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Abstra
t

In this work, the synthesis of 
lustered phased array antennas 
hara
terized

by an irregular organization of tiles modules is addressed. By exploiting tiling

theorems drawn from the mathemati
al theory, optimal and sub-optimal meth-

ods for the optimization of tiles arrangements and the 
orresponding ex
itations

minimizing user-de�ned 
ost fun
tions are presented. An enumerative approa
h

able to retrieve the optimal 
lustering providing the maximum aperture 
over-

age and the best radiation performan
e is proposed to deal with the synthesis

of low/medium-size arrays. Based on the same optimal theorems and still ex-

ploiting the algorithmi
 pro
edures at the basis of the enumerative approa
h, an

innovative s
hemata-based optimization method is introdu
ed for designing large

arrays, as well. A set of numeri
al examples and full-wave simulations, 
on
erned

with di�erent aperture sizes, is reported to assess the e�e
tiveness, the limita-

tions, and the ranges of 
omputationally-admissible appli
ability of the proposed

methods.
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Chapter 1

Introdu
tion

Phased array antennas are enabling te
hnologies for high radiation perfor-

man
e and fast beam s
anning, but they are still quite expensive solutions. It

is known that almost half of the 
ost of a phased array is due to the transmis-

sion/re
eption modules (TRM s) that 
ontrol the amplitude and the phase/time-

delay of ea
h radiating element to perform beam forming [1℄. To minimize the


osts, still yielding satisfa
tory radiation features, un
onventional ar
hite
tures

su
h as sub-arrayed/
lustered, thinned, or sparse arrays have been proposed

instead of fully-populated �ideal� solutions [2℄. Su
h sub-optimal/
ompromise

solutions are gaining more and more attention be
ause of the most re
ent mar-

ket requirements of s
anning and beam forming 
apabilities [2℄ in modern radars

and 
ommuni
ation systems. In su
h a framework, 
lustered phased arrays im-

plement low-
ost ar
hite
tures by 
omposing the array aperture with multiple

elementary tiles of two or more radiating elements, ea
h tile being fed by a single

TRM [3℄, still keeping good radiation e�
ien
ies. Besides the smaller number of

TRM s with respe
t to fully-populated ar
hite
tures, a further redu
tion of the


osts 
an be yielded if the sub-arrays have simple and similar shapes suitable

for a modular assembling of the radiating system as well as the produ
tion of

only few types of tiles [4℄. Indeed modularity is advantageous in phased array

antenna manufa
turing sin
e it allows the implementation of light and low pro�le

stru
tures [4℄, an easy maintenan
e, and integrated 
ooling systems [5℄.

Unfortunately, despite those positive features and be
ause of the use of sub-

array TRM instead of one per array element [6℄, a key issue to be fa
ed is the

presen
e of undesired high sidelobes. As a matter of fa
t, when redu
ing the ar-


hite
tural 
omplexity of the array stru
ture by simply partitioning its aperture

into re
tangular sub-arrays of equal shapes and orientations, the radiated power

pattern turns out to be 
hara
terized by undesired grating lobes whose number

unavoidably in
reases widening the operational bandwidth as well as extending

the s
anning angle [7℄-[9℄. To 
ope with this drawba
k, aperiodi
 sub-array ar-

rangements [10℄-[32℄ or tiles having irregular shapes and/or irregularly lo
ated

within the antenna aperture [19℄-[31℄ have been proposed. The advantages of

1



aperiodi
 tiling arrangements against grating lobes have been �rstly introdu
ed

in [15℄[16℄ for the design of aperiodi
 array layouts. Su

essively, in [17℄[18℄ irreg-

ular polyomino 
lustering have been investigated, while in [19℄ and [20℄ Penrose

and Pinwheel tilings have been 
onsidered, respe
tively, showing that su
h ape-

riodi
 
lustering 
on�gurations break the periodi
ity of the quantization and,


onsequently, redu
e the level of the undesired sidelobes. Nevertheless no op-

timization strategies of the tiling 
on�guration and of the sub-array weights

have been proposed in these works. For this reason, the phased array parti-

tioning problem has been widely addressed in the re
ent years, both for linear

[21℄-[28℄ and planar [29℄-[32℄ geometries. Theoreti
al optimal strategies for the


omputation of the sub-array weights have been exploited, su
h as the analyti


ex
itations mat
hing (EM ) te
hnique [21℄[23℄[30℄ as well as hybrid methodologies


ombining analyti
 [28℄ or evolutionary [22℄ algorithms with 
onvex programming

(CP) optimizers. As regards the optimization of the 
lustering layout, several

e�
ient lo
al-sear
h te
hniques have then been developed, for instan
e the Con-

tiguous Partition Method (CPM ) [23℄[29℄[32℄, the Weighted K-means Cluster-

ing Method (WKCM ) [30℄, Geneti
 Algorithm (GA)-based approa
hes [24℄ and

multi-obje
tive strategies [25℄, that even if they guarantee a fast 
onvergen
e,

they don't allow to a-priori �x the size/shape of the 
lusters. A

ordingly, ran-

dom sear
h based s
hemes [12℄[27℄, di
tionary-based Compressive Sensing (CS )

te
hniques [26℄ as well as GA-based methods [31℄, have been re
ently proposed for

the optimization of 
lustering 
on�gurations with modularity 
onstraints. Fo
us-

ing on planar array developed methods, in [31℄ the position within the aperture

and the orientation of �xed-sized polyomino-shaped tiles are optimized in order

to minimize the side-lobe level (SLL) of the radiated power pattern. Anyway

the exa
t partitioning of the aperture region is not assured be
ause the tiles are

allowed to partially 
over the boundary of the region, 
onsequently the use of

additional and not expe
ted tiles shapes is ne
essary in order to �ll the gaps

at the aperture borders, and even if the maximization of the dire
tivity (D) is

enfor
ed in the 
ost fun
tion, a 
omplete 
overage of the entire aperture is not

always ensured.

Although e�
ient 
lustering methods are available, it is worth pointing out

that no optimal-design methodologies for array tiling (namely, the full 
overage

of the array aperture for a given tile shape/geometry) exist till now sin
e array


lustering (espe
ially for large arrays) is mathemati
ally a very 
omplex problem

[33℄-[35℄. On the other hand, optimal surfa
e tiling theorems [36℄-[47℄ and algo-

rithms [48℄-[53℄ have been derived in other �elds of s
ien
e (e.g., mathemati
s)

for simple tile shapes su
h as dominoes [48℄-[55℄, bars/planks [56℄[57℄, multiple

re
tangular tiles [58℄-[62℄, as well as diamond shapes [63℄-[66℄ and more 
omplex

�gures, as instan
e L-shaped tiles [67℄, T-tetrominoes tiles [68℄-[74℄, ribbon tiles

[75℄-[77℄ and general polyominoes [78℄-[85℄. Among these, useful rules 
an be

pro�tably exploited for array design, as well. Indeed, in some 
ases they 
ould

allow one to a-priori state (i) whether an area (i.e., the aperture in array 
lus-
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CHAPTER 1. INTRODUCTION

tering) is fully tilable with the tile shape at hand, (ii) what is the extension of

the un
overed area when (i) does not hold true, and (iii) the total number of

admissible tiling 
on�gurations. Moreover, mathemati
ally-derived tiling algo-

rithms usually permit - besides the de�nition of the optimal surfa
e 
overage -

the iterative generation of all possible subarraying 
on�gurations as well as the

analyti
al de�nition of a sub-set of referen
e 
lustering solutions.

In this thesis the optimal (low-medium size arrays) or best-optimized (large

size arrays) design of irregular sub-arrayed re
tangular planar phased arrays,


omposed by domino-like tiles (i.e. re
tangular 1×2 and 2×1 modules), and ra-

diating a pen
il beam whi
h is as 
lose as possible to a referen
e one, is addressed

by exploiting some available mathemati
al literature 
on
erned with the optimal


overage of the aperture. First, an enumerative method (ETM ) based on the

optimal surfa
e-tiling algorithms introdu
ed in [48℄[53℄ is proposed to retrieve the

optimal array 
overage providing the best radiation performan
e in low/medium

size arrays. Sin
e the number of admissible 
lustering rapidly grows with the

array size and the enumerative pro
edure is no more 
omputationally possible

for large arrangements, an innovative optimization method (OTM ) based on an

analyti
ally s
hemata-driven version of the GA is also introdu
ed. In su
h an

implementation, the GA pro�tably bene�ts of the knowledge of a set of referen
e

solutions/individuals 
hara
terized by a good geneti
 
ontent, namely s
hemata

[86℄[87℄ with high �tness-values/radiation-performan
e, and de�ned a

ording

to the tiling theorems/algorithms in [48℄[53℄. Moreover, the synthesis of tiled

phased arrays has been formulated as a multi-obje
tive optimization problem

(MOP) in order to deals with multiple beam pattern requirements, also ad-

dressing the 
ase of arbitrarily shaped arrays (i.e. not only square/re
tangular

shaped apertures). Finally a mask-
onstrained domino-tiling synthesis method

is presented, in whi
h, starting from a set of ideal requirements on the array ra-

diation performan
es de�ned by a power mask, aims at �nding the optimal tiling


on�guration minimizing the distan
e of the tiled array power pattern with the

mask, while maximizing the dire
tivity of the radiated pattern. A

ordingly

three new optimization te
hniques, namely the ETM − CP , EM − ETM/CP ,
and EM − OTM/CP methods, are proposed, positively 
ompared with the

ETM and OTM te
hniques, whi
h unavoidably fail when dealing with a mask

mat
hing synthesis problem. With respe
t to the state-of-art 
lustering/tiling

methodologies, this thesis 
overs the following novel 
ontributions:

1. the domino tiling synthesis problem has been formulated, exploiting math-

emati
al surfa
e-tiling theorems providing 
onditions for the existen
e of

the optimal array 
lustering (i.e., the full 
overage of the antenna array

aperture) as well as on the total number of di�erent optimal sub-array


on�gurations. A

ordingly, the possibility to 
onverge towards optimal

solutions is dis
ussed, proposing theoreti
ally unfeasible and feasible opti-

mization strategies for the problem at hand;
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2. an enumerative, yet optimal, tiling method for determining the best sub-

array 
on�guration/s of low/medium size re
tangular arrays guaranteeing

the maximum performan
e for a given array aperture and tile shape;

3. a 
ustomized GA-based optimization tool for an e�e
tive exploration of the

wide solution spa
e of 
lustered 
on�gurations of large re
tangular arrays

thanks to a suitable exploitation of analyti
ally-de�ned s
hemata blo
ks;

4. a novel synthesis method addressing the mask-
onstrained synthesis prob-

lem by jointly 
ombining enumerative/GA-based approa
hes with optimal


onvex strategies, for the optimization of the tiling 
on�guration and of

the tiles ex
itations 
oe�
ients.

Thesis outline

The thesis is organized as follows. Firstly, the phased array tiling problem is

mathemati
ally formulated in Chapter 2. Then, the analyti
al/GA-based tiling

methodologies for low/medium and large array sizes are des
ribed in Chapter 3.

The mask-
onstrained tiling synthesis method is reported in Chapter 4, while

the multi-obje
tive optimization problem of orthogonal polygon shaped arrays,

has been addressed in Chapter 5. Finally the 
on
lusions are drawn in Chapter

6.
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Chapter 2

Phased Array Tiling Problem

In this Chapter the mathemati
al formulation for the analysis of 
lustered pla-

nar phased arrays is reported. More in detail the formulation of the array fa
tor

when 
onsidering a sub-arrayed ar
hite
ture is des
ribed, fo
using on re
tan-

gular shaped aperture and domino-like sub-arrays. Moreover the phased array

tiling synthesis problem is formulated, providing theoreti
al optimum and sub-

optimum optimization strategies for the 
omputation of the 
lustering 
on�gu-

ration and of the amplitude and phase sub-array 
oe�
ients, in order to radiate

a pen
il beam whi
h is as 
lose as possible to a referen
e one.

5



2.1. MATHEMATICAL FORMULATION

2.1 Mathemati
al Formulation

Let us 
onsider a planar phased array of radiating elements disposed on a re
t-

angular latti
e with inter-element spa
ing dx and dy along the two surfa
e axes

[Fig. 2.1(a)℄. The ele
tromagneti
 (EM) �eld generated in far-�eld by su
h

an arrangement is expressed as E (θ, φ) = f̂ (θ, φ)AF (θ, φ) where f̂ (θ, φ) is the
embedded or a
tive element pattern [3℄[6℄, here assumed identi
al for all antennas

1

, and AF (θ, φ) the array fa
tor equal to

AF (θ, φ) =
M
∑

m=1

N
∑

n=1

Imne
jk(xm sin θ cosφ+yn sin θ sinφ)

(2.1)

being Imn the 
omplex (i.e., amplitude and phase) ex
itation of the (m,n)-th
element (m = 1, ...,M ; n = 1, ..., N), k = 2π

λ
the wavenumber, with λ the working

wavelength, (xm, yn) the 
entroid of the (m,n)-th array element, and (θ, φ) the
polar variables, with the polar axis assumed perpendi
ular to the array plane.

Moreover, let the 
ontrol points of the beam-forming network (BFN), namely

the ampli�ers and the phase shifters or time-delay units, all lo
ated at the sub-

array level [Fig. 2.1(b)℄. Then, the array weights turn out to be a fun
tion of

the sub-array 
oe�
ients as follows

Imn = Icmn
= αcmn

ejβcmn

m = 1, ...,M ; n = 1, ..., N ; cmn ∈ [1, Q]
(2.2)

where cmnare the elements of an M × N matrix C(whose elements are ordered

down-up instead of an usual up-down ordering), assuming Q integer values, Q
(Q ≤ M × N) being the number of sub-arrays/tiles 
omposing the array and


overing totally or partially its surfa
e, while αcmn
and βcmn

are the cmn-th (cmn ∈
[1, Q]) sub-array amplitude and phase 
oe�
ients, respe
tively [Fig. 2.2(a)℄. The

ve
tor of integer indexes c = {Cp = cmn ; p = 1, ...,M × N , p = (m,n), m =
1, ...,M , n = 1, ..., N}, namely the sub-array aggregation, univo
ally des
ribes

a generi
 array tiling 
on�guration that is the grouping of the M × N array

elements into Q sub-arrays, σ = {σcmn
; cmn = 1, ..., Q}[Fig. 2.2(b)℄, and it is

built from the matrix C 
onsidering a raster order, starting from the lower-left

array element,(m,n) = (1, 1), to the lower right element (m,n) = (M, 1), and
from the lower row of elements, (m,n) = (m, 1), to the upper row, (m,n) =
(m,N).

1

This assumption will not a�e
t the optimization methodologies proposed in the following


hapters, in whi
h isotropi
 radiators are 
onsidered. Only the reliability assessment reported

in Se
. 3.4.1.2 
onsiders, for the sake of simpli
ity, the embedded element pattern of a real

radiator surrounded by two rings of elements as an a

eptable approximation for all the array

antennas (i.e. when the size of the array is reasonably large).
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CHAPTER 2. PHASED ARRAY TILING PROBLEM
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Figure 2.1: Sket
h of the fully-populated array ar
hite
ture (a) and of the sub-

array ar
hite
ture (b).
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2.2. PROBLEM STATEMENT

2.2 Problem Statement

By supposing the use of two domino-like sub-arrays of two-elements

2

[i.e., σcmn
=

σV
or σcmn

= σH
being σV =

{

(xm, yn) ∪
(

xm, y(n±1)

)}

and σH = {(xm, yn)
∪
(

x(m±1), yn
)}

- Fig. 2.2(a)℄, the unknown 
lustered 
on�guration, c, and the


orresponding values of the sub-array amplitudes, α = {αcmn
; cmn = 1, ..., Q},

and phases, β = {βcmn
; cmn = 1, ..., Q}, are determined by solving the following

synthesis problem:

Phased Array Tiling Synthesis Problem - given an array of M × N
isotropi
 elements

3

, positioned over a re
tangular latti
e, and two

domino-like tiles

(

σV , σH
)

, �nd the optimal tiling/
lustering 
on�g-

uration c
opt

and the 
orresponding sub-array weights αopt
and βopt

,

su
h that the radiated pattern �ts user-de�ned requirements Φ (c;α,β),
with the man lobe steered toward (θ0, φ0).

The global optimum of the array tiling synthesis problem 
an be theoreti
ally

rea
hed by means of a full-global optimization approa
h, by jointly optimize the

tiling 
on�guration c and the tiles ex
itations 
oe�
ients α and β as

(

c
opt;αopt,βopt

)

= arg

[

min
c;α,β
{Φ (c;α,β)}

]

(2.3)

It is 
lear that (2.3) turns out to be 
omputationally unfeasible in most of the


ases: it is ne
essary to set 2Q real values, for the amplitude and phase 
oe�-


ients, and M×N integer numbers for the 
oding of the 
lustering 
on�guration,

whi
h generate an extremely wide solution spa
e even for very small arrays. This

issues 
an be solved if the subset T = {ct, t = 1, ..., T}, in
luding all the existing
tilings of the M×N array, is known, by solving the following nested optimization

(

c
opt;αopt,βopt

)

= arg

[

min
ct

{

Φ
(

ct;α
opt
t ,βopt

t

)}

]

(2.4)

(

α
opt
t ,βopt

t

)

= arg

[

min
αt,βt

{Φ (αt,βt |ct )}

]

(2.5)

In order to solve su
h a synthesis problem, the lo
ations and the orientations of

the elementary domino shapes must be properly optimized to yield the maximum

2

Ea
h element 
an be either a radiating element or an aggregation (building blo
k) of

radiating elements. Without loss of generality and hereinafter, we will 
onsider the domino-

like sub-array as 
omposed by two elementary radiating elements.

3

The hypothesis of isotropi
 elements instead of real radiators as formulated in Se
. 2.1, is

made for the sake of simpli
ity. The in�uen
e of the element fa
tor will be analyzed in Se
.

3.4.1 and Se
. 4.4.4, for a sub-set of the optimized solutions reported in the respe
tive se
tions.

8



CHAPTER 2. PHASED ARRAY TILING PROBLEM

(a)

(b)

Figure 2.2: Sket
h of the array aperture tiling (a)(b) when c = {1, 1, 2, 3, 3, 4,
5, 5, 2, 6, 7, 4, 8, 9, 9, 6, 7, 10, 8, 11, 11, 12, 12, 10} and σ = {σH

, σV
, σH

, σV
,

σH
, σV

, σV
, σV

, σH
, σV

, σH
, σH

}, being M = 6, N = 4, and Q = 12.

(total) 
overage of the array aperture with an irregular sub-array arrangement

for minimizing the level of the undesired �quantization lobes� [6℄. Inspired by

optimal tiling theorems and algorithms available in the s
ienti�
 literature, two

novel design methods will be presented in the following 
hapters to deal with

small and large size arrays, respe
tively.
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Chapter 3

Array Tiling Methodologies

In this Chapter two methodologies for the optimization of re
tangular regions

tiled by domino-like tiles are presented. By exploiting optimal analyti
 tiling

algorithms, an enumerative-based approa
h able to sequentially generate all the

existing 
omplete tilings, is proposed for the optimization of domino-tiled phased

arrays. When the dimension of the tiling solutions spa
e is too large for an ex-

haustive sear
h, an optimization-based methodology exploiting a 
ustomized GA
optimizer is used for the synthesis of large tiled phased arrays. The numeri
al as-

sessment validates the proposed approa
hes, 
onsidering small and medium/large

apertures, also 
ompared to state-of-art 
lustered solutions. Finally, the relia-

bility assessment of the optimized solutions when 
onsidering real radiating ele-

ments, using a 
ommer
ial full-wave simulator, is presented and dis
ussed.
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3.1. TILING THEORY AND THEOREMS

3.1 Tiling Theory and Theorems

Given a bounded region of the plane and a set of tile shapes, 
an we 
over


ompletely the region with the tiles? And in how many ways? This se
tion

is devoted to answer to these questions, exploiting the mathemati
al literature

devoted at solving su
h a di�
ult problem. Useful theorems for the tilability

of �nite regions, as well as 
losed form formulas for the 
omputation of the

number of existing tilings are reported, with a fo
us on re
tangular regions tiled

by re
tangular tiles.

Let us 
onsider a set of S tiles shapes σ = {σs; s = 1, ..., S} , and a bounded

region A de�ned over a given latti
e. We 
an say that σ tiles A (equivalently,

that A is tilable by σ) if A 
an be 
overed with translates of tiles σ ∈ σ su
h

that ea
h latti
e 
ell in A is 
overed by exa
tly one tile (i.e. overlapping is not

admissible). We 
an de�ne two main tiling problems [40℄:

• Plane Tiling Problem

Given a �nite set σ of tiles, does σ tile the whole (i.e. in�nite) latti
e?

• Finite Tiling Problem

Given a region A and a �nite set σ of tile, does σ tiles A?

The only regular polygons able to tile the plane are the square, the equilateral

triangle and the hexagon [40℄. These three tiles de�nes the three regular latti
es

in whi
h the majority of tiling problems are de�ned. If for example we try to

tile the plane with a single pentagonal shaped tile, for sure we end to leave

some un
overed spa
e in between the tiles, be
ause the plane is not tilable by

pentagons. It is well known in the literature that the Plane Tiling Problem is

unde
idable. The unde
idability of tiling the plane has been proved by R. Berger

in 1966 [33℄ in 
ase of dominoes tiles, further dis
ussed by R. M. Robinson in

1971 [34℄ for di�erent shaped tiles. Moreover the unde
idability of tiling the plane

with polyominoes has been also treated by Golomb in [37℄ redu
ing the Plane

Tiling Problem to the Wang Tile Problem [35℄. The aim of this thesis is to exploit

tiling problems for the design of antenna arrays whi
h is an instan
e of the Finite

Tiling Problem and, like for the Plane Tiling Problem it is usually a di�
ult task

[40℄-[45℄. Even the 
ounting of the number of existing tilings for medium/large

apertures is generally an almost 
omputationally intra
table/impossible task.

In order to solve a Finite Tiling Problem we need to answer to the following

questions:

Q1 Given a tile shape, σ, is the region 
ompletely tilable? If not, what is the

extension of the un
overed area?

Q2 Given a tile shape, σ, how many �
omplete� tiling 
on�gurations (i.e., tiling


on�gurations fully 
overing the whole region) exist?

12



CHAPTER 3. ARRAY TILING METHODOLOGIES

In the following, some theoreti
al insights on these two fundamental questions

will be given and, exploited in the next se
tions for de�ning suitable 
lustering

methods for dealing with the synthesis of re
tangular and fully tilable apertures

with domino tiles.

3.1.1 Covering Theorem: �Is the region tilable? �

Answers to question Q1 are reported in the following, exploiting tiling theorems

when 
onsidering re
tangular regions and re
tangular tiles, fo
using on the 
ase

of domino-like tiles is treated.

Let us 
onsider a region A dis
retized into M × N pixels, and re
tangular

shaped tiles of the 
lass B × 1 and 1 × B. In 1969 Klarner derived a useful


ondition in order to solve the respe
tive tilability 
ondition [42℄ :

T1 : An M × N re
tangle A 
an be tiled by σ = {B × 1, 1× B} tiles if and
only if B divides M or N .

The theorem is then generalized for the more wide 
lass of re
tangular tiles B×D
and B ×D, leading to the following theorem [42℄:

T2 : An M × N re
tangle A 
an be tiled by σ = {B ×D, D × B} tiles if and
only if B divides M or N , D divides M or N , and if BD divides one side of

A, then the other side 
an be expressed in the form Bx+Dy with x, y ≥ 0.

In 
ase the re
tangle A is not tilable by the 
onsidered re
tangular tiles, it is

interesting to know how many pixels of A are left un
overed. We will refer to

the un
overed pixel as wasted area. In 1979 Barnes, starting from the out
omes

of the seminal work on re
tangles pa
king [44℄ derived analyti
 relationships

between the size of the region and of the tiles, with the wasted area, reported in

the following theorem [44℄[45℄:

T3 : Consider an M ×N re
tangle A tiled with σ {B × 1, 1×B} tiles, and let

M̂ ≡M modB (3.1)

N̂ ≡ N modB (3.2)

where 0 ≤ M̂ < M and 0 ≤ N̂ < N , and mod being the modulo operation.

Then the wasted area W in the best possible pa
king (i.e. a not 
omplete

tiling of A) with the tiles σ is given by

W =

{

M̂N̂ if M̂ + N̂ ≤ B

(B − M̂)(B − N̂) if M̂ + N̂ ≥ B
(3.3)

When 
onsidering domino-like tiles (i.e. σ = {2× 1, 1× 2}) the tilability 
on-

dition and the wasted area estimation are simpli�ed in the following theorem:

13



3.1. TILING THEORY AND THEOREMS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2  4  6  8  10  12  14  16

N
um

be
r 

0f
 ti

lin
gs

, 1
0l

og
(T

)

N

M=N
M=2N
M=3N

Figure 3.1: Number of 
omplete domino tiling 
on�gurations, T , for square and
re
tangular M ×N regions.

T4 : To 
he
k whether A may be fully 
overed with domino tiles, it is

su�
ient that one side of the re
tangle A (either M or N) 
ontains an

even number of pixels [42℄. Otherwise (i.e., only when both M and N are

odd), the empty area extends to W = 1 square pixel [44℄[45℄.

3.1.2 Cardinality Theorem: �How many 
omplete tiling


on�gurations? �

In order to answers to question Q2, theorems and formulas taken from the mathe-

mati
al literature are reported in the following. In parti
ular the following 
losed

form formula, will be very useful for solving the tiling problems of the following


hapters, in whi
h re
tangular areas tiled by domino-like tiles are 
onsidered.

The number of tiling 
on�gurations that fully 
over a surfa
e A of dimensions

M ×N square pixels with domino tiles is equal to [46℄

T = 2
MN
2

∏M
m=1

∏N
n=1

[

cos2
(

πm
M+1

)

+ cos2
(

πn
N+1

)]1/4
(3.4)

To give an indi
ation on the dimension of the solution spa
e of the tiling problem

at hand (i.e., the total number of 
omplete tiling arrangements) Fig. 3.1 shows

the values of T as fun
tion of the re
tangle edge N for square (i.e. M = N)

and re
tangular (i.e M = 2N and M = 3N) areas. Table 3.1 reports the exa
t

numbers obtained using (3.4).
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Table 3.1: Number of 
omplete domino tiling 
on�gurations, T , for di�erent sizes
of square and re
tangular M ×N regions.

N T

N = M N = 2M N = 3M

6 6.728× 103 1.0692× 108 1.7657× 1012

8 1.2989× 107 5.4006× 1014 2.3334× 1022

10 2.5858× 1011 2.8942× 1023 3.3658× 1035

16 2.4449× 1030 6.3623× 1061 1.7204× 1093

3.2 Height Fun
tion based En
oding for Domino

Tiling

In 
ase the aperture A is totally tilable and the exhaustive analysis of the spa
e of


omplete sub-arrays arrangements is 
omputationally-a�ordable, an enumerative

approa
h is proposed by properly 
ustomizing the analyti
 te
hnique in [53℄ to the

synthesis of sub-arrayed phased arrays. The method is based on the exploitation

of the height fun
tion [48℄ that allows one to univo
ally identify a generi
 t-th
tiling solution, c

(t)
(t = 1, ..., T ), namely the organization of verti
al, σV

, and

horizontal, σH
, domino tiles

1

within the array aperture A [Fig. 2.2(b)℄.

(A) Height Fun
tion Computation

In order to de�ne the height fun
tion h (·) and its values, let us �rst des
ribe

the array aperture A, 
omposed by M ×N pixels, in terms of its pixel-verti
es,

{vmn; m = 0, ...,M ; n = 0, ..., N}, and pixel-edges, {emn→m(n±1), emn→(m±1)n;

m = 0, ...,M − 1; n = 0, ..., N − 1} (Fig. 3.2). Indeed, the height fun
tion h (·)
is de�ned on the pixel-verti
es [i.e., hmn = h (vmn), m = 0, ...,M ; n = 0, ..., N ℄,

while the h-values are determined by 
onsidering the pixel-edges. Towards this

end, the aperture pixels are 
olored a

ording to a bla
k, ζmn = −1, and white,

ζmn = 1, 
he
kerboard pattern, starting with an arbitrary 
olor for the �rst pixel

ζ11 = ±1 (e.g., ζ11 = 1 in Figs. 3.2-3.3), and the edges of white/bla
k pixels are

oriented 
lo
kwise/
ounter
lo
kwise (Fig. 3.2). Then, the following pro
edure

(Algorithm A1 ) is used:

• A1.1 Computation of the h-value of the boundary verti
es of A (v
(t)
ext ={v

(t)
mn;

[m = {0, M}; n = 0, ..., N ℄

⋃

[n = {0, N}; m = 0, ...,M ℄}; v
(t)
ext ∈ ∂A be-

ing ∂A the 
ontour/boundary of A) - Regardless of the t-th (t = 1, ..., T )

1

In 
ase of non-
ir
ularly polarized radiators and to �t the required state-of-polarization

(e.g., linear verti
al/horizontal polarization) of the array, two tiles (σV
and σH

) equally-

polarized must be built although with the same (re
tangular) shape. Otherwise, only a re
t-

angular domino tile is enough.
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...
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...

...
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vMN
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e00→10 e(m−1)0→m0

e00→01

vmn

vm(n−1)v(m−1)(n−1)

em(n−1)→mn

e(m−1)(n−1)→m(n−1)

e(m−1)(n−1)→(m−1)n

vm0

e0(n−1)→0n

v(m−1)n

e(m−1)n→mn

y

xxm

yn

Figure 3.2: Bla
k-and-white 
he
kerboard representation of the array aper-

ture A with pixel verti
es vmn, m = 0, ...,M , n = 0, ..., N and edges

emn→m(n±1), emn→(m±1)n, m = 0, ...,M − 1, n = 0, ..., N − 1.
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tiling 
on�guration, c
(t)
, set the value of the height fun
tion of the vertex

v00 ∈ v
(t)
ext to h00 = h (v00) = 0 (Fig. 3.3). Then, starting from the pixel-

vertex v00 and moving along ∂A 
lo
kwise, the value of the height fun
tion

is in
reased/de
reased of one unit from one vertex to the su

essive one if

these latter belong to the edge of a white/bla
k pixel

{

h(m−1)n

⌋

ζmn=±1
, h(m+1)n

⌋

ζmn=±1
,

hm(n−1)

⌋

ζmn=±1
, hm(n+1)

⌋

ζmn=±1

}

=

= hmn⌋ζmn=±1 ± 1.

(3.5)

It is worth pointing out that su
h a step is 
arried out only on
e and

at the beginning of the synthesis pro
edure independently on the tiling

(∀ t ∈ [1, T ]) at hand;

• A1.2 Computation of the h-value of the internal verti
es of A (v
(t)
int ={v

(t)
mn;

m = 1, ...,M − 1; n = 1, ..., N − 1}) - With referen
e to a 
lustered


on�guration c
(t)

of tile shapes verti
ally or horizontally oriented (e.g.,

Fig. 3.4), sele
t an internal vertex v
(t)
mn ∈ v

(t)
int with at least one neigh-

boring vertex, denoted as v
(t)
pg ∈ v

(t)
mn [v

(t)
mn = {v

(t)
(m−1)n, v

(t)
(m+1)n, v

(t)
m(n−1),

v
(t)
m(n+1)} being the set of verti
es neighbor to v

(t)
mn℄, having the height fun
-

tion value, h
(t)
pg = h

(

v
(t)
pg

)

already set (i.e., v
(t)
pg = v

(t)
(m−1)n or v

(t)
pg = v

(t)
(m+1)n

or v
(t)
pg = v

(t)
m(n−1) [e.g., Fig. 3.4(b) and Fig. 3.4(d)℄ or v

(t)
pg = v

(t)
m(n+1) [e.g.,

Fig. 3.4(a) and Fig. 3.4(
)℄). Then, determine the unknown value h
(t)
mn

a

ording to one of the following �tiling rules�:

� if the edge emn→pg is dire
ted from v
(t)
mn to v

(t)
pg and it belongs to the


ontour of a tile of c
(t)

[Fig. 3.4(a)℄ then h
(t)
mn = h

(t)
pg − 1;

� if the edge emn→pg is dire
ted from v
(t)
pg to v

(t)
mn and it belongs to the


ontour of a tile of c
(t)

[Fig. 3.4(b)℄ then h
(t)
mn = h

(t)
pg + 1;

� if the edge emn→pg is dire
ted from v
(t)
pg to v

(t)
mn and it does not belong

to the 
ontour of a tile of c
(t)

[Fig. 3.4(
)℄ then h
(t)
mn = h

(t)
pg − 3;

� if the edge emn→pg is dire
ted from v
(t)
mn to v

(t)
pg and it does not belong

to the 
ontour of a tile of c
(t)

[Fig. 3.4(d)℄ then h
(t)
mn = h

(t)
pg + 3;

Iterate the pro
ess for all the internal verti
es, v
(t)
mn ∈ v

(t)
int, m = 1, ...,M − 1;

n = 1, ..., N − 1 [Fig. 3.4(e)℄.

(B) Exhaustive Tiling Generation
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Figure 3.3: Enumerative Tiling Method (M = 4, N = 3) - Illustrative s
heme

for the 
omputation and arising values of the height fun
tion of the boundary

verti
es v
(t)
ext ∈ ∂A.

Starting from the de�nition of the height fun
tion, the analyti
 pro
edure for gen-

erating the full-set of T 
omplete tilings is based on the de�nition of a sequen
e of

tiling words, w
(t) =

{

w
(t)
l : l = 1, ..., L

}

(t = 1, ..., T ), ea
h one 
orresponding to

a sub-array 
on�guration, c
(t)
, and 
omposed by L = (M − 1)× (N − 1) integer

entries (also 
alled letters) whose values only

2

depend on the height fun
tion at

the internal verti
es, v
(t)
int, as follows

w
(t)
l =

h
(t)
mn − h

(1)
mn

4
, l = 1, ..., L (3.6)

where l , m+ (n− 1)× (M − 1), h
(t)
mn and h

(1)
mn being the height fun
tion value

of the (m,n)-th (m = 1, ...,M − 1; n = 1, ..., N − 1) internal vertex of the t-th
entry and of the �rst one (i.e., c

(1)
also indi
ated as minimal tiling [48℄) of the

T -size list of 
omplete 
on�gurations, respe
tively.

The minimal tiling is generated only on
e by means of the following algorithmi


sequen
e (Algorithm B1 ):

• B1.1 Vertex sele
tion - Sele
t the vertex of ∂A with maximum height value

2

On
e again it is worth remembering that the values of the height fun
tion in 
orresponden
e

with the boundary verti
es, v
(t)
ext
∈ ∂A, only depend on the shape of the array aperture A.

Therefore, they are the same for a �xed surfa
e A whatever the 
omplete tiling 
on�guration

at hand.
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(i.e., v
(1)
mn = arg

{

maxj=0,...,M
k=0,...,N

[

h
(

v
(t)
jk

)

; v
(t)
jk ∈ v

(t)
ext

]}

). If there are two or

more verti
es with the same height fun
tion, arbitrarily sele
t one of them;

• B1.2 Domino tile pla
ement - Pla
e a verti
al, σV
, or horizontal, σH

,

domino tile so that the two boundary verti
es adja
ent to v
(1)
mn (i.e., v

(1)
(m±1)n ∈

v
(1)
ext [e.g., Fig. 3.5(a)℄ or v

(1)
m(n±1) ∈ v

(1)
ext) are also verti
es of the same domino

tile;

• B1.3 Aperture boundary and h-value update - Complete the 
omputation

of the h-values of the verti
es of the domino tile pla
ed in A at the step

B1.2, by determining the height fun
tion in 
orresponden
e of the internal

verti
es a

ording to the rules de�ned in A1.2 of the �Algorithm A1 � (Fig.

3.4). By subtra
ting the tile area σV/H
from the original surfa
e of the

aperture A, update the aperture boundary, ∂A← ∂
(

A− σV/H
)

, as well as

the extension of the aperture, A←
(

A− σV/H
)

[Fig. 3.5(b)℄;

• B1.4 Stopping 
riterion - Stop if the aperture is totally 
overed and the

fun
tion h is 
omputed for all (internal) verti
es [Fig. 3.5(
)℄. Otherwise,

go to the �B1.1 Vertex sele
tion� step.

It is worth noti
ing that the word �
oding� su
h a minimal tiling, c
(1)
, is w

(1) = 0

sin
e all its letters are equal to zero (i.e., w
(1)
l = 0, ∀l) being h

(t)
l = h

(1)
l , l = 1, ..., L

in (3.6).

The last tiling solution c
(T )

, 
alled maximal tiling [48℄, is also analyti
ally de-

termined by still applying the Algorithm B1, but sele
ting the vertex with the

minimum height fun
tion value on ∂A in �B1.1 Vertex sele
tion�.

As for the generation of the remaining 
omplete tiling 
on�gurations (t = 2, ..., T−

1), on
e the h-values of the minimal tiling have been 
omputed, {h
(1)
l , l =

1, ..., L}, a

ording to the �Algorithm B1 �, they are exhaustively generated as

follows (Algorithm B2 ):

• B2.1 Tiling word update - S
an the tiling word w
(t−1)

from the last letter

(l = L) to the �rst one (l = 1) and stop when h
(t−1)
r−1 > h

(t−1)
r , r ∈ [2, L]

[e.g., r = L - Fig. 3.5(
)℄ or r = 1. Set the �rst r letters of the new tiling

word w
(t)

as follows

w
(t)
l =

{

w
(t−1)
l l = 1, ..., r − 1

w
(t−1)
l + 1 l = r

; (3.7)

• B2.2 Height fun
tion 
omputation - Compute the values of the height

fun
tion of the �rst r internal verti
es, {v
(t)
mn ∈ v

(t)
int; n =

⌊

l−1
M−1

⌋

+ 1;
m = l − (n− 1) × (M − 1); l = 1, ..., r}, ⌊·⌋ being the �oor fun
tion,


orresponding to the letters w
(t)
l , l = 1, ..., r a

ording to the rule

h(t)
mn = 4w

(t)
l + h(1)

mn; (3.8)
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Figure 3.4: Enumerative Tiling Method (M = 4, N = 3) - Illustrative s
heme

for the 
omputation (a)(b)(
)(d) and (e) values of the height fun
tion of the

internal verti
es v
(t)
int.
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Figure 3.5: Enumerative Tiling Method (M = 4, N = 3) - Illustrative s
heme for

the de�nition of the minimal tiling 
on�guration and for the 
omputation of the

height fun
tion values: (a) pla
ement of a new domino tile; (b) 
omputation of

the height fun
tion of the new verti
es and aperture/aperture-boundary update;

(
) values of the height fun
tion of the minimal tiling.
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• B2.3 Feasibility Che
k - Go to �B2.4 - New tiling generation� if the 
ondi-

tion

∣

∣h(t)
mn − h(t)

pg

∣

∣ = {1, 3} (3.9)

holds true, v
(t)
pg being a neighboring vertex (i.e., v

(t)
pg ∈ v

(t)
mn) with an already

de�ned height fun
tion value, h
(t)
pg = h

(

v
(t)
pg

)

. Otherwise, go to �B2.1 Tiling

word update� and 
ontinue s
anning the tiling word starting from r = r−1;

• B2.4 New tiling generation - Known the values of h (·) on ∂A (Algorithm

A1 ) and the height fun
tion values h
(t)
mn 
omputed through (3.8), pla
e the

domino tiles inside A to �t the �tiling rules� in �A1.2 Computation of the

h-value of the internal verti
es of A�. Afterwards, de�ne the new 
omplete

tiling 
on�guration c
(t)

by applying the �Algorithm B1 �. On
e the array

aperture A has been totally 
overed and the height fun
tion values are all

de�ned, {h
(t)
mn; m = 1, ...,M − 1; n = 1, ..., N − 1}, 
ompute the remaining

letters w
(t)
l , l = r + 1, ..., L through (3.6);

• B2.5 Stopping 
riterion - If t = T − 1, then stop the tiling generation.

Otherwise, update t (i.e., t← t + 1) and go to �B2.1 Tiling word update�.

3.3 Pen
il Beam Synthesis through the Enumer-

ative Tiling Method (ETM )

On
e the 
omplete list of existing tilings has been generated, the nested opti-

mization strategy des
ribed in Chapter 2 [eq. (2.4) and (2.5)℄ together with an

ex
itation mat
hing approa
h for a fast 
omputation of the sub-array 
oe�
ients

is here proposed in order to �nd the optimal tiling/
lustered 
on�guration, c
opt

that totally 
overs the aperture and radiates the minimum sidelobe level (SLL)
pen
il beam pattern with its main beam steered along (θ0, φ0). A

ordingly the


ost fun
tion of the tiling array synthesis problem is de�ned as follows

Φ (c;α,β) = SLL
[

|AF (θ, φ; c,α,β)|2
]

(3.10)

where in (3.10) SLL [·] is the fun
tion measuring the SLL of the power pattern

|AF (θ, φ; c,α,β)|2. The Enumerative Tiling Method (ETM ) is summarized in

the following steps:

• Step 1. Referen
e Array : given the ideal fully-populated array, the refer-

en
e amplitude weights αref
mn, m = 1, ... , M, n = 1, ... , N are obtained

by means of standard methods (e.g., Taylor, Dolph-Chebyshev [91℄) while

the phases as

βcmn
= −k (xcmn

sin θ0 cosφ0 + ycmn
sin θ0 sinφ0) , (3.11)
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xcmn
=

{

xm+x(m±1)

2

}

and ycmn
=

{

yn+y(n±1)

2

}

being the planar 
oordinates

of the cmn-th sub-array 
enter.

• Step 2. Tilings Enumeration: the optimal tiling generation method de-

s
ribed in the previous se
tion, is used for the enumeration of the whole

set of 
lustering 
on�gurations C∞ =
{

c
(t); t = 1, ..., T

}

;

• Step 3. EM Sub-array Weights: for ea
h tiling ct;, t = 1, ..., T , the op-

timal 
ompromise EM ex
itations 
oe�
ients

(

αEM
t ,βEM

t

)

are obtained

minimizing the following ex
itation mat
hing problem

3

(

αEM
t ,βEM

t

)

= arg

[

min
α,β

{

M
∑

m=1

N
∑

n=1

∣

∣Irefmn − Imn

∣

∣

}]

(3.12)

The optimal amplitudes and phase 
oe�
ients solving (3.12), turn out to

be analyti
ally obtained as [29℄

αEM
q,t =

1

2

N
∑

n=1

M
∑

m=1

αref
mnδcmnq, q = 1, ..., Q (3.13)

βEM
q,t =

1

2

N
∑

n=1

M
∑

m=1

βref
mn δcmnq, q = 1, ..., Q (3.14)

• Step 4. Cost Fun
tion Evaluation: evaluation of the SLL (3.10) for ea
h

of the T solutions and sele
tion of the best tiling/sub-array weights, solving

(

c
opt;αopt,βopt

)

= arg

[

min
t=1,...,T

{

Φ
(

ct;α
EM
t ,βEM

t

)}

]

(3.15)

3.3.1 Numeri
al Assessment

The �rst example is 
on
erned with a planar array made of 40 (M × N =
8 × 5) ideal isotropi
 radiators (i.e. E (θ, φ) = AF (θ, φ)) with inter-element

spa
ing dx = dy = d = λ
2
[Fig. 3.6(a)℄. The ex
itations of the referen
e fully-

populated array [Fig. 3.6(a)℄, a�ording the power pattern shown in Fig. 3.6(b)

and 
hara
terized by the pattern indexes in Tab. 3.2, have been de�ned as

αref
mn , αref

m αref
n , {αref

m ; m = 1, ...,M} and {αref
n ; n = 1, ..., N} being the weights

of a Dolph-Chebyshev pattern [91℄ with SLL = −20 dB. It is worth noting

3

A rigorous enumerative approa
h, minimizing (3.10), would require for ea
h tiling solution

the determination of the optimal set of ex
itations minimizing the SLL (e.g. by means of a


onvex optimization). Here a sub-optimal EM -based enumerative pro
edure is justi�ed by

the numeri
al e�
ien
y of the analyti
 relationships used for the 
omputation of the EM
ex
itations. A detailed dis
ussion about optimal ETM methods, jointly optimizing the sub-

array 
on�guration and the ex
itations 
oe�
ients, is reported in Chapter 4.
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here that the 
hosen referen
e pattern is not an optimal referen
e, and has been

sele
ted be
ause is a simple �
anoni
al� pattern, and if the proposed approa
h is

able to a
hieve a good approximation of the referen
e, the same would happen

for a true optimal pattern.

Sin
e at least one side (M = 8) is even (i.e., M mod 2 = 0) and a

ording to the

Covering Theorem (Se
. 3.1.2), the array aperture at hand turns out to be fully

tilable with domino tiles and the whole number of 
omplete tiling 
on�gurations

(3.4) amounts to T = 1.4824×104. Being ∆τ ≃ 0.12 [se
℄ (τ ≃ 0.178×104 [se
℄)
and ∆τΦ = 0.45 [se
℄, the CPU -time for determining a 
lustering solution and for


omputing the 
orresponding SLL value, respe
tively, the overall 
omputational


ost of an exhaustive sear
h is still viable (τETM ≃ 0.845 × 104 [se
℄, being

τETM , (∆τ +∆τΦ) × T ), thus the ETM (Se
t. 3.3) has been pro�tably used

to �nd the globally-optimum sub-arraying 
on�guration.

Figure 3.7 shows the SLL values of the whole set of 
omplete tiling 
on�gu-

rations, C∞ =
{

c
(t); t = 1, ..., T

}

, ordered from the worst (i.e., the 
lustered

arrangement with the highest SLL: SLLworst = −11.36 dB) up to the best (i.e.,

SLLbest = −18.89 dB). While di�erent solutions 
an have the same SLL value,

only a subset of the T sub-array 
on�gurations guarantees performan
e 
lose to

that of the referen
e fully-populated array (SLLth = −20 dB). More in detail,

only about 10% 
omplete tiling solutions are 
hara
terized by SLL < −18.0 dB.
Su
h a per
entage redu
es to 1% for having SLL < −18.5 dB and it turns out

to be less than 0.2% to guarantee a SLL < −18.8 dB.

Let us now fo
us on the solutions with the lowest sidelobes. There are four

di�erent tiling 
on�gurations a�ording power patterns with the minimum SLL
value (i.e., SLLbest = −18.89 dB). They are shown in Fig. 3.8 along with

their sub-array amplitudes [Fig. 3.8(a), Fig. 3.8(
), Fig. 3.8(e), and Fig.

3.8(g)℄ and the radiated power patterns [Fig. 3.8(b), Fig. 3.8(d), Fig. 3.8(f ),

and Fig. 3.8(h)℄. For 
ompleteness, the 
orresponding tiling words w
(t)
, t =

{186, 1267, 3223, 9323}, are reported in Tab. 3.3. As it 
an be observed, these

ar
hite
tures are irregularly organized with an unbalan
ed distributions of hori-

zontal, σH
, and verti
al, σV

, tiles (i.e., 16 σH
over 20). Moreover, it is worthwhile

noti
ing that, even though ea
h arrangement 
orresponds to a di�erent tiling-

word (Tab.3.3), all 
an be yielded from one of them by simple mirroring with

respe
t to a 
oordinate axis. For instan
e, the solutions t = {1267, 3223, 9323}

an be generated from the t = 186-th one [Fig.3.8(a)℄ by just applying an hor-

izontal [e.g., Fig. 3.8(g)℄ and/or a verti
al [e.g., Fig. 3.8(
) and Fig. 3.8(e)℄

�ip/s. Su
h an observation will be further assessed in future works and (if veri-

�ed) also fully exploited to further redu
e the dimension of the solution spa
e as

well as the CPU -time τ for generating W∞, thus extending/enabling the use of

the ETM to larger array sizes to �nd without un
ertainty the global optimum


lustering.

For 
omparative purposes, the worst-
ase solution (t = 11729) with the 
orre-

sponding sub-array ex
itations [Fig. 3.9(a)℄ and its power pattern [Fig. 3.9(b)℄
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Figure 3.6: ETM Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T = 1.4824×
104) - Plots of (a) the array geometry and referen
e ex
itation amplitudes (αref

mn;

m = 1, ...,M ; n = 1, ..., N) and (b) the referen
e power pattern,

∣

∣AFref (θ, φ)
∣

∣

2
.

Table 3.2: ETM Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T = 1.4824×
104) - Radiation performan
e (SLL, D, HPBWaz, HPBWel) of the referen
e,

the best, and the worst ETM tiling solutions.

SLL D HPBWaz HPBWel

[dB℄ [dBi℄ [deg℄ [deg℄

Reference −20.00 20.30 14.23 23.71
Best −18.89 20.30 14.06 23.46
Worst −11.36 20.03 14.18 21.87

is reported, as well. Unlike the optimal tilings in Fig. 3.8, whi
h provide the

lowest SLL (Tab. 3.2), the organization of domino tiles is here quite regular

[Fig. 3.9(a)℄, thus unavoidably generating high sidelobes [6℄.

3.4 Pen
il Beam Synthesis using the Optimization-

Based Tiling Method (OTM )

The ETM approa
h allows to �nd the global optimum by a 
omplete enumer-

ation of the existing tilings. Anyway when the dimension of the array aperture

in
reases, the number of tiles needed to 
ompletely 
over it in
reases, and 
on-

sequently the number of 
ombinations for the aperture tiling in
reases. Table

3.4 reports a set of T values for di�erent sizes of the aperture side of a square

array (i.e., M = N). As it 
an be noti
ed, the admissible set of 
omplete tilings

exponentially grows with the array size, namely the number of elements M ×N ,
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Figure 3.7: ETM Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824×104) - Values of the SLL of the whole set of 
omplete tiling 
on�gurations,

C∞ =
{

c
(t); t = 1, ..., T

}

, ordered from the worst. to the best.

Table 3.3: ETM Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T = 1.4824×
104) - Tiling words 
orresponding to the ETM 
lustered arrays t = 186, t = 1267,
t = 3223, and t = 9323 providing the global minimum SLL.

t w
(t)

Best 186 0000000000001101111100111111
Best 1267 0000000110000001111101111110
Best 3223 0000001111111101222211111111
Best 9323 1000000111111112222101111111

Worst 11729 1010101111111101111100101010
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t = 1267
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t = 3223
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t = 9323
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Figure 3.8: ETM Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T = 1.4824×
104) - Plots of (a)(
)(e)(g) the tiling 
on�gurations and sub-array ex
itations,

and (b)(d)(f )(h) the power pattern of the solutions (a)(b) t = 186, (
)(d) t =
1267, (e)(f ) t = 3223, and (g)(h) t = 9323 providing the global minimum SLL.
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Figure 3.9: ETM Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824× 104) - Plots of (a) the tiling 
on�guration and the sub-array ex
itation

amplitudes and (b) the power pattern of the worst 
omplete 
lustering a�ording

the global maximum SLL.

Table 3.4: Number of 
omplete tiling 
on�gurations, T , and time requested for

the generation of a single tiling solution (∆τ) and all tiling 
on�gurations (τ) for
di�erent sizes of a square aperture, M = N = {6, 8, 10, 16}.

M = N T ∆τ [se
℄ τ [se
℄

6 6728 0.10 6.72× 102

8 1.29× 107 0.15 1.94× 106

10 2.58× 1011 0.20 5.16× 1010

16 2.44× 1030 0.40 9.76× 1029

pointing out that an enumerative sampling of the solution spa
e looking for the

�best� sub-array 
on�guration turns out to be already unfeasible for M = N = 8
(T = 1.29 × 107, ∆τ = 0.15 [se
℄ → τ = 1.94 × 106 [se
℄) and impossible when

M = N ≥ 10 (T ≥ 2.58 × 1011, ∆τ ≥ 0.20 [se
℄ → τ = 5.16 × 1010 [se
℄), ∆τ
and τ being the CPU -time for generating one and the whole set of T 
omplete

tilings (τ , T ×∆τ), respe
tively, on a 2.4GHz PC with 2GB of RAM.

A

ordingly, when the dimension of the aperture (i.e., the 
ardinality of the


orresponding solution spa
e) does not allow a 
omputationally-feasible appli
a-

tion of the enumerative approa
h (Se
t. 3.3), the domino-like aperture tiling is

solved through an innovative binary GA that exploits both a suitable 
oding and

proper analyti
ally-generated GA-�s
hemata� [87℄ to e�
iently (i.e., maximizing

the 
onvergen
e rate as well as redu
ing the dimension of the solution spa
e)

explore the solution spa
e for enabling the synthesis of large arrays. Before de-

s
ribing the optimization pro
edure, let us point out the following key-points


on
erned with the GAs and their e�e
tive/pro�table use in high-dimensional
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solution spa
e (e.g., large array synthesis):

• GA-S
hemata and GA-Impli
it Parallelism

GAs sear
h me
hanisms mainly rely on �s
hemata� and the arising �impli
it

parallelism� [87℄. From [87℄, a s
hemata is a similarity template des
ribing

a subset of 
hromosomes (i.e., the 
oded representation of the unknown

ve
tor w) with similarities at 
ertain 
hromosome positions. For a bi-

nary alphabet, (i) there are 3L admissible s
hemata, (ii) a GA population

of U trial solutions, W
(i) =

{

w
(u)
i ; u = 1, ..., U

}

, 
ontains between 2L and

U×2L s
hemata depending upon the population diversity, and (iii) at ea
h

i-th iteration (i = 0, ..., I; I being the maximum number of iterations) stan-

dard geneti
 operators (i .e., roulette-wheel sele
tion, single-point 
rossover,

and mutation [94℄[88℄[89℄) pro
ess something like U3
s
hemata.

The S
hemata theorem [87℄ states that a s
hemata is replied in the su
-


essive iterations a number of times proportional to the average �tness of

the 
orresponding trial 
hromosomes, Φ
(u)
i = Φ

(

w
(u)
i

)

being the �tness of

w
(u)
i . Therefore, the GA solution at the 
onvergen
e (i.e., i = Iopt ≤ I)

is 
omposed by the best s
hemata 
ombined during the evolution by all

GA operators, but mainly by the 
rossover, whi
h is responsible of mix-

ing the geneti
 
ontent of the di�erent 
hromosomes. Sin
e a s
hemata

is replied in the su

essive iterations a number of times proportional to

the average �tness of the 
orresponding trial 
hromosomes [87℄, it turns

out that �generating/sele
ting� from the beginning (i = 0 - Initialization)

�good� s
hemata is a good re
eipt to in
rease the 
onvergen
e rate (i.e.,

redu
ing the number of iterations Iopt) for redu
ing the CPU -time of the

optimization pro
ess.

Towards this end, let us 
onsider that the probability to yield �good�

s
hemata from a random generation of a population of U (U ≤ T ) tiling

words, W
(0) =

{

w
(u)
0 ; u = 1, ..., U

}

, U ≤ T , is generally lower than ran-

domly 
hoosing/generating these latter from the total set of admissible T
words, W∞ =

{

w
(t); t = 1, ..., T

}

, to whi
h the optimal one w
opt


ertainly

belongs to, as well. On the other hand, sin
e it is not 
omputationally pos-

sible to generate all T words (as for the enumerative approa
h), a suitable

algorithm for setting w
(u)
0 ∈W∞ without 
omputing whole ensemble W∞

is needed . As for this latter, the following �word rules� 
an be exploited:

- Rule #1. By substituting (3.8) into (3.9) and re-writing the equation, it

turns out that

4
(

w
(t)
l − w

(t)
k

)

+ h(1)
mn − h(1)

pg = {±1,±3} (3.16)

where w
(t)
k =

h
(t)
pg−h

(1)
mn

4
(3.6) is the letter 
orresponding to the neighboring

vertex v
(t)
pg and k , p + (g − 1) × (M − 1). Sin
e h

(1)
mn − h

(1)
pg = {±1,±3}
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from (3.9) and knowing that w
(t)
l is an integer value,

(

h
(t)
l − h

(1)
l

)

always

being a multiple of 4 [52℄, the following 
ondition holds true (Rule #1 ):

w
(t)
l − w

(t)
k = {0, ±1} (3.17)

where w
(t)
k =

{

w
(t)
l−1, w

(t)
l+1, w

(t)
l−(M−1), w

(t)
l+(M−1)

}

unless w
(t)
k 6= w

(t)
l+1 if

l mod (M − 1) = 0 and/or w
(t)
k 6= w

(t)
l−1 if (l − 1) mod (M − 1)= 0

- Rule #2. It has been proved [48℄ that the letters of the maximal tiling

word, w
(T )

, with the same value belongs to 
onne
ted regions over A, Υ
(j)
int,

j = 1, ..., wmax
, being wmax = maxl=1,...,L

{

w
(T )
l

}

[Fig. 3.10℄ and they

satisfy (3.17), as well;

- Rule #3. From [53℄,

w
(1)
l ≤ w

(t)
l ≤ w

(T )
l , l = 1, ..., L (3.18)

w
(1)
l and w

(T )
l (l = 1, ..., L) being the l-th letter of the minimal and the

maximal tiling words, respe
tively. Therefore, sin
e w
(1)
l = 0, l = 1, ..., L

and w
(T )
l ≤ wmax

by de�nition of wmax
, a generi
 letter w

(t)
l is a non-

negative integer value (i.e., w
(t)
l ≥ 0 ∀l ∈ [1, L]);

• GA-Coding

GAs are optimization tools devoted to minimize/maximize a suitably-de�ned


ost fun
tion Φ (·) that quanti�es the �tting of a trial solution to the

user-de�ned requirements. The 
omputational burden of GAs is given by

∆τΨ × Iopt × U [92℄ where ∆τΨ is the CPU -time for a single 
ost-fun
tion

evaluation, Iopt is the number of iterations to 
onverge to the �nal solu-

tion, c
opt
, and U is the population dimension. Sin
e U is proportional

(usually greater than) to the number of problem unknowns, the use of the

tiling word, w = {wl : l = 1, ..., L}, as unknown ve
tor instead of the mem-

bership ve
tor, c = {cmn ; m = 1, ...,M ; n = 1, ..., N} is pro�table sin
e

L < M × N . Another key advantage in preferring w to c for saving 
om-

putational resour
es lies in the 
ardinality of the 
orresponding solution

spa
e, indeed it drasti
ally redu
es from QM×N
[29℄ to (3.4).

Within su
h guidelines, the following GA-based optimization strategy has been

implemented:

• Step 1: Population Initialization (i = 0) - Set the �rst (u = 1) and the Ũ-th

[Ũ = wmax×(wmax+1)
2

+ 14℄ trial solutions of the initial population W
(0)

to

4

The value of Ũ is equal to the maximum number of di�erent tiling words, all belonging to

W∞, that 
an be generated through (3.20).
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Υ
(1)
int = {v

(T )
mn ∈ v

(T )
int : w

(T )
l = 1}

Υ
(2)
int = {v

(T )
mn ∈ v

(T )
int : w

(T )
l = 2}

Υ
(wmax)
int = {v

(T )
mn ∈ v

(T )
int : w

(T )
l = wmax}
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Figure 3.10: Optimization-based Tiling Method - Illustrative s
heme for the def-

inition of the letters of the maximal tiling word w
(T )

on the internal verti
es

v
(T )
int ∈ A.
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the minimal tiling word (i.e., w
(u)
i

⌋

u=1, i=0
= w

(t)
⌋

t=1
) and to the maximal

tiling word (i.e., w
(u)
i

⌋

u=Ũ , i=0
= w

(t)
⌋

t=T
), respe
tively.

As for the solutions from u = 2 to u = Ũ − 1 still belonging to W∞,


onsider w
(1)
0 = {w

(1)
l,0 = 0; l = 1, ..., L} as referen
e parent. Sin
e (3.17)

(�Rule #1 �) and (3.18) (�Rule #3 �) state that the l-th letter of w
(u)
i

⌋

u=2, i=0


an be only in
remented by one (i.e., w
(u)
l,i = w

(u−1)
l,i + 1), set those letters

whose 
orresponding verti
es belong to the most internal region of the

aperture (i.e., v
(u)
mn,0 ∈ Υ

(wmax)
int [Fig. 3.10℄) to w

(u)
l,i

⌋

u=2, i=0
= w

(u)
l,i

⌋

u=1, i=0
+

1. Afterwards, iteratively generate the solutions from u = 3 up to Ũ −1 by
exploiting �Rule #2 � and �Rule #3 �. More spe
i�
ally, update by one the

letters of the verti
es in the region Υ
(j)
int, j = wmax − u + χ (u) [Fig. 3.10℄

being

χ (u) =

{

2 if u ≤ wmax + 1

2 +
∑ξ(u)

k=1 (w
max − k + 1) otherwise

(3.19)

where ξ (u) = min {[1, ..., wmax − 2] : χ (u) ≥ u}. Mathemati
ally, the ini-

tialization of the u-th solution (u = 2, ..., Ũ − 1) 
an be summarized as

follows

w
(u)
l,i =

{

w
(u−1)
l,i + 1 if v

(u)
mn,i ∈ Υ

(j)
int

w
(u−1)
l,i otherwise

, l = 1, ..., L (3.20)

where

j =

{

wmax if u = χ (u)
j − 1 otherwise

. (3.21)

If Ũ < U , de�ne the remaining (Ũ − U) initial words by deriving at most

⌈

U
Ũ

⌉

ones from the appli
ation of the enumerative approa
h (�Algorithm

B1 �) to ea
h one of the �rst Ũ−15 words, {w
(u)
0 , u = 1, ..., Ũ−1}. Otherwise

(Ũ > U), randomly sele
t the U solutions of W
(0)

from the Ũ ones;

• Step 2: Binary Coding - A

ording to (3.18) (�Rule #3 �), the maximum

number of bits for 
odifying a generi
 l-th letter of a word is equal to

Bwl
= ⌈log2 {w

max}⌉. Thus, 
ode the u-th trial tiling word, w
(u)
i , into

a binary GA-
hromosome of Bw = L × ⌈log2 {w
max}⌉ bits, ⌈·⌉ being the


eiling fun
tion

6

;

5

The last word (i.e., w
(Ũ)
0 = w

(T )
) has no su

essive words and therefore it 
annot be


onsidered as starting point for generating new initial trial solutions.

6

The advantage of 
onsidering w instead of c is even greater when dealing with the (binary)


oded (i.e., more symbols are used in 
orresponden
e with an unknown) representation of the

unknown ve
tor sin
e Bw ≪ Bc, Bc = (M ×N) × ⌈log2 Q⌉being the number of bits needed

for 
oding c and wmax ≪ Q.
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• Step 3: Reprodu
tion Cy
le - Apply the roulette-wheel sele
tion, the single-

point 
rossover with probability pc, and the mutation with probability pm
[88℄[89℄) (Fig. 3.11) to generate a new set of trial solutions, W

(i)
, i ≥ 1.

For ea
h u-th (u = 1, ..., U) word, w
(u)
i , 
ompute the height fun
tion values

of the 
orresponding verti
es through (3.8) and 
he
k the 
ondition (3.9).

If this latter is not satis�ed, dis
ard this trial solution and generate a new

one through the GA operators;

• Step 4: Fitness Evaluation - Determine the GA-population of U tiling


on�gurations, {c
(u)
i , u = 1, ..., U}, 
orresponding to the word set W

(i)

through �B2.4 - New tiling generation� and 
ompute their �tness values

Φ
(u)
i = Φ

(

c
(u)
i

)

(3.22)

Close the GA-operation loop by �nally applying the elitism operator [94℄

to keep the best solution found so far within the 
urrent i-th population;

• Step 5: Convergen
e Che
k - If i = I or Φ
(

c
opt
i

)

< SLLth,

c
opt
i = arg

(

min
u=1,..,U

{

Φ
(

c
(u)
i

)}

)

(3.23)

and SLLth being the optimal tiling at the i-th iteration and a user-de�ned

�tness threshold, stop the iterations (Iopt = i) and set c
opt = c

opt
i . Other-

wise, update the iteration index (i← i+ 1) and go to Step 3.

3.4.1 Numeri
al Assessment

The proposed s
hemata-driven synthesis framework and its implementation for

the design of 
omplete-aperture-
overage 
lustered planar arrays that radiate the

minimum SLL power pattern are dis
ussed in this Se
tion by illustrating a set

of representative numeri
al examples 
onsidering ideal-elements arrays as well as

real-elements arrays, simulated using a full-wave 
ommer
ial software.

3.4.1.1 Ideal-Elements Arrays

This sub-se
tion is aimed at assessing the e�e
tiveness of the analyti
ally-driven

GA-based tiling method (Se
t. 3.4). Towards this end, the �rst ben
hmark

is related to the same aperture of Se
t. 3.3.1, therefore a tra
table 
ardinal-

ity for the ETM that would not require in prin
iple the exploitation of an

optimization/solution-spa
e-sampling strategy, but here dealt with the OTM for

proving its 
apability to retrieve a global optimum solution (i.e., a 
lustered

arrangement belonging to C∞ with the lowest SLL value). The 
ontrol parame-

ters of the GA have been set a

ording to [94℄: pc = 0.9 (
rossover probability),
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FITNESS EVALUATION
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R
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ycle

SELECTION
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MUTATION

New Complete
Population?

END
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Convergence?

FITNESS EVALUATION

INITIALIZATION

Is the Word

Admissible?

pm
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u = 1, ..., U
Φ(u,0); u = 1, ..., U

i = i+ 1

Φ(u,i); u = 1, ..., U

i = 0

w
(u,i) = {w

(u,i)
l ; l = 1, ..., L}

Figure 3.11: Flow
hart of the GA-based OTM approa
h.
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pm = 0.01 (mutation probability), U = 8, and I = 100. Therefore, the number
of trial tiling 
on�gurations potentially generated during the GA-optimization is

at most U × I = 800, that is about 5% of the total number of 
omplete tiling

solutions, T = 1.4824× 104. With referen
e to Step 1 (Se
t. 3.4) and the gener-

ation of the initial tiling-words population, W
(0) =

{

w
(u)
0 ; u = 1, ..., U

}

(L = 28

being the word length or number of letters), it turns out that Ũ = 4 sin
e

wmax = 2, w(T ) = {1111111122222112222211111111} being the maximal tiling

word. Table 3.5 reports the Ũ = 4 analyti
ally-generated words (w
(1)
0 = w

(t)
⌋

t=1

and w
(Ũ)
0 = w

(t)
⌋

t=T
being the minimal and the maximal tiling words, respe
-

tively), while the 
orresponding sub-array 
on�gurations are shown in Fig. 3.12.

Due to the sto
hasti
 nature of the GA, Ω = 100 runs have been exe
uted to

give statisti
ally-meaningful insights on the OTM performan
e. For ea
h ω-

th (ω = 1, ...,Ω) run, the remaining

(

U − Ũ
)

= 4 individuals for 
ompleting

the initial population have been randomly generated by imposing non-equality


onditions among both the whole set of U trial words and the di�erent pop-

ulations of the Ω independent runs. From su
h a statisti
al analysis, it turns

out that the OTM 
onverged to one of 4 di�erent �nal solutions denoted as

Solution 1 [Figs. 3.14(a)-3.14(b)℄, Solution 2 [Figs. 3.14(a)-3.14(b)℄, Solution 3

[Figs. 3.14(
)-3.14(d)℄, and Solution 4 [Figs. 3.14(e)-3.14(f )℄ whose radiation

indexes are reported in Tab. 3.6. More spe
i�
ally, the Solution 1 with the

lowest SLL = −18.89 dB has been found with a su

ess rate of 40%. Otherwise,

even though the global optimum has not been rea
hed, the GA-solution ςbest

[ςbest , arg (maxω=1,..,Ω {Φ (coptω )})℄ with the higher SLL value (Solution 4 - Tab.

3.6) is 
hara
terized by a SLL = Φ
(

ςbest
)

= −18.85 dB, that is, only 0.04 dB
above the global minimum of the 
ost fun
tion, Φ. Moreover, it is worth point-

ing out that always (∀ω = 1, ...,Ω), the GA-synthesized arrangement belongs

to the 0.2% pool of solutions having SLL < −18.8 dB within the whole set of

T = 1.4824× 104 
omplete tilings, thus 
on�rming the e�e
tiveness of the OTM

in sampling the solution spa
e.

A key item to be 
arefully dis
ussed is the advantage of the smartGA-initialization

of the OTM. Towards this end, let us analyze the behavior of Φ
(

c
opt
i

)

versus the

iteration index, i = 1, ..., I, for a representative set of the previous Ω runs along

with that of a GA (denoted as Bare Init GA) where the U 
hromosomes of the

initial population have been set to the �rst U words generated by the ETM (i.e.,

w
(u)
0 = w

(t)
, u = t, t = 1, ..., U ≤ T ) (Fig. 3.13). As it 
an be observed, whatever

the initialization with good s
hemata, the GA-based optimizations are very e�-


ient at the beginning (∀ω: Φ
(

c
opt
i

)⌋

i≤3
∈ [−16.7; −17.5] dB → Φ

(

c
opt
i

)⌋

i≤3
≪

SLLworst = −11.36 dB), but the OTM -based ones qui
kly 
onverge to the global

minimum or 
lose to it �tness/SLL value (SLLbest = −18.89 dB), while a �bare�
initialization 
auses the 
orresponding 
lustering solution c

opt
i is trapped/sti
ks
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Table 3.5: OTM Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T = 1.4824×
104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) - Ũ = 4 analyti
ally-

generated words, w
(1)
0 = w

(t)
⌋

t=1
and w

(Ũ)
0 = w

(t)
⌋

t=T
being the minimal and

the maximal ones, respe
tively, of the initial OTM population.

u w
(u)
0

1 0000000000000000000000000000 = w
(t)
⌋

t=1

2 0000000011111001111100000000
3 1111111111111111111111111111

Ũ = 4 1111111122222112222211111111 = w
(t)
⌋

t=T

u = 1 u = 2
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Figure 3.12: OTM Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824 × 104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) - Plots of
the Ũ = 4 tiling 
on�gurations used for the OTM initialization: (a) u = 1, (b)
u = 2, (
) u = 3, and (d) u = Ũ .
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-19

-18.5

-18

-17.5

-17

-16.5

 0  20  40  60  80  100

S
LL

 [d
B

]

Iteration Index, i

Sample Run 1
Sample Run 2
Sample Run 3
Sample Run 4

Sample Run 5
Sample Run 6
Sample Run 7
Sample Run 8

Sample Run 9
Sample Run 10

Bare Init.

Figure 3.13: OTM Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824× 104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) - Behavior
of the optimal value of the 
ost fun
tion (3.22) versus the iteration index, i,
for 10 representative sample runs of the OTM and for the GA run with �bare�

initialization.

Table 3.6: OTM Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T = 1.4824×
104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) - Radiation indexes

(SLL, D, HPBWaz, HPBWel) of the referen
e solution, of the 
onvergen
e

solutions synthesized in Ω = 100 OTM runs, and when 
onsidering the GA-

based tiling method with �bare� initialization.

SLL D HPBWaz HPBWel

[dB℄ [dBi℄ [deg℄ [deg℄

OTM − Sol 1 −18.89 20.30 14.06 23.46

OTM − Sol 2 −18.87 20.31 14.03 23.46

OTM − Sol 3 −18.86 20.29 14.08 23.41

OTM − Sol 4 −18.85 20.32 14.07 23.62

GA− Bare −17.95 20.29 14.12 23.67

Reference −20.00 20.30 14.23 23.71
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Figure 3.14: OTM Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824 × 104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) - Plots of
(a)(
)(e) the tiling 
on�gurations and the sub-array ex
itation amplitudes and

(b)(d)(f ) the power pattern of the Solution 2 (a)(b), Solution 3 (
)(d), and

Solution 4 (e)(f ).
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Figure 3.15: OTM Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824 × 104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) -

Chromosomal sequen
e of the initial GA population as generated in the OTM

(a) and through the �bare� strategy (b) together with the global optimum one

(
).
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Figure 3.16: OTM Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824 × 104; L = 28; B = 56; U = 7; pc = 0.9; pm = 0.01; I = 100) -

Chromosomal sequen
e of the GA population at the iterations (a) i = 10, (b)
i = 20, and (
)(d) i = I = 100 for the OTM (a)(b)(
) and (d) when exploiting

the bare GA-initialization.
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in a lo
al/non-optimal minimum of Φ with SLL > −18 dB (Fig. 3.13) just after

4 iterations.

The bene�t of adopting the OTM smart GA-initialization 
an be further out-

lined from the perspe
tive of the S
hemata theorem [87℄, as well. Keeping in

mind the key-argumentations in Se
t. 3.4, one 
an dedu
e that whether the ini-

tial GA-population does not 
ontain the �good� s
hemata of the global optimum,

the optimization will di�
ulty 
onverge to it in a reasonable/�nite amount of

iterations without a lu
ky mutation, this latter usually performed with low prob-

ability [87℄[94℄, as well. Therefore, a key-issue for in
reasing the 
onvergen
e rate

(or, at least, the probability to rea
h the global optimum in a �nite CPU -time)

to the optimal solution is to de�ne an initialization pro
edure able to in
lude

the �s
hemata� of the (unknown) global optimum within the population W
(0)
.

To assess this property, let us analyze the 
hromosomes (i.e., the 
oded version

of the tiling words where the �s
hemata� 
an be identi�ed) of the initial pop-

ulation generated in the OTM a

ording to (3.20) [Fig. 3.15(a)℄ and through

the �bare� strategy [Fig. 3.15(b)℄ with respe
t to the global optimum sequen
e

[Fig. 3.15(
)℄. Di�erent 
olor boxes highlight some representative s
hemata of

the global-optimum 
hromosome [Fig. 3.15(
)℄. As it 
an observed, these lat-

ter are all present in the initial OTM population [Fig. 3.15(a)℄, while only a

subset of them 
an be found in the 
hromosomal sequen
es from the bare ini-

tialization [Fig. 3.15(b)℄. For instan
e, the �yellow� s
hemata 
hara
terized by

the �xed alleles {101} at the bit positions 26, 27, and 28 is not present in Fig.

3.15(b). During the iterative pro
ess [see Figs. 3.16(a)-3.16(b) - OTM ℄, the

GA e�e
tively re
ombines the best s
hemata of the initial population until the


onvergen
e. Unlike the bare GA [Fig. 3.16(d) - Bare Init ℄, the OTM is able to

�nd at the 
onvergen
e (i = Iopt = I) the global optimum 
hromosome, whi
h

is also shared in almost all individuals [Fig. 3.16(
) - OTM ℄ as an e�e
t of the

well-known geneti
 pressure.

In order to assess the potentialities of the GA-based tiling approa
h as an

enabling tool for dealing with more 
omplex/high-dimensional syntheses, the

domino 
lustering of a larger planar array has been addressed. The array at

hand is 
omposed by 264 λ
2
-spa
ed elements (M = 22, N = 12), while the

two sets of referen
e ex
itations {αref
m ; m = 1, ...,M} and {αref

n ; n = 1, ..., N}

have been still set to the Dolph-Chebyshev ones [91℄ to a�ord a power pattern

with SLL = −20 dB. Be
ause of the array size, the problem 
ardinality is now

extremely large (T ≃ 1.9898× 1031), thus preventing the appli
ation of the enu-

merative method, while requiring the exploitation of a non-exhaustive sampling

of the solution spa
e su
h as that performed by the OTM. Due to the prob-

lem dimensionality, the maximum number of GA iterations has been in
reased

with respe
t to the previous test 
ase (I = 103) as well as the population size

(U = 2×L = 462 [94℄, L = 231 being the number of unknowns equal the number
of internal verti
es). On the other hand, it is worth pointing out that, despite the

41



3.4. PENCIL BEAM SYNTHESIS USING THE OPTIMIZATION-BASED

TILING METHOD (OTM )
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Figure 3.17: OTM Numeri
al Assessment (M = 22, N = 12; d = 0.5λ; T ≃
1.99 × 1031; L = 231; B = 693; U = 462; pc = 0.9; pm = 0.01; I = 1000) -
Behavior of Φ

(

c
opt
i

)

versus the iteration index, i = 1, ..., I, for 10 representative

OTM sample runs in
luding the best, ςbest, and the worst, ςworst
, 
ases within

the whole set of Ω = 100 tests.
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Table 3.7: OTM Numeri
al Assessment (M = 22, N = 12; d = 0.5λ; T ≃
1.99 × 1031; L = 231; B = 693; U = 462; pc = 0.9; pm = 0.01; I = 1000) -

Minimal tiling word, w
(1)
0 = w

(t)
⌋

t=1
, maximal tiling word, w

(Ũ)
0 = w

(t)
⌋

t=T
,

and intermediate tiling words, w
(7)
0 and w

(14)
0 , of the initial OTM population.

u w
(u)
0

1
0000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000

= w
(t)
⌋

t=1

7
1111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111111

14
1111111111111111111111222222222222222222211222222222222222
2222112222222222222222222112223333333333333222112223333333
3333332221122233333333333332221122222222222222222221122222
222222222222221122222222222222222221111111111111111111111

Ũ = 22
1111111111111111111111222222222222222222211233333333333333
3332112344444444444444432112345555555555555432112345666666
6666654321123455555555555554321123444444444444444321123333
333333333333321122222222222222222221111111111111111111111

= w
(t)
⌋

t=T

in
rement of the upper bound of the number of samples of the solution spa
e (i.e.,

U × I⌋M×N=22×12 = 4.62×105 vs. U × I⌋M×N=8×5 = 8×102), the ratio between
the maximum number of trial solutions 
he
ked during the iterative multi-agent

optimization pro
ess and the set of 
omplete tiling solutions has been drasti
ally

redu
ed (i.e.,

U×I
T

⌋

M×N=22×12
= 2.3× 10−26

vs.

U×I
T

⌋

M×N=8×5
= 5.4× 10−2

).

A

ording to the OTM, the GA-optimization has been initialized with Ũ = 22
tiling words being wmax = 6. The minimal tiling word, w

(1)
0 = w

(t)
⌋

t=1
, the

maximal tiling word, w
(Ũ)
0 = w

(t)
⌋

t=T
, and other two intermediate words (i.e.,

w
(7)
0 and w

(14)
0 ) of the initial trial population are reported in Tab. 3.7. Also in

this 
ase, the GA has been run Ω = 100 times with di�erent initial populations

unless the analyti
ally-de�ned Ũ = 22 individuals. Unlike the previous 
ase, all

optimizations 
onverged, in less than 10 hours, to a di�erent �nal solution be-


ause of the extremely large problem 
ardinality, but all with SLL values below

that of the best solution a
hievable for the smaller array [Φ (coptω ) < −19.3 dB,
∀ω = 1, ...,Ω, while SLLbest

⌋

M×N=8×5
= −18.89 dB℄. This out
ome is not sur-

prising (even though it further 
on�rms that the optimizer at hand �guarantees�

what physi
ally expe
ted) sin
e the number of domino tiles in the larger array

is greater and therefore the quantization issues, 
ausing the undesired high side-

lobes, are less 
riti
al. What is relevant for assessing the e�e
tiveness of the

OTM in sampling a so-large solution spa
e is that the dis
repan
y between the

SLL performan
e of the worst (ςworst , arg (minω=1,..,Ω {Φ (coptω )}) - OTM Worst

Solution) and the best (ςbest - OTM Best Solution) GA solutions is only 0.01 dB
(Tab. 3.8). For 
ompleteness, Figure 3.17 shows the behavior of Φ

(

c
opt
i

)

versus

the iteration index, i = 1, ..., I, for 10 representative OTM runs, while the tiling


on�guration, the values of the resulting sub-array amplitude weights, and the
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Figure 3.18: OTM Numeri
al Assessment (M = 22, N = 12; d = 0.5λ; T ≃
1.99× 1031; L = 231; B = 693; U = 462; pc = 0.9; pm = 0.01; I = 1000) - Plots
of the (a)(b) the tiling 
on�gurations and the sub-array ex
itation amplitudes

and (
)(d) the power pattern of the best, ςbest, and the worst, ςworst
, 
ases within

the whole set of Ω = 100 tests.

power patterns of the OTM−Best Solution and of the OTM −Worst Solution
are shown on the left and the right 
olumn of Fig. 3.18, respe
tively. From Fig-

ures 3.18(a)-3.18(b), it turns out that a large part of the dominoes are horizontal,

σH , while only 34 [Fig. 3.18(a)℄ and 36 [Fig. 3.18(b)℄ over 132 are verti
al, σV ,

respe
tively.

In order to assess the proposed approa
h also when dealing with steered beam

syntheses, the next ben
hmark example is 
on
erned with the 
omplete tiling

of the same aperture of the previous example, but now providing the minimum

SLL when the main lobe is steered in both prin
ipal planes, namely towards

(θ0, φ0) = (30, 90) [deg] and (θ0, φ0) = (30, 0) [deg]. The best solution found at

the 
onvergen
e among Ω = 100 OTM-GA runs for ea
h pointing dire
tion is

shown in Fig. 3.19. Firstly, it is interesting to point out that the best tilings

[Fig. 3.19(a) and Fig. 3.19(b)℄ are quite di�erent from that synthesized when


onstraining the beam to point along boresight (θ0, φ0) = (0, 0) [deg] (Fig. 3.18).
Moreover, it is interesting to point out that there is a prevalen
e of horizontal

tiles, σH , in Fig. 3.19(a) and verti
al tiles, σV , in Fig. 3.19(b) sin
e they are the
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Figure 3.19: OTM Numeri
al Assessment (M = 22, N = 12; d = 0.5λ; T ≃
1.99 × 1031; L = 231; B = 693; U = 462; pc = 0.9; pm = 0.01; I = 103) -

Plots of the tiling 
on�gurations and the sub-array ex
itation (a)(b) amplitudes

and (
)(d) phases, and (e)(f ) the power pattern of the best 
ase within the

whole set of Ω = 100 tests when steering the beam towards (a)(
)(e) (θ0, φ0) =
(30, 90) [deg] and (b)(d)(f ) (θ0, φ0) = (30, 0) [deg].
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Figure 3.20: OTM Numeri
al Assessment (M = 22, N = 12; d = 0.5λ; T ≃
1.99 × 1031; L = 231; B = 693; U = 462; pc = 0.9; pm = 0.01; I = 1000) -
SLL values of the patterns generated by tiling 
on�gurations optimized for (a)

(θ0, φ0) = (0, 0) [deg] [Fig. 3.18(a)℄, (b) (θ0, φ0) = (30, 90) [deg] [Fig. 3.19(a)℄,
and (
) (θ0, φ0) = (30, 0) [deg] [Fig. 3.19(b)℄ when s
anning the beam in the

se
tor {θ0 ∈ [−30, 30] [deg], φ0 ∈ [0, 180] [deg]}.

ones least a�e
ted by quantization when s
anning the beam in the φ0 = 90 [deg]
plane [Fig. 3.19(e)℄ and in the φ0 = 0 [deg] plane [Fig. 3.19(f )℄, respe
tively.

As for the radiation performan
e, the peak level of the sidelobes of the power

patterns in Fig. 3.19 is equal to SLL = −18.33 dB [Fig. 3.19(e)℄ and SLL =
−18.12 dB [Fig. 3.19(f )℄, that is 1 dB worse than that for the broadside 
ase

(Tab. 3.8 - SLL = −19.32 dB). This is due to the phase quantization deriving

from the use of a single phase shifter for ea
h domino tile [Fig. 3.19(
) and Fig.

3.19(d)℄. For 
ompleteness and in order to 
hara
terize the s
anning performan
e

of a synthesize array, the SLL values obtained when steering the main lobe in

the se
tor θ0 ∈ [−30, 30] [deg] and φ0 ∈ [0, 180] [deg] are shown in Fig. 3.20 for

the three tiling 
on�gurations optimized for (θ0, φ0) = (0, 0) [deg] [Fig. 3.20(a)℄,
(θ0, φ0) = (30, 90) [deg] [Fig. 3.20(b)℄, and (θ0, φ0) = (30, 0) [deg] [Fig. 3.20(
)℄.
It is possible to observe that a prevalen
e of horizontal tiles, σH , [Fig. 3.18(a) and

Fig. 3.19(a)℄ provides lower SLL values when s
anning the beam in the plane

with φ0 = 90 [deg] [Figs. 3.20(a)-3.20(b)℄ be
ause they are the least a�e
ted by

quantization. Vi
eversa, better SLL performan
e are a
hieved in the φ0 = 0 [deg]
(or φ0 = 180 [deg]) plane in 
ase there are more verti
al tiles, σv, [Fig. 3.19(b)℄.

3.4.1.2 Real-Elements Arrays

Finally, the pra
ti
al reliability of the results from the proposed analyti
ally-

driven 
lustering methodology has been validated by 
onsidering arrays made

of real radiating elements, as well. The aim is to show that, as expe
ted,

for moderate s
anning angles, the element pattern does not signi�
antly af-

fe
t the synthesis results. Towards this end, the same tiling 
on�gurations
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Table 3.8: OTM Numeri
al Assessment (M = 22, N = 12; d = 0.5λ; T ≃
1.99 × 1031; L = 231; B = 693; U = 462; pc = 0.9; pm = 0.01; I = 1000) -
Radiation indexes (SLL, D, HPBWaz, HPBWel) of the referen
e solution as


ompared to the best, ςbest, and the worst, ςworst
, 
ases within the whole set of

Ω = 100 OTM tests.

SLL D HPBWaz HPBWel

[dB℄ [dBi℄ [deg℄ [deg℄

Reference −20.00 28.46 4.82 9.13

OTM −Best Solution −19.32 28.51 4.82 9.11

OTM −WorstSolution −19.31 28.52 4.82 9.11

Freq = 9.5 [GHz]

x

y

z
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-1
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G
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B
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Figure 3.21: 3D Plot of the embedded gain pattern of the aperture-sta
ked pat
h

mi
rostrip antennas [93℄ resonating at the 
entral operation frequen
y of 9.5GHz
and lo
ated in a two rings of neighboring elements.
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Figure 3.22: OTM Numeri
al Assessment (Real Element Array ; M = 22, N =
12; d = 0.5λ) - Power pattern radiated by the ideal and the real arrays when

setting the mainlobe steered along broadside: (a) horizontal (φ = 0 [deg]) and
(b) verti
al (φ = 90 [deg]) 
uts.
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Figure 3.23: OTM Numeri
al Assessment (Real Element Array ; M = 22, N =
12; d = 0.5λ) - Verti
al (φ = 90 [deg]) 
ut of the power pattern radiated by

the ideal and the real arrays when setting the mainlobe steered at (θ0, φ0) =
(30, 90) [deg].

for the aperture M × N = 22 × 12 synthesized when steering the beam along

(θ0, φ0) = (0, 0) [deg] and (θ0, φ0) = (30, 90) [deg] have been 
onsidered, but

substituting the isotropi
/ideal elements with aperture-sta
ked pat
h mi
rostrip

antennas [93℄ resonating at the 
entral operation frequen
y of 9.5GHz. As for

this latter, the embedded element pattern, f̂ (θ, φ), radiated at 9.5GHz has been

al
ulated through a full-wave simulation when 
onsidering the intera
tions of

two rings of neighboring elements (the results are 
oin
ident also when enlarging

the neighbour set) so as to in
lude the 
oupling e�e
ts is shown in Fig. 3.21.

Figure 3.22 
ompares the normalized

7

broadside, (θ0, φ0) = (0, 0) [deg], power
pattern of the real and the ideal arrays [f̂ (θ, φ) = 1℄ along the horizontal [Fig.

3.22(a)℄ and the verti
al [Fig. 3.22(b)℄ 
uts. As it 
an be noti
ed, the behavior of

the power pattern in the mainlobe region as well as for the �rst sidelobes for the

real 
ase turns out to be very similar to the ideal one sin
e f̂ (θ, φ) has a large

beamwidth. Overall, the sidelobe of the real array is equal to SLL = −18.72 dB,
thus there is a deterioration of 0.55 dB with respe
t to the ideal 
ase. Similar


on
lusions hold true also for the synthesis when setting the steering dire
tion

at (θ0, φ0) = (30, 90) [deg] as proved by the plots along the steering plane (i.e.,

the verti
al one) in Fig. 3.23.

7

Ea
h pattern has been normalized to its maximum in order to 
ompare the SLL values.
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Chapter 4

Mask-Constrained Optimization of

Domino-Tiled Phased Arrays

In this Chapter a set of te
hniques based on the enumerative/optimization based

methods presented in the previous Chapter, are presented to address the mask

mat
hing synthesis problem, 
onsidering pen
il shaped beams. Starting from a

set of ideal requirements on the array radiation performan
es de�ned by a power

mask, the proposed methods aim at �nding the optimal tiling 
on�guration min-

imizing the mismat
h of the tiled array power pattern with the mask. Optimal

tiles ex
itations 
oe�
ients are obtained by means of 
onvex optimization meth-

ods. The numeri
al assessment validates the proposed approa
hes, as well as the

reliability assessment of the optimized solutions when 
onsidering real radiating

elements through 
ommer
ial full-wave simulators.
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4.1. INTRODUCTION

4.1 Introdu
tion

The design of phased array antennas usually requires that the radiation pattern


omplies with a power mask, de�ning the maximum/minimum radiated power

over a set of angular dire
tions. In this way the user is allowed to de�ne the

desired radiation performan
es with high pre
ision and high �exibility. As in-

stan
e, it is possible to request a very low SLL only in a limited angular region

for interfering signals suppression. A

ordingly, the synthesis of tiled phased

arrays minimizing the distan
e of the power pattern with user-de�ned referen
e

power masks is here addressed. The mat
hing with an user-de�ned power mask

is 
onsidered as 
ost fun
tion of the tiling optimization, with the aim of �nd an

optimal tiled arrays (i.e. a 
ompromise with respe
t to the ideal fully populated

array) whose power pattern is as 
lose as possible to the referen
e mask. A set

of new optimization methods, namely the ETM − CP , EM − ETM/CP , and
EM − OTM/CP methods, are proposed, addressing the mask mat
hing tiling

optimization by jointly 
ombining enumerative/GA-based approa
hes with opti-

mal 
onvex strategies, for the optimization of the tiling 
on�guration and of the

tiles ex
itations 
oe�
ients. The presented te
hniques positively 
ompared with

the ETM and OTM optimization methods presented in the previous 
hapters,

whi
h unavoidably fail when dealing with a mask mat
hing synthesis problem.

Mask Constrained Tiling Synthesis Problem - given an array ofM×N
isotropi
 elements, positioned over a re
tangular latti
e, and two

domino-like tiles

(

σV , σH
)

, �nd the optimal tiling/
lustering 
on�g-

uration c
opt

and the 
orresponding sub-array weights αopt
and βopt

,

su
h that the pen
il beam pattern radiated by the tiled array maxi-

mizes the mat
hing with an user-de�ned power mask M (u, v).

A

ordingly, the 
ost fun
tion of the tiling optimization problem is de�ned as:

Φ (c;α,β) = χ (c;α,β) +
H [−χ (c;α,β)]

D (u0, v0)
(4.1)

whereD (u0, v0) is the peak dire
tivity, (u0, v0) being the beam pointing dire
tion,

and

χ (c;α,β) = max
(u,v)∈V

{|P (u, v)−M (u, v)| H [P (u, v)−M (u, v)]} (4.2)

is the maximum violation of the power pattern from the power mask in the

(u, v)−plane, within the visible region V = {(u, v) : u2 + v2 < 1}. Moreover

P (u, v) is the power pattern of the 
lustered array given as P (u, v) = |AF (u, v; c)|2,
while H [·] is the Heaviside fun
tion. As expressed by (4.1) the mask mat
hing is
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de�ned as the maximum distan
e of the power pattern from the mask χ (c;α,β)
only in 
ase the power pattern is above the mask, otherwise, the 
ost fun
tion

a

ounts only the se
ond term [i.e. the ratio 1/D (u0, v0)℄ with the purpose

of peak dire
tivity maximization. Consequently, the ideal optimum (i.e. when

χ (c;α,β) = 0) is rea
hed only if the power pattern is below the power mask in

all the (u, v) points of V. Su
h optimal mat
hing 
an be easily obtained when


onsidering 
onventional fully-populated ar
hite
tures, providing feasible mask


onstraints. When instead a 
lustered ar
hite
ture is 
onsidered, whi
h is intrin-

si
ally a sub-optimal solution with respe
t to a fully-populated array, a perfe
t

mat
hing 
annot be assured. Indeed, it is worth to point out here that the aim

of the proposed methodologies is not to exa
tly �t the referen
e mask, but to

�nd the 
losest 
ompromise solution to a perfe
t mask mat
hing.

4.2 Enumerative Approa
h with Convex Program-

ming Optimization of Sub-Array Weights

As explained in detail in Chapter 2, the global optimum of the domino tiling syn-

thesis problem 
an be theoreti
ally rea
hed by means of a full-global optimization

approa
h, by jointly optimize the tiling 
on�guration c and the tiles ex
itations


oe�
ients α,β. Su
h optimization approa
h turns out to be 
omputationally

unfeasible in most of the 
ases, mainly due to the wide solutions spa
e when

dealing with medium/large antenna apertures. The nested-optimization method

is therefore proposed, by jointly exploiting the ETM approa
h and a Convex

Programming (CP ) optimization [100℄[101℄[102℄[28℄, denoted as ETM-CP and

de�ned by the following steps:

• Step 1. Tilings Enumeration: the optimal tiling generation method de-

s
ribed in Chapter 3 is used for the enumeration of the whole set of 
lus-

tering 
on�gurations C∞ =
{

c
(t); t = 1, ..., T

}

• Step 2. CP Optimizations: given the power mask M (u, v) de�ning the

ideal requirements on the power pattern, the following optimization prob-

lem is solved

(

αCP
t ,βCP

t

)

= arg

[

min
αt,βt

{Φ (αt,βt |ct )}

]

(4.3)

where for ea
h tiling ct, t = 1, ..., T , the optimization the sub-array weights

is performed through the CP strategy presented in [102℄, in whi
h the

maximization of the power pattern dire
tivity along the sum beam pointing

dire
tion is maximized, still satisfying the power mask M (u, v). More

in detail the power mask M (u, v) is uniformly dis
retized in R sampling

dire
tions, (ur, vr), r = 1, ..., R and a standard CP -based optimization

te
hnique is used to obtained the optimal subarray amplitude and phase
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ex
itations

(

αCP
t ,βCP

t

)

of the t-th trial 
lustering 
on�guration ct, are

obtained solving the following minimization problem

min
ℜ{It},ℑ{It}

∫ π

0

∫ 2π

0

P (θ, φ; ct) sin (θ) dθdφ (4.4)

subje
t to the following 
onstraints

P (u0, v0; ct) = 1 (4.5)

P (ur, vr; ct) ≤M (ur, vr)
r = 1, ..., R

(4.6)

where in (4.4) It =
{

Iq,t = αq,te
jβq,t ; q = 1, ..., Q

}

and ℜ and ℑ stand for

real and imaginary part, respe
tively. The minimization of (4.4) subje
t

to (4.5) implies the maximization of the antenna dire
tivity (assuming the

array does not radiate in the ba
k half-spa
e), de�ned as

D =
4π |P (u0, v0; ct)|

2

∫ π

0

∫ 2π

0
|P (θ, φ; ct)|

2 sin (θ) dθdφ
. (4.7)

• Step 3. Cost Fun
tion Evaluation: evaluation of the mask mat
hing (4.1)

between the tiled array power pattern P
(

u, v; cETM−CP
)

and the power

mask M (u, v), for ea
h of the T CP−optimized solutions and sele
tion of

the best tiling/sub-array weights as

(

c
ETM−CP ;αETM−CP ,βETM−CP

)

= arg

[

min
t=1,...,T

{

Φ
(

ct;α
CP
t ,βCP

t

)}

]

(4.8)

The above pro
edure allows to rea
h the optimum of our problem with a total


omputational time equal to∆tETM−CP = ∆tETM+T∆tCP+T∆tΦ, being∆tETM

the time ne
essary for the ETM simulation, ∆tCP
is the time for a single CP

optimization and ∆tΦis the time for the evaluation of (4.1). It is worth noting

here that the feasibility of the nested optimization, depends by: i) the 
ardinality

of the solution spa
e, di
tated by T ; ii) the 
omputational 
ost needed to solve

(4.4) under the 
onstraints (4.5) and (4.6). Therefore, in 
ase of small/medium

arrays, even if T allows to enumerate C∞ =
{

c
(t); t = 1, ..., T

}

in a reasonable

time, the optimization is still 
ompromised by (2.5), whi
h turns out to be the

real bottlene
k of the nested optimization approa
h.

4.3 Ex
itation Mat
hing-Based Approa
hes

In order to deal with medium/large arrays, a further approximation is needed.

As done in the ETM te
hnique presented in Chapter 3, the ETM −CP method
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is redu
ed to an ex
itation mat
hing (EM) ETM approa
h, allowing a fast 
om-

putation of the tiles ex
itations 
oe�
ients, by means of analyti
 relationships.

Anyway su
h approximation is exploited only for the sear
h of the optimal 
lus-

tering 
on�guration, while the �nal sub-array amplitude and phase 
oe�
ients

are re-optimized using a CP -based optimization. Su
h an approa
h, 
alled EM-

ETM/CP, is implemented throughout the following pro
edural steps:

• Step 1. Referen
e Array : given the power mask M (u, v) de�ning the

ideal requirements on the power pattern, the optimal referen
e ex
ita-

tions weights Iref = αref
mne

jβref
mn , m = 1, ... , M, n = 1, ... , N are

obtained through a CP optimization of the M × N fully-populated array

[Fig. 2.1(a)℄;

• Step 2. Tilings Enumeration: the height fun
tion based methodology

(Chapter 3) is used for the enumeration of the whole set of 
lustering


on�gurations ct;, t = 1, ..., T ;

• Step 3. EM Sub-array Weights: for ea
h tiling ct;, t = 1, ..., T , the op-

timal 
ompromise EM ex
itations 
oe�
ients

(

αEM
t ,βEM

t

)

are obtained

minimizing the following ex
itation mat
hing problem

(

αEM
t ,βEM

t

)

= arg

[

min
α,β

{

M
∑

m=1

N
∑

n=1

∣

∣Irefmn − Imn

∣

∣

}]

(4.9)

The optimal amplitudes and phase 
oe�
ients solving (4.9), turn out to be

analyti
ally obtained as [29℄

αEM
q,t =

1

2

N
∑

n=1

M
∑

m=1

αref
mnδcmnq, q = 1, ..., Q (4.10)

βEM
q,t =

1

2

N
∑

n=1

M
∑

m=1

βref
mn δcmnq, q = 1, ..., Q (4.11)

• Step 4. Cost Fun
tion Evaluation: evaluation of the mask mat
hing (4.1)

for ea
h of the T solutions and sele
tion of the best tiling/sub-array weights,

solving

(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)

= arg

[

min
t=1,...,T

{

Φ
(

ct;α
EM
t ,βEM

t

)}

]

(4.12)

• Step 5. CP Optimization: single �nal CP optimization of the amplitude

and phase ex
itations of the EM−optimized 
lustering ve
tor c
EM−ETM

(

αEM−ETM/CP ,βEM−ETM/CP
)

= arg

[

min
α,β

{

Φ
(

α,β
∣

∣c
EM−ETM

)}

]

(4.13)
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The EM-based methods allows to optimize the tiling with a total 
omputational

time equal to ∆tEM−ETM/CP = ∆tEM−ETM + 2∆tCP + T∆tΦ, being ∆tEM−ETM

the time ne
essary for the ETM simulation, in
luding the EM ex
itation 
om-

putation and the 
ost fun
tion. The use of the analyti
 formulas (4.10) and

(4.11), allows a fast 
omputation of the tiles ex
itations weights. In this 
ase the


onvergen
e of the solution

(

c
EM−ETM ;αEM−ETM/CP ,βEM−ETM/CP

)

toward the

global optimum of the addressed problem 
annot be assured as in (2.3), anyway

the best possible 
ompromise solution obtained in a feasible amount of time,

is provided. Finally, in 
ase T is large enough to make both ETM − CP and

EM −ETM/CP methods unfeasible, the OTM methodology is used instead of

the ETM method in Steps 2-5 of the EM − ETM/CP pro
edure. For su
h an

approa
h, 
alled EM-OTM/CP, the Step 4 is implemented as

(

c
EM−OTM ;αEM−OTM ,βEM−OTM

)

= arg

[

min
k=1,...,K

{

min
ct(k)

{

Φ
(

ct(k);α
EM
t(k) ,β

EM
t(k)

)}

}]

(4.14)

where the set ct(k) ⊂ T is a fra
tion of the whole solution spa
e, explored by

the OTM at the k−th iteration, K being the maximum user-de�ned iterations

number. Finally the optimal sub-array weights are obtained as:

(

αEM−OTM/CP ,βEM−OTM/CP
)

= arg

[

min
α,β

{

Φ
(

α,β
∣

∣c
EM−OTM

)}

]

. (4.15)

4.4 Numeri
al Assessment

4.4.1 Small Dimensions Arrays

Let us 
onsider a small re
tangular aperture of dimensions 2.5λ × 2λ, �lled by

M × N = 5 × 4 elements, lo
ated over a square latti
e, equally spa
ed by dx =
dy = λ/2. The ideal design requirements are de�ned by the power mask of Fig.

4.1, where a re
tangular window of dimension BWu×BWv = 1.00 [u]×1.12 [v] is
allowed for the main beam, a sidelobe level equal to SLLL1 = −20 [dB℄ is required
for the �rst sidelobes near the main beam, while the end-�re sidelobes along the

azimuth plane are lowered to SLLL2 = −25 [dB℄. As 
an be seen the mask shows

two symmetries along the azimuth (φ = 0 [deg℄) and elevation (φ = 90 [deg℄)

planes, a

ordingly, the phase 
oe�
ients of the fully populated array are set to

βref
mn = 0,m = 1, ...,M , n = 1, ..., N , while the amplitude 
oe�
ients have been

optimized using a CP optimization strategy, obtaining the amplitudes showed

in Fig. 4.2(a). The CP optimization has been 
arried out 
onsidering a max-

imum number of iterations equal to I = 200, and a �tness threshold equal to

τ = 10−6
(the threshold τ is an user-de�ned value used to dis
riminate the so-

lutions for whi
h the mask mat
hing χ (c;α,β) is 
onsidered χ (c;α,β) = 0).
The top view of the 
orresponding synthesized ideal power pattern is shown in
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Figure 4.1: Numeri
al Assessment (Small Array, Symmetri
 Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - The power mask M (u, v) de�ning the


onstraints for the synthesis of an M ×N = 5× 4 array of isotropi
 elements.

Fig. 4.2(b). A

ording to (3.4), the 
onsidered array allows to entirely 
over

the aperture with Q = 10 tiles in T = 95 di�erent ways. The limited number

of tiling 
on�gurations enables a full-global optimization approa
h, 
onsequently

the ETM − CP simulation has been exe
uted in ∆tETM−CP = 9 : 44 : 30
[h:min:se
℄ 
onsidering the same CP parameters used for the referen
e array

synthesis. Figure 4.3(a) shows the sorted values of the mask mat
hing evaluated

for the T solutions. In order to dis
riminate among the 
onvergent solutions

(i.e. solutions yielding a power pattern that 
ompletely �ts the power mask) and

the non 
onvergent solutions (i.e. the power pattern violates the power mask)

the �tness threshold is reported in the �gure as a bla
k dashed line. As 
an

be seen 6 ETM − CP solutions have 
ost-fun
tion value that is below the �t-

ness threshold. The global optimum [Fig. 4.4(a)℄ has been analyzed in detail,


omputing the radiated power pattern [Fig. 4.4(b)℄ and the respe
tive power

pattern des
riptors, namely the SLL, HPBWAZ, HPBWEL D, reported in Tab

4.1. The 
omparisons of the power pattern with the power mask of the best

ETM − CP solution, along the azimuth and elevation planes, are reported in

Fig. 4.3(b) and Fig. 4.3(
), respe
tively. As 
an be seen, the power pattern


ompletely meets the power mask, also 
on�rmed by the mask mat
hing value [

χ
(

c
ETM−CP ;αETM−CP ,βETM−CP

)

= 1.22×10−9
, Tab 4.1℄. In order to validate

the EM−based proposed approa
hes, the �bare� EM −ETM optimization has

been exe
uted 
onsidering as referen
e ex
itations the optimal amplitudes 
oef-

�
ients of Fig. 4.2(a). The evaluated 
ost fun
tion values have been reported in

Fig. 4.3(a) as 
ompared to the ETM−CP approa
h. However, as expe
ted, none
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Figure 4.2: Numeri
al Assessment (Small Array, Symmetri
 Mask ; d = 0.5λ,
M×N = 5×4 Ntot = 20, T = 95) - The referen
e solution of the fully-populated
array obtained through a CP optimization. (a) The amplitude 
oe�
ients, and

(b) the top-view power pattern.

of the EM−ETM solutions rea
h the �tness threshold, showing a non negligible

distan
e of the EM − ETM best solution from the global optimum rea
hed by

ETM − CP . Indeed, by observing Fig. 4.3(b)-(
) the power pattern 
ut along

the azimuth and elevation planes of the EM−ETM power pattern, 
onsiderably

violates the power mask in both the prin
ipal planes 
uts. Anyway, by observing

the tiling/amplitudes 
on�guration of the best EM−ETM solution reported, in

Fig, 4.4(
), the tiles arrangement is exa
tly the same of the ETM −CP solution

[Fig. 4.4(a)℄, while the sub-array amplitude 
oe�
ients shows di�erent values.

For this reason, the proposed EM − ETM/CP approa
h, by a CP optimiza-

tion of the tiles amplitudes [Fig. 4.4(e)℄, allows to exa
tly 
onverge to the same

ETM − CP solution [Fig. 4.4(a)℄, a

ordingly the respe
tive power patterns

overlap [Fig. 4.3(b)-(
)℄. It is worth noting here that the overall time needed

to obtain the global optimal solution using the EM − ETM/CP method has

been estimated equal to ∆tEM−ETM/CP = ∆tref + ∆tEM−ETM + ∆tCP = 1 : 18
[min:se
℄ (Tab 4.1), whi
h means a time redu
tion of 99.7% with respe
t to the

ETM − CP approa
h. With the purpose of validating the EM − OTM/CP
strategy, the GA−based s
hemata-driven optimization, has been also exe
uted.

The GA 
ontrol parameters have been set a

ording to the rules des
ribed in Ch.

3 (U = 6, K = 10, pc = 0.9, pm = 0.01). For statisti
al reasons, the GA opti-

mization has been exe
uted for 10 di�erent time 
onverging to the EM −ETM
simulation [Fig. 4.3(b)-(
)℄, 
onsequently the EM −OTM/CP solution 
oin
ide

to the EM − ETM/CP .

In order to quantify the robustness of the optimized tiled array, when the

beam is steered o�-broadside dire
tions, the mask mat
hing of the power pattern
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Figure 4.3: Numeri
al Assessment (Small Array, Symmetri
 Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - (a) The ETM − CP 
ost fun
tion

evaluations for ea
h of the T = 95 tiling solutions, as 
ompared to the EM −
ETM simulation 
ost fun
tion evaluations, and the 
ost fun
tion of the EM −
ETM/CP simulation. (b)(
) The power pattern 
uts along the u = u0 = 0.0
and v = v0 = 0.0 plane of the ETM − CP , EM −ETM , EM −OTM optimal

solutions and the EM −ETM/CP solution, as 
ompared to the power mask.
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Table 4.1: Numeri
al Assessment (Small Array, Symmetri
 Mask ; d = 0.5λ,M×
N = 5×4 Ntot = 20, T = 95) - Measured radiation indexes (SLL, D, HPBWaz,

and HPBWel), mask mat
hing χ [P (u, v)] of the referen
e and optimized tilings

patterns, and timings of the optimizations/simulations.

SLL D HPBWaz HPBWel χ ∆t

[dB℄ [dBi℄ [deg℄ [deg℄ - [h:min:se
℄

M ×N = 4× 5 SymmetricMask

Reference −20.00 17.12 24.15 30.10 2.36× 10−9 00 : 11 : 40

ETM − CP −20.00 16.95 24.21 30.10 1.22× 10−9 09 : 44 : 30

EM − ETM −17.80 17.20 23.49 29.29 6.94× 10−4 00 : 00 : 31

EM −OTM −17.80 17.20 23.49 29.29 6.94× 10−4 00 : 00 : 05

EM − ETM/CP −20.00 16.95 24.21 30.10 1.22× 10−9 00 : 00 : 47

varying the beam pointing within the visible range (i.e. 0◦ ≤ θ0 < 90◦ and

0◦ ≤ φ0 < 360◦), has been evaluated and reported in the polar diagram of Fig.

4.5(a). It 
an be noti
ed that the steering of the beam along the φ0 = 90[deg℄
dire
tion, leads to higher mask mat
hing values for lower θ0 angles with respe
t

to when steering along the azimuth plane. A detail of the steering analysis is

reported in Fig. 4.5(b) showing the mask mat
hing as fun
tion of the pointing

angle θ0 along the φ0 = 0 [deg℄ and φ0 = 90 [deg℄ planes, showing a maximum

o�-boresight steering angle of θ0 < 1 [deg℄ along the φ0 = 90 [deg℄ plane, and

θ0 < 2 [deg℄ along the φ0 = 0 [deg℄ plane. The steering of the beam in Fig. 4.5(a)-

(b) has been obtained by a simple linear phase shift, using the analyti
 formula

(3.11). Hen
e the reported results 
an be further improved by performing a CP

synthesis of the steered power pattern, 
onsidering the steered mask.

In order to show the versatility of the proposed methodologies, an asym-

metri
 power mask (Fig. 4.6) has been 
onsidered for a se
ond assessment of

the M × N = 4 × 5 array. This time both the amplitudes and phase 
o-

e�
ients are optimized, and the referen
e ideal optimal CP amplitude and

phase 
oe�
ients are shown in Fig. 4.7(a) and Fig. 4.7(b) respe
tively, to-

gether with the synthesized referen
e power pattern in Fig. 4.7(
). Also in

this 
ase the ETM − CP approa
h has been exe
uted in order to �nd the

optimal tiled array �tting M (u, v). Two solutions rea
hed the �tness thresh-

old [Fig. 4.8(a)℄, with a �nal 
ost-fun
tion value of the global best equal to

χ
(

c
ETM−CP ;αETM−CP ,βETM−CP

)

= 1.04 × 10−8
(Tab. 4.2). The amplitude

and phases 
oe�
ients, as well as the tiling 
on�guration, have been reported in

Fig. 4.9(a)-(b), together with the top view of the power pattern [Fig. 4.9(
)℄.

Even in this 
ase the EM − ETM and the EM − OTM methods 
onverge to

the same EM−optimal solution [Fig. 4.8(a)℄, but still too far from an a

ept-

able mat
hing [χ
(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)

= 8.03 × 10−4
, Tab. 4.2℄.
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Figure 4.4: Numeri
al Assessment (Small Array, Symmetri
 Mask ; d = 0.5λ,
M ×N = 5 × 4 Ntot = 20, T = 95) - (a)(
)(e) The tiles amplitudes ex
itations


oe�
ients and (b)(d)(f ) the respe
tive top-view power patterns of the ETM −
CP optimal solution (a)(b), the EM − ETM optimal solution (
)(d), and the

EM −ETM/CP solution (e)(f ).
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Figure 4.5: Numeri
al Assessment (Small Array, Symmetri
 Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - The mask mat
hing map, evaluated when

steering the beam of the EM −ETM/CP solution, within a s
an 
one.

It 
an be noti
ed that the tiles orientation of the solution rea
hed by the �bare�

EM−based methods [Fig. 4.9(d)℄, is slightly di�erent from the ETM − CP
tiling [Fig. 4.9(a)℄, 
onsequently, in this 
ase there are no 
han
es to 
onverge

to the global optimum through the EM − ETM/CP . Nevertheless, di�erently
from the EM −ETM , the EM −ETM/CP solution lowers the mask mat
hing

down to χ
(

c
EM−ETM ;αEM−ETM/CP ,βEM−ETM/CP

)

= 2.05 × 10−5
(Tab. 4.2),

and, even if the 
ost fun
tion is above the �tness threshold, the power pat-

tern it's very 
lose to the referen
e power mask pro�le and to the optimal

ETM − CP pattern [Fig. 4.8(b)-(
)℄, also 
on�rmed by the pattern des
rip-

tors reported in Tab. 4.2 (∆SLL =
∣

∣SLLEM−ETM/CP − SLLref
∣

∣ = 0.41 [dB℄,

∆D =
∣

∣DEM/ETM−CP −Dref
∣

∣ = 0.28 [dBi℄, ∆HPBWAZ =
∣

∣

∣
HPBW

EM−ETM/CP
AZ

−HPBW ref
AZ

∣

∣

∣
= 0.55 [deg℄, ∆HPBWEL =

∣

∣

∣
HPBW

EM−ETM/CP
EL −HPBWRref

EL

∣

∣

∣
=

0.21 [deg℄). Moreover, the EM − ETM/CP method allows to rea
h the 
los-

est solution to the optimum in a redu
ed amount of time, whi
h is equal to

∆tEM−ETM/CP = ∆tref +∆tEM−ETM +∆tCP = 00 : 16 : 18 [h:min:se
℄, instead

of ∆tETM−CP = 16 : 43 : 10 [h:min:se
℄ for the full ETM − CP simulation. Fi-

nally, the analysis varying the s
anning angle has been performed for the optimal

and 
ompromise solutions. As 
an be seen from Fig. 4.10(a)(
) the ETM −CP
solution is more robust when steering the beam along the azimuth plane, while

the EM −ETM/CP tiling allows better performan
es along the elevation plane

[Fig. 4.10(b)-(d)℄.
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Figure 4.6: Numeri
al Assessment (Small Array, Asymmetri
 Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - The power mask M (u, v) de�ning the


onstraints for the synthesis of an M ×N = 5× 4 array of isotropi
 elements.

Table 4.2: Numeri
al Assessment (Small Array, Asymmetri
 Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - Measured radiation indexes (SLL, D,

HPBWaz, and HPBWel), mask mat
hing χ [P (u, v)] of the referen
e and opti-

mized tilings patterns, and timings of the optimizations/simulations.

SLL D HPBWaz HPBWel χ ∆t

[dB℄ [dBi℄ [deg℄ [deg℄ - [h:min:se
℄

M ×N = 4× 5 AsymmetricMask

Reference −20.00 16.96 24.70 30.08 4.60× 10−10 00 : 11 : 50

ETM − CP −20.00 16.81 24.95 30.08 1.04× 10−7 16 : 43 : 10

EM − ETM −17.14 17.04 24.10 29.57 8.03× 10−4 00 : 00 : 30

EM −OTM −17.14 17.04 24.10 29.57 8.03× 10−4 00 : 00 : 09

EM − ETM/CP −19.59 16.68 25.25 30.29 2.05× 10−5 00 : 03 : 58
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Figure 4.7: Numeri
al Assessment (Small Array, Asymmetri
 Mask ; d = 0.5λ,
M×N = 5×4 Ntot = 20, T = 95) - The referen
e solution of the fully-populated
array obtained through a CP optimization. (a) The amplitude 
oe�
ients, (b)

the phase 
oe�
ients, and (
) the top-view power pattern.

64



CHAPTER 4. MASK-CONSTRAINED OPTIMIZATION OF

DOMINO-TILED PHASED ARRAYS

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0  10  20  30  40  50  60  70  80  90  100

M
as

k 
M

at
ch

in
g,

 χ

Sorted Solution Index

Fitness Threshold

ETM-CP EM-ETM EM-OTM EM-ETM/CP

(a)

-30

-25

-20

-15

-10

-5

 0

-1 -0.5  0  0.5  1

N
or

m
al

iz
ed

 P
ow

er
 P

at
te

rn
  [

dB
]

u=sin(θ)cos(φ)

φ = 0 [deg]

Reference

ETM-CP

EM-ETM

EM-OTM

EM-ETM/CP

Mask

-30

-25

-20

-15

-10

-5

 0

-1 -0.5  0  0.5  1

N
or

m
al

iz
ed

 P
ow

er
 P

at
te

rn
  [

dB
]

v=sin(θ)sin(φ)

φ = 90 [deg]

Reference

ETM-CP

EM-ETM

EM-OTM

EM-ETM/CP

Mask

(b) (
)

Figure 4.8: Numeri
al Assessment (Small Array, Asymmetri
 Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - (a) The ETM − CP 
ost fun
tion

evaluations for ea
h of the T = 95 tiling solutions, as 
ompared to the EM −
ETM simulation 
ost fun
tion evaluations, and the 
ost fun
tion of the EM −
ETM/CP simulation, together with the full-wave results. (b)(
) The power

pattern 
uts along the u = u0 = 0.0 and v = v0 = 0.0 plane of the ETM − CP ,
EM −ETM , EM −OTM optimal solutions and the EM −ETM/CP solution,

as 
ompared to the power mask.
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Figure 4.9: Numeri
al Assessment (Small Array, Asymmetri
 Mask ; d = 0.5λ,
M × N = 5 × 4 Ntot = 20, T = 95) - (a)(d)(g) The tiles amplitudes ex
ita-

tions 
oe�
ients, (b)(e)(h) the tiles phases ex
itations 
oe�
ients and (
)(f )(i)

the respe
tive top-view power patterns of the ETM − CP optimal solution

(a)(b)(
), the EM − ETM optimal solution (d)(e)(f ), the EM − ETM/CP
solution (g)(h)(i).
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Figure 4.10: Numeri
al Assessment (Small Array, Asymmetri
 Mask ; d = 0.5λ,
M ×N = 5 × 4 Ntot = 20, T = 95) - The mask mat
hing map, evaluated when

steering the beam of the EM − ETM/CP solution, within a s
an 
one.
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4.4.2 Medium Dimensions Arrays

In order to asses the proposed methodology for small/medium sized arrays, an

4.5λ × 3λ re
tangular aperture is now 
onsidered, �lled with N ×M = 9 × 6
elements lo
ated over a squared latti
e and equally spa
ed by dx = dy = λ/2.
The symmetri
 power mask of Fig. 4.11 de�nes the optimal pattern shape, 
on-

sisting in a main beam window of dimension BWu × BWv = 0.5 [u] × 0.8 [v], a
maximum SLLL1 = −20 [dB℄ for the lobes nearby the main lobe, and a max-

imum SLLL2 = −25 [dB℄ in the end-�re zone. The CP optimized amplitude


oe�
ients of the referen
e fully-populated array, together with the synthesized

power pattern are reported in Fig. 4.13. A

ording to (3.4) a M × N = 9 × 6
elements array 
an be partitioned into exa
tly T = 8.17991×105 di�erent tilings.
It is 
lear that in this 
ase the amount of time needed to 
omplete an ETM−CP
simulations turns out to be very large (i.e ∆t ≃ 94 days, assuming ∆tCP ≃ 10
[se
℄). The EM−based te
hniques instead, allow to 
omplete the optimization

into a reasonable amount of time (i.e.∆tEM−ETM = 15 : 39 : 36 [h:min:se
℄ and

∆tEM−OTM = 00 : 20 : 12 [h:min:se
℄, Tab. 4.3). The mask mat
hing evaluated

by the EM −ETM for all the existing tilings has been reported in Fig. 4.13(a),

together with the best solution provided by the EM−OTM approa
h. It is worth

noting that also in this 
ase the EM −OTM method (the following parameters

have been used for the 10 GA optimizations: U = 54, K = 500, pc = 0.9,
pm = 0.01), a
hieve the same EM − ETM solution. Figure 4.14(a) reports the

tiling, as well as the amplitude 
oe�
ients of the EM − ETM/OTM solution,

while the top-view power pattern is shown in Fig. 4.14(b). The 
omparison of

the power pattern with the power mask is reported in Fig. 4.13(b)-(
) along the

azimuth and elevation planes, respe
tively. As 
an be seen the power pattern 
or-

responding to the EM−ETM solution, does not mat
h the optimal performan
es

[χ
(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)

= 4.8× 10−5
, Tab. 4.3℄. Nevertheless, the

solution obtained through the proposed EM − ETM/CP method [Fig. 4.9(
)-

(d)℄ a�ords a power pattern that 
ompletely �ts the power mask, as 
on�rmed

by the �nal 
ost fun
tion value [χ
(

c
EM−ETM ;αEM−ETM/CP ,βEM−ETM/CP

)

=
5.0 × 10−10

Tab. 4.3℄, whi
h is below the �tness threshold [Fig. 4.13(a)℄. The

analysis of the mask mat
hing varying the s
anning angle has been exe
uted and

graphi
ally shown in the diagram of Fig. 4.15(a). Moreover, Fig. 4.15(b) reports

the mask mat
hing parameter when steering the beam along the φ0 = 0 [deg℄

and φ0 = 90 [deg℄ planes, showing a maximum s
an angle of θ0 = 2 [deg℄, if a

good mat
hing with the power mask must be assured.

A se
ond assessment of the 9 × 6 array has been performed 
onsidering the

power mask of Fig. 4.16. A window of dimensionBWu×BWv = 0.64 [u]×0.92 [v]
is 
onsidered for the main beam, while three di�erent SLL levels are asym-

metri
ally de�ned in the side-lobes zone: SLLL1 = −25 [dB℄, SLLL2 = −28
[dB℄, and SLLL3 = −35 [dB℄. The referen
e 
omplex ex
itations of the fully

populated array is reported in Fig. 4.17(a)-(b), and the 
orresponding power

pattern in Fig. 4.17(
). As shown in Fig. 4.18(a), the EM − ETM and

68



CHAPTER 4. MASK-CONSTRAINED OPTIMIZATION OF

DOMINO-TILED PHASED ARRAYS

Figure 4.11: Numeri
al Assessment (Medium Array, Symmetri
 Mask ; d = 0.5λ,
M×N = 6×9 Ntot = 54, T ≃ 8.2×105) - The power mask M (u, v) de�ning the

onstraints for the synthesis of an M ×N = 6× 9 array of isotropi
 elements.
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Figure 4.12: Numeri
al Assessment (Medium Array, Symmetri
 Mask ; d = 0.5λ,
M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - The referen
e solution of the

fully-populated array obtained through a CP optimization. (a) The amplitude


oe�
ients, and (b) the top-view power pattern.
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Figure 4.13: Numeri
al Assessment (Medium Array, Symmetri
 Mask ; d = 0.5λ,
M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - (a) The EM − ETM , EM −
OTM simulation 
ost fun
tion evaluations, and the 
ost fun
tion of the EM −
ETM/CP simulation. (b)-(
) The power pattern 
uts along the u = u0 = 0.0
and v = v0 = 0.0 plane of the ETM − EM , EM − OTM optimal solution

and the EM −ETM/CP solution, as 
ompared to the referen
e fully-populated

solution and to the power mask.
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Figure 4.14: Numeri
al Assessment (Medium Array, Symmetri
 Mask ; d = 0.5λ,
M×N = 6×9 Ntot = 54, T ≃ 8.2×105) - (a)(
) The tiles amplitudes ex
itations


oe�
ients and (b)(d) the respe
tive top-view power patterns of the the EM −
ETM optimal solution (a)(b), and the EM − ETM/CP solution (
)(d).
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Figure 4.15: Numeri
al Assessment (Medium Array, Symmetri
 Mask ; d = 0.5λ,
M ×N = 6× 9 Ntot = 54, T ≃ 8.2× 105) - The mask mat
hing map, evaluated

when steering the beam of the EM −ETM/CP solution, within a s
an 
one.
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Table 4.3: Numeri
al Assessment (Medium Array, Symmetri
 Mask ; d = 0.5λ,
M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - Measured radiation indexes (SLL,
D, HPBWaz, and HPBWel), mask mat
hing χ [P (u, v)] of the referen
e and

optimized tilings patterns, and timings of the optimizations/simulations.

SLL D HPBWaz HPBWel χ [P (u, v)] ∆t

[dB℄ [dBi℄ [deg℄ [deg℄ - [h:min:se
℄

M ×N = 6× 9 SymmetricMask

Reference −20.00 21.52 13.15 20.07 3.60× 10−10 00 : 21 : 25

EM − ETM −19.11 21.54 13.03 19.86 4.80× 10−5 15 : 39 : 36

EM −OTM −19.11 21.54 13.03 19.86 4.80× 10−5 00 : 20 : 12

EM − ETM/CP −20.00 21.46 13.15 20.07 5.00× 10−10 00 : 03 : 30

EM − OTM simulations 
onverges to the same EM−optimal solution show-

ing a mask mat
hing equal to χ
(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)

= 2.4× 10−4

(Tab. 4.4), whose 
orresponding tiling is pi
tured in Fig. 4.19(a)-(b), to-

gether with the EM − ETM amplitude and phase 
oe�
ients, while the top

view power pattern is reported in Fig. 4.19(
). The EM − ETM/CP op-

timization still does not rea
h the 
onvergen
e, 
onsequently the 
ost fun
-

tion value [χ
(

c
EM−ETM ;αEM−ETM/CP ,βEM−ETM/CP

)

= 1.7 × 10−5
Tab 4.4℄

is still above the �tness threshold [Fig. 4.18(a)℄, but its lower with respe
t

to the EM − ETM solution. Indeed, even if the EM − ETM/CP power

pattern violates the power mask [Fig. 4.18(b)-(
)℄, the 
orresponding beam

pattern des
riptors (Tab. 4.4) are very 
lose to the optimal ones (∆SLL =
∣

∣SLLEM−ETM/CP − SLLref
∣

∣ = 0.55 [dB℄, ∆D =
∣

∣DEM−ETM/CP −Dref
∣

∣ = 0.18

[dBi℄,∆HPBWAZ =
∣

∣

∣
HPBW

EM−ETM/CP
AZ −HPBW ref

AZ

∣

∣

∣
= 0.16 [deg℄, ∆HPBWEL =

∣

∣

∣
HPBW

EM−ETM/CP
EL −HPBW ref

EL

∣

∣

∣
= 0.12 [deg℄). The analysis of the robust-

ness against the beam steering [Fig. 4.20℄ shows a better performan
e of the

EM − ETM/CP along the elevation plane with respe
t to the azimuth plane.

4.4.3 Large Dimensions Arrays

As a �nal example, a larger array is 
onsidered. The array aperture is a re
t-

angle of dimension 10λ × 7.5λ �lled by Ntot = 300 elements lo
ated over a

20 × 15 grid, equally spa
ed by dx = dy = λ/2. The 
onsidered power mask

is shown in Fig. 4.21, as 
an bee seen, the mask is asymmetri
 with a main

beam window of dimension BWu × BWv = 0.32 [u] × 0.42 [v] and SLL levels

equal to: SLLL1 = −25 [dB℄, SLLL2 = −30 [dB℄, and SLLL3 = −40 [dB℄.

Figure 4.22(a)-(b) shows the optimal CP ex
itation 
oe�
ients of the refer-

en
e fully-populated array, and Fig. 4.22(b) shows the top-view of the synthe-
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Figure 4.16: Numeri
al Assessment (Medium Array, Asymmetri
 Mask ; d =
0.5λ, M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - The power mask M (u, v)
de�ning the 
onstraints for the synthesis of an M ×N = 6× 9 array of isotropi


elements.

Table 4.4: Numeri
al Assessment (Medium Array, Asymmetri
 Mask ; d = 0.5λ,
M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - Measured radiation indexes (SLL,
D, HPBWaz, and HPBWel), mask mat
hing χ [P (u, v)] of the referen
e and

optimized tilings patterns, and timings of the optimizations.

SLL D HPBWaz HPBWel χ ∆t

[dB℄ [dBi℄ [deg℄ [deg℄ - [h:min:se
℄

M ×N = 6× 9 AsymmetricMask

Reference −25.00 20.81 14.53 21.61 3.05× 10−10 00 : 27 : 35

EM − ETM −23.48 20.85 14.32 21.33 2.40× 10−4 16 : 08 : 10

EM −OTM −23.48 20.85 14.32 21.33 2.40× 10−4 00 : 25 : 20

EM − ETM/CP −24.45 20.63 14.69 21.49 1.70× 10−5 01 : 47 : 46
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Figure 4.17: Numeri
al Assessment (Medium Array, Asymmetri
 Mask ; d =
0.5λ, M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - The referen
e solution of the

fully-populated array obtained through a CP optimization. (a) The amplitude


oe�
ients, (b) the phase 
oe�
ients, and (
) the top-view power pattern.
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Figure 4.18: Numeri
al Assessment (Medium Array, Asymmetri
 Mask ; d =
0.5λ, M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - (a) The EM − ETM ,

EM − OTM simulation 
ost fun
tion evaluations, and the 
ost fun
tion of the

EM−ETM/CP simulation. (b)-(
) The power pattern 
uts along the u = u0 =
0.0 and v = v0 = 0.0 plane of the ETM − EM , EM − OTM optimal solution

and the EM −ETM/CP solution, as 
ompared to the referen
e fully-populated

solution and to the power mask.
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Figure 4.19: Numeri
al Assessment (Medium Array, Asymmetri
 Mask ; d =
0.5λ, M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - (a)(d) The tiles amplitudes

ex
itations 
oe�
ients, (b)(e) the tiles phase ex
itations 
oe�
ients and (
)(f )

the respe
tive top-view power patterns of the EM − ETM and EM − OTM
optimal solution (a)(b)(
), and the EM − ETM/CP solution (d)(e)(f ).
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Figure 4.20: Numeri
al Assessment (Medium Array, Asymmetri
 Mask ; d =
0.5λ, M × N = 6 × 9 Ntot = 54, T ≃ 8.2 × 105) - The mask mat
hing map,

evaluated when steering the beam of the EM − ETM/CP solution, within a

s
an 
one.

sized power pattern. In this 
ase the 
ardinality of the solution spa
e equals

to T = 4.9098 × 1035, whi
h is a too large for an exhaustive exploration, 
on-

sequently, the EM − OTM has been 
hosen in order to sear
h for the optimal

tiling in a feasible amount of time. Indeed, 10 di�erent GA optimizations have

been exe
uted 
onsidering U = 800 individuals, K = 1000 iterations, pc = 0.9
and pm = 0.01, for a total simulation time equal to ∆t = 16 : 42 : 30 [h:min:se
℄.

The �tness of all the exe
uted simulations are reported in Fig. 4.23(a) as

fun
tion of the iteration index. As 
an be seen, all the GA simulations 
on-

verges to 
ost-fun
tions values within the interval [2.0 × 10−6, 1.8 × 10−6]. The
50% of the exe
uted GA simulations 
onverges to the same best solution hav-

ing a mat
hing with the mask equal to χ
(

CEM−OTM ; αEM−OTM , βEM−OTM
)

=
1.8 × 10−6

(Tab. 4.5). The EM−optimal tiling, together with the ampli-

tude and phase ex
itation 
oe�
ients, are reported in Fig. 4.24(a)-(b), respe
-

tively, while the top view power pattern is reported in Fig. 4.24(
). Even

if the �bare� EM − OTM solution does not mat
h 
ompletely the mask, the

EM−OTM/CP su

essfully lowers the mask mat
hing below the �tness thresh-

old [ χ
(

CEM−OTM ; αEM−OTM/CP , βEM−E=OTM/CP
)

= 6.2 × 10−9
, Tab. 4.5℄.

Finally, the mask mat
hing has been evaluated varying the beam s
anning di-

re
tion, graphi
ally shown in the diagram of Fig. 4.25(a), together with a fo
us

in the nearby of the boresight dire
tion along the φ0 = 0 [deg℄ and φ0 = 90 [deg℄
planes reported in Fig. 4.25(b).
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Figure 4.21: Numeri
al Assessment (Large Array, Asymmetri
 Mask ; d = 0.5λ,
M×N = 15×20 Ntot = 300, T ≃ 4.9×1035) - The power mask M (u, v) de�ning
the 
onstraints for the synthesis of an M×N = 6×9 array of isotropi
 elements.

Table 4.5: Numeri
al Assessment (Large Array, Asymmetri
 Mask ; d = 0.5λ,
M × N = 15 × 20 Ntot = 300, T ≃ 4.9 × 1035) - Measured radiation indexes

(SLL, D, HPBWaz, and HPBWel), mask mat
hing χ [P (u, v)] of the referen
e
and optimized tilings patterns, and timings of the optimizations.

SLL D HPBWaz HPBWel χ ∆t
[dB℄ [dBi℄ [deg℄ [deg℄ - [h:min:se
℄

M ×N = 15× 20 AsymmetricMask
Reference −25.00 28.27 6.50 8.60 9.57× 10−9 02 : 59 : 03
EM − OTM −24.73 28.31 6.48 8.56 1.80× 10−6 04 : 28 : 29

EM − OTM/CP −25.00 28.24 6.51 8.60 6.20× 10−9 02 : 07 : 07
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Figure 4.22: Numeri
al Assessment (Large Array, Asymmetri
 Mask ; d = 0.5λ,
M × N = 15 × 20 Ntot = 300, T ≃ 4.9 × 1035) - The referen
e solution of the

fully-populated array obtained through a CP optimization. (a) The amplitude


oe�
ients, (b) the phase 
oe�
ients, and (
) the top-view power pattern.
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Figure 4.23: Numeri
al Assessment (Large Array, Asymmetri
 Mask ; d = 0.5λ,
M×N = 15×20Ntot = 300, T ≃ 4.9×1035) - (a) The EM−OTM simulation 
ost

fun
tion evaluations for the 10 GA simulation runs. (b)(
) The power pattern


uts along the u = u0 = 0.0 and v = v0 = 0.0 plane of the EM −OTM optimal

solutions and the EM − OTM/CP , as 
ompared to the power mask.
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Figure 4.24: Numeri
al Assessment (Large Array, Asymmetri
 Mask ; d = 0.5λ,
M × N = 15 × 20 Ntot = 300, T ≃ 4.9 × 1035) - (a)(d) The tiles amplitudes

ex
itations 
oe�
ients, (b)(e) the tiles phase ex
itations 
oe�
ients and (
)(f )

the respe
tive top-view power patterns of the EM − OTM optimal solution

(a)-(
), and the EM − OTM/CP solution (d)-(f ).
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Figure 4.25: Numeri
al Assessment (Large Array, Asymmetri
 Mask ; d = 0.5λ,
M × N = 15 × 20 Ntot = 300, T ≃ 4.9 × 1035) - The mask mat
hing map,

evaluated when steering the beam of the EM − OTM/CP solution, within a

s
an 
one.

Table 4.6: Numeri
al Assessment (Full-Wave Simulations) - Radiation indexes

(SLL, D, HPBWaz, and HPBWel), and mask mat
hing χ [P (u, v)] of the tiled
array power pattern, obtained simulating the entire arrays stru
ture using a full-

wave 
ommer
ial software.

M ×N SLL D HPBWaz HPBWel χ
[dB℄ [dBi℄ [deg℄ [deg℄ -

Full −Wave, PatchMulti− Layer
4× 5 ETM − CP −22.91 16.29 23.76 28.94 1.77× 10−8

EM −ETM/CP −21.86 16.14 24.04 29.15 1.29× 10−5

EM − ETM −19.68 16.54 22.90 28.54 2.37× 10−5

6× 9 EM −ETM/CP −24.69 19.80 14.43 21.09 6.91× 10−6

EM − ETM −24.90 20.06 13.98 20.93 3.58× 10−5

15× 20 EM − OTM/CP −25.08 27.20 6.42 8.56 1.88× 10−8

EM − OTM −24.86 27.00 6.40 8.50 9.19× 10−8

Full −Wave, Patch Spline
4× 5 ETM − CP −21.38 17.19 24.37 28.71 0.0

EM −ETM/CP −21.38 17.06 24.51 29.12 1.42× 10−6

EM − ETM −19.46 17.41 23.65 28.28 2.38× 10−4

6× 9 EM −ETM/CP −25.22 20.08 14.50 21.00 1.09× 10−6

EM − ETM −24.60 21.10 14.20 20.80 5.94× 10−5

15× 20 EM − OTM/CP −25.30 28.40 6.40 8.50 5.62× 10−7

EM − OTM −25.04 28.40 6.40 8.40 1.28× 10−6
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(a) (b)

(
) (d)

Figure 4.26: Numeri
al Assessment (Full-Wave Simulations) - (a) The model of

the multi-layer pat
h antenna and (b) the 
avity ba
ked spline pat
h antenna


onsidered for the full-wave simulations.
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Figure 4.27: Numeri
al Assessment (Full-Wave Simulations; d = 0.5λ, M ×
N = 5 × 4 Ntot = 20) - The normalized power pattern 
uts along (a)(
) the

u = u0 = 0.0 and (b)(d) v = v0 = 0.0 planes of the EM − ETM , CP − ETM ,

EM − ETM/CP , and EM − OTM/CP methods, 
ompared to the referen
e

mask, obtained using the full-wave solver when 
onsidering (a)(b) the aperture-


oupled multi-layered pat
h antenna and (
)(d) the 
avity-ba
ked spline pat
h

antenna.
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Figure 4.28: Numeri
al Assessment (Full-Wave Simulations; d = 0.5λ, M×N =
6× 9 Ntot = 54) - The normalized power pattern 
uts along (a)(
) the u = u0 =
0.0 and (b)(d) v = v0 = 0.0 planes of the EM − ETM , EM − ETM/CP ,
and EM −OTM/CP methods, 
ompared to the referen
e mask, obtained using

the full-wave solver when 
onsidering (a)(b) the aperture-
oupled multi-layered

pat
h antenna and (
)(d) the 
avity-ba
ked spline pat
h antenna.
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Figure 4.29: Numeri
al Assessment (Full-Wave Simulations; d = 0.5λ, M ×
N = 15 × 20 Ntot = 300) - The normalized power pattern 
uts along (a)(
)

the u = u0 = 0.0 and (b)(d) v = v0 = 0.0 planes of the EM − OTM , and

EM − OTM/CP methods, 
ompared to the referen
e mask, obtained using

the full-wave solver when 
onsidering (a)(b) the aperture-
oupled multi-layered

pat
h antenna and (
)(d) the 
avity-ba
ked spline pat
h antenna.
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4.4.4 Reliability Assessment

In order to assess the reliability of the optimized solutions when 
onsidering real

radiating elements, a set of test 
ases sele
ted among the small, medium and large

arrays of the previous sub-se
tion, have been simulated using a 
ommer
ial full-

wave software. Two di�erent pat
h antenna elements, namely the multi-layered

aperture 
oupled pat
h antenna [93℄ [Fig. 4.26(a)℄ and a 
avity-ba
ked spline-

shaped pat
h [Fig. 4.26(b)℄ [90℄, have been 
onsidered. The respe
tive gain pat-

tern obtained simulating the single isolated element are reported in Fig. 4.26(
)

and Fig. 4.26(d), respe
tively, showing a di�erent radiating behaviour among the

two antennas. In this 
ase, di�erently from the reliability assessment performed

in Se
. 3.4.1, the entire array stru
ture has been simulated, in
luding the ground

plane, and the mi
rostrip antennas substrates. The power pattern 
uts along the

φ0 = 0 [deg℄ and φ0 = 90 [deg℄ planes of the simulated smallN×M = 4×5 array,
partitioned a

ording to the tiling 
on�guration obtained from the EM −ETM ,

ETM − CP , EM −ETM/CP and EM −OTM/CP methods, when 
onsider-

ing the asymmetri
 power mask of Fig. 4.6, are shown in Fig. 4.27 as 
ompared

to the referen
e synthesis mask. As 
an be seen, the real power pattern 
orre-

sponding to the ETM − CP array, shows a good mat
hing with the mask for

both two radiating elements [ χ
(

c
ETM−CP ;αETM−CP ,βETM−CP

)
∣

∣

5×4

Multi−Layer
=

1.77 × 10−8
and χ

(

c
ETM−CP ;αETM−CP ,βETM−CP

)
∣

∣

5×4

Spline
= 0.0, Tab. 4.6℄,

while the EM − ETM/CP real array pattern slightly violates the mask along

the elevation plane when 
onsidering the multi-layered pat
h [Fig. 4.27(
)℄

(χ
(

c
EM−ETM ;αEM−ETM/CP ,βEM−ETM/CP

)
∣

∣

5×4

Multi−Layer
= 1.29×10−5

, Tab. 4.6).

The mask violation is instead mu
h more evident when using the �bare� EM −
ETM solution (i.e without re-optimizing the sub-array 
oe�
ients) with a mask

mat
hing equal to χ
(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)
∣

∣

5×4

Multi−Layer
= 2.37×10−5

and χ
(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)
∣

∣

5×4

Spline
= 2.38 × 10−4

. Similarly, both

the medium (M × N = 6 × 9) and large (M × N = 15 × 20) arrays have been

validated 
omparing the proposed approa
hes solutions with the mask and to

the �bare� EM −ETM methodology. The 
omparison of the power pattern 
uts

with the power mask are reported in Fig. 4.28 and Fig. 4.29, for the 6 × 9
and 15 × 20 arrays. Also in this 
ases the full-wave analysis shows very 
lose

behaviours of the radiation patterns when 
onsidering the two di�erent pat
h

antennas. Moreover the full-wave pattern obtained 
onsidering the solutions the

proposed methods (i.e ETM − CP , EM − ETM/CP and EM − OTM/CP )
outperform in terms of mask mat
hing the EM − ETM solution in all the


onsidered 
ases [e.g. χ
(

c
EM−ETM ;αEM−ETM/CP ,βEM−ETM/CP

)
∣

∣

6×9

Multi−Layer
=

6.91 × 10−6
vs. χ

(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)
∣

∣

6×9

Multi−Layer
= 3.58 × 10−5

and χ
(

c
EM−OTM ;αEM−OTM/CP ,βEM−OTM/CP

)
∣

∣

15×20

Spline
= 5.62× 10−7

vs.

χ
(

c
EM−ETM ;αEM−ETM ,βEM−ETM

)
∣

∣

15×20

Spline
= 1.28× 10−6

, Tab. 4.6℄.
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Chapter 5

Multi-Obje
tive Optimization of

Orthogonal Polygons by

Domino-Like Tiles

In this Chapter the tiling optimization problem of orthogonal-polygon shaped

apertures is addressed. With respe
t to standard re
tangular shaped arrays,

orthogonal polygon shaped arrays allows to give to the antenna an arbitrary

shape, over a re
tangular grid. The synthesis of tiled phased arrays radiating

a pen
il beam is formulated as a multi-obje
tive problem (MOP), exploiting

the ETM and OTM methods introdu
ed in the previous Chapters. A set of

illustrative examples validating the proposed method are �nally reported.
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5.1. PROBLEM FORMULATION

5.1 Problem Formulation

Let us 
onsider an arbitrary shaped aperture array and elements positioned over a

re
tangular latti
e. The resulting array turns out to have an orthogonal polygon

shape. A polygon is 
alled orthogonal (or re
tilinear) if its edges are either

horizontal or verti
al (i.e., if edges meet at right angles) [95℄[96℄. An example of

two orthogonal polygon shaped arrays are reported in Fig. 5.1.

Instead of the simple minimization of a single pattern parameter (e.g. SLL)
here, a multi-obje
tive optimization approa
h is proposed. The multi-obje
tive

problem (MOP) is de�ned as:

Multi-Obje
tive Optimization of Arbitrary Shaped Phased Arrays

- given an array of arbitrary aperture, with elements positioned over

a re
tangular latti
e, and two domino-like tiles

(

σV , σH
)

, �nd the op-

timal tiling/
lustering 
on�guration c
opt

and the 
orresponding sub-

array weights αopt
and βopt

, su
h that the radiated pattern jointly �ts

multiple user-de�ned requirements Φr (c;α,β), r = 1, ..., R, with the

main lobe steered toward (θ0, φ0).

In order to 
omply with multiple and 
on�i
ting obje
tives, a set of Pareto

optimal solutions will be provided to the designer who is allowed to 
hoose the

best solution a

ording to user-de�ned 
riterion. The set of Pareto optimal

solutions are obtained as:

(

c
opt;αopt,βopt

)

= arg






min

c;αEM ,βEM











Φ1

(

c;αEM ,βEM
)

.

.

.

ΦR

(

c;αEM ,βEM
)
















(5.1)

where

(

αEM ,βEM
)

are obtained a

ording to (4.10) and (4.11).

5.2 Tilability Condition

In Se
t. 3.2 it has been des
ribed the algorithm that allows to 
ompute the �min-

imal� tiling of re
tangular shaped arrays, based on the height fun
tion de�ned

in [48℄. The derived tiling pro
edure works also for arbitrary simply 
onne
ted

regions, provided that the area 
an be totally 
overed by the domino tiles. In [97℄

the following theorem is reported for the domino tilability 
ondition of arbitrary

shaped regions:

T5 : Let A be a simply 
onne
ted region in the plane de�ned over a re
tangular

latti
e, and let n be the number of pixels 
omposing A. There exists an

algorithm that de
ides tilability of A in time O (n log n).
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(a)

(b)

Figure 5.1: Examples of orthogonal polygon shaped arrays. (a) indented re
tan-

gle and (b) quantized hexagon.
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5.2. TILABILITY CONDITION

The theorem suggests that it is always possible to verify the tilability of sim-

ple 
onne
ted regions, by exe
uting the algorithms presented in [48℄[53℄, and

des
ribed in detail in Chapter 3. The algorithms allows to 
ompute the height

fun
tion on the border of the region [Se
. 3.2(A)℄ and on the internal verti
es

[Se
. 3.2(B.1)℄, providing the so 
alled �minimal� tiling. A

ordingly, in order to

verify the tilability of an orthogonal shaped region the following two steps are

required:

Step 1. Feasibility on the boundary verti
es of A - 
ompute the height h-
value of the boundary verti
es of A (vext ={vmn; [m = {0, M}; n = 0, ..., N ℄

⋃

[n = {0, N}; m = 0, ...,M ℄} vext ∈ ∂A being ∂A the 
ontour/boundary of A)
and verify that the following 
ondition holds true:

|h (vmn)− h (vpg)| = 1 (5.2)

where vpg ∈ vext being a neighboring vertex of vmn ∈ vext. If the 
ondition

(5.2) is veri�ed for ea
h 
ouple of neighboring verti
es of the boundary ∂A, the
following 
ondition (Step 2 ) must be 
he
ked, otherwise it is impossible to obtain

a 
omplete tiling of A using domino tiles.

Step 2. Feasibility on the inner verti
es of A - 
ompute the height h-value
of the inner verti
es of A (v

(t=0)
int ={v

(t=0)
mn ; m = 1, ...,M − 1; n = 1, ..., N − 1})

and obtain the �minimal� tiling (i.e. t = 0) a

ording to the rules de�ned in A1.2

of the �Algorithm A1 � and B1.1-4 of the �Algorithm B1 � des
ribed in Chapter

3, and verify that the following 
ondition holds true:

∣

∣h
(

v(t=0)
mn

)

− h
(

v(t=0)
pg

)
∣

∣ = {1, 3} (5.3)

v
(t=0)
pg ∈ v

(t=0)
mn [v

(t=0)
mn = {v

(t=0)
(m−1)n, v

(t=0)
(m+1)n, v

(t=0)
m(n−1), v

(t=0)
m(n+1)} being the set of

verti
es neighbor to v
(t=0)
mn ℄. If an admissible tiling is obtained, the tilability is

veri�ed, and the whole set of 
omplete tilings 
an be generated using �Algorithm

B2� reported in Chapter 3
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(a) (b)

Figure 5.2: Example of tilable (a) and non-tilable (b) orthogonal polygon by

dominoes, exploiting the Thurston Theorem

5.3 Estimation of the Solution Spa
e Cardinality

For orthogonal polygon shaped apertures, for the best of the author knowledge,

there is no analyti
 formula or theorem giving the exa
t number of the total

admissible domino tilings T . In the following an upper and a lower bound of

T are provided, exploiting the analyti
 formula for 
ounting the tilings of an

M × N re
tangular region [eq. (3.4)℄. Let us 
onsider an arbitrary orthogonal

polygon A, in order to 
ompute the upper bound T , the idea is to �rst 
ompute

the number of domino tilings for the smallest possible re
tangle R ins
ribing A.
Consequently we have that the number of tilings of A is for sure less than the

number of tilings of R. In order to have a sharper bound, the area obtained as

the 
omplement of A with respe
t to R is disse
ted into the minimum number

of re
tangles and the respe
tive number of domino tilings are 
omputed and

subtra
ted from T . Let us refer to T (M,N) as the number of domino tilings of

an M ×N re
tangle, a

ordingly, the upper bound T is obtained as

T = T
(

M,N
)

−
J
∑

j=1

T
(

M j, N j

)

(5.4)

M and N being the edge of the smallest re
tangle ins
ribing A and T
(

M j , N j

)

,

ij = 1, ..., J the number of tiling of J re
tangles obtained as the 
omplement of

A with respe
t to R and the M ×N re
tangle;

In a similar way, the lower bound T is obtained as

J
∑

j=1

T
(

M j , N j

)

(5.5)

, being T
(

M j , N j

)

, j = 1, ..., J the minimum number of J re
tangles, exa
tly


overing A, without overlapping.
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Figure 5.3: Example of estimated upper (a) and lower bound (b) of T , exploiting
the 
ardinality theorem for re
tangular regions.
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5.4 Numeri
al Assessment

Let us 
onsider an array of Ntot = 44 elements, lo
ated over a square latti
e,

equally spa
ed by dx = dy = λ/2 and positioned a

ording to the arbitrary shape

shown in Fig. 5.4(a). The referen
e amplitude 
oe�
ients [Fig. 5.4(a)℄ have

been 
omputed a

ording to a gaussian distribution in order to obtain a power

pattern with an SLL equal to SLL = −30.20 [dB℄ [Fig. 5.4(b)℄ and the main

beam pointing toward (θ0, φ0) = (0, 0) [deg℄, 
onsequently the phase 
oe�
ients

of the fully populated array are set to βref
n = 0, n = 1, ..., Ntot. By using eq.

(5.4) and eq. (5.5), the number of domino tilings is estimated within 573 < T <
1.859× 105, whi
h allows an exhaustive sear
h in a feasible 
omputational time.

The ETM−MOP optimization has been exe
uted 
onsidering as a �rst obje
tive

(r = 1) the SLL of the power pattern, and as se
ond obje
tive (r = 2) the half
power beamwidth along the elevation plane (HPBWEL). The simulation has

been exe
uted in ∆tETM−MOP = 18 : 05 [min:se
℄ evaluating the power pattern

and the respe
tive two obje
tive parameters (i.e. SLL and HPBWEL) for the

e�e
tive T = 9531 tiling solutions. Figure 5.5(a) shows the values of the 
ost

fun
tion in the SLL/HPBWEL plane, together with the Pareto front solutions.

The optimal tiling solution with respe
t to the obje
tive r = 1 (Solution 1, Fig.

5.5) has been reported in Fig. 5.6(a) together with the respe
tive power pattern

5.6(b) showing a SLL = −27.11 [dB℄ and an HPBWEL = 29.00 [deg℄ (Tab. 5.1),
while the optimal tiling solution with respe
t to the obje
tive r = 2 (Solution

2, Fig. 5.5) has been reported in Fig. 5.6(
)-(d) showing a SLL = −11.39 [dB℄

and an HPBWEL = 25.29 [deg℄ (Tab. 5.1). As 
an be noti
ed from Fig. 5.5, the

two obje
tive are in 
ontrast with ea
h other. Let us suppose that the following

design requirements are assumed: SLLmax ≤ −20 [dB℄ and HPBWmax
EL ≤ −26.2

[deg℄ (Tab. 5.1). A

ording to Fig. 5.5 the Pareto optimal solution has been

sele
ted in order to satisfy both the requirements (i.e. Solution 3 Fig. 5.5,

SLL = −20.20 [dB℄ and HPBWEL = 26.10 Tab. 5.1). In order to 
ompare

the three di�erent solutions, the 
uts of the power patterns along the azimuth

[Fig. 5.7(a)℄ and elevation [Fig. 5.7(b)℄ planes have been reported together with

a detail of the main beam along the elevation plane [Fig. 5.7(
)℄.

As a se
ond numeri
al example, let us 
onsider an array of Ntot = 300 el-

ements, lo
ated over a square latti
e, equally spa
ed by dx = dy = λ/2 and

positioned a

ording to the arbitrary shape shown in Fig. 5.8(a). It is worth

noting here that even if the aperture shape is very similar to a regular hexagon,

it is still an orthogonal polygon, being 
omposed by square elementary 
ells ap-

proximating an exa
t hexagon. The referen
e amplitude and phase 
oe�
ients

[Fig. 5.8(a)-(b)℄ have been 
omputed a

ording to a gaussian distribution in

order to obtain a power pattern with an SLL equal to SLL = −20.00 [dB℄ [Fig.

5.8(
)℄ and the main beam pointing toward (θ0, φ0) = (30, 0) [deg℄. In order to

estimate the dimension of the solution spa
e eq. (5.5) has been used to 
ompute

T , 
onsidering only the M × N = 14 × 14 square ins
ribed in the orthogonal
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(a) (b)

Figure 5.4: ETM-MOP Numeri
al Assessment (Ntot = 44 ; d = 0.5λ) - Plots of
(a) the array geometry and referen
e ex
itation amplitudes (αref

mn; m = 1, ...,M ;

n = 1, ..., N) and (b) the referen
e power pattern,

∣

∣AFref (θ, φ)
∣

∣

2
.

Figure 5.5: ETM-MOP Numeri
al Assessment (Ntot = 44 ; d = 0.5λ; T = 9531)
- Evaluated 
ost fun
tions of the exhaustive ETM −MOP optimization (blue


ross) 
onsidering as the �rst obje
tive the SLL and as se
ond obje
tive the

HPBWEL of the tiled array power pattern. The red dots are the solutions that

belongs to the Pareto front.
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(a) (b)

(
) (d)

(e) (f)

Figure 5.6: ETM-MOP Numeri
al Assessment (Ntot = 44 ; d = 0.5λ; T =
9531) - Plots of (a)(
)(e) the tiling 
on�gurations and sub-array ex
itations,

and (b)(d)(f ) the power pattern of the solutions (a)(b) Solution 1 (t = 230),
(
)(d) Solution 2 (t = 5948), (e)(f ) Solution 3 (t = 3223).
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Figure 5.7: ETM-MOP Numeri
al Assessment (M = 8, N = 5; d = 0.5λ;
T = 1.4824 × 104) - Plots of (a) the power patterns along the φ = 0 [deg℄ 
ut,

(b) the he power patterns along the φ = 90 [deg℄ 
ut and (
) a detail of the main

beam of the power patterns along the φ = 90 [deg℄ 
ut.
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POLYGONS BY DOMINO-LIKE TILES

Table 5.1: ETM-MOP Numeri
al Assessment (Ntot = 44 ; d = 0.5λ; T = 9531)
- Radiation performan
e (SLL, D, HPBWaz, HPBWel) of the referen
e and

optimized tiled solutions sele
ted among the Pareto front of the ETM-MOP

simulation.

SLL D HPBWaz HPBWel

[dB℄ [dBi℄ [deg℄ [deg℄

Required −20.00 − − 26.20

Reference −30.20 19.77 13.63 29.28
Solution− 1 −27.11 19.77 13.64 29.00
Solution− 2 −11.39 19.59 13.45 25.29
Solution− 3 −20.20 19.90 13.40 26.10

hexagon, obtaining a lower bound equal to T = 1.1220× 1023 whi
h is already a

huge number of solutions. Being T > T an optimization based strategy is 
onsid-

ered in this 
ase. The OTM−MOP optimization has been exe
uted 
onsidering

the NSGA-II multi-obje
tive GA-based optimizer [98℄[99℄, 
onsidering as a �rst

obje
tive (r = 1) the SLL of the power pattern, and as se
ond obje
tive (r = 2)
the half power beamwidth along the azimuth plane (HPBWAZ). The optimiza-

tion has been exe
uted 
onsidering a population size equal to P = 200 and a

total number of �tness evaluations (NFE ) equals to NFE = 20000 for a total

simulation time equal to ∆tOTM−MOP = 40 : 35 [min:se
℄. Figure 5.9(a) shows

the values of the 
ost fun
tion in the SLL/HPBWaz plane, together with the

Pareto front solutions. The Pareto optimal solution has been sele
ted a

ord-

ing to the design requirements [SLLmax ≤ −16.0 [dB℄ and HPBWmax
AZ ≤ −9.5

[deg℄ (Tab. 5.2) and reported in Fig. 5.6(a)-(b) together with the respe
tive

power pattern 5.10(
) showing a SLL = −16.00 [dB℄ and an HPBWEL = 9.48
[deg℄ (Tab. 5.2). The reported results show the e�e
tiveness of a multi-obje
tive

optimization approa
h, that provides to the designer a �exible tool able to han-

dle di�erent pattern features and a
hieving useful trad-o� solutions. Moreover

the tiling of orthogonal polygons, have been su

essfully validated, enabling the

design of arbitrary shaped arrays.
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(a) (b)

(
)

Figure 5.8: OTM-MOP Numeri
al Assessment (Ntot = 40 d = 0.5λ) - Plots of
(a)(b) the array geometry and referen
e ex
itation (a) amplitudes (αref

mn ; m =
1, ...,M ; n = 1, ..., N) and (b) phases (βref

mn ; m = 1, ...,M ; n = 1, ..., N) and (
)

the referen
e power pattern,

∣

∣AFref (θ, φ)
∣

∣

2
.

Table 5.2: OTM-MOP Numeri
al Assessment (M = 8, N = 5; d = 0.5λ; T =
1.4824 × 104) - Radiation performan
e (SLL, D, HPBWaz, HPBWel) of the

referen
e and optimized tiled solution sele
ted among the Pareto front of the

OTM-MOP simulation.

SLL D HPBWaz HPBWel

[dB℄ [dBi℄ [deg℄ [deg℄

Required −16.00 - 9.50 -

Reference −20.00 25.86 10.50 8.90
OTM −MOP −16.00 24.14 9.48 8.75
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Figure 5.9: OTM-MOP Numeri
al Assessment (M = 8, N = 5; d = 0.5λ;
T = 1.4824 × 104) - Evaluated 
ost fun
tions of the exhaustive OTM −MOP
optimization (green 
ross) 
onsidering as the �rst obje
tive the SLL and as

se
ond obje
tive the HPBWAZ of the tiled array power pattern. The red dots

are the solutions that belongs to the Pareto front.
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(a) (b)

(
)

Figure 5.10: OTM-MOP Numeri
al Assessment (Ntot = 40 d = 0.5λ) - Plots
of (a)(b) the tiling 
on�gurations and sub-array (a) amplitude and (b) phase


oe�
ients, and (
) the power pattern of the sele
ted Pareto solution.
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Chapter 6

Con
lusions and Final Remarks

In this thesis a set of innovative tiling methodologies for the design of tiled phased

arrays has been presented and numeri
ally validated. The developed synthesis

pro
edures and algorithms allow to redu
e the number of 
ontrol points of an

array radiating mask-
onstrained pen
il beams

1. without impa
ting on the feasibility and 
omplexity of the array layout;

2. without a signi�
ant degradation of the a
hievable performan
es, for small/moderate

s
anning angles.

In Chapter 2 the phased array synthesis problem has been formulated, proposing

theoreti
ally unfeasible and feasible optimization strategies, and fo
using, with-

out loss of generality, to domino-like tiles. In Chapter 3 useful tiling theorems

and algorithms have been reported, fo
using to the problem of tiling re
tangular

shaped apertures with re
tangular tiles, as well as a 
losed form formula for the

enumeration of the domino tiling solution spa
es. Moreover, together with the

des
ription of an optimal domino tiling generation algorithm based on an e�
ient

en
oding of the 
lustering 
on�guration exploiting height fun
tion theory, two

main methodologies have been introdu
ed. A �rst te
hnique, namely the ETM,

has been developed to optimally synthesize low and medium size arrays through

a suitable 
ustomization of mathemati
al tiling theorems and algorithms. The

se
ond one, denoted as OTM and based on a 
ustomized GA-based optimization

strategy, has been derived to deal with large arrays.

The main advantages of the proposed design approa
h in its two di�erent imple-

mentations are:

• the retrieval of the global optimal solution for the problem of �nding the


omplete tiling a�ording the minimum SLL power pattern thanks to the

exploitation of the mathemati
al theory on the optimal 
overage of spa
e

surfa
es through the enumerative approa
h (ETM );
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• the synthesis of large 
lustered arrays, 
omputationally una�ordable ei-

ther by the enumerative approa
h (i.e., the ETM ) or a standard sto
hasti


global optimization te
hnique, thanks to the analyti
 de�nition of a set

of referen
e tiling arrangements and a 
ustomized GA-based algorithm al-

lowing an e�e
tive and e�
ient exploration of the solution spa
e of the


omplete tiling 
on�gurations, whose 
ardinality rapidly grows with the

array size.

The numeri
al analysis has proved that:

• the SLLs of the solutions of the exhaustive list generated by the ETM

usually vary over a wide range of values, but only a limited sub-set of tiling


on�gurations gives performan
e 
lose to that of the referen
e array;

• the 
omplete tiling 
on�guration providing the minimum/optimum SLL

is generally non-unique within the list of ETM -generated solutions. This

allows the array designer to sele
t a SLL-optimal 
lustering that also �t

additional 
riteria su
h as 
onstraints on other radiation features and/or

manufa
turing 
hara
teristi
s;

• the OTM, as applied to synthesis problems still a�ordable with the ETM

(i.e., small/medium size array design), proved to be able to �nd the opti-

mal tiling (i.e., the same arrangement found with the ETM ) with a high

probability/su

ess-rate despite the evaluation of only a fra
tion of the

whole set of T solutions;

• the OTM, when dealing with large-s
ale arrays (i.e., problems with a di-

mensionality intra
table with the ETM ), is statisti
ally robust sin
e the


onvergen
e solutions usually lie in a narrow range of SLL values 
loser and


loser to the referen
e one as the array size in
reases;

• the OTM and the ETM are reliable te
hniques for addressing pattern

syntheses requiring beam steering along a generi
 dire
tion (θ0, φ0).

In Chapter 5 the design of arbitrary shaped aperture arrays is addressed, 
on-

sidering a multi-obje
tive optimization approa
h for the 
omputation of Pareto-

optimal tiling 
on�gurations. The presented numeri
al results positively vali-

dates the possibility to handle orthogonal-polygon shaped arrays exploiting the

ETM and OTM methods of Chapter 3. The reported numeri
al results positively

validate the ETM-MOP and OTM-MOP methods, a�ording �exible design tools

for the optimization of small and large apertures, with the possibility to 
hoose

among a set of trade-o� solutions.

In Chapter 4 an additional 
lass of tiling optimization te
hniques are pre-

sented aimed at solving a mask-
onstrained synthesis problem. The mat
hing

between the tiled array power pattern and an user-de�ned power mask, de�ning
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ideal requirements for a referen
e non-
lustered phased array, is used as 
ost fun
-

tion of the domino tiling synthesis problem. The mask mat
hing optimization

allows to the user a �exible de�nition of the ideal pattern 
onstraints, however,

a perfe
t mat
hing with the mask is not always assured. The proposed design

methodology aims indeed at �nd solutions that are as 
lose as possible to a per-

fe
t ful�lment of the 
onstraints. A

ording to the size of the array aperture,

three di�erent novel te
hniques have been proposed, namely the ETM − CP ,
EM −ETM/CP and EM −OTM/CP , jointly optimizing the tiling 
on�gura-

tion and the amplitude and/or phase ex
itation 
oe�
ients of the tiles modules.

CP -based synthesis methods have been exploited in order to: (i) synthesize opti-

mal sub-array weights, a

ording to the 
lustering 
on�guration of the tiled array;

(ii) provide optimal referen
e ex
itations 
oe�
ients of the fully-populated ar-

ray. A set of representative numeri
al results, validate the proposed methods, for

small, medium and large array sizes, 
onsidering both symmetri
 and asymmetri


masks. Moreover the robustness of the optimized tiled array when steering the

main beam within the visible range, as well as the reliability assessment when


onsidering real radiating elements, through a full-wave simulations, has been

analyzed. The numeri
al assessment leads to the following out
omes:

• the proposed exhaustive ETM − CP approa
h, has been e�e
tively used

for the optimization of very small arrays, but it turns out to be impra
ti
al

for small/medium arrays, due to the high 
omputational burden introdu
ed

by the optimization of the tiles 
ontrol points;

• the small array design 
ase, when 
onsidering the symmetri
 mask, shows

that the 
ompromise EM − ETM/CP -based te
hniques 
an potentially


onverge to the optimal ETM −CP solutions, with a perfe
t mat
h of the

ideal design requirements. Even if a perfe
t mat
hing, 
annot be always

ensured (e.g. as shown by the design of small/medium sized arrays 
on-

sidering asymmetri
 masks) the reported results show that the proposed

EM − ETM/CP and EM − OTM/CP methods allows to improve the

mat
hing with the ideal mask-de�ned requirements, with respe
t to �bare�

EM −ETM and EM − OTM optimizations.

• the reliability of the proposed methodologies has been assessed by means

of full-wave simulations 
onsidering two di�erent pat
h antenna elements,

positively 
ompared with respe
t to the �bare� EM − ETM and EM −
OTM solutions in terms of mask mat
hing of the radiated pattern obtained

using a 
ommer
ial full solver.

Future resear
h a
tivities, beyond the s
ope of the 
urrent work, will be aimed at

improving the 
omputational e�
ien
y of both (a) the ETM and (b) the OTM

to avoid the generation of tiling words 
orresponding to symmetri
 sub-array


on�gurations. This will allow a redu
tion of the dimension of the solution spa
e

and, on the one hand, an extension of the range of appli
ability of the ETM to
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larger array sizes (a), on the other, an in
rease of the number of samples of the

solution spa
e evaluated during the GA-evolution (b), thus a higher probability

to �nd the optimal 
lustering. Moreover, the whole synthesis methodology will

be extended to planar arrays that 
an be 
ompletely 
overed by tiles shapes

that di�ers from the domino-like tiles 
onsidered in this thesis, allowing the

synthesis of array having di�erent aperture shapes (e.g. exa
t hexagon, 
ir
ular

shapes) and 
onsidering di�erent latti
es (e.g. triangular, hexagonal). Finally,

a 
omparative assessment of the performan
es obtained with the the presented

approa
hes with those a
hievable with alternative layouts, (e.g. sparse arrays

with a smaller number of elements) will be 
onsidered in the future resear
h.
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