics.
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Chapter 5

Ranking Partial Models with

Clustering

In this chapter, a clustering technique for predicting the best partial model that describes

an image content is developed. The idea is to start from already detected objects in the

image and cluster them according to some relation. This intuition holds for many relations

such as the part-whole relation or the relations that describe events. For example, for the

part-whole relation whole objects and their parts need to be grouped together. Regarding

the events, the objects participating at the event need to be clustered. Moreover, also the

type of the whole object/event has to be discovered. The great advantage of clustering

techniques relies in their unsupervision: there is no need of a ground truth of partial

models as training set along with a training phase.

The following section provides an overview of clustering analysis as background for the

first SII algorithm. Then, the loss function is defined as the clustering balance between

the intra and inter-cluster similarity. These similarities are distance measures that con-

sider low-level and semantic features of objects in the image. The next section describes

an innovative agglomerative clustering algorithm that searches for a partial model that

optimizes the loss function. Then, an experimental evaluation tests the quality of the

approach. The algorithm has been evaluated on two datasets on the task of part-whole

detection between composite objects and their parts. The results confirm the quality of

the method. Finally, the clustering algorithm is discussed along with its advantages and

limitations. All the explanations take into account the running example of Figure 2.1.
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5.1 An Overview of Cluster Analysis

Cluster analysis [102] (or simply clustering) divides input data (called data set) into groups

(called clusters) that are understandable by humans. This means that the clusters should

capture the natural structure of the data, that is, the elements on the same cluster share

similar features. Cluster analysis is a useful tool for data analysis, information extraction

and as preprocessing technique for other types of analysis, such as data summarization

or data compression. Cluster analysis has been applied in a wide variety of fields: psy-

chology (for example, identification of different types of depression), biology (for example,

the automatic creation of taxonomies or the understanding of gene functions), business

analysis (for example, the segmentation of customers for marketing activities), pattern

recognition (used, for example, in understanding the Earth’s climate), information re-

trieval (for example, for grouping the results of a search engine query), machine learning,

and data mining.

Clustering is the problem of grouping the elements of the data set into groups (clus-

ters) so that the elements within a group are similar each other (intra-cluster similarity)

and different from the elements in the other clusters (inter-cluster similarity). The greater

the similarity within a cluster and the greater the difference between clusters, the better,

or more separate, the clustering. A collection of clusters is commonly referred as a clus-

tering. The are several types of clusterings, the main distinction is between partitional

and hierarchical clustering. In partitional clustering the clusters are a partition of the

data set: every object is assigned to one cluster and the clusters are pairwise disjoint.

Hierarchical clustering is a generalisation of partitional clustering where clusters can be

recursively clustered in higher-level clusters.

We briefly describe the following two clustering techniques as a background for under-

standing our initial proposals to the Semantic Image Interpretation problem: the agglom-

erative hierarchical clustering [102] and the Self-Organizing Maps clustering [53]. The

former technique is suitable for exploring the huge search space of clusterings by repeat-

edly aggregating clusters and evaluating a loss function on the result. The latter has been

chosen as a sort of baseline for comparison due to its ability of automatically estimate the

number of clusters, see next sections.

5.1.1 Agglomerative Hierarchical Clustering

The agglomerative hierarchical clustering [102] technique starts with N elements as indi-

vidual clusters and, iteratively, merges the closest pair of clusters. This requires an N ∗N
similarity (or distance) matrix between the data set elements, see Algorithm 1. A hier-
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Algorithm 1: Basic Agglomerative Hierarchical Clustering Algorithm.
Input: A data set and a similarity matrix

1 Assign each item to a cluster.

2 repeat

3 Find the most similar pair of clusters in the similarity matrix and merge them together.

4 Update the similarity matrix to reflect the proximity between the new cluster and the

original clusters.

5 until Only one cluster remains.

archical clustering can be graphically displayed as a tree-like diagram called dendrogram,

see Figure 5.1, which displays both the cluster-subcluster relationships and the order in

which the clusters were merged. A crucial operation of Algorithm 1 is the updating of

a b c d e

Figure 5.1: A hierarchical clustering of five elements shown as a dendrogram.

the similarity matrix between the new cluster and the original ones. This boils down to

define a similarity between clusters, or groups of elements. Examples of common cluster

similarities are the MIN, MAX and Group Average functions. The MIN function defines

the similarity between two cluster as the similarity between the two closest points in the

clusters. The MAX function is the opposite: it considers the similarity between the two

farthest points in the clusters. Finally, the group average function defines the cluster

similarity as the average pairwise similarity of all pairs of points with the first component

in one cluster and the second component in the other cluster.

An important issue of hierarchical clustering regards the number of output clusters

(or configuration). For example, the whole dendogram could be of little interest and a

cut of the tree at a certain height could be more significant. If we consider the clustering

of Figure 5.1 we can have the following clusterings (with a different number of clusters)

{{a, b}, {{c, d}, e}} and {{a}, {b}, {{c, d}, e}} according to the particular tree height that

we cut the dendogram. This problem could be addressed by considering internal properties

35



5.1. CLUSTERING CHAPTER 5. RANKING AS CLUSTERING

of the clusters such as the intra-cluster error sum Λ and the inter-cluster error sum Γ. We

briefly describe the method proposed in [52] as a background of our clustering algorithm

for SII described in Section 5.2.

Let D = {e1}Ni=1 a dataset of N elements where each element is a feature vector in

a m dimensional space: ei = 〈ei1 . . . eim〉. A cluster Cj is simply a set of nj elements:

Cj = {e(j)
1 . . . e

(j)
nj }. The centroid e

(j)
0 of a cluster Cj is the mean vector of the cluster

elements:

ej0 =
1

nj

nj∑
i=1

e
(j)
i .

Recalling the above-mentioned definition, a clustering groups elements into clusters such

that elements in the same cluster have maximum (intra-cluster) similarity and elements

in different clusters have minimum (inter-cluster) similarity. According to [52], the intra-

cluster similarity can be defined as the intra-cluster error sum Λ, that is the squared error

of the Euclidean distance between the elements and the centroid of a cluster:

Λ =
k∑
j=1

nj∑
i=1

||e(j)
i − e

(j)
0 ||22 (5.1)

where k is the total number of clusters. On the other hand, the inter-cluster similarity

can be defined as the inter-cluster error sum Γ, that is the squared error of the Euclidean

distance between the centroids {e(j)
0 }kj=1 of the k clusters and the global centroid e0 of

the dataset:

Γ =
k∑
j=1

||e(j)
i − e0||22 (5.2)

where

e0 =
1

N

N∑
i=1

e1.

Given a clustering χ, the clustering balance is a weighted sum of Λ and Γ:

E(χ) = αΛ + (1− α)Γ. (5.3)

According to [52], Λ is always nondecreasing and Γ is always nonincreasing and the optimal

clustering configuration is the one that minimizes the clustering balance E . A clustering

configuration is also useful as a proposal input for partitional clustering algorithms (such

as K-means). In Section 5.2, we develop an agglomerative clustering algorithm that min-

imizes the clustering balance and Λ, Γ encode both geometric and semantic information

of the bounding boxes of an input semantically labelled picture.
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5.1.2 Self-Organizing Map Clustering

Self-Organizing Maps (SOMs) [53] are a sort of artificial neural networks trained with

unsupervised data to produce a low-dimensional (usually two-dimensional) and discrete

representation (also called feature map) of the input data. They are a useful method for

visualizing high-dimensional data in a two dimensional space.

A SOM consists of a (usually) two-dimensional hexagonal or rectangular grid (or map)

M . Each node v of the grid is associated with a vector of weights wv of the same dimension

of the input data e ∈ D = {ei}Ni=1. The underlying idea of SOM is to adapt the grid to the

input data, that is, parts of the map respond similarly to certain input patterns. When an

input data e is fed to the map the SOM algorithm finds the node with the closest (smallest

Euclidean distance) weight vector to e (competitive learning). This node is called best

matching unit (BMU). The weights of the BMU and of its neighbours in the SOM are

adjusted towards the input vector. The magnitude of the change decreases with the time

and with the distance (within the lattice) from the BMU. This process is repeated for a

big number of cycles. Algorithm 2 describes in details the learning process. Here α(t) is a

Algorithm 2: Self-Organizing Map Algorithm.
Input: A data set D
Output: A feature map M

1 Let M be a 2-dimensional grid of nodes.

2 Randomize the node weight vectors in M .

3 while t < max number iterations do

4 Let e ∈ D an input vector.

5 bmu← argminv∈M ||e−wv||22 // bmu stands for best matching unit

6 foreach neighbour node v of bmu do

7 wv = wv + θ(bmu, v, t) · α(t) · (e−wv) // also the bmu is updated

8 return M

monotonically decreasing learning coefficient. θ(bmu, v, t) is the neighbourhood function

which gives the distance between the BMU and the node v at step t. Common choices

for θ are the step or the Gaussian function. The function θ decreases monotonically

according to the learning step. At the beginning, the neighbourhood is broad so the

weights updating takes place on the global scale. At the end, the neighbourhoods are just

few nodes so the weight updating is performed locally.

The returned feature map M has to be interpreted to return a clustering. During the

training step the weight vectors of the neighbours of the BMU are moved in the same

direction, thus similar input patterns excite adjacent nodes. Therefore, similar patterns
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are mapped together and and dissimilar ones apart. This makes a SOM a semantic map

that can be visualized with a unified distance matrix (U-matrix) [23]. A U-matrix reports

the mean of the Euclidean distances between a single node and its neighbours in grayscale

values. Thus, light colors depict closely spaced weight vectors of the nodes and darker

colors indicate separated node weight vectors. This representation can be processed with

simple image processing techniques to easily identify the clusters.

We use this clustering technique in the very first experiments of our SII models [26, 25],

and in Section 5.4 we compare this technique with an algorithm based on agglomerative

clustering, see Section 5.3.

5.2 The Loss Function as Clustering Optimization

In the following, we concentrate on the part-whole relation and we define a loss function

LKB that is used to recognise the presence of complex objects starting from their parts.

As input, we consider a semantically labelled picture and a DL knowledge base whose

symbols are used as labels in the input picture. The choice of this particular task is firstly

motivated by the fact that, given the novelty of the approach, we want to test it on a

simplified, though real, scenario. Second, the part-whole relation has a special status with

respect to other relations, as it can be used to represent, via reification, a large class of

relations [40]. In our running example, the relationship between the person and the horse

can be reified in an object of type “riding event” whose parts are the person and the horse.

Third, the advantage of exploiting parts for detecting a whole object is that parts have a

low intra-class variability, their configuration provides useful information about the whole

object and they better deal with deformations and pose variations [70]. Fourth, there is

a well-established dataset, the PASCAL-Part-dataset [17]. The problem of recognising

complex objects once simpler objects (parts) have been detected can be seen as a clustering

problem and we specify the loss function in terms of a clustering optimisation function.

Recognising the presence of complex objects and their parts, starting from a known

set of atomic objects, can be seen as a hierarchical clustering problem with the additional

task of typing the intermediate nodes. More precisely: the clustering solution associated

to a semantically interpreted picture S = (P , Ip,G) is equal to C = {Cd | d ∈ ∆Ip} where

each Cd = {s ∈ G(d′) | d′ ∈ ∆Ip , 〈d, d′〉 ∈ hasPartIp}. If we assume that the hasPart

relation is inverse functional, transitive and irreflexive1, the clustering C is guaranteed

to be hierarchical. However, other relations do not respect these assumptions and other

1The standard ontological axioms of classical mereology assume the reflexivity of the part-whole

relation. Here we use a restricted version of this relation by considering that nothing can be part of itself.
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type of clustering techniques need to be used. For example, if a relation is not functional

then its members can belong to more than one cluster and overlapping clustering [4]

has to be used. As stated in Section 5.1, clustering algorithms are based on a distance

measure between input elements. We propose a distance measure δ(d, d′) that combines

the Euclidean distance δG(d, d
′) between the centroids of G(d) and G(d′) called grounding

distance, and a semantic quasidistance2 δKB(d, d′) between the types of d and d′ in Ip.
As grounding distance we use the L2

2 norm on the centroids of the segments3 δG(d, d
′) =

||cent(G(d))−cent(G(d′))||22 (the centroids are scaled to the interval [0, 1]). The use of the

centroid of G(d) as a numeric feature is enough to show the effectiveness of our approach.

Indeed, the combination of the centroid with the L2
2 norm tends to group objects close

in the space. This assumption is based on the Law of Proximity of Gestalt Psychology

[97] that states that parts of the same object are usually close. However, other relations

are more difficult to recognize, for example the proximity between a person and a horse

is not sufficient to distinguish between the ride and the next-to relation. Moreover, other

relations are difficult to recognize using the proximity as the subject and the object

could be distant in the space, for example the look-at, above, flying-kite and jumping-on

relations. In these cases, the approach can be generalised by considering other features

like shape, texture, color, inverse distance, angle with a given axis, etc. For the semantic

quasidistance we specialize the Hirst and St-Onge measure (HSO) defined in [47]. Here

concepts have a big distance if (1) the knowledge base path (number of arcs) between them

is high and (2) this path has a large number of changes of directions. If a path is composed

only by upward (or downward) ISA arcs then it has no changes of directions. Whereas,

if a path is composed by composing upward, downward ISA arcs with a partOf arc then

the path has changes of directions. With this idea in mind our semantic quasidistance

δKB(d, d′) assigns a small value to concepts constrained with the hasPart relation. Whereas

δKB(d, d′) assigns a larger value to pairs of concepts with no hasPart constraint between

them or with a negative hasPart constraint. We define δKB(d, d′) as

δKB(d, d′) = min

parKB(C,C ′)

∣∣∣∣∣∣∣∣∣
〈C,w〉 ∈ L(G(d)),

〈C ′, w′〉 ∈ L(G(d′)),

for no D,D′ ∈ ΣC ,

D v C,D′ v C ′

 (5.4)

2Semantic distance is not required to be symmetric.
3Note that, the method is general and can be applied to semantically labelled picture obtained by

both semantic segmentation and object detection. For this reason we use the general term segments.
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with

parKB(C,C ′) =


1 if KB |= C v ∃hasPart.C ′

∞ if KB |= C v ¬∃hasPart.C ′

γ otherwise

where the parameter γ, according to the definition of HSO, can be defined as: γ =

pathLength+ k ∗ changesDirections, with k a constant. Examples of semantic quasidis-

tance between the elements of the partial model of Figure 2.2 are the following:

δKB(h1, t1) = parKB(Horse,Tail) = 1

δKB(h1, f1) = parKB(Horse,Face) =∞
δKB(h1, p1) = parKB(Horse,Person) = γ.

Following Section 5.1.1 and [52], we define the intra-cluster error sum Λ as:

Λ =
∑

〈p,d〉∈hasPartIp

(
βδG(p, d) + (1− β)

δKB(p, d)

w(d,G, Ip)

)
(5.5)

with w(d,G, Ip) = wl, if l is the most specific concept that Ip assigns to d and wl is the

weight associated to the label l in G(d). Otherwise w(d,G, Ip) is undefined. The parameter

β ∈ [0, 1] mixes the geometric and the semantic contribution. The inter-cluster error sum

Γ is defined as:

Γ =
∑

〈p,p′〉∈(∃hasPart.>)Ip

δG(p, p
′). (5.6)

Finally, we define the loss function LKB(P , Ip,G) as the clustering balance (with param-

eter α ∈ [0, 1]) between Λ and Γ:

LKB(P , Ip,G) = α · Λ + (1− α) · Γ. (5.7)

5.3 A Clustering and DL Reasoning Algorithm for

Minimizing the Loss Function

Minimizing Equation (5.7) analytically is not possible as LKB is not expressed in an

analytical form. We therefore developed the PartWholeClusteringAlgorithm (in

short PWCA, Algorithm 3) that preforms a greedy search on the lattice of clusterings of

the set of segments {s1, . . . , sn} of P . For each clustering C, PWCA generates a partial

model-grounding pair (Ip,G) that minimizes LKB(P , Ip,G). PWCA starts from the initial
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clustering C0 = {{s1}, . . . , {sn}}. At each iteration PWCA (i) considers a clustering C; (ii)

generates all super-clusterings of C by merging any pair of clusters in C (agglomerative

step performed by AgglomerativeMatrix(C)) and (iii) selects the super-clustering

C ′ whose associated partial model-grounding pair (computed by BestMod) minimizes

the loss function. PWCA terminates when |C| = 1, that is, no super-clustering can

be generated form C, or when there is no partial model that can be associated to the

super-clusterings of C. PWCA returns the partial model-grounding pair with minimal

loss among those that have been generated.

Algorithm 3: PartWholeClusteringAlgorithm(P ,KB)

Input: A labelled picture P = 〈S,L〉 and a knowledge base KB
Output: A partial model Ip and its grounding G on P

1 C0 ← {{s1} . . . {s|S|}} from P
2 (I∗p ,G∗)← BestMod(P, C0,KB)

3 F ← {C0}
4 while F 6= ∅ do
5 C ← RemoveElement(F )

6 A← AgglomerativeMatrix(C)
7 if A 6= ∅ then
8 C′ ← argminC∈A LKB(P,BestMod(P, C,KB))

9 F ← {C ′}
10 (I ′p,G′)← BestMod(P, C′,KB)

11 if LKB(P, I ′p,G′) < LKB(P, I∗p ,G∗) then

12 (I∗,G∗)← (I ′,G′)

13 return (I∗p ,G∗)

BestMod generates a partial model-grounding pair (Ip,G) from a clustering C =

{C1 . . . Cn} as follows: The domain of Ip is ∆Ip = {ds | s ∈ Cj and Cj ∈ C}∪{pj | Cj ∈ C};
it contains the element ds for each segment s of P , and an additional element pj that

corresponds to the parent (the composite object) of the cluster Cj. The grounding G(ds)

is {s}, whereas the grounding of pj is given by G(pj) = {
⋃
s∈Cj s}. At this step, BestMod

selects one concept for every d ∈ ∆Ip according to the weighted multiple labels associated

to the segments of P . The function caj, called the concept assigning function for Ci, is

defined as:

caj : Cj ∪ G(pj)→ ΣC

such that for all s ∈ Cj, 〈caj(s), w〉 ∈ L(s). Let CA(Cj) be the set of all concept

assignment functions for Cj. The best concept assignment function for cluster Cj ∈ C is

41



5.3. THE ALGORITHM CHAPTER 5. RANKING AS CLUSTERING

the one such that:

ca∗j = argmin
caj∈CA(Cj)

∑
s∈Cj

parKB(caj(pj), caj(s))

wl(s, caj(s))
(5.8)

where the function wl(s, l) = w, if ∃l : 〈l, w〉 ∈ L(s). Otherwise wl(s, l) is undefined.

For every Cj ∈ C the algorithm computes Equation (5.8) obtaining the best concept

assignment ca∗j for Cj. Then PWCA constructs the interpretation function for every

element of l ∈ ΣC :

lIp = {d ∈ ∆Ip | ca∗j(d) = l for some Cj ∈ C}

and hasPartIp = {〈pj, d〉 : G(d) ⊆ Cj}. In this manner, PWCA handles possible detection

errors where a segment is classified according to the label with the highest weight. The

step of introducing a new logical individual, with type given by Equation (5.8), that

“explains” a cluster according to KB can be seen as an abduction operation. As a final

step BestMod checks if Ip is a partial model of KB. This is done by checking the

consistency of KB extended with the ABox A that represents Ip4. Thus, we check if

Ip |=p KB ∪A using a standard DL reasoner, see Section 4.1.3.

AgglomerativeMatrix generates all possible clusterings that can be obtained by

joining any pair of clusters in C = {C1, . . . , Cn}. The result is represented in a matrix

A whose elements are akh = (C \ {Ck, Ch}) ∪ {Ck ∪ Ch}. For every clustering in A

the BestMod procedure generates the corresponding partial model and grounding. The

algorithm performs a greedy choice, it selects the clustering whose partial model and

grounding minimize the loss function, see the combination of argmin with BestMod,

line number 8. During these operations of clusterings generation and local minimum

selection the partial model I∗p and grounding G∗ that minimize the loss are stored (lines

10, 11, 12) to be returned at the end, line 13. The algorithm terminates if there are

no clusterings to process, that is, PWCA reaches the bottom of the lattice or all the

clusterings generate no partial models.

Regarding the computational complexity of PWCA, the algorithm starts from C0, with

|S| clusters, and passes through O(|S|) levels of the lattice to reach the bottom. A level

contains clusterings with n clusters. Therefore, for every level the algorithm performs

O(n2) operations due to the super-clusterings generation and the greedy choice. Thus,

the whole algorithm visits O(|S|3) nodes of the lattice.

In our running example, the algorithm starts with the clustering (for simplicity we use

individuals instead of bounding boxes) C0 = {{l1}, {l2}, {l3}, {l4}, {l5}, {a1}, {m1}, {t1}, {f1}}.
4The interpretation Ip is represented with an ABox as follows: if d ∈ lIp , with l ∈ ΣC , then l(d) is in

the ABox, if (p, d) ∈ hasPartIp , with hasPart ∈ ΣR, then hasPart(p, d) is in the ABox.
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For presentation purposes, we assume that only the parts in the running example are de-

tected and whole objects (the person and the horse) are missing. BestMod(P , C0,KB)

computes the partial model I∗p and the grounding G∗ corresponding to C0 as follows:

• ∆Ip is defined as a set of 9 individuals corresponding to simple objects, l1, . . . , f9,

one for every cluster in C0;

• ∆Ip is extended with 9 new individuals corresponding to composite objects, p1, . . . , p9,

one for every cluster in C0;

• then the part-whole assertions are added (for example, hasPart(p1, l1), hasPart(p7,m1),

and hasPart(p9, f1));

• then BestMod assigns the best concept types to all individuals in ∆Ip accord-

ing to Equation (5.8) (for example, Leg(l1), Arm(a1),. . . , Muzzle(m1), Horse(p1) t
Person(p1), Horse(p7), and Person(p9));

• Finally BestMod checks the consistency of I∗p (represented with an ABox) with a

DL reasoner.

Then PWCA enters in the while loop and the best child clustering of C0, selected by

the argmin, is C ′ = {{l1},{l2},{l3},{l5},{a1},{m1},{t1},{f1, l4}}. The BestMod proce-

dure generates a new partial model (in a new ABox) from C ′. According to the steps

above, every element in every cluster is first introduced as a logical individual in the

ABox. Then, there is the introduction of individuals corresponding to the parents, the

introduction of the part-whole assertions and the assignment of the concept types (Equa-

tion (5.8)). For example, the cluster {f1, l4} has parent p′1 of type Person. At the end of

the while loop the algorithm outputs the partial model corresponding to the clustering

{{a1, l1}, {f1, l4, l5}, {m1, t1, l2, l3}}. In this partial model the first cluster is represented

with a logical individual of type Person with two hasPart relations with individuals of

type Arm and Tail. The second cluster is still represented with a person with the hasPart

relation with three individual of type Face, Leg and Leg. The last cluster is represented

with an individual of type Horse having as parts logical individuals of type Muzzle, Tail,

Leg and Leg. Notice that this clustering partially matches with the ground truth of Fig-

ure 2.2. Indeed the types of the parents are computed correctly, whereas a horse leg is

assigned to a person.
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5.4 Experimental Evaluation: Object Classification

from Parts

To evaluate the quality of PWCA we focus on the classification of complex objects from

their parts. We evaluate two aspects of this task: (i) the ability of PWCA to group

together parts belonging to the same complex object and (ii) given the clustered parts,

the ability of PWCA to assign the correct label to the composite object. In the following

we present the input datasets of semantically labelled pictures and the knowledge base,

the evaluation criteria and the results.

5.4.1 The PASCAL-Part and PartOf Datasets

To evaluate our approach we need a ground truth dataset of images annotated with

bounding boxes containing an object. Each bounding box is correctly annotated with a

label describing its object type: a part or a whole object. Moreover, pairs of bounding

boxes are annotated with the part-of relation. One such a dataset is the PASCAL-

Part-dataset [17] containing 10103 annotated images. Labels are divided into three

main groups: animals, vehicles and indoor objects, with their corresponding parts and

“part-of” label. Whole objects inside the same group can share parts. Whole objects of

different groups do not share any part. However, the labels for parts are very specific,

for example, “left lower leg” and “right hand”. Since we are not interested in such a

fine-grained distinction, we merged, without loss of generality, the bounding boxes of the

images that refer to the same part in a unique bounding box. For example, two bounding

boxes labelled with “left lower leg” and “left front leg” of the same leg have been merged

in a bounding box labelled with “leg”. In this way, we limit our experiments to a dataset

with 20 labels for whole objects and 39 labels for parts. In addition, we remove from

the dataset any bounding box with height or width smaller than 6 pixels. Then we split

the dataset into PASCAL-Part training set (7687 images) and PASCAL-Part test

set (2416 images) such that they contain the 80% and 20% of the objects of every class

respectively. We perform the evaluation on the test set.

The images of the PASCAL-Part test set contain few whole objects (an average

of 2.10 whole objects per image) thus in many cases there is few variability between

classes of whole objects. Since we want to test our algorithm on images that contain

more composite objects and parts, we develop a new dataset called PartOf dataset.

Using LabelMe [86] we annotate 203 pictures with simple objects, whole objects and

their part-of relations. The labels of the PartOf dataset include classes of buildings,
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trees, people, street vehicles, and their parts. Table 5.1 summarises the main differences

and figures of these datasets. The PartOf dataset contains more complex objects and

PASCAL-Part test set PartOf dataset

Pictures 2416 203

Average of simple objects per picture 12.89 13.28

Average of complex objects per picture 2.10 9.84

Average of parts per complex object 5.69 2.04

Table 5.1: The main figure of the PASCAL-Part test set and the PartOf dataset.

parts per picture than PASCAL-Part. The presence of more complex objects in our

dataset is more challenging for PWCA than the PASCAL-Part test set. The datasets

of the experiments and the knowledge bases (see next section) are available at https:

//dkm.fbk.eu/technologies/knowpic.

5.4.2 The PASCAL-Part and PartOf Knowledge Bases

We also manually build two knowledge bases about the meronymy of the classes of objects

in the datasets. Such knowledge bases are also called meronomies. That is, hierarchies

that deal with the part-whole relation instead of the classical subsumption between classes.

In the specific, a meronomy states the parts for a set of classes through existential (and

possibly cardinality) constraints. Figure 5.2 shows extracts of the knowledge bases for the

PASCAL-Part and PartOf datasets, respectively. In a large scale setting a meron-

omy can be automatically extracted from Semantic Web resources like WordNet [34] or

Yago [66]. However, the cardinality constraints should be manually added or extracted

from semantic networks such as ConceptNet [100]. This procedure requires human super-

vision as ConceptNet is not complete and is affected by noise: for example, some mappings

to WordNet and many cardinality constraints are missing or misspelled. For this reason,

in the experiments we also investigate the impact of cardinality constraints and check if

they are really necessary. Table 5.3 summarises the main quantitative differences of these

knowledge bases (note that for PASCAL-Part KB there are two additional classes with

respect to the dataset: Animal and Vehicle). The PartOf knowledge base contains less

classes for whole objects but more parts than the PASCAL-Part knowledge base. Fur-

thermore, PartOf KB contains many more part-whole axioms than the PASCAL-Part

one. This means that every whole object is related with more parts. Moreover, there are

many classes that are neither whole objects nor parts. This makes possible to test if
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PASCAL-Part KB PartOf KB

Dog v (= 1)hasParts.Muzzle

u (= 1)hasParts.Nose

u(= 1)hasParts.Tail

u (= 2)hasParts.Ear

u(= 1)hasParts.Torso

u (= 2)hasParts.Eye

u(= 1)hasParts.Neck

u (= 1)hasParts.Head

u (= 4)hasParts.Leg

PottedPlant v (= 1)hasParts.Pot

u (= 1)hasParts.Plant

Car v (= 1)hasPart.Bodywork

u (= 1)hasParts.LicensePlate

u (= 2)hasParts.Mirror

u (= 4)hasParts.Wheel

u ∃hasParts.Door
u ∃hasParts.Headlight
u ∃hasParts.Window

Person v (= 1)hasParts.Mouth

u (= 2)hasParts.Leg

u(= 1)hasParts.Nose

u (= 1)hasParts.Head

u(= 1)hasParts.Torso

u (= 2)hasParts.Arm

u(= 2)hasParts.Eye

u ∃hasParts.Hair
Tree v (= 1)hasParts.Trunk

u ∃hasParts.Foliage
Motorbike v (= 1)hasPart.Bodywork

u (= 1)hasParts.LicensePlate

u (= 2)hasParts.Mirror

u (= 2)hasParts.Wheel

u (= 2)hasParts.Tyre

u (= 1)hasParts.Handlebar

u ∃hasParts.Taillight
u ∃hasParts.Headlight
u ∃hasParts.Saddle

Table 5.2: An excerpt of the PASCAL-Part and the PartOf knowledge bases.

PASCAL-Part KB PartOf KB
Axioms in KB 85 229

Classes 61 127

Classes for complex objects 22 10

Classes for parts 39 48

Classes for other objects 0 69

Table 5.3: The main figure of the PASCAL-Part and the PartOf knowledge bases.
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PWCA is able to deal with objects not related with constraints.

5.4.3 Evaluation Criteria and Results

To compute the performance of PWCA with respect to a gold standard dataset D, we

need to define a distance measure between the output of PWCA and the annotations on

the elements of D. We suppose that both, the output of PWCA, and the annotations

on D, are represented with ABoxes. We, therefore, need to define a distance between

ABoxes. Let APWCA
P be the ABox that represents the output of PWCA on P and let

ADP the ABox associated to the picture P in the dataset D. We define the following two

measures.

Grouping (GRP) measures how good is PWCA at grouping parts of the same com-

posite object.

precGRP =
1

|D|
∑
P∈D

|sibl(APWCA
P ) ∩ sibl(ADP)|
|sibl(APWCA

P )|

recGRP =
1

|D|
∑
P∈D

|sibl(APWCA
P ) ∩ sibl(ADP)|
|sibl(ADP)|

where for any ABox A, sibl(A) = {〈d, d′〉 | ∃d′′ : {hasPart(d′′, d), hasPart(d′′, d′)} ⊆ A}.
Complex-object prediction (COP) measures how good is PWCA at predicting

the type of a composite object.

precCOP =
1

|D|
∑
P∈D

|ptype(APWCA
P ) ∩ ptype(ADP)|
|ptype(APWCA

P )|

recCOP =
1

|D|
∑
P∈D

|ptype(APWCA
P ) ∩ ptype(ADP)|
|ptype(ADP)|

where for any ABox A, ptype(A) = {〈d,C〉 | ∃d′ : {hasPart(d′, d),C(d′)} ⊆ A}. Intuitively,

ptype(A) is the set of pairs 〈d,C〉 such that, according to A, d is a part of an element of

type C. For both measures the F1 is defined as usual. We run PWCA on the images of

both PASCAL-Part and PartOf datasets where we remove the information about the

part-of relation and the complex objects. Then we measure the distance of the output

produced by PWCA with the full annotations in the datasets. As experimental setting

we used the Pellet DL reasoner [96] in the BestMod procedure. We run the experiments

on an Intel Xeon E5-1660 v3 3.00 GHZ, 16 core, 32 GB DDR4.

To evaluate the impact of semantic information in the problem of the recognition of

the part-whole relation in images, we run different configurations of PWCA:
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1. PWCA where the parameters α and β have been optimized (PWCAα,β);

2. PWCA with β = 1.0 and α optimized, that is, no semantic information is taken

into account (PWCAα,β=1);

3. PWCA with optimal parameters α and β where the knowledge base has been ex-

tended with a set of cardinality constraints that restrict the number of parts of the

same class for each complex object (PWCAα,β+CA).

4. Our previous version of PWCA [26, 25] (PWCASOM , see Algorithm 4) which pro-

poses to solve the same task with a non-parametric clustering algorithm based on

Self-Organizing Maps, see Section 5.1.2. The algorithm first encodes the segments

Algorithm 4: PartWholeClusteringAlgorithmSOM(P ,KB)

Input: A labelled picture P = 〈S,L〉 and a knowledge base KB
Output: A partial model Ip and its grounding G on P

1 E ← Encode(P)

2 for l← 1 to max number iterations do

3 C ← Som(E)

4 (I∗p ,G∗)← BestModSom(P, C,KB)

5 if I∗p |=p KB then

6 return (I∗p ,G∗)

7 return (I∗p ,G∗)

of P into a data set E of feature vectors. For each segment in P , its feature vector

contains the centroid coordinates and the semantic distances, Equation (5.4), be-

tween the segment label and the label of the other segments. Here we consider the

label with the highest weight. Now, the algorithm performs the clustering with the

Som algorithm and then the BestModSom procedure creates an interpretation I∗p
and a grounding G∗. The difference with the above BestMod procedure is that

here we predict only the label of the complex object without considering the weights

of the parts. In addition, BestModSom returns only a logical interpretation, so

the algorithm iterates the Som clustering and the BestModSom procedure until a

partial model is found or a maximum number of iterations has reached. Therefore,

PWCASOM does not guarantee that images are interpreted as partial models.

Table 5.4 shows the details of the evaluation:

1. The performance of PWCAα,β on the PASCAL-Part test set and PartOf dataset

respectively (first and fourth line of the table) are encouraging. For both datasets we
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precGRP recGRP F1GRP precCOP recCOP F1COP

PWCAα,β (PASCAL-Part) 0.78 0.78 0.74 0.99 0.87 0.92

PWCAα,β=1 (PASCAL-Part) 0.75 0.55 0.59 0.97 0.83 0.89

PWCAα,β+CA (PASCAL-Part) 0.79 0.66 0.7 0.99 0.87 0.92

PWCAα,β (PartOf) 0.66 0.92 0.73 0.91 0.81 0.85

PWCAα,β=1 (PartOf) 0.32 0.68 0.37 0.89 0.75 0.8

PWCAα,β+CA (PartOf) 0.68 0.79 0.71 0.91 0.81 0.85

PWCASOM (PartOf) 0.61 0.89 0.67 0.73 0.75 0.74

Table 5.4: Results of the partial models evaluation on the PASCAL-Part test set and

on the PartOf dataset. The first line for both datasets contains the results for α =

0.5, β = 0.3, the second line the baseline with β = 1.0, the third line contains the results

for α = 0.5, β = 0.3 with all cardinality axioms in the knowledge bases. In bold the best

F1 measures for GRP and COP for both datasets.

use the parameters α = 0.5, β = 0.3, that maximize the performance of a portion of

the PartOf training set. The choice of reusing the parameters that maximize the

“hardest” dataset well generalizes to a standard dataset. Indeed we obtain better

results for the PASCAL-Part test set with respect to the PartOf dataset.

2. To show the impact of background knowledge on the performance of PWCA, we

compare PWCA with a knowledge-blind baseline (PWCAα,β=1). This is ob-

tained by setting β = 1.0 in (5.5) with the effect of cancelling out the impact of

the semantic quasidistance in the loss function. Comparing this baseline with the

results of other settings, we can see that semantic features significantly improve the

F1 measure on both datasets.

3. Most of the Semantic Web resources about meronomy (WordNet [34]) have no

cardinality axioms, such as wholeObject v (= n)hasPart.part. To check if they

are really necessary, we test how adding cardinality axioms to the knowledge

base affects the performance of PWCA. Thus, we run PWCA with the knowledge

base containing all cardinality axioms (PWCAα,β+CA). In both datasets we used

the optimal parameters α = 0.5, β = 0.3. Adding all cardinality axioms to the

knowledge bases slightly improves the precision in the GRP measure at the price

of a dramatic decrease of the recall. Whereas, cardinality axioms do not affect the

COP. We can conclude that PWCA works better with simple part-whole knowledge

bases with no cardinality axioms.
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4. We compare PWCA with our previous work PWCASOM [26]. We test PWCASOM

on PartOf dataset and we can see that PWCA outperforms our previous algorithm.

As PWCASOM does not guarantee that images are always interpreted in partial

models, in our implementation the 8% of the cases generate interpretations which

are not models. PWCA, instead, always returns partial models.

5.5 Discussion

Our first proposal to Semantic Image Interpretation is a well-founded and general frame-

work that interprets an image as a partial model that minimizes a loss function. The

construction of the partial model is guided by an agglomerative clustering algorithm,

PWCA, that integrates semantic information with low-level numeric features and per-

forms DLs reasoning. We evaluate the quality of the method on the task of part-whole

detection between whole objects and their parts. We test the algorithm on two datasets,

the results confirm that the integration of low-level features and semantic information

improves the methods that rely only on numeric features. The advantages of PWCA are:

Unsupervision PWCA is completely unsupervised and can be easily adapted to spe-

cific domains by providing an appropriate part-whole knowledge base, for example

WordNet [34]. Usually, providing a part-whole knowledge base is less expensive

then producing a training set of images. More expressive knowledge bases can be

automatically obtained from Web resources (such as, corpora, Web documents, RDF

repositories) with the use of ontology learning techniques, see, for example, [20, 75].

Dealing with noise PWCA deals with multiple and noisy labels on parts. Given a

segment labelled with many labels, PWCA selects the best label by taking into

account also the labels assigned to the sibling segments. Thus, PWCA can discard

labels with the highest weight in favour of labels with lower weight when these

optimize a global labelling of the elements of the cluster.

Extension to events The heuristic of grouping simple objects according to their geo-

metric and semantic proximity could be also applied to the relation participate-in an

event. In this case, the simple objects are the participants at the event represented

in the image, whereas the composite objects are the events themselves.

On the other hand, PWCA suffers of some limitations:
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False positives bounding boxes The ability of PWCA to retrieve false negatives of

the object detectors (the inference of a composite object from its parts) is counter-

balanced by the lack of discarding false positives. For example, a wrong bounding

box with label “eye” in the middle of a meadow is not recognized as false positive

and thus is not discarded.

Heuristic Many types of events do not satisfy the heuristic of grouping objects close

both in the geometric and in the semantic space. For example, in events such as

look-at, above, flying-kite, jumping-on the participants can be distant in the space.

Handcrafted loss function The defined loss function partly depends on the considered

relation. In this chapter, it has been defined for the part-whole relation but other

relations, such as ride or next-to, require a different loss definition with additional

features. In a large scale setting with many relations this can be a scalability issue.

Computational cost PWCA is computationally demanding: given an input labelled

picture with |S| bounding boxes, PWCA takes O(|S|3) operations to compute a

semantically interpreted picture.

Therefore, in the next chapter we use a totally different (supervised), and more flexible,

approach able to overcome these issues.
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Chapter 6

Logic Tensor Networks

In the previous sections we developed a SII technique based on partial models. This

models satisfy the logical constraints of a knowledge base and are built with a totally

unsupervised algorithm. The advantage of being independent from a training set is coun-

terbalanced by the hard generalization to many binary relations. To overcome this issue,

we develop an alternative supervised method based on Neural Networks [9]. In the last

years, Neural Networks have grown popularity due to their achievements in many real-life

scenarios. Indeed, their great advantage is the ability to learn (that is, to progressively

improve the performance on) tasks by considering examples, without a rule-based specifi-

cation of the task. This allows machines, for example, to perform classical cognitive tasks,

such as the classification of images, or natural language texts or speeches, according to

some categories. Other application examples are more conceptual and can involve some

reasoning, such as the machine translation or the link prediction on knowledge graphs.

However, the application of Neural Networks to SII is not straightforward as SII presents

some peculiarities that need to be considered. First, SII deals with relational domains,

that is, domains with objects (in the image) that are connected each other through se-

mantic relations. Second, data are uncertain. Indeed, the scene is cluttered so the objects

can overlap each other and cannot be totally visible. Finally, a scene in a picture satisfies

the logical constraints of the background knowledge of the domain. Indeed, we a priori

know that people ride horses and not vice-versa. This available knowledge is of great

help to semantically interpret pictures. Therefore, we need a technique able to learn from

relational (uncertain) data in presence of logical constraints.

For these reasons, we apply Logic Tensor Networks (LTNs) [91] to SII. LTNs is a

framework that integrates learning from numerical data and logical reasoning. The learn-

ing is based on Neural Tensor Networks (NTNs) [98] and the integration with reasoning is
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performed with predicate Fuzzy Logic [44]. With this formulation, it is possible to satisfy

the SII requirements, that is, learning relational data in presence of logical constraints

and to reason with data affected by uncertainty.

In the following sections we provide an overview of Fuzzy Logic and NTNs as back-

grounds for LTNs. Then, we describe in details the LTNs framework. All the explanations

take into account the running example in Figure 2.1.

6.1 An Overview of Fuzzy Logic

Fuzzy Logic was introduced in 1965 by Lotfi Zadeh in order to model imprecise and vague

propositions, such as: young man, small horse or enough food. Fuzzy Logic is a form of

many-valued logic1 that generalizes classical boolean logic by taking the truth values of

formulas in the interval [0, 1] instead of the set {0, 1}. In this way, Fuzzy Logic encodes a

notion of different levels of truth where the extreme values 0, 1 correspond to the absolute

truth and falseness, respectively. The success of Fuzzy Logic is due to its ability to reason

about facts that are inherently approximate and this is frequent in real-life applications.

Common applications of Fuzzy Logic range from control theory to artificial intelligence

in general regarding, for examples, domains such as medicine, economics and agriculture.

In the following presentation the main considered references are [44, 22].

6.1.1 Syntax and Semantics of Fuzzy Logic

We first present the syntax and the semantics of a propositional Fuzzy Logic language.

Definition 6 (Propositional Fuzzy Logic Language). A propositional fuzzy logic lan-

guage consists of the propositional variables p, q, r, . . . , the connectives → (implication),

∧ (conjunction), ∨ (disjunction), and the propositional constants >,⊥.

Here, a proposition is a sentence that can be assigned a truth value. The sentences “the

grass is green”, “the man on the horse is young” are propositions whereas the sentence

“hurry up, ride the horse!” is not. This language is the same propositional language of

classical logic [8]. The difference is in its semantics as we show in this section. Formulas

are defined as usual: a propositional variable is a formula; if φ, ψ are formulas then φ→ ψ,

φ ∧ ψ, φ ∨ ψ, are formulas. The connective ¬ is defined as: ¬φ is φ → ⊥. In classical

logic, the truth value of a formula is taken from the set {0, 1} whereas in Fuzzy Logic the

1Many-valued logics are non classical logics that deal with more than two truth values. In this sense,

Fuzzy Logic was already studied since the 1920s, as infinite-valued logic by  Lukasiewicz and Tarski.
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set is the interval [0, 1] with its natural ordering ≤. This means that if y ≤ x then x is a

stronger or equal truth than y. The truth value 0 means the total falsity and the value

1 total truth, as in classical logic. The generalization of classical logic resides in the fact

that all the intermediate values are a continuum of truth values. The logical connectives

(for example, conjunction, disjunction, negation and implication) have, as classical logic,

functional semantics: the truth value of a complex formula is determined by the truth

value of its components. The difference with respect to classical logic is that connectives

are interpreted in a function from [0, 1]2 to [0, 1].

The conjunction connective in Fuzzy Logic is interpreted by a binary operation on

truth values, called t-norm, which satisfies a minimal set of properties to capture the

intuitive meaning of the conjunction2.

Definition 7 (T-norm). A t-norm is a function T from [0, 1]2 to [0, 1] satisfying the

following conditions:

Commutative T (x, y) = T (y, x);

Associative T (x, T (y, z)) = T ((x, y), z);

Non-decreasing if x ≤ y then T (z, x) ≤ T (z, y);

Zero and One T (0, x) = 0 and T (1, x) = x.

A t-norm is continuous if the function T is continuous in the usual sense. Figure 6.1

shows examples of the most important continuous t-norms.

The implication connective → is interpreted in a function ⇒, called residuum, that

satisfies the residuation condition. That is, let T be a t-norm and x, y be the truth values

of the propositional formulas φ, ψ, respectively. Let x ⇒ y be the truth value of φ → ψ,

then for every z ∈ [0, 1], holds:

T (x, z) ≤ y iff z ≤ (x⇒ y).

The intuition here is that the more φ→ ψ is true, the less additional information is carried

by φ with respect to ψ. Therefore, the semantics of the implication can be intended as

the maximum truth value to be “added” to x to obtain y. The function ⇒ is called the

the residuum of the t-norm T .

2In classical logic, the conjunction and the disjunction are idempotent, that is, φ∧φ = φ and φ∨φ = φ.

In general, t-norms and conorms are not idempotent. Thus, to satisfy the idempotence, it is common

to also introduce the weak conjunction ∧w and the weak disjunction ∨w. We exclude these connectives

from the presentation as LTNs do not deal with them. Further details can be found in [22].
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(a)  Lukasiewicz t-norm:

T (x, y) = max(0, x+ y − 1)

(b) Gödel t-norm:

T (x, y) = min(x, y)

(c) Product t-norm:

T (x, y) = x · y

Figure 6.1: Examples of the main Fuzzy Logic t-norms.

Definition 8 (Residuum of a t-norm). The residuum of a t-norm T is a function ⇒ from

[0, 1]2 to [0, 1] defined as:

x⇒ y = max({z|T (x, z) ≤ y})

Some basic properties of the residuum are:

1. if x ≤ y then x⇒ y = 1;

2. (1⇒ x) = x;

3. (x⇒ 1) = 1;

4. if x ≤ y then x = T (y, y ⇒ x);

Figure 6.2 shows the residua for the three main introduced t-norms.

In classical logic the negation of a proposition ¬φ is defined as φ → 0. Fuzzy Logic

proceeds in a similar manner:

Definition 9 (Precomplement). Given a t-norm T and its residuum ⇒, the precomple-

ment operator ∼ is defined as:

∼ x = x⇒ 0.

The precomplements of the mentioned t-norms are:
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(a)  Lukasiewicz residuum:

x⇒ y = 1− x+ y

(b) Gödel residuum:

x⇒ y = y

(c) Product residuum:

x⇒ y = y/x

Figure 6.2: Examples of the main Fuzzy Logic residua. If x ≤ y then x⇒ y = 1.

 Lukasiewicz: ∼ x = 1− x

Gödel: ∼ x =

{
1 if x = 0

0 otherwise

Product: ∼ x =

{
1 if x = 0

0 otherwise

The logical disjunction is represented with the notion of t-conorm (also s-norm) S, a

function that is dual to the t-norm.

Definition 10. Given a t-norm T , the function S(x, y) is a t-conorm if:

S(x, y) = 1− T (1− x, 1− y).

This generalizes De Morgan’s Laws. A t-conorm satisfies the following properties:

Commutativity S(x, y) = S(y, x);

Associativity S(x, S(y, z)) = S(S(x, y), z);

Non-decreasing if x ≤ y then S(z, x) ≤ S(z, y);

Zero and One S(0, x) = x and S(1, x) = 1.

Figure 6.3 shows the t-conorms of the mentioned t-norms.

Now we explicit the semantics of propositional Fuzzy Logic formulas through t-norms.

An evaluation of propositional variables is a function e that assigns each propositional
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(a)  Lukasiewicz t-conorm:

S(x, y) = min(1, x+ y)

(b) Gödel t-conorm:

S(x, y) = max(x, y)

(c) Product t-conorm:

S(x, y) = x+ y − xy

Figure 6.3: Examples of the main Fuzzy Logic t-conorms.

variable p its truth value e(p) ∈ [0, 1]. The truth value of the formulas is given by:

e(>) = 1

e(⊥) = 0

e(φ→ φ) = e(φ)⇒ e(φ)

e(φ ∧ ψ) = T (e(φ), e(ψ))

e(φ ∨ ψ) = S(e(φ), e(ψ))

e(¬φ) = ∼ e(φ). (6.1)

6.1.2 Predicate Fuzzy Logic

Propositional logic suffers of some expressivity limitations. For example, sentences like

“all horses are animals”, “there is a person who is riding a horse” or “every natural

number is either even or odd” are very difficult to express (they assume to know a priori

all the individuals of a “universe”) or even impossible with a finite formula. First-Order

Logic (or predicate logic) FOL [8] is introduced to overcome these limitations. In Fuzzy

Logic the same operation is performed by introducing a predicate language:

Definition 11 (Predicate language). A predicate language PL consists of a non-empty

set P of predicate symbols, a set F of function symbols and a set C of constant symbols.

Predicate symbols are denoted with letters P , Q, R, . . ., function symbols with f , g, h, . . .

and constant symbols with c, d, e . . . A function/predicate symbol s is associated with

a positive natural number α(s) denoting its arity. If α(s) = n we say that s is n-ary.
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Moreover, the logical symbols are variables x, y, . . . , connectives →,∧,∨, truth constants

>,⊥ and quantifiers ∀,∃.

The connective ¬ is defined as in propositional logic. Terms are variables or constants.

If t1, . . . , tn are terms and f is a n-ary symbol function, then f(t1, . . . , tn) is a term. If

t1, . . . , tn are terms and P is a n-ary predicate symbol, then P (t1, . . . , tn) is an atomic

formula. An atomic formula is a formula. If φ, ψ are formulas, then>, ⊥, φ→ ψ, φ∧ψ, φ∨
ψ and ¬φ are formulas. If φ is a formula and x a variable, then ∀xφ and ∃xφ are formulas.

This language is the same predicate language of FOL [8]. The difference is in its semantics

as we show in what follows. The logical formulas of PL allow us to express relational

information and general knowledge about a domain in a uniform manner. In the SII

domain, PL formulas can express (i) simple facts, such as that the bounding box b contains

a horse, written Horse(b), or the object in bounding box b1 is riding the object in bounding

box b2, written ride(b1, b2); (ii) complex facts, such as that b contains an object that is both

a horse and a mammal, written Horse(b) ∧Mammal(b); (iii) common knowledge, such as

that the relation ride is asymmetric, written ∀xy(ride(x, y)→ ¬ride(y, x)), or that horses

are ridden by people, written ∀xy(Horse(x)∧ ride(y, x)→ Person(y)). Now we explicit the

semantics of predicate Fuzzy Logic formulas through t-norms.

Definition 12 (Structure). A structure M for a predicate language PL has the form:

〈M, (PM)P∈P , (FM)F∈F , (CM)C∈C〉 where M is a non-empty domain; for each n-ary predi-

cate symbol P ∈ P, PM : Mn → [0, 1] is a function that maps n-tuples of domain elements

in truth values; for each n-ary function symbol F ∈ F , FM : Mn →M is a function that

maps n-tuples of domain elements in domain elements; for each constant symbol C ∈ C,

CM : C →M is a function that maps constants to domain elements.

Let M be a structure for PL, an evaluation of the variables is a mapping v which

assigns each variable x an element v(x) ∈ M . With the notation v[x/a] we denote the

evaluation that coincides with v on all the variables but x, which is assigned to a. Now,

we have all the formalism to define the semantics of terms and formulas of predicate Fuzzy

Logic by stating their truth values. Let M be a structure for PL, v an evaluation, T a

t-norm with ⇒ the associated residuum and its dual s-norm S, the truth values of terms
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and formulas is:

‖x‖M,v = v(x);

‖>‖M,v = 1;

‖⊥‖M,v = 0;

‖P (t1, . . . , tn)‖M,v = PM(‖t1‖M,v, . . . , ‖tn‖M,v);

‖f(t1, . . . , tn)‖M,v = FM(‖t1‖M,v, . . . , ‖tn‖M,v);

‖φ→ ψ‖M,v = ‖φ‖M,v ⇒ ‖ψ‖M,v;

‖φ ∧ ψ‖M,v = T (‖φ‖M,v, ‖ψ‖M,v);

‖φ ∨ ψ‖M,v = S(‖φ‖M,v, ‖ψ‖M,v);

‖∀xφ‖M,v = inf{‖φ‖M,v[x/a]|a ∈M};
‖∃xφ‖M,v = sup{‖φ‖M,v[x/a]|a ∈M}. (6.2)

If the infimum or supremum do not exist, the truth value of the quantified formula is

undefined.

6.2 An Overview of Neural Tensor Networks

Neural Tensor Networks (NTNs) [98] are Neural Networks [9] introduced for learning in

relational domains [77]. These domains present the data as a knowledge graph consisting of

labelled nodes (the entities or objects of the domain) connected by labelled edges (semantic

relations between objects). For example, a dataset of semantically interpreted pictures

is a relational domain. The main goals in relational domains are: (i) the predictions

of missing labels in nodes or edges (also known as knowledge base completion); (ii) the

prediction of properties of nodes (for example, features of objects); (iii) the clustering of

nodes based on their connective patterns [72]. The prediction of a missing edge requires

to predict the existence of an unseen triple 〈subject, relation, object〉. This prediction

requires some reasoning. For example, the never seen triple 〈Person, drive,Truck〉 can be

inferred by the seen triple 〈Person, drive,Car〉 by reasoning on the similarity between Car

and Truck. Indeed, both have some wheels, a bodywork, an engine, they run and can be

parked on streets. NTNs are effective models able to perform this kind of reasoning [98].

Therefore, the goal of NTNs is to learn a model that exploits common sense reasoning in

order to predict missing edges from training knowledge graphs.

Let E be a set of entities (or objects) of a relational domain and each entity e ∈ E is
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represented as a d-vector e ∈ Rd of features3. Let R be a set of relations of the domain,

a NTNs is a function g : E ×R×E :→ R that returns a score about the likelihood of the

triple 〈e1, R, e2〉, with e1, e2 ∈ E , R ∈ R. That is, the score is high if e1 is in relation R

with e2, low otherwise. The function g has the following form:

g(〈e1, R, e2〉) = uᵀRf

(
eᵀ

1W
[1:k]
R e2 + VR

[
e1

e2

]
+ bR

)
, (6.3)

where f = tanh is a standard non-linearity applied element-wise. The element W
[1:k]
R

is a tensor that is used to perform the bilinear tensor product eᵀ
1W

[1:k]
R e2 resulting in a

vector h ∈ Rk. Each entry of h is computed by one slice i = 1 . . . k of the tensor WR:

hi = eᵀ
1W

[i]
R e2. The other components of the formula are the standard parameters of

neural networks: VR ∈ Rk×2d, bR ∈ Rk and uR ∈ Rk. In particular, the vector parameter

uR linearly combines the features returned by the non-linearity function f for returning a

score. Figure 6.4 shows a graphical representation of the NTN equation. The advantage of

+f

Slices of
Tensor Layer

BiasStandard
Layer

Linear
Layer

+

Figure 6.4: Visualization of Neural Tensor Network. The first (from left) linear layer is

the parameter vector u, the dashed boxes are the slices of the tensor W (k = 2) and

contain the bilinear product eᵀ
1W

[1:k]e2 (the input entities e1, e2 are blue vectors with

d = 3). Then the standard layer V
[
e1

e2

]
and the bias b follow. The network parameters

are represented with green color.

this network, with respect to previous models of Neural Networks for relational domains,

is that it learns the joint interaction of the entity vectors with the tensor of parameters

W
[1:k]
R . The several k slices of the tensor map the pair of entities 〈e1, e2〉 in a k-dimensional

latent space for the relation R that is able to capture different instantiations of R [98]. For

example, the partOf relation can occur between animals and their parts or between vehicles

3These features can be a learnt embedding of e or manually defined.
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and their parts. Moreover, the non-linearity given by the tanh function increases the NTN

expressive power. This leads to good performance in the knowledge base completion task

[98]. NTN is a generalization of the bilinear model g(〈e1, R, e2〉) = eᵀ
1WRe2 for relational

data [72], which is obtained setting k = 1, VR = 0, bR = 0 and f = identity.

6.3 Logic Tensor Networks

Logic Tensor Networks (LTNs) [91] adopt the same syntax of a First-Order predicate

language PL (with the symbols in the signature Σ = 〈P ,F , C〉, see Section 6.1) to ex-

press relational information and a priori knowledge about a domain. LTNs semantics

deviates from the standard abstract semantics of Predicate Fuzzy Logic towards a con-

crete semantics. Indeed, the interpretation domain is a subset of Rn, that is, constant

symbols and closed terms are associated with a n-dimensional tuple of real numbers. The

intuition is that this n-vector encodes n numerical features of an object. These features

can be manually engineered. In the SII domain, the engineered features of a bounding

box can be the score confidence of an object detector for several classes of objects, the

bounding box coordinates, the area, the colors, etc. Functional symbols are interpreted

as real-valued functions and predicates are interpreted as functions on real vectors to the

interval [0, 1]. The intuition is that the interpretation of a formula represents the degree

of truth for that formula: an higher value means a higher degree of truth. To emphasize

the fact that in LTNs the interpretation of PL formulas is in a “real” world the term

(semantic) grounding, denoted by G, is used instead of the standard term interpretation4.

The idea underlying the notion of grounding is that a grounding has to capture the latent

correlation between the features of objects and their categorical/relational properties. In

any case, the grounding is synonym of interpretation in the predicate Fuzzy Logic.

Definition 13. An n-grounding (with n ∈ N, n > 0), or simply grounding, G for a First-

Order Language PL is a function from the signature of PL that satisfies the conditions:

1. G(c) ∈ Rn for every constant symbol c ∈ C;

2. G(f) ∈ Rn·α(f) −→ Rn for every functional symbol f ∈ F ;

3. G(P ) ∈ Rn·α(P ) −→ [0, 1] for every predicate symbol P ∈ P.

4In logic literature, the term “grounding” is the replacing of the variables of a term/formula with

constants, or terms not containing other variables.
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Given a grounding G and let term(PL) = {t1, t2, t3, . . .} be the set of closed terms of PL
(that is, the terms that do not contain any variable), the semantics of closed terms and

atomic formulas is inductively defined as follows:

G(f(t1, . . . , tm)) = G(f)(G(t1), . . . ,G(tm))

G(P (t1, . . . , tm)) = G(P )(G(t1), . . . ,G(tm)). (6.4)

The semantics for non-atomic formulas is defined according to t-norms functions used in

propositional and predicate Fuzzy Logic, see Equation (6.1). If we take, for example, the

 Lukasiewicz t-norm, we have:

G(φ→ ψ) = min(1, 1− G(φ) + G(ψ))

G(φ ∧ ψ) = max(0,G(φ) + G(ψ)− 1)

G(φ ∨ ψ) = min(1,G(φ) + G(ψ))

G(¬φ) = 1− G(φ). (6.5)

LTNs provide a semantics also for universal and existential quantifiers that differs from the

semantics of classical Fuzzy Logic. Indeed, the interpretation for the universal quantifier

(Section 6.1.2) leads to define G(∀xφ(x)) for LTNs as:

G(∀xφ(x)) = inf{G(φ(t))|t ∈ term(PL)}. (6.6)

This definition is not in the spirit of LTNs as it does not tolerate exceptions. In-

deed, the presence of an exception to a universally-quantified formula (for example,

∀xy(Horse(x) ∧ ride(y, x) → Person(y)) such as a dog riding a horse in a circus, would

falsify the whole formula. LTNs handle these outliers giving a higher truth-value to the

formula ∀xφ(x) if many examples satisfy φ(x). Thus, the interpretation of a universal

quantified constraints ∀xφ(x) is that normally φ(x) holds. This aspect fulfils the require-

ments of a SII systems. Indeed, in a visual scene (due to occlusions, perspective of the

view or unexpected situations) the logical constraints of common knowledge are not al-

ways respected. Formally, the semantics for the universal quantifier is defined in terms of

mean-operator:

Definition 14. Let meanp(x1, . . . , xd) =
(

1
d

∑d
i=1 x

p
i

) 1
p
, with p ∈ Z, d ∈ N, the grounding

for ∀xφ(x) is

G(∀xφ(x)) = lim
d→|term(PL)|

meanp(G(φ(t1)),G(φ(t2)), . . . ,G(φ(td))). (6.7)
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This definition states that the grounding of a universally quantified formula ∀xφ(x) is

the mean of the d groundings of the quantifier-free formula φ(x), with d that tends to all

the terms of the predicate language PL. The limit operator is used as the set of terms

term(PL) is infinite due to the recursive application of function symbols to simpler terms.

Examples of popular mean operators can be obtained by changing the parameter p in the

definition, for example, p = −1 gives the harmonic mean, p = 1 the arithmetic mean and

p = 2 the geometric mean.

The semantics of the existential quantifier is usually determined by the semantics of the

universal quantifier by exploiting the equivalence between ∃ and ¬∀¬. However, this ap-

proach presents a drawback in LTNs: if we consider, for instance, the Lukasiewicz t-norm

and the arithmetic mean, the semantics of ∀ becomes G(∀xφ(x)) = G(∃xφ(x)). Therefore,

in LTNs existential quantification is interpreted via Skolemization: every formula of the

form ∀x1, . . . , xn(. . . ∃yφ(x1, . . . , xn, y)) is rewritten as

∀x1, . . . , xn(. . . φ(x1, . . . , xn, f(x1, . . . , xn)))

by introducing the so-called Skolem function f(x1, . . . , xn), that is a new n-ary function

symbol. In this way, the Skolem functions allow the removal of existential quantifiers from

the logical formulas of LTNs. For example, if we consider the formula ∀x(Person(x) →
∃y(partOf(y, x) ∧ Leg(y)) the existential quantification of variable y is translated in the

Skolem function legOf(x) applied to x (which is the universally quantified variable) and

the quantifier ∃y occurs in the scope of its quantification. The final formula is

∀x(Person(x)→ partOf(legOf(x), x) ∧ Leg(legOf(x)).

A function suitable for a grounding should preserve some form of regularity. Let b ∈ C
a constant that refers to, for example, a bounding box that contains a horse. Let v

the feature vector returned by the grounding of b, that is, G(b) = v, then it holds that

G(Horse)(v) ≈ 1. Moreover, for every bounding box with feature vector v′ similar to v,

G(Horse)(v′) ≈ 1 holds. In the following we show some functions for groundings.

6.3.1 Rule-Based Grounding

In the above the syntax and semantics of LTNs have been introduced without stating how

to compute the groundings for functions and atomic formulas. These groundings can be

explicitly defined in terms of real functions (rule-based groundings), learnt from examples

or a combination of both approaches. For example, the grounding of some predicates can

be computed with a rule-based method, whereas it can be learnt for other predicates. In

the following we provide some examples of rule-based groundings.
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b

b′

θ

Figure 6.5: The angle between two bounding boxes.

Regarding the constant symbols of bounding boxes, we denote with score(C, b) the

classification score of an object detector (for example, Fast R-CNN [36]) for the constant

symbol b for the class C ∈ P1. The bounding box coordinates for b are denoted with

〈x0(b), y0(b), x1(b), y1(b)〉, where 〈x0(b), y0(b)〉 is the top-left corner of b and 〈x1(b), y1(b)〉
is the bottom-right corner of b. The grounding for a bounding box constant b ∈ C can be

defined as the feature vector vb:

〈score(C1, b), . . . , score(C|P1|, b), x0(b), y0(b), x1(b), y1(b)〉.

A simple grounding for unary predicates in P could totally rely on the score returned

by an external classifier of objects. In our running example, we suppose to have an

object detector trained on the classes of the example. The object detector returns a score

score(C, b) regarding the possibility that bounding box b contain an object of class C.

Let b ∈ C a constant symbol that refers to a bounding box in the picture, the grounding

for the predicate C ∈ P is:

G(C(b)) = σ(score(C, b))

with σ the sigmoid function that maps the score of the object detector in the interval [0, 1].

A rule-based grounding can be defined also for binary predicates. Each predicate needs

its own rule and we present examples for spatial relations and for the partOf predicates.

The choice of the spatial relations is due to the fact that some works [68, 10] define the

spatial relations as membership functions [111]. A membership function returns the degree

of membership of an element to a set. In Fuzzy Logic, a membership function represents

the truth value of an atomic formula. Let b, b′ ∈ C be two bounding box constants, and θ

be the angle made by the line passing through the centroids of b and b′ and the x-axis, see

Figure 6.5. The groundings for the spatial relations right of, below, above, left of between
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b, b′ are the membership functions proposed in [68]:

G(right of(b, b′)) =

{
cos2(θ) −π/2 ≤ θ ≤ π/2

0 otherwise

G(below(b, b′)) =

{
sin2(θ) 0 ≤ θ ≤ π

0 otherwise

G(above(b, b′)) =

{
sin2(θ) −π ≤ θ ≤ 0

0 otherwise

G(left of(b, b′)) =

{
cos2(θ) −π ≤ θ ≤ −π/2, π/2 ≤ θ ≤ π

0 otherwise.

Regarding the binary predicate partOf, a possible grounding is based on the näıve hy-

pothesis that the more a bounding box b is contained in a bounding box b′, the higher the

possibility that b is part of b′. Thus, G(partOf(b, b′)) can be defined as the inclusion ratio

ir(b, b′) of bounding box b into bounding box b′, that is, how much b is included into b′:

G(partOf(b, b′)) = ir(b, b′) =
intersec(b, b′)

area(b)
, (6.8)

where intersec(b, b′) is the area of the intersection of b with b′ and area(b) is the area of

bounding box b. This rule-based grounding for partOf can be refined in a more accurate

manner by taking into account also the type compatibility between parts and whole objects,

that is, by multiplying the inclusion ratio with a factor wij:

G(partOf(b, b′)) =

{
1 if ir(b, b′) ·max

|P1|
i,j=1(wij · vi · v′j) ≥ thir

0 otherwise
(6.9)

with thir a threshold (for example thir > 0.5), and wij = 1 if Ci is part of Cj, and 0

otherwise.

However, explicitly defining a grounding could present some drawbacks. First, these

groundings are heuristics that need to be handcrafted and, in a large scale setting, this

could represent a scalability issue. Second, these groundings can be inaccurate. For

example, the classification score of the bounding box detector may be wrong; due to the

perspective of the picture an object behind another one could have the bounding box

coordinates that satisfy the grounding for above; a bounding box could be included into

another without being in part-of relation, etc. For these reasons, in the next section we

present a method for learning groundings from data.
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6.3.2 Tensor-Network-Based Grounding

Learning the grounding from data needs the use of parametric functions whose parameters

are tweaked in a training process that tries to fit the training data. The LTNs approach

could be applied to any family of parametric functions [91] such as, linear or polynomial

functions, Gaussian mixtures, neural networks. However, LTNs focus on functions based

on linear transformations and on NTNs, see Section 6.2.

The grounding for function symbols is based on linear transformations from Rmn to

Rn. Let b1, . . . , bm be some constant symbols in C with feature vectors vi = G(bi) ∈ Rn,

with i = 1 . . .m, and v = 〈v1; . . . ; vm〉 is a mn-ary vector given by the vertical stacking

of each feature vector vi. If f(b1, . . . , bm) is a m-ary function then:

G(f)(v) = Mfv +Nf . (6.10)

The parameters of G(f) are the n×mn real matrix Mf and the n-vector Nf . Regarding

the predicate symbols, the grounding G(P ) of an m-ary predicate P (b1, . . . , bm) is a

generalization of the neural tensor network of Section 6.2 as a function from Rmn to [0, 1]:

G(P )(v) = σ
(
uᵀP tanh

(
vᵀW

[1:k]
P v + VPv + bP

))
(6.11)

with σ the sigmoid function. The LTNs version of the mentioned tensor network focus on

the generalization to m-ary predicates instead of only binary predicates. Indeed, the input

vector v is the concatenation of all the m groundings v1, . . . ,vm of the input elements

b1, . . . , bm of P . Moreover, the original formulation of the tensor network returns a score

regarding how much the two input elements are related with the predicate P . LTNs,

instead, use the sigmoid σ to return the truth value of the atomic formula P (b1, . . . , bm).

The parameters for P are: uP ∈ Rk, a 3-D tensor W
[1:k]
P ∈ Rk×mn×mn, VP ∈ Rk×mn and

bP ∈ Rk. The parameter uP computes a linear combination of the quadratic features

returned by the tensor product. With Equations (6.10) and (6.11) the grounding of a

complex LTNs formula can be computed by first computing the groundings of the closed

terms and the atomic formulas contained in the complex formula. Then, these groundings

are combined using a specific t-norm, see Equation 6.5.

6.3.3 Learning as Best Satisfiability

In the previous section, we define the logic on which LTNs is found along with its syntax

and semantics. The central notion of LTNs is the grounding G for constants, functions

and predicates. The grounding for constants is defined as a feature vector associated to
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the constant of the domain. The grounding for functions and predicates is a parametric

function. Unfortunately, an a priori definition of the grounding is not possible in general

and it should be learned from data. This learning is performed by optimizing the truth

values of the formulas in a LTNs knowledge base. In the following the introduce the notion

of grounded theory (a LTNs knowledge base) and see how the learning of a grounding is

performed. We start with the notion of partial grounding Ĝ, that is a grounding defined

on a subset of the signature of PL. A grounding G for PL is a completion of Ĝ (in symbols

Ĝ ⊆ G) if G coincides with Ĝ on the symbols where Ĝ is defined.

Definition 15. A grounded theory GT is a pair 〈K, Ĝ〉 with K a set of closed formulas

and Ĝ a partial grounding.

Here follows the definition of satisfiability of a grounded theory in LTNs.

Definition 16. A grounding G satisfies a grounded theory 〈K, Ĝ〉 if Ĝ ⊆ G and G(φ) = 1,

for all φ ∈ K. A grounded theory 〈K, Ĝ〉 is satisfiable if there exists a grounding G that

satisfies 〈K, Ĝ〉.

According to the above definition, the satisfiability of 〈K, Ĝ〉 can be obtained by searching

for a grounding G that extends Ĝ such that every formula in K has value 1. When a

grounded theory is not satisfiable a user can be interested in a degree of satisfaction of

the GT. This is defined as follows with the notion of best satisfiability.

Definition 17. Let 〈K, Ĝ〉 be a grounded theory, the best satisfiability problem amounts

at searching an extension G∗ of Ĝ in G (the set of all possible groundings) that maximizes

the truth value of the conjunction of the formulas in K:

G∗ = argmax
Ĝ⊆G∈G

G

(∧
φ∈K

φ

)
. (6.12)

The best satisfiability problem can be seen as an optimization problem on the set of

parameters to be learned. Let Θ = {Mf , Nf | f ∈ F} ∪ {WP , VP , bP , uP | P ∈ P} be the

set of parameters. Let G(·|Θ) denote the grounding obtained by setting the parameters

of the parametric functions to Θ. Thus, the best satisfiability problem aims at finding

the best set of parameters Θ such that:

Θ∗ = argmaxΘ G
(∧

φ∈K φ
∣∣∣Θ)− λ‖Θ‖2

2 (6.13)

with λ‖Θ‖2
2 a smoothing factor of the parameters to avoid data over fitting. The grounding

of a grounded theory is given by the considered t-norm applied to all the formulas in K.

Given the associativity of t-norms, the grounding computation (that is, one step of the

optimization of Equation (6.13)) is linear with respect to the formulas in K.
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6.3.4 From Knowledge Bases to Tensor Networks

In the following, we graphically show how to encode a set of formulas in K in Logic Tensor

Networks. The idea is: for every formula in K we build a LTN and then aggregate all the

networks with an and operator according to Equation (6.12). Let us consider K containing

only the formula drive(x, y)→ V ehicle(y), with input elements v,u. The computation of

the grounding of this formula is given by the Logic Tensor Network in Figure 6.6. In this

tensor network the parameters to be learned are Wd, Vd, bd, ud,WV , VV , bV , uV (d stands

for drive and V stands for V ehicle). The learning is performed through maximization

of the degree of satisfiability (the truth value) of drive(x, y) → V ehicle(y), see previous

section. However, a knowledge base K may contain many formulas: K = {φ1, . . . φq},

G(drive(v,u)) G(V ehicle(u))

v = 〈v1, . . . , vn〉 u = 〈u1, . . . , un〉

W1
d W2

d V 1
d V 2

d B1
d B2

d

+ +

th th

ud

σ

1−

W1
V W2

V V 1
V V 2

V B1
V B2

V

+ +

th th

uV

σ

+

G(drive(v,u)→ V ehicle(u))

min 1

Figure 6.6: Logic Tensor Network for the formula drive(x, y) → V echicle(y), with

G(x) = v, G(y) = u and k = 2. The considered t-norm is the  Lukasiewicz. There-

fore, G(drive(v,u)→ V ehicle(u)) = min(1, 1− G(drive(v,u)) + G(V ehicle(u))).

and the grounding G(φ) is computed for every formula φ ∈ K obtaining a set of LTNs.

Notice that the blocks (the dashed rectangles in Figure 6.6) of the networks correspond

to predicates in PL that can appear in many formulas. Therefore, some blocks can be

linked with blocks of other formulas, thus composing a very complex network. Finally,

the outputs of the networks, that is, the groundings G(φ), with φ ∈ K, are connected

with some operators that implement the
∧

operator (according to the chosen t-norm)

that returns the grounding G(K) of the whole knowledge base K, see Equation (6.12).
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Chapter 7

Semantic Image Interpretation with

Logic Tensor Networks

The goal of this chapter is to introduce how the SII problem can be solved by using LTNs.

Suppose you have a dataset that is useful for learning and evaluating the approach. Such

a dataset contains relational data, that is, objects and pair of objects labelled with a set

of labels. This dataset consists of pictures annotated with bounding boxes around the

objects. The labels (also known as semantic classes or object types) for the bounding

boxes describe the physical objects contained in the bounding boxes. For example, if

a bounding box b1 contains a person its labels are Person and Animal. Whereas the

labels between pairs of bounding boxes describe the semantic relations (also called visual

relationships) between the physical objects in the bounding boxes. For example, let

us suppose to have a second bounding box b2 under b1 and labelled with Horse and

Animal, the pair 〈b1, b2〉 is labelled with the relations ride and on. This representation

can be encoded with a knowledge graph, see Section 6.2. This kind of datasets (and in

general relational data) can be easily formalized with LTNs with a set of atomic formulas:

{Person(b1),Animal(b1),Horse(b2),Animal(b2), ride(b1, b2), on(b1, b2)}.

However, the information in the dataset is incomplete, that is, many bounding boxes

have no label annotations, or there are missing relations between bounding boxes or even

some pictures have no annotations at all. Therefore, the LTNs goal is to exploit the

information encoded in the dataset to complete the missing information. This task is

also called knowledge base completion, see the previous chapter. LTNs are developed to

encode and solve this task with the help of logical constraints. Indeed, the available SII

data can be encoded with a grounded theory TSII = 〈KSII, ĜSII〉, where KSII is a LTNs

knowledge base and ĜSII is a partial grounding. The knowledge base encodes, with LTNs
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formulas, the bounding box annotations in the dataset and some background knowledge

about the domain. The task is to complete the partial knowledge of the SII dataset by

finding a grounding G∗SII, that extends ĜSII, such that:

G∗SII(C(b)) 7→ [0, 1]

G∗SII(R(b1, b2)) 7→ [0, 1]

for every unary (C) and binary (R) predicate symbol and for every (pair of) bounding

box in the dataset1. The grounding G∗SII is found by maximizing the satisfiability of TSII,

see Equation (6.12).

The chapter follows with the explanation of the single components of the grounded

theory TSII = 〈KSII, ĜSII〉: Section 7.1 explains the LTNs knowledge base KSII, whereas

Section 7.2 explains the computation of the grounding ĜSII. Section 7.3 presents some con-

siderations about the whole optimization process. Finally, Section 7.4 shows the modules

of the Python package that implements LTNs for SII.

7.1 The Knowledge Base KSII

Let Pics be a SII dataset and B(p) be the set of bounding boxes in picture p ∈ Pics .

Each bounding box (and pairs of bounding boxes) is annotated with a set of labels, as

described above. Let ΣSII = 〈P ,F , C〉 be a PL signature where P = {P1}∪{P2} is the set

of predicates. P1 is the set of unary predicates that are the object types used to label the

bounding boxes, for example, P1 = {Horse,Person,Elephant, Leg,Pizza, Shirt, . . . }. The

set P2 contains binary predicates used to label pairs of bounding boxes, for example,

P2 = {partOf, ride, on, under,wear, eat, . . . }. The set F is left empty as the SII task of

partial knowledge completion does not require function symbols. Let C =
⋃
p∈Pics B(p) be

the set of constants for all the bounding boxes in the dataset Pics . The knowledge base

KSII = POS ∪ NEG ∪ BK is a set that contains three kind of information: the positive

facts POS, the negative facts NEG and the background knowledge BK.

Positive Facts This set of information regards the labels of the annotations of the (pairs

of) bounding boxes. These facts are the positive examples for learning the predicates.

The positive examples for a semantic class C are the atomic formulas C(b), for every

bounding box b labelled with class C ∈ P1 in the pictures of the dataset. The positive

examples for a relation R are the atomic formulas R(b1, b2), for every pair of bounding

1For SII we do not use function symbols.
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boxes 〈b1, b2〉 labelled with the binary relation R ∈ P2 in the pictures of the dataset. We

denote with φ+ the set containing all the positive examples (that is, the positive atomic

formulas) for the predicate φ ∈ P . The set POS contains all the positive examples of the

dataset for all the predicates:

POS =
⋃
φ∈P

φ+.

Negative Facts This set of facts contains the negative examples necessary for learning

the predicates. SII datasets usually contain only partial and positive information without

negative labels for objects and relations. Indeed, the labels indicate only the content

of a bounding box or the relations between them. However, the missing information in

the dataset cannot be considered negative information as the Close World Assumption

(CWA) [81] does. CWA states that every unknown fact (that is, a missing label on a

bounding box or on an edge) is false and thus can be regarded as a negative example. This

assumption is too strong because the missing information does not necessary imply falsity.

Therefore, the negative examples are computed by adopting a relaxed version, called R-

CWA, of the CWA. Regarding the negative examples for a semantic class C, R-CWA

completes the annotations of the single bounding boxes according to the IsA constraints

of a considered knowledge base. For example, the constraint ∀x(Horse(x) → Animal(x))

leads to complete the annotation of the bounding boxes containing horses with the extra

label “animal”. Then, the negative examples are the atomic formulas ¬C(b), for every

bounding box b not labelled with the class C ∈ P1. The negative examples for a relation

R are the atomic formulas ¬R(b1, b2), for every pair of bounding boxes 〈b1, b2〉 belonging

to the same picture and not labelled with any binary relation. R-CWA avoids to consider,

as negative examples for a relation R, bounding boxes annotated with another relation.

Consider, for example, the case where b1 and b2 are annotated only with the ride relation:

with the CWA the pair b1, b2 is a wrong negative example for the on relation whereas our

relaxed version avoids this issue. We denote with φ− the set containing all the negative

examples (that is, the negated atomic formulas) for the predicate φ ∈ P . The set NEG
contains all the negative examples of the dataset for all the predicates:

NEG =
⋃
φ∈P

φ−.

Background Knowledge The above sources of information add toKSII only assertional

(factual) information about the labels of the (pairs of) bounding boxes in Pics . However,

the object classes and the relations can be related through logical constraints. Indeed, a
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relation can imply another one, for example, “a person rides a horse” implies “a person is

on a horse”, or “a person is on the left of a horse” implies “a person is next to a horse”.

Other examples of constraints state that some object classes cannot be the subject/object

of some relations, for example “horses cannot ride” and “a person cannot be worn”. These

constraints express some background (or prior) knowledge BK about the domain of the

pictures in our dataset. In LTNs, the background knowledge can be formalized as a set

of PL formulas. Here follow some categories of logical constraints for SII with examples:

IsA these constraints encode containment between semantic classes or binary relations.

For example: ∀x(Horse(x)→ Animal(x)) and ∀xy(ride(x, y)→ on(x, y)).

Mutual Exclusivity These constraints encode mutual exclusivity between classes or re-

lations. For example: ∀x(Animal(x)→ ¬Car(x)) and ∀xy(ride(x, y)→ ¬wear(x, y)).

Inverse These constraints regard the binary relations and state that one binary relation

is the inverse of another one. That is, if R is the inverse relation of R′ and if

R(b1, b2) holds then also R′(b2, b1) holds. For example: ∀xy(on(x, y)→ under(y, x))

and ∀xy(left of(x, y)→ right of(y, x)).

Symmetry These constraints regard the binary relations and encode the symmetric (or

antisymmetric) property of binary relations. That is, if the pair 〈b1, b2〉 is related

with R then also the inverse pair 〈b2, b1〉 is (or not). For example: ∀xy(near(x, y)→
near(y, x)) and ∀xy(ride(x, y)→ ¬ride(y, x)).

Reflexivity These constraints regard the binary relations and encode the reflexivity

property of binary relations. That is, if a relation R always holds for a single

bounding box or not: R(b, b). For example: ∀x(near(x, x)) and ∀x(¬wear(x, x)).

Domain and Range These constraints join classes and binary relations and encode the

types of subjects (domain) and objects (range) that are involved in a binary relation.

For example: ∀xy(Person(x)∧ride(x, y)→ Horse(y)∨Motorcycle(y)∨Bicycle(y)) and

∀xy(Pizza(y) ∧ eat(x, y)→ Person(x)).

Negative Domain and Range These constraints join semantic classes and binary re-

lations and discard some classes for the domain/range of the binary relations. For

example: ∀xy(ride(x, y)→ ¬Horse(x)) and ∀xy(drive(x, y)→ ¬Pizza(y)).

These logical constraints can be manually defined according to the domain and the sig-

nature ΣSII or retrieved by on-line linguistic resources such as WordNet [34], FrameNet

[7] and VerbNet [90]. For example, the IsA constraints about classes can be retrieved
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in WordNet, whereas all the mentioned resources provide the range and domain of the

binary relations through the so-called frames. A frame is a data structure that describes

the semantic roles (such as the domain and the range with their semantic classes) of each

binary relation.

Therefore, our knowledge baseKSII = POS∪NEG∪BK, contains positive and negative

examples and general prior knowledge about the SII domain. All this information is

necessary for training a LTNs model and it is expressed with a uniform representation

through LTNs formulas.

7.2 The Grounding ĜSII

As stated in Section 6.3, the LTNs grounding is based on numeric features of the objects

of the domain, that is, bounding boxes for SII. The bounding boxes, along with their

features, can be provided by a SII dataset or extracted from images with the use of a

trained object detector, such as Fast R-CNN [36]. The features can be divided into two

groups: the semantic features and the geometric features. The first group of features

represents the fact that a bounding box b could contain an object whose semantic class is

C ∈ P1. This set of features is denoted with {score(C, b)}C∈P1 , where score(C, b) is the

classification score of the object detector for b according to the class C ∈ P1. The second

group of features describes geometric properties of bounding boxes:

• 〈x0(b), y0(b), x1(b), y1(b)〉 : these features are the coordinates of the bounding box

b. The pair 〈x0(b), y0(b)〉 is the top-left corner of b whereas 〈x1(b), y1(b)〉 is the

bottom-right corner of b.

• area(b) : this feature is the area of b.

The grounding for a pair of bounding boxes can be defined by concatenating the ground-

ings of the single bounding boxes as the LTNs framework states, see Section 6.3. However,

when dealing with n-tuples of objects, adding some extra features regarding the combina-

tion of these n objects improves the performance of the LTNs model. In the SII domain

the extra features involve geometrical joint properties of both bounding boxes:

• intersec(b1, b2) : this feature is the area of the intersection between bounding boxes

b1, b2.

• euclid dist(b1, b2) : this feature is the Euclidean distance between the centroids of

bounding boxes b1, b2. The centroid of a bounding box is computed by using the

bounding box coordinates.
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• sin(b1, b2) : this feature is the sine of the angle between the centroid of b1 and the

centroid of b2.

• cos(b1, b2) : this feature is the cosine of the angle between the centroid of b1 and the

centroid of b2.

Except for the semantic features and the bounding box coordinates, the computation of

all other functions is performed by using the bounding box coordinates. All the features

are normalized in the interval [−1, 1]. In addition, sine and cosine are defined according

to the θ angle between b1 and b2 computed in a counter-clockwise manner, see Figure

6.5. Regarding the constants, the grounding for a bounding box constant b ∈ C can be

defined as a feature vector composed of semantic and geometric features. More formally,

for each bounding box constant b ∈ C, the grounding ĜSII(b) = vb ∈ R|P1|+4 is:

vb = 〈score(C1, b), . . . , score(C|P1|, b), x0(b), y0(b), x1(b), y1(b)〉 (7.1)

with the last four elements the coordinates of the top-left and bottom-right corners of b

defined above. Another definition for the grounding of constants is its one-hot encoding :

the semantic features take the value of 1 in the position of the class with the highest

detection score. All other positions are zero and the geometric features remain unchanged:

vib =

{
1 if i = argmax1≤l≤|P1| score(Cl, b)

0 otherwise
(7.2)

with vib the i-th entry in vector vb. The grounding for a pair of bounding boxes 〈b1, b2〉
is the concatenation of the groundings of the single bounding boxes 〈vb1 : vb2〉 with some

extra features as discussed above:

vb1,b2 = 〈vb1 : vb2 , ir(b1, b2), ir(b2, b1),
area(b1)

area(b2)
,
area(b2)

area(b1)
, euclid dist(b1, b2),

sin(b1, b2), cos(b1, b2)〉 (7.3)

with ir(b1, b2) = intersec(b1, b2)/area(b1) is the inclusion ratio defined in Section 6.3.1.

Regarding the unary predicates in P1, a simple grounding can be defined by adopting

a one-vs-all multi-classifier approach. Given a bounding box constant b, along with its

feature vector vb =
〈
v1, . . . , v|P1|+4

〉
, and a predicate symbol Ci ∈ P1, the grounding for

Ci is:

ĜSII(Ci)(vb) =

{
1 if i = argmax1≤l≤|P1| v

l
b

0 otherwise.
(7.4)
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A slightly different definition of the above grounding is to substitute the value 1 in Equa-

tion 7.4 with score(Ci, b) if i = argmax1≤l≤|P1| v
l
b and left zero otherwise. This rule-based

grounding can be a good solution if the performance of the object detection are good.

Otherwise, it is possible to learn the groundings from bounding box examples according

to Equation (6.11). Regarding the binary predicates in P2, a rule-based grounding can

be difficult to define as it requires a different analysis for each relation (scalability issue)

and it could be inaccurate. As explained in Section 6.3.3, some groundings should be

learned from data by maximizing the truth values of the logic formulas in the grounded

theory. However, due to the flexibility of LTNs, this does not prevent us from using both

groundings: a rule-based for unary predicates and a learnt one for relations.

The grounding of the logical constraints in BK is determined by (i) instantiating the

constraints in BK with all the bounding box constants b ∈ C. Here, it is worth to notice

that every constraint has to be instantiated with only bounding box constants belonging

to the same picture. Constraints on bounding boxes on different images showing different

scenes have no sense for building a semantically interpreted picture. (ii) Computing the

groundings of the atomic formulas for every instantiated constraint; (iii) combining the

groundings of the atomic formulas according to the LTNs semantics (that is, the chosen

t-norm) for every instantiated constraints; (iv) aggregating the groundings of every in-

stantiated constraint with a mean operator, according to the LTNs semantics for universal

quantifiers, see Section 6.3. Here follows an example of grounding computation for the

logical constraint ψ = ∀xy(ride(x, y)→ ¬Horse(x) ∧ ¬Cat(x)), that is, horses and cats do

not ride. Let C = {b1, b2} be the set of constants, (i) the instantiations of the formula ψ

according to C is:

ride(b1, b1)→ ¬Horse(b1) ∧ ¬Cat(b1)

ride(b1, b2)→ ¬Horse(b1) ∧ ¬Cat(b1)

ride(b2, b1)→ ¬Horse(b2) ∧ ¬Cat(b2)

ride(b2, b2)→ ¬Horse(b2) ∧ ¬Cat(b2)

Then, (ii) the computation of the groundings of the atomic formulas of each instantiation

is performed:

ĜSII(ride(x, y)) ĜSII(Horse(x)) ĜSII(Cat(x))

ride(b1, b1)→ ¬Horse(b1) ∧ ¬Cat(b1) 0.16 0.11 0.29

ride(b1, b2)→ ¬Horse(b1) ∧ ¬Cat(b1) 0.76 0.11 0.29

ride(b2, b1)→ ¬Horse(b2) ∧ ¬Cat(b2) 0.13 0.85 0.17

ride(b2, b2)→ ¬Horse(b2) ∧ ¬Cat(b2) 0.39 0.85 0.17
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The next step (iii) is the aggregation of these results to obtain the grounding of the

formula ride(x, y)→ ¬Horse(x)∧¬Cat(x). This is done, according to the LTNs semantics,

by considering a t-norm. If we take, for example, the  Lukasiewicz t-norm2, we have that

ĜSII(ψ) = 1 if ĜSII(ride(x, y)) ≤ max(0, 1−ĜSII(Horse(x)) + 1−ĜSII(Cat(x))− 1) (first line

of the following table), and ĜSII(ψ) = 1−ĜSII(ride(x, y)) + max(0, 1−ĜSII(Horse(x)) + 1−
ĜSII(Cat(x))− 1) otherwise:

ĜSII(ride(x, y)→ ¬Horse(x) ∧ ¬Cat(x))

ride(b1, b1)→ ¬Horse(b1) ∧ ¬Cat(b2) 1

ride(b1, b2)→ ¬Horse(b1) ∧ ¬Cat(b2) (1− 0.76) + max(0, 1− 0.11 + 1− 0.29− 1) = 0.84

ride(b1, b3)→ ¬Horse(b1) ∧ ¬Cat(b2) (1− 0.13) + max(0, 1− 0.85 + 1− 0.17− 1) = 0.87

ride(b2, b2)→ ¬Horse(b2) ∧ ¬Cat(b2) (1− 0.39) + max(0, 1− 0.85 + 1− 0.17− 1) = 0.61

Finally, (iv) the grounding of the universal quantifier is computed with a mean operator.

According to Equation (6.7), if we use, for example, the harmonic mean as mean operator

(p = 1) we obtain: ĜSII(∀xy(ride(x, y)→ ¬Horse(x)∧¬Cat(x))) = meanp(ĜSII(ride(x, y)→
¬Horse(x) ∧ ¬Cat(x))|〈x, y〉 ∈ T ) with T = {〈b1, b1〉, 〈b1, b2〉, 〈b2, b1〉, 〈b2, b2〉}. Therefore,

meanp=1(ĜSII(ride(x, y)→ ¬Horse(x) ∧ ¬Cat(x))|〈x, y〉 ∈ T ) =(
1−1 + 0.84−1 + 0.87−1 + 0.61−1

4

)−1

= 0.80.

This simple example gives an intuition of the computation of the grounding for logical

constraints. For more complex constraints, we compute the parse tree of every instanti-

ated constraint, all the groundings of the atomic formulas are computed and the results

are combined in a bottom-up fashion to return the grounding of the whole instantiated

constraint. The results are then combined according to the grounding of the univer-

sal quantifier. The logical connectives are computed according to the chosen t-norm,

residuum and s-norm. For further details see Section 6.3.4.

7.3 The Optimization of the Grounded Theory TSII

Once the grounded theory TSII is defined, its satisfiability needs to be maximized according

to Equation (6.13), in order to learn the parameters Θ∗ of LTNs:

Θ∗ = argmaxΘ ĜSII

(∧
φ∈KSII

φ
∣∣∣Θ)− λ‖Θ‖2

2.

2We recall that, with this t-norm, ĜSII(¬φ) = 1− ĜSII(φ), ĜSII(φ ∧ χ) = max(0, ĜSII(φ) + ĜSII(χ)− 1)

and ĜSII(φ→ χ) = 1− ĜSII(φ) + ĜSII(χ) if ĜSII(φ) > ĜSII(χ), 1 otherwise.
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The above Equation maximizes the grounding of the conjunctions of the formulas in

the knowledge base KSII. The grounding of the conjunctions is the t-norm of the single

groundings. However, when working with optimization according to data, the use of the

main t-norms could present some numeric pitfalls that need to be avoided:

 Lukasiewicz t-norm According to this t-norm, the satisfiability of a knowledge base is

given by the formula: ĜSII(
∧
φ∈KSII

φ) = max{0,
∑

φ∈KSII
ĜSII(φ)− |KSII|+ 1}. Thus,

the higher the number of formulas the higher their grounding should be to have a

satisfiability value bigger than zero. However, as we are optimizing the groundings

of the formulas, even a small number of formulas in KSII with a low grounding value

can lead the knowledge base satisfiability to zero. We call this issue zero satisfiability

problem.

Gödel t-norm This t-norm considers the satisfiability of the whole knowledge base as the

minimum of the groundings of all its formulas: ĜSII(
∧
φ∈KSII

φ) = min{ĜSII(φ)|φ ∈
KSII}. The problem is that the optimization process could get stuck in a local

optimum. Indeed, a single (or a group of) axiom could be too difficult to learn

for LTNs, and thus the satisfiability of the knowledge base is the grounding of

this difficult axiom. The optimizer tries to increase this value but without any

improvement (this particular predicate is too difficult to learn) and thus leaving out

the other predicates from the optimization.

Product t-norm This t-norm considers the satisfiability of the whole knowledge base as

the product of the groundings of all its formulas: ĜSII(
∧
φ∈KSII

φ) =
∏

φ∈KSII
ĜSII(φ).

As a knowledge base can have hundreds of formulas, the product of hundreds of

groundings (values in [0, 1]) can result in a very small number and thus incurring in

underflow problems.

To avoid these issues, we provide another definition of knowledge base satisfiability, more

in the spirit of optimization with data. The knowledge base satisfiability is a mean of

the groundings of the single formulas. This idea is similar to the grounding of the uni-

versal quantifier. Indeed, a mean operator returns a global satisfiability of the knowledge

base without the side effect of a single predicate that determines the satisfiability. More-

over, it avoids the other numeric problems of the t-norms. Thus, we adopt the following

optimization task:

Θ∗ = argmaxΘmeanp

(
ĜSII(φ|Θ)|φ ∈ KSII

)
− λ‖Ω‖2

2. (7.5)

As stated in Chapter 6, some well-known means are obtained by setting up the parameter

p with an integer number. For example, if we set up p → −∞ we obtain the minimum
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of the groundings and thus the Gödel t-norm. If we set p = −1 or p → 0, we obtain the

harmonic and the geometric mean, respectively, These choices are reasonable for avoiding

the mentioned t-norm issues. On the other hand, with a higher value for p we obtain

means that are more influenced by the higher grounding values, that is, by the predicates

“easy” to learn. These means return a too optimistic value of the satisfiability and this

wrongly avoids the need of optimization.

The instantiation of the logical constraints with all the constant symbols in C (be-

longing to the same image) is not tractable due to the combinatorial explosion of the

grounded constraints. Therefore, we perform a uniform random sampling of the grounded

constraints such that every constraint has the same number of instantiations.

Another numeric issue related to t-norms regards the aggregation of groundings of the

atomic formulas in the constraints according to the semantics of the logical connectives.

In particular, we focus on the grounding of the negation ĜSII(¬φ) for the atomic formula φ.

As LTNs have a functional semantics, the value ĜSII(¬φ) depends from the value of ĜSII(φ)

according to a selected t-norm. If we consider, for example, the Gödel and the Product

t-norms we obtain the value of 0 for ĜSII(¬φ) in the majority of the cases, as it is rather

unlikely to predict an atomic formula with grounding exactly 1, see the precomplement

definition in Chapter 6. The  Lukasiewicz t-norm, instead, avoids this problem by defining

ĜSII(¬φ) as 1− ĜSII(φ).

7.4 The Implementation of Logic Tensor Networks

LTNs have been implemented as a Google TensorFlowTM library whose root folder is

LTN. This library contains the source code and the resources (datasets and knowledge

bases) necessary to implement the main functions of a Machine Learning system and its

evaluation. The library can be divided into these software modules:

LTNs core This module of the library is the pure implementation of LTNs and it is

totally independent from the domain, the dataset and the evaluation. It contains

the single file LTN/logictensornetworks.py that takes as input a LTNs knowledge

base KSII and builds the relative tensor network as shown in Section 6.3.4. This is

performed by defining the computational graph of the groundings for the predicates,

the functions, the logical constraints and the optimization of the knowledge base

satisfiability, see Equation (7.5). The computational graph is defined by using the

TensorFlowTMmethods. This file is the starting point for applying LTNs to other

domains with different datasets and tasks.
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Dataset and knowledge base parsing A SII dataset and knowledge base need to be

parsed in order to be converted into a LTNs knowledge base KSII. The dataset is

split in the folders LTN/data/train and LTN/data/test, the first one is used for

training and the second one for the evaluation. The knowledge base is stored in the

folder LTN/data/ontology into several files according to the semantic classes, the

relationships and the types of logical constraints. Both dataset and knowledge base

are stored in csv format. After the parsing, the feature of the (pairs of) bounding

boxes are extracted for computing the grounding of constant symbols, see Section

7.2. Parsing and features extraction are implemented in a single Python script,

usually named with the name of the dataset.

Training After the process of parsing the dataset/knowledge base and the extraction of

features, the LTNs knowledge base KSII (containing LTNs formulas for examples and

constraints) is instantiated and the training process starts in order to compute ĜSII.

A training step is performed for a maximum number of epochs in order to minimize

the loss function. The data (examples and instantiations of the constraints) are

passed in batches and randomly shuffled according to a fixed number of iterations.

This is implemented in a Python script called LTN/train.py. In addition, in this file

the hyperparameters of KSII, such as the means for universal quantification and loss

function (Equation (7.5)), the chosen t-norm, the hyperparameters for the training,

such as number of training epochs, type of loss optimizer, smoothing factor λ, the

number k of tensor layers, are set. Once the training is finished the parameters of

the grounded theory TSII are saved in a folder called LTN/models.

Testing The LTNs grounded theory is evaluated according to some tasks (for example

the detection of relations between bounding boxes) on the test set, see next Chapter.

This is implemented in the Python script LTN/evaluate.py and the results are saved

in the LTN/results folder. In some cases, the test set provides also some code for

the evaluation, thus the script LTN/evaluate.py provides an interface from LTNs

to the test set code.
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Chapter 8

Experimental Results with Logic

Tensor Networks

The previous chapters show all the theoretical framework for LTNs and how SII has been

encoded with a LTNs grounded theory TSII. This Chapter describes a set of experiments

that allow us to evaluate LTNs on the following aspects of a semantically interpreted

picture construction.

Performance on the SII Problem The construction of a graph that describes the con-

tent of a picture implies two main tasks. First, the detection and the classification

of bounding boxes with some labels (that is, the unary predicates) that describe

objects, and then the classification of visual relationships (that is, the binary pred-

icates) between two bounding boxes. Notice that these tasks are the completion

of the partial information in a SII dataset. These tasks are tested with two LTNs

models: a first one trained only with positive and negative examples of the unary

and binary predicates. This model allows us to evaluate the effectiveness of LTNs

in a classical Machine Learning setting. A second one trained with examples and

logical constraints of a background knowledge. This is an important feature of

LTNs as the semantic classes of the bounding boxes are not independent from the

relations between them. This connection is expressed with logical constraints of

a background knowledge. Therefore, it is important to test if such a background

knowledge improves the performance of a classical Machine Learning setting, see

our works [92, 28].

Robustness to Noisy Labels The present and the following tasks are more related

with issues of the datasets for training Machine Learning models than to strictly
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SII tasks. However, solving this issues affecting the datasets makes a trained SII

system more robust. Indeed, as training sets for Neural Networks become larger,

some problems related to human annotation become acute [80]. Two main problems

are (i) the quality of the labels (subjective labelling) and (ii) the completeness of

the dataset, that is, the quantity of missing label. The first task regards the quality

of the labels. Indeed, annotators may not agree on the semantic class label for a

bounding box or on the visual relationship for a pair of bounding boxes. Therefore,

it is possible to have a consistent amount of noisy labels and it is very important

to have a SII system robust to this noise. This experiment aims at testing the

robustness of LTNs to noisy training labels for both semantic classes and visual

relationships according to the SII tasks defined above.

Zero-Shot Learning This experiment regards the so-called zero-shot learning [99] and

tests the ability of LTNs to deal with unseen visual relationships according to the

SII tasks defined above. This experiment concerns the second mentioned problem

affecting datasets: the missing labels in a dataset. Indeed, it is quite hard for

annotators to label every instance in a dataset. For example, in a SII dataset, some

semantic classes can have no training examples (bounding boxes), thus, they cannot

be detected. Another SII example regards the visual relationships: some instances

of relationships (for example, the relation stand on between two bounding boxes

labelled with Elephant and Street, respectively) can have no annotations. However,

never seen instances can be predicted by similarity with already seen examples.

For instance, it is possible to deduce that elephants stand on streets by a certain

similarity between elephants and horses (supposed that annotations between horses

and streets are given).

The experiments for these tasks are conducted on two SII datasets: the PASCAL-Part-

dataset [17] and the Visual Relationship Dataset (VRD) [65]. Each dataset is used to test

different tasks. We specify the tasks for each dataset in Table 8.1.

Dataset Performance Robustness Zero-Shot Learning

PASCAL-Part-dataset Section 8.1.2 Section 8.1.3

Visual Relationship Dataset Section 8.2.3 Section 8.2.4

Table 8.1: The SII tasks for every considered dataset.

This chapter follows with two sections, each one for a dataset. Section 8.1 presents

the results obtained on the PASCAL-Part-dataset whereas Section 8.2 introduces the
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VRD dataset along with the results obtained on it.

8.1 Objects Classification and Part-of Detection

The first experiment is conducted on the PASCAL-Part-dataset [17] presented in Sec-

tion 5.4.1. The performance of LTNs are tested on the following tasks1

Object Classification Given a set of bounding boxes, provided by the PASCAL-Part-

dataset, the task is to assign each bounding box with an object type. The set

P1 ∈ ΣSII contains the 60 semantic classes of the PASCAL-Part-dataset.

Part-of Detection Given a set of pairs of bounding boxes (in this case all the pairs

belonging to the same picture), provided by the PASCAL-Part-dataset, the task

is to predict if they are in part-of relation or not. That is, if the object contained

in the first bounding box is part of the object contained in the second one. In this

case, P2 ∈ ΣSII contains only the partOf predicate. This is a particular instance

of the visual relationship detection task where the prediction is performed only on

a single binary predicate. With multiple relations the general task is described in

Section 8.2 and Figure 8.3.

Notice that these two tasks are not independent due to the constraints that join the

whole objects with their parts. In addition, these tasks do not require the use of an

object detector for finding bounding boxes as they are totally provided by the dataset.

Therefore, the predictions do not depend on the object detector performance. In this

manner, it is possible to focus only on the ability of LTNs to predict unary and binary

predicates. The performance of LTNs on both tasks have been evaluated with two LTNs

models: a first one trained with only positive and negative examples (Texpl) and a second

one trained with examples and constraints (Tprior). This evaluation has been performed

by splitting the PASCAL-Part-dataset in two parts: the training set for training the

LTNs models and the test set for performing the evaluation, as in a classical Machine

Learning setting. Details regarding this splitting are reported in Section 5.4.1.

1The code for the experiments with the PASCAL-Part-dataset can be downloaded here https://

gitlab.fbk.eu/donadello/LTN_ACM_SAC17/ [92] and here https://gitlab.fbk.eu/donadello/LTN_

IJCAI17 [28].
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8.1.1 The PASCAL-Part Background Knowledge

In this evaluation, the logical background knowledge BK adopted here is a FOL extended

version of the one in Section 5.4.2 used for testing the unsupervised method. This new

background knowledge is not a simple meronomy of the semantic classes. Indeed, it also

contains constraints about the mutual exclusivity between classes, properties of the partOf

relation, domain and range constraints. Here follow some examples of logical constraints

in BK grouped by categories:

Mutual Exclusivity These constraints encode the mutual exclusivity between all the se-

mantic classes of the PASCAL-Part-dataset. Some examples are: ∀x(Bicycle(x)→
¬Motorcycle(x)) and ∀x(Saddle(x)→ ¬Wheel(x)).

Anti-symmetry This constraint is the antisymmetric property of the partOf relation:

∀xy(partOf(x, y)→ ¬partOf(y, x)).

Anti-reflexivity This constraint is the anti-reflexivity property of partOf relation2:

∀x(¬partOf(x, x)).

Domain and Range These constraints include the meronomy of the semantic classes

of the dataset (the background knowledge of Section 5.4.2). For example, this

constraint states the parts of a motorcycle: ∀xy(Motorcycle(y) ∧ partOf(x, y) →
Handlebar(x)∨Headlight(x)∨Saddle(x)∨Wheel(x)). In addition, for every semantic

class in P1 denoting a part object, these constraints list the classes of whole objects

containing the given part. For example, this constraint states the whole objects

having a saddle: ∀xy(Saddle(x) ∧ partOf(x, y)→ Motorcycle(y) ∨ Bicycle(y)).

The combination of mutual exclusivity with domain and range constraints makes BK
“closed” under the partOf relation. Indeed, for every whole object, the background knowl-

edge states all and only its part objects. On the other hand, for every part object, the

background knowledge states all and only its whole objects.

8.1.2 Performance With and Without Constraints

In order to test the performance of LTNs on the above-mentioned SII tasks, we define

a grounded theory Texpl = 〈Kexpl, ĜSII〉3, where Kexpl = POS ∪ NEG contains only pos-

itive and negative examples of the predicates in P for optimizing Texpl, as the classical

2We adopt a restricted version of the part-whole relation: nothing is part of itself.
3For the sake of presentation, we remove the subscript SII from TSII and KSII.
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Machine Learning setting requires. This first theory allows us to check the effectiveness

of LTNs with respect to other methods. Moreover, we define another grounded theory

Tprior = 〈Kprior, ĜSII〉, where Kprior = POS ∪NEG ∪BK contains examples and the logical

constraints in BK defined in the previous section. This second theory allows us to check

if the background knowledge has effect on the optimization and improves the results.

Both grounded theories have the same definition of grounding ĜSII. In this case, the

grounding is learnt from examples (and constraints) without a rule-based definition. Re-

garding the constant symbols, the grounding is the vector of semantic and geometric

features defined in Equation 7.1. Regarding the unary and the partOf predicate, the

grounding is learnt according to Equation (6.11). For the partOf predicate, the grounding

ĜSII(b, b
′) of a pair of bounding boxes, for the computation ĜSII(partOf(b, b

′)), is defined

with Equation 7.3 but with only two extra features: the inclusion ratios ir(b, b′), ir(b′, b),

see Section 6.3.1. The mean function used both for the grounding of the universal quanti-

fier (Equation (6.7)) and for the grounding of the whole knowledge base (Equation (7.5)) is

the harmonic mean. The chosen t-norm is the  Lukasiewicz’s: T (x, y) = max(0, x+ y−1).

The number of tensor layers in Equation (6.11) is k = 6 and the regularization parame-

ter in Equation (7.5) is λ = 10−10. Even though both grounded theories have the same

grounding, the optimization processes are different as they are performed on two different

knowledge bases: Kexpl and Kprior. We run 1000 training epochs of the RMSProp learning

algorithm available in TensorFlowTM .

Once the grounded theories Texpl, Tprior are trained, we evaluate them on the mentioned

tasks with the following procedure. Every bounding box b, in the test set, is classified

with C ∈ P1 if ĜSII(C(b)) ≥ th for a threshold th that varies in the interval [0, 1]. In

this manner, a bounding box can be classified with more than one class. For each class,

precision and recall are calculated in the usual way. Every pair of bounding boxes 〈b, b′〉,
belonging to the same picture of the test set, is classified with partOf if ĜSII(partOf(b, b

′)) ≥
th, with th ∈ [0, 1]. Precision and recall are computed as in a usual binary classification.

The trained LTNs models are compared with a well-known object detector and a

rule-based method according to the SII tasks4:

Object Types Classification A bounding box b is classified with the label C∗ obtaining

the highest score provided by the Fast R-CNN object detector (FRCNN) [36], that

is, C∗ = argmaxC∈P1
score(C, b), with score(C, b) ≥ th, for th ∈ [0, 1] and C ∈ P1.

Part-of Detection A pair of bounding boxes 〈b, b′〉 is classified with the partOf relation

if the inclusion ratio ir(b, b′) is greater than a given threshold th (in this experiments

4A direct comparison with the SII system in [15] is not possible because the source code is not available.
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(a) LTNs with prior knowledge im-

prove the performance of Fast R-CNN

on object type classification, achiev-

ing an Area Under the Curve (AUC)

of 0.800 in comparison with 0.756.

(b) LTNs with prior knowledge out-

perform the rule-based approach in

the detection of part-of relations,

achieving AUC of 0.598 in comparison

with 0.172.

Figure 8.1: Precision-Recall curves for indoor objects type classification and the partOf

relation between bounding boxes.

th = 0.7). This baseline is similar to the one used for the grounding of the partOf

relation, see Equation (6.8).

Results for indoor objects are shown in Figure 8.1 where AUC is the area under the

precision-recall curve. The results show that, for both object types and the part-of rela-

tion, the LTNs trained with examples and background knowledge have better performance

than the LTNs trained with only examples. Moreover, background knowledge allows LTNs

to improve the performance of the Fast R-CNN object detector. Notice that the LTNs

are trained using the Fast R-CNN results as features. Regarding the LTNs model Texpl

without constraints, we can see that it outperforms only the rule-based method for the

part-of detection. A possible explanation is that FRCNN assigns a bounding box to a

class if the value of the corresponding semantic feature exceeds th. This is local to the

specific semantic features. If such local features are very discriminative (which is the case

in our experiments), then very good levels of precision can be achieved. Differently from

FRCNN, the LTNs model Texpl makes a global choice which takes into consideration all

(semantic and geometric) features together. This should offer robustness to the LTNs

classifier at the price of a drop in precision. However, this drop is compensated by the

logical constraints in Tprior. For the other object types (animals and vehicles), LTNs have

results comparable to FRCNN: FRCNN beats Tprior by 0.05 and 0.037 AUC, respectively,
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for animals and vehicles. Finally, we perform an initial experiment on small data, on

the assumption that the LTNs constraints should be able to compensate a reduction in

training data. By removing the 50% of the training data for indoor objects, a similar per-

formance to Tprior with the full training set can be achieved: 0.767 AUC for object types

and 0.623 AUC for the part-of relation, that is, a little improvement in performance.

8.1.3 Robustness to Noisy Labels

It has been acknowledged that, with the impressive growth of the size of training sets for

visual recognition [55], many data annotations may be affected by noise, such as missing

or erroneous labels, non-localised objects, and disagreements between annotations [80].

For example, human annotators could mistake the “part-of” relation with the “have”

relation. Indeed, the label “have” could be used for both annotating possession (“person

have umbrella”) and part-of relationship (“person have leg”). In this experiment, we

evaluate the robustness of LTNs models with respect to the presence of errors in the

labels of the training data.

We artificially add an increasing amount of noise to the PASCAL-Part training data,

and then the measures on how performance degrade in presence of noise are taken. For

an error rate er in {0, 10, 20, 30, 40}, we randomly select the er% of the bounding boxes

in the training data, and we randomly change their classification labels. In addition, we

randomly select the er% of pairs of bounding boxes, and we flip the value of the part-of

relation label. Notice that, the case for er = 0 is the case without errors described in the

previous section. Then, two sets of LTNs grounded theories, {T erexpl}40
er=0 and {T erprior}40

er=0,

have been trained according to the values of er and evaluated on both SII tasks, as done

before. As expected, adding too much noise to training labels leads to a large drop in

performance. Figure 8.2 shows the AUC measures for indoor objects with increasing error

er. Each pair of bars indicates the AUC of T erprior, T erexpl for a given er% of errors.

Results indicate that the LTNs constraints offer robustness to noise: in addition to the

expected overall drop in performance, an increasing gap can be seen between the drop in

performance of the LTNs model trained with only examples and the LTNs model trained

with examples and background knowledge.

8.2 Multiple Relationships Detection

In the previous section, the experiments were performed according to only one single

binary predicate. However, in a real visual scene, there are many binary predicates
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(a) Object types (b) Part-of predicate

Figure 8.2: AUCs for indoor object types and part-of relation with increasing noise in the

labels of the training data. The drop in performance is noticeably smaller for the LTNs

model trained with examples and background knowledge.

between bounding boxes. In this section, the experiments with LTNs are extended to the

more challenging task of detecting multiple binary predicates between bounding boxes.

This task is called visual relationship detection [65]. In SII literature, a binary relation

between two labelled bounding boxes b and b′ is called visual relationship. Formally, it is

defined as a triple 〈subject, predicate, object〉 where the subject refers to the label (or the

unary predicate in P1) of b, the object refers to the label (or the unary predicate in P1) of

b′ and the predicate refers to the label of the relationship (or the binary predicate in P2)

between b and b′. A visual relationship is also visually grounded, that is, the subject and

the label have a corresponding bounding box in the image. In LTNs a visual relationship

is expressed with the atomic formula: subject(b) ∧ predicate(b, b′) ∧ object(b′). Examples

of visual relationships in LTNs are: Person(b1)∧ ride(b1, b2)∧Motorcycle(b2), Person(b1)∧
on(b1, b2)∧Motorcycle(b2) and Cat(b3)∧under(b3, b4)∧Table(b4). In SII visual relationships

are very important as they are the building blocks of a semantically interpreted picture.

The construction of a SII graph with labelled and direct edges from visual relationships

is pretty forward. For each visual relationship subject(b) ∧ predicate(b, b′) ∧ object(b′), if

the graph nodes for b and b′ do not exist, then create them and add the labels subject and

object. If they exist, add the labels subject and object to the nodes. If the direct edge

from the node corresponding to b to the node corresponding to b′ does not exist, then

create it and add the label predicate. If such an edge exists, then add the label predicate

to it. These experiments are conducted on the Visual Relationship Dataset (VRD) [65]

developed for the very same task, see next section. The performance of LTNs are tested
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on these standard tasks for the detection of visual relationships5 (see Figure 8.3):

Phrase Detection Given an image, the task is to predict a correct triple 〈subject,
predicate, object〉 and localize it in a single bounding box containing both the

subject and the object. The triple is a true positive if the labels are the same of the

ground truth triple and if the predicted bounding box has at least 50% of overlap

with a corresponding bounding box in the ground truth. The ground truth bound-

ing box is the union of the ground truth bounding boxes of the subject and of the

object.

Relationship Detection Given an image, the task is to predict a correct triple 〈subject,
predicate, object〉 and the bounding boxes containing the subject and the object

of the relationship. The triple is a true positive if both bounding boxes have at

least 50% of overlap with the corresponding ones in the ground truth. In addition,

the labels for the predicted triple have to match with the ones of the corresponding

triple in the ground truth.

Predicate Detection Given an image with a set of pairs of bounding boxes, the task is

to predict a set of correct binary predicates between them. As the pairs of bounding

boxes are given, this prediction does not depend on the performance of an object

detector. Thus, the focus is only on the ability of LTNs to predict binary predicates.

As in the previous section, the performance of LTNs on these tasks have been evaluated

with two LTNs models: a first one trained only with positive and negative examples (Texpl)

and a second one trained with examples and constraints (Tprior) to check the effect of the

logical constraints. This evaluation has been performed by training the LTNs models on

the VRD training set and then by evaluating them on the VRD test set. Both LTNs

models are then compared with the original work on VRD [65] and with the state-of-

the-art [6] on all the mentioned tasks. Moreover, all three tasks have been tested in a

zero-shot learning scenario in order to test the ability of the LTNs models to generalize

to relationships never seen (and learnt) during the training phase, see Section 8.2.4 for

further details.

5In these experiments, we implement the LTNs starting from the file LTN/logictensornetworks.py.

The files and resources for parsing the VRD and its knowledge base, for defining the grounded theories

and for training and evaluation have been changed accordingly to the VRD and its tasks, see Section 7.4.
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Figure 8.3: The three standard tasks of visual relationship detection.

8.2.1 The Visual Relationship Dataset

This dataset has been developed for the specific tasks of visual relationship detection.

It contains 5000 images (4000 for training and 1000 for testing) annotated with visual

relationships (bounding boxes and labels). Each bounding box is annotated with a label in

the set P1 containing 100 unary predicates. These predicates include labels for animals (for

ComparativeAction Preposition Spatial Prep. phrases

person
hit
ball

person
with
dog

cat
on

sofa

elephant
taller than

person

car
park on
street

Figure 8.4: The binary predicates of the Visual Relationship Dataset can be grouped in

categories (here shown 5 examples of them).

example, Horse and Elephant), vehicles (for example, Car and Bus), clothes (for example,

Shirt and Jacket) and generic objects (for example, Camera and Cone). In addition, pairs of

bounding boxes are annotated with a label in the set P2 containing 70 binary predicates.
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These predicates include labels for actions (for example, ride and hit), prepositions (for

example, with and at), spatial relations (for example, on and below), comparatives (for

example, taller than) or preposition phrases (for example, park on and sit behind), see

Figure 8.4. The dataset has 37993 instances of visual relationships, that is, every image

has in average 7.60 triples that describe the content of the image. A visual relationship

may appear several times in the images. The dataset has 6672 types of relationships. In

addition, 1877 relationships occur only in the test set and they are used to evaluate the

zero-shot tasks. On average, a unary predicate is connected with 24.25 binary predicates

through visual relationships. Table 8.2 resumes these statistics.

VRD Statistics

Images 5000 Relationship Types 6672

Images Train Set 4000 Relationship Instances 37993

Images Test Set 1000 Relationships Only in the Test Set 1877

Unary Predicates 100 Avg. Triples per Image 7.60

Binary Predicates 70 Avg. Predicates per Obj. Category 24.25

Table 8.2: Main figures for the Visual Relationship Dataset.

The dataset presents some issues that make the learning challenging. The first one is

the so-called long tail phenomenon [62]: many binary predicates are involved in only few

visual relationships, see Figure 8.5. Indeed, the dataset respects the 80-20 rule: the 80%

Figure 8.5: Long tail phenomenon: many predicates have only few relationships as ex-

amples. The figure shows the number of relationship instances for every predicate in the

Visual Relationship Dataset.

of the triples is covered by only the 16% of the binary predicates (11 predicates such as
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on, wear and has). This makes the learning of the single binary predicates very difficult.

Another issue is that a single pair of bounding boxes is involved in only one single visual

relationship (on average 1.17). This is quite unlikely in a real visual scene where a pair

of bounding boxes occur in more relationships, for example, if 〈Person, ride,Horse〉 then it

also holds that 〈Person, on,Horse〉.

8.2.2 The Visual Relationship Background Knowledge

In this evaluation, we manually build the background knowledge BK with logical con-

straints related to the unary and the binary predicates of the VRD. In the specific, we

focus on the constraints that join binary and unary predicates. The reason is that a

visual relationship is not independent from its subjects and objects. For example, there

is a strong dependence between the sleep on relationship and its subjects that are only

animals. Another strong dependence is between the drive relationship and its objects

that are only vehicles. For this reason, the background knowledge contains the following

category of constraints:

Negative Domain and Range These constraints do not list all the possible subjects

and objects for a predicate but, rather, they exclude some semantic classes as sub-

jects and objects. For example, physical objects cannot sleep on. Therefore, for

every unary predicate PhyObj in P1 that refers to a physical object, the constraint

∀xy(sleep on(x, y)→ ¬PhyObj(x)) is added to BK. Another example is that clothes

cannot be driven. For every unary predicate Dress in P1 that refers to a dress, the

constraint ∀xy(drive(x, y)→ ¬Dress(y)) is added to BK.

However, more complex constraints on the binary predicates can be added to BK, such

as the IsA, the mutual exclusivity, the inverse, the symmetry and reflexivity properties,

the positive domain and range constraint. Or even, a subject/object can be added in

the negative domain/range constraints in BK, for example, a person eats only edible

things. However, adding too much knowledge could overfit the optimization with poor

generalization results. For this reason, we add only the simple negative domain/range

constraints. As future work, we study how performance change by introducing in BK
other categories of constraints.

8.2.3 Performance With and Without Constraints

As done for the experiments on the PASCAL-Part-dataset, in order to evaluating the

LTNs performance on phrase, relationship and predicate detection we define a grounded
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theory Texpl = 〈Kexpl, ĜSII〉, where the knowledge base Kexpl = POS ∪ NEG contains

only positive and negative examples of the predicates in P . This theory gives us the

first results on the effectiveness of LTNs on visual relationship detection with respect to

the state-of-the-art. Moreover, a second grounded theory Tprior = 〈Kprior, ĜSII〉 is defined

with its knowledge base Kprior = POS ∪NEG ∪ BK containing examples and the logical

constraints in BK. As before, with this theory we check the contribution of the logical

constraints with respect to a standard Machine Learning approach.

Both grounded theories have the same definition for the grounding ĜSII. Differently

from the previous experiments, here the grounding is a mixture of the rule-based and learnt

from examples approaches. Indeed, the grounding of the unary predicates is the result

given by an object detector according to Equation (7.4). On the other hand, the grounding

of the binary predicates is learnt from examples (and constraints) according to Equation

(6.11). This choice is due to the focus of the experiments, our aim is to perform the

detection of many relationships between bounding boxes instead of classifying bounding

boxes. This last goal is left to the object detector. Regarding the constant symbols, the

grounding, defined in Equation 7.2, is the vector that combines the one-hot encoding of the

semantic features with the geometric features. The grounding of pairs of bounding boxes

is the concatenation of the groundings of the single bounding boxes with the extra features

defined in Equation (7.3). The mean function used for both the grounding of the universal

quantifier (Equation (6.7)) and for the grounding of the whole knowledge base (Equation

(7.5)) is the harmonic mean. The chosen t-norm is the  Lukasiewicz one. The number of

tensor layers in Equation (6.11) is k = 5 and the regularization parameter in Equation

(7.5) is λ = 10−10. Even though both grounded theories have the same grounding, the

optimization processes are performed on the different knowledge bases Kprior and Kexpl.

We run 20000 training epochs of the RMSProp optimizer in TensorFlowTM .

The LTNs models Texpl and Tprior are compared with the methods in [65] and in [6] on

all the tasks:

Lu et al. [65] This method detects visual relationships by combining visual and seman-

tic information. The visual information is the classification score given by two

convolutional neural networks (VGG net [95]). The first network classifies single

bounding boxes according to the semantic classes in P1. The second one classifies

the union of two bounding boxes (subject and object) according to the relations in

P2. These scores are then combined with a language prior score for modelling the

semantics underlying the visual relationships. This prior is based on word embed-

dings. This combination allows the generalization from few (or zero) examples.

95



8.2. MULTIPLE RELATIONSHIPS CHAPTER 8. LTNS EXPERIMENTS

Baier et al. [6] This method also combines visual and semantic information. However,

the work improves the results of the previous one by using link prediction methods

(RESCAL, MultiwayNN, CompleEx, DistMult [6, 72]) in place of word embeddings

for modelling the visual relationship semantics.

At the time of the experiments, these were the results of the state-of-the-art. Successfully,

the method in [109] improves the results above. Here, a visual relationship is predicted

with a network trained on visual features and on the word embeddings of the labels

for the subject and the object. This network is regularized with a semantic term that

encodes knowledge about the statistical dependencies between the relationships and the

subjects/objects. We do not compare LTNs results with the results in [109] as they are

successive to our experiments. Moreover, a full comparison is not possible as in [109] a

different object detector, with respect to the one used in LTNs, is adopted for discovering

the bounding boxes. Therefore, we limit at reporting the results in [109] and comparing

the work with LTNs in Chapter 9.

Once the grounded theories Texpl, Tprior are trained, we evaluate them on the mentioned

tasks by using the test set of the VRD. For each image in the test set, we use Texpl and Tprior

to compute the ranked set of groundings {ĜSII(r(b, b
′))}r∈P2 , with 〈b, b′〉 bounding boxes

computed with an object detector (phrase and relationship detection tasks) or taken from

the image ground truth (predicate detection task). As object detector, we use the one (R-

CNN) provided by [65]6. Then, we select the top 100 and 50 relationships from the ranked

set and compute the recall@100 and recall@50 [65, 1] as evaluation metrics. The choice

of classifying the input pair 〈b, b′〉 of bounding boxes with all the predicates in P2 is due

to the fact that many relationships can occur between two objects. For example, a person

rides and is on a horse at the same time, or a person could be on the right of, beside and

near to a motorcycle simultaneously. However, it is not possible to define a preference

notion between relationships, for example, if two objects are one beside the other than

they are automatically in the near relation. Other works [65] do not consider this fact and

take the relation with highest score on 〈b, b′〉. This approach assumes that all the relations

in P2 are mutually exclusives. Our choice is counterbalanced by ranking the predictions

and taking the first 100 and 50. Therefore, the challenge is to predict correct relationships

with a high score. Table 8.3 shows the results for the visual relationships detection tasks.

The first line presents the results in [65] and the following four lines the results in [6]

according to the link prediction models implemented. The last two lines show the LTNs

results for Texpl and Tprior, respectively. The LTNs models outperform the original work

6https://github.com/Prof-Lu-Cewu/Visual-Relationship-Detection
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Task Phrase Det. Phrase Det. Rel. Det. Rel. Det. Pred. Det. Pred. Det.

Evaluation R@100 R@50 R@100 R@50 R@100 R@50

Lu et al. [65] 17.03 16.17 14.7 13.86 47.87 47.87

RESCAL [6] 19.17 18.16 16.88 15.88 52.71 52.71

MultiwayNN [6] 18.88 17.75 16.65 15.57 51.82 51.82

ComplEx [6] 19.36 18.25 17.12 16.03 53.14 53.14

DistMult [6] 15.42 14.27 13.64 12.54 42.18 42.18

Texpl 28.12 23.21 24.86 20.82 91.23 77.32

Tprior 28.24 22.72 25.1 20.63 91.88 78.63

Yu et al. [109] 29.43 26.32 31.89 22.68 94.65 85.64

Table 8.3: Results on the Visual Relationship Dataset (R@K stands for recall at K). The

Texpl and Tprior models are comparable and always outperform the state-of-the-art.

on VRD [65] and the state-of-the-art [6] on all the tasks for every measure. The phrase

and the relationship detection tasks are the hardest, as they include also the detection of

the bounding boxes of the subject and of the object. Therefore, the errors coming from

the object detector propagate also to the visual relationship detection models. Adopting

the same object detector used by our competitors allows us to compare LTNs results

starting from the same level of error coming from the bounding boxes detection. The

good results obtained by LTNs models show that LTNs deal with the object detection

errors in a better way. The predicate detection task, instead, is easier as it is independent

from object detection. We can see the improvement of performance on all the methods.

In this task, it is possible to see all the effectiveness of LTNs due to the good improvement

of performance. Indeed, the LTNs models are able to correctly classify more than the 90%

of all the given pairs of bounding boxes within the first 100 results. In this evaluation, the

performance of Texpl and Tprior are comparable. This fact suggests us that the negative

domain and range constraints do not take particular effect on the optimization. Therefore,

the improvement given by LTNs is mostly determined by the underlying Neural Tensor

Network (Equation 6.11) and the encoding of the bounding boxes with semantic and

(extra) geometric features.

8.2.4 Performance on Zero-Shot Learning

In a SII dataset, many types of visual relationships have only few, or even zero, examples

(the long tail problem). This is due to the big effort of annotation. Thus, it is important
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for a SII system to perform this kind of generalization. The zero-shot learning scenario

evaluates the ability of a method to generalize to never seen types of visual relationships.

In this setting, both Texpl and Tprior models are tested on the defined visual relationship

detection tasks and compared with the presented methods. The test is performed only

on the 1877 never seen types of visual relationships in the training set (for example,

〈Elephant, stand on, Street〉). In this evaluation, we test the ability of LTNs to generalize

from unseen relationships by exploiting similarity with already seen relationships and the

logical constraints. Table 8.4 shows the results for the visual relationships detection tasks

in the zero-shot learning scenario. The difficulty of this setting can be seen in the huge

Task Phrase Det. Phrase Det. Rel. Det. Rel Det. Pred. Det. Pred. Det.

Evaluation R@100 R@50 R@100 R@50 R@100 R@50

Lu et al. [65] 3.75 3.36 3.52 3.13 8.45 8.45

RESCAL [6] 6.59 5.82 6.07 5.3 16.34 16.34

MultiwayNN [6] 6.93 5.73 6.24 5.22 16.6 16.6

ComplEx [6] 6.5 5.73 5.82 5.05 15.74 15.74

DistMult [6] 4.19 3.34 3.85 3.08 12.4 12.4

Texpl 13.94 8.98 12.57 8.13 64.5 40.12

Tprior 15.91 11.12 14.37 10.09 70.15 46.28

Yu et al. [109] 17.24 12.96 15.89 12.02 74.65 54.20

Table 8.4: Results on the Visual Relationship Dataset in the zero-shot learning scenario

(R@K stands for recall at K). The LTNs models always outperform the state-of-the-art.

The use of the logical constraints in Tprior leads to the best results.

drop in performance for all the methods on all the tasks. The LTNs models Texpl, Tprior

outperform the state-of-the-art. This proves the LTNs ability to generalize to never seen

relationships. Indeed, the LTNs learning model exploits the structure in the data to infer

similarity between relationships. For example, the triple 〈Elephant, stand on, Street〉 can

be inferred by the triple 〈Horse, stand on, Street〉 due to the similarity between Elephant

and Horse. Indeed, both concepts can eat/stand on Grass and both have Legs, Body

and Tail. As above, LTNs better deals with the errors of the object detection (phrase and

relationship detection) and predicts correctly the majority of the predicates between given

pairs of bounding boxes (predicate detection). Moreover, the LTNs model Tprior trained

with data and constraints outperforms the model Texpl trained with only constraints. The

negative domain and range constraints are leveraged by LTNs to exclude some binary

predicates for a bounding box with a given subject or object. For example, if the subject
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is a physical object, then the predicate cannot be sleep on. Comparing these results with

the ones in the normal scenario, we can state that the background knowledge is useful

when the training data are scarce. These good results are of great help as many Neural

Networks datasets suffer of the long tail problem.
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Chapter 9

Related work

In this Chapter, we compare PWCA and LTNs for SII with some works of the-state-

of-the-art. However, not all the following methods can be compared with both PWCA

and LTNs. In [50] the authors propose a fuzzy DL ontology of spatial relations and an

algorithm for building scene graphs. The scene graph is constructed starting from some

basic objects in the scene, then, through logical reasoning, semantic relations between

objects (or new objects) are inferred. This approach is effective in domains where the

objects are tightly related with one or few spatial relations (for example, for detecting

particular areas during a brain image analysis). However, in a general scene understanding

many actions can occur between two objects. This method is unsupervised as PWCA, the

scene is built with logical fuzzy reasoning whereas PWCA exploits clustering of numeric

and semantic features and then logical reasoning. This method deals with the uncertainty

coming from the object detection with a fuzzy approach as LTNs do. However, LTNs do

not use a strict reasoning procedure to build the scene graph but rather exploit logical

constraints to locally predict visual relationships.

In [57] the labelling of the scene graph is found through energy minimization of a CRF.

The potentials are given by (i) the object/attribute detection on objects; (ii) the manual

definition of 16 spatial relations between bounding boxes according to their geometric

properties; (iii) text priors, such as co-occurrence of objects and relations found in the

image descriptions of Flickr. This work limits the description of a scene to spatial relations

between objects. These relations are manually defined and the extension to other relations

is not straightforward. LTNs use a different methodology: it maximizes training data and

logical knowledge instead of the statistical textual knowledge in Flickr. LTNs are not

limited to spatial relations and are able to generalize to new relations simply by learning

from examples.
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Also in [15] the scene graph is encoded as a graphical model and the task is to correctly

find a labelling for nodes and edges through energy minimization. The energy term

combines visual information coming from the object detection and logical constraints of a

DL knowledge base of the domain. This method needs a dataset to learn the parameters of

the graphical model, whereas PWCA is an unsupervised method. PWCA handles multiple

labels for the detected objects, whereas [15] does not handle such uncertainty of the object

detectors. Finally, PWCA is able to reconstruct composite objects from the detection of

their parts with a sort of abductive reasoning. The idea in [15] of combining axioms and

visual information is close in spirit to LTNs but with a totally different methodology:

LTNs combine Neural Tensor Networks with Fuzzy Predicate Logic instead of a graphical

model as in [15]. Moreover, in LTNs it is easier to add more types of constraints, whereas

the work in [15] is tailored to domain/range and cardinality constraints.

The work in [78] predicts visual relationships by jointly considering, in the same em-

bedding space, visual information and logical constraints (derived from WordNet) be-

tween the relationships. Also LTNs consider visual information and constraints jointly

but as a task of maximization of the satisfiability of a knowledge base. Differently from

LTNs, this work predicts only a single triple for image without the visual grounding of

bounding boxes. Moreover, it is tailored to only 3 logical constraints: visual relationship

implication, type-of constraint and mutual exclusion, defined with a rule-based approach.

LTNs are more general as they predict relations between bounding boxes and encode

many types of constraints with minimal effort.

Visual relationships are detected in [65, 6] by multiplying a visual term (the visual

features of the union of the bounding boxes of the subject and of the object computed

with a CNN) with a semantic term. This semantic term is a pre-trained word embedding

(word2vec) [67] of the subject and of the object labels, such that similar triples are close

in the embedding space. In this manner, even if no examples of a visual relationship

are in the data, the relationship can be inferred from similarity with already seen visual

relationships (zero-shot learning). In [6] the semantic term is computed with statistical

link prediction methods [72] that model the statistical information encoded in the Visual

Relationship Dataset. The proposed statistical methods improve the results of [65] both in

seen and unseen triples. However, this statistical knowledge is tailored to the training set

whereas LTNs exploit logical knowledge that can be found in available knowledge bases.

In both [65, 6] inconsistent triples, such as 〈man, eat, chair〉, can be predicted due to the

lack of a consistency checking. LTNs are able to avoid this problem by considering, in the

training phase, logical axioms (for example, “chairs are not normally edible”) that bind

predicates with subjects and objects. The ability of LTNs to handle exceptions makes a
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SII system able to deal with both real-value data and crisp axioms.

In [109] every visual relationship is predicted with a Neural Network trained on vi-

sual features and on the word embeddings of the labels (returned by an object detec-

tor) for the subject and the object. This network is regularized with a semantic term

that encodes semantic knowledge about the statistical dependencies between the relation-

ships and subjects/objects. This knowledge is taken from the training set and Wikipedia

documents. LTNs are different as they exploit only external logical knowledge encoded

with constraints. The difference is that the statistical knowledge states only the statisti-

cal dependencies (co-occurrences) between subjects/objects and relationships. Whereas

logical knowledge can express more information, for example, dependencies between sub-

jects/objects and relationships, properties of the relationships, hierarchies of classes or re-

lationships, mutual exclusions, cardinality constraints and negations of subjects/objects

for a given relationship. Logical knowledge is more flexible as it allows a more accu-

rate reasoning on the visual relationships. Moreover, the network in [109] has to predict

O(|P1|2|P2|) possible relationships, whereas the searching space of LTNs is O(|P1|+ |P2|).
This implies an important reduction of the number of parameters of the network and a

substantial advantage on scalability.

In [107] a scene graph is built with an iterative message passing algorithm where

information of the latent state (computed with a Gated Recurrent Unit [18]) of a node

(or edge) is passed to the edges (or nodes) to compute the states of the next iteration.

Every iteration refines the prediction of the nodes and edges. The features for objects

(and pairs of objects) are computed with an object detector. The advantages of this

method are (i) the refinement of its predictions through iterations and (ii) the fact that

the graph is predicted globally and not locally by triple predictions. This work does not

exploit background knowledge and is different in spirit from LTNs. LTNs, instead, are

focused on combining logical knowledge with training data for improving the predictions

of objects and relationships and thus leading to the scene graph construction.

Some of the previous methods are difficult to compare with PWCA, the main difference

with respect to the others (a part of [50]) is the unsupervision of PWCA and the reasoning

procedure it uses for finding partial models. PWCA is more suitable to compare with

part-based models for object detection. In these models, an object is determined by the

composition of its parts. In [17] a CRF is built for discovering whole objects and their

parts. The nodes are the objects (whole and its parts), the edges represent the part-whole

relation and the fact that two parts belong to the same whole object. The unary potentials

are the scores returned by a trained object detector about an object, the binary potentials

are manually defined as geometric relations between bounding boxes. As in PWCA, a
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whole object is determined by geometric and semantic (the labels) properties of its parts.

However, PWCA is more fine grained as it is able to deal with more specific parts (the

parts in [17] are only the head, the torso and the legs). Indeed, PWCA can reason about

the number of parts composing a whole object: a horse cannot have more than four

legs. PWCA does not need to be trained as [17]. PWCA is scalable in the number of

objects in the domain, whereas in [17] the possible configurations of parts and wholes

grows exponentially.

In [70] a whole object is determined by two trained models: an appearance model

about the parts and a location model about the location of the whole object and its

parts. These models are learnt in an iterative way: first they are trained on examples

from Google images, then on examples mined (with the first version of these models)

from the previous Google images and finally on examples mined (with the second version

of the models) from the PASCAL VOC dataset [33]. The models of the last iteration

are composed with the R-CNN object detector [37]. This method is different in spirit

from PWCA as it requires 3 steps of training. PWCA does not need an object detector

for whole objects as, in principle, it is able to detect a whole object only from its parts.

Moreover, PWCA can reason about the number of parts of a whole object.
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Conclusion

In this thesis, we addressed the Semantic Image Interpretation as the problem of extracting

a labelled direct graph, also known as semantically interpreted picture or scene graph,

that describes the content of an input image. The labelled nodes represent the objects

in the image, the labelled edges represent relationships between the objects. The labels

describe the semantic types of the objects and the semantic relations between objects.

Labels are taken from the signature of a knowledge base.

We devised two well-founded methods for solving the SII problem. The first one

formalizes a semantically interpreted picture as a partial model of a knowledge base.

That is, a logical interpretation, defined on a subset of the signature of the knowledge

base, such that there exists a model that extends the interpretation. Partial models are

constructed with a clustering algorithm (PWCA) that considers geometric and semantic

features and performs reasoning on the objects in the scene. The evaluation on the

part-whole relation shows that PWCA outperforms methods based only on numerical

features. This method is unsupervised, thus it does not need a training set. The research

question of dealing with both numeric and geometric features is addressed by considering

geometric and semantic distances in the clustering. The research question of inferring new

objects with few information is addressed by predicting whole objects from the presence

of few part objects. The dealing with constraints of a knowledge base is dealt with the

construction of a partial model of the knowledge base.

The second method uses the framework Logic Tensor Networks to predict both nodes

and visual relationships. This framework is based on the principle of jointly maximiz-

ing both the likelihood of training data and the satisfiability of logical constraints of a

knowledge base. The evaluation tested the ability of LTNs to predict both object types

of bounding boxes and visual relationships between objects. The results show that LTNs
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outperforms the state-of-the-art and, moreover, the use of logical background knowledge

improves the results both in a standard setting and in settings with noisy training labels

or missing data (zero-shot learning). The research question of dealing with both numeric

and geometric features is addressed by encoding the data with a vector containing both

kinds of features. The research question of discarding some proposals can be addressed

by training LTNs to recognize “background” objects. The dealing with constraints of a

knowledge base is dealt with the jointly optimization of the likelihood of both training

data and constraints. This method, at the time of writing (autumn 2017), outperformed

the state-of-the-art on visual relationship detection on the VRD [6]. Now it is second

to a Computer Vision top conference paper [109]. The difference is that our proposal is

based on a well-founded and strong framework (LTNs) that tightly integrates data and

constraints. Moreover, it easily deals with very expressive background logical knowledge

and not only with statistical knowledge

As future work, we want to test LTNs for Semantic Image Interpretation on different

settings on VRD. The first setting is the LTNs evaluation with noisy training labels. In the

second setting we progressively remove some amounts of data from the training set and see

how performance change. Another evaluation of LTNs regards the logical constraints. Our

aim is to study the difference in performance by using different categories of constraints

(for example, by adding the mutual exclusion and removing the IsA constraints) in the

grounded theory of LTNs. In this manner, we want to check if there are constraints more

effective than others. In addition, we want to use different object detectors that provide

the proposals to LTNs. Another direction of investigation is the application of LTNs

to a specific domain of images, such as, the images obtained with the scanning electron

microscope (SEM). The idea is to find relations between nanoscience objects detected

from images obtained with the SEM. These images are provided by a startup company

which performed an initial work on the classification of nanoscience images [69].
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Appendix A

KnowPic, the Semantic Image

Interpretation Demo

A Semantic Image Interpretation system has been developed during the doctoral years.

The name of the system is KnowPic, and it refers to a system that knows your pictures.

Indeed, this system is a Web Application that allows a user to upload a picture and

see the results of the semantic interpretation of the input picture. The result is a set

of visual relationships: triples 〈subject, predicate, object〉. For every triple, it is possible

to show the corresponding bounding boxes by simply clicking on the “show bounding

boxes” button. This set of grounded (that is, linked with image bounding boxes) visual

relationships composes the scene graph associated to the input picture.

The technologies used for developing this demo are:

Web Application KnowPic is a Web Application built with Flask (http://flask.

pocoo.org/): a micro web-development framework for Python.

Object Detection The object detector used here is Fast R-CNN [36]. It is trained on

the VRD dataset and provides the bounding boxes corresponding to the nodes of the

scene graph. These bounding boxes are filtered with a threshold on the classification

score of each bounding box.

Visual Relationship Detection The bounding boxes of the object detection are pro-

vided to the LTNs model trained with data and prior knowledge on the VRD and on

the VRD knowledge base of Section 8.2. Every pair of bounding boxes is classified

with the LTNs model according to the binary predicates of the VRD. The triples

are then filtered with a threshold on the classification score.
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APPENDIX A. KNOWPIC, THE SEMANTIC IMAGE INTERPRETATION DEMO

In the following some screenshots of the results of KnowPic on images downloaded from

Google.

Figure A.1: The input page of KnowPic: here it is possible to upload a picture and run

the system.
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Figure A.2: Once the picture is uploaded, the “generate” button starts the SII of the

picture.
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Figure A.3: The SII result for the running example. The number following the label for

the subject (in red) and the object (in blue) is the confidence score returned by Fast

R-CNN. The number following the predicate is the confidence score of the triple returned

by LTNs.
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Figure A.4: The SII result for a picture containing an indoor scene.

Figure A.5: The SII result for a picture containing an urban scene.
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