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CHAPTER 1 

1. INTRODUCTION 
The topic of my Ph.D. thesis spans different disciplines, as it is in the fields of 

behavioral game theory, experimental economics, and agent-based modeling. 

Specifically, my research addresses issues of learning in repeated games and 

generalization i.e., how human beings generalize and apply their acquired strategic 

skills to new strategic situations, and it heavily relies on and makes use of the tools of 

computational social sciences. 

This work provides further evidence that insights from psychology and 

neuroscience can be successfully used to design agent-based models that help improve 

understanding of human decision-making processes and that these models can far 

outperform (neoclassical) standard economic theory in describing and predicting 

human choice behavior. 

The aim of my Ph.D. thesis is to advance understanding of human choice behavior 

in repeated strategic interactions. This is potentially important, since it would help 

explain empirical phenomena that cannot be accounted for by standard economic 

theory, such as overbidding in auctions and overtrading in financial markets (Selten, 

Abbink, and Cox, 2005). A further confirmation of the relevance of this topic comes 

from Erev and Haruvy (2005:359): “[it] is our conviction that some of the most 

promising directions for learning research lie in the investigation of “small” repeated 

decisions that are made with little information and little deliberation”, and “Though 

small decisions are of small consequence to the individual making them, they are 

potentially of tremendous importance to firms and society”. In economics, interactive 

strategic situations are commonly modeled as games, in which the gain (or payoff) of 

an agent (or player) depends upon its own choice and the choices of the other players. 

All throughout my thesis I devote my attention to a particular class of games i.e., the 

class of two-person 2x2, completely mixed1 games. This choice is coherent with an 

established paradigm of analysis in the behavioral and experimental economics fields, 

and is not only necessary to disentangle the effects of reciprocation and adaptation 

                                                 
1 With completely mixed games I mean here games with a unique equilibrium in mixed 
strategies (MSE). In the remainder, I will use interchangeably these two terms. 
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processes (Erev and Roth, 1998), but also particularly interesting for reasons explained 

below. 

This project is well divided into three, recognizably distinct parts (addressed in 

Chapters 2-4, respectively) that constitute a wider, unitary, and coherent research 

project on how past experience affects current behavior in interactive decision tasks, as 

well as the formal modeling of this behavioral process. Section 1 offers an overview of 

the main argument by providing a brief summary of each part. In Section 2, I illustrate 

the motivations for which the topic of learning in repeated games is important and, 

specifically, why repeated games with a unique equilibrium in mixed strategies are 

noteworthy. Section 3 reviews the most important models of learning proposed in the 

behavioral game theory and experimental economics literature. Section 4 provides a 

background for the role of regret in models and theories of choice behavior. Section 5 

illustrates some of the most popular concepts of equilibrium, alternative to the theory 

proposed by Nash (1950) and based on very different assumptions. These stationary 

concepts can be grouped into two main classes: best-response and behavioral models. 

Section 6 introduces the concepts of similarity, categorization, and generalization, 

reviewing some of the most important contributions on these topics in the field of 

cognitive psychology. Section 7 provides a short introduction to neural networks and 

their important properties as models of information categorization and generalization. 

Finally, a section on methodological issues related to model comparison and selection 

criteria concludes. 

 

1.1  Overview of the Thesis 
1.1.1 Part One (Chapter 2) 

This part of my thesis deals with interactive learning in repeated decision tasks. In a 

paper coauthored with Professor Massimo Warglien (Marchiori and Warglien, 2008), I 

propose a new model of learning, the Perceptron-based (PB) model, which embeds the 

basic principles of Learning Direction Theory (Selten and Stoecker, 1986) and 

translates them into a neural network model. 

The basic assumption of the PB model is that learning is driven by an ex-post 

rationalizing process: individuals modify their behavior by looking backward to what 

might have been their best moves, once they know others’ moves; then, they adjust in 

the direction of such ex-post best response, and it is assumed that the intensity of such 
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directional change is proportional to a measure of regret i.e., how much they have 

missed by not making this move. This is coherent with recent neuroscience research on 

individual decision making, according to which regret affects learning, and both neuro-

physiological and behavioral responses to the experience of regret are correlated to its 

magnitude (Coricelli et al., 2005 and Daw et al., 2006). 

Further extending and improving the methodology adopted by Marchiori and 

Warglien (2008), I test the PB model on a set of 35 different datasets drawn from 

different experiments on games with unique equilibria in mixed strategies in which the 

participants received a complete description of the payoff matrix and of their 

opponents’ choices. In addition, I compare the performance of the PB model with those 

of other six popular models of learning in the behavioral game theory literature. As a 

result, the PB model outperforms in accuracy Nash equilibrium and all other models of 

learning, with the exception of a model (Normalized Fictitious Play proposed by Ert 

and Erev, 2007) similarly based on regret. 

 

1.1.2 Part Two (Chapter 3) 

In the second part of my thesis I propose and analyze the formal properties and the 

predictive power of a new concept of equilibrium I call Net Reward Attractions (NRA) 

Equilibrium. 

The NRA Equilibrium is a stationary concept designed for strategic form games 

and is based on behavioral assumptions about human choice behavior, rather than on 

the principle of full rationality. It is assumed that, in equilibrium, agents are not 

expected utility maximizers, but that, for a player, the propensity of choosing an action 

is proportional to its corresponding expected net reward – net reward being defined as 

the difference between the actual payoff and the minimum obtainable one, given other 

players’ moves. I simply assume here that players are attracted by actions, and that this 

attraction can be quantified in terms of how much, on average, an action is perceived as 

better than the others. I propose also a parameterized version of NRA I call Parametric 

NRA (pNRA), obtained by introducing a parameter 

€ 

λ > 0, which tunes players’ 

sensitivity to expected net rewards. 

The concept of net reward, as introduced here, is very similar to Loomes and 

Sugden’s (1982) concept of rejoicing i.e., a measure of the additional pleasure 

associated to the awareness of having chosen the best action. In this vein, the approach 

based on net rewards, which I adopt to model choice behavior in the long run, is 
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complementary, although not equivalent (as I show in Chapter 3), to that based on 

regret. In Loomes and Sugden’s (1982) regret theory, these two complementary aspects 

are fused together in the Rejoice/Regret function (see Section 4.2 of Introduction), and 

I show in Chapters 2 and 3 of my thesis that these two components can be separately 

used to successfully design models of choice behavior. 

The intuition at the basis of the NRA model, that relative rewards are what matters 

in determining choice behavior rather than absolute payoffs, is coherent with recent 

neuroeconomic research (Tremblay and Schultz, 1999; Tobler, Fiorillo, and Schultz, 

2005; Daw et al., 2006). 

In part two of my thesis, I test the predictive accuracy of the NRA equilibrium on 

data from experiments on 26 repeated, completely mixed games run under full-

feedback condition. In addition, I compare NRA’s predictive power with that of other 

five equilibrium concepts and eight models of learning, representing cutting-edge 

research on interactive decision making modeling. As a result, NRA turns out to be 

always among the best predictors of empirical data, performing significantly better than 

Nash equilibrium, self-tuning EWA, and reinforcement-based models. 

 

1.1.3 Part Three (Chapter 4) 

The third part of my thesis stands as a first attempt to investigate how do human 

subjects generalize their past experience when facing new strategic situations i.e., it 

addresses issues of conditional behavior and generalization. 

With generalization I mean here the set of cognitive mechanisms and rules 

according to which subjects extract from past experience some general knowledge to 

deal with new, never encountered strategic situations. Issues of generalization and 

conditional behavior (different responses to different inputs) are relevant because most 

human interactive learning happens in contexts where tasks do not repeat themselves 

identically over time, contrary to the typical patterns of interaction that have been 

empirically studied until now. Generalizing from examples and learning of conditional 

behavior are natural features of human behavior. 

I designed and ran some preliminary multi-game experiments in which subjects 

played sequences of different two-person 2x2 games with a unique equilibrium in 

mixed strategies. Each game in a sequence was obtained multiplying by a randomly 

drawn positive constant the payoffs of two completely mixed games. 
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I use my experimental data to test the predictive power of the Perceptron-Based 

(PB) model and compare it with that of other popular learning and equilibrium models 

of interactive choice behavior. It is worth noting here that conventional “attractions and 

stochastic choice rule” models of economic learning cannot capture such features of 

human behavior, since they are designed only for fitting and predicting data from 

situations in which subjects repeatedly play the same stage game. On the contrary, the 

architecture of the PB model accounts for this kind of dependence of behavior from the 

perception of changes in game payoffs. 

As a result, the PB model outperforms in accuracy Nash equilibrium and all other 

models of learning as well. Further, I do not observe learning spillover effects in my 

experiments, which means that subjects are able to discriminate the different strategic 

situations and act accordingly. This fact might provide an explanation for why non-

standard equilibrium models turn out to be the best predictors of my experimental data. 

 

1.2  On Learning in Repeated, Completely Mixed Games 
Despite their apparent simple structure, games with a unique mixed-strategy 

equilibrium (MSE) are worthy of particular consideration. Zero-sum games, which 

model a situation in which a player’s win corresponds to an opponent’s loss and vice-

versa, are perhaps the most known and extreme example. In general, constant-sum 

games, of which zero-sum ones are a particular case, model situations of conflict, since 

players’ interests are opposed: in other words, players cannot help their opponents 

without being damaged. In this way, feelings such as fairness, reciprocity, and 

cooperation are almost completely excluded from this kind of interactions. Given their 

nature, these games faithfully portray situations of everyday life in which strict 

competitiveness is the most salient feature. 

In games with MSE, equilibrium play requires players to randomize their actions: if 

a player behaves predictably – for example always choosing the same action – an 

opponent can anticipate his moves and then win. For this reason, as can be intuitively 

understood, an equilibrium can be established if and only if players behave 

unpredictably i.e., if they randomize their actions. However, this says nothing about the 

processes that induce players to introduce randomness into their behavior, and theorists 

do not yet agree on a unique interpretation of MSE. According to one interpretation 

(Osborne and Rubinstein, 1994), an equilibrium in mixed strategies can be seen as a 
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profile of common beliefs on the players’ moves and each player will choose an action 

that best responds to those beliefs; in this vein, a player chooses an action rather than a 

mixed strategy and an equilibrium is a steady state of players’ beliefs. Another 

interpretation is that proposed by Harsanyi (1973), who provides the proof that almost 

any MSE is the limit of pure strategy strict equilibria of opportunely chosen games 

whose payoffs are affected by random perturbations; therefore, players merely choose 

among their possible pure strategies, being the random fluctuations of the payoffs that 

lead players to use their pure strategies with the right frequencies. 

From an experimental and behavioral point of view, however, this class of games 

represents a serious challenge for the predictive power of Nash equilibrium. Indeed, 

two strong – but behaviorally weak – assumptions stand at the core of the concept of 

Nash equilibrium. First, players are assumed to act in accordance with the theory of 

rational choice: they only care about the maximization of their own expected payoff, 

given their beliefs about the other players’ moves. Second, these beliefs are correct – in 

that sense players are said to be experienced. 

In the realistic case of human, bounded-rational, and non-experienced players, it is 

not clear that an MSE can be learned and the question of how an equilibrium of play (if 

any) arises is still unanswered. There are at least four problems. 

First, the ability itself of providing a series of random independently drawn 

numbers has been proved to be quite unnatural for human beings (Neuringer, 1986; 

Camerer, 2003), and stochastic behavior, in this context a major source of cognitive 

complexity, makes equilibrium strategy hard to be learnt. Second, as it has been shown 

in Crawford (1985), in games with MSE, learning dynamics that assume players move 

toward strategies with higher expected payoffs are known not to converge to MSE, at 

least in finite repetitions. Third, in equilibrium, all mixed strategies yield to each player 

the same expected payoff (given others are playing the equilibrium mixed strategy), 

and hence they are all best responses: as a consequence, in equilibrium players have no 

positive incentives to play the predicted mixed strategy. A fourth problem arises in 

games repeatedly played by randomly matched subjects of a population, as pointed out 

in Camerer (2003). In this case, an MSE can be reached at a population level, even if 

individuals play one of their pure strategies with probability equal to one. As an 

example, consider the case of the matching pennies game (see figure 1) repeatedly 

played by random matched individuals of a population; if in the population 50 percent 

of the individuals always choose Head and the other 50 percent always choose Tail, 
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then, when two individuals from that population are randomly matched, it is impossible 

for them to guess the moves of their opponents, making this situation identical to that 

in which subjects choose randomly their pure strategies with probability 0.5. 

 

           Player 2 

Player 1 
Head Tail 

Head (1,-1) (-1,1) 

Tail (-1,1) (1,-1) 

 

Figure 1. The matching pennies game, one of the most popular examples of zero-sum 

games. 

 

1.2.1 Learning: Empirical Findings 

Since the late 1950s, the experimental game theory literature on repeated games has 

provided significant departures from Nash equilibrium behavior (Erev and Roth, 1998) 

and especially data from experiments involving repeated games with unique MSE seem 

to contradict the predictions of standard game theory. In this specific context, indeed, 

Nash equilibrium not only fails to approximate laboratory observed behavior in the 

early rounds, but often it is also a poor predictor of the stable behavior emerging in the 

long run (Erev and Roth, 1998; Erev, Roth, Slonim, and Barron, 2007). As noted in 

Erev and Roth (1998:851) “in 5 of the 12 games equilibrium predicts badly: average 

choice probabilities, pooled over all rounds, are closer to random choices than to the 

equilibrium predictions”. The unsatisfactory performances of Nash equilibrium have 

led researchers to find alternative theories and models of learning to better explain and 

justify experimentally observed human behavior. 

As a result, most of the models of learning proposed in the behavioral game theory 

literature outperform standard equilibrium theory in the tasks of fitting and predicting 

experimental data and these models attribute to other factors the role of drivers of 

choice behavior (Camerer, 2003; Erev and Roth, 1998; Erev, Bereby-Meyer, and Roth, 

1999; Erev, Roth, Slonim, and Barron, 2002; Erev et al., 2007). 

On the other hand, a growing body of empirical literature that addresses the 

evaluation of the descriptive and predictive power of MSE for real life, on-field 

situations, has provided contrasting results with those obtained in the laboratory. The 
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contributions by Walker and Wooders (2001), Chiappori, Levitt, and Groseclose 

(2002), Palacios-Huerta (2003), Palacios-Huerta and Volij (2006a, 2006b) show that 

the behavior of sport and chess professionals is “largely consistent with the minimax 

hypothesis” (Walker and Wooders, 2001:1521) and “remarkably consistent with 

equilibrium play in every respect” (Palacios-Huerta, 2003:395). One of the reasons of 

the discrepancy between on-field and lab-observed behaviors is that in the two cases 

players have different levels of experience with the situation they are facing. Indeed, as 

Walker and Wooders (2010) point out, “MSE is effective for explaining and predicting 

behavior in strategic situations at which the competitors are experts and less effective 

when the competitors are novices, as experimental subjects typically are”. Selten and 

Chmura (2008) propose another explanation: when a game is repeatedly played with 

random matching by two populations, subjects’ behavior can be quite different from 

that observed when the same game is played repeatedly by the same two individuals. In 

the latter case, playing hundreds of times against each other makes players focus on not 

being predictable by the other, which should reasonably push their behavior to 

minimax play. However, this explanation seems to be rather weak, since significant 

departures from MSE have been observed also in many experiments with fix-pairing 

protocol. 

Could context be a further explanation for professionals’ behavior? Empirical 

evidence provides a negative answer to this question. Palacios-Huerta and Volij 

(2006a), indeed, observed the behavior of students and soccer professionals playing in 

laboratory settings a 2x2 game, formally identical to the typical strategic interactive 

situation of a penalty kick. The authors find that while professionals continue to play 

consistently with Nash theory, even in settings that entirely differ from those they are 

familiar with, college students perform quite poorly in terms of equilibrium play. This 

can be interpreted as evidence that professionals are able to transfer their strategic skills 

across different environments and that context has a negligible role in pushing subjects’ 

behavior to equilibrium play. 

In my view, the fact that experienced players tend to conform to Nash play surely 

adds important insights on human choice behavior, but does not invalidate the results 

obtained in labs. Indeed, in most of everyday contexts, we do not repeatedly face the 

same identical strategic situations – and we do not perceive them as identical, either. 

Thus, in many interesting applications to everyday life, it seems reasonable to assume 
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that individuals’ behavior is closer to that of college students than to professionals, and 

this justifies the need for experiments on repeated games. 

 

1.3  Quantitative Models of Learning 
Standard game theory does not provide a theory of learning and is limited to describing 

a steady state situation. On the contrary, experimentally observed behavior provides 

overwhelming evidence of the existence of a process – i.e. learning – after which past 

experience dramatically affects subjects’ current strategic choices (Camerer, 2003). 

Specifically, interactive learning differs from individual learning in that given N agents, 

each agent adapts to a strategic environment which is continuously modified by the 

concurrent learning of the other N-1 agents. 

Learning models try to replicate artificially the process in which past experience 

affects agents’ current behavior; more specifically, they establish how the probabilities 

with which future actions will be chosen are affected by information about the 

outcomes produced by actions chosen in the past. In order to do this, quantitative 

theories assume that, for a player, all his possible actions are associated with numerical 

evaluations, called attractions or propensities (these two terms will be used 

interchangeably), which are mapped, according to opportune rules, into choice 

probabilities. Propensities can be interpreted as a measure of the propensity of a player 

to choose the actions they are associated with, while learning rules determine how these 

attractions are updated in response to past experience. 

There is a wide variety of different approaches for modeling learning (for a 

comprehensive review of these models and theories see Camerer, 2003), but the most 

successful learning theories proposed so far are those of reinforcement learning, beliefs 

learning, hybrid models combining both (Ho, Camerer, and Chong, 2007) and, finally, 

theories which emphasize the role of post-decision regret as the driver of human 

behavior (Erev et al., 1999; Ert and Erev, 2007). 

 

1.3.1 Reinforcement Learning Models 

Reinforcement learning models are based on the following assumptions about human 

choice behavior (Erev and Roth, 1998): 
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1. The Law of Effect: choices that have led to good outcomes in the past are more 

likely to be repeated in the future (Thorndike, 1898). This law implicitly 

assumes that choice behavior is probabilistic. 

2. The power law of practice: learning curves tend to be steep initially, and then 

flatter (Blackburn, 1936). 

3. Experimentation (or Generalization): not only the choices which were 

successful in the past are more likely to be employed in the future, but also 

similar choices will be employed more often (Erev and Roth, 1998). 

4. Recency: recent experience plays a larger role than past experience in 

determining behavior (Erev and Roth, 1998). 

Erev and Roth’s Reinforcement Learning (REL), the standard Reinforcement 

Learning (RL), and the Normalized Reinforcement Learning (NRL) models embed in 

their structure these four principles. 

In reinforcement models, agents are assumed to have a very simple cognitive 

structure: they do not know anything about foregone or historical payoffs from 

strategies they did not choose, and occasionally experiment with the effects of similar 

choices. Here, only the actually played actions are reinforced. Typically, these models 

underestimate the empirical rate of learning, although correctly predicting its direction, 

being in the majority of the cases too slow to adapt to the observed dynamics. This 

seems to be due to the fact that in experiments in which subjects are provided with 

complete information about payoffs, they actually use that information in forming their 

strategies, while those models, by design, do not. 

 

The REL Model 

This model was first proposed in Erev et al. (1999) and further considered and 

developed in Erev et al. (2002). Here, I describe the REL model as reported in the latter 

contribution. 

Attractions updating. The propensity of player i to play her k-th pure strategy at 

period t+1 is given by: 

€ 

aij t +1( ) =

aij t( ) ⋅ N 1( ) + Cij t( ) −1[ ] + x
N 1( ) + Cij t( )

       if  k = j

aij t( )                                           otherwise,

 

 
 

 
 
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where 

€ 

Cij t( )  indicates the number of times that strategy j has been chosen in the first t 

rounds, x is the obtained payoff, and 

€ 

N 1( )  a parameter of the model determining the 

weight of the initial attractions. 

Stochastic choice rule. Player i’s attractions are mapped into choice probabilities by 

the following logistic rule: 

€ 

pik t( ) =
exp λ ⋅ aik t( ) S t( )[ ]
exp λ ⋅ aij t( ) S t( )[ ]j∑

, 

where 

€ 

λ  is a parameter tuning the sensitivity to payoff values, and 

€ 

S t( )  gives a 

measure of payoff variability. 

Initial attractions. The value 

€ 

S 1( ) is defined as the expected absolute distance 

between the payoff from random choices and the expected payoff given random 

choices, denoted as 

€ 

A 1( ) . For period 

€ 

t >1, the authors define: 

€ 

S t +1( ) =
S t( ) ⋅ t + m ⋅ N 1( )[ ] + A t( ) − x

t + m ⋅ N 1( ) +1
, 

where x is the received payoff, m the number of player i’s pure strategies, and 

€ 

A t +1( ) 

is defined as: 

€ 

S t +1( ) =
A t( ) ⋅ t + m ⋅ N 1( )[ ] + x

t + m ⋅ N 1( ) +1
. 

The authors fix initial attractions as follows: 

€ 

aij 1( ) = A 1( ) , for all i and j. 

Thus, this model has two free parameters, namely 

€ 

λ  and 

€ 

N 1( ) . 

 

The RL Model 

This model has been proposed in Erev et al. (2007) and enriches the Basic 

Reinforcement model described in Erev and Roth (1999); the main difference between 

the two models is that in the latter, propensities are mapped into choice probability by 

simple normalization, while, in the former, this mapping is operated by a logit function. 

Initial propensities. At time period 

€ 

t =1, player i-th associates to the propensity of 

playing his pure strategy j, the value corresponding to the expected payoff from random 

choice (denoted by 

€ 

A 1( )). Thus: 

€ 

aij 1( ) = A 1( ) , for all i and j. 



 12 

Attractions updating. At each time step, propensities are updated according to the 

following: 

€ 

aij t +1( ) =
1− w( ) ⋅ aij t( ) + w ⋅ vik x( )      if   j = k

aij t( )                                     otherwise,

 
 
 

  
 

where 

€ 

vij t( )  is the realized payoff and w one of the two parameters of the model 

(sensitivity to foregone payoffs). The updating rule implies agents’ insensitivity to 

foregone payoffs. 

Stochastic choice rule. Attractions at time 

€ 

t  are mapped into choice probabilities 

according to the rule: 

€ 

pik t( ) =
exp λ ⋅ aik t( )[ ]
exp λ ⋅ aij t( )[ ]j∑

, 

where 

€ 

λ  is a free parameter tuning sensitivity to payoffs. In the first period, the authors 

suggest setting 

€ 

recenti = A 1( ) . 

 

The NRL Model 

This model, described in Erev et al. (2007), is quite similar to REL and differs from RL 

in the fact that here payoff sensitivity is assumed to decrease with payoff variability. 

Initial propensities. At time period 

€ 

t =1, player i-th associates to the propensity of 

playing his pure strategy j, the value corresponding to the expected payoff from random 

choice (denoted by 

€ 

A 1( )). Thus: 

€ 

aij 1( ) = A 1( ) , for all i and j. 

Attractions updating. At each time step, propensities are updated according to the 

following: 

€ 

aij t +1( ) =
1− w( ) ⋅ aij t( ) + w ⋅ vik x( )      if   j = k

aij t( )                                    otherwise,

 
 
 

  
 

where 

€ 

vij t( )  is the realized payoff and w one of the two parameters of the model 

(sensitivity to foregone payoffs). The updating rule implies agents’ insensitivity to 

foregone payoffs. 

Stochastic choice rule. Attractions at time 

€ 

t  are mapped into choice probabilities 

according to the rule: 



 13 

€ 

pik t( ) =
exp λ ⋅ aik t( ) S t( )[ ]
exp λ ⋅ aij t( ) S t( )[ ]j∑

, 

where 

€ 

S t( )  gives a measure of payoff variability and 

€ 

λ  is a free parameter tuning 

sensitivity to payoffs. 

€ 

S t +1( ) = 1− w( ) ⋅ S t( ) + wmax recent1,recent2{ }− vij t( ) , 

where recenti is the most recent experienced payoff from action i. In the first period, 

the authors suggest setting 

€ 

recenti = A 1( ) ; in addition, the initial value 

€ 

S 1( ) is set equal 

to 

€ 

λ . Similarly to the case of the NFP model, payoff sensitivity (the ratio 

€ 

λ S t( )) is 

assumed to decrease with payoff variability. 

 

1.3.2 Beliefs Learning Models 

The models of this class embed the principles of the beliefs learning theory and are 

generally much more sophisticated than reinforcement models. According to this 

theory, players are assumed to keep track of the history of all other players’ moves and 

form their beliefs about what other players will do based on this past information. The 

strategy that will be chosen is that which maximizes the expected payoff given the 

beliefs about other players’ actions. 

Two very popular models derived from this theory are the fictitious play and 

weighted fictitious play models. In the first, players keep track of the relative frequency 

with which other players have employed each strategy in the past, and then calculate 

the expected payoff given these beliefs and choose that with the highest expected value. 

While in this model all previous observations are equally salient, in the weighted 

fictitious play model distant experiences in the past are less salient than recent ones 

(recency effect). 

The Normalized Fictitious Play (NFP), the Stochastic Fictitious Play (SFP), and the 

Self-Tuning Experience Weighted Attraction (stEWA) models belong to this class of 

models. The last model, however, would be better described as a hybrid model, 

blending the main features of reinforcement and fictitious play models; indeed, if 

parameters are constrained to specific values, it reduces to a simple version of the 

reinforcement model in which only chosen strategies are reinforced and if parameters 

are set in a different way, stEWA reduces exactly to weighted fictitious play. 

The weakness of these models (and of most of the reinforcement ones), however, 

stands in the logit response function which operates the mapping of propensities into 
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choice probabilities; by construction, this function is extremely sensitive to how initial 

propensities are defined, and different approaches can dramatically affect the 

performances of these models. 

 

The NFP Model 

This model has been proposed by Ert and Erev (2007) and described in Erev et al. 

(2007). 

Initial propensities. At time period 

€ 

t =1, player i-th associates to the propensity of 

playing his pure strategy j the value corresponding to the expected payoff from random 

choice (denoted by 

€ 

A 1( )). Thus: 

€ 

aij 1( ) = A 1( ) , for all i and j. 

Attractions updating. At each time step, propensities are updated according to the 

following: 

€ 

aij t +1( ) = 1− w( ) ⋅ aij t( ) + w ⋅ vij t( ) , for all i and j, 

where 

€ 

vij t( )  is the expected payoff in the selected cell and w is one of the two 

parameters of the model (sensitivity to foregone payoffs). 

Stochastic choice rule. Attractions at time 

€ 

t  are mapped into choice probabilities 

according to the rule: 

€ 

pik t( ) =
exp λ ⋅ aik t( ) S t( )[ ]
exp λ ⋅ aij t( ) S t( )[ ]j∑

, 

where 

€ 

S t( )  gives a measure of payoff variability and 

€ 

λ  is a free parameter tuning 

sensitivity to payoffs. 

€ 

S t +1( ) = 1− w( ) ⋅ S t( ) + wmax recent1,recent2{ }− vij t( ) , 

where recenti is the last experienced payoff from action i. In the first period, the authors 

suggest setting 

€ 

recenti = A 1( ) ; in addition, the initial value 

€ 

S 1( ) is set equal to 

€ 

λ . 

 

The SFP Model 

This model, described in Erev et al. (2007), is identical to NFP with the exception that 

here stable payoff sensitivity is assumed. 
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Initial propensities. At time period 

€ 

t =1, player i-th associates to the propensity of 

playing his pure strategy j the value corresponding to the expected payoff from random 

choice (denoted by 

€ 

A 1( )). Thus: 

€ 

aij 1( ) = A 1( ) , for all i and j. 

Attractions updating. At each time step, propensities are updated according to the 

following: 

€ 

aij t +1( ) = 1− w( ) ⋅ aij t( ) + w ⋅ vij t( ) , for all i and j, 

where 

€ 

vij t( )  is the expected payoff in the selected cell and w one of the two parameters 

of the model (sensitivity to foregone payoffs). 

Stochastic choice rule. Attractions at time 

€ 

t  are mapped into choice probabilities 

according to the rule: 

€ 

pik t( ) =
exp λ ⋅ aik t( )[ ]
exp λ ⋅ aij t( )[ ]j∑

, 

where 

€ 

λ  is a free parameter tuning sensitivity to payoffs. In the first period, the authors 

suggest setting 

€ 

recenti = A 1( ) . 

 

The stEWA Model 

Self-tuning Experience Weighted Attraction is a one-parameter model of learning in 

games proposed by by Ho, Camerer, and Chong (2007). It replaces part of the 5 

parameters in an earlier model called EWA (Camerer and Ho, 1999) with functions of 

experience that operate a self-tuning over time. 

Attractions updating. At time t, player i associates to his j-th pure strategy the 

attraction 

€ 

aij t( ), given by: 

€ 

aij t( ) =
φi t( ) ⋅ N t −1( ) ⋅ aij t −1( ) + δij t( ) + 1−δij t( )( ) ⋅ I sij,si t( )( )[ ] ⋅ π i sij,s−i t( )( )

N t −1( ) ⋅ φi t( ) +1
, 

where are parameters, 

€ 

si t( )  and 

€ 

s−i t( )  are the strategies played by player i and his 

opponents, respectively, and 

€ 

π i sij,s−i t( )( ) is the ex-post payoff deriving from playing 

strategy j. The function 

€ 

I ⋅( )  is defined as: 

€ 

I x,y( ) =
0    if x ≠ y
1    if x = y,
 
 
 
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while the functions 

€ 

δij t( )  and 

€ 

φi t( )  are called, respectively, the attention function end 

the change detector function. The second depends primarily on the difference between 

the relative frequencies of chosen strategies in the most recent periods and the relative 

frequencies calculated on the entire series of actions. The attention function essentially 

tunes the importance that players associate to past payoffs (see Camerer, Ho and 

Chong, 2007 for details). Thus, attractions on time t depend on the attractions on time t-

1 multiplied by an experience weight 

€ 

N t −1( ) , on received and foregone payoffs, and 

are pseudo normalized by the quantity 

€ 

N t( ) = N t −1( ) ⋅ φi t( ) +1 (

€ 

N 0( ) =1). 

Stochastic choice rule. Attractions are mapped into choice probabilities by the 

following equation: 

€ 

pij t +1( ) =
exp λ ⋅ aij t( )( )
exp λ ⋅ aij t( )( )j∑

, 

where 

€ 

λ  is the unique free parameter of the model. 

Initial attractions. The authors do not provide a unique method to define initial 

attractions 

€ 

aij 0( )  and suggest at least four ways it might be done. In this specific case, I 

define initial attractions according to the method adopted for reinforcement models, 

which leads to first-period uniformly distributed choices. 

 

1.4  Regret and Choice Behavior 
The unsatisfactory performances of Nash equilibrium have led researchers to find 

alternative theories and models to better explain and justify experimentally observed 

interactive choice behavior. 

As a result, no matter the methodology adopted, most of the models proposed in the 

behavioral game theory literature outperform standard equilibrium theory in both the 

tasks of fitting and predicting experimental data, and attribute to other factors the role 

of drivers of choice behavior (Camerer, 2003; Erev and Roth, 1998; Erev et al., 1999, 

2002, 2007; Selten and Chmura, 2008). Specifically, some recent contributions have 

shown that regret-based models are the best predictors of data from experiments on 

interactive repeated choice tasks, thus suggesting that regret for foregone payoffs must 

play a central role in shaping human choice behavior. Before proceeding further with 

the description of the most important economic theories of decision based on regret, I 
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will provide a short review of the principal contributions on regret proposed in the 

psychology literature, in order to more precisely define its meaning and nature. 

 

1.4.1 Psychology of Regret 

Behavioral economics, experimental economics, and psychology have devoted much 

attention to the effects of emotions on decision-making, and the literature on this topic 

is vast. If we consider all contributions on emotions and the role they play in shaping 

human choice behavior, regret has been the most studied. I will present some of the 

most important contributions, mainly from the field of psychology, investigating nature 

and properties of this counterfactual emotion. 

Regret is generally defined as the emotion that a decision maker experiences 

whenever the outcome of his action is worse than the one he would have received, had 

he acted in a different way. A first distinction has to be done between regret and 

disappointment; generally, these two emotions are reputed to be different and have 

been shown to produce different behaviors (Mellers, Schwartz, and Ritov, 1999; 

Zeelenberg, van Dijk, and Manstead, 1998). Disappointment arises whenever the 

received outcome is worse than the outcome one would have obtained in another state 

of the world. Therefore, the difference between these two negative emotions relies on 

the decision maker’s intervention (agency); for regret to occur, not only the actual 

outcome must be worse than foregone ones, but the decision maker must also consider 

himself as directly responsible for it by having chosen a specific course of action. 

As said, regret is a counterfactual emotion i.e., it arises in those situations in which 

we make comparisons between the reality and what might have been, had we acted 

differently. Then, regret can be seen as a consequence of the natural humans’ attitude to 

think counterfactually (Zeelenberg at al., 1998). As Roese (1994:805) writes, “The 

ability to imagine alternative, or counterfactual, versions of actual events appears to be 

pervasive, perhaps even essential, feature of human consciousness.” Counterfactual 

thoughts are precisely structured: they can be represented as conditional sentences with 

an antecedent of the form “If only I had done X”, and a consequent of the form “Y 

would have happened”; in other words, one alters some factual antecedent and 

evaluates the consequences of that alteration. The question that arises is, then, why do 

we reason counterfactually? It has been shown (Roese, 1994) that counterfactual 

reasoning serves two functions: affective and preparative. As for the first, people might 

think to how things might have been different to make themselves feel better (e.g., rape 
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victims sometimes generate positive feeling by noting that they could have been more 

seriously injured or killed). As for the latter function, comparisons with better 

alternatives (called upward counterfactuals) can serve to develop patterns of future 

actions. Indeed, as Roese (1997) points out, counterfactual thinking is triggered when 

our choices have a negative effect i.e., in those situations in which corrective thinking 

is most important. 

Two main factors have been shown to determine regret and its intensity: the first is 

the degree of availability of possible alternatives and, second, the active versus inactive 

attitude of the decision maker. Seta, Seta, McElroy, and Hatz’s (2008) experimental 

results show that the salience of counterfactuals is positively correlated with the 

intensity of experienced regret, coherently with Kahnemann and Miller’s (1986) norm 

theory. In addition, also mutability of events or states can affect the intensity of regret. 

The underlying idea is that if events can be changed in many ways, it is also true that 

some modifications are more natural than others as well as some attributes are easier to 

be changed than others. Kahnemann and Tversky (1982) show that exceptional features 

are more mutable than routine ones since the former explicitly provide alternative 

scenarios to the occurred state. Kahnemann and Miller (1986) further investigate the 

role of mutability and find that “an event is more likely to be undone by altering 

exceptional than routine aspects of the causal chain that led to it” (Kahnemann and 

Miller, 1986:143). From this point of view, when agents’ decisions involve active 

behavior, they are likely to be considered as exceptional features and generate regret 

(“If only I did not do that…”). On the opposite, when agents’ behavior is inertial (i.e., 

they do not act to change things), their choices are more naturally interpreted as routine 

features in the causal chain, and are less likely to generate regret. 

A series of empirical studies have shown not only that post-decisional regret 

experienced in the past plays a crucial role in determining our behavior in current 

decision tasks, but also that this emotion is conditional to the knowledge of the 

outcomes from unchosen actions. However, regret has also been proved to have an 

anticipatory dimension, and studies by Bar-Hillel and Neter (1996), Zeelenberg (1999), 

and Hetts et al. (2000) have shown that the anticipation of regret does influence current 

decisions and behavior. These contributions provide empirical evidence supporting the 

hypothesis that individuals are able to anticipate counterfactual regret, by imagining the 

consequences of each action, and choose the action that would produce the lowest level 

of regret. This kind of behavior is in accordance with a large body of literature showing 
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that people not only anticipate emotions, but also take them into account when deciding 

(Larrick and Boles, 1995; Ritov, 1996; Bar-Hillel and Neter, 1996; Zeelenberg, Beattie, 

van der Pligt, and de Vries 1996; Zeelenberg and Beattie, 1997). In addition, 

Zeelenberg (1999) provides an explanation of how anticipated regret can lead to 

relatively risk seeking behavior, as previously experimentally shown by Larrick and 

Boles (1995) and Ritov (1996). Zeelenberg’s argument starts from the reasonable 

assumption that people are regret averse; regret is a negative and unpleasant emotion, 

and then people tend to make choices as to minimize it. Now, regret-minimizing 

choices can be either safe or risky; indeed, it can happen that risky options are those to 

which there corresponds the lowest level of regret. As a simple example, consider a 

situation in which an individual has to choose between two choices, one riskier than the 

other. Assume also that the riskier option will always be resolved, whereas the safer 

will only be resolved if chosen. Then, if the decision maker chooses the safer choice, he 

runs the risk of learning that the riskier option turned out to be better and then 

experiences regret. 

Zeelenberg (1999) mentions five conditions, not yet experimentally tested, that 

might determine occurrence and intensity of anticipated counterfactual regret. First, 

regret is likely to be anticipated when available actions have similar degree of 

dominance. If an action is evidently dominant (for some particularly salient reason) 

with respect to the others, an agent will choose it without spending too much time 

thinking about its consequences, and he would not consider himself as particularly 

responsible for a possible bad or suboptimal outcome (of course, he would be 

disappointed). On the contrary, if available actions are of equal attractiveness, then an 

agent would consider them more thoroughly and anticipate the feeling of regret he 

might feel for not having chosen the best one, and a bad outcome would be easily 

interpreted as the consequence of a wrong choice. Second, the shorter the time interval 

between an action and its consequence, the more intense the anticipated regret; if 

consequences are delayed in time, agents might discount the associated regret. Third, 

the relative importance of actions plays a central role in the anticipation of regret; it is 

reasonable to assume that if an action has important consequences, then it will result in 

a more intense feeling of regret. The fourth factor is the availability of feedback about 

unchosen options. Zeelenberg shows that when post-decisional feedback is available, 

people anticipate regret; on the opposite, when this feedback is not available, regret 

plays almost no role in the process of decision making. Lastly, the social dimension of 
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the decision making process might affect the level of anticipated regret, particularly 

high in situations in which people that are important to the agent expect him to 

carefully evaluate all alternatives or delay his choice. 

As noted by Zeelenberg (1999), these five aspects deserve further empirical 

investigation, as their understanding would help design a psychological theory of regret 

aversion and determine its scope of applicability. 

 

1.4.2 Regret and Decision-Making Modeling 

As far as I know, Savage (1951 and 1954) was the first to formally introduce regret in a 

theory of decision-making. His theory of (statistical) decision-making applies to 

situations in which the utility of an individual depends upon his own choice and the 

occurrence of one of n mutually exclusive states of the world. It is assumed that agents 

know how their own utilities depend jointly upon their choices and the (unknown) state 

of the world that will occur, but they do not know the probabilities that are associated 

to each state of the world. Savage defined the loss associated to action a and state s as 

the difference between the best outcome over all possible actions (given state s) and the 

outcome from action a. Let us consider the following example proposed by Savage in 

which the decision maker has to decide whether or not to carry with him his umbrella. 

Two states of the world can take place: it might be rainy or shiny, and the decision 

maker does not know the probabilities of the two states. Suppose that the utility of the 

decision maker for each possible combination (action, state) is as reported in the 

following matrix: 

 

           State 

Action 
Rain Shine 

Carry 4 5 

Do not carry -10 10 
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The corresponding matrix of losses will be then: 

 

           State 

Action 
Rain Shine 

Carry 0 5 

Do not carry 14 0 

 

Savage proposed as a decision rule the minimax principle, according to which the 

decision maker chooses the action that minimizes the maximum loss. This theory of 

choice allows for violations of the axiom of independence of irrelevant alternatives and 

is quite pessimistic, since the decision maker looks only at the worst possible state for 

each of his actions. For these reasons both normative and descriptive validity of the 

minimax regret choice rule were criticized (Mellers, Schwartz, and Ritov, 1999). 

The tendency to anticipate regret and avoid post-decision regret shown by humans 

was first incorporated in an economic model of individual decision-making by Bell 

(1982) and by Loomes and Sugden (1982). These two contributions independently 

introduced and developed the regret theory to account for empirical systematic 

violations of some of the axioms of expected utility theory (von Neumann and 

Morgenstern, 1947). In particular, the aim of Loomes and Sugden (1982) was that of 

proposing a new, alternative theory of individual choice under uncertainty much 

simpler and intuitively more appealing than Kahnemann and Tversky’s (1979) prospect 

theory. The starting point of Loomes and Sugden’s (1982) theory is the systematic 

violation of some of the axioms of the conventional expected utility theory, observed in 

the experiments on choice between pairs of prospects (i.e., probability distributions 

over consequences) described by Kanhemann and Tversky (1979). Specifically, three 

different kinds of paradoxical behavior emerged (nowadays widely known) that cannot 

be accommodated by conventional theory of choice without dropping one or more of 

its axioms: the common ratio effect, Allais paradox, and the isolation effect. Regret 

theory was formulated to account for these irrational behaviors. According to this 

theory, utility is interpreted in its classical, Bernoullian sense i.e., as the psychological 

experience of pleasure associated to satisfaction of desire. In this view, it is clear that 

when deciding, psychological factors other than the sole income can modify our utility, 

and regret for foregone gains and rejoicing for foregone losses are perhaps the most 
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important. This means that our utility is determined not only by the outcome from our 

choice (as assumed by von Neumann and Morgenstern’s theory), but also by outcomes 

corresponding to unchosen actions. As an example, if foregone outcomes are better 

than the obtained one, we would experience regret for not having chosen differently, 

with a consequent decrease in the utility level. On the opposite, if foregone outcomes 

are worse than the obtained one, we would then experience rejoicing for having made 

the best decision, and this would translate in an increase of utility. The concept of 

regret as illustrated above was not new in the early 1980s, but closely resembles the 

argument exposed in Savage (1951) in the ambit of the theory of statistical decision, 

with the difference that in regret theory probabilities associated to outcomes are known. 

Of course, the importance of what might have been can be assessed only in those cases 

in which all outcomes are known i.e., in those situations in which agents receive 

feedback about their actions. In the light of these considerations about utility, Loomes 

and Sugden (1982) and Bell (1982) proposed a model in which agents are supposed to 

maximize a modified utility function, which explicitly takes into account the role of 

regret. In a restricted version of this model formulated by Loomes and Sugden, the 

utility function is of the form: 

€ 

mij
k = cij + R cij − ckj( ) , (1) 

where 

€ 

mij
k  is the modified utility when action i has been chosen and the j-th state of the 

world has occurred, with respect to the consequence of action k; similarly,

€ 

cij  represents 

the choiceless utility, defined as the utility that the individual would derive from 

outcome x without having chosen it – as if it were exogenously assigned to the 

individual. This assumption about 

€ 

cij  is quite important because, in contrast with the 

concept of utility provided by von Neumann and Morgenstern, it provides a sort of 

utility measure free from any psychological implication. Psychological aspects are 

introduced in (1) through the real valued regret-rejoice function 

€ 

R ⋅( ) , which weights 

the difference between obtained and foregone utility. Obviously, 

€ 

R ⋅( )  is supposed to be 

non-decreasing. In the limiting case in which 

€ 

R c( ) = 0  

€ 

∀c , (1) is equivalent to standard 

expected utility theory. In terms of (1), action 

€ 

Ak  is non-preferred to action 

€ 

Ai  if and 

only if: 

€ 

p j cij − ckj + R cij − ckj( ) − R ckj − cij( )[ ]
j=1

n

∑ ≥ 0 , (2) 
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given that each of the n states of the world occurs with probability 

€ 

p j . As its authors 

suggested, equation (2) can be reformulated in terms of a function 

€ 

Q ⋅( ) such that 

€ 

Q c( ) = c + R c( ) − R −c( ) , obtaining: 

€ 

p j Q cij − ckj( )[ ]
j=1

n

∑ ≥ 0 . 

Now, individuals for which 

€ 

Q ⋅( ) is non-linear behave in such a way that might 

violate “consistently and knowingly the axioms of transitivity and equivalence without 

ever accepting, even after the most careful reflection, that they have made a mistake” 

(Loomes and Sugden, 1982:820). With this sentence, the authors challenge the 

assumption that choice behavior under uncertainty can be defined as rational if and 

only if it conforms to the axioms of von Neumann and Morgenstern’s expected utility 

theory. On the contrary, Loomes and Sugden propose the idea that agents whose choice 

behavior violates some of the axioms of expected utility theory is not necessarily 

irrational, as it can still be described (as in the case of regret theory) in terms of a 

behavior that maximizes an opportunely defined (or, better, modified) utility function. 

Loomes and Sugden (1987a) compare regret theory with the skew-symmetric 

bilinear utility theory (SSB) proposed by Fishburn (1982 and 1983). The approach 

followed by Fishburn is essentially axiomatic rather than psychologically based. The 

two theories are similar in that they both drop the transitivity axiom. However, 

Fishburn’s model cannot account for the isolation effect, as it is presented in terms of 

prospects rather than actions. On the other hand, if we consider the particular case of 

(statistically) independent prospects, regret theory and SSB are equivalent. 

Loomes and Sugden (1987b) provide further empirical evidence of violations of the 

axioms of expected utility theory, supporting the hypothesis that individuals’ capacity 

to anticipate feelings of regret and rejoicing heavily affect choice behavior and 

confirming the need for a theory that takes explicitly into account this psychological 

aspect. 

The contribution by Selten and Stoeker (1986) first generalized the concept of post-

decision regret to the context of interactive strategic situations (games), building the 

foundations of Learning Direction Theory (LDT) – successively developed in Selten 

and Buchta (1999). The approach adopted in LDT is quite different from that of regret 

theory: in the former case post-decision regret is emphasized, whereas in the latter it is 

the anticipation of regret and its avoidance that conditions choice behavior. 
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LDT is a qualitative theory of learning in repeated decision tasks and assumes that 

agents decide on the basis of the ex-post rationality principle: one looks at what might 

have been better in the previous instance of decision making and adjusts in this 

direction. The central point is that agents’ behavior is based on a qualitative and causal 

representation of their environment. The feedback about actions chosen in the previous 

trial is a necessary condition for a qualitative and causal representation of the context in 

which the new decisions are taken. Such a representation of the world and feedback 

about previous choices are the two fundamental assumptions of LDT. 

LDT is not a complete explanation of adaptive behavior and does not postulate that 

ex-post rationality is always sufficient in the explanation of the experimentally 

observed behavior. Sometimes other factors may influence the decisional process, 

leading to adjustments in the “wrong” direction. However, this theory assumes that ex-

post rationality is more important than the other factors. These considerations lead to 

the following prediction: more frequently than randomly, changes in the parameters are 

in the direction suggested by ex-post rationality.  

Due to its qualitative nature, LDT does not specify the probabilities with which 

changes will occur, and hence we cannot use it to make quantitative predictions. 

However, this theory provides important insights – largely supported by experimental 

data (Selten, Abbink, and Cox, 2001) – whose basic principles can be incorporated into 

other quantitative models. 

Recently, also some game theorists have devoted their attention to regret. 

Contributions by Hart and Mas-Colell (2000 and 2003) and by Hart (2005) show the 

existence of some adaptive procedures of choice behavior, defined in discrete time and 

based on regret, that can be proved to converge to the set of correlated equilibria of a 

game (the notion of correlated equilibrium was first introduced by Aumann, 1974). The 

approach followed by the authors is almost exclusively theoretical, leaving no room for 

empirical tests of their models. The most important is the regret matching procedure 

introduced by Hart and Mas-Colell (2000) and defined by the following, simple rule: 

 

“Switch next period to a different action with a probability that is proportional 

to the regret for that action, where regret is defined as the increase in payoff 

had such a change always been made in the past.” (Hart, 2005) 
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The mathematical formulation of the rule above is as follows. Consider player i at 

time 

€ 

T +1. The average obtained payoff over the first T periods is: 

€ 

U =
1
T

ui st( )
t=1

T

∑ , 

and denote with 

€ 

j = sT
i  the action chosen by player i at time T. For each available 

alternative action

€ 

k ≠ j , consider the average payoff that i would have obtained had he 

always played k instead of j in all previous trials: 

€ 

V k( ) =
1
T

ν t
t=1

T

∑  

where 

€ 

ν t =
ui k,st

−i( )   if sti = j

ui st
i,st

−i( )   if sti ≠ j.

 
 
 

  
 

The regret associated to action k is then defined as: 

€ 

R k( ) =V k( ) −U , 

if the difference is positive and zero otherwise. According to regret matching, the 

probability 

€ 

pT +1 k( )  with which action k is played at time 

€ 

T +1 is proportional to 

€ 

R k( )  

according to the following: 

€ 

pT +1 k( ) =
c ⋅ R k( )               if k ≠ j

1− c ⋅ R k( )     if k ≠ j,
k≠ j
∑

 

 
 

  
 

where c is an opportune positive constant. Therefore, if at time 

€ 

T +1, before choosing 

his action, player i has no regret (i.e., all 

€ 

R k( ) = 0 for all 

€ 

k ≠ j), then he will play action 

j for sure. If instead there are some actions 

€ 

k  for which 

€ 

R k( )  is positive, then the 

probability for player i to choose those actions will be different than zero and 

proportional to their corresponding regret. 

The unconditional regret matching model (Hart, 2005) is obtained by slightly 

changing function 

€ 

V k( ) and replacing it with the following: 

€ 

˜ V k( ) =
1
T

ui k,st
−i( )

t=1

T

∑ . 

In this case 

€ 

R k( )  correspond to an increase in the average payoff, if any, were one 

to replace all past plays, and not the j-plays, by k. Of course, in the case of 2x2 games 

(and in general in any strategic situation in which all sets of actions have two 

elements), regret matching and unconditional regret matching are equivalent. 
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The most important results proved by Hart and Mas-Colell (2003) is that if all 

players play regret matching strategies, then the joint distribution of play converges to 

the set of correlated equilibria of the stage game. This result, known as the Regret 

Matching Theorem, is important as it shows that behavior of bounded rational agents 

can nonetheless converge to a rational outcome i.e., a correlated equilibrium. This 

result must then be seen as an effort to reconcile bounded rationality and rational 

behavior. 

 

1.5  Best Response and Behavioral Models of Equilibrium 
In spite of what reported at the beginning of Section 3, a stream of economic literature 

on non-standard equilibrium models has shown that also stationary concepts based on 

psychological considerations about human behavior are good predictors of data from 

experiments on auctions and repeated, completely mixed games (Selten, Abbink, and 

Cox, 2005; Ockenfels and Selten, 2005; Avrahami, Güth, and Kareev, 2005; 

Neugebauer and Selten, 2006; Selten and Chmura, 2008). In particular, I am referring 

to the Impulse Balance Equilibrium (IBE) model proposed by Ockenfels and Selten 

(2005). This stationary concept incorporates the principles of Learning Direction 

Theory (see previous section) in a quantitative theory. Specifically, its authors define 

upward and downward impulses: we have an upward impulse if a higher parameter 

would have yielded a higher payoff, and a downward impulse in the opposite case. The 

decision maker is assumed to act in the direction of impulses. In the context of normal 

form games, impulses are determined as the expected payoff in a transformed game 

obtained subtracting to all payoffs above the pure strategy maximin payoffs (regarded 

as a “natural aspiration level”, Selten and Chmura, 2008:947) one half of the 

difference between original payoffs and the maximin payoffs. The rationale for this 

kind of rescaling is that, as in Kahnemann and Tversky’s (1979) prospect theory, losses 

(evaluated with respect to the natural level of aspiration embodied by the maximin 

payoff) are weighted double in the computation of impulses. An equilibrium of play is 

established when probabilities are such that the downward impulse equals the upward 

impulse. Impulse Balance Equilibrium is quite important because agents are not 

supposed to be neither expected utility maximizers nor best responders to some kind of 

partial information. In other non-standard stationary models as Payoff-sampling 

equilibrium (Osborne and Rubinstein, 1998) and Action-sampling equilibrium 
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(described in Selten and Chmura, 2008, but previously formulated by Selten), agents 

are supposed to choose optimally with respect to the information from n samples of 

equal size (one for each available action), and from a sample of seven observations of 

the strategies played by their opponents, respectively. In both cases, the size of the 

sample can be interpreted as the unique free parameter of the two models. The concept 

of Quantal Response (QRE) equilibrium proposed by (McKelvey and Palfrey, 1995) 

can be considered as a generalization of the equilibrium model proposed by Nash 

(1950). It is based on the idea that players give quantal best responses to the behavior 

of the others i.e., players make mistakes and assume other players to do so as well; 

players are still supposed to be maximizers, departing from Nash’s theory in that 

perfectly rational expectations are replaced with noisy, imperfect ones. Assuming a 

particular distribution of errors, along the theoretical framework proposed by 

McFadden (1976), McKelvey and Palfrey designed the Logit Equilibrium, which 

converges to Nash equilibrium as the free parameter of the logistic quantal response 

function tends to infinite. 

Selten and Chmura (2008) show that the free parameters IBE model is the best 

predictor of the data from experiments on twelve 2x2 repeated, completely mixed 

games, if compared with the other stationary concepts mentioned in this Section. 

However, the authors raise two important, yet unanswered, questions: first, it is not 

clear why in some games equilibrium models with so different theoretical foundations 

provide equivalently accurate predictions; second, they do not test models on more 

general patterns of strategic interaction (e.g., games with more than two players and 

more than two actions available to each player). 

I provide here a short description of each model of equilibrium in the particular 

context of two-person 2x2 games with a unique equilibrium in mixed strategies. A 

detailed description and a comparative analysis of these models is reported in Selten 

and Chmura (2008). 

Any game in this particular class can be described by the following payoff structure 

(Selten and Chmura, 2008), the other possible case being obtained by just switching its 

rows and columns: 
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         Player 2 
Player 1 L R 

U 

€ 

aL + cL ;bU( )  

€ 

aR ;bU + dU( ) 
D 

€ 

aL ;bD + dD( )  

€ 

aR + cR ;bD( )  
 

where the constants 

€ 

cL , 

€ 

cR , 

€ 

dU , and 

€ 

dD  are strictly bigger than zero. Let us assume that 

Player 1 will choose action U with probability p and that Player 2 will choose action L 

with probability q. 

 

Quantal Response Equilibrium (QRE) 

Quantal Response Equilibrium was first introduced by McKelvey and Palfrey (1995). 

Equilibrium probabilities are determined as follows: 

€ 

p =
eλEU q( )

eλEU q( ) + eλED q( )  and 

€ 

q =
eλEL p( )

eλEL p( ) + eλER p( ) , 

where 

€ 

λ ≥ 0 is the unique free parameter of the model. 

 

Action-Sampling Equilibrium (7-sampling) 

Proposed by Reinhard Selten, this stationary concept assumes that players sample 7 

actions made by their opponents and best respond based to that sample. Formally, 

choice probabilities are defined as follows: 

€ 

p =
7
k
 

 
 
 

 
 qk 1− q( )7−kαU k( )

k= 0

7

∑  and 

€ 

q =
7
m
 

 
 
 

 
 

m= 0

7

∑ 1− p( )m p7−mαL m( ) , 

where 

€ 

αU k( )  is the probability with which Player 1 will choose U given k Ls in the 

sample by his opponent, and 

€ 

αL m( ) the probability with which Player 2 will choose L 

given m Us in the sample. Those are defined as: 

€ 

αU k( ) =

1   if   k
7

>
cR

cL + cR
1
2

  if   k
7

=
cR

cL + cR
0   otherwise

 

 

 
 
 

 

 
 
 

 and 

€ 

αL m( ) =

1   if   m
7

>
dU

dU + dD
1
2

  if   m
7

=
dU

dU + dD
0   otherwise

 

 

 
 
 

 

 
 
 

. 
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Payoff-Sampling Equilibrium 

This parametric stationary concept was introduced by Osborne and Rubinstein (1998). 

According to it, players are assumed to play each of their available actions for n (the 

parameter of the model) times, record their opponents’ moves, and best respond to 

those samples. In the case of 2x2 games, suppose that 

€ 

kU  and 

€ 

kD  are the number of Ls 

in the two samples of Player 1, whereas

€ 

mL  and 

€ 

mR  are the number of Us in the two 

samples of Player 2. Then, the probabilities with which Player 1 chooses U and Player 

2 chooses R are, respectively: 

€ 

β kU ,kD( ) =

1   if   kU aL + cL( ) + n − kU( )aR > kDaL + n − kD( ) aR + cR( )
1
2

  if   kU aL + cL( ) + n − kU( )aR = kDaL + n − kD( ) aR + cR( )

0   otherwise

 

 
 
 

 
 
 

, and 

€ 

 

€ 

γ mL ,mR( ) =

1   if   mLbU + n −mL( ) bD + dD( ) > mR bU + dU( ) + n −mR( )bD
1
2

  if   mLbU + n −mL( ) bD + dD( ) = mR bU + dU( ) + n −mR( )bD
0   otherwise

 

 
 
 

 
 
 

, 

Choice probabilities are defined as the expectation of the 

€ 

β  and 

€ 

γ  functions: 

€ 

p =
n
kU

 

 
 

 

 
 
n
kD

 

 
 

 

 
 

kD = 0

n

∑ qkU +kD 1− q( )2n−kU −kD β kU ,kD( )
kU = 0

n

∑  

€ 

q =
n
mL

 

 
 

 

 
 
n
mR

 

 
 

 

 
 

mR = 0

n

∑ 1− p( )mL +mR p2n−mL −mRγ mL ,mR( )
mL = 0

n

∑ . 

 

Impulse Balance Equilibrium (IBE) 

This concept of equilibrium is based on the qualitative Learning Direction Theory 

(LDT), proposed by Selten and Buchta (1999). According to Impulse Balance 

Equilibrium (Selten, Abbink, and Cox, 2005; Ockenfels and Selten, 2005), equilibrium 

probabilities are obtained as follows: 

€ 

p =
qcL

*

qcL
* + 1− q( )cR*

 and 

€ 

q =
1− p( )dD*

pdU
* + 1− p( )dD*

, 

Constants 

€ 

cL
* , 

€ 

cR
* , 

€ 

dU
* , and 

€ 

dD
*  are the payoff differences the transformed game 

obtained, for each of the players, leaving unchanged the payoffs below or equal to the 

pure strategy minimax value and adding to payoffs above that value half of the surplus. 
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1.6  Similarity, Categorization, and Generalization 
Issues of similarity, categorization, and generalization have been deeply and 

systematically investigated in the field of cognitive psychology in the 1970s and 1980s 

(Holland, Holyoak, Nisbett, and Thagard, 1986). These concepts are intimately linked, 

as similarity judgments about objects or events affect the way in which they are 

categorized (but the other way around holds true, too), and our responses, as human 

beings, depend upon past learning and categorization. In this vein, that of 

categorization can be considered as one of the most fundamental functions of all living 

creatures. 

Categorization takes place whenever two or more stimuli are treated equivalently 

and this can happen in many different ways e.g., by associating to different objects the 

same name or by responding to different situations with the same actions. All 

environmental stimuli are unique, but humans (and, more in general, most of all living 

creatures) tend to partition them in subsets and consider as equivalent those belonging 

to same set (Mervis and Rosch, 1981). 

Rosch (1973) and Rosch and Mervis (1975) report experimental evidence 

supporting the hypothesis that both artificial and natural categories are constructed 

around some (naturally) focal, prototypical objects in terms of degree of family 

resemblance, thus associating to different objects different degrees of membership. 

Prototypes of a category are those objects for which family resemblance with the other 

members of their own category is maximal, and the overlap with members of other 

categories is minimized. From a probabilistic point of view, prototypical objects can be 

defined as those items that are the best predictors of a given category or, equivalently, 

as those with the highest cue validity. These findings lead us to reject the Aristotelian 

interpretation of categories as logical and clearly bounded entities, according to which 

objects (once again, in the broadest meaning of the word) are unambiguously classified 

on the basis of the presence or absence of some specific attributes (Rosch, 1975), and 

that all objects are equally representative of their category. 

The degree of family resemblance is not the unique variable driving categorization, 

as other factors such that frequency of stimuli and salience of particular attributes can 

significantly affect the process of prototype formation. However, empirical results 

presented by Rosch and Mervis (1975) support the hypothesis that family resemblance 

is the most important factor conditioning the way in which categories of natural and 
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artificial objects are created. Nosofsky (1990) provides a model that considers the joint 

effect of similarity and frequency on the process of category formation. His 

experiments on classification learning showed that classification accuracy and 

typicality ratings increase for objects presented with high frequency and for members 

of the target category that are similar to the high frequency objects, and decrease for 

members of the contrast category that are similar to the high frequency objects. 

Nosofsky’s model provides a good quantitative account of the classification learning 

and typicality data and relies on the assumption that people learn categories by storing 

individual objects in memory. According to this approach, the process of category 

formation is based on similarity comparisons to the stored patterns, a principle 

embedded in many successive economic models of choice behavior based on similarity 

comparisons with previous experience (for example, Gilboa and Schmeidler’s, 1995 

Case-Based Decision Theory). 

Nor the system of categories is arbitrarily structured. On the contrary, natural 

categories are highly determined as they reflect the structure of the environment, 

intended as the correlation in the occurrence of attributes (Rosch et al., 1976). The 

same authors have also shown that there exists one level of abstraction (intended as 

degree of inclusiveness) at which the most category cuts are made. This is the basic 

level of abstraction to which there correspond basic categories, such as chair and car; 

above it, there is the level of superordinate categories, such as furniture and vehicle, 

and below that one of subordinate categories, such as kitchen chair or sports car. Basic 

natural categories have been shown to be optimal in the sense that they maximize the 

cue validity of attributes: superordinate categories have lower cue validity because they 

have fewer common attributes within category, and subordinate categories have lower 

cue validity because they share many attributes with other categories (Rosch and 

Mervis, 1975). In this sense, basic category partitions are the most informative as they 

provide the best compromise between the need for an accurate description of the 

environment and the necessity to operate a reduction of the potentially infinite 

environmental stimuli to facilitate further processing. 

Other than optimality, basic categories have been shown to possess other important 

properties. Indeed, at this level, given a set of objects belonging to the same category, 

persons use similar motor actions for interacting with them; objects have similar 

shapes; it is possible for people to create an overall mental representation of these 

objects (Rosch et al., 1976). Not only, the same contribution reports that objects are 



 32 

more easily and readily recognized as members of basic categories than as members of 

superordinate or subordinate categories. 

The importance of the role played by similarity judgments in the process of 

category formation is evident, since the most important factor driving categorization is 

family resemblance (Rosch and Mervis, 1975). As Tversky (1977:327) put it 

“Similarity serves as an organizing principle by which individuals classify objects, 

form concepts, and make generalizations”. 

At a first glance, it might seem that the most natural way to define and 

conceptualize similarity is in terms of the Euclidean distance (or one of its generalized 

formulation e.g., the Minkowsky r-metric) between two objects, represented as points 

in the multidimensional space of attributes (Shepard, 1962; Kruskal, 1964; Hutchinson 

and Lockhead, 1977). Indeed, many abstract models of similarity rely on this 

assumption and, indirectly, ascribe to similarity all the metric properties of a function 

of distance (namely, minimality, symmetry, and the triangle inequality) (Carroll and 

Wish, 1974; Shepard, 1974). However, contributions by Tversky (1977) and Tversky 

and Gati (1982) show that metric models of similarity are not adequate, providing 

empirical evidence that similarity judgments violate minimality, symmetry, and the 

triangle inequality. Indeed, recognition experiments have shown that an object is more 

likely to be recognized as another one rather than as itself, thus violating minimality. 

Moreover, similarity assessments have an intrinsic asymmetric nature: a statement of 

the form “a is like b” is not equivalent to “b is like a”. Experimental results show that, 

given two objects a and b, we tend to select as referent (i.e., the object of the sentence) 

the most prototypical or salient of the two, and the other, less salient, as the variant 

(i.e., the subject of the sentence). As an example, we say that “an ellipse is like a circle” 

and not that “a circle is like an ellipse”. It is also important to note that asymmetries in 

similarity have been observed not only in comparative tasks, but also in production 

tasks (e.g. pattern recognition and stimulus identification) in which a subject is given a 

stimulus and is asked to respond with the most similar response. We conclude that 

similarity is asymmetric, that the direction of the asymmetry is determined by the 

relative salience of stimuli, and that we generally choose as referents the most 

prototypical stimuli. As for the triangle inequality, it cannot be so easily tested, as it 

cannot be expressed in ordinal terms (contrary to minimality and similarity features). 

However, if a and b are quite similar to c, then it must be the case that a is not so 

dissimilar from c. For an example, we can say that Jamaica is similar to Cuba because 
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of geographical proximity and that Cuba is similar to China because of their common 

political regime; on the other hand, Jamaica and China are very dissimilar from one 

another. This example suggests that similarity is not transitive and that the perceived 

distance between Jamaica and China much exceeds the sum of the distances between 

Jamaica and Cuba and Cuba and China (thus violating the triangle inequality). Tverky 

(1977) proposes a model of similarity (called contrast model) that accounts for 

experimental data, according to which objects (or more in general stimuli) are 

described as a set of features and similarity is described as a process of feature 

matching. 

Now, let us analyze more in dept the interplay between similarity and 

categorization and the effects of a change of the context on similarity. As said, 

similarity judgments are not symmetric but depend on the salience of some attributes 

and objects/stimuli are grouped so that similarity is maximized within and minimize 

between categories. Tversky (1977) argues that attribute salience has two components: 

intensity and diagnosticity. The first has to do with the frequency with which an 

attribute occurs and is rather stable across contexts, the second with the frequency with 

which an attribute is employed as a criterion of classification and varies across 

contexts. The effects of context on similarity can be explained in terms of a change in 

the diagnostic salience of attributes induced by different groupings of objects, and have 

been verified experimentally; given a set of objects, the addition or deletion of some 

objects alters the diagnostic salience of the attributes of the remainder objects, leading 

to a corresponding change in the perception of their similarity. It follows that if 

classification is determined by similarity among objects, it is also true that the 

similarity among objects depends on how they are grouped. This means that there is a 

bidirectional relationship between categorization and similarity, in the sense described 

above. 

Tversky’s contrast model of similarity is quite important not only because it 

accounts for empirical data, but also for the fact that it unifies under the same 

framework the intimately linked concepts of similarity, family resemblance, and 

prototipicality, interpreting them as linear combinations of the measures of the sets of 

common and distinctive features. 

Generalization is defined as the tendency to react in the same way to stimuli that 

are similar (but not equal) to a stimulus experienced in the past. In other words, a 

response conditioned to one stimulus tends also to occur to other stimuli, and the 
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correlation stimulus-response is function of the degree of similarity between that 

stimulus and that one to which the response was originally conditioned. As Shepard 

(1958:242) puts it “The principle of stimulus generalization is of such fundamental 

importance that any quantitative theory of behavior that fails to deal with it explicitly 

can only be regarded as incomplete”. It is evident from its definition that generalization 

is intimately linked with similarity. 

The legitimacy of the statement “All objects A have property B” based on the 

knowledge that some observed objects A have property B, has been discussed and 

questioned, since Aristotle, by many logicians and philosophers. 

In particular, instance-based generalization can be defined as a process of inductive 

inference by which we add new rules to existing concepts (Holland et al., 1986). 

According to these authors, generalization can be made about abstract categories (of 

the kind “If X is a dog, then X barks”) and individuals (of the type “If you do this, he 

will do that”). In both cases, generalization produces the expectation of certain 

properties of the object or individual; however, whereas these properties are rather 

stable (in terms of variability) for objects, the behavioral properties of individuals can 

be quite instable. 

The question that arises is then what are the factors that lead us to consider our 

generalizations as valid or, more precisely, what are the factors we consider to assess 

the acceptability of sentences of the type “every object (in the broadest sense of the 

term) F has property G”. Holland et al. (1986) argue that these factors are two. The first 

is the number of items F that have been observed to have property G. The second is our 

knowledge about statistical properties of the population about which we are 

generalizing a concept; if we know that F and G are highly invariant across the 

population, the generalization from few instances will be legitimate; on the contrary, if 

we know that F and G exhibit high variability, then we will consider our generalization 

as acceptable only after having observed a greater number of instances. This principle 

of acceptability can also be expressed equivalently saying that acceptability of 

generalization is proportional to the cue validity of observed objects. However, we do 

not have to forget that this cue validity depends upon the category that we select as 

reference class to assess the degree of variability of the objects in consideration. This 

last point shows also that organization of categories has a direct influence on 

generalization. 
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1.7  Modeling Categorization and Generalization with Neural 

Networks 
From 1943, when McCulloch and Pitts first introduced their neuron model, neural 

networks have always been intended and used as tools for classifying data. As Hertz, 

Krogh, and Palmer (1991:9) point out “The reason for much of the excitement about 

neural networks is their ability to generalize to new situations”. The term neural 

networks refers to a large family of models that implement a computational paradigm 

alternative to the usual one, taking inspiration from neuroscience and the structure of 

real neurons in the brain. McCulloch and Pitts’s model is a computationally powerful 

device, as it has been shown that an assembly of such artificial neurons is capable in 

principle of universal computation i.e., it can perform any computation that an ordinary 

digital computer can. 

I will briefly illustrate here two ways for modeling the processes of category 

formation and generalization with neural tools. Detailed descriptions about these 

models can be found in Hertz, Krogh, and Palmer (1991), Bishop (1995), and Ripley 

(1996). 

The first is that followed by the model of associative memory proposed by Hopfield 

(1982). This model gives a solution to the following problem: 

 

Store a set of patterns in such a way that when presented with a new pattern P, 

the network responds by producing whichever one of the stored patterns that 

most closely resembles P. 

 

Hopfield provides a procedure that allows to store in the connection weights of a 

network some binary vectors. These vectors (also referred to as patterns) are generally 

interpreted as binary codes of the possible true states the world can assume (or some 

ideal prototypical objects); in a pattern, each component (bit) corresponds to a feature 

of that state or object, and the value of each bit can be interpreted as the 

presence/absence of that feature. In this kind of networks, units can then assume only 

binary values, and the state of a network is defined as a particular configuration of 

values of its units. 

Whenever a network is fed with an arbitrarily chosen input, after an iterated process 

of updating of its unit activation states that minimizes a measure of energy associated 
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to network states (relaxation), it produces as an output the stored pattern that most 

resembles that particular input (usually in terms of Hamming distance). It is worth 

noting that connection weights remain unchanged and what changes is the activation 

state of units. Here inputs are commonly interpreted as noisy stimuli from the 

environment; according to this view, the task is then that of reconstructing the right true 

state from the information contained in the stimulus. 

From another perspective, in the space of all possible states of the network (called 

configuration space), stored patterns behave as attractors. The dynamics of the system 

carries starting point (inputs) into one of the attractors (the response). 

This approach of modeling associative memory is very similar to Gilboa and 

Schmeidler’s (1995) Case-Based Decision Theory, which seems rather a particular case 

of the Hopfield model. 

The main limitation of the Hopfield’s model is that classes are constructed around 

prototypes or true states that are known a priori i.e., the patterns stored in a network. 

This assumption is quite strong and is reasonably applicable only to a restricted class of 

real world situations. However, there are neural models according to which networks 

can be thought a classification task and generalize this knowledge to never seen before 

mapping tasks. 

As explained in Hertz, Krogh, and Palmer (1991), according to the procedure called 

supervised learning (or learning with a teacher), network outputs are compared with 

known correct answers, and networks receive feedback about any errors. Usually, 

networks with separate input and output units are considered. More specifically, 

networks can be taught to operate classification tasks on some representative pairs of 

input-target (training set), changing their connection weights in response to each 

training pair as to minimize the difference between networks’ and desired outputs 

(Rumelhart, Hinton, and Williams, 1986a and 1986b; McClelland, Rumelhart, and the 

PDP Research Group, 1986). What a neural network learns is stored in its connection 

weights, and this knowledge can be used to deal with new classification tasks for 

which, in most of the cases, an a priori solution is not known. The association task 

learnt with supervised learning is more general than that in the associative memory 

problem; there we wanted the stored patterns to reproduce themselves when used as 

inputs (auto-association), in contrast to the hetero-association task, in which output 

patterns differ from input ones. 
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Supervised learning is particularly straightforward in the case of networks with a 

particular structure i.e., layered feed forward networks. These models were called 

perceptrons when they where first studied in detail by Rosenblatt (1962). 

 

  
Figure 2. Perceptrons. On the left hand side, a simple perceptron, which has (by 

definition) only one layer of connections. On the right hand side, an example of two-

layer perceptron. 

 

Figure 2 shows two examples of percetrons; there is a set of input units whose role 

is that of feeding the network with external stimuli and on which no computation is 

performed. After this, one or more intermediate layers of units can come (called hidden 

units), followed by a final layer of output units that yield the result of the computation. 

From a unit, there are neither connections pointing to units in previous layers, nor to 

other units in the same layer, nor to units in more than one layer ahead. In virtue of the 

described structure, connections in feed-forward networks are asymmetric i.e., all 

connections are unidirectional. This fact is of great importance, as it implies that, in 

general, the existence of an energy function defined over network states is not 

guaranteed; only symmetric connections guarantee the existence of such a function – as 

in the Hopfield’s model, wherein connections are all bidirectional and the relaxation 

process relies on energy function minimization. 

Perceptrons are particularly powerful models and can virtually learn any 

classification task, as two-layer networks have the important property that they can 

approximate arbitrarily well any functional (one-to-one or many-to-many) continuous 

mapping from one finite-dimensional space to another, provided the number of hidden 

units is sufficiently large (see Bishop, 1995). 
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One-layer feed-forward networks are called simple perceptrons. They have a layer 

of input units, one layer of output units, and a layer of connections in between. 

Therefore, there are not hidden layers. If output units are labeled with 

€ 

yi (

€ 

i =1,2,...,n ), 

output units with 

€ 

x j  (

€ 

j =1,2,...,m ), and connection weight from input unit j to output 

unit i with 

€ 

wij , then the computation of outputs is simply: 

€ 

yi = g hi( ) = g wij x j
j
∑
 

 
  

 

 
  , 

where 

€ 

g ⋅( ) is the activation function computed by the units, sometimes referred to also 

as gain function or squashing function. Usually 

€ 

g ⋅( ) is taken to be non linear and 

differentiable (in which case we have continuous output units), but also threshold 

functions (binary output units) and linear functions (linear output units) are often used. 

Supervised learning is implemented in the context of simple perceptrons as follows. 

In response to each training pair, the following error or cost function is evaluated: 

€ 

E w( ) = ti
µ − yi

µ[ ]
2

i,µ
∑ = ti

µ − g wij x j
j
∑
 

 
  

 

 
  

 

 
 
 

 

 
 
 

2

i,µ
∑ , (1) 

where 

€ 

tµ = t1
µ ,...,ti

µ,...,tn
µ( )  represents the target vector (

€ 

µ =1,2,...,Ν). Function (1) 

provides a measure of the divergence between the output provided by the network and 

the desired output (target), and depends upon weights. The gradient descent algorithm 

provides a procedure that allows us to find a set of weights, which produces exactly the 

desired outputs from each input pattern, by successive improvement from a point 

arbitrarily chosen. Specifically, this procedure suggests changing all weights by a 

quantity 

€ 

Δwij  given by: 

€ 

Δwij = −η
∂E
∂wij

, (2) 

where the parameter 

€ 

η ∈ 0,1( ) (called rate of learning) tunes the speed of learning i.e., 

how rapidly the network adapts. If we consider the error function (1), then we can 

write: 

€ 

∂E
∂wij

= − ti
µ − g hi

µ( )[ ] ⋅ ′ g hi
µ( ) ⋅ x j

µ

µ

∑ , 

leading to 

€ 

Δwij =η ⋅ ti
µ − yi

µ[ ] ⋅ ′ g hi
µ( ) ⋅ x j

µ . (3) 
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A sufficient condition, although not necessary, for the network to be able to learn 

successfully the association tasks in the training set is linear independence of input 

patterns. However, assuming that a solution exists, the gradient descent algorithm 

might not be able to converge to it; if for example the targets lie outside the range of 

€ 

g ⋅( ) (e.g., 

€ 

±1 targets with 

€ 

g h( ) = tahn h( )), the cost function might have local minima 

besides the global one at which 

€ 

E = 0. The gradient descent can then become stuck in 

such a minimum. In order to overcome this problem, some simulations techniques have 

been developed (e.g., simulated annealing). 

Nor the quadratic cost function (1) is the only possible one. Other error functions 

have been proposed in the literature. The relative entropy function has received 

particular attention (Kullback, 1959; Hopfield, 1987; Baum and Wilczek, 1988), and is 

defined as follows: 

€ 

E w( ) =
1
2
1+ ti

µ( ) log 1+ ti
µ

1+ yi
µ +

1
2
1− ti

µ( ) log 1− ti
µ

1− yi
µ

 

 
 

 

 
 

i,µ
∑ . (4) 

This error function can be naturally interpreted in terms of learning the correct 

probabilities of a set of hypothesis represented by the output units; provided that the 

range of the activation function 

€ 

g ⋅( ) is 

€ 

−1,1( ) , then 

€ 

1
2
1+ yi

µ( ) can be interpreted as the 

guess of the network, and 

€ 

1
2
1+ ti

µ( )  as the correct probability. 

The use of the entropy cost function (4) has been shown to solve some learning 

problems that cannot be solved through the use of the quadratic cost function. 

Moreover, using (4) as a measure of error and taking 

€ 

g h( ) = tanh βh( )  then, 

€ 

Δwij =η ⋅ β ⋅ ti
µ − yi

µ[ ] ⋅ x j
µ . (5) 

As we can see, (4) is equal to (5), except for the term 

€ 

′ g hi
µ( ). The updating rule (5) 

is identical to the rule that can be derived for linear output units i.e., when the 

activation function is of the form 

€ 

g h( ) = h . 

Marchiori and Warglien (2008), in defining their Perceptron-Based (PB) learning 

model (which I describe in Chapter 2), multiply the updating rule (5) by a term of 

regret; this fact adds further insights and meaning to the fundamental assumptions and 

mechanisms of this model of learning. 
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1.8  Methodological Appendix 
Erev and Haruvy (2005) note that literature on learning model comparisons has 

provided contrasting results on which model best fits and/or predicts empirical data. 

This is the consequence of the fact that the methodological approaches adopted are 

different and serve different purposes. Specifically, contributions by Erev and Roth 

(1998) and Sarin and Vahid (2001) show that simple reinforcement learning models 

provide the best approximation of empirical data. On the opposite, Camerer and Ho 

(1999) suggest that the model of learning that best approximate data is the EWA 

model, a hybrid model merging reinforcement learning and beliefs learning. Along a 

third line of research, Stahl (1999) shows that a simple logit best reply model with 

inertia and adaptive expectations outperforms both EWA and reinforcement models. 

The above-mentioned results appear to contradict each other. However, this is 

consequence of two facts: first, the methodologies adopted are different and, second, 

models of learning are intrinsically misspecified. 

As for the methodologies adopted, they can be grouped into two main classes: one-

period-ahead and T-period-ahead techniques. The former class of techniques is 

focused on within-game predictions i.e., observed information from past trials is used 

to predict the behavior in the next period. Accordingly, the following likelihood 

function is maximized: 

€ 

L θ( ) = pit xit | x1,...,xt−1,θ( )
t=1

T

∏
i=1

N

∏ , 

where i indexes players, t time periods, 

€ 

xt  is the choice of player i at time t, 

€ 

θ  is the 

vector of parameters, and 

€ 

pit  is the estimated probability of choice on period t. Some 

authors allow for different set of parameters in different games (Camerer and Ho, 

1999), whereas some others (Cheung and Friedman, 1998; Stahl, 1999) suggest a single 

parameter set for all games. 

According to the T-period-ahead techniques, researchers simulate the entire path of 

interaction and compare it with the observed one. It is then evident that this approach 

heavily relies on simulations. Usually, the best model is that one that most accurately 

predicts observed data in terms of Mean Squared Deviation (MSD) rather than in terms 

of likelihood. Indeed, in this case, likelihood estimation would require the computation 

of the following (t-1)-fold integral: 
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€ 

L θ( ) = ... fit x1,...,xt−1,xit ,θ( )∫ dx1 ⋅ ...⋅ dxt−1∫
i=1

N

∏ , 

where 

€ 

f it ⋅( )  id the density function of choices for player i at time t. On the one hand, 

the calculus of the integrals above would be computationally infeasible, and, on the 

other, MSD can be shown to have nice properties not shared with other scoring rules 

(Selten, 1998). 

One might consider the T-periods-ahead technique as rather inefficient, as 

information on past periods of play is not taken into consideration. Nonetheless, this 

approach can be successfully adopted to predict data in those cases in which there are 

no previous available observations for that particular game or class of games. 

Contributions by Roth and Erev (1995), Erev and Roth (1998), and Sarin and Vahid 

(2001) insist on a single set of parameters for all games when adopting this kind of 

analysis. 

If models were well specified, then the two described techniques would provide the 

same ranking over models. However, this is not the case as models, in general, provide 

only an approximation of phenomena and, perhaps more important, it has been shown 

that subjects are sufficiently heterogeneous that just pooling them together can be a 

source of model misspecification. Moreover, misspecification can arise also 

considering a unique set of parameters across different games (this aspect concerns 

mainly the new-game analytical approach). Due to model misspecification, maximizing 

one-period-ahead likelihood might be different than minimizing MSD, then resulting in 

different rankings of models. Although all models of learning are likely to be 

misspecified (particularly those which assert the same set of parameters for different 

games), they can nonetheless provide some useful approximation of observed behavior. 

Indeed, in certain classes of games, it has been shown that new-game predictions of 

some learning models are more accurate than those derived using Nash equilibrium 

(see Section 2). 

Erev and Haruvy (2005) show that differences in the responses of new-game and 

within-game approaches are mainly due to action inertia i.e., the tendency of players to 

repeat past actions – independently from their beliefs. Clearly, in those cases in which 

the inertial component of behavior is important, within-game analyses based on the 

one-period-ahead technique will favor models that take inertia (either explicitly or 

implicitly) into consideration, as in the case, for example, of the EWA model. On the 
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opposite, the informative value of inertia is negligible within the new-game analytical 

framework, as individuals’ past history of play is not considered. In this case, the 

analysis is likely to favor reinforcement models, as shown in Erev and Roth (1998), 

Erev et al. (1999), and Sarin and Vahid (2001). 

The conclusion is that there does not exist the “right” procedure to compare models 

of learning and that different methodological approaches can lead to different rankings 

of the models. However, noting that different analyses serve different purposes, the 

contradictory results proposed in the literature can be interpreted as “a result of 

ignoring the effect of the type of available information on a model’s success” (Erev and 

Haruvy, 2005:369). 

 

Individual Versus Pooled Data-Driven Predictions 

As said in the previous paragraph, generalizing model parameters across games can be 

a source of model misspecification. On the other hand, as noted in Erev and Haruvy 

(2001), also pooling subjects together and describe their behavior, within the same 

game, with the same set of parameters can produce serious forms of model 

misspecification; indeed, there is no valid reason to exclude a priori that different 

subjects behave differently in the same strategic situation, and that these differences in 

behavior are not due to random factors, but rather to systematic characteristics of 

subjects. 

However, introducing agents’ heterogeneity, models “can easily get out of hand and 

lose robustness” (Erev and Haruvy, 2001:4), with the final result that in spite of the 

evidence against agents’ homogeneity (Cheung and Friedman, 1997; Camerer and Ho, 

1998; Busemeyer and Stout, 2002), most part of the analyses proposed adopt the 

parsimonious approach of describing behavior of all agents with the same set of 

parameters. 

 

Scoring Rules 

Scoring rules provide a measure of divergence between observed data and data 

estimated with the use of some probabilistic model that fully specifies a probability 

distribution over outcomes or actions. More specifically, in the case of repeated games, 

a score is computed in each period of play on the basis of observed actions and 
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estimated probabilities; eventually, scores are summed up yielding a measure of model 

performance. 

The two concepts of distance and scoring rule are different but intimately related, 

as it will be made clear later. Before giving the definition of scoring rule some notation 

is in order. Let 

€ 

X  be a random variable with cumulative distribution function (cdf) 

€ 

F  

and probability density function (pdf) 

€ 

f  defined over the range 

€ 

D⊆ R. A scoring rule 

is a real valued functional (possibly equal to 

€ 

−∞ ) 

€ 

S g,x( )  defined for all densities 

€ 

g  in 

€ 

D (Friedman, 1983). In other words, a scoring rule provides an assessment of the 

quality of the forecast in terms of a real number (possibly 

€ 

−∞ ), based on the estimated, 

or hypothesized, density 

€ 

g  and the realization 

€ 

x  of the random variable 

€ 

X  (whose pdf 

€ 

f  is obviously unknown to the researcher). A scoring rule is said to be proper, or 

incentive compatible, if the expected value: 

€ 

E f S g( )[ ] = S g,x( ) f x( )dx
D
∫ , 

is maximized on 

€ 

D at 

€ 

g = f . Incentive compatibility implies that the correct theory is 

the only one that obtains the highest score and is a minimal requirement for a scoring 

rule. A scoring rule is said to be effective with respect to distance 

€ 

d  if for all densities 

€ 

f , 

€ 

g , and 

€ 

h  in 

€ 

D we have: 

€ 

E f S g( )[ ] > E f S h( )[ ]⇔ d f ,g( ) < d f ,h( ) . 

Effectiveness establishes a precise relationship between the scoring rule 

€ 

S g,x( )  and 

distance 

€ 

d; the expected score is a monotone decreasing function of the distance 

between the true and the estimated distribution. It is worth noting that if 

€ 

S g,x( )  is 

effective, then it is also proper. 

Let us now consider the measure 

€ 

d2  defined as: 

€ 

d2 f ,g( ) = f x( ) − g x( ) dx
D
∫

 
 
 

 
 
 

1 2

, 

which in the case of discrete distributions assumes the well known form: 

€ 

d2 f ,g( ) =
1
n

pi − qi( )2
i=1

n

∑
 
 
 

 
 
 

1 2

. 

The norm of order two of a function 

€ 

f  defined over range D is: 

€ 

f 2 = f x( )
2
dx

D
∫

 
 
 

 
 
 

1 2

. 
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Now, it can be proved that the quadratic scoring rule, defined up to a linear 

transformation, 

€ 

Q g,x( ) = 2g x( ) − g 2
2  is proper and effective with respect to distance 

€ 

d2  

above defined. As an example, the linear scoring rule 

€ 

N g,x( ) = g x( )  is not proper and 

effective with respect to any measure, whereas the logarithmic one 

€ 

L g,x( ) = logg x( ) 

has shown to be proper. 

The family of Mean Square Deviation (MSD)-based rules (whose elements differ 

up to a linear transformation) satisfies some nice properties other than those of 

incentive compatibility and effectiveness above mentioned (Selten, 1998). 

 

The Information-Theoretic Approach 

MSD can be used as a criterion for comparing models, provided that the number of 

parameters of the models in consideration is the same; in other words, MSD provides a 

very good measure of data fitting, but it cannot be interpreted as a measure of model 

predictive power and robustness, as more complex models are intrinsically favored. 

Indeed, an arbitrary increase in the number of parameters cannot correspond to a 

decrease in the accuracy of fit. Hence, if the analysis is focused on measuring model 

predictive power, other methods have to be adopted that explicitly penalize model 

statistical complexity. 

In the new-game analytical framework, one of the possible alternatives is to adopt 

the information-theoretic approach. According to this approach, models are compared 

on the basis of Akaike’s Information Criterion (AIC) defined as follows (Akaike, 1973; 

Burnham and Anderson, 2003): 

€ 

AIC = −2log L ˆ θ | data( )( ) + 2K , 

where 

€ 

log L ˆ θ | data( )( )  is the log-likelihood evaluated at the MLE 

€ 

ˆ θ  of the true 

parameter (or parameter set) 

€ 

θ , given the observed data 

€ 

y , and 

€ 

K  is the number of 

estimable parameters. A second order information criterion for small samples is also 

defined (see Burnham and Anderson, 2003 for further details). In the case of Least 

Squares estimation, under the assumption that residuals are normally distributed with 

constant variance, then AIC can be easily calculated as: 

€ 

AIC = n log ˆ σ 2( ) + 2K , 

where, 
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€ 

ˆ σ 2 =
ˆ ε i

2∑
n

, 

is the MLE of 

€ 

σ 2, and 

€ 

ˆ ε i are the estimated residuals for a particular model. In this 

particular case, 

€ 

K  must include also 

€ 

σ 2 and all other parameters. Despite its simplicity, 

this approach does not seem to be applicable to measure the performance of models of 

learning in games. Indeed, computing AIC to obtain an overall assessment of 

predictions over all games necessarily implies to pool data from different experiments 

and hypothesize that residuals are normally distributed with common variance; 

however, there is no valid reason for considering the variance of residuals as constant 

across different games. 

 

Cross Validation and Generalization Criteria 

The cross validation criterion was first formalized by Mosier (1951) and then 

subsequently elaborated by a number of researchers. The essential idea is that of 

dividing the total sample of 

€ 

N  observations into two independent subsamples of sizes 

€ 

N1 and 

€ 

N2. During the calibration stage, model parameters are estimated as to 

minimize the discrepancy between predictions and observed statistics based on 

€ 

N1 

(called in-sample data). In the validation stage, the estimated parameters are used to 

make predictions over statistics based on the second set of observations 

€ 

N2 (out-of-

sample data). The model that best performs in this second stage is to be preferred. This 

process can be repeated using different divisions of the total sample into in-sample and 

out-of-sample data. 

As noted in Busemeyer and Wang (1999), the usefulness of this criterion is limited 

to the case in which the sample size is small because as the sample size increases, the 

target statistics from in-sample and out-sample data tend to the same value; in this case, 

a lower discrepancy in the calibration stage is very likely to produce a small 

discrepancy in the validation stage as well. 

The Generalization Criterion for model comparison was first formalized by 

Busemeyer and Wang (1999) and is quite similar to the cross-validation procedure. 

Whereas cross-validation employs data from the same design for both the calibration 

and the validation stages, generalization employs data from an entirely new design for 

the validation stage. The latter criterion distinguishes for the emphasis placed on 
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extrapolations to new experimental conditions in the second stage, and is useful also 

when the sample size is large. 

However, the use of Busemeyer and Wang’s criterion does not seem appropriate in 

the context of learning model comparison. Specifically, for a meaningful use of the 

generalization criterion, the different conditions (i.e., games) should be randomly 

drawn; on the opposite, a typical compound dataset groups together data from different 

experiments in which games are usually chosen ad hoc, reflecting the different 

purposes of experimenters. For this reason, it is not clear at all how to partition datasets 

in the two subsamples for calibrating and validating models. 

 

The Equivalent Number of Observations (ENO) Measure 

ENO was first proposed by Erev et al. (2002) to measure model predictive accuracy of 

choice behavior in experiments on repeated games. The idea proposed by the authors is 

that rather looking at whether a theory can or cannot be rejected based on the data, we 

should ask ourselves how good is the approximation of the data provided by that 

theory. One intuitive way to formalize this concept is then to determine the number of 

empirical observations that are needed to provide a prediction as accurate as that of the 

model. This number is called equivalent number of observations (ENO) (Erev et al., 

2007). Therefore, the higher the ENO, the better the model. ENO is defined as follows: 

€ 

ENO =
S2

M − S2( )
, 

where 

€ 

S2 is the pooled variance (across games in the experiment), and M is the mean 

square error associated to the model. 

I do not use ENO in my analyses because in order to compute 

€ 

S2 and M, data for 

each independent observation are needed. For the datasets I consider in Chapter 2, 

individual data are not available in all cases, whereas for the datasets I consider in 

Chapter 3, individual data are available. Nonetheless, I adopt the approach based on 

MSD Prediction scores (see the method section of Chapter 2), as it can be applied in 

both situations (with or without data on individual observations), thus providing a 

uniform methodology for evaluating and comparing model performances. 
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CHAPTER 2 

2. PREDICTING HUMAN BEHAVIOR BY REGRET-DRIVEN 

NEURAL NETWORKS 
 

Abstract. The surge of interest in the neural bases of economic behavior raises the 

question of how well neural networks can model human interactive decision-making. 

Experimental game theory has provided a large set of laboratory data on human 

interactive learning in repeated games, often contradicting the predictions of standard 

game theory and justifying the search for new explanatory models. Here, I use datasets 

from 35 experiments on repeated games with a unique equilibrium in mixed strategies 

to compare the descriptive and predictive performances of the Perceptron-Based (PB) 

learning model (Marchiori and Warglien, 2008) with some of the most popular learning 

models in the behavioral game theory literature. As a result, the PB model turns out to 

be the best predictor of empirical data with respect to all other models of learning, with 

the exception of a model proposed by Ert and Erev (2007), similarly based on regret. 
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2.1  Models of Learning 
Standard game theory does not provide a theory of learning and is limited to describing 

a steady state situation. On the contrary, experimentally observed behavior provides 

overwhelming evidence of the existence of a process, commonly known as learning, 

after which past experience dramatically affects subjects’ current strategic choices. 

Specifically, interactive learning differs from individual learning in that given N agents, 

each agent adapts to a strategic environment which is continuously modified by the 

concurrent learning of the other N-1 agents. 

Learning models try to replicate artificially the process in which past experience 

affects agents’ current behavior; more specifically, they establish how the probabilities 

with which future actions will be chosen are affected by information about the 

outcomes produced by actions chosen in the past. In order to do this, many quantitative 

theories assume that, for a player, all his possible actions are associated with numerical 

evaluations, called attractions or propensities (these two terms will be used 

interchangeably), which are mapped, according to opportune rules, into choice 

probabilities. Propensities can be interpreted as a measure of the propensity of a player 

to choose the actions they are associated with, while learning rules determine how these 

attractions are updated in response to past experience. 

There is a wide variety of different approaches for modeling learning (for a 

comprehensive review of these models and theories see Camerer, 2003), but the most 

successful learning theories proposed so far are those of reinforcement learning, beliefs 

learning, hybrid models combining both (Ho, Camerer, and Chong, 2007), and, finally, 

theories which emphasize the role of post-decision regret as the driver of human 

behavior (Erev et al., 1999; Ert and Erev, 2007). 

 

2.2  The PB Model 
Departing from the mainstream behavioral game theory literature on learning, 

Marchiori and Warglien (2008) propose a model of interactive learning that embeds the 

basic principles of Learning Direction Theory (LDT) (Selten and Stoecker, 1986), and 

translate them into a neural network-based model which is potentially more flexible 

than the traditional “attractions and stochastic choice rule” models, because it is 

responsive to the structure of the game and capable of modeling the transfer of learning 

to new games. 
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The basic assumption of the Perceptron-Based (PB) model is that learning is driven 

by a sort of ex-post rationalizing process: individuals modify their behavior by looking 

backward to what might have been their best move, once they know their opponents’ 

moves. They adjust in the direction of such ex-post best response, and it is assumed 

that the intensity of such directional change is proportional to a measure of regret – 

how much they have missed by not playing that move. This is consistent with recent 

neuroscience research on individual decision making, showing that regret affects 

learning, and that both neuro-physiological and behavioral responses to the experience 

of regret are correlated to its amplitude (Coricelli et al., 2005 and Daw et al., 2006). 

The PB model consists of a simple analog perceptron (i.e., a one-layer feed-

forward neural network) fed back by a measure of regret for foregone payoffs. Input 

units (labeled with 

€ 

x j) receive relevant information about the structure of the strategic 

environment (i.e., game payoffs) and propagate such information to higher-level units 

in the network. Output units (labeled with 

€ 

yi) are in a one-to-one mapping with the 

elements in each agent’s set of actions and have a sigmoid (hyperbolic tangent) 

activation function. The activation state of output units represents the propensity (or 

attraction) demonstrated by an agent to play the corresponding action. Propensities are 

turned into choice’s probabilities by a simple normalization. 

 

 
Figure 1. How strategic information (the payoff matrix) is mapped into neural net 

structured-agents in the PB model. 

For an agent, the propensity of playing its action i-th, is given by: 

€ 

yi = tanh λ wij x j
j
∑

 

 
  

 

 
  , (1) 
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where 

€ 

wij  is the weight of the connection from the j-th input unit to the i-th output unit. 

For a generic k-th player, propensities’ updating rule is given by: 

€ 

wij
t = wij

t−1 + Δwij , (2) 

with: 

€ 

Δwij = −λ2 ti a
−k( ) − yi[ ]Rk ai

k,a−k( )x j . (3) 

In (1) and (3), 

€ 

λ  is the unique free parameter of the model; 

€ 

ti a
−k( )  is the ex-post 

best response to other players’ 

€ 

a−k  action profile; the term 

€ 

Rk ai
k,a−k( ) represents the 

regret of player k-th given the action profile 

€ 

ai
k,a−k( ); 

€ 

x j  (the activation state of j-th 

input unit) could be interpreted as the strength of the input to the node (payoff saliency 

factor). Regret is defined as the difference between the maximum obtainable payoff 

given other players’ actions and the payoff actually received. Thus, the psychological 

intuition underlying (3) is that connection weight adjustment is driven by a series of 

factors that can be summarized as follows: 

 

 

Adjustment = Learning rate × Distance from ex-post best response × Regret × 

Input saliency 

 

 

It is important to note that in the PB model past experience affects future attractions 

only indirectly, through changes in connection weights. No explicit track of past 

experiences needs to be kept and it is indirectly store in the configuration of the 

weights of connections. 

The free parameter 

€ 

λ  has two roles in the model: it determines, in (3), agents’ 

learning rate and, in (1), the steepness of the activation function in a neighborhood of 

the origin. Marchiori and Warglien (2008) also propose a zero-parameters version of 

the model, called PB0, where 

€ 

λ  is, in (1) and (3), replaced by a deterministic function. 

The value of this self-tuning function is defined at each time-step as the ratio between 

the actual cumulated regret and the maximum cumulated regret, as follows: 

€ 

λt
k =

Rt
k

t
∑
max Rt

k( )
t
∑

, (4) 
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where t is the number of iterations, 

€ 

Rt
k is the actually experienced regret by player k at 

round t, and 

€ 

max Rt
k( )  is the maximum possible regret player k could experience at time 

t (of course in a repeated game this value is constant). 

A highly simplified example will clarify the mechanics of the model. To make 

things easier, I will consider a network with only two inputs and two output nodes. 

 

 
Figure 2. An example of how the PB model works. Time step 0: initialization of 

agents. 
 

For simplicity, let’s start from an initial state in which all connection weights are 

equal to 0.3 (usually, they are initialized randomly). In the first run, output units are 

activated, assuming values that are the sum of the inputs, weighted by connection 

weights, and transformed by the hyperbolic tangent function (here we assume 

€ 

β =1). 

The activation state of both output units will be 

€ 

tanh 0.24 + 0.06( ), that is 0.291. In 

practice, this implies that both actions will be played with equal probability after 

normalization. 
 

 
Figure 3. An example of how the PB model works. Time step 0: calculation of 

attractions. 
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Imagine that the network plays the “low node” action. It turns out to be the wrong 

move, and a regret of 0.6 is experienced. After the updating, weights will be as in 

figure 4. 
 

 
Figure 4. An example of how the PB model works. Time step 1: ex-post 

rationalization. 

 

The output vector (0.529, -0.223), after normalization, implies a 0.667 probability to 

play the “high node” action. 

Notice that changing the input weights will change the learning trajectory even if 

the inputs always repeat themselves. Once more, a simple numeric example will clarify 

the point. Consider the following network, which is identical to that one in figure 2 and 

against the same environment, except for the input vector, which has now been 

modified to (0.5,0.5). The initial output will be exactly the same:  

 

 
Figure 5. An example of how the PB model works. Time step 0: initialization of agents 

with new inputs. 

 

If the network plays also in this case the “low node” action and receives a same 

amount of regret 0.6, the network will change as follows: 
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Figure 6. An example of how the PB model works. Time step 0: calculation of 

attractions. 

 

which, after normalization, will imply a 0.617 probability to play the “high node” 

action. 

Will differences in learning paths persist in the long run, and with full-fledged 

networks? I conduced a further analysis over the 10 Erev et al.’s (2007) games, 

comparing the learning trajectories of pairs of networks with complete and correct 

payoff inputs with those of pairs of networks with “flat” inputs (e.g., representing all 

inputs as 0.5), which is equivalent to a simpler “attraction and choice rule” architecture. 

All the rest was kept the same. I observed that in general the two versions produce 

average behaviors that are significantly different. Moreover, the more diverse the 

payoffs, the more the trajectories tend to differ (up to a 4% difference in the predicted 

frequencies of play). Therefore, the Perceptron could be well approximated by a more 

conventional learning architecture only in the cases in which all payoffs are similar 

enough. 

A theoretical issue remains open: is it possible to obtain an explicit form the error 

function E that changes in weights defined in (3) try to minimize? In order to do that, 

the differential equation: 

€ 

Δwij = −λ
∂E
∂wij

= −λ2 ti a
−k( ) − yi[ ]Rk ai

k,a−k( )x j , (5) 

may be integrated, and we obtain the following: 

€ 

E = λ ti a
−k( ) − yi[ ]Rk ai

k,a−k( )x j∂wij∫ . (6) 

Now, the question that arises is that whether or not in equation (6) it is possible to 

consider the term 

€ 

Rk ai
k,a−k( ) independent of 

€ 

wij . In the affirmative case, we could 

easily derive the explicit analytical form of E. Yet, this does not seems to be possible 
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because the regret term 

€ 

Rk ai
k,a−k( ) depends on the profile of actions that in its turn 

depends on the distribution of probability over actions, and then, although indirectly, 

on 

€ 

wij . 

 

2.3  Methods 
Drawing from the approach pioneered by Erev and Roth (1998), for each model I 

determine three different measures of data fitting and prediction, based on data from 

experiments on 35 different, repeatedly played games (described in the next section). 

All three types of scores are based on Mean Squared Deviation (MSD) and are: By 

Game, Best Fit, and Prediction scores. 

MSD is a suitable way to measure the divergence between estimated and observed 

vectors of choice frequencies (Selten, 1998; Erev and Roth, 1995; 1998). Labeling with 

€ 

y  the vector of observed choice frequencies (of length 

€ 

N ) and with 

€ 

′ y θ( ) the vector of 

estimated choice frequencies, given the parameter configuration 

€ 

θ = θ1,...,θk( ) , 

€ 

MSD θ( ) is defined as follows: 

€ 

MSD θ( ) =

′ y i θ( ) − yi( )2
i=1

N

∑
N

. 

By Game scores are obtained by selecting the lowest value MSD for each dataset, 

whereas Best Fit scores correspond to the performance of the models obtained when 

the parameters minimize MSD across all datasets. Finally, Prediction scores are 

computed according to the leave-one-out estimation procedure: for each experimental 

dataset, the remaining datasets are used to estimate the free parameter values that 

minimize MSD over the remaining datasets. The ensuing parameter estimates are 

subsequently used to generate predictions over the left-out condition. 

Since all models I consider here are stochastic, I compute for each condition and for 

each parameter configuration the MSD value for the estimated frequency of choice 

averaged over 150 simulations. Simulations reproduced the structure of laboratory 

conditions, including subject pairing protocol, information feedback available to 

agents, number of agents, and payoffs. To make simulation results comparable, the 

initialization of all models is set to assure equal probabilities of choosing each action at 

the first round of the simulation. 
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Put all together, the experimental data I gathered provide 35 independent 

observations. I compute MSD scores for each model in correspondence to each 

independent experimental observation, and store them in a vector of length 35. In order 

to assess the significance of model pairwise comparisons, I use a Mann-Whitney-

Wilcoxon match-paired signed-rank (two-tailed) test, as done in Selten and Chmura 

(2008). For each pair of models, I test the null hypothesis that the corresponding 

vectors of scores have the same mean. 

I compare the performances of the six different models of learning described in the 

Introduction (namely, REL, RL, NRL, NFP, SFP, and stEWA), together with those of 

the PB1 and PB0 models, and Nash equilibrium. 

Furthermore, I also consider in my analysis three benchmark models. The first is 

the model of random behavior (labeled Random). It is a desirable property for a good 

model of learning that of being able to produce more accurate predictions than those of 

blind random behavior. The other two models of benchmark are called NNET2 and 

NNET. The NNET2 model is nothing but a traditional one-layer analog perceptron, 

where output units are fed back, as usual, by a measure of target-output error. Thus, the 

regret factor is dropped from the updating rule (3) illustrated in Section 2, resulting in 

the following equation: 

€ 

Δwij = λ ⋅ β ⋅ ti a
−k( ) − yi[ ] ⋅ x j . (1) 

NNET2 is a two-parameter model and further differs from PB1 in that steepness 

and learning rate parameters (labeled 

€ 

λ  and 

€ 

β , respectively) are allowed to vary 

independently one another. The NNET model is identical to the NNET2 one, with the 

exception that in (1) I set 

€ 

λ = β , thus obtaining a model with only one free parameter. 

I include the NNET2 and NNET models in my analysis in order to better assess in 

what measure incorporating regret in a one-layer perceptron results in an improvement 

of its predictive and descriptive performances. 

I test also the effects of payoff rescaling on the performance of models. Thus, the 

same methodology described above is applied to test model accuracy when payoffs are 

rescaled according to Diminishing Sensitivity i.e., transformed via the following 

function (called value function): 

€ 

v x( ) =
xα               if x ≥ 0

−λ −x( )β     otherwise,

 
 
 

  
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where 

€ 

α , 

€ 

β , and 

€ 

λ  are positive constants. Tversky and Kahneman (1992) provide 

estimates for these parameters using their experimental data. The obtained values are: 

€ 

α = β = 0.88  and 

€ 

λ = 2.25. 

For each model, the grid search for optimal parameter values was conducted on 

broad parameter spaces, summarized in Table 1. The portions of parameter spaces I 

investigated were suggested by the authors of the models in previous works (Erev at al., 

2007; Ho, Camerer, and Chong, 2007). 

 

Table 1. Values of model free parameters used in my simulations. 

Model Free Parameter: [Interval of variation] – Increment 

NFP 

€ 

λ : 

€ 

1.5,4.0[ ]  - 0.25 

€ 

w: 

€ 

0.1,0.9[ ] - 0.1 

NNET 

€ 

λ : 

€ 

0.05,1.00[ ] - 0.05 

NNET2 

€ 

λ : 

€ 

0.1,1.0[ ] - 0.1 

€ 

β : 

€ 

0.1,1.0[ ] - 0.1 

NRL 

€ 

λ : 

€ 

3.0,7.0[ ] - 0.5 

€ 

w: 

€ 

0.10,0.90[ ] - 0.05 

PB1 

€ 

λ : 

€ 

0.05,1.00[ ] - 0.05 

REL 

€ 

λ : 

€ 

2.2,3.4[ ] - 0.1 

€ 

N 1( ) : 

€ 

27,34[ ] - 1 

RL 

€ 

λ : 

€ 

6.0,10.0[ ] - 0.5 

€ 

w: 

€ 

0.10,0.90[ ] - 0.05 

SFP 

€ 

λ : 

€ 

10.0,14.0[ ] - 0.5 

€ 

w: 

€ 

0.05,0.90[ ] - 0.05 

stEWA 

€ 

λ : 

€ 

1,9[ ] - 1 

 

2.4  The Data 
I collected datasets from different experiments on games with unique equilibria in 

mixed strategies, wherein the participants received a complete description of the payoff 

matrix and feedback about their choices and those of their opponents. These 

experiments have been conducted in a range of more than 50 years, under a variety of 

experimental conditions, and by different researchers in different fields. The games 

involved have a number of actions available to each player ranging from 2 to 5 

(Appendix B provides a detailed description of all datasets). 

Out of the 35 games considered, 24 are constant-sum, while in the remainders 

players could find incentive to reciprocate; in other words, in 24 experiments, subjects 

had to learn strategies of pure conflict, while in the other 11 the conflictual aspect does 
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not necessarily exclude a sort of cooperative (or fair) behavior, as in the non-constant 

sum games reported in Selten and Chmura (2008). 

In order to let the learning processes fully unfold, I selected experiments with a 

minimum of 100 iterations of the stage game; this allows for the testing of the 

descriptive and predictive power of the different models on subjects’ behavior not only 

in the early rounds, but also in the long run. 

The reasons why I chose to test the models on data gathered by other experimenters 

are twofold. First, as Erev and Roth (1998:851) observed, “there is a danger that 

investigators will treat the models they propose like as their toothbrushes, and each will 

use his own model only on his own data”; thus, I considered a number as large as 

possible of datasets from experiments concerning long runs of games with unique 

equilibria in mixed strategies. Secondly, experimenters may unconsciously make some 

decisions, when designing their experiments, which in some way could favor their 

starting hypotheses. As a consequence, testing models on datasets from experiments 

conducted by other researchers helps to reduce these methodological biases. 

The experimental datasets I gathered are in the form of sequences of average choice 

frequencies, computed over blocks of repetitions of the stage game. Relative 

frequencies are calculated for the two typologies of players (row and column players). 

For example, Malcolm and Lieberman (1965) present choice frequencies in 8 blocks of 

25 trials each (the game was repeated 200 times). 
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Table 2. Summary of the datasets. The first column indicates the name of the 

researchers and the second one the year of publication of the experiment. The third 

column reports the number of times that the stage game was played. The fourth column 

specifies the number of blocks of trials over which the average choice frequencies are 

calculated. The fifth column indicates the number of subject who participated to the 

experiments. The sixth column reports additional important features (if any) for each 

experiment. Finally, the seventh column reports whether or not subjects were randomly 

paired at each trial. 

Experimenters Year Games 
Rounds 

# 

Treatments/ 

Games 

Blocks of 

Iterations 
Subjects # Other 

Random 

Matching 

Suppes and 

Atkinson 
1960 2x2 210 1 7 20 pairs 

No 

monetary 

reward – 

only 

“correct” 

feedback 

No 

Malcolm and 

Liberman 
1965 2x2 200 1 8 9 pairs  No 

O’Neill 1987 4x4 105 1 7 25 pairs 

15 practice 

rounds were 

run 

No 

Rapoport and 

Boebel 
1992 5x5 120 2 4 

10 pairs 

for each 

treatment 

10 practice 

rounds were 

run 

No 

Ochs 1995 2x2 

56x10, 

64x10, 

and 

64x10 

3 

7 in the 

first 

treatment, 8 

in the other 

two 

8 pairs for 

each 

treatment 

 Yes 

Rosenthal, 

Shachat, and 

Walker 

2003 2x2 
100 and 

200 
2 10 

20 pairs 

for each 

treatment 

 No 

Avrahami, Guth, 

and Kareev 
2005 2x2 100 3 3 

6 pairs in 

the first 

treatment 

and 12 

pairs in the 

other two 

Only the 

“Known” 

treatment is 

considered 

No 

Erev, Roth, 

Slonim, and 

Barron 

2007 2x2 500 10 5 

9 pairs for 

each 

treatment 

 No 

Selten and 

Chmura 
2008 2x2 200 12 8 

16 pairs 

for each 

treatment 

 Yes 
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2.5  Simulation Results: Actual Payoffs 
I will focus on the comparison of model performances based on Prediction scores (see 

the Methods Section), which penalize, although not directly, model complexity and 

provide a measure of model predictive power. Best Fit and By Game Scores provide a 

mere measure of data fitting and, for that reason, heavily favor more complex models. 

Model performances are tested on a combined dataset from 35 experiments on 

repeated games with a unique equilibrium in mixed strategies. These experiments share 

the feature that the games were played repeatedly 100 or more times, in order to let the 

learning processes fully unfold. The present analysis is conducted over a larger number 

of models and datasets and further improves the methodology adopted in Marchiori and 

Warglien (2008). 

Table 3 reports, for each condition (or game) and model, the corresponding 

Prediction Score multiplied by 100; models are then accordingly ranked from the best 

(top line) to the worst (bottom line). The average Prediction score is a summary 

statistic by which models with a different number of free parameters can be roughly 

compared, since model complexity is opportunely weighted. The significance of 

pairwise model comparisons is tested with a Mann-Whytney-Wilcoxon Match-Pairs 

Signed-Rank Test; p-values are reported in Tables 4, whereas the estimates of the 

differences between average Prediction scores for all pairs of models are reported in 

Table 5. In the analysis that follows, I will consider the 5% level of significance of the 

test i.e., two models are considered as equivalent if the null hypothesis of no 

differences in their respective average prediction scores cannot be rejected at a 5% 

level. 

The main result of my analysis is that regret-based models are the best predictors of 

observed frequencies of play. The crucial importance of post-decisional regret is 

evident if we compare the performance of the PB model with that of the simple 

perceptrons NNET and NNET2; this shows that the introduction in the updating rule of 

a term accounting for regret dramatically improves the reliability of predictions. 

The NFP and SFP models can be considered as the best predictors because, reading 

from Table 4, they provide, on average, equivalent predictions. These two fictitious 

play models are both based on regret and differ for a minor structural detail. SFP and 

NFP perform significantly better than all other models, with the exception of RL. This 

result, surprising at a first glance, can be explained by looking at the high variability of 
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RL’s performance: even though the average prediction score for RL is three times as 

bigger as that of SFP, the distribution of the average ranked scores of RL does not 

stochastically dominate the ones corresponding to NFP and SFP. Nonetheless, it seems 

reasonable to claim that SFP and NFP are the best performing models. 

The PB0 and PB1 models are equivalent predictors of the data and are not able to 

predict data significantly better than do Nash and RL models. Also this result might 

appear surprising at a first sight. Let us consider, for example, the PB0 model: if we 

look at the estimated differences between average prediction scores (reported in Table 

5), we can see that its predictions are two times more accurate than those provided by 

Nash equilibrium. However, once again, a signed rank test fails to reject the null of no 

differences between average scores due to the high variance in one of the two 

distributions. These two examples of highly counterintuitive responses of the ranked 

test might constitute a point of weakness of the present analysis; however, they should 

rather be interpreted as the lack of sufficient information that might be either obtained 

considering new games, or disaggregating existing data at the lowest unit of 

observation (i.e., individuals or groups of players, depending on whether experiments 

were run using fix-pairing or random-matching protocol). It is also worth noting that 

the PB0 model does significantly better that stEWA. 

At the ideal third place there is the stEWA model. It is outperformed by NFP, SFP, 

and PB0, but it performs equivalently to PB1, Nash equilibrium, and the RL model. As 

mentioned in the introduction of this thesis, stEWA is a hybrid model merging beliefs 

and reinforcement learning theories. Most probably, its lower level of accuracy is due 

to its reinforcement component. 

All models based on reinforcement, with the exception of the RL model (most 

probably due to the high variability of its prediction accuracy), are outperformed by 

Nash equilibrium. The NRL model is even a poorer predictor of data if compared with 

the random choice model. This is another important result of my analysis, as it goes 

against more than one study in the extant literature on learning (Erev and Roth, 1998; 

Sarin and Vahid, 2001; Erev et al., 2007). This result might be due to reasons of two 

different natures. For first, reinforcement based models do very poorly in the last six 

games proposed by Selten and Chmura (2008). Even though completely mixed, these 

games are not constant-sum and players might found incentive to cooperate and/or 

reciprocate. Indeed, observed choice frequencies in the first (constant-sum) and last six 

(non constant-sum) games described by Selten and Chmura are quite different, in spite 
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of the fact that the equilibria of the first six games are correspondingly equal to those of 

the last six. The difference is then due to the fact that in non constant-sum games 

cooperative behavior is not necessarily excluded. Also the games proposed by 

Avrahami, Guth, and Kareev (2005) are not constant-sum. Reinforcement learning 

models, by design, do not take into account these cooperative features of human 

behavior, even indirectly, and are not able to predict behavior in such psychologically 

richer interactive situations. Another reason for the failure of reinforcement models 

could be that testing models on a large dataset would require the exploration of broader 

regions of the parameter spaces than those suggested by the authors of the models in 

previous works, where smaller datasets were considered. 
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Table 3. MSD and Prediction Scores. Actual Payoffs. In the first column, between 

parentheses, the number of model free parameters is reported. 

  AGK50 AGK67 AGK75 ERSB 
G1 

ERSB 
G2 

ERSB 
G3 

ERSB 
G4 

ERSB 
G5 

ERSB 
G6 

ERSB 
G7 

SFP (2) 0.045 1.169 2.248 0.408 0.318 0.374 0.689 0.204 1.098 0.893 

NFP (2) 0.045 1.165 2.240 0.389 0.302 0.350 0.862 0.108 1.032 0.856 

PB0 (0) 0.050 0.112 0.523 0.780 1.253 0.503 2.078 0.848 0.120 0.323 

PB1 (1) 0.048 0.140 0.813 0.581 1.821 0.271 1.967 0.368 0.189 0.384 

stEWA (1) 0.045 0.152 0.172 1.832 5.078 3.010 2.772 1.953 1.065 1.700 

NE (0) 0.045 1.903 4.515 1.919 10.582 6.728 1.078 1.117 5.261 5.804 

RL (2) 0.043 0.522 1.565 0.377 0.244 0.205 2.150 0.111 0.128 0.249 

NNET (1) 0.046 0.355 0.345 2.220 6.962 4.309 2.827 2.469 1.433 2.236 

NNET2 (2) 0.051 0.369 0.338 2.234 6.978 4.314 2.824 2.482 1.427 2.248 

REL (2) 0.043 0.390 0.366 2.230 6.990 4.340 2.841 2.483 1.420 2.248 
Random 

(0) 0.045 0.373 0.348 2.228 6.972 4.310 2.824 2.472 1.429 2.241 

NRL (2) 0.063 0.639 1.770 2.182 1.229 4.042 1.124 1.383 2.105 2.347 

 

  ERSB 
G8 

ERSB 
G9 

ERSB 
G10 M&L Oc1 Oc4 Oc9 On R&B10 R&B15 

SFP (2) 0.323 0.730 1.038 0.593 0.434 0.790 1.149 0.166 0.269 0.587 

NFP (2) 0.553 0.319 1.047 0.613 0.437 0.777 1.110 0.163 0.199 0.448 

PB0 (0) 1.962 0.138 3.062 0.924 0.450 1.219 2.139 0.302 0.155 0.495 

PB1 (1) 1.529 0.140 2.053 0.704 0.435 1.256 1.973 0.309 0.183 0.541 

stEWA (1) 4.163 0.302 5.381 1.106 0.418 2.026 4.492 0.135 0.219 0.357 

NE (0) 1.866 0.668 1.233 2.114 0.435 1.366 2.240 0.136 0.354 0.865 

RL (2) 0.880 0.216 0.998 7.016 0.423 1.687 1.525 0.130 0.102 0.331 

NNET (1) 4.612 0.418 6.183 2.459 0.446 1.779 3.897 0.301 0.181 0.519 

NNET2 (2) 4.612 0.418 6.186 2.457 0.436 1.781 3.902 0.313 0.180 0.542 

REL (2) 4.613 0.414 6.190 2.491 0.433 1.875 3.954 2.237 1.067 1.400 
Random 

(0) 4.611 0.418 6.188 2.458 0.435 1.778 3.897 1.236 5.041 5.428 

NRL (2) 0.516 1.298 0.934 10.602 0.471 3.334 3.695 0.091 0.350 0.279 

 

  RSW D RSW S S&A3K S&C 
G1 

S&C 
G2 

S&C 
G3 

S&C 
G4 

S&C 
G5 

S&C 
G6 

S&C 
G7 

SFP (2) 1.118 2.610 1.621 1.150 0.061 0.899 0.605 0.207 0.088 0.468 

NFP (2) 1.404 2.624 1.415 1.039 0.055 0.940 0.599 0.455 0.088 0.572 

PB0 (0) 1.905 4.252 1.610 0.478 0.651 0.486 0.703 0.656 0.219 1.191 

PB1 (1) 1.397 3.893 1.665 2.847 0.798 0.913 0.912 0.774 0.232 0.924 

stEWA (1) 3.764 5.629 6.690 8.390 0.491 0.283 0.077 0.114 0.165 0.793 

NE (0) 0.397 0.610 7.327 2.546 2.137 1.331 0.672 0.309 0.113 6.520 

RL (2) 0.236 1.007 9.912 2.661 4.952 1.843 1.112 0.720 0.217 12.741 

NNET (1) 3.767 3.756 2.551 10.810 4.116 9.975 5.094 2.869 0.645 7.077 

NNET2 (2) 3.789 3.797 2.550 10.813 4.116 9.979 5.096 2.868 0.645 7.073 

REL (2) 3.661 5.493 2.592 10.954 4.145 10.078 5.159 2.886 0.666 7.131 
Random 

(0) 3.763 5.496 2.550 10.809 4.117 9.977 5.098 2.869 0.645 7.073 

NRL (2) 3.799 2.985 21.957 3.431 7.541 2.002 2.264 1.664 0.414 7.421 
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  S&C G8 S&C G9 S&C G10 S&C G11 S&C G12 Mean sd 

SFP (2) 0.323 1.289 0.443 0.177 0.090 0.705 0.596 

NFP (2) 0.438 1.514 0.721 0.187 0.098 0.719 0.598 

PB0 (0) 1.604 1.453 0.955 0.570 0.237 0.983 0.913 

PB1 (1) 1.773 1.874 0.992 0.656 0.256 1.017 0.865 

stEWA (1) 0.491 0.266 0.575 0.176 0.149 1.841 2.237 

NE (0) 1.388 0.418 0.785 0.410 0.095 2.151 2.530 

RL (2) 1.405 15.210 2.227 1.284 0.918 2.153 3.602 

NNET (1) 3.668 8.434 2.971 2.648 0.758 3.232 2.798 

NNET2 (2) 3.668 8.437 2.972 2.656 0.758 3.237 2.798 

REL (2) 3.696 8.465 2.985 2.656 0.773 3.410 2.753 

Random (0) 3.668 8.436 2.972 2.651 0.758 3.589 2.730 

NRL (2) 9.672 5.345 10.357 10.652 14.959 4.083 4.863 

 

Table 4. This table reports the P-values for pair-wise model comparisons in terms of 

Prediction scores. Simulations were run feeding models with actual payoffs. The null 

of no differences in the mean scores was tested with a Mann-Whitney-Wilcoxon 

match-paired signed-rank (two-tailed) test. Shaded cells refer to the cases in which the 

null is not rejected at a 5% level of significance. 

 SFP 
(2) 

NFP 
(2) 

PB0 
(0) 

PB1 
(1) 

stEWA 
(1) 

NE 
(0) 

RL 
(2) 

NNET 
(1) 

NNET2 
(2) 

REL 
(2) 

Random 
(0) 

NRL 
(2) 

SFP (2)   0.918 0.028 0.006 0.010 0.000 0.063 0.000 0.000 0.000 0.000 0.000 

NFP (2) 0.918   0.018 0.004 0.009 0.000 0.052 0.000 0.000 0.000 0.000 0.000 

PB0 (0) 0.028 0.018   0.676 0.045 0.056 0.298 0.000 0.000 0.000 0.000 0.000 

PB1 (1) 0.006 0.004 0.676   0.052 0.076 0.528 0.000 0.000 0.000 0.000 0.000 
stEWA 

(1) 0.010 0.009 0.045 0.052   0.193 0.762 0.000 0.000 0.000 0.000 0.017 

NE (0) 0.000 0.000 0.056 0.076 0.193   0.915 0.047 0.043 0.023 0.017 0.028 

RL (2) 0.063 0.052 0.298 0.528 0.762 0.915   0.012 0.012 0.009 0.008 0.000 
NNET 

(1) 0.000 0.000 0.000 0.000 0.000 0.047 0.012   0.004 0.000 0.026 0.851 

NNET2 
(2) 0.000 0.000 0.000 0.000 0.000 0.043 0.012 0.004   0.000 0.567 0.863 

REL (2) 0.000 0.000 0.000 0.000 0.000 0.023 0.009 0.000 0.000   0.003 0.812 
Random 

(0) 0.000 0.000 0.000 0.000 0.000 0.017 0.008 0.026 0.567 0.003   0.800 

NRL (2) 0.000 0.000 0.000 0.000 0.017 0.028 0.000 0.851 0.863 0.812 0.800   
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Table 5. Pair-wise model comparisons in terms of Prediction scores. Simulations were 

run feeding models with actual payoffs. Each cell of this table reports the estimate for 

the difference of the location parameters of x and y, where x is row model’s vector of 

scores, and y that one of the column model. 

 SFP 
(2) 

NFP 
(2) 

PB0 
(0) 

PB1 
(1) 

stEWA 
(1) 

NE 
(0) 

RL 
(2) 

NNET 
(1) 

NNET2 
(2) 

REL 
(2) 

Random 
(0) 

NRL 
(2) 

SFP (2)   -
0.001 

-
0.274 

-
0.300 -0.858 -

0.803 
-

0.432 -2.231 -2.244 -
2.395 -2.639 -

1.976 

NFP (2) 0.001   -
0.249 

-
0.252 -0.851 -

0.786 
-

0.422 -2.180 -2.180 -
2.348 -2.596 -

1.897 

PB0 (0) 0.274 0.249   -
0.016 -0.513 -

0.554 
-

0.208 -1.751 -1.759 -
1.863 -2.116 -

1.835 

PB1 (1) 0.300 0.252 0.016   -0.605 -
0.472 

-
0.102 -1.909 -1.910 -

1.981 -2.232 -
1.715 

stEWA 
(1) 0.858 0.851 0.513 0.605   -

0.259 0.056 -0.943 -0.953 -
1.189 -1.350 -

1.072 

NE (0) 0.803 0.786 0.554 0.472 0.259   0.011 -1.007 -1.014 -
1.220 -1.514 -

0.982 

RL (2) 0.432 0.422 0.208 0.102 -0.056 -
0.011   -1.176 -1.178 -

1.421 -1.628 -
1.287 

NNET 
(1) 2.231 2.180 1.751 1.909 0.943 1.007 1.176   -0.004 -

0.030 -0.002 -
0.036 

NNET2 
(2) 2.244 2.180 1.759 1.910 0.953 1.014 1.178 0.004   -

0.027 0.000 -
0.024 

REL (2) 2.395 2.348 1.863 1.981 1.189 1.220 1.421 0.030 0.027   0.017 0.081 
Random 

(0) 2.639 2.596 2.116 2.232 1.350 1.514 1.628 0.002 0.000 -
0.017   0.107 

NRL (2) 1.976 1.897 1.835 1.715 1.072 0.982 1.287 0.036 0.024 -
0.081 -0.107   

 

2.6  Simulation Results: Rescaled Payoffs 
I ran the same simulations described in the methods section feeding models with payoff 

rescaled according to Kahnemann and Tversky’s (1979) prospect theory. The estimates 

of the parameters of the transformation (value function) I used for simulations are those 

reported in Kahnemann and Tversky (1992). 

As done in the previous section, the present analysis is focused on Prediction scores 

and the significance of pairwise comparisons is assessed through the use of a Mann-

Whitney-Wilcoxon test. For each pair of models, the null hypothesis of no difference in 

their average Prediction scores (over the 35 independent observations) is tested. Table 

6 reports, for each model and for each game the corresponding Prediction score and 

models are ranked accordingly from the best (on the top line) to the worst (on the 

bottom line). Tables 7 and 8 report, respectively, the p-values and the estimated 

differences between average scores, for all possible model pairwise comparisons. 

Comparing numbers reported in Tables 3 and 6, the first result is that regret based 

models are those for which the increase in prediction accuracy due to the introduction 

of rescaled payoff is the largest. The improvement of the predictive power is marginal 

for stEWA and all reinforcement based models. If the transformation of payoffs 
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according to prospect theory does not improve model accuracy in the same measure for 

all models, it is also true that it preserves the ranking of the models. Indeed, comparing 

Tables 3 and 6, it is evident that the models are ranked in the same way with the 

exception of minor changes. 

Even though with rescaled payoffs NFP is a better predictor than SFP, the 

difference is not significant and, once again, they turn out to be the best models of 

learning. Furthermore, both the PB1 and PB0 models perform significantly better than 

stEWA, Nash equilibrium, and all other models, with the exception of the RL model. 

The stEWA model performs equivalently to Nash equilibrium and the RL model. 

Lastly, the simple perceptron (in both its versions NNET and NNET2), NRL, and REL 

are all outperformed by Nash equilibrium and provide equivalently accurate 

predictions. 

 

Table 6. MSD and Prediction Scores. Rescaled Payoffs. In the first column, between 

parentheses, the number of model free parameters is reported. 

  AGK50 AGK67 AGK75 ERSB 
G1 

ERSB 
G2 

ERSB 
G3 

ERSB 
G4 

ERSB 
G5 

ERSB 
G6 

ERSB 
G7 

NFP (2) 0.046 1.116 1.277 0.349 0.283 0.411 0.999 0.092 0.977 0.810 

SFP (2) 0.043 1.073 1.315 0.407 0.313 0.458 0.901 0.096 1.085 0.887 

PB0 (0) 0.037 0.079 0.399 0.713 1.225 0.446 2.066 0.720 0.113 0.255 

PB1 (1) 0.046 0.105 0.633 0.541 1.765 0.229 1.960 0.234 0.201 0.312 
stEWA 

(1) 0.035 0.080 0.428 1.791 5.081 3.020 2.524 1.911 0.382 1.723 

RL (2) 0.038 0.394 1.296 0.383 0.236 4.451 2.119 0.103 0.101 0.196 

NE (0) 0.045 1.903 4.515 1.919 10.582 6.728 1.078 1.117 5.261 5.804 
NNET2 

(2) 0.050 0.385 0.348 2.237 6.978 4.309 2.817 2.485 1.439 2.246 

NNET (1) 0.046 0.365 0.363 2.255 6.976 4.319 2.829 2.469 1.434 2.246 

REL (2) 0.040 0.395 0.374 2.245 7.031 4.337 2.795 2.464 1.443 2.248 

NRL (2) 0.039 0.462 1.377 2.423 1.199 3.945 0.933 1.696 2.251 2.323 

 

  ERSB 
G8 

ERSB 
G9 

ERSB 
G10 M&L Oc1 Oc4 Oc9 On R&B10 R&B15 

NFP (2) 0.355 0.302 0.877 0.451 0.431 0.623 0.864 0.148 0.132 0.433 

SFP (2) 0.338 0.442 0.671 0.595 0.440 0.640 0.942 0.167 0.301 0.562 

PB0 (0) 1.822 0.126 2.869 0.606 0.435 1.005 1.530 0.303 0.170 0.485 

PB1 (1) 1.343 0.152 2.154 0.359 0.434 0.866 1.459 0.311 0.181 0.536 
stEWA 

(1) 4.110 0.123 5.450 0.315 0.433 1.474 3.478 0.126 0.171 0.403 

RL (2) 0.792 0.222 1.029 12.469 0.425 1.220 1.339 0.166 0.115 0.321 

NE (0) 1.866 0.668 1.233 2.114 0.435 1.366 2.240 0.136 0.354 0.865 
NNET2 

(2) 4.615 0.422 6.175 2.462 0.438 1.781 3.892 0.329 0.181 0.535 

NNET (1) 4.609 0.422 6.203 2.458 0.459 1.820 3.898 0.319 0.186 0.517 

REL (2) 4.639 0.424 6.168 1.677 0.446 1.750 3.915 2.299 1.077 1.383 

NRL (2) 0.496 1.528 0.979 11.089 0.488 2.606 3.538 0.071 0.347 0.295 
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  RSW D RSW S S&A3K S&C 
G1 

S&C 
G2 

S&C 
G3 

S&C 
G4 

S&C 
G5 

S&C 
G6 

S&C 
G7 

NFP (2) 0.837 1.788 1.448 0.636 0.056 0.422 0.201 0.150 0.049 0.587 

SFP (2) 0.739 2.604 1.646 0.421 0.084 0.337 0.144 0.108 0.046 0.539 

PB0 (0) 1.524 3.860 1.633 0.304 0.422 0.351 0.476 0.416 0.115 1.345 

PB1 (1) 1.622 2.957 1.612 2.221 0.494 0.586 0.580 0.504 0.136 0.905 
stEWA 

(1) 2.829 4.824 6.460 5.809 1.524 0.743 1.134 0.546 0.247 0.863 

RL (2) 0.199 0.569 9.340 2.205 4.792 1.804 1.245 0.904 0.387 5.882 

NE (0) 0.397 0.610 7.327 2.546 2.137 1.331 0.672 0.309 0.113 6.520 
NNET2 

(2) 3.767 3.771 2.551 10.807 4.115 9.987 5.111 2.874 0.646 7.086 

NNET (1) 3.774 3.774 2.557 10.809 4.132 9.978 5.108 2.871 0.646 7.074 

REL (2) 3.607 5.348 2.607 10.877 4.115 9.986 5.112 2.850 0.640 7.152 

NRL (2) 2.135 3.355 20.221 3.602 7.527 1.980 2.509 2.481 0.670 7.419 

 
  S&C G8 S&C G9 S&C G10 S&C G11 S&C G12 Mean sd 

NFP (2) 0.394 1.088 0.363 0.142 0.047 0.548 0.440 

SFP (2) 0.348 0.836 0.297 0.122 0.041 0.571 0.524 

PB0 (0) 1.305 1.256 0.759 0.422 0.112 0.849 0.847 

PB1 (1) 1.517 1.724 0.788 0.487 0.131 0.860 0.751 

stEWA (1) 1.178 0.485 1.167 0.395 0.066 1.752 1.883 

RL (2) 1.129 9.397 1.822 1.523 1.263 1.996 2.972 

NE (0) 1.388 0.418 0.785 0.410 0.095 2.151 2.530 

NNET2 (2) 3.688 8.466 2.984 2.653 0.765 3.240 2.798 

NNET (1) 3.669 8.441 2.974 2.662 0.758 3.241 2.796 

REL (2) 3.701 8.448 2.958 2.668 0.740 3.370 2.751 

NRL (2) 9.890 5.080 8.531 6.779 15.998 3.893 4.600 

 

Table 7. This table reports the P-values for pair-wise model comparisons in terms of 

Prediction scores. Simulations were run feeding models with rescaled payoffs. The null 

hypothesis of no differences in the mean scores was tested with a Mann-Whitney-

Wilcoxon match-paired signed-rank (two-tailed) test. Shaded cells refer to the cases in 

which the null hypothesis is not rejected at a 5% level of significance. 

 NFP 
(2) 

SFP 
(2) 

PB0 
(0) 

PB1 
(1) 

stEWA 
(1) 

RL 
(2) 

NE 
(0) 

NNET2 
(2) 

NNET 
(1) 

REL 
(2) 

NRL 
(2) 

NFP (2)   0.688 0.006 0.003 0.000 0.003 0.000 0.000 0.000 0.000 0.000 

SFP (2) 0.688   0.019 0.012 0.001 0.008 0.000 0.000 0.000 0.000 0.000 

PB0 (0) 0.006 0.019   0.700 0.001 0.081 0.004 0.000 0.000 0.000 0.000 

PB1 (1) 0.003 0.012 0.700   0.003 0.114 0.012 0.000 0.000 0.000 0.000 

stEWA (1) 0.000 0.001 0.001 0.003   0.993 0.417 0.000 0.000 0.000 0.013 

RL (2) 0.003 0.008 0.081 0.114 0.993   0.456 0.002 0.002 0.001 0.000 

NE (0) 0.000 0.000 0.004 0.012 0.417 0.456   0.043 0.045 0.028 0.047 

NNET2 (2) 0.000 0.000 0.000 0.000 0.000 0.002 0.043   1.000 0.147 0.980 

NNET (1) 0.000 0.000 0.000 0.000 0.000 0.002 0.045 1.000   0.229 0.980 

REL (2) 0.000 0.000 0.000 0.000 0.000 0.001 0.028 0.147 0.229   0.749 

NRL (2) 0.000 0.000 0.000 0.000 0.013 0.000 0.047 0.980 0.980 0.749   
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Table 8. Pair-wise model comparisons in terms of Prediction scores. Simulations were 

run feeding models with rescaled payoffs. Each cell of this table reports the estimate 

for the difference of the location parameters of x and y, where x is row model’s vector 

of scores, and y that one of the column model. 

 NFP 
(2) 

SFP 
(2) 

PB0 
(0) 

PB1 
(1) 

stEWA 
(1) 

RL 
(2) 

NE 
(0) 

NNET2 
(2) 

NNET 
(1) 

REL 
(2) 

NRL 
(2) 

NFP (2)   -0.007 -0.245 -0.264 -0.907 -
0.634 

-
0.966 -2.328 -2.336 -2.483 -2.073 

SFP (2) 0.007   -0.236 -0.249 -0.905 -
0.617 

-
1.000 -2.298 -2.302 -2.437 -2.119 

PB0 (0) 0.245 0.236   -0.014 -0.594 -
0.436 

-
0.748 -1.923 -1.933 -1.996 -1.927 

PB1 (1) 0.264 0.249 0.014   -0.682 -
0.298 

-
0.652 -2.052 -2.057 -2.143 -1.835 

stEWA (1) 0.907 0.905 0.594 0.682   0.002 -
0.156 -1.108 -1.114 -1.212 -1.029 

RL (2) 0.634 0.617 0.436 0.298 -0.002   -
0.176 -1.208 -1.219 -1.364 -1.136 

NE (0) 0.966 1.000 0.748 0.652 0.156 0.176   -1.019 -1.013 -1.160 -0.945 

NNET2 (2) 2.328 2.298 1.923 2.052 1.108 1.208 1.019   0.000 -0.009 -0.007 

NNET (1) 2.336 2.302 1.933 2.057 1.114 1.219 1.013 0.000   -0.008 -0.006 

REL (2) 2.483 2.437 1.996 2.143 1.212 1.364 1.160 0.009 0.008   0.167 

NRL (2) 2.073 2.119 1.927 1.835 1.029 1.136 0.945 0.007 0.006 -0.167   

 

2.7  Conclusions 
Simulation results show that the two regret-based models Normalized Fictitious Play 

(NFP) and Stochastic Fictitious Play (SFP) are the best predictors of the data. 

Compared to the other models, they provide the smallest Prediction scores and their 

performances are substantially equivalent. Indeed, these two models are identical 

except for a minor structural detail. 

The second best model is the PB model. The parameter free version PB0 performs, 

surprisingly, better that the parametric version PB1 in terms of average Prediction 

scores, even though this difference is not statistically significant. In general, the 

Perceptron shows very fast convergence to rather stable frequencies of choice 

(similarly to stEWA and NFP, and differently from the reinforcement learning models, 

which are slower to adapt). Its advantage, then, is not in mimicking well the 

experimental speed of learning, which is, generally, slower. On the contrary, its success 

is due to a large extent to its ability to fit the experimental average behavior in the long 

run. It is well known from the literature on the “learning direction” that subjects tend to 

adjust in the direction of the ex-post best response in a large variety of experimental 

games. The PB model seems to capture an empirically valid quantification of this 

qualitative tendency by tuning the intensity of the adjustment proportionally to the 

regret (and conditionally to the salience of the payoffs). The NFP model follows 
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similar learning principles and performs in a very similar way. Why then do other 

models do worse? As well known, reinforcement learning models respond mainly to 

experienced payoffs, and thus adapt slowly and fail to capture all the relevance of 

foregone payoffs even in the long run. This seems to be a source of empirical relative 

weakness in the experiments considered here. It is less clear what may be the source of 

relative weakness of stEWA (which, by the way, performs very well). The stEWA 

model tends to preserves a weight for reinforcement learning, that may keep it away 

from the long run average behavior of experimental subjects. The model has one free 

parameter and adjusts via its self-tuning mechanism at least two additional parameters. 

I conjecture that this might lead to some form of over-fitting that makes it 

comparatively less robust; this is consistent with the fact that the model is much 

stronger in fitting separately single games, while its performance deteriorates in the 

cross-prediction task. 

As perhaps the most important results of my thesis, simulation results show that 

regret-based models fare better than Nash equilibrium, self-tuning EWA and 

reinforcement based models, thus supporting the hypothesis that regret for foregone 

payoffs plays a central role in shaping human choice behavior. 

Another important result is that reinforcement based models turn out to be very 

poor predictors of empirical data; no matters whether with actual or rescaled payoffs, 

the NRL model is less accurate than the model of random choice behavior. This result 

is in contradiction with some recent contributions in the learning literature (Erev and 

Roth, 1998; Sarin and Vahid, 2001; Erev et al., 2007) and the motivations might be of 

two different natures. First, testing models on Selten and Chmura’s (2008) games 

seems to particularly penalize reinforcement based models. In particular, the last six 

games, even though completely mixed, are not constant-sum and, for that reason, might 

have provided some incentive for cooperative or reciprocating behaviors. 

Reinforcement learning models do not take into account these cooperative features of 

human behavior, even indirectly, and are not able to predict behavior in such richer 

interactive situations. Another reason for the failure of reinforcement models could be 

that testing models on a large dataset would require the exploration of broader regions 

of the parameter spaces than those suggested by the authors of the models in previous 

works, where smaller datasets were considered. 

In this chapter I also analyze the predictive power of models when fed with payoffs 

rescaled according to Kahnemann and Tversky’s (1979 and 1992) prospect theory. 
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Results show two facts as we pass from actual to rescaled payoffs: first, the ranking of 

the models remains unaltered; second, the increase in accuracy is significant for regret-

based models (NFP, SFP, and PB) and marginal for all the others (stEWA and 

reinforcement learning models). 
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2.8  Appendix A. Supporting Material 
Table A1. MSD and By Game Scores. Actual Payoffs. In the first column, between 

parentheses, the number of model free parameters is reported. 

  AGK50 AGK67 AGK75 ERSB 
G1 

ERSB 
G2 

ERSB 
G3 

ERSB 
G4 

ERSB 
G5 

ERSB 
G6 

ERSB 
G7 

SFP (2) 0.043 0.369 0.344 0.221 0.229 0.145 0.439 0.092 0.169 0.156 

NFP (2) 0.042 0.366 0.344 0.150 0.214 0.137 0.479 0.102 0.174 0.137 

stEWA (1) 0.034 0.074 0.171 0.216 0.349 0.183 0.944 0.195 0.094 0.209 

PB1 (1) 0.037 0.085 0.219 0.581 1.443 0.271 1.967 0.368 0.118 0.305 

PB0 (0) 0.050 0.112 0.523 0.780 1.253 0.503 2.078 0.848 0.120 0.323 

RL (2) 0.027 0.065 0.377 0.176 0.238 0.205 1.542 0.111 0.074 0.206 

NE (0) 0.045 1.903 4.515 1.919 10.582 6.728 1.078 1.117 5.261 5.804 

NRL (2) 0.021 0.204 0.653 2.170 0.734 2.924 0.876 1.344 1.371 1.737 

NNET2 (2) 0.035 0.354 0.327 2.211 6.946 4.284 2.812 2.457 1.416 2.225 

NNET (1) 0.038 0.355 0.334 2.216 6.962 4.302 2.814 2.469 1.423 2.222 

REL (2) 0.035 0.351 0.340 2.196 6.942 4.287 2.784 2.451 1.409 2.223 
Random 

(0) 0.045 0.373 0.348 2.228 6.972 4.310 2.824 2.472 1.429 2.241 

           

  ERSB 
G8 

ERSB 
G9 

ERSB 
G10 M&L Oc1 Oc4 Oc9 On R&B10 R&B15 

SFP (2) 0.306 0.235 0.330 0.289 0.394 0.624 0.762 0.037 0.131 0.234 

NFP (2) 0.322 0.123 0.397 0.287 0.401 0.584 0.773 0.061 0.114 0.133 

stEWA (1) 0.476 0.106 0.113 0.638 0.377 1.151 1.940 0.044 0.140 0.342 

PB1 (1) 1.529 0.126 2.053 0.689 0.421 1.134 1.646 0.303 0.175 0.527 

PB0 (0) 1.962 0.138 3.062 0.924 0.450 1.219 2.139 0.302 0.155 0.495 

RL (2) 0.284 0.100 0.138 7.016 0.388 0.437 0.766 0.130 0.087 0.281 

NE (0) 1.866 0.668 1.233 2.114 0.435 1.366 2.240 0.136 0.354 0.865 

NRL (2) 0.149 1.265 0.826 10.602 0.308 0.473 0.809 0.063 0.086 0.279 

NNET2 (2) 4.590 0.402 6.164 2.448 0.405 1.741 3.835 0.298 0.176 0.520 

NNET (1) 4.598 0.415 6.179 2.444 0.407 1.743 3.879 0.295 0.178 0.406 

REL (2) 4.558 0.410 6.135 2.172 0.397 1.708 3.816 2.196 1.050 1.347 
Random 

(0) 4.611 0.418 6.188 2.458 0.435 1.778 3.897 1.236 5.041 5.428 

           

  RSW D RSW S S&A3K S&C 
G1 

S&C 
G2 

S&C 
G3 

S&C 
G4 

S&C 
G5 

S&C 
G6 

S&C 
G7 

SFP (2) 0.290 0.716 0.312 0.049 0.060 0.045 0.020 0.048 0.061 0.384 

NFP (2) 0.421 1.031 0.434 0.141 0.055 0.053 0.014 0.042 0.060 0.405 

stEWA (1) 3.451 5.581 3.642 3.806 0.491 0.283 0.077 0.114 0.165 0.619 

PB1 (1) 1.397 3.893 0.072 2.732 0.755 0.860 0.864 0.754 0.168 0.884 

PB0 (0) 1.905 4.252 1.610 0.478 0.651 0.486 0.703 0.656 0.219 1.191 

RL (2) 0.185 0.445 6.305 2.661 2.315 1.843 1.112 0.720 0.217 7.814 

NE (0) 0.397 0.610 7.327 2.546 2.137 1.331 0.672 0.309 0.113 6.520 

NRL (2) 3.151 2.783 6.330 3.431 4.013 1.814 2.264 1.664 0.345 7.421 

NNET2 (2) 3.724 3.696 2.543 10.803 4.106 9.965 5.074 2.851 0.637 7.066 

NNET (1) 3.748 3.703 2.548 10.794 4.104 9.958 5.089 2.860 0.640 7.071 

REL (2) 3.568 5.356 2.554 10.763 4.079 9.914 5.038 2.801 0.624 7.026 
Random 

(0) 3.763 5.496 2.550 10.809 4.117 9.977 5.098 2.869 0.645 7.073 
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  S&C G8 S&C G9 S&C G10 S&C G11 S&C G12 Mean sd 

SFP (2) 0.306 0.309 0.428 0.079 0.046 0.249 0.191 

NFP (2) 0.430 0.391 0.476 0.072 0.049 0.269 0.229 

stEWA (1) 0.436 0.266 0.575 0.172 0.066 0.787 1.303 

PB1 (1) 1.698 1.829 0.989 0.652 0.191 0.907 0.861 

PB0 (0) 1.604 1.453 0.955 0.570 0.237 0.983 0.913 

RL (2) 1.405 1.320 2.227 1.284 0.918 1.240 1.948 

NE (0) 1.388 0.418 0.785 0.410 0.095 2.151 2.530 

NRL (2) 7.782 1.278 4.227 4.980 2.347 2.306 2.507 

NNET2 (2) 3.661 8.430 2.962 2.644 0.753 3.216 2.797 

NNET (1) 3.657 8.380 2.949 2.648 0.756 3.217 2.798 

REL (2) 3.620 8.302 2.912 2.595 0.725 3.334 2.719 

Random (0) 3.668 8.436 2.972 2.651 0.758 3.589 2.730 

 

Table A2. This table reports the P-values for pair-wise model comparisons in terms of 

By Game scores. Simulations were run feeding models with actual payoffs. The null 

hypothesis of no differences in the mean scores was tested with a Mann-Whitney-

Wilcoxon match-paired signed-rank (two-tailed) test. Shaded cells refer to the cases in 

which the null hypothesis is not rejected at a 5% level of significance. 

 SFP 
(2) 

NFP 
(2) 

stEWA 
(1) 

PB1 
(1) 

PB0 
(0) 

RL 
(2) 

NE 
(0) 

NRL 
(2) 

NNET2 
(2) 

NNET 
(1) 

REL 
(2) 

Random 
(0) 

SFP (2)   0.000 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NFP (2) 0.000   0.016 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
stEWA 

(1) 0.000 0.016   0.052 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

PB1 (1) 0.017 0.025 0.052   0.073 0.056 0.041 0.004 0.000 0.005 0.000 0.000 

PB0 (0) 0.000 0.000 0.000 0.073   0.466 0.399 0.902 0.166 0.928 0.004 0.008 

RL (2) 0.000 0.000 0.000 0.056 0.466   0.107 0.000 0.003 0.000 0.000 0.000 

NE (0) 0.000 0.000 0.000 0.041 0.399 0.107   0.259 0.008 0.000 0.000 0.000 

NRL (2) 0.000 0.000 0.000 0.004 0.902 0.000 0.259   0.048 0.126 0.000 0.000 
NNET2 

(2) 0.000 0.000 0.000 0.000 0.166 0.003 0.008 0.048   0.147 0.001 0.001 

NNET 
(1) 0.000 0.000 0.000 0.005 0.928 0.000 0.000 0.126 0.147   0.000 0.000 

REL (2) 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.001 0.000   0.199 
Random 

(0) 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.001 0.000 0.199   
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Table A3. Pair-wise model comparisons in terms of By Game scores. Simulations were 

run feeding models with actual payoffs. Each cell of this table reports the estimate for 

the difference of the location parameters of x and y, where x is row model’s vector of 

scores, and y that one of the column model. 

 SFP 
(2) 

NFP 
(2) 

stEWA 
(1) 

PB1 
(1) 

PB0 
(0) 

RL 
(2) 

NE 
(0) 

NRL 
(2) 

NNET2 
(2) 

NNET 
(1) 

REL 
(2) 

Random 
(0) 

SFP (2)   0.046 0.018 1.514 2.207 2.116 2.351 2.315 2.576 2.484 3.070 3.071 

NFP (2) -
0.046   -0.019 1.121 1.892 1.785 2.013 1.968 2.152 2.195 2.641 2.672 

stEWA 
(1) 

-
0.018 0.019   0.999 1.770 1.740 1.999 1.904 2.128 2.192 2.562 2.581 

PB1 (1) -
1.514 

-
1.121 -0.999   0.421 0.554 0.514 0.748 0.845 0.694 1.160 1.156 

PB0 (0) -
2.207 

-
1.892 -1.770 -

0.421   -
0.068 

-
0.062 0.020 0.295 0.028 0.492 0.523 

RL (2) -
2.116 

-
1.785 -1.740 -

0.554 0.068   0.067 0.121 0.276 0.188 0.612 0.608 

NE (0) -
2.351 

-
2.013 -1.999 -

0.514 0.062 -
0.067   0.043 0.186 0.142 0.551 0.554 

NRL (2) -
2.315 

-
1.968 -1.904 -

0.748 
-

0.020 
-

0.121 
-

0.043   0.144 0.059 0.464 0.474 

NNET2 
(2) 

-
2.576 

-
2.152 -2.128 -

0.845 
-

0.295 
-

0.276 
-

0.186 
-

0.144   -0.092 0.127 0.125 

NNET 
(1) 

-
2.484 

-
2.195 -2.192 -

0.694 
-

0.028 
-

0.188 
-

0.142 
-

0.059 0.092   0.393 0.386 

REL (2) -
3.070 

-
2.641 -2.562 -

1.160 
-

0.492 
-

0.612 
-

0.551 
-

0.464 -0.127 -0.393   0.007 

Random 
(0) 

-
3.071 

-
2.672 -2.581 -

1.156 
-

0.523 
-

0.608 
-

0.554 
-

0.474 -0.125 -0.386 -
0.007   
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Table A4. MSD and Best Fit Scores. Actual Payoffs. In the first column, between 

parentheses, the number of model free parameters is reported. 

  AGK50 AGK67 AGK75 ERSB 
G1 

ERSB 
G2 

ERSB 
G3 

ERSB 
G4 

ERSB 
G5 

ERSB 
G6 

ERSB 
G7 

SFP (2) 0.045 1.169 2.248 0.408 0.318 0.374 0.671 0.204 1.098 0.893 

NFP (2) 0.045 1.165 2.240 0.389 0.302 0.350 0.862 0.108 1.032 0.856 

PB0 (0) 0.050 0.112 0.523 0.780 1.253 0.503 2.078 0.848 0.120 0.323 

PB1 (1) 0.048 0.140 0.813 0.581 1.821 0.271 1.967 0.368 0.189 0.384 

stEWA (1) 0.045 0.152 0.172 1.832 5.078 3.010 2.772 1.953 1.065 1.700 

NE (0) 0.045 1.903 4.515 1.919 10.582 6.728 1.078 1.117 5.261 5.804 

RL (2) 0.043 0.522 1.565 0.377 0.244 0.205 2.150 0.111 0.128 0.249 

NNET (1) 0.046 0.355 0.345 2.220 6.962 4.309 2.827 2.469 1.433 2.236 

NNET2 (2) 0.042 0.369 0.338 2.225 6.978 4.314 2.824 2.469 1.427 2.248 

REL (2) 0.043 0.390 0.366 2.230 6.990 4.326 2.820 2.462 1.420 2.248 

NRL (2) 0.063 0.639 1.770 2.182 1.229 4.042 1.124 1.383 2.105 2.347 
Random 

(0) 0.045 0.373 0.348 2.228 6.972 4.310 2.824 2.472 1.429 2.241 

           

  ERSB 
G8 

ERSB 
G9 

ERSB 
G10 M&L Oc1 Oc4 Oc9 On R&B10 R&B15 

SFP (2) 0.323 0.293 0.435 0.593 0.434 0.790 1.134 0.166 0.269 0.587 

NFP (2) 0.338 0.319 0.556 0.613 0.437 0.777 1.110 0.163 0.199 0.448 

PB0 (0) 1.962 0.138 3.062 0.924 0.450 1.219 2.139 0.302 0.155 0.495 

PB1 (1) 1.529 0.140 2.053 0.704 0.435 1.256 1.973 0.309 0.183 0.541 

stEWA (1) 4.163 0.302 5.381 1.106 0.418 2.026 4.492 0.135 0.219 0.357 

NE (0) 1.866 0.668 1.233 2.114 0.435 1.366 2.240 0.136 0.354 0.865 

RL (2) 0.880 0.216 0.998 7.016 0.423 1.687 1.525 0.130 0.102 0.331 

NNET (1) 4.612 0.418 6.183 2.459 0.423 1.779 3.897 0.301 0.181 0.519 

NNET2 (2) 4.612 0.418 6.186 2.457 0.411 1.744 3.902 0.304 0.180 0.526 

REL (2) 4.613 0.414 6.190 2.251 0.433 1.785 3.954 2.237 1.067 1.400 

NRL (2) 0.516 1.298 0.934 10.602 0.471 3.334 3.695 0.091 0.350 0.279 
Random 

(0) 4.611 0.418 6.188 2.458 0.435 1.778 3.897 1.236 5.041 5.428 

           

  RSW D RSW S S&A3K S&C 
G1 

S&C 
G2 

S&C 
G3 

S&C 
G4 

S&C 
G5 

S&C 
G6 

S&C 
G7 

SFP (2) 0.659 1.143 1.621 0.571 0.061 0.425 0.227 0.207 0.088 0.468 

NFP (2) 0.529 1.277 1.415 0.624 0.055 0.451 0.246 0.222 0.088 0.572 

PB0 (0) 1.905 4.252 1.610 0.478 0.651 0.486 0.703 0.656 0.219 1.191 

PB1 (1) 1.397 3.893 1.665 2.847 0.798 0.913 0.912 0.774 0.232 0.924 

stEWA (1) 3.764 5.629 3.642 3.806 0.491 0.283 0.077 0.114 0.165 0.793 

NE (0) 0.397 0.610 7.327 2.546 2.137 1.331 0.672 0.309 0.113 6.520 

RL (2) 0.236 1.007 9.912 2.661 4.952 1.843 1.112 0.720 0.217 12.741 

NNET (1) 3.767 3.756 2.551 10.810 4.116 9.975 5.094 2.869 0.645 7.077 

NNET2 (2) 3.777 3.743 2.550 10.807 4.116 9.979 5.096 2.868 0.645 7.073 

REL (2) 3.661 5.493 2.592 10.774 4.120 9.967 5.159 2.874 0.645 7.034 

NRL (2) 3.799 2.985 21.957 3.431 7.541 2.002 2.264 1.664 0.414 7.421 
Random 

(0) 3.763 5.496 2.550 10.809 4.117 9.977 5.098 2.869 0.645 7.073 
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  S&C G8 S&C G9 S&C G10 S&C G11 S&C G12 Mean sd 

SFP (2) 0.323 0.974 0.443 0.177 0.090 0.569 0.477 

NFP (2) 0.438 1.130 0.476 0.187 0.098 0.575 0.473 

PB0 (0) 1.604 1.453 0.955 0.570 0.237 0.983 0.913 

PB1 (1) 1.773 1.874 0.992 0.656 0.256 1.017 0.865 

stEWA (1) 0.491 0.266 0.575 0.176 0.149 1.623 1.792 

NE (0) 1.388 0.418 0.785 0.410 0.095 2.151 2.530 

RL (2) 1.405 15.210 2.227 1.284 0.918 2.153 3.602 

NNET (1) 3.668 8.434 2.971 2.648 0.758 3.232 2.798 

NNET2 (2) 3.668 8.437 2.972 2.651 0.758 3.232 2.800 

REL (2) 3.696 8.452 2.985 2.656 0.773 3.386 2.731 

NRL (2) 9.672 5.345 10.357 5.042 2.354 3.563 4.328 

Random (0) 3.668 8.436 2.972 2.651 0.758 3.589 2.730 

 

Table A5. This table reports the P-values for pair-wise model comparisons in terms of 

Best Fit scores. Simulations were run feeding models with actual payoffs. The null 

hypothesis of no differences in the mean scores was tested with a Mann-Whitney-

Wilcoxon match-paired signed-rank (two-tailed) test. Shaded cells refer to the cases in 

which the null hypothesis is not rejected at a 5% level of significance. 

 SFP 
(2) 

NFP 
(2) 

PB0 
(0) 

PB1 
(1) 

stEWA 
(1) 

NE 
(0) 

RL 
(2) 

NNET 
(1) 

NNET2 
(2) 

REL 
(2) 

NRL 
(2) 

Random 
(0) 

SFP (2)   0.550 0.007 0.008 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NFP (2) 0.550   0.980 0.001 0.035 0.013 0.000 0.000 0.000 0.000 0.000 0.000 

PB0 (0) 0.007 0.980   0.012 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

PB1 (1) 0.008 0.001 0.012   0.915 0.889 0.528 0.298 0.103 0.087 0.011 0.014 
stEWA 

(1) 0.017 0.035 0.050 0.915   0.122 0.076 0.056 0.010 0.004 0.000 0.000 

NE (0) 0.000 0.013 0.000 0.889 0.122   0.056 0.045 0.016 0.010 0.003 0.004 

RL (2) 0.000 0.000 0.000 0.528 0.076 0.056   0.676 0.000 0.016 0.001 0.002 
NNET 

(1) 0.000 0.000 0.000 0.298 0.056 0.045 0.676   0.009 0.000 0.003 0.004 

NNET2 
(2) 0.000 0.000 0.000 0.103 0.010 0.016 0.000 0.009   0.700 0.007 0.015 

REL (2) 0.000 0.000 0.000 0.087 0.004 0.010 0.016 0.000 0.700   0.014 0.021 

NRL (2) 0.000 0.000 0.000 0.011 0.000 0.003 0.001 0.003 0.007 0.014   0.682 
Random 

(0) 0.000 0.000 0.000 0.014 0.000 0.004 0.002 0.004 0.015 0.021 0.682   
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Table A6. Pair-wise model comparisons in terms of Best Fit scores. Simulations were 

run feeding models with actual payoffs. Each cell of this table reports the estimate for 

the difference of the location parameters of x and y, where x is row model’s vector of 

scores, and y that one of the column model. 

 SFP 
(2) 

NFP 
(2) 

PB0 
(0) 

PB1 
(1) 

stEWA 
(1) 

NE 
(0) 

RL 
(2) 

NNET 
(1) 

NNET2 
(2) 

REL 
(2) 

NRL 
(2) 

Random 
(0) 

SFP (2)   0.268 0.002 1.628 1.514 1.464 2.232 2.116 2.415 2.315 2.797 2.769 

NFP (2) -
0.268   -

0.011 1.151 0.885 1.018 1.537 1.682 1.697 1.823 1.982 1.998 

PB0 (0) -
0.002 0.011   1.176 1.007 1.000 1.909 1.751 2.080 1.922 2.317 2.353 

PB1 (1) -
1.628 

-
1.151 

-
1.176   -0.011 -

0.015 0.102 0.208 0.296 0.335 0.500 0.535 

stEWA 
(1) 

-
1.514 

-
0.885 

-
1.007 0.011   0.330 0.472 0.554 0.652 0.748 0.934 0.943 

NE (0) -
1.464 

-
1.018 

-
1.000 0.015 -0.330   0.504 0.510 0.685 0.639 0.898 0.874 

RL (2) -
2.232 

-
1.537 

-
1.909 

-
0.102 -0.472 -

0.504   0.016 0.141 0.122 0.405 0.391 

NNET 
(1) 

-
2.116 

-
1.682 

-
1.751 

-
0.208 -0.554 -

0.510 
-

0.016   0.116 0.121 0.337 0.330 

NNET2 
(2) 

-
2.415 

-
1.697 

-
2.080 

-
0.296 -0.652 -

0.685 
-

0.141 -0.116   0.014 0.220 0.217 

REL (2) -
2.315 

-
1.823 

-
1.922 

-
0.335 -0.748 -

0.639 
-

0.122 -0.121 -0.014   0.198 0.192 

NRL (2) -
2.797 

-
1.982 

-
2.317 

-
0.500 -0.934 -

0.898 
-

0.405 -0.337 -0.220 -
0.198   0.003 

Random 
(0) 

-
2.769 

-
1.998 

-
2.353 

-
0.535 -0.943 -

0.874 
-

0.391 -0.330 -0.217 -
0.192 

-
0.003   
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Table A7. MSD and By Game Scores. Rescaled Payoffs. In the first column, between 

parentheses, the number of model free parameters is reported. 

  AGK50 AGK67 AGK75 ERSB 
G1 

ERSB 
G2 

ERSB 
G3 

ERSB 
G4 

ERSB 
G5 

ERSB 
G6 

ERSB 
G7 

SFP (2) 0.043 0.239 0.065 0.146 0.232 0.154 0.474 0.096 0.169 0.152 

NFP (2) 0.040 0.366 0.342 0.141 0.214 0.152 0.489 0.092 0.174 0.143 
stEWA 

(1) 0.035 0.064 0.162 0.194 0.399 0.196 1.022 0.145 0.085 0.178 

PB1 (1) 0.038 0.071 0.199 0.541 1.377 0.229 1.960 0.234 0.111 0.246 

PB0 (0) 0.037 0.079 0.399 0.713 1.225 0.446 2.066 0.720 0.113 0.255 

RL (2) 0.028 0.051 0.331 0.166 0.233 2.931 1.540 0.103 0.073 0.188 

NE (0) 0.045 1.903 4.515 1.919 10.582 6.728 1.078 1.117 5.261 5.804 

NRL (2) 0.024 0.147 0.493 2.305 0.722 2.850 0.852 1.604 1.307 1.644 

NNET (1) 0.036 0.362 0.335 2.220 6.957 4.301 2.816 2.462 1.417 2.229 
NNET2 

(2) 0.032 0.354 0.332 2.215 6.955 4.287 2.805 2.458 1.412 2.228 

REL (2) 0.032 0.357 0.333 2.196 6.928 4.279 2.795 2.452 1.414 2.207 

           

  ERSB 
G8 

ERSB 
G9 

ERSB 
G10 M&L Oc1 Oc4 Oc9 On R&B10 R&B15 

SFP (2) 0.315 0.111 0.485 0.306 0.383 0.562 0.726 0.038 0.133 0.234 

NFP (2) 0.328 0.108 0.528 0.295 0.390 0.543 0.696 0.059 0.116 0.134 
stEWA 

(1) 0.444 0.108 0.077 0.290 0.378 0.852 1.582 0.115 0.128 0.359 

PB1 (1) 1.343 0.120 1.867 0.313 0.415 0.860 1.319 0.302 0.176 0.528 

PB0 (0) 1.822 0.126 2.869 0.606 0.435 1.005 1.530 0.303 0.170 0.485 

RL (2) 0.238 0.098 0.123 12.469 0.358 0.435 0.791 0.166 0.090 0.283 

NE (0) 1.866 0.668 1.233 2.114 0.435 1.366 2.240 0.136 0.354 0.865 

NRL (2) 0.157 1.464 0.948 11.089 0.353 0.504 0.999 0.064 0.089 0.295 

NNET (1) 4.598 0.415 6.178 2.428 0.394 1.750 3.848 0.292 0.177 0.435 
NNET2 

(2) 4.591 0.407 6.162 2.456 0.406 1.721 3.802 0.300 0.175 0.517 

REL (2) 4.571 0.407 6.141 1.411 0.396 1.729 3.821 2.208 1.050 1.351 

           

  RSW D RSW S S&A3K S&C 
G1 

S&C 
G2 

S&C 
G3 

S&C 
G4 

S&C 
G5 

S&C 
G6 

S&C 
G7 

SFP (2) 0.397 1.015 0.392 0.080 0.058 0.055 0.021 0.038 0.041 0.389 

NFP (2) 0.562 1.288 0.435 0.098 0.052 0.082 0.029 0.041 0.041 0.411 
stEWA 

(1) 2.762 4.488 3.290 0.666 0.351 0.213 0.045 0.064 0.095 0.148 

PB1 (1) 1.546 2.872 0.102 1.952 0.426 0.586 0.575 0.478 0.110 0.676 

PB0 (0) 1.524 3.860 1.633 0.304 0.422 0.351 0.476 0.416 0.115 1.345 

RL (2) 0.185 0.340 6.305 2.205 2.356 1.750 1.245 0.904 0.387 5.882 

NE (0) 0.397 0.610 7.327 2.546 2.137 1.331 0.672 0.309 0.113 6.520 

NRL (2) 1.679 3.141 7.717 3.602 3.301 1.829 2.509 2.370 0.619 7.414 

NNET (1) 3.737 3.744 2.549 10.776 4.101 9.948 5.066 2.852 0.642 7.053 
NNET2 

(2) 3.737 3.699 2.544 10.795 4.099 9.949 5.084 2.848 0.642 7.064 

REL (2) 3.570 5.313 2.542 10.723 4.072 9.898 5.035 2.819 0.622 7.033 
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  S&C G8 S&C G9 S&C G10 S&C G11 S&C G12 Mean sd 

SFP (2) 0.342 0.217 0.296 0.063 0.032 0.243 0.221 

NFP (2) 0.354 0.306 0.328 0.060 0.031 0.270 0.255 

stEWA (1) 0.220 0.258 0.344 0.083 0.027 0.568 0.991 

PB1 (1) 1.392 1.359 0.776 0.487 0.111 0.734 0.697 

PB0 (0) 1.305 1.256 0.759 0.422 0.112 0.849 0.847 

RL (2) 1.129 1.309 1.822 1.500 1.263 1.408 2.420 

NE (0) 1.388 0.418 0.785 0.410 0.095 2.151 2.530 

NRL (2) 7.836 1.310 4.235 5.750 3.408 2.418 2.642 

NNET (1) 3.643 8.429 2.943 2.632 0.747 3.215 2.796 

NNET2 (2) 3.662 8.427 2.962 2.641 0.754 3.215 2.795 

REL (2) 3.615 8.352 2.930 2.617 0.730 3.313 2.729 

 

Table A8. This table reports the P-values for pair-wise model comparisons in terms of 

By Game scores. Simulations were run feeding models with rescaled payoffs. The null 

hypothesis of no differences in the mean scores was tested with a Mann-Whitney-

Wilcoxon match-paired signed-rank (two-tailed) test. Shaded cells refer to the cases in 

which the null hypothesis is not rejected at a 5% level of significance. 

 SFP 
(2) 

NFP 
(2) 

stEWA 
(1) 

PB1 
(1) 

PB0 
(0) 

RL 
(2) 

NE 
(0) 

NRL 
(2) 

NNET 
(1) 

NNET2 
(2) 

REL 
(2) 

SFP (2)   0.054 0.004 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 

NFP (2) 0.054   0.018 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 

stEWA (1) 0.004 0.018   0.001 0.001 0.030 0.000 0.000 0.000 0.000 0.000 

PB1 (1) 0.000 0.000 0.001   0.126 0.688 0.005 0.001 0.000 0.000 0.000 

PB0 (0) 0.000 0.000 0.001 0.126   0.737 0.004 0.004 0.000 0.000 0.000 

RL (2) 0.002 0.003 0.030 0.688 0.737   0.045 0.000 0.000 0.000 0.000 

NE (0) 0.000 0.000 0.000 0.005 0.004 0.045   0.390 0.054 0.052 0.038 

NRL (2) 0.000 0.000 0.000 0.001 0.004 0.000 0.390   0.061 0.061 0.045 

NNET (1) 0.000 0.000 0.000 0.000 0.000 0.000 0.054 0.061   0.647 0.003 

NNET2 (2) 0.000 0.000 0.000 0.000 0.000 0.000 0.052 0.061 0.647   0.016 

REL (2) 0.000 0.000 0.000 0.000 0.000 0.000 0.038 0.045 0.003 0.016   
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Table A9. Pair-wise model comparisons in terms of By Game scores. Simulations were 

run feeding models with rescaled payoffs. Each cell of this table reports the estimate 

for the difference of the location parameters of x and y, where x is row model’s vector 

of scores, and y that one of the column model. 

 SFP 
(2) 

NFP 
(2) 

stEWA 
(1) 

PB1 
(1) 

PB0 
(0) 

RL 
(2) 

NE 
(0) 

NRL 
(2) 

NNET 
(1) 

NNET2 
(2) 

REL 
(2) 

SFP (2)   -0.009 -0.075 -0.412 -0.501 -
0.613 

-
1.161 -1.659 -2.598 -2.586 -2.661 

NFP (2) 0.009   -0.060 -0.401 -0.484 -
0.602 

-
1.142 -1.640 -2.549 -2.557 -2.630 

stEWA (1) 0.075 0.060   -0.215 -0.224 -
0.531 

-
1.020 -1.404 -2.197 -2.191 -2.273 

PB1 (1) 0.412 0.401 0.215   -0.059 -
0.081 

-
0.694 -1.136 -2.156 -2.165 -2.189 

PB0 (0) 0.501 0.484 0.224 0.059   -
0.116 

-
0.748 -1.161 -1.902 -1.906 -1.963 

RL (2) 0.613 0.602 0.531 0.081 0.116   -
0.454 -0.766 -1.684 -1.665 -1.733 

NE (0) 1.161 1.142 1.020 0.694 0.748 0.454   -0.314 -0.996 -0.999 -1.108 

NRL (2) 1.659 1.640 1.404 1.136 1.161 0.766 0.314   -0.544 -0.544 -0.883 

NNET (1) 2.598 2.549 2.197 2.156 1.902 1.684 0.996 0.544   0.001 0.019 

NNET2 (2) 2.586 2.557 2.191 2.165 1.906 1.665 0.999 0.544 -0.001   0.015 

REL (2) 2.661 2.630 2.273 2.189 1.963 1.733 1.108 0.883 -0.019 -0.015   
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Table A10. MSD and Best Fit Scores. Rescaled Payoffs. In the first column, between 

parentheses, the number of model free parameters is reported. 

  AGK50 AGK67 AGK75 ERSB 
G1 

ERSB 
G2 

ERSB 
G3 

ERSB 
G4 

ERSB 
G5 

ERSB 
G6 

ERSB 
G7 

NFP (2) 0.046 1.116 1.277 0.349 0.283 0.411 0.999 0.092 0.900 0.810 

SFP (2) 0.043 1.073 1.315 0.407 0.313 0.458 0.846 0.096 1.085 0.887 

PB0 (0) 0.037 0.079 0.399 0.713 1.225 0.446 2.066 0.720 0.113 0.255 

PB1 (1) 0.046 0.105 0.633 0.541 1.765 0.229 1.960 0.234 0.201 0.312 
stEWA 

(1) 0.035 0.080 0.428 0.872 1.808 0.665 2.524 0.845 0.382 0.491 

RL (2) 0.038 0.394 1.296 0.383 0.236 4.451 2.119 0.103 0.101 0.196 

NE (0) 0.045 1.903 4.515 1.919 10.582 6.728 1.078 1.117 5.261 5.804 
NNET2 

(2) 0.038 0.373 0.334 2.220 6.978 4.309 2.817 2.472 1.432 2.236 

NNET (1) 0.046 0.365 0.363 2.221 6.976 4.301 2.829 2.469 1.422 2.246 

REL (2) 0.040 0.395 0.374 2.245 7.031 4.337 2.795 2.464 1.443 2.248 

NRL (2) 0.039 0.462 1.377 2.423 1.199 3.945 0.933 1.696 2.251 2.323 

           

  ERSB 
G8 

ERSB 
G9 

ERSB 
G10 M&L Oc1 Oc4 Oc9 On R&B10 R&B15 

NFP (2) 0.355 0.302 0.877 0.451 0.431 0.623 0.864 0.148 0.132 0.264 

SFP (2) 0.338 0.442 0.663 0.595 0.440 0.630 0.904 0.167 0.301 0.562 

PB0 (0) 1.822 0.126 2.869 0.606 0.435 1.005 1.530 0.303 0.170 0.485 

PB1 (1) 1.343 0.152 1.867 0.359 0.434 0.866 1.459 0.311 0.181 0.536 
stEWA 

(1) 2.843 0.123 3.055 0.315 0.433 1.474 2.420 0.126 0.171 0.403 

RL (2) 0.792 0.222 1.029 12.469 0.425 1.220 1.339 0.166 0.115 0.321 

NE (0) 1.866 0.668 1.233 2.114 0.435 1.366 2.240 0.136 0.354 0.865 
NNET2 

(2) 4.606 0.422 6.175 2.462 0.413 1.721 3.892 0.307 0.181 0.535 

NNET (1) 4.609 0.422 6.184 2.458 0.435 1.769 3.898 0.298 0.186 0.517 

REL (2) 4.639 0.424 6.168 1.413 0.446 1.750 3.915 2.299 1.077 1.383 

NRL (2) 0.496 1.528 0.979 11.089 0.488 2.606 3.538 0.071 0.347 0.295 

           

  RSW D RSW S S&A3K S&C 
G1 

S&C 
G2 

S&C 
G3 

S&C 
G4 

S&C 
G5 

S&C 
G6 

S&C 
G7 

NFP (2) 0.837 1.788 1.252 0.636 0.056 0.422 0.201 0.150 0.049 0.587 

SFP (2) 0.731 1.610 1.646 0.421 0.084 0.337 0.144 0.108 0.046 0.513 

PB0 (0) 1.524 3.860 1.633 0.304 0.422 0.351 0.476 0.416 0.115 1.345 

PB1 (1) 1.622 2.957 1.612 2.221 0.494 0.586 0.580 0.504 0.136 0.905 
stEWA 

(1) 2.829 4.824 6.460 5.809 1.524 0.743 1.134 0.546 0.247 0.863 

RL (2) 0.199 0.569 9.340 2.205 4.792 1.804 1.245 0.904 0.387 5.882 

NE (0) 0.397 0.610 7.327 2.546 2.137 1.331 0.672 0.309 0.113 6.520 
NNET2 

(2) 3.767 3.771 2.551 10.807 4.115 9.987 5.094 2.874 0.646 7.075 

NNET (1) 3.754 3.744 2.549 10.809 4.116 9.978 5.097 2.871 0.646 7.074 

REL (2) 3.607 5.348 2.607 10.877 4.115 9.986 5.112 2.850 0.640 7.152 

NRL (2) 2.135 3.355 20.221 3.602 7.527 1.980 2.509 2.481 0.670 7.419 
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  S&C G8 S&C G9 S&C G10 S&C G11 S&C G12 Mean sd 

NFP (2) 0.394 1.088 0.363 0.142 0.047 0.535 0.429 

SFP (2) 0.348 0.836 0.297 0.122 0.041 0.539 0.427 

PB0 (0) 1.305 1.256 0.759 0.422 0.112 0.849 0.847 

PB1 (1) 1.517 1.724 0.788 0.487 0.131 0.851 0.738 

stEWA (1) 1.178 0.485 1.167 0.395 0.066 1.365 1.609 

RL (2) 1.129 9.397 1.822 1.523 1.263 1.996 2.972 

NE (0) 1.388 0.418 0.785 0.410 0.095 2.151 2.530 

NNET2 (2) 3.669 8.439 2.966 2.653 0.765 3.231 2.800 

NNET (1) 3.669 8.434 2.974 2.650 0.758 3.232 2.797 

REL (2) 3.701 8.448 2.958 2.668 0.740 3.363 2.756 

NRL (2) 9.890 5.080 8.531 6.779 3.408 3.534 4.090 

 

Table A11. This table reports the P-values for pair-wise model comparisons in terms of 

Best Fit scores. Simulations were run feeding models with rescaled payoffs. The null 

hypothesis of no differences in the mean scores was tested with a Mann-Whitney-

Wilcoxon match-paired signed-rank (two-tailed) test. Shaded cells refer to the cases in 

which the null hypothesis is not rejected at a 5% level of significance. 

 NFP 
(2) 

SFP 
(2) 

PB0 
(0) 

PB1 
(1) 

stEWA 
(1) 

RL 
(2) 

NE 
(0) 

NNET2 
(2) 

NNET 
(1) 

REL 
(2) 

NRL 
(2) 

NFP (2)   0.863 0.005 0.002 0.001 0.002 0.000 0.000 0.000 0.000 0.000 

SFP (2) 0.863   0.019 0.009 0.003 0.005 0.000 0.000 0.000 0.000 0.000 

PB0 (0) 0.005 0.019   0.700 0.003 0.081 0.004 0.000 0.000 0.000 0.000 

PB1 (1) 0.002 0.009 0.700   0.007 0.107 0.010 0.000 0.000 0.000 0.000 

stEWA (1) 0.001 0.003 0.003 0.007   0.617 0.147 0.000 0.000 0.000 0.003 

RL (2) 0.002 0.005 0.081 0.107 0.617   0.456 0.003 0.002 0.001 0.000 

NE (0) 0.000 0.000 0.004 0.010 0.147 0.456   0.050 0.048 0.033 0.050 

NNET2 (2) 0.000 0.000 0.000 0.000 0.000 0.003 0.050   0.925 0.004 0.967 

NNET (1) 0.000 0.000 0.000 0.000 0.000 0.002 0.048 0.925   0.026 0.954 

REL (2) 0.000 0.000 0.000 0.000 0.000 0.001 0.033 0.004 0.026   0.676 

NRL (2) 0.000 0.000 0.000 0.000 0.003 0.000 0.050 0.967 0.954 0.676   
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Table A12. Pair-wise model comparisons in terms of Best Fit scores. Simulations were 

run feeding models with rescaled payoffs. Each cell of this table reports the estimate 

for the difference of the location parameters of x and y, where x is row model’s vector 

of scores, and y that one of the column model. 

 NFP 
(2) 

SFP 
(2) 

PB0 
(0) 

PB1 
(1) 

stEWA 
(1) 

RL 
(2) 

NE 
(0) 

NNET2 
(2) 

NNET 
(1) 

REL 
(2) 

NRL 
(2) 

NFP (2)   0.004 -0.268 -0.287 -0.575 -
0.637 

-
0.967 -2.328 -2.329 -2.484 -1.983 

SFP (2) -0.004   -0.245 -0.270 -0.597 -
0.629 

-
1.004 -2.346 -2.340 -2.457 -2.016 

PB0 (0) 0.268 0.245   -0.014 -0.235 -
0.436 

-
0.748 -1.918 -1.923 -1.996 -1.848 

PB1 (1) 0.287 0.270 0.014   -0.282 -
0.298 

-
0.652 -2.066 -2.085 -2.156 -1.737 

stEWA (1) 0.575 0.597 0.235 0.282   -
0.083 

-
0.278 -1.542 -1.534 -1.633 -1.442 

RL (2) 0.637 0.629 0.436 0.298 0.083   -
0.176 -1.205 -1.205 -1.364 -1.106 

NE (0) 0.967 1.004 0.748 0.652 0.278 0.176   -1.004 -1.011 -1.154 -0.915 

NNET2 (2) 2.328 2.346 1.918 2.066 1.542 1.205 1.004   0.000 -0.020 0.016 

NNET (1) 2.329 2.340 1.923 2.085 1.534 1.205 1.011 0.000   -0.016 0.010 

REL (2) 2.484 2.457 1.996 2.156 1.633 1.364 1.154 0.020 0.016   0.185 

NRL (2) 1.983 2.016 1.848 1.737 1.442 1.106 0.915 -0.016 -0.010 -0.185   
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2.9  Appendix B. The Dataset Description 
2.9.1 Suppes and Atkinson (1960) 

In this experiment, 20 pairs of subjects played this game for 210 times. The payoff 

matrix was known to the subjects. The authors presented the data they gathered in 7 

blocks of 30 repetitions of the stage game. Table B1 shows the matrix of payoffs and 

experimentally observed frequencies of choice. 

 

Table B1. Suppes and Atkinson’s (1960) game and empirical data. 

 

   Player 2 
 
 
Player 1 

A2 B2 

A1 (3,7) (8,2) 

B1 (4,6) (1,9) 

 

 

2.9.2 Malcolm and Lieberman (1965) 

Nine pairs of subjects played this game for 200 rounds. The payoff matrix was known 

to the subjects. The authors presented the choices’ relative frequencies in 8 blocks of 

25 trials. Table B2 shows the matrix of payoffs and reports experimentally observed 

frequencies of choice. 

 

Table B2. Malcolm and Lieberman’s (1965) game and empirical data. 

 

   Player 2 
 
 
Player 1 

A2 B2 

A1 (3,-3) (-1,1) 

B1 (-9,9) (3,-3) 
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2.9.3 O’Neill (1987) 

Experimental settings and data: 20 pairs of subjects participated in 105 replications of 

this zero-sum 4x4 game. Strategies B, C and D are symmetrical for both players. The 

author presented the relative frequency with which strategy A was played in 7 blocks of 

15 iterations. Table B3 shows the matrix of payoffs and reports experimentally 

observed frequencies of choice. 

Equilibrium prediction: According to the unique mixed strategy equilibrium of this 

game, both players are expected to choose A with probability 0.4 and each of the other 

strategies with probability 0.2.  
 

Table B3. O’Neill’s (1987) game and empirical data. 
 

   Player 2 
 
 
Player 1 

A2 B2 C2 D2 

A1 +5 -5 -5 -5 

B1 -5 -5 +5 +5 

C1 -5 +5 -5 +5 

D1 -5 +5 +5 -5 
 

 

2.9.4 Rapoport and Boebel (1992) 

Experimental settings and data: Both those constant-sum games were played in two 

sessions. In the first session, 10 pairs of subjects played the game for 120 rounds, while 

in the second session subjects exchanged roles and played another 120 rounds of the 

game. Here are presented only data gathered in the first sessions. The authors presented 

the proportions of A and B choices in 4 blocks of 30 trials. Table B4 shows the matrix 

of payoffs and reports experimentally observed frequencies of choice. 

Equilibrium prediction: According to the unique mixed strategy equilibrium of this 

game, both players are expected to choose A with probability 

€ 

3/8 , B with probability 

€ 

2 /8  and each of the other (symmetrical) strategies with equal probability (

€ 

1/8). 
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Table B4. Rapoport and Boebel’s (1992) games and empirical data. 

 

 

  Player 2 
 
 
Player 1 

A2 B2 C2 D2 E2 

A1 W L L L L 

B1 L L W W W 

C1 L W L L W 

D1 L W L W L 

E1 L W W L L 

 
 

2.9.5 Ochs (1995) 

Experimental settings and data: This experiment by Ochs developed in three sessions in 

which subjects were asked to state at each round the frequency of A choices that they 

wished to make in the next 10 games. In the first, 8 pairs of subjects played for 64 

rounds game Oc1 with 

€ 

a = b =1; in the second, 8 pairs of subjects played for 16 rounds 

game Oc1 and for 56 rounds game Oc9, with 

€ 

a = 9 and 

€ 

b =1; finally, in section three, 8 

pairs of subjects played for 16 rounds game Oc1 and for 64 rounds game Oc4, with 

€ 

a = 4  and 

€ 

b =1. The author presented the average frequencies of choice A in blocks of 

80 trials (80 games). Table B5 shows the matrix of payoffs and reports experimentally 

observed frequencies of choice. 

Equilibrium prediction: In the unique mixed strategy equilibrium of the game, 

player 1 chooses A1 with probability 

€ 

p =1 2  and player 2 chooses A2 with probability 

€ 

q = b a + b( ) . 
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Table B5. Ochs’s (1995) games and empirical data. 

 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 (a,0) (0,b) 

B1 (0,b) (b,0) 

 
 

2.9.6 Rosenthal, Shachat, and Walker (2003) 

The authors considered two versions of a zero sum game with the same matrix 

representation, called Deterministic Game (D) and Stochastic Game (S), respectively. 

In the first version game payoffs are deterministic, in the second stochastic. Six pairs of 

subjects played repeatedly game D 200 times and other twenty pairs played game S 200 

times in a fix pairing protocol. Players were informed about the structure of the game 

and, at each round, were given full feedback about their own actions and their 

opponents’. Table B6 shows the matrix of payoffs and reports experimentally observed 

frequencies of choice. 
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Table B6. Rosenthal, Shachat, and Walker’s (2003) games and empirical data. 

 

 

    Player 2 
 
 
Player 1 

A2 B2 

A1 (1,-1) (0,0) 

B1 (0,0) (2,-2) 

 

 
2.9.7 Avrahami, Güth and Kareev (2005) 

In three different experimental sessions, three groups of subjects (for a total of 60 

participants) played for 100 times a game that the authors named Parasite Game. 

This game involves two players and an indifferent nature. Nature moves first and 

decides where a resource for player 1 becomes available (H or T, which stands for two 

different locations). Then, T and H are also the locations where player 1 can search for 

the resource and where player 2 can steal it from player 1. So, success for player 1 

means to guess nature’s move but not to be outguessed by player 2; for player 2, 

instead, it means to outguess player 1 when player 1 has guessed nature. 

Two different protocols were considered: one in which 

€ 

w  was initially declared to 

participants (labeled with KNOWL=1) and one in which 

€ 

w was unknown by 

participants (labeled with KNOWL=0). We used data gathered in the three session 

using protocol KNOWL=0. 

In the first session, 6 pairs of subjects played the Parasite Game with 

€ 

w =1 2 (we 

labeled with AGK50); in the second, 12 pairs played the same game, but with 

€ 

w = 2 3 

(AGK67); finally, in the third session 12 pairs played the Parasite Game with 

€ 

w = 3 4  
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(AGK75). In each group half of the pairs were in the known and the other half in the 

unknown treatment. 

The authors presented the data in 3 blocks of 30 iterations – the first and the last 5 

rounds were excluded from analysis. 

Equilibrium prediction: The unique mixed strategy equilibrium of the game 

predicts that player 1 chooses strategy H with probability 

€ 

p =1− w  and player 2 

chooses H with probability 

€ 

q = w . Table B7 shows the payoffs of the normal form 

games and reports experimentally observed frequencies of choice. 

 

Table B7. Avrahami, Güth, and Kareev’s (2005) games and empirical data. 

 

 

 

    Player 2 
 
 
Player 1 

A2 B2 

A1 (0,w) (w,0) 

B1 (1-w,0) (0,1-w) 
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2.9.8 Erev, Roth, Slonim and Barron (2007) 

Nine pairs of subjects played for 500 rounds ten randomly selected games. The 

numbers in each matrix represents probabilities that the players will win a fixed amount 

€ 

w  on each trial. For example, if on a certain trial both players choose A, then player 1 

will win 

€ 

w  with the specified probability 

€ 

p1 and player 2 will win 

€ 

w  with probability 

€ 

1− p1. A player who does not win 

€ 

w  earns zero for that period. Subjects knew the 

probabilities that define the game. The authors presented the average frequencies of 

choice A in 5 blocks of 100 trials. Table B8 shows the matrices of payoffs and reports 

experimentally observed frequencies of choice. 
 

Table B8. Erev, Roth, Slonim, and Barron’s (2007) games and empirical data. 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 0.77 0.35 

B1 0.08 0.48 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 0.73 0.74 

B1 0.87 0.20 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 0.63 0.08 

B1 0.01 0.17 
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     Player 2 
 
 
Player 1 

A2 B2 

A1 0.55 0.75 

B1 0.73 0.60 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 0.05 0.64 

B1 0.93 0.40 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 0.46 0.54 

B1 0.61 0.23 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 0.89 0.53 

B1 0.82 0.92 
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     Player 2 
 
 
Player 1 

A2 B2 

A1 0.88 0.38 

B1 0.40 0.55 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 0.40 0.76 

B1 0.91 0.23 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 0.69 0.05 

B1 0.13 0.33 

 
 

2.9.9 Selten and Chmura (2008) 

The authors ran experiments on 6 constant sum games and 6 non-constant sum games. 

Each of the first 6 constant sum games was played for 200 times by 12 groups of 8 

subjects each (random matching protocol) and each of the other non-constant sum 

games was played for 200 times by 6 groups of 8 subjects each (random matching 

protocol). The average frequencies of choice A are presented in 8 blocks of 25 trials 

each. Table B9 shows the matrices of payoffs and reports experimentally observed 

frequencies of choice. 
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Table B9. Selten and Chmura’s (2008) games and empirical data. 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 (10,8) (0,18) 

B1 (9,9) (10,8) 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 (9,4) (0,13) 

B1 (6,7) (8,5) 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 (8,6) (0,14) 

B1 (7,7) (10,4) 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 (7,4) (0,11) 

B1 (5,6) (9,2) 
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     Player 2 
 
 
Player 1 

A2 B2 

A1 (7,2) (0,9) 

B1 (4,5) (8,1) 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 (7,1) (1,7) 

B1 (3,5) (8,0) 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 (10,12) (4,22) 

B1 (9,9) (14,8) 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 (9,7) (3,16) 

B1 (6,7) (11,5) 
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     Player 2 
 
 
Player 1 

A2 B2 

A1 (8,9) (3,17) 

B1 (7,7) (13,4) 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 (7,6) (2,13) 

B1 (5,6) (11,2) 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 (7,4) (2,11) 

B1 (4,5) (10,1) 

 

 

     Player 2 
 
 
Player 1 

A2 B2 

A1 (7,3) (3,9) 

B1 (3,5) (10,0) 
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Table B10. Summary of empirical frequencies of play in the 35 games. 

  BLOCKS    
GAME ACTION 1 2 3 4 5 6 7 8 9 10 NE 
AGK50 A1 0.50 0.49 0.47        0.500 
AGK50 A2 0.52 0.52 0.47        0.500 
AGK67 A1 0.50 0.49 0.52        0.330 
AGK67 A2 0.57 0.57 0.61        0.670 
AGK75 A1 0.52 0.49 0.47        0.250 
AGK75 A2 0.55 0.57 0.61        0.750 

AGK50k A1 0.49 0.46 0.49        0.500 
AGK50k A2 0.43 0.47 0.46        0.500 
AGK67k A1 0.57 0.50 0.53        0.330 
AGK67k A2 0.63 0.67 0.67        0.670 
AGK75k A1 0.50 0.42 0.39        0.250 
AGK75k A2 0.72 0.79 0.80        0.750 
ERSB G1 A1 0.59 0.51 0.63 0.61 0.63      0.490 
ERSB G1 A2 0.31 0.28 0.35 0.34 0.31      0.160 
ERSB G2 A1 0.80 0.90 0.79 0.85 0.86      0.990 
ERSB G2 A2 0.37 0.44 0.36 0.35 0.28      0.790 
ERSB G3 A1 0.61 0.57 0.65 0.54 0.54      0.230 
ERSB G3 A2 0.22 0.19 0.25 0.23 0.22      0.130 
ERSB G4 A1 0.32 0.22 0.26 0.29 0.28      0.390 
ERSB G4 A2 0.62 0.52 0.47 0.47 0.43      0.450 
ERSB G5 A1 0.35 0.38 0.38 0.38 0.40      0.470 
ERSB G5 A2 0.36 0.36 0.34 0.27 0.27      0.210 
ERSB G6 A1 0.60 0.61 0.66 0.65 0.67      0.830 
ERSB G6 A2 0.38 0.39 0.42 0.40 0.47      0.670 
ERSB G7 A1 0.35 0.32 0.27 0.28 0.26      0.220 
ERSB G7 A2 0.45 0.53 0.52 0.54 0.57      0.850 
ERSB G8 A1 0.52 0.47 0.34 0.34 0.34      0.230 
ERSB G8 A2 0.25 0.19 0.22 0.22 0.24      0.260 
ERSB G9 A1 0.54 0.59 0.59 0.54 0.55      0.650 
ERSB G9 A2 0.41 0.42 0.51 0.48 0.43      0.510 

ERSB G10 A1 0.33 0.36 0.35 0.26 0.30      0.240 
ERSB G10 A2 0.20 0.21 0.20 0.20 0.19      0.330 

M&L A1 0.64 0.68 0.65 0.76 0.71 0.70 0.70 0.71   0.750 
M&L A2 0.60 0.46 0.46 0.38 0.38 0.35 0.42 0.39   0.250 
Oc1 A1 0.41 0.55 0.47 0.43 0.51 0.54 0.53 0.47   0.500 
Oc1 A2 0.54 0.45 0.45 0.59 0.44 0.47 0.43 0.34   0.500 
Oc4 A1 0.47 0.59 0.55 0.60 0.59 0.63 0.43 0.48   0.500 
Oc4 A2 0.38 0.35 0.38 0.40 0.34 0.27 0.27 0.30   0.200 
Oc9 A1 0.41 0.67 0.72 0.58 0.58 0.58 0.63    0.500 
Oc9 A2 0.32 0.33 0.24 0.22 0.22 0.28 0.20    0.100 
On A1 0.36 0.35 0.38 0.33 0.35 0.38 0.39    0.400 
On A2 0.45 0.42 0.40 0.42 0.43 0.44 0.43    0.400 

R&B10 A1 0.32 0.30 0.26 0.33       0.375 
R&B10 B1 0.32 0.30 0.27 0.27       0.250 
R&B10 A2 0.41 0.29 0.35 0.32       0.375 
R&B10 B2 0.20 0.24 0.18 0.18       0.250 
R&B15 A1 0.26 0.25 0.27 0.31       0.375 
R&B15 B1 0.36 0.37 0.37 0.33       0.250 
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R&B15 A2 0.33 0.33 0.36 0.35       0.375 
R&B15 B2 0.10 0.13 0.19 0.21       0.250 
RSW D A1 0.55 0.58 0.60 0.60 0.68 0.68 0.73 0.67 0.71 0.63 0.670 
RSW D A2 0.66 0.71 0.72 0.74 0.77 0.74 0.73 0.69 0.72 0.76 0.670 
RSW S A1 0.58 0.69 0.68 0.69 0.72 0.72 0.75 0.68 0.78 0.74 0.670 
RSW S A2 0.72 0.78 0.77 0.76 0.81 0.81 0.72 0.72 0.73 0.75 0.670 
S&A3k A1 0.62 0.65 0.69 0.68 0.67 0.70 0.70    0.375 
S&A3k A2 0.59 0.62 0.60 0.64 0.66 0.67 0.69    0.875 
S&C G1 A1 0.13 0.09 0.08 0.08 0.07 0.08 0.06 0.05   0.091 
S&C G1 A2 0.58 0.66 0.71 0.72 0.73 0.74 0.71 0.67   0.909 
S&C G2 A1 0.27 0.21 0.23 0.22 0.23 0.21 0.20 0.17   0.182 
S&C G2 A2 0.47 0.51 0.54 0.55 0.53 0.57 0.54 0.51   0.727 
S&C G3 A1 0.19 0.18 0.16 0.16 0.16 0.17 0.15 0.14   0.273 
S&C G3 A2 0.72 0.78 0.78 0.80 0.80 0.82 0.82 0.82   0.909 
S&C G4 A1 0.25 0.28 0.28 0.28 0.31 0.29 0.29 0.30   0.364 
S&C G4 A2 0.72 0.72 0.72 0.75 0.74 0.77 0.74 0.73   0.818 
S&C G5 A1 0.32 0.32 0.32 0.34 0.37 0.34 0.31 0.30   0.364 
S&C G5 A2 0.65 0.62 0.66 0.68 0.67 0.66 0.67 0.69   0.727 
S&C G6 A1 0.44 0.44 0.48 0.44 0.43 0.48 0.43 0.43   0.455 
S&C G6 A2 0.58 0.57 0.62 0.60 0.60 0.59 0.60 0.61   0.636 
S&C G7 A1 0.25 0.17 0.17 0.12 0.12 0.08 0.10 0.11   0.091 
S&C G7 A2 0.50 0.48 0.52 0.50 0.53 0.63 0.68 0.66   0.909 
S&C G8 A1 0.30 0.26 0.30 0.19 0.21 0.25 0.25 0.24   0.182 
S&C G8 A2 0.48 0.57 0.59 0.58 0.61 0.64 0.64 0.58   0.727 
S&C G9 A1 0.29 0.26 0.22 0.26 0.25 0.28 0.24 0.22   0.273 
S&C G9 A2 0.78 0.80 0.83 0.85 0.84 0.84 0.85 0.84   0.909 

S&C G10 A1 0.35 0.35 0.39 0.42 0.37 0.38 0.36 0.31   0.364 
S&C G10 A2 0.67 0.72 0.71 0.72 0.65 0.70 0.70 0.73   0.818 
S&C G11 A1 0.32 0.31 0.33 0.34 0.35 0.35 0.36 0.30   0.364 
S&C G11 A2 0.60 0.66 0.64 0.70 0.65 0.64 0.70 0.64   0.727 
S&C G12 A1 0.44 0.46 0.43 0.41 0.46 0.44 0.44 0.42   0.455 
S&C G12 A2 0.59 0.60 0.59 0.60 0.58 0.61 0.63 0.64   0.636 
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CHAPTER 3 

3. NET REWARD ATTRACTIONS EQUILIBRIUM FOR STRATEGIC 

FORM GAMES AND ITS EXPERIMENTAL TEST 
 

Abstract. Data from experiments on repeated, completely mixed games show that 

Nash equilibrium is a poor predictor of observed human choice behavior. Here I 

propose the concept of Net Reward Attractions (NRA) equilibrium and test its 

predictive accuracy on data from experiments on 26 repeated, completely mixed games 

run under full-feedback condition. Moreover, I compare NRA’s predictive power with 

that of other five equilibrium concepts and eight models of learning, representing 

cutting-edge research on interactive decision making modeling. NRA turns out to be 

among the best predictors of empirical data, performing significantly better than Nash 

equilibrium, self-tuning EWA, and reinforcement-based models. 
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3.1  Introduction 
Since the late 1950s, the experimental game theory literature on repeated games has 

provided significant departures from Nash equilibrium behavior and especially data 

from experiments on repeated games with a unique equilibrium in mixed strategy 

(MSE) seem to contradict the predictions of standard game theory (Erev and Roth, 

1998; Erev et al., 2007; Selten and Chmura, 2008). The unsatisfactory performances of 

Nash equilibrium have led researchers to find alternative theories and models to better 

explain and justify experimentally observed interactive choice behavior. 

As a result, most of the models proposed in the behavioral game theory literature 

outperform standard equilibrium theory in both the tasks of fitting and predicting 

experimental data, and attribute to other factors the role of drivers of choice behavior 

(Camerer, 2003; Erev and Roth, 1998; Erev et al., 1999, 2002, 2007; Selten and 

Chmura, 2008). Specifically, some recent contributions have shown that regret-based 

models are the best predictors of data from experiments on interactive repeated choice 

tasks, thus suggesting that regret for foregone payoffs must play a central role in 

shaping human choice behavior. 

In the recent literature on repeated strategic interaction, two patterns of analysis are 

usually adopted, one focusing on dynamic models and the other on stationary ones. 

According to the first approach, authors are mainly interested in comparing the 

accuracy of a bunch of models of learning, considering the performance of one or very 

few equilibrium concepts merely as a benchmark (Erev and Roth, 1998; Erev et al., 

2007). According to the second approach, only equilibrium models are tested and 

compared (Selten and Chmura, 2008). However, an overall and systematic comparison 

of the predictive power of both equilibrium and learning models on many different 

experimental datasets has not yet been proposed. 

In the first place, such an overall analysis involving both equilibrium and learning 

models would shed light on the gap (if any) between these two approaches. In general, 

equilibrium models are less complex than learning ones from at least three points of 

view: statistically (i.e., number of free parameters), analytically, and computationally. 

Stationary concepts are designed to predict and describe choice behavior emerging in 

the long run, once play has converged to a steady state, whereas learning models (in 

virtue of their higher degree of complexity) are expected to be more flexible and 

capable to capture learning dynamics also in the early trials. If this were not the case, 
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that would constitute a strong argument in favor of the less complex and analytically 

more tractable stationary concepts, in accordance with Occam’s principle of parsimony. 

In this paper, I propose a new behavioral equilibrium concept and compare its 

predictive accuracy with that of other five equilibrium concepts and eight models of 

learning, among the most popular in the literature on interactive decision making 

modeling. 

I test models on a large compound dataset: I collected data from experiments on 26 

two-person 2x2 games played more than 100 times, run under full feedback condition, 

conducted by other researchers other than me, and for which data for each independent 

observation were available. 

 

3.2  The NRA Equilibrium 
The Net Reward Attractions (NRA) Equilibrium is a stationary concept designed for 

strategic form games and is based on behavioral assumptions about human choice 

behavior, rather than on the principle of full rationality. It is assumed that, in 

equilibrium, agents do not maximize their expected utility function, but that, for a 

player, the propensity of choosing an action is proportional to its corresponding 

expected net reward – net reward being defined as the difference between the actual 

payoff and the minimum obtainable one, given other players’ moves. I simply assume 

here that players are attracted by actions, and that this attraction can be quantified in 

terms of how much, on average, an action is perceived as better than the others. 

The concept of net reward, as introduced here, is very similar to Loomes and 

Sugden’s (1982) concept of rejoicing i.e., a measure of the additional pleasure 

associated to the awareness of having chosen the best action. In this vein, the approach 

based on net rewards, which I adopt to model choice behavior in the long run, is 

complementary, although not equivalent (see Section 3), to that based on regret. In 

Loomes and Sugden’s (1982) regret theory, these two complementary aspects are fused 

together in the Rejoice/Regret function (see the Introduction), and I show in Chapters 2 

and 3 of my thesis that these two components can be separately used to successfully 

design models of choice behavior. 

The intuition at the basis of the NRA model that relative rewards rather than 

absolute payoffs are what matters in determining choice behavior, is coherent with 

recent neuroeconomic research. In a pioneering study, Tremblay and Schultz (1999) 
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report that neurons in the orbitofrontal area of the brain of primates do not encode 

absolute values of reward objects, but just relative preferences over a set of few objects 

available at a certain time. In the same vein, Tobler, Fiorillo, and Schultz (2005) show 

results supporting the hypothesis that dopamine neurons in Macaque monkeys encode a 

measure of prediction error, defined as the difference between the value of the reward 

and its expected value. Brain’s limited computational resources offer an explanation for 

these results: whereas in the brain there is a finite number of neurons that can code a 

finite number of objects, absolute reward values of objects are potentially infinite. For 

this reason, coding relative rewards of a small number of available objects at a time 

would not only reduce the complexity of the task of object evaluation, but also increase 

the accuracy of the process of discrimination between objects. Daw et al. (2006) report 

data from an experiment with human subjects, consisting in a gambling task. The 

authors tested the predictive power of the (reinforcement) softmax model, in which 

choice probabilities are determined on the basis of actions’ relative expected values. As 

a result, the softmax model turns out to be the best predictor of observed behavior, in 

comparison with other two models of reinforcement. In addition, the authors find that 

there is a positive correlation between softmax predicted probabilities and the 

activation of the medial and lateral orbitofrontal cortex areas of the brain. 

In interactive, conflictual decision tasks, wherein feelings such as fairness, 

reciprocity, and cooperation are almost completely excluded, the problem of choosing a 

strategy in a game can be interpreted as an individual choice problem under uncertainty 

(Brandenburger, 1992), and it seems reasonable to assume that the neural mechanisms 

involved in those interactive strategic situations are the same as those triggered in the 

contest of individual choice problems. This gives credit to the idea that relative 

preferences between rewards are at the basis of human choice behavior, at least in the 

class of strategic situations above described. Of course, it is a well-known fact that in 

general interactive decision-making is a psychologically richer process than individual 

decision-making (Camerer, 2003), as social comparison issues (see for example 

Fliessbach et al., 2007), inequality aversion feelings, and reciprocating behaviors (see 

for example Fehr and Schmidt, 1999) are involved. 

 

3.2.1 Theoretical Framework 

Before providing the formal definition of NRA equilibrium and describing its 

properties, I introduce some notation. Consider a finite n-person strategic game 

€ 

G, 
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defined by a set of players 

€ 

N = 1,...,n{ } , a non-empty set 

€ 

Ai = ai1,...,aimi{ } of available 

actions for each player 

€ 

i ∈ N , and a payoff function 

€ 

ui :×i∈N Ai → R . Denote the 

elements of 

€ 

A = ×i∈N Ai  (action profiles) with 

€ 

a . Let 

€ 

Δ i = Δ Ai( )  be the set of 

probability measures on 

€ 

Ai ; all elements 

€ 

pi = pi1,..., pimi( )  of 

€ 

Δ Ai( )  are such that 

€ 

pij
j=1

mi

∑ =1 and 

€ 

pij ≥ 0  

€ 

∀j =1,...,mi, so that 

€ 

Δ Ai( )  is isomorphic to the 

€ 

mi-dimensional 

simplex 

€ 

Δ Ai( ) = pi pij
j=1

mi

∑ =1, pij ≥ 0
 
 
 

  

 
 
 

  
. Elements in 

€ 

Δ = ×i∈NΔ i  will be denoted by 

€ 

p = p1,..., pn( ) . 

Consider now the transformed payoff function 

€ 

′ u i a( ) : A → R , defined as the 

difference between the payoff received and the minimum obtainable payoff, given 

other players’ actions; indicating with 

€ 

′ a i,a−i( ) the action profile in which player i 

chooses 

€ 

′ a i  and all other players play the profile 

€ 

a−i , we write: 

€ 

′ u i a( ) = ui a( ) − min
′ a i ∈Ai

ui ′ a i,a− i( ){ } and 

€ 

′ u i a( ) = ′ u i a( ),..., ′ u i a( )( ) . 

It is possible to extend the payoff function 

€ 

′ u a( )  to the domain 

€ 

Δ  by writing: 

€ 

′ u i p( ) = pi a( ) ⋅ ′ u i a( )
a∈A
∑ = pi a( ) ⋅ ui a( ) −min

′ a i ∈A
ui ′ a i,a− i( ){ } 

 
  

 
 

a∈A
∑ ; 

denote with 

€ 

Eij p( ) = ′ u i aij , p−i( ) , player 

€ 

i’s expected net reward from action 

€ 

j . 

 

Definition 1. Let 

€ 

G = N,A,u( ) be a finite n-person strategic game. A vector 

€ 

p = p1,..., pn( )∈ Δ  is said to be a Net Reward Attractions (NRA) equilibrium if 

€ 

pij =
Eij p( )

Eik p( )
k=1

mi

∑
,       for ∀ i =1,...,n; j =1,...,mi , 

provided that 

€ 

Eik p( )
k=1

mi

∑ > 0; otherwise, 

€ 

pij  can assume all values in 

€ 

0,1[ ]. 

 
 

As an illustration, consider the case of an mxn two-person game represented by the 

following payoff matrix. 
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         Player 2 
Player 1 A21 A22 … A2n 

A11 

€ 

a11,b11 

€ 

a12,b12  … 

€ 

a1n ,b1n  
A12 

€ 

a21,b21 

€ 

a22,b22  … 

€ 

a2n ,b2n  
… … … … … 

A1m 

€ 

am1,bm1  

€ 

am2,bm2  … 

€ 

amn,bmn  
 

The NRA equilibrium is computed on the transformed payoff matrix: 

 

         Player 2 
Player 1 A21 A22 … A2n 

A11 

€ 

′ a 11, ′ b 11 

€ 

′ a 12, ′ b 12  … 

€ 

′ a 1n , ′ b 1n  
A12 

€ 

′ a 21, ′ b 21 

€ 

′ a 22, ′ b 22  … 

€ 

′ a 2n , ′ b 2n  
… … … … … 

A1m 

€ 

′ a m1, ′ b m1  

€ 

′ a m2, ′ b m2  … 

€ 

′ a mn, ′ b mn  
 

where 

€ 

′ a ij = aij −mink
aik{ } , for 

€ 

i =1,...,m , and 

€ 

′ b ij = bij −minl bil{ }, for 

€ 

j =1,...,n . In 

equilibrium, provided that the denominators are positive, choice probabilities are the 

solutions of the following two systems of equations: 

€ 

p1 =
E11 q( )
E1 j q( )

j=1

m
∑

...

pm =
E1m q( )
E1 j q( )

j=1

m
∑

 

 

 
 
 

 

 
 
 

 and 

€ 

q1 =
E21 p( )
E2 j p( )

j=1

n
∑

...

qn =
E2n p( )
E2 j p( )

j=1

n
∑

 

 

 
 
 

 

 
 
 

, 

whith 

€ 

p = p1,..., pm( ) and 

€ 

q = q1,...,qn( ), and 

€ 

E1i  and 

€ 

E2 j  are the expected net reward 

(average, transformed utilities) from actions 

€ 

i  and 

€ 

j  for row and column players, 

respectively. Therefore, the above-defined equations tell us that the larger the relative 

reward associated to an action, the larger the probability that that action will be chosen. 

The following theoretical results hold. 

 

Theorem 1. Every finite n-person strategic game has a NRA equilibrium. 

Proof. If 

€ 

Eik p( )
k=1

mi

∑ > 0, the vector function

€ 

f  (with 

€ 

f ij p( ) =
Eij p( )

Eik p( )
k=1

mi

∑
) is continuous in 

the simplex 

€ 

Δ  and then, by Brouwer’s Theorem, has at least one fixed-point.  
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If instead 

€ 

Eik p( )
k=1

mi

∑ = 0, this implies that 

€ 

Eij p( ) = 0  

€ 

∀j =1,...,mi because all 

expectations are, by definition, non-negative. In this latter case, any vector 

€ 

pi = pi1,..., pimi( )  of 

€ 

Δ Ai( )  in 

€ 

p = p1,..., pn( )∈ Δ  is a NRA equilibrium. 

 
 

Theorem 2. In every finite two-person 2x2 strategic game, 

• If there is a unique Nash equilibrium in mixed strategies (MSE), then there is a 

unique NRA equilibrium. 

• Every pure strategy Nash equilibrium is a pure strategy NRA equilibrium. 

 

Proof of a). Without loss of generality, we can consider the payoff matrix reported 

below as the general structure of a 2x2 strategic game with a unique MSE (Selten and 

Chmura, 2008), being the other possible case obtained by switching its rows and 

columns. 

 

         Player 2 
Player 1 L R 

U 

€ 

aL + cL ;bU( )  

€ 

aR ;bU + dU( ) 
D 

€ 

aL ;bD + dD( )  

€ 

aR + cR ;bD( )  
 

The constants 

€ 

cL , 

€ 

cR , 

€ 

dU , and 

€ 

dD  are supposed to be strictly bigger than zero. 

For player 1, the transformed payoff matrix will assume the form: 

 

€ 

cL  0 

€ 

0 

€ 

cR  

 

Let us indicate with p the probability with which player 1 plays U and with q the 

probability with which player 2 plays L; then we can write: 

€ 

p q( ) =
q ⋅ cL

q ⋅ cL + 1− q( ) ⋅ cR
. (1) 

Then, p is a continuous, differentiable function in q. In fact, the denominator of (1) is 

always strictly positive (it is a linear combination of strictly positive numbers). 
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Analogously, for player 2 the transformed payoffs will be as those in the following 

payoff matrix: 

 

0 

€ 

dU  

€ 

dD  0 

 

and we can write: 

€ 

q p( ) =
1− p( ) ⋅ dD

1− p( ) ⋅ dD + p ⋅ dU
. (2) 

Also in this case, q is a continuous, differentiable function in p. In fact, the 

denominator of (2) is always strictly positive (it is a linear combination of strictly 

positive numbers). 

In addition, we have that the derivative of (1) is always strictly positive, whereas 

the derivative of (2) is always strictly negative. 

In the 

€ 

p × q = 0,1[ ] × 0,1[ ]  space, the two functions 

€ 

p q( )  and 

€ 

q p( )  either cross each 

other once or do not cross at all, since 

€ 

p q( )  is strictly increasing and 

€ 

q p( )  is strictly 

decreasing. But then, by Theorem 1, the two curves must cross once. 

Proof of b). In the pure strategy Nash equilibrium 

€ 

a1
*,a2

*( ), NRA players’ rescaled 

payoffs are either bigger or equal than zero, whereas the rescaled payoffs from the 

other choice are always equal to zero. In the first case, the probability associated to that 

action is either equal to 1 or can assume any value in 

€ 

0,1[ ]. In both cases, 

€ 

a1
*,a2

*( ) is a 

NRA equilibrium. 
 

 

Theorem 3. Every pure strategy NRA equilibrium is a pure strategy Nash equilibrium. 

Proof. Consider a finite n-person strategic game. A strategy profile 

€ 

a1
*,...,an

*( ) is a pure 

strategy NRA equilibrium if and only if for all players the corresponding (rescaled) 

outcomes are bigger or equal than zero and the outcomes from the other strategies are 

equal to zero. But then 

€ 

a1
*,...,an

*( ) must be a Nash equilibrium, since each player cannot 

be better off acting differently. 
 
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Theorem 4. The NRA equilibrium for a 2x2 strategic game with a unique MSE is: 

€ 

p* =
cL ⋅ q*

cL ⋅ q*+cR ⋅ 1− q*( )
,q*

 

 
 

 

 
 , 

where 

€ 

q* is the unique solution in the interval 

€ 

0,1[ ] of the polynomial 

€ 

t q( ) = cLdU − cRdD( ) ⋅ q2 + 2cRdDq − cRdD . 

Proof. The NRA equilibrium for a game with a unique MSE is the solution of the 

following system of equations (see the proof of Theorem 2a): 

€ 

p =
q ⋅ cL

q ⋅ cL + 1− q( ) ⋅ cR

q =
1− p( ) ⋅ dD

1− p( ) ⋅ dD + p ⋅ dU

 

 
 
 

 
 
 

, 

and substituting the first equation in the second we get: 

€ 

p =
q ⋅ cL

q ⋅ cL + 1− q( ) ⋅ cR
cLdU − cRdD( )q2 + 2cRdDq − cRdD = 0

 

 
 

 
 

. 

Now, consider the polynomial 

€ 

t q( ) = cLdU − cRdD( )q2 + 2cRdDq − cRdD . In the case 

in which 

€ 

cLdU − cRdD = 0 , the unique root of 

€ 

t q( )  is 

€ 

q =
1
2

. 

If instead 

€ 

cLdU − cRdD ≠ 0 , then 

€ 

t q( )  has always two roots. Indeed, 

€ 

Δ = b2 − 4ac = 4cLdUcRdD > 0 (remember that the constants 

€ 

cL , 

€ 

cR , 

€ 

dU , and 

€ 

dD  are 

supposed to be strictly bigger than zero). 

Now, the first derivative of 

€ 

t q( )  is 

€ 

′ t q( ) = 2 cLdU − cR dD( )q + 2cR dD . We can 

distinguish two possible cases. 

I) 

€ 

cLdU − cRdD > 0 . 

We have that 

€ 

t q( )  is always increasing in 

€ 

0,1[ ] since 

€ 

′ t q( ) > 0   ∀   q∈ 0,1( ) . Moreover, 

we have that 

€ 

t 0( ) < 0 and that 

€ 

t 1( ) > 0 and then, by the Intermediate Value Theorem, 

€ 

t q( )  has one and only one root in 

€ 

0,1[ ]. 

II) 

€ 

cLdU − cRdD < 0 . 

We have that 

€ 

t q( )  is always increasing in 

€ 

0,1[ ] since 

€ 

′ t q( ) > 0   ∀   q∈ 0,1( ) . Moreover, 

it is 

€ 

t 0( ) < 0 and 

€ 

t 1( ) > 0, and then, by the Intermediate Value Theorem, 

€ 

t q( )  has one 

and only one root in 

€ 

0,1[ ]. 
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We have then shown that the polynomial 

€ 

t q( )  has always a unique solution in the 

interval 

€ 

0,1[ ], denote it with 

€ 

q*, which concludes the proof. 

 
 

Reading together points a) and b) of Theorem 2, we can conclude that there is a one 

to one correspondence between Nash pure strategy equilibria and NRA pure strategy 

equilibria. However, this holds true only in the case of 2x2 two-person games. In 

general, the set of pure strategy NRA equilibria is a subset of that one of pure strategy 

Nash equilibria. 

 

3.2.2 Parametric NRA 

I provide also a parameterized version of NRA I call Parametric NRA (pNRA). It is 

obtained introducing in the calculus of expectations in Definition 1 a parameter 

€ 

λ > 0, 

tuning players’ sensitivity to net rewards. In my analysis, I consider both NRA and 

pNRA and it turns out that the introduction of a parameter 

€ 

λ  leads to a significant 

increase in the accuracy of predictions. 

The pNRA equilibrium is defined as follows: 

 

Definition 2. Let 

€ 

G = N,A,u( ) be a finite n-person strategic game and 

€ 

λ  be a positive 

constant. A vector 

€ 

p = p1,..., pn( )∈ Δ  is said to be a Parametric Net Reward 

Attractions (pNRA) equilibrium if 

€ 

pij =
Eij

λ p( )

Eik
λ p( )

k=1

mi

∑
,       for ∀ i =1,...,n; j =1,...,mi , 

provided that 

€ 

Eik p( )
k=1

mi

∑ > 0; otherwise 

€ 

pij  can assume all values in 

€ 

0,1[ ]. 

 
 

Theorems 1 to 3 still hold true if we replace NRA with pNRA, with obvious, minor 

adaptations of the proofs. The formulation of Parametric NRA might resemble a simple 

linearization of logit equilibrium (McKelvey and Palfrey, 1995), but this is not the 

case. The two concepts are profoundly different for two reasons: first, according to 

pNRA, equilibrium probabilities are determined via the linear probabilistic choice rule 
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of Definition 1, and not via the logistic quantal response function; second, and more 

importantly, even though logit equilibrium is invariant to additive changes of the 

payoffs, in pNRA expectations are taken with respect to net rewards, which are not 

obtained by simply adding a constant to all payoffs. We must then conclude that the 

two concepts cannot correspond. 

 

3.2.3 Convergence to NRA Equilibrium 

One of the most important questions associated to stationary concepts is that of how an 

equilibrium (if any) emerges in a population of players (Camerer, 2003). In order to 

complete the theoretical framework described in the previous section, I propose a 

procedure, which I call Counterfactual Reinforcement Learning (CRL), according to 

which players’ choice behavior approaches to the set of NRA equilibria. Although I do 

not use CRL as a model to predict empirical data, it will turn useful to understand the 

NRA equilibrium in depth. 

The CRL procedure is defined as follows: 

1. Initial propensities. At time period 

€ 

T =1, before the game has been played for 

the first time, player i’s propensity of playing his pure strategy j is equal to the 

expected payoff from random choice (denoted by 

€ 

A 0( ) ). Then, 

€ 

aij 1( ) = A 0( )  for 

all i and j. 

2. Attractions updating. At each time step 

€ 

T >1, player i’s propensities are 

updated according to the rule: 

€ 

aij T( ) = aij T −1( ) + NR−i
T−1 j( ),     ∀j  (1) 

where 

€ 

NR−i
T j( )  is the net reward at time T associated to player i’s action j. The 

net reward 

€ 

NR−i
T j( )  of action j is defined as the difference between the 

corresponding payoff and the minimum obtainable payoff, given other player’ 

moves. 

3. Stochastic choice rule. Attractions at time step 

€ 

T >1 are mapped into choice 

probabilities according to the linear probabilistic response rule: 

€ 

pik T( ) =
aik T −1( )
aij T −1( )
j∑

. (2) 

The motivation for the adjective counterfactual is that CRL implicitly assumes that 

players know their own payoffs, receive full feedback about their choices, and make 

comparisons between actual and foregone payoffs. At a first glance, one might consider 
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these assumptions as too strong; however, especially in the context of repeated games, 

when the payoff matrix is initially not known to players, it is reasonable to assume that 

players can easily, after few trials, figure out the structure of their own payoffs and use 

this information when forming their strategies. Empirical evidence supports this 

conjecture. Indeed, the experiment described in Erev et al. (2007) replicated a former 

experiment on the same set of ten repeated games (Erev et el., 1999), with the 

exception that subjects were given complete information about the payoff structure of 

each game. In the former version of the experiment, subjects received information only 

about their actually experienced payoffs. It seems reasonable to assume that players in 

the former experiment could, after some trials, infer the structure of their own payoffs, 

as the two treatments produced only minor differences on the observed average choice 

behavior. 

It can be shown analytically that CRL converges to NRA equilibrium. Indeed, 

according to (1) and (2), we can write: 

€ 

pik T( ) =
aik T −1( )
aij T −1( )
j∑

=

A 0( ) + NR−i
t k( )

t=1

T−2

∑

A 0( ) + NR−i
t j( )

t=1

T−2

∑
 

 
 

 

 
 

j∑
 

provided that the denominator is positive; multiplying and dividing both numerator and 

denominator by 

€ 

T − 2, we get: 

€ 

pik T( ) =

A 0( )
T − 2

+ < NR− i k( ) >

A 0( )
T − 2

+ < NR− i j( ) >
 

 
 

 

 
 j∑
, (3) 

where 

€ 

< NR−i k( ) >=

NR− i
t k( )

t=1

T−2

∑
T − 2

. Now, taking the limit of (3) as 

€ 

T→ +∞ , we have that: 

€ 

pik →
Eik p( )
Eij p( )

j∑
, 

€ 

∀ i =1,...,n and j =1,...,mi 

as 

€ 

Eij  is defined as the expected net reward for player i from his action j, showing that 

choice probabilities converge to NRA equilibria. 
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3.3  Related Work 
CRL produces dynamics that are different from those produced by any beliefs-based 

model. According to fictitious play models, players are assumed to keep track of the 

relative frequency with which other players have employed each strategy in the past, 

and then calculate the expected payoff given these beliefs and choose that 

corresponding to the highest expected value. On the contrary, in CRL, players are not 

supposed to be maximizers, but simply choose an action with probability proportional 

to its expected net reward. 

In particular, the Experience Weighted Attraction (EWA) model (Camerer and Ho, 

1999; Ho, Camerer, and Chong, 2007) cannot capture CRL dynamics. EWA is a hybrid 

model, blending the main features of the reinforcement and beliefs based models; 

indeed, if parameters are constrained to specific values, it reduces to the (average or 

cumulative) reinforcement model in which only chosen strategies are reinforced and if 

parameters are set in a different way, EWA reduces exactly to (weighted) fictitious 

play. More specifically, according to the EWA model, attractions are updated as 

follows: 

€ 

aij T( ) =
φ ⋅ N T −1( ) ⋅ aij T −1( ) + δ + 1−δ( ) ⋅ I sij ,si T( )( )[ ] ⋅ π i sij ,s− i T( )( )

N T −1( ) ⋅ φ ⋅ 1−κ( ) +1
 (4) 

and choice probabilities determined by the (logit) stochastic choice rule: 

€ 

pij T( ) =
exp λ ⋅ aij T −1( )( )
exp λ ⋅ aij T −1( )( )j∑

. (5) 

As one can easily see, CRL dynamics cannot be replicated by setting in (4) 

€ 

δ = 0 ; 

in this case, EWA corresponds to a reinforcement learning model in which only 

propensities corresponding to played actions are updated. The best approximation to 

CRL is obtained by setting in (4) 

€ 

δ =1, 

€ 

κ = 0 , and 

€ 

φ =1; in this case, EWA 

corresponds to the weighted fictitious play model where distant experiences in the past 

are less salient than recent ones (recency effect), and propensities are reinforced by 

their corresponding payoffs (with weight 

€ 

δ =1). Moreover, propensities are mapped 

into choice probabilities by the logit response function (5) and not by the simple 

normalization operated by (2). Then, it can be can easily seen that there is no parameter 

configuration allowing EWA to capture CRL dynamics. 
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There are also some similarities between CRL and the stochastic fictitious play 

(SFP) model proposed by Erev et al. (2007) (see Introduction). According to the SFP 

model, at each time step, propensities are updated according to the following: 

€ 

aij T( ) = 1− w( ) ⋅ aij T −1( ) + w ⋅ vij T −1( ) , for all i and j, 

where 

€ 

vij T( ) is the expected payoff in the selected cell and w one of the two parameters 

of the model tuning sensitivity to foregone payoffs. However, SFP cannot replicate the 

behavior of CRL, because past experience is decayed, propensities are reinforced with 

the payoffs, and choice probabilities are determined via the logit choice rule (5). 

The CRL procedure closely resembles Unconditional Regret Matching (URM), as 

described in Young (2004) and in Hart (2005). However, these two procedures, though 

very similar, are not equivalent. According to URM, the regret for not having played 

action k is defined as:  

€ 

˜ R k( ) := ˜ V k( ) −U[ ]
+
, (6) 

where 

€ 

˜ V k( ) := 1
T

ui k,st
− i( )

t=1

T

∑  and 

€ 

U := 1
T

ui st( )
t=1

T

∑ . 

Choice probabilities are determined via: 

€ 

σT +1 k( ) :=
˜ R k( )

˜ R l( )
l=1

m
∑

 for each 

€ 

k =1,2,...,m . 

For simplicity, let us consider the particular class of 2x2 completely mixed games. 

According to CRL, at each round the probability of playing an action is always positive 

and the reference point is set equal to the (average) minimum obtainable payoff given 

other player’s choices; in URM, choice probabilities are not necessarily always positive 

and the reference point is the average received payoff. Specifically, let us consider the 

quantities 

€ 

˜ R k( )*T  and 

€ 

aik T( ) , as defined in (1) and (6), respectively. We have that 

€ 

aik T( ) = A 0( ) + NR− i
t k( )

t=1

T−1

∑ , which means that the attraction associated to action k at 

time T is equal to the summation of initial propensities and received net rewards, and 

for T large we can write (with some abuse of notation) 

€ 

aik T( ) = NR−i
t k( )

t=1

T

∑ . Now, we 

can write, according to the definition of CRL: 

€ 

aik T( ) = NR−i
t k( )

t=1

T

∑ = ui k,st
− i( )

t=1

T

∑ − min
j

ui j,s−i
t( ){ }

t=1

T

∑ . 
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Compared with the following: 

€ 

˜ R k( )*T := ˜ V k( ) −U[ ]
+

*T = ui k,st
− i( )

t=1

T

∑ − ui st( )
t=1

T

∑
 

 
 

 

 
 

+

, 

it is clear that the two quantities 

€ 

˜ R k( )*T  and 

€ 

aik T( )  are different, then leading to 

different dynamics of choice behavior. 

In addition, experimental data do not support the hypothesis of convergence to 

correlated equilibria, as joint distributions of play can be easily verified to be to the 

product of the marginal distributions in all experiments I consider in this study (and 

which I describe in Section 5). 

A stationary concept similar to NRA is Impulse Balance Equilibrium (IBE) (Selten 

and Chmura, 2008). According to these two solution concepts, equilibrium 

probabilities are calculated considering a transformed game whose payoffs quantify 

players’ propensities (or impulses) to choose actions. Nonetheless, these two models 

are deeply different, as can be easily seen considering the simple case of 2x2 two 

person games. Indeed, in the former model, all payoffs are rescaled by subtracting the 

minimum obtainable payoff given other players’ moves, whereas, in the latter, only 

payoffs above the pure strategy maximin payoff (“a natural aspiration level”, Selten 

and Chmura, 2008:947) are rescaled by subtracting one half of the difference between 

these payoffs and the maximin payoff. 

 

3.4  Model Comparison Methodology 
For each parametric model, I determine the corresponding Prediction scores based on 

data from experiments on 26 different, repeatedly played games. I computed these 

scores according to the leave-one-out estimation procedure, as described in the 

Methods section of Chapter 2. 

As for non-parametric models, I simply determine the corresponding Mean Squared 

Deviation, as no parameters are to be estimated. 

Considering all 26 experiments together, I gathered a total of 234 independent 

observations. For each model, I calculate the MSD (or Prediction) scores corresponding 

to each independent observation, and store them in a vector of length 234. In order to 

assess the significance of pairwise comparisons of models’ accuracy, I use a Mann-

Whytney-Wilcoxon match-paired signed-rank (two-tailed) test, as done in Selten and 

Chmura (2008). For each pair of models, the null hypothesis that the vectors of scores 
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have the same mean is tested. As already said, for the testing I use here a dataset of 

experiments on 26 different games, smaller than that I use in the second chapter (which 

counts 35 games). Indeed, I consider here only datasets for which data for each 

independent observation were available (either at the individual or group level, 

depending on whether fix-pairing or random-matching protocol was used in the 

experiment). This allows me to gather a large number of independent conditions on 

which to test each model, also giving the Mann-Whitney-Wilcoxon test more chances 

to compare models more precisely. 

My analysis can be divided into three, distinct parts; I compare models’ accuracy in 

predicting observed choice behavior in the short run (i.e., choice frequencies averaged 

over the first 50 trials), in the long run (i.e., choice frequencies averaged over the last 

50 trials), and choice behavior averaged over all periods. 

Since learning models are stochastic, the estimated frequency of choice was 

obtained as the average over 150 simulations, which were run for each experiment and 

for each parameter configuration. Moreover, in order to make simulation results 

comparable, the initialization of all dynamic models was set to assure equal 

probabilities of choosing each action at the first round of the simulation. 

I compare the performances of eight different models of learning and five stationary 

concepts. I consider in my analysis the following models of learning: Normalized 

Fictitious Play (NFP) (Erev et al., 2007); Normalized Reinforcement Learning (NRL) 

(Erev et al., 2007); Perceptron-Based (PB0 and PB1 with, respectively, zero and one 

free parameters) (Marchiori and Warglien, 2008); Reiforcement Learning (REL) (Erev 

and Roth, 1998); Reinforcement Learning (RL) (Erev et al., 2007); Stochastic 

Fictitious Play (Erev at al., 2007); and Self-tuning Experience Weighted Attraction 

(stEWA) (Ho, Camerer, and Chong, 2007). The equilibrium concepts I consider are: 

Nash Equilibrium; Quantal Response Equilibrium (QRE) (McKelvey and Palfrey, 

1995); Impulse Balance Equilibrium (IBE) (Ockenfels and Selten, 2005); Action-

Sampling Equilibrium (Sample-7) (Selten, 2000); Payoff-Sampling Equilibrium 

(Osborne and Rubinstein, 1998); Net Reward Attractions (NRA) Equilibrium and its 

parametric version pNRA. 

The grid search for optimal parameter values was conducted on broad parameter 

spaces, summarized in Table 1. The portions of parameter spaces that have been 

investigated were suggested by the authors of the models in previous works (Erev at al., 

2007; Ho, Camerer, and Chong, 2007). 
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Table 1. Values of model free parameters used in my simulations. 

Model Free Parameter: [Interval of variation] – Increment 
NFP 

€ 

λ : 

€ 

1.5,4.0[ ]  - 0.25 

€ 

w: 

€ 

0.1,0.9[ ] - 0.1 
NRL 

€ 

λ : 

€ 

3.0,7.0[ ] - 0.5 

€ 

w: 

€ 

0.10,0.90[ ] - 0.05 
PB1 

€ 

λ : 

€ 

0.05,1.00[ ] - 0.05 
QRE 

€ 

λ : 

€ 

0.01,18[ ] - 0.01 
REL 

€ 

λ : 

€ 

2.2,3.4[ ] - 0.1 

€ 

N 1( ) : 

€ 

27,34[ ] - 1 
RL 

€ 

λ : 

€ 

6.0,10.0[ ] - 0.5 

€ 

w: 

€ 

0.10,0.90[ ] - 0.05 
SFP 

€ 

λ : 

€ 

10.0,14.0[ ] - 0.5 

€ 

w: 

€ 

0.05,0.90[ ] - 0.05 
stEWA 

€ 

λ : 

€ 

1,9[ ] - 0.1 
 

3.5  The Data 
I collected datasets from different experiments on two-person 2x2 games with a unique 

equilibrium in mixed strategies (also known as “completely mixed games”), run under 

full feedback condition, and for which data for each independent observation were 

available. These experiments have been conducted under a variety of experimental 

conditions and by different researchers. Out of the 26 games considered, 16 are 

constant-sum, while in the remainder players could find incentive to reciprocate; in 

other words, in 16 experiments, subjects had to learn strategies of pure conflict, while 

in the other 10 the conflict aspect did not exclude a priori a sort of cooperative (or fair) 

behavior, as in the non-constant sum games reported in Selten and Chmura (2008). In 

order to let the learning processes fully unfold, I selected experiments with a minimum 

of 100 iterations of the stage game; this allows for the testing of the descriptive and 

predictive power of the different models on subjects’ behavior not only in the early 

rounds, but also in the long run (Erev and Roth, 1998). I labeled games with the initials 

of the authors who conducted the experiments (AGK = Avrahami, Guth, and Kareev, 

2005; ERSB = Erev et al., 2007; RSW = Rosenthal, Shachat, and Walker, 2003; S&C = 

Selten and Chmura, 2008). 
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Table 2. Summary of the Datasets. The first column of Table 2 indicates the name of 

the researchers and the second one the year of publication of the experiment. The third 

column reports the number of times that the stage game was played. The fourth column 

indicates how many different games experimenters considered. The fifth column 

indicates the number of subject who participated to the experiments. The sixth column 

reports additional important features (if any) for each experiment. Finally, the seventh 

column reports whether or not subjects were randomly paired at each trial. 

Experimenters Year Rounds 
# 

Treatments/ 
Games Subjects # Independent 

Observations Other Random 
Matching 

Rosenthal, 
Shachat, and 

Walker 
2003 

100 
and 
200 

1 
20 pairs for 

each 
treatment 

6  No 

Avrahami, 
Guth, and 

Kareev 
2005 100 3 

6 pairs in 
the first 

treatment 
and 12 

pairs in the 
other two 

6 + 12x2 

Only the 
“Known” 

treatment is 
considered 

No 

Erev, Roth, 
Slonim, and 

Barron 
2007 500 10 

9 pairs for 
each 

treatment 
9x10  No 

Selten and 
Chmura 2008 200 12 

16 pairs for 
each 

treatment 
12x6 + 6x6  Yes 

 

Table 3. Observed Frequencies of Play. 

First 50 Trials Last 50 Trials All Trials Game Row Column Row Column Row Column 
AGK50 0.460 0.440 0.480 0.467 0.470 0.454 
AGK67 0.567 0.515 0.620 0.569 0.593 0.542 
AGK75 0.492 0.640 0.460 0.663 0.476 0.652 

ERSB G1 0.598 0.289 0.642 0.318 0.591 0.318 
ERSB G2 0.731 0.362 0.876 0.256 0.840 0.361 
ERSB G3 0.633 0.220 0.502 0.244 0.583 0.222 
ERSB G4 0.340 0.627 0.309 0.436 0.274 0.502 
ERSB G5 0.342 0.344 0.411 0.296 0.378 0.320 
ERSB G6 0.536 0.409 0.631 0.489 0.638 0.410 
ERSB G7 0.362 0.480 0.198 0.602 0.295 0.522 
ERSB G8 0.518 0.222 0.351 0.220 0.400 0.226 
ERSB G9 0.504 0.404 0.571 0.369 0.562 0.449 
ERSB G10 0.313 0.178 0.304 0.198 0.320 0.202 

RSW D 0.583 0.713 0.660 0.730 0.659 0.737 
S&C G1 0.109 0.620 0.055 0.691 0.079 0.690 
S&C G2 0.240 0.490 0.185 0.527 0.217 0.527 
S&C G3 0.183 0.747 0.148 0.822 0.164 0.793 
S&C G4 0.267 0.719 0.294 0.736 0.286 0.736 
S&C G5 0.320 0.635 0.306 0.682 0.327 0.664 
S&C G6 0.439 0.575 0.426 0.602 0.445 0.596 
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S&C G7 0.210 0.488 0.105 0.673 0.141 0.564 
S&C G8 0.281 0.524 0.244 0.611 0.250 0.586 
S&C G9 0.275 0.787 0.228 0.844 0.254 0.827 
S&C G10 0.348 0.698 0.335 0.715 0.366 0.699 
S&C G11 0.314 0.625 0.328 0.668 0.331 0.652 
S&C G12 0.451 0.592 0.433 0.635 0.439 0.604 

 

3.6  Results 
I tested all models on three prediction tasks, measuring their accuracy in predicting 

observed choice behavior averaged over the first 50 trials, the last 50 trials, and all 

trials. Tables 4-6 report a summary of the results of my analysis; specifically, they 

report, for each prediction task, the ranking of the models according to MSD (non 

parametric models) or Prediction scores (computed for parametric models), and the 

significance of pairwise comparisons with respect to the best performing model. Tables 

7-9 report more detailed data of model performances. Finally, Tables 10-12 show the p-

values of all possible model pairwise comparisons (for each pair of models, the null 

hypothesis of no difference between their average scores is tested). 

The models I consider are based on quite different theories and hypotheses about 

human choice behavior in repeated, interactive decision tasks. As a premise to the 

following analysis, it is worth noting that when we test a model, we obtain a joint 

evaluation of the validity of the theory it relies on and of how that theory is 

implemented. Therefore, we cannot reject a theory based only on a bad performance of 

the corresponding model. However, whenever different implementations of the same 

theory perform well (bad), we are then allowed to conclude that that theory is (is not) 

supported by empirical evidence. 

In light of their lower degree of complexity, one would expect models of 

equilibrium to perform better than models of learning in predicting behavior in the long 

run, when play has converged to a stable state and initial effects have been washed out. 

On the opposite, in virtue of their higher degree of complexity, learning models should 

be more suitable to capture the dynamic of learning in the early periods of play if 

compared to stationary models. I will test these conjectures in the following paragraphs 

under the light of my simulation results. 

For what concerns the statistical significance of model pairwise comparisons, I will 

refer to the standard, widely accepted, 5% level of significance. 
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3.6.1 First 50 Trials 

Reading from Table 4, if we compare the Prediction score of each of the first eleven 

best performing models with that of the best one (in this case, NFP), these differences 

are not significant, with the sole exception of the SFP model. This can be explained by 

noting that the NFP and SFP models differ only for a minor structural detail (see 

Introduction) and generate predictions that are, on average, almost equal; however, 

NFP is systematically more accurate than SFP, which justifies the statistical 

significance of the difference of their performances. 

In the group of the best performing models, whose accuracy of predictions is on 

average equivalent to that of NFP, we count both learning and equilibrium models. 

Predictions generated by NRA, IBE, pNRA, and Payoff-sampling equilibria are 

equivalent to those of the NFP and PB0 models. This is one of the most important 

results of the third chapter of my thesis: there is no significant gap between the best 

equilibrium and learning models, even in the task of predicting behavior in the early 

trials. Simulation results deny the conjecture I made in the previous section, as models 

of learning, in spite of their higher complexity, are not able to predict observed 

behavior in the early trials significantly better than stationary concepts. Fast 

convergence of play to stable behavior might provide a possible explanation for that, 

since in this case averaging choice frequencies over the first 50 periods would be 

sufficient to wash out initial effects. However, such an explanation is not satisfactory. 

Indeed, if we look at Table 3 above, showing the empirical frequencies of play, we can 

see that the behavior in the first 50 trials is, in most games, different from that in the 

last 50 trials. It seems rather that the models considered in my analysis are, on average, 

better predictors of the behavior in the first trials rather than of that emerging in the 

long run, as it is clear if we compare the Prediction scores reported in Tables 4 and 5. 

QRE, stEWA, Nash equilibrium, and REL are less accurate models; in particular, if 

we look at Table 10, we can see that the Nash equilibrium and REL models perform 

significantly worse than all the others. 

Reinforcement learning models capture well behavior in the short run, but, as I will 

illustrate in the next section, they are very poor predictors of long run behavior. This 

seems to confirm the hypothesis according which reinforcement models suffer of 

inertia i.e., they are too slow in adapting their behavior. 
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Table 4. Summary of simulation results for the first 50 trials of play. Models are 

ranked from the best to the worst (from the left to the right) according to average MSD 

or Prediction Scores (third row). The fourth row reports in percentage how worse is the 

accuracy of a certain model with respect to the best performing one. Each cell in the 

fifth row reports the p-value of the test of the null hypothesis of no difference between 

the average score of the corresponding model and that of the best performing model. 

Shaded cells refer to the cases in which the null hypothesis is not rejected at a 5% level. 

Ranking 1 2 3 4 5 6 7 8 

Model (# of 
parameters) 

NFP 
(2) 

NRA 
(0) PB0 (0) PB1 (1) SFP (2) IBE (0) pNRA 

(1) 

Payoff-
sampling 
(1) 

Avg. Scores 0.0473 0.0498 0.0499 0.0501 0.0503 0.0504 0.0506 0.0508 
Gap to the 
best (%) - 5.45% 5.54% 6.00% 6.32% 6.70% 7.11% 7.48% 

Comparison 
significance  0.939 0.928 0.183 0.003 0.341 0.874 0.073 

 
Ranking 9 10 11 12 13 14 15 

Model (# of 
parameters) NRL (2) 

7-
sampling 
(0) 

RL (2) QRE (1) stEWA 
(1) Nash (0) REL (2) 

Avg. Scores 0.0514 0.0538 0.0540 0.0595 0.0659 0.0975 0.0986 
Gap to the best 
(%) 8.74% 13.83% 14.30% 25.93% 39.38% 106.32% 108.70% 

Comparison 
significance 0.397 0.312 0.084 0.030 0.001 0.000 0.000 

 

3.6.2 Last 50 Trials 

Reading from Table 5, we note two things: first, the set of best predictors (the set of 

models predicting equivalently well to the best one) shrinks a lot with respect to the 

short run prediction task; second, out of the five best predictors, three are equilibrium 

models. 

IBE turns out to be the most accurate model in terms of Prediction scores, but its 

performance is statistically equivalent to that of pNRA, NFP, Action-sampling, and 

Payoff-sampling. The IBE model is here particularly advantaged by the inclusion in the 

dataset of the games described by Selten and Chmura (2008); indeed, six games among 

those considered by these authors, though completely mixed, are not constant-sum, 

thus leaving room for cooperative and reciprocating behaviors. IBE, by design (see 

Introduction), takes indirectly into account this kind of behavior, thus resulting 

particularly favored with respect to the other models. 
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As for the other models, self-tuning EWA and Nash equilibrium are equivalent 

predictors of the behavior in the long run (with rather high Prediction scores), whereas 

reinforcement based models (REL, NRL, and RL) do very poorly, with Prediction 

scores much larger than IBE’s. 

QRE and Nash equilibria are the two stationary models excluded from the set of 

best performing models. In addition, it is worth noting that only IBE and pNRA predict 

observed data significantly better than QRE. 

The NFP model is the sole model of learning whose predictions are equivalent to 

those of IBE and pNRA. The PB0 and PB1 models predict better than Nash 

equilibrium, and their scores are about 20% larger than NFP’s. 

 

Table 5. Summary of simulation results for the last 50 trials play. Models are ranked 

from the best to the worst (from the left to the right) according to average MSD or 

Prediction Scores (third row). The fourth row reports in percentage how worse is the 

accuracy of a certain model with respect to the best performing one. Each cell in the 

fifth row reports the p-value of the test of the null hypothesis of no difference between 

the average score of the corresponding model and that of the best performing model. 

Shaded cells refer to the cases in which the null hypothesis is not rejected at a 5% level. 

Ranking 1 2 3 4 5 6 7 8 

Model (# of 
parameters) IBE (0) pNRA 

(1) 
NFP 
(2) 

7-
sampling 
(0) 

SFP (2) 
Payoff-
sampling 
(1) 

QRE 
(1) 

NRA 
(0) 

Avg. Scores 0.0505 0.0525 0.0536 0.0545 0.0548 0.0566 0.0576 0.0599 
Gap to the 
best (%) - 3.93% 6.21% 7.87% 8.60% 12.08% 14.09% 18.60% 

Comparison 
significance  0.253 0.084 0.488 0.004 0.125 0.005 0.000 

 
Ranking 9 10 11 12 13 14 15 

Model (# of 
parameters) PB1 (1) PB0 (0) Nash (0) stEWA 

(1) REL (2) NRL (2) RL (2) 

Avg. Scores 0.0636 0.0653 0.0828 0.0865 0.1303 0.1311 0.1749 
Gap to the best 
(%) 25.91% 29.24% 63.94% 71.19% 158.07% 159.51% 246.32% 

Comparison 
significance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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3.6.3 All Trials 

The conclusions I draw in this section are quite similar to those in the previous one. It 

is worth noting that the best performing models (see Table 6) do much better in 

predicting average behavior over all trials than they do in the other two prediction 

tasks. 

The most accurate model is, in this third prediction task, the SFP model. The set of 

best performing models counts six models, of which four are equilibrium concepts. IBE 

performs significantly better than pNRA, although the estimated difference between 

their Prediction scores is quite small. Moreover, the accuracy of pNRA is equivalent to 

that of SFP. 

The reinforcement models REL and NRL do once again very poorly, providing 

predictions of the 180% and 275% less accurate than those of SFP. Also in this case, 

Self-tuning EWA gives predictions statistically equivalent to those of Nash equilibrium 

and RL model. 

Surprisingly, the QRE model is among the best performing models. This is quite 

interesting as this means that QRE is not able to capture neither short nor long run 

behavior, but is able to capture behavior that is in the middle of the previous two. 
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Table 6. Summary of simulation results for all trials of play. Models are ranked from 

the best to the worst (from the left to the right) according to average MSD or Prediction 

Scores (third row). The fourth row reports in percentage how worse is the accuracy of a 

certain model with respect to the best performing one. Each cell in the fifth row reports 

the p-value of the test of the null hypothesis of no difference between the average score 

of the corresponding model and that of the best performing model. Shaded cells refer to 

the cases in which the null hypothesis is not rejected at a 5% level. 

Ranking 1 2 3 4 5 6 7 8 

Model (# of 
parameters) SFP (2) IBE (0) NFP 

(2) 

7-
sampling 
(0) 

pNRA 
(1) 

Payoff-
sampling 
(1) 

QRE 
(1) 

NRA 
(0) 

Avg. Scores 0.0360 0.0363 0.0365 0.0385 0.0389 0.0418 0.0419 0.0419 
Gap to the 
best (%) - 0.88% 1.46% 7.15% 8.05% 16.12% 16.39% 16.59% 

Comparison 
significance  0.718 0.088 0.910 0.070 0.015 0.208 0.000 

 
Ranking 9 10 11 12 13 14 15 

Model (# of 
parameters) PB0 (0) PB1 (1) stEWA 

(1) RL (2) Nash (0) REL (2) NRL (2) 

Avg. Scores 0.0437 0.0448 0.0634 0.0644 0.0716 0.1008 0.1350 
Gap to the best 
(%) 21.63% 24.44% 76.18% 78.96% 98.99% 180.34% 275.27% 

Comparison 
significance 0.005 0.000 0.000 0.000 0.000 0.000 0.000 

 

3.7  Summary and Conclusions 
In all three prediction tasks (early trials, long run, and average behavior), the 

performance pNRA is equivalent to that of the most accurate model (at a 5% level of 

significance). NRA is outperformed in the long run and average behavior tasks by 

pNRA, showing that the introduction of a parameter tuning sensitivity to net rewards 

significantly improves accuracy. NRA and pNRA are very accurate predictors of 

empirical data, performing always significantly better than Nash equilibrium, stEWA, 

and reinforcement models.  

In each prediction task, we can define a set of best performing models i.e., models 

whose performance is statistically equivalent to that of the model with the smallest 

Prediction score. In the three prediction tasks, the model that provides the smallest 

Prediction score is not always the same: NFP in the short run, IBE in the long run, and 

SFP in all trials. These results not only confirm the robustness and reliability of regret-

based learning models (particularly those of SFP and NFP), but also show that some 
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stationary models are very good predictors of behavior in the early periods of play as 

well as in the long run. 

If it is clear that on average regret based models outperform reinforcement-based 

ones (confirming the results reported in the second chapter of my thesis), the analysis 

concerning equilibrium models is less straightforward, and it is not clear why models 

based on so different assumptions provide in some cases equivalently accurate 

predictions (as also pointed out in Selten and Chmura, 2008). 

Another important result is that behavioral stationary concepts (IBE and NRA) are 

never outperformed by QRE, Action-sampling, and Payoff-sampling (i.e., best 

response models), although in some cases the two classes of solution concepts are 

equivalent in predicting data. For this reason, I think that it would be important to 

include in the set of criteria for model selection the plausibility of the assumptions on 

which models are based, at least as a tie breaking rule, since the causal relationship 

between assumptions and model accuracy is, in this context, of particular interest 

(Burnham and Anderson, 2003). We do not have to forget that best-response models 

are to be interpreted as “as if” models: they do not aim at replicating the real 

mechanisms at the basis of the decision-making process, but merely its effects. In other 

words, from this point of view, what matters is whether or not models are able to 

predict data, as if agents would act according to them. Trivially, the fact that none of us 

is able to think rationally (i.e., as prescribed by standard theory of choice) and act 

accordingly is not new, and any argument against standard theory based on this 

objection would be rather poor. The point here is that if we have to choose between two 

models which perform almost equivalently, why should not we privilege the use of that 

one that embeds principles about the real mechanisms of choice behavior? This 

approach I suggest would be much more informative, as it would allow us to infer the 

real bases of choice behavior. Of course, the judgment about plausibility of 

assumptions must be cautiously done because there are no principles that can guide us 

in this kind of task, and caution is primarily needed in those cases in which we are 

interested to judge whether certain assumptions are more plausible than others. 

The NRA and pNRA models are analytically tractable, straightforwardly 

generalizable to n-person games, and based on assumptions validated by recent 

research on the neural mechanism at the basis of human choice behavior. These 

features make the NRA and pNRA models particularly appealing. 
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My analysis confirms the poor predictive power of Nash equilibrium, as reported in 

many other contributions. Compared to the most accurate model, standard theory 

provides predictions that are worse of the 106% in the first 50 trials, of the 64% in the 

last 50 trials, and of the 99% over all periods. 

In the long run, reinforcement models provide significantly less accurate 

predictions than Nash equilibrium (with the exception of RL in average prediction 

task). I also find confirmation of the result shown in Marchiori and Warglien (2008), 

according to which regret-based learning models are better than reinforcement-based 

ones; indeed, NFP, SFP and PB0 always perform significantly better than stEWA, 

NRL, REL, and RL. 

Among models of learning, NFP and SFP are the best predictors: their predictive 

accuracy is statistically equivalent to that of PB0 and PB1 only in the short run, and 

predict always significantly better than stEWA and reinforcement models. It is worth 

noting that out of the eight models of equilibrium I consider, only four (NFP, SFP, 

PB0, and PB1) perform always significantly better than Nash equilibrium, whereas all 

equilibrium models give more accurate predictions than does standard theory. 

If compared to learning models, stationary concepts are, in general, less complex 

(statistically, analytically, and computationally). Nonetheless, with the exception of 

QRE, their predictions of short run behavior are as accurate as that of the best 

performing learning model, which constitutes a strong argument in favor of equilibrium 

concepts. 

As stated in Selten and Chmura (2008), two-person 2x2 completely mixed games 

constitute a small set of games for testing models of interactive choice behavior and it 

would be interesting and important to gather data also from more general patterns of 

strategic interaction. 
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Table 7. MSD and Prediction Scores in the First 50 Trials. 
Model (# of 
parameters) 

NFP 
(2) NRA (0) PB0 

(0) 
PB1 
(1) SFP (2) IBE 

(0) 
pNRA 

(1) 
Payoff-sampling 

(1) 
Avg. Score 0.047 0.050 0.050 0.050 0.050 0.050 0.051 0.051 

Gap to the best (%) - 5.45% 5.54% 6.00% 6.32% 6.70% 7.11% 7.48% 

AGK50 0.014 0.014 0.013 0.014 0.014 0.014 0.014 0.014 

AGK67 0.103 0.075 0.051 0.056 0.103 0.075 0.079 0.109 

AGK75 0.087 0.090 0.085 0.083 0.095 0.090 0.092 0.090 

ERSB G1 0.105 0.114 0.131 0.121 0.105 0.115 0.113 0.111 

ERSB G2 0.061 0.120 0.054 0.080 0.072 0.116 0.121 0.059 

ERSB G3 0.094 0.094 0.104 0.091 0.106 0.110 0.098 0.112 

ERSB G4 0.105 0.107 0.122 0.114 0.107 0.106 0.107 0.110 

ERSB G5 0.037 0.035 0.047 0.041 0.038 0.040 0.035 0.044 

ERSB G6 0.079 0.095 0.048 0.059 0.098 0.127 0.103 0.098 

ERSB G7 0.078 0.094 0.060 0.064 0.096 0.126 0.105 0.075 

ERSB G8 0.097 0.089 0.111 0.101 0.098 0.100 0.090 0.094 

ERSB G9 0.036 0.026 0.021 0.023 0.051 0.039 0.027 0.042 

ERSB G10 0.069 0.069 0.122 0.107 0.067 0.050 0.067 0.063 

RSW D 0.032 0.031 0.083 0.068 0.028 0.023 0.030 0.026 

S&C G1 0.026 0.026 0.015 0.043 0.028 0.015 0.025 0.040 

S&C G2 0.013 0.015 0.017 0.023 0.013 0.017 0.015 0.013 

S&C G3 0.021 0.014 0.011 0.013 0.018 0.007 0.012 0.014 

S&C G4 0.023 0.016 0.010 0.021 0.025 0.006 0.015 0.021 

S&C G5 0.015 0.016 0.015 0.020 0.015 0.010 0.015 0.012 

S&C G6 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 

S&C G7 0.011 0.022 0.048 0.017 0.012 0.040 0.027 0.037 

S&C G8 0.014 0.023 0.026 0.032 0.013 0.014 0.023 0.012 

S&C G9 0.052 0.052 0.048 0.047 0.045 0.031 0.050 0.047 

S&C G10 0.032 0.032 0.031 0.034 0.036 0.021 0.031 0.045 

S&C G11 0.008 0.009 0.007 0.013 0.008 0.006 0.008 0.016 

S&C G12 0.008 0.008 0.009 0.009 0.007 0.005 0.008 0.010 
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Model (# of parameters) NRL (2) 7-sampling (0) RL (2) QRE (1) stEWA (1) Nash (0) REL (2) 

Avg. Score 0.051 0.054 0.054 0.060 0.066 0.098 0.099 

Gap to the best (%) 8.74% 13.83% 14.30% 25.93% 39.38% 106.32% 108.70% 

AGK50 0.013 0.014 0.015 0.014 0.013 0.014 0.013 

AGK67 0.084 0.084 0.066 0.061 0.049 0.126 0.052 

AGK75 0.091 0.121 0.086 0.082 0.086 0.148 0.098 

ERSB G1 0.119 0.105 0.121 0.136 0.156 0.134 0.162 

ERSB G2 0.050 0.109 0.048 0.071 0.091 0.298 0.121 

ERSB G3 0.090 0.135 0.096 0.136 0.158 0.265 0.192 

ERSB G4 0.121 0.099 0.116 0.126 0.133 0.124 0.134 

ERSB G5 0.035 0.043 0.036 0.054 0.071 0.069 0.087 

ERSB G6 0.057 0.110 0.053 0.047 0.050 0.200 0.056 

ERSB G7 0.061 0.107 0.058 0.060 0.068 0.213 0.077 

ERSB G8 0.093 0.107 0.103 0.132 0.152 0.171 0.168 

ERSB G9 0.029 0.033 0.024 0.022 0.024 0.053 0.029 

ERSB G10 0.077 0.053 0.096 0.146 0.160 0.071 0.188 

RSW D 0.025 0.025 0.022 0.028 0.069 0.031 0.078 

S&C G1 0.017 0.016 0.026 0.054 0.132 0.096 0.183 

S&C G2 0.081 0.032 0.148 0.052 0.029 0.072 0.081 

S&C G3 0.021 0.008 0.048 0.020 0.021 0.040 0.177 

S&C G4 0.016 0.008 0.023 0.013 0.008 0.025 0.109 

S&C G5 0.024 0.013 0.019 0.014 0.011 0.020 0.062 

S&C G6 0.009 0.008 0.009 0.009 0.008 0.010 0.017 

S&C G7 0.045 0.062 0.068 0.148 0.087 0.199 0.096 

S&C G8 0.044 0.030 0.039 0.048 0.036 0.063 0.066 

S&C G9 0.035 0.043 0.037 0.033 0.058 0.038 0.161 

S&C G10 0.039 0.022 0.032 0.027 0.029 0.033 0.081 

S&C G11 0.043 0.007 0.011 0.009 0.004 0.017 0.060 

S&C G12 0.017 0.005 0.007 0.006 0.009 0.007 0.017 
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Table 8. MSD and Prediction Scores in the Last 50 Trials. 
Model (# of 
parameters) 

IBE 
(0) 

pNRA 
(1) 

NFP 
(2) 

7-sampling 
(0) 

SFP 
(2) 

Payoff-sampling 
(1) 

QRE 
(1) 

NRA 
(0) 

Avg. Score 0.051 0.052 0.054 0.054 0.055 0.057 0.058 0.060 

Gap to the best (%) - 3.93% 6.21% 7.87% 8.60% 12.08% 14.09% 18.60% 

AGK50 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 

AGK67 0.101 0.125 0.135 0.118 0.142 0.149 0.119 0.101 

AGK75 0.142 0.150 0.167 0.162 0.155 0.154 0.146 0.142 

ERSB G1 0.167 0.166 0.166 0.159 0.170 0.177 0.156 0.159 

ERSB G2 0.068 0.074 0.074 0.138 0.086 0.116 0.073 0.068 

ERSB G3 0.137 0.139 0.141 0.149 0.138 0.144 0.130 0.135 

ERSB G4 0.105 0.108 0.106 0.113 0.106 0.103 0.127 0.116 

ERSB G5 0.069 0.068 0.065 0.065 0.066 0.067 0.068 0.074 

ERSB G6 0.062 0.060 0.058 0.045 0.067 0.059 0.036 0.050 

ERSB G7 0.093 0.097 0.099 0.089 0.095 0.102 0.118 0.091 

ERSB G8 0.053 0.052 0.050 0.052 0.050 0.050 0.082 0.067 

ERSB G9 0.081 0.079 0.083 0.080 0.083 0.087 0.078 0.075 

ERSB G10 0.056 0.057 0.057 0.057 0.068 0.059 0.080 0.075 

RSW D 0.019 0.020 0.015 0.021 0.015 0.013 0.009 0.036 

S&C G1 0.025 0.013 0.028 0.014 0.030 0.019 0.044 0.051 

S&C G2 0.010 0.009 0.010 0.017 0.011 0.011 0.040 0.019 

S&C G3 0.013 0.012 0.022 0.015 0.021 0.013 0.023 0.037 

S&C G4 0.009 0.010 0.007 0.010 0.007 0.007 0.014 0.023 

S&C G5 0.018 0.019 0.017 0.015 0.015 0.016 0.018 0.032 

S&C G6 0.008 0.008 0.007 0.007 0.007 0.007 0.008 0.010 

S&C G7 0.010 0.010 0.010 0.011 0.015 0.011 0.048 0.039 

S&C G8 0.012 0.023 0.016 0.012 0.016 0.030 0.023 0.040 

S&C G9 0.024 0.026 0.025 0.032 0.029 0.027 0.018 0.054 

S&C G10 0.009 0.014 0.014 0.011 0.011 0.024 0.016 0.023 

S&C G11 0.006 0.008 0.006 0.007 0.005 0.010 0.008 0.018 

S&C G12 0.007 0.009 0.008 0.006 0.008 0.007 0.005 0.014 
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Model (# of parameters) PB1 (1) PB0 (0) Nash 
(0) stEWA (1) REL (2) NRL (2) RL (2) 

Avg. Score 0.064 0.065 0.083 0.086 0.130 0.131 0.175 

Gap to the best (%) 25.91% 29.24% 63.94% 71.19% 158.07% 159.51% 246.32% 

AGK50 0.009 0.009 0.009 0.009 0.010 0.010 0.009 

AGK67 0.087 0.084 0.171 0.086 0.096 0.102 0.093 

AGK75 0.143 0.143 0.185 0.151 0.163 0.138 0.140 

ERSB G1 0.159 0.163 0.205 0.200 0.211 0.222 0.156 

ERSB G2 0.067 0.071 0.362 0.205 0.254 0.094 0.092 

ERSB G3 0.141 0.142 0.213 0.172 0.189 0.221 0.131 

ERSB G4 0.126 0.130 0.101 0.135 0.135 0.108 0.125 

ERSB G5 0.077 0.088 0.074 0.105 0.109 0.125 0.072 

ERSB G6 0.039 0.037 0.098 0.040 0.042 0.064 0.032 

ERSB G7 0.112 0.115 0.150 0.174 0.187 0.128 0.100 

ERSB G8 0.092 0.101 0.066 0.143 0.149 0.055 0.097 

ERSB G9 0.075 0.077 0.099 0.088 0.095 0.162 0.079 

ERSB G10 0.097 0.113 0.071 0.160 0.182 0.078 0.070 

RSW D 0.075 0.102 0.011 0.084 0.085 0.195 0.194 

S&C G1 0.054 0.038 0.062 0.158 0.247 0.111 0.109 

S&C G2 0.030 0.026 0.049 0.028 0.112 0.091 0.267 

S&C G3 0.021 0.021 0.033 0.025 0.235 0.064 0.055 

S&C G4 0.019 0.020 0.019 0.011 0.102 0.077 0.082 

S&C G5 0.031 0.032 0.020 0.016 0.089 0.125 0.209 

S&C G6 0.010 0.010 0.009 0.009 0.021 0.210 0.249 

S&C G7 0.042 0.027 0.064 0.121 0.198 0.131 0.709 

S&C G8 0.059 0.057 0.026 0.057 0.087 0.161 0.168 

S&C G9 0.038 0.038 0.022 0.034 0.216 0.059 0.606 

S&C G10 0.021 0.021 0.019 0.017 0.078 0.094 0.090 

S&C G11 0.017 0.018 0.010 0.009 0.070 0.122 0.154 

S&C G12 0.013 0.014 0.006 0.010 0.027 0.460 0.460 
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Table 9. MSD and Prediction Scores in All Trials. 
Model (# of 
parameters) 

SFP 
(2) 

IBE 
(0) NFP (2) 7-sampling 

(0) 
pNRA 

(1) 
Payoff-sampling 

(1) 
QRE 

(1) 
NRA 

(0) 
Avg. Score 0.036 0.036 0.036 0.039 0.039 0.042 0.042 0.042 

Gap to the best (%) - 0.88% 1.46% 7.15% 8.05% 16.12% 16.39% 16.59% 

AGK50 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 

AGK67 0.107 0.077 0.107 0.090 0.094 0.123 0.085 0.077 

AGK75 0.112 0.106 0.112 0.131 0.114 0.122 0.107 0.106 

ERSB G1 0.072 0.083 0.072 0.069 0.081 0.090 0.073 0.077 

ERSB G2 0.037 0.065 0.037 0.069 0.062 0.051 0.039 0.073 

ERSB G3 0.075 0.082 0.074 0.101 0.085 0.096 0.070 0.072 

ERSB G4 0.059 0.063 0.063 0.066 0.069 0.062 0.091 0.074 

ERSB G5 0.030 0.031 0.028 0.030 0.030 0.032 0.030 0.031 

ERSB G6 0.043 0.056 0.041 0.049 0.052 0.068 0.022 0.037 

ERSB G7 0.073 0.092 0.072 0.079 0.095 0.109 0.062 0.071 

ERSB G8 0.043 0.042 0.043 0.044 0.042 0.044 0.068 0.049 

ERSB G9 0.037 0.039 0.037 0.035 0.035 0.037 0.034 0.034 

ERSB G10 0.056 0.055 0.059 0.056 0.058 0.059 0.089 0.071 

RSW D 0.029 0.028 0.026 0.031 0.033 0.023 0.020 0.046 

S&C G1 0.031 0.021 0.029 0.010 0.015 0.011 0.037 0.045 

S&C G2 0.007 0.010 0.007 0.016 0.009 0.010 0.038 0.015 

S&C G3 0.016 0.006 0.019 0.008 0.007 0.006 0.019 0.023 

S&C G4 0.011 0.005 0.012 0.007 0.008 0.004 0.011 0.019 

S&C G5 0.015 0.012 0.016 0.011 0.014 0.010 0.012 0.022 

S&C G6 0.003 0.005 0.003 0.003 0.005 0.003 0.004 0.006 

S&C G7 0.002 0.008 0.002 0.019 0.014 0.025 0.096 0.008 

S&C G8 0.012 0.006 0.013 0.011 0.018 0.026 0.024 0.029 

S&C G9 0.035 0.022 0.043 0.033 0.031 0.028 0.018 0.050 

S&C G10 0.011 0.011 0.013 0.013 0.020 0.032 0.019 0.024 

S&C G11 0.007 0.004 0.007 0.006 0.006 0.003 0.007 0.013 

S&C G12 0.004 0.004 0.004 0.003 0.005 0.004 0.004 0.007 
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Model (# of parameters) PB0 (0) PB1 (1) stEWA 
(1) RL (2) Nash (0) REL (2) NRL (2) 

Avg. Score 0.044 0.045 0.063 0.064 0.072 0.101 0.135 

Gap to the best (%) 21.63% 24.44% 76.18% 78.96% 98.99% 180.34% 275.27% 

AGK50 0.009 0.009 0.008 0.010 0.009 0.009 0.009 

AGK67 0.057 0.061 0.057 0.076 0.138 0.063 0.078 

AGK75 0.104 0.103 0.109 0.104 0.156 0.119 0.099 

ERSB G1 0.080 0.077 0.102 0.071 0.103 0.109 0.104 

ERSB G2 0.056 0.066 0.131 0.035 0.243 0.171 0.059 

ERSB G3 0.077 0.073 0.128 0.071 0.206 0.155 0.144 

ERSB G4 0.088 0.085 0.102 0.087 0.067 0.101 0.071 

ERSB G5 0.043 0.034 0.065 0.029 0.048 0.076 0.055 

ERSB G6 0.023 0.024 0.041 0.023 0.128 0.051 0.069 

ERSB G7 0.063 0.062 0.090 0.061 0.170 0.100 0.098 

ERSB G8 0.075 0.068 0.117 0.055 0.072 0.128 0.049 

ERSB G9 0.033 0.033 0.037 0.035 0.045 0.039 0.056 

ERSB G10 0.108 0.091 0.154 0.068 0.073 0.171 0.064 

RSW D 0.108 0.088 0.099 0.018 0.020 0.094 0.183 

S&C G1 0.014 0.057 0.162 0.055 0.057 0.226 0.068 

S&C G2 0.020 0.027 0.029 0.132 0.048 0.087 0.211 

S&C G3 0.009 0.013 0.018 0.043 0.031 0.208 0.045 

S&C G4 0.014 0.018 0.006 0.016 0.017 0.106 0.079 

S&C G5 0.021 0.024 0.012 0.017 0.015 0.065 0.099 

S&C G6 0.006 0.007 0.006 0.004 0.004 0.014 0.173 

S&C G7 0.011 0.012 0.063 0.199 0.124 0.135 0.195 

S&C G8 0.038 0.045 0.044 0.050 0.030 0.077 0.361 

S&C G9 0.035 0.039 0.032 0.265 0.021 0.180 0.071 

S&C G10 0.024 0.024 0.022 0.113 0.021 0.064 0.285 

S&C G11 0.012 0.015 0.006 0.023 0.010 0.055 0.335 

S&C G12 0.008 0.008 0.008 0.014 0.004 0.018 0.446 
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Table 10. Significance of model pairwise comparisons based on prediction scores in 

the First 50 Trials. The null hypothesis of no differences in Row and Column Model 

average scores is tested (Mann-Whitney-Wilcoxon test). Shaded cells indicate 

comparisons for which we fail to reject the null at the 5% level. 

 NFP 
(2) NRA (0) PB0 

(0) 
PB1 
(1) SFP (2) IBE (0) pNRA 

(1) 
Payoff-sampling 

(1) 
NFP (2)   0.939 0.928 0.183 0.003 0.341 0.874 0.073 

NRA (0) 0.939   0.772 0.032 0.067 0.679 0.795 0.044 

PB0 (0) 0.928 0.772   0.929 0.443 0.137 0.558 0.186 

PB1 (1) 0.183 0.032 0.929   0.929 0.220 0.042 0.838 

SFP (2) 0.003 0.067 0.443 0.929   0.049 0.094 0.849 

IBE (0) 0.341 0.679 0.137 0.220 0.049   0.471 0.003 

pNRA (1) 0.874 0.795 0.558 0.042 0.094 0.471   0.015 
Payoff-sampling 

(1) 0.073 0.044 0.186 0.838 0.849 0.003 0.015   

NRL (2) 0.397 0.006 0.085 0.438 0.877 0.000 0.009 0.957 

7-sampling (0) 0.312 0.194 0.545 0.945 0.788 0.007 0.244 0.932 

RL (2) 0.084 0.013 0.039 0.143 0.462 0.000 0.014 0.400 

QRE (1) 0.030 0.016 0.000 0.013 0.111 0.001 0.017 0.111 

stEWA (1) 0.001 0.000 0.000 0.000 0.004 0.000 0.000 0.010 

Nash (0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

REL (2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

 NRL (2) 7-sampling (0) RL (2) QRE (1) stEWA (1) Nash (0) REL (2) 

NFP (2) 0.397 0.312 0.084 0.030 0.001 0.000 0.000 

NRA (0) 0.006 0.194 0.013 0.016 0.000 0.000 0.000 

PB0 (0) 0.085 0.545 0.039 0.000 0.000 0.000 0.000 

PB1 (1) 0.438 0.945 0.143 0.013 0.000 0.000 0.000 

SFP (2) 0.877 0.788 0.462 0.111 0.004 0.000 0.000 

IBE (0) 0.000 0.007 0.000 0.001 0.000 0.000 0.000 

pNRA (1) 0.009 0.244 0.014 0.017 0.000 0.000 0.000 

Payoff-sampling (1) 0.957 0.932 0.400 0.111 0.010 0.000 0.000 

NRL (2)   0.297 0.045 0.621 0.057 0.000 0.000 

7-sampling (0) 0.297   0.033 0.006 0.004 0.000 0.000 

RL (2) 0.045 0.033   0.695 0.064 0.000 0.000 

QRE (1) 0.621 0.006 0.695   0.000 0.000 0.000 

stEWA (1) 0.057 0.004 0.064 0.000   0.000 0.000 

Nash (0) 0.000 0.000 0.000 0.000 0.000   0.053 

REL (2) 0.000 0.000 0.000 0.000 0.000 0.053   
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Table 11. Significance of model pairwise comparisons cased on prediction scores in 

the Last 50 Trials. The null hypothesis of no differences in Row and Column Model 

average scores is tested (Mann-Whitney-Wilcoxon test). Shaded cells indicate 

comparisons for which we fail to reject the null at the 5% level. 

 IBE 
(0) 

pNRA 
(1) 

NFP 
(2) 

7-sampling 
(0) 

SFP 
(2) Payoff-sampling (1) QRE 

(1) 
NRA 

(0) 
IBE (0)   0.253 0.084 0.488 0.004 0.125 0.005 0.000 

pNRA (1) 0.253   0.268 0.746 0.045 0.017 0.045 0.000 

NFP (2) 0.084 0.268   0.221 0.082 0.169 0.212 0.001 

7-sampling (0) 0.488 0.746 0.221   0.582 0.408 0.109 0.000 

SFP (2) 0.004 0.045 0.082 0.582   0.800 0.348 0.001 

Payoff-sampling (1) 0.125 0.017 0.169 0.408 0.800   0.632 0.008 

QRE (1) 0.005 0.045 0.212 0.109 0.348 0.632   0.280 

NRA (0) 0.000 0.000 0.001 0.000 0.001 0.008 0.280   

PB1 (1) 0.000 0.000 0.000 0.001 0.000 0.002 0.013 0.011 

PB0 (0) 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.085 

Nash (0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 

stEWA (1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

REL (2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NRL (2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

RL (2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

 PB1 
(1) PB0 (0) Nash (0) stEWA (1) REL 

(2) NRL (2) RL (2) 

IBE (0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

pNRA (1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NFP (2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

7-sampling (0) 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

SFP (2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Payoff-sampling (1) 0.002 0.001 0.000 0.000 0.000 0.000 0.000 

QRE (1) 0.013 0.004 0.000 0.000 0.000 0.000 0.000 

NRA (0) 0.011 0.085 0.002 0.000 0.000 0.000 0.000 

PB1 (1)   0.054 0.025 0.000 0.000 0.000 0.000 

PB0 (0) 0.054   0.050 0.000 0.000 0.000 0.000 

Nash (0) 0.025 0.050   0.654 0.000 0.000 0.000 

stEWA (1) 0.000 0.000 0.654   0.000 0.000 0.000 

REL (2) 0.000 0.000 0.000 0.000   0.124 0.647 

NRL (2) 0.000 0.000 0.000 0.000 0.124   0.005 

RL (2) 0.000 0.000 0.000 0.000 0.647 0.005   
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Table 12. Significance of model pairwise comparisons based on prediction scores in 

All Trials. The null hypothesis of no differences in Row and Column Model average 

scores is tested (Mann-Whitney-Wilcoxon test). Shaded cells indicate comparisons for 

which we fail to reject the null at the 5% level. 

 SFP 
(2) 

IBE 
(0) NFP (2) 7-sampling 

(0) 
pNRA 

(1) 
Payoff-sampling 

(1) 
QRE 

(1) 
NRA 

(0) 
SFP (2)   0.718 0.088 0.910 0.070 0.015 0.208 0.000 

IBE (0) 0.718   0.367 0.429 0.011 0.020 0.007 0.000 

NFP (2) 0.088 0.367   0.633 0.322 0.087 0.260 0.000 

7-sampling (0) 0.910 0.429 0.633   0.164 0.081 0.048 0.001 

pNRA (1) 0.070 0.011 0.322 0.164   0.093 0.193 0.000 
Payoff-sampling 

(1) 0.015 0.020 0.087 0.081 0.093   0.341 0.185 

QRE (1) 0.208 0.007 0.260 0.048 0.193 0.341   0.608 

NRA (0) 0.000 0.000 0.000 0.001 0.000 0.185 0.608   

PB0 (0) 0.005 0.000 0.009 0.007 0.000 0.067 0.048 0.671 

PB1 (1) 0.000 0.000 0.000 0.001 0.000 0.014 0.020 0.001 

stEWA (1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

RL (2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 

Nash (0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

REL (2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NRL (2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

 PB0 
(0) 

PB1 
(1) 

stEWA 
(1) RL (2) Nash (0) REL (2) NRL (2) 

SFP (2) 0.005 0.000 0.000 0.000 0.000 0.000 0.000 

IBE (0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NFP (2) 0.009 0.000 0.000 0.000 0.000 0.000 0.000 

7-sampling (0) 0.007 0.001 0.000 0.000 0.000 0.000 0.000 

pNRA (1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Payoff-sampling (1) 0.067 0.014 0.000 0.000 0.000 0.000 0.000 

QRE (1) 0.048 0.020 0.000 0.000 0.000 0.000 0.000 

NRA (0) 0.671 0.001 0.000 0.019 0.000 0.000 0.000 

PB0 (0)   0.097 0.000 0.030 0.000 0.000 0.000 

PB1 (1) 0.097   0.000 0.112 0.000 0.000 0.000 

stEWA (1) 0.000 0.000   0.303 0.225 0.000 0.000 

RL (2) 0.030 0.112 0.303   0.203 0.000 0.000 

Nash (0) 0.000 0.000 0.225 0.203   0.000 0.000 

REL (2) 0.000 0.000 0.000 0.000 0.000   0.382 

NRL (2) 0.000 0.000 0.000 0.000 0.000 0.382   
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CHAPTER 4 

4. LEARNING IN MULTI-GAME EXPERIMENTS 
 

Abstract. I designed and ran multi-game experiments in which subjects played 

sequences of different two-person, 2x2 games with a unique equilibrium in mixed 

strategies (MSE). Games in each sequence were obtained by multiplying for a 

randomly drawn positive constant the payoffs of two completely mixed games. I use 

these experimental data to test the predictive power of the Perceptron-Based (PB) 

model and compare it with that of other popular learning and equilibrium models of 

interactive choice behavior. As a result, the PB model is, by design, the sole model of 

learning capable to discriminate between the two different classes of games, and it 

outperforms in accuracy Nash equilibrium and all the other models of learning as well. 

In addition, experimental results do not provide evidence of learning spillover effects 

across games, which might provide an explanation for why non-standard stationary 

models turn out to be the best predictors of observed choice frequencies. 
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4.1  Economic Models of Generalization and Empirical Evidence 
As Stahl and Van Huyck (2002:2) put it, “our ability to understand and predict human 

behavior would be greatly enhanced by a successful theory of how past experiences 

with similar situations affect current behavior”. The issue of generalization is also 

economically relevant because most human interactive learning happens in contexts 

where tasks do not repeat themselves identically over time – as in the typical patterns 

of interaction that have been empirically studied up to now in the experimental and 

behavioral economics literature. As seen in the Introduction, generalizing from 

examples and learning of conditional behavior are among the most fundamental 

functions of human beings. 

Despite the economic relevance of this topic, the experimental and behavioral 

economics literature on generalization counts only few contributions, which can be 

classified in three groups based on the approach adopted. 

The first is that proposed in Gilboa and Schmeidler’s Case-Based Decision Theory; 

this model is designed to describe a decision maker who bases his decisions on the 

consequences derived from past actions taken in relevant similar cases (learning by 

examples) (Gilboa and Schmeidler, 1995; Rubinstein, 1998). Analogously, Leland 

(2001) proposes a model of decision-making where agents are assumed to base their 

decisions on comparisons regarding the similarity or dissimilarity of attributes across 

alternatives, along the lines suggested by Tversky (1969), although without providing 

an explicit definition of similarity for games. 

The second stream of literature deals with the problem of how past experience 

fosters the emergence of coordination in a population of players and how subjects 

anchor to previously learned strategic behaviors. Contributions by Rankin, Van Huyck, 

and Battalio (2000) and Stahl and Van Huyck (2002) report evidence on the origin of 

conventions based on payoff dominance in laboratory cohorts playing repeatedly 

similar but not identical stag-hunt games. Using data from their experiments on 

repeated play of similar stag hunt games, Stahl and Van Huyck (2002) compare the 

predictive performance of four models of adaptive beliefs formation, with a number of 

free parameters ranging from 3 to 8, in which the probability for a player to choose the 

payoff dominant action is a function of a measure of the distance between the payoffs 

in the current game and those in the previous one. Their main result is that only the 

more complex model (allowing for an exogenous belief in the salience of the payoff 
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dominant action) can explain the data with one set of estimated parameters. In Devetag 

(2005) the issue of transfer of learning between two different typologies of 

coordination games (i.e., from critical mass to minimum effort games) is investigated. 

Here, the main finding is that subjects use what they have previously learned playing 

the first game repeatedly as they play the second one; the present study assesses the 

extent to which efficient achieved precedents can be successfully used as a 

coordination device in the new situation. In Egidi and Narduzzo (1997), it is shown that 

past experience could even lead to “strongly routinized behaviors, i.e. groups of player 

which, after the training phase, adopted one strategy once and for all, and insisted on 

using it even when hands could not be efficiently played with the strategy adopted” 

(Egidi and Narduzzo, 1997:1). This above mentioned phenomenon is commonly 

known as path-dependence. 

Works by LiCalzi (1992), Sgroi and Zizzo (2002 and 2007) and Sgroi (2003) 

illustrate the third approach in which the issue of generalization is purely addressed 

from a modeling point of view. LiCalzi’s paper is based on the question raised by 

Fudenberg and Kreps (1993) – “how does fictitious play extend to situations where 

players try to extrapolate from past experiences in similar games?” – and provides a 

new model of fictitious play by “cases”. Sgroi and Zizzo present a neural network-

based methodology for examining the learning of game playing rules in never 

previously encountered games. They show how a back-propagation neural network can 

learn Nash strategies if all other players play Nash equilibrium and the network 

receives as a feedback target the Nash equilibrium itself. The most important result is 

that one can teach Nash equilibrium to a neural network with a 60% success rate – 

similar to the rate experimentally observed on human subjects. 

The contribution by Huck, Jehiel, and Rutter (2007) cannot be included in any of 

the three above-mentioned approaches because it merges experimental and modeling 

methodologies. However, this contribution adds important insights on the issue. The 

authors investigate under what conditions learning spillovers arise in a context of 

multiple interaction tasks i.e., when long run behaviors in one game are affected by 

behaviors in another one. They find that learning spillovers are a function of the 

structure of the feedback received by agents. Indeed, when playing two different 

dominance solvable games, if the information that subjects receive about different 

interactions is easily separable, then spillovers are minimal; on the contrary, if 

information is not clearly separated for each game or if it is less accessible, then 
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learning spillovers do matter and lead subjects’ behavior away from that predicted by 

standard theory. Moreover, Jehiel (2005) provides the concept of analogy-based 

expectation equilibrium, suggesting a way to broaden the notion of equilibrium in the 

presence of learning spillovers. 

 

4.2  The Generalizing PB Model 
As explained in the second chapter, the PB model of learning is technically a one-layer 

neural network with continuous output units; neural networks of this kind are called 

simple perceptrons (first proposed by Rosenblatt, 1958). Now, simple perceptrons 

suffer some severe theoretical limitations in the discrimination tasks they can perform 

(Hertz, Krogh, and Palmer, 1991; Minsky and Papert, 1969; this latter contribution 

caused a significant decline in interest and funding of neural network research). 

However, in spite of these limitations, simulation results discussed in the following 

Section 6 show that perceptrons are able to discriminate between two different strategic 

situations and to replicate human choice behavior. 

The PB model presents some architectural analogies with established models of 

learning in games, but it has also some peculiar features that differentiate it from its 

competitors. Established learning models in economics have two main, cyclically 

intertwined, component processes: 

1. Behavior is generated by some stochastic choice rule that maps propensities 

into probabilities of play. 

2. Learning employs feedback to modify propensities, which in turn affect 

subsequent choices. 

 

 
Figure 1. General architecture of a “propensities and stochastic choice rule” learning 

model. 
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The PB model’s architecture resembles that of other learning models only partially: 

one can easily interpret network outputs as propensities, whose normalization plays the 

role of the stochastic choice rule. What makes our model different is that choice 

behavior depends also directly upon game payoffs (represented in the “input layer”). In 

other words, while in a typical economic learning model choice is a function of 

propensities only, here it is function of both propensities and the payoffs of the game. 

Furthermore, the learning rule itself depends upon the input payoffs.  

 

 
Figure 2. General architecture of the PB model. 

 

This architecture provides the PB model with a peculiar capability to discriminate 

among different games. Conventional learning models in economics are designed for 

repeated games. There is learning, but no discrimination or generalization: the 

simulated learning agent is unable to discriminate between different games at a certain 

moment. If given abruptly two different games, it would respond in the same way (or 

just throw away what has been learned). On the other hand, discrimination is something 

Perceptrons do pretty well: since output is also directly affected by perceived inputs 

(the activation states of input units), a network, after learning, will respond differently 

to different games. 
 

4.3  Experimental Design 
I designed and ran a multi-game experiment in order to investigate how acquired 

strategic skills affect subjects’ decisions when facing new strategic situations. The 

experiment consists of two treatments. 

In Treatment 1, four cohorts of 8 players each (corresponding to four independent 

observations) played a sequence of 120 games. This sequence was obtained perturbing 

the payoffs of two 2x2, two-person constant-sum games (henceforth Game A and 
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Game B) with a unique MSE. Specifically, perturbations were obtained by multiplying 

payoffs for a randomly drawn positive constant (from the normal distribution with 

mean 10 and standard deviation 4). Thus, I obtained two sets of Type A and Type B 

games. It is worth noting that Type A and B games are characterized by the same 

equilibrium probabilities of Game A and B, respectively. The sequence of games was 

constructed so that in each block of 10 trials there were 5 Type A and 5 Type B games 

in random order; thus, in each block subjects could play the same number of times 

Type A and Type B games. Each cohort played a different sequence obtained according 

to the procedure described above. Due to the structural characteristics of game 

sequences, I decided to average observed choice frequencies for Type A and Type B 

games within blocks of 20 trials each. Treatment 2 is equal to the first, except for the 

pair of games I used to build the sequences (Games A and C). The experimental design 

is summarized in Table 1. Games A, B, and C were designed in such a way that, in all 

three games, the sum of all payoffs for row and column players is constantly equal to 

the same number. 

At the beginning of the experiment, subjects in each cohort were randomly assigned 

the role of either row or column player. At each round and within each cohort, subjects 

assigned to different roles were randomly and anonymously paired (random matching 

protocol). Random matching was adopted in order to discourage coordination and 

reciprocating behaviors (Erev and Haruvy, 2005). At the end of each round, subjects 

were provided with feedback about their and their opponents’ actions and outcomes in 

that round (complete information protocol). 

In order to avoid income effects and induce incentives based on performance, 

subjects were paid on the basis of the outcomes in 12, randomly drawn, rounds. All 

treatments were run at the experimental laboratory of CEEL (University of Trento). 

Subjects could not participate to more than one treatment. 
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Table 1. Experimental design. 

Game A Game B 

Treatment 1 

 
          Player 2 
Player 1 L R 

U 17,5 16,6 
D 8,14 17,5 

 

NE: P(U) = 0.9, P(L) = 0.1 

 
          Player 2 
Player 1 L R 

U 5,17 2,20 
D 4,18 11,11 

 

NE: P(U) = 0.7, P(L) = 0.9 

Game A Game C 

Treatment 2 

 
          Player 2 
Player 1 L R 

U 17,5 16,6 
D 8,14 17,5 

 

NE: P(U) = 0.9, P(L) = 0.1 

 
            Player 2 
Player 1 L R 

U 17,5 15,7 
D 15,7 18,4 

 

NE: P(U) = 0.6, P(L) = 0.6 

 

4.4  Experimental Results 
Figures 4 and 5 report my experimental results. Reported choice frequencies 

correspond, for each treatment, to average choice behavior over four independent 

observations (four cohorts of subjects). In both figures, I report separately choice 

frequency trajectories for the two types of games in blocks of 10 trials, although within 

each block subjects played also 10 games of the other kind. Tables 2 and 3 report 

empirical choice frequencies averaged over all trials for each independent observation 

and for each treatment. 

I used Game A to build the sequences in both treatments in order to assess to what 

extent choice behavior is affected by the simultaneous play of another game. If we 

consider choice behavior in type A games averaged over all periods of play, data do not 

show any significant difference between average choice behavior in Treatments 1 and 

2, for both row (Mann-Whitney-Wilcoxon paired test, p-value = 0.4227) and column 

players (Mann-Whitney-Wilcoxon paired test, p-value = 0.625). This suggests that 

learning spillover effects across different games are negligible, at least in this simple 

case in which the games are of just two types, and that subjects are then able to 

recognize the structure of the two types of games and play accordingly. This might also 

explain why equilibrium models outperform dynamic models of learning in predicting 

data from my experiment. 
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Empirical results show that in Treatment 1 observed behavior in Type A games is 

not well approximated by Nash equilibrium. Row players play Nash mixture only in 

the first two blocks (as Table 4 illustrates), but then observed choice frequencies depart 

from Nash’s mixture. As for column players, play starts from random behavior in the 

first block, and then converges to values systematically higher than predicted 

frequencies (observed value of 0.328 versus estimated value of 0.1). 

In Treatment 1, Nash descriptive power of choice behavior in type B games is very 

poor. Column players are supposed to choose action U with probability 0.7, whereas 

observed play converges to the relative frequency of 0.9. Column players are supposed 

to choose action L with probability 0.9, but observed behavior converges, after two 

blocks, to the value of 0.4. 

 

 
Figure 4. Observed choice frequencies averaged over all independent observations in 

Treatment 1. Nash predicted behavior for Type A games is P(U) = 0.9 and P(L) = 0.1, 

whereas for Type B games P(U) = 0.7 and P(L) = 0.9. 

 

In Treatment 2, the relative frequency with which row players choose action U in 

Type A games is systematically higher than that predicted by standard theory, similarly 

to what happened in Treatment 1. It is interesting to note here that in Type C games 

empirical behavior of both row and column players converges to Nash probabilities 

(P(U) = P(L) = 0.6) in the last block of trials. 
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Figure 5. Observed choice frequencies averaged over all independent observations in 

Treatment 2. Nash predicted behavior for Type A games is P(U) = 0.9 and P(L) = 0.1, 

whereas for Type C games P(U) = P(L) = 0.6. 

 

Table 2. Observed choice frequencies averaged over all periods in Treatment 1, for 

Type A and B games. 

Type A 
 Observation 

1 
Observation 

2 
Observation 

3 
Observation 

4 Mean sd 

Row Player 0.829 0.708 0.900 0.854 0.823 0.082 
Column 
Player 0.254 0.292 0.450 0.317 0.328 0.085 

 
Type B 

 Observation 
1 

Observation 
2 

Observation 
3 

Observation 
4 Mean sd 

Row Player 0.221 0.621 0.454 0.092 0.347 0.236 
Column 
Player 0.917 0.838 0.829 0.779 0.841 0.057 
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Table 3. Observed choice frequencies averaged over all periods in Treatment 2, for 

Type A and C games. 

Type A 
 Observation 

1 
Observation 

2 
Observation 

3 
Observation 

4 Mean sd 

Row Player 0.829 0.804 0.892 0.983 0.877 0.080 
Column 
Player 0.404 0.638 0.417 0.238 0.424 0.164 

 
Type C 

 Observation 
1 

Observation 
2 

Observation 
3 

Observation 
4 Mean sd 

Row Player 0.717 0.517 0.500 0.583 0.579 0.098 
Column 
Player 0.504 0.854 0.704 0.783 0.711 0.151 

 

4.5  Methods 
For each model, Mean Squared Deviation (MSD) scores are computed. In order to get 

the estimated choice frequencies, I ran each model with parameters set to the values 

that minimize MSD across all datasets considered in the third chapter of my thesis, and 

computed the MSD with respect to the experimental data. In some sense this procedure 

corresponds to the leave-one-out one (described in the second chapter) that, although 

indirectly, penalizes models with higher degree of (statistical) complexity. For this 

reason, in the remainder I will refer to these scores as Prediction scores. I will not 

consider in this analysis the significance of model pairwise comparisons (as I do in the 

previous two chapters), since the aim of this study is to test some qualitative aspects of 

the models. 

As always, larger values of Prediction scores correspond to less accurate 

predictions. 

Since learning models are stochastic, the estimated frequency of choice was 

obtained as the average over 150 simulations, which were run for each experiment and 

for each parameter configuration. Moreover, in order to make simulation results 

comparable, the initialization of all dynamic models was set to assure equal 

probabilities of choosing each action at the first round. 

I compare the performances of eight different models of learning and five stationary 

concepts (for a comprehensive description of some of the most popular stationary and 

dynamic models see the Introduction). I consider in my analysis the following models 

of learning: Normalized Fictitious Play (NFP) (Erev et al., 2007); Normalized 

Reinforcement Learning (NRL) (Erev et al., 2007); Perceptron-Based (PB0 and PB1 
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with, respectively, zero and one free parameters) (Marchiori and Warglien, 2008); 

Reiforcement Learning (REL) (Erev and Roth, 1998); Reinforcement Learning (RL) 

(Erev et al., 2007); Stochastic Fictitious Play (Erev at al., 2007); and Self-tuning 

Experience Weighted Attraction (stEWA) (Ho, Camerer, and Chong, 2007). The 

equilibrium concepts I consider are: Nash Equilibrium; Impulse Balance Equilibrium 

(IBE) (Ockenfels and Selten, 2005); Action-Sampling Equilibrium (Sample-7) (Selten, 

2000); Payoff-Sampling Equilibrium (Osborne and Rubinstein, 1998); Net Reward 

Attractions (NRA) Equilibrium and its parametric version pNRA (proposed and 

described in Chapter 3). 

Logit Quantal Response Equilibrium (McKelvey and Palfrey, 1995) is not invariant 

to the multiplication of all payoffs for a constant (for a fixed value of the parameter 

€ 

λ ), 

and for that reason it is not included it in my analysis. 
 

4.6  Simulation Results 
Experimental results show that subjects can distinguish between the two situations, 

behaving differently in the two different strategic situations. However, there is no valid 

reason to expect that this result holds true also in the presence of sequences with more 

complex games, or with many, structurally different games. 

The first important result is that learning models, with the exception of the PB 

model, are not able to discriminate between the two different strategic situations, 

providing a poor “average” behavior for both strategic situations, and are always 

outperformed by Nash equilibrium. 

On the contrary, the PB model is able to replicate subjects’ conditional behavior, 

due to its direct dependence of response on game payoffs and performs better than 

standard theory of equilibrium. Moreover, simulation results show that there is a 

qualitative parallelism between the behavior produced by the PB model and the 

observed one; if we consider estimated frequencies for Type A games averaged over all 

periods in Treatment 1 and 2, the difference is statistically significant for both row 

(Mann-Whitney-Wilcoxon paired test, p-value < 2.2e-16) and column player (Mann-

Whitney-Wilcoxon paired test, p-value < 2.2e-16), but the estimated differences are 

very small (0.0561 for row player and -0.0875 for column player). This means that not 

only that the PB model is able to replicate subjects’ ability to recognize different 

strategic situations and act accordingly, but also that its structure is complex enough to 

avoid spillover effects across games. 
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Simulation results show that the PB model is the most accurate model of learning. 

However, non-standard equilibrium models are by far the best predictors of the data, 

perhaps due to the fact that spillover effects are negligible in my experiment. As a 

confirmation of this, models of equilibrium give good predictions of behavior in Type 

A games in both Treatment 1 and 2: this would not be possible if choice behavior were 

conditioned by the simultaneous play of another game. 

Reading from Tables A1 and A2 in Appendix A, we can see that in these games 

equilibrium models alternative to standard game theory (NRA, IBE, Payoff-sampling, 

and Action sampling models) provide quite similar predictions. This is the reason for 

which these stationary models are almost equivalent in predicting data. This is not a 

shortcoming of my experimental design, since here the aim is to test the predictive 

power of learning models on data from experiments with a radically new design with 

respect to the established pattern of analysis proposed up to now in the literature. 

Moreover, a thorough comparative analysis of equilibrium models has already been 

proposed in previous chapters. The role of equilibrium models here is rather that of a 

benchmark, allowing for a better evaluation of the performances of dynamic models. 

 

 
Figure 6. Row Player’s predicted and observed choice frequencies in Type A and B 

games. 
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Figure 7. Column Player’s predicted and observed choice frequencies in Type A and B 

games. 

 

Table 4. Average model Prediction scores in Type A and B games (Treatment 1). 

Models MSD Scores Player Type Type A Games 
Average MSD 

Type B Games 
Average MSD 

Row 0.010 0.133 
Nash 0.053 

Column 0.063 0.007 

Row 0.030 0.139 
NFP 0.081 

Column 0.107 0.048 

Row 0.038 0.138 
NRL 0.094 

Column 0.189 0.011 

Row 0.023 0.039 
PB0 0.024 

Column 0.035 0.001 

Row 0.012 0.019 
PB1 0.028 

Column 0.075 0.005 

Row 0.107 0.033 
REL 0.076 

Column 0.041 0.122 

Row 0.043 0.139 
RL 0.097 

Column 0.194 0.010 

Row 0.037 0.153 
SFP 0.094 

Column 0.126 0.061 

Row 0.051 0.081 
stEWA 0.086 

Column 0.201 0.009 

Row 0.014 0.010 
IBE 0.012 

Column 0.020 0.005 

Row 0.015 0.029 
Payoff-sampling 0.016 

Column 0.012 0.007 

Row 0.010 0.008 
NRA 0.016 

Column 0.040 0.004 

Row 0.014 0.010 
pNRA 0.011 

Column 0.014 0.005 

Row 0.018 0.014 
7-Sampling 0.012 

Column 0.011 0.006 
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Figure 8. Row Player’s predicted and observed choice frequencies in of type A and C 

games. 

 

 
Figure 9. Column Player’s predicted and observed choice frequencies in Type A and C 

games. 
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Table 5. Average model Prediction scores in Type A and C games (Treatment 2). 

Models MSD Scores Player Type Type A Games 
Average MSD 

Type C Games 
Average MSD 

Row 0.001 0.007 
Nash 0.034 

Column 0.108 0.019 

Row 0.020 0.043 
NFP 0.036 

Column 0.017 0.065 

Row 0.025 0.071 
NRL 0.047 

Column 0.034 0.060 

Row 0.005 0.035 
PB0 0.029 

Column 0.033 0.043 

Row 0.009 0.020 
PB1 0.026 

Column 0.044 0.032 

Row 0.144 0.014 
REL 0.055 

Column 0.009 0.052 

Row 0.027 0.070 
RL 0.053 

Column 0.043 0.072 

Row 0.021 0.043 
SFP 0.036 

Column 0.011 0.068 

Row 0.141 0.012 
stEWA 0.058 

Column 0.071 0.007 

Row 0.003 0.008 
IBE 0.007 

Column 0.003 0.012 

Row 0.001 0.013 
NRA 0.010 

Column 0.009 0.019 

Row 0.003 0.007 
Payoff-sampling 0.008 

Column 0.007 0.015 

Row 0.003 0.010 
pNRA 0.008 

Column 0.005 0.016 

Row 0.005 0.007 
7-Sampling 0.008 

Column 0.011 0.009 

 

4.7  What Do Subjects Learn? 
An important question that arises from the analysis of my experimental results is that of 

what do subject learn to play. In order to answer this question, a good idea is that of 

looking at how Prediction scores of a model vary across blocks of trials; this should 

make clear whether or not subjects’ behavior is converging to the behavior predicted by 

that particular model. Figures in this section report this information, first for data from 

Treatment 1and then for data from Treatment 2. 

Figures 10-13 report the Prediction scores corresponding to each model in each 

block of trials, for row and column players, in Type A and B games (Treatment 1). 

These figures help visualize toward which prediction observed behavior is directed. 

For what concerns equilibrium models, we can notice the poor predictive power of 

Nash equilibrium of row players’ behavior in type B games (figure 10) and of column 
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players’ behavior in type A games (figure 11). As already noted, equilibrium concepts 

alternative to standard theory provide very similar predictions and observed behavior 

converges to the predicted one in Type B games. However, this is not true for Type A 

games, in which Prediction scores does not seem to be decreasing over time for both 

row and column players. 

As for learning models, we can first note that they are in general less accurate than 

stationary concepts and, second, that in most of the cases, the produced dynamics 

diverge greatly from the observed ones (figures 12 and 13). On the other hand, only 

observed behavior of row player in Type A games does not converge to the PB model 

prediction (figure 12). In general it can be easily seen that the PB model provides the 

best approximation of empirical data. 

 

 
Figure 10. Models of equilibrium. Plot of MSD Scores against blocks of trials for row 

player in Treatment 1. 
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Figure 11. Models of equilibrium. Plot of MSD Scores against blocks of trials for 

column player in Treatment 1. 

 

 
Figure 12. Models of learning. Plot of MSD Scores against blocks of trials for row 

player in Treatment 1. 
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Figure 13. Models of learning. Plot of MSD Scores against blocks of trials for column 

player in Treatment 1. 

 

In Figures 14-17, choice frequencies on type A and C games are considered 

(Treatment 2). 

For what concerns equilibrium models, in general convergence of observed choice 

behavior to the estimated frequencies is not monotone as in Treatment 1. It turns out 

that Nash equilibrium is a very good predictor of row player’s behavior in Type C 

games (figure 14), but a very bad predictor of column player’s observed choice 

frequencies in Type A games (for a quantitative reference see Table 5). Also in this 

case we can observe that the performances of equilibrium models are quite similar. 

On the contrary, learning models provide predictions that are dramatically different 

and, in general, there is no convergence to empirical frequencies of choice (in 

particular for column players, see figure 17). However, observed behavior seem to 

converge toward the PB model predictions, with the exception of column player in 

Type A games, as in Treatment 1; this is, of course, consequence of the fact that 

empirical behavior in Type A games is on average the same in the two treatments. 
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Figure 14. Models of equilibrium. Plot of MSD Scores against blocks of trials for row 

player in Treatment 2. 

 

 
Figure 15. Models of equilibrium. Plot of MSD Scores against blocks of trials for 

column player in Treatment 2. 
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Figure 16. Models of learning. Plot of MSD Scores against blocks of trials for row 

player in Treatment 2. 

 

 
Figure 17. Models of learning. Plot of MSD Scores against blocks of trials for column 

player in Treatment 2. 

 

4.8  Conclusions and Further Research 
I designed and ran multigame experiments in order to assess to what extent past 

experience affects current choice behavior and to test the capability of some of the most 

popular dynamic models of choice behavior in providing different responses to 

different strategic situations. 

Empirical results show that in the simple experimental settings considered here, 

players are able to recognize the two different game structures in each sequence and 
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play accordingly to this classification. This is particularly interesting because even 

though the two original games, from which each sequence was obtained, differ only in 

the predicted probabilities of play, subjects can recognize them, but do not use Nash 

equilibrium to form their strategies (neither in the early periods, nor in the long run). 

Simulation results show that traditional “attraction and stochastic choice rule” 

learning models are not able to discriminate between the different strategic situations, 

providing a poor “average” behavior for both strategic situations, and are always 

outperformed by Nash equilibrium. On the contrary, the PB model is able to replicate 

subjects’ conditional behavior, due to its direct dependence of response on game 

payoffs and performs better than standard theory of equilibrium. In addition, not only 

the PB model is able to replicate subjects’ ability to recognize different strategic 

situations and act accordingly, but its structure is also complex enough to avoid 

spillover effects across games, establishing a qualitative parallelism between predicted 

and observed choice behavior. 

Another important result of my analysis is that non-standard equilibrium models are 

by far the best predictors of empirical data. I conjecture that this is a consequence of 

the fact that in my experiments spillover effects are negligible. As a confirmation of 

this, models of equilibrium give good predictions of behavior in Type A games in both 

Treatment 1 and 2: this would not be possible if choice behavior were conditioned by 

the simultaneous play of another game. 

If we ask ourselves what do subject learn, then the answer is not unique and 

straightforward. Indeed, if non-standard equilibrium models and the PB model provide 

the best approximations of observed behavior, it is also true that empirical choice 

frequencies do not converge in all cases to the predictions of one of these concepts, 

thus without giving support to this or that model. 

These results leave room for further research. 

First of all, further investigations could focus on the effects of some factors on 

learning spillovers, e.g. different degrees or distributions of payoff perturbations and an 

increase in the number of different types of games in a sequence. My conjecture is that 

an increase in the magnitude of payoff perturbations and in the number of different 

kinds of games in a sequence would lead subjects to confuse games toward an 

“average” play. However, this conjecture itself and the extent to which it is true have 

not yet been investigated experimentally. Further research could also include the design 

of multigame experiments in which the sequences of games are built starting from 
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more general patterns of strategic interaction other than two-person, 2x2 completely 

mixed games. 

In addition, other potential properties of the PB model are worthy to be 

investigated. Above mentioned results show that both humans and neural networks are 

able to categorize games in a sequence, obtained perturbing the payoffs of two games. 

This parallelism does not hold for any other dynamic model I consider: standard 

models of economic learning (including the recently proposed NFP and SFP), by 

design, cannot capture such features of human behavior, because there is no way they 

can model dependence of behavior from the perception of different game structures. 

However, it would be also interesting to see under what conditions learning spillovers 

arise, and test whether neural networks are able to produce equivalent dynamics to 

those observed under these conditions. It would also be interesting to test the accuracy 

of equilibrium models in predicting data from multigame experiments in which 

learning spillovers are present. 
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4.9  Appendix A. Supporting Materials and Tables 
Table A1. Predicted and observed choice frequencies for each game and block in 

Treatment 1. 
Type A Type B Choice 

Frequencies Block 
1 

Block 
2 

Block 
3 

Block 
4 

Block 
5 

Block 
6 

Block 
1 

Block 
2 

Block 
3 

Block 
4 

Block 
5 

Block 
6 

P(A1): 0.894 0.894 0.844 0.813 0.756 0.738 0.156 0.319 0.413 0.394 0.419 0.381 
Empirical 

P(A2): 0.531 0.400 0.263 0.263 0.256 0.256 0.744 0.775 0.850 0.856 0.906 0.913 

P(A1): 0.900 0.900 0.900 0.900 0.900 0.900 0.700 0.700 0.700 0.700 0.700 0.700 
Nash 

P(A2): 0.100 0.100 0.100 0.100 0.100 0.100 0.900 0.900 0.900 0.900 0.900 0.900 

P(A1): 0.686 0.719 0.604 0.633 0.642 0.677 0.646 0.661 0.716 0.732 0.765 0.769 
NFP 

P(A2): 0.661 0.690 0.629 0.671 0.596 0.610 0.664 0.603 0.617 0.691 0.580 0.658 

P(A1): 0.596 0.561 0.763 0.688 0.715 0.798 0.660 0.566 0.763 0.751 0.709 0.802 
NRL 

P(A2): 0.710 0.740 0.750 0.750 0.750 0.774 0.735 0.740 0.750 0.750 0.750 0.780 

P(A1): 0.775 0.964 0.973 0.959 0.949 0.949 0.491 0.353 0.262 0.283 0.157 0.255 
PB0 

P(A2): 0.772 0.676 0.475 0.377 0.355 0.332 0.712 0.796 0.849 0.863 0.927 0.873 

P(A1): 0.730 0.916 0.865 0.868 0.879 0.900 0.451 0.313 0.326 0.338 0.306 0.317 
PB1 

P(A2): 0.701 0.640 0.477 0.611 0.588 0.554 0.669 0.769 0.792 0.794 0.847 0.784 

P(A1): 0.494 0.507 0.516 0.495 0.503 0.497 0.511 0.502 0.493 0.502 0.497 0.500 
REL 

P(A2): 0.515 0.490 0.492 0.510 0.504 0.507 0.498 0.502 0.503 0.485 0.497 0.498 

P(A1): 0.588 0.515 0.776 0.700 0.701 0.781 0.667 0.580 0.778 0.767 0.691 0.783 
RL 

P(A2): 0.731 0.756 0.758 0.758 0.758 0.762 0.755 0.756 0.758 0.758 0.758 0.763 

P(A1): 0.724 0.710 0.520 0.601 0.675 0.686 0.667 0.642 0.779 0.798 0.738 0.774 
SFP 

P(A2): 0.690 0.696 0.690 0.721 0.591 0.630 0.635 0.589 0.522 0.641 0.579 0.670 

P(A1): 0.582 0.593 0.611 0.617 0.628 0.640 0.617 0.594 0.612 0.617 0.629 0.640 
stEWA 

P(A2): 0.728 0.766 0.768 0.768 0.768 0.768 0.757 0.766 0.768 0.768 0.768 0.768 

P(A1): 0.925 0.925 0.925 0.925 0.925 0.925 0.386 0.386 0.386 0.386 0.386 0.386 
IBE 

P(A2): 0.421 0.421 0.421 0.421 0.421 0.421 0.873 0.873 0.873 0.873 0.873 0.873 

P(A1): 0.900 0.900 0.900 0.900 0.900 0.900 0.337 0.337 0.337 0.337 0.337 0.337 
NRA 

P(A2): 0.500 0.500 0.500 0.500 0.500 0.500 0.821 0.821 0.821 0.821 0.821 0.821 

P(A1): 0.929 0.929 0.929 0.929 0.929 0.929 0.490 0.490 0.490 0.490 0.490 0.490 Payoff-
sampling P(A2): 0.357 0.357 0.357 0.357 0.357 0.357 0.898 0.898 0.898 0.898 0.898 0.898 

P(A1): 0.926 0.926 0.926 0.926 0.926 0.926 0.392 0.392 0.392 0.392 0.392 0.392 
pNRA 

P(A2): 0.380 0.380 0.380 0.380 0.380 0.380 0.870 0.870 0.870 0.870 0.870 0.870 

P(A1): 0.943 0.943 0.943 0.943 0.943 0.943 0.420 0.420 0.420 0.420 0.420 0.420 7-
Sampling P(A2): 0.336 0.336 0.336 0.336 0.336 0.336 0.883 0.883 0.883 0.883 0.883 0.883 
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Table A2. Predicted and observed choice frequencies for each game and block in 

Treatment 2. 
Type A Type C Choice 

Frequencies Block 
1 

Block 
2 

Block 
3 

Block 
4 

Block 
5 

Block 
6 

Block 
1 

Block 
2 

Block 
3 

Block 
4 

Block 
5 

Block 
6 

P(A1): 0.881 0.875 0.856 0.919 0.875 0.856 0.419 0.600 0.600 0.675 0.556 0.625 
Empirical 

P(A2): 0.506 0.425 0.438 0.431 0.325 0.419 0.775 0.750 0.819 0.700 0.625 0.600 

P(A1): 0.900 0.900 0.900 0.900 0.900 0.900 0.600 0.600 0.600 0.600 0.600 0.600 
Nash 

P(A2): 0.100 0.100 0.100 0.100 0.100 0.100 0.600 0.600 0.600 0.600 0.600 0.600 

P(A1): 0.746 0.728 0.700 0.796 0.727 0.721 0.743 0.817 0.767 0.840 0.671 0.812 
NFP 

P(A2): 0.527 0.544 0.502 0.528 0.588 0.477 0.543 0.435 0.438 0.493 0.501 0.418 

P(A1): 0.609 0.751 0.883 0.708 0.864 0.977 0.756 0.673 0.867 0.764 0.879 0.975 
NRL 

P(A2): 0.590 0.707 0.355 0.468 0.572 0.201 0.584 0.699 0.439 0.529 0.633 0.218 

P(A1): 0.754 0.849 0.887 0.877 0.946 0.929 0.779 0.728 0.562 0.496 0.534 0.457 
PB0 

P(A2): 0.573 0.550 0.554 0.509 0.613 0.697 0.538 0.451 0.521 0.556 0.566 0.569 

P(A1): 0.693 0.784 0.812 0.826 0.887 0.864 0.713 0.688 0.597 0.599 0.616 0.509 
PB1 

P(A2): 0.596 0.624 0.580 0.552 0.629 0.719 0.569 0.515 0.540 0.596 0.556 0.556 

P(A1): 0.506 0.496 0.502 0.490 0.497 0.497 0.499 0.494 0.508 0.494 0.492 0.487 
REL 

P(A2): 0.503 0.498 0.504 0.496 0.507 0.501 0.491 0.496 0.505 0.497 0.500 0.494 

P(A1): 0.569 0.781 0.882 0.714 0.879 0.977 0.727 0.649 0.875 0.780 0.896 0.977 
RL 

P(A2): 0.548 0.764 0.308 0.492 0.549 0.154 0.519 0.742 0.420 0.556 0.619 0.165 

P(A1): 0.736 0.752 0.650 0.808 0.731 0.748 0.758 0.816 0.779 0.846 0.665 0.781 
SFP 

P(A2): 0.521 0.538 0.465 0.529 0.510 0.493 0.523 0.415 0.473 0.416 0.575 0.429 

P(A1): 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 
stEWA 

P(A2): 0.663 0.687 0.688 0.688 0.688 0.688 0.666 0.687 0.688 0.688 0.688 0.688 

P(A1): 0.925 0.925 0.925 0.925 0.925 0.925 0.536 0.536 0.536 0.536 0.536 0.536 
IBE 

P(A2): 0.421 0.421 0.421 0.421 0.421 0.421 0.634 0.634 0.634 0.634 0.634 0.634 

P(A1): 0.900 0.900 0.900 0.900 0.900 0.900 0.500 0.500 0.500 0.500 0.500 0.500 
NRA 

P(A2): 0.500 0.500 0.500 0.500 0.500 0.500 0.600 0.600 0.600 0.600 0.600 0.600 

P(A1): 0.929 0.929 0.929 0.929 0.929 0.929 0.554 0.554 0.554 0.554 0.554 0.554 Payoff-
sampling P(A2): 0.357 0.357 0.357 0.357 0.357 0.357 0.618 0.618 0.618 0.618 0.618 0.618 

P(A1): 0.926 0.926 0.926 0.926 0.926 0.926 0.523 0.523 0.523 0.523 0.523 0.523 
pNRA 

P(A2): 0.380 0.380 0.380 0.380 0.380 0.380 0.615 0.615 0.615 0.615 0.615 0.615 

P(A1): 0.943 0.943 0.943 0.943 0.943 0.943 0.561 0.561 0.561 0.561 0.561 0.561 7-
Sampling P(A2): 0.336 0.336 0.336 0.336 0.336 0.336 0.662 0.662 0.662 0.662 0.662 0.662 
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4.10 Appendix B. Experimental Instructions 
 

INSTRUCTIONS 
(Translated from Italian) 
You are participating to an experiment on interactive decision-making funded by the 
Italian Ministry of University and Research (MIUR). This experiment is not aimed at 
evaluating you neither academically nor personally. We have a policy of strict 
anonymity and we will never correlate data in such a way that it would allow us or 
others to identify your responses. 
You will be paid on the basis of your performance, privately and in cash, according to 
the rules described below. 
 
During the experiment, you will not be allowed to communicate with the other 
participants, neither verbally nor in any other way. If you have any problems or 
questions, raise your hand and a member of the staff will immediately contact you. 
 
The experiment will consist of 120 round, and in each round you will face an 
interactive decision task. Specifically, in each round you will be randomly matched 
with another participant and your payoff will depend on both your decision and that of 
the other participant. The structure of each decision task will be represented by a payoff 
matrix, as shown in the following figure: 
 

The Other Player 
(Column Player) 

 

Action 1 Action 2 

Action 1 (6,4) (4,7) 
YOU 

(Row Player) 
Action 2 (3,4) (5,6) 

 
You have been assigned the role of “row player”: therefore, the other player will 
always play the role of “column player”. 
For each player, two actions are available (labeled “action 1” and “action 2”). For every 
possible combination of actions by row and column players, there corresponds a cell in 
the payoff matrix. In every cell there are two numbers between parentheses: the first 
number corresponds to YOUR payoff (in experimental currency units) and the second 
corresponds to the payoff of the other player (again expressed in experimental currency 
units). 
 
As an example, referring to the matrix reported below, if YOU choose to play “action 
1” and the other player chooses to play “action 2”, then the payoffs will be 4 for YOU 
(row player) and 7 for the other player (column player). 
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The Other Player 
(Column Player) 

 

Action 1 Action 2 

Action 1 (6,4) (4,7) 
YOU 

(Row Player) 
Action 2 (3,4) (5,6) 

 
Please, remember that the experiment will consist of 120 rounds. In each round, you 
will be shown a sequence of two screenshots. 
 
The first screenshot will show you the current payoff matrix and you will be invited to 
make a decision. In order to make a decision, you must type either “1” or “2” in the box 
labeled “your decision”, and then click on the button “confirm”. Once you have clicked 
the confirmation button, you cannot change your decision. You will have a maximum 
of 30 seconds to choose: after these 30 seconds a blinking red message will appear on 
the right-up corner of the screen and spur you on to take a decision. Delaying your 
decision will cause the other participants to wait for you. 
 
Once all players have made their decision, the second screenshot will appear on your 
monitor. In this second screenshot there will be reported the action you chose, the 
action chosen by the other player, your respective payoffs, and the payoff matrix you 
saw in the first screenshot. 
The second screenshot will be visible on your monitor for 10 seconds and then another 
round will start. 
 
This process will be repeated for 120 times. After all rounds have been played, the 
experiment will be over and the procedure of payment will start. In order to determine 
your payment, 12 integers between 1 and 120 will be randomly drawn without 
replacement. In this way, 12 out of the 120 rounds will be randomly selected and you 
will be paid on the basis of their outcome. One experimental currency unit is equivalent 
to 10 eurocents (10 experimental units = 1 euro). Moreover, independently from your 
performance, you will be paid an additional show-up fee of 5 euros. 
 
Before the beginning of the experiment, you will be asked to fill a questionnaire to 
verify whether the instructions have been understood. Then the experiment will start. 
At the end of the experiment, you will be asked to fill a questionnaire for your 
payment. 
 
Thank you for your kind cooperation! 
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CHAPTER 5 

5. OVERALL CONCLUSIONS AND FURTHER RESEARCH 
The Chapters 2 and 3 of my thesis are devoted to the introduction of a new model of 

learning (the Perceptron-Based model) and of a new model of equilibrium for normal 

form games (Net Reward Attractions Equilibrium), respectively. I investigate the 

formal properties of these two models, test their predictive power on data from 

experiments on two-person, 2x2 completely mixed games, and compare the accuracy of 

their predictions with those of other stationary and dynamic models representing 

cutting-edge research in the field of interactive choice behavior modeling. 

In the third part of my thesis, I address issues of generalization and conditional 

behavior in repeated strategic interactions, using both experimental and computational 

methodologies. Of all parts of my thesis, the last one is that that most deserves further 

investigation. The reason for that is twofold. First, behavioral and experimental 

economics literature has paid, up to now, little attention to issues of generalization and 

conditional behavior in games, in spite of their pervasiveness in everyday life situations 

and their economic relevance. As a consequence, there is no established methodology 

to empirically investigate these topics. Second, due to the small number of 

combinations of strategic situations I study experimentally and to their specific nature, 

the fourth chapter of my thesis has a rather explorative nature, and a systematic 

investigation of how human beings generalize and apply their acquired strategic skills 

to new strategic situations is on the top list of my future research agenda. 

All three parts of my thesis share the same methodological approach of model 

comparison based on new-game prediction tasks, opposed to the approach focused on 

within-game predictions (see Introduction and Erev and Haruvy, 2005). The 

fundamental assumption characterizing the former approach is the use of general 

parameter values to describe choice behavior over different conditions (games), 

therefore not allowing for individual or role-related agents’ heterogeneity. 

The detailed conclusions can be grouped into three distinct sections, one for each 

part of my thesis, without compromising the unitarity of this work. A section on some 

of the possible further steps of my research concludes. 
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5.1  Part One (Chapter 2) 
The first important result of my thesis is that regret-based models are always more 

accurate predictors of empirical data than other models of interactive choice behavior I 

consider, thus showing that regret for foregone payoffs must play a central role in 

shaping human choice behavior. The important role of regret in repeated decision tasks 

has been confirmed also by recent research in the field of neuroscience. 

However, the principal aim of the second chapter of my thesis is that of testing the 

viability of the PB model as predictor of empirical data. As a result, the PB model turns 

out to be the best predictor of observed data with respect to all other models of learning 

I consider in my analysis, with the exception of a model (Normalized Fictitious Play 

proposed by Ert and Erev, 2007) similarly based on regret. 

The third important result is the poor performance of reinforcement based models: 

in some cases they provide less accurate predictions than those of the model of random 

choice behavior. This result is in contradiction with some recent contributions in the 

learning literature (Erev and Roth, 1998; Sarin and Vahid, 2001; Erev et al., 2007) and 

the motivations might be of two different natures. First, testing models on Selten and 

Chmura’s (2008) games seems to particularly penalize reinforcement based models. In 

particular, the last six games, even though completely mixed, are not constant-sum and, 

for that reason, might have provided some incentive for cooperative and reciprocating 

behaviors. Reinforcement learning models do not take into account these cooperative 

features of human behavior, even indirectly, and are not able to predict behavior in 

such richer interactive situations. Another reason for the failure of reinforcement 

models might be that testing models on a large dataset would require the exploration of 

broader regions of the parameter spaces than those suggested by the authors of the 

models in previous works, where smaller datasets were considered. 

In this chapter I further analyze the predictive power of models fed with game 

payoffs rescaled according to Kahnemann and Tversky’s (1979 and 1992) prospect 

theory. Results show two facts as we pass from actual to rescaled payoffs: first, the 

ranking of the models remains unaltered; second, the increase in accuracy is significant 

for regret-based models (NFP, SFP, and PB) and marginal for all the others (stEWA 

and reinforcement learning models). 

Unlike other models of learning, the free parameter PB0 model allows for 

individual and role-related agents’ heterogeneity, as simulations have shown that 
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connection weights (which directly determine agents’ choice behavior) are different for 

each artificial agent, and that connection weights associated to row players and column 

players are, on average, different. 

 

5.2  Part Two (Chapter 3) 
In Chapter 3, I propose a new behavioral equilibrium concept I call Net Reward 

Attractions (NRA) equilibrium, and compare its predictive accuracy with that of other 

five equilibrium concepts and eight models of learning, among the most popular in the 

literature on interactive decision making modeling. I provide also a parameterized 

version of NRA I call Parametric NRA (pNRA). It is obtained introducing a parameter 

€ 

λ > 0 that tunes players’ sensitivity to net rewards. According to NRA, it is assumed 

that, in equilibrium, agents do not maximize their expected utility function, but that, for 

a player, the propensity of choosing an action is proportional to its corresponding 

expected net reward – net reward being defined as the difference between the actual 

payoff and the minimum obtainable one, given other players’ moves. 

For the comparison, I use here a dataset of experiments on 26 different games, 

smaller than that I use in the second chapter (which counts 35 games). Indeed, I 

consider here only datasets for which experimenters made available data for each 

independent observation (either at the individual or group level, depending on whether 

fix-pairing or random-matching protocol was used). This allows me to gather a large 

number of independent conditions on which to test each model and gives the Mann-

Whitney-Wilcoxon test more chances to compare models more precisely. 

The concept of net reward, as I use it, is very similar to Loomes and Sugden’s 

(1982) concept of rejoicing i.e., a measure of the additional pleasure associated to the 

awareness of having chosen the best action. In this vein, the approach based on net 

rewards, which I adopt to model choice behavior in the long run, is complementary, 

although not equivalent, to that based on regret. In Loomes and Sugden’s (1982) regret 

theory, these two complementary aspects are fused together in the Rejoice/Regret 

function (see the Introduction), and I show in Chapters 2 and 3 of my thesis that these 

two components can be separately used to successfully design models of choice 

behavior. 

I tested all models on three prediction tasks, measuring their accuracy in predicting 

observed choice behavior averaged over the first 50 trials, the last 50 trials, and all 
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trials. In each prediction task, we can define a set of best performing models i.e., 

models whose performance is statistically equivalent to that of the model with the 

smallest Prediction score. 

The first important result of my analysis is that in all three prediction tasks, pNRA 

is in the set of the most accurate models in predicting choice behavior. NRA is 

outperformed in predicting behavior in the long run by pNRA, showing that the 

introduction of a parameter tuning sensitivity to net rewards leads to an increase in 

accuracy. NRA and pNRA are then very accurate predictors of empirical data, 

performing always significantly better than Nash equilibrium, stEWA, and 

reinforcement-based models.  

In the three prediction tasks, the model that provides the smallest Prediction score is 

not always the same: NFP in the short run, IBE in the long run, and SFP in all trials. 

These results not only confirm the robustness and reliability of regret-based learning 

models (in particular those of SFP and NFP), but also show that some stationary 

models are very good predictors of behavior in the early periods of play as well as in 

the long run. 

If it is clear from the results that on average regret based models outperform 

reinforcement-based ones (confirming the results reported in the second chapter of my 

thesis), the analysis concerning equilibrium models is less straightforward, and the 

question of why models based on very different assumptions provide equivalently 

accurate predictions remains unanswered (as also pointed out in Selten and Chmura, 

2008). What can be said is that behavioral stationary concepts (IBE and NRA) are 

never outperformed by QRE, Action-sampling, and Payoff-sampling (i.e., best-

response models), although in some cases the two classes of solution concepts are 

equivalent in predicting data. For this reason, I think that it would be important to 

include in the set of criteria for model selection the plausibility of the assumptions on 

which models are based, at least as a tie breaking rule, since the causal relationship 

between assumptions and model accuracy is, in this context, of particular interest 

(Burnham and Anderson, 2003). We do not have to forget that best-response models 

are to be interpreted as “as if” models: they do not aim at replicating the mechanisms at 

the basis of the decision-making process, but merely its effects. In other words, from 

this point of view, what matters is whether or not models are able to predict data, as if 

agents would act according to them. Obviously, the fact that none of us is able to think 

rationally (i.e., as prescribed by standard theory of choice) and act accordingly is not 
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new, and any argument against standard theory based on this objection would be rather 

poor. The point here is that if we have to choose between two models which perform 

almost equivalently, why should not we privilege the use of that one that embeds 

principles about the real mechanisms of choice behavior? This approach I suggest 

would be much more informative, as it would allow us to infer the real bases of choice 

behavior. Of course, the judgment about plausibility of assumptions must be cautiously 

done because there are no principles that can guide us in this kind of task, and caution 

is primarily in order in those cases in which we are interested to judge whether certain 

assumptions are more plausible than others. 

The NRA and pNRA models are analytically tractable, straightforwardly 

generalizable to n-person games, and based on assumptions validated by recent 

research on neural mechanism at the basis of human choice behavior. These features 

make the NRA and pNRA models particularly appealing. 

My analysis confirms the poor predictive power of Nash equilibrium, as reported in 

many other contributions. Compared to the most accurate model, standard theory 

provides predictions that are worse of the 106% in the first 50 trials, of the 64% in the 

last 50 trials, and of the 99% over all periods. 

In the long run, reinforcement models provide significantly less accurate 

predictions than does Nash equilibrium (with the exception of RL in average prediction 

task). I also find confirmation of the result shown in Chapter 2, according to which 

regret-based learning models are better than reinforcement-based ones; indeed, NFP, 

SFP and PB0 always perform significantly better than stEWA, NRL, REL, and RL. 

Among models of learning, NFP and SFP are the best predictors: their predictive 

accuracy is statistically equivalent to that of PB0 and PB1 only in the short run, and 

predict always significantly better than stEWA and reinforcement models. It is worth 

noting that out of the eight models of equilibrium I consider, only four (NFP, SFP, 

PB0, and PB1) perform always significantly better than Nash equilibrium, whereas all 

equilibrium models give more accurate predictions than does standard theory. 

If compared to learning models, stationary concepts are, in general, less complex 

(statistically, analytically, and computationally). Nonetheless, with the exception of 

QRE, their predictions of short run behavior are as accurate as those of the best 

performing learning model, which strongly favors the use of equilibrium models, 

according to the Occam’s razor argument. 
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5.3  Part Three (Chapter 4) 
An important source of advantage for the PB model comes from the nature of the 

learning tasks that can be modeled. Most human interactive learning happens in 

contexts where tasks do not repeat themselves identically over time as in the 

experiments considered here. Generalizing from examples and the learning of 

conditional behavior (different responses to different inputs) are natural features of 

human behavior. Standard models of economic learning cannot capture, by design, 

such features because there is no way they can model dependence of behavior from the 

perception of different game structures. On the contrary, even simple neural networks, 

as those investigated here, can easily model generalization and conditional behavior, 

thus making them a natural tool for describing and predicting learning dynamics in the 

realistic context of mutating strategic settings. 

I designed and ran multigame experiments in order to assess to what extent past 

experience affects current choice behavior and to test the capability of some of the most 

popular dynamic models of choice behavior in providing different responses to 

different strategic situations. 

The first important point is that empirical results show that in these simple 

experimental settings, players are able to recognize the structures of the two games in 

each sequence and play accordingly to this classification. This is particularly interesting 

because even though the two original games, from which each sequence was obtained, 

differ only for the predicted probabilities of play, subjects are able to recognize them, 

but nonetheless do not use Nash equilibrium to form their strategies (also in the long 

run). 

From a computational point of view, simulation results show that traditional 

“attraction and stochastic choice rule” learning models are not able to discriminate 

between the different strategic situations, providing a poor “average” behavior for both 

situations, and are always outperformed by Nash equilibrium. On the contrary, the PB 

model is able to replicate subjects’ conditional behavior, due to its direct dependence of 

response on game payoffs and performs better than standard theory of equilibrium. In 

addition, not only the PB model is able to replicate subjects’ ability to recognize 

different strategic situations and act accordingly, but its structure is also complex 

enough to avoid spillover effects across games, establishing a qualitative parallelism 

between predicted and observed choice behavior. 
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Another important result of my analysis is that non-standard equilibrium models are 

by far the best predictors of empirical data. I conjecture that this is a consequence of 

the fact that in my experiments learning spillover effects are negligible. As a 

confirmation of this, models of equilibrium give good predictions of behavior in Type 

A games that are played simultaneously with two other different kinds of games in two 

separate treatments: this would not be possible if choice behavior were conditioned by 

the simultaneous play of the other games. 

If we ask ourselves what do subject learn, then the answer is not unique and 

straightforward. Indeed, if non-standard equilibrium and PB models provide the best 

approximations of observed behavior, it is also true that empirical choice frequencies 

do not converge in all cases to the predictions of one of these concepts, thus not 

providing unambiguous support for this or that theory. 

 

5.4  Further Research 
A further test of the PB and NRA models, and in general of all models of interactive 

choice behavior proposed until now, on data from experiments on a broader class of 

strategic interactions (e.g., games with more than two players, with more than two 

actions available to players, and not necessarily constant sum) is in order. As stated in 

Selten and Chmura (2008), two-person 2x2 completely mixed games constitute a small 

class of games where testing models of interactive choice behavior and it would be 

important to gather data from more general patterns of strategic interaction. 

The PB and the NRA models were designed to capture behavior in strategic 

situations of conflict (constant sum games) in which players’ interests are opposed i.e., 

in which players cannot help their opponents without being damaged. Although this 

pattern of empirical investigation is necessary if we want to disentangle the effects of 

adaptation and reciprocation, in many economically interesting situations reciprocating 

and cooperative behaviors do matter (also recent neuroscientific research supports this 

claim, see Fliessbach et al., 2007); thus, it would be interesting to generalize these 

models by, for example, introducing a social preference or inequality aversion 

component. 

In addition, potential properties of the PB model are worthy to be investigated. 

Above mentioned results show that both humans and neural networks are able to 

categorize games in a sequence, obtained perturbing the payoffs of two games. This 
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parallelism does not hold for any other dynamic models that I consider: standard 

models of economic learning (including the recently proposed NFP and SFP), by 

design, cannot capture such features of human behavior, because there is no way they 

can model dependence of behavior from the perception of different game structures. 

However, it would be also interesting to see under what conditions learning spillovers 

arise, and test whether neural networks are able to produce dynamics of behavior 

equivalent to those observed under these conditions. It would also be interesting to test 

the accuracy of equilibrium models in predicting data from multigame experiments in 

presence of learning spillovers. 

Issue of generalization deserves further investigation also from an experimental 

point of view. First of all, further research could focus on the effects of some factors on 

learning spillovers, e.g. different degrees and distributions of payoff perturbations and 

an increase in the number of different types of games in a sequence. My conjecture is 

that an increase in the magnitude of payoff perturbations and in the number of different 

kinds of games used to build a sequence would lead subjects to confuse games toward 

an “average” play. However, this conjecture itself and the extent to which it is true 

have not yet been investigated experimentally. Further research could also include the 

design of multigame experiments in which the sequences of games are built starting 

from patterns of strategic interaction more general than two-person, 2x2 completely 

mixed games. 



 167 

6. BIBLIOGRAPHY 
Akaike, Hirotogu. 1973. “Information Theory and an Extension of the Maximum 

Likelihood Principle.” Pages 267-281 in B. N. Petrov, and F. Csaki, (eds.) Second 

International Symposium on Information Theory. Akademiai Kiado, Budapest. 

Arthur, Brian. 1994. “On Designing Economic Agents that Behave Like Human 

Agents.” Journal of Evolutionary Economics, 3 (1), 1-22. 

Atkinson, Richard C., and Patrick Suppes. 1958. “An Analysis of Two-Person Game 

Situations in Terms of Statistical Learning Theory.” Journal of Experimental 

Psychology, 55(4), 369-78. 

Aumann, Robert J. 1974. “Subjectivity and Correlation in Randomized Strategies.” 

Journal of Mathematical Economics, 1 (1), 67–96. 

Avrahami, Judith, Werner Güth, and Yaakov Kareev. 2005. “Games of Competition in 

a Stochastic Environment.” Theory and Decision, 59 (4), 225-294. 

Bar-Hillel, Maya, and Efrat Neter. 1996. “Why Are People Reluctant to Exchange 

Lottery Tickets?” Journal of Personality and Social Psychology, 70 (1), 17-27. 

Baum, Eric B., and Frank Wilczek. 1988. “Supervised Learning of Probability 

Distributions by Neural Networks.” In Neural Information Processing Systems, ed. 

D. Z. Anderson, 52-61. New York: American Institute of Pshysics. 

Bell, David E. 1982. “Regret in Decision Making Under Uncertainty.” Operations 

Research, 30 (5), 961-981. 

Binmore, Ken, Joe Swierzbinski, and Chris Proulx. 2001. “Does Minimax Work? An 

Experimental Study.” Economic Journal, 111 (473), 445-464. 

Bishop, Christopher M. 1995. “Neural Networks for Pattern Recognition.” Oxford 

University Press, Oxford, NY. 

Blackburn, James M. 1936. “Acquisition of Skill: An Analysis of Learning Curves.” 

IHRB Report No. 73. 

Brandenburger, Adam. 1992. “Knowledge and Equilibrium in Games.” Journal of 

Economic Perspectives, 6 (4), 83-101. 

Browne, Michael W. 2000. “Cross-Validation Methods.” Journal of Mathematical 

Psychology, 44 (1), 108-132. 

Burnham, Kenneth P., and David Anderson. 2003. “Model Selection and Multimodel 

Inference. A Practical Information-Theoretic Approach.” Springer-Verlag, New 

York, NY. 



 168 

Busemeyer, Jerome R., and Yin-Min Wang. 2000. “Model Comparisons and Model 

Selections Based on Generalization Criterion Methodology.” Journal of 

Mathematical Psychology, 44 (1), 171-189. 

Busemeyer, Jerome R., and Julie C. Stout. 2002. “A Contribution of Cognitive 

Decision Models to Clinical Assessments: Decomposing Performance on the 

Bechara Gambling Task.” Psychological Assessment, 14 (3), 253-262. 

Camerer, Colin F. 2003. “Behavioral Game Theory: Experiments in Strategic 

Interaction.” Princeton University Press, Princeton, NJ. 

Camerer, Colin F. 2003. “Psychology and Economics. Strategizing in the brain.” 

Science, 300 (5626), 1673-1675. 

Camerer, Colin F., and Teck-Hua Ho. 1999. “Experience-Weighted Attraction 

Learning in Normal Form Games.” Econometrica, 67 (4), 837-874. 

Camille, Nathalie, Giorgio Coricelli, Jerome Sallet, Pascale Pradat-Diehl, Jean-René 

Duhamel, and Angela Sirigu. 2004. “The Involvement of Orbitofrontal Cortex in the 

Experience of Regret.” Science, 304 (5674), 1167-1170. 

Carroll, Douglas J., and Myron Wish .1974. “Models and Methods for Three-Way 

Multidimensional Scaling.” in D.H. Krantz, R.C. Atkinson, R.D. Luce & P. Suppes 

(Eds.), Contemporary developments in mathematical psychology: Vol. 2 

Measurement, psychophysics, and neural information processing, 283-319, New 

York, Academic Press. 

Cheung, Yin-Wong, and Daniel Friedman. 1997. “Individual Learning in Normal Form 

Games: Some Laboratory Results.” Games and Economic Behavior, 19 (1), 46-76. 

Cheung, Yin-Wong, and Daniel Friedman. 1998. “Comparison of Learning and 

Replicator Dynamics Using Experimental Data.” Journal of Economic Behavior and 

Organization, 35 (3), 263-280. 

Chiappori, Pierre A., Steven D. Levitt, and Timothy Groseclose. 2002. “Testing Mixed 

Strategy Equilibrium When Players Are Heterogeneous: The Case of Penalty 

Kicks.” American Economic Review, 92 (4), 1138-1151. 

Connolly, Terry, and Marcel Zeelenberg. 2002. “Regret in Decision Making.” Current 

Directions in Psychological Science, 11 (6), 212-216. 

Coricelli, Giorgio, Hugo D. Critchley, Mateus Joffily, John P. O'Doherty, Angela 

Sirigu, and Raymond J. Dolan. 2005. “Regret and its Avoidance: a Neuroimaging 

Study of Choice Behavior.” Nature Neuroscience, 8, 1255-1262. 



 169 

Crawford, Vincent P. 1985. “Learning Behavior and Mixed-Strategy Nash Equilibria.” 

Journal of Economic Behavior & Organization, 6 (1), 69-78. 

Daw, Nathaniel D., John P. O'Doherty, Peter Dayan, Ben Seymour, and Raymond J. 

Dolan. 2006. “Cortical Substrates for Exploratory Decisions in Humans.” Nature, 

441, 876-879. 

Denker, John S. 1986. “Neural Network Refinements and Extensions.” In Neural 

Networks for Computing , ed. John S. Denker, 121-128. American Institute of 

Physics Inc., Woodbury, NY. 

Devetag, Giovanna. 2005. “Precedent Transfer in Coordination Games: An 

Experiment.” Economic Letters, 89 (2), 227-232. 

Egidi, Massimo, and Alessandro Narduzzo. 1997. “The Emergence of Path-Dependent 

Behaviors in Cooperative Contexts.” International Journal of Industrial 

Organization, 15 (6), 677-709. 

Erev, Ido, and Alvin E. Roth. 1998. “Predicting How People Play Games: 

Reinforcement Learning in Experimental Games with Unique, Mixed-Strategy 

Equilibria.” American Economic Review, 88 (4), 848-81. 

Erev, Ido, Yoella Bereby-Meyer, and Alvin E. Roth. 1999. “The Effect of Adding a 

Constant to All Payoffs: Experimental Investigation, and Implications for 

Reinforcement Learning Models.” Journal of Economic Behavior & Organization, 

39 (1), 111-128. 

Erev, Ido, and Ernan Haruvy. 2001. “On the Potential Uses and Current Limitations of 

Data Driven Learning Models.” Working paper. 

Erev, Ido, Alvin E. Roth, Robert L. Slonim, and Greg Barron. 2002. “Predictive Value 

and the Usefulness of Game Theoretic Models.” International Journal of 

Forecasting, 18 (3), 359-368. 

Erev, Ido, and Ernan Haruvy. 2005. “Generality, Repetition, and the Role of 

Descriptive Learning Models.” Journal of Mathematical Psychology, 49 (5), 357-

371. 

Erev, Ido, Alvin E. Roth, Robert L. Slonim, and Greg Barron. 2007. “Learning and 

Equilibrium as Useful Approximations: Accuracy of Prediction on Randomly 

Selected Constant Sum Games.” Journal of Economic Theory, 33 (1), 29-51. 

Ert, Eyal, and Ido Erev. 2007. “Replicated Alternatives and the Role of Confusion, 

Chasing, and Regret in Decisions from Experience.” Journal of Behavioral Decision 

Making, 20 (3), 305-322. 



 170 

Fehr, Ernst, and Klaus M. Schmidt. 1999. “A Theory of Fairness, Competition, and 

Cooperation.” The Quarterly Journal of Economics, 114 (3), 817-868. 

Fishburn, Peter C. 1982. “Non Transitive Measurable Utility.” Journal of 

Mathematical Psychology, 26 (1), 31-67.  

Fishburn, Peter C. 1983. “Transitive Measurable Utility.” Journal of Economic Theory, 

31 (2), 293-317. 

Fliessbach, K., B. Weber, P. Trautner, T. Dohmen, U. Sunde, C. E. Elger, and A. Falk. 

2007. “Social Comparison Affects Reward-Related Brain Activity in the Human 

Ventral Striatum.” Science, 318 (5854), 1305-1308. 

Friedman, Daniel. 1983. “Effective Scoring Rule for Probabilistic Forecasts.” 

Management Science, 29 (4), 447-454. 

Fudenberg, Drew, and David M. Kreps. 1993. “Learning Mixed Equilibria.” Games 

and Economic Behavior, 5 (3), 320-367. 

Gilboa, Itzhak, and David Schmeidler. 1995. “Case-Based Decision Theory.” Quarterly 

Journal of Economics, 110 (3), 605-639. 

Harsanyi, John C. 1973. “Games with Randomly Disturbed Payoffs: A New Rationale 

for Mixed-Strategy Equilibrium Points.” International Journal of Game Theory, 2 

(1), 1-23. 

Hart, Sergiu, and Andreu Mas-Collel. 2000. “A Simple Adaptive Procedure Leading to 

Correlated Equilibrium.” Econometrica, 68 (5), 1127-1150. 

Hart, Sergiu, and Andreu Mas-Collel. 2003. “Regret-Based Continuous-Time 

Dynamics.” Games and Economic Behavior, 45 (2), 375-394. 

Hart, Sergiu. 2005. “Adaptive Heuristics.” Econometrica, 73 (5), 1401-1430. 

Haruvy, Ernan, and Dale O. Stahl. 2000. “Robust Initial Conditions for Learning 

Dynamics.” Working paper, University of Texas at Austin. 

Hertz, John A., Anders S. Krogh, and Richard G. Palmer. 1991. “Introduction to the 

Theory of Neural Computation.” Addison-Wesley Publishing Company, Redwood 

City, CA. 

Hetts, John J., David S. Boninger, David A. Armor, Faith Gleicher, Ariel Nathanson. 

2000. “The Influence of Anticipated Counterfactual Regret on Behavior.” 

Psychology and Marketing, 17 (4), 345-368. 

Ho, Teck-Hua, Colin F. Camerer, and Juin-Kuan Chong. 2007. “Self-tuning 

Experience-Weighted Attraction Learning in Games.” Journal of Economic Theory, 

133 (1), 177-198. 



 171 

Holland, John H., Keith J. Holyoak, Richard E. Nisbett, and Paul R. Thagard. 1986. 

“Induction: Processes of Inference, Learning, and Discovery.” The MIT Press, 

Cambridge, MA. 

Hopfield, John J. 1982. “Neural Networks and Physical Systems with Emergent 

Collective Computational Abilities.” Proceedings of the National Academy of 

Sciences of the USA, 79 (8), 2554-2558. 

Hopfield, John J. 1987. “Learning Algorithms and Probability Distributions in Feed-

Forward and Feed-Back Networks.” Proceedings of the National Academy of 

Sciences of the USA, 84 (23), 8429-8433. 

Huck, Steffen, Philippe Jehiel, and Tom Rutter. 2007. “Learning Spillover and 

Analogy-Based Expectations: A Multi-Game Experiment.” Working Paper. 

Hutchinson, J. Wesley, and Gregory R. Lockhead. 1977. “Similarity as Distance: A 

Structural Principle for Semantic Memory.” Journal of Experimental Psychology: 

Human Learning and Memory, 3 (6), 660-678. 

Jehiel, Philippe. 2005. “Analogy-Based Expectations Equilibrium.” Journal of 

Economic Theory, 123 (2), 81-104. 

Kahneman, Daniel, and Amos Tversky. 1979. “Prospect Theory: An Analysis of 

Decision Under Risk.” Econometrica, 47 (2), 263-291. 

Kahnemann, Daniel, and Amos Tversky. 1982. “Judgment Under Uncertainty: 

Heuristics and Biases.” Cambridge University Press, Cambridge, NY. 

Kahneman, Daniel, and Dale T. Miller. 1986. “Norm Theory: Comparing Reality to its 

Alternatives.” Psychological Review, 93 (2), 136-153. 

Kruskal, Joseph B. 1964. “Nonmetric Multidimensional Scaling: a Numerical Method.” 

Psychometrika, 29 (2), 115-129. 

Kullback, Solomon. 1959. “Information Theory and Statistics.” John Wiley and Sons, 

New York, NY. 

Larrick Richard P., and Terry L. Boles. 1995. “Avoiding Regret in Decisions with 

Feedback: A Negotiation Example.” Organizational Behavior and Human Decision 

Processes, 63 (1), 87-97. 

Lee, Daeyeol. 2006. “Neuroeconomics: Best to Go with What You Know?” Nature, 

441, 822-823. 

Leland, Jonathan W. 2002. “Similarity, Uncertainty and Time – Tversky (1969) 

Revisited.” (under revision, Organizational Behavior and Human Decision 

Processes). 



 172 

LiCalzi, Marco. 1992. “Fictitious Play by Cases.” Games and Economic Behavior, 11 

(1), 64-89. 

Loomes, Graham, and Robert Sugden. 1982. “Regret Theory: An Alternative Theory of 

Rational Choice Under Uncertainty.” Economic Journal, 92 (368), 805-824. 

Loomes, Graham, and Robert Sugden. 1983. “Regret Theory and Measurable Utility.” 

Economics Letters, 12 (1), 19-21. 

Loomes, Graham, and Robert Sugden. 1987a. “Some Implications of a More General 

Form of Regret Theory.” Journal of Economic Theory, 41 (2), 270-287. 

Loomes, Graham, and Robert Sugden. 1987b. “Testing for Regret and Disappointment 

in Choice Under Uncertainty.” Economic Journal, 97 (388a), 118-129. 

Marchiori, Davide, and Massimo Warglien. 2008. “Predicting Human Behavior by 

Regret Driven Neural Networks.” Science, 319 (5866), 1111-1113. 

McCabe, Kevin A., Arijit Mukherji, and David E. Runkle. 2000. “An Experimental 

Study of Information and Mixed-Strategy Play in Three-Person Matching-Pennies 

Game.” Economic Theory, 15 (2), 421-462. 

McClelland, James L., David E. Rumelhart, and the PDP Research Group. 1986. 

“Parallel Distributed Processing. Explorations in the Microstructure of Cognition. 

Volume 2: Psychological and Biological Models.” The MIT Press, Cambridge, MA. 

McCulloch, Warren S., and Walter Pitts. 1943. “A Logical Calculus of the Ideas 

Immanent in Nervous Activity.” Bulletin of Mathematical Biophysics, 5, 115-133. 

McFadden, Daniel L. 1976. “Quantal Choice Analysis: A Survey.” Annals of 

Economics and Social Measurement, 5 (4), 363-390. 

McKelvey, Richard D., and Thomas R. Palfrey. 1995. “Quantal Response Equilibria 

for Normal Form Games.” Games and Economic Behavior, 10 (1), 6-38. 

Mellers, Barbara, Alan Schwartz, Katty Ho, and Ilana Ritov. 1997. “Decision Affect 

Theory: Emotional Reactions to the Outcomes of Risky Options.” Psychological 

Science, 8 (6), 423-429. 

Mellers, Barbara, Alan Schwartz, and Ilana Ritov. 1999. “Emotion-Based Choice.” 

Journal of Experimental Psychology: General, 128 (3), 332-345. 

Mervis, Carolyn B., and Eleanor H. Rosch. 1981. “Categorization of Natural Objects.” 

Annual Review of Psychology, 32, 89-115. 

Minsky, Marvin L., and Seymour Papert. 1969. “Perceptrons.” The MIT Press, 

Cambridge, MA. 

Mookherjee, Dilip, and Barry Sopher. 1994. “Learning Behavior in an Experimental 



 173 

Matching Pennies Game.” Games and Economic Behavior, 7 (1), 62-91. 

Mookherjee, Dilip, and Barry Sopher. 1997. “Learning and Decision Costs in 

Experimental Constant Sum Games.” Games and Economic Behavior, 19 (1), 97-

132. 

Mosier, Charles I. 1951. “The Need and Means of Cross Validation. I. Problems and 

Designs of Cross-Validation.” Educational and Psychological Measurement, 11, 5-

11. 

Nash, John F. 1950. “Equilibrium Points in n-Person Games.” Proceedings of the 

National Academy of Sciences, 36 (1), 48-49. 

Neugebauer, Tibor, and Reinhard Selten. 2006. “Individual Behavior of First-Price 

Auctions: The Importance of Information Feedback in Computerized Experimental 

Markets.” Games and Economic Behavior, 54 (1), 183-204. 

Neuringer, Allen. 1986. “Can People Behave ‘Randomly’? The Role of Feedback.” 

Journal of Experimental Psychology: General, 115 (1), 62-75. 

Nosofsky, Robert M. 1990. “Similarity Scaling and Cognitive Process Models.” 

Annual Review of Psychology, 43, 25-53. 

Ockenfels, Axel, and Reinhard Selten. 2005. “Impulse Balance Equilibrium and 

Feedback in First Price Auctions.” Games and Economic Behavior, 51 (1), 155-170. 

Osborne, Martin J., and Ariel Rubinstein. 1994. “A Course in Game Theory.” The Mit 

Press, Cambridge, MA. 

Osborne, Martin J., and Ariel Rubinstein. 1998. “Games with Procedurally Rational 

Players.” American Economic Review, 88 (4), 834–47. 

Palacios-Huerta, Ignacio. 2003. “Professionals Play Minimax.” Review of Economic 

Studies, 70 (2), 395-415. 

Palacios-Huerta, Ignacio, and Oscar Volij. 2006a. “Appendix to Experientia Docet: 

professionals Play minimax in Laboratory Experiments.” Working paper, Brown 

University. 

Palacios-Huerta, Ignacio, and Oscar Volij. 2006b. “Field Centipedes.” Working paper, 

Brown University. 

R Development Core Team. 2009. “R: A Language and Environment for Statistical 

Computing.” R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-

900051-07-0, URL http://www.R-project.org. 



 174 

Rankin, Frederick W., John B. Van Huyck, and Raymond C. Battalio. 2000. “Strategic 

Similarity and Emergent Conventions: Evidence from Similar Stag Hunt Games.” 

Games and Economic Bahavior, 32 (2), 315-337. 

Ripley, Brian D. 1996. “Pattern Recognition and Neural Networks.” Cambridge 

University Press, Cambridge, MA. 

Ripley, Brian D., and William N. Venables. 2002. “Modern Applied Statistics with S.” 

Springer-Verlag, New York, NY. 

Ritov, Ilana. 1996. “Probability of Regret: Anticipation of Uncertainty Resolution in 

Choice.” Organizational Behavior and Human Decision Processes, 66 (2), 228-236. 

Roese, Neal J. 1994. “The Functional Basis of Counterfactual Thinking.” Journal of 

Personality and Social psychology, 66 (5), 805-818.  

Roese, Neal J. 1997. “Counterfactual thinking.” Psychological Bulletin, 121 (1), 133-

148. 

Rosch, Eleanor H. 1973. “Natural Categories.” Cognitive Psychology, 4 (3), 328-350. 

Rosch, Eleanor H. 1975. “Cognitive Representations of Semantic Categories.” Journal 

of Experimental Psychology: General, 104 (3), 192-233. 

Rosch, Eleanor H., and Carolyn B. Mervis. 1975. “Family Resemblances: Studies in 

the Internal Structure of Categories”. Cognitive Psychology, 7 (4), 573-605. 

Rosch, Eleanor H., Carolyn B. Mervis, Wayne D. Gray, David M. Johnson, and Penny 

Boyes-Braem. 1976. “Basic Objects in Natural Categories.” Cognitive Psychology, 

8 (3), 382-439. 

Rosenblatt, Frank. 1958. “The Perceptron: A Probabilistic Model for Information 

Storage and Organization in the Brain.” Psychological Review, 65 (6), 386-408. 

Rosenblatt, Frank. 1962. “Principles of Neurodynamics: Perceptrons and the Theory of 

Brain Mechanisms.” Spartan Books, Washington, DC. 

Rosenthal, Robert W., Jason Shachat, and Mark Walker. 2003. “Hide and Seek in 

Arizona.” International Journal of Game Theory, 32 (2), 273-293. 

Roth, Alvin E., and Ido Erev. 1995. “Learning in Extensive-Form Games: 

Experimental Data and Simple Dynamic Models in the Intermediate Term.” Games 

and Economic Behavior, 8 (1), 164-212. 

Rubinstein, Ariel. 1998. “Modeling Bounded Rationality.” The MIT Press, Cambridge, 

MA. 

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986a. “Learning 

Representations by Back-Propagating Errors.” Nature, 323, 533-536. 



 175 

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986a. “Learning 

Internal Representations by Error Propagation.” In Parallel Distributed Processing. 

Explorations in the Microstructure of Cognition, vol. 1, 318-362. MIT Press, 

Cambridge, MA. 

Sarin, Rajiv, and Farshid Vahid. 2001. “Predicting How People Play Games: A Simple 

Dynamic Model of Choice.” Games and Economic Behavior, 34 (1), 104-122. 

Savage, Leonard J. 1951. “The Theory of Statistical Decision.” Journal of the 

American Statistical Association, 46 (253), 55-67. 

Savage, Leonard J. 1954. “The Foundations of Statistics.” John Wiley and Sons, New 

York, NY. 

Selten, Reinhard, and Rolf Stöcker. 1986. “End Behavior in Sequences of Finite 

Prisoner’s Dilemma Supergames: A Learning Theory Approach.” Journal of 

Economic Behavior and Organization, 7 (1), 47-70. 

Selten, Reinhard. 1998. “Axiomatic Characterization of the Quadratic Scoring Rule.” 

Experimental Economics, 1 (1), 43-62. 

Selten, Reinhard, and Joachim Buchta. 1999. “Experimental Sealed Bid First Price 

Auctions with Directly Observed Bid Functions.“ In: D. Budescu, I. Erev., and R. 

Zwick (eds.), Games and Human Behavior: Essays in the Honor of Amnon 

Rapoport. Lawrenz Associates Mahwah, NJ.  

Selten, Reinhard, Klaus Abbink, and Ricarda Cox. 2005. “Learning Direction Theory 

and the Winner’s Curse.” Experimental Economics, 8 (1), 5-20. 

Selten, Reinhard, and Thorsten Chmura. 2008. “Stationary Concepts for Experimental 

2x2-Games.” American Economic Review, 98 (3), 938-66. 

Seta, Catherine E., John J. Seta, Todd G. McElroy, and Jessica Hatz. 2008. “Regret: the 

Role of Consistency-Fit and Counterfactual Salience.” Social Cognition, 26 (6), 

700-719. 

Sgroi, Daniel, and Daniel J. Zizzo. 2002. “Strategy Learning in 3x3 Games by Neural 

Networks.” Working paper. 

Sgroi, Daniel. 2003. “Using Neural Network to Model Bounded Rationality in 

Interactive Decision-Making.” Greek Economic Review, 22, 113-132. 

Sgroi, Daniel, and Daniel J. Zizzo. 2007. “Neural Networks and Bounded Rationality.” 

Physica A, 375 (2), 717-725. 



 176 

Sgroi, Daniel, and Daniel J. Zizzo. 2009. “Learning to Play 3x3 Games: Neural 

Networks as Bounded-Rational Players.” Journal of Economic Behavior and 

Organization, 69 (1), 27-38. 

Shachat, Jason M. 2002. “Mixed Strategy Play and the Minimax Hypothesis.” Journal 

of Economic Theory, 104 (1), 189-226. 

Shepard, Roger N. 1958. “Stimulus and Response Generalization: Deduction of the 

Generalization Gradient From a Trace Model.” Psychological Review, 65 (4), 242-

256. 

Shepard, Roger N. 1962. “The Analysis of Proximities: Multidimensional Scaling with 

an Unknown Distance Function.” Psychometrika, 27 (2), 125-140. 

Shepard, Roger N. 1974. “Representation of Structure in Similarity Data: Problems and 

Prospects.” Psychometrika, 39 (4), 373-421. 

Stahl, Dale O. 1999. “A Horse Race Among Action Reinforcement Learning Models.” 

University of Texas working paper. 

Stahl, Dale O., and John B. Van Huyck. 2002. “Learning Conditional Behavior in 

Similar Stag Hunt Games.” Working Paper. 

Tang, Fang-Fang. 2001. “Anticipatory Learning in Two-Person Games: Some 

Experimental Results.” Journal of Economic Behavior and Organization, 44 (2), 

221-232. 

Thorndike, Edward L. 1898. “Animal Intelligence: An Experimental Study of the 

Associative Processes in Animals.” Psychological Monographs, 2(8). 

Tobler, Philippe N., Christopher D. Fiorillo, and Wolfram Schultz. 2005. “Adaptive 

Coding of Reward Value by Dopamine Neurons.” Science, 307 (5715), 1642-1645. 

Tremblay, Leon, and Wolfram Schultz. 1999. “Relative Reward Preference in Primate 

Orbitofrontal Cortex.” Nature, 398, 704-708. 

Tversky, Amos. 1969. “Intransitivity of Preferences.” Psychological Review, 76 (1), 

31-48. 

Tversky, Amos. 1977. “Features of Similarity.” Psychological Review, 84 (4), 327-352. 

Tversky, Amos, and Itamar Gati. 1982. “Similarity, Separability, and the Triangle 

Inequality.” Psychological Review, 89 (2), 123-154. 

Tversky, Amos, and Daniel Kahneman. (1992). “Advances in Prospect Theory: 

Cumulative Representation of Uncertainty.” Journal of Risk and Uncertainty, 5 (4), 

297-323. 



 177 

Von Neumann, John, and Oskar Morgenstern. 1947. “Theory of Games and Economic 

Behavior.” Princeton University Press, Princeton, NJ. 

Walker, Mark, and John Wooders. 2001. “Minimax Play at Wimbledon.” American 

Economic Review, 91 (5), 1521-1538. 

Walker, Mark and John Wooders. “Mixed Strategy Equilibrium.” The New Palgrave 

Dictionary of Economics. Second Edition. Eds. Steven N. Durlauf and Lawrence E. 

Blume. Palgrave Macmillan, 2008. The New Palgrave Dictionary of Economics 

Online. Palgrave Macmillan. 05 January 2010. 

Yechiam, Eldad, and Jerome R. Busemeyer. 2005. “Comparison of Basic Assumptions 

Embedded in Learning Models for Experience-Based Decision Making.” 

Psychonomic Bulletin & Review, 12 (3), 387-402. 

Young, Peyton H. 2004. “Strategic Learning and its Limits.” Oxford University Press, 

Oxford, NY. 

Zeelenberg, Marcel, Jane Beattie, Joop van der Pligth, and Nanne K. de Vries. 1996. 

“Consequences of Regret Aversion: Effects of Expected Feedback on Risky 

Decision-Making.” Organizational Behavior and Human Decision Processes, 65 

(2), 148-158. 

Zeelenberg, Marcel, and Jane Beattie. 1997. “Consequences of Regret Aversion 2: 

Effects of Expected Feedback on Risky Decision-Making.” Organizational 

Behavior and Human Decision Processes, 72 (1), 63-78. 

Zeelenberg, Marcel, Wilco W. van Dijk, and Antony S. R. Manstead. 1998. 

“Reconsidering the Relation between Regret and Responsibility.” Organizational 

Behavior and Human Decision Processes, 74 (3), 254-272. 

Zeelenberg, Marcel, Wilco W. van Dijk, Joop van der Pligt, Antony S. R. Manstead, 

Pepijn van Empelen, and Dimitri Reinderman. 1998. “Emotional Reactions to the 

Outcomes of Decisions: The Role of Counterfactual Thought in the Experience of 

Regret and Disappointment.” Organizational Behavior and Human Decision 

Processes, 75 (2), 117-141. 

Zeelenberg, Marcel. 1999. “Anticipated Regret, Expected Feedback and Behavioral 

Decision Making.” Journal of Behavioral Decision Making, 12 (2), 93-106. 

 


