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Abstract 

The rapid technological advancement manifested lately in the remote sensing acquisition 

platforms has triggered many benefits in favor of automated territory control and monitoring. In 

particular, unmanned aerial vehicles (UAVs) technology has drawn a lot of attention, providing 

an efficient solution especially in real-time applications. This is mainly motivated by their capacity 

to collect extremely high resolution (EHR) data over inaccessible areas and limited coverage 

zones, thanks to their small size and rapidly deployable flight capability, notwithstanding their 

ease of use and affordability. The very high level of details of the data acquired via UAVs, however, 

in order to be properly availed, requires further treatment through suitable image processing and 

analysis approaches.  

In this respect, the proposed methodological contributions in this thesis include: i) a complete 

processing chain which assists the Avalanche Search and Rescue (SAR) operations by scanning 

the UAV acquired images over the avalanche debris in order to detect victims buried under snow 

and their related objects in real time; ii) two multilabel deep learning strategies for coarsely 

describing extremely high resolution images in urban scenarios; iii) a novel multilabel conditional 

random fields classification framework that exploits simultaneously spatial contextual information 

and cross-correlation between labels; iv) a novel spatial and structured support vector machine 

for multilabel image classification by adding to the cost function of the structured support vector 

machine a term that enhances spatial smoothness within a one-step process. Conducted 

experiments on real UAV images are reported and discussed alongside suggestions for potential 

future improvements and research lines. 
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1.1. Remote Sensing Platforms and Applications     

There exist several definitions for Remote Sensing; all of those definitions in the widest 

sense are concerned with information acquisition and measuring the reflected energy of areas and 

objects under monitoring without a direct contact. Remote Sensing can be divided into two 

categories, active and passive. Active remote sensing is when a signal is first emitted then the 

resulting reflected energy is analyzed. Active image sensors such as,  satellites- and aircraft-based 

sensors emit their own energy (radiation pulse) which is transmitted to the object (i.e., earth 

surface) creating a backscatter that bounces and returns back to the emitting sensors again. This 

technique has shown great potential in collecting data whenever it is needed, day or night, without  

any time or atmospheric constraints, however it is energy demanding. Two common examples 

among the variety of existing active sensors that are widely used within the remote sensing 

community are Radars, and light detection and ranging (LiDAR). Radar and LiDAR are 

respectively, radio waves- and laser- based sensors used to collect information about the target 

under surveillance, such as distance, range, velocity, angle, and elevation. On the other hand, 

passive remote sensing simply acquires information using the energy that the target reflects (i.e., 

the sun, electromagnetic energy). It exploits the targets’ own energy, which is not energy 

demanding but depends on the external sources. 

 

Over the last few decades, satellites have reached a good level of technological progress in 

terms of spatial resolution (i.e. Landsat 8 with 15 meters of spatial resolution). Such acquired 

information from satellites have been used widely, and showed to be efficient in various 

applications such as (e.g., forestry, cartography, forestry, climate, geology) [1]. However since the 

lunch of IKONOS the first very high resolution (VHR) optical satellite with (82-centimeter 

resolution and multispectral imagery of 4 meters), and then the last generation of VHR (i.e., 

 
Fig. 1.1.  Example of imagery spatial resolution differences of three acquisition platforms covering the same area.  

(a) Satellite; (b) Airborne; (c) Unmanned aerial vehicle. 
  

http://www.emodnet-seabedhabitats.eu/default.aspx?page=1898#LiDAR
http://www.emodnet-seabedhabitats.eu/default.aspx?page=1898#LiDAR
https://en.wikipedia.org/wiki/Laser
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GeoEye-1 -2, QuickBird, WorldView-1 -2 & 3) a new level of spatial complexity has been 

exposed.  

In particular, very high-resolution (VHR) satellites imagery has shown a remarkable 

performance and efficiency in several applications. For instance, in [2], using Multitemporal High-

Resolution IKONOS and GeoEye-1 Satellites data, authors proposed a segmentation-based 

method exploiting support vector machines (SVMs) classifier to map urban ecological conditions, 

and to determine land cover changes in a dense urban core from 2000 to 2009. In [3], was presented 

an identification method for archaeological buried remains within a dense presence of vegetation 

using VHR Quickbird satellite data. In [4], authors introduced a bayesian classification framework 

of urban land use. It incorporates its open source data from very high resolution (VHR) GeoEye 

stereo satellite imagery. In [5], the authors presented an automatic moving vehicles information 

extraction framework from Single-Pass WorldView-2 VHR Imagery. 

Similarly, airborne technologies equipped with VHR SAR and LiDAR sensors such as, 

helicopters, fixed wing aircrafts and single-rotor helicopters have shown to be very suitable for 

several urban landscape 3D modeling gaining a rapid growth in recent years.  For instance, in [6], 

authors present a three dimensional reconstruction method for large multilayer interchange bridges 

using airborne light detection and ranging (LiDAR) data. In [7], authors put forth an image 

reconstruction algorithm for airborne downward-looking sparse linear array 3-D synthetic aperture 

radar (DLSLA 3-D SAR). Another Airborne LiDAR application for large urban environments was 

introduced in [8], particularly, a multiscale grid algorithm for the detection and reconstruction of 

building roofs. It derives benefits from making use of an iterative morphological interpolation 

exploiting a gradually increasing scale from large to small scales. Afterwards, the resulting 

building roofs features are segmented and reconstructed according to their elevation. In [9], it was 

introduced a woodland canopy reconstruction framework of digital terrain model (DTM) from an 

airborne E-SAR sensor. Another very interesting work has been presented in [10], where Paris et 

al. proposed a 3-dimentional model-based algorithm for tree top height estimation for high-spatial-

density LiDAR data. 

Notably, airborne sensors have proven to be very efficient in providing color/ infrared very 

high-resolution imagery. Outfitted with different sensors and technologies (i.e., camera, LIDAR), 

they are capable to acquire very accurate and high quality geometrical data of the observed areas. 

On the contrary, satellites imagery have a smaller resolution capability compared to airborne 

sensors. However, their coverage capacity is extremely large due to their very high altitude, saving 

the mosaicking and geocoding process that is required for aerial photography platforms when the 

scanned area is large (Fig. 1.1). Yet, satellites suffer from (i) cloud cover and (ii) specific fixed-

timing acquisitions. As a result, airborne platforms are emerging as a potential strong alternative 

to conventional satellites acquisition technologies in both spectrally and spatially very high-

resolution remote sensing imagery. Despite the afforested, airborne high cost and complicated 

flight procedures, in addition of their limited flight altitude, make of them a less appropriate 

acquisition platform for critical applications such as routine maintenance and emergency response. 

By contrast, UAVs were originally developed for military purposes, where their mission 

plans are designed “on-demand” in prospect to survive in critical mission conditions. They are 

http://www.thesaurus.com/browse/similarly
http://www.emodnet-seabedhabitats.eu/default.aspx?page=1898#LiDAR
http://www.thesaurus.com/browse/aforestated
http://www.thesaurus.com/browse/in%20prospect


 Chapter I. Introduction and Thesis Overview 

4 

 

characterized by low-cost, fast deployment and custom-made capacity, since they can be equipped 

with appropriate sensors according to the requirements of several distinct missions. Moreover, 

they play a complementary role in supporting satellites to cover inaccessible small areas, by taking 

advantage of their very detailed scanning capability at a sub meter / centimeter level i.e., extremely 

high image spatial resolution (EHR). Furthermore, UAVs grant the flexibility to operate within a 

swarm forming a complex acrobatic group flights that communicate and cooperate synchronously 

in mid-air. As to cope with their limited coverage scale, UAVs collect data in a timely manner 

providing a wider coverage capacity. Thanks to their smaller size and easier air traffic management 

compared to airborne platforms, UAVs stand out to be a favorable alternative to the traditional 

field visit and ground surveying, and a very suitable acquisition platform to collect extremely high-

resolution (EHR) data for several image classification and analysis applications such as, urban and 

environmental monitoring, precision farming, surveillance, and search and rescue missions (Fig. 

1.2). 

For instance, in mapping and cartography applications, Márquez et al. in [11], presented a 

framework that generates cadastral cartography for small urban/rural locations taking as input 

unmmaned aerial vehicles imagery. Pattern recognition algorithms were applied to add pictorial 

terrain components in the resulting cadastral plans. In [12], it was proposed a 3-D mapping system 

via a UAV flying from low altitude equipped with cameras, a laser scanner, an inertial 

measurement unit, and Global Positioning System (GPS). In [13], authors presented a novel range-

dependent map-drift algorithm (RDMDA) developed for synthetic aperture radar (SAR) systems 

mounted on unmanned aerial vehicles (UAVs). One more interesting work in [14] put forth a stereo 

vision path planning assistant system for unmanned ground vehicle (UGV) in GPS-denied 

environments based on multiunmanned aerial vehicles. As for the inspection and public safety 

applications, a notable interest has been dedicated to UAVs platforms. In [15], a navigation 

prototype is developed to localize drone positions in indoor environments for industrial 

applications. Another automatic UAV inspection system is presented in [16]. This platform aims 

towards resource assessment and defect detection in large-scale photovoltaic systems over large 

geographical areas. Furthermore, in [17], Pinto et al. introduced an online inspection video 

monitoring system for industrial installations based on areial collaborative communications 

between small UAVs (i.e., UAV-to-UAV network).  Concerning public safety, UAV aerial support 

provides a very adequate system to acquire information in unreachable areas. Aside from 

guaranteeing the safety of human operators from direct contact with danger in emergency 

 
Fig. 1.2.  Example of unmanned aerial vehicles usages in different application environments. 
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situations. For instance, [18] presented an autonomous UAV system equipped with thermal and 

digital imagery sensors for human body detection in disaster scenarios. The detected victim 

positions are geo-located within a map of points and then sent to the rescuing teams. [19] put forth 

a 3D UAV-based modeling for collapsed buildings rapid response situations in urban scenes. In 

[20], a semi-autonomous indoor fire-fighting to ensure firefighters safety is presented. Other works 

based on UAVs dealing with emergency and disaster fast response can be found in [21]-[22]. 

Moreover, UAVs have been finding their way in precision agricultural applications. By 

incorporating thermal, near-infrared and visible spectral bands to UAVs platform sensors, they 

serve as an alternative to traditional field visits to measure vegetation, health condition, and water 

stress indices, especially for large farmlands surveying. For instance, in [23] Katsigiannis et al. 

presented an autonomous multi-sensor UAV system that provides spectral information related to 

water management for pomegranate orchards. In [24], authors put forth a low cost multi-spectral 

vegetation classification platform of UAVs equipped with a set of exchangeable filters over a 

camera connected to a Raspberry Pi. The implemented prototype have shown to be able to 

distinguish between two types of vineyards and different species of plants. Authors in [25], 

presented a row and water front detection architecture combining UAV and thermal-infrared 

imagery for furrow irrigation monitoring. Still in precision farming, an interesting UAV-based 

network system for early stage disease detection was presented in [26].  In [27], authors presented 

an autonomous timely monitoring method for close range UAV citrus greening disease detection. 

It exploits depth-invariant machine learning models to distinguish between healthy and infected 

plant leaves. Very promising results have been yielded with validation accuracies up to 93%.  

Furthermore, plenty of other works involving UAVs have been undertaken in a wide range of 

areas, including but not limited to archaeology [28], radiation monitoring [29], ecological 

protection [30], and environmental monitoring in general [31],[32]. For further potential remote 

sensing applications of UAVs, we refer the reader to relevant state of the art. 

1.2.  Issues, Solutions and Thesis Organization 

As with the evolution of UAVs technology which has known a dramatic increase for civilian 

applications over the last decade. UAVs have displayed a remarkable efficiency as a safer and job 

faster alternative to traditional field visit and ground surveying in urban scenarios. Such acquisition 

systems, despite their effectiveness, convey an extremely high-resolution (EHR) images with a 

very accurate geometrical analysis for the objects present in the scene, entailing a challenging huge 

amount of details to be processed and exploited (i.e., hundreds of spectral bands). This calls for 

the need to adopt new processing and analysis techniques that are capable to exploit the full 

potential of this huge amount of acquired information. Thus acquiring some main points to be dealt 

with, like: 

 

 The first one recalls the fact that the more the resolution of the acquired data increases 

significantly, the most likely that monolabel processing methods become inadequate to meet 

satisfactory classification accuracies and needs. Indeed, in UAV scene description 

applications, typically an image frame tends to contain several objects with complex 

distribution structures (i.e., between-class similarity and within-class diversity) due to the 
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large amount of details of the extremely high resolution data. Indeed, most of the monolabel 

processing methods have been applied successfully within constrained environments with 

moderate resolutions and a limited number of classes of objects to be predicted. This calls for 

the need to design new processing methods suggesting the use of multilabeling approaches. 

 The second one is that the objects in EHR imagery manifest two particular topologies of 

correlation, which could be exploited to enhance the recognition process. They are: i) the 

intrinsic correlation between objects (i.e., when a particular object is present, it is likely that 

another is present as well); ii) the spatial correlation between adjacent decisions, which may 

be provided by a given classifier. 

 Third, as a matter of fact, most UAV-oriented applications require real-time processing 

overhead. Therefore, the respective processing algorithms are ought to be implemented to 

meet such requirement. 

 

1.3.  Multilabel Classification 

As hinted earlier, usually imagery analysis and classification applications for data acquired 

over urban areas are composed by a list of objects, that when are put together they describe the 

conventional scene. In order to address this, we extend the interest into describing several classes 

at the same time. Therefore, multilabel approach presents an alternative to the single object 

description making the classification task more informative and generalized. 

In particular, the scope of this dissertation is mainly focused on describing extremely high 

resolution images in urban scenarios. Consequently, we dedicated three chapters to deal with 

multilabel classification, which is a subject that has attracted a scarce attention with respect to 

monolabel (i.e., binary and multiclass) classification. In fact, most of the processing methods and 

frameworks based on statistical modeling are mainly designed for monolabel tasks. Particularly, 

within the remote sensing community, monolabel classification and object detection has drawn the 

attention of most of researchers generating the largest number of published papers. In contrast to 

multiclass classification where the labels are mutually exclusive (only one object class per sample), 

multilabel classification associates to a single sample one or more than one label simultaneously 

(i.e., a list of object classes). As a result, as the number of classes exponentially increases, so does 

the classification output space complexity. A common way to address the multilabel issue, is to 

handle each class separately (i.e., in a class specific manner) then the resulting output of all the 

classes together is the final outcome. Such approach is very time consuming due to the number of 

algorithms (i.e., classifiers) that would be called simultaneously. Another critical point to be 

highlighted in multilabel classification is the inter-class correlation information between labels and 

how to exploit them effectively through the classification process. Therefore, we will try to benefit 

from handling all the object classes together rather than separately in order to extract some 

interaction rules between labels. 

The other challenging part of this task, which makes it not easily achievable, is the large 

number of variable and heterogeneous complex features with very similar spectral characteristics 

in extremely high resolution data.  As hinted earlier, it is clearly essential that we must take into 

http://www.thesaurus.com/browse/as%20a%20consequence
http://www.thesaurus.com/browse/as%20a%20consequence
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consideration the capability of the proposed approach in terms of its ability to resolve both the 

multilabel classification and the EHR spectral feature complexities characterizing this task.  

In this respect, having devoted this first chapter as an introductive part to cover the different 

aspects of the topic. The rest of the thesis is organized into five chapters, in which the next chapter 

presents an interesting public safety application, namely, a framework based on UAV imagery for 

assisting avalanche search and rescue operations, whereas in the remaining three chapters, we put 

forth three proposed multilabeling classification schemes in urban scenarios. In more details, in 

Chapter 2, we put forth a victim detection and localization framework to assist rescue teams in 

avalanche search and rescue (SAR) operations my means of a UAV equipped with digital cameras. 

The proposed framework consists of three steps, 1) a pre-processing step to select regions of 

interest within the acquired images. 2) we use convolutional neural networks (CNN) for feature 

extraction and a Support Vector Machine (SVM) on top of it for classification. 3) a post-processing 

step based on a Hidden Markov Model is used to improve the prediction output of the SVM 

classifier.  

In Chapter 3, we propose a tile-based pipeline that takes advantage of a tile-based coarse 

description technique providing global results for the considered EHR images. Considering the 

conventional pixel-based and segment-based descriptors that may raise the problem of intra-class 

variability particularly when dealing with the multilabel object detection. Coarse description 

strategy does not aim to assign to each single pixel or pattern descriptor a label, but it simply 

describes a query image or the specific investigated tile within the image by the list of objects 

present in it. In this context, two Deep Neural Networks (DNNs) architectures have been 

investigated namely, convolutional neural networks [33], and autoencoders [34] which have 

become one of the most promising and fast growing techniques within the machine learning 

community in the last few years. Moreover, for the multilabeling requirements, we introduce a 

multilabel layer that has been integrated on top of the proposed architectures to increase the 

obtained results. 

Chapter 4, proposes a novel method that aims to address the multilabel classification 

problem by combining two types of information, namely, the spatial correlation between adjacent 

tiles as well as the interclass correlation between all class labels, we define this method as full 

multilabel conditional random field (Full-ML-CRF) model. This Full-ML-CRF method 

reformulates both the interclass and spatial correlation information as an energy minimization 

problem based on the conventional conditional random fields model. Iterated Conditional Modes 

(ICM) algorithm is adopted for the optimization problem. In particular, after the subdivions of the 

query images into a grid of equal tiles, posterior probability predictions are generated for each tile 

by means of an opportune multilabel classification method. Afterwards, we feed the resulting 

predictions (i.e., classification label maps) to the Full-ML-CRF to improve the obtained prediction 

results. Such approach is able to bridge the gap up to a reasonable extent, between the likely high 

semantic content of the UAV-grabbed images and their spectral information.  Furthermore, it 

enhances the spatial and the interclass smoothness of the resulting label maps of the multilabel 

classification framework. In Chapter 5, we put forth a novel multilabel classification approach 

based on a structural Support Vector Machine (SSVM) classifier. Unlike state-of-the-art 
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techniques, which typically perform the multilabel classification task by separating the spectral 

features and the spatial contextual information into two different processing methods. We propose 

here a completely different alternative scheme called Spatial and Structured Support Vector 

Machine (SSSVM).  Aiming at expanding the coarse tile-based multilabel spectral features 

classification scheme to incorporate the spatial information within the recognition process, we 

propose to merge both information, spectral and contextual within the same cost function. The 

resulting framework operates as an extension to the conventional Structured Support Vector 

Machine (SSVM) by integrating the structured output of the SVM and the spatial information 

simultaneously during the training phase. Finally, Chapter 6 draws final conclusions of the 

discussed methods and put forward some open issues and potential ameliorations for future 

developments.  

This dissertation has been written supposing that the Reader is familiar with the basic 

concepts regarding the image processing, remote sensing and pattern recognition fields. Otherwise, 

the Reader is recommended to consult the references which are available at the end of each chapter 

of this dissertation. They are useful to give a complete and well-structured overview about the 

topics discussed throughout the manuscript. The following chapters have been written in such a 

way to be independent between each other to give to the Readers the possibility to read only the 

chapter/s of interest, without loss of information. 
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Abstract– Following an avalanche, one of the factors that affect victims chance of survival is the 

speed at which they get located and dugout. Rescue teams use techniques like trained rescue dogs 

and electronic transceivers to locate victims. However, the amount of resource required and time to 

deploy rescue teams are major bottlenecks to increase victim’s chance of survival. Advances in the 

field of Unmanned Aerial Vehicles (UAVs) have enabled the use of flying robots equipped with 

sensors like optical cameras to assess damages caused by natural or manmade disasters and locate 

victims in the debris. In this chapter, we propose to assist avalanche search and rescue (SAR) 

operations with UAVs fitted with vision cameras. The sequence of images of the avalanche debris 

captured by the UAV is processed with a pre-trained Convolutional Neural Network (CNN) to 

extract discriminative features. A trained linear Support Vector Machine (SVM) is integrated at the 

top of the CNN to detect objects of interest. Moreover, we introduce a pre-processing method to 

increase the detection rate and a post-processing method based on a Hidden Markov Model to 

improve prediction performance of the classifier. Experimental results conducted on two different 

datasets at different levels of resolution show that detection performance increases with an increase 

in resolution while the computation time increases. Additionally, they also suggest that a significant 

decrease in processing time can be achieved thanks to the pre-processing step. 

2.1. Introduction 

An avalanche, a large mass of snow detached from a mountain slope and sliding suddenly 

downward, kills more than one hundred fifty people worldwide [1] every year. According to the 

Swiss institute for snow and avalanche research, more than 90 percent of avalanche fatalities are 

occurred in uncontrolled terrain, like for example during off-piste skiing and snowboarding, [2]. 

Backcountry avalanches are mostly triggered by skiers or snowmobilers. Though it is rare, they 

can also be triggered naturally due to an increased load from a snow fall, metamorphic changes in 

snow pack, rock fall, and icefall. The enormous amount of snow carried at a high speed can cause 

a significant destruction to life as well as property. In areas where avalanches pose significant 

threat to people and infrastructure, preventive measures like snow fences, artificial barriers and 

explosives, to dispose avalanche potential snow packs, are taken to prevent and lessen their 

obstruction power. 

Several factors account for the victims’ survival. For example, victims can collide with 

obstacles while carried away by avalanches or fall over a cliff in the avalanches path and get 

physically injured. Once the avalanche stops, it settles like a rock and body movement is nearly 

impossible. Victims chance of survival depends on the degree of burial, presence of clear airway, 

and severity of physical injuries. Additionally, duration of burial is also a factor for victims’ 

survival. According to statistics, 93 percent of victims survive if dugout within fifteen minutes of 

complete burial. Survival chance drops fast after the first fifteen minutes of complete burial. A 

“complete burial” is defined as where snow covers victims’ head and chest; otherwise the term 

partial burial applies, [3]. Therefore, avalanche SAR operation is time critical. 

Avalanche SAR teams use various ways to locate victims. For example, trained avalanche 

rescue dogs are used to locate victims by searching for pools of human scent rising up from the 

snow pack. Though dogs can be useful in locating victims not equipped with electronic 

transceivers, the number of dogs required and the time to deploy are constraints. If victims are 

equipped with electronic transceivers like ARVA (Appareil de Recherche de Victime 

d’Avalanche) part of skiers can immediately start searching for a missing member. But such 
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transceivers are powered by batteries and require experience to use. RECCO rescue system is an 

alternative to transceivers where one or more passive reflectors are embedded into clothes, boots, 

helmets, etc. worn by skiers and a detector is used by rescuers to locate the victims. Once area of 

burial is identified, a probe can be used to localize the victim and estimate the depth of snow to be 

shoveled. Additionally, an organized probe line can also be used to locate victims not equipped 

with electronic transceivers or if locating with the transceivers fails. But such technique requires 

significant man power and is a slow process. Recent advances in the field of UAVs have enabled 

the use of flying robots equipped with ARVA transceivers and other sensors to assist post-

avalanche SAR operations, [4–6]. This has allowed to reduce search time and to search in areas 

that are difficult to reach and dangerous for rescuers. 

In the literature, there are active remote sensing methods proposed to assist post-avalanche 

SAR operation. For example, the authors in [7] have shown that it is possible to detect victims 

buried under snow by using a Ground Penetrating Radar (GPR). Since human body has a high 

dielectric permittivity relative to snow, a GPR can uniquely image human body buried under snow 

and differentiate it from other man-made and natural objects. With the advent of satellite 

navigational system, Jan S, et.al [8], studied the degree to which a GPS signal can penetrate 

through the snow and be detected by a commercial receiver, hence a potential additional tool for 

quick and precise localization of buried victims. Following the work in [8], the authors in [9] also 

studied the performance of low cost High Sensitivity GPS (HSGPS) receivers available in the 

market for use in post-avalanche SAR operation. In a more recent work, Victor et.al [10] studied 

the feasibility of 4G-LTE signals to assist SAR operations for avalanche buried victims and 

presented a proof of concept that using a small UAV equipped with sensors that can detect 

cellphone signals, it is possible to detect victim’s cellphone buried up to seven feet deep. Though 

there has been no research published documenting the use of vision based methods, a type of 

passive remote sensing methods, specifically for post-avalanche SAR operation, it is possible to 

find papers that propose to support SAR operations in general with image analysis techniques. 

Rudol et.al., [11], proposed to assist wilderness SAR operation with videos collected using a UAV 

with an onboard thermal and color cameras. In their experiment, the thermal image is used to find 

regions with possible human body and corresponding regions in the color image are further 

analyzed by an object detector that combines Haar feature extractor with cascade of boosted 

classifiers. Because of partial occlusion and variable pose of victims, the authors in [12] 

demonstrated models that decompose complex appearance of humans into multiple parts, [13–15], 

are more suited than monolithic models to detect victims laying on the ground from aerial images 

captured by UAV. Furthermore, they have also shown that integrating prior scale information from 

inertial sensors of the UAV helps to reduce false positives and a better performance can be 

obtained by combining complementary outputs of multiple detectors. 

In recent years, civilian remote sensing applications are greatly benefiting from the 

development of smaller and cost effective UAVs. Some of the applications include: detecting and 

counting of cars or other objects from aerial images captured by UAVs [16–18], to assess impact 

of man-made or natural disaster for humanitarian action, and vegetation mapping and monitoring. 

In general, they are rapid, efficient, and effective systems to acquire extremely high resolution 

(EHR) images. Additionally, their portability and easiness to deploy makes them well suited for 
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applications like post-avalanche SAR operation. According to [19] out of 1886 people by 

avalanche in Switzerland between 1981 and 1998, 39% of the victims were buried with no visible 

parts while the rest are partially buried or stayed completely unburied on the surface. Moreover, 

chance of complete burial can be reduced if avalanche balloons are used. With this statistics, we 

present a method that utilizes UAVs equipped with vision sensors to scan the avalanche debris and 

further process the acquired data with image processing techniques to detect avalanche victims 

and objects related to the victims in near-real time. 

Organization of this chapter is as follows: the overall block diagram of the system along with 

the description of each block is presented in the next section. Datasets used and experimental setup 

are presented in section 3. Experimental results are presented in section 4 and the last section, 

section 5, is dedicated to conclusion and further development. 

2.2. Methodology 

In this section we present a pre-processing method, partially based on image segmentation 

technique, to filter areas of interest from a video frame followed by an image representation 

method based on Convolutional Neural Networks (CNNs or ConvNets) and train a Support Vector 

Machine (SVM) classifier to detect objects. Furthermore, we present a post-processing method 

based on Hidden Markov Models (HMMs) to take advantage of the correlation between successive 

video frames to improve decision of the classifier. Block diagram of the overall system is shown 

in Fig 2.1. 

 

 

 

Fig. 2.1. Block diagram of the overall system 

 

2.2.1. Pre-processing 

If we consider post-avalanche areas, they are covered by snow and hence mostly white. 

Assuming objects of interest will have different color than snow, applying image segmentation 

methods will allow us to separate a frame into regions of snow and other objects. Then, these 

potential regions of objects are further processed by the next steps. This step allows us to process 

only regions of a frame and in some cases to skip or filter frames with no potential object regions, 

thereby providing a better localization of objects and a desirable reduced computation time. In the 
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pre-processing step, a frame will be scanned with a sliding window and each window will be 

checked for a color different than snow by thresholding saturation component of the window in 

the HSV color space. We have adopted the thresholding scheme proposed in [20]: 

𝑡ℎ𝑠𝑎𝑡(𝑉) = 1.0 −
0.8𝑉

255
, (1) 

where V represents the value of the intensity component. We decide that a pixel corresponds to an 

object if the value of the saturation component S is greater or equal than thsat(V). In such a case, 

the window is said to contain an object. 

2.2.2. Feature Extraction 

Feature extraction is the process of mapping image pixels or groups of pixels into a suitable 

feature space. The choice of an appropriate feature extractor strongly affects the performance of 

the classifier. In the literature, one can find several feature extraction methods proposed for object 

detection in images or videos. Haar, Scale Invariant Feature Transform (SIFT), and Histogram of 

Gradients (HOG) are some of the most widely used methods to generate image descriptors. In 

recent years, the availability of large real world datasets like ImageNet [21] and high performance 

computing devices have enabled the capability to train deep and improved neural network 

architectures like ConvNets. These classifiers have significantly improved object detection and 

classification performances. Beside training CNNs to learn features for a classification task, using 

pre-trained CNN architectures as a generic feature extractor and training classifiers like SVM has 

outperformed the performance results obtained by using hand designed feature extractors like SIFT 

and HOG [22,23]. 

CNNs are regular feedforward neural networks where each neuron accepts inputs from 

neurons in the previous layer and perform operations such as multiplication of the input with the 

network weights and non-linear transformation. Unlike regular neural networks, a neuron in a 

CNN is only connected to a small number of neurons in the previous layer that are called local 

receptive fields. Moreover, neurons in a layer are arranged in three dimensions: width, height, and 

depth. CNNs are primarily designed to encode spatial information available in images and make 

the network more suited to image focused tasks [24]. Regular neural networks struggle from 

computational complexity and overfitting with an increase in the size of the input. In contrast, 

CNNs overcome this problem through weight sharing. Weight sharing is a mechanism by which 

neurons in a ConvNet are constrained in a depth slice and use the same learned weights and bias 

in the spatial dimension. These set of learned weights are called filters or kernels. A typical CNN 

architecture (Fig. 2.2) is a cascade of layers mainly made from three types of layers: the 

convolutional, pooling, and fully connected layers. 
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Fig. 2.2. Example of CNN architecture for object recognition 

2.2.2.1. Convolutional Layer 

The convolutional layer is the main building block of a ConvNet that contains a set of 

learnable filters. These filters are small spatially (along the height and width dimension) and extend 

fully in the depth dimension. Through training, the network learns these filters that activate 

neurons when they see a specific feature at a spatial position of the input. The convolution layer 

performs a 2-D convolution of the input with a filter and produce a 2-D output called activation 

map (Fig. 2.3). Several filters can be used in a single convolutional layer and the activation maps 

of each filter are stacked to form the output of this layer, which is an input to the next layer. The 

size of the output is controlled by three parameters: depth, stride, and zero padding. The depth 

parameter controls the number of filters in a convolutional layer. Stride is used to control the extent 

of overlap between adjacent receptive fields and has impact on the spatial dimension of the output 

volume. Zero padding is used to specify the number of zeros that need to be padded on the border 

of the input, which allows to preserve input spatial dimension at the output.   Although there are 

other types of non-linear activation functions, such as the sigmoid and tanh , the most commonly 

used activation function in ConvNets is the rectified linear unit (ReLu) [25] that thresholds the 

input at zero. They are simple to implement and their non-saturating form accelerates the 

convergence of stochastic gradient descent [26]. 

 

 

Fig. 2.3. An example of operation performed by the neurons at a spatial location of the input and the resulting activation 

maps.   
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2.2.2.2. Pooling Layer 

In addition to weight sharing, CNNs use pooling layers to control overfitting. A pooling 

layer performs down sampling of the input in the spatial dimensions. Similar to convolutional 

layers, it also has stride and filter size parameters that control the spatial size of the output. Each 

element in the output activation map corresponds to the aggregate statistics of the input at the 

corresponding spatial position. In addition to control overfitting, pooling layers help to achieve 

spatial invariance [27]. The most commonly used pooling operations in CNNs are the max pooling, 

which computes maximum response of a given patch, the average pooling, which computes 

average response of a given patch, and the sub sampling (Equation 2) [27]  

𝑎𝑗 = tanh⁡(𝛽 ∑ 𝑎𝑖
𝑛×𝑛

𝑁×𝑁

+ 𝑏) (2) 

which computes the average over a patch of size 𝑛 × 𝑛, multiply it with a trainable parameter 𝛽, 

add a trainable bias 𝑏, and applies a non-linear function. 

2.2.2.3. Fully Connected Layer 

This layer is a regular multi-layer perceptron (MLP), where a neuron is connected to all 

neurons in the previous layer, that is used for classification. Once the network is setup the weights 

and biases are learned by using variants of the gradient descent algorithm. The algorithm requires 

to compute the derivative of a training loss with respect to the network parameters using the 

backpropagation algorithm. In the context of classification, the cross-entropy loss function is used 

in combination with the softmax classifier.  

Training deep CNN architectures from scratch requires to have sufficient training data, high 

computing power, and sometimes months of work. Often researches release pre-trained models 

along with their paper. These models can be adapted to specific tasks either by fine tuning that is 

using the network parameters as initialization and re-train with the new dataset or as a fixed feature 

extractor for the recognition task. Which type of transfer learning to use depends on the size of 

data at hand and its affinity with the original dataset (exploited by the pre-trained model) [28]. In 

this work, we will make use of the publicly available trained CNN named GoogLeNet. It is trained 

for image classification task with ImageNet ILSVRC2014 [29] challenge and ranked first. The 

challenge involved classifying images into one of thousand leaf node categories in the ImageNet 

hierarchy. ILSVRC dataset contains about 1.2 million images for training, 50,000 for validation, 

and 100,000 images for testing. The network is 27 layers’ deep including the pooling layers. Each 

convolutional layer contains 64 to 1024 filters of size 1x1 to 7x7 and they use RELU activation 

function. Max pooling kernels of size 3x3 and an average pooling kernel of size 7x7 are used at 

different layers of the network. The input layer takes a color image of size 224x224. Beside the 

classification performance achieved by the network, design of the deep architecture considered the 

power and memory usage of mobile and embedded platforms so that it could be put to real world 

use at a reasonable cost. We refer the reader to [30] for detailed description of the model. 
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2.2.3. Classifier 

The next step after feature extraction is to train a classifier suited for the task at hand. The 

choice of the classifier should take into account dimensionality of the feature space, the number 

of training samples available and any other requirements of the application. Motivated by their 

effectiveness in hyperdimensional classification problems, we will adopt the SVM classifier in 

this work. Introduced by Vapnik and Chervonenkis, SVMs are supervised learning models used 

to analyze data for classification and regression analysis. The main objective of such models is to 

find an optimal hyperplane or set of hyperplanes (in multiclass object discrimination problems) 

that separates a given dataset. They have been applied to a wide range of classification and 

regression tasks, [31–33]. 

Consider a binary classification problem with 𝑁 training samples in a 𝑑-dimensional feature 

space 𝑥𝑖𝜖⁡ℜ
𝑑⁡(𝑖 = 1, 2, 3, … ,𝑁)with corresponding labels 𝑦𝑖𝜖{−1,+1}. There is an optimal 

hyperplane defined by a vector 𝑤𝜖ℜ𝑑 normal to the plane and a bias 𝑏𝜖ℜ that minimizes the cost 

function [34] given by: 

𝜓(𝑤, 𝜉) =
1

2
‖𝑤‖

2
+ 𝐶∑𝜉𝑖

𝑁

𝑖=1

 (3) 

     subject to the following constraints: 

{
𝑦𝑖(𝑤 ⋅ 𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝑖 = 1,2,3, … ,𝑁

𝜉𝑖 ≥ 0, 𝑖 = 1,2,3, … ,𝑁
 (4) 

 

The cost function in equation 3 combines both margin maximization (separation between 

the two classes) and error minimization (penalizing wrongly classified samples) in order to account 

for non separability in real data. The slack variables (𝜉𝑖’s) are used to take into account non 

separable data while 𝐶 is a regularization parameter that allows to control the penalty assigned to 

errors. Though initially designed for linearly separable data, SVMs were later extended to 

nonlinear patterns by using kernel tricks. A kernel function aims at transforming the original data 

into a new higher dimensional space using kernel functions (𝜙(. )’s) and classification (or 

regression) is performed in the transformed space. Membership decision is made based on the sign 

of a discriminant function 𝑓(𝑥) associated with the hyperplane. Mathematically, 

𝑦̂ = 𝑠𝑖𝑔𝑛{𝑓(𝑥)}, where 

𝑓(𝑥) = ⁡𝑤 ⋅ 𝜙(𝑥) + 𝑏, 

(5) 
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2.2.4. Post-Processing 

In a video sequence, it can be reasonably expected that the change in content of successive 

frames is small. Therefore, it is highly likely for an object to appear in consecutive frames. With 

this in mind, we propose to resort to hidden markov models to improve decision of the classifier 

for a frame at time 𝑡 based on the previous frame decisions. HMMs are statistical Markov models 

useful to characterize systems where unobserved internal state governs the external observations 

we make. They have been applied to a wide range of applications like human activity recognition 

from sequential images, bioinformatics, speech recognition, computational and molecular biology, 

etc., [35,36]. 

Consider a system with 𝑁 distinct states, 𝑆 = {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑁}, and 𝑀 distinct observation 

symbols, 𝑉 = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑀}, per state. Given the following parameters, 

1. State transition matrix, 𝐴 = [𝑎𝑖𝑗]: probability that the system will be in state 𝑠𝑗 at time 𝑡 given 

the previous state is 𝑠𝑖. 

𝑎𝑖𝑗 = Pr(𝑞𝑡 = 𝑠𝑗|𝑞𝑡−1 = 𝑠𝑖) , 1 ≤ 𝑖, 𝑗 ≤ 𝑁 (6) 

    where 𝑞𝑡 is the state at time t. 

2. Initial state probability, 𝜋: state of the system at time 𝑡 = 0  

𝜋 = Pr⁡(𝑞0 = 𝑠𝑖) (7) 

3. Observation symbol probability distribution in state 𝑠𝑗, 𝐵 =⁡ [𝑏𝑗(𝑘)] 

𝑏𝑗(𝑘) = 𝑃𝑟(𝑥𝑡 = 𝑣𝑘|𝑞𝑡 = 𝑠𝑗) , 1 ≤ 𝑗 ≤ 𝑁⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡1 ≤ 𝑘 ≤ 𝑀 
(8) 

          where 𝑥𝑡 is the observation at time 𝑡 

and given also the two main HMM assumptions, i.e., first order Markov assumption (a state at 

time 𝑡 only depends on a state at time 𝑡 − 1) and the independence assumption (output observation 

at time 𝑡 is only dependent on a state at time 𝑡), there are three basic problems that need to be 

solved in the development of a HMM methodology. These are: 

1) Evaluation problem: the objective of this problem is to calculate the probability of an 

observation sequence, 𝑂 = ⁡𝑜1, 𝑜2, … , 𝑜𝑇, given model parameters 𝜆 = (𝐴, 𝐵, 𝜋), i.e. 

𝑃(𝑂|𝜆). Besides, it can also be viewed as a way of evaluating how the model can predict 

the given observation sequence.  

2) Decoding problem: it deals with finding the optimal state sequence, 𝑆 = ⁡ 𝑠1, 𝑠2, … , 𝑠𝑇, 

that best explains a given observation sequence, 𝑂 = ⁡𝑜1, 𝑜2, … , 𝑜𝑇, given model 

parameters 𝜆. 

3) Learning problem: it consists in estimating model parameters, 𝜆 = (𝐴, 𝐵, 𝜋), from a 

given training data (supervised or unsupervised) to maximize 𝑃(𝑂|𝜆). 

For our detection problem, we have two hidden states, 𝑆 = {𝑠1, 𝑠2}, namely the presence and 

absence of an object in a frame (see Table 2.1). The observation variables, 𝑥, are image descriptors 

and our objective will be to maximize the instantaneous posteriori probability (the probability that 

maximizes the decision of a frame at time 𝑡 given all the previous observations). Mathematically, 
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⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑞𝑡
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥

1≤𝑖≤2
𝑃(𝑞𝑡 = 𝑠𝑖|𝑜1, 𝑜2, … , 𝑜𝑡, 𝜆)  (9) 

  

Table 2.1. HMM notations in accordance to our detection problem 

𝑠1 𝑦 = ′ − 1′ 

𝑠2 𝑦 =⁡′+ 1′ 

𝑜𝑡 𝑥𝑡 (image aquired at time t) 

𝑦𝑡 𝑦̂ (equation 4) 

 

The state diagram is shown in Fig. 2.4. There exists an efficient dynamic programming 

algorithm called the forward algorithm, [36], to compute the probabilities. The algorithm consists 

of the following two steps: 

 

1. Prediction step: predict the current state given all the previous observations 

𝑃(𝑞𝑡|𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥1) = ∑𝑃(𝑞𝑡|𝑞𝑡−1)

𝑠𝑡−1

𝑃(𝑞𝑡−1|𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥1) (10) 

 

2. Update step: update the prediction based on the current observation 

𝑃(𝑞𝑡|𝑥𝑡, 𝑥𝑡−1, … , 𝑥1) =
𝑃(𝑥𝑡|𝑞𝑡)𝑃(𝑞𝑡|𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥1)

∑ 𝑃(𝑥𝑡|𝑞𝑡)𝑥𝑡 𝑃(𝑞𝑡|𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥1)
 (11) 

using Bayes probability theorem 

𝑃(𝑥𝑡|𝑞𝑡) =
𝑃(𝑞𝑡|𝑥𝑡)𝑃(𝑥𝑡)

𝑃(𝑞𝑡)
 (12) 

substituting equation 12 into 11, we obtain 

𝑃(𝑞𝑡|𝑥𝑡, 𝑥𝑡−1, … , 𝑥1) =
𝑃(𝑞𝑡|𝑥𝑡)𝑃(𝑞𝑡|𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥1)

∑ 𝑃(𝑞𝑡|𝑥𝑡)𝑥𝑡 𝑃(𝑞𝑡|𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥1)
 (13) 
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Fig. 2.4. State transition diagram (object pointed by a yellow arrow is a jacket used to simulate top half of buried victim) 

The posterior probability, 𝑃(𝑞𝑡|𝑥𝑡), is obtained by converting SVM classifier decision into 

a probability using the Platt scaling method, [37]. Platt scaling is a way of transforming outputs of 

a discriminative classification model (like SVM) into a probability distribution over the classes. 

Given a discriminant function,⁡𝑓(𝑥), of a classifier, the method works by fitting a logistic 

regression model to the classifier scores. Mathematically, 

𝑃(𝑦 = 1|𝑥) = ⁡
1

1 + 𝑒𝑥𝑝⁡(𝐴𝑓(𝑥) + 𝐵)
 (14) 

      where the parameters 𝐴 and 𝐵 are fitted using the maximum likelihood estimation method from 

a training set by minimizing the cross-entropy error function. 

2.3. Data and Experimental Setup 

2.3.1. Dataset Description 

For this work, we have used two datasets. The first one was compiled by extracting 

successive frames from different videos of ski areas captured by UAVs freely available on the 

web. We edited the frames by placing objects of interest like body parts, backpacks, skis, etc. This 

dataset has a total of 270 frames, of which 165 were used for the training set and the rest for the 

test set. We have 59 and 52 positive samples in the training and test sets, respectively. Resolution 

of the images is 1280x720. An example of positive and negative images is shown in Fig. 2.5. 
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Fig. 2.5. Example of positive (top) and negative (bottom) images from the first dataset. Objects of interest (partially buried 

skis (left) and top half buried victim (right)) are marked with yellow circle.  

 

The second dataset is recorded on a mountain close to the city of Trento using a GoPro 

camera mounted on a CyberFed “Pinocchio” hexacopter. It consists of five videos of different 

durations recorded in 4K resolution (3840x2160) at a rate of 25 frames per second. For 

convenience, let us call each video as video 1, video 2…, up to video 5. Videos 1, 2, 3, and 4 are 

recorded at a height in the range of 2 to 10 meters while video 5 is recorded at a relatively higher 

height, which is between 20 and 40 meters. The first two videos were recorded with the camera at 

45° tip angle while the others were captured with the camera pointing strait to the nadir. For this 

dataset, training set images are extracted from videos 1 and 2 and the rest are used for the test set. 

Sample frame snapshots are shown in Fig. 2.6. 
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Fig. 2.6. Positive (left) and negative (right) frame snapshots from the second dataset. Objects of interest (skis, jacket to 

simulate bottom half buried victim, and ski pole) are marked by yellow circle. 

2.3.2. Setup 

As explained earlier, since our dataset is small and objects of interest are among the thousand 

classes onto which GoogleNet is trained, we have used the network as a feature extractor. For this 

purpose, we removed the classification layer (layer 25) of the network. A forward propagation of 

zero center normalized image of size 224x224 through the network outputs a vector of image 

descriptor with 1024 elements. 

 

 Moreover, since processing time is critical to our problem and data is distributed in a high 

dimensional space, we train linear SVM for the task of classification. Both training and test 

features are scaled to have a unit length (equation 14) and the choice of best 𝐶 (regularization 

factor) is performed with a grid search of values in the range of 2−15 to 25 using two fold cross 

validation. 

𝑥′ =
𝑥

||𝑥||
 (15) 
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We have used the MatConvNet library [38] to operate on the pre-trained model and LibSVM 

library [39] to train SVM. All the experiments were conducted on a standard desktop computer 

with clock speed of 3GHz and 8GB RAM. 

2.4. Results and Discussions 

In this section, we report experimental results obtained for both datasets. General 

information about all experiments conducted can be found in Table 2.2. Accuracy, probability of 

true positives (𝑃𝑇𝑃), and probability of false alarm (𝑃𝐹𝐴) are the performance metrics used. 𝑃𝑇𝑃 

and 𝑃𝐹𝐴 are calculated as follows: 

𝑃𝑇𝑃 =⁡
∑#⁡𝑜𝑓⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠⁡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦⁡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

∑#⁡𝑜𝑓⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (16) 

  

𝑃𝐹𝐴 =⁡
∑#⁡𝑜𝑓⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠⁡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑⁡𝑎𝑠⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑#⁡𝑜𝑓⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (17) 

 

Table 2.2. General description of experiments conducted 

  
Original image 

resolution 
Resized to 

Pre-

processing 

First dataset 

Experiment 1 1280 × 720 224 × 224 No 

Experiment 2 
1280 × 720 672⁡× 448, then⁡6 tiles 

(224 × 224) 

No 

Experiment 3 
1280 × 720 1120⁡× 672, then⁡15 

tiles (224 × 224) 

No 

Second dataset 

Experiment 4 3840 × 2160 224 × 224 No 

Experiment 5 3840 × 2160 640 × 480 Yes 

Experiment 6 3840 × 2160 1280 × 720 Yes 

Experiment 7 3840 × 2160 1920 × 1080 Yes 

Experiment 8 3840 × 2160 No resizing Yes 

 

 

2.4.1. Experiments without pre-processing 

For the first dataset, we conducted three separate experiments at different resolutions. The 

first experiment is conducted by resizing both training and test frames to an input size, 224⁡ ×

⁡224, of the pre-trained model and extracting the features. In the second experiment, each frame 

is divided into six tiles each of 224x224 size after resizing to 672x448 (close to VGA). While in 

the third experiment, fifteen tiles of size 224x224 are generated from each frame after resizing to 

1120x672 (close to the original resolution). The results are reported in Table 2.3. 
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Table 2.3. Classification results for the first dataset (Experiments 1 - 3). 

 Accuracy (%) 𝑃𝑇𝑃 𝑃𝐹𝐴 

Experiment 1 65.71 0.8462 0.5283 

Experiment 2 94.29 0.6346 0.1095 

Experiment 3 97.59 0.8065 0.0152 

 

From Table 2.3, it is clear that the overall accuracy increases and 𝑃𝐹𝐴 decreases with an increase 

in resolution. Contrarily, 𝑃𝑇𝑃 decreases as for the second and third experiments with respect to the 

first and it increases for the third experiment with respect to the second. We believe that the reason 

for having a high 𝑃𝑇𝑃 in the first experiment is because we are considering the whole frame, which 

contains unwanted objects like poles, trees, lift lines, etc. In the first experiment we have high 𝑃𝐹𝐴 

because the whole frame is resized to 224x224. The resizing makes objects of interest become 

insignificant with respect to the surrounding and thus forces the classifier to learn not only objects 

of interest but also the surrounding. On the other hand, second and third experiments have small 

𝑃𝐹𝐴 and increased 𝑃𝑇𝑃 due to tiling, which makes objects of interest in a tile to become more 

significant with respect to the surrounding and the classifier is able to better discriminate objects 

of interest from the background. Some qualitative results are shown in Fig. 2.7. 

 

Fig. 2.7. Example of correctly classified negative (top left) and positive (top right), false positive object marked in yellow 

rectangle (bottom left), and false negative object marked by red rectangle (bottom right). 

For the second dataset, the first experiment (Experiment 4 in Table 2.2) we conducted is by 

down sampling each frame to a size of 224x224. For this experiment, the training set is made up 

of 4000 frames, of which 2000 are positive samples, extracted from the first two videos. From the 

results in Table 2.4, video 3 has high accuracy and very low 𝑃𝐹𝐴 as compared to the other test 

videos. This is mainly due to the nature of the video. Almost all frames are either snow (white) or 

objects of interest on top of snow. So, down sampling the frames will not affect visibility of objects 

of interest. On the other hand, frames from videos 4 and 5 contain background objects like cars, 
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trees, etc. Additionally, video 5 is recorded at a higher height. For the reasons mentioned above, 

down sampling a frame to 224x224 results in higher insignificance of objects of interest with 

respect to the background and hence a high 𝑃𝐹𝐴. 

Table 2.4. Classification results for the second dataset at resolution of 224 × 224 (Experiment 4). 

 Accuracy (%) 𝑃𝑇𝑃 𝑃𝐹𝐴 

Video 3 84.34 0.8386 0.1470 

Video 4 36.25 0.9405 0.7445 

Video 5 44.13 0.4311 0.5472 

 

2.4.2. Experiments with pre-processing 

Next, we conducted four separate experiments at resolutions of 640x480, 1280x720, 

1920x1080, and 3840x2160, respectively. Since the number of frames in this dataset is large, tiling 

each frame and labeling each tile is time consuming. Alternatively, we composed a training set 

with 3000, of which 1500 are positive, image crops of size 224x224 from the first two videos at 

the original resolution and trained a linear SVM. During the test phase, each frame is scanned with 

a sliding window of size 80x80 and if a window passes the threshold, a crop of size 224x224 

centered on the window is taken for further processing with the next steps. An example of this 

process is shown in Fig. 2.8. 

 

Fig. 2.8. Example showing the pre-processing step. The image on top shows a frame being scanned by a sliding window while the 

image on the bottom highlights a region (marked by blue rectangle), centered around a window (marked by cyan rectangle) 

selected for further processing. 

As seen from the results in Tables 2.5 and 2.6, for video 3 (experiments 5 to 8), the overall 

accuracy increases with an increase in resolution as compared to the results obtained in experiment 

4. An exception is at the VGA resolution, where there is a decrease in accuracy due to loss of 

details in down sampling. As expected, the probability of false alarm (𝑃𝐹𝐴) drops significantly 

with an increase in resolution. On the other hand, 𝑃𝑇𝑃 has decreased with respect to the result 

obtained in experiment 4. But it started to increase as resolution is improved, yielding a significant 
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increase at 4K resolution (experiment 8). We believe that the decrease is due to the difference in 

the training sets used for experiment 4 and experiments 5 to 8 while the increase is due to a more 

detailed information available with an increase in resolution. 

Similarly, for video 4, the overall accuracy improves significantly as compared to the results 

obtained in experiment 4. But it starts to drop, as compared to the result at VGA resolution 

(experiment 5), with an increase in resolution. In experiment 4 we have a high 𝑃𝐹𝐴, but it decreases 

significantly as resolution is improved. However, as we go from VGA (experiment 5) to 4K 

(experiment 8) resolution, there is an increase in 𝑃𝐹𝐴. This is because of objects or part of objects 

in the background that have similarity with objects of interest, thus incurring the classifier in more 

wrong decisions. Moreover, the increase in 𝑃𝐹𝐴 has a negative impact on the overall accuracy. 

Though initially we have a decrease in 𝑃𝑇𝑃 at the VGA resolution with respect to the result 

obtained in experiment 4, there is an increase and stability in the rest of the experiments. 

Table 2.5. Classification results for the second dataset at 640 × 480 and 1280 × 720 resolutions (Experiments 5 and 6) 

 Experiment 5 Experiment 6 

 Accuracy (%) 𝑃𝑇𝑃 𝑃𝐹𝐴 Accuracy (%) 𝑃𝑇𝑃 𝑃𝐹𝐴 

Video 3 78.95 0.6383 0.0020 88.40 0.8061 0.0080 

Video 4 96.93 0.8452 0.0080 93.31 0.9940 0.0078 

Video 5 62.72 0.3352 0.0409 67.72 0.4259 0.0373 

  Table 2.6. Classification results for the second dataset at 1920 × 1080 and 3840 × 2160 resolutions (Experiments 7 and 8) 

 Experiment 7 Experiment 8 

 Accuracy(%) 𝑃𝑇𝑃 𝑃𝐹𝐴 Accuracy(%) 𝑃𝑇𝑃 𝑃𝐹𝐴 

Video 3 90.01 0.8333 0.0080 94 0.9084 0.0164 

Video 4 77.32 0.9940 0.2687 70.63 0.9940 0.3480 

Video 5 74.34 0.5723 0.0620 78.93 0.7087 0.1191 

 

For video 5, we have a significant increase in the overall accuracy as resolution increases. 

𝑃𝑇𝑃 initially decreases at VGA resolution (experiment 5) with respect to the results obtained in 

experiment 4, but it starts to increase as resolution increases. Moreover, we have less 𝑃𝑇𝑃⁡as 

compared to other videos because of the height at which the video is captured. Similar to the other 

videos, 𝑃𝐹𝐴 drops significantly with an increase in resolution. But there is also a slight increase in 

experiments 5 to 8 due to similar reasons mentioned for video 4. Some qualitative results are shown 

in Fig. 2.9 and 2.10. 
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Fig. 2.9. Snapshot of frames with correct positive (left) and negative (right) detection results at the VGA resolution from 

the second dataset. Regions of a frame containing an object are shown with green rectangle. 

 

Fig. 2.10. Examples of false positive (left) and false negative (right) frame snapshots at VGA resolution. Yellow arrows 

indicate false positive regions in a frame whereas red arrows show missed objects in a frame. 
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2.4.3. Experiments with Markovian post-processing  

In the previous experiments, decisions are made separately for each frame. But in a video 

sequence, there is correlation between successive frames and performance can be further improved 

by embedding this information in the decision making process. As described in the previous 

methodological section, we have used HMMs to opportunely exploit this information. Model 

parameters, prior distribution, transition matrix and observation probability distribution are 

calculated as follows: 

 We have initialized prior distribution in such a way that the probability there is no object in 

the initial frame is high. For such purpose, we fixed this prior probability value to 0.9. 

 The state transition matrix (Table 2.7) is calculated from the available labeled frames. 

 Instead of the observation probability distribution, we use the posterior probability by 

converting SVM discriminant function value into a probability value using the Platt’s 

method and use it in the modified equation of the forward algorithm mentioned in Section 

2.2. 

The effect of post-processing on the prediction performance can be positive or negative. 

Indeed, it can correct wrong predictions made by the classifier (positive change) or change the 

correct prediction made by the classifier into a wrong prediction (negative change). Moreover, 

these positive or negative changes occur between successive frames where there is transition from 

one state to the other in the prediction of the classifier. For example, consider two successive 

frames, at time 𝑡 and 𝑡 − 1. If the decision of the SVM at time 𝑡 is different than the decision made 

by HMM for the frame at time 𝑡 − 1, because of the small state transition probabilities it is highly 

likely for the HMM to remain in the same state for the current frame thereby changing decision of 

the SVM. Depending on the original label of the frame, this change can be either positive or 

negative. Therefore, prediction performance of the system can either increase if there are more 

positive changes than negative changes or decrease if there are more negative changes than the 

positive ones. 

The results in Tables 2.8-10 show for video 3 the impact of HMM is not that significant in 

improving 𝑃𝐹𝐴. On the other hand, 𝑃𝑇𝑃 improves by more than 2% at the VGA resolution. For 

video 4, since the number of positive frames is very small an increase or decrease in 𝑃𝑇𝑃 does not 

affect the overall accuracy. For example, 𝑃𝑇𝑃 increases by 6% in the first experiment and decreases 

by approximately 10% at the VGA resolution, but the effect on the overall accuracy is very small. 

With an increase in resolution 𝑃𝐹𝐴 gets improved and accuracy increases by more than 5%. Though 

post-processing has negative effect on the accuracy for video 5, we can see from the results that 

as resolution increases, 𝑃𝐹𝐴 drops and, consequently, the difference between the accuracies 

(achieved with and without post-processing) decreases. In general, it is possible to see that the gain 

of post-processing depends on the goodness of the classifier. When 𝑃𝑇𝑃 is high and 𝑃𝐹𝐴 is low, 

prediction performance gets improved or remains the same. In all other cases, the impact on 

prediction performance, especially on the overall accuracy, depends on the ratio of positive and 

negative frames. Example of positive and negative changes made by HMM are given in Fig. 2. 11 

and 2.12. 
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Table 2.7. State transition matrix 

 Current frame with no object Current frame with object 

Previous frame with no 

object 

0.9977 0.0023 

Previous frame with 

object 

0.0023 0.9977 

 

Table 2.8. HMM detection result at resolution of 224 × 224 

 Accuracy (%) 𝑃𝑇𝑃 𝑃𝐹𝐴 

Video 3 84.95 0.8450 0.1440 

Video 4 36.06 1 0.7580 

Video 5 42.64 0.4120 0.5570 

 

 

Table 2.9. HMM detection results at VGA and 720p resolutions 

 640 × 480 1280 × 720 

 Accuracy (%) 𝑃𝑇𝑃 𝑃𝐹𝐴 Accuracy (%) 𝑃𝑇𝑃 𝑃𝐹𝐴 

Video 3 80.52 0.6642 0.0010 88.70 0.8090 0.0051 

Video 4 96 0.7440 0.0010 95.26 0.9880 0.0517 

Video 5 59.7 0.2768 0.0340 65.47 0.3712 0.0299 

 

 

Table 2.10. HMM detection results at 1080p and 4K resolutions 

 
1920 × 1080 3840 × 2160 

 Accuracy (%) 𝑃𝑇𝑃 𝑃𝐹𝐴 Accuracy (%) 𝑃𝑇𝑃 𝑃𝐹𝐴 

Video 3 
89.39 0.8211 0.0056 93.29 0.8910 0.0091 

Video 4 
82.89 0.99 0.2033 72.86 0.99 0.3226 

Video 5 
72.80 0.5178 0.0330 77.45 0.6179 0.0463 
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Fig. 2.11. Example of positive change by HMM. Sequence of white and black squares on top indicate label of successive 

frames. White square indicates a frame has object of interest whereas black square indicates the opposite. The frame where 

the change happened is highlighted by red dotted rectangle and the corresponding frame in the bottom. The frame for which 

SVM made wrong decision is shown in bottom left (the object in the frame, skis in this case, is indicated by red arrow) 

whereas the same frame corrected by HMM is shown in the bottom right (the object in the frame is indicated by green 

arrow). Note that object is not localized since post-processing decision is made at the frame level. 

 

Fig. 2.12. Example of negative change by HMM. Sequence of white and black squares on top indicate label of successive frames. 

White squares indicate a frame has object of interest whereas black squares indicate the opposite. Frame where the change happened 

is highlighted by red dotted rectangle. The frame for which SVM made the right decision, with the object localized in a green rectangle, 

is shown in the bottom left. The same frame for which HMM made wrong decision is shown in bottom right. 
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2.4.4 Computation time 

The processing time required to extract CNN features and perform the prediction for an input 

image of size 224x224 is 0.185 seconds. For both the first and second datasets, detection at a 

resolution of 224x224 can be done at a rate of 5.4 frames per second. For the first dataset, since 

we used tiling to do detection at higher resolutions, the processing time is the product of the 

number of tiles per frame with the processing time required for a single tile (0.185 seconds). 

Therefore, at near VGA and full resolutions detection rates are 0.9 and 0.36 frames per second, 

respectively. For the second dataset, since we have the pre-processing step, we only extract 

features and perform prediction on frames that pass this step. Additionally, there can be more than 

one crop of size 224x224 from a single frame. The average processing time is reported in Table 2. 

XI. The advantage of pre-processing as compared to the tiling approach is twofold. First, it allows 

to reduce processing time and, second, it provides better localization of objects with in a frame.  

In general from the experimental results obtained, it emerges that working at a higher 

resolution provides a significant improvement on prediction performance at a cost of increased 

processing time. The bar graph in Fig. 2.13 shows the average accuracy and processing time for 

the second dataset. 

Table 2.11. Detection speed (number of frames per second) for the second dataset 

 Video 3 Video 4 Video 5 

224 × 224 5.4 5.4 5.4 

640 × 480 3.63 1.8 2.88 

1280 × 720 2.25 1.15 1.65 

1920 × 1080 1.48 0.86 0.98 

3840 × 2160 0.41 0.32 0.24 

 

 

Fig. 2.13 Bar graph showing the change in accuracy and detection rate as resolution increases 
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2.4.5 Conclusion 

In this chapter, we have presented a method to support avalanche SAR operation using 

UAVs equipped with vision cameras. The UAVs are used to acquire EHR images of an avalanche 

debris and the acquired image is processed by a system composed of a pre-processing method to 

select regions of interest within the image, a pre-trained CNN to extract suitable image descriptors, 

a trained linear SVM classifier for object detection and a post-processing method based on HMM 

to further improve detection results of the classifier.  

From the experimental results, it is clear that improved resolution results in an increase in 

prediction performance. This is mainly due to the availability of a more detailed information at a 

higher resolution which enables the decision system to better discriminate objects of interest from 

the background. Contrarily, we have also seen an increase in false alarm because of background 

objects or part of objects that exhibit similarity with the objects of interest. Though the 

computation time increases with an increase in resolution, it is possible to assert that, except at full 

resolution, the processing time is acceptable for such kind of applications. Additionally, as seen 

from experimental results of video 5, the height at which frames are acquired is also an important 

factor which impacts on the prediction performance and the results obtained with the other test 

videos suggest that scanning the debris at a lower altitude is preferable for a better detection 

performance. Finally, the choice of resolution to perform detection should be done according to a 

tradeoff between accuracy and processing time. 

Operational scenarios of the proposed method are two. In the first one, the data are 

transmitted in real time to the ground station where the processing is performed in order to alert 

the operator when objects of interest are detected while the UAV (or a swarm of UAVs) performs 

the scans of the avalanche areas. In this scenario, problems of communication links between the 

drone and the ground station need to be beforehand resolved. In the second scenario, the processing 

is performed onboard the UAV. This allows to reduce considerably the amount of information to 

be sent toward the ground station, which in this case can be reduced to simple flag information 

whenever a frame containing objects of interest is detected. The drawback is the processing 

capabilities which are reduced with respect to those of a ground station. Work is in progress for an 

onboard implementation. Moreover, though we have used videos captured at 45° in our 

experiments, we expect the acquisition to be performed at nadir. 
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Abstract – This chapter faces the problem of multilabeling unmanned aerial vehicle (UAV) imagery, 

typically characterized by a high level of information content, by proposing two novel methods based 

on two deep learning networks, namely, convolutional neural network (CNN) and Autoencoder (AE) 

network. They are exploited as means to yield a powerful description of the query image. The two 

proposed methods start by subdividing a given query image into a set of equal tiles, which are 

successively processed and analyzed separately. Precisely, each tile is described by extracting 

opportune features that are exploited to perform the multilabel classification task in order to derive 

the list of objects present in it. In particular, the first method performs the tiles feature extraction 

process using a pre-trained CNN. Then, it classifies the resulting features by means of a Radial Basis 

Function Neural Network (RBFNN). Differently, the second method carries out the tiles feature 

extraction by taking advantage from using three different handcrafted feature descriptors namely, 

the bag of visual words (BOW), the wavelets transform, and the Histogram of oriented Gradients 

(HoG). Followed by a further transformation through a learning step of an autoencoder (AE) model. 

This last provides new features of reduced dimensionality, exploited to feed a multilayer perceptron 

(MLP) classifier. Furthermore, for both proposed methods, a multilabeling layer composed of 

customized thresholding operations is integrated on the top of their whole architectures to improve 

the obtained outcomes. From the conducted experiments on two different EHR UAV image datasets, 

it comes out that the proposed methods yield very interesting classification accuracies compared to 

the state-of-the-art. 

 

 

3.1. Introduction 

The ever increasing interest witnessed in the acquisition and development of Unmanned 

Aerial Vehicles (UAVs), commonly known as drones in the past few years, has paved the way to 

a very promising and effective technology. Since 2005, the number of countries that have acquired 

drones doubled from 40 to more than 75 [1]. UAVs have proven their effectiveness in collecting 

data over unreachable areas and limited coverage zones due to their small size and fast deployment. 

Moreover, their custom-made capacity allows them to collect information with a very high level 

of detail, leading to extremely high resolution (EHR) images. UAVs were mainly created for 

military usage. However, in the last decade, they have being exploited in numerous civilian 

applications as well. For instance, in [2], a real time algorithm is introduced for classification, 

object detection and tracking from thermal UAV images acquired over the surface of the ocean. 

In [3], the authors present a UAV cloud system disaster surveillance system to reduce natural or 

man-made damages. In [4], Shaodan et al. introduce an unsupervised classification method for 

UAV images to detect earthquake triggered on rural houses. Furthermore, several works dealing 

with vehicle detection can be found in [5]-[6]. Authors in [7], present a visual surveillance system 

for tracking moving objects in video sequences acquired by means of UAVs using Lucas-Kanade 

optical flow and Continuously Adaptive Mean-Shift (CAMshift) techniques. In [8], a texture-

based (i.e., energy, correlation, mean intensity and lacunarity) classification method using 

Minkovski distance as a method of comparison was presented. In addition, UAVs have been used 

with promising results in various applications such as in the agricultural sector. In particular, in 

[9], the authors proposed an automatic method for palm tree detection using Scale-invariant 

Feature Transform (SIFT) features and extreme learning machine (ELM) classifier. Moreover,  

Senthilnath et al. [10] describe a spectral-spatial method for the detection of tomatoes on UAV 

http://www.sciencedirect.com/science/article/pii/S1537511015001841
http://www.sciencedirect.com/science/article/pii/S1537511015001841
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images, exploiting three different spectral clustering methods with spatial segmentation and 

morphological operations applied on the target image.  

In spite of the efforts being dedicated to UAV imagery classification and analysis within the 

remote sensing community, there is still a plenty of room for improvement. Indeed, as the spatial 

resolution increases, so does the need for new methods to process images with such high level of 

detail and rich information content, where traditional ways of classification such as pixel-based 

and segment-based descriptors may raise the problem of intra-class variability especially when 

dealing with several classes at the same time. Moreover, they dramatically increase the 

computational needs. Indeed, this makes the analysis of UAV imagery particularly challenging. In 

this chapter, we deal with the problem of multilabel classification of EHR images acquired by 

means of UAVs using a coarse description approach. That is, instead of attributing a label to each 

individual spatial entity or segment region descriptor as in the traditional monolabel classification, 

we describe the considered entity by a list of object classes present in it. This approach first 

subdivides the image into a grid of equal tiles. Then using some specific tile representation and an 

opportune classification tool, to each tile, a vector of labels is assigned representing the object 

classes that are possibly present in it. Such a multilabel classification approach was first introduced 

in [11] for describing UAV images over urban areas with interesting results. In particular, the 

multilabel implementation derives benefits from exploiting local feature descriptors, such as Scale 

Invariant Feature Transform (SIFT), and Histogram of Oriented Gradients (HoG), combined with 

a Bag Of visual Words (BOW) compact representation. Recently, the computer vision community 

has reported a very promising generation of neural networks architectures, called Deep Neural 

Networks, They have shown their capability to overcome traditional classification methods in very 

complex vision tasks [13]-[14]-[15]. In this chapter, we propose two alternative techniques to the 

new classification problem raised in [11]. The idea behind the development of the first method lies 

in : i) representing tiles with CNN features; and ii) substituting the matching paradigm adopted in 

[11] with a multilabel classification model based on a Radial Basis Function Neural Network 

(RBFNN) .  

In the second method, a faster classification paradigm is put forth by using a suitable tile 

representation, followed by a feature learning step based on an AutoEncoder (AE) network. Once 

extracted, the produced features are fed to a multilayer perceptron (MLP) network, which acts as 

classifier for our multilabeling task.  

Finally, for both proposed methods, we introduce a multilabeling layer, relying on a set of 

simple thresholding operations [16] integrated on the top of their architectures to enhance further 

the obtained results. The remaining part of this chapter recalls the coarse scene description. Then, 

details the proposed multilabel classification methods. Experiments are conducted on two real 

UAV image datasets acquired over urban areas to investigate the effectiveness the proposed 

method, including a comparison with the state-of-the-art. 
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3.2. Methodological Overview 

3.2.1. Image Coarse Description  

Pixel based image analysis methods are very time consuming and have demonstrated a 

limitation in processing VHR images in complex urban environments compared to object-/ 

segment- based methods, which allow producing higher classification accuracies, and better 

thematic maps [17].  However, these descriptor methods (i.e., object-/ segment- based) may raise 

the problem of intra-class variability when dealing with several classes at the same time especially 

for extremely high resolution imagery where spatial resolution increases up to 2 cm [11].  

Moreover, these methods are not meant to deal with multilabel object classification since they 

assign to each pixel / segment entity a single label, which increases the number of algorithms (i.e., 

classifiers) invoked simultaneously for each class. Differently from these techniques, coarse 

description strategy does not aim to assign to each single pixel or pattern descriptor a single label, 

but it simply describes a query image or a specific investigated tile within the image by the list of 

objects present in it. This list indicates the presence/absence state of different objects of interest. 

Such approach exhibits the advantage of considerably simplifying the complexity of the 

multilabeling process requirements by jointly handling the co-occurring objects within a unique 

entity, providing a better perception of the considered multilabeled scene. However, objects 

normally manifest a sense of semantic dependency. In other words, some objects tend to appear 

along with other objects, which suggests adopting a classification model that handles such 

consistency. In greater detail, let us consider a three-channel RGB extremely high resolution 

(EHR) image (𝐼) acquired by means of UAVs. We start by subdividing it into a grid of tiles of 

equal sizes. The size of each tile is defined according to the spatial resolution of I and the expected 

sizes of objects that one aims at recognizing. The multiclass tile-based approach is composed of 

two main stages: 1) a suitable tile representation strategy; and 2) a tile classification/matching 

method. A query tile is labeled either with a binary vector of the most similar tile present in the 

training library using a matching strategy, where the closest tile in the feature space from the 

training library has likely the same list of objects of the query tile, or as proposed in this chapter it 

is labeled by means of a classification paradigm. To this point, each tile is “coarsely” described by 

the subset of classes present in it (Fig. 3.1). 

 

 
Fig. 3.1.  Flow chart of the multilabel coarse classification framework. 
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3.2.2. Multilabeling UAV Images with Convolutional Neural Networks 

The first proposed strategy starts with the extraction of features using the GoogLeNet pre-

trained CNN [13]. CNN is a feedforward hierarchical neural network implementing a set of 

convolutional and subsampling operations, followed by a softmax classifier. The main underlying 

idea behind convolutional neural network is to look for a pattern supposed to be invariant to spatial 

translations. The major difference between convolutional networks and a Multi-Layer Perceptron 

(MLP) is that, unlike MLP, the internal order of inputs and hidden units is relevant in convolutional 

networks, and each unit is connected with a specific spatial position of the input image. CNN 

architecture starts with a convolutional layer that is usually a 3 dimensional volume of neurons. It 

consists of a set of feature detectors which refer to a convolution with a mask that is consistently 

convolved across the width and height of the input layer in order to extract robust features against 

noise and translation. The repetition of this mask all over the input layer allows to share the same 

weights all over the input layer which reduces the number of free parameters learned. In fact, this 

simplifies the computational requirements of training the network on large datasets building much 

efficient and powerful networks. After the convolutional layer, several operations are performed 

such as the activation function and subsampling, called also pooling. This last forms a nonlinear 

down-sampling layer that reduces the spatial size, and thus the number of parameters to be 

computed for the next layer. The most common pooling technique is Max-Pooling. It divides the 

input into a set of non-overlapping blocks, and assigns to each block its maximum value. In order 

to increase sparseness, an elementwise activation function Rectified Linear Units (ReLU) layer 

can be applied after any convolutional layer. The ReLU layer deals also with the vanishing gradient 

problem in the error backpropagation phase. Thereafter, a set of convolutional and subsampling 

layers, comes the classification layer. It is a fully connected layer that has full connections to all 

activation units in the previous layers with a loss function (e.g., softmax). 

Training a deep network usually requires a huge number of training images to avoid 

overfitting. Nevertheless, one may reasonably tackle this issue by transfer learning, which in our 

case consists of exploiting the weights of a model that is pertained on a large dataset and making 

use of them while developing our dataset-specific classifier. CNN features computed with pre-

trained networks have been used in many computer vision tasks, and have shown good results 

[18]-[19]. One of the publicly available pre-trained CNN is GoogLeNet. It was first trained over 

ILSVRC2014 dataset, which contains over 1.2 million images, with a classification challenge of 

1000 different classes, thus making GoogLeNet a promising candidate for generating powerful 

discrimination features. GoogLeNet is a 22-layers deep network excluding pooling layers, with a 

softmax loss layer as a classifier. The size of its receptive field is 224×224 of three channels (RGB) 

with zero mean. A rectified linear activation (ReLU) is used in all its convolutional layers. 

GoogLeNet generates a feature vector of size equal to 1024. The most important component 

characterizing GoogLeNet network is what is called Inception modules, which are modules with 

a wise local sparse structure of dense components (e.g., Convolution, Pooling, Softmax). They 

cluster the correlation statistics of the previous layer output into group of units (Fig. 3.2). The 

major benefit of this inception layers is their efficient reduction of dimensionality as well as 

computational requirements.  GoogLeNet is based on 9 inception modules. The width of inception 

modules ranges from 256 filters (in early modules) to 1024 in top inception modules. 
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Since GoogLeNet is not directly adapted to multilabel classification tasks, in this work, we 

substitute the softmax classifier with a Radial Basis Function neural network (RBFNN), which is 

a classifier that can fit our multilabeling requirement. Indeed, we will violate the principle that the 

sum of output targets should be equal to one (i.e., just one of them is active) ruling traditional 

(mono-label) classification problems. We will look at the outputs of the RBFNN no more as 

posteriors but as indicators of presence/absence of the corresponding object. This means that 

during the training phase the classifier will model which objects are present/absent in each training 

tile. During the prediction phase, the model will provide for each object a quantity (indicator) 

𝑓𝑖(𝑋) from which we will need to infer the presence of absence of the considered object. Since 

during training, the values used to indicate the presence or the absence of an object are set to 

𝑓𝑖(𝑋)=1 or 0, respectively, during the prediction an intuitive decision mechanism is “the object is 

present if 𝑓𝑖(𝑋)0.5, otherwise it is absent”. We propose to substitute this intuitive decision rule 

by integrating a multilabeling layer, which will be part of the architecture (Fig. 3.3). In particular, 

each indicator 𝑓𝑖(𝑋) will be viewed as a feature along which two hypotheses H0 (absence) and H1 

(presence) are defined. The problem of discrimination between H0 and H1 can be seen as a simple 

thresholding problem. In the literature, there exist several algorithms for computing the best 

threshold between two classes. In the following, we briefly introduce a simple and fast algorithm, 

called Otsu’s method [16], which will be exploited in this chapter. 

 

 
Fig. 3.3.  Global flowchart of the proposed classification scheme. 

 
 

 
 

Fig. 3.2.  Flow chart of the Inception module. 
. 
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3.2.3. Otsu’s Thresholding Algorithm  

This algorithm is an unsupervised method, which finds a decision threshold 𝑡ℎ̂ between two 

hypothesis (classes) 𝐻0 (absence of object), 𝐻1 (presence of object) based on a discriminant 

criterion aiming at maximizing the separability between the two classes and thus minimizing their 

intra-class variance (Fig. 3.4). Let 𝑓𝑖(𝑋) be an output function (feature) of a deep network 

architecture represented by a 1D histogram composed of M bins.  

 

 

 

 

 

 

 

 

 

 

This last is transformed by normalization into a probability function 𝑝(𝑓𝑖(𝑋)).  Let us assume 

that along 𝑓𝑖(𝑋) just two classes lie, namely 𝐻0 and 𝐻1. We are interested in finding a threshold 

value t that best separates the two classes.  For a given threshold value t, the prior probabilities of 

𝐻0⁡and⁡𝐻1 can be computed as follows: 

P(𝐻0(𝑡)) = ∑ 𝑝(𝑖)𝑡−1
𝑖=0                                  (1) 

P(𝐻1(𝑡)) = ∑ 𝑝(𝑖)𝑀−1
𝑖=𝑡                                 (2) 

The main idea behind Otsu’s method is to select the threshold 𝑡ℎ̂ that minimizes the intra-

class variance of the two classes 𝐻0, ⁡𝐻1 which is but the weighted sum of variances of each cluster 

defined as: 

𝜎𝑊
2 (𝑡) = P(𝐻0(𝑡))⁡𝜎0

2(𝑡) +⁡P(𝐻1(𝑡))𝜎1
2(𝑡)             (3) 

where 𝜎1
2(𝑡) and 𝜎0

2(𝑡) are the variance the pixels above and below the threshold t (thus an 

approximation of the variance of the classes H0 and H1)., respectively. Alternatively, we may 

express the minimization process in terms of the between-class variance 𝜎𝐵
2(𝑡), which is defined 

as the subtraction of the within-class variance 𝜎𝑊
2 (𝑡) from the total variance of their combined 

distribution 𝜎2 given by: 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜎𝐵
2(𝑡) = 𝜎2 − 𝜎𝑊

2 (𝑡) 

⁡⁡⁡= ⁡ P(𝐻0(𝑡))(𝜇0(𝑡) − 𝜇𝑇)
2 + P(𝐻1(𝑡))(𝜇1(𝑡) − 𝜇𝑇)

2 

= P(𝐻0(𝑡))P(𝐻1(𝑡))⁡[𝜇0(𝑡) − 𝜇1(𝑡)]
2                   (4) 

where the class means are: 

 

 
 

Fig. 3.4.  Graphical histogram illustration of the OTSU thresholding 

technique 

 
. 

 
 

 



 Chapter III. Multilabel Deep Learning Strategies for Imagery Description 

44 
 

𝜇0(𝑡) = ∑ 𝑖𝑝(𝑖)/P(𝐻0)
𝑡−1
𝑖=0 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

𝜇1(𝑡) = ∑ 𝑖𝑝(𝑖)/P(𝐻1)
𝑀−1
𝑖=𝑡                              (6) 

 

and the total mean level is defined as: 

 

𝜇𝑇 = ∑ 𝑖𝑝(𝑖)𝑀−1
𝑖=0                                              (7) 

It can easily be verified that: 

 

P(𝐻0) + P(𝐻1) = 1,        P(𝐻0)𝜇0 + P(𝐻1)𝜇1 = 𝜇T       (8) 

The best threshold 𝑡ℎ̂ that minimizes the within-class variance 𝜎𝑊
2  is selected as: 

 

𝑡ℎ̂ = 𝑚𝑎𝑥0≤𝑡≤𝑀−1⁡⁡𝜎𝐵
2(𝑡)                                    (9) 

For every bin 𝑡 (candidate value for the best threshold) of the histogram, we thus compute the 

between-classes variance 𝜎𝐵
2(𝑡) and we choose the optimum threshold 𝑡ℎ̂ that maximizes it. This 

process is repeated for each output 𝑓𝑖(𝑋) of the RBFN network in order to find the best threshold 

value for each object and therefore to complete the training of the multilabeling layer. This means 

that: 1) for each output a histogram needs to be generated; and 2) Otsu’s algorithm is applied on 

each histogram to estimate the best decision threshold for the corresponding class. 

3.3. Multilabeling UAV Images with Autoencoders Neural Networks 

The main underlying reason for this second approach is to improve the computational 

performance by proposing a fast and compact process chain that satisfies real-time application 

standards. Taking into consideration the fact that these algorithms are opted for computational 

devices mounted on UAVs, which are characterized by their limited processing capacity. The use 

of deep CNNs has a computational time drawback, due to the depth of their architectures (i.e., 

numerous computations performed through several layers) resulting in more processing 

requirements. As described earlier, this proposed tile-based paradigm starts with the extraction of 

features. Since we are working with extremely high resolution (EHR) imagery, each tile is 

characterized by a high level of detail and rich information content. In order to extract a compact 

signature that describes efficiently each tile, we resort to three different tile representation 

strategies, namely the bag of visual words (BOW), the wavelets transform, and the Histogram of 

oriented Gradients (HoG) representations. In order to further boost their representation capability, 

we exploit autoencoder neural networks. Indeed, we feed the extracted features to an autoencoder 

network, which constructs new learned features from the initially extracted features (i.e., 

RGB_BW, HoG, wavelets transform) (Fig. 3.5). The next step of our classification framework 

consists in adding a multilayer perceptron (MLP) network as a classifier, which fits our 

multilabeling requirement. Indeed, the MLP can handle simultaneously multiple outputs, which 

may characterize each tile of the image. Each title will be labeled with a binary vector of multiple 

predefined classes which correspond to the number of MLP outputs. Moreover, we will implement 

a simple refining mechanism at the output of the MLP so that to further boost the multilabeling 
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accuracy. It is based on a thresholding operation applied on the output of the MLP. The value of 

the threshold is estimated empirically i.e., by maximizing the average accuracy on the validation 

samples. The tile representation strategies adopted in this chapter are outlined in the following. 

3.3.1. Tile Representation strategies  

3.3.1.1. Bag of Visual Words 

The bag of visual words is a well-known paradigm that has been widely applied in the 

computer vision field. The main reason behind using BOW model is to reformulate our tile image 

representation into a compact and finite number of features. The details outlining the BOW model 

starts from the pixel values (RGB) that represent the spectral features of our image tiles. First, we 

project all pixels of our training tile images into a 3D space of RGB features, forming a cloud of 

points. Next, we apply the 𝐾-means clustering method on the resulting spectral values which 

produce a set of C cluster centroids (i.e., words) forming what is called a codebook. Each learned 

cluster 𝐾𝑖⁡ (i=1, 2,…, C) represents a word of this codebook. Finally, we map the RGB features of 

all the image tiles into a histogram whose length equals the number of the learned centroids (i.e., 

C) by assigning each pixel of a given tile to the closest centroid (word) of the built codebook. The 

generated histogram presents a compact signature codifying the number of occurrences of each 

word in the image tile. 

3.3.1.2. Wavelet Transform 

In order to overcome the limitation of Fourier transform in extracting and analyzing the 

features of a signal in both time and frequency domains simultaneously, an alternative tool was 

introduced, namely the wavelet transform. It highlights the local regions over a range of scales 

instead of the frequency to capture both time and frequency information of a signal. In particular, 

in image processing, discrete wavelet transform (DWT) provides a multi-scale analysis transform 

framework that captures both spatial and frequency features at different resolution levels, where it 

decomposes the image into an independent approximation and detailed coefficients using low-pass 

 

 
 

Fig. 3.5.  Flow chart of the multilabel classification method based on the autoencoder network. 

http://www.thesaurus.com/browse/simultaneously
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and high-pass finite impulse response (FIR) filters, respectively [20]. This decomposition process 

is performed recursively at each resolution level until a certain iteration number is reached. Since 

the wavelet decomposition is defined by some filter banks, and in consideration of the large 

number of filters that can be found. A problem to solve is the selection of the filter banks 

corresponding to a wavelet that can efficiently represent our UAVs tile images. In order to cope 

with this issue, we will exploit a well-known family of DWT orthogonal wavelets with compact 

support, namely Daubechies wavelets [21]. 

3.3.1.3. Histogram of oriented gradients 

Histogram of oriented gradients (HoG) is an image descriptor that has gained a sound 

reputation in the computer vision and remote sensing communities. It extracts structural 

information (i.e., shape) in a localized section of an image, based on edge directions and the 

distribution of intensity gradients. This feature descriptor was initially introduced in [22] for 

pedestrian detection, then it has proven its effectiveness for detecting various complex classes of 

objects in both static and video images. The HoG features descriptor is obtained by subdividing 

the query image into a set of overlapping regions called cells. Then for each cell, a histogram of 

gradient directions is computed. The resulting histograms are then concatenated to form the 

descriptors of the image. Finally, a set of larger regions than the cells called blocks, are formed 

out of the resulting normalized histogram descriptors, in order to deal with the invariance to 

illumination and shadowing changes. 

3.3.2. Autoencoder neural network 

In recent years, Deep Neural Networks (DNNs) have become a topic of ongoing interest in 

the machine learning community, and have shown a great potential in many complex computer 

vision tasks. One of these Deep Neural Networks architectures is the Autoencoder [23]. It consists 

of a three-layer feedforward neural network (i.e., input, hidden, output) composed of a two-step 

process (i.e., encoding and decoding) (Fig. 3.6). The Autoencoder can reduce the dimensionality 

of a set of data by learning nonlinearly transformed features (through the hidden layer) (Fig. 3.6). 

 

 

 

 

 

 

 

  
 

Fig. 3.6.  Architecture of an AE network. 

http://www.thesaurus.com/browse/immense
https://en.wikipedia.org/wiki/Orthogonal_wavelet
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 Alike the multilayer perceptron, the Autoencoder has the same number of inputs nodes in 

the output layer, since it aims at reconstructing the input vector at the output by passing it through 

the hidden layer that captures effective representation features with little redundancy. Usually (but 

not necessarily) the hidden layer contains fewer nodes than the input layer in order to generate 

compact and less sparse features. 

Let x ∈ ℛn be an input vector, and W,b the weight matrix and the bias of the input vector, 

respectively. 

     The AE learns the nonlinear function h1⁡such that: 

s = h1(Wx + b) 

usually, an element-wise activation function (i.e., sigmoid) is applied, which is formulated as: 

h1(z) =
1

1 + e−z
 

After the encoding phase comes the decoding phase, where one reconstructs the output x̂ that has 

the same dimension of the input vector x, defined as:  

x̂ = h2(W′s + b′) 

 

A loss function (e.g., squared error) is used to compute the error between the input vector x and its 

reconstruction x̂ as follows: 

L(x, x̂) ⁡= ⁡ ‖x − x̂‖2 

= ‖x − h2(W
′(h1(Wx + b)) + ⁡b′‖

2
 

 

The AE estimates its parameters (i.e.,⁡W, W′,⁡b, b′) by minimizing the cost function, namely the 

squared error between the input vector 𝐱 and its reconstruction 𝐱̂ : 

argmin
𝐖,𝐖′,𝐛,𝐛′

[ 𝐿(𝐱, 𝐱̂)] 

In the training phase, the weights and biases are first initialized randomly. In order to compute 

their best values, the back propagation algorithm is adopted to update them iteratively. Finally, the 

reconstruction layer is removed including its parameters (W′, b′) to obtain the optimal values of 

the construction weights and the biases (i.e.,W, b) of the encoding phase which will allow to 

generate the new reduced feature vector. In a successive step, the new AE-generated features are 

fed into a classifier to get the final prediction results. It is noteworthy that the AE-generated 

features can come from any of the previously mentioned type of features (RGB bag of visual 

words, wavelet, HoG features) or other kinds of descriptors not considered in this chapter (e.g., 

local binary pattern, Gabor features. etc…). Turning back to the classifier, we will make use of a 

multilayer perceptron (MLP) with a single hidden layer and sigmoid activation functions. We have 

chosen the MLP network as a classifier since it fits our multilabel requirements (i.e., need to handle 

simultaneously multiple outputs). Moreover, due to its relative simple architecture, an MLP with 

a single hidden layer does not need many parameter tunings. As the AE, the MLP training is based 

on the back propagation algorithm. 

 

http://www.thesaurus.com/browse/effective
https://en.wikipedia.org/wiki/Multilayer_perceptron
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3.4. Experimental Results 

 

In this section, we evaluate the classification performances of the proposed methods on two real 

datasets of UAV images acquired over two different locations.  

 

3.4.1. Dataset Description and Experimental Setup 

In the context of theses proposed frameworks, we used two different datasets of UAV 

images. The first set of images was taken over the Faculty of Science of the University of Trento, 

Povo, (Italy) Nadir acquisition on the 3rd October 2011 at 12:00 am. The second set of images 

was acquired near the city of Civezzano (Italy) at different off-nadir angles, on the 17th October 

2012. Both Acquisitions were performed with a picture camera Canon EOS 550D characterized 

by a CMOS APS-C sensor with 18 megapixels. The UAV images are characterized by three 

channels (RGB) with a spatial resolution of approximately 2 cm. The image size is 5184×3456 

pixels and the radiometric resolution is 8 bits for both datasets. The first dataset is composed of 9 

images, subdivided into three groups. 

Training set: 2 images are selected as training images. We extracted randomly 1000 tiles of 

size 224×224 from both images. The two training images were chosen from the overall set in such 

a way they contain all predefined classes of objects, which are ‘Asphalt’, ‘Grass’, ‘Tree’, 

‘Vineyard’, ‘Pedestrian Crossing’, ‘Person’, ‘Car’, ‘Roof 1’, ‘Roof 2’, ‘Solar Panel’, ‘Building 

Facade’, ‘Soil’ and ‘Shadow’. 

Validation set: Just one image belongs to this set. It was used to determine the free 

parameters for both strategies, namely, the RBFNN’s number of hidden nodes, centers of 

activation functions and their desctributions for the first strategy. The best number of epochs for 

the reconstruction phase (feature learning) in the autoencoder, along with the number of hidden 

nodes in the MLP classifier for the second strategy. In addition of the best threshold values yielded 

by the Otsu’s method for each of the RBFNN/MLP output classes. 

Test set: it is composed of 7 images. We subdivided each test image into a non-overlapping 

grid of equal tiles of 224×224 pixels as explained in the previous section. 

    The second dataset is composed by 10 images, subdivided into two groups. 

Training set: 3 images are selected as training. We extracted randomly 1000 tiles of size 

224×224 from the three images. The three training images were chosen from the overall set in such 

a way they contain all predefined classes of objects, which are ‘Asphalt’, ‘Grass’, ‘Tree’, 

‘Vineyard’, ‘Low Vegetation’, ‘Car’, ‘Roof 1’, ‘Roof 2’, ‘Roof 3, ‘Solar Panel’, ‘Building 

Facade’, ’ Soil’, ‘Gravel’, and ‘Rocks’. 

Test set: it is composed of 7 images. We subdivided each test image into a non-overlapping 

grid of equal tiles of 224×224 pixels. For both training sets, we rotated each tile randomly with 

one of the following four angle values: 0°, 90°, 180°, and 270°. Given the image resolution of 2 

cm, the tile size covers 4.5×4.5 meters. Regarding the accuracy evaluation, we adopted the 

sensitivity and specificity metrics in order to compare our methods with a reference one [11]. This 
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latter consists in using RGB and HoG features combined with a Bag Of visual Words (BOW) for 

compact tile representation, and the chi-squared measure distance (𝝌𝟐) as a matching strategy 

(each test tile is labeled with the same binary vector of the most similar tile present in the training 

tiles library). All the experiments were conducted on an Intel Xeon E3-1246 CPU @ 3.5 GHz with 

32 GB RAM using a Matlab platform. 

 

3.4.2. Results and Discussion 

3.4.2.1. Results of the Convolutional Neural Networks based Method  

As for comparing the proposed first strategy with other state-of-the-art CNN-based models, 

we investigate also the AlexNet architecture [24] (Caffe version), which is another very popular 

pre-trained model. It contains five convolutional layers with three fully-connected layers. AlexNet 

generates a feature vector of size equal to 4096. In order to deal with our multilabeling 

requirement, we substitute the original multinomial logistic regression (Softmax) in AlexNet and 

GoogLeNet with a Multilabel Logistic Regression (MLR) prediction model, which consists of as 

many binary logistic classifiers as the number of labels (classes). In order to enrich further the 

comparative study, we added two other strategies, which are based on feeding the CNN features 

(i.e., AlexNet, GoogLeNet) to multiclass (one-against-all) Support Vector Machines (SVMs), 

implemented with both linear and radial basis function (RBF) kernels. The quantitative 

comparison results are summarized in Table 3.1. As shown, the combinations of CNN features 

(i.e., AlexNet, GoogLeNet) with RBFNN classifier achieved in general better results in terms of 

average accuracy than the combination of the same features with the other three classifiers (i.e., 

Multilabel Logistic Regression, linear SVM, and SVM with the Gaussian RBF kernel). 

GoogLeNet-RBFNN and AlexNet-RBFNN score 79.3% and 78.4% of average accuracy 

respectively for dataset 1, and 77.4% and 76.9% of average accuracy for dataset 2. Furthermore, 

this combination strategy overcomes the reference method [11] in dataset 1 with an increment of 

around 3% for GoogLeNet and 2% for AlexNet (in terms of average accuracy), and slightly 

overcomes it in dataset 2 with an increment of 0.8% and 0.3 % of average accuracy for GoogLeNet 

Table 3.1. Comparison of classification accuracies in terms of sensitivity (SENS) and specificity (SPEC) between the 

 different implementations. Computational time per tile is also reported for each strategy. 

 Dataset 1(Povo) Dataset 2(Civezzano) 

Accuracy(%) Time(ms) Accuracy(%) Time(ms) 

METHOD Spec Sens Average Tile 

Representation 

Classification 

/ Matching 

Total Spec Sens Average Tile 

Representation 

Classification 

/ Matching 

Total 

HCR-B  [11] 92.2 60.7 76.4 32 7 39 91.9 61.4 76.6 32 7 39 

GoogLeNet (MLR)   92.7 60.8 76.8 90 0.3 90 92.9 58.7 75.8 90 0.3 90 

AlexNet(MLR)  94.5 60.4 77.5 40 0.8 41 94.0 58.0 76.0 40 0.9 41 

GoogLeNet -RBFNN 95.4 63.1 79.3 90 2 92 96.1 58.7 77.4 90 2 92 

AlexNet -RBFNN 96.2 60.6 78.4 40 5 45 95.4 58.3 76.9 40 5 45 

GoogLeNet _SVM(linear) 96.4 59.0 77.7 90 41 131 96.1 58.1 77.1 90 53 143 

GoogLeNet_SVM(RBF) 96.3 58.6 77.5 90 39 129 95.1 53.6 74.4 90 51 141 

AlexNet -SVM(linear) 95.5 54.5 75.0 40 131 171 95.2 52.3 73.7 40 143 183 

AlexNet -SVM(RBF) 95.7 52.5 74.1 40 124 164 95.2 52.3 73.8 40 144 184 

GoogLeNet -RBFNN (ML) 90.3 75.1 82.7 90 2 92 92.6 68.6 80.6 90 2 92 

AlexNet -RBFNN(ML) 93.0 70.5 81.8 40 5 45 93.2 66.1 79.7 40 5 45 
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and AlexNet, respectively. This stresses the promising discriminative capabilities of the deep and 

hierarchical feature representation process implemented by GoogLeNet and AlexNet. 

A further refinement of the results has been possible thanks to the addition of a multilabeling 

layer of step functions at the top of the RBFNN. As explained earlier, the parameter (i.e., bias) of 

these functions is estimated by applying the very fast Otsu’s algorithm on the output of the training 

RBFNN. In particular, for each RBFNN 𝑓𝑖(𝑋) output, we constructed a histogram of 30 bins 

covering the range from -1.5 to +1.5 from the available training tiles.  The obtained bias values of 

the multilabeling layer are reported in Table 3.2, which shows that the values range from 0.14 to 

0.49 depending on the class, stressing thus the importance of customizing the threshold value to 

each kind of object. The final results on the test tiles of datasets 1 and 2 are reported in Table 3.1. 

As can be seen, a significant boost of accuracy was possible by adding the multilabeling layer on 

top of the RBFNN outputs. In particular, there is a clear average accuracy improvement that comes 

at the cost of some loss in the specificity. For instance, for GoogLeNet-RBFNN scheme in dataset 

1, despite the decrease in specificity of roughly 5 % from 95.4% to 90.3%, there is a higher gain 

of almost 12 % in terms of sensitivity from 63.1% to 75.1%. A same improvement can be noticed 

for all CNN feature combinations with RBFNN in both datasets. The multilabeling layer exhibits 

the advantage that it reduces the risk of missing objects (estimated threshold values are all less 

than 0.5) resulting thus in a globally better prediction. The obtained results clearly illustrate the 

usefulness of exploiting the distributions of the RBFNN outputs from the training tiles for 

customizing the decision process and therefore improving the results of the multilabel 

classification task.  

    In terms of processing time required per single tile (see Table 3.1), the reference method 

[11] reports to be 6 millisecond faster than the proposed AlexNet-RBFNN architecture (39 against 

45 milliseconds, respectively) and shows about 2 times faster than GoogLeNet-RBFNN (39 

against 92 milliseconds, respectively). Indeed, CNN networks, in particular GoogLeNet, perform 

much more computations due to the large number of layers and blocks composing each layer 

compared to the HCR-B strategy which uses fast local feature descriptors. As expected, AlexNet-

RBFNN turned out to be two times faster than GoogLeNet-RBFNN. In fact, GoogLeNet 

architecture is deeper than that of AlexNet’s, resulting in more processing needs. 

 

Table 3.2.  Best threshold values yielded by the Otsu’s method for each of the RBFNN output classes. 

 Bias values 

class 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔 𝒃𝟕 𝒃𝟖 𝒃𝟗 𝒃𝟏𝟎 𝒃𝟏𝟏 𝒃𝟏𝟐 𝒃𝟏𝟑 𝒃𝟏𝟒 

GoogLeNet (Dataset 1/Povo) 0.38  0.45  0.50 0.26 0.36 0.33 0.42 0.46 0.32 0.34 0.37 0.38 0.38 --- 

AlexNet (Dataset 1/Povo) 0.41 0.43 0.44 0.20 0.38 0.15 0.46 0.43 0.32 0.36 0.37 0.38 0.38 --- 

GoogLeNet (Dataset 2/Civezzano) 0.49 0.44 0.39 0.26 0.27 0.43 0.34 0.34 0.38 0.38 0.35 0.36 0.35 0.37 

AlexNet (Dataset 2/Civezzano) 0.44 0.47 0.43 0.34 0.36 0.37 0.41 0.43 0.32 0.44 0.45 0.42 0.27 0.41 
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3.4.2.2. Results of the Autoencoder Neural Networks based Method 

Before evaluating the performance of the second proposed classification method, we discuss 

briefly the set of free parameters characterizing the three feature extractors exploited in this 

scheme. For the RGB-BW features, we have fixed the number C of clustering centroids to 200 in 

order to adequately represent the large color variations in EHR images. For the HoG features, we 

have set its parameters for generating the histograms as follows: 9 for the number of bins and 56 

as the size of cells, which results in a feature descriptor of size 576. With regard to the wavelet 

features, we benefit from using the approximation part of the Daubechies wavelet filter coefficients 

of order 2 as extracted features with four decomposition levels. This results in an approximation 

image of size 14×14 and 3 channels (RGB). The input image is finally converted into a vector of 

length 588. 

In consideration of the outputs of the MLP classifier which are real values and in order to 

force each output value into one of the two states of the corresponding object (present/absent), a 

thresholding step must take place. For this purpose, we investigate the effectiveness of integrating 

the multilabeling layer based on Otsu’s method [16] (as explained earlier) on top of the MLP 

classifier compared to the standard 0.5 threshold. In Table 3.3, we first report the results of the 

three different typologies of features without applying an AE learning step.  In particular, we first 

interpret the effect of feeding directly the features to the MLP classifiers using the naïve 0.5 

threshold. In general, the accuracies expose some limitations, except for RGB-BOW, which 

exhibits an average accuracy of 73.3% and 74.9% for dataset 1 and 2, respectively, and WAV 

which scores 72.8% in dataset 2. We reasonably expect that the inclusion of an AE network, which 

can act as a nonlinear feature reduction means to get strong but still effective features with high 

compactness, may improve further these accuracies. Indeed, the dimensionality of the feature 

spaces induced by BoW, HoG and WAV is relatively high (200, 576 and 588, respectively). 

Table 3.3. Comparison of classification accuracies in terms of sensitivity (SENS) and specificity (SPEC) between the different  

implementations. Computational time per tile is also reported for each strategy. 

 Dataset 1(Povo) Dataset 2(Civezzano) 

Accuracy(%) Time(ms) Accuracy(%) Time(ms) 

METHOD Spec Sens Average Tile 

Representation 

Classification 

/ Matching 

Total Spec Sens Average Tile 

Representation 

Classification 

/ Matching 

Total 

HoG 93.7 34.4 64.1 5 0.1 5 94.3 42.1 68.2 5 0.1 5 

WAV 94.7 39.7 67.2 9 0.1 9 94.6 50.9 72.8 9 0.1 9 

RGB-BOW 96.5 50.1 73.3 25 0.1 25 96.2 53.5 74.9 25 0.1 25 

HoG-AE 94.2 41.5 67.8 5 0.1 5 93.4 45.7 69.6 5 0.1 5 

WAV-AE 94.0 44.6 69.3 9 0.1 9 94.8 53.7 74.3 9 0.1 9 

RGB-BOW-AE 94.4 56.6 75.5 25 0.1 25 92.8 60.9 76.9 25 0.1 25 

HoG-AE(ML) 77.4 76.6 77.0 5 0.1 5 79.9 69.0 74.5 5 0.1 5 

WAV-AE(ML) 84.0 79.9 82.0 9 0.1 9 89.6 65.1 77.4 9 0.1 9 

RGB-BOW-AE(ML) 86.0 74.4 80.2 25 0.1 25 84.6 76.7 80.7 25 0.1 25 

HCR-B  [11] 92.2 60.7 76.4 32 7 39 91.9 61.4 76.6 32 7 39 

GoogLeNet-RBFNN (ML) 90.3 75.1 82.7 90 2 92 92.6 68.6 80.6 90 2 92 

AlexNet -RBFNN(ML) 93.0 70.5 81.8 40 5 45 93.2 66.1 79.7 40 5 45 
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As for the configuration of the size of the AE hidden layer, Fig. 3.7 (a) and 3.7(b) illustrate 

the average of the sensitivity and specificity accuracies achieved by the three feature 

representations successively transformed through AE learning step with the multilabeling layer 

(ML) in datasets 1 and 2. In particular, we have reduced the size of the input feature vectors into 

5%, 10%, 20%, 30%, 40% and 50 % of its original size. In other words, the features are exposed 

to a reduction rate of 95%, 90%, 80%, 70%, 60% and 50% respectively. As can be observed in 

Fig. 3.7, there are some fluctuations of the average accuracy to the features reduction rate (i.e., 

size of AE hidden layer) which are not that high. Therefore, we adopt 80% features reduction rate 

in the remaining reported experiments.  

The detailed accuracies of these results in terms of sensitivity (SENS) and specificity (SPEC) 

(along with their average) are reported in Table 3.3. By analyzing the obtained results, one can 

observe that a significant improvement of the average accuracy for the three tile representation 

strategies was possible by including an AE learning step with the conventional 0.5 threshold in 

both datasets. This clearly illustrates the effectiveness of exploiting the AE feature transformation. 

A further improvement of these obtained results has been yielded thanks to the addition of the 

multilabeling layer at the top of the MLP.  

The best accuracies achieved in dataset 1 and 2 were by the WAV-AE(ML) and the RGB-

BOW-AE(ML) strategies respectively. They have scored 84.0% of specificity and 79.9 % of 

sensitivity for the WAV-AE(ML) in dataset 1 and 84.6% of specificity and 76.7% of sensitivity 

for the RGB-BOW-AE(ML) in dataset 2. These strategies overcome the state-of-the-art method 

[11] set with an increment of around 6% for dataset 1 and 4% of average accuracy for dataset 2. 

The obtained bias values of the multilabeling layer are reported in Table 3.4. The values range 

from 0.11 up to 0.39, pointing out the importance of adjusting the threshold values of each class 

on the resulting classification accuracies.  

 

 
(a)                                                                                                             (b) 

Fig. 3.7. The effect of the encoding rate on the average accuracy for (a) dataset 1 (Povo) and (b) dataset 2 (Civezzano). 
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Fig. 3.8 depicts an example of two MLP output histograms (the two first classes in dataset 

1) and their decision threshold computed using OTSU’s method (Fig. 3.5 (a) class Asphalt, Fig. 

3.5 (b) Grass). As can be seen from the two histograms  that the threshold values computed using 

OTSU’s method show a better separable capability than the default threshold (th=0.5). 

For the sake of further comparison, we considered the CNN-RBFNN (ML) methods detailed 

in section 3.2.2. Observing the results in Table 3.3, it comes out that, in overall terms, both RGB-

BOW-AE (ML) and WAV-AE (ML) strategies respectively in dataset 1 and 2 perform almost 

equivalently compared to GoogLeNet-RBFNN (ML) accuracies. The sensitivity and specificity 

accuracies of each class of the compared strategies i.e., GoogLeNet-RBFNN (ML), RGB-BOW-

AE (ML) and WAV-AE (ML) of both dataset 1 and 2 are detailed in Tables 3.5 and 3.6 

respectively. 

Table 3.4.  Best threshold values yielded by the Otsu’s method for each of the AE-MLP based output classes. 

 Bias values 

class 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝒃𝟓 𝒃𝟔 𝒃𝟕 𝒃𝟖 𝒃𝟗 𝒃𝟏𝟎 𝒃𝟏𝟏 𝒃𝟏𝟐 𝒃𝟏𝟑 𝒃𝟏𝟒 

HoG-AE (Dataset 1/Povo) 0.13 0.16 0.15 0.19 0.20 0.17 0.18 0.15 0.20 0.29 0.13 0.13 0.18 --- 

WAV-AE (Dataset 1/Povo) 0.11 0.11 0.35 0.38 0.10 0.33 0.32 0.24 0.23 0.17 0.11 0.29 0.21 --- 

RGB-BW-AE (Dataset 1/Povo) 0.17 0.26 0.22 0.24 0.19 0.31 0.22 0.16 0.24 0.22 0.11 0.23 0.26 --- 

HoG-AE (Dataset 2/Civezzano) 0.17 0.26 0.15 0.29 0.22 0.27 0.27 0.26 0.27 0.30 0.24 0.28 0.15 0.25 

WAV-AE (Dataset 2/Civezzano) 0.29 0.30 0.33 0.30 0.22 0.30 0.30 0.29 0.30 0.30 0.30 0.30 0.29 0.30 

RGB-BW-AE (Dataset 2/Civezzano) 0.21 0.12 0.19 0.16 0.31 0.21 0.21 0.23 0.17 0.30 0.31 0.17 0.26 0.37 

 

 
(a)                                                                                                             (b) 

Fig. 3.8. Example of two MLP output histograms and their decision threshold computed using OTSU’s method for WAV-

AE,(a) class Asphalt, (b) class Grass in dataset one (Povo). 
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Concerning the processing time required per a single tile size of 224×224, one can notice 

that the AE based strategies are faster than both the CNN based strategies (i.e., AlexNet and 

GoogLeNet) and the state-of-art method [11]. In particular RGB-BOW-AE architechture reports 

to be 14 milliseconds faster than the state of the art method (25 against 39 milliseconds, 

respectively) and 15 milliseconds faster than AlexNet architecture which has scored 45 

milliseconds. On the other hand, WAV-AE(ML) approach reports to be 5 times faster than 

AlexNet architecture (9 against 45 milliseconds, respectively) and almost 4 times faster than the 

reference method. This is explained by the fact that combining fast handcrafted features with 

shallow neural networks i.e., the one layer autoecnoder performs less computations than the Deep 

CNNs that are characterized  by their large number of layers and blocks composing their 

architecture which results in further processing requirements. This suggests that this proposed 

architecture is an appropriate paradigm for real-time applications meeting together a satisfactory 

classification accuracy and reasonable processing time. The classification maps (qualitative 

results) of the proposed multilabel methods on some of the test images along with its related 

ground truth and original image are illustrated in Figures 3.9.1-3.9.3. The multilabel map allows 

depicting the spatial distribution of the object classes at a tile level. It can be noticed that most of 

the objects are sufficiently well detected. 

Table 3.5. Sensitivity (SENS) and specificity (SPEC) accuracy achieved for each class by the reference method , the CNN-RBFNN  

and WAV-BOW with and without the multilabeling layer (ML) classifiers on dataset 1 (Povo). 

 Asphalt Grass Tree P.cross Car Person Roof1 Roof2 B.Facade Vineyard S.Panel Soil Shadow 

HCR-B [11] SENS 55.9 70.3 75.3 36.2 27.9 0 50 63.6 21.7 52.3 100 66.5 46.8 

SPEC 93.6 81.5 61.7 98.4 97.3 98.8 98.6 86.6 96.1 92.2 99.0 86.9 91.4 

GoogLeNet-RBFNN SENS 47.0 80.9 68.4 0 53.4 0 53.0 60.6 4.3 71.2 33.3 51.9 44.4 

SPEC 96.7 72.6 83.3 100 98.9 100 99.4 96.3 99.3 93.9 99.6 88.6 95.9 

GoogLeNet-RBFNN  

(ML) 

SENS 67.2 89.2 69.9 20.7 71.6 0 65.2 68.6 22.8 89.4 66.7 66.0 67.3 

SPEC 89.6 60.2 80.9 99.7 93.3 99.7 98.0 94.2 93.7 83.4 98.1 77.5 85.7 

WAV-AE SENS 0 76.8 71.2 0 0 0 42.4 51.4 0 1.2 0 0 43.5 

SPEC 100 83.9 42.7 100 100 100 93.6 95.3 100 99.5 100 100 96.7 

WAV-AE 

(ML) 

SENS 91.0 93.0 97.6 0 8.3 0 77.3 76.6 5.4 88.6 0 22.3 69.4 

SPEC 70.9 53.4 11.6 100 99.3 100 77.3 81.7 98.5 79.1 99.9 92.7 83.9 

 
Table 3.6. Sensitivity (SENS) and specificity (SPEC) accuracy achieved for each class by the reference method, the CNN-RBFNN   

and RGB-BOW with and without  the multilabeling layer (ML) classifiers on dataset 1 (Civezzano). 

 Asphalt Grass Tree Vineyard L.Vegetation Car Roof 1 Roof 2 Roof 3 S.Panel B.Facade Soil Gravel Rocks 

HCR-B [11] SENS 80.5 79.7 55.4 2.6 22.4 57.4 50 46.7 41.4 61.5 56.2 44.9 11.8 77.2 

SPEC 74.3 75.2 81.5 99.3 92.6 86.7 94.8 95.9 98.2 97.9 90.7 91.4 98.4 90.7 

GoogLeNet -RBFNN SENS 83.8 83.0 42.9 0 13.6 65.6 48.2 40.1 45.0 51.9 53.7 22.4 13.7 53.3 

SPEC 78.1 76.0 91.6 100 97.1 96.8 97.8 97.2 99.6 99.6 95.3 98.9 100 98.8 

GoogLeNet -RBFNN  

(ML) 

SENS 84.5 87.1 54.8 7.0 45.6 72.5 58.2 59.2 67.5 69.2 72.2 32.7 25.5 72.8 

SPEC 77.5 72.1 86.2 99.5 80.6 95.1 93.5 92.0 98.9 98.3 89.2 96.6 100 95.8 

RGB-BOW-AE SENS 76.6 88.5 33.4 0 1.6 61.5 40.6 43.4 20.4 51.9 45.1 25.6 0 64.1 

SPEC 84.1 71.3 93.7 100 99.3 97.1 98.5 97.1 99.7 99.1 96.2 98.8 100 98.4 

RGB-BOW-AE 

(ML) 

SENS 92.5 97.8 56.2 0 21.3 90.2 67.6 65.8 66.5 78.8 88.9 60 2.0 76.1 

SPEC 67.9 22.8 85.4 100 93.4 80.5 85.7 93.7 97.0 97.5 79.6 80.9 98.2 96.8 
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Fig. 3.9-2 Qualitative map results of the 13 object classes obtained by the coarse GoogLeNet-RBFNN (ML) classification technique  

on one of the test images of dataset 1(Povo) along with its related ground truth and original image. 

 

Fig. 3.9-1 Qualitative map results of the 13 object classes obtained by the coarse WAV-AE (ML) classification technique 

 on one of the test images of dataset 1(Povo) along with its related ground truth and original image. 
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 3.5. Conclusion  

In this chapter, we have proposed two efficient multilabel classification methods for UAV 

images over urban areas. The proposed models start by subdividing the image into a set of non-

overlapping equal tiles, each described by a list of objects present in it. In the first method, CNN 

features are extracted from each tile using the GoogLeNet pre-trained network. Then a RBFNN 

model is trained for the classification task. Despite the efficiency of deep CNNs as feature 

extractors, they are known to some extent to be computationally time-consuming for real-time 

scenarios, due to their deep architecture. As to cope with this, we propose in the second method to 

apply a two-stage signature representation for each tile. In particular, we apply a suitable 

handcrafted feature extraction method, followed by a feature learning step that enhances the 

features discrimination capability using an Autoencoder model. Then a multilayer perceptron 

network is trained for the multilabel classification task. Furthermore, for the multilabeling issue, a 

multilabel layer has been integrated on top of the whole proposed architectures to improve the 

obtained results. From the results, one can infer that the proposed methods are rather promising 

for EHR UAV multilabeling applications and can achieve substantial classification accuracy gains 

over the state-of-the art. The autoencoder-based methods allow obtaining good results especially 

in terms of processing time, making it a good candidate for real time urban monitoring 

applications. Moreover, we believe that this multilabel classification framework opens the door to 

exploit various other alternative solutions for the tile representation and the classification/matching 

Fig. 3.9-3 Qualitative map results of the 14 object classes obtained by the coarse Alex-RBFNN (ML) classification technique  

on one of the test images of dataset 2 (Civezzano) along with its related ground truth and original image. 
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steps. As mentioned earlier, it is noteworthy that those methods could be applied to any typology 

of image descriptors and is not restricted to the three feature types considered in this chapter. A 

future development could consist in exploiting the spatial correlation between tiles. 
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Abstract– In this chapter, we formulate the multilabeling classification problem of unmanned aerial 

vehicle (UAV) imagery within a conditional random field (CRF) framework with the aim of exploiting 

simultaneously spatial contextual information and cross-correlation between labels. The pipeline of 

the framework consists of two main phases. First, the considered input UAV image is subdivided into 

a grid of tiles, which are processed thanks to an opportune representation and a multilayer 

perceptron classifier providing thus tile-wise multilabel prediction probabilities. In the second phase, 

a multilabel CRF model is applied to integrate spatial correlation between adjacent tiles and the 

correlation between labels within the same tile, with the objective to improve iteratively the multilabel 

classification map associated with the considered input UAV image. Experimental results achieved 

on two different UAV image datasets are reported and discussed.  

4.1. Introduction 

Unmanned aerial vehicles (UAVs) in the recent years have earned an exceptional 

standing within the remote sensing community especially in urban land use planning and analysis 

applications, and there are very good reasons for that. Due to their small size, rapid deployment, 

and high customizability, they provide a cheaper, safer and job faster platform in urban scenarios 

compared to other traditional data collection alternatives such as airborne and satellites. 

Furthermore, UAVs’ capability of supporting high-resolution imagery and sensors in addition of 

their wide coverage capacity in a timely manner, grant the adequacy to collect data more efficiently 

with a higher level of details. In general, most methods introduced in the remote sensing literature 

have paid very scarce attention to multilabel recognition problem. This latter might be of a great 

importance in remote sensing imagery, where often many classes are likely to appear 

simultaneously. However in a classification setup, multilabel images pose a major challenge, since 

the classes may occur in different shape, appearance and texture complexity especially when 

dealing with extremely high resolution (EHR) images that contain a large amount of information 

details. This would augment the difficulty of finding a model that maps several target labels to a 

single instance using an opportune discriminative paradigm for all the considered object 

categories. Departing from this limitation, in [1] authors presented a novel classification 

framework for multilabel coarse scene description for EHR UAV imagery. It takes advantage of 

dividing the input image into a set of tiles, where each tile is described coarsely by the subset of 

classes present in it. Experimental results put forth a very promising performance compared to 

other pixel-based approaches.  The latter multilabel paradigm has been adopted in other two works. 

The first one in [2].  It takes advantage of deep convolutional neural networks. It introduces a 

multilabeling layer (ML) integrated on the top of the whole architecture to improve the obtained 

outcomes. The second work which will be exploited in this chapter was put forth in [3]. It derives 

benefits from handcraft features followed by a feature learning step using autoencoder networks. 

Structured Random Fields have been used in classification problems in remote sensing 

images by exploiting and integrating the spatially neighboring information within the decision 

process. Especially in EHR images, where a single object class tends to be represented by 

thousands of pixels where each pixel has some correlation  degree with its close spatial match. To 

this point, the goal is to exploit the pixels that are associated to the same entity within the area of 

interest (i.e., Spatial contiguity). Markov random fields (MRFs) [4], and conditional random fields 

(CRFs) [5], are mathematical frameworks that model a given scene by expressing contextual 
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information by means of adequate energy functions. They integrate spatial correlation of neighbors 

in a label image into a decision rule. This allows the reduction of the model complexity by passing 

from a global model to a model of local properties, defined in terms of both the potential function 

of single pixels and the interactions among pixels in appropriate neighborhoods. For instance, in 

[6], the authors put forth an overview comparison of classification methods which imposes a 

smoothness prior on the labels in areal images of high spatial resolution (HSR), and they have 

shown that exploring the spatial correlation enhances greatly the classification accuracy. Zhang et 

al. [7] introduce a multilevel Conditional Random Fields for multiclass pixel labeling in very high-

resolution  (VHR) optical remote sensing images. Volpi et al. [8] address the problem of semantic 

segmentation in urban remote sensing into land cover maps, they proposed to embed geographic 

context potentials (i.e., land cover classes’ local co-occurrence and relative locations) into a 

pairwise CRF coupled with unary potentials from a random forest (RF) classifier. Proposed in [9], 

a multi-feature probabilistic ensemble conditional random field (MFPECRF) model to perform 

change detection task for HSR imagery. Paisitkriangkrai et al. [10] introduce a semantic pixel 

labeling framework of aerial and satellite imagery. They exploited different types of features (i.e., 

CNN features and hand-crafted features) in order to generate per-pixel class probabilities followed 

with a CRF as a post processing step. Another work in [11] presents a sub-pixel mapping algorithm 

based on CRFs for hyperspectral remote sensing imagery.  

Accordingly, based over the state of the art reported so far, we propose in this chapter a novel 

multilabel conditional Random Field (CRF) framework for EHR UAV images.  We formulate the 

concept of coarse description within a CRF perspective as a post processing step by applying it on 

a tile level, where we assign to each tile a vector of labels instead of one class label. The main 

novelty in this work is that the proposed CRF integrates two learning strategies, i.e., the spatial 

information within the same class jointly with the correlation information between different class 

labels. To the best of our knowledge, there is no work in literature that merges simultaneously both 

 
 

Fig. 4.1.  Flow chart of the multilabel classification method. 
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spatial and correlation information for multilabel classification. We believe that such approach is 

subject to bridge the gap up to a reasonable extent, between the likely high semantic content of the 

UAV-grabbed images and their spectral information. Furthermore, it promotes a better perception 

of the tile labeling task taking into consideration its multilabel classification context extending the 

interactions between random variables in the output space. This learning strategy considers the 

multilabel vector descriptor that contains the list of objects of a query tile as new learning space 

viewed as a third dimension in the generated classification label maps (i.e., depth). See Fig. 4.1. 

Finally, we adopt the Iterated Conditional Modes (ICM) algorithm [12] to maximize the local 

conditional probabilities iteratively in the proposed multilabel CRF framework in order to 

regularize the final outcomes. The rest of this chapter is organized as follows, Section II recalls 

briefly the standard CRF and the tile-based coarse description and then outlines the proposed 

multilabel framework.  Parameters estimation and experimental part is conducted in Section III. 

Finally, Section VI draws the conclusion and elaborates future developments. 

4.2. Proposed Method 

4.2.1. Monolabel Classification with CRF 

Let 𝑋 be the observed data from an input image defined as,⁡𝑋⁡ = {𝒙𝑖 ∈ 𝑋|𝑖 = 1,… , 𝑛} where 

𝒙𝑖 the observation data (i.e., the feature vector extracted) from the 𝑖𝑡ℎsite. Let ⁡𝑌 be their 

corresponding labels, defined as⁡⁡𝑌⁡ = {𝒚𝑖 ∈ 𝑌|𝑖 = 1, … , 𝑛}. Unlike MRFs that are generative 

frameworks which regularize the classification output of an image by enforcing priors assumption 

between neighboring sites, discriminative CRFs are globally conditioned on the observations⁡𝑋, 

where they directly model the posterior distribution as a Gibbs model. This means that the potential 

functions in CRFs are more flexible in capturing complex spatial dependencies between labels [5]. 

The posterior distribution of Y conditioned on 𝑋 is defined as: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑃(𝑌|𝑋) =
1

𝑍
⁡exp(−⁡𝐸(𝑌; 𝑋))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1)⁡ 

where Z is a normalizing constant, also called the partition function. According to (1), maximizing 

the a posteriori probability (MAP) of the whole image is equivalent to minimizing its 

corresponding energy function 𝐸(𝑌; 𝑋). This latter is expressed as sum of unary and pairwise 

terms: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸(𝑌; 𝑋) = 𝐸𝑑𝑎𝑡𝑎(𝑌; 𝑋) + 𝐸𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑌; 𝑋)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

where ⁡𝐸𝑑𝑎𝑡𝑎 represents the local decision term. It computes the cost of associating a given tile to 

a certain class without including its neighbors, which is equal to the likelihood function of the 

observed data at that site, and it is given by: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸𝑑𝑎𝑡𝑎(𝑌; 𝑋) =∑𝑉1(𝑦𝑖, 𝑋)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3)

𝑖∈𝒮

 

with⁡⁡𝒮 being the set of total 𝑛 sites. The second term 𝐸𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ⁡ is a smoothness term. It imposes 

spatial smoothness by penalizing dissimilarities between pair labels, and it is given by: 
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𝐸𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝑌; 𝑋) =∑∑ 𝑉2(𝑦𝑖, 𝑦𝑗 , 𝑋)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4)

𝑗∈𝑁𝑖𝑖∈𝒮

 

where 𝑁𝑖 is the neighborhood of site⁡⁡𝑖. The order of the neighborhood system plays an important 

role in the spatial term and consequently affects the energy function [13]. Generally, the most 

common neighboring systems used in this framework are the first and the second order ones, 

namely, the 4-neighbor and 8-neighbor systems, respectively. The following subsection details the 

proposed CRF framework based on the tile-based multilabel paradigm. 

4.2.2. CRF for Multilabel Classification 

Let us consider a three-channel (RGB) image (𝐼) acquired by means of a UAV. We start by 

subdividing 𝐼 into a grid of tiles of equal size. This last is defined according to the spatial resolution 

of 𝐼 and the expected sizes of objects to recognize. Our multilabel tile-based approach starts with 

the extraction of features. Since we are dealing with EHR imagery, each tile is characterized by a 

high level of detail and thus a rich information content. In order to extract a compact signature that 

describes efficiently each tile, we resort to a well-known strategy, namely, the bag of visual words 

(BOW) representation. To further boost its representation capability, we resort to an autoencoder 

neural network (AE). We feed the extracted features to an AE network, which constructs new 

learned features. The next step consists in adding a multilayer perceptron (MLP) network with a 

single hidden layer and sigmoid activation functions as a classifier at the end of the encoding part 

in order to classify the resulting features. This classifier fits our multilabeling requirements, and 

thereafter can be used on the test tiles to infer their object lists. Indeed, the MLP can handle 

simultaneously multiple outputs, which may characterize each tile of the query image [3]. The 

number of the MLP outputs 𝐶 corresponds to the number of predefined object classes. The 

resulting MLP outputs generate what is called the classification maps 𝑋𝑘 for⁡𝑘 ∈ {1,… , 𝐶}, such 

that⁡𝑋𝑘 ⁡= {𝑥𝑘𝑖 ∈ 𝑋𝑘|𝑖 = 1,… , 𝑛}. These maps are inferred from the posterior probability 

distribution provided by the MLP outputs (Fig. 4.1). In each classification map⁡𝑋𝑘, the 

presence/absence of object k is indicated for each tile ⁡𝑥𝑘𝑖. In other words, each tile ⁡𝑥𝑖 is associated 

with a multilabel descriptor of size 𝐶, defined as ⁡𝑥𝑖 = (𝑥1𝑖, 𝑥2𝑖, … 𝑥𝐶𝑖). 

In dealing with multilabel imagery, one may observe that: 1) some labels are frequently 

correlated with others in many image tiles; and 2) some labels rarely appear with one another. For 

instance, the label ‘car’ is strongly correlated with the label ‘asphalt’, on the contrary, it is seldom 

that the label ‘car’ appears together with label ‘railway’ in the same image tile. To this end, the 

cross-correlation between labels can serve as an additional important source of information to 

build a robust classification framework with a strong capability of penalizing the co-occurrence of 

uncorrelated labels. To this purpose, we propose to encode the cross-correlation information 

between labels in a CRF model, namely, by changing the interaction potential term from a pairwise 

term (i.e.,⁡⁡𝐸𝑠𝑝𝑎𝑡𝑖𝑎𝑙) into a ternary one. According to the Hammersley-Clifford theorem [4], for 

each map⁡𝑘, we define a CRF over the outputs 𝑌𝑘 given the inputs 𝑋𝑘, through the following 

posterior distribution: 
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𝑃(𝑌𝑘|𝑋𝑘) =
1

𝑍
exp{∑𝑉1(𝑦𝑘𝑖, 𝑋𝑘) +∑ ∑ ∑ 𝑉2(𝑦𝑘𝑖, 𝑦𝑘𝑗, 𝑦𝑙𝑖, 𝑋𝑘)

𝑙∈𝑐𝑘𝑖𝑗∈𝒩𝑖

𝑛

𝑖=1

𝑛

𝑖=1

}⁡⁡⁡⁡⁡(5) 

where 𝑉1 is the unary potential, which is the probabilistic output of our discriminative classifier 

when considering each tile in isolation, and 𝑉2 is the interaction term expressed as a trinary-wise 

potential that depends on 2 types of information. The first one is the traditional spatial information 

of neighboring tiles within the same class map 𝑘⁡using the⁡𝑁𝑖 neighborhood of tile⁡𝑖.  

The second one is the information obtained from the neighborhood 𝑐𝑘𝑖 of tile 𝑖, namely, the 

multilabel components of the binary vector of tile⁡𝑖). 

In this work, for simplicity, we consider the first order neighborhood system for the 

traditional spatial information and the labels belonging to the same tile (i.e., multilabel vector 

descriptor) for the cross-correlation information (Fig. 4.2). Moreover, we tackle each of these 

information sources separately. We thus quantify 𝑉2 as a sum of two interaction terms, the first 

one over each map (spatial information) and the second one across the maps to encode the cross-

correlation between the multiple labels lying within the same tile. Under these simplifying 

assumptions, the interaction potential 𝑉2 in the posterior 𝑃(𝑌𝑘|𝑋𝑘)⁡ can be written as: 

 

𝑃(𝑌𝑘|𝑋𝑘) ⁡=
1

𝑍
exp{∑𝑉1(𝑦𝑘𝑖, 𝑋𝑘) +∑ ∑ 𝐼1(𝑦𝑘𝑖, 𝑦𝑘𝑗 , 𝑋𝑘)

𝑗∈𝒩𝑖

𝑛

𝑖=1

𝑛

𝑖=1

+∑ ∑ 𝐼2(𝑦𝑘𝑖, 𝑦𝑙𝑖)

𝑙∈𝑐𝑘𝑖

𝑛

𝑖=1

}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

 

where ⁡𝐼1 is the interaction function at the level of each map (spatial term), and 𝐼2⁡is the cross-

correlation function,⁡⁡𝑐𝑘 = {(𝑙, 𝑖), 𝑙 ∈ 𝒞 ∖ 𝑘}. According to the CRF representation in [14], and 

after adding the cross-correlation term, (6) becomes: 

 

 

Fig. 4.2.  The correlation and traditional spatial neighboring information in the proposed ML-CRF. 
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𝑃(𝑌𝑘|𝑋𝑘) =
1

𝑍
∏𝜓𝑖(𝑦𝑘𝑖, 𝑋𝑘)∏𝜓𝑖,𝑗(𝑦𝑘𝑖, 𝑦𝑘𝑗 , 𝑋𝑘)∏ 𝜓𝑖,𝑙(𝑦𝑘𝑖, 𝑦𝑐𝑘𝑖)

(𝑖,𝑐𝑘)

(7)

(𝑖,𝑗)𝑖

 

The terms 𝜓𝑖 and 𝜓𝑖𝑗 are respectively the node and the edge potential functions over the map 𝑘, 

while ⁡𝜓𝑖𝑙 is the cross-correlation function (i.e., edge potential through different labels). 

In the following, we define each of the potential functions, given that 𝑦𝑘𝑖⁡ takes a binary state,⁡𝑦𝑘𝑖 ∈

{0,1}. The node potential takes the following form: 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜓𝑖(𝑦𝑘𝑖, 𝑋𝑘) = (𝑒𝑣𝑖,1
𝑡 𝑓𝑘𝑖 , 𝑒𝑣𝑖,2

𝑡 𝑓𝑘𝑖)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 

where ⁡𝑓𝑘𝑖 = [1, 𝑥𝑘𝑖] and 𝑣𝑘𝑖 = {𝑣𝑘𝑖,1, 𝑣𝑘𝑖,2} are respectively, the node features and their associated 

weights.  

 

The traditional edge potentials are defined as: 

 

𝜓𝑖,𝑗(𝑦𝑘𝑖, 𝑦𝑘𝑗 , 𝑋𝑘) = (𝑒
𝑤𝑘𝑖𝑗,11
𝑡 𝑓𝑘𝑖𝑗 ⁡ 𝑒𝑤𝑘𝑖𝑗,12

𝑡 𝑓𝑘𝑖𝑗 ⁡

𝑒𝑤𝑘𝑖𝑗,21
𝑡 𝑓𝑘𝑖𝑗 ⁡ 𝑒𝑤𝑘𝑖𝑗,22

𝑡 𝑓𝑘𝑖𝑗 ⁡
)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

where 𝑓𝑘𝑖𝑗⁡ are the edge features, defined as: 

⁡𝑓𝑘𝑖𝑗 = [1,  ℎ(𝑥𝑘𝑖, 𝑥𝑘𝑗)], with ℎ(𝑥𝑘𝑖, 𝑥𝑘𝑗) =
1

1+|𝑥𝑘𝑖−𝑥𝑘𝑗|
⁡⁡being an arbitrary decreasing function that 

takes values in [0,1], and 𝑤𝑘𝑖𝑗 = {𝑤𝑘𝑖𝑗,11, 𝑤𝑘𝑖𝑗,12, 𝑤𝑘𝑖𝑗,21, 𝑤𝑘𝑖𝑗,22} being the weights associated 

with edges. 

Regarding the correlation potentials⁡𝜓𝑖,𝑙⁡, we define first an auxiliary function 𝑔𝑘𝑙: ℒ × ℒ →

[0,1] that measures the co-occurrence probability of two labels 𝑦𝑙𝑖 ⁡and⁡𝑦𝑘𝑖 as: 

𝑔𝑘𝑙(𝑦𝑘𝑖, 𝑦𝑙𝑖) =
1

|{𝑦𝑙𝑖 = 𝑦𝑘𝑖}|
∑1{𝑦𝑘𝑖}(𝑦𝑙𝑖)

𝑛

𝑖=1

⁡⁡⁡ 

s. t⁡⁡⁡𝑙 ∈ {1, … , 𝐶|𝑙 ≠ 𝑘}⁡⁡⁡⁡(10)⁡ 

Note that 𝑔𝑘𝑙 is defined when 𝑦𝑙𝑖⁡and⁡𝑦𝑘𝑖 holds the same label value (i.e., 0 or 1), for the case 

where 𝑦𝑘𝑖 and 𝑦𝑙𝑖 have different labels, we set 𝑔𝑘𝑙 as: 

𝑔𝑘𝑙 = 𝑔𝑘𝑙(𝑦𝑘𝑖, 𝑦𝑙𝑖) = 1 − 𝑔𝑘𝑙(𝑦𝑘𝑖 , 𝑦𝑙𝑖)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

The values of 𝑔𝑘𝑙⁡⁡and⁡⁡𝑔𝑘𝑙 are estimated from the training tiles to assess the correlation degree 

between label classes. Once 𝑔𝑘𝑙 ⁡⁡and⁡⁡𝑔𝑘𝑙 are computed, the cross-correlation weights for a given 

test tile at location⁡𝑖, are defined as: 

             ⁡𝜇𝑘𝑖(𝑦𝑘𝑖, 𝑦.𝑖) = ∑ 1{𝑦𝑘𝑖}(𝑦𝑙𝑖)𝑔𝑘𝑙 + (1 − 1{𝑦𝑘𝑖}(𝑦𝑙𝑖))𝑔𝑘𝑙𝑙∈𝑐𝑘 ⁡⁡      s. t⁡⁡𝑦𝑘𝑖 = 1                    (12) 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜏𝑘𝑖(𝑦𝑘𝑖, 𝑦.𝑖) = ∑ 1{𝑦𝑘𝑖}(𝑦𝑙𝑖)𝑔𝑘𝑙 + (1 − 1{𝑦𝑘𝑖}(𝑦𝑙𝑖))𝑔𝑘𝑙𝑙∈𝑐𝑘          s. t⁡⁡𝑦𝑘𝑖 = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13) 

 



 Chapter IV. Multilabel Conditional Random Field Classification 

66 
 

The functions 𝜇𝑘𝑖⁡and 𝜏𝑘𝑖 define the cross-correlation weights for the two possible states of 

label⁡𝑦𝑘𝑖, namely, presence and absence respectively by using the sum of the label pairs scores to 

evaluate the degree of the relationship of a given test tile. Subsequently, the correlation potential 

is given as: 

𝜓𝑖,𝑙(𝑦𝑘𝑖, 𝑦𝑐𝑘𝑖) = (𝑒
𝜆1⁡𝜇𝑘𝑖(𝑦𝑘𝑖,𝑦.𝑖) , 𝑒𝜆2⁡𝜏𝑘𝑖(𝑦𝑘𝑖,𝑦.𝑖))            (14) 

where 𝜆1and 𝜆2 are coefficients used to ponder the importance between the two states that a given 

label may take i.e., presence and absence, respectively. 

In order to obtain an optimum multilabeling solution over a given test image, the use of an 

inference algorithm during the training phase is necessary in order to estimate the parameters 

(i.e.,𝑣𝑘𝑖, 𝑤𝑘𝑖𝑗) of the graphical model. For such purpose, we make use of the loopy belief 

propagation (LBP) method [15], which is a widely used inference procedure in approximation 

algorithms for graph structures [16]. As mentioned earlier, in the test phase, we adopt the iterated 

conditional modes (ICM) algorithm. This algorithm maximizes the local conditional probabilities 

iteratively, given an initial labeling. The label that maximizes the local conditional probability is 

chosen as an optimal local solution [12]. 

In this chapter, the local probabilities of each tile are conditioned by its multilabel vector 

descriptor in addition to the corresponding neighboring tiles over the same label map level. 

Starting from an initial multilabel combination generated from the output of the MLP classifier, at 

each iteration, the ICM maximizes the conditional MAP estimation: 

𝑦𝑘𝑖̂ ← 𝑎𝑟𝑔max
𝑦𝑘𝑖

𝑃(𝑦𝑘𝑖 𝑦𝑘𝒩𝑖
⁄ , 𝑦⁡𝑐𝑘𝑖, 𝑋𝑘)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(15) 

passing through all label maps of the test image repeatedly up to a convergence is reached, 

producing thus a final multilabel classification map of the considered image. Algorithm I. below 

illustrates the related multilabel framework pseudo code. 

4.3. Experimental Validation 

4.3.1. Dataset Description and Experimental Setup 

In order to evaluate the performance of the proposed classification method, we exploited two 

real datasets of UAV and airborne images acquired over two different locations. The first set of 

images is a UAV dataset that was aquired near the city of Civezzano (Italy) at different off-nadir 

angles, on the 17th October 2012. The acquisition was performed with a picture camera Canon 

EOS 550D characterized by a CMOS APS-C sensor with 18 megapixels. These UAV images are 

characterized by three channels (RGB) with a spatial resolution of around 2 cm. The image size is 

5184×3456 pixels and the radiometric resolution is 8 bits datasets. This dataset is composed of 10 

images, subdivided into two groups (3 training and 7 test images). They contain 14 classes of 

objects, namely, ‘Asphalt’, ‘Grass’, ‘Tree’, ‘Vineyard’, ‘Low Vegetation’, ‘Car’, ‘Roof 1’, ‘Roof 

2’, ‘Roof 3, ‘Solar Panel’, ‘Building Facade’, ’ Soil’, ‘Gravel’, and ‘Rocks’. 

 



 Chapter IV. Multilabel Conditional Random Field Classification 

67 
 

 

The second dataset was originally acquired for the sake of vehicle detection over Munich, 

Germany [17], but here we use it for land use classification. The images were captured from an 

airplane by a Canon Eos 1Ds Mark III camera with a resolution of 5616×3744 pixels, 50 mm focal 

length. The images were taken at a height of 1000 meters above ground, with a spatial resolution 

of approximately 13 cm. This dataset is composed of 20 images (10 training and 10 test images) 

and contain all predefined 16 classes of objects, which are ‘Slate Roof’, ‘Clay Roof’, ‘Asphalt’, 

‘Standing Steam Roof’, ‘Sports Field’, ‘Green Trees’, ‘Dried Trees’, ‘Grass’, ‘Building 

Site/Operating Machinery’, ‘Paved Road’, ‘Soil’, ‘Dark Soil’, ’ Green Roof’, ‘Flat Concrete 

Roof’,’ Railway’, and ‘Cars’. We subdivided each image in both the first and the second datasets 

into a non-overlapping grid of equal tiles of 50×50 pixels as explained in the previous section. 

4.3.2. Evaluation metrics and experimental results 

The effectiveness of the proposed framework is quantified in terms of sensitivity (SENS), 

specificity (SPEC) and their average. The parameters of the proposed multilabel CRF model i.e., 

𝑣𝑘𝑖 , 𝑤𝑘𝑖𝑗⁡ are learned from the training data using the Loopy Belief Propagation (LBP) inference 

algorithm. We set ⁡𝑣𝑘𝑖2 = 0⁡𝑎𝑛𝑑⁡𝑤𝑘𝑖𝑗12 = 𝑤𝑘𝑖𝑗21 = 0 in order to avoid over-parametrization of 

the model [14]. For cross-correlation weights 𝜇𝑘𝑖 and ⁡𝜏𝑘𝑖 they are estimated during the training 

phase as described in equations (12) and (13) using the training labels. 

The free correlation parameters⁡𝜆1, 𝜆2⁡are fixed to ⁡𝜆1 = 𝜆2 = 1. This means, they do not 

have any effect on the weights 𝜇𝑘𝑖⁡and 𝜏𝑘𝑖 of the correlation function 𝜓𝑖,𝑙 and thus on the final 

classification results. The main purpose behind adding these two parameters into the proposed 

method is to provide a robust model that is able to cope with different types of datasets in which 

the presence and the absence states of the investigated labels are imbalanced (i.e., presence states 
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are relatively much bigger than the absence states and vice versa). The effect of varying the 

correlation parameters on the obtained results is analyzed later in this section. 

As side notes, it is worth to mention that: 1) it is possible to recover an MRF model (i.e., the 

joint probability⁡𝑃(𝑌𝑘, 𝑋𝑘)) by setting the edge features ⁡𝑓𝑘𝑖𝑗 = 1, so that 𝑤𝑘𝑖𝑗 will represent the 

unconditional potential edge between nodes ⁡𝑖⁡and⁡𝑗; and 2) once we set⁡𝜆1 = 𝜆2 = 0, we recover 

the traditional monolabel CRF that works at the level of each class map separately. 

For the sake of comparison, we confront the proposed multilabel scheme with unary scores 

strategy obtained by means of RGB bag-of-words features coupled with autoencoder network and 

MLP classifier [3] as described earlier (termed as ML-Unary), along with the traditional monolabel 

CRF reference method which was run on each binary map (class) independently from the others, 

not taking into account the multilabel context (i.e.,⁡𝜆1 = 𝜆2 = 0). In the following, this reference 

method is called ML-CRF. The Full-ML-CRF stands for the proposed method which exploits also 

the interclass correlation as described earlier. The results are summarized in Table 4.1. 

Our proposed strategy (Full-ML-CRF) outperforms both the ML-Unary and ML-CRF 

methods in terms of average accuracy scoring, 83.4% and 79.6% for datasets 1 and 2, respectively. 

It records an increment of around 3 % and 2 % in dataset 1 and dataset 2 over ML-Unary and ML-

CRF methods respectively. Moreover, our strategy offers the advantage of yielding higher 

sensitivity in both datasets while maintaining an appropriate rate of specificity. An interesting fact 

to point out is that the spatial information has allowed to recover some lost objects (true positives) 

but at the expense of a higher number of errors on absent objects (true negatives). The exploitation 

of the cross-correlation information by Full-ML-CRF has led to a further substantial boost in the 

correct detection of true positives (and thus a higher SENS).Indeed, the exploitation of spatial 

information incurs in a loss of true negatives (confirmed for both datasets) which are typically 

dominant in multilabel maps. This is however accompanied by an increase of the true positives, 

which can be very substantial (case of Full-ML-CRF on both datasets). The detailed experimental 

results in terms of sensitivity (SENS) and specificity of each class (SPEC), along with their average 

(AVG) of datasets 1 and 2 are reported respectively, in Table 4.2, 4.3. 

Another element to discuss is the influence of varying the correlation parameter values i.e., 

𝜆1, 𝜆2⁡on the classification outcomes. Fig. 4.2 describes the behavior of the average accuracy 

against 𝜆1⁡and⁡𝜆2. By analyzing Fig. 4.3 (a), one can notice that the best results are obtained when 

𝜆1and⁡𝜆2 take similar values. Indeed, balancing between 𝜆1 and 𝜆2 which represent respectively 

the presence and the absence state of a given label leads to a better balance between sensitivity 

Table 4.1. Sensitivity (SENS), specificity (SPEC) and average (AVG) accuracies in percent obtained by the different 

classification methods on datasets 1 and 2. 

 

 Dataset 1(Civezzano) Dataset 2(Munich) 

Accuracy (%) Accuracy (%) 

METHOD SPEC SENS AVG SPEC SENS AVG 

ML-Unary 98.2 62.6 80.4 97.8 55.6 76.7 

ML-CRF 92.5 70.6 81.5 94.2 61.4 77.8 

Full-ML-CRF 90.8 75.9 83.4 90.7 68.5 79.6 
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and specificity. By contrast, magnifying one parameter at the expense of the other, leads to a very 

high sensitivity (i.e., 100%) and very low specificity (i.e., 0%) or vice-versa, which results in 50% 

of average accuracy. Same observations apply for Dataset 2 as can be seen in Fig. 4.3 (b). Fig. 4.4 

illustrates examples of multilabel classification maps obtained with the proposed Full-ML-CRF 

along with the two reported methods on two test images from dataset 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.3.  Average accuracy versus spatial parameters 𝜆1, 𝜆2 achieved by the Full-ML-CRF method on (a) dataset 1 

(Civezzano) and (b) dataset 2 (Munich). 

Table 4.2. class-by-class accuracy performances achieved by the three models on dataset 1 (Civezzano). 

 class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

ML-Unary 

Sens 66.3 50.1 69.3 52.2 48.0 70.2 60.3 55.1 43.8 74.4 85.8 64.7 84.4 73.3 

Spec 96.7 96.6 99.0 97.9 94.9 99.2 98.0 99.1 97.6 99.2 99.2 98.5 99.4 98.9 

Ave 81.5 73.3 84.1 75.1 71.4 84.7 79.1 77.1 70.7 86.8 92.5 81.6 91.9 86.1 

ML-CRF 

Sens 55.1 60.2 71.3 69.6 60.0 78.7 71.2 57.0 62.2 82.0 88.1 78.4 88.2 83.2 

Spec 87.5 88.5 88.1 87.7 87.9 89.2 89.1 97.5 94.2 97.3 97.6 95.8 97.0 96.8 

Ave 71.3 74.3 79.7 78.7 73.9 84.0 80.2 77.2 78.2 89.6 92.8 87.1 92.6 90.0 

Full-ML-

CRF 

Sens 66.1 66.9 74.2 76.1 67.7 83.8 77.6 61.2 68.9 85.6 90.4 86.1 90.4 86.5 

Spec 84.5 85.2 86.3 86.7 86.0 89.8 86.8 96.8 91.2 96.1 96.6 94.0 96.0 95.4 

Ave 75.3 76.0 80.3 81.4 76.8 86.8 82.2 79.0 80.1 90.9 93.5 90.0 93.2 90.9 
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Table 4.3. class-by-class accuracy performances achieved by the three models on dataset 2 (Munich). 

 class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

ML-

Unary 

Sens 18.8 73.5 74.3 45.2 13.6 70.8 28.3 64.4 0 0.4 33.7 25.5 43.7 5.3 33.4 16.2 

Spec 99.4 98.9 88.6 98.7 99.9 88.7 97.4 88.4 100 99.9 98.7 99.3 99.7 99.6 99.6 99.0 

Ave 59.1 86.2 81.5 72.0 56.8 79.7 62.8 76.4 50 50.2 66.2 62.4 71.7 52.4 66.5 57.6 

ML-CRF 

Sens 52.5 50.4 51.0 54.3 58.0 59.8 57.8 60.0 60.4 66.5 65.6 69.5 68.6 68.7 64.3 73.6 

Spec 95.4 95.7 94.9 94.8 94.3 93.1 92.7 93.3 92.8 93.1 93.5 94.9 93.1 93.8 94.5 96.9 

Ave 73.9 73.0 72.9 74.5 76.2 76.5 75.3 76.6 76.6 79.8 79.6 82.2 80.8 81.3 79.4 85.3 

Full-ML-

CRF 

Sens 61.8 60.2 57.6 60.8 62.2 64.4 67.1 67.4 68.0 73.3 74.5 77.0 75.6 75.4 70.9 79.0 

Spec 91.7 91.8 91.6 91.3 91.5 89.7 87.7 89.1 87.9 88.5 90.8 92.6 89.3 90.8 91.5 94.7 

Ave 76.8 76.0 74.6 76.0 76.8 77.0 77.4 78.2 77.9 80.9 82.6 84.8 82.4 83.1 81.2 86.8 
  

 

 

Fig. 4.4. Examples of multilabel classification maps obtained by the three classification methods (ML-Unary, ML-CRF, Full-ML-CRF)  

on two test images of dataset 1(Civezzano), along with their related ground truth and original image. 
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4.4. Conclusion 

This chapter has introduced a novel multilabel conditional random field model for UAV 

image classification. The underlying idea is to exploit simultaneously label cross-correlation and 

spatial contextual information within a structured prediction framework. The proposed model 

starts with the subdivision of the image into a set of equal tiles, then an opportune classifier is used 

to generate initial predictions for each tile. Afterwards, a CRF model is applied on the resulting 

multilabel map to iteratively improve it. Experimental results show that the exploitation of both 

spatial alongside (across map) label-label information can boost significantly the quality of the 

multilabel map. As future development, expanding the action field of the cross-correlation term 

by considering wider neighborhood systems could be worth investigating, though this would lead 

to an increase of the method complexity. Moreover, an automatic way for estimating the optimal 

value of 𝜆1=𝜆2 (here fixed to 1) could be interesting to improve further the results as Fig. 4.3 

suggests. 
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Abstract– We describe a novel multilabel classification approach based on support vector machine 

(SVM) for extremely high-resolution (EHR) remote sensing images. Its underlying ideas consist: 1) 

to exploit inter-label relationships by means of a structured SVM; and 2) to incorporate spatial 

contextual information by adding to the cost function a term which encourages spatial smoothness 

into the structural SVM optimization process. The resulting formulation appears as an extension of 

the traditional SVM learning, in which our proposed model integrates output structure and spatial 

information simultaneously during the training. Numerical experiments conducted on two different 

UAV and airborne acquired sets of images show the interesting properties of the proposed model in 

particular in terms of classification accuracy. 

 

5.1. Introduction 

Remotely sensed data have constantly given us valuable information for various applications 

such as global-local environmental changes, urban growth, etc [1] [2] [3]. Suitable related analysis 

tools have helped us to understand their insights more deeply and to create timely land use maps 

with less labor force. Combined with the fast technological developments, remotely sensed data 

have been continuously getting more informative and at the same time challenging. Especially, 

unmanned aerial vehicles (UAVs), commonly known as drones, have attracted huge attention 

recently in the remote sensing community due to their interesting potentials for data collectability, 

customizability, portability, and cost efficiency. They have made it possible to gather extremely 

high-resolution (EHR) image data and further analyze tinier scale objects, which even enable us 

to develop improved or new practical systems such as in traffic monitoring, precision farming, and 

disaster victim detection. For instance, the authors in [4] addressed the problem of processing real-

time traffic data extracted from videos mounted on UAVs for traffic monitoring applications, 

where the camera platforms move with UAVs. The proposed system quickly estimates traffic 

parameters such as traffic directions, number of vehicles, and their average stream speed. Another 

work in pedestrian detection in UAV surveillance camera applications was put forth in [5]. This 

algorithm relies basically on the combination of Haar-LBP (local binary pattern) descriptors in 

Adaboost cascade classifiers along with mean shift algorithm to improve their pedestrian detection 

capability. The authors in [6] proposed an effective strategy to detect and track multiple UAVs 

with a single moving camera mounted on a UAV to systemize collision avoidance systems. The 

detector refined by Kalman filter showed the effectiveness of their approach. As for precision 

agriculture and forest monitoring applications, relatively, much contribution could be found in the 

literature. In [7], for instance, an automatic estimation system to map land use in a vegetable farm 

was introduced on the basis of UAV images. In [8], the authors presented a successful system to 

delineate eroded areas in a tropical rain forest using digital cameras in UAVs. In disaster and 

victim detection applications, Bejiga et al. [9] interestingly suggested a method of assisting 

avalanche search and victim detection with UAVs fitted with vision cameras. In [10], a method 

for detecting and evaluating flooded areas in natural disaster scenarios was developed, where they 

use LBP descriptors extended to color information of UAV images. 

One of the major applications of remote sensing data is classification, whose task is to assign 

class labels to certain regions defined by pixels or grids using trained classifiers. Object 

classification is a well-studied area in the remote sensing community, and many refined 

approaches have been proposed in the past few years. For instance, the authors in [11] proposed a 
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sparse land cover classification framework with heterogeneous feature extraction for airborne 

LiDAR point cloud data. A multiple kernel learning is embedded into the sparse representation 

classification, which enhances classification performances on LiDAR data. Mei et al. [12] 

introduced a convolutional neural network (CNN) that intends to learn spatial-spectral features for 

efficient hyperspectral classification. The network was tested on four benchmark data sets from 

two sensors, and the result has shown an improvement over the state-of-the-art CNN-based 

classification methods. Zhang et al. in [13] proposed a deep learning approach for object-based 

land cover classification in very high-resolution UAVs images. It makes use of stacked denoising 

autoencoder (SDAE) networks. The proposed method has shown a good performance especially 

when sufficient training samples are lacking. Another deep neural network based on recurrent 

neural networks was proposed in [14] for hyperspectral image classification, in which they utilized 

a new activation function called parametric rectified tanh. Experimental results on three airborne 

hyperspectral images put forth a very promising performance compared to other deep neural 

networks.  However, the efforts mainly focus on satellite and airborne images. Compared with 

such very high-resolution images, EHR images are characterized by microscale: a few centimeters’ 

resolution. Due to this fact, traditional pixel-based and segment-based classification strategies may 

not be able to provide reasonable prediction especially when dealing with tens of classes at the 

same time. Additionally, the plenty of information supplied by EHR images makes classification 

itself more challenging. In this context, a coarse description approach was first proposed in [15] 

to tackle these problems raised by EHR images. In particular, the authors proposed subdividing 

images into a grid of tiles, which creates multilabeled outputs whose binary descriptors represent 

the presence and absence of target objects. This strategy casts the land cover classification problem 

to a more complicated multilabel classification formulation. 

Multilabel classification is one of the most challenging tasks in pattern recognition because, 

unlike multiclass cases where samples belong to only one class, multilabel outputs can exhibit 

more than one label simultaneously. Accordingly, the output space of multilabeling problems 

exponentially grows as the number of classes. Besides, such data normally contain complicated 

structure in samples and label sets as mentioned later. An intuitive way to deal with multilabel 

classification consists in decomposing the multilabel problem into a set of binary classification 

tasks. Afterwards, a group of binary classifiers are trained independently (i.e., one classifier per 

label) and the combination of their predictions is exploited to yield the final output. Boutell et al. 

introduced an interesting multilabel learning scheme in [16] based on such approach. Its 

underlying idea is to deal with each label combination in the training set as an identifier of a new 

distinct class. The resulting set of label values is then processed by a monolabel classifier. Its main 

issue is the limitation of label combination samples in training sets. An alternative approach to 

deal with multilabel sets is to adopt the monolabel models to perform directly the multilabel 

classification. However, some models are less easily adapted to be extended for multilabel tasks 

than others. In this context, the authors of [15] presented a multilabel pattern matching based on 

Chi-squared distance. In [17], they used an RBFNN with multiple outputs to fit the multilabeling 

requirements. Other methods in the literature were developed so as to better exploit correlation 

information between labels. For instance, in [18], a graph-based multilabel classifier is proposed 

by exploiting low rank representation. In [19], a correlated logistic model is introduced for joint 

prediction in multilabel classification problems. It consists in extending independent logistic 
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regressions by explicitly modeling the pairwise correlation among labels. Its model is formulated 

using an elastic regularized maximum pseudo-likelihood estimation, exploiting sparsity in both 

feature selection and label correlation. Such a formulation results in a linear computational 

complexity with respect to the number of labels. Another interesting multilabel framework based 

on deep neural networks can be found in [20]. Its cost function takes advantage of combining: 1) 

a max-margin term, which maximizes the score of present labels over absent ones through a 

predefined margin; 2) a max-correlation criterion, which maximizes the correlations between the 

extracted features and their corresponding labels within a learned semantic space; and 3) a 

correntropy (correlation-entropy) term as an alternative to the traditional softmax loss function. In 

[21], the authors introduced a multilabeling Bayes-optimal classifier, based on hierarchical 

extensions of the Hamming and ranking loss functions. 

Among such machine learning methods, support vector machines (SVMs) are known to be 

one of the most promising classification tools [22] [23] [24], especially in the remote sensing field 

[25] [26]. Moreover, the SVM frameworks have been extended substantially according to the 

increasing complexity of remote sensing data. One of their great contributions is structure learning 

[27]. Structured SVM (SSVM) is an efficient classifier for data with output structure. In multilabel 

classification problems, for instance, “Solar Panel” labels are more likely to coincide with “Roof” 

labels than “Tree” labels because solar panels obviously require flat places to absorb much 

sunshine. This kind of output relationship should be built in classifiers to yield more reasonable 

classification outcomes. The SSVM classifiers achieved this request with the straightforward 

extension of the normal SVM learning. SSVM has already been applied to multi-class 

classification in various fields including remote sensing, in which they have reported the promising 

capability of the structure learning [28] [29] [30]. 

The other aspect to be considered, especially in pixel- and tile-wise land cover classification, 

is spatial information. It is pretty natural assumption that each tile gives more similar prediction 

with its neighborhood than any other randomly picked tiles. The basic classification algorithms 

cannot embed this principle because they treat instances as independently sampled ones. This 

neighborhood information is actually useful in remotely sensed images. There exist some 

approaches which formulate spatial dependency, and they showed significant improvement in 

classification accuracy with SVM-based space embedding [31]. Spatial contiguity based on the 

SVM learning is straightforward because the formulation still keeps the basics of the normal SVM 

concepts [32] [33]. Even though the extension is simple, such algorithms can make improvements 

on pixel-wise classification. 

The aim of this chapter is to propose a novel SVM-based multilabel classification approach 

which simultaneously embeds the above two properties, namely output structure and spatial 

contiguity, to achieve accurate land cover classification for EHR remote sensing images. First, we 

incorporate the output structure by following a SSVM multilabel formulation. Second, we 

additionally embed spatial contextual information into the SSVM formulation. From a 

mathematical viewpoint, we add a term to lessen neighborhood discrepancy into the SSVM primal 

objective function. As is the same with the previous spatial embedding approaches for binary SVM 

cases as shown in [32] [33], the basic SVM principles are still kept, which means we can optimize 

https://en.wiktionary.org/wiki/correlation#English
https://en.wiktionary.org/wiki/entropy#English
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the classifier by solving the standard quadratic programming problem of the dual. As a result, the 

method makes it possible to incorporate output structure and spatial information simultaneously 

with ease. We conducted experiments on two types of remotely sensed data, UAV and airborne 

imagery. The results show the proposed SVM model outperforms reference SVM-based 

approaches, namely multilabel SVM and its structured version, in terms of classification 

accuracy.The remainder of this chapter is organized as follows. Section 2 introduces the basics of 

multilabel classification for EHR images and SSVM. In section 3, we propose our new model. 

Section 4 reports the experimental results. We draw final conclusion in the section 5. 

5.2. Problem Formulation and Tools 

5.2.1. Multilabel Classification for EHR Imagery 

Let us consider EHR images in which all the pixels are characterized by visible RGB 

channels. As mentioned before, EHR images contain quite abundant information that typical land 

classification strategies cannot deal with. As an alternative, a new strategy called coarse 

description of images was recently proposed [15]. Following this strategy, we first subdivide 

images into a grid of tiles of equal sizes as shown in Fig. 5.1. Each tile contains a set of RGB 

information for the pixels and the corresponding binary descriptor represents the presence and 

absence of target labels. This formulation results in a multilabel supervised classification problem, 

that is, our goal is to make a prediction as a list of existing objects for every tile in unlabeled 

images. In contrast to classical multi-class classification, the tiles can hold multiple classes 

simultaneously. In general, the size of the tiles should be defined according to the spatial resolution 

Fig.5.1. General block diagram of the proposed framework for multilabel tile-wise description. 
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of the image and the expected sizes of objects that one aims at recognizing.The tile-wise multilabel 

classification is composed of two main steps. The overall process is shown in Fig. 5.1. 

The first step concerns suitable tile representation in order to extract discriminative features for 

classification. Our approach makes use of a deep learning technique, i.e., convolutional neural 

networks (CNNs), as a feature extractor. They have definitely drawn a major outgrowth as 

compared to traditional handcrafted feature extraction means and have shown great effectiveness 

in various computer vision applications [34]. After extracting features, we pass them to the second 

step, classification process, which represents the focus of this chapter. The essential aspects here 

are to develop an efficient classifier with the following two properties: output structure and spatial 

contiguity. As shown in Fig. 5.1, for instance, ‘Car’ labels are likely to hold the ‘Asphalt’ label 

simultaneously. Also, we can readily imagine that tiles with the ‘Asphalt’ label range in 

consecutive areas. Any model embedding these two properties has a huge potential of improving 

the recognition accuracy, which is our primal motivation in this chapter. To the best of our 

knowledge, there is no work in the literature which merges them simultaneously for multilabel 

classification. In the following subsections, we describe briefly the CNN pre-trained model 

adopted for the tile representation step, then we elaborate details outlining how to embed the two 

properties into the SVM-based classification. 

 

5.2.2. Tile Representation 

Departing from the need to extract discriminative features as the first step in our multilabel 

classification approach, as mentioned in the previous section. This tile representation model is 

inspired by deep neural networks, precisely CNNs, which are learning paradigms that map features 

from input data in a hierarchical way, resulting in multiple levels of pattern representations formed 

by a composition of low-level features. The CNN-based feature learning has successfully provided 

an effective alternative to traditional handcrafted features [35] [36] [37]. It is composed of a set of 

convolution and subsampling operations, followed by a classifier. The convolution layer consists 

of a set of filters convolved repeatedly through spatial sliding over images to generate what is 

called the feature maps, followed by the pooling layer that reduces the size of the obtained features. 

Further operations can be performed to the resulting outputs such as dropout, batch normalization, 

and elementwise activation function layer (i.e., Rectified Linear Units, ReLU) that can be applied 

to increase the sparseness of the network and better deal with the overfitting risk. The propagated 

features come to the fully connected classification layer from the previous layers to make final 

outputs. 

In this chapter, we resort to the publicly available pre-trained CNN named GoogLeNet. The 

network was originally trained over the ImageNet ILSVRC2014 dataset which contains over 1.2 

million images with 1000 categories and showed a promising capability for image recognition. Its 

process contains a 27-layer deep network including pooling layers, with a softmax loss layer as a 

classifier. The size of the receptive field is 224×224 of three RGB channels with zero mean. The 

ReLU operation is used in all its convolution layers. It finally generates discriminative feature 

vectors of the size equal to 1024. The most important component characterizing the GoogLeNet 

network is what is called inception modules, which are modules with a wise local sparse structure 
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of dense components (e.g., convolution, pooling, and softmax). They cluster the correlation 

statistics of the previous layer output into a group of units. The major benefit of these inception 

layers is their efficient reduction of dimensionality as well as computational requirements. 

GoogLeNet is based on nine inception modules. The width of inception modules ranges from 256 

filters (in early modules) to 1024 in top inception modules. After the subdivision of our image 

into a non-overlapping grid of equal tiles of size 50×50 pixels as explained in Section 2.A., we 

resize the image tiles for each RGB channel into the size of the pre-trained GoogLeNet receptive 

field (i.e., 224×224). Afterwards, the features are extracted by propagating each tile throughout 

the network up to its fully connected layer generating a feature vector of length 1024 for each 

tile. The following section details the proposed SVM-based multilabel classifier. 

5.2.3. Reviews of Structured SVM 

We first review the background of SSVM for multilabel classification [27]. Let us define a 

training set as {(𝒙𝑖, 𝒚𝑖) ∈ 𝒳 × 𝒴|𝑖 = 1,… , 𝑛}, where 𝒳 and 𝒴 are the input and output spaces, 

respectively. In ordinary multilabel classification, we define them as 𝒳 = ℝ𝑑 and 𝒴 = {0, 1}𝑐, 

where 𝑐 represents the number of total classes. Each element of the output vector 𝒚𝑖 expresses the 

presence and absence of class 𝑘 ∈ {1,… , 𝑐}; the 𝑘th element of 𝒚𝑖 is 1⁡if the sample 𝒙𝑖 holds the 

class 𝑘 label and 0 otherwise. The cardinality of the output space is 2c because samples can belong 

to multiple classes. The basic concepts of multilabel structure learning is to make predictions for 

samples according to the rule defined by the function 𝑔: 𝒳 → 𝒴 such that 

𝑔(𝒙) = argmax
𝒚∈𝒴

𝑓(𝒙, 𝒚). (1) 

  

The discriminant function 𝑓:⁡𝒳 × 𝒴 → ℝ defines scores for the input-output pairs, which takes 

the inner product with the weight vector 

 

𝑓(𝒙, 𝒚) = 𝒘𝑇𝝍(𝒙, 𝒚). (2) 

  

The joint feature map 𝝍:𝒳 × 𝒴 → ℋ maps the input-output pairs jointly into a feature space ℋ. 

Flexible designs of the joint feature vector make it possible to incorporate hierarchical structure in 

pattern analysis. In commonly used multilabel classification settings described in [28] [29] [30] 

the joint feature is defined as 

 

𝝍(𝒙, 𝒚) = 𝒚⁡⨂⁡𝝓(𝒙), (3) 

  

where ⨂ is the Kronecker tensor product and 𝝓:⁡𝒳 → ℝ𝑝 is the feature mapping which maps an 

original 𝑑 dimensional input 𝒙 to 𝑝 dimensional feature space. That is, the joint feature 𝝍 finally 

constructs the 𝑝 × 𝑐 dimensional joint feature vector. 

The weight vector 𝒘 is trained via the similar optimization with the normal binary SVM: 

maximizing the margin and minimizing the empirical error [27]. Here we assume a loss function 

∆(𝒚, 𝒚̅) ≥ 0 which quantifies the dissimilarity between labels 𝒚, 𝒚̅ ∈ 𝒴, where ∆(𝒚, 𝒚) = 0. Then, 

we formulate the following optimization, 
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min
𝒘,𝝃

⁡
1

2
‖𝒘‖2 + 𝐶∑𝜉𝑖

𝑛

𝑖=1

, (4) 

s. t⁡∀𝒚̅𝑖 ∈ 𝒴, 𝒘T{𝝍(𝒙𝑖, 𝒚𝑖) − 𝝍(𝒙𝑖, 𝒚̅𝑖)} ≥ ∆(𝒚𝑖, 𝒚̅𝑖) − 𝜉𝑖 ,⁡⁡⁡⁡for⁡𝑖 = 1,… , 𝑛. 

 

This is called 𝑛-slack SSVM formulation with margin rescaling. Every constraint insists that the 

score of the true label must be greater than those of the other labels added their losses. Otherwise, 

𝜉𝑖 imposes a positive penalty. Hence, the weight parameter must be tuned so that the classifier 

surely separates unlikely events imposed large losses to minimize the objective function. In this 

way, we can avoid coincidence of unlikely classes. 

The practical iterative optimization method based on the cutting-plane algorithm was proposed in 

[38], in which the 𝑛-slack formulation is first replaced with the alternative so-called 1-slack 

formulation as follows: 

min
𝒘,𝜉

⁡
1

2
‖𝒘‖2 + 𝐶𝜉, (5) 

s. t⁡∀(𝒚̅1, … , 𝒚̅𝑛) ∈ 𝒴𝑛,
1

𝑛
𝒘T∑{𝝍(𝒙𝑖, 𝒚𝑖) − 𝝍(𝒙𝑖, 𝒚̅𝑖)}

𝑛

𝑖=1

≥
1

𝑛
∑∆(𝒚𝑖, 𝒚̅𝑖)

𝑛

𝑖=1

− 𝜉. 

This formulation shares all the slack variables by summing up 𝜉 =
1

𝑛
∑𝜉𝑖. This is efficient because 

we no longer need to store constraints for each sample individually. The theoretical equivalence 

between the two formulations and experimental comparison is shown in [38]. The direct 

optimization of the 1-slack formulation is still not practical because the total number of constraints 

is |𝒴|𝑛. The cutting-plane algorithm, alternatively, includes only the most violated constraint in 

 

 

  Fig. 5.2.  Output graph structure obtained for dataset 1 (Civezzano). 

. 
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each step, then the primal objective function is solved subject to the restricted constraints. The 

detailed algorithm is described in the next section where we explain our model.  

Note that we can still utilize “kernel trick” even in SSVM by defining the kernel for the inner 

product of the joint feature vectors, i.e., :⁡(𝒳 × 𝒴) × (𝒳 × 𝒴) → ℝ . Especially in the multilabel 

classification, it can be derived readily as 

 

𝐾(𝒙𝑖, 𝒚𝑖, 𝒙𝑗 , 𝒚𝑗) = 𝝍(𝒙𝑖, 𝒚𝑖)
𝑇𝝍(𝒙𝑗, 𝒚𝑗) = 𝒚𝑖

𝑇𝒚𝑗 ×𝝓(𝒙𝑖)
𝑇𝝓(𝒙𝑗). (6) 

  

Once we replace the inner product of the input space with a kernel function 𝐾′:⁡𝒳 × 𝒳 → ℝ, we 

do not need to describe the feature map explicitly. 

 

 

 

 

 

 

 

 

 

 

 

 

In order to embed the output structure into the model, we need to define the structural loss 

function ∆(𝒚, 𝒚̅). In the multi-class structural learning in [28] [30], they built the hierarchical 

output structure a priori based on obvious facts and expert experiences. The losses among labels 

are computed according to the distances of meta-labeled outputs defined by the tree structure. If 

two classes are the branches of different trees, i.e., they are not similar classes in some sense, then 

the miss-classification penalty increases, and vice versa. The readers can refer [28] [30] for further 

details. Another approach of embedding output loss structure is data-driven rather than by 

experience. Chow-Liu algorithm is one of the examples, which construct output graph structure 

based on mutual information among labels [39]. Figure 5.2 depicts the relationships between labels 

estimated on dataset 1 (dataset 1 is described below in Experimental Results Section). The nodes 

of the graph represent the class labels, and each weight 𝑤𝑙,𝑚 on the edges controls the degree of 

label-label relationship. For instance, whenever two nodes 𝑙, 𝑚 do not have a correlation, they will 

not have an edge between them, namely, the edge weight 𝛼𝑙,𝑚 is equal to zero. We use this 

algorithm in our experiments in which the weights are also estimated in the training process. 

5.2.3. Structured SVM with Spatial Embedding 

So far, we reviewed our land cover classification strategy and the basic of the structural 

learning. Modifying the SSVM, in this section, we present a new SSVM-based algorithm for 

effective multilabel land cover classification. In the tile-wise image classification, neighbor tiles 

very likely tend to share same labels. To embed this property, we propose adding an extra term to 

 
 

Fig. 5.3.  First-order neighborhood system. The black tile is the center 𝑖 and 

the yellow tiles are the elements of neighborhood 𝑁𝑖. 
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penalize the dissimilarity among neighbor tiles into the SSVM objective function. First, we focus 

on a center tile 𝑖 and its neighbors 𝑗 ∈ 𝑁𝑖, where 𝑁𝑖 is the set of the tile indexes of the tile 𝑖 

neighborhood. Fig. 5.3 shows an example of the first-order neighborhood system: the closest four 

tiles on up and down, left and right. The sum of the score distances between the center tile and its 

neighbors, 

∑{𝒘𝑇𝝍(𝒙𝑖, 𝒚𝑖) − 𝒘𝑇𝝍(𝒙𝑗, 𝒚𝑗)}
2

𝑗∈𝑁𝑖

, (7) 

 

should be minimized in the training process to reduce un-smoothness on images. A similar 

formulation has been proposed in the binary SVM classification [32] [33]. Here, we move to the 

SSVM framework and we embed spatial contiguity into it. Note that we have to do it on test 

(unknown) images, which do not have ground truth labels. Hence, we need to lessen the spatial 

label discrepancy among neighborhood possibly for any label patterns. 

In multilabel classification, the weight 𝒘 consists of the series of the weights associated with 

all classes, namely, 𝒘 = (𝒘1
𝑇 , … ,𝒘𝑐

𝑇)𝑇. The individual score of class 𝑘 for an instance 𝒙𝑖, 

𝒘𝑘
𝑇𝝓(𝒙𝑖), can be rewritten by 𝒘𝑇𝝍(𝒙𝑖, 𝒆𝑘) using the joint feature, where 𝒆𝑘 is the unit vector and 

takes one in the 𝑘th element. The sum of distances of all the 𝑘 scores 𝒘𝑇𝝍(𝒙𝑖, 𝒆𝑘) for 𝑘 ∈ {1,… , 𝑐} 

derives the following formula: 

⁡⁡⁡⁡⁡⁡⁡∑ ∑{𝒘𝑇𝝍(𝒙𝑖, 𝒆𝑘) − 𝒘𝑇𝝍(𝒙𝑗, 𝒆𝑘)}
2

𝑗∈𝑁𝑖

𝑐

𝑘=1

. (8) 

 

minimizing the above quantity forces adjacent tiles to have similar scores not only on respective 

classes but also on every label pattern in the output space 𝒴 because they all are the combination 

of class scores, as long as we use the joint feature mapping  defined in (3). In this way, the 

additional term encourages neighbor tiles even to have same predictions. We define an adjacent 

matrix 𝐵 such that 𝐵𝑖,𝑗 = 1 if the tile 𝑖 and 𝑗 are in the neighborhood and 𝐵𝑖,𝑗 = 0 otherwise. The 

total distance of the adjacent tiles on the whole image can be written by 

∑ ∑ 𝐵𝑖,𝑗{𝒘
𝑇𝝍(𝒙𝑖, 𝒆𝑘) − 𝒘𝑇𝝍(𝒙𝑗, 𝒆𝑘)}

2
𝑁

𝑖,𝑗=1

𝑐

𝑘=1

= 2𝒘𝑇 {∑𝜳𝑘
𝑇

𝑐

𝑘=1

(𝐷 − 𝐵)𝜳𝑘}𝒘. 

(9) 

Here, 𝑁⁡(> 𝑛) is the total number of samples combined training and test data, 𝐷 is the diagonal 

matrix whose 𝑖th element 𝐷𝑖,𝑖 = ∑ 𝐵𝑖,𝑗
𝑁
𝑗=1 , and 𝜳𝑘 = (𝝍(𝒙1, 𝒆𝑘),… , 𝝍(𝒙𝑁 , 𝒆𝑘))

𝑇
 is the joint 

feature matrix corresponding to class 𝑘. Once we define the matrix 𝜮 as 

 

𝜮 = ∑𝜳𝑘
𝑇

𝑐

𝑘=1

(𝐷 − 𝐵)𝜳𝑘, (10) 
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then we merge it with the SSVM primal objective function as follows: 

min
𝒘

⁡
1

2
𝒘𝑇(𝑰 + 𝜆𝜮)𝒘 + 𝐶𝜉, (11) 

s. t⁡∀(𝒚̅1, … , 𝒚̅𝑛) ∈ 𝒴𝑛,
1

𝑛
𝒘T∑{𝝍(𝒙𝑖, 𝒚𝑖) − 𝝍(𝒙𝑖, 𝒚̅𝑖)}

𝑛

𝑖=1

≥
1

𝑛
∑∆(𝒚𝑖, 𝒚̅𝑖)

𝑛

𝑖=1

− 𝜉. 

The positive constant 𝜆 is the trade-off parameter between the model accuracy and smoothness. 

We can describe the whole algorithm to optimize the weight parameter in the same way with the 

original cutting-plane algorithm for the structure learning [38]. Algorithm 1 shows the related 

pseudo code. 

 

Algorithm 1: Cutting-plane algorithm for 1-slack 

formulation with spatial information 

1. Input: {(𝒙𝑖, 𝒚𝑖)}𝑖=1,…,𝑛⁡, 𝜮, 𝐶, 𝜆, 𝜀,𝒲 ← ∅. 

2. Repeat 

3.      𝒘, 𝜉 ← argmin𝒘,𝜉 ⁡
1

2
𝒘𝑇(𝑰 + 𝜆𝜮)𝒘 + 𝐶𝜉 

 s. t⁡∀(𝒚̅1, … , 𝒚̅𝑛) ∈

𝒲,⁡⁡⁡
1

𝑛
𝒘T∑ {𝝍(𝒙𝑖, 𝒚𝑖) − 𝝍(𝒙𝑖, 𝒚̅𝑖)}

𝑛
𝑖=1 ≥

1

𝑛
∑ ∆(𝒚𝑖, 𝒚̅𝑖)
𝑛
𝑖=1 − 𝜉. 

4.      for 𝑖 = 1,… , n do 

5.           𝒚̅𝑖 ← argmax𝒚̅∈𝒴{∆(𝒚𝑖, 𝒚̅) +

𝒘T𝝍(𝒙𝑖, 𝒚̅)} 
6.      end for 

7.      𝒲 ←𝒲∪ {(𝒚̅1, … , 𝒚̅𝑛)} 

8. until  all the constraints are fulfilled with the 

tolerance rate 𝜀 

 

The algorithm starts with a null constraint 𝒲 = ∅, where 𝒲 is called the working set. Each 

step searches for the most violated constraint under the current parameters and adds it to the 

working set iteratively until the algorithm terminates. The most violated constraint is found in 

Steps 4-6. The only difference from the original algorithm is in Step 3; we newly add the term 𝜆𝜮 

for the spatial contiguity. Since the primal objective function still keeps the same principle of 

SSVM, we can derive the quadratic programming dual problem of the primal as: 

max
𝜶

⁡ ∑ 𝛼𝒚̅ {
1

𝑛
∑∆(𝒚𝑖, 𝒚̅𝑖)

𝑛

𝑖=1

}

𝒚̅∈𝒴𝑛

−⁡
1

2
∑ 𝛼𝒚̅𝛼𝒚̅′

𝒚,̅𝒚̅′∈𝒴𝑛

𝐻(𝒚̅, 𝒚̅′), (12) 

s. t⁡⁡ ∑ 𝛼𝒚̅
𝒚̅∈𝒴𝑛

= 𝐶, 

     where 
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𝐻(𝒚̅, 𝒚̅′) =
1

𝑛2
[∑{𝝍(𝒙𝑖 , 𝒚𝑖) − 𝝍(𝒙𝑖, 𝒚̅𝑖)}

𝑛

𝑖=1

]

𝑇

(𝑰 + 𝜆𝜮)−1 [∑{𝝍(𝒙𝑖, 𝒚𝑖) − 𝝍(𝒙𝑖, 𝒚̅𝑖
′)}

𝑛

𝑖=1

]. (13) 

 

Each 𝛼𝒚̅ is the Lagrange multiplier associated with one of the constraints in the working set. After 

we solve the dual problem, we pass to the weight vector, 

𝒘 = (𝑰 + 𝜆𝜮)−1 ∑ 𝛼𝒚̅
𝒚̅∈𝒴𝑛

[
1

𝑛
∑{𝝍(𝒙𝑖, 𝒚𝑖) − 𝝍(𝒙𝑖, 𝒚̅𝑖)}

𝑛

𝑖=1

], (14) 

  

as the primal solution. The weight parameter is optimized so as to find separable hyperplane for 

the training samples as well as simultaneously enhance smoothness in entire images. We call this 

algorithm Spatial Structured SVM (SSSVM). 

5.3. Experimental Results 

We conducted numerical experiments to assess the classification accuracy of the proposed 

method on two real datasets composed of UAV and airborne images acquired over two different 

locations. 

5.3.1. Dataset Description 

1) Dataset 1: The first set of images is a UAV dataset which had been acquired near the city 

of Civezzano (Italy) at different off-nadir angles on October 17, 2012 [17]. The data acquisition 

was performed with a picture camera Canon EOS 550D characterized by a CMOS APS-C sensor 

with 18 megapixels. The images are characterized by three channels (RGB) with a spatial 

resolution of approximately 2 cm. The obtained images are of size 5184×3456 pixels with 8-bit 

radiometric resolution. This dataset is composed of ten images. All the images are subdivided into 

a non-overlapping grid of equal tiles of 50×50 pixels as explained in section 2.1. We selected three 

learning images in such a way they contain all predefined 14 classes of objects, which are 

‘Asphalt’, ‘Grass’, ‘Tree’, ‘Vineyard’, ‘Low Vegetation’, ‘Car’, ‘Roof 1’, ‘Roof 2’, ‘Roof 3’, 

‘Solar Panel’, ‘Building Facade’, ’ Soil’, ‘Gravel’, and ‘Rocks’. We divided the ‘Roof’ category 

into three different classes due to its large heterogeneity. Furthermore, we randomly subdivided 

the learning set into two parts, training and validation sets, the former for training the model and 

the latter for estimating related hyperparameters. The final sizes of the training, validation, and 

test sets are 5000, 16321, and 49749 respectively. Table 5.1 lists all the class occurrences in the 

data.   

2) Dataset 2: The second dataset was originally acquired for the sake of vehicle detection 

over Munich, Germany [40], but here we use it for land use classification. The images were 

captured from an airplane by a Canon Eos 1Ds Mark III camera with a resolution of 5616×3744 

pixels, 50 mm focal length. The images were taken at a height of 1000 meters above ground, with 

a spatial resolution of approximately 13 cm. This dataset is composed of 20 images and contain 

all predefined 16 classes of objects, which are ‘Slate Roof’, ‘Clay Roof’, ‘Asphalt’, ‘Standing 

Steam Roof’, ‘Sports Field’, ‘Green Trees’, ‘Dried Trees’, ‘Grass’, ‘Building Site/Operating  
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Machinery’, ‘Paved Road’, ‘Soil’, ‘Dark Soil’, ’ Green Roof’, ‘Flat Concrete Roof’,’ Railway’,  

and ‘Cars’. We used ten images for test. The rest of images were further divided into the training 

and validation sets, whose sizes are 5000 and 77880, respectively. The detailed numbers of every 

set and the class occurrences are provided in Table 5.2. 

5.3.2. Experimental Setup  

We compared our SSSVM model with two closely related reference approaches, namely the 

standard SVM and the structured SVM (SSVM). The SSVM was implemented by “pystruct” 

python module [41]. The standard SVM can be viewed as a special case of SSVM, simply by 

implementing it without giving any structure in the module. Doing in this way, one can solve the 

multi-class classification problem directly without dividing the output space as done in the so-

called One-Against-All classification. For SSVM and SSSVM, we first built the output structure 

on the basis of Chow-Liu algorithm using the output labels in their training sets. We tuned the 

regularization parameter 𝐶 according to validation errors using the following set of values 

{2−15, … , 2−3}. In SSSVM models, we first tuned 𝐶 based on the validation errors of SSVM 

models, then selected the best 𝜆 in {2−9, … , 22} according to the minimum validation error. 

Table 5.2. Number of class occurrence on dataset 2 (Munich). 

Class Tiles 

No Name Training Validation Test 

  5000 77880 82880 

1 Slate Roof 296 4394 9836 

2 Clay Roof 285 4046 6069 

3 Asphalt 1344 21389 31366 

4 Standing Seam 
Roof 

224 3378 2786 

5 Sports Field 13 234 383 

6 Green Trees 1487 24105 32983 

7 Dried Trees 685 11112 7466 

8 Grass 1797 27697 25737 

9 Building 
Site/Operating 

Machinery 

19 408 275 

10 Paved Road 162 2367 968 

11 Soil 336 5107 3649 

12 Dark Soil 243 3571 1563 

13 Green Roof 130 2002 2594 

14 Flat Concrete 
Roof 

231 3955 4773 

15 Railway 128 2020 299 

16 Cars 306 4830 8709 

 

[1]  

Table 5.1. Number of class occurrence on dataset 1 (Civezzano). 

Class Tiles 

No Name Training Validation Test 

  5000 16321 49749 

1 Asphalt 1195 3957 13280 

2 Grass 2082 6906 18508 

3 Tree 886 2843 8790 

4 Vineyard 58 182 1228 

5 Low 
Vegetation 

374 1110 4354 

6 Car 215 610 1458 

7 Roof1  239 772 1728 

8 Roof2  218 657 1254 

9 Roof3  121 341 2833 

10 Solar 
Panel 

98 295 456 

11 Building 
Facade 

217 706 1224 

12 Soil 205 755 1957 

13 Gravel 17 58 491 

14 Rocks 156 538 731 
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In all the experiments, we adopted the simple linear kernel, which does not ask for additional 

parameter except for 𝜆. The neighborhood system used is the first-order neighborhood (Fig. 3). 

We assessed the classification accuracy with the specificity, sensitivity, and their average metrics. 

We also computed the Hamming loss between the ground truth and the prediction. The loss is 

given as the mean losses of all the samples, namely, lies in [0, 𝑐], where 𝑐 is the number of total 

classes. Moreover, we conducted the McNemar’s statistical test to assess the pairwise significance 

of differences between two classifiers. I consists in the calculation of [42]: 

𝑍𝑖𝑗 =
𝑓𝑖𝑗 − 𝑓𝑗𝑖

√𝑓𝑖𝑗 + 𝑓𝑗𝑖
, (15) 

  

where 𝑓𝑖𝑗 indicates the number of samples correctly classified by the 𝑖th classifier and wrongly 

classified by the⁡𝑗th classifier. At the commonly used 5 % significant level, the difference in 

accuracy of two classifiers is said to be statistically significant if |𝑍𝑖𝑗| > 1.96. The signs of 𝑍𝑖𝑗 

stand for the goodness of the two; 𝑍𝑖𝑗 > 0 means the 𝑖th classifier is more accurate than the 𝑗th 

classifier and vice versa. 

5.3.3. Experimental Results  

5.3.3.1. Results of Dataset 1 

Table 5.3 shows the quantitative experimental results achieved on dataset 1. The SSVM 

performs better than SVM, and both are outperformed by our proposed SSSVM model. Indeed, 

the average accuracy of SSVM and SSSVM are 83.82 % and 84.12 %, respectively. Although the 

less than 1% gain may sound tiny, the McNemar’s test shows this improvement is statistically 

significant (see. Table 5.4). Such improvement can also be confirmed by analyzing the 

classification maps (see Fig. 5.4). Fig. 5.4(a) represents the ground truth image of test image 10. 

The tiles of Fig. 5.4(b-d) are colored according to the Hamming distances between the ground 

truth labels and the predicted labels obtained by the three classifiers. The map based on SVM in 

Fig. 5.4(b) is apparently bright, which indicates many of the tiles were wrongly predicted. On the 

other hand, the darkness of the SSSVM map in Fig. 5.4(d) shows that the classification by the 

proposed model is seemingly more accurate than what yielded by the SVM and even the SSVM 

classification. Fig. 5.5 illustrates the classification maps generated by SSSVM for test image 10. 

It is noteworthy that in multilabel classification, one gets as many classification maps as the total 

number of classes. In general, the achieved results are good, even though, as expected, there are 

some confusion in discriminating between classes with similar visual appearance (e.g., ‘Grass’ and 

‘Trees’), besides some false positives which emerge due to the intrinsic class variability especially 

when dealing with UAV imagery and a considerable number of classes simultaneously. However, 

in overall terms, the classification maps exhibit a satisfactory description of the scene.  In greater 

detail, Table 5.7 compares the class accuracies of the three classifiers. Since the overall sensitivity 

of SVM is high and its specificity is low, SVM classifier tends to overestimate present labels. This 

gives it an advantage in the classification of the large classes such as class 1 (“Asphalt”) and class 

2 (“Grass”) as shown in Table 5.7. Compared with SVM and SSVM, SSSVM produce a higher 

accuracy in terms of specificity. For the dominant classes (with large samples) such as classes 1, 

http://www.thesaurus.com/browse/however
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2, and 3, their average rates are comparable. On the other hand, SSSVM achieves a more accurate 

classification than SSVM for medium size classes (intermediate sizes of samples). For small 

classes in the training set such as class 4 (“Vineyard”) and class 13 (“Gravel”), the SSVM classifier 

is a bit more accurate than SSSVM. This can be explained by the fact that the spatial contextual 

information tend to smooth out isolated labels or small structures. However, in general, SSSVM 

model succeeds in improving both accuracy and Hamming loss of SSVM.  

Regarding the output structure, based on the structure estimated by the Chow-Liu Algorithm, 

the “Asphalt” class has connection with the following four classes: “Grass”, “Tree”, “Vineyard”, 

and “Low Vegetation” as shown in Figure 5.2. That is to say, the estimated classifier can increase 

or reduce the penalties for the coincidence with each of them. From the results, the penalty for the 

coincidence of “Asphalt” and “Vineyard” was the biggest of the four. This is indeed reasonable 

because there are no samples in the training set which share both labels. The training process was 

able to distinguish unlikely events automatically. 

There are three aspects that deserve to be mentioned. First, many Average criterion values 

of SVM are greater than those of SSVM and SSSVM. This is caused by the low cardinality of the 

dataset, where the cardinality represents the number of labels each instance holds on average. 

Indeed, the cardinality of the dataset is 1.17. In this context, even though SVM overestimates false 

positives, Specificity is not affected as much as Sensitivity, because true negatives still largely 

exist. That is why the classification performances of SVM look nice at a glance. Even in such 

situation, however, structured models are superior to SVM and the Hamming distances support 

their superiority as well. Second, structured models behave so as to reduce wrong label co-

occurrences in its predictions, thanks to the exploitation of the inter-label correlation.  

 

 

 

 

 

Table 5.3. Classification accuracies of the three classifiers on dataset 1 (Civezzano). 

 Sensitivity Specificity Average Hamming 

SVM 88.20 73.04 80.62 3.597 

SSVM 78.18 89.47 83.82 1.607 

SSSVM 76.69 91.57 84.12 1.355 

 

Table 5.4. Statistical comparison based on MCNEMAR’s test between the three models on dataset 1(Civezzano). 

    SVM SSVM 

SSVM -293.5  

SSSVM -313.6 -81.1 
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This suggests that the SSVM and SSSVM classifiers can learn that the cardinality of the 

dataset is low. This effect can be confirmed by the estimated weights of the graph edges. The 

cardinality of predictions of SSVM and SSSVM were low, i.e., 2.27 and 1.98 respectively. Third, 

as the downside of SSSVM compared with SSVM, spatial embedding of SSSVM sometimes 

works in a wrong way on boundaries of two objects, for which it is typically harder to provide 

discriminative features. As a result, SSSVM sometimes underestimates the presence of labels on 

boundaries. Globally however, as the tables show, utilizing spatial information typically allows 

generating more reasonable outcomes. 

We also analyzed the influence that the value of spatial parameter 𝜆 has on the classification 

outcomes. Fig. 5.7(a) shows the behavior of the average accuracy against 𝜆. In the range from 𝜆 =

2−4 to 20 except for 2−3, the accuracy exceeds the baseline of the SSVM classification accuracy. 

The larger the 𝜆, the larger the spatial smoothness. This may occasionally incur in worse 

classification, but the analysis confirms that the SSSVM accuracy is relatively stable in a wide 

range of 𝜆 values. 

 

 

 

 

 
Fig. 5.4.  (a) Ground truth of a test image of dataset 1 (Civezzano). (b, c, d) Classification results of the test image 

obtained by SVM(b),SSVM(c) and SSSVM(d). Each tile is colored according to the Hamming distance between 

the ground truth and prediction. 
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Fig. 5.5.  Multilabel classification map obtained by the SSSVM classifier on one of the test images of dataset 1 (Civezzano),  

along with its related ground truth and original image. 

 

 

 
 

Fig. 5.6.  Output graph structure obtained for dataset 2 (Munich). 
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5.3.3.2. Results of Dataset 2 

On dataset 2, the proposed SSSVM also outperforms SVM and SSVM. Table 5.5 lists the 

classification accuracies. The average accuracy without the structure is 71.83%. The structured 

models, SSVM and SSSVM, get approximately 1.5% and 2.0% gains of accuracy. The inferred 

structure for these models is given in Fig. 6. Thanks to the exploitation of spatial information, 

SSSVM performs better than the other two methods. Its average metric and Hamming loss are 

73.78% and 2.67 respectively. According to the McNemar’s test shown in Table 5.6, SSSVM 

significantly improves the accuracy over SVM and SSVM. The result suggests output structure 

with spatial modeling has potentials of making classification more reliable. This improvement is 

visually confirmed in Fig. 8(b-d). Fig. 9 illustrates the classification maps of SSSVM obtained on 

one of the test images. Detailed class accuracies are provided in Table 5.8. The SVM model 

classifies well the large classes such as classes 3 (“Asphalt”), 6 (“Green Trees”) and 8 (“Grass”). 

The SSSVM classifier handles well medium-size classes, while SSVM tends to preserve small 

classes such as class 5 (“Sports Field”) and class 9 (“Building Site”), which benefit from the 

captured inter-label relationships in the structured model. Similarly to dataset 1, we also checked 

the accuracy is not strongly influenced by the values of 𝜆 as shown in Fig. 7(b). 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.5. Classification accuracies of the three classifiers on dataset 2 (Munich). 

 Sensitivity Specificity Average Hamming 

SVM 79.17 64.50 71.83 5.43 

SSVM 67.34 79.21 73.28 3.53 

SSSVM 61.74 85.82 73.78 2.67 

 

[2]  
Table 5.6. Statistical comparison based on MCNEMAR’s test 

between the three models on  dataset 2 (Munich). 

 SVM SSVM 

SSVM -360.6  

SSSVM -420.7 -195.6 

 

 

 

 

 

  
                                                                  (a)                                                                                                                          (b) 

Fig. 5.7.  Average accuracy versus spatial parameter 𝝀 (of SSSVM model) for dataset 1 (Civezzano) (a) and dataset 2 (Munich) (b).  
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Fig. 5.8.  (a) Ground truth of a test image of dataset 2 (Munich). (b, c, d) Classification results of the test image obtained by SVM(b), 

SSVM(c) and SSSVM(d). Each tile is colored according to the Hamming distance between the ground truth and prediction. 

 

 

 
Fig. 5.9.  Multilabel classification map obtained by the SSSVM classifier on one of the test images of dataset 2 (Munich), 

along with its related ground truth and original image. 
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For the sake of further comparison, we confront these obtained results with two Multilabel 

Conditional Random Field based Classification frameworks (detailed in chapter 4).  The first one 

is the traditional CRF that takes into consideration the tile-based spatial information of each class 

separately (termed as ML-CRF). The second method similarly to the SSSVM method exploits both 

the spatial  information between tiles along with the label-label correlation information (termed as 

Full-ML-CRF).  

The main difference between these two methods is that the SSSVM framework incorporates; 

1) the spatial contextual information and 2) the labels cross-correlation information along with 3) 

the classification process within a single cost function (i.e., one-step process). On the other hand, 

the Full-ML-CRF operates as a two-steps framework instead of a single one, where at first, the 

classification predictions are generated using an opportune classifier (i.e., SVM), and afterwards 

the Full-ML-CRF is applied as a post-processing step exploiting both the labels correlation and 

the spatial information to further improve the yielded classification accuracies. Table 5.9 reports 

the obtained accuracies.  

 

 

Table 5.8. class-by-class accuracy performances achieved by the three models on dataset 2 (Munich). 

 class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

SVM 

Sens 87.5 94.0 77.8 88.3 58.0 76.0 85.3 74.0 81.8 60.2 87.5 97.8 76.6 77.3 91.3 80.7 

Spec 63.9 70.1 77.9 62.9 60.1 79.7 62.0 76.9 59.9 57.0 56.8 54.8 62.6 62.6 63.2 76.1 

Ave 75.7 82.1 77.9 75.6 59.5 77.9 73.7 75.5 70.9 58.6 72.2 76.3 69.6 69.9 77.3 78.4 

SSVM 

Sens 81.2 91.4 62.8 83.0 42.3 62.6 71.7 65.3 42.5 45.2 76.7 4.80 71.0 66.4 91.0 76.8 

Spec 72.5 76.7 88.7 72.1 76.2 88.8 77.8 84.7 90.4 74.3 73.5 99.1 72.8 71.9 75.8 79.4 

Ave 76.8 84.0 75.7 77.5 59.2 75.7 74.8 75.0 66.5 59.8 75.1 52.0 71.9 69.2 83.4 78.1 

SSSVM 

Sens 76.5 89.9 52.9 82.4 13.6 55.8 70.2 60.0 6.91 20.5 74.9 0.0 66.3 63.9 90.0 81.3 

Spec 78.0 81.3 92.7 73.8 93.6 91.8 81.1 88.2 99.4 89.5 81.2 100.0 85.1 76.3 85.2 78.4 

Ave 77.3 85.6 72.8 78.1 53.6 73.8 75.7 74.1 53.2 55.0 78.1 50.0 75.7 70.1 87.6 79.9 
  

Table 5.7. class-by-class accuracy performances achieved by the three models on dataset 1 (Civezzano). 

 class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

SVM 

Sens 86.6 87.4 89.2 82.2 86.5 94.0 83.9 88.2 96.3 99.1 87.5 96.0 73.7 94.0 

Spec 85.4 89.2 78.5 63.7 65.0 79.6 80.0 74.9 71.9 74.6 71.2 61.5 65.3 70.9 

Ave 86.0 88.3 83.9 72.9 75.7 86.8 81.9 81.5 84.1 86.9 79.4 78.8 69.5 82.4 

SSVM 

Sens 76.2 83.3 85.4 44.7 67.4 87.7 77.4 66.1 79.6 97.1 73.3 82.5 18.1 40.2 

Spec 89.0 92.0 82.6 91.2 82.5 89.2 90.2 95.9 87.5 89.3 84.0 83.8 95.5 98.7 

Ave 82.6 87.7 84.0 67.9 74.9 88.4 83.8 81.0 83.6 93.2 78.7 83.2 56.8 69.5 

SSSVM 

Sens 73.3 82.6 88.5 25.4 65.9 90.5 76.9 60.4 80.7 96.1 71.2 78.1 4.3 22.3 

Spec 89.8 92.3 81.8 96.2 83.3 90.0 92.0 97.0 91.7 93.0 87.4 86.1 99.1 99.6 

Ave 81.5 87.5 85.2 60.8 74.6 90.3 84.5 78.7 86.2 94.5 79.3 82.1 51.7 60.9 
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 By analyzing the reported results, one can observe that in terms of average accuracy, the 

Full-ML-CRF performs better than the reported methods achieving 84.69% and 74.85% with a 

gain of around 0.5% and 1% over the SSSVM method on dataset 1 and dataset 2 respectively. 

However, in terms of sensitivity the SSSVM yields higher scores than Full-ML-CRF achieving 

91% against 78% in dataset 1, and 85% against 62%, in dataset 2. Indeed, the higher sensitivity 

(true positives) achieved by the SSSVM comes at the cost of some loss in the specificity (true 

negatives) compared to the basic SVM and the Full-ML-CRF methods in which this latter displays 

more balanced scores in terms of both sensitivity and specificity.  

Concerning the Hamming loss distances computed between the obtained predictions and the 

ground truth labels, the ML-CRF achieves the smallest loss scoring 1.15 in the first dataset, and 

1.94 in the second dataset. This is explained by the fact that the ML-CRF provides the best 

specificity accuracies in both datasets taking into consideration the fact that the cardinality (how 

many labels each sample holds on average) in both datasets are low favoring the object absence 

(which is the case of most multilabel datasets). For instance, if we set all the prediction outputs 

labels to zeros, we get 1.17 and 1.68 of Hamming loss distance in dataset 1 and 2 respectively. In 

overall terms, both methods (i.e., SSSVM and Full-ML-CRF) confirm the usefulness of exploiting 

both the contextual spatial information and the inter-label correlation information in improving the 

results of the basic SVM classifier. Another element to be highlighted in the comparison between 

these two multilabel frameworks is the fact that in the Full-ML-CRF we did not tune the free 

parameters 𝜆1 and 𝜆2 (see chapter 4) and we have set them to one (𝜆1 = 𝜆2=1). By contrast, in the 

SSSVM method, we have tuned the free parameter 𝜆 during the training phase due to its 

importance in the cost function. This suggests that the Full-ML-CRF model provides very good 

results without resorting to parameter empirical tuning like the case of the SSSVM model. 

5.4. Conclusion 

In this chapter, we have coped with the challenging problem of multilabel classification. In 

particular, the input image, assumed to be of extremely high-resolution, is first subdivided into a 

grid of tiles. Each tile can hold multiple class labels simultaneously. Because of the image 

resolution, one can reasonably expect that the tiles convey intrinsic label relationships potentially 

useful to improve the classification accuracy if suitably exploited. Additionally, it is also to expect 

that in tile-wise classification adjacent tiles are likely to have similar labels. Starting from these 

considerations, we propose a new multilabel classification method which can embed the output 

Table 5.9. Sensitivity (SENS), specificity (SPEC) and average (AVG) accuracies in percent obtained by the different 

classification methods on datasets 1and 2. Average Hamming distances are also reported. 

 

 Dataset 1 (Civezzano) Dataset 2 (Munich) 

Accuracy (%) Accuracy (%) 

METHOD SPEC SENS AVG Hamming SPEC SENS AVG Hamming 

SVM 88.20 73.04 80.62 3.59 79.17 64.50 71.83 5.43 

SSVM 78.18 89.47 83.82 1.60 67.34 79.21 73.28 3.53 

SSSVM 76.69 91.57 84.12 1.35 61.74 85.82 73.78 2.67 

ML-CRF 93.59 71.71 82.65 1.15 91.64 55.76 73.70 1.94 

Full-ML-CRF 90.71 78.64 84.69 1.43 86.76 62.95 74.85 2.51 
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structure and spatial contiguity simultaneously. The output structure is embedded by using the 

conventional structural SVM learning. Then, we integrate a new term to encourage spatial 

smoothness in the optimization processes, handled as a natural extension of the standard SVM 

learning. In summary, the method can model the spatial contiguity as well as the output structure. 

The experimental results on two remotely sensed data sets demonstrate that our method 

significantly outperforms the conventional approaches. The major drawback of the proposed 

method is the computational cost since SSVM needs to solve linear programming problems for all 

samples in every step. To keep such cost contained, we reduced the number of training samples in 

the experiments. It is noteworthy that kernelization of the SSSVM model is possible using 

Woodbury matrix identity. Since it causes additional computations, it is however better to create 

discriminative features and adopt the linear kernel as we did in our experiments. 
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In this thesis, different analysis and detection methods have been investigated for 

extremely/very high spatial resolution (HER/VHR) imagery acquired by means of unmanned 

aerial vehicle acquisition technologies. This dissertation covered several major aspects and 

challenges characterizing the requirements of the processing and analysis techniques that are 

meant to deal with the powerful potential displayed by such EHR images. Indeed, EHR imagery 

contains a big amount of information details to be processed, which represent a double-edged 

means. In other words, in spite of the fact that increasing the quantity of information that represent 

the characteristics of a single/ list of objects that might appear in an image enriches the amount of 

discriminative features promoting a better detection, still it is rather hard to design a suitable model 

that is capable to discriminate between different classes of objects when taking into consideration 

the resulting large intrinsic-class variability. 

The scope of the thesis is mainly focused on scene description and analysis of extremely 

high-resolution images acquired over urban areas. Such complex scenarios are usually 

characterized by the simultaneous presence of several classes of objects in the scene. 

Consequently, we have addressed this issue by investigating several multilabel classification 

approaches. A key-contribution to be emphasized in this dissertation, is merging simultaneously 

both correlation between labels and spatial information (i.e., the likely high semantic content of 

the UAV-grabbed images and their spectral information) within i) a single decision process, ii) a 

conditional random fields framework. Furthermore, a UAV-imagery-based prototype for assisting 

avalanche search and rescue operations has been presented. In the following, we summarize the 

underlining highlights of the proposed strategies. For more details we forward the reader to the 

respective chapters. 

Chapter 2, (A Deep Learning Approach for Assisting Avalanche Search and Rescue 

Operations with UAV Imagery), addresses another interesting application, namely, supporting 

avalanche search and rescue operations to track and detect victims by means of UAV technology. 

Equipped with a digital camera, UAVs represent an efficient real-time system that provides an 

interesting solution to integrate to the traditional work performed by the rescue teams. Such 

solution enhances the chances of victims’ survival in emergency situations. In particular, UAVs 

are exploited to acquire EHR images of the avalanche debris fields. Afterwards, the acquired 

sequence of images are fed to a pre-trained CNN for feature extraction. The resulting features are 

classified using a linear SVM in order to detect objects of interest. Furthermore, we introduced (i) 

a pre-processing step to filter areas of interest from the video frames to decrease the processing 

time, and (ii) a post-processing step that exploits the correlation between the sequential frames 

output by means of hidden markov models to improve the classifier prediction performance. 

In Chapter 3, (Multilabel Deep Learning Strategies for UAV Imagery Description), we 

investigated the problem of describing UAV images by exploiting two deep learning methods. 

Basically, our aim was to detect multiple object classes at once using a tile-based coarse 

description strategy. The two proposed strategies start with subdividing the query grabbed UAV 

image into a set of equal tiles. Afterwards, we infer the list of present objects within each tile. As 

a matter of fact, traditional pixel-based and object-based approaches would hardly provide a 

satisfactory scene classification, since neither pixel-based strategies can describe the class 

http://www.thesaurus.com/browse/as%20a%20consequence


 Chapter VI. Conclusions 

99 
 

behavior while taking into consideration each pixel separately, nor the object-based strategies that 

they ignore the global semantic context of the described scene, especially when dealing with a 

multilabeling task, where several classes might appear simultaneously. Departing from this, we 

resort to two deep learning representation techniques for the tile representation strategy. In 

particular, the first strategy exploits the features of a deep pre-trained convolution neural networks 

(i.e., GoogLeNet architecture) for the feature extraction. Afterwards, we substitute the softmax 

classifier on top of the GoogLeNet with a Radial Basis Fuction Neural Network to suit the 

multilabel classification requirements. The second strategy, takes advantage of three opportune 

handcrafted feature descriptors (i.e., HoG, wavelets transform, and RGB channels BoW). 

Subsequently, for the scope of providing a compact, yet affective representation of the handcrafted 

extracted features, a nonlinear feature reduction step take place using an autoencoder network. The 

resulting features are fed to an MLP classifier. Furthermore, for both proposed strategies, we apply 

a refinement step to further improve the yielded results by including on top of the whole 

architectures a multilabeling layer, which consists in a set of customized thresholding operations 

for each class output. The second strategy has demonstrated a better behavior than the first one in 

terms of processing time while maintaining a similar accuracy rate. 

In Chapter 4, (Multilabel Conditional Random Field Classification for UAV Images), we 

reformulated the concept exposed in chapter 3, within a two stage tile-based structured prediction 

framework. In particular, we presented a novel multilabel conditional random field model that 

derives benefits from exploiting simultaneously label cross-correlation and spatial contextual 

information as a post-processing step to improve the initial classification predictions of the EHR 

UAV images. The proposed framework at the first stage generates initial predictions for each tile 

by means of an opportune classifier, after the subdivision of the query image into a set of equal 

tiles. At the second stage, the proposed multilabel CRF model is applied on the resulting map 

predictions in an iterative way to enhance the obtained outcomes. 

Chapter 5, (Spatial and Structured SVM for Multilabel Image Classification), puts forth a 

novel multilabel SVM-based classification framework for extremely high resolution imagery. Its 

underlying idea relies on exploiting two types of information i) the label-label correlations 

captured by the conventional structural SVM model, and (ii) the spatial contextual information 

derived from the considered EHR scene. In particular, after the subdivision of the original image 

into small tiles, where each tile is subject to hold multiple class labels, we incorporate the output 

structure of the Structured SVM together with the likely expected spatial contiguity between the 

adjacent tiles into a single cost function. This basically aims to increase (i) the spatial smoothness 

and (ii) the semantic homogeneity of the resulting structured output of the proposed tile-based 

classification framework. 

In overall terms, the proposed contributions provided in this thesis, have been concentrated 

on developing some novel detection and analysis methods to keep pace with the extremely high-

resolution imagery acquired by the modern and very fast growing UAV technology. The obtained 

results are generally very promising and open the door for potential ameliorations and future 

developments. In this regard, we put forward some aspects and open issues of the research that 

would be worth investigating further.  
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One of the main concerns in the proposed tile-based multilabel classification frameworks is 

the heterogeneous spatial size and spectral characteristics of the list of object classes that one aims 

at recognizing. Indeed, adopting the same paradigm to proceed with the recognition of different 

classes of objects that are alike in terms of their respectful feature characteristics and homogeneity 

increases the complexity of getting a satisfactory detection rate for all of them. In other words, the 

multilabel nature of the problem entails handling a multitude of objects that manifest various 

colors, shapes, illumination and scale changes. Indeed, despite the good overall results, the 

proposed methods have the drawback of poor detection rate for some classes. In particular, while 

they enhance the accuracies of some classes, they degrade others. This usually happens due to 

some main factors: i) dominant classes get a better accuracy at the expense of minor classes (i.e., 

the unbalanced numbers of present objects classes in the images which is the case of most 

datasets); ii) accuracy metrics exploited to measure the performance of the proposed methods (we 

focused on the average of sensitivity and specificity in our case) which is relative to the semantic 

importance of the targeted classes varying from an application to another iii) low cardinality of 

present labels in each image tile. Therefore, these raised points are very interesting issues to be 

further investigated in future works.  

As foresaid, it is a matter of fact that the detection of some classes of objects is harder than 

others, especially when using the same set of parameters, which are fixed in a way to compromise 

between all these diverse objects properties within the adopted classification paradigm. On this 

point, some potential solutions could be investigated. For instance, in all the presented 

classification frameworks we have limited the recognition process to RGB aerial imagery acquired 

by means of a digital camera (i.e., red, green, and blue bands). However, the usage of different 

multispectral sensors would enhance the capability to capture in a better way the characteristics of 

the different objet classes and thus to extract better discriminative features. For instance, the 

presence of shadows represents an obstacle when using only color information. To overcome this 

problem, the integration of light detection and ranging (LiDAR) data would significantly lessen 

the impact of shadows on the interpretability of the acquired images. Moreover, RGB data alone 

fails to distinguish between object classes that share similar texture and colors, such as Asphalted 

Roofs and Asphalted Roads or different types of vegetation i.e., Grass, Low-Vegetation and Trees. 

However, thanks to the capability of LiDAR and multispectral data to estimate the elevation of the 

targeted objects, the distinction between such classes becomes easier. The same way goes for 

thermal sensors, which have proven to be very efficient in persons’ detection in both urban 

scenarios and avalanche search and rescue operations. 

Furthermore, on what concerns the propsed multilabel tile-based methods, instead of using 

fixed tile sizes, one could consider using several tile sizes adapted to the shape of each class of the 

predefined list of objects. For instance, one could exploit different sizes each time in the 

subdivision of the image into a set of equal tiles. Afterwards, an ensemble of the multilabel 

classification methods are trained on each set of tile size. The final step to take is to exploit an 

appropriate method to fuse the resulting posterior classification probabilities by penalizing the 

classification errors, for instance, the Ordered Weighted Averaging (IOWA) method [1]. The same 

concept could be used to couple relevant state-of-the-art methods i.e., tile representation, spatial 

correlation, and multilabel classifiers in order to consolidate the framework capability of handling 



 Chapter VI. Conclusions 

101 
 

different aspects of the objects properties. We believe that such improvements are reasonably 

expected to further enhance the classification performance. 

Another subject of future developments, yet very pivotal concerning the deep learning 

techniques (i.e., CNNs) in multilabeling classification. As a matter of fact, the existing CNN 

architectures are not intrinsically developed to handle either multilabeling tasks nor to perform 

contextual decisions. However, they need to be adapted for instance by changing the structure of 

the top layer [2] [3] [4]. Therefore, the most adequate way to make a full advantage of them would 

be to intervene on their cost functions to satisfy the aforesaid concern.  

Ultimately, in remote sensing applications, the acquired data are subject to data shift 

problems due to the various changes of the surveyed geographical areas, atmospheric conditions, 

and the quality of the exploited sensors. Therefore, investigating some domain adaptation 

techniques such as transfer learning is worth addressing in order to adapt the proposed image 

description and analysis methods to operate on different data topologies. In particular, a very 

promising direction to adopt is to make use of the generative adversarial networks [5], which are 

an instance of generative probabilistic models. They are exploited to generate samples from a 

source data (i.e., training) without explicitly defining its density distribution. Generative 

adversarial networks have been proven effective in diverse unsupervised learning tasks such as 

image inpainting [6], text /image-to-image translation [7] [8], image super resolution [9], 

clustering [10], and domain adaptation [11][12][13]. The underlying idea of GANs is to set up an 

adversarial game between two models (i.e., generative and discriminative) iteratively. In 

particular, at one hand, the generative model is trained to fool the discriminator model by 

generating new samples that are intended to be derived from the distribution of the training data. 

At the other hand, the discriminative model tries to divide these generated samples into two classes 

(i.e., fake and real) in order to authenticate weather they belong to the same distribution of the 

training data or not. The final goal of the generative model is to be able to create samples that are 

indistinguishable from the real ones. Moreover, GANs can also be exploited for classification tasks 

[14][15], yet such technique favors the scenarios in which the target labels are binary. Indeed, the 

basic GANs has a single discriminator and generator models, however, we believe that adapting 

GANs framework to mutli-label/class tasks is very promising. For instance, instead of restricting 

the GANs framework to a single discriminator with two classes output (i.e., real and fake) and a 

single generator, one could think of adding for each object class a discriminator with a real and 

fake version together with a generator to distinguish between each class distribution. 
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