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Abstract 

Deep learning, a branch of machine learning, has been gaining ground in many research fields as well as 

practical applications. Such ongoing boom can be traced back mainly to the availability and the 

affordability of potential processing facilities, which were not widely accessible than just a decade ago 

for instance. Although it has demonstrated cutting-edge performance widely in computer vision, and 

particularly in object recognition and detection, deep learning is yet to find its way into other research 

areas. Furthermore, the performance of deep learning models has a strong dependency on the way in 

which these latter are designed/tailored to the problem at hand. This, thereby, raises not only precision 

concerns but also processing overheads. The success and applicability of a deep learning system relies 

jointly on both components. In this dissertation, we present innovative deep learning schemes, with 

application to interesting though less-addressed topics.  

In this respect, the first covered topic is rough scene description for visually impaired individuals, whose 

idea is to list the objects that likely exist in an image that is grabbed by a visually impaired person, To 

this end, we proceed by extracting several features from the respective query image in order to capture 

the textural as well as the chromatic cues therein. Further, in order to improve the representativeness of 

the extracted features, we reinforce them with a feature learning stage by means of an autoencoder model. 

This latter is topped with a logistic regression layer in order to detect the presence of objects if any. 

In a second topic, we suggest to exploit the same model, i.e., autoencoder in the context of cloud removal 

in remote sensing images. Briefly, the model is learned on a cloud-free image pertaining to a certain 

geographical area, and applied afterwards on another cloud-contaminated image, acquired at a different 

time instant, of the same area. Two reconstruction strategies are proposed, namely pixel-based and patch-

based reconstructions.  

From the earlier two topics, we quantitatively demonstrate that autoencoders can play a pivotal role in 

terms of both (i) feature learning and (ii) reconstruction and mapping of sequential data.  

Convolutional Neural Network (CNN) is arguably the most utilized model by the computer vision 

community, which is reasonable thanks to its remarkable performance in object and scene recognition, 

with respect to traditional hand-crafted features. Nevertheless, it is evident that CNN naturally is availed 

in its two-dimensional version. This raises questions on its applicability to unidimensional data. Thus, a 

third contribution of this thesis is devoted to the design of a unidimensional architecture of the CNN, 

which is applied to spectroscopic data. In other terms, CNN is tailored for feature extraction from one-

dimensional chemometric data, whilst the extracted features are fed into advanced regression methods to 

estimate underlying chemical component concentrations. Experimental findings suggest that, similarly 

to 2D CNNs, unidimensional CNNs are also prone to impose themselves with respect to traditional 

methods.    

The last contribution of this dissertation is to develop new method to estimate the connection weights of 

the CNNs. It is based on training an SVM for each kernel of the CNN. Such method has the advantage 

of being fast and adequate for applications that characterized by small datasets.  
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1.1. Deep Neural Networks 

Machine learning is a study field of artificial intelligence (AI) that enables systems to automatically 

learn and improve from experience without or with little explicit human interference. It focuses on the 

development of computer programs that can acquire data and build models in order to make better 

decisions according to prior observations or data records.  

According to the adopted learning way, machine learning methods are usually categorized as being 

either supervised or unsupervised. In supervised learning, a model at hand is learned on a certain data 

along with its respective labels. Thus, once a model is learned on known data, it can be further fed with 

another set of data whose labels are unknown. In unsupervised learning, however, prior labels are 

inaccessible or accessible but unimportant for the application being addressed. This latter, thus, consists 

in studying how systems can infer functions to define hidden structures from unlabeled data. Semi-

supervised learning is another direction whose aim is to exploit a small-sized label data and a large-sized 

unlabeled data. 

A close look at the recent literature would tell that a big focus is being oriented towards deep 

learning. By contrast to traditional Neural Networks, various layers of neurons in deep learning perform 

a hierarchical learning of the data representation via non-linear transformations. In other words, the data 

is passed cumulatively across a long chain of layers (thus, the description deep), where each layer can be 

fully or partially connected to the preceding one. 

Although deep architectures have long existed, the term “deep learning” was first introduced in 

2006 by Hinton et al.  [1], where they showed that a multilayer feedforward neural network can be more 

efficient by applying pretraining of one layer at a time and considering each layer as an unsupervised 

Restricted Boltzmann Machine (RBM), by using supervised back propagation for finetuning. One year 

later, Bengio et al. [2] developed the Stacked AutoEncoder (SAE), which is a deep architecture based on 

the concatenation of many AutoEncoders (AEs). Each AE has three layers, one visible layer (input), one 

hidden layer and one reconstruction layer with similar size as the input. Another famous deep architecture 

is the Convolutional Neural Network (CNN) [3]. CNNs are generally composed of many layers, where 

each layer has two parts, one for convolution (filtering) and one for pooling (subsampling). The chain of 

convolutional/pooling layers is normally concluded by a regression layer (e.g., logistic regression) in 

order to discern the class label of the image/object presented as input to the network. CNNs are shaped 

in a 2D structure, which offers the advantage of directly processing the raw images. This can be achieved 

with local connections and tied weights followed by subsampling. Yet, it is evident that deep models in 

general, and CNNs in particular, undergo a heavy processing, which demands highly powerful 

computation machines. 

Figure 1-1, Figure 1-2 and Figure 1-3 show examples of architectures of a RBM, an AE and a 

CNN. 
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Figure 1-1: Example of a Restricted Boltzman Machine network. 

 

Figure 1-2: Example of an AutoEncoder network. 

 

Figure 1-3: Example of a simple CNN architecture. 
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1.2. Applications and Open Issues 

Deep learning techniques have been suggested to solve problems related to diverse research fields. 

For instance, in robotics, CNN was used in order to recognize the category and estimate the pose of 

garments hanging from a single point [4] and for real-time human detection with a feature-based layered 

pre-filter [5]. On the other hand, SAE was used for dimension reduction and combined with particle filter 

for real-time humanoid robot imitation [6]. In the remote sensing field, Huang et al. [7] proposed a new 

pan-sharpening method based on SAEs to address the remote sensing image fusion problem. Tang et al. 

[8] propose a method for ship detection based on a Stacked Denoising Autoencoder (SDA) for 

hierarchical ship feature extraction in the wavelet domain and extreme learning machine (ELM) for 

feature fusion and classification. Chen et al. [9] combine SAEs with principal component analysis (PCA) 

to learn deep features of hyperspectral images, they propose to extract spatial dominated information for 

the classification and use the PCA to reduce the large input dimension. A logistic regression is used as 

output layer for the classification. Fang et al. [10] use CNNs for scene classification, CaffeNet [11] is 

used as pretrained model in the classification architecture and finetuning is applied to the pretrained 

model in order to tailor it to scene classification. Regarding problems of detection and recognition, deep 

learning was widely used to solve problems of different nature such as speech recognition [12]-[14], face 

recognition [15]-[18], traffic signs [19]-[21], pedestrian detection and recognition [22]-[24] and detection 

of various objects [25]-[28]. In the biomedical field, RBM and SAEs were used to solve problems of 

abnormalities detection and classification of Electrocardiogram signals (ECG) [29]-[32], 

Electroencephalogram signals (EEG) [33]-[35], Electrooculogram signals (EOG) [36]-[37] and 

Electromyogram signals (EMG) [38]. 

Accordingly, from the state-of-the-art reported so far, it is possible to make out that deep learning 

has established a solid ground in many applications, but in fact still scarcely explored in others. This 

could be traced back to the fact that deep learning methods are all based on a neural network architecture, 

and the major objective is to extract high level features in order to apply them for classification problems. 

To the best of our knowledge so far, all the contributions focus on the single object (class) recognition. 

That is to say, all the approaches focus on the recognition of one specific category of objects. The problem 

of multilabeling classification was addressed before in machine learning and can be grouped in two 

categories. The first category, known as a binary relevance (BR) approach, is based on reducing the 

initial multilabel classification problem into multiple independent binary classification tasks and each 

classifier is trained on one class label [39]-[42]. However, such methods are characterized by the high 

computational costs and also the incapability to identify the correlation between the different classes. By 

contrast, in for the second category, methods revise and adapt the output formula of the classifier for a 

multilabel learning problem without the need to transform it into single-label sub-problems. For instance, 

AdaBoost.MH [43] is adapted from AdaBoost by minimizing Hamming loss and Support Vector 

Machine (SVM) is revised into Rank-SVM [44] by defining a new approach based on ranking method 

combined with the predictor. 
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A second argument constituting this dissertation relates to remote sensing, where only several 

recent works deal with the problem of clouds based on a deep learning approach [45]-[46]. For instance, 

all focus on the problem of cloud detection, whilst none, to the best of our awareness, tried to solve the 

problem of removing clouds and reconstructing the missing area (the area obscured by clouds). Such 

contribution can bring benefits for many applications, especially with those which deal with 

multitemporal images. 

Another important field of research is chemometrics analyses from spectroscopic data. Usually 

researchers use reference methods of regression such as partial least squares regression (PLS regression), 

support vector machines for regression (SVR) and Gaussian process regression (GPR) in order to 

estimate the concentration of chemical components of interest in a given product. By introducing deep 

learning, chemometrics can benefit from the advantages that deep methods can provide, especially the 

capacity of extracting highly discriminative features. 

The last concern of this dissertation relates to the manner that deep methods, especially CNNs, 

estimate the parameters of the network. As a matter of fact, they are all based on the back propagation of 

errors, which requires big training data and numerous iterations to converge to a satisfactory solution. 

Such situation involves the need for sophisticated hardware and long processing time. Thus, it would be 

of particular interest to find another solution to train the network in order to overcome such inconvenient 

and even handle small training datasets.       

1.3. Thesis Objectives, Solutions and Organization 

As mentioned earlier, deep learning was used in many research fields and applications and brought 

important improvements and contributions. However, in some application issues, deep learning methods 

cannot necessarily be directly applied as they may need some modification and improvement to be suited 

to the considered problems. To this end, we propose to use deep methods to solve problems related to (i) 

multilabel classification for scene description for the visually impaired (VI) people, (ii) reconstructing 

areas obscured by clouds in multispectral images, and (iii) chemometric analysis from spectroscopic data.  

Regarding the first problem, the overwhelming majority of existing systems and prototypes pay 

attention to assisted navigation and obstacle avoidance whilst neglecting the evidently important need of 

object recognition. While only several solutions have been presented for assisted object recognition for 

VI individuals, they mainly remain focused on detecting a single object at once. To deal with this 

problem, we propose a new real-time method to describe the surrounding environment for a blind person 

based on a coarse image description strategy. i.e. provide the list of objects most likely existing in the 

scene regardless of their location. This method is based on extracting low-level features from the query 

image that is acquired by the VI user via an optical camera. The feature selected are: Local Binary Pattern 

(LBP), Histogram of Oriented Gradient (HOG) and Bag of Words (BoW). Those features are fed to an 

AutoEncoder Neural Network (AE) in order to extract more discriminative features (high-level features). 
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Once generated, the new features are fed into a logistic regression layer using a multilabeling strategy as 

to draw the final outcomes highlighting the objects present in the image of interest.  

For the problem of cloud removal and consequent reconstruction of obscured areas in multispectral 

images, we propose to exploit the strength of the AE networks in the reconstruction phase to restore the 

missing data. Suppose we have two satellite images of the same area, taken at two different times. Let 

the first be the cloud-free image (reference image) and the second be the cloud-contaminated image 

(target image), the AE learning will be slightly modified in such a way that, rather than supposing that 

the output layer (the reconstruction layer) is equal to the input layer, we consider here that the output is 

constituted of pixels from the target image, and their corresponding pixels on the reference image are 

used as input. In other words, we try to find the essential mapping function between the reference and 

the target images using the AE.  

Concerning the question of chemometrics analyses from spectroscopic data, we propose to profit 

from the advantages of CNNs in extracting high discriminative features from images to apply them on 

spectroscopic data. Since the concerning data is of one-dimensional nature, the architecture of the CNN 

is modified and adapted to fulfill spectroscopic data requirements. In particular, filtering and pooling 

operations as well as equations for training are revisited. Furthermore, we propose to use the particle 

swarm optimization (PSO) method to train the 1D-CNN. 

As per the last concern of this thesis, we propose a new method to calculate the weights of the CNN 

kernels. The method consists in training an SVM for each kernel in the CNN. The advantage of this new 

way of training is the possibility to use small training dataset while retaining a satisfactory performance 

of the network. Furthermore, the training is applied in one pass i.e., just one iteration, which renders it 

so fast compared to conventional CNNs.    

The remainder of this dissertation is outlined as follows. Chapter 2 describes the multilabeling 

method using the AEs to describe the indoor environment for VI persons. In chapter 3, we give details 

about the proposed method to reconstruct a missing area covered by clouds in multispectral images using 

AEs. Chapter 4 details the developed 1D-CNN for chemometric data analysis. In Chapter 5, we present 

the developed SVM_CNN for multilabel classification. Finally, Chapter 6 concludes the thesis and gives 

suggestions for possible future improvements.  

Finally, we would like to mention that, although deep learning constitutes a denominator of all the 

addressed topics in this thesis, the applications remain conceptually distinct. Thus, the following chapters 

were conducted independently. That is, each chapter is self-contained, which eases access to the reader 

and removes the need of keeping track of the chapters in a sequential order. Nevertheless, we suppose 

that the reader is familiar with typical concepts related to computer vision and machine learning. 

Otherwise, the reader is recommended to consult the references provided in each chapter. 
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2.1. Introduction  

Strolling around, adjusting the walking pace and bodily balance, perceiving nearby or remote 

objects and estimating their depth, are all effortless acts for a well-sighted person. That is, however, 

hardly doable for other portions in society, such as individuals with certain cases of handicap, or visual 

impairment, which may require different forms of substantial training, and in many situations external 

physical and/or verbal intervention as to ease their mobility. In dealing with that, numerous attempts at 

different governmental, institutional, as well as societal spheres have been taking place. 

One assistive line, ought to be undertaken by various research institutions, is the providence of 

either technological designs or end-user products that can help bridging the gap between the conditions 

being experienced by such disabled people and their expectations. As per the physically handicapped 

category, a well-established amount of rehabilitation (particularly robotic-based) layouts has been 

developed so far. However, when it comes to blindness rehabilitation technologies, relatively fewer 

attentions have been drawn in the relevant literature. As a side note, depending upon the severity of sight 

loss, vision disability is an umbrella term that encompasses a wide range of progressively inclusive cases, 

since it could be diagnosed as a: (i) mild impairment, (ii) middle-range impairment, (iii) severe 

impairment, and ends up to the unfortunate (iv) full blindness. Full sight loss is therefore a serious 

disability that entails far-reaching ramifications, as it blocks in many cases, the affected individual from 

conducting his/her daily routines smoothly. 

In order to enable the visually disabled persons to move around more easily, several contributions 

have been proposed in the literature, which are commonly referred to as Electronic Travel Aids (ETAs). 

By and large, the current ETA methodologies can be identified according to two distinct but 

complementary aspects, namely: (i) mobility and navigation assistance, that undertakes as a goal assisting 

visually disabled people to autonomously walk around with the possibility to sense nearby obstacles, and 

avoid potential collisions thereby, and (ii) object recognition, whose underlying motive is to aid them 

recognize objects. 

Regarding the mobility and obstacle avoidance part, a reasonable amount of works has been put 

forth thus far. Pundlik et al. [1], for instance, developed a collision detection approach based on a body-

mounted camera for visually impaired (VI) people. They proceed by computing the sparse optical flow 

in the acquired videos and make use of a gyroscopic sensor to estimate the camera rotation. The collision 

risk is then estimated from the motion estimates. In another work, Balakrishnan et al. [2], presented a 

system to detect obstacles. The blind individual carries two small cameras mounted on sunglasses. From 

the captured pair of images, the disparity map is generated and the distances of the objects to the cameras 

are estimated, which allow for a further decision whether the objects lying ahead of the user make a 

potential threat. Another navigation aid, named the guide cane, was introduced in [3], which comprises 

a wheeled housing supplied with a set of ultrasonic sensors, a handle to guide the cane through, and a 

processing core that processes the ultrasonic signals emitted by the sensors as to infer whether an object 
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is present along the walking path. The concept of the ultrasonic sensors is that they simultaneously emit 

beams of signals, which in case of obstacles if any, are reflected back. The distance to the obstacles is 

then deduced based on the time lapse between emission and reflection (commonly termed as time of 

flight − TOF). The same concept was adopted in [4], where the sensors are placed on a wearable belt 

instead. Another similar work was put forth in [5]. In this work, the sensors were placed on the shoulders 

of the user as well as on a guide cane. Another unique contribution proposes exploiting electromagnetic 

signals instead of ultrasonic ones by using a widespread antenna [6]. However, the capacity of the 

proposed prototype is limited to 3 m ahead of the user. Having a close look at the literature, it emerges 

clearly that TOF-based concepts have often been employed and exhibited promising outcomes. The 

apparent downsides of such methodologies, however, are mainly confined to the dimensions as well as 

weight of the developed prototypes on the one hand, which may compromise the user’s convenience, and 

the demanding power consumption (i.e., constant emission/reception of ultrasonic signals) on the other 

hand. 

Regarding the object recognition aspect, introspectively far less contributions can be observed. 

This might be traced back to the reason that object recognition for the blind might be a harder task to 

fulfil as compared to navigation and object avoidance. In other words, mobility and object avoidance 

does not pay attention to the kind of potential objects but to their presence instead, whilst object 

recognition emphasises on the nature of the nearby objects (i.e., not only their existence). Furthermore, 

recognizing objects, in camera-shot images, might come at the cost of several challenges such as rotation, 

scale, and illumination variations, notwithstanding the necessity to carry out such task in a brief time 

lapse. Nevertheless, different computer-vision techniques have been tailored to tackle this issue. In [7], 

for instance, a food product recognition system in shopping spaces was proposed. It relies on detecting 

and recognizing the QR codes of food items by means of a portable camera. Another work considers 

detecting and recognizing bus line numbers for the VI [8]. Banknote recognition has also been addressed 

in [9]. Staircases, doors, and indoor signage detection/ recognition have been considered in [10–12]. In 

[13], the authors developed a prototype composed of ultrasonic sensors and a video camera, which is 

embedded in a smartphone for a real-time obstacle detection and classification. They first extract FAST 

feature points from the image and track them with a multiscale Lucas-Kanade algorithm. Then, in the 

classification phase, a Support Vector Machine was used to detect one of the four objects defined a priori. 

Consequently, it can be observed that the scarce amount of works that have been devoted to assisted 

object recognition for the VI so far, emphasize on detecting/recognizing single classes of objects. On this 

point, it is believed that extending the process into a multiobject recognition is prone to provide a richer 

description for the VI people. 

Subsequently, posing the case of multiobject recognition in general, the mainstream research line 

suggests designing as many models as the number of objects of interest and then run those learned models 

on a given query image as to discern its potential object list. Such paradigm could be of notable 

efficiency, but it is achievable at the cost of prohibitively large processing overheads, which is not a wise 

choice if undertaken in the context of assistive recognition for the VI people. Departing from this 
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limitation, Mekhalfi et al. [14] introduced a novel approach called coarse description, which operates on 

portable camera-grabbed images by listing the objects existing in a given nearby indoor spot, irrespective 

of their location in the indoor space. Precisely, they proposed Scale Invariant Feature Transform (SIFT), 

Bag of Words (BOW), and Principal Component Analysis (PCA) strategies as a means of image 

representation. For the sake of furthering the performance of their coarse image description, they 

suggested another scheme, which exploits Compressive Sensing (CS) theory for image representation 

and a semantic similarity metric for image likelihood estimation through a bunch of learned Gaussian 

Process Regression (GPR) models, and concluded that a trade-off between reasonable recognition rates 

and low processing times can be maintained [15]. 

In this Chapter, we propose a new method to describe the surrounding environment for a VI person 

in real-time. We use Local Binary Pattern (LBP) technique, Histogram of Oriented Gradient (HOG) and 

BOW to describe coarsely the content of the image acquired via an optical camera. In order to improve 

the state of the art results and deal properly with runtime, we propose to use a deep learning approach, in 

particular an Auto Encoder Neural Network (AE), to create a new high-level feature representation from 

the previous low-level features (HOG, BoW and LBP). Once generated, the new feature vectors are fed 

into a logistic regression layer using a multilabeling strategy as to draw the objects present in the image 

of concern. This work is a part of a project to guide a VI person in an indoor environment. As validated 

by the experimental setup, tangible recognition gains and significant speedups have been scored with 

respect to recent works. 

In what follows, Section 2.2 recalls the coarse scene description in brief. Section 2.3 provides short 

but self-contained conceptual backgrounds of the different methodologies employed for image 

representation. Section 2.4 outlines the image multilabeling pipeline, which is meant for coarse 

description. In Section 2.5, we quantify the recognition rates and the processing time and discuss the 

different pros and cons of the proposed method in the context of indoor scene description. Finally, 

conclusions are given in Section 2.6. 

2.2. Coarse Description 

As mentioned earlier, the key idea is to sacrifice the objects’ coordinates across the indoor space 

with the processing requirements, so as to render the recognition process faster yet more convenient for 

(at least near) real-time scenarios. In this respect, a coarse description of images captured in an indoor 

environment is adopted. The principle of this approach consists in checking the presence/absence of 

different objects, which were determined a priori, and turns out to convey the list of the objects that are 

most likely present in the scene. This approach is based on the multilabeling strategy by creating a binary 

vector (vector of labels). This vector, as shown in Figure 2-1, indicates which objects are present/absent 

in its corresponding image. In the training phase, a set of images are captured from the indoor 

environment and stored with their binary vector. In the classification phase, the proposed method gives 

in output a multilabel vector referring to the list of existing objects in the scene. This new representation 

aims to enhance the perception of the VI individual regarding the surrounding environment. 
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Figure 2-1: Binary descriptor construction for a training image. 

2.3. Tools and Concepts 

Let us consider a colour image X acquired by a portable digital camera in an indoor environment. 

Due to several inherent properties of the images, such as illumination, rotation and scale changes, the 

images cannot be used in their raw form but need to be transformed into an adequate feature space that 

is able to capture the spatial as well as the spectral variations. Such objective can normally be addressed 

from three perspectives, namely: (i) shape information, (ii) colour information, and (iii) textural changes. 

On this point, adopting one feature modality while omitting the others may drop the robustness of the 

classification algorithm being developed. We therefore resort to a more efficient representation, by 

making use of all three feature modalities. Precisely, we opt for reputed feature extractors. The first one 

is the HOG [16] to feature the different shapes distributed over the images. The second one is the BOW 

[17] based on colour information of the different chromatic channels (BOW_RGB). Finally, the LBP 

technique in order to express the textural behaviour of the images. As a matter of fact, all the mentioned 

features can yield interesting results, and this has been documented by previous works, mainly related to 

object, texture recognition, biometrics as well as remote sensing. In order to further boost their 

representativeness, we also put forth a feature learning scheme that maps the original feature vectors 

(derived by means of either feature type mentioned above) onto another lower/higher feature space that 

offers a better feature representation capability. A well-established feature learning model is the Stacked 

AutoEncoder (SAE) neural network, or simply AutoEncoder (AE), which constructs a model learned on 

features pertaining to training images, and then applies it on a given image in order to produce a final 

image representation. 

The final step of the proposed image multilabeling method is the classification of the generated 

features. This step is performed by appending a logistic regression layer (LRL) to the top of the network. 

The general diagram of the multilabeling procedure is depicted in Figure 2-2. The following subsections 

are dedicated to provide basic elaborations of the feature extraction and learning methodologies. 
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Figure 2-2: Pipeline of the feature learning-based image multilabeling scheme. 

2.3.1 Histogram of Oriented Gradient 

The HOG was initially aimed at pedestrian detection [16]. Soon later, it was utilized in other 

applications ranging from object recognition and tracking to remote sensing [18,19]. The basic idea of 

the HOG is to gather the gradient variations across a given image. Basically, this can be done by dividing 

the image into adjacent small-sized areas, called cells, and calculating the histograms of the 

magnitudes/directions of the gradient for the pixels within the cell. Each pixel of the cell is then assigned 

to one of the bins of the histogram, according to the orientation of the gradient at this point. This 

assignment is weighted by the gradient of the intensity at that point. Histograms are uniform from either 

0 to 180° (unsigned case) or from 0 to 360° (signed case). Dalal and Triggs [16] point out that a fine 

quantization of the histogram is needed, and they get their best results with a 9-bin histogram. The 

combination of the computed histograms then forms the final HOG descriptor. 

2.3.2 Bag of Visual Words 

The BOW is a very popular model in the general computer vision literature. It is usually adopted 

for its notable property of promoting a concise but rich representation of a generic image. BOW 

signatures are generally reproduced from a certain feature space of the images, it can be the spectral 

intensities or alternatively keypoint-based descriptors derived from the images. The BOW is opted for in 

our work in order to produce a compact representation of the colour attributes of an image. We therefore 

depart from the chromatic (Red, Green, and Blue channels) values of the images. At first, a basis 

commonly referred to as codebook is established by gathering all the spectral features of the training 

images into a matrix. Afterwards, we apply a clustering technique i.e., the K-means clustering, on the 

built matrix to narrow down its size, which points out a small-sized basis (codebook). Next, the 

occurrences of the elements (words) of the codebook are observed in the chromatic space of a given 

image, which turns out to generate a compact histogram whose length equals to the number of the 

codebook’s words. For a more detailed explanation, the reader is referred to [14,17]. 

2.3.3 Local Binary Pattern (LBP) 

Texture is a very important information that can play a key-role in characterizing images and their 

objects. One of the most popular techniques in this regard is the Local Binary Pattern (LBP) which is a 

multiresolution, gray-scale, and rotation invariant texture representation. It was first proposed by Ojala 

et al. [20] and then improved by Guo et al. [21] who introduced a variant called Completed Local Binary 

Pattern (CLBP), followed by many other variants. The following part gives a brief review about the basic 
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LBP operator. Given a pixel in the image z(u, v) its LBP code is computed by comparing its intensity 

value to the values of its local neighbours: 

𝐿𝐵𝑃𝑃,𝑅(𝑢, 𝑣) =  ∑ 𝐻(z(𝑢, 𝑣) − z(𝑢𝑝, 𝑣𝑝))2𝑝𝑃−1
𝑝=0         (2.1) 

where z(𝑢𝑝, 𝑣𝑝) is the grey value of its pth neighbouring pixel, P is the total number of neighbours, R is 

the radius of the neighbourhood and H(∙) is the Heaviside step function. 

The coordinates of the neighbour z(𝑢𝑝, 𝑣𝑝) are: 𝑢𝑝 = 𝑢 + 𝑅cos (
2π𝑝

𝑃
) and 𝑣𝑝 = 𝑣 − 𝑅sin (

2π𝑝

𝑃
). If 

the neighbors do not fall at integer coordinates, the pixel value is estimated by interpolation. Once the 

LBP label is constructed for every pixel z(𝑢, 𝑣) ∈ ℛi, a histogram is generated to represent the texture 

region as follows: 

𝐻𝑖𝑠𝑡(𝑘) = ∑ ∑ 𝛿(𝐿𝐵𝑃𝑃,𝑅(𝑢, 𝑣), 𝑘)𝑣 , 𝑘 ∈ [0, 𝑁𝑏𝑖𝑛𝑠]𝑢      (2.2) 

where 𝑁𝑏𝑖𝑛𝑠 is the number of bins and δ is the delta function. 

In order to give more robustness for LBP and make it more discriminative, a similar strategy to the 

HOG method is applied. First, the image is divided into cells and the LBP is calculated for each cell. 

Then, the computed LBPs are combined to form the final LBP descriptor. 

2.3.4 AutoEncoder Networks (AE) 

The AE is at the basis a neural network architecture characterized by one hidden layer. It has then 

three layers, one visible layer of size n, one hidden layer of d nodes and one reconstruction layer with n 

nodes. Let  𝐱 ∈ ℛ𝑛 be the input vector, 𝐡 ∈ ℛ𝑛  the output of the hidden layer and �̂� ∈ ℛ𝑛 the output of 

the AE (reconstruction of 𝐱). d can be inferior or superior to n. In the former case (i.e., d < n), the AE 

performs feature reduction. In the latter case, however, it performs an over-complete representation [22]. 

As can be shown in Figure 2-3, the output of the hidden and reconstruction layers can be calculated 

using the following equations: 

𝐡 = 𝑓(𝐖𝐱 + 𝐛)          (2.3) 

�̂� = 𝑓(𝐖′𝐡 + 𝐛′)          (2.4) 

Where f(.) is a non-linear activation function, 𝐖 and 𝐛 are the d × n weight matrix and the bias vector of 

dimension d of the encoding, and 𝐖′ and 𝐛′ are the n × d weight matrix and the bias vector of dimension 

n of the decoding part. 

The parameters (𝐖, 𝐖′, 𝐛 and 𝐛′) can be estimated by minimizing a cost function through a back-

propagation algorithm [23]: 
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argmin
𝐖,𝐖′,𝐛,𝐛′

[ 𝐿(𝐱, �̂�)]          (2.5) 

The loss function 𝐿(𝐱, �̂�) adopted in this work is the squared error i.e., ‖𝐱 − �̂�‖2. After finding the 

optimal values of weights and biases, we proceed by removing the last layer (i.e., reconstruction) with 

its corresponding parameters (𝐖′ and 𝐛′). The layer ‘h’ therefore contains a new feature representation, 

which can be directly used as inputs into a classifier, or alternatively fed into another higher layer to 

generate deeper features. 

In our case, we add a multinomial logistic regression layer (LRL), known also as softmax classifier, 

at the end of the encoding part to classify the produced feature representations. The choice of using a 

LRL is justified by its simplicity and the fact that it does not require any parameter tuning. The LRL is 

trained by adopting the output of the encoding part (the new feature representation) as input, and the 

corresponding binary vector as target output. 

 

Figure 2-3: One layer architecture of an AE. 

2.4. Feature Fusion 

As described so far, three types of features are made use of in this work (HOG, BOW_RGB, and 

LBP). In order to further improve the classification efficiency, we propose three distinct feature fusion 

schemes. The first one is a stacked fusion, which consists of extracting the three feature vectors from a 

given image and then stack them up to form a global feature vector. This latter is injected as an input to 

an AE topped by a logistic regression layer (LRL). The general diagram of the stacked fusion is observed 

in Figure 2-4. 
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Figure 2-4: Diagram of the first fusion strategy (Fusion 1) based on a low-level feature 

aggregation. 

The second technique is a parallel fusion, as shown in Figure 2-5, which proceeds by feeding each 

type of feature into an individual AE model, followed by concatenating the learned features to form a 

single vector. This latter is set as input to another AE model that is connected to a LRL that outputs the 

final classification results. It is worth to mention that the two blocks composing the autoencoders are 

trained separately. 

 

Figure 2-5: Diagram of the second fusion strategy (Fusion 2) based on a AE induced-level 

aggregation. 

The third method is based on a linear sum of the individual decisions of the three types of features. 

In other words, each feature vector is fed into a separate AE model topped by a LRL. The outputs of each 

LRL are then averaged to come down to a single real-valued output, which is subsequently thresholded 

to force its values to either one or zero. Figure 2-6 gives an illustration of the fusion procedure. 

 

Figure 2-6: Diagram of the third fusion strategy (Fusion 3) based on a decision-level 

aggregation. 
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2.5. Experimental Results 

2.5.1 Description of the Wearable System 

The developed method is part of a complete prototype which is composed of two parts. The first 

part is the guidance system, which is responsible of guiding a visually impaired person across an indoor 

environment from an initial point to a desired destination taking into account the avoidance of the 

different static and/or dynamic obstacles. The second part is the recognition system, which is meant to 

describe the indoor site for the blind individual to give him better ability to sense the nearby surrounding 

environment by providing him with a list of existing objects. Regarding the hardware, the wearable 

system is composed of a laser range finder for detecting and determining objects distance to the user, a 

portable CMOS camera model UI-1240LE-C-HQ (IDS Imaging Development Systems, Germany) 

equipped with a LM4NCL lens (KOWA, Japan), a portable processing unit which can be a laptop, a 

tablet or a smartphone and a headset for voice input and audio output. The user controls the system by 

giving vocal instructions (i.e., specific keywords) via a microphone and receives information (e.g., list 

of objects) vocally synthesized through the earphone. All the hardware is mounted on a wearable jacket 

as can be seen on Figure 2-7. The design of the entire prototype was performed by taking into 

consideration the feedbacks we received from VI persons, in particular regarding interfacing and 

exploitation. 

 

Figure 2-7: View of the wearable prototype with its main components. 

2.5.2 Dataset Description 

The set of images used in this work was acquired by means the CMOS UI-1240LE-C-HQ camera, 

with KOWA LM4NCL lens, which is carried by a wearable lightweight shield. The images were shot at 

two different indoor spaces within the faculty of science at the University of Trento (Italy). The size of 

each image is 640 × 480. The first ensemble amounts to a total of 130 images, which was divided into 

58 training and 72 testing images. The second set accounts for 131 images, split up into 61 training 

images, and 70 for testing purposes. It is noteworthy that the training images for both datasets were 

selected in such a way to cover all the predefined objects in the considered indoor environments. To this 
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end, we have selected the objects deemed to be the most important ones in the considered indoor spaces. 

Regarding the first dataset, 15 objects were considered as follows: ‘External Window’, ‘Board’, ‘Table’, 

‘External Door’, ‘Stair Door’, ‘Access Control Reader’, ‘Office’, ‘Pillar’, ‘Display Screen’, ‘People’, 

‘ATM’, ‘Chairs’, ‘Bins’, ‘Internal Door’, and ‘Elevator’. Whereas, for the second dataset, the list was 

the following: ‘Stairs’, ‘Heater’, ‘Corridor’, ‘Board’, ‘Laboratories’, ‘Bins’, ‘Office’, ‘People’, ‘Pillar’, 

‘Elevator’, ‘Reception’, ‘Chairs’, ‘Self Service’, ‘External Door’, and ‘Display Screen’. 

2.5.3 Evaluation Metrics and Parameter Setting 

For evaluation purposes, we use the well-known sensitivity (SEN) and specificity (SPE) measures: 

SEN =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
          (2.6) 

SPE =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
         (2.7) 

The sensitivity expresses the classification rate of real positive cases i.e., the efficiency of the 

algorithm towards detecting existing objects. The specificity, on the other hand, underlines the tendency 

of the algorithm to detect the true negatives i.e., the non-existing objects. In general, those two quantities 

reflect opposite measures. In other words, the more the method tends to detect existing objects (high 

True-Positive which entails higher sensitivity) the more is exposed to make wrong detections (high False-

Positive which implies low specificity). In order to make a trade-off between the two measures and to 

make an adequate comparison of results with respect to the state-of-the-art methods, we propose to 

further include the average of both: 

AVG =
SEN+SPE

2
           (2.8) 

We set the parameters of the three feature extractors as follows. 

 For HOG features, we set the number of bins to 9 and the size of the cells to 80, which gives a 

HOG feature vector of size 1260 (recall that the size of the image is 640 × 480). 

 Regarding the BOW_RGB, the number of centroids i.e., ‘K’ of the K-means clustering is set to 

200, which was observed as the best choice among other options. 

 For the LBP, we set R = 1, P = 8, and size of the cells = 80, which produces a LBP feature 

vector of length 480 bins. 

In input layer, all values are normalised between 0 and 1. Regarding output, In fact, the LRLs point 

out real values. In order to force them to ones or zeroes, a thresholding must take place. Therefore, to 

determine the most convenient threshold, we applied a 5-folds cross validation technique on the training 

dataset, with 4 folds chosen randomly as training and the last one as test. The threshold values range 

from 0.1 to 0.9 with a step of 0.1. We repeated the experiments 5 times, each time with different random 

permutation. The results presented in Figure 2-8, refer to the average of the sensitivity and the specificity 

(along with their average) by means of the first fusion method. By observing those figures, SEN and SPE 
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exhibit opposite behaviours as the threshold value increases. On average between SEN and SPE, a 

threshold of 0.3 stands out as the best option, which will be adopted in the remaining experiments.  

   

     

Figure 2-8: Impact of the threshold value on the classification rates using the three feature 

types. Upper row for Dataset 1, bottom row for Dataset 2. 

2.5.4 Results 

We first report the results pointed out by using the three types of features individually. We tried 

many configuration by changing the size of the hidden layer from 100 to 1000 nodes by a step of 100. 

Ultimately, 300 nodes turned out to be the best choice for all the features. It can be observed from 

Table 2-1 that on Dataset 1, the three features perform closely, with a slight improvement being noticed 

with BoW_RGB. On dataset 2, however, the BoW_RGB outperforms, by far, the remaining two, which 

was expected beforehand as this dataset particularly manifests richer colour information than the former 

one. Nevertheless, the yielded rates are quite reasonable taking into account the relatively large number 

of objects considered in this work, besides other challenges such as scale and orientation changes. 

Table 2-1: Obtained recognition results using single features. 

Dataset Dataset 1 Dataset 2 

Method HOG BoW_RGB LBP HOG BoW_RGB LBP 

SEN (%) 76.77 79.77 76.77 72.73 88.64 81.82 

SPE (%) 82.16 82.9 80.07 88.67 90.24 86.27 

AVG (%) 79.46 81.33 78.42 80.7 89.44 84.04 

Coming to the fusion scenarios, an interesting point to initiate with is the determination of the 

optimal size of the hidden layer (i.e., number of hidden units). Different architectures have been explored. 

Precisely, we tried out values within the range of 100–1000 with a step of 100. Ultimately, the first fusion 

technique ended up having 900 neurons as an optimal choice, whilst the remaining two strategies pointed 
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out their best at 500 and 300, respectively. It is to note that all the values within 100–1000 have pointed 

out nearby performances. The earlier optimal parameters will therefore be adopted in what follows. 

The classification results of the fusion schemes are summarized in Table 2-2 and examples of results 

obtained for some query images are provided in Figure 2-9 for both datasets. As a first remark, it can be 

spotted that significant gains have been introduced with respect to using individual features (Table 2-1), 

which strengthens the assumption that fusing multiple features is likely to be advantageous over 

individual feature classification scenarios. 

Table 2-2: Classification outcomes of all the fusion schemes. 

Dataset Dataset 1 Dataset 2 

Method SEN (%) SPE (%) AVG (%) SEN (%) SPE (%) AVG (%) 

Fusion 1 79.40 87.45 83.42 85.00 91.80 88.40 

Fusion 2 80.89 87.69 84.29 87.27 91.56 89.41 

Fusion 3 89.51 81.30 85.40 90.00 90.12 90.06 

   

   

Figure 2-9: Example of results obtained by the proposed multilabeling fusion approach for 

both datasets. Upper row for Dataset 1, and lower one for Dataset 2. 

Another observation is that the average classification rate gradually increases from Fusion 1 all the 

way to Fusion 3, with minor disparities. Moreover, the first two strategies seem to favour the SPE over 

the SEN on both datasets, while Fusion 3, which performs fusion at decision level, favours SEN on 
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Dataset 1 and exhibits a better SEN-SPE balance on Dataset 2. As a matter of fact, choosing between 

SEN or SPE depends upon the application being addressed. In our case, we will privilege SEN as we 

think it is more important to provide information on the presence of objects (even if it generates some 

false positives) rather than on the absence of objects. For such purpose, late fusion of individual decisions 

(i.e., Fusion 3) has proved to be a more efficient option than feature-level fusion (i.e., the first two 

schemes), with a tendency to score higher or equal SEN rates with respect to SPE. 

For the sake of comparison of Fusion 3 strategy with state-of-the-art methods, we considered the 

contribution made in [15], namely the Semantic Similarity-based Compressed Sensing (SSCS) and the 

Euclidean Distance-based Compressed Sensing (EDCS) techniques, and also three different pretrained 

Convolutional Neural Networks (CNNs) which are ResNet [24], GoogLeNet [25] and VDCNs [26]. As 

shown in Table 2-3, for Dataset 1, our strategy outperforms largely the reference work in [15] with at 

least 10% of improvement and between 2% to 5% compared to the three pretrained CNNs. Moreover, 

our method offers the advantage of yielding far higher SEN. Both observations can be traced back to two 

considerations. On the one hand, the work put forth in [15] makes use of a small-sized dictionary of 

learning images to represent a given image by means of a compressive sensing-based approach, which 

might succeed in representing an image that has good matches in the dictionary but may fail when it 

comes to an (outlier) image that has no match in the dictionary. On the other hand, the proposed approach 

proceeds by extracting robust features capable to capture different variations across the images, followed 

by a customized feature learning step that furthers their discrimination capacity, which is ultimately 

reflected on higher classification rates as the results tell. The same observations apply for Dataset 2 as 

seen in Table 2-4. 

Table 2-3: Comparison of classification rates on Dataset 1. 

Method SEN (%) SPE (%) AVG (%) 

SSCS 79.77 66.54 73.15 

EDCS 69.66 80.19 74.92 

ResNet 66.29 94.46 80.38 

GoogLeNet 67.04 94.22 80.63 

VDCNs 71.91 94.46 83.19 

Ours 89.51 81.3 85.40 

Table 2-4: Comparison of classification rates on Dataset 2. 

Method SEN (%) SPE (%) AVG (%) 

SSCS 75 74.09 74.54 

EDCS 70 90.12 80.06 

ResNet 68.18 96.75 82.46 

GoogLeNet 72.27 97.11 84.69 

VDCNs 81.82 96.39 89.10 

Ours 90.00 90.12 90.06 

An interesting fact to point out is that the size of the images has a direct influence on the processing 

time. Therefore, an option was to scale down the image resolution from full size (640 × 480), to its half 

(320 × 240), then (128 × 96), and finally (64 × 48), which respectively define a 100%, 50%, 20%, and 
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10% of the original size. The classification results in terms of AVG accuracy are shown in Table 2-5 and 

Table 2-6 for both datasets, respectively. It can be observed that the accuracy does not manifest drastic 

changes as the image size drops. In fact, there are instances where the smallest resolutions introduce 

slight improvements, which we believe can be interpreted by the fact that, in many images, there are 

large background surfaces (e.g., walls) that have usually uniform colours and textures, which may not be 

really useful as salient visual properties by which the images can be discriminated, reducing the image 

size thereby reduces the size occupied by those backgrounds, which may either maintain or even raise 

the classification performance. 

Table 2-5: Comparison of classification rates on Dataset 1 under different resolutions. 

Method 100% 50% 20% 10% 

SSCS 73.15 73.34 74.52 74.51 

EDCS 74.92 74.74 75.11 75.43 

ResNet 80.38 79.88 79.32 78.76 

GoogLeNet 80.63 81.63 82.52 79.02 

VDCNs 83.19 83.37 84.50 84.57 

Ours 85.40 86.02 86.14 86.63 

Table 2-6: Comparison of classification rates on Dataset 2 under different resolutions. 

Method 100% 50% 20% 10% 

SSCS 74.54 74.54 73.91 74.48 

EDCS 80.06 80.06 79.30 78.60 

ResNet 82.46 82.40 84.69 87.13 

GoogLeNet 84.69 84.69 84.74 84.12 

VDCNs 89.10 88.71 87.80 88.13 

Ours 90.06 90.34 90.03 90.69 

Besides the classification rates, another important performance parameter is the runtime. For the 

proposed method, the runtime includes the feature extraction, the prediction and the fusion times. We 

provide the average processing time per image for both datasets in Table 2-7 and Table 2-8, from which 

it can be seen that, as expected, the runtime decreases with the image size, with our method being at least 

four times faster than the best runtime (GoogLeNet) provided by methods of reference. Particularly, 22 

milliseconds per image is a very promising time span provided that fifteen objects are targeted in this 

work. Such processing time is based on a Matlab R2016b implementation, which is subject to be 

drastically reduced under for instance a C++ implementation. It is also worth mentioning that the number 

of objects in our work does not impact on the classification process. 

Table 2-7: Comparison of average runtime per image on Dataset 1 under different resolutions. 

Method 100% 50% 20% 10% 

SSCS 2.16 1.42 1.22 1.17 

EDCS 2.44 1.41 1.1 1.08 

ResNet 0.136 0.132 0.131 0.131 

GoogLeNet 0.100 0.098 0.096 0.093 

VDCNs 0.300 0.295 0.291 0.288 

Ours 1.230 0.200 0.048 0.022 
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Table 2-8: Comparison of average runtime per image on Dataset 2 under different resolutions. 

Method 100% 50% 20% 10% 

SSCS 2.66 1.53 1.21 1.17 

EDCS 2.69 1.54 1.23 1.2 

ResNet 0.136 0.132 0.131 0.131 

GoogLeNet 0.100 0.098 0.096 0.093 

VDCNs 0.300 0.295 0.291 0.288 

Ours 1.230 0.200 0.048 0.022 

2.6. Conclusions 

This chapter presented a scene description (via image multilabeling) methodology meant to assist 

visually impaired people to conceive a more accurate perception about their surrounding objects in indoor 

spaces. The idea of the proposed method is promoted around detecting multiple objects at once within a 

possible short runtime. A key-determinant of our image multilabeling scheme is that the number objects 

is independent of the classification system, which entails the property of detecting as many objects as 

desired (depending on the offline setup to be customized by the user) within the same amount of time 

which amounts for much less than a second in our work. 

The multilabeling algorithm exploits feature learning concept by means of an AutoEncoder neural 

network, which amply demonstrated a significant potential in generating discriminative image 

representations. 

Pros: In the literature, there exist several multi-object recognition methods (but not in the context of 

visually impaired rehabilitation). Those methods, may show interesting recognition efficiency, but they 

are dependent on the number of objects considered. By contrast, our method as hinted earlier, does not, 

which renders it much faster yet more reliable if considered in real-time scenarios. The earlier two points 

are technically verified in [15], where it was concluded that coarse image description is more adequate 

in this sense. 

Cons: While the aim of the conducted coarse description is to roughly list the present objects as to 

bridge the gap between the real indoor setup and the image conceived in the visually disabled person’s 

imagination, inferring further information pertaining to the detected object’s location in the indoor space 

remains a vivid endeavour in our future considerations. This, however, may come at the cost of a heavier 

processing but it is not out of question. To complement this missing component, we suggest to find a 

way to introduce the depth information (e.g., through Kinect sensors for instance) as a post-operation. 

Another issue is related to the scalability of the system since it will need to be completely retrained in 

case the set of predefined objects requires to be modified quantitatively or qualitatively.  
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3.1. Introduction 

Depending on the application, clouds in remotely sensed imagery can be seen as a source of 

information or noise. In the latter case, which represents the focus of this work, clouds are considered as 

a serious problem because they can cover partially or completely a region of interest, and thereby reduce 

the exploitability of the images. Detecting clouds in the images is often performed as a pre-processing 

step in order to remove them and recover the missing areas. In this work, we focus on reconstructing the 

missing areas supposing that the cloudy areas in the images are already identified. 

In the literature, some contributions start from the hypothesis that clouds are thin and do not obscure 

completely the reflected signal from Earth. They generally use either monotemporal methods that exploit 

the different spectral bands of the single image to reconstruct the affected areas or multitemporal ones 

which deal with a temporal sequence of images acquired over the same location ([1]-[4]). 

In order to address the case of opaque clouds, which is the scope of this chapter, Maalouf et al.  [5] 

proposed an inpainting technique based on the Bandelet transform and the multiscale geometrical 

grouping. They presented interesting results but such techniques showed their limits compared to those 

based on multitemporal prediction [6]. Moreover, since satellite multitemporal imagery over a given area 

can be regularly acquired, most methods in the literature rely on the exploitation of the temporal 

dimension. Among the first related contributions, one can cite the work of Liew et al. [7]. They generate 

an ensemble of cloud-free image mosaics by composing several cloudy SPOT and IKONOS satellite 

images acquired from the same area. In [8], two unsupervised contextual reconstruction methods were 

proposed. The first method is a linear prediction based on the expectation-maximization (EM) algorithm 

and the second one is a nonlinear prediction based on a support vector machine (SVM). Tseng et al. [9] 

proposed a method to generate cloud-free mosaic images from multitemporal SPOT images based on a 

multiscale wavelet-based fusion method in order to ameliorate the transition between two mosaic parts. 

In [10], Lin et al. proposed to clone cloud-free information from a set of multitemporal images by 

adopting a batch-based reconstruction method formulated as a Poisson equation and solved using a global 

optimization process. Lorenzi et al. [11] proposed to rely on the compressive sensing (CS) theory to 

reconstruct the area covered by clouds. They developed two common CS solutions, namely, the basis 

pursuit (BP) and the orthogonal matching pursuit (OMP). A third CS solution based on exploiting the 

search capabilities of genetic algorithms (GAs) is also introduced. 

In this chapter, we describe a new method to recover missing data in multispectral images due to 

presence of clouds. Specifically, we propose to exploit the strength of the AE networks in the 

reconstruction phase to restore the missing data. It is worth mentioning that AE networks have been used 

for general image restoration problems. For example, the authors in [12] combine them with sparse 

coding for image denoising and blind inpainting. In another work [13], the authors exploit them for the 

enhancement of natural low-light images. In [14], it is proposed a non-local AE with collaborative 

stabilization for natural image denoising and super-resolution. In the remote sensing literature, they were 
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successfully applied to image pansharpening [15], object detection [16] and hyperspectral data 

classification [17]. In the present work, AEs are exploited to address the issue of missing data 

reconstruction in multispectral images. Given a cloud-free image (source or reference image) and a 

cloud-contaminated image (target image), the AE learning will be slightly modified in such a way that 

rather than supposing that the output layer (the reconstruction layer) is equal to the input layer, we 

consider here that the output is constituted of pixels from the target image and their corresponding pixels 

on the reference image are used as input. In other words, we try to find the essential mapping function 

between the source and the target image using the AE [18]. In the training phase, cloud-free pixels from 

both source and target images are exploited. After that, in the prediction phase, pixels from the reference 

image corresponding to contaminated pixels in the target image are used in order to reconstruct the 

missing areas in the second image. Moreover, in order to fix the problem of the empirical tuning of the 

hidden layer size (which is still an open issue in the definition of an AE architecture), the minimum 

descriptive length (MDL) criterion [19] in combination with a Pareto front selection method is applied 

to infer the best AE architecture. It is noteworthy that the trained neural network is contextualized, in the 

sense that it exploits contextual information of a given missing region to recover only that specific region. 

Accordingly, it is not intended to generalize to other missing regions for which other (fine-tuned) neural 

networks will be needed. Compared to [12], our method is different from various points of view: 1) [12] 

deals with the image denoising and inpainting problems while we focus on multitemporal image 

reconstruction; 2) [12] makes use of a fixed Stacked AutoEncoder (SAE) architecture (with 3 hidden 

layers, each of them composed of the same number of hidden nodes set to 5 times the number of input 

nodes) while our architecture is not stacked (more compact) and the number of hidden nodes is estimated 

automatically (thanks to MDL criterion); 3) our method is contextualized while [12] is not; and 4) our 

method is specifically developed for cloud-contaminated remote sensing image reconstruction. 

The rest of this chapter is organized as follows. Section 3.2 formulates the problem of the 

reconstruction of a cloud-contaminated image and describes the two developed methods based on a 

modified learning of the AE network. The experimental results are presented in Section 3.3. Finally, 

conclusions are reported in Section 3.4. 

3.2. Methodology 

Let us consider two multitemporal multispectral images I(1) and I(2) with nb bands acquired by an 

optical sensor and registered over the same geographical area. The two images are acquired at two 

different dates, which are supposed to be sufficiently close to each other in order to keep similarity 

concerning the spatial structure. I(1) refers to the cloud-free image (source/reference image) and I(2) refers 

to the cloudy image (target image).  The objective of the proposed method is to reconstruct any area of 

the target image which is contaminated by clouds. We note that the problem of the detection of clouds is 

out of scope of this work. We will call the cloudy area in the contaminated image I(2) as target region 

Ts(2) and its corresponding area in the cloud-free image I(1) as source region Ts(1). The areas surrounding 
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the cloudy region (cloud-free area) in I(2) and I(1) are referred as target training region Tr(2) and source 

training region Tr(1), respectively. 

The underlying idea of the proposed method is to find the transformation 𝑠(∙) which captures the 

relationship between the source and the target images. For such purpose, the training regions are used to 

estimate 𝑠(∙) and a model is learned such that: 

Tr(2)=s(Tr(1))          (3.1) 

Once the mapping model is learned, one can reconstruct the cloudy region in the target image (Ts(2)) 

by applying the estimated transformation 𝑠(∙) on the reference test region Ts(1). 

Ts(2)=s(Ts(1))          (3.2)  

The transformation function 𝑠(∙) can be learnt using linear or nonlinear models. In multispectral 

images, the distributions of data are typically complex (multimodal) which makes the simple linear model 

not the most suitable choice to perform the transformation. As mentioned earlier, various ways have been 

proposed in the literature for solving this mapping problem. In this work, we propose an alternative 

solution based on AutoEncoder (AE) neural networks because of their promising capability to reconstruct 

data in a nonlinear way. More details are given in the next sections. 

3.2.1 Pixel-based Reconstruction with AutoEncoder 

The AE is basically an artificial neural network architecture that is characterized by one hidden 

layer. Stacking many AEs (many hidden layers) forms a so-called stacked AE (SAE) which is considered 

as a deep architecture. 

A simple AE has three layers, one visible layer of size n (input layer), one hidden layer of d nodes 

and one reconstruction layer (output layer) with n nodes. Let 𝒙 ∈ ℛ𝑛 be the input vector, 𝒉 ∈ ℛ𝑑 the 

outcome of the hidden layer and �̂� ∈ ℛ𝑛 the output of the AE (the reconstruction of x). 

In our case, since we are not interested in an auto-reconstruction operation of the AE 

(encoding/decoding) but in a mapping between two correlated spaces (source and target images), the 

training of the AE will be slightly modified in order to find the mapping function between the two images 

(I(1) and I(2)). 

Let us consider a input vector 𝒙(1) = [𝑥1
(1)

, 𝑥2
(1)

, … , 𝑥𝑛
(1)

]
T

 which represents a generic pixel from 

the region Tr(1) and 𝒙(2) = [𝑥1
(2)

, 𝑥2
(2)

, … , 𝑥𝑛
(2)

]
T

 is its corresponding pixel in Tr(2) (our target), �̂� =

[�̂�1, �̂�2, … , �̂�𝑛] T is the reconstruction vector (the output of the AE), 𝐖 = [𝒘𝟏, … , 𝒘𝒅]T and 𝒃 are the d 

× n weight matrix and the bias vector of dimension d of the encoding part, and 𝐖′ = [𝒘′𝟏, … , 𝒘′𝒏]T and 

𝒃′ are the n × d weight matrix and the bias vector of dimension n of the decoding part. The parameter n 
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represents the number of nodes of the input and the reconstruction layers and it equals here to the number 

of bands of the images, namely nb. 

 

Figure 3-1: Proposed pixel-based AutoEncoding reconstruction method. 

As can be shown in Figure 3-1, the output of the hidden and reconstruction layers can be calculated 

using the following equations. 

ℎi = 𝑓(𝒘𝐢𝒙
(1) + 𝑏i)             (i=1...d)      (3.3) 

�̂�i = 𝑓(𝒘′𝐢𝒉 + 𝑏′i)             (i=1...n)      (3.4) 

where 𝒘𝐢 and 𝒘′𝐢 are the ith rows of the weight matrices 𝐖  and 𝐖′  respectively, 𝑏i and 𝑏′i are the ith 

elements of the bias vectors 𝒃 and 𝒃′ respectively, and 𝑓(∙) is a nonlinear activation function. Typically, 

a sigmoid activation function is used, which is expressed by the equation below: 

𝑓(𝑧) =
1

1+𝑒−𝑧         (3.5) 

The parameters (𝐖, 𝐖′, 𝒃 and 𝒃′) can be estimated by minimizing a cost function 𝐿(∙) which 

quantifies the error between the target 𝒙(2) and the output �̂� of the AE.  

argmin
𝐖,𝐖′,𝒃,𝒃′

[ 𝐿(𝒙(2), �̂�)]        (3.6) 

In this work, we adopt the squared error function, i.e. 𝐿(𝒙, �̂�) =‖𝒙 − �̂�‖2. Therefore, the 

minimization problem in (3.6) becomes: 

argmin
𝐖,𝐖′,𝒃,𝒃′

[‖𝒙 − 𝒇[𝐖′𝒇(𝐖𝒙 + 𝒃) + 𝒃′]‖2]      (3.7) 

where 𝒇(∙) is the vector representation of the activation function 𝑓(∙) defined in (3.5). 

The computation of this objective function is performed on the available training samples and 

optimized according to a backpropagation method which relies on its gradient calculation. In particularly, 

Multispectral image 

Input Reconstruction

W W’

h

Multispectral image Pixel vector Autoencoder Pixel vector
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we use the stochastic gradient descent method to optimize the cost function in (3.7) [20]. Since the 

weights are updated for each training sample, this method has proved faster, more reliable, and less prone 

to reach bad local minima than standard gradient descent. 

3.2.2 Patch-based reconstruction strategy 

In remote sensing images, it can be reasonably expected that neighbor pixels are highly correlated 

and present spectral similarities. To benefit from spatial correlation, we propose a second method which 

consists to reconstruct by patch rather than by single pixel, and then apply an opportune fusion to infer 

the estimation of each missed image pixel. 

 

Figure 3-2: Proposed patch-based AutoEncoding reconstruction method. 

In this method, we keep the same principle like the previous method, but the size of the input layer 

(same for the reconstruction layer) is increased. As illustrated in Figure 3-2, the input vector x(1) (similar 

reasoning for the target vector x(2)) is formed by flattering the patch which is composed by the current 

pixel of interest (the central pixel) and its spatial neighboring pixels. If a window of size sz × sz is chosen, 

then the size of the input layer n is equal to sz × sz × nb. Therefore, rather than mapping just one pixel at 

a time, a region of size of sz × sz is mapped. 

With such a reconstruction scheme, the problem which arises is that instead of getting an estimation 

for each target pixel, we obtain (sz × sz) estimations (excluding the cases of pixels lying close to the 

image borders). This is due to the fact that we pass from a pixel-based to a patch-based reconstruction. 

In order to get an estimation for each pixel from the generated patches, we propose to apply a simple 

weighted average of all the (sz × sz) cases as follows: 

𝒙𝑇𝑠(2) = ∑ 𝛼𝑖�̂�𝑖 
𝑠𝑧×𝑠𝑧
𝑖=1         (3.8) 

where 𝛼𝑖 are weights such that: 

∑ 𝛼𝑖 = 1    and    0 ≤ 𝛼𝑖 ≤ 1 𝑠𝑧×𝑠𝑧
𝑖=1        (3.9) 

and �̂�𝑖 is the mapping of the pixel x(1) obtained from the ith patch containing the pixel of interest. 
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Regarding the selection of the weight values, we will opt for a simple strategy in which a weight 

of 0.5 is assigned to the central pixel while all remaining neighboring pixels will have a weight equal to 
0.5

(𝑠𝑧×𝑠𝑧−1)
 (which means that 50% of the weighting is assigned to the central pixel and 50% is equally 

distributed over all remaining pixels of the patch). It is noteworthy that other strategies (i.e., equal weights 

and Gaussian function weights) were implemented as well but performed worse or did not provide any 

significant improvement compared to the above strategy. 

Figure 3-3 shows an example of a 3 × 3 neighborhood. Case 1 is the case when the pixel of interest 

coincides with the center of the window. The other cases refer to situations when the pixel is still inside 

the window (but not at its center). 

 

Figure 3-3: Illustration of the fusion of the patch-based results related to a given pixel of interest (in 

black) for a 3×3 neighborhood system. In this case, 𝛼1 =
1

2
 and all other weights 𝛼2 = … = 𝛼9 =

1

16
. 

3.2.3 Estimation of the size of the hidden layer 

As the size of the hidden layer d is unknown a priori, it needs to be estimated. Typically, this is 

done empirically by trying various configurations and picking up the one with highest accuracy. In this 

proposed method, for solving this issue, we propose a new method which is inspired from the minimum 

description length (MDL) principle [21]. If we take for instance the problem of the selection of the 

number of components in a mixture, MDL permits to search for a tradeoff since, on the one hand the 
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higher the number of components, the higher the risk of overfitting, while on the other, the smaller the 

number of components, the lower the model flexibility [8]. In such a case (mixture density problem), 

MDL is defined as [19]: 

MDL(𝑑) =  −ℓ̃(ψ|Θ) + 𝛾. 𝑘. log(𝐿)          (3.10) 

where ℓ̃(ψ|Θ) represents the log-likelihood function value found with a maximum likelihood estimation 

algorithm, 𝑘 is the number of free parameters to be estimated (in our case it will be equal to the number 

of weights and biases), 𝛾 is a constant and L is the number of data sample. Therefore, the MDL principle 

aims at achieving a balance between accuracy and complexity of the model so that to provide a good 

generalization capability. Applying a simple grid-search procedure guided by empirical risk 

minimization can instead lead to overfitting issues. 

In order to adapt MDL to our problem, ψ = {𝜀1, 𝜀2, … , 𝜀𝐿} will represent the set of 

multidimensional errors incurred by the AE (dimensionality = number of output nodes) for each of the L 

input data. For the sake of tractability, we assume the multidimensional errors are drawn from a 

multivariate normal distribution, namely p(ε) = N(𝝁, 𝚺) where the mean vector µ is supposed to be null 

and the covariance matrix 𝚺 is supposed to be a diagonal matrix with values equal to 𝜎2 where 𝜎 is the 

standard deviation. Then, the distribution function can be written as follows: 

𝑝(𝜀) =
1

√(2𝜋)𝑛|𝚺|
exp (−

1

2
𝜀T𝚺−𝟏𝜀)      (3.11) 

The negative log-likelihood function will be represented as follows: 

−ℓ̃(ψ|Θ) = −𝑙𝑜𝑔 ∏ 𝑝(𝜀𝑖)
𝐿
𝑖=1 = − ∑ log (𝑝(𝜀𝑖))𝐿

𝑖=1   

     =
1

2
∑ ((2𝜋)𝑛|𝚺|)𝐿

𝑖=1 +
1

2
∑ (𝜀𝑖

T𝚺−𝟏𝜀𝑖)
𝐿
𝑖=1       (3.12) 

The optimal size of hidden layer �̂� is estimated by minimizing the MDL criterion, i.e., 

�̂� = arg min
𝑑 = 1..𝑑𝑚𝑎𝑥

{MDL(𝑑)}        (3.13) 

where 𝑑𝑚𝑎𝑥 is a predefined maximum size of the hidden layer. 

During simulations, we noticed that the second term of the MDL criterion, which depends on the 

number of weights and biases involved in the considered AE architecture, increases rapidly compared to 

the first term (the log-likelihood function) which decreases very slowly. The observed best �̂� value 

corresponds always to a hidden layer size of one or two units (i.e., 𝑑 = 1 or 𝑑 = 2). In order to get a 

better balance between the two terms of the MDL criterion, the parameter 𝛾 need to be as smaller as 

possible to keep under control the rapid increase of the second part. However, there is no guarantee that 

the best choice of 𝛾 for one dataset will give also good results for other datasets and in this case the 



Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder  

36 

 

developed method will be highly dependent on the value of the parameter 𝛾. To overcome this issue, we 

propose to opt for a Pareto-like optimization, inspired from the multi-objective optimization literature 

(MO optimization) and the nondominated sorting concept. 

3.2.4   Multi-objective Optimization 

In the cases when there are multiple measures of competing objectives (criteria) to be 

simultaneously estimated like in ours, MO optimization can be solved by combining linearly the 

objectives into a single function (like previous MDL formulation) with opportune weights or by finding 

a set of optimal solutions rather than a single one. The selection of a solution from this set is not trivial 

and is usually user-dependent. From a mathematical viewpoint, a general MO optimization problem can 

be formulated as follows: 

Find the vector 𝒑∗ which minimizes the ensemble of 𝑄 objective functions: 

𝒇(𝒑) = [𝑓𝑖(𝒑), 𝑖 = 1, … , 𝑄]         (3.14) 

subject to the J equality constraints 

𝑔𝒋(𝒑) = 0        j=1,2,…,J       (3.15) 

and the K inequality constraints 

ℎ𝑘(𝒑) ≤ 0           k=1,2,…,K       (3.16) 

where p is a candidate solution to the considered optimization problem. In our case, it consists of finding 

the solution that minimize the two criteria 𝑓1 = −ℓ̃(ψ|Θ) and 𝑓2 = 𝑘. log(𝐿) (𝑄 = 2) without any 

constraints. 

The solving of a MO optimization problem is based on the concept of dominance. A solution 𝒑i is 

said to dominate another solution 𝒑j if and only if 𝒇(𝒑i) is partially less than 𝒇(𝒑j), i.e., 

∀ 𝑘 ∈ {1,2, … , 𝑄}, 𝑓𝑘(𝒑i) ≤ 𝑓𝑘(𝒑j)   ∧  ∃𝑘 ∈ {1,2, … , 𝑄}: 𝑓𝑘(𝒑i) < 𝑓𝑘(𝒑j)                  (3.17) 

This concept leads to the definition of Pareto optimality: a solution 𝒑𝑖
∗ ∈ Ω (Ω is the solution space) 

is said to be Pareto optimal if and only if there exists no other solution 𝒑𝑗
∗ ∈ Ω that dominates 𝒑𝑖

∗. The 

latter is said to be nondominated and the set of all nondominated solutions forms the so-called Pareto 

front of optimal solutions. 

Once the Pareto front is identified, a solution has to be selected from the set of nondominated 

solutions. Although different strategies can be found in the literature, in our method we used the simple 

median solution to maintain a tradeoff between the two different criteria. 
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An example of nondominated sorting is shown in Figure 3-4, in which a joint optimization of the 

two criteria 𝑓1 and 𝑓2 is involved. The nondominated samples (in red) constitute the Pareto front, which 

represents the set of optimal solutions. From this set, the selected solution is given by the median one (in 

green). Dominated solutions are drawn with black crosses. 

 

Figure 3-4: Illustration of a front of nondominated solutions. 

3.3. Experimental Validation 

3.3.1 Dataset description 

In our simulations, we use two different datasets, each containing two images. We assume that one 

of the two images contains the cloudy regions. The first dataset was acquired by the Taiwanese optical 

high resolution FORMOSAT-2 satellite [22], which permits the acquisition of an area of interest every 

day, from the same viewpoint and under the same light conditions. These images represent part of the 

Arcachon basin in the south region of Aquitaine, in France. The images are composed of 400×400 pixels 

and four spectral bands (blue, green, red, and near infrared) with a pixel spacing of 8 m. They were 

acquired on the 24th of June and 16th of July, 2009, respectively (see Figure 3-5). The second dataset was 

acquired by the French satellite SPOT-5, whose images represent part of the Réunion island [23]. The 

images are characterized by a size of 450×450 pixels, four spectral bands (blue, green, red, and near 

infrared), and a pixel spacing of 10 m and were taken on May 2 and June 18, 2008, respectively (see 

Figure 3-6). The two datasets exhibit several disparities, which are (i) sensor-wise, and/or (ii) inter-pixel 

spacing, and importantly (iii) the land covers. In fact, the former dataset displays more vegetation than 

urban areas, whereas the latter shows otherwise. 
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(a)      (b) 

Figure 3-5: Color composite of first dataset acquired by FORMOSAT-2 over the Arcachon basin on (a) 

24th June and (b) 16th June, 2009. 

    

(a)       (b) 

Figure 3-6: Color composite of second dataset acquired by SPOT-5 over the Réunion island on (a) May 

2nd and (b) June 18th, 2008. 

In order to evaluate the two developed methods, the rocedure adopted in our experiments consists: 

1) to consider a cloud-free image, e.g., 𝐼(1); 2) to simulate the presence of clouds by partly obscuring the 

other image, e.g., 𝐼(2); and 3) to compare the reconstructed image with the original cloud-free image. 

This study aims at understanding the sensitivity of the two investigated methods regarding two aspects, 

which are: 1) the kind of ground covers obscured; and 2) the size of the contaminated area. In order to 

obtain a detailed assessment of the reconstruction quality, we adopt the popular peak signal-to-noise ratio 

(PSNR) measure [24], as well as the correlation coefficient. 
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3.3.2 Results 

In the experiments, the size of the hidden layer d in the autoencoder is varied over a predefined 

range and the two objective functions f1 and f2 are calculated at convergence for each case. In the first 

method, the size n of the input feature vector is equal to four (number of image bands). For the second 

method, a neighborhood of 3×3 is chosen, the value of n in this case is equal to 4×3×3. The value of d 

for both cases is chosen to be within the range [1, 100]. The other parameters of the autoencoder are fixed 

as follows: momentum = 0.5, initial learning rate = 1, iterative decay factor for learning rate = 0.95, and 

number of epochs = 150. Regarding the multivariate normal distribution N(𝝁, 𝚺), we used zero mean and 

𝜎 = 0.04. 

1) Contamination of Different Ground Covers: Figure 3-7 shows different masks whose positions were 

selected in such a way as to simulate the obscuration of different kinds of ground cover. In particular, for 

the first dataset, in Figure 3-7(a), mask A is over a completely urban area, mask B covers a region that 

includes mainly industrial zone, and mask C obscures a vegetation area. For the second dataset, 

Figure 3-7(b) shows mask A covering mainly a rural area, and mask B a vegetation region. The 

experiments were carried out by considering each mask at a time, where each mask is composed by 

around 2000 pixels, and the training set Tr is composed by around 4000 pixels from the surrounding 

region of each mask. 

    

(a)       (b) 

Figure 3-7: Masks adopted to simulate the different ground cover contaminations. 

In the experiments, mask A is used for training an autoencoder AEA, which on its turn is considered 

as pretrained autoencoder exploited to fine-tune the other models, i.e., AEB for mask B and AEC for mask 

C. In these cases (masks B and C), the number of epochs is reduced to half. 

Figure 3-8 shows an example of the Pareto fronts obtained at convergence for the first dataset using 

mask A and for both developed methods of reconstruction where the nondominated solutions lie along a 



Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder  

40 

 

red curve and the selected solution is highlighted with a green circle. The different best solutions for both 

datasets are reported in Table 3.1. 

  

(a)       (b) 

Figure 3-8: Pareto fronts obtained at convergence for the first dataset and mask A simulation by (a) 

pixel-based autoencoding reconstruction, and (b) patch-based autoencoding reconstruction. 

Table 3.1: Best size of hidden layer found for the different cases. 

 Dataset 1 Dataset 2 

Method Pixel-AE Patch-AE Pixel-AE Patch-AE 

Best d value 19 29 14 29 

In order to evaluate our methods, we compare the obtained results in our experiments with results 

found by state-of-the-art methods based on compressive sensing theory, namely the Orthogonal Matching 

Pursuit (OMP), Basis Pursuit (BP) and Genetic Algorithm (GA) reconstruction techniques [11]. 

Compressed sensing in signal processing is considered as an efficient approach for reconstructing a signal 

by finding solutions of an underdetermined linear system under constraint of sparsity. BP convexifies 

the problem by solving it under L1 norm instead of L0 norm [25], [26]. OMP is a faster alternative of the 

MP method and is based on finding the atom that has the highest correlation with the signal and then 

subtracts off the correlated part from the signal and iterates the procedure on the resulting residual signal 

[27], [28]. Regarding GAs, they are considered as part of evolutionary computation methods which 

solves optimization problems by performing a search by regenerating a population of candidate solutions 

represented by chromosomes [29], [30]. The Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) 

[31] is adopted in order to find the optimal solution. 

The results are reported in Table 3.2, from which we can see that our methods perform better with 

exception of the case of mask B on dataset 2 where BP outperforms our method by 0.24 dB but provides 

a similar correlation coefficient (0.91). Regarding the other cases, the improvement is between 3.69 dB 

(mask B on dataset 1) and 11.49 dB for the case of mask C on dataset 1. Such improvements can be 

justified by the fact that methods based on compressive sensing approach are based on a linear 



Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder  

41 

 

reconstruction paradigm contrary to the AE which involves a nonlinear transformation. Moreover, in the 

method developed in [11], a dictionary is created by grid-sampling over all the image and with a limited 

number of atoms in order to reduce the processing complexity. By contrast in our methods, we select the 

training patterns from pixels of the surrounding region of the masks, which are potentially more 

correlated to those obscured. Finally, it can be seen that using patch-based reconstruction improves 

significantly the result compared to using pixel-based information for reconstruction, since it opportunely 

exploits the spatial correlation between neighboring pixels. 

Table 3.2: (a) PSNR values and (b) correlation coefficients obtained by the different methods in the 

first simulation experiments. 

(a) 

Method Dataset 1 Dataset 2 

Mask A Mask B Mask C Mask A Mask B 

OMP [11] 23.96 20.60 31.97 26.36 30.43 

BP [11] 22.22 24.74 30.67 26.45 31.63 

GA [11] 23.78 23.15 32.01 26.72 31.28 

Pixel-AE 29.71 27.73 39.42 28.62 31.25 

Patch-AE 32.95 28.47 43.94 30.77 32.23 

(b) 

Method Dataset 1 Dataset 2 

Mask A Mask B Mask C Mask A Mask B 

OMP [11] 0.81 0.94 0.89 0.77 0.88 

BP [11] 0.86 0.96 0.90 0.76 0.91 

GA [11] 0.84 0.95 0.90 0.78 0.90 

Pixel-AE 0.93 0.98 0.98 0.90 0.91 

Patch-AE 0.97 0.98 0.99 0.91 0.93 

Finally, we analyzed the sensitivity of the patch-based strategy to the size of the patch, by 

increasing it from 3×3 to 7×7. The results which are provided in Table 3.3 suggest that the accuracy 

decreases as the size increases. This can be explained by the fact that an increasing size of the patch 

involves a quadratic increase in the dimensionality of both the input and output spaces and thus a potential 

risk of curse of dimensionality. Moreover, increasing the size leads to a decrease of correlation between 

the central pixel and the neighboring ones adding noise in the reconstruction process. 

Table 3.3: Analysis of the sensitivity to the patch size in terms of PSNR for the first simulation 

experiments. 1×1 size refers to the pixel-based strategy. 

Patch size Dataset 1 Dataset 2 

Mask A Mask B Mask C Mask A Mask B 

1x1 29.71 27.23 39.71 28.62 31.25 

3x3 32.95 28.47 43.94 30.77 32.23 

5x5 30.74 25.57 43.53 29.86 31.1 

7x7 23.61 16.83 32.12 27.93 31.25 
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2) Contamination with Different Sizes: the second simulation experiments consist of increasing the size 

of the obscured area. Figure 3-9 illustrates the three different masks adopted to simulate the different 

sizes of the clouds. Mask 1 is fixed with the same size as the masks A adopted in the previous 

experiments, i.e., it covers about 2000 pixels. Masks 2 and 3 are built by multiplying the previous size, 

by 3 and by 6, and the resulting masks cover around 6000 and 12000 pixels, respectively. Also in these 

experiments, we selected pixels for training from the surrounding regions of the obscured areas. The size 

of the training is chosen to be around double the size of the corresponding mask. Similarly to previous 

experiment, mask 1 is used to build the pretrained autoencoder AE1. A fine tuning is applied by using 

AE1 on the two other cases (mask 2 and mask 3) in order to build their corresponding models AE2 and 

AE3, respectively. Table 3.4 reports for the two datasets the results achieved by the two reconstruction 

techniques and by varying the amount of missing data. 

 

(a)       (b) 

Figure 3-9: Masks adopted to simulate the different sizes of contamination. 

From a quantitative viewpoint, in terms of PSNR and correlation coefficient, we have similar 

results as in the previous experiments. The two developed methods outperform by more than 3 dB for all 

cases compared to the other methods. Also, we can notice that by increasing the size of the contaminated 

region, the PSNR increases very slightly which shows that the developed strategy maintains the 

reconstruction quality of the cloudy regions almost independently from the size of the clouds. The 

correlation coefficients are much higher in most of the cases (around 0.95 on an average). 
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Table 3.4: (a) PSNR values and (b) correlation coefficients obtained by the different methods in the 

second simulation experiments. 

(a) 

Method Dataset 1 Dataset 2 

Mask 1 Mask 2 Mask 3 Mask 1 Mask 2 Mask 3 

OMP [11] 23.96 23.21 25.01 26.36 26.42 27.39 

BP [11] 22.22 22.89 21.47 26.45 26.82 28.25 

GA [11] 23.78 23.85 23.03 26.72 27.10 28.15 

Pixel-AE 29.71 30.05 29.68 28.92 28.53 29.18 

Patch-AE 32.95 33.15 32.37 30.77 30.85 30.91 

(b) 

Method Dataset 1 Dataset 2 

Mask 1 Mask 2 Mask 3 Mask 1 Mask 2 Mask 3 

OMP [11] 0.81 0.75 0.92 0.77 0.78 0.80 

BP [11] 0.86 0.87 0.87 0.76 0.77 0.81 

GA [11] 0.84 0.82 0.89 0.78 0.78 0.80 

Pixel-AE 0.93 0.95 0.95 0.90 0.84 0.84 

Patch-AE 0.97 0.98 0.98 0.91 0.92 0.90 

From a qualitative viewpoint, Figure 3-10 and Figure 3-11 show the reconstruction results in color 

composites obtained for dataset 1 (with mask C) and for dataset 2 (with mask 2), respectively. In 

particular, OMP and Patch-AE reconstruction methods are considered for comparison since: 1) OMP 

represents the best compromise between accuracy and computation time compared to BP and GA 

strategies; and 2) Patch-AE outperforms Pixel-AE in all simulations with insignificant extra computation 

cost. From Figure 3-10.b and Figure 3-10.c, it can be observed that OMP generates a salt-and-pepper 

noise in the reconstruction while the Patch-AE result appears perfect visually (which confirms the 43.60 

dB of reconstruction accuracy, see Table 3.2). In Figure 3-11.b and Figure 3-11.c, due to the complex 

structure of the urban area, the reconstruction task is a priori harder. The OMP result exhibits a noise 

under the form of dark spots spread along the urban structures, it loses some urban morphologies and 

introduces a bias which makes the reconstruction appear a bit brighter than it should. All these problems 

can be explained by the fact that the OMP is a very sparse strategy as mentioned in [11], which makes it 

less robust in particular when complex structures are contaminated. The Patch-AE result is definitely 

better as most of the structures appear correctly reconstructed but with a problem of blurring. This can 

be explained by the fact that the Patch-AE method reconstructs the single pixels by averaging the 

outcomes from all patches involving each single pixel (see Figure 3-3). Such a weighted averaging 

operation acts thus as a post-processing filter incurring in a blurring effect. 
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(a)                                  (b)                                           (c) 

Figure 3-10: Examples of qualitative results for Dataset 1. (a) Original image. Image reconstructed 

(after contamination with mask C) by the (b) OMP and (c) patch-based reconstruction methods. 

   
(a)                                  (b)                                           (c) 

Figure 3-11: Examples of qualitative results for Dataset 2. (a) Original image. Image reconstructed 

(after contamination with mask 2) by the (b) OMP and (c) patch-based reconstruction methods. 

As performed for the first set of experiments, we analyzed again the sensitivity of the patch-based 

strategy to the patch size (see Table 3.5). Similar observations can be drawn, leading to the conclusion 

that a 33 patch size is the best compromise in terms of accuracy and computation load. 

Table 3.5: Analysis of the sensitivity to the patch size in terms of PSNR for the second simulation 

experiments. 1×1 size refers to the pixel-based strategy. 

Patch size Dataset 1 Dataset 2 

Mask 1 Mask 2 Mask 3 Mask 1 Mask 2 Mask 3 

1x1 29.71 30.05 29.68 28.62 28.53 29.18 

3x3 32.95 33.15 32.37 30.77 30.85 30.91 

5x5 30.74 31.26 30.99 29.86 29.9 30.22 

7x7 23.61 23.78 23.16 27.93 27.91 28.68 

3.3.3 Results on real clouds  

In addition, we applied our method on a data set with real clouds (see Figure 3-12). In particular, 

this data set, useful for qualitative evaluation, is composed of three images. It was acquired by the 

European optical high resolution Sentinel-2 satellite. The images represent part of the Washington region 

in USA. They contain 800×700 pixels and four spectral bands (blue, green, red, and near infrared) with 

a pixel spacing of 10 m on the ground. They were acquired on September 14th 2015, August 5th 2015, 

and July 20th, 2016, respectively. The first image is used as reference image (cloud free image) and the 

two others as target images (cloudy images). Between the first and second images (Figure 3-12.a and 
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Figure 3-12.b), a first autoencoder AE1 was trained and exploited as a pretrained model to fine-tune 

another autoencoder AE2 for the third image (Figure 3-12.c). The clouds and their shadows on both 

cloudy images were masked manually (Figure 3-13). The obtained results on the two target images are 

provided in Figure 3-14. Figure 3-15 presents zooms of contaminated regions after reconstruction. The 

images show the good capability of the developed method in reconstructing areas contaminated by clouds 

(and their shadow). Indeed, the differences between the reconstructed areas and the surrounding regions 

are very small and can hardly be seen visually. On its side, the reference OMP method exhibits a slight 

spectral mismatch when compared to the surrounding uncontaminated area (see Figure 3-15.c and 

Figure 3-15.f) as well as some artifacts (see Figure 3-15.c). 

   

(a)      (b)     (c) 

Figure 3-12: Color composite of the third dataset acquired by Sentinel-2 over Washington on (a) 

September 14th, 2015 (source image); (b) August 5th, 2015 (target image 1); and (c) July 20th, 2016 

(target image 2). 

  

Figure 3-13: Masked clouds and shadows of the third dataset. 
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(a)         (b) 

Figure 3-14: Reconstructed images obtained for dataset 3. (a) second image (August 5th, 2015), (b) 

third image (July 20th, 2016). 

 
(a)                                            (b)                                             (c) 

Figure 3-15: Zooms of reconstruction results obtained for third image (July 20th, 2016) from source 

image (September 14th, 2015) of dataset 3, over (a)-(b) urban and (d)-(e) green areas. For comparison, 

results generated by the OMP method are provided in (c) and (f). 

As a last experiment, we tested our method on an image characterized by the presence of 

phenological changes. This image was acquired in the region of Bejaia, Algeria, with the Landsat-8 

satellite. The first (source) image was acquired on July 31st, 2016 (Figure 3-16.a), while the second 

(target) image was taken on March 28th, 2016 (Figure 3-16.b). The latter conveys healthy vegetation 

while the former reports dry vegetation due to high temperatures at that period of the year. Figure 3-16.c 

reveals that, despite the presence of significant spectral changes in the land covers, the proposed method 

is capable to capture them and provide a visually sound reconstruction result. 
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(a)                                              (b)                                              

 

(c)  

Figure 3-16: Results achieved for dataset 4. (a) first image (July 31st, 2016), (b) second image (March 

28th, 2016), (c) reconstruction of second image. 

3.4. Conclusion 

We have proposed in this chapter a new approach to recover missing data in multispectral images 

due to the presence of clouds. In particular, the reconstruction problem is formulated under an 

autoencoding perspective, based on an AE neural network. Given a cloud-free image (source image) and 

a cloud-contaminated image (target image), the standard AE process is slightly modified so as to estimate 

the mapping function between the source and the target images. For this purpose, we have developed two 

strategies; the first relies on simple pixel-based information to calculate the transformation function 
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whereas the second strategy performs a patch-to-patch mapping followed by a simple fusion step to 

reconstruct the single pixels of the missing areas in the target image. Moreover, in order to fix the problem 

of the hidden layer size, a new solution combining the minimum descriptive length (MDL) criterion and 

a Pareto-like selection method has been introduced. 

The experimental results reveal that the two proposed methods (Pixel-AE and Patch-AE) show 

good results in reconstructing the missing areas and can significantly outperform state-of-the-arts 

methods. Compared to Pixel-AE, Patch-AE yields better accuracies thanks to the feeding of contextual, 

and thus richer information, in the reconstruction model. In general, it is noteworthy that the size of the 

contaminated region does not affect the performance of the methods. Nevertheless, since the training is 

performed over the neighborhood of the missing area it is important that the neighborhood be enough 

representative. Otherwise, the risk to get unsatisfactory results can sharply increase. 
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4.1. Introduction 

Chemometrics is the application of mathematical and statistical tools to mostly retrieve chemical 

information, but may include also physical, biological, and other quantitative and/or qualitative data in 

order to address problems in chemistry, biology, medicine, and chemical engineering. Associated with 

chemometrics, spectroscopy allows simultaneous analysis of several parameters and gives possibility to 

replace many devices, thereby providing analysis solutions merged into a single platform. Spectroscopy 

has become nowadays a powerful tool for quality control and product analysis in different chemical fields 

[1]–[5]. However, estimating the concentration of chemical components of interest in a given product is 

difficult and challenging due to the collinearity between the spectral variables, and the large number of 

variables to be treated. To address this issue, machine learning can represent an attractive approach since 

it may exhibit various advantages compared to traditional methods such: 1) as nonlinear modeling 

capability; 2) good generalization capability thanks to an adequate handling of the overfitting risk; 3) 

little or no knowledge is required on the problem; 4) limited number of hyperparameters to be tuned; and 

5) good results even with limited number of training samples. In this context, many solutions have been 

proposed in the literature, using predominantly machine learning estimation methods, such as partial 

least squares regression (PLS regression) [6]–[8], multiple linear regression (MLR) [9], artificial neural 

networks (ANNs) [10], support vector machines for regression (SVR) [11]–[13], Gaussian process 

regression (GPR) [14], extreme learning machines (ELM) [15] and fusion approach based on induced 

ordered weighted averaging operators (IOWA) applied on an ensemble generated by GPR and ELM 

estimators associated with different kernels [16]. 

Convolutional Neural Networks (CNNs) are considered as machine learning tools based on 

learning data models. They were developed by Y. LeCun et al. in 1998 [17] as a class of deep feed-

forward artificial neural networks. They are now one of the most important deep learning architectures, 

and they have been applied for numerous tasks in different research fields which deal with images such 

as remote sensing [18], [19], biomedical imaging [20], [21] and biometrics [22], [23]. However, it can 

be interesting to explore the effectiveness of CNNs to other applications that do not deal with image data, 

such as biosignals and chemometric signals. To the best of our knowledge, the works developed by 

Acquarelli et al. [24], Chen et al. [25] and Kiranyaz et al. [26] are the only works where CNNs are used 

over 1D input signals. In particular, they were applied for spectroscopic data classification, hyperspectral 

images classification (pixel-based method) and ECG real time classification, respectively. 

In this work, we propose a novel approach for chemometric data analysis by using 1-D 

convolutional neural networks (1D-CNNs). Conventional CNNs are hierarchical architectures based on 

an alternation of convolutional layers with subsampling layers and followed by a fully connected layer 

(or many layers similar to a multilayer perceptron MLP). Regarding 1D-CNNs, the basis of the 

architecture is similar to that of conventional CNNs. The difference is the use of 1D input data that 

requires the application of 1D filters on the convolution layers and consequently the modification of the 

equations of the forward propagation and back propagation during the training phase. Furthermore, in 
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order to deal with the problem of limited data, we propose to optimize the 1D-CNN and estimate the 

weights of the filters by using an evolutionary method. We use for this purpose the particle swarm 

optimization (PSO) method. The 1D-CNN and the PSO-1DCNN methods are used here as feature 

extractor and the extracted features are fed to advanced regression methods such as GPR and SVR (see 

Figure 4-1). 

To the best of our knowledge, the contribution of this work is twofold. First, it explores 1D-CNNs for 

regression issues, with application to spectroscopic signal regression. Secondly, it is also the first work 

proposing PSO to train a 1D-CNN for signal regression. 

 

Figure 4-1: General scheme of the proposed method for chemometric data analysis. 

The rest of this Chapter is organized as follows. Section II presents the architecture of the proposed 

1D-CNN method. The developed PSO-1DCNN is described in Section III. In Section IV, we give brief 

details about the two methods of regression used in the prediction phase (GPR and SVR). The 

experimental results are presented in Section V. Finally, conclusions and future developments are 

reported in Section VI. Mathematical symbols adopted in this chapter are summarized in the Appendix. 

4.2.  1D-CNNs 

As stated before, 1D-CNNs are used in this work for feature extraction. The last fully connected 

layer (logistic regression layer) is added for the purpose of adjusting the different parameters just during 

the back propagation training. 

Let us consider a matrix of training samples X = [x1, x2, …, xN]′, where N is the number of training 

samples and each vector xi is represented in the d-dimensional measurement space. Let us also denote as 

y = [y1, y2, …, yN]′ the real output target vector associated with X. A 1D-CNN is constituted of a number 

L of layers, each layer l (l=1..L) is composed of ml feature signals and performs both convolution and 

subsampling operations. We assume that the factor of subsampling (ss) is always equal to 2 (ss = 2). 

Figure 4-2 illustrates a general 1D-CNN architecture. 

1D-CNNs 
Regressors
(GPR/SVR) 

Input data 

x

Extracted 

features

z

output
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Figure 4-2: 1D-CNN general architecture. 

4.2.1  Forward propagation 

Assuming the current layer l, during the forward propagation, the input of each feature signal of 

the layer l is the result of the accumulation of the final output (after the subsampling) of the previous 

feature signal (l - 1) convolved with their proper filters and passed through an nonlinear activation 

function as follows: 

𝒂𝑖
𝑙 = 𝑏𝑖

𝑙 + ∑ conv1D(𝒘𝑖,𝑗
𝑙𝑚𝑙−1

𝑗=1 , 𝒔𝑗
𝑙−1)    (i=1, …,𝑚𝑙)    (4.1) 

𝒔𝑖
𝑙 = 𝑓(𝒂𝑖

𝑙)             (4.2) 

where 𝒂𝑖
𝑙 is the input of the i-th feature signal of the layer l,  𝑏𝑖

𝑙 is the bias of this feature signal and 𝒔𝑖
𝑙 is 

its output, 𝒔𝑗
𝑙−1 is the output of the j-th feature signal on the previous layer (l-1), 𝒘𝑖,𝑗

𝑙  is the filter (kernel) 

weights vector between the j-th feature signal on the l-1 layer and the i-th feature signal on the l-th layer, 

and 𝑓(∙) is a nonlinear activation function. Typically, a sigmoid activation function is used, which is 

expressed by the equation below: 

𝑓(𝑥) =
1

1+𝑒−𝑥          (4.3) 

Regarding the dimension of the vectors on each part of the 1D-CNN, if we suppose that dl is the 

dimension of the final output of each feature signal on the layer l and rl is the length of its corresponding 

kernel (filter), the final output of the feature signal of the next layer l+1 (l+1 ≤ L) is: 
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𝑑𝑙+1 =
𝑑𝑙– 𝑟𝑙 +1

2
            (4.4) 

The outputs of feature signals of the last layer L are stacked in one vector z which is the feature 

vector of the 1D-CNN with a size n equals to 𝑑𝐿 × 𝑚𝐿. Neurons of this layer are fully connected to the 

output layer. In our case, since we deal with regression problems and each input x has one target value 

y, the output layer is formed by just one neuron and its output y (𝒔𝐿+1) is formulated as follows: 

 𝑦 = 𝒔𝐿+1 = 𝑓(𝑏𝐿+1 + ∑ (𝒘1,𝑖
𝐿+1𝑛

𝑖=1 × 𝒛))         (4.5) 

4.2.2 Back propagation 

In order to train the 1D-CNN, we need to compute first the error at the output layer 𝐸(𝑦) and its 

gradient 
𝜕𝐸

𝜕𝑦
. The objective of calculating this error is to be able to estimate the weights in order to 

minimize this error during the process of learning. To this end, we need to calculate the derivative of the 

error with respect to each weight 
𝜕𝐸

𝜕𝒘𝑖,𝑗
𝑙 = ∆𝒘𝑖,𝑗

𝑙 .  

Using the chain rule, we get the following: 

𝜕𝐸

𝜕𝒘𝑖,𝑗
𝑙 =

𝜕𝐸

𝜕𝒂𝑖
𝑙

𝜕𝒂𝑖
𝑙

𝜕𝒘𝑖,𝑗
𝑙           (4.6) 

From equation (4.1), we can deduce that: 

𝜕𝒂𝑖
𝑙

𝜕𝒘𝑖,𝑗
𝑙 = 𝒔𝑗

𝑙−1          (4.7) 

Using equation (4.7), equation (4.6) becomes: 

𝜕𝐸

𝜕𝒘𝑖,𝑗
𝑙 =

𝜕𝐸

𝜕𝒂𝑖
𝑙 𝒔𝑗

𝑙−1 =
𝜕𝐸

𝜕𝒂𝑖
𝑙 𝑓(𝒂𝑗

𝑙−1)        (4.8) 

We already know all the values of 𝒔. In order to compute the gradient, we need to know the values 
𝜕𝐸

𝜕𝒂𝑖
𝑙 . By using once more the chain rule, we can write: 

𝜕𝐸

𝜕𝒂𝑖
𝑙 =

𝜕𝐸

𝜕𝒔𝑖
𝑙

𝜕𝒔𝑖
𝑙

𝜕𝒂𝑖
𝑙 =

𝜕𝐸

𝜕𝒔𝑖
𝑙

𝜕

𝜕𝒂𝑖
𝑙 𝑓(𝒂𝑖

𝑙) =
𝜕𝐸

𝜕𝒔𝑖
𝑙 𝑓′(𝒂𝑖

𝑙)       (4.9) 

We can compute the derivative 
𝜕𝐸

𝜕𝒂𝑖
𝑙 at the current layer by just computing the derivative of the 

activation function  𝑓′(𝒂𝑖
𝑙). Since we use a sigmoid function, the derivative of the activation function is 

written as follows: 
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𝑓′(𝑥) = 𝑓(𝑥) × (1 − 𝑓(𝑥))        (4.10) 

Moreover, since we already know the error at the current layer 
𝜕𝐸

𝜕𝒔𝑖
𝑙, we can compute then the 

gradient with respect to the weights used by the considered convolutional layer. 

Next task consists of propagating the errors back to the previous layer. By using again chain rule, we can 

find: 

𝜕𝐸

𝜕𝒔𝑗
𝑙−1 =

𝜕𝐸

𝜕𝒂𝑖
𝑙

𝜕𝒂𝑖
𝑙

𝜕𝒔𝑗
𝑙−1          (4.11) 

From equation (4.1), we can deduce that: 

𝜕𝒂𝑖
𝑙

𝜕𝒔𝑗
𝑙−1 = 𝒘𝑖,𝑗

𝑙           (4.12) 

Now, we have everything we need to compute ∆𝒘𝑖,𝑗
𝑙 , we just need to update weights as follows: 

𝒘𝑖,𝑗
𝑙∗ = 𝒘𝑖,𝑗

𝑙 + 𝜂∆𝒘𝑖,𝑗
𝑙          (4.13) 

where 𝒘𝑖,𝑗
𝑙∗  corresponds to the weights of the next iteration and 𝜂 is the learning rate. 

4.2.3 Subsampling layers 

The main objective of subsampling is to reduce the size of the final feature vector in order to allow 

the problem remaining tractable. The subsampling can be done by different ways. In our case, in forward 

propagation, each block of size ss×1 is reduced to a single value. This value equals to the average of its 

corresponding block. Therefore, it acquires an error computed from backward propagation from the 

previous layer. This error is then just expanded (upsampled) and forwarded to the next layer (in the 

backward propagation direction). 

We refer the Reader to [27] where more details can be found regarding the general concepts behind 

CNNs. 

4.3. PSO-1DCNN 

Particle swarm optimization (PSO) [28] is a stochastic optimization technique which is inspired by 

social behavior of bird flocking and fish schooling. Similar to other evolutionary computation algorithms, 

PSO is a population-based search method that exploits the concept of social sharing of information. This 

means that each individual (called particle) of a given population (called swarm) can profit from the 

previous experiences of all other individuals from the same population. During the search process in the 

d-dimensional solution space, each particle (i.e., candidate solution) will adjust its flying velocity and 



Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression 

56 

 

position according to its own flying experience as well as the experiences of the other companion 

particles of the swarm. 

We propose to introduce PSO to estimate the different parameters (weights) of the 1D-CNN as an 

alternative to the standard back propagation algorithm. The advantage of using PSO is to overcome the 

problem of overfitting due to limited number of training samples. Furthermore, the complexity of the 

network will be reduced by using a layer-wise optimization, where PSO will be applied on each layer 

independently as described in the following figure. 

 

Figure 4-3: Architecture of the PSO-1DCNN. 

In the following, we will describe briefly the main concepts of the basic PSO algorithm. Let us 

consider a swarm of size S. Each particle Pi (i = 1, 2,..., S) from the swarm is characterized by: 1) its 

current position 𝐩𝑖(𝑡) ∈ ℜ𝑛, which refers to a candidate solution of the optimization problem at iteration 

t; 2) its velocity 𝐯𝑖(𝑡) ∈ ℜ𝑛; and 3) the best position 𝐩𝑏𝑖(𝑡) ∈ ℜ𝑛 that is identified during its past 

trajectory. Let 𝐩𝑔(𝑡) ∈  ℜ𝑛 be the best global position found over all trajectories that are traveled by the 

particles of the swarm. Since the PSO is applied in cascade on each layer of the 1DCNN, the coordinates 

of a particle will encode the values of all the weights characterizing that layer. The position optimality is 

measured by means of one or more fitness functions that are defined in relation to the considered 

optimization problem. During the search process, the particles move according to the following 

equations: 

Concatenation

Input

Convolution Subsampling 

Population 

of filters

Fully connected 

sub-network

ith population 

(i=1…S)

Input

trained sub-network Population of 

filters
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{

𝐯𝑖(𝑡 + 1) = 𝜔0𝐯𝑖(𝑡) + 𝑐1. 𝑟1(𝑡)(𝐩𝑏𝑖(𝑡) − 𝐩𝑖(𝑡))

        +𝑐2. 𝑟2(𝑡) (𝐩𝑔(𝑡) − 𝐩𝑖(𝑡))

𝐩𝑖(𝑡 + 1) = 𝐩𝑖(𝑡) + 𝐯𝑖(𝑡)                                      

   (4.14) 

where r1(t) and r2(t) are random variables that are drawn from a uniform distribution in the range [0, 1] 

to provide a stochastic weighting of the different components participating in the particle velocity 

definition. c1 and c2 are two acceleration constants regulating the relative velocities with respect to the 

best local and global positions, respectively. The inertia weight 𝜔0 is used as a tradeoff between global 

and local exploration capabilities of the swarm. Large values of this parameter permit better global 

exploration, whereas small values lead to a fine search in the solution space. First part of the equation 

(4.14) allows the computation of the velocity at iteration t + 1 for each particle in the swarm by combining 

linearly its current velocity and the distances that separate the current particle position from its best 

previous position and the best global position, respectively. The updating of the particle position is 

performed with the second part of equation (4.14), which is iterated until convergence of the search 

process is reached. 

4.4. Prediction 

Similarly to conventional 2DCNNs, the feature signals of the last subsampling layer are gathered 

and concatenated to form the feature vector which will be considered as a new representation of the input 

sample. For the prediction, we will resort to two different methods of regression, namely GPR and SVR, 

which will be fed with features extracted by the 1D-CNN. The choice of these advanced machine learning 

methods is motivated by their successful applications in different research fields [29]–[34], as well as in 

the chemometric data analysis [16]. Such a success is mainly explained by their lower sensitivity to the 

risk of overfitting, and thus their higher generalization capability with respect to traditional regression 

methods. Moreover, they involve a very limited number of hyperparameters to be tuned (depending on 

the adopted covariance/kernel function). A brief description of these two methods is provided in the 

following. 

4.4.1 GPR 

Let us consider a set of N training samples Z = [z1, z2, …, zN]′, where each vector zi is the feature 

vector of dimension n extracted by the 1D-CNN from the input sample xi. Let us also denote as y = [y1, 

y2, …, yN]′ the corresponding target vector associated with Z. The objective of the GPR is to deduce a 

relationship between the set of training samples Z and the target vector y which is considered as the sum 

of a latent function f and a noise component εn, where: 

f~GP(0, K(Z, Z))         (4.15) 

εn~N(0, 𝜎𝑛
2I)         (4.16) 
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The first equation implies that a Gaussian process GP(.,.) is assumed over the latent function f 

which is considered as a collection of random variables which follow a joint Gaussian distribution [35]. 

K is the covariance matrix built by means of a kernel function K computed on all the training sample 

pairs. The second equation states that the output target vector is corrupted by a noise that follows a 

Gaussian distribution with zero-mean and variance equals to 𝜎𝑛
2. Since the latent function f and the noise 

ε are statistically independent, the noisy observations y are also modeled with GP, that is, 

y~GP(0, K(Z, Z) + 𝜎𝑛
2I)        (4.17) 

or equivalently 

p(y|Z) = N(0, K(Z, Z) + 𝜎𝑛
2I)       (4.18) 

In the prediction phase, given the set of training samples, the best estimation of the output value yt 

associated with an unknown sample zt is given by: 

�̂�t|𝐙, 𝐲, 𝐳𝐭~𝐸{𝑦t|𝐙, 𝐲, 𝐳𝐭} = ∫ 𝑦t 𝑝(𝑦t|𝐙, 𝐲, 𝐳𝐭)d𝑦      (4.19) 

It is clear from the last equation that in order to estimate the output value, the knowledge of the 

predictive distribution 𝑝(𝑦t|𝐙, 𝐲, 𝐳𝐭) is required. For this purpose, the joint distribution of the known 

observations y and the desired function value 𝑦t should be first derived. Thanks to the assumption of a 

GP over y and to the marginalization property of GPs, this joint distribution is Gaussian. The desired 

predictive distribution can be derived simply by conditioning the joint one to the noisy observations y 

and takes the expression: 

𝑝(𝑦t|𝐙, 𝐲, 𝐳𝐭) = N(𝜇t, 𝜎t
2)         (4.20) 

where: 

𝜇t = [
𝑘(𝐳t, 𝐳1)

⋮
𝑘(𝐳t, 𝐳𝑁)

]

T

. [𝐊(𝐙, 𝐙) + 𝜎𝑛
2𝐈]−1. 𝐲       (4.21) 

and 

𝜎t
2 = 𝑘(𝐳t, 𝐳t) − [

𝑘(𝐳t, 𝐳1)
⋮

𝑘(𝐳t, 𝐳𝑁)
]

T

. [𝐊(𝐙, 𝐙) + 𝜎𝑛
2𝐈]−1. [

𝑘(𝐳t, 𝐳1)
⋮

𝑘(𝐳t, 𝐳𝑁)
]     (4.22) 

These are the key equation in the GPR approach. The mean 𝜇t expresses the best output value 

estimate for the considered sample and the variance 𝜎t
2 represents the confidence measure associated by 

the model to the output. 
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A central role in the GPR model is played by the kernel function k(𝐳i, 𝐳j) (covariance) as it embeds 

the geometric structure of the training samples. Through it, it is possible to define the prior knowledge 

about the output function we wish to learn. The parameters of the covariance function can be determined 

empirically (for example by cross-validation). As an alternative, the intrinsic nature of GPs allows a 

Bayesian treatment for the estimation of parameter vectors Θ. To this end, one may resort to the ML-II 

estimation procedure. It consists in the maximization of the marginal likelihood with respect to Θ, that 

is, the integral of the likelihood times the prior. 

𝑝(𝒚|𝐙) = 𝑝(𝒚|𝐙, 𝚯) = ∫ 𝑝(𝐲|𝐟, 𝐙, 𝚯)𝑝(𝐟|𝐙, 𝚯)d𝐟     (4.23) 

with the marginalization over the latent function f. Under GP modeling, both the prior and the likelihood 

follow Gaussian distributions. After some manipulation, it is possible to show that 

the log marginal likelihood can be written as [35]: 

log𝑝(𝒚|𝐙, 𝚯) = −
1

2
𝐲T. [𝐊(𝐙, 𝐙) + 𝜎𝑛

2𝐈]−1. 𝐲 −
1

2
log|𝐊(𝐙, 𝐙) + 𝜎𝑛

2𝐈| −
𝑁

2
log(2𝜋)    (4.24) 

This equation is characterized by the sum of three terms. The first is the only one that involves the 

target observations. It represents the capability of the model to fit the data. The second one is the model 

complexity penalty, and the third term is a normalization constant. From an implementation viewpoint, 

this maximization problem can easily be solved by a gradient-based search routine [35]. 

4.4.2 SVR 

Support Vector machine Regression (SVR) performs linear regression in a feature space using an 

epsilon-intensive loss (ε-SVM). This technique is based on the idea of deducing an estimate �̂�(𝐳𝑖) of the 

true but unknown relationship 𝑦𝑖 = 𝑔(𝐳𝑖) (𝑖 = 1, … , 𝑁) between the vector of observations 𝐳𝑖 and the 

target value 𝑦𝑖 such that: 1) �̂�(𝐳𝑖) has, at most, ε deviation from the desired targets 𝑦𝑖 and 2) it is as 

smooth as possible [36], [37]. This is performed by mapping the data from the original feature space of 

dimension n to a higher 𝑛′-dimensional transformed feature space (kernel space), i.e., 𝛷(𝐳𝑖) ∈

ℜ𝑛′
 (𝑛′ > 𝑛), to increase the flatness of the function and, by consequence, to approximate it in a linear 

way as follows: 

�̂�(𝐳𝑖) = 𝜔∗. 𝛷(𝐳𝑖) + 𝑏∗        (4.25) 

Therefore, SVR is formulated as minimization of the following cost function: 

ψ(𝜔, 𝜉) =
1

2
‖𝜔‖2 + 𝑐 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑁
𝑖=1        (4.26) 

subject to: 
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{

𝑦𝑖 − (𝜔. 𝛷(𝐳𝑖) + 𝑏) ≤ ε + 𝜉𝑖

(𝜔. 𝛷(𝐳𝑖) + 𝑏) − 𝑦𝑖 ≤ ε + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

       (4.27) 

where, 𝜉𝑖 and 𝜉𝑖
∗ are the slack variables that measure the deviation of the training sample 𝐳𝑖 outside the 

ε-intensive zone. c is a parameter of regularization that allows tuning the tradeoff between the flatness 

of the function �̂�(𝐳) and the tolerance of deviations larger than ε. 

The aforementioned optimization problem can be transformed through a Lagrange functional into a dual 

optimization problem expressed in the original dimensional feature space in order to lead to the following 

dual prediction model: 

 �̂�(𝐳) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝐳𝑖, 𝐳) + 𝑏∗

𝑖∈𝑈       (4.28) 

where K is a kernel function, U is a subset of indices (i = 1, … ,N) corresponding to the nonzero Lagrange 

multipliers 𝛼𝑖’s or 𝛼𝑖
∗’s. The training samples that are associated to nonzero weights are called SVs. The 

kernel K(·,·) should be chosen such that it satisfies the condition imposed by the Mercer’s theorem, such 

as the Gaussian kernel functions [36], [37]. 

4.5. Experimental results  

4.5.1 Dataset description and performance evaluation 

In the experiments, three different datasets are used, each has been decomposed in two sets. The 

first is a training set for model learning and selection, while the second is a test set for assessment and 

evaluation of the trained model. 

The first dataset “Orange Juice” deals with the problem of determining the concentration of 

saccharose in orange juice samples by near-infrared reflectance spectroscopy [38], [39]. The training set 

contains 150 samples and the test set contains 68 samples, with 700 spectral variables (features). Those 

features are the absorbance (log 1/R) at 700 wavelengths between 1100 and 2500 nm (where R is the 

light reflectance on the sample surface). The saccharose concentration ranges from 0% to 95.2% by 

weight. Figure 4-4 shows the spectra of the training samples. 
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Figure 4-4: Near-infrared spectra of orange juice training samples. 

The second dataset is related to the determination of alcohol content by mid-infrared spectroscopy 

in wine samples [38]–[40]. The dataset contains 124 samples: 94 as training samples (see Figure 4-5) 

and 30 as test samples, with 256 spectral variables that are the absorbance (log 1/T) at 256 wave numbers 

between 4000 and 400 cm-1 (where T is the light transmittance through the sample thickness). 

 

Figure 4-5: Mid-infrared spectra of wine training samples. 

The third dataset deals with the prediction of the fat content of meat samples analyzed by near-

infrared transmittance spectroscopy [40], [41]. The corresponding data were recorded on a Tecator 

Infratec Food and Feed Analyzer working in the wavelength range 850-1050 nm by the Near Infrared 
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Transmission (NIT) principle. The spectrometer records light transmittance through the meat samples at 

100 channel spectrum of absorbance in the specified range. Each sample contains finely chopped pure 

meat with different moisture, fat and protein contents. Those contents, measured in percent by weight, 

are determined by analytic chemistry. There are 215 samples in this dataset, 172 samples are used as 

training (see Figure 4-6) and 43 samples as test. 

 

Figure 4-6: Near-infrared spectra of Tecator training samples. 

In order to evaluate the regression methods and to perform a direct comparison with state-of-the-

art results, we adopt the Normalized Mean Square Error (NMSE) metric. Since it normalizes the error 

with respect to the range of variation of the output, it is usually preferred over the popular MSE metric. 

It is given by: 

𝑁𝑀𝑆𝐸 =
∑ (𝑦𝑖𝑡−�̂�𝑖𝑡)2𝑁𝑡

𝑖=1

(var{𝑦,𝑦𝑡})
         (4.29) 

where 𝑁𝑡 is the total number of test samples, 𝑦𝑖𝑡 and �̂�𝑖𝑡 are the real and estimated output for the i-th test 

sample 𝒙𝑖𝑡 and var{𝑦, 𝑦𝑡} is the variance of all output samples. 

We also use a gain in accuracy measure in order to give information about how much our methods 

improved those of the state-of-the-art methods [16]. This measure is given by: 

𝑔𝑎𝑖𝑛 = 100 ×
(𝑁𝑀𝑆𝐸2−𝑁𝑀𝑆𝐸1)

𝑁𝑀𝑆𝐸2
         (4.30) 

where 𝑁𝑀𝑆𝐸1is the NMSE of our proposed method and 𝑁𝑀𝑆𝐸2 is the NMSE of the state-of-the-art 

method. 
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4.5.2 Parameter setting 

The architecture of a 1D-CNN involves three main parameters: number of layers L, number of 

feature signals ml and length of kernel rl of each layer l (l=1,..,L). To compute the best parameter values, 

we use a cross-validation technique with a number of folds equal to 3. Due to the large number of 

combinations and also to the limited number of training samples, we decided to limit the maximum 

number of possible layers 𝐿max to 3. Moreover, the maximum number of feature signals in each layer l 

(𝑚max
𝑙 ) is fixed to 5 with step of 1 and maximum kernel size on each layer l (𝑟max

𝑙 ) is fixed to 10% of the 

current layer features length dl with step of 5 for the first dataset and 3 for the two other datasets. The 

obtained best values of the parameters by cross-validation are listed in Table 4.1. Regarding the PSO-

1DCNN method, since the training is performed layer-by-layer, the number of possible cases in the cross-

validation is reduced compared to the previous procedure. Thus, the number of feature signals in each 

layer l (𝑚max
𝑙 ) is fixed to 10 while keeping the other parameters similar to the previous method. The 

optimal parameters found by cross-validation are presented in Table 4.2. Figure 4-7 and Figure 4-8 show 

examples of the best NMSE found by cross-validation by changing the number of layers and changing 

the number of feature signals (in the case of one layer), respectively. We can observe from these figures 

that the best architecture needs to be neither large nor shallow in order to get the best results. 

Regarding GPR and SVR, we use the Matérn covariance function for GPR and the Radial Basis 

Function (RBF) for SVR as kernel functions. During the cross validation, the parameter of regularization 

of SVR ‘c’ and the width of its kernel function ‘γ’ were varied in the range [1, 104] and [10-3, 5] 

respectively. The ε value of the insensitive tube was fixed to 10−3. 

Table 4.1: Best parameter values of the 1D-CNN for each dataset. 

Dataset Layer 1 Layer 2 

𝑚1 𝑟1 𝑚2 𝑟2 

Orange Juice 5 9 1 19 

Wine 1 17 5 9 

Tecator 5 13 3 7 

Table 4.2: Best parameter values of the PSO-1DCNN for each dataset. 

Dataset Layer 1 Layer 2 Layer 3 

𝑚1 𝑟1 𝑚2 𝑟2 𝑚3 𝑟3 

Orange Juice 1 31 1 21 1 13 

Wine 4 15 4 7 0 0 

Tecator 5 7 1 7 5 5 
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Figure 4-7: Effect of number of layers on estimation error. 

 

Figure 4-8: Effect of number of feature signals on estimation error. 

4.5.3 Results 

In order to evaluate our method, as already explained in the methodology part, we chose two known 

and effective regression methods, namely GPR and SVR, to apply them on the features extracted from 

the two proposed methods, i.e. 1D-CNN and PSO-1DCNN. It is worth recalling that, during the training 

of 1D-CNN and PSO-1DCNN, just a linear regression (LR) layer is put on top of the neural network. 

The accuracies achieved with LR are also analyzed. From [16], we took for comparison results achieved 

by the well-known partial least square regressor (PLSR), as well as the GPR and SVR fed with all 

available original features. All the results in terms of NMSE are reported in Table 4.3, Table 4.4 and 

Table 4.5 for Orange Juice, Wine and Tecator datasets, respectively. The obtained gains in accuracy for 

the three datasets are presented in Table 4.6. 



Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression 

65 

 

Table 4.3: Results for the Orange Juice dataset. 

Features Regression 

Method 

No. features NMSE 

[16] PLSR 13 0.1626 

[16] GPR 700 1.1350 

1D-CNN LR 164 0.2869 

PSO-1DCNN LR 73 0.6007 

1D-CNN GPR 164 0.1661 

PSO-1DCNN GPR 73 0.1569 

[16] SVR 700 0.2488 

1D-CNN SVR 164 0.1462 

PSO-1DCNN SVR 73 0.1416 

Table 4.4: Results for the Wine dataset. 

Features Regression 

Method 

No. features NMSE 

[16] PLSR 9 0.00610 

[16] GPR 256 0.00287 

1D-CNN LR 280 0.03150 

PSO-1DCNN LR 232 0.21010 

1D-CNN GPR 280 0.00261 

PSO-1DCNN GPR 232 0.00226 

[16] SVR 256 0.00590 

1D-CNN SVR 280 0.00320 

PSO-1DCNN SVR 232 0.00282 

Table 4.5: Results for the Tecator dataset. 

Features Regression 

Method 

No. features NMSE 

[16] PLSR 12 0.02840 

[16] GPR 100 0.00124 

1D-CNN LR 57 0.00210 

PSO-1DCNN LR 45 0.03770 

1D-CNN GPR 57 0.00098 

PSO-1DCNN GPR 45 0.00079 

[16] SVR 100 0.00250 

1D-CNN SVR 57 0.00076 

PSO-1DCNN SVR 45 0.00088 

Table 4.6: Gain in accuracy for the 3 datasets. 

Dataset Gain (%) 

GPR SVR 

Orange Juice 86.2 43.1 

Wine 21.3 52.2 

Tecator 36.3 69.6 
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From these tables, it can be seen that using the features extracted from the two proposed methods 

(1D-CNN and PSO-1DCNN) coupled with GPR and SVR techniques provide better results in term of 

NMSE compared to the state-of-the-art methods [16]. Moreover, from Table 4.6, the calculated gains in 

accuracy by comparing the same regression method (GPR or SVR) fed with all original features and with 

best extracted features (among 1D-CNN and PSO-1DCNN) show clearly how important are the 

achievable improvements with the proposed method. As for the contribution of resorting to PSO to 

estimate the parameters of the CNN, it can be seen clearly on all cases (except the case of the Tecator 

dataset by using SVR) that there are noticeable improvements compared to the results yielded by using 

the classical back propagation algorithm. This encourages using evolutionary methods to train a CNN-

based architecture especially with limited number of training samples. Also because the training time for 

both developed methods takes only few minutes and small memory space. As expected, the traditional 

gradient-based method is faster as, on an average, it takes about 1 minute with respect to 3 minutes for 

the PSO. 

In more detail, considering the best obtained results among the two proposed methods, from 

Table 4.3 (orange juice dataset), the NMSE using the PSO-1DCNN features is equal to 0.1569 with GPR 

and 0.1416 with SVR. On the other hand, from [16], NMSE equals to 1.1350 and 0.2488 with GPR and 

SVR, respectively. For this dataset, the PLSR method with just 13 features achieved a better result 

compared to GPR and SVR with a NMSE equal to 0.1626. The gain in accuracy obtained by our method 

with respect to the state-of-the-art methods is equal to 86.2% and 43.1% for GPR and SVR, respectively. 

Regarding the Wine dataset (Table 4.4), the PSO-1DCNN features provide NMSE equal to 0.00226 and 

0.00282 with GPR and SVR, respectively. In [16], it is equal to 0.00287 for GPR and 0.0059 for SVR. 

The corresponding gains in accuracy are equal to 21.3% and 52.2%, respectively. For the Tecator dataset 

(Table 4.5), GPR and SVR provide NMSE equal to 0.00079 and 0.00076 by using PSO-1DCNN and 1D-

CNN features, respectively. In [16], they are equal to 0.00124 and 0.0025, respectively. In this case, the 

gain in accuracy is 36.3% for GPR and 69.6% for SVR. It is noteworthy that in most of the cases the 

PSO-1DCNN worsened the results for the LR regressor. The explanation is that, in all scenarios, the 

PSO-1DCNN is trained with LR, and thus the LR accuracy is used as fitness function. Accordingly, a 

high risk is incurred that the obtained PSO-1DCNN (with LR) overfits the data and provides poorer 

results with respect to traditional gradient descent optimization. Regarding the two other regressors (SVR 

and GPR), they are not affected by this issue as they were not part of the optimization process, but they 

just exploit the features provided by the 1DCNN optimized by the PSO on the LR. 

Qualitatively, we can notice from Figure 4-10 and Figure 4-11 which correspond to datasets 2 and 

3, respectively, that the estimated values by the proposed method are almost identical to the real ones. 

By contrast, in dataset 1 (Figure 4-9), more mismatches can be observed due to the higher complexity of 

this dataset. However, as the above quantitative assessments show, the estimation errors are on an average 

very low for this dataset. 
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Figure 4-9: Sample-by-sample comparison between estimated and real output values for the test set of 

the Orange Juice dataset. 

 

Figure 4-10: Sample-by-sample comparison between estimated and real output values for the test set of 

the Wine dataset. 
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Figure 4-11: Sample-by-sample comparison between estimated and real output values for the test set of 

the Tecator dataset. 

4.6. Conclusion 

In this work, we propose new methods for chemometric data analysis based on convolutional neural 

networks. In particular, we modify the standard CNN architecture to adapt it to 1D input data. The 

proposed 1-D CNN architecture is thus based on an alternation of convolutional layers with subsampling 

layers and connected at the end to a linear regression layer. The convolution is applied using 1D filters 

in the convolution layers and pooling (subsampling) is applied by averaging the samples over a given 

sliding 1D window. The estimation of the architecture weights is performed using two methods. The first 

one consists of the standard back propagation algorithm. The second approach is based on a layerwise 

particle swarm optimization. Next step consists of applying a regression method (GPR and SVR, or any 

other method) using features provided by the proposed methods. 

The experimental results show that results yielded by the proposed approach are very promising. 

Indeed, on the three considered datasets, and for both methods of regression, CNN-like extracted features 

can provide significant gains in accuracy (between 21.3% and 86.2%), suggesting that CNNs are able to 

extract powerful feature for regression on 1D signals. Moreover, the contribution of the PSO in the 

training of the neural network architecture appears valuable on two datasets over three, and with a very 

limited additional computational overload. 
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4.7. Appendix: List of Mathematical Symbols 

 𝜂: learning rate (1D-CNN) 

 𝜔0: inertia weight (PSO) 

 𝜔: weight vector (SVR) 

 εn : noise component (GPR) 

 ε : insensitivity parameter (SVR) 

 𝛼𝑖: Lagrange multipliers (SVR) 

 𝜉𝑖: slack variable (SVR) 

 𝒂𝑖
𝑙: i-th input feature signal of layer l (1D-CNN) 

 𝑏𝑖
𝑙: bias of the i-th feature signal of layer l (1D-CNN) 

 b: bias (SVR) 

 𝑐1 𝑐2 : acceleration constants (PSO) 

 c: regularization parameter (SVR) 

 dl : size of feature vector of layer l (1D-CNN) 

 E: error criterion (1D-CNN) 

 f: latent function (GPR) 

 f: activation function (1D-CNN) 

 𝑔(∙) : input-output relationship (SVR) 

 I: identity matrix (GPR) 

 K: covariance matrix (GPR) 

 K: kernel function (SVR) 

 K: covariance function (GPR) 

 L : number of layers (1D-CNN) 

 l: index of current layer (1D-CNN) 

 ml : number of feature signals of layer l (1D-CNN) 

 N(·,·): Normal distribution (GPR) 

 N: number of training samples 

 𝑁𝑡: number of test samples 

 n: output size (1D-CNN) 

 𝑛′: dimension of transformed feature space (SVR) 

 Pi: i-th particle (PSO) 

 𝐩𝑖(𝑡): position of the i-th particle Pi at iteration t (PSO) 

 𝐩𝑔(𝑡): best global position (PSO) 

 𝐩𝑏𝑖(𝑡): best position during past trajectory (PSO) 

 rl : size of the filter of the lth layer (1D-CNN) 

 r1(t) and r2(t) : random numbers generated at iteration t (PSO) 

 S: number of particles (PSO)  

 ss: subsampling factor (1D-CNN) 

 𝒔𝑖
𝑙: output of i-th feature signal of layer l (1D-CNN) 

 𝑡: iteration index (PSO) 

 U : subset of indices (SVR) 
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 𝐯𝑖(𝑡): velocity of the i-th particle Pi at iteration t (PSO) 

 𝒘𝑖,𝑗
𝑙 : filter weights between the j-th feature signal on the l-1 layer and the i-th feature signal on the 

l-th layer (1D-CNN) 

 X=[x1, x2, …, xN]′ : training samples in original space (1D-CNN) 

 y = [y1, y2, …, yN]′ : targets of training samples 

 Z = [z1, z2, …, zN]′: training samples in 1D-CNN induced space (GPR and SVR). 

 

4.8. References 

[1] R. Gente et al., “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans. 

Terahertz Sci. Technol., vol. 6, no. 5, pp. 754–756, Sep. 2016. 

[2] P. Przybylek, “A new method for indirect measurement of water content in fibrous electro-insulating 

materials using near-infrared spectroscopy,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 3, pp. 1798–

1804, Jun. 2016. 

[3] I. Hiroaki, N. Toyonori, and T. Eiji, “Measurement of pesticide residues in food based on diffuse reflectance 

IR spectroscopy,” IEEE Trans. Instrum. Meas., vol. 51, no. 5, pp. 886–890, Oct. 2002. 

[4] A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, H. Ottevaere, and H. Thienpont, “Spectroscopy AS a 

#x201C;green #x201D; technique for food quality and safety applications,” in Technical Digest of the 

Eighteenth Microoptics Conference, 2013, pp. 1–2. 

[5] S. Nishizawa, H. Morita, T. Iwamoto, M. W. Takeda, and M. Tani, “Terahertz time-domain spectroscopy 

applied to nondestructive evaluation of pharmaceutical products,” in 2011 International Conference on 

Infrared, Millimeter, and Terahertz Waves, 2011, pp. 1–2. 

[6] S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemom. Intell. 

Lab. Syst., vol. 58, no. 2, pp. 109–130, 2001. 

[7] B. M. Nicolai, K. I. Theron, and J. Lammertyn, “Kernel PLS regression on wavelet transformed NIR spectra 

for prediction of sugar content of apple,” Chemom. Intell. Lab. Syst., vol. 85, no. 2, pp. 243–252, 2007. 

[8] B. G. Arrobas et al., “Raman spectroscopy for analyzing anthocyanins of lyophilized blueberries,” in 

SENSORS, 2015 IEEE, 2015, pp. 1–4. 

[9] R. K. H. Galvão et al., “Multivariate analysis of the dielectric response of materials modeled using networks 

of resistors and capacitors,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 3, pp. 995–1008, 2013. 

[10] A. Verikas and M. Bacauskiene, “Using artificial neural networks for process and system modelling,” 

Chemom. Intell. Lab. Syst., vol. 67, no. 2, pp. 187–191, 2003. 

[11] H. Li, Y. Liang, and Q. Xu, “Support vector machines and its applications in chemistry,” Chemom. Intell. 

Lab. Syst., vol. 95, no. 2, pp. 188–198, 2009. 

[12] O. Devos, C. Ruckebusch, A. Durand, L. Duponchel, and J.-P. Huvenne, “Support vector machines (SVM) 

in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation,” Chemom. 

Intell. Lab. Syst., vol. 96, no. 1, pp. 27–33, 2009. 

[13] D. Porro, N. Hdez, I. Talavera, O. Núñez, Á. Dago, and R. J. Biscay, “Performance evaluation of relevance 

vector machines as a nonlinear regression method in real-world chemical spectroscopic data,” in Pattern 

Recognition, 2008. ICPR 2008. 19th International Conference on, 2008, pp. 1–4. 



Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression 

71 

 

[14] T. Chen, J. Morris, and E. Martin, “Gaussian process regression for multivariate spectroscopic calibration,” 

Chemom. Intell. Lab. Syst., vol. 87, no. 1, pp. 59–71, 2007. 

[15] J. Peng, L. Li, and Y. Y. Tang, “Combination of activation functions in extreme learning machines for 

multivariate calibration,” Chemom. Intell. Lab. Syst., vol. 120, pp. 53–58, 2013. 

[16] H. AlHichri, Y. Bazi, N. Alajlan, F. Melgani, S. Malek, and R. R. Yager, “A novel fusion approach based 

on induced ordered weighted averaging operators for chemometric data analysis,” J. Chemom., vol. 27, no. 

12, pp. 447–456, 2013. 

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” 

Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. 

[18] G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convolutional neural networks for object 

detection in VHR optical remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 

7405–7415, 2016. 

[19] P. Ghamisi, Y. Chen, and X. X. Zhu, “A Self-Improving Convolution Neural Network for the Classification 

of Hyperspectral Data,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 10, pp. 1537–1541, 2016. 

[20] M. Srinivas, D. Roy, and C. K. Mohan, “Discriminative feature extraction from X-ray images using deep 

convolutional neural networks,” in 2016 IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), 2016, pp. 917–921. 

[21] Z. Cui, J. Yang, and Y. Qiao, “Brain MRI segmentation with patch-based CNN approach,” in Control 

Conference (CCC), 2016 35th Chinese, 2016, pp. 7026–7031. 

[22] R. F. Nogueira, R. de Alencar Lotufo, and R. C. Machado, “Fingerprint Liveness Detection Using 

Convolutional Neural Networks,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 6, pp. 1206–1213, 2016. 

[23] A. Rikhtegar, M. Pooyan, and M. T. Manzuri-Shalmani, “Genetic algorithm-optimised structure of 

convolutional neural network for face recognition applications,” IET Comput. Vis., 2016. 

[24] J. Acquarelli, T. van Laarhoven, J. Gerretzen, T. N. Tran, L. M. C. Buydens, and E. Marchiori, 

“Convolutional neural networks for vibrational spectroscopic data analysis,” Anal. Chim. Acta, vol. 954, pp. 

22–31, Feb. 2017. 

[25] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep Feature Extraction and Classification of 

Hyperspectral Images Based on Convolutional Neural Networks,” IEEE Trans. Geosci. Remote Sens., vol. 

54, no. 10, pp. 6232–6251, Oct. 2016. 

[26] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-Time Patient-Specific ECG Classification by 1-D 

Convolutional Neural Networks,” IEEE Trans. Biomed. Eng., vol. 63, no. 3, pp. 664–675, 2016. 

[27] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, The MIT Press: London, 2016. 

[28] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International Conference on Neural 

Networks, 1995. Proceedings, 1995, vol. 4, pp. 1942–1948 vol.4. 

[29] R. Dürichen, M. A. Pimentel, L. Clifton, A. Schweikard, and D. A. Clifton, “Multitask Gaussian processes 

for multivariate physiological time-series analysis,” IEEE Trans. Biomed. Eng., vol. 62, no. 1, pp. 314–322, 

2015. 

[30] D. Kwon, M. H. Azarian, and M. Pecht, “Remaining-Life Prediction of Solder Joints Using RF Impedance 

Analysis and Gaussian Process Regression,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 5, no. 11, 

pp. 1602–1609, 2015. 

[31] H.-C. Yen and C.-C. Wang, “Cross-Device Wi-Fi Map Fusion with Gaussian Processes,” IEEE Trans. Mob. 

Comput., vol. 16, no. 1, pp. 44–57, 2017. 



Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression 

72 

 

[32] H. Sun et al., “Accurate Age Estimation of Bloodstains Based on Visible Reflectance Spectroscopy and 

Chemometrics Methods,” IEEE Photonics J., vol. 9, no. 1, pp. 1–14, 2017. 

[33] K. Y. Bae, H. S. Jang, and D. K. Sung, “Hourly Solar Irradiance Prediction Based on Support Vector 

Machine and Its Error Analysis,” IEEE Trans. Power Syst., 2016. 

[34] L. Garg and V. Sahula, “Macromodels for Static Virtual Ground Voltage Estimation in Power-Gated 

Circuits,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 63, no. 5, pp. 468–472, 2016. 

[35] C. E. Rasmussen, “Gaussian processes for machine learning,” 2006. 

[36] V. N. Vapnik and V. Vapnik, Statistical learning theory, vol. 1. Wiley New York, 1998. 

[37] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat. Comput., vol. 14, no. 3, pp. 

199–222, 2004. 

[38] “Datasets provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT, 

meurens@bnut.ucl.ac.be. Wine and orange juice datasets available from: http://www.ucl.ac.be/mlg/.” . 

[39] F. Rossi, A. Lendasse, D. François, V. Wertz, and M. Verleysen, “Mutual information for the selection of 

relevant variables in spectrometric nonlinear modelling,” Chemom. Intell. Lab. Syst., vol. 80, no. 2, pp. 215–

226, 2006. 

[40] C. Krier, F. Rossi, D. François, and M. Verleysen, “A data-driven functional projection approach for the 

selection of feature ranges in spectra with ICA or cluster analysis,” Chemom. Intell. Lab. Syst., vol. 91, no. 

1, pp. 43–53, 2008. 

[41] “Tecator meat sample dataset. Available from: http://lib.stat.cmu.edu/datasets/tecator.” . 

 



 

73 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5  
 

Convolutional SVM 

 



Chapter 5: Convolutional SVM 

74 

 

5.1. Introduction 

Deep learning is a family of machine learning based on learning data representation. The learning 

can be supervised or unsupervised depending on the adopted architecture. The most famous deep 

architectures are the Stacked AutoEncoder (SAE) [1], which consists in a concatenation of many 

AutoEncoders (AEs), Deep Belief Network (DBN) [2], which is based on a series of Restricted 

Boltzmann Machine (RBM) and Convolutional neural networks (CNNs) [3]. 

Recently deep convolutional neural networks (CNNs) have achieved impressive results on a variety 

of applications including image classification [4]-[8], object detection [9]-[12], and image segmentation 

[13], [14]. Thanks to their sophisticated structure, they have the ability to learn powerful generic image 

representations in a hierarchical way compared to state-of-the-art shallow methods based on handcrafted 

features. Modern CNNs are made up of several alternating convolution and pooling layers followed by 

some fully connected layers. The feature maps produced by the convolution layers are usually fed to a 

nonlinear gating function such as the Rectified Linear Unit (ReLU). Then the output of this activation 

function can further be subjected to normalization (i.e., local response normalization). The whole CNN 

architecture is trained end-to-end using the backpropagation algorithm with dropout regularization [15] 

to reduce overfitting. It is worth recalling that recent deeper CNNs (winner of the ImageNet Large-Scale 

Visual Recognition ILSVRC14 and ILSVRC15 challenges) use inception modules [7] and residual 

learning [6].  

Usually, CNNs perform well for analysing datasets with large labeled data. However they are prone 

to overfitting when dealing with datasets with limited labeled data. For these scenarios, it is has been 

shown that it is more interesting to transfer knowledge from CNNs (such as AlexNet [8], VGG-VD [16], 

GoogLeNet [7], and ResNet [6]) pretrained on an auxiliary recognition task with very large labeled data 

instead of training a CNN from scratch [17]-[20]. While the possible transfer learning solutions include 

fine-tuning the pretrained CNN on the labeled data of the target dataset or to exploit the CNN feature 

representations with an external classifier. We refer the reader to [18] where the authors introduce and 

investigate several factors affecting the transferability of these representations. 

In this chapter, we propose an alternative strategy for training CNNs based on SVMs for handling 

these scenarios in a multilabeling context. SVMs are among the most popular supervised classifiers 

available in the literature. They rely on the margin maximization principle which makes them less 

sensitive to overfitting problems. They have been intensively used in conjunction with handcrafted 

features for solving various recognition problems. In addition, as discussed previously, they are also 

commonly placed on the top of a CNN feature extractor for carrying out the classification task [18]. Here, 

we use them to estimate the filters of the CNN convolutional layer. We call this network as convolutional 

SVM (CSVM).  
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Each convolution layer uses a set of linear SVMs as filter banks, which are convolved with the 

feature maps produced by the precedent layer to generate a new set of features maps. For the first 

convolution layer, the SVM filters are convolved with the original input images. The SVM weights of 

each convolution layer are computed directly in a supervised way by training on patches (extracted from 

the previous layer) representing the objects of interest. The high level representations obtained by the 

network are fed again to a linear SVM classifier for carrying out the classification task.   

The rest of this chapter is organized as follows. In Section II, we give a description of the proposed 

CSVM architecture. First sub-section will be devoted for a case of single object detection, and the second 

sub-section for the general case (multi-object detection). The experimental results are presented in 

Section III. Finally, conclusions and future developments are reported in section IV. 

5.2. Proposed Methodology 

Let us consider a set of 𝑀 training RGB images {𝐗𝑖, 𝒚𝑖}𝑖=1
𝑀  of size 𝑟 × 𝑐, where 𝐗𝑖 ∈ 𝓡𝑟×𝑐×3 and 𝑟 

and 𝑐 refer the number of rows and columns of the images. Let us assume also 𝒚𝑖 = [𝑦1, 𝑦2, … , 𝑦𝐾]′ is 

its corresponding label vector, where 𝐾 represents the total number of targeted classes. In a multilabel 

setting, the label 𝑦𝑖 = 1 is set to 1 if the corresponding object is present, otherwise it is set to 0. Figure 5-1 

shows a general view of the proposed multilabel classification system. For simplicity, we present the 

method for detecting the presence of a single object than we extend it to the case of the multilabel 

classification. 

 

Figure 5-1: Estimating the weights of the convolution layer with SVM for detecting the presence of two 

objects in a given input image. 
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5.2.1 Monolabel classification 

We recall that the application of our method to other advanced architectures such as those based 

on inception and residual modules is straightforward. As mentioned in the introduction, our main 

contribution is to use SVM for estimating the weights of the convolution filters in a supervised way. In 

the following, we detail this method for the first convolution layer.  

In a binary classification setting, the training set {𝐗𝑖, 𝑦𝑖}𝑖=1
𝑀  is supposed to be composed of 𝑀 

positive and negative RGB images and the corresponding class labels are set to 𝑦𝑖 ∈ {+1, −1}. The 

positive images contain the object of interest, whereas the negatives ones just represent background. 

From each image 𝐗𝑖,  we extract a set of patches of size ℎ × ℎ × 3  and represent them as feature vectors 

𝐱𝑖 of dimension 𝑑, with 𝑑 = ℎ × ℎ × 3. After processing the 𝑀 training images, we obtain a large training 

set 𝑇𝑟(1) = {𝐱𝑖, 𝑦𝑖}𝑖=1
𝑚(1)

  of size 𝑚(1) as shown in Figure 5-2.   

   

Figure 5-2: Training set generation for the first convolution layer. 

Next, we learn a set of  SVM filters on different sub-training sets 𝑇𝑟𝑠𝑢𝑏
(1)

= {𝐱𝑖, 𝑦𝑖}𝑖=1
𝑙  of size 𝑙 

randomly sampled from the training set 𝑇𝑟(1). The weight vector 𝒘 ∈ 𝓡𝑑  and bias 𝑏 ∈ 𝓡 of each SVM 

filter are determined by optimizing the following optimization problem [21], [22]. 

min
𝒘,𝑏

𝒘𝑇𝒘 + 𝐶 ∑ 𝜉(𝒘, 𝑏; 𝒙𝑖, 𝑦𝑖)
𝑙
𝑖=1         (5.1) 

where 𝐶 is a penalty parameter, which can be estimated through cross-validation. As loss function, we 

use  𝜉(𝒘, 𝑏; 𝒙𝑖, 𝑦𝑖) = max(1 − 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏), 0) referred as the hinge loss. After training, we represent 
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the weights of the SVM filters as  {𝐰𝑘
(1)

}
𝑘=1

𝒏(1)

 , where 𝐰𝑘
(1)

∈ 𝓡ℎ×ℎ×3  refers to kth-SVM filter weight 

matrix, while 𝑛(1) is the number of filters. Then, the complete weights of the first CNN convolution layer 

are grouped into filter bank of four dimensions  𝑾(𝟏) ∈ 𝓡ℎ×ℎ×3×𝑛(1)
 .  

In order to generate the feature maps, we simply convolve each training image {𝐗𝑖}𝑖=1
𝑀 , with the 

obtained filters as usually done in standard CNN to generate a set of 3D hyper-feature maps {𝐇𝑖
(1)

}𝑖=1
𝑀 . 

Here 𝐇𝑖
(1)

∈ 𝓡𝑟(1)×𝑐(1)×𝑛(1)
 is the new feature representation of image 𝐗𝑖 composed of 𝑛(1) feature maps 

(Figure 5-2). To obtain the kth feature map 𝐡𝑘𝑖
(1)

, we convolve the kth filter with a set of sliding windows 

of size ℎ × ℎ × 3 (with a predefined stride) over the training image 𝐗𝑖 as shown in Figure 5-3: 

   𝐡𝑘𝑖
(1)

= 𝑓(𝐗𝑖 ∗ 𝐰𝑘
(1)

) , 𝑘 = 1, … , 𝑛(1)                                  (5.2) 

where ∗ is the convolution operator and 𝑓 is the activation function.  

 

Figure 5-3: Supervised feature map generation. 

 

5.2.2 Multilabel classification 

In the last sub-section, we showed how our proposed CSVM works with single class (object). When 

the problem posed is a multilabel classification, many CNNs are used depending on the number of 

existing classes. Each CNN apply the convolution on the current image separately using SVM as 

described in the previous sub-section. After the pooling (subsampling), a fusion strategy is applied in 

order to share the representation levels between the different objects. In our case we opt for the max 
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strategy in order to highlight the different objects existing and detected by the CNNs. Figure 5-4 presents 

an example of the interest of this strategy with two classes (objects). The input image contains two 

objects, Laboratories (object1) and Bins (object2). The first CNN try to highlight the first object while 

the second CNN is devoted for the second object. The output maps after pooling of the two CNNs are 

fused in order to get a new map (image) where the two concerned objects are highlighted as it can be 

seen in Figure 5-4. 

 

Figure 5-4: Example of fusion of output maps of two CNNs. 

5.3. Experimental results 

5.3.1 Dataset description and performance evaluation 

The set of Images used in this work is divided on three groups. The first two groups of images have 

been taken at two different indoor spaces of the faculty of science of University of Trento (Italy). The 

size of each image is 320x240. The first ensemble amounts for a total of 130 images, which was divided 

into 58 training and 72 testing images. The second set accounts for 131 images, split up into 61 training 

images, and 70 for testing purposes. The third group of images represents an outdoor environment and 

was acquired at different locations across the city of Trento located in the Trentino-Alto Adige region. 

The locations were selected based on their importance as well as the density of people frequenting them. 

This third dataset comprises two hundred (200) images, which were split up into training and testing 

subsets (i.e., 100 each). The size of each image is 275x175. It is noteworthy that the training images for 

all datasets were selected in such a way to cover all the predefined objects in the considered indoor and 

outdoor environments. To this end, we have selected the objects deemed to be the most important ones 

in the considered spaces. Regarding the first dataset, 15 objects were considered as follows: ‘External 

Window’, ‘Board’, ‘Table’, ‘External Door’, ‘Stair Door’, ‘Access Control Reader’, ‘Office’, ‘Pillar’, 

‘Display Screen’, ‘People’, ‘ATM’, ‘Chairs’, ‘Bins’, ‘Internal Door’, and ‘Elevator’. Whereas, for the 

Fu
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second set, the list was the following: ‘Stairs’, ‘Heater’, ‘Corridor’, ‘Board’, ‘Laboratories’, ‘Bins’, 

‘Office’, ‘People’, ‘Pillar’, ‘Elevator’, ‘Reception’, ‘Chairs’, ‘Self Service’, ‘External Door’, and 

‘Display Screen’. Finally, for the last dataset, a total of 25 objects were definded as follows: ‘People’, 

‘Building’, ‘Bar(s)’, ‘Monument(s)’, ‘Chairs/Benches’, ‘Green ground’, ‘Vehicle(s)’, ‘Stairs’, ‘Walk 

path / Sidewalk’, ‘Fence / Wall’, ‘Tree(s) / Plant(s)’, ‘Garbage can(s)’, ‘Bus stop’, ‘Crosswalk’, ‘River’, 

‘Roundabout’, ‘Pole(s) / Pillar(s)’, ‘Shop(s)’, ‘Supermarket(s)’, ‘Pound/Birds’, ‘Underpass’, ‘Bridge’, 

‘Railroad’, ‘Admiration building’, ‘Church’, and ‘Traffic signs’. 

  

Figure 5-5: Example of images of the first dataset. 

  

Figure 5-6: Example of images of the second dataset. 

  

Figure 5-7: Example of images of the third dataset. 
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For evaluation purposes, we use the well-known sensitivity (SEN) and specificity (SPE) measures: 

SEN =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
       (5.3) 

SPE =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
       (5.4) 

The sensitivity expresses the classification rate of real positive cases i.e., the efficiency of the 

algorithm towards detecting existing objects. The specificity, on the other hand, underlines the tendency 

of the algorithm to detect the true negatives i.e., the non-existing objects. We also propose to compute 

the average of the two earlier measures as follows: 

AVG =
SEN+SPE

2
                           (5.5) 

5.3.2 Parameter setting 

The architecture of the proposed CSVM involves several free parameters. In our work, we will 

focus on three main parameters which are: number of layers L, number of maps (kernels) ml and length 

of kernel rl of each layer l (l=1,..,L). To compute the best parameter values, we use a cross-validation 

technique with a number of folds equal to 3. Due to the limited number of training samples and the large 

number of possible combinations, we decided to limit the maximum number of possible layers 𝐿max to 

3. Moreover, the maximum number of kernels in each layer l (𝑚max
𝑙 ) is fixed to 512 with step of 2i 

(i=0,…,9) and maximum kernel size on each layer l (𝑟max
𝑙 ) is fixed to 10% of the size of the current map 

(we consider the minimum between the high and the width as the considered size) with step of 2. The 

obtained best values of the parameters by cross-validation are listed in Table 5.1. We can deduce from 

this Table that only one layer is enough for the first dataset, whereas the two other datasets need a second 

layer (which is the last layer) to get the best performances. Concerning number and size of kernels 

(maps), dataset3 presents the simplest architecture with just one kernel on the first layer and two kernels 

on the second one with size of 3. Contrary to the other datasets where they require big number of kernels. 

Regarding SVM, we use a linear SVM (with the linear kernel Function). During the cross 

validation, the parameter of regularization of SVM ‘c’ was fixed randomly in the range [1, 102]. The ε 

value of the insensitive tube was fixed to 10−3. 

Table 5.1: Best parameter values of the CSVM for each dataset. 

Dataset Layer 1 Layer 2 

𝑚1 𝑟1 𝑚2 𝑟2 

Dataset1 512 7 / / 

Dataset2 32 7 256 3 

Dataset3 1 3 2 3 
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5.3.3 Results 

In order to evaluate our method, we chose to compare it with results obtained using three different 

pretrained convolutional neural networks which are ResNet [6], GoogLeNet [7] and VDCNs [16].  All 

the results in terms of accuracies are reported in Table 5.2, Table 5.3 and Table 5.4 for Dataset 1, Dataset 

2 and Dataset 3, respectively. 

Table 5.2: Comparison of classification rates on Dataset 1. 

Method SEN (%) SPE (%) AVG (%) 

ResNet 71.16 93.84 82.50 

GoogLeNet 78.65 94.34 86.49 

VDCNs 74.53 94.58 84.55 

CSVM 89.14 84.26 86.70 

Table 5.3: Comparison of classification rates on Dataset 2. 

Methods SEN (%) SPE (%) AVG (%) 

ResNet 89.54 96.38 92.96 

GoogLeNet 83.63 96.86 90.25 

VDCNs 81.81 96.14 88.98 

CSVM 93.64 92.17 92.90 

Table 5.4: Comparison of classification rates on Dataset 3. 

Methods SEN (%) SPE (%) AVG (%) 

ResNet 64.17 92.40 78.29 

GoogLeNet 62.50 93.27 77.88 

VDCNs 64.32 93.98 79.15 

CSVM 80.79 82.27 81.53 

From Table 5.2, Table 5.3 and Table 5.4, and in terms of average accuracy, it can be seen that in 8 

cases among 9, our proposed method by far outperforms the different pretrained CNNs. In 7 cases the 

improvement is clearly important (more than 2%). Only in one case for Dataset2 where ResNet method 

gives slightly better results than our method (92.96% compared to 92.90%).  

From qualitative point of view of the results, Figure 5-8, Figure 5-9 and Figure 5-10 present 

examples of classification results for Dataset1, Dataset2 and Dataset3, respectively.  
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Existing objects: ‘External Door’, ‘Stair Door’, ‘Office, ‘Chairs’, ‘Internal Door’ 

                        CSVM    

Detected Objects: ‘External Door’, ‘Stair Door’, ‘Office, 

‘Display Screen’, ‘Chairs’, ‘Internal Door’ 

Missed objects: ∅ 

GoogLeNet 

Detected Objects: ‘External Door’, ‘Stair Door’, ‘Office, 

‘Pillar’, ‘Chairs’,  

Missed objects: ‘Internal Door’ 

Figure 5-8: Example of classification results with CSVM and GoogLeNet on Dataset1. In red are 

highlighted false positives. 

 
Existing objects: 'bins', 'office' 

                    CSVM    

Detected Objects: 'bins', 'office' 

Missed objects: ∅ 

ResNet 

Detected Objects: ‘Laboratories’, 'bins', 'office' 

Missed objects: ∅ 

Figure 5-9: Example of classification results with CSVM and ResNet on Dataset2. In red are 

highlighted false positives. 

 
Existing objects: 'building', 'green ground', 'stair(s)', 'walk path', 'Fence/Wall', 'Trees', 'pole/ Pillar', 'traffic sign' 

                                  CSVM    

Detected Objects: 'building', 'green ground', 'vehicle/bus', 

'stair(s)', 'walk path', 'Fence/Wall', 'Trees', 'pole/ Pillar', 

'traffic sign' 

Missed objects: ∅ 

VDCNs 

Detected Objects: 'people', 'building', 'green ground', 

'vehicle/bus', 'stair(s)', 'walk path', 'Fence/Wall', 'Trees', 

'pole/ Pillar',  

Missed objects: 'traffic sign' 

Figure 5-10: Example of classification results with CSVM and VDCNs on Dataset3. In red are 

highlighted false positives. 



Chapter 5: Convolutional SVM 

83 

 

Besides the classification accuracies, another important performance parameter is the runtime. 

Table 5.5 which shows the consumed time for training the proposed method on the 3 datasets. It can be 

seen clearly that the training of the CSVM is so fast and need just few seconds to few minutes in the 

worst case. In details, Dataset 1 presents the highest runtime (76 seconds) which is due to the high number 

of filters used for this dataset (512). While training of Dataset 3 is so fast with just 8 seconds which is 

due to the simple network architecture that this dataset requires to get the best performance (see 

Table 5.1). 

Table 5.5: Training time of the proposed CSVM. 

Dataset Runtime (s) 

Dataset1 76 

Dataset2 42 

Dataset3 8 

Regarding runtime of the prediction step, which includes the feature extraction and the prediction, 

the CSVM method presents different runtime for the 3 datasets depending on the complexity of the 

adopted architecture. For instance, and as we can see on Table 5.6, Table 5.7 and Table 5.8, the highest 

runtime is with the first Dataset 1 with around 200 millisecond (ms) per image which is due to the high 

number of filter adopted for it (512). Contrary to the third dataset which requires only 2ms to extract 

features and estimate the classes for each image. This short time is due to the small number of kernels 

and their small size for the architecture adopted for this dataset. It is also important to mention that the 

runtime provided by our method outperforms the 3 pretrained CNNs on 2 datasets (Dataset 2 and 3), 

especially for the dataset 3 where the difference is so significant. Only for Dataset 1 GooLeNet is slightly 

faster. This is mainly due to the larger size of the first layer of CSVM (512), which typically consumes 

most of the processing time as applied on the original image. Moreover, in GoogLeNet, the image is 

smaller as it needs to be resized to 224×224.  

Table 5.6: Comparison of average runtime per image on Dataset 1. 

Method Runtime (ms) 

ResNet 207 

GoogLeNet 141 

VDCNs 291 

CSVM 206 

Table 5.7: Comparison of average runtime per image on Dataset 2. 

Method Runtime (ms) 

ResNet 208 

GoogLeNet 144 

VDCNs 291 

CSVM 115 
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Table 5.8: Comparison of average runtime per image on Dataset 3. 

Method Runtime (ms) 

ResNet 207 

GoogLeNet 145 

VDCNs 300 

CSVM 2 

5.4. Conclusion 

In this chapter, we have presented a novel method for multilabel classification, which has the 

following important properties: 1) it estimates the weights of CNNs based on SVMs learning 

formulation; 2) it uses a forward supervised learning strategy for computing the weights of the filters; i) 

the experimental results obtained on three datasets with limited training samples confirm the promising 

capability of the proposed method with respect to state-of-the-art methods based on pretrained CNNs.  
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In this thesis, some deep learning methods and their applications have been covered. In particular, 

interest was given to Convolutional Neural Network (CNN) and Stacked AutoEncoder (SAE). CNN is 

composed of an ensemble of convolution and subsampling layers and concluded by a prediction in order 

to discern the class label of the input of the network (generally an image). Whereas a SAE is a series of 

many AutoEncoders (AEs), each AE is composed of three layers: one visible layer which is the input 

layer, one hidden layer and one reconstruction layer. Despite the big interest that deep learning methods 

are getting and their application on many research fields, they are still hardly explored in others. This 

could be justified by the fact that deep learning methods are all based on a neural network architecture 

which require huge training data in order to learn such networks. Furthermore, the major objective of 

deep methods is to extract high level features in order to apply them for classification problems. 

Departing from this fact, we have developed new deep approaches based on AEs and CNNs in order to 

deal with problems of i) multilabeling classification based on coarse description, ii) reconstructing a 

missing area covered by clouds in multispectral images, and iii) regression for chemometric data analysis. 

In the following, we give highlights emphasizing the four (04) proposed deep methods. For further 

details, we direct the reader to the respective chapters. 

In Chapter 2, we provide a presentation about the scene description methodology using a 

multilabeling strategy. The objective is to assist visually impaired people to conceive a more accurate 

perception about their surrounding objects in indoor spaces. This method exploits feature learning 

concept by means of an AE neural network, which amply demonstrated a significant potential in 

generating discriminative image representations. The key-determinant of our image multilabeling 

scheme is that the number of objects is independent of the classification system, which entails the 

property of detecting as many objects as desired (depending on the offline setup to be customized by the 

user) within the same amount of time which amounts for much less than a second in our work and makes 

it possible to be applied in real time. 

In Chapter 3, we present our proposed approach to reconstruct a missing area in multispectral images 

due to the presence of clouds based on an AE neural network. Given a cloud-free image (source image) 

and a cloud-contaminated image (target image), the standard architecture of the AE is slightly modified 

in order to be able to estimate the mapping function between the source and the target images. For this 

purpose, two strategies were developed. The first relies on simple pixel-based information to calculate 

the transformation function whereas the second strategy performs a patch-to-patch mapping followed by 

a simple fusion step to reconstruct the single pixels of the missing areas in the target image. Moreover, 

in order to fix the problem of the hidden layer size, a new solution combining the minimum descriptive 

length (MDL) criterion and a Pareto-like selection method has been introduced. The experimental results 

reveal that the two proposed methods show good results in reconstructing the missing areas and can 

significantly outperform state-of-the-arts methods. Compared to the pixel-based strategy, the patch-based 

one yields better accuracies thanks to the feeding of spatial contextual, and thus richer information, in 

the reconstruction model. 
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In Chapter 4, we describe the developed methods for chemometric data analysis based on CNN. In 

particular, we modify the standard CNN architecture to adapt it to 1D input data. The proposed 1D-CNN 

architecture is thus based on an alternation of convolutional layers with subsampling layers and 

connected at the end to a linear regression layer. The convolution is applied using 1D filters and pooling 

is performed by averaging the samples over a given sliding 1D window. The estimation of the 

architecture weights is performed using two methods. The first one consists of the standard back-

propagation algorithm. The second approach is based on a layerwise particle swarm optimization. GPR 

and SVR are used in the regression step. The experimental results show that results yielded by the 

proposed approach are very promising. Indeed, on the three considered datasets, the extracted features 

can provide significant gains in accuracy, suggesting that CNNs are able to extract powerful features for 

regression on 1D signals. Moreover, the contribution of the PSO in the training of the neural network 

architecture appears valuable and with a very limited additional computational overload. 

In Chapter 5, we introduce the proposed new method to train the CNNs. This method is based on 

using Support Vector Machine (SVM) in order to estimate the parameters of the network. The 

architecture of the developed network is similar to the standard CNN i.e., composed of a succession of 

convolution and subsampling layers and each layer is composed of a number of maps. The novelty of the 

proposed method is to estimate the weights of the kernels by means of SVM. The advantage of this 

method is that the training is applied in just one pass and does not require a big training dataset. The 

experimental results show that results yielded by the new developed method (CSVM) are very promising 

in term of accuracies and time consumed in both training and prediction phases. 

Finally, in order to improve results and accuracies of the different proposed methods, we suggest the 

following hints for future developments: 

 While the objective of the coarse description is to roughly list the present objects as to bridge 

the gap between the real indoor setup and the image conceived in the visually disabled person’s 

imagination, inferring further information pertaining to the detected object location in the indoor 

space remains a vivid endeavour in our future considerations. To complement this missing 

component, we suggest to find a way to introduce the depth information (e.g., through Kinect 

sensors for instance) as a post-operation. Another issue is related to the scalability of the system 

since it will need to be completely retrained in case the set of predefined objects requires to be 

modified quantitatively or qualitatively. As last suggestion, it is worth mentioning that the 

thresholding step for final decision could be made more sophisticated as proposed in [1]. 

 Regarding the reconstructing of missing area in multispectral images due to presence of clouds 

and in order to improve the accuracy of the reconstruction process, different aspects of the 

methods deserve to be investigated in future research studies. We limited our AE neural network 

to a shallow architecture (just one hidden layer). Stacked and thus deep AE could be a way to 

make the reconstruction even more accurate. However, this will raise the problem of the best 

architecture to be set (number of hidden layers and number of hidden nodes per layer) as well 
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as of the computational complexity which will unavoidably increase. Another aspect regards the 

fact that our reconstruction is based on a one image-to-one image mapping. It would be also 

interesting to probe ways to integrate further the temporal dimension in the reconstruction by 

reasoning at the level of time series images (and not just on couples of images). 

 Concerning the 1D-CNN, it may be interesting to explore other kinds of deep neural networks 

such as SAEs and train them with evolutionary methods, given the limitation of the number of 

training samples. Moreover, we can apply the 1D-CNNs for other applications where input data 

are under the form of 1D signals (e.g., prediction issues for ECG signals and solar energy plants). 

Another research direction regards the possibility to use the same model for different 

instruments. It is noteworthy that the model obtained in this work (and in most of those based 

on machine learning) is valid only for a given instrument, namely the one on which it was 

trained. However, moving from an instrument to the other would not necessarily require to 

change completely the model but to resort to the so-called domain adaption approach, in order 

to adapt the original model trained in a source domain (instrument 1) to a target domain 

(instrument 2) with hopefully little effort (by analyzing the data distributions from a domain to 

the other). Another potential issue is a higher risk of overfitting, requiring some modifications 

in the cost function in order to mitigate such risk. This could be the subject of another future 

research direction. Finally, we believe that it would be useful to tailor the 1D-CNN to other 

remote sensing applications, such us precision farming, traffic monitoring and prediction of 

natural disasters, among others.  

 Regarding the CSVM, it can be interesting to test our approach to other datasets. In our case we 

focused in multilabeling real time problems. But it can be also used for classical classification 

of single objects. Also, it will be more interesting to use nonlinear SVM to sophisticate the 

CSVM network for applications where computational time is not a primordial factor. 
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