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Abstract 

Cancer is the second leading cause of death worldwide1,2. Tumor cells contain several 

mutations that can generate neoepitopes, targets of an effective anti-cancer T cell 

response3–9. Increasing evidence demonstrated that cancer vaccines targeting 

neoepitopes are effective and safe both in preclinical models10–13 and human 

patients14,15. Bacterial Outer Membrane Vesicles (OMVs) are naturally produced by all 

Gram-negative bacteria16,17. They contain several Microbe-Associated-Molecular 

Patterns (MAMPs)18,19, crucial for stimulating innate immunity and promoting adaptive 

immune responses20–22. The ability to engineer OMVs with cancer epitopes23,24 

together with their unique adjuvanticity and safety make them a particularly interesting 

vaccine platform. 

In this study, we have demonstrated that immunization of mice with OMVs activate 

both innate and adaptive immunity and induce a Th1 immune response, fundamental 

for an effective cancer vaccine. OMV immunization also caused upregulation of genes 

involved in MAMPs detection and signal transduction, a central component of the 

inflammasome and pro-inflammatory cytokines. OMV vaccination induced an 

upregulation of Th1 key transcription factor and cytokines, while inducing a 

downregulation of transcription factor and cytokines associated to Th2 response. 

Moreover, cytokines released by activated macrophages, DCs, T cells and natural 

killer (NK) cells were induced by OMV vaccination, together with a key chemokine and 

a protein for immune cell recruitment and adhesion, respectively. 

We have successfully engineered OMVs on the surface and in the lumen with OVA257-

264 CD8 T cell model epitope. These OVA-engineered OMVs induced a high 

percentage of OVA257-264 specific CD8 T cells and protected mice from OVA-

expressing tumors. We have shown that OMVs engineered with a tumor specific 

antigen (TSA) induced a protective response and promoted a significant recruitment of 

CD4 and CD8 T cells into tumors, while reducing both CD4 regulatory T cells (Tregs) 

and myeloid-derived suppressor cells (MDSCs). We have also shown in the same 

mouse model that vaccination with OMVs engineered with two TSAs have a synergistic 

protective activity in controlling tumor growth. Finally, we have demonstrated that 
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therapeutic OMV vaccines targeting five different neoepitopes protect mice from tumor 

growth. 

Taken together, our results show that OMVs are a promising platform for effective 

personalized cancer vaccines. 
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Introduction 

Globally, malignant neoplasms represent the second leading cause of death1,2. 

According to the International Agency for Cancer Research (IARC) in 2012 the global 

number of new cancer cases and of cancer-related deaths were 14.1 million and 8.2 

million, respectively1. The same report predicts that in 2030, these numbers will grow 

to 21.7 million and 13 million. Using epidemiological data from 2012 to 2014, the 

American Cancer Society (ACS) has calculated that the lifetime probability of 

developing cancer and dying for cancer in the United States was approximately 1 in 3 

and 1 in 5, respectively, for both men and women25. 

Over the last three decades, the 5-year relative survival rate for all cancers has 

increased by more than 40% in the USA, growing from 49% in 1975-1977 to 69% in 

2007-201325, while mortality has decreased by 26% from 1991 to 201525–27.  

In these last years, the great effort in cancer research led to significant advances in 

many therapeutic disciplines, especially in cancer immunotherapy. Recently, the 

United States launched the so call “Cancer Moonshot” program, allocating 1.8 billion 

dollars over seven years to fund the project28. The goal is to boost cancer research to 

improve cancer prevention and early detection, together with the development of new 

effective cancer treatments while rendering more therapies available to more patients. 

Among the strategies available to fight cancer, immunotherapy has recently achieved 

some of the most spectacular results. The following products recently approved by the 

U.S. Food and Drug Administration (FDA) are worth noting: 

- The vaccines against human papilloma virus (HPV) and hepatitis B virus 

(HBV)29, which, if universally administered, will eliminate up to 90% of all 

cervical-30 and HPV-positive oropharyngeal cancers31, and 50% of 

hepatocarcinomas32,33 respectively. 

- Sipuleucel-T in 2010, the first approved therapeutic cancer “vaccine”, based on 

the adoptive transfer of autologous dendritic cells, and used to treat castration 

resistant prostate cancer patients34.  

- Six checkpoint inhibitors monoclonal antibodies (mAbs) for the treatment of 

several types of cancers35. The therapeutic efficacy of these mAbs is 

impressive, as demonstrated by the 50% of patients with metastatic melanoma 
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who showed objective responses when treated with a combination of anti-

CTLA-4 and anti-PD-L1 antibodies36,37. 

- Two chimeric antigen receptor (CAR)-T cell therapies: 

1) tisagenlecleucel (Kymriah™) for the treatment of patients up to 25 years of 

age with B-cell precursor acute lymphoblastic leukemia (ALL)38,39. So far, 

treated patients showed an overall remission rate of 83%40, with 63% of 

patients with complete remission41; 

2) axicabtagene ciloleucel (Yescarta™) for patients with large-B-cell 

lymphomas 42. Patient’s objective response rate for this treatment is 72%, 

with a complete remission rate of 51%43.   

 

Based on these results and on the intense research activity carried out in many 

laboratories worldwide, immunotherapy is expecting to revolutionize the way cancer 

patients will be treated. 

Immune system and cancer 

Background 

The role of the immune system in controlling, shaping and eliminating tumors remained 

controversial until recently. The first evidence of a possible connection between 

inflammation and cancer goes back to 1880s, when Rudolf Virchow noticed the 

presence of leukocytes within tumors44. In the same years, Anton Chekhov observed 

and documented the existence of a connection between infection and tumor 

regression45. In the late 1890s, Dr. William B. Coley observed that some cancer 

patients had remission of their tumor during severe infections. Following this 

observation, he then intentionally infected with the “Coley’s toxin”, inactivated toxins 

from a cocktails of bacteria, over 500 patients, claiming to have induced cancer 

remission in over 150 people46. He demonstrated for the first time that it is possible to 

affect and/or inhibit cancer growth by stimulating the immune system. 

In 1909, Paul Ehrlich suggested that the immune system could recognize and repress 

cancer development in mammals47. In the following years, new discoveries and a 

deeper understanding of the immune system permitted to Burnet and Thomas to 

generate the theory of “cancer immunosurveillance”. They proposed that the immune 
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system, and T cells in particular, could protect a host against cancer outgrowth by 

recognition and elimination of transformed cells early in their development47,48. 

Following the observations that infection was involved in tumor regressions, in 1970s, 

the live attenuated tuberculosis vaccine Bacillus Calmette–Guérin (BCG) became, and 

still remains mostly unmodified, the effective treatment for non–muscle invasive 

bladder cancer49.  

Furthermore, important experiments involving immunocompetent and immunodeficient 

mouse models demonstrated then the role of both innate and adaptive immunity50,51 in 

controlling tumor growth. It was shown that mice lacking an intact immune system 

develop both carcinogen-induced and spontaneous tumors more rapidly and with 

greater frequency compared to wild type mice50–52.  

Final evidence for the existence of antitumor immunity came in the 1980s, when 

interleukin 2 (IL-2) was systemically administered to treat patients with metastatic 

cancer53. An extensive analysis on 270 patients with metastatic melanoma between 

1985 and 1993 showed that the efficacy of infusions of high doses of IL-2 was 16%54. 

It was demonstrated that IL-2 induces the growth and proliferation of T cells and NK 

cells and acts by expanding pre-existing cancer specific effector T cells: therefore IL-2 

became the first approved effective cancer immunotherapy for human patients53. 

The immune system 

The immune system comprises of innate and adaptive immune responses. The first is 

the oldest from an evolutionary point of view and confers first line protection against 

infection by recognizing common features of microorganisms. The innate immune 

system includes monocytes, macrophages, granulocytes (neutrophils, eosinophils and 

basophils), mast cells, the complement system, dendritic cells and innate lymphoid 

cells (ILCs), including natural killer (NK) cells55,56.  

The adaptive immune system is made of B and T lymphocytes, which can recognize 

different antigens via B and T cell receptors, respectively. These receptors arise from 

somatic rearrangement of DNA and allow the cell to bind foreign antigens in a specific 

manner. The two components (adaptive and innate) usually work together to eliminate 

pathogens55,56. 
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When macrophages and DCs recognize MAMPs, they become activated and start 

releasing cytokines and chemokines, effector molecules that induce a state of 

inflammation which, within hours, activate and attract more immune cells to the infected 

tissue. Among these, ILCs and NKs amplify the signals from innate recognition towards 

adaptive immunity and kill infected cells, respectively55–57. Activated antigen presenting 

cells then migrate to a local draining lymph node to present antigens to T cells. Each 

T lymphocyte expresses its TCR on the surface together with a cluster of differentiation 

3 (CD3) molecule, involved in signal transduction following antigen recognition, and 

with either a CD4 (CD4 T cells) or CD8 (CD8 T cells or cytotoxic T lymphocytes, CTL) 

molecule, co-receptors required for antigen binding. T cells recognize antigens bound 

to a major histocompatibility complex (MHC) molecules. There are two different types 

of MHC molecules: 

- MHC class I, expressed by every nucleated cell, can bind 8-10 amino acid 

peptides derived from cytoplasmic and viral protein, and present these epitopes to CD8 

T cells55,56; 

- MHC class II, expressed only by antigen presenting cells (APCs), a group of 

cells that specialize in presenting foreign antigens on their surface. MHC II can bind 

13-17 amino acid peptides derived from extracellular proteins and present epitopes to 

CD4 T cells55,56. 

Moreover, through the process of cross-presentation, APCs can also present 

extracellular peptides on MHC I to CD8 T cells56,58. After antigen binding, T 

lymphocytes proliferate and differentiate into CTLs, which kill target cells, or into helper 

T cells (Th cells), which activate B cell to secrete antibodies, activate macrophages to 

destroy engulfed cells and aid CTLs in their killing activity. They can also become 

regulatory T cells (Tregs), which help to limit possible damage by repressing the activity 

of other lymphocytes55–57. 

On cell surface, all nucleated cells display both self and non-self antigens on MHC I 

molecules. The duty of T cells is to detect and to eliminate cells that present foreign 

peptides, including cancer antigens. During their development, T cells showing high 

affinity for self-antigens are eliminated in the thymus through the process of central 

tolerance (negative selection): in this way autoreactive T cells are eliminated and only 
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non-self targeting T lymphocytes potentially recognizing foreign antigens are allowed 

to continue their development55–57. 

B lymphocytes can directly bind their cognate antigen via the B cell receptor (BCR), a 

membrane-bound form of the secreted antibody. After antigen recognition, the B cells 

proliferate and become plasma cells, effector cells that release antibodies with the 

same antigen specificity possessed by its progenitor55–57. Antibodies exert their 

protective function in three main ways. They can bind to pathogens or their derived 

toxins and neutralize them, preventing their access to or interaction with cells. A 

pathogen can be coated with antibodies, a process called opsonization: macrophages 

and other phagocytic cells then phagocyte the whole bacteria by recognizing through 

a specific receptor common features present on all antibodies molecules. Antibodies 

coating bacteria can also activate the complement system, which lead to the direct 

lysis or to phagocytosis of the pathogen. Both infected and cancer cells can be 

recognized by specific antibodies that can engage NK cells, resulting in the elimination 

of the antibody coated cell through the process of antibody-dependent cell-mediated 

cytotoxicity (ADCC)55–57. 

Tumor antigens and mechanisms of cancer immunosurveillance 

The immune system can eliminate tumor cells by recognizing the differences existing 

between neoplastic and normal tissues. Tumors develop as a consequence of gene 

mutations that generate tumor antigens and lead to alterations of cellular morphology 

and metabolism. These alterations, that give tumors a selective growth advantage over 

healthy tissues, potentially represent tumors’ “Achilles’ heel” since our immune system 

has specifically evolved to recognize the “non-self” or aberrant forms of the “self”.  

Tumor antigens can be divided in three main categories: 1) tumor-associated antigens 

(TAAs), 2) Cancer germline/cancer testis antigens (CTAs) and 3) Tumor-specific 

antigens (TSAs)59,60. 

TAAs (Figure 1a) represent proteins encoded in the “wild type” genome and may be 

either normal differentiation antigens (e.g. rearranged Ig in B cell- and rearranged TCR 

in T cell-lymphomas) or proteins that are aberrantly expressed, such as over expressed 

or with different degree of post-translational modifications. Examples of these TAAs 

are melanosomal proteins like tyrosinase61, gp10062, and melanoma antigen 
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recognized by T cells 1 (MART-1)63. These proteins are found overexpressed by 

malignant melanoma cells but also expressed by normal melanocytes of the skin and 

the eye60. Other TAAs are directly involved in carcinogenesis and are represented by 

overexpressed normal proteins that possess growth- and survival-promoting functions 

such as the transcriptional regulator Wilms tumor 1 (WT1)64 or the epidermal growth 

factor receptor family member Her2/neu65. 

CTAs (Figure 1a) are genes that are normally expressed in ovary, testis and in 

trophoblast tissues but found aberrantly expressed also in tumors due to hypo-

methylation and gene dysregulation66. Examples of these class of antigen are 

melanoma antigen family A1 (MAGE-A1)67 and NY-ESO-168, the latter being 

expressed in acute myeloid leukemia, acute lymphoid leukemia, myeloma, breast, 

lung, esophageal, ovarian, sarcoma, bladder, uterine cancers and melanoma60. 

Although the highly restricted tissue expression made them attractive targets for 

immunotherapy69, they are typically expressed only by a subset of tumor cells and are 

not essential for cancer cell survival70. 

TSAs (Figure 1b) represent antigens not encoded in the normal host genome and that 

are uniquely expressed by tumor cells. These can be further divided into two classes. 

One comprises oncogenic viral proteins like EBNA1 and LMP1 and LMP2A from 

Epstein-Barr virus found in Hodgkin’s lymphoma and nasopharyngeal carcinoma71 or 

like E6 and E7 proteins from Human Papillomavirus expressed in cervical and head 

and neck cancers72. The other class comprises neoantigens/neoepitopes, abnormal 

proteins arising from non-synonymous somatic de novo point mutations, alterations in 

the reading frame, DNA insertion and/or deletions and from chromosomal 

translocations60. The majority of tumor relevant mutations consist in single amino acid 

changes73 and these create a neoepitope when the mutation generates a peptide that 

can now be bound to either MHC I (CD8 epitope) or MHC II (CD4 epitope) 

molecules74,75. In some cases, single amino acid mutations can generate neoepitopes 

recognized by CD4 and a CD8 T cells at the same time or a peptide presented on 

different MHC class I alleles to different CD8 T cells14.  

Some neoantigens will confer growth advantages to the cell and will be responsible for 

transformation: these are referred to as “driver” mutations and, for their intrinsic 

characteristic, will be positively selected in the cancer development. 
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Figure 1 | Tumor antigen presentation by cancer cells. a, Tumor-associated antigens 
(TAAs) and cancer germline/cancer testis antigens (CTAs) are proteins encoded in the “wild 
type” genome and are expressed in several tumors b, Tumor specific antigens (TSAs) are not 
encoded in the normal host genome and are unique to a particular tumor. They can be either 
viral proteins or neoantigens, abnormal proteins arising from non-synonymous, somatic de 
novo mutations that generate a peptide that can be presented on MHC molecules. Figure 
modified from Zhang et al., 201776. 

 

On the other hand, “passenger” mutations represent events that do not confer selective 

growth advantages and are byproduct of genomic instability of the tumor cell77,78. There 

are usually between 1000 and 10000 somatic mutations in adult cancers79 and the vast 

majority of neoantigens are passenger mutations that are different in every cancer 

patient78. 

 

TAAs, TCAs and TSAs can be processed by APCs, dendritic cells in particular (Figure 

2). If this is accompanied with immunogenic signals such as pro-inflammatory 

cytokines or factors released by dying tumor cells, an anticancer response will be 

generated (the lack of such signals, one of tumor escape mechanism, lead to 

peripheral tolerance). APCs then load tumor antigens on MHC I and II molecules and 

migrate to the lymph nodes where they prime and activate T cells able to recognize 

the presented cancer antigens. The responding T cell population proliferate, traffic to 

the tumor site via blood stream and infiltrate the tumor. There, upon recognition of their 
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cognate antigen bound to MHC I molecules, CTLs eliminate cancer cells80. Beyond 

their well-known activity in enhancing CD8 T cell response and activation of innate 

antitumor immunity (NK cells), CD4 T cells can also have a direct cytotoxic activity and 

directly kill tumor cells81. The killing of the transforming cell releases additional tumor 

antigens and immunogenic signals that boost the anti-cancer immune response and 

can eventually end with tumor elimination. 

 

 

Figure 2 | Tumor immunosurveillance by immune system. Schematic representation of the 
immunosurveillance process, which lead to tumor elimination by the immune system. Figure 
modified from Melero et al., 201482. 

Immunoediting and cancer escape from immunosurveillance 

Unfortunately, in cancer patients the immune system fails to completely eliminate 

developing tumors. According to the “Cancer Immunoediting” concept proposed by 

Schreiber and collegues83,84, the immune system has a protective and tumor-

promoting role in early and late stages of cancer development, respectively. 

Immunoediting, in its most complex form, comprises three phases: elimination, 

equilibrium, and escape (Figure 3). 

In the elimination phase, innate and adaptive immunity work together to recognize and 

eradicate the developing tumor. 
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Figure 3 | Cancer immunoediting process. Schematic representation of the three 
immunoediting phases and the immune mediators involved. Figure taken from Schreiber et al., 
201184. 

If this elimination process is not completely effective and some cancer cells survive, 

they can enter the equilibrium phase. In this period, the immune system controls tumor 

outgrowth to keep it in a state of dormancy, which can last for the lifetime of the host85. 

During the equilibrium phase however, there is a constant immune selective pressure 

on genetically unstable tumor cells. This “editing” force may result in tumor cell variants 

with reduced immunogenicity, that are no longer recognized by host immune system 

and that will become clinically apparent cancers, the escape phase. 

Tumors can escape immune surveillance in several ways. Cancer cells can lose or 

downregulate their MHC I molecules86–88, acquire defects in the antigen processing 
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machinery89 or lose their antigenic determinants90,91. They can also start expressing 

ligands for inhibitory proteins such as PDL-192,93, secrete immunosuppressive 

cytokines like IL-10 and TGF-β94 and factors causing nutrient depletion for immune 

cells, such as indoleamine 2,3-dioxygenase (IDO)93. Moreover, tumors can be 

infiltrated by suppressive immune cells like CD4 Tregs, M2 macrophages and MDSCs 

which act together to create an immunosuppressive tumor microenvironment93,95. 
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Cancer immunotherapy 

Immunotherapy aims at restoring, expanding and at reactivating the original tumor 

specific immune response, in order to counteract further tumor development with the 

final goal of eliminating all malignant cells. 

There are currently several immunotherapies available36,96. These comprise the use of 

cytokines97,98, monoclonal antibodies, including antibodies targeting cancer cells99 and 

checkpoint inhibitors36,100, adoptive cell transfer (ACT) of T lymphocytes101,102 and 

cancer vaccines11,13–15,103,104. Cytokines, checkpoint inhibitors and cancer vaccines are 

classified as active immunotherapies because they generate their anticancer effect 

only by reactivating the host immune system and thus generating a long lasting, 

endogenous immune response. On the other hand, adoptive transfer of T lymphocytes  

and monoclonal antibodies targeting cancer cells possess intrinsic anticancer activity, 

are short lived and rely on repeated application of high amount of effector molecules 

or cells, they represent passive forms of immunotherapy105,106. 

Depending on antigen specificity, we can further divide immunotherapies in specific 

and non-specific. Cytokines and checkpoint inhibitors induce an antitumor response 

that has a broad and unknown specificity, and therefore are referred to as non-specific 

immunotherapies. Conversely, cancer vaccines target specific antigens and are 

considered active, specific immunotherapies105,106. 

 

The immunotherapy I will focus on, which is the most relevant for my PhD project, is 

personalized cancer vaccines. 

 

Cancer vaccines 

Vaccination against infectious diseases has been one of the biggest revolution in the 

medical field. It exploits differences between host and pathogen to mount an immune 

response that will protect the host from a future infection by the same agent107,108. No 

other medical intervention has saved the number of lives saved by vaccines over the 

centuries.  

Based on its spectacular results and on its mechanisms of action, vaccination is 

theoretically an ideal strategy to fight cancer and indeed a large number of pre-clinical 
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and clinical studies involving cancer vaccines have been described over the last two 

decades.  

Contrarily to prophylactic vaccines against infectious diseases, cancer vaccines are 

administered in a therapeutic modality, when the disease has already escaped 

immunosurveillance. In fact, antigenic determinant of cancer cells in patients are 

usually not known before the disease has become clinically apparent. Reeducating the 

immune system to recognize and eliminate a chronic disease like cancer is a very 

challenging task, as demonstrated by the modest efficacy of therapeutic vaccines 

against chronic viral infections such as HPV109,110 and HBV111,112. 

 

The goal of cancer vaccination is to achieve a functional and durable immune response 

and an effective cancer vaccine should comprise: 

 

- Several TSAs to direct the immune response against cancer cells 

- One or more immune stimulating molecules (adjuvants) 

- A vehicle that allow co-delivery of the previous components to the same APC 

   

  

The adjuvant component is at least as important as the antigenic part. Adjuvants must 

stimulate and activate DCs for optimal T cell activation and for a Th1 cellular response. 

In fact, to be effective, cancer vaccines require the induction of a Th1 polarized immune 

response, involving IFN-γ releasing CD4 T cells, CD8 T cells and natural killer (NK) T 

cells acting together in order to eliminate cancer cells82,113–115. The lack of these stimuli 

will result in T cell anergy against antigens present in the vaccine82. To be effective, 

cancer vaccines also have to overcome immune tolerance of tumor cells116,117. This is 

achieved by delivering high quantities of antigen to both MHC class I and II molecules 

of adjuvant-activated DCs, that consequently will promote both CD8 and CD4 T cell 

responses104,117. In addition to their cytotoxic activity81, CD4 T cells are needed for 

optimal and sustained effector CD8 T cell responses and are fundamental to inducing 

and maintaining CD8 memory104. In fact, vaccines should stimulate central memory T 

cell reactivity, as these cells are more efficient at controlling tumor growth owing to 

their higher proliferative capacity, persistence and polyfunctionality118. 
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The antigenic component is pivotal to direct the response to cancer cells only, avoiding 

possible off-target effects on non-cancerous self-cells expressing the same proteins 

present in the vaccine. One of the reasons why cancer vaccines have shown modest 

therapeutic effect is the unsatisfactory selection of target antigens, which has often 

been based on shared TAAs. Although being an attractive way to target many patients 

and many cancers with the same vaccine, it has revealed some important drawbacks. 

Due to central tolerance, targeting TAAs may result in the complete absence of the T 

cells specific for that antigen or in T cells that have TCRs with low antigen affinity and 

functional avidity and therefore not able to properly target and eliminate cancer 

cells74,95,119. Moreover, although being expressed by cancer cells, TAAs are also 

expressed by healthy tissues and targeting them may result in on-target off-tumor 

activity, causing disorders ranging from mild to severe and even death74,120. 

In fact, according to an extensive analysis on several clinical trials involving nearly a 

thousand patients with solid cancers and vaccinated against TAAs, only 3.6% of the 

immunized patients showed an objective response118. 

 

Neoepitopes are more attractive immunotherapy targets for several reasons. 

Neoantigens are not present in the thymus, therefore neoepitope-specific T cells are 

not subject to central tolerance and the immune system recognize them as non-

self119,121. This result in high-affinity T cell clones available for immunotherapy that 

possess functional avidity reaching the avidity strength of anti-viral T cells119. Because 

T cells  with TCRs with high affinity for their cognate antigens have greater cytotoxic 

capacity, longer persistence in the tumor environment and decreased susceptibility to 

immune suppression120, these T cells may be of pivotal relevance to tumor control. 

Moreover, for their intrinsic definition, neoantigens are expressed only by cancer cells 

and therefore immune therapies targeting such antigens are less likely to induce 

autoimmunity76,120,121 and hence are theoretically safer. 

 

One of the first publications describing the relevance of neoantigens in cancer 

immunotherapy reported the case of a melanoma patient whose spontaneous anti-

cancer immune response generated T cells against both TAAs and against 
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neoantigens formed by somatic point mutation in five different genes. The most 

important result was that the T cell response against neoantigens prevailed over the 

response against TAAs3.  Further evidence for the importance of neoepitopes as 

central tumor-rejection antigens comes from animal studies and clinical trials involving 

immune checkpoint inhibitors. These antibodies target inhibitory proteins expressed by 

activated T cells, namely CTLA-4, with a major role in dampening T cell priming and 

activation, and PD-1, that blocks T cell effector functions within the tissues36,60,117. 

CTLA-4 has temporally delayed expression compared to CD28 molecule100, but it has 

higher affinity to CD80/86 compared to the activating counterpart CD2860. PD-1 is 

upregulated following antigen stimulation and continuous or chronic TCR activation 

maintain his expression at high levels122. Its ligand, PD-L1, is constitutively expressed 

by both immune cells like T cells, B cells, NK cells and DCs, and by non-immune cells 

like epithelial cells and vascular endothelial cells. Its expression can be upregulated by 

many other types of cells in the presence of a strong inflammatory signal such as IFN-

γ92,123 and some tumors can constitutively express PD-L1 as a mechanism of immune 

evasion124. Therefore, although in different ways, both CTLA-4 and PD-L1 dampen or 

totally stop tumor elimination by the immune system. The blockade of either of these 

inhibitory pathways with specific antibodies removes the inhibitory signals and 

amplifies preexisting, or triggers new, antitumor immune responses36,60,100. In 

particular, blockade of CTLA-4 eliminates Tregs and promotes T cell priming12,36,60, 

while blockade of PD-1 promotes T cell activation and effector functions12,36,100,125. 

Although the therapeutic efficacy of checkpoint inhibitor antibodies is impressive, only 

a fraction of patients respond to the therapy. Several studies aiming to investigate the 

reasons for such partial response have revealed the importance of mutation 

frequencies in tumors. It has been demonstrated that the higher the mutation load in a 

tumor, the higher the sensitivity to checkpoint inhibitors and the better the clinical 

response121. A higher number of mutations in a tumor means a higher number of 

neoepitopes as possible target of immune cells. 

In patients with metastatic melanoma, a cancer characterized by a high number of 

mutations due to exposure to UV-light, the degree of clinical benefits correlated with 

the mutational load of patients. Patients with higher number of exomic mutations 

experienced a significantly higher long-term benefit compared to patients with lower 
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mutational tumors after treatment with ipilimumab, an anti CTLA-4 antibody. Moreover, 

activated CD8 T cells specific for tumor neoepitopes were present after checkpoint 

blockade treatment4. 

Even more striking evidence for the central role of neoepitopes as tumor rejection 

antigens, comes from the analysis of the correlation of the response to checkpoint 

inhibitors and the mutational loads within the same tumor type.  

A study analyzing patients with non-small-cell lung carcinoma (NSCLC) treated with 

pembrolizumab, an antibody targeting PD-1, showed that current or former smokers 

 

Figure 4 | The clinical efficacy of PD-1 or PD-L1 blockade correlates with the frequency 
of somatic mutations present in the tumor. This graph shows the correlation of PD-1 or PD-
L1 inhibitors efficacy calculated as objective response rate (ORR) with the tumor somatic 
mutation frequency. Melanoma, characterized by a high mutational load, which means high 
number of neoepitopes, showed high ORR to PD-1 or PD-L1 inhibitors. The importance of 
mutations, and therefore of neoepitopes, as tumor rejection antigens is even more appreciable 
comparing ORR and somatic mutation frequency within the same tumor type, e.g. non-small-
cell lung carcinoma (NSCLC) in current or previous smoker patients versus NSCLC in patients 
who had never smoked cigarettes and mismatch repair deficient (MMR-D) versus mismatch 
repair proficient (MMR-P) colon cancer patients. MCC (MCPyV negative), Merkel cell 
polyomavirus negative Merkel cell carcinoma, RCC, renal cell carcinoma; SCLC, small-cell 
lung cancer. Figure taken from Yarchoan et al., 2017121. 
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(tobacco smoke is a mutation inducing agent) had a response rate of 22.5%, as 

compared with 10.3% among patients who had never smoked cigarettes126 (Figure 4). 

Moreover, PD-1 blockade induced neoepitope specific CD8 T cells that paralleled 

tumor regression5. 

Similar results have been reported in colorectal cancers patients treated with 

pembrolizumab. Patients with DNA mismatch repair deficient tumors, characterized by 

high mutation burden, had an objective response rate and progression-free survival 

rate of 40% and 78%, respectively. By contrast, patients with mismatch repair proficient 

colorectal cancers had a much less favorable response, 0% and 11% respectively127 

(Figure 4). In the same study, patients with non-colorectal cancers that were also DNA 

mismatch repair deficient showed responses similar to those observed in patients with 

mismatch deficient colorectal cancers, confirming the importance of neoepitopes in 

immune related cancer growth control. Very recently, it was also demonstrated that by 

targeting the DNA repair process it is possible to trigger neoepitopes generation and 

to inhibit tumor outgrowth in preclinical animal models128. 

Since 2011, the FDA has approved six checkpoint inhibitor antibodies35 as a 

consequence of their efficacy in the treatment of several human cancers. They 

represent one of the most remarkable achievements in cancer therapy over the last 

decades. 

Furthermore, combining CTLA-4 and PD-1 blockade showed synergistic effects both 

in preclinical studies129,130 and clinical trials37,131, due to the simultaneous elimination 

of Tregs and release of neoepitope specific T cell effector functions. 

The importance of neoepitopes in controlling cancer outgrowth also emerged in 

patients treated with adoptive T cell transfer therapy. In this approach, tumor infiltrating 

lymphocytes (TILs) are expanded and activated in vitro and then reinfused back into 

the patient after lymphodepletion132. This last step is very important for the success of 

the treatment and contribute to efficient tumor regression and persistence of 

oligoclonal repopulation of the host with transferred antitumor lymphocytes133. In fact, 

lymphodepletion eliminates Tregs and other immunosuppressive cells as well as all 

lymphocytes which compete with the transferred tumor-reactive T cells for the 

homeostatic cytokines IL-7 and IL-15134. 
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An important research in 20056 reported the analysis of T cell antigen reactivity and 

the in-vivo persistence of T cells in a melanoma patient, who experienced a complete 

regression of all metastatic lesions following adoptive transfer of autologous tumor-

reactive TILs previously expanded. The analysis revealed several T cell clones specific 

for two neoepitopes generated by point mutations in melanoma cells. These 

neoepitope specific T cells were still present after one month from the adoptive transfer 

and were present at higher level in the tumor site compared to peripheral blood6. 

Another study identified seven different melanoma specific neoepitopes recognized by 

in vitro expanded TILs in three different patients who had shown objective responses 

to ACT therapy7. It was shown that adoptive transfer of neoepitope specific T cells 

could mediate tumor regression also in non-melanoma epithelial cancers, 

characterized by a low number of mutations. In one patient with epithelial cancer, TILs 

revealed the presence of CD4 Th1 cells recognizing a neoepitope expressed by the 

tumor. Adoptive transfer of TILs containing more than 95% of cancer neoepitope 

specific CD4 Th1 cells mediated tumor regression8. Further analyses of TILs in patients 

with epithelial cancers revealed the presence of CD4 and/or CD8 T cells targeting one 

to three neoepitopes expressed by the patient’s own tumor in 9 out of 10 cases9. 

Moreover, none of the neoepitopes were shared between the patients. This evidence 

further supports a personalized approach for effective cancer treatment. 

 

Personalized cancer vaccines 

Based on the strong evidence of the pivotal role of neoepitopes in eliciting potent anti-

cancer immune responses, “personalized cancer vaccines” formulated with 

neoepitopes are being developed and are emerging as a promising therapeutic 

approach. 

Recently, next generation sequencing completely transformed the way we detect 

neoepitopes, making patient-specific neoepitopes mapping feasible both from cost and 

time perspectives. In this approach, summarized in Figure 5, tumor cells and normal 

tissue from a patient are subjected to whole exome and RNA sequencing to identify all 

patient specific, non-synonymous somatic mutations, constituting the patient specific 

“mutanome”. RNA sequencing is an important step that allows the identification of 
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mutations in genes that are transcriptionally active. Confirmed mutations are analyzed 

in silico for MHC class I and class II binding and skimmed through several filters like 

antigen processing or whether the mutant epitope has a stronger predicted binding 

affinity compared to the corresponding wild type peptide. An important parameter is 

the abundance of the epitope, which is estimated indirectly by quantitating RNA 

expression levels. 

 

Figure 5 | Workflow for the generation of personalized vaccine formulations targeting 
neoantigens. This figure summarizes the key steps for the generation of personalized cancer 
vaccine formulations targeting patient specific neoepitopes. PBMCs, peripheral blood 
mononuclear cells. Figure taken from Zhang et al., 201776. 

The list of candidate neoepitopes can be synthetized and validated by identifying 

mutant neoepitope-specific T cells in fresh patient TILs through functional assays (such 

as ELISPOT assays, peptide binding assay and/or intracellular cytokine staining) 

and/or MHC-multimer screenings. Recently, new bioinformatics approaches allow the 
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prediction and validation in silico of patient specific cancer neoantigens11,14, thus 

avoiding the time consuming in vitro validation. Validated neoepitope can be 

synthetized under good manufacturing practice (GMP) conditions and used to either 

expand neoepitope-specific TILs for ACT or to formulate personalized cancer 

vaccines60,76,135,136. 

 

In one study, using the genomics and bioinformatics approaches described above, 

researchers identified neoepitopes that worked as T-cell rejection antigens following 

PD-1 and/or CTLA-4 blockade therapy in tumor bearing mice. More importantly, when 

these neoepitopes were incorporated as synthetic long peptides in therapeutic 

vaccines they were as effective as checkpoint blockade immunotherapy in inducing 

tumor rejection12. So it has been revealed that, beyond being important targets in 

checkpoint blockade therapy, tumor-specific neoepitopes can also be used to develop 

personalized cancer-specific vaccines12. 

In another research, whole-exome and RNA sequencing was used in combination with 

mass spectrometry to identify neoepitope that were filtered and prioritized to predict 

the most immunogenic ones. The resulting peptides were validate in vivo, obtaining 

three neoepitope that induced a neoepitope specific T cell population when used to 

immunize MHC I matched mice. More importantly, these neoepitopes were also able 

to protect mice from tumor growth both in a prophylactic and in a therapeutic 

schedule13. 

Using an approach they previously developed10, the same research group 

demonstrated in three different tumor models that the majority of cancer specific 

mutations is immunogenic and recognized by CD4 T cells. Moreover, RNA-based 

therapeutic vaccination with these CD4 neoepitopes conferred strong antitumor 

activity11. Another important result of the previous study is that they generated a 

method for the selection of identified mutation as RNA vaccine candidates that rely 

exclusively on bioinformatics prioritization based on their expression levels and MHC 

class II binding affinity. They also demonstrated that the approach is suitable for 

prediction of neoepitopes in human cancers. 

In fact, in a following publication the same group applied the approach to the first in 

human personalized mutanome vaccine against melanoma14. They identified non 
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synonymous tumor specific mutations in thirteen patients with stage III and IV 

melanoma. They selected ten of those mutations (five for one patient) according to 

predicted high MHC class II binding affinity together with high expression of the 

neoepitopes as RNA levels and according to high MHC class I binding affinity and 

created a RNA-vaccine unique for each patient. Sixty percent of the predicted 

neoepitopes were immunogenic in patients and the responses were mediated mostly 

by CD4 T cells and by a mix of CD4 and CD8 T cells. All patients showed significantly 

reduced metastatic events after vaccination, with the result of a sustained progression-

free survival. One patient showing fast disease progression after vaccination, 

experienced a complete response after combination therapy with PD-1 blockade14. In 

another clinical trial, six melanoma patients were vaccinated with a mix of adjuvants 

and several long peptides encoding up to 20 personal neoepitopes predicted on their 

MHC class I binding affinity15. Vaccination induced both CD4 and CD8 neoepitope 

specific T cells and despite their prediction method, surprisingly vaccination induced T 

cells were mostly CD4 T cells as observed in the previous study. All patients that 

started vaccination with stage IIIB/C melanoma remained without disease recurrence 

for more than two years. Two patients that started treatment with stage IV melanoma 

and showed lung metastasis had recurrent disease after vaccination. However, both 

achieved complete tumor regression after PD-1 blockade therapy15. 

Together, these two human studies proved the safety, feasibility and clinical efficacy 

of personalized, patient specific, multi neoepitope directed cancer vaccination. 

Moreover, in both cases patients with recurrent diseases became tumor free after 

pembrolizumab therapy14,15, suggesting a synergistic effect of vaccination and 

checkpoint inhibitors therapies. 

 

All the data obtained from the studies reported above provide compelling evidence that 

patient specific, neoepitope targeting vaccines are an effective cancer immunotherapy. 

Moreover, to overcome tumor escape derived from immunoediting-driven neoantigen-

loss137, the most effective strategy appears to be personalized cancer vaccination 

targeting several trunk driver mutations, combined with checkpoint blockade therapy 

to obtain full therapeutic efficacy. 
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Bacterial outer membrane vesicles (OMVs) 

OMVs are non-replicating structures of 20-250 nm naturally released by all gram-

negative bacteria from the budding out of the outer membrane16,17. Reflecting their 

origin, they contain mostly lipopolysaccharide (LPS), glycerophospholipids and outer 

membrane and periplasmic proteins138, together with DNA, RNA and peptidoglycan139. 

OMVs have several functions, including inter and intra species cell-to-cell cross-talk, 

biofilm formation, genetic transformation, defense against host immune responses, 

and toxin and virulence factor delivery to host cells138,140. OMVs are an emerging 

attractive vaccine platform because of several characteristics. OMVs possess a built-

in adjuvanticity, carrying many MAMPs, such us LPS, lipoproteins, peptidoglycan, and 

flagellin18,19. By binding to pathogen recognition receptors on immune cells, these 

molecules play a key role in stimulating innate immunity and promoting adaptive 

immune responses20–22. In fact OMVs activate macrophages and  induce maturation 

of DCs and their consequent production of pro-inflammatory cytokines139. Several 

works have demonstrated that OMVs elicit a Th1-skewed immune response141–143, 

which is needed to eliminate both intracellular pathogens and cancer cells82,113–115. 

OMV protein content can be easily and promptly manipulated by altering the OMV-

producing strain with molecular and synthetic biology techniques. OMVs can be 

engineered with selected antigens, either heterologous protein  both in the lumen and 

on the surface144,145. Recently, our group showed that different bacterial antigens could 

be delivered to the lumen of E. coli vesicles by fusing their coding sequences to a 

leader peptide for secretion142. Furthermore, we showed that heterologous lipoproteins 

could be incorporated into the OMV membrane23 and that through such polypeptides 

it is possible to deliver heterologous antigens as fusion protein to the OMV surface23,24. 

More importantly, it has been demonstrated by our and other groups, that OMVs induce 

both B and T cell responses specific for the delivered antigens 24,141,142,146–148. 

Finally, OMV vaccines are safe and effective. In fact, an OMV-based vaccine has been 

approved to prevent Neisseria meningitidis serogroup B infections in humans149,150. 

OMVs production can be promptly scaled-up from laboratory to industrial levels. Using 

mutant strains showing hyper-vesiculating phenotype146,151, OMVs can be rapidly and 

easily purified from bacterial culture supernatant with detergent-free 

methods23,142,151,152. Once the supernatant is separated from the biomass of these 
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mutant strains, the purification of the vesicles can be carried out using tangential flow 

filtration with production yield higher than 100 mg of vesicles (protein content) per liter 

of culture153 under GMP conditions. 

 

Due to these characteristics, OMVs appear to be an ideal tool for the creation of a 

vaccine platform suitable for personalized medicine. Once patient’s specific 

neoepitopes are selected through in silico approaches, these can be expressed in 

OMVs and the resulting engineered vesicles can be rapidly purified in high amounts 

under GMP conditions.  
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Aim of the thesis 

Our laboratory is interested in the exploitation of OMVs as a vaccine platform. 

Therefore, the aim of my thesis is to set the groundwork for the use of engineered 

OMVs in personalized cancer vaccines. The main goals of my experimental work can 

be summarized as follows: 

1. Analysis of immune genes induced by OMV vaccination with the objective of 

elucidating the mechanisms of activation of innate and adaptive immunity  

2. Decoration of OMVs with a CD8 T cell epitope in order to follow the T cell 

population induced by OMV vaccination and the capacity of OMV vaccination to 

protect mice from tumor challenge 

3. Analysis of antigen specific CD8 T cell response and protection from tumor 

challenge induced by OMV vaccination  

4. Demonstration of the general applicability of an OMV-based vaccine platform in 

personalized cancer vaccines by demonstrating the ease and efficiency with 

which OMVs can be decorated with foreign epitopes and the capacity of 

engineered OMVs to control tumor growth using different mouse models 

5. Setting up a protocol for OMV engineering that is compatible with the timing of 

the personalized cancer vaccine approach.  
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Results 

Immune gene expression analysis in mice immunized with OMVs 

First, we wanted to investigate how OMVs affect immune gene expression. We 

immunized mice subcutaneously with 20 µg of OMVs from E. coli BL21(DE3)ΔompA 

strain, our OMV-overproducing strain, and after 36 hours, we collected draining lymph 

nodes and extracted the total RNA. The schedule of tissue collection after 

immunization was chosen according to the time DCs, macrophages and monocytes 

require to migrate to lymph nodes and interact with T cells154. 

 

After retrotranscription, qPCR was performed to compare gene expression levels in 

term of RNA amount in mice immunized with either OMVs or PBS, the OMV 

resuspension buffer, as a control. We analyzed 84 genes involved in host innate and 

adaptive immune responses to bacterial infection using the Qiagen RT² Profiler™ PCR 

Array Mouse Innate & Adaptive Immune Responses. This array, among all genes, 

includes several cytokines, T cell activation and Th1 immune response markers.  

 

It is important to note that by collecting whole lymph nodes, we are taking and 

analyzing a mixed cell population consisting of immune cells, such as DCs, monocytes, 

macrophages, T, B and NK cells, as well as other cell types like epithelial, endothelial 

and stromal cells (fibroblasts and pericytes). This is very useful to have a wide picture 

of the ongoing immune response, which is naturally carried out by several different cell 

types, and provides an average expression level of a specific gene. On the other hand, 

this type of analysis might underestimate or completely ignore gene changes occurring 

in a small cell population only, which are eventually diluted in the mixed-cell samples 

analyzed. 

 

Figure 6, which reports the Log10 of the normalized gene expression levels in mice 

injected with either OMVs or PBS, provides a snapshot on how many, and to what 

extent, genes are up- and down regulated in draining lymph nodes upon OMV 

administration. Genes whose expression varies less than twofold fall within the two 

dotted lines, while genes that are upregulated and downregulated more than two fold 
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are plotted as red dots and green dots, respectively, above and below the dotted lines. 

In total 19 genes were upregulated by OMVs while 5 were down-regulated. 

 

 

 

Figure 6  | Snapshot of the extent of immune gene changes induced by OMV vaccination. 
This graph shows the log10 of the normalized expression level of each gene in OMV treated 
versus PBS control group. In this plot, genes with similar expression level in the two groups 
fall between the two dashed lines. Genes upregulated or downregulated more than two times 
stand out above and below, respectively, the dashed lines. To help a quick visualization, 
upregulated  and downregulated genes are plotted in red and green, respectively. 
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Table 1 reports the list of upregulated and downregulated interesting genes, grouped 

on the basis of their role in immune responses.  

 

Gene Fold regulation  Gene Fold regulation 

Pro-inflammatory cytokines  Th1 response 

IL-1α 4.0  IFN-γ 3.4 

IL-1β 58.6  IL-18 1.7 

IL-6 8.3  Stat1 1.6 

TNF-α 2.0  T-bet (Tbx21) 2.4 

MAMPs detection and signaling  Th2 response 

CD14 5.0  GATA3 -1.8 

NOD2 2.8  IL-4 -3.6 

MyD88 2.5  IL-5 -3.5 

Ticam (Trif) 2.6  IL-13 -7.0 

IRF7 4.1    

Other genes  Chemoattraction and adhesion 

GM-CSF 4.3  Itgam 3.8 

NLRP3 7.9  Cxcl10 4.8 

 

Table 1 | Immune gene affected by OMV immunization in mice. Gene expression level was 
analyzed by qPCR on cDNA retrotranscribed from RNA extracted from draining lymph nodes 
of mice immunized with either OMVs or PBS. Fold change was calculated by dividing the 
normalized expression of a gene in OMV treated sample by the normalized expression level 
of the same gene in the PBS control group. Gene expression level was provided as fold 
regulation, which is equal to the fold change for up-regulated genes, while it is the negative 
inverse of the fold change for down-regulated genes. 

 

The first interesting observation was the upregulation of genes involved in MAMP 

signaling, important to activate innate immunity upon microbe detection. They include 

CD14, NOD2 and NLRP3. CD14 is involved in LPS sensing and was upregulated 

fivefold in the OMVs treated group compared to PBS control group (Figure 7b and 

Figure 7e). This is in line with the fact that LPS represents the most abundant and 

relevant MAMPs in OMVs, being found at a concentration of more than 100 mg/mg of 

OMV proteins. There was a remarkable activation of the inflammasome machinery 

(NLRP3 was upregulated by 7.9 times, Figure 7e), which is induced by TLRs and NOD 

signaling and activated by cellular stress, extracellular ATP, disruption of lysosomes 

and intracellular LPS. Finally, NOD2, which responds to intracellular concentration of 

peptidoglycan-deriving muramyl dipeptide, was upregulated by 2.8 times (Figure 7b). 

This supports the notion that OMVs are endocytosed by phagocytic cells and are 
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subsequently partially released from the vesicular compartment into the cytoplasm 

thorough mechanisms not yet fully elucidated. 

 

A second group of genes was that involved in signal transduction upon engagement 

of MAMP receptors and some cytokine receptors (IL-1 and IL-18 receptors). They 

include MyD88 and Ticam1, which were found upregulated by 2.5 and 2.6 fold, 

respectively (Figure 7b). In addition IRF7, which is also activated by TLR9 and is 

responsible for Type I interferons production, was upregulated 4.1 times (Figure 7b), 

suggesting a role of CpG dsDNA which has been reported to be present in OMVs. 

 

A third important group of genes which was upregulated encodes pro-inflammatory 

cytokines, released by activated APCs. They promote vasodilatation and are important 

for the infiltration and activation of both innate and adaptive immune cells at the site of 

infection. They included IL-1α, IL-1β, IL-6, upregulated by 4, 58.6 and 8.3 times 

respectively. TNF-α showed a 2 fold increase, while GM-CSF a 4.3 upregulation 

(Figure 7a and Figure 7e). The expression of these cytokines is in line with the 

observed activation of MAMP receptors. 

OMV vaccination induced the activation of NLRP3 inflammasome, responsible for the 

release of biologically active IL-1 β and IL-18 (Figure 7a and Figure 7c). NLRP3, 

induced after TLRs and NOD signaling, was found strongly upregulated by 7.9 times 

and the pro inflammatory IL-18 was upregulated by 1.7 times (Figure 7e). 

 

Investigating genes involved Th1/Th2 differentiation, which are induced by the innate 

mediators analyzed above, data shows a strong induction of a type 1 response (Figure 

7c). We found the key Th1 marker IFN-γ upregulated by 3.4 times and, as already 

pointed out, the cytokine IL-18 upregulated by 1.7 times. IFN-γ signaling through IFN-

γ receptor, via transcription factor Stat1, induces transcription of the master regulator 

of Th1 differentiation, T-bet (Tbx21). We found both these two key components 

upregulated upon OMV immunization: Stat1 was upregulated by 1.6 times and T-bet 

was upregulated by 2.4 times.  

In line with the notion that Th1- and Th2-type of immune responses are mutually 

exclusive and OMVs induced a Th1-skewed response, Gata3 transcription factor, that 
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drives Th2 differentiation, was downregulated by 1.8 times. This translated in 

downregulation of IL-4, IL-5 and IL-13 by 3.6-, 3.3- and 7 fold, respectively (Figure 7d). 

All these are Th2 cytokines controlled by Gata3. 

 

We also found GM-CSF, a cytokine induced in activated macrophages and DCs as 

well as in activated NK and T cells, upregulated by 4.3 times (Figure 7e). Cxcl-10, a 

chemokine involved in T cell, NK cell and DC recruitment after IFN-γ signaling, showed 

a 4.8-fold upregulation and Itgam, molecule responsible for leukocytes adhesion and 

extravasation, had a 3.8-fold increase after OMV injection (Figure 7e). 

 

Taken together, these results show that OMV vaccination is extremely efficient in 

stimulating innate immunity and a Th1-skewed response.  
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OMV engineering with OVA257-264 as a model epitope 

OVA257-264 as CD8 T cell model epitope 

One of the goal of my research was to investigate whether vaccination with OMVs 

engineered with specific CD4 and/or CD8 T cell epitopes could elicit epitope-specific 

cell-mediated immune responses and whether such responses could be protective 

against tumors expressing such epitopes. Moreover, we wanted to investigate whether 

differences in antigen compartmentalization in OMVs, i.e. lumen vs. surface, could 

affect the quality and quantity of epitope-specific T cell responses. 

To this purpose, as model epitope we selected the OVA257-264 peptide from chicken 

ovalbumin, a CD8 epitope known to be immunogenic in H-2 Kb mice (C57BL/6 mice). 

We chose OVA257-264 for three main reasons. First, the epitope has been extensively 

used in many mouse studies and therefore there is a large body of published data to 

use as reference. Second, OVA257-264 specific dextramers are available, an extremely 

useful tool to follow OVA257-264-specific T cells in a quantitative manner. Third, a 

B16F10 murine melanoma cell line stably transfected with chicken OVA is available, 

which can be used to test whether the levels of OVA257-264-specific T cells induced by 

immunization could be strong enough to protect syngeneic C57BL/6 mice from the 

challenge with such engineered cell line. 

 

OMV engineering with OVA257-264 epitope 

To obtain OVA257-264 epitope expression in OMVs, we fused it to specific carrier 

proteins, selected in our laboratory for their efficient delivery of foreign antigens in 

OMVs. In particular, the E. coli maltose binding protein (MBP) was used to obtain 

OVA257-264 expression in the lumen of OMVs, while for a surface exposition, OVA257-264 

was fused to the PSP protein (no details of PSP can be given for confidentiality 

reasons). MBP is naturally present in the periplasm of E. coli155. During the vesiculation 

process, the protein is encapsulated in the lumen of OMVs19 and therefore 

heterologous polypeptides fused to MBP are delivered inside the OMVs. By contrast, 

PSP is a lipoprotein which reaches the E. coli outer membrane. Polypeptides fused to 
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the C-terminus of PSP are transported to the outer membrane and therefore are 

compartmentalized in the OMV membrane  during vesiculation. 

The cloning of OVA257-264 antigen was made with the following criteria: 

 

1) To increase antigen concentration in OMVs, three copies were fused in tandem 

to the carrier protein; 

2) To facilitate its processing and presentation on MHC class I, OVA257-264 was 

fused to the carrier proteins flanked by its natural flanking sequences156. 

Furthermore, each copy of OVA257-264 with flanking sequences was separated 

from each other by a glycine-glycine flexible spacer156; 

 

From now on, the three copies of the OVA257-264 with flanking sequences and separated 

by glycine-glycine spacer will be referred to as OVA (for amino acid sequence of OVA 

see Material and Methods section, Table 3 and Figure 18 in the Appendix section). 

The mini-gene encoding OVA was chemically synthesized and fused to the 3’-end of 

either PSP or MBP using Polymerase Incomplete Primer Extension (PIPE) method157, 

obtaining pET-PSP-OVA and pET-MBP-OVA plasmids, respectively. Plasmids 

encoding the fusion proteins were used to transform the E. coli OMV-overproducing 

strain BL21(DE3)ΔompA and OMVs were purified (see Figure 18 in the Appendix 

section for details). Briefly, BL21(DE3)ΔompA pET-PSP-OVA and BL21(DE3)ΔompA 

pET-MBP-OVA strains were grown at 30°C to OD600=0.5 and the expression of the 

recombinant proteins was induced by addition of 0.1 mM of isopropil-ß-D-1-

thiogalactopyranoside (IPTG) for four hours. Cells were pelleted and supernatant 

filtered with a 100 KDa membrane. After 2 hours of ultracentrifugation, OMVs were 

resuspended with sterile-filtered PBS. Finally, to assess the presence of the fusion 

proteins, 20 µg of OMVs (protein content) purified from BL21(DE3)ΔompA pET-PSP-

OVA (PSP-OVA OMVs), from BL21(DE3)ΔompA pET-MBP-OVA (MBP-OVA OMVs) 

and from BL21(DE3)ΔompA transformed with the pET empty vector (“Empty” OMVs) 

as a control, were separated by SDS-PAGE using Any kD™ Criterion™ TGX Stain-

Free™ Protein Gel. Proteins were revealed by Coomassie staining. Figure 8a shows 

a typical pattern of the total protein contents of OMVs. The recombinant proteins 

accumulated with high efficiency in OMVs, as indicated by the bands marked with a 
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star. The presence of OVA257-264 epitope fused to the carrier proteins was confirmed 

by Western Blot analysis. 20 µg of PSP-OVA OMVs, of MBP-OVA OMVs and of 

“Empty” OMVs as a control were separated as above. Proteins were transferred onto 

nitrocellulose membranes and bands corresponding to OVA257-264 epitope were 

revealed using α-OVA polyclonal antibodies. As shown by the bands in Figure 8b, 

OVA257-264 epitope is efficiently incorporated in both PSP- and MBP-OMVs. 

  

 

Figure 8 | OVA257-264 is efficiently expressed in OMVs. a, SDS-PAGE analysis of 20 µg of 
OMVs purified from BL21(DE3)ΔompA pET-PSP-OVA (PSP-OVA OMVs) and from 
BL21(DE3)ΔompA pET-MBP-OVA (MBP-OVA OMVs) strains. As a control were used OMVs 
purified from BL21(DE3)ΔompA strain transformed with pET empty vector (“Empty” OMVs). 
PSP-OVA and MBP-OVA proteins are indicated by a star. b, Western blot analysis of 20 µg of 
PSP-OVA, MBP-OVA OMVs and “Empty” OMVs as a control. OVA257-264 epitope was detected 
using α-OVA polyclonal antibodies. 
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Analysis of antigen compartmentalization in bacterial cells and OMVs 

To fully characterize OVA-engineered vesicles and to assess the correct antigen 

localization in OMVs, we performed Triton X-114 assay on OMVs and flow cytometry 

analysis on whole cells. 

 

When OMVs are solubilized with Triton X-114 detergent and exposed at temperatures 

above its cloud point (23°C), two phases are generated: an aqueous phase, containing 

polar and hydrophilic molecules, and a detergent-enriched, lipophilic phase, containing 

hydrophobic molecules, including lipoprotein158. Because of their difference in 

hydrophilicity/hydrophobicity, the periplasmic MBP fusion protein and the lipidated PSP 

fusion protein should be enriched in the aqueous and in the detergent phases, 

respectively. 

 

100 µg of PSP- and MBP-OMVs were therefore solubilized with 1% Triton X-114 

solution and after temperature shift, the proteins present in the two phases were 

precipitated by chloroform-methanol and resuspended in Laemmli buffer. The proteins 

present in the two phases and in total OMVs (20 µg) were separated by SDS-PAGE 

using NuPAGE™ 4-12% Bis-Tris Protein Gels and analyzed by Western Blot using α-

OVA antibodies. As shown in Figure 9, PSP-OVA localize in the hydrophobic phase 

(9a) while MBP-OVA localize in the aqueous phase (9b). These data confirm that PSP-

OVA is associated to the lipid membrane bilayer of OMVs, while MBP resides in their 

lumen. 

To assess PSP-OVA and MBP-OVA localization in bacteria, BL21(DE3)ΔompA(pET-

PSP-OVA) and BL21(DE3)ΔompA(pET-MBP-OVA) strains were grown at 30°C to 

OD600=0.5 and the expression of the recombinant proteins was induced by addition of 

0.1 mM of IPTG for four hours. Cells were collected, incubated with the α-OVA 

antibodies and subsequently with secondary Alexa Fluor®488 anti-rabbit total IgGs 

antibodies. Finally, cells were fixed with 2% formaldehyde and analyzed by flow 

cytometry. The data shown in Figure 9c indicated that PSP-OVA fusion was surface 

exposed as deducible from the marked increase in the population of cells positive for 

α-OVA antibodies. By contrast, the staining of bacteria only with secondary Alexa 

Fluor®488 anti-rabbit antibodies showed no increase in fluorescence signal, 
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confirming specificity of the signal. The staining of bacteria expressing MBP-OVA 

showed no increase in fluorescence signal, confirming the periplasmic localization of 

the fused protein (Figure 9d). 

 

 

Figure 9 | OVA257-264 epitope is exposed on the surface of PSP-OVA OMVs. a, b, Triton X-
114 assay: 100 µg of PSP-OVA OMVs (a) and MBP-OVA OMVs (b) were solubilized with 1% 
Triton X-114, obtaining an aqueous phase enriched in hydrophilic proteins and a detergent 
phase enriched in membrane-associated proteins. After chloroform-methanol precipitation, 
proteins from both phases, together with proteins from total OMVs (20 µg) were separated by 
SDS-PAGE and transferred on a nitrocellulose membrane for a Western blot analysis. The 
presence of the OVA257-264 epitope in either aqueous or detergent phase was detected using 
α-OVA antibodies. c, d, Flow cytometry analysis. Bacterial cells from BL21(DE3)ΔompA pET-
PSP-OVA (c) and BL21(DE3)ΔompA pET-MBP-OVA (d) strains were stained with rabbit α-
OVA antibodies. Signal was detected using Alexa Fluor® 488 α-rabbit IgGs antibodies. As a 
control, cell were stained with Alexa Fluor® 488 α-rabbit IgGs antibodies only. 
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Analysis of epitope specific T cell response induced by epitope-

decorated OMVs 

We have demonstrated that OMV vaccination can activate innate immunity and induce 

type 1 immunity (Figure 7) and that we can express antigen both in the lumen and on 

the surface of OMVs (Figure 8 and Figure 9). Next, we analyzed if engineered OMVs 

induced an epitope-specific CD8 T cell response. To this aim, we immunized C57BL/6 

mice with 20 µg of PSP-OVA OMVs and MBP-OVA OMVs. Mice immunized with 

“Empty” OMVs were used as a control. Mice were vaccinated 2 times on day 0 and 

day 7 and blood was analyzed for the presence of OVA257-264-specific CD8 T cells on 

day 12 or 13 (schedule in Figure 11a). 

 

One way to detect and quantify antigen specific T cells is to exploit the natural 

interaction between MHCI-peptide complexes and TCRs in flow cytometry. Since a 

single TCR possesses low affinity for a MHCI-peptide complex, multimers, which carry 

multiple copies of MHCI-peptide complexes, have been developed. These molecules 

bind several TCRs with the same antigen specificity, allowing a more stable interaction 

between these compounds and the lymphocyte. 

 

 

Figure 10 | Dextramer molecule. Representation of a dextramer molecule, made of a dextran 
backbone which bears MHCI-peptide complexes and fluorochrome molecules. This structure 
allows the recognition of T cells carrying TCRs with either high or low affinity for MHCI-peptide 
complexes and gives high stability to the dextramer molecule. Figure taken from 
www.immudex.com159 
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In particular, dextramers are MHC multimers made of MHCI-peptide complexes linked 

to a dextran backbone carrying several fluorochrome molecules159,160 (Figure 10). The 

use of dextramers allows the identification of antigen-specific T cells independently 

from their ability to secrete cytokines and can therefore detect also antigen specific T 

cells that do not secrete IFN-γ, such as in less differentiated cells. 

 

Furthermore, for their intrinsic nature, by physically binding to lymphocytes dextramers 

give a direct evidence of the presence of antigen specific CD8 T cells, as opposed to 

intracellular cytokines staining (ICS), which is an indirect measurement.  

 

For a better detection of antigen specific CD8 T lymphocytes, a strategy to exclude 

unwanted cell populations and reduce the background noise was adopted, with minor 

modifications as previously described161,162. To reduce nonspecific binding of dead 

cells (7-AAD positive), monocytes (CD11b positive) and B lymphocytes (CD19 

positive), a “dump channel” was created. α-CD11b and α-CD19 antibodies were 

labelled with the same fluorochrome, which had the same fluorescence of the 7-AAD: 

in this way, all three were acquired in the same fluorescent channel and excluded from 

the following analyses. Even though the staining was performed after Fc receptor 

blocking with α-CD16/CD32 antibodies, the exclusion of these cells is very important 

because all of them can bind in a nonspecific manner to antibodies and dextramer 

molecules, affecting the final evaluation of OVA257-264 specific CD8 T cells. Moreover, 

since red blood cells compose the vast majority of peripheral blood cells, they were 

lysed and eliminated. 

After the exclusion of all the above-mentioned cells, T lymphocytes were selected for 

CD3 expression. OVA257-264 specific CD8 T cells were detected as the population 

positive to Dextramer and CD8 signals at the same time, gating on the CD3 positive 

population. 

In order to detect the residual level of nonspecific staining and background noise, a 

negative control dextramer, which carries an irrelevant peptide, was used with the 

same gating strategy. Finally, dextramer positive, i.e. the OVA257-264 specific CD8 T cell 

population, was calculated as percentage of the whole CD8 T cells. 
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As shown in Table 2, both PSP-OVA and MBP-OVA OMVs induced OVA257-264-specific 

CD8 T cells at an average percentage of 1.8 and 0.7%, respectively. An average 

frequency of OVA-specific T cell response of 3.7% was obtained immunizing mice with 

20 µg of “Empty” OMVs adsorbed to 100 µg of synthetic OVA peptide (ads-OVA 

OMVs). “Empty” OMVs alone did not induce any OVA257-264 specific CD8 T cells. 

  

 % of OVA257-264 specific CD8 T cells 
in mice immunized with 

 
Mouse 

 
PSP-OVA 

OMVs 

 
MBP-OVA 

OMVs 

OVA257-264 
adsorbed to 

“Empty” OMVs 

1 0.5 1.4 2.4 

2 1.4 0.3 5.7 

3 5.9 0.2 4.1 

4 0.3 0.4 1.0 

5 0.6 0.3 6.5 

6 2.2 0.1 1.9 

7 0.1 0.3 1.4 

8 2.1 2.6 3.8 

9 1.6 0.9 2.0 

10 3.0 0.7 7.8 

Average 1.8 0.7 3.7 
 

Table 2 | Percentage of OVA257-264 specific CD8 T cells induced by OMV vaccination in 
C57BL/6 mice. Percentage of OVA specific CD8 T cells was calculated as fraction of the CD8 
and dextramer positive events on the total of CD8 positive events. Data accumulated from 2 
independent experiments of 5 mice/group each (n=10). 

Figure 11 shows a representative dextramer analysis of epitope-specific CD8 T cells 

induced by PSP-OVA (11b), MBP-OVA (11c), ads-OVA (11d) and “Empty” (11e) OMV 

vaccination. 

Considering that the OVA epitope represents less than 10% of each fusion protein and 

that mice received 20 µg of OMVs, approximately 0.2-0.4 µg of OVA peptide/dose were 

administered. This amount is approximately 200-fold lower than the amount of 

synthetic OVA peptide adsorbed to OMVs (100 µg peptide/20 µg OMVs). Therefore, 

when the antigen is physically associated to OMVs as in engineered OMVs, the 

elicitation of OVA257-264 specific T cells is much more efficient.   

This is in line with the notion that co-delivering of antigen and adjuvant is a prerequisite 

for an optimal cell-mediated immunity.  
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In conclusion, both PSP-OVA OMVs and MBP-OVA OMVs elicited high OVA257-264 

specific T cells, PSP-OMVs being probably superior to the other fusion. Whether this 

difference is due to the effect of epitope compartmentalization within the vesicles or 

rather to a different expression level of the fusion proteins remains to be investigated.  

Noteworthy, the high mean fluorescence of OVA257-264 specific T cells induced by both 

PSP-OVA and MBP-OVA OMVs indicates that T cells possess high avidity for cognate 

MHC class I-peptide complexes. This result is very important, because only T cells with 

high affinity for their target are useful for and will possibly give some chances to 

therapeutic cancer vaccination. 

 

Figure 11 | OVA engineered OMVs induce OVA257-264 specific CD8 T cells in C57BL/6 
mice. a, C57BL/6 mice were subcutaneously immunized two times on day 0 and day 7 and 
blood was collected on day 12. The analysis of OVA257-264 specific CD8 T cells was performed 
with OVA257-264 specific dextramers on whole blood after red blood cell lysis. As a control, a 
staining with a negative control dextramer, which bear an irrelevant peptide, was included in 
each analysis. b-d, Representative dextramer analysis performed on blood from a mouse 
immunized with b, PSP-OVA OMVs, c with MBP-OVA OMVs, d, with “Empty” OMVs adsorbed 
with 100 OMVs µg of OVA257-264 synthetic peptide and e, with “Empty” OMVs as a control. 
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OMV-based vaccine efficacy in cancer mouse models 

OVA-OMV vaccines protect mice from B16-OVA tumors 

With the previous experiments, we demonstrated that OVA-OMVs induce OVA specific 

T cells. We next asked the question whether such response could protect mice from 

OVA-expressing tumors. The cell line used in this experiment was the B16-OVA, a 

derivative of the murine melanoma B16F10 cell line transfected with a plasmid 

encoding secreted chicken ovalbumin. Before initiating the challenge experiments, 

ovalbumin expression in the culture supernatant of B16-OVA was assessed by ELISA, 

while the presence of the OVA257-264 epitope within the OVA protein sequence was 

confirmed by sequencing the PCR product obtained by amplifying the ovalbumin cDNA 

from B16-OVA total RNA. 

Once the presence and expression of the OVA antigen in B16-OVA was confirmed, 

we subcutaneously injected 2.85x105 cells in C57BL/6 mice (five mice/group) and the 

day after each mouse received 20 µg of PSP-OVA-OMVs, the engineered vesicles 

which gave a T cell response higher than MBP-OMVs (see previous section). 

Immunization was repeated every three days for a total of five injections (see 

immunization schedule in Figure 12a and details in Materials and Methods section). 

Mice immunized with “Empty” OMVs were used as a control and experiments were 

repeated twice on groups of 5 mice. 

 

Tumor growth was followed over a period of 18 days from the challenge, measuring 

tumor size with a caliper. As shown in Figure 12b, immunization with PSP-OVA-OMVs 

strongly inhibited tumor growth and the average tumor size after 18 days from 

challenge was 290 mm3 as opposed to an average of 2054 mm3 in control mice 

(P=0.0001). 
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Figure 12 | PSP-OVA OMV vaccine protect mice from B16-OVA tumors. a, C57BL/6 mice 
were challenged with B16-OVA cells on day 0 and subcutaneously immunized on day 1, 4, 8, 
11 and 15 with either PSP-OVA OMVs or “Empty” OMVs. Tumor growth was followed starting 
from day 8. b, Tumor growth (mean ± s.e.m.) in C57BL/6 mice (n=10) immunized with PSP-
OVA OMVs or “Empty” OMVs as a control. Data accumulated from 2 independent experiments 
of 5 mice/group each. Statistical analysis was performed using unpaired, two-tailed Student’s 
t-test.  
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Synergistic protective activity of OMVs engineered with two antigens 

The data shown in the previous section indicate that OMVs engineered with a TSA can 

protect mice from tumors expressing the epitope with which OMVs were engineered. 

In the clinical setting, anticancer vaccines based on single epitopes may not be highly 

effective in establishing long-term, disease-free survival due to the immunoediting 

process, that selects tumor cells resistant to single-target therapies. Therefore, vaccine 

formulations that combine more than one antigen are expected to be a prerequisite to 

bring cancer vaccines to the clinic. 

Therefore, we next asked the question whether OMVs engineered with two cancer 

epitopes had a superior protective activity of OMVs engineered with either of the two 

antigens. 

The epitopes selected for these experiments were the B cell epitope EGFRvIII and the 

CD4 epitope M30, two epitopes expressed in B16F10-EGFRvIII cell line (see Material 

and methods section for details). 

EGFRvIII is a ligand-independent, constitutively active mutated form of the human 

epidermal growth factor receptor (EGFR) generated by an in-frame deletion and found 

in many malignant brain tumors (up to 60% of primary glioblastoma multiforme is 

EGFRvIII positive) and other cancers such as breast, ovarian and prostate cancer163.  

The in-frame deletion creates a peptide sequence which is not found in normal cells 

and therefore constitutes an ideal target for immunotherapy163,164. Indeed, a peptide 

vaccine based on such epitope have been tested in PhaseII/PhaseIII trials in 

glioblastoma patients165,166. 

A derivative of B16F10 cell line is available that constitutively expresses EGFRvIII and 

therefore such cell line can be exploited to test the efficacy of EGFRvIII-OMV vaccines 

in the syngeneic B57BL/6 mice. 

M30 CD4 epitope has been recently described in B16-F10 melanoma cells11. The 

epitope derived from a mutation, not present in C57BL/6 mice, occurring in the kif18b 

gene, one component of a protein complex involved in microtubule depolimerization167. 

RNA-based vaccine expressing M30 neoepitope have been shown to protect C57BL/6 

mice from the challenge of B16F10 tumor11.  

Since B16F10-EGFRvIII cell line also carries the M30 mutation, such cell line can be 

used to test whether OMVs decorated with EGFRvIII and M30 epitopes could elicit a 
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synergistic protective response against B16F10-EGFRvIII tumor growth in C57BL/6 

mice. 

In this particular experiment, OMVs were engineered using fHbp as carrier protein. 

fHbp is a Neisseria meningitidis lipoprotein that we previously shown to reach the 

surface of E. coli and to be capable of chaperoning foreign polypeptides when fused 

to its C-terminus23.   

We first tested whether OMVs decorated with the Nm-fHbp-vIII fusion protein carrying 

three copies of EGFRvIII peptide at its C-terminus could induce α-EGFRvIII antibodies 

and whether such α-EGFRvIII immune response could protect mice from B16F10-

EGFRvIII challenge. Briefly, a synthetic DNA encoding three copies of EGFRvIII 

peptide was fused to the 3’ end of the fHbp gene, generating the plasmid pET-Nm-

fHbp-vIII. We then transformed the plasmid in E. coli BL21(DE3)ΔompA strain and 

purified Nm-fHbp-vIII OMVs. 

We then immunized mice (n=16) for a total of three times every fourteen days with 20 

µg of Nm-fHbp-vIII OMVs or with 20 µg of “Empty” OMVs as a control (Figure 13a). 

Seven days after the third immunization, sera were collected as indicated in material 

and methods section and the induction of α-EGFRvIII antibodies was confirmed by 

ELISA (Figure 13b). Briefly, Nunc Immobilizer Amino plates were coated with EGFRvIII 

peptide, sera dilutions from each group added and α-EGFRvIII IgGs were revealed 

using alkaline phosphatase-conjugated goat α-mouse total IgG. As shown in Figure 

13b, Nm-fHbp-vIII OMVs but not “Empty” OMVs induced high titers of α-EGFRvIII 

antibodies in C57BL/6 mice. To determine the Th1 or Th2 polarization of the response 

induced by Nm-fHbp-vIII OMV vaccination, we investigated IgG isotype composition. 

ELISA was performed as described above and IgG1 and IgG2a were detected using 

phosphatase-conjugated goat α-mouse IgG1 and IgG2a, respectively. As shown in 

Figure 13b, a large amount of α-EGFRvIII antibodies belonged to IgG2a class, as a 

result of the Th1 immune response168 induced by OMV vaccination. 

On day 35, 0.5x105 B16F10-EGFRvIII cells were subcutaneously injected in each 

mouse and tumor growth followed for thirty days. Immunization with Nm-fHbp-vIII 

OMVs markedly reduced tumor growth in a statistically significant manner compared 

to control mice, immunized with “Empty” OMVs (Figure 13c, P<0.001). While all but 

one control mice developed large tumors 30 days after the challenge, with an average 
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tumor volume of 850 mm3, mice immunized with Nm-fHbp-vIII OMVs developed tumors 

with average volumes of approximately 400 mm3. Remarkably, eight mice were 

completely protected from tumor growth (Figure 13c). 

On day 65, 30 days after B16F10-EGFRvIII cell challenge (Figure 13a), we analyzed 

the tumor-infiltrating cell population both in Nm-fHbp-vIII OMV immunized and control 

mice. Two tumors per group were randomly collected and mechanically and 

enzymatically disaggregated, obtaining a single cell suspension.  The percentage of 

CD4 T cells, CD8 T cells, Tregs, and MDSCs populations was evaluated by flow 

cytometry using specific antibodies. 

Leukocyte population was detected using α-CD45 antibody. Of this population, helper 

T and cytotoxic TILs were selected as positive for CD4 and CD8 molecules, 

respectively. Tregs were identified as FoxP3 positive CD4 cells while MDSCs were 

recognized as leukocytes positive for CD11b and Gr1 markers. CD4, CD8 and 

CD11b/Gr1 double positive cell populations were calculated as a percentage of the 

total leukocyte population. Tregs were calculated as percentage of FoxP3 positive cells 

of the CD4 population. 

 

In line with the Th1 profile of the immune response, Nm-fHbp-vIII OMV immunization 

induced a statistically significant increase of CD4 and CD8 T cells associated with a 

simultaneous reduction of both CD4 Treg and MDSC cells at tumor site (Figure 13d).  
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Figure 13 | Nm-fHbp-vIII OMVs vaccination generates α-EGFRvIII antibodies, protects 
mice from B16F10-EGFRvIII tumors and induces an increase in CD4 and CD8 T cells and 
decrease in Treg and MDSCs infiltrated in B16F10-EGFRvIII tumors. a, C57BL/6 mice 
(n=16) were intraperitoneally immunized three times with either Nm-fHbp-vIII OMVs or “Empty” 
OMVs on day 0, 14 and 28. Seven days after the last immunization, mice were challenged with 
B16F10-EGFRvIII cells and tumor growth was followed. At the end of the experiment (day 65), 
2 tumors per group were collected and analyzed. b, α-EGFRvIII antibody titers in C57BL/6 
mice immunized with “Empty” OMVs and with Nm-fHbpvIII OMVs. Sera from mice immunized 
as reported in a, were pooled and total IgG, IgG1 and IgG2a were measured by ELISA. c, 
Tumor volume at day 65 in mice immunized either Nm-fHbp-vIII OMVs or “Empty” OMVs. d, 
Histograms with percentages of tumor infiltrated cells calculated by flow cytometry analysis. 
*P < 0.05; **P < 0.01; ***P < 0.001. Statistical analysis was performed using unpaired, two-
tailed Student’s t-test. 
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Once demonstrated that Nm-fHbp-vIII OMVs induced a robust protection in C57BL/6 

mice challenged with B16F10-EGFRvIII cell line, we investigated if we could increase 

their protective activity by engineering them with a second antigen (M30 neoepitope). 

We therefore made a fusion protein consisting of fHbp fused to three copies of the M30 

neoepitope followed by three copies of the vIII peptide (See Material and methods 

section for details). This construct was transformed in E. coli BL21(DE3)ΔompA strain 

and Nm-fHbp-M30vIII OMVs were purified. 

To investigate if these vesicles were able to induce M30 specific CD4 T cells, we 

intraperitoneally immunized C57BL/6 mice with 20 µg of Nm-fHbp-M30vIII OMVs on 

day 0 and on day 7, and spleens from each mouse were collected on day 12 (Figure 

14a). Mice immunized with 20 µg of “Empty” OMVs adsorbed with 100 µg of M30 

peptide or immunized with 20 µg of “Empty” OMVs were used as a positive and 

negative controls. 

Single cell suspension was obtained from each spleen and splenocytes were 

incubated with 2 mg/ml of M30 peptide. If immunization induced M30 specific T cells, 

antigen recognition by splenocytes would determine their activation and following 

release of IFN-γ. Therefore, by monitoring IFN-γ release after in vitro stimulation with 

the cognate antigen it is possible to follow antigen specific T cell generation. As 

negative control, cells were stimulated with 2 mg/ml of an unrelated peptide (not 

present in the vaccine formulation): this stimulation should result in no or minimal, non-

specific IFN-γ release. 

As shown in Figure 14b, Nm-fHbp-M30vIII OMVs did induce M30-specific CD4 T cells, 

as demonstrated by the release of IFN-γ by splenocytes from mice immunized with 

Nm-fHbp-M30vIII OMVs and stimulated with M30 peptide. This M30 specific population 

was induced also, at the same magnitude, in mice immunized with “Empty” OMVs 

adsorbed with M30 peptide. The frequencies of IFN-γ positive T cells in both cases 

were greater than the percentages obtained with non-specific stimulation generated by 

an unrelated peptide, which was probably caused by impurities present in the synthetic 

polypeptide. 

To investigate the protective activity, C57BL/6 mice (n=6) were immunized every 

fourteen days for a total of three times (Figure 13a) with 20 µg of Nm-fHbp-M30vIII 

OMVs. Seven days after the last immunization, 0.5x105 B16-EGFRVIII cells were 
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subcutaneously injected in each mouse and tumor growth followed for thirty days. 

Vaccination with Nm-fHbp-M30vIII OMVs completely protected mice from tumor 

growth (P<0.001, Figure 14c).  

 

All together, these experiment strongly demonstrate that when the TSA vIII and the 

neoepitope M30 are co-delivered, they have a synergistic activity in protecting mice 

from tumors expressing both antigens. 

 

 

 

Figure 14 | Synergistic protective activity of OMVs engineered with two antigens. a, 
C57BL/6 mice (n=5) were intraperitoneally immunized two times on day 0 and day 7 with either 
Nm-fHbp-M30vIII OMVs, “Empty” OMVs adsorbed with 100 µg of M30 synthetic peptide or 
“Empty” OMVs as a control and spleens were collected on day 12. b, Splenocytes from mice 
treated with the different OMV vaccines were in vitro stimulated with M30 peptide or with an 
unrelated peptide mix as a control. The release of IFN-γ by CD4 T cells able to recognize the 
M30 was determined by flow cytometry. Analysis of “Empty” OMV immunized mice not shown. 
c, C57BL/6 mice (n=6) were immunized with either Nm-fHbp-vIII OMVs, with Nm-fHbp-M30vIII 
OMVs or with “Empty” OMVs as a control following the schedule described in Figure 13a. The 
graph represents tumor volume (mean ± s.e.m) on day 30 after B16F10-EGFRvIII challenge 
in the differently treated mice. **P < 0.01; ***P < 0.001. Statistical analysis was performed 
using unpaired, two-tailed Student’s t-test. 
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OMV platform in personalized immunotherapy 

The effectiveness of personalized cancer vaccines relies on the use of multiple 

neoepitopes selected among those generated by specific mutations present in each 

individual patient. Usually, 5 to 20 epitopes are considered, in order to minimize tumor 

immune escape driven by cancer immunoediting. For instance, in the two recent 

publications describing the positive results in melanoma patients, ten14 and up to 

twenty15 epitopes were included in the final formulations, respectively. A second 

fundamental requirement of any personalized medicine approach is the time necessary 

to formulate the vaccines once neoepitopes have been selected. A period not 

exceeding three months is considered acceptable to allow the patient to be promptly 

vaccinated after the tumor is resected and sequenced. Therefore, for the OMV platform 

to be compatible with personalized medicine, it has to be tested both for its capacity to 

include multiple neoepitopes, for the time needed to engineer the OMV-producing 

strain, to purify the vesicles and prepare the final formulation. 

Based on the above, we decided to challenge the OMV system by testing its 

applicability with five neoepitopes present in CT26 murine cell line and previously 

described to induce protective T cell responses in BALB/c mice11. 

Before engineering the vesicles with the five selected epitopes M03, M20, M26, M27 

and M68, we first verified their immunogenicity and protective activity by using 

synthetic peptides absorbed to “Empty” OMVs. 

To test immunogenicity, 20 µg of purified OMVs were mixed with 20 µg of each of the 

five synthetic peptides (ads-pentatope OMVs) and mice were intraperitoneally 

immunized on day 0 and day 7 (Figure 15a). On day 12, we performed ICS on 

splenocytes in vitro stimulated with 0.4 mg/ml of each of the five peptides (the five 

peptides as a group are referred to as pentatope). 3 out of 5 mice immunized with ads-

pentatope OMVs generated CD4 and CD8 pentatope-specific T cells, as demonstrated 

by IFN-γ released by splenocytes when stimulated with pentatope peptide mix (Figure 

15b). To demonstrate that the release of IFN-γ was pentatope-specific, the same 

splenocytes were stimulated with an unrelated peptide mix. This time, no T cell 

activation was detected. As a further control, we performed the same analysis on 

splenocytes collected from mice immunized with “Empty” OMVs. As shown in Figure 

15b, in this group only a marginal and negligible CD8 T cell activation could be detected   
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Figure 15 | ads-pentatope OMV vaccine induces pentatope specific T cells and protects 
mice from CT26 tumors. a, BALB/c mice (n=5) were intraperitoneally immunized two times 
on day 0 and day 7 with either ads-pentatope OMVs or “Empty” OMVs and spleens were 
collected on day 12. b, Splenocytes from ads-pentatope OMV or “Empty” OMV immunized 
mice were in vitro stimulated with the five peptides of the pentatope or with an unrelated 
peptide mix as a control. The release of IFN-γ by CD4 and CD8 T cells able to recognize the 
pentatope was analyzed by flow cytometry. c, BALB/c mice were challenged with CT26 cells 
on day 0 and immunized on day 1, 4, 8, 11, 15, 18 and 21 with either ads-pentatope OMVs or 
“Empty” OMVs. Tumor growth was followed starting on day 11. d, Tumor growth (mean ± 
s.e.m.) in BALB/c mice (n=14) immunized with ads-pentatope-OMVs or “Empty” OMVs as a 
control. Data accumulated from 2 independent experiments of 6 mice/group and 8 mice/group, 
respectively. Statistical analysis was performed using unpaired, two-tailed Student’s t-test. 
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when splenocytes were stimulated with pentatope peptides, whereas no pentatope-

specific CD4 T cells was generated by “Empty” OMVs vaccination. 

Once demonstrated the immunogenicity of ads-pentatope OMVs, we assessed the 

capacity of pentatope-specific T cell population to protect mice from CT26 challenge. 

We subcutaneously injected 1.5x105 CT26 cells in BALB/c mice and one day after 

challenge the animals were immunized intraperitoneally with 20 µg of ads-pentatope 

OMVs and the therapeutic immunization was repeated every three days for a total of 

seven injections (Figure 15c). Tumor growth was followed by measuring tumor size 

periodically with a caliper. 

As shown in Figure 15d, 24 days after tumor cell injection, mice vaccinated with ads-

pentatope OMVs had an average tumor volume of 431 mm3 while mice immunized 

with “Empty” OMVs as a control showed an average tumor volume of 972 mm3. This 

data demonstrate that ads-pentatope OMVs strongly inhibited CT26 tumor growth in 

BALB/c mice (P=0.0017). 

 

Having demonstrated the capacity of the pentatope to elicit protective immune 

responses, we moved to OMV engineering, setting up a protocol that could be 

compatible with personalized vaccination. In particular, the strategy we tested was to 

produce five vesicles, each carrying one copy of an epitope and to prepare the final 

formulation by mixing equal amounts of each of the five engineered OMVs. 

Figure 16 schematizes the experimental protocol reporting the time necessary to 

complete each step. In essence, the plasmid encoding PSP (pET-PSP) was modified 

by inserting a cloning site carrying BamHI/XhoI restriction sites immediately up-stream 

the PSP stop codon (no details can be given for confidentiality reasons). Meanwhile, 

single stranded oligonucleotides, each coding for the forward and reverse strand of 

each one of the five neoepitopes, were chemically synthesized. Once annealed, these 

oligonucleotides were designed to create overhangs corresponding to BamHI and XhoI 

sequences at the 5’ and 3’, respectively, of the created minigene (see Materials and 

Methods section and Table 5 for details). Moreover, a stop codon was added at the 

end of the sequence coding each one of the neoepitopes. After annealing of forward 

and reverse synthetic oligonucleotides, the double stranded DNA fragments with 

BamHI and XhoI overhangs were ligated to pET-PSP linearized with BamHI and XhoI 
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and the mixture was used to transform BL21(DE3)ΔompA strain. From selected 

recombinant clones, the correctness of the PSP-neoepitope fusions was sequence 

verified and the clones were finally used to purify OMVs as described above. 

 

Figure 16 | Protocol for the use of OMV as a personalized cancer vaccine platform. 
Schematic representation of the steps and timing involved in the engineering of OMVs with 
specific cancer neoepitopes using the protocol set up for the use of OMVs as personalized 
cancer vaccine platform. 

20 µg of each one of the five OMVs expressing one of the selected antigens (PSP-

M03, PSP-M20, PSP-M26, PSP-M27 and PSP-M68 OMVs) were separated by SDS-

PAGE using Any kD™ Criterion™ TGX Stain-Free™ Protein Gel. As a control, “Empty” 

OMVs were included and proteins were revealed by Coomassie staining. As shown in 

Figure 17, the fusion proteins represented a major component of total OMV proteins. 
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In terms of timing, the whole process required less than seven working days by the 

time oligonucleotides were designed and synthesized.  

 

In conclusion, the OMV platform appears to be perfectly suitable for personalized 

cancer vaccines. 

 

 

Figure 17 | OMVs are efficiently engineered with CT26 neoepitopes. SDS-PAGE analysis 
of 20 µg of OMVs purified from BL21(DE3)ΔompA pET-PSP-M03 (PSP-M03 OMVs), 
BL21(DE3)ΔompA pET-PSP-M20 (PSP-M20 OMVs), BL21(DE3)ΔompA pET-PSP-M26 
(PSP-M26 OMVs), BL21(DE3)ΔompA pET-PSP-M27 (PSP-M27 OMVs) and 
BL21(DE3)ΔompA pET-PSP-68 (PSP-M68 OMVs). OMVs purified from BL21(DE3)ΔompA 
strain transformed with the empty pET vector (“Empty” OMVs) were used as a control. 
Recombinant fusion proteins are indicated by a star.  
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Discussion 

The final goal of this work was to demonstrate that OMVs can be exploited in 

personalized cancer vaccines. We believe that the data presented fully support OMVs 

future use in cancer immunotherapy.  

 

The first important message of our work emerges from the analysis of gene 

transcription profile in draining lymph nodes after OMVs injection. One of the expected 

advantages of OMVs over other adjuvant/delivery systems is that they carry several 

MAMPs18,19 targeting different cellular receptors involved in activation of immune 

responses. Since it is known that combinations of more than one adjuvant can work 

synergistically thus amplifying the stimulation of innate immunity169, OMVs are 

theoretically an ideal vaccine platform. Our transcription profile analysis fully confirmed 

our expectations (Figure 7). 

In line with the abundancy of LPS and lipoproteins in OMVs18,19,139, genes involved in 

the TLR4 and TLR2 pathways (CD14, MyD88, Ticam1) appeared up-regulated170,171. 

Furthermore, the presence of DNA and peptidoglycan in OMVs18,19,139 is also 

consistent with the observed up-regulation of IRF7172 and NOD2173, respectively. 

The simultaneous stimulation of several pattern recognition receptors (PRRs) by 

OMVs described above, explains the upregulation of the pro-inflammatory cytokines 

TNF-α, IL-1β, IL-6 that we identified with the analysis. This cytokine profile is 

associated with M1 macrophages, which promotes Th1 T cell differentiation and tumor 

cell elimination174. 

The strong activation (7.9 fold) of NLRP3 is particularly important. Such activation can 

be due to the stimulation of TLR4 and NOD2, which in turn activate the transcription of 

NLRP3175–179. Since NOD2- and TLR4-induced NLRP3 inflammasome needs further 

stimuli to become activated175–177, one of the triggering signals can come from 

caspase-11, which is activated by cytoplasmic LPS175,176. This is consistent with a 

recent work demonstrating that OMVs after being phagocytosed are release in to the 

cytoplasm and activate caspase-11180. 

Moreover, according to data from our24 and other laboratories141,181 showing that OMVs 

elicit cell-mediated immunity, our transcription profile analysis demonstrated that OMV 
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strongly induce a type 1 immune response together with a concomitant inhibition of 

type 2 differentiation. The cytokines IL-12, IL-18 and IFN-γ are crucial for the 

development of Th1 cells182, together with Stat-1 and the master regulator of Th1 

differentiation, T-bet (Tbx21)115,182,183. All these genes are upregulated in lymph nodes 

after OMV vaccination. Moreover, also GM-CSF is usually upregulated in activated 

macrophages and DCs, but it is also released by activated NK and T cells and can be 

considered as T cell activation indicator. Although in our array IL-12 gene is not 

included, by looking at its downstream pathways we have an indirect evidence of its 

role in OMV immunization. IL-12 is produced by activated DCs and macrophages 

following signaling through TLRs and stimulates cell-mediated immunity by inducing 

Th1 cell development174. IL-12 induces NK cells to release IFN-γ, which activates 

macrophages and enhances their bactericidal activity in early phases of innate 

response to infection184. It also synergizes with pro-inflammatory cytokines like IL-18 

in stimulating IFN-γ production, as well as the cytotoxicity of NK and CD8 T cells174,185. 

Furthermore, IL-12 produced by activated macrophages and DCs, TCR signaling 

following MHC II-antigen binding together with IFN-γ released by activated NK drive 

the Th1 differentiation of naive Th0 CD4 T cells. In these cells, IL-12 induces activation 

of STAT4, which results in IFN-γ production, while IFN-γ signaling induces STAT1 to 

activate the crucial transcription factor T-bet184,185. Moreover, T-bet represses 

differentiation into Th2 cell by inhibiting the key IL-4 gene and affecting the function of 

GATA3182. In fact, Th2 differentiation can be initiated by IL-4: this cytokine induces 

GATA3 transcription factor, master regulator of Th2 differentiation and responsible for 

the transcription of IL-4, IL-5 and IL-13182,185,186. 

The fact that we have found upregulated key players of Th1 differentiation (IL-18, IFN-

γ, STAT1 and T-bet) and downregulated pivotal components of a Th2 differentiation 

(IL-4, GATA3, IL-5 and IL-13) is a solid and compelling evidence not only for a strong 

activation of adaptive immunity by innate response, but also unequivocally support the 

suitability of OMVs in personalized cancer vaccines. 

Finally, OMV vaccination induced both adhesion molecule and chemokines. In fact, we 

found Itgam, molecule responsible for leukocytes adhesion and extravasation187, 

upregulated in lymph nodes of OMV-immunized mice. 
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Remarkable is the upregulation of the chemokine CXCL-10, which is induced in 

response to IFN-γ by leukocytes and monocytes, but also secreted by epithelial cells, 

endothelial cells and fibroblasts188. It is important to attract monocytes, activated Th1 

CD4 T cells, effector CD8 T cells, NK and NK T cells189. Therefore, CXCL10 is a crucial 

chemokine for an effective anticancer response, and the fact that OMVs foster its 

upregulation provide further evidence for the applicability of OMVs as a platform for 

personalized cancer vaccine. 

 

The second relevant result of this work is that immunization with OMVs engineered 

with T cell epitopes induce a potent epitope specific T cell response.  

We decorated OMVs with the CD8 model epitope OVA257-264. By fusing three copies of 

the epitope to two different carrier proteins (PSP and MBP) we successfully delivered 

high amount of the fusion protein to the surface and the lumen of the OMV, respectively 

(Figure 8 and Figure 9). Both PSP-OVA and MBP-OVA OMVs induced OVA-specific 

CD8 T cell population: however, the percentage of OVA-positive CD8 T cells measured 

in the blood was higher after PSP-OVA OMVs immunization compared to the luminal 

counterpart (Figure 11 and Table2). Rather than to antigen amount, differenced in OVA 

specific CD8 T cell induced, if confirmed, can be attributed to the mechanism of cross-

presentation, responsible for the OVA peptide loading on MHCI, that appear to be more 

efficient when the epitope is exposed on the OMV surface. 

 

The elicitation of OVA specific CD8+ T cells correlated with a robust protection in mice 

challenged with B16-OVA cell line. Compared to control mice, a 90% reduction 

(P=0.0001) in tumor growth was observed in mice challenged with B16-OVA cells and 

therapeutically vaccinated with PSP-OVA OMVs (Figure 12b). This indicated that the 

OVA specific CD8 T cells induced by PSP-OVA OMV vaccination have cytotoxic and 

effector function. 

 

Personalized cancer vaccines should contain multiple epitopes in order to overcome 

tumor immune escape driven by cancer immunoediting. We therefore tested the 

protective activity of a combination of two epitopes, the B cell epitope EGFRvIII163,164 

and the CD4 T cell epitope M3010,11, both expressed in the murine B16F10-EGFRvIII 
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cell line. We first demonstrated that mice immunized with EGFRvIII-OMVs induced a 

strong protection against B16F10-EGFRvIII challenge in C57BL/6 mice (Figure 13c). 

Interestingly, protection not only correlated with the elicitation of α-EGFRvIII antibodies 

(Figure 13b) but also with tumor infiltration of CD4 and CD8 T cells and concomitant 

reduction of MDSCs and Tregs (Figure 13d). Although we do not have a direct 

evidence, according to the reported cell mediated cytotoxicity induced by α-EGFRvIII 

antibodies164, we can speculate that infiltrated CD4 and CD8 T cells are specific for 

mutation-derived neoepitopes present of B16F10-EGFRvIII cells. In fact, the 

neoepitopes released by tumor cells after vIII-antibody mediated NK cytotoxicity or 

complement activation might be taken up by antigen presenting cells, which then elicit 

a neoepitope specific T cell immune response. Moreover, α-EGFRvIII antibody coated 

tumor cells might be directly phagocytosed by APCs190 and therefore neoepitopes 

presented on both MHC class I and class II molecules to T cells. B16-F10 are a 

malignant melanoma cell line characterized by a high mutational load and therefore a 

high frequency of cancer-specific neoepitopes10,11. This should promote the elicitation 

of a large population of neoepitope-specific T cells, whose importance has been widely 

demonstrated  in both preclinical11–13 and clinical studies4–9,14,15,126. 

Once we demonstrated the protective activity of EGFRvIII-OMVs, after challenge with 

B16F10-EGRFvIII cells, we immunized C57BL/6 mice with OMVs engineered with both 

EGFRvIII and M30. Our data demonstrated that the two epitopes worked 

synergistically, providing a full protection against the challenge with the cancer cell line 

(Figure 14c).   

 

The efficacy of combination of more than one epitope was further confirmed using five 

neoepitopes expressed in CT26 cell line11. OMVs, when formulated with these five 

cancer neoepitopes and therapeutically injected in BALB/c mice challenged with CT26 

cells, induced neoepitope specific T cells (Figure 15b) and a strong inhibition of tumor 

growth compared to control mice (P=0.0017, Figure 15d). 

 

The last message of this work is the demonstration that the OMV platform is fully 

compatible with personalized medicine. In the clinical setting is mandatory that, once 

the patient-specific neoepitopes are identified by exome/RNA sequencing of tumor 
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biopsies, the final vaccine formulation including selected neoepitopes is ready to be 

injected into the patient in less than three months14.  

For this reason, we set up a protocol to efficiently and promptly engineer OMVs with 

several antigens. We demonstrated that our cancer vaccine platform could be 

efficiently used to build a personalized cancer vaccine in extremely short time (Figure 

16 and Figure 17).  In fact, we have demonstrated that it is feasible to create vaccines 

containing neoepitopes deriving from de novo mutations in cancer cells in less than 

seven working days. 

 

Altogether, we have provided compelling evidence for a future use of OMVs as an 

effective personalized cancer vaccine platform. 
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Future perspectives 

We have demonstrated that OMVs activate both innate and adaptive immunity and that 

vesicles induce a Th1-skewed immune response. Furthermore, we have demonstrated 

in mouse models that single- and double-antigen engineered OMVs induce epitope 

specific immune responses, which protect mice from growth of tumors expressing such 

antigens. Moreover, we set up a protocol to efficiently engineer OMVs with cancer 

neoantigens, which is suitable for a personalized cancer vaccine approach. 

 

There are still a few unanswered questions we would like to address in the near future. 

First, our studies on protective activity of engineered OMVs have been restricted to the 

analysis of primary, subcutaneously implanted, tumors. Since metastases are the main 

cause of death in humans, it will be important to see whether OMV immunization can 

also prevent their formation. Considering that the tumor cell lines we used can also be 

used for metastases models, we can use them to answer this question.  

Second, as pointed out several times in this document, an effective cancer vaccine 

should include several (five to twenty) different patient-specific neoepitopes. This 

opens the question on how to engineer OMVs in order to accommodate all required 

epitopes. One possibility is to fuse strings of different epitopes to the carrier protein. 

We are already testing this approach and we already know that strings of up to five to 

ten epitopes can be efficiently expressed in OMVs. We are currently investigating, 

using a variety of different epitopes, what the maximum number of antigens is, that can 

be expressed in OMVs with this approach. Alternatively, OMVs can be engineered with 

single (or few) epitopes and subsequently combinations of different engineered OMVs 

can be mixed to create the final vaccine formulation. Considering the ease with which 

OMVs can be produced, this second option should be also compatible with clinical 

applications for personalized cancer therapies. In line with this, we will test if OMVs 

engineered with the CT26 neoantigens are able to protect mice from tumor growth.  

Finally, to be applicable in the clinic, the process for OMV production must be robust 

and reproducible. Therefore, a number of analytical assays have to be set-up to 

analyze the yield of OMVs in fermentation, the quantity of OMVs purified from culture 

supernatant, the quality of OMVs in terms of protein content, and presence of possible 
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contaminants deriving from the fermentation process. To solve this question, our group 

is also working on implementing different analytical methods, including mass 

spectrometry, spectroscopic and electrophoretic analysis which will be used to quality 

control every different batch of engineered OMVs.  

 

All these experiments will provide us comprehensive information on the OMV platform 

suitability and efficacy in personalized cancer vaccine immunotherapy.  
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Materials and methods 

Chemicals, cell lines and animals 

LB broth medium and ampicillin were purchased from Sigma-Aldrich. 

Bacterial stock preparations for each strain were stored at -80°C in 20% dimethyl 

sulfoxide (DMSO). Cells were tested for mycoplasma before animal injection. 

Roswell Park Memorial Institute (RPMI) medium and Fetal Bovine Serum (FBS) were 

purchased from Gibco, Life Technologies. Penicillin/streptomycin/L-glutamine (PSG) 

was purchased from Thermo Fisher Scientific. GeneticinTM G418 was purchased from 

Gibco, Thermo Fisher Scientific. 

Mouse melanoma B16F10 and CT26 mouse colon carcinoma cell lines, were kindly 

given by the Department of Biomedical and Clinic Sciences of the University of 

Florence. 

B16F10-EGFRvIII cell line, a melanoma cell line stably expressing human EGFRvIII 

was kindly provided by Prof. J. H. Sampson from the Department of Neurosurgery of 

the Duke University Medical Center in North Carolina (U.S.). 

B16-OVA cell line, a B16F10 cell line transfected with a plasmid carrying a complete 

copy of chicken ovalbumin (OVA) mRNA and the Geneticin (G418) resistance gene, 

was kindly provided by Cristian Capasso and prof. Vincenzo Cerullo from the 

Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, 

University of Helsinki. 

C57BL/6 and BALB/c female 4-6 week old mice were purchased from Charles River 

Laboratories and kept and treated in accordance with the Italian policies on animal 

research at CIBIO, University of Trento, Italy. 

Bacterial strains and culture conditions 

Plasmid assembly using the polymerase incomplete primer extension (PIPE) 

method157 was carried out in E. coli HK-100 strain. OMVs were purified from E. coli 

BL21(DE3)ΔompA strain as previously described23,24,191. E. coli was routinely grown in 

LB broth medium (Sigma-Aldrich) at 30°C and/or 37°C  and 180 rpm. When required, 

Ampicillin (Amp) was added to a final concentration of 100 μg/ml. Stock preparations 

of strains in LB and 20% glycerol were stored at -80°C. Each bacterial manipulation 
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was started from an o/n culture inoculum of a frozen stock or of a single colony from 

LB plate. 

B16F10, B16F10-EGFRvIII and CT26 cell lines were cultured in RPMI supplemented 

with 10% FBS and PSG, and grown at 37°C in 5% CO2. 

B16-OVA cell line was cultured in RPMI supplemented with 10% FBS, PSG and 5 

mg/ml GeneticinTM (Gibco, Life Technologies) and grown at 37°C in 5% CO2.  

Amino acid sequences of the epitopes 

All peptides were purchased from GenScript. 

 

Peptide Sequence 

OVA257-264 SIINFEKL 

OVA QLESIINFEKLTEGGQLESIINFEKLTEGGQLESIINFEKLTE 

EGFRvIII LEEKKGNYVVTDH 

3xEGFRvIII GSLEEKKGNYVVTDHGSLEEKKGNYVVTDHGSLEEKKGNYVVTDH 

M30 PSKPSFQEFVDWENVSPELNSTDQPFL 

M03 DKPLRRNNSYTSYIMAICGMPLDSFRA 

M20 PLLPFYPPDEALEIGLELNSSALPPTE 

M26 VILPQAPSGPSYATYLQPAQAQMLTPP 

M27 EHIHRAGGLFVADAIQVGFGRIGKHFW 

M68 VTSIPSVSNALNWKEFSFIQSTLGYVA 

 

Table 3 | Epitopes. Amino acid sequences and name of each epitope used in this work. 

Analysis of immune gene expression in mice immunized with OMVs 

C57BL/6 (n=3) mice were subcutaneously immunized with 20 µg of OMVs purified from 

E. coli BL21(DE3)ΔompA strain or PBS (OMVs resuspension buffer) as a control. After 

36 hours, draining lymph nodes were collected and total RNA extracted using RNeasy 

Mini Kit (Qiagen) as per manufacturer’s instruction. cDNA was retrotranscribed using 

RT2 First Strand Kit (Qiagen) following manufacturer’s instruction. Gene expression 

levels were assessed by qPCR using RT² Profiler™ PCR Array Mouse Innate & 

Adaptive Immune Responses (Qiagen) following manufacturer’s instruction using 
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BioRad CFX384 instrument. qPCR data analysis was performed using the web portal 

available on the Qiagen website (http://www.qiagen.com/geneglobe, 

www.qiagen.com/it/shop/genes-and-pathways/data-analysis-center-overview-page/) 

to create the scatter plot in Figure 6. qPCR data analysis for each gene was performed 

using the cycle threshold (CT) method. Briefly, ΔCT was normalized subtracting to the 

CT of each gene in a group the average of the three CT values (3 mice/group) of β2-

microglobulin reference housekeeping gene (ΔCT= CT(gene in OMV/PBS group)- 

CT(average of the three mice of CT values of β2-microglobulin in OMV/PBS group). 

ΔΔCT was obtained by subtracting the average of ΔCT in the PBS group to the ΔCT in 

the OMV immunized group for each gene (ΔΔCT= ΔCT(OMVs group)- ΔCT(PBS 

group)). Fold Change is then calculated using the 2^ (-ΔΔCT) formula. Gene expression 

level is then calculated as fold regulation, which is equal to the fold change for up-

regulated genes, while it is the negative inverse of the fold change for down-regulated 

genes. Histogram of fold regulation were created using GraphPad Prism 5.03. 

pET-PSP-OVA and pET-MBP-OVA generation 

Plasmid assembly was made by the polymerase incomplete primer extension (PIPE) 

method157. 

Full sequence of both Maltose binding protein (MBP) and PSP (no details of PSP can 

be given for confidentiality reasons) were previously cloned in our laboratory in the 

pET21b+ plasmid. 

The synthetic gene encoding for 3 copies of OVA257-264 epitope with its flanking 

sequences separated by a glycine-glycine flexible spacer was purchased from 

GeneArt® Gene Synthesis (LifeTechnologies). Full sequence of the construct is 5’-

CAGCTGGAAAGCATTATTAACTTTGAAAAACTGACCGAAGGTGGTCAGCTGGAA

AGCATTATTAACTTTGAAAAACTGACCGAAGGTGGTCAGCTGGAAAGCATCATC

AACTTCGAAAAACTGACCGAA-3’. 

The peptide coded by this construct will be referred to simply as OVA (sequence: 

QLESIINFEKLTEGGQLESIINFEKLTEGGQLESIINFEKLTE). 

To clone OVA to pET-PSP and obtain the fusion protein PSP-OVA: 

pET-PSP was linearized using Nohisflag and PSP-Rev primers, OVA construct was 

amplified with OVAPSP-F and OVAPSP-R primers (Table 3). Finally, PCR products 

http://www.qiagen.com/geneglobe
http://www.qiagen.com/it/shop/genes-and-pathways/data-analysis-center-overview-page/
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were mixed together and used to transform E. coli HK100 competent cells, obtaining 

pET-PSP-OVA. 

To clone OVA to pET-MBP and obtain the fusion protein MBP-OVA, pET-MBP was 

linearized using Nohisflag and MBP-Rev primers, OVA construct was amplified with 

OVAMBP-F and OVAMBP-R primers (Table 3). Finally, PCR products were mixed 

together and used to transform E. coli HK100 competent cells, obtaining pET-MBP-

OVA. 

 

Oligo name Sequence 

OVAPSP-F 5’-
TAATTAAAGCTGCAAAACAGCTGGAAAGCATTATTAACTTTGAAAAAC
-3’ 

OVAPSP-R 5’-
TGGTGATGGTGATGTTATTCGGTCAGTTTTTCGAAGTTGATGATGCT
TTC-3’ 

PSP-Rev 5’-TTTTGCAGCTTTAATTAATTTTTCTTTTAAATCTTTACGC-3’ 

OVAMBP-F 5’-ACTCGTATCACCAAGCAGCTGGAAAGCATTATTAACTTTG-3’ 

OVAMBP-R 5’-GTGATGGTGATGTTATTCGGTCAGTTTTTCGAAGTTGATG-3’ 

MBP-Rev 5’-CTTGGTGATACGAGTCTGCGC-3’ 

Nohisflag 5’-TAACATCACCATCACCATCACGATTACAAAGA-3’ 

 

Table 4 | Primers. List of all primers used to OVA257-264 to pET-PSP and pET-MBP. 

 

pET-Nm-fHbp-vIII plasmid expressing Nm-fHbp fused to three copies of EGFRvIII 

peptide separated by a Glycine-Serine spacer, was generated as previously 

described23. 

pET-Nm-fHbp-M30-vIII plasmid carrying Nm-fHbp gene fused to three copies of M30 

peptide and three copies of EGFRvIII peptide, each copy intercalated by a Glycine-

Serine spacer, was generated as previously described24. 

OMV purification and SDS-PAGE 

Plasmids containing the genes of interest were used to transform E. coli 

BL21(DE3)ΔompA strain. Recombinant clones were grown at 30°C and 180 rpm in LB 

medium (starting OD600 = 0.05) and, when the cultures reached an OD600 value of 0.5, 

protein expression was induced by addition of 0.1 mM IPTG (Sigma-Aldrich). After 4 

hours, culture supernatants were separated from living bacterial cells by a 

centrifugation step at 6,000 x g for 15 minutes followed by a filtration through a 0.22 
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μm pore size filter (Millipore). Supernatants were then subjected to high-speed 

centrifugation (200,000 x g for 2 hours) and pellets containing the OMVs were finally 

re-suspended in sterile 1X PBS. OMVs amounts were estimated by measuring protein 

concentration using DC protein assay (Bio-Rad) or NanoDrop (Thermo Fisher 

Scientific). 20 µg (protein content) were resuspended in sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) Laemmli buffer and heated at 100°C 

for 10’. Proteins were separated using NuPAGE™ 4-12% Bis-Tris Protein Gels 

(Thermo Fisher Scientific) in MES (2-morpholin-4-ylethanesulfonic acid) buffer 

(Thermo Fisher Scientific) or using Any kD™ Criterion™ TGX Stain-Free™ Protein Gel 

(BioRad) in TrisGlicyne buffer (BioRad).Finally proteins were revealed by Coomassie 

Blue staining. 

Western Blot 

Purified OMVs (20 μg of protein content) were suspended in Laemmli buffer and were 

then separated using NuPAGE™ 4-12% Bis-Tris Protein Gels (Thermo Fisher 

Scientific) in MES buffer (Thermo Fisher Scientific) or using Any kD™ Criterion™ TGX 

Stain-Free™ Protein Gel (BioRad) in TrisGlicyne buffer (BioRad). Proteins separated 

by SDS-PAGE were subsequently transferred onto nitrocellulose membrane (iBlot™ 

Transfer Stack, nitrocellulose, Thermo Fisher Scientific) with iBlot® Dry Blotting 

System (Thermo Fisher Scientific). The membranes were blocked at room temperature 

(RT) for 30’ by agitation in blocking solution (10% skimmed milk and 0.05% Tween 20 

dissolved in PBS (PBST)). Rabbit polyclonal α-OVA antibodies (pAbs) were incubated 

for 1 hour at RT or o/n at 4°C. The pAbs were custom made by Genscript and were 

used at 0.8 μg/ml concentration in 1% skimmed milk-PBST. After three washing steps 

of 5’ in PBST, the membranes were incubated in 1:2,000 dilution of peroxidase-

conjugated anti-rabbit total IgGs (Dako) for 1 hour in 1% skimmed milk-PBST, and after 

2 washing steps of 5’ in PBST and 1 wash of 5’ in PBS, antibody binding was detected 

by using the Novex™ ECL Chemiluminescent Substrate Reagent Kit (Thermo Fisher 

Scientific) at ChemiDOC (BioRAS) instrument. 
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Triton X-114 assay 

Protein phase partitioning with Triton X-114 (Sigma-Aldrich) was assessed with minor 

modification from previous work158. 100 µg of OMVs were diluted in 450 µl of PBS, 

then ice cold 10% TritonX-114 was added to 1% final concentration and the OMV-

containing solution was incubated at 4 °C for 1 h under shaking. The solution was then 

heated at 37 °C for 10’ and the aqueous phase was separated from the detergent by 

centrifugation at 13,000 x g for 10’. Proteins in both phases were then precipitated by 

standard chloroform/methanol procedure, separated by SDS-PAGE electrophoresis 

and the protein of interest visualized by Western blot using α-OVA antibodies. 

Flow cytometry on bacteria 

E. coli BL21(DE3)ΔompA strain transformed with pET-PSP-OVA and E. coli 

BL21(DE3)ΔompA strain transformed with pET-MBP-OVA  were grown at 30°C and 

180 rpm in LB medium (starting OD600 = 0.05) and, when the cultures reached an OD600 

value of 0.5, protein expression was induced by addition of 0.1 mM IPTG (Sigma-

Aldrich). After induction, a volume corresponding to OD=1 was collected from each 

culture and centrifuge at 14,000 rpm 10’. Pellet was resuspended in 1ml PBS/BSA 1% 

and further diluted 1:50 in PBS/BSA 1%. 50 µl/well were put in 96 well plate. 50 µl of 

2x solution of rabbit α-OVA antibodies (final concentration is 8 μg/ml) in PBS/BSA 

1%were added in selected wells and cell incubated for 1h at 4°C. Cells were then 

washed 2 times with 100-200 µl/well of PBS/BSA 1% and centrifuged centrifuge for 10’ 

at 3500 rpm and 4°C. 100 µl/well of Alexa Fluor®488 α-rabbit IgGs (Thermo Fisher 

Scientific) diluted 1:200 (final concentration is 10 µg/ml) in PBS/BSA1% were added in 

selected wells and incubated for 1h at 4°C in the dark. Cells were then washed 2 times 

with 100-200 µl/well of PBS/BSA 1% and centrifuged centrifuge for 10’ at 3,500 rpm 

and 4°C. Cells were fixed with 100 µl PBS/Formaldehyde 2% for 15’ at room 

temperature. Cells were then washed 2 times with 100-200 µl/well of PBS and 

centrifuged centrifuge for 10’ at 3,500 rpm and 4°C. Cells were finally resuspended 

cells in 200 µl of PBS and stored at 4 °C in the dark or acquired to the Flow cytometry. 

Data were analyzed using FlowJo v10.1. 
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Animal studies 

Mice were monitored twice per day to evaluate early signs of pain and distress, such 

as respiration rate, posture, and loss of weight (more than 20%) according to humane 

endpoints. Animals showing such conditions were anesthetized and subsequently 

sacrificed in accordance with experimental protocols, which were reviewed and 

approved by the Animal Ethical Committee of The University of Trento and the Italian 

Ministry of Health. 

Mice immunization 

For T cell generation, C57BL/6 or BALB/c mice were subcutaneously or 

intraperitoneally injected with either 20 µg of engineered OMVs, with 20 µg of “Empty” 

OMVs adsorbed to a total of 100 µg of a single or a mix of synthetic peptides or with 

20 µg of “Empty” OMVs. Immunization were performed on day 0 and on day 7. On day 

12-13, either blood or spleens were collected and analyzed. 

Tumor challenge experiments 

2.85x105 B16-OVA cells were subcutaneously injected in C57BL/6 mice on day 0. Mice 

were then immunized on day 1, 4, 8, 11 and 15 with either 20 µg of PSP-OMVs or 20 

µg of “Empty” OMVs. Tumor growth was followed from day 8 on every 3 days. 

C57BL/6 mice were immunized intraperitoneally on day 0, 14 and 28 with either 20 µg 

of Nm-fHbpvIII OMVs, Nm-fHbp-M30-vIII OMVs or “Empty” OMVs. On day 35, blood 

was collected by submandibular bleeding to measure α-EGFRvIII antibodies. On the 

same day, 0.5 x 105 B16F10-EGFRvIII cells were subcutaneously injected in mice and 

tumor growth was followed every 3 days from day 47 to the end of the experiment (day 

65). 

1.5x105 CT26 cells were subcutaneously injected in BALB/c mice on day 0. Mice were 

then immunized on day 1, 4, 8, 11, 15 and 21 with either 20 µg of ads-pentatope-OMVs 

(20 µg of “Empty” OMVs adsorbed to 20 µg/peptide of M03, M20, M26, M27 and M68) 

or 20 µg of “Empty” OMVs. Tumor growth was followed from day 11 on every 3 days. 
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Tumor measurements 

Tumor volume was measured unblinded with a caliper and calculated using the formula 

(AxB2)/2 where A was the largest and B the smallest diameter of the tumor. Statistical 

analysis (unpaired, two-tailed Student’s t-test) and graphs were processed using 

GraphPad Prism 5.03 software. 

T cell detection by flow cytometry 

Dextramer analysis 

For the staining of CD8 T cells with dextramers (Immudex), the manufacturer’s 

instructions were followed with minor modifications. Blood was collected either by 

submandibular bleeding or by cardiac puncture. 120 μL of whole blood were incubated 

with 5 µl of OVA257-264 (SIINFEKL) dextramer-PE for 10’ at room temperature in a 12 x 

75 mm polystyrene test tube. To block Fc receptors, 3 µl of α-CD16/CD32 was added 

and incubated for 15’ at room temperature. Then, 5 µl of 7-AAD, 5 µl of α-CD19-PerCP, 

5 µl of α-CD11b-PerCP, 3 µl of α-CD3-FITC and 5 µl α-CD8-APC antibodies were 

added and incubated for 20’ at 4°C in the dark (all these antibodies were purchased 

from Beckton Dickinson (BD)). At this stage, red blood cells were lysed with 2 ml of  

EasyLyseTM working solution (Dako) for 15’ at room temperature. Cells were 

centrifuged for 5’ at 300 x g and washed 2 times with 2 ml of PBS+%% FBS. Cells 

were finally resuspended in 350 µl of PBS and acquired using BD FACSCanto. For a 

better detection of antigen specific CD8 T lymphocytes, a strategy to exclude unwanted 

cell populations and reduce the background noise was adopted, with minor 

modifications as previously described161,162. Briefly, after gating lymphocytes from all 

events on the basis of SSC-A and FSC-A, a very strictly gating strategy was used. 

Single cells were selected on SSC-A and SSC-W, excluding both duplets and 

aggregates, which would have bound more and in a nonspecific manner respectively, 

the following antibodies. A “dump channel” was constructed in order to exclude dead 

cells (7-AAD positive), monocytes (CD11b positive) and B lymphocytes (CD19 

positive): all these antibodies carried the same fluorochrome molecule (PerCP) and 

were used in the same fluorescent channel. The exclusion of these cells is very 

important because all of them can bind in a nonspecific manner to antibodies and 



  

75 
 

multimer molecules, affecting the final output of the staining. After the exclusion of all 

the above mentioned cells, T lymphocytes were selected for CD3 expression and the 

positive fraction inspected for CD8 to obtain the mean fluorescent values of the CD8 

positive cells to set in the following plot. Dextramer positive T cells were finally 

visualised against CD8 expression, gating on the CD3 positive population. 

In order to detect the residual level of nonspecific staining and background noise, a 

negative control dextramer, which carries an irrelevant peptide, was used with the 

same gating strategy. 

The OVA257-264 specific CD8 T cell population was calculated as percentage of 

dextramer and CD8 positive cells on the total of CD8 cells. 

Intracellular cytokine staining on splenocytes 

Mice were immunized twice intraperitoneally at days 0 and 7 with either 20 μg “Empty” 

OMVs, 20 μg “Empty” OMVs + 100 µg M30 peptide, 20 μg Nm-fHbp-M30-vIII-OMVs 

or 20 μg of ads-pentatope-OMVs (20 µg of “Empty” OMVs + 20 µg of each of M03, 

M20, M26, M27 and M68 peptides). On day 12, mice were sacrificed and spleens 

collected. Spleens were then homogenized and splenocytes filtered using a 70 μm cell 

Strainer (BD). After centrifugation at 400 x g for 7’, splenocytes were resuspended in 

RPMI+10%FBS and PSG and aliquoted in a 96-well plate at a concentration of 1x106 

cells per well. Cells were stimulated with 2 mg/ml of M30 peptide (spleens from mice 

immunized with Nm-fHbp-M30-vIII-OMVs and “Empty” OMVs + 100 µg M30 peptide) 

or with 0.4 mg/ml of each of the 5 pentatope peptides (M03, M20, M26, M27 and M68; 

spleens from mice immunized with ads-pentatope OMVs). As positive and negative 

controls, cells were stimulated with phorbol 12-myristate 13-acetate (PMA, 0.5 mg/ml) 

and Ionomycin (1 mg/ml) or with 2 mg/ml of an unrelated peptide, respectively. After 2 

hours of stimulation at 37°C, Brefeldin A (BD) was added to each well and cells 

incubated for 4 hours at 37°C. After two washes with PBS, LIVE/DEAD™ Fixable Near-

IR Dead Cell Stain Kit (Thermo Fisher Scientific) was incubated with the splenocytes 

for 20’ at RT in the dark. After two washes with PBS and permeabilization and fixing 

with Cytofix/Cytoperm (BD) following manufacturer’s protocol, Fc receptors were 

blocked with 3 µl of α-CD16/CD32 for 15’ at room temperature. Splenocytes were 

stained with the following fluorescent-labeled antibodies: α-CD3-APC (BioLegend), α-
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CD4-BV510 (BioLegend), α-CD8-PECF594 (BD), and α-IFN-γ-BV785 (BioLegend). 

Samples were acquired on a BD FACSCanto II flow cytometer. Briefly, after gating 

lymphocytes from all events on the basis of SSC-A and FSC-A, single cells were 

selected on SSC-A and SSC-W, excluding both duplets and aggregates, which would 

have bound more and in a nonspecific manner, respectively, the antibodies. Live cells 

were selected as negative to LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit 

(Thermo Fisher Scientific) and T lymphocytes were selected for CD3 expression. CD4 

and CD8 lymphocytes were identified as positive for CD4 and CD8 molecules, 

respectively. IFN-γ positive T cells were finally visualized against CD4 or CD8 

expression (depending on the epitope nature), gating on the CD3 positive population. 

The IFN-γ releasing CD4 and CD8 T cell populations were calculated as percentage 

of IFN-γ/CD4 and IFN-γ/CD8 double positive cells on the total of CD4 or CD8 cells, 

respectively. 

Graphs and statistical analyses (unpaired, two-tailed Student’s t-test) were performed 

with GraphPad Prism 5.03. 

Analysis of TILs 

Tumor-infiltrating lymphocytes were isolated from subcutaneous B16F10-EGFRvIII 

tumors taken from sacrificed mice. Two tumors per group were collected and minced 

into pieces of 1–2 mm of diameter using a sterile scalpel. Tumor samples were then 

transferred into 15 ml tubes containing 5 ml of collagenase solution (Collagenase Type 

3,200 U/ml, Collagenase Type 4,200 U/ml (DBA Italia)) diluted in Hank's Balanced Salt 

Solution (HBSS, Gibco, Thermo Fisher Scientific) with 3 mM CaCl2 and incubated 

under agitation for 2 hours at 37°C. The resulting cell suspensions were filtered through 

a 70 μm cell strainer 70 μm, washed twice with PBS and 1×106 cells were dispensed 

in a 96-well plate. Then, cells were incubated with LIVE/DEAD™ Fixable Near-IR Dead 

Cell Stain Kit (Thermo Fisher Scientific) 20’ at RTin the dark. After two washes with 

PBS, Fc receptors were blocked with 3 µl of α-CD16/CD32 for 15’ at room temperature. 

Samples were stained with the following mixture of fluorescent-labeled antibodies (all 

antibodies were purchased from BD): α-GR1 (BV605), α-CD11b-BV480, α-CD45-

BV786, α-CD3-BV421, α-CD4-PE, α-CD8- PECF594 and α-CD25-APC. The samples 

were then incubated 1 hour at RT. After two washes with PBS, Cytofix/Cytoperm (BD) 
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was added to each well and incubated 20’ on ice in the dark. After two washes with 

PBS, cells were stained with α-Foxp3-A488 (BD) antibodies diluted in Permwash 1x 

buffer for 20’ at RT in the dark. Finally, samples were washed two times with 1% BSA 

in PBS and analyzed on a BD FACSCanto II. Briefly, after selecting live cells as the 

population negative for LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit (Thermo 

Fisher Scientific), a homogeneous cell population was individuated from all events on 

the basis of SSC-A and FSC-A. Single cells were selected on SSC-A and SSC-W, 

excluding both duplets and aggregates, which would have bound more and in a 

nonspecific manner, respectively, antibodies. Leukocytes were selected as population 

positive to CD45 antibodies. Helper and cytotoxic TILs were identified as leukocytes 

positive for the CD4 and CD8 molecules, respectively. Tregs were individuated as CD4 

subpopulation positive to FoxP3 marker. MDSCs were identified as leukocytes positive 

for both CD11b and Gr1 markers. CD4, CD8 and CD11b/Gr1 double positive cell 

populations were calculated as a percentage of the total leukocyte population. Tregs 

were calculated as percentage of FoxP3 positive cells of the CD4 population. 

ELISA 

To obtain serum, blood was collected from the submandibular vein, let stand for half 

an hour at RT and centrifuged for 10’ at 2,000 x g. ELISA was performed using Nunc 

Immobilizer Amino plates (Thermo Fisher Scientific). Plate coating was performed by 

incubating plates o/n at 4°C with 100 μl of synthetic EGFRvIII peptide (5 μg/ml, 

Genscript). The day after, wells were washed 3 times with PBST (0.05% Tween 20 

dissolved in PBS), saturated with 100 μl of 1% BSA dissolved in PBS for 1 hour at 

37°C and washed again 3 times with PBST. An equal amount of serum from each 

mouse immunized with either Nm-fHbp-vIII OMVs or “Empty” OMVs as a control was 

pooled and 100-fold diluted in PBST and 0.1% BSA. This starting solution was 

threefold serially diluted in PBST and 0.1% BSA and 50 μl/well of each solution added 

to the EGFRvIII coated plate. After 3 washes with PBST, 100 μl of each serum dilution 

were dispensed in plate wells and incubated 2 hours at 37°C. Wells were subsequently 

washed 3 times with PBST and incubated for 1 hour at 37°C with alkaline phosphatase-

conjugated goat α-mouse total IgG (Sigma-Aldrich), goat α-mouse IgG1 

(SouthernBiotech) or goat α-mouse IgG2a (SouthernBiotech) at a final dilution of 
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1:2,000. After triple PBST wash, 100μl of Alkaline Phosphatase substrate (Sigma-

Aldrich) were added to each well and plates were maintained at RT in the dark for 30’. 

Finally, absorbance was read at 405nm using Tecan Infinite M200Pro Plate reader. 

Protocol for OMV engineering for the personalized cancer vaccine 

platform 

pET-PSP was modified and BamHI and XhoI restriction enzyme sites were added 

before PSP stop codon (no details can be given for confidentiality reasons). 

Forward and reverse single stranded oligonucleotides coding for each one of the five 

neoepitopes were chemically synthesized. After oligo phosphorylation with T4 

Polynucleotide Kinase (New England Biolabs), forward and reverse strands were 

annealed creating a mini-gene encoding the neoepitope (e.g. M03F and M03R after 

annealing create M03 neoantigen minigene with BamHI and XhoI overhangs at the 5’ 

and 3’ ends of the gene, respectively; for full list of oligos used and for their nucleotide 

sequences, see Table 5). Annealing was performed at 95°C for 10’ and then lowering 

the temperature by 0.5°C every 20’’ until 65°C. After annealing, they were ligated to 

pET-PSP linearized with BamHI and XhoI using T4 DNA Ligase (New England 

Biolabs). After cloning, a glycine/serine spacer is created between PSP and the 

neoepitope. This mixture was used to transform BL21(DE3)ΔompA strain and PSP-

neoepitope fusions was sequence verified from selected recombinant clones. Clones 

with the correct pET-PSP-neoepitope sequence were finally used to purify OMVs as 

described above. 
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Neoantigen Oligo name Sequence 
M03 M03F 5’-

GATCCGACAAGCCCTTACGTCGCAATAACTCCTATAC
GAGCTATATTATGGCGATCTGCGGGATGCCACTTGAT
AGCTTTCGTGCCTAAC-3’ 

M03 M03R 5’-
TCGAGTTAGGCACGAAAGCTATCAAGTGGCATCCCGC
AGATCGCCATAATATAGCTCGTATAGGAGTTATTGCG
ACGTAAGGGCTTGTCG-3’ 

M20 M20F 5’-
GATCCCCTCTTTTACCTTTTTATCCACCAGACGAGGCA
TTGGAAATCGGCCTTGAATTAAATTCTTCAGCGTTGCC
ACCCACAGAATAAC-3’ 

M20 M20R 5’-
TCGAGTTATTCTGTGGGTGGCAACGCTGAAGAATTTA
ATTCAAGGCCGATTTCCAATGCCTCGTCTGGTGGATA
AAAAGGTAAAAGAGGG-3’ 

M26 M26F 5’-
GATCCGTAATTCTTCCCCAGGCCCCGAGCGGACCGT
CCTACGCAACATACTTACAACCTGCCCAGGCGCAGAT
GTTAACACCTCCTTAAC-3’ 

M26 M26R 5’- 
TCGAGTTAAGGAGGTGTTAACATCTGCGCCTGGGCAG
GTTGTAAGTATGTTGCGTAGGACGGTCCGCTCGGGG
CCTGGGGAAGAATTACG-3’ 

M27 M27F 5’-
GATCCGAGCATATTCATCGTGCTGGTGGACTTTTTGT
GGCTGACGCAATTCAAGTAGGATTTGGACGCATCGGT
AAGCATTTCTGGTAAC-3’ 

M27 M27R 5’-
TCGAGTTACCAGAAATGCTTACCGATGCGTCCAAATC
CTACTTGAATTGCGTCAGCCACAAAAAGTCCACCAGC
ACGATGAATATGCTCG-3’ 

M68 M68F 5’-
GATCCGTAACAAGCATCCCATCCGTCTCTAATGCTCT
GAATTGGAAAGAATTTTCGTTTATTCAGAGTACCTTGG
GCTACGTGGCCTAAC-3’ 

M68 M68R 5’-
TCGAGTTAGGCCACGTAGCCCAAGGTACTCTGAATAA
ACGAAAATTCTTTCCAATTCAGAGCATTAGAGACGGAT
GGGATGCTTGTTACG-3’ 

 

Table 5  | Oligonucleotides. List of all oligonucleotides used to create minigenes coding for 
each one of the five CT26 neoepitopes used to engineer OMVs. 

 

  



  

80 
 

References 

 

1. Torre, L. & Rebecca Siegel, A. J. Global Cancer Facts & Figures 3rd Edition. 

Am. Cancer Soc. 1–64 (2015). doi:10.1002/ijc.27711 

2. Jemal, A. et al. Global Cancer Statistics. CA Cancer J Clin 61, 69–90 (2011). 

3. Lennerz, V. et al. The response of autologous T cells to a human melanoma is 

dominated by mutated neoantigens. 102, 16013–18 (2005). 

4. Snyder, A. et al. Genetic Basis for Clinical Response to CTLA-4 Blockade in 

Melanoma. N. Engl. J. Med. 371, 2189–2199 (2014). 

5. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade 

in non-small cell lung cancer. Science (80-. ). 348, 124–128 (2015). 

6. Zhou, J., Dudley, M. E., Rosenberg, S. A. & Robbins, P. F. Persistence of 

Multiple Tumor-Specific T-Cell Clones Is Associated with Complete Tumor 

Regression in a Melanoma Patient Receiving Adoptive Cell Transfer Therapy. 

J. Immunother. 28, 53–62 (2005). 

7. Robbins, P. F. et al. Mining exomic sequencing data to identify mutated 

antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 

19, 747–752 (2013). 

8. Tran, E. et al. Cancer Immunotherapy Based on mutation-specific CD4+ T cells 

in a patient with epithelial cancer. Science (80-. ). 9, 641–645 (2014). 

9. Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal 

cancers. Science (80-. ). 350, 1387–1391 (2015). 

10. Castle, J. C. et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 

72, 1081–1091 (2012). 

11. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune 

responses to cancer. Nature 520, 692–696 (2015). 

12. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets 

tumour-specific mutant antigens. Nature 515, 577–581 (2014). 

13. Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass 

spectrometry and exome sequencing. Nature 515, 572–576 (2014). 

14. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific 



  

81 
 

therapeutic immunity against cancer. Nature 547, 222–226 (2017). 

15. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with 

melanoma. Nat. Publ. Gr. 547, 217–221 (2017). 

16. Beveridge, T. J. Sructure of fram-negative cell walls and their derived mebrane 

vesicles. J. Bacteriol. 181, 4725–4733 (1999). 

17. D. Mayrand, D. G. Biological activities of outer membrane vesicles. Can. J. 

Microbiol. 6, 607–13 (1989). 

18. Campos, J. H. et al. Extracellular Vesicles: Role in Inflammatory Responses 

and Potential Uses in Vaccination in Cancer and Infectious Diseases. J. 

Immunol. Res. 2015, (2015). 

19. Ellis, T. N. & Kuehn, M. J. Virulence and Immunomodulatory Roles of Bacterial 

Outer Membrane Vesicles. Microbiol. Mol. Biol. Rev. 74, 81–94 (2010). 

20. Moshiri, A., Dashtbani-Roozbehani, A., Peerayeh, S. N. & Siadat, S. D. Outer 

membrane vesicle: A macromolecule with multifunctional activity. Hum. 

Vaccines Immunother. 8, 953–955 (2012). 

21. Ellis, T. N., Leiman, S. A. & Kuehn, M. J. Naturally produced outer membrane 

vesicles from Pseudomonas aeruginosa elicit a potent innate immune 

response via combined sensing of both lipopolysaccharide and protein 

components. Infect. Immun. 78, 3822–3831 (2010). 

22. Kaparakis, M. et al. Bacterial membrane vesicles deliver peptidoglycan to 

NOD1 in epithelial cells. Cell. Microbiol. 12, 372–385 (2010). 

23. Fantappiè, L. et al. Some Gram-negative Lipoproteins Keep Their Surface 

Topology When Transplanted from One Species to Another and Deliver 

Foreign Polypeptides to the Bacterial Surface. Mol. Cell. Proteomics 16, 1348–

1364 (2017). 

24. Grandi, A. et al. Synergistic Protective Activity of Tumor-Specific Epitopes 

Engineered in Bacterial Outer Membrane Vesicles. Front. Oncol. 7, 1–12 

(2017). 

25. American Cancer Society. Cancer Facts & Figures 2018. (2018). 

doi:10.1097/01.NNR.0000289503.22414.79 

26. Byers, T. et al. The American Cancer Society challenge goal to reduce US 

cancer mortality by 50% between 1990 and 2015: Results and reflections. CA. 



  

82 
 

Cancer J. Clin. 0, 1–11 (2016). 

27. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA. Cancer J. 

Clin. 68, 7–30 (2018). 

28. NIH-National Cancer Institute. Cancer MoonshotSM - National Cancer Institute. 

(2016). Available at: https://www.cancer.gov/research/key-initiatives/moonshot-

cancer-initiative. (Accessed: 27th January 2018) 

29. Finn, O. J. The dawn of vaccines for cancer prevention. Nat. Rev. Immunol. 

(2017). doi:10.1038/nri.2017.140 

30. Huh, W. K. et al. Final efficacy, immunogenicity, and safety analyses of a nine-

valent human papillomavirus vaccine in women aged 16–26 years: a 

randomised, double-blind trial. Lancet 390, 2143–2159 (2017). 

31. Gillison, M. Chapter 8. HPV vaccines and potential prevention of HPV-positive 

head and neck cancer. in IARC HPV Working Group. Primary End-points for 

Prophylactic HPV Vaccine Trials. 86–92 (International Agency for Research on 

Cancer; 2014. (IARC Working Group Reports, No. 7.), 2014). 

32. Centers for Disease Control and Prevention. Epatocarcinoma prevention with 

HBV vaccines-Pinkbook | Hepatitis B | Epidemiology of Vaccine Preventable 

Diseases | CDC. (2018). Available at: 

https://www.cdc.gov/vaccines/pubs/pinkbook/hepb.html. (Accessed: 16th 

February 2018) 

33. World Health Organization-WHO. Hepatitis B. (2018). Available at: 

http://www.who.int/mediacentre/factsheets/fs204/en/. (Accessed: 16th February 

2018) 

34. Kantoff, P. W. et al. Sipuleucel-T Immunotherapy for Castration-Resistant 

Prostate Cancer. N. Engl. J. Med. 363, 411–422 (2010). 

35. American Cancer Society. FDA approved immune checkpoint inhibitors to treat 

cancer. (2017). Available at: https://www.cancer.org/treatment/treatments-and-

side-effects/treatment-types/immunotherapy/immune-checkpoint-

inhibitors.html. (Accessed: 28th December 2017) 

36. Farkona, S., Diamandis, E. P. & Blasutig, I. M. Cancer immunotherapy: the 

beginning of the end of cancer? BMC Med. 14, 73 (2016). 

37. Wolchok, J. D. et al. Nivolumab plus Ipilimumab in Advanced Melanoma. N. 



  

83 
 

Engl. J. Med. 369, 122–133 (2013). 

38. U.S. Food and Drug Administration. Kymriah (tisagenlecleucel) - FDA approval 

brings first gene therapy to the United States. (2017). Available at: 

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm57405

8.htm. (Accessed: 31st December 2017) 

39. Prasad, V. Immunotherapy: Tisagenlecleucel - the first approved CAR-T-cell 

therapy: implications for payers and policy makers. Nat. Rev. Clin. Oncol. 

(2017). doi:10.1038/nrclinonc.2017.156 

40. U.S. Food and Drug Administration. Kymriah overall remission rate. Press 

Announcements - FDA approval brings first gene therapy to the United States. 

(2017). Available at: 

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm57405

8.htm. (Accessed: 25th January 2018) 

41. U.S. Food and Drug Administration. Kymriah overall remission rate and 

complete remission. Approved Drugs - FDA approves tisagenlecleucel for B-

cell ALL and tocilizumab for cytokine release syndrome. (2017). Available at: 

https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm574154.htm. 

(Accessed: 25th January 2018) 

42. U.S. Food and Drug Administration. Yescarta (axicabtagene ciloleucel) - FDA 

approves CAR-T cell therapy to treat adults with certain types of large B-cell 

lymphoma. (2017). Available at: 

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm58121

6.htm. (Accessed: 31st December 2017) 

43. U.S. Food and Drug Administration. Yescarta (axicabtagene ciloleucel) 

complete remission rate. Approved Drugs - FDA approves axicabtagene 

ciloleucel for large B-cell lymphoma. (2017). Available at: 

https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm581296.ht

m. (Accessed: 25th January 2018) 

44. Balkwill, F. & Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 

357, 539–545 (2001). 

45. Lizée, G. et al. Harnessing the Power of the Immune System to Target Cancer. 

Annu. Rev. Med. 64, 71–90 (2013). 



  

84 
 

46. Sell, S. Cancer immunotherapy: Breakthrough or ‘deja vu, all over again’? 

Tumor Biol. 39, 101042831770776 (2017). 

47. Ichim, C. V. Revisiting immunosurveillance and immunostimulation: 

Implications for cancer immunotherapy. J. Transl. Med. 3, 8 (2005). 

48. Burnet, M. Cancer: a Biological Approach III. Viruses Associated With 

Neoplastic Conditions. Br. Med. J. 1, 841–847 (1957). 

49. Rentsch, C. A. et al. Bacillus calmette-guérin strain differences have an impact 

on clinical outcome in bladder cancer immunotherapy. Eur. Urol. 66, 677–688 

(2014). 

50. Kaplan, D. H. et al. Demonstration of an interferon γ-dependent tumor 

surveillance system in immunocompetent mice. Immunology 95, 7556–7561 

(1998). 

51. Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT 

cells. J. Exp. Med. 191, 661–668 (2000). 

52. Street, S. E., Cretney, E. & Smyth, M. J. Perforin and interferon-gamma 

activities independently control tumor initiation, growth, and metastasis. Blood 

97, 192–197 (2001). 

53. Rosenberg, S. A. IL-2: The First Effective Immunotherapy for Human Cancer. 

J. Immunol. 192, 5451–5458 (2014). 

54. Atkins, B. M. B. et al. High - Dose Recombinant Interleukin-2 Therapy for 

Patients With Meta static Melanoma : Analysis o f 270 Patients Treated 

Between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999). 

55. Delves, P. J. & Roitt, I. M. The Immune System: Firts of Two Parts. N. Engl. J. 

Med. 343, 37–49 (2000). 

56. Murphy, K. & Weaver, C. Janeway’s Immunobiology. 9th Edition. (Garland 

Science, 2016). 

57. Delves, P. J. & Roitt, I. M. The Immune System: Second of Two Parts. N. Engl. 

J. Med. 343, 782–786 (2000). 

58. Groothuis, T. A. M. & Neefjes, J. The many roads to cross-presentation. J. Exp. 

Med. 202, 1313–1318 (2005). 

59. Coulie, P. G., Van Den Eynde, B. J., Van Der Bruggen, P. & Boon, T. Tumour 

antigens recognized by T lymphocytes: At the core of cancer immunotherapy. 



  

85 
 

Nat. Rev. Cancer 14, 135–146 (2014). 

60. Ward, J. P., Gubin, M. M. & Schreiber, R. D. The Role of Neoantigens in 

Naturally Occurring and Therapeutically Induced Immune Responses to 

Cancer. Advances in Immunology 130, (Elsevier Inc., 2016). 

61. Brichard, V. et al. The tyrosinase gene codes for an antigen recognized by 

autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 178, 

489–495 (1993). 

62. Bakker, B. A. B. H. et al. Melanocyte lineage-specific antigen gp100 is 

recognized by melanoma-derived tumor-infiltrating lymphocytes. J. Exp. Med. 

179, 1005–1009 (1994). 

63. Kawakami, Y. et al. Cloning of the gene coding for a shared human melanoma 

antigen recognized by autologous T cells infiltrating into tumor. Proc. Natl. 

Acad. Sci. U. S. A. 91, 3515–9 (1994). 

64. Ohminami, H., Yasukawa, M. & Fujita, S. HLA class I-restricted lysis of 

leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 

peptide. Blood 95, 286–93 (2000). 

65. Fisk, B. B., Blevins, T. L., Wharton, J. T. & Ioannides, C. G. Identification of an 

immunodominant peptide of HER-2/neu protooncogene recognized by ovarian 

tumor-specific cytotoxic T lymphocyte lines. Peptides 181, (1995). 

66. Whitehurst, A. W. Cause and Consequence of Cancer/Testis Antigen 

Activation in Cancer. Annu. Rev. Pharmacol. Toxicol. 54, 251–272 (2014). 

67. van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic 

T lymphocytes on a human melanoma. Science (80-. ). 254, 1643–1647 

(1991). 

68. Chen, Y.-T. et al. A testicular antigen aberrantly expressed in human cancers 

detected by autologous antibody screening. Proc. Natl. Acad. Sci. 94, 1914–

1918 (1997). 

69. Scanlan, M. J., Gure, A. O., Jungbluth, A. A., Old, L. J. & Chen, Y. T. 

Cancer/testis antigens: an expanding family of targets for cancer 

immunotherapy. Immunol Rev 188, 22–32 (2002). 

70. Jungbluth, A. A. et al. Monoclonal antibody MA454 reveals a heterogeneous 

expression pattern of MAGE-1 antigen in formalin-fixed paraffin embedded 



  

86 
 

lung tumours. Br. J. Cancer 83, 493–497 (2000). 

71. Schulz, T. F. & Cordes, S. Is the Epstein-Barr virus EBNA-1 protein an 

oncogen? Proc. Natl. Acad. Sci. U. S. A. 106, 2091–2092 (2009). 

72. Marur, S. & Forastiere, A. A. Head and Neck Cancer: Changing Epidemiology, 

Diagnosis, and Treatment. Mayo Clin. Proc. 83, 489–501 (2008). 

73. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. 

Nature 500, 415–21 (2013). 

74. Bethune, M. T. & Joglekar, A. V. Personalized T cell-mediated cancer 

immunotherapy: progress and challenges. Curr. Opin. Biotechnol. 48, 142–152 

(2017). 

75. Vormehr, M. et al. Mutanome directed cancer immunotherapy. Curr. Opin. 

Immunol. 39, 14–22 (2016). 

76. Zhang, X., Sharma, P. K., Peter Goedegebuure, S. & Gillanders, W. E. 

Personalized cancer vaccines: Targeting the cancer mutanome. Vaccine 35, 

1094–1100 (2017). 

77. Vogelstein, B. et al. Cancer Genome Landscapes. Science (80-. ). 339, 1546–

1558 (2013). 

78. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. 

Nature 446, 153–158 (2007). 

79. Stratton, M. R. Exploring the Genomes of Cancer Cells: Progress and Promise. 

Science (80-. ). 331, 1553–1558 (2011). 

80. Chen, D. S. & Mellman, I. Oncology meets immunology: The cancer-immunity 

cycle. Immunity 39, 1–10 (2013). 

81. Haabeth, O. A. W. et al. How do CD4+ T cells detect and eliminate tumor cells 

that either lack or express MHC class II molecules? Front. Immunol. 5, 1–13 

(2014). 

82. Melero, I. et al. Therapeutic vaccines for cancer: An overview of clinical trials. 

Nat. Rev. Clin. Oncol. 11, 509–524 (2014). 

83. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer 

immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 3, 

991–998 (2002). 

84. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer Immunoediting: Integrating 



  

87 
 

Immunity’s Roles in Cancer Suppression and Promotion. Science (80-. ). 331, 

1565–1570 (2011). 

85. MacKie, R. M., Reid, R. & Junor, B. Fatal Melanoma Transferred in a Donated 

Kidney 16 Years after Melanoma Surgery. N. Engl. J. Med. 348, 567–568 

(2003). 

86. Bodmer, W. F. et al. Tumor Escape from Immune Response by Variation in 

HLA Expression and Other Mechanisms. Ann. N. Y. Acad. Sci. 690, 42–49 

(1993). 

87. Garrido, F., Ruiz-Cabello, F. & Aptsiauri, N. Rejection versus escape: the tumor 

MHC dilemma. Cancer Immunol. Immunother. 66, 259–271 (2017). 

88. Drake, C. G., Jaffee, E. & Pardoll, D. M. Mechanisms of Immune Evasion by 

Tumors. Adv. Immunol. 90, 51–81 (2006). 

89. Seliger, B., Maeurer, M. J. & Ferrone, S. Antigen-processing machinery 

breakdown and tumor growth. Immunol. Today 21, 455–464 (2000). 

90. Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-

induced reversible dedifferentiation. Nature 490, 412–416 (2012). 

91. Vyas, M., Müller, R. & von Strandmann, E. P. Antigen loss variants: Catching 

hold of escaping foes. Front. Immunol. 8, 1–7 (2017). 

92. Garcia-Diaz, A. et al. Interferon Receptor Signaling Pathways Regulating PD-

L1 and PD-L2 Expression. Cell Rep. 19, 1189–1201 (2017). 

93. Spranger, S. et al. Up-Regulation of PD-L1, IDO, and Tregs in the Melanoma 

Tumor Microenvironment Is Driven by CD8+ T Cells. Sci. Transl. Med. 5, 

200ra116-200ra116 (2013). 

94. Motz, G. & Coukos, G. Deciphering and Reversing Tumor Immune 

Suppression. Immunity 39, 61–73 (2013). 

95. Van Der Burg, S. H., Arens, R., Ossendorp, F., Van Hall, T. & Melief, C. J. M. 

Vaccines for established cancer: Overcoming the challenges posed by immune 

evasion. Nat. Rev. Cancer 16, 219–233 (2016). 

96. Sharma, P., Wagner, K., Wolchok, J. D. & Allison, J. P. Novel cancer 

immunotherapy agents with survival benefit: recent successes and next steps. 

Nat. Rev. Cancer 11, 805–812 (2011). 

97. Parker, B. S., Rautela, J. & Hertzog, P. J. Antitumour actions of interferons: 



  

88 
 

Implications for cancer therapy. Nat. Rev. Cancer 16, 131–144 (2016). 

98. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. 

Cancer 4, 11–22 (2004). 

99. Scott, A. M., Wolchok, J. D. & Old, L. J. Antibody therapy of cancer. Nat. Rev. 

Cancer 12, 278–287 (2012). 

100. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. 

Nat. Rev. Cancer 12, 252–264 (2012). 

101. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized 

immunotherapy for human cancer. Science (80-. ). 348, 62–68 (2015). 

102. Restifo, N., Dudley, M. & Rosenberg, S. A. Adoptive immunotherapy for 

cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 

(2012). 

103. Guo, C. et al. Therapeutic cancer vaccines. Past, present, and future. 

Advances in Cancer Research 119, (Elsevier Inc., 2013). 

104. Melief, C. J. M., van Hall, T., Arens, R., Ossendorp, F. & van der Burg, S. H. 

Therapeutic Cancer Vaccines. J. Clin. Invest. 125, 3401–12 (2015). 

105. Galluzzi, L. et al. Classification of current anticancer immunotherapies. 

Oncotarget 5, 12472–12508 (2014). 

106. Schuster, M., Nechansky, A., Loibner, H. & Kircheis, R. Cancer 

immunotherapy. Biotechnol. J. 1, 138–147 (2006). 

107. Plotkin, S. A. Vaccines: Past, present and future. Nat. Med. 11, S5 (2005). 

108. Grandi, A., Tomasi, M. & Grandi, G. Vaccinology: The art of putting together 

the right ingredients. Hum. Vaccines Immunother. 12, 1311–1317 (2016). 

109. Yang, A., Farmer, E., Wu, T. C. & Hung, C. F. Perspectives for therapeutic 

HPV vaccine development. J. Biomed. Sci. 23, 1–19 (2016). 

110. Karaki, S., Pere, H., Badoual, C. & Tartour, E. Hope in the Long Road Toward 

the Development of a Therapeutic Human Papillomavirus Vaccine. Clin. 

Cancer Res. 22, 2317–2319 (2016). 

111. Lee, Y. Bin, Lee, J.-H., Kim, Y. J., Yoon, J.-H. & Lee, H.-S. The effect of 

therapeutic vaccination for the treatment of chronic hepatitis B virus infection. J. 

Med. Virol. 87, 575–582 (2015). 

112. Michel, M. L., Deng, Q. & Mancini-Bourgine, M. Therapeutic vaccines and 



  

89 
 

immune-based therapies for the treatment of chronic hepatitis B: Perspectives 

and challenges. J. Hepatol. 54, 1286–1296 (2011). 

113. Kirkwood, J. M. et al. Immunotherapy of cancer in 2012. CA. Cancer J. Clin. 

62, 309–335 (2012). 

114. Wurz, G. T., Kao, C.-J. & DeGregorio, M. W. Novel cancer antigens for 

personalized immunotherapies: latest evidence and clinical potential. Ther. 

Adv. Med. Oncol. 8, 4–31 (2016). 

115. Kaiko, G. E., Horvat, J. C., Beagley, K. W. & Hansbro, P. M. Immunological 

decision-making: How does the immune system decide to mount a helper T-

cell response? Immunology 123, 326–338 (2008). 

116. Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. 

Nature 480, 480–489 (2011). 

117. Topalian, S. L., Weiner, G. J. & Pardoll, D. M. Cancer immunotherapy comes of 

age. J. Clin. Oncol. 29, 4828–4836 (2011). 

118. Klebanoff, C. A., Acquavella, N., Yu, Z. & Restifo, N. P. Therapeutic cancer 

vaccines: Are we there yet? Immunol. Rev. 239, 27–44 (2011). 

119. Bobisse, S., Foukas, P. G., Coukos, G. & Harari, A. Neoantigen-based cancer 

immunotherapy. Ann. Transl. Med. 4, 262–262 (2016). 

120. Martin, S. D., Coukos, G., Holt, R. A. & Nelson, B. H. Targeting the 

undruggable: Immunotherapy meets personalized oncology in the genomic era. 

Ann. Oncol. 26, 2367–2374 (2015). 

121. Yarchoan, M., Johnson, B. A., Lutz, E. R., Laheru, D. A. & Jaffee, E. M. 

Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 

209–222 (2017). 

122. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic 

viral infection. Nature 439, 682–687 (2006). 

123. Loke, P. & Allison, J. P. PD-L1 and PD-L2 are differentially regulated by Th1 

and Th2 cells. Proc. Natl. Acad. Sci. 100, 5336–5341 (2003). 

124. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host 

immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. 

Acad. Sci. 99, 12293–12297 (2002). 

125. Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S. & Honjo, T. A rheostat for 



  

90 
 

immune responses: The unique properties of PD-1 and their advantages for 

clinical application. Nat. Immunol. 14, 1212–1218 (2013). 

126. Garon, E. B. et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung 

Cancer. N. Engl. J. Med. 372, 2018–2028 (2015). 

127. Le, D. T. et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. 

Engl. J. Med. 372, 2509–2520 (2015). 

128. Germano, G. et al. Inactivation of DNA repair triggers neoantigen generation 

and impairs tumour growth. Nature (2017). doi:10.1038/nature24673 

129. Duraiswamy, J., Kaluza, K. M., Freeman, G. J. & Coukos, G. Dual blockade of 

PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell 

rejection function in tumors. Cancer Res. 73, 3591–3603 (2013). 

130. Curran, M. A., Montalvo, W., Yagita, H. & Allison, J. P. PD-1 and CTLA-4 

combination blockade expands infiltrating T cells and reduces regulatory T and 

myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. 107, 4275–

4280 (2010). 

131. Larkin, J. et al. Combined Nivolumab and Ipilimumab or Monotherapy in 

Untreated Melanoma. N. Engl. J. Med. 373, 23–34 (2015). 

132. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized 

immunotherapy for human cancer. Science (80-. ). 348, 62–68 (2015). 

133. Dudley, M. E. Cancer Regression and Autoimmunity in Patients After Clonal 

Repopulation with Antitumor Lymphocytes. Science (80-. ). 298, 850–854 

(2002). 

134. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. 

Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat. 

Rev. Cancer 8, 299–308 (2008). 

135. Gubin, M. M., Artyomov, M. N., Mardis, E. R. & Schreiber, R. D. Tumor 

neoantigens: building a framework for personalized cancer immunotherapy. J. 

Clin. Invest. 125, 3413–3421 (2015). 

136. Aldous, A. R. & Dong, J. Z. Personalized neoantigen vaccines: A new 

approach to cancer immunotherapy. Bioorganic Med. Chem. (2017). 

doi:10.1016/j.bmc.2017.10.021 

137. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent 



  

91 
 

mechanism of cancer immunoediting. Nature 482, 400–404 (2012). 

138. Kulp, A. & Kuehn, M. J. Biological Functions and Biogenesis of Secreted 

Bacterial Outer Membrane Vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010). 

139. Kaparakis-Liaskos, M. & Ferrero, R. L. Immune modulation by bacterial outer 

membrane vesicles. Nat. Rev. Immunol. 15, 375–387 (2015). 

140. Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-

negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–19 

(2015). 

141. Kim, O. Y. et al. Immunization with Escherichia coli outer membrane vesicles 

protects bacteria-induced lethality via Th1 and Th17 cell responses. J. 

Immunol. 190, 4092–102 (2013). 

142. Fantappiè, L. et al. Antibody-mediated immunity induced by engineered 

Escherichia coli OMVs carrying heterologous antigens in their lumen. J. 

Extracell. vesicles 3, 1–14 (2014). 

143. Rosenthal, J. A. et al. Mechanistic insight into the Th1-biased immune 

response to recombinant subunit vaccines delivered by probiotic bacteria-

derived outer membrane vesicles. PLoS One 9, 1–24 (2014). 

144. Kuehn, N. C. K. and M. J. Incorporation of Heterologous Outer Membrane and 

Periplasmic Proteins into Escherichia coli Outer Membrane Vesicles. 279, 

2069–2076 (2012). 

145. Chen, D. J. et al. Delivery of foreign antigens by engineered outer membrane 

vesicle vaccines. Proc. Natl. Acad. Sci. U. S. A. 107, 3099–3104 (2010). 

146. Gerritzen, M. J. H., Martens, D. E., Wijffels, R. H., van der Pol, L. & Stork, M. 

Bioengineering bacterial outer membrane vesicles as vaccine platform. 

Biotechnol. Adv. 35, 565–574 (2017). 

147. Alaniz, R. C., Deatherage, B. L., Lara, J. C. & Cookson, B. T. Membrane 

vesicles are immunogenic facsimiles of Salmonella typhimurium that potently 

activate dendritic cells, prime B and T cell responses, and stimulate protective 

immunity in vivo. J. Immunol. 179, 7692–7701 (2007). 

148. Laughlin, R. C., Mickum, M., Rowin, K., Adams, L. G. & Alaniz, R. C. Altered 

host immune responses to membrane vesicles from Salmonella and Gram-

negative pathogens. Vaccine 33, 5012–5019 (2015). 



  

92 
 

149. Giuliani, M. M. et al. A universal vaccine for serogroup B meningococcus. Proc. 

Natl. Acad. Sci. USA 103, 10834–9 (2006). 

150. Serruto, D., Bottomley, M. J., Ram, S., Giuliani, M. M. & Rappuoli, R. The new 

multicomponent vaccine against meningococcal serogroup B , 4CMenB : 

Immunological , functional and structural characterization of the antigens. 

Vaccine 30S, B87–B97 (2012). 

151. Deatherage, B. L. et al. Biogenesis of bacterial membrane vesicles. Mol. 

Microbiol. 72, 1395–1407 (2009). 

152. Bernadac, A. et al. Escherichia coli tol-pal Mutants Form Outer Membrane 

Vesicles Escherichia coli tol-pal Mutants Form Outer Membrane Vesicles. J. 

Bacteriol. 180, 4872–4878 (1998). 

153. Berlanda Scorza, F. et al. High yield production process for Shigella outer 

membrane particles. PLoS One 7, (2012). 

154. Bousso, P. T-cell activation by dendritic cells in the lymph node: Lessons from 

the movies. Nat. Rev. Immunol. 8, 675–684 (2008). 

155. Nikaido, H. Maltose transport system of Escherichia coli: an ABC-type 

transporter. FEBS Lett. 346, 55–58 (1994). 

156. Rueda, P., Morón, G., Sarraseca, J., Leclerc, C. & Casal, J. I. Influence of 

flanking sequences on presentation efficiency of a CD8+ cytotoxic T-cell 

epitope delivered by parvovirus-like a particles. J. Gen. Virol. 85, 563–572 

(2004). 

157. Klock, H. E., Koesema, E. J., Knuth, M. W. & Lesley, S. A. Combining the 

polymerase incomplete primer extension method for cloning and mutagenesis 

with microscreening to accelerate structural genomics efforts. Proteins Struct. 

Funct. Genet. 71, 982–994 (2008). 

158. Bordier, C. Phase separation of integral membrane proteins in Triton X-114 

solution. J. Biol. Chem. 256, 1604–1607 (1981). 

159. Immudex. IMMUDEX - Immudex makes Dextramers-next generation of MHC 

tetramer. Available at: http://www.immudex.com/. (Accessed: 31st January 

2018) 

160. Batard, P. et al. Dextramers: New generation of fluorescent MHC class 

I/peptide multimers for visualization of antigen-specific CD8+T cells. J. 



  

93 
 

Immunol. Methods 310, 136–148 (2006). 

161. Perfetto, S. P., Chattopadhyay, P. K. & Roederer, M. Seventeen-colour flow 

cytometry: unravelling the immune system. Nat. Rev. Immunol. 4, 648–655 

(2004). 

162. Chattopadhyay, P. K. et al. Techniques to improve the direct ex vivo detection 

of low frequency antigen-specific CD8 + T cells with peptide-major 

histocompatibility complex class I tetramers. Cytom. Part A 73A, 1001–1009 

(2008). 

163. Vecchio, D., Li, G. & Wong, A. J. Targeting EGF receptor variant III : tumor-

specific peptide vaccination for malignant gliomas. Expert Rev. Vaccines 11, 

133–144 (2012). 

164. Heimberger, A. B. et al. Epidermal growth factor receptor VIII peptide 

vaccination is efficacious against established intracerebral tumors. Clin. Cancer 

Res. 9, 4247–4254 (2003). 

165. Schuster, J. et al. A phase II, multicenter trial of rindopepimut (CDX-110) in 

newly diagnosed glioblastoma: The ACT III study. Neuro. Oncol. 17, 854–861 

(2015). 

166. Weller, M. et al. Rindopepimut with temozolomide for patients with newly 

diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-

blind, international phase 3 trial. Lancet Oncol. 18, 1373–1385 (2017). 

167. Tanenbaum, M. E. et al. A complex of Kif18b and MCAK promotes microtubule 

depolymerization and is negatively regulated by aurora kinases. Curr. Biol. 21, 

1356–1365 (2011). 

168. Snapper, C. M. & Paul, W. E. Interferon-gamma and B cell stimulatory factor-1 

reciprocally regulate Ig isotype production. Science (80-. ). 236, 944–947 

(1987). 

169. Maisonneuve, C., Bertholet, S., Philpott, D. J. & De Gregorio, E. Unleashing 

the potential of NOD- and Toll-like agonists as vaccine adjuvants. Proc. Natl. 

Acad. Sci. 111, 12294–12299 (2014). 

170. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 

135–145 (2001). 

171. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–



  

94 
 

511 (2004). 

172. Honda, K. & Taniguchi, T. IRFs: Master regulators of signalling by Toll-like 

receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol. 6, 

644–658 (2006). 

173. Strober, W., Murray, P. J., Kitani, A. & Watanabe, T. Signalling pathways and 

molecular interactions of NOD1 and NOD2. Nat. Rev. Immunol. 6, 9–20 (2006). 

174. Duque, G. A. & Descoteaux, A. Macrophage cytokines: Involvement in 

immunity and infectious diseases. Front. Immunol. 5, 1–12 (2014). 

175. Guo, H., Callaway, J. B. & Ting, J. P. Y. Inflammasomes: Mechanism of action, 

role in disease, and therapeutics. Nat. Med. 21, 677–687 (2015). 

176. Jo, E.-K., Kim, J. K., Shin, D.-M. & Sasakawa, C. Molecular mechanisms 

regulating NLRP3 inflammasome activation. Cell. Mol. Immunol. 13, 148–159 

(2016). 

177. He, Y., Hara, H. & Núñez, G. Mechanism and Regulation of NLRP3 

Inflammasome Activation. Trends Biochem. Sci. 41, 1012–1021 (2016). 

178. Liu, T., Zhang, L., Joo, D. & Sun, S.-C. NF-κB signaling in inflammation. Signal 

Transduct. Target. Ther. 2, 17023 (2017). 

179. Martinon, F., Agostini, L., Meyland, E. & Tschopp, J. Identification of Bacterial 

Muramyl Dipeptide as Activator of the NALP3/Cryopyrin Inflammasome. Curr. 

Biol. 14, 1929–1934 (2004). 

180. Finethy, R. et al. Inflammasome activation by bacterial outer membrane 

vesicles requires guanylate binding proteins. MBio 8, 1–11 (2017). 

181. Lee, D. H. et al. Adjuvant effect of bacterial outer membrane vesicles with 

penta-acylated lipopolysaccharide on antigen-specific T cell priming. Vaccine 

29, 8293–8301 (2011). 

182. Luckheeram, R. V., Zhou, R., Verma, A. D. & Xia, B. CD4 +T cells: 

Differentiation and functions. Clin. Dev. Immunol. 2012, (2012). 

183. Lazarevic, V., Glimcher, L. H. & Lord, G. M. T‑bet: a bridge between innate and 

adaptive immunity. Nat. Rev. Immunol. 13, 777–789 (2013). 

184. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and 

adaptive immunity. Nat. Rev. Immunol. 3, 133–146 (2003). 

185. Lohoff, M. & Mak, T. W. Roles of interferon-regulatory factors in T-helper-cell 



  

95 
 

differentiation. Nat. Rev. Immunol. 5, 125–135 (2005). 

186. Ho, I. C., Tai, T. S. & Pai, S. Y. GATA3 and the T-cell lineage: Essential 

functions before and after T-helper-2-cell differentiation. Nat. Rev. Immunol. 9, 

125–135 (2009). 

187. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of 

inflammation : the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 

678–689 (2007). 

188. Liu, M., Guo, S. & Stiles, J. K. The emerging role of CXCL10 in cancer. Oncol. 

Lett. 2, 583–589 (2011). 

189. Groom, J. R. & Luster, A. D. CXCR3 ligands: Redundant, collaborative and 

antagonistic functions. Immunol. Cell Biol. 89, 207–215 (2011). 

190. Guel, N. & Van Egmond, M. Antibody-dependent phagocytosis of tumor cells 

by Macrophages: A Potent effector mechanism of monoclonal antibody therapy 

of cancer. Cancer Res. 75, 5008–5013 (2015). 

191. Fantappiè, L. et al. Antibody-mediated immunity induced by engineered 

Escherichia coli OMVs carrying heterologous antigens in their lumen. J. 

Extracell. Vesicles 3, (2014). 

 



  

96 
 

Appendix 

 

Figure 18 | Scheme of the constructs used to engineer OMVs with the OVA antigen. a, 
Amino acid sequence of the OVA antigen, composed of three copies of the OVA257-264 epitope 
(red) with its natural flanking sequences (blue) separated by a glycine-glycine spacer (green). 
b, Schematic representation of pET-PSP-OVA construct used to generate PSP-OVA OMVs. 
c, Schematic representation of pET-MBP-OVA construct used to generate MBP-OVA OMVs. 
OMV drawing modified from Kaparakis-Liaskos and Ferrero, 2015139. 
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