
2

INTELLIGENTMANUFACTURING
Engaging Industry 4.0 Challenges through Emerging Technologies

2014 / 2017 — XXX Cycle

Dept. Industrial Engineering

School of Materials,
Mechatronics and
Systems Engineering

Advisor: PAOLO BOSETTI

MATTEO RAGNI

Br
ow
n
&
Sh
ar
pe

M
fg
.C
o.
(P
ub
lic
Do
m
ai
n)

1

Obviously for you, Laura

A lot of people should be thanked for the work presented in this thesis, and for
the help they provided me. I want to start with my family, because without them
such a result would have been simply impossible. I want to thanks Paolo Bosetti, a
great advisor and teacher for my PhD journey, Francesco Biral and Enrico Bertolazzi
for their support, suggestions and the always useful discussions. Amedeo, Matteo,
Luca, Mirko, Andrea 1 and 2, Mattia, Sultan, Roberto, Alessandro and Silvia: you
guys are the greatest minds I have ever met, and I’m very lucky for having shared
this adventure with you. During my period abroad I’ve had the opportunity to
explore some research path that kept alive my interest day and night, thanks to the
suggestions of David Windridge and the company of Franco, Giuseppe, Lorenzo,
Elisabetta and Michele. A special thanks to Amedeo, who has written all the source
code of Artool, that is in this thesis, and a special thanks also to Matteo Cocetti, for
his time, his consideration, his thoughtfulness, and his guidance.

Contents

1 Introduction 1

1.1 Intelligent Manufacturing: an Overview 1

1.2 Machining Economics and AR 4

1.2.1 Envisioning AR Technologies 4

1.2.2 A Framework for AR in Manufacturing 7

1.2.3 Optimization of Part Programs 9

1.3 Industry and AI . 13

1.4 The long journey . 15

2 The ARTool Framework 17

2.1 An Overview of the Platform 17

2.1.1 From Authors to Consumers: the Flow of Data 18

2.1.2 Operator device 19

2.1.3 The SCADA and per-machine server 22

2.2 Applications Showcase 23

2.2.1 Origin Debugger 23

2.2.2 Trajectory Inspector 24

2.2.3 Trajectory Simulator 25

2.2.4 ARTool Zero . 25

2.2.5 Maintenance Mode 26

i

ii CONTENTS

2.3 The AR Core of ARTool 27

2.3.1 ARSceneDetector Library Details 28

2.4 ARTool as input . 31

2.4.1 Client interface 34

2.5 Alignment Procedure . 36

2.5.1 Features description 36

2.5.2 Procedure . 38

3 Pre-processing Optimization 53

3.1 Optimal Control Formulation 53

3.1.1 Path Clusterization 54

3.1.2 Model of System Dynamics 55

3.1.3 Coordinate change 59

3.1.4 Formulation of the Optimal Control Problem . 61

3.2 Mr.CAS Description . 64

3.2.1 Software Architecture 64

3.2.2 Main Functionalities 68

4 Tests and Validations 73

4.1 ARSceneDetector benchmarking 73

4.1.1 Methodology . 74

4.1.2 Result Analysis 75

4.2 ARTool Zero Code Example 79

4.3 ARTool Usability Assessment 80

4.3.1 Tasks definition 82

4.3.2 Part program description 83

CONTENTS iii

4.3.3 Results . 84

4.4 Experimental Validation of OCP 86

4.4.1 Nodes resampling 87

4.4.2 Results . 89

4.5 Advanced Usage for Mr.CAS 99

4.5.1 Code Generation as C Library 99

4.5.2 Using the module as interface 103

4.5.3 ODE Solver with Taylor’s series 106

5 Deep Understanding 109

5.1 A brief introduction to Artificial Neural Nets 109

5.1.1 Algorithms as Functions 109

5.1.2 Topology of an ANN 110

5.1.3 Different Approaches to Learning 111

5.2 ANNs Applied to an Industrial Problem 113

5.2.1 ANNs and X-Ray Crystallography 113

5.2.2 The Convolution Layer 115

5.2.3 Generation of Examples 119

5.2.4 Inference Examples 122

5.3 A Matter of Representation 126

5.3.1 Representation and Transfer Learning 126

5.3.2 Good Representations 127

5.3.3 Autoencoders and Representation 128

5.3.4 Autoencoder Library 130

6 Conclusions 133

iv CONTENTS

1Introduction

The Industry 4.0 challenge is to exploit the synergy of different technologies
in order to achieve the results required by its specifications. This chapter
presents: (a) the state of the art in Augmented Reality applied to industrial
engineering and manufacturing machines, (b) insights on the implementa-
tion of optimal feed-rate interpolation for computer numerical control ma-
chine tools, (c) an application of knowledge-based techniques such as com-
puter algebra systems in the implementation of solvers for optimal control
problems, and (d) challenges in the application of artificial neural networks
to the massive amount of unlabeled data available in the industrial practice.
It is shown how these topics, wich may appear as distant one from each
other, play a central and correlated role in the Industry 4.0.

1.1 intelligent manufacturing: an overview

The industrial world is preparing itself, since 2011, for the fourth
industrial revolution. It was in the Hannover Messe that the term
Industry 4.0 was coined after an initial investigation from the German
Government.

Leaving aside the strong criticism arisen around the term revolution,
the strategic plan considers four main topics that empower the gen-
eral industrial hype around this topic.

Interoperability a strong emphasis is given to the evolution from

1

2 introduction

automated systems to cyber-physical systems that extend be-
yond the single machine, to embrace the whole plant, if not the
entire set of productive assets of a geographical region. Cyber-
physical systems operates on multiple levels: physical/mechan-
ical, software, and communication technologies that character-
ize them are deeply intertwined and expose to the external
world a series of behavior that reacts to a given context. When
the cyber-physical system embodiment of an industrial system
is extended way beyond the single machine, it is immediate to
raise the term interoperability as one of the critical and challeng-
ing aspect of such heterogeneous systems. Main research topics
focused on this aspect are Internet of Things (IoT), Industrial
IoT, and their interaction with Internet of People (IoP).

Information Transparency the new cyber-physical systems may be
formalized with the common paradigm of a perception—action
agent, where the perception is actually the constellation of sen-
sors typically employed in industrial contexts that produce a
massive amount of raw data, as a projection of the physical en-
vironment observable by the system. The representation of this
world is probably redundant, and one of the biggest challenge is
the aggregation of data in a more compact space, where higher-
value information (with respect to the context) are transparently
available to the system itself (to perform or select the subse-
quent action) or to the other agents that interacts with such sys-
tem.

Technical Assistance this topic tackles two main aspects of the in-
terface between systems and human operator; the first aspect
is strictly related with the information transparency topic, since
it interests the presentation of the data to the human agents
in a comprehensibly and contextualized form, to ease the de-
cision process or the information gathering tasks. As for the
second aspect, the technical assistance implies the capability of
the system in physically performing some particular tasks that

1.1 intelligent manufacturing: an overview 3

are currently fulfilled by human operators. Those operations
range from the critical, the unsafe, the unpleasant, and even the
exhausting, in order to relief humans.

Decentralized Decisions the fourth topic regards the autonomous
level of the cyber-physical system. While a single machine may
be considered autonomous in performing a very specific task
and capable of correct deviation from the requested operation
(Autonomous level A4 closed loops [3]), the approach is to make
the whole system capable of abstracting and deciding the strat-
egy to achieve a specific goal (Autonomous level A7 reasoning),
with the minimum waste of assets. The system may access
different abstraction layers of the perceived reality, in order to
tackle a particular problem.

Those aspects underline the stronger importance of software in the
industrial world, in particular in the form of optimization and intel-
ligent algorithms. There is no unique solution to the challenges that
are raised by the Industry 4.0 plan. Like tiles of a very big puzzle,
different methodologies should be employed in synergy, over exist-
ing hardware, to build the envisioned cyber-physical system. The
long term inspiration is to detach the human expertise from the shop
floors to obtain the from art to part paradigm, a result that is unfortu-
nately still far from being achieved.

The following chapters will present different approaches and tech-
nologies (augmented reality, optimal control, knowledge based sys-
tems, and machine learning algorithms) that have been explored in
order to tackle some of the four Industry 4.0 topics. The synergy of
the different technologies allows to synthesize a framework to tighten
the gap between human programmed machine and Computer Nu-
merical Control (CNC) machines.

4 introduction

1.2 machining economics and ar

The economics of machining operations considers different cost au-
thorities that should be minimized to achieve an efficient process. For
each machined product, the main factors to consider are [39, 53]:

• the cost of the effective machining operation, alongside with
maintenance and man-hours costs;

• the cost for preparing the machine, which comprises testing of
the part-program, fixing and aligning the blank material in the
working area, and mounting the tools and the cutters on tool
holders;

• the costs for loading the raw material and unloading the fin-
ished part;

• the cost of tooling.

One of the cost of strongest impact is related to maintenance and
inactivity that directly correlates time and machining costs. In case
of human operator involved in the process of loading and unloading
material—e.g. in case case of shop-floor with limited automation and
with small batches to be produced—optimizing the maintenance and
the alignments procedures permits to reduce dramatically the costs.

The application of AR technologies to manufacturing can boost the
efficiency [58], while reducing the error rate.

1.2.1 Envisioning AR Technologies

The manufacturing industry has always envisioned the application of
AR related technologies, and the strong interest is underlined in the
results of the survey conducted by the Deutsche Forschungszentrum
für Künstliche Intelligenz during the Hannover Messe of 2010. On a

1.2 machining economics and ar 5

total of 54 industrial rappresentative, 77.8 % have every intention of
deploying augmented solutions in their production lines [70].

In literature, Architecture is the first field that embraced the AR,
enlarging the Building Information Modeling schemes in order to ac-
comodate a data infrastructure for the Augmented Reality technolo-
gies [91].

Also the Cognitive Sciences inspected the application of AR tech-
nologies, evaluating the benefit from a cognitive workload point of
view [48, 73].

In general, the proofs-of-benefit for AR as alternative training meth-
od, described in Refs. [35, 67], make educational and informational
applications, such as augmented manuals and operators training, lit-
erally mainstream. In Ref. [59], the authors use a marker solution
to build interactive lectures on machinery handling for completely
inexperienced students, revealing once again the high acceptance of
the methodology, and allowing a faster comprehension of program-
ming caveats for complex paths [24]. Ref. [78] pushes towards the
integration of AR for training and expert systems to support decision
making for inexperienced operators.

The costs of integrating such a new technology in the process is not
an easy decision. Few studies started to develop decision supporting
tools ex-ante [31], for evaluating the effectiveness of the approach for
a specific manufacturing process. Both Product Design and Planning
(PDP) and Workplace Design and Planning (WDP) benefit from an
AR developing environment [63], that aid designers and engineers in
making better decision while designing new assembly lines. Lines
include AR interfaces [12, 19] that guide the operator in the execution
of a specific task — i.e. projecting welding spots on work-piece in [29].
The ergonomy of the technology is also evaluated in literature [87].

Refs. [48, 92] present first implementations of virtual assembly inter-
faces. Cameras are used to detect position of operator hands, that are
the Human Computer Interface (HCI) for the augmented renderer.

6 introduction

Systems are desktop static prototypes, but usability is validated with
respect to non-augmented real-case-scenario. Evidence of cognitive
workload reduction for the operator are underlined, as also reduced
time to complete tasks and reduced mean error rate.

For what concerns application on process machines, the manipula-
tors programming and collision avoidance is for sure the most pro-
lific field. And in fact the complex kinematic configurations during
a program execution results more intuitive—e.g. programming [32]
or visualizing [21, 33] end-effector pose and trajectory,—by the mean
of different user interface—e.g. mobile, projection on half silvered
glasses or head displays [51]. General survey can be found in Refs. [62,
60].

The applications of AR on machine tools are limited and may be
referred as proof-of-concept prototypes rather than proof-of-benefit
ones. In Ref. [77], an AR application is used to help operators during
manual alignment in a pipe manufacturing machine. In Ref. [58], AR
is used to develop a framework for dimensional validation of finished
parts. The framework is marker based, one reliable solution that guar-
antees enough precision for manufacturing applications. The work
also illustrates evidences of advantages, both economical and prac-
tical, induced by the use of AR applications in manufacturing. An-
other approach typically discussed in literature, is the use of super-
imposition of virtual image on work-space video recording for val-
idation of complex paths [95]. Virtual images contain augmented
information about the process, and are visualized through the use of
different device, such as stereo-projector [61] or mobile devices. In
general, the idea is to use the augmented visualization to give more
insight to the operators about the process, usually before perform-
ing the actual machining operation [99]. Other applications focused
on active maintenance, using OCR (Optical Character Recognition) in
combination with localization markers [57], but real benefits of such
implementations to users were not assessed. In Ref. [96], it is worth
noting the use of handheld devices, with respect to the typical static

1.2 machining economics and ar 7

desktop setups seen in previous works.

1.2.2 A Framework for AR in Manufacturing

Chapter 2 introduces a framework that exploits Virtual, Augmented
Reality and Optimal Control technologies to reduce unproductive
times. The platform reduces errors induced by operators during pro-
cedures such as alignments of blank material and in touch-probe pro-
gramming. In common practice, for avoiding collisions that may re-
sult in extended damages for both machine and work-piece, in-air test
are performed—i.e. a complete execution of the part program with a
constant safety offset between the tool and the raw material.

The Augmented Reality (AR) component of the framework, namely
ARTool, uses the reference systems stored inside the machine con-
troller to overlay a properly oriented simulation of the workpiece
blank, alongside with fixtures, and machine moving peripherals on
the scene of the working area captured by a camera. The simulation
reflects exactly what the machine is programmed to perform, thus in-
air test, which may require hours to be fully executed, is substituted
by an augmented simulation where time can be scaled. The operator
concentrates the attention only on the complicated passages, and ef-
fectively identify visually evident mistakes, in less time and with an
higher accuracy.

The augmented component of the framework is built to run on a per-
sonal device, and the considered device is a tablet, which is relatively
low-cost with respect to more exotic hardware—e.g. head-mounted
displays. With a tablet, the operator explores the simulated scene
from different perspectives. Moreover, the same framework can be
easily employed to enhance the maintenance operations on a ma-
chine, and inexperienced operators largely benefit from the usage of
augmented schematics and manuals.

8 introduction

An interesting application regards the automatic programming of
touch-probes. Modern machine tools implement specific code blocks
for touch-probes, based on the assumption that the operators already
have a rough knowledge about positions and orientations of fixed
workpieces in working space. At least, an approximate measure-
ment is required, and tolerance parameters for approaching must be
set. Some simulations can be seen on the CNC screen before execu-
tion, although no feedback is provided with respect to real objects
in workspace. Those procedures require time and experience, since
errors bring to catastrophic damages for machine, workpieces, and
touch-probes.

To employ ARTool in this context, the framework has been expanded
to become a complete input-output interface. Generation of part-
programs for touch-probes aims at reducing setup time related to
block form alignment. This application is extended to the measure-
ment of different geometric primitives, which are the basic blocks
for the identification of complex geometric features. Trajectory of
the probe is generated starting from the information collected by the
camera and the user input; the device is a mobile tablet, which allows
to project on camera feed the simulation of the generated listing and
send it to CNC for the actual execution.

To improve furthermore the performances, the generated trajectory
is optimizable with respect to machine dynamics. Performance of
machine tools depends on the algorithms that the Computer Numer-
ical Control (CNC) implements for calculating feed rate profiles. This
performance impacts both the accuracy of the tool movements (path
tracking), and the efficiency in terms of process time (or average tool
speed) [76].

1.2 machining economics and ar 9

1.2.3 Optimization of Part Programs

Modern CNC systems are based on acceleration/deceleration control be-
fore interpolation. This is a software implementation, where the feed
rate profiles (i.e. profiles of tangential speed) are generated before
executing the motion interpolation on individual machine tool axes.
Path tracking error for these CNC systems is theoretically limited by
the performance of axes drivers, provided that the feed rate profiles
are generated within the velocity, acceleration, and jerk feasibility lim-
its for each axis.

A relatively open issue, though, remains when considering the cor-
nering performance. Any sharp corner along the tool path represents
a point of discontinuity in the velocity vector, so that the only physi-
cally feasible trajectory along the tool path must get to a full stop in
the corners. For tool paths made by a succession of short segments,
though, this approach greatly reduces the average feed rate compared
to its nominal (or programmed) value.

This issue has been partially addressed by CNC manufacturers by
allowing the CNC programmer to relax the path-following tolerance
thus sacrificing the accuracy in favor of speed. It is the case of
G61 (exact path mode) and G64 (continuous mode) G-code instruc-
tions [76, 50], where the former requires an accurate positioning at
nodes by forcing a full stop, whether the latter enable higher aver-
age speed by allowing some limited tracking error during the accel-
eration/deceleration phases at the expense of tracking accuracy and
thanks to the look-ahead approach [76, 2].

It has been shown that these solutions provide non-optimal trajec-
tories both in terms of path tracking error, and in terms of minimum
time [72]. In fact, the calculation of the feed rate profile is performed
by assuming that the maximum allowed tangential acceleration is that
of the slowest axis, so that the part program can be executed with
comparable results whichever is the orientation of the workpiece to

10 introduction

be machined with respect to the machine tool axes—and this is by
definition, since the feed rate profiles are calculated before interpola-
tion.

Consequently, it is interesting to investigate the possibility to im-
prove the machine tool performance by designing more advanced al-
gorithms for feed rate profiling. Recent literature reports a number of
works in manufacturing and in robotics field, proposing algorithms
for motion interpolation of multiple axes aiming at improving time
efficiency and path tracking accuracy. A comprehensive literature
review on this subject has been proposed by Refs. [38, 28, 26, 27].
It is worth noting that most of the available literature deals with
minimum-time feedrate profiles generated for a pre-defined tool path
(i.e. admitting zero path tracking error). Clever solutions have also
been proposed on this matter [86, 74, 9, 28, 49, 1, 52, 72, 100] that
do not explicitly relate the path tracking accuracy to optimization param-
eters. In other words, the approach followed in these works is to
calculate the optimal velocity profile satisfying a given set of limits,
jerk included, assuming that the nominal tool path is the reference,
but without enabling the perspective user to explicitly set a limit or
constraint on the maximum allowable path tracking error, which is
actually what really matters from the product quality point-of-view.

Here a different approach is adopted: the whole trajectory is op-
timized, rather than the sole feed rate profile. This choice allows
to define a lateral tolerance on the tool path—which can be physi-
cally related to the workpiece design tolerance. On this basis, the for-
mulation of an optimal control problem (OCP) minimizing the time
and yet respecting constraints on maximum jerks and accelerations,
proved effective in comparison to the execution time for part pro-
grams run on standard CNCs.

After the preprocessing of the original part program it is possible
to generate an optimized code, made by a sequence of short straight
segments, whose track is a discretization of the optimized tool path,

1.2 machining economics and ar 11

and whose feed rate are set to copy the optimized speed profile. The
effectiveness of this approach is evaluated by comparing the cycle-
time and the acceleration profiles of a reference part program with
those of its optimized version.

The optimal control problem has been tackled with a numerical ap-
proach, by using the custom solver PINS. PINS is able to solve prob-
lems in the form:

Minimize Φ(x(a), x(b)) +
∫ b

a J(x(t), u(t), p, t)dt (1.1)

subject to: M(x(t), p, t)ẋ(t) = f(x(t), u(t), p, t), (1.2)

b(x(a), x(b), p) = 0 (1.3)

It has an interface in Ruby while the core solver is a C++ library.
Ruby [36] is a purely object-oriented scripting language designed in
the mid-1990s by Yukihiro Matsumoto, internationally standardized
since 2012 as ISO/IEC 30170.

With the advent of the Internet of Things, a compact version of the
Ruby interpreter called mRuby (eMbedded Ruby) [80] was published on
GitHub by Matsumoto, in 2014. The new interpreter is a lightweight
implementation, aimed at both low power devices and personal com-
puters, and complies with the standard [81]. mRuby has a completely
new API, and it is designed to be embedded in complex projects as a
front-end interface—for example, PINS uses mRuby for problem def-
inition.

The Ruby code-base exposes a large set of utilities in core and stan-
dard libraries, that can be furthermore expanded through third party
libraries, or gems. Among the large number of available gems, Ruby
still lacks an Automatic and Symbolic Differentiation (ASD) [83] en-
gine that handles basic computer algebra routines, compatible with
all different Ruby interpreters.

Nowadays Ruby is mainly known thanks to the web-oriented Rails

12 introduction

framework. Its expressiveness and elegance make it interesting for
use in the scientific and technical field. An ASD-capable gem would
prove a fundamental step in this direction, including the support for
flexible code generation for high-level software—for example, IPOPT
[90, 89].

Mr.CAS1 is a gem—i.e. a dinamically loadable Ruby library—imple-
mented in pure Ruby that supports symbolic differentiation (SD) and
fundamentals computer algebra operations [88]. The library aims
at supporting programmers in rapid prototyping of numerical al-
gorithms and in code generation, for different target languages. It
permits to implement mathematical models with a clean separation
between actual mathematical formulations and conditioning rules for
numerical instabilities, in order to support generation of code that is
more robust with respect to issues that can be introduced by specific
applications. As a long-term effort, it will become a complete open-
source CAS system for the standard Ruby language, but has been
specifically designed to become the main interface for PINS.

Other CAS libraries for Ruby are available:

Rucas [55], Symbolic [6] : milestone gems, yet at an early stage and
with discontinued development status. Both offer basic simpli-
fication routines, although they lack differentiation.

Symengine [20] : is a wrapper of the symengine C++ library. The back-
end library is very complete, but it is compatible only with the
vanilla C Ruby interpreter and has several dependencies. At best
of Author knowledge, the gem does not work with Ruby 2.x in-
terpreter, and cannot be employed in numerical code genera-
tion.

1Minimalistic Ruby Computer Algebra System

1.3 industry and ai 13

1.3 industry and ai

In the Industry 4.0 domain, the cyber-physical system perceives the
world through sensors that produce a massive amount of raw data in
which important semantic information are usually represented in a
distributed way—i.e. for each sensory information, multiple semantic
feature may be represented, while a single feature may be a represen-
tation of multiple possible sensorial input. One of the challenge is to
actually extract the high-profile information that represents orthog-
onal and factorized data. Chapter 5 discusses and underlines what
has been identified as a good research path to tackle the representation
problem, reviewing what is currently well know in the Deep Learning
field [40].

Probably everyone has heard at least once the words Deep Learning
in the last two years. Deep Learning is for sure one of the emerging
technology that is reshaping the future. A sort of revolution by itself,
this research field is remodeling completely how computers perceive
the world. Even if the basis for this technology must be searched
years before the Second World War, under the name of cybernetics in
1940s and connectionism in the 1980s, it is only in the last ten years
(2006 is also known as the year of the third wave) that the artificial neu-
ral networks have returned as one of the central topics for the scientific
community [47].

This resurgence is strictly related with the advances in numerical
mathematics (with the stochastic gradient descent), the application of
graphic accelerator (GPUs), and the reduction in digital storage prices.
The synergy between those elements has greatly amplified the com-
putational power of common workstations, allowing researcher a-
round the globe to finally train and test networks in a span of time
that is extremely convenient. What in 2005 required months, in 2017

can be trained in few minutes. Also, existing libraries allow to dis-
tribute the computational requirements over different machines [43].

14 introduction

Nevertheless, the storage technology has increased the possible di-
mensions for training dataset.

Some of the architecture proposed in this field, like others in the
Machine Learning Science, are able to partially disclose hidden struc-
tures in the data [7].

Looking at the recent literature, this problem is rarely been directly
addressed in the industrial world, even if such property is extensively
recognized and discussed in the application of machine learning tech-
niques to industrial problem. The literature mainly focuses at the
application of the machine learning science to a very limited task.

For example, Ref. [34] applies Sparse Linear + Discriminant Anal-
ysis to synchronous motor signals to categorize the status between
normal, abnormal, and faulty behavior, showing how the three cat-
egories can be made separable after some feature engineering. In
Ref. [97] the tool wear is forecast through a Random Decision For-
est, while comparing with a single layered fully connected neural
network. Even if the decision forest presented a better performance,
also in this case the feature engineering is a prominent task that is
manually handled. Ref. [82] applies clustering techniques to separate
the overcome of the laser cutting process subject to some parameters.
The clusters are then used to infer the optimal parameters to perform
a specific cut. In Ref. [85], the quality control variables for the pro-
duction of car body are analyzed in order to detect outliers. In this
particular case the feature space is not reduced, but used directly.
Ref. [25] uses Scale Invariant Transformations over images to identify
a reduced representation. Subsequently, the reduced representation
is used for classification of different powder types for additive man-
ufacturing.

This pattern is repeated across the literature, but the lack of auto-
matic knowledge retrieval is underlined strongly in Ref. [65], where
machine learning is applied to an agent with wider tasks to perform.
But it is in Ref. [37] that a deep network is employed to learn not only

1.4 the long journey 15

the classification algorithm, but also a better representation for input
data. In this particular case a Deep Belief Network is trained in a
unsupervised way in order to reduce the feature space. Then, the re-
duced space is fine tuned for classification, applying a classical back
propagation method. The network inspects input from accelerome-
ters to monitor the cutting state during machining. The architecture
of this last work refelcts some of the aspects discussed in Chapter 5.

1.4 the long journey

Industry 4.0 is a long journey that must be travelled with the help of
different enabling technologies that synergically cooperate in order to
achieve the different objectives proposed in the strategic plan.

The following chapters summarize one little step in the search of
this synergy. Methodologies that will appear as orthogonal and un-
correlated will be employed in an orchestrated manner, in particular
to facilitate the relation between milling machines in shop floor and
operators.

16 introduction

2The ARTool Framework

The chapter presents an overview of the ARTool platform, underlining the
assets that are included in the framework, describing different devices re-
quired for the information flow, and discussing implementations. A show-
case presents some of the demo applications designed to exhibit the promi-
nent capabilities of the framework.
The second part of the chapter gives details about the application of ARTool
as an input device for programming touch-probe movements. Procedures
are detailed with specific algorithms for part-program generation. Opera-
tors may select directly the geometries to identify and obtain on the fly a
simulation of the machine movements that can be inspected from different
point-of-view. Eventually, the generated probe trajectory is loaded in the
machine CNC for actual execution.

2.1 an overview of the platform

The ARTool Framework is conceived to support machine manufactur-
ers, technical offices, and machine operators in bringing augmented
reality information on the machine and in the production lines.

The main objective of the framework is the optimization of the ma-
chining processes by tackling two major shortfalls:

• reducing the unproductive time between production batches,
allowing the operators to quickly test the newer part-program

17

18 the artool framework

and to correct possible misalignment of blank material with re-
spect to to reference systems saved in numerical control;

• supporting the maintenance procedures through the introduc-
tion of augmented manuals that facilitate remote assistance and
technical support. Failure diagnosis can be improved highlight-
ing failing components directly on machine chassis.

2.1.1 From Authors to Consumers: the Flow of Data

The main source of information are the technical offices, that provide
tasks to shop-floor. Tasks data include:

• part-programs;

• fixtures list and fixture sequences;

• tooling information.

The technical office stores the authored data in SCADA (Supervisory
Control and Data Acquisition) servers: this permits the centralization
and distribution to data consumers.

The second authoring agent of the network is the machine manu-
facturer that through a Content Delivery Network (CDN) distributes
assets for augmented manuals that the different SCADA servers of
the different industries that acquired the machine download. The
SCADA server act as a gateway for delivering updated assets to lo-
cal machine and shop-floor operators. Optionally, manufacturers can
exploit the framework for marketing opportunities. Machine man-
ufacturers shall use the CDN also to deploy up-to-date versions of
machine manuals, run a web store for spare parts, and provide a
ticketing web interface to allow users to request advanced technical
support. In such a way, ARTool opens new communication channels
between users and vendors, and guarantees new marketing opportu-
nities for machine producers.

2.1 an overview of the platform 19

For both technical offices and machine manufacturers, tools for au-
thoring information are developed as plugins for commercially avail-
able Computer Aided Engineering (CAE) software [79, 66]. For tech-
nical offices, this means to expand the capabilities of common Com-
puter Aided Manufacturing software, while, for manufacturers, the
plugins are related to Computer Aided Design (CAD) and Product
Life-cycle Management (PLM) software.

The main information consumers are the machine tool and the op-
erator device. Both consumers fetch data from SCADA servers. The
computer numerical control (CNC) communicates using a client that
can be a software service, for newer machines, or an embedded com-
puter, for older machines. The client requires an implementation of
the proprietary communication protocol of the machine, while the
communication with the SCADA is performed through standard pro-
tocols. The client broadcasts to the SCADA server all relevant infor-
mation for diagnostic and simulation purposes, such as system states,
tools table, etc.

Machine operators carry a personal device that has the hardware
necessary to perform the ego-localization task—i.e. camera and iner-
tial sensors—that is the most prominent feature of the ARTool frame-
work. Currently, ARTool has been tested only on tablet devices,
which are relatively low-cost and reliable with respect to other so-
lutions.

2.1.2 Operator device

Operators are equipped with personal devices that have the mini-
mum hardware requirements to perform the ego-localization. The
current release of ARTool framework requires an high definition cam-
era for gathering the scene on which assets are overlaid, an inertial
measurement unit to filter the ego-localization state and a GPU for
rendering the virtual scene.

20 the artool framework

Figure 2.1: The ARTool flow of information, from technical offices and man-
ufacturer, to machines and operators

2.1 an overview of the platform 21

Figure 2.2: Screenshot of a very first prototype ARTool iPad app, showing
the setup-mode augmented reality view. In this case, marker distances are
measured. Camera images are localized in the working area: the application
shows a bulk, a trajectory and a tool oriented with machine reference frames
(From [MR11] with permissions)

Localization is performed through markers that characterize a scene
(see Section 2.3 for a description of scene in detail). Once a scene
is identified, a query to the SCADA server permits to populate the
camera feed with virtual assets.

The framework eases the presentation of different information, that
are contextualized with respect to a scene and a operation mode, or
scope. When the current scope is to setup a new process for a ma-
chine, the main assets considered are:

• blank material and possibly the fixing for the bulk;

• tool and optionally machine head;

• mechanical axes simulacra;

• coordinate systems and oriented trajectory;

• marker anchoring elements (see Section 2.4);

• auxiliary descriptive text.

When the intended scope is maintenance, the framework is designed
to stage:

22 the artool framework

• machine contextual information;

• masks over components of the machine;

• contextual manual web pages;

• geometric primitive shapes—e.g. arrows—that can be used to
draw operator attention.

The device selected as prototype is an Apple iPad 2 Air Tablet, with
iOS 9.3 operating system. The framework is a C++ library that exposes
Swift and Objective-C bindings. The rendering operation are handled
by the Apple Framework SceneKit [4].

2.1.3 The SCADA and per-machine server

The SCADA server is responsible for storage and distribution of aug-
mented assets. It also challenges machine clients for information nec-
essary to present simulation and localized elements:

• the current state of machine, that includes the current position
of axes, the active coordinate system, the loaded tool on the
spindle and the active part-program;

• part-program simulation hooks, that comes from the numeri-
cal control parser/interpolator. If this information is available,
ARTool shows the exact tool trajectory as interpolated by the
numerical controller. If this information is not actually avail-
able, the framework exposes a fallback interpolator, that will
generates trajectory with minimal differences;

• coordinate systems table and tool table. The tool table relates
the currently loaded tool with a solid model counterpart for ren-
dering. The reference systems table permits to project machine
simulacra within the AR view, alongside the correct origins;

2.2 applications showcase 23

• optionally, diagnostic information that guides inexperienced op-
erators in unusual situation and training.

In the experimental system, the server is a Ruby and C++ software
on a separated machine, with database composed by a sequence of
YAML files—i.e. a format that simplifies inspection and debugging. The
server provides a HTML5 web application for authoring, which exploits
the C++ component of ARTool framework for the creation of scenes
from static images.

2.2 applications showcase

The section presents a series of applications designed to exhibit the
prominent capabilities and features of the ARTool framework, leav-
ing aside the authoring tools for machine manufacturer and technical
offices.

2.2.1 Origin Debugger

The application visualizes the origins and the coordinate systems of
both markers and numerical controller. The machine client is con-
nected to the Heidenhain iTNC 530 of a Deckel Mori DMU-60T (5-
axis milling machine), and takes advantages of an FTP connection
for data exchange. From the FTP, the machine client downloads the
iTNC file that stores the reference table. The file is queried at constant
interval and parsed only if modification time changes.

The application permits to see selected origins of the table projected
on the screen, overlaid on the frame captured by the camera. Opera-
tors can inspect the scene from different orientations. The application
shows also distances between origins for debugging (see Fig. 2.3).

24 the artool framework

Figure 2.3: The Origin Debugger application: on the left, the visualization of
the reference frame obtained from the machine client, while on the right a
measurement between different origin is performed

2.2.2 Trajectory Inspector

The application is built upon the capabilities of the previous applica-
tion. The machine client queries the controller for the currently active
part-program and download it through the FTP connection, along-
side with origin and tool table.

The tool table is parsed, and the name is used as identifier for the
digital model to render, distributed through SCADA server. Since
there is no communication channel for the numerical interpolator of
this particular machine, it is the fallback ARTool interpolator that
parses the part-program source file and generates the tool trajectory
for the simulations.

Simulations are projected in a virtual environment that can be nav-
igated, exactly like a common CAE environment. It is also possi-
ble to fix the virtual environment through a marker and explore the
simulation by moving and reorienting the tablet, as depicted in the
screenshot of Fig. 2.4.

2.2 applications showcase 25

Figure 2.4: The Trajectory Inspector: operator can navigate the virtual envi-
roment or fix it through a marker

2.2.3 Trajectory Simulator

This application acts exactly like the Trajectory Inspector, and uses
machine client and SCADA server to collect data and generate a vir-
tually simulated environment that, in this case, is projected upon the
camera feed. Operators can inspect directly the simulation in the
working area, against real objects, the result of the interpolated trajec-
tory and intercept collisions, programming errors, and misalignments
(see Fig. 2.5).

2.2.4 ARTool Zero

ARTool Zero is the concept of an Augmented Reality application that
allows operator to select directly some geometric features as reference
through the touch-probe of a machine tool. Leveraging the input ca-
pabilities described in Section 2.4, the approximated feature informa-
tion input through the augmented interface is transformed on-the-fly
in a part-program that allows the touch-probe to precisely identify
the geometry.

26 the artool framework

Figure 2.5: The Trajectory Simulator: operator can inspect the trajectory that
is performed by the virtual tool, super-imposed on the working area

2.2.5 Maintenance Mode

The maintenance mode is at an early developing stage. The applica-
tion requires a series of marker installed in the different parts of the
machine to allow contextualized information gathering. In this case,
the placement of assets on the screen does not require the same accu-
racy as in simulation, and a single marker covers quite a big area of
the machine.

Figure 2.6: Maintenance Mode: a failed component highlighted

2.3 the ar core of artool 27

If a component fails the diagnostic, it is highlighted (see Fig. 2.6)
and it is made evident to the operators. At the same time, an op-
erator recall the manual page of a particular component by framing
and taping it on the screen (using the input capabilities described in
Section 2.4).

2.3 the ar core of ARTool

One of the critical requirements for an augmented application is a
reliable and precise localization of the device with respect to the scene
observed. The library ARSceneDetector is the software component that
fulfill this task.

During the early development stage, the ARTool framework included
the open source libray ARUCO, currently distributed with the OpenCV
suite [16]. ARUCO is a localization library which takes advangtage of
the presence of structured markers in scene for reconstruction. ARU-

CO was chosen after a comparison with the ArtoolKit platform [54]: it
provided a better responsiveness at the cost of a lower accuracy, on
the prototype device.

In a later development stage, in order to tackle the accuracy issues
and to get a more stable and reliable localization through sensor
fusion, the designed-from-scratch ARSceneDetector library has been
introduced as core component of the ARTool framework. The li-
brary is strongly device-dependent (ARM-processor) and uses spe-
cific hardware instructions to speed-up its performances. This allows
to squeeze the computational power of the device, attaining a precise
and yet responsive placement of virtual assets on the framed scene.
The next section describes the internal logical structure of ARSceneDe-

tector.

28 the artool framework

2.3.1 ARSceneDetector Library Details

The ARSceneDetector library is logically divided in three different lay-
ers, from perception to scene rendering.

• The Sensor Acquisition and information gathering layer is writ-
ten in Swift language. This is required by the platform and uses
the current operating system API.

• The Marker Handler layer is written in C++ and is linked to the
OpenCV library. This layer handles the identification of the
marker in the scene, the inter-frame tracking and the image sta-
bilization.

• The very last layer is the Scene Detector, a classifier that extracts
more information based upon the relative position of the marker
in the scene.

The three layers are presented in Fig. 2.7.

As with other computer vision algorithms, ARSceneDetector requires
a calibration of the camera [42] which results in a camera matrix.
Light parameters and thresholds are automatically evaluated through
normalization procedures: each frame is enhanced and the edge de-
tection is extracted from the frame in GPU.

Using the internal camera of the prototype device, it is possible to
collect frame with 720p and 1080p resolution. The bigger the frame,
the lower the update frequency guaranteed for the localization—i.e.
120 Hz and 30 Hz respectively.

Beside the camera frame, accelerations and angular ratios of the de-
vice are measured by the on-board IMU sensor. This information
permits to stabilize the rendered scene [11]. The combination of the
frame and IMU data are passed through the bridge Swift/C++ and
enters the marker handler layer, as Scene container.

2.3 the ar core of artool 29

Figure 2.7: Library structure. ARSD stands for ARSceneDetector. In gray,
plugins that are disabled during benchmark

30 the artool framework

The Marker Detector is the implementation of a classical one-frame-
at-the-time algorithm which, for each camera frame, extracts convex
quadrilateral shapes as marker candidates. The candidates are then
reoriented and checked for squareness. The pose of each square ele-
ment is reconstructed using different well-known algorithms [56, 71].
The algorithms return a reference system that is oriented through an
asymmetrical pattern drawn on the marker itself. The pattern can be
a number encoded in a binary form—e.g. the ARUCO encoding—or a
image. The reference system is relative to the camera point-of-view
and has always the ẑ axis perpendicular to the marker surface.

The Tracker is an extension of the Detector algorithm that uses in-
formation of the previous frame to reduce the computational efforts
of the Detector, limiting the area in which quadrilateral are searched,
and lowering the frequency of whole-frame scanning (configurable,
but with a default value of 10 frame). It can be disabled. To improve
efficiency, Single Instruction Multiple Data (SIMD) instructions are
employed.

The IMU Stabilization filters the state of the device, fusing the signal
sampled by the IMU sensor.

The result of the Marker Handler is a General Scene Container, a
data structure with all the information about identified marker and
their position with respect to the device.

The very last layer of the library performs a classification of the Gen-
eral Scene Container. Using a combination of markers it is possible
to drastically improve the accuracy of the localization. The possible
scenes contain:

• a simple single marker;

• a board of co-planar markers, with parallel ẑ axes;

• a board of markers, with parallel ẑ axes, and known, non-zero
offset in ẑ direction;

2.4 artool as input 31

• a board of three markers with mutually orthogonal ẑ axes, with
known offset vectors;

• a solid cube of markers.

The SCADA server provides the list of scenes to be classified. The
Scene Detector matches the most similar one. Nevertheless, the li-
brary may enrich SCADA definitions: this particular feature is used
for marker chaining which allows to expand the rendering volume,
reaching area in which marker are not currently visible. Once the
scene has been classified and reconstructed, the General Scene Con-
tainer is shared with the render engine, that places the virtual models
in a virtual world that is aligned with the perceived one.

2.4 ARTool as input

The first version of ARTool ships an augmented output-only inter-
face for shop-floor user. Inputs come in as models localized in ma-
chine reference frame, prepared by machine manufacturers and tech-
nical personnel (e.g. CAD models, fixture elements, etc). With AR-
Tool Zero, capabilities of the framework are expanded to reach the
paradigm of input/output human-machine interface for CNC opera-
tors. The input allows to recognize points and geometric features in
space, without adding further exotic hardware to the tablet device.

A screen of a mobile device allows to capture a bi-dimensional in-
put. As already discussed, machine workspace is reconstructed via
markers. Each marker defines a virtual reference frame. The ẑ direction
is the marker normal. Considering Fig. 2.8, which shows the vir-
tual plane x̂× ŷ that contains the origin, it is possible to cast through
the camera matrix [42] a bi-dimensional screen coordinate to a tri-
dimensional point that lies on the virtual plane. In other words, the
2-D screen point is the projection along the line of view on the virtual
plane. Marker dimension is known, thus it is possible to perceive also

32 the artool framework

the world scale, and ascribe coordinates in metric units.

The procedure is explained in Fig. 2.8. Perspective projection ma-
trices are notation for reference systems. One reference frame with
index j, defined with respect to another frame with index i, namely
iTj, is composed by: (a) a rotational matrix iRj, which is 3× 3, where
each column represents orthogonal directions in space; (b) an origin
point in homogeneous coordinates, iOj, which is 4× 1 where the first
three elements are coordinates in space, and the last one represents an
homogeneous scaling factor, that is always considered 1; (c) a vector
of zeros 01×3: when iRj is concatenated with this vector, the notation
iTj is used.

iTj =

(
iRj

iOj1...3
01×3 1

)
=
(

iRj
iOj

)
(2.1)

The inverse transformation is:

(
iTj

)−1
=

((iRj
)> −

(iRj
)> iOj1...3

01×3 1

)
(2.2)

Each machine has an absolute coordinates system, known as machine
reference T0 ∈ R4×4. Mathematically, this reference is an identity
matrix I4. Commercial CNCs save transformation of coordinate from
the machine coordinate system in a reference table. A point pr ∈
R4×1, described in a reference at the index r of the table

(0Tr
)

is
reported internally in machine coordinate with the relation:

p0 = T0
0Tr pr = Tr pr (2.3)

The active reference, also known as part reference, which is the reference
currently selected on the CNC, allows to specify a part program with
coordinates relative to a position and an orientation of the part, which
is the reason why alignment procedures are fundamental.

An ARTool-ready machine has a fixed machine marker A that is asso-
ciated with a known coordinate transformation 0TA. The marker in

2.4 artool as input 33

0TA is used by ARTool library to ego-localize the mobile device. User
fixes further free markers—e.g. B—in working-area: ARTool closes the
chain between machine active reference and the marker reference, pass-
ing through the fixed marker reference:

rTB = rT0
0TA

ATB (2.4)

The procedure is also known as anchoring: it allows ARTool to save
the transformation between free and fixed marker, when both are
framed.

When the user taps the mobile screen, using the camera matrix CB

and the previous transformation, the 2D coordinates of the tap on the
screen ptap are transformed in the coordinates of a 3D point projected
on the plane of B, pB:

pB = CB ptap (2.5)

where pB · ẑ = 0. There is no need to keep both machine marker and free

Virt
ual p

lane

Artool Device

Figure 2.8: Using the mobile device as a 3D input system, through a mobile
marker

marker framed at all times: indeed, once the free marker is positioned

34 the artool framework

and anchored, it can be used as a machine marker. This allows to create
chains of anchored markers, extending the volume of view in which
it is possible to input a position, although the accuracy of the ego-
localization decreases exponentially at each chain hop.

The input procedure just depicted is enough to interpret basic ge-
ometric features and to perform alignments. The camera feed can-
not guarantee the precision required in manufacturing technology—
i.e. ARTool showed a repeatability in the order of ±1mm—, but the
perceived space is precise enough to maneuver an electronic touch-
probe, which collects more precise measurements. This entails that
a client with part program generation capabilities is connected to the
machine.

2.4.1 Client interface

The client software communicates with the computer CNC, expos-
ing the table reference frames, describing actual end-effector ma-
chine coordinates, and commanding the execution of preparatory
code. Unfortunately, each machine has a different part program fla-
vor (Siemens, Heidenhain, FANUC, FIDIA, etc.) and different touch-
probe preparatory blocks (Heidenhain, Renishaw, etc.), thus the client
must abstract an intermediate post processor: this approach is not dif-
ferent from what is currently done by commercial Computer Aided
Manufacturing (CAM) softwares.

For the sake of the argument, the following routines are assumed to
be abstracted for the communication between client and NC:

safe() the routine allows to bring the machine end effector in a safe
position. For a milling machine, it usually maximize the ẑ coor-
dinate in the machine reference.

goto(T, p) the routine performs an interpolated movement of the end
effector. Takes as input a reference frame T and an arrival point p

2.4 artool as input 35

that lays in the same reference; the procedure projects the arrival
point in the active reference and than executes a G01 preparatory
block, at maximum feed.

getFrame(i) the routines reads reference matrix with respect to ma-
chine reference, which stored at the index i in the reference ta-
ble. With no arguments, returns the active reference frame.

probe(T, p, α) commands the touch-probe to find a contact point on
the line that connects the actual position of the probe and the
point p specified in the reference T; the argument α commands
the retraction distance, which is the distance that must be trav-
eled back after contact, along the line that connects starting
point and contact point. The routines takes into account the
uncertainty that surrounds the contact point. This routines calls
a preparatory code that usually raises an error on the NC when
contact is not achieved.

align(T) aligns the ẑ of the end effector with ẑ of the argument
frame, using interpolated movements. Align always performs a
safe() before movements.

Each probe manufacturer defines a set of proprietary preparatory
codes that perform inspection of different geometric features. This
forces the implementation of a series of basic procedures that rely
on a single interface common to all manufacturers. From these basic
functions, complex procedures to perform alignment are derived.

Furthermore, the code generated by ARTool zero may also be opti-
mized, to minimize the dwell movements between consequent touches.
The optimization is actually a post-processing procedure and it is de-
scribed in Chapter 3.

36 the artool framework

2.5 alignment procedure

2.5.1 Features description

Operators use more than one feature to perform the alignment, and
these can differ in shape and size. For this reason, several paramet-
ric procedures are developed, which are able to measure primitive
entities, and are combined to estimate complex geometric features.

From a geometrical point of view the most interesting features to
define a coordinate system in space are:

• simple touch

• line

• plane normal

• inner and outer

• vertex

• sphere

A graphical example of the features is depicted in Fig. 2.9.

The simple contact is the very basic feature that represents a contact
between the touch-probe and the workpiece, while the probe moves
along a direction in space, in a predefined system of coordinates.
This procedure is a corner stone for all other routines, while being
fundamental for users during identification and alignment of free-
form geometries.

The line is identified by performing two simple contacts on one face of
the workpiece, and it is typical for 2.5D machines. From the joining
of the two touches it is easy to reckon slope of edges with respect to
an arbitrary system of coordinates.

2.5 alignment procedure 37

The plane normal is geometrically identified through three simple con-
tacts. This procedure is actually the combination of two edges.

Inner and outer circles are in many situations good alignment features,
and are associated with a plane normal that determines an origin off-
set, where the identified circle lays. For inner circles, origin is typically
placed on the aperture, while for the outer ones it is located on top of
the extruded material, to avoid collisions.

Corners are the most used feature in alignment for a prismatic work-
piece: edges can be aligned with machine axis, with three faces rep-
resenting the zero of each axis. The procedure to identify a corner
expects at least three simple contacts that define an origin of the coor-
dinate system.

The last feature is the sphere. In several cases this feature can be
useful in the identification of a space, while neglecting its orienta-
tion. The sphere center is identified by the solution of a minimization
problem.

corner

plane normal

sphere

line

simple contact

inner crf.

outer crf.

Figure 2.9: The different feature list on the model of a sample bulk, with all
the features described in this work

38 the artool framework

2.5.2 Procedure

When a feature marker appears in field of view of tablet camera, AR-
Tool Zero detects the type of feature, and project a localization mask
which is specific for that feature, on the marker reference frame. User
can translate, rotate and scale the mask to nearly fit the real feature.
Each mask is associated with a reference frame and a parameter σ

that represents the scale of the mask. The AR interface commands the
execution of a generated part-program, when user confirm the mask
position. Alignments are defined through procedures that enforce
robustness with respect to misalignments and and collisions. It must
be clear that ARTool Zero is an interface only, and even if procedure
definitions try to reduce mistakes and impacts, user has always to
check through the augmented simulation if probe can reach contact
points, while avoiding collisions. These procedure are constructed
with respect to the coordinate frame of the marker, where marker
normal is assumed to be on the ẑ axis.

Simple contact

The simple contact feature is the very basic one, and it is employed in
all other procedures, thus it has to be complete and versatile.

When user frames the marker related to simple contact procedure, a
mask shaped like a little circle is shown on display, that is associated
with a reference frame BTµ. It is only possible to translate the mask
on the plane x̂ × ŷ of the marker, thus the origin of the mask frame
has third component equal to zero.

Internally, the procedure, transforms the mask reference origin in a
contact point to be reached by touch-probe:

v = Tr
rTB

BOµ (2.6)

2.5 alignment procedure 39

that in Fig. 2.10 is the red dashed vector. The actual trajectory of the
probe is the vector v − w and the parameter δ specify the so called
retraction. The final position of the probe is:

p = (v− w)− δ
v− w
|v− w| (2.7)

The reconstructed reference frame, has the same orientation of the
active frame, and it is translated in the contact point v

rTk =
(

rR Trv
)

(2.8)

When δ is not specified, the probe is considered to retract in its ini-
tial position. There is no constraints on the input T, and internally
it is possible to set a combination of T and p that has an offset with
respect to marker plane. The procedure is described in the follow-
ing function. The returned frame is always with respect to machine
reference.

function simpleContact(T, p, δ)
const k . Constant number for last touched point
probe(T, p, δ)

return← getFrame(k)
end function

Line

Line feature is a peculiar case of alignments, mainly introduced for
2.5D machines, where the angle between one straight face of the
workpiece and a machine axis has to be compensated. There is a
contact of two points, in such a way they can approximate a line that
belongs to a face of the workpiece. The mask has the shape of a vec-

40 the artool framework

Probe initial position

Probe final position

Simple contact
 point

Figure 2.10: The simple contact procedure, with probe approaching and re-
tracting trajectory

tor. The origin of the mask reference frame is in the application point
of the vector. The contact procedure is shown in Fig. 2.11. The mask
should be approximately aligned on one edge-line of the face of the
workpiece, that is the actual feature to be reconstructed. Users move,
rotate and scale the mask in the x̂× ŷ plane. While the rotation spec-
ifies the orientation of the vector, the scale parameter σ specify the
length, adjustable through pinch-to-zoom. Points to be touched with
two simple contacts are:

v1 = Tr
rTB

BTµ(δ1 x̂)
v2 = Tr

rTB
BTµ(δ1 x̂ + σŷ)

(2.9)

where δ1 is a offset imposed for safety reasons that prevents the probe
from missing the workpiece. The δ2 offset sets the clearance between
the probe tip and the workpiece surface, that determines the two
dwell positions:

w1 = Tr
rTB

BTµ(δ1 x̂ + δ2ẑ)
w2 = Tr

rTB
BTµ(δ1 x̂ + σŷ + δ2ẑ)

(2.10)

Both parameters are modifiable through slider elements. The proce-
dure reaches point w1 and performs a simple contact in v1 with a

2.5 alignment procedure 41

complete retraction, then moves to w2 and performs a second simple
contact in v2. The reconstructed reference frame has x̂ axis along-
side touched points, ŷ axis is the skew symmetric of the normal of
the marker reference and the x̂. Last axis, ẑ is the skew symmetric
between x̂ and ŷ1. The sequence of operation are summarized in the
following function:

function lineContact(BTµ, σ, δ1, δ2)
for ξ ← [δ1 x̂ , δ1 x̂ + σŷ] do

goto(BTµ, ξ + δ2ẑ)
0Ti ← simpleContact(BTµ,ξ)

end for

x̂ ←
0O2 − 0O1

‖0O2 − 0O1‖
ŷ←

[
[µTB]1...4,3

]
×

x̂ . [·]× is the skew operator

ẑ← [x̂]× ŷ

return
(

x̂ ŷ ẑ 0O1

)
end function

Plane

To reconstruct a plane, the machine has to probe the workpiece three
times. User places a triangular mask, that may be re-oriented and
scaled (σ factor). The assigned reference frame is centered in the
centroid of the mask. The three points are in the corners of the mask,
and it is simple to reconstruct their position, in the mask reference

1The skew symmetric operator is defined as:

[v]× =


0 −v3 v2 0
v3 0 −v1 0
−v2 v1 0 0

0 0 0 1



42 the artool framework

Probe initial position
Probe final position

goto
simpleContact

Figure 2.11: The edge contact procedure: the mask is in full blue, while actual
contact points are in blue stroke and white fill

frame:

vµ,j = σ cos
(

2π j
3

)
x̂ + σ sin

(
2π j

3

)
ŷ j = 0, 1, 2 (2.11)

while the cleared positions are:

wµ,j = vµ,j + δẑ j = 0, 1, 2 (2.12)

with δ parameter for dwell clearance. The vector are not referred in
machine active reference: as before, it is possible to use the defined
functions to reach them in machine reference. Once the three points
have been reached, the reconstructed frame has origin:

b =
1
3

2

∑
k=0

vk (2.13)

The first orientations that are reconstructed are x̂ and ẑ. The proce-
dure can be configured to reach the secure position and to align the
probe to be orthogonal to the mask. While the procedure is sum-
marized in the following function, the sequence of movements is de-
picted in Fig. 2.12.

2.5 alignment procedure 43

function planeContact(BTµ, σ, δ)
align(BTµ) if align? . configured by user
goto(BTµ, δẑ)
for ξ ← [0, 1, 2] do

vi = σ cos
(

2πk
3

)
x̂ + σ sin

(
2πk

3

)
ŷ

goto(BTµ, vi + δẑ)
Ti← simpleContact(BTµ,vi)

end for
b← 1

3 ∑2
i=0 Oi

x̂ ← O0 − b
‖O0 − b‖

ẑ←
[

O1 − O0

‖O1 − O0‖

]
×

O2 − O1

‖O2 − O1‖
ŷ← [ẑ]× x̂

return
(

x̂ ŷ ẑ b
)

end function

Probe initial position

Probe final
position

goto
simpleContact

Figure 2.12: The plane contact procedure: the mask is in blue, and the first
contact point is highlighted with the filled circle

44 the artool framework

Inner and Outer circles

Circles are the feature in which AR interface shows its true expres-
siveness potential. Let’s consider the first case of a inner circle iden-
tification. There are two masks that are consecutively placed on the
workpiece surface: a plane normal mask and a circle mask that is spe-
cific for the procedure. The system engages the user in positioning a
plane normal mask, since it is necessary to evaluate a precise axis of
the circle in order to keep evaluation of circle consistent. Plane normal
mask has reference BTµ1

The inner circle mask is the slice of a full cylinder that superposes
graphically the convex hull of the probe reached space during touches.
The mask has orientation defined through two fingers gesture and it
is scaled through pinch-to-zoom. Other parameters are input through
sliders: the final angle for the sequence (π/12 ≤ δ1 ≤ 2π), the num-
ber of touches (δ2 ≥ 3), and the depth at which the actual touch will
be performed (δ3 > 0 mm). This depth is the height of the visualized
mask. The reference of the mask is BTµ2 that is centered along the
axis of the cylinder. With respect to this reference, the points to be
touched are:

vi = σ cos
(

i δ1

δ2

)
x̂ + σ sin

(
i δ1

δ2

)
ŷ− δ3ẑ i = 0, . . . , δ2 − 1 (2.14)

Before reaching the dwell position, that is in the center of the refer-
ence frame identified by the mask, the procedure forces an align(BTµ).

Points collected by the touch-probe fulfill the equation of a sphere,
that has center in q and radius ρ

(vi − q)> (vi − q) = ρ2 (2.15)

2.5 alignment procedure 45

It is possible to manipulate Eq. 2.15 to the following expression:v>0 v0

. . .
vδ2−1


︸ ︷︷ ︸

Φ

=

 2v>0 1
.

2v>δ2−1 1


︸ ︷︷ ︸

A

(
q

ρ2 − q>q

)
︸ ︷︷ ︸

Q

(2.16)

Unknowns are contained in Q. If A has full rank, the solution is
obtained through a left pseudo-inverse, that is the solution of the
associated minimum squares problem:

Q =
(

A>A
)−1

A>Φ (2.17)

To guarantee the existence of a solution with sample collected on the
same plane, the solution has to drop the ẑ component of the for-
mulation, that is useless in this particular case. The ẑ component is
inherited from the plane procedure. The modified minimization prob-
lem is identified by over-lined symbols (Φ, Q, A). Even if radius is
reconstructed, it is currently dropped, since the CNC interface does
expose a unified method for saving variables.

The returned reference frame has the same orientation of plane con-
tact, and the frame is centered at the opening of the inner circle. The
procedure can be summarized as follows:

function icContact(BTµ1 , BTµ2 , σ1, σ2, δ0, δ1, δ2, δ3)
align(BTµ2)
0Tz ← planeContact(BTµ1 , σ1, δ0)
goto(BTµ2 , δ0 ẑ)
goto(BTµ2 , 0)
for ξ ← [0, . . . , δ2 − 1] do

vi = σ cos
(

i δ1

δ2

)
x̂ + σ sin

(
i δ1

δ2

)
ŷ− δ3 ẑ

Ti ←
(0Tz

)−1
simpleContact(BTµ,vi)

46 the artool framework

end for
goto(BTµ2 , δ0 ẑ)

Φ← Φ
(

O0, . . . , O(δ2−1)

)
. see Eq. 2.17

A← A
(

O0, . . . , O(δ2−1)

)
[
q, ρ2 − q>q

]> ← (
A>A

)−1
A>Φ

return
(

0Rz
(
q x̂ + q ŷ + 0Oz ẑ

))
end function

Probe initial position

Figure 2.13: The inner circle procedure, over δ2 = 4 contact points. For clarity,
only the movements for the contact with the first point are reported

For outer circle, the second mask is a slice of a cave cylinder, that
represents the convex hull of the space reached by the touch-probe.
The inner radius of this mask should be on the later surface of the
geometric feature to be measured. With respect to the previous situa-
tion, a new parameter is necessary, that is the thickness of the cylinder
on the mask. The procedure details are not reported for the sake of
brevity, while the mask parameters are reported in Fig. 2.14.

2.5 alignment procedure 47

Figure 2.14: The outer circle procedure, over δ2 = 4 contact points. For
clarity, only the movements for the contact with the first point are reported.
The marker is positioned on the top of the feature

Corner

Corners are identified through three simple contacts for orthogonal
faces. The procedure shows mask that has a cubic shape. The cube
has one corner highlighted, that is the target corner. The mask refer-
ence is centered in selected corner. The reconstructed reference has
the origin in the locus of intersection of the three planes of the ac-
tive reference, which is the reason why this procedure has to be per-
formed after a plane and a line procedure, for use with general orien-
tation. Double tap on the mask changes the highlighted target corner.
This changes the approach sequence in the procedure.

The mask dimensions show the extremes at which the touch probe
will approach the material to perform contacts. The depth of cube
extends below the marker plane.

The procedure has two parameters: δ1 > 0 that is the dwell position
of the probe above the material in each direction, and δ2 ∈ [0, . . . , 3]
that represents the corner to be touched—i.e. the corner of the front
of the cubic mask. The effect of δ2 is to apply a rotation on all points

48 the artool framework

declared, of δ2π/4, as pictured in Fig. 2.15. The reference of the mask
has origin placed in the center of the corner selected.

y

x

v0
v1

v2
x

y

v0
v1

v2

y

x

v0v1

v2
x

y

v0 v1

v2

δ2 = 0δ2 = 1

δ2 = 2 δ2 = 3

π
4

Figure 2.15: The touching point schemes derived from parameter δ2, as a
discrete rotation around ẑ axis of π/4 steps, looking at the front face of the
cube mask

The procedure function is not reported for the sake of brevity. Fig.
2.16 reports the graphical representation of the procedure.

Sphere

The mask of the sphere procedure is a slice of an hemisphere. The
center of the hemisphere is identified through the minimum square
problem expressed in eq. 2.17.

The procedure has several parameters, that determines the grid of
contact points of the procedure. The resulting system of coordinate
inherits the same orientation of the currently active reference, while
the origin is the centre of the hemisphere.

The procedure has several parameter, shown in Fig. 2.18:

• the polar initial angle of the sphere: 0 < δ1 < π/2,

• the polar span of the sphere: 0 < δ2 < π/2− δ1,

2.5 alignment procedure 49

Probe final
position

Probe initial position

Figure 2.16: The complete sequence of movements for the corner contact
procedure

• the azimuthal initial angle: 0 < δ3 < 2π,

• the azimuthal span angle: 0 < δ4 < 2π − δ3,

• the subdivisions parameter: δ5 ≥ 0,

• the ẑ elevation of the hemisphere: δ6 ≥ 0,

• the dwell position for the probe: δ7 ≥ 0.

Using the maximum possible values for δ2 and δ4 the mask is a full
hemisphere.

There are two additional procedures used inside the sphere contact.
The first one evaluates the subdivisions for the angles to be reached,
as in Fig. 2.17. The latter is the moving strategy, that emulates a cir-
cular interpolation. The strategy uses simple goto calls, in such a way
the probe can move over the hemisphere surface without colliding.

function sphereContact(BTµ, σ, δ1, δ2, δ3, δ4, δ5, δ6, δ7)

50 the artool framework

0 1 2

δ3

. . .

. . .

δ5

(2 + δ5)
2

δ3 δ3 + δ4

δ1

δ1 + δ2

Figure 2.17: The subdivision scheme for sphere contact procedure. The sub-
division is used to create the moving strategy

align(BTµ)

for i, θi, ψi ← subdivision(δ1, δ2, δ3, δ4, δ5) do
vi ← σ (sin(θi) cos(ψi)x̂ + sin(θi) sin(ψi)ŷ + cos(θi)ẑ) + δ6ẑ
wi ← vi + δ7 (sin(θi) cos(ψi)x̂ + sin(θi) sin(ψi)ŷ + cos(θi)ẑ)
moveStrategy(wi)
Ti ← simpleContact(BTµ,vi)

end for
Φ← Φ

(
O0, . . . , O

(2+δ5)
2

)
. see Eq. 2.17

A← A
(

O0, . . . , O
(2+δ5)

2

)
[
q, ρ2 − q>q

]> ← (
A>A

)−1 A>Φ
0Tr ← getFrame()

return
(

0Rr (q, 1)>
)

end function

2.5 alignment procedure 51

Figure 2.18: The parameters for the sphere contact procedures

52 the artool framework

3Pre-processing Optimization

The chapter is divided in two sections. The first part presents the formula-
tion of the minimum time optimal control problem for the interpolation of
axes motion for a numerically controlled machine. The proposed solution
exploits a lateral tolerance to produce a trajectory that crosses an intersec-
tion point while pushing the machine to its dynamical limits, using the
constrained jerk as a control variable. The second part introduces Mr.CAS,
a computer algebra library aimed at rapid prototyping and code generation,
written in purely Ruby language.

3.1 optimal control formulation

The Section recalls the theory behind the optimal control and shows
how the optimized trajectory—i.e. the tool path together with the
speed profile—can be used for preprocessing an original part pro-
gram and generating a modified one, made by a sequence of short
straight segments, whose track is a discretization of the optimized
tool path, and whose feed rate are set to copy the optimized speed
profile. Even if previous Chapters presented the method as an opti-
mization for the dwell transfer between consequent touches in AR-
Tool, the approach is general enough to be used in different contexts.
In this theoretic introduction, the original notation is kept.

53

54 pre-processing optimization

3.1.1 Path Clusterization

Before diving into the optimal control formulation, the part program
must be parsed in order to be transformed in a nominal trajectory
that can be included in the optimization routines. The geometry of
the path is split in clusters of movements. The clustering approach
allows to split a long path made of thousands of position commands
in shorter sequences for which boundary conditions are known, with-
out exceeding the computational limits of the machine that executes
the optimization task.

The clusterization is performed following four heuristic rules.

1. A new cluster is initialized when a full-stop for all axes is re-
quired (e.g. switching from G00 to G01). This rule sets to zero
some of the boundary conditions of the problem.

2. A new cluster is initialized when a block defines a linear move-
ment that is long enough to reach the desired feed rate in nom-
inal conditions—i.e. the length of the segment is greater than
a critical length defined as l? = f 2

n /a?, where a? < amax is a
target acceleration / deceleration. A short movement is not long
enough to reach l?.

3. Collinear segments are squashed in the same cluster, unless one
of the previous rules apply.

4. Circular arcs and short movements join the subsequent path.

Since the tolerance is expressed as a distance along the orthogonal
direction with respect to nominal path, the final optimized path pass
through discontinuity points in order to simplify the evaluation of tol-
erances (i.e. avoid ambiguity and construction of particular tolerance
functions around discontinuity points, which may make the problem
infinite-dimensional).

3.1 optimal control formulation 55

3.1.2 Model of System Dynamics

Taking as a reference the sketch in Fig. 3.1, when s is the arc length,
or curvilinear abscissa, the nominal trajectory can be described as a
continuos function of s:

Pn(s) =

(
xn(s)
yn(s)

)
for 0 ≤ s ≤ L (3.1)

with piecewise continuos derivative. The derivative of the nominal
trajectory Pn(s) is discontinuous on a finite number of points, corre-
sponding to arc lengths 0 < s1 < s2 < · · · < sm−1 < L, where L is the
total cluster length and m is the number of blocks in the cluster. Being
‖P′n(s)‖ = 1, it is possible to define θn(s), the angle of the nominal
trajectory, as the angle that satisfies:

P′n(s) =

(
x′n(s)
y′n(s)

)
=

(
cos θn(s)
sin θn(s)

)
, (3.2)

whenever s 6= sk. Note that hereafter the prime notation is used for
space derivative, while the dot notation is used for the time deriva-
tive. The directions tangent and normal to the nominal trajectory are,
respectively:

T(θn) =

(
cos θn

sin θn

)
, N(θn) =

(
− sin θn

cos θn

)
. (3.3)

On the basis of the vector N(θn), and of the nominal trajectory Pn(s),
one can define a curvilinear coordinate system, where a point P has
the curvilinear coordinates (s, n) when P ≡ Pn(s) + nN(θn).

In this curvilinear coordinate system the tool center position can be

56 pre-processing optimization

Nominal path

X

Y

P n(s)

s

N

vn

vs

sk

✓

T

Figure 3.1: Local coordinate frame used for formulating the optimal control
problem
(From [MR3] with permissions)

described as:

P(t) = Pn(s) + nN(θn),

with s ≡ s(t)

and n ≡ n(t)

and θn ≡ θn(s(t)).

(3.4)

Notice that, in order of having an univocal definition for P(tk) and
due to the possible discontinuity in the derivative of nominal trajec-
tory at nodal points, the curvilinear coordinate n(t) must be 0 for
t = tk, where s(tk) = sk. This implies that the tool center position is
forced to cross the nominal trajectory at nodal points P(tk). Along
this path, the tool velocity V(t) = Ṗ(t) can thus be expressed as:

V(t) = T(θn)(1− nκ)ṡ + N(θn)ṅ, κ(s) = θ′n(s) (3.5)

where κ(s) is the curvature of the nominal trajectory.

The projections of the velocity vector in the local curvilinear refer-
ence frame, according to Fig. 3.1, can be thus expressed as:

vs(t) = V(t) · T(s) = (1− nκ)ṡ,

vn(t) = V(t) · N(s) = ṅ,
(3.6)

3.1 optimal control formulation 57

and the velocity vector itself can be rewritten as:

V(t) = T(θn)vs + N(θn)vn. (3.7)

Analogously, the acceleration A(t) = V̇(t) can be expressed as:

A(t) = T(θn)(v̇s − κvn ṡ) + N(θn)(v̇n + κvs ṡ), (3.8)

and using again the local projections in the curvilinear reference frame:

as(t) = A(t) · T(s) = v̇s − κvn ṡ,

an(t) = A(t) · N(s) = v̇n + κvs ṡ,

A(t) = T(θn)as + N(θn)an.

(3.9)

Finally, the jerk J(t) = Ȧ(t) can be expressed as:

J(t) = T(θn)(ȧs − κan ṡ) + N(θn)(ȧn + κas ṡ), (3.10)

and, by using again the local projections in the curvilinear reference
frame:

js(t) = J(t) · T(s) = ȧs − κvs ṡ,

jn(t) = J(t) · N(s) = ȧn + κvs ṡ,

J(t) = T(θn)js + N(θn)jn

(3.11)

By combining Eqs. 3.6, 3.9, and 3.11, one obtains the following sys-
tem of ordinary differential equations (ODE):

ṡ = vs/(1− κn), ṅ = vn,

v̇s = as + κvn ṡ, v̇n = an − κvs ṡ,

ȧs = js + κan ṡ, ȧn = jn − κas ṡ

(3.12)

whose solution represents the tool trajectory determined by the jerk
history.

58 pre-processing optimization

This ODE is valid wherever s(t) 6= sk, i.e. except for the disconti-
nuity points of the nominal trajectory. In correspondence with these
discontinuity points the actual trajectory P(t) must be continuous:

P(t−k) = P(t+k), V(t−k) = V(t+k), A(t−k) = A(t+k) (3.13)

where the superscripts + and − represent the quantities on the right
(i.e. after) and on the left (i.e. before) side of a node, respectively.

As a consequence of the continuity equations and of Eq. 3.4, and by
defining θ±k = θn(s(t±k)), it follows that:

Pn(sk) + n(t−k)N(θ−k) = Pn(sk) + n(t+k)N(θ+k), (3.14)

which, unless N(θ−k) = N(θ+k), implies that:

n(t−k) = n(t+k) = 0 (3.15)

i.e. that the tool center passes exactly through the node, as shown in
Fig. 3.1 (point sk).

From Eq. 3.7, the continuity condition implies that

vs(t+k) =T(θ+k) · T(θ−k)vs(t−k) + T(θ+k) · N(θ−k)vn(t−k)

vn(t+k) =N(θ+k) · T(θ−k)vs(t−k) + N(θ+k) · N(θ−k)vn(t−k)
(3.16)

The last pair of equations, by using the formulas

cos(a− b) = cos(a) cos(b) + sin(a) sin(b)

sin(a− b) = − cos(a) sin(b) + sin(a) cos(b)
(3.17)

and by defining ∆θk = θ+k − θ−k , can be finally expressed as:

vs(t+k) = vs(t−k) cos ∆θk + vn(t−k) sin ∆θk ,

vn(t+k) = vn(t−k) cos ∆θk − vs(t−k) sin ∆θk .
(3.18)

3.1 optimal control formulation 59

After analogous operations, from Eq. 3.9 one can obtain the corre-
sponding continuity equations for the two acceleration components:

as(t+k) = as(t−k) cos ∆θk + an(t−k) sin ∆θk ,

an(t+k) = an(t−k) cos ∆θk − as(t−k) sin ∆θk .
(3.19)

3.1.3 Coordinate change

The formulation of the tool center position above detailed cannot be
used for optimization purposes, for the time at which the tool reaches
the discontinuity points tk—i.e. the times at which s(tk) = sk—are not
known a priory. To overcome this issue, a coordinate change is here
introduced.

Lets consider a set of segments in the part program, for which the
initial and final conditions are known (typically known position at
zero speed). Let Lk be the length of the k-th segment of the nominal
tool path, and Tk the time spent for traveling from the beginning to
the end of this segment. Set also t0 = 0 and s(tm) = L, being tm = t f

the time at the very end of the set of segments, and m is the number
segments (being m − 1 the number of discontinuity points). With
these definitions, the coordinate ζ can be defined as:

ζ = ζ(t) = sk−1 + (t− tk−1)
Lk
Tk

, tk−1 ≤ t < tk, (3.20)

satisfying ζ(tk−1) = sk−1, and ζ(tk) = sk−1 + Lk = sk. By using ζ

as independent coordinate, the set of ODE in Eq. 3.12 becomes (for

60 pre-processing optimization

Lk

Tk

sk - 1
sk = sk - 1 + Lk

ζ(
t)

 =
 s

k
- 1

 +
 (

t -
 t k

 -
1)

 L k T k

⋯

ζ(tk-1)

ζ(tk)

ζ(tk+1)
⋯

t
⋯ tk-1 tk tk+1 ⋯

Figure 3.2: Coordinate change
(From [MR3] with permissions)

ζ ∈ (sk−1, sk)):

s′(ζ) =
(

Tk
Lk

)
vs(ζ)

1− n(ζ)κ(s(ζ))
,

n′(ζ) = (Tk/Lk) vn(ζ),

v′s(ζ) = (Tk/Lk) as(ζ) + κ(s(ζ)) vn(ζ) s′(ζ),

v′n(ζ) = (Tk/Lk) an(ζ)− κ(s(ζ)) vs(ζ) s′(ζ),

a′s(ζ) = (Tk/Lk) js(ζ) + κ(s(ζ)) an(ζ) s′(ζ),

a′n(ζ) = (Tk/Lk) jn(ζ)− κ(s(ζ)) as(ζ) s′(ζ)

(3.21)

where the prime operator indicates the first derivative with respect to
ζ. The last set of equations is completed with the initial (i.e. ζ = 0)
boundary conditions:

s(0) = 0, vs(0) = f−, as(0) = 0,

n(0) = 0, vn(0) = 0, an(0) = 0,
(3.22)

and with the final (i.e. ζ = L) boundary conditions:

s(L) = L, vs(L) = f+, as(L) = 0,

n(L) = 0, vn(L) = 0, an(L) = 0,
(3.23)

3.1 optimal control formulation 61

where f− and f+ are the feed rate at the beginning and at the end of
the set of segments—typically 0.

Finally, the interface conditions of Eqs. 3.15, 3.18, and 3.19—after the
change of coordinates defined in Eq. 3.20—become:

s(s+k) = s(s−k) = sk

ns(s+k) = ns(s−k) = 0

vs(s+k) = vs(s−k) cos ∆θk + vn(s−k) sin ∆θk ,

vn(s+k) = vn(s−k) cos ∆θk − vs(s−k) sin ∆θk ,

as(s+k) = as(s−k) cos ∆θk + an(s−k) sin ∆θk ,

an(s+k) = an(s−k) cos ∆θk − as(s−k) sin ∆θk .

(3.24)

3.1.4 Formulation of the Optimal Control Problem

Informally, the Optimal Control Problem (OCP) can be stated as fol-
lows: one wants to calculate the continuous trajectory:

P(t) = P(s(t), n(t)),

where
P(s, n) = Pn(s) + nN(θn(s)),

which approximates the nominal path Pn(s) given a prescribed track-
ing tolerance and by moving as close as possible to the nominal feed
rate f (s), which in turn is a piecewise constant function representing
the nominal feed rate for each positioning block in the part program.

Since the path tracking error, which is the distance between Pn(s) and
P(s, n), is |n| by definition, the trajectory P(t) must satisfy nmin ≤
n(t) ≤ nmax, where nmax ≥ 0 and nmin ≤ 0 are the maximum allowed
path tracking error on the left and right side of the tool path, re-
spectively, and where nmax− nmin > 0. It is also worth noting that, as

62 pre-processing optimization

suggested by the same figure, the width of the error band can assume
different values for each path segment, thus allowing fine-tuning of
local accuracy and overall time-efficiency.

The most natural definition for a target function to be used in the
trajectory planning problem is time minimization, i.e.:

Minimize:
∫ t f

0
1 dt = t f , (3.25)

subject to the constraint on the velocity norm

f (s(t)) =
√

vs(t)2 + vn(t)2,

which must not be larger than the nominal feed rate: f ∗(s(t)) ≥
f (s(t)). However, the numerical solution of the optimization problem
defined by this target function proved computationally expensive.

A different formulation that approximates the minimum time prob-
lem is the minimization of the distance between the actual feed rate,
f (s(t)) =

√
vs(t)2 + vn(t)2, and the nominal feed rate, f ∗(s(t)). A

scaled version of this distance is the following performance index:

Minimize:
∫ t f

0

(
f (s(t))
f ∗(s(t))

− 1

)2

dt. (3.26)

Finally, to avoid excessive oscillations above the nominal feed rate,
the actual feed rate must satisfy f (s(t)) ≤ fmax, where fmax ≥ f ∗(s)
is the maximum feed rate allowed.

The Optimal Control Problem, by using ζ coordinate, takes the form:

1. find positive parameters T1, T2, . . . , Tm and control history js(ζ),
jn(ζ) that minimize the performance index:

m

∑
k=1

(
Tk
Lk

) ∫ sk

sk−1

(
f (s(ζ))
f ∗(s(ζ))

− 1
)2

dζ, (3.27)

3.1 optimal control formulation 63

2. where vs(ζ) and vn(ζ) are the solutions of the ODE in Eq. 3.21

with boundary conditions of Eq. 3.22–3.23 and internal or inter-
face conditions of Eq. 3.24;

3. additional constraints on lateral position, velocity, acceleration,
and jerk are also included:

nmin ≤ n(ζ) ≤ nmax, vs(ζ)
2 + vn(ζ)

2 ≤ f 2
max,

|as(ζ)| ≤ as,max , |an(ζ)| ≤ an,max ,

|js(ζ)| ≤ js,max , |jn(ζ)| ≤ jn,max ,

(3.28)

Note that Eq. 3.28 limits acceleration and jerk within a rectangle in
(s, n) coordinate. It is also possible to limit their values within a circle
(i.e. so that they are limited in modulus):

as(ζ)
2 + an(ζ)

2 ≤ a2
max , js(ζ)2 + jn(ζ)2 ≤ j2max , (3.29)

or within a rectangle in (x, y):

|as(ζ) cos(θ)− an(ζ) sin θ| ≤ ax,max ,

|as(ζ) sin(θ) + an(ζ) cos θ| ≤ ay,max ,

|js(ζ) cos(θ)− jn(ζ) sin θ| ≤ jx,max ,

|js(ζ) sin(θ) + jn(ζ) cos θ| ≤ jy,max .

(3.30)

Other kind of constraints can be set depending on the characteristic
of the machine tool dynamics or on the purpose of the optimization.

It should be noted that the above formulation does not take into
account the convexity of the problem. In fact — altought for simpler
problems a proof of convexity can be provided with linear boundaries
conditions — the much higher complexity of this formulation makes
the same proof a formidable and still open issue. Nevertheless, the
implementation of this formulation solves the problem of reducing
the execution time of an existing part program, and it is still possi-
bile to check, after the execution of the optimization algorithm, the

64 pre-processing optimization

first and the second variation [17] with respect to solution in order
to verify whether the solution corresponds a minimum or not. The
analitycal form of such conditions are not provided here for the sake
of brevity.

Solution is obtained through the high-performance in-house imple-
mentation of an indirect solver for optimal control problems [10]
called PINS. Currently PINS employs as interface for problem def-
inition the proprietary Computer Algebra System (CAS) Maple, dis-
tributed by MapleSoft, while for parameters specification an instance
of mRuby is included in PINS binaries. Section 3.2 introduces the im-
plementation of an ad-hoc library in pure Ruby language, developed
specifically for code generation.

3.2 mr.cas description

3.2.1 Software Architecture

Mr.CAS is an object oriented ASD gem—i.e. a dinamically loadable
Ruby library—that supports computer algebra routines such as sim-
plifications and substitutions. When gem is loaded, it overloads meth-
ods of Fixnum (integers) and Float classes, making them compatible
with fundamental symbolic classes.

Each symbolic expression (or operation) is the instance of an object,
that inherits from a common virtual ancestor class: CAS::Op. An oper-
ation encapsulates sub-operations recursively, building a tree, that is
the mathematical equivalent of function composition:

(f ◦ g) (3.31)

When a new operation is created, it is appended to the tree. The
number of branches are determined by the parent container class of

3.2 mr.cas description 65

x0 + x1

x0 · x1 0

2 xy

z x− y

2 1

CAS::NaryOpCAS::BinaryOp

CAS::VariableCAS::Constant

Classes:

d
dz
(
z2 + 1

)
= 2 z(2−1) + 0

x0 ← 2 z(2−1)
x1 ← 0

x0 ← 2 x1 ← z(2−1)

x ← z y← (2− 1)

x ← 2 y← 1

Figure 3.3: Tree of the expression derived in Listing 3.1
(From [MR7] with permissions)

66 pre-processing optimization

the current symbolic function. There are three possible containers:

CAS::Op unary sub-tree operation—e.g. sin(·).

CAS::BinaryOp binary sub-tree operation—e.g. exponent xy—that in-
herits from CAS::Op.

CAS::NaryOp operation with arbitrary number of sub-tree—e.g. sum
x1 + · · ·+ xN—that inherits from CAS::Op.

Fig. 3.3 contains a graphical representation of an expression tree. The
different kind of containers allows to introduce some properties—
i.e. associativity and commutativity for sums and multiplications [22].
Each container exposes the sub-tree as instance attributes. Basic con-
tainers interfaces and inheritances are shown in Fig. 3.4. For a com-
plete overview of all classes and inheritance, see the software docu-
mentation.

The leaves of the graph are the classes CAS::Constant, CAS::Varia-

ble and CAS::Function. The former models a simple numerical value,
the second represents an independent variable, that can be used to
perform derivatives and evaluations, and the latter is a prototype for
implicit functions. Those classes support only real scalar expressions,
with definition of complex, vector, and matrix extensions as mile-
stones for the next major release.

The symbolic differentiation (CAS::Op#diff) explores the graph until
it reaches leaf nodes. A terminal node is the starting point for deriva-
tives accumulation, the mathematical equivalent of the chain rule:

(f ◦ g)′ =
(

f ′ ◦ g
)

g′ (3.32)

The recursion is also used for simplifications (CAS::Op#simplify), sub-
stitutions (CAS::Op#subs), evaluations (CAS::Op#call), and code genera-
tion.

3.2 mr.cas description 67

CAS::Op

x : CAS::Op

diff(CAS::Op) : CAS::Op
subs(Hash) : CAS::Op
call(Hash) : Numeric
simplify : CAS::Op

CAS::BinaryOp

x : CAS::Op
y : CAS::Op

CAS::NaryOp

x : Array

CAS::Sin

CAS::Log

...

CAS::Diff

CAS::Pow

...

CAS::Sum

CAS::Mul

...

Figure 3.4: Reduced version of classes interface and inheritance. The figure
depicts the basic abstract class CAS::Op, from which the single argument opera-
tions inherit. CAS::Op is also the ancestor for other kind of containers, namely
the CAS::BinaryOp and CAS::NaryOp, the models of container with two and more
arguments
(From [MR7] with permissions)

68 pre-processing optimization

3.2.2 Main Functionalities

Basic Functionalities

No additional dependencies are required and the gem can be installed
through the rubygems.org provider1. Gem functionalities are required
using the Kernel method: require ’Mr.CAS’, which exposes the mod-
ule CAS. The module contains all the methods and classes described
in this chapter.

Symbolic Differentiation (SD) is performed with respect to indepen-
dent variables (CAS::Variable) through forward accumulation, even
for implicit functions. The differentiation is done by the method
CAS::Op#diff, having a CAS::Variable as argument, as shown in List-
ing 3.1.

Listing 3.1: Differentiation example

z = CAS.vars ’z’ # creates a variable
f = z ** 2 + 1 # define a symbolic expression
f.diff(z) # derivative w.r.t. z
=> (((z)^((2 - 1)) * 2 * 1) + 0)
g = CAS.declare :g, f # creates implicit expression
g.diff(z) # derivative w.r.t. z
=> ((((z)^((2 - 1)) * 2 * 1) + 0) * Dg[0](((z)^(2) + 1)))

Automatic differentiation (AD) is included as a plugin and exploits
the properties of dual numbers to efficiently perform differentiation,
see [5] for further details. The AD strategy is useful in case of complex
expressions, where explicit derivative’s tree may exceed the call stack
depth.

Simplifications are not executed automatically after differentiation.
Each node of the tree knows rules for simplify itself, and rules are
called recursively, exactly like ASD. Simplifications that require a
heuristic expansion of the sub-graph—i.e. some trigonometric identi-

1gem install Mr.CAS

3.2 mr.cas description 69

ties—are not defined for now, but can be easily achieved through
substitutions, as shown in Listing 3.2.

Listing 3.2: Simplification example

x, y = CAS::vars ’x’, ’y’ # creates two variables
f = CAS.log(CAS.sin(y)) # symbolic expression
f.subs y => CAS.asin(CAS.exp(x)) # performs substitution
f.simplify # simplifies expression
=> x

The tree is numerically evaluated when the independent variables
values are provided in a feed dictionary. The graph is reduced recur-
sively to a single numeric value, as shown in Listing 3.3.

Listing 3.3: Tree evaluation example

x = CAS.vars ’x’ # creates a variable
f = x ** 2 + 1 # defines a symbolic expression
f.call x => 2 # evaluates for x = 2
=> 5.0

Symbolic expressions can be used to create comparative expressions,
that are stored in special container classes, modeled by the ancestor
CAS::Condition—for example, f (·) ≥ g(·). This allow the definition of
piecewise functions, in CAS::Piecewise. Internally, max(·) and min(·)
functions are declared as operations that inherits from CAS::Piecewise.
Usage is shown in Listing 3.4.

70 pre-processing optimization

Listing 3.4: Expressions and Piecewise functions

x, y = CAS.vars ’x’, ’y’
f = CAS.declare :f, x
g = CAS.declare :g, x, y
h = CAS.declare :h, y

f.greater_equal g
=> (f(x) >= g(x, y))
pw = CAS::Piecewise.new(f,

CAS::Piecewise.new(g, h, y.equal(0)),
x.greater(0))

=> ((x > 0) ? f(x) : ((y 0) ? g(x, y) : h(y)))
CAS::max f, g
=> ((f(x) >= g(x, y)) ? f(x) : g(x, y))

Meta-programming and Code-Generation

Mr.CAS is developed explicitly for metaprogramming and code gen-
eration. Expressions can be exported as source code or used as pro-
totypes for callable closures (the Proc object in Listing 3.5):

Listing 3.5: Graph evaluation example

x = CAS::vars ’x’ # creates a variable
f = CAS::log(CAS::sin(x)) # define a symbolic function

proc = f.as_proc # exports callable lambda
proc.call ’x’ => Math::PI/2
=> 0.0

Compiling a closure of a tree is like making its snapshot, thus any
further manipulation of the expression does not update the callable
object. This drawback is balanced by the faster execution time of a
Proc: when a graph needs only to be evaluated, transforming it in a clo-
sure reduces the execution time—for example, in a iterative algorithm,
where a closure is called at each iteration.

Code generation should be flexible enough to export expression
trees in a user’s target language. Generation methods for common

3.2 mr.cas description 71

languages are included in specific plugins. Users can furthermore
expand exporting capabilities by writing specific exportation rules,
overriding method for existing plugin, or designing their own ex-
porter, like the one shown in Listing 3.6:

Listing 3.6: Example of a Fortran code generation plugin

Rules definition for Fortran Language
module CAS
{
. . .
CAS::Variable => Proc.new { "#{name}" }
CAS::Sin => Proc.new { "sin(#{x.to_fortran})" },
. . .

}.each do |cls, prc|
cls.send(:define_method, :to_fortran, &prc)

end
end

Usage
x = CAS.vars ’x’
code = (CAS.sin(x)).to_fortran
=> sin(x)

72 pre-processing optimization

4Tests and Validations

The following chapter is completely dedicated to the validation of the work
presented in the previous chapters.
The ARTool core library is benchmarked with respect to the well known AR-

UCO library. An example of a part-program generated through ARTool Zero
is shown.
The usability of ARTool is assessed from three major perspective: timing,
error identification performances, and cognitive workload.
A trajectory is optimized through the application of the OCP. A sample
part-program for a milling machine is optimized. The timed outcomes with
respect to different tolerances are evaluated, proving a limited acceleration
and jerk with respect to the nominal path.
Finally, some advanced application of Mr.CAS are shown.

4.1 ARSceneDetector benchmarking

This section is dedicated to the comparison between the ARSceneDe-

tector and the ARUCO library, which is the first solution adopted by
ARTool, in the very early developing stages.

The test focuses on:

• computational time;

• reliability in marker identification;

73

74 tests and validations

• accuracy in ego-localization.

4.1.1 Methodology

For the localization, the ground-truth is provided by a professional
level Motion Capture System (MoCap OptiTrack, equipped with 8

Prime13 cameras running at 120 fps). For the localization test, a Mo-
Cap 3D reference is attached on the iPad that records a video of a
board of 4 ARUCO markers. At least one marker is always framed dur-
ing the video (see Fig. 4.1). The MoCap reference frame is placed on
the coordinate system of one of the corner of one of the marker—
i.e. the origin have a known offset.

Figure 4.1: A frame of the video used for bench-marking

The recorded video is then used to run a testing application with
both libraries in profiling mode. Setup parameters are fine tuned to
crunch the maximum performances without compromising too much
reliability, but some of the very advanced features of the ARSceneDetec-

tor—i.e. the GPU usage and the SIMD operations—are disabled for a
fairer comparison. This effects the real performances of ARSceneDetec-
tor, but allows to limit the comparison only on the algorithmic level,
rather than on differences in filtering and input data processing.

Since the signal length are different for MoCap and iPad, localiza-

4.1 arscenedetector benchmarking 75

Table 4.1: Comparison of speed (in frame per seconds) and reliability (per-
centage of frame identified with respect to total—21 599)

ARTool ARUCO

Speed 114.5 fps 94.3 fps
Reliability 98.9 % (21 380) 86.8 % (18 739)

tion data are synchronized minimizing the variance of positions with
respect to time. Given the signals:

• x0(t) the x coords returned by the MoCap at frame t

• xA(t) the x coords returned by the ARTool library at frame t

• xB(t) the x coords returned by the ARUCO library at frame t

the distance εx(t, δ) is evaluated as:

εx(t, δ) = 2x0(t)− ((xA(t + δ) + xB(t + δ)) (4.1)

while the variance σx(δ) with respect to the shift δ on the x signal is
obtained as:

σx(δ) = E [εx(t, δ)− E [εx(t, δ)]] (4.2)

consequently, the time-shift to be used for aligning the signals is the
result of:

δ∗ = arg
δ

min ∑
i={x,y,z}

σi(δ) (4.3)

Position signals are used because more reliable with respect to the
others.

4.1.2 Result Analysis

76 tests and validations

0

1

−0.5
0

0.5
1

0

0.5

1

400

401402

403

x(m)

z(m)

y(
m
)

ARUCO

ARTool
MoCap

400 401
402403

ARTool
ARUCO
MoCap

y
(m

)

−0.5

0

0.5

1.0

1.5

x (m)
−0.5 0 0.5 1.0

40
0

40
1

40
2

40
3

ARTool
ARUCO
MoCap

z
(m

)

0

0.5

1.0

x (m)
0 0.5 1.0

40
0

40
1

40
2 40

3

ARTool
ARUCO
MoCap

z
(m

)

−0.5

0

0.5

1.0

1.5

y (m)
−0.5 0 0.5 1.0

Figure 4.2: On top of the image the 3D representation of the trajectories in
the video. The reference frames of each marker are also reported. The spikes
in the ARUCO trajectory are due to missed identification of markers
(From [MR11] with permissions)

4.1 arscenedetector benchmarking 77

ARTool
Aruco

x
(m

)

−0.5

0

0.5

1.0

Δ
x (m

)

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Frame #
0 2000 4000 6000

ARTool
Aruco

α(
ra

d)

0

1

2

3

4

5

6

7
Δ
α (rad)

−0.4

−0.2

0

0.2

0.4

Frame #
0 2000 4000 6000

ARTool
Aruco

y
(m

)

−0.5

0

0.5

1.0

Δ
y (m

)

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Frame #
0 2000 4000 6000

ARTool
Aruco

β(
ra

d)

0

1

2

3

4

5

6

7

Δ
β (rad)

−0.4

−0.2

0

0.2

0.4

Frame #
0 2000 4000 6000

ARTool
Aruco

z
(m

)

−0.5

0

0.5

1.0

Δ
z (m

)

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Frame #
0 2000 4000 6000

ARTool
Aruco

γ(
m

)

0

1

2

3

4

5

6

7

Δ
γ (rad)

−0.4

−0.2

0

0.2

0.4

Frame #
0 2000 4000 6000

Figure 4.3: Ego-localization errors. On the left, there are position plot and
errors between marker libraries and MoCap. On the right Euler’s angles and
their errors are plotted. ARUCO fails the identification between frames 5672 and
5807 (vertical hatched band)
(From [MR11] with permissions)

The benchmark trajectory in space and its projection along the prin-
cipal direction is depicted in Fig. 4.2. The reference frames of the
markers are also presented.

ARUCO localization presents instability, and in different occasions it
is not able to reconstruct the pose of the markers. In particular,

78 tests and validations

ARTool
Aruco

Ev
en

t
Pr

ob
ab

ili
ty

 (
%

)

0

1

2

3

4

5

6

Δx (m)
−0.02 −0.01 0 0.01 0.02

ARTool
Aruco

Ev
en

t
Pr

ob
ab

ili
ty

 (
%

)

0

2

4

6

8

10

Δα(rad)
−0.2 −0.1 0 0.1 0.2

ARTool
Aruco

Ev
en

t
Pr

ob
ab

ili
ty

 (
%

)

0

2

4

6

8

10

12

14

Δy (m)
−0.02 −0.01 0 0.01 0.02

ARTool
Aruco

Ev
en

t
Pr

ob
ab

ili
ty

 (
%

)

0

2

4

6

8

10

12

Δβ(rad)
−0.2 −0.1 0 0.1 0.2

ARTool
Aruco

Ev
en

t
Pr

ob
ab

ili
ty

 (
%

)

0

50

100

150

200

250

Δz (m)
−0.02 −0.01 0 0.01 0.02

ARTool
Aruco

Ev
en

t
Pr

ob
ab

ili
ty

 (
%

)

0

2

4

6

8

10

12

Δγ(rad)
−0.2 −0.1 0 0.1 0.2

Figure 4.4: Ego-localization errors distribution. The left column contains
positions, while the right column contains Euler’s angle
(From [MR11] with permissions)

between the frame 5672 and 5807 it completely loses the tracking—
i.e. the spikes in figure. For further analysis, the ARUCO missing tra-
jectory is approximated linearly between the last known and the first
new localization. However this segment is the main cause of the dif-
ferences reported in Tab. 4.1, where it is noticeable the reliability of
ARSceneDetector, that almost never drops track of the marker, scoring
a quite high reliability index (98.9 %).

4.2 artool zero code example 79

Table 4.2: Statistical indicators for errors distribution (mean µ, standard de-
viation σ and kurtosis k)

ARTool

µ σ k

x (mm) −3.10 5.38 7.92
y (mm) 1.22 4.33 8.75
z (mm) 9.37 · 10−1 5.66 3.59
α (rad) 1.92 · 10−2 2.99 · 10−1 1.33 · 10−2

β (rad) −9.07 · 10−4 2.23 · 10−2 2.38
γ (rad) 2.13 · 10−2 3.84 · 10−1 1.52 · 10−2

ARUCO

µ σ k

x (mm) −6.04 2.93 · 101 7.58 · 101

y (mm) 4.05 2.05 · 101 5.85 · 101

z (mm) 4.72 8.20 5.67
α (rad) 4.07 · 10−2 3.09 · 10−1 1.09 · 102

β (rad) −4.20 · 10−3 5.17 · 10−2 4.75 · 101

γ (rad) 1.67 · 10−2 3.39 · 10−1 1.53 · 102

Fig. 4.3 shows a comparison of the three trajectory and the error
of the markers detected trajectories with respect to the MoCap one.
In Fig. 4.4, histograms report the probability distribution for errors.
For what concern positions, the error distribution of ARUCO tends to
be larger with a mode that diverges slightly from zero. Numerical
analysis is reported in Tab. 4.2. Regarding attitude estimation, the
performance can be considered comparable.

4.2 ARTool zero code example

The example presented in this section regards the identification of
a corner as an intersection of three orthogonal plane in space. This
is one of the very first features that an operator learns to identify.

80 tests and validations

The example is presented as a series of images that show the user
interface, the simulated sequence and the executed sequence. The
procedure contains a sequence of three simple contacts, as described
in Section 2.5.2

In Fig. 4.5, user overlaps the mask, in gray, over the geometrical
feature to be recognized, scaling its dimensions accordingly, to let
the part-program generator to derive the sequence of operations. The
simulated sequence is depicted in the left column of Fig. 4.6. Once the
simulation is completed, a dialog window engages the user, asking
to check the simulation further, to send the program to the machine
controller, or to completely abort the procedure. The result, in terms
of axis actual movements for the corner identification, is shown in the
right column of the same figure.

Figure 4.5: The mask for the corner is actually a cube, with a dot on the target
corner. The image is from an alpha version of the application, in which pinch-
to-zoom callback is not yet implemented, and scaling parameter is defined
manually in a configuration menu

4.3 ARTool usability assessment

To assess the advantages provided by such a new instrument to shop
floor operators, efficiency and impact on users workload has to be

4.3 artool usability assessment 81

Figure 4.6: The sequence on the left shows the simulated part program on
the display of the tablet: users can frame the scene from different directions
to check for collisions; on the right, the actually sequence of operations are
depicted. In each of the scene it is possible to see two markers: the feature
marker that generates the virtual plane, and the machine marker, whose posi-
tion is known with respect to machine reference frame. The feature marker
triggers the visualization of the corner mask, that is evident in simulation

Simulation Execution

82 tests and validations

investigated. This section deals with the examination of the cognitive
potentials of the proposed AR tool for part-program evaluation.

The main hypotheses here taken into account were:

Hypothesis 1 compared to the common inspection method through
in-air test of a new part-program (i.e. safe execution of part-
program at an offset above the workpiece along the tool axis),
the AR application reduces the number of errors in detecting
collisions and misalignments;

Hypothesis 2 compared to the common inspection method through
in-air test of a new part-program, the AR application reduces
the time needed for detecting collisions and misalignments;

Hypothesis 3 by using the AR application for detecting collisions,
the operative workload on user with respect to normal in-air
test inspection is reduced.

Hypothesis inference is made through experimental design, in which
24 participants aging from 18 to 25, mostly male [23], with instruction
level between B.Sc. and M.Sc. and with no deficits in spatial capabil-
ities, have to identify the position of any possible collision between
tool and other objects in the milling machine work area, while the
procedure time is recorded.

4.3.1 Tasks definition

The experimental task is to identify the position of collisions in a 5-
axis milling machine (Deckel Maho DMU 60-T), between a 10 mm
cylindrical milling cutter and any other object, including the work-
piece. The identification is divided in two distinct procedures, pro-
posed to participants according to a random sequence.

1. Identify the presence of evident collisions—e.g. at least 5 mm,

4.3 artool usability assessment 83

half tool diameter—through observation of in-air execution of
the part-program. Vertical offset is set to 50 mm. participant
can slow down, stop, or accelerate tool motion through the feed-
rate override command on machine tool controller. Inversion of
motion is not possible, but repetitions can be performed on re-
quest. The procedure is timed, and the participant is instructed
to try and perform it as quickly as possible. The time needed
for auxiliary machine operations—e.g. tool change and rapid
movements—is not recorded.

2. Identify presence of evident collisions by using an ARTool -
equipped iPad. Users can control position of the simulated
spindle head and tool using an on-screen slider. The application
also renders the finished part simulacrum and the complete tra-
jectory as a dotted trace. The user can freely move and orient
the device around the workpiece. Spatially, simulated bulk and
real bulk are overlapped. The procedure is timed, and has to be
performed as quickly as possible.

On completion of all the tasks, participants are asked to take a RAW
NASA TLX survey. The RAW test is a modified version in which user
evaluation is not scaled, and its use is suggested in the identification
of cognitive workload with respect to the standard scaled test, when
low physical workload is required [41].

4.3.2 Part program description

Three different part-program trajectories were proposed to partici-
pants during testing, and are described in Fig. 4.7:

1. is a correct execution with no errors;

2. there is a collision in corner D, along x̂ axis, simulating a wrong
definition for a variable in the part-program;

84 tests and validations

3. there is a collision through the whole trajectory, along ẑ axis,
simulating a wrong zero definition.

A collision may be located in one of the eight cardinal points of the
x̂ × ŷ plane, in any arbitrary direction. Part-programs are identical
on milling machine and on ARTool device, but those trajectories are
provided randomly to each participant, thus, in-air and AR trajectory
can be different.

test 3: z-offset error

test 1: no errortool

z
x

y

test 2: program error

10

5

Figure 4.7: Visualization of the three test part-programs. Test 1 is without
collisions, while test 2 contains a collision in x̂ direction, and test 3 collide
through the whole trajectory due to a ẑ shift
(From [MR11] with permissions)

4.3.3 Results

For what concerns the Hypothesis 1, test results are quite evident.
None of the participants made a complete correct collision forecast
with the simple observation of the in-air part-program. Conversely,
by using the ARTool device 22 participants correctly identified colli-
sions. This is an noteworthy result for users that are unexperienced
both in the use of AR and of machine tools.

4.3 artool usability assessment 85

For what concerns the Hypothesis 2, the times required for identi-
fication of collisions in both methods are comparable. In this case
it is not conceivable to reject the null hypothesis—t-test providing
a p-value of 0.9839. It must be noted that timing for in-air tests
only considers interpolated axes movement (G01/G02/G03), and not
for rapid ones (G00), nor tool-changing axes maneuvers.

RAW NASA TLX also gives some important results regarding target
self-evaluation. In fact, users were requested to answer the following
5 questions, with a score from 1 to 10:

• perceived mental demand,

• perceived temporal demand,

• required effort,

• perceived performance,

• frustration in performing the task.

0 2 4 6 8 10

Frustration
p0 = 0.0003

Performance
p0 = 0.0001

Effort
p0 = 0.0006

Temporal
Demand

p0 = 0.0021
Mental

Demand
p0 = 0.0044

2.9

7.3

3.7

3.2

4.5

5.4

4.4

6.1

4.9

6.4 in-air
AR

Figure 4.8: Mean scores for RAW NASA TLX test
(From [MR11] with permissions)

Each participant was required to answer the RAW NASA TLX test
both for the AR task and for the in-air execution task. Participants

86 tests and validations

perceived AR tasks simpler to perform from a cognitive workload
point-of-view. Also, frustration in performing is reduced, and per-
ceived time request is reduced. From a cognitive workload point-
of-view, this result shows an evident benefit from the introduction
of ARTool in manufacturing—at least for the case of unexperienced
users—increasing the self-confidence in the operation of the machine
tool. Users’ mean scores are reported for reference in Fig. 4.8.

4.4 experimental validation of ocp

∼0
.00

2 m
m

Nominal
Actual

Start

Y
 (

m
)

0

0.02

0.04

0.06

X (m)
−0.02 0 0.02 0.04 0.06

Figure 4.9: Test tool path. It consists in 17 straight segments and 3 circular
arcs. Detail shows the difference between nominal and actual toolpath, as
measured by the CNC oscilloscope
(From [MR7] with permissions)

Demonstrating the effectiveness of the approach described in the
previous section would require to bypass the CNC of a real machine
tool. Given that machine tools are rather complex and closed systems,

4.4 experimental validation of ocp 87

Authors decided to follow a different approach, yet opening some in-
teresting possibilities from a practical point of view. In short, the idea
is to start from a standard part program (as the one producing the
tool path reported in Fig. 4.9), calculate an optimized trajectory by
applying the OCP approach above described, and finally generate a
new part program, where the original segments have been replaced
with (typically much-) shorter segments that match the optimized
tool path, and have a nominal feed rate set to the optimal one. The
following subsections describe how this new part program can be
generated, and how its efficiency has been tested comparing both ex-
ecution time and motion smoothness when a modern CNC machine
tool runs the original and the optimized part program.

accelerometer

x

y

z

Figure 4.10: Experimental setup: the machine tool has X and Y axes on the
head, Z on the table; a triaxial capacitive accelerometer is mounted on the
moving head
(From [MR7] with permissions)

4.4.1 Nodes resampling

The solution of the OCP is stored as a sequence of points. The dis-
tance between consequent points is often smaller than the average

88 tests and validations

precision of an industrial machine tool (i.e. 5 µm). Before generating
the output part program, the set of points P has to be reduced. Re-
duction is performed by a post-processing script that takes as input
the OCP solution:

P = {P(t) : OCP solution for Pn(s)} (4.4)

and performs three steps of reduction:

1. minimum distance elimination;

2. completely aligned point elimination;

3. chordal distance elimination.

While implementation of the first step is trivial, the second and the
third steps rely on the idea of a circle that passes through three points.
Given a set of three non-coincident points P1, P2, P3, the center Pc

and the radius R of the circle are the solution of the problem:

(Pi,x − Pc,x)
2 +

(
Pi,y − Pc,y

)2
= R2,

{
i = 1 . . . 3

R ≥ 0
(4.5)

Solution exists and it is unique. If three points are aligned, R→ +∞.
This is the second elimination criterion.

Chordal distance is defined as distance between point P2 and inter-
section point Pζ . The position of the intersection point is given by
solution of:

(P3,x − P1,x)
(

Pζ,y − P1,y
)
=
(

P3,y − P1,y
) (

Pζ,x − P1,x
)

(P2,x − Pc,x)
(

Pζ,y − Pc,y
)
=
(

P2,y − Pc,y
) (

Pζ,x − Pc,x
) (4.6)

which can be formulated in matrix form as APζ = b, easy to solve
analytically. The existence of A−1 is ensured by problem hypothesis
(points not aligned). It should be clear now that we are using chordal
distance as an approximation of the curvature. If this curvature is

4.4 experimental validation of ocp 89

P

Pc
R

P1

P2

P3

Pζ

Figure 4.11: Circle through three points
(From [MR7] with permissions)

below a certain threshold then point P2 is eliminated, and P1 and P3

are considered aligned, as a third elimination criterion.

Description of other, more complex re-interpolation algorithms are
omitted for the sake of brevity.

4.4.2 Results

The machine tool used for testing is a Deckel-Maho DMU60-T with a
Heidenhain iTNC530 controller, schematically shown in Fig. 4.10. The
machine has a maximum feed rate of 20 m/min on the X and Y axes
and 10 m/min on the Z axis, though the latter was not moving during
the tests. A triaxial capacitive accelerometer was mounted on the
machine moveable head and used to record head accelerations with
a sample rate of 5 kHz. Finally, the on-board software oscilloscope
of the iTNC530 was used for recording time (with a sampling period
of 3.6 ms), instant position and acceleration of X and Y axes, actual
feed rate, and block number. part program were executed in-air (no
workpiece) and with non-rotating spindle, in order to only measure

90 tests and validations

accelerations produced by the two feed axes (X and Y).

The toolpath represented in Fig. 4.9 has beed encoded into an ISO
G-code part program, which has been pre-processed according to the
OCP problem and the nodes resampling procedure above described.
Constraints on the OCP have been set to the limits of the DMU60-T
machine, according to the identification reported in Ref. [13]. Several
combinations of optimization parameters and node reresampling pa-
rameters have been tested. Due to space restrictions, only the more in-
teresting cases are hereafter reported, and namely three combinations
of tool path tracking tolerance: 50 µm, 250 µm, and 500 µm). Eventu-
ally, the original part program and the pre-processed ones have been
executed on a CNC machine tool.

It is worth noting that the system here proposed is of special interest
for high speed movements, i.e. when the nominal feed rate is close
or equal to the machine limit, since under these conditions most of
the cycle time is spent in accelerating or decelerating the axes, and
a constant value of the actual feed rate is seldom maintained for the
larger part of each positioning block. For this reason, the tests were
performed at relatively high feed rates of 5, 15, and 20 m/min, the
latter corresponding to the machine limit.

Figure 4.12 compares the nominal tool path with the actual tool
paths recorded by the onboard oscilloscope for the three selected
tracking tolerances. Figure 4.13 shows how the actual tool paths com-
ply with selected tracking tolerance limits, with the notable exception
of some short overshoots in the case of the smaller tolerance, which
is related to the fact that the OCP solver implements the constraints
on tracking error as penalty functions.

It is evident that the optimized part program follows a smoother
trajectory that results in smaller accelerations, as can be noted by ob-
serving the acceleration components ax and ay reported in Fig. 4.15.
At the same time—and what really matters—the execution time is sig-
nificantly reduced as can be observed from data in Tab. 4.3, with gains

4.4 experimental validation of ocp 91

Nominal
0.05 mm
0.25 mm
0.5 mm

Y
 (

m
)

0

0.02

0.04

0.06

X (m)
−0.02 0 0.02 0.04 0.06

0.030

0.032

0.034

0.036

0.038

0.040

−0.010 −0.008

Figure 4.12: Nominal tool path (black) compared with the real tool paths
as reported by the on-board CNC oscilloscope with three different tracking
tolerances
(From [MR7] with permissions)

92 tests and validations

t=
0.

05
0

m
m

0

0.1

0.2

0.3

Tr
ac

ki
ng

 E
rr

or
 (

m
m

)
t=

0.
25

0
m

m

0

0.2

0.4

t=
0.

50
0

m
m

0

0.2

0.4

Normalized curvilinear abscissa (-)
0 0.5 1.0

Figure 4.13: Path tracking errors compared with OCP tracking tolerances
(From [MR7] with permissions)

4.4 experimental validation of ocp 93

OCP real

t=
0.

05
0

m
m

0
0.1
0.2
0.3

Fe
ed

-r
at

e
(m

/s
)

t=
0.

25
0

m
m

0
0.1
0.2
0.3

t=
0.

50
0

m
m

0
0.1
0.2
0.3

Normalized curvilinear abscissa (-)
0 0.5 1.0

Figure 4.14: Actual feed rate as measured by the oscilloscope compared with
OCP result, plotted against normalized nominal curvilinear abscissa for three
different tracking tolerances
(From [MR7] with permissions)

94 tests and validations

a y
 (

m
/s

2)

O
rig

in
al

−2

0

2

a y
 (

m
/s

2)

t
=

 0
.0

50
 m

m

−2

0

2

a y
 (

m
/s

2)

t
=

 0
.2

50
 m

m

−2

0

2

a y
 (

m
/s

2)

t
=

 0
.5

00
 m

m

−2

0

2

ax (m/s2)
−4 −2 0 2 4

Figure 4.15: Accelerations along X and Y axes, as measured by the accelerom-
eter (red) and as calculated by the OCP. Square boxes represent the con-
straints set to the OCP
(From [MR7] with permissions)

4.4 experimental validation of ocp 95

t
=

 0
.0

50
m

m

−1

0

1La
te

ra
l a

cc
el

er
at

io
ns

 a
n

(m
/s

2)

t
=

 0
.2

50
m

m

−1

0

1

t
=

 0
.5

00
m

m

−1

0

1

Longitudinal accelerations as (m/s2)
−3 −2 −1 0 1 2 3

Figure 4.16: Longitudinal and lateral accelerations,calculated by OCP. Square
boxes represent the constraint set in longitudinal and lateral directions
(From [MR7] with permissions)

96 tests and validations

Normalized curvilinear abscissa (-)

ax
OCP Real

t=
0.

05
0

m
m

−2

0

2A
cc

el
er

at
io

ns
 (

m
/s

2)
t=

0.
25

0
m

m

−2
0
2

t=
0.

50
0

m
m

−2

0

2

0 0.5 1.0

Normalized curvilinear abscissa (-)

ayay

t=
0.

05
0

m
m

−2

0

2A
cc

el
er

at
io

ns
 (

m
/s

2)
t=

0.
25

0
m

m

−2

0

2

t=
0.

50
0

m
m

−2

0

2

0 0.5 1.0

Figure 4.17: Comparison between OCP solution (black) and real machine
acceleration (red, measures from on-board oscilloscope)
(From [MR7] with permissions)

ranging from 5 to 20% in the most relevant cases. Moreover, it should
be noted that the execution times obtained by the OCP solution are

4.4 experimental validation of ocp 97

in air in material

a y
 (

m
/s

2)

−2

0

2

a x
 (

m
/s

2)

−2

0

2

Normalized curvilinear abscissa (-)
0 0.2 0.4 0.6 0.8 1.0

Figure 4.18: Comparison between execution in air and in material, with feed
18 m/min and tolerance 500 µm
(From [MR7] with permissions)

98 tests and validations

Table 4.3: part program execution times

feed rate tolerance exec. time change OCP exec. time
(m/min) (mm) (s) (%) (s)

20.00 nominal p.p. 4.67 – −
20.00 0.50 3.98 −14.8 3.02
20.00 0.25 4.42 −5.2 3.13
20.00 0.05 4.97 6.4 3.69
15.00 nominal p.p. 5.22 – −
15.00 0.50 4.21 −19.4 3.18
15.00 0.25 4.50 −13.9 3.29
15.00 0.05 4.99 −4.4 3.71
5.00 nominal p.p. 6.93 – −
5.00 0.50 6.67 −3.6 6.27
5.00 0.25 7.85 13.4 6.36
5.00 0.05 8.21 18.5 6.40

0.
86

0.
95

0.
94

0.
930.
94

0.
81

0.
78

5 m/min

0.
38

0.
63

0.
61

0.
54

0.
47

0.
44

0.
40

15 m/min

0.
32

0.
49

0.
48

0.
40

0.
38

0.
34

0.
30

20 m/min

iTNC

ηOCP ηReal

T
im

e
Ef

fic
ie

nc
y
η(

-)

0

0.2

0.4

0.6

0.8

1.0

N
om

.
0.

50
0.

25
0.

05

Tolerance (±mm)

N
om

.
0.

50
0.

25
0.

05

N
om

.
0.

50
0.

25
0.

05

Figure 4.19: Comparison for time efficiency metric η

always faster than the nominal case, meaning that the complete sub-
stutution of current CNC profiling/interpolation scheme with one

4.5 advanced usage for mr.cas 99

based on the OCP described in Ref. [13] would ensure significant
advantages in every condition. The different performance of opti-
mization and real execution has been assessed using time efficiency
metrics [13], defined as ratio between minimum theoretical execution
time and effective execution time:

η =
L

f T
(4.7)

Time efficiency for both OCP and real execution time are compared
in Fig. 4.19, while timing are reported in Table 4.3.

On the negative side, Fig. 4.14 remarks how the CNC own feed rate
profiling is significantly reducing the actual feed rate with respect
to that resulting from the OCP solution, thus somehow limiting the
effectiveness of the proposed solution in terms of minimum attainable
execution time. Those effects could also be seen in terms of optimized
and actual accelerations. Even if the optimized solution lays inside
experimentally identified boundaries (Fig. 4.16), sometimes during
the tests it appears to be further limited by the CNC, Fig. 4.17.

In Fig. 4.18 a comparison of accelerations between two executions
of the same optimized part program — in-air and in-material — is
presented. The operation is the same toolpath as in Fig. 4.9, with a
nominal feed rate 18 m/min and a tolerance of 500 µm. It is clear that
presence of material does not change the foundamental dynamic of
execution, but it also gives only an higher frequency contribution.

4.5 advanced usage for mr.cas

4.5.1 Code Generation as C Library

This example shows how a user of Mr.CAS can export a mathematical
model as a C library. The c-opt plugin implements advanced features

100 tests and validations

such as code optimization and generation of libraries.

The library example implements the model:

f (x, y) = xy + g(x) log(sin(xy)) (4.8)

where the expression g(x) belongs to a external object, declared as
g_impl, whose interface is described in g_impl.h header. What should
be noted is the corpus of the exported code: the intermediate oper-
ation xy is evaluated once, even if appears twice in eq. 4.8. The C
function that implements f (x, y) is declared with the token f_impl.
The exporter uses as default type double for variables and function
returned values. Library created by CLib contains the code shown in
Listing 4.3.

Listing 4.1: Calling optimized-C exporter for library generation

Model
x, y = CAS.vars :x, :y
g = CAS.declare :g, x

f = x ** y + g * CAS.log(CAS.sin(x ** y))

Code Generation
g.c_name = ’g_impl’ # g token

CAS::CLib.create "example" do
include_local "g_impl" # g header
implements_as "f_impl", f # token for f

end

4.5 advanced usage for mr.cas 101

Listing 4.2: C Header

// Header file for library:
example.c

#ifndef example_H
#define example_H

// Standard Libraries
#include <math.h>

// Local Libraries
#include "g_impl"

// Definitions

// Functions
double f_impl(
double x, double y);

#endif // example_H

Listing 4.3: C Source

// Source file for library:
example.c

#include "example.h"

double f_impl(double x, double y)
{

double __t_0 = pow(x, y);
double __t_1 = g_impl(x);
double __t_2 = sin(__t_0);
double __t_3 = log(__t_2);
double __t_4 = (__t_1 + __t_3);
double __t_5 = (__t_0 + __t_4);

return __t_5;
}

// end of example.c

The function g(x) models the following operation:

g(x) = (
√

x + a−
√

x) +
√

π + x (4.9)

and may suffer from catastrophic numerical cancellation [45] when the
x value is considerably greater than a. The user may decide to spe-
cialize code generation rules for this particular expression, stabilizing
it through rationalization. Without modifying the actual model, g(x)
the rationalization for differences of square roots1 is inserted into the
exportation rules, as in Listing 4.4. The rules are valid only for the
current user script. For more insight about __to_c and __to_c_impl,
refer to the software manual.

1i.e.:
√

φ(·)−
√

ψ(·) = φ(·)− ψ(·)√
φ(·) +

√
ψ(·)

102 tests and validations

Listing 4.4: Conditioning in exporting function

Model
a = CAS.declare "PARAM_A"

g = (CAS.sqrt(x + a) - CAS.sqrt(x)) + CAS.sqrt(CAS::Pi + x)

Particular Code Generation for difference between square roots.
module CAS
class Diff
alias :__to_c_impl_old :__to_c_impl

def __to_c_impl(v)
if @x.is_a? CAS::Sqrt and @y.is_a? CAS::Sqrt
"(#{@x.x.__to_c(v)} + #{@y.x.__to_c(v)}) / " +
"(#{@x.__to_c(v)} + #{@y.__to_c(v)})"

else
self.__to_c_impl_old(v)

end
end

end
end

CAS::CLib.create "g_impl" do
define "PARAM_A()", 1.0 # Arbitrary value for PARAM_A
define "M_PI", Math::Pi
implements_as "g_impl", g

end

puts g
=> ((sqrt((x + PARAM_A())) - sqrt(x)) + sqrt((+ x)))

It should be noted the separation between the model, which does not
contain stabilization, and the code generation rule. For this particular
case, the code generation rule in Listing 4.4 overloads the predefined
one, in order to obtain the conditioned code. Obviously, the user can
decide to apply directly the conditioning on the model itself, but this
may change the calculus behavior in further manipulation.

4.5 advanced usage for mr.cas 103

Listing 4.5: g_impl Header

// Header file for library: g_impl
.c

#ifndef g_impl_H
#define g_impl_H

// Standard Libraries
#include <math.h>

// Local Libraries

// Definitions
#define PARAM_A() 1.0
#define M_PI 3.141592653589793

// Functions
double g_impl(double x);

#endif // g_impl_H

Listing 4.6: g_impl Source

// Source file for library: g_impl
.c

#include "g_impl.h"

double g_impl(double x) {
double __t_0 = PARAM_A();
double __t_1 = (x + __t_0);
double __t_2 = sqrt(__t_1);
double __t_3 = sqrt(x);
double __t_4 = (__t_1 + x) / \
(__t_2 + __t_3);

double __t_5 = (M_PI + x);
double __t_6 = sqrt(__t_5);
double __t_7 = (__t_4 + __t_6);

return __t_7;
}

// end of g_impl.c

4.5.2 Using the module as interface

As example, an implementation of an algorithm that estimates the or-
der of convergence for trapezoidal integration scheme [94] is provided,
using the symbolic differentiation as interface.

Given a function f (x), the trapezoidal rule for primitive estimation
for the interval [a, b] is:

In(a, b) = h

(
f (a) + f (b)

2
+

n−1

∑
k=1

f (a + k h)

)
(4.10)

with h = (b− a)/n, where n mediates the step size of the integration.
When exact primitive F(x) is known, approximation error is:

E[n] = F(b)− F(a)− In(a, b) (4.11)

104 tests and validations

The error has an asymptotic expansion of the form:

E[n] ∝ C n−p (4.12)

where p is the convergence order. Using a different value for n, for
example 2 n, the ratio 4.13 takes the approximate vale:

E[n]
E[2 n]

≈ 2p → p ≈ log2

(
E[n]

E[2 n]

)
(4.13)

Listings 4.7 and 4.8 contain the implementation of the described pro-
cedure using the proposed gem and the well known Python [84] li-
brary for symbolic math SymPy [75]. Mean time comparison for the
scripts is reported in Tab. 4.4.

4.5 advanced usage for mr.cas 105

Listing 4.7: Ruby version

require ’Mr.CAS’

def integrate(f, a, b, n)
h = (b - a) / n

func = f.as_proc

sum = ((func.call ’x’ => a) +
(func.call ’x’ => b)) /

2.0

for i in (1...n)
sum += (func.call ’x’ =>
(a + i*h))

end
return sum * h

end

def order(f, a, b, n)
x = CAS.vars ’x’

f_ab = (f.call x => b) -
(f.call x => a)

df = f.diff(x).simplify
f_1n = integrate(df, a, b, n)
f_2n = integrate(df, a, b, 2 * n

)

return Math.log(
(f_ab - f_1n) /
(f_ab - f_2n),

2)
end

x = CAS.vars ’x’
f = CAS.arctan x

puts(order f, -1.0, 1.0, 100)
=> 1.9999999974244451

Listing 4.8: Python version

import sympy
import math

def integrate(f, a, b, n):
h = (b - a)/n
x = sympy.symbols(’x’)
func = sympy.lambdify((x), f)

sums = (func(a) +
func(b)) / 2.0

for i in range(1, n):
sums += func(a + i*h)

return sums * h

def order(f, a, b, n):
x = sympy.symbols(’x’)

f_ab = sympy.Subs(f, (x), (b)).n
() - \

sympy.Subs(f, (x), (a)).n
()

df = f.diff(x)
f_1n = integrate(df, a, b, n)
f_2n = integrate(df, a, b, 2 * n

)

return math.log(
(f_ab - f_1n) /
(f_ab - f_2n),

2)

x = sympy.symbols(’x’)
f = sympy.atan(x)

print(order(f, -1.0, 1.0, 100))
=> 1.9999999974244451

106 tests and validations

Table 4.4: Mean time for examples 4.7 and 4.8 on Intel i7 M640 with Arch
Linux amd64. Output from time keyword in bash 4.4.12

Ruby (2.4.3) Python (3.6.4)
Mr.CAS (0.2.7) Sympy (1.1.1)

Real 0.104 s 0.551 s
User 0.096 s 0.514 s

System 0.006 s 0.042 s

4.5.3 ODE Solver with Taylor’s series

In this example, a solving step for a specific ordinary differential
equation (ODE) using Taylor’s series method [18] is derived. Given
an ODE in the form:

y′(x) = f (x, y(x)) (4.14)

the integration step with order n has the form:

y(x + h) = y(x) + h y′(x) + · · ·+ hn

n!
y(n)(x) + En(x) (4.15)

where it is possible to substitute equation 4.14:

y(i)(x) =
∂y(i−1)(x)

∂x
+

∂y(i−1)(x)
∂y

y′(x) (4.16)

For this algorithm, three methods are defined. The first evaluates the
factorial, the second evaluates the list of required derivatives, and the
third returns the integration step in a symbolic form. The result of
the third method is transformed in a C function. In this particular
case, the ODE is y′ = xy. For the resulting C code of Listing 4.9, refer
to the online version of the examples.

4.5 advanced usage for mr.cas 107

Listing 4.9: Generator for ODE integration step

$x, $y, $h = CAS::vars :x, :y, :h
Evaluates n!
def fact(n); (n < 2 ? 1 : n * fact(n - 1)); end
Evaluates all derivatives required by the order
def coeff(f, n)
df = [f]
for _ in 2..n
df << df[-1].diff($x).simplify + (df[-1].diff($y).simplify * df

[0])
end
return df

end
Generates the symbolic form for a Taylor step
def taylor(f, n)
df = coeff(f, n)
y = $y
for i in 0...df.size
y = y + (($h ** (i + 1))/(fact(i + 1)) * df[i])

end
return y.simplify

end

Example function for the integrator
f = $x * $y
Exporting a C function
clib = CAS::CLib.create "taylor" do
implements_as "taylor_step", taylor(f, 4)

end

Other examples are available online2: (a) adding a user defined
CAS::Op that implements the sign(·) function with the appropriate op-
timized C generation rule; (b) exporting the operation as a continuous
function through overloading or substitutions; (c) performing a sym-
bolic Taylor’s series; (d) writing an exporter for the LATEX language;
(e) a Newton-Raphson algorithm using automatic differentiation plu-
gin.

2http://bit.ly/Mr_CAS_examples

108 tests and validations

5Deep Understanding

The chapter engages the application of artificial neural networks to indus-
trial problems. The chapter introduces the reader to the neural nets termi-
nology and current practices, while showing the application of such tech-
niques to identification and regression of phase in X-Ray Crystallography.
The example allows to introduce the representation problem, and the unsu-
pervised learning for such representation through autoencoders, for which a
library has been implemented.

5.1 a brief introduction to artificial neural

nets

5.1.1 Algorithms as Functions

Automated sytems should gain knowledge from experience, without
the need of human intervention in specifying all the rules needed to
perform a task, in terms of formal languages. This approach is at
the very core of the Machine Learning (ML) field, in which, instead
of manually describing a procedure to solve a task, an algorithm to
perform it is automatically derived.

The performance of such algorithms depends heavily on the inter-
pretation of the input. From those data it is important to outline

109

110 deep understanding

the essential information—i.e. features. This problem may be handled
manually with some feature engineering, or leaved to the learning algo-
rithm. In the latter case, the machine not only learns how to solve the
task, but also how to elaborate a better representation that points out
the prominent attributes to perform the task. This approach is know
as representational learning [46]. One class of algorithms that is able
to tackle the representation of data autonomously are the Artificial
Neural Networks (ANNs) [40].

ANNs are systems of interconnected nodes that operates a simple
transformation from an input x to an output y:

ANN : Rdim(x) 7→ Rdim(y) (5.1)

5.1.2 Topology of an ANN

Topologically, an ANN is composed by layers. There are many dif-
ferent layers formulations in the field of ANNs, but the most com-
mon one is the fully connected structure, in which the layers comprises
simpler operations, called neurons, that share the same input. The
neuron may have different mathematical formulations, but the most
common one is the perceptron [68]:

p : Rdim(z) 7→ R, p(z |w, b) = f (z ·w + b) = h (5.2)

where w (weights) and b (bias) are trainable parameters—i.e. their
values must be learned through a training procedure—and f is an
activation function f : Rdim(w) 7→ R. Fig. 5.1 represents a simple per-
ceptron. When more than one perceptron is combined, the resulting
structure is a layer:

l(z) : Rdim(z) 7→ Rdim(h), (5.3)

l(z) =
[

p1(z |w1, b1), . . . , pdim(h)(z |wdim(h), bdim(h))
]
= h (5.4)

5.1 a brief introduction to artificial neural nets 111

f (·)Σ

w1

. . .

wk

b

z1

. . .

zk

h

Figure 5.1: The representation of a perceptron

An ANN may have more than one layer, and the inner ones are com-
monly entitled hidden layers. The most common ANN, the multi-layer
perceptron, is similar to the one presented in Fig. 5.3.

5.1.3 Different Approaches to Learning

There are different approaches to learning. The first one that is taken
into account is the supervised learning. Algorithms trained with this
approach are mainly employed for:

classification to discriminate input data in different categories;

regression to estimate the relationship among input to predict a con-
tinuous or discrete series of output.

The training procedure is used to determine the value of the weights
(w) and biases (b) in order to obtain the desired behavior from the
network. The term “supervised” underlines the fact that the machine
observes a series of complete examples for which the correct answer
is know—i.e. the training dataset has examples that are a tuple of
pattern and output: [x, ŷ].

The evolution of the network is guided through a loss function that
underlines how the networks is performing with respect to the super-

112 deep understanding

vised data. The loss depends on the network itself:

L : Rdim(y) ×Rdim(y) 7→ R (5.5)

and the training is an optimization problem:

minimize L(ANN(x |w, b), ȳ)

[x, ȳ] ∈ Database of examples
(5.6)

where ȳ represents the supervised output, the one that should be re-
turned by the perfect ANN. The optimization is carried out through
different flavor of gradient descent algorithm. One of the advantages
of the ANNs approach is related to the fact that the training can
be carried out by showing a partial sequence of examples (batches)
from the training dataset to the optimization routine and statistically
update the gradient that guides the optimization step—i.e. stochastic
gradient descent (SDG). Several algorithms based upon this approach
have been derived to train networks—e.g. SDG [14], ADAM, ADA-
GRAG [30], RMSPROP, etc. This approach allows to train with respect
to enormous database of examples, and it is in contrast with respect
to many ML algorithms where the training requires the whole dataset
in a single batch, limiting the maximum number of examples, due to
technological constraints.

A different approach of particular interest for the challenges pro-
posed by Industry 4.0 is the unsupervised learning, where learning
refers to the capacity of the automatic algorithm to discover, if present,
the inner structure of data that are not labeled.

Multiple target for representation may be achieved, where the most
employed ones are:

lower dimensional representation a representation that describes the
input points with no information loss, but using a dimension-
ally smaller space (lower number of features);

5.2 anns applied to an industrial problem 113

sparser representation a representation in which input are sparse
has almost all dimensions equal to zero: the information tend
to accumulate along some directions;

independent representation different dimensions are considered as
orthogonal in the representation of the data.

Those representations are not mutually exclusive and expose some
interesting property to exploit.

Other typical training approaches are: the semi-supervised learning (a
combination of the previous two techniques), and the reinforcement
learning (the learner, which acts over an environment, is trained on
the basis of a specific reward).

5.2 anns applied to an industrial problem

5.2.1 ANNs and X-Ray Crystallography

When an X-ray beam is shot toward a sample of matter, the sample
reflects the incident beam with a specific intensity that depends upon
the angle between the incident ray and the surface normal. The re-
flections generate patterns that contain information upon atomic and
molecular structures of the sample.

This physical phenomenon has been deeply employed in different
scientific fields, in particular in the non-destructive identification of
crystalline matter, where the reflections are function of the Bragg’s
Law [93]. It is possible to identify the substances in a crystalline
powder by comparing the peaks of the experiments in the X-ray
difractometer with respect to the peaks associated to substances in
big databases of theoretical and experimental patterns. Nevertheless,
due to noise and concentration uncertanties, it is necessary to manu-
ally handle the experimental pattern. Moreover, when the sample is

114 deep understanding

a compound of different substances—phases—the experience of the
researcher becomes fundamental.

At the core of the work there is an architecture where a 1D convolu-
tional classifier operates in tandem with a fully connected regressor.
The two networks are developed to be general, but trained specif-
ically to recognize the presence and regress the concentration of a
particular phase Pi.

The two networks fulfill the following pseudo-code:

1: function Pi(x)
2: if ANNPi

cl (x) > 0.5 then
3: return ANNPi

rg(x)
4: else
5: return 0.0
6: end if
7: end function

where ANNPi
cl is the classifier trained on the phase Pi and ANNPi

rg

is the regressor, trained on the same phase. Both networks operate
on an input spectrum x (normalized with respect to the maximum
value). The full application is composed by different ANN of different
phases. Notice that the regressor is actually called in the application
flow only if the classifier identifies the specific phase.

Conceptually, the pseudo-code for the complete application is:

1: function Application(x)
2: return { P1 : P1(x), . . . , Pn : Pn(x) }
3: end function

that allows to arbitrarily change the number of the phase, but does
not guarantee that the sum of concentrations is 1.0.

5.2 anns applied to an industrial problem 115

The formal definition of the classifier function is:

ANNP
cl : [0, 1]dim(x) 7→ [0, 1] (5.7)

and the output domain is the probability of presence of the phase
P. The greater the probability, the greater the confidence of the net-
work. The fact that there may be millions of phases, and thus mil-
lions of classifiers that run for a single spectrum sets some limitations
upon the classifier structure: the classifier must be computationally
as lightweight as possible, while keeping an overall high accuracy.
This is the reason why the classifier contains some convolutional lay-
ers (see Section 5.2.2) to maintain the number of parameters to train
as limited as possible. This parameters reduction allows to load sev-
eral networks in calculator memory simultaneously, a straightforward
way to parallelize the task. The structure of the network is summa-
rized in Fig. 5.2. The convolutional layers of the network try to project
the information in a compressed space. The compression is obtained
through the shared kernels.

The formal definition of the regressor is:

ANNP
rg : [0, 1]dim(x) 7→ [0, 100] (5.8)

and the output is the concentration of the phase in percentage. Since
the number of regressors that must be loaded in memory is limited by
the classification, there is more freedom in the selection of the archi-
tecture of this network. The structure is summarized in Fig. 5.3. The
fully connected network is the one that proved the best performances.

5.2.2 The Convolution Layer

The adoption of functional layers in a ANN allows to specialize the
network with respect to the target input. The specialization is actually
the injection of an a priori knowledge about the representation of the

116 deep understanding

Batch Input

1D Convolution
Kernel size: 8 (36 weights)

Activation: Relu
Stride: 1

1D Max Pooling
Kernel size: 8

Stride: 4

1D Convolution
Kernel size: 8 (264 weights)

Activation: Relu
Stride: 1

1D Max Pooling
Kernel size: 8

Stride: 4

1D Convolution
Kernel size: 8 (780 weights)

Activation: Relu
Stride: 1

1D Max Pooling
Kernel size: 8

Stride: 4

Dense
Kernel size: 10 (250 weights)

Activation: Sigmoid

Dense
Kernel size: 1 (11 weights)

Activation: Sigmoid

Output: Probability

?× 360× 1

?× 353× 4

?× 87× 4

?× 80× 8

?× 19× 8

?× 12× 12

?× 2× 12→?× 24

?× 10

?× 1

Su
pe

rv
is

ed
Le

ar
ni

ng
O

pt
im

iz
er

:A
D

A
G

R
A

D
(l

ea
rn

in
g

ra
te

:1
·1

0−
3)

Lo
ss

fu
nc

ti
on

:
−

y
lo

g(
ŷ)
−
(1
−

y)
lo

g(
1
−

ŷ)
(b

in
ar

y
cr

os
s

en
tr

op
y)

Tr
ai

ni
ng

Pa
ra

m
et

er
s:

1
’3

4
1

Figure 5.2: The classifier structure and the training parameters

5.2 anns applied to an industrial problem 117

Batch Input

Dense
Kernel size: 180 (64980 weights)

Activation: Sigmoid

Dense
Kernel size: 90 (16290 weights)

Activation: Sigmoid

Dense
Kernel size: 10 (910 weights)

Activation: Sigmoid

Dense
Kernel size: 1 (11 weights)

Activation: Sigmoid

Output: Concentration value

?× 360

?× 180

?× 90

?× 10

?× 1

Su
pe

rv
is

ed
Le

ar
ni

ng
O

pt
im

iz
er

:A
D

A
G

R
A

D
(l

ea
rn

in
g

ra
te

:1
·1

0−
3)

Lo
ss

fu
nc

ti
on

:E
{ (y−

ŷ)
2} (m

ea
n

sq
ua

re
d

er
ro

r)
Tr

ai
ni

ng
Pa

ra
m

et
er

s:
8
2

’1
9
1

Figure 5.3: The classifier structure and the training parameters

input data. In case of convolution, a strong emphasis is given to the
spatial distribution of values in the input vector.

The convolution operation1 uses kernels to generate an output that
is referred to as feature map. The elements of the feature map are
evaluated as follows:

mk = (x ∗w)k =
dim(w)

∑
i=1

xk+i wk (5.9)

A sample of the operation is presented in Fig. 5.4. A single convolu-
tional layer may employ multiple kernels. The usage of more kernels
allows to search different features on the same input space. If the in-
put of a layer is in Rm×1 and the convolution operation is performed
with a kernel that is Ra×b, the output vector is of dimensions Rm̃×b,

1The convolution operation is actually a cross-correlation operation in many imple-
mentations. They are both called convolution by convention.

118 deep understanding

input vector

1 0 2 5 20 0

0.2 0.6 0.2

0.2 0.6 0.2

0.2 0.6 0.2

0.2 0.6 0.2

0.2 0.6 0.2

i = 1

i = 2

i = 3

i = 4

i = 5

0.6

0.6

2.2

3.8

2.2

⇓

0.6 0.6 2.2 3.8 2.2

Figure 5.4: Convolution operation example, with same padding

where b is the new feature depth2.

But the importance of the convolution lies in the properties that
emerge from this kind of layer [40]:

sparse interaction in a common fully connected layer all input are
forced to interact with all the output units. But in a convolu-
tional layers the kernel are smaller than the input, in order to
learn to disclose little feature in big inputs. Fewer parameters
are stored to accomplish the task and this reduces the memory
requirement for a model, improving its efficiency.

parameters sharing in a fully connected network, each weight ap-
plies exactly once for each input, while in the convolution the
weight applied to an input is bound to the same weight applied
in another position of the input, due to the correlation.

equivariance to translation is the robustness with respect to small

2The first dimension m may change (m 6= m̃) due to padding.

5.2 anns applied to an industrial problem 119

Figure 5.5: A complete example of 1D convolution and max pooling

translation of particular feature in the input data, and directly
derives from the parameter sharing. This result is also rein-
forced by the application of a max pooling layer.

Fig. 5.5 represents the output of a very first layer of the classifier.
The convolution is typically applied to images, where the grid like
topology is related to the pixel composition that characterize a raster
image. The formulation of the convolution operation is slightly dif-
ferent, and the accumulation is performed along both dimension of
the image.

The convolution is not the only peculiar layer that insert a infinitely
strong priori interpretation for input data in the network. Many other
layers may be applied to a network to impose some preference on the
interpretation of inputs.

5.2.3 Generation of Examples

There is a great advantage in training the networks if a very big
database of labeled examples is available. In the context of this ap-
plication, it is possible to programmatically generate a new labeled

120 deep understanding

example starting from the theoretical peaks of phases. The original
peaks are retrieved from ICCD PDFTM cards, in the form of angles
(2θ) and intensities (I).

The generation procedure introduces different physical-based aber-
rations in order to present to the network an example as realistic as
possible, allowing the network to understand which is the good rep-
resentation to identify and regress the presence of a specific phase.
For the generation of the input of an example (pattern):

1. a random shift in the 2θ domain is applied, both for single (b)
and concurrent peaks (a1dim(2θ)):

(2θ)′ = (2θ) + b + a1dim(2θ) (5.10)

where3:
a ∼ U (∆θmin, ∆θmax)

b ∼ {U (∆θmin, ∆θmax)}dim(2θ)

2. after a projection in d? = 2 sin(θ′)/λ, a secondary shift is ap-
plied:

(d?)′ = (2θ) + b + a1dim(d?) (5.11)

with a and b defined as above. λ is the wavelength of the source;

3. the pattern for a single phase is generated as a linear combi-
nation of Cauchy and Normal probability density functions,
where parameters define peaks heights and shape:

φ(d) = ∑
di∈(d?)′

I(di) (νN (d, di, σ1) + (1− ν)C(d, di, σ2)) (5.12)

4. a noise proportional to the square root of the local intensity is

3U is the uniform distribution

5.2 anns applied to an industrial problem 121

added to the pattern:

φ′(d) = φ(d) +
√

φ(d) n(d) n(d) ∼ U (0, 1) (5.13)

Everything can be collected in a single operation:

φ′(d) = Φ(d, 2θ, I, λ) (5.14)

5. mixture of phases are combined as a weighted summation, were
the weight is proportional to concentration. Also a white noise
and a background is added to obtain the final signal:

φ′′(d) = β(d) + ∑
Pi∈P

γ(Pi)Φ(d, 2θ(Pi), I(Pi), λ(Pi)) (5.15)

where γ(Pi) is the concentration of each phase, such that

∑
Pi∈P

γ(Pi) = 1,

and β(d) is the background and the white noise contribution.
Different formulation for the background noise may be used:
polynomial, exponential, etc. For example:

β(d) =
a1

1− e−d+a2
+ n(d) n(d) ∼ U (nmin, nmax) (5.16)

The presence of the target phase—i.e. the one for which the
ANNs are trained—depends on a sample from the distribution
U (0, 1). If the sample is greater than 0.5, the target phase is
included in the pattern. When generating pattern for the re-
gressor the target phase is always present.

6. the final example is normalized with respect to the maximum
value:

φ′′′(d) =
φ′′(d)

max(φ′′(d))
(5.17)

122 deep understanding

this is necessary for keeping the learning problem numerically
stable.

The generation of the output of an example, necessary for the super-
vised training is quite simple. For the classifier:

ȳcl =

 1 if Ptarget ∈ P

0 otherwise
(5.18)

while for the regressor it is the concentration:

ȳrg = γ(Ptarget) (5.19)

The combination of pattern and output are used to train the networks.
Some patterns are used to validate the network.

5.2.4 Inference Examples

In the following section some inference examples, Figg. 5.7–5.10, are
reported for different concentrations of positively labeled validation
input. The images contain the actual input for the network (the pat-
tern as seen by a diffractometer) and the distribution of theorical
peaks for BaSO4. The performance of both classifier and regressor
are proportionally dependent to the concentration, with a drop for
concentration below 20% for classification, as reported in Fig 5.6. The
drop is due to the fact that other phases and background noise mask
the presence of the target phase. It is easy to find some situations
where the classifier is wrong for low concentrations, as reported in
Fig. 5.11

5.2 anns applied to an industrial problem 123

Figure 5.6: The graph contains a summary of the performance for the two
networks with respect to concentration

Figure 5.7: Pattern for BaSO4 with concentration at 16%. The classifier per-
ceives the phase with a confidence of 71%, and the regressor confirms a con-
centration of 19%

124 deep understanding

Figure 5.8: Pattern for BaSO4 with concentration at 25%. The classifier per-
ceives the phase with a confidence of 80%, and the regressor confirms a con-
centration of 26%

Figure 5.9: Pattern for BaSO4 with concentration at 40%. The classifier per-
ceives the phase with a confidence of 79%, and the regressor confirms a con-
centration of 39%

5.2 anns applied to an industrial problem 125

Figure 5.10: Pattern for BaSO4 as only phase. The classifier perceives the
phase with a confidence of 89%, and the regressor confirms a concentration
of 98%

Figure 5.11: Pattern for BaSO4 with concentration at 11% and 12%. In the first
case the classifier fails in perceiving the phase (confidence of 7%), thus the
regressor is not called. In the second case the classifier identifies the phase
(with a low confidency score of 67%) but the regressor fails, reporting a too
high concentration (21%)

126 deep understanding

5.3 a matter of representation

5.3.1 Representation and Transfer Learning

The lesson taken from the previous example it is quite straightfor-
ward. The algorithm learns a representation for the data through the
observation of the couple [x, ȳ]. In principle, it is possible to identify
in the very first layers of the network a transformation from one fea-
ture space to another, but the algorithm is forced to learn a particular
kind of transformation due to the strong effect of the label ȳ. This is a
further reason why the two networks, the classifier and the regressor
in the previous example, do not share the same basic representation.
The feature transformation identified by the classifier probably loses
the information necessary to the concentration reconstruction.

In general it is profitable that the algorithm learns a good represen-
tation, i.e. the representation that allows it to perform the required
task with the best performance possible. This approach is so impor-
tant that, in a common feed forward network for classification, the
initial layers transport data in a feature space where the very last lay-
ers can linearly separate the data [69]. On this basis it is possible
to notice an interesting property of the network: the transfer learn-
ing. Lets say a single learner is put in front of two different tasks, in
which it is known that some initial layer may share the same repre-
sentation transformation, but only for the very first task the dataset is
sufficiently large for performing a supervised training. The machine
first layers, after a training, can be shared to a new network, where
last layer are trained on the smaller dataset while leveraging on an
already learned representation. It is the case of machines that works
on images: it is quite common that the very first layers in the network
contains weights that detect edges and primitive geometries [64], and
those layers are shared across different tasks. This technique trans-
fers the ability to perceive and extract a semantic knowledge of an

5.3 a matter of representation 127

input space from a network to another. This concept is at the very
core of the transfer learning. This is also one of the reason why neural
networks usually operates at perception level (near the sensory raw
input). And in fact several side effects of this techniques were used
in Section 5.2: the networks learn:

• to de-noise the data

• to disentangle the different property of each phase

• to clusterize the input domain

and all this process starts from the very first layer.

5.3.2 Good Representations

What characterize a good representation and how to achieve it? This
is actually an open challenge but Ref. [40] and Ref. [7] identify several
clues that may help a learner in the creation of the transformation:

Regularization the representation may be constrained to be locally
smooth, and the learner may be forced to be robust with respect
to minor disturbances in the input space.

Manifold Learning the idea is that data with high dimensionality
and a shared representation accumulates near loci, namely man-
ifolds, that can be described with a lower dimensional feature
space. Learning the structure of a manifold is an important task,
since such transformation can be seen as a hierarchical organi-
zation of the data.

Sparsity a representation wants to be sparse when the majority of
the directions of the feature space are not relevant for the de-
scription of the input. This is common in the case of networks
for objects detection. The direction should be different from

128 deep understanding

zero only if the feature to detect is actually present in the input,
while all the others should be nil.

Orthogonality the representation should disentangle the causal fac-
tors in the data in such a way they are independent. Usually
an orthogonal representation is also the one that factorizes the
data and describes them in the most compact space. For ex-
ample, a very orthogonal representation identifies a marginal
dependence: P(h) = ∏i Pi(hi).

Supervised Learning a learning strategy with labels is a strong a-
priori that creates a peculiar representation that is completely
guided by the provided supervised output, and tries to mimic
it.

5.3.3 Autoencoders and Representation

An autoencoder [15] is a particular network composed by two struc-
tures: an encoder that applies the function:

E : Rdim(x) 7→ Rdim(h) E(x) = h (5.20)

and a decoder that applies the function:

D : Rdim(h) 7→ Rdim(x) E(h) = r (5.21)

The complete autoencoder applies the function:

AE : Rdim(x) 7→ Rdim(x) AE(x) = D(E(x)) = r (5.22)

where x is the input, h the code, and r is the reconstruction. Some-
times the input is perturbed in order to make the reconstruction ro-
bust with respect to noise (denoising autoencoder). This architecture is
usually trained to mimic the identity function, in such a way the re-
constructed output is only an approximation of the input. One of the

5.3 a matter of representation 129

most used constraint is a dimensionality reduction, in such a way:

dim(x)� dim(h) (5.23)

and the training is guided by a loss function that minimizes a norm
from the input and the reconstruction:

L(x|AE) = ||x− r||L = ||x− AE(x)||L (5.24)

The training does not use labeled examples, and thus is referred as
a unsupervised training. This kind of autoencoders are said to be
undercomplete. There is a balance between dimensions for the code
and its representation capacity, since it may fall in a representation
that can reconstruct all input examples using only a simple index
(that is the example index): if the autoencoder has a capacity which is
too big may learn nothing useful about the representation of the data.
This is the reason why the autoencoders are usually regularized—i.e.
some additional constraints are applied to the basic loss function.

There are different objectives to add to the loss function that changes
the kind of representation that is learned:

• the autoencoder may be forced to learn a sparse coding when a
penalty function that enforces a sparsity for the code represen-
tation (sparse autoencoder) is applied:

Ω(h) = λ ∑
i
|hi| (5.25)

• alongside the de-noising strategy, it is possible to regularize the
code representation by limiting during training the variation of
the code with respect to the input (contractive autoencoder):

Ω(h, x) = λ ∑
i
||∇xhi||2 (5.26)

In any case autoencoders exploit the accumulation of data along

130 deep understanding

lower dimensional manifolds, in order to actually learn the struc-
ture of the manifold. This structure characterizes how an input may
change, and such form of variation is understood mathematically as
the tangent planes of the manifold in the point x. From this principle
it is possible to get a rule to dimension the capacity of the network:
the autoencoder should be capable only to learn variations that re-
construct an input example. The set of variations are the real repre-
sentation of data, and are also known as the embeddings.

It must be clear that all the discussion relies on the hypothesis that
the manifold is smooth enough [8]. But the properties of the au-
toencoders are already been employed to information retrieval task,
after the application of dimensionality reduction to input data, in an
application called semantic hashing [69].

5.3.4 Autoencoder Library

In the pursuit of a better understanding of the properties of autoen-
coders, the cae library for experiments has been written in Tensor-
flow [43]. The library is actually an implementation of a convolutional
autoencoder that operates mainly on images. It allows to:

• specify completely the structure of each layer;

• insert specific training loss, alongside with additional regular-
ization;

• perform greedy layer-wise training [47];

• perturbate the input;

• use transposed encoder weights as decoder weights;

• perform a differential learning [44];

• inspect each layer output and trained weights.

5.3 a matter of representation 131

Convolutional Encoder Convolutional Decoder

Internal Factorized
Representation

Input Output

Convolution
Operation with
Leaking ReLU
and Pooling

Figure 5.12: A test application for the convolutional autoencoder, using the
cae library. The black figures are a real input and a reconstructed output.

The library has been written as basis for future works in the applica-
tion of unsupervised learning to industrial dataset, in order to derive
favorable representation and applications, and it is freely attainable
from GitHub4.

A very first application, to test the capability of the library in com-
pressing the information is reported as example in Fig 5.12. The ap-
plication constraints an input x ∈ R161×161×1 to a code in the domain
h ∈ R3×3×25. The information are compressed by 99%, but the output
can still be reconstructed. The factorized representation has dimen-
sions near to the dimension of the actual information present in the
images (3 different shapes in possible 25 positions, never overlapped),
but since in the example no regularization is applied to the training
the inner code is quite dense. But still, the library proved its efficacy.

4cae, a Convolutional AutoEncoder Library: https://github.com/MatteoRagni/cae

132 deep understanding

6Conclusions

Filling the Industry 4.0 leap is and will be a long journey made by
transformations. At the end of the road it is possible to forsee a new
generation of industrial automated assets that interact with operators.
Those assets overlook tasks that can be regarded as contingential with
respect to the overall production process. Those tasks, when carried
out by human operators, can be considered unsafe, unpleasent and
even exhausting.

On the same line, human operators are deeply connected and ex-
tensively informed. The newer human-machine interfaces engage
increasingly the sensorial perception of the operators, through aug-
mented interfaces, and the exchange of information is bi-directional.

The design of a product moves its focus away from the propedeutic
production process. The identification of the production goals and
the coordination of the assets is decentralized on a distributed intelli-
gence that operates at different abstraction layers. The highest levels
operate on the definition of sequence of goals that characterize a spe-
cific production process, while lower levels operates on the optimiza-
tion of single step of the sequence, or specific task, perceiving and
adapting their actions with respect to real operative conditions.

There is no technology that answers directly to all the challenges
proposed by the Industry 4.0 strategic plan, but instead it is possible
to apply a synergy of enabling technologies. Some of such enabling
technologies have been identified and their application is introduced
in the manufacturing world.

133

134 conclusions

The work presents an industry-ready framework for the application
of augmented reality and optimal control to machine tools setup and
maintenance that engages specifically the information transparency and
the technical assistance. Ironically, computer numerical control ma-
chines, even of recent production, employ as human-machine inter-
face the G-CODE language (ISO 6983), an 1980 standard. To overpass
the specific limitations of the language, the different machine manu-
facturers have to expand it with not standard features [98]. The cost
to pay is an extremely fragmented interfacing scenario, where each
manufacturer employs its own dialect that requires a specific forma-
tion for the operator.

Through the application of an augmented interface, a human oper-
ator can use the system to inspect part-programs, to program touch-
probes faster, and to check machines for maintenance purposes, while
machine manufacturers and technical offices have an easier way to
distribute documentations and technological information. The user is
not engaged on a semantic level (through a programming language),
but instead on a sensory level (through visual stimula): the operators
can see the world as perceived by the machine and input directives
that are based upon concrete objects in the real world.

To improve the efficiency of existing machines, an optimal control
strategy has been implemented to perform minimum time optimiza-
tion to existing part-program in pre-processing, alongside with spe-
cific tools to easily develop similar strategies. The approaches have
been validated through experimental activities.

However, this futuristic scenario is contrasted by the intrinsic reality
of the European manufacturing industry, characterized by a multi-
tude of medium and small industries with dated machines that do
not even support a network connection. That is the reason why all
the technologies introduced always considered the existing manufac-
turing scenario as an implementation constraint.

What actually remains a completely open topic is the interoperabil-

conclusions 135

ity and the decentralized decisions, for which an higher autonomous
level is required. Indeed, before thinking about the decision making
process, a strategy should be envisioned to actually extract semantic
information from the big amount of raw data perceived from sensors.
Even if the very last two years presented alternatives—e.g. dropout,
leaky rectifing linear units, etc.—that outperform shared representa-
tional methodologies, those methods still require quite a big volume
of labeled data to truly achieve the results, and this data are not avail-
able in the industrial practice.

The unsupervised learning of the manifold structures that describe
the data is extremely interesting. As initial step in this direction, a
library to build autoencoders has been implemented and tested on
experimental dataset for feature reduction. However, the results of
the Deep Learning field has been applied to one of the many indus-
trial problem, proving its efficacy with success.

It will be a long journey.

136 conclusions

Bibliography

[1] Y. Altintas and N.A. Erol. Open architecture modular tool kit for
motion and machining process control. CIRP Annals - Manufac-
turing Technology, 47(1):295–300, 1998.

[2] Y. Altintas and W. K. Munasinghe. A hierarchical open-
architecture CNC system for machine tools. Annals of CIRP,
43(1):349–354, 1994.

[3] George H Amber and Paul S Amber. Anatomy of automation.
Prentice-Hall, 1962.

[4] Apple Inc. SceneKit Framework. https://developer.apple.com/

scenekit/, 2016.

[5] Michael Bartholomew-Biggs, Steven Brown, Bruce Christianson,
and Laurence Dixon. Automatic differentiation of algorithms.
Journal of Computational and Applied Mathematics, 124(1):171–190,
2000.

[6] Ravil Bayramgalin. Symbolic. https://github.

com/brainopia/symbolic, 2012. Online; commit:
bbd588e8676d5bed0017a3e1900ebc392cfe35c3.

[7] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Represen-
tation learning: A review and new perspectives. IEEE transactions
on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

[8] Yoshua Bengio and Martin Monperrus. Non-local manifold tan-
gent learning. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Ad-
vances in Neural Information Processing Systems 17, pages 129–136.
MIT Press, 2005.

137

138 BIBLIOGRAPHY

[9] Xavier Beudaert, Sylvain Lavernhe, and Christophe Tournier. Fee-
drate interpolation with axis jerk constraints on 5-axis NURBS
and G1 tool path. International Journal of Machine Tools and Manu-
facture, 57(0):73–82, 2012.

[10] Francesco Biral, Enrico Bertolazzi, and Paolo Bosetti. Notes on
numerical methods for solving optimal control problems. IEEJ
Journal of Industry Applications, 5(2):154–166, 2016.

[11] Gabriele Bleser and Didier Stricker. Advanced tracking through
efficient image processing and visual–inertial sensor fusion. Com-
puters & Graphics, 33(1):59–72, 2009.

[12] I. Bondrea and R.E. Petruse. Augmented reality - an improve-
ment for computer integrated manufacturing. Advanced Materials
Research, 628:330–336, 2013.

[13] Paolo Bosetti and Enrico Bertolazzi. Feed-rate and trajectory
optimization for CNC machine tools. Robotics and Computer-
Integrated Manufacturing, 30(6):667–677, 12 2014.

[14] Léon Bottou. Online algorithms and stochastic approximations.
In David Saad, editor, Online Learning and Neural Networks. Cam-
bridge University Press, Cambridge, UK, 1998. revised, oct 2012.

[15] H. Bourlard and Y. Kamp. Auto-association by multilayer per-
ceptrons and singular value decomposition. Biological Cybernetics,
59(4):291–294, 9 1988.

[16] Gary Bradski et al. The opencv library. Doctor Dobbs Journal,
25(11):120–126, 2000.

[17] A.E. Bryson and Y.C. Ho. Applied optimal control: optimization, es-
timation, and control. Halsted Press book’. Hemisphere Publishing
Company, 1975.

[18] J.C. Butcher. Numerical Methods for Ordinary Differential Equations,
Second Edition. John Wiley & Sons, 2008.

BIBLIOGRAPHY 139

[19] S.a Büttner, O.a Sand, and C.b Röcker. Extending the design
space in industrial manufacturing through mobile projection. In
MobileHCI 2015 - Proceedings of the 17th International Conference on
Human-Computer Interaction with Mobile Devices and Services Ad-
junct, pages 1130–1133, 2015.

[20] Ondrej Certik, Dale Lukas Peterson, Thilina Ban-
dara Rathnayake, et al. Symengine. https://github.

com/symengine/symengine.rb, 2016. Online; commit:
8cf9e08c972085788c17da9f4e9f22898e79d93b.

[21] J.W.S.a Chong, S.K.c Ong, A.Y.C.a c Nee, and K.a b Youcef-
Youmi. Robot programming using augmented reality: An in-
teractive method for planning collision-free paths. Robotics and
Computer-Integrated Manufacturing, 25(3):689–701, 2009.

[22] Joel S Cohen. Computer algebra and symbolic computation: Mathe-
matical methods. Universities Press, 2003.

[23] David W Collins and Doreen Kimura. A large sex difference on
a two-dimensional mental rotation task. Behavioral neuroscience,
111(4):845, 1997.

[24] S.a Ćuković, G.a Devedžić, F.b Pankratz, K.c Baizid, I.d Ghionea,
and A.a Kostić. Augmented reality simulation of cam spatial tool
paths in prismatic milling sequences. IFIP Advances in Information
and Communication Technology, 467:516–525, 2015.

[25] B.L. DeCost, H. Jain, A.D. Rollett, and E.A. Holm. Computer
vision and machine learning for autonomous characterization of
am powder feedstocks. JOM, 69(3):456–465, 2017.

[26] J. Dong and J. A. Stori. Bidirectional scan algorithm for con-
strained feed-rate optimization. Journal of Dynamic Systems, Mea-
surement, and Control, 128:379–390, 6 2006.

[27] J. Dong and J.A. Stori. A generalized time-optimal bidirectional
scan algorithm for constrained feed-rate optimization. Journal

140 BIBLIOGRAPHY

of Dynamic Systems, Measurement and Control, Transactions of the
ASME, 128(2):379–390, 2006.

[28] Jingyan Dong, P.M. Ferreira, and J.A. Stori. Feed-rate opti-
mization with jerk constraints for generating minimum-time tra-
jectories. International Journal of Machine Tools and Manufacture,
47(12–13):1941–1955, 2007.

[29] A.a Doshi, R.T.a Smith, B.H.a Thomas, and C.b Bouras. Use
of projector based augmented reality to improve manual spot-
welding precision and accuracy for automotive manufacturing.
International Journal of Advanced Manufacturing Technology, pages
1–15, 2016.

[30] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgra-
dient methods for online learning and stochastic optimization. J.
Mach. Learn. Res., 12:2121–2159, July 2011.

[31] V. Elia, M.G. Gnoni, and A. Lanzilotto. Evaluating the applica-
tion of augmented reality devices in manufacturing from a pro-
cess point of view: An ahp based model. Expert Systems with
Applications, 63:187–197, 2016.

[32] H.C. Fang, S.K. Ong, and A.Y.C. Nee. Interactive robot trajectory
planning and simulation using augmented reality. Robotics and
Computer-Integrated Manufacturing, 28-2:227–237, 2012.

[33] H.C. Fang, S.K. Ong, and A.Y.C. Nee. Robot path and end-
effector orientation planning using augmented reality. In Procedia
CIRP, volume 3-1, pages 191–196, 2012.

[34] J.G. Ferreira and A. Warzecha. An application of machine learn-
ing approach to fault detection of a synchronous machine. In 2017
International Symposium on Electrical Machines, SME 2017, 2017.

[35] M. Fiorentino, A.E. Uva, M. Gattullo, S. Debernardis, and
G. Monno. Augmented reality on large screen for interactive

BIBLIOGRAPHY 141

maintenance instructions. Computers in Industry, 65(2):270–278,
2014.

[36] David Flanagan and Yukihiro Matsumoto. The ruby programming
language. O’Reilly Media, Inc., 2008.

[37] Y. Fu, Y. Zhang, H. Qiao, D. Li, H. Zhou, and J. Leopold. Analy-
sis of feature extracting ability for cutting state monitoring using
deep belief networks. In Procedia CIRP, volume 31, pages 29–34,
2015.

[38] A. Gasparetto, A. Lanzutti, R. Vidoni, and V. Zanotto. Ex-
perimental validation and comparative analysis of optimal time-
jerk algorithms for trajectory planning. Robotics and Computer-
Integrated Manufacturing, 28(2):164–181, 2012.

[39] WW Gilbert. Economics of machining. Machining theory and
practice, pages 465–485, 1950.

[40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016. http://www.deeplearningbook.org.

[41] Sandra G Hart. Nasa-task load index (nasa-tlx); 20 years later. In
Proceedings of the human factors and ergonomics society annual meet-
ing, volume 50-9, pages 904–908. Sage Publications, 2006.

[42] R. I. Hartley and A. Zisserman. Multiple View Geometry in Com-
puter Vision. Cambridge University Press, ISBN: 0521540518, sec-
ond edition, 2004.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CoRR, abs/1512.03385,
2015.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CoRR, abs/1512.03385,
2015.

142 BIBLIOGRAPHY

[45] N. Higham. Accuracy and Stability of Numerical Algorithms. Soci-
ety for Industrial and Applied Mathematics, 2002.

[46] G. E. Hinton and T. J. Sejnowski. Learning and relearning in
boltzmann machines. In David E. Rumelhart, James L. McClel-
land, and CORPORATE PDP Research Group, editors, Parallel
Distributed Processing: Explorations in the Microstructure of Cogni-
tion, Vol. 1, pages 282–317. MIT Press, Cambridge, MA, USA, 1986.

[47] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A
fast learning algorithm for deep belief nets. Neural Comput.,
18(7):1527–1554, July 2006.

[48] Lei Hou, Xiangyu Wang, Leonhard Bernold, and Peter ED Love.
Using animated augmented reality to cognitively guide assembly.
Journal of Computing in Civil Engineering, 27(5):439–451, 2013.

[49] Javad Jahanpour and Behnam Imani. Real-time P-H curve CNC
interpolators for high speed cornering. The International Journal of
Advanced Manufacturing Technology, 39:302–316, 2008.

[50] Ariacutty Jayendran. CNC machines (CNC Maschinen). In Me-
chanical Engineering, pages 177–192. Teubner, 2006.

[51] N.-M. Jozef, J. Miroslav, and N.-M. Ludmila. Augmented reality
aided control of industrial robots. Advanced Materials Research,
1025-1026:1145–1149, 2014.

[52] Bing-Feng Ju, Xiaolong Bai, Jian Chen, and Yaozheng Ge. Design
of optimal fast scanning trajectory for the mechanical scanner of
measurement instruments. Scanning, 2013.

[53] Serope Kalpakjian, Steven R Schmid, and Chi-Wah Kok. Manu-
facturing processes for engineering materials. Pearson-Prentice Hall,
2008.

[54] Hirokazu Kato. Artoolkit: library for vision-based augmented
reality. IEICE, PRMU, 6:79–86, 2002.

BIBLIOGRAPHY 143

[55] John Lees-Miller. Rucas. https://github.com/jdleesmiller/rucas,
2010. Online; commit: 047a38b541966482d1ad0d40d2549683cf193082.

[56] David G. Lowe. Fitting parameterized three-dimensional models
to images. IEEE Transactions on Pattern Analysis & Machine Intelli-
gence, 1(5):441–450, 1991.

[57] Héctor Martínez, Seppo Laukkanen, and Jouni Mattila. A new
hybrid approach for augmented reality maintenance in scien-
tific facilities. International Journal of Advanced Robotic Systems,
Manuel Ferre, Jouni Mattila, Bruno Siciliano, Pierre Bonnal (Ed.),
ISBN, 1729:8806, 2013.

[58] B.a Meden, S.a Knodel, and S.b Bourgeois. Markerless aug-
mented reality solution for industrial manufacturing. In ISMAR
2014 - IEEE International Symposium on Mixed and Augmented Real-
ity - Science and Technology 2014, Proceedings, pages 359–360, 2014.

[59] A.a Monroy Reyes, O.O.a Vergara Villegas, E.b Miranda Bo-
jórquez, V.G.b Cruz Sánchez, and M.a Nandayapa. A mobile
augmented reality system to support machinery operations in
scholar environments. Computer Applications in Engineering Edu-
cation, 24(6):967–981, 2016.

[60] A.Y.C. Nee and S.K. Ong. Virtual and augmented reality ap-
plications in manufacturing. In IFAC Proceedings Volumes (IFAC-
PapersOnline), pages 15–26, 2013.

[61] Alex Olwal, Jonny Gustafsson, and Christoffer Lindfors. Spa-
tial augmented reality on industrial cnc-machines. In Proc. SPIE,
volume 6804, pages 6804–9, 2008.

[62] S.K. Ong, M.L. Yuan, and A.Y.C. Nee. Augmented reality appli-
cations in manufacturing: A survey. International Journal of Pro-
duction Research, 46(10):2707–2742, 2008.

144 BIBLIOGRAPHY

[63] S.K.b Ong, Y.a Pang, and A.Y.C.a b Nee. Augmented reality
aided assembly design and planning. CIRP Annals - Manufacturing
Technology, 56(1):49–52, 2007.

[64] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic.
Learning and transferring mid-level image representations using
convolutional neural networks. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 6 2014.

[65] E. Ostermeyer, C. Danjou, A. Durupt, and J. Le Duigou. Re-
trieval of manufacturing knowledge using machine learning - a
review. In Advances in Transdisciplinary Engineering, volume 6,
pages 515–521, 2017.

[66] PTC Inc. Product Lifecycle Management (PLM) Software. http:

//www.ptc.com/product-lifecycle-management, 2016. accessed on
April 17, 2018.

[67] H.a b Ramírez, E.a Mendoza, M.a Mendoza, and E.b González.
Application of augmented reality in statistical process control, to
increment the productivity in manufacture. In Procedia Computer
Science, volume 75, pages 213–220, 2015.

[68] F. Rosenblatt. The perceptron: A probabilistic model for infor-
mation storage and organization in the brain. Psychological Review,
pages 65–386, 1958.

[69] Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing.
International Journal of Approximate Reasoning, 50(7):969–978, 2009.

[70] P Schaumlöffel, M Talha, D Gorecky, and G Meixner. Augmented
reality applications for future manufacturing. Proceedings of the 5th
Manufacturing Science and Education-MSE, 1(5):2–5, 2011.

[71] Gerald Schweighofer and Axel Pinz. Robust pose estimation
from a planar target. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(12):2024–2030, 2006.

BIBLIOGRAPHY 145

[72] B. Sencer, Y. Altintas, and E. Croft. Feed optimization for five-
axis CNC machine tools with drive constraints. International Jour-
nal of Machine Tools and Manufacture, 48(7–8):733–745, 2008.

[73] Amedeo Setti, Paolo Bosetti, and Matteo Ragni. Artool - aug-
mented reality platform formachining setup and maintenance.
In Proceedings of SAI Intelligent Systems Conference (Intellisys) 2016,
volume 2, pages 273–281. Springer, 8 2017.

[74] Zvi Shiller. On singular time-optimal control along specified
paths. IEEE Transactions on Robotics and Automation, 10(4):561–566,
1994.

[75] Christopher Smith, Aaron Meurer, Mateusz Paprocki, et al.
Sympy 1.0. https://doi.org/10.5281/zenodo.47274, 2016. Online;
accessed: 2016-10-15.

[76] Suk-Hwan Suh, Seong Kyoon Kang, Dae-Hyuk Chung, and Ian
Stroud. Theory and Design of CNC Systems. Springer Series in
Advanced Manufacturing. Springer, 1st edition, 2008.

[77] F.a Suárez-Warden, E.G.a Mendívil, H.b Ramírez, L.E.b
Garza Nájera, and G.b Pantoja. Mill setup manual aided by aug-
mented reality. In Mechanisms and Machine Science, volume 25,
pages 433–441, 2015.

[78] A.a Syberfeldt, O.a Danielsson, M.a Holm, and L.a b Wang. Dy-
namic operator instructions based on augmented reality and rule-
based expert systems. In Procedia CIRP, volume 41, pages 346–351,
2016.

[79] Dassault Systems. Solidworks Model Based Definitions.
http://www.solidworks.it/sw/products/technical-communication/

packages.htm, 2016. accessed on April 17, 2018.

[80] Kazuaki Tanaka, Avinash Dev Nagumanthri, and Yukihiro Mat-
sumoto. mruby–rapid software development for embedded sys-

146 BIBLIOGRAPHY

tems. In 15th International Conference on Computational Science and
Its Applications (ICCSA), pages 27–32. IEEE, 2015.

[81] Technical Committee : ISO/IEC JTC 1/SC 22. ISO/IEC 30170 –
Information technology – Programming languages – Ruby. Stan-
dard, International Organization for Standardization, Geneva,
CH, 4 2000.

[82] H. Tercan, T.A. Khawli, U. Eppelt, C. Büscher, T. Meisen, and
S. Jeschke. Improving the laser cutting process design by machine
learning techniques. Production Engineering, 11(2):195–203, 2017.

[83] John E Tolsma and Paul I Barton. On computational differentia-
tion. Computers & chemical engineering, 22(4):475–490, 1998.

[84] Guido Van Rossum and Fred L Drake. The Python language refer-
ence manual. Network Theory Ltd., 2011.

[85] B. Van Stein, M. Van Leeuwen, H. Wang, S. Purr, S. Kreissl,
J. Meinhardt, and T. Back. Towards data driven process control in
manufacturing car body parts. In Proceedings - 2016 International
Conference on Computational Science and Computational Intelligence,
CSCI 2016, pages 459–462, 2017.

[86] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and
M. Diehl. Time-energy optimal path tracking for robots: a numer-
ically efficient optimization approach. In Advanced Motion Control,
2008. AMC ’08. 10th IEEE International Workshop on, pages 727–732,
3 2008.

[87] N.a Vignais, M.b Miezal, G.b Bleser, K.c Mura, D.c Gorecky, and
F.a Marin. Innovative system for real-time ergonomic feedback in
industrial manufacturing. Applied Ergonomics, 44(4):566–574, 2013.

[88] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer
algebra. Cambridge university press, 2013.

BIBLIOGRAPHY 147

[89] Andreas Wächter and Lorenz T. Biegler. On the implementation
of an interior-point filter line-search algorithm for large-scale non-
linear programming. Mathematical Programming, 106:25–57, 2006.

[90] Andreas Wächter and Carl Laird. Ipopt-an interior point opti-
mizer. https://projects.coin-or.org/Ipopt, 2009. Online; accessed:
2016-11-28.

[91] Xiangyu Wang, Peter ED Love, Mi Jeong Kim, Chan-Sik Park,
Chun-Pong Sing, and Lei Hou. A conceptual framework for in-
tegrating building information modeling with augmented reality.
Automation in Construction, 34:37–44, 2013.

[92] ZB Wang, SK Ong, and AYC Nee. Augmented reality aided
interactive manual assembly design. The International Journal of
Advanced Manufacturing Technology, 69(5-8):1311–1321, 2013.

[93] Bertram Eugene Warren. X-ray Diffraction. Courier Corporation,
1969.

[94] J André C Weideman. Numerical integration of periodic func-
tions: A few examples. The American mathematical monthly,
109(1):21–36, 2002.

[95] K. Weinert, A. Zabel, E. Ungemach, and S. Odendahl. Im-
proved nc path validation and manipulation with augmented re-
ality methods. Production Engineering, 2(4):371–376, 2008.

[96] Tomasz Wójcicki. Supporting the diagnostics and the mainte-
nance of technical devices with augmented reality. Diagnostyka,
15(1):43–47, 2014.

[97] D. Wu, C. Jennings, J. Terpenny, R.X. Gao, and S. Kumara.
A comparative study on machine learning algorithms for smart
manufacturing: Tool wear prediction using random forests. Jour-
nal of Manufacturing Science and Engineering, Transactions of the
ASME, 139(7), 2017.

148 BIBLIOGRAPHY

[98] Xun Xu. Machine tool 4.0 for the new era of manufactur-
ing. The International Journal of Advanced Manufacturing Technology,
92(5):1893–1900, Sep 2017.

[99] J. Zhang, S.K. Ong, and A.Y.C. Nee. A multi-regional computa-
tion scheme in an ar-assisted in situ cnc simulation environment.
CAD Computer Aided Design, 42(12):1167–1177, 2010.

[100] Ke Zhang, Chun-Ming Yuan, Xiao-Shan Gao, and Hongbo Li.
A greedy algorithm for feedrate planning of CNC machines along
curved tool paths with confined jerk. Robotics and Computer-
Integrated Manufacturing, 28(4):472–483, 2012.

Personal Bibliography

[MR1] Enrico Bertolazzi, Francesco Biral, and Matteo Ragni. Gtoc
9: Results from university of trento (team elfman). Acta
Futura, (11):79–90, jan 2018.

[MR2] Paolo Bosetti and Matteo Ragni. Milling part-program pre-
processing for jerk-limited, minimum-time toolpaths based
on optimal control theory. SAMCON 2015, 3 2015.

[MR3] Paolo Bosetti and Matteo Ragni. Milling part program pre-
processing for jerk-limited, minimum-time tool paths based
on optimal control theory. IEEJ Journal of Industry Applica-
tions, 5(2):53–60, 2016.

[MR4] Paolo Bosetti, Matteo Ragni, and Matteo Leoni. Modern
machine-learning tools for crystallography. 73:C562–C562,
12 2017.

[MR5] Laura Lugli, Matteo Ragni, Laura Piccardi, and Raffaella
Nori. Hypermedia navigation: Differences between spatial
cognitive styles. Computers in Human Behavior, 66:191–200,
2017.

[MR6] Matteo Ragni. Avionic perception-action model for uav
aimed at avalanche buried searching. In Genova Univer-
sity Press, editor, Conference procedings AIMETA 2015 - XXII
Conference - The Italian Association of Theoretical and Applied
Mechanics, volume 1, page 311, 9 2015. Abstract.

[MR7] Matteo Ragni. Mr.CAS: A minimalistic (pure) ruby cas for
fast prototyping and code generation. SoftwareX, 6:128–134,
2017.

149

150 PERSONAL BIBLIOGRAPHY

[MR8] Matteo Ragni, Matteo Perini, Amedeo Setti, and Paolo
Bosetti. Artool zero: Programming trajectory of touch-
probes using augmented reality. Computers and Industrial
Engineering (IN REVIEW - not yet published), 2017.

[MR9] Emilio Sanfilippo, Ferruccio Mandorli, Claudio Masolo, and
Matteo Ragni. The interplay between shape and feature rep-
resentation. In Joint Ontology Workshops 2017 - SHAPES 4.0,
9 2017.

[MR10] Amedeo Setti, Paolo Bosetti, and Matteo Ragni. ARTool—
Augmented Reality Human-Machine Interface for Machining
Setup and Maintenance, pages 131–155. Springer Interna-
tional Publishing, Cham, 2018.

[MR11] Amedeo Setti, Paolo Bosetti, and Matteo Ragni. ARTool-
Augmented Reality Platform for Machining Setup and Main-
tenance, pages 457–475. Springer International Publishing,
Cham, 2018.

[MR12] Andrea Zignoli, Matteo Ragni, Alessandro Fornasiero, Paul
Laursen, Federico Schena, and Francesco Biral. Estimating
oxygen uptake in cycling using neural network analysis of
easy-to-obtain inputs. In Springer Verlag Italia, editor, Sport
Sciences for Health Sismes IX National Congress, volume 13,
page 50, 9 2015.

