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Abstrat

In this work, the synthesis of lustered phased array antennas haraterized

by an irregular organization of tiles modules is addressed. By exploiting tiling

theorems drawn from the mathematial theory, optimal and sub-optimal meth-

ods for the optimization of tiles arrangements and the orresponding exitations

minimizing user-de�ned ost funtions are presented. An enumerative approah

able to retrieve the optimal lustering providing the maximum aperture over-

age and the best radiation performane is proposed to deal with the synthesis

of low/medium-size arrays. Based on the same optimal theorems and still ex-

ploiting the algorithmi proedures at the basis of the enumerative approah, an

innovative shemata-based optimization method is introdued for designing large

arrays, as well. A set of numerial examples and full-wave simulations, onerned

with di�erent aperture sizes, is reported to assess the e�etiveness, the limita-

tions, and the ranges of omputationally-admissible appliability of the proposed

methods.
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Chapter 1

Introdution

Phased array antennas are enabling tehnologies for high radiation perfor-

mane and fast beam sanning, but they are still quite expensive solutions. It

is known that almost half of the ost of a phased array is due to the transmis-

sion/reeption modules (TRM s) that ontrol the amplitude and the phase/time-

delay of eah radiating element to perform beam forming [1℄. To minimize the

osts, still yielding satisfatory radiation features, unonventional arhitetures

suh as sub-arrayed/lustered, thinned, or sparse arrays have been proposed

instead of fully-populated �ideal� solutions [2℄. Suh sub-optimal/ompromise

solutions are gaining more and more attention beause of the most reent mar-

ket requirements of sanning and beam forming apabilities [2℄ in modern radars

and ommuniation systems. In suh a framework, lustered phased arrays im-

plement low-ost arhitetures by omposing the array aperture with multiple

elementary tiles of two or more radiating elements, eah tile being fed by a single

TRM [3℄, still keeping good radiation e�ienies. Besides the smaller number of

TRM s with respet to fully-populated arhitetures, a further redution of the

osts an be yielded if the sub-arrays have simple and similar shapes suitable

for a modular assembling of the radiating system as well as the prodution of

only few types of tiles [4℄. Indeed modularity is advantageous in phased array

antenna manufaturing sine it allows the implementation of light and low pro�le

strutures [4℄, an easy maintenane, and integrated ooling systems [5℄.

Unfortunately, despite those positive features and beause of the use of sub-

array TRM instead of one per array element [6℄, a key issue to be faed is the

presene of undesired high sidelobes. As a matter of fat, when reduing the ar-

hitetural omplexity of the array struture by simply partitioning its aperture

into retangular sub-arrays of equal shapes and orientations, the radiated power

pattern turns out to be haraterized by undesired grating lobes whose number

unavoidably inreases widening the operational bandwidth as well as extending

the sanning angle [7℄-[9℄. To ope with this drawbak, aperiodi sub-array ar-

rangements [10℄-[32℄ or tiles having irregular shapes and/or irregularly loated

within the antenna aperture [19℄-[31℄ have been proposed. The advantages of
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aperiodi tiling arrangements against grating lobes have been �rstly introdued

in [15℄[16℄ for the design of aperiodi array layouts. Suessively, in [17℄[18℄ irreg-

ular polyomino lustering have been investigated, while in [19℄ and [20℄ Penrose

and Pinwheel tilings have been onsidered, respetively, showing that suh ape-

riodi lustering on�gurations break the periodiity of the quantization and,

onsequently, redue the level of the undesired sidelobes. Nevertheless no op-

timization strategies of the tiling on�guration and of the sub-array weights

have been proposed in these works. For this reason, the phased array parti-

tioning problem has been widely addressed in the reent years, both for linear

[21℄-[28℄ and planar [29℄-[32℄ geometries. Theoretial optimal strategies for the

omputation of the sub-array weights have been exploited, suh as the analyti

exitations mathing (EM ) tehnique [21℄[23℄[30℄ as well as hybrid methodologies

ombining analyti [28℄ or evolutionary [22℄ algorithms with onvex programming

(CP) optimizers. As regards the optimization of the lustering layout, several

e�ient loal-searh tehniques have then been developed, for instane the Con-

tiguous Partition Method (CPM ) [23℄[29℄[32℄, the Weighted K-means Cluster-

ing Method (WKCM ) [30℄, Geneti Algorithm (GA)-based approahes [24℄ and

multi-objetive strategies [25℄, that even if they guarantee a fast onvergene,

they don't allow to a-priori �x the size/shape of the lusters. Aordingly, ran-

dom searh based shemes [12℄[27℄, ditionary-based Compressive Sensing (CS )

tehniques [26℄ as well as GA-based methods [31℄, have been reently proposed for

the optimization of lustering on�gurations with modularity onstraints. Fous-

ing on planar array developed methods, in [31℄ the position within the aperture

and the orientation of �xed-sized polyomino-shaped tiles are optimized in order

to minimize the side-lobe level (SLL) of the radiated power pattern. Anyway

the exat partitioning of the aperture region is not assured beause the tiles are

allowed to partially over the boundary of the region, onsequently the use of

additional and not expeted tiles shapes is neessary in order to �ll the gaps

at the aperture borders, and even if the maximization of the diretivity (D) is

enfored in the ost funtion, a omplete overage of the entire aperture is not

always ensured.

Although e�ient lustering methods are available, it is worth pointing out

that no optimal-design methodologies for array tiling (namely, the full overage

of the array aperture for a given tile shape/geometry) exist till now sine array

lustering (espeially for large arrays) is mathematially a very omplex problem

[33℄-[35℄. On the other hand, optimal surfae tiling theorems [36℄-[47℄ and algo-

rithms [48℄-[53℄ have been derived in other �elds of siene (e.g., mathematis)

for simple tile shapes suh as dominoes [48℄-[55℄, bars/planks [56℄[57℄, multiple

retangular tiles [58℄-[62℄, as well as diamond shapes [63℄-[66℄ and more omplex

�gures, as instane L-shaped tiles [67℄, T-tetrominoes tiles [68℄-[74℄, ribbon tiles

[75℄-[77℄ and general polyominoes [78℄-[85℄. Among these, useful rules an be

pro�tably exploited for array design, as well. Indeed, in some ases they ould

allow one to a-priori state (i) whether an area (i.e., the aperture in array lus-
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CHAPTER 1. INTRODUCTION

tering) is fully tilable with the tile shape at hand, (ii) what is the extension of

the unovered area when (i) does not hold true, and (iii) the total number of

admissible tiling on�gurations. Moreover, mathematially-derived tiling algo-

rithms usually permit - besides the de�nition of the optimal surfae overage -

the iterative generation of all possible subarraying on�gurations as well as the

analytial de�nition of a sub-set of referene lustering solutions.

In this thesis the optimal (low-medium size arrays) or best-optimized (large

size arrays) design of irregular sub-arrayed retangular planar phased arrays,

omposed by domino-like tiles (i.e. retangular 1×2 and 2×1 modules), and ra-

diating a penil beam whih is as lose as possible to a referene one, is addressed

by exploiting some available mathematial literature onerned with the optimal

overage of the aperture. First, an enumerative method (ETM ) based on the

optimal surfae-tiling algorithms introdued in [48℄[53℄ is proposed to retrieve the

optimal array overage providing the best radiation performane in low/medium

size arrays. Sine the number of admissible lustering rapidly grows with the

array size and the enumerative proedure is no more omputationally possible

for large arrangements, an innovative optimization method (OTM ) based on an

analytially shemata-driven version of the GA is also introdued. In suh an

implementation, the GA pro�tably bene�ts of the knowledge of a set of referene

solutions/individuals haraterized by a good geneti ontent, namely shemata

[86℄[87℄ with high �tness-values/radiation-performane, and de�ned aording

to the tiling theorems/algorithms in [48℄[53℄. Moreover, the synthesis of tiled

phased arrays has been formulated as a multi-objetive optimization problem

(MOP) in order to deals with multiple beam pattern requirements, also ad-

dressing the ase of arbitrarily shaped arrays (i.e. not only square/retangular

shaped apertures). Finally a mask-onstrained domino-tiling synthesis method

is presented, in whih, starting from a set of ideal requirements on the array ra-

diation performanes de�ned by a power mask, aims at �nding the optimal tiling

on�guration minimizing the distane of the tiled array power pattern with the

mask, while maximizing the diretivity of the radiated pattern. Aordingly

three new optimization tehniques, namely the ETM − CP , EM − ETM/CP ,
and EM − OTM/CP methods, are proposed, positively ompared with the

ETM and OTM tehniques, whih unavoidably fail when dealing with a mask

mathing synthesis problem. With respet to the state-of-art lustering/tiling

methodologies, this thesis overs the following novel ontributions:

1. the domino tiling synthesis problem has been formulated, exploiting math-

ematial surfae-tiling theorems providing onditions for the existene of

the optimal array lustering (i.e., the full overage of the antenna array

aperture) as well as on the total number of di�erent optimal sub-array

on�gurations. Aordingly, the possibility to onverge towards optimal

solutions is disussed, proposing theoretially unfeasible and feasible opti-

mization strategies for the problem at hand;
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2. an enumerative, yet optimal, tiling method for determining the best sub-

array on�guration/s of low/medium size retangular arrays guaranteeing

the maximum performane for a given array aperture and tile shape;

3. a ustomized GA-based optimization tool for an e�etive exploration of the

wide solution spae of lustered on�gurations of large retangular arrays

thanks to a suitable exploitation of analytially-de�ned shemata bloks;

4. a novel synthesis method addressing the mask-onstrained synthesis prob-

lem by jointly ombining enumerative/GA-based approahes with optimal

onvex strategies, for the optimization of the tiling on�guration and of

the tiles exitations oe�ients.

Thesis outline

The thesis is organized as follows. Firstly, the phased array tiling problem is

mathematially formulated in Chapter 2. Then, the analytial/GA-based tiling

methodologies for low/medium and large array sizes are desribed in Chapter 3.

The mask-onstrained tiling synthesis method is reported in Chapter 4, while

the multi-objetive optimization problem of orthogonal polygon shaped arrays,

has been addressed in Chapter 5. Finally the onlusions are drawn in Chapter

6.
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Chapter 2

Phased Array Tiling Problem

In this Chapter the mathematial formulation for the analysis of lustered pla-

nar phased arrays is reported. More in detail the formulation of the array fator

when onsidering a sub-arrayed arhiteture is desribed, fousing on retan-

gular shaped aperture and domino-like sub-arrays. Moreover the phased array

tiling synthesis problem is formulated, providing theoretial optimum and sub-

optimum optimization strategies for the omputation of the lustering on�gu-

ration and of the amplitude and phase sub-array oe�ients, in order to radiate

a penil beam whih is as lose as possible to a referene one.
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2.1. MATHEMATICAL FORMULATION

2.1 Mathematial Formulation

Let us onsider a planar phased array of radiating elements disposed on a ret-

angular lattie with inter-element spaing dx and dy along the two surfae axes

[Fig. 2.1(a)℄. The eletromagneti (EM) �eld generated in far-�eld by suh

an arrangement is expressed as E (θ, φ) = f̂ (θ, φ)AF (θ, φ) where f̂ (θ, φ) is the
embedded or ative element pattern [3℄[6℄, here assumed idential for all antennas

1

, and AF (θ, φ) the array fator equal to

AF (θ, φ) =
M
∑

m=1

N
∑

n=1

Imne
jk(xm sin θ cosφ+yn sin θ sinφ)

(2.1)

being Imn the omplex (i.e., amplitude and phase) exitation of the (m,n)-th
element (m = 1, ...,M ; n = 1, ..., N), k = 2π

λ
the wavenumber, with λ the working

wavelength, (xm, yn) the entroid of the (m,n)-th array element, and (θ, φ) the
polar variables, with the polar axis assumed perpendiular to the array plane.

Moreover, let the ontrol points of the beam-forming network (BFN), namely

the ampli�ers and the phase shifters or time-delay units, all loated at the sub-

array level [Fig. 2.1(b)℄. Then, the array weights turn out to be a funtion of

the sub-array oe�ients as follows

Imn = Icmn
= αcmn

ejβcmn

m = 1, ...,M ; n = 1, ..., N ; cmn ∈ [1, Q]
(2.2)

where cmnare the elements of an M × N matrix C(whose elements are ordered

down-up instead of an usual up-down ordering), assuming Q integer values, Q
(Q ≤ M × N) being the number of sub-arrays/tiles omposing the array and

overing totally or partially its surfae, while αcmn
and βcmn

are the cmn-th (cmn ∈
[1, Q]) sub-array amplitude and phase oe�ients, respetively [Fig. 2.2(a)℄. The

vetor of integer indexes c = {Cp = cmn ; p = 1, ...,M × N , p = (m,n), m =
1, ...,M , n = 1, ..., N}, namely the sub-array aggregation, univoally desribes

a generi array tiling on�guration that is the grouping of the M × N array

elements into Q sub-arrays, σ = {σcmn
; cmn = 1, ..., Q}[Fig. 2.2(b)℄, and it is

built from the matrix C onsidering a raster order, starting from the lower-left

array element,(m,n) = (1, 1), to the lower right element (m,n) = (M, 1), and
from the lower row of elements, (m,n) = (m, 1), to the upper row, (m,n) =
(m,N).

1

This assumption will not a�et the optimization methodologies proposed in the following

hapters, in whih isotropi radiators are onsidered. Only the reliability assessment reported

in Se. 3.4.1.2 onsiders, for the sake of simpliity, the embedded element pattern of a real

radiator surrounded by two rings of elements as an aeptable approximation for all the array

antennas (i.e. when the size of the array is reasonably large).
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Figure 2.1: Sketh of the fully-populated array arhiteture (a) and of the sub-

array arhiteture (b).
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2.2. PROBLEM STATEMENT

2.2 Problem Statement

By supposing the use of two domino-like sub-arrays of two-elements

2

[i.e., σcmn
=

σV
or σcmn

= σH
being σV =

{

(xm, yn) ∪
(

xm, y(n±1)

)}

and σH = {(xm, yn)
∪
(

x(m±1), yn
)}

- Fig. 2.2(a)℄, the unknown lustered on�guration, c, and the

orresponding values of the sub-array amplitudes, α = {αcmn
; cmn = 1, ..., Q},

and phases, β = {βcmn
; cmn = 1, ..., Q}, are determined by solving the following

synthesis problem:

Phased Array Tiling Synthesis Problem - given an array of M × N
isotropi elements

3

, positioned over a retangular lattie, and two

domino-like tiles

(

σV , σH
)

, �nd the optimal tiling/lustering on�g-

uration c
opt

and the orresponding sub-array weights αopt
and βopt

,

suh that the radiated pattern �ts user-de�ned requirements Φ (c;α,β),
with the man lobe steered toward (θ0, φ0).

The global optimum of the array tiling synthesis problem an be theoretially

reahed by means of a full-global optimization approah, by jointly optimize the

tiling on�guration c and the tiles exitations oe�ients α and β as

(

c
opt;αopt,βopt

)

= arg

[

min
c;α,β
{Φ (c;α,β)}

]

(2.3)

It is lear that (2.3) turns out to be omputationally unfeasible in most of the

ases: it is neessary to set 2Q real values, for the amplitude and phase oe�-

ients, and M×N integer numbers for the oding of the lustering on�guration,

whih generate an extremely wide solution spae even for very small arrays. This

issues an be solved if the subset T = {ct, t = 1, ..., T}, inluding all the existing
tilings of the M×N array, is known, by solving the following nested optimization

(

c
opt;αopt,βopt

)

= arg

[

min
ct

{

Φ
(

ct;α
opt
t ,βopt

t

)}

]

(2.4)

(

α
opt
t ,βopt

t

)

= arg

[

min
αt,βt

{Φ (αt,βt |ct )}

]

(2.5)

In order to solve suh a synthesis problem, the loations and the orientations of

the elementary domino shapes must be properly optimized to yield the maximum

2

Eah element an be either a radiating element or an aggregation (building blok) of

radiating elements. Without loss of generality and hereinafter, we will onsider the domino-

like sub-array as omposed by two elementary radiating elements.

3

The hypothesis of isotropi elements instead of real radiators as formulated in Se. 2.1, is

made for the sake of simpliity. The in�uene of the element fator will be analyzed in Se.

3.4.1 and Se. 4.4.4, for a sub-set of the optimized solutions reported in the respetive setions.
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CHAPTER 2. PHASED ARRAY TILING PROBLEM

(a)

(b)

Figure 2.2: Sketh of the array aperture tiling (a)(b) when c = {1, 1, 2, 3, 3, 4,
5, 5, 2, 6, 7, 4, 8, 9, 9, 6, 7, 10, 8, 11, 11, 12, 12, 10} and σ = {σH

, σV
, σH

, σV
,

σH
, σV

, σV
, σV

, σH
, σV

, σH
, σH

}, being M = 6, N = 4, and Q = 12.

(total) overage of the array aperture with an irregular sub-array arrangement

for minimizing the level of the undesired �quantization lobes� [6℄. Inspired by

optimal tiling theorems and algorithms available in the sienti� literature, two

novel design methods will be presented in the following hapters to deal with

small and large size arrays, respetively.
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Chapter 3

Array Tiling Methodologies

In this Chapter two methodologies for the optimization of retangular regions

tiled by domino-like tiles are presented. By exploiting optimal analyti tiling

algorithms, an enumerative-based approah able to sequentially generate all the

existing omplete tilings, is proposed for the optimization of domino-tiled phased

arrays. When the dimension of the tiling solutions spae is too large for an ex-

haustive searh, an optimization-based methodology exploiting a ustomized GA
optimizer is used for the synthesis of large tiled phased arrays. The numerial as-

sessment validates the proposed approahes, onsidering small and medium/large

apertures, also ompared to state-of-art lustered solutions. Finally, the relia-

bility assessment of the optimized solutions when onsidering real radiating ele-

ments, using a ommerial full-wave simulator, is presented and disussed.
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3.1. TILING THEORY AND THEOREMS

3.1 Tiling Theory and Theorems

Given a bounded region of the plane and a set of tile shapes, an we over

ompletely the region with the tiles? And in how many ways? This setion

is devoted to answer to these questions, exploiting the mathematial literature

devoted at solving suh a di�ult problem. Useful theorems for the tilability

of �nite regions, as well as losed form formulas for the omputation of the

number of existing tilings are reported, with a fous on retangular regions tiled

by retangular tiles.

Let us onsider a set of S tiles shapes σ = {σs; s = 1, ..., S} , and a bounded

region A de�ned over a given lattie. We an say that σ tiles A (equivalently,

that A is tilable by σ) if A an be overed with translates of tiles σ ∈ σ suh

that eah lattie ell in A is overed by exatly one tile (i.e. overlapping is not

admissible). We an de�ne two main tiling problems [40℄:

• Plane Tiling Problem

Given a �nite set σ of tiles, does σ tile the whole (i.e. in�nite) lattie?

• Finite Tiling Problem

Given a region A and a �nite set σ of tile, does σ tiles A?

The only regular polygons able to tile the plane are the square, the equilateral

triangle and the hexagon [40℄. These three tiles de�nes the three regular latties

in whih the majority of tiling problems are de�ned. If for example we try to

tile the plane with a single pentagonal shaped tile, for sure we end to leave

some unovered spae in between the tiles, beause the plane is not tilable by

pentagons. It is well known in the literature that the Plane Tiling Problem is

undeidable. The undeidability of tiling the plane has been proved by R. Berger

in 1966 [33℄ in ase of dominoes tiles, further disussed by R. M. Robinson in

1971 [34℄ for di�erent shaped tiles. Moreover the undeidability of tiling the plane

with polyominoes has been also treated by Golomb in [37℄ reduing the Plane

Tiling Problem to the Wang Tile Problem [35℄. The aim of this thesis is to exploit

tiling problems for the design of antenna arrays whih is an instane of the Finite

Tiling Problem and, like for the Plane Tiling Problem it is usually a di�ult task

[40℄-[45℄. Even the ounting of the number of existing tilings for medium/large

apertures is generally an almost omputationally intratable/impossible task.

In order to solve a Finite Tiling Problem we need to answer to the following

questions:

Q1 Given a tile shape, σ, is the region ompletely tilable? If not, what is the

extension of the unovered area?

Q2 Given a tile shape, σ, how many �omplete� tiling on�gurations (i.e., tiling

on�gurations fully overing the whole region) exist?

12



CHAPTER 3. ARRAY TILING METHODOLOGIES

In the following, some theoretial insights on these two fundamental questions

will be given and, exploited in the next setions for de�ning suitable lustering

methods for dealing with the synthesis of retangular and fully tilable apertures

with domino tiles.

3.1.1 Covering Theorem: �Is the region tilable? �

Answers to question Q1 are reported in the following, exploiting tiling theorems

when onsidering retangular regions and retangular tiles, fousing on the ase

of domino-like tiles is treated.

Let us onsider a region A disretized into M × N pixels, and retangular

shaped tiles of the lass B × 1 and 1 × B. In 1969 Klarner derived a useful

ondition in order to solve the respetive tilability ondition [42℄ :

T1 : An M × N retangle A an be tiled by σ = {B × 1, 1× B} tiles if and
only if B divides M or N .

The theorem is then generalized for the more wide lass of retangular tiles B×D
and B ×D, leading to the following theorem [42℄:

T2 : An M × N retangle A an be tiled by σ = {B ×D, D × B} tiles if and
only if B divides M or N , D divides M or N , and if BD divides one side of

A, then the other side an be expressed in the form Bx+Dy with x, y ≥ 0.

In ase the retangle A is not tilable by the onsidered retangular tiles, it is

interesting to know how many pixels of A are left unovered. We will refer to

the unovered pixel as wasted area. In 1979 Barnes, starting from the outomes

of the seminal work on retangles paking [44℄ derived analyti relationships

between the size of the region and of the tiles, with the wasted area, reported in

the following theorem [44℄[45℄:

T3 : Consider an M ×N retangle A tiled with σ {B × 1, 1×B} tiles, and let

M̂ ≡M modB (3.1)

N̂ ≡ N modB (3.2)

where 0 ≤ M̂ < M and 0 ≤ N̂ < N , and mod being the modulo operation.

Then the wasted area W in the best possible paking (i.e. a not omplete

tiling of A) with the tiles σ is given by

W =

{

M̂N̂ if M̂ + N̂ ≤ B

(B − M̂)(B − N̂) if M̂ + N̂ ≥ B
(3.3)

When onsidering domino-like tiles (i.e. σ = {2× 1, 1× 2}) the tilability on-

dition and the wasted area estimation are simpli�ed in the following theorem:

13



3.1. TILING THEORY AND THEOREMS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2  4  6  8  10  12  14  16

N
um

be
r 

0f
 ti

lin
gs

, 1
0l

og
(T

)

N

M=N
M=2N
M=3N

Figure 3.1: Number of omplete domino tiling on�gurations, T , for square and
retangular M ×N regions.

T4 : To hek whether A may be fully overed with domino tiles, it is

su�ient that one side of the retangle A (either M or N) ontains an

even number of pixels [42℄. Otherwise (i.e., only when both M and N are

odd), the empty area extends to W = 1 square pixel [44℄[45℄.

3.1.2 Cardinality Theorem: �How many omplete tiling

on�gurations? �

In order to answers to question Q2, theorems and formulas taken from the mathe-

matial literature are reported in the following. In partiular the following losed

form formula, will be very useful for solving the tiling problems of the following

hapters, in whih retangular areas tiled by domino-like tiles are onsidered.

The number of tiling on�gurations that fully over a surfae A of dimensions

M ×N square pixels with domino tiles is equal to [46℄

T = 2
MN
2

∏M
m=1

∏N
n=1

[

cos2
(

πm
M+1

)

+ cos2
(

πn
N+1

)]1/4
(3.4)

To give an indiation on the dimension of the solution spae of the tiling problem

at hand (i.e., the total number of omplete tiling arrangements) Fig. 3.1 shows

the values of T as funtion of the retangle edge N for square (i.e. M = N)

and retangular (i.e M = 2N and M = 3N) areas. Table 3.1 reports the exat

numbers obtained using (3.4).
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Table 3.1: Number of omplete domino tiling on�gurations, T , for di�erent sizes
of square and retangular M ×N regions.

N T

N = M N = 2M N = 3M

6 6.728× 103 1.0692× 108 1.7657× 1012

8 1.2989× 107 5.4006× 1014 2.3334× 1022

10 2.5858× 1011 2.8942× 1023 3.3658× 1035

16 2.4449× 1030 6.3623× 1061 1.7204× 1093

3.2 Height Funtion based Enoding for Domino

Tiling

In ase the aperture A is totally tilable and the exhaustive analysis of the spae of

omplete sub-arrays arrangements is omputationally-a�ordable, an enumerative

approah is proposed by properly ustomizing the analyti tehnique in [53℄ to the

synthesis of sub-arrayed phased arrays. The method is based on the exploitation

of the height funtion [48℄ that allows one to univoally identify a generi t-th
tiling solution, c

(t)
(t = 1, ..., T ), namely the organization of vertial, σV

, and

horizontal, σH
, domino tiles

1

within the array aperture A [Fig. 2.2(b)℄.

(A) Height Funtion Computation

In order to de�ne the height funtion h (·) and its values, let us �rst desribe

the array aperture A, omposed by M ×N pixels, in terms of its pixel-verties,

{vmn; m = 0, ...,M ; n = 0, ..., N}, and pixel-edges, {emn→m(n±1), emn→(m±1)n;

m = 0, ...,M − 1; n = 0, ..., N − 1} (Fig. 3.2). Indeed, the height funtion h (·)
is de�ned on the pixel-verties [i.e., hmn = h (vmn), m = 0, ...,M ; n = 0, ..., N ℄,

while the h-values are determined by onsidering the pixel-edges. Towards this

end, the aperture pixels are olored aording to a blak, ζmn = −1, and white,

ζmn = 1, hekerboard pattern, starting with an arbitrary olor for the �rst pixel

ζ11 = ±1 (e.g., ζ11 = 1 in Figs. 3.2-3.3), and the edges of white/blak pixels are

oriented lokwise/ounterlokwise (Fig. 3.2). Then, the following proedure

(Algorithm A1 ) is used:

• A1.1 Computation of the h-value of the boundary verties of A (v
(t)
ext ={v

(t)
mn;

[m = {0, M}; n = 0, ..., N ℄

⋃

[n = {0, N}; m = 0, ...,M ℄}; v
(t)
ext ∈ ∂A be-

ing ∂A the ontour/boundary of A) - Regardless of the t-th (t = 1, ..., T )

1

In ase of non-irularly polarized radiators and to �t the required state-of-polarization

(e.g., linear vertial/horizontal polarization) of the array, two tiles (σV
and σH

) equally-

polarized must be built although with the same (retangular) shape. Otherwise, only a ret-

angular domino tile is enough.
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Figure 3.2: Blak-and-white hekerboard representation of the array aper-

ture A with pixel verties vmn, m = 0, ...,M , n = 0, ..., N and edges

emn→m(n±1), emn→(m±1)n, m = 0, ...,M − 1, n = 0, ..., N − 1.
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tiling on�guration, c
(t)
, set the value of the height funtion of the vertex

v00 ∈ v
(t)
ext to h00 = h (v00) = 0 (Fig. 3.3). Then, starting from the pixel-

vertex v00 and moving along ∂A lokwise, the value of the height funtion

is inreased/dereased of one unit from one vertex to the suessive one if

these latter belong to the edge of a white/blak pixel

{

h(m−1)n

⌋

ζmn=±1
, h(m+1)n

⌋

ζmn=±1
,

hm(n−1)

⌋

ζmn=±1
, hm(n+1)

⌋

ζmn=±1

}

=

= hmn⌋ζmn=±1 ± 1.

(3.5)

It is worth pointing out that suh a step is arried out only one and

at the beginning of the synthesis proedure independently on the tiling

(∀ t ∈ [1, T ]) at hand;

• A1.2 Computation of the h-value of the internal verties of A (v
(t)
int ={v

(t)
mn;

m = 1, ...,M − 1; n = 1, ..., N − 1}) - With referene to a lustered

on�guration c
(t)

of tile shapes vertially or horizontally oriented (e.g.,

Fig. 3.4), selet an internal vertex v
(t)
mn ∈ v

(t)
int with at least one neigh-

boring vertex, denoted as v
(t)
pg ∈ v

(t)
mn [v

(t)
mn = {v

(t)
(m−1)n, v

(t)
(m+1)n, v

(t)
m(n−1),

v
(t)
m(n+1)} being the set of verties neighbor to v

(t)
mn℄, having the height fun-

tion value, h
(t)
pg = h

(

v
(t)
pg

)

already set (i.e., v
(t)
pg = v

(t)
(m−1)n or v

(t)
pg = v

(t)
(m+1)n

or v
(t)
pg = v

(t)
m(n−1) [e.g., Fig. 3.4(b) and Fig. 3.4(d)℄ or v

(t)
pg = v

(t)
m(n+1) [e.g.,

Fig. 3.4(a) and Fig. 3.4()℄). Then, determine the unknown value h
(t)
mn

aording to one of the following �tiling rules�:

� if the edge emn→pg is direted from v
(t)
mn to v

(t)
pg and it belongs to the

ontour of a tile of c
(t)

[Fig. 3.4(a)℄ then h
(t)
mn = h

(t)
pg − 1;

� if the edge emn→pg is direted from v
(t)
pg to v

(t)
mn and it belongs to the

ontour of a tile of c
(t)

[Fig. 3.4(b)℄ then h
(t)
mn = h

(t)
pg + 1;

� if the edge emn→pg is direted from v
(t)
pg to v

(t)
mn and it does not belong

to the ontour of a tile of c
(t)

[Fig. 3.4()℄ then h
(t)
mn = h

(t)
pg − 3;

� if the edge emn→pg is direted from v
(t)
mn to v

(t)
pg and it does not belong

to the ontour of a tile of c
(t)

[Fig. 3.4(d)℄ then h
(t)
mn = h

(t)
pg + 3;

Iterate the proess for all the internal verties, v
(t)
mn ∈ v

(t)
int, m = 1, ...,M − 1;

n = 1, ..., N − 1 [Fig. 3.4(e)℄.

(B) Exhaustive Tiling Generation
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Figure 3.3: Enumerative Tiling Method (M = 4, N = 3) - Illustrative sheme

for the omputation and arising values of the height funtion of the boundary

verties v
(t)
ext ∈ ∂A.

Starting from the de�nition of the height funtion, the analyti proedure for gen-

erating the full-set of T omplete tilings is based on the de�nition of a sequene of

tiling words, w
(t) =

{

w
(t)
l : l = 1, ..., L

}

(t = 1, ..., T ), eah one orresponding to

a sub-array on�guration, c
(t)
, and omposed by L = (M − 1)× (N − 1) integer

entries (also alled letters) whose values only

2

depend on the height funtion at

the internal verties, v
(t)
int, as follows

w
(t)
l =

h
(t)
mn − h

(1)
mn

4
, l = 1, ..., L (3.6)

where l , m+ (n− 1)× (M − 1), h
(t)
mn and h

(1)
mn being the height funtion value

of the (m,n)-th (m = 1, ...,M − 1; n = 1, ..., N − 1) internal vertex of the t-th
entry and of the �rst one (i.e., c

(1)
also indiated as minimal tiling [48℄) of the

T -size list of omplete on�gurations, respetively.

The minimal tiling is generated only one by means of the following algorithmi

sequene (Algorithm B1 ):

• B1.1 Vertex seletion - Selet the vertex of ∂A with maximum height value

2

One again it is worth remembering that the values of the height funtion in orrespondene

with the boundary verties, v
(t)
ext
∈ ∂A, only depend on the shape of the array aperture A.

Therefore, they are the same for a �xed surfae A whatever the omplete tiling on�guration

at hand.
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(i.e., v
(1)
mn = arg

{

maxj=0,...,M
k=0,...,N

[

h
(

v
(t)
jk

)

; v
(t)
jk ∈ v

(t)
ext

]}

). If there are two or

more verties with the same height funtion, arbitrarily selet one of them;

• B1.2 Domino tile plaement - Plae a vertial, σV
, or horizontal, σH

,

domino tile so that the two boundary verties adjaent to v
(1)
mn (i.e., v

(1)
(m±1)n ∈

v
(1)
ext [e.g., Fig. 3.5(a)℄ or v

(1)
m(n±1) ∈ v

(1)
ext) are also verties of the same domino

tile;

• B1.3 Aperture boundary and h-value update - Complete the omputation

of the h-values of the verties of the domino tile plaed in A at the step

B1.2, by determining the height funtion in orrespondene of the internal

verties aording to the rules de�ned in A1.2 of the �Algorithm A1 � (Fig.

3.4). By subtrating the tile area σV/H
from the original surfae of the

aperture A, update the aperture boundary, ∂A← ∂
(

A− σV/H
)

, as well as

the extension of the aperture, A←
(

A− σV/H
)

[Fig. 3.5(b)℄;

• B1.4 Stopping riterion - Stop if the aperture is totally overed and the

funtion h is omputed for all (internal) verties [Fig. 3.5()℄. Otherwise,

go to the �B1.1 Vertex seletion� step.

It is worth notiing that the word �oding� suh a minimal tiling, c
(1)
, is w

(1) = 0

sine all its letters are equal to zero (i.e., w
(1)
l = 0, ∀l) being h

(t)
l = h

(1)
l , l = 1, ..., L

in (3.6).

The last tiling solution c
(T )

, alled maximal tiling [48℄, is also analytially de-

termined by still applying the Algorithm B1, but seleting the vertex with the

minimum height funtion value on ∂A in �B1.1 Vertex seletion�.

As for the generation of the remaining omplete tiling on�gurations (t = 2, ..., T−

1), one the h-values of the minimal tiling have been omputed, {h
(1)
l , l =

1, ..., L}, aording to the �Algorithm B1 �, they are exhaustively generated as

follows (Algorithm B2 ):

• B2.1 Tiling word update - San the tiling word w
(t−1)

from the last letter

(l = L) to the �rst one (l = 1) and stop when h
(t−1)
r−1 > h

(t−1)
r , r ∈ [2, L]

[e.g., r = L - Fig. 3.5()℄ or r = 1. Set the �rst r letters of the new tiling

word w
(t)

as follows

w
(t)
l =

{

w
(t−1)
l l = 1, ..., r − 1

w
(t−1)
l + 1 l = r

; (3.7)

• B2.2 Height funtion omputation - Compute the values of the height

funtion of the �rst r internal verties, {v
(t)
mn ∈ v

(t)
int; n =

⌊

l−1
M−1

⌋

+ 1;
m = l − (n− 1) × (M − 1); l = 1, ..., r}, ⌊·⌋ being the �oor funtion,

orresponding to the letters w
(t)
l , l = 1, ..., r aording to the rule

h(t)
mn = 4w

(t)
l + h(1)

mn; (3.8)
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Figure 3.4: Enumerative Tiling Method (M = 4, N = 3) - Illustrative sheme

for the omputation (a)(b)()(d) and (e) values of the height funtion of the

internal verties v
(t)
int.
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Figure 3.5: Enumerative Tiling Method (M = 4, N = 3) - Illustrative sheme for

the de�nition of the minimal tiling on�guration and for the omputation of the

height funtion values: (a) plaement of a new domino tile; (b) omputation of

the height funtion of the new verties and aperture/aperture-boundary update;

() values of the height funtion of the minimal tiling.
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3.3. PENCIL BEAM SYNTHESIS THROUGH THE ENUMERATIVE

TILING METHOD (ETM )

• B2.3 Feasibility Chek - Go to �B2.4 - New tiling generation� if the ondi-

tion

∣

∣h(t)
mn − h(t)

pg

∣

∣ = {1, 3} (3.9)

holds true, v
(t)
pg being a neighboring vertex (i.e., v

(t)
pg ∈ v

(t)
mn) with an already

de�ned height funtion value, h
(t)
pg = h

(

v
(t)
pg

)

. Otherwise, go to �B2.1 Tiling

word update� and ontinue sanning the tiling word starting from r = r−1;

• B2.4 New tiling generation - Known the values of h (·) on ∂A (Algorithm

A1 ) and the height funtion values h
(t)
mn omputed through (3.8), plae the

domino tiles inside A to �t the �tiling rules� in �A1.2 Computation of the

h-value of the internal verties of A�. Afterwards, de�ne the new omplete

tiling on�guration c
(t)

by applying the �Algorithm B1 �. One the array

aperture A has been totally overed and the height funtion values are all

de�ned, {h
(t)
mn; m = 1, ...,M − 1; n = 1, ..., N − 1}, ompute the remaining

letters w
(t)
l , l = r + 1, ..., L through (3.6);

• B2.5 Stopping riterion - If t = T − 1, then stop the tiling generation.

Otherwise, update t (i.e., t← t + 1) and go to �B2.1 Tiling word update�.

3.3 Penil Beam Synthesis through the Enumer-

ative Tiling Method (ETM )

One the omplete list of existing tilings has been generated, the nested opti-

mization strategy desribed in Chapter 2 [eq. (2.4) and (2.5)℄ together with an

exitation mathing approah for a fast omputation of the sub-array oe�ients

is here proposed in order to �nd the optimal tiling/lustered on�guration, c
opt

that totally overs the aperture and radiates the minimum sidelobe level (SLL)
penil beam pattern with its main beam steered along (θ0, φ0). Aordingly the

ost funtion of the tiling array synthesis problem is de�ned as follows

Φ (c;α,β) = SLL
[

|AF (θ, φ; c,α,β)|2
]

(3.10)

where in (3.10) SLL [·] is the funtion measuring the SLL of the power pattern

|AF (θ, φ; c,α,β)|2. The Enumerative Tiling Method (ETM ) is summarized in

the following steps:

• Step 1. Referene Array : given the ideal fully-populated array, the refer-

ene amplitude weights αref
mn, m = 1, ... , M, n = 1, ... , N are obtained

by means of standard methods (e.g., Taylor, Dolph-Chebyshev [91℄) while

the phases as

βcmn
= −k (xcmn

sin θ0 cosφ0 + ycmn
sin θ0 sinφ0) , (3.11)
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xcmn
=

{

xm+x(m±1)

2

}

and ycmn
=

{

yn+y(n±1)

2

}

being the planar oordinates

of the cmn-th sub-array enter.

• Step 2. Tilings Enumeration: the optimal tiling generation method de-

sribed in the previous setion, is used for the enumeration of the whole

set of lustering on�gurations C∞ =
{

c
(t); t = 1, ..., T

}

;

• Step 3. EM Sub-array Weights: for eah tiling ct;, t = 1, ..., T , the op-

timal ompromise EM exitations oe�ients

(

αEM
t ,βEM

t

)

are obtained

minimizing the following exitation mathing problem

3

(

αEM
t ,βEM

t

)

= arg

[

min
α,β

{

M
∑

m=1

N
∑

n=1

∣

∣Irefmn − Imn

∣

∣

}]

(3.12)

The optimal amplitudes and phase oe�ients solving (3.12), turn out to

be analytially obtained as [29℄

αEM
q,t =

1

2

N
∑

n=1

M
∑

m=1

αref
mnδcmnq, q = 1, ..., Q (3.13)

βEM
q,t =

1

2

N
∑

n=1

M
∑

m=1

βref
mn δcmnq, q = 1, ..., Q (3.14)

• Step 4. Cost Funtion Evaluation: evaluation of the SLL (3.10) for eah

of the T solutions and seletion of the best tiling/sub-array weights, solving

(

c
opt;αopt,βopt

)

= arg

[

min
t=1,...,T

{

Φ
(

ct;α
EM
t ,βEM

t

)}

]

(3.15)

3.3.1 Numerial Assessment

The �rst example is onerned with a planar array made of 40 (M × N =
8 × 5) ideal isotropi radiators (i.e. E (θ, φ) = AF (θ, φ)) with inter-element

spaing dx = dy = d = λ
2
[Fig. 3.6(a)℄. The exitations of the referene fully-

populated array [Fig. 3.6(a)℄, a�ording the power pattern shown in Fig. 3.6(b)

and haraterized by the pattern indexes in Tab. 3.2, have been de�ned as

αref
mn , αref

m αref
n , {αref

m ; m = 1, ...,M} and {αref
n ; n = 1, ..., N} being the weights

of a Dolph-Chebyshev pattern [91℄ with SLL = −20 dB. It is worth noting

3

A rigorous enumerative approah, minimizing (3.10), would require for eah tiling solution

the determination of the optimal set of exitations minimizing the SLL (e.g. by means of a

onvex optimization). Here a sub-optimal EM -based enumerative proedure is justi�ed by

the numerial e�ieny of the analyti relationships used for the omputation of the EM
exitations. A detailed disussion about optimal ETM methods, jointly optimizing the sub-

array on�guration and the exitations oe�ients, is reported in Chapter 4.
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here that the hosen referene pattern is not an optimal referene, and has been

seleted beause is a simple �anonial� pattern, and if the proposed approah is

able to ahieve a good approximation of the referene, the same would happen

for a true optimal pattern.

Sine at least one side (M = 8) is even (i.e., M mod 2 = 0) and aording to the

Covering Theorem (Se. 3.1.2), the array aperture at hand turns out to be fully

tilable with domino tiles and the whole number of omplete tiling on�gurations

(3.4) amounts to T = 1.4824×104. Being ∆τ ≃ 0.12 [se℄ (τ ≃ 0.178×104 [se℄)
and ∆τΦ = 0.45 [se℄, the CPU -time for determining a lustering solution and for

omputing the orresponding SLL value, respetively, the overall omputational

ost of an exhaustive searh is still viable (τETM ≃ 0.845 × 104 [se℄, being

τETM , (∆τ +∆τΦ) × T ), thus the ETM (Set. 3.3) has been pro�tably used

to �nd the globally-optimum sub-arraying on�guration.

Figure 3.7 shows the SLL values of the whole set of omplete tiling on�gu-

rations, C∞ =
{

c
(t); t = 1, ..., T

}

, ordered from the worst (i.e., the lustered

arrangement with the highest SLL: SLLworst = −11.36 dB) up to the best (i.e.,

SLLbest = −18.89 dB). While di�erent solutions an have the same SLL value,

only a subset of the T sub-array on�gurations guarantees performane lose to

that of the referene fully-populated array (SLLth = −20 dB). More in detail,

only about 10% omplete tiling solutions are haraterized by SLL < −18.0 dB.
Suh a perentage redues to 1% for having SLL < −18.5 dB and it turns out

to be less than 0.2% to guarantee a SLL < −18.8 dB.

Let us now fous on the solutions with the lowest sidelobes. There are four

di�erent tiling on�gurations a�ording power patterns with the minimum SLL
value (i.e., SLLbest = −18.89 dB). They are shown in Fig. 3.8 along with

their sub-array amplitudes [Fig. 3.8(a), Fig. 3.8(), Fig. 3.8(e), and Fig.

3.8(g)℄ and the radiated power patterns [Fig. 3.8(b), Fig. 3.8(d), Fig. 3.8(f ),

and Fig. 3.8(h)℄. For ompleteness, the orresponding tiling words w
(t)
, t =

{186, 1267, 3223, 9323}, are reported in Tab. 3.3. As it an be observed, these

arhitetures are irregularly organized with an unbalaned distributions of hori-

zontal, σH
, and vertial, σV

, tiles (i.e., 16 σH
over 20). Moreover, it is worthwhile

notiing that, even though eah arrangement orresponds to a di�erent tiling-

word (Tab.3.3), all an be yielded from one of them by simple mirroring with

respet to a oordinate axis. For instane, the solutions t = {1267, 3223, 9323}
an be generated from the t = 186-th one [Fig.3.8(a)℄ by just applying an hor-

izontal [e.g., Fig. 3.8(g)℄ and/or a vertial [e.g., Fig. 3.8() and Fig. 3.8(e)℄

�ip/s. Suh an observation will be further assessed in future works and (if veri-

�ed) also fully exploited to further redue the dimension of the solution spae as

well as the CPU -time τ for generating W∞, thus extending/enabling the use of

the ETM to larger array sizes to �nd without unertainty the global optimum

lustering.

For omparative purposes, the worst-ase solution (t = 11729) with the orre-

sponding sub-array exitations [Fig. 3.9(a)℄ and its power pattern [Fig. 3.9(b)℄
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Figure 3.6: ETM Numerial Assessment (M = 8, N = 5; d = 0.5λ; T = 1.4824×
104) - Plots of (a) the array geometry and referene exitation amplitudes (αref

mn;

m = 1, ...,M ; n = 1, ..., N) and (b) the referene power pattern,

∣

∣AFref (θ, φ)
∣

∣

2
.

Table 3.2: ETM Numerial Assessment (M = 8, N = 5; d = 0.5λ; T = 1.4824×
104) - Radiation performane (SLL, D, HPBWaz, HPBWel) of the referene,

the best, and the worst ETM tiling solutions.

SLL D HPBWaz HPBWel

[dB℄ [dBi℄ [deg℄ [deg℄

Reference −20.00 20.30 14.23 23.71
Best −18.89 20.30 14.06 23.46
Worst −11.36 20.03 14.18 21.87

is reported, as well. Unlike the optimal tilings in Fig. 3.8, whih provide the

lowest SLL (Tab. 3.2), the organization of domino tiles is here quite regular

[Fig. 3.9(a)℄, thus unavoidably generating high sidelobes [6℄.

3.4 Penil Beam Synthesis using the Optimization-

Based Tiling Method (OTM )

The ETM approah allows to �nd the global optimum by a omplete enumer-

ation of the existing tilings. Anyway when the dimension of the array aperture

inreases, the number of tiles needed to ompletely over it inreases, and on-

sequently the number of ombinations for the aperture tiling inreases. Table

3.4 reports a set of T values for di�erent sizes of the aperture side of a square

array (i.e., M = N). As it an be notied, the admissible set of omplete tilings

exponentially grows with the array size, namely the number of elements M ×N ,
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Figure 3.7: ETM Numerial Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824×104) - Values of the SLL of the whole set of omplete tiling on�gurations,

C∞ =
{

c
(t); t = 1, ..., T

}

, ordered from the worst. to the best.

Table 3.3: ETM Numerial Assessment (M = 8, N = 5; d = 0.5λ; T = 1.4824×
104) - Tiling words orresponding to the ETM lustered arrays t = 186, t = 1267,
t = 3223, and t = 9323 providing the global minimum SLL.

t w
(t)

Best 186 0000000000001101111100111111
Best 1267 0000000110000001111101111110
Best 3223 0000001111111101222211111111
Best 9323 1000000111111112222101111111

Worst 11729 1010101111111101111100101010
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t = 186
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t = 1267
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t = 3223
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t = 9323
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Figure 3.8: ETM Numerial Assessment (M = 8, N = 5; d = 0.5λ; T = 1.4824×
104) - Plots of (a)()(e)(g) the tiling on�gurations and sub-array exitations,

and (b)(d)(f )(h) the power pattern of the solutions (a)(b) t = 186, ()(d) t =
1267, (e)(f ) t = 3223, and (g)(h) t = 9323 providing the global minimum SLL.
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Figure 3.9: ETM Numerial Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824× 104) - Plots of (a) the tiling on�guration and the sub-array exitation

amplitudes and (b) the power pattern of the worst omplete lustering a�ording

the global maximum SLL.

Table 3.4: Number of omplete tiling on�gurations, T , and time requested for

the generation of a single tiling solution (∆τ) and all tiling on�gurations (τ) for
di�erent sizes of a square aperture, M = N = {6, 8, 10, 16}.

M = N T ∆τ [se℄ τ [se℄

6 6728 0.10 6.72× 102

8 1.29× 107 0.15 1.94× 106

10 2.58× 1011 0.20 5.16× 1010

16 2.44× 1030 0.40 9.76× 1029

pointing out that an enumerative sampling of the solution spae looking for the

�best� sub-array on�guration turns out to be already unfeasible for M = N = 8
(T = 1.29 × 107, ∆τ = 0.15 [se℄ → τ = 1.94 × 106 [se℄) and impossible when

M = N ≥ 10 (T ≥ 2.58 × 1011, ∆τ ≥ 0.20 [se℄ → τ = 5.16 × 1010 [se℄), ∆τ
and τ being the CPU -time for generating one and the whole set of T omplete

tilings (τ , T ×∆τ), respetively, on a 2.4GHz PC with 2GB of RAM.

Aordingly, when the dimension of the aperture (i.e., the ardinality of the

orresponding solution spae) does not allow a omputationally-feasible applia-

tion of the enumerative approah (Set. 3.3), the domino-like aperture tiling is

solved through an innovative binary GA that exploits both a suitable oding and

proper analytially-generated GA-�shemata� [87℄ to e�iently (i.e., maximizing

the onvergene rate as well as reduing the dimension of the solution spae)

explore the solution spae for enabling the synthesis of large arrays. Before de-

sribing the optimization proedure, let us point out the following key-points

onerned with the GAs and their e�etive/pro�table use in high-dimensional
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solution spae (e.g., large array synthesis):

• GA-Shemata and GA-Impliit Parallelism

GAs searh mehanisms mainly rely on �shemata� and the arising �impliit

parallelism� [87℄. From [87℄, a shemata is a similarity template desribing

a subset of hromosomes (i.e., the oded representation of the unknown

vetor w) with similarities at ertain hromosome positions. For a bi-

nary alphabet, (i) there are 3L admissible shemata, (ii) a GA population

of U trial solutions, W
(i) =

{

w
(u)
i ; u = 1, ..., U

}

, ontains between 2L and

U×2L shemata depending upon the population diversity, and (iii) at eah

i-th iteration (i = 0, ..., I; I being the maximum number of iterations) stan-

dard geneti operators (i .e., roulette-wheel seletion, single-point rossover,

and mutation [94℄[88℄[89℄) proess something like U3
shemata.

The Shemata theorem [87℄ states that a shemata is replied in the su-

essive iterations a number of times proportional to the average �tness of

the orresponding trial hromosomes, Φ
(u)
i = Φ

(

w
(u)
i

)

being the �tness of

w
(u)
i . Therefore, the GA solution at the onvergene (i.e., i = Iopt ≤ I)

is omposed by the best shemata ombined during the evolution by all

GA operators, but mainly by the rossover, whih is responsible of mix-

ing the geneti ontent of the di�erent hromosomes. Sine a shemata

is replied in the suessive iterations a number of times proportional to

the average �tness of the orresponding trial hromosomes [87℄, it turns

out that �generating/seleting� from the beginning (i = 0 - Initialization)

�good� shemata is a good reeipt to inrease the onvergene rate (i.e.,

reduing the number of iterations Iopt) for reduing the CPU -time of the

optimization proess.

Towards this end, let us onsider that the probability to yield �good�

shemata from a random generation of a population of U (U ≤ T ) tiling

words, W
(0) =

{

w
(u)
0 ; u = 1, ..., U

}

, U ≤ T , is generally lower than ran-

domly hoosing/generating these latter from the total set of admissible T
words, W∞ =

{

w
(t); t = 1, ..., T

}

, to whih the optimal one w
opt

ertainly

belongs to, as well. On the other hand, sine it is not omputationally pos-

sible to generate all T words (as for the enumerative approah), a suitable

algorithm for setting w
(u)
0 ∈W∞ without omputing whole ensemble W∞

is needed . As for this latter, the following �word rules� an be exploited:

- Rule #1. By substituting (3.8) into (3.9) and re-writing the equation, it

turns out that

4
(

w
(t)
l − w

(t)
k

)

+ h(1)
mn − h(1)

pg = {±1,±3} (3.16)

where w
(t)
k =

h
(t)
pg−h

(1)
mn

4
(3.6) is the letter orresponding to the neighboring

vertex v
(t)
pg and k , p + (g − 1) × (M − 1). Sine h

(1)
mn − h

(1)
pg = {±1,±3}
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from (3.9) and knowing that w
(t)
l is an integer value,

(

h
(t)
l − h

(1)
l

)

always

being a multiple of 4 [52℄, the following ondition holds true (Rule #1 ):

w
(t)
l − w

(t)
k = {0, ±1} (3.17)

where w
(t)
k =

{

w
(t)
l−1, w

(t)
l+1, w

(t)
l−(M−1), w

(t)
l+(M−1)

}

unless w
(t)
k 6= w

(t)
l+1 if

l mod (M − 1) = 0 and/or w
(t)
k 6= w

(t)
l−1 if (l − 1) mod (M − 1)= 0

- Rule #2. It has been proved [48℄ that the letters of the maximal tiling

word, w
(T )

, with the same value belongs to onneted regions over A, Υ
(j)
int,

j = 1, ..., wmax
, being wmax = maxl=1,...,L

{

w
(T )
l

}

[Fig. 3.10℄ and they

satisfy (3.17), as well;

- Rule #3. From [53℄,

w
(1)
l ≤ w

(t)
l ≤ w

(T )
l , l = 1, ..., L (3.18)

w
(1)
l and w

(T )
l (l = 1, ..., L) being the l-th letter of the minimal and the

maximal tiling words, respetively. Therefore, sine w
(1)
l = 0, l = 1, ..., L

and w
(T )
l ≤ wmax

by de�nition of wmax
, a generi letter w

(t)
l is a non-

negative integer value (i.e., w
(t)
l ≥ 0 ∀l ∈ [1, L]);

• GA-Coding

GAs are optimization tools devoted to minimize/maximize a suitably-de�ned

ost funtion Φ (·) that quanti�es the �tting of a trial solution to the

user-de�ned requirements. The omputational burden of GAs is given by

∆τΨ × Iopt × U [92℄ where ∆τΨ is the CPU -time for a single ost-funtion

evaluation, Iopt is the number of iterations to onverge to the �nal solu-

tion, c
opt
, and U is the population dimension. Sine U is proportional

(usually greater than) to the number of problem unknowns, the use of the

tiling word, w = {wl : l = 1, ..., L}, as unknown vetor instead of the mem-

bership vetor, c = {cmn ; m = 1, ...,M ; n = 1, ..., N} is pro�table sine

L < M × N . Another key advantage in preferring w to c for saving om-

putational resoures lies in the ardinality of the orresponding solution

spae, indeed it drastially redues from QM×N
[29℄ to (3.4).

Within suh guidelines, the following GA-based optimization strategy has been

implemented:

• Step 1: Population Initialization (i = 0) - Set the �rst (u = 1) and the Ũ-th

[Ũ = wmax×(wmax+1)
2

+ 14℄ trial solutions of the initial population W
(0)

to

4

The value of Ũ is equal to the maximum number of di�erent tiling words, all belonging to

W∞, that an be generated through (3.20).
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Υ
(1)
int = {v

(T )
mn ∈ v

(T )
int : w

(T )
l = 1}

Υ
(2)
int = {v

(T )
mn ∈ v

(T )
int : w

(T )
l = 2}

Υ
(wmax)
int = {v

(T )
mn ∈ v

(T )
int : w

(T )
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Figure 3.10: Optimization-based Tiling Method - Illustrative sheme for the def-

inition of the letters of the maximal tiling word w
(T )

on the internal verties

v
(T )
int ∈ A.
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the minimal tiling word (i.e., w
(u)
i

⌋

u=1, i=0
= w

(t)
⌋

t=1
) and to the maximal

tiling word (i.e., w
(u)
i

⌋

u=Ũ , i=0
= w

(t)
⌋

t=T
), respetively.

As for the solutions from u = 2 to u = Ũ − 1 still belonging to W∞,

onsider w
(1)
0 = {w

(1)
l,0 = 0; l = 1, ..., L} as referene parent. Sine (3.17)

(�Rule #1 �) and (3.18) (�Rule #3 �) state that the l-th letter of w
(u)
i

⌋

u=2, i=0

an be only inremented by one (i.e., w
(u)
l,i = w

(u−1)
l,i + 1), set those letters

whose orresponding verties belong to the most internal region of the

aperture (i.e., v
(u)
mn,0 ∈ Υ

(wmax)
int [Fig. 3.10℄) to w

(u)
l,i

⌋

u=2, i=0
= w

(u)
l,i

⌋

u=1, i=0
+

1. Afterwards, iteratively generate the solutions from u = 3 up to Ũ −1 by
exploiting �Rule #2 � and �Rule #3 �. More spei�ally, update by one the

letters of the verties in the region Υ
(j)
int, j = wmax − u + χ (u) [Fig. 3.10℄

being

χ (u) =

{

2 if u ≤ wmax + 1

2 +
∑ξ(u)

k=1 (w
max − k + 1) otherwise

(3.19)

where ξ (u) = min {[1, ..., wmax − 2] : χ (u) ≥ u}. Mathematially, the ini-

tialization of the u-th solution (u = 2, ..., Ũ − 1) an be summarized as

follows

w
(u)
l,i =

{

w
(u−1)
l,i + 1 if v

(u)
mn,i ∈ Υ

(j)
int

w
(u−1)
l,i otherwise

, l = 1, ..., L (3.20)

where

j =

{

wmax if u = χ (u)
j − 1 otherwise

. (3.21)

If Ũ < U , de�ne the remaining (Ũ − U) initial words by deriving at most

⌈

U
Ũ

⌉

ones from the appliation of the enumerative approah (�Algorithm

B1 �) to eah one of the �rst Ũ−15 words, {w
(u)
0 , u = 1, ..., Ũ−1}. Otherwise

(Ũ > U), randomly selet the U solutions of W
(0)

from the Ũ ones;

• Step 2: Binary Coding - Aording to (3.18) (�Rule #3 �), the maximum

number of bits for odifying a generi l-th letter of a word is equal to

Bwl
= ⌈log2 {w

max}⌉. Thus, ode the u-th trial tiling word, w
(u)
i , into

a binary GA-hromosome of Bw = L × ⌈log2 {w
max}⌉ bits, ⌈·⌉ being the

eiling funtion

6

;

5

The last word (i.e., w
(Ũ)
0 = w

(T )
) has no suessive words and therefore it annot be

onsidered as starting point for generating new initial trial solutions.

6

The advantage of onsidering w instead of c is even greater when dealing with the (binary)

oded (i.e., more symbols are used in orrespondene with an unknown) representation of the

unknown vetor sine Bw ≪ Bc, Bc = (M ×N) × ⌈log2 Q⌉being the number of bits needed

for oding c and wmax ≪ Q.
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• Step 3: Reprodution Cyle - Apply the roulette-wheel seletion, the single-

point rossover with probability pc, and the mutation with probability pm
[88℄[89℄) (Fig. 3.11) to generate a new set of trial solutions, W

(i)
, i ≥ 1.

For eah u-th (u = 1, ..., U) word, w
(u)
i , ompute the height funtion values

of the orresponding verties through (3.8) and hek the ondition (3.9).

If this latter is not satis�ed, disard this trial solution and generate a new

one through the GA operators;

• Step 4: Fitness Evaluation - Determine the GA-population of U tiling

on�gurations, {c
(u)
i , u = 1, ..., U}, orresponding to the word set W

(i)

through �B2.4 - New tiling generation� and ompute their �tness values

Φ
(u)
i = Φ

(

c
(u)
i

)

(3.22)

Close the GA-operation loop by �nally applying the elitism operator [94℄

to keep the best solution found so far within the urrent i-th population;

• Step 5: Convergene Chek - If i = I or Φ
(

c
opt
i

)

< SLLth,

c
opt
i = arg

(

min
u=1,..,U

{

Φ
(

c
(u)
i

)}

)

(3.23)

and SLLth being the optimal tiling at the i-th iteration and a user-de�ned

�tness threshold, stop the iterations (Iopt = i) and set c
opt = c

opt
i . Other-

wise, update the iteration index (i← i+ 1) and go to Step 3.

3.4.1 Numerial Assessment

The proposed shemata-driven synthesis framework and its implementation for

the design of omplete-aperture-overage lustered planar arrays that radiate the

minimum SLL power pattern are disussed in this Setion by illustrating a set

of representative numerial examples onsidering ideal-elements arrays as well as

real-elements arrays, simulated using a full-wave ommerial software.

3.4.1.1 Ideal-Elements Arrays

This sub-setion is aimed at assessing the e�etiveness of the analytially-driven

GA-based tiling method (Set. 3.4). Towards this end, the �rst benhmark

is related to the same aperture of Set. 3.3.1, therefore a tratable ardinal-

ity for the ETM that would not require in priniple the exploitation of an

optimization/solution-spae-sampling strategy, but here dealt with the OTM for

proving its apability to retrieve a global optimum solution (i.e., a lustered

arrangement belonging to C∞ with the lowest SLL value). The ontrol parame-

ters of the GA have been set aording to [94℄: pc = 0.9 (rossover probability),
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Figure 3.11: Flowhart of the GA-based OTM approah.
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pm = 0.01 (mutation probability), U = 8, and I = 100. Therefore, the number
of trial tiling on�gurations potentially generated during the GA-optimization is

at most U × I = 800, that is about 5% of the total number of omplete tiling

solutions, T = 1.4824× 104. With referene to Step 1 (Set. 3.4) and the gener-

ation of the initial tiling-words population, W
(0) =

{

w
(u)
0 ; u = 1, ..., U

}

(L = 28

being the word length or number of letters), it turns out that Ũ = 4 sine

wmax = 2, w(T ) = {1111111122222112222211111111} being the maximal tiling

word. Table 3.5 reports the Ũ = 4 analytially-generated words (w
(1)
0 = w

(t)
⌋

t=1

and w
(Ũ)
0 = w

(t)
⌋

t=T
being the minimal and the maximal tiling words, respe-

tively), while the orresponding sub-array on�gurations are shown in Fig. 3.12.

Due to the stohasti nature of the GA, Ω = 100 runs have been exeuted to

give statistially-meaningful insights on the OTM performane. For eah ω-

th (ω = 1, ...,Ω) run, the remaining

(

U − Ũ
)

= 4 individuals for ompleting

the initial population have been randomly generated by imposing non-equality

onditions among both the whole set of U trial words and the di�erent pop-

ulations of the Ω independent runs. From suh a statistial analysis, it turns

out that the OTM onverged to one of 4 di�erent �nal solutions denoted as

Solution 1 [Figs. 3.14(a)-3.14(b)℄, Solution 2 [Figs. 3.14(a)-3.14(b)℄, Solution 3

[Figs. 3.14()-3.14(d)℄, and Solution 4 [Figs. 3.14(e)-3.14(f )℄ whose radiation

indexes are reported in Tab. 3.6. More spei�ally, the Solution 1 with the

lowest SLL = −18.89 dB has been found with a suess rate of 40%. Otherwise,

even though the global optimum has not been reahed, the GA-solution ςbest

[ςbest , arg (maxω=1,..,Ω {Φ (coptω )})℄ with the higher SLL value (Solution 4 - Tab.

3.6) is haraterized by a SLL = Φ
(

ςbest
)

= −18.85 dB, that is, only 0.04 dB
above the global minimum of the ost funtion, Φ. Moreover, it is worth point-

ing out that always (∀ω = 1, ...,Ω), the GA-synthesized arrangement belongs

to the 0.2% pool of solutions having SLL < −18.8 dB within the whole set of

T = 1.4824× 104 omplete tilings, thus on�rming the e�etiveness of the OTM

in sampling the solution spae.

A key item to be arefully disussed is the advantage of the smartGA-initialization

of the OTM. Towards this end, let us analyze the behavior of Φ
(

c
opt
i

)

versus the

iteration index, i = 1, ..., I, for a representative set of the previous Ω runs along

with that of a GA (denoted as Bare Init GA) where the U hromosomes of the

initial population have been set to the �rst U words generated by the ETM (i.e.,

w
(u)
0 = w

(t)
, u = t, t = 1, ..., U ≤ T ) (Fig. 3.13). As it an be observed, whatever

the initialization with good shemata, the GA-based optimizations are very e�-

ient at the beginning (∀ω: Φ
(

c
opt
i

)⌋

i≤3
∈ [−16.7; −17.5] dB → Φ

(

c
opt
i

)⌋

i≤3
≪

SLLworst = −11.36 dB), but the OTM -based ones quikly onverge to the global

minimum or lose to it �tness/SLL value (SLLbest = −18.89 dB), while a �bare�
initialization auses the orresponding lustering solution c

opt
i is trapped/stiks
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Table 3.5: OTM Numerial Assessment (M = 8, N = 5; d = 0.5λ; T = 1.4824×
104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) - Ũ = 4 analytially-

generated words, w
(1)
0 = w

(t)
⌋

t=1
and w

(Ũ)
0 = w

(t)
⌋

t=T
being the minimal and

the maximal ones, respetively, of the initial OTM population.

u w
(u)
0

1 0000000000000000000000000000 = w
(t)
⌋

t=1

2 0000000011111001111100000000
3 1111111111111111111111111111

Ũ = 4 1111111122222112222211111111 = w
(t)
⌋

t=T

u = 1 u = 2
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Figure 3.12: OTM Numerial Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824 × 104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) - Plots of
the Ũ = 4 tiling on�gurations used for the OTM initialization: (a) u = 1, (b)
u = 2, () u = 3, and (d) u = Ũ .
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Figure 3.13: OTM Numerial Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824× 104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) - Behavior
of the optimal value of the ost funtion (3.22) versus the iteration index, i,
for 10 representative sample runs of the OTM and for the GA run with �bare�

initialization.

Table 3.6: OTM Numerial Assessment (M = 8, N = 5; d = 0.5λ; T = 1.4824×
104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) - Radiation indexes

(SLL, D, HPBWaz, HPBWel) of the referene solution, of the onvergene

solutions synthesized in Ω = 100 OTM runs, and when onsidering the GA-

based tiling method with �bare� initialization.

SLL D HPBWaz HPBWel

[dB℄ [dBi℄ [deg℄ [deg℄

OTM − Sol 1 −18.89 20.30 14.06 23.46

OTM − Sol 2 −18.87 20.31 14.03 23.46

OTM − Sol 3 −18.86 20.29 14.08 23.41

OTM − Sol 4 −18.85 20.32 14.07 23.62

GA− Bare −17.95 20.29 14.12 23.67

Reference −20.00 20.30 14.23 23.71
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Figure 3.14: OTM Numerial Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824 × 104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) - Plots of
(a)()(e) the tiling on�gurations and the sub-array exitation amplitudes and

(b)(d)(f ) the power pattern of the Solution 2 (a)(b), Solution 3 ()(d), and

Solution 4 (e)(f ).
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Figure 3.15: OTM Numerial Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824 × 104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) -

Chromosomal sequene of the initial GA population as generated in the OTM

(a) and through the �bare� strategy (b) together with the global optimum one

().
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Figure 3.16: OTM Numerial Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824 × 104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) -

Chromosomal sequene of the GA population at the iterations (a) i = 10, (b)
i = 20, and ()(d) i = I = 100 for the OTM (a)(b)() and (d) when exploiting

the bare GA-initialization.
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in a loal/non-optimal minimum of Φ with SLL > −18 dB (Fig. 3.13) just after

4 iterations.

The bene�t of adopting the OTM smart GA-initialization an be further out-

lined from the perspetive of the Shemata theorem [87℄, as well. Keeping in

mind the key-argumentations in Set. 3.4, one an dedue that whether the ini-

tial GA-population does not ontain the �good� shemata of the global optimum,

the optimization will di�ulty onverge to it in a reasonable/�nite amount of

iterations without a luky mutation, this latter usually performed with low prob-

ability [87℄[94℄, as well. Therefore, a key-issue for inreasing the onvergene rate

(or, at least, the probability to reah the global optimum in a �nite CPU -time)

to the optimal solution is to de�ne an initialization proedure able to inlude

the �shemata� of the (unknown) global optimum within the population W
(0)
.

To assess this property, let us analyze the hromosomes (i.e., the oded version

of the tiling words where the �shemata� an be identi�ed) of the initial pop-

ulation generated in the OTM aording to (3.20) [Fig. 3.15(a)℄ and through

the �bare� strategy [Fig. 3.15(b)℄ with respet to the global optimum sequene

[Fig. 3.15()℄. Di�erent olor boxes highlight some representative shemata of

the global-optimum hromosome [Fig. 3.15()℄. As it an observed, these lat-

ter are all present in the initial OTM population [Fig. 3.15(a)℄, while only a

subset of them an be found in the hromosomal sequenes from the bare ini-

tialization [Fig. 3.15(b)℄. For instane, the �yellow� shemata haraterized by

the �xed alleles {101} at the bit positions 26, 27, and 28 is not present in Fig.

3.15(b). During the iterative proess [see Figs. 3.16(a)-3.16(b) - OTM ℄, the

GA e�etively reombines the best shemata of the initial population until the

onvergene. Unlike the bare GA [Fig. 3.16(d) - Bare Init ℄, the OTM is able to

�nd at the onvergene (i = Iopt = I) the global optimum hromosome, whih

is also shared in almost all individuals [Fig. 3.16() - OTM ℄ as an e�et of the

well-known geneti pressure.

In order to assess the potentialities of the GA-based tiling approah as an

enabling tool for dealing with more omplex/high-dimensional syntheses, the

domino lustering of a larger planar array has been addressed. The array at

hand is omposed by 264 λ
2
-spaed elements (M = 22, N = 12), while the

two sets of referene exitations {αref
m ; m = 1, ...,M} and {αref

n ; n = 1, ..., N}

have been still set to the Dolph-Chebyshev ones [91℄ to a�ord a power pattern

with SLL = −20 dB. Beause of the array size, the problem ardinality is now

extremely large (T ≃ 1.9898× 1031), thus preventing the appliation of the enu-

merative method, while requiring the exploitation of a non-exhaustive sampling

of the solution spae suh as that performed by the OTM. Due to the prob-

lem dimensionality, the maximum number of GA iterations has been inreased

with respet to the previous test ase (I = 103) as well as the population size

(U = 2×L = 462 [94℄, L = 231 being the number of unknowns equal the number
of internal verties). On the other hand, it is worth pointing out that, despite the
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Figure 3.17: OTM Numerial Assessment (M = 22, N = 12; d = 0.5λ; T ≃
1.99 × 1031; L = 231; B = 693; U = 462; pc = 0.9; pm = 0.01; I = 1000) -
Behavior of Φ

(

c
opt
i

)

versus the iteration index, i = 1, ..., I, for 10 representative

OTM sample runs inluding the best, ςbest, and the worst, ςworst
, ases within

the whole set of Ω = 100 tests.
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Table 3.7: OTM Numerial Assessment (M = 22, N = 12; d = 0.5λ; T ≃
1.99 × 1031; L = 231; B = 693; U = 462; pc = 0.9; pm = 0.01; I = 1000) -

Minimal tiling word, w
(1)
0 = w

(t)
⌋

t=1
, maximal tiling word, w

(Ũ)
0 = w

(t)
⌋

t=T
,

and intermediate tiling words, w
(7)
0 and w

(14)
0 , of the initial OTM population.

u w
(u)
0

1
0000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000

= w
(t)
⌋

t=1

7
1111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111

14
1111111111111111111111222222222222222222211222222222222222
2222112222222222222222222112223333333333333222112223333333
3333332221122233333333333332221122222222222222222221122222
222222222222221122222222222222222221111111111111111111111

Ũ = 22
1111111111111111111111222222222222222222211233333333333333
3332112344444444444444432112345555555555555432112345666666
6666654321123455555555555554321123444444444444444321123333
333333333333321122222222222222222221111111111111111111111

= w
(t)
⌋

t=T

inrement of the upper bound of the number of samples of the solution spae (i.e.,

U × I⌋M×N=22×12 = 4.62×105 vs. U × I⌋M×N=8×5 = 8×102), the ratio between
the maximum number of trial solutions heked during the iterative multi-agent

optimization proess and the set of omplete tiling solutions has been drastially

redued (i.e.,

U×I
T

⌋

M×N=22×12
= 2.3× 10−26

vs.

U×I
T

⌋

M×N=8×5
= 5.4× 10−2

).

Aording to the OTM, the GA-optimization has been initialized with Ũ = 22
tiling words being wmax = 6. The minimal tiling word, w

(1)
0 = w

(t)
⌋

t=1
, the

maximal tiling word, w
(Ũ)
0 = w

(t)
⌋

t=T
, and other two intermediate words (i.e.,

w
(7)
0 and w

(14)
0 ) of the initial trial population are reported in Tab. 3.7. Also in

this ase, the GA has been run Ω = 100 times with di�erent initial populations

unless the analytially-de�ned Ũ = 22 individuals. Unlike the previous ase, all

optimizations onverged, in less than 10 hours, to a di�erent �nal solution be-

ause of the extremely large problem ardinality, but all with SLL values below

that of the best solution ahievable for the smaller array [Φ (coptω ) < −19.3 dB,
∀ω = 1, ...,Ω, while SLLbest

⌋

M×N=8×5
= −18.89 dB℄. This outome is not sur-

prising (even though it further on�rms that the optimizer at hand �guarantees�

what physially expeted) sine the number of domino tiles in the larger array

is greater and therefore the quantization issues, ausing the undesired high side-

lobes, are less ritial. What is relevant for assessing the e�etiveness of the

OTM in sampling a so-large solution spae is that the disrepany between the

SLL performane of the worst (ςworst , arg (minω=1,..,Ω {Φ (coptω )}) - OTM Worst

Solution) and the best (ςbest - OTM Best Solution) GA solutions is only 0.01 dB
(Tab. 3.8). For ompleteness, Figure 3.17 shows the behavior of Φ

(

c
opt
i

)

versus

the iteration index, i = 1, ..., I, for 10 representative OTM runs, while the tiling

on�guration, the values of the resulting sub-array amplitude weights, and the
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Figure 3.18: OTM Numerial Assessment (M = 22, N = 12; d = 0.5λ; T ≃
1.99× 1031; L = 231; B = 693; U = 462; pc = 0.9; pm = 0.01; I = 1000) - Plots
of the (a)(b) the tiling on�gurations and the sub-array exitation amplitudes

and ()(d) the power pattern of the best, ςbest, and the worst, ςworst
, ases within

the whole set of Ω = 100 tests.

power patterns of the OTM−Best Solution and of the OTM −Worst Solution
are shown on the left and the right olumn of Fig. 3.18, respetively. From Fig-

ures 3.18(a)-3.18(b), it turns out that a large part of the dominoes are horizontal,

σH , while only 34 [Fig. 3.18(a)℄ and 36 [Fig. 3.18(b)℄ over 132 are vertial, σV ,

respetively.

In order to assess the proposed approah also when dealing with steered beam

syntheses, the next benhmark example is onerned with the omplete tiling

of the same aperture of the previous example, but now providing the minimum

SLL when the main lobe is steered in both prinipal planes, namely towards

(θ0, φ0) = (30, 90) [deg] and (θ0, φ0) = (30, 0) [deg]. The best solution found at

the onvergene among Ω = 100 OTM-GA runs for eah pointing diretion is

shown in Fig. 3.19. Firstly, it is interesting to point out that the best tilings

[Fig. 3.19(a) and Fig. 3.19(b)℄ are quite di�erent from that synthesized when

onstraining the beam to point along boresight (θ0, φ0) = (0, 0) [deg] (Fig. 3.18).
Moreover, it is interesting to point out that there is a prevalene of horizontal

tiles, σH , in Fig. 3.19(a) and vertial tiles, σV , in Fig. 3.19(b) sine they are the
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Figure 3.19: OTM Numerial Assessment (M = 22, N = 12; d = 0.5λ; T ≃
1.99 × 1031; L = 231; B = 693; U = 462; pc = 0.9; pm = 0.01; I = 103) -

Plots of the tiling on�gurations and the sub-array exitation (a)(b) amplitudes

and ()(d) phases, and (e)(f ) the power pattern of the best ase within the

whole set of Ω = 100 tests when steering the beam towards (a)()(e) (θ0, φ0) =
(30, 90) [deg] and (b)(d)(f ) (θ0, φ0) = (30, 0) [deg].

45



3.4. PENCIL BEAM SYNTHESIS USING THE OPTIMIZATION-BASED

TILING METHOD (OTM )

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-30 -20 -10  0  10  20  30

S
ca

n 
A

ng
le

, φ
0 

[d
eg

]

Scan Angle, θ0 [deg]

-20

-15

-10

-5

 0

S
LL

 [d
B

]
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-30 -20 -10  0  10  20  30

S
ca

n 
A

ng
le

, φ
0 

[d
eg

]

Scan Angle, θ0 [deg]

-20

-15

-10

-5

 0

S
LL

 [d
B

]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

-30 -20 -10  0  10  20  30

S
ca

n 
A

ng
le

, φ
0 

[d
eg

]

Scan Angle, θ0 [deg]

-20

-15

-10

-5

 0

S
LL

 [d
B

]

(a) (b) (c)

Figure 3.20: OTM Numerial Assessment (M = 22, N = 12; d = 0.5λ; T ≃
1.99 × 1031; L = 231; B = 693; U = 462; pc = 0.9; pm = 0.01; I = 1000) -
SLL values of the patterns generated by tiling on�gurations optimized for (a)

(θ0, φ0) = (0, 0) [deg] [Fig. 3.18(a)℄, (b) (θ0, φ0) = (30, 90) [deg] [Fig. 3.19(a)℄,
and () (θ0, φ0) = (30, 0) [deg] [Fig. 3.19(b)℄ when sanning the beam in the

setor {θ0 ∈ [−30, 30] [deg], φ0 ∈ [0, 180] [deg]}.

ones least a�eted by quantization when sanning the beam in the φ0 = 90 [deg]
plane [Fig. 3.19(e)℄ and in the φ0 = 0 [deg] plane [Fig. 3.19(f )℄, respetively.

As for the radiation performane, the peak level of the sidelobes of the power

patterns in Fig. 3.19 is equal to SLL = −18.33 dB [Fig. 3.19(e)℄ and SLL =
−18.12 dB [Fig. 3.19(f )℄, that is 1 dB worse than that for the broadside ase

(Tab. 3.8 - SLL = −19.32 dB). This is due to the phase quantization deriving

from the use of a single phase shifter for eah domino tile [Fig. 3.19() and Fig.

3.19(d)℄. For ompleteness and in order to haraterize the sanning performane

of a synthesize array, the SLL values obtained when steering the main lobe in

the setor θ0 ∈ [−30, 30] [deg] and φ0 ∈ [0, 180] [deg] are shown in Fig. 3.20 for

the three tiling on�gurations optimized for (θ0, φ0) = (0, 0) [deg] [Fig. 3.20(a)℄,
(θ0, φ0) = (30, 90) [deg] [Fig. 3.20(b)℄, and (θ0, φ0) = (30, 0) [deg] [Fig. 3.20()℄.
It is possible to observe that a prevalene of horizontal tiles, σH , [Fig. 3.18(a) and

Fig. 3.19(a)℄ provides lower SLL values when sanning the beam in the plane

with φ0 = 90 [deg] [Figs. 3.20(a)-3.20(b)℄ beause they are the least a�eted by

quantization. Vieversa, better SLL performane are ahieved in the φ0 = 0 [deg]
(or φ0 = 180 [deg]) plane in ase there are more vertial tiles, σv, [Fig. 3.19(b)℄.

3.4.1.2 Real-Elements Arrays

Finally, the pratial reliability of the results from the proposed analytially-

driven lustering methodology has been validated by onsidering arrays made

of real radiating elements, as well. The aim is to show that, as expeted,

for moderate sanning angles, the element pattern does not signi�antly af-

fet the synthesis results. Towards this end, the same tiling on�gurations
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Table 3.8: OTM Numerial Assessment (M = 22, N = 12; d = 0.5λ; T ≃
1.99 × 1031; L = 231; B = 693; U = 462; pc = 0.9; pm = 0.01; I = 1000) -
Radiation indexes (SLL, D, HPBWaz, HPBWel) of the referene solution as

ompared to the best, ςbest, and the worst, ςworst
, ases within the whole set of

Ω = 100 OTM tests.

SLL D HPBWaz HPBWel

[dB℄ [dBi℄ [deg℄ [deg℄

Reference −20.00 28.46 4.82 9.13

OTM −Best Solution −19.32 28.51 4.82 9.11

OTM −WorstSolution −19.31 28.52 4.82 9.11

Freq = 9.5 [GHz]
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Figure 3.21: 3D Plot of the embedded gain pattern of the aperture-staked path

mirostrip antennas [93℄ resonating at the entral operation frequeny of 9.5GHz
and loated in a two rings of neighboring elements.
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Figure 3.22: OTM Numerial Assessment (Real Element Array ; M = 22, N =
12; d = 0.5λ) - Power pattern radiated by the ideal and the real arrays when

setting the mainlobe steered along broadside: (a) horizontal (φ = 0 [deg]) and
(b) vertial (φ = 90 [deg]) uts.
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Figure 3.23: OTM Numerial Assessment (Real Element Array ; M = 22, N =
12; d = 0.5λ) - Vertial (φ = 90 [deg]) ut of the power pattern radiated by

the ideal and the real arrays when setting the mainlobe steered at (θ0, φ0) =
(30, 90) [deg].

for the aperture M × N = 22 × 12 synthesized when steering the beam along

(θ0, φ0) = (0, 0) [deg] and (θ0, φ0) = (30, 90) [deg] have been onsidered, but

substituting the isotropi/ideal elements with aperture-staked path mirostrip

antennas [93℄ resonating at the entral operation frequeny of 9.5GHz. As for

this latter, the embedded element pattern, f̂ (θ, φ), radiated at 9.5GHz has been
alulated through a full-wave simulation when onsidering the interations of

two rings of neighboring elements (the results are oinident also when enlarging

the neighbour set) so as to inlude the oupling e�ets is shown in Fig. 3.21.

Figure 3.22 ompares the normalized

7

broadside, (θ0, φ0) = (0, 0) [deg], power
pattern of the real and the ideal arrays [f̂ (θ, φ) = 1℄ along the horizontal [Fig.

3.22(a)℄ and the vertial [Fig. 3.22(b)℄ uts. As it an be notied, the behavior of

the power pattern in the mainlobe region as well as for the �rst sidelobes for the

real ase turns out to be very similar to the ideal one sine f̂ (θ, φ) has a large

beamwidth. Overall, the sidelobe of the real array is equal to SLL = −18.72 dB,
thus there is a deterioration of 0.55 dB with respet to the ideal ase. Similar

onlusions hold true also for the synthesis when setting the steering diretion

at (θ0, φ0) = (30, 90) [deg] as proved by the plots along the steering plane (i.e.,

the vertial one) in Fig. 3.23.

7

Eah pattern has been normalized to its maximum in order to ompare the SLL values.
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Chapter 4

Mask-Constrained Optimization of

Domino-Tiled Phased Arrays

In this Chapter a set of tehniques based on the enumerative/optimization based

methods presented in the previous Chapter, are presented to address the mask

mathing synthesis problem, onsidering penil shaped beams. Starting from a

set of ideal requirements on the array radiation performanes de�ned by a power

mask, the proposed methods aim at �nding the optimal tiling on�guration min-

imizing the mismath of the tiled array power pattern with the mask. Optimal

tiles exitations oe�ients are obtained by means of onvex optimization meth-

ods. The numerial assessment validates the proposed approahes, as well as the

reliability assessment of the optimized solutions when onsidering real radiating

elements through ommerial full-wave simulators.
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4.1. INTRODUCTION

4.1 Introdution

The design of phased array antennas usually requires that the radiation pattern

omplies with a power mask, de�ning the maximum/minimum radiated power

over a set of angular diretions. In this way the user is allowed to de�ne the

desired radiation performanes with high preision and high �exibility. As in-

stane, it is possible to request a very low SLL only in a limited angular region

for interfering signals suppression. Aordingly, the synthesis of tiled phased

arrays minimizing the distane of the power pattern with user-de�ned referene

power masks is here addressed. The mathing with an user-de�ned power mask

is onsidered as ost funtion of the tiling optimization, with the aim of �nd an

optimal tiled arrays (i.e. a ompromise with respet to the ideal fully populated

array) whose power pattern is as lose as possible to the referene mask. A set

of new optimization methods, namely the ETM − CP , EM − ETM/CP , and
EM − OTM/CP methods, are proposed, addressing the mask mathing tiling

optimization by jointly ombining enumerative/GA-based approahes with opti-

mal onvex strategies, for the optimization of the tiling on�guration and of the

tiles exitations oe�ients. The presented tehniques positively ompared with

the ETM and OTM optimization methods presented in the previous hapters,

whih unavoidably fail when dealing with a mask mathing synthesis problem.

Mask Constrained Tiling Synthesis Problem - given an array ofM×N
isotropi elements, positioned over a retangular lattie, and two

domino-like tiles

(

σV , σH
)

, �nd the optimal tiling/lustering on�g-

uration c
opt

and the orresponding sub-array weights αopt
and βopt

,

suh that the penil beam pattern radiated by the tiled array maxi-

mizes the mathing with an user-de�ned power mask M (u, v).

Aordingly, the ost funtion of the tiling optimization problem is de�ned as:

Φ (c;α,β) = χ (c;α,β) +
H [−χ (c;α,β)]

D (u0, v0)
(4.1)

whereD (u0, v0) is the peak diretivity, (u0, v0) being the beam pointing diretion,

and

χ (c;α,β) = max
(u,v)∈V

{|P (u, v)−M (u, v)| H [P (u, v)−M (u, v)]} (4.2)

is the maximum violation of the power pattern from the power mask in the

(u, v)−plane, within the visible region V = {(u, v) : u2 + v2 < 1}. Moreover

P (u, v) is the power pattern of the lustered array given as P (u, v) = |AF (u, v; c)|2,
while H [·] is the Heaviside funtion. As expressed by (4.1) the mask mathing is
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de�ned as the maximum distane of the power pattern from the mask χ (c;α,β)
only in ase the power pattern is above the mask, otherwise, the ost funtion

aounts only the seond term [i.e. the ratio 1/D (u0, v0)℄ with the purpose

of peak diretivity maximization. Consequently, the ideal optimum (i.e. when

χ (c;α,β) = 0) is reahed only if the power pattern is below the power mask in

all the (u, v) points of V. Suh optimal mathing an be easily obtained when

onsidering onventional fully-populated arhitetures, providing feasible mask

onstraints. When instead a lustered arhiteture is onsidered, whih is intrin-

sially a sub-optimal solution with respet to a fully-populated array, a perfet

mathing annot be assured. Indeed, it is worth to point out here that the aim

of the proposed methodologies is not to exatly �t the referene mask, but to

�nd the losest ompromise solution to a perfet mask mathing.

4.2 Enumerative Approah with Convex Program-

ming Optimization of Sub-Array Weights

As explained in detail in Chapter 2, the global optimum of the domino tiling syn-

thesis problem an be theoretially reahed by means of a full-global optimization

approah, by jointly optimize the tiling on�guration c and the tiles exitations

oe�ients α,β. Suh optimization approah turns out to be omputationally

unfeasible in most of the ases, mainly due to the wide solutions spae when

dealing with medium/large antenna apertures. The nested-optimization method

is therefore proposed, by jointly exploiting the ETM approah and a Convex

Programming (CP ) optimization [100℄[101℄[102℄[28℄, denoted as ETM-CP and

de�ned by the following steps:

• Step 1. Tilings Enumeration: the optimal tiling generation method de-

sribed in Chapter 3 is used for the enumeration of the whole set of lus-

tering on�gurations C∞ =
{

c
(t); t = 1, ..., T

}

• Step 2. CP Optimizations: given the power mask M (u, v) de�ning the

ideal requirements on the power pattern, the following optimization prob-

lem is solved

(

αCP
t ,βCP

t

)

= arg

[

min
αt,βt

{Φ (αt,βt |ct )}

]

(4.3)

where for eah tiling ct, t = 1, ..., T , the optimization the sub-array weights

is performed through the CP strategy presented in [102℄, in whih the

maximization of the power pattern diretivity along the sum beam pointing

diretion is maximized, still satisfying the power mask M (u, v). More

in detail the power mask M (u, v) is uniformly disretized in R sampling

diretions, (ur, vr), r = 1, ..., R and a standard CP -based optimization

tehnique is used to obtained the optimal subarray amplitude and phase
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exitations

(

αCP
t ,βCP

t

)

of the t-th trial lustering on�guration ct, are

obtained solving the following minimization problem

min
ℜ{It},ℑ{It}

∫ π

0

∫ 2π

0

P (θ, φ; ct) sin (θ) dθdφ (4.4)

subjet to the following onstraints

P (u0, v0; ct) = 1 (4.5)

P (ur, vr; ct) ≤M (ur, vr)
r = 1, ..., R

(4.6)

where in (4.4) It =
{

Iq,t = αq,te
jβq,t ; q = 1, ..., Q

}

and ℜ and ℑ stand for

real and imaginary part, respetively. The minimization of (4.4) subjet

to (4.5) implies the maximization of the antenna diretivity (assuming the

array does not radiate in the bak half-spae), de�ned as

D =
4π |P (u0, v0; ct)|

2

∫ π

0

∫ 2π

0
|P (θ, φ; ct)|

2 sin (θ) dθdφ
. (4.7)

• Step 3. Cost Funtion Evaluation: evaluation of the mask mathing (4.1)

between the tiled array power pattern P
(

u, v; cETM−CP
)

and the power

mask M (u, v), for eah of the T CP−optimized solutions and seletion of

the best tiling/sub-array weights as

(

c
ETM−CP ;αETM−CP ,βETM−CP

)

= arg

[

min
t=1,...,T

{

Φ
(

ct;α
CP
t ,βCP

t

)}

]

(4.8)

The above proedure allows to reah the optimum of our problem with a total

omputational time equal to∆tETM−CP = ∆tETM+T∆tCP+T∆tΦ, being∆tETM

the time neessary for the ETM simulation, ∆tCP
is the time for a single CP

optimization and ∆tΦis the time for the evaluation of (4.1). It is worth noting

here that the feasibility of the nested optimization, depends by: i) the ardinality

of the solution spae, ditated by T ; ii) the omputational ost needed to solve

(4.4) under the onstraints (4.5) and (4.6). Therefore, in ase of small/medium

arrays, even if T allows to enumerate C∞ =
{

c
(t); t = 1, ..., T

}

in a reasonable

time, the optimization is still ompromised by (2.5), whih turns out to be the

real bottlenek of the nested optimization approah.

4.3 Exitation Mathing-Based Approahes

In order to deal with medium/large arrays, a further approximation is needed.

As done in the ETM tehnique presented in Chapter 3, the ETM −CP method
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is redued to an exitation mathing (EM) ETM approah, allowing a fast om-

putation of the tiles exitations oe�ients, by means of analyti relationships.

Anyway suh approximation is exploited only for the searh of the optimal lus-

tering on�guration, while the �nal sub-array amplitude and phase oe�ients

are re-optimized using a CP -based optimization. Suh an approah, alled EM-

ETM/CP, is implemented throughout the following proedural steps:

• Step 1. Referene Array : given the power mask M (u, v) de�ning the

ideal requirements on the power pattern, the optimal referene exita-

tions weights Iref = αref
mne

jβref
mn , m = 1, ... , M, n = 1, ... , N are

obtained through a CP optimization of the M × N fully-populated array

[Fig. 2.1(a)℄;

• Step 2. Tilings Enumeration: the height funtion based methodology

(Chapter 3) is used for the enumeration of the whole set of lustering

on�gurations ct;, t = 1, ..., T ;

• Step 3. EM Sub-array Weights: for eah tiling ct;, t = 1, ..., T , the op-

timal ompromise EM exitations oe�ients

(

αEM
t ,βEM

t

)

are obtained

minimizing the following exitation mathing problem

(

αEM
t ,βEM

t

)

= arg

[

min
α,β

{

M
∑

m=1

N
∑

n=1

∣

∣Irefmn − Imn

∣

∣

}]

(4.9)

The optimal amplitudes and phase oe�ients solving (4.9), turn out to be

analytially obtained as [29℄

αEM
q,t =

1

2

N
∑

n=1

M
∑

m=1

αref
mnδcmnq, q = 1, ..., Q (4.10)

βEM
q,t =

1

2

N
∑

n=1

M
∑

m=1

βref
mn δcmnq, q = 1, ..., Q (4.11)

• Step 4. Cost Funtion Evaluation: evaluation of the mask mathing (4.1)

for eah of the T solutions and seletion of the best tiling/sub-array weights,

solving

(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)

= arg

[

min
t=1,...,T

{

Φ
(

ct;α
EM
t ,βEM

t

)}

]

(4.12)

• Step 5. CP Optimization: single �nal CP optimization of the amplitude

and phase exitations of the EM−optimized lustering vetor c
EM−ETM

(

αEM−ETM/CP ,βEM−ETM/CP
)

= arg

[

min
α,β

{

Φ
(

α,β
∣

∣c
EM−ETM

)}

]

(4.13)
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The EM-based methods allows to optimize the tiling with a total omputational

time equal to ∆tEM−ETM/CP = ∆tEM−ETM + 2∆tCP + T∆tΦ, being ∆tEM−ETM

the time neessary for the ETM simulation, inluding the EM exitation om-

putation and the ost funtion. The use of the analyti formulas (4.10) and

(4.11), allows a fast omputation of the tiles exitations weights. In this ase the

onvergene of the solution

(

c
EM−ETM ;αEM−ETM/CP ,βEM−ETM/CP

)

toward the

global optimum of the addressed problem annot be assured as in (2.3), anyway

the best possible ompromise solution obtained in a feasible amount of time,

is provided. Finally, in ase T is large enough to make both ETM − CP and

EM −ETM/CP methods unfeasible, the OTM methodology is used instead of

the ETM method in Steps 2-5 of the EM − ETM/CP proedure. For suh an

approah, alled EM-OTM/CP, the Step 4 is implemented as

(

c
EM−OTM ;αEM−OTM ,βEM−OTM

)

= arg

[

min
k=1,...,K

{

min
ct(k)

{

Φ
(

ct(k);α
EM
t(k) ,β

EM
t(k)

)}

}]

(4.14)

where the set ct(k) ⊂ T is a fration of the whole solution spae, explored by

the OTM at the k−th iteration, K being the maximum user-de�ned iterations

number. Finally the optimal sub-array weights are obtained as:

(

αEM−OTM/CP ,βEM−OTM/CP
)

= arg

[

min
α,β

{

Φ
(

α,β
∣

∣c
EM−OTM

)}

]

. (4.15)

4.4 Numerial Assessment

4.4.1 Small Dimensions Arrays

Let us onsider a small retangular aperture of dimensions 2.5λ × 2λ, �lled by

M × N = 5 × 4 elements, loated over a square lattie, equally spaed by dx =
dy = λ/2. The ideal design requirements are de�ned by the power mask of Fig.

4.1, where a retangular window of dimension BWu×BWv = 1.00 [u]×1.12 [v] is
allowed for the main beam, a sidelobe level equal to SLLL1 = −20 [dB℄ is required
for the �rst sidelobes near the main beam, while the end-�re sidelobes along the

azimuth plane are lowered to SLLL2 = −25 [dB℄. As an be seen the mask shows

two symmetries along the azimuth (φ = 0 [deg℄) and elevation (φ = 90 [deg℄)

planes, aordingly, the phase oe�ients of the fully populated array are set to

βref
mn = 0,m = 1, ...,M , n = 1, ..., N , while the amplitude oe�ients have been

optimized using a CP optimization strategy, obtaining the amplitudes showed

in Fig. 4.2(a). The CP optimization has been arried out onsidering a max-

imum number of iterations equal to I = 200, and a �tness threshold equal to

τ = 10−6
(the threshold τ is an user-de�ned value used to disriminate the so-

lutions for whih the mask mathing χ (c;α,β) is onsidered χ (c;α,β) = 0).
The top view of the orresponding synthesized ideal power pattern is shown in
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Figure 4.1: Numerial Assessment (Small Array, Symmetri Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - The power mask M (u, v) de�ning the

onstraints for the synthesis of an M ×N = 5× 4 array of isotropi elements.

Fig. 4.2(b). Aording to (3.4), the onsidered array allows to entirely over

the aperture with Q = 10 tiles in T = 95 di�erent ways. The limited number

of tiling on�gurations enables a full-global optimization approah, onsequently

the ETM − CP simulation has been exeuted in ∆tETM−CP = 9 : 44 : 30
[h:min:se℄ onsidering the same CP parameters used for the referene array

synthesis. Figure 4.3(a) shows the sorted values of the mask mathing evaluated

for the T solutions. In order to disriminate among the onvergent solutions

(i.e. solutions yielding a power pattern that ompletely �ts the power mask) and

the non onvergent solutions (i.e. the power pattern violates the power mask)

the �tness threshold is reported in the �gure as a blak dashed line. As an

be seen 6 ETM − CP solutions have ost-funtion value that is below the �t-

ness threshold. The global optimum [Fig. 4.4(a)℄ has been analyzed in detail,

omputing the radiated power pattern [Fig. 4.4(b)℄ and the respetive power

pattern desriptors, namely the SLL, HPBWAZ, HPBWEL D, reported in Tab

4.1. The omparisons of the power pattern with the power mask of the best

ETM − CP solution, along the azimuth and elevation planes, are reported in

Fig. 4.3(b) and Fig. 4.3(), respetively. As an be seen, the power pattern

ompletely meets the power mask, also on�rmed by the mask mathing value [

χ
(

c
ETM−CP ;αETM−CP ,βETM−CP

)

= 1.22×10−9
, Tab 4.1℄. In order to validate

the EM−based proposed approahes, the �bare� EM −ETM optimization has

been exeuted onsidering as referene exitations the optimal amplitudes oef-

�ients of Fig. 4.2(a). The evaluated ost funtion values have been reported in

Fig. 4.3(a) as ompared to the ETM−CP approah. However, as expeted, none
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Figure 4.2: Numerial Assessment (Small Array, Symmetri Mask ; d = 0.5λ,
M×N = 5×4 Ntot = 20, T = 95) - The referene solution of the fully-populated
array obtained through a CP optimization. (a) The amplitude oe�ients, and

(b) the top-view power pattern.

of the EM−ETM solutions reah the �tness threshold, showing a non negligible

distane of the EM − ETM best solution from the global optimum reahed by

ETM − CP . Indeed, by observing Fig. 4.3(b)-() the power pattern ut along

the azimuth and elevation planes of the EM−ETM power pattern, onsiderably

violates the power mask in both the prinipal planes uts. Anyway, by observing

the tiling/amplitudes on�guration of the best EM−ETM solution reported, in

Fig, 4.4(), the tiles arrangement is exatly the same of the ETM −CP solution

[Fig. 4.4(a)℄, while the sub-array amplitude oe�ients shows di�erent values.

For this reason, the proposed EM − ETM/CP approah, by a CP optimiza-

tion of the tiles amplitudes [Fig. 4.4(e)℄, allows to exatly onverge to the same

ETM − CP solution [Fig. 4.4(a)℄, aordingly the respetive power patterns

overlap [Fig. 4.3(b)-()℄. It is worth noting here that the overall time needed

to obtain the global optimal solution using the EM − ETM/CP method has

been estimated equal to ∆tEM−ETM/CP = ∆tref + ∆tEM−ETM + ∆tCP = 1 : 18
[min:se℄ (Tab 4.1), whih means a time redution of 99.7% with respet to the

ETM − CP approah. With the purpose of validating the EM − OTM/CP
strategy, the GA−based shemata-driven optimization, has been also exeuted.

The GA ontrol parameters have been set aording to the rules desribed in Ch.

3 (U = 6, K = 10, pc = 0.9, pm = 0.01). For statistial reasons, the GA opti-

mization has been exeuted for 10 di�erent time onverging to the EM −ETM
simulation [Fig. 4.3(b)-()℄, onsequently the EM −OTM/CP solution oinide

to the EM − ETM/CP .

In order to quantify the robustness of the optimized tiled array, when the

beam is steered o�-broadside diretions, the mask mathing of the power pattern
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Figure 4.3: Numerial Assessment (Small Array, Symmetri Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - (a) The ETM − CP ost funtion

evaluations for eah of the T = 95 tiling solutions, as ompared to the EM −
ETM simulation ost funtion evaluations, and the ost funtion of the EM −
ETM/CP simulation. (b)() The power pattern uts along the u = u0 = 0.0
and v = v0 = 0.0 plane of the ETM − CP , EM −ETM , EM −OTM optimal

solutions and the EM −ETM/CP solution, as ompared to the power mask.
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Table 4.1: Numerial Assessment (Small Array, Symmetri Mask ; d = 0.5λ,M×
N = 5×4 Ntot = 20, T = 95) - Measured radiation indexes (SLL, D, HPBWaz,

and HPBWel), mask mathing χ [P (u, v)] of the referene and optimized tilings

patterns, and timings of the optimizations/simulations.

SLL D HPBWaz HPBWel χ ∆t

[dB℄ [dBi℄ [deg℄ [deg℄ - [h:min:se℄

M ×N = 4× 5 SymmetricMask

Reference −20.00 17.12 24.15 30.10 2.36× 10−9 00 : 11 : 40

ETM − CP −20.00 16.95 24.21 30.10 1.22× 10−9 09 : 44 : 30

EM − ETM −17.80 17.20 23.49 29.29 6.94× 10−4 00 : 00 : 31

EM −OTM −17.80 17.20 23.49 29.29 6.94× 10−4 00 : 00 : 05

EM − ETM/CP −20.00 16.95 24.21 30.10 1.22× 10−9 00 : 00 : 47

varying the beam pointing within the visible range (i.e. 0◦ ≤ θ0 < 90◦ and

0◦ ≤ φ0 < 360◦), has been evaluated and reported in the polar diagram of Fig.

4.5(a). It an be notied that the steering of the beam along the φ0 = 90[deg℄
diretion, leads to higher mask mathing values for lower θ0 angles with respet

to when steering along the azimuth plane. A detail of the steering analysis is

reported in Fig. 4.5(b) showing the mask mathing as funtion of the pointing

angle θ0 along the φ0 = 0 [deg℄ and φ0 = 90 [deg℄ planes, showing a maximum

o�-boresight steering angle of θ0 < 1 [deg℄ along the φ0 = 90 [deg℄ plane, and

θ0 < 2 [deg℄ along the φ0 = 0 [deg℄ plane. The steering of the beam in Fig. 4.5(a)-

(b) has been obtained by a simple linear phase shift, using the analyti formula

(3.11). Hene the reported results an be further improved by performing a CP

synthesis of the steered power pattern, onsidering the steered mask.

In order to show the versatility of the proposed methodologies, an asym-

metri power mask (Fig. 4.6) has been onsidered for a seond assessment of

the M × N = 4 × 5 array. This time both the amplitudes and phase o-

e�ients are optimized, and the referene ideal optimal CP amplitude and

phase oe�ients are shown in Fig. 4.7(a) and Fig. 4.7(b) respetively, to-

gether with the synthesized referene power pattern in Fig. 4.7(). Also in

this ase the ETM − CP approah has been exeuted in order to �nd the

optimal tiled array �tting M (u, v). Two solutions reahed the �tness thresh-

old [Fig. 4.8(a)℄, with a �nal ost-funtion value of the global best equal to

χ
(

c
ETM−CP ;αETM−CP ,βETM−CP

)

= 1.04 × 10−8
(Tab. 4.2). The amplitude

and phases oe�ients, as well as the tiling on�guration, have been reported in

Fig. 4.9(a)-(b), together with the top view of the power pattern [Fig. 4.9()℄.

Even in this ase the EM − ETM and the EM − OTM methods onverge to

the same EM−optimal solution [Fig. 4.8(a)℄, but still too far from an aept-

able mathing [χ
(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)

= 8.03 × 10−4
, Tab. 4.2℄.
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Figure 4.4: Numerial Assessment (Small Array, Symmetri Mask ; d = 0.5λ,
M ×N = 5 × 4 Ntot = 20, T = 95) - (a)()(e) The tiles amplitudes exitations

oe�ients and (b)(d)(f ) the respetive top-view power patterns of the ETM −
CP optimal solution (a)(b), the EM − ETM optimal solution ()(d), and the

EM −ETM/CP solution (e)(f ).
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Figure 4.5: Numerial Assessment (Small Array, Symmetri Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - The mask mathing map, evaluated when

steering the beam of the EM −ETM/CP solution, within a san one.

It an be notied that the tiles orientation of the solution reahed by the �bare�

EM−based methods [Fig. 4.9(d)℄, is slightly di�erent from the ETM − CP
tiling [Fig. 4.9(a)℄, onsequently, in this ase there are no hanes to onverge

to the global optimum through the EM − ETM/CP . Nevertheless, di�erently
from the EM −ETM , the EM −ETM/CP solution lowers the mask mathing

down to χ
(

c
EM−ETM ;αEM−ETM/CP ,βEM−ETM/CP

)

= 2.05 × 10−5
(Tab. 4.2),

and, even if the ost funtion is above the �tness threshold, the power pat-

tern it's very lose to the referene power mask pro�le and to the optimal

ETM − CP pattern [Fig. 4.8(b)-()℄, also on�rmed by the pattern desrip-

tors reported in Tab. 4.2 (∆SLL =
∣

∣SLLEM−ETM/CP − SLLref
∣

∣ = 0.41 [dB℄,

∆D =
∣

∣DEM/ETM−CP −Dref
∣

∣ = 0.28 [dBi℄, ∆HPBWAZ =
∣

∣

∣
HPBW

EM−ETM/CP
AZ

−HPBW ref
AZ

∣

∣

∣
= 0.55 [deg℄, ∆HPBWEL =

∣

∣

∣
HPBW

EM−ETM/CP
EL −HPBWRref

EL

∣

∣

∣
=

0.21 [deg℄). Moreover, the EM − ETM/CP method allows to reah the los-

est solution to the optimum in a redued amount of time, whih is equal to

∆tEM−ETM/CP = ∆tref +∆tEM−ETM +∆tCP = 00 : 16 : 18 [h:min:se℄, instead

of ∆tETM−CP = 16 : 43 : 10 [h:min:se℄ for the full ETM − CP simulation. Fi-

nally, the analysis varying the sanning angle has been performed for the optimal

and ompromise solutions. As an be seen from Fig. 4.10(a)() the ETM −CP
solution is more robust when steering the beam along the azimuth plane, while

the EM −ETM/CP tiling allows better performanes along the elevation plane

[Fig. 4.10(b)-(d)℄.
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Figure 4.6: Numerial Assessment (Small Array, Asymmetri Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - The power mask M (u, v) de�ning the

onstraints for the synthesis of an M ×N = 5× 4 array of isotropi elements.

Table 4.2: Numerial Assessment (Small Array, Asymmetri Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - Measured radiation indexes (SLL, D,

HPBWaz, and HPBWel), mask mathing χ [P (u, v)] of the referene and opti-

mized tilings patterns, and timings of the optimizations/simulations.

SLL D HPBWaz HPBWel χ ∆t

[dB℄ [dBi℄ [deg℄ [deg℄ - [h:min:se℄

M ×N = 4× 5 AsymmetricMask

Reference −20.00 16.96 24.70 30.08 4.60× 10−10 00 : 11 : 50

ETM − CP −20.00 16.81 24.95 30.08 1.04× 10−7 16 : 43 : 10

EM − ETM −17.14 17.04 24.10 29.57 8.03× 10−4 00 : 00 : 30

EM −OTM −17.14 17.04 24.10 29.57 8.03× 10−4 00 : 00 : 09

EM − ETM/CP −19.59 16.68 25.25 30.29 2.05× 10−5 00 : 03 : 58
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Figure 4.7: Numerial Assessment (Small Array, Asymmetri Mask ; d = 0.5λ,
M×N = 5×4 Ntot = 20, T = 95) - The referene solution of the fully-populated
array obtained through a CP optimization. (a) The amplitude oe�ients, (b)

the phase oe�ients, and () the top-view power pattern.
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Figure 4.8: Numerial Assessment (Small Array, Asymmetri Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - (a) The ETM − CP ost funtion

evaluations for eah of the T = 95 tiling solutions, as ompared to the EM −
ETM simulation ost funtion evaluations, and the ost funtion of the EM −
ETM/CP simulation, together with the full-wave results. (b)() The power

pattern uts along the u = u0 = 0.0 and v = v0 = 0.0 plane of the ETM − CP ,
EM −ETM , EM −OTM optimal solutions and the EM −ETM/CP solution,

as ompared to the power mask.
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Figure 4.9: Numerial Assessment (Small Array, Asymmetri Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - (a)(d)(g) The tiles amplitudes exita-

tions oe�ients, (b)(e)(h) the tiles phases exitations oe�ients and ()(f )(i)

the respetive top-view power patterns of the ETM − CP optimal solution

(a)(b)(), the EM − ETM optimal solution (d)(e)(f ), the EM − ETM/CP
solution (g)(h)(i).
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Figure 4.10: Numerial Assessment (Small Array, Asymmetri Mask ; d = 0.5λ,
M ×N = 5 × 4 Ntot = 20, T = 95) - The mask mathing map, evaluated when

steering the beam of the EM − ETM/CP solution, within a san one.
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4.4.2 Medium Dimensions Arrays

In order to asses the proposed methodology for small/medium sized arrays, an

4.5λ × 3λ retangular aperture is now onsidered, �lled with N ×M = 9 × 6
elements loated over a squared lattie and equally spaed by dx = dy = λ/2.
The symmetri power mask of Fig. 4.11 de�nes the optimal pattern shape, on-

sisting in a main beam window of dimension BWu × BWv = 0.5 [u] × 0.8 [v], a
maximum SLLL1 = −20 [dB℄ for the lobes nearby the main lobe, and a max-

imum SLLL2 = −25 [dB℄ in the end-�re zone. The CP optimized amplitude

oe�ients of the referene fully-populated array, together with the synthesized

power pattern are reported in Fig. 4.13. Aording to (3.4) a M × N = 9 × 6
elements array an be partitioned into exatly T = 8.17991×105 di�erent tilings.
It is lear that in this ase the amount of time needed to omplete an ETM−CP
simulations turns out to be very large (i.e ∆t ≃ 94 days, assuming ∆tCP ≃ 10
[se℄). The EM−based tehniques instead, allow to omplete the optimization

into a reasonable amount of time (i.e.∆tEM−ETM = 15 : 39 : 36 [h:min:se℄ and

∆tEM−OTM = 00 : 20 : 12 [h:min:se℄, Tab. 4.3). The mask mathing evaluated

by the EM −ETM for all the existing tilings has been reported in Fig. 4.13(a),

together with the best solution provided by the EM−OTM approah. It is worth

noting that also in this ase the EM −OTM method (the following parameters

have been used for the 10 GA optimizations: U = 54, K = 500, pc = 0.9,
pm = 0.01), ahieve the same EM − ETM solution. Figure 4.14(a) reports the

tiling, as well as the amplitude oe�ients of the EM − ETM/OTM solution,

while the top-view power pattern is shown in Fig. 4.14(b). The omparison of

the power pattern with the power mask is reported in Fig. 4.13(b)-() along the

azimuth and elevation planes, respetively. As an be seen the power pattern or-

responding to the EM−ETM solution, does not math the optimal performanes

[χ
(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)

= 4.8× 10−5
, Tab. 4.3℄. Nevertheless, the

solution obtained through the proposed EM − ETM/CP method [Fig. 4.9()-

(d)℄ a�ords a power pattern that ompletely �ts the power mask, as on�rmed

by the �nal ost funtion value [χ
(

c
EM−ETM ;αEM−ETM/CP ,βEM−ETM/CP

)

=
5.0 × 10−10

Tab. 4.3℄, whih is below the �tness threshold [Fig. 4.13(a)℄. The

analysis of the mask mathing varying the sanning angle has been exeuted and

graphially shown in the diagram of Fig. 4.15(a). Moreover, Fig. 4.15(b) reports

the mask mathing parameter when steering the beam along the φ0 = 0 [deg℄

and φ0 = 90 [deg℄ planes, showing a maximum san angle of θ0 = 2 [deg℄, if a

good mathing with the power mask must be assured.

A seond assessment of the 9 × 6 array has been performed onsidering the

power mask of Fig. 4.16. A window of dimensionBWu×BWv = 0.64 [u]×0.92 [v]
is onsidered for the main beam, while three di�erent SLL levels are asym-

metrially de�ned in the side-lobes zone: SLLL1 = −25 [dB℄, SLLL2 = −28
[dB℄, and SLLL3 = −35 [dB℄. The referene omplex exitations of the fully

populated array is reported in Fig. 4.17(a)-(b), and the orresponding power

pattern in Fig. 4.17(). As shown in Fig. 4.18(a), the EM − ETM and
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Figure 4.11: Numerial Assessment (Medium Array, Symmetri Mask ; d = 0.5λ,
M×N = 6×9 Ntot = 54, T ≃ 8.2×105) - The power mask M (u, v) de�ning the
onstraints for the synthesis of an M ×N = 6× 9 array of isotropi elements.
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Figure 4.12: Numerial Assessment (Medium Array, Symmetri Mask ; d = 0.5λ,
M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - The referene solution of the

fully-populated array obtained through a CP optimization. (a) The amplitude

oe�ients, and (b) the top-view power pattern.
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Figure 4.13: Numerial Assessment (Medium Array, Symmetri Mask ; d = 0.5λ,
M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - (a) The EM − ETM , EM −
OTM simulation ost funtion evaluations, and the ost funtion of the EM −
ETM/CP simulation. (b)-() The power pattern uts along the u = u0 = 0.0
and v = v0 = 0.0 plane of the ETM − EM , EM − OTM optimal solution

and the EM −ETM/CP solution, as ompared to the referene fully-populated

solution and to the power mask.
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Figure 4.14: Numerial Assessment (Medium Array, Symmetri Mask ; d = 0.5λ,
M×N = 6×9 Ntot = 54, T ≃ 8.2×105) - (a)() The tiles amplitudes exitations

oe�ients and (b)(d) the respetive top-view power patterns of the the EM −
ETM optimal solution (a)(b), and the EM − ETM/CP solution ()(d).
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Figure 4.15: Numerial Assessment (Medium Array, Symmetri Mask ; d = 0.5λ,
M ×N = 6× 9 Ntot = 54, T ≃ 8.2× 105) - The mask mathing map, evaluated

when steering the beam of the EM −ETM/CP solution, within a san one.
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Table 4.3: Numerial Assessment (Medium Array, Symmetri Mask ; d = 0.5λ,
M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - Measured radiation indexes (SLL,
D, HPBWaz, and HPBWel), mask mathing χ [P (u, v)] of the referene and

optimized tilings patterns, and timings of the optimizations/simulations.

SLL D HPBWaz HPBWel χ [P (u, v)] ∆t

[dB℄ [dBi℄ [deg℄ [deg℄ - [h:min:se℄

M ×N = 6× 9 SymmetricMask

Reference −20.00 21.52 13.15 20.07 3.60× 10−10 00 : 21 : 25

EM − ETM −19.11 21.54 13.03 19.86 4.80× 10−5 15 : 39 : 36

EM −OTM −19.11 21.54 13.03 19.86 4.80× 10−5 00 : 20 : 12

EM − ETM/CP −20.00 21.46 13.15 20.07 5.00× 10−10 00 : 03 : 30

EM − OTM simulations onverges to the same EM−optimal solution show-

ing a mask mathing equal to χ
(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)

= 2.4× 10−4

(Tab. 4.4), whose orresponding tiling is pitured in Fig. 4.19(a)-(b), to-

gether with the EM − ETM amplitude and phase oe�ients, while the top

view power pattern is reported in Fig. 4.19(). The EM − ETM/CP op-

timization still does not reah the onvergene, onsequently the ost fun-

tion value [χ
(

c
EM−ETM ;αEM−ETM/CP ,βEM−ETM/CP

)

= 1.7 × 10−5
Tab 4.4℄

is still above the �tness threshold [Fig. 4.18(a)℄, but its lower with respet

to the EM − ETM solution. Indeed, even if the EM − ETM/CP power

pattern violates the power mask [Fig. 4.18(b)-()℄, the orresponding beam

pattern desriptors (Tab. 4.4) are very lose to the optimal ones (∆SLL =
∣

∣SLLEM−ETM/CP − SLLref
∣

∣ = 0.55 [dB℄, ∆D =
∣

∣DEM−ETM/CP −Dref
∣

∣ = 0.18

[dBi℄,∆HPBWAZ =
∣

∣

∣
HPBW

EM−ETM/CP
AZ −HPBW ref

AZ

∣

∣

∣
= 0.16 [deg℄, ∆HPBWEL =

∣

∣

∣
HPBW

EM−ETM/CP
EL −HPBW ref

EL

∣

∣

∣
= 0.12 [deg℄). The analysis of the robust-

ness against the beam steering [Fig. 4.20℄ shows a better performane of the

EM − ETM/CP along the elevation plane with respet to the azimuth plane.

4.4.3 Large Dimensions Arrays

As a �nal example, a larger array is onsidered. The array aperture is a ret-

angle of dimension 10λ × 7.5λ �lled by Ntot = 300 elements loated over a

20 × 15 grid, equally spaed by dx = dy = λ/2. The onsidered power mask

is shown in Fig. 4.21, as an bee seen, the mask is asymmetri with a main

beam window of dimension BWu × BWv = 0.32 [u] × 0.42 [v] and SLL levels

equal to: SLLL1 = −25 [dB℄, SLLL2 = −30 [dB℄, and SLLL3 = −40 [dB℄.

Figure 4.22(a)-(b) shows the optimal CP exitation oe�ients of the refer-

ene fully-populated array, and Fig. 4.22(b) shows the top-view of the synthe-
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Figure 4.16: Numerial Assessment (Medium Array, Asymmetri Mask ; d =
0.5λ, M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - The power mask M (u, v)
de�ning the onstraints for the synthesis of an M ×N = 6× 9 array of isotropi

elements.

Table 4.4: Numerial Assessment (Medium Array, Asymmetri Mask ; d = 0.5λ,
M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - Measured radiation indexes (SLL,
D, HPBWaz, and HPBWel), mask mathing χ [P (u, v)] of the referene and

optimized tilings patterns, and timings of the optimizations.

SLL D HPBWaz HPBWel χ ∆t

[dB℄ [dBi℄ [deg℄ [deg℄ - [h:min:se℄

M ×N = 6× 9 AsymmetricMask

Reference −25.00 20.81 14.53 21.61 3.05× 10−10 00 : 27 : 35

EM − ETM −23.48 20.85 14.32 21.33 2.40× 10−4 16 : 08 : 10

EM −OTM −23.48 20.85 14.32 21.33 2.40× 10−4 00 : 25 : 20

EM − ETM/CP −24.45 20.63 14.69 21.49 1.70× 10−5 01 : 47 : 46
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Figure 4.17: Numerial Assessment (Medium Array, Asymmetri Mask ; d =
0.5λ, M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - The referene solution of the

fully-populated array obtained through a CP optimization. (a) The amplitude

oe�ients, (b) the phase oe�ients, and () the top-view power pattern.

74



CHAPTER 4. MASK-CONSTRAINED OPTIMIZATION OF

DOMINO-TILED PHASED ARRAYS

10-8

10-7

10-6

10-5

10-4

10-3

10-2

 0  1  2  3  4  5  6  7  8  9

M
as

k 
M

at
ch

in
g,

 χ

Solution Index [x105]

Fitness Threshold

EM-ETM

EM-OTM

EM-ETM/CP

(a)

-40

-35

-30

-25

-20

-15

-10

-5

 0

-1 -0.5  0  0.5  1

N
or

m
al

iz
ed

 P
ow

er
 P

at
te

rn
  [

dB
]

u=sin(θ)cos(φ)

φ = 0 [deg]

Reference

EM-ETM

EM-OTM

EM-ETM/CP

Mask

-40

-35

-30

-25

-20

-15

-10

-5

 0

-1 -0.5  0  0.5  1

N
or

m
al

iz
ed

 P
ow

er
 P

at
te

rn
  [

dB
]

v=sin(θ)sin(φ)

φ = 90 [deg]

Reference

EM-ETM

EM-OTM

EM-ETM/CP

Mask

(b) ()

Figure 4.18: Numerial Assessment (Medium Array, Asymmetri Mask ; d =
0.5λ, M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - (a) The EM − ETM ,

EM − OTM simulation ost funtion evaluations, and the ost funtion of the

EM−ETM/CP simulation. (b)-() The power pattern uts along the u = u0 =
0.0 and v = v0 = 0.0 plane of the ETM − EM , EM − OTM optimal solution

and the EM −ETM/CP solution, as ompared to the referene fully-populated

solution and to the power mask.
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Figure 4.19: Numerial Assessment (Medium Array, Asymmetri Mask ; d =
0.5λ, M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - (a)(d) The tiles amplitudes

exitations oe�ients, (b)(e) the tiles phase exitations oe�ients and ()(f )

the respetive top-view power patterns of the EM − ETM and EM − OTM
optimal solution (a)(b)(), and the EM − ETM/CP solution (d)(e)(f ).
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Figure 4.20: Numerial Assessment (Medium Array, Asymmetri Mask ; d =
0.5λ, M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - The mask mathing map,

evaluated when steering the beam of the EM − ETM/CP solution, within a

san one.

sized power pattern. In this ase the ardinality of the solution spae equals

to T = 4.9098 × 1035, whih is a too large for an exhaustive exploration, on-

sequently, the EM − OTM has been hosen in order to searh for the optimal

tiling in a feasible amount of time. Indeed, 10 di�erent GA optimizations have

been exeuted onsidering U = 800 individuals, K = 1000 iterations, pc = 0.9
and pm = 0.01, for a total simulation time equal to ∆t = 16 : 42 : 30 [h:min:se℄.

The �tness of all the exeuted simulations are reported in Fig. 4.23(a) as

funtion of the iteration index. As an be seen, all the GA simulations on-

verges to ost-funtions values within the interval [2.0 × 10−6, 1.8 × 10−6]. The
50% of the exeuted GA simulations onverges to the same best solution hav-

ing a mathing with the mask equal to χ
(

CEM−OTM ; αEM−OTM , βEM−OTM
)

=
1.8 × 10−6

(Tab. 4.5). The EM−optimal tiling, together with the ampli-

tude and phase exitation oe�ients, are reported in Fig. 4.24(a)-(b), respe-

tively, while the top view power pattern is reported in Fig. 4.24(). Even

if the �bare� EM − OTM solution does not math ompletely the mask, the

EM−OTM/CP suessfully lowers the mask mathing below the �tness thresh-

old [ χ
(

CEM−OTM ; αEM−OTM/CP , βEM−E=OTM/CP
)

= 6.2 × 10−9
, Tab. 4.5℄.

Finally, the mask mathing has been evaluated varying the beam sanning di-

retion, graphially shown in the diagram of Fig. 4.25(a), together with a fous

in the nearby of the boresight diretion along the φ0 = 0 [deg℄ and φ0 = 90 [deg℄
planes reported in Fig. 4.25(b).
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Figure 4.21: Numerial Assessment (Large Array, Asymmetri Mask ; d = 0.5λ,
M×N = 15×20 Ntot = 300, T ≃ 4.9×1035) - The power mask M (u, v) de�ning
the onstraints for the synthesis of an M×N = 6×9 array of isotropi elements.

Table 4.5: Numerial Assessment (Large Array, Asymmetri Mask ; d = 0.5λ,
M × N = 15 × 20 Ntot = 300, T ≃ 4.9 × 1035) - Measured radiation indexes

(SLL, D, HPBWaz, and HPBWel), mask mathing χ [P (u, v)] of the referene
and optimized tilings patterns, and timings of the optimizations.

SLL D HPBWaz HPBWel χ ∆t
[dB℄ [dBi℄ [deg℄ [deg℄ - [h:min:se℄

M ×N = 15× 20 AsymmetricMask
Reference −25.00 28.27 6.50 8.60 9.57× 10−9 02 : 59 : 03
EM − OTM −24.73 28.31 6.48 8.56 1.80× 10−6 04 : 28 : 29

EM − OTM/CP −25.00 28.24 6.51 8.60 6.20× 10−9 02 : 07 : 07
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Figure 4.22: Numerial Assessment (Large Array, Asymmetri Mask ; d = 0.5λ,
M × N = 15 × 20 Ntot = 300, T ≃ 4.9 × 1035) - The referene solution of the

fully-populated array obtained through a CP optimization. (a) The amplitude

oe�ients, (b) the phase oe�ients, and () the top-view power pattern.
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Figure 4.23: Numerial Assessment (Large Array, Asymmetri Mask ; d = 0.5λ,
M×N = 15×20Ntot = 300, T ≃ 4.9×1035) - (a) The EM−OTM simulation ost

funtion evaluations for the 10 GA simulation runs. (b)() The power pattern

uts along the u = u0 = 0.0 and v = v0 = 0.0 plane of the EM −OTM optimal

solutions and the EM − OTM/CP , as ompared to the power mask.

80



CHAPTER 4. MASK-CONSTRAINED OPTIMIZATION OF

DOMINO-TILED PHASED ARRAYS

E
M
−

O
T
M

-5 -2.5  0  2.5  5

x/λ

-3.75

-2.5

-1.25

 0

 1.25

 2.5

 3.75

y/
λ

 0

 0.2

 0.4

 0.6

 0.8

 1

E
xc

ita
tio

n 
A

m
pl

itu
de

 [a
rb

itr
ar

y 
un

it]

-5 -2.5  0  2.5  5

x/λ

-3.75

-2.5

-1.25

 0

 1.25

 2.5

 3.75

y/
λ

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

E
xc

ita
tio

n 
P

ha
se

 [r
ad

]

(a) (b)

()

E
M
−

O
T
M
/C

P

-5 -2.5  0  2.5  5

x/λ

-3.75

-2.5

-1.25

 0

 1.25

 2.5

 3.75

y/
λ

 0

 0.2

 0.4

 0.6

 0.8

 1

E
xc

ita
tio

n 
A

m
pl

itu
de

 [a
rb

itr
ar

y 
un

it]

-5 -2.5  0  2.5  5

x/λ

-3.75

-2.5

-1.25

 0

 1.25

 2.5

 3.75

y/
λ

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

E
xc

ita
tio

n 
P

ha
se

 [r
ad

]

(d) (e)

(f)

Figure 4.24: Numerial Assessment (Large Array, Asymmetri Mask ; d = 0.5λ,
M × N = 15 × 20 Ntot = 300, T ≃ 4.9 × 1035) - (a)(d) The tiles amplitudes

exitations oe�ients, (b)(e) the tiles phase exitations oe�ients and ()(f )

the respetive top-view power patterns of the EM − OTM optimal solution

(a)-(), and the EM − OTM/CP solution (d)-(f ).
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Figure 4.25: Numerial Assessment (Large Array, Asymmetri Mask ; d = 0.5λ,
M × N = 15 × 20 Ntot = 300, T ≃ 4.9 × 1035) - The mask mathing map,

evaluated when steering the beam of the EM − OTM/CP solution, within a

san one.

Table 4.6: Numerial Assessment (Full-Wave Simulations) - Radiation indexes

(SLL, D, HPBWaz, and HPBWel), and mask mathing χ [P (u, v)] of the tiled
array power pattern, obtained simulating the entire arrays struture using a full-

wave ommerial software.

M ×N SLL D HPBWaz HPBWel χ
[dB℄ [dBi℄ [deg℄ [deg℄ -

Full −Wave, PatchMulti− Layer
4× 5 ETM − CP −22.91 16.29 23.76 28.94 1.77× 10−8

EM −ETM/CP −21.86 16.14 24.04 29.15 1.29× 10−5

EM − ETM −19.68 16.54 22.90 28.54 2.37× 10−5

6× 9 EM −ETM/CP −24.69 19.80 14.43 21.09 6.91× 10−6

EM − ETM −24.90 20.06 13.98 20.93 3.58× 10−5

15× 20 EM − OTM/CP −25.08 27.20 6.42 8.56 1.88× 10−8

EM − OTM −24.86 27.00 6.40 8.50 9.19× 10−8

Full −Wave, Patch Spline
4× 5 ETM − CP −21.38 17.19 24.37 28.71 0.0

EM −ETM/CP −21.38 17.06 24.51 29.12 1.42× 10−6

EM − ETM −19.46 17.41 23.65 28.28 2.38× 10−4

6× 9 EM −ETM/CP −25.22 20.08 14.50 21.00 1.09× 10−6

EM − ETM −24.60 21.10 14.20 20.80 5.94× 10−5

15× 20 EM − OTM/CP −25.30 28.40 6.40 8.50 5.62× 10−7

EM − OTM −25.04 28.40 6.40 8.40 1.28× 10−6
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(a) (b)

() (d)

Figure 4.26: Numerial Assessment (Full-Wave Simulations) - (a) The model of

the multi-layer path antenna and (b) the avity baked spline path antenna

onsidered for the full-wave simulations.
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Figure 4.27: Numerial Assessment (Full-Wave Simulations; d = 0.5λ, M ×
N = 5 × 4 Ntot = 20) - The normalized power pattern uts along (a)() the

u = u0 = 0.0 and (b)(d) v = v0 = 0.0 planes of the EM − ETM , CP − ETM ,

EM − ETM/CP , and EM − OTM/CP methods, ompared to the referene

mask, obtained using the full-wave solver when onsidering (a)(b) the aperture-

oupled multi-layered path antenna and ()(d) the avity-baked spline path

antenna.
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Figure 4.28: Numerial Assessment (Full-Wave Simulations; d = 0.5λ, M×N =
6× 9 Ntot = 54) - The normalized power pattern uts along (a)() the u = u0 =
0.0 and (b)(d) v = v0 = 0.0 planes of the EM − ETM , EM − ETM/CP ,
and EM −OTM/CP methods, ompared to the referene mask, obtained using

the full-wave solver when onsidering (a)(b) the aperture-oupled multi-layered

path antenna and ()(d) the avity-baked spline path antenna.
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Figure 4.29: Numerial Assessment (Full-Wave Simulations; d = 0.5λ, M ×
N = 15 × 20 Ntot = 300) - The normalized power pattern uts along (a)()

the u = u0 = 0.0 and (b)(d) v = v0 = 0.0 planes of the EM − OTM , and

EM − OTM/CP methods, ompared to the referene mask, obtained using

the full-wave solver when onsidering (a)(b) the aperture-oupled multi-layered

path antenna and ()(d) the avity-baked spline path antenna.
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4.4.4 Reliability Assessment

In order to assess the reliability of the optimized solutions when onsidering real

radiating elements, a set of test ases seleted among the small, medium and large

arrays of the previous sub-setion, have been simulated using a ommerial full-

wave software. Two di�erent path antenna elements, namely the multi-layered

aperture oupled path antenna [93℄ [Fig. 4.26(a)℄ and a avity-baked spline-

shaped path [Fig. 4.26(b)℄ [90℄, have been onsidered. The respetive gain pat-

tern obtained simulating the single isolated element are reported in Fig. 4.26()

and Fig. 4.26(d), respetively, showing a di�erent radiating behaviour among the

two antennas. In this ase, di�erently from the reliability assessment performed

in Se. 3.4.1, the entire array struture has been simulated, inluding the ground

plane, and the mirostrip antennas substrates. The power pattern uts along the

φ0 = 0 [deg℄ and φ0 = 90 [deg℄ planes of the simulated smallN×M = 4×5 array,
partitioned aording to the tiling on�guration obtained from the EM −ETM ,

ETM − CP , EM −ETM/CP and EM −OTM/CP methods, when onsider-

ing the asymmetri power mask of Fig. 4.6, are shown in Fig. 4.27 as ompared

to the referene synthesis mask. As an be seen, the real power pattern orre-

sponding to the ETM − CP array, shows a good mathing with the mask for

both two radiating elements [ χ
(

c
ETM−CP ;αETM−CP ,βETM−CP

)
∣

∣

5×4

Multi−Layer
=

1.77 × 10−8
and χ

(

c
ETM−CP ;αETM−CP ,βETM−CP

)
∣

∣

5×4

Spline
= 0.0, Tab. 4.6℄,

while the EM − ETM/CP real array pattern slightly violates the mask along

the elevation plane when onsidering the multi-layered path [Fig. 4.27()℄

(χ
(

c
EM−ETM ;αEM−ETM/CP ,βEM−ETM/CP

)
∣

∣

5×4

Multi−Layer
= 1.29×10−5

, Tab. 4.6).

The mask violation is instead muh more evident when using the �bare� EM −
ETM solution (i.e without re-optimizing the sub-array oe�ients) with a mask

mathing equal to χ
(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)
∣

∣

5×4

Multi−Layer
= 2.37×10−5

and χ
(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)
∣

∣

5×4

Spline
= 2.38 × 10−4

. Similarly, both

the medium (M × N = 6 × 9) and large (M × N = 15 × 20) arrays have been

validated omparing the proposed approahes solutions with the mask and to

the �bare� EM −ETM methodology. The omparison of the power pattern uts

with the power mask are reported in Fig. 4.28 and Fig. 4.29, for the 6 × 9
and 15 × 20 arrays. Also in this ases the full-wave analysis shows very lose

behaviours of the radiation patterns when onsidering the two di�erent path

antennas. Moreover the full-wave pattern obtained onsidering the solutions the

proposed methods (i.e ETM − CP , EM − ETM/CP and EM − OTM/CP )
outperform in terms of mask mathing the EM − ETM solution in all the

onsidered ases [e.g. χ
(

c
EM−ETM ;αEM−ETM/CP ,βEM−ETM/CP

)
∣

∣

6×9

Multi−Layer
=

6.91 × 10−6
vs. χ

(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)
∣

∣

6×9

Multi−Layer
= 3.58 × 10−5

and χ
(

c
EM−OTM ;αEM−OTM/CP ,βEM−OTM/CP

)
∣

∣

15×20

Spline
= 5.62× 10−7

vs.

χ
(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)
∣

∣

15×20

Spline
= 1.28× 10−6

, Tab. 4.6℄.
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Chapter 5

Multi-Objetive Optimization of

Orthogonal Polygons by

Domino-Like Tiles

In this Chapter the tiling optimization problem of orthogonal-polygon shaped

apertures is addressed. With respet to standard retangular shaped arrays,

orthogonal polygon shaped arrays allows to give to the antenna an arbitrary

shape, over a retangular grid. The synthesis of tiled phased arrays radiating

a penil beam is formulated as a multi-objetive problem (MOP), exploiting

the ETM and OTM methods introdued in the previous Chapters. A set of

illustrative examples validating the proposed method are �nally reported.
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5.1. PROBLEM FORMULATION

5.1 Problem Formulation

Let us onsider an arbitrary shaped aperture array and elements positioned over a

retangular lattie. The resulting array turns out to have an orthogonal polygon

shape. A polygon is alled orthogonal (or retilinear) if its edges are either

horizontal or vertial (i.e., if edges meet at right angles) [95℄[96℄. An example of

two orthogonal polygon shaped arrays are reported in Fig. 5.1.

Instead of the simple minimization of a single pattern parameter (e.g. SLL)
here, a multi-objetive optimization approah is proposed. The multi-objetive

problem (MOP) is de�ned as:

Multi-Objetive Optimization of Arbitrary Shaped Phased Arrays

- given an array of arbitrary aperture, with elements positioned over

a retangular lattie, and two domino-like tiles

(

σV , σH
)

, �nd the op-

timal tiling/lustering on�guration c
opt

and the orresponding sub-

array weights αopt
and βopt

, suh that the radiated pattern jointly �ts

multiple user-de�ned requirements Φr (c;α,β), r = 1, ..., R, with the

main lobe steered toward (θ0, φ0).

In order to omply with multiple and on�iting objetives, a set of Pareto

optimal solutions will be provided to the designer who is allowed to hoose the

best solution aording to user-de�ned riterion. The set of Pareto optimal

solutions are obtained as:

(

c
opt;αopt,βopt

)

= arg






min

c;αEM ,βEM











Φ1

(

c;αEM ,βEM
)

.

.

.

ΦR

(

c;αEM ,βEM
)
















(5.1)

where

(

αEM ,βEM
)

are obtained aording to (4.10) and (4.11).

5.2 Tilability Condition

In Set. 3.2 it has been desribed the algorithm that allows to ompute the �min-

imal� tiling of retangular shaped arrays, based on the height funtion de�ned

in [48℄. The derived tiling proedure works also for arbitrary simply onneted

regions, provided that the area an be totally overed by the domino tiles. In [97℄

the following theorem is reported for the domino tilability ondition of arbitrary

shaped regions:

T5 : Let A be a simply onneted region in the plane de�ned over a retangular

lattie, and let n be the number of pixels omposing A. There exists an

algorithm that deides tilability of A in time O (n log n).
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CHAPTER 5. MULTI-OBJECTIVE OPTIMIZATION OF ORTHOGONAL

POLYGONS BY DOMINO-LIKE TILES

(a)

(b)

Figure 5.1: Examples of orthogonal polygon shaped arrays. (a) indented retan-

gle and (b) quantized hexagon.
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5.2. TILABILITY CONDITION

The theorem suggests that it is always possible to verify the tilability of sim-

ple onneted regions, by exeuting the algorithms presented in [48℄[53℄, and

desribed in detail in Chapter 3. The algorithms allows to ompute the height

funtion on the border of the region [Se. 3.2(A)℄ and on the internal verties

[Se. 3.2(B.1)℄, providing the so alled �minimal� tiling. Aordingly, in order to

verify the tilability of an orthogonal shaped region the following two steps are

required:

Step 1. Feasibility on the boundary verties of A - ompute the height h-
value of the boundary verties of A (vext ={vmn; [m = {0, M}; n = 0, ..., N ℄

⋃

[n = {0, N}; m = 0, ...,M ℄} vext ∈ ∂A being ∂A the ontour/boundary of A)
and verify that the following ondition holds true:

|h (vmn)− h (vpg)| = 1 (5.2)

where vpg ∈ vext being a neighboring vertex of vmn ∈ vext. If the ondition

(5.2) is veri�ed for eah ouple of neighboring verties of the boundary ∂A, the
following ondition (Step 2 ) must be heked, otherwise it is impossible to obtain

a omplete tiling of A using domino tiles.

Step 2. Feasibility on the inner verties of A - ompute the height h-value
of the inner verties of A (v

(t=0)
int ={v

(t=0)
mn ; m = 1, ...,M − 1; n = 1, ..., N − 1})

and obtain the �minimal� tiling (i.e. t = 0) aording to the rules de�ned in A1.2

of the �Algorithm A1 � and B1.1-4 of the �Algorithm B1 � desribed in Chapter

3, and verify that the following ondition holds true:

∣

∣h
(

v(t=0)
mn

)

− h
(

v(t=0)
pg

)
∣

∣ = {1, 3} (5.3)

v
(t=0)
pg ∈ v

(t=0)
mn [v

(t=0)
mn = {v

(t=0)
(m−1)n, v

(t=0)
(m+1)n, v

(t=0)
m(n−1), v

(t=0)
m(n+1)} being the set of

verties neighbor to v
(t=0)
mn ℄. If an admissible tiling is obtained, the tilability is

veri�ed, and the whole set of omplete tilings an be generated using �Algorithm

B2� reported in Chapter 3
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POLYGONS BY DOMINO-LIKE TILES

(a) (b)

Figure 5.2: Example of tilable (a) and non-tilable (b) orthogonal polygon by

dominoes, exploiting the Thurston Theorem

5.3 Estimation of the Solution Spae Cardinality

For orthogonal polygon shaped apertures, for the best of the author knowledge,

there is no analyti formula or theorem giving the exat number of the total

admissible domino tilings T . In the following an upper and a lower bound of

T are provided, exploiting the analyti formula for ounting the tilings of an

M × N retangular region [eq. (3.4)℄. Let us onsider an arbitrary orthogonal

polygon A, in order to ompute the upper bound T , the idea is to �rst ompute

the number of domino tilings for the smallest possible retangle R insribing A.
Consequently we have that the number of tilings of A is for sure less than the

number of tilings of R. In order to have a sharper bound, the area obtained as

the omplement of A with respet to R is disseted into the minimum number

of retangles and the respetive number of domino tilings are omputed and

subtrated from T . Let us refer to T (M,N) as the number of domino tilings of

an M ×N retangle, aordingly, the upper bound T is obtained as

T = T
(

M,N
)

−
J
∑

j=1

T
(

M j, N j

)

(5.4)

M and N being the edge of the smallest retangle insribing A and T
(

M j , N j

)

,

ij = 1, ..., J the number of tiling of J retangles obtained as the omplement of

A with respet to R and the M ×N retangle;

In a similar way, the lower bound T is obtained as

J
∑

j=1

T
(

M j , N j

)

(5.5)

, being T
(

M j , N j

)

, j = 1, ..., J the minimum number of J retangles, exatly

overing A, without overlapping.
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5.3. ESTIMATION OF THE SOLUTION SPACE CARDINALITY
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Figure 5.3: Example of estimated upper (a) and lower bound (b) of T , exploiting
the ardinality theorem for retangular regions.
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CHAPTER 5. MULTI-OBJECTIVE OPTIMIZATION OF ORTHOGONAL

POLYGONS BY DOMINO-LIKE TILES

5.4 Numerial Assessment

Let us onsider an array of Ntot = 44 elements, loated over a square lattie,

equally spaed by dx = dy = λ/2 and positioned aording to the arbitrary shape

shown in Fig. 5.4(a). The referene amplitude oe�ients [Fig. 5.4(a)℄ have

been omputed aording to a gaussian distribution in order to obtain a power

pattern with an SLL equal to SLL = −30.20 [dB℄ [Fig. 5.4(b)℄ and the main

beam pointing toward (θ0, φ0) = (0, 0) [deg℄, onsequently the phase oe�ients

of the fully populated array are set to βref
n = 0, n = 1, ..., Ntot. By using eq.

(5.4) and eq. (5.5), the number of domino tilings is estimated within 573 < T <
1.859× 105, whih allows an exhaustive searh in a feasible omputational time.

The ETM−MOP optimization has been exeuted onsidering as a �rst objetive

(r = 1) the SLL of the power pattern, and as seond objetive (r = 2) the half
power beamwidth along the elevation plane (HPBWEL). The simulation has

been exeuted in ∆tETM−MOP = 18 : 05 [min:se℄ evaluating the power pattern

and the respetive two objetive parameters (i.e. SLL and HPBWEL) for the

e�etive T = 9531 tiling solutions. Figure 5.5(a) shows the values of the ost

funtion in the SLL/HPBWEL plane, together with the Pareto front solutions.

The optimal tiling solution with respet to the objetive r = 1 (Solution 1, Fig.

5.5) has been reported in Fig. 5.6(a) together with the respetive power pattern

5.6(b) showing a SLL = −27.11 [dB℄ and an HPBWEL = 29.00 [deg℄ (Tab. 5.1),
while the optimal tiling solution with respet to the objetive r = 2 (Solution

2, Fig. 5.5) has been reported in Fig. 5.6()-(d) showing a SLL = −11.39 [dB℄

and an HPBWEL = 25.29 [deg℄ (Tab. 5.1). As an be notied from Fig. 5.5, the

two objetive are in ontrast with eah other. Let us suppose that the following

design requirements are assumed: SLLmax ≤ −20 [dB℄ and HPBWmax
EL ≤ −26.2

[deg℄ (Tab. 5.1). Aording to Fig. 5.5 the Pareto optimal solution has been

seleted in order to satisfy both the requirements (i.e. Solution 3 Fig. 5.5,

SLL = −20.20 [dB℄ and HPBWEL = 26.10 Tab. 5.1). In order to ompare

the three di�erent solutions, the uts of the power patterns along the azimuth

[Fig. 5.7(a)℄ and elevation [Fig. 5.7(b)℄ planes have been reported together with

a detail of the main beam along the elevation plane [Fig. 5.7()℄.

As a seond numerial example, let us onsider an array of Ntot = 300 el-

ements, loated over a square lattie, equally spaed by dx = dy = λ/2 and

positioned aording to the arbitrary shape shown in Fig. 5.8(a). It is worth

noting here that even if the aperture shape is very similar to a regular hexagon,

it is still an orthogonal polygon, being omposed by square elementary ells ap-

proximating an exat hexagon. The referene amplitude and phase oe�ients

[Fig. 5.8(a)-(b)℄ have been omputed aording to a gaussian distribution in

order to obtain a power pattern with an SLL equal to SLL = −20.00 [dB℄ [Fig.

5.8()℄ and the main beam pointing toward (θ0, φ0) = (30, 0) [deg℄. In order to

estimate the dimension of the solution spae eq. (5.5) has been used to ompute

T , onsidering only the M × N = 14 × 14 square insribed in the orthogonal
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5.4. NUMERICAL ASSESSMENT

(a) (b)

Figure 5.4: ETM-MOP Numerial Assessment (Ntot = 44 ; d = 0.5λ) - Plots of
(a) the array geometry and referene exitation amplitudes (αref

mn; m = 1, ...,M ;

n = 1, ..., N) and (b) the referene power pattern,

∣

∣AFref (θ, φ)
∣

∣

2
.

Figure 5.5: ETM-MOP Numerial Assessment (Ntot = 44 ; d = 0.5λ; T = 9531)
- Evaluated ost funtions of the exhaustive ETM −MOP optimization (blue

ross) onsidering as the �rst objetive the SLL and as seond objetive the

HPBWEL of the tiled array power pattern. The red dots are the solutions that

belongs to the Pareto front.
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(a) (b)

() (d)

(e) (f)

Figure 5.6: ETM-MOP Numerial Assessment (Ntot = 44 ; d = 0.5λ; T =
9531) - Plots of (a)()(e) the tiling on�gurations and sub-array exitations,

and (b)(d)(f ) the power pattern of the solutions (a)(b) Solution 1 (t = 230),
()(d) Solution 2 (t = 5948), (e)(f ) Solution 3 (t = 3223).
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Figure 5.7: ETM-MOP Numerial Assessment (M = 8, N = 5; d = 0.5λ;
T = 1.4824 × 104) - Plots of (a) the power patterns along the φ = 0 [deg℄ ut,

(b) the he power patterns along the φ = 90 [deg℄ ut and () a detail of the main

beam of the power patterns along the φ = 90 [deg℄ ut.
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Table 5.1: ETM-MOP Numerial Assessment (Ntot = 44 ; d = 0.5λ; T = 9531)
- Radiation performane (SLL, D, HPBWaz, HPBWel) of the referene and

optimized tiled solutions seleted among the Pareto front of the ETM-MOP

simulation.

SLL D HPBWaz HPBWel

[dB℄ [dBi℄ [deg℄ [deg℄

Required −20.00 − − 26.20

Reference −30.20 19.77 13.63 29.28
Solution− 1 −27.11 19.77 13.64 29.00
Solution− 2 −11.39 19.59 13.45 25.29
Solution− 3 −20.20 19.90 13.40 26.10

hexagon, obtaining a lower bound equal to T = 1.1220× 1023 whih is already a

huge number of solutions. Being T > T an optimization based strategy is onsid-

ered in this ase. The OTM−MOP optimization has been exeuted onsidering

the NSGA-II multi-objetive GA-based optimizer [98℄[99℄, onsidering as a �rst

objetive (r = 1) the SLL of the power pattern, and as seond objetive (r = 2)
the half power beamwidth along the azimuth plane (HPBWAZ). The optimiza-

tion has been exeuted onsidering a population size equal to P = 200 and a

total number of �tness evaluations (NFE ) equals to NFE = 20000 for a total

simulation time equal to ∆tOTM−MOP = 40 : 35 [min:se℄. Figure 5.9(a) shows

the values of the ost funtion in the SLL/HPBWaz plane, together with the

Pareto front solutions. The Pareto optimal solution has been seleted aord-

ing to the design requirements [SLLmax ≤ −16.0 [dB℄ and HPBWmax
AZ ≤ −9.5

[deg℄ (Tab. 5.2) and reported in Fig. 5.6(a)-(b) together with the respetive

power pattern 5.10() showing a SLL = −16.00 [dB℄ and an HPBWEL = 9.48
[deg℄ (Tab. 5.2). The reported results show the e�etiveness of a multi-objetive

optimization approah, that provides to the designer a �exible tool able to han-

dle di�erent pattern features and ahieving useful trad-o� solutions. Moreover

the tiling of orthogonal polygons, have been suessfully validated, enabling the

design of arbitrary shaped arrays.
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(a) (b)

()

Figure 5.8: OTM-MOP Numerial Assessment (Ntot = 40 d = 0.5λ) - Plots of
(a)(b) the array geometry and referene exitation (a) amplitudes (αref

mn ; m =
1, ...,M ; n = 1, ..., N) and (b) phases (βref

mn ; m = 1, ...,M ; n = 1, ..., N) and ()

the referene power pattern,

∣

∣AFref (θ, φ)
∣

∣

2
.

Table 5.2: OTM-MOP Numerial Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824 × 104) - Radiation performane (SLL, D, HPBWaz, HPBWel) of the

referene and optimized tiled solution seleted among the Pareto front of the

OTM-MOP simulation.

SLL D HPBWaz HPBWel

[dB℄ [dBi℄ [deg℄ [deg℄

Required −16.00 - 9.50 -

Reference −20.00 25.86 10.50 8.90
OTM −MOP −16.00 24.14 9.48 8.75
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Figure 5.9: OTM-MOP Numerial Assessment (M = 8, N = 5; d = 0.5λ;
T = 1.4824 × 104) - Evaluated ost funtions of the exhaustive OTM −MOP
optimization (green ross) onsidering as the �rst objetive the SLL and as

seond objetive the HPBWAZ of the tiled array power pattern. The red dots

are the solutions that belongs to the Pareto front.
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(a) (b)

()

Figure 5.10: OTM-MOP Numerial Assessment (Ntot = 40 d = 0.5λ) - Plots
of (a)(b) the tiling on�gurations and sub-array (a) amplitude and (b) phase

oe�ients, and () the power pattern of the seleted Pareto solution.
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Chapter 6

Conlusions and Final Remarks

In this thesis a set of innovative tiling methodologies for the design of tiled phased

arrays has been presented and numerially validated. The developed synthesis

proedures and algorithms allow to redue the number of ontrol points of an

array radiating mask-onstrained penil beams

1. without impating on the feasibility and omplexity of the array layout;

2. without a signi�ant degradation of the ahievable performanes, for small/moderate

sanning angles.

In Chapter 2 the phased array synthesis problem has been formulated, proposing

theoretially unfeasible and feasible optimization strategies, and fousing, with-

out loss of generality, to domino-like tiles. In Chapter 3 useful tiling theorems

and algorithms have been reported, fousing to the problem of tiling retangular

shaped apertures with retangular tiles, as well as a losed form formula for the

enumeration of the domino tiling solution spaes. Moreover, together with the

desription of an optimal domino tiling generation algorithm based on an e�ient

enoding of the lustering on�guration exploiting height funtion theory, two

main methodologies have been introdued. A �rst tehnique, namely the ETM,

has been developed to optimally synthesize low and medium size arrays through

a suitable ustomization of mathematial tiling theorems and algorithms. The

seond one, denoted as OTM and based on a ustomized GA-based optimization

strategy, has been derived to deal with large arrays.

The main advantages of the proposed design approah in its two di�erent imple-

mentations are:

• the retrieval of the global optimal solution for the problem of �nding the

omplete tiling a�ording the minimum SLL power pattern thanks to the

exploitation of the mathematial theory on the optimal overage of spae

surfaes through the enumerative approah (ETM );
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• the synthesis of large lustered arrays, omputationally una�ordable ei-

ther by the enumerative approah (i.e., the ETM ) or a standard stohasti

global optimization tehnique, thanks to the analyti de�nition of a set

of referene tiling arrangements and a ustomized GA-based algorithm al-

lowing an e�etive and e�ient exploration of the solution spae of the

omplete tiling on�gurations, whose ardinality rapidly grows with the

array size.

The numerial analysis has proved that:

• the SLLs of the solutions of the exhaustive list generated by the ETM

usually vary over a wide range of values, but only a limited sub-set of tiling

on�gurations gives performane lose to that of the referene array;

• the omplete tiling on�guration providing the minimum/optimum SLL

is generally non-unique within the list of ETM -generated solutions. This

allows the array designer to selet a SLL-optimal lustering that also �t

additional riteria suh as onstraints on other radiation features and/or

manufaturing harateristis;

• the OTM, as applied to synthesis problems still a�ordable with the ETM

(i.e., small/medium size array design), proved to be able to �nd the opti-

mal tiling (i.e., the same arrangement found with the ETM ) with a high

probability/suess-rate despite the evaluation of only a fration of the

whole set of T solutions;

• the OTM, when dealing with large-sale arrays (i.e., problems with a di-

mensionality intratable with the ETM ), is statistially robust sine the

onvergene solutions usually lie in a narrow range of SLL values loser and

loser to the referene one as the array size inreases;

• the OTM and the ETM are reliable tehniques for addressing pattern

syntheses requiring beam steering along a generi diretion (θ0, φ0).

In Chapter 5 the design of arbitrary shaped aperture arrays is addressed, on-

sidering a multi-objetive optimization approah for the omputation of Pareto-

optimal tiling on�gurations. The presented numerial results positively vali-

dates the possibility to handle orthogonal-polygon shaped arrays exploiting the

ETM and OTM methods of Chapter 3. The reported numerial results positively

validate the ETM-MOP and OTM-MOP methods, a�ording �exible design tools

for the optimization of small and large apertures, with the possibility to hoose

among a set of trade-o� solutions.

In Chapter 4 an additional lass of tiling optimization tehniques are pre-

sented aimed at solving a mask-onstrained synthesis problem. The mathing

between the tiled array power pattern and an user-de�ned power mask, de�ning
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ideal requirements for a referene non-lustered phased array, is used as ost fun-

tion of the domino tiling synthesis problem. The mask mathing optimization

allows to the user a �exible de�nition of the ideal pattern onstraints, however,

a perfet mathing with the mask is not always assured. The proposed design

methodology aims indeed at �nd solutions that are as lose as possible to a per-

fet ful�lment of the onstraints. Aording to the size of the array aperture,

three di�erent novel tehniques have been proposed, namely the ETM − CP ,
EM −ETM/CP and EM −OTM/CP , jointly optimizing the tiling on�gura-

tion and the amplitude and/or phase exitation oe�ients of the tiles modules.

CP -based synthesis methods have been exploited in order to: (i) synthesize opti-

mal sub-array weights, aording to the lustering on�guration of the tiled array;

(ii) provide optimal referene exitations oe�ients of the fully-populated ar-

ray. A set of representative numerial results, validate the proposed methods, for

small, medium and large array sizes, onsidering both symmetri and asymmetri

masks. Moreover the robustness of the optimized tiled array when steering the

main beam within the visible range, as well as the reliability assessment when

onsidering real radiating elements, through a full-wave simulations, has been

analyzed. The numerial assessment leads to the following outomes:

• the proposed exhaustive ETM − CP approah, has been e�etively used

for the optimization of very small arrays, but it turns out to be impratial

for small/medium arrays, due to the high omputational burden introdued

by the optimization of the tiles ontrol points;

• the small array design ase, when onsidering the symmetri mask, shows

that the ompromise EM − ETM/CP -based tehniques an potentially

onverge to the optimal ETM −CP solutions, with a perfet math of the

ideal design requirements. Even if a perfet mathing, annot be always

ensured (e.g. as shown by the design of small/medium sized arrays on-

sidering asymmetri masks) the reported results show that the proposed

EM − ETM/CP and EM − OTM/CP methods allows to improve the

mathing with the ideal mask-de�ned requirements, with respet to �bare�

EM −ETM and EM − OTM optimizations.

• the reliability of the proposed methodologies has been assessed by means

of full-wave simulations onsidering two di�erent path antenna elements,

positively ompared with respet to the �bare� EM − ETM and EM −
OTM solutions in terms of mask mathing of the radiated pattern obtained

using a ommerial full solver.

Future researh ativities, beyond the sope of the urrent work, will be aimed at

improving the omputational e�ieny of both (a) the ETM and (b) the OTM

to avoid the generation of tiling words orresponding to symmetri sub-array

on�gurations. This will allow a redution of the dimension of the solution spae

and, on the one hand, an extension of the range of appliability of the ETM to
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larger array sizes (a), on the other, an inrease of the number of samples of the

solution spae evaluated during the GA-evolution (b), thus a higher probability

to �nd the optimal lustering. Moreover, the whole synthesis methodology will

be extended to planar arrays that an be ompletely overed by tiles shapes

that di�ers from the domino-like tiles onsidered in this thesis, allowing the

synthesis of array having di�erent aperture shapes (e.g. exat hexagon, irular

shapes) and onsidering di�erent latties (e.g. triangular, hexagonal). Finally,

a omparative assessment of the performanes obtained with the the presented

approahes with those ahievable with alternative layouts, (e.g. sparse arrays

with a smaller number of elements) will be onsidered in the future researh.
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