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Abstract

Deep learninga branclof machine learnindjas been gaining ground in many resedigdtis as well as

practical applicationsSuch ongoing boom can be traced back mainly to the availabildytlze
affordability of potential processing facilities, which were not widely accessible than just a decade ago
for instance Although it has demonstrated cuttiedge performance widely in computer vision, and
particularly in object recognition and detect, deep learning is yet to find its way ingther research

areas. Furthermore, the performance of deep learning models has a strong dependency on the way in
which these latter are designed/tailored to the problem at hand. This, thereby, raises piectsibn

concerns but also processing overheads. The success and applicability of a deep learning system relies
jointly on both componentdn this dissertationywe presentinnovative deep learning schemes, with
application to interesting though leaddessed topics.

In this respect, the first covered topic is rough scene description for visually impaired individuals, whose
idea is to list the objects that likely exist in an image that is grabbed by a visually impaired person, To
this end, we proceed lextracting several features from the respective query image in order to capture
the textural as well as the chromatic cues therein. Further, in order to improve the representativeness of
the extracted features, we reinforce them with a feature leastagegby means of an autoencoder model.

This latter is topped with a logistic regression layer in order to deteptésence of objects if any.

In a second topic, we suggesetploitthe same modgle., autoencoder in the context of cloud removal
in renote sensing images. Briefly, the model is learned on a dleedimage pertaining to a certain
geographical area, and applied afterwards on another-ctmtdminated image, acquired at a different
time instant, of the same ardavo reconstruction stragges are proposed, namely pbtelsed and pateh
based reconstructions.

From the earlier two topics, we quantitatively demonstrate that autoencoders can play a pivotal role in
terms of both (i) feature learning and (ii) reconstruction and mambisgquetial data

Convolutional Neural Network (CNN) is arguably the most utilized model by the computer vision
community, which is reasonable thanio its remarkable performanieobject and scene recognition,

with respect to traditional harttafted featuredNevertheless, it is evident that Cidturallyis availed

in its two-dimensional version. This raises questions on its applicability to unidimensional data. Thus, a
third contribution of this thesis is devoted to the design of a unidimensional arat@tettine CNN,

which is applied to spectroscopic data. In other terms, CNN is tailored for feature extractiamé&om
dimensional chemometric data, whilst the extracted features are fedirancedegression methode
estimate underlying chemical coomentconcentrations. Experimental findings suggbst, similarly

to 2D CNNs,unidimensional CNHN are also prone to impose themselvesth respect to traditional
methods.

The last contribution of this dissertation is to develop new method to estimatmnection weightef
the CNNSs. It is based on training an SVM for each kernel of the CNN. Such method has the advantage
of being fast and adequate for applications that characterized by small datasets.
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Chapter 1: Introduction and Thesis Overview

1.1. Deep Neural Networks

Machine learning is a study faebf artificial intelligence (A) thatenablesystems to automatically
learn and improve from experience withautwith little explicit human interferencét focuses on the
development of computer programs that eaguiredataand build models in order tanake better
decisions accordingp prior observation®r data records

According to the adopted learnimgy, machine learningnethod areusuallycategorizeds being
either supervised or unsuperviséa supervised learning, a model at hand is learned on a certain data
along with its respectiviabels Thus, once a model is learned on known data, it can be further fed with
another set of data whosabels are unknown In unsupervisedearning however,prior labels are
inaccessible or accessible but unimportant for the application being addressed. This latter, thus, consists
in studyinghow systems cainfer functions to define hidden structurBem unlabeleddata Semt
supervised learning is another direction whose aim is to exploit asixedl label data and a largezed
unlabeled data.

A close look at the recent literature would tell that a big focus is being oriented towards deep
learning.By contrast® traditional Neural Networksariouslayers of neurons in deep learning perform
a hierarchical learning of the data representatiamon-linear transformatios In other words, the data
is passed cumulatively across a long chain of layers (thus, sbept®ndeep), where each layer can be
fully or partially connected to the preceding one.

Althoughdeep architecturésave long existedhe termii d e e p | veasgfirsmiritrodgcedin
2006 by Hintoret al. [1], where they showed that a mudifer feefbrward neural network can leore
efficient by applying preaining of one layer at a time and considering each layer as an unsupervised
Restricted BoltzmanMachine(RBM), by using supervised bagkopagation for fietuning. One year
later,Bengioet al [2] developed th&tackedAutoEncoder (SAE)which is a deep architecture based on
theconcatenation of manfutoEncodersAESs). EachAE has three layers, one visible lay@put), one
hidden layer and one reconstructlayer with similar size as thepnt. Another famous deep architecture
is the Convolutional Neural Network (CNN3]. CNNs aregenerallycomposedf many layers, where
each layer hasvo parts,one for convolution (filtering) and one for pooling (subsamplifigne chain of
convolutional/poling layers is normally concluded byr@gression layer (e.g., logistic regression) in
order to discern the class label of the image/object presented as input to the .nétWskare shaped
in a2D structurewhichoffersthe advantagef directly processing herawimages. This can be achieved
with local connectios and tied weights followed IsubsamplingYet, it is evident that deep models in
general, and CNNs in particular, undergo a heavy processing, which demands highly powerful
computatiormachires.

Figure 1-1, Figure 1-2 and Figure 1-3 show exampes of architectures of a RBM, an AE and a
CNN.
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1.2. Applications and Open Issues

Deep learning techniques have beaggestetb solve problems related to diverse researchdield
For instance, in robotics, CNN was used in orderettognze the category and estimate the pose of
garments hanging from a single pduif and for reattime human detection with a featdrased layered
prefilter [5]. On the other handBAE was used for dimension reduction and combined with particle filter
for reattime humanoid robamitation [6]. In theremote sensing fieldjuanget al.[7] proposed aew
pansharpening methodased on SAE® address theemote sensing image fusion probléfanget al.
[8] propose a method for ship detection based oBtagked Denoising Autoencoder (SDA) for
hierachical ship featurextraction inthe wavelet domain and extreme learning machine (ELM) for
feature fusion and classificatio@henet al.[9] combine SAEs with pnicipal component analysis (PCA)
to learn deep features of hyperspectral imaitpey, propos to extract spatial dominated information for
the classification and use tR&€A to reduce the large input dimensidnlogistic regression is used as
output layer for the classificatiofanget al.[10] use CNNs for scene classificatidbaffeNet[11] is
used as pteained model in the clasghtion architecture anfinetuning is applied to the prained
model in order tdailor it to scene classificatiofrRegardingoroblens of detection andecognition, deep
learning was widely used to solve problemhslifferent naturesuch as speech recognitidr2]-[14], face
recognition [B]-[18], traffic signs [19}[21], pedestrian detecticand recognitiof22]-[24] and detection
of variousobjects [25][28]. In the biomedicalfield, RBM and SAEs wereised to sale problems of
abnormalities detection and classification dlectrocardiogram signals (ECG) [29]-[32],
Electroencephalogransignals (EEG) [33][35], Electrooculogramsignals (EOG) [36]37] and
Electromyogransignals(EMG) [38].

Accordingly, from the statof-the-art reported so fait is possible to make out thdeep learning
has established a solid ground in many applications, but in fact still scarcely explored inTdtisers
could be traced back to the faélcat deep learning methods are all based neural network architecture,
andthe major objective is to extract high level featunesrder toapply them forlassification problems.

To the best of our knowledge so,fall the contributiongocus on the single object (class) recognition.
That s to sayall theapproache®cuson the recognition of one specitiategory of objectI he problem

of multilabeling classification was addressed before in machine learning and can be grouped in two
categories. The first categorknown as ainary rel&ance(BR) approachis based on reducinthe
initial multilabel classification problem into multiple independent binary classification task&®ach
classifier is trained on one class laf#9]-[42]. However,such methods are characterized by the high
computational costs and also theapabilityto identify the correlation between the different clasBgs.
contrast, infor the second category, methods revise and adapt the output formula of the cfassfier
multilabel learning problemwithoutthe reed to transformit into singlelabel subproblems. Foimstance
AdaBoost.MH [43] is adapted from AdaBab by minimizing Hamming lossand Support Vector
Machine(SVM) is revised intdRankSVM [44] by defining a new approach based on ranking method
combinedwith the predictor.
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A second argument constituting this dissertation relategrwte sensingwhere only several
recent workgleal with the problem of clouds basedaateep learning approachq]-[46]. For instance,
all focuson the problem ofloud detection whilst none to the best of our awarenes#d to solvethe
problem of removing clouds anéconstructinghe missing area (the areascuredoby clouds).Such
contribution can bring benefits for many applications, especially with thadseh deal with
multitemporal images.

Another important field of researdh chemometris analyses fronspectroscopic datdaJsually
researchers use reference methods of regression spattiakleast soares regression (PLS regressjon)
support vector machines foegression (SVRand Gaussian process regression (GRR)rder to
estimate the concentration cfiemical components of interest in a given prodBgtintroducing deep
learning,chemometrics can benefit from the advantages that deep methods can mspedelly the
capacity of extracting hidy discriminative features.

The last concern of this dissertatimlates to the manner thdéep methods, especially CHN
estimate the parameters of the netwéka matter of facthey are all based on the kgropagation of
errors which requiresbig training data anchumerousterationsto converge to a satisfactory solution.
Such situation involvethe needfor sophigicated hardware and long processing tifiteus, t would be
of particular interestio find another solution to train the network in order to overcome iswcmvenient
andeven handlsmalltrainingdatasets.

1.3. Thesis Objectives, Solutions and Organization

As mentioneckarlier, deep learning was used in many researchsfald applicationandbrought
important improvements and contributiokkawever,in some application issuedeep learning methods
cannot necessarily be directly applied as they negyl some modification and improvement tciéed
to the cosiderd problemsTo this endwe propose to use deep methods to solve problems related to (i)
multilabel classification forscene description for the visually impair@d) people (ii) reconstructing
aress obscured by clouds in multispectral images, anafigmometric analysisdm spectroscopic data

Regarding the first problenthe overwhelming majority of exisg systems and prototypes pay
attention to assisted navigation and obstacle avoidance whilst neglecting the evidently important need of
object recognitionWhile only sveral solutions have been presented for assisted object recognition for
VI individuals, theymainly remain focused on detecting a single object at omoedeal with this
problem, we propose a new rgahe method to describe the surrounding environnara blind person
based ora coarse image description strategy. i.e. proviasist of objects most likely existing in the
sceneregardles®f their location This method is based on extractlog-level features from thquery
imagethat isacquiredoy theVI uservia an optical camerdhe feature selected atecal Binary Pattern
(LBP), Histogram of Oriented Gradient (HOG) and Bag of Words (BoWQs@&tieatures are fed to an
AutoEncoder Neural Network (AE) in order to extract more discriminative fesinighlevel features).
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Once generated, the new feagmeefed intoa logisticregression layer using a miadding strategy as
to draw the final outcomes highlighting the objects present in the imagte st

For the problem of cloud removaléconsequent reconstructionaiiscured areas in multispectral
imageswe propose to exploit the strength of the AE networks in the reconstruction phase to restore the
missing dataSupposg we havetwo satellite images of the same grizkenat twodifferent times. Let
the first be thecloudfree image (reference image) atiet second be theloud-contaminated image
(target image)the AE learning will be slightly modified in such a way thather than supposing that
the output layer (the reconstructitayer) is equal to the input layer, we consider here that the output is
constituted of pixels from the target imagad their corresponding pixels on the reference image are
used as input. In other words, we try to find the essential mapping functisedoethereferenceand
the target imageusing the AE.

Concerning the question of chemometrics analyses $mentroscopic datave propose to profit
from the advantagesf CNNsin extracting high discriminative features from imagespply thenon
spectoscopic dataSince the concerning dataof onedimensionahature thearchitecture of the CNN
is modified and adapteid fulfill spectroscopic data requirementa particular, filtering and pooling
operations as well as equations for training arésitex. Furthermore, we propose to use the particle
swarm optimization (PSO) method to train the CRIN.

As perthe last concern of this thesis, we propose a new method to calculate the weigh®NM the
kernels Themethod consistin training an SVM foreach kernein theCNN. The advantage of this new
way of training is the possibility to use small training dataset whthkininga satisfactoryperformance
of the network. Furthermore, the training is applied in one ipasfust one iterationwhich renderst
so fast compared to conventional CNNs.

The remainder of this dissertation is outlined as follows. Chapter 2 describes the nfinlilabe
method using the AEs to dedm the indoor environment f&fl persos. In chapter 3we give details
abou theproposed method to reconstruct a missing area coverddums in multispectral images using
AEs. Chapten details the developed 2ONN for chemometric data analysis Chapter 5, we present
the developed SVM_CNN for multilabel classificatiéimally, Chaptet6 concludeghe thesis andives
suggestiongor possiblefutureimprovements

Finally, wewould liketo mention thatalthoughdeep learning constituteslanominator of all the
addressed topics in this thesibe applications remain comtaally distinct.Thus,thefollowing chapters
were conducted independently. That is, each chapter is@#Hined, which eases access to the reader
and removes the need keeping track of the chapters in a sequential order. Nevertheless, we suppose
tha the reader idamiliar with typical concepts related to computer vision and machine learning.
Otherwisethe reader is recommendexiconsult the references providedceach chapter.
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Chapter 2: Reallime Indoor Scene Description for the Visually Impaired with Using AutoEncoder

2.1. Introduction

Strolling around, adjusting the walking pace and bodily balance, perceiving nearby or remote
objects and estimating their deptre all effortless acts for a wedighted person. That is, however,
hardly doable for other portions in society, such as individuals with certain cases of handicap, or visual
impairment, which may require different forms of substantial training, and my situations external
physical and/or verbal intervention as to ease their mobility. In dealing with that, numerous attempts at
different governmental, institutional, as well as societal spheres have been taking place.

One assistive line, ought to be untd&en by various research institutions, is the providence of
either technological designs or easer products that can help bridging the gap between the conditions
being experienced by such disabled people and their expectations. As per the physidatgppad
category, a welestablished amount of rehabilitation (particularly robbtsed) layouts has been
developed so far. However, when it comes to blindness rehabilitation technologies, relatively fewer
attentions have been drawn in the relevaatdiure. As a side note, depending upon the severity of sight
loss, vision disability is an umbrella term that encompasses a wide range of progressively inclusive cases,
since it could be diagnosed as a: (i) mild impairment, (i) middige impairment,ii{) severe
impairment, and ends up to the unfortunate (iv) full blindness. Full sight loss is therefore a serious
disability that entails fareaching ramifications, as it blocks in many cases, the affected individual from
conducting his/her daily routisesmoothly.

In order to enable the visually disabled persons to move around more easily, several contributions
have been proposed in the literature, which are commonly referred to as Electronic Travel Aids (ETAS).
By and large, the current ETA methodolagiean be identified according to two distinct but
complementary aspects, namely: (i) mobility and navigation assistance, that undertakes as a goal assisting
visually disabled people to autonomously walk around with the possibility to sense nearby glastdcles
avoid potential collisions thereby, and (ii) object recognition, whose underlying motive is to aid them
recognize objects.

Regarding the mobility and obstacle avoidance part, a reasonable amount of works has been put
forth thus far. Pundlik et gl1], for instance, developed a collision detection approach based on-a body
mounted camera for visually impaired (VI) people. Theycped by computing the sparse optical flow
in the acquired videos and make use of a gyroscopic sensor to estimate the camera rotation. The collision
risk is then estimated from the motion estimates. In another work, Balakrishnaf2¢t mlesented a
system to detect obstacles. The blind individual carries two small cameras mounted on sunglasses. From
the captured pair of images, the disparity map is generated and the distances ofthédhje cameras
are estimated, which allow for a further decision whether the objects lying ahead of the user make a
potential threat. Another navigation aid, named the guide cane, was introd{i8gdnhich comprises
a wheeled housing supplied with a set of ultrasonic sensors, a handle to guide the cane through, and a
processing core that processes the ultrasonic signals enyitted sensors as to infer whether an object
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is present along the walking path. The concept of the ultrasonic sensors is that they simultaneously emit
beams of signals, which in case of obstacles if any, are reflected back. The distance to the obstacles is
then deduced based on the time lapse between emission and reflection (commonly termed as time of
flight 1T TOF). T he s fmwhere thensensqrstare wlacedaowedrabfetbadtd i n
instead. Another similar work was put forth#j. In this work the sensors were placed on the shoulders

of the user as well as on a guide cane. Another unique contribution proposes exploiting electromagnetic
signals instead of ultrasonic ones by using a widespread ar@nrtidowever, the capacity of the
proposed prototype is limited to 3 m ahead of the user. Having a close libekliéérature, it emerges

clearly that TOFbased concepts have often been employed and exhibited promising outcomes. The
apparent downsides of such methodologies, however, are mainly confined to the dimensions as well as
weight of the developed prototype on t he one hand, which may comp
the demanding power consumption (i.e., constant emission/reception of ultrasonic signals) on the other
hand.

Regarding the object recognition aspect, introspectively far less contribotonse observed.
This might be traced back to the reason that object recognition for the blind might be a harder task to
fulfil as compared to navigation and object avoidance. In other words, mobility and object avoidance
does not pay attention to the #irof potential objects but to their presence instead, whilst object
recognition emphasises on the nature of the nearby objects (i.e., not only their existence). Furthermore,
recognizing objects, in camesfot images, might come at the cost of severalarigés such as rotation,
scale, and illumination variations, notwithstanding the necessity to carry out such task in a brief time
lapse. Nevertheless, different competesion techniques have been tailored to tackle this issyé],In
for instance, a food product recognition system in shopping spaces was proposed. It relies on detecting
and recognizing the QR codes of food items by means of a portable camerarAmmtk considers
detecting and recognizing bus line numbers for thEBVIBanknote recognition has also been addressed
in [9]. Staircases, doors, and indoor signage detection/ recognitrerbban considered [a0i 12]. In
[13], the authors developed a prototype composed of ultrasonic sensors and a video camera, which is
embedded in a smartphone for a t@le obstacle detection and classificati®hey first extract FAST
feature points from the image and track them witmultiscale Luca&anade algorithm. Then, in the
classification phase, a Support Vector Machine was used to detect one of the four objects defined a priori.
Consequently, it can be observed that the scarce amount of works that have been devoteedto assist
object recognition for the VI so far, emphasize on detecting/recognizing single classes of objects. On this
point, it is believed that extending the process into a multiobject recognition is prone to provide a richer
description for the VI people.

Subseguently, posing the case of multiobject recognition in general, the mainstream research line
suggests designing as many models as the number of objects of interest and then run those learned model
on a given query image as to discern its potential obgictSuch paradigm could be of notable
efficiency, but it is achievable at the cost of prohibitively large processing overheads, which is not a wise
choice if undertaken in the context of assistive recognition for the VI people. Departing from this
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limitation, Mekhalfi et al[14] introduced a novel approach called coarse description, which operates on
portable camergrabbed images by listing the objects existing in a given nearby indoor spot, irrespective
of their location in the indo@pace. Precisely, they proposed Scale Invariant Feature Transform (SIFT),
Bag of Words (BOW), and Principal Component Analysis (PCA) strategies as a means of image
representation. For the sake of furthering the performance of their coarse image desdhiptio
suggested another scheme, which exploits Compressive Sensing (CS) theory for image representation
and a semantic similarity metric for image likelihood estimation through a bunch of learned Gaussian
Process Regression (GPR) models, and concludeé thhadeoff between reasonable recognition rates

and low processing times can be maintaifiég.

In thisChapter we propose a new meithto describe the surrounding environment for a VI person
in reattime. We use Local Binary Pattern (LBP) technique, Histogram of Oriented Gradient (HOG) and
BOW to describe coarsely the content of the image acquired via an optical camera. In ordesve impr
the state of the art results and deal properly with runtime, we propose to use a deep learning approach, in
particular an Auto Encoder Neural Network (AE), to create a newlbigh feature representation from
the previous lowevel features (HOG, BoVdnd LBP). Once generated, the new feature vectors are fed
into a logisticregression layer using a multilalmg strategy as to draw the objects present in the image
of concern. This work is a part of a project to guide a VI person in an indoor envitodsemlidated
by the experimental setup, tangible recognition gains and significant speedups have been scored with
respect to recent works.

In what follows, Sectio.2 recalls the coarse scene description in brief. Se2tbprovides short
but selfcontained conceptual backgrounds of the different methodologies employed for image
representation. SectioB4 outlines the image multilabef pipeline, which is meant for coarse
description. In Sectio.5, we quantify the recognition rates and the prangssme and discuss the
different pros and cons of the proposed method in the context of indoor scene desdéripéily.
conclusionsare givenn Section 2.6

2.2. Coarse Description

As mentioned earlier, the keysacnsstheindsordpace s ac
with the processing requirements, so as to render the recognition process faster yet more convenient for
(at least near) redgime scenarios. In this respect, a coarse description of images captured in an indoor
environment is adated. The principle of this approach consists in checking the presence/absence of
different objects, which were determined a priori, and turns out to convey the list of the objects that are
most likely present in the scene. Tapproach is based on theltilabeling strategy by creating a binary
vector (vector of labels). This vector, gsown inFigure2-1, indicates whiclobjects are present/absent
in its corresponding image. In the training phase, a set of images are captured from the indoor
environment and stored with their binary vector. In the classification phase, the proposed method gives
in output a multiabel vector referring to the list of existing objects in the scene. This new representation
aims to enhance the perception of the VI individual regarding the surrounding environment.
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Figure2-1: Binary descriptor construction for a training image.

2.3. Tools and Concepts

Let us consider a colour image X acquired by a portable digital camera in an indoor environment.
Due to several inherent properties of the images, such as illumination, rotatisnadéama@hanges, the
images cannot be used in their raw form but need to be transformed into an adequate feature space tha
is able to capture the spatial as well as the spectral variations. Such objective can normally be addressec
from three perspectivesamely: (i) shape information, (ii) colour information, and (iii) textural changes.
On this point, adopting one feature modality while omitting the others may drop the robustness of the
classification algorithm being developed. We therefore resort to a efficeent representation, by
making use of all three feature modalities. Precisely, we opt for reputed feature extractors. The first one
is the HOG[16] to feature the different shapes distributed over the images. The second one is the BOW
[17] based on colour information of the different chromathannels (BOW_RGB). Finally, the LBP
technique in order to express the textural behaviour of the images. As a matter of fact, all the mentioned
features can yield interesting results, and this has been documented by previous works, mainly related to
object, texture recognition, biometrics as well as remote sensing. In order to further boost their
representativeness, we also put forth a feature learning scheme that maps the original feature vectors
(derived by means of either feature type mentioned almne)another lower/higher feature space that
offers a better feature representation capability. A-estihblished feature learning model is Stecked
AutoEncoder (SAE) neural network, or simpghutoEncoder (AE), which constructs a model learned on
featues pertaining to training images, and then applies it on a given image in order to produce a final
image representation.

The final step of the proposed image multilabeling method is the classification of the generated
features. This step is performed Ippanding a logistic regression layer (LRL) to the top of the network.
The general diagram of the multilabeling procedudejsicted inFigure2-2. The following subsections
are dedicated to provide basic elabiorag of the feature extraction and learnmgthodologies.
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Figure2-2: Pipeline of the feature learnifzased image multilabeling scheme.

2.3.1 Histogram of Oriented Gradient

The HOG was initially aimed at pedean detection16]. Soon later, it was utilized in other
applications ranging from object recognition and tracking to remote s¢ds§ifi®] The basic idea of
the HOG is to gather the gradient variai@tross a given image. Basically, this can be done by dividing
the image into adjacent smalkzed areas, called cells, and calculating the histograms of the
magnitudes/directions of the gradient for the pixels within the cell. Each pixel of the belhiagsigned
to one of the bins of the histogram, according to the orientation of the gradient at this point. This
assignment is weighted by the gradient of the intensity at that point. Histograms are uniform from either
0 to 180° (unsigned case) or fromd360° (signed case). Dalal and Trig@8] point out that a fine
guantization of the histogram is needed, and they get their best results wiilm d&iStogram. The
combination of the computed histograms then forms the final HOG descriptor.

2.3.2 Bag ofVisual Words

TheBOW is a very popular model in the general computer vision literature. It is usually adopted
for its notable property of promoting a concise but rich representation of a generic image. BOW
signatures are generally reproduced from a cefature space of the images, it can be the spectral
intensities or alternatively keypotbtased descriptors derived from the images. The BOW is opted for in
our work in order to produce a compact representation of the colour attributes of an imagerefdecth
depart from the chromatic (Red, Green, and Blue channels) values of the images. At first, a basis
commonly referred to as codebook is established by gathering all the spectral features of the training
images into a matrix. Afterwards, we apply astéring technique i.e., the-ideans clustering, on the
built matrix to narrow down its size, which points out a srealéd basis (codebook). Next, the
occurrences of the elements (words) of the codebook are observed in the chromatic space of a given
image, which turns out to generate a compact histogram whose length equals to the number of the
codebookds words. For a more de[l4d7]ll ed expl anat.

2.3.3 Local Binary Pattern (LBP)

Texture is a very important infioration that can play a keple in characterizing images and their
objects. One of the most popular techniques in this regard is the Local Binary Pattern (LBP) which is a
multiresolution, grayscale, and rotation invariant texture representation. It wstspiioposed by Ojala
et al.[20] and then improved by Guo et i#1] who introduced a variant called Completed Local Binary
Pattern (CLBP), followed by many other variants. The following part gives a brief review about the basic
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LBP operator. Given a pixel in the imagg, V) its LBP code is computed by comparing its intensity
value to the values of its local neighbours:

b6y 6w B OUK Us W ¢ (2.1)

whereU 6 h) is the greyalue of itspth neighbouring pixelP is the total number of neighbouRjs
the radius of the neighbourhoodadl A) i s t he Heaviside step funct

The coordinates of the neighbdip iy are:6 6 'YAT 6 AT R 0 YOE— .If

the neighbors do not fall at integer coordinates, the pixel value is estimated by interpolation. Once the
LBP label is constructed for every piXglbhd N T , a histogram is generated to represent the texture
region as follows:

"0®Q B B 06§ 6 AQRN nh) (2.2)

~

where0 i s the number of bins and U0 is the delta 1

In order to give more robustness for LBP and make it mocgigiimative, a similar strategy to the
HOG method is applied. First, the image is divided into cells and the LBP is calculated for each cell.
Then, the computed LBPs are combined to form the final LBP descriptor.

2.3.4 AutoEncoder Networks (AE)

The AE is at thdvasis a neural network architecture characterized by one hidden layer. It has then
three layers, one visible layer of size n, one hidden layer of d nodes and one reconstruction layer with n
nodes. Leto M T be the input vector, N T the output of the hidden layer aad T the output of
the AE (reconstruction dj). d can be inferior or superior fm In the former case (i.ed,< n), the AE
performs feature reduction. In the latteseghowever, it performs an ovesmplete representati¢p?2].

As can be shown iRigure2-3, the output of the hidden and reconstruction layers can be calculated
using the following equations:

i Qno "H (2.3)
0 Qi & 'He (24)

Wheref(.) is a nonlinear activation function) and"Hare thed x n weight matrix and the bias vector of
dimensiond of the encoding, and aand Hare then x d weight marix and the bias vector of dimension
n of the decoding part.

The parametersj(, | &8'Hand Hecan be estimated by minimizing a cost function through a-back
propagation algorithrf23]:
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AOCi Edr (2.5)
B A
The loss functiod 6fd adopted in this work is the squared error ., o4& . After finding the
optimal values of weights and biases, we prddagremoving the last layer (i.e., reconstruction) with
its corresponding parametefféand e The | ayer 6ého6 therefore cont ai
which can be directly used as inputs into a classifier, or alternatively fed into anather layer to
generate deeper features.

In our case, we add a multinomial logistic regression layer (LRL), known also as softmax classifier,
at the end of the encoding part to classify the produced feature representations. The choice of using a
LRL is justified by its simplicity and the fact that it does not require any parameter tuning. The LRL is
trained by adopting the output of the encoding part (the new feature representation) as input, and the
corresponding binary vector as target output.

—— e ————

Encoding Feed-forward Decoding Feed-backward

Figure2-3: Onelayer architecture of an AE.

2.4. Feature Fusion

As described so far, three types of features are made use of in this work (HOG, BOW_RGB, and
LBP). In order to further improve the classification efficienag, propose three distinct feature fusion
schemes. The first one is a stacked fusion, which consists of extracting the three feature vectors from a
given image and then stack them up to form a global feature vector. This latter is injected as an input to
an AE topped by a logistic regression layer (LRL). The general diagram of thedstaslan is observed
in Figure2-4.
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X1

BOW_RGB

y y
AE+LRLE— |

Image g HOG

LBP  [x,

Figure2-4: Diagram of the first fusion strategy (Fusion 1) based on ddwel feature
aggregation.

The second technique is a parallel fusion, as showigure2-5, which proceeds by feeding each
type of feature into an individual AE model, followed by concatenating the learned features to form a
single vector. This latter is set as input to another AE model that is connected to a LRL that outputs the
final classificaton results. It is worth to mention that the two blocks composing the autoencoders are
trained separately.

BOW_RGB

Image > HOG

S\] s ") y
AE+LRL H 1 >

LBP

Figure2-5: Diagram of the second fusion strategy (Fusion 2) based on a AE indwetd
aggregation.

The third method is based on a linear sum of the individual decisions of the three types of features.
In other words, each featuvector is fed into a separate AE model topped by a LRL. The outputs of each
LRL are then averaged to come down to a singlevalaled output, which is subsequently thresholded
to force its values to either one or zef@ure2-6 gives an illustration of the fusion procedure.

X1

BOW_RGB » AE+LRL
X2

Image HOG AE+LRL
X3

LBP » AE+LRL

Figure2-6: Diagram of the third fusion strategy (Fusion 3) based on a dedesieh
aggregation.
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2.5. Experimental Results

2.5.1 Description of the Wearable System

The developed method is part of a complete prototype which is composed of two parts. The first
part is the guidance system, which is responsible of guiding a visually impaired person across an indoor
environment from an initial point to a desired destorattaking into account the avoidance of the
different static and/or dynamic obstacles. The second part is the recognition system, which is meant to
describe the indoor site for the blind individual to give him better ability to sense the nearby sugoundin
environment by providing him with a list of existing objects. Regarding the hardware, the wearable
system is composed of a laser range finder for detecting and determining objects distance to the user, a
portable CMOS camera model WP40LEC-HQ (IDS Imajing DevelopmeniSystems, Germany)
equipped with a LM4ANCL lens (KOWA, Japan), a portable processingmmah can be a laptop, a
tablet or a smartphone and a headset for voice input and audio output. The user controls the system by
giving vocal instructias (i.e., specific keywords) via a microphone and receives information (e.g., list
of objects) vocally synthesized through the earphone. All the hardware is mounted on a wearable jacket
as can be seen drigure 2-7. The design othe entire prototype was performed by taking into
consideration the feedbacks we received from VI persons, in particular regarding interfacing and
exploitation.

Headset

Jacket Laser sensor Camera

Figure2-7: View of the wearable prototypeith its main components.

2.5.2 Dataset Description

The set of images used in this work was acquired by means the CMOBIQLEC-HQ camera,
with KOWA LM4NCL lens, which is carried by a wearable lightweight shield. The images were shot at
two different indoor paces within the faculty of science at the University of Trento (ltaly). The size of
each image is 640 x 480. The first ensemble amounts to a total of 130 images, which was divided into
58 training and 72 testing images. The second set accounts for 1gdsinsplit up into 61 training
images, and 70 for testing purposes. It is noteworthy that the training images for both datasets were
selected in such a way to cover all the predefined objects in the considered indoor environments. To this
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end, we have satted the objects deemed to be the most important ones in the considered indoor spaces.
Regarding the first dataset, 15 objects were coc

OExternal Door 6, 60Stair Door ®PidAacédss 00Oomstpl aly
O0ATMOG, 0Chairso, 0Bi ns o, 0l nternal Door 6, and
the foll owing: 60Stairsé6é, OHeaterd6, o6Corridor 6,
OEevatoré6, O6Receptionédé, O6Chairsé, o6Self Service

2.5.3 Evaluation Metrics and Parameter Setting

For evaluation purposes, we use the watbwn sensitivity (SEN) and specificity (SPE) measures:

3 %. (2.6)

30 % (2.7)

The sensitivity expresses the classification rate of real positive cases i.e., the efficiency of the
algorithm towards detecting existing objects. The specificity, on the other hand, underlines the tendency
of the algorithm to dtect the true negatives i.e., the fexisting objectsln generalthose two quantities
reflect opposite measures. In other words, the more the method tends to detect existing objects (high
True-Positive which entails higher sensitivity) the more is exposed to make wrong detections (high False
Positive which implies lovepecificity). In order to make a tradéf between the two measures and to
make an adequate comparison of results with respect to theokthteart methods, we propose to
further include the average of bot

1 6' ——— (2.8)

We set the parameters of the three feature extractors as follows.

1 For HOG features, we set the number of bins to Sla@size of the cells to 80, which gives a
HOG feature vector of size 1260 (recall that the size ofntlagyé is 640 x 480).

1 Regarding the BOW_RGB, the number of centadid.,6 K& o0 fmeandchisteking is set to
200, which was observexsthe best choice among other options.

1 For the LBP, we sdR = 1, P = 8, and size of the cells = 80, which producdB& feature
vector of length 480 bins.

In input layer, all values are normalised between 0 and 1. Regarding output, In fact, the LRLs point
out real values. In order to force them to ones or zeroes, a thresholding must take place. Therefore, to
determinelte most convenient threshold, we appliedfal8s cross validation technique on the training
dataset, with 4 folds chosen randomly as training and the last one as test. The threshold values range
from 0.1 to 0.9 with a step of 0.1. We repeated the expeatsrb times, each time with different random
permutation. The results presenterigure2-8, refer to the average of the sensitivity and the specificity
(along with their average) by means of the first fusion method. By observing those figures, SEN and SPE
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exhibit opposite behaviours as the threshold value increases. On average betwesmdSHRE, a
threshold of 0.3 stands out as the best option, which will be adopted in the remaining experiments.

HOG 1 BOW_RGB 1 LBP
1

0.9 0.8

0.6 %;&\u—\

~ 0.4 T

= SEN ™~ = SEN T~

0.4 SPE 0.2

0.8

0.6

0.7

0.6

0.5

0.4 = 0.2 0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 0.1 02 0.3 0.4 0.5 0.6 07 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09
Threshold Threshold Threshold

) HOG . BOW_RGB . Lep

06} - — 1 0.6 .\\ ‘ Bl
N — PN = SEN

oaf 3N N 04 RE,EG ~ 04t SPE

-— AVG - AVG

0.2 0.2 0.2l " " . . " " " )

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Threshold Threshold Threshold

Figure2-8: Impact of the threshold value on the classification rates usingrbe fieature
types. Upper row for Dataset 1, bottom row for Dataset 2.

2.5.4 Results

We first report the results pointed out by using the three types of features individually. We tried
many configuration by changing the size of the hidden layer from 100 tori@@® by a step of 100.
Ultimately, 300 nodes turned out to be the best choice for all the features. It can be observed from
Table2-1 that on Dataset 1, the three features perform closely, with a slight improvement being noticed
with Bow_RGB. On dataset 2, however, the BoW_RGB outperfdognfar, the remaining two, which
was expected beforehand as this dataset particularly marmifdser colour information than the former
one. Nevertheless, the yielded rates are quite reasonable taking into account the relatively large number
of objects considered in this work, besides other challenges such as scale and orientation changes.

Table2-1: Obtained recognition results using single features.

Dataset Dataset 1 Dataset 2

Method HOG BoW_RGB LBP HOG BoW_RGB LBP
SEN (%) 76.77 79.77 76.77 72.73 88.64 81.82
SPE (%) 82.16 82.9 80.07 88.67 90.24 86.27
AVG (%) 79.46 81.33 78.42 80.7 89.44 84.04

Coming to the fusion scenarios, an interesting point to initiate with is the determination of the
optimal size of the hidden layer (i.e., number of hidden units). Different architectures have been explored.
Precisely, werted out values within the range of 2A®00 with a step of 100. Ultimately, the first fusion
technique ended up having 900 neurons as an optimal choice, whilst the remaining two strategies pointed
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out their best at 500 and 300, respectively. It is to thateall the values within 100000 have pointed
out nearby performances. The earlier optimal parameters will therefore be adopted in what follows.

The classification results of the fusischemes are summarizedliable2-2 and examples of results
obtained for some quergnages are provided irigure2-9 for both datasets. Asfirstremark, it can be
spotted that significant gains have been introduced with respect to using indieatuatg Table2-1),
which strengthens the assumption that fusing multiple features is likely to be advantageous over
individual feature classification scenarios.

Table2-2: Classification outcomes of all the fusion schemes.

Dataset Dataset 1 Dataset 2

Method SEN (%) SPE (%) AVG (%) SEN (%) SPE (%) AVG (%)
Fusion 1 79.40 87.45 83.42 85.00 91.80 88.40
Fusion 2 80.89 87.69 84.29 87.27 91.56 89.41
Fusion 3 89.51 81.30 85.40 90.00 90.12 90.06

Predicted objects Predicted objects Predicted objects
Boord, Office, Pillor, Chairs, External Door, Access Intemal Door, Elevator.
Bins, Internal Door. Control Reader.

Predicted objects Predicted objects PTEdiCtEd objects ‘
Stairs, Heoter, Corridor, Stoirs, Heater, Corridor, Corridor, Boord, Reception,
Board. Boord. Self Service.

Figure2-9: Example of results obtained by the proposed multilabeling fusion approach for
both datasets. Upper row for Dataset 1, and lower one for Dataset 2.

Another observation is that the average classification rate graduaiases from Fusion 1 all the
way to Fusion 3with minor disparities. Moreover, the first two strategies seem to favour the SPE over
the SEN on both datasets, while FusignwBich performs fusion at decision ley&vours SEN on

22



Chapter 2: Reallime Indoor Scene Description for the Visually Impaired with Using AutoEncoder

Dataset 1 and exhibitskeetter SENSPE balance on Dataset 2. As a matter of fact, choosing between
SEN or SPE depends upon the application being addressed. In our case, we will privilege SEN as we
think it is more important to provide information on the presence of objects (eitegenerates some

false positivesjatherthan on the absence of objects. For such purpose, late fusion of individual decisions
(i.e., Fusion 3) has proved to be a more efficient option than fdatwwekfusion (i.e., the first two
schemes), with atelency to score higher or equal SEN rates with respect to SPE.

For the sake of comparison of Fusion 3 strategy with-sftiatiee-art methods, we considered the
contribution maden [15], namely the Semantic Similariased Compressed Sensing (SSCS) and the
Euclidean Distancbased Compressed Sensing (EDCS) techniques, and also three different pretrained
Convolutional Neural Networks (CNNs) wdh are ResNdi4], GoogLeNe{25] and VDCNg[26]. As
shown inTable2-3, for Dataset 1, our strategy outperfortagyely the reference work ifiL5] with at
least 10% of improvement and between 2% to S¥mared to the three pretrained CNNs. Moreover,
our method offers the advantage of yielding far higher SEN. Both observations can be traced back to two
considerations. On the one hand, the work put fortfi%h makes use of amaltsizal dictionary of
learning images to represent a given image by means of a compressive-baasth@pproach, which
might succeed in representing an image thatgoasl matches in the dictionary but may fail when it
comes to afoutlier) image that has no match in the dictionary. On the other hand, the proposed approach
proceeds by extracting robust features capable to capture different variations across théoihoagsss,
by a customized feature learning step that furthers their discrimination capacity, which is ultimately
reflected on higher classification rates as the resultsTtei sameobservations applfor Dataset 2 as
seen inTable2-4.

Table2-3: Comparison of classification rates on Dataset 1.

Method SEN (%) SPE (%) AVG (%)
SSCS 79.77 66.54 73.15
EDCS 69.66 80.19 74.92

ResNet 66.29 94.46 80.38

GooglLeNet 67.04 94.22 80.63

VDCNs 71.91 94.46 83.19

ours 89.51 81.3 85.40

Table2-4: Comparison of classification rates on Dataset 2.

Method SEN (%) SPE (%) AVG (%)
SSCS 75 74.09 74.54
EDCS 70 90.12 80.06

ResNet 68.18 96.75 82.46

GooglLeNet 72.27 97.11 84.69

VDCNs 81.82 96.39 89.10

Ours 90.00 90.12 90.06

An interesting fact to point out is that the size of the images has a direct influence on the processing
time. Therefore, an option was to scale down the image resolution frosizki640 x 480), to its half
(320 x 240), then (128 x 96), and finally (64 x 48), which respectively define a 100%, G/oar2d
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10% of the original size. The classification results in terms of AVG accuracy are shoalrie2-5 and

Table2-6 for both datasets, respectively. It can be observed that the accuracy does not manifest drastic
changes as the image size drops. In fact, there are instances where the smallest resolutions introduce
slight impgrovements, which we believe can be interpreted by the fact that, in many images, there are
large background surfaces (e.g., walls) that have usually uniform colours and textures, which may not be
really useful as salient visual properties by which the @sagan be discriminated, reducing the image

size thereby reduces the size occupied by those backgrounds, which magnaititamor even raise

the classification performance.

Table2-5: Comparison of classification rates on Dataset 1 under different resolutions.

Method 100% 50% 20% 10%
SSCS 73.15 73.34 74.52 7451
EDCS 74.92 74.74 75.11 75.43

ResNet 80.38 79.88 79.32 78.76

GoogLeNet 80.63 81.63 82.2 79.02

VDCNs 83.19 83.37 84.50 84.57

Ours 85.40 86.02 86.14 86.63

Table2-6: Comparison of classification rates on Dataset 2 under different resolutions.

Method 100% 50% 20% 10%
SSCS 74.54 74.54 73.91 74.48
EDCS 80.06 80.06 79.30 78.60

ResNet 82.46 82.40 84.69 87.13

GoogLeNet 84.69 84.69 84.74 84.12

VDCNs 89.10 88.71 87.80 88.13

Ours 90.06 90.34 90.03 90.69

Besides the classification rates, another important performance parameter is the runtitine. For
proposed method, the runtime includes the feature extraction, the prediction and the fusion times. We
provide the average processing time per imagédth datasets ifable2-7 andTable2-8, from which
it can be seen that, as expected, the runtime decreases with the image size, with our method being at leas
four times faster than the best runtime (GoogLeNet) provided by methods of refereticelddgr 22
milliseconds per image is a very promising time span provided that fifteen objects are targeted in this
work. Such processing timie based ora Matlab R2016kmplementation which is subject to be
drastically reduced under for instance a @hplementation. Its also worth mentioning that the number
of objects in our work does not impact on the classification process.

Table2-7: Comparison of average runtime per image on Dataset 1 under different resolutions.

Method 100% 50% 20% 10%
SSCS 2.16 1.42 1.22 1.17
EDCS 2.44 1.41 11 1.08

ResNet 0.136 0.132 0.131 0.131

GoogLeNet 0.100 0.098 0.096 0.093

VDCNSs 0.300 0.295 0.291 0.288

Ours 1.230 0.200 0.048 0.022
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Table2-8: Comparison of average runtime per image on Dataset 2 under different resolutions.

Method 100% 50% 20% 10%
SSCS 2.66 1.53 1.21 117
EDCS 2.69 1.54 1.23 1.2

ResNet 0.136 0.132 0.131 0.131

GoogLeNet 0.100 0.098 0.096 0.093

VDCNs 0.300 0.295 0.291 0.288

Ours 1.230 0.200 0.048 0.022

2.6. Conclusiors

This chapterpresented a scene description (via image multilabeling) methodology toeassist
visually impaired people to conceive a more accurate perception about their surrounding objects in indoor
spaces. The idea of the proposed method is promoted around detecting multiple objects at once within a
possible short runtime. A kegeternminant of our image multbeling scheme is that the number objects
is independent of the classification system, which entails the property of detecting as many objects as
desired (depending on the offline setup to be customized by the user) within tharsaor of time
which amounts for much less than a second in our work.

The multilabeling algorithnexploitsfeature €arning concept by means of antéEncoder neural
network, which amply demonstrated a significant potential in generating discriminativge ima
representations.

Pros: In the literature, there exist several raltiiect recognition methods (but not in the context of
visually impaired rehabilitation). Those methods, may show interesting recognition efficiency, but they
are dependent on the numinérobjects considered. By contrast, our method as hinted earlier, does not,
which renders it much faster yet more reliable if considered irtirealscenarios. The earlier two points
are technically verified iffl5], where it was concluded that coarse image description is more adequate
in this sense.

Cons: While the aim of the conducted coarse description is to roughly list the presentasbjects
bridge the gap between the real i ndoor setup a
i magination, inferring further information pert
remains a vivid endeavour in our futw@nsiderations. This, however, may come at the cost of a heavier
processing buit is not out of question. To complement this missing component, we suggest to find a
way to introduce the depth information (e.g., through Kinect sensors for instancepstpepation.

Another issue is related to the scalability of the system since it will need to be completely retrained in
case the set of predefined objects requires to be modified quantitatively or qualitatively.
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Chapter 3: Reconstructing Clod@ontaminated Multispectral Images with Contextualized Butoder

3.1. Introduction

Depending on the application, clouds in remotely sensed imagery can be seen as a source of
information or noise. In the latter case, which represstite focus of this work, clouds are considered as
a serious problem because they can cover partially or completely a region of interest, and thereby reduce
the exploitability of the images. Detecting clouds in the images is often performed apragassing
step in order to remove them and recover the missing areas. Wotkjsve focus on reconstructing the
missing areas supposing that the cloudy areas in the images are already identified.

In the literature, some contributions start from the hypdghbkat clouds are thin and do not obscure
completely the reflected signal from Earth. They generally use either monotemporal methods that exploit
the different spectral bands of the single image to reconstruct the affected areas or multitemporal ones
which deal with a temporal sequence of images acquired over the same locatjdi.([1]

In order to address the case of opaque clouds, which is the scopechfitey Maaloufet al. [5]
proposed an inpainting technique basedtlo® Bandelet transform arttie multiscale geometrical
grouping. They presented interesting results but such techniques showed their limits compared to those
based on muitemporal predictiof6]. Moreover, since satellite multitemporal imagery over a given area
can be regularly aegred, most methods in the literature rely on the exploitation of the temporal
dimension. Among the first related contributions, one can cite the work ofdtialy[7]. They generate
an ensemble of cloufilee image mosaics by composing several cloudyTSB@ IKONOS satellite
images acquired from the same area. In [8], two unsupervised contextual reconstruction methods were
proposed. The first method is a linear prediction based on the expectatdmization (EM) algorithm
and the second one is a noelm prediction based on a support vector machine (SVM). Teteadd9]
proposed a method to generate ckinigd mosaic images from multitemporal SPOT images based on a
multiscale wavelebased fusion method in order to ameliorate the transition betweemasaic parts.
In [10], Lin et al. proposed to clone clodflee information from a set of multitemporal images by
adopting a batchased reconstruction method formulated as a Poisson equation and solved using a global
optimization process. Lorengt al. [11] proposed to rely on the compressive sensing (CS) theory to
reconstruct the area covered by clouds. They developed two common CS solutions, namely, the basis
pursuit (BP) and the orthogonal matching pursuit (OMP). A third CS solution based on egplodi
search capabilities of genetic algorithms (GASs) is also introduced.

In this chapter we describe a new method to recover missing data in multispectral images due to
presence of clouds. Specifically, we propose to exploit the strength of the AErksetimothe
reconstruction phase to restore the missing data. It is worth mentioning that AE networks have been used
for general image restoration problems. For example, the auth@t2]icombine them with sparse
coding for image denoising and blind inpainting. In another 8k the authors exploit them for the
enhancement of natural lehght images. In[14], it is proposed a nelocal AE with collaborative
stabilization for natural image denoising and supsplution. In the remote sensing literature, they were
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successfully applied to imagpansharpening [15], objectetiéction [16] and hyperspectral data
classification [17].In the present work, AEs are exploited to address the issue of missing data
reconstruction in multispectral images. Given a clreé image (source or reference image) and a
cloud-contaminated imagy(target image), the AE learning will be slightly modified in such a way that
rather than supposing that the output layer (the reconstruction layer) is equal to the input layer, we
consider here that the output is constituted of pixels from the targge iamal their corresponding pixels

on the reference image are used as input. In other words, we try to find the essential mapping function
between the source and the target image using the AE [18]. In the training phasé&edqixiels from

both sourcerd target images are exploited. After that, in the prediction phase, pixels from the reference
image corresponding to contaminated pixels in the target image are used in order to reconstruct the
missing areas in the second image. Moreover, in order thdiproblem of the empirical tuning of the
hidden layer size (which is still an open issue in the definition of an AE architecture), the minimum
descriptive length (MDL) criterion [19] in combination with a Pareto front selection method is applied

to inferthe best AE architecture. It is noteworthy that the trained neural network is contextualized, in the
sense that it exploits contextual information of a given missing region to recover only that specific region.
Accordingly, it is not intended to generalito other missing regions for which other (fin@ed) neural
networks will be needed. Compared to [12], our method is different from various points of view: 1) [12]
deals with the image denoising and inpainting problems while we focus on multitempags im
reconstruction; 2) [12] makes use of a fix@dckedAutoEncoder(SAE) architecture (with 3 hidden

layers, each of them composed of the same number of hidden nodes set to 5 times the number of input
nodes) while our architecture is not stacked (monepaxt) and the number of hidden nodes is estimated
automatically (thanks to MDL criterion); 3) our method is contextualized while [12] is not; and 4) our
method is specifically developed for cleadntaminated remote sensing image reconstruction.

The restof this chapteris organized as follows. Sectidh2 formulates the problem of the
reconstruction of a cloudontaminated image and describes the two developed methods based on a
modified learning of the AE network. The experimental results are presentetiion3.3. Finally,
conclusions are reported in Sectid.

3.2. Methodology

Let us consider two multitemporal multispectral imag8sand|® with nb bands acquired by an
optical sensor and registered over the same geographical area. The two imayzpiiaed at two
different dates, which are supposed to be sufficiently close to each other in order to keep similarity
concerning the spatial structut®) refers to the cloudree image (source/reference image) Bfidefers
to the cloudy image (taeg image). The objective of the proposed method is to reconstruct any area of
the target image which is contaminated by clouds. We note that the problem of the detection of clouds is
out of scope of thisvork. We will call the cloudy area in the contantied imagel® as target region
Ts? and its corresponding area in the clduee imagd® as source regions?. The areas surrounding
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the cloudy region (cloudtee area) in® and|® are referred as target training regibr® and source
training regionTr, respectively.

The underlying idea of the proposed method is to find the transforniatiowhich captures the
relationship between the source and the target images. For such purpose, the training regions are used tt
estimatd O and a nodel is learned such that:

Tr@=g(Tr®) (3.1)

Once the mapping model is learned, one can reconstruct the cloudy region in the targdtdfage (
by applying the estimated transformatior® on thereference test regiofs.

T2=g(T<Y) (3.2)

The transformation functioh O can be learnt using linear or nonlinear models. In multispectral
images, the distributions of data are typically cawgmultimodal) which makes the simple linear model
not the most suitable choice to perform the transformation. As mentioned earlier, various ways have been
proposed in the literature for solving this mapping problem. In this work, we propose an akernativ
solution based on AuEncoder (AE) neural networks because of their promising capability to reconstruct
data in a nonlinear way. More details are given in the next sections.

3.2.1 Pixel-based Reconstruction with AuEncoder

The AE is basically an artificial meal networkarchitecture thats characterized by one hidden
layer. Stacking many AEs (many hidden layers) formsea#led stacked AE (SAE) which is considered
as a deep architecture.

A simple AE has three layers, one visible layer of sigi@put laye), one hidden layer af nodes
and one reconstruction layer (output layer) withodes. Lete ¥ T be the input vectorlN T the
outcome of the hidden layer amd T the output of the AE (the reconstructionx)f

In our case, since we are not interested in an - agonstruction operation of the AE
(encoding/decoding) but in a n@pg between two correlated spaces (source and target images), the
training of the AE will be slightly modifieth order to find the mapping function betweha two images
(1D and1?),

Let us consider a input vecter » fw B which represents a generic pixel from

~

the regionTr® and e w Mo M is its corresponding pixel iTr® (our target),e

who B hw  is the reconstruction vectéthe output of the AE) o B hom  and{are thed
x nweight matrix and the bias vector of dimensibof the encoding parandfj @ «adB h:a and
-Heare then x d weight matrix and the bias vector of dimensioof the decding part.The parameten
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represents the number of nodes of the input and the reconstruction layers and it equals here to the numbe
of bands of the images, namaeilly.

x@

Multispectral imagel® Pixel vector Autoencoder Pixel vector Multispectral imagel ?

Figure3-1: Proposed pixebasedAutoEncoding reconstruction method

As can be shown iRigure3-1, the output of the hidden and reconstruction layers can be calculated
using the following equations.

N Qoie &) (i=1..d) (3.3)
® Qog] de (i=1..n) (34)

where; and< geare thei™ rows of theweight matrices] andij eerespectivelyg and Geeare thei™
elements of the bias vecto|*sand+}aeespectivelyand“QO is a nonlinear activation function. Typically,
a sigmoid activation function is used, which is expressed by the equation below:

Fo) uuu— (35)

The parametersij(, fj gfand{fg2can beestimatedoy minimizing a cost functios O which
guantifies the error between the target and the outpué of the AE.

AO H%I (Ed he (3.6)

In this work, we adopt the squared error function, iileehe =& e&. Therefore, the
minimization problem ir{3.6) becomes:

Ac‘)ﬁ%iﬁéilﬁ Bie 4+ 4= (37)
i i
Wherel Jis the vector representation of the activation funcié® defined in(3.5).

The computation of this objective function is performed on the available tragamgles and
optimized according to a backpropagation method which relies on its gradient calculation. In particularly,
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we use the stochastic gradient descent method to optimize th&goson in (3.7) [20]. Since the
weights are updated for each tramsample, this method has proved faster, more reliable, and less prone
to reach bad local minima than standard gradient descent.

3.2.2 Patch-based reconstruction strategy

In remote sensing images, it can be reasonably expected that neighbor pixels are higjatedor
and present spectral similarities. To benefit from spatial correlation, we propose a second method which
consists to reconstruct by patch rather than by single pixel, and then apply an opportune fusion to infer
the estimation of each missed imagesp

x® e

rﬁ Input Reconstruction __

Neighbor g
region

Unflattening @

E‘ Multispectral imagel ®

Neighbor
region

@ Flattening <

) ) o)
Multispectral imagel Autoencoder

Figure3-2: Proposed patebhasedAutoEncoding reconstruction method

In this method, we keep the same principle like the previous method, but the size of the input layer
(same for the reconstruction layer) isremsed. As illustted inFigure3-2, the input vectok™® (similar
reasoning for the target vectd?) is formed by flattering the patch which is composed by the current
pixel of interest (the central pixel) and its spatial neighboring piKelsvindow of sizeszx szis chosen,
then the size of the input layers equal taszx szx nb. Therefore, rather than mapping just one pixel at
a time, a region of size gk x szis mapped.

With such a reconstruction scheme, the problem which asitlest instead of getting an estimation
for each target pixel, we obtaisz(x s2 estimations (excluding the cases of pixels lying close to the
image borders). This is due to the fact that we pass from almsed to a patebased reconstruction.
In order to get an estimation for each pixel from the generated patches, we propose to apply a simple
weighted average of all thezx s2 cases as follows:

° B | ® (3.8)
wherg are weights such that:
B | o AT At | 0 (3.9)

ande is the mapping of the pixef® obtained from thé&" patch containing the pixel of interest.
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Regarding the selection of the weight values, we will opt for a simple strategy in which a weight
of 0.5 is assigned to the central pixel while all remaining neighboring pixels will have a weight equal to

(which means that 50% of theewghting is assigned to the central pixel and 50% is equally

distributed over all remaining pixels of the patch). It is noteworthy that other strategies (i.e., equal weights
and Gaussian function weights) were implemented as well but performed worsenot pgrdvide any
significant improvement compared to the above strategy.

Figure3-3 shows an example of a 3 x 3 neighborhood. Case 1 is the case when the pixel of interest
coincides with the center of the window. The other cases refer to situations when the pixel is still inside
the window (but not at its center).

Patchbased Fusion
reconstruction

weights

X x

AE

Final
estimation

AE

case 9

[0 concerned Pixel [ Central pixel of the window

Figure3-3: lllustration of the fusion of the patdhased results related to a given pixel of interest (in
black) fora 3x3 neighborhood system. In this case, -and all other weights 8 | —.

3.2.3 Estimation of the size of the hidden layer

As the size of the hidden laydris unknown a priori, it needs to be estimated. Typically, this is
done empirically by trying various configurations and picking up the one with highest accuracy. In this
proposed methd) for solving this issue, we propose a new method which is inspired from the minimum
description length (MDL) principle [21]. If we take for instance the problem of the selection of the
number of components in a mixture, MDL permits to search for a tifasiece, on the one hand the
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higher the number of components, the higher the risk of overfitting, while on the other, the smaller the
number of components, the lower the model flexibility [8]. In such a case (mixture density problem),
MDL is defined as [2]:

-%$.,Q By 8@ 1(C (3.10)

where/bS gy represents the lelikelihood function value found with a maximum likelihood estimation
algorithm, Qis the number of free parameters to be estimaeouf case it will be equal to the number

of weights and biases),is a constant andis the number of data sample. Therefore, the MDL principle
aims at achieving a balance between accuracy and complexity of the model so that to provide a good
generalzation capability. Applying a simple grskarch procedure guided by empirical risk
minimization can instead lead to overfitting issues.

In order to adapt MDL to our problem§ - h FBh  wil represent the set of
multidimensional errors ingred by the AE (dimensionality = number of output nodes) for each af the
input data. For the sake of tractability, we assume the multidimensional errors are drawn from a
multivariate normal distribution, namepf() = N(Hh ) where the mean vectgris supposed to be null
and the covariance matrixis supposed to be a diagonal matrix with values equal tehere, is the
standard deviation. Then, the distribution function can be written as follows:

n - =§$A D -- - (3.11)

The negativédog-likelihood function will be represented as follows:
S g a€BQ N - B 1 1rg-
-B ¢ ss -B - - (3.12)
The optimal size of hidden lay€ris estimated by minimizing the MDL criterion, i.e.,

Q AOQCEI- $,Q (3.13)
B8

whereQ is a predefined maximum size of the hidden layer.

During simulations, we noticed that the second term of the MDL criterion, which depends on the
number of weights and biases involved in the considered AE archierctareases rapidly compared to
the first term (the logikelihood function) which decreases very slowly. The observed Qestlue
corresponds always to a hidden layer size of one or two ueitscd p or’Q ). In order to get a
better balance beten the two terms of the MDL criterion, the paramgtereed to be as smaller as
possible to keep under control the rapid increase of the second part. However, there is no guarantee thalt
the best choice df for one dataset will give also good results 6ther datasets and in this case the
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developed method will be highly dependent on the value qfaheemetef . To overcome this issue, we
propose to opt for a Parelike optimization, inspired from theulti-objective optimization literature
(MO optimization) and the nondominated sorting concept.

3.2.4  Multi-objective Optimization

In the cases when there are multiple measures of competing objectives (criteria) to be
simultaneously estimated like in ours, MO optimization can be solved by combining litlearly
objectives into a single function (like previous MDL formulation) with opportune weights or by finding
a set of optimal solutions rather than a single one. The selection of a solution from this set is not trivial
and is usually usaiependent. From aathematical viewpoint, a general MO optimization problem can
be formulated as follows:

Find the vectows Which minimizes the ensemble @fobjective functions:

B= QuiiQ pB (3.14)
subject to thd equality constraints

Qum T =1, 2, é, (3.15)
and theK inequality constraints

QO mm T k=1, X, é, (3.16)

wherep is a candidate solution to the considered optimization problem. In our case, it consists of finding

the solution that minimize the two criteri® JBCg and™ Q@ "G 1 (O = 2) without any
constraints.

The solving of a MO optimization prigm is based on the concept of dominance. A soludios
said to dominate another solutiaaif and only if == is partially less thal] m= | i.€.,

'Oy R Qe Qe ™~ M pRB N O mm Q mm (3.17)

This concept leads to the definitionRdreto optimalitya solutions=™ LI( @ i S t he sol ut
is said to bePareto optimalf and only if there exists no otheolutions M LI that dominatesss. The

latter is said to beondominatedind the set of all nondominated solutions forms theafled Pareto
front of optimal solutions.

Once the Pareto front is identified, a solution has to be selected feosetlof nondominated
solutions. Although different strategies can be found in the literatuoeirimethodve used the simple
median solution to maintain a tradeoff between the two different criteria.
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An example of nondomated sorting is shown iRigure3-4, in which a joint optimization of the
two criteria”Qand Qis involved. The nondominated samples (in red) constitute the Pareto front, which
represents the set of optimal solutions. From this set, the selected solution is given by th@nes(@a
green). Dominated solutions are drawn with black crosses.

f
'y

front of

nondominated solutions

-
# dominated solutions
-
Utopia point

» f;

Figure3-4: lllustration of a front of nondominated solutions

3.3.Experimental Validation

3.3.1 Dataset description

In our simulations, we use twidifferent datasets, each containing two images. We assume that one
of the two images contains the cloudy regions. The first dataset was acquired by the Taiwanese optical
high resolution FORMOSAT® satellite [22], which permits the acquisition of an aremterest every
day, from the same viewpoint and under the same light conditions. These images represent part of the
Arcachonbasin in the south region of Aquitaine, in France. The images are composed of 400x400 pixels
and four spectral bands (blue, greeed, and near infrared) with a pixel spacing of 8 m. They were
acquired on the 2%of June and 1Bof July, 2009, respectively (s€&gure3-5). The second dataset was
acquired by the French satellite SR Twhose images regsent part of the Réunion island [23]. The
images are characterized by a size of 450x450 pixels, four spectral bands (blue, green, red, and near
infrared), and a pixel spacing of 10 m and were taken on May 2 and June 18, 2008, respectively (see
Figure3-6). The two datasets exhibit several disparities, which are (i) senseyand/or (ii) intepixel
spacing, and importantly (iii) the land covers. In fact, the former dataset displays more vegetation than
urban areas, whereas the latter shows otlserwi
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(b)
Figure3-5: Color composite ofifst dataset acquired BJORMOSAT-2 overthe Arcachonbasinon (a)
24" June and (b) f8June, 2009

@ 2 Sk b
Figure3-6: Color composite o$econddataset acquired POTF5 overthe Réunionislandon (a) May
2"9and (b) June 1§ 2008

In order to evaluate the two developed methods, the rocedure adopted in our experiments consists:
1) to consi@r a cloudfree image, e.g'0 ; 2) to simulate the presence of clouds by partly obscuring the
other image, e.g'D ; and 3) to compare the reconstructed image with the original-fteadmage.
This study aims at understanding the sensitivity of the two investigated dseattgarding two aspects,
which are: 1) the kind of ground covers obscured; and 2) the size of the contaminated area. In order to
obtain a detailed assessment of the reconstruction quality, we adopt the popular pe#b-smsalratio
(PSNR) measure [24as well as the correlation coefficient.
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3.3.2 Results

In the experiments, the size of the hidden layer the autoencoder is varied over a predefined
range and the two objective functioisandf. are calculated at convergence for each case. In the first
method, the size of the input feature vector is equal to four (number of image bands). For the second
method, a neighborhood of 3x3 is chosen, the valueiothis case is equal to 4x3x3. The valuel of
for both cases is chosen to be within the rang2QQ@]. The other parameters of the autoencoder are fixed
as follows: momentum = 0.5, initial learning rate = 1, iterative decay factor for learning rate = 0.95, and
number of epochs = 15Regardinghe multivariate normal distributidd(Hh ), we used zero mean and
, TEUT

1) Contamination of Different Ground CoveEgure3-7 shows different masks whose positions were
selected in such a way as to simulate the obscuration of different kinds of groundrcpeaeticular, for

the first dagset, inFigure 3-7(a), mask A is over a completely urban area, mask B covers a region that
includes mainly industrial zone, and mask C obscures a vegetationFareghe second dataset,

Figure 3-7(b) shows mask A covering mainly a rural area, and mask B a vegetation region. The
experiments were carried out by considering each mask at a time, where each mask is composed by
around 2000 pixels, and the training $etis conposed by around 4000 pixels from the surrounding
region of each mask.

(@) G

Figure3-7: Masks adopted to simulate the different ground cover contaminations

In the experiments, mask A is used fraining an autoencoder AEvhich on its turn is considered
as pretrained autoencoder exploited to-tumee the other models, i.e., AEbr mask B and AEfor mask
C. In these cases (masks B and C), the number of epochs is reduced to half.

Figure3-8 shows an example of the Pareto fronts obtained at convergence for the first dataset using
mask A and for both developed methods of reconstruction where the nondominated solutions lie along a
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red curve and the selected solution is highlighted witleargcircle. The different best solutions for both
datasets are reportedTable3.1.

3
45 x10

4t
3571

3t

median solution

-2.5

-3.25 -3.2 -3.15 -3.1 -3.056 -3
1 «10%

(a)
Figure3-8: Pareto fronts obtained at convergence for the first datasehasid A simulation by (a)
pixel-based autoencoding reconstruction, and (b) padsied autoencoding reconstruction

Table3.1: Best size of hidden layer found for the different cases.

Dataset 1 Dataset 2
Method Pixel-AE Patch-AE Pixel-AE Patch-AE
Bestd value 19 29 14 29

In order to evaluate our methods, we compare the obtained results in our experiments with results
found by stateof-the-art methods based on compressive sensing theory, namely the Oahdgtrhing
Pursuit (OMP), Basis Pursuit (BP) and Genetic Algorithm (GA) reconstruction techniques [11].
Compressed sensing in signal processing is considered as an efficient approach for reconstructing a signal
by finding solutions of an underdeterminéaelr system under constraint of sparsity. BP convexifies
the problem by solving it under L1 norm instead of LO norm [25], [26]. OMP is a faster alternative of the
MP method and is based on finding the atom that has the highest correlation with tharsigtian
subtracts off the correlated part from the signal and iterates the procedure on the resulting residual signal
[27], [28]. Regarding GAs, they are considered as part of evolutionary computation methods which
solves optimization problems by perfongia search by regenerating a population of candidate solutions
represented by chromosomes [29], [30]. The {@@minated Sorting Genetic Algorithith (NSGA-II)
[31] is adopted in order to find the optimal solution.

The results are reped inTable3.2, from which we can see that our methods perform better with
exception of the case of mask B on dataset 2 whei@uBferforms our method by 0.24 dB but provides
a similar correlation coefficient (0.91). Regarding the otases, the improvement isttveen 3.69 dB
(mask B on dataset 1) and 11.49 dB for the case of mask C on dataset 1. Such improvements can be
justified by the fact that methods based on compressive sensing approach are based on a linear
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reconstruction paradigm contrary to the AE whitéolves a nonlinear transformation. Moreover, in the
method developed in [11], a dictionary is created by-gaithpling over all the image and with a limited
number of atoms in order to reduce the processing complexity. By contrast in our methods;tvtleesele
training patterns from pixels of the surrounding region of the masks, which are potentially more
correlated to those obscured. Finally, it can be seen that usinghaesteti reconstruction improves
significantly the result compared to using ptkesed information for reconstruction, since it opportunely
exploits the spatial correlation between neighboring pixels.

Table3.2: (a) PSNR values and (b) correlation coefficients obtained by the different methods in the
first simulation experiments.

(@)
Method Dataset 1 Dataset 2
Mask A Mask B Mask C Mask A Mask B
OMP [11] 23.96 20.60 31.97 26.356 30.43
BP [11] 22.22 24.74 30.67 26.45 31.63
GA [11] 23.78 23.15 32.01 26.72 31.28
Pixel-AE 29.71 27.73 39.42 28.62 31.25
Patch-AE 32.95 28.47 43,94 30.77 32.23
(b)
Method Dataset 1 Dataset 2
Mask A Mask B Mask C Mask A Mask B
OMP [11] 0.81 0.94 0.89 0.77 0.88
BP [11] 0.86 0.96 0.90 0.76 0.91
GA [11] 0.84 0.95 0.90 0.78 0.90
Pixel-AE 0.93 0.98 0.98 0.90 0.91
Patch-AE 0.97 0.98 0.99 0.91 0.93

Finally, we analyzed the sensitivity of the patmsed strategy to the size of the patch, by
increasigy it from 3x3 to 7x7. The resultghich are provided iTable 3.3 suggest that the accuracy
decreases as the size increases. This can be explained by the fact that an increasing size of the patc
involves a quadratic increasetite dimensionality of both the input and output spaces and thus a potential
risk of curse of dimensionality. Moreover, increasing the size leads to a decrease of correlation between
the central pixel and the neighboring ones adding noise in the recoiostircicess.

Table3.3: Analysis of the sensitivity to the patch size in termB8NR for the first simulation
experiments. 1x1 size refers to the pikaked strategy.

Patch size Dataset 1 Dataset 2
Mask A Mask B Mask C Mask A Mask B
1x1 29.71 27.23 39.71 28.62 31.25
3x3 32.95 28.47 43.94 30.77 32.23
5x5 30.74 25.57 43.53 29.86 31.1
X7 23.61 16.83 32.12 27.93 31.25
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2) Contamination with Different Sizethe second simulation experiments consist of increasingzbe s

of the obscured aa.Figure 3-9 illustrates the three different masks adopted to simulate the different
sizes of the clouds. Mask 1 is fixed with the same size as the masks A adopted in the previous
experiments, i.e., it covers about 2000 pixels. Masks 2 and 3 are built by nugifiig previous size,

by 3 and by 6, and the resulting masks cover around 6000 and 12000 pixels, respectively. Also in these
experiments, we selected pixels for training from the surrounding regions of the obscured areas. The size
of the training is choseto be around double the size of the corresponding mask. Similarly to previous
experiment, mask 1 is used to build the pretrained autoené@deA fine tuning is applied by using

AE;: on the two other cases (mask 2 and mask 3) in order to build theissgonding model8E, and

AEs, respectivelyTable3.4 reports for the two datasets the results achieved by the two reconstruction
techniques and by varying the amount of missing data.

() (b)

Figure3-9: Masks adopted to simulate the different sizes of contamination

From a quantitative viewpointn terms of PSNR and correlation coefficient, we have similar
results as in the previous experiments. The two developed methipesform by more than 3 dB for all
cases compared to the other methods. Also, we can notice that by increasing the size of the contaminatec
region, the PSNR increases very slightly which shows that the developed strategy maintains the
reconstruction qudly of the cloudy regions almost independently from the size of the clouds. The
correlation coefficients are much higher in most of the cases (around 0.95 on an average).

42







































































































































