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Abstract

In this work, the synthesis of clustered phased array antennas characterized
by an irregular organization of tiles modules is addressed. By exploiting tiling
theorems drawn from the mathematical theory, optimal and sub-optimal meth-
ods for the optimization of tiles arrangements and the corresponding excitations
minimizing user-defined cost functions are presented. An enumerative approach
able to retrieve the optimal clustering providing the maximum aperture cover-
age and the best radiation performance is proposed to deal with the synthesis
of low/medium-size arrays. Based on the same optimal theorems and still ex-
ploiting the algorithmic procedures at the basis of the enumerative approach, an
innovative schemata-based optimization method is introduced for designing large
arrays, as well. A set of numerical examples and full-wave simulations, concerned
with different aperture sizes, is reported to assess the effectiveness, the limita-
tions, and the ranges of computationally-admissible applicability of the proposed
methods.

Keywords
Phased Array Design, Array Tiling, Domino Tiles, Exhaustive Search, Genetic
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Chapter 1

Introduction

Phased array antennas are enabling technologies for high radiation perfor-
mance and fast beam scanning, but they are still quite expensive solutions. It
is known that almost half of the cost of a phased array is due to the transmis-
sion/reception modules (TRMs) that control the amplitude and the phase/time-
delay of each radiating element to perform beam forming [1]. To minimize the
costs, still yielding satisfactory radiation features, unconventional architectures
such as sub-arrayed/clustered, thinned, or sparse arrays have been proposed
instead of fully-populated “ideal” solutions [2]. Such sub-optimal/compromise
solutions are gaining more and more attention because of the most recent mar-
ket requirements of scanning and beam forming capabilities [2] in modern radars
and communication systems. In such a framework, clustered phased arrays im-
plement low-cost architectures by composing the array aperture with multiple
elementary tiles of two or more radiating elements, each tile being fed by a single
TRM |[3], still keeping good radiation efficiencies. Besides the smaller number of
TRMs with respect to fully-populated architectures, a further reduction of the
costs can be yielded if the sub-arrays have simple and similar shapes suitable
for a modular assembling of the radiating system as well as the production of
only few types of tiles [4]. Indeed modularity is advantageous in phased array
antenna manufacturing since it allows the implementation of light and low profile
structures [4], an easy maintenance, and integrated cooling systems [5].

Unfortunately, despite those positive features and because of the use of sub-
array TRM instead of one per array element [6], a key issue to be faced is the
presence of undesired high sidelobes. As a matter of fact, when reducing the ar-
chitectural complexity of the array structure by simply partitioning its aperture
into rectangular sub-arrays of equal shapes and orientations, the radiated power
pattern turns out to be characterized by undesired grating lobes whose number
unavoidably increases widening the operational bandwidth as well as extending
the scanning angle [7]-[9]. To cope with this drawback, aperiodic sub-array ar-
rangements [10]-[32] or tiles having irregular shapes and/or irregularly located
within the antenna aperture [19]-[31] have been proposed. The advantages of



aperiodic tiling arrangements against grating lobes have been firstly introduced
in [15][16] for the design of aperiodic array layouts. Successively, in [17][18] irreg-
ular polyomino clustering have been investigated, while in [19] and [20] Penrose
and Pinwheel tilings have been considered, respectively, showing that such ape-
riodic clustering configurations break the periodicity of the quantization and,
consequently, reduce the level of the undesired sidelobes. Nevertheless no op-
timization strategies of the tiling configuration and of the sub-array weights
have been proposed in these works. For this reason, the phased array parti-
tioning problem has been widely addressed in the recent years, both for linear
[21]-]28] and planar [29]-[32] geometries. Theoretical optimal strategies for the
computation of the sub-array weights have been exploited, such as the analytic
excitations matching (EM) technique [21][23][30] as well as hybrid methodologies
combining analytic [28] or evolutionary [22] algorithms with convex programming
(CP) optimizers. As regards the optimization of the clustering layout, several
efficient local-search techniques have then been developed, for instance the Con-
tiguous Partition Method (CPM) [23][29][32], the Weighted K-means Cluster-
ing Method (WKCM) [30], Genetic Algorithm (GA)-based approaches [24] and
multi-objective strategies [25], that even if they guarantee a fast convergence,
they don’t allow to a-priori fix the size/shape of the clusters. Accordingly, ran-
dom search based schemes [12]|27], dictionary-based Compressive Sensing (CS')
techniques [26] as well as GA-based methods [31], have been recently proposed for
the optimization of clustering configurations with modularity constraints. Focus-
ing on planar array developed methods, in [31] the position within the aperture
and the orientation of fixed-sized polyomino-shaped tiles are optimized in order
to minimize the side-lobe level (SLL) of the radiated power pattern. Anyway
the exact partitioning of the aperture region is not assured because the tiles are
allowed to partially cover the boundary of the region, consequently the use of
additional and not expected tiles shapes is necessary in order to fill the gaps
at the aperture borders, and even if the maximization of the directivity (D) is
enforced in the cost function, a complete coverage of the entire aperture is not
always ensured.

Although efficient clustering methods are available, it is worth pointing out
that no optimal-design methodologies for array tiling (namely, the full coverage
of the array aperture for a given tile shape/geometry) exist till now since array
clustering (especially for large arrays) is mathematically a very complex problem
[33]-[35]. On the other hand, optimal surface tiling theorems [36]-[47] and algo-
rithms [48]-[53] have been derived in other fields of science (e.g., mathematics)
for simple tile shapes such as dominoes [48|-[55|, bars/planks [56][57|, multiple
rectangular tiles [58]-[62], as well as diamond shapes [63]-[66] and more complex
figures, as instance L-shaped tiles [67], T-tetrominoes tiles [68]-[74], ribbon tiles
[75]-|77] and general polyominoes [78]-[85]. Among these, useful rules can be
profitably exploited for array design, as well. Indeed, in some cases they could
allow one to a-priori state (i) whether an area (i.e., the aperture in array clus-
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CHAPTER 1. INTRODUCTION

tering) is fully tilable with the tile shape at hand, (i) what is the extension of
the uncovered area when (i) does not hold true, and (éii) the total number of
admissible tiling configurations. Moreover, mathematically-derived tiling algo-
rithms usually permit - besides the definition of the optimal surface coverage -
the iterative generation of all possible subarraying configurations as well as the
analytical definition of a sub-set of reference clustering solutions.

In this thesis the optimal (low-medium size arrays) or best-optimized (large
size arrays) design of irregular sub-arrayed rectangular planar phased arrays,
composed by domino-like tiles (i.e. rectangular 1 x 2 and 2 x 1 modules), and ra-
diating a pencil beam which is as close as possible to a reference one, is addressed
by exploiting some available mathematical literature concerned with the optimal
coverage of the aperture. First, an enumerative method (ETM) based on the
optimal surface-tiling algorithms introduced in [48][53] is proposed to retrieve the
optimal array coverage providing the best radiation performance in low /medium
size arrays. Since the number of admissible clustering rapidly grows with the
array size and the enumerative procedure is no more computationally possible
for large arrangements, an innovative optimization method (OTM) based on an
analytically schemata-driven version of the GA is also introduced. In such an
implementation, the GA profitably benefits of the knowledge of a set of reference
solutions/individuals characterized by a good genetic content, namely schemata
[86][87] with high fitness-values/radiation-performance, and defined according
to the tiling theorems/algorithms in [48][53|. Moreover, the synthesis of tiled
phased arrays has been formulated as a multi-objective optimization problem
(MOP) in order to deals with multiple beam pattern requirements, also ad-
dressing the case of arbitrarily shaped arrays (i.e. not only square/rectangular
shaped apertures). Finally a mask-constrained domino-tiling synthesis method
is presented, in which, starting from a set of ideal requirements on the array ra-
diation performances defined by a power mask, aims at finding the optimal tiling
configuration minimizing the distance of the tiled array power pattern with the
mask, while maximizing the directivity of the radiated pattern. Accordingly
three new optimization techniques, namely the ETM — CP, EM — ETM/CP,
and EM — OTM/CP methods, are proposed, positively compared with the
ETM and OTM techniques, which unavoidably fail when dealing with a mask
matching synthesis problem. With respect to the state-of-art clustering/tiling
methodologies, this thesis covers the following novel contributions:

1. the domino tiling synthesis problem has been formulated, exploiting math-
ematical surface-tiling theorems providing conditions for the existence of
the optimal array clustering (i.e., the full coverage of the antenna array
aperture) as well as on the total number of different optimal sub-array
configurations. Accordingly, the possibility to converge towards optimal
solutions is discussed, proposing theoretically unfeasible and feasible opti-
mization strategies for the problem at hand;



2. an enumerative, yet optimal, tiling method for determining the best sub-
array configuration/s of low/medium size rectangular arrays guaranteeing
the maximum performance for a given array aperture and tile shape;

3. a customized GA-based optimization tool for an effective exploration of the
wide solution space of clustered configurations of large rectangular arrays
thanks to a suitable exploitation of analytically-defined schemata blocks;

4. a novel synthesis method addressing the mask-constrained synthesis prob-
lem by jointly combining enumerative/GA-based approaches with optimal
convex strategies, for the optimization of the tiling configuration and of
the tiles excitations coefficients.

Thesis outline

The thesis is organized as follows. Firstly, the phased array tiling problem is
mathematically formulated in Chapter 2. Then, the analytical/GA-based tiling
methodologies for low /medium and large array sizes are described in Chapter 3.
The mask-constrained tiling synthesis method is reported in Chapter 4, while
the multi-objective optimization problem of orthogonal polygon shaped arrays,
has been addressed in Chapter 5. Finally the conclusions are drawn in Chapter
6.



Chapter 2

Phased Array Tiling Problem

In this Chapter the mathematical formulation for the analysis of clustered pla-
nar phased arrays is reported. More in detail the formulation of the array factor
when considering a sub-arrayed architecture is described, focusing on rectan-
gular shaped aperture and domino-like sub-arrays. Moreover the phased array
tiling synthesis problem is formulated, providing theoretical optimum and sub-
optimum optimization strategies for the computation of the clustering configu-
ration and of the amplitude and phase sub-array coefficients, in order to radiate
a pencil beam which is as close as possible to a reference one.



2.1. MATHEMATICAL FORMULATION

2.1 Mathematical Formulation

Let us consider a planar phased array of radiating elements disposed on a rect-
angular lattice with inter-element spacing d, and d, along the two surface axes
[Fig. 2.1(a)]. The electromagnetic (EM) field generated in far-field by such
an arrangement is expressed as E (6, ¢) = f (0, ¢) AF (0, ¢) where f (0, ) is the
embedded or active element pattern [3][6], here assumed identical for all antennas
', and AF (0, ¢) the array factor equal to

M N
AF (0,¢) _ Z Z]mnejk(xm sin 6 cos ¢+yn, sin 0 sin ¢) (21)

m=1 n=1

being I, the complex (i.e., amplitude and phase) excitation of the (m,n)-th
element (m=1,...,M;n=1,...N), k= 27” the wavenumber, with A the working
wavelength, (z,,,y,) the centroid of the (m,n)-th array element, and (6, ¢) the
polar variables, with the polar axis assumed perpendicular to the array plane.
Moreover, let the control points of the beam-forming network (BF N), namely
the amplifiers and the phase shifters or time-delay units, all located at the sub-
array level [Fig. 2.1(b)]. Then, the array weights turn out to be a function of
the sub-array coefficients as follows

Lon = 1, = ae,, ePemn (2.2)
m=1,..M;n=1,...,N; ¢y, € [1,Q]

where ¢,,,are the elements of an M x N matrix C(whose elements are ordered
down-up instead of an usual up-down ordering), assuming () integer values, Q)
(Q < M x N) being the number of sub-arrays/tiles composing the array and
covering totally or partially its surface, while ., and ., are the ¢,,,-th (¢, €
[1,Q]) sub-array amplitude and phase coefficients, respectively [Fig. 2.2(a)]. The
vector of integer indexes ¢ = {C, =Cpp; p = 1,.., M X N, p = (m,n), m =
l,...M, n=1,.., N}, namely the sub-array aggregation, univocally describes
a generic array tiling configuration that is the grouping of the M x N array
elements into @) sub-arrays, o = {0, .; ¢mn = 1, ..., Q}Fig. 2.2(b)], and it is
built from the matrix C considering a raster order, starting from the lower-left
array element,(m,n) = (1,1), to the lower right element (m,n) = (M, 1), and
from the lower row of elements, (m,n) = (m, 1), to the upper row, (m,n) =
(m, N).

! This assumption will not affect the optimization methodologies proposed in the following
chapters, in which isotropic radiators are considered. Only the reliability assessment reported
in Sec. 3.4.1.2 considers, for the sake of simplicity, the embedded element pattern of a real
radiator surrounded by two rings of elements as an acceptable approximation for all the array
antennas (i.e. when the size of the array is reasonably large).
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Figure 2.1: Sketch of the fully-populated array architecture (a) and of the sub-
array architecture (b).



2.2. PROBLEM STATEMENT

2.2 Problem Statement

By supposing the use of two domino-like sub-arrays of two-elements? [i.e., 0., =
oV or 0., = ol being oV = {(:pm, Yn) U (xm,y(nﬂ))} and o = {(2n, Yn)

U (x(mil),yn) }— Fig. 2.2(a)|, the unknown clustered configuration, ¢, and the
corresponding values of the sub-array amplitudes, a = {a.,, . ; ¢mn = 1, ..., Q},
and phases, 3 = {f.,..; Cmn = 1, ..., @}, are determined by solving the following

synthesis problem:

Phased Array Tiling Synthesis Problem - given an array of M x N
isotropic elements®, positioned over a rectangular lattice, and two
domino-like tiles (UV, JH), find the optimal tiling/clustering config-
uration c?’ and the corresponding sub-array weights a*and (3°,
such that the radiated pattern fits user-defined requirements ¢ (c; o, 3),

with the man lobe steered toward (6y, ¢g).

The global optimum of the array tiling synthesis problem can be theoretically
reached by means of a full-global optimization approach, by jointly optimize the
tiling configuration ¢ and the tiles excitations coefficients a and 3 as

(e " B7") = arg ?},}% {®(c;e, B)} (2:3)

It is clear that (2.3) turns out to be computationally unfeasible in most of the
cases: it is necessary to set 2() real values, for the amplitude and phase coeffi-
cients, and M x N integer numbers for the coding of the clustering configuration,
which generate an extremely wide solution space even for very small arrays. This
issues can be solved if the subset T = {c;, t = 1, ..., T}, including all the existing
tilings of the M x N array, is known, by solving the following nested optimization

(a?pt’ tOpt) = arg {m%l {® (ay, By |ct)}] (2.5)

In order to solve such a synthesis problem, the locations and the orientations of
the elementary domino shapes must be properly optimized to yield the maximum

2Each element can be either a radiating element or an aggregation (building block) of
radiating elements. Without loss of generality and hereinafter, we will consider the domino-
like sub-array as composed by two elementary radiating elements.

3The hypothesis of isotropic elements instead of real radiators as formulated in Sec. 2.1, is
made for the sake of simplicity. The influence of the element factor will be analyzed in Sec.
3.4.1 and Sec. 4.4.4, for a sub-set of the optimized solutions reported in the respective sections.
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Figure 2.2: Sketch of the array aperture tiling (a)(b) when ¢ = {1, 1, 2, 3, 3, 4,
5,52, 6,7,4,89,9,6, 7, 10,8, 11, 11, 12, 12, 10} and o = {o¥, oV, o, oV,
ol oV, oV, oV, o, oV, o, o'}, being M =6, N =4, and Q = 12.

(total) coverage of the array aperture with an irregular sub-array arrangement
for minimizing the level of the undesired “quantization lobes” [6]. Inspired by
optimal tiling theorems and algorithms available in the scientific literature, two
novel design methods will be presented in the following chapters to deal with
small and large size arrays, respectively.



2.2. PROBLEM STATEMENT
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Chapter 3

Array Tiling Methodologies

In this Chapter two methodologies for the optimization of rectangular regions
tiled by domino-like tiles are presented. By exploiting optimal analytic tiling
algorithms, an enumerative-based approach able to sequentially generate all the
existing complete tilings, is proposed for the optimization of domino-tiled phased
arrays. When the dimension of the tiling solutions space is too large for an ex-
haustive search, an optimization-based methodology exploiting a customized G A
optimizer is used for the synthesis of large tiled phased arrays. The numerical as-
sessment validates the proposed approaches, considering small and medium /large
apertures, also compared to state-of-art clustered solutions. Finally, the relia-
bility assessment of the optimized solutions when considering real radiating ele-
ments, using a commercial full-wave simulator, is presented and discussed.

11



3.1. TILING THEORY AND THEOREMS

3.1 Tiling Theory and Theorems

Given a bounded region of the plane and a set of tile shapes, can we cover
completely the region with the tiles? And in how many ways? This section
is devoted to answer to these questions, exploiting the mathematical literature
devoted at solving such a difficult problem. Useful theorems for the tilability
of finite regions, as well as closed form formulas for the computation of the
number of existing tilings are reported, with a focus on rectangular regions tiled
by rectangular tiles.

Let us consider a set of S tiles shapes o = {05; s = 1,..., S}, and a bounded
region A defined over a given lattice. We can say that o tiles A (equivalently,
that A is tilable by o) if A can be covered with translates of tiles o € o such
that each lattice cell in A is covered by exactly one tile (i.e. overlapping is not
admissible). We can define two main tiling problems [40]:

e PLANE TILING PROBLEM

Given a finite set o of tiles, does o tile the whole (i.e. infinite) lattice?

e FINITE TILING PROBLEM

Given a region A and a finite set o of tile, does o tiles A?

The only regular polygons able to tile the plane are the square, the equilateral
triangle and the hexagon [40]. These three tiles defines the three regular lattices
in which the majority of tiling problems are defined. If for example we try to
tile the plane with a single pentagonal shaped tile, for sure we end to leave
some uncovered space in between the tiles, because the plane is not tilable by
pentagons. It is well known in the literature that the Plane Tiling Problem is
undecidable. The undecidability of tiling the plane has been proved by R. Berger
in 1966 [33] in case of dominoes tiles, further discussed by R. M. Robinson in
1971 [34] for different shaped tiles. Moreover the undecidability of tiling the plane
with polyominoes has been also treated by Golomb in [37] reducing the Plane
Tiling Problem to the Wang Tile Problem [35]. The aim of this thesis is to exploit
tiling problems for the design of antenna arrays which is an instance of the Finite
Tiling Problem and, like for the Plane Tiling Problem it is usually a difficult task
[40]-[45]. Even the counting of the number of existing tilings for medium/large
apertures is generally an almost computationally intractable/impossible task.

In order to solve a Finite Tiling Problem we need to answer to the following
questions:

Q1 Given a tile shape, o, is the region completely tilable? If not, what is the
extension of the uncovered area?

Q2 Given a tile shape, o, how many “complete” tiling configurations (i.e., tiling
configurations fully covering the whole region) exist?

12
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In the following, some theoretical insights on these two fundamental questions
will be given and, exploited in the next sections for defining suitable clustering
methods for dealing with the synthesis of rectangular and fully tilable apertures
with domino tiles.

3.1.1 Covering Theorem: “Is the region tilable?”

Answers to question ()1 are reported in the following, exploiting tiling theorems
when considering rectangular regions and rectangular tiles, focusing on the case
of domino-like tiles is treated.

Let us consider a region A discretized into M x N pixels, and rectangular
shaped tiles of the class B x 1 and 1 x B. In 1969 Klarner derived a useful
condition in order to solve the respective tilability condition [42] :

T1 : An M x N rectangle A can be tiled by o = {B x 1, 1 x B} tiles if and
only if B divides M or N.

The theorem is then generalized for the more wide class of rectangular tiles B x D
and B x D, leading to the following theorem [42]:

T2 : An M x N rectangle A can be tiled by o = {B x D, D x B} tiles if and
only if B divides M or N, D divides M or N, and if BD divides one side of
A, then the other side can be expressed in the form Bx+ Dy with z,y > 0.

In case the rectangle A is not tilable by the considered rectangular tiles, it is
interesting to know how many pixels of A are left uncovered. We will refer to
the uncovered pixel as wasted area. In 1979 Barnes, starting from the outcomes
of the seminal work on rectangles packing [44] derived analytic relationships
between the size of the region and of the tiles, with the wasted area, reported in
the following theorem [44][45]:

T3 : Consider an M x N rectangle A tiled with o {B x 1, 1 x B} tiles, and let
M = M mod B (3.1)

N = Nmod B (3.2)

where 0 < M < M and 0 < N < N, and mod being the modulo operation.
Then the wasted area W in the best possible packing (i.e. a not complete
tiling of A) with the tiles o is given by

W:{( MN if M+N<B

B—M)B-N) if M+N>B (3:3)

When considering domino-like tiles (i.e. o = {2 x 1, 1 x 2}) the tilability con-
dition and the wasted area estimation are simplified in the following theorem:

13
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Figure 3.1: Number of complete domino tiling configurations, T, for square and
rectangular M x N regions.

T4 : To check whether A may be fully covered with domino tiles, it is
sufficient that one side of the rectangle A (either M or N) contains an
even number of pixels [42]. Otherwise (i.e., only when both M and N are
odd), the empty area extends to W = 1 square pixel [44][45].

3.1.2 Cardinality Theorem: “How many complete tiling
configurations?”

In order to answers to question ()2, theorems and formulas taken from the mathe-
matical literature are reported in the following. In particular the following closed
form formula, will be very useful for solving the tiling problems of the following
chapters, in which rectangular areas tiled by domino-like tiles are considered.

The number of tiling configurations that fully cover a surface A of dimensions
M x N square pixels with domino tiles is equal to [46]

T = 2% T T [eos? (3725) + cos? ()] (3.4

To give an indication on the dimension of the solution space of the tiling problem
at hand (i.e., the total number of complete tiling arrangements) Fig. 3.1 shows
the values of T' as function of the rectangle edge N for square (i.e. M = N)
and rectangular (i.e M = 2N and M = 3N) areas. Table 3.1 reports the exact
numbers obtained using (3.4).

14
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Table 3.1: Number of complete domino tiling configurations, T, for different sizes
of square and rectangular M x N regions.

V] T |
| | N=M | N=2M | N=3M |
6 | 6.728 x 10° | 1.0692 x 10° | 1.7657 x 102
8 | 1.2989 x 107 | 5.4006 x 10 | 2.3334 x 10?2
10 | 2.5858 x 10 | 2.8942 x 10%® | 3.3658 x 10%
16 | 2.4449 x 10%° | 6.3623 x 106! | 1.7204 x 10%

3.2 Height Function based Encoding for Domino
Tiling

In case the aperture A is totally tilable and the exhaustive analysis of the space of
complete sub-arrays arrangements is computationally-affordable, an enumerative
approach is proposed by properly customizing the analytic technique in [53] to the
synthesis of sub-arrayed phased arrays. The method is based on the exploitation
of the height function 48] that allows one to univocally identify a generic ¢-th
tiling solution, ¢® (¢t = 1,...,T), namely the organization of vertical, ¢", and
horizontal, oI, domino tiles’ within the array aperture A [Fig. 2.2(b)].

(A) Height Function Computation

In order to define the height function A (-) and its values, let us first describe
the array aperture A, composed by M x N pixels, in terms of its pixel-vertices,
{mn; m = 0,...,M; n = 0,..., N}, and pixel-edges, {€nnsmmnt1): €mns(mei)n;
m=0,..M—1;n=0,..,N — 1} (Fig. 3.2). Indeed, the height function A (-)
is defined on the pixel-vertices [i.e., hpn = b (Vmn), m = 0,..., M; n =0, ..., N|,
while the h-values are determined by considering the pixel-edges. Towards this
end, the aperture pixels are colored according to a black, (., = —1, and white,
Cmn = 1, checkerboard pattern, starting with an arbitrary color for the first pixel
(11 = £1 (e.g., (11 = 1 in Figs. 3.2-3.3), and the edges of white/black pixels are
oriented clockwise/counterclockwise (Fig. 3.2). Then, the following procedure
(Algorithm AT) is used:

e A1.1 Computation of the h-value of the boundary vertices of A (vi?t :{vg)n;
[m=1{0, M};n=0,...NU|n={0, N};m=0,., M} v € A be-
ing 0A the contour/boundary of A) - Regardless of the ¢t-th (t = 1,...,T)

'Tn case of non-circularly polarized radiators and to fit the required state-of-polarization
(e.g., linear vertical /horizontal polarization) of the array, two tiles (0¥ and o) equally-
polarized must be built although with the same (rectangular) shape. Otherwise, only a rect-
angular domino tile is enough.

15
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Figure 3.2: Black-and-white checkerboard representation of the array aper-
ture A with pixel vertices v,,,, m 0,....M, n
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tiling configuration, ¢®, set the value of the height function of the vertex
Vg € Vé?t to hoo = h(veo) = 0 (Fig. 3.3). Then, starting from the pixel-
vertex vgy and moving along dA clockwise, the value of the height function
is increased /decreased of one unit from one vertex to the successive one if
these latter belong to the edge of a white/black pixel

{h(m—l)NJ Coam==%1" h(m+1)NJ Cmn==1"

= B, o £ 1.

(3.5)

It is worth pointing out that such a step is carried out only once and
at the beginning of the synthesis procedure independently on the tiling
(Vt € [1,T]) at hand;

e A1.2 Computation of the h value of the internal vertices of A ( mt {vmn,
m=1,..M -1, n = 1,..,N — 1}) - With reference to a clustered

configuration ¢® of tile shapes vertically or horizontally oriented (e.g.,

Fig. 3.4), select an internal vertex v,(f;)n € VZ(Z)t

borlng vertex, denoted as oY) € v [v0) — {v

With at least one neigh-

) ®)
(m+1)n? vm(n 1)’

m(n+1 } bemg the set of vertices neighbor to vmn] having the height func-

(m—1)n? v

tion value, h g =D (vpg)) already set (i.e. v,(,tg) = v((fi 1)n OF v,(,tg) = U((Z)m—i-l)n

or v%) = v(t(n ) le-g., Fig. 3.4(b) and Fig. 3.4(d)] or o) = vfn)(nﬂ) le.g.,
Fig. 3.4(a) and Fig. 3.4(c)]). Then, determine the unknown value h'%,
according to one of the following “tiling rules™

— if the edge €y is directed from v,(q% to vz(f; and it belongs to the
contour of a tile of ¢ [Fig. 3.4(a)] then hih, = %) — 1:

— if the edge €,,,—pg is directed from vz(,) to v,(m and it belongs to the

contour of a tile of ¢*) [Fig. 3.4(b)] then h, = nl) 4+ 1

— if the edge e,y is directed from vz(,) to vﬁrm and it does not belong

to the contour of a tile of ¢ [Fig. 3.4(c)] then hY, = hﬁfg - 3;

— if the edge €,n—pg is directed from o9, to v,(,i,) and it does not belong

to the contour of a tile of ¢® [Fig. 3.4(d)| then h'%), = A + 3;

Iterate the process for all the internal vertices, vl € vl(fl)t,

n=1,..,N —1|Fig. 3.4(e)|.

m=1,..M-—1,

(B) Exhaustive Tiling Generation
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Figure 3.3: Enumerative Tiling Method (M = 4, N = 3) - Tllustrative scheme
for the computation and arising values of the height function of the boundary
vertices vgt € 0A.

Starting from the definition of the height function, the analytic procedure for gen-
erating the full-set of T complete tilings is based on the definition of a sequence of

tiling words, w® = {wl(t) l=1,.., L} (t=1,...,T), each one corresponding to

a sub-array configuration, ¢!, and composed by L = (M — 1) x (N — 1) integer
entries (also called letters) whose values only? depend on the height function at
(t)

the internal vertices, v, ,, as follows

hin — hin

w® = 2y L (3.6)

4

where I 2 m + (n — 1) x (M — 1), ), and h{}) being the height function value

of the (m,n)-th (m=1,..,M —1; n =1,..., N — 1) internal vertex of the ¢-th

entry and of the first one (i.e., c(V) also indicated as minimal tiling [48]) of the
T-size list of complete configurations, respectively.

The minimal tiling is generated only once by means of the following algorithmic

sequence (Algorithm B1):

e B1.1 Vertex selection - Select the vertex of 0A with maximum height value

20nce again it is worth remembering that the values of the height function in correspondence
with the boundary vertices, vggt € 0A, only depend on the shape of the array aperture A.
Therefore, they are the same for a fixed surface A whatever the complete tiling configuration

at hand.
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(i.e., o) = arg {maa:f;% """ % [h (vﬁ}?) ; UJ(Q evl } }) If there are two or

_____ ext

more vertices with the same height function, arbitrarily select one of them;

e B1.2 Domino tile placement - Place a vertical, ¢, or horizontal, o/,
domino tile so that the two boundary vertices adjacent to vr(ézl (i.e., v((izﬂ)n €

v le.g., Fig. 3.5(a)] or vgznil) € Vé?t) are also vertices of the same domino

tile;

e B1.3 Aperture boundary and h-value update - Complete the computation
of the h-values of the vertices of the domino tile placed in A at the step
B1.2, by determining the height function in correspondence of the internal
vertices according to the rules defined in A1.2 of the “Algorithm A1“ (Fig.
3.4). By subtracting the tile area o"/# from the original surface of the
aperture A, update the aperture boundary, A < 9 (A — oV/1), as well as
the extension of the aperture, A + (A — ¢"/#) [Fig. 3.5(b)];

e B1.j Stopping criterion - Stop if the aperture is totally covered and the
function h is computed for all (internal) vertices [Fig. 3.5(¢)]. Otherwise,
go to the “B1.1 Vertex selection” step.

It is worth noticing that the word “coding” such a minimal tiling, ¢, is w) =0
since all its letters are equal to zero (i.e., wl(l) =0, V1) being hl(t) = hl(l), l=1,...L
in (3.6).

The last tiling solution ¢, called mazimal tiling [48], is also analytically de-
termined by still applying the Algorithm B1, but selecting the vertex with the
minimum height function value on A in “B1.1 Vertex selection”.

As for the generation of the remaining complete tiling configurations (t = 2, ..., T'—

T)

1), once the h-values of the minimal tiling have been computed, {hl(l), [ =
1,..., L}, according to the “Algorithm B1”, they are exhaustively generated as
follows (Algorithm B2):

e B2.1 Tiling word update - Scan the tiling word w(*=1) from the last letter
(I = L) to the first one (I = 1) and stop when hf:ll) > a0 e (2, L]
le.g., r = L - Fig. 3.5(¢)] or r = 1. Set the first r letters of the new tiling
word w® as follows

(t=1)
® ) w l=1,..,r—=1
w,’ = ; 3.7
| { v 1o, (3.7)
e B2.2 Height function computation - Compute the values of the height
function of the first r internal vertices, {v,(f;)n € v,(fft; n = L%J + 1;

m=1—(n—-1)x (M-1); 1l = 1,...,r}, || being the floor function,
corresponding to the letters wl(t), [ =1,...,r according to the rule

h0) = 4w + ). (3.8)

mn’
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Figure 3.4: Enumerative Tiling Method (M = 4, N = 3) - Tllustrative scheme
for the computation (a)(b)(c)(d) and (e) values of the height function of the
internal vertices vﬁfn.
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(1) e (1)
U(mfl)n Umn U(m+1)n

S S

p 1

Figure 3.5: Enumerative Tiling Method (M = 4, N = 3) - Illustrative scheme for
the definition of the minimal tiling configuration and for the computation of the
height function values: (a) placement of a new domino tile; (b) computation of
the height function of the new vertices and aperture/aperture-boundary update;
(c) values of the height function of the minimal tiling.
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o B2.3 Feasibility Check - Go to “B2.4 - New tiling generation” if the condi-
tion

h8 — | ={1,3} (3.9)

9
holds true, v being a neighboring vertex (i.e., v\ € v(%) ) with an already

defined height function value, hz(fg) =h (v,(,?). Otherwise, go to “B2.1 Tiling
word update” and continue scanning the tiling word starting from r = r—1;

e B2.} New tiling generation - Known the values of h (-) on 0A (Algorithm
A1) and the height function values hd, computed through (3.8), place the
domino tiles inside A to fit the “tiling rules” in “A1.2 Computation of the
h-value of the internal vertices of A”. Afterwards, define the new complete
tiling configuration ¢ by applying the “Algorithm B1”. Once the array
aperture A has been totally covered and the height function values are all
defined, {hﬁf)n; m=1,..M—1;n=1,..,N — 1}, compute the remaining
letters wl(t), l=r+1,.., L through (3.6);

e B2.5 Stopping criterion - If t = T" — 1, then stop the tiling generation.
Otherwise, update ¢ (i.e., t « ¢t + 1) and go to “B2.1 Tiling word update”.

3.3 Pencil Beam Synthesis through the Enumer-
ative Tiling Method (ETM)

Once the complete list of existing tilings has been generated, the nested opti-
mization strategy described in Chapter 2 [eq. (2.4) and (2.5)] together with an
excitation matching approach for a fast computation of the sub-array coefficients
is here proposed in order to find the optimal tiling/clustered configuration, ¢
that totally covers the aperture and radiates the minimum sidelobe level (SLL)
pencil beam pattern with its main beam steered along (6y, ¢o). Accordingly the
cost function of the tiling array synthesis problem is defined as follows

® (c;a, ) = SLL [|AF (0, ¢; ¢, v, B)|] (3.10)

where in (3.10) SLL [-] is the function measuring the SLL of the power pattern
|AF (0, ¢; c,a,6)|2. The Enumerative Tiling Method (ETM) is summarized in
the following steps:

e Step 1. Reference Array: given the ideal fully-populated array, the refer-
ence amplitude weights o/, m =1, ..., M, n=1, ..., N are obtained

by means of standard methods (e.g., Taylor, Dolph-Chebyshev [91]) while
the phases as

Bemn = —k (¢, sin by cos ¢g + ye,,.. sinfysin ¢y) , (3.11)
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m+ m n+ n . .
T, = {#} and v, = {w} being the planar coordinates

of the ¢,,,-th sub-array center.

e Step 2. Tilings Enumeration: the optimal tiling generation method de-
scribed in the previous section, is used for the enumeration of the whole
set of clustering configurations C,, = {c(t); t=1,.., T};

e Step 3. EM Sub-array Weights: for each tiling c;;, t = 1,...,T, the op-
timal compromise EM excitations coefficients (o™, BFM) are obtained

minimizing the following excitation matching problem?

(M, BFM) = arg [mm {Z > | - H (3.12)

m=1 n=1

The optimal amplitudes and phase coefficients solving (3.12), turn out to
be analytically obtained as [29]

Zz&ref@:mq’ g=1,....Q (3.13)

nlml

B ZZﬁr@facmn(P q= 17---aQ (314)

nlml

e Step 4. Cost Function Evaluation: evaluation of the SLL (3.10) for each
of the T" solutions and selection of the best tiling/sub-array weights, solving

(e o) =g | min (@ (esaf B} (313

3.3.1 Numerical Assessment

The first example is concerned with a planar array made of 40 (M x N =
8 x 5) ideal isotropic radiators (i.e. E(0,¢) = AF (6, ¢)) with inter-element
spacing d, = d, = d = 5 [Fig. 3.6(a)]. The excitations of the reference fully-
populated array |Fig. 3.6(a)], affording the power pattern shown in Fig. 3.6(b)
and characterized by the pattern indexes in Tab. 3.2, have been defined as
aref 2 arefaref {aref;m=1,.., M} and {a’*/; n =1, ..., N} being the weights
of a Dolph-Chebyshev pattern [91] with SLL = —20dB. It is worth noting

3 A rigorous enumerative approach, minimizing (3.10), would require for each tiling solution
the determination of the optimal set of excitations minimizing the SLL (e.g. by means of a
convex optimization). Here a sub-optimal EM-based enumerative procedure is justified by
the numerical efficiency of the analytic relationships used for the computation of the EM
excitations. A detailed discussion about optimal ET M methods, jointly optimizing the sub-
array configuration and the excitations coefficients, is reported in Chapter 4.
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here that the chosen reference pattern is not an optimal reference, and has been
selected because is a simple “canonical” pattern, and if the proposed approach is
able to achieve a good approximation of the reference, the same would happen
for a true optimal pattern.

Since at least one side (M = 8) is even (i.e., M mod2 = 0) and according to the
Covering Theorem (Sec. 3.1.2), the array aperture at hand turns out to be fully
tilable with domino tiles and the whole number of complete tiling configurations
(3.4) amounts to T' = 1.4824 x 10*. Being A7 ~ 0.12 [sec| (7 =~ 0.178 x 10* [sec|)
and A7g = 0.45 [sec|, the CPU-time for determining a clustering solution and for
computing the corresponding SLL value, respectively, the overall computational
cost of an exhaustive search is still viable (7pry =~ 0.845 x 10* [sec|, being
Term = (AT + Atg) x T), thus the ETM (Sect. 3.3) has been profitably used
to find the globally-optimum sub-arraying configuration.

Figure 3.7 shows the SLL values of the whole set of complete tiling configu-
rations, C,, = {c(t); t=1, ...,T}, ordered from the worst (i.e., the clustered
arrangement with the highest SLL: SLLY"™' = —11.36 dB) up to the best (i.e.,
SLLbt = —18.89 dB). While different solutions can have the same SLL value,
only a subset of the T" sub-array configurations guarantees performance close to
that of the reference fully-populated array (SLLy, = —20dB). More in detail,
only about 10% complete tiling solutions are characterized by SLL < —18.0dB.
Such a percentage reduces to 1% for having SLL < —18.5dB and it turns out
to be less than 0.2% to guarantee a SLL < —18.8dB.

Let us now focus on the solutions with the lowest sidelobes. There are four
different tiling configurations affording power patterns with the minimum SLL
value (i.e., SLL** = —18.89dB). They are shown in Fig. 3.8 along with
their sub-array amplitudes [Fig. 3.8(a), Fig. 3.8(c¢), Fig. 3.8(e), and Fig.
3.8(¢g)| and the radiated power patterns [Fig. 3.8(b), Fig. 3.8(d), Fig. 3.8(f),
and Fig. 3.8(h)]. For completeness, the corresponding tiling words w(®, ¢ =
{186, 1267, 3223, 9323}, are reported in Tab. 3.3. As it can be observed, these
architectures are irregularly organized with an unbalanced distributions of hori-
zontal, o) and vertical, oV, tiles (i.e., 16 o over 20). Moreover, it is worthwhile
noticing that, even though each arrangement corresponds to a different tiling-
word (Tab.3.3), all can be yielded from one of them by simple mirroring with
respect to a coordinate axis. For instance, the solutions ¢ = {1267, 3223, 9323}
can be generated from the ¢ = 186-th one [Fig.3.8(a)| by just applying an hor-
izontal [e.g., Fig. 3.8(g)] and/or a vertical [e.g., Fig. 3.8(c¢) and Fig. 3.8(e)|
flip/s. Such an observation will be further assessed in future works and (if veri-
fied) also fully exploited to further reduce the dimension of the solution space as
well as the CPU-time 7 for generating W, thus extending/enabling the use of
the ETM to larger array sizes to find without uncertainty the global optimum
clustering.

For comparative purposes, the worst-case solution (¢ = 11729) with the corre-
sponding sub-array excitations [Fig. 3.9(a)| and its power pattern [Fig. 3.9(b)]
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Figure 3.6: ETM Numerical Assessment (M =8 N =5;d = 0.5)\; T = 1.4824 x
10%) - Plots of (a) the array geometry and reference excitation amplitudes (a¢/;

m=1,...M;n=1,..,N) and (b) the reference power pattern, !AF"ef (Q,gb)f.

Table 3.2: ETM Numerical Assessment (M =8, N =5;d = 0.5\; T = 1.4824 x
10*) - Radiation performance (SLL, D, HPBW,., HPBW,) of the reference,
the best, and the worst ETM tiling solutions.

SLL D | HPBW,, | HPBW,
[dB] | [dBi] | [deg] |deg]
Reference | —20.00 | 20.30 14.23 23.71
Best —18.89 | 20.30 14.06 23.46
Worst —11.36 | 20.03 14.18 21.87

is reported, as well. Unlike the optimal tilings in Fig. 3.8, which provide the
lowest SLL (Tab. 3.2), the organization of domino tiles is here quite regular
[Fig. 3.9(a)], thus unavoidably generating high sidelobes [6].

3.4 Pencil Beam Synthesis using the Optimization-
Based Tiling Method (OTM)

The ETM approach allows to find the global optimum by a complete enumer-
ation of the existing tilings. Anyway when the dimension of the array aperture
increases, the number of tiles needed to completely cover it increases, and con-
sequently the number of combinations for the aperture tiling increases. Table
3.4 reports a set of T" values for different sizes of the aperture side of a square
array (i.e., M = N). As it can be noticed, the admissible set of complete tilings
exponentially grows with the array size, namely the number of elements M x N,
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SLL [dB]

Reference-Array
SLL
L T T T T T
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Solution Index [x 103]

Figure 3.7 ETM Numerical Assessment (M = 8 N = 5; d = 0.5\; T =
1.4824x10%) - Values of the SLL of the whole set of complete tiling configurations,
Co = {c®; t =1,..,T}, ordered from the worst. to the best.

Table 3.3: ETM Numerical Assessment (M =8, N =5;d = 0.5\; T = 1.4824 x
10%) - Tiling words corresponding to the ETM clustered arrays t = 186, t = 1267,
t = 3223, and ¢t = 9323 providing the global minimum SLL.

| | ¢ | w!

Best 186 | 0000000000001101111100111111
Best | 1267 | 0000000110000001111101111110
Best | 3223 | 0000001111111101222211111111
Best | 9323 | 1000000111111112222101111111

| Worst | 11729 [ 1010101111111101111100101010
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Figure 3.8: ETM Numerical Assessment (M =8 N =5;d = 0.5)\; T = 1.4824 x
10%) - Plots of (a)(¢)(e)(g) the tiling configurations and sub-array excitations,
and (b)(d)(f)(h) the power pattern of the solutions (a)(b) t = 186, (¢)(d) t =
1267, (e)(f) t = 3223, and (g)(h) t = 9323 providing the global minimum SLL.
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Figure 3.9: ETM Numerical Assessment (M = 8 N = 5; d = 0.5\, T =
1.4824 x 10*) - Plots of (a) the tiling configuration and the sub-array excitation
amplitudes and (b) the power pattern of the worst complete clustering affording
the global maximum SLL.

Table 3.4: Number of complete tiling configurations, 7', and time requested for
the generation of a single tiling solution (A7) and all tiling configurations () for
different sizes of a square aperture, M = N = {6, 8, 10, 16}.

M =N T AT [sec] T [sec]
6 6728 0.10 6.72 x 102
8 1.29 x 107 0.15 1.94 x 10°
10 2.58 x 10 0.20 5.16 x 10%°
16 [ 244x10% | 040 |9.76 x 10

pointing out that an enumerative sampling of the solution space looking for the
“best” sub-array configuration turns out to be already unfeasible for M = N =8
(T =1.29 x 107, A7 = 0.15 [sec] — 7 = 1.94 x 10° [sec|) and impossible when
M =N >10 (T > 2.58 x 10", A7 > 0.20 [sec] — 7 = 5.16 x 10" [sec]), AT
and 7 being the CPU-time for generating one and the whole set of T complete
tilings (7 = T x A7), respectively, on a 2.4GHz PC with 2GB of RAM.
Accordingly, when the dimension of the aperture (i.e., the cardinality of the
corresponding solution space) does not allow a computationally-feasible applica-
tion of the enumerative approach (Sect. 3.3), the domino-like aperture tiling is
solved through an innovative binary GA that exploits both a suitable coding and
proper analytically-generated GA-“schemata” [87] to efficiently (i.e., maximizing
the convergence rate as well as reducing the dimension of the solution space)
explore the solution space for enabling the synthesis of large arrays. Before de-
scribing the optimization procedure, let us point out the following key-points
concerned with the GAs and their effective/profitable use in high-dimensional
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solution space (e.g., large array synthesis):

e GA-Schemata and GA-Implicit Parallelism
(G As search mechanisms mainly rely on “schemata” and the arising “implicit
parallelism” [87|. From (87|, a schemata is a similarity template describing
a subset of chromosomes (i.e., the coded representation of the unknown
vector w) with similarities at certain chromosome positions. For a bi-
nary alphabet, (i) there are 3L admissible schemata, (ii) a GA population

of U trial solutions, W® = {wgu); u=1,.., U}, contains between 2% and

U x 2% schemata depending upon the population diversity, and (i) at each
i-th iteration (i = 0, ..., [; I being the maximum number of iterations) stan-
dard genetic operators (i.e., roulette-wheel selection, single-point crossover,
and mutation [94][88][89]) process something like U® schemata.

The Schemata theorem [87] states that a schemata is replied in the suc-
cessive iterations a number of times proportional to the average fitness of

the corresponding trial chromosomes, CIDZ(-U) = <W§“)> being the fitness of

WE“). Therefore, the GA solution at the convergence (i.e., i = [P < )
is composed by the best schemata combined during the evolution by all
G'A operators, but mainly by the crossover, which is responsible of mix-
ing the genetic content of the different chromosomes. Since a schemata
is replied in the successive iterations a number of times proportional to
the average fitness of the corresponding trial chromosomes [87], it turns
out that “generating/selecting” from the beginning (i = 0 - Initialization)
“good” schemata is a good receipt to increase the convergence rate (i.e.,
reducing the number of iterations I°") for reducing the CPU-time of the
optimization process.

Towards this end, let us consider that the probability to yield “good”

schemata from a random generation of a population of U (U < T) tiling
words, WO = {wéu); u=1,.., U}, U < T, is generally lower than ran-
domly choosing/generating these latter from the total set of admissible T
words, W, = {W(t); t=1,.., T}, to which the optimal one w° certainly
belongs to, as well. On the other hand, since it is not computationally pos-
sible to generate all 7" words (as for the enumerative approach), a suitable

algorithm for setting W(()“) € W, without computing whole ensemble W
is needed . As for this latter, the following “word rules” can be exploited:
- Rule #1. By substituting (3.8) into (3.9) and re-writing the equation, it
turns out that

4 (wf” = w) + b, - nY) = (1,43} (3.16)
(t) _ hpd—hinn : , : ,
where w,’ = =#—="" (3.6) is the letter corresponding to the neighboring

vertex v and k £ p+ (g— 1) x (M —1). Since high — hby) = {&1,+3}
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from (3.9) and knowing that wl(t) is an integer value, (hl(t) - hl(l)> always

being a multiple of 4 [52], the following condition holds true (Rule #1):
w —w = {0, £1} (3.17)

where w,(:) = {wl(t,)l, wl(jr)l, wl(t,)(M,l)a wl(i)(M,l)} unless wlit) # wl(t+)1 if

Imod (M — 1) =0 and/or wg) # wl(i)l if (1 —1)mod (M —1)=0

- Rule #2. Tt has been proved [48] that the letters of the maximal tiling

word, w(T), with the same value belongs to connected regions over A, TEZ&,

Jj = 1,..,w™" being w™*" = max;_1 1 {wl(T)} [Fig. 3.10] and they
satisfy (3.17), as well;
- Rule #3. From [53],

wl(l) < wl(t) < wl(T), [=1,..,L (3.18)

w" and w!™ (I = 1,...,L) being the I-th letter of the minimal and the

maximal tiling words, respectively. Therefore, since wl(l) =0,l=1,..,L

T) ()

and wl( < w™*® by definition of w™*, a generic letter w,” is a non-

negative integer value (i.e., wl(t) >0Viell L),

e GA-Coding

G As are optimization tools devoted to minimize /maximize a suitably-defined
cost function @ (-) that quantifies the fitting of a trial solution to the
user-defined requirements. The computational burden of G As is given by
Aty x IP" x U [92] where Aty is the CPU-time for a single cost-function
evaluation, I°P" is the number of iterations to converge to the final solu-
tion, c?!, and U is the population dimension. Since U is proportional
(usually greater than) to the number of problem unknowns, the use of the
tiling word, w = {w; : [ =1, ..., L}, as unknown vector instead of the mem-
bership vector, ¢ = {¢n; m = 1,...,M; n=1,..., N} is profitable since
L < M x N. Another key advantage in preferring w to c for saving com-
putational resources lies in the cardinality of the corresponding solution
space, indeed it drastically reduces from Q> [29] to (3.4).

Within such guidelines, the following G A-based optimization strategy has been
implemented:

e Step 1: Population Initialization (i = 0) - Set the first (v = 1) and the U-th

U = w 4 14 trial solutions of the initial population W to

4The value of U is equal to the maximum number of different tiling words, all belonging to
W, that can be generated through (3.20).
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Figure 3.10: Optimization-based Tiling Method - 1llustrative scheme for the def-

in(it)ion of the letters of the mazimal tiling word w(™ on the internal vertices
T

Vil € A.
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the minimal tiling word (i.e., WZ(U)J = W(t)thl) and to the mazimal
u=1,i=0 =

tiling word (i.e., WEU)Ju:U T W(t)Jt:T), respectively.
As for the solutions from v = 2 to u = U — 1 still belonging to W,
consider Wél) = l(lo =0;1=1,..,L} as reference parent. Since (3.17)

(“Rule #17) and (3.18) (“Rule #3”) state that the [-th letter of w§“>J
u=2,1=0

can be only incremented by one (i.e., wl(,z) = (u Qs 1), set those letters

whose corresponding vertices belong to the rnost internal region of the

aperture (i.e., v , € Y [Fig. 3.10]) to wl(?)J Z(Z)J +
' 7 du=2,i= 0o u=1,i=0

1. Afterwards, iteratively generate the solutions from v = 3 up to U — 1 by
exploiting “ Rule #2” and “ Rule #3". More specifically, update by one the
letters of the vertices in the region 'I'mt, Jj=w""" —u+x(u) [Fig. 3.10]
being

X (u) = { ’ if uS W (3.19)

2+ Zg(u (w™*® — |+ 1) otherwise

where ¢ (u) = min {[1,...,w™** — 2] : x (u) > u}. Mathematically, the ini-
tialization of the u-th solution (v = 2,...,U — 1) can be summarized as

follows ) w "
u—1 . u
u A 1 e’
wy = { Wiy T s €Yy 3a0)
wy,; otherwise
where (@)
- wm difu=x(u
J= { j—1 otherwise (3.21)

If U < U, define the remaining (U — U) initial words by deriving at most

[%W ones from the application of the enumerative approach (“Algorithm

B1”) to each one of the first U'—1° words, {W0 u=1,..,0— 1}. Otherwise
(U > U), randomly select the U solutions of W from the U ones;

e Step 2: Binary Coding - According to (3.18) (“Rule #3”), the maximum
number of bits for codifying a generic [-th letter of a word is equal to
By, = [log, {w™=}]. Thus, code the u-th trial tiling word, w'*, into
a binary G A-chromosome of By, = L x [log, {w™*}]| bits, [-] being the
ceiling function®;

5The last word (i.e., w(()U) = w(?) has no successive words and therefore it cannot be
considered as starting point for generating new initial trial solutions.

6The advantage of considering w instead of c is even greater when dealing with the (binary)
coded (i.e., more symbols are used in correspondence with an unknown) representation of the
unknown vector since By, < B, Be = (M x N) x [log, Q]being the number of bits needed
for coding c and w™** < Q.
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e Step 3: Reproduction Cycle - Apply the roulette-wheel selection, the single-
point crossover with probability p., and the mutation with probability p,,
[88][89]) (Fig. 3.11) to generate a new set of trial solutions, W® i > 1.
For each u-th (u =1, ...,U) word, qu), compute the height function values
of the corresponding vertices through (3.8) and check the condition (3.9).
If this latter is not satisfied, discard this trial solution and generate a new
one through the G A operators;

e Step 4: Fitness Evaluation - Determine the G A-population of U tiling
configurations, {c§“’, u = 1,...,U}, corresponding to the word set W
through “B2./ - New tiling generation” and compute their fitness values

o = @ (c§“>> (3.22)

Close the GA-operation loop by finally applying the elitism operator [94]
to keep the best solution found so far within the current :-th population;

e Step 5: Convergence Check - If i = I or ® (c?pt) < SLLy,

e = ang (min, { (<) }) (3.23)

and SLL;, being the optimal tiling at the i-th iteration and a user-defined
fitness threshold, stop the iterations (I°?* = i) and set c®”* = c¢*'. Other-
wise, update the iteration index (i < i+ 1) and go to Step 3.

3.4.1 Numerical Assessment

The proposed schemata-driven synthesis framework and its implementation for
the design of complete-aperture-coverage clustered planar arrays that radiate the
minimum SLL power pattern are discussed in this Section by illustrating a set
of representative numerical examples considering ideal-elements arrays as well as
real-elements arrays, simulated using a full-wave commercial software.

3.4.1.1 Ideal-Elements Arrays

This sub-section is aimed at assessing the effectiveness of the analytically-driven
G A-based tiling method (Sect. 3.4). Towards this end, the first benchmark
is related to the same aperture of Sect. 3.3.1, therefore a tractable cardinal-
ity for the ETM that would not require in principle the exploitation of an
optimization /solution-space-sampling strategy, but here dealt with the OTM for
proving its capability to retrieve a global optimum solution (i.e., a clustered
arrangement belonging to C,, with the lowest SLL value). The control parame-
ters of the GA have been set according to [94]: p. = 0.9 (crossover probability),
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INITIALIZATION i =0
wiei) = ™)1 =1,.., L}
u=1,..,U0

FITNESS EVALUATION
Q) =1,...,U

——| SELECTION

CROSSOVER
Pe
1 .
MUTATION 2
Pm g_
c
Q
=
>S5
0O
NO Is the Word ﬁ
Admissible? o
YES

NO New Complete
Population?

YES

FITNESS EVALUATION
o)y =1,..,U

t=14+1 NO

Convergence?

END

Figure 3.11: Flowchart of the GA-based OT M approach.
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pm = 0.01 (mutation probability), U = 8, and I = 100. Therefore, the number
of trial tiling configurations potentially generated during the G A-optimization is
at most U x I = 800, that is about 5% of the total number of complete tiling
solutions, T' = 1.4824 x 10*. With reference to Step 1 (Sect. 3.4) and the gener-

ation of the initial tiling-words population, W(©® = {w(()u); u=1,.., U} (L =28

being the word length or number of letters), it turns out that U = 4 since
wm® = 2, wT) = {1111111122222112222211111111} being the mazimal tiling
word. Table 3.5 reports the U = 4 analytically-generated words (Wél) = w(t)J

and w(()U) = W(t)thT being the minimal and the mazimal tiling words, respec-

tively), while the corresponding sub-array configurations are shown in Fig. 3.12.
Due to the stochastic nature of the GA, €2 = 100 runs have been executed to
give statistically-meaningful insights on the OTM performance. For each w-

t=1

th (w = 1,...,Q) run, the remaining (U — (7) = 4 individuals for completing
the initial population have been randomly generated by imposing non-equality
conditions among both the whole set of U trial words and the different pop-
ulations of the 2 independent runs. From such a statistical analysis, it turns
out that the OTM converged to one of 4 different final solutions denoted as
Solution 1 |Figs. 3.14(a)-3.14(b)|, Solution 2 |Figs. 3.14(a)-3.14(b)|, Solution 3
[Figs. 3.14(c)-3.14(d)], and Solution 4 [Figs. 3.14(e)-3.14(f)] whose radiation
indexes are reported in Tab. 3.6. More specifically, the Solution 1 with the
lowest SLL = —18.89 dB has been found with a success rate of 40%. Otherwise,
even though the global optimum has not been reached, the GA-solution bt
[cPest & arg (max,—1_q {® (c?')})] with the higher SLL value (Solution j - Tab.
3.6) is characterized by a SLL = ® (gbes’f) = —18.85dB, that is, only 0.04dB
above the global minimum of the cost function, ®. Moreover, it is worth point-
ing out that always (Vw = 1,...,Q), the GA-synthesized arrangement belongs
to the 0.2% pool of solutions having SLL < —18.8dB within the whole set of
T = 1.4824 x 10* complete tilings, thus confirming the effectiveness of the OTM
in sampling the solution space.

A key item to be carefully discussed is the advantage of the smart G'A-initialization
of the OTM. Towards this end, let us analyze the behavior of ® (cfp t) versus the
iteration index, ¢ = 1, ..., I, for a representative set of the previous () runs along
with that of a GA (denoted as Bare Init GA) where the U chromosomes of the
initial population have been set to the first U words generated by the ETM (i.e.,
Wéu) =w® u=tt=1,..,U <T) (Fig. 3.13). As it can be observed, whatever
the initialization with good schemata, the GA-based optimizations are very effi-
cient at the beginning (Vw: ® (cfpt)JKs € [-16.7; —=17.5] dB — ® (c?”t)Jl.<3 <
SLL"s" = —11.36 dB), but the OTM-based ones quickly converge to the global
minimum or close to it fitness/SLL value (SLL"%" = —18.89 dB), while a “bare”

initialization causes the corresponding clustering solution c;” " is trapped /sticks
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Table 3.5: OTM Numerical Assessment (M =8, N =5;d = 0.5\; T = 1.4824 x
10% L =28; B =56; U = 7; p. = 0.9; py, = 0.01; I = 100) - U = 4 analytically-
generated words, W(()l) = w(t)Jt_l and W(()U) = w(t)Jt_T being the minimal and

the mazximal ones, respectively,_of the initial OTM papulation.

| wy | |

|
1| 0000000000000000000000000000 || = w®]
2 [ 0000000011111001111100000000
3 [ 1111111111111111111111111111
U =4 | 1111111122222112222211111111 | = w] _

1.25 1.25

0.75 0.75

0.25 0.25

yIN
yIN

-0.25 -0.25

-0.75 -0.75

-1.25 -1.25

'
N

-15 -1 -05 0 05 1 15
XI\

N

1.25 1.25

0.75 0.75

0.25 0.25

yIN
yIN

-0.25 -0.25

-0.75 -0.75

-1.25

-1.25

-15 -1 05 0 05 1 15
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N
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() (d)

N
'
N

Figure 3.12: OTM Numerical Assessment (M = 8, N = 5; d = 0.5\ T =
1.4824 x 10*; L = 28; B =56; U = 7; p. = 0.9; p,, = 0.01; I = 100) - Plots of
the U = 4 tiling configurations used for the OTM initialization: (a) u = 1, (b)
u=2,(c)u=3,and (d) u=U.
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-16.5 T

17 ¢

-17.5

SLL [dB]

-18

-18.5

-19 !

Sample Run 1
Sample Run 2
Sample Run 3
Sample Run 4

40

Iteration Index, i

Sample Run 5
Sample Run 6 ———
Sample Run7 ===

Sample Run 8 — — —

80 100

Sample Run 9
Sample Run 10
Bare Init.

Figure 3.13: OTM Numerical Assessment (M = 8 N = 5; d = 0.5\, T =
1.4824 x 10%; L = 28; B = 56; U = 7; p. = 0.9; p,, = 0.01; I = 100) - Behavior
of the optimal value of the cost function (3.22) versus the iteration index, i,
for 10 representative sample runs of the OTM and for the GA run with “bare”

initialization.

Table 3.6: OTM Numerical Assessment (M =8, N =5;d = 0.5\; T = 1.4824 x
10, L =28; B=56; U =T7; p. = 0.9; p,, = 0.01; I = 100) - Radiation indexes
(SLL, D, HPBW,,, HPBW,) of the reference solution, of the convergence
solutions synthesized in 2 = 100 OTM runs, and when considering the GA-
based tiling method with “bare” initialization.

SLL D HPBW,. | HPBW
[dB] | [dBi] [deg] [deg]
OTM — Soll | —18.89 | 20.30 14.06 23.46
OTM — Sol2 | —18.87 | 20.31 14.03 23.46
OTM — Sol3 | —18.86 | 20.29 14.08 23.41
OTM — Sol4 | —18.85 | 20.32 14.07 23.62
‘ GA — Bare ‘ —17.95 ‘ 20.29 ‘ 14.12 23.67 ‘
‘ Reference ‘ —20.00 ‘ 20.30 ‘ 14.23 23.71 ‘
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Solution 2

1.25 1
0.75 0.9
0.8
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Figure 3.14: OTM Numerical Assessment (M = 8, N = 5; d = 0.5\ T =
1.4824 x 10% L = 28; B =56; U = 7; p. = 0.9; p,, = 0.01; I = 100) - Plots of
(a)(c)(e) the tiling configurations and the sub-array excitation amplitudes and
(b)(d)(f) the power pattern of the Solution 2 (a)(b), Solution 3 (c)(d), and

Solution 4 (e)(f).
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u | SLL[dB] GA Chromosome

1| -16.67 |[0000000000000000000000000000000000000000/0000000000000000
2| -1807 | 0000000000000000010101010100[0001010101010000000000000000
3| -1762 | 010101010101010101010101010101010101010%01010[201p101d101
4| -1693 | 010101010101010110101010100101101010101001010201j0101d101
5| -17.11 |/0000000000000000000000000000000000000101/0000000000000100
6 | -17.56 | 0000000000000000000000000000000000000101/0000000000000J101
7 | -17.78 | 0000000000000000010101010100j0001010101010000000001000/101
U=8| -17.34 | 010101010101010101010101010101010101100100010100p101d100

(a)

u | SLL[dB] GA Chromosome

1| -16.67 ||00000000000000000000000000000000000000000000000000000000
2 | -17.11 |[00000000000000000000000000000000000001010000000000000100
3| -17.56 |[00000000000000000000000000000000000001010000000000000[201
4 | -1614 |0000000000000000000000000000000001010100/0000000000000000
5 | -17.64 |[00000000000000000000000000000000010101000000000001000000
6 | -16.80 ooooooooooooooooooooooooooooooolooooooooomoo 00
7 | -17.88 | 00000000000000000000000000000000[010101010000000001000J201
U=8| -16.11 |0000000000000000000000000000f000701000000/0000010000000000

()
SLL [dB] | Global-Optimum Chromosome
-18.89 ‘ |0000000000OOOOOOOOOOOOOOdl01|0001|0101010]400000|101b101(|101|

()

Figure 3.15: OTM Numerical Assessment (M = 8 N = 5; d = 0.5\, T =
1.4824 x 10% L = 28, B = 56; U = 7; p. = 0.9; p,, = 0.01; I = 100) -
Chromosomal sequence of the initial GA population as generated in the OTM
(a) and through the “bare” strategy (b) together with the global optimum one

(¢).
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u | SLL[dB] GA Chromosome
1| -18.71 0000000000000000010101010101000ﬂ010101010000000000000101
2 | -18.09 0000000000000000010101000100§000101010101/00010[101f01010101
3 -18.72 0000000000000001010101010100/00010101010210000000000000/10
4 | -18.71 0000000000000000010101010101/00014010101010000000000000/101
5 | -18.85 0000000000000000000000000100/0002140101010200010{101§01010/101
6 | -18.85 0000000000000000000000000100/000140101010200010{10101010101
7 | -18.56 0000000000000000010101010100/000140101010210000000000000{101
U=8| -18.35 0000000000000001010000000100/00010101010210000000000000(101
(a)
u | SLL[dB] GA Chromosome
1 | -18.85 0000000000000000000000000/100f00010101010700010[1011010d101
2 | -18.72 0000000000000001010101010100/0002010101010000000000000J101
3 -17.83 0000000000000001010101010100/0001010101010001010000000]10
4 -18.47 00000000000000000000000001000001010101010000000000000{101
5 -18.47 0000000000000000000000000100/00020101010210000000000000J101
6 -18.89 0000000000000000000000000101j0001401010102400000]101)01010101
7 | -18.82 0000000000000000000000000101/00020101010100010/101}01010101
U=8| -18.45 0000000000000000000000000100/000201010101400000101{01010f101
(b)
u | SLL[dB] GA Chromosome
1 -18.89 0000000000000000000000000101/000240101010120000C|10101010101
2 -18.89 0000000000000000000000000101j0001401010102400000j10101010101
3 -18.89 00000000000000000000000O00O0C101/00010101010140000CJ2101)0101010
4 -18.18 0000000000000000000000000101j0001401010102400000§101f01010100
5 -18.89 0000000000000000000000000101/0001401010102400000j101)01010101
6 -18.89 0000000000000000000000000101/0001401010102400000j10101010101
7 -18.89 0000000000000000000000000101/0001401010102400000j101§01010101
U=8| -18.18 0000000000000000000000000101j0001401010102400000j101j01010j100
(c)
u | SLL[dB] GA Chromosome
1 -17.95 0000000000000000000000000000000%'010101090001010000000000
2 -17.73 0000000000000000000000000000/00014010100000001010000000000
3 -17.95 0000000000000000000000000000/00014010101000001010000000000
4 | -17.95 0000000000000000000000000000/0001010101000001010000000000
5 -17.95 0000000000000000000000000000/0001010101000001010000000000
6 -17.95 0000000000000000000000000000/0001/010101000001010000000000
7 -17.95 0000000000000000000000000000000%01010100‘0001010000000000
U=8| -17.95 0000000000000000000000000000/00011010101000001010000000000

(d)

Figure 3.16: OTM Numerical Assessment (M = 8, N = 5; d = 0.5\; T =
1.4824 x 10% L = 28; B = 56; U = T7; p. = 0.9; p,, = 0.01; T = 100) -
Chromosomal sequence of the GA population at the iterations (a) i = 10, (b)
i =20, and (¢)(d) i = I =100 for the OTM (a)(b)(¢) and (d) when exploiting
the bare G'A-initialization.
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in a local /non-optimal minimum of ® with SLL > —18dB (Fig. 3.13) just after
4 iterations.

The benefit of adopting the OTM smart GA-initialization can be further out-
lined from the perspective of the Schemata theorem [87|, as well. Keeping in
mind the key-argumentations in Sect. 3.4, one can deduce that whether the ini-
tial GA-population does not contain the “good” schemata of the global optimum,
the optimization will difficulty converge to it in a reasonable/finite amount of
iterations without a lucky mutation, this latter usually performed with low prob-
ability [87][94], as well. Therefore, a key-issue for increasing the convergence rate
(or, at least, the probability to reach the global optimum in a finite CPU-time)
to the optimal solution is to define an initialization procedure able to include
the “schemata” of the (unknown) global optimum within the population W,
To assess this property, let us analyze the chromosomes (i.e., the coded version
of the tiling words where the “schemata” can be identified) of the initial pop-
ulation generated in the OTM according to (3.20) [Fig. 3.15(a)| and through
the “bare” strategy [Fig. 3.15(b)] with respect to the global optimum sequence
[Fig. 3.15(¢)]. Different color boxes highlight some representative schemata of
the global-optimum chromosome [Fig. 3.15(c¢)|. As it can observed, these lat-
ter are all present in the initial OTM population [Fig. 3.15(a)|, while only a
subset of them can be found in the chromosomal sequences from the bare ini-
tialization [Fig. 3.15(b)|. For instance, the “yellow” schemata characterized by
the fixed alleles {101} at the bit positions 26, 27, and 28 is not present in Fig.
3.15(b). During the iterative process [see Figs. 3.16(a)-3.16(b) - OTM], the
G A effectively recombines the best schemata of the initial population until the
convergence. Unlike the bare GA [Fig. 3.16(d) - Bare Init|, the OTM is able to
find at the convergence (i = I°?" = I) the global optimum chromosome, which
is also shared in almost all individuals [Fig. 3.16(c) - OTM]| as an effect of the
well-known genetic pressure.

In order to assess the potentialities of the G A-based tiling approach as an
enabling tool for dealing with more complex/high-dimensional syntheses, the
domino clustering of a larger planar array has been addressed. The array at
hand is composed by 264 %—spaced elements (M = 22, N = 12), while the
two sets of reference excitations {a’¢/; m = 1,.., M} and {'*; n = 1,..., N}
have been still set to the Dolph-Chebyshev ones [91] to afford a power pattern
with SLL = —20dB. Because of the array size, the problem cardinality is now
extremely large (T ~ 1.9898 x 10%!), thus preventing the application of the enu-
merative method, while requiring the exploitation of a non-exhaustive sampling
of the solution space such as that performed by the OTM. Due to the prob-
lem dimensionality, the maximum number of GA iterations has been increased
with respect to the previous test case (I = 10%) as well as the population size
(U =2x L =462 (94|, L = 231 being the number of unknowns equal the number
of internal vertices). On the other hand, it is worth pointing out that, despite the
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Figure 3.17: OTM Numerical Assessment (M = 22, N = 12; d = 0.5\; T ~
1.99 x 103 L = 231; B = 693; U = 462; p. = 0.9; p,, = 0.01; [ = 1000) -
Behavior of ® (cfpt) versus the iteration index, i = 1, ..., I, for 10 representative
OTM sample runs including the best, ¢***!, and the worst, ¢*?"*!, cases within
the whole set of €2 = 100 tests.
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Table 3.7 OTM Numerical Assessment (M = 22, N = 12; d = 0.5)\; T ~
1.99 x 103%; L = 231; B = 693; U = 462; p. = 0.9; p,, = 0.01; I = 1000) -

) = W(t)Jt_l, mazimal tiling word, W(()U) = W(t)Jt:T,
and intermediate tiling words, W(()7)and W(()M), of the initial OTM population.

Minimal tiling word, W(()l

(u)
U W
0000000000000000000000000000000000000000000000000000000000
1 0000000000000000000000000000000000000000000000000000000000 — ‘V(t)J
0000000000000000000000000000000000000000000000000000000000 t=1

000000000000000000000000000000000000000000000000000000000
1111111111111111111111111111111111111111111111111111111111
7 1111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111111111111
1111111111111111111111222222222222222222211222222222222222
]}4 2222112222222222222222222112223333333333333222112223333333
3333332221122233333333333332221122222222222222222221122222
222222222222221122222222222222222221111111111111111111111
~ 1111111111111111111111222222222222222222211233333333333333
U — 22 3332112344444444444444432112345555555555555432112345666666 — W(t)J
6666654321123455555555555554321123444444444444444321123333

333333333333321122222222222222222221111111111111111111111

t=T

increment of the upper bound of the number of samples of the solution space (i.e.,
UX I neseiy = 462x10° vs. U X I, yv_gys = 8x 10%), the ratio between
the maximum number of trial solutions checked during the iterative multi-agent
optimization process and the set of complete tiling solutions has been drastically

o UxI _ ~26 UxI _ —2
reduced (e, &L o =23x107% vs. TXJMXN:8><5 =5.4x1072).

According to the OTM, the G A-optimization has been initialized with U =22
tiling words being w™* = 6. The minimal tiling word, w(()l) = w(t)J the

t=1’
mazximal tiling word, W(()U) = W(t)Jt:T,
w(g?) and W(()M)) of the initial trial population are reported in Tab. 3.7. Also in
this case, the GA has been run 2 = 100 times with different initial populations
unless the analytically-defined U = 22 individuals. Unlike the previous case, all
optimizations converged, in less than 10 hours, to a different final solution be-
cause of the extremely large problem cardinality, but all with SLL values below
that of the best solution achievable for the smaller array [® (cZ') < —19.3dB,
YVw = 1,...,Q, while SLLI’E“JMX]V:8X5 = —18.89dB]|. This outcome is not sur-
prising (even though it further confirms that the optimizer at hand “guarantees”
what physically expected) since the number of domino tiles in the larger array
is greater and therefore the quantization issues, causing the undesired high side-
lobes, are less critical. What is relevant for assessing the effectiveness of the
OTM in sampling a so-large solution space is that the discrepancy between the
SLL performance of the worst (¥ £ arg (ming—;_ o {® (c?*)}) - OTM Worst
Solution) and the best (¢**** - OTM Best Solution) G A solutions is only 0.01 dB
(Tab. 3.8). For completeness, Figure 3.17 shows the behavior of (c?pt) Versus
the iteration index, ¢ = 1, ..., I, for 10 representative OTM runs, while the tiling
configuration, the values of the resulting sub-array amplitude weights, and the

and other two intermediate words (i.e.,
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Figure 3.18: OTM Numerical Assessment (M = 22, N = 12; d = 0.5\; T ~
1.99 x 103 L = 231; B = 693; U = 462; p. = 0.9; p,, = 0.01; I = 1000) - Plots
of the (a)(b) the tiling configurations and the sub-array excitation amplitudes
and (¢)(d) the power pattern of the best, ¢***, and the worst, ¢“°"*!, cases within
the whole set of 2 = 100 tests.

power patterns of the OT M — Best Solution and of the OT M — W orst Solution
are shown on the left and the right column of Fig. 3.18, respectively. From Fig-
ures 3.18(a)-3.18(b), it turns out that a large part of the dominoes are horizontal,
op, while only 34 [Fig. 3.18(a)| and 36 [Fig. 3.18(b)| over 132 are vertical, oy,
respectively.

In order to assess the proposed approach also when dealing with steered beam
syntheses, the next benchmark example is concerned with the complete tiling
of the same aperture of the previous example, but now providing the minimum
SLL when the main lobe is steered in both principal planes, namely towards
(B, o) = (30, 90) [deg] and (6o, po) = (30, 0) [deg]. The best solution found at
the convergence among €2 = 100 OTM-GA runs for each pointing direction is
shown in Fig. 3.19. Firstly, it is interesting to point out that the best tilings
[Fig. 3.19(a) and Fig. 3.19(b)| are quite different from that synthesized when
constraining the beam to point along boresight (6, ¢o) = (0, 0) [deg] (Fig. 3.18).
Moreover, it is interesting to point out that there is a prevalence of horizontal
tiles, o, in Fig. 3.19(a) and vertical tiles, oy, in Fig. 3.19(b) since they are the
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Figure 3.19: OTM Numerical Assessment (M = 22, N = 12; d = 0.5\; T ~
1.99 x 10°%; L = 231; B = 693; U = 462; p. = 0.9; py = 0.01; [ = 10°) -
Plots of the tiling configurations and the sub-array excitation (a)(b) amplitudes
and (¢)(d) phases, and (e)(f) the power pattern of the best case within the
whole set of 2 = 100 tests when steering the beam towards (a)(c)(e) (6o, po) =

(30, 90) [deg] and (b)(d)(f) (0o, ¢o) = (30, 0) [deg].
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Figure 3.20: OTM Numerical Assessment (M = 22, N = 12; d = 0.5\; T =~
1.99 x 103; L = 231; B = 693; U = 462; p. = 0.9; p,, = 0.01; I = 1000) -
SLL values of the patterns generated by tiling configurations optimized for (a)
(6o, o) = (0, 0) [deg] [Fig. 3.18(a)], (b) (6o, Po) = (30, 90) [deg] [Fig. 3.19(a)],
and (c¢) (0o, 00) = (30, 0) [deg] |Fig. 3.19(b)| when scanning the beam in the
sector {6y € [—30, 30] [deg], ¢o € [0, 180] [deg]}.

ones least affected by quantization when scanning the beam in the ¢y = 90 [deg]
plane [Fig. 3.19(e)] and in the ¢9 = 0[deg| plane [Fig. 3.19(f)], respectively.
As for the radiation performance, the peak level of the sidelobes of the power
patterns in Fig. 3.19 is equal to SLL = —18.33dB [Fig. 3.19(e)|] and SLL =
—18.12dB |Fig. 3.19(f)|, that is 1dB worse than that for the broadside case
(Tab. 3.8 - SLL = —19.32dB). This is due to the phase quantization deriving
from the use of a single phase shifter for each domino tile [Fig. 3.19(¢) and Fig.
3.19(d)]. For completeness and in order to characterize the scanning performance
of a synthesize array, the SLL values obtained when steering the main lobe in
the sector 0y € [—30,30] [deg] and ¢y € [0, 180] [deg| are shown in Fig. 3.20 for
the three tiling configurations optimized for (6y, ¢9) = (0, 0) [deg] [Fig. 3.20(a)],
(0o, o) = (30, 90) [deg] [Fig. 3.20(b)|, and (6o, ¢o) = (30, 0) [deg] [Fig. 3.20(c)].
It is possible to observe that a prevalence of horizontal tiles, oy, [Fig. 3.18(a) and
Fig. 3.19(a)| provides lower SLL values when scanning the beam in the plane
with ¢y = 90 [deg| [Figs. 3.20(a)-3.20(b)| because they are the least affected by
quantization. Viceversa, better SLL performance are achieved in the ¢y = 0 [deg]
(or ¢o = 180 [deg]) plane in case there are more vertical tiles, o, [Fig. 3.19(b)].

3.4.1.2 Real-Elements Arrays

Finally, the practical reliability of the results from the proposed analytically-
driven clustering methodology has been validated by considering arrays made
of real radiating elements, as well. The aim is to show that, as expected,
for moderate scanning angles, the element pattern does not significantly af-
fect the synthesis results. Towards this end, the same tiling configurations
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Table 3.8: OTM Numerical Assessment (M = 22, N = 12; d = 0.5\; T =~
1.99 x 103; L = 231; B = 693; U = 462; p. = 0.9; p,, = 0.01; I = 1000) -
Radiation indexes (SLL, D, HPBW,,, HPBW,;) of the reference solution as
compared to the best, ¢®**, and the worst, ¢!, cases within the whole set of
Q=100 OTM tests.

SLL D HPBW,. | HPBW,
[@B] | [d4Bi] | [deg] [deg]
Reference —20.00 | 28.46 4.82 9.13
OTM — Best Solution —19.32 | 28.51 4.82 9.11
OTM — Worst Solution | —19.31 | 28.52 4.82 9.11

Freq = 9.5 [GHZz]

Wk P wo N

Gain [dB]

Figure 3.21: 3D Plot of the embedded gain pattern of the aperture-stacked patch
microstrip antennas [93] resonating at the central operation frequency of 9.5 GH z
and located in a two rings of neighboring elements.
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Figure 3.22: OTM Numerical Assessment (Real Element Array; M = 22, N =
12; d = 0.5)\) - Power pattern radiated by the ideal and the real arrays when
setting the mainlobe steered along broadside: (a) horizontal (¢ = 0 [deg]) and
(b) vertical (¢ = 90 [deg]) cuts.
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Figure 3.23: OTM Numerical Assessment (Real Element Array; M = 22, N =
12; d = 0.5)) - Vertical (¢ = 90[deg]) cut of the power pattern radiated by

the ideal and the real arrays when setting the mainlobe steered at (g, ¢g) =
(30, 90) [deg].

for the aperture M x N = 22 x 12 synthesized when steering the beam along
(0o, 90) = (0, 0) [deg] and (0y, po) = (30, 90) [deg] have been considered, but
substituting the isotropic/ideal elements with aperture-stacked patch microstrip
antennas [93| resonating at the central operation frequency of 9.5 GHz. As for
this latter, the embedded element pattern, f(@, ¢), radiated at 9.5 GH z has been
calculated through a full-wave simulation when considering the interactions of
two rings of neighboring elements (the results are coincident also when enlarging
the neighbour set) so as to include the coupling effects is shown in Fig. 3.21.
Figure 3.22 compares the normalized” broadside, (6o, ¢o) = (0, 0) [deg], power
pattern of the real and the ideal arrays [f (6, ¢) = 1] along the horizontal [Fig.
3.22(a)] and the vertical [Fig. 3.22(b)] cuts. As it can be noticed, the behavior of
the power pattern in the mainlobe region as well as for the first sidelobes for the
real case turns out to be very similar to the ideal one since f (6, ¢) has a large
beamwidth. Overall, the sidelobe of the real array is equal to SLL = —18.72dB,
thus there is a deterioration of 0.55dB with respect to the ideal case. Similar
conclusions hold true also for the synthesis when setting the steering direction
at (0o, po) = (30, 90) [deg] as proved by the plots along the steering plane (i.e.,
the vertical one) in Fig. 3.23.

"Each pattern has been normalized to its maximum in order to compare the SLL values.
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Chapter 4

Mask-Constrained Optimization of
Domino-Tiled Phased Arrays

In this Chapter a set of techniques based on the enumerative/optimization based
methods presented in the previous Chapter, are presented to address the mask
matching synthesis problem, considering pencil shaped beams. Starting from a
set of ideal requirements on the array radiation performances defined by a power
mask, the proposed methods aim at finding the optimal tiling configuration min-
imizing the mismatch of the tiled array power pattern with the mask. Optimal
tiles excitations coefficients are obtained by means of convex optimization meth-
ods. The numerical assessment validates the proposed approaches, as well as the
reliability assessment of the optimized solutions when considering real radiating
elements through commercial full-wave simulators.
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4.1. INTRODUCTION

4.1 Introduction

The design of phased array antennas usually requires that the radiation pattern
complies with a power mask, defining the maximum/minimum radiated power
over a set of angular directions. In this way the user is allowed to define the
desired radiation performances with high precision and high flexibility. As in-
stance, it is possible to request a very low SLL only in a limited angular region
for interfering signals suppression. Accordingly, the synthesis of tiled phased
arrays minimizing the distance of the power pattern with user-defined reference
power masks is here addressed. The matching with an user-defined power mask
is considered as cost function of the tiling optimization, with the aim of find an
optimal tiled arrays (i.e. a compromise with respect to the ideal fully populated
array) whose power pattern is as close as possible to the reference mask. A set
of new optimization methods, namely the ETM — CP, EM — ETM/CP, and
EM — OTM/CP methods, are proposed, addressing the mask matching tiling
optimization by jointly combining enumerative/GA-based approaches with opti-
mal convex strategies, for the optimization of the tiling configuration and of the
tiles excitations coefficients. The presented techniques positively compared with
the ET'M and OTM optimization methods presented in the previous chapters,
which unavoidably fail when dealing with a mask matching synthesis problem.

Mask Constrained Tiling Synthesis Problem - given an array of M x N
isotropic elements, positioned over a rectangular lattice, and two
domino-like tiles (UV, JH), find the optimal tiling/clustering config-
uration c?’ and the corresponding sub-array weights a’*and (3P,
such that the pencil beam pattern radiated by the tiled array maxi-

mizes the matching with an user-defined power mask M (u,v).

Accordingly, the cost function of the tiling optimization problem is defined as:

[—x (c; e, B)]
D (UO, ’Uo)

H
®(c;o, B) = x (¢, B) + (4.1)
where D (ug, vp) is the peak directivity, (ug, v9) being the beam pointing direction,
and

X (C7 o, B) = (mz)xxv {|P (u7 'U) -M (ua U)| H [P (ua U) - M (ua U)]} (42)
u,v)e
is the maximum violation of the power pattern from the power mask in the
(u,v) —plane, within the visible region V = {(u,v): u®+v* < 1}. Moreover
P (u,v) is the power pattern of the clustered array given as P (u,v) = |AF (u, v;c)|?,
while # [-] is the Heaviside function. As expressed by (4.1) the mask matching is
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defined as the maximum distance of the power pattern from the mask x (c; o, 8)
only in case the power pattern is above the mask, otherwise, the cost function
accounts only the second term [i.e. the ratio 1/D (ug,vg)] with the purpose
of peak directivity maximization. Consequently, the ideal optimum (i.e. when
X (c;a, B) = 0) is reached only if the power pattern is below the power mask in
all the (u,v) points of V. Such optimal matching can be easily obtained when
considering conventional fully-populated architectures, providing feasible mask
constraints. When instead a clustered architecture is considered, which is intrin-
sically a sub-optimal solution with respect to a fully-populated array, a perfect
matching cannot be assured. Indeed, it is worth to point out here that the aim
of the proposed methodologies is not to exactly fit the reference mask, but to
find the closest compromise solution to a perfect mask matching.

4.2 Enumerative Approach with Convex Program-
ming Optimization of Sub-Array Weights

As explained in detail in Chapter 2, the global optimum of the domino tiling syn-
thesis problem can be theoretically reached by means of a full-global optimization
approach, by jointly optimize the tiling configuration c¢ and the tiles excitations
coefficients a;, 3. Such optimization approach turns out to be computationally
unfeasible in most of the cases, mainly due to the wide solutions space when
dealing with medium /large antenna apertures. The nested-optimization method
is therefore proposed, by jointly exploiting the ET'M approach and a Convex
Programming (C'P) optimization [100][101|[102][28], denoted as ETM-CP and
defined by the following steps:

e Step 1. Tilings Enumeration: the optimal tiling generation method de-
scribed in Chapter 3 is used for the enumeration of the whole set of clus-
tering configurations Co, = {c; ¢t =1,...,T}

e Step 2. CP Optimizations: given the power mask M (u,v) defining the
ideal requirements on the power pattern, the following optimization prob-
lem is solved

(atCP, tCP) =arg |min {® (ay, B |c;)} (4.3)
a,Bt

where for each tiling ¢;, t = 1, ..., T, the optimization the sub-array weights
is performed through the C'P strategy presented in [102], in which the
maximization of the power pattern directivity along the sum beam pointing
direction is maximized, still satisfying the power mask M (u,v). More
in detail the power mask M (u,v) is uniformly discretized in R sampling
directions, (u,,v,), r = 1,..., R and a standard CP-based optimization
technique is used to obtained the optimal subarray amplitude and phase
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4.3. EXCITATION MATCHING-BASED APPROACHES

excitations (af”,BCF) of the t-th trial clustering configuration c;, are
obtained solving the following minimization problem

%{It} J{It}/ / 0, ¢; ct) sin (0) dfd¢ (4.4)

subject to the following constraints
P (ug,vo;¢) =1 (4.5)
P (uy,vp5¢4) < M (u,,v,)

r=1.,R

where in (4.4) I, = {I,; = ag.e%; ¢=1,..,Q}and R and $ stand for
real and imaginary part, respectively. The minimization of (4.4) subject
to (4.5) implies the maximization of the antenna directivity (assuming the
array does not radiate in the back half-space), defined as

(4.6)

_ 47T|P(u0avo§ct)|2
T 27 |P (6, 65 ¢ sin (6) dBde

(4.7)

e Step 3. Cost Function Evaluation: evaluation of the mask matching (4.1)
between the tiled array power pattern P (u,v;c”"™=CP) and the power
mask M (u,v), for each of the T" C'P—optimized solutions and selection of
the best tiling/sub-array weights as

(CETMch; aETM-CP BETM*CP) = arg mmT {‘b (Cm o’ By )}

-----

The above procedure allows to reach the optimum of our problem with a total
computational time equal to AtFTM=CP — AtFTM LT AtCP L TAt®?, being AtFTM
the time necessary for the ETM simulation, At¢? is the time for a single C'P
optimization and At®is the time for the evaluation of (4.1). It is worth noting
here that the feasibility of the nested optimization, depends by: i) the cardinality
of the solution space, dictated by T’; ii) the computational cost needed to solve
(4.4) under the constraints (4.5) and (4.6). Therefore, in case of small/medium
arrays, even if T" allows to enumerate C,, = {c(t); t=1, ...,T} in a reasonable
time, the optimization is still compromised by (2.5), which turns out to be the
real bottleneck of the nested optimization approach.

4.3 Excitation Matching-Based Approaches

In order to deal with medium/large arrays, a further approximation is needed.
As done in the ETM technique presented in Chapter 3, the ET'M — C' P method
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is reduced to an excitation matching (EM) ET'M approach, allowing a fast com-
putation of the tiles excitations coefficients, by means of analytic relationships.
Anyway such approximation is exploited only for the search of the optimal clus-
tering configuration, while the final sub-array amplitude and phase coefficients
are re-optimized using a C'P-based optimization. Such an approach, called FM-
ETM/CP, is implemented throughout the following procedural steps:

Step 1. Reference Array: given the power mask M (u,v) defining the
ideal requirements on the power pattern, the optimal reference excita-
tions weights I/ = afj,{ejﬁ:’f’{, m=1 .., M, n=1, .., N are
obtained through a C'P optimization of the M x N fully-populated array
[Fig. 2.1(a)];

Step 2. Tilings Enumeration: the height function based methodology
(Chapter 3) is used for the enumeration of the whole set of clustering
configurations c;;, t =1, ..., T

Step 3. EM Sub-array Weights: for each tiling ci;, t = 1,...,T, the op-
timal compromise EM excitations coefficients (o™, BFM) are obtained

minimizing the following excitation matching problem

(M, BFM) = arg [mm {Z > | - }] (4.9)

m=1 n=1

The optimal amplitudes and phase coefficients solving (4.9), turn out to be
analytically obtained as [29]

= Z Z Wit Ocrngs 1= 1,.,Q (4.10)

nlml

- Z Z B Ocmmas 4= 1,..,Q (4.11)

nlml

Step 4. Cost Function Evaluation: evaluation of the mask matching (4.1)
for each of the T solutions and selection of the best tiling/sub-array weights,
solving

(CEM—ETM; aEM—ETM’BEM—ETM) — arg [ minT{(I) (Ct; alM fM) }] (4.12)

Step 5. CP Optimization: single final C'P optimization of the amplitude
and phase excitations of the EM —optimized clustering vector ¢c#M-FTM

(aEM—ETM/CP’BEM—ETM/CP) = arg |:r27151 {(I) (a,ﬁ ’cEM—ETM)}

(4.13)

95



4.4. NUMERICAL ASSESSMENT

The EM-based methods allows to optimize the tiling with a total computational
time equal to AtFM-ETM/CP — \¢EM=ETM 4 9 \tCP  TAt® being AtFM-ETM
the time necessary for the ET'M simulation, including the EM excitation com-
putation and the cost function. The use of the analytic formulas (4.10) and
(4.11), allows a fast computation of the tiles excitations weights. In this case the
convergence of the solution (c#M~FTM; oFM-ETM/CFP gEM=ETM/CF) toward the
global optimum of the addressed problem cannot be assured as in (2.3), anyway
the best possible compromise solution obtained in a feasible amount of time,
is provided. Finally, in case T is large enough to make both ET'M — C'P and
EM — ETM/C P methods unfeasible, the OT' M methodology is used instead of
the ET M method in Steps 2-5 of the EM — ETM/CP procedure. For such an
approach, called EM-OTM/CP, the Step 4 is implemented as

(CEM—OTM; aEM—OTMﬂ@EM—OTM) = arg |:km1nK{m1n {(I) (Ct(k)a aﬁé\;[’ g}i\;f)}}]

L., Ct(k)

(4.14)
where the set c,;) C 7 is a fraction of the whole solution space, explored by
the OT'M at the k—th iteration, K being the maximum user-defined iterations
number. Finally the optimal sub-array weights are obtained as:

(aEM—OTM/C’PHBEM—OTM/C’P) = arg [Iglél {(I) (a,ﬁ }CEM—OTM)}:| . (415)

4.4 Numerical Assessment

4.4.1 Small Dimensions Arrays

Let us consider a small rectangular aperture of dimensions 2.5\ x 2\, filled by
M x N =5 x 4 elements, located over a square lattice, equally spaced by d, =
d, = A\/2. The ideal design requirements are defined by the power mask of Fig.
4.1, where a rectangular window of dimension BW,, x BW, = 1.00 [u] x 1.12 [v] is
allowed for the main beam, a sidelobe level equal to SLL;; = —20 [dB] is required
for the first sidelobes near the main beam, while the end-fire sidelobes along the
azimuth plane are lowered to SLLry = —25 [dB]. As can be seen the mask shows
two symmetries along the azimuth (¢ = 0 [deg]) and elevation (¢ = 90 [deg])
planes, accordingly, the phase coefficients of the fully populated array are set to
pref = 0m =1,...., M, n =1,.. N, while the amplitude coefficients have been
optimized using a C'P optimization strategy, obtaining the amplitudes showed
in Fig. 4.2(a). The C'P optimization has been carried out considering a max-
imum number of iterations equal to I = 200, and a fitness threshold equal to
7 = 107%(the threshold 7 is an user-defined value used to discriminate the so-
lutions for which the mask matching x (c; ¢, 3) is considered x (c; ¢, 3) = 0).
The top view of the corresponding synthesized ideal power pattern is shown in
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Figure 4.1: Numerical Assessment (Small Array, Symmetric Mask; d = 0.5,
M x N =5 x4 Ny =20, T = 95) - The power mask M (u,v) defining the
constraints for the synthesis of an M x N =5 x 4 array of isotropic elements.

Fig. 4.2(b). According to (3.4), the considered array allows to entirely cover
the aperture with () = 10 tiles in T = 95 different ways. The limited number
of tiling configurations enables a full-global optimization approach, consequently
the ETM — CP simulation has been executed in AtFTM-CP — 9 . 44 : 30
[h:min:sec| considering the same C'P parameters used for the reference array
synthesis. Figure 4.3(a) shows the sorted values of the mask matching evaluated
for the T solutions. In order to discriminate among the convergent solutions
(i.e. solutions yielding a power pattern that completely fits the power mask) and
the non convergent solutions (i.e. the power pattern violates the power mask)
the fitness threshold is reported in the figure as a black dashed line. As can
be seen 6 E'T'M — C'P solutions have cost-function value that is below the fit-
ness threshold. The global optimum [Fig. 4.4(a)] has been analyzed in detail,
computing the radiated power pattern [Fig. 4.4(b)] and the respective power
pattern descriptors, namely the SLL, HPBW ,,, HPBWg; D, reported in Tab
4.1. The comparisons of the power pattern with the power mask of the best
ETM — CP solution, along the azimuth and elevation planes, are reported in
Fig. 4.3(b) and Fig. 4.3(c), respectively. As can be seen, the power pattern
completely meets the power mask, also confirmed by the mask matching value |
X (cETM=CP, o FTM=CP gETM=CP) — 1 22x 1079, Tab 4.1]. In order to validate
the EM —based proposed approaches, the “bare” EM — ET M optimization has
been executed considering as reference excitations the optimal amplitudes coef-
ficients of Fig. 4.2(a). The evaluated cost function values have been reported in
Fig. 4.3(a) as compared to the ET'M —C'P approach. However, as expected, none
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Figure 4.2: Numerical Assessment (Small Array, Symmetric Mask; d = 0.5,
M x N =5x4 Ny =20, T = 95) - The reference solution of the fully-populated
array obtained through a C'P optimization. (a) The amplitude coefficients, and
(b) the top-view power pattern.

of the EM — E'T'M solutions reach the fitness threshold, showing a non negligible
distance of the EM — ET M best solution from the global optimum reached by
ETM — CP. Indeed, by observing Fig. 4.3(b)-(c) the power pattern cut along
the azimuth and elevation planes of the EM — E'T'M power pattern, considerably
violates the power mask in both the principal planes cuts. Anyway, by observing
the tiling/amplitudes configuration of the best EM — ET'M solution reported, in
Fig, 4.4(c), the tiles arrangement is exactly the same of the ET'M — C'P solution
[Fig. 4.4(a)], while the sub-array amplitude coefficients shows different values.
For this reason, the proposed EM — ETM/CP approach, by a C'P optimiza-
tion of the tiles amplitudes [Fig. 4.4(e)], allows to exactly converge to the same
ETM — CP solution |Fig. 4.4(a)|, accordingly the respective power patterns
overlap [Fig. 4.3(b)-(c)]. It is worth noting here that the overall time needed
to obtain the global optimal solution using the EM — ETM/CP method has
been estimated equal to AtEM—ETM/CP — Ngref 4 ApPM-BETM 4 A$CP — 1 . 18
[min:sec] (Tab 4.1), which means a time reduction of 99.7% with respect to the
ETM — CP approach. With the purpose of validating the EM — OTM/CP
strategy, the GA—based schemata-driven optimization, has been also executed.
The G A control parameters have been set according to the rules described in Ch.
3 (U =6, K=10, p.=0.9, p,, = 0.01). For statistical reasons, the GA opti-
mization has been executed for 10 different time converging to the EM — ET'M
simulation [Fig. 4.3(b)-(c)], consequently the EM — OT M /CP solution coincide
to the EM — ETM/CP.

In order to quantify the robustness of the optimized tiled array, when the
beam is steered off-broadside directions, the mask matching of the power pattern
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Figure 4.3: Numerical Assessment (Small Array, Symmetric Mask; d = 0.5,
M x N =5x4 Ny =20, T = 95) - (a) The ETM — CP cost function
evaluations for each of the T' = 95 tiling solutions, as compared to the EM —
ETM simulation cost function evaluations, and the cost function of the EM —
ETM/CP simulation. (b)(c¢) The power pattern cuts along the u = uy = 0.0
and v = vy = 0.0 plane of the ETM — CP, EM — ETM, EM — OTM optimal
solutions and the EM — ETM/C P solution, as compared to the power mask.
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Table 4.1: Numerical Assessment (Small Array, Symmetric Mask; d = 0.5\, M x
N =5x4 Nyp»y =20, T = 95) - Measured radiation indexes (SLL, D, HPBW,,,
and HPBW,;), mask matching x [P (u,v)] of the reference and optimized tilings
patterns, and timings of the optimizations/simulations.

SLL D HPBW,, | HPBW X At

[dB] [dBi] [deg] [deg] - [h:min:sec]
M x N =4 x5 Symmetric Mask

Reference —20.00 | 17.12 24.15 30.10 2.36 x 107 | 00:11:40
ETM —CP —20.00 | 16.95 24.21 30.10 1.22x 1072 | 09 : 44 : 30
EM — ETM —17.80 | 17.20 23.49 29.29 6.94 x 10* | 00:00 : 31
EM —OTM —17.80 | 17.20 23.49 29.29 6.94 x 10=* | 00: 00 : 05
EM — ETM/CP | —20.00 | 16.95 24.21 30.10 1.22 x 1079 | 00: 00 : 47

varying the beam pointing within the visible range (i.e. 0° < 6, < 90° and
0° < ¢ < 360°), has been evaluated and reported in the polar diagram of Fig.
4.5(a). It can be noticed that the steering of the beam along the ¢y = 90[deg|
direction, leads to higher mask matching values for lower 6, angles with respect
to when steering along the azimuth plane. A detail of the steering analysis is
reported in Fig. 4.5(b) showing the mask matching as function of the pointing
angle 6y along the ¢y = 0 [deg| and ¢y = 90 [deg] planes, showing a maximum
off-boresight steering angle of 6y < 1 [deg] along the ¢g = 90 [deg| plane, and
0y < 2 [deg] along the ¢y = 0 [deg| plane. The steering of the beam in Fig. 4.5(a)-
(b) has been obtained by a simple linear phase shift, using the analytic formula
(3.11). Hence the reported results can be further improved by performing a CP
synthesis of the steered power pattern, considering the steered mask.

In order to show the versatility of the proposed methodologies, an asym-
metric power mask (Fig. 4.6) has been considered for a second assessment of
the M x N = 4 x 5 array. This time both the amplitudes and phase co-
efficients are optimized, and the reference ideal optimal C'P amplitude and
phase coefficients are shown in Fig. 4.7(a) and Fig. 4.7(b) respectively, to-
gether with the synthesized reference power pattern in Fig. 4.7(c). Also in
this case the ETM — C'P approach has been executed in order to find the
optimal tiled array fitting M (u,v). Two solutions reached the fitness thresh-
old [Fig. 4.8(a)], with a final cost-function value of the global best equal to
X (cETM=CF, o FTM=CP gETM=CP) — 104 x 10® (Tab. 4.2). The amplitude
and phases coefficients, as well as the tiling configuration, have been reported in
Fig. 4.9(a)-(b), together with the top view of the power pattern [Fig. 4.9(c)].
Even in this case the EM — ETM and the EM — OT M methods converge to
the same F M —optimal solution [Fig. 4.8(a)], but still too far from an accept-
able matching [y (cPM-ETM; FM-ETM gEM-ETM) — 803 x 1074, Tab. 4.2].
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Figure 4.4: Numerical Assessment (Small Array, Symmetric Mask; d = 0.5,
M x N =5x4 Ny =20, T =95) - (a)(c)(e) The tiles amplitudes excitations
coefficients and (b)(d)(f) the respective top-view power patterns of the ETM —
C'P optimal solution (a)(b), the EM — ET M optimal solution (¢)(d), and the
EM — ETM/CP solution (e)(f).
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Figure 4.5: Numerical Assessment (Small Array, Symmetric Mask; d = 0.5\,
M x N =5 x4 Ny =20, T =95) - The mask matching map, evaluated when
steering the beam of the EM — ETM/C P solution, within a scan cone.

It can be noticed that the tiles orientation of the solution reached by the “bare”
EM—based methods [Fig. 4.9(d)], is slightly different from the ETM — C'P
tiling [Fig. 4.9(a)], consequently, in this case there are no chances to converge
to the global optimum through the EM — ETM/CP. Nevertheless, differently
from the EM — ETM, the EM — ET M /C P solution lowers the mask matching
down to y (CEM_ETM;aEM—ETM/CP,BEM_ETM/CP) = 2.05 x 107°(Tab. 4.2),
and, even if the cost function is above the fitness threshold, the power pat-
tern it’s very close to the reference power mask profile and to the optimal
ETM — CP pattern [Fig. 4.8(b)-(c)], also confirmed by the pattern descrip-
tors reported in Tab. 4.2 (ASLL =|SLLEM-ETM/CP _ gL [ref| = 0.41 [dB],

AD = | DFMIETMCP _ pref| — 0,28 [dBil, AHPBW .1z = HPBW )M/

—HPBW'Y ‘: 0.55 [deg], AHPBWiy, = ‘HPBWEM ~ETM/CP _ i p gy fires ) -

0.21 [deg]). Moreover, the EM — ETM/CP method allows to reach the clos-
est solution to the optimum in a reduced amount of time, which is equal to
AEM=ETM/CP — Ngref 4 A¢EM=ETM 4 AtCF = (0 : 16 : 18 [h:min:sec], instead
of AtFTM=CF =16 : 43 : 10 |h:min:sec| for the full ETM — CP simulation. Fi-
nally, the analysis varying the scanning angle has been performed for the optimal
and compromise solutions. As can be seen from Fig. 4.10(a)(c) the ETM — CP
solution is more robust when steering the beam along the azimuth plane, while
the EM — ET M /CP tiling allows better performances along the elevation plane
[Fig. 4.10(b)-(d)].
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M x N =5 x4 Ny =20, T = 95) - The power mask M (u,v) defining the
constraints for the synthesis of an M x N =5 x 4 array of isotropic elements.

Table 4.2: Numerical Assessment (Small Array, Asymmetric Mask; d = 0.5\,
M x N =5x4 Ny = 20, T = 95) - Measured radiation indexes (SLL, D,
HPBW,,, and HPBW,), mask matching x [P (u,v)] of the reference and opti-
mized tilings patterns, and timings of the optimizations/simulations.

SLL D HPBW,, | HPBW X At

[dB] [dBi] [deg] [deg] - [h:min:sec]
M x N =4 x5 Asymmetric Mask

Reference —20.00 | 16.96 24.70 30.08 4.60 x 10719 | 00:11:50
ETM —CP —20.00 | 16.81 24.95 30.08 1.04 x 1077 | 16:43:10
EM — ETM —17.14 | 17.04 24.10 29.57 8.03 x 10=* | 00:00: 30
EM — OTM —17.14 | 17.04 24.10 29.57 8.03 x 10=* | 00:00: 09
EM — ETM/CP | —19.59 | 16.68 25.25 30.29 2.05 x 1075 | 00: 03 : 58
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Figure 4.8: Numerical Assessment (Small Array, Asymmetric Mask; d = 0.5,
M x N =5x4 Ny = 20, T = 95) - (a) The ETM — CP cost function
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ET M simulation cost function evaluations, and the cost function of the EM —
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pattern cuts along the u = ug = 0.0 and v = vy = 0.0 plane of the ETM — CP,
EM — ETM, EM — OTM optimal solutions and the EM — ET M /C P solution,
as compared to the power mask.
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Figure 4.9: Numerical Assessment (Small Array, Asymmetric Mask; d = 0.5\,
M x N =5x4 Ny =20, T =95) - (a)(d)(g) The tiles amplitudes excita-
tions coefficients, (b)(e)(h) the tiles phases excitations coefficients and (¢)(f)(1)
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solution (g)(h) (7).
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4.4.2 Medium Dimensions Arrays

In order to asses the proposed methodology for small/medium sized arrays, an
4.5\ x 3\ rectangular aperture is now considered, filled with N x M = 9 x 6
elements located over a squared lattice and equally spaced by d, = d, = \/2.
The symmetric power mask of Fig. 4.11 defines the optimal pattern shape, con-
sisting in a main beam window of dimension BW,, x BW, = 0.5 [u] x 0.8 [v], a
maximum SLLp; = —20 [dB| for the lobes nearby the main lobe, and a max-
imum SLLpy; = —25 [dB| in the end-fire zone. The C'P optimized amplitude
coefficients of the reference fully-populated array, together with the synthesized
power pattern are reported in Fig. 4.13. According to (3.4) a M x N =9 x 6
elements array can be partitioned into exactly 7' = 8.17991 x 10° different tilings.
It is clear that in this case the amount of time needed to complete an ET'M —C P
simulations turns out to be very large (i.e At ~ 94 days, assuming At“" ~ 10
[sec]). The EM—based techniques instead, allow to complete the optimization
into a reasonable amount of time (i.e. AtEM=FTM — 1539 : 36 [h:min:sec| and
AEM=OTM — ()0 : 20 : 12 |h:min:sec|, Tab. 4.3). The mask matching evaluated
by the EM — ET'M for all the existing tilings has been reported in Fig. 4.13(a),
together with the best solution provided by the EM —OT M approach. It is worth
noting that also in this case the EM — OT M method (the following parameters
have been used for the 10 GA optimizations: U = 54, K = 500, p. = 0.9,
pm = 0.01), achieve the same EM — ETM solution. Figure 4.14(a) reports the
tiling, as well as the amplitude coefficients of the EM — ETM/OTM solution,
while the top-view power pattern is shown in Fig. 4.14(b). The comparison of
the power pattern with the power mask is reported in Fig. 4.13(b)-(c) along the
azimuth and elevation planes, respectively. As can be seen the power pattern cor-
responding to the KM — ET M solution, does not match the optimal performances
[x (cEM—ETM, o EM-ETM gEM=ETM) — 4 8 x 107°, Tab. 4.3]. Nevertheless, the
solution obtained through the proposed EM — ETM/CP method [Fig. 4.9(c)-
(d)] affords a power pattern that completely fits the power mask, as confirmed
by the final cost function value [y (¢ZM-ETM; oPM-ETM/CP gEM-ETM/CP)
5.0 x 10719 Tab. 4.3], which is below the fitness threshold [Fig. 4.13(a)]. The
analysis of the mask matching varying the scanning angle has been executed and
graphically shown in the diagram of Fig. 4.15(a). Moreover, Fig. 4.15(b) reports
the mask matching parameter when steering the beam along the ¢y = 0 [deg]
and ¢g = 90 [deg| planes, showing a maximum scan angle of 6y = 2 [deg], if a
good matching with the power mask must be assured.

A second assessment of the 9 x 6 array has been performed considering the
power mask of Fig. 4.16. A window of dimension BW,, x BW,, = 0.64 [u] x0.92 [v]
is considered for the main beam, while three different SLL levels are asym-
metrically defined in the side-lobes zone: SLLp; = —25 [dB|, SLL;, = —28
[dB], and SLLy3 = —35 |dB|. The reference complex excitations of the fully
populated array is reported in Fig. 4.17(a)-(b), and the corresponding power
pattern in Fig. 4.17(c). As shown in Fig. 4.18(a), the EM — ETM and

68



CHAPTER 4. MASK-CONSTRAINED OPTIMIZATION OF
DOMINO-TILED PHASED ARRAYS

-5
0.5 =
S,
S 9 Oﬁ
5 g
2 o0 c
£ o
1 £1-158
5
_0 5 g
20%

-25

-1
-1 -0.5 0 0.5
u=sin(@)cos(d)

—_

Figure 4.11: Numerical Assessment (Medium Array, Symmetric Mask; d = 0.5,
M x N =6x9 Ny =54, T ~ 8.2 x 10°) - The power mask M (u,v) defining the
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Figure 4.13: Numerical Assessment (Medium Array, Symmetric Mask; d = 0.5\,
MxN =06x9 Ny =54, T ~ 82x 10°) - (a) The EM — ETM, EM —
OT M simulation cost function evaluations, and the cost function of the EM —
ETM/CP simulation. (b)-(¢) The power pattern cuts along the u = ug = 0.0
and v = vy = 0.0 plane of the ETM — EM, EM — OTM optimal solution
and the EM — ET'M/C P solution, as compared to the reference fully-populated
solution and to the power mask.
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Table 4.3: Numerical Assessment (Medium Array, Symmetric Mask; d = 0.5\,
M x N =06x9 Ny =54, T ~ 82 x 10°) - Measured radiation indexes (SLL,
D, HPBW,,, and HPBW,;), mask matching x [P (u,v)] of the reference and
optimized tilings patterns, and timings of the optimizations/simulations.

SLL D HPBW,, | HPBW¢ | x [P (u,v)] At
[dB] [dBi] [deg] [deg] - [h:min:sec]
M x N =6 x9 Symmetric Mask
Reference —20.00 | 21.52 13.15 20.07 3.60 x 10719 | 00:21:25
EM — ETM —19.11 | 21.54 13.03 19.86 4.80 x 107° | 15:39 : 36
EM —OTM —19.11 | 21.54 13.03 19.86 4.80 x 1075 | 00:20: 12
EM — ETM/CP | —20.00 | 21.46 13.15 20.07 5.00 x 10719 | 00: 03 : 30

EM — OTM simulations converges to the same EM—optimal solution show-
ing a mask matching equal to y (cZM—FTM; o EM-ETM gEM=ETM) — 3 4 » 10~
(Tab. 4.4), whose corresponding tiling is pictured in Fig. 4.19(a)-(b), to-
gether with the EM — ETM amplitude and phase coefficients, while the top
view power pattern is reported in Fig. 4.19(c). The EM — ETM/CP op-
timization still does not reach the convergence, consequently the cost func-
tion value [y (cZM—FTM; o FM-ETM/CP gEM-ETM/CF) — 1.7 % 1075 Tab 4.4]
is still above the fitness threshold [Fig. 4.18(a)|, but its lower with respect
to the EM — ETM solution. Indeed, even if the EM — ETM/CP power
pattern violates the power mask [Fig. 4.18(b)-(c)|, the corresponding beam
pattern descriptors (Tab. 4.4) are very close to the optimal ones (ASLL =
|SLLEM=ETM/CE _ gL [rel| = 0.55 [dB], AD = | DEM-ETM/CP _ pref| — .18

[dBi], AHPBW 1, = )HPBWff “ETM/CP _ [rppwTd ) — 0.16 [deg], AHPBWpy, =
)HPBW]%/[_ETM/CP — HPBWEGL’[) = 0.12 [deg|). The analysis of the robust-

ness against the beam steering [Fig. 4.20] shows a better performance of the
EM — ETM/CP along the elevation plane with respect to the azimuth plane.

4.4.3 Large Dimensions Arrays

As a final example, a larger array is considered. The array aperture is a rect-
angle of dimension 10\ x 7.5\ filled by N, = 300 elements located over a
20 x 15 grid, equally spaced by d, = d, = A/2. The considered power mask
is shown in Fig. 4.21, as can bee seen, the mask is asymmetric with a main
beam window of dimension BW, x BW, = 0.32[u] x 0.42[v] and SLL levels
equal to: SLLp; = —25 [dB]|, SLL;; = —30 [dB], and SLL;3 = —40 [dB|.
Figure 4.22(a)-(b) shows the optimal C'P excitation coefficients of the refer-
ence fully-populated array, and Fig. 4.22(b) shows the top-view of the synthe-
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0.5, M X N =6 x9 Ny = 54, T ~ 8.2 x 10°) - The power mask M (u,v)
defining the constraints for the synthesis of an M x N = 6 x 9 array of isotropic
elements.

Table 4.4: Numerical Assessment (Medium Array, Asymmetric Mask; d = 0.5\,
M x N =6x9 Ny =54, T ~ 82 x 10°) - Measured radiation indexes (SLL,
D, HPBW,,, and HPBW,;), mask matching x [P (u,v)] of the reference and
optimized tilings patterns, and timings of the optimizations.

SLL D HPBW,, | HPBW, X At
[dB] [dBi] [deg] [deg] - [h:min:sec]
M x N =6 x9 Asymmetric Mask
Reference —25.00 | 20.81 14.53 21.61 3.05 x 10710 | 00:27:35
EM — ETM —23.48 | 20.85 14.32 21.33 240 x 107 | 16:08:10
EM —0OTM —23.48 | 20.85 14.32 21.33 2.40 x 107% | 00:25:20
EM — ETM/CP | —24.45 | 20.63 14.69 21.49 1.70 x 10> | 01:47:46
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Figure 4.17: Numerical Assessment (Medium Array, Asymmetric Mask; d =
0.50, M x N =6 x 9 Ny =54, T ~ 82 x 10°) - The reference solution of the
fully-populated array obtained through a C'P optimization. (a) The amplitude
coefficients, (b) the phase coefficients, and (¢) the top-view power pattern.
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Figure 4.18: Numerical Assessment (Medium Array, Asymmetric Mask; d =
05N, M X N = 6 x9 Nyy = 54, T ~ 82 x 10°) - (a) The EM — ETM,
EM — OTM simulation cost function evaluations, and the cost function of the
EM — ETM/CP simulation. (b)-(c) The power pattern cuts along the u = ug =
0.0 and v = vy = 0.0 plane of the ETM — EM, EM — OT M optimal solution
and the EM — ET M /CP solution, as compared to the reference fully-populated
solution and to the power mask.
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Figure 4.19: Numerical Assessment (Medium Array, Asymmetric Mask; d =
0.50, M x N =6x%9 Nypy =54, T ~ 82 x 10°) - (a)(d) The tiles amplitudes
excitations coefficients, (b)(e) the tiles phase excitations coefficients and (¢)(f)
the respective top-view power patterns of the EM — ETM and EM — OTM
optimal solution (a)(b)(c), and the EM — ETM/CP solution (d)(e)(f).
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Figure 4.20: Numerical Assessment (Medium Array, Asymmetric Mask; d =
0.5\, M x N = 6x9 Ny = 54, T ~ 82 x 10°) - The mask matching map,
evaluated when steering the beam of the EM — ETM/CP solution, within a
scan cone.

sized power pattern. In this case the cardinality of the solution space equals
to T = 4.9098 x 103°, which is a too large for an exhaustive exploration, con-
sequently, the EM — OT M has been chosen in order to search for the optimal
tiling in a feasible amount of time. Indeed, 10 different GA optimizations have
been executed considering U = 800 individuals, K = 1000 iterations, p. = 0.9
and p,, = 0.01, for a total simulation time equal to At = 16 : 42 : 30 [h:min:sec]|.
The fitness of all the executed simulations are reported in Fig. 4.23(a) as
function of the iteration index. As can be seen, all the GA simulations con-
verges to cost-functions values within the interval [2.0 x 107%,1.8 x 107%]. The
50% of the executed GA simulations converges to the same best solution hav-
ing a matching with the mask equal to y (C*" 9", QEM_OTM,BEM*OTM) =
1.8 x 1075 (Tab. 4.5). The EM—optimal tiling, together with the ampli-
tude and phase excitation coefficients, are reported in Fig. 4.24(a)-(b), respec-
tively, while the top view power pattern is reported in Fig. 4.24(c). Even
if the “bare” EM — OTM solution does not match completely the mask, the
EM —OTM /C P successfully lowers the mask matching below the fitness thresh-

old [ X QEM—OTM; gEMfOTM/CP’ﬁEMfE:OTM/CP — 6.2 % 1079, Tab. 45]

Finally, the mask matching has been evaluated varying the beam scanning di-
rection, graphically shown in the diagram of Fig. 4.25(a), together with a focus
in the nearby of the boresight direction along the ¢g = 0 [deg| and ¢g = 90 |deg]
planes reported in Fig. 4.25(b).

7



4.4. NUMERICAL ASSESSMENT

v=sin(B)sin(¢)

-0.5

05

-0.5

0 0.5

u=sin(@)cos(d)

Power Pattern Mask [dB]

Figure 4.21: Numerical Assessment (Large Array, Asymmetric Mask; d = 0.5\,
M x N =15x20 Ny = 300, T ~ 4.9 x 10%) - The power mask M (u,v) defining
the constraints for the synthesis of an M x N = 6 x 9 array of isotropic elements.

Table 4.5: Numerical Assessment (Large Array, Asymmetric Mask; d = 0.5\,
M x N =15 x 20 Ny = 300, T ~ 4.9 x 10%) - Measured radiation indexes
(SLL, D, HPBW,,, and HPBW,;), mask matching x [P (u, v)] of the reference
and optimized tilings patterns, and timings of the optimizations.

SLL D | HPBW,, | HPBW, X At
[dB] | [dBi] [deg] [deg] - [h:min:sec|
M x N =15 x 20 Asymmetric Mask
Reference —25.00 | 28.27 6.50 8.60 9.57 x 1079 | 02: 59 : 03
EM —OTM —24.73 | 28.31 6.48 8.56 1.80 x 107% | 04 : 28 : 29
EM — OTM/CP | —25.00 | 28.24 6.51 8.60 6.20 x 1079 | 02: 07 : 07
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Figure 4.22: Numerical Assessment (Large Array, Asymmetric Mask; d = 0.5,
M x N =15 x 20 Ny = 300, T ~ 4.9 x 10%) - The reference solution of the
fully-populated array obtained through a C'P optimization. (a) The amplitude

coefficients, (b) the phase coefficients, and (¢) the top-view power pattern.
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solutions and the EM — OTM/C P, as compared to the power mask.
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Figure 4.24: Numerical Assessment (Large Array, Asymmetric Mask; d = 0.5,
M x N =15 x 20 Ny = 300, T ~ 4.9 x 10%) - (a)(d) The tiles amplitudes
excitations coefficients, (b)(e) the tiles phase excitations coefficients and (¢)(f)
the respective top-view power patterns of the EM — OTM optimal solution
(a)-(c), and the EM — OT' M /CP solution (d)-(f).
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Table 4.6: Numerical Assessment (Full-Wave Simulations) - Radiation indexes
(SLL, D, HPBW,,, and HPBW,;), and mask matching x [P (u,v)] of the tiled
array power pattern, obtained simulating the entire arrays structure using a full-
wave commercial software.

M x N SLL D | HPBW,, | HPBW, X
[dB] | [dBi] | [deg] [deg] -
Full — Wave, Patch Multi — Layer
4 x5 ETM - CP —22.91 | 16.29 23.76 28.94 1.77 x 1078
EM — ETM/CP | —21.86 | 16.14 24.04 29.15 1.29 x 107°
EM — ETM —19.68 | 16.54 22.90 28.54 2.37 x 107
6x9 | EM —FETM/CP | —24.69 | 19.80 14.43 21.09 6.91 x 1076
EM — ETM —24.90 | 20.06 13.98 20.93 3.58 x 107
15 x20 | EM — OTM/CP | —25.08 | 27.20 6.42 8.56 1.88 x 1078
EM —OTM —24.86 | 27.00 6.40 8.50 9.19 x 1078
Full — Wave, Patch Spline
4 x5 ETM - CP —21.38 | 17.19 24.37 28.71 0.0
EM — ETM/CP | —21.38 | 17.06 24.51 29.12 1.42 x 107¢
EM — ETM —19.46 | 17.41 23.65 28.28 2.38 x 1074
6x9 | EM —FETM/CP | —25.22 | 20.08 14.50 21.00 1.09 x 10°°
EM — ETM —24.60 | 21.10 14.20 20.80 5.94 x 1075
15 x20 | EM — OTM/CP | —25.30 | 28.40 6.40 8.50 5.62 x 1077
EM — OTM —25.04 | 28.40 6.40 8.40 1.28 x 107¢

82




CHAPTER 4. MASK-CONSTRAINED OPTIMIZATION OF
DOMINO-TILED PHASED ARRAYS

(a) (b)

Freq = 9.5 [Ghz]

Freq = 31.2 [Ghz]

z

Gain [dB]

Gain [dB]

(c) (d)

Figure 4.26: Numerical Assessment (Full-Wave Simulations) - (a) The model of
the multi-layer patch antenna and (b) the cavity backed spline patch antenna
considered for the full-wave simulations.
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Figure 4.27: Numerical Assessment (Full-Wave Simulations; d = 0.5\, M X
N =5 x4 Ny = 20) - The normalized power pattern cuts along (a)(c) the
u=1ug = 0.0 and (b)(d) v = vy = 0.0 planes of the EM — ETM, CP — ETM,
EM — ETM/CP, and EM — OTM/CP methods, compared to the reference
mask, obtained using the full-wave solver when considering (a)(b) the aperture-
coupled multi-layered patch antenna and (c¢)(d) the cavity-backed spline patch
antenna.
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Figure 4.28: Numerical Assessment (Full-Wave Simulations; d = 0.5\, M x N =
6 X 9 Ny = 54) - The normalized power pattern cuts along (a)(c) the u = uy =
0.0 and (b)(d) v = vo = 0.0 planes of the EM — ETM, EM — ETM/CP,
and EM — OT M /C P methods, compared to the reference mask, obtained using
the full-wave solver when considering (a)(b) the aperture-coupled multi-layered
patch antenna and (¢)(d) the cavity-backed spline patch antenna.
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Figure 4.29: Numerical Assessment (Full-Wave Simulations; d = 0.5\, M X
N = 15 x 20 Ny = 300) - The normalized power pattern cuts along (a)(c)
the u = uy = 0.0 and (b)(d) v = vy = 0.0 planes of the EM — OTM, and
EM — OTM/CP methods, compared to the reference mask, obtained using
the full-wave solver when considering (a)(b) the aperture-coupled multi-layered
patch antenna and (¢)(d) the cavity-backed spline patch antenna.
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4.4.4 Reliability Assessment

In order to assess the reliability of the optimized solutions when considering real
radiating elements, a set of test cases selected among the small, medium and large
arrays of the previous sub-section, have been simulated using a commercial full-
wave software. Two different patch antenna elements, namely the multi-layered
aperture coupled patch antenna [93] [Fig. 4.26(a)| and a cavity-backed spline-
shaped patch [Fig. 4.26(b)| [90], have been considered. The respective gain pat-
tern obtained simulating the single isolated element are reported in Fig. 4.26(c)
and Fig. 4.26(d), respectively, showing a different radiating behaviour among the
two antennas. In this case, differently from the reliability assessment performed
in Sec. 3.4.1, the entire array structure has been simulated, including the ground
plane, and the microstrip antennas substrates. The power pattern cuts along the
¢o = 0 |deg|] and ¢y = 90 [deg| planes of the simulated small N x M = 4 x5 array,
partitioned according to the tiling configuration obtained from the EM — ET M,
ETM —CP, EM — ETM/CP and EM — OTM/C P methods, when consider-
ing the asymmetric power mask of Fig. 4.6, are shown in Fig. 4.27 as compared
to the reference synthesis mask. As can be seen, the real power pattern corre-
sponding to the E'T'M — C'P array, shows a good matching with the mask for

oL ETM—CP.  ETM—CP QETM-CP)|5%4 _
both two radiating elements | x (c : 3 ) Multi— Layer —

177 x 1078 and y (cFTM-CP; oFTM-CP gETM-CP) Z;“n — 0.0, Tab. 4.6],

while the EM — ETM/CP real array pattern slightly violates the mask along
the elevation plane when considering the multi-layered patch [Fig. 4.27(c)]

(v (CEM—ETM; QFPM—-ETM/CP. ﬁEM—ETM/CP) ?\;:tltiimyer — 1.29%1075, Tab. 4.6).

The mask violation is instead much more evident when using the “bare” EM —
ETM solution (i.e without re-optimizing the sub-array coefficients) with a mask

(87

. _ _ _ 5x4 _
matching equal to X(CEM ETM. o EM—-ETM - gEM ETM) Multi—Lager =2.37x107°
and y (cEM*ETM;aEM*ETM,BEM*ETM) Z:fme = 2.38 x 10~ Similarly, both

the medium (M x N = 6 x 9) and large (M x N = 15 x 20) arrays have been
validated comparing the proposed approaches solutions with the mask and to
the “bare” EM — ET'M methodology. The comparison of the power pattern cuts
with the power mask are reported in Fig. 4.28 and Fig. 4.29, for the 6 x 9
and 15 x 20 arrays. Also in this cases the full-wave analysis shows very close
behaviours of the radiation patterns when considering the two different patch
antennas. Moreover the full-wave pattern obtained considering the solutions the
proposed methods (i.e ETM — CP, EM — ETM/CP and EM — OTM/CP)
outperform in terms of mask matching the EM — ETM solution in all the

: EM—ETM. o EM—ETM/CP gEM—-ETM/CPY|6%9 _
considered cases [e.g. x (c ; 3 ) Multi—Lager =

- EM—ETM. ., EM—ETM QEM—ETM) |69 _ -
6.91 x 107° vs. x (c et B M atutti-pager = 3:58 X 107°
and y (c EM—-OTM/CP BEMfOTM/CP) 1520 5 69 % 10-7 vs.

Spline
EM—ETM; oEM=ETM | GEM-ETM)|2X20 _ 1 98 5 10=6 Tab, 4.6].

Spline

(8

EMfOTM; a

X (c
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Chapter 5

Multi-Objective Optimization of
Orthogonal Polygons by
Domino-Like Tiles

In this Chapter the tiling optimization problem of orthogonal-polygon shaped
apertures is addressed. With respect to standard rectangular shaped arrays,
orthogonal polygon shaped arrays allows to give to the antenna an arbitrary
shape, over a rectangular grid. The synthesis of tiled phased arrays radiating
a pencil beam is formulated as a multi-objective problem (MOP), exploiting
the ETM and OTM methods introduced in the previous Chapters. A set of
illustrative examples validating the proposed method are finally reported.
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5.1. PROBLEM FORMULATION

5.1 Problem Formulation

Let us consider an arbitrary shaped aperture array and elements positioned over a
rectangular lattice. The resulting array turns out to have an orthogonal polygon
shape. A polygon is called orthogonal (or rectilinear) if its edges are either
horizontal or vertical (i.e., if edges meet at right angles) [95](96]. An example of
two orthogonal polygon shaped arrays are reported in Fig. 5.1.

Instead of the simple minimization of a single pattern parameter (e.g. SLL)
here, a multi-objective optimization approach is proposed. The multi-objective
problem (MOP) is defined as:

Multi- Objective Optimization of Arbitrary Shaped Phased Arrays
- given an array of arbitrary aperture, with elements positioned over
a rectangular lattice, and two domino-like tiles (av, O'H), find the op-
timal tiling/clustering configuration ¢®* and the corresponding sub-
array weights a®and (3°*, such that the radiated pattern jointly fits
multiple user-defined requirements ®, (c; o, 8), 7 = 1, ..., R, with the
main lobe steered toward (6, ¢o).

In order to comply with multiple and conflicting objectives, a set of Pareto
optimal solutions will be provided to the designer who is allowed to choose the
best solution according to user-defined criterion. The set of Pareto optimal
solutions are obtained as:

o, (c; aFM BEM)
(Copt; aopt’BOPt) = arg c'agj}}%EM (51)
oM, Op (c; M, BEM)

where (oM, BFM) are obtained according to (4.10) and (4.11).

5.2 Tilability Condition

In Sect. 3.2 it has been described the algorithm that allows to compute the “min-
imal” tiling of rectangular shaped arrays, based on the height function defined
in [48]. The derived tiling procedure works also for arbitrary simply connected
regions, provided that the area can be totally covered by the domino tiles. In [97]
the following theorem is reported for the domino tilability condition of arbitrary
shaped regions:

T5 : Let A be a simply connected region in the plane defined over a rectangular
lattice, and let n be the number of pixels composing A. There exists an
algorithm that decides tilability of A in time O (nlogn).
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Figure 5.1: Examples of orthogonal polygon shaped arrays. (a) indented rectan-
gle and (b) quantized hexagon.
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5.2. TILABILITY CONDITION

The theorem suggests that it is always possible to verify the tilability of sim-
ple connected regions, by executing the algorithms presented in [48][53], and
described in detail in Chapter 3. The algorithms allows to compute the height
function on the border of the region [Sec. 3.2(A)] and on the internal vertices
[Sec. 3.2(B.1)], providing the so called “minimal” tiling. Accordingly, in order to
verify the tilability of an orthogonal shaped region the following two steps are
required:

Step 1. Feasibility on the boundary vertices of A - compute the height h-
value of the boundary vertices of A (Vepr ={vmn; [m = {0, M}; n=0,...,N| U
[n ={0, N}; m =0,..., M|} very € OA being A the contour/boundary of A)
and verify that the following condition holds true:

B (Vmn) — I (vpg)| =1 (5.2)

where v,, € V¢ being a neighboring vertex of v,,, € Ve If the condition
(5.2) is verified for each couple of neighboring vertices of the boundary 0A, the
following condition (Step 2) must be checked, otherwise it is impossible to obtain
a complete tiling of A using domino tiles.

Step 2. Feasibility on the inner vertices of A - compute the height h-value
of the inner vertices of A (nglto ={w (t=0) cm=1,.. M—-1;n=1,.,N—1})
and obtain the “minimal” tiling (i.e. ¢ = 0) according to the rules defined in A1.2
of the “Algorithm A1* and B1.1-4 of the “Algorithm B1” described in Chapter

3, and verify that the following condition holds true:

b (vEZ2) — b (02| = {1, 3} (5.3)

W= e l=0) [V(tzo) = {U((,t;,oi)n, v((,z?i)n, vg(zle) ffl(r?ﬂ} being the set of
0)]

vertices neighbor to Tl If an admissible tiling is obtained, the tilability is
verified, and the whole set of complete tilings can be generated using “Algorithm
B2” reported in Chapter 3
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Figure 5.2: Example of tilable (a) and non-tilable (b) orthogonal polygon by
dominoes, exploiting the Thurston Theorem

5.3 Estimation of the Solution Space Cardinality

For orthogonal polygon shaped apertures, for the best of the author knowledge,
there is no analytic formula or theorem giving the exact number of the total
admissible domino tilings 7. In the following an upper and a lower bound of
T are provided, exploiting the analytic formula for counting the tilings of an
M x N rectangular region [eq. (3.4)]. Let us consider an arbitrary orthogonal
polygon A, in order to compute the upper bound 7, the idea is to first compute
the number of domino tilings for the smallest possible rectangle R inscribing A.
Consequently we have that the number of tilings of A is for sure less than the
number of tilings of R. In order to have a sharper bound, the area obtained as
the complement of A with respect to R is dissected into the minimum number
of rectangles and the respective number of domino tilings are computed and
subtracted from T . Let us refer to T'(M, N) as the number of domino tilings of
an M x N rectangle, accordingly, the upper bound 7 is obtained as

J
T=T(MN)-Y T(M;N;) (5.4)
j=1
M and N being the edge of the smallest rectangle inscribing A and T (Mj, W]—),
17 =1, ..., J the number of tiling of J rectangles obtained as the complement of

A with respect to R and the M x N rectangle;
In a similar way, the lower bound 7T is obtained as

ZJI T (M;,N;) (5.5)

, being T (Mj,ﬁj), j = 1,...,J the minimum number of J rectangles, exactly
covering A, without overlapping.
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Figure 5.3: Example of estimated upper (a) and lower bound (b) of T', exploiting
the cardinality theorem for rectangular regions.
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5.4 Numerical Assessment

Let us consider an array of N,,; = 44 elements, located over a square lattice,
equally spaced by d, = d, = A\/2 and positioned according to the arbitrary shape
shown in Fig. 5.4(a). The reference amplitude coefficients [Fig. 5.4(a)| have
been computed according to a gaussian distribution in order to obtain a power
pattern with an SLL equal to SLL = —30.20 [dB| [Fig. 5.4(b)] and the main
beam pointing toward (6y, ¢9) = (0,0) [deg|, consequently the phase coefficients
of the fully populated array are set to 37/ = 0, n = 1,..., Nyp;. By using eq.
(5.4) and eq. (5.5), the number of domino tilings is estimated within 573 < T <
1.859 x 10°, which allows an exhaustive search in a feasible computational time.
The E'T'M —MO P optimization has been executed considering as a first objective
(r = 1) the SLL of the power pattern, and as second objective (r = 2) the half
power beamwidth along the elevation plane (HPBWEg). The simulation has
been executed in AtETM-MOP — 18 . 05 [min:sec| evaluating the power pattern
and the respective two objective parameters (i.e. SLL and HPBWpgy) for the
effective T = 9531 tiling solutions. Figure 5.5(a) shows the values of the cost
function in the SLL/H PBWpgy, plane, together with the Pareto front solutions.
The optimal tiling solution with respect to the objective r = 1 (Solution 1, Fig.
5.5) has been reported in Fig. 5.6(a) together with the respective power pattern
5.6(b) showing a SLL = —27.11 |[dB| and an HPBW g, = 29.00 [deg| (Tab. 5.1),
while the optimal tiling solution with respect to the objective r = 2 (Solution
2, Fig. 5.5) has been reported in Fig. 5.6(c)-(d) showing a SLL = —11.39 [dB]
and an H PBW g, = 25.29 [deg| (Tab. 5.1). As can be noticed from Fig. 5.5, the
two objective are in contrast with each other. Let us suppose that the following
design requirements are assumed: SLL™* < —20 [dB| and HPBWf* < —26.2
|[deg| (Tab. 5.1). According to Fig. 5.5 the Pareto optimal solution has been
selected in order to satisfy both the requirements (i.e. Solution 3 Fig. 5.5,
SLL = —20.20 [dB] and HPBWpg; = 26.10 Tab. 5.1). In order to compare
the three different solutions, the cuts of the power patterns along the azimuth
[Fig. 5.7(a)] and elevation [Fig. 5.7(b)] planes have been reported together with
a detail of the main beam along the elevation plane [Fig. 5.7(c)].

As a second numerical example, let us consider an array of N;,; = 300 el-
ements, located over a square lattice, equally spaced by d, = d, = A\/2 and
positioned according to the arbitrary shape shown in Fig. 5.8(a). It is worth
noting here that even if the aperture shape is very similar to a regular hexagon,
it is still an orthogonal polygon, being composed by square elementary cells ap-
proximating an exact hexagon. The reference amplitude and phase coefficients
[Fig. 5.8(a)-(b)] have been computed according to a gaussian distribution in
order to obtain a power pattern with an SLL equal to SLL = —20.00 [dB] [Fig.
5.8(c)] and the main beam pointing toward (6o, ¢o) = (30,0) [deg|. In order to
estimate the dimension of the solution space eq. (5.5) has been used to compute
T, considering only the M x N = 14 x 14 square inscribed in the orthogonal
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Figure 5.4: ETM-MOP Numerical Assessment (Nyy = 44 ; d = 0.5)\) - Plots of
(a) the array geometry and reference excitation amplitudes (a’%; m = 1,..., M;
n=1,..,N) and (b) the reference power pattern, }AFref (0, gb)}z.
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Figure 5.5: ETM-MOP Numerical Assessment (N = 44 ; d = 0.5X\; T = 9531)
- Evaluated cost functions of the exhaustive ETM — MOP optimization (blue
cross) considering as the first objective the SLL and as second objective the
HPBWYEgy, of the tiled array power pattern. The red dots are the solutions that
belongs to the Pareto front.
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Figure 5.6: ETM-MOP Numerical Assessment (Nyy = 44 ;3 d = 0.5\, T =
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Table 5.1: ETM-MOP Numerical Assessment (Nyyy = 44 ;5 d = 0.5\, T' = 9531)
- Radiation performance (SLL, D, HPBW,,, HPBW,) of the reference and
optimized tiled solutions selected among the Pareto front of the ETM-MOP
simulation.

SLL D | HPBW,, | HPBW,
[dB] | [dBi] | [deg] |deg]
‘ Required ‘ —20.00 ‘ — ‘ — ‘ 26.20 ‘
Reference | —30.20 | 19.77 13.63 29.28
Solution — 1 | —27.11 | 19.77 13.64 29.00
Solution — 2 | —11.39 | 19.59 13.45 25.29
Solution — 3 | —20.20 | 19.90 13.40 26.10

hexagon, obtaining a lower bound equal to 7" = 1.1220 x 10** which is already a
huge number of solutions. Being 7" > T an optimization based strategy is consid-
ered in this case. The OT M — MOP optimization has been executed considering
the NSGA-II multi-objective GA-based optimizer [98][99], considering as a first
objective (r = 1) the SLL of the power pattern, and as second objective (r = 2)
the half power beamwidth along the azimuth plane (HPBW 7). The optimiza-
tion has been executed considering a population size equal to P = 200 and a
total number of fitness evaluations (NFE) equals to NFE = 20000 for a total
simulation time equal to AtOTM=MOP — 4() : 35 [min:sec|. Figure 5.9(a) shows
the values of the cost function in the SLL/HPBW,, plane, together with the
Pareto front solutions. The Pareto optimal solution has been selected accord-
ing to the design requirements [SLL™** < —16.0 [dB] and HPBW % < —9.5
[deg] (Tab. 5.2) and reported in Fig. 5.6(a)-(b) together with the respective
power pattern 5.10(¢) showing a SLL = —16.00 [dB| and an HPBWpg; = 9.48
[deg] (Tab. 5.2). The reported results show the effectiveness of a multi-objective
optimization approach, that provides to the designer a flexible tool able to han-
dle different pattern features and achieving useful trad-off solutions. Moreover
the tiling of orthogonal polygons, have been successfully validated, enabling the
design of arbitrary shaped arrays.
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Figure 5.8: OTM-MOP Numerical Assessment (Nyy = 40 d = 0.5\) - Plots of
(a)(b) the array geometry and reference excitation (a) amplitudes (a’¢/; m =

mn?

1,...,M;n=1,..,N) and (b) phases (87¢/; m =1,...M;n =1,...,N) and (c)

mn

the reference power pattern, }AF’"ef (0, gb)}Q.

Table 5.2: OTM-MOP Numerical Assessment (M =8, N =5;d = 0.5\ T =
1.4824 x 10%) - Radiation performance (SLL, D, HPBW,., HPBW,;) of the
reference and optimized tiled solution selected among the Pareto front of the
OTM-MOP simulation.

SLL D | HPBW,, | HPBW,
[dB] | [dBi] | [deg] [deg]
| Required | -1600] - | 950 | - |
Reference —20.00 | 25.86 10.50 8.90
OTM — MOP | —16.00 | 24.14 9.48 8.75
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Figure 5.9: OTM-MOP Numerical Assessment (M = 8 N = 5; d = 0.5,
T = 1.4824 x 10%) - Evaluated cost functions of the exhaustive OTM — MOP
optimization (green cross) considering as the first objective the SLL and as
second objective the H PBW 45 of the tiled array power pattern. The red dots
are the solutions that belongs to the Pareto front.
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Chapter 6

Conclusions and Final Remarks

In this thesis a set of innovative tiling methodologies for the design of tiled phased
arrays has been presented and numerically validated. The developed synthesis
procedures and algorithms allow to reduce the number of control points of an
array radiating mask-constrained pencil beams

1. without impacting on the feasibility and complexity of the array layout;

2. without a significant degradation of the achievable performances, for small /moderate
scanning angles.

In Chapter 2 the phased array synthesis problem has been formulated, proposing
theoretically unfeasible and feasible optimization strategies, and focusing, with-
out loss of generality, to domino-like tiles. In Chapter 3 useful tiling theorems
and algorithms have been reported, focusing to the problem of tiling rectangular
shaped apertures with rectangular tiles, as well as a closed form formula for the
enumeration of the domino tiling solution spaces. Moreover, together with the
description of an optimal domino tiling generation algorithm based on an efficient
encoding of the clustering configuration exploiting height function theory, two
main methodologies have been introduced. A first technique, namely the ETM,
has been developed to optimally synthesize low and medium size arrays through
a suitable customization of mathematical tiling theorems and algorithms. The
second one, denoted as OTM and based on a customized G A-based optimization
strategy, has been derived to deal with large arrays.

The main advantages of the proposed design approach in its two different imple-
mentations are:

e the retrieval of the global optimal solution for the problem of finding the
complete tiling affording the minimum SLL power pattern thanks to the
exploitation of the mathematical theory on the optimal coverage of space
surfaces through the enumerative approach (ETM);
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e the synthesis of large clustered arrays, computationally unaffordable ei-
ther by the enumerative approach (i.e., the ETM) or a standard stochastic
global optimization technique, thanks to the analytic definition of a set
of reference tiling arrangements and a customized GA-based algorithm al-
lowing an effective and efficient exploration of the solution space of the
complete tiling configurations, whose cardinality rapidly grows with the
array size.

The numerical analysis has proved that:

e the SLLs of the solutions of the exhaustive list generated by the ETM
usually vary over a wide range of values, but only a limited sub-set of tiling
configurations gives performance close to that of the reference array;

e the complete tiling configuration providing the minimum /optimum SLL
is generally non-unique within the list of ETM-generated solutions. This
allows the array designer to select a SLL-optimal clustering that also fit
additional criteria such as constraints on other radiation features and/or
manufacturing characteristics;

e the OTM, as applied to synthesis problems still affordable with the ETM
(i.e., small/medium size array design), proved to be able to find the opti-
mal tiling (i.e., the same arrangement found with the ETM) with a high
probability /success-rate despite the evaluation of only a fraction of the
whole set of T" solutions;

e the OTM, when dealing with large-scale arrays (i.e., problems with a di-
mensionality intractable with the ETM), is statistically robust since the
convergence solutions usually lie in a narrow range of SLL values closer and
closer to the reference one as the array size increases;

e the OTM and the ETM are reliable techniques for addressing pattern
syntheses requiring beam steering along a generic direction (0, ¢).

In Chapter 5 the design of arbitrary shaped aperture arrays is addressed, con-
sidering a multi-objective optimization approach for the computation of Pareto-
optimal tiling configurations. The presented numerical results positively vali-
dates the possibility to handle orthogonal-polygon shaped arrays exploiting the
ETM and OTM methods of Chapter 3. The reported numerical results positively
validate the ETM-MOP and OTM-MOP methods, affording flexible design tools
for the optimization of small and large apertures, with the possibility to choose
among a set of trade-off solutions.

In Chapter 4 an additional class of tiling optimization techniques are pre-
sented aimed at solving a mask-constrained synthesis problem. The matching
between the tiled array power pattern and an user-defined power mask, defining
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ideal requirements for a reference non-clustered phased array, is used as cost func-
tion of the domino tiling synthesis problem. The mask matching optimization
allows to the user a flexible definition of the ideal pattern constraints, however,
a perfect matching with the mask is not always assured. The proposed design
methodology aims indeed at find solutions that are as close as possible to a per-
fect fulfilment of the constraints. According to the size of the array aperture,
three different novel techniques have been proposed, namely the ETM — CP,
EM — ETM/CP and EM — OTM/CP, jointly optimizing the tiling configura-
tion and the amplitude and/or phase excitation coefficients of the tiles modules.
C'P-based synthesis methods have been exploited in order to: (i) synthesize opti-
mal sub-array weights, according to the clustering configuration of the tiled array;
(i) provide optimal reference excitations coefficients of the fully-populated ar-
ray. A set of representative numerical results, validate the proposed methods, for
small, medium and large array sizes, considering both symmetric and asymmetric
masks. Moreover the robustness of the optimized tiled array when steering the
main beam within the visible range, as well as the reliability assessment when
considering real radiating elements, through a full-wave simulations, has been
analyzed. The numerical assessment leads to the following outcomes:

e the proposed exhaustive ET'M — C'P approach, has been effectively used
for the optimization of very small arrays, but it turns out to be impractical
for small /medium arrays, due to the high computational burden introduced
by the optimization of the tiles control points;

e the small array design case, when considering the symmetric mask, shows
that the compromise EM — ETM/C P-based techniques can potentially
converge to the optimal ET'M — C'P solutions, with a perfect match of the
ideal design requirements. Even if a perfect matching, cannot be always
ensured (e.g. as shown by the design of small/medium sized arrays con-
sidering asymmetric masks) the reported results show that the proposed
EM — ETM/CP and EM — OTM/CP methods allows to improve the
matching with the ideal mask-defined requirements, with respect to “bare”
EM — ETM and EM — OT M optimizations.

e the reliability of the proposed methodologies has been assessed by means
of full-wave simulations considering two different patch antenna elements,
positively compared with respect to the “bare” EM — ETM and EM —
OT M solutions in terms of mask matching of the radiated pattern obtained
using a commercial full solver.

Future research activities, beyond the scope of the current work, will be aimed at
improving the computational efficiency of both (a) the ETM and (b) the OTM
to avoid the generation of tiling words corresponding to symmetric sub-array
configurations. This will allow a reduction of the dimension of the solution space
and, on the one hand, an extension of the range of applicability of the ETM to
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larger array sizes (a), on the other, an increase of the number of samples of the
solution space evaluated during the GA-evolution (b), thus a higher probability
to find the optimal clustering. Moreover, the whole synthesis methodology will
be extended to planar arrays that can be completely covered by tiles shapes
that differs from the domino-like tiles considered in this thesis, allowing the
synthesis of array having different aperture shapes (e.g. exact hexagon, circular
shapes) and considering different lattices (e.g. triangular, hexagonal). Finally,
a comparative assessment of the performances obtained with the the presented
approaches with those achievable with alternative layouts, (e.g. sparse arrays
with a smaller number of elements) will be considered in the future research.
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