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INTRODUCTION 

 

Background and Motivations: 

SSA economic development and Ethiopia case study 

The world can be easily divided into areas of wealth and poverty. This has always been true. Since after the 

colonial rule, economic strategies implemented by wealthier countries and donors in Sub-Saharan Africa 

(SSA) aimed to increase economic growth in poor nations in the continent. In the 60s a number of SSA 

countries had relatively promising development expectations and income levels similar to those in Southeast 

Asian countries [Heidhues, 2009]. At that time, World Bank (WB) data reported that GDP per capita and GDP 

growth were higher in Africa than in Asia: due to their superior endowment of natural resource SSA countries 

were expected to grow faster than Asian countries [World Bank, 2005 p.274]. However, in the second decade 

of the 2000s many Southeast Asian countries achieved higher development and income levels, some even 

reaching the status of ``semi-industrialized’’ countries, while for many SSA countries the political and 

economic stability are still distant promises to fulfill [Heidhues, ibid.]. Why? SSA for over two decades (70s-

80s) missed the opportunity to adjust to the global changing economic conditions and lost the chance to grow 

[Sundaram et al., 2011]. In the 70s, massive food imports due to a drop in agricultural production, jointly with 

adverse terms of trade, oil crisis, a worsening of the world economy exacerbated the negative trends of social 

and economic indicators of SSA. At the same time, the political instability, ethnic conflicts and violence 

threatened the stability of the newborn African institutions. In the 80s, as Heidhues (ibid.) reports ``Africa’s 

crisis was deepening with weak agricultural growth, declining industrial output, poor export performance, 

climbing internal and external debt as well as deteriorating social indicators, institutions and environment’’. 

Not surprisingly, the literature refers to this period as `Africa’s growth tragedy’ [Easterly and Levine, 1997]. 

Until the late 90s, many economists warned against the persistence of slow growth in the continent [Sachs and 

Warner, 1997; Collier and Gunning 1999]. On the other hand, there is a general consensus that SSA 

experienced during the 2000s an unprecedented decade of economic growth, Young (2012) described it as an 

`African growth miracle’. Despite the progress made in reducing poverty1 and achieving nutrition objectives, 

Africa remains the least developed region in the world. A significant share of economic growth was driven by 

reallocation of the workforce out of agriculture and towards modern sectors of the economy. However, 

agriculture still plays a crucial role in most of the economies of SSA countries. During the 2000s, the efforts 

to reduce poverty emphasized agricultural and rural development as fundamental players to foster development 

in Africa. This culminated in the WB’s World Development Report 2008 which put agricultural at a central 

role for achieving the Millennium Development Goal.  

A twofold strategy needs to be addressed in SSA. First, foster the modernization of the agricultural sector to 

increase the agricultural productivity in order to release labor force to other modern sectors of the economy.  

At the same time, this will generate an increase the wellbeing of households involved in farming activities. In 

fact, a technological improvement on the farm will help to increase the returns earned from these activities. 

                                                           
1 The headcount ratio in Africa since 2002 declined by more than a fourth falling to 41% in 2013 (African Union, 2017)  
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Second, sustain the structural change.  McMillan and Rodrik (2011) empirically show what Arthur Lewis 

originally hypothesized. They argue that: 

 ``One of the earliest and most central insights of the literature on economic development is that 

development entails structural change. The countries that manage to pull out of poverty and get richer 

are those that are able to diversify away from agriculture and other traditional products. As labor and 

other resources move from agriculture into modern economic activities, overall productivity rises and 

income expand. The speed with which this structural transformation takes place is the key factor that 

differentiates successful countries from unsuccessful one’’. 

This urge for economic development calls for several focused reforms and essential investments in SSA. 

Amongst the most pressing for policy-makers we find: 

- Regulatory and operational improvements for business and programs to attract foreign investment 

as well as stable governance (legal rights enforcement); 

- Build infrastructure, reliable transport networks and power supply; 

- Investing in the development of rural-urban economic linkages (i.e. processing of agricultural 

products); 

- Increase investment in research and development to boost productivity in terms of efficiency and 

competitiveness with technological improvements (i.e. agricultural input adoption on farm, develop 

modern industry sector); 

- Develop and sustain credit and financing systems; 

- Provision of social infrastructure and improving the status of women still segregated to sectors with 

lower productivity and less remunerative. 

 

Ethiopia is not an exception amongst other SSA countries. Compared to the common colonial experience of 

other SSA countries, Ethiopia experienced brief Italian occupation from 1935 to 1941 and can be actually 

considered a non-colony country. As Alemayehu (2007) extensively analyzed there were significant elements 

of modernization undertaken in terms of transportation during the Italian occupation. However, economic 

insecurity pervaded since then Ethiopia’s modern history. During the Imperial Regime (1930-1974) the landed 

aristocracy and the majority of peasants constitute the major socio-economic agents during this period. 

Attempts were made to modernize the country through the expansion of school and health facilities, 

infrastructure and the promulgation of a constitution. However, during the consequent Derg (meaning `the 

committee’ in Amharic) regime economic growth decelerated due to conflicts and its dependence on the 

agricultural sector. The Derg established a `hard control’ socialist regime where market forces were 

deliberately repressed and socialization of the production and distribution process pursued vigorously. Only 

after 1991, adjustment policies of market liberalization were adopted. Impressive but fragile economic growth 

was reached due to external shocks (i.e. the war with Eritrea).  

Ethiopia is among the most populous countries in SSA, with a population of 97 million of which 80% live in 

rural areas (World Bank databank, 2016). Ethiopia has witnessed rapid economic growth, with real gross 

domestic product (GDP) growth averaging 10.9% between 2004 and 2014, which has lifted the country from 

being among the poorest in the world in 2000 to be in a position to become a middle-income country by 2025 

provided it continues its current growth trajectory [World Bank, 2015]. Since 2000, households have 

experienced a decade of remarkable progress in well-being and the country has seen a 33% reduction in the 

share of the population living in poverty, only Uganda has had a higher annual poverty reduction during the 

same time period [World Bank, Ethiopia Poverty Assessment, 2014]. However, almost 30% of Ethiopians still 

live below the nationally defined poverty line and malnutrition is very widespread damaging over one-third of 

total population [Ministry of Finance and Economic Development (MoFED), 2012; World Bank databank, 

2016, respectively]. Agriculture is the major employer in the country and generates the largest share of valued 

added on total GDP (almost the 41%). Even though the efforts of the national government in boosting 

http://www.nber.org/papers/w17143
https://unchronicle.un.org/article/w-arthur-lewis-pioneer-development-economics
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agricultural productivity with community shops, efforts to stabilize the volatility of food prices and subsidizing 

fertilizer farmers still struggle to abandon a subsistent farming system. Crop agriculture is dominated by 

smallholders with no further expansion of crop cultivation: production growth needs to come from yield 

improvements resulting from improved seeds and fertilizer. On the other hand, the rural non-farm sector has 

gained importance during the last years. From National Accounts a range of 10-35% of rural households in 

Ethiopia is engaged in non-farm enterprise indicating that Ethiopia is making effort to differentiate its economy 

away from agriculture. However, external constraints prevent the non-farm sector to further develop due to the 

high bribery index, the high number of days required to obtain an electrical connection, to start a business, the 

number of procedures to register a business [World Development Indicators, World Bank Doing Business and 

World Enterprise Survey data]. 

Research questions  

The aim of the following chapters is to address two main research questions: 

 

1. Emotional factors could affect decision-making, which is the role of non-cognitive skills in 

affecting productive and allocative efficiency in rural Ethiopia? 

 

2. What are the determinants of Ethiopian households’ diversification into non-farm activities? Are 

households pushed/pulled into these activities? 

 

Regarding the first research question, the behavioral economics literature has provided ample empirical 

evidence sustaining the importance of emotional factors affecting individual decision-making. Since the 

seminal works of Simon and Kahneman until the more recent contributions of Heckman on the topic solid 

evidence on the importance of emotions affecting deviations of individual from rational decision-making has 

been produced for developed economies. What about developing countries? Recently, the behavioral 

economics approach has spread also outside Western countries. Given the positive responses and results that 

these first attempts brought they merited the enthusiastic epithet of `small miracles’ by WB World 

Development Report 2015. One could argue if other empirical evidence is necessary to further stress what 

other researchers have proved until now. In fact, we could agree that all decision-makers -either rich or poor- 

could exhibit a bounded rationality proposed by Simon (1955) or rather the automatic thinking suggested by 

Kahneman (2003)2. However, a striking difference respect developed world is that in many developing 

countries -especially in SSA- poverty is a concrete bundle affecting with overwhelming consequences the 

living of millions of people. In fact, poor people may suffer the psychological stresses of poverty and scarcity 

providing them further impediments to the understanding of opportunities they face. Moreover, within the 

behavioral economics approach controlling for non-cognitive skills in analyzing farm production outcomes 

remains novel. As we before-mentioned, agriculture is the major employer in SSA and provides the livelihoods 

for millions of people. Since the 60s donors and national governments undertook efforts to replicate the success 

of the Asian Green Revolution. However, these policies have generated little effect in terms of increased use 

of chemical fertilizers or high yielding varieties. In part, this failure may be due to the different conditions in 

Africa compared to Asia. For instance, the African continent’s agro-ecological zones are more diverse than 

those in Asia. However, could other factors have concurred to these disappointing results in boosting 

                                                           
2 Bounded rationality is the idea developed by Simon that when individuals make decisions their rationality is limited by 
the tractability of the decision problem, the cognitive limitations of their minds and the time available to make the 
decision. This would lead to choose sub-optimal strategies. While, automatic thinking is one of the two thought systems 
defined by Kahneman affecting the decision making of the individual. It is defined to be fast, emotional, based on 
stereotypes and uses heuristics and `mental shortcut’ to solve problems. The combination of these two systems -one 
fast and the other slow, effortful and calculating- defines the individual behavior. Depending on external conditions one 
of the two may prevail leading to different results given the same inputs. 
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agricultural productivity? Neglecting the effect of non-cognitive skills endowment on individual decision-

making in developing rural context may overestimate the possible results of such policies promoting 

agricultural input usage? We put aside for a moment the desperate need of SSA for infrastructure the lack 

thereof hinders further economic development in the continent. Policies aiming to increase the supply and the 

availability of agricultural inputs to psychologically distressed farmers due to the difficult external conditions 

(poverty, drought, famine, conflicts and political instability) could not bring the expected results. It is difficult 

to see how policy-makers might alter those behavioral patterns which prevent farmers from reaching the 

technological frontier. Bernard et al. (2012) suggested that fatalistic beliefs have implications for the behavior 

of poor rural Ethiopian household towards investments in the future and hindering the consequent economic 

performance. The inclusion of farmers’ behavioral traits to proxy traits which are difficult to systematically 

measure such as motivation, entrepreneurship and aspiration may help to understand rural smallholders’ 

farming process and better target households more inclined to use new agricultural technologies.  

These considerations suggest that further research on the topic is needed. We present two papers trying to 

give a useful contribution to the related literature. We address two issues: a) the role of non-cognitive skills in 

affecting productive efficiency (the ability to produce more from the same inputs); b) how non-cognitive skills 

affect allocative efficiency (use of a more or less efficient combination of inputs). We proxy non-cognitive 

skills using taxonomies of traits derived from two well-known psychometric tests: the `Big Five Inventory’ 

and the ̀ Emotion Regulation’ questionnaires. The endowment of either cognitive (years of education) and non-

cognitive skills (conscientiousness and willingness to work for long-term goals) could affect the performance 

on a certain task. For instance, without enduring personality traits or strong cognitive abilities may be more 

likely to abandon agricultural activities. In the two following papers, we explore in a systematic way which 

behavioral traits are associated with higher yield output or with input adoption choices of Ethiopian rural 

smallholders. Non-cognitive skills can help answer why entrepreneurship appears to be limited in poor 

countries and help identifies what can be done to stimulate greater agricultural activity. 

The second research question was motivated by complementing how off-farm income may sustain overall 

economic development in Ethiopia. The first research question focuses on agricultural productivity of rural 

farmers and their non-cognitive skills. However, the movement of workforce away from agriculture to 

manufacturing and industry is consistent with a long tradition in development economics in which poor 

countries need to undergo a process of structural change to achieve high levels of aggregate productivity. 

Following Lewis (1954) and Ranis and Fei (1961) seminal studies on the topic labor move from the less 

productive agricultural sector to the more productive ones, thus the economy grows in terms of productivity, 

income and the urbanization rate rises. However, in SSA most poverty alleviation strategies focus primarily 

only on smallholders’ agricultural activity. A `pessimistic’ school of agricultural development specialists 

thinks that for both technical and economic reasons, Africa cannot rely on agriculture as a source of growth or 

poverty reduction [Maxwell, 2004]. Evidence shows that close to 40% of African rural households are involved 

in non-farm activities despite the fact that only 9-19% of the rural labor force is employed in such activities 

[Haggblade et al., 2007]. According to Rijkers et al. (2008), non-farm activity in Ethiopia is predominantly a 

means to complement farm income rather than a pathway out of poverty. Understanding the determinants of 

households’ participation in the non-farm sector3 can be extremely useful for policy-makers determine which 

kind of policies to pursue to encourage the movement of labor across different sectors. Do households choose 

to allocate more labor off-farm because of the presence of more remunerative opportunities or rather have they 

pushed away from agriculture because of shocks harming agricultural output? Understanding the drivers 

behind households’ participation in the non-farm sector enable us to further explore which benefits this 

engagement will bring to the households’ wellbeing. Theoretically speaking the related literature tends to agree 

                                                           
3 A variety of terms is used in the current literature to distinguish between different sources of rural income: `off-farm’, 
`non-farm’, `non-agricultural’, in this dissertation we adopt the definition of `non-farm’ income which refers to earning 
deriving from non-farm entrepreneurship activities 
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that households’ income diversification will help households to cope better with shocks and increase the 

disposable income. Empirical evidence suggests either a positive or a negative correlation between non-farm 

income and wealth indicators. In the last paper presented in this dissertation, we want to give a picture of the 

current Ethiopian households’ non-farm participation and the possible effect of this engagement on food 

consumption and agricultural input adoption. Even though the great progress toward achieving the Millennium 

Development Goals malnutrition damages over one-third of the total population in Ethiopia.  

 
Conceptual Map: Background and Motivations 

 
This conceptual map represents a broad simplification of the background and the motivations for this 

dissertation. Two are the main channels to reach the ambitious aim of economic development in SSA 

countries (and in this case the Ethiopian’s one): through the modernization of the agricultural sector 

and helping the creation of industry, manufacturing and modern services. On one hand, agriculture 

accounts for the largest share of employed people and also for the largest proportion of value added 

generated as a percentage of total GDP. Most poverty alleviation strategies in Africa tend to focus on 

smallholders’ agricultural activity. With the modernization of the agricultural sector, the agricultural 

production can be increased. Moreover, thanks to the technological improvement on farm agriculture 

may become a more remunerative activity for those households primarily involved in it. The increased 

labor productivity on the farm may help to release extra labor force away from agriculture towards 

modern sectors of the economy leading to a consequent increase in national GDP. As before-mentioned, 

one of the most central insights of development economics literature is that economic development 

entails a structural transformation. The countries that manage to pull out of poverty and get richer are 

those that are able to diversify away from agriculture and other traditional products. As labor and other 

resources move from agriculture into modern economic activities, overall productivity rises and income 

expand. The speed with which this structural transformation takes place is the key factor that 

differentiates successful countries from unsuccessful ones. The first two papers of this dissertation 

focus on the left side of the map: how `internal constraints’ (personality traits) affect input adoption 

and agricultural productivity; while the third paper focuses on the right side. The paper explores whether 

non-farm entrepreneurship activities might help a successful structural transformation to occur in 

Ethiopia through a sustained diversification of households’ income. 
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Methodology 

The methodology used for this dissertation relies on different data sources. We provide for descriptive 

purposes descriptive statistics at the macro level provided by online sources such as FAO-stat and World Bank 

databank. We present data on Ethiopia and other SSA countries in order to complement the empirical 

estimation of the three papers performed at the microeconomic level using Ethiopian households’ surveys.  

 

To answer the first research question, we use cross-sectional data for 501 rural households collected in 

2012. The survey was financed by FAO and implemented by the University of Addis Ababa in collaboration 

with CEIS of the University of TorVergata. The survey complements the usual information on demographic 

characteristics of the household, agricultural production, and labor activities with a special section devolved 

to collect data on individual non-cognitive characteristics. The `Big Five Inventory’ and the `Emotion 

Regulation’ questionnaires were used to proxy such individual characteristics. We use the scores for 

personality traits in the OLS estimation of the production function of the agricultural output and as controls 

for the probability of a household to adopt fertilizers and seeds on the plot. Then, we tested the neoclassical 

recursivity assumption strategy between input decisions and harvest outcome. We are aware of the limitations 

that such a small sample could generate as the limited external validity of our results. However, even though 

the sample is not representative for Ethiopa as a whole, we believe that this empirical exercise contributes new 

knowledge because it is one of the first study on the matter promoting an innovative angle of reading. 

 

The methodology used for the second research question relies on longitudinal dataset `Living Standards 

Measurement Study-Integrated Survey on Agriculture’ (LSMS-ISA) 2012, 2014 and 2016 available rounds. 

First of all, we provide from a descriptive point of view which socio-economic characteristics affect 

households that engage in the non-farm sector compared to those households who do not. Then, restricting the 

sample only on households reporting to have at least a non-farm entrepreneurship activity we performed a 

cluster analysis to find a categorization of households according to their similarity with respect to push or pull 

variables. Finally, we compute the probability of households to engage in the non-farm sector and we use this 

probability to control for self-selection and analyze food consumption and input adoption choice for 

households who diversify their income outside agriculture. 

 

Structure of the Thesis 

The thesis is structured as follows. The three main papers are presented in chapters 1, 2 and 3. The first two 

papers of the thesis share the same dataset and focus on Ethiopian farmers and their non-cognitive skills -in 

other words- the first research question mentioned. A brief chapter presenting non-cognitive skills’ definition 

and the related economic literature (``Introducing Non-cognitive Skills’’), and then exploring Ethiopian 

agricultural system and descriptive statistics (``Ethiopia: Food and Agriculture Systems’’) precede the two 

papers. The first paper is called ``Farming Productivity and Non-cognitive Skills: Evidence from Ethiopian 

Smallholders’’ and focuses on the estimation of agricultural output production function controlling for the 

personality traits of family members working on the plots. The second one ``The allocative efficiency of 

Agricultural Inputs and Non-cognitive Skills’’ continues the analysis exploring the linkage between input 

equations and non-cognitive skills. Then it provides a weak validation of the recursivity strategy between input 

decisions and harvest outcome controlling for the non-cognitive skills endowment of farmers.  

 

The third paper focuses on non-farm activities of Ethiopian smallholders and uses a different dataset 

compared to the previous chapters. The paper called ``Non-farm Entrepreneurship Activity in Ethiopia: 

Determinants and Impacts on Households’ Wellbeing’’ refers to the second research question presented. The 

paper is introduced by a brief description of the non-farm sector performance in Ethiopia during the last years 

and descriptive statistics for the dataset used for the subsequent empirical analysis (``Ethiopia: Non-farm 

Activities and Seasonality’’). 
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Final considerations summarizing the results obtained within the thesis are presented in a concluding chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

The three main papers of the thesis are reported in the green frames. The blue rectangles refer to the 

introductory chapter presenting descriptive statistics and the background motivations before the 

empirical strategy of each paper. The grey boxes refer to general introductory and conclusive 

consideration of the dissertation.   

Structure of the Thesis 

1.Farming Productivity and Non-cognitive Skills: 

Evidence from Ethiopian smallholders 

2.Allocative Efficiency of Agricultural Inputs and Non-

cognitive Skills 

3. Non-farm Entrepreneurship Activity in Ethiopia: 

Determinants and Impacts on Household’ Wellbeing 

Introducing Non-cognitive Skills 

Ethiopia: Food and Agriculture Systems 

Ethiopia: Non-farm Activities and Seasonality 

 

CONCLUSIONS 

INTRODUCTION 
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Introducing Non-cognitive Skills 

 

What are personality traits/non-cognitive skills? 

Historically, there has been much considerable confusion around the concept of personality trait. Allport 

(1961) describes a trait as ``[…] a neuropsychic structure having the capacity to render many stimuli 

functionally equivalent, and to initiate and guide equivalent meaningfully consistent forms of adaptive and 

expressive behavior’’. This definition influenced numerous subsequent definitions of personality traits. For 

example, Tellegen (1991) defined traits as ``a psychological organismic structure underlying a relatively 

enduring behavioral disposition, i.e., a tendency to respond in certain ways under certain circumstances’’. But 

one can respond to a situation not only in ones behavior, but also with feeling and cognition. That is the reason 

why most personality psychologists agree that personality facets are ``enduring patterns of thoughts, feelings, 

and behaviors’’ [Johnson, 1999] which, moreover, cannot dramatically change over short periods of time. 

A distinction between personality and cognition is not easy to make. Non-cognitive skills or abilities are 

personality traits and are distinguished from intelligence, defined as the ability to solve abstract problems. 

Skills are not traits set in stone at birth and determined solely by genes: they can change with age and 

instruction [Heckman et al., 2014]. The definition of `skill’ is not purely semantic: non-cognitive skills are 

capacities to function and they can be shaped over the life cycle. Families and social environments perform a 

powerful role in their formation. Like raw intelligence, non-cognitive skills are not determined solely by 

parental genes, although heritability plays an important role. Heritability studies show that measures of 

personality traits tend to be about 40%-60% heritable [Bouchard and Loehlin, 2001]. Heckman (2007) 

demonstrated that behaviors and abilities have both a genetic and an acquired character. Furthermore, 

biological sciences show there exist critical periods in skill development, the foundations of which are 

established in the early stages of childhood and through adolescence. As evidenced by Almond and Currie 

(2010), negative shocks in early childhood result in inferior outcomes later in life. In addition, skills are 

malleable at different stages of the life cycle: IQ scores become stable by age ten [Schuerger and Witt, 1989] 

while there is a wider margin for non-cognitive skills due to the malleability of the pre-frontal cortex into the 

early twenties [Dahl, 2004]. This region of the brains governs emotion and self-regulation. However, that 

evidence does not ask whether these changes occur naturally or whether they are due to changes in the 

environment. 

Personality psychologists have taken advantage of the advances made in biology to provide an alternative 

model for the psychology of personality. This alternative perspective is called Sociogenomics [Robinson, 

Grozinger and Whitfield, 2005] and differs from standard biological personality psychology model proposed 

by Eynseck (1972 and 1997) where DNA represents the root of the system. This theory assumes that since 

genetic polymorphisms4 do not change, then the influence on behavior must not change. While one of the key 

                                                           
4 The term polymorphism was originally used to describe variations in shape and form that distinguish normal individuals 
within a species from each other. These days, geneticists use the term genetic polymorphisms to describe the inter-
individual, functionally silent differences in DNA sequence that make each human genome unique [Weinberg, 
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element of sociogenomic biology is the relation between biology and environment. We briefly describe a 

sociogenomic model in the next paragraph in order to present the context for the analysis of personality traits 

on households’ outcomes. 

-A Sociogenomic model of personality traits 

We describe a sociogenomic model of personality traits to provide a link between personality traits and 

biological factors associated with personality. The model is derived from Roberts’ (2009) paper and builds on 

state-trait models presented by Nezlek (2007), Steyer, Schmitt and Eid (1999).  They first define states made 

up of enduring patterns of thoughts, feeling, and behaviors schemas, beliefs, chronically accessible constructs 

and moods. Second, traits are made up of stable enduring patterns of states which cause future state repetitions. 

The example provided by Roberts relates to a friend or a colleague who is habitually late at social engagements 

without feeling guilt (repetitive behavior and effect) leading one to conclude that he is not punctual. It is these 

repetitions in people’s state profiles that are key to the inference that traits exist. People can act `out of the 

character’ because of environmental influences, but usually, these do not cause long-term personality trait 

change because they affect short-term responses rather than radically and permanently change their traits.  

Behavioral inconsistency from moment to moment is to be expected and environmental influences help explain 

the shift in personality traits. However, if these state changes become persistent and extended, then they may 

cause changes in traits: personality change evolves into personality development. An example provided by 

Roberts (2009) could be students’ opinions and actions in class that may lead some professors to change their 

approach to teaching and improving their classroom organization. Over the course of several semesters, the 

positive reaction of the students may bring a sense of work satisfaction and the belief the being organized is a 

good thing. Then, this belief could spread to other domains, since a reliable behavior pleases also other aspects 

of life. The environment could shape gradually and in a cumulative way the personality traits. Stressful states 

likely interact with genes responsive to stress, which in turn affect the neuroanatomy that shapes the habitual 

ability of the person to respond to future environmental stimulus. 

This model offers the advantage of being amenable to experimental methods to demonstrate the causal role 

of traits. However, it is difficult to demonstrate causal effects on outcomes since it is challenging to manipulate 

traits and may also be unethical.  

Figure 1 The sociogenomic model of personality traits (taken from Roberts, 2009) 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
2013].Genetic polymorphism is actively and steadily maintained in populations by natural selection, in contrast 
to transient polymorphisms where a form is progressively replaced by another [Begon, Townsend and Harper, 2006]. 
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The Non-Cognitive Skills Literature in Economics 

There is an ample empirical evidence showing that emotional factors affect individual decision-making in 

relation to their economic environment:  

- Individuals focus on aspects of decision problems that are congruent with their emotional state [Bower 

and Cohen, 1982]. 

-  Emotions affect the information that is retrieved from memory [Isen et al., 1978; Wright and Bower, 

1992]. 

- Economic preferences are influenced by numeracy and intelligence. IQ test scores are determined not 

only by intelligence but also by factors as motivation and anxiety [Borghans et al., 2008]. 

- Emotion and soft skills may be important in explaining deviations of individuals from rational 

decision-making: the so called ``cognitive bias’’ [Kahneman and Tversky, 1996]. 

The human capital literature has expanded over the past two decades to take into account non-cognitive 

abilities in order to give a more complete (or at least more psychologically credible) picture of homo 

economicus. These attempts include seminal Heckman's works [Heckman and Rubinstein, 2001; Heckman 

et al., 2006; Heckman and Kautz ,2012], which underline the strength of personality traits in predicting 

outcomes such as schooling, labor market, behavior and health. Heckman et al. (2006) show that the power of 

those personality traits that they consider equals or exceeds the predictive power of cognitive traits for those 

outcomes.  

Heckman and Rubinstein (2001) use evidence from General Education Development (GED) testing program 

to demonstrate the quantitative importance of personality traits. Results show that GED recipients have the 

same cognitive ability as high school graduates who do not go to college. Nyhus and Pons (2005) have shown 

that emotional stability (an aspect of behavior connected with neuroticism) predicts higher wages. These results 

have important implications for policy-design: current systems of evaluation are based on scores on cognitive 

tests, but these results provide only a partial picture of skills required for a successful life since it is well-known 

that non-cognitive skills are traits most valued by employers5. In this sense, mentoring and motivational 

programs oriented towards disadvantaged teenagers are effective tools for increasing employability. Brunello 

and Schlotter (2011) reviewed a selected group of policy measures both in the US and in Europe that aim 

directly or indirectly at improving non-cognitive skill: evidence is somewhat mixed and scarce with some 

program more successful than others. Several countries already provide balanced assessment which 

incorporates non-cognitive skills in school curriculum at different education levels (see European Commission, 

2010).  

Following this approach, the World Bank World Development Report 2015 (WDR 2015) moves behavioral 

approaches to center stage, analyzing so-called ``small miracles''. The WDR cites Duflo's works on nudging 

fertilizer use - the reason why farmers do not use fertilizer is in part because they procrastinate and postpone 

purchasing fertilizer until proceeds from the harvest are spent (Duflo, Kremer and Robinson, 2011) -  and the 

power of reminders for ensuring timely access to HIV medical assistance administered in Kenya (Duflo, 

Dupas, Kremer and Sinei, 2006). Both papers demonstrate that the use of small precautionary measures 

(provision of moneyboxes to save money for purchasing fertilizers, and phone reminders for taking 

medications, respectively) results in significant improvement in outcomes - reduced procrastination and 

improve yield and health outcomes respectively.  

Tognatta et al. (2016) focus on seven low and middle-income countries that participated in the STEP Skill 

Measurement Survey to conduct a comparative analysis of gender gaps. The concept is to use measures in 

order to capture different dimensions of human capital and to extend the literature on gender wage gap in 

developing countries. Using Blinder-Oaxaca decomposition results show that men receive a reward for scoring 

                                                           
5 See Bowles and Gintis (1976), Edwards (1976) and Klein et al. (1991) 
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higher, on average, on openness and emotional stability traits. The interpretation is that men sort into 

occupations that require the appearance of more openness and emotional stability. Controlling for occupation, 

however, results do not confirm that sorting explains the entire difference between men’s and women’s returns 

to non-cognitive skills in Vietnam. 

Fatalism is considered pervasive in many poor communities Bernard et al. (2012) investigates whether 

fatalistic beliefs have implications for the behavior of poor rural Ethiopian households towards investments in 

the future. Some researchers identify fatalism as a key factor explaining Ethiopia’s slow socioeconomic 

transformation because people refrain from making investments that would enhance their wellbeing believing 

that these would not lead to significant changes. The key message is that the poor can and do make choices, 

and these choices may not coincide with those implied by standard economic reasoning.  

Controlling for non-cognitive skills in analyzing farm production outcomes remains novel. Concerning 

productivity of dairy cows, the study of Hanna et al. (2009) shows no relationship between any Big Five 

Inventory traits of dairy stock farmers and milk yield in Northern Ireland. In most farms there was more than 

one person involved with the cows, this would have a confounding effect on the results reported.  Having the 

possibility of relating psychological measures to successful stock farming it may prove possible to select 

employees with more appropriate psychological attributes or select those existing employees who would 

benefit most from training. In fact, farmers may be vulnerable to stress resulting from unpredictable weather 

or output prices. They are subject to time pressures, changes in government policies, and farm hazards. Many 

farmers are geographically isolated.  Unanticipated events might generate psychological pressure [Willock et 

al., 1999].  

Ali et al. (2017) provide another contribution in explaining farm production controlling for non-cognitive 

skills endowment of Ghanaian rice farmers. They proxy non-cognitive skills using 25 questions developed by 

industrial psychologists. They found three traits in particular -polychronicity, work centrality, and optimism- 

significantly affect simple adoption decisions, returns from adoption. Results from the stochastic frontier 

analysis show either technical efficiency in rice production is affected by non-cognitive skills. The study 

confirms the explanatory power of these traits exceeds that of traditional human capital measures.  

In developing countries, women account for a large share of agricultural work performed on the farm. 

However, they generally have less access to land, agricultural extension program, credit and markets 

[Quisumbing and Pandolfelli, 2010]. Montalvao et al. (2017) document the psychological characteristics such 

as `strength of will’ or `grit’ of high-achieving women farmers in Malawi. A one standard deviation increase 

in female non-cognitive skills is associated with a 5.4 percentage point increase in tobacco adoption. The 

results are even stronger when controlling for patrilocal communities where women face greater adversity and 

the returns of these skills are the highest. All these considerations provide the motivation for including 

emotional and personality variables in agricultural production functions.  

However, most of the evidence provided in existing studies are correlational: there is no strict proof that 

personality traits cause higher outcomes. Herrnstein and Murray (1994) present evidence on the correlation 

between levels of cognitive ability and different dimensions of social behavior, while Almlund et al. (2011) 

present association of the Big Five and intelligence with years of completed schooling.  In the next section, we 

set out the theoretical framework developed by Heckman and Kautz (2012) which allows causal modeling of 

the role of emotions on agricultural yields. 
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An Economic Framework for Non-cognitive Skills 

We set out the economic framework developed by Heckman and Kautz (2012) to interpret personality within 

an economic model. Suppose we have an indicator for performance on a task at age a, Ta, which depends on 

cognition Ca, personality Pa, other skills Ka and on the effort allocated to the task eTa
: 

𝑇𝑎 = 𝑎( 𝐶𝑎, 𝑃𝑎 , 𝐾𝑎, 𝑒𝑇𝑎
), 𝑎 = 1, … , 𝐴 

Effort allocated to the task 𝑇𝑎  again depends on cognition 𝐶𝑎, personality 𝑃𝑎 other skills 𝐾𝑎, incentives 𝑅𝑇𝑎
, 

and preferences ϒ𝑎 : 

𝑒𝑇𝑎
= 

𝑇𝑎
(𝐶𝑎, 𝑃𝑎 , 𝐾𝑎, 𝑅𝑇𝑎

, ϒ𝑎) 

The effort applied to a task is the outcome of a choice problem that depends on traits, preferences, and 

incentives. Multiple traits, effort and acquired skills generate performance in a given task. To assume a linear 

relationship between outcomes and traits could be problematic since extreme levels of traits are associated 

with Obsessive Compulsive Disorder, which hinders task performance [Samuel and Widiger, 2008]. 

The traits and other acquired skills evolve over time through investment and habituation , 𝐼𝑎. Traits at age 

𝑎 + 1 are age dependent functions of cognitive ability, personality traits, other acquired skills and investment 

at age 𝑎. In this way, previous levels of traits and acquired skill affect current levels of traits and acquired 

skills. 

(𝐶𝑎+1, 𝑃𝑎+1, 𝐾𝑎+1) = 𝑎
(𝐶𝑎, 𝑃𝑎 , 𝐾𝑎 , 𝐼𝑎  ), 𝑎 = 1, … , 𝐴 

 

Measuring Non-cognitive Skills: BFI and ER tests 

Achievement tests were developed to measure cognition during mid-twentieth century with the aim of 

evaluating individual performance. However, test scores predict only a small fraction of the variance in later-

life success and neglect important dimensions of human potential. In order to capture those traits, psychologists 

have developed self-reported surveys based on self-reporting or indirect self-reports. The Big Five Inventory 

(BFI) and Emotion Regulation (ER) tests are the principal measurement systems for personality traits. They 

rely on taxonomies of traits established by psychologists and are based on self-report questionnaires. The BFI 

is among the most popular and most widely used tests [John and Srivastava, 1999]. Aggregating the different 

questions using the existing scale we obtain a score for each of the five traits. The BFI identifies five personality 

traits: 

- Conscientiousness (organization skills and ability to act in a rational way). Individuals with high 

conscientiousness scores are often perceived as stubborn and obsessive while individuals with low 

conscientiousness scores are seen as flexible and spontaneous, but possibly also as sloppy and unreliable.  

- Agreeableness (ability to cooperate in an unselfish way).  

- Extraversion (energy, positive emotions, assertiveness, sociability and the tendency to seek stimulation 

in the company of others, and talkativeness).  

- Neuroticism (the tendency to not control anxiety and stressful situations rationally).  A low need for 

stability is seen to be associated with a reactive and excitable personality.  Individuals who score highly 

on this test are often very dynamic, but can also be unstable or insecure. 

- Openness to experience (tendency to be open to new circumstances and unfamiliar intellectual 

experiences).  

The `Emotion Regulation’ (ER) questionnaire summarizes the ability of an individual to dominate or control 

emotions or be affected by them (Gross and John, 1998, 2003). The ER test measures how subjects respond to 

stressful situations identifying two traits aggregating the score to each question:  
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- Suppression (defined as the ability to inhibit expressive behavior while emotionally aroused).  Emotional 

suppression is negatively associated with mood repair and life satisfaction; positively with anxiety and 

self-esteem. 

- Reappraisal (defined as the ability to interpreting potentially emotionally-relevant stimuli in 

unemotional terms). Individuals with a high reappraisal score are able to lower emotional intensity and 

hence improving function in circumstances in which individuals with high suppression scores might 

experience negative social consequences. Initial studies by Gross and John showed reappraisal to be 

related to greater positive affect, mood repair, life satisfaction, and reduced depression. 

 

Several studies aimed to test the reliability and validity of these two psychometric tests we are using for our 

consequent analysis. The ER questionnaire has been widely used in studies of emotion regulation and the 

measures have demonstrated adequate to good internal consistency and temporal stability [Gross and John, 

2003; Sala et al., 2012; Batistoni et al., 2013; Ioannidis and Siegling, 2015].  

Schmitt et al. (2007) tested the assumption that the core psychological constructs transcend human language 

and culture, comparing scores of BFI for 56 countries. Since BFI (as well as ER) was developed in the U.S., 

any observed difference in mean scores between different culture may exist because of a real disparity on some 

personality trait, but also because of inappropriate translation, and biased sampling.  Results show a lower 

congruence of BFI for Africa and Southeast Asia, especially for single items of the BFI Openness trait. 

Previous research failed to find a clear definition of openness in Black South African cultures.  

Another related study is provided by Laajaj and Macours (2017) who test the reliability and validity of a 

wide set of non-cognitive skills measures -as well as BFI traits- among Western Kenyan farmers. This study 

represents one of the first structured attempt to validate technical and non-cognitive skills in a rural farming 

context in a developing country. A survey with a series of skills measurement was administrated to more than 

900 farmers in Kenya. The reliability of the measures is attested with a second skill measurement after three 

weeks of the same questions asked included in the survey collected the first time. To test the predictive power 

of these measures in the survey were collected also information on agricultural practices and production. 

Results present mixed results on the ability of the tests to measure the intended skills in the sample considered. 

Some measurement challenges remain to be addressed to guarantee full reliability of such constructs. For 

instance, as Laajaj and Macours (2017) argue, in rural areas in developing countries the questions of the test 

are often read by an enumerator which could affect the responses. Nine percent of the variance of the non-

cognitive skills can be explained by which enumerator posed the questions. In turns, the enumerator affects 

also the reliability of the measures quite substantially. Developing scripts to be followed literally can help 

training the enumerators. The low educational level of the respondents can affect the ability of the respondent 

to understand the question of the test This would lead to do not ignore the level of complexity introduced by 

the test. The order of sections is found to affect the measurement error too.  

The general conclusion seems to be that only accounting for the main sources of measurement error can help 

increase the reliability and the predictive power of the non-cognitive skills test. 

 

The contribution to the Behavioral discipline 

Against this literature background, we want to stress the main contribution of this thesis to application of the 

behavioral approach in the context of developing countries. We can briefly summarize the main points as 

following:  

- This work is one of the first attempt to introduce in a systematic way the impacts of non-cognitive 

skills on agricultural production and input adoption in a rural context in a developing country. 

Behavioral applications in developing are becoming common in the literature, but their implications 

for  agricultural productivity remain unexplored despite the importance of agricultural sector in 

developing economies. 
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- Rural farmers are historically considered to be one of the most conservative sectors of the population 

in terms of their beliefs. In developing countries often households are trapped in agricultural 

activities because of the lack of off-farm alternatives. By introducing traits such organizational 

skills, reliability, enthusiasm and intellectual openness to new experience into the analysis, it is 

possible to shed new light on the motivation of the household’s engagement in agriculture. Are 

peculiar traits, endurance and intellectual curiosity needed for success in farm activities under 

adverse conditions?  

- In the empirical applications reported in this thesis, we only rely on constructs from a signle 

psychometric test. At the same time, we complement the BFI measures with the ER constructs to 

account for possible short-term deviations from the habitual individual behavior. 

- The structure of the survey we emply allows us to use a detailed set of household and individual 

characteristics which we  link to the personality traits measures 

- We use a mix of qualitative and quantitative tools to measures this impact: we use descriptive 

statistics, statistical tests and Ordinary Least Square regressions to estimate the farm production 

function. 

- The results we obtain generate a set of implications which may enable better targeting of input 

adoption policies. Some farmers may be more inclined than others to adapt to new agricultural 

technologies. Provision of limited incentives may foster a positive attitude towards innovation and 

improve the efficiency of input use on farms.  

 

All these points will be addressed in a more extensive way in the following chapters.  
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Ethiopia: Food and Agriculture Systems 

 

Background 

Ethiopia is among the most populous countries in Sub-Saharan Africa, with a population of 97 million of 

which 80% live in rural areas (World Bank databank, 2016). Ethiopia has witnessed rapid economic growth, 

with real gross domestic product (GDP) growth averaging 10.9% between 2004 and 2014, which has lifted the 

country from being among the poorest in the world in 2000 to be in a position to become a middle-income 

country by 2025 provided it continues its current growth trajectory [World Bank, 2015]. Since 2000, 

households have experienced a decade of remarkable progress in well-being and the country has seen a 33% 

reduction in the share of the population living in poverty, only Uganda has had a higher annual poverty 

reduction during the same time period [World Bank, Ethiopia Poverty Assessment, 2014]. However, almost 

30% of Ethiopians still live below the nationally defined poverty line and malnutrition is very widespread 

damaging over one-third of the total population [Ministry of Finance and Economic Development (MoFED), 

2012; World Bank databank, 2016, respectively]. In addition, the country remains one of the poorest in the 

region, with a GDP per capita of only 486.3 constant 2010 USD$ in 2015, compared to Kenya (1,133.5 constant 

2010 USD$), $) and Uganda (673.2 constant 2010 USD$) [see Table 1]. 

Table 1 GDP per capita in constant 2010 USD$ 

 2012 2013 2014 2015 

Ethiopia 392 423 455 486 

Kenya 1,043 1,074 1,101 1,134 

Sudan 1,668 1,688 1,703 1,723 

Uganda 653 653 662 673 

Sub-Saharan Africa (excluding high income) 1,587 1,617 1,647 1,651 

Created from: World Development Indicators Series: GDP per capita (constant 2010 US$) 

 

Three new factors have been important over the period since 2013: a rapid expansion of community shops 

that supply inhabitants with necessary consumer items, the creation of `Ethiopian Grain Trade Enterprises’ 

(EGTE) to help the volatility of food prices, and subsidization of fertilizers. Food price stability was achieved 

in 2014 thanks to the recent decline in global prices of food and fuel coupled with state intervention. The great 

institutional efforts at a federal and local level such as the implementation of safety nets and price control 

measures brought some results, but farmers still struggle owing to high fertilizer prices and the timing of tax 

and debt payments. 

As a result of the impact of the 2015 drought, on crop production and food security conditions have sharply 

deteriorated since mid-2015, with the estimated number of food-insecure people increasing from 4.5 million 

in August to 10.2 million during the first semester of 2016 [FAO GIEWS Country Brief: Ethiopia, 2016]. In 

addition, the very poorest in Ethiopia have become even poorer: the high food prices that improve incomes for 

many poor farmers make buying food more challenging for the poorest [World Bank Press Release on Poverty 
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Assessment, 2015]. Furthermore, Ethiopia is one amongst the largest refugee-hosting country in Africa, with 

about 738,000 refugees and asylum seekers from South Sudan, Somalia, Eritrea and the Sudan. The fragile 

ecosystem and scarcity of resources have led to tensions between host communities and refugees in some 

locations [FAO GIEWS Country Brief: Ethiopia, 2016]. 

 

- The Food and Agriculture Sector in Ethiopia 

Agriculture dominates economic activity and accounts for a much larger share of GDP in Ethiopia (41.0%) 

than in neighboring Kenya (32.9%), Sudan (28.6%) or Uganda (24.7%) [World Bank data, 2015]. In addition, 

it is mostly characterized by subsistence farming, heavily dependent on weather variations and seasonal 

variability6.  

More than 70% of the cultivated land is under cereals (maize, teff, barley, wheat, and sorghum) that are 

mostly used for household consumption. 

Teff is an indigenous crop cultivated at great altitudes and is the major staple food in Ethiopia, accounting 

for 28% of all cultivated land. It is noted for its high quality and high yield and it is the main ingredient for 

preparing enjera, a sourdough-risen flatbread. Maize is the second most cultivated cereal in Ethiopia in terms 

of area, although is less tolerant of cold than teff, barley and wheat. Sorghum cultivation, which accounts for 

17% of cultivated land, adapts to a variety of extreme conditions: in fact, it is drought tolerant, it can accept 

excess of water conditions, and it grows best in semiarid conditions. However, is sensitive to cold and high 

altitudes. Coffee, cultivated in the rainfall sufficient southern highlands is Ethiopia’s major export crop. While 

livestock is the major sources of meat and livelihood of the pastoralist populations. 

 

We can conclude that Ethiopia’s rural poverty could be likely be the result of land shortages in the high-

land, low food productivity, recurrent droughts and variable rainfall. Since Ethiopia’s crop agriculture 

continues to be dominated by smallholders and with little suitable land available for the expansion of crop 

cultivation, future cereal production growth will need to come from yield improvements such as those 

resulting from improved seeds and greater application of inorganic fertilizers.  

 

- Smallholder Technology Adoption 

The country faces major strategic questions regarding the role of agriculture in its overall economic 

development plan. The relative stagnation of cereal yields suggested to many that significant expansion of 

smallholder production is constrained by land shortage in Ethiopian highlands, limited potential for irrigation, 

inadequate infrastructure and a weak seed sector [Dorosh and Rashid, 2012].  

Table 2 reports statistics for agricultural technology adoption indicators in Africa for available countries 

(Niger, Tanzania, Malawi, Nigeria, Uganda and Ethiopia) and time of collection (2010 or 2011). Ethiopia 

shows the highest percentages for improved seed varieties, irrigation and organic fertilizer usage; while for 

the adoption of agro-chemicals and inorganic fertilizers is surpassed by Nigeria and Malawi, respectively.  

 

 

 

 

 

                                                           
6 However, following Gilbert et al. (2016) results Ethiopia’s seasonal gap for main staple cereals -the difference between 
the high price immediately prior to the harvest and the low price following the harvest averaged across 10 years- is one 
of the lowest amongst other African countries such as Niger, Burkina Faso, Malawi and Ghana which show an average 
seasonal gap in excess of 30% at wholesale level. While Tanzania and Uganda are intermediate at around 25%. 
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Table 2 Agriculture in Africa – Technology adoption indicators 

 
Niger 

(2010) 

Tanzania 

(2010) 

Malawi 

(2010) 

Nigeria 

(2010) 

Uganda 

(2010) 
Ethiopia 
(2011) 

Female share of agricultural labor by agricultural 
activities(All) 

24.0 53.0 52.0 37.0 56.0 29.0 

Percent of cultivating households using modern inputs 
(agro-chemicals) 

8.0 13.0 3.0 33.0 11.0 31.0 

Percent of cultivating households using modern inputs 
(improved seed varieties) 

3.0 NA NA NA NA 24.0 

Percent of cultivating households using modern inputs 
(inorganic fertilizer) 

17.0 17.0 77.0 41.0 3.0 56.0 

Percent of cultivating households using modern inputs 
(irrigation) 

7.0 4.0 1.0 4.0 4.0 9.0 

Percent of cultivating households using modern inputs 
(mechanized inputs) 

NA NA NA 47.0 NA NA 

Percent of cultivating households using modern inputs 
(organic fertilizer) 

55.0 20.0 18.0 3.0 13.0 66.0 

Source Project: Agriculture in Africa – Telling Facts from Myths, World Bank databank 
NA: the data is not available for the indicator and the year  
 

Over the past two decades, decision-makers in Ethiopia have pursued a range of policies and investments to 

boost agricultural production and productivity. The government of Ethiopia launched a strategy known as 

`Agricultural Development Led Industrialization’ (ADLI) in 1993, one of the major component is the national 

extension package program known as `Participatory Demonstration and Training Extension System’ 

(PADETS). The objective of this program was to increase farm productivity through enhanced supply and 

promotion of improved seeds, fertilizers, on-farm demonstrations of improved farm practices. The impacts of 

the program were mixed with the increased use of fertilizer but poor productivity growth [World Bank, 2006].  

The literature has shown that constraints to agricultural technology adoption decision are explained by 

imperfect information, risk, uncertainty, institutional constraints, human capital, input availability and 

infrastructural problems Yanggen et al. (1998) showed that in Africa fertilizer use capacity is constrained by 

a prevalent lack of human capital (basic education, extension and health/nutrition), financial capital (income, 

credit and assets) and basic services (infrastructure, quality controls and contract enforcement, information 

and government policies). Yield response factors (biophysical environment, technology and extension) and 

high input prices combined with low output prices (structure conduct and performance of subsector, 

competition efficiency and equity) have also contributed.  

It seems possible that non-cognitive skills may also play a role in determining the decision to adopt new 

technology in agriculture. Motivation, optimism, and sociability may also be important determinants of 

smallholders’ decision to buy and apply inorganic fertilizer or to trust extension advice. This issue is addressed 

in the following sections. 

 

- Land Tenure Policy 

Households living in rural areas and involved in the agriculture sector consider land as their main asset: it 

serves as a store of wealth against inflation, as the source of self-employment and food security, as collateral 

for credit, and as a source of insurance. Access to land is therefore of fundamental importance  

Land tenure policies have changed dramatically over time in Ethiopia. The current government policy is 

based on state ownership that ensures free access to land for all people of Ethiopia in order to prevent a small 

number of wealthier landowners from acquiring a majority of the land. This legislation was designed to protect 

against conditions experienced under the imperial regime, where a majority of rural farmers worked under 

tenancy contracts with exploitative labor agreements [Jemma, 2001; Rahmato, 2004; Chamberlin and 

Schmidt, 2009]. 

The most recent proclamation dates back to 2005 when the central government issued a revised proclamation 

designed to increase subjective tenure security through land registration and certification of plots while 
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remaining within the context of the state-owned land law. The result is that rural households can use the land 

for agriculture production, have full ownership of the products from their farming, have right to rent to fellow 

farmers, lease to investors, and inherit and donate to family members. The right of sale and mortgage are not 

included, but holding rights give farmers sufficient tenure security to make land investments [Scandizzo, 

Savastano and Alfani, 2012]. These rights may and also possible `psychological relief’ which will be the 

subject for our subsequent analysis. However, concerns have been raised that state ownership and limits to 

land transfers are restricting the development of key land markets, producing negative spillovers in agricultural 

productivity and off-farm labor (EEA/EEPRI 2002; Deininger et al. 2004).  

 

Data 

The Centre for the Study of African Economics (CSAE), in collaboration with the International Food Policy 

Research Institute (IFPRI), has collected a unique panel data set Ethiopia Rural Household Survey (ERHS) 

covering household in a number of villages in rural Ethiopia from the late 80s until 2009. The 2012 round is a 

stand-alone survey with household sampled from ERHS panel data, the survey was financed by FAO and 

implemented by the University of Addis Ababa in collaboration with Centre for Economic and International 

Studies (CEIS) of University of Rome TorVergata. The ERHS covered all regional states except the capital, 

Addis Ababa. It primarily collected information on rural areas. It was implemented in 290 rural and 43 small 

town enumeration areas (EAs). The 2012 round covers 501 households mostly living in the Oromia region 

(55% of households) with the remaining household living in the Amhara region. The survey consists of three 

rounds of visits to the household. The first round was carried out in September and October 2011 and collected 

information on post-planting agriculture activities. The second round was conducted in November-December 

2011 and fielded the livestock questionnaire to collect information on ownership, production and utilization of 

livestock, and livestock by products. The third round took place in January-March 2012 to collect information 

included in the post-harvest agriculture, household, and community questionnaires7. 

The survey includes field production information on about 1400 parcels of land (size of parcels, yield, labor 

and agricultural input usage, and information on soil quality) together with demographic and other household 

information (age, gender, education level, distance from the cultivated plot, wealth index). Furthermore, 

respondents compiled a section of the survey which allowed the construction of BFI and ER indices, to derive 

measures for non-cognitive skills (`the scores’) to be used in the subsequent analysis.  

 

Due to the small sample size (501 households interviewed) and the high compliance to input usage on farm 

(presented later in the main descriptive statistics) we believe that exist a sampling bias. The main consequence 

is that empirical results would not have external validity and will not be representative for entire rural Ethiopia.  

- Descriptive statistics 

In this paragraph, we present the main descriptive statistics for the sample focusing on the relationship 

between agricultural variables, cognitive abilities and non-cognitive skills. The principal descriptive statistics 

are shown in Table 3. The average size of the parcel is 0.56 hectares (with a standard deviation of 0.51, and a 

median of 0.50 hectares), while household total crop area id 2.07 hectares (with a standard deviation of 1.30, 

and a median of 1.75 hectares). Households cultivate, in average, 1.5 different types of crops on each plot – 

the range goes from a minimum of a 1 to a maximum of 9 different crops-. 83% of plots have a formal 

certificate of acquisition.  

The most frequently cultivated crops in the sample are the white teff variety (on average 0.56 hectares are 

allocated to its cultivation, with a yield of 109.31 Kg/ha, wheat 0.41 hectares with a yield 88.87 Kg/ha and 

maize 0.38 hectares, with an average yield of 75.28 Kg/ha. Data on quantity harvested and crop area was 

                                                           
7 It was not possible to recover other detailed information about the sampling design 
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imputed for regions and woreda levels8: namely, we replaced outliers with median values stratified by region 

and woreda levels. Female-headed households are less than 30% of the sample. Average household education 

level is almost 4.4 years of schooling, on average 70% of households’ heads have no education at all. 

Household size average is 5.75. 

We use a proxy for agricultural productivity a multi-crop index following Owens et al. (2003), Liu (2006) 

and Peterman et al. (2011). The multi-crop output 𝐾𝑖 is a measure of value of crop yield per area unit calculated 

as quantity produced for each crop per hectare (  multiplied by caloric intake of that specific crop (𝑐𝑘).  

𝐾𝑖 = ∑(𝑦𝑖𝑘𝑐𝑘)

𝑖

 

As a robustness check, we use an alternative multi-crop measure in which output is weighted by unit prices9  

( ). 

𝑌𝑖 = ∑(𝑦𝑖𝑘𝑝𝑘)

𝑖

 

Table 3 Descriptive Stats 

 Obs Average Std Dev 

HH Characteristics    
Female HH Head 501 0.28 0.45 

HH Size 501 5.75 2.65 

No HH Head Education (=1) 501 69.81 0.49 

Age (years) 501 28.76 12.63 

Gross Agr. Inc (Crop+livestock) (BIRR) 501 8,857.64 14002 

Gross Aggregate Inc (BIRR) 501 11,135.13 14919 

HH member migrant (=1) 501 0.68 0.46 

Credit (at least 100 Birr) (=1) 501 0.37 0.48 

    
Agricultural Variables    
Distance from Plot (minute) 1481 27.88 34.72 

Crop Area (ha) 1465 2.073 1.3 

Dummy for Monoculture (=1) 1481 0.69 0.46 

Dummy for Low Quality Soil (=1) 1480 0.127 0.33 

Dummy for Normal Quality Soil (=1) 1480 0.5 0.5 

Total Yield (KG/ha) 1481 101.64 135.58 

Multicrop Output (KG/BIRR) 1481 987.29 4622.56 

Cultivation by Hand (=1) 1481 0.16 0.37 

Cultivation with Animal (=1) 1481 0.84 0.37 

 

Table 4a shows the share of plots adopting agricultural inputs such as hybrid seeds (87%), inorganic 

fertilizers (86%), pesticides (23%) and use of an irrigation system (99%). These high percentages make us 

believe the existence of possible sampling bias. The main consequence is that empirical results would not have 

external validity and will not be representative for entire rural Ethiopia. We provide to compare the basic 

descriptive statistics of ERHS data which covers households in a number of villages in rural Ethiopia from the 

late 1980s until 2009. From ERHS panel data structure was sampled the 2012 round we use in the analysis. In 

2009, 23% of households in the sample used hybrid seeds; 50% used inorganic fertilizers, 20% acquired 

pesticides, and 24% used some irrigation on one or more plots (Table 4b). 

                                                           
8 Woredas are the third-level administrative divisions of Ethiopia; woredas are aggregated into zones to create regions. 
9 Unit prices were calculated for each household by dividing total sales values by the quantity sold, where a household 
did not sell any of the crop, its total yield is multiplied by the median price received by farmers in that specific location. 
We use unit price instead of state-market prices as Owens et al. (2003) for Zimbabwe, even though the possibility of 
edongeneity of unit prices deriving from farmer characteristics. 
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Table 4a Agriculture Input Adoption 

Variable N Mean Std. Dev 

Hybrid Seed 501 0.87 0.33 

Inorganic Fertilizer 453 0.86 0.34 

Pesticides 501 0.23 0.418 

Irrigation System 501 0.99 0.100 

 
Table 4b Descriptive Statistics from `Ethiopian Rural Household Survey' longitudinal data. 2012 survey is a stand-alone survey with 

household sampled from ERHS panel data 

 Mean 

 

Female-Headed 

Household 
HH size 

No HH Head 

Education (=1) 
HH Head Age Tot Crop Area (ha) 

2009 0.3196126 5.713479 0.4898457 52.93664 1.480888 

2004 0.2800646 5.748184 0.582716 51.0223 1.426379 

1999 0.2631154 5.881356 0.6089069 49.48664 1.755847 

1994 0.196933 6.299435 0.7252836 46.15653 1.773703 

Agr Inputs               

Dummy for having 

used fertilizer 

Mean 

Dummy for HH using 

improved seeds 

Mean Dummy for HH 
acquired pesticides 

(incl. Fungicides and 

herbicides) 

Mean Dummy for 
some irrigation 

on one or more 

plots 

Mean 

2009 0.50 2009 0.23 2009 0.20 2009 0.24 

2008 0.54 1999 0.14 2004 0.01 2004 0.23 

2007 0.54   1999 0.21 1999 0.10 

2006 0.55       
2005 0.55       
Data Source: `Ethiopian Rural Household Survey’ longitudinal data, collected by IFPRI 

 

- Non-Cognitive Skills Measures 

We now turn to the BFI and ER scores. Non-cognitive skills are collected at the individual level and so are 

the descriptive statistics on these variables. Responses to all 44 BFI questions are on a scale of one to five, 

with five indicating ``agree strongly’’ and one indicating ``disagree strongly’’. While, responses to all 10 

questions or ER test are on a scale of one to seven, with seven indicating ``agree strongly’’ and one indicating 

``disagree strongly’’. Each measure of the two tests is created aggregating the different questions using the 

existing scale and taking the simple average of items that belong to that specific domain (see the Appendix I). 

Each score was converted into T- scores: having a range between 20 and 8010.  

The five traits defined by the test correspond to agreeableness, conscientiousness, neuroticism, extraversion, 

and openness to experience. We derive two further personality traits from ER questionnaire. These concern 

the respondent’s abilities to control emotions and how these affect decision-making: reappraisal and 

suppression.  

We report Cronbach’s alpha11 as a measure of the internal reliability of BFI and ER scores in Table 5: values 

of alpha increase as the correlations among test items increase (average reliability is 0.67 which indicates 

almost reliable consistency, where the rule of thumb is to around 0.7). Although results are in line with the 

existent literature on BFI scores in Africa12, low internal reliability might due to language and culture 

differences. The test scale for ER test is 0.58.  

                                                           
10 In the following chapters we may refer to these measures using the denomination `score’ or `T-score’ as synonym  
11 Cronbach’s alpha is used as a lower bound estimate of the reliability of a psychometric test. Suppose that we measure 

a quantity which is a sum of K components, Cronbach’s alpha is defined as  where  is the 

variance of the observed total test scores, and  the variance of the component  for the current sample of persons. 

Rule of thumb to have a reliable psychometric indicator is 0.70 
 
12 See Schmitt et al. (2007). In this paper is tested the assumption that the core psychological constructs transcend 
human language and culture, comparing scores of BFI for 56 countries. Since BFI was developed in the U.S., any observed 
difference in mean scores between different cultures may exist because of a real disparity on some personality trait, 
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However, Laajaj and Macours (2017) argued that the Cronbach alpha is affected both by the noise and the 

extent to which items are measuring the same underlying construct. Measurement errors could be generated 

by several sources amongst which areinterviewer characteristics, low level of education, the order of the 

section of the survey and other cognitive biases. Laajaj and Macours try different methods for aggregating 

responses. For example, they account for the tendency of the respond to agree with the statement presented in 

the questions, correcting for latent factors with exploratory factor analysis (EFA) and Item Response Theory. 

Unfortunately in our case, we cannot control ex-post for these sources of measurement error since the original 

survey design did not include controls for measurement errors in relation to non-cognitve skills (as well as the 

cognitive ones). In our case, we simply rely on the Cronbach alpha aware of the possible limitations of this 

statistical tool. However, we try to check for other statistical correlation between the results of the two tests’ 

scores and other variables to identify a possible latent relationship between the two. 
Table 5 Descriptive Statistics and Cronbach’s alpha 

 

 

 

 

 

The theoretical value of alpha varies from 0 to 1. The last column gives Cronbach’s α for the test scale, which consists of all but the 
one item. A commonly accepted rule for describing internal consistency using Cronbach’s Alpha is to have a test scale around 0.70 

Figure 1 shows the distribution of BFI and ER scores for household perceptions as to whether they are among 

the poorest, towards the average or among the the richest in their village (information collected directly with 

the questionnaire). We are not in a position to make an assumption on the direction of causality - whether 

poverty affects non-cognitive skills endowment or being poor is caused directly by personality traits. We 

notice that those households who perceived themselves as poorer show on average higher scores in 

Agreeableness and Openness whilericher households have on average higher scores in Conscientiousness and 

Neuroticism. 
Figure 1 Non-Cognitive Skills Distribution by Household Perception of Wellbeing 

 

We exclude the possibility of multicollinearity issues for the following econometric estimations by looking 

at the correlation between schooling, wealth and non-cognitive skills [Table 6]. The small number of people 

in rural regions who have obtained some level of schooling may have personality traits that differ from the 

other sampled individuals, and moreover, the schooling process could strengthen such abilities. Thus, the 

information of BFI and ERmeasures are largely orthogonal to education and experience. Then we test whether 

                                                           
but also because of inappropriate translation, biased sampling. Results, show a lower congruence of BFI scores for Africa 
and Southeast Asia, especially for single items of the BFI Openness trait (as in out sample). Previous research failed to 
find a clear definition of openness in Black South African cultures.  Furthermore, it would seem logical to expect that 
the economic prosperity of a nation would be related to the conscientiousness of its citizens or at least that 
conscientiousness would be a favorable factor for economic development. Contrary to this expectation, the correlation 
between the BFI factor scores of Conscientiousness and gross domestic product (GDP) per capita approached marginal 
significance in the negative direction. 

BFI Mean Std Dev Min Max Alpha 

Extraversion T-score 50.93 6.07 35 70.71 0.68 

Agreeableness T-score 55.33 9.13 24.17 70 0.59 

Conscientiousness T-score 56.34 6.7 34.73 70 0.57 

Neuroticism T-score 40.61 6.71 26.07 60.71 0.58 

Openness T-score 44.41 6.89 27.71 62.86 0.66 

Test Scale         0.67 

ER Test Sale     0.58 
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individuals with some level of education statistically differ in non-cognitive skills endowment respect to 

people without any schooling attainment. Results show that on average people able to afford education have 

higher non-cognitive skills scores (except for Neuroticism trait). On average individuals with basic education 

have 2 points more for the conscientiousness and 3 points for the openness traits [Table 7].  

 Even though we already graphically represented the relationship between own-perception of the wealth 

status of households we check also a possible correlation with the derived measures of wealth and income. In 

this case, we notice that behavioral variables are largely uncorrelated with wealth measures (Gross aggregated 

income, number of assets owned). 

Table 6 Correlation tables  

  
Output 
Index 

Schooling 
(yeas) 

HH Head Age 
(years) 

Extravers
ion 

Agreeable
ness 

Conscientiou
sness 

Neurotic
ism 

Openn
ess 

Suppress
ion 

Reappra
isal 

Output Index 1.0000          
Schooling 
(yeas) -0.0061 1.0000         
HH Head Age 

(years) -0.0019 0.0679 1.0000        
Extraversion 0.0818 -0.0475 -0.0227 1.0000       
Agreeableness 0.036 0.0101 0.0163 0.2495 1.0000      
Conscientiousne
ss 0.006 0.1162 -0.0758 0.0554 0.3575 1.0000     
Neuroticism 0.0081 -0.099 0.0516 0.0602 -0.4308 -0.5619 1.0000    
Openness 0.0866 0.1811 -0.0121 0.3142 0.1135 0.4303 -0.2943 1.0000   
Suppression -0.0058 0.0009 -0.0626 -0.1915 -0.0962 0.1568 -0.0739 0.126 1.0000  
Reappraisal 0.0137 0.0281 -0.0104 0.136 0.1512 0.3184 -0.2403 0.3296 0.4455 1.0000 

 

  

Gross Aggr 

Income 

Number of 

Bikes 

Number of 

Cell  

Number of 

Radio 

Agreeablen

ess  

Extraversi

on 

Conscientious

ness 

Neurotici

sm 

Openne

ss 

Gross Aggr 
Income 

1.0000         

Number of 

Bikes 
0.0566 1.0000        

Number of Cell  0.2539 0.2795 1.0000       

Number of 

Radio 
0.1991 0.1903 0.2365 1.0000      

Agreeableness  0.2058 -0.0712 0.0171 0.0418 1.0000     

Extraversion 0.0364 -0.0951 0.0135 0.0045 0.2994 1.0000    

Conscientiousn
ess 

0.2115 -0.0659 -0.0745 0.0329 0.3804 0.1173 1.0000   

Neuroticism -0.2807 -0.004 -0.0501 -0.0942 -0.4904 0.058 -0.5327 1.0000  

Openness 0.1205 0.0116 0.0833 0.0364 0.0459 0.3972 0.3372 -0.1806 1.0000 
 

We use Gross aggregate income and number of bikes, cellphones and radios to proxy household wealth. BFI Scores refers to Family members working 

on the plot 

Table 7 T-test BFI and ER score for people with/without educational attainment 

BFI Scores 

Mean (No 

Education) 

Mean 

(Education>1 

year) 

Difference 

Extraversion 50.591 51.067  -.477* 

Agreeableness 53.904 54.529  -.625* 

Conscientiousness 53.750 56.028  -2.27*** 

Neuroticism 42.516 40.554  1.962*** 

Openess 41.781 45.192  -3.412*** 

ER Scores    
Suppression 3.997 3.998 -.001  

Reappraisal 4.634 4.744 -0.110*** 
Asterisks denote significance of t-tests for equality of means between the preceding columns: *** p<0.01, ** p<0.05, * p<0.1 

We test whether land tenure security affects household personality traits. Table 8 reports the t-test statistics 

for BFI and ER. We can assume that having a plot certificate is an exogenous outcome for households and 

also that having a certificate could decrease psychological distress and increases subjective psychological 

wellbeing. This could favorably affect the land investment and subsequent farming productivity. Results 

confirm that respondents in  households without formal plot certificates show on average higher neuroticism 
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while members living in households with a certificate are more open to new experience and show higher 

scores for suppression.  

Table 8 T-test BFI and ER score for plots with/without formal certificate 

Variable 

Mean (No Plot 

Certificate) 

Mean (Plot 

Certificate) 

Mean 

Total Diff 

BFI Scores     

Extraversion 50.48 51.03 50.93658 -0.55 

Agreeableness 55.61 55.28 55.34 -0.33 

Conscientiousness 55.94 56.17 56.14 -0.24 

Neuroticism 41.66 40.40 40.61 1.26*** 

Openness 43.64 44.57 44.41 -0.93* 

ER Scores     

Suppression 3.75 3.99 3.95 -0.23*** 

Reappraisal 4.71 4.76 4.75 -0.04 
Asterisks denote significance of t-tests for equality of means between the preceding columns: *** p<0.01, ** p<0.05, * p<0.1 

We test whether cognitive and non-cognitive skills of family members working on the plot differ between 

who adopt a certain level of agricultural inputs. In Table 9 we report results for t-test between the users and 

non-users of inorganic fertilizer (first three columns) and between the users of low quantities of seeds (first 

and second terciles of the distribution) and intensive users (third tercile). The results show that non-cognitive 

skills differ across these groups. In particular, family members who apply inorganic fertilizer on the plot show 

on average higher scores for extraversion and agreeableness (0.88 and 1.25 points respectively), and lower 

scores for conscientiousness (-0.77 points). The results for the t-test on seed purchase are more difficult to 

interpret since households may choose to purchase high-quality seed to enhance output or may be obliged to 

purchase seed because of insufficient retention from the previous crop year. These two possible categories of 

seed purchaser are likely to be associated with different behavioral traits. The t-test results show a statistically 

significant difference in household average educational attainment used to proxy cognitive skill. Individuals 

who apply lower quantities of seeds have on average a half-year more of education compared to people who 

apply larger quantity. As with the results for inorganic fertilizer adoption, family members who apply a larger 

quantity of seeds on the plot show on average higher scores for extraversion, agreeableness and suppression, 

and lower scores for conscientiousness. 

Table 9 T-test BFI and ER score for family members working on the plot by technological adoption 

  

Mean (No 

Inorg Fert) 

Mean (Some 

Inorg Fert) 
Difference 

Mean (1st, 

2nd 

terciles of 

quantity 

of seeds 

applied 

per ha) 

Mean (3rd 

tercile of 

quantity 

of seeds 

applied 

per ha)  

Difference 

Cognitive Skill        

Household Average Educational Attain. 3.66 3.85 -0.19 3.87 3.59 .51*** 

BFI Scores         

Extraversion 50.33 51.21 -.88** 50.63 52.15 -1.51*** 

Agreeableness 54.41 55.67 -1.25** 55.02 56.23 -1.21* 

Conscientiousness 57.08 56.81 .77* 57.04 55.55 1.85*** 

Neuroticism 40.59 40.53 0.06 40.47 40.93 -.46 

Openess 44.53 44.7 -0.17 44.6 44.82 -.21 

ER Scores         

Suppression 3.93 3.98 -0.05 3.92 4.17 -.26** 

Reappraisal 4.81 4.72 0.09 4.75 4.77 -.02 
Asterisks denote significance of t-tests for equality of means between the preceding columns: *** p<0.01, ** p<0.05, * p<0.1 

We explore the relationship between BFI and agricultural productivity measures (total crop yield under all 

crops Kg/ha) plotting the yield against the quantile distribution of BFI and ER scores in Figure 2. The graphs 

show a common pattern: top quantile distribution of BFI and ER show a decreasing trend in scores as total 

yield increases, while the reverse is true at the bottom of the distribution.  
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Figure 2: Quantile Distribution of BFI and ER on Total Yield (Kg/ha) 

 

In this section, we provided a descriptive picture of the possible connection between non-cognitive skills 

and farming system of rural households in Ethiopia. For instance, there are several interesting hints to further 

explore the contribution of non-cognitive skills on the wellbeing of rural households. We are aware of the 

possible limitations of our approach, especially the threat of measurement errors that could hinder the 

goodness of our non-cognitive skills measures. Laajaj and Macours (2017) are rather skeptical on the use of 

these measures because often they do not measure what they supposed to. On the other hand, thereis other 

more positive evidence  such as: Ali et al. (2017), Montalvao et al. (2017), and Bernard et al. (2012). 

After this exploratory and mainly correlational analysis in the next chapter, we try to assess in a more 

rigorous way the impacts of such skills on agricultural output performance. 
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APPENDIX I 

Big Five Questionnaire 

 

 

Disagree strongly      Disagree a little             Neither agree nor disagree                      Agree a little                    Agree strongly 

1----------------------------------2----------------------------------3-------------------------------------4----------------------------------5 

 

 

___   1.  is talkative ___ 23.  tends to be lazy 

___   2.  tends to find fault with others ___ 24.  is emotionally stable, not easily upset 

___   3.  does a thorough job ___ 25.  is inventive 

___   4.  is depressed, blue ___ 26.  has an assertive personality 

___   5.  is original, comes up with new ideas ___ 27.  can be cold and aloof 

___   6.  is reserved ___ 28.  perseveres until the task is finished 

___   7.  is helpful and unselfish with others ___ 29.  can be moody 

___   8.  can be somewhat careless ___ 30.  values artistic, aesthetic experiences 

___   9.  is relaxed, handles stress well ___ 31.  is sometimes shy, inhibited 

___ 10.  is curious about many different things ___ 32.  is considerate and kind to almost everyone 

___ 11.  is full of energy ___ 33.  does things efficiently 

___ 12.  starts quarrels with others ___ 34.  remains calm in tense situations 

___ 13.  is a reliable worker ___ 35.  prefers work that is routine 

___ 14.  can be tense ___ 36.  is outgoing, sociable 

___ 15.  is ingenious, a deep thinker ___ 37.  is sometimes rude to others 

___ 16.  generates a lot of enthusiasm ___ 38.  makes plans and follows through with them 

___ 17.  has a forgiving nature ___ 39.  gets nervous easily 

___ 18.  tends to be disorganized ___ 40.  likes to reflect, play with ideas 

___ 19.  worries a lot ___ 41.  has few artistic interests 

___ 20.  has an active imagination ___ 42.  likes to cooperate with others 

___ 21.  tends to be quiet ___ 43.  is easily distracted 

___ 22.  is generally trusting ___ 44.  is sophisticated in art, music, or literature 

 
Big Five Inventory Scoring Key 13 

Extraversion:   1, 6R 14,11, 16, 21R, 26, 31R, 3                               Neuroticism: 4, 9R, 14, 19, 24R, 29, 34R, 39 

Agreeableness:   2R, 7, 12R, 17, 22, 27R, 32, 37R, 42                     Openness: 5, 10, 15, 20, 25, 30, 35R, 40, 41R, 44 

Conscientiousness: 3, 8R, 13, 18R, 23R, 28, 33, 38, 43R 

 

Total Scores Converted to T-Scores 

Extraversion___.  Total Score divided by 8 = ____ (X).  X minus 3.2 = ____ (Y).  Y divided by 0.8 = (Z) = ____.  (Z * 10) + 50 = ____ (T) 
 

Agreeableness___.  Total Score divided by 9 = ____ (X).  X minus 3.8 = ____ (Y).  Y divided by 0.6 = (Z) = ____.  (Z * 10) + 50 = ____ (T) 

 
Conscientiousness___.  Total Score divided by 9 = ____ (X).  X minus 3.6 = ____ (Y).  Y divided by 0.7 = (Z) = ____.  (Z * 10) + 50 = ____ (T) 

 

Neuroticism___.  Total Score divided by 8 = ____ (X).  X minus 3.0 = ____ (Y).  Y divided by 0.8 = (Z) = ____.  (Z * 10) + 50 = ____ (T) 
 

Openness___. Total Score divided by 10 = ____ (X). X minus 3.7 = ____ (Y).  Y divided by 0.7 = (Z) = ____.  (Z * 10) + 50 = ____ (T) 

 

                                                           
13   Copyright Oliver P. John (1991), University of California-Berkeley, Institute for Personality and Social Research. 
14  Note that “R” denotes reverse-scored items (1=5, 2=4, 3=3, 4=2, 5=1). 
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Emotion Regulation Questionnaire 

 

 

Disagree strongly                                                          Neither agree nor disagree                                                              Agree strongly 

1-----------------------2----------------------3----------------------------4----------------------------5----------------------6----------------------7 

 

 

Reappraisal: 1, 3, 5, 7, 8, 10; Suppression: 2, 4, 6, 9 
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1.Farming Productivity and Non-cognitive Skills: Evidence 

from Ethiopian Smallholders 

 

1.1. Introduction 

The use of behavioral approach in the economic discipline has blooming during the last years. The 

motivation for including emotions and personality traits is to try to give a more complete picture of homo 

economicus. Heckman’s works testify the strength of the behavioral variables in predicting outcomes in 

schooling, labor market behavior and health. The success of this approach is confirmed by its spreading in 

developing countries too. The World Bank’s 2015 World Development Report (WDR 2015) collects the best 

examples of behavioral application in developing countries referring to them as `small miracles’ (amongst the 

which the WDR cites Duflo’s works on the power of nudging fertilizer use reminders for ensuring access to 

HIV medical assistance). The general conclusion is that with the use of small precautionary measures results 

in significant improvement in outcomes. 

 

Controlling for non-cognitive skills in analyzing farm production outcomes remains an unexplored topic in 

the discipline. Farmers may be vulnerable to stress resulting from unpredictable weather or output prices. 

They are subject to time pressures, changes in government policies, and farm hazards. Many farmers are 

geographically isolated. Unanticipated events might generate psychological pressure [Willock et al., 1999]. 

These considerations provide the motivation for including emotional and personality variables in agricultural 

production functions. In this chapter, we assess the role of non-cognitive skills in affecting productive 

efficiency (the ability to produce more from the same inputs) and/or affecting allocative efficiency (use a more 

or less efficient combination of inputs). We use cross-sectional data for 501 households in rural villages in the 

Amhara and Oromya regions of Ethiopia during the crop year 2012. We integrate information on non-

cognitive skill measures into standard production function estimates to account the `unobservable’ factors that 

may affect household decision-making (such as mindset, entrepreneurship and aspiration).   

The remainder of the chapter is organized as follows: section two presents empirical framework adopted on 

agricultural productivity; while section three and four present the estimation results for productivity using 

non-cognitive skills measures. Section 5 concludes. 

 

1.2. Agricultural Productivity: Empirical Framework and Evidence 

In this chapter and the following one, we address two issues: a) the role of non-cognitive skills in affecting 

productive efficiency (the ability to produce more from the same inputs); b) how non-cognitive skills affect 

allocative efficiency (use of a more or less efficient combination of inputs). In this specific chapter, we address 

the first point and the associated literature.  

 

The standard method for measuring and modeling differences in technical efficiency in agricultural 

productivity is through the estimation of production functions. Production functions represent the 
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technological relationship between output and factor inputs. The literature considers different explanations for 

disparities in agricultural productivity. We briefly survey these in what follows.  

o Many development interventions have aimed to reduce the gender gaps in health, education and 

nutritional status. There is considerable evidence of gender differences in agricultural productivity. A 

number of possible factors may lead to agricultural productivity differences between men and women 

such as lack of access to productive resources and low levels of human capital.  The literature on the 

specific productive necessities of poor female farmers is relatively limited and it is typically confined 

to a single factor – land - [Quisumbing and Pandolfelli, 2010]. Peterman et al. (2011), for example, 

show persistently lower productivity on female-owned plots and among female-headed households in 

Nigeria and Uganda.  

o Technology adoption (allocation and adoption of inputs) is identified as the key to improving 

agricultural productivity in Africa [Doss, 2001].  

o Extension services may help the spread of agricultural inputs usage. Owens et al. (2003) show that in 

Zimbabwe, after controlling for innate productivity characteristics and farmer ability and village fixed-

effects, access to agricultural extension services raises the value of crop production by 15%.  

o Credit is often a prerequisite for the adoption of improved seeds and fertilizers: a farmer’s ability to 

obtain credit may be correlated with land tenure and agricultural productivity itself. Thus, large-scale 

farmers who produce for the market may have better access to credit than small-scale farmers [Doss, 

ibid.]. The impact of fertilizers and seeds on agricultural productivity depends on availability and proper 

application on the plot. Again, extension services may improve knowledge and implement 

recommendations to smallholders. Asia’s green revolution was successfully achieved through 

wholesale supply strategies aimed at extending the use of fertilizers. Supply problems have been widely 

cited to explain why farmers do not purchase and use fertilizer. For example, because the African 

continent’s agro-ecological zones are more diverse than Asia’s these strategies may not produce the 

same yield results in Sub-Saharan Africa [Voortman et al., 2000] 

Against this background, we analyze how emotional and attitudinal factors affect agricultural outcomes. We 

start with a standard neoclassical production function defined by 

𝑌𝑖=𝑓(𝑉𝑖, 𝑋𝑖) 

where Y𝑖 is the quantity produced on plot i; 𝑉𝑖 is a vector of inputs used on plot i (land, labor, capital) and 𝑋𝑖 

is a vector of individual attributes. Typically, empirical studies estimating farming productivity use the 

translog or Cobb-Douglas specifications, the latter being a special case of the former. Both functional forms 

are linear in parameters and, conditioning on input choices, can be estimated using OLS. Zellner et al. (1966) 

argue that input decisions are made to maximize expected, not actual profits, prior to revelation of the 

production function disturbance. This assumption allows consistent estimation of the conditional 

representation by OLS. The assumption is reasonable if the production function disturbance represents the 

impact of unanticipated post-planting weather shocks. If the disturbance also comprises omitted factors which 

potentially also influence input choices, OLS estimates will be inconsistent. The omission of the emotional-

attitudinal variables (as well as other omitted variables) may therefore result in inconsistency in standard 

neoclassical production function estimates. 

If we possessed information on the inputs used for each crop, we would be able to compute distinct 

production function for each crop using crop yield as the dependent variable. More usually, the data do not 

permit allocation of inputs across crops and intercropping may imply that some inputs, for example, fertilizers, 

may not be crop-specific. This is the case with our data and we follow Owens et al. (2003), Liu (2006) and 

Peterman et al. (2011) in using an output index. The multi-crop output 𝑌𝑖 is a measure of value of crop yield 

per area unit calculated as quantity produced for each crop per hectare (𝑦𝑖𝑘) multiplied by caloric intake of 

that specific crop (𝑐𝑘) 𝑌𝑖=Σ(𝑦𝑖𝑘∗c𝑘).  
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We can assume a vector of personality traits 𝐵𝑖 that affect outcomes 𝑌𝑖 and input adoption 𝑉𝑖, such that the 

model become: 

𝑌𝑖=𝑓(𝑉𝑖, 𝑋𝑖, 𝐵𝑖) 

Vector 𝐵𝑖 may explain farmers’ reactions to negative events: farmers with strong endowment of both 

cognitive (making use of extension services, years of education etc.) and non-cognitive abilities 

(conscientiousness and willingness to work for long-term goals) may overcome short-term or temporary 

negative shocks through long-term commitment to pursuing farming activities. Farmers without enduring 

personality traits or strong cognitive abilities may be more likely to abandon agriculture activities [Savastano, 

2013]. Smallholders’ choices in the adoption of new input technologies to enhance agricultural productivity 

may also depend on their aspiration levels. If they form mental models which ignore some options for 

investment. Behavioral variables may affect both yield directly and also indirectly through input use. Policies 

directed towards increasing the supply of fertilizers and seeds may not lead to the expected results if non-

rational perceptions of investments are not taken into account.  

 

1.3. Empirical Strategy 

We estimate a production function including proxies for personality traits to check if they concur to affect 

the farming production process. Production function relates the physical output of a production process to the 

physical inputs or factors of production. The simplest technical specification is the Cobb-Douglas function: 

ln 𝑌 𝑖 =  𝛿0 + ∑ 𝛽𝑗 ln 𝑉𝑖𝑗
𝑘
𝑗=1 + 𝛼2′𝑋𝑖 + 𝛼3′𝐵𝑖 + 𝛿′𝑊𝑖 + 𝜖𝑖 (1)  

∀ 𝑖 = 1, … , 𝑁 

where the subscript 𝑖 identifies the plot field. 𝑌𝑖 is the total output of plot 𝑖 (crop yield per area unit, weighted 

by crop caloric intake15); 𝑉𝑖𝑗 is the jth agricultural input (including family labor, quantity of fertilizer seeds, 

crop area, quality of the soil) applied on plot 𝑖; 𝑋𝑖 is a vector of the characteristics of the household operating 

plot 𝑖 (female-headed household, household head age, average educational attainment in the household, 

household size, access to credit and extension services, number of plows and bikes owned) , 𝐵𝑖 is a vector of 

behavioral and personality variables relating to the household members working on farming plot 𝑖16 and i is 

an error term. We control for geographical differences with m dummy variables W for administrative woreda 

levels. We restrict the sample to those plots on which a single crop variety is cultivated.  

We estimate also another possible specification for agricultural productivity using a translog production 

function.  

ln 𝑌 𝑖 =  𝛿0 +  ∑ 𝛽𝑗 ln 𝑉𝑖𝑗
𝑘
𝑗=1 +

1

2
∑ ∑ 𝛽ℎ𝑗 ln 𝑉𝑖ℎ ln 𝑉𝑖𝑗

𝑘
𝑗=1

𝑘
ℎ=1 + 𝛼2′𝑋𝑖 + 𝛼3′𝐵𝑖 + 𝛿′ 𝑊𝑖 + 𝜖𝑖 (2) 

∀ 𝑖 = 1, … , 𝑁; 

The translog production function specializes to the Cobb-Douglas form if 𝛽𝑖𝑙 = 0. We test these restrictions 

using a Wald test. We control for geographical differences with a set of m dummy variables W where 𝑊𝑖𝑗 = 1 

if plot j is in woreda i. We distinguish 𝑘 = 5 input variables usually utilized in farming production function 

                                                           
15 We try to restrict the agricultural output to different crop-categories (such as cereal, and other crops) and most 
cultivated crop (such as teff, barley, and sorghum). We omit to present the results since the small N of the regressions 
do not produce reliable estimates 
16 We use the average BFI (agreeableness, conscientiousness, neuroticism, extraversion and openness) and ER 
(suppression and reappraisal) scores of household members working on the plot. We tried different specifications with 
no great difference on the estimated results: disaggregating averages of BFI and ER scores by the gender of household 
members, and using the scores of the household head 
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analysis: plot area (ha), the quantity of fertilizers applied per hectare (kg/ha), quantity of seeds used per hectare 

(kg/ha), family labor person per day per hectare, and having a low-quality plot. The pure neoclassical 

specification usually includes only input variables, however household characteristics may affect the 

agricultural output and are often included in the estimation. The household characteristics vector X has eight 

components: a dummy variable for a female household head, the household head age, the average schooling 

level in the household, household size per adult equivalent, a dummy which takes the value one if the 

household during last year has received a loan outstanding 100 BIRR or more, a binary variable to account 

extension services, and number of plows and bikes owned to account for agricultural asset and wealth in the 

household.  

As anticipated in the previous section, personality traits might affect performance on a task, controlling for 

cognition, other skills, and effort applied. In addition, the effort allocated to the task, in this case, agriculture 

production, depends on cognition, personality traits, incentives and also preferences. Personality traits are 

largely inherited, but it is also possible that the may be modified by the social environment over time [Roberts, 

2009].  

We are aware of the limitations that such a small sample could generate -the most important- the limited 

external validity of our results. However, even though the sample is not representative for Ethiopa, we believe 

that this empirical exercise still may shed light on the impact of non-cognitive skills on agricultural output. 

We also mention beforehand the possibility of measurement errors affecting at a certain degree the reliability 

of our behavioral measures. The extensive descriptive section presented above tries to isolate the noise and 

correlation between the different sets of variables. 

 

We estimate both the Cobb-Douglas and translog functions as specified above using Ordinary Least Square 

(OLS) and also four cases:  

a) A base specification which sets both the α and β coefficients to zero. This provides the base in which 

we can measure fit using an adjusted R2 statistic [Table 1 in the appendix I]; 

b) The pure neoclassical specification that sets the α coefficients associated with the household and 

behavioral variables to zero. Again, we estimate both the translog and Cobb-Douglas versions [columns 

1-2 Table 1 in the text]; 

c) The standard classification without behavioral variables [columns 3-4 Table 1 in the text]; 

d) The general case defined by equation (2) and also the Cobb-Douglas simplification (1) [columns 5-6 

Table 1 in the text]. 

Full estimates with heteroscedasticity-robust standard errors are reported in Appendix I Table 1 and 2. While 

Table 1 in the text present in a more concise way the extensive results reported in the appendix I.  

The gradual addition of different sets of variables allow us to statistically control whether adding certain 

variables increase the explanatory power of each specification. The main aim is to assess whether inserting 

behavioral variables in the estimation positively affect the explanatory power of the production function. We 

try to isolate at the best the `noise’ coming from the other variables (geographical locations, inputs and 

household characteristics). 

 

The OLS estimation is a basic estimation tool. However, under reasonable assumptions about the disturbance 

term the inputs can be shown to be independent of the disturbance term of the production function. Therefore, 

OLS estimation method gives consistent and unbiased estimates. However, observed inputs may be correlated 

with unobserved shock and therefore hinder the reliability of the OLS estimates. The most common solutions 

offered by the literature are the instrumental variable approach and using longitudinal panel data. Regarding 

the first solution the researcher should find a variable that is correlated with the variable input and uncorrelated 

with the shock. A possibility is to use input prices as instrument. However, as in our case, exogenous input 



35 
 

prices are not observed. Furthermore, even when these prices are observed they could not vary by farm or the 

variation itself may be correlated with the error. Aware of the possible shortcomings of the OLS estimation 

we are constrained to rely on it because of the cross-sectional nature of the survey design and the lack of a 

proper exogenous and relevant instrument to use.  

 

Results for the full model are shown in Table 1 and summarized the fit of the six production functions in 

terms of standard error, R2 , and AIC17. For equations (1)-(2) we also give the R2 statistic relative to the 

equation with only administrative dummy variables, i.e. netting out explanation due to woreda dummies 

[Table 1 in the appendix I]. Adding a set of variables (household characteristics and non-cognitive skills 

measures) to regressions progressively decreases AIC statistics, while the R2 statistic relative to the equation 

in table 1 increases. In particular, adding the set of non-cognitive skills measures to Cobb-Douglas and 

translog models increases the R2 statistic relative to the base woreda equation by 12 and 8 percentage points, 

respectively.  

To assume a linear relationship between the outcome and traits could be problematic since extreme levels of 

traits are associated with Obsessive Compulsive Disorder which hinders task performance [Samuel and 

Widiger, 2008]. In order to choose the correct specification for non-cognitive skills variables, we tried 

different specification (linear, quadratic and cubic). 

Two robustness checks are performed: we re-estimate OLS excluding observations with farm size greater 

than 5 hectares [results not presented], and we use the output index weighted by unit prices [Table 2b 

Appendix I] in place of calorific values. The two different specifications return similar results so we limit the 

comments to the results obtained using as independent variable the crop yield weighted by the caloric intake. 

We tested whether a reduced model for production function is preferred to the full model specification: we 

show F-test results in table 1 for Cobb-Douglas and translog (with quantity variables in the first row and using 

dummy variables for inputs in row 2). We then performed a restricted Hausman test between Cobb-Douglas 

specification without and with behavioral variables. The null hypothesis is that the coefficients on the factor 

input variables reported in column (3) and (5) are not statistically different amongst the two models. These 

results allow us to conclude that omission of the behavioral measures from the estimation leads to inconsistent 

estimates for the production function 

Table 2 in the appendix I summarize fit of regression adding a set of variables. The first two columns report 

results for Cobb-Douglas and translog production function using only inputs variables. In columns (3) and (4) 

we add household characteristics, and finally, in columns (5) and (6), we present full model specification 

results with non-cognitive skills measures. 

The analysis focuses on the estimation of different specifications of the production functions. However, a 

well-established stream of literature uses production function estimation as the first step in deriving 

conclusions on the input efficiency. Using an estimated production frontier it is possible to measure the relative 

efficiency of certain groups or set of practices from the relationship between observed production and some 

ideal or potential production [Greene, 1993]. We started this work with the intention of undertaking stochastic 

frontier estimation estimation using non-cognitive skills as a source of technical inefficiency of the agricultural 

                                                           
17 The Akaika Information Criterion (AIC) is a widely used criterion for model selection. The AIC rule suggests selection 
of the specification which minimizes the AIC. The AIC modifies the likelihood of the model (L) to penalize the number of 
parameters estimated (k): 𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿). Akaike (1974) showed that the AIC estimates the difference in the losses 

from two alternative specifications. In the linear regression model, 𝐴𝐼𝐶 = 𝑛[1 + ln(2)] + 𝑛 ln(𝛿̂2) + 2𝑘, the 

minimization of AIC requires minimization both of RSS (and hence 𝛿̂2) and the number of parameters 𝑘. This forces a 

balance between parsimony (small 𝑘) and high fit (low 𝛿̂2). 
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output. However, we chose to not continue to pursue this objective since the results were inconclusive. The 

analysis is summarized in Appendix II.   

1.4.Detailed discussion of the results 

In the previous paragraph we presented the empirical strategy and how we chose to split the estimation 

results amongst the tables in the text. In this section we focus on commenting the results we obtained. 

First of all, we must keep in mind the purpose of the empirical estimation. We want to isolate the effect of 

inserting the behavioral variables of the household members working on the plot into the estimation of two 

different specifications of production function (Cobb-Douglas and translog) of the agricultural output. The 

regressions are performed restricted on the plot where only one variety of crop is cultivated, each crop yield 

is weighted by the caloric intake of the crop.  

 

Input coefficients translog specification: Extended results are presented in table 2 in the appendix I. The 

estimated translog coefficients for the quantity of seeds and fertilizers used on the plot define an inverse U-

shaped function while the reverse is true for family labor per person per day18. The relationship between crop 

area cultivated and productivity is monotone positive. Figure 1 shows graphically the predicted margins for 

translog input coefficients. It is worth commenting on their shape. The first panel on the left, suggests concave 

predicted impacts of higher levels of quantity of seeds used on the plot on increasing farming output. Increases 

in quantity of seeds used are most significant at lower parts of the distribution. At the same time, predicted 

impacts decrease when moving up the distribution after reaching the optimal point of quantity of seeds applied. 

The second panel on the right shows predicted margins for fertilizer applied per hectare. Again, we notice 

concave predicted impacts but after reaching the turning point of the function margins rapidly decreases, i.e. 

the application of too much quantity of fertilizer on the plot is associated with a sharp decrease in output. A 

possible explanation could be that farmers try to compensate low quality of the cultivated soil over-applying 

fertilizer to protect the productivity of the crop. Moreover, researchers have established the negative impacts 

of using fertilizers on farmer agricultural land which causes the degradation of the surface land, and long-term 

depletion of organic matter and soil compaction [Sullivan, 2004]. This conjecture is reinforced by the 

descriptive statistics. On average farmers apply a larger quantity of fertilizer on low-quality plots19. Last, we 

comment family labor per day. Output per family worker initially declines and then almost increased in a 

nearly linear manner after the turning point. As documented by Lewis (1954), Kuznets (1966), and Timmer 

(1988), the start of economic growth in poor labor-abundant countries requires a prior sustained rise in per 

capita productivity in the agricultural sector since otherwise, the agricultural sector is unable to respond to the 

augmented urban demand for agricultural products. Increased agricultural productivity creates a surplus which 

is used to develop the non-agricultural sector. A failure of agricultural productivity to rise would result in food 

price inflation that would inhibit growth in the non-agricultural sector. The shape of family labor per day 

coefficient seems to reflect this path: at the beginning agricultural output is not rising meaning that agricultural 

sector contains potential surpluses of labor time (confirmed by descriptive statistics), then after releasing some 

labor forces to other economic sector output per worker starts to rise after the turning point. 

 

Household Characteristics’ coefficients: Including household characteristics and then non-cognitive skills 

measures either in the Cobb-Douglas and translog specifications we notice that estimated marginal effects 

alter coefficients with the claim that production functions that omit these variables give biased estimates for 

marginal effects for the inputs. Marginal effects increase for both specifications, except for quantity of seeds 

used which decrease for Cobb-Douglas specification when introducing non-cognitive skills measures. 

                                                           
18 We checked whether there are data both sides of turning point to assess if the sign of the derivative is a feature of 
the data or an extrapolation of the functional form outside the range of sample variation. 
19 On average on low quality plot is applied 71 Kg more compared to other soil quality. However, this difference is not 
statistically significant 
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Turning to the vector of household characteristics X in the fully specified model in the appendix I, larger 

families are more productive than smaller ones. Non-agricultural assets (number of bikes owned) are 

associated with a decrease in agricultural productivity. A possible explanation is that the primary activity of 

wealthy households, where wealth is assessed in terms of asset ownership, is non-agricultural. For example, 

the data show a positive correlation between both bicycle and radio ownership and gross aggregated income, 

and a negative correlation with agricultural income [results not shown]. 

 

Behavioral coefficients: We finally comment the vector of the behavioral variables. Table 2 in the appendix 

I reports the estimated coefficients for each personality construct. We inserted a weighted average of the scores 

of the family members that reported to have worked on the plot. The significant coefficients are stables across 

the two different specifications and have similar magnitude. Conscientiousness, neuroticism and suppression 

traits positively affect the agricultural outcomes, while openness is negatively associated to the production. A 

possible explanation could be that organizational skills, reliability along with a certain degree of psychological 

pression caused by high level of neuroticism may help increase the yield on farm. Ethiopian farmers may be 

engaged in farming activities under harsh conditions and external pressure depending on favorable rain to 

cultivate. High level of stress may help or may be caused by this environment displaying a positive coefficient 

in the production function. The positive sign of emotional suppression may be a consequent result of the 

positive relationship of the neuroticism trait. Suppression occur after the individual is exposed to strong 

emotional external stimuli suppressing the subsequent distress. The negative sign of openness to experience 

show that success on farm and intellectual enthusiasm for the novelties is not verified. Given that the selected 

sample displayed already high level of compliance regarding the use of agricultural technology input on farm 

the trait may not necessary capture this attribute. Excessive openness may even cause farmers to switch 

occupation outside the farm. Therefore, this confirm at a certain degree the speculation mentioned beforehand 

that farmers may be associated to the most conservative segment of the population.   

Table 1 Estimated Marginal effects for Inputs; AIC and R^2; F-test and Wald-test 
 (1) (2) (3) (4) (5) (6) 

 Input only: 
Cobb-Douglas 

Input only: 
Translog 

Input + HH 
Characteristics: 

Cobb-Douglas 

Input + HH 
Characteristics: 

Translog 

Input + HH 
Characteristics+ 

Non-cogn: 

Cobb-Douglas 

Input + HH 
Characteristics+ 

Non-cogn: 

Translog 

Predicted Margins       
Log Seed Used (kg) 0.495*** 0.151*** 0.492*** 0.158*** 0.456*** 0.192*** 

 [15.00] [3.58] [14.70] [3.86] [13.61] [4.57] 

Log Fertilizers Used (kg) -0.0227 0.0621 -0.0316 0.0540 -0.0298 0.0246 
 [-0.553] [1.52] [-0.765] [1.34] [-0.694] [0.59] 

Log Family Labor (person per day) 0.108 0.318*** 0.125* 0.323*** 0.154** 0.329*** 

 [1.560] [4.47] [1.816] [4.50] [2.257] [4.31] 
Dummy for low quality soil 0.0899 0.0308 0.129 0.077 0.0526 0.0442 

 [0.786] [0.30] [1.137] [0.75] [0.479] [0.42] 
Log Crop Area Tot (ha) 0.340*** 0.350*** 0.326*** 0.352*** 0.450*** 0.443*** 

 [3.546] [3.79] [3.375] [3.82] [4.742] [4.90] 

       
       

R-squared 0.560 0.654 0.579 0.667 0.641 0.700 

AIC† 3150 2971 3128 2953 2668 2558 

Residula Sums of Squared  1907 1500 1825 1441 1340 1120 

R^2 Corrected†† 0.520 0.623 0.541 0.638 0.663 0.718 

F-Test*       

Test Statistics 2.8431068 2.17995     

Confidence Interval 1.2697697 1.2701636     

P-value 0.000 0.000     

       

Wald-Test**       

F  17.37  16.45  9.34 

Prob>F  0.000  0.000  0.000 
       

Hausman Test***       

Chi(5)   127.3889    
P-value   0.000    

*** p<0.01, ** p<0.05, * p<0.1 

Robust Std Errors 
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† The AIC rule suggests selection of the specification which minimizes the AIC. the minimization of AIC requires minimization both of RSS (and hence 

𝛿̂2) and the number of parameters 𝑘. This forces a balance between parsimony (small 𝑘) and high fit (low 𝛿̂2). 
†† R^2 Corrected using the R2 statistic relative to the equation with only administrative dummy variables, i.e. netting out explanation due to woreda 

dummies. 

*F-test between reduced Cobb-Douglas/Translog models against extended models with non-cognitive skills variables. We reject the null hypothesis of 
reduced models being equal to the extended one. 

**Wald-test is used in order to test restrictions 𝛽𝑖𝑙 = 0 for Translog models. 

***Hausman Test performed between Cobb Douglas regressions without/with noncognitive skills, both regressions include household 

characteristics. We restricted a number of coefficients tested (log seed used, log fertilizer, log family labor, dummy for low quality, log crop area). 

Null hypothesis 𝐻0:E [3]=E[5]. We reject the null hypothesis estimated inputs coefficients are different between the two models 

Figure 1 Predicted Margins for Translog Model (full specification with household characteristics and non-cognitive skills) 

 

 
Log Quantity of Seeds Used: turning point: 5.069 (336 obs before, 870 after) 
Log Fertilizer Used: turning point: 1.573 (555 obs before, 651 after) 

Log Family Labor per day: turning point 4.733 (98 obs before, 1108 after) 

 
1.5. Conclusions 

The human capital literature has expanded over the past two decades to take into account non-cognitive 

abilities. In this chapter, we estimated production functions for a sample of Ethiopian farmers in 2012, 

integrating standard household characteristics with non-cognitive skills as measured by BFI and ER tests. 

Without the presumption to be exhaustive, in this chapter we responded the first of two connected issues: a) 

the role non-cognitive skills in affecting productive efficiency (the ability to produce more from the same 

inputs); and b) how non-cognitive skills affect allocative efficiency (use a more or less efficient combination 

of inputs). We are aware of the possible limitations of the results, especially in terms of representativeness of 

the national population of Ethiopia and the possible measurement errors hindering the reliability of our 

behavioral constructs. Also, another threat to the reliability of our results is represented by the possible 

endogeneity of the stock of the non-cognitive skills across villages. Since a large component of those trait is 

inherited and the social environment may as well shape those traits, household members living in the same 

village will likely have similar endowment of skills. 

The estimation of farm-level productivity is a well-known topic in the economic literature. However, there 

are various difficulties during the estimation. Zellner et al. (1966) represents a first attempt to correct such 

problems in the estimation. The fact is that farmers observe idiosyncratic shocks and adjust their input choices 

accordingly. Moreover, the inclusion of non-cognitive skills might reduce bias to ̀ unobservables’ in empirical 

estimation making observable the unobservable variables that may affect household decision-making.  
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The yield analysis is performed on plot-level data using translog and Cobb-Douglas production function 

specifications. The results indicate that there is a contribution of non-cognitive skills in explaining agricultural 

productivity. When introducing the set of non-cognitive skills variables in the estimation of the Cobb-Douglas 

model we found that inputs coefficients change (they increase for all inputs except for the quantity of seed 

used). This is confirmed by a Hausman test restricted on the coefficients of the input variables. The coefficients 

of household characteristics lose statistical significance (average schooling in the household, number of plows 

and being under extension services) implying that these characteristics to some extent proxy more fundamental 

behavioral variables. Similar results are found also for the translog specification. Moving to the behavioral 

measures, – higher scores for conscientiousness, neuroticism, and suppression are all associated with a positive 

and statistically significant effect on agricultural productivity Organizational skills, reliability, a strong 

capacity to “suppress” external emotional stimulus, and a high level of anxiety all appear to be yield-enhancing 

psychological characteristics. The results for the neuroticism measure merit comment. It is possible that a 

degree of `psychological pressure’ is required in order to successfully perform agricultural tasks but that too 

much anxiety results in insecurity which depresses yields. High levels of neuroticism may also reflect the 

distress caused by the lack of other economic opportunities outside agriculture `trapping’ households on 

farming activities. This is also in line with the economic concept of `procedural utility’ [Frey et al., 2004], 

which in turn relies on self-determination theory (SDT) [Deci and Ryan 1985, 2004]. People are said to obtain 

procedural utility when their well-being is affected not only by the final outcomes they achieve but also by 

the process of reaching those outcomes [Markussen et al., 2017]. Omitting behavioral variables in the 

estimation of the production function could lead to possible misleading results: overestimating the effect of 

certain variables respects to other, for example. This is confirmed by the R2 and AIC statistics reported, and 

also by F, Wald and Hausman tests. We discuss extended policy implications in the final conclusions in the 

next chapter after takin in account the household input adoption choices.  
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APPENDIX I 

Table 1 OLS regression base estimates excluding economic and behavioral variables 
 Output (unit price 

weights) 

(1) 

Output (caloric 
intake weights) 

(1) 

VARIABLES Woreda and 
Intercept 

Woreda and 
Intercept 

Woreda (Lasta) -0.307 -0.145 

 [-1.420] [-0.690] 

Woreda (Sirba) 0.426** 0.357* 

 [2.150] [1.886] 

Woreda (Adele Keke) -0.331* 0.422** 

 [-1.678] [2.321] 
Woreda (Koro Degaga) 1.267*** 1.169*** 

 [6.616] [6.309] 

Woreda (Turfe) -0.785*** -0.0883 
 [-2.835] [-0.343] 

Woreda (Basona Werana) -2.823*** -2.374*** 

 [-11.18] [-9.441] 

Constant 5.963*** 11.84*** 

 [33.87] [69.67] 
Observations 1,297 1,191 

R-squared 0.325 0.290 

AIC 5379 4830 
Residual Sums of Squared  4751 3978 

R^2 Corrected   

*** p<0.01, ** p<0.05, * p<0.1 

Robust Std Errors 

Table 2a Output Index weighted by crop caloric intake 
 (1) (2) (3) (4) (5) (6) 

VARIABLES Input only: 
Cobb-Douglas 

Input only: 
Translog 

Input + HH 
Characteristics: 

Cobb-Douglas 

Input + HH 
Characteristics: 

Translog 

Input + HH 
Characteristics+ 

Non-cogn: 

Cobb-Douglas 

Input + HH 
Characteristics+ 

Non-cogn: 

Translog 

Woreda (Lasta) -0.113 0.105 -0.0347 0.157 -0.227 0.0204 
 [-0.599] [0.507] [-0.173] [0.748] [-1.158] [0.102] 

Woreda (Sirba) 0.149 0.267* 0.303* 0.395** 0.629*** 0.602*** 

 [0.897] [1.673] [1.661] [2.327] [3.283] [3.342] 

Woreda (Adele Keke) 0.236 0.506*** 0.0933 0.402** 0.185 0.462* 

 [1.467] [3.126] [0.477] [2.090] [0.796] [1.959] 

Woreda (Koro Degaga) 0.852*** 0.800*** 0.854*** 0.814*** 1.015*** 0.911*** 

 [4.700] [4.332] [4.256] [4.156] [4.797] [4.306] 

Woreda (Turfe) 0.492** 0.584** 0.583** 0.674*** 0.777*** 0.828*** 

 [2.039] [2.582] [2.296] [2.863] [2.906] [3.354] 
Woreda (Basona Werana) -1.255*** -0.920*** -0.919*** -0.634*** -0.704*** -0.500** 

 [-5.376] [-4.123] [-3.708] [-2.741] [-2.862] [-2.156] 

       
Inputs       

Log Seed Used (kg) 0.495*** 1.633*** 0.492*** 1.585*** 0.456*** 1.318*** 

 [15.00] [13.90] [14.70] [13.20] [13.61] [10.21] 
Log Fertilizers Used (kg) -0.0227 0.851*** -0.0316 0.859*** -0.0298 0.675*** 

 [-0.553] [4.251] [-0.765] [4.299] [-0.694] [3.251] 

Log Family Labor (person per day) 0.108 -0.746** 0.125* -0.664** 0.154** -0.755** 

 [1.560] [-2.264] [1.816] [-2.003] [2.257] [-2.160] 

Dummy for low quality soil 0.0899 0.589 0.129 0.703 0.0526 0.854* 

 [0.786] [1.281] [1.137] [1.497] [0.479] [1.819] 
Log Crop Area Tot (ha) 0.340*** -0.0239 0.326*** -0.00374 0.450*** 0.0904 

 [3.546] [-0.0822] [3.375] [-0.0124] [4.742] [0.285] 

       
Translog Inputs Terms       

Log Seeds Used Squared  -0.179***  -0.174***  -0.130*** 

  [-10.14]  [-10.02]  [-7.177] 
Log Fert Used Squared  -0.0735***  -0.0745***  -0.0713*** 

  [-3.456]  [-3.622]  [-3.195] 

Log Family Labor Squared  0.257***  0.248***  0.240*** 

  [3.586]  [3.484]  [3.204] 

Log Crop Area Tot Squared  0.0857  0.0674  0.0409 
  [0.674]  [0.536]  [0.318] 

Log Seeds Used* Log Fert Used  0.00521  0.00789  0.00157 

  [0.304]  [0.463]  [0.0896] 
Log Seeds Used* Log Family Labor  -0.00117  -0.00119  -0.00182 

  [-0.890]  [-0.925]  [-1.405] 

Log Seeds Used*Low Quality  -0.112**  -0.116**  -0.0988* 

  [-2.243]  [-2.321]  [-1.915] 
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Log Seeds Used*Log Crop Area Tot  0.0155  0.0172  0.0155 

  [0.762]  [0.873]  [0.803] 

Log Fert Used*Log Family Labor  -0.0458  -0.0489  0.00633 

  [-0.826]  [-0.928]  [0.105] 

Log Fert Used*Low Quality  -0.0949  -0.102  -0.0901 

  [-1.390]  [-1.529]  [-1.325] 

Log Fert Used*Log Crop Area Tot  0.104**  0.0924*  0.0874 

  [2.002]  [1.718]  [1.588] 
Log Fam Labor*Low Quality  0.152  0.135  0.00619 

  [1.314]  [1.191]  [0.0542] 

Log Fam Labor*Log Crop Area Tot  -0.0494  -0.0481  -0.0476 
  [-1.229]  [-1.190]  [-1.157] 

Low Quality*Log Crop Area Tot  -0.112  -0.0475  0.0473 

  [-0.704]  [-0.300]  [0.294] 
       

Household Characteristics       

Dummy for Female Household Head   -0.143 -0.0656 0.0150 0.0107 
   [-1.024] [-0.515] [0.102] [0.0798] 

Household Head Age (years)   0.00468 0.000353 0.00475 0.000734 

   [0.421] [0.0358] [0.443] [0.0729] 
Household Average Schooling   -0.0446* -0.0313 -0.0392 -0.0314 

   [-1.804] [-1.417] [-1.558] [-1.374] 

Household Size per adult equivalent   0.106*** 0.0688* 0.118*** 0.0888** 

   [2.601] [1.683] [3.011] [2.170] 

Dummy for Obtained Credit   0.0693 0.0976 -0.0154 0.0354 

   [0.631] [0.946] [-0.136] [0.324] 
Number of Plough   -0.116* -0.107** -0.0814 -0.0784 

   [-1.962] [-1.983] [-1.117] [-1.106] 

Number of Bikes   -0.499*** -0.600*** -0.689*** -0.727*** 

   [-2.717] [-3.236] [-3.723] [-3.939] 

Dummy for Extension Services   0.911*** 0.767*** 0.378 0.395 

   [3.380] [3.241] [1.169] [1.343] 
       

Big Five Inventory T-Scores (Family 

Members working on plot) 

      

Extraversion      -0.00618 0.00394 

     [-0.537] [0.370] 

Agreeableness     0.00202 0.00339 

     [0.252] [0.452] 

Conscientiousness     0.0205* 0.0117 

     [1.842] [1.155] 

Neuroticism     0.0378*** 0.0266*** 

     [3.484] [2.665] 
Openness     -0.0370*** -0.0229*** 

     [-4.050] [-2.722] 

       
Emotion Regulation Score (Family 

Members working on plot) 

      

Suppression     0.304*** 0.285*** 

     [7.640] [7.380] 

Reappraisal     0.0850 0.00949 

     [1.337] [0.145] 
       

Constant 9.251*** 7.058*** 8.046*** 6.045*** 5.911*** 4.567*** 

 [28.27] [9.223] [14.94] [7.032] [5.023] [3.480] 
       

Observations 860 860 860 860 771 771 

R-squared 0.560 0.654 0.579 0.667 0.641 0.700 
AIC 3150 2971 3128 2953 2668 2558 

Residula Sums of Squared  1907 1500 1825 1441 1340 1120 

R^2 Corrected 0.520 0.623 0.541 0.638 0.663 0.718 

*** p<0.01, ** p<0.05, * p<0.1 
Robust Std Errors 

Table 2b OLS Regressions for Log Output Index (unit price): Final Models [Robustness Check] 
 (1) (2) (3) (4) (5) (6) 
VARIABLES Input only: 

Cobb-Douglas 

Input only: 

Translog 

Input + HH 

Characteristics: 

Cobb-Douglas 

Input + HH 

Characteristics: 

Translog 

Input + HH 

Characteristics+ 

Non-cogn: 
Cobb-Douglas 

Input + HH 

Characteristics+ 

Non-cogn: 
Translog 

Woreda (Lasta) -0.307 -0.118 -0.261 -0.102 -0.374* -0.192 

 [-1.585] [-0.555] [-1.283] [-0.477] [-1.881] [-0.943] 

Woreda (Sirba) 0.200 0.285* 0.344* 0.406** 0.719*** 0.668*** 

 [1.129] [1.667] [1.801] [2.261] [3.586] [3.499] 

Woreda (Adele Keke) -0.393** -0.162 -0.543*** -0.281 -0.319 -0.0561 

 [-2.299] [-0.950] [-2.632] [-1.384] [-1.315] [-0.232] 
Woreda (Koro Degaga) 0.953*** 0.878*** 0.899*** 0.842*** 1.170*** 1.044*** 



43 
 

 [5.415] [5.023] [4.559] [4.469] [5.778] [5.342] 

Woreda (Turfe) -0.201 -0.102 -0.0966 0.00412 0.223 0.251 

 [-0.764] [-0.419] [-0.359] [0.0167] [0.790] [0.949] 

Woreda (Basona Werana) -1.765*** -1.464*** -1.471*** -1.217*** -1.159*** -0.984*** 

 [-7.524] [-6.674] [-5.958] [-5.316] [-4.771] [-4.345] 
       

Inputs       

Log Seed Used (kg) 0.488*** 1.632*** 0.484*** 1.598*** 0.457*** 1.366*** 

 [15.64] [14.48] [15.31] [13.97] [14.34] [11.00] 

Log Fertilizers Used (kg) -0.0252 0.936*** -0.0314 0.929*** -0.0297 0.792*** 

 [-0.621] [4.349] [-0.764] [4.367] [-0.695] [3.517] 
Log Family Labor (person per day) 0.166** -0.562* 0.184*** -0.465 0.236*** -0.580* 

 [2.453] [-1.729] [2.737] [-1.435] [3.518] [-1.929] 

Dummy for low quality soil 0.0139 0.842* 0.0529 0.982** -0.00880 1.171** 

 [0.124] [1.749] [0.471] [2.013] [-0.0795] [2.415] 

Log Crop Area Tot (ha) 0.356*** -0.0944 0.356*** -0.0438 0.481*** 0.0222 

 [3.885] [-0.339] [3.896] [-0.152] [5.436] [0.0733] 
       

Translog Inputs Terms       

Log Seeds Used Squared  -0.173***  -0.169***  -0.130*** 

  [-10.37]  [-10.30]  [-7.468] 

Log Fert Used Squared  -0.0738***  -0.0728***  -0.0698*** 

  [-3.527]  [-3.613]  [-3.234] 
Log Family Labor Squared  0.243***  0.233***  0.260*** 

  [3.304]  [3.226]  [3.754] 

Log Crop Area Tot Squared  0.114  0.101  0.0901 
  [0.947]  [0.842]  [0.735] 

Log Seeds Used* Log Fert Used  0.00510  0.00726  0.00149 

  [0.308]  [0.440]  [0.0913] 
Log Seeds Used* Log Family Labor  -0.00108  -0.00114  -0.00197* 

  [-0.856]  [-0.909]  [-1.649] 

Log Seeds Used*Low Quality  -0.128***  -0.137***  -0.113** 

  [-2.638]  [-2.791]  [-2.298] 

Log Seeds Used*Log Crop Area Tot  -0.00440  -0.00420  -0.00735 

  [-0.250]  [-0.241]  [-0.433] 
Log Fert Used*Log Family Labor  -0.0695  -0.0727  -0.0361 

  [-1.343]  [-1.462]  [-0.675] 

Log Fert Used*Low Quality  -0.128*  -0.141**  -0.117* 

  [-1.885]  [-2.121]  [-1.741] 

Log Fert Used*Log Crop Area Tot  0.130**  0.123**  0.118** 

  [2.572]  [2.361]  [2.203] 

Log Fam Labor*Low Quality  0.112  0.104  -0.0761 

  [0.941]  [0.896]  [-0.667] 
Log Fam Labor*Log Crop Area Tot  -0.0244  -0.0281  -0.0264 

  [-0.629]  [-0.730]  [-0.682] 

Low Quality*Log Crop Area Tot  -0.153  -0.0991  0.0433 
  [-0.966]  [-0.623]  [0.266] 

       

Household Characteristics       
Dummy for Female Household Head   -0.0972 -0.0157 0.0794 0.0778 

   [-0.696] [-0.125] [0.535] [0.576] 

Household Head Age (years)   0.00541 0.00395 0.00397 0.00196 
   [0.547] [0.445] [0.403] [0.212] 

Household Average Schooling   -0.0582** -0.0462** -0.0490* -0.0413* 

   [-2.313] [-2.050] [-1.904] [-1.774] 
Household Size per adult equivalent   0.0950** 0.0640 0.0991** 0.0737* 

   [2.329] [1.581] [2.467] [1.780] 

Dummy for Obtained Credit   0.0374 0.0689 -0.0395 0.0174 
   [0.341] [0.667] [-0.346] [0.158] 

Number of Plough   -0.0940 -0.0935* -0.0495 -0.0524 

   [-1.575] [-1.729] [-0.679] [-0.748] 
Number of Bikes   -0.436** -0.542*** -0.685*** -0.717*** 

   [-2.213] [-2.888] [-3.558] [-3.867] 

Dummy for Extension Services   0.796*** 0.662*** 0.338 0.348 

   [2.962] [2.704] [1.023] [1.118] 

       

Big Five Inventory T-Scores (Family 

Members working on plot) 

      

Extraversion      -0.00621 0.00362 

     [-0.536] [0.338] 
Agreeableness     -0.00146 -0.000979 

     [-0.178] [-0.128] 

Conscientiousness     0.0291*** 0.0221** 

     [2.788] [2.328] 

Neuroticism     0.0501*** 0.0395*** 

     [4.810] [4.092] 
Openness     -0.0326*** -0.0192** 
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     [-3.572] [-2.291] 

       

Emotion Regulation Score (Family 

Members working on plot) 

      

Suppression     0.308*** 0.291*** 

     [7.551] [7.348] 

Reappraisal     0.0112 -0.0471 

     [0.160] [-0.673] 
       

Constant 3.368*** 0.709 2.350*** -0.182 -0.663 -2.733** 

 [10.15] [0.899] [4.451] [-0.212] [-0.593] [-2.108] 
       

Observations 936 936 936 936 840 840 

R-squared 0.579 0.659 0.593 0.669 0.651 0.707 
AIC 3497 3328 3481 3315 2987 2868 

Residula Sums of Squared  2240 1814 2165 1759 1614 1356 

R^2 Corrected 0.529 0.618 0.544 0.630 0.660 0.715 

*** p<0.01, ** p<0.05, * p<0.1 
Robust Std Errors 
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APPENDIX II 

Technical Efficiency: 

Production efficiency is defined as the ability to produce the maximum quantity of output possible given the 

inputs used: a production function simply defines the technological relationship between inputs and output, 

assuming all farms as identically technically efficient. Therefore, the production frontier is set by the average 

farm, variations from this frontier are assumed to be random, perhaps due to unobserved factors of production 

(land quality etc.). The stochastic production function methodology allows the distinction between random 

variations in production (a stochastic error component) and an inefficiency component (an additional one-

sided error) affecting the reaching of maximal potential output. 

Inefficiencies may arise due to structural problems in the market, environmental production conditions, 

manager skill quality, and other unobservable factors. 

Battese and Coelli (1992, 1995) and Battese (1992) define the reference theoretical framework for the 

stochastic production frontier analysis, taking as a starting point the works of Aigner, Lovell and Schmidt 

(1977) and Meeusen and van den Broeck (1997). 

Let’s assume the following production frontier for a farm 𝑦𝑖 = 𝑓(𝑥𝑖; 𝛽)𝑇𝐸𝑖, where 𝑦𝑖 is the output produced 

by the i-th producer, 𝑥 is a vector of inputs used by producer 𝑖), and TE is the level of technical efficiency for 

farm 𝑖.  

Consider the stochastic frontier 𝑦𝑖 = 𝑓(𝑥𝑖; 𝛽)𝑇𝐸𝑖 exp (𝑖), where exp (𝑖) captures the effect of random 

shocks to each producer.  

Taking logs on both sides of equation, we obtain the estimating function log(𝑦𝑖) = α + log(𝑥𝑖) β𝑖 + 𝑖 −

𝑢𝑖; where 𝑢𝑖 = −log (𝑇𝐸𝑖), and 𝑖 is a statistical noise assumed to have independently identical symmetric 

distribution as 𝑁(0, 𝜎
2) . While, 𝑢𝑖 is distributed as a one-sided normal distribution 𝑁(0, 𝜎𝑢

2),  this error 

component captures the effects of inefficiencies relative to the stochastic frontier. The output from ``frontier’’ 

on stata incudes estimates of the standard deviations of the two error components,  and 𝑢. In the log 

likelihood they are parametrized as ln 𝜎
2and ln 𝜎𝑢

2. The estimate of the total error variance, 𝜎𝑆
2 = 𝜎

2 +  𝜎𝑢
2, 

and the estimate of the ratio of the standard deviation of the inefficiency component to the standard deviation 

of the idiosyncratic component is  = 𝑢 ⁄ . 

When TE=1 the farm is on the frontier, namely, is producing the optimal output given the technology of the 

production function; on the other hand, when TE<1 the farm is not making the most of set of inputs 𝑥. 

However, the (strict) underlying assumption is that all farmers have access to the same technology and that 

technology may vary across cultivated plots. Furthermore, the stochastic frontier approach suffers from all the 

problems of specification of the production function (such as the transmission bias). 

The production function we try to identify in a first version of the thesis is the following equation:  

log(𝑦) = α + log(𝑥𝑖) β𝑖 + 𝜀𝑖 , 

where 𝜀𝑖 = 
𝑖

− 𝑢𝑖 

where 𝑦𝑖 is an agricultural output index; 𝑥𝑖 is a set of covariates for each household including agricultural 

inputs affecting agricultural production and technical efficiency. Amongst factors which affect efficiency the 

literature identified different sources such as education, wealth level of the household, distance in minutes 

from the plot, household size, and we add the non-cognitive skills variables. However, there is no standard 

procedure for separating the two contributions to the deviations of each unit from the supposed true efficiency 

frontier. In addition, during the estimation we must ignore errors in the output measure, and arbitrarily choose 

the joint distribution of 𝑖 𝑎𝑛𝑑 𝑢𝑖 and the functional form of the production function. Because of all these 

theoretical difficulties we do not present the results we obtained for the farmers’ technical efficiency use of 

inputs. One of the main problems was to properly justify why certain variables affect input efficiency rather 

than the final output. The identification was not so sharp to allow us to assign each variable in the production 

function or in the inefficiency component. Some variables are likely to have affected both the output and 

technical efficiency components. 
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2.Allocative Efficiency of Agricultural Inputs and Non-cognitive 

Skills 

 

2.1. Introduction and literature riview 

In this section, we address the role played by behavioral variables in affecting the decision to whether and 

to what extent to adopt agricultural inputs such as seeds and inorganic fertilizers. Research-led technological 

change in agriculture may generate sufficient productivity growth to give high rates of return in Africa and 

Asia and could have a substantial impact on poverty [Thirtle et al. 2003]. Moreover, it is generally accepted 

that SSA farmers often have low yields which could be increased, all else equal, if they bought more `external 

inputs’ (such as chemical fertilizer, pesticides, and seeds) [Adjognon et al., 2016]. 

African governments and donors have attempted to increase agricultural production by developing policies 

inspired by the Asian Green Revolution but these policies have generated a little effect in terms of increased 

use of chemical fertilizers or high yielding varieties [Nin-Pratt and McBride, 2014]. In part, this failure may 

be due to the different conditions in Africa compared to Asia. Because the African continent’s agro-ecological 

zones are more diverse than those in Asia, these strategies may not produce the same yield results in Sub-

Saharan Africa [Voortman et al., 2000]. Others have argued that the demand for chemical inputs has been low 

because land is relatively abundant and farmers have little incentive to use cultivated land more intensively or 

to save on land costs [Binswanger and Pingali, 1988]. More recently, a renewed interest in policies inspired 

by Asian Green Revolution has emerged in Sub-Saharan African countries. This renewed optimism seems to 

be based on the assumption that rapid population growth on the continent will result in declining labor costs 

and growing land constraints [Nin-Pratt and McBride, 2014]. But as discussed by Woodhouse (2009) and 

despite rapid population growth, the performance of African agriculture is still largely limited by the high labor 

cost and low productivity of labor. This situation may again frustrate attempts to promote agricultural growth 

in Africa. 

Standard economic models suppose that perfectly informed agent with time consistent preferences apply the 

optimal quantities of inputs and follow an optimized investment plan. Credit is often a prerequisite for the 

adoption of improved seeds and fertilizers and a farmer’s ability to obtain credit may be correlated with land 

tenure and agricultural productivity itself. Credit can facilitate farm households in purchasing the needed 

agricultural inputs and hence enhance their capacity to effect long-term investment in their farms [Mohamed 

and Temu, 2008]. Specialized credit schemes are often established by the government to promote the adoption 

of specific agricultural technologies. Access to credit may raise allocative efficiency in agriculture. As 

Hazarika and Alwang (2003) argue a farmer unable to obtain market inputs in sufficient quantities may 

substitute non-market inputs such as labor of family members. However, given the opportunity cost of family 

labor, the farmer’s input combination may be costlier than an alternative combination consisting of more 

purchased inputs and less family labor. Credit may allow the farmer to utilize market and non-market inputs 

in a cost-minimizing combination. Ultimately, the paper suggests that credit may also raise allocative 

efficiency by increasing a farmer’s ability to bear risk and adopt more capital-intensive methods of production. 

http://www.sciencedirect.com/science/article/pii/S0306919214000785#b0055
http://www.sciencedirect.com/science/article/pii/S0306919214000785#b0285
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The encouragement of household saving is becoming a priority in the development agenda. Brune et al. (2013) 

tested access to savings accounts using a randomly selected sample of smallholder tobacco farmers in Malawi. 

They found that providing tobacco farmers with access to a saving accounts positively affected their savings 

level relative to the comparison group. Moreover, the group that opened a commitment savings account20 saw 

a 17.1 percent increase in input use. Commitment mechanisms that bind individuals to future actions can 

overcome time inconsistency. However, people often underinvest, even in the absence of market failures or 

constraining social structures. The failure by smallholders to adopt productivity-enhancing input technologies 

may also result from low aspiration levels and mental models which downplay the role of investment. There 

are two possible points of views on this issue. Aspirations can also reflect the extent to which poor people feel 

that they have control over their future (i.e. underinvestment is a facet of low aspiration levels) [Bernard et al., 

2012]. However, the poor might have low aspirations and weak orientation to the future because their own 

experiences suggest altering the condition of their poverty is difficult or impossible. The poor may lack the 

`capacity to aspire’ which can be caused by poverty itself [Appadurai, 2004]. Personality traits might affect 

how agricultural inputs are used and adopted by smallholders other than productivity itself21.  

All decision-makers, either rich or poor, exhibit such mental models. However, poor people also suffer the 

psychological stresses of poverty and scarcity preventing them the understanding of opportunities they face. 

Bernard et al. (2014) showed short documentaries to smallholders in remote and rural part of Ethiopia. In these 

documentaries, people from similar backgrounds to the audience tell stories about their lives how they 

improved their socio-economic position. The authors showed that this intervention changed aspirations and 

saving behavior and led to increased investment in education.  

Concrete information about opportunities will not always boost investment and learning behavior. People 

could fail to adjust on productivity frontier because they lack sufficient data to learn from. Even with sufficient 

information, there could be a failure to notice something in the data, as Hanna et al. (2012) noted when he 

talked about `learning through noticing’. In fact, agents can observe data during a demonstration that leads 

them to believe that they can use a technology profitably. Yet, when they adopt it, they systematically earn a 

negative surplus (disappointment) having ignored some dimensions necessary for effective use. Even relatively 

experienced agents may not understand the production functions that constrain their activities. Hanna et al. 

(2014) find that both experienced managers and farmers fail to recognize key inputs into their respective 

production functions. Moreover, production processes typically require a sustained effort over time, but agents 

may lack the self-control to exert effort now in order to earn rewards later [Kaur et al., 2015]. 

This chapter face the challenge to answer to some of the points raised with this introduction to the topic. 

Therefore, we want to understand whether behavioral traits help explain household decision to adopt and how 

                                                           
20 A commitment-saving account can force people to stick to a saving plan. They often mandate rules restricting 
individual choice in the future (accounts that charge per withdrawal, postponing the cashing of paychecks, giving money 
to a trusted individual to hold, opening an account at a branch that is inconveniently located, and choosing not to have 
an ATM card). 
21There are two main branches of behavioral literature explaining individuals’ deviations from profit-maximizing 
behavior. The first one holds that individuals have cognitive and time limits which limit the tractability of a decision 
problem. This is the concept of bounded rationality proposed by Simon (1955). Given that agents cannot consider all 
the possible combinations of choices available (i.e. the optimal choice predicted by neoclassical framework may be 
technically non-computable), individuals can analyze only partially the problem, ignoring infeasible strategies using 
heuristic mechanism to collect information, allowing them to choose that strategy which appears best given the 
information they have collected and their past experience in similar situations. The second approach, exemplified by 
Kahneman (2003), maintains that rational agents tend to avoid detailed analysis of choices and their outcomes due to 
the time and effort this would require. In fact, to process information is a time-consuming activity, because of this, 
agents recur to automatic thinking to get near optimal choice but which may lead to systematic biases in judgment. 
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much use particular inputs on their farm. The use of fertilizers and seeds may help raise the agricultural 

productivity and the livelihoods of the farmers. 

The remainder of the chapter is organized as follows: section two sets out the empirical framework adopted. 

Section three reports the results for the allocative efficiency of inputs using non-cognitive skills. Section four, 

focuses on testing the recursivity hypothesis. Finally, section 5 concludes with policy implications of the 

analysis. 

 

2.2. Allocative Efficiency of Agricultural Inputs: Framework  

We have assumed that productivity 𝑌 is affected by inputs, household characteristics, and either 

cognitive/non-cognitive skills of household members working on the plot. As anticipated in the previous 

chapter, personality traits may affect performance on a task, controlling for cognition, other skills, and effort 

applied. 

𝑌𝑖=𝑓(𝑉𝑖, 𝑋𝑖, 𝐵𝑖) 

We can assess that the level of input adopted per plot by smallholders is in turn affected by household 

characteristics, and either cognitive/non-cognitive skills by positing 

V𝑖j=g(𝑋𝑖, 𝐵𝑖) 

Smallholders’ choices in the adoption of new input technologies to enhance agricultural productivity may 

also depend on their aspiration levels. Even with sufficient information smallholders may fail to apply inputs 

in appropriate quantities.  

In the previous chapter, we examined how behavioral variables affect quantities produced conditional on 

input use. However, this is only part of the story since behavioral variables will also likely affect input choices. 

Indeed, this is what one should expect from standard neoclassical production theory in which agents equate 

the value of marginal factor products to input prices since the marginal product will depend on planned output. 

A decision to increase output will make it attractive to increase fertilizer application, for example. However, 

input use may also be affected by behavioral variables even in the absence of any impact on planned output. 

This could happen, for example, if a smallholder is reluctant to invest in fertilizers but aims to increase output 

by applying more household labor.  

In the Zellner et al. (1966) model, input decisions predate harvest outcomes generating a recursive structure 

in which the errors on the input equations are independent of the production function error. It is this assumption 

that validates OLS estimation of the neoclassical production function. However, recursivity is undermined if 

common, unmodeled, behavioral variables enter both the input demand and output equations. Paradoxically, 

therefore, explicit modeling of the behavioral impacts on the input and output equations rescues the 

neoclassical Zellner et al. (1966) recursive strategy. 

We model allocative efficiency using logit and ordered logit regressions for input use. We estimate the 

following equations: 

𝐷𝑖 =  𝛼0 + 𝛼1′𝑊𝑖 + 𝛼2′𝑋𝑖 + 𝛼3′𝐵𝑖 + 𝜈𝑖1 (3) 

𝑆𝑖 =  𝛽0 + 𝛽1′𝑊𝑖 + 𝛽2′𝑋𝑖 + 𝛽3′𝐵𝑖 +  𝜈𝑖2 (4) 

Where 𝐷𝑗 is a dummy variable equals one if a positive amount of inorganic fertilizer was applied on the 

plot 𝑗; 𝑆𝑗 takes values one, two and three identifying the three terciles of quantity of seeds applied per hectare 

on the plot; 𝑋𝑖 is a vector of household characteristics possibly affecting technical adoption; 𝐵𝑖 is a vector of 

behavioral and personality variables relating to the household members working on farming plot j and νi1 and 
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νi2 are error terms. We estimate the equation (3) using a standard (binary) logit specification and equation (4) 

using an ordered logit.  

2.3.Results 

Results for equation (3) and (4) are shown in tables 1 and 2 in the appendix, respectively. In column (1) we 

estimated the models without behavioral measures, while we add them in column (2).  

We start commenting the results for fertilizer use of Table 1 in the Appendix. Although we might expect 

that a higher quantity of inorganic fertilizer will be applied on low-quality soil, the efficiency of these 

inorganic fertilizers is typically low on depleted soils. Our results show that plots with low soil quality are 

negatively associated with the application of inorganic fertilizer but that, after controlling for soil quality, 

cultivated area is associated positively with the application of inorganic fertilizer. After introducing behavioral 

measures into estimation, some household characteristics lose statistical significance (household head age, 

dummy for being under extension service and having some system of irrigation on the plot) suggesting that 

these variables work to proxy omitted behavioral variables. The coefficient for number of bikes (to proxy 

household wealth) remains statistically significant and positive since behavioral variables are largely 

uncorrelated with wealth. 

In table 1 we report average values of predicted probabilities to adopt inorganic fertilizers. We predict 

probabilities at fixed levels of noncognitive skills (lowest, median and highest scores). This sort of ̀ simulation’ 

allows us to analyze how propensity to adopt and use fertilizer may change according to different population’s 

endowment of non-cognitive skills. We notice that being at the extremes of the distribution of non-cognitive 

skills (highest or lowest scores) is associated with a higher predicted probability of adopting inorganic 

fertilizer. To compare estimated impacts of personality traits with those of standard measures of human capital 

indicators (average education level of the household) we plot the predicted probability of adopting inorganic 

fertilizer on the plot for the distribution of average education level of the household, and the BFI and ER score 

distributions [Fig.2]. We hold all other covariates constant at the sample mean. We notice that both our measure 

of human capital (average education level in the household) and BFI scores to proxy non-cognitive skills 

display large confidence interval which only becomes thin near the median values of the distribution. The 

width of these bands this prevents us from drawing clear conclusions. Only predicted margins for ER scores 

show acceptable confidence bands. We notice a linear and increasing impact of higher levels of suppression 

scores on adoption of inorganic fertilizer. The reverse is true for the reappraisal facet. This implies that ER 

scores indicators better identify individuals most likely to adopt and disseminate new technologies. 

Table 2 in the appendix shows results for the ordered logit model on quantity of seeds used. Again, the 

second column of the table reports the estimated coefficients associated with the personality traits. As with 

fertilizer application, the introduction of non-cognitive skills variables results in some household 

characteristics variables losing statistical significance.  

The total cultivated area is positively associated with increasing quantity of seeds applied per plot per 

hectare. Looking at household characteristics, credit and the number of plows are important assets predicting 

seed use, while the coefficient household size (adult equivalents) is negative. 

In the bottom part of table 1, we report average predicted probabilities estimated for the three terciles of 

quantity of seeds applied per hectare on the pot. Again, we estimated predicted probabilities fixing the values 

of non-cognitive skill scores. Having the highest attainable scores in all non-cognitive measures is associated 

with a higher probability of use a larger quantity of seeds per hectare, while the reverse is true when 

considering the margins predicted for the lowest scores. 

Again, we compare predicted probabilities of adopting different quantities of seeds between human capital 

measure (average education level of the household) and non-cognitive skills measures. In this case, we 

distinguish between three different predicted probabilities: being in the first, second and third tercile of the 

distribution. Concerning average education level of the household, we notice a higher probability in using 

quantity of seeds associated with the second, first and third tercile, respectively. Increasing average number 
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of years of education of the household cultivating the plot does not generate an increase in using seeds on the 

plot. We now look to non-cognitive skills measures. We focus our attention on extraversion, suppression and 

reappraisal scores. The marginal effect of increments in extraversion affects positively the probability of being 

in the second and the third tercile of seeds quantity distribution (with a greater steepness for the third tercile). 

While increments in the extraversion scores diminish the probability to use a small quantity of seeds per plot. 

The same pattern is observed for suppression score, even more accentuated. Concerning reappraisal, the 

variation is less prominent. Again, the ability of individuals to manage their emotions - especially the ability 

to suppress emotional reactions due to external shocks- appear to be relevant in identifying the most suitable 

farmers to adapt to new agricultural technologies. 

 

From these results we can derive some sketched conclusions. First of all, standard measure of cognition such 

as the number of years of schooling in the family seems to be not relevant at explaining the choice to adopt 

certain inputs. The predicted probabilities graphs show no alteration as the education level increases or 

decreases. On the other hand, suppression and reappraisal traits well summarize the propensity of households 

to use fertilizers or more seeds on the plot. These results along with the average predicted probabilities at fixed 

values of non-cognitive skills show that highest scores are associated to higher probabilities. Therefore, acting 

on alleviating the external constraints that prevent households to use agricultural inputs may help to improve 

the psychological conditions for households to be receptive to new technologies and use them more 

effectively. How governments can act to modify such conditions? Some researches show that with small 

expedients is possible to boost the confidence and the compliance to certain behavior.  

Table 1 Average Predicted Probabilities to adopt fertilizer/seeds fixed at Non-cognitive skills values Logit and Ordered Logit 
Logit Model (HH Charact+Non-Cognitive Skills) Fertilizers adoption 

(1) 

Average Value Predicted Prob  
At NonCognitive 

Skills=median values 

(2) 

Average Value Predicted Prob  
At NonCognitive Skills=lowest 

values 

(3) 

Average Value Predicted Prob  
At NonCognitive 

Skills=highest values 

.6668731*** .6956607*** .6951342*** 
(.012629) (.094449) (.0801368) 

 
Ordered Logit Model (HH Charact+Non-Cognitive Skills) Quantity of Seeds used on the plot 

Predict (1) 

Average Value Predicted Prob  
At NonCognitive 

Skills=median values 

(2) 

Average Value Predicted Prob  
At NonCognitive Skills=lowest 

values 

(3) 

Average Value Predicted Prob  
At NonCognitive 

Skills=highest values 

First Tercile Seeds used .3056443*** .4335551*** .160738*** 

 (.0126701) (.0954654) (.0484879) 
    

Second Tercile Seeds used .5259597*** .4679733*** .5112607*** 
 (.0150949) (.0574894) (.0336702) 

    

Second Tercile Seeds used .168396*** .0984716*** .3280013*** 
 (.0116149) (.0395403) (.0783805) 

Asterisks denote significance of coefficients: *** p<0.01, ** p<0.05, * p<0.1 

Figure 2 Predicted Probabilities of Inorganic Fertilizer Adoption by BFI and ER scores distribution (Red Line=Median Value) 
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BFI and ER scores of Family members working on the plot 

Figure 3 Predicted Probabilities of Quantity of Seeds Applied per hectare on plot by BFI and ER scores distribution (Red Line=Median 
Value) 

 

 

 
BFI and ER scores of Family members working on the plot 

 

2.4.Testing the Recursivity Assumption 

In this paragraph, we want to test the recursive structure between input decisions and production function. 

As previously mentioned, in the Zellner et al. (1966) model, input decisions predate harvest outcomes. 

Outputs, therefore, depend on inputs but inputs only depend on expected output. This validates OLS estimation 

of the neoclassical production function. However, recursivity is undermined if common, unmodeled, 
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behavioral variables enter both the input demand and output equations. Therefore, by explicitly modeling the 

behavioral impacts on the input and output equations we can hope to rescue the neoclassical Zellner et al. 

(1966) recursive strategy.  

In order to test this hypothesis, we recover residuals from the estimated Cobb-Douglas production function 

in the previous chapter. We define equations 𝑎𝑖 and 𝑏𝑖 as Cobb-Douglas production function without and with 

behavioral variables measures. 

𝑎𝑖 = ln 𝑌 𝑖 =  𝛿0 +  ∑ 𝛽𝑗 ln 𝑉𝑖𝑗

𝑘

𝑗=1

+ 𝛼2′𝑋𝑖 + 𝛿′𝑊𝑖 + 𝜖𝑖  

𝑏𝑖 = ln 𝑌 𝑖 =  𝛿0 +  ∑ 𝛽𝑗 ln 𝑉𝑖𝑗

𝑘

𝑗=1

+ 𝛼2′𝑋𝑖 + 𝛼3′𝐵𝑖 + 𝛿′𝑊𝑖 + 𝜖𝑖  

∀ 𝑖 = 1, … , 𝑁 

Then we recover the vector of residuals for both specifications 𝑒𝑎 = 𝑎𝑖 − 𝑎𝑖̂;  𝑒𝑏 = 𝑏𝑖 − 𝑏𝑖̂. Then we enter 

these residuals as an additional variable in the logit regression (equation 3) and ordered logit (equation 4) in 

case (a) with behavioral variables excluded and (b) included. In case the recursivity is confirmed we would 

expect the coefficient of the residuals to be statistically significant in the first case (𝑒𝑎 in the logit/ordered logit 

without behavioral variables) but insignificant in the other case. That is, when we omit behavioral variables in 

(a) error terms are correlated with output, but once the behavioral variables have been taken into account the 

error terms in the input decision and production function should be independent. We report results in Table 4. 

They weakly confirm out hypothesis: behavioral variables are not only important for econometric regression 

but as confirmed by Hausman test results in the previous chapter, they ̀ contaminate’ the estimated coefficients. 

In this case, we can weakly reject at 5% the recursivity assumption when introducing non-cognitive skills 

variables in the model. 

 For inorganic fertilizers, the coefficient of the residuals is significant at the 5% level in the “a” specification 

which omits the behavioral variables but is only significant at the 10% level in the “b” specification which 

includes the behavioral variables. Although the same direction of movement is apparent in the ordered logit 

equations for seed use, the coefficient remains significant at the 5% level in the “b” equations. In summary, 

these results confirm that, in the absence of behavioral variables, the errors in the production function and 

input use equations are correlated invalidating the standard recursive structure in which outputs are conditioned 

on factor inputs, but suggest that this structure can be at least to some extent rescued by modeling farmers’ 

behavioral aspects. 

Table 2 Recusivity: coefficients of residuals obtained from Cobb-Douglas specifications (𝒆𝒂, 𝒆𝒃) inserted in the logit regression 
(column 1) and the ordered logit regression (column 2) 

Coeff 

Inorganic 

Fertlizer (Logit) 

Quantity of 

Seeds Used 

(Ordered Logit) 

𝑒𝑎 0.1781** -0.1859*** 

 
2.16 -2.69 

𝑒𝑏 0.1795* -0.1532** 

 
1.82 -2.10 

*** p<0.01, ** p<0.05, * p<0.1 
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2.5. Conclusions and Policy Implications 

These two chapters contribute to the current literature in extending the behavioral approach to the 

agricultural context in developing countries, providing two critics to the neoclassical economic framework. 

First, we assess that behavioral variables are not only important for the production function estimation but 

their inclusion alters the extent of the inputs coefficient. Second, we conditioned inputs choices on personality 

traits and we weakly confirm a recursive structure between inputs and output. In this section, we responded 

the previously mentioned issue of how non-cognitive skills affect smallholders’ allocative efficiency (use a 

more or less efficient combination of inputs). This issue is strictly connected to the productive efficiency 

discussed in the previous chapter. The estimation of farm-level productivity is a well-known topic in the 

economic literature. However, there are various difficulties during the estimation. Zellner et al. (1966) were 

an early attempt to correct such problems in the estimation. The fact is that farmers observe idiosyncratic 

shocks and adjust their input choices accordingly. Moreover, the inclusion of non-cognitive skills might 

reduce bias to ̀ unobservables’ in empirical estimation making observable the unobservable variables that may 

affect household decision-making. This validates the Zellner et al. (1966) use of OLS to estimate the 

production function within a recursive structure in which the errors on the input equations are uncorrelated 

with those of the production function.  

We are aware of the possible limitations of this analysis. First of all, a possible section bias of the sample 

may threat the external validity of the results we obtained. Second, as other researchers argued, the behavioral 

constructs we use to proxy non-cognitive skills may be hindered by mismeasurements and they may fail in 

capturing what they supposed to measure. Also, the use of cross-sectional data prevents us to use more 

advanced econometric tools to address other sources of endogeneity. 

The failure by smallholders to adopt productivity-enhancing input technologies may also result from low 

aspiration levels and mental models which downplay the role of investment. This is in contrast with standard 

economic models which assume that perfectly informed agents with time consistent preferences chose how to 

apply the right quantity of inputs. That is, personality traits might affect how agricultural inputs are used and 

adopted by smallholders other than productivity itself.  For example, Hanna et al. (2014) find that experienced 

managers and farmers respectively fail to recognize key inputs into their respective production functions. We 

address this second set of issues by estimating logit and ordered logit equations to investigate the role play 

non-cognitive skills in input adoption. The importance of including personality traits in the estimation is 

confirmed by the significance of the coefficients of the behavioral variables. Being at the extremes of the 

distribution of non-cognitive skills (highest or lowest scores) is associated with a higher probability of adopting 

inorganic fertilizer. Regarding the probability of using seeds per hectare having the highest attainable scores 

in all non-cognitive measures is associated with a higher probability of use a larger quantity of seeds per 

hectare, while the reverse is true when considering the margins predicted for lowest scores. Holding all other 

covariates constant at the sample mean we plot the predicted probability of adopting inorganic fertilizer and 

using different quantities of seeds on the plot for the distribution of the BFI and ER scores. Only the ER scores 

display predicted margins with acceptable confidence bands This implies that these behavioral measures better 

identify individuals most likely to adopt and disseminate new technologies. Concerning the probability of 

adopting inorganic fertilizer, we find a linear and increasing impact of higher levels of suppression scores, 

while the reverse is true for the reappraisal trait. Focusing on the probability to use a different amount of seeds, 

the marginal effect of increments in suppression and reappraisal scores positively affect the probability of 

being in the second and third terciles of seeds quantity distribution (with a greater steepness for the third 

tercile). Increments in the ER scores diminish the probability of using small quantities of seeds per plot. 

Concerning reappraisal, the variation along the distribution is less prominent. First of all, standard measure of 

cognition such as the number of years of schooling in the family seems to be not relevant at explaining the 

choice to adopt certain inputs. The predicted probabilities graphs show no alteration as the education level 

increases or decreases. On the other hand, suppression and reappraisal traits well summarize the propensity of 

households to use fertilizers or more seeds on the plot.  
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These results along with the average predicted probabilities at fixed values of non-cognitive skills show that 

highest scores are associated to higher probabilities. Also concerning the agricultural productivity, higher 

scores for conscientiousness, neuroticism, and suppression are all associated with a positive and statistically 

significant effect on agricultural productivity. Organizational skills, reliability, a strong capacity to “suppress” 

external emotional stimulus, and a high level of anxiety all appear to be yield-enhancing psychological 

characteristics. Therefore, acting on alleviating the external constraints that prevent households to use 

agricultural inputs may help to improve the psychological conditions for households to be receptive to new 

technologies and use them more effectively. How governments can act to modify such conditions? Some 

researches show that with small expedients is possible to boost the confidence and the compliance to certain 

behavior [see Bernard (2014) and Duflo’s works]. 

In table 5 we provide a synthesis of the effect associated with BFI and ER measures we obtained from our 

empirical analysis. 

These results may be useful in order to explain supply problems which have been widely cited to explain 

why some farmers do not purchase and use agricultural inputs. Incremental production from improved inputs 

usage is pointed as one of the priorities for boosting African agriculture. Our research suggests that the effects 

of subsidies and institutional innovation to overcome market failures and to increase input supply for farmers 

might be overstated by the literature.  This judgment applies in particular, to studies comparing `average’ 

versus `best’ practices in inputs use within each country22. Simply increasing the availability of seeds and 

fertilizers may not translate in higher yields since other factors such as personality traits may concur to affect 

input adoption. It is difficult to see how policy-makers might alter those behavioral patterns which prevent 

farmers from reaching the technological frontier.  

Faced with a lack of information regarding why and how people make their choices, one is left to assume a 

particular type of preferences and/or expectations. Provided enough care is taken to design attitudinal data, 

relevant analysis can be performed to usefully inform researchers about individuals’ decision-making 

processes (Manski, 2004; Bernard et al., 2012). Viewed in this light, personality traits become a valuable 

analytical device for boosting agricultural productivity through inputs adoption. Non-cognitive skills can help 

answer why entrepreneurship appears to be limited in poor countries and help identifies what can be done to 

stimulate greater agricultural activity. 

Moreover, these results can be useful for discussing the literature about poverty and the approaches to the 

problem. According to Dalton et al. (2010), the literature on poverty can be divided into two groups: the first, 

and most influential strand argues that poverty exists because to constraints that are external to individuals, 

such as credit, insurance market imperfections, coordination problems, governmental failures. The alternative 

view is that internal factors, such as the endowment of non-cognitive skills, aspiration and beliefs, are more 

likely to affect poorer individuals and influence their decisions that in a manner that tends to perpetuate poverty 

[Mojo and Fischer, 2015]. The two different approaches lead to two different kinds of policy responses: in the 

first case, policies aim to relax external constraints, while the second one justifies interventions that alter 

internal constraints as a means by which poor people could challenge and alter the conditions of their own 

poverty [Dalton et al. 2010]. 

The policy implications of the results obtained in these chapters could be assimilated to the second branch 

of literature, but a combination of the two approaches is definitely more indicated. Namely, all policies aiming 

                                                           
22 The basic idea of Malmquist (1953) of the `frontier productivity approach’ is to construct the best practice or frontier 

production function and to measure the distance of each country in the sample from the frontier using data envelopment 

analysis (DEA).  The Malmquist approach can distinguish between two sources of productivity growth: changes in 

technical efficiency and technical change. The contemporaneous approach of Trueblood and Coggins (2003) identifies 

the best practice countries in each period and measure the change in each country’s performance relative to the change in 

the frontier. 
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to address the external constraints could also play a role in addressing the internal constraints. This implies 

that when designing interventions to increase agricultural input adoption and/or improving yield productivity, 

should be taken into account the interaction with individual’s beliefs, behavioral traits and other key factors 

affecting future-oriented behaviors. When considering personality traits as in our case arises an ethical 

problem. Government lacks the prerogative to alter personality change even though it could encourage early 

childhood development interventions that aim to support the development of non-cognitive skills. But even 

with the help of small initiatives undertook during the adulthood may bring to great improvements. As the 

findings of Bernard et al. (2014) suggest showing short documentaries to smallholders in remote and rural 

part of Ethiopia lead to an aspirations’ change and saving behavior and a consequent increase in investment 

in education. Moreover, it would be discriminatory to target fertilizer supplies to those with the most 

conducive personalities. However, these findings might help in identifying individuals most likely to adopt 

certain technologies or to benefit from such adoption.  

Concluding, the results highlighted in this paper confirm the relevance of behavioral approach in rural 

contexts such as Ethiopia, through the use of good measures of skills - whether cognitive of non-cognitive. 

Table 3 Statistical Association between Agricultural Variables and Non-Cognitive measures (obtained from Regressions results, only 
statistically significant coefficients are reported) 

Non-cognitive skills 

Measures 
Definition 

Yield 

Output 

(Cobb-

Douglas) 

Yield Output 

(Translog) 

Inorganic 

Fertilizer 

Adoption 

Quantity 

of 

Improved 

seeds per 

ha 

Agreeableness ability to cooperate in an unselfish way   Negative  

Extraversion 

energy, positive emotions, assertiveness, 
sociability and the tendency to seek stimulation 

in the company of others, and talkativeness    Positive 

Conscientiousness 
organizational skills and the ability to act in a 
rational way Positive   Negative 

Neuroticism 
the tendency to not control anxiety and stressful 

situations rationally Positive Positive   

Openness 
the tendency to be open to new circumstances 

and unfamiliar intellectual experiences Negative Negative   

Suppression 
defined as the ability to inhibit expressive 
behavior while emotionally aroused Positive Positive Positive Positive 

Reappraisal 

defined as the ability to interpreting potentially 

emotionally-relevant stimuli in unemotional 
terms         

  



57 
 

References 

 
Adjognon, S. G.; Saweda, L.; Liverpool-Tasie, O.; and Reardon, T. A., 2016, ̀ `Agricultural Input Credit in Sub-Saharan Africa: Telling 

Myth from facts’’, Food Policy in press 

 

Appadaurai, A., 2004, ``The capacity to aspire: Culture and the terms of recognition’’, in V. Rao and M. Walton eds., `Culture and 

Public Action’, Stanfors University Press, Stanford, pp. 59-84 

 

Bernard, T.; Dercon, S.; and Taffesse, A. S., 2014, ``The Future in Mind: Aspirations and Forward-Looking Behavior in Rural 

Ethiopia’’, CSAE Working Paper WPS/2014-16 

 

Binswanger, H. P., and Pingali, P., 1988, ``Technological Priorities for Farming in Sub-Saharan Africa’’, World Bank Res. Observer, 

3 (1), pp 81-98 

 

Borghans, L.; Duckworth, A. L.; Heckman, J. J.; ter Weel, B., 2006, ``The Economics and Psychology of Personality Traits’’, the 

Journal of Human Resoruces, vol. XLIII  

 

Brune, L; Giné, X.; Goldberg, J.; and Yang, D., 2013, ``Commitments to Save: A field Experiment in Rural Malawi’’, University of 

Maryland Working Paper 

 

Dalton P. S.; Ghosal S. and Mani A., 2010, ``Poverty and aspirations failure’’, CAGE Working Paper Series No. 22, Coventry, UK: 

Department of Economics, University of Warwick. 

 

Deaton, A., 1898, ``Savings in Developing Countries: Theory and Review’’, Proceeding of the World Bank, Annual Conference on 

Development Economics, Washington DC 

 

Friedman, M., 1954, ``A Theory of the Consumption Function’’, Princeton University Press 

 

Hazarika, G.; and Alwang, J., 2003, ``Access to credit, plot size and cost inefficiency among smallholder tobacco cultivators in 

Malawi’’, Agricultural Economics, Vol. 29, pp 99-109 

 

Hanna, R.; Mullainathan, S.; and Schwartzstein, J., 2012, ``Learning Through Noticing: Theory and Experimental Evidence in 

Farming’’, HKS Faculty Research Working Paper Series, October 2012 

 

Hanna, R.; Mullainathan, S.; and Schwartzstein, J., 2014, ``Learning through noticing theory and evidence from a field experiment’’, 

Quarterly Journal of Economics, 129(3), 1311-1353. 

 

Kahneman, D., 2003, ``Maps of Bounded Rationality: Psychology for Behavioral Economics’’, The American Economic Review’, 93 

(5), pp. 1449-1475 

 

Kaur, S., Kremer, M., & Mullainathan, S., 2015, ``Self-control at work’’, Journal of Political Economy, forthcoming. 

 

Manski, C. F., 2004, ``Measuring Expectations’’, Econometrica Vol 72 (5), pages 1329-1376 

 

Malmquist, S., 1953, ``Index Numbersand Indifferences Surfaces’, Trabajos de Estatistica, Vol. 4, pp 209-242 

 

Modigliani, F., 1966, ``The life-cycle hypothesis of saving, the demand for wealth, and the supply of capital’’, Social Research, 33, pp 

160-217 

 

Mohamed, K. S., and Temu, A., 2008, ``Access to Credit and Its Effect on the Adoption of Agricultural Technologies: the Case of 

Zanzibar’’, African Review of Money Finance and Banking, pp 45-89  

 

Mojo, D., Fischer, C., 2015, ``Collective Action and Aspirations: The Impact of Cooperative on Ethiopian Coffee Farmers’ 

Aspirations’’, Selected paper prepared for presentation at 13thInternational Conference on the Ethiopian Economy, Ethiopian 

Economics Association (EEA), Addis Ababa, Ethiopia 

 

Nin-Pratt, A., and McBride, L., 2014, ``Agricultural Intensification in Ghana: Evaluating the optimist’s case for a Green Revolution’’, 

Food Policy, Vol. 48, pp 153-167 

 

Simon, H. A., 1955, ``A Behavioral Model for Rational Choice’’, The Quarterly Journal of Economics, Vol. 69, No.1, pp 99-118 

 

Thirtle, C.; Lin, L.; and Piesse, J., 2003,``The Impact of Research-Led Agricultural Productivity Growth on Poverty Reduction in 

Africa, Asia and Latin America’’, World Development, Volume 31, Issue 12, December 203, Pages 1959-1975 

 

Trueblood, M. A., and Coggins, J., 2003, ̀ `Intercountry Agricultural Efficiency and Productivity: A Mallquist Index Approach’’, World 

Bank, Washington DC 

  



58 
 

APPENDIX I 

Table 1 Logit Regression: Using Inorganic Fertilizers on Plot 
 (1) (2) 
VARIABLES Woreda and HH Charact Woreda and HH Charact and 

Non-cogn Skills 

Woreda (Lasta) -2.257*** -2.133*** 

 [-7.519] [-6.865] 
Woreda (Sirba) -1.056*** -0.745** 

 [-3.673] [-2.287] 

Woreda (Adele Keke) -0.167 0.263 

 [-0.538] [0.689] 

Woreda (Koro Degaga) -0.332 -0.210 

 [-1.027] [-0.594] 
Woreda (Turfe) -1.036*** -1.080*** 

 [-3.050] [-2.800] 

Woreda (Basona Werana) -0.435 0.135 

 [-1.451] [0.392] 

Inputs   

Dummy for low quality soil -0.315** -0.416*** 

 [-2.222] [-2.576] 

Log Crop Area Tot (ha) 0.262** 0.282** 

 [2.399] [2.329] 

   

Household Characteristics   
Dummy for Female Household Head 0.00539 -0.206 

 [0.0325] [-1.070] 

Household Head Age (years) -0.0206* -0.0135 
 [-1.900] [-1.034] 

Household Average Schooling 0.0166 0.0291 

 [0.665] [0.955] 
Household Size per adult equivalent 0.0367 0.0597 

 [0.789] [1.167] 

Dummy for Obtained Credit 0.218 0.186 
 [1.574] [1.185] 

Number of Plough 0.0521 -0.0171 

 [0.859] [-0.199] 
Number of Bike 0.857** 0.862* 

 [2.155] [1.906] 

Dummy for Extension Services 0.856*** 0.562 

 [3.124] [1.315] 

Dummy for Irrigation System 0.856* 0.300 

 [1.738] [0.361] 
   

Big Five Inventory T-Scores (Family Members working 

on plot) 

  

Extraversion   0.0104 

  [0.714] 

Agreeableness  -0.0188* 

  [-1.701] 

Conscientiousness  0.00193 

  [0.133] 
Neuroticism  -0.00529 

  [-0.377] 

Openness  0.00592 

  [0.449] 

   

Emotion Regulation Score (Family Members working 

on plot) 

  

Suppression  0.196*** 

  [3.100] 
Reappraisal  -0.160 

  [-1.633] 

   
Constant -0.314 0.618 

 [-0.455] [0.369] 

   
Observations 1,393 1,167 

*** p<0.01, ** p<0.05, * p<0.1 

Robust Std Errors 
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Table 2 Ordered Logit Regression: quantity of seeds applied per hectare (terciles) 
 (1) (2) 

VARIABLES Woreda and HH Charact Woreda and HH Charact and 
Non-cogn Skills 

Woreda (Lasta) -0.119 -0.204 

 [-0.521] [-0.854] 
Woreda (Sirba) 0.404* 0.288 

 [1.891] [1.216] 

Woreda (Adele Keke) 1.256*** 1.443*** 

 [4.431] [4.240] 

Woreda (Koro Degaga) 0.121 -0.186 

 [0.475] [-0.644] 
Woreda (Turfe) -0.159 -0.218 

 [-0.496] [-0.622] 

Woreda (Basona Werana) -2.041*** -1.860*** 

 [-8.382] [-6.825] 

Inputs   

Dummy for low-quality soil -0.0138 -0.143 

 [-0.109] [-1.050] 

Log Crop Area Tot (ha) 0.307*** 0.357*** 

 [3.120] [3.459] 

   

Household Characteristics   

Dummy for Female Household Head -0.299** -0.358** 

 [-2.144] [-2.306] 

Household Head Age (years) 0.00321 0.00250 

 [0.293] [0.205] 
Household Average Schooling -0.0109 -0.00445 

 [-0.481] [-0.169] 

Household Size per adult equivalent -0.0827* -0.136*** 

 [-1.900] [-2.949] 

Dummy for Obtained Credit 0.231* 0.326** 

 [1.915] [2.354] 
Number of Plough 0.208*** 0.260*** 

 [3.424] [3.345] 

Number of Bikes -0.269 -0.231 

 [-0.892] [-0.767] 

Dummy for Extension Services 0.881*** 0.361 

 [3.584] [1.028] 
Dummy for Irrigation System -0.480 -0.621 

 [-1.131] [-1.279] 

   
Big Five Inventory T-Scores (Family Members 

working on plot) 

  

Extraversion   0.0415*** 

  [2.743] 

Agreeableness  -0.00285 

  [-0.285] 

Conscientiousness  -0.0241* 

  [-1.926] 
Neuroticism  -0.0197 

  [-1.525] 

Openness  -0.00737 

  [-0.604] 

   

Emotion Regulation Score (Family Members 

working on plot) 

  

Suppression  0.256*** 

  [4.864] 

Reappraisal  0.139 

  [1.456] 

   
Constant Cut 1 -0.600 -0.444 

 [-1.017] [-0.347] 

Constant Cut 2 2.067*** 2.343* 

 [3.522] [1.820] 

   

Observations 1,393 1,167 

*** p<0.01, ** p<0.05, * p<0.1 
Robust Std Errors 
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Ethiopia: Non-farm Activities and 

Seasonality 

 

Background:  

Agriculture, Non-farm sector and Structural Transformation in Sub-Saharan Africa 

Researchers and policy-makers have identified a range of bottlenecks causing economic stagnation in SSA 

countries. Many solutions and suggestions have been proposed to solve these problems over the post-

independence period. Modernization of the agricultural sector remains the priority to promote economic 

development. As is evident from its high share in GDP, the agricultural sector heavily influences overall 

economic activity in SSA. Since the start of the new millennium, the rural non-farm sector has gained 

increasing importance, roughly 25% of rural full-time employment and 35–40% of rural incomes was 

attributed to the rural nonfarm economy in developing countries [Haggblade et al., 2002; van den Berg and 

Kumbi, 2006]. Nevertheless, little attention has been paid to the possible role of the rural non-farm sector in 

the process of structural adjustment and renewal of sustained economic development [Hamer, 1986].  

Despite the vision of rural African economies as purely based on agriculture being outdated, the image 

continues to persist. Diversification of household income emerges naturally both from ex-ante risk 

management strategies and from ex-post coping with adverse shocks. Barrett et al., (2001) show that this 

paradigm applies in SSA. For the majority of households, participation in the non-farm economy is either part-

time or seasonal and is largely motivated by the need to manage risk caused by uncertainties of weather, market 

price fluctuations and diseases affecting crops, livestock and family members [IFAD Rural Poverty Report, 

2011]. It is often argued that African economies need to become less dependent on agriculture if they are to 

escape poverty. A `pessimistic’ school of agricultural development specialists thinks that, for both technical 

and economic reasons, Africa cannot rely on agriculture as a source of growth or poverty reduction [Maxwell, 

2004]. The existing literature offers only limited insights on how non-farm activities and income might 

contribute to the alleviation rural poverty [Loening et al., 2008]. Most poverty alleviation intervention 

strategies in Africa neglect rural entrepreneurship and tend to focus only on smallholder agriculture activity 

[Fox and Sohnesen, 2013].  

The analysis is complicated both by definitional and methodological problems in assessing and comparing 

employment data in SSA. A variety of terms is used in the current literature to distinguish between different 

sources of rural income: ``off-farm’’, ``non-farm’’, and ``non-agricultural’’ are examples of terms used23. 

Furthermore, information on the size and the economic significance of the SSA non-farm enterprise sector is 

imprecise and limited, with the vast majority of these activities operating in the informal sector. 

The WB’s World Development Report 2008 stressed that agriculture continues to be addressed as a 

fundamental instrument for sustainable development and poverty reduction. Agriculture contributes to 

                                                           
23 In this chapter and the following ones, we adopt the definition of ``non-farm income’’ which includes earnings deriving 

from rural non-farm entrepreneurship activities 
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development in many ways: as an economic activity; through a series of linkages24 (as a source of growth for 

the national economy, a provider of investment opportunities for the private sector, and prime driver of 

agriculture-related industries); and as a livelihood (more than 80% of the decline in rural poverty is attributable 

to better conditions in rural areas rather than to out-migration of the poor) [World Bank, 2008]. The classical 

theory of agricultural transformation suggests that the share of agriculture in a country’s labor force and total 

output should decline both in the cross-section and over time as income per capita increases. The economic 

literature has recognized that there is a strong link between agricultural and industrial growth. Agriculture can 

contribute to the growth of industrial sector by transferring the `surplus’ of labor from agriculture to the 

industry with little or no reduction in the level of agricultural output. Some economists have argued that there 

is a point at which the marginal productivity of labor becomes almost zero in agriculture. If the population 

exceeds the quantity at which the marginal productivity of labor becomes zero, labor is available to the 

manufacturing sector without loss of agricultural output [Lewis, 1954; Ranis and Fei, 1961]. The basic cause 

and effect of the structural transformation are rising productivity of agricultural labor. Another main feature 

of structural transformation is a rising share of urban economic activity in industry and modern services. In 

rural areas of Sub-Saharan African countries, the relative reduction of the importance of agricultural and the 

expansion in rural non-farm activities are features of the process of economic development [Davis et al., 2014].  

In addition, there are several other factors apart from agriculture, such as the process of urbanization and the 

national economic context, that may affect the form and development of non-farm enterprise activities. In 

particular, when the economic context is stagnant, opportunities for growth in the non-farm entrepreneurship 

activities are limited. After gaining independence in the 1960s African countries failed to achieve a structural 

transformation of their economies. Few African countries have yet achieved sustainable urban development. 

African urbanization is entering a critical phase at which the growth momentum presents an opportunity for 

accelerating national development and for creating the foundation of a sustainable urban future.  Countries like 

Burundi, Rwanda, Malawi, Ethiopia and Burkina Faso are still overwhelmingly rural, whereas in Djibouti and 

Gabon more than 80 percent of the country’s population lives in urban areas. Also, Nigeria experienced a rapid 

urbanization during the last year with almost half of its population living in urban areas [United Nations 

Economic Commission for Africa, ECOSOC, 2014]. The acceleration of growth of the industrial sector has 

been possible in those countries that could rely on the stability of their governments and on the administrative, 

legal and regulatory capacity to guide markets. Ghana and Kenya, with their progressive institutions, openness 

to civil society and media scrutiny, are among the countries pursuing the `good governance’ route [Altenburg 

and Melia, 2014].  

In the next paragraph, we provide a brief description of the economic performance of Ethiopia and 

neighboring countries (Kenya, Uganda and Sudan) focusing on those aspects likely to promote a favorable 

context for non-farm activities.  

We find that Africa’s economic structure is changing but at different speeds in each country. Figure one 

reports value added generated in three different sectors as a share of GDP for Ethiopia, Kenya, Uganda, Sudan 

and aggregated SSA countries (excluding high income). On average the share of services activities is growing 

in SSA countries. But after disaggregating the trends we notice that Ethiopia remains highly dependent on 

agricultural sector compared to its neighbors Uganda, Kenya and Sudan. The shares of industry and services 

have grown slightly over the most recent years, indicating that a structural transformation is taking place even 

though it is in its early stages. The inability to accelerate economic diversification away from agriculture keeps 

SSA countries vulnerable to external shocks and prevents the eradication of poverty.  

                                                           
24 Haggblade et al. (2007) describe several linkages between agricultural and non-farm economy: production linkages, 
consumption linkages, factor market linkages, linkages between labor demand and rural/urban wage rates, and 
productivity linkages. 
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Figure 1 Sectors value added as share of GDP 

 
Data from database: World Development Indicators 

 

The embryonic stage of structural transformation of Ethiopia is also confirmed by the constraints and the 

struggle faced by households in the enterprise sector. Ethiopia has the highest bribery index amongst Uganda, 

Kenya and Sudan, as reported in Table 1. The time and the cost to start a new business also are respectively 

the longest and highest in the region. In conjunction with a low level of legal rights enforcement regarding 

credit, this results in major difficulties in starting and running businesses (as confirmed by the ease of doing 

business index).  A coherent set of policies concerning human capital formation, infrastructure and institutions 

should be addressed to create stability and a favorable context for households to engage in non-farm enterprise 

activities. Concerning infrastructure, as Tagegne (2000) argues, there exist `truncated linkages’ between rural 

and urban areas in Ethiopia, with the consequence of limited flows of agricultural commodities from rural to 

urban markets and in turn limited flows of manufactured and imported goods from urban to rural areas. 

Table 1 Non-farm Sector in Africa 

Source: World Bank Enterprise Surveys. *Source: World Bank Doing Business. **Source: World Development Indicators 

- Ethiopia Economic Performance and Non-farm Entrepreneurship Activities 

Evidence shows that close to 40% of African rural households are involved in non-farm activities despite the 

fact that only 9-19% of the rural labor force is employed in such activities [Haggblade et al., 2007]. Non-farm 

activities contribute between 8% (Malawi) and 36% (Niger) of average household income (World Bank, 2016). 

Based on a small number of case studies cited by Guenther et al. (2007) some 10% to 35% of rural households 

in Ethiopia may be engaged in nonfarm enterprise activities. Non-farm enterprises in Ethiopia are 

predominantly small with an average of employment of 1.14 workers [Ali and Peerlings, 2012]. Non-farm 

 
Ethiopia 

(2015) 

Uganda 

(2013) 

Kenya 

(2013) 

Sudan 

(2014) 

Bribery Index (% of gift or informal payment requests during public 
transactions) 

19.8 14.6 16.7 7.6 

Days to obtain an Electrical Connection (upon application) 
194.3 18.1 43.0 5.8 

*Cost to get electricity (% of income per capita) 1414.9 13575.8 1081.3 4386.3 

**Time required to start a business (days) 
35 28 32 36.5 

*Cost to start a business (% of income per capita) 79.1 78.3 38.2 25.1 

Days to obtain an Operating License 5.4 10.4 13.8 4.7 

**Start-up procedures to register a business (number) 
14 13 7 11 

Number of permanent full-time workers 36 15 43 25 

Number of temporary workers 13 6 15 1 

*Ease of doing business index (1=easiest to 185=most difficult) 
159 116 113 164 

*Credit: Strength of legal rights index (0=weak to 10=strong) 3 6 7 3 
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enterprises in Ethiopia appear to provide self-employment opportunities, yet very few wage labor 

opportunities.  

Ethiopia is among the most populous countries in SSA, with a population of 97 million with continuing 

population growth. This only increases the need for income diversification strategies and promotion of non-

farm enterprises activities. The latest Ethiopian five-year plan `Growth and Transformation Plan’ (GTP) 

outlines an ambitious development strategy to transform the country from subsistence agriculture to become a 

highly-competitive industrialized economy by 2015 and a middle-income country by 2020 [UN-Habitat 

Report, 2014]. The GTP requires a variety of policies, specifically targeted financial support (subsidies and 

loans), state-owned corporations to address market failures, trade policies, tax incentives, investment in 

infrastructure, regulatory exemptions to attract foreign direct investment. 

According to information obtained from the Addis Ababa City Administration, in 2004, 23% of young people 

between 15 and 20 years old were unemployed25, and the rate is higher when considering people between 15 

and 25 years of age. The `Addis Ababa Integrated Housing Programme’ (AAIHDP) aimed to improve living 

standards of Addis residents through the creation of employment opportunities in small-scale and micro 

enterprises (SMEs).  

Urban labor markets in Ethiopia are characterized by high unemployment and informality and the labor 

market position for youth, women and uneducated people is particularly disadvantaged. The situation is 

accentuated for women whose labor market position reflects their disadvantaged position in society: they carry 

most of the burden of domestic work, have lower educational achievements, are less likely to obtain a job, 

have longer unemployment spells, and suffer pay discrimination when they do manage to get a job [Rijkers, 

2009]. 

According to Rijkers et al. (2008), non-farm activity in Ethiopia is predominantly a means to complement 

farm income rather than a pathway out of poverty.  In addition, enterprise activity is highly countercyclical 

with agriculture, which suggests that non‐farm enterprise activities are most appealing when the opportunity 

cost of labor is low.  

 

Data 

The `Living Standard Measurement Survey-Integrated Surveys on Agriculture’ (LSMS-ISA) longitudinal 

data is a nationally representative panel of 3,776 households observed in 2011/12, 2013/14 and 2015/16 

covering the regions of Tigray, Amhara, Oromya and Southern Nations, Nationalities and People’s Region 

(SNNPR). The survey includes agriculture production information, participation into non-farm 

entrepreneurship sector, food consumption and household characteristics26.  

Information on the size and the economic significance of the Ethiopian non-farm enterprise sector is 

imprecise and limited.  Most non-farm enterprises in Ethiopia are small and informal and offer no social 

                                                           
25 The statistics on employment and unemployment were measured using ILO recommendation to use the strict 
definition of unemployment (``condition of people without work but willing to work who either carried out specific 
actions to find a job during the reference period’’). However, during the data collection operation these international 
standards share the measurement problem that are common in countries with unorganized labor market and 
predominantly agrarian subsistent economy 
26 The sample for the first wave comprises 4,000 households in rural and small towns areas, the sample for the second 
wave was expanded to include 1,500 urban households, for a total of 5,500 households. The sample in the third wave 
comprises only households sampled in the first and second wave. Samples from all waves are a two-stage probability 
sample. The sample for the first wave is representative at the regional level for the most populous regions (Amhara, 
Oromiya, SNNP, and Tigray). In the second wave, in order to correspond with the existing first wave design while 
ensuring that all urban areas are included, the population frame was stratified to be able to provide population 
inferences for the same five domains as in the first wave plus an additional domain for the city of Addis Ababa. 
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protection. There is a lack of information about productivity levels and the survival and failure rates of these 

activities in Ethiopia as in other SSA countries.  

 

In Table 2 we report main descriptive statistics of the sample disaggregated by year. On average 28% of 

households are female-headed with a family size of 4 people per adult equivalent. The dependency ratio 

(children less than 14 and elderly above 60 on labor age household members) averages 0.89. The level of 

schooling is quite low with an average household attainment of slightly less than 3.5 years. Half of the 

household heads cannot read or write. Farm size averages 1.25 hectares. Only 21% of the household had access 

to credit to buy agricultural inputs during last year, and only 16% of households reported to have access to a 

bank in the community. We see a general improvement in housing conditions along the three rounds. In fact, 

access to electricity tapped water source and flush toilet indicators improved from 2011 to 2016. The improved 

housing conditions reflected also on slightly improvements in malnutrition levels of children. On average 

anthropometric values are less than a standard deviation below the reference mean. During the 2015/16 round, 

an increasing number of households experienced several shocks such as damaged crop during the year, a 

drought or flood, an idiosyncratic shock or a price shock.  

Table 2 Main Descriptive Statistics LSMS-ISA Ethiopia 2011/12, 2013/14 and 2015/16 rounds 

        

Household Characteristics 2011/12 N 2013/14 N 2015/16 N Total 

Female HH Head 0.248 3969 0.304 5262 0.306 4887 0.286 

HH Head can read and write 0.402 3905 0.494 5261 0.499 4887 0.465 

HH Head Educ 2.697 3104 3.927 4525 3.747 4227 3.457 

HH Head Age 43.1 3969 44.1 5262 46.4 4887 44.6 

HH Size per AE 3.873 3969 4.069 5262 4.310 4887 4.084 

Share of Children 0.489 3147 0.460 3933 0.502 4159 0.484 

Share of Elderly 0.386 877 0.335 1211 0.293 1250 0.338 

Share of Adult (Males) 0.318 3092 0.340 4252 0.293 3879 0.317 

Share of Adult (Females) 0.319 3467 0.346 4633 0.300 4325 0.322 

Dep Ratio (<15+>65)/(15-65)*100 8.97E-07 3785 7.09E-07 5123 1.07E-06 4739 8.92E-07 

Rural Area =1 0.873 3969 0.609 5455 0.605 5329 0.696 
        
Housing 2011/12 N 2013/14 N 2015/16 N Total 

Dummy for Electricity 0.179 3969 0.419 5262 0.402 4890 0.333 

Dummy for Flush Toilet 0.019 3969 0.068 5262 0.107 4890 0.065 

Dummy for Tapped Water Source 0.169 3969 0.408 5262 0.576 4890 0.384 

Number of Rooms 1.661 3909 1.839 5258 1.914 4890 1.805 
        
Farming Characteristics 2011/12 N 2013/14 N 2015/16 N Total 

Dummy for Irrigation System 0.114 2849 0.110 3173 0.108 3087 0.110 

Crop Area (ha) 1.283 3118 1.312 3633 1.176 3664 1.257 

Dummy for plot certificate 0.442 2649 0.468 3450 0.531 3460 0.481 

Dummy for Improved Seeds 0.176 2791 0.189 3169 0.191 3085 0.185 

Dummy fro Traditional Seed 0.974 2791 0.958 3169 0.988 3085 0.973 
        
Shocks27 2011/12 N 2013/14 N 2015/16 N Total 

Dummy for Damaged Crop 0.673 2826 0. 600 3170 0.757 3111 0.676 

Dummy for Geographic Shock 0.208 3969 0.102 5455 0.263 5329 0.191 

Dummy for Idiosyncratic Shock 0.2045 3969 0.137 5455 0.285 5329 0.209 

Dummy for Price Shock 0.291 3969 0.207 5455 0.305 5329 0.268 

Dummy for Other Shock 0.022 3969 0.025 5196 0.014 4887 0.020 

Dummy for Food Shock 0.285 3900 0.273 5244 0.247 4882 0.268 
        
Food Consumption 2011/12 N 2013/14 N 2015/16 N Total 

Weekly Purchased Food Exp per ae* 3450.28 3900 1346.89 5200 71.44 4847 1622.87 

Dummy for Poor Diet Variety 0.667 3969 0.662 5455 0.857 5329 0.728 

Dummy for Critical Food Cons 0.515 3969 0.454 5455 0.498 5329 0.489 
        

                                                           
27 Idiosyncratic shocks comprehend: if the household experienced the death, illness loss of a non-farm job of a family 
member; geographic shocks include: if a drought, a flood, a landslide/avalanche, or heavy rains occurred during the last 
year; price shocks refer whether a price fall or rise of a food item or of agricultural input occurred; food shock refer to 
lack of food in the household; other shocks include all other shock not included in the other categories.  
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Wealth 2011/12 N 2013/14 N 2015/16 N Total 

Dummy for Mobile Phone 0.293 3969 0.560 5455 0.606 5329 0.486 

Gross Aggregate Agr Inc (BIRR)* 48921.90 3969 80553.36 5262 7329.63 4979 45601.63 
        
Child Malnutrition 2011/12 N 2013/14 N 2015/16 N Total 

Stunting (height per age) -1.430 2061 -0.593 2520 -0.582 2128 -0.869 

Weight per age -1.057 2061 -0.504 2520 -0.487 2128 -0.683 

Wasting (weight per height) -0.368 2061 -0.189 2520 -0.203 2128 -0.254 

Body mass index zscore -0.220 2061 -0.143 2520 -0.157 2128 -0.173 

*2015/16 round values differ due to different survey construction 

-Non-farm activities in Ethiopia: Descriptive Statistics 

The LSMS-ISA data for Ethiopia shows that the percentage of household involved in some non-farm activity 

is around 28%. On average, households who engage in non-farm enterprise derive 25% of their cash income 

from these activities. Licenses grant individuals the right to operate a business in certain city or area and sector. 

The competent authorities check to make sure that the workplace is appropriate for the purpose and a 

registration is needed in order to collect taxes on sales and revenues. During 2016, less than 28% of rural non-

farm enterprise had a license to formally operate and most operated from the household residence (36.2%).  

Figure 2 shows that non-farm enterprises on average consist of just two workers (one of them being the 

employer). They rely almost completely on household labor (90% of the sample employ only family labor). 

The International Labor Organization (ILO) defines own-account work with contributing family workers as 

vulnerable statuses of employment. If the latter definition is applied, the vulnerable employment rate (sum of 

own-account and contributing family workers as a proportion of total employment) in this case is near unity. 

Enterprises operates mostly in `buying and selling’/trade sector (38.6%); manufacturing (16.2%); 

transportation (15.2%); and electricity (12.4%). Agriculture represents the principal activity for households 

and processing food represent a consistent share of non-farm enterprises in the sample: on average 15%. This 

is consistent with the view of Ethiopian households being in the first stage of structural transformation where 

most of the entrepreneurship activities are directly linked to agriculture. Typically, they include the 

manufacture of fertilizer, agricultural and transport equipment. The second stage of transformation, non-farm 

activities are more varied focusing on tourism and services.  

Local consumers and passers-by are the principal selling-base (40% of final selling). Most of the remaining 

sales are to markets (35%) and traders (18%) [Figure 3]. Figure 4 shows gender differences across enterprise 

sectors: typically women sell products28. 

On average, half of the non-farm activities are undertaken by female household members. The reason for the 

high participation of women in nonfarm employment reflects the cultural segregation of agricultural activity 

according to sex. For instance, many households in Amhara believe that the harvest will be bad if women work 

on the farm (Bardasi & Getahun, 2007; Zwede and Associates, 2002). According to Gellla and Tadele (2014), 

the `farmer’ symbolic construction is an essentially a masculine cultural subject in Ethiopia with the plow 

occupying a pivotal and privileged place in the history of farming in the country. Women are seen as helpers 

and caretakers to the men who do the `real farming’ due to this symbolic and somatic association. Men are 

traditionally responsible for plowing and cutting seed, while women traditionally perform weeding, preparing 

and carrying manure. They help with harvesting but are rarely are given the task of looking after cattle. As a 

result, it is difficult for unmarried women to be independent farmers since they have no opportunities to learn 

those activities and rely on non-farm activities as a primary source of income more likely than men [Gella and 

Tadele, 2014].  

Female owned enterprises are on average smaller in size compared to men-owned ones, likely reflecting the 

unprivileged position of women in the Ethiopian labor market and enterprises run by female-headed 

                                                           
28 These differences are statistically significant on average along the three rounds, t-test results are reported in table 3 
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households [Rijkers et al., 2008]. Often women are overrepresented in low-paid, household-based, labor-

intensive activities because of the severe restrictions on their mobility (UNCTAD Report, 2015) 

The primary sources of start-up capital are agricultural income, non-farm self-employment income and 

family and friends in the community. Only 8% of enterprises cited formal credit institutions (credit association, 

cooperative or bank loan, private moneylenders) as their primary source of funding. This suggests that informal 

entrepreneurs could possibly gain by formalizing the access to formal credit. 

Self-reported constraints that prevent further growth of the non-farm businesses are access to the market 

(distance and cost), low demand for the goods and services produced and the difficulty of obtaining information 

on products in the market. For those enterprises with a formal license to operate, the major constraint is the 

high value of the taxes paid. Controlling for enterprises with licenses, we found no improvement in access to 

formal credit. Even though small entrepreneurs in Ethiopia have one of the highest rates of compliance for 

licenses amongst Sub-Saharan Africa [Nagler and Naudé, 2014], it still clear that disclosure of activities to the 

authorities is not perceived as advantageous or profitable. Compliance is a cost that is difficult to sustain. 

Taxation also imposes a compliance cost but there is the risk of being fined for operating without payment. 

Informal entrepreneurs could possibly gain by formalizing in terms of access to formal credit. Formalization 

would also entail compliance with a healthy and secure work environment for employees. 

Figure 2 Frequency Distribution of the Number of Workers per Firm 

 
Figure 3 Main Selling Distribution                                                           Figure 4 Sectors Distribution by Gender of Enterprise's Owner 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 Non-farm Characteristics: difference between female and male owners 

 
Male 

Owner N 

Female 

Owner N Total Diff  

Agricultural Sector 0.059 4077 0.053 4216 0.056 0.005  
Buying/Selling Sector 0.385 4077 0.387 4216 0.386 -0.003  
Manufacturing Sector 0.132 4077 0.192 4216 0.162 -0.060 *** 

Transport Sector 0.160 4077 0.145 4216 0.152 0.015 * 

Electricity Sector 0.129 4077 0.118 4216 0.124 0.011  
Hotel & Rest Sector 0.039 4077 0.040 4216 0.040 -0.001  
Other Sector 0.033 4077 0.020 4216 0.027 0.013 *** 
Tot Workers 1.787 4077 1.682 4216 1.735 0.104 * 
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House - Primary Operating 

Location 0.326 4077 0.413 4216 0.369 -0.087 *** 
Market - Primary Operating 

Location 0.358 4077 0.371 4216 0.364 -0.013  
Mobile - Primary Operating 

Location 0.117 4077 0.077 4216 0.097 0.040 *** 
Other - Primary Operating 

Location 0.198 4077 0.139 4216 0.169 0.059 *** 
Processed and sold any 

agricultural products (=1) 0.106 3429 0.199 3516 0.153 -0.093 *** 
Seasonal Activity (=1) 0.318 4055 0.314 4196 0.316 0.004  

Asterisks denote significance of t-tests for equality of means between the preceding columns: *** p<0.01, ** p<0.05, * 

p<0.1 

We tested to see whether households that engage in non-farm activities are on average statistically different 

in household characteristics and farming activities from other households. Table 5 gives the results of t-tests 

that show that households with at least one non-farm enterprise are on average larger, with less educated and 

younger household head. Households with some non-farm activity on average experienced more shocks during 

the year (idiosyncratic and price), and have poorer access to water and flushed toilets while better access to 

electricity.  

Looking at farming activities, the difference between the two samples is less evident: there is no statistically 

significant difference for the use of an irrigation system. Households with non-farm activities have less 

cultivated land but use more improved seeds. 

We proxy wealth by the number of rooms in the dwelling and possession of a mobile cellphone. On this 

basis, households who do not participate in the non-farm sector are better off than those who participate but 

the difference is not statistically significant. 

Since families with non-farm activities are larger due to a higher share of children, we examine if 

participating in the non-farm sector could increase health outcomes for children. Again, t-test results show that 

on average children living in families participating in the non-farm sector have inferior health outcomes.  

We also investigate differences in food consumption indicators in table 5. Since there is no single way to 

measure food security, we adopted two indicators of household food consumption developed by World Food 

Program (WFP) and `Food and Nutrition Technical Assistance’ (FANTA) project respectively. The first is the 

`Household Dietary Diversity Score’ (HDDS) which measures the number of different food groups consumed 

over a given reference period. This is an attractive proxy indicator for food access. A more diversified diet is 

generally associated with a number of improved outcomes such as higher child birth weight, greater caloric 

and protein adequacy, a higher proportion of animal protein and higher household income. The second 

indicator is the `Food Consumption Score’ (FCS) which measures the frequency of consumption of different 

food groups29. For each indicator is possible to calculate a threshold to assess a poor consumption/diet variety 

in the household30. Based on these measures, households participating in non-farm activities on average are 

more likely to have poor diet variety but are less critical with regard to food consumption. Table 5 shows 

percentages for FC and HDD scores. 

                                                           
29 We calculate the HDDS counting how many different food groups household consumed, divided by household size per 

adult equivalent. The food groups are: cereals, root and tubers, vegetables, fruits, meat, eggs, pulse and legumes, milk 

and milk products, oil and fats, sugar and honey. FCS is calculated weighting the frequency of consumption of different 

food groups. The food groups are: main staple (weight 2); pulses (weight 3); vegetables (weight 1); fruit (weight 1); meat 

and fish (weight 4); milk (weight 4); sugar (weight 0.5); oil (weight 0.5); condiments (weight 0) 
 
30 The threshold for having a poor diet variety is set by the average HDDS for the first tercile of food consumption 

expenditure. For FCS a score below 28 is defined as poor food consumption, 28.5-42 borderline food consumption and 

above 42 as acceptable. 
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Table 4: t-tests results: testing statistically average difference between the two groups 

        

Household Characteristics 

Household Not 

Participating N 

Household 

Participating N Total Diff  
Female HH Head 0.294 9965 0.277 4153 0.285 0.017 ** 
HH Head can read and write 0.467 9903 0.478 4150 0.472 -0.011  
HH Head Educ 3.687 8242 3.206 3614 3.447 0.481 *** 
HH Head Age 45.1 9965 43.5 4153 44.3 1.6 *** 
HH Size per AE 3.983 9965 4.370 4153 4.177 -0.387 *** 
Share of Children 0.485 7780 0.481 3459 0.483 0.005  
Share of Elderly 0.348 2508 0.285 830 0.317 0.063 *** 
Share of Adult (Males) 0.323 7781 0.305 3442 0.314 0.019 *** 
Share of Adult (Females) 0.325 8610 0.316 3815 0.321 0.009 ** 
Dep Ratio (<15+>65)/(15-

65)*100 0.886 9557 0.887 4090 0.887 -0.001  
Rural Area =1 0.670 10591 0.701 4162 0.685 -0.032 *** 
        

Housing 

Household Not 

Participating N 

Household 

Participating N Total Diff  
Dummy for Electricity 0.341 9968 0.357 4153 0.349 -0.015 * 
Dummy for Flush Toilet 0.071 9968 0.061 4153 0.066 0.010 ** 
Dummy for Tapped Water 

Source 0.406 9968 0.382 4153 0.394 0.024 *** 
Number of Rooms 1.785 9907 1.889 4150 1.837 -0.104 *** 
        

Farming Characteristics 

Household Not 

Participating N 

Household 

Participating N Total Diff  
Dummy for Irrigation 

System 0.110 6275 0.111 2834 0.110 -0.001  
Crop Area (ha) 1.309 7081 1.143 3334 1.226 0.166 *** 
Dummy for plot certificate 0.503 6517 0.442 3042 0.473 0.061 *** 
Dummy for Improved Seeds 0.179 6011 0.198 3034 0.189 -0.018 ** 
Dummy fro Traditional Seed 0.975 6011 0.970 3034 0.972 0.005  
        

Shocks 

Household Not 

Participating N 

Household 

Participating N Total Diff  
Dummy for Damaged Crop 0.682 6062 0.665 3045 0.673 0.017  
Dummy for Geographic 

Shock 0.187 10591 0.194 4162 0.190 -0.007  
Dummy for Idiosyncratic 

Shock 0.200 10591 0.230 4162 0.215 -0.030 *** 
Dummy for Price Shock 0.258 10591 0.282 4162 0.270 -0.024 *** 
Dummy for Other Shock 0.021 9914 0.019 4138 0.020 0.002  
Dummy for Food Shock 0.272 9886 0.257 4140 0.265 0.014 * 
        

Food Consumption 

Household Not 

Participating N 

Household 

Participating N Total Diff  
Weekly Purchased Food Exp 

per ae 1479.33 9819 1521.48 4128 1500.40 -42.15  
Dummy for Poor Diet 

Variety 0.703 10591 0.811 4162 0.757 -0.108 *** 
Dummy for Critical Food 

Cons 0.508 10591 0.432 4162 0.470 0.076 *** 
        

Wealth 

Household Not 

Participating N 

Household 

Participating N Total Diff  
Dummy for Mobile Phone 0.501 10591 0.514 4162 0.508 -0.014  
Gross Aggregate Agr Inc 

(BIRR) 48696.63 10048 39700.45 4162 44198.54 8996.18  
        

Child Malnutrition 

Household Not 

Participating N 

Household 

Participating N Total Diff  
Stunting (height per age) -0.865 4505 -0.810 2204 -0.837 -0.055  
Weight per age -0.683 4505 -0.638 2204 -0.661 -0.045  
Wasting (weight per height) -0.256 4505 -0.233 2204 -0.245 -0.023  
Body mass index zscore -0.177 4505 -0.158 2204 -0.168 -0.019  
Asterisks denote significance of t-tests for equality of means between the preceding columns: *** p<0.01, ** p<0.05, * 

p<0.1 
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Table 5 Food Diversity and Food Consumption indices 

Food Consumption Score 

Household 

Not 

Participating  

Household 

Participating 

<28 Poor Food Consumption 25.29 % 18.44 % 

28.5-42 Borderline Food Consumption 27.71 % 26.77 % 

>42 Acceptable Food Consumption 47.00 % 54.79 % 

Household Diet Diversity Score % % 

Poor Diet Diversity 70.27 % 81.07 % 

Not-Poor Diet Diversity 29.73 % 18.93 % 

 

Descriptive statistics so far show that households involved in non-farm enterprises are generally poorer and 

have lower wellbeing. This is consistent with the view that these households are being pushed into non-farm 

activities rather than being attracted to them. These activities are much vulnerable employment modes, relying 

entirely on own-account and contributing family workers. Moreover, this is consistent also with the view that 

the poorest households have the greatest and strongest incentives to diversify into other activities, but they 

have the most limited capacities and opportunities to do so, limiting the benefits to them and to the wider 

economy. In fact, the pervasive level of engagement in the informal sector force often the insecure to low-

paying part-time jobs. Usually, they remain the only option for many especially for poor people living in rural 

areas. To accelerate employment -especially for the youth- SSA countries must put stronger efforts to enhance 

the skills for the majority of young people -who missed out even on basic literacy skills- whose only option is 

in the informal sector.  

 

- Linkages with Agriculture 

In Figure 5 we plot months of activity of enterprises located in local and rural areas. During 2015/16, almost 

one-third of enterprises operate for five months or less, while in urban areas enterprises typically operate for 

the entire year. Along the three rounds, we notice that the percentage of households operating an enterprise for 

less of six months is shrinking in both rural and urban areas. The difference in economic opportunities between 

urban and rural areas shape household participation in the non-farm sector in different ways. Beyond urban 

areas, labor markets are typically characterized by an excess of supply of labor (except during the peak season) 

due to limited opportunities and factors pushing poorer households into seeking supplementary income 

[UNCTAD Report, 2015]. The months of greatest activity are reported in Figure 6. The highest activity is 

concentrated during the minor harvest season -Belg- September, October and November, and the first month 

of the dry season -Bega- December (45% of the sample reported December to be the highest month of 

enterprise activity).  

In this sense, reported firm-activity seem to be counter-cyclical with respect to agricultural activity: with 

highest non-farm activity during the agricultural dry season, and the lowest activity during the main crop 

season –Meher - when heavy rains fall during June, July and August, and during the hottest month of the year 

May. This trend is confirmed controlling for the sector of activity and urban/rural location. Non-farm enterprise 

activity is much lower during the peak agricultural season, reflecting household labor allocation decisions to 

prioritize agriculture since most labor input is unpaid. Household decisions not to hire workers for enterprise 

activity suggest that supplying more labor is not worthwhile: the non-farm sector rather absorbs surplus labor 

in the household rather than `pulling’ people away from agricultural activities. This is confirmed by the work 

of Haggblade, Hazell and Dorosh, (2007) and also by Ethiopian crop calendar for major crop foods on the right 

part of Figure 6. In addition, agricultural work during major crop seasons might be better paid because it is 

more demanding or because it is dominated by men, who tend to be better paid than women. 
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Figure 5 Months of Activity of Households' Enterprises 

 
Figure 6 Enterprise highest activity during 2015/16. December is omitted because it accounts for almost 45% of the total 

 

 

 

 

 

 

 

- Cluster Analysis 

In this paragraph, we provide a brief cluster analysis focusing on the sample of households participating in 

the non-farm sector. We want to assess whether households with some enterprise activity can be grouped 

according to push and pull factors variables: `push’ factors comprise shocks, any surplus of household labor 

and seasonality while, `pull’ factors related to educational attainment, household wealth and the availability of 

business opportunities at a distance from the nearest large town. We restricted the sample to the households 

having at least one non-farm activity, about 4,000 observations (1,077, 1,584 and 1,501 amongst the three 

rounds). We perform a hierarchical agglomerative method proposed by Ward (1963) where groups of 

observations are joined to maximize an objective function. The agglomerative hierarchical clustering methods 

begin with each observation’s being considered as a separate group and then the closest two groups are 

combined31. We restrict the set of variables to push (household size per adult equivalent, rainfall, shocks, 

cultivated area) and to pull factors (household head age and literacy, proxy for wellbeing, distance from market 

and road) and other household characteristics (female household head) and regional variables (rural areas, and 

woreda district). 

 

Figure 7 reports the dendrogram (also called cluster tree) for the hierarchical clustering we performed. The 

dendrogram graphically presents the information concerning which observations are grouped together at the 

various levels of similarity. The highest is the branch the strongest is the clustering of the observations. The 

dendrogram indicates the presence of three major groups (G1 the first group, G2 the second and finally G3 the 

last one). Looking at the mean values of the variables for the three groups we set out to classify the groups 

according to the prevalence of push or pull factors [Table 6].  

On average the first group could be defined as the `push’ factor-group, with the greater mean values for 

household size and experienced shocks. Also, this group is characterized by higher level of wealth (possession 

of a plow, a larger number of rooms). We can identify this group as the most involved in agriculture and with 

                                                           
31 We provide a brief technical appendix after this paragraph explaining the methodology 
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the largest area of cultivated land. We identify the second group as that in which `pull’ factors prevail. It is 

characterized by the lowest values for experiencing a shock during the year, the youngest and the most literate 

household heads, but also by the farthest distances from the market and the main road. The last group is mainly 

characterized by push factors, but also by the rural location, and having a female household head. This last 

group is the most severed pushed group in the non-farm sector: with the most disadvantaged segment of the 

population -rural female-headed households- subject to highest probability to experience lack of food, 

idiosyncratic, price and other shocks during the year. 

Figure 7 Dendrogram for Ward's Cluster Analysis 

 
 

Table 6 Descriptive Statistics for Cluster Groups 

  Group 1 Group 2 Group 3 

VARIABLES mean N mean N mean N 

Rural Area (=1) 0.901 1,076 0.869 909 0.910 581 

Female HH Head 0.222 1,076 0.187 909 0.315 581 

Push Factors       
HH Size per AE 5.438 1,076 3.588 909 4.436 581 

Rain during major 

season right amount 

(=1) 0.453 1,076 0.439 909 0.444 581 

Food Shock (=1) 0.308 1,076 0.283 909 0.324 581 

Geog Shock (=1) 0.238 1,076 0.163 909 0.238 581 

Other Shock (=1) 0.0204 1,076 0.0165 909 0.0189 581 

Idiosync Shock (=1) 0.230 1,076 0.168 909 0.246 581 

Price Shock (=1) 0.316 1,076 0.241 909 0.263 581 

Crop Damage (=1) 0.679 1,076 0.647 909 0.654 581 

Cultivated Area (ha) 1.418 1,076 1.055 909 1.296 581 

Pull Factors       
HH Head age (years) 44.79 1,076 29.91 909 65.56 581 

HH Head can read (=1) 0.414 1,076 0.416 909 0.355 581 

Bank (=1) 0.0623 1,076 0.0858 909 0.0585 581 

Number of Rooms 1.853 1,076 1.650 909 1.795 581 

Plough (=1) 0.586 1,076 0.505 909 0.527 581 

Log Distance from 

Market 3.543 1,076 3.675 909 3.555 581 

Log Distance from 

Road 2.144 1,076 2.146 909 2.096 581 
       

Number of total hh_id  2,870  2,870  2,870 

 

Concluding, the clustering of households engaging in the non-farm sector results in three major groups. In 

fact, looking at mean values of the variables associated with push factors we assess whether the group is 

prevalently characterized by those factors. The third group, as shown by the dendrogram, is the most dissimilar: 

this is due to the highest percentage of female household heads and households located in rural areas. The 

group summarizes the characteristics of the most disadvantaged sector of the population who diversify their 

income.  
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3.Non-farm Entrepreneurship Activity in Ethiopia: 

Determinants and Impacts on Household’ Wellbeing 

 

3.1. Introduction 

Reduction of rural poverty in Africa over the next 50 years depends on achieving massive production 

improvements and increases in labor productivity. For the most part, poverty alleviation policies focus 

primarily only on smallholder agricultural activity. The vision of rural Africa economies as purely based on 

agriculture is outdated, but the image persists even today. However, it is arguable that reduction in rural poverty 

may depend more on what happens off-farm than on-farm. Evidence shows that close to 40% of African rural 

households are involved in non-farm activities despite the fact that only 9-19% of the rural labor force is 

employed in such activities [Haggblade et al., 2007].  

According to Rijkers et al. (2008), non-farm activity in Ethiopia is predominantly a means to complement 

farm income rather than a pathway out of poverty. This is consistent with results obtained in the previous 

chapter: t-test results showed that households with at least one non-farm enterprise are on average larger, with 

less educated and younger household head. Households with some non-farm activity on average experienced 

more shocks during the year (idiosyncratic and price ones), and have poorer access to water and flushed toilets 

while better access to electricity. Descriptive statistics so far show that households involved in non-farm 

enterprises are generally poorer and have lower wellbeing. Also cluster analysis shows that households split 

into three major groups: one where on average push- factors prevail, the second where prevail pull-factors, and 

the third one as the most dissimilar due to the higher percentage of rural female-headed households. 

We use the LSMS-ISA data for Ethiopia to address two questions: a) What are the major determinants of 

households’ participation in the non-farm sector (`push’ or `pull’ factors)? b) Does participation in these 

activities positively affects indicators of household well-being (such as food consumption and variety). We 

assess how non-farm earnings derived from non-farm activities affect household wellbeing as evidenced in 

food consumption and household food security. These are crucial in Ethiopia given its dependence on 

agriculture, exposing households to both seasonal price variability and food price volatility. An enhanced 

understanding of the influence of non-farm income can inform food security policy and initiatives.  

Our results confirm that households are more likely to have a rural non-farm activity as the result of push 

factors than because of remunerative business opportunities. This is consistent with the view that these 

households are being pushed into non-farm activities rather than being attracted to them. These activities are 

much vulnerable employment modes, relying entirely on own-account and contributing family workers. 

Moreover, this is consistent also with the view that the poorest households have the greatest and strongest 

incentives to diversify into other activities, but they have the most limited capacities and opportunities to do 

so, limiting the benefits to them and to the wider economy. Moreover, female household heads are more likely 

to start a non-farm activity though this is typically at a small size, possibly reflecting gender-based cultural 
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segregation of agricultural activities. For instance, many households in Amhara believe that the harvest will 

be bad if women work on the farm (Bardasi & Getahun, 2007; Zwede and Associates, 2002).  

Looking at the non-farm sector we find that participation has a stronger impact on food security indicators 

than on household food consumption expenditure. Empirical evidence suggests a positive correlation between 

non-farm income and wealth indicators although the causation could run in either direction. For example, 

households with diversified income may potentially have a better nutritional status and greater food security, 

augmenting the share of food in total consumption. Moreover, non-farm income might improve agriculture 

performance providing farmers with cash to invest in agricultural inputs [Babatunde and Qaim 2010; Sani et 

al., 2014; Woldeyohanes et al., 2015].  

The body of the chapter is organized as follows. Section 2 briefly present the theoretical background. In 

section 3 we outline the empirical strategy and report the estimation results. The final section concludes. 

 

3.2. Theoretical Background 

Becker's (1965) seminal study was the first one to formalize the concept of household time allocation choices. 

The study provided the theoretical framework to further develop a class of models of household time 

allocation choices. Time is an important resource in a developing country context where the economic agent’s 

(individual or household) interaction with the outside world (through market activities) is relatively more 

restricted than in developed countries. Like any other resource in the household, time is not equally distributed 

across members. There are significant differences not just along gender lines but also by age, social status and 

wealth to cite the most relevant. Also, time use is not constant over the cycle of the year especially in rural 

areas. Time allocation is found to be largely affected by seasonality, for example winter is usually characterized 

by a low engagement in agricultural activities on-farm, while during the peaks of the agricultural season it 

involves larger amounts of labour (Ilahi, 2000).  

The main assumption in the Becker model and its extension is that households seek to maximise the 

household utility function defined over consumption commodities and that time is allocated between work and 

leisure so as to maximise that utility function. We draw upon the economic theory of farm households (Singh 

et al. 1986) and empirical studies of household labour allocation in developing countries (Rosenzweig, 1980; 

Jacoby, 1993; Abdulai and Delgado 1999) to provide a basic theoretical framework for the determinants of 

household time allocation in multiple sectors. The theoretical framework here presented ignores all the 

complexities of the model and eventual extensions. 

We assume that each household maximizes its utility U which is a function of consumption C and leisure 

time L (equation 1). Household consumes both food (𝑐𝑓) and manufactured goods (𝑐𝑚) We also assume that 

household and individual characteristics (Z) influence preferences. The household production function on the 

farm is defined as  𝑄(𝑙𝐴𝐺𝑅 , 𝒛, 𝐹), where 𝑙𝐴𝐺𝑅in on-farm labor, 𝒛 is a vector of variables inputs such as fertilizer, 

and 𝐹 is a vector of structural characteristics of the farm. The labor market failure is described as the off-farm 

labor constraint 𝑙𝑁𝐴𝐺𝑅 ≤  𝑙𝑁𝐴𝐺𝑅̇  where 𝑙𝑁𝐴𝐺𝑅̇  is the maximum hours farmers can work off the farm. 

Utility is maximized over a time constraint equation (2) and a cash income constraint equation (3) where we 

include income derived from household farm production and incomes and from non-agricultural activities 

(wNAGR).  

max
𝑐

𝑈 = 𝑓(𝑪, 𝐿; 𝑍)      (1) 

𝑇 = 𝐿 +  𝑙𝐴𝐺𝑅 +  𝑙𝑁𝐴𝐺𝑅      (2) 

𝑝𝑄(𝑙𝐴𝐺𝑅 , 𝒛, 𝐹) − 𝑝𝑧𝑧 + 𝑤𝑁𝐴𝐺𝑅𝑙𝑁𝐴𝐺𝑅 + 𝑉= 𝑪    (3) 

𝑙𝑁𝐴𝐺𝑅 , 𝑙𝐴𝐺𝑅 ≥ 0; 𝑙𝑁𝐴𝐺𝑅 + 𝑙𝐴𝐺𝑅 = 0     (4) 

Where 𝑝 is the farm output price, 𝑝𝑧 is the input price, 𝑤𝑁𝐴𝐺𝑅 is the off-farm wage, and 𝑉 represents transfers. 

The first order condition for this problem are: 

𝑤 𝐴𝐺𝑅∗ = 𝑝
𝜕𝑄

𝜕𝑙𝐴𝐺𝑅 = 𝑤𝑁𝐴𝐺𝑅   𝑖𝑓   𝑙𝑁𝐴𝐺𝑅 > 0    (5) 
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𝑤 𝐴𝐺𝑅∗ = 𝑝
𝜕𝑄

𝜕𝑙𝐴𝐺𝑅 < 𝑤𝑁𝐴𝐺𝑅   𝑖𝑓   𝑙𝑁𝐴𝐺𝑅 = 0     (6) 

𝑤 𝐴𝐺𝑅∗ = 𝑝
𝜕𝑄

𝜕𝑙𝐴𝐺𝑅 > 𝑤𝑁𝐴𝐺𝑅   𝑖𝑓   𝑙𝐴𝐺𝑅 = 0     (7) 

     

𝑤 𝐴𝐺𝑅∗ is called the shadow wage or the opportunity cost of time. If the constraint on off-farm work is not 

binding then the return from farm and off-farm work should be equal to the shadow wage (equation 5). 

Otherwise, if the constraint is binding than the return from farm work can be set to the shadow wage but less 

than the off-farm wage (equation 6). Substituting the shadow wage into the budget constraint we can find the 

optimal labor supply. Farm households will develop different labor participation strategies according to their 

asset position and to the relationship between hired wage rate, off-farm market wage rate and shadow wage.  

 

However, within this empirical application is taken to be equal to the observed off-farm wage (𝑤𝑁𝐴𝐺𝑅). We 

derive the labor supply solving the maximization problem. This is reasonable provided there are no transaction 

costs (transportation etc.) involved in non-agricultural work. It follows that 𝑤 𝐴𝐺𝑅 = 𝑝𝑄(𝑙𝐴𝐺𝑅 , 𝒛, 𝐹) − 𝑝
𝑧
𝑧. 

 

Equation (8) shows the determinants of time allocation in different activities: wage levels (wAGR and wNAGR), 

capital (K), infrastructure conditions (IN), household characteristics and time. We group these determinants 

for the following empirical analysis in two broad categories: PUSH and PULL factors. 

𝑙𝑁𝐴𝐺𝑅  
𝑙𝐴𝐺𝑅 } = 𝑔 (𝑤𝑁𝐴𝐺𝑅 , 𝑤 𝐴𝐺𝑅 , 𝐾, 𝐼𝑁, 𝑍, 𝑇)     (8) 

= 𝑔 (𝑃𝑈𝑆𝐻, 𝑃𝑈𝐿𝐿) 

 

We can summarize push factors as those factors which determine the agricultural shadow wage. They come 

through the farm production function. Pull factors are those that come through the non-agricultural wage. There 

may be important costs in engaging in off-farm work, this third set may be a crucial “wedge” between the 

agricultural and non-agricultural wages. 

 

 

3.3. Empirical Strategy 

In this section, we investigate the probability that the household to participate in a non-farm enterprise 

activity focusing on whether push or pull factors predominate. Based on this first set of results, we analyze the 

impact of non-farm earnings on household wellbeing, specifically food consumption, quality of food consumed 

and agricultural technology adoption. The evidence in the current literature suggests mixed conclusions about 

how non-farm income contributes to food security and household food consumption: the nutrition impacts may 

be positive because non-farm income contributes to higher household income and better access to food, but 

could be also negative since working off-farm could reduce household food availability due to competition for 

family labor between farm and non-farm work. Moreover, non-farm income might improve agriculture 

performance providing farmers with cash to invest in agricultural inputs [Savadogoa, Reardonb and Pietolac, 

1998; Diiro and Sam, 2015; Anang, 2017]. 

 

In order to answer the first question, we analyze the main contributions to household participation in the non-

farm sector. We run a fixed effects (FE) logit regression using the longitudinal structure of the data to identify 

household and location characteristics that might determine the decision of a household to operate a non-farm 

enterprise. With a panel data structure, we can use the subjects as their own controls. We can control for stable 

characteristics that do not change over time (i.e. only the constant heterogeneity). FE models look at the 

determinants of within-subject variability: if there is no variability within a subject over time there is nothing 

to examine. Therefore, some heterogeneity still remains. 

The estimating equation is the following: 

𝑃𝑅(𝐿𝑖𝑡 = 1) =
exp (𝛼𝑖 + 𝑋1𝑖𝑡𝛽1 + 𝑋2𝑖𝑡𝛽2)

1 + exp (𝛼𝑖 + 𝑋1𝑖𝑡𝛽1 + 𝑋2𝑖𝑡𝛽2)
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𝑡 = 1,2,3         𝑖 = 1, … , 𝑁 

 

Where 𝐿 is a binary variable indicating participation in the non-farm sector, and 𝑋𝑖𝑡 is a vector of household 

and location characteristics. 𝑋1 refers to push factors (household size and dependency ratio, shocks, cultivated 

area and amount of annual precipitation) and 𝑋2 to pull factors (literacy, number of rooms and owning plough 

and mobile phone used to proxy wealth, distance to main road and market, having a bank in the community), 

𝛼𝑖 is the fixed effect. Information on wages (minimum wage in the urban center, average wage o the nearest 

cities) are often included as pertinent push-related variables. Unfortunately, the survey does not collect 

information on wages. Using wage levels derived from the data could be an additional source of endogeneity32. 

For these reasons we are unable to control for the attraction of urban wages toward rural households. The same 

reasoning applies to the decision to not include variables concerning migration behavior within the household. 

Since the direction of causality is not well defined (households can afford to send a family member away 

because already participate into non-farm activities or the opposite?). Table 2 reports averaged marginal effects 

for the entire sample and on the sub-sample of rural households. 

Table 2 Logit Regression FE: the probability of having a non-farm activity.  Averaged marginal effects 

 (1) (2) 

VARIABLES FE Logit FE Logit -Rural- 

Female HH Head .0522 .0827 

 [1.10] [1.55] 

   

Push Factors   

HH Size per AE .0186* .0221** 

 [1.84] [1.98] 

Rain during major season right amount (=1) .0211 .0166 

 [1.24] [0.91] 

Food Shock (=1) -.0007 .0093 

 [-0.04] [0.47] 

Geog Shock (=1) -.0382 -.0366 

 [-1.47] [-1.34] 

Other Shock (=1) -.1696** -.1857 

 [-1.97] [-2.11] 

Idiosyncratic Shock (=1) .0473** .0483* 

 [1.99] [1.93] 

Price Shock (=1) .0409* .0473* 

 [1.85] [1.94] 

Crop Damage (=1) .0326* .0404* 

 [1.69] [1.87] 

Log Crop Area (ha) -.0146** -.0092 

 [-2.03] [-1.34] 

Pull Factors   

HH Head age (years) -.0017 -.0025 

 [-0.88] [-1.11] 

HH Head can read (=1) .0345* .0450** 

 [1.76] [2.01] 

Bank (=1) -.0052 .0626 

 [-0.07] [0.81] 

Number of Rooms .0124   .0069 

 [1.05] [0.53] 

Plough (=1) -.0055 -.0153 

 [-0.23] [-0.59] 

Log Distance from Road .0125* .0181** 

 [1.74] [2.11] 

Log Distance from Market .0040 .0004 

 [0.46] [0.04] 

   

                                                           
32 We also try to proxy the level of development of the urban centers using national-level luminosity data for Ethiopia. 
However, given the low degree of urbanization of the country the data do not help proxy urban centers. We do not 
include results in the text. 
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2014 .2059*** .2365*** 

 [2.92] [3.10] 

2016 -.0443 -.0536 

 [-1.44] [-1.59] 

   

Observations 3,014 2,938 

Number of hh_id 1,184 1,150 

*** p<0.01, ** p<0.05, * p<0.1 

Clustered Std Errors at region level 

 

The probability that a household has a non-farm activity is positively associated with push factors as 

household size per adult equivalent (so a surplus of labor in the household) and shocks (idiosyncratic, crop 

damage and price shock) and negatively with other shocks. Focusing on the pull variables, only the literacy of 

household heads is positively and statistically significantly associated with a higher probability of doing 

business. Other variables accounting for pull factors are not significant or do not have the expected sign. This 

is the case with distance from the main road which has a statistically significant positive coefficient the reason 

could be that households face less organized competition in remote areas33.  

To understand the impact of non-farm earnings on household food consumption we now report estimates of 

a Heckman selection model following the methodology proposed by Wooldridge (1995) for panel data. As 

mentioned beforehand, the FE logit model control for the constant heterogeneity across time. This method 

allows for the possibility that explanatory variables are not strictly exogenous even after we remove the 

unobserved effect with standard FE model. In our case the choice to participate in non-farm activities. FE 

models allow the selection to be correlated with the unobserved heterogeneity returning biased estimates. We 

formulate the following model: 

𝑌𝑖𝑡
∗ = 𝑋𝑖𝑡

′ 𝛽 + µ𝑖 + 
𝑡

+ 𝜖𝑖𝑡 (1) 

𝑑𝑖𝑡
∗ = 𝑍𝑖𝑡

′ 𝛾 + 𝛼𝑖 + 
𝑡

+ 𝑖𝑡 (2) 

𝑑𝑖𝑡 = 1 𝑖𝑓 𝑑𝑖𝑡
∗ > 0 

𝑌𝑖𝑡 = 𝑌𝑖𝑡
∗𝑑𝑖𝑡 

𝑡 = 1,2,3         𝑖 = 1, … , 𝑁 

Where 𝑌𝑖𝑡
∗  and 𝑑𝑖𝑡

∗  are latent variables, a consumption indicator and a household non-farm participation 

dummy respectively; 𝑋𝑖𝑡  and 𝑍𝑖𝑡  are two sets of covariates affecting 𝑌𝑖𝑡
∗  and 𝑑𝑖𝑡

∗ . They contain both household 

characteristics, information on the experienced shocks during the year, and agricultural information. To 

introduce selection bias, we assume the errors for each equation can be decomposed into an individual effect 

(µ𝑖 and 𝛼𝑖), a time effect (
𝑡
 and 

𝑡
), an idiosyncratic effect (𝜖𝑖𝑡 and 𝑖𝑡). Each error component follows a 

normal distribution. The only further assumption we need is that 𝑍𝑖𝑡
′  should be strictly exogenous. 

                                                           
33 In Appendix I, we provide a robustness check estimating the relative contribution of the non-farm enterprise to 
household income by estimating a pooled Tobit model using as the dependent variable the share of non-farm earnings 
on the total household income, which is assumed to be a latent variable, observable only for positive outcomes. As 
before, a larger number of household members is associated with a higher share of non-agricultural income. 
Furthermore, the share is positively associated with non-food expenditure quartile and again the distance from the 
main road and market. In Appendix II, we provide further results on the probability for households to engage across 
different sectors. We restrict the sample to those households having some non-farm activity. We run six separate pooled 
logit regressions using as dependent variable a dummy indicating six different sectors of activity (agriculture, buying 
and selling, manufacturing, transport, hotel and restaurants and other). As expected, regressions results show 
heterogeneity amongst sectors of activity. Female household head are less likely to have a non-farm activity in the 
agricultural, transport and other sector, while they have a positive probability to be in the manufacturing sector. A larger 
number of household members is more likely to affect the starting of an activity such as a restaurant or a hotel. 
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Wooldridge (1995) outlines a number of estimating procedures for equation (1) where the underlying model 

has a FE structure. For each time period t we estimate a cross-sectional probit regression of equation (2) using 

𝑍𝑖 as set of covariates. Then we compute for each regression the Inverse Mills Ratio (IMR)34 that we include 

in the final estimation of 𝑌𝑖𝑡
∗ . This procedure allows us to remove the constant heterogeneity in food 

consumption indicators, and agricultural technologies variables, and also to take into account the endogeneity 

of households to participate in the non-farm sector into the estimating equation.  

For the estimation of the IMRs, the selection model includes the same set of covariates used to estimate the 

FE logit specification. Overall, the IMRs are statistically significant and we reject they are simultaneously 

equal to zero performing a Wald-test. The combined statistical significance and the rejection of the null 

hypothesis of these coefficients suggest that the selection model is well identified and should be no noise 

disturbing the output of the consequent empirical analysis. Table 3 shows results for FE models with IMRs for 

each cross-sectional probit estimated for 2012, 2014 and 2016 rounds35. We use as dependent variables the 

FCS (not reported because we fail to reject that IMRs =0), HDD score (column 1) and the total calories 

consumed by households during the year (column 2). For each regression performed on the mentioned 

dependent variables, we estimated the models restricting the sample to those households participating in the 

non-farm sector (𝑑𝑖𝑡 = 1). In this way we are estimating the relationship between food consumption indicator 

and the push/pull factors for household who diversify their income correcting for the probability for households 

to be engaged in activity outside the farm. 

The coefficients maintain the same sign and similar magnitude across column one and two of table 3. On 

average, push factor variables such as share of adult in the household, quantity of livestock owned and 

precipitation positively affect nutritional status of households engaged in the non-farm sector. Again, the 

results confirm once again the strict relationship between non-farm sector activities and agricultural 

performance. The larger the household size and consequently the number of active members within the family 

working in non-farm activities the higher the possibility to consume a more diverse diet. On the other hand, 

the pull factor coefficients show mixed signs: household head age and the average educational attainment in 

the household negatively affect either the HDD score and total calories consumed. While, literacy level of the 

household head and the distance from the market are positively associated with the independent variables. 

Therefore, education level seems not to be necessary in order to aspire to more remunerative jobs in the non-

farm sector allowing to increase the food consumption within the household. Against our expectations, the 

distance from the market positively affect the food consumption. A possible explanation could be that a great 

component of non-farm activities is still related to the agricultural sector. Such activities concentrate in the 

food-processing industries and some basic activities linked to clothing apparel for example. Also, the distance 

from the market may be related to have less competition with other activities in the urban areas. 

Table 3 FE models with IMR: Food Diversity and Food Consumption Variables. Regressions performed on the sub-sample of 
households with some enterprise activity (𝑑𝑖𝑡 = 1)  

 (1) (2) 

VARIABLES FE- HDD Score 

(𝑑𝑖𝑡 = 1) 

FE- Log Tot 

Calories (year) 

(𝑑𝑖𝑡 = 1) 

Inverse Mills 

Ratios 

  

IMR 2012 0.660* 0.513 

 [1.933] [0.759] 

IMR 2014 1.044*** 3.959*** 

 [4.214] [8.072] 

                                                           
34 The IMR=

(𝑍𝑖
′𝛾)

(𝑍𝑖
′𝛾)

, where (. ) and (. ) denote the probability density and cumulative distribution functions of the 

standard normal distribution. 
35 We do not report results for these regression models: we use the same set of covariates used for the FE logit 
regression shown in table 2 
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IMR 2016 -0.409 -0.379 

 [-1.410] [-0.660] 

   

Female HH Head 0.0273 -1.121** 

 [0.102] [-2.118] 

Push Factors   

Share of Adult 0.640*** 1.796*** 

 [2.971] [4.214] 

Rain during 

major season 

right amount 

(=1) 

0.103 0.477*** 

 [1.344] [3.139] 

Log Cultivated 

Area (ha) 

0.0241 0.0569 

 [0.768] [0.919] 

Quantity of 

Livestock (n) 

0.0116*** 0.0445*** 

 [4.766] [9.273] 

   

Pull Factors   

HH Head Age 

(years) 

-0.0360*** -0.102*** 

 [-4.295] [-6.161] 

HH Head can 

read (=1) 

0.134* 0.122 

 [1.877] [0.867] 

Avg HH Edu Year -0.0423 -0.184*** 

 [-1.626] [-3.561] 

Log Distance 

Market (km) 

0.226*** 0.910*** 

 [5.098] [10.39] 

   

Constant 1.388** 15.63*** 

 [2.488] [14.16] 

   

Observations 2,100 2,096 

R-squared 0.419 0.668 

Number of hh_id 1,638 1,634 
Wald-Test*   
F F(  3,   450) =    

9.09 

F(  3,   450) =   

24.84 
Prob>F 0.0000 0.0000 

*** p<0.01, ** p<0.05, * p<0.1 
*Wald-test is used in order to test restrictions 𝐼𝑀𝑅𝑡 = 0  

In Table 4 we present results for agricultural technology adoption after correcting for the probabilities of 

households to engage in non-farm activities for each round. We follow the same strategy implemented for 

studying food security. Again, we use similar set of covariates we used for nutritional status. Regarding push 

factors we again controlled for the household size and variables connected to the agricultural performance. 

Turning to pull factors we use variables to account the human capital level of the household, distance from the 

road and variables to proxy the level of wealth of the households. We estimated the regressions using as 

dependent variables the quantity of inorganic fertilizer used on the plot and the quantity of seeds. However, 

participating in non-farm activities does not have an impact on the quantity of inorganic fertilizers used, we 

also to fail to reject that IMRs =0, for this reason we do not the results for this specification. In column one we 

report results for log quantity of seeds used per hectare. 

After controlling for the probability of being in the non-farm sector, having a female household head is 

associated with a higher quantity of seeds used. Looking at push factors, having larger households and having 

experienced a crop damage during the last year affect positively the quantity of seeds used. Concerning pull 



80 
 

factors, households engaging in the non-farm sector use more seeds in the presence of a bank in the community 

and less the farthest they are from the main road.  

Table 4 FE models with IMR: Agricultural Technology Adoption. Regressions performed on the sub-sample of households with some 
enterprise activity (𝑑𝑖𝑡 = 1) 

 (1) 

VARIABLES FE- Log Q Used Seeds (kg) (𝑑𝑖𝑡 = 1) 

Inverse Mills Ratios  

IMR 2012 1.628*** 

 [2.756] 

IMR 2014 -2.186*** 

 [-2.698] 

IMR 2016 0.230 

 [0.416] 

  

Female HH Head 1.098** 

 [2.185] 

  

Push Factors  

HH Size per AE 0.232** 

 [2.056] 

Rain during major season right amount (=1) -0.0709 

 [-0.418] 

Geo Shock -0.773*** 

 [-3.041] 

Crop Damage (=1) 0.288* 

 [1.687] 

  

Pull Factors  

HH Head Age (years) 0.0105 

 [0.592] 

HH Head can read (=1) 0.201 

 [1.299] 

Bank (=1) 1.243** 

 [2.171] 

Log Distance Road (km) -0.191** 

 [-2.359] 

Log Distance Pop Center 0.0938 

 [1.004] 

Number of Rooms 0.0779 

 [0.687] 

Mobile Phone (=1) 0.175 

 [0.882] 

Constant 0.138 

 [0.0947] 

  

Observations 2,392 

R-squared 0.090 

Number of hh_id 1,898 

*Wald-Test  
F F(  3,   479) =    5.30 
Prob>F 0.0013 

*** p<0.01, ** p<0.05, * p<0.1 
*Wald-test is used in order to test restrictions 𝐼𝑀𝑅𝑡 = 0  

Concluding, we wanted to assess using econometric tools whether the households were `pushed’ or `pulled’ 

in the non-farm sector. Descriptive statistics in the previous chapter showed that on average households are 

pushed to quit agriculture to compensate for experienced shocks and lower level of wellbeing. However, 

household can be categorized mainly in three categories depending which variables affect more their decision 

to engage in the non-farm sector. Using FE logit regressions, we confirm the results we obtained in the previous 

chapter: households tend to participate in non-farm activities because of push factors. Therefore, we can 

assume that households that quit agriculture remain strongly linked to it. This could be likely related to the 

lack of opportunities outside agriculture typical of SSA countries, lack of accumulation of human capital and 

other barriers to engage in this kind of activities [McCullough, 2017]. However, FE logit specification may 
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still have some selection bias threating the reliability of our estimates. For this reason, we complement the 

empirical strategy with Heckman correction model using the strategy proposed by Wooldridge. In this way we 

can estimate the relationship between household nutritional status and input adoption for those households 

engaging in activities off-farm correcting for the section bias. Results also in this case confirm that push factors 

tend to prevail compared to pull factors variables confirming that households likely because of adverse events 

experienced on farm refugee in low remunerative activities off-farm. 

 

3.4 Conclusions 

In this chapter we have addressed mainly two questions: first, what is the motivation for households to 

participate in the rural non-farm sector, and specifically if this participation was the results of `push’ or `pull’ 

factors; and second, what is the impact of this participation on household wellbeing outcomes such as food 

consumption frequency, number of calories consumed and the adoption of agricultural technology.  

The reduction of rural poverty in Africa in the next 50 years depends on achieving major increases in 

production and labor productivity. The bulk of interventions aimed at the alleviation of rural poverty alleviation 

focus on smallholder agricultural activity, but reductions in rural poverty may depend more on what happens 

off-farm than on-farm. Specifically for African countries, with strong population growth and increasingly 

limited agricultural resources. There is a lack of policy strategy to promote a less vulnerable non-farm sector 

and formalization of the off-farm economy. 

The image presented by longitudinal LSMS-ISA data for Ethiopia depicts a familiar pattern for SSA 

countries: a large proportion of rural enterprises mainly operate for only a few months each year mainly during 

the dry and minor crop seasons. Female-headed households are more likely to start a non-farm enterprise 

because of cultural segregation by gender of agricultural activity and the social stigma associated with single 

women operating as independent farmers in Ethiopia. Non-farm activities represent the primary source of 

income for women in rural areas, but the size of these activities is smaller compared to male-owned ones. 

Moreover, push factors (shocks, annual precipitation, and surplus of household labor) play a greater role in 

determining participation in the non-farm sector compared to pull factors. Furthermore, the greatest constraints 

preventing the growth of non-farm enterprises are represented by access to the market, and low demand for 

goods. In addition, the cluster analysis confirm that the group of non-farm activities led by women represents 

one of the most marginalized share of households.  

Results for push/pull factors are predominantly negative in relation to the possibility of non-farm 

employment acting as an engine of productivity growth by attracting workers off the land. Regarding the 

impacts of non-farm enterprise activities on household wellbeing, we found a positive effect on household 

food security and adoption of seeds on farm. The joint use of cluster analysis to identify and target the needs 

of different portion of households and econometric analysis exploiting longitudinal data may help shed light 

on the motivation and the impact of income diversification. 

These findings finally allow us to draw some modest policy suggestions. Although the constraints faced by 

rural non-farm activities in Ethiopia are heterogeneous, investment in local infrastructure in rural areas will 

support the performance of both farm and off-farm business. Another way to add value to agricultural products 

is by strengthening the linkages between agriculture and non-agricultural sectors, like for instance the 

manufacturing sector, supporting the creation of ad hoc agro-processing industries to fill the gap of the 

“missing middle”. The manufacturing sector is SSA and Ethiopia is mainly constituted by small food 

processing enterprises that mostly operate informally. Processing food industries represent a great opportunity 

of economic development for Ethiopia for several reasons among which to reduce the post-harvest losses and 

meet the demand of foods coming from urban centers. However, as suggested by econometric results the 

policies’ effectiveness is conditional on the proper development of the country fundamentals. These 

fundamentals embed the adequate development of infrastructure, markets, and credit institutions. Households 
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are not likely to increase the share of hours in modern sectors of the economy if they are confined in remote 

areas. 

The failure of other types of industrial policies in SSA has been largely documented by the literature, since 

they have been normally adopted in the past without being tailored to local economic and political conditions 

(Mbate, 2016). As a result, most policies turned out to be ineffective as they are not context-specific and do 

not take into account a country's endowments of resources and initial conditions. 

Finally, policies seeking to address poverty should consider the potential contribution of non-farm enterprises 

on household wellbeing. Without policy strategies aimed to promote business opportunities in the short run, it 

is difficult to hopeful that off-farm employment will generate major on-farm productivity improvements in 

Ethiopia.  
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-APPENDIX I 

The relative contribution of the non-farm enterprise to household income: we estimate a pooled Tobit model 

for the share of income derived from non-farm enterprise activity: 

𝑆𝑁𝐹
∗ =  𝛼0 + 𝛼1𝑋𝑖𝑡 + 𝜖𝑖 𝑖𝑓 𝛼1𝑋𝑖𝑡 + 𝜖𝑖 > 0 

𝑆𝑁𝐹
∗ = 0 𝑖𝑓 𝛼1𝑋𝑖𝑡 + 𝜖𝑖 ≤ 0  

𝑆𝑁𝐹
∗  is latent variable observed for positive income share. While, 𝑋𝑖𝑡 is a vector of variables including `push’ 

(household size per adult equivalent, dependency ratio, annual precipitation) and `pull’ factors (literacy of 

household head, number of rooms in the dwelling as proxy for wealth, and dummy for non-food expenditure 

quartile, having a bank in the community, distance from road, main center and market) and land holding and 

agricultural asset. 

Table 1 Pooled Tobit Regressions: Share of Non-farm income and Share of Non-agricultural wage 

 (1) (5) 

VARIABLES Tobit -Rural- Sh 

Non-farm Inc 

Tobit -Rural- Sh 

Non-Agr Wage 

Female HH Head 0.00846 -0.0261 

 [0.288] [-1.265] 

Push Factors    

Dep Ratio -0.0238 0.0237** 

 [-1.513] [2.011] 

Log HH Size per AE 0.0866*** -0.0151 

 [2.999] [-0.730] 

Right amount rain during 

major season (=1) 

-0.0365 -0.0278* 

 [-1.612] [-1.733] 

Log Cultivated Area (ha) -0.00732 -0.00857* 

 [-1.075] [-1.770] 

Pull Factors   

HH Head age (years) -0.00348*** -0.000680 

 [-4.144] [-1.056] 

Edu HH Head (years) 0.00106 -4.55e-05 

 [0.281] [-0.0184] 

Bank (=1) 0.0880 0.0490 

 [0.817] [0.602] 

2nd exp quartile 0.0894*** -0.0265 

 [2.887] [-1.185] 

3rd exp quartile 0.111*** -0.0728*** 

 [3.466] [-3.175] 

Top exp quartile 0.187*** -0.0516** 

 [5.148] [-1.985] 

Number of Rooms -0.00928 -0.0217** 

 [-0.795] [-2.380] 

Plough (=1) -0.173*** 0.0280* 

 [-7.070] [1.657] 

Log Distance Road (km) 0.0163* -0.00312 

 [1.883] [-0.514] 

Log Distance Market (km) 0.0303** 0.0189** 

 [2.332] [2.077] 

Log Distance Pop Center (km) -0.0417*** -0.0166 

 [-2.967] [-1.623] 

   

2014 0.283*** -0.0607*** 

 [11.26] [-3.463] 

2016 -0.0853** 0.0972*** 

 [-2.055] [3.560] 

Constant -0.238** 0.647*** 

 [-2.089] [7.950] 

   

Observations 6,020 1,857 

*** p<0.01, ** p<0.05, * p<0.1 
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-APPENDIX II 

Table 5 Marginal Logit Regressions: Enterprise Sectors 

 (1) (2) (3) (4) (5) (6) 

VARIABLES Marginal 

Logit -

AGRI- 

Marginal 

Logit -

BUYING- 

Marginal Logit -

MANUFACT- 

Marginal 

Logit -

TRANSP- 

Marginal 

Logit -HOT 

& REST- 

Marginal 

Logit -

OTHERS- 

Rural area (=1) 0.427 0.211 -0.463** 0.0140 -0.957** 1.344*** 

 [0.973] [1.601] [-1.973] [0.0839] [-2.497] [3.632] 

Female HH Head -0.430* -0.0243 0.277* -0.413*** 0.133 -0.603* 

 [-1.702] [-0.304] [1.752] [-2.844] [0.355] [-1.871] 

HH Head Age 

(years) 

-0.00102 0.00114 0.00567 -0.000577 -0.0175*** -0.00376 

 [-0.123] [0.394] [1.524] [-0.212] [-4.131] [-0.604] 

HH Head can read 

(=1) 

-0.124 0.0396 -0.0351 -0.0448 -0.0536 0.00221 

 [-1.343] [0.735] [-0.470] [-0.491] [-0.586] [0.0110] 

HH Size per Ae -0.0159 -0.00100 0.00271 0.0170 0.0619** -0.100*** 

 [-0.706] [-0.0534] [0.0734] [0.496] [2.275] [-3.279] 

Bank (=1) 0.106 0.272 -0.410 0.0402 -0.290 -0.100 

 [0.218] [1.530] [-1.241] [0.259] [-0.508] [-0.169] 

Log Distance from 

Road (km) 

0.00269 -0.00737 0.0472 -0.0176 -0.0732 0.0971*** 

 [0.0381] [-0.214] [1.338] [-0.485] [-0.728] [3.002] 

Log Distance 

Populated Center 

-0.0939 -0.0379 0.0909** -0.0376 0.159 -0.00129 

 [-0.930] [-0.741] [2.034] [-0.740] [1.450] [-0.0190] 

Rain during major 

season right 

amount (=1) 

-0.119 -0.126* 0.166** 0.0636 0.382 -0.265 

 [-0.956] [-1.794] [2.088] [0.681] [1.276] [-0.698] 

Food Shock (=1) -0.445** 0.122 0.0494 0.0812 -0.0838 0.0606 

 [-2.293] [1.163] [0.359] [1.003] [-0.526] [0.494] 

Geog Shock (=1) 0.429** -0.133 -0.0607 0.0634 -0.150 -0.261 

 [2.486] [-1.138] [-0.631] [0.911] [-0.501] [-1.045] 

Other Shock (=1) -0.333 0.191 -0.206 -0.0422 -0.330 0.184 

 [-0.880] [0.980] [-0.969] [-0.172] [-0.427] [0.379] 

Idiosyncratic 

Shock (=1) 

-0.0311 0.121* -0.0843 -0.0262 -0.0486 -0.00597 

 [-0.312] [1.823] [-0.670] [-0.289] [-0.204] [-0.0484] 

Price Shock (=1) 0.162 0.121 -0.0921 0.00810 -0.488** -0.359* 

 [1.100] [1.317] [-0.999] [0.0817] [-1.981] [-1.848] 

Crop Damage (=1) 0.203 -0.0841* -0.105* 0.0282 0.122 0.0603 

 [1.581] [-1.649] [-1.846] [0.318] [0.944] [0.249] 

Number of Rooms  -0.162 -0.0119 0.00980 0.0569 -0.125 0.0860** 

 [-1.514] [-0.366] [0.184] [0.907] [-1.616] [2.296] 

Cellphone (=1) -0.0255 0.106* -0.427*** -0.0373 -0.0986 0.211 

 [-0.184] [1.846] [-6.747] [-0.517] [-0.525] [1.123] 

2012 0.814** -0.176 -0.292 0.464*** 0.608* -1.297*** 

 [2.208] [-1.015] [-1.315] [2.601] [1.652] [-4.090] 

2014 1.369*** -0.360* 0.363** 0.280 -0.274 -0.863*** 

 [3.463] [-1.883] [2.385] [1.187] [-0.512] [-3.142] 

Constant -2.847*** -0.166 -2.334*** -1.763*** -3.162*** -3.527*** 

 [-3.563] [-0.269] [-3.492] [-4.400] [-4.437] [-3.234] 

       

Observations 5,204 5,204 5,204 5,204 5,204 5,204 

Predict (margin at 

median level) 

.9354*** .6120*** .8394*** .8409*** .9727*** .9525*** 

       

*** p<0.01, ** p<0.05, * p<0.1 

Clustered Std Errors at woreda level 

Base category not shown 
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CONCLUSIONS 

 

This thesis contributes to the current literature of development economics responding two main connected 

research questions:  

1) to what extent non-cognitive skills affect productive and allocative efficiency in rural Ethiopia;  

2) what are the main drivers for Ethiopian households’ income diversification into the non-farm 

entrepreneurship sector.  

The human capital literature has expanded over the past two decades to account for all those traits concerning 

the sphere of emotions and personality traits which could possibly explain deviations in decision-making 

process. We want to contribute to the recent extension of the behavioral approach in developing countries 

analyzing the impact of personality traits on agricultural performance. This perspective is still largely 

unexplored by the recent literature. However, even though agriculture plays a crucial role in many SSA 

countries we are aware that the economic development does not depend uniquely on what happens on the farm 

but also off-farm. SSA’s population is still growing rapidly (2.8%) its population is expected to double to two 

billion people by 2050 [UNDESA, 2015]. This underlines the compelling need to create sufficient jobs for 

Africa’s bulging youth population. Our analysis focuses on Ethiopia which well represents the economic 

prospects that SSA countries are facing. To respond these two questions, we use data collected with two 

national representative households’ surveys: 

- a cross-sectional dataset for 501 rural households collected in 2012 by the University of Addis 

Ababa in collaboration with CEIS of the University of TorVergata and financed by FAO;  

- and the LSMS-ISA longitudinal dataset which comprises 2012, 2014 and 2016 rounds. 

Ethiopia’s economic performance of the last two decades was characterized by strong growth. The expansion 

of services and the agricultural sector account for most of this growth while manufacturing performance was 

relatively modest. Ethiopia is among those countries that have made the greatest progress toward achieving 

the Millennium Development Goals but still remain one of the world’s poorest countries. The government is 

currently implementing the second phase of its Growth and Transformation Plan (GTP II). The plan aims to 

continue improvements in physical infrastructure and reaching a lower-middle income status by 2025. 

Agriculture is the major employer and is mainly characterized by subsistence farming. However, significant 

progress in job creation off-farm has started to be implemented [WB Country Overview, 2017]. 

We report key results obtained for each research question: 

1. Emotional factors could affect decision-making, which is the role of non-cognitive skills in affecting 

productive and allocative efficiency in rural Ethiopia? 

- This work represents one of the first attempt to introduce in a systematic way the non-cognitive skills’ 

impacts on agricultural production and input adoption in a rural context in a developing country.  
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- Usually the other behavioral empirical applications use only constructs from one psychometric test are 

used, on the other hand we complement the BFI measures with the ER constructs to account for possible 

short-term deviations from the habitual individual behavior. In fact, an external stimuli may generate a 

reaction in the individual driven by the emotivity causing to `act out of character’. 

- The structure of the survey allows us to use a detailed set of household and indivual characteristics to 

link to the personality traits measures we collect at the individual level. 

- There is a contribution of non-cognitive skills in explaining agricultural productivity statistically 

confirmed by tests. Omitting these variables in the estimation of the production function could lead to 

overestimation of certain variables (input coefficients).  

- Organizational skills, reliability, a strong capacity to “suppress” external emotional stimulus, and a high 

level of anxiety all appear to be yield-enhancing psychological characteristics. The results for the 

neuroticism measure merit comment. It is possible that a degree of `psychological pressure’ is required 

to successfully perform agricultural tasks but that too much anxiety results in insecurity which depresses 

yields. Thi is consistent the the context of Ethiopian farming system characterized by shocks and the 

dependence on precipitation. On the other hand, a high degree of enthusiasm for new intellectual 

experiences is negatively related with yield. Intellectual curiosity may not be essential to succeed on 

farm activities. 

- Non-cognitive skills affect input adoption decisions: higher BFI and ER scores increase the probability 

to use fertilizers and seeds. Holding all other variables constant at the sample mean ER measure better 

identify individuals most likely to adopt and disseminate new technologies. Again, higher scores in 

suppression trait has a positive effect on increasing input usage on farm.  

- We can conclude that on average the choice to adopt fertilizers and seeds on farm is the emotional 

response to an external shock such unfavorable wheather conditions. For example, consider the 

implications of an adverse event such as a drought. First of all, this is likely to cause a decreae in the 

agricultural income which can affect life satisfaction in the short-term. For this reason farmers may 

respond to this negative event increasing the quantities of inputs used on the plot. However, on the long-

term farmers with strong  degree of consciousness and willingness to work for long term goals may 

overcome such temporary shock. This is confirmed by our results for the production function 

estimation, where on average BFI measures have a statistically significant impact on yield. 

- Controlling for non-cognitive skills enable us to validate the Zellner et al. (1966) use of the OLS to 

estimate the production function within a recursive structure in which the errors on the input equations 

are uncorrelated with those of the production function. 

- The small dimension of the sample and some descriptive statistics suggest a possible selection bias. The 

main consequence is that the sample is not national representative of the entire Ethiopia. Also, as stated 

in the literature psychometric tests performed in developing countries suffer from measurement errors 

the may cause a low reliability of the constructs. The measures we use are very near the threshold for 

good reliability, and we try to compensate analyzing in detail the relationship of these measures with 

other household and individual characteristics. 

 

Viewed in this light, personality traits become a valuable analytical device for boosting agricultural 

productivity through inputs adoption. Non-cognitive skills can help answer why entrepreneurship appears to 

be limited in poor countries and help identifies what can be done to stimulate greater agricultural activity. 

Behavioral variables may affect both yields directly and indirectly through input use.  

Policies directed towards increasing the supply of fertilizers and seeds may not lead to the expected results 

if non-rational perceptions of investment are not considered. Moreover, these results can be useful for 

discussing the literature about poverty and the approaches to the problem. Even though governments lack the 

prerogative to alter personality traits, however, it could encourage early childhood development interventions 

that aim to support the development of non-cognitive skills. Even with small interventions during the adult age 

can be reached great improvements in behavior patterns (such showing documentaries on successful 

smallholders). 

To derive more conclusive policy implications could be arduous given the small sample size and the 

possibility of selection bias joint with the threat of measurement errors in the variables we used. However, the 
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results we obtain can be useful to be extended to include in a more systematic way the behavioral variables 

into the estimation of productivity on farm in developing countries. The results we obtained -given all the 

limitations we face- prove the statistical validity of using such variables into the econometric analysis. A 

further extension of this work could include a longitudinal panel survey to track households in time. With a 

panel structure it could be possible to control at least for the endogeneity of the inputs in the estimation of the 

production function and for the time-constant household heterogeneity. Furthermore, it could be useful to 

submit psychometric tests in different points time. We know that non-cognitive skills -as any other skills- are 

not fixed in time. However, a large component is also genetically inherited. Observing whether personality 

traits change over time will help the debate on how much they are time variant during a life-time span. Also, 

should be considered the methodology proposed by Laajaj and Macours (2017) in order to control for the 

mismeasurements of the non-cognitive skills and improve the quality of such measures. A series of 

`experiments’ may complement the survey collection.  

 

 

2. What are the determinants of Ethiopian households’ diversification into non-farm activities? Are 

households pushed/pulled into these activities? 

- Descriptive statistics show that on average households are pushed to quit agriculture to compensate for 

experienced shocks and lower level of wellbeing. However, household can be categorized mainly in 

three categories depending which variables affect more their decision to engage in the non-farm sector. 

- Non-farm push factors (shocks, annual precipitation, household size) play a greater role in determining 

participation in the non-farm sector. 

- Cluster analysis results are negative in relation to the possibility of non-farm employment acting as an 

engine of productivity growth by attracting workers off the land. In fact, a large proportion of rural 

enterprises mainly operate for only a few months each year mainly during the dry and minor crop 

seasons 

- Regarding the impacts of non-farm enterprise activities on household wellbeing, we found a positive 

effect on household food security and input adoption confirming that households are pushed into these 

activities because the neeed to overcome adverse events of farm. Therefore, we can assume that 

households that quit agriculture remain strongly linked to it. This could be likely related to the lack of 

opportunities outside agriculture typical of SSA countries, lack of accumulation of human capital and 

other barriers to engage in this kind of activities 

- Without policy strategies aimed to promote business opportunities in the short run (such as investments 

in the local infrastructure), it is difficult that off-farm employment will generate major on-farm 

productivity improvements in Ethiopia 

These findings finally allow us to draw some modest policy suggestions. Although the constraints faced by 

rural non-farm activities in Ethiopia are heterogeneous, investment in local infrastructure in rural areas will 

support the performance of both farm and off-farm business. Second, policies seeking to address poverty 

should consider the potential contribution of non-farm enterprises on household wellbeing. Without policy 

strategies aimed to promote business opportunities in the short run, it is difficult to hopeful that off-farm 

employment will generate major on-farm productivity improvements in Ethiopia. Such business opportunities 

include the developing of the agro-prociessing food industries which represent a great opportunity of economic 

development for Ethiopia to fill the ``missing middle’’. Even though Ethiopia experienced strong urbanization 

during the last years, the phenomen of the so called ``consumption cities’’ observed in Ghana is tangible. This 

phenomenon occurs when urbanization occurred without structural transformation towards manufacturing 

leading to create urban centre services-based and whose demand for goods is spread toward non-food products 

[see Jedwab, 201236]. However, it was extensively documented in the literature the failure of some industrial 

policies in SSA that were adopted without being tailored to local economic and political conditions. Most of 

                                                           
36 Jedwab, R., and Osei, R. D. (2012). Structural Change in Ghana 1960-2010. Institute for International Economic Policy 
Working Paper. Washington, DC: Institute for International Economic Policy, George Washington University. 
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them turned out to be ineffective. In this sense, Ethiopia should careful promote business opportunities in rural 

areas in order to avoid prevent such failure. 

 

 

 


