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Abstract

The dynamics of systems out of equilibrium, such as the phase transition process,
are very rich, and related to largely scalable problems, from very small ultracold gases to
large expanding galaxies. Quantum low-dimensional systems show interesting features,
notably different from the canonical three-dimensional case. Bose-Einstein condensates
are very good platforms to study macroscopic quantum phenomena. These three points
describe well the motivation behind the study presented in this work.

In this thesis, some dynamical problems of trapped and uniform condensates are
studied, both at zero and finite temperature. In particular, we focus on the analysis
of the propagation of linear and nonlinear excitations in a quasi-1D and in quasi-2D
systems. In the first case, we are able to correctly describe the dynamics of a solitonic
vortex in an elongated condensate, as measured by Serafini et al. [Phys. Rev. Lett.
115, 170402 (2015)]. In the second case, we reproduce the decay rate of a phase-
imprinted soliton (collaboration with Birmingham), and assess its dependence on the
temperature. We also replicate the propagation speed of sound waves over a wide
range of temperatures as in Ville et al. [arXiv:1804.04037] (collaboration with Collège
de France). The result of this analysis is included in Ota et al. [arXiv:1804.04032],
which is currently under revision.

In uniform low-dimensional systems Bose-Einstein condensation is technically not
possible, and in two dimensions it is replaced by the Berezinskii-Kosterlitz-Thouless
superfluid phase transition. We study its critical properties by analysing the sponta-
neous generation of vortices during a quench, produced via the Kibble-Zurek mecha-
nism. This procedure predicts, for any dimension, the scaling for the density of defects
formed during a fast transition, when the system is not adiabatically following the
control parameter, and regions of phase inhomogeneity are formed. We address the
role of reduced dimensionality on this process. All finite temperature simulations are
performed by means of the stochastic (projected) Gross-Pitaevskii equation, a model
fully incorporating density and phase fluctuations for weakly interacting Bose gases.
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Introduction

In the last decades, ultracold atomic gases have proven to be a versatile toolbox for
investigating fundamental problems in many-body physics[1–3]. The high controllabil-
ity of the trapping potentials, and the possibility to tune important properties such as
the inter-atomic interactions, allow to study a great variety of configurations and phe-
nomena. Among these, low-dimensional systems have recently acquired a widespread
interest in the community, particularly concerning two aspects: the study of phase
transitions and their dynamical behaviour. Phase transitions are a phenomenon that
goes beyond the boundaries of a single physical system and can be found at very dif-
ferent scales, both at a classical and at a quantum level: from microscopic ultracold
atomic gases, condensed matter systems and photonic devices, to huge galaxy clus-
ters[4]. The dimensionality of the sample can have a strong effect in limiting the kind of
phase transitions allowed to occur in it. Moreover, the dynamical properties of systems
in reduced dimensions can also show interesting new features, when compared to the
canonical three-dimensional case. Let us start by briefly introducing some historical
steps leading to the notorious Bose-Einstein condensation.

A long journey: Bose-Einstein condensation

Bose-Einstein condensation (BEC) is a clear example of serendipity[5]: enriching
new physics can arise from unexpected paths. It is nowadays regarded as one of the
great manifestations of the quantum nature of the microscopic world, despite having
been first postulated in 1924, one year before Werner Heisenberg and Erwin Schrödinger
gave the first formulation of quantum mechanics1. Satyendra Bose was having some
1 Even more so, Schrödinger first met the concept of “de Broglie wavelength” in Einstein’s paper
about BEC, hence one could say that the concept of wavefunction itself was pushed by Bose-Einstein
condensation, and not the other way around!

[1] F. Dalfovo et al. In: Rev. Mod. Phys. 71 (1999), pp. 463–512.
[2] I. Bloch, J. Dalibard, and W. Zwerger. In: Rev. Mod. Phys. 80 (2008), pp. 885–964.
[3] S. Giorgini, L. P. Pitaevskii, and S. Stringari. In: Rev. Mod. Phys. 80 (2008), pp. 1215–1274.
[4] A. A. Starobinsky. In: Physics Letters B 117.3 (1982), pp. 175–178.
[5] M. Delbruck. In: J. Chem. Ed. 57.7 (1980), p. 467.
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Introduction 9

difficulties in getting his work on the quantum statistics of photons accepted, and sent
the English manuscript to Albert Einstein to get his opinion. Einstein was highly
impressed by the work of the brilliant Indian physicist, and translated it himself to
German in order to have it published[6] in “Zeitschriff für Physik”, at the time the
most important journal for physics. He then further developed the ideas of that paper
in two consecutive publications[7,8], so to also include some concepts that a young

Bose, Einstein and the condensation.2

Louis de Broglie had just developed in his
PhD thesis: matter particles can behave as
waves, and thus they should obey the same
statistics. Initially the paper produced lit-
tle effect, and was almost forgotten, but af-
ter the discovery of superfluidity in liquid
helium (Pëtr Kapitza[9], 1938) Fritz Lon-
don[10] realised that it might have been re-
lated to Bose-Einstein condensation, and
that Einstein’s relation for the transition
temperature of the ideal gas, TBEC, was a
close estimation of the observed superfluid
transition temperature. This revamped the
interest in this topic, especially from a theo-
retical point of view: Lev Landau[11] (1941)
formulated the two-fluid model for super-

fluidity, Nikolay Bogoliubov[12] (1947) the first microscopic theory for interacting Bose
gases, Oliver Penrose (1951) and Lars Onsager (1956) connected[13] the BEC with the
occurrence of off-diagonal long-range ordering. Experiments on superfluid liquid helium
showed indeed a good agreement with Landau’s prediction for the excitation spectrum,
and were able to measure the condensate fraction by means of the momentum dis-
2 Incidentally, a great name for a folk rock band.

[6] Bose. In: Zeitschrift für Physik 26.1 (1924), pp. 178–181.
[7] A. Einstein. In: Sitz. der Preus. Akad. der Wiss. (1924).
[8] A. Einstein. In: Sitz. der Preus. Akad. der Wiss. (1925).
[9] P. Kapitza. In: Nature 141 (1938), p. 74.
[10] F. London. In: Nature 141 (1938), p. 643.
[11] L. D. Landau. In: Phys. Rev. 60 (1941), pp. 356–358. (original Rus.) Zh. Eksp. Teor. Fiz. 11
(1941) p. 592.
[12] N. N. Bogoliubov. In: J. Phys U.S.S.R. 11.1 (1947), p. 23.
[13] O. Penrose and L. Onsager. In: Phys. Rev. 104 (1956), pp. 576–584.
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tribution. Onsager[14] (1949) and Richard Feynman[15] (1955) further predicted the
existence of vortices with quantised circulation, which were later discovered by Henry
Hall and Joe Vinen[16] in 1956.

On the experimental side, Bose-Einstein condensation remained a chimera for a
long time. The connection of condensation with helium superfluidity was fruitful but
non-conclusive: due to the strong interactions between helium atoms, a complete con-
densation can not occur in such a system, and only a small fraction of the atoms is
condensed at low temperature. Einstein predicted condensation for non-interacting
particles, thus prompting the research for weakly interacting gases that could be ef-
fectively trapped and cooled down. The first suggestions came from Charles Hecht[17],
pointing out the small interactions of spin-polarised hydrogen at low temperatures.
This stimulated several experiments throughout the 70s and 80s (e.g. Isaac Silvera
and Jook Walraven[18]), but, however close to the required degeneracy, this was not
reached until 1998 by Thomas Greytak and Daniel Kleppner[19]. A noteworthy con-
tribution to the field has been carried out by the study of laser cooling by Stephen
Chu, Claude Cohen-Tannoudji and William Phillips over three decades3, but the ma-
jor breakthrough finally came by applying a series of different techniques at the same
time. Indeed, by combining laser cooling and evaporation, the groups of Eric Cornell
and Carl Wieman[20] at JILA, and of Wolfgang Ketterle[21] at MIT, were finally able to
reach the required densities and temperature for the condensation in 1995, seventy years
after its first formulation. For this achievement they shared the Nobel Prize in Physics
in 2001. These first realisations usually involved the alkali atoms, given their ener-
getic internal structure, suitable for trapping and cooling, but condensation has been
achieved also in other systems, including fermionic gases[22], magnons[23], photons[24]

and exciton-polaritons[25].
3 Nobel Prize in Physics 1997.

[14] L. Onsager. In: Il Nuovo Cimento 6 (1949), pp. 279–287.
[15] R.P. Feynman. Chapter II Application of Quantum Mechanics to Liquid Helium. Ed. by C. J.
Gorter. Vol. 1. Supplement C. Elsevier, 1955, pp. 17–53.
[16] H. E. Hall and W. F. Vinen. In: Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences 238.1213 (1956), pp. 215–234.
[17] C. E. Hecht. In: Physica 25.7 (1959), pp. 1159–1161.
[18] Isaac F. Silvera and J. T. M. Walraven. In: Phys. Rev. Lett. 44 (1980), pp. 164–168.
[19] Dale G. Fried et al. In: Phys. Rev. Lett. 81 (1998), pp. 3811–3814.
[20] M. H. Anderson et al. In: Science 269.5221 (1995), pp. 198–201.
[21] K. B. Davis et al. In: Phys. Rev. Lett. 75 (1995), pp. 3969–3973.
[22] C. A. Regal, M. Greiner, and D. S. Jin. In: Phys. Rev. Lett. 92 (2004), p. 040403.
[23] Fang Fang et al. In: Phys. Rev. Lett. 116 (2016), p. 095301.
[24] J. Klaers et al. In: Nature 468 (2010), p. 545.
[25] J. Kasprzak et al. In: Nature 443 (2006), p. 409.
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Phenomenology of Bose-Einstein condensation. Particle indistinguishability
lies at the foundations of quantum mechanics, and ultimately determines its statistical
nature. The Heisenberg uncertainty principle, i.e. the impossibility to know simultane-
ously the position and the momentum of a particle, negates the deterministic approach
allowed by classical mechanics. Particles can no longer be seen as discrete entities but
in certain regimes show wave-like properties, and collective behaviours. Their quantum
mechanical description has to be inherently statistical, and it is hence implemented
by means of a wavefunction, whose square modulus describes the probability density
for the particles. In a many-body system, two outcomes are possible when exchanging
two particles: either the wavefunction maintains its sign (and is therefore symmetric
under particle exchange), or it changes it (antisymmetric). In the first case the par-
ticles are called bosons and have integer spin, while in the second they are referred
to as fermions, with half-integer spin. The antisymmetry of the wavefunction implies
that two fermions cannot share the same quantum state, and cannot be described by
the same wavefunction. This is known as the Pauli exclusion principle for fermions,
and has no counterpart for bosons: they can lie in the same quantum state, with no
limitations.

The quantum nature of a Bose gas becomes apparent in certain regimes. Two length
scales play an important role in the definition of the transition. In three dimensions
these are:

• the average distance between the particles n−1/3, given in terms of the inverse
density of the system n = N/V , where N is the number of atoms and V is their
volume;

• the thermal de Broglie wavelength, which, for a particle of mass m and temper-
ature T is

λT =
√

2π~2

mkBT
, (1)

where ~ is the reduced Planck constant and kB is the Boltzmann constant.

In our everyday experience, the values of the temperature and of the masses of common
objects are such that λT is effectively very small. In this regime, when λT � n−1/3,
the particles see each other as discrete classical objects. Both fermions and bosons
will distribute according to the classical Boltzmann statistics. However, decreasing the
temperature means to increase the value of λT , meaning that eventually one can reach
a phase in which λT > n−1/3. This is the so-called quantum degenerate regime, in
which the notion of a particle trajectory is not defined, and indistinguishability plays
an important role.
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The result of the work of Bose and Einstein is the formulation of the Bose-Einstein
statistics for a gas of bosons

n(Es) = 1
e(Es−µ)/kBT − 1

(2)

in terms of the energy Es of the single particle state s, the chemical potential µ and
the temperature T . A notable consequence of the statistics defined in equation (2) is
that, in three dimensions, it naturally predicts a macroscopic occupation of a single
particle state at low temperature, in the thermodynamic limit (see Appendix C). This
accumulation of particles in a single mode of the system is the essence of Bose-Einstein
condensation. For a free ideal Bose gas, the particles condense in the zero momen-
tum state, corresponding to the state at minimum energy. The critical point for this
transition is determined[26], in three dimensions and in free space, by the condition

nλ3
T ≥ ζ(3/2), (3)

where ζ(3/2) ' 2.612 is the Riemann zeta function. The phase-space density nλ3
T

effectively represents the number of particles lying in a volume set by the de Broglie
wavelength. The above criterion can be reformulated in terms of a critical temperature

Tc = 2π~2

mkB

(
n

ζ(3/2)

)2/3
, (4)

which determines the fraction of atoms in the lowest energy level, the so-called con-
densed fraction

n0 = N0
N

= 1−
(
T

Tc

)3/2
. (5)

In typical experimental systems, the atoms are confined in a magneto-optical trap
(MOT), combining the use of magnetic trapping and laser cooling techniques to reach
condensation. One of the most common configurations for the trapping potential is the
harmonic confinement

Vtr = 1
2m(ωxx2 + ωyy

2 + ωzz
2) (6)

being (ωx, ωy, ωz)/2π the trapping frequencies in the three directions. The non-uniformity
of the system causes a redefinition of the critical quantities, and the critical temperature
is

T ho
c = ~

kB
(ωxωyωz)1/3

(
N

ζ(3)

)
. (7)

[26] L. Pitaevskii and S. Stringari. Bose-Einstein Condensation and Superfluidity. Oxford University
Press, 2016.
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The typical values of the critical temperatures for experimentally achievable number
of atoms in the trap is of the order of 10−7 K. Such extreme conditions explain the
difficulty in realising the technology needed to reach condensation. Moreover, at such
low temperatures, the stable thermodynamic phase is the solid state. To maintain the
system in a gaseous form, it is therefore necessary to use low densities of the order of
10−14 cm−3, to avoid the clustering of atoms. Being so dilute means that the distance
between the atoms is rather large, and the details of the interatomic potential at short
scales become negligible. Furthermore, the high-energy scattering processes, involving
high angular momenta, are suppressed by the low temperature in the system. It is
therefore possible to describe the interaction among the atoms as an effective contact
potential, parametrised by a single quantity, the s-wave scattering length a (see more
on that in Chapter 1).

An important remark is that the above discussion is only valid in three dimensions.
In a system of reduced dimensionality, the Mermin-Wagner-Hohenberg theorem pre-
vents the formation of a true BEC. The thermal fluctuations become more relevant in
reduced dimensions, and are able to destroy the long-range coherence of the system at
any finite temperature. However, a two-dimensional infinite system can still exhibit a
superfluid phase transition, the celebrated Berezinskii-Kosterlitz-Thouless (BKT) phase
transition. A detailed discussion about the BKT transition and its consequences is re-
ported in Chapter 4.

Thesis outline

The purpose of this work, and of my PhD, is to understand some of the aspects
related to the dynamical properties of low-dimensional Bose-Einstein condensates, at
equilibrium and when driven across a phase transition. The thesis is structured as
follows:
Part I is dedicated to the study of zero temperature systems.

• Chapter 1: Description of the Gross-Pitaevskii equation. Solitonic solution and
its properties. Superfluidity and hydrodynamic equations. Bogoliubov approach
to first-order excitations in a Bose-Einstein condensate.

• Chapter 2: Description of the experimental setup in [27]. Theoretical description
of the motion of solitonic vortices in a cigar-shaped BEC, and modifications due
to the particle reduction. Comparison with the experiment and further results
on vortex interactions.

[27] S. Serafini et al. In: Phys. Rev. Lett. 115 (2015), p. 170402.
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Part II is dedicated to the study of finite temperature systems.

• Chapter 3: Description of the theoretical framework for the stochastic Gross-
Pitaevskii equation and the stochastic projected Gross-Pitaevskii equation. Nu-
merical implementation for the two models and details on analysis of the results:
Penrose-Onsager diagonalisation and computation of the order parameter.

• Chapter 4: Description of the Berezinskii-Kosterlitz-Thouless phase transition
for two-dimensional systems, and of its principal properties. Introduction to the
Kibble-Zurek mechanism for fast quenches across a continuous phase transition.
Numerical results for the thermal equilibrium of a two-dimensional system with
periodic boundary conditions. Analysis on the critical point for the transition.
Dynamical scalings for the correlation length in an instantaneous quench in tem-
perature and chemical potential. Slow quenches in the two parameters and scaling
for the number of defects. Interaction quench and dynamical scaling for the cor-
relation length.

• Chapter 5: Description of two experiments concerning the dynamics of excita-
tions in low-dimensional atomic gases. Decay of a phase-imprinted grey soliton in
a quasi-2D elongated condensate, for different temperatures. Theoretical back-
ground for the propagation of sound in a two-dimensional system. Description
of the experiment at the Collège de France on the measurement of the speed of
sound across the BKT phase transition. Numerical analysis and comparison with
the experimental results.

Finally, some general conclusions are drawn, followed by some useful appendices and
the references.

Collaborations

Science, however historically driven by influential polymaths and creative flairs, is
nowadays a collaborative effort. In the endeavour of my PhD, I enrolled in a joint
programme between Università degli Studi di Trento and Newcastle University, co-
supervised by Prof. Franco Dalfovo on the Italian side and by Prof. Nick Proukakis on
the British side. I also had the opportunity to do a research stage of one month at the
Collège de France in Paris, under the supervision of Prof. Jean Dalibard. I have directly
collaborated with three experimental groups. Chapter 2 is the result of a collaboration
with the experimental group at the BEC Center in Trento, coordinated by Gabriele
Ferrari and Giacomo Lamporesi. The first experiment described in Chapter 5 has
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Chapter 1

Gross-Pitaevskii theory

In this first chapter we present some theoretical tools needed to describe Bose-
Einstein condensates at zero temperature. We start from the notorious Gross-Pitaevskii
equation, then we introduce some important remarks on the excitations for these sys-
tems. We describe the solitonic solutions of the Gross-Pitaevskii equation and review
their main properties. We address the concept of superfluidity and quantised vorticity
and we briefly present the hydrodynamic equations for a condensate. Finally we review
the Bogoliubov approach for the computation of the first-order phononic excitations.

1.1 The Gross-Pitaevskii equation

The Gross-Pitaevskii equation (GPE) is a very successful tool to describe a dilute
quantum gas of bosons at zero temperature. It was independently formulated by Eugene

Gross and Pitaevskii

P. Gross[28] and Lev P. Pitaevskii[29] in
1961, and is a mean field approxima-
tion of the complete field equation. Be-
low we report a short derivation of the
equation; an alternative approach can be
found in the Les Houches lectures of Yvan
Castin[30], which also cover other theo-
retical aspects of Bose-Einstein conden-
sation. Bose-Einstein condensation is a
phenomenon concerning a large number
[28] E. P. Gross. In: Il Nuovo Cimento 20 (1961), pp. 454–457.
[29] L. P. Pitaevskii. In: Soviet Physics JETP-USSR 13.2 (1961). (original Rus.) Zh. Eksp. Teor. Fiz.
40 (1961) p. 646.
[30] Y. Castin. “Bose-Einstein Condensates in Atomic Gases: Simple Theoretical Results”. In: Coher-
ent atomic matter waves. Ed. by R. Kaiser, C. Westbrook, and F. David. 2001, p. 1.

17



1.1. The Gross-Pitaevskii equation 18

of bosons, at very low energy. Let us then consider a gas of N bosons, interacting via
a two-body isotropic potential V̂int, hence only depending on the interparticle distance,
such that its functional representation is Vint(|ri − rj |) = Vint(|rj − ri|). In the space
of the spatial coordinate r we therefore require the matrix elements of the two-particle
operator to be

〈rirj |V̂int|r′ir′j〉 = δ(ri − r′i)δ(rj − r′j)Vint(|ri − rj |). (1.1)

In the Fock space, the interaction potential operator is represented as

V̂int = 1
2

∫
dr
∫
dr′Ψ̂†(r, t)Ψ̂†(r′, t)Vint(|r− r′|)Ψ̂(r′, t)Ψ̂(r, t) (1.2)

and the time-dependent Hamiltonian in coordinate representation is written in the
second quantisation formalism as

Ĥ(t) =
∫
dr Ψ̂†(r, t)

(
−~2∇2

2m + Vtr(r, t)
)

Ψ̂(r, t)

+ 1
2

∫
dr
∫
dr′ Ψ̂†(r, t)Ψ̂†(r′, t)Vint(|r− r′|)Ψ̂(r′, t)Ψ̂(r, t),

(1.3)

where Vtr is the trapping potential for the atoms, and m is their mass.
If we consider a very low temperature, it is sufficient to ensure that the condition

n|a|3 � 1 (1.4)

holds, for the low-energy s-wave collisions to dominate the atomic interactions. Here
we defined n = N/V the gas density and a the s-wave scattering length. Atoms can
then be considered as point-like particles colliding elastically, and one can exclusively
consider the contact potential

Vint(|r− r′|) = gδ(r− r′), (1.5)

where δ is the Dirac delta, and we identify the coupling constant g as

g = 4π~2a

m
. (1.6)

By substituting (1.5) into (1.3), and integrating out the r′ coordinate we get

Ĥ(t) =
∫
dr Ψ̂†(r, t)Ĥ0Ψ̂(r, t) + g

2

∫
dr Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t), (1.7)
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where we defined the Hamiltonian of an ideal gas confined in a trap Vtr

Ĥ0 =
(
−~2∇2

2m + Vtr(r, t)
)
. (1.8)

The Heisenberg equation determines the time evolution of the operator Ψ̂(r, t):

i~
∂Ψ̂(r, t)
∂t

=
[
Ψ̂(r, t), Ĥ(t)

]
. (1.9)

By means of the (equal-time) bosonic commutation relations

[
Ψ̂(r), Ψ̂(r′)

]
=
[
Ψ̂†(r), Ψ̂†(r′)

]
= 0;[

Ψ̂(r), Ψ̂†(r′)
]

= δ(r− r′),
(1.10)

where
[Â, B̂]φ = Â(B̂φ)− B̂(Âφ), (1.11)

one can simplify the expression (1.9) and get

i~
∂Ψ̂(r, t)
∂t

=
(
−~2∇2

2m + Vtr(r, t)
)

Ψ̂(r, t) + gΨ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t). (1.12)

The main concept of Bose-Einstein condensation concerns the macroscopic occupa-
tion of the same quantum state by a large number of identical bosons. One can therefore
separate the Bose field operator in terms of a highly populated term ψ(r, t) = 〈Ψ̂(r, t)〉
and a fluctuation term δΨ̂(r, t):

Ψ̂(r, t) = ψ(r, t) + δΨ̂(r, t). (1.13)

The complex function ψ(r, t) is defined as the mean value of the field operator, and its
square modulus fixes the condensate density through the relation n(r, t) = |ψ(r, t)|2. It
is thus a classical field, and represents the order parameter of the BEC phase transition.
At T = 0 it is possible to neglect the fluctuations in the expansion (1.13), and equation
(1.12) becomes

i~
∂

∂t
ψ(r, t) =

(
−~2∇2

2m + Vtr(r, t) + g|ψ(r, t)|2
)
ψ(r, t), (1.14)

which is the celebrated Gross-Pitaevskii equation (GPE).
The corresponding energy functional can be recovered by applying (1.13) to the
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Hamiltonian (1.7), while discarding the fluctuations δΨ̂(r, t), and it is

E(t) =
∫
dr
(
− ~2

2m |∇ψ(r, t)|2 + Vtr(r, t)|ψ(r, t)|2 + g

2 |ψ(r, t)|4
)
. (1.15)

In the common case in which the potential is constant in time Vtr(r, t) = Vtr(r), the
GPE admits stationary solutions, meaning wave functions with constant norm. The
time evolution of the condensate is dictated by

ψ(r, t) = ψ0(r)e−i
µ
~ t, (1.16)

and the GPE reduces to its stationary version

(
−~2∇2

2m + Vtr(r) + g|ψ0(r)|2
)
ψ0(r) = µψ0(r). (1.17)

In equation (1.17), ψ(r) minimizes the expectation value of the Hamiltonian, under the
constraint that the number of atoms N is conserved and∫

dr|ψ(r)|2 = N. (1.18)

Then, the Lagrange multiplier µ can be identified with the chemical potential of the
system. In the limit in which the interactions dominate over the kinetic energy effects,
one can apply the simple reasoning of discarding the first term in equation (1.17), and
perform the so-called Thomas-Fermi approximation, for which

|ψTF(r)|2 = 1
g

(µ− Vtr(r)) Θ(RTF − |r|). (1.19)

This approximation is valid when the number of atoms is large and the density varies
smoothly in space over the relevant length scales. Here Θ(x) is the Heaviside theta
function, ensuring that the sign of the density remains positive, and RTF is the Thomas-
Fermi radius, representing the boundary of the condensate. In the noteworthy case of
a harmonic confinement, where

Vtr(r) = 1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (1.20)

the Thomas-Fermi density profile takes the shape of an inverted parabola and the radii
in the three directions are

Ri =
√

2µ/mω2
i . (1.21)

Instead, if the density varies on short length scales, the first term in the stationary
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Gross-Pitaevskii equation (1.17), the so-called quantum pressure, is not negligible. In
this case it is convenient to introduce a new quantity: the healing length. For simplicity,
let us consider the one-dimensional version of the equation (1.14):

i~
∂

∂t
ψ(x, t) =

(
− ~2

2m
∂2

∂x2 + Vtr(x) + g1D|ψ(x, t)|2
)
ψ(x, t), (1.22)

where g1D is the properly rescaled effective one-dimensional interaction strength, ob-
tained with a procedure analogous to the one for g2D in Chapter 3. Consider then a
condensate confined in a static box with infinitely hard walls. At the walls the wave-
function (and the density) must vanish, while in the centre of the box the density
approaches its bulk value. One can compute the length over which the density “heals”,
and rises from zero to its uniform value. This is the so-called healing length ξ, and can
be computed from eq. (1.22). Far from the wall, the wave function is determined by the
competition between the kinetic energy and the interaction energy. If we suppose that
the two compensate each other over the spatial scale ξ, we have that ~2/2mξ2 = ng,
hence

ξ =
√

~2

2mng = 1
8πna. (1.23)

1.1.1 Solitons in a Bose-Einstein condensate

An interesting class of solutions of the one-dimensional Gross-Pitaevskii equation
(1.22) is represented by the so-called solitons. The concept of soliton is ubiquitous
in physics. It basically consists of a localized self-reinforcing solitary wave, at rest or
moving at constant speed, maintaining its shape in time. Solitons can also collide with
each other without any substantial change, apart from a phase shift. Their existence is
directly related to the self-focussing non-linearity of the GPE, which compensates the
dispersive quantum pressure term arising from the kinetic energy. Two kind of solitons
may exist: grey solitons represent a density depletion with respect to the unperturbed
value, while bright solitons correspond to a density enhancement.

Let us now investigate the uniform case Vtr(x) = 0, and a solution for (1.22) trav-
elling at a constant speed v. Since the soliton has a finite size, far from its core the
density should approach its unperturbed uniform value n. Following the treatment
given by Stringari and Pitaevskii[26], we will search for stationary solutions of the kind

ψ0(x) =
√
nf(x, ξ), (1.24)

[26] L. Pitaevskii and S. Stringari. Bose-Einstein Condensation and Superfluidity. Oxford University
Press, 2016.
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where f(x, ξ) is a dimensionless function with properties

lim
x→±∞

f(x, ξ) = 1 and lim
x→±∞

∂xf(x, ξ) = 0. (1.25)

The full solution is therefore

ψ(x, t) =
√
nf(ζ)e−i

µ
~ t, (1.26)

where ζ = (x− vt)/ξ and µ = ng. By substituting (1.26) into (1.22) one gets

2iS ∂f
∂ζ

= ∂2f

∂ζ2 + (1− |f |2)f, (1.27)

where we substituted dt = −ξ
v
dζ and defined

S ≡ mvξ

~
= v√

2c
, (1.28)

where c is the sound speed (see eq. (1.61)). Multiplying (1.27) by f∗ and subtracting
its complex conjugate one gets

2iS
(
∂f

∂ζ
f∗ + ∂f∗

∂ζ
f

)
− ∂2f

∂ζ2 f
∗ + ∂2f∗

∂ζ2 f = 0, (1.29)

which can be simplified by recalling the Leibniz rule for the derivative of a product as

∂

∂ζ

(
2iS|f |2 − ∂f

∂ζ
f∗ + ∂f∗

∂ζ
f

)
= 0. (1.30)

The parenthesis in (1.30) is therefore a constant, which we will impose to be 2iS:

2iS(1− |f |2) + ∂f

∂ζ
f∗ − ∂f∗

∂ζ
f = 0. (1.31)

Let us keep this equation aside for a moment. In general f = fR + ifI is a complex
function. By decomposing f into (1.27), and by only taking the imaginary part of the
resulting equation, one gets

2S∂fR
∂ζ

= ∂2fI
∂ζ2 + (1− f2

R − f2
I )fI . (1.32)

Eq. (1.32) can be simplified by only considering solutions with constant fI :

2S∂fR
∂ζ

= (1− f2
R − f2

I )fI . (1.33)
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This last equation coincides with (1.31) by identifying

fI =
√

2S = v/c, (1.34)

and becomes
√

2∂fR
∂ζ

= 1− f2
R −

v2

c2 , (1.35)

whose solution is

fR(ζ) =

√
1− v2

c2 tanh

 ζ√
2

√
1− v2

c2

 . (1.36)

Thus, the solitonic solution for the Gross-Pitaevskii equation is

ψS(x− vt) =
√
n

iv
c

+

√
1− v2

c2 tanh

x− vt√
2ξ

√
1− v2

c2

 e−iµ~ t . (1.37)

The density profile n(x−vt) = |ψS(x−vt)|2 has a minimum in the centre of the soliton
corresponding to n(0) = nv2/c2. This value drops to zero whenever v = 0, i.e. in the
presence of a static defect, which, having a complete density depletion, is evocatively
called black soliton. The width of the soliton is determined by the healing length ξ,
amplified by a factor 1/

√
1− v2/c2 proportional to the velocity.

A peculiar aspect of solitons is the phase jump occurring at the position of the
defect. From (1.37) one can compute that

∆θ(ψS) = π − 2 arctan
(

v/c√
1− v2/c2

)

= 2 arccos
(
v

c

)
. (1.38)

In the case of a black soliton, the wave function then becomes purely real

ψDS =
√
n tanh

(
x√
2ξ

)
, (1.39)

and the phase jump assumes its maximum value π.
Another interesting aspect to investigate is the soliton energy, which can be com-

puted as the difference between the grand canonical energies in the presence and in the
absence of the soliton

ES =
∫ ∞
−∞

dx

(
~2

2m

∣∣∣∣dψS
dx

∣∣∣∣2 + g

2
(
|ψS|2 − n

)2
)
, (1.40)
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whose result is

ES = 4
3~cn

(
1− v2

c2

)3/2

. (1.41)

When considering small velocities, and large depletions, eq. (1.41) can be rewritten as

ES ∼
4
3~cn−

1
2

4~n
c
v2. (1.42)

Equation (1.42) is remarkable. It tells us that the soliton behaves as a particle of neg-
ative mass ms = −4~n/c. Then, being a (quasi)particle with negative kinetic energy,
the faster the defect the less energetic it is. Therefore, any dissipative effect, such as
collisions with thermal excitations, will result in an acceleration of the soliton, corre-
sponding to a decrease in the density depletion, eventually leading to its disappearance
for v → c.

1.1.2 Superfluidity and hydrodynamic approach

One of the most striking properties of Bose-Einstein condensation is that it strictly
connects to superfluidity. By superfluidity, one generally means a set of macroscopic
phenomena in quantum fluids determined by a peculiar dynamical condition: the sys-
tem exhibits zero viscosity, and the velocity field is irrotational. The consequences of
these facts are quite remarkable, as they allow the presence of persistent mass cur-
rents, the possibility of having stationary equilibrium states in rotating vessels and the
quantisation of the vorticity.

Quantised vortices. The formal link between superfluidity and BEC can be un-
derstood from the phase of the order parameter ψ. Consider a uniform system, with
Vtr = 0. At equilibrium, the solution of equation (1.17) is given by the uniform relation

ψ(r, t) = ψ0 =
√
ne−iµt/~, (1.43)

where n is a constant density independent of the position. If we now consider instead
a moving frame at constant velocity v, the order parameter takes the form

ψ0 =
√
neiS(r,t) (1.44)

where
S(r, t) = 1

~

[
mv · r−

(
m
v2

2 + µ

)
t

]
(1.45)
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𝑞 = +1

Figure 1.1: Circulation of the velocity v(r) = ~/m∇S associated to the classical
field ψ(r) =

√
neiS(c). The value of the circulation does not depend on the contour

chosen, unless it crosses a point of zero density (identified as the vortex).

is the phase of the condensate. The velocity can be therefore identified with the gradient
of the phase

v(r, t) = ~
m
∇S(r, t). (1.46)

The velocity (1.46) describes the collective motion of many particles in the same quan-
tum state, and since it is defined as the gradient of a scalar function, it is by construction
irrotational:

∇× v = 0. (1.47)

In order for the wavefunction (1.44) to be single-valued, the change in phase around
any closed contour C must be an integer multiple of 2π:∮

C
∇S · dl = 2πs s ∈ Z. (1.48)

This also means that the velocity circulation satisfies the Onsager-Feynman[14,15] quan-
tisation condition ∮

C
v · dl = s

(2π~
m

)
s ∈ Z, (1.49)

which implies that the circulation of the fluid is also quantised in units of (~/m).
Hence, the system will only present vortices with quantised circulation, which can only
be generated and annihilated via recombination processes between pairs of opposite
charge (for more on that, see Chapter (4)). This is drastically different from a classical
fluid, where the energy of a vortex can dissipate leading to its eventual disappearance.
[14] L. Onsager. In: Il Nuovo Cimento 6 (1949), pp. 279–287.
[15] R.P. Feynman. Chapter II Application of Quantum Mechanics to Liquid Helium. Ed. by C. J.
Gorter. Vol. 1. Supplement C. Elsevier, 1955, pp. 17–53.
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The velocity around a single vortex core is given by

v(r, θ) = s

( ~
mr

)
θ̂ s ∈ Z, (1.50)

where r is the radius distance from the core, and θ̂ is the azimuthal unit vector.
It is worth stressing that in three dimensional systems, vortices appear as lines where

the system density goes to zero. These lines are constrained to be locally perpendicular
to the system borders, if present, and thus they can be bent in non-uniform fluids
such as trapped ultracold gases (see more on this in Chapter 2). As their classical
counterparts, they can present long-wavelength helical excitations, the so-called Kelvin
waves[31–33].

Hydrodynamic equations. By means of the phase S and the velocity v defined
above, one can show that the macroscopic dynamics of the condensate is well described
by the hydrodynamic equations for an irrotational non-viscous fluid. By substituting
(1.44) into (1.14), and by discarding1 the quantum pressure term ∇2√n, one gets the
following coupled hydrodynamic equations

∂n

∂t
+ ∇ · (vn) = 0 (1.51)

m
∂v
∂t

+ ∇
(
Vtr + gn+ mv2

2

)
= 0. (1.52)

1.2 Zero temperature excitations: Bogoliubov approach

Excitation spectrum. One can compute the first-order excitations on top of a sta-
tionary solution of the Gross-Pitaevskii equation by substituting

ψ(r, t) = (ψ0(r) + δψ(r, t))e−i
µ
~ t, (1.53)

into (1.14), which gives

i~
∂

∂t
δψ(r, t) =

[
− ~2

2m∇
2 + Vtr(r) + 2g|ψ0(r)|2 − µ

]
δψ(r, t) + gψ2

0(r)δψ∗ (1.54)

1 This implies a limitation of the description of the system to scales larger than the healing length ξ.

[31] W. Thomson (Lord Kelvin). In: Philos. Mag. 10 (1880), p. 155.
[32] V. Bretin et al. In: Phys. Rev. Lett. 90 (2003), p. 100403.
[33] Alexander L. Fetter. In: Phys. Rev. A 69 (2004), p. 043617.
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where we have neglected all the terms in δψ2. We can rewrite (1.54) in a system of
linear equations by applying the Bogoliubov transformation:

δψ(r, t) =
∑
k

(uk(r)e−iωkt + v∗k(r)eiωkt) (1.55)

where k marks the different modes of frequency ωk. This allows us to write a linear
system of two coupled equations for the functions uk(r) and vk(r), known as the zero-
temperature Bogoliubov equations2

 Â(r) B̂(r)
−B̂∗(r) −Â∗(r)

uk(r)
vk(r)

 = ~ωk

uk(r)
vk(r)

 (1.56)

where we defined
Â(r) = −~2∇2

2m + Vtr(r) + 2g|ψ0(r)|2 − µ

B̂(r) = gψ2
0(r).

(1.57)

For a uniform system, where Vtr(r) = 0, the Bogoliubov functions have the form

uk(r) = uke
ik·r and vk(r) = vke

ik·r, (1.58)

thus representing the amplitudes of plane waves of wavevector k. Equation (1.55) then
means that the excitations are represented by quasi-particles composed of counter-
propagating plane waves (see below). Since in the uniform system (1.19) implies that
µ = g|ψ0|2, we can rewrite (1.56):

(−~2k2

2m + g|ψ0|2 − ~ωk
)

gψ2
0

g(ψ∗0)2
(
−~2k2

2m + g|ψ0|2 + ~ωk
)uk

vk

 = 0. (1.59)

This equation can be solved by simply imposing the determinant to be zero, and results
in the well known T = 0 Bogoliubov excitation spectrum for the uniform case

~ωk =
√

~2k2

2m

(~2k2

2m + 2gn0

)
. (1.60)

The Bogoliubov dispersion relation (1.60) shows a peculiar twofold behaviour. In
the low momentum regime it is linear, thus leading to a phonon-like relation

~ωk = ~ck where c =
√
gn0
m

is the Bogoliubov speed of sound. (1.61)

2 These are analogue to the Bogoliubov-de Gennes equations for superconductivity [34].
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In the large momentum regime, instead, the spectrum becomes the one of a free particle,
plus a mean field contribution ~ωk = ~2k2/2m+ gn0.

Bogoliubov quasiparticles. It is possible to show[26] that the phonon-like excita-
tions, recovered by linearising the Gross-Pitaevskii equation as performed above, cor-
respond to the Bogoliubov quasi-particles which diagonalise the Hamiltonian (1.3) of a
weakly interacting Bose gas of N particles in a uniform potential Vtr(r) = 0, i.e.

Ĥ =
∫
dr
(

~2

2m∇Ψ̂†(r)Ψ̂(r)
)

+ 1
2

∫
dr dr′ Ψ̂†(r)Ψ̂†(r′)Vint(r− r′)Ψ̂(r)Ψ̂(r′), (1.62)

where Vint(r− r′) is the general form of the two-body interaction potential as in (1.1).
By assuming that the gas lies in a uniform three-dimensional box of size L3, one can
expand the field operators Ψ̂ in the plane wave basis

Ψ̂(r) = 1√
L3

∑
p
âpe

ip·r/~ (1.63)

where âp is the operator annihilating a particle in a plane wave state of momentum p,
obeying the bosonic commutation relations

[
âp, â

†
p′
]

= âpâ
†
p′ − â

†
p′ âp = δp,p′ . (1.64)

By the substitution of (1.63) into (1.62) one gets

Ĥ =
∑

p

p2

2mâ†pâp + 1
2L3

∑
p1,p2,q

Vqâ
†
p1+qâ

†
p2−qâp1 âp2 , (1.65)

where
Vq =

∫
drVint(r)e−ip·r/~. (1.66)

By the same considerations as above, one could exclusively consider a contact potential
as in equation (1.5), which means to effectively keeping the sole constant term V0 = g

in the above equation. This allows one to rewrite

Ĥ =
∑

p

p2

2mâ†pâp + g

2L3

∑
p1,p2,q

â†p1+qâ
†
p2−qâp1 âp2 . (1.67)

[26] L. Pitaevskii and S. Stringari. Bose-Einstein Condensation and Superfluidity. Oxford University
Press, 2016.
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By splitting the operator for the ground state â0 from the ones for the excited states
âp one gets

Ĥ = g

2L3 â
†
0â
†
0â0â0 +

∑
p6=0

p2

2mâ†pâp + g

2L3

∑
p6=0

(
4â†0â†pâ0âp + â†pâ

†
−pâ0â0 + â†0â

†
0âpâ−p

)
.

(1.68)
The last term of the above equation only includes operators in p 6= 0 which appear
quadratically; the terms only having one operator in p are forbidden due to momentum
conservation. The factor 4 accounts for the four different possible combinations of p1,p2

and q leading to the resulting term in p.
The crucial point is now to follow the Bogoliubov prescription and replace the

operators â†0 and â0 with a c-number

â0 =
√
N0, (1.69)

representing the occupation of the lowest single-particle state. Once again, this approx-
imation corresponds to neglecting the short-range details of the interaction potential.
The first term of (1.68) can be computed in terms of the normalisation condition

â†0â0 +
∑
p6=0

â†pâp = N, (1.70)

which leads, neglecting higher order terms, to

â†0â
†
0â0â0 ' N2 − 2N

∑
p6=0

â†pâp. (1.71)

In the other terms of equation (1.68) we can instead perform the approximate substitu-
tion â0 =

√
N , where we assume that the system is very cold and that the occupation

of the zero-momentum state is macroscopic. The Hamiltonian (1.68) then becomes

Ĥ = 1
2gnN +

∑
p

p2

2mâ†pâp + 1
2gn

∑
p6=0

(
2â†pâp + â†pâ

†
−p + âpâ−p

)
, (1.72)

where n = N/L3 is the density, and the last term of the Hamiltonian is composed by
the self interaction of the excited states, the simultaneous creation of excited states
of opposite momentum and their simultaneous annihilation, respectively. Equation
(1.72) can be diagonalised by performing the linear transformation in the creation and
annihilation operators

âp = upb̂p + v−pb̂
†
−p, and â†p = upb̂

†
p + v−pb̂−p, (1.73)
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known as the Bogoliubov transformation. The operators b̂p and b̂†p obey the same
bosonic commutation relations as the original fields. This implies a constraint on the
two amplitudes up and v−p

|up|2 − |v−p|2 = 1, (1.74)

which means that they can be rewritten as

up = cosh(αp) and v−p = sinh(αp). (1.75)

The value of αp can be chosen so to suppress the non-diagonal terms b̂†pb̂†−p and b̂pb̂−p

of the Hamiltonian (1.72), by imposing the condition

gn

2 (|up|2 + |v−p|2) +
(
p2

2m + gn

)
upv−p = 0, (1.76)

which translates into
coth(2αp) = − 1

gn

(
p2

2m + gn

)
. (1.77)

This condition allows to determine uniquely the coefficients

up, vp = ±
√

1
2ε(p)

(
p2

2m + gn

)
± 1

2 , (1.78)

being

ε(p) =
√
p2

2m

(
p2

2m + 2gn
)

(1.79)

which recovers relation (1.60) for the Bogoliubov excitation spectrum. By substituting
equations (1.73) and (1.78), the Hamiltonian (1.72) is diagonalised into

H = E0 +
∑
p6=0

ε(p)b̂†pb̂p, (1.80)

where
E0 = 1

2gnN + 1
2
∑
p6=0

(
ε(p)− gn− p2

2m +m
(gn)2

p2

)
(1.81)

is the ground state energy. Its zero-order value can be computed by simply assuming
that all the states with p 6= 0 are suppressed due to the low temperature, and consists
in the first term 1

2gnN . The first-order correction has been computed[35,36] to be

E0 = 1
2gnN

(
1 + 128

15π
√
na3

)
. (1.82)

[35] T. D. Lee and C. N. Yang. In: Phys. Rev. 105 (1957), pp. 1119–1120.
[36] T. D. Lee, Kerson Huang, and C. N. Yang. In: Phys. Rev. 106 (1957), pp. 1135–1145.
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The chemical potential in the first order correction then becomes

µ = ∂E0
∂N

= gn

(
1 + 32

3π
√
na3

)
. (1.83)

Equations (1.82) and (1.83) are known as Lee-Huang-Yang relations.

1.3 Chapter summary

In this chapter we briefly introduced some of the theoretical tools we are going to
use throughout the thesis. We reviewed the Gross-Pitaevskii equation and the Thomas-
Fermi approximation for its solution in the low-temperature stationary state. We looked
at a distinctive class of dynamical solutions for the equation, the solitons, and we
described some of their properties. We introduced the concepts of superfluidity in a
BEC, and of quantisation of vorticity, and we sketched the hydrodynamic equations for
a condensate. We finally studied the Bogoliubov approach for the first-order excitations
in the system. We will make use of some of these concepts in the following chapter,
describing the dynamics of a defect in an elongated quasi-1D condensate.



Chapter 2

Vortices in elongated
Bose-Einstein condensates

This chapter reports the theoretical description of an experiment realised at the
laboratory of ultracold atoms of the INO-CNR BEC Center in Trento1, in collaboration
with Franco Dalfovo and myself. The experiment concerned the study of the real-
time dynamics of randomly generated vortices in a large, elongated sodium BEC. The
vortices were produced by the Kibble-Zurek mechanism, and their motion was followed
in time by means of a stroboscopic technique. The vortex precession motion showed
good agreement with the theory. This work was published[27] in Physical Review Letters.

2.1 Description of the experiment

The experiment was performed in a cigar-shaped sodium BEC, confined in a mag-
netic harmonic trap with frequencies ωx = ωy = ω⊥ = 2π(131Hz), and ωz = 2π(13Hz),
hence giving an aspect ratio of approximately 10. This geometry was chosen in order
to probe the role of anisotropy in the motion of the vortices, spontaneously generated
by the Kibble-Zurek mechanism (KZM)2: if, during the evaporation, the temperature
is varied quickly enough when crossing the phase transition critical point, the system
will exhibit phase defects, which will eventually decay into a number of vortices with
random position and orientation. The average number of vortices scales as an inverse
power law of the quench time τq. At the end of the evaporation procedure the number of
atoms in the condensate was around 107 at 200 nK. It is important to clarify that, even
though the system is quite elongated, it is still represented by a three-dimensional de-
1 bec.science.unitn.it
2 For more on this, see Chapter 4.

[27] S. Serafini et al. In: Phys. Rev. Lett. 115 (2015), p. 170402.
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density profile and the velocity field would be isotropic
[Fig. 2(a)]. Conversely, if the vortex is oriented along the
radial direction of an elongated trap, as in our case, the
equiphase surfaces, which originate from the vortex and
must be orthogonal to the condensate outer surface, are
forced to bend and to gather in the short radial direction
[Fig. 2(b)]. The phase gradient is then concentrated in a
planar region whose width is much smaller than the axial
length of the condensate. The high phase gradient corre-
sponds to a high atomic velocity field and the system tends
to reduce its energy by depleting the density in the plane.
The resulting structure is a solitonic vortex [7,8]. Far from
the density depleted region the phase pattern is similar to
that of a gray soliton [Fig. 2(c)], the two sides of the
condensate having different phases (Δϕ ¼ π in the case of
a stationary solitonic vortex and a dark soliton). A key
difference is that in a soliton the phase gradient is the same

in the whole nodal plane, while in a solitonic vortex it has
opposite sign in the two half planes separated by the vortex
line. A consequence is that, if a condensate containing a
soliton is released from the trap, the overall density
structure is preserved, while in the case of a solitonic
vortex the asymmetric flow induces the two density
depleted sides to twist in opposite directions. From the
standard definition of superfluid velocity, v ¼ ðℏ=mÞ∇ϕ, it
follows that the atomic flux is oriented towards increasing
phases; hence, the depleted regions move in the opposite
direction. If at least one extreme of the vortex line is
oriented along y or z a remarkable structure appears (see
Fig. 1): a solitonic plane twisted around a hollow vortex
core. Such a feature was already clearly visible in [1]. The
sign of a vortex, which was previously observed exciting
collective modes [17], following the vortex core precession
[18,19], or using interferometric techniques [20], is here
extracted from the twist orientation in single absorption
images.
We compare our observations with the solution

of the Gross-Pitaevskii (GP) equation iℏ∂tψ ¼ − ℏ2
2m∇2ψþ

1
2mω2

xðx2 þ α2r2Þψ þ gjψ j2ψ , where α ¼ ω⊥=ωx and g ¼
4πℏ2as=m with as being the scattering length. The trapped
stationary state is obtained by means of an imaginary time
evolution of the GP equation, where the phase pattern of a
solitonic vortex is initially imprinted [7,8,21]. This state is
then used as the initial condition for the simulation of the
free expansion. In order to speed up the simulation time and
make the calculation feasible also for long expansions, we
dynamically rescale the GP equation by means of the
Thomas-Fermi scaling ansatz in the transverse direction
[22–28]. A typical result is shown in Fig. 1(c) for a three-
dimensional (3D) simulation of a condensate expanding for
120 ms with ω⊥ ¼ 10ωx and μtheo ¼ 10ℏω⊥. The expand-
ing solitonic vortex clearly develops a planar density

(a) (b) (c)

FIG. 1 (color online). Integrated triaxial density distribution of a BEC after a time of flight of 120 ms in presence of a solitonic vortex
aligned along y. For each condensate we report absorption images along the two radial directions, horizontal y (left) and vertical z (top),
and the residuals of axial (x) imaging after subtracting the Thomas-Fermi profile fit. (a)–(b) Experimental snapshots of two condensates
with opposite circulation. (c) Theoretical 3D calculation with clockwise circulation and a μtheo ≃ μexp=3 (white noise has been added in
order to better compare the theoretical calculation to the experimental results). Arrows indicate the atomic flow. Other examples of
solitonic vortices with different orientation and shape can be seen in the Supplemental Material [16].

π

π

(a)

(b)

(c)

FIG. 2 (color online). Theoretical solutions of in situ density
and phase profiles for (a) a vortex aligned along the axis of an
axially symmetric potential, a solitonic vortex (b) and a soliton
(c) oriented perpendicularly to the axis of an elongated axially
symmetric trap. Arrows indicate the atomic flow.

PRL 113, 065302 (2014) P HY S I CA L R EV I EW LE T T ER S week ending
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𝑦𝑥

𝑧

Figure 2.1: [Figure from [37]] Schematic representation of a solitonic vortex, show-
ing the theoretical solutions of the trapped densities (left) and phase profiles (right)
for a vortex in an isotropic harmonic potential (a), a solitonic vortex in an elon-
gated geometry (b) and a soliton (c).

scription, and that the phase transition associated with it is the canonical second-order
Bose-Einstein condensation.

As opposed to a completely destructive absorption technique, such as the one used
in a previous work[37], here a different approach was used, similar to the one used by the
group of D. Hall[38]. This consists in a stroboscopic imaging process, which is a quasi
non-destructive protocol that allows to follow the real-time dynamics of a single sample.
For an initial atom number in the trap N0, by shining a microwave pulse on the BEC, it
is possible to outcouple a small fraction of the atoms ∆N/N0 ∼ 4% into an anti-trapped
state. This “extraction” happens homogeneously across the condensate, and the atoms
resemble the distribution of the whole system. They are subsequently expanded for a
short period of time (∼ 13 ms) and are observed with an imaging laser, leaving the
ones in the condensate unperturbed. The resulting optical densities are fitted to a
Thomas-Fermi profile[1], which is then subtracted in order to get the residual density.
This procedure can be repeated up to 20 times with fixed time steps ∆t and ∆N ,
only slightly affecting the dynamics of the system, provided that ∆N/N(t) is small
enough. This way, it is possible to produce “movies” of the motion of the defects in
time. Vortices appear as dark stripes in the expanded cloud, because of the distinctive
features of the kind of defect that is created in this configuration: the solitonic vortex.
The difference with the canonical vortex in a bulk lies in the peculiar distribution of
[37] S. Donadello et al. In: Phys. Rev. Lett. 113 (2014), p. 065302.
[38] D. V. Freilich et al. In: Science 329.5996 (2010), pp. 1182–1185.
[1] F. Dalfovo et al. In: Rev. Mod. Phys. 71 (1999), pp. 463–512.
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vortices [22,23], after expansion the whole radial plane
containing a vortex exhibits a density depletion and
vortices are seen as dark stripes independently of their
in-plane orientation. During the extraction sequence the
remaining condensate evolves in trap, only weakly affected
by atom number change, provided ΔN=NðtÞ is sufficiently
small. We can then identify the axial position of the
vortex in each image of the outcoupled atoms and analyze
its oscillation as a faithful representation of the in-trap
dynamics. Typical examples are shown in Figs. 1(a)–1(i).
Alternatively we image the full BEC along the axial
direction after a long expansion with a destructive tech-
nique as in Ref. [22] and directly see the shape and
orientation of the vortex lines as in Figs. 1(j)–1(m).

We first choose an evaporation rate of 525 kHz=s,
yielding one vortex in each BEC on average. From the
sequence of radial images we extract the axial position of
each vortex zðtÞ. Frames are recorded every Δt ¼ 84 ms.
Figures 2(a) and 2(b) show two examples corresponding to
the raw images of Figs. 1(b) and 1(c), respectively. The
observations are consistent with a vortex precession around
the trap center, as the one observed in oblate BECs [16,33].
In a nonrotating elongated condensate, a straight vortex
line, oriented in a radial plane, is expected to follow an
elliptic orbit in a plane orthogonal to the vortex line,
corresponding to a trajectory at constant density [34]. The
observed motion of each dark stripe in Figs. 1(a)–1(c) is
the axial projection of such a precession. Given ro ¼
zmax=R z ¼ ymax=R ⊥ the in-trap amplitude of the orbit
normalized to the TF radii R ⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ=ðmω2

⊥Þ
p

and R z ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ=ðmω2

zÞ
p

[32], the precession period is predicted to be

T ¼ 4ð1 − r2oÞμ
3ℏω⊥ lnðR ⊥=ξÞ

Tz; ð1Þ

where Tz ¼ 2π=ωz is the axial trapping period and ξ is
related to the chemical potential μ by ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2=ð2mμÞ

p
.

This result, which is valid to logarithmic accuracy, has been
derived for a disk-shaped nonaxisymmetric condensate in
Refs. [35,36] within the Gross-Pitaevskii theory at T ¼ 0
and in the TF approximation, corresponding to R ⊥=ξ ≫ 1
(in our case, R ⊥=ξ ranges from 60 to 20). It can also be
obtained by means of the superfluid hydrodynamic
approach introduced in Ref. [37] to describe the motion
of vortex rings in elongated condensates, appropriately
generalized to the case of solitonic vortices as in Ref. [24].
The quantity μð1 − r2oÞ is the local chemical potential along
the vortex trajectory and we assume ro to be constant
during expansion, as distances are expected to scale in the
same way in the slow axial expansion.
In comparing the observed period with Eq. (1) we must

consider that the number of atoms is decreasing from shot
to shot. Since extraction is spatially homogeneous, the
gradients of the density, and hence the equipotential lines
for the vortex precession and the orbit amplitude, remain
almost unchanged. However, NðtÞ (hence μ ∝ N2=5)
decreases in time and so does the vortex orbital period
T, as is clearly visible in Figs. 2(a) and 2(b). We define an
instantaneous period at time t as the period obtained from a
sinusoidal fit to the measured position in a time interval
centered at t and containing about one oscillation. Such
TðtÞ is plotted in Figs. 2(c) and 2(d) and compared to
Eq. (1), where we include the effect of the observed t
dependence on N, shown in Fig. 2(e), both in μ and ξ.
The agreement is good, the major limitation being the
experimental uncertainty in N. We also show the period
expected for the oscillation of a dark or grey soliton, which
is

ffiffiffi
2

p
Tz independently of N [38,39]. In Fig. 2(f) we plot

the period of vortices orbiting with different amplitude ro.

(a) (b) (c)
(d) (e)

(g)(f)

(h) (i)

(j) (k) (l) (m)

FIG. 1 (color online). (a)–(c) Sequences of 20 images of the
density distribution of the atoms extracted from three BECs;
frames are taken everyΔt ¼ 84 ms, each after a 13 ms expansion.
(a) Static vortex. (b),(c) Vortices precessing with different
amplitudes. Each vortex is randomly oriented in the xy plane
and, after expansion, it forms a planar density depletion [23]
which is visible as a stripe. (d)–(i) Sequences with two and three
vortices, with Δt ¼ 28 ms; here frames are not to scale and
vertically squeezed to enhance visibility. (j)–(m) Destructive
absorption images of the whole BEC taken along the axial
direction z after 120 ms of expansion, showing (j) a single vortex
filament crossing the condensate from side to side and (k)–(m) two
vortices with different relative orientation and shape. All images
show the residuals after subtracting the fitting TF profile.
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Figure 2.2: [Figure from [27]] (a)-(c) Example sequences of 20 consecutive images
of the density distribution of the extracted atoms, only presenting one defect. The
time interval between two shots is ∆t = 84 ms, and each picture is taken after 13
ms of expansion. In particular, (a) shows a static vortex, while (b) and (c) show
vortices with a different amplitude of the precessing motion. (d)-(i) Sequences
with multiple vortices, with ∆t = 28 ms. The time axis of these frames has been
squeezed to enhance visibility.

the phase gradient around the vortex core, which is modified by the presence of the
BEC boundary. The presence of a virtual vortex on the opposite side of the edge of the
condensate causes the lines of equal phase to bend, thus making the regions close to the
border the ones where the majority of the flow is concentrated. This causes a planar
density depletion in an elongated condensate, and combined with the almost constant
phase on two large patches on the side of the vortex core, resembles the features of a
soliton (Figure 2.1). It is important to note that with this method it is not possible to
estimate the orientation of the vortical line in the x − y plane, as this would require
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a different approach in the phase analysis (and was only realised in a later work[39]).
Figure 2.2 shows some example trajectories for various numbers of solitonic vortices.
From them it is possible to extract the axial position of the vortex z(t) as a function
of time.

2.2 Motion of a vortex in an elongated BEC

This section reports the theoretical analysis of the motion of a solitonic vortex in
the elongated configuration presented above. This analysis is based on the superfluid
hydrodynamic approach developed by Pitaevskii[40], and generalised to the case of
solitonic vortices as in a paper of Ku et al.[41]. Consider a cigar-shaped BEC with
isotropic strong confinement in the x and y direction, corresponding to a Thomas-
Fermi radius R⊥ � Rz much smaller than the one in the loosely confined z direction.
Let us further assume that the vortex line is perfectly straight and aligned along x,
and that, given that the local density approximation (LDA) holds, the vortex core size
is ξ � R⊥, so that log(R⊥/ξ)� 1 and the logarithm is approximately constant. Here
the size of the vortex is assumed to be the condensate healing length ξ =

√
~2/2mng.

Let us finally consider the position of the vortex in the y-z plane to be r = (y0, z0).

𝑧

𝑦
𝑥 𝒓 = 𝑦&, 𝑧&

𝑅)

𝑅*

We will assume that the energy of the vortex is dominated by the kinetic energy of
its flow field v = (~/mB)∇φ, where mB is the mass of the boson (for a BEC this is
simply the mass of the atoms m, whereas for fermions mB = 2m), and

φ = arctan
(
y − y0
z − z0

)
(2.1)

is the phase profile in the vicinity of the vortex core. The vortex presence is only going
to affect a density region of dimension ∼ πR2

⊥ around its core. Hence the defect energy
[39] S. Serafini et al. In: Phys. Rev. X 7 (2017), p. 021031.
[40] L. P. Pitaevskii. In: ArXiv e-prints (2013). arXiv: 1311.4693 [cond-mat.quant-gas].
[41] M. J. H. Ku et al. In: Phys. Rev. Lett. 113 (2014), p. 065301.

http://arxiv.org/abs/1311.4693
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is
EV =

∫
d3 r1

2mn(x, y, z)v2 = 1
2
~2m

m2
B

∫
d3 n(x, y, z)(∇φ)2. (2.2)

Now, consider the following:

• compute the term (∇φ)2:

∇φ ·∇φ =
(
∂φ

∂x

)2
+
(
∂φ

∂y

)2
+
(
∂φ

∂z

)2

=
(

z − z0
(z − z0)2 + (y − y0)2

)2
+
(

y − y0
(z − z0)2 + (y − y0)2

)2

= 1
(z − z0)2 + (y − y0)2 ; (2.3)

• the volume of integration
∫
d3r is a cylinder of height R⊥ and base πR2

⊥, excluding
the central region of the vortex core of size πξ2;

𝑅"

𝑅"𝑦

𝑥
𝑧

• local density approximation: the expression for the energy can be recovered as
the one computed with a uniform density equal to its value near the vortex,

n(x, y, z) = n(x, y0, z0). (2.4)

Thus, we can compute

EV = 1
2
~2m

m2
B

∫ R⊥

−R⊥
dx

∫ R⊥

ξ
dr r

∫ 2π

0
dθ

1
r2n(x, y0, z0)

= 1
2
~2m

m2
B

∫ R⊥

−R⊥
dxn(x, y0, z0)︸ ︷︷ ︸

two-D column density n2D

2π
∫ R⊥

ξ
dr

1
r

= π~2 m

m2
B

n2D(y0, z0) log
(
R⊥
ξ

)
. (2.5)
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Figure 2.3: Schematic representation of the phase jump around the vortex core,
highlighting a phase difference of ±π in the z direction. Due to the anisotropy of
the system, the lines of equal phase are bent towards the edges of the condensate,
and the phase gradient is only concentrated in a region of size R⊥ around the
vortex core.

The canonical momentum of the vortex along the axial direction z is

Pz = m

mB

∫
d3rmnvz = m

mB

∫
d3r ~n(x, y, z)∂zφ. (2.6)

By means of the local density approximation, we can substitute n(x, y, z) ∼ n(x, y, z0).
Once again we integrate over a cylinder centred in the vortex core

Pz = m

mB

∫ R⊥

0
dx

∫ R⊥

y0
dy n(x, y, z0)

∫
dz∂zφ (2.7)

= m

mB

∫ R⊥

0
dy n2D(y, z0)

∫
dz∂zφ. (2.8)

Let us now focus on the
∫
dz∂zφ term. Since our defect is a vortex, the phase around

it should undergo a jump of an integer multiple of 2π (let us assume that it is singly
charged). As discussed above, for the peculiar class of the solitonic vortices, the phase
gradient is mainly concentrated in a region of the condensate of size ∼ R⊥ close to the
surface. When we integrate in z from −Rz to +Rz, the value of ∆φ will depend on
whether we perform the linear integration in the y > y0 (∆φ = +π) or in the y < y0

region (∆φ = −π), as shown in Figure (2.3). Hence

Pz = ~
m

mB

[
π

∫ y0

−R⊥
dy − π

∫ R⊥

y0
dy

]
n2D(y, z0)

= ~π
m

mB

∫ y0

−y0
dy n2D(y, z0), (2.9)

where we used the symmetry of n2D in the y direction.
We can now compute the speed of the vortex along the z direction using the Hamil-
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ton equation
ż0 = ∂EV

∂Pz
= ∂EV /∂y0

∂Pz/∂y0
. (2.10)

In order to solve (2.10) we need to consider the Thomas-Fermi approximation as in the
previous chapter: if the density is slowly varying in the region of interest, the quantum
pressure term (∝ ∇2√n) of the Gross-Pitaevskii equation (1.17) can be neglected (see
eq. (1.19)), and the condensate profile assumes the simple shape given by

gn(r) + Vtr(r) = µ0, (2.11)

which, in our harmonic trap, is

n(r) = µ(r)
g

= µ0
g

(
1− x2 + y2

R2
⊥
− z2

R2
z

)
. (2.12)

Here, µ0 is the (local) chemical potential in the centre of the trap, and R⊥ =
√

2µ0
mω2
⊥

and Rz =
√

2µ0
mω2

z
are the so-called Thomas-Fermi radii. To generalise the following, let

us consider the proportionality of n on µ as

n = Aµγ ⇒ γ = ∂n

∂µ

µ

n
= ∂n

∂µ

µ

n
. (2.13)

The noteworthy cases are γ = 1 for Bose atoms, and γ = 3/2 for Fermi gases at
unitarity[42,43]. Now we can compute the different factors of equation (2.10), and the
things get a little messy

∂EV
∂y0

= π~2 m

m2
B

∂µ

∂y0

∂n2D
∂µ

log
(
R⊥
ξ

)

= π~2 m

m2
B

(
−2µ0

y0
R2
⊥

)
∂

∂µ

[∫ R⊥

−R⊥
dxn(x, y0, z0)

]
log

(
R⊥
ξ

)

= −2π~2 m

m2
B

µ0
y0
R2
⊥

2
(∫ R⊥

0
dx

∂n

∂µ

)
log

(
R⊥
ξ

)
(since n is symmetric in x)

= −2π
( ~m
mB

)2
ω2
⊥y0γ

∫ R⊥

0
dxAµγ−1

0

(
1− x2 + y2

0
R2
⊥
− z2

0
R2
z

)γ−1
 log

(
R⊥
ξ

)
;

(2.14)
[42] C. Menotti, P. Pedri, and S. Stringari. In: Phys. Rev. Lett. 89 (2002), p. 250402.
[43] Hui Hu et al. In: Phys. Rev. Lett. 93 (2004), p. 190403.
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And
∂Pz
∂y0

= π~
m

mB

∂

∂y0

[
2
∫ y0

0
n2D(y, z0)

]
= 2π~ m

mB
n2D(y0, z0). (2.15)

Hence
ż0 = ∂EV /∂y0

∂Pz/∂y0
= − m

mB
~ω2y0γ log

(
R⊥
ξ

)
I

2 , (2.16)

where

I =

∫ R⊥
0 dxµγ−1

0

(
1− x2+y2

0
R2
⊥
− z2

0
R2
z

)γ−1

∫ R⊥
0 dxµγ0

(
1− x2+y2

0
R2
⊥
− z2

0
R2
z

)γ . (2.17)

We can now rename a =
(

1− y2
0

R2
⊥
− z2

0
R2
z

)
and compute

µγ−1
0

∫ R⊥

0
dx

(
a− x2

R2
⊥

)γ−1

= µγ−1
0

R⊥
a

(a− 1γ)
(
a− 1
a

)−γ
2F

1
(1

2 , 1− γ; 3
2 ; 1
a

)
= µγ−1

0 R⊥a
γ−1

2F
1
(1

2 , 1− γ; 3
2 ; 1
a

)
,

(2.18)
where 2F

1
(

1
2 , 1− γ; 3

2 ; 1
a

)
is the hypergeometric function.

Analogously

µγ0

∫ R⊥

0
dx

(
a− x2

R2
⊥

)γ
= µγ0R⊥a

γ
2F

1
(1

2 ,−γ; 3
2 ; 1
a

)
, (2.19)

The properties of the hypergeometric function come to our help, since

2F
1
(

1
2 , 1− γ; 3

2 ; 1
a

)
2F

1
(

1
2 ,−γ; 3

2 ; 1
a

) = 1
2γ + 1 (2.20)

Then we can finally compute equation (2.17):

I =
µγ−1

0 R⊥a
γ−1

2F
1
(

1
2 , 1− γ; 3

2 ; 1
a

)
µγ0R⊥a

γ2F
1
(

1
2 ,−γ; 3

2 ; 1
a

)
= 1
µ0a

(2γ + 1
2γ

)
. (2.21)

Therefore, if we define the planar local chemical potential in the position of the vortex
(computed in the Thomas-Fermi approximation without the defect):

µ̃ ≡ µ0a = µ0

(
1− y2

0
R2
⊥
− z2

0
R2
z

)
, (2.22)



2.2. Motion of a vortex in an elongated BEC 40

we get
I = 1

µ̃

2γ + 1
2γ . (2.23)

Hence we can finally recover equation (2.10) and write

ż0 = − m

mB

2γ + 1
4

~ω⊥
µ̃

log
(
R⊥
ξ

)
ω⊥y0, (2.24)

which can be rewritten as
ż0 = −ω⊥

ωz
Ωy0, (2.25)

where we defined
Ω
ωz

= m

mB

2γ + 1
4

~ω⊥
µ̃

log
(
R⊥
ξ

)
. (2.26)

For a Bose gas, as mB = m and γ = 1:

ΩBEC

ωz
= 3

4
~ω⊥
µ̃

log
(
R⊥
ξ

)
. (2.27)

Now, it is possible to apply the very same reasoning to the equation for ẏ0, which leads
to

ẏ0 = − ωz
ω⊥

Ωz0. (2.28)

Equations (2.25) and (2.28) represent an elliptical precession of the defect in the y-z
plane around the centre of the condensate. The precession will follow orbits of equal
chemical potential

µ̃(n) = const. ⇒ y2
0

R2
⊥

+ z2
0
R2
z

= const. (2.29)

which is indeed an ellipse, whose maximum amplitudes are given by the equipotential
condition

z2
max
R2
z

= y2
max
R2
⊥
. (2.30)

The oscillation period is then simply given by

TSV
Tz

= ωz
Ω = 4

3
µ̃

~ω⊥
1

log(R⊥/ξ)
, (2.31)

and is expected to be valid with logarithmic accuracy. The period (2.31) can be com-
pared with the results available in the literature, in particular the ones computed using
a variational Lagrangian approach in a paper by Fetter et al.[44]. Therein, the period
[44] A. L. Fetter and J.-k. Kim. In: J. Low Temp. Phys. 125.5 (2001), pp. 239–248.
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of precession for a non-rotating non-axisymmetric 2D condensate is reported to be

T 2D
p = 2π

ωp
= 2 µ̃

~ω⊥
Tz

log(
√

2R⊥/ξ)
, (2.32)

whereas in a three-dimensional condensate it is

T 3D
p = 2π

ωp
= 4

3
µ̃

~ω⊥
Tz

log(
√

2R⊥/ξ)
, (2.33)

which is compatible with the result (2.31) within logarithmic accuracy.

2.3 Time-dependent number of particles

In the previous section we assumed that the condensate maintains its properties in
time, and in particular that the number of particles and thus the chemical potential µ0

are fixed from the beginning. In the real-life experiment, however, two main sources
of atom reduction were present: the first, major contribution arose from the imaging
process, which implied that at each time interval τ a fraction fN(0) of the atoms was
extracted homogeneously from the condensate; the second source were the natural trap
losses, that continually reduced the atoms with time (see Figure (2.4)). Experimentally
the typical fraction of the original atoms which was extracted from each shot was
f ∼ 2.4%.

Let us approximate the step function representing the atom number with a linear
relation such that:

N(t) = N(0)− αt

= N(0)− f N(0)
τ

t. (2.34)

At the l-th imaging shot we have

N(lτ) = N(0)(1− lf) with lf < 1. (2.35)

As shown before, in the Thomas-Fermi approximation we have that

n(x, y, z) = µ0
g

(
1− x2 + y2

R2
⊥
− z2

R2
z

)
, (2.36)

hence
n(r, z, t) = µ0(t)

g

(
1− r2

R2
⊥
− z2

R2
z

)
. (2.37)
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Figure 2.4: [Figure from [27]] Measured atoms in the BEC. The atom reduction
only due to trap losses is reported in grey, while the one combined with the imaging
extraction is plotted in green.

The normalisation condition for the condensate will then read

N(t) =
∫
dxdydz n(x, y, z, t), (2.38)

where ∫
dxdydz =

∫ Rz

−Rz
dz

∫ R⊥(1−z2/R2
z)

0
dr r

∫ 2π

0
dθ. (2.39)

We can compute that

N(t) =
∫
dz

∫
dr r

∫
dθ
µ0(t)
g

(
1− r2

R2
⊥
− z2

R2
z

)

= 2πµ0(t)
g

∫
dz

∫
dr

[(
1− z2

R2
z

)
r − r3

R2
⊥

]

= 2πµ0(t)
g

∫
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1
2

(
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R2
z

)3 [
1− 1

2

(
1− z2

R2
z

)]

= 2πµ0(t)
g

R2
⊥Rz

16
63

= 2πµ0(t)
g

(2µ0(t)
m

)3/2 1
ω2
⊥ωz

16
63 . (2.40)

Hence:

µ0(t) = 1
2

[
N(t)
π

gm3/2ω2
⊥ωz

63
16

]2/5

= ~ωho
2

(
N(t)63

4
a

aho

)2/5
, (2.41)
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where we recalled the definition (1.6) and we defined

ωho = (ω2
⊥ωz)1/3 and aho =

√
~

mωho
. (2.42)

In conclusion we have shown that

µ0(t) ∼ N(t)2/5 ⇒ µ0(lτ) = µ0(0)(1− lf)2/5. (2.43)

Thus in first approximation we derive

T (lτ) = 4
3
µ̃(0)
~ω⊥

(1− lf)2/5 Tz

log
(
2µ0(0)

~ω⊥ (1− lf)2/5
) , (2.44)

where we used the fact that
R⊥(t)
ξ(t) = 2µ0(t)

~ω⊥
. (2.45)

2.4 Comparison with the experiment

Due to the relatively good visibility of the defect axial position in the extracted
frames, it was possible to follow the orbital motion of a single defect, and compare the
results with equation (2.44). The extraction was assumed to be homogeneous, which
implied that the gradients of the density and the lines of equal chemical potential
remained unchanged throughout the process. As already pointed out, however, µ(t) ∝
N(t)2/5 was decreasing with time, and so was the orbital period T (see Figure (2.5)).
We defined the period T (t) corresponding to the instant t, as the period obtained
by fitting a sinusoidal function to the measured position of the vortex. The fit was
performed over a time interval centred in t, and large enough to include a complete
oscillation. In determining the theoretical prediction, we included the consideration of
the changing number of particles N(t) as shown in Figure (2.4), both in the value of
the chemical potential µ, and of the healing length ξ. In particular, we considered the
effect of N(t) on the Thomas-Fermi radius Rz(t), so that

r0(t) ≡ zmax(t)2

Rz(t)2 = ymax(t)2

R⊥(t)2 , (2.46)

was properly rescaled. Here we extracted zmax(t) by looking at the instantaneous
amplitude of the sinusoidal fit of the oscillation.

The reported agreement is quite remarkable, as there are no free parameters in the
computation. The main limitation to the accuracy of the prediction arose from the
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Figure 2.5: [Figure from [27]] (a)-(b) Axial position of the vortex after expansion
for the two sets of extraction (b) and (c) of Figure (2.2). (c)-(d) Normalised
instantaneous period T (t) fitted on the above data. The theoretical prediction
(2.44) is represented by the solid line, and also includes the measured variation of
N(t) reported in Figure (2.4). The grey region marks an experimental uncertainty
in the number of atoms of 20%. The dashed line shows the prediction for the
oscillation of a grey soliton Tsol =

√
2Tz.

uncertainty in the determination of the number of atoms N(t). A famous result[45]

concerning the oscillation of a grey soliton in a BEC in a harmonic trap, predicts its
period to be Tsol =

√
2Tz, which is reported in Figure (2.5) as a comparison in a black

dashed line.
Another test can be performed by looking at the behaviour of the vortex period

with the quantity r2
0. For this purpose, for each set of data, we considered the period

of the first complete oscillation (marked as T0 in Figure (2.5)). The resulting plot can
be seen in Figure (2.6a), where the theoretical prediction (2.31) is reported in a dashed
line, and is without free parameters. Once again the agreement is good, and the two
are compatible within a 20% uncertainty in the determination of N(t0).

The result of Figure (2.6a) can be further appreciated by observing the ratio between
the period T0, measured at a given r0, and its theoretical counterpart, computed for the
same values of r0 and N . In Figure (2.6b) are reported the histograms for this quantity,
in the presence of a single vortex, and when two vortices are simultaneously oscillating
in the condensate. In the single vortex case, the mean value is 〈T0/Tth〉 = 0.97± 0.04,
while in the second case 〈T0/Tth〉 = 0.96± 0.14, showing an increase in the dispersion
[45] Vladimir V. Konotop and Lev Pitaevskii. In: Phys. Rev. Lett. 93 (2004), p. 240403.
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2

tion sequence the remaining condensate evolves in trap,
only weakly a↵ected by atom number change, provided
�N/N(t) is su�ciently small. We can then identify the
axial position of the vortex in each image of the outcou-
pled atoms and analyze its oscillation as a faithful rep-
resentation of the in-trap dynamics. Typical examples
are shown in Figs. 1(a)-1(i) . Alternatively we image the
full BEC along the axial direction after a long expan-
sion with a destructive technique as in [22] and directly
see the shape and orientation of the vortex lines as in
Figs. 1(j)-1(m).

tim
e

t0
t0 +

Δt 

}
}

z

y

x

x

y

.z

100 µm

1 mm

(a)

Ox

O

(b) (c)
(d) (e)

(f) (g)

(h) (i)

(j) (k) (l) (m)

FIG. 1. (a)-(c) Sequences of 20 images of the density distri-
bution of the atoms extracted from three BECs; frames are
taken every �t = 84 ms, each after a 13 ms expansion. (a)
Static vortex. (b)-(c) Vortices precessing with di↵erent am-
plitudes. Each vortex is randomly oriented in the xy plane
and, after expansion, it forms a planar density depletion [23]
which is visible as a stripe. (d)-(i) Sequences with two and
three vortices, with �t = 28 ms; here frames are not to scale
and vertically squeezed to enhance visibility. (j)-(m) Destruc-
tive absorption images of the whole BEC taken along the ax-
ial direction z after 120 ms of expansion, showing (j) a single
vortex filament crossing the condensate from side to side and
(k)-(m) two vortices with di↵erent relative orientation and
shape. All images show the residuals after subtracting the
fitting TF profile.

We first choose an evaporation rate of 525 kHz/s, yield-
ing one vortex in each BEC on average. From the se-

quence of radial images we extract the axial position of
each vortex z(t). Frames are recorded every �t = 84 ms.
Figures 2(a) and 2(b) show two examples corresponding
to the raw images of Figs. 1(b) and 1(c), respectively.
The observations are consistent with a vortex precession
around the trap center, as the one observed in oblate
BECs [16, 33]. In a nonrotating elongated condensate,
a straight vortex line, oriented in a radial plane, is ex-
pected to follow an elliptic orbit in a plane orthogonal to
the vortex line, corresponding to a trajectory at constant
density [34]. The observed motion of each dark stripe in
Figs. 1(a)-1(c) is the axial projection of such a precession.
Given ro = zmax/Rz = ymax/R? the in-trap amplitude of
the orbit normalized to the TF radii R? =

p
2µ/(m!2

?)

and Rz =
p

2µ/(m!2
z) [32], the precession period is pre-

dicted to be

T =
4(1 � r2

o)µ

3~!? ln(R?/⇠)
Tz , (1)

where Tz = 2⇡/!z is the axial trapping period and ⇠ is
related to the chemical potential µ by ⇠ =

p
~2/(2mµ).

This result, which is valid to logarithmic accuracy, has
been derived for a disk-shaped nonaxisymmetric conden-
sate in Refs. [35, 36] within the Gross-Pitaevskii theory
at T = 0 and in the TF approximation, corresponding to
R?/⇠ � 1 (in our case, R?/⇠ ranges from 60 to 20). It
can also be obtained by means of the superfluid hydro-
dynamic approach introduced in Ref. [37] to describe the
motion of vortex rings in elongated condensates, appro-
priately generalized to the case of solitonic vortices as in
Ref. [24]. The quantity µ(1 � r2

o) is the local chemical
potential along the vortex trajectory and we assume ro to
be constant during expansion, as distances are expected
to scale in the same way in the slow axial expansion.

In comparing the observed period with Eq. (1) we must
consider that the number of atoms is decreasing from shot
to shot. Since extraction is spatially homogeneous, the
gradients of the density, and hence the equipotential lines
for the vortex precession and the orbit amplitude remain
almost unchanged. However, N(t) (hence µ / N2/5)
decreases in time and so does the vortex orbital period
T , as is clearly visible in Figs. 2(a) and 2(b). We de-
fine an instantaneous period at time t as the period ob-
tained from a sinusoidal fit to the measured position in a
time interval centered at t and containing about one os-
cillation. Such T (t) is plotted in Fig. 2(c) and 2(d) and
compared to Eq. (1), where we include the e↵ect of the
observed t dependence on N , shown in Fig. 2(e), both in
µ and ⇠. The agreement is good, the major limitation
being the experimental uncertainty in N . We also show
the period expected for the oscillation of a dark or grey
soliton, which is

p
2 Tz independently of N [38, 39]. In

Fig. 2(f) we plot the period of vortices orbiting with dif-
ferent amplitude ro. The agreement with theory is again
good and can be further appreciated by considering the
ratio between each value of T measured at a given ro and

(c)

Figure 2.6: [Figure from [27]] (a) Period of the vortex T (t0) = T0 extracted from
the first complete oscillation of 30 different sequences, normalised by Tz and plotted
as a function of r2

0. The solid line represents the behaviour (1 − r2
0) predicted

by (2.31), and no free parameters are included. The shaded area allows for an
uncertainty in the determination of N(t0) of 20%. (b) Density of probability for
the ratio between the measured period T0 and the theoretical Tth, computed with
the appropriate N and r0. (red) 30 cases of single vortex oscillations; (blue) 27
cases of coexistence of two vortices. The grey area accounts for a 20% uncertainty
in the measurement of N . (c) Absorption (destructive) images of the BEC in
the axial direction, highlighting the presence of one (j) and two (k)-(m) vortices.
The vortex lines are not usually straight, and are bent towards the surface of the
condensate.

of the data.
The agreement between the theoretical and the experimental results shown above is

quite remarkable, especially given the fact that the theory supporting equation (2.31)
implies that the vortex behaves as a straight rigid line. In our case, however, where a
strong confinement is present, the off-centred vortices are bent towards the surface of
the BEC (see Figure (2.6c)).
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2.5 Vortex interactions

The experiment also addressed the effect of the presence of multiple solitonic vortices
all at once. The goal was to investigate the possible effect of interactions between
defects. The first quantity to be observed was the vortex lifetime. In a non-rotating
BEC this is limited by the scattering of the defect with the thermal fluctuations, which
could eventually dissipate the vortex energy into the thermal cloud. Interestingly, as
vortices (and solitons) can be mapped to particles with negative effective mass, the
dissipation causes an acceleration on their motion, and an antidamping effect on their
trajectories. When the vortex reaches the edge of the atomic cloud, where the thermal
atoms are concentrated, it can dissipate and disappear. The lifetime τ was measured
by counting the number 〈NV 〉t of surviving vortices at time t, having started with
NV (0). If NV (0) = 1 a clear exponential decay was measured (Figure (2.7)), and
the corresponding lifetime τ1 = (910 ± 100) ms is close to the one available in the
literature[37,46].
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FIG. 2. (a),(b) Vortex axial position after expansion for the condensates in Figs. 1(b) and 1(c). (c),(d) Instantaneous period
normalized to the trapping period Tz = 77 ms (points) obtained by fitting the above oscillations; the solid line is the theoretical
prediction (1) for the measured atom number N(t) and its 20% uncertainty (grey region); the dashed line is the prediction for
a dark or grey soliton. (e) BEC atom number, with (green) and without (grey) the extraction sequence. (f) Period T extracted
from the vortex position in the first frames in units of Tz as a function of r2

o; the solid line represents the predicted (1 � r2
o)

behavior, with no free parameters. (g) Probability density of the measured period T0 vs. the theoretical one Tth in the same
conditions. Red (blue) bars refer to 30 (27) cases with a single vortex (two vortices), all of them with the same N within a
20% uncertainty.

the theoretical value in Eq. (1) obtained for the same ro

and N . Figure 2(g) shows the histogram of all values
obtained by extracting T and ro from a fit to the first
oscillation, using N = 9⇥ 106 in Eq. (1). The histogram
gives T0/Tth = 0.97 ± 0.04. This remarkable agreement
with theory is nontrivial since Eq. (1) assumes ro ⌧ 1
and a rigid straight vortex line, while o↵-centered vor-
tices actually bend toward the curved BEC surface. For
rotating condensates the bending mechanism has been
discussed in Refs. [40–44] and observed in Ref. [45]. Ex-
amples of straight and bent vortices in our condensate
are given in Figs. 1(j)-1(m). In our elongated BEC, with
strong radial inhomogeneity, this bending mechanism is
expected to be more e↵ective than in oblate BECs. Our
observations seem to indicate that its e↵ect on the period
is small, possibly of the same order of the logarithmic
corrections to Eq. (1) predicted for a straight vortex in a
2D geometry [46, 47]. This may be due to the fact that
the di↵erence in length between a bent and a straight
vortex, at a comparable ro, is relatively small and the
overall structure of the vortical flow is also quite similar,
so that the key quantities entering the hydrodynamic de-
scription (i.e, the force acting on a unit of length of the
vortex and the momentum of the vortex, in the language
of Ref. [37]) are almost the same in the two cases.

Vortex lifetime in nonrotating BECs is limited by scat-
tering of thermal excitations, which causes the dissipa-
tion of the vortex energy into the thermal cloud. Since a
vortex behaves as a particle of negative mass, dissipation
causes an antidamping of the orbital motion and vortices
decay at the edge of the condensate [48, 49]. We can
measure the lifetime ⌧ by counting the average number
of vortices hNV it remaining in the condensate at time t,
starting with NV (0). If NV (0) = 1 we find a clear expo-
nential decay with ⌧1 = (910 ± 100) ms (Fig. 3), close to

that measured in Refs. [22, 28] and of the same order of
the one observed in a fermionic superfluid [24, 49].

Using a faster evaporation ramp (700 kHz/s), we pro-
duce more vortices and search for signatures of mutual in-
teraction. Examples are shown in Fig. 1(d)-1(i) and typi-
cal trajectories are also reported in Fig. 4. In some cases,
vortices perform unperturbed oscillations [Fig. 4(a)]; in
others, we clearly see a shift in their trajectories at the
crossing point [Fig. 4(b)]. The average relative velocity
at the crossing in the latter case is systematically smaller
(⇠ 0.5 mm/s) than in the former (⇠ 1.1 mm/s) [30]. The
shift has a consequence also in the determination of the
orbital period as it causes a broadening of the proba-
bility distribution of the ratio T0/Tth which now gives
0.96 ± 0.14, with a standard deviation three times larger
than for the single vortex [Fig. 2(g)]. In addition, cross-
ings are frequently associated with a sudden change of
visibility of one or both vortices [Figs. 1(e)-1(h)). Fi-
nally, by analyzing the lifetime of vortices for the initial
condition NV = 2 and NV = 3 we observe a lifetime
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FIG. 3. Average vortex number, hNV i, remaining in a con-
densate at time t starting from configurations with NV = 1
(circles), 2 (triangles) and 3 (diamonds) at t = 0. Solid lines
are exponential fits.

Figure 2.7: [Figure from [27]] Average surviving vortices 〈NV 〉t at time t, in loga-
rithmic scale: NV (0) = 1 (green), NV (0) = 2 (blue), NV (0) = 3 (red). The solid
lines represent an exponential fit.

In the framework of the Kibble-Zurek mechanism, one could produce a higher num-
ber of initial defects in the system (see more on that in Chapter (4)). This simply
requires to use a faster evaporation ramp to decrease the temperature and thus accel-
erate the quench. This way, once the system has grown to the full condensate, it is
possible to get up to 5 defects[46]. For the purpose of this work, however, and for visibil-
ity reasons, only up to NV (0) = 3 were considered. From the extraction sequences (see
Figure (2.2d-i) for some examples) it is again possible to follow the trajectories of the
[37] S. Donadello et al. In: Phys. Rev. Lett. 113 (2014), p. 065302.
[46] G. Lamporesi et al. In: Nat Phys 9.10 (2013), pp. 656–660.
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FIG. 4. Vortex axial position in BECs. (a) Two vortices with
no apparent interaction. (b) Two crossing vortices change
their visibility and experience a phase shift in their trajectory.
(c) Two vortices becoming hardly visible after crossing. (d)
Two vortices oscillating with unperturbed trajectories while
a third one disappears. (a)-(d) correspond to the data in
Figs. 1(d)-1(g), respectively. Solid and empty symbols are
used to distinguish high and low density contrast, respectively.

⌧2 = (1050 ± 100) ms for the two-vortex configuration,
consistent with the one-vortex configuration. The situ-
ation instead changes in the three-vortex configuration,
where a faster decay is observed, ⌧3 = (490 ± 100) ms
(Fig. 3).

The frequent observation of unperturbed orbits for
multiple vortices is intriguing. Two vortex lines mov-
ing back and forth in the condensate with random radial
orientations should have large probability to cross each
other at some point. If crossings occur, reconnections
are expected to take place [7] with possible drastic (and
almost temperature independent [50, 51]) e↵ects on the
vortical dynamics. The actual dynamics can strongly
depend on the relative angle ↵ between vortex lines as
well as the relative velocity vr between the planes where
they lie. When ↵ is close to 0 (⇡), the vortex lines tend
to align (antialign), thus reducing the chance of recon-
nection for vortices on di↵erent orbits. But when vor-
tices approach with ↵ ⇠ ⇡/2 reconnection can be hardly
avoided. The fact that we observe the same vortex life-
time for NV (0) = 1 and 2 implies that such reconnec-
tions are either suppressed or they induce a negligible
dissipation. A possible explanation is the occurrence of
double reconnection processes [52]. Vortex reconnection
corresponds to the switching of a pair of locally coplanar
vortex lines, accompanied by a change of topology. In
our geometry a finite vr implies that the newly formed
filaments must stretch in the condensate while the two
planes separate again after reconnection. The consequent
energy cost is instead avoided if vortices perform a con-
secutive second reconnection when they are still at close
distance. This would preserve the vortex number, con-
sistent with our observation of an equal vortex lifetime
for NV (0) = 1 and 2. It is worth mentioning that a

similar scenario has also been recently suggested for the
collision of cosmic strings [53]. The occurrence of a shift
in the trajectories, that apparently depends on vr, could
be associated with the role of the collision time: faster
vortices have less time to interact and their trajectories
are marginally a↵ected, and this scenario may be appli-
cable both to fly-by vortices and double reconnections.
Also Kelvin modes can be excited in the collision [54–
56] but, if present, they seem not to a↵ect the lifetime,
while they are likely responsible for the change of visi-
bility of the vortices, as they can produce out-of-plane
distortions and hence a change of contrast in the density
distribution. Finally, the observation of a shorter lifetime
in configurations with NV (0) = 3 can be understood by
considering the role of a third vortex in the collision of
two other vortices, whose tendency to rotate in the ra-
dial plane is frustrated by three-body interaction, thus
enhancing the probability of collisions and reconnections.
A similar role of three-body interactions in the dynamics
of vortices was recently investigated in the context of 2D
classical turbulence [57].

Our experimental results demand new theoretical mod-
els. So far, numerical simulations of vortex reconnection
are usually performed with vortex lines initially at rest,
at small distance, which then evolve in time [7, 58–61],
while in our case the role of the relative velocity seems to
be crucial. Shedding light on this, and generally on the
dynamics of few vortices in such a relatively simple con-
figuration, can help to understand the physics of vorticity
in more complex settings, like those of Refs. [62–64], in
the search of a satisfactory comprehension of quantum
turbulence in superfluids with boundaries.

We thank L.P. Pitaevskii, N.P. Proukakis, I-Kang Liu,
N.G. Parker and C.F. Barenghi for insightful discussions.
We acknowledge Provincia Autonoma di Trento for fund-
ing.
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Figure 2.8: [Figure from [27]] Vortex axial position, corresponding to the extraction
sequences of Figure (2.2d-g): (a) two vortices crossing with unperturbed trajecto-
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trajectory; (c) sudden change in visibility after the crossing; (d) two unperturbed
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vortices. In some cases the path is unperturbed, and the defects seem to cross without
effect (see Figure (2.8a)), while in other cases two effects are visible: a phase shift in
the trajectories (Figure (2.8b)), or a sudden change in the visibility of the defects (Fig-
ure (2.8c)). The phase shift is also responsible for the broadening of the distribution
of T0/Tth for multiple vortices, as seen in Figure (2.6b), whose mean value becomes
0.96± 0.14. The change in visibility can be associated to a rotation of the vortex line,
so that it no longer lies in the x-y plane. Due to the observation method that was
implemented, which implies that the extracted density is integrated in the x direction,
this results indeed in a reduction of the contrast. The lifetimes for the two initial con-
ditions NV (0) = 2 and NV (0) = 3 are τ2 = (1050 ± 100) ms and τ3 = (490 ± 100)
ms.

From these results one could argue that whenever only two vortices are present in
the system, their interaction is such that it does not influence the lifetime, whereas in
the three-vortex case, a clear reduction of the τ is measured. This led us to formulate
the hypothesis that three-body collisions were responsible for the rapid decay in the
case NV (0) = 3. The presence of a third defect drastically reduces the chance of three
vortices to pass by without crossing. As for the two-vortex case, a possible explanation
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for the small effect of the two-body processes was given as follows. When two vortices
approach, two outcomes are given: either the defects pass by avoiding each other, or
they cross and reconnect. In the first instance, which should be statistically infrequent,
the modification to the trajectory could be negligible. When two vortical lines cross,
reconnections are predicted to occur[47]: the lines can merge, and locally coplanar
sections of them can be exchanged among the defects. This might clearly affect the
vortex dynamics, and should cause a change in their motion. The fact that often
no appreciable effect is seen was justified by the existence of a double-reconnection
process: when the two vortex planes come across, the vortex lines first exchange a
section, and, due to the geometry of the system, when the planes separate again, they
stretch. The energy cost associated with this elongation favours a second reconnection
process when the two vortices are still at close distance, which establishes again the
original configuration. Such a mechanism could well explain the trajectory phase shift,
and was postulated to be connected with the relative velocity of the incoming defects.

2.6 Chapter conclusions and follow-up analysis

In this chapter we described an experiment on the real-time dynamics of vortices
generated at random positions by performing a fast quench of the temperature. Soli-
tonic vortices are quantised vortices constrained in a narrow geometry, thus showing
some of the properties usually associated with the solitons. In the experiment, their
dynamics was followed in real-time by means of a stroboscopic non-destructive tech-
nique, outcoupling a small portion of the atoms while leaving the rest of the system only
marginally affected. The vortices are predicted to follow equipotential line with con-
stant chemical potential µ. The imaging technique, combined with the natural losses of
the trap, were reducing the number of atoms in time, causing the defects to follow ellip-
tical spiral trajectories with decreased period. The theoretical estimation of the period
fitted well with the experimental data. We also presented an experimental analysis on
the possible effect of vortex interactions, by looking at the lifetime of the defects. It
was measured that when the initial number of defects is NV (0) = 2, their lifetime is
almost unaffected with respect to the single vortex case. However, when NV (0) = 3, a
clear reduction effect was measured. This prompted the idea that vortex reconnection
processes might enhance the decay of the defects, in a non-trivial way depending on
the initial position and orientation of the vortices. This topic was further addressed
in a following paper[39], where a more sophisticated experimental technique has been
implemented. This allowed to infer the original mutual orientation of the defects, and
[47] M. S. Paoletti and D. P. Lathrop. In: Ann. Rev. of Cond. Mat. Phys. 2.1 (2011), pp. 213–234.
[39] S. Serafini et al. In: Phys. Rev. X 7 (2017), p. 021031.
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by means of extensive numerical analysis it was possible to identify several unexpected
collisional processes, such as double reconnections, rotations, rebounds after a collision
and ejection of defects.



Part II

Finite-temperature analysis

50



Chapter 3

Stochastic Gross-Pitaevskii
theory at finite temperature

In this chapter, we describe the theoretical tools which will be used for the rest
of the thesis. Among the finite temperature methods available in the literature (e.g.
the Classical-Field approach[48–50]), we give a description of two methods, similar in
concept, but coming from different derivations. At first, we introduce the stochastic
Gross-Pitaevskii equation (SGPE), and then we review the key aspects of the stochastic
projected Gross-Pitaevskii equation (SPGPE).

The SGPE is a theoretical model which allows to describe the non-equilibrium
dynamics of a Bose-Einstein condensate, and in particular the condensation process
itself. The approach we present is the one introduced by Stoof[51–54], as summarised
by Proukakis and Jackson[34], and consists in writing a Fokker-Planck equation for the
problem, from which one can then derive an equivalent Langevin equation. This ap-
proach is similar to the one applied to the standard treatment of the classical Brownian
motion, which is reported for comparison in Appendix A.

Later on, we review the main steps of the stochastic projected Gross-Pitaevskii equa-
tion[55], which features a projector explicitly separating low- and high-energy modes.
Although having a formulation very close to the SGPE, this method arises from a
[48] A. Sinatra, C. Lobo, and Y. Castin. In: Phys. Rev. Lett. 87 (2001), p. 210404.
[49] BV Svistunov. In: J. Moscow Phys. Soc 1 (1991), p. 373.
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different theoretical perspective.
In the second part of the chapter, we outline the numerical implementation of such

models for two-dimensional systems, along with some details of their use and of the
analysis of the results.

3.1 Theoretical description

In Stoof’s approach one writes an equation for the evolution of the Wigner proba-
bility distribution P [φ∗, φ; t], which represents the probability for the system to be in
a quantum coherent state

|φ(r; t)〉 = e
∫
drφ(r)Ψ̂†(r,t)|0〉, (3.1)

where |0〉 identifies the vacuum state. Then the probability distribution can be com-
puted by means of the initial density matrix ρ(t0):

P [φ∗, φ; t] = Tr
[
ρ(t0) |φ, t〉〈φ, t|

〈φ, t|φ, t〉

]
=
∫
dφ∗0 dφ0 ρ(|φ0|2; t0) |〈φ, t|φ0, t0〉|2

〈φ, t|φ, t〉
. (3.2)

In the above equation, the density matrix ρ(t0) has been expanded in terms of the
coherent states defined in equation (3.1). By means of the Keldysh formalism, it is
possible to compute the matrix elements 〈φ; t|φ0; t0〉 and 〈φ0; t0|φ; t〉 as path integrals
over all the possible complex fields Φ(r, t) having as their initial state Φ(r, t0) = φ0(r).
Thus

P [φ∗, φ, t] =
∫
dΦ∗ dΦ eiSeff(Φ∗,Φ)/~ , (3.3)

where Seff(Φ∗,Φ) is an effective action, as reported by Stoof[56]. Computing 〈φ; t|φ0; t0〉
and 〈φ0; t0|φ; t〉 means to investigate all the possible paths followed by ψ from the
generic time t back to the initial t0 (backward evolution) and back again to t (forward
evolution) which then represents a Keldysh contour[57]. From eq. (3.3) it is possible to
derive the full Fokker-Planck equation, as is again reported by Stoof[56].

By means of a Hartree-Fock-type approach, the system is separable in two compo-
nents describing the low-lying modes of the system (the so-called coherent region, also
known as c-field) ψ and the highly energetic thermal modes (incoherent region) φ′:

P [φ∗, φ; t] = P0[ψ∗, ψ; t]P1[φ′∗, φ′; t]. (3.4)

By substituting this ansatz in the full Fokker-Planck equation it is possible to compute
[56] H. T. C. Stoof. In: Phys. Rev. Lett. 78 (1997), pp. 768–771.
[57] L. V. Keldysh. In: JETP 20 (1965), p. 1515.
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a system of two coupled equations for ψ and φ′.

!

!"#$
Coherent 

region

Incoherent
region

Figure 3.1: Schematic representation of the coherent region included in ψ, indi-
cating the highly occupied modes, and of the above lying incoherent region, whose
dynamics is not described by ψ.

3.1.1 Quantum Boltzmann equation for the thermal modes

Let us first give a look at the high-lying modes, whose evolution is governed by the
quantum Boltzmann equation:

∂f

∂t
+
(
∇pε(r, t)

)
·
(
∇rf(r,p, t)

)
−
(
∇rε(r, t)

)
·
(
∇pf(r,p, t)

)
= C12[f ] + C22[f ], (3.5)

where the functions f(r,p, t) are the Wigner phase-space distribution for the thermal
particles, constrained by

nt(r, t) =
∫

dp
(2π~)3 f(r,p, t), (3.6)

and the energy of a thermal particle is

ε(r, t) = |p|
2

2m + V (r) + 2g
(
|ψ(r, t)|2 + nt(r, t)

)
. (3.7)

The two terms on the right side of equation (3.5) represent the binary elastic collisions
between particles and refer to two distinct processes.

The exchange between the c-field and the incoherent region is described by the
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collisional integral

C12[f ] = 4π
~
g2|ψ|2

∫
dp1

(2π~)3

∫
dp2

(2π~)3

∫
dp3

(2π~)3

× (2π~)3δ(mvc + p1 − p2 − p3)δ(εc + ε1 − ε2 − ε3)

× (2π~)3 (δ(pc − p1)− δ(pc − p2)− δ(pc − p3))

× (f1(f2 + 1)(f3 + 1)− (f1 + 1)f3f4) ,

(3.8)

where the subscript “c” indicates the coherent part. Here (f1 + 1)f3f4 accounts for one
particle falling into the coherent region, while f1(f2 + 1)(f3 + 1) for the promotion of
a particle from the low-energy part.

The other collisional integral describes the internal collision involving two thermal
atoms, redistributing the population of these modes:

C22[f ] = 4π
~
g2
∫

dp1
(2π~)3

∫
dp2

(2π~)3

∫
dp3

(2π~)3

× (2π~)3δ(p + p1 − p2 − p3)δ(ε+ ε1 − ε2 − ε3)

× ((f + 1)(f1 + 1)f2f3 − ff1(f2 + 1)(f3 + 1)) .

(3.9)

Note that both in eq. (3.8) and (3.9) the δ functions ensure the conservation of energy
and momentum, for the collisions to be elastic.

3.1.2 Fokker-Planck equation for the coherent modes

By integrating out the incoherent part φ′ one gets a Fokker-Planck equation(3.10)
for the coherent region ψ:

i~
∂

∂t
P [ψ∗, ψ; t] =

−
∫
dr δ

δψ(r)

(
−~2∇2

2m + V (r)− iR(r, t) + g|ψ(r, t)|2 − µ(t)
)
ψ(r, t)P [ψ∗, ψ; t]

+
∫
dr δ

δψ∗(r)

(
−~2∇2

2m + V (r) + iR(r, t) + g|ψ(r, t)|2 − µ(t)
)
ψ∗(r, t)P [ψ∗, ψ; t]

− 1
2

∫
dr δ2

δψ(r)δψ∗(r)~ΣK(r; t)P [ψ∗, ψ; t], (3.10)

where by δ/δψ we denote a functional derivative in the field ψ. Differently from the
solution of the Gross-Pitaevskii equation (eq. (1.14)), here ψ does not only represent the
condensate wavefunction, but a finite set of low-energy excitations are also included[53].

Let us clarify the role of the elements in (3.10). The two terms iR(r, t) and ΣK(r, t)
[53] R. A. Duine and H. T. C. Stoof. In: Phys. Rev. A 65 (2001), p. 013603.
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have their origin in the coupling with the incoherent region, hence with an infinite
reservoir of thermalised atoms with which the c-field can exchange particles due to
elastic collisions. In the Hartree-Fock approximation the full expression for the term R

is

R(r, t) =2πg2
∫

dp1
(2π)3

∫
dp2

(2π)3

∫
dp3

(2π)3 (2π)3δ(p1 − p2 − p3)

δ(εc + ε1 − ε2 − ε3)(f1(1 + f2)(1 + f4)− (1 + f1)f2f3). (3.11)

In the above equation, the conservation of the energy and momentum in the elastic
collisions is ensured again by the δ terms. The functions fi = fi(r,pi, t) represent once
again the Wigner distributions for the thermal particles and are the solution of eq.
(3.5), and the energies of the thermal particles are

εi = |p|
2

2m + V (r) + 2g〈|ψ(r, t)|2〉, (3.12)

where we assumed that the mean field effect of the incoherent component has a negli-
gible consequence on the properties of the coherent region.
The quantity ~ΣK is the so-called Keldysh self-energy, determining the strength of the
fluctuations:

~ΣK(r, t) = −4πig2
∫

dp1
(2π~)3

∫
dp2

(2π~)3

∫
dp3

(2π~)3

× (2π~)3δ(p + p1 − p2 − p3)δ(ε+ ε1 − ε2 − ε3)

× ((f + 1)(f1 + 1)f2f3 + ff1(f2 + 1)(f3 + 1)) .

(3.13)

Equations (3.11) and (3.13) describe respectively the dissipations and the fluctuations
in the system[53]. Note that eq. (3.11) and eq. (3.13) are similar but not identical: in
one case the Wigner functions, corresponding to “in” and “out” rates in the collisions,
are subtracted, while in the other case they are added. This means that at equilibrium,
when the particles falling into the coherent region are balanced by the ones extracted
from it, the dissipation of the system can be suppressed on average. On the contrary,
the fluctuations are always present in the system. The dynamical equilibrium described
by this theory is therefore established when these two quantities balance each other out.
[53] R. A. Duine and H. T. C. Stoof. In: Phys. Rev. A 65 (2001), p. 013603.
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3.1.3 The stochastic Gross-Pitaevskii equation

Let us now derive an important tool, following almost exactly the treatment of
Duine and Stoof[53]. In order to better treat the problem numerically, it is possible to
map the Fokker-Planck equation (3.10) into a Langevin equation describing the same
system. The energy εc necessary to remove an atom from the low-lying modes described
by ψ is

εc = −~2∇2

2m + V (r) + g|ψ(r, t)|2, (3.14)

so that this energy depends on the classical field itself. This has a profound consequence,
as both R and ΣK will depend on ψ through εc. As pointed out by Duine and Stoof[53],
this means that the Langevin equation would contain a multiplicative noise term, rather
than an additive one, with a prefactor depending on ψ. The numerical implementation
of this problem is all but trivial. In order to make it more manageable, we will introduce
some assumptions. If the thermal cloud is close to equilibrium, it will act as a thermal
bath in contact with the coherent region. This way we can neglect the dynamical
treatment for the incoherent region associated with the quantum Boltzmann equation
(3.5), and instead consider a reduced equation where C22[f ] = 0 (physically this means
that the collisions leading to the thermalisation of the higher modes act much faster
than the other dynamical processes). It is possible to show that the solutions for this
equation satisfy the Bose-Einstein distribution

nBE = 1
eβ(εi−µ) − 1

, (3.15)

where we introduced β = 1/kBT . We will therefore replace the Wigner distributions f
with nBE, and this allows us to write a fluctuation-dissipation relation[53]

iR(r, t) = −1
4~ΣK(r, t) 1

1/2 + nBE(εc)
. (3.16)

This relation depends on the particle distribution in the modes (through nBE) plus an
average of an extra 1/2 particle per mode. These indicate respectively the spontaneous
and the stimulated scattering processes, underlying the quantum nature of the theory.
Equation (3.16) determines the system’s equilibrium distribution, and is only valid in
the linear regime of the perturbation from equilibrium of the thermal cloud.

We are finally able to write the Langevin equation equivalent to the Fokker-Planck
equation (3.10) under the assumptions described above. Its form resembles the one
of the Gross-Pitaevskii equation (1.14), with the important addition of the dissipative
[53] R. A. Duine and H. T. C. Stoof. In: Phys. Rev. A 65 (2001), p. 013603.
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and the fluctuating terms

i~
∂ψ(r, t)
∂t

=
(
−~2∇2

2m + Vtr(r, t)− iR(r, t) + g|ψ(r, t)|2 − µ
)
ψ(r, t) + η(r, t). (3.17)

Equation (3.16) can be further approximated. For high temperatures (β � 1) or close
to equilibrium (εc−µ� 1) it is possible to Taylor-expand the Bose-Einstein distribution
nBE

1
2 + nBE ∼

1
β(εc − µ) , (3.18)

and replace the fluctuation-dissipation relation by its classical counterpart

iR(r, t) = −β4 ~ΣK(r, t)(εc − µ). (3.19)

Note that the expansion (3.18) requires that the average occupation number of each
mode is larger than one (in practical terms between 1 and 10)[55].

By introducing this approximation it is possible to rewrite the Fokker-Planck equa-
tion (3.10) as

i~
∂

∂t
P [ψ∗, ψ; t] =

− β

4

∫
dr ~ΣK(r, t) δ

δψ(r)

(
−~2∇2

2m + V (r) + g|ψ(r, t)|2 − µ
)
ψ(r, t)P [ψ∗, ψ; t]

− β

4

∫
dr ~ΣK(r, t) δ

δψ∗(r)

(
−~2∇2

2m + V (r) + g|ψ(r, t)|2 − µ
)
ψ∗(r, t)P [ψ∗, ψ; t]

− 1
2

∫
dr ~ΣK(r, t) δ2

δψ(r)δψ∗(r)P [ψ∗, ψ; t], (3.20)

whose solution can be shown[53] to be the correct equilibrium distribution, obeying
the time-independent Gross-Pitaevskii equation (1.17). By means of eq. (3.19), the
Langevin equation becomes numerically treatable, and can be rewritten as

i~
∂ψ(r, t)
∂t

=
(

1 + β

4 ~ΣK(r, t)
)[
−~2∇2

2m + Vtr(r, t) + g|ψ(r, t)|2 − µ
]
ψ(r, t) + η(r, t)

(3.21)
which will be referred to as stochastic Gross-Pitaevskii equation (SGPE), and will be
one of the main tools used in the following of this thesis. Equations (3.21) and (3.20)
show some analogy with the ones for the Brownian motion reported in Appendix A,
[55] P. B. Blakie et al. In: Advances in Physics 57.5 (2008), pp. 363–455.
[53] R. A. Duine and H. T. C. Stoof. In: Phys. Rev. A 65 (2001), p. 013603.
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where we can identify the analogue of the damping term γ in eq. (A.27) with

i
β

4 ~ΣK(r, t)(εc − µ) ≡ γ(r, t)(εc − µ). (3.22)

Similarly to the noisy term of the Brownian motion (eq. (A.6)) here we have that the
correlation is

〈η∗(r, t)η(r′, t′)〉 = 2γ(r, t)~kBTδ(r− r′)δ(t− t′). (3.23)

Given the stochastic nature of eq. (3.21), the physical observables are obtained by
means of an average over many noise realisations. However, the single realisation still
holds information about the fluctuations in the system, and can be linked to a single
experimental run[58,59].

Ultraviolet divergence and cutoff. The stochastic Gross-Pitaevskii approach de-
scribed by eq. (3.21) enters the family of the so-called classical field (c-field) approxi-
mations. The common feature of these methods is to assume a high mode occupation
of the low-energy part of the whole quantum Bose operator, and treat it as a classical
object. This means that its intrinsic quantised nature is replaced by a continuum of
energy levels, so that a classical wave can describe it. This makes the procedure anal-
ogous to the one used in electromagnetism, where one can approximate the low-energy
limit of the black-body radiation by the classical Rayleigh-Jeans distribution, instead of
the quantised Planck distribution. This approximation fails dramatically in the high-
energy regime, leading to the so-called ultraviolet catastrophe. Thus, a high-energy
cutoff is needed in the theory to eliminate the high-energy (large momenta) modes.
This also means to introduce an effective theory unaffected by the short-range details
of the interaction[55,60]. In order to include all the important dynamics in the system,
the cutoff should be much greater than the chemical potential µ and larger than the
thermal energy kBT . In practical terms, this is usually achieved by the natural cutoff
introduced by the spatial discretisation needed in treating the equations numerically.
However, one could explicitly impose an energy cutoff by means of a projector acting
on the system, as explained below.
[58] S. P. Cockburn. “Bose Gases In and Out of Equilibrium within the Stochastic Gross-Pitaevskii
Equation”. PhD thesis. Newcastle University, 2010.
[59] D. Gallucci. “Ab Initio Modelling of quasi-one-dimensional Bose gas experiments via the Stochastic
Gross-Pitaevskii Equation”. PhD thesis. Newcastle University, 2013.
[55] P. B. Blakie et al. In: Advances in Physics 57.5 (2008), pp. 363–455.
[60] M. J. Davis et al. “C-Field Methods for Non-Equilibrium Bose Gases”. In: Quantum Gases.
Imperial College Press, 2013, pp. 163–175.
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3.1.4 The stochastic projected Gross-Pitaevskii equation

Among the various c-field methods for describing the dynamics of finite temperature
condensates, the one which is more closely related to the SGPE approach (3.21) is the
stochastic projected Gross-Pitaevskii equation (SPGPE)[61–63]. This method combines
the kinetic theory of C. W. Gardiner and co-workers[64–66] with the finite temperature
formalism for the Gross-Pitaevskii equation, which was developed by Davis and co-
workers[67,68].

Similar to the Stoof approach presented in the previous section, it also assumes the
separation of the high- and the low-energy modes of the system, but this separation
is carried out in two subsequent steps. At first, the Bose field is coarse-grained by
the introduction of a spatial minimum distance (and maximum momentum) to be
considered, in order to get an effective coupling in the interaction between atoms. As
for the SGPE, this basically consist of recovering the Gross-Pitaevskii equation from
the full quantum theory, as an effective field theory, and corresponds to the introduction
of a high-energy cutoff to heal the ultraviolet catastrophe. The resulting field is then
explicitly separated in two regions

Ψ(r) = ΨC(r) + ΨI(r) (3.24)

by means of a projector operator P̂C , recasting Ψ into the coherent region at each time
step

ΨC(r, t) = P̂C [Ψ(r, t)] =
∑
n∈C

anϕn(r, t), (3.25)

where ϕn are the eigenvectors of the single-particle Hamiltonian belonging to the co-
herent region C.

The Langevin equation (3.21) is indeed very similar to the one for the SPGPE,
even though the derivation comes from a quantum optics perspective rather than a
Keldysh formalism. The density of the coherent region can be described in terms of
a master equation, after introducing a “high-temperature” approximation assuming
that the energies of the modes in the coherent region are small compared to the tem-
[61] C. W. Gardiner, J. R. Anglin, and T. I. A. Fudge. In: J. Phys. B 35.6 (2002), p. 1555.
[62] M. Davis et al. Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics. Imperial
College Press, 2013.
[63] C W Gardiner and M J Davis. In: J. Phys. B 36.23 (2003), p. 4731.
[64] C. W. Gardiner and P. Zoller. In: Phys. Rev. A 55 (1997), pp. 2902–2921.
[65] C. W. Gardiner and P. Zoller. In: Phys. Rev. A 58 (1998), pp. 536–556.
[66] C. W. Gardiner and P. Zoller. In: Phys. Rev. A 61 (2000), p. 033601.
[67] M. J. Davis, S. A. Morgan, and K. Burnett. In: Phys. Rev. Lett. 87 (2001), p. 160402.
[68] M. J. Davis, S. A. Morgan, and K. Burnett. In: Phys. Rev. A 66 (2002), p. 053618.
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perature. Strictly speaking, this limits the formal validity of the theory to relatively
high temperatures, 0.5Tc . T . Tc in 3D. The master equation can then be mapped
into a Fokker-Planck equation for the Wigner distribution of the coherent region. The
nonlinear interaction term in the Hamiltonian leads to third order derivatives of the dis-
tributions with respect to the phase-space variables, and avoids a direct correspondence
of the Fokker-Planck equation with a Langevin equation. By means of the truncated
Wigner approximation, however, it is possible to discard the third order derivatives
and get a differential equation quite similar in spirit to (3.21). It reads:

dΨC(r) = P̂C

{
− i
~

(
− ~2

2m∇
2 + Vtr(r) + g|ΨC(r)|2

)
ΨC(r) dt (3.26a)

+ G(r)
kBT

[
µ−

(
− ~2

2m∇
2 + Vtr(r) + g|ΨC(r)|

)]
ΨC(r) + dWG(t, t) (3.26b)

+
∫
drM(r− r′) i~∇ · jC(r′)

kBT
ΨC(r)dt+ iΨC(r)dWM (r, t)

}
, (3.26c)

where the noise fields have correlations

〈dW ∗G(r, t)dWG(r′, t′)〉 = 2G(r)δ(r− r′)δ(t− t′), (3.27a)

〈dW ∗M (r, t)dWG(r′, t′)〉 = 2M(r− r′)δ(t− t′). (3.27b)

The first line (3.26a) is essentially the T = 0 (projected) Gross-Pitaevskii equation.
The second line (3.26b) expresses the growth processes, hence the collisions which
transfer atoms between the coherent and in the incoherent region. One can draw a
direct correspondence between the term G(r) and the γ term of eq. (3.22), (eq. (171)
of Blakie et al.[55]). The “growth” noisy field dWG corresponds to the noise term η

in the SGPE, and so do their respective correlations eq. (3.23) and eq. (3.27a). The
third line (3.26c) expresses instead the scattering processes that leave the atom number
in the two regions unaffected. The amplitude of such collisions is M(r − r′) and it is
usually quite small at equilibrium. Notably, the noise term dWM associated with this
kind of events is multiplicative in ΨC and non local, as seen in eq. (3.27b). This fact
causes the numerical implementation of the full SPGPE to be quite challenging1.

To implement the approach in numerical simulations, a simplified version of the
stochastic projected GPE is usually applied. This consists in neglecting the terms ap-
pearing in (3.26c), postulating that at equilibrium the process they describe is small,
and M(r− r′) = 0. This leads to the so-called “simple growth SPGPE”, which, apart
1 A method to treat both the coherent region and the number-conserving scattering processes with the
reservoir has been recently implemented in [69].

[55] P. B. Blakie et al. In: Advances in Physics 57.5 (2008), pp. 363–455.
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from the presence of the projector, is practically equivalent to the SGPE equation
(3.21). The two theories have been compared by Proukakis and Jackson[34] to be func-
tionally equivalent, when the projector operator is ignored. The book by Proukakis et
al.[62], where both these approaches are reviewed, also shows an unpublished comparison
(Figure 17.2) between the densities and the correlation functions of a one-dimensional
version of both methods. The two quantities are identical, except for a small difference
in the thermal wings.

The simulation results reported in the following chapters have been obtained pre-
dominantly including the projector term P̂, thus using the stochastic projected Gross-
Pitaevskii approach. The main reason for that was to avoid the dependence of the
physics included in the theory on the numerical discretisation chosen.

3.2 Numerical implementation

Let us now give a description of the way in which the theory developed in the
previous section has been adapted to the computational needs of the projects in this
thesis. The focus of this work has been the study of low-dimensional systems, and in
particular the distinctive 2D case. To this purpose, it is useful to report some of the
details of the numerical implementation of the stochastic (projected) Gross-Pitaevskii
equation.

3.2.1 2D dimensionless formulation

Let us first outline the dimensionless formulation of the equation, in the case of
interest of a two-dimensional configuration. Consider a weakly interacting Bose gas
in a non-isotropic confinement: ~ωz ≡ ~ω⊥ � (µ, kBT ) and ωx, ωy � ωz. In this
setting, along the strong confinement direction z, the dynamics of the system will be
completely suppressed and its wavefunction will simply be the ground-state for the
harmonic oscillator. This allows to integrate out the suppressed degree of freedom, and
obtain an equation for the two-dimensional problem.

Let us start by writing eq. (3.21), with the addition of the projector P̂, in terms of
dimensionless quantities. Let us define

az =
√

~
mωz

; τ = 1
ωz

; ψ̃(r, t) = a3/2
z ψ(r, t); T̃ = kBT

~ωz
;

r̃ = r
az

; t̃ = t

τ
; ∇̃2 = ∇2a2

z; αi = ωi
ωz

; µ̃ = µ

~ωz
.

(3.28)

[34] N. P Proukakis and B. Jackson. In: J. Phys. B 41 (2008), p. 203002.
[62] M. Davis et al. Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics. Imperial
College Press, 2013.
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Then, by ignoring for now the noise term, whose addition has to be considered in the
end with the proper dimensionality, we can write

i
∂ψ̃(r̃, t̃)
∂t̃

= P̂
{(

1− iγ(r̃, t̃)
)
×

×
[
−∇̃

2

2 + 1
2
(
α2
xx̃

2 + α2
yỹ

2 + z̃2
)

+ g3D
~ωza3

z

|ψ̃(r̃, t̃)|2 − µ̃
]
ψ̃(r̃, t̃)

}
. (3.29)

By separating the wavefunction into two distinct components it is possible to highlight
the ground state form in the direction z:

ψ̃(x, y, z, t) = ψ2D(x, y, t)φ(z), (3.30)

being φ(z)HO = (π)−1/4e−z
2/2 the harmonic oscillator lowest-energy wavefunction.

Now, given the fact that
∫∞
−∞ |φ(z)HO| = 1, it is possible to multiply φ(z)∗HO on the left

and integrate in z. The integration of the potential term in z results in a constant that
can be reabsorbed in the definition of the chemical potential µ̃. The resulting equation
is (dropping all the tildes):

i
∂ψ

∂t
= P̂

{
(1− iγ(x, y, t))

×
[
−1

2∇
2 + 1

2
(
α2
xx

2 + α2
yy

2
)

+
√

8πas
az

|ψ|2 − µ
]
ψ + η(x, y, t)

}
. (3.31)

In the particular case of a uniform 2D system, ωx = ωy = 0, and

i
∂ψ

∂t
= P̂

{
(1− iγ)

[
−1

2∇
2 + g2D|ψ|2 − µ

]
ψ + η(x, y, t)

}
, (3.32)

where we defined the two-dimensional coupling constant

g2D =
√

8πas
az

, (3.33)

and the noise term has the right correlations

〈η∗(x, y, t)η(x′, y′, t′)〉 = 2T̃ γδ(t− t′)δ(x− x′)δ(y − y′). (3.34)

The numerical adaptation of equation (3.32) has been performed in two ways during
my PhD. At first it was used in a less sophisticated approach based on the use of
the Cranck-Nicholson method (see Appendix B.1), and subsequently a more refined
approach based on the Adaptive Runge-Kutta method (see Appendix B.2).
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3.2.2 Energy cutoff and above-cutoff atoms

The theoretical derivation of the stochastic (projected) Gross-Pitaevskii equation
assumes that the modes included in the coherent region are all macroscopically occu-
pied. Then, in order for the expansion (3.18) to hold, the occupation number at the
last included mode should be in principle very large. In practical terms, this is usually
considered to be between 1 and 10, and the cutoff energy εcut imposed by the projector
(3.25) has to be chosen accordingly. In defining εcut one can consider the distribution
of the atoms in the incoherent region to be the Bose-Einstein relation (C.1), so that2

εcut ≈ kBT log(2) + µ. (3.35)

The cutoff is explicitly implemented, for example by setting to zero all modes outside a
sphere in momentum space of radius kcut =

√
2mεcut. However, a number of momenta

outside the projected region has to be retained in the simulation to avoid aliasing
(Appendix B of Blakie et al.[55]). In the spatial coordinate, this is achieved by imposing
a number of points in the discretised grid such that

∆x = Lx
Nx
≤ π

2kcut
, (3.36)

which is a criterion twice as stringent as the Nyquist sampling requirement, ∆xN =
π/kcut.

Another important point concerning the cutoff is that, even though the dynamics
of the incoherent region is neglected, in comparing the experimental quantities with
the simulations, one should take into account the presence of the above-cutoff atoms
nI (meaning the ones in the incoherent region):

nI =
∫ ∞
εcut

dε g(ε)nBE(ε), (3.37)

where g(ε) is the appropriate density of states of the system (for uniform and har-
monic traps, see Appendix C). This means that, for example, one should consider
the total number of atoms (ntot = nC + nI) when determining the simulated density
in a uniform system, or in computing other extensive quantities such as the critical
2 An alternative approach is to simply consider εcut − µ = kBT corresponding to an occupation of
∼ 0.6.

[55] P. B. Blakie et al. In: Advances in Physics 57.5 (2008), pp. 363–455.
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temperature[58,59].

3.2.3 Dissipation term determination

Let us now concentrate on the determination of a relation for the dissipative term
in (3.21). In analogy with the classical Brownian motion treatment (Appendix A), in
equation (3.22) we have redefined

γ(r, T, t) ≡ iβ4 ~ΣK(r, t), (3.38)

which should in principle be computed from the relation for the Keldysh self-energy,
eq. (3.13). The term γ has the role of parametrising the interaction between the high-
lying and the low-lying modes ψ, and has the pragmatical role of setting the speed
with which the system reaches the equilibrium set by the external parameters T and
µ. The larger is γ, the shorter is the time required for the system to equilibrate, and
vice versa. In principle, it should depend both on position and time, but given the
uniform nature of the trapping potential we are going to consider, it is possible to use
the approximation

γ ∼ κ4mkBT

π

(
as
~

)2
, (3.39)

first introduced by Penckwitt et al.[70], where the value κ ≈ 3 has been found to match
the typical experimental growth. Neglecting the spatial dependence in γ does generally
bear no drastic consequences, as also discussed in the literature[58,71].

It is worth noting that relation (3.39) only gives an effective leading scaling for
γ, and should only be used to express its order of magnitude. Due to its appearance
both as the dissipative term as well as in the magnitude of the fluctuation term η,
γ is directly related to the speed with which the system will grow to equilibrium, as
discussed in the next section. In comparing with experiments, the best match has been
found to happen when γ is considered as a fitting parameter, and is tuned to reproduce
the measured growth to equilibrium in the physical system[72].
[58] S. P. Cockburn. “Bose Gases In and Out of Equilibrium within the Stochastic Gross-Pitaevskii
Equation”. PhD thesis. Newcastle University, 2010.
[59] D. Gallucci. “Ab Initio Modelling of quasi-one-dimensional Bose gas experiments via the Stochastic
Gross-Pitaevskii Equation”. PhD thesis. Newcastle University, 2013.
[70] A. A. Penckwitt, R. J. Ballagh, and C. W. Gardiner. In: Phys. Rev. Lett. 89 (2002), p. 260402.
[71] S. P. Cockburn et al. In: Phys. Rev. A 83 (2011), p. 043619.
[72] C. N. Weiler et al. In: Nature 455 (2008), p. 948.
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(a) (b)

Figure 3.2: (a) Growth of the profile of the 2D coherent region ψ, integrated in
one direction and averaged over 100 realisations. (b) Total particle number Ntot in
time. The points correspond to the density snapshots with the same colour in the
figure on the left. The parameters for this simulations are ωx = ωy = 2π × 25Hz,
ω⊥ = 2π × 1500Hz, µ = 81.72~ωx, T = 50nK and γ = 0.005.

3.2.4 Growth to equilibrium

By “growth” of the system, we mean the spontaneous accumulation of atoms in the
low-lying modes until the equilibrium is reached. In our simulations the initial state is
effectively represented by the noisy field ψ(r, t = 0) = η(r, 0), which seeds the growth
process randomly. The total atom number will then grow in time until it reaches its final
value, fixed by the input chemical potential µ. Figure (3.2) shows the growth process
corresponding to the simulation of a two-dimensional isotropic harmonic-trapped gas,
at finite temperature. One dimension is integrated out for presentation purposes, and
an average over 100 realisations is performed. Figure (3.2a) indicates that, starting
from an almost empty initial state, atoms progressively accumulate in the centre of the
trap, and the density acquires the inverted parabola shape associated with the Thomas-
Fermi profile given by (1.19), plus the broad wings due to the thermal atoms (see eq.
(3.45)). Figure (3.2b) shows the equilibration of the total atom number Ntot = Nc+NI ,
given as the sum of the c-field atoms and of the above-cutoff ones. The highlighted
points in the figure correspond to the density profile with the same colour.

The speed of the growth is determined by the parameter γ, which sets the rate of
collisions between the atoms. Figure (3.3a) shows the different growth rate for the total
number of particles when having all the parameters of the simulation identical, except
for the scattering value γ (which is assumed constant in time and uniform in space).
By diminishing the collisional rate, the growth is slowed down significantly, because the
bosonic enhancement mechanism leading to the accumulation of atoms in the low-lying
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(a) (b)

(c)

Figure 3.3: Growth processes for different values of gamma. (a)-(b) Reaching of
equilibrium for different values of the parameter γ, in normal and log scale. (c)
Same as before, but the time coordinate is rescaled by multiplying γ. Changing
the value of the dissipative factor has little effect aside from rescaling the time
needed to reach equilibrium.

modes is reduced. As initially these modes are sparsely populated by the noise, it takes
more time for the spontaneous growth to reach a “critical” value when the stimulated
process can occur. Since γ affects both the spontaneous mechanism (through the noise)
and the stimulated one (through the scattering term proportional to γεc), a small value
slows down significantly the equilibration. Figure (3.3b) shows that the growth curves
are indeed very similar when the time coordinate is transformed logarithmically, the
only difference being an overall shift. Since an added shift in logscale corresponds to
a multiplicative factor in normal units, we rescale the time coordinate by γ for each
simulation, and we find a good agreement between the curves (Figure (3.3c)). Finally,
the equilibrium saturation value for Ntot is consistent for all the γ considered.
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3.2.5 Penrose-Onsager diagonalisation

As already stated in Section 3.1.2, the classical field ψ does not represent the con-
densate as in the T = 0 case, but also includes the low-energy excited states. One could
therefore ask how to extract information about the condensate. Strictly speaking, in an
infinite uniform two-dimensional configuration, Bose-Einstein condensation is not pos-
sible, because the long-range order is destroyed by the thermal fluctuations3. However,
when the system is confined, the coherence range can exceed the physical dimension of
the gas, and a “true” condensate can be formed. In an ideal gas, Bose-Einstein conden-
sation occurs when the lowest single-particle mode becomes macroscopically occupied
with respect to the other modes in the system. In 1956, Penrose and Onsager[13] gave
a generalisation of this criterion, in order to also include interacting gases. Its formu-
lation is quite simple: considering a set of N interacting bosons, the single-particle
density matrix ρ is defined as:

ρ(r, r′) = |ψ(r)〉〈ψ(r′)|, (3.40)

where the average is performed over many different noise realisations. Now, diagonal-
ising the density matrix means to solve the eigenproblem∫

dr′ ρ(r, r′)ψj(r′) = pjψj(r), (3.41)

which defines the eigenfunctions ψj and the non-negative eigenvectors pj . Then the
condensation occurs if the largest eigenvalue

N0 ≡ sup
j

(pj) (3.42)

is macroscopic, i.e. if

lim
N→∞

supj(pj)
N

> 0. (3.43)

In this case N0 represents the number of condensed particles, and the corresponding
eigenvector ψ0 will set the condensed density

nc(r) = |ψ0(r)|2. (3.44)
3 See more about this in Chapter 4.

[13] O. Penrose and L. Onsager. In: Phys. Rev. 104 (1956), pp. 576–584.
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(a) (b)

(c) (d)

Figure 3.4: (a) Average density for a 87Rb gas in a harmonic trap, expressed in
units of µ/g2D. The parameters for this simulations are ωx = ωy = 2π(25Hz), ω⊥ =
2π(1500Hz), µ = 81.52~ωx, T = 50nK, and the average is performed over 1000
noise realisations. (b) Condensed density computed as in (3.44), after performing
the Penrose-Onsager diagonalisation.(c) Thermal density computed as in (3.45).
Note that, as expected for repulsive interactions g2D > 0, the thermal part is
repelled by the condensate and pushed towards the edges of the trap. (d) Densities
of the total, condensed and thermal atom distributions, obtained as the slice of (a)-
(c) in y = 0. The dashed line marks a parabolic fit of the condensed density. The
resulting concavity A = 5.5±0.1 is close to the one expected in the Thomas-Fermi
approximation ATF = 5.3.
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The average thermal density4 is instead recovered by

〈nt〉 = 〈ntot〉 − nc. (3.45)

Figure (3.4) shows the Penrose-Onsager extraction of the condensate for a Bose gas
in an isotropic two-dimensional harmonic trap. As expected for a repulsive interaction
g2D > 0, the condensate shown in Figure (3.4b) exhibits the Thomas-Fermi inverted
parabola profile and mainly occupies the centre of the trap, while the thermal atoms
are repelled by the condensate and lie in the external part of the confinement (Figure
(3.4c)).

According to the definition, the Penrose-Onsager procedure is only justified when
the largest eigenvalue pmax is much larger than the others, corresponding to the macro-
scopic occupation of an eigenmode of the sample. We will therefore consider the ex-
traction for the condensate only valid when pmax > p2max/0.3, where p2max is the
second largest eigenvalue. In general, the Penrose-Onsager diagonalisation procedure
is computationally quite heavy, and requires large samples of noise realisations to be
accurate. However, it has the unique feature to reproduce the equilibrium profile of the
condensate and of the thermal cloud. One should also notice that throughout the thesis
we perform ensemble averages over many noise realisations, rather than time averages
sometimes computed in the literature[73].

3.2.6 Order parameter of the SGPE

An alternative method to establish the grade of degeneracy of the system is to
compute the order parameter for the stochastic Gross-Pitaevskii equation. This has
a great computational advantage with respect to the Penrose-Onsager extraction de-
tailed above, but lacks the possibility to recover the condensed density. The following
treatment summarises the approach detailed by Kobayashi et al.[74].

The statistical definition for the order parameter associated with breaking a U(1)
symmetry is

m ≡ lim
h→0
〈ψh〉eq, (3.46)

where h represents a perturbation linearly coupled to the field into the Hamiltonian.
In the Bose-Einstein condensation process, however, the linear h factor does not have
4 Strictly speaking, this only represents the density of the thermal atoms inside the coherent region.
In comparing to experiments, one should also consider the distribution of the above-cutoff atoms.

[73] I.-K. Liu et al. In: ArXiv e-prints (2017). arXiv: 1712.08074.
[74] M. Kobayashi and L. F. Cugliandolo. In: Phys. Rev. E 94 (2016), p. 062146.

http://arxiv.org/abs/1712.08074
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(a) (b)

Figure 3.5: (a) Comparison between the order parameter m defined in eq. (3.50)
and the condensed fraction n0 defined in eq. (3.51), for a Bose gas in a harmonic
confinement. The parameters for this simulations are ωx = ωy = 2π × 25Hz,
ω⊥ = 2π × 1500Hz, µ = 27.17~ωx, the temperature spans a range (0nK− 300nK)
and the averages are performed over 200 noise realisations. m is normalised by
its T = 0 result m0. (b) Growth of the order parameter m and the condensed
fraction n0 defined in eq. (3.51) in time, for a Bose gas in a harmonic confinement,
normalised by their equilibrium values for better comparison. The dashed line
expresses the time interval for which the relative magnitude of the first and the
second eigenvalue is below 0.3, thus the Penrose-Onsager procedure is not well
defined (see text). The parameters for this simulations are the same as in (a),
and the temperature is T = 5nK. For both plots, we also included the above-
cutoff atoms computed as in Section 3.2.2 for the determination of the total atom
number.

an easy implementation. Thus, an alternative definition is considered,

m ∝
√
|C(r →∞)|, (3.47)

where
C(r) =

〈 1
4πr2

∫
dΩ
∫
dr′ψ∗(r′)ψ(r + r′)

〉
eq

(3.48)

accounts for the off-diagonal long-range order arising in a BEC.
An equivalent numerical definition, very simple from a computational point of view,

can be defined on a discretised two-dimensional grid of Mx ×My points

Lx × Ly = (x1, . . . , xi, . . . , xMx)× (y1, . . . , yj , . . . , yMy), (3.49)
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where

m ≡ 1√
MxMy

〈
∣∣∣∑i,j ψi,j

∣∣∣〉√
〈
∑
i,j |ψi,j |

2〉
. (3.50)

One can show that, using this normalisation, definition (3.50) coincides with the nor-
malised first-order correlation function at the system’s limit (see more on that in Chap-
ter 4), as expected from eq. (3.47). In our work we will use definition (3.50).

Figure (3.5a) shows a comparison example between the order parameter defined in
(3.50) and the condensed fraction

n0 = N0
Ntot

, (3.51)

for a Bose gas in a harmonic trap, over a range of temperatures. Figure (3.5b) shows
the growth in time of these two quantities, for a given temperature. Note that, given
the non-uniform nature of the sample, the value for the correlation length at the edge
of the system is not clearly defined, and m is better compared with the condensed
fraction when renormalised by its zero-temperature value m0.

3.3 Chapter summary

In this chapter we presented two methods to treat the finite temperature dynamics
of atomic Bose gases, similar in spirit but arising from different derivation approaches.
The first technique is the stochastic Gross-Pitaevskii equation (SGPE), effectively rep-
resented by a Langevin equation describing the combined dynamics of a condensate
and of a finite number of thermal modes. It can be seen as an extension to the zero
temperature Gross-Pitaevskii approach, where a damping term and a noise term are
also included. These two terms represent the collisional processes between the low-
lying coherent part and the high-energy incoherent part, which is effectively treated
as a bath. The thermal equilibrium is achieved by the establishment of a fluctuation-
dissipation theorem in the two collisional terms. The second technique is the stochastic
projected Gross-Pitaevskii equation (SPGPE), which explicitly includes a projector to
separate the coherent and the incoherent parts. We will make use of both approaches
in this thesis. In the following sections, we described the details of the numerical im-
plementation of the methods for the two-dimensional system of our interest. We gave
a two-dimensional formulation of the equation and we outlined the selection procedure
for the energy cutoff and for the dissipation term γ. We showed some examples of a har-
monically trapped two-dimensional system growing to equilibrium, and we described
two methods to extract useful quantities related to the degeneracy of the sample. We
introduced the Penrose-Onsager diagonalisation procedure to estimate the condensate
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wavefunction and the condensed fraction. We finally compared it with the computation
for the order parameter m for the Langevin equation, connected to the establishment
of a quasi long-range coherence in the system.



Chapter 4

Temperature and interaction
quench in a two-dimensional
Bose-Einstein condensate

Physics is different in systems with low dimensions, when compared to our canonical
three-dimensional world. As strange as it may sound (or as trivial) the dimensionality
dramatically affects the properties of a physical system, even more so in the bizarre
realm of quantum mechanics. A very clear example of that is the absence of a true
condensation in infinite 2D systems at any finite temperature, and in 1D systems alto-
gether. However, not everything is lost. In two dimensions, when the system is confined
and has a finite size, the Bose-Einstein transition may still occur: it is sufficient that
the coherence length exceeds the boundaries of the trap, and the resulting correlated
system becomes indistinguishable from a true BEC. Even in infinite systems a peculiar
kind of phase transition still exists, even though it shows some key differences with the
Bose-Einstein condensation. In the following I will address the Berezinskii-Kosterlitz-
Thouless (BKT) phase transition, reviewing its main properties.

Crossing a phase transition always results in interesting physics. This is both true
for the classical as well as for the quantum world. In the second part of the chapter
the Kibble-Zurek mechanism for the creation of defects during a phase transition is
presented, and its modifications due to dimensionality are also discussed. Finally, a set
of numerical results addressing this topic is presented and commented upon.

73
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4.1 The Berezinskii-Kosterlitz-Thouless phase transition

Since 1934, when Peierls proposed his argument[75] in solid state physics, it is known
that no crystalline order exists in one- or two-dimensional systems for T > 0. This is
due to the particular form of the relation for the uncertainty of the displacement of an
atom from its equilibrium position, uj . Peierls showed, in fact, that in 1D and in 2D

〈(uj − u0)2〉 ∝ T log(Rj0), (4.1)

diverging for large range Rj0 for any finite temperature T (for the 3D case this quan-
tity only depends on T , but is independent from the distance). Peierls conclusion has
been generalised by the so-called Mermin-Wagner-Hohenberg theorem, demonstrated
by Mermin and Wagner in 1966[76] on the anti- and ferromagnetic order in 1D and 2D
systems, and independently by Hohenberg in 1967[77] in Bose liquids and superconduc-
tors. The theorem states that for a system of dimension less than or equal to 2 and
short range interactions, it is not possible to have the spontaneous breaking of a con-
tinuous symmetry at non-zero temperature. In other words, the thermal fluctuations
at any temperature are strong enough to destroy the long-range coherence in the sys-
tem. However, repulsive interactions may induce a quasi long-range order in an atomic
gas, leading to an algebraic decrease of the one-body correlation function. This has
deep consequences in allowing the formation of a superfluid, even in absence of a true
condensation process, and the presence of a topological phase transition, the renowned
Berezinskii-Kosterlitz-Thouless (BKT) phase transition, taking the name from Vadim
L’vovich Berezinskĭı, J. Michael Kosterlitz, and David J. Thouless1. Let us present the
theoretical description of the important quantities related to the transition. We will
show the approach given by Dalibard[78], who explicitly follows the original introduction
in the seminal paper by Kosterlitz and Thouless[79].

4.1.1 Quasi long-range order

A two-dimensional uniform Bose gas at finite temperature cannot condense, apart
when it is exactly at T = 0 (see Appendix C). Consider a gas confined in a uniform
1 Kosterlitz and Thouless were awarded the 2016 Nobel Prize in Physics, together with Duncan
Haldene, for their studies on topological phase transitions and topological phases of matter.

[75] R. E. Peierls. In: Helv. Phys. Acta 7 (1934), p. 24.
[76] N. D. Mermin and H. Wagner. In: Phys. Rev. Lett. 17 (1966), pp. 1133–1136.
[77] P. C. Hohenberg. In: Phys. Rev. 158 (1967), pp. 383–386.
[78] J. Dalibard. Lecture notes in ”Quantum Fluids in low dimension and Kosterlitz-Thouless transi-
tion” (in French). 2017.
[79] J. M. Kosterlitz and D. J. Thouless. In: J. Phys. C 6.7 (1973), p. 1181.
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trap of size L×L, with periodic boundary conditions. In this case one can rewrite the
wavefunction as ψ =

√
neiθ, being n = N/L2 and θ uniform. From (1.15), its kinetic

and interaction energies are

E0
kin = 0, E0

int = g

2L
2n2. (4.2)

At finite temperature, n(r) and θ(r) will instead be varying in space due to the thermal
fluctuations.

Suppression of density fluctuations. It is possible to show that for low temper-
atures the density fluctuations are suppressed because of the repulsive nature of the
atomic interaction. The interaction energy is

Eint = g

2

∫
dr |ψ(r)|4 = g

2L
2〈n2(r)〉, (4.3)

where the average 〈. . . 〉 is performed over the entire sample. Then, the interaction
energy surplus is proportional to the density fluctuations

Eint − E0
int ∝ (∆n)2 = 〈n2(r)〉 − n2

= (g2(0)− 1)n2 (4.4)

where
g2(r) = 〈n(r)n(0)〉

n2 (4.5)

is the second-order correlation function2, and n = 〈n(r)〉.
However, for low enough temperatures, one could write a criterion for which the

interaction energy Eint becomes dominant with respect to the thermal energy kBT :

Eint
kBT

= gn/2
kBT

≡ g2D
4π D, (4.6)

where we recall the definition (3.33) of g2D, and we introduce the phase-space density
D as

D = nλ2
T , (4.7)

2 Note that, for a classical field ψ, the density correlation function g2(0) > 1 due to the Cauchy-
Schwartz inequality

L2
∫
d2r n(r)2 ≥

(∫
d2r n(r)

)2

,

so that Eint is always greater than E0
int.
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where

λT =
√

2π~2

mkBT
(4.8)

is the thermal de Broglie wavelength. Hence, for a large phase-space density

D � 4π
g2D

(4.9)

any density fluctuation would require an energy much larger than the one available due
to the temperature, and it is therefore suppressed. This means that in the uniform
system only phase fluctuations can be present for sufficiently low T , and that the
interaction energy can be considered constant.

Phase fluctuations. Let us now treat the case where no vortices are present in the
system. We will show that the phase fluctuations, resulting from the thermal excitations
as seen above, may result in a disruption of the long-range coherence in the sample. If
the density fluctuations are suppressed, one can assume that the gradient

∇ψ = ∇
(√

n(r)eiθ(r)
)
≈
√
n(i∇θ)eiθ(r), (4.10)

and the kinetic energy becomes

Ekin = ~2

2mn

∫
d2r (∇θ)2. (4.11)

The term in front of the integral in (4.11) deserves some discussion. It expresses a
certain rigidity of the system: the phase fluctuations are directly related to a cost
in kinetic energy. This “rigidity” is a common property of superfluid systems: when
one tries to put it in motion, it resists. Then, if one completely neglects the density
fluctuations (T → 0), a 2D system described by the Gross-Pitaevskii energy functional
is superfluid, and the superfluid density ns equals the total density n. When increasing
the temperature, the measured superfluid density decreases, and the association of n
with ns does not hold anymore. However, one could introduce a phenomenological
temperature-dependent superfluid density ns(T ), so that

Ekin = ~2

2mns(T )
∫
d2r (∇θ)2. (4.12)

This effectively means to renormalise the density so to only take into account the
long-range physics we care about, and avoid to treat the short range fluctuations. To
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evaluate (4.12) we need to evaluate the first-order correlation function g1(r)

g1(r) = 〈ψ(r)ψ∗(0)〉
n

= 〈ei(θ(r)−θ(0))〉, (4.13)

if we consider the suppression of the density fluctuations explained before. The actual
computation of the term g1 is quite convoluted, and can be found in detail in the notes
of Dalibard[78]. It is possible to show that

〈[θ(r)− θ(0)]2〉 ∼ 2
D

log
(
r

λT

)
, (4.14)

which is analogous to the Peierls argument (4.1), and, since for a Gaussian variable x
〈eix〉 = e−〈x

2〉/2,

g1(r) ∼
(
λT
r

)1/D
. (4.15)

The decay of the correlation function has then an algebraic behaviour, as opposed to
the case for an ideal 2D gas, where

gid
1 (r) ∝

 e−πr
2/λ2

T for non degenerate gases
(
Z = eµ/kBT � 1

)√
l
re
−r/ζ for degenerate gases

(
Z = eµ/kBT � 1

)
,

(4.16)

where ζ ∼ λT√
4πe
D/2. The comparison between the two cases is quite striking. As shown

in Fig. (4.1), the ideal gas correlation drops to zero much faster than the one for
the interacting gas. For the parameters set in the figure, for samples of size less than
1000λT the gas maintains a fairly strong phase coherence in the whole system. This
case is usually referred to as quasi-condensate[80]. In a system with finite size L, this
coherence gives rise to a noticeable condensed fraction, which can be defined as the
value of g1(L)[81].

Two important conclusions emerge from the above consideration; in a system in two
dimensions, both statements below are true:

• according to the Mermin-Wagner theorem, no long-range coherence (hence no
condensate) can appear in the thermodynamic limit;

• the interactions between the atoms allow the presence of a quasi-order which, in
finite size systems, “simulates” the presence of a true condensate.

Hence the situation is delicate: the Mermin-Wagner theorem has very strong require-
[78] J. Dalibard. Lecture notes in ”Quantum Fluids in low dimension and Kosterlitz-Thouless transi-
tion” (in French). 2017.
[80] Y. Kagan, B. V. Svistunov, and G. V. Shlyapnikov. In: Sov. Phys. JETP 66.2 (1987), p. 314.
[81] J. Dalibard. Lecture notes in ”Coherence and superfluidity in atomic gases” (in French). 2015.
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Figure 4.1: Comparison between the first-order correlation functions for an ideal(
g1 ∼ e−r/ζ

)
and an interacting

(
g1 ∼ (λT /r)1/D

)
Bose gas. The parameters in

this example are D = 12, ζ = (λT /
√

4π)eD/2 ∼ 114λT .

ments to be formally established. If we define the limit for which the theorem is fully
valid as the one for which the condensed fraction g1(L) < 1%, for our example in figure
(4.1) we find (

λT
L

)1/D
< 0.01 ⇒ L > 1024λT . (4.17)

This fact is at the base of the argument made by Bramwell and Holdsworth[82] in the
context of the magnetisation of 2D systems: one should need the samples to have the
size of Texas to fully apply Mermin-Wagner.

4.1.2 Role of vortices

In the previous section we discussed how the role of thermally activated phonons
can disrupt the long-range order in a two-dimensional system. Mora and Castin[83]

showed that, when no vortices are considered, it is possible to recover a Bogoliubov-
like spectrum for the elementary excitations in such a system, similar to the one of eq.
(1.60):

ωq = ~
2m

√
q2(q2 + 4g2Dn0), (4.18)

where n0 = N/L. Such a spectrum, having a linear behaviour at low momenta, implies
by itself that the system is superfluid, as can be seen by simply applying the renown
Landau criterion[84]. In brief, the criterion states that it exist a minimum velocity for
which an impurity moving in a condensate will produce excitations which are ener-
[82] S. T. Bramwell and P. C. W. Holdsworth. In: Phys. Rev. B 49 (1994), pp. 8811–8814.
[83] C. Mora and Y. Castin. In: Phys. Rev. A 67 (2003), p. 053615.
[84] C. J. Pethick and H. Smith. Bose–Einstein Condensation in Dilute Gases. 2nd ed. Cambridge
University Press, 2008.
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Figure 4.2: Lines of zero value for R(ψ) (blue) and I(ψ) (red), showing the pres-
ence of a vortex and an antivortex.

getically favourable. If the speed is too low, the excitations produced would actually
increase the total energy of the system. This allows a flow of the impurity (or of the
fluid) without the production of excitations lowering its speed, which remains forever
at a constant value. This means that the system has zero viscosity and is a superfluid.

Let us now go beyond the purely phononic approach, and let us also consider vortices
in the system. Vortices have the effect of disrupting the phase coherence in a system.
This is easily understandable by considering that the phase on two opposite sides of
a vortex core has to change by a factor π. Thus, two points spatially separated by a
segment ĀB can have a phase difference δθ which suddenly jumps to δθ + π when a
vortex randomly passes on the segment. The coherence between A and B will then be
lost.

An easy visualisation scheme can be related to the vortex. In our classical field
context, a vortex is a zero-density region |ψ(r)|2 = 0, presenting a phase winding3

around it of ±2π (charge q = ±1). Thus, they are simultaneously zero both for the
real R(ψ) and for the imaginary I(ψ) part of the wavefunction. Both these quantities
oscillate in space under the effect of thermal fluctuations, and go from positive to
negative. The vortices are then represented as discrete points ri such that

R(ψ) = 0 and I(ψ) = 0, (4.19)

at the same time, hence points where the lines of zero value for the two functions merge
(Fig. (4.2)).

The phase winding of a vortex constitutes a topological protection for it: it is not
3 or any other superposition of the two cases ±2π.
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Figure 4.3: Creation of a vortex-antivortex pair from thermal fluctuations. The
lines of zero values come toghether (left) and initially form a double zero (middle).
Then, as they continue their evolution, a couple of vortices with opposite circu-
lations are formed and start separating (right). The opposite mechanism, leading
to the annihilation of two vortices, is also possible.

possible to create or annihilate a single vortex in the bulk of the system, because this
would mean to instantly rearrange the phase pattern of the whole sample. Instead,
only two cases may happen: either a single vortex is created at the boundaries of the
system, where the density is zero, or a vortex-antivortex pair is created from a large
density fluctuation. This formation of couples of opposite circulation from a double
zero of ψ(r) is pictured in Fig. (4.3).

Energy of a vortex. Let us compute the energy of an isolated vortex in the centre of
a circular 2D gas of radius R. This is going to be useful in determining the probability
for single vortices to exist. As already shown in eq. (1.50), the velocity field around a
vortex of charge one is

v(r, θ) =
( ~
mr

)
θ̂. (4.20)

For r = 0 the density goes to zero, while it recovers its bulk value at a distance equal to
the healing length defined in eq. (1.23). One can simplify the computation by assuming
that the density is a step function such that

n(r) = 0 if r < ξ,

n(r) = n if r > ξ. (4.21)



4.1. The Berezinskii-Kosterlitz-Thouless phase transition 81

The kinetic energy of the fluid is then

EVkin = 1
2m

∫
drn(r)v2(r)

≈ 1
2mn

~2

2m

∫ R

ξ
dr

1
r2 2πr

= π
~2n

m
log

(
R

ξ

)
. (4.22)

Equation (4.22) has a profound consequence: the energy of a single vortex diverges
logarithmically when the size of the system goes to infinity4. Given the suppression
of the density fluctuations at low temperatures, the kinetic energy of a vortex is much
larger than the phononic one, and ∆Ekin ≈ EVkin.

Also the interaction energy is modified by the presence of the vortex, because the
density in the bulk changes from N/(πR2) to n = N/(π(R2 − ξ2)). Hence

EVint = ~2

2mg2D

∫
dr2 n2(r). (4.23)

The increase in energy from the state without vortices, for which E0 = ~2

2m
g2DN
πR2 , is

∆Eint = EVint − E0

= ~2

2mg2D

(
N2

π(R2 − ξ2) −
N2

πR2

)
≈ π

2
~2n

2m , (4.24)

where we used the approximated relation for ξ2 ≈ πR2/2Ng2D. Since ∆Eint does not
depend on the sample size R, it becomes negligible when compared to the kinetic energy
difference, diverging as log(R). This is not the case for a vortex-antivortex pair, where
the long-range kinetic energy is suppressed (see below).

For finite temperatures, the superfluid density ns does not coincide with the total
density n, hence one should consider ns instead of n in both relations for the kinetic
and the interaction energy.

Probability of an isolated vortex. If we again consider a circular system of area
πR2, given that the size of a vortex is πξ2, the number of independent “boxes” to place
a vortex will be

W ' R2

ξ2 . (4.25)

4 the details of the result do not depend on the model for the density profile, apart from a constant in
the logarithm argument, negligible when R→∞.



4.1. The Berezinskii-Kosterlitz-Thouless phase transition 82

Figure 4.4: Isolated vortices crossing the high-density regions of an atomic ring.
The net current is diminished over time, and superfluidity is lost.

The probability for one vortex to appear in the system is given by the Boltzmann law

p ≈ exp
(
−EVkin/kBT

)
= exp

(
− π~

2ns
mkBT

log(R/ξ)
)

≈
(
ξ

R

)Ds/2
, (4.26)

where Ds = nsλ
2
T . The total probability is then

PV = pW =
(
ξ

R

)Ds/2−2
. (4.27)

Equation (4.27) presents two cases:

• if the exponent is positive, i.e. if DS > 4, the probability to form a vortex goes
to zero in the thermodynamic limit R → ∞. For large samples it becomes very
difficult to have an isolated vortex;

• if the exponent is negative, i.e. if DS < 4, P diverges in the thermodynamic limit
(and thus can no longer be interpreted as a probability). In practice it becomes
very likely that the sample has a large number of “isolated” vortices, of random
charge. We will show that vortex proliferation disrupts the superfluidity, and we
should then consider DS = 0.

From this basic analysis5 one recovers the critical point for the BKT phase transition,
corresponding to the normal-superfluid transition, which is precisely Ds = 4, indepen-
dently from the interaction strength g2D.
5 The same result can be recovered by studying the sign of the free energy F = E − TS = E −
kBT log(W ).
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Superfluidity is affected by isolated vortices. Suppose one has a gas in a ring, with
a metastable permanent current, so that the phase winding is 2πs and s is an integer.
If Ds < 4, isolated vortices can exist in the high density region of the ring. This means
that potentially an isolated vortex can cross from the interior of the ring to the outside
(or viceversa), escaping the system and modifying the current. Since there is a higher
concentration of vortices of one sign (say positive) in the inside of the ring, the net result
of hopping of vortices with random sign will be a reduction of the current, eventually
going to zero (Fig. (4.4)). The current is then not metastable, and superfluidity is lost.
This is however not the case for pairs of vortices, for which the net modification of the
current is null.

Energy and probability of a vortex pair. The situation just explained for a
single vortex is different when computed for a vortex-antivortex pair. Suppose they are
separated by a distance l. It can be shown[85] that the kinetic energy of a vortex pair
is

E2V
kin(l) ≈ 2π~

2ns
m

log(l/ξ). (4.28)

This result, although similar in shape, is instead very different from the isolated case
(4.22), because it is not divergent with the size R of the system. The increased inter-
action energy for a couple of vortices will simply be twice the value computed in eq.
(4.24), ∆E2V

int = 2∆EVint. The probability for a pair is then

P2V (l) = exp
(
−2∆EVint + E2V

kin(l)
kBT

)

≈ z2
0

(
ξ

l

)Ds
, (4.29)

where z0 = exp(−∆EVint/kBT ) ≈ exp(−Ds/4) for a step density profile, is called fugacity
of the vortex.

Then, up to fairly degenerate gases Ds . 1 and for vortices not too close (l ∼ a few
ξ), the probability of having a couple of vortices in the system is relevant.

Average distance. The average distance between two vortices in a pair is defined as

〈l2〉 = 〈(ri − rj)2〉 =
∫∞
ξ l2P2V (l)2πldl∫∞
ξ P2V (l)2πldl , (4.30)

[85] P. Nozieres and D. Pines. Theory of Quantum Liquids. Avalon Publishing, 1999.
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Figure 4.5: Schematic representation of the Berezinskii-Kosterlitz-Thouless phase
transition, marked by the divergence of the average normalised distance 〈l2〉/ξ2

(blue line). Depending on the value of the superfluid phase-space density, the
vortices in the system are either free (Ds < 4, no superfluidity) or bound in pairs
(Ds > 4, superfluid).

whose result is given by Kosterlitz and Thouless[79]:

〈l2〉 = ξ2Ds − 2
Ds − 4 . (4.31)

From (4.31) we see that the mean distance is only defined for Ds > 4, as it has to be
positive, and diverges at the transition point Ds = 4. On the other hand, for increasing
Ds the separation tends to the core size ξ.

We can now summarise what we have learnt for the Berezinskii-Kosterlitz-Thouless
phase transition. The situation we face is the following (Fig. (4.5)):

• for Ds < 4 we are in the non-degenerate case. The system presents a proliferation
of free vortices, and there is no superfluidity: ns = 0.

• for Ds > 4 the system is degenerate. The vortices in the system can only exist in
bound pairs, whose average length decreases with increasing Ds. The system is
superfluid: ns > 0.

4.1.3 Critical temperature

In the previous paragraphs we have seen that the superfluid transition occurs at the
critical value Ds = 4 for the phase-space density of the superfluid, which is universal
in the sense that it does not depend on the value of the interaction g. It is useful to
[79] J. M. Kosterlitz and D. J. Thouless. In: J. Phys. C 6.7 (1973), p. 1181.
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translate this criterion into one for the critical temperature. Then, once one is able to
explicitly calculate the dependence of ns on the temperature, the critical temperature
is defined via

ns(Tc)λ2
Tc = 4. (4.32)

Prokof’ev, Ruebenacker et al.[86], and Prokof’ev and Svistunov[87] developed a thermo-
dynamic approach to derive the behaviour of the superfluid density on the temperature.
This is based on approximating the dynamics of an interacting gas in a L×L box with
a sum of independent oscillators at the Bogoliubov modes ωk described by (1.60). This
way, one is able to write the chemical potential

µ =
(
∂F

∂N

)
T,L2

(4.33)

in terms of the free energy

F = ~2

2mL2 g2DN
2 − kBT

∑
k

log
(
kBT

~ωk

)
. (4.34)

Thus it is possible to write[78] µ in terms of the phase-space density for the entire gas
D = nλ2

T :
µ

kBT
≈ g2D

2π

(
D + log

(
π

g2DD

))
(4.35)

which is an equation of state for the interacting gas. If one assumes that the first term
on the right side of (4.35) is larger than the logarithmic one, one can invert the previous
equation into a relation for the total density of states:

D ≈ 2π
g2D

µ

kBT
− log

(
kBT

2µ

)
. (4.36)

The superfluid density of states can instead be computed from the Landau relation
for the superfluid density[78], and results to be

Ds ≈ D − log
(
kBT

2µ

)
. (4.37)

Remembering that the critical point is defined by Ds = 4, after some algebra one arrives
to write that

µ

kBT

∣∣
c
≈ g2D

π
log

(
Cµ
g2D

)
, (4.38)

[86] N. Prokof’ev, O. Ruebenacker, and B. Svistunov. In: Phys. Rev. Lett. 87 (2001), p. 270402.
[87] N. Prokof’ev and B. Svistunov. In: Phys. Rev. A 66 (2002), p. 043608.
[78] J. Dalibard. Lecture notes in ”Quantum Fluids in low dimension and Kosterlitz-Thouless transi-
tion” (in French). 2017.
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where Cµ is a constant depending on the energy cutoff imposed to the model. Analo-
gously, one can write the critical value for the total phase-space density

Dc ≈ log
(
CD
g2D

)
. (4.39)

The values of Cµ and CD have been determined by Prokof’ev, Ruebenacker and Svis-
tunov[86] by means of classical field simulations, performed in order to correctly match
the asymptotic quantum results for a free particle at large ω. The resulting critical
values are:

Dc ≈ log
(380
g2D

)
. (4.40)

µ

kBT

∣∣∣∣
c

≈ g2D
π

log
(13.2
g2D

)
. (4.41)

these results have also been confirmed by quantum Monte Carlo simulations[88].

Order of the transition. As the free energy F is continuous in the temperature T
at the transition point, and so are all its derivatives, the Berezinskii-Kosterlitz-Thouless
is an infinite order phase transition. Approaching from T > Tc, eq. (4.15) tells us that
the correlation function g1 decreases exponentially with the distance

g1(r) ∝ e−r/ζ . (4.42)

Differently from what happens in second-order transitions such as Bose-Einstein con-
densation, in the vicinity of the critical temperature its correlation length diverges
exponentially rather than algebraically

ζ ∼ λT exp
(√

η

ε

)
, (4.43)

where η is a constant depending on the microphysics of the system and we defined

ε = T − Tc
Tc

(4.44)

as the normalised distance from the critical point.
[86] N. Prokof’ev, O. Ruebenacker, and B. Svistunov. In: Phys. Rev. Lett. 87 (2001), p. 270402.
[88] S. Pilati, S. Giorgini, and N. Prokof’ev. In: Phys. Rev. Lett. 100 (2008), p. 140405.
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4.2 Quench across the phase transition

The critical point of a phase transition is critical in the sense that bizarre things
may happen. We can observe this aspect in a classical (first-order) phase transition,
such as the ice melting process, in which the continuous injection of heat in the system
does not cause a change in temperature, but is rather absorbed to drastically modify its
physical properties. Continuous (second-order or higher) phase transitions also exhibit
interesting features.

It is common knowledge that crossing a phase transition in an abrupt way can result
in the production of defects in the system. In statistical physics and condensed matter
physics this phenomenon has been addressed theoretically by several authors (see for
example [89,90]). In the following we will focus on a particular example of theoretical
description for the formation of such impurities, the Kibble-Zurek mechanism. In three
dimensions, it describes the formation of defects in a condensed matter system as a
result of a relatively fast quench through the critical point. It was first proposed by
Kibble[91] in a cosmological context to describe the formation of domain structures
in the creation of galaxies, where the relativistic causality imposes a lower bound to
the density of defects formed. Its application was later proposed in liquid helium and
condensed matter systems by Zurek[92,93]. The mechanism acts both in classical (e.g.
in glasses) and in quantum systems (e.g. in superfluid helium[94,95], superconducting
films[96] and rings[97], ion chains[98] and recently in quantum gases[46]).

4.2.1 Kibble-Zurek mechanism

Let us consider the dynamics of a system undergoing a continuous phase transition.
At the critical point, the equilibrium correlation length ζ and the equilibrium relaxation
time τ will both diverge. The relaxation time is defined as the time interval needed
for a system to reach a new equilibrium after being perturbed. In second-order phase
[89] IM Lifshitz. In: Sov. Phys. JETP 15 (1962), p. 939. (Original Rus.) Zh, Eksp. Teor. Fiz. 42,
1354 (1962).
[90] Samuel M. Allen and John W. Cahn. In: Acta Metallurgica 27.6 (1979), pp. 1085–1095.
[91] T. W. B. Kibble. In: J. Phys. A 9.8 (1976), p. 1387.
[92] W. H. Zurek. In: Nature 317 (1985), p. 505.
[93] W. H. Zurek. In: Phys. Rep. 276.4 (1996), pp. 177–221.
[94] C. Bäuerle et al. In: Nature 382 (1996), p. 332.
[95] V. M. H. Ruutu et al. In: Nature 382 (1996), p. 334.
[96] R. Carmi and E. Polturak. In: Phys. Rev. B 60 (1999), pp. 7595–7600.
[97] R. Carmi, E. Polturak, and G. Koren. In: Phys. Rev. Lett. 84 (2000), pp. 4966–4969.
[98] K. Pyka et al. In: Nature Communications 4 (2013), p. 2291.
[46] G. Lamporesi et al. In: Nat Phys 9.10 (2013), pp. 656–660.
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transitions, as the Bose-Einstein condensation, their divergence is algebraic

ζ(ε) = ζ0
|ε|ν

and τ(ε) = τ0
|ε|zν

, (4.45)

where ν and z are critical exponents, and ζ0 and τ0 depend on the sample. In infinite-
order phase transitions such as the BKT, the divergence still occurs, but its form is
exponential (eq. (4.43)).

Assume that the quench through the critical point can be considered linear in time
t. This means that the control parameter T is

T (t) = Tc(1− ε(t)), (4.46)

where the reduced parameter ε is symmetric around the critical point

ε(t) = t/τq, (4.47)

over a time interval [−τq, τq]. We imposed the time reference such that T (0) = Tc. At
any instant, the time distance from the transition is

t = |ε/ε̇| (4.48)

Both in eqs. (4.43) and (4.45) far away from the transition |ε| � 1, the equilibrium
relaxation time is very small. Conversely, near the transition ε → 0 causing the re-
laxation time to diverge. The Kibble-Zurek picture is represented by the following
approximation[99]:

• The system is assumed to be fully adiabatic when the value of the relaxation
time is smaller than t. For “adiabatic” we mean having effectively a null relax-
ation time, and being able to follow instantaneously the equilibrium configuration
imposed by the control parameter ε.

• When the relaxation time equals the time needed to reach the critical point

− t̂ = τ(−t̂), (4.49)

the system will not have enough time to reach a new equilibrium before the
transition occurs. The approximation here consists in assuming that after this
instant the system dynamics is dramatically slowed down, and is effectively frozen.
The instant −t̂ is evocatively called freezing time.

[99] A. del Campo and W. H. Zurek. In: Int. J. Mod. Phys. A 29.08 (2014), p. 1430018.
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Figure 4.6: Schematic representation of the Kibble-Zurek mechanism. For t < −t̂
the system is assumed to be perfectly adiabatic, while for −t̂ > t > 0 the dynamics
is frozen, and the system forms defects. For t > 0 the system will eventually recover
its dynamics and the defect interaction will slowly lead them to decay.

Figure (4.6) summarises the concepts just introduced. In a second-order phase transi-
tion, the degree of freedom relevant for the selection of the symmetry breaking cannot
keep up with the externally imposed change of the control ε, then it is effectively frozen
at the equilibrium value corresponding to ε(t̂). This is also true for the correlation
length, which is frozen at a value ζ̂ = ζ(ε̂), creating independent domains whenever the
system size exceeds ζ̂. These domains are causally disconnected, and the symmetry is
independently broken in each one of them. This is cause of the formation of defects
at the interface between two domains, where the phase is discontinuous. The usual
prediction for the density of defects is given by

ρdef ∼
ζ̂d

ζ̂D
, (4.50)

where D and d are, respectively, the dimensions of the space and of the defect (e.g.
D = 3 and d = 1 for vortex lines in a 3D superfluid). Usually eq. (4.50) overestimates
the density of defects and is only able to provide an order of magnitude indication. The
true efficiency of the process is given by

ρdef ∼
1
f

ζ̂d

ζ̂D
, (4.51)

where f ≈ (5 − 10) depending on the specific model considered. In the usual picture
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of the Kibble-Zurek mechanism for three dimensions, the density of defects depends
algebraically on the quench time τq, as

ρdef ∝
1
ταq
, (4.52)

where α is related to the critical exponents for the transition considered.

4.3 Numerical analysis

In the following we will show the results for the numerical analysis on a uniform
atomic two-dimensional system, of size L×L, where we also imposed periodic boundary
conditions in both directions. The simulations are performed by means of the stochastic
projected Gross-Pitaevskii equation described in Chapter 3.

4.3.1 Equilibrium results

Before presenting the results on the quench through the phase transition, let us
derive some results for the thermal equilibrium of our system. To do so, we run simula-
tions at several temperatures, leaving all the other parameters unchanged. The system
size is in this case Lx × Ly = (50 × 50)µm and the chemical potential is µ = 20~ωref,
where ωref = 2π(5Hz). After letting the system equilibrate for a very long time we
acquired the relevant quantities characterising the equilibrium.

First-order correlation function. The first-order correlation function expresses
the phase coherence in a quantum system. It is defined as

g1(r) ≡ 〈ψ∗(x)ψ(x + r)〉N√
〈|ψ(x)|2〉N 〈|ψ(x + r)|2〉N

, (4.53)

where the average is performed over the spatial coordinate x, independently on the
angle, and over all the stochastic realisations N . In our discretised two-dimensional
configuration we define

g1(r) ≡ (gx1 (r) + gy1(r))/2

where gx1 (r) = 1
NxNy

Nx∑
i=1

Ny∑
j=1

〈ψ∗i,jψi+r,j〉N√
〈|ψi,j |2〉〈|ψi+r,j |2〉N

and gy1(r) = 1
NxNy

Nx∑
i=1

Ny∑
j=1

〈ψ∗i,jψi,j+r〉N√
〈|ψi,j |2〉〈|ψi,j+r|2〉N

.

(4.54)

We also remind that, due to periodic boundary conditions, one should assume that
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in the x coordinate ψi+r,j = ψi+r−Nx,j , and the same is true for the y coordinate.
From relations (4.16) and (4.15) one should expect that the correlation function decays
exponentially with the distance in the non degenerate case, and progressively grows to
an algebraic decay in the low-temperature case. We perform a test of this assumption,
by observing the equilibrium profile of g1(r) as a function of the reduced temperature
T/TBKT. Here the critical temperature TBKT is defined by means of equation (4.41).
Figure (4.7a) reports the resulting growth for g1(r).

It is useful to check the temperature below which the decay turns algebraic. Fol-
lowing the idea in Dagvadorj et al.[100], this can be done by fitting the long-range
correlation functions with the two relations

Galg ∝ (r/r0)α and Gexp ∝ e−r/λ. (4.55)

One could then estimate the point at which the two fits apply equally well to the
data, and identify it as the crossover between the two regimes. In the Berezinskii-
Kosterlitz-Thouless picture, this can be identified with the critical point of the transi-
tion. Figure (4.7b) plots the profiles of g1(r) with the fits defined in eq. (4.55). Figure
(4.7c) plots the estimator

Ξ = MSEexp
MSEalg

, (4.56)

where
MSE(T ) = 〈(g(r, T )−G(r, T ))2〉 (4.57)

is the mean squared error for our fits. The resulting plot shows that one can identify
the crossover between an algebraic an an exponential decay of g1(r) to be shifted by
a factor ∼ 0.25 with respect to the theoretical relation for the transition described in
(4.41).

Another test on the same concept concerns the order parameter m defined in (3.50)
as a function of the reduced temperature T/TBKT. The result is reported in Fig. (4.8a),
together with the square root of the equilibrium result for |g1(Lx/2)|. As described in
3.2.6, the two quantities should coincide at equilibrium. We measure that indeed they
show the same qualitative behaviour across the whole temperature range, even though
they present a small deviation in the region of the algebraic-to-exponential crossover.
Moreover, once again there appears to be a shift of about ∼ 0.25 in the transition
point, as measured in the previous analysis. Finally, following the treatment in [74],
[100] G. Dagvadorj et al. In: Phys. Rev. X 5 (2015), p. 041028.
[74] M. Kobayashi and L. F. Cugliandolo. In: Phys. Rev. E 94 (2016), p. 062146.
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(a)

(b) (c)

Figure 4.7: Simulation of uniform system in a box of size Lx ×Ly = (50× 50)µm,
with periodic boundary conditions. The averages are performed over N = 100
stochastic realisations for each temperature data set. (a) Equilibrium profiles for
the first-order correlation function g1(r) for different temperatures. (b) Correlation
function profiles as in the previous figure, in logarithmic scale. The fitted algebraic
(dotted lines) and exponential (dashed lines) functions are defined as in (4.55). (c)
Ratio Ξ between the mean squared errors for the fits in (b), as defined in (4.56).
The dashed line expresses the value of Ξ for which the two fits apply equally well
to the data. The resulting critical point presents a shift of about ∼ 0.25 with
respect to the theoretical relation for TBKT, equation (4.41).
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(a) (b)

Figure 4.8: (a) Equilibrium order parameter (blue) and square root of the edge
correlation function

√
|g1(L/2)| (red) for samples at thermal equilibrium at dif-

ferent values of T/TBKT as in Fig. (4.7). The error bars are indicative of the
statistical standard deviation of the different noise realisations. The data show
again a shift in the critical point of the order of ∼ 0.25. (b) Comparison between
the time evolution of the order parameter defined as in eq. (3.47) and the one
defined as in eq. (3.50) for T/TBKT = 0.78.

we compute the Binder ratio, defined as

U =
〈
∣∣∑

i,j ψi,j
∣∣4〉

〈
∣∣∑

i,j ψi,j |2〉2
, (4.58)

and reported in Fig. (4.9a), which confirms the same trend for the transition tempera-
ture.

In Fig. (4.9b) we also plot the value of the quasi-condensate fraction as a function
of the temperature. In a uniform Bose system it is possible to compute it as

nqc =
√

2〈|ψ|2〉2 − 〈|ψ|4〉
n

, (4.59)

where the average is performed over the entire spatial grid and on the different noise
realisations. The quasi-condensate has a significant non-zero value also above the crit-
ical temperature. At the critical point its value is ∼ 0.7. In the BKT picture, it is the
quasi-condensate which allows the existence of the vortices above the transition, where
a superfluid is not present.

The systematic shift in the position of the critical point is a recurrent feature of
our analysis, and is currently a matter of investigation. The transition of the order
parameter is moreover not very sharp, when compared to the one that can be found
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(a) (b)

Figure 4.9: (a) Equilibrium Binder ratio U as defined in text, for samples at
thermal equilibrium at different values of T/TBKT as in Fig. (4.7). The data
indicate again a shift in the critical temperature position compatible with the
one of the previous analysis. (b) Equilibrium quasi-condensate fraction nqc as a
function of the temperature.

Figure 4.10: Time evolution of the vortex density nv as a function of the reduced
temperature T/TBKT, expressed in natural units of 1/lref, where lref =

√
~/mωref.

in the literature[74]. We believe this effect to be due to the finite size of the system
combined with the periodic boundary conditions we imposed, which may enhance the
creation of a quasi long-range order, causing the critical point to lose definition. More
[74] M. Kobayashi and L. F. Cugliandolo. In: Phys. Rev. E 94 (2016), p. 062146.
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discussions on that are reported in Section 4.4.
We also study the equilibrium number of vortices as a function of the temperature.

We count the number of vortices nv(t) at any time step by means of a numerical routine
which considers the phase winding around each grid point to identify the vortices in the
system, and their circulation6 (Fig. (4.10)). From the equilibrium value for the vortex
density (Fig. (4.11a)) it is possible to estimate an equilibrium correlation length simply
defined as ζeqv = 1/√nevq (see the discussion on the next section). The resulting plot in
Fig. (4.11b) shows an exponential growth of the correlation length in the proximity of
the transition point, as expected from the theory.

(a) (b)

Figure 4.11: (a) Equilibrium vortex density computed by performing a short time
average of the final values of nv. For temperatures below ∼ 0.75TBKT, for our
parameters, the vortices will completely annihilate. (b) Correlation length ζeqv
extracted from the equilibrium values for nv, expressed in natural units of lref.
The coloured points correspond to the temperatures indicated in Fig. (4.10).

4.3.2 Quench in temperature and chemical potential

Let us now report some results of quenches performed from a high-temperature
T > TBKT state to a highly degenerate one T < TBKT. In real-life experiments, the
atomic cloud is progressively grown into the trap, leading to an accumulation of atoms
in the modes of the system and to its thermalisation. This is effectively simulated
by first imposing a state at a negative value of the chemical potential in equation 3,
reproducing an infinite temperature configuration. At a time t = t0 the temperature
is suddenly reduced, and the chemical potential assumes a positive value. The system
will then grow from a initial state only populated by the Gaussian noise η (Fig. (4.12),
6 The routine follows what is referred to as “Algorithm 5” in George Stagg PhD thesis[101].
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x xx x

Figure 4.12: Density (above) and phase (below) of a uniform two-dimensional
system quenched from a non-degenerate to a degenerate configuration. The initial
random state (first panel) grows to an intermediate state where the system shows
many soliton-like defects, and the phase is homogeneous in small patches (second
panel). They eventually decay into vortex-antivortex pairs due to the snaking
instability (third panel), which eventually annihilate if the temperature is low
enough (fourth panel). The capture time for these frames is indicated in Fig.
(4.14).

first panel), up to its equilibrium configuration set by the final values of T and µ. The
equilibration process passes through several phases. At first, immediately after the
quench, the system will accumulate atoms in the coherent region ψ. Given the random
initial distribution of the phase, in the framework of the Kibble-Zurek mechanism, a
large number of defects will be formed. The creation of phase domains according to the
KZM leads to the formation of soliton-like excitations (Fig. (4.12), second panel, and
Fig. (4.13), first panel), which will eventually break due to the snaking instability into
pairs of vortices (Fig. (4.12), third panel). If the final temperature is very low, these
vortices will eventually lose energy due to the collisions with the thermal excitations,
and annihilate (Fig. (4.12), fourth panel). The resulting decay is reported in figure
(4.14), where we performed an average over several stochastic realisations.

Figures (4.15a) and (4.15b) report the time evolution of g1(r) for an instantaneous
quench, and show indeed an initial fast spatial decaying profile, progressively growing,
after the transition is crossed, to match a slow algebraic decay. Figure (4.15c) shows the
simultaneous growth of the function g1(L/2) at the edge of the system, the condensed
fraction nc extracted via the Penrose-Onsager diagonalisation (see Section 3.2.5) and
the order parameter m defined in eq. (3.50). To properly fulfil the Penrose-Onsager
prescription, one should only consider the case in which the highest eigenvalue of the
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x Δ𝑡 = 0.093Δ𝑡 = 0.032 Δ𝑡 = 0.154x x

Figure 4.13: Zoom of the central regions of density (above) and phase (below) of
the 2D system, captured at a short time after the quench, showing the formation
of regions of uniform phase, corresponding, in density, to soliton-like defects at
their boundaries. They will eventually undergo a dynamical instability and break
into vortex-antivortex pairs.

density matrix αmax = α(1) is macroscopic with respect to the others, and this is only
true quite far from the transition point, when the system has grown a significant con-
densed fraction. Here we assume that the Penrose-Onsager extraction holds for each
instant in which p2max < 0.3pmax. As postulated in Sec. 4.1.1, the equilibrium con-
densed fraction coincides with the edge value of the equilibrium first-order correlation
function. The square of the order parameter, after an initial equilibration, also equals
g1(L/2), as one expects from its definition.

4.3.3 Dynamical scalings after an instantaneous quench

We now want to study the dynamic scaling of the correlation length when perform-
ing an instantaneous quench from a temperature T > TBKT to T < TBKT. As in the
previous section, the gas will initially be in a high-temperature non-degenerate case,
and it is suddenly quenched to a degenerate low-temperature configuration. The sys-
tem is then left to equilibrate for a sufficient time, establishing a quasi long-range order
as predicted by (4.15). The procedure reported here is inspired by the one developed
for the 2D XY model by Jelić and Cugliandolo[102].

The first-order equal-time space correlation function (4.53) can be can be written
[102] A. Jelić and L. F. Cugliandolo. In: J. Stat. Mech. 2011.02 (2011), P02032.
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Figure 4.14: (top) Control parameters T and µ, quenched simultaneously. Here
ωref = 2π(5Hz). (bottom) Measured number of vortices as a function of time,
averaged over N = 100 stochastic realisations. The four red points indicate the
four instants represented in (4.12).

by means of the scaling relation

g1(r, t) ≈ r−η(T )f

(
r

ζ(t, T )

)
, (4.60)

where η is the static critical exponent for the BKT phase transition, f is a scaling
function, and ζ(t, T ) is the correlation length. The latter is an important quantity,
which we will investigate further. Its scaling in time for purely diffusive processes
is ζ ∼ t1/2. For a quench from a temperature above TBKT in the XY model, it is
predicted[102–104] that it shows instead a small modification

ζ(t, T ) ≈
(
λ(T ) t

log(t/t0(T ))

)1/z
, (4.61)

where z = 2 for the XY model, λ(T ) and t0 are non-universal, since they depend on
the way in which ζ is measured. The difference is considered to be due to the process
of vortex annihilation.

We will focus on two ways of measuring ζ. The first is by directly applying eq.
(4.60), and by extracting the correlation length ζg(t) from the decay of g1(r). Figure
(4.16) shows the time evolution of the first-order correlation function after an instanta-
[102] A. Jelić and L. F. Cugliandolo. In: J. Stat. Mech. 2011.02 (2011), P02032.
[103] B. Yurke et al. In: Phys. Rev. E 47 (1993), pp. 1525–1530.
[104] A. J. Bray, A. J. Briant, and D. K. Jervis. In: Phys. Rev. Lett. 84 (2000), pp. 1503–1506.
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(a)

𝑡

(b) (c)

Figure 4.15: (a) (top) Control parameters T and µ, quenched simultaneously.
(middle) Growth of the order parameter m (eq. (3.50)). (bottom) Growth of
the modulus of the first-order correlation function (4.53) after an instantaneous
quench. (b) Evolution of |g1(r)| from a non degenerate gas to a low-temperature
configuration. The shape of the correlation length switches from exponential to
algebraic, according to (4.15) and (4.16). (c) Growth of the correlation function
at the edge |g1(L/2)| (blue), of the condensed fraction nc (red) and of the square
of the order parameter m2 (green). m2, |g1(L/2)|, and nc coincide for long t, as
postulated in Sections 4.1.1 and 3.2.6. The dashed grey line indicates the instant
of the quench. The dashed section of the condensed fraction represents the fact
that it is only well defined sufficiently far from the transition (see text).
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Figure 4.16: (left) Time evolution of the first-order correlation function g1(r)
during an instantaneous quench across the BKT critical point. (right) Correlation
function, rescaled according to a function f(r/ζ(t)) as in (4.60). The definition
of ζ(t) is chosen so that, at any t, g1(ζ(t), t) = 0.4. The parameters for this
simulation are ωref = 2π(5Hz), µ = (−10 → +10)~ωref, T = (200 → 5)nK,
γ = 0.01, L = 216µm.

neous quench, and its rescaling according to (4.60). This is done by imposing the values
of g1(ζg(t), t) to be equal to a certain cut value gcut (e.g. gcut ≡ 0.4 in the example),
so to get a time-dependent value for ζg. The spatial coordinate is then rescaled by the
proper ζg(t) for each time. Figure (4.16) (right) shows indeed the predicted dynamic
scaling to hold. We checked that the resulting correlation length is only marginally
affected by changing the cut value in a sensible range (0.2 − 0.7). The second way of
measuring ζ comes from the study of the density of vortices ρv(t) ≡ nv(t)/L2 in the
system. In the fully random infinite temperature limit, at equilibrium, the density of
defects is predicted[102] to be ρv ' 0.3. Figure (4.17) (right) reports the decay of the
number of defects as a function of time. One can see that for the “infinite” tempera-
ture case, we measure a density of defects around 0.4. After the quench is performed,
the density of defects decays exponentially. As the vortices disrupt the coherence in a
uniform system, one could postulate a correlation length associated with the inverse of
the vortex density, as ζv(t) = 1/

√
ρv(t) in two dimensions.

The two correlation lengths are presented in Figure (4.18). The difference in the
absolute value for the two quantities is due to the details of how they are computed,
and in light of relation (4.61) it can be seen as having determined different values for
t0 and λ(T ). We are interested in investigating the scaling for the growth of ζg(t) and
ζv(t). For this purpose we perform several fits for their long-time evolution, according
[102] A. Jelić and L. F. Cugliandolo. In: J. Stat. Mech. 2011.02 (2011), P02032.
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Figure 4.17: (left) Time evolution for the density of defects ρv(t) = nv(t)/L2. Note
that the initial value is consistent with the one predicted for an infinite temperature
configuration ∼ 0.3. (right) Decay of nv(t) log(nv(t)) as a function of time. The
parameters are the same as in Fig. (4.16).

Figure 4.18: (left) Correlation length ζg(t) extracted from the growth of the first-
order correlation function g1(r), reported in Fig. (4.16). The definition of ζg(t)
corresponds to the scaling factor for the spatial coordinate r, given an intersection
of 0.4. (right) Correlation length ζv(t) extracted from the decay of the density of
vortices ρv(t). The definition is ζv(t) = 1/

√
ρv(t). The difference between the two

is given by the different values for the non-universal constants t0 and λ(T ), due
to the different measuring procedure. In both figures several fitted scalings are
plotted (see text), giving very similar results for z.
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to the four relations
ζ(t) ≈ At1/zt (blue),

≈ At0.5 (black),

≈ A(t/ log(t))1/zt/ log(t) (cyan),

≈ A(t/ log(t))0.5 (green),

(4.62)

where we considered as reference the expected value zth = 2. The four fitting relations
show respectively a diffusive-type scaling (blue), the diffusive scaling expected from the
theory ∼ t1/2 (black), relation (4.61), with the exponent as a free parameter (cyan),
and the one with the expected critical exponent (green).

The plots show indeed a certain internal consistency between the two “indepen-
dently” computed correlation lengths, but the value for the critical exponent z is not
close to the expected one zth = 2. This disagreement is remarkable, especially in the
light of previous works[105] in other physical systems showing good agreement with the
theory, and remains an open matter for further investigation.

4.3.4 Slow quenches and Kibble-Zurek scaling

In this section we study again the evolution of a system from its non-degenerate
to its degenerate phase, but instead of performing an instantaneous quench across
the transition, we consider slower quenches. In order to simulate this, we follow the
prescription by Jelić et al.[102]: we first equilibrate the system at a finite temperature
above the critical value T0 > TBKT. Then, at t0 we perform linear ramps in the control
parameter, with a finite duration τq, up to the final subcritical value:

T (t) = T0 − (T0 − Teq)(t− t0)
τq

. (4.63)

From there, the temperature is kept fixed at Teq, and the system is left to equilibrate.
Figure (4.19) summarises the cooling procedure just described, for different quench
durations.

According to the Kibble-Zurek picture, after passing −t̂, the evolution of the sys-
tem is dramatically slowed down, and the correlation length ζ maintains its “frozen”
value ζ(t > −t̂) = ζ(−t̂) ≡ ζ̂. However, one could argue that this is a rather strong
simplification, and that the correlation length evolution is modified but not stopped
[105] P. Comaron et al. In: ArXiv e-prints (2017). arXiv: 1708.09199.
[102] A. Jelić and L. F. Cugliandolo. In: J. Stat. Mech. 2011.02 (2011), P02032.

http://arxiv.org/abs/1708.09199
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//
//

Figure 4.19: Schematic representation of the cooling procedure. The temperature
is equilibrated from infinite to a finite value T0 > TBKT, then, starting at t0, it is
quenched with a linear ramp of various durations τq and finally kept fixed at Teq.

after −t̂. Jelić et al.[102] postulated that, if ∆t = t̂+ t:

ζ(t) =

 ζeq(T (t)) for t < −t̂(τq)

ζ̂ +
(
λ(T ) ∆t

log(∆t/t0(T (t)))

)1/z
for t > −t̂(τq),

(4.64)

where λ(T ) and t0(T ) are assumed to evolve so slowly that one can retain their evolution
after an instantaneous quench. Therefore, the correlation length follows its equilibrium
value up to −t̂, after which its evolution is modified and continues according to (4.61).
From (4.61) it is possible to infer a relation for the evolution of the density of defects
as a function of the quench time τq:

ρv(τq) ≈ τ−1
q +

(
λ(Teq)−1 log[∆t(τq)/t0(τq)]

∆t(τq)

)

= τ−1
q +

(
λ−1 log[(t̂+ τq)/t0]

t̂+ τq

)
. (4.65)

A very brief analysis has been carried out on the evolution for the density of defects.
In the simulation results, due to the choice of the parameters, the growth of the quasi
long-range order given by the order parameter m occurs always at the end of the cooling
ramp. Hence, the vortex evolutions are always computed after the ramp is completed,
therefore in a situation with fixed control parameters T and µ.

This is clearly different from the case studied in [102], where the measurement of
the number of defects is done precisely at the end of the ramp, when the temperature
[102] A. Jelić and L. F. Cugliandolo. In: J. Stat. Mech. 2011.02 (2011), P02032.
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Figure 4.20: Scaling of the vortex density ρv as a function of the quench time τq.
The number of vortices is computed at a time interval tcount − t0 = τq(1 + s) after
the cooling ramp is completed. The solid lines correspond to fitting functions of
the kind of relation (4.65), where λ and t0 are kept as free fitting parameters.

has just reached its final value. To estimate whether this plays a role in the dynamic
scaling, we computed the number of vortices at three different fraction s of the ramp
time, after the quench is completed. Thus, for any ramp time τq the density of defects
is counted at a time

∆tcount = tcount − t0 = τq + sτq, (4.66)

where we considered the values for the fraction s = [0.1, 0.2, 0.3]. The results are shown
in Figure (4.20), where indeed the scaling is unaffected by the difference in the fraction
s, apart from a general shift in the magnitude. The solid lines show a fit for the data
according to the relation (4.65), where λ and t0 are assumed to be free parameters.

4.3.5 Interaction quench

In section 4.3.2 we reported results obtained by quenching both the temperature and
the chemical potential in our sample. Dynamically controlling two parameters at the
same time causes a certain amount of ambiguity in the determination of the system’s
critical point. Abruptly changing µ also causes large atom number fluctuations, which
may cause issues in the dynamical evolution to equilibrium, and in the definition of
the projector separating the coherent and the incoherent regions. Moreover, one could
question whether quenching linearly both T and µ is seen from the system as a linear
overall quench. An alternative approach is easily recognised by looking at equation
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(a)

Figure 4.21: (top) Control parameter g2D/gc. (middle) Growth of the order param-
eter m (eq. (3.50)). (bottom) Growth of the modulus of the first-order correlation
function (4.53) after an instantaneous quench.

(4.41), which sets the critical condition for the Berezinskii-Kosterlitz-Thouless phase
transition. Keeping T and µ fixed, it is still possible to sample the critical region by
varying the coupling constant g2D instead. By inverting equation (4.41), its critical
value is given by

g2D

(
1− log(g2D)

log(13.2)

) ∣∣∣∣
c

= πµ

kBT

1
log(13.2) , (4.67)

which is a transcendental equation that can be solved numerically. In doing so, one
should note that the theory for the classical field approach as the SPGPE used here
is only justified for small values of the interaction parameter g, and T and µ have
to be chosen accordingly. We repeated the analysis presented in the previous section
on instantaneous quenches performed on the interaction constant g2D from 1.9gc to
0.1gc, at fixed (and low) temperature and chemical potential. The resulting analysis
are reported in Figures (4.21) to (4.24).

The behaviour of the correlation function is once again compatible with a scaling
like in eq (4.60), and both the vortex density and the correlation lengths resemble the
ones obtained for the temperature quench. In particular, the exponents for the growth
of ζ are again compatible within themselves, and are similar to the ones of the previous
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Figure 4.22: (left) Time evolution of the first-order correlation function g1(r)
during an instantaneous quench of g2D across the BKT critical point gc. (right)
Correlation function, rescaled according to a function f(r/ζ(t)) as in (4.60). The
definition of ζ(t) is chosen so that, at any t, g1(ζ(t), t) = 0.5. The parameters for
this simulation are ωref = 2π5 Hz, µ = 10~ωref, T = 5nK, γ = 0.01, L = 216µm.

Figure 4.23: (left) Time evolution of the density of defects ρv(t) = nv(t)/L2.
(right) Decay of nv(t) log(nv(t)) as a function of time. The parameters are the
same as in Fig. (4.22).

case, although still far from the predicted values z = 2.
Understanding the deviation of the exponents from the theoretical value for the

two-dimensional phase transition is the main goal of the future research we intend to
carry out in this area.
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Figure 4.24: (left) Correlation length ζg(t) extracted from the growth of the first-
order correlation function g1(r), reported in Fig. (4.22). The definition of ζg(t)
corresponds to the scaling factor for the spatial coordinate r, given an intersection
of 0.5. (right) Correlation length ζv(t) extracted from the decay of the density of
vortices ρv(t). The difference between the two is given by the different values for
the non-universal constants t0 and λ(T ), due to the different measuring procedure.
On both figures several fitted scalings are plotted (see text).

4.4 Chapter conclusions and future outlook

In this chapter we addressed the specificity of the two-dimensional configuration
for an atomic Bose gas. At first we reviewed the phase transition occurring in such a
system, the Berezinskii-Kosterlitz-Thouless transition. We detailed the derivation of
the most important features, such as the establishment of a quasi long-range ordering
leading to an algebraic decay of the first-order correlation function, and the role of the
vortices in characterising the superfluid transition.

We briefly reviewed the main aspects of the Kibble-Zurek mechanism, responsible
for the formation of defects in a three-dimensional system rapidly quenched across a
continuous phase transition.

Subsequently, we showed the results for the numerical analysis performed on uniform
two-dimensional systems with periodic boundary conditions. At first we concentrated
on the equilibrium results. We computed the equilibrium first-order correlation func-
tion, at different values of temperature. We then fitted their profile with an algebraic
and an exponential law, and we measured the position of the crossover between the
two decays. In the BKT framework, this should represent the critical point of the



4.4. Chapter conclusions and future outlook 108

transition. We measured a shift in its value with respect to the predicted one given by
eq. (4.41). We then computed the order parameter as a function of the temperature,
and we compared it with the square root of the edge value of the correlation function.
We found that they are identical in a broad region of temperatures, as expected from
the definition of m, and they only show a small deviation in the region of the crossover.
Moreover, these quantities seem to confirm the shift in the critical point. This topic is
still under investigation, and can be related to the shift in the speed of sound minimum
in Chapter (5). Furthermore, the decay region of m and g1(L/2) was found to be quite
large. In [74] a similar behaviour was measured for m when decreasing the system
size. We therefore postulated that this could be related to finite size effects. In order
to address the issue, we plan to perform the same simulations with different system
extensions, and to compute the temperature dependence of the order parameter. In the
same paper, the critical temperature for the transition is computed by comparing, for
different box size, the first- and the second-order correlation functions, and by produc-
ing the so-called Binder ratio as in Fig. (4.9a). We plan to perform a similar analysis
to precisely characterise the transition. Another issue on the critical point is related
to the exact determination of the quantities entering (4.41), and how well the system
responds to the input control parameters T and µ.

We are able to count the number of vortices by means of a numerical routine iden-
tifying the distribution of the circulation of the phase. We measured an equilibrium
value for the vortex density and for the associated correlation length as a function of
the temperature. The uncertainty in the determination of the critical temperature for
our parameters outlined above also plays a role in the characterisation of the divergence
of the correlation length at the transition.

In Section 4.3.2 we reported the results of an instantaneous quench through the
phase transition. The quench is performed in both control parameters T and µ, real-
ising a rapid growth of the atoms in the c-field and a rapid decay of the number of
vortices. For this system, we computed the first-order correlation function defined in
equation (4.53). We analysed the dynamical scaling of g1(r) towards the equilibration,
by rescaling the time-dependent profiles by means of a scaling function as in equation
(4.60). This allowed us to extract a correlation length ζg associated with the correlation
function, which was compared with the one (ζv) associated with the time-dependent
vortex density. The same procedure can be applied to a slightly different setup. To
avoid the issues connected to changing two control parameters at the same time, we
performed a quench of the coupling constant g across a critical value set by equation
(4.41). We performed the same analysis as in the temperature quench, again obtaining
two relations for the correlation lengths associated to g1(r) and to the vortices. An-
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other important quantity that we plan to investigate in the future is the growth of the
quasi-condensate and link it to the growth of the Penrose-Onsager condensate, as done
in Cockburn et al.[106].

On the two correlation lengths, one could fit several relations for the dynamical
scaling. We found that the predicted logarithmic correction (4.61) produced a criti-
cal exponent which is not compatible with the theoretical prediction for the F-model,
zth = 2, both for the temperature quench as well as for the interaction quench. The
values of the critical exponents, however not adherent to the predictions, show a certain
degree of internal consistency. In the literature, several values for z are proposed and
confirmed for different systems. A recent work on the Kibble-Zurek dynamical scaling
for a system in reduced dimensions has been carried out in [107], also showing a sig-
nificant deviation of the critical exponent from the mean-field prediction (although, in
that case, the critical exponent has been found to be larger than the theoretical one).
For the spin-1 ferromagnetic transition, in certain regimes the value z = 1 is predicted
by the model E [108]. In polariton condensates, it has been recently proposed[109] that
the critical exponent can assume value 1 or 2 depending on the physical parameters im-
posed. Addressing the disagreement between the theoretical and the numerical critical
exponent in our simulations will be the core of the future work related to this project.

In Section 4.3.4 we briefly addressed the problem of ramping the control parameters
in a finite time interval. We sketched an analysis on the density of defects following
different ramps and checked that the predicted scaling including the logarithmic cor-
rection can be recovered. Further analysis on that would require to perform a similar
analysis on the interaction quenched system, so to better control the definition of the
critical point for the transition. Moreover, a crucial point concerns the determination
of the freezing time t̂ entering eq. (4.65), which can be computed as in [102] by compar-
ing the equilibrium correlation length as a function of the control parameter with the
one dynamically obtained from the quench system. In the instant for which these two
quantities deviate from each other, one can assume that the system is no longer able
to adiabatically follow the external control parameter, which provides an operational
definition of t̂.

[106] S. P. Cockburn et al. In: Phys. Rev. A 83 (2011), p. 043619.
[107] R. G. McDonald and A. S. Bradley. In: Phys. Rev. A 92 (2015), p. 033616.
[108] L. A. Williamson and P. B. Blakie. In: Phys. Rev. Lett. 116 (2016), p. 025301.
[109] Micha l Kulczykowski and Micha l Matuszewski. In: Phys. Rev. B 95 (2017), p. 075306.



Chapter 5

Soliton and sound dynamics in
two-dimensional Bose-Einstein
condensates at finite temperature

In this chapter we will present the results concerning the simulations of two different
sets of experiments. The first was performed at the University of Birmingham, by the
group of Prof. Kai Bongs, and concerned the generation and the subsequent decay of a
soliton, imprinted in an elongated quasi-2D condensate, at various temperatures. The
second concerned the measurement of the speed of sound in a uniform two-dimensional
Bose gas confined in a box trap, over a temperature range spanning a wide region across
the critical point. This experiment has been performed at the Laboratoire Kastler-
Brossel at the Collège de France in Paris, under the direction of prof. Jean Dalibard.
The results of this analysis have been included in [110], which has been simultaneously
submitted with [111] and is currently under review.

5.1 Soliton decay in a finite temperature quasi-2D BEC

As presented in Chapter 1, solitons are a nonlinear class of solutions of the one-
dimensional Gross-Pitaevskii equation. In two or three dimensions, solitons are known
to undergo the so-called snaking instability. Kuznetsov and Turitsyn[112] first studied
this instability, showing that the dark solitons are prone to transverse modulational
instability: for transverse perturbations with long wavelength, the amplitude of a recti-
[110] M. Ota et al. In: ArXiv e-prints (2018). arXiv: 1804.04032 [cond-mat.quant-gas].
[111] J. L. Ville et al. In: ArXiv e-prints (2018). arXiv: 1804.04037 [cond-mat.quant-gas].
[112] E. A. Kuznetsov and Turitsyn S. K. In: JETP 67.8 (1988). (original Rus.) Zh. Eksp. Teor. Fiz.
94 (1988) p. 119.
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(a) (b)

Figure 5.1: (a) Presence of a solitonic defect a short time interval ∆t = 0.6ms after
the phase jump is imprinted in the system at T = 17nK. (above) Density profile
averaged over N = 100 stochastic realisations. (below) Phase of a single noise
realisation. (b) Bending of the soliton line due to the spatial inhomogeneities of
the trapped system after ∆t ' 6ms. (above) Density profile averaged overN = 100
stochastic realisations. (below) Phase of a single noise realisation.

linear (or planar) soliton will grow exponentially in the transverse direction. The decay
process results[113] in the creation of topologically protected defects such as vortex-
antivortex pairs (in 2D) or vortex rings (in 3D). A stabilisation of the defect and an
increase of its lifetime can be achieved by confining the system in a narrow channel.
Unstable grey solitons, hence defects with velocity v > 0 and whose density depletion
is not complete, may not decay into vortices, dispersing instead in a finite time by the
emission of phonons.

An experiment at the University of Birmingham, in the group of Prof. Kai Bongs,
wanted to address the possibility that the thermal excitations naturally present in a
system with finite temperature might have an effect on the lifetime of a grey soliton
in a quasi-2D geometry. This prompted the work presented in the following section, in
which we simulate the phase imprinting of a solitonic defect and its successive decay,
by means of the stochastic Gross-Pitaevskii equation addressed in Chapter 3. The
parameters for the system are set to match the experimental ones, and are

ωx = 2π(5Hz) ωy = 2π(40Hz) ω⊥ = 2π(250Hz) (5.1)

for the trapping frequencies, and

µ = 63~ωx, N ' 41500, T = 17nK, T/T 0
c = 0.15

µ = 59~ωx, N ' 45000, T = 50nK, T/T 0
c = 0.41.

(5.2)

[113] P.G. Kevrekidis, D.J. Frantzeskakis, and R. Carretero-González. The Defocusing Nonlinear
Schrödinger Equation: From Dark Solitons to Vortices and Vortex Rings. SIAM, 2015.
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𝑡

Figure 5.2: Zoomed density (above) and phase (below) evolution after the im-
printing of the phase step. During its propagation, the soliton will bend due
to the density inhomogeneity. The frames are taken respectively at ∆t =
[0.6, 3.12, 6.27, 9.11]ms after the perturbation is imposed.

where T 0
c is the critical temperature for the ideal gas in a 2D harmonic trap[84]:

kBT
0
c = ~

√
6ωxωy

N

π2 . (5.3)

Once the sample is grown to thermal equilibrium, a phase jump of ∆ϕ = π is im-
printed along the x direction, centred in the origin. This is achieved by multiplying the
wavefunction by a hyperbolic factor

ψ∆ϕ(r) = ei∆ϕ(1+tanh(x/ξ))/2ψ(r), (5.4)

where ξ is the healing length. This causes the system to develop a density defect in the
centre, which will move with a velocity set by its depth. In its motion, it will eventually
bend due to the inhomogeneous spatial profile of the system in the trap (Figures (5.1)
and (5.2)).

The decay of the soliton is then characterised in terms of the normalised depth

∆n = nsol/n0, (5.5)

where nsol marks the density depletion in the soliton core, while n0 is the equilibrium
[84] C. J. Pethick and H. Smith. Bose–Einstein Condensation in Dilute Gases. 2nd ed. Cambridge
University Press, 2008.
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Figure 5.3: Schematic definition of the normalised depth ∆n = nsol/n0.

density in the absence of a defect (see Fig. (5.3)). The depth of the defect nsol is
measured by subtraction in the central region of the atomic cloud, by comparing the
unperturbed density with the one in the presence of the soliton. At first, for each
stochastic realisation, we integrate the density profile over a very narrow region in the
central part of the trap in the y direction, to increase the visibility of the defect. We then
produce the unperturbed result by averaging the density profile over all the random
samples and by further performing a short time-average over several equilibrium time
steps. We subtract the first quantity from the second, obtaining samples of density
difference as in Fig. (5.4b).

(a) (b)

Figure 5.4: (a) Slice-integrated density of a single noise realisation (see text)
and corresponding integrated average density. (b) Difference between the sliced-
integrated density and the average density. The red point marks the minimum as
recognised by the tracking routine, while the coloured lines indicate the standard
deviation of the background noise.
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(a) (b)

Figure 5.5: (a) Decay of the normalised depth of the soliton, as a function of time.
The solid lines report the numerical results from the GPE (T = 0) and the SGPE
simulations (lowT, highT), while the dashed lines represent the experimental data
from Birmingham [Courtesy of Giovanni Barontini, unpublished]. (b) Numerical
results for the simulations performed with SGPE and with ZNG method [Courtesy
of Kean Loon Lee, unpublished]. The normalised depth is rescaled by its maximum
value for better comparison.

We identify the presence of the soliton with the minimum of the density difference,
when this exceeds twice the standard deviation of the background noise. Otherwise,
the defect is considered to be completely decayed. The resulting decay of the soliton
depth as a function of time is reported in Fig. (5.5a), where we also add the resulting
behaviour for a T = 0 simulation performed by solving the Gross-Pitaevskii equation
(1.14).

They appear to show a remarkable qualitative agreement with the experimental data
also plotted in the same figure, even though a closer quantitative comparison would
require a higher resolution. We also report the results of numerical simulations with
the same physical parameters, performed by Kean-Loon Lee using the Zaremba-Nikuni-
Griffin (ZNG) method[114]. This is a self-consistent treatment describing the coupled
dynamics of the condensate, by means of a dissipative Gross-Pitaevskii equation, and
the thermal cloud, through a quantum Boltzmann equation. The data obtained with
the SGPE and with the ZNG approach also show a good qualitative agreement (Fig.
(5.5b)). We perform an exponential fit on the data of the kind

∆n(t) = A(T )e−t/τ(T ), (5.6)
[114] E. Zaremba, T. Nikuni, and A. Griffin. In: J. Low Temp. Phys. 116.3-4 (1999), pp. 277–345.
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(a) (b)

Figure 5.6: (a) Resulting lifetime extracted from a fit of the normalised depth
according to equation (5.6). The resulting numerical values for the SGPE approach
(in black) are qualitatively compatible with the experimental ones (in red) within
the errorbars. The latter are slightly shifted in temperature to better display the
errorbars. (b) Distribution of the occurrences of the fitted lifetime τ(T ). The
effect of the temperature is a slight widening of the distribution corresponding to
the highest case.

to extract the lifetime as a function of the temperature τ(T ). The result is plotted in
Fig. (5.6), and again the SGPE simulations are compatible with the experiments within
the error bars. Finally, we include the distribution of the occurrences of τ for the two
different temperature cases, showing a wider distribution for the higher temperature
case.

The analysis reported above shows that there is a rather good agreement between
the numerical simulations and the experimental data. The results give a qualitative
indication that the main mechanism for the dispersion of a grey soliton in an inhomo-
geneous atomic sample is scarcely influenced by the temperature, and that it is likely
to be connected with the geometry of the system. However, the situation might be dif-
ferent in different systems, such as a purely two-dimensional sample, where the defect
is confined in a narrow channel and bounces on the rigid walls of a box trap.
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5.2 Sound propagation in a thermal uniform 2D Bose gas

In this section we will present the simulations concerning the experiment performed
at the Collège de France, on the measurement of the speed of sound in a finite tem-
perature uniform 2D BEC. We will first introduce some of the theoretical background
related to the subject, and then show the numerical results with a comparison to the
experimental data.

5.2.1 Theoretical background: hydrodynamic sound

The topic of the speed of sound at the Berezinskii-Kosterlitz-Thouless phase transi-
tion, in a configuration at which the collisions are strong enough to sustain a hydrody-
namic regime, has been addressed in a paper by Ozawa and Stringari[115]. Therein, the
temperature dependence of the first and the second sound velocities has been computed
by solving Landau’s equations for the two-fluid model. We will now introduce the rele-
vant relations following the treatment given in the book by Pitaevskii and Stringari[26],
which is independent from the dimensionality.

The hydrodynamic equations for a finite temperature sample are identical in form
to the ones for the zero-temperature case, equations (1.51) and (1.52). If we only
concentrate on the small-amplitude oscillations in a uniform system, we can neglect
the v2 term and rewrite equation (1.52) for the superfluid velocity as

m
∂vs
∂t

+ ∇µ = 0, (5.7)

where one can no longer consider the zero temperature relation µ = gn to hold, but
should also include a temperature dependence in the chemical potential. The equation
for the density is the usual continuity equation

∂n

∂t
+ ∇ · j = 0, (5.8)

where, according to the two-fluid picture, one can separate the current into the normal
and the superfluid component

j = nsvs + nnvn. (5.9)

When no external fields are present, the time derivative of the momentum density mj
is the force per unit volume, which can be approximated by the gradient of the pressure
[115] T. Ozawa and S. Stringari. In: Phys. Rev. Lett. 112 (2014), p. 025302.
[26] L. Pitaevskii and S. Stringari. Bose-Einstein Condensation and Superfluidity. Oxford University
Press, 2016.
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P , then
m
∂j
∂t

+ ∇P = 0. (5.10)

One can finally derive an equation for the entropy per unit volume, s. If all dissipation
processes are absent in the system, the entropy is conserved, and one can associate a
continuity equation to it. The entropy is however only transported by the normal part
of the fluid, hence

∂s

∂t
+ ∇ · (svn) = 0. (5.11)

Equations (5.8) and (5.10) can be combined to eliminate j and get an equation relating
the time and the space variations of the density and of the pressure:

m
∂2n

∂t2
= ∇2P. (5.12)

Now we need another equation, relating the time and space variations of the temper-
ature and of the entropy. If one rewrites equation (5.11) in terms of the entropy per
unit mass, s̃ = s/(mn):

m

(
∂s̃

∂t

)
n+ms̃

(
∂n

∂t

)
+ms̃n∇ · vn = 0, (5.13)

by means of eq. (5.10) one can further write

∂s̃

∂t
+ s̃

ns
n
∇ · (vn − vs). (5.14)

The Gibbs-Duhem equation connects some of the intensive thermodynamic quanti-
ties we are studying:

n∇µ = −s∇T + ∇P. (5.15)

Then, by means of eq. (5.15), one can rewrite eq. (5.10) as

m
∂

∂t
(nsvs + nnvn) + (ns + nn)∇µ+ms̃n∇T. (5.16)

Now, eq. (5.7) allows us to eliminate the chemical potential µ and get

nn
∂

∂t
(vn − vs) + ns̃∇T = 0. (5.17)

Combining equations (5.14) and (5.17), in the linear regime, we get the equation we
were searching for:

∂2s̃

∂t2
= s̃2ns

n
∇2T. (5.18)

The two equations (5.12) and (5.18) provide coupled equations for the pressure and the
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temperature. Indeed, let us search for plane-wave solutions of the kind

P = P0e
−iω(t−x/c) → ∇2P = −ω

2

c2 P,
∂2P

∂t2
= −ω2P ;

T = T0e
−iω(t−x/c) → ∇2T = −ω

2

c2 T,
∂2T

∂t2
= −ω2T.

(5.19)

Then, given that the two thermodynamic coordinates under consideration are T and
P , the two relations for the differential hold

dn = ∂n

∂P

∣∣∣∣
T

dP + ∂n

∂T

∣∣∣∣
P

dT, (5.20)

ds̃ = ∂s̃

∂P

∣∣∣∣
T

dP + ∂s̃

∂T

∣∣∣∣
P

dT. (5.21)

The relations (5.21) allow us to expand the derivatives ∂2n/∂t2 and ∂2s̃/∂t2, and by
substituting (5.19) and only retaining the real part of the resulting equations, one
obtains the system of equations

( 1
c2 −m

∂n

∂P

)
P = m ∂n

∂T T(
ns
nn

s̃2

c2 −
∂s̃

∂T

)
T = ∂s̃

∂P P
(5.22)

By substitution, one gets to the following relation for the velocity of sound

m

(
∂s̃

∂T

∂n

∂P
− ∂s̃

∂P

∂n

∂T

)
c4 −

(
∂s̃

∂T
+ms̃2 ns

nn

∂n

∂P

)
c2 + s̃2 ns

nn
= 0 (5.23)

In his original paper[11] about the two-fluid model for Helium-II, Landau showed that
it is possible to rewrite this equation by means of thermodynamic relations, in a more
convenient form

c4 −
(

1
m

∂P

∂n

∣∣∣∣
s̃

+ nsT s̃
2

nnC̃v

)
c2 + nsT s̃

2

nnC̃vm

∂P

∂n

∣∣∣∣
T

= 0 , (5.24)

where we introduced the specific heat at constant volume per unit mass

C̃v = T
∂s̃

∂T

∣∣∣∣
n

. (5.25)

One can immediately see that, whenever ns 6= 0, equation (5.24) gives rise to two
different sound velocities. These are associated with the two degrees of freedom given
[11] L. D. Landau. In: Phys. Rev. 60 (1941), pp. 356–358. (original Rus.) Zh. Eksp. Teor. Fiz. 11
(1941) p. 592.
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by the presence of the normal and of the superfluid component. An easy solution is
found in the limit of T → Tc where the superfluid density can be neglected. The larger
velocity is in this case

c2
10 = 1

m

∂P

∂n

∣∣∣∣
s̃

≡ 1
mnκs

, (5.26)

where
κs = 1

n

∂n

∂P

∣∣∣∣
s̃

(5.27)

is the isoentropic (adiabatic) compressibility. By neglecting the c4 term in equation
(5.24), and in the same regime ns → 0, one gets the smaller solution

c2
20 = T

m

s̃2ns

C̃pnn
, (5.28)

where C̃v = T (∂s̃/∂T )|P is the specific heat at constant pressure. The quantity c10 is
associated with isoentropic oscillations in the system, while c20 with isobaric oscilla-
tions.

For systems with a small thermal expansion coefficient α = −(∂n/∂T )|P /n =
T−1(C̃p/C̃v − 1), showing therefore almost identical isothermal and adiabatic com-
pressibility, as in superfluid Helium or 3D Fermi gases at unitarity, the two solutions
(5.26) and (5.28) represent an accurate estimation of the two sound speeds. In par-
ticular, the first sound is related to the in-phase oscillation of the normal and the
thermal components, leading to an overall total density fluctuation. The second sound
is conversely connected to the propagation of entropy perturbations, while the two
components oscillate out of phase, leaving the total density unperturbed.

However, this is not the case for dilute Bose gases, where α is indeed quite large.
One can instead develop an alternative approach by considering that for temperatures
kBT � µ = gn the thermodynamic functions of the weakly interacting Bose gas,
apart from the isothermal compressibility, are not very sensitive to the interactions.
Therefore, it is possible to use the ideal Bose gas model, which gives the following
result

1
m

∂P

∂n

∣∣∣∣
s̃

+ nsT s̃
2

nnC̃v
= nT s̃2

nnC̃v
(5.29)

for the coefficient of the c2 term in eq. (5.24). Then one can compute the second sound
speed by discarding the larger term c4, and get

c2
2 = ns

nm

∂P

∂n

∣∣∣∣
T

= ns
n

1
nmκT

. (5.30)

In 3D one can safely replace the superfluid density ns by the condensate density. In
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In Figs. 2 and 3, we show two relevant thermodynamic
functions: the ratio κT=κs ¼ c̄p=c̄v and the superfluid
fraction ns=n, calculated as a function of T=Tc for a fixed
value of the total density. The figures correspond to the
value g ¼ 0.1. Figure 2 clearly points out the large differ-
ence between κT and κS near the critical point, reflecting
the large value of the thermal expansion coefficient
α≡−ð∂n=∂TÞp=n ¼ T−1ðκT=κs − 1Þ. We note that
κT=κs → 1 as T → 0 while κT=κs → 2 as T → ∞. The
figure shows the occurrence of a maximum above the
critical point, whose height becomes larger and larger as
one decreases the value of g. Figure 3 instead points out the
large value of the superfluid fraction at the transition and
the consequent jump. As we will see below, both the large
value of the thermal expansion coefficient and the jump of
the superfluid density play an important role to characterize
the solutions of the Landau’s Eq. (1) near the transition.
In Fig. 4 we show the values for the first and second

sound velocities predicted by the solutions of Eq. (1). These
values are expressed in units of the zero temperature value

of the Bogoliubov sound velocity c0 ≡ ffiffiffiffiffi
gn

p
=m and are

calculated at fixed total density. The most remarkable
feature emerging from the figure is the discontinuity
exhibited by both the first and second sound velocities
at the transition.
Changing the interaction g does not affect the overall

qualitative behavior of the sound velocities. For example,
while for g ¼ 0.1, the jumps at the transition are c1=c0 ¼
2.36 → 1.94 and c2=c0 ¼ 0.56 → 0, reducing the value of
g by a factor of 3 the jumps become c1=c0 ¼ 3.52 → 2.82
and c2=c0 ¼ 0.56 → 0, while increasing it by a factor
of 3 the jumps become c1=c0 ¼ 1.57 → 1.38 and
c2=c0 ¼ 0.53 → 0. These results show that the jump of
second sound, when expressed in terms of c0, is not very
sensitive to the value of g. Using the parameters from the
experiment of [6] carried out on a gas of 87Rb atoms
(g ¼ 0.093, n ¼ 50=μm2), we predict the value c2 ≈
0.88 mm= sec for the second sound velocity at the tran-
sition. This value is close to the critical velocity observed in
[6], thereby suggesting that the excitation of second sound
is a possible mechanism for the onset of dissipation in this
experiment.
Concerning the physical characterization of the two

sounds, it is worth noticing that, according to Landau’s
hydrodynamic equations, the first and second sound
velocities are well represented by the expressions

c10 ≡ 1
ffiffiffiffiffiffiffiffiffiffiffi
mnκs

p ; c20 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T
m

s̄2ns
c̄pnn

s

; (5)

if the conditions

c220
c210

≪ 1;
c220
c210

αT ≪ 1; (6)
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FIG. 2 (color online). Value of κT=κs ¼ c̄p=c̄v ¼ 2PD0=D2 as a
function of T=Tc for g ¼ 0.1. The line is calculated using the
approximate analytical expressions on the universal functions,
and dots are calculated using the numerical results from [9].
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FIG. 3 (color online). Normalized superfluid density ns=n for
g ¼ 0.1. The line is calculated from the approximate analytical
expression, and the dots are calculated using the numerical values
from [9]. Two analytical expressions valid at low and high
temperatures are connected to give the curve, resulting in an
unphysical kink at T=Tc ∼ 0.7.
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FIG. 4 (color online). First and second sound velocities in units
of the zero temperature Bogoliubov sound velocity c0 ¼

ffiffiffiffiffi
gn

p
=m

with g ¼ 0.1. The blue and green solid lines are the first and
second sound velocities calculated from solving Eq. (1). The blue
and green dashed lines are the c10 and c20 defined in Eq. (5). The
dots are the first and second sound velocities calculated from the
numerical values of [9].
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fraction ns=n, calculated as a function of T=Tc for a fixed
value of the total density. The figures correspond to the
value g ¼ 0.1. Figure 2 clearly points out the large differ-
ence between κT and κS near the critical point, reflecting
the large value of the thermal expansion coefficient
α≡−ð∂n=∂TÞp=n ¼ T−1ðκT=κs − 1Þ. We note that
κT=κs → 1 as T → 0 while κT=κs → 2 as T → ∞. The
figure shows the occurrence of a maximum above the
critical point, whose height becomes larger and larger as
one decreases the value of g. Figure 3 instead points out the
large value of the superfluid fraction at the transition and
the consequent jump. As we will see below, both the large
value of the thermal expansion coefficient and the jump of
the superfluid density play an important role to characterize
the solutions of the Landau’s Eq. (1) near the transition.
In Fig. 4 we show the values for the first and second

sound velocities predicted by the solutions of Eq. (1). These
values are expressed in units of the zero temperature value

of the Bogoliubov sound velocity c0 ≡ ffiffiffiffiffi
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calculated at fixed total density. The most remarkable
feature emerging from the figure is the discontinuity
exhibited by both the first and second sound velocities
at the transition.
Changing the interaction g does not affect the overall

qualitative behavior of the sound velocities. For example,
while for g ¼ 0.1, the jumps at the transition are c1=c0 ¼
2.36 → 1.94 and c2=c0 ¼ 0.56 → 0, reducing the value of
g by a factor of 3 the jumps become c1=c0 ¼ 3.52 → 2.82
and c2=c0 ¼ 0.56 → 0, while increasing it by a factor
of 3 the jumps become c1=c0 ¼ 1.57 → 1.38 and
c2=c0 ¼ 0.53 → 0. These results show that the jump of
second sound, when expressed in terms of c0, is not very
sensitive to the value of g. Using the parameters from the
experiment of [6] carried out on a gas of 87Rb atoms
(g ¼ 0.093, n ¼ 50=μm2), we predict the value c2 ≈
0.88 mm= sec for the second sound velocity at the tran-
sition. This value is close to the critical velocity observed in
[6], thereby suggesting that the excitation of second sound
is a possible mechanism for the onset of dissipation in this
experiment.
Concerning the physical characterization of the two

sounds, it is worth noticing that, according to Landau’s
hydrodynamic equations, the first and second sound
velocities are well represented by the expressions

c10 ≡ 1
ffiffiffiffiffiffiffiffiffiffiffi
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FIG. 2 (color online). Value of κT=κs ¼ c̄p=c̄v ¼ 2PD0=D2 as a
function of T=Tc for g ¼ 0.1. The line is calculated using the
approximate analytical expressions on the universal functions,
and dots are calculated using the numerical results from [9].
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expression, and the dots are calculated using the numerical values
from [9]. Two analytical expressions valid at low and high
temperatures are connected to give the curve, resulting in an
unphysical kink at T=Tc ∼ 0.7.
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with g ¼ 0.1. The blue and green solid lines are the first and
second sound velocities calculated from solving Eq. (1). The blue
and green dashed lines are the c10 and c20 defined in Eq. (5). The
dots are the first and second sound velocities calculated from the
numerical values of [9].
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Figure 5.7: [Figure from [115]] (a) Relative superfluid density for g = 0.1. The line
is calculated for the two approximated analytical expressions from [87], for high
and low temperatures, resulting in an unphysical kink at T/Tc ∼ 0.7. The dots
are calculated from the numerical data from [87]. (b) Velocities of first (blue solid
line) and second (green solid line) sound as computed by solving equation (5.24),
rescaled by the zero temperature Bogoliubov sound velocity c0 =

√
gn/m. The

dashed lines correspond to c10 and c20 defined in equations (5.26) and (5.28). The
dots correspond again to numerical values extracted from the results in [87].

two dimensions, relation (5.30) still describes the behaviour of the second sound, in the
limit of small interactions. The first sound velocity is solved by means of the equation
(5.24). In searching for large sound speed, one can neglect the last term and obtain

c2
1 = 1

mnκs
+
(
T

m

s̃2

C̃p

ns
n

)
C̃p

C̃v

= c2
10 + c2

20(Tα+ 1)

≈ c2
10 + c2

20Tα. (5.31)

Prokof’ev and Svistunov[87] gave an approximate analytic equation for the ratio ns/n
below the critical point. Ozawa and Stringari[115] plotted the resulting curves (Fig.
(5.7a)) showing a sharp discontinuity at the transition. This discontinuity has an effect
on both sound speeds, as can be seen from Fig. (5.7b). The second sound is predicted to
show a sudden drop at the transition point, while the first sound should discontinuously
reach the value set by c10.

5.2.2 Experimental setup at the Collège de France

The experimental group at the Laboratoire Kastler-Brossel at the Collège de France
is able to realise a two-dimensional configuration for a 87Rb gas by means of an “optical
[87] N. Prokof’ev and B. Svistunov. In: Phys. Rev. A 66 (2002), p. 043608.
[115] T. Ozawa and S. Stringari. In: Phys. Rev. Lett. 112 (2014), p. 025302.
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amount of additional heating compared to the ideal adiabatic
evolution. These experiments are carried out with a flat-bottom
in-plane potential.

II. ACCORDION OPTICAL SETUP

The design of our accordion lattice is inspired from [22] and
depicted in Fig. 1(a). A single laser beam of wavelength λ =
532 nm is split by a pair of polarizing beam splitters (PBSs) into
two parallel beams propagating along the y axis. These two
beams cross in the focal plane of a lens, and their interference
forms a one-dimensional (1D) optical lattice. The position of
the incoming beam on the PBSs is moved thanks to a motorized
translation stage. This position controls the distance between
the two beams reflected by the PBSs, hence the angle between
the beams in the focal plane and the fringe spacing. The relative
phase between the two beams, which determines the absolute
position of the fringes, is controlled by a piezoelectric stack
glued on the mirror reflecting the top beam. The two beams
are transmitted through a common polarizing beam-splitter
cube positioned just before the lens [not shown in Fig. 1(a)]
to ensure that they have identical polarization. In this work
we use an elliptical beam with measured waists at atom
positions of wx = 88(2) µm and wz = 38(6) µm in the hor-
izontal and vertical directions, respectively. The uncertainty
corresponds to the standard deviation of the measurement
for the different lattice spacings studied here. The choice
of these values for the waists results from the compromise
between getting the highest intensity with the available power
and having a large enough horizontal waist to get a uniform
confinement over the sample size (see next section) and a
large enough vertical one to ensure a robust overlap between
the two beams when changing the lattice spacing, as discussed
below.

In our setup we change the full angle θ between the two
interfering beams from 3◦ to 15◦. The maximum angle is
limited by the available numerical aperture on this axis, and
the minimum angle is constrained by the finite size of the
beams, which should not be clipped by the edges of the PBSs.
We measure the lattice period i resulting from the interference
of the two beams by imaging the intensity pattern in the atom
plane on a camera, and we obtain the results shown in Fig. 1(b).
By translating the initial beam by 11.5 mm, we vary i from
11.0(1) to 1.9(1) µm. The data points are fitted by

i = λ

2

√
1 + [f/(d + d0)]2, (1)

where d is the displacement of the stage from the position
giving our largest lattice period. Here, d0 is an arbitrary offset,
and f is the focal length of the lens.

The main challenge for realizing the accordion lattice is
to avoid displacements of the beams in the focal plane when
changing their angle. A large displacement of the two beams
decreases their overlap and leads to a lower lattice depth and
hence to a reduction of the trapping frequency or even to atom
loss. In our setup, the main limitation is the imperfect quality
of the lens. For instance, spherical aberrations and surface
irregularities induce variations of the beam positions. We have
tested standard achromatic doublets and an aspherical lens
(Asphericon A50-100) and have found that the displacement
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FIG. 1. (a) Sketch of the optical design allowing one to change
the angle between the two interfering beams as proposed in [22]. The
initial beam is moved (bottom arrow) by a distance d with a motorized
translation stage (model LS-110 from PI miCos) that changes the
distance between the two beams reflected by the polarizing beam
splitters (PBS) of 25 mm size. These two beams are then focused
on the atomic cloud by an aspherical 2-inch-diameter lens of focal
length f0 = 100 mm. The top beam is reflected on a mirror glued on
a piezoelectric stack and goes twice through a quarter-wave plate. (b)
Measured lattice spacing i of the vertical lattice at the atom position
for different positions d of the translation stage. The data points
are fitted by Eq. (1) with f and d0 as free parameters. We obtain
f = 103(1) mm and d0 = 2.46(3) mm. The one-standard-deviation
errors obtained from the fit on the measured lattice spacing are smaller
than the size of the points.

is much smaller for the aspherical lens [26]. We show in
Fig. 2 the positions of the centers of both beams in the z
direction. The beams move by typically less than 20 µm in
both directions, justifying our choice of wz = 39 µm. We
measure a displacement with a similar amplitude along the
horizontal axis. We note that this motion of relatively small
amplitude of the beams could induce irregular variations of the

013632-2

Figure 5.8: [Figure from [116]] Sketch of the setup of the “optical accordion”. By
moving the initial beam by a distance d it is possible to change the angle between
the two final beams, which results in an increased trapping frequency ωz along the
vertical direction.

accordion”[116]. This mainly consists in realising a one-dimensional optical lattice in
the gravity direction z, thanks to the focussing of two copies of a single laser beam of
wavelength λ = 532nm. The distance between the interference fringes can be tuned
by changing the angle between the two beams, and results in a trapping frequency
ωz inversely proportional to the spacing itself (see Fig. (5.8)). The atomic cloud
can therefore be cooled down in a magneto-optical trap by using standard techniques,
obtaining a 3D ultracold gas. This can be compressed in the z direction into a pancake-
shaped distribution. The power of the accordion beam can then be increased to trap
the atoms in a single node of the optical lattice, and the dipole trap can be turned off.
At this point, an adiabatic change in the angle between the accordion beams further
compresses the gas, up to the point in which the thermal and the interaction energy
are smaller than ~ωz, effectively freezing the motion in the vertical direction, and
achieving the two-dimensional regime. The in-plane confinement is implemented by a
digital micromirror device (DMD), a spatial light modulator allowing to imprint traps
of any shape, without perturbing the flat bottom of the resulting confinement. The
cloud can be imaged in-situ along the z and the y directions by absorption techniques.
[116] J. L. Ville et al. In: Phys. Rev. A 95 (2017), p. 013632.
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FIG. 4. In situ absorption images of the trapped cloud before
compression with ωz/2π = 2.1 kHz and T = 800 nK. The cloud
diameter is 40 µm. To avoid saturation of the absorption signal, we
transfer, using a microwave field, only a small fraction of the 105

atoms from the F = 1 state to the F = 2 state before imaging atoms
in F = 2. (a) Side view (transferred fraction: 100%, average of five
pictures). The weak signals above and below the main cloud are
fringes due to the propagation of light through our dense sample. We
have checked that their position is independent of the lattice spacing
of the accordion lattice. (b) Top view (transferred fraction: 2.4%,
average of 35 pictures).

interaction energy are smaller than !ωz. A typical picture of
the cloud taken along the vertical axis is presented in Fig. 4(b).

IV. COMPRESSION IN THE ACCORDION

The main feature of this setup is the possibility to compress
the gas along the z direction once the atoms are loaded in
a single node of the lattice. In this section we describe our
characterization of the compression process starting from
atoms loaded in the largest-spacing configuration. First, we
measure the oscillation frequency of the cloud in the vertical
direction for different lattice spacings at maximum power.
This frequency is determined as follows. We excite the
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FIG. 5. Measured oscillation frequency along the vertical direc-
tion for different lattice spacings. The solid line is the calculated
frequency with the independently measured parameters of the beams,
and the shaded area corresponds to the uncertainty on the calibration
of the beam parameters. The error bars represent the standard
deviation given by the fit algorithm on the measured frequency and
are close to the size of the data points and not visible for the low
frequencies.

center-of-mass motion of the cloud along the z direction by
suddenly changing the power in the accordion beams, we
let the cloud oscillate, and, finally, we measure the vertical
position of the atomic cloud after a short free expansion. The
trapping frequency is given by a sinusoidal fit of the data. The
results are shown in Fig. 5. By compressing the lattice spacing
from 11 to 2 µm we observe an increase of the oscillation
frequency from 2.15(5) to 11.2(3) kHz. We also plot in Fig. 5
the expected frequency calculated with the measured power,
waists, and lattice spacing. Our measurements are consistently
below this calculation. We attribute this effect to the inaccurate
calibration of the beam waists and powers and the imperfect
overlap of the beams.

We now discuss the effect of compression on the cloud’s
temperature T , which is measured with a method detailed in
Appendix A. In order to avoid evaporation of atoms during this
compression, we first proceed to a cooling stage. It consists of
lowering the power of the in-plane confining laser to evaporate
the cloud and then setting it back to its initial value. After this
evaporation cooling, we typically obtain N = 3 × 104 atoms
in the large-spacing lattice at a temperature of T0 = 180 nK.
With these parameters, the total 2D phase-space density,
defined as D = Nλ2

T /A, with A being the disk area and λT

being the thermal de Broglie wavelength, is D = 4.8, which
corresponds to a noncondensed gas [5]. We then compress
the cloud to various final vertical confinements at a constant
velocity of the translation stage (90 mm/s) within 0.13 s while
keeping the overall sequence duration constant. We show in
Fig. 6(a) the measured final temperature (blue circles) for
various final trapping frequencies. We observe a significant
increase in the cloud’s temperature by a factor of about 2 for
the largest final frequency. The atom number is unchanged
during this compression, and thus it rules out any evaporation
process.
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FIG. 4. In situ absorption images of the trapped cloud before
compression with ωz/2π = 2.1 kHz and T = 800 nK. The cloud
diameter is 40 µm. To avoid saturation of the absorption signal, we
transfer, using a microwave field, only a small fraction of the 105

atoms from the F = 1 state to the F = 2 state before imaging atoms
in F = 2. (a) Side view (transferred fraction: 100%, average of five
pictures). The weak signals above and below the main cloud are
fringes due to the propagation of light through our dense sample. We
have checked that their position is independent of the lattice spacing
of the accordion lattice. (b) Top view (transferred fraction: 2.4%,
average of 35 pictures).

interaction energy are smaller than !ωz. A typical picture of
the cloud taken along the vertical axis is presented in Fig. 4(b).

IV. COMPRESSION IN THE ACCORDION

The main feature of this setup is the possibility to compress
the gas along the z direction once the atoms are loaded in
a single node of the lattice. In this section we describe our
characterization of the compression process starting from
atoms loaded in the largest-spacing configuration. First, we
measure the oscillation frequency of the cloud in the vertical
direction for different lattice spacings at maximum power.
This frequency is determined as follows. We excite the

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5

1/i (µm−1)

0

2

4

6

8

10

12

ω
z
/2

π
(k

H
z)

FIG. 5. Measured oscillation frequency along the vertical direc-
tion for different lattice spacings. The solid line is the calculated
frequency with the independently measured parameters of the beams,
and the shaded area corresponds to the uncertainty on the calibration
of the beam parameters. The error bars represent the standard
deviation given by the fit algorithm on the measured frequency and
are close to the size of the data points and not visible for the low
frequencies.

center-of-mass motion of the cloud along the z direction by
suddenly changing the power in the accordion beams, we
let the cloud oscillate, and, finally, we measure the vertical
position of the atomic cloud after a short free expansion. The
trapping frequency is given by a sinusoidal fit of the data. The
results are shown in Fig. 5. By compressing the lattice spacing
from 11 to 2 µm we observe an increase of the oscillation
frequency from 2.15(5) to 11.2(3) kHz. We also plot in Fig. 5
the expected frequency calculated with the measured power,
waists, and lattice spacing. Our measurements are consistently
below this calculation. We attribute this effect to the inaccurate
calibration of the beam waists and powers and the imperfect
overlap of the beams.

We now discuss the effect of compression on the cloud’s
temperature T , which is measured with a method detailed in
Appendix A. In order to avoid evaporation of atoms during this
compression, we first proceed to a cooling stage. It consists of
lowering the power of the in-plane confining laser to evaporate
the cloud and then setting it back to its initial value. After this
evaporation cooling, we typically obtain N = 3 × 104 atoms
in the large-spacing lattice at a temperature of T0 = 180 nK.
With these parameters, the total 2D phase-space density,
defined as D = Nλ2

T /A, with A being the disk area and λT

being the thermal de Broglie wavelength, is D = 4.8, which
corresponds to a noncondensed gas [5]. We then compress
the cloud to various final vertical confinements at a constant
velocity of the translation stage (90 mm/s) within 0.13 s while
keeping the overall sequence duration constant. We show in
Fig. 6(a) the measured final temperature (blue circles) for
various final trapping frequencies. We observe a significant
increase in the cloud’s temperature by a factor of about 2 for
the largest final frequency. The atom number is unchanged
during this compression, and thus it rules out any evaporation
process.

013632-4

Figure 5.9: [Figure from [116]] In-situ absorption images of the trapped atomic
cloud at T = 800nK, before the compression of the accordion. (a) Side view of
the atoms, acquired along the y direction. The fringes are due to the propagation
of light through the sample, and do not represent an atomic distribution. (b) Top
view for a circular trapping realised by the DMD.

An example of the loaded atomic cloud before compression is provided by Fig. (5.9),
where the DMD has been set to imprint a circular trapping.

The temperature of the sample is measured by outcoupling a small fraction of the
atoms (small enough to avoid the formation of a condensate) and by comparing its
expanded radial profile with the one of an ideal gas, initially Bose-Einstein distributed
and uniform in the trap, expanded for the same time. The resulting temperature
estimation is given with an uncertainty between 3% and 25%.

5.2.3 Measurement of the speed of sound

According to Ozawa and Stringari[115] the first sound is hardly achievable in experi-
ments involving density perturbations as a source. The first difficulty is the necessity to
reach the collisional hydrodynamic regime, so that ωτ � 1, where ω is the frequency of
the sound and τ the typical time interval between the collisions. Given the high frequen-
cies involving the first sound, this regime is difficult to achieve experimentally. Even
if this is the case, the authors proved that the second sound contribution dominates
the inverse weighted energy moment

∫∞
−∞ S(q, ω)/ω, where S(q, ω) is the dynamical

structure function with momentum q and frequency ω. This will effectively mean that
it is much more favourable to excite the second sound via density perturbations.
[115] T. Ozawa and S. Stringari. In: Phys. Rev. Lett. 112 (2014), p. 025302.
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Step potential

The purpose of the experimental measurements, as well as the one of our simula-
tions, is hence to study the propagation of the second sound in a uniform 2D gas in a
box, and to investigate the effect of temperature on its speed. We consider a rectangu-
lar flat-bottom trap of size Lx × Ly = 40× 30µm, containing about 33000 atoms. The
atomic sample is initially equilibrated into the trap, in the presence of a step potential

V (x, y) =

 Vstep for − (Lx/2) < x < −(Lx/2) + ∆x
0 otherwise,

(5.32)

which increases the bottom of the box in a region of ∆x = 10µm in the x direction.
The step height is set to be a fraction of the chemical potential Vstep = 0.25µ (Fig.
(5.10a)). The effect of the step potential is to induce a density perturbation on the side
of the trap (Fig. (5.10b)). Once the system has reached the equilibrium, the coupling
with the thermal reservoir is removed by setting γ and η to zero, and the subsequent
time evolution is performed according to the (projected) Gross-Pitaevskii equation. At
the same time, the step is suddenly removed, releasing the density perturbation which
starts its propagation in the trap. After reaching the other edge of the trap it bounces
back, and depending on the dissipation magnitude determined by the temperature, is
able to perform several complete oscillations before disappearing (Fig. (5.11)).

30𝜇m

40𝜇m

10𝜇m

0.25𝜇

𝑥

𝑦

(a) (b)

Figure 5.10: (a) Sketch of the 2D uniform box trap, with the step potential Vstep
inducing a density depletion in one side of the atomic sample. (b) Average density
integrated in the y direction, at equilibrium in the presence of the step potential.
The temperature of this simulation is T ' 0.19TBKT.
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Sound propagation in a uniform superfluid two-dimensional Bose gas

J.L. Ville, R. Saint-Jalm, É. Le Cerf, M. Aidelsburger†, S. Nascimbène, J. Dalibard, and J. Beugnon⇤
1Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University,

Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
(Dated: April 12, 2018)

In superfluid systems several sound modes can be excited, as for example first and second sound in
liquid helium. Here, we excite propagating and standing waves in a uniform two-dimensional Bose
gas and we characterize the propagation of sound in both the superfluid and normal regime. In the
superfluid phase, the measured speed of sound is well described by a two-fluid hydrodynamic model,
and the weak damping rate is well explained by the scattering with thermal excitations. In the
normal phase the sound becomes strongly damped due to a departure from hydrodynamic behavior.

Propagation of sound waves is at the heart of our un-
derstanding of quantum fluids. In liquid helium, the cel-
ebrated two-fluid model was confirmed by the observa-
tion of first and second sound modes [1]. There, first
sound stands for the usual sound appellation, namely a
density wave for which normal and superfluid fractions
oscillate in phase. Second sound corresponds to a pure
entropy wave with no perturbation in density (normal
and superfluid components oscillating out of phase), and
is generally considered as a smoking gun of superfluidity.

Sound wave propagation is also central to the study of
dilute quantum gases, providing information on thermo-
dynamic properties, relaxation mechanisms and super-
fluid behavior. In ultracold strongly interacting Fermi
gases, the existence of first and second sound modes in
the superfluid phase was predicted [2] and observed in
experiments [3, 4], with a behavior similar to liquid he-
lium. In weakly interacting Bose-Einstein condensates
(BECs), one still expects two branches of sound with
speeds c(1) > c(2) but the nature of first and second sound
is strongly modified because of their large compressibil-
ity [5]. While at zero temperature density perturbations
propagate as Bogoliubov sound waves, at finite temper-
ature we expect them to couple mostly to second sound
– a behavior contrasting with the case of liquid helium –
with a sound speed proportional to the square root of the
superfluid fraction [5, 6]. Sound waves in an elongated
three-dimensional (3D) BEC were observed in Refs. [7, 8]
in a regime where the sound speed remains close to the
Bogoliubov sound speed.

Propagation of sound in weakly interacting two-
dimensional (2D) Bose gases was recently discussed in
Ref. [9] using a hydrodynamic two-fluid model, predict-
ing the existence of first and second sound modes of as-

sociated speeds c
(1)
HD and c

(2)
HD, respectively. In 2D Bose

gases, superfluidity occurs via the Berezinskii-Kosterlitz-
Thouless (BKT) mechanism [10]. The superfluid to nor-
mal transition is associated with a jump of the superfluid
density that cannot be revealed from the thermodynamic
properties of the gas. As the second sound speed is re-

lated to the superfluid fraction, one expects c
(2)
HD to re-

main non-zero just below the critical point of the super-

FIG. 1. Experimental protocol and observation of propagat-
ing waves. (a) Absorption image of the cloud perturbed by a
local additional potential. The excitation is delimited by the
horizontal dashed line and depletes the atomic density by a
factor around 1/3. (b) Example of time evolution of the varia-
tion of the density profile n2D with respect to its spatial mean
value (integrated along x) obtained after abruptly removing
the additional potential. For this example T/Tc = 0.37(12)
and n2D = 29(3) µm�2. The position of the dip is fitted by
a triangle function (black solid line) which gives, c =1.49(3)
mm/s.

fluid to normal transition and to disappear just above
the transition.

In this Letter, we study the propagation of sound in
a 2D uniform Bose gas. We observe a single density
sound mode both in the superfluid and normal phases.
Deep in the superfluid regime, the measured sound speed
agrees well with the Bogoliubov prediction. We measure
a weak damping rate compatible with Landau damping, a
fundamental mechanism for the understanding of collec-
tive modes of superfluids at finite temperature [11]. For
higher temperatures, we observe a decrease of the sound
velocity consistent with the second sound speed variation
predicted in Ref. [9] from two-fluid hydrodynamics. The
damping of sound increases with temperature, and the
sound propagation becomes marginal for temperatures
close to the superfluid to normal transition. Above the
critical point, we still observe strongly damped density
waves, with no discernable discontinuity at the critical
point. The discrepancy with the two-fluid model predic-
tions could be due to a departure from hydrodynamic
behavior, that manifests in our experiments as a strong
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Figure 5.11: (top) Time propagation of a density perturbation generated at t = 0
in a 87Rb gas with scattering length as = 5.27nm. The density is integrated in
the y direction to enhance visibility of the defect, and is averaged over a variable
number N = (30− 100) of stochastic realisations. Depending on the temperature,
the perturbation is able to bounce several times off the system walls. The blue
dashed line corresponds to the computed Bogoliubov speed of sound at T = 0,
cbog =

√
ng/m. (middle) Integrated differential density, obtained by subtracting

the integrated density above by its time-averaged value at equilibrium, after the
perturbation has completely dissipated. The black dashed line is the triangular
fit extracted from the data of the bottom panel. (bottom) Trace of the minimum
density as a function of time. The dashed black line represents a triangular fit,
while the grey line marks the boundaries of the system. (a) Data for T ' 0.19TBKT.
(b) Data for T ' 0.60TBKT. (c) [Figure from [111]] (left) Absorption imaging of
the in-situ density profile of the experiment at Collège de France, perturbed by a
step potential whose size is marked by the dashed line. (right) Experimental data
for the time propagation of the density perturbation. The density is integrated in
the y direction to enhance the visibility of the defect, and T/TBKT = 0.37.
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We perform numerical simulations by means of the stochastic projected Gross-
Pitaevskii equation described in Chapter 3. Some results for low- and high-temperature
data are shown in Fig. (5.11). In order to enhance the visibility of the density per-
turbation propagating towards x, we integrate the averaged density of our stochastic
realisations in the y direction. The resulting profile shows the motion of the defect
as it bounces back and forth in the trap, for an amount of time depending on the
temperature (Figures (5.11a) and (5.11b), top panel), and it closely resembles the ex-
perimental data (Fig. (5.11c)). This feature is even more evident when we subtract
from the integrated density profile its time-averaged value at equilibrium, when the sys-
tem has completely dissipated the density perturbation (Figures (5.11a) and (5.11b),
middle panel). From this, it is possible to extract the defect trajectory by following the
minima of the differential density. One could also fit on this data a triangular wave

f∆(t) = 4A
T̃

(
(t− θ)− 1

2 T̃F (t− θ)
)

(−1)F (t−θ), (5.33)

where
F (x) =

⌊2x
T̃

+ 1
2

⌋
, (5.34)

b·c is the floor function, T̃ is the period of the wave, A is the amplitude, and θ is a
phase in time (Figures (5.11a) and (5.11b), bottom panel). Then one could extract
from it the speed of sound as

c∆ = 4A
T
. (5.35)

Although the analysis above is in principle correct, a more accurate estimation of
the speed of sound can be performed by studying the motion of the centre of mass of
the system. The displacement of the centre of mass with respect to the centre of the
trap is defined as

∆xcm(t) =
∫
dx′ dy x′n(x′, y, t)∫
dx′ dy n(x′, y, t) , (5.36)

and is an oscillating function whose amplitude is decaying in time, as the perturbation
progressively dissipates (see Fig. (5.12)).

Thus, by imposing a fitting function of the kind of a damped harmonic oscillator

Fcm(t) = Fe−t/τ
(

cos(ωt) + 1
ωτ

sin(ωt)
)
, (5.37)

where F is the amplitude, ω/2π is the frequency of the oscillating wave, and τ is a
decay time, one could extract the speed of sound as

ccm = Lxω

π
. (5.38)



5.2. Sound propagation in a thermal uniform 2D Bose gas 126

Figure 5.12: Oscillation of the centre of mass, as defined in text, for the different
values of temperature indicated in the figures. The centre of mass position is
normalised by its value at t = 0, hence x̃cm(t) = xcm(t)/xcm(0). The dashed line
indicates the damped oscillating fit according to the relation (5.37). The resulting
speed of sound, computed as in equation (5.38), is normalised according to the
Bogoliubov speed of sound. The uncertainty in the measurement is simply the
relative error of the fit.

Figure (5.12) reports the resulting oscillatory behaviour of the centre of mass in four
cases at different temperatures, and the corresponding fits according to equation (5.37).
The speed of sound computed according to eq. (5.38) is normalised by the zero-
temperature Bogoliubov speed of sound c0 =

√
ng/m.

A third method, which was implemented in [111], consists in studying the decay
of the first Fourier mode associated with the collective oscillation of the atoms. One
could decompose the integrated density profile in the sine basis as1

n(x, t) = n̄+
∞∑
n=1

An(t) sin(k̃nx), (5.39)

where k̃n = π/Lx is the wavelength corresponding to the nth mode of the box, and n̄ is
1 Note that, in [111] this is instead expanded in the cosine basis, because of a different definition of
the spatial coordinate x: in our case x ∈ [−Lx/2, Lx/2], while in the reference x ∈ [0, Lx].

[111] J. L. Ville et al. In: ArXiv e-prints (2018). arXiv: 1804.04037 [cond-mat.quant-gas].

http://arxiv.org/abs/1804.04037


5.2. Sound propagation in a thermal uniform 2D Bose gas 127

Sound propagation in a superfluid two-dimensional Bose gas

LKB team1⇤
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FIG. 1. Experimental protocol and observation of propagating
waves. (a) Absorption image of the cloud perturbed by a local addi-
tional potential. The excitation is delimited by the line and depletes
the atomic density by a factor 1/3. (b) Example of time evolution
of the variation of the density profile with respect to its mean value
(integrated along x) obtained after abruptly removing the additional
potential. For this example T/Tc = 0.37(12). The position of the dip
(in red) is fitted by a triangle function (black solid line) which gives,
for this example, a speed of 1.49(3) mm/s.

(a) (b)

(c) (d)

FIG. 2. Time evolution of the lowest-energy modes for di↵erent de-
generacies. (a) Amplitude of the first mode as a function of time for
T/Tc = 0.37(12). The solid line is a fit by exponentially damped si-
nusoidal oscillation. (b) Amplitude of the second mode for the same
run as in (a). (c,d) Amplitude of the first mode for T/Tc = 0.95(5)
and for T/Tc = 1.38(18), respectively. For all graphs each point is
the average of three measurements and the error bars represent the
associated standard deviation.

FIG. 3. Speed of sound and damping. (a) Measured speed of sound
normalized to the Bogoliubov speed of sound cB. The vertical dashed
line shows the expected position of the critical point. The solid line
shows the result from the two-fluid hydrodynamic model applied to
the 2D Bose gas. The shaded area represents the influence of our un-
certainty on the calibration of the atomic density n2D on the determi-
nation of cB (see [1] for details). (b) Quality factor Q1,2 = !1,2/�1,2

of first (circles) and second (squares) modes. The solid line is the
prediction for Landau damping. Note that there are fewer points for
the second mode because for some experimental runs the signal to
noise ratio does not allow for a robust fit of the damping of the os-
cillations. For both graphs, the error bars represent the statistical
uncertainty extracted from the fitting procedures used to determine
speed of sound, damping rate and degeneracy of the gas.
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FIG. 1. Experimental protocol and observation of propagating
waves. (a) Absorption image of the cloud perturbed by a local addi-
tional potential. The excitation is delimited by the line and depletes
the atomic density by a factor 1/3. (b) Example of time evolution
of the variation of the density profile with respect to its mean value
(integrated along x) obtained after abruptly removing the additional
potential. For this example T/Tc = 0.37(12). The position of the dip
(in red) is fitted by a triangle function (black solid line) which gives,
for this example, a speed of 1.49(3) mm/s.
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FIG. 2. Time evolution of the lowest-energy modes for di↵erent de-
generacies. (a) Amplitude of the first mode as a function of time for
T/Tc = 0.37(12). The solid line is a fit by exponentially damped si-
nusoidal oscillation. (b) Amplitude of the second mode for the same
run as in (a). (c,d) Amplitude of the first mode for T/Tc = 0.95(5)
and for T/Tc = 1.38(18), respectively. For all graphs each point is
the average of three measurements and the error bars represent the
associated standard deviation.

FIG. 3. Speed of sound and damping. (a) Measured speed of sound
normalized to the Bogoliubov speed of sound cB. The vertical dashed
line shows the expected position of the critical point. The solid line
shows the result from the two-fluid hydrodynamic model applied to
the 2D Bose gas. The shaded area represents the influence of our un-
certainty on the calibration of the atomic density n2D on the determi-
nation of cB (see [1] for details). (b) Quality factor Q1,2 = !1,2/�1,2

of first (circles) and second (squares) modes. The solid line is the
prediction for Landau damping. Note that there are fewer points for
the second mode because for some experimental runs the signal to
noise ratio does not allow for a robust fit of the damping of the os-
cillations. For both graphs, the error bars represent the statistical
uncertainty extracted from the fitting procedures used to determine
speed of sound, damping rate and degeneracy of the gas.

(b)

Figure 5.13: [Courtesy by the group of Jean Dalibard at the Collège de France,
unpublished] Decay of the amplitude of the Fourier mode corresponding to the col-
lective mode sin(k1x), with k1 = π/Lx. (a) Data corresponding to a temperature
T/TBKT ' 0.37. (b). Data corresponding to a temperature T/TBKT ' 0.95.

the average density along x. Some examples of the experimental analysis can be seen
in Fig. (5.13). By studying the time decay of the amplitude of the first mode A1(t)
with a fitting procedure analogous to eq. (5.37), at different temperatures, it is possible
to extract the speed of sound. We applied this approach to the following treatment,
where we detached from the experimental configuration described so far, to study a
similar but different system more suited to this kind of analysis.

Oscillation and decay of single standing waves

The aim of the previous analysis has been to reproduce the experimental configura-
tion of the Dalibard’s group. However, from a purely theoretical perspective, one would
want to excite a single standing wave (SSW) to study its decay. Therefore, instead of a
step density perturbation, one could engineer the initial potential to mainly couple with
one oscillation mode of the system, and study the decay of its amplitude in time. We
performed numerical simulations of a two-dimensional system with periodic boundary
conditions in both directions. The size of the computational box was set to match the
experimental trap, so once again we considered Lx×Ly = 40×30µm, and the chemical
potential was tuned to reproduce the experimental atom number. The system is grown
to thermal equilibrium in the presence of a stationary sinusoidal perturbation of the
trap bottom,

Vp(x, y, t) = Vp(x) = −0.1µ sin(knx), (5.40)

where
kn = 2π

Lx
n (5.41)
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(a) (b)

Figure 5.14: Oscillation and decay of a single standing wave (SSW) for a tem-
perature of T/TBKT = 0.29. The two-dimensional density is integrated in the y
direction to enhance visibility, and its average equilibrium value is subtracted from
it. (a) Decay of the n = 1 mode. (b) Carpet plot of the decay for the three modes
n = 1, 2, 3.

and n is a positive integer number. For the periodicity imposed by the boundary
conditions to be non singular, we can only consider those values of kn such that the
box contains an integer number of wavelengths. Different values for the amplitude of
the perturbation have been considered, and the value of 0.1µ has been found to be
sufficiently strong to generate a good signal but low enough to minimise the coupling
of the standing wave with other modes of the system.

Once the system has equilibrated, the coupling with the thermal reservoir is switched
off, and the sinusoidal perturbation is removed. The real-time evolution is then per-
formed according to the (projected) Gross-Pitaevskii equation. As in the previous case,
we integrate along the y direction to enhance the visibility. The density profile of the
system oscillates in time, maintaining its initial sinusoidal shape if only one collective
mode was originally excited (see Fig. (5.14)). We extract the values of the amplitude
at each time by fitting to the integrated density a sinusoidal function2

ffit = A sin(knx) (5.42)

where the amplitude is the fitting parameter. Figure (5.15) shows the resulting damped
oscillations for A. Analogously to what has been done in eq. (5.37), we fit the oscilla-
2 An alternative approach consists in a Fourier analysis of the integrated density similar to what has
been done in [111]. We checked that the results are identical to the ones obtained as explained in the
text.



5.2. Sound propagation in a thermal uniform 2D Bose gas 129

Figure 5.15: Oscillation of the normalised amplitude Ã = A(t)/A(0), as defined
in text, for the different values of the mode index n indicated in the figures. The
dashed line indicates the damped oscillating fit according to the relation (5.43).
The temperature for these data is T/TBKT = 0.32.

tions with the damped harmonic oscillator relation

Fosc = Fe−t/τn
(

cos(ωnt) + 1
ωnτn

sin(ωnt)
)
, (5.43)

where the index n corresponds again to the collective mode kn. Thus, we are able to
get different values of the oscillation frequency and of the decay time for up to three
collective modes of the system (n = 1, 2, 3), as a function of the temperature.

In the next subsection we will show the resulting behaviour of these quantities, and
how they are related among themselves and with the literature.

Results and comments

In the following we report the results of the analysis performed in the previous
sections. The results for the fit of the sound speed extracted from the study of the step
perturbation are reported in Fig. (5.16a). The blue points correspond to the velocity
computed by analysing the motion of the centre of mass, as explained above. The red
points correspond to the decay of the coefficient A1(t) for the first Fourier mode as
in equation (5.39), and resemble the analysis performed for the experimental data[111],
plotted in green. The two sets of theoretical data show an identical trend, but present
a small shift. In particular, the Fourier decay points are systematically smaller than
the centre of mass ones, and do not converge to unity in the low-temperature limit.
We believe that this effect might be due to the coupling of the lowest collective mode
with the ones of higher order, caused by the step potential perturbation. Having a
coupling with modes of higher order and lower wavelength could result in a lowering of
[111] J. L. Ville et al. In: ArXiv e-prints (2018). arXiv: 1804.04037 [cond-mat.quant-gas].

http://arxiv.org/abs/1804.04037
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(a) (b)

Figure 5.16: (a) Speed of sound computed from the propagation of a density
depletion produced by a step potential, as described in Fig. (5.10a), normalised
by the zero-temperature Bogoliubov speed of sound c0 =

√
ng/m. The green

data correspond to the experimental values of [111]. The blue and red points are
the result of the analysis performed on the simulations described in the previous
subsection. The blue data report the sound computed from the oscillation of the
centre of mass, while the red ones correspond to the decay of the first Fourier
component A1, as done in [111]. We measure a small systematic shift between
these two methods, which could be explained by the coupling of the first mode
with the ones at higher order. The errorbars in c are indicative of the error of
the fit, while the ones in temperature account for a small uncertainty in the value
of the density n, arising from statistical fluctuations. (a) Decay rates 1/τ for the
oscillation of the centre of mass and of the first Fourier component.

the sound speed.
Both the experimental and the numerical results show that, above TBKT, the values

of c do not fall to zero, as expected for the second sound in the hydrodynamic regime[115].
However, the theoretical prediction for the first sound would require the values of
the velocity to be much larger than the measured ones. Thus, one could wonder if
the measured speeds of sound arise from a non hydrodynamic process. Indeed, the
experimental parameter of [111] are such, that the collisional rate[117]

Γcoll = ~ng2
2D

m
(5.44)

is of the same order of the frequency of the excited mode, meaning that the collisions
are not frequent enough for the system to be in the collisional hydrodynamic regime.
[115] T. Ozawa and S. Stringari. In: Phys. Rev. Lett. 112 (2014), p. 025302.
[111] J. L. Ville et al. In: ArXiv e-prints (2018). arXiv: 1804.04037 [cond-mat.quant-gas].
[117] D. S. Petrov and G. V. Shlyapnikov. In: Phys. Rev. A 64 (2001), p. 012706.
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Figure 5.17: Distribution of ωn as a function of kn for the three modes n = 1, 2, 3,
at various temperatures indicated in the legend.

In order to avoid the coupling with more modes, we performed the analysis on the
decay of a single collective mode, imprinted by a proper sinusoidal density perturbation,
as explained above. The fit procedure according to eq. (5.43) gives different sets of
frequencies ωn and decay time τn for each temperature, and for the modes n = 1, 2, 3.
With them, two interesting quantities can be computed. The first is the speed of
sound, obtained by performing linear fits of the distributions of ωn as a function of the
wavevectors kn, as in Fig. (5.17) and Fig. (5.18a). The data obtained this way agree
remarkably well with the experiment, and show once again the same features as the
results of Fig. (5.16a), such as the finite value of the sound speed for temperatures
higher than TBKT. In [110], the data have been found to agree very well with the
theoretical prediction of the Random Phase Approximation (RPA) formalism, which is a
method to describe the dynamic behaviour of a Bose gas in the absence of collisions[118],
which is also reported in Fig. (5.18a). Note that, below the BKT transition, the
measured speed of sound agrees well with the theoretical prediction for the second
sound c2 defined in eq. (5.30), reported as a dashed line in Fig. (5.18a). This is
understood by considering that in weakly interacting Bose gases close to the transition,
relation (5.30) approximates well the second sound. Moreover, it only differs from
the isothermal sound cT = 1/√mnκT by a factor

√
ns/n, depending on the superfluid

fraction, which remains fairly large even in the vicinity of the transition. The isothermal
(collisionless) sound actually serves as a good approximation for the measured speed
of sound (see [110] for a more detailed treatment of this aspect).
[110] M. Ota et al. In: ArXiv e-prints (2018). arXiv: 1804.04032 [cond-mat.quant-gas].
[118] L.P. Kadanoff and G. Baym. Quantum statistical mechanics: Green’s function methods in equi-
librium and nonequilibrium problems. W.A. Benjamin, 1962.
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(a) (b)

Figure 5.18: (a) Resulting speed of sound as a function of temperature, normalised
by the zero-temperature Bogoliubov speed of sound c0 =

√
ng/m. The red points

are the speed of sound of the single standing wave (SSW) computed from a linear fit
of the distribution of ωn in Fig. (5.17), while the green points are the experimental
data from [111]. The blue solid line corresponds to the theoretical data obtained
with the RPA approach., while the grey dashed line corresponds to the result for
the second sound speed as in [115]. (b) Theoretical and numerical results for the
speed of sound, as defined in (a) and in Fig. (5.16).

A second interesting quantity is the quality factor Q of the damped harmonic oscil-
lator, which expresses the energy loss in a single cycle of the oscillator, relative to the
total energy stored in the system. In our definition of the parameters in eq. (5.43), the
quality factor is

Q = ωnτn. (5.45)

Fig. (5.19a) shows the resulting quality factor for the temperature range considered,
and for the three modes n = 1, 2, 3. From it, one could deduce that the quality factor
does not depend on which mode is considered, nor on the associated oscillation fre-
quencies (inset). This is a clear feature indicating that the damping mechanism of the
system is collisionless. If it were collisional, in fact, the damping rate 1/τn would show
a quadratic dependence on the oscillation frequency ωn, which should also be reflected
in a strong frequency dependence for the quality factor[119].

Finally, since it does not depend on n, we can average the quality factor over the
oscillation modes and compare it to the experimental one, from [111]. The result
is shown in Fig. (5.19b), also including the theoretical curve obtained by the RPA
approach.
[119] I.M. Khalatnikov. An introduction to the theory of superfluidity. W.A. Benjamin, 1965.
[111] J. L. Ville et al. In: ArXiv e-prints (2018). arXiv: 1804.04037 [cond-mat.quant-gas].
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(a) (b)

Figure 5.19: (a) Resulting quality for the three modes n = 1, 2, 3, as a function
of temperature. (inset) Quality factor as a function of the fitted frequency ωn
for the three modes, for different values of temperature. From top to bottom,
T/TBKT = 0.29, 0.58, 0.81, 1.02. Both plot show that the quality factor does not
show a strong dependence on the mode considered, nor on its frequency. (b)
Quality factors for numerical and experimental data. The red data correspond
to the quality factor for the single standing wave (SSW), averaged over the three
modes n = 1, 2, 3. The green points are the experimental data from [111], and the
blue solid line corresponds to the theoretical result for the RPA approach, as in
[110].

The experimental analysis performed in [111], and the theoretical investigation in
[110] agree well with each other, and both seem to indicate that indeed, for the param-
eters in the experiment, the system is not in the collisional hydrodynamic regime. The
measured speed of sound, then, does not correspond to one of the hydrodynamic sounds
described in section 5.2.1, but has rather to be related to a collisionless sound propa-
gation, which can exist even at temperatures above the critical value, in the absence of
superfluidity.

5.3 Chapter conclusions and future outlook

In this chapter we described the collaboration with two distinct experiments on the
dynamics of excitations in a finite temperature gases in reduced dimensions. In the
first section we report the analysis performed on the decay of a soliton in an elongated
quasi-2D condensate. After equilibrating the sample at two different temperatures, a
phase difference is imprinted in the soliton, leading to the creation of a grey soliton.
[111] J. L. Ville et al. In: ArXiv e-prints (2018). arXiv: 1804.04037 [cond-mat.quant-gas].
[110] M. Ota et al. In: ArXiv e-prints (2018). arXiv: 1804.04032 [cond-mat.quant-gas].
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This propagates in the condensate bending due to the inhomogeneity of the density
profile, and eventually decaying into sound waves. The progressive reduction of the
defect density depletion is measured as a function of time, and a lifetime is estimated
by means of an exponential fit. The simulations are compared with the experimental
results of the group at Birmingham University and with ZNG simulations performed in
Newcastle, showing good agreement. It is possible to get a qualitative indication about
the effect of temperature on the soliton decay, which seems to be marginal, apart from a
slight widening of the distribution for the lifetimes of the single noise realisations. The
main mechanism for the decay of the defect appears to be the geometry of the system,
at least in this configuration. A further analysis would involve the determination of
the same quantities in a 2D homogeneous system, where the soliton can be confined in
a narrow channel to increase its stability.

In the second section we reviewed the theoretical derivation of the equation for the
two branches of the speed of sound in a two-dimensional gas at finite temperature, in the
hydrodynamic regime, as done in [115]. We summarised the experimental realisation of
a 2D ultracold Bose gas in a uniform trap by the laboratory at the Collège de France,
by means of an “optical accordion” and a digital mirror device, and we described the
mechanism used to create sound waves in the experimental sample. We presented our
numerical simulations, with two different sound excitation protocols: the initial step
potential in a rectangular box as used in the experiments, and a single standing wave
(SSW) excitation potential in a periodic system. We detailed the analysis leading to the
extraction of the speed of sound as a function of temperature for the two protocols. In
both cases, we are able to reproduce the main features of the experimental findings. In
particular, we are able to confirm the absence of a sudden drop of the sound speed at the
transition, as predicted for the hydrodynamic second sound. Instead, we observe a finite
velocity even above the critical point. This is compatible with the propagation of sound
in a collisionless regime, which is sustained by interactions even above the transition by
the fairly large presence of the quasi-condensate. Most of the analysis related to this
part of the chapter have been included in [110], together with an investigation of the
same system with the Random Phase Approximation and with some more analysis on
the equation of state of a two-dimensional Bose gas across the Berezinskii-Kosterlitz-
Thouless phase transition. The paper has now been simultaneously submitted with
[111], and is currently under review.

[110] M. Ota et al. In: ArXiv e-prints (2018). arXiv: 1804.04032 [cond-mat.quant-gas].
[111] J. L. Ville et al. In: ArXiv e-prints (2018). arXiv: 1804.04037 [cond-mat.quant-gas].
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General conclusions

At the end of a long journey, it is always useful to sum up the travelled path and
the gathered experience. In this work we presented some analysis on the dynamics of
excitations in low-dimensional Bose gases. The thesis is divided in two parts: the first
is devoted to the theoretical description and the following analysis of zero tempera-
ture results, while the second addresses finite temperature, which allows us to explore
interesting phenomena such as the phase transitions and the effect of the thermal fluc-
tuations on the dynamics of excitations in low dimensions. This section is a brief recap
of the more detailed conclusions that can be found at the end of each chapter.

In Chapter 1 we outlined the theoretical framework related to the treatment of zero
temperature Bose-Einstein condensates. We reviewed the Gross-Pitaevskii equation
governing their dynamics, and the Thomas-Fermi approximation for its solution in the
low-temperature stationary regime. We looked at the concept of solitons, a class of
dynamical solutions for the equation, and we described their main features. We intro-
duced the concepts of superfluidity in a BEC, the associated quantisation of vorticity,
and we outlined the hydrodynamic equations for a condensate. We also reported the
Bogoliubov approach for the first-order excitations in the system.

Most of these concepts were used in the subsequent Chapter 2, where we described
the results related to an experiment[27] in which, by means of a stroboscopic technique,
it was possible to follow the dynamics of solitonic vortices in an elongated, quasi one-
dimensional condensate. The defects in this distinctive trapping configuration are called
solitonic vortices, because they share some of the properties of solitons. Experimentally,
it was possible to follow their oscillations by means of a stroboscopic non-destructive
technique. We detailed the theoretical analysis predicting a motion of the vortices
following equipotential lines in the condensate, and we accounted for the atom losses
due to the imaging and the trap imperfection to produce a fitting relation for the
experimental data. This constituted my main contribution to this work. Theory and
experiment resulted to be in good agreement.
This work was the starting point of further studies on the decay and interaction of
[27] S. Serafini et al. In: Phys. Rev. Lett. 115 (2015), p. 170402.
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vortices. A preliminary experimental result investigated the presence of more than one
vortex in the system, and how the lifetime of the defects is reduced in the NV (0) = 3
configuration, while it remains almost unaffected in the NV (0) = 2 one. The properties
of vortex interactions were further addressed in a subsequent paper[39], where a more
sophisticated imaging technique was implemented, that also allowed to infer the vortex
orientation. A larger insight was possible thanks to numerical simulations of the vortex
dynamics, that indeed showed the occurrence of double reconnection processes, as well
as other unexpected phenomena such as rebounds, vortex rotations, and ejections of
defects.

In Chapter 3 we reviewed the theoretical derivation of two models allowing to treat
the finite temperature dynamics of atomic gases, similar in spirit but arising from
different derivation approaches. At first we described the stochastic Gross-Pitaevskii
equation, a Langevin equation describing the combined time evolution of a condensate
and a finite number of thermal modes. The coupling between the low-lying modes
and a heat bath representing the high-energy thermal modes is effectively realised by
means of a dissipation term and a stochastic term added to the zero temperature Gross-
Pitaevskii equation. The second method we outlined is the stochastic projected Gross-
Pitaevskii equation, which explicitly introduces a projector to separate the high-energy
modes from the coherent region. We detailed the numerical implementation of such
methods in the two-dimensional case, and we outlined the constraints on the physical
input parameters. We produced some example of the result analysis by simulating a
harmonically trapped two-dimensional sample, on which we applied two methods to
estimate the degeneracy at finite temperature: the Penrose-Onsager diagonalisation,
allowing for the determination of the condensate wave function, and the computation
of the order parameter of the equation, related to the quasi long-range ordering in the
system.

Chapter (4) is devoted to the analysis of a two-dimensional uniform system with pe-
riodic boundary conditions going through the topological Berezinskii-Kosterlitz-Thouless
(BKT) phase transition. We started the chapter by reviewing the main features of the
BKT. We introduced the concept of quasi long-range ordering and the role of vortices
in the breakdown of the superfluidity in the system. We presented the picture for the
Kibble-Zurek mechanism (KZM) leading to the creation of defects as a result of fast
quenches across continuous phase transitions. Then, we reported some results on the
thermal equilibration of the 2D system. At first we measured the equilibrium first-
order correlation function g1(r) for a temperature range spanning the critical region.
We studied its transition from an exponential to an algebraic decay, and we measured
[39] S. Serafini et al. In: Phys. Rev. X 7 (2017), p. 021031.
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a systematic shift in the critical point of about ∼ 0.25 with respect to the theoretical
relation for the BKT. We also computed the temperature dependence of the equilib-
rium order parameter, measuring again the same shift in the critical point. The data
also showed a widening of the decay region, which might be due to finite size effect.
We counted the number of vortices in the system by means of a numerical routine ac-
counting for the circulation of the phase. From it, we got an equilibrium result for the
number of vortices as a function of temperature, and the associated correlation length
ζv. The uncertainty in the determination of the critical point is also reflected here,
and we plan to address the problem by performing a precise characterisation of these
quantities as a function of the system size, similarly to what has been done in [74].

We then described the dynamics of a two-dimensional Bose gas instantaneously
driven across the BKT phase transition. At first we performed quenches in two con-
trol parameters (T and µ). This might conceptually present some issues in the precise
control of the system status, therefore we chose to perform further simulations, im-
plementing a quench in the interaction strength g. For both quench protocols, we
performed an analysis on the time growth of the first-order correlation function g1(r),
from which a correlation length ζg can be extracted by applying a scaling argument.
This can be compared with the correlation length extracted from the decay in time
of the vortex density, and both can be fitted with a relation including a logarithmic
correction accounting for the coupling of vortices below TBKT. The resulting criti-
cal exponent shows a degree of self consistency, for both quench protocols, but is not
compatible with the theoretical prediction for the BKT transition. Addressing this
disagreement will be the core of the future work on this project. We also reported a
brief analysis on the dynamics following ramped quenches, with finite time durations.
We checked that the predicted scaling for the density of defects is recovered. Further
analysis would require a precise characterisation of the important quantities related to
the Kibble-Zurek mechanism, such as the freezing time t̂.

The final chapter reported the results of the collaboration with two experimental
groups, on the dynamical properties of excitations in finite temperature gases confined
in reduced dimension. In the first section we analysed an experiment carried out at the
University of Birmingham, on the decay of a phase imprinted grey soliton in a quasi-2D
condensate. The propagation of the defect was traced by looking at the motion of the
density depletion, whose progressive reduction characterises the decay of the soliton.
We extracted the lifetimes for two different temperatures and we compared them with
the experimental results, as well as with numerical results obtained with a different
theoretical approach (ZNG). We found good agreement between the data, leading to
the formulation of the hypothesis that the main contribution in the decay mechanism
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for this geometry is not given by the temperature, but rather by the inhomogeneity of
the density. A further analysis would require to simulate 2D uniform systems with a
greater aspect ratio, so to increase the stability of the defect.

The second section reported the analysis of an experiment performed at the Collège
de France, on the sound propagation in a two-dimensional uniform gas at different
temperatures. At first we reviewed the theoretical background related to this problem,
as presented in [115]. We then presented the experimental setup at the Collège, and we
performed numerical simulations in the same conditions. The speed of sound was then
estimated by looking at the oscillations of the centre of mass, and was compared to
the experimental result, finding a good qualitative agreement. We then investigated a
second excitation protocol, able to better couple with a single mode of the system. We
found again a good agreement with the experimental data. A notable feature measured
both by the experiment and by the simulation is the finite value of the speed of sound
above the critical temperature for the BKT transition. This is in contrast with the
theoretical approach for the sound speed in the hydrodynamic regime, which predicts
its sudden drop to zero at the critical point. We obtained a strong indication that the
sound propagation measured in [111] is related to a collisionless regime. The results of
this investigation have been included in [110], which is currently under revision for the
publication, and has been simultaneously submitted with [111].

[111] J. L. Ville et al. In: ArXiv e-prints (2018). arXiv: 1804.04037 [cond-mat.quant-gas].
[110] M. Ota et al. In: ArXiv e-prints (2018). arXiv: 1804.04032 [cond-mat.quant-gas].
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Appendix A

Stochastic analysis of the
Brownian motion

Among the discoveries of modern Physics, the Brownian motion occupies a very
relevant place. First observed by Robert Brown[120] at a time at which the debate on the
existence of atoms was still open, once it was correctly interpreted as due to molecular
motion by Albert Einstein[121] in 1905 it quickly became a typical model for many
physical processes. In the following is reported a derivation of the Langevin equation
for the Brownian motion, largely taken from the book by Risken and Frank[122]. In
the subsequent section the Fokker-Planck equation for the Brownian motion is derived,
mimicking the procedure contained in the book by Reif[123].

A.1 Stochastic (Langevin) equation for the Brownian mo-
tion

The problem is first approached by means of the Newton laws. Take a particle of
mass m, immersed in a fluid. Deterministically, a friction force of expression

F = m
dv

dt
= −αv, (A.1)

[120] R. Brown. In: Philosophical Magazine 4 (1828), pp. 161–173.
[121] A. Einstein. In: Annalen der Physik 17 (1905), pp. 549–560.
[122] H. Risken and T. Frank. The Fokker-Planck Equation: Methods of Solution and Applications.
Springer-Verlag Berlin Heidelberg, 1996.
[123] Reif F. Fundamentals Of Statistical And Thermal Physics. McGraw-Hill Sci-
ence/Engineering/Math, 1965.
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will act on the particle. The solution of this equation is simply

v(t) = v(0)e−γt. (A.2)

An initial velocity v(0) will then dissipate within the relaxation time τ = 1/γ = m/α.
Equation (A.1), however, is only valid in the regime for which m is large enough that its
velocity associated with the thermal fluctuations can be neglected. If we also consider
temperature in the picture, we can say that, thanks to the equipartition theorem, in
one dimension

1
2m〈v

2〉 = 1
2kBT. (A.3)

The average thermal velocity is then

vt =

√
kBT

m
(A.4)

which can assume significant values for large temperatures T or small masses m, and
can no longer be neglected. One should therefore modify eq. (A.1) so that it leads to
the correct thermal energy, eq. (A.3). This is achieved by the addition of a random
force Ff (t) = mΓ(t)

dv(t)
dt

= −γv(t) + Γ(t), (A.5)

which represents the combined action of the fluid particles. The random force varies
from system to system, depending in principle on the initial conditions of the fluid, and
the meaningful results can only be computed on average. Equation (A.5) is a stochastic
differential equation usually named Langevin equation, and it should recover the mean
findings of the deterministic equation (A.1), when averaged. The force should not
impose a bias towards any direction, hence the average effect should be null. Moreover,
it is reasonable to assume that the collisions of different fluid molecules with the probe
particle are independent. This means that

〈Γ(t)〉 = 0 and 〈Γ(t)Γ(t′)〉 = qδ(t− t′) (A.6)

where √q represents the strength of the Langevin force. The second (autocorrelation)
condition is derived by assuming that the typical collision time τ0 is much smaller than
the relaxation time τ of the velocity of the probe. The resulting force Γ is simply white
noise, as can be easily seen by computing its power spectral density

S(w) =
∫ ∞
−∞

dτ e−iωτqδ(τ) = q

2 , (A.7)
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which is indeed uniform.
Let us now compute the mean square velocity of the particle. The solution of (A.5),

assuming that v(0) = v0, is

v(t) = v0e
−γt +

∫ t

0
e−γ(t−t′)Γ(t′)dt′. (A.8)

By using eq. (A.6) we can compute

〈v(t1)v(t2)〉 = v2
0e
−γ(t1+t2) +

∫ t1

0

∫ t2

0
et1+t2−t′−t′′qδ(t′ − t′′)dt′dt′′. (A.9)

Which results in

〈v(t1)v(t2)〉 = v2
0e
−γ(t1+t2) + q

2γ
(
e−γ|t1−t2| − e−γ|t1+t2|

)
. (A.10)

For large times γt1 � 1 and γt2 � 1 the correlation in velocity only depends on the
time difference

〈v(t1)v(t2)〉 → q

2γ e
−γ|t1−t2|. (A.11)

If we now substitute this into eq. (A.3), assuming t1 = t2, we find the magnitude of
the noise

q = 2γkBT

m
. (A.12)

Interestingly, eq. (A.12) represents a fluctuation-dissipation relation, connecting the
amplitude of the noisy force with the damping magnitude. The two quantities act on
the opposite: while the first agitates the system, the second dissipates such effect, and
when these two mechanism balance an equilibrium is established.

Let us now compute the mean square displacement of the particle, at equilibrium.
This is simply

〈(x(t)− x0)2〉 = 〈
∫ t

0
v(t1)dt1

∫ t

0
v(t2)dt2〉, (A.13)

By means of eq. (A.11) we can compute it to be

〈(x(t)− x0)2〉 = 2Dt, (A.14)

where
D = q

2γ2 = kBT

mγ
(A.15)

is the famous Einstein relation for the diffusion coefficient D.
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A.2 The Fokker-Planck equation for the Brownian motion

By considering the problem in a more probabilistic way, it is possible to show that
the Langevin equation for the Brownian motion can be mapped into a Fokker-Planck
equation. Instead of investigating the time behaviour of the mean value of the velocity,
tha Fokker-Planck equation governs the evolution of the probability P (v, t)dv that the
particle possesses, at time t, a velocity lying between v and v + dv. It is reasonable to
consider that this probability should not depend on the entire history of the particle,
but that it can be computed knowing simply the velocity v0 at a certain past instant
t0. This is usually referred to as the ”Markovian approximation”. Therefore, P can be
written as a conditional probability

Pdv = P (v, t|v0, t0) dv = P (v, s|v0) dv, (A.16)

where we make explicit that P does not depend on the origin at which the time is
computed, and that only the time interval s = t− t0 is relevant. There are two regimes
for the previous equation. In the case s→ 0, of course v = v0, thus

P (v, s|v0)→ δ(v − v0). (A.17)

In case s → ∞, instead, we should assume that the particle equilibrates with the
background medium at temperature T , and the past history is forgotten. In this case
P should not any more depend on the value of v0 and of time, and the system should
get a Boltzmann distribution

P (v, s|v0)→

√
mβ

2π e
−β
2 mv2

dv. (A.18)

Let us now consider a general condition on the evolution of the probability P (v, s|v0). In
any small interval τ , the variation of the probability that a particle has velocity between
v and v + dv is negative for the particles whose velocity changes to one outside this
interval, let us say in another interval between v1 and v1 +dv1; it is instead positive for
the particles that originally had a velocity outside the range, but which end up having
a final velocity inside [v, (v + dv)]. In mathematics

∂P

∂s
dv τ = −

∫
v1

(P (v, s|v0) dv) (P (v1, τ |v0) dv1) +
∫
v1

(P (v1, s|v0) dv1) (P (v, τ |v0) dv).

(A.19)
Here the integrals run over all the possible values of the velocity v1 and

∫
v1
P (v1, s|v) dv1 =

1. If we assume to treat macroscopic particles, over the small time increment τ the
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change in the velocity can be postulated to be small. Thus, the probability distribu-
tion will be very peaked in a small velocity interval |ξ| = |v − v1|, and we can rewrite

∂P

∂s
τ = −P (v, s|v0) +

∫ ∞
−∞

P (v − ξ, s|v0)P (v, τ |v − ξ) dξ, (A.20)

and Taylor expand it in powers of ξ

∂P

∂s
τ = −P (v, s|v0) +

∞∑
n=0

(−1)n

n!
∂n

∂vn

(
P (v, τ |v0)

∫ ∞
−∞

dξ ξnP (v + ξ, τ |v)
)
. (A.21)

The n = 0 term is simply P (v, s|v0), while we can rewrite the other terms as moments
of the velocity increment

Mn ≡
1
τ

∫ ∞
−∞

dξ ξnP (v + ξ, τ |v) = 〈(v(τ)− v(0))n〉
τ

, (A.22)

so that
∂P

∂s
τ =

∞∑
n=1

(−1)n

n!
∂n

∂vn
(P (v, τ |v0)Mn). (A.23)

It is possible to show that, for τ → 0, the moments 〈(v(τ)− v(0))n〉 → 0 more quickly
that τ , if n > 2. Then we can neglect all terms beyond the two lowest orders in eq.
(A.23), for small time increment τ (which are, however, still large compared to the
correlation time of the noisy Langevin force):

∂P

∂s
τ = − ∂

∂v
(M1P ) + 1

2
∂2

∂v2 (M2P ), (A.24)

which is finally the “Fokker-Planck equation”.
We can associate eq. (A.24) with the Brownian motion and its relative Langevin

equation by computing the moments M1 and M2. By simply taking a discretised version
of eq. (A.5), by performing the average and considering (A.6), we can write

M1 = 〈v(τ)− v(0)〉
τ

= −γ〈v(τ)〉, (A.25)

where we assumed for simplicity that v(0) = 0. We already computed M2 in eq. (A.11),
hence

M2 = 〈(v(τ)− v(0))2〉
τ

= 2γkBT

m
. (A.26)

Thus, finally, the Fokker-Planck equation for the Brownian motion is

∂P

∂s
τ = γ

∂

∂v
(vP ) + γ

kBT

m

∂2

∂v2P. (A.27)



Appendix B

Numerical tools

In the following are reported the main numerical tools used to solve the Stochastic
Gross-Pitaevskii equation (3.32). At first the Cranck-Nicholson method to solve partial
differential equations is shown, then the Runge-Kutta method is explained.

B.1 Cranck-Nicholson method

Let us start by sketching the reasoning behind the solution of the Gross-Pitaevskii
equation, followed by the detailed application to the stochastic Gross-Pitaevskii equa-
tion.

B.1.1 Gross-Pitaevskii equation

Consider the Gross-Pitaevskii equation (1.14):

i~
∂ψ(r, t)
∂t

= (HGP − µ)ψ(r, t) (B.1)

Let us discretise the time coordinate by means of an index m = 0, 1, 2, ...,mmax dividing
the interval into equal segments of magnitude ∆t = t/mmax, so that

tm = m∆t. (B.2)

The solution of equation (B.1) is

ψ(r, tm+1) = e−i(HGP−µ)∆t/~ψ(r, tm). (B.3)

If we apply Cayley’s relation for the exponential

exp
(
−i(HGP − µ)∆t

~

)
= 1− i∆t(HGP − µ)/2~

1 + i∆t(HGP − µ)/2~ +O(∆t2), (B.4)
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the equation to solve becomes

[1 + i∆t(Hm+1/2
GP − µ)/2~]ψ(r, tm+1) = [1− i∆t(Hm+1/2

GP − µ)/2~]ψ(r, tm), (B.5)

where we introduced

HmGP = −~2∇2

2m + Vtr(r) + g|ψ(r, tm)|2, (B.6)

and
Hm+1/2

GP ≡ H
m
GP +Hm+1

GP
2 . (B.7)

The introduction of Hm+1/2
GP has the purpose to give a self-consistent average of the

non-linear term, evaluated at the midpoint of the time step. The solution of (B.5) at
time m+ 1 then passes through the following steps:

• Solve (B.5) using ψm ≡ ψ(r, tm) in the non-linear term, obtaining the intermedi-
ate solution ψ̃m.

• Solve (B.5) again, using the combination (ψ̃m + ψm)/2 in the non-linear term,
getting the solution ψm+1.

B.1.2 Stochastic Gross-Pitaevskii equation

The reasoning with the Stochastic Gross-Pitaevskii equation (3.21) is similar. As
pointed out by Bijlsma and Stoof[52], the solution for the SGPE is

ψ(r, tm+1) = eiΓ(HGP−µ)∆t/~ (ψ(r, tm)+

− i

~
eiΓ(HGP−µ)tm/~

∫ tm+1

tm
dt′ eiΓ(HGP−µ)t′/~η(r, t),

(B.8)

where Γ ≡ 1− iγ(r), and we can define

ξm(r) ≡ eiΓ(HGP−µ)tm/~
∫ tm+1

tm
dt′ eiΓ(HGP−µ)t′/~η(r, t) (B.9)

as a new noisy field, having correlations

〈ξ∗m(r)ξm(r′)〉 = 2γ(r)kBTδ(r− r′)δmn∆t+O(∆t2). (B.10)
[52] H. T. C. Stoof and M. J. Bijlsma. In: J. Low Temp. Phys. 124.3 (2001), pp. 431–442.
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Let us consider for now the one-dimensional case. Again by using Cayley’s relation, we
will have to solve

[1 + iΓ∆t(HGP − µ)]︸ ︷︷ ︸
B

ψm+1(x) = [1− iΓ∆t(HGP − µ)]︸ ︷︷ ︸
A

(
ψm(x)− i

~
ξ(x, tm)

)
︸ ︷︷ ︸

≡φm(xi)=φmi

, (B.11)

where we also discretised the spatial coordinate into segments ∆x by means of an index
j = 0, 1, 2, ..., Nx.

The operator A can be made adimensional:

A = 1− i∆t2 (1− iγ)
(
−1

2
∂2

∂x2 + V + g|ψ|2 − µ
)

≡ 1− i∆t2 (1− iγ)
(
−1

2
∂2

∂x2 + V
)

= 1− γ∆t
2

(
−1

2
∂2

∂x2 + V
)
− i∆t2

(
−1

2
∂2

∂x2 + V
)

(B.12)

Now, the discretised version of the Laplacian is

∂2φ

∂x2 = φj+1 − 2φj + φj−1
∆x2 , (B.13)

so that

∆t
2

(
−1

2
∂2

∂x2 + V
)
φmj = ∆t

2∆x2︸ ︷︷ ︸
αx

(
−
φmj−1

2 + (1 + V∆x2)φmj −
φmj+1

2

)
. (B.14)

Thus
Aφmj = φmj

[
1− γαx(1 + V∆x2)− iαx(1 + V∆x2)

]︸ ︷︷ ︸
≡brhs

+

+ φmj−1
αx
2 (γ + i)︸ ︷︷ ︸
≡arhs

+φmj+1
αx
2 (γ + i)︸ ︷︷ ︸
≡crhs

.
(B.15)

Similarly, for B:

B = 1 + γ
∆t
2

(
−1

2
∂2

∂x2 + V
)

+ i
∆t
2

(
−1

2
∂2

∂x2 + V
)
, (B.16)

hence
Bφmj = φmj

[
1 + γαx(1 + V∆x2) + iαx(1 + V∆x2)

]︸ ︷︷ ︸
≡blhs

+ φmj−1
αx
2 (−γ − i)︸ ︷︷ ︸
≡alhs

+φmj+1
αx
2 (−γ − i)︸ ︷︷ ︸
≡clhs

.
(B.17)
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The problem can now be reduced to the solution of a tridiagonal linear system. Indeed
we can rewrite eq. (B.11) as

BΨm+1 = Φm
rhs, (B.18)

where B is a tridiagonal matrix and we defined

Ψm+1 =


ψm+1

1
...

ψm+1
Nx

 and Φm
rhs =


Aφm1

...
AφmNx

 . (B.19)

Several effective methods exist to solve a tridiagonal linear system, and can be easily
found in the literature[124].

B.2 Runge-Kutta method

Let us now shortly review the idea behind the Runge-Kutta method to solve dif-
ferential equations. The Runge-Kutta algorithm is based on the simple Euler method,
which is now sketched.

B.2.1 Euler method

Suppose to have the generic first-order1 differential equation

dy

dt
= f(t, y). (B.20)

Consider, as above, the coordinate discretisation ∆t, so that tm+1 = tm + ∆t and
m = 0, ...mmax. the simple Euler approach predicts

ym+1 = ym + ∆tf(tm, ym). (B.21)

Equation (B.21) is non symmetric, in that only uses information on the function
f(tm, ym) evaluated at one side of the interval [tm, tm+1], and it is accurate up to a
1 Any ordinary differential equation, of any order n, can be rewritten into a system of n first-order
differential equations. For example, h′′ + q(t)h′ = r(t) can be rewritten into{

y′1 = y2(t)
y′2 = r(t)− q(t)y2(t),

where h(t) = y1(t) and y2(t) is a new independent variable.

[124] W. H. Press et al. Numerical Recipes in Fortran 77: the art of Scientific Computing. 2nd ed.
Cambridge University Press, 1993.
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correction O(∆t2). The Euler method is poorly accurate for finite size ∆t and shows a
large region of instability.

B.2.2 Runge-Kutta algorithm

In order to improve the accuracy of the Euler method, the simpler solution is to
consider the so-called midpoint approximation. In practice, once the Euler method has
been applied, its solution is used as the trial function for the subsequent iteration:

k1 = ∆tf(tm, ym)

k2 = ∆tf(tm + 1
2∆t, ym + 1

2k1)

ym+1 = ym + k2 +O(∆t3).

(B.22)

Equation (B.22) is called the second order Runge-Kutta method (RK2), and has order 2.
Of course nothing prevents us from using the solution of RK2 to increase the precision of
a successive iteration, and this is exactly the principle behind the subsequent orders of
the algorithm. It can be shown that any successive addition eliminates approximation
errors of growing order.

The most used configuration is the fourth-order Runge-Kutta algorithm (RK4),
which is

k1 = ∆tf(tm, ym)

k2 = ∆tf(tm + 1
2∆t, ym + 1

2k1)

k3 = ∆tf(tm + 1
2∆t, ym + 1

2k2)

k4 = ∆tf(tm + ∆t, ym + k3)

ym+1 = ym + k1
6 + k2

3 + k3
3 + k4

6 +O(∆t5).

(B.23)

In equation (B.23), the different terms represent increments based on the slope of the
function at different points, and, in the averaging of the contributions, a larger influence
is given to the midpoint.

A good practice is to also include in the algorithm a way to adaptively control its
progress, by making frequent changes in the stepsize ∆t. The principle is that when the
function exhibits roughness, the step should be smaller to better capture it, while in
smooth, uninteresting regions it can be assumed to be larger. This is usually achieved
by comparing, with a fixed frequency in time, the results of the algorithm with a step
∆t1 and ∆t2 = ∆t1/2. When the difference falls below a certain imposed threshold,
the larger ∆t1 can be considered, otherwise the interval is reduced. Other more refined
methods imply to use different orders of Runge-Kutta to evaluate the step size. In this
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thesis, depending on the problem faced, several of these techniques have been used.

B.3 The XMDS2 software package

The numerical simulations of this thesis have been performed mainly by using two
approaches:

1. A in-house solver of the SGPE, developed by the group of Prof. Nick Proukakis,
and specifically by Dr. Stuart Cockburn[58,59,125], based on the Cranck-Nicholson
algorithm summarised above.

2. XMDS22, a partial and ordinary differential equation solver, originally developed
by Peter Drummond and Greg Collecutt and subsequently rewritten by Graham
Dennis[126].

2 www.xmds.org/index.html

[58] S. P. Cockburn. “Bose Gases In and Out of Equilibrium within the Stochastic Gross-Pitaevskii
Equation”. PhD thesis. Newcastle University, 2010.
[59] D. Gallucci. “Ab Initio Modelling of quasi-one-dimensional Bose gas experiments via the Stochastic
Gross-Pitaevskii Equation”. PhD thesis. Newcastle University, 2013.
[125] S. P. Cockburn and N. P. Proukakis. In: Phys. Rev. A 86 (2012), p. 033610.
[126] Dennis G. R., Hope J. J., and Johnsson M. T. In: Computer Physics Communications 184.1
(2013), pp. 201–208.

www.xmds.org/index.html


Appendix C

Two-dimensional ideal Bose gas

The very basis of the theory of Bose-Einstein condensation is represented by the
study of a gas of non-interacting particles1. For these gases, the mean occupation
number of a single-particle mode s is the Bose-Einstein distribution already described
in (2)

n(Es) = ns = 1
eβ(Es−µ) − 1

, (C.1)

where β = 1/kBT and Es denotes the energy of the state s. The chemical potential is
determined by assuming that ∑

s

ns = N. (C.2)

Equation (C.1) tells us a very important fact. The chemical potential µ can never
exceed the minimum energy Emin (usually set to be 0), otherwise the occupation of
the state would become negative, and therefore unphysical. This means that the mean
occupation ns can never exceed the value

nmax
s = 1

eβ(Es−Emin) − 1
, (C.3)

which is fixed and determined by the physical parameters (and is decreasing when
lowering the temperature). Thus, the number of particles that can be allocated to the
excited states

Nex =
∑
s>0

ns (C.4)

is finite and determined by the temperature. In very cold systems, Nex can be less
than the total number of particles N , leading to an accumulation of atoms in the only
available state: the ground state. The particles are then said to condense. The critical
temperature Tc is defined as the last temperature for which a condensate still exists.
1 The following treatment is largely taken from [84].
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C.1 Density of states

Let us now consider the limitations to condensation that can arise from dimension-
ality. In order to do this, it is useful to introduce the density of states. This is a usual
concept in treating the thermodynamics of gases, when the sums are replaced by inte-
grals and the quantum level structure is replaced by a continuum. For this reason, this
approach fails in describing a condensed system, but it is still a sensible approximation
for the excited state contribution. Given a quantum system, if Γ(E) is the total number
of states with energy less than E, the density of states is defined as

g(E) = dΓ(E)
dE

. (C.5)

C.1.1 Uniform system

Let us now consider the relevant case of a uniform two-dimensional atomic system.
Assume that a particle of mass m is confined in a 2D box of dimension L in the x− y
plane:

Vtr =

0 inside the box,

∞ outside.
(C.6)

The solution of the Schrödinger equation for such potential is

ψsx,sy = 2
L

sin
(
π

L
sxx

)
sin
(
π

L
syy

)
(C.7)

where sx, sy = 1, 2, 3, . . . , and the corresponding eigenenergies are

E = hbar2

2m
πs2

L2 ≡
~2k2

2m , (C.8)

where s =
√
s2
x + s2

y and ki = siπ/L. Hence, a unit change in the level index sx or
sy corresponds to the smallest change in energy ∆E. Assuming that L � 1 we can
consider these quantities to be infinitesimal. Since E ∝ s2, all the states in the phase
space lying on the circle of radius s will have the same energy. Then, the number of
states whose energy lies in between E and E + dE is an annulus of area

dA = 2πs ds. (C.9)

However, since necessarily sx, sy > 0 we are only interested in a quadrant of the disk,
and

g(E)dE = dA

4 = π

2 s ds. (C.10)
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Thanks to eq. (C.8) we can say that

ds

dE
= 1

2

√
2m
E

L

π~
, (C.11)

hence
g(E) = π

2 s
ds

dE
= mL2

2π~2 . (C.12)

An important point is that the density of states (C.12) does not depend on E. This is
a peculiarity of the two-dimensional system, and it is possible to prove that

g(E) ∝ Ed/2−1 (C.13)

for a free particle in a d-dimensional state.
The dependence of g on E has a strong consequence on the possibility for the system

to present condensation. In fact, by assuming a continuum of states, eq. (C.4) becomes

Nex =
∫ ∞

0
dE g(E)n(E). (C.14)

Considering that, if Emin = 0,

nmax
s = 1

eβE − 1 −−−→E→0

kBT

E
, (C.15)

let us now see the different cases, from eq. (C.13):

• 3D: g(E) ∝
√
E, hence Nex ∝

∫ ∞
0

dE (1/
√
E) which is convergent in E → 0.

The number of particles allocable to the excited modes is therefore finite, and in
the thermodynamic limit N →∞ condensation is possible.

• 2D: g(E) ∝ const., and the integral Nex ∝
∫ ∞

0
dE (1/E) does not converge in

E → 0. There is no upper limit for the excited atoms, and condensation does not
occur.

C.1.2 Harmonic trap.

Let us now briefly present the case for an atomic gas confined in a harmonic potential

V (x, y) = 1
2m(ω2

xx
2 + ω2

yy
2). (C.16)
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The eigenstates of the Schrödinger equation will be the Hermite-Gauss functions, and
the spectrum

E(sx, sy) =
(
sx + 1

2

)
~ωx +

(
sy + 1

2

)
~ωy, (C.17)

where sx, sy = 0, 1, 2, . . . Once again we want to compute the number of states Γ(E)
with energy less than E. For large energies we can treat the index s as a continuous
variable, and we can neglect the zero-point energy ~ωi/2. Then:

Γ(E) = 1
~2ωxωy

∫ E

0
dEx

∫ E+Ex

0
dE = E2

2~2ωxωy
. (C.18)

Then, the density of states is

g(E) = dΓ(E)
dE

= E

~2ωxωy
. (C.19)

For a generic d-dimensional harmonic oscillator, it can be shown that

g(E) = Ed−1

(d− 1)!
∏
i ~ωi

. (C.20)

From eq. (C.19) one can immediately see that when confined in a harmonic trap, a
two-dimensional system can still exhibit Bose-Einstein condensation2.

2 An important note is that this is only valid for an ideal gas. In fact, even though the integral (C.14)
remains finite, the density profile in the centre of the trap[78]

ρ(r)
r→0
≈ − 1

λ2
T

log(r2) + const.

is divergent, and this is not achievable for atoms with repulsive interaction. This makes the experi-
mental realisation of atomic 2D BECs in harmonic traps challenging. However, photons in a cavity
are shown to behave like a nearly ideal 2D Bose gas, with a very small effective mass. Some recent
experiments[24,127,128] showed indeed that it is possible to reach Bose-Einstein condensation for an ideal
gas of photons in a 2D harmonic trap.
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[121] A. Einstein. “Über die von der molekularkinetischen Theorie der Wärme geforder
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