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Summary 

 

In the current era of the Anthropocene, human activities are powerful forces that affect the 

geosphere, atmosphere, and biosphere – globally, fundamentally, and in most cases irreversibly. In 

freshwaters, land use change, chemical pollution, decline in biodiversity, spread of invasive 

species, climate change, and shifts in the hydrological regime are among the key drivers of 

changes. In the 21
st
 century, major water engineering projects such as large dams and water 

diversion schemes will fundamentally alter the natural hydrological regime of entire landscapes 

and even continents. At the same time, the hydrological regime is the governing variable for 

biodiversity, ecosystem functions and services in river networks. Indeed, there will be an 

increasing conflict between managing water as a resource for human use and waters as highly 

valuable ecosystems. Therefore, research needs to unravel the challenges that the freshwaters are 

facing, understand their potential drivers and impacts, and develop sustainable management 

practices – for the benefit of humans and ecosystems alike.   

The present thesis focuses on three currently understudied alterations in flow and material 

dynamics within river networks, namely (i) on the dynamics of floating organic matter (FOM) and 

its modification in dammed rivers, (ii) on river intermittency and its effects on nutrient and 

organic matter (OM) dynamics, and (iii) on major future water transfer schemes. Massive 

construction and operation of dams cause modification of water flow and material fluxes in rivers, 

such as of FOM. FOM serves as an essential component of river integrity, but a comprehensive 

understanding of its dynamics is still lacking. River damming, climate change and water 

extraction for human needs lead to a rapid expansion in number and extent of intermittent rivers 

worldwide, with major biogeochemical consequences on both regional and global scales. 

Increased intermittency of river networks also forces people to implement engineering solutions, 

such as water transfer schemes, which help to supply water to places of demand. Water transfer 

projects introduce artificial links among freshwater bodies modifying the hydrological balance. 

Impacts of abovementioned activities on freshwaters have been assessed in single case studies. 

However, the current knowledge does not allow a generalization of their globally applicable 

meaning for ecosystems. Furthermore, mostly neglected aspects of these alterations, such as the 

potential consequences of FOM extraction from rivers, the biogeochemical role of intermittent 

rivers upon rewetting, and the current scale of water transfers require better understanding before 

bold conclusions could be made.  

By combining research methods such as extensive literature reviews, laboratory 

experiments and quantitative analyses including spatial analyses with Geographic Information 

Systems, I investigated (1) the natural cycle, functions, and amounts of FOM in rivers fragmented 
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by dams, (2) effects of rewetting events on the pulsed release of nutrients and OM in intermittent 

rivers and ephemeral streams (IRES), and (3) the potential extent of water transfer megaprojects 

(WTMP) that are currently under construction or in the planning phase and their role in modifying 

the global freshwater landscape. In all three cases, I provide a global perspective.  

The role of FOM in rivers as a geomorphological agent, a resource, a dispersal vector and a 

biogeochemical component was investigated based on an extensive literature review. Collected 

information allowed for conceptualizing its natural cycle and dynamics, applicable to a wide range 

of rivers. Data on FOM accumulations at 31 dams located within catchments of 13 rivers showed 

that damming leads to FOM entrapment (partly or completely) and modifies its natural cycling. 

The results of a spatial analysis considering environmental properties revealed that catchment 

characteristics can explain around 57% in the variation of amounts of trapped FOM.  

Effects of rewetting events on the release of nutrients and OM from bed sediments and 

course particulate organic materials (CPOM) accumulated in IRES was studied in laboratory 

experiments. Using a large set of samples collected from 205 rivers, located in 27 countries and 

distributed across five major climate zones, I determined the concentrations and qualitative 

characteristics of nutrients and OM released from sediments and CPOM. I also assessed how these 

characteristics can be predicted based on environmental variables within sampled IRES. In 

addition, I calculated area-specific fluxes of nutrients and OM from dry river beds. I found that the 

characteristics of released substances are climate specific. In the Continental zone I found the 

highest concentrations of released nutrients, but the lowest quality of OM in terms of its potential 

bioavailability. In contrast, in the Arid zone the concentrations of released nutrients were the 

lowest, but the quality of OM the highest. The effect of environmental variables on the 

concentrations of nutrients and the quality of OM was better predicted for sediments than for other 

substrates with the highest share of explained variance in the Continental and Tropical zones. On 

the global scale, dissolved organic carbon, phenolics, and nitrate dominate fluxes released during 

rewetting events. Overall, this study emphasized that on the global scale rewetting events in IRES 

represent biogeochemical “hot moments”, but characteristics of released nutrients and OM differ 

greatly among climate zones.  

The present thesis fills also a major knowledge gap on the global distribution of large 

water transfer schemes (referred to as “megaprojects”) that are actually planned or under 

construction. To provide an inventory of WTMP, I collected data from various literature sources, 

ranging from published academic studies, the official web-sites of water transfer projects, 

environmental impact assessments, reports of non-governmental organizations, and information 

available in on-line newspapers. In total, 60 WTMP were identified. Information on spatial 

location, distances and volumes of water transfer, costs, and purposes of WTMP was collected and 
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compared with those of existing schemes. The results showed that North America, Asia and Africa 

will be the most affected by future WTMP having the highest densities of projects and the largest 

water transfer distances and volumes. If all projects were completed by 2050, the total water 

transfer distances would reach 77,063 km transferring more than 1,249 km
3
 per year, which 

corresponds to about 20 times the annual flow of the river Rhine. 

The outcomes of the thesis provide major implications for environmental management. 

Natural FOM is an important component for sustaining the ecological and geomorphic integrity of 

rivers and, therefore, should be managed appropriately. Intermittent rivers must be considered in 

models quantifying nutrient and OM fluxes in river networks. First flush events in particular 

release huge amounts of nutrients and OM, which may cause dramatic metabolic effects on 

downstream receiving waters. Finally, the future WTMP alter the hydrological balance of entire 

river basins and continents. They require multiple assessments before construction and careful 

management practices for sustainable operation in order to consider both freshwater as a resource 

as well as freshwaters as pivotal ecosystems. 
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Zusammenfassung 

 

Im Anthropozän, dem jetzigen Zeitalter, werden die Geosphäre, die Atmosphäre und die 

Biosphäre vom mächtigen Einfluss menschlicher Aktivitäten beherrscht. Die Auswirkungen sind 

global, grundlegend und meistens irreversibel. Hauptursachen für Veränderungen von 

Süßwassersystemen sind intensivere Landnutzung, chemische Kontamination, Verlust von 

Artenvielfalt, Verbreitung von invasiven Arten, der Klimawandel und Eingriffe in hydrologische 

Systeme. Im 21sten Jahrhundert werden großangelegte Wasserbauprojekte, wie große Dämme und 

Wassertransferpläne den natürlichen Wasserhaushalt ganzer Landschaften und sogar Kontinente 

verändern. Der Wasserhaushalt aber ist die grundlegende Variable für Artenvielfalt sowie 

Funktionalität und Leistung der Ökosysteme in Fließgewässern. Der Konflikt zwischen 

Wassermanagement zur menschlichen Nutzung und dem Schutz des Wassers als überaus 

wertvolles Ökosystem wird sich zunehmend verschärfen. Deshalb muss die Wissenschaft die 

Herausforderungen in der Süßwassernutzung angehen, die möglichen Einflussfaktoren verstehen 

und Methoden zum nachhaltigen Management entwickeln – zum Wohle der Menschen und der 

Ökosysteme gleichermaßen. 

Die vorliegende Arbeit behandelt drei wissenschaftlich bisher vernachlässigte 

Veränderungen in Fließ- und Stoffdynamik innerhalb von Flussnetzen, nämlich (i) die Dynamik 

von schwimmenden organischen Stoffen (FOM) und deren Änderung in gestauten Flüssen, (ii) die 

Flussperiodizität und deren Effekt auf die Dynamik von Nährstoffen und organischer Materie und 

(iii) die großen zukünftigen Wassertransferpläne. Der massive Bau und der Betrieb von 

Staudämmen beeinflussen den Wasser- und Stofftransport, zum Beispiel FOM, in Flüssen. FOM 

ist essenzieller Bestandteil intakter Flüsse, aber das vollständige Verständnis der FOM Dynamik 

ist noch unzureichend. 

Das Stauen von Flüssen, der Klimawandel und die Wasserextraktion zum menschlichen 

Nutzen führen weltweit zu einer raschen Ausbreitung periodischer Flüsse in Anzahl und Fläche. 

Das hat beträchtliche biogeochemische Konsequenzen im regionalen und globalen Maßstab. 

Zunehmende Periodizität von Flussnetzen zwingt Menschen Baumaßnahmen, wie 

Wassertransferpläne, vorzunehmen um die Wasserversorgung zu sichern. Wassertransferprojekte 

verursachen künstliche Verbindungen zwischen Süßgewässern, die das hydrologische 

Gleichgewicht verschieben. Die Auswirkungen der oben genannten Faktoren auf Süßgewässer 

wurden in einzelnen Fallstudien untersucht. Der jetzige Wissenstand jedoch lässt keine 

Verallgemeinerung auf deren globale Bedeutung für Ökosysteme zu. Außerdem wird eine bessere 

Wissensgrundlage über die meist vernachlässigten Aspekte dieser Veränderungen, wie die 

möglichen Folgen von FOM-Extraktion von Flüssen, die biochemische Rolle periodischer Flüsse 
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für die Wiedervernässung und der momentane Stand von Wassertransferen benötigt bevor 

voreilige Schlüsse gezogen werden. 

Durch die Kombination von Forschungsmethoden, wie Literaturrecherchen, 

Laborexperimenten und quantitativen Analysen einschließlich räumlicher Analysen mit 

geographischen Informationssystemen habe ich (1) die natürlichen Zyklen, Funktionen und 

Mengen von FOM in durch Dämme fragmentierten Flüssen (2) die Effekte von 

Wiedervernässungsereignissen auf die fluktuierende Freisetzung von Nährstoffen und organischer 

Materie in periodischen und ephemeren Gewässern (IRES) und (3) das potentielle Ausmaß von 

Wassertransfer-Megaprojekten (WTMP), die momentan im Bau oder in der Planungsphase sind, 

und deren Rolle beim Wandel der globalen Süßwasserlandschaft untersucht. Alle drei Fälle habe 

ich von einer globalen Perspektive behandelt. 

Die Rolle von FOM in Flüssen als geomorphologischer Wirkstoff, als Ressource, als 

Ausbreitungsvektor und als biogeochemischer Bestandteil wurde mit Hilfe einer ausführlichen 

Literaturrecherche untersucht. Durch die gesammelten Informationen konnte ein Konzept der 

natürlichen FOM Zyklen und Dynamiken erstellt werden, das auf eine große Bandbreite an 

Flüssen anwendbar ist. Daten über die FOM Anhäufung an 31 Dämmen innerhalb der 

Einzugsgebiete von 13 Flüssen zeigten, dass Stauung von Flüssen zum (teilweisen oder 

kompletten) Einschluss von FOM führt und deren natürlichen Kreislauf beeinflusst. Das Ergebnis 

einer räumlichen Analyse, die die Umwelteigenschaften miteinbezieht, zeigte, dass die 

Eigenschaften des Einzugsgebietes 57% der Mengenunterschiede in eingeschlossener FOM 

erklären können. 

Der Einfluss von Wiedervernässungereignissen auf die Freisetzung von Nährstoffen und 

organischer Materie aus Flussbettsedimenten und grober partikulärer organischer Substanz 

(CPOM) die sich in IRES angehäuft hat wurde in Laborexperimenten untersucht. Mit Hilfe einer 

großen Anzahl von Proben aus 205 Flüssen aus 27 Ländern, verteilt über fünf Hauptklimazonen 

bestimmte ich die Konzentrationen und qualitativen Eigenschaften von Nährstoffen und OM aus 

Sedimenten und CPOM. Ich bewertete zudem, wie sich diese Eigenschaften mit 

Umweltbedingungen innerhalb der beprobten IHRES vorhersagen lassen. Zusätzlich berechnete 

ich gebietsspezifische Einträge von Nährstoffen und OM aus trockenen Flussbetten. Es zeigte 

sich, dass die Eigenschaften von freigesetzten Substanzen klimabedingt sind. In der kontinentalen 

Zone waren die Konzentrationen von freigesetzten Nährstoffen am höchsten, aber die Qualität von 

OM in Bezug auf potentielle Bioverfügbarkeit am niedrigsten. In der ariden Zone hingegen waren 

die Konzentrationen von freigesetzten Nährstoffen am niedrigsten, während die Qualität von OM 

am höchsten war. 
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Der Effekt von Umweltvariablen auf Nährstoffkonzentrationen und die Qualität von OM 

konnte besser für Sedimente als für andere Substrate vorhergesagt werden mit dem größten Anteil 

der Varianzaufklärung in den kontinentalen und tropischen Zonen. Im globalen Maßstab 

dominieren gelöster organischer Kohlenstoff, Phenole, und Nitrat die Stoffflüsse während 

Wieservernässungsereignissen. Diese Studie machte deutlich, dass Wiedervernässungsereignisse 

in IRES auf globaler Ebene biogeochemische „hot moments“ darstellen, aber die Eigenschaften 

freigestezter Nährstoffe und OM unterscheiden sich stark zwischen den Klimazonen. 

Die vorliegende Arbeit schließt zudem eine große Wissenslücke im Bereich der globalen 

Verteilung großer Wassertransferpläne (genannt „Megaprojekte“) die in Planung oder im Bau 

sind. Um eine Bestandsaufnahme zu erstellen, sammelte ich Daten von verschiedenen 

Literaturquellen, wie veröffentlichten akademischen Studien, offiziellen Internetseiten von 

Wassertransferprojekten, Umweltverträglichkeitsstudien, Berichten von 

Nichtregierungsorganisationen und Informationen aus Onlinezeitungen. Insgesamt wurden 60 

WTMP identifiziert. Informationen über Standorte, Strecken und Volumina von Wassertransferen, 

sowie Kosten und Verwendungszwecke von WTMP wurden gesammelt und mit denen bereits 

existierender Vorhaben verglichen. Die Ergebnisse zeigten, dass Nordamerika, Asien und Afrika 

am meisten von den zukünftigen WTMP betroffen sind, weil sie die höchste Dichte an Projekten 

und die längsten Strecken und größten Volumina der Wassertransfere haben. Wenn alle Projekte 

bis 2050 fertig gestellt würden, würde die gesamte Wassertransferstrecke 77,063 km betragen, das 

heiß ein Volumen von mehr als 1,249 km
3
 pro Jahr würde verlegt werden, was ungefähr dem 20-

fachen des jährlichen Durchflusses des Rheins entspräche. 

Die Ergebnisse der Arbeit liefern entscheidende Schlussfolgerungen für das 

Umweltmanagement. Natürliches FOM ist eine wichtige Komponente für die Erhaltung der 

ökolgischen und geomorphischen Integrität von Flüssen und sollte deshalb angemessen gemanaget 

werden. Periodische Flüsse müssen in die Modellierung zur Quantifizierung von Nährstoff- und 

OM Flüssen in Flussnetzen miteinbezogen werden. Besonders First-Flush-Ereignisse setzen 

gewaltige Mengen an Nährstoffen und OM frei, die große metabolische Auswirkungen auf 

Gewässer stromabwärts haben können. Schließlich verschieben zukünftige WTMP das 

hydrologische Gleichgewicht ganzer Flussbecken und Kontinente. Sie benötigen vielfältige 

Bewertungen vor dem Bau und sorgfältiges Management für einen nachhaltigen Betrieb, um 

Süßgewässer sowohl als Ressource als auch Schlüsselökosysteme anzuerkennen.  

 

 

 



 

 

Thesis outline 

 

 

 

 

This thesis consists of three manuscripts that are either submitted for publication or ready 

to be submitted to peer-reviewed journals. The general introduction (Chapter 1) provides a context 

for the thesis and specifies research objectives of individual chapters. Chapters 2-4 are presented 

in form of completed manuscripts, which contain sections of introduction, methods, results, 

discussion, conclusion and references. The general discussion (Chapter 5) presents the discussion 

of the findings obtained within each individual chapter in the broader context and provides 

directions for further research. The references are listed separately after each chapter.  

 

Chapter 1:  

General introduction  

 

 

Chapter 2:  

O. Shumilova, K. Tockner, A.M. Gurnell, S.D. Langhans, M. Righetti, A. Lucia, C. Zarfl 

(submitted to Aquatic Science, id: AQSC-D-17-00256) Floating organic matter: A neglected 

component affecting the ecological and geomorphic integrity of rivers.   

 

Author’s contributions: OS, KT and CZ designed the study and conceptualized the manuscript. OS 

collected data and performed statistical analysis. OS wrote the manuscript and all co-authors 

contributed to the text.  

 

 

Chapter 3: 

O. Shumilova, D. Zak, T. Datry, D. von Schiller, R. Corti, A. Foulquier, B. Obrador, K. Tockner, 

C. Zarfl (in preparation) Pulsed release of nutrients and organic matter during simulated rewetting 

events in intermittent rivers and ephemeral streams: a global analysis. 

 

Author’s contributions: OS, DZ, KT and CZ designed the study. OS and DZ performed chemical 

analytical analyses in the laboratory. TD performed analysis of carbon and nitrogen content in 
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1. General introduction 

 

1.1. Unique role of rivers on Earth  

Rivers are dendritic arteries of landscapes. They account for only 0.0009% of the total 

water volume present in the biosphere, however, they are recognized as one of the most dynamic 

and diverse systems on Earth (Wetzel 2001; Strayer and Dudgeon 2010). Rivers support various 

ecosystem functions and provide many valuable ecosystem services. Through biogeochemical 

processes rivers participate in nutrient cycling and water purification. Rivers provide a habitat and 

resources for organisms sustaining biodiversity. For humans, rivers are key elements of water 

supply for drinking, irrigation, electricity production and other industrial purposes, thereby 

ensuring socio-economic sustainability and further development.  

The governing variable of rivers is flow, which controls processes of energy, materials and 

organisms redistribution between upstream and downstream river sections as well as between 

channel, floodplain and groundwater compartments (Sponseller et al. 2013; Fisher et al. 2004). 

Flow of rivers is a dominant force responsible for shaping the surface of Earth and transporting 

sediments from land to ocean (Latrubesse and Park 2017). Sediments are important for sustaining 

river geomorphology and are closely linked to the fluxes of nutrients. Apart from sediments, 

nutrients and organic matter (OM) are also essential materials that are transported with river flow. 

Being incorporated by microbial organisms, they form a foundation for the food web and support 

higher trophic levels (Tank et al. 2010). On the yearly basis, inland waters receive 2.7 Pg of 

carbon (C), from which only 0.7 Pg is transported to the ocean (Aufdenkampe et al. 2011; Battin 

et al. 2009). Around 1.2 Pg C yr
-1 

is released to the atmosphere (for example, as CO2) and 0.6 Pg 

C yr
-1

 is stored in geosphere in river channels, floodplains, wetlands and reservoirs (Aufdenkampe 

et al. 2011; Raymond et al. 2013; Sutfin et al. 2016). Therefore, the unique feature of rivers is 

their ability to serve as a reactive medium that couples biogeochemical cycles of different 

compartments of the Earth – continents, atmosphere, oceans as well as living organisms 

(Aufdenkampe et al. 2011).  

 

1.2. Global challenges that rivers are facing nowadays 

In the current era of the Anthropocene, when human impacts are influencing ecosystem 

processes on the global scale, rivers are facing several important challenges that substantially 

modify their role in ecosystem processes. Humans have altered the fluxes of water, sediments and 

nutrients on scales that by far exceed natural fluxes (Habersack et al. 2014; Van Cappellen and 

Maavara 2016). Obstructions of river flow and modifications of the flow regime by hydropower 
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dams, land use and land cover changes, water extraction for drinking and irrigation needs, all in 

combination with climate change, introduce new variabilities in functioning of rivers and 

ecosystem processes associated with them (Veldkamp 2017; Van Cappellen and Maavara 2016). 

 

1.2.1. Increasing dam construction and impacts of their operation 

Humans started to build dams at least 7000 years ago (Van Cappellen and Maavara 2016). 

Nowadays, dams and reservoirs provide valuable services such as water storage for irrigation, 

electricity supply, flood protection, navigation, and recreation, but most importantly, they serve as 

a secure source of stable drinking water supply. Currently, on the global scale the flow of more 

than 50% of streams and rivers to the ocean is obstructed by at least one dam. By 2030, this share 

is predicted to reach 90%, making dams inevitable players in the hydrological cycle on the global 

scale (Fig. 1; Zarfl et al. 2015; Van Cappellen and Maavara 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Hydropower dams under construction and planned within the next 20 years  

(Zarfl et al. 2015) 

 

Dams impede water flow and generally lead to its homogenization (Poff et al. 2007). This 

happens due to modified magnitudes of water and timing of ecologically critical high and low 

water flows. According to Vörösmarty et al (2003), 633 of the world’s largest reservoirs (with 

maximum storage capacity ≥ 0.5 km
3
) intercept around 40% of the global river discharge. 

Obstruction of flow leads to trapping of sediments causing a post-dam sediment deficit or surplus, 

river bed degradation, downstream channel incision and changes in bed texture (Syvitski et al. 
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2005; Skalak et al. 2013; Petts and Gurnell 2005). As a consequence, the flux of particulate 

material from rivers to oceans globally decreased by 25% (Syvitski et al. 2005). In combination 

with flow modification and sediment entrapment, dams are disrupting biogeochemical cycles due 

to interrupted flow of nutrients, changing their balance in rivers, affecting oxygen content and 

thermal conditions (Friedl and Wüest 2002). Damming not only changes absolute fluxes of 

nutrients, but also introduces new variability in their stoichiometry in rivers on the temporal scale, 

with consequences for patterns in nutrient limitations and water quality downstream (Van 

Cappellen and Maavara 2016). 

Some consequences of damming for processes in rivers become recognized only after a 

long time, after they become evident not only at the dam location, but also along the whole river 

system. This includes, for example, increases in salinity of river estuaries due to reduced input of 

freshwater (Friedl and Wüest 2002). Many impacts of dams have already been extensively studied, 

such as impacts on transport of various types of materials in rivers – from bedload and suspended 

sediments (e.g., Petts and Gurnell 2005) to dissolved materials in form of nutrients and organic 

matter (e.g., Van Cappellen and Maavara 2016). However, alteration in transport of material that 

floats on water surface (floating organic material, FOM) and is trapped by dams has received 

almost no attention, with the exception of floating wood. This material (mostly logs, branches and 

leaves, with associated organisms and material of anthropogenic origin) is an essential part of 

material input to rivers from terrestrial environments. FOM provides a range of ecological and 

geomorphic functions important for river integrity – an ability to support and maintain a range of 

biological, physical and chemical processes essential for ecosystem sustainability (Moog and 

Chovanec 2000). The importance of these functions is, however, currently not completely 

recognized. Changes in the natural cycle of FOM and reduction of its amount imposed by dam 

trapping may have far-reaching ecohydrological implications, but our understanding of these 

consequences is currently lacking.   

.  

1.2.2. Increasing intermittency of world rivers and consequences for biogeochemical 

processes 

While some of the world rivers are impounded by dams and large reservoirs, other 

experience another type of extreme alteration in the hydrological cycle - river intermittency. Such 

river systems cease to flow at some point in time and space (Acuña et al. 2014). Rivers where 

water can become restricted to isolated pools are defined as intermittent, and rivers where flow 

resumes only occasionally after rain or snowmelt events, are known as ephemeral streams (Datry 

et al. 2017). Together, intermittent rivers and ephemeral streams (IRES) currently comprise 

around 50% of the global river network, and are recognized as the most widespread type of 
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flowing waters on Earth that are present on all continents and within all climates (Fig. 2; Datry et 

al. 2017).  

Major scientific attention on IRES was attracted only recently – starting from 1990s (Leigh 

et al. 2015). Currently, this research field is flourishing due to the recognition of multiple 

ecosystem services provided by IRES as well as due to a significant increase in their occurrence in 

the Anthropocene (Datry et al. 2017). River intermittency is caused by alterations of the 

hydrological cycle and flow regime due to both climate change and human activities such as 

damming, surface and groundwater extraction, and various land use changes within the 

catchments (Steward et al. 2012; Palmer et al. 2008). However, many rivers are naturally 

intermittent due to physical features of the channel (e.g., bed porosity) and the catchment (e.g., 

water table depth) (Datry et al. 2018). IRES play an important role in ecosystem functioning and 

provide a number of valuable ecosystem services during flowing, non-flowing and dry phases, but 

their importance is overlooked by society (Datry et al. 2018). Due to a dynamic alteration of the 

drying-rewetting cycles, IRES couple aquatic and terrestrial systems providing a diverse habitat 

mosaic and generating unique biodiversity of aquatic, terrestrial and semi-terrestrial organisms 

(Datry et al. 2014). For terrestrial biota, IRES can be migration corridors and act as egg and seed 

banks (Sánchez-Montoya et al. 2016). They also serve as sites of storage and processing of coarse 

particulate organic matter (CPOM) and nutrients (Larned et al. 2010). In addition, IRES have a 

value for humans by serving cultural functions, being a fertile soil, a source of food and water, 

sites for grazing of cattle, a source for extraction of building materials etc. (Steward et al. 2012; 

Koundouri et al. 2017). 

Altered flow regime and accumulation of CPOM during the dry phase makes IRES unique 

“pulsed biogeochemical reactors” with high variation in nutrient and OM dynamics on temporal 

and spatial scales (von Schiller et al. 2017). Rewetting events in IRES occur when the flow 

resumes due to rainfall or transport of water masses from upstream, and are considered as 

biogeochemical “hot moments”. During such events, sediments and accumulated CPOM are 

resuspended and transported downstream, releasing nutrients and OM (Jacobson et al. 2000; 

Skoulikidis et al. 2017; Bianchi et al. 2017) that are known to cause eutrophication and hypoxic 

events in receiving waters (Hladyz et al. 2011). However, despite a widespread presence of IRES 

on a global scale and a distinct biogeochemical cycling within them, these systems are currently 

omitted from large-scale estimates of nutrients and OM loads in freshwater systems, which usually 

rely on the river area and the discharge (Datry et al. 2014). Without considering IRES, existing 

calculations of nutrients and OM fluxes might be underestimated, with consequences for river 

monitoring and conservation strategies. Furthermore, the current understanding of biogeochemical 

processes in IRES is based on single studies, which does not provide an opportunity to derive 
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specific concepts applicable to a broad range of IRES present in different climates. Therefore, 

expanding geographical coverage and seeking a mechanistic understanding of biogeochemical 

processes were recognized as one of the priorities in future biogeochemical research in IRES (von 

Schiller et al. 2017). 

Fig 2. Examples of intermittent rivers and ephemeral streams: a) unnamed karstic stream in 

New Zealand; b) Rio Seco, Chaco, Bolivia; c) Rio Hozgarganta, Andalucia, Spain; d) Clauge, 

Jura, France; e) unnamed gravel-bed stream, New Zealand; f) Calavon, Provence, France (adopted 

from Datry et al. (2017), photo courtesy: T. Datry, N. Bonada, B. Launay) 

 

1.2.3. Water transfer as a modern solution to ensure water security 

Modern society is highly dependent on, and in many cases limited by the water cycle 

(Vörösmarty and Sahagian 2000). Distribution of water across the globe is uneven in space and 

time, and while its availability remains relatively constant, the demand for water is increasing 

(Gupta and van der Zaag 2008). In the last century, water use increased 8-fold, reaching around 

4000 km
-3

 year
-1 

in 2010 (Wada et al. 2016). Population growth, increasing food demand, rise in 

living standards and economic development all intensify the dependence of humans on water 

resources and stimulate development of engineering solutions that divert water to where it is 

needed (Vörösmarty et al. 2013). Climate change further exacerbate uneven distribution of water 

through change in precipitation and other climatic variables that cause extreme events, changes in 

seasonality, and in inter-annual variability, with effects differing across regions (Schewe et al. 

2014; Rockström et al. 2014). Water engineering measures such as aquifer mining, building of 
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dams, water diversions or wetland drainage not only regulate global withdrawals, but also transfer 

water between different water systems (Vörösmarty and Sahagian 2000).   

Water transfer has become a global phenomenon (Gupta and van der Zaag 2008; Tockner 

et al. 2016). Today, 10% of large cities in the world are dependent on water that is moved between 

basins (McDonald et al. 2014). Currently, in the United States alone there are 2161 aritificial 

waterways that connect different hydrological basins (Dickson and Dzombak 2017). In the 

western part of the USA, an analysis of the isotopic signal of water used for domestic supply 

showed that around 31% of the domestic water supply differs from surface water that can be found 

within the local basins (Good et al. 2014). Environmental consequences of water transfers are 

double-edged and can include impacts that are both positive (e.g., flood protection, ecosystem 

restoration, water quality improvement) and negative (e.g., reduced water volume and quality in 

donating bodies, spread of invasive species, waste of water due to evapotranspiration) (Zhuang et 

al. 2016). 

The construction of many water transfer projects is a costly and time-consuming process. 

In order to meet the growing need for water, a significant number of megaprojects, defined as 

projects with a cost of 1 billion US$ and more (Flyvbjerg 2014), can be expected to be planned or 

are currently under construction. Their construction requires significant efforts, and an inventory 

of these projects currently does not exist. It makes it impossible to predict the scale and extent of 

future hydrological modifications and their consequences for freshwaters as a resource and an 

ecosystem. Understanding of the potential changes in redistribution of water within the global 

freshwater landscape will help to predict the future challenges imposed on freshwater ecosystems 

in the light of growing demands of human population and climate change (Rockström et al. 2014; 

Tockner et al. 2016). 

 

1.3 Thesis structure 

This thesis provides the analysis of three important aspects related to global alterations of 

water cycle, namely river damming, river intermittency and artificial large-scale water transfers. 

These aspects are imposed by the challenges that freshwater ecosystems face today, but are 

overlooked in the existing research. 

River damming leads to an alteration in the natural cycle of material that floats on the river 

surface (FOM). Dams accumulate FOM of natural and anthropogenic origin in large amounts, 

leading to its extraction and alteration of its interaction with a river channel and floodplain 

through changes in hydrological regime. Although FOM has important functions in rivers, these 

are rarely considered in current research compared to other components of the material flow. Our 

understanding of FOM dynamics in rivers and associated processes is very limited. In the second 
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chapter, I provide a conceptual overview of the dynamics and functions of FOM based on an 

extensive literature review. I summarize the evidence that FOM is an essential component of the 

ecological integrity in rivers and serves as a geomorphological agent, a dispersal vector for 

organisms, a resource, a habitat and a biogeochemical component. I provide a general framework 

to discuss the dynamic cycle and functions of FOM across a wide range of rivers. In addition, I 

analyzed factors that potentially control accumulation of FOM in rivers fragmented by 

hydropower dams across catchments with available information on the amount of FOM trapped in 

front of the dams. I also identified key knowledge gaps with respect to the importance of FOM in 

supporting river integrity and the aspects of FOM management in rivers that need further 

consideration. 

The increase in river intermittency worldwide and the necessity to access the 

biogeochemical role of IRES upon rewetting events form the basis for the third chapter. Here, I 

analyzed the pulsed release of nutrients and OM from accumulated course particulate organic 

material and the dry bed sediments in IRES. Using three different substrates that were collected 

from 205 intermittent rivers worldwide, namely leaves, biofilms and sediments, I simulated 

rewetting events under standardized laboratory conditions and analyzed magnitudes of nutrients 

and OM release, the quality of released OM, and area-specific fluxes of nutrient and OM species 

from dry river beds across broad geographic and climatic gradients. The information on selected 

characteristics of substrates and environmental variables collected from sampled dry river beds in 

the respective regions was used to identify factors that may control the quantity and quality of OM 

and nutrients released from accumulated OM and bed sediments. 

The development of large-scale water transfers is driven by the need to secure stabile water 

supply and expected to increase in the nearest future across the globe, at locations and at scales 

that are currently not known. In the forth chapter I provide comprehensive data on the global 

distribution of water transfer megaprojects (WTMP) that are currently under construction or in the 

planning phase, based on information available in research articles, books and grey literature such 

as reports and newspapers available online. Based on the available information, I performed the 

first analyses on the properties of these megaprojects (e.g., water transfer distance and volume, 

water transfer donor and acceptor, costs and purposes of transfer) and discuss the results in respect 

to sustainable water management. The compiled database aims to close an information gap that 

was constraining further research on this topic and serves as an important resource for future 

analyses on the social, economic, and environmental consequences of major water transfer 

schemes on the global scale.  
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In the fifth chapter I summarized and placed the key findings of each chapter in a broader 

context. I discussed implications for freshwaters and environmental managements. I also 

identified knowledge gaps and provided recommendations for further research.   
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2.1. Abstract 

Floating organic matter (FOM) is a pivotal albeit neglected element along river corridors 

that contributes to their ecological and geomorphic integrity. FOM consists of particulate matter of 

natural and anthropogenic origin (wood, branches, leaves, seeds, waste) that, due to its properties, 

is able to float on the water surface. In this paper, we provide a conceptual overview of FOM 

dynamics and define its fundamental environmental functions in river ecosystems. We also 

discuss a spatial analysis in which we correlate the amount of FOM accumulated at dams and 

reservoirs – locations where such information was available – with key characteristics of the 

respective catchments. We find that FOM is an important geomorphological agent, a dispersal 

vector for animals and plant propagules, a habitat, a resource, and a biogeochemical component. 

Current fragmentation of rivers truncates the natural dynamics of FOM through its extraction at 

damming structures, decreased variability of discharge regimes and low morphological 

complexity of river channels that reduce potential FOM retention. The amount of FOM 

accumulated within river networks is difficult to predict due to the variability of processes that 

lead to FOM introduction into rivers and the specifics of dam operations where FOM is trapped. 

Finally, we identify key knowledge gaps in relation to the value of FOM for supporting river 

integrity and also how FOM may be effectively managed in rivers. 

 

 2.2. Introduction 

Rivers form dendritic networks embedded in a terrestrial matrix. Functionally, they link 

upstream with downstream sections as well as the main channel with floodplain and upland areas 

(e.g., Ward et al. 2002; Harvey and Gooseff 2015). At the same time, rivers transfer, transform 

and store large amounts of energy and material, thereby controlling the geomorphological and 

ecological integrity of the river corridor (Vannote 1980; Pringle 2003; Sponseller et al. 2013; 

Wohl et al. 2015).  

The dynamics of dissolved, suspended and bedload material (classification based on size 

classes and position within the water column during transportation) has been well studied along 

rivers (e.g., Walling et al. 2008; Covino 2017; Vercruysse et al. 2017). However, material floating 

at the water surface has received much less attention (e.g., Robinson et al. 2002; Bunte et al. 2016; 

Kramer and Wohl 2016). Such floating organic matter, FOM, consists of (i) natural particulate 

material such as wood, twigs, leaves, seeds, carcasses or faeces, (ii) human waste including plastic 

debris, timber and styrofoam (Fig. 3), and (iii) living organisms, in particular terrestrial animals 

and plant propagules.  

Up to now, FOM studies have mainly focused on the marine environment (Box 1), 

standing inland waters (floating mats, neuston, surface biofilms; for definitions: see glossary) 
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(e.g., Gladyshev 1986; Burchardt and Marshall 2003; Marshall and Burchardt 2005; Wotton and 

Preston 2005; Azza et al. 2006), and on FOM deposits along river, estuarine and coastal shores 

(e.g., Strayer and Findlay 2010; Harris et al. 2014; Heerhartz et al. 2016; Gittman et al. 2016; Del 

Vecchio et al. 2017). In standing waters, research has focused on the role of free floating 

macrophytes and floating mats. Studies have addressed relevant factors that affect their formation 

and density (Ngari et al. 2008; Sarneel et al. 2011; Downing-Kunz and Stacey 2011), the role of 

floating mats in distributing emergent vegetation (Azza et al. 2006), facilitating seedling 

establishment (Shin et al. 2015), providing a feeding resource (Adams et al. 2002), and 

influencing water flow between open areas and areas covered with floating vegetation (Zhang and 

Nepf 2011). Free floating macrophytes have been also widely studied with regards to their ability 

to purify water from an excess of nutrients and heavy metals (Nahlik and Mitsch 2006; Dhote and 

Dixit 2009). In addition, a number of studies has focused on the composition and structure of 

neuston in aquatic ecosystems (Burchardt and Marshall 2003; Marshall et al. 2005; Marshall and 

Gladyshev 2009), biophysical properties of this layer (Gladyshev 2002) and its role as a trophic 

resource (e.g., Saveanu and Martín 2015).  

 

 

 

 

 

Fig. 3. Floating organic matter (FOM) in freshwaters: a) floating wood and leaves along 

the shore of Lake Müggelsee (Germany); b) FOM composed of natural material and 

anthropogenic waste (source: Kleinschmidt Energy and Water Consultants 2008); c) FOM in front 

of a sluice along the River Spree (Germany). 

 

Along rivers, research has focused on the dynamics of large wood (e.g., Gurnell et al. 

2005; Kramer and Wohl 2016; Piégay et al. 2017; Picco et al. 2017; see glossary), on the transport 

and cycling of coarse particulate organic matter (Langhans et al. 2013; Turowski et al. 2013; 

Bunte et al. 2016), and on the transport of plant propagules (e.g., Merritt and Wohl 2002, 2006; 

Nilsson et al. 2010; Soons et al. 2016; Tonné et al. 2017). However, a comprehensive 

understanding of the multiple functions of the various components of FOM is missing. At the 

same time, land-use change and river regulation and fragmentation (e.g., Allan et al. 2004; Grill et 

al. 2015; Zarfl et al. 2015; Wohl et al. 2015) alter the natural dynamics of FOM and so are likely 

to affect the integrity of river systems.   
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Box 1. Floating organic matter in marine systems 

Currently, thousands of tons of natural and anthropogenic material is floating at the surface of 

oceans and seas (e.g., Thiel et al. 2011; van Sebille et al. 2015) while rivers are a key medium for the 

transfer from land to sea (e.g., Sadri and Thompson 2014). According to recent calculations, more than 

62 million macro-litter items are currently floating at the surface of the Mediterranean sea (Suaria et al. 

2014). Because of these large quantities, the role of FOM as a dispersal vector, a habitat and a resource 

as well as a potential environmental and socio-economic threat has already received significant 

attention (Thiel and Gutow 2005a,b; Suaria et al. 2014; Thiel et al. 2011). 

Rafting on floating objects is a well-known dispersal mechanism in the marine environment 

(Thiel and Gutow 2005a,b and references therein). More than 1,200 species are reported to be 

associated with natural and anthropogenic FOM (Thiel and Gutow 2005b) using FOM for dispersal of 

up to 1,000 km or more (Thiel and Gutow 2005a; Schuchert 1935). Consequently, FOM facilitates the 

colonization of islands and larger land masses (Gathorne-Hardy et al. 2000). Censky et al. (1998), for 

example, described the colonization of the island of Anguilla (Carribean Sea) by green iguana floating 

on logs. During transportation across the open ocean, even salt-intolerant species such as amphibians 

are able to survive (Henderson and Hamilton 1995; Schiesari et al. 2003; Measey et al. 2007; Bell et 

al. 2015). For example, lizards, snakes and small mammals were observed as far as 1,600 km from the 

mouth of the Amazon and Orinoco Rivers (Schuchert 1935). Such survival rates of terrestrial 

organisms over large transportation distances emphasize the importance of FOM for evolutionary 

processes (Thiel and Haye 2006).  

FOM may also support the spreading of nonnative and invasive species (Kiessling et al. 2015), 

bloom-forming algae (Masó et al. 2003), pathogens (Zettler et al. 2013) and pollutants (Holmes et al. 

2010). For marine fish and vertebrates, FOM provides a shelter and additional resource, explaining 

why these organisms often aggregate around floating objects and can disperse over long distances 

(e.g., Luiz et al. 2012). Dispersal of marine and freshwater biota can be further facilitated by the 

increasing amount of anthropogenic FOM (Barnes and Milner 2005). For example, Kiessling et al. 

(2015) reported a total of 387 taxa (pro- and eukaryotic microorganisms, seaweeds, and invertebrates) 

found attached to artificial FOM in marine environments. 

Marine FOM is important for ecosystems after deposition too. Deposits of FOM along coastal 

areas (so called “wrack deposits”) are suppliers of food and habitat and can immediately boost 

abundance and biodiversity of primary and secondary consumers (Spiller et al. 2010; Del Vecchio et 

al. 2017; Brien et al. 2017). Shore wrack is especially important in hostile areas such as the Arctic 

region (Lastra et al. 2014).  

The role of surface biofilms in seas and oceans has also been recognized with respect to their 

role in biogeochemical processes, air-sea gas and heat exchange, source and sink of pollutants, and a 

habitat for distinct microbial communities (Zaitsev 1997; Dandonneau et al. 2008; Wurl et al. 2017). 
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In the present overview, we emphasize that FOM is a pivotal component in supporting the 

ecological and geomorphic integrity of rivers across a wide range of spatial and temporal scales. 

The main objective of this paper is to conceptualize the natural cycle of FOM that is applicable to 

a wide range of rivers, and to identify key functions that FOM provides for aquatic systems and 

aquatic-terrestrial interfaces. In particular, we focus on the geomorphological functions of FOM 

and its role as a dispersal vector, resource, habitat, and biogeochemical component. Furthermore, 

we compiled information on the amount of FOM entrapped upstream of dams and correlated this 

data with catchment characteristics in order to evaluate whether the amount of FOM in such 

systems can be predicted. Finally, we briefly discuss FOM management strategies and highlight 

challenges to integrate FOM into river management. We also identify key research gaps related to 

FOM dynamics in rivers. Overall, this paper is expected to increase awareness that FOM is a 

pivotal component of material cycling in rivers and, therefore, should be taken into account in 

understanding the processes that control the integrity of river corridors. 

 

2.3. Composition and dynamics of FOM in river ecosystems  

The composition of FOM is highly variable in terms of its origin (i.e. natural or 

anthropogenic) and size fractions (i.e. from seeds to large logs) (Appendix A Table S1). For 

example, senescence of leaves and seed fall, both largely seasonal, provide important natural 

fractions of FOM input, while substantial input of anthropogenic fractions of FOM occur during 

storm events due to surface runoff and wastewater overflow (e.g., Gurnell 2007; Krejčí and Máčka 

2012; Zupanski and Ristic 2012; Chen et al. 2013). By volume, the main fraction of natural FOM 

is comprised of small and large wood (Table S1). However, the importance of other natural 

components can be under-estimated because wood is the main component that is reported in the 

scientific literature. Wood is also the main focus of reports from hydropower companies that 

monitor the amount of FOM trapped in reservoirs. The small wood and non-woody fractions can 

comprise up to 80-90% of FOM by volume (Table S1). In urbanized catchments FOM delivered to 

reservoirs can be entirely anthropogenic in origin (e.g., Zupanski and Ristic 2012), including 

human-cut wood, waste such as plastic bottles and bags, styrofoam, car tyres, parts of structures 

located along rivers (piers, wharves, bulkheads), and household waste, among others. 

In its natural state, FOM exhibits a dynamic cycle of input, transfer, deposition, and 

remobilization (e.g., Benda and Sias 2003; Trottmann 2004; Langhans 2006; Gurnell 2007; Seo et 

al. 2008; Fremier et al. 2010; Le Lay et al. 2013; Wohl 2013) (Fig. 4). This cycle is controlled by 

hydrogeomorphological, biological, and anthropogenic factors (Fig. 4) (Gurnell et al. 2002; 

Fremier et al. 2010; Le Lay et al. 2013; Turowski et al. 2013; Seo et al. 2015; Ruiz-Villanueva et 

al. 2016a,b; Kramer and Wohl 2016, and references therein). The dynamics of FOM along rivers 
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partly resemble and are closely interconnected with those of mineral sediments (Gurnell 2007). In 

particular, parallels can be drawn with regards to transportation and deposition, which in both 

cases are controlled by the flow regime, hydraulic conditions, and the morphology of the river in 

relation to physical characteristics of sediments and FOM (Gurnell 2007; Wohl and Scott 2016; 

Nakamura et al. 2017). Similar to sand and coarser sediments, transportation of FOM occurs 

through nonlinear and episodic processes, and reflects similar thresholds limiting sediment 

mobilization and grain-grain interaction during movement (Wohl et al. 2015), with FOM generally 

occupying one end of a density continuum of particles that are transported by rivers.  

Fig. 4. Conceptual model of the cycling of floating organic matter along rivers 

At a reach scale, straight river sections (A) facilitate FOM transfer, while meanders (B) 

and braided sections (C) facilitate FOM deposition. However, within reaches of all types, and 

particularly in narrow rivers, landform and vegetation irregularities and other roughness elements 

of varying size retain FOM including artificial obstructions, such as bridges, weirs, and dams. 

Dashed red arrows represent downstream movement of FOM in sequential steps in time. Dashed 

yellow arrows represent movement of FOM from floodplain areas to river channels. Within a 

vertical transect across a river channel, accumulation, transportation, deposition, and 

remobilisation of FOM occur in varying proportions through time. 
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Similar to mineral sediments, FOM is affected by river fragmentation, and trapped by 

dams (Nakamura et al. 2017). However, because of its lower density and thus lower potential to 

settle out from the water column, FOM may have a higher potential to pass through such 

obstructions. This is particularly likely where the water volume can exceed the hydraulic capacity 

of a dam and water can overtop a dam structure or pass through spillways that drain water from 

the reservoir surface (e.g., dams on Susquehanna river, URS Corporation Gomez and Sullivan 

Engineers 2012).  

Considering the various components of the FOM cycle, the potential (and actual) input of 

FOM into rivers varies significantly depending on several factors: on the size of the catchment 

area and thus the area generating FOM, the river’s flow regime and energy (dependent on 

discharge and river gradient) available to mobilise material, the type and amount of riparian 

vegetation that can readily supply natural FOM directly to the river network, the season, and local 

disturbance events that may release FOM (Reeves et al. 2003; Montgomery et al. 2003; Gurnell 

2007; Fremier et al. 2010; Kramer and Wohl 2016; Piégay et al. 2017). For example, the creation 

and input of FOM in headwater streams mainly result from direct inputs from biological processes 

(seed fall, senescence of leaves, tree breakage, toppling, shredding) and episodic disturbance 

events (landslides, debris flows, wind, snow, fires) that can transfer and release significant 

quantities of FOM to the river network (e.g., Reeves et al. 2003; Comiti et al. 2016). In 

downstream sections, as well as in partially confined and unconfined rivers, where the river is 

increasingly separated from hillslopes by a floodplain, the main input process is bank erosion 

(e.g., Martin and Benda 2001; Gurnell 2002; Benda and Sias 2003; Reeves et al. 2003; Seo and 

Nakamura 2009; Seo et al. 2010; Lucía et al. 2015a; Comiti et al. 2016; Steeb et al. 2017) and 

overbank flooding in cases of high discharge (e.g., Pettit et al. 2005; Stteb et al. 2017). 

The main parameters that control transportation of FOM are the characteristics of the 

floating material itself (i.e. size, shape, buoyancy) in relation to the dimensions of the river 

channel (width and depth), its morphology (Gurnell et al. 2002; Fremier et al. 2010; Kramer and 

Wohl 2016) and discharge (Koljonen et al. 2012). In general, FOM with a smaller surface-to-

volume ratio is expected to be transported over longer distances (Spänhoff and Meyer 2004; West 

et al. 2011), whereas large, irregular pieces such as branches, trunks and root wads of large wood 

are more likely to become snagged and thus to move relatively short distances. Furthermore, 

regardless of shape and size, the density of FOM is fundamental to the way it is transported and 

thus important for its potential transport distance. The density can change during transportation 

(Ruiz-Villanueva et al. 2016c), and also the density of wood varies enormously according to 

species and degree of decay, with some species characterized by a density greater than water 

(Ruiz-Villanueva et al. 2016b). In these cases, the wood is transported in a similar way to mineral 
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bed sediment (e.g., rolling, sliding, bouncing along the river bed) rather than floating as a part of 

the FOM. Furthermore, although many seeds initially float on entering a river, their buoyancy may 

decrease with time, whereas some seed species may not be buoyant at all. Thus, seeds may be 

transported by flotation or as suspended or bed material at different stages of the FOM cycle, 

leading to complex mobilisation-transport-deposition patterns as the seeds interact with river 

flows (Gurnell et al. 2007, 2008). In general, for fine fractions of FOM (e.g., leaves) that have low 

specific gravity, transport in streams is controlled mainly by bed roughness and discharge (Hoover 

et al. 2006; de Brouver et al. 2017). Overall, the amount of transported material increases with 

catchment size, discharge and flood frequency (Richardson et al. 2005; Fremier et al. 2010; 

Moulin and Piegay 2004; Comiti et al. 2016), but FOM transport is also temporally more variable 

in small streams compared to larger ones (Richardson et al. 2005). Along intermittent rivers, 

transportation of FOM has a particularly distinctive pulsed character with notable transport peaks 

during first flush events following dry periods (Corti and Datry 2012; Rosado et al. 2014).  

Deposition of FOM depends on the morphology of the river channel and floodplain, which 

varies with river type (e.g., meandering, braided) and local morphological and other irregularities 

(e.g., vegetation) that together determine locations for potential FOM storage (Piegay and Gurnell 

1997). In addition, transported mineral sediment can anchor or bury FOM, further contributing to 

its retention and potential residence time in storage (e.g., Gurnell 2007; Osei et al. 2015; Parker et 

al. 2017). The type and physical properties of FOM also affect the likelihood that FOM will be 

retained (e.g., Richardson et al. 2009). For example, some plant material, including wood from 

some riparian tree species, can sprout once deposited, increasing its likely retention and residence 

time at the deposition location as a result of root anchorage (Gurnell et al. 2005). The residence 

time of FOM in a river storage location affects its properties, including properties that may in turn 

affect the potential for remobilisation. Thus, biological decay, water absorption and physical 

breakage influence size, shape and buoyancy of the deposited FOM (Ruiz-Villanueva et al. 

2016b,c) and may facilitate complete mineralization of FOM during deposition (Merten et al. 

2013). 

Remobilization of stored FOM back to the floating phase occurs as a result of processes 

similar to those that determine its input, most notably flow energy (a combination of discharge and 

channel gradient) that is sufficient to induce erosion of the stored material (e.g., Pettit et al. 2005; 

Merten et al. 2010; Wohl 2013). The exposure of stored FOM to remobilisation is also influenced 

by channel morphology, stabilisation by vegetation, the degree to which it is buried by deposited 

mineral sediments as well as FOM characteristics such as its dimensions and density. Thus, FOM 

can undergo a succession of phases of mobilisation, transportation and deposition as it moves 

downstream (Moulin and Piegay 2004) and as its properties gradually change through a variety of 
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biogeochemical processes. The length and duration of these phases reflect an integration of 

catchment, river network and local properties that interact with the transferred FOM, and thus the 

transfer of FOM serves as an indicator of landscape integrity (Nakamura et al. 2017). In addition, 

the natural cycle of FOM partly resembles a nutrient spiralling concept proposed by Newbold et 

al. (1981): similar to nutrient cycling, the path of FOM within the catchment can be viewed as a 

spiral with input, transportation, retention and further remobilization back to the flowing river 

water. 

 

2.4. The functional role of FOM in rivers 

The functions performed by FOM shift during its natural cycle. During transport, FOM 

functions as a dispersal vector for attached organisms and as a geomorphic agent. Once deposited, 

it serves as habitat and geomorphic driver. During both transportation and deposition it can be a 

nutritional resource and a biogeochemical component of carbon and nutrient cycling. Although 

some similarities can be identified between the functions and cycling of FOM and other 

components of the materials that flow along rivers, FOM has distinctive features which emphasize 

its uniqueness for supporting geomorphological, hydrological and biological integrity along river 

corridors. 

 

2.4.1. FOM as a geomorphological agent  

Materials transported within rivers, together with water flow, play a key role in shaping 

river channels and floodplains and structuring freshwater habitats (Hassan et al. 2005; Elosegi et 

al. 2010; Gurnell et al. 2012; Gurnell 2013, 2014). Considering the geomorphological role of 

FOM, our knowledge is based mainly on studies of large wood in rivers so far. This fraction of 

FOM is considered to be the most stable and, therefore, to have similar importance for channel 

morphological change as sediments (Kramer and Wohl 2016). This is especially true when the 

wood pieces are very large or are able to sprout and thus anchor themselves into sediments and 

soils once deposited (Collins et al. 2012; Gurnell et al. 2016). 

The geomorphological role of FOM is the most prominent once it is deposited. Large 

pieces and accumulations of deposited FOM obstruct and interact with water flow to increase 

hydraulic heterogeneity, the complexity of flow pathways, and the variability of flow velocity for 

any given discharge. Where large accumulations of FOM span the river channel, these 

obstructions can cause lateral flow diversions and can induce a step in the water surface profile 

with an increase in water level upstream (Montgomery et al. 2003; Gurnell 2013; Wohl 2013; 

Matheson et al. 2017). As a result of its hydraulic impact, the deposition of large pieces or 

accumulations of FOM induce local erosion, sorting, and deposition of inorganic sediments and 
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fine organic matter including seeds (Osei et al. 2015a, b), with associated major changes in 

landform (Gurnell 2013; Wohl and Scott 2016; Elosegi et al. 2017; Parker et al. 2017). In these 

ways, FOM can affect river morphodynamics through aggradation, erosion, and avulsion 

processes, and by inducing or forcing the creation of landforms such as pools, bars, islands, side 

channels as well as their associated habitats (Gurnell et al. 2001; Montgomery et al. 2003; Wohl 

2013; Ravazzolo et al. 2015a; Bertoldi et al. 2015, Zen et al. 2016). For example, as meander 

migration is pushed by the development of wood-cored scroll bars, ridge and swale floodplains are 

created (Zen et al. 2017). Increased interaction of riparian woodland and large wood with flow and 

sediment transport processes may lead to the transformation of braided to island braided, or 

wandering to meandering river styles (Bertoldi et al. 2015). Therefore, the effects of FOM span 

from the patch scale (e.g., germination of deposited seeds and resprouting of deposited wood) to 

the scale of the river corridor (Lancaster and Grant 2006; Collins et al. 2012; Bertoldi et al. 2015; 

Schalko et al. 2016; Wohl and Scott 2016).  

The geomorphological effect of FOM within river reaches links lateral, vertical, and 

longitudinal dimensions (e.g., Johnson et al. 2000; Gerhard and Reich 2000; Gurnell et al. 2002; 

Montgomery et al. 2003; Trottmann, 2004; Krause et al. 2014; Elosegi et al. 2017). For example, 

FOM deposited on shorelines increases the hydrological connectivity between rivers and their 

floodplain by increasing the area of the riparian zone (Gerhard and Reich 2000). Accumulations of 

FOM also intensify hydrological interactions between stream water and groundwater by creating 

steps in the water surface profile, which may induce infiltration of surface water into the river bed 

and also drive sediment sorting, erosion and deposition that form a mosaic of surface-subsurface 

exchange patches (Malard et al. 2002; Krause et al. 2014; Czarnecka 2015). These processes lead 

to an increase in the volume of the hyporheic zone and affect the rate of exchange flow within it 

(Wondzell and Swanson 1999; Pilotto et al. 2016).    

Despite parallels in the cycling of FOM and mineral sediments that allow us to draw 

comparisons concerning their geomorphological functions, important differences exist. Whereas 

mineral sediments are transported as bedload or in suspension in the water column, FOM by 

definition floats on the water surface. Furthermore, in comparison with mineral sediment particles, 

the range of size fractions of FOM is higher (from seeds to large logs); its shape (root wads, 

branches, whole trees, logs, leaves, seeds) and composition (from easily decomposable organic 

particles to wood with a high proportion of lignin) are more diverse; and, in some cases, it has the 

ability to germinate or sprout, further promoting its retention and landform building abilities 

(Gurnell 2013, 2014). Indeed, burial of large quantities of slow-decaying wood has been identified 

as an important element in the reinforcement of some floodplains (Nanson et al. 1995; Abbe and 
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Montgomery 2006). These properties enable FOM to perform an even more complex range of 

roles as a geomorphic agent than mineral sediments.   

 

2.4.2. FOM: a key dispersal vector for terrestrial animals  

Rivers form pivotal dispersal corridors for both aquatic and terrestrial organisms 

(Johansson 1996; Bilton et al. 2001; Nilsson et al. 2010; Altermatt 2013). Obligate aquatic species 

(e.g., fish and aquatic invertebrates) move longitudinally and laterally, thereby connecting 

upstream and downstream sections as well as the floodplain with the main channel (Malmqvist 

2002; Grant et al. 2007). Downstream drifting of aquatic organisms provides access to suitable 

habitats, sustains gene flow among populations, and therefore maintains population variability 

(e.g., Malmqwist 2002; Naman et. al. 2016). Similarly, the dispersal of plant propagules by water 

(i.e. hydrochory) maintains riparian plant species and genetic diversity along river corridors 

(Andersson et al. 2000; Nathan and Muller-Landau 2000; Gurnell et al. 2008; Nilsson et al. 2010), 

and allows terrestrial plants to access new habitats. For example, specific alpine plants – so-called 

”Alpenschwemmlinge” – disperse with water flow and can be found in downstream river sections 

at high diversity (Tinner et al. 2008).  

For terrestrial invertebrates and vertebrates, rivers are usually considered as dispersal 

barriers (e.g., Puth and Wilson 2001). However, FOM may offer a medium on or within which 

terrestrial animals can be transported, potentially over long distances. Hence, FOM can be 

considered as an important dispersal vector, both spatially (unidirectional stepwise transportation 

downstream) and temporally (with respect to seasonal and event dynamics of FOM) (Henderson 

and Hamilton 1995; Shiesari 2003; Luiz et al. 2012; Čejka et al. 2015). Furthermore, FOM serves 

as a “passive sampler” for terrestrial animals: it accumulates species from the entire river corridor. 

Therefore, fresh FOM deposits become “hot spots” for riparian animal diversity (Trottmann 2004; 

Pettit et al. 2006). Drawing parallels with the marine environment (Box 1), dispersal of terrestrial 

organisms with FOM can be an important mechanism for colonising new sites and maintaining 

species and genetic diversity of terrestrial animals (and riparian plants) along the entire river 

corridor.  

Dispersal of terrestrial species associated with FOM has long been overlooked. This is 

partly due to the short-term release and transfer of FOM during the rising limb of the hydrograph, 

which may constrain sampling (e.g., Tockner et al. 1997; West et al. 2011; Corti and Datry 2012; 

Rosado et al. 2014; Bunte et al. 2016). Data concerning the dispersal of terrestrial animals with 

FOM has been gathered mostly by entomologists who have studied fresh FOM deposits. Along 

European perennial rivers, transportation distances for terrestrial invertebrates attached to FOM 

may vary from 20 km (Tenzer 2003) to 300 km (Czogler and Rotarides 1938). At the same time, it 
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has been shown that around 50% of the terrestrial invertebrates associated with FOM are eggs or 

juveniles (Boness 1975; Trottmann 2004). After deposition, FOM can release large quantities of 

terrestrial animals that mix with the local fauna. For example, Trottmann (2004) recorded a peak 

emergence (i.e. on average about 1,900 living terrestrial invertebrates per 100 g of dry FOM) ten 

days after collection of fresh FOM from a site upstream of a dam. It underpins the major value of 

FOM as a dispersal vector for eggs and larvae of terrestrial athropods.  

The density and composition of terrestrial animals rafting on FOM depends on its physical 

properties (e.g., physical structure, buoyancy), degree of decay, fate of FOM within the floodplain 

(residence time, deposition location), season of the transporting flood, and land-use along the river 

corridor (Haden et al. 1999; Tenzer 2003; Thiel and Gutow 2005a; Carthey et al. 2015; Čejka et 

al. 2015). Among FOM components, wood has been recognised as a “hot spot” for terrestrial (and 

aquatic) invertebrates during transport and deposition (Haden et al. 1999; Braccia and Batzer 

2001; Tenzer 2001, 2003; Trottmann 2004; Langhans 2000, 2006; Horáčková et al. 2015). Indeed, 

within the same study as mentioned above, the density of Aranea, Coleoptera, Diptera, and 

Gastropoda associated with FOM was even higher than the density in the adjacent mulch soil 

layer, although such a comparison must be considered with care (Trottmann 2004; Table 1). 

More recently, mass dispersal of terrestrial organisms has also been observed along dry 

rivers during movement of advanced wetted fronts (Corti and Datry 2012; Rosado et al. 2014). At 

the onset of first flush events, FOM that has accumulated at the surface during the dry phase, 

including ground-dwelling arthropods, is resuspended and transported downstream, often over 

long distances (e.g., Corti and Datry 2012). After floods, deposits of fresh FOM are colonized by 

both arthropods dislodged from upstream and arthropods from local riparian areas (Rosado et al. 

2014). Thus, fresh FOM deposits have much higher densities of arthropods compared to the river 

bed, although arthropod composition in both can be similar (Rosado et al. 2014).  
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Table 1.  Mean density of living terrestrial invertebrates associated with floating organic matter in 

selected European rivers compared to the mean density of soil arthropods (individuals/100 L, 

forest mulch layer: 0-0.2 m depth) (adopted from Trottmann 2004). 

 

 

Density of soil 

arthropods 

(Dunger 1983) 

Floating organic 

matter 
River* Reference 

Ind/100L Ind/100L 
Ind/100g of 

dry weight 

Aranea 100 48 - Lahn (G) Tenzer (2003) 

204 2.5 Aare (S) Trottmann (2004) 

Coleoptera 300 600-800 - Oberrhein (G) Siepe (1989) 

779 - Lahn, Weschnitz 

(G) 

Tenzer (2000) 

1,214 - Lahn, Weschnitz 

(G) 

Tenzer (2000) 

2,181 26.8 Aare (S) Trottmann (2004) 

1,962 - Lahn (G) Tenzer (2003) 

2,960 - Oberweser (G) Gerken et al. 

(1998) 

5,000 - Rhein, Wupper (G) Boness (1975) 

Diptera 500 1,213 14.9 Aare (CH) Trottmann (2004) 

5,000 - Rhein, Wupper (G) Boness (1975) 

Hymenoptera - 93 - Lahn (G) Tenzer (2003) 

293 3.6 Aare (S) Trottmann (2004) 

25,000 - Rhein, Wupper (G) Boness (1975) 

Gastropoda 500 1,724 - Rhein (G) Tenzer (2003) 

2,500 30 Tagliamento (It) Langhans (2000) 

 

* Geographical location of rivers: G – Germany, S – Switzerland, It - Italy 

 

2.4.3. Habitat function  

In accordance with the habitat template concept (Southwood 1977), the physical properties 

of rivers determine the structure and functions of biological communities along entire fluvial 

corridors. Aquatic and terrestrial organisms at different stages of their life cycle are sensitive to 

the distribution of different habitat types and materials of various size classes. FOM, being a 

physical substrate, can both participate in formation of habitat elements when deposited and serve 

as a habitat itself during transportation and deposition.  

Once deposited, FOM may shape channel morphology, initiate island development as well 

as induce scour of permanent and ephemeral ponds (Gurnell et al. 2005). Such deposits are 

relatively stable due to their three-dimensional structure (particularly large wood deposits), retain 

moisture, and exhibit high surface complexity, which increases with time due to decay processes. 
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Similar to marine environments, such deposits become rapidly colonized in freshwaters (Brien et 

al. 2017). FOM provides attached organisms with protection against desiccation and thermal 

stress, protects them from predators and can dissipate turbulence caused by wave action (e.g., 

Harris et al. 2014; Gabel et al. 2008; Czarnecka et al. 2014). The importance of FOM as a habitat 

is also determined by the degree of decay, moisture retention, physical orientation in relation to 

flow, and the composition, density and size distribution of FOM components (Harmon et al. 

1986). Biofilms and detritus food webs formed on FOM also attract fungal decomposers and 

predator animals such as birds and small mammals (Xiong and Nilsson 1997; Vadeboncoeur et al. 

2006) which have feedback effects on the structure and composition of the FOM deposits (Xiong 

and Nilsson 1997; Vogt 2007). Decay further increases surface complexity of FOM, which again 

leads to an increase in abundance and biomass of associated macroinverterbate assemblages 

(Schneider and Winemiller 2008; Czarnecka et al. 2014). Some insects (e.g., ants, termites) use 

FOM as a nesting site (Harmon et al. 1986). Terrestrial arthropods also may use it as a refugium 

during floods and prolonged periods of high discharge (Braccia and Bratzer 2001; Loeser et al. 

2006). In addition to being an attactive habitat for animals, FOM deposits retain and accumulate 

seeds and sediments, facilitating plant regeneration after floods (Harmon et al. 1986; Pettit and 

Naiman 2006) in both perennial and intermittent rivers (Rosado et al. 2014). As such, FOM 

increases and diversifies habitats that can be used by aquatic, terrestrial and semi-terrestrial 

animals and plants during different stages of their life cycle (e.g., Harmon et al. 1986).  

When FOM is mobilized by water and starts drifting, it also can serve as a substrate for 

invertebrates (e.g., Haden et al. 1999; Braccia and Batzer 2001). Floating at the water surface, it 

disperses synchronously with flow, reducing abrasion and increasing the survival rate of attached 

organisms. Floating FOM stimulates biofilm development due to light exposure and absence of 

accumulation of mineral sediments that, in contrast, can be accumulated on deposited FOM (Tank 

et al. 1993; Galloday and Sinsabaugh 1991; Haden et al. 1999). Furthermore, FOM transported 

within river corridors may provide a shelter against visual predators for juvenile fish (e.g., floating 

mats in the Parana river, Brazil; Bulla et al. 2011).  

 

2.4.4. FOM: a resource along river corridors  

FOM is an ephemeral nutritional resource as well as a foraging ground (Yang et al. 2008). 

As transportation of FOM is a stepwise process, it also forms a component of nutrient spiraling 

along river corridors (Ensign and Doyle 2006). In addition, it serves as a component of 

stoichiometric flow that can introduce variabilities in resources within the ecosystems (Massol et 

al. 2017). 
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FOM can primarily be seen as a resource during the deposition phase. Organisms attached 

to FOM can consume it or feed on other organisms associated with the FOM (Bowen et al. 1998; 

Haden et al. 1999; Hoffmann and Hering 2000; Eggert and Wallace 2007). Components of FOM 

vary in their composition and, therefore, may have different nutritional value (Thiel and Gutow 

2005a). Leaves that have been transported and deposited are a well-known allochthonous source 

and conveyor of energy and nutrients for microorganisms and macroinvertebrates (e.g., Vannote 

1980). The woody fraction of FOM is more recalcitrant and can be an important resource for 

xylophages species (Harmon et al. 1986). Less is known about the role of finer fractions of FOM 

such as seeds and pollen as a nutritional resource along rivers. FOM that is of an artificial nature 

(e.g., plastic) has low nutritional value, therefore most organisms attached to it are suspension 

feeders (e.g., examples from marine environment; Thiel and Gutow 2005a; Kiessling et al. 2015).  

FOM is also a resource during its rewetting phase, as wet conditions facilitate organic 

carbon and nitrogen release (Xiong and Nilsson 1997). In addition, during rewetting and 

subsequent decomposition, microbial conditioning of FOM surface layers increases its protein 

content and allows macroinvertebrates to obtain sufficient nitrogen and other nutrients to complete 

their life-cycles (Cummins 1974; Le Lay et al. 2013). This affects primary and higher trophic 

levels, and food web dynamics in general (Rossi 2007; Spiller 2010). FOM is also an important 

foraging ground due to the algae and bacteria associated with it and the higher organic matter 

content in riverbed sediments that surround FOM  (e.g., Pilotto et al. 2014; Czarnecka 2015). High 

densities of macroinverterbrates on FOM may further provide foraging opportunities for fish 

(Schneider and Winemiller 2008). In addition, FOM itself can be a site where trophic interactions 

and energy transfer occur among macroinverterbate species (e.g., Loeser et al. 2006). For 

example, the diet of predaceous terrestrial invertebrates found on FOM contained up to 70-90% of 

aquatic species (Hering and Plachter 1997; Braccia and Batzer 2001). Neuston, as a component of 

FOM, can be a trophic resource when other feeding resources are absent. For example, Saveanu 

and Martin (2015) showed that aquatic apple snails were feeding on neuston as an alternative food 

resource both under laboratory and natural conditions.  

The meaning of FOM as a nutritional resource varies depending on the characteristics of 

the river ecosystem, stream order, and season. For example, in low-order desert streams 

importance of FOM is limited, but it plays a crucial role in food webs of high-order streams with 

limited autochthonous production (Haden 1997; Haden et al. 1999). Floating macroalgae, on the 

other hand, can be an important food resource in autumn, while during spring and summer they 

serve mainly as a refugium (Thiel and Gutow 2005a).  
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2.4.5. Biogeochemical function of FOM 

Transportation of coarse particulate organic matter (CPOM) by water is one of the forms of 

redistribution of carbon within river networks and to the oceans (Turowski et al. 2016; West et al. 

2011). Although the contribution of CPOM to the total carbon load is usually around 2.5-10%, it 

can reach 80%, for example in catchments that comprise rapidly eroding mountainous streams 

(Richardson et al. 2005; Bunte et al. 2016; Turowski et al. 2016). Taking into account the potential 

of FOM to be transported for long distances, it may represent a highly mobile component of 

catchment carbon discharge that is redistributed in a pulsed manner. During transportation, it can 

be transferred to floodplains, trapped in reservoirs, or delivered to oceans. At 2%, the average 

contribution of FOM to total organic carbon (TOC) export at the catchment scale is minimal (Seo 

et al. 2008). However, during extreme storms, FOM can reach up to 30-60% of the total carbon 

mobilized (West et al. 2011). 

Deposited FOM is a component of biogeochemical processes that take place at the river 

reach scale in both vertical and horizontal dimensions. In the vertical dimension, FOM deposits 

may affect key drivers of biogeochemical cycling and microbial activities such as hyporheic water 

residence time, oxygen conditions on the surface of sediments, temperature, and access to 

bioavailable organic matter (Krause et al. 2014; Czarnecka 2015). Different communities will be 

present in adjusted aerobic and anaerobic zones, and denitrification may occur within anaerobic 

zones of deposited FOM (Pusch et al. 1998; Czarnecka 2015). FOM accumulations intensify 

vertical exchange of particulate and dissolved substances from surface water layers to the 

hyporheic zone, where they are degraded microbially, thereby increasing the self-cleaning 

capacity of the water body (Pusch et al. 1998; Krause et al. 2014). Regarding the horizontal 

dimension, FOM leads to nutrient retention within the channel and its margins due to facilitation 

of sediment deposition and accumulation of finer organic matter (Comiti et al. 2008; Pilotto et al. 

2014; Wohl and Scott 2016; Elosegi et al. 2017). In addition, deposited FOM, particularly large 

wood which can contain up to 45-50% of carbon, may serve as a component of carbon storage 

within the floodplain (Chen et al. 2005).  

Biofilms associated with FOM also play important biogeochemical functions. They 

represent sites of intensive chemical tranformation with carbon, nitrate, and phosphate uptake 

(Baldwin et al. 2014; Collins et al. 2012). Indeed, the presence and density of FOM deposits 

affects the functioning of ecosystems by promoting biofilms (Baldwin et al. 2014). Surface 

biofilms as components of FOM may be as heterogeneous as benthic biofilms, contributing to a 

continuous arrival of new microorganism communities due to their advection (e.g., Wotton and 

Preston 2005). These communities play an important role in the physical and chemical processes 
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at the air-water interface such as photosynthesis, attenuation of solar radiation, and metabolic 

production of exudates.   

 

2.5. Management of FOM 

Management of FOM in freshwaters is challenging due to its dual nature.  As shown 

above, FOM is a pivotal component of ecosystem integrity. However, at the same time, it can 

cause damage and flood hazards when it accumulates in reservoirs, at bridges, and other bankside 

infrastructures that impede its longitudinal transport (e.g., Diehl 1997; Lucía et al. 2015a; Comiti 

et al. 2016; Gschnitzer et al. 2017).  

Currently, the natural cycle of FOM has been greatly modified due to anthropogenic 

activities. These reduce the ability of FOM to reach a river channel, to be transported and 

deposited, and induce a shift in the composition of FOM towards an increasing anthropogenic 

fraction (e.g., Krejčí and Máčka 2012). Modifications of river corridors often reduce the 

interaction of the river with its floodplain, which reduces the amount and quality of FOM that 

potentially enters the river (e.g., Harris et al. 2014). FOM that has reached the channel and has 

been transported may be trapped behind dams in reservoirs (see Box 2) or at other water 

infrastructures. Material that accumulates behind dams may cause damage and contribute to 

greenhouse gas emissions to the atmosphere (carbon dioxide, methane) due to its decomposition 

(Abril et al. 2013). Accumulated FOM is usually removed in order to ensure the safe operation of 

turbines and prevent potential flood hazards, to be further disposed as landfill or be burnt (e.g., 

Diehl 1997; Hauenstein 2003; Bradley et al. 2005; Le Lay and Moulin 2007; Seo et al. 2008; 

VAW 2008). The proportion of FOM that passes downstream may also be affected by the 

operation of water facilities: it can be pulverized, its transportation and deposition patterns may 

also be affected by changes in downstream hydrodynamic conditions including reductions in the 

area subject to flooding (Shannon et al. 1996; Tenzer 2003; Kleinschmidt Energy and Water 

Consultants 2008). 

 

Box 2. FOM trapped in reservoirs in relation to catchment characteristics 

Dams and reservoirs represent “observational windows” where trapped FOM can be 

monitored with respect to a specific point or period of time. Based on information available in 

research papers and reports of hydropower companies, we collected data on the amount and 

composition of FOM accumulated behind 31 dams located within catchments of 13 rivers 

(Appendix A Table S1). Our aim was to estimate whether the amount of FOM observed in 

reservoirs can be explained by available bulk characteristics of their catchments. 
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Based on the results of multiple linear regressions (for details on methods and statistical 

analysis see Appendix A), we identified that bulk characteristics of the catchment such as size of 

the catchment area above the reservoir (as far as the next upstream trapping structure), annual 

precipitation, ratio of ‘woodshed’ (catchment area to the next upstream dam) to catchment area, 

percentage of forest cover, and artificial areas within 200 m of the river channel buffer explained 

around 56.5% of the variation in trapped FOM. This indicates that further environmental 

parameters should be taken into account, e.g., flood magnitude during the time period of wood 

trapping, position of the flood within the annual hydrograph (e.g., Moulin and Piegay 2004), or the 

lag effect of events that lead to the emission of FOM (suggested by Fremier et al. 2010; Seo et al. 

2015). We were not able to test the effects of these factors due to the limited information that is 

currently available. In addition, we analyzed relatively large catchments with a mean catchment 

size of around 13,000 km
2
, in contrast to Seo et al. (2008) and Rickenmann (1997) that analyzed 

catchments between 6.2 – 2,369.5 km
2
 and between 0.76 – 6,273  km

2
 in size. We also suggest 

that flood magnitude should be considered in relation to the hydraulic capacity of the dams that 

are present. If the hydraulic capacity of dams located upstream is not exceeded, FOM remains 

trapped and cannot pass downstream (see report by URS Corporation Gomez and Sullivan 

Engineers 2012). Furthermore, different recruitment processes that lead to the introduction of 

FOM into water bodies are potentially important factors that should be considered (e.g., Diehl 

1997; Bradley et al. 2005; Mazzorana et al. 2009, 2011; Mayer and Rimböck 2014; Steeb et al. 

2017). However, more detailed case studies are needed to take into account specific recruitment 

processes, also including smaller spatial scales than those analysed here. Finally, reference 

conditions for entrapment, particularly time since the last flood, could be incorporated to indicate 

the potential quantity of FOM that accumulates within the floodplain and is delivered to the river. 

 

Management of FOM in rivers can greatly benefit from a range of recent empirical and 

modeling approaches that target large wood transport and retention (e.g., described in SedAlp 

2014, Bertoldi et al. 2014; Lucía et al. 2015b; Ruiz-Villanueva et al. 2016b,d; Wohl et al. 2016; 

Mazzorana et al. 2017; Senter et al. 2017). Quantifying FOM transport and retention remains a 

major challenge because of the complex geomorphic, hydrological, and biological processes that 

control FOM dynamics in catchments of different sizes. At present, large wood budgets proposed 

by Benda and Sias (2003) are used as a tool to understand the dynamics during certain period or 

events, ranging from single events (Lucía et al. 2015b, Steeb et al. 2017) to interdecadal scales 

(Boivin et al. 2017). Furthermore, new approaches to monitoring are currently under development, 

including radio frequency identification tags and tracking with geographic positioning system 

devices, video observations, time-lapse photography, or oblique images (Macvicar and Piégay 
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2012; Schenk et al. 2014; Kramer and Wohl 2014; Ravazzolo et al. 2015b; Benacchio et al. 2017). 

These monitoring systems will enhance our understanding of the pathways of FOM within river 

networks and thus help improve FOM quantification.   

 

2.6. Conclusions and research gaps  

We provided a short and by no means all-encompassing synthesis on the various 

environmental functions of FOM for the integrity of entire river corridors. Indeed, we are just at 

the beginning of understanding the multiple functions FOM may play along rivers – as well as in 

lake and marine systems.  

Indeed, a number of research gaps remain. First, the factors that determine the quantity and 

quality of FOM in rivers require key attention. Results of our analysis (Box 2) show that bulk 

characteristics of the catchments can only partly predict the amount of FOM trapped in reservoirs. 

In addition, most attention has been given to the large wood component of FOM in river 

environments, while other finer fractions of FOM have been neglected. To some extent this can be 

explained by difficulties in FOM sampling, although the use of neuston samplers may offer a 

solution (Fig. 5).  

 

Fig. 5. Example of a sampler to collect FOM and its deployment (source: S.D. Langhans) 

 

With respect to the role of FOM in supporting dispersal of organisms along rivers, there is 

a need for investigation of quantity and composition of transported species, transport distances, 

and the importance of FOM in maintaining species and genetic diversity. Such information will 

help to predict current and future consequences of FOM extraction for overall river-bound 

biodiversity as well as potential evolutionary consequences for marine biodiversity, which we are 

unable to estimate so far.  

Our understanding of the role of FOM as an ecosystem engineer also needs to be increased. 

FOM is important in structuring the geomorphological complexity of river channels, abundance of 

resources and habitat conditions for other organisms, therefore is an important contribution to 

shaping ecosystems. Hence, FOM should be embedded within the framework of existing 



 

47 
 

geomorphological and ecological concepts related to rivers, such as the River Continuum Concept 

(Vannote et al. 1981), River Flood Pulse Concept (Junk et al. 1989), Nutrient Spiralling (Newbold 

et al. 1981), and Serial Discontinuity Concept (Ward and Stanford 1983).  

Finally, appropriate management strategies should be developed in order to balance 

environmental needs and human safety. So far, no studies have been done on management and 

maintainance of FOM post-flood accumulations deposited naturally along river corridors (Loeser 

et al. 2006). In fragmented systems, FOM that is entrapped at water infrastructures cannot be 

extracted and passed downstream completely as, under current conditions, it often contains a large 

fraction of anthropogenic waste (see Box 2). Therefore, we need to understand how to deal with 

mixed FOM, which fractions of FOM can be potentially reintroduced, and when reintroduction 

should take place. Potential reintroduction of FOM into rivers (such as reintroduction of wood) 

faces challenges due to negative human perceptions of its effects (Piegay et al. 2005). With respect 

to this, important research issues are how to predict FOM transportation and the likely locations of 

FOM accumulation in fragmented systems in order to avoid hazardous effects and to identify 

FOM’s “hot-spots”.  

 

Acknowledgments 

This work has been carried out within the SMART Joint Doctorate Programme ‘Science 

for the MAnagement of Rivers and their Tidal systems’ funded by the Erasmus Mundus 

programme of the European Union (http:// www.riverscience.it). We are thankful to Pablo Streich 

for collecting spatial data on the characteristics of the catchments analysed in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

48 
 

Glossary (selected terms, in alphabetical order) 

  

Coarse particulate organic matter (CPOM) – particulate organic matter larger than 1 

mm in diameter (Fischer and Likens 1973). 

Floating mats – buoyant accumulations that include living plant biomass, dead organic 

material and mineral sediments held together by rhizomes and roots secured by attachment to soils 

(Azza et al. 2006). 

Floating organic matter (FOM) – particulate matter of natural and anthropogenic origin 

(wood, branches, leaves, seeds, waste) that, due to its properties, is able to float on the water 

surface. 

Free floating macrophytes – plants that grow unattached within or upon the water layer 

(Hasan and Chakrabarti 2009). 

Large wood – pieces of wood larger than 1 m in length and more than 10 cm in diameter 

(Montgomery et al. 2003). 

Neuston – organisms associated with the air-water interface in aquatic habitats, including 

small vascular plants and inactive life stages of other organisms (e.g., seeds, spores) (Marshall and 

Gladyshev 2009). 

Surface biofilms – complex of organic compounds and microorganisms that aggregate at 

the water-air interface and extend a few micrometers (µm) from the surface into the bulk water 

(Wotton and Preston 2005). 

Wrack – organic matter washed onto shores (Harris et al. 2014). 
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3.1. Abstract  

Intermittent rivers and ephemeral streams (IRES) comprise more than half of the global 

river network. Despite being among the most widespread lotic systems, their biogeochemical 

functioning and significance at the global scale remain almost unknown. In these systems, 

rewetting events are considered as biogeochemical “hot moments”, with a massive, pulsed release 

of nutrients and organic matter (OM) in dissolved and particulate form. We experimentally 

simulated rewetting events using leaves, epilithic biofilms and river bed sediments, collected 

during the dry phase from 205 intermittent river reaches globally. Based on these experiments, we 

identified the magnitude of dissolved nutrient and OM release, determined the qualitative 

characteristics of the released OM, and estimated area-specific fluxes of nutrient and OM species 

from dry river beds. In addition, we explored whether the magnitudes of nutrients and OM release 

as well as qualitative characteristics of OM can be predicted based on substrate characteristics and 

selected environmental variables. We found large variability in the leaching rates from collected 

substrates with the largest variability in sediment leachates. The magnitudes of released nutrients 

and OM were better predicted for river bed sediments than for leaves both on global and regional 

scales (best predicted in Continental and Tropical zones). For sediments, the effects of 

environmental variables on substrate characteristics and through this on quantitative and 

qualitative characteristics of leachates were most prominent. For leaves, the variance was 

explained mainly by the effects of environmental variables alone. On the global scale, dissolved 

organic carbon, phenolics, and nitrate dominate the flux released from river beds. The highest 

nutrient load, but with the lowest qualitative characteristics, is expected to be observed in the 

Continental zone compared to others. Our results suggest that rewetting events in IRES can play a 

significant role in biogeochemical cycling of nutrients and OM on the global scale. 

 

3.2. Introduction 

Intermittent rivers and ephemeral streams (IRES) are waterways that cease to flow at some 

points in space and time along their course (Acuña et al. 2014). They represent the most 

widespread type of lotic ecosystems, covering more than half of the global river network, and are 

expected to expand further due to climate change and human exploitation (Larned et al. 2010; 

Datry et al. 2017). Despite their global relevance, research on nutrient and organic matter (OM) 

dynamics in IRES is based on single case studies, which do not allow for generalization of the role 

of IHRES in biogeochemical cycles at catchment and global scales (Datry et al. 2014; von Schiller 

et al. 2017; Skoulikidis et al. 2017a).  

From a biogeochemical perspective, IRES function as pulsed reactors with massive fluxes 

of nutrients and OM occurring during rewetting events (Larned et al. 2010; Datry et al. 2010). 
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During such first-pulse events, large quantities of coarse particulate material (CPOM), which have 

accumulated during the dry phase in the form of different organic substrates (e.g., woody debris, 

leaves, herbs, algae, biofilm mats), are rewetted and transported downstream (Obermann et al. 

2007; Corti and Datry 2012). Rewetting of CPOM as well as sediments within the river beds leads 

to the release of dissolved nutrients and OM. Concentrations of released substances may exceed 

baseflow values by several orders-of-magnitude. The released fraction may also make up a 

substantial part of their total annual flux at the catchment scale, despite a relatively low 

contribution to the water flux (Corti and Datry 2012; Bernal et al. 2013). Although released 

nutrients and OM are crucial for heterotrophic consumers and functioning of the ecosystems 

(Austin et al., 2004), they may have negative consequences. This includes eutrophication and 

hypoxia when released in high concentrations (Hladyz et al. 2011; Whitworth et al. 2012), 

formation of disinfection by-products due to OM released from aged leaves (Jian et al. 2016) and 

may impede further treatment of water due to increased concentrations of dissolved organic 

carbon (DOC) (Ritson et al. 2016).  

The process of soluble substance release from CPOM and sediments, which takes place in 

IRES upon rewetting, is defined as leaching (e.g., Bärlocher 2005). Leaching from leaves, which 

represent an important part of CPOM accumulated in dry river beds (Datry et al. 2018), is 

characterized by rapid mass loss (Nykvist 1963). Released leachates contain DOC (from 6 to 39% 

of the leaf bulk carbon content), nutrients (e.g., phosphorus, nitrogen, potassium), soluble sugars, 

carbonic and amino acids, phenolic substances and proteins (Nykvist 1963; Bärlocher 2005; 

Harris et al. 2016). Leaching of sediments releases large concentrations of inorganic nitrogen in 

the form of nitrate (e.g., Tzoraki et al. 2007; Arce et al. 2014; Merbt et al. 2016). In addition to 

leaves and sediments, dry river beds sometimes contain epilithic biofilm mats (further referred as 

“biofilms”), which contain different communities of microorganisms (algae, bacteria, fungi) 

embedded in a structure (Timoner et al. 2012). The quantity and qualitative characteristics of 

dissolved substances released from biofilms may differ significantly from those released from 

leaves and sediments (Sabater et al. 2016). The leachate from biofilms may contain highly 

bioavailable organic carbon and nitrogen due to the accumulation of exudates and products of cell 

lysis (Schimel et al. 2007; Romani et al. 2017). Overall, the quantity and the composition of 

nutrients and OM in leachates depend on the sources of leachate in the reach. The leachate has an 

impact on stream metabolism, nutrient cycling, the fate of dissolved organic matter (DOM) in the 

rivers and therefore is responsible for ecosystem processes (Baldwin and Mitchell 2000; Jacobson 

and Jacobson 2013; Fellman et al. 2013; Skoulikidis et al. 2017b).  

Concentrations and composition of leached nutrients and OM reflect the physical and 

chemical characteristics of the material accumulated within the river bed during the dry phase. 
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Characteristics of accumulated material are affected by environmental variables that act on both 

large scale (determined by climate) and local scale (e.g., river geomorphology, land use, riparian 

canopy, timing and duration of the dry phase) (Aerts 1997; Datry et al. 2018; Catalan et al. 2013; 

von Schiller et al. 2017). Despite the general knowledge of the factors controlling the nutrient and 

OM release, it remains unknown how rewetting events in IRES may contribute to nutrient and OM 

fluxes, regionally and globally, thereby affecting water quality and ecosystem processes in 

downstream receiving waters.  

In the present study, we experimentally simulated rewetting events under laboratory 

conditions using substrates collected in 205 globally distributed dry river reaches. The aim was to 

(i) compare the quantity and qualitative characteristics of nutrients and OM released from 

accumulated leaves, biofilms and bed sediments, (ii) identify their drivers of variability for 

different substrates, and (iii) estimate fluxes of nutrients and OM potentially released from the 

river bed (rates per m
2
 of bed surface). We focused on nutrient and OM species such as 

ammonium, nitrate, soluble reactive phosphorous, phenolics, dissolved organic carbon and 

nitrogen, as their concentrations in freshwaters affect essential ecosystem processes such as 

primary production and microbial respiration (Elser et al. 2007; Conley et al. 2009). We also 

classified released DOM according to size fractions and optic indices in order to explore its 

qualitative characteristics. We expect the amount of nutrients and OM and qualitative 

characteristics of DOM to differ significantly among substrates depending on the substrate 

characteristics, which are determined by environmental variables.  

 

3.3. Material and methods 

 

3.3.1. Sampling sites, substrate collection and environmental variables  

A total of 205 river beds, located in 27 countries spanning 13 Köppen-Geiger climate 

classes, were sampled during the dry period within the frame of the 1000 Intermittent Rivers 

Project and applying a standardized protocol (Datry et al. 2016, 

http://1000_intermittent_rivers_project.irstea.fr/, Fig. 6). Briefly, for each river, a surface area 

defined as 10 times the width of the average active channel was sampled. Within this area, 

approximately 5% of the river bed was randomly sampled with 1 m
2
 quadrates. From each 

quadrate, CPOM (leaves and biofilms mats, if present) was sampled at the surface. Biofilm and 

dry algae mats were collected by subsampling a 20 cm x 20 cm area of each quadrate by removing 

mats and/or scrapping stones with a razor blade. In addition, river bed sediment samples were 

collected from each quadrate from 0-10cm sediment depth. CPOM (~60 g of leaves), biofilms/dry 
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algae samples, and sediment (up to 3 L) were placed in separate transparante Ziploc bags. After 

collection, subsampled of each type of substrate material was pooled together per reach.   

 

Fig. 6 Location of the sampling sites (N=205). Climate zones are marked with different 

colors. 

 

Field samples were then processed in the laboratory. Leaves and biofilms were oven-dried 

at 60°C for 12 hours. Bed sediments were sieved through 2 mm sieves and air-dried for one week. 

The dry material was placed in transparent plastic bags, shipped and stored in a dry and dark room 

until further processing and analysis. 

To analyze environmental factors that can have potential influence on characteristics of 

leachates for each reach, we selected 9 environmental variables (Table 2). As variables of a large 

scale influence, we used the airidity index and potential evapotranspiration (PET), extracted from 

the Global Aridity and PET database (for details see Datry et al. 2018). As variables of a local 

influence, we used river width, % of riparian cover within the river bed (visually estimated river 

bed area covered by vegetation), dry period duration, altitude and % of pasture, forest and urban 

areas within the catchment. Variables of the local scale influence were recorded in situ by 

participants of the 1000 Intermittent Rivers Project (Datry et al. 2016, 

http://1000_intermittent_rivers_project.irstea.fr/). For an overview of the environmental variables 

and substrate characteristics sampled see Appendix B Table S4. 

 

3.3.2. Samples preparation and laboratory procedure 

The leaching experiment and chemical analyses of leachates were conducted at the 

Department of Chemical Analytics and Biogeochemistry of the Leibniz-Institute of Freshwater 
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Ecology and Inland Fisheries in Berlin. We cut leaves in 0.5 cm x 0.5 cm pieces and homogenized 

them in glass beakers. In case the sample contained pine-needles (approximately 30% of samples), 

we cut them in 4 cm length. From each mixed sample we weighed 0.5 ± 0.01 g (mean and 

standard deviation) into 250-mL dark glass bottles and than filled them with 200 mL of NaCl 

leaching solution using a measuring beaker. We used a 200 mg L
-1

 NaCl  leaching solution to 

mimic ionic strength in the stream waters and prevent extreme osmotic stress for microorganisms 

(e.g., McNamara and Leff 2004). In case of biofilms, homogenized sub-samples were weighed to 

1 ± 0.01 g and filled with 100 mL of the leaching solution. Samples of sediments (20-60 g) were 

homogenized in the same way, weighed to 10 ± 0.1 g, transferred into 250-mL dark glass bottles 

and filled with 100 mL of the leaching solution. The selected amount of substrate mass allowed us 

to maximize the leaching yield and avoid over-saturation of any dissolved substance.  

Based on preliminary investigations on the effect of temperature and time on the leaching 

yield (tested at temperatures of 4 and 20 ºC and leaching durations of 4 and 24 hours) a constant 

temperature of 20°C and leaching duration of 4 hours were selected. This time duration reflects 

the rapid nature of flush events and minimizes modification of leachates by the microbial 

community. Bottles containing substrates and the leaching solution were covered with caps and 

placed on shaking tables (100 rpm) in a climate chamber under controlled conditions in complete 

darkness. From each substrate type collected within a sampling site, two leachates subsamples 

(technical replicates) were produced for approximately 70% of samples, where enough material 

was available.   

After four hours the volumetric content was filtered through 8.0 µm cellulose acetate and 

0.45 µm cellulose nitrate membrane filters (Sartorius) pre-rinsed with 1 L of de-ionized water per 

filter using a vacuum pump. Filtered leachates were collected in 200-mL glass flasks pre-rinsed 

with 50 mL of the filtrated leachate. When available, subsamples were combined in one glass flask 

in order to obtain one representative sample. Leachates were then transferred into HCl pre-washed 

25-mL plastic bottles before further chemical analysis. Samples for analysis of dissolved organic 

carbon (DOC) and nitrogen species (see below) were acidified with 2 N HCl to pH≈3-4 using a 

dropper. Samples for DOC analysis and DOM characterization with size exclusion 

chromatography were stored at 2°C pending analysis within two weeks. Preliminary tests had 

shown that storage under these conditions does not alter DOC concentrations or DOM 

composition (Heinz and Zak 2017). Samples for the analysis of ammonium (N-NH4
+
), nitrate (N-

NO3
-
), optic indices of DOM through absorbance-fluorescence measurements were stored at -20°C 

and analysed within one month. Concentrations of SRP and phenolics were analyzed immediately 

after the filtration of the leachates. 
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For each type of substrate, organic C and total N content were determined using elementar 

amalyzers. Leaf litter and biofilms were grinded to 5 μm with a ball mill (MM301, Retsch GmbH, 

Haan, Germany) and fractions of carbon and nitrogen (%C and %N, respectively) were estimated 

in three 10-mg subsamples (FlashEA 1112, Fisher Scientific, Waltham, Massachusetts, USA). The 

analysis was performed at IRSTEA, Lyon, France. The organic C and total N content of sediments 

were measured after grinding and acidification with 2N HCl (TruSpec Micro CHNS, Leco 

Corporation, USA), using two subsamples. The analysis was done at the University of the Basque 

Country in Bilbao, Spain. Sediment texture (% sand, silt and clay) and their mean and median 

particle size were determined, after elimination of OM with H2O2, with a laser-light diffraction 

instrument (Coulter LS 230, Beckman-Coulter, USA), using one replicate per sediment sample. 

Analysis of sediment texture was done at the University of Barcelona, Spain. 

 

3.3.3. Analytical measurements 

DOC was measured as nonpurgeable organic carbon in a filtered water sample with a TOC 

analyzer (multi N/C 2100, Jena Analytics, Jena, Germany) according to DIN EN 1484 (DEV, H3). 

Soluble reactive phosphorus (SRP) was determined with the ammonium molybdat spectrometric 

method (DIN EN 1189 D11) using a Cary 1E Spectrophotometer (Varian). NH4
+
 and NO3

-
 were 

determined colorimetrically using the photometry CFA method (Skalar SAN, Skalar Analytical 

B.V., The Netherlands) following the guidelines in EN ISO 11732 (DEV-E 23) and EN ISO 

13395 (DEV, D 28), respectively. Concentrations of phenolics were determined according to 

Folin-Ciocalteau method using a spectrophotometer (SPEKOL 2000,  Analytic Jena, Jena, 

Germany) and measured concentrations were expressed in units of gallic acid equivalent (as 

described in Box 1983; Ainsworth and Gillespie 2007).  

Detection limits of the selected analysis procedures were: DOC 0.5 mg C L
-1

, NH4
+
 0.03 

mg N L
-1

, NO3
-
 0.01 mg N L

-1
, SRP 3 µg P L

-1
, phenolics 0.01 mg gallic acid equivalent L

-1
 

(GAE). When measurements were lower than the detection limit (for less than 15% of the total 

number of samples), we set the concentration value to half of the detection limit following the 

recommendations by USEPA (2000).  

Obtained values of nutrient and OM concentrations in leaching solutions were used to 

calculate respective release rates per g of dry material (total leaching rates) and per g of respective 

element, C or N, in the substrate (relative leaching rates). Total leaching rates allowed us to derive 

information relevant for evaluation of possible environmental consequences of the rewetting 

events taking into account the masses of substrates accumulated at the field scale. In addition, 

relative leaching potentials indicate a qualitative assessment of different substrates in terms of C 

and N content. 
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3.3.4. Size exclusion chromatography 

For a subset of leachates, we determined dissolved organic nitrogen (DON) concentrations 

and characterized composition of DOM using size-exclusion chromatography (SEC) (as described 

in Huber, Balz, Abert & Pronk, 2011; Graeber, Gelbrecht, Pusch, Anlanger & von Schiller, 2012) 

using organic carbon and organic nitrogen detection (LC-OCD-OND analyzer, DOC-Labor 

Huber, Karlsruhe, Germany). The subset was selected to represent each of the climate zones 

sampled (52 leaves, 11 biofilms and 77 sediments). DOM was classified into three major sub-

fractions: (i) biopolymers (BP), (ii) humic or humic-like substances (HS) including building 

blocks and (iii) low-molecular weight substances (LMWS) including low molecular weight acids 

and low molecular weight neutral substances. We assigned fractions using the customized 

software programme ChromCALC (DOC-Labor Huber, Karlsruhe, Germany) based on standards 

of the International Humic Substances Society. Detection limits for each fraction was 0.01 mg C 

L
-1

. We expressed each fraction in a percentage contribution to the total DOC.  

 

3.3.5. Spectroscopic analysis 

Absorbance spectra of DOM and fluorescence excitation-emission matrices (EEM) were 

produced simultaneously using a spectrofluorometer (Horiba Jobin Yvon Aqualog, Horiba 

Scientific Ltd, Kyoto, Japan). Samples were defrosted and acclimated to room temperature. 

Absorbance spectra were measured from 250 to 600 nm with 5 nm steps using a 10-mm quartz 

cuvette and a scan speed of 12 000 nm min
-1

. Fluorescence EEMs were produced with excitation 

wavelengths 250-600 nm (5 nm increments) and emission ranges from 250 to 550 nm (1.77 

increments).  

We calculated specific UV absorption values at a wavelength of 254 nm (SUVA254), which 

are correlated with aromatic content (Weishaar et al. 2003), by dividing decadal absorption by 

DOC concentration (mg C L
-1

) and cuvette length (in m). When samples were too concentrated for 

the optical measurements, evaluated visually and based on measured concentrations of DOC, the 

samples were diluted and a respective dilution factor was accounted for further calculations. 

Exitation-emission matrices were corrected for Raman scatter, Rayleigh and inner filter 

effect before calculation of fluorescence indices (Parlanti et al. 2000; Mcknight et al. 2001). We 

calculated the fluorescence index (FI), the humification index (HIX) and the freshness index (β:α) 

(for details see Fellman et al. 2010; Hansen et al. 2016). Fluorescence index is used to determine 

whether organic matter is derived from terrestrial sources (e.g., plant or soil, FI value ~1.4) or 

microbial sources (e.g., extracellular release, leachates from bacterial and algal cells lysis 

compounds, FI value ~1.9) (McKnight et al. 2001). Humification index indicates the extent of OM 

humification (degradation) (Zsolnay et al. 1999; Ohno 2002) with HI<0.9 indicating OM derived 
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from relatively recent (plant and algae) inputs (Hansen et al. 2016). The ratio of autochthonous (β) 

versus allochtonous (α) DOM indicates dominance by  recently produced or decomposed OM 

(values ~0.6-0.7 indicate more decomposed allochtonous DOM) (Parlanti et al. 2000; Wilson and 

Xenopoulos 2008). 

 

3.3.6. Calculation of the total areal flux of nutrients and OM  

Total areal flux of nutrients and OM from a representative square meter of the river bed 

was calculated based on information about masses of leaves and biofilms accumulated per 1 m
2
 of 

dry river beds (Datry et al. 2018), as well as on average mass of sediments present within 1 m
2
 of 

surface area. To calculate fluxes from sediments we assumed the average density of sediments to 

be 1.6 g cm
-3

 (Hillel 1980) and the depth of affected sediments to be 10 cm according to the 

sampling protocol. We acknowledge that this assumption should be considered with caution as 

high variability in sediment densities can be found in reality (e.g., Boix-Fayos et al. 2015) and 

potentially different depths of the sediment layers contribute to leaching.  

Overall, the total flux is the sum of potential leachable nutrients and OM from all 

substrates found within the dry river bed. To make a global comparison of total surface  fluxes, we 

selected the 157 sampled reaches for which a complete set of nutrients and OM concentrations 

(except DON) was available (reaches for which one or more chemical measurements was missing 

due to outliers were excluded). We assume these calculations to serve as a proxy to reflect 

differences in surface fluxes of nutrients and OM from a range of sampled river reaches.  

 

3.3.7. Statistical analysis 

Differences in the total and relative leaching potentials from different substrates were 

assessed using Kruskal-Wallis non-parametric test followed by Dunn test with Bonferroni 

correction for post hoc comparison. The level of significance was set to 0.0167 to account for 

multiple comparisons among the three substrates and to 0.0125 to account for differences among 

the four main climate zones. Main climate zones were assigned using the Köppen-Geiger 

classification of sampling sites: Arid (merging Köppen-Geiger BSh, BSk, BWh and BWk, n=29), 

Continental (Dfb, Dfc, n=13), Temperate (Cfa, Cfb, Csa, Csb, Cwa, n=142) and Tropical (As, Aw, 

n=19). The Polar climate zone was excluded from the comparison as there was only one sampling 

location there. Biofilm leachates were excluded from the cross-climatic comparison as this was 

almost exclusive to the Temperate zone (35 out of 41 samples). Variability in leaching rates was 

assessed based on interquartile difference (quartile three of data distribution minus quartile one) 

expressed in percentages. This measure of variability allowed us to account for differences in 

distributions of nutrients and OM released from different substrates and their further comparison. 
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To analyse the effect of environmental variables and substrate characteristics (independent 

variables X) on quantitative and qualitative characteristics of leachates (dependent variable Y), 

partial least squares (PLS) regression models were applied (Wold et al. 2001). In case when the 

effect of the environmental variables on substrates was investigated, substrates characteristics 

were used as dependent variables. An overview of the components included in the model is given 

in Table 1. The approach allows exploring the relationship between collinear data in matrices X 

and Y. Performance of the model is expressed by R
2
Y (explained variance) and by Q

2
Y 

(predictive power estimated by cross validation). To summarize the influence of every variable X 

on the variable Y, across the extracted PLS components (latent vectors, that explain as much as 

possible of covariance between X and Y), we used the variable influence on projection (VIP). The 

VIP scores of every model term (X-variables) are cumulative across components and weighted 

according to the amount of Y-variance explained in each component (Eriksson et al. 2006). X-

variables with VIP > 1 are most influential on the Y-variable, with 1>VIP>0.8 are moderately 

influential. To help data meet assumptions of normal distribution and homogeneity of variance 

data in X and Y matrices were transformed prior to analysis, and applied transformations are 

presented in Table 2. 

In order to partition variance in quantitative and qualitative characteristics of nutrients and 

OM explained by different groups of variables (environmental variables, substrate characteristics, 

and their interactions), we used the approach suggested in Borcard et al. (1992) (Fig. 7). In our 

study the information only on a subset of environmental variables and substrate characteristics 

was available. Thus, the measured environmental variables explain the composition of leachates 

not only due to their effect on measured substrate characteristics (fraction b in Fig. 7), but also due 

to the effect on substrate characteristics that were not measured in the study (fraction a). Similarly, 

a certain variation in known substrate characteristics explains variation in leachates, but not due to 

the effect of known environmental variables (fraction c). In addition, there is a certain part of 

unexplained variation (fraction d). In order to distinguish fractions of explained variance, we ran 

the following PLS-regression models: 

- Fraction [a+b] – PLS regression model of environmental variables on 

quantitative/qualitative characteristics of leachates; 

- Fraction [b+c] - PLS regression model of substrate characteristics on 

quantitative/qualitative characteristics of leachates; 

- Fraction [a+b+c] – PLS regression model of environmental variables and substrate 

characteristics on quantitative/qualitative characteristics of leachates. 
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Fig. 7. Variance partitioning among variables that influence leaching of nutrients and organic 

matter from substrates accumulated in intermittent rivers and ephemeral streams. [a+b] – effect of 

the environmental variables on composition/quality of leachates; [b+c] - effect of the substrates 

characteristics on composition/quality of leachates; [a+b+c] - effect of the environmental variables 

and substrates characteristics on composition/quality of leachates; [d] – unexplained variance 

 

From each PLS-regression we calculated the explained variance R
2
Y, that was then used to 

calculate the fraction of the explained variance separately (Borcard et al. 1992). For the PLS 

regression analysis we selected the complete set of variables for which required data (all responses 

and predictors, Table 2) was available. We ran partitioning of variance for the set of samples on 

the global scale and individually for each climate zone. For biofilms the analysis was done for 

samples of the Temperate zone only because of the limited amount of samples from other climate 

zones.  

All statistical analyses were performed in R 3.2.2 (R Core Team 2017), except for the PLS 

analysis which was conducted using XLSTAT software (XLSTAT 2017.1, Addinsoft, Germany). 

Extreme outliers were excluded from chemical data after careful identification with boxplots and 

Cleveland dotplots (Zuur et al. 2010).  
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Table 2. Overview of the variables included in the partial least squares regression models 

Variable Description Measurement 

units 

Transformation PLS 

model 

Environmental variables 

PET Mean potential 

evapotranspiration for year 

1950-2000 

mm month-1 Log(x) X 

Aridity Mean annual Aridity index 

for years 1950-2000 

- Log(x) X 

Altitude Altitude of the sampled 

reach 

m Log10 (x) X 

Riparian cover Percentage of the sampled 

reach covered by 

vegetation 

% Log10(x+1) X 

Width of the 

sampled reach 

Active channel width m Log(x) X 

Dry period Duration of the drying 

period 

days Log10(x) X 

Pasture area Percentage of pasture 

areas within the river 

catchment 

% Log10(x+1) X 

Forested area Percentage of forested 

areas within the river 

catchment 

% Log10(x+1) X 

Urban area Percentage of urban areas 

within the river catchment 

% Log10(x+1) X 

Properties of substrates 

% C Carbon content % Log10(x) X, Y 

% N Nitrogen content % Log10(x) X, Y 

C:N Molar C:N ratio - Log10(x) X, Y 

Specific properties of sediments 

Silt Silt fraction % Log10(x) X, Y 

Sand Sand fraction % Log10(x) X, Y 

Clay Clay fraction % Log10(x) X, Y 

Mean size Mean particle size mm Log10(x) X, Y 

Quantitative variables 

DOC Dissolved organic carbon mg g
-1

 dry mass Log10(x) Y 

DON Dissolved organic nitrogen mg g
-1

 dry mass Log10(x) Y 

SRP Soluble reactive 

phosphorous  

mg g
-1

 dry mass Log10(x) Y 

N-NH4
+
 Ammonium  mg g

-1
 dry mass Log10(x) Y 

N-NO3
-
 Nitrate  mg g

-1
 dry mass Log10(x) Y 

Qualitative variables 

SUVA254 Specific ultraviolet 

absorbance  

mg C L
-1

 - Y 

FI Fluorescence index - Log10(x+1) Y 

HIX Humification index - Log10(x+1) Y 

β:α Ratio of autochthonous to 

allochtonous dissolved 

organic matter 

- Log10(x+1) Y 
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DOC:DON Ratio of DOC to DON 

concentration 

-  Y 

phenolics:DO

C 

Ratio of phenolics to DOC 

concentration 

- Log10(x+1) Y 

LMWS Low molecular weight 

substances 

%  Y 

BP Biopolymers %  Y 

HS Humic substances %  Y 

 

  

3.4. Results 

 

3.4.1. Leaching rates of organic matter and nutrient species 

 

3.4.1.1. Total and relative leaching rates 

The total leaching rates (mg g
-1

 dry mass) of nutrients (except N-NO3
-
) and OM were the 

highest for leaves, followed by biofilms, and sediments (Fig. 8; Appendix B Table S5). The N-

NO3
-
 leaching rates were the highest for biofilms, and no significant difference was found between 

leaves and sediments (Kruskal-Wallis test, χ
2 

=
 
15.8061, d.f. = 2, p>0.0167). DON release rates in 

leaves and biofilms were not significantly different (χ
2 

=
 
105.7, d.f. = 2, p>0.0167). 

The total median release rates of nutrients and OM from leaves and biofilms decreased in a 

similar sequence: DOC>phenolics>DON>SRP>N-NH4
+
>N-NO3

-
. In the case of sediments, the 

total median release rates decreased in the following order: DOC>phenolics>N-NO3
-
>N-

NH4
+
=DON>SRP (Table S5).   

The relative leaching rates of DOC and phenolics (mg g
-1 

C) and DON (mg g
-1

 N) were the 

highest for leaves, followed by biofilms and bed sediments (Fig. 8; Table S5). For phenolics and 

DON, however, there were no significant differences between leaves and biofilms (χ
2 

=
 
51.6, d.f. = 

2, p>0.0167), and between biofilms and sediments (χ
2 

=
 
265.4, d.f. = 2, p>0.0167). Relative 

leaching rates of N-NH4
+
 were the highest from biofilms, followed by leaves and bed sediments, 

with no significant difference between biofilms and leaves (Kruskal-Wallis test, χ
2 

=
 
265.4, d.f. = 

2, p>0.0167). For N-NO3
-
, release rates decreased significantly from sediments to biofilms and 

leaves (Figure 8; Table S5). 

For all substrates, a large variability of both rate types was found. Biofilms showed up to 

10 times more increase in total and relative release rates of DOC, N-NO3
-
, SRP and total release of 

phenolics compared to sediments and leaves (Table S5). Sediments had the highest variability in 

the total release rates of DON and relative release of N-NH4
+
 and phenolics. In case of leaves, the 

highest variability was found for relative release of DON. 
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Fig. 8. Magnitudes of absolute (left) and relative (right) leaching rates of organic matter and 

nutrient species from leaves (L), biofilms (B) and sediments (S) of IRES globally. Box: median, 

interquartile range, outliers are values that exceed 1.5 interquartile range. 
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3.4.1.2. DOM characterization 

 

Values of SUVA254, a proxy of aromatic carbon content, decreased from sediments to 

leaves and biofilms, with no significant difference between sediments and leaves (χ
2 

=
 
55.8, d.f. = 

2, p>0.0167) (Fig. 9; Appendix B Table S6).  

The DOC:DON and phenolics:DOC ratios were highest in leachates from leaves, while 

differences between sediments and biofilms were not statistically significant (Table S6).  

In all leachates, the HS were the dominating fraction of DOM followed by BP and LMWS 

with the highest proportion in sediment leachates (Fig. 9). The leachates of leaves and biofilms 

had similar proportions of HS in DOM (χ
2 

=
 
29.9, d.f. = 2, p>0.0167). The highest percentage of 

LMWS was present in leave leachates (twice as high compared to sediments and biofilms) (Fig. 9; 

Table S6). The highest proportion of BP was found in leachates from biofilms (2 and 6 times 

higher than in sediments and leaves, respectively).  

Values of HIX showed statistically significant differences among all substrates (χ
2 

=
 
96.94, 

d.f. = 2, p<0.001), indicating a decrease in the degree of humification from sediments to biofilms 

and leaves. For all substrates, the β:α showed a dominant share of allochthonous material in 

leachates. Proportion of “fresh” material decreased from biofilms to sediments and leaves 

(difference between biofilms and sediments was not significant, χ
2 

=
 
197.4, d.f. = 2, p<0.001). 

Values of FI indicated presence of organic matter from terrestrial sources in all leachates, with no 

significant differences among them (χ
2 

=
 
6.3, d.f. = 2, p=0.043). 
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Fig. 9. Qualitative characteristics of dissolved organic matter leached from leaves (L), biofilms 

(B) and sediments (S) of intermittent rivers globally. Box: median, interquartile range, outliers are 

values that exceed 1.5 interquartile range. For parameter acronyms see Table 2. 
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3.4.1.3. Cross-climatic differences in leaching rates and qualitative characteristics of DOM 

 

Within each climate zone, we observed a large variability in both total and relative release 

rates and DOM quality. However, some significant differences were found based on the type of 

the substrates (Table 3). 

For leaves, a significant difference in the total leaching rates was observed only for N-

NH4
+
 between Continental and Arid, as well as between Continental and Temperate zones (χ

2 
=

 

19.04, d.f. = 3, p<0.001). Concentrations of all parameters for leaves were highest from samples 

collected in the Continental zone, except for N-NO3
-
 (highest in the Tropical zone) and DON 

(highest in the Arid zone). For sediments, significant differences in concentrations were found for 

all variables except phenolics. In all cases, the highest total leaching rates were found in the 

Continental zone and the lowest in leachates from the Arid zone (Table 3). Concentrations of 

nutrients and OM from leave and sediment samples from the Temperate zone, the most abundant 

in the study, usually followed those found in the Tropical zone, however with no significant 

difference (Table 3). 

The relative leaching rates did not differ significantly among climate zones for both leaves 

and sediments, except the rate of DOC for leaves that was significantly higher in the Temperate 

zone compared to the Arid zone (χ
2 

=
 
10.31, d.f. = 3, p<0.05).  

Aromatic carbon content (based on SUVA254 values) released from leaves was not 

significantly different among climatic zones. In case of sediments, a statistically significant 

difference was found between the Arid and the Continental zone (χ
2 

=9.99, d.f. = 3, p<0.05), with 

leachates from the Arid zone having lower aromaticity.  
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Table 3 Total and relative leaching rates of organic matter and nutrients species from leaves and bed sediments of IRES globally (median) 

Parameter Unit 

 Leaves Sediments 

Leaching 

rate 
Arid Continental Temperate Tropical Arid 

Contine

ntal 
Temperate Tropical 

DOC 
mg g

-1
 dry mass Total 

30.98 

 

47.40 

 

25.30 

 

22.90 

 

0.06 

 

0.25 

 

0.07 

 

0.08 

 

mg g
-1

 C Relative 86.28 108.86 58.1 66.5 14.66 13.3 12.24 19.92 

N-NH4
+
 

mg g
-1

 dry mass Total 

0.06 

 

 

0.14 

 

 

0.08 

 

 

0.105 

 

 

0.001 

 

 

0.004 

 

 

0.0015 

 

 

0.002 

 

 

mg g
-1

 N Relative 
7.8 

 
11.7 6.6 8.2 6.01 4.3 4.51 6.36 

N-NO3
+
 

mg g
-1

 dry mass Total 

0.004 

 

 

0.006 

 

 

0.002 

 

 

0.008 

 

 

0.003 

 

 

0.01 

 

 

0.004 

 

 

0.005 

 

 

mg g
-1

 N Relative 
0.43 

 
0.32 0.27 0.59 13.03 10.57 10.48 18.32 

DON 
mg g

-1
 dry mass Total 

0.30 

 

0.22 

 

0.14 

 

0.29 

 

0.001 

 

0.007 

 

0.002 

 

0.002 

 

mg g
-1

 N Relative 22.03 17.8 12.5 28.8 6.1 4.9 4.8 2.3 

SRP mg g
-1

 dry mass Total 0.11 0.24 0.15 0.16 0.0004 0.002 0.0005 0.0007 

Phenolics 

mg of GAE* g
-1

 of 

substrate 
Total 

9.08 

 

20.18 

 

8.38 

 

8.92 

 

0.003 

 

0.010 

 

0.005 

 

0.007 

 

mg of GAE* g
-1

 of 

C 
Relative 0.23 0.51 0.20 0.24 

0.008 

 
0.006 0.005 0.009 

SUVA 254 mg C L
-1

  1.6 1.44 1.57 1.88 1.21 2.01 1.75 1.78 

 

* GAE – gallic acid equivalent 
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3.4.2. Impact of environmental variables and substrate characteristics  

 

3.4.2.1. Effect on quantitative composition  

 

On the global scale, 25% of the variance (fraction [a+b+c]) in the quantitative composition 

of sediment leachates could be explained, this was more than twice as high as for leaves (11%). 

For sediments, around 23% of variance could be explained by the effect of substrate 

characteristics (fraction [a+b]), around 15% by the effect of environmental variables (fraction 

[b+c]) and 13% by the effect of environmental variables on substrate characteristics (fraction [b]) 

(Fig. 10). For leaves, the substrate characteristics and the environmental variables explained 

approximately an equal percentage of variance, 8 and 6% respectively, which was much lower 

than for sediments. Environmental variables and substrate characteristics accounted for 3 % of 

variance (Fig. 10). For both substrates, the most influential variables (VIP>1) were % C, % N, 

PET, and in the case of leaves also C:N and % pasture (Appendix B Table S7).  

For both leaves and sediments, the highest fraction of variance was explained for the 

Continental and Tropical zones (59 and 46%, Fig. 10). Sediments leachates from these regions 

were predicted mostly by the total effect of environmental variables and their interaction with 

substrates. High VIP was found for the dry period duration, % N and textural classes (both zones), 

river width and % forest (Continental), PET, % urban areas and % C (Tropical). In contrast, in 

leaves from these zones, most of the variance was predicted by environmental variables alone and 

not by their interaction with substrates. Environmental variables with high VIP in these zones 

were PET and aridity (in both), river width and altitude (in Continental) as well as % of pasture 

and dry period duration (in Tropical zone) (Table S7).  

For the Temperate zone, results of variance partitioning were available for all analyzed 

substrates. Variance in leachates from biofilms was best predicted (48%) followed by sediments 

(30%) and leaves (15%). In contrast to sediments and leaves, variance of biofilm leachates was 

better explained by environmental variables than by substrate characteristics (VIP>1 for % N, % 

C, aridity and altitude). 
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Fig. 10. Partitioning of variance in composition (A) and qualitative characteristics (B) of leachates on global and regional scales 
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3.4.2.2. Effect on qualitative characteristics 

 

For sediments and leaves, the fraction of variance explained for qualitative characteristics 

on the global scale was much lower in comparison to the quantitative composition - around 7% for 

each of the substrates (Fig. 10). Contribution of environmental variables, substrate characteristics 

and their interaction to the total variance was approximately equal (Fig. 10). Influential variables 

with VIP>1 were altitude and % C (both substrates), PET and texture (for sediments), river width 

and % urban (for leaves). 

For sediments, as in the case of quantitative composition, the variance was best explained 

in Tropical (58%) and Continental (53%) zones and was driven mainly by the total effect of 

environmental variables and their interaction with substrates. Variables with VIP>1 in both zones 

were sediment texture (% of silt and clay), and in addition in the Tropical zone – PET, aridity and 

% of urban areas, in the Continental zone % of pasture, forest and riparian cover, aridity and dry 

period duration (Table S7). For sediments in the Arid zone the explained variance was around 

28% and the share of fractions that explained variance was different. Particularly, almost all 

variance explained by the environment was due to the interaction with substrates (VIP>1 for 

texture, % C, % N and % forest). This was opposite for leave leachates, where variance was 

explained mainly by the effect of environmental variables alone (PET, Aridity and Dry period 

duration).  

In the Temperate zone, variance of leachate qualities was best predicted for biofilms (27%) 

followed by leaves (13%), and sediments (6%). The same was found for quantitative 

characteristics, where the explained variance for biofilms was due to environmental variables 

(PET and % of different land use types), for leaves due to substrate characteristics (% C, % N). 

For sediments the share of variance explained by substrate characteristics and environmental 

variables was approximately equal (VIP>1 for sediment texture classes, river width, altitude).  

 

3.4.3. Areal fluxes of nutrients and organic matter from the river beds  

 

We upscaled the leaching results by converting them into area-specific fluxes for the river 

beds. Fluxes for nutrients and OM differed by orders-of-magnitude among the sampled river sites. 

Fluxes of DOC and SRP differed by 2 orders of magnitude and ranged for DOC from 3 to 163 g 

m
-2

 river bed surface (mean±SD: 23.4±26.7, median: 15.2) and for SRP from 0.015 to 2.63 g m
-2

 

(0.21±0.32, median: 0.12). For N-NH4
+ 

and phenolics the difference in magnitudes of fluxes 
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spanned 3 orders of magnitude, from 0.009 to 6.67 g m
-2  

for
 
N-NH4

+ 
(0.52±0.78, median: 0.27) 

and from 0.012 to 35 g m
-2  

for phenolics (2.8±4.3, median: 1.39). The highest, 4-orders of 

magnitude difference in the area-specific fluxes was found for N-NO3
-  

where concentrations 

ranged from 0.008 to 18.88 g m
-2

 (1.48±2.52, median: 0.59 g m
-2

). Overall, fluxes decreased in the 

following order: DOC>phenolics> N-NO3
-
> N-NH4

+
>SRP. 

Contribution of leaves, biofilms and sediments to the total areal fluxes in general reflected 

masses of leaves and biofilms found in the field. Overall, the main contribution to the total flux of 

all nutrients and OM was made by sediments. Particularly, contribution of sediments to the total 

flux of N-NO3
- 
was 98±7 % (mean±SD), for N-NH4

+ 
97±6%, for SRP 86±19%, for DOC 85±20% 

and 56±33% for phenolics. The second major contribution to the total flux was made by leaves 

(except N-NO3
-
, where biofilms contribution was higher, 1.5±7% compared to 0.33±1.3% leaves). 

Apart from N-NO3
-
, contribution of biofilms to the total flux of nutrients and OM was very small 

and mean values did not exceed 0.1%. 

The highest fluxes in case of all nutrients and OM species were found in the Continental 

zone (Table 4, Appendix B Fig. S2). Compared to the Arid zone, the Continental zone had 3 times 

higher total median areal flux of N-NH4
+ 

and phenolics, 4 times higher for N-NO3
-
, and 5 times 

higher for SRP and DOC. For all nutrients and OM, except phenolics, the differences between 

Continental and Arid zones were statistically significant (p<0.001). Differences were also 

statistically significant between Continental and Temperate as well as between Continental and 

Tropical zones for DOC (χ
2 

=
 
24.8, d.f. = 3, p<0.001) and SRP (χ

2 
=

 
20.02, d.f. = 3, p<0.001). 

Analysis also showed statistically significant difference between Continental and Temperate zones 

for N-NH4
+ 

(χ
2 

=
 
16.5, d.f. = 3, p<0.001). 
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Table 4 Comparison of the areal fluxes (g m
-2

) of the different organic matter and nutrient species across climatic zones  

 

 Arid (N=23) Temperate (N=105) Tropical (N=15) Continental (N=12) 

Parameter Med. Mean±SD Min Max Med. Mean±SD Min Max Med. Mean±SD Min Max Med. Mean±SD Min Max 

DOC 9.4 11±6.07 2.96 26.71 16.7 24.9±29.82 3.0 162.67 15.9 14.99±7.53 3.71 28.01 43.8 44.79± 

21.15 

15.04 82.58 

N-NH4
+
 0.22 0.29±0.33 0.01 1.65 0.25 0.56±0.92 0.01 6.67 0.33 0.42±0.28 0.04 1.06 0.61 0.68±0.23 0.43 1.24 

N-NO3
+
 0.41 0.65±0.78 0.03 3.64 0.62 1.56±2.76 0.01 18.87 0.78 1.39±1.67 0.16 5.59 1.65 2.53±2.92 0.03 11.31 

SRP 0.07 0.12±0.14 0.03 0.57 0.10 0.20±0.34 0.02 2.63 0.11 0.15±0.12 0.03 0.51 0.36 

 

0.48±0.37 0.15 1.48 

Phenolics 1.1 1.57±2.08 0.01 9.43 1.45 3.19±4.95 0.012 35.00 1.11 1.90±2.04 0.05 7.57 2.78 2.75±1.19 0.37 4.58 
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3.5 Discussion 

3.5.1. Leaching of organic matter and nutrients  

3.5.1.1. Quantity of released nutrients and OM 

Our study showed how leaves, sediments and biofilms found within the dry beds of IRES 

contribute to nutrients and OM load upon rewetting. Leachates released from different substrates 

differed significantly in the concentrations of nutrients and OM, as well as in qualitative 

characteristics of DOM. High release rates of OM and nutrients from substrates of organic origin 

compared to sediments were consistent with results from other studies reported for different kinds 

of substrates that can be found within the river beds (e.g., Ostojić et al. 2013).  

Although sediments had the lowest total leaching rates per gram, their relative leaching of 

nitrate per g of N was higher compared to biofilms and leaves. During the dry period sediments are 

in contact with air, which increases nitrate content due to increased nitrification and inhibited 

denitrification (Arce et al. 2014; Merbt et al. 2016). In general, nitrogen species from sediments 

were released in higher concentrations compared to SRP, which was also found in other studies 

(e.g., Tzoraki et al. 2007; Skoulikidis and Amaxidis 2009). 

For all substrates, we observed high variability in total leaching rates. We expected higher 

variabilities in the total release rates from sampled leaves due to a large diversity of factors that can 

affect the amount of soluble compounds in leaves. This includes different physiological 

characteristics of the leaves (e.g., thickness and toughness) and heterogeneity of leaf material in 

terms of drying history and preconditioning due to invertebrates, microbial preconditioning, and 

exposure to UV-light (Fellman et al. 2013; Abril et al. 2016; Dieter et al. 2011). However, the 

highest variabilities were observed for biofilms and sediments. In biofilms, this was most likely 

related to different survival rates upon rewetting of algae and bacteria present (Timoner et al. 2012; 

Sabater et al. 2016). In addition, biofilms can trap nutrients and OM within their physical structure, 

which also can introduce variability in release rates (Sabater et al. 2016). In sediments, several 

factors affect leaching, from dissolution of salts accumulated on sediment particles to 

mineralization of cytoplasmic solutes of dead communities or release of intracellular solutes upon 

rewetting (Baldwinn and Mitchell 2000; Marxsen et al. 2010). The high proportion of microbially 

derived DOM underlines the importance of mineralization processes.  

 

3.5.1.2. Qualitative characteristics of OM 

Our analysis showed that leachates released from different substrates vary in the qualitative 

characteristics of released DOM affecting their potential to contribute to ecosystem processes. 

Biofilms released DOM with the highest qualitative characteristics that suggest its higher potential 

bioavailability (low aromaticity, DOC:DON, phenolic:DOC ratios). This is related to substrate 
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characteristics of biofilms, whose mas is mainly constituted by microorganisms with a low C:N 

ratio and has a low abundance of structural compounds and secondary metabolites (e.g., lignin, 

phenols) compared to leaves. Biofilm leachates also contained the highest percentage of BP in 

comparison with other size fractions of DOM. BP may play a key role as a source of bioavailable 

DOM in IRES and are more likely to be retained within the stream (Romani et al. 2015, Vazquez 

and Butturini 2006; von Schiller et al. 2015). In addition, during rewetting events biofilms can be 

scoured from areas where they are located, which can lead to increases in highly bioavailable 

material in transport (Ylla et al. 2010).  

Dissolved OM released from sediments and leaves differed in the origin of DOM and its 

molecular size distribution, although no significant differences in SUVA254 values (indicator of 

aromatic carbon content) were found. Highly humified DOM in leachates from leaves showed that 

leaching from leaves in IRES is more abiotic process. In sediments, a significant proportion of 

leached DOM originate from microbial cell lysis and release of intracellular solutes (Baldwin and 

Mitchell 2000; Merbt et al. 2016), or might be modified by microbial activity that recovered 

immediately after rewetting (Amalfitano et al. 2008; Ylla et al. 2010; Sabater et al. 2016). We also 

observed a very high variability in values of FI and β:α for sediments, showing that the contribution 

of microbially derived DOM from sediments is highly variable, potentially due to different survival 

rates and composition of communities (Amalfitano et al. 2008; Marxsen et al. 2010; Pohlon et al. 

2013).  

Considering the distribution of DOM size fractions, HS were the most abundant fraction in 

the leachates from all investigated substrates, which was consistent with composition of DOM 

characterized after rewetting of IRES in other field studies (Catalan et al. 2013; von Schiller at al. 

2015). However, leaves had a higher relative proportion of LMWS. Due to their small size, these 

molecules are highly mobile and can mobilize from stream-riparian interface to groundwater 

(Romani et al. 2006). This indicates that upon rewetting in IRES this size fraction of DOM might 

escape more from microbial metabolism than more bioavailable molecules of large size (e.g., BP 

released in high amount from biofilms).  

 

3.5.1.3. Inter-climate comparison 

Comparison of leachates based on climate zones showed significant differences only in total 

release rates from sediments. Continental and Arid zones opposed to each other in magnitudes of 

release rates and aromatic carbon content of leachates. In Arid zone we can expect low 

concentration of nutrients during flush events due to lower masses of organic matter accumulated. 

However, the ecosystems implications can be greater in this zone due to lower aromaticity of 

released DOM and thus its higher potential bioavailability (Weishaar et al. 2003). We suggest that 
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such differences across climates are related to the duration of dry periods (in our study 260±241 

days (mean and SD) for Arid and 106±67 days for Continental zone, Table S4), type of riparian 

vegetation and photodegradation, the last being more pronounced in Arid zones where vegetation 

cover, and thus shading, is low (49±33% in the Arid zone and 81±25% in the Continental  zone, 

Table S4). In addition, the aridity index was 2.6 times higher in the Arid zone compared to the 

Continental zone (Table S4). Increased aridity leads to a reduction in nutrient concentrations in soil 

due to a higher soil erosion and a reduced riparian cover accompanied by lower N mineralization 

(Schimmel and Bennet 2004; Delgado-Baquerizo et al. 2013).  

 

3.5.2. Drivers of leachates characteristics 

Understanding which factors control the composition and qualitative characteristics of 

leachates that are released during rewetting events in IRES can provide valuable information for 

prediction of peak nutrient loads across geographical locations and allows for the optimization of 

water management. Results of our analysis on variance partitioning showed that drivers of leachates 

quantitative and qualitative characteristics differed among studied substrates, and were climate-

specific. For substrates of organic origin (leaves and biofilms), variance both in composition and 

qualitative characteristics of leachates was clearly best predicted based on environmental variables. 

However, environmental variables influenced other substrate characteristics that affect leaching, 

rather then carbon and nitrogen content and their stoichiometric ratio assessed in our study. Thus, 

environmental variables are correlated with physical properties of leaves that may influence 

leaching (e.g., structural compounds, toughness), and the content of secondary metabolites, as 

antiherbivory compounds. In case of sediments, environmental variables had much higher influence 

on substrates and through this on variance in leachates. Overall, this finding shows that 

environmental variables can be used as predictors of potential nutrient load after rewetting of IRES 

within a particular climate zone. In addition, in certain climate regions environmental variables can 

be used to predict variance also in the qualitative characteristics of leachates. 

Potential evapotranspiration was found to be an influential factor in the explanation of 

variance in the quantitative composition of leachates both for leaves and sediments. PET reflects the 

ability of the atmosphere to remove water through the process of evapotranspiration, therefore being 

an indicator of soil and litter moisture availability (Aerts et al. 1997; Zomer et al. 2007). In addition, 

evapotranspiration was recognized as a key indicator of climatic control on litter decomposition on 

the global scale (Aerts et al. 1997). In the beds of IRES in particular, low moisture level reduces 

litter decomposition causing low mass loss, but higher DOC release upon rewetting (Abril et al. 

2016). In sediments, moisture serves as a regulator of survival and composition of microbial 

communities present within sediments (Timoner et al. 2012).  
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We also found inter-substrate and cross-climatic differences in the variables that were best 

predictors of quantitative and qualitative characteristics of leachates. In the Arid zone, where IRES 

usually have an open canopy (Steward et al. 2012), aridity and riparian cover had high importance 

in explaining the variance in sediment leachates. Variation in the presence of vegetation in arid 

areas can significantly alter nutrient content of sediments, which in general have fewer organic C 

and total N compared to less arid regions (Delgado-Baquerizo et al. 2013). The type of land use 

(mostly % pasture) explained higher % of variance in concentration of leachates from leaves, but 

not from sediments. The presence of agricultural areas in catchments reduces plant vegetation, 

therefore increasing insolation of the river bed (Allan 2004). The duration of the dry period in our 

analysis had a strong influence on variation in leachates only in certain geographical zones 

(Continental and Tropical), although in many case studies it was recognized as an important factor 

that influences leaching from substrates in IRES (von Schiller et al. 2017). Most likely, this can be 

explained by the fact that substrates were collected within the dry period, when substrates with 

different drying history could be accumulated. In addition, our study was conducted under 

laboratory conditions, therefore it was not possible to account for additional factors that potentially 

influence leaching in the field (e.g., temperature at the moment of leaching, intensity of 

precipitation, severity and timing of a rewetting event, volume of a flood, local topography that 

influences preferential flow paths etc. (Baldwin and Mitchell 2000; Ocampo et al. 2006; Hladyz et 

al. 2011; Bernal et al. 2013)).  

 

3.5.3. Areal fluxes from dry river beds 

Under field conditions, nutrient load delivered with rewetting events in IRES will depend 

not only on the release per g of substrates, but also on their field scale loadings. In IRES, loading of 

plant litter can reach up to 963 g m
-2

 depending on aridity, river width, catchment area, riparian 

cover and drying duration (Datry et al. 2018 and Table S4). By comparing areal fluxes from 

different IRES we aimed to see whether higher accumulations of materials within river beds 

(mainly plant litter and biofilms) result in higher total nutrient and OM load that can be delivered 

downstream. In analyzed IRES the highest loadings of plant litter were found in the Continental 

(median 54 g m
-2

)
 
and the Temperate zones (43 g m

-2
). In addition to the highest amount of leaves 

in the Continental zone, both leaves and sediments in this region had the highest leaching rates. 

Higher values of areal fluxes found within the Continental climate may result from initially higher 

nutrient and OM content in plant litter as well as a decline in the rates of OM decomposition 

generally observed with increasing latitude (Boyer et al. 2017; Meentemeyer 1978). Higher 

allochthonous input of OM in the form of leaves results also in higher nutrient content in sediments. 

Although depending on local conditions, other substrates can be present within the beds of IRES, 
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such as wood (Datry et al. 2018), their contribution to the nutrient load is relatively small compared 

to leaf litter and sediments (O’Connell et al. 2000; Hladyz et al. 2011). Therefore, the data obtained 

in our study can serve as the basis for a comparison of areal fluxes in IRES and can be further used 

for upscaling and modelling in order to adress implications of rewetting at catchment scales.  

 

3.6. Conclusions 

We showed that potential contribution of IRES to nutrient load delivered downstream after 

reweting events depends on the type and the amount of substrates accumulated during the dry 

period, and a range of environmental factors that can affect substrate properties at the moment of 

rewetting. The triangular relationship between environmental variables, substrates characteristics 

and the quantitative-qualitative characteristics of the resulting leachates can be derived only on 

regional scales of climate zones. The results we present here can be used to predict general patterns 

in the contribution of runoff events in dry rivers to nutrient load, based on the amount of material 

that can be accumulated within the beds of IRES. Overall, the quantity and quality of leachates are 

determined by a complex interaction of large-gradient climate variables and modulated by the 

variables of local scale influence. 
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4.1. Abstract 

Water transfer megaprojects (WTMP) are large-scale engineering interventions that aim to 

ensure water security for human needs by diverting water within and between catchments. Socio-

economic and environmental consequences of such projects are double-faced. Due to lack of their 

comprehensive inventory it is impossible to understand the consequences for freshwaters and 

predict the scale of future modifications. In this study, a database of key characteristics (distance, 

volume, cost, purposes) was compiled for 60 future WTMP that are under construction or planned 

by 2050 and 27 existing WTMP. Our inventory shows that in future WTMP a total volume of 1,250 

km
3
 per year would be transferred along a total distance exceeding twice the length of Earth’s 

equator. Future WTMP will have longer water transfer distances compared to existing with the 

longest total distances and total volumes in North America, Asia and Africa. Total investments in 

WTMP will reach more then 2,500 billion US$. Our results show that through WTMP new links in 

the global river network will be created, which can introduce modifications in the hydrological 

cycle and functioning of ecosystems.  

 

4.2. Introduction 

Water is an essential resource for humans and a prerequisite of well-being. At the same time 

increasing water scarcity is among the biggest challenges humanity is facing (World Economic 

Forum 2015). Indeed, freshwater is unevenly distributed globally, both temporally and spatially 

(Gupta and van der Zaag 2008). While total freshwater availability remains relatively constant, 

demand is strongly increasing due to human population and economic growth. By 2030 the world 

will face a 40% water deficit under a business-as-usual scenario (2030 Water Resources Group 

2009). Climate change further exacerbates the uneven distribution of water through changes in total 

precipitation, seasonality, interannual variability, and the frequency of extreme meteorological 

events – with magnitudes differing across regions (Schewe et al. 2014; Rockström et al. 2014). In 

addition, water quality of freshwater is deteriorating too due to pollution from industrial, 

agricultural and municipal sources, increasing the limitation of water resources for humans and 

nature alike (United Nations World Water Assessment Programme 2017).    

Shortage and quality decline primarily call for engineering solutions to store, redistribute 

and treat water resources. Water transfer is defined as “the transfer of water from one 

geographically distinct river basin to another, or from one river reach to another”; hereafter called 

“donor” and “recipient” system, respectively (Davies et al. 1992; Gupta and van der Zaag 2008). 

According to the report of the International Commission on Irrigation and Dams (2005), water 

transfer accounted for 14% of the global water withdrawals (about 540 km
3
 a

-1
) in the beginning of 

the 2000s. Global water withdrawal through transfer schemes is expected to increase to 25% by 
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2025 (Gupta and van der Zaag 2008), primarily through an expansion of water transfer schemes. In 

the USA, for example, the number of interbasin water transfers schemes has increased by an order-

of-magnitude during the past decades, from 256 (1985/1986) to 2161 (2017) (Dickson and 

Dzombak 2017). 

The impacts of water transfer projects on freshwaters are double-faced. They may cause 

positive as well as negative effects on both donor and recipient systems (WWF 2007; Zhang et al. 

2015; Zhuang 2016 and examples therein). On the one hand, they may reduce pressure on 

groundwater resources (Poland 1981), support ecosystem restoration measures (Snedden et al. 

2007; Dadaser-Celik et al. 2009), improve water quality (Hu et al. 2008; Rivera-Monroy et al. 

2013), and maintain biodiversity (Zhuang 2016). On the other hand, they may increase water loss 

due to evapotranspiration (Davies et al. 1992) and affect water quality leading to salinization 

(Davies et al. 1992), increase in concentrations of iron, silica (Fornarelli and Antenucci 2011), 

nutrients (Davies et al. 1992; Jin et al. 2013) and cause algae blooms (Fornarelli and Antenucci 

2011). Water transfer also can facilitate the spreading of pollutants (Murphy and Rzeszutko 1977; 

Zhuang 2016), diseases (Davies et al. 1992; Gupta and van der Zaag 2008) and invasive species 

(O’Keeffe and DeMoor 1988; Snaddon and Davies 1998; Clarkson 2004), but also decrease 

richness of riverine communities (Grant et al. 2012; Lin et al. 2017) and impede migration of 

terrestrial animals (Davies et al. 1992). Consequently, the number of publications on the various 

impacts of water transfers is growing steadily since 1991 (Zhang et al. 2015). 

Today, we relay more and more on large-scale technologies, so-called megaprojects, in 

order to meet expanding water needs. In general, megaprojects require significant investments and 

demand long time frames from planning to completion; with major socio-economic and 

environmental ramifications (Flyvbjerg 2014), and water megaprojects are no exception (Sternberg 

2016). Apart from water transfer megaprojects (WTMP), megaprojects include large dams, 

desalination plants, navigation canals and major restoration schemes (Sternberg 2016; Tockner et 

al. 2016). WTMP provide water for irrigation, energy production, domestic supply, ecosystem 

restoration, navigation and industrial development (Sternberg 2016). They are often initiated as an 

expression of national power and to trigger economic and social development (Sternberg 2016). At 

the same time, the social, economic and environmental consequences receive much less attention in 

the decision-making process (WWF 2007; Sternberg 2016; Zhuang 2016). Thus, WTMP may 

transform the hydrology and ecology of river basins fundamentally, long-term, large-scale, and in 

most cases irreversibly (Tockner et al. 2016).  

Up to now, we lack comprehensive data and information on the global extent of future 

WTMP, and on the multiple consequences these projects may cause for humans and nature alike 

(Tockner et al. 2016). Future megaprojects are mainly triggered by economic development, climate 
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change scenarios, and trust in engineering solutions. Design, construction, and commencement of 

megaprojects require time, money and technical skills (Flyvbjerg 2014). Therefore, WTMP 

currently in the planning or construction may require decades until completed. 

In the current paper we aim to collate information about water transfer megaprojects that are 

currently planned or under construction globally, and to be completed by 2050. In addition, we 

collected preliminary information on already existing water transfer megaprojects.  

The key research questions of our study are: 

(1) What is the global distribution of WTMP planned or under construction, and which 

purposes they are expected to fulfill?  

(2) How much water will be transferred across which distances? 

(3) What are the estimated costs of future WTMP? 

This is the first comprehensive study on future water transfer megaprojects, which may 

stimulate the collection of further information as well as research on sustainable solutions to cope 

with the increasing pressure on freshwater resources, while preserving highly valuable ecosystems. 

 

4.3. Methods 

 

4.3.1. Water transfer megaproject definition 

In the present study, the definition of a water transfer project is based on the work by 

Davies et al (1992) and Gupta and van der Zaag (2008). Thus, any type of infrastructure that 

transfers water from one river catchment to another, from one river reach to another, or from any 

freshwater body (rivers, lakes, groundwater sources) to a place where it will be utilized by humans 

is covered by the proposed definition.  

According to Flyvbjerg (2014), a megaproject is defined based on actual construction costs, 

with a threshold of one billion US$ per project. We first selected a sample of WTMP that are under 

construction or in the planning phase with the estimated cost of 1±0.5 billion US$ and calculated 

their median water transfer distance and volume (a total of 15 projects, Supplementary Information, 

Table 1). Based on the calculations, we applied one of the following criteria to define a water 

transfer megaproject: cost (one billion US$ or more), distance of water transfer (190 km or more) 

or volume of transferred water (0.23 km
3
 a

-1
 or more). These criteria were also used for identifying 

existing megaprojects. 

4.3.2. Data collection sources and criteria 

We collected information on megaprojects, which are under construction or in the planning 

phase, from published scientific publications, official web-sites of water transfer projects, 

environmental impact assessments, reports of non-governmental organizations, and information 
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available in on-line newspapers. Data were collected between January and December 2017. We 

searched for the English terms water transfer, water diversion, water megaproject, water 

redistribution schemes, using search engines (www.webofsceince.com; www.googlescholar.com; 

www.google.com). To reduce heterogeneity in data quality for projects where only non-peer-

reviewed and non-official information was accessible, we used multiple sources for cross-validation 

(list of information sources: Appendix C Table S8).  

For each project we derived the following data and information: location of project 

(continent, country), project status (planned, under construction), donor and recipient system, total 

water transfer distance, total water transfer volume (i.e. maximum annual capacity), construction 

cost, and purpose of water transfer project. We visualized the location of each project using QGIS 

software (version 2.12). Location of planed WTMP was based on available maps, terrain 

topography, or depicted as the shortest connection between donating and receiving water body in 

case no other information was accessible. 

 

4.4. Results 

 

4.4.1. Distribution and purposes of existing and future WTMP 

A preliminary list of existing WTMP includes 27 projects, of which 10 are located in North 

America and 10 in Asia (Fig. 11, Appendix C Table S9). At the same time, we identified 60 WTMP 

that are either under construction (26 projects) or in the planning (34) phase (Fig. 12; Appendix C 

Table S10). The majority of future WTMPs are located in North America (20 projects) and Asia 

(16) (Fig. 12; Table 5). In Europe, only two WTMP were identified (both are under construction).  

Most of the existing as well as future WTMP serve domestic water supply and irrigation, 

combined with electricity generation due to construction of weirs and dams (Table S9; Table S10). 

Among existing WTMP, three transfer water exclusively for energy generation with hydropower 

and one project for restoration purposes. Among future WTMP, six projects will transfer water in 

order to meet the needs of the mining industry, four serve restoration purposes and three will 

provide new freshwater navigation roads.  

 

4.4.2. Water transfer volumes and distances of existing and future WTMP  

For existing WTMP, the water transfer volume ranges from 0.06 to 51 km
3
 a

-1 
(median 

value: 1.9 km
3
 a

-1
) with a total water transfer volume of more than 180 km

3
 a

-1 
(Table 5). The 

largest water volumes are transferred within the “James Bay Project” in Canada (51 km
3
 a

-1
) and 

“Goldfields Water Supply Scheme” in Australia (33 km
3
 a

-1
).

 
The estimated water volume 

transferred per future WTMP ranges from 0.05 to 317 km
3
 a

-1
 (median value: 0.9 km

3
 a

-1
).

 
The total 
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volume of water transfer (all projects combined) amounts to about 1,250 km
3
 a

-1
 (Table 5). The 

planned “North American Water and Power Alliance” (NAWAPA) megaproject is estimated to 

transfer 193 km
3
 a

-1
 across the entire continent, the “Great Recycling and Northern Development 

(GRAND) Canal of North America” even 317 km
3
 a

-1
.  

The water transfer distance of existing WTMP ranges between 14 and 2,820 km (median: 

384 km) with a total length of 12,234 km (Table 5). The longest distance of water transfer amounts 

to 2,820 km for the “Great Manmade River” in Libya (2,820 km) and California State Water Project 

in the USA (1,128 km). The water transfer distance per future WTMP varies from 3.2 km to 14,900 

km (median value: 482 km) (Table S10). The calculated total length of all megaprojects planned 

(50,646 km) or under construction (26,417 km) is 77,063 km. The “National River Linking Project” 

(India), which is under construction, will stretch a total length of 14,900 km, the planned 

“NAWAPA” megaproject 10,620 km.  

 

Table 5. Water transfer megaprojects either planned or under construction 

 

 
1
 One project in Australia has missing information on distance; 

2
 Four projects have missing 

information on total water transfer volume (2 in North America, 1 in South America, 1 in Asia); 
3
 

Three projects have missing information on cost (2 in North America, 1 in Asia) 

 

 

 

 

 

 

 

 

 

 

Continent Number of 

projects 

Total water 

transfer 

distances
1
 (km) 

Total water 

transfer volume
2
 

(km
3
 a

-1
)
 
 

Total cost of all 

projects combined
3
 

(billion US$) 

North America 20 20,043 673.4 1,744 

Asia 16 28,388 320.2 521 

Africa  9 6,600 232.9 128 

Australia 7 8,238 12.9 72 

South America 6 11,777 8.2 36 

Europe 2 2,017 1.6 8 

Sum 60 77,063 1,249.2 2,509 
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Fig. 11. Global distribution of the largest exisitng water transfer megaprojects (purple 

limes) (N=27). Blue lines show major world rivers. 

 

 

Fig. 12. Location of future water transfer megaprojects that are under construction 

(red limes) and in the planning phase (green lines) (N=60). Blue lines show major world rivers. 
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4.4.3. Estimated costs of future WTMP 

Construction costs of individual WTMP range from 0.095 to 1,500 billion US$, median 

costs per project are 4.5 billion US$ (Table 5). The construction of 57 WTMP requires a total 

investment of around 2,509 billion US$. For three projects no data were accessible. The 

construction of “NAWAPA” is estimated to cost 1,500 billion US$. In terms of project cost per km 

of water transfer, the most expensive projects are in the USA and currently in the planning phase: 

“California Water Fix and Eco Restore” project (479 million US$) and “Mid-Barataria Sediment 

Diversion” project (375 million US$), as well as Acheloos River diversion project in Europe (339 

million US$). Considering the costs of transfer per millions of m
3
 a

-1
, the highest prices were 

identified for the channel connecting Lake Baikal with the Chinese city Lanzhou (325 million US$), 

the pipeline connecting the underground aquifer in eastern Nevada with Las Vegas (97 million 

US$), and the Kimberley-Perth canal in Australia (73 million US$), all of which are in the planning 

phase. 

 

4.5. Discussion   

In this paper, we present information on existing and future WTMP, which are expected to 

be completed by around 2050 globally, and on the key characteristics of each project. The current 

inventory indicates that the global hydrological balance will be altered by the 60 new megaprojects 

identified so far, creating “artificial links” across regions and continents (Emmanuel et al. 2015). 

Indeed, within future WTMP a total volume of 1,250 km
3
 would be transferred along a combined 

distance exceeding twice the length of Earth’s equator. For comparison, the mean annual flow of 

the Rhine River at mouth is around 72 km
3
 a

-1 
(Uehlinger et al. 2009). The median water transfer 

distance per individual project will be around one third of the Rhine River length (Uehlinger et al. 

2009).  

Unavoidable, the present inventory has limitations, primarily due to the heterogeneous 

quality of the accessible sources. For example, information on project costs was often collected 

from newspapers, which list different values depending on time of publication. In addition, we 

found a list of research studies that aim to provide information on locations and characteristics of 

water transfers, but are available only in Chinese (see references in Zhuang 2016). The inventory 

could also be potentially incomplete due to lack of comprehensive reports that compile information 

on water transfer on the scale of individual countries for both existing and future projects. There is 

no special agency responsible for maintaining a database on water transfer projects, even in 

countries where water transfer is an important component of water supply such as in the United 

States or China (Dickson and Dzombak 2017; Yu et al. 2018). The only comprehensive inventory 

of existing water transfers to our knowledge was just recently compiled in the United States 
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(Dickson and Dzombak 2017). Developing of the database on water transfers is one of the pre-

requisites to understand the water supply landscape on a country scale and to effectively manage 

water resources to meet the evolving demand (Dickson and Dzombak 2017). Internationally agreed 

standards to evaluate water transfer projects performance and impacts on ecosystems also do not 

exist as it does for dams (Roman et al. 2017; World Commission on Dams 2000). Despite numerous 

case studies on the social, economic and environmental impacts of individual projects, we are 

lacking a global inventory of existing and future WTMP, which limits our present understanding of 

the ongoing transformation of the global water landscape. Hence, such a global database would be 

of great value in order to develop appropriate decision and management strategies, considering the 

manifold consequences and trade-offs of WTMP. 

Water transfer distance and volume of future projects may exceed the values of existing 

projects by an order-of-magnitude. Among 27 existing projects, only two have total water transfer 

distance exceeding 1000 km; compared to 21 out of 60 future projects. In addition, the largest 

future WTMP will transfer six times more water compared to the largest existing WTMP. 

Moreover, nine future megaprojects will transfer water across country boundaries; compared to a 

single existing project.  

By 2050, the total water volume transferred through future WTMP will reach around 31% of 

the volume of total global water withdrawal made in the beginning of the century (Table 6). In 

North America and Africa WTMP will transfer water volumes that almost reach the volumes of 

total continental water withdrawal in year 2000. Compared to volume of water withdrawal made 

exclusively through inter-basin transfers, future WTMP will transfer 2.3 times higher water volume 

(Table 6). Total water volume transferred through future WTMP will also be equivalent to 

approximately 3.2% of the total global continental discharge to oceans (Table 6). Indeed, we may 

expect an even stronger increase because our analysis only includes megaprojects. More than 70% 

of the total water transfer volumes is expected to be through the five largest megaprojects (namely, 

“NAWAPA” and “GRAND” in North America, “National River Linking Project” in India, and 

“New Nile” and “Transaqua” projects in Africa). 

 Individual projects can have very different effects on the hydrological balance of the 

respective basins.  In order to further investigate these effects and to put WTMP in the context of 

hydrological balance on the continental scales, properties of the donating and recipient systems 

need to be investigated. These properties include, among others, hydroclimatological conditions, 

proportion of streamflow volume lost or received through water transfer, ability of downstream 

sections to persist reduced flow volumes (Emmanuel et al. 2015). Thus, interbasin transfers do not 

always extract significant proportion of streamflow in supplying basins. For example, the analysis 

of inter-basin transfers that existed in the US in 1973-1982 showed that half of them extracted 
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0.04% of streamflow in the donating basins, and 78% (including previously mentioned) less than 

1% (Emmanuel et al. 2015). 

 

Table 6. Comparison of water volumes transferred in future WTMP with data on continental 

water withdrawals (total and done through inter-basin transfer) and continental discharge to oceans 

 

Continent Water volume 

relocated 

through future 

WTMP (km
3
 a

-1
) 

Water withdrawals (km
3
 a

-1
) Volume of 

continental 

discharge to 

oceans
3
 (km

3
 a

-1
) 

Total in 

2000
1
 

Through IBT 

in 2005
2
 

North America 673.4 705 300 5,892 

Asia 320.2 2,357 146 13,091 

Africa  232.9 235 11 4,517 

Australia 12.9 32 1 1,320 

South America 8.2 182 3 11,715 

Europe 1.6 463 79 2,772 

Sum 1,249.2 3,974 540 39,307 
 

1
 Shiklomanov (2000); 

2
ICID (2005); 

3 
Fekete et al. (2002). Abbreviations: IBT – inter-basin 

transfer 

The purposes of future WTMP show that their development is driven mainly by climate 

conditions (e.g., WTMP planned in the south-western part of the United States) and deficit of water 

supply for further economic development (e.g., transfer schemes to provide water for mining 

schemes in Chile and Australia). Future WTMP are also proposed to facilitate the further economic 

connections of regions (e.g., navigation canals in South America and Africa). Certain projects aim 

to provide water supply for particular cities (e.g., water transfer from aquifer in East Nevada to Las 

Vegas, water transfer from Lake Baikal to Chinese city Lanzhou), increasing the number of cities in 

the world that have water supply from transfer schemes (nowadays – more than 10%, McDonald et 

al. 2014). Increase in a number of projects that will serve purposes of river restoration (e.g., in the 

United States) and navigation (in South America) is also among characteristic features of future 

WTMP compared to existing projects. 

Analysis of the estimated costs of WTMP shows enormous investments in water transfer 

projects. The total construction costs of all 60 megaprojects will require more than 2.5 trillion US$, 

which exceeds the calculated investments for constructing 3700 future hydropower dams either 

planned or under construction (Zarfl et al. 2015). Median value of single WTMP cost (4.5 bullion 

US$) can comprise a significant proportion in annual GDP of individual countries (for comparison, 

annual GDP of Greece is 196 billion US$ (World Economic Outlook Database 2017)). In China 

estimated expenses on water diversion projects (both completed and planned until 2015) accounted 
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for around 1% of country’s GDP in 2014 exceeding 150 billion US$, with the average cost of 3.5 

billion US$ per project (Yu et al. 2018). High costs, however, can lead to financial failures of 

megaprojects (Sternberg 2016). For example, Central Arizona Project completed in 1992 in the 

USA provided water for farmers with very high irrigation fees and investments in the projects are 

still not covered (Sternberg 2016). Estimated expanses of WTMPs can also increase while projects 

are constructed. The cost of Sao Francisco irrigation project in Brazil, currently under construction, 

has increased from initially estimated 4.5 to more than 10 billion US$ (Roman et al. 2017). High 

expenses on water transfer mean that funds are diverted from other potential uses. In the budget of 

Saudi Arabia, for example, 4% is dedicated to development of projects increasing water resources 

(Ministry of Finance, Saudi Arabia, 2013).  

The massive development of WTMP can have various consequences for freshwater 

ecosystems. Water extraction leads to reduced annual flows in the donor system. For example, the 

annual flow of the Yellow River in China was reduced by 10% in 2013 compared to the average 

flows within the last 60 years (Yu et al. 2018). The reason for this is water over-exploitation with 

on average 3.3 km
3
 or 11% of flow transferred out of the river annually (Yu et al. 2018). The 

overall effect of water transfer on freshwaters will depend on the physical and biological differences 

between donating and recipient systems, type of the connecting structures (pipelines or open canals) 

as well as on magnitude, frequency and duration of transfers (Soulsby et al. 1999; Gibbins et al. 

2000; Fornarelli and Antenucci 2011). For the future projects that will transfer water across 

thousands of kilometers, the impacts can be unpredictable. The construction of WTMP can have 

severe environmental impacts and these concerns are stimulating intensive debates. For example, 

the project “Acheloos Diversion” in Greece (still under construction) that was named a “Modern 

Greek Drama” (Tyralis et al. 2017) can cause irreversible damage to ecosystems that have 

exceptional ecological value and are a habitat for internationally protected species (WWF 2007). 

Sao Francisco irrigation project in Brazil is expected to increase desertification and cause 

salinization of irrigated soils due to increased evapotranspiration (Stolf et al. 2012). However, some 

of the future WTMP have an aim to prevent ecological losses, as for example “Transaqua” project 

aimed to refill shrinking Lake Chad, or “Comprehensive Everglades Restoration Plan” that will 

restore reduced annual flow in the area upon its realization (Ifabiyi 2013; Comprehensive 

Everglades Restoration Plan).  

 

4.6. Conclusions 

Within the next decades we expect a global boom in the construction of WTMP for rapidly 

increasing water needs. Even projects that are currently still in the planning phase can be become 

realized under certain social and political circumstances. These new artificial links will become an 
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integral part of the global freshwater landscape. Alteration of hydrological balance and connectivity 

caused by large scale water transfer represent a new emerging threat for global freshwaters. 

Consequences of these megaprojects have to be investigated with the required rigor, which is not 

yet the case today. With regards to freshwaters as ecosystems, future research can be done on 

overlap with hot-spots of biodiversity, potential spread of invasive species, impact on water quality 

and temperature patterns. Overall, results of the inventory of water transfer megaprojects emphasize 

the need to include these projects in the global hydrological models and to develop criteria for their 

multiple assessments.  
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5. General discussion 

 

Humans depend on freshwater as a resource and on freshwaters as ecosystems. This leads to 

increasing pressures on freshwaters, which are among the most threatened systems on Earth (WWF 

2016). Concurrently, it is obvious that people cannot completely avoid various impacts on rivers, 

lakes, wetlands and groundwaters. For example, a global boom in hydropower dam development 

represents a key threat to the remaining free-flowing rivers; at the same time dams provide major 

benefits for humans such as electricity generation, flood control and storage for irrigation and 

drinking water. The recent Paris climate agreement on the necessity to reduce greenhouse gas 

emissions will further facilitate hydropower development as a source of renewable energy; and 

therefore increase the pressure on freshwaters (Hermoso 2017). Indeed, freshwaters are most likely 

the main “losers” of the Paris agreement. By 2050 river flow components such as mean discharge, 

seasonality and extreme flow events will be much stronger affected by climate change than by river 

damming and water withdrawals in 2000 (Döll and Zhang 2010), including feedback processes 

between climate change and direct human interventions. The expected alterations pose serious risks 

to the global human population. Indeed, water security of around 80% of people is already under 

high level of threat (Vörösmarty et al. 2010). Overall, it has become more and more evident that 

freshwater science, governance and management need to consider and analyze these modifications 

and to apply respective measures across local and global scales (Vörösmarty et al. 2015; Bunn 

2016). The present thesis aimed to provide globally applicable conclusions on three challenges 

freshwaters are facing: river damming, river intermittency and large-scale water transfer schemes.  

 

5.1. Key research findings 

River damming can influence the dynamics of floating organic matter (FOM) in rivers, but 

this aspect of hydropower development was rarely studied before. In Chapter 2, I presented a 

detailed overview of the various functions and natural dynamics of floating organic matter (FOM) 

based on an extensive literature survey. A comprehensive description of FOM functions in 

freshwaters is accompanied by a conceptual understanding of FOM natural dynamics, further 

applicable to a wide range of rivers. An analysis of FOM accumulated at 31 dams showed that the 

amount of FOM is determined not only by general characteristics of the upstream catchment (57% 

in variation explained), but to some extent by characteristics of dams (maximum hydraulic capacity) 

and by flood events (magnitude and position within the hydrograph) too, which therefore should be 

further considered in future analyses and predictions.  

The role of rewetting events in biogeochemical processes in intermittent rivers and 

ephemeral streams (IRES) was studied in Chapter 3. I presented the results of a massive laboratory 
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study where I found that the release of nutrients and organic matter (OM) from bed sediments and 

accumulated coarse particulate organic matter (CPOM) of intermittent rivers upon rewetting is 

substrate- and climate-specific. Bed sediments released the lowest concentrations of nutrients and 

OM per gram of substrate, but sediments contributed most to the area-specific flux due to their high 

volume and mass – compared to CPOM (leaves and biofilms). However, high bulk concentrations 

of released nutrient and OM species did not always correspond to a high quality of dissolved 

organic matter in terms of potential bioavailability, and therefore the relevance for ecosystem 

processes. Overall, I found that the concentrations and qualitative characteristics of leachates are 

resulting from a complex interaction between environmental variables, at large and local scale 

influences, and their effects on substrate (bed sediments, CPOM) characteristics. The effects of 

environmental variables on substrate characteristics are better predicted for concentrations of 

nutrients and OM released from sediments compared to leaves. The effects are also better predicted 

on the scale of individual climate zones than on the global scale. Dry period duration and potential 

evapotranspiration were highly influential predictors for concentrations and quality of OM released 

from sediments in Continental and Tropical zones, where the highest percentage of variance was 

explained. 

The scale of expected intervention in the global freshwater landscape through water transfer 

megaprojects (WTMP) was investigated in the Chapter 4. The inventory of 60 future WTMP 

showed that in case of their realization by 2050, the total water transfer volume will reach 

1,290 km
3
 per year, which is 18 times higher than the annual discharge of Rhine River. Total 

distance of water transfer will twice exceed the length of Earth’s equator. In North America and 

Africa WTMP will transfer water volumes that almost reach the volumes of total continental water 

withdrawal in the beginning of the century. In addition, the total volume and distance of water 

transfer through individual future WTMP will be an order-of-magnitude higher compared to 

existing WTMP. Results of this chapter showed that water transfer megaprojects are considered an 

increasing threat to freshwater ecosystems. Hence, the social, environmental and economic 

consequences of WTMP need to considered, because these megaprojects may reduce alternative 

options to cope with water shortage and demand. 

Overall, the findings of my dissertation force us to think about the following key question: Is 

our understanding of ecosystem processes, in particular of organic matter dynamics, in rivers still 

accurate, taking into account the existing and planned alterations of the global freshwaterscape? 

River damming leads to the truncation of the transport of FOM, which is an important albeit 

neglected component of organic matter load in rivers, thereby providing multiple ecosystem 

functions. Intermittent rivers represent half of the world’s river network; however, they are 

currently not fully included in the global models of C cycling in inland waters (Datry et al. 2016). 
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In the next decades, a boom in water transfer megaprojects is expected in North America, Asia and 

Africa, but these massive interventions, with potentially severe consequences for the natural water 

balance, are not yet considered and no central repository has been established so far to provide an 

overview of the existing data on these projects. All these aspects represent important and emerging 

pressures on global freshwaters that, together with other pressures such as climate change and 

pollution, impose key challenges for the sustainable management of freshwater resources and 

conservation of threatened ecosystems. 

 

5.2. Implications for ecosystem processes and management  

 

5.2.1. Management of FOM accumulations at dams 

Despite the small contribution of FOM to the total material flux in rivers (by volume, on 

average 2% of the total organic carbon load (Seo et al. 2008)), it provides key functions in river 

systems at various spatial and temporal scales. Reduced amounts of FOM and modifications in its 

natural cycle due to river damming imply that downstream river sections will not benefit from FOM 

functions. 

From the managerial perspective, a problem of effective management of deposited and 

accumulated FOM remains open in fragmented rivers. Up to 100% of FOM transported within river 

networks can be entrapped at dams, extracted and utilized (Le Lay and Moulin 2007; Seo et al. 

2008). Complete reintroduction of trapped FOM back to rivers is, however, not possible as it may 

contain a large proportion of anthropogenic waste, which increases due to urbanization (Krejčí and 

Máčka 2012). Sustainable management of FOM can greatly benefit from engagement among 

scientific and technical disciplines. Thus, depending on the share of natural and anthropogenic 

FOM in fragmented rivers, design of spillways can be potentially adopted to allow fractions of 

FOM smaller than large wood (e.g., less than 1 m in length and 10 cm in diameter) to pass through. 

The first step towards accessing such measures can be to start monitoring the amount and 

composition of FOM accumulations by dam operators. 

 

5.2.2. Incorporation of intermittent rivers in models of nutrient load 

The recently developed “Pulse Shunt Concept” (Raymond et al. 2016) postulates that 

extreme hydrologic events (e.g., heavy rainfalls, ice melting events etc.) will cause a rapid 

transportation of released terrestrial organic matter before it can be metabolized by microbes or 

modified by photochemical reactions within the river network. Travel distances of the released 

substances will be proportional to the size of the hydrologic event (e.g., stream velocity, flow 

volume). With respect to intermittent rivers, released substances will be “shunted” to large rivers, 
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where they can increase eutrophication (the so-called “priming effect” or increase in decomposition 

after the input of fresh organic matter). Therefore, the severity of rewetting events should be 

considered in models that aim to predict the likelihood of eutrophication caused by rewetting of 

IRES. In addition, apart from the intensity of hydrological events that cause rewetting, other 

environmental variables identified in the current study (potential evapotranspiration, aridity index, 

dry period duration) can be used as indicators of the magnitudes of nutrient and OM release at 

particular geographical locations. 

 

5.2.3. Assessment of water transfer megaprojects and their inclusion in global hydrological 

models  

The estimate that water transfer volumes will equal volumes of the total continental 

freshwater withdrawal in North America and Africa emphasize a clear need to include water 

transfer in existing global hydrological models such as the WaterGAP model that simulates the 

characteristic macro-scale behaviour of the terrestrial water cycle (Alcamo et al. 2003). In addition, 

data on water transfer should be implemented in the global scale databases on water resources and 

their use such as UNESCO’s World Water Assessment Programme (www.unesco.org/water/wwap) 

or the Transboundary Waters Assessment Programme (TWAP, http://www.geftwap.org/) (Müller 

Schmied et al. 2016). 

For water transfer projects a cost-benefit perspective should be considered as well. A recent 

study by Alcamo et al. (2017) identified that in the 20th and the 21st century 23.7% of the global 

population has experienced a significant decrease in water availability, while only 20.4% has 

experienced a significant increase due to human interventions such as land use and land cover 

change, man-made reservoirs and human water use (here: withdrawals from surface and 

groundwater to fulfill human demand). WTMP often unwisely aim to provide water for irrigation in 

areas where cropping is unsustainable due to natural conditions. Sufficient consideration to 

potential consequences of such highly expensive and risky megaprojects is not given (WWF 2007). 

Alternatives to water transfer (such as reducing water demand and waste water recycling) are often 

not evaluated as potential solutions (WWF 2007). As it was noticed by Bunn (2016), people have 

made high investments to provide water security, but a much lower level of investments was 

provided to protect freshwater ecosystems. The first step to assess impacts of water transfer is a 

refinement of water balance databases that should include volumes relocated from donating to 

receiving water bodies. In addition, commencement of projects in the future should be evaluated in 

detail, including assessment of alternatives for water transfer, cost-benefit analysis of project 

impacts, potential risks and mitigation measures as well as a consultation process with affected 

communities. 
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5.3. Suggestions for further research 

 

5.3.1. Contribution of FOM to species dispersal 

One of the most important albeit understudied functions of FOM is its ability to support 

biological integrity along entire river corridors. Many terrestrial and aquatic invertebrates disperse 

attached to FOM, partly over long distances, and these animals (but also plant propagules) reach 

sections along the river network, and even of the ocean, that would otherwise be inaccessible for 

them. In this respect, FOM plays a key role in sustaining the biological and genetic diversity of 

animals and plants along river corridors and in coastal areas. At the same time, we have only scant 

information on how many terrestrial species rely on FOM as a dispersal mode, apart from single 

case studies conducted along some European rivers (e.g., Langhans 2000; Tenzer 2003; Trottmann 

2004). To further analyze the role of FOM in species dispersal in different types of rivers, 

invertebrate assemblages associated with FOM should be studied in lowland and alpine rivers or in 

rivers with different types of land use in their catchments.  

Although quantitative sampling of FOM (during the transport phase) remains a challenge 

due to its pulsed dynamic and location at the water-atmosphere interface, a modified neuston 

sampler is proposed in this thesis. In addition, dams represent “observation windows”, where 

trapped and accumulated FOM can be sampled and quantified. Knowing which species rely on 

FOM as dispersal vector can help to predict consequences of FOM extraction for sustaining food 

webs and biodiversity sensu lato along fragmented rivers, particularly along rivers, which are 

species rich but highly threatened – actually and in the near future (e.g., Amozon, Congo, Mekong). 

Furthermore, it would be of interest to analyze the types of microorganisms that can be transported 

on FOM of anthropogenic origin, and whether FOM may serve as a dispersal vector for diseases 

and pollutants too.  

The relative proportion of anthropogenic FOM trapped at dams may be as high as 25% or 

even higher. Although information on the exact composition of this fraction is not available, plastic 

comprises a significant proportion and therefore should receive major attention as an emerging 

dispersal mode for freshwater organisms. Finally, the dispersal of species from rivers to the marine 

environment on logs may facilitate the colonization of new places such as islands and even 

continents. Hence, FOM extraction along rivers can have major evolutionary consequences for 

biodiversity, at very large scales and on long time periods.  

 

5.3.2. Refining the role of intermittent rivers in global biogeochemical cycles 

Quantitative data on the concentrations of nutrients and organic matter (OM) released from 

intermittent rivers provide a key base for the assessment of the role of IRES in global 
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biogeochemical cycles. Concurrently, von Schiller et al. (in prep.) estimated CO2 fluxes from 

rewetted sediments. A combination of data sets on leaching and CO2 release, and extrapolation of 

these estimates to the global scale, knowing the amounts of coarse particulate organic matter 

(CPOM) and bed sediments (studied in Datry et al. 2018), will allow to refine the current 

knowledge on the amount of carbon that is processed in inland waters. At the same time, we need 

information on the global extent and area of IRES, and the duration of the dry periods, to allow the 

calculation of global fluxes.  

The information obtained from laboratory experiments need to be related to the 

environmental variables that are expected to modulate leaching and CO2 release in reality. 

Rewetting of IRES is caused by rainfall and water flow transported from upstream parts of the 

catchment. Intensity of rainfall and flow volume can modify concentrations of released nutrients 

and OM and affect their fate within surface-subsurface systems of the dry river bed (e.g., Raymond 

et al. 2016; Li et al. 2017). Thus, knowing the hydraulic properties of sediments (such as textural 

classes (%clay, %silt, %sand), residual and saturated water content) and intensity of rewetting we 

can predict the concentrations of the released leachates that will be transferred to groundwater or 

released to the runoff (Shukla 2013). The large empirical database I provide in this thesis can be 

used for mechanistic modelling that aim to investigate the impacts of such modulators. Particularly, 

these predictions can be performed under different scenarios of climate change, which is known to 

reduce number of rainfall events, while making them more extreme (IPCC 2014). 

 

5.3.3. The role of water transfer megaprojects in altering river continuum 

From the perspective of river ecosystem functioning, WTMP are artificial structures that 

perturb the river continuum (Davies et al. 1992). Rivers exhibit a continuum of physical and biotic 

gradients that determine also a gradient of biotic responses (structure and functioning of 

communities) according to the so-called River Continuum Concept (Vannote et al. 1980). 

Downstream communities are controlled by events that take place in the upstream reaches. 

Therefore, in case of water addition or removal, functioning of this continuum and associated 

systems (e.g., floodplain, hyporheic zone) will be modified. According to another concept, the 

Serial Discontinuity Concept (Ward and Stanford 1983), perturbations in rivers require some 

distance to recover (e.g., thermal patterns in rivers with impoundments). Same disruptions in 

temperature gradient, continuum of nutrient concentrations or sediment regime can occur in rivers 

with WTMP, especially when two basins distinct in their characteristics are connected (Davies et al. 

1992). Even transfer of water between parts of the catchment can cause disruption in river 

continuum (Davies et al. 1992). Studying the effect of WTMP on perturbation of river continuum 
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components and drivers of their magnitudes represents one of the future directions in research on 

environmental impacts of large-scale water transfers. 

 

5.4. Conclusions  

 

Damming and intermittency are altering the water and organic matter dynamics of rivers, 

both in space and time. The further construction of large-scale water transfer schemes, in 

combination with climate change, will exacerbate these alterations with profound consequences for 

freshwaters at local, regional and global scales. The present thesis provides a global prospective on 

some of the neglected challenges freshwaters are facing. 

The results of this thesis show that the integrity of rivers is largely supported by a previously 

neglected component of material flow in rivers – floating organic matter (FOM). Therefore, the 

future design and operation of dams must consider to facilitate an unimpeded input and transfer of 

natural FOM, in order to support ecological and geomorphic functions it provides along river 

corridors. 

Rewetting of intermittent rivers leads to a pulsed release of nutrients and organic matter. I 

found that sediments serve as key contributor to the fluxes, and the concentrations of released 

material can be predicted based on environmental variables, depending on the climate zone. 

Intermittent rivers should be included in models of organic matter processing. Knowledge on 

environmental drivers that affect magnitudes of nutrient release can be further used to predict 

potential negative effects of rewetting on downstream receiving waters. 

Water transfer megaprojects are considered an emerging threat to freshwaters. The present 

inventory of megaprojects either planned or under construction, and their key characteristics, shows 

a massive boom in the near future. Hence, we need to include these projects in analyzing 

hydrological cycles and developing criteria for assessing the multiple effects.  

The results of the thesis emphasize that freshwater alterations are closely linked to each 

other, causing additive or synergistic consequences as well as multiple trade-offs. Identifying the 

underlying drivers as well as the related consequences, provides a fundamental basis for the 

sustainable management of rivers as ecosystems and freshwater as a vital resource for human well-

being alike. 
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Table S1. Amount and composition of floating organic material (FOM) trapped at dams and reservoirs worldwide 
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43.5± 

20.7 

1996

-

2003 

100 63 37 0  

Trottmann (2004) 9 

Flumenthal 47.23; 7.59 Aare 4346.8 35.4 355.6 28.2 80.8 924.0 
774.3± 

274.4 

1981

-

2003 

 

Only 

wood 

volum

e was 

  8 years 
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estima

ted 

10 Bannwil 

(Emme) 
47.23; 7.73 Aare 4617.0 35.6 378.7 28.6 85.0 947.0 

588.9± 

262.4 
97 90-92 3-4 5-6 

11 
Wynau 47.26; 7.79 Aare 4630.1 35.6 381.0 28.7 85.1 970.0 

650.6± 

260.1 

 

Only 

wood 

volum

e was 

estima

ted 

  

12 
Ruppoldingen 47.31; 7.88 Aare 4885.2 36.0 402.8 28.9 89.1 982.0 

135.9± 

123.8 

13 
Gösgen 47.37; 7.98 Aare 5633.2 36.5 462.2 28.0 100.9 1028.0 

1674.9± 

676.5 

14 
Aarau-Stadt 47.39; 8.04 Aare 5667.7 36.6 464.9 28.1 101.4 1006.0 

320.5± 

259.0 

15 
Aarau-Rüchlig 47.40; 8.05 Aare 5673.2 36.6 465.3 28.1 101.5 1006.0 

105.5± 

55.1 

16 Rupperswil-

Auenstein 
47.41; 8.11 Aare 6075.6 36.8 497.0 27.9 108.0 1033.0 

1710.7± 

850.5 

17 
Wildegg-Brugg 47.47; 8.17 Aare 6442.7 36.6 527.1 27.7 114.5 1019.0 

581.5± 

253.9 

18 
Beznau 47.56; 8.24 Aare 7997.8 37.2 666.7 29.7 147.7 1020.0 

1525.2± 

540.4 

19 
Klingnau (Aare) 47.59; 8.23 Aare 8094.7 37.1 674.6 29.5 149.5 1019.0 

1018.7± 

437.3 

20 Mühleberg 

(Aare,Wohlen 

See) 

46.97; 7.28 Aare 674.0 40.8 57.9 36.0 13.6 954.0 1500.0 
5 

years 
90 10-50 

40-

80 
10 5 years 

Hauenstein (2003) 

21 Niederried/Kall

nach (Aare, 

Saane) 

47.00; 7.24 Aare 2119.2 40.0 178.7 44.8 39.5 902.0 740.0 
5 

years 
100 99 11 - 5 years 

22 Hagneck (Aare, 

Saane) 
47.06; 7.18 Aare 2163.7 40.0 183.4 44.6 40.2 902.0 414.0 

9 

years 
100 80 20 - 9 years 

23 
Kandergrund 46.54; 7.66 Kander 37.8 50.3 4.7  1.1 1389.0 33.0 

5 

years 
100 84 16 - 5 years 

24 

Zvornik 44.37; 19.11 Drina 17474.2 47.0 1317.0 56.1 367.3 860.0 
2176.0± 

256.8 

2009

-

2011 

- 18 81 

All 

fractio

ns 

reporte

d as 

“waste

” 

2009 

Zupanski and Ristic 

(2012) 

25 

Bijina Basta 43.96; 19.41 Drina 14738.7 44.8 1102.9 54.8 346.1 947.0 
12138.7± 

6058.9 

2009

-

2011 

- - - - - 

26 Potpec 43.52; 19.58 Lim 3493.3 42.0 261.9 49.8 95.5 1022.0 1200.0 2011 - - - - - 

27 Krasnoyarsk 55.94; 92.29 Yenisei 593781.7 5.2 57884.0 3.9 2090.5 496.0 104000.0 1995 - Only - - 1995 Korpachev (2004) 
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28 Sayano–

Shushenskaiy 
52.82; 91.37 Yenisei 483345.0 2.1 47278.4 1.8 1125.4 453.0 1000000.0 

 wood 

volum

e was 

estima

ted 

 

29 
Bratsk 

56.29; 

101.79 
Angara 797385.3 7.2 78878.7 3.4 2404.8 342.0 2200000.0 

30 
Ust-Ilimsk 

57.97; 

102.69 
Angara 748744.1 6.5 73806.7 3.2 2179.5 354.0 900000.0 

31 

Shihmen 

Reservoir 

24.81; 

121.25 
Dahan 760.2 95.6 47.1 86.1 42.4 2417.0 54000.0 2004 - 

Only 

wood 

volum

e is 

report

ed 

- - 2004 Chen et al. (2013) 
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Approach and methods used for the analysis of the results presented in Box 2 “FOM 

trapped in reservoirs in relation to catchment characteristics” 

 

For “material observed in dams”, we consider material that was either extracted behind 

dams or that arrived and was recorded to pass downstream.  

In total, we collected information on 31 dams located within the catchment of 13 rivers and 

used these data for the regression analysis. For each dam, we identified the average annual amount 

of FOM extracted based on data available per year of observation. Four dams were excluded from 

the final analysis due to the comparatively large size of their catchments and therefore the likely 

complexity of processes that contribute to the delivery of FOM. We also excluded three dams with 

a significantly higher percentage of anthropogenic waste in FOM (>80%) and three dams that did 

not have trapping structures upstream.  

Data on the amount of observed material was normalized to bulk m
3
. Data given in tons 

were converted to volume using the average density of wood extracted from the Genissiat dam that 

was given in Ruiz-Villanueva et al (2016c). 

We aimed to correlate the amount of trapped material with the following characteristics of 

the catchments: 

- size of the catchment (WS), 

- size of the catchment area located upstream until the next trapping structure (WSA), 

the so-called “woodshed” as described in Fremier et al., 2010. (Compared to a 

catchment, which is defined as the whole collection area of water, “woodshed” is an 

area where material, which can become floating, is able to reach the stream and be 

passed downstream). 

- average annual discharge at the dam locations (AD),  

- average annual precipitation at the dam locations (AP), 

- size of the 200 m river buffer along both sides of the river channel (CB200), 

- type of land cover (percentage forested area and percentage artificial area) within the 

200 m river channel buffer (WL200 and WA200 respectively). 

In addition, we calculated the ratio of WSA to WS, further abbreviated as “R”, to evaluate 

the remaining areal fraction potentially contributing to material supply if upstream dams are 

considered (approach suggested by Fremier et al. (2010)). 

All spatial data analysis was carried out using the geographical information system software 

ArcGIS 10.4.1 TM. We calculated the catchment area using the digital elevation model (DEM) 

derived from the HydroSheds dataset (Hydrological data and maps based on Shuttle Elevation 

Derivatives at multiple Scales) of the United States Geological Survey (USGS), which is based on 
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shuttle radar topographic mission (SRTM) data. Dam catchments were delineated using Global 

SRTM data in 1 arcsec resolution. All catchments were delineated within a continental lambert 

conic conformal projection. Size was calculated within the equal area Mollweide projection. 

Average annual discharge at the dam locations was calculated using the ArcHydro tool of 

the ArcGIS software and based on the runoff shapefile from Lehner and Döll 2004.  

Landcover analysis of the catchments and within the 200 m river channel buffer was based 

on ESA Globcover Version 2.3 from 2009. All land cover analysis was carried out within the 

Mollweide projection. Categories assigned to the type “forested” were:  

- Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5m) 

- Closed (>40%) broadleaved deciduous forest (>5m) 

- Closed (>40%) needleleaved evergreen forest (>5m) 

- Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m). 

In addition, we calculated % forested area within the 200 m river buffer according to the 

method described in Seo et al. (2008). 

Data on annual precipitation at the dam locations were acquired from the set of global 

climate layers, WorldClim, with 5 min spatial resolution (http://www.worldclim.org/, Hijmans et 

al., 2005).  

A Principal Component Analysis (PCA) was performed to exclude variables that were 

colinear (Fig. S1). PCA was conducted with the statistical software XLSTAT (XLSTAT 2017.1, 

Addinsoft, Germany). The first two principal components explained 70.37 % of the variation in the 

explanatory variables. 

On the basis of a visual analysis of the PCA plot and the obtained correlation matrix 

(variables with correlation coefficients ≥0.7 were defined as colinear) (Table S3), the following 

variables were selected for further analysis: 

- Size of the catchment until the next trapping structure (WSA); 

- Annual precipitation (AP); 

- Ratio of woodshed to catchment (R); 

- % of forest within the river buffer (WL200); 

- % of artificial areas within the river buffer (WA200). 

All data were log-transformed to fit the assumptions of homogeneity of variance and 

normality of distributions. Further statistical analyses were performed in R 3.2.2 (R Core Team 

2015). The application of a multiple linear regression model with the given catchment variables 

explained 56.52 % of the variance in the amount of FOM and was statistically significant (p<0.05, 

F5,16=6.459). Obtained model coefficients are given in Table S4. 
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Fig S1. Multivariate ordination (PCA) of dams with trapped FOM based on catchment descriptors. 

The percentage of explained variation for each principal component is shown in brackets. The 

points represent the scores of the samples (dams) on the first two principal components and the 

lines represent the loadings of each descriptor on these components.  

 

Abbreviations used: AAD – average annual discharge, m
3
/sec; WS – size of the catchment, 

km
2
; AP - annual precipitation, mm; WSA - size of the catchment area located upstream until the 

next trapping structure, km
2
; R - ratio of woodshed to catchment; CB200 – size of the 200 m 

channel buffer, km
2
; WL200 - forest area within the river buffer, %; WA200 – artificial area within 

the river buffer, % (Numbers refer to respective dams in Table S1)  

 

Table S2. Correlation matrix of variables 

Variables AAD WS AP WSA R CB200 WL200 WA200 

AAD 1 0.850 0.506 0.464 -0.160 0.866 0.203 0.205 

WS  1 0.675 0.482 -0.234 0.997 0.290 -0.334 

AP   1 0.135 -0.237 0.687 -0.088 -0.257 

WSA    1 0.589 0.460 0.534 -0.215 

R     1 -0.249 0.093 0.264 

CB200      1 0.259 -0.299 

WL200       1 -0.073 

WA200        1 

 

Abbreviations used: AAD – average annual discharge, m
3
/sec; WS – size of the catchment, 

km
2
; AP - annual precipitation, mm; WSA - size of the catchment area located upstream until the 
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next trapping structure, km
2
; R - ratio of woodshed to catchment; CB200 – size of the 200 m 

channel buffer, km
2
; WL200 - forest area within the river buffer, %; WA200 – artificial area within 

the river buffer, %. Numbers in bold indicate colinear variables. 

 

 

Table S3. Coefficients of the linear regression model* 

 Intercept WSA AP R WL200 WA200 

coefficients -14.588 0.7446 1.299 0.2494 1.2922 1.1674 

p 0.382 0.003 0.585 0.035 0.042 0.002 

* All parameters were log transformed for the regression analysis. 

 

Abbreviations used: WSA - size of the catchment area located upstream until the next 

trapping structure, km
2
; AP - annual precipitation, mm; R - ratio of woodshed to catchment; WL200 

- forest area within the river buffer, %; WA200 – artificial area within the river buffer, %. Numbers 

in bold indicate statistically significant coefficients in the model. 
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Table S4. Comparison of the environmental variables and substrate characteristics across climatic zones (N - number of samples)  

 Arid (N=29) Temperate (N=142) Tropical (N=19) Continental (N=13) 

Parameter Median Mean±SD Min Max Median Mean±SD Min Max Median Mean±SD Min Max Medi

an 

Mean±SD Min Max 

Dry period 190 260±241 10 800 73 81±53 6 300 120 136±74 45 300 90 106±67 40 243 

Riparian 

cover 

40 49±33 2 100 75 64±33 0 100 60 63±27 10 100 90 81±25 10 100 

R_width 4 4±2.3 0.5 10.7 3 3.3±2.3 0.4 13.5 5 5.6±2.4 2 10 2 2.5±1.5 1.20

0 

7 

Aridity 289 1388±153 73 682 592 617±200 5 1667 993 1013±180 830 1653 485 529±75 461 689 

PET 343 1442±226 1081 1817 977 1062±201 635 1721 1590 1553±221 1101 1896 763 778±50 730 910 

% urban 1 3.4±6.6 0 29 0 5±12 0 100 5 18±23 0 80 1 8±20 0 80 

% forest 30 36±34 0 100 65 59±34 0 100 30 46±30 5 100 21 43±37 5 100 

% pasture 61 59 ±35 0 100 28 36±33 0 100 25 36±32 0 94 69 49±36 0 93 

Z 195 519±809 580 2852 287 417±338 24 1658 70 249±279 23 845 80 198±185.1

23 

42 666 

Sediments N=28 N=129 N=15 N=12 
%C 0.4 0.5±0.4 0.1 1.9 0.8 1.8±2. 0.1 10.4 0.2 0.6±0.5 0.1 1.7 1.6 2.8±2.7 0.4 8.5 

%N 0.02 0.03±0.03 0.01 0.1 0.04 0.07±0.1 0.01 0.7 0.02 0.04±0.04 0.01 0.1 0.09 0.2±0.2 0.03 0.5 

C:N 17 28±30 2.4 138 17 67±1667 6 1353 14 15±3 9 23 15 26 ±29 9 109 

Mean size 67 289±304 15 1019 406 401 ±334 9 1209 590 504±310 33 1077 304 345±222 24 693 

%Clay 6 8 ±8 0.3 32 3.5 6 ±5.5 0.21 22 1.8 4.8±5.5 0.2 16 3 5±5 0.9 17 

% Silt 50 55 ±32 4 99 81 63±33 0.1 99.9 93 74 ±29 17 98 84 72 ±28 13 97 

Leaves N=27 N=138 N=19 N=13 
%C 42 39±10 11 53 44 42±8 13 60 42 40±6 23 48 45 43±7 21 50 

%N 0.9 1±0.4 0.3 2.4 1.2 1.1±0.4 0.09 2.5 1.3 1.3±0.4 0.8 2.2 1.8 1.6±0.4 0.8 2.1 

C:N 41 43±14 17 86 35 41±10 17 154 34 33±20 10 50 26 29±10 21 58 

Weight, 

g m
-2

 

32 71±135 0.07 714 36 93±147 0.4 963 66 168±224 3 755 54 67±45 15 180 

Biofilms N=4 N=33 N=3 N=0 

%C 10 21±21 3.7 50 14 17±10 1.5 48 12.4 12.9 7.3 19     

%N 0.5 0.4±0.3 0.08 0.8 0.65 0.85±0.7 0.13 2.9 1.7 1.3±0.5 0.5 1.7     

C:N 7 45±18 21 66 22 26±16 3 56 11 11±3 7 15     

Weight, 

g m
-2

 

15 16±17 0.03 35 5 35±77 0.3 327 0.3 0.4±0.2 0.3 0.7     
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Table S5. Values of total and relative leaching rates of organic matter and nutrient species from leaves, biofilms and bed sediments of IRES 

globally 

Parameter Unit Leaching 

rate 
Leaves Biofilms Sediments 

Median Mean±S

D 

Min Max IQRd
*, 

% 

Median Mean±S

D 

Min Max IQRd, 

% 

Median Mean±S

D 

Min Max IQRd, 

% 

DOC mg g-1 dry 

mass 

Total 26.94 

 

35.44±2

7.03 

2.6 

 

151.7 

 

242 6.45  

 

12.30±1

8.17 

0.10 

 

90.2 

 
925 0.07  

 

0.14± 

0.19 

0.0005 1.46 

 

192 

mg g-1 C Relative 66.50 86.86±6

9.77 

9.2 396.3 236 49.86 73.59±8

1.51 

3.18 373.09 432 13.66 18.41±1

6.14 

0.016 

 

85.55 314 

N-NH4
+ mg g-1 dry 

mass 

Total 0.08 

 

0.098±0

.07 

0.006 

 

0.402 

 

173 0.036  

 

0.054±0

.06 

0.006 

 

0.251 

 

300 0.002  

 

0.004±0

.006 

0.00005 0.048 

 

304 

mg g-1 N Relative 7.23 8.49± 

5.59 
0.665 

 

33.732 

 

143 7.865 8.08±5.

2 

0.743 17.691 204 4.603 8.312±9

.416 

0.314 51.811 356 

N-NO3
+ mg g-1 dry 

mass 

Total 0.002 

 

0.013±0

.026 

0.000002 0.182 

 

453 0.012 

 

0.018±0

.019 

0.0003 

 

0.075 

 

537 0.004  

 

0.008±0

.012 

0.00005 0.085 

 

465 

mg g-1 N Relative 0.31 1.19± 

2.17 
0.00017 15.1 

 

608 2.643 4.706±  

6.692 

0.046 32.885 802 11.423 21.956±

33.376 

0.032 271.659 535 

DON mg g-1 dry 

mass 

Total 0.16 

 

0.22± 

0.15 

0.008 

 

0.640 

 

233 0.061  

 

0.107±0

.105 

0.012 

 

0.306 

 

245 0.002 

 

0.003±0

.003 

0.000026 0.017 

 

474 

mg g-1 N Relative 15.92 20.03±1

7.02 
1.13 86.52 186 11.057 16.49±1

2.16 

5.291 45.832 163 4.532 5.755±  

4.257 

0.289 22.634 145 

SRP mg g-1 dry 

mass 

Total 0.15 0.19± 

0.14 
0.016 0.772 200 0.045  0.108±0

.155 
0.002 0.7 1803 0.001  0.001±0

.003 

0.0000031 0.023 361 

Phenolics mg of 

GAE* g-1 

dry mass 

Total 8.96 

 

13.56±1

3.4 

0.17 59.45 

 

459 0.22 0.384±0

.517 

0.001 2.151 2650 0.005±0

.010 
0.020 0.0000025 0.185 991 

mg of 

GAE* g-1 

of C 

Relative 21.84 32.84±3

1.75 

 

0.59 

 

147.30 459 1.64 3.001±4

.893 

0.011 27.056 1799 0.611±1

.406 
2.323 0.00015 18.358 1856 

 

* GAE – gallic acid equivalent 

** IQRd – percentage increase of the value of third quartile versus first quartile of data distribution 
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Table S6. Compositional parameters of dissolved organic matter in leachates released from leaves, biofilms and bed sediments of IRES globally 

Parameter Unit Leaves Biofilms Sediments 

Median Mean±SD Min Max Median Mean±SD Min Max Median Mean±SD Min Max 

SUVA254 mg C 

L
-1

 

1.59 1.74±0.76 0.32 4.51 0.71 0.81±0.36 0.13 1.61 1.75 1.73±0.60 0.37 3.19 

DOC:DON - 125.8 152.4±99.8 28.36 501.33 40.18 116.86±240.77 20.55 158.34 38.52 49.72±28.2

0 

14.75 148.31 

LMWS % 38.00 39.06±11.64 18.00 66.00 16.50 20.67±15.89 0.20 36.70 19.00 22.54±13.3

3 

1.4 80.0 

BP % 4.20 5.25±4.20 0.50 19.20 23.40 22.02±11.51 29.00 70.00 10.00 11.45±5.76 2.3 34.0 

HS % 55.30 55.58±10.90 32.00 78.70 56.00 56.69±10.33 8.00 67.00 69.00 65.75±11.3

0 

18.0 84.0 

Phenolics: 

DOC 

- 0.33 0.34±0.18 0.019 0.903 0.03 0.03±0.03 0.00035 0.124 0.06 0.07±0.07 0.000

053 

0.50 

FI - 1.36 1.40±0.26 0.60 2.67 1.49 1.49±0.33 0.60 2.24 1.38 1.50±0.42 0.96 3.51 

HIX - 0.57 0.81±0.81 0.04 6.57 1.15 1.40±0.85 0.42 3.58 2.69 2.86±1.60 0.28 7.84 

β:α - 0.41 0.44±0.21 0.15 1.28 0.63 0.65±0.24 0.10 1.28 0.58 0.60±0.21 0.07 1.59 
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Table S7. Ranking of environmental variables and substrate predictors that explain variation 

in composition (A) and quality (B) of leachates on global and regional scales according to 

their value of VIP (variable influence on projection). VIP>1 indicate highly influential 

predictors, 1>VIP>0.8 indicate moderately influential variables, VIP<0.8 indicate variables of 

low influence. 

Predictors 

Sediments Leaves Biofilms 

Global 

(170) 

Arid 

(20) 

Cont. 

(10) 

Temp. 

(125) 

Trop. 

(15) 

Global 

(183) 

Arid 

(21) 

Cont. 

(13) 

Temp. 

(131) 

Trop. 

(18) 

Temp. 

(23) 

 

Composition of leachates 

PET 1.445  0.111  0.557  1.441  1.367  1.129  0.776  1.352  1.134  1.180  0.833  

Aridity 0.371  1.444  0.388  0.303  0.708  0.765  0.979  1.371  0.505  1.844  1.131  

Dry period 0.495  0.580  1.767  0.325  1.061  0.630  0.745  0.706  0.752  1.000  0.534  

River width 0.867  0.920  1.095  0.868  0.333  0.821  0.683  1.207  0.950  0.938  0.852  

Riparian cover 0.955  1.243  0.805  0.765  0.394  0.744  0.869  0.702  0.567  0.554  0.829  

% pasture 0.153  0.506  0.727  0.205  0.063  1.225  1.397  0.442  1.160  1.467  0.189  

% forest 0.445  0.264  1.030  0.495  0.472  0.528  1.139  0.871  0.815  0.776  0.439  

% urban 0.389  0.073  0.929  0.532  1.030  0.163  0.674  1.116  0.360  0.865  0.558  

Altitude 0.784  0.731  0.547  0.630  0.881  0.549  1.170  1.268  0.982  0.439  1.041  

%C 1.768  1.390  0.889  1.782  1.170  1.132  0.990  0.365  1.454  0.668  1.424  

% N 2.062  1.657  1.345  2.117  1.000  1.673  1.510  0.933  1.279  0.705  2.026  

C:N 0.336  0.897  0.509  0.238  1.761  1.526  0.576  1.017  1.348  0.618  0.757  

% sand 0.897  1.368  1.100  0.856  0.986  
      

% silt 0.960  0.744  1.139  1.056  1.177  
      

% clay 0.920  1.055  1.145  1.003  1.159  
      

Mean size 0.902  1.136  1.067  0.923  1.004  
      

Var explained (%) 25.1 37.8 58.6 29.4 45.7 11.1 29.6 37.5 15.3 34.2 47.5 

 
Quality of leachates 

PET 1.100 0.582 0.903 0.377 1.734 0.496 1.696 1.097 0.601 1.378 1.538 

Aridity 0.432 0.526 1.180 0.430 1.217 0.680 1.074 0.983 0.853 1.167 0.703 

Dry period 0.468 0.704 1.141 0.555 0.877 0.613 1.555 1.224 0.599 1.786 0.690 

River width 0.864 0.841 0.375 1.230 0.281 1.027 0.255 0.438 1.045 0.934 0.497 

Riparian cover 0.786 0.645 1.092 0.265 0.234 0.452 0.638 1.093 0.176 0.516 0.564 

% pasture 0.589 0.217 1.257 0.988 0.310 0.716 0.794 0.722 0.652 0.728 1.081 

% forest 0.942 1.655 1.227 0.802 0.929 0.585 0.972 0.640 0.752 0.564 1.140 

% urban 0.469 0.478 0.095 0.108 1.161 1.097 0.860 0.712 0.385 1.128 1.235 

Altitude 1.124 0.191 1.094 1.386 0.683 1.104 0.722 1.002 1.059 0.369 0.869 

%C 1.148 1.553 0.577 0.562 0.882 2.311 0.824 0.516 2.329 0.243 1.057 

% N 0.688 1.059 0.575 0.729 0.878 0.822 0.846 1.311 1.036 1.130 1.165 

C:N 0.792 0.812 1.108 0.939 1.381 0.600 0.921 1.587 0.820 0.905 0.937 

% sand 1.379 1.609 1.080 1.309 0.935 

      
% silt 1.443 1.201 1.222 1.564 1.119 

      
% clay 1.403 0.967 1.164 1.492 1.161 

      
Mean size 1.389 1.247 0.979 1.455 0.952 

      
Var explained (%) 6.4 28.2 52.9 6.2 58.9 7.5 41.1 38.7 11.9 42.2 26.9 
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Fig. S2. Geographic distribution of total surface fluxes of nutrients and organic matter, g m
-2 

(intervals selected based on equal numbers of samples within each category) 
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Appendix C: Supplementary material for Chapter 4 
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Table S8. Projects under construction or in the planning phase with a cost of 1±0.5 billions US$ (N=15). 

Project Name Continent 

of location 

Country Project status Total water 

transfer 

distance, km 

Total water 

transfer volume, 

km
3
 a

-1
 

Total estimated 

cost, 

billion US$ 

Great Melen Project Asia Turkey Construction 190 1.18 1.18 

Gerede Project Asia Turkey Construction 30 0.23 0.9 

Ankara Water Supply Project (Kizilirmak plan) Asia Turkey Construction 128 0.284 1.3 

The Disi Water Conveyance Project Asia Jordan Construction 325 0.1 1.1 

Mzimvubu Water Project Africa South Africa Construction 257 0.71 1.17 

Mokolo and Crocodile River (West)  

Water Augmentation Project 

Africa South Africa Construction 190 0.242 1.26 

New Nile Project Africa DR Congo, Egypt, 

Sudan, South Sudan 

Planning 2500 110 1.2 

The uMkhomazi Water Project Africa South Africa Planning 40.5 0.054 1.3 

Delaware Aqueduct Bypass Tunnel Project North America USA Construction 136 0.694 1.19 

Mid-Barataria Sediment Diversion North America USA Planning 3.2 66.225 1.2 

Navajo-Gallup Water Supply Project (NGWSP) North America USA Construction 450.6 0.046 1 

The Southern Delivery System (SDS) Project North America USA Construction 80 0.207 1.45 

Connors River Dam and Pipeline Project  

with pipeline to Alpha 

Australia Australia Planning 398 0.0745 1.1 

Nathan Dam and Pipelines Australia Australia Planning 220 0.066 1.4 

 

 

 

 

 

 



 

 

137 

 

Table S9. List of the selected existing water transfer megaprojects (N=27). 
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Eastern National  Water 

Carrier 
1987 Africa Namibia 

Okawango River, 

Van Bach Dam 
Grootfontein N 394 0.063 0.150 Domestic supply 

Orange river Transfer 

Scheme 
1987 Africa South Africa Orange River basin 

Great Fish and Sundays 

Rivers 
N 97 1.7 NA 

Flood control; 

hydropower; 

domestic supply 

Great Manmade River 1989 Asia Libya depth quifer of Sahara 
Mediterranean cost of 

Libya 
N 2820 2.372 25 Irrigation 

Indira Gandhi Canal 1958 Asia India 

Harike Barrage at Harike 

(confluence of Satluj and 

Beas Rivers) 

Thar Desert 

(Rajasthan state) 
N 649 10.608 NA 

Domestic supply; 

irrigation 

Irtysh-Karaganda Canal 1968 Asia Kazahstan River Bela and Shiderta Karaganda N 450 2.365 NA Irrigation 

Irtysh–Karamay–Ürümqi 

Canal 
2008 Asia China Irtysh River 

Cities of Karamay and 

Ürümqi 
I 562 

 
NA Irrigation 

National Water Carrier of 

Israel 
1964 Asia Israel Galilee Sea North of Israel N 130 0.620 NA 

Domestic supply; 

irrigation 

Periyar Vaigai Irrigation 

Project 
1984 Asia India Periyar River Vaigai River N 331 1.293 NA Irrigation 

Tarim River Restoration 

Project 
2007 Asia China 

Lake Bosten and 

Daxihaizi reservoir 

Tarim and Lake 

Taitema 
N 358 

 
1.29 Restoration 

Yin Da Ru Qin Project 1995 Asia China Datong River 
Qinwangchuan region 

(Gansu province) 
N 884 4.430 NA Domestic supply 

Jiang Shui Bei Diao 

Project 

1980 

 
Asia China Yangtze River Lake Weishan N 400 3.300 NA Domestic supply 

Telugu Ganga Project 2004 Asia India Krishna River Chennai city N 406 0.1 NA Domestic supply 
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Goldfields Water Supply 

Scheme 
1903 Australia Australia Helena River 

Coolgardie and 

Kalgoorlie 

communiteis 

N 530 32.85 NA 

Domestic supply; 

irrigation; 

hydropower; 

mining industry 

Snowy river Scheme 1949 Australia Australia 
Murray-Darling 

River basin 
Snowy River N 100 1.1 0.63 

Irrigation, 

hydropower 

North Crimean Canal 1975 Europe Ukraine River Dnieper Kerch N 402.5 
  

Domestic supply; 

irrigation 

Tagus-Segura Transfer 1978 Europe Spain 
Upper Tagus River 

(Tagus Basin) 

Talave Dam (Mundo 

River, Segura basin) 
N 286 0.305 NA 

Irrigation; 

domestic supply 

All-American Canal 1942 
North 

America 
USA Colorado River Imperial Valley N 130 23.355 NA 

Domestic supply; 

irrigation 

California State Water 

Project 
1962 

North 

America 
USA Lake Oroville 

South California (San 

Francisco bay area) 
N 1128 3.330 9 

Domestic supply; 

irrigation 

Central Arizona Project 1992 
North 

America 
USA Lake Havasu 

Central and Southern 

Arizona 
N 540 1.85 5 

Irrigation; 

domestic supply 

Colorado River Aqueduc 1939 
North 

America 
USA 

Colorado River at Lake 

Havasu 
Southern California N 389 1.5 0.220 Domestic supply 

Cutzamala System 1970 
North 

America 
Mexico 

Cutzamala River in 

the Balsas basin 
Great Mexico City N 154 0.479 1.3 Domestic supply 

First Los Angeles 

Aqueduc and Mono Basin 

Extension 

1913 
North 

America 
USA Owens River 

San Fernando 

Reservoir (Lower Van 

Norman Reservoir) 

N 375 0.39 0.0245 Domestic supply 

Second Los Angeles 

Aqueduc 
1970 

North 

America 
USA 

junction of the North and 

South Haiwee reservoirs 

(south of Owens Lake) 

Los Angeles N 220 0.135 0.089 Domestic supply 

Teno-Chimbarango Canal 1970 
South 

America 
Chile 

Mataquito river basin 

(River Teno) 

Rapel River basin 

(Estero Chimbarongo 

River) 

N 13.66 2.049 NA 
Irrigation; 

hydropower 

James Bay Project 1984 
North 

America 
Canada 

Eastmain, Opinaca and 

Caniapiscau Rivers 

reservoirs on La 

Grande River 
N 400 51.404 13.7 Hydropower 

Churchill River Diversion 1977 
North 

America 
Canada Churchill River Nelson River N 40 24.44 NA Hydropower 

Churchill Falls diversion 1970 
North 

America 
Canada 

Rivers Naskaupi and 

Kanairktok 
Churchill River N 45 10.407 NA Hydropower 
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Table S10. List of water transfer megaprojects planned or under construction (N=60). 
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Jonglei Canal 1978 2032 Africa 
South Sudan, 

Sudan, Egypt 
C White Nile 

White Nile 

(in Egypt and 

Sudan) 

I 360 4.7 NA Irrigation 

Mzimvubu Water 

Project 
2014 2020 Africa South Africa C 

Tsitsa River, 

Mzimvubu river 

Eastern Cape 

province 
N 257 0.71 1.2 

Hydropower; 

irrigation; 

domestic supply 

Mokolo and 

Crocodile River 

(West) Water 

Augmentation 

Project 

2009 2018 Africa South Africa C 

Mokolo River, 

Crocodile River, 

Lephalale River 

Lephalale, power 

plants and mines 
N 190 0.242 1.3 

Domestic supply; 

irrigation; mining 

inductry 

El Salam Project 2015 open Africa Egypt C 

Nile River, 

Bahr Hadous Drain, 

El Serw Drain 

Sinai desert N 242 4.45 2 Irrigation 

Lesotho Highlands 

Water Project 
1989 2024 Africa Lesotho C Senqu/Orange River 

Vaal River basin 

(Gauteng region) 
N 200 2.2 8 

Hydropower; 

domestic water 

supply 

New Valley 

Project / Toshka 

Project 

1997 2020 Africa Egypt C Lake Naser Sahara desert N 310 10.5 90 Irrigation 

New Nile Project 1980s open Africa 

DR Kongo, 

Egypt, Sudan, 

Souht Sudan 

P Congo River Nile River I 2500 110 1.2 Irrigation 

Transaqua Project 2009 open Africa Chad, Central P Ubangi River Lake Chad I 2500 100 23 Navigation; 
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African 

Republic, 

DR Kongo, 

Niger, Nigeria, 

Kamerun 

restoration; 

irrigation 

The uMkhomazi 

Water Project 
2018 2023 Africa South Africa P 

uMkhomazi, uMlaza 

and uMngeni River 

catchments 

Durban and 

Pietermaritzburg 
N 40.5 0.054 1.3 

Domestic supply; 

irrigation 

National River 

Linking Project 
2002 2037 Asia 

India, Bhutan, 

Nepal 
C 

37 rivers (main donors:  

Brahmaputra, 

Mahanadi, Godavari) 

rivers in South 

India 
I 14900 174 168 

Domestic supply; 

irrigation 

The Disi Water 

Conveyance 

Project / Disi-

Mudawwara 

project 

1996 2017 Asia Jordan C Disi aquifer Amman N 325 0.1 1.1 Domestic supply 

Great Melen 

Project 
2008 open Asia Turkey C Melen River Istanbul N 190 1.18 1.18 Domestic supply 

Ankara Water 

Supply Project 

(Kizilirmak plan) 

2007 2027 Asia Turkey C Kizilirmak River Ankara N 128 0.284 1.3 
Domestic supply; 

municipal supply 

The Central 

Yunnan Water 

Transfer Project 

2013 2023 Asia China C Lake Qiandao Xianlin/Hangzhou N 900 3.42 11.7 Domestic supply 

South-to-North 

Water Transfer 

Project 

2002 2050 Asia China C 

Chang Jiang, 

Han, Tongtianhe, 

Yalongjiang, Daduhe 

Rivers 

Yellow River basin N 2746 44.8 80 

Irrigation; 

domestic supply; 

hydropower 

Gerede Project 1999 2024 Asia Turkey C Gerede River Ankara N 30 0.23 0.9 
Groundwater 

stabilization 

Southeastern 

Greater Anatolian 

Project (GAP) 

1989 2018 Asia Turkey C 
Euphrates and Tigris 

Rivers basin 

Southeastern 

Anatolia 
N 1032 52.9 32 Irrigation 

Konya Plain 

Project 
? 2018 Asia Turkey C Göksu river Konya Plain N 17 0.414 2.56 

Domestic supply; 

irrigation 

From Baikal to 

China transfer 
2017 open Asia Russia, China P Lake Baikal Lanzhou I 2000 0.08 26 

Drinking water 

supply 

SibAral Project / 

Soviet Union 

1940, 

2010 
open Asia 

Russia, 

Kazahstan 
P Ob, Irtysh Rivers Aral Sea I 2500 27 40 Restoration 
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River Diversion 

Project 

Orhon-Gobi Water 

Transfer Project 
? open Asia Mongolia P 

Shivee Ovoo, 

Shainsand, and 

Zamin-Udd 

Tsagaan Suvarga 

copper mine 
N 740 0.078 0.55 

Mining industry 

supply 

Herlen-Gobi 

Water Transfer 

Project 

? open Asia Mongolia P Orhon River 
Tavan Tolgoi and 

Oyu Tolgoi 
N 540 0.047 0.44 

Mining industry 

supply 

Yettinahole 

Diversion Project 
2015 open Asia India P 

Yettinahole and 

Kumaradhara 

Hassan, 

Ramanagara, 

Chickmagalur, 

Bangalore rural, 

Tumkur, Kolar and 

Chikkaballapur 

N 1000 0.672 2 Domestic supply 

Irtysh-Ishim canal 2013 2023 Asia Kazahstan P Irtysh River Ishim River N 340 NA 3.3 
Irrigation; 

domestic supply 

Tibet to Xinjiang 

tunnel 
2017 open Asia China P 

Yarlung Tsangpo River 

in southern Tibet 

(Brahmaputra) 

Taklamakan desert 

in Xinjiang 
N 1000 15 150 ? 

Connors River 

Dam and Pipeline 

Project with 

pipeline to Alpha 

2012 open Australia Australia C Connors River 
Bowen and Galilee 

basins 
N 398 0.0745 1.1 

Mining industry 

supply 

Kimberley–Perth 

Canal 
2005 open Australia Australia P Fitzroy River Perth N 3700 0.2 14.5 

Drinking water 

supply 

Water diversion 

from Northern 

Queensland 

2010 open Australia Australia P North Queensland 
Sydney, Adelide, 

Melbourne 
N 1800 4 9 

Irrigation; 

domestic supply 

Kimberley–Perth 

Pipeline 
2005 open Australia Australia P Fitzroy River Perth N 1900 0.2 11.9 

Drinking water 

supply 

Nathan Dam and 

Pipelines 
2006 open Australia Australia P Dawson River Maranbah, Alpha N 220 0.066 1.4 Irrigation 

Marshal's plan 

canal 
2016 open Australia Australia P Kimberley region 

Pilbara, Mid-West 

and Goldfields 

(mining sites) 

N 220 1 24 
Mining industry 

supply 

Bradfield Scheme 2007 open Australia Australia P 
Tully, Herbert and 

Burdekin Rivers 
Queensland N 

 
7.353 10 

Irrigation; 

domestic supply 

Alqueva Project 2007 2020 Europa Portugal C 
Loureiro dam 

(Guadiana basin) 

Alvito reservoir 

(Sado basin) 
N 2000 1 1.7 

Irrigation; 

hydropower 
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Acheloos River 

diversion project 
1993 open Europa Greece C Acheloos River Thessaly plain N 17.4 0.6 5.9 Irrigation 

Navajo-Gallup 

Water Supply 

Project (NGWSP) 

2012 2024 
North 

America 
USA C 

San Juan River, Cutter 

reservoir 

Navajo, Jicarilla, 

Gallup 
N 450.6 0.046 1 Domestic supply 

Integrated pipeline 

Project Q-48 
2014 2020 

North 

America 
USA C Lake Palestine 

Lake Benbrook, 

Cedar Creek Lake, 

Richland-Chambers 

Reservoirs 

N 241 0.483 1.6 Domestic supply 

Delaware 

Aqueduct Bypass 

Tunnel Project 

2013 2017 
North 

America 
USA C 

Randout, Neversink, 

Pepacton, Cannonsville 

reservoirs 

Westbranch 

Reservoir 
N 136 0.694 1.19 Municipla supply 

The Southern 

Delivery System 

(SDS) project 

2011 2025 
North 

America 
USA C 

Arkansas River, Pueblo 

Reservoir 

Colorado Springs, 

Fountain, Poeblo 

West and Security 

(cities) 

N 80 0.207 1.5 Domestic supply 

Comprehensive 

Everglades 

Restoration Plan 

2000 2050 
North 

America 
USA C Kissimmee River Everglades N 380 NA 10.5 

Flow restoration; 

irrigation; 

domestic supply 

New York's City 

Tunnel No. 3 
1970 2021 

North 

America 
USA C Hillview Reservoir New York N 97 11.388 6 Municipal supply 

The Great 

Recycling and 

Northern 

Development 

(GRAND) Canal 

of North America 

1959, 

1994 
 

North 

America 
USA P James Bay 

Georgian Bay, 

USA, Mexico 
I 791 317 100 Irrigation 

NAWAPA: North 

American Water 

And Power 

Alliance / 

NAWAPA XXI 

1950, 

2010 

open 

 

North 

America 
USA P Yukon/Mackenzie basin 

USA Southwest, 

northern Mexico 
I 10620 193.656 1500 

Irrigation; 

domestic supply 

PLHINO: Plan 

Hidráulico del 

Noroeste 

1960, 

2007 

open 

 

North 

America 
Mexiko P 

San Pedro, Acaponeta, 

Baluarte, Presidio, and 

Piaxtla 

Yaqui River N 1100 7 NA Irrigation 

PLHIGON 

(Hydraulic Plan of 

the Northeast 

Gulf) 

1999 
open 

 

North 

America 
Mexiko P 

Grijalva-

Usumacinta,Papaloapan, 

Coatzacoalcos, and 

Tonalá 

North Mexico N 1400 9.5 NA Irrigation 
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The Lake Powell 

pipeline 
2006 2026 

North 

America 
USA P Lake Powell 

Washington 

County, Kane 

County 

N 223 0.106 1.8 Domestic supply 

Yampa River 

Pumpback Project  

open 

 

North 

America 
USA P 

Yampa River water near 

Maybell Colorado 

Front Range and 

Denver 
N 402 0.37 3.9 

Domestic supply; 

irrigation 

Flaming Gorge 

Pipeline 
2012 

open 

 

North 

America 
USA P 

Green River in 

Southwest Wyoming 

Denver and Fort 

Collins in Colorado 
N 900 0.308 9 Domestic supply 

Missouri River 

Pipeline 
2013 2033 

North 

America 
USA P Missouri River Denver N 810 0.740 8.6 Domestic supply 

Bear River 

Pipeline within 

The Bear River 

Development 

Project 

2015 2035 
North 

America 
USA P Bear River 

Box Elder, Cache, 

Weber, Davis and 

Salt Lake Counties 

N 80 0.271 2 Domestic supply 

Seattle-California 

pipeline 
2015 

open 

 

North 

America 
USA P Seattle California N 1200 NA 30 Irrigation 

Eastern Nevada to 

Las Vegas 

pipeline 

2014 
open 

 

North 

America 
USA P 

Underground aquifer 

in east Nevada 
Las Vegas N 482 0.155 15 Domestic supply 

Kansas Aqueduct 
1978, 

2015 
open 

North 

America 
USA P Missouri 

 
N 600 4.9 28 

Irrigation; 

domestic supply 

Mid-Barataria 

Sediment 

Diversion 

2019 2026 
North 

America 
USA P Missisipi River Barataria Basin N 3.2 66.225 1.2 

Sediment 

diversion, 

restoration 

California Water 

Fix and Eco 

Restore Project 

2011 
open 

 

North 

America 
USA P Sacramento River 

intake stations for 

the State Water 

Project and 

the Central Valley 

Project 

N 48 60.440 23 Domestic supply 

Sao Francisco 

Irrigation Project 
2007 2025 

South 

America 
Brasil C Sao Francisco Sertao N 720 2 4.5 Irrigation 

ALTO MAIPO 

Hydroelectric 

Project" (PHAM) 

2012 open 
South 

America 
Chile C Maipo River 

Minera Los 

Pelambres 

(mining site) 

N 70 0.079 2.1 
Irrigation, 

hydropower 

Hidrovia 

Amazonica 
2014 2034 

South 

America 
Brasilia, Peru P Amazon 

River Maranon, 

River Huallaga, 

River Ucayali 

I 2687 3.868 0.095 Navigation 

Hidrovia Project 1997 open 
South 

America 

Argentina, 

Bolivia, 
P Paraguay Parana I 3400 

 
4 Navigation 
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* Two years show when Project was proposed for the first time and then reconsidered 

 

 

 

 

 

Brazil, 

Paraguay, 

Uruguay 

Via Hidrica del 

Norte 
- 2024 

South 

America 
Chile P 

Rapel, Maule, BíoBío 

Rivers 
 N 2400 0.789 10.5 

Mining industry 

supply, irrigation, 

municipal supply 

Aquatacama - 2025 
South 

America 
Chile P 

Rapel, Maule, BíoBío 

Rivers 
Arica city N 2500 1.482 15 

Mining industry 

supply, irrigation, 

municipal supply 
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Appendix D: 

List of information sources used to collected data on water transfer megaprojects under 

construction or planned 
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