

International Doctorate School in

Information and Communication Technologies

Department of Information Engineering and Computer Science

University of Trento

DEEP NEURAL NETWORK MODELS

FOR IMAGE CLASSIFICATION AND REGRESSION

Salim MALEK

Advisor: Prof. Farid Melgani, University of Trento

THANKS

All my gratitude and thanks to God, who guided me to this way of science, and gave me the courage and

the will to get to this level.

I would like to express my gratitude to my supervisor Dr. Farid Melgani for his academic and moral

supports, and his valuable advices.

I thank also Dr. Yakoub Bazi and Dr. Mohamed Lamine Mekhalfi for their encouragement and support.

Finally, I want to thank anyone who helped the cause of this work in any possible way, in particular my

dear family.

Abstract

Deep learning, a branch of machine learning, has been gaining ground in many research fields as well as

practical applications. Such ongoing boom can be traced back mainly to the availability and the

affordability of potential processing facilities, which were not widely accessible than just a decade ago

for instance. Although it has demonstrated cutting-edge performance widely in computer vision, and

particularly in object recognition and detection, deep learning is yet to find its way into other research

areas. Furthermore, the performance of deep learning models has a strong dependency on the way in

which these latter are designed/tailored to the problem at hand. This, thereby, raises not only precision

concerns but also processing overheads. The success and applicability of a deep learning system relies

jointly on both components. In this dissertation, we present innovative deep learning schemes, with

application to interesting though less-addressed topics.

In this respect, the first covered topic is rough scene description for visually impaired individuals, whose

idea is to list the objects that likely exist in an image that is grabbed by a visually impaired person, To

this end, we proceed by extracting several features from the respective query image in order to capture

the textural as well as the chromatic cues therein. Further, in order to improve the representativeness of

the extracted features, we reinforce them with a feature learning stage by means of an autoencoder model.

This latter is topped with a logistic regression layer in order to detect the presence of objects if any.

In a second topic, we suggest to exploit the same model, i.e., autoencoder in the context of cloud removal

in remote sensing images. Briefly, the model is learned on a cloud-free image pertaining to a certain

geographical area, and applied afterwards on another cloud-contaminated image, acquired at a different

time instant, of the same area. Two reconstruction strategies are proposed, namely pixel-based and patch-

based reconstructions.

From the earlier two topics, we quantitatively demonstrate that autoencoders can play a pivotal role in

terms of both (i) feature learning and (ii) reconstruction and mapping of sequential data.

Convolutional Neural Network (CNN) is arguably the most utilized model by the computer vision

community, which is reasonable thanks to its remarkable performance in object and scene recognition,

with respect to traditional hand-crafted features. Nevertheless, it is evident that CNN naturally is availed

in its two-dimensional version. This raises questions on its applicability to unidimensional data. Thus, a

third contribution of this thesis is devoted to the design of a unidimensional architecture of the CNN,

which is applied to spectroscopic data. In other terms, CNN is tailored for feature extraction from one-

dimensional chemometric data, whilst the extracted features are fed into advanced regression methods to

estimate underlying chemical component concentrations. Experimental findings suggest that, similarly

to 2D CNNs, unidimensional CNNs are also prone to impose themselves with respect to traditional

methods.

The last contribution of this dissertation is to develop new method to estimate the connection weights of

the CNNs. It is based on training an SVM for each kernel of the CNN. Such method has the advantage

of being fast and adequate for applications that characterized by small datasets.

Contents

Chapter 1 Introduction and Thesis Overview ..1

1.1. Deep Neural Networks ...2

1.2. Applications and Open Issues ...4

1.3. Thesis Objectives, Solutions and Organization ..5

1.4. References ..7

Chapter 2 Real-Time Indoor Scene Description for the Visually Impaired Using AutoEncoder 10

2.1. Introduction ... 11

2.2. Coarse Description ... 13

2.3. Tools and Concepts .. 14

2.3.1 Histogram of Oriented Gradient .. 15

2.3.2 Bag of Visual Words ... 15

2.3.3 Local Binary Pattern (LBP) ... 15

2.3.4 AutoEncoder Networks (AE) .. 16

2.4. Feature Fusion ... 17

2.5. Experimental Results ... 19

2.5.1 Description of the Wearable System ... 19

2.5.2 Dataset Description ... 19

2.5.3 Evaluation Metrics and Parameter Setting .. 20

2.5.4 Results ... 21

2.6. Conclusions .. 25

2.7. References ... 26

Chapter 3 Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder 28

3.1. Introduction ... 29

3.2. Methodology ... 30

3.2.1 Pixel-based Reconstruction with AutoEncoder ... 31

3.2.2 Patch-based reconstruction strategy .. 33

3.2.3 Estimation of the size of the hidden layer ... 34

3.2.4 Multi-objective Optimization .. 36

3.3. Experimental Validation .. 37

3.3.1 Dataset description.. 37

3.3.2 Results ... 39

3.3.3 Results on real clouds .. 44

3.4. Conclusion ... 47

3.5. References ... 48

Chapter 4 1D-Convolutional Neural Networks for Spectroscopic Signal Regression ... 50

4.1. Introduction ... 51

4.2. 1D-CNNs... 52

4.2.1 Forward propagation ... 53

4.2.2 Back propagation ... 54

4.2.3 Subsampling layers .. 55

4.3. PSO-1DCNN .. 55

4.4. Prediction .. 57

4.4.1 GPR .. 57

4.4.2 SVR ... 59

4.5. Experimental results .. 60

4.5.1 Dataset description and performance evaluation ... 60

4.5.2 Parameter setting .. 63

4.5.3 Results ... 64

4.6. Conclusion ... 68

4.7. Appendix: List of Mathematical Symbols .. 69

4.8. References ... 70

Chapter 5 Convolutional SVM .. 73

5.1. Introduction ... 74

5.2. Proposed Methodology ... 75

5.2.1 Monolabel classification .. 76

5.2.2 Multilabel classification ... 77

5.3. Experimental results .. 78

5.3.1 Dataset description and performance evaluation ... 78

5.3.2 Parameter setting .. 80

5.3.3 Results ... 81

5.4. Conclusion ... 84

5.5. References ... 84

Chapter 6 Conclusion ... 86

List of Figures

Figure 1-1: Example of a Restricted Boltzman Machine network ...3

Figure 1-2: Example of an AutoEncoder network ..3

Figure 1-3: Example of a simple CNN architecture ...3

Figure 2-1: Binary descriptor construction for a training image. .. 14

Figure 2-2: Pipeline of the feature learning-based image multilabeling scheme. ... 15

Figure 2-3: One layer architecture of an AE. .. 17

Figure 2-4: Diagram of the first fusion strategy (Fusion 1) based on a low-level feature aggregation. 18

Figure 2-5: Diagram of the second fusion strategy (Fusion 2) based on a AE induced-level aggregation. 18

Figure 2-6: Diagram of the third fusion strategy (Fusion 3) based on a decision-level aggregation. 18

Figure 2-7: View of the wearable prototype with its main components. ... 19

Figure 2-8: Impact of the threshold value on the classification rates using the three feature types. Upper

row for Dataset 1, bottom row for Dataset 2. .. 21

Figure 2-9: Example of results obtained by the proposed multilabeling fusion approach for both datasets.

Upper row for Dataset 1, and lower one for Dataset 2. ... 22

Figure 3-1: Proposed pixel-based AutoEncoding reconstruction method. .. 32

Figure 3-2: Proposed patch-based AutoEncoding reconstruction method. ... 33

Figure 3-3: Illustration of the fusion of the patch-based results related to a given pixel of interest

 (in black) for a 3×3 neighborhood system. In this case, 𝛼1 = 12 and all other weights

 𝛼2 = ⋯ = 𝛼9 = 116. .. 34

Figure 3-4: Illustration of a front of nondominated solutions. .. 37

Figure 3-5: Color composite of first dataset acquired by FORMOSAT-2 over the Arcachon basin on

(a) 24th June and (b) 16th June, 2009. .. 38

Figure 3-6: Color composite of second dataset acquired by SPOT-5 over the Réunion island on

(a) May 2nd and (b) June 18th, 2008. .. 38

Figure 3-7: Masks adopted to simulate the different ground cover contaminations.. 39

Figure 3-8: Pareto fronts obtained at convergence for the first dataset and mask A simulation by

(a) pixel-based autoencoding reconstruction, and (b) patch-based autoencoding reconstruction. 40

Figure 3-9: Masks adopted to simulate the different sizes of contamination. ... 42

Figure 3-10: Examples of qualitative results for Dataset 1. (a) Original image. Image reconstructed (after

contamination with mask C) by the (b) OMP and (c) patch-based reconstruction methods. 44

Figure 3-11: Examples of qualitative results for Dataset 2. (a) Original image. Image reconstructed (after

contamination with mask 2) by the (b) OMP and (c) patch-based reconstruction methods. 44

Figure 3-12: Color composite of the third dataset acquired by Sentinel-2 over Washington on

(a) September 14 th, 2015 (source image); (b) August 5 th, 2015 (target image 1); and

(c) July 20th, 2016 (target image 2). .. 45

Figure 3-13: Masked clouds and shadows of the third dataset. ... 45

Figure 3-14: Reconstructed images obtained for dataset 3. (a) second image (August 5th, 2015), (b)

third image (July 20th, 2016). .. 46

Figure 3-15: Zooms of reconstruction results obtained for third image (July 20th, 2016) from source image

(September 14th, 2015) of dataset 3, over (a)-(b) urban and (d)-(e) green areas. For comparison,

results generated by the OMP method are provided in (c) and (f). ... 46

Figure 3-16: Results achieved for dataset 4. (a) first image (July 31st, 2016), (b) second image (March 28th,

2016), (c) reconstruction of second image. ... 47

Figure 4-1: General scheme of the proposed method for chemometric data analysis. .. 52

Figure 4-2: 1D-CNN general architecture. .. 53

Figure 4-3: Architecture of the PSO-1DCNN. .. 56

Figure 4-4: Near-infrared spectra of orange juice training samples. ... 61

Figure 4-5: Mid-infrared spectra of wine training samples. .. 61

Figure 4-6: Near-infrared spectra of Tecator training samples. .. 62

Figure 4-7: Effect of number of layers on estimation error. .. 64

Figure 4-8: Effect of number of feature signals on estimation error. .. 64

Figure 4-9: Sample-by-sample comparison between estimated and real output values for the test set of the

Orange Juice dataset. ... 67

Figure 4-10: Sample-by-sample comparison between estimated and real output values for the test set of

the Wine dataset. ... 67

Figure 4-11: Sample-by-sample comparison between estimated and real output values for the test set of the

Tecator dataset .. 68

Figure 5-1: Estimating the weights of the convolution layer with SVM for detecting the presence of two

objects in a given input image. .. 75

Figure 5-2: Training set generation for the first convolution layer. .. 76

Figure 5-3: Supervised feature map generation. .. 77

Figure 5-4: Example of fusion of output maps of two CNNs .. 78

Figure 5-6: Example of images of the first dataset .. 79

Figure 5-7: Example of images of the second dataset ... 79

Figure 5-8: Example of images of the third dataset ... 79

Figure 5-9: Example of classification results with CSVM and GoogLeNet on Dataset1. In red are

highlighted false positives. .. 82

Figure 5-10: Example of classification results with CSVM and ResNet on Dataset2. In red are highlighted

false positives. ... 82

Figure 5-11: Example of classification results with CSVM and VDCNs on Dataset3. In red are highlighted

false positives. ... 82

List of Tables

Table 2-1: Obtained recognition results using single features. .. 21

Table 2-2: Classification outcomes of all the fusion schemes. .. 22

Table 2-3: Comparison of classification rates on Dataset 1. ... 23

Table 2-4: Comparison of classification rates on Dataset 2. ... 23

Table 2-5: Comparison of classification rates on Dataset 1 under different resolutions. 24

Table 2-6: Comparison of classification rates on Dataset 2 under different resolutions. 24

Table 2-7: Comparison of average runtime per image on Dataset 1 under different resolutions. 24

Table 2-8: Comparison of average runtime per image on Dataset 2 under different resolutions. 25

Table 3.1: Best size of hidden layer found for the different cases... 40

Table 3.2: (a) PSNR values and (b) correlation coefficients obtained by the different methods in the first

simulation experiments. ... 41

Table 3.3: Analysis of the sensitivity to the patch size in terms of PSNR for the first simulation experiments.

1×1 size refers to the pixel-based strategy. .. 41

Table 3.4: (a) PSNR values and (b) correlation coefficients obtained by the different methods in the second

simulation experiments. ... 43

Table 3.5: Analysis of the sensitivity to the patch size in terms of PSNR for the second simulation

experiments. 1×1 size refers to the pixel-based strategy. ... 44

Table 4.1: Best parameter values of the 1D-CNN for each dataset. .. 63

Table 4.2: Best parameter values of the PSO-1DCNN for each dataset.. 63

Table 4.3: Results for the Orange Juice dataset. .. 65

Table 4.4: Results for the Wine dataset. .. 65

Table 4.5: Results for the Tecator dataset. .. 65

Table 4.6: Gain in accuracy for the 3 datasets. .. 65

Table 5.1: Best parameter values of the CSVM for each dataset. ... 80

Table 5.2: Comparison of classification rates on Dataset 1. .. 81

Table 5.3: Comparison of classification rates on Dataset 2. .. 81

Table 5.4: Comparison of classification rates on Dataset 3. .. 81

Table 5.5: Training time of the proposed CSVM. ... 83

Table 5.6: Comparison of average runtime per image on Dataset 1.. 83

Table 5.7: Comparison of average runtime per image on Dataset 2.. 83

Table 5.8: Comparison of average runtime per image on Dataset 3.. 84

1

Chapter 1

Introduction and Thesis Overview

 Chapter 1: Introduction and Thesis Overview

2

1.1. Deep Neural Networks

Machine learning is a study field of artificial intelligence (AI) that enables systems to automatically

learn and improve from experience without or with little explicit human interference. It focuses on the

development of computer programs that can acquire data and build models in order to make better

decisions according to prior observations or data records.

According to the adopted learning way, machine learning methods are usually categorized as being

either supervised or unsupervised. In supervised learning, a model at hand is learned on a certain data

along with its respective labels. Thus, once a model is learned on known data, it can be further fed with

another set of data whose labels are unknown. In unsupervised learning, however, prior labels are

inaccessible or accessible but unimportant for the application being addressed. This latter, thus, consists

in studying how systems can infer functions to define hidden structures from unlabeled data. Semi-

supervised learning is another direction whose aim is to exploit a small-sized label data and a large-sized

unlabeled data.

A close look at the recent literature would tell that a big focus is being oriented towards deep

learning. By contrast to traditional Neural Networks, various layers of neurons in deep learning perform

a hierarchical learning of the data representation via non-linear transformations. In other words, the data

is passed cumulatively across a long chain of layers (thus, the description deep), where each layer can be

fully or partially connected to the preceding one.

Although deep architectures have long existed, the term “deep learning” was first introduced in

2006 by Hinton et al. [1], where they showed that a multilayer feedforward neural network can be more

efficient by applying pretraining of one layer at a time and considering each layer as an unsupervised

Restricted Boltzmann Machine (RBM), by using supervised back propagation for finetuning. One year

later, Bengio et al. [2] developed the Stacked AutoEncoder (SAE), which is a deep architecture based on

the concatenation of many AutoEncoders (AEs). Each AE has three layers, one visible layer (input), one

hidden layer and one reconstruction layer with similar size as the input. Another famous deep architecture

is the Convolutional Neural Network (CNN) [3]. CNNs are generally composed of many layers, where

each layer has two parts, one for convolution (filtering) and one for pooling (subsampling). The chain of

convolutional/pooling layers is normally concluded by a regression layer (e.g., logistic regression) in

order to discern the class label of the image/object presented as input to the network. CNNs are shaped

in a 2D structure, which offers the advantage of directly processing the raw images. This can be achieved

with local connections and tied weights followed by subsampling. Yet, it is evident that deep models in

general, and CNNs in particular, undergo a heavy processing, which demands highly powerful

computation machines.

Figure 1-1, Figure 1-2 and Figure 1-3 show examples of architectures of a RBM, an AE and a

CNN.

 Chapter 1: Introduction and Thesis Overview

3

Figure 1-1: Example of a Restricted Boltzman Machine network.

Figure 1-2: Example of an AutoEncoder network.

Figure 1-3: Example of a simple CNN architecture.

h1 h2 h3 h4

v1 v2 v3 v4 v5

h ∈ {0,1}4

v ∈ {0,1}5

W ∈ ℝ4x5

Visible layer

Hidden layer

h1

h2

h3

x1

x2

x3

x4

Hidden layer

Input layer Reconstruction layer

+1

+1

C1

Input 32x32
F1: feature map

4@28x28 F2: f. map

4@14x14
F3: f. map

8@10x10
F4: f. map

8@5x5

5x5 convolution

S1
2x2 subsampling

C2
5x5 convolution

S2
2x2 subsampling

Feature extraction

Neural
Network

Classification

 Chapter 1: Introduction and Thesis Overview

4

1.2. Applications and Open Issues

Deep learning techniques have been suggested to solve problems related to diverse research fields.

For instance, in robotics, CNN was used in order to recognize the category and estimate the pose of

garments hanging from a single point [4] and for real-time human detection with a feature-based layered

pre-filter [5]. On the other hand, SAE was used for dimension reduction and combined with particle filter

for real-time humanoid robot imitation [6]. In the remote sensing field, Huang et al. [7] proposed a new

pan-sharpening method based on SAEs to address the remote sensing image fusion problem. Tang et al.

[8] propose a method for ship detection based on a Stacked Denoising Autoencoder (SDA) for

hierarchical ship feature extraction in the wavelet domain and extreme learning machine (ELM) for

feature fusion and classification. Chen et al. [9] combine SAEs with principal component analysis (PCA)

to learn deep features of hyperspectral images, they propose to extract spatial dominated information for

the classification and use the PCA to reduce the large input dimension. A logistic regression is used as

output layer for the classification. Fang et al. [10] use CNNs for scene classification, CaffeNet [11] is

used as pretrained model in the classification architecture and finetuning is applied to the pretrained

model in order to tailor it to scene classification. Regarding problems of detection and recognition, deep

learning was widely used to solve problems of different nature such as speech recognition [12]-[14], face

recognition [15]-[18], traffic signs [19]-[21], pedestrian detection and recognition [22]-[24] and detection

of various objects [25]-[28]. In the biomedical field, RBM and SAEs were used to solve problems of

abnormalities detection and classification of Electrocardiogram signals (ECG) [29]-[32],

Electroencephalogram signals (EEG) [33]-[35], Electrooculogram signals (EOG) [36]-[37] and

Electromyogram signals (EMG) [38].

Accordingly, from the state-of-the-art reported so far, it is possible to make out that deep learning

has established a solid ground in many applications, but in fact still scarcely explored in others. This

could be traced back to the fact that deep learning methods are all based on a neural network architecture,

and the major objective is to extract high level features in order to apply them for classification problems.

To the best of our knowledge so far, all the contributions focus on the single object (class) recognition.

That is to say, all the approaches focus on the recognition of one specific category of objects. The problem

of multilabeling classification was addressed before in machine learning and can be grouped in two

categories. The first category, known as a binary relevance (BR) approach, is based on reducing the

initial multilabel classification problem into multiple independent binary classification tasks and each

classifier is trained on one class label [39]-[42]. However, such methods are characterized by the high

computational costs and also the incapability to identify the correlation between the different classes. By

contrast, in for the second category, methods revise and adapt the output formula of the classifier for a

multilabel learning problem without the need to transform it into single-label sub-problems. For instance,

AdaBoost.MH [43] is adapted from AdaBoost by minimizing Hamming loss and Support Vector

Machine (SVM) is revised into Rank-SVM [44] by defining a new approach based on ranking method

combined with the predictor.

 Chapter 1: Introduction and Thesis Overview

5

A second argument constituting this dissertation relates to remote sensing, where only several

recent works deal with the problem of clouds based on a deep learning approach [45]-[46]. For instance,

all focus on the problem of cloud detection, whilst none, to the best of our awareness, tried to solve the

problem of removing clouds and reconstructing the missing area (the area obscured by clouds). Such

contribution can bring benefits for many applications, especially with those which deal with

multitemporal images.

Another important field of research is chemometrics analyses from spectroscopic data. Usually

researchers use reference methods of regression such as partial least squares regression (PLS regression),

support vector machines for regression (SVR) and Gaussian process regression (GPR) in order to

estimate the concentration of chemical components of interest in a given product. By introducing deep

learning, chemometrics can benefit from the advantages that deep methods can provide, especially the

capacity of extracting highly discriminative features.

The last concern of this dissertation relates to the manner that deep methods, especially CNNs,

estimate the parameters of the network. As a matter of fact, they are all based on the back propagation of

errors, which requires big training data and numerous iterations to converge to a satisfactory solution.

Such situation involves the need for sophisticated hardware and long processing time. Thus, it would be

of particular interest to find another solution to train the network in order to overcome such inconvenient

and even handle small training datasets.

1.3. Thesis Objectives, Solutions and Organization

As mentioned earlier, deep learning was used in many research fields and applications and brought

important improvements and contributions. However, in some application issues, deep learning methods

cannot necessarily be directly applied as they may need some modification and improvement to be suited

to the considered problems. To this end, we propose to use deep methods to solve problems related to (i)

multilabel classification for scene description for the visually impaired (VI) people, (ii) reconstructing

areas obscured by clouds in multispectral images, and (iii) chemometric analysis from spectroscopic data.

Regarding the first problem, the overwhelming majority of existing systems and prototypes pay

attention to assisted navigation and obstacle avoidance whilst neglecting the evidently important need of

object recognition. While only several solutions have been presented for assisted object recognition for

VI individuals, they mainly remain focused on detecting a single object at once. To deal with this

problem, we propose a new real-time method to describe the surrounding environment for a blind person

based on a coarse image description strategy. i.e. provide the list of objects most likely existing in the

scene regardless of their location. This method is based on extracting low-level features from the query

image that is acquired by the VI user via an optical camera. The feature selected are: Local Binary Pattern

(LBP), Histogram of Oriented Gradient (HOG) and Bag of Words (BoW). Those features are fed to an

AutoEncoder Neural Network (AE) in order to extract more discriminative features (high-level features).

 Chapter 1: Introduction and Thesis Overview

6

Once generated, the new features are fed into a logistic regression layer using a multilabeling strategy as

to draw the final outcomes highlighting the objects present in the image of interest.

For the problem of cloud removal and consequent reconstruction of obscured areas in multispectral

images, we propose to exploit the strength of the AE networks in the reconstruction phase to restore the

missing data. Suppose we have two satellite images of the same area, taken at two different times. Let

the first be the cloud-free image (reference image) and the second be the cloud-contaminated image

(target image), the AE learning will be slightly modified in such a way that, rather than supposing that

the output layer (the reconstruction layer) is equal to the input layer, we consider here that the output is

constituted of pixels from the target image, and their corresponding pixels on the reference image are

used as input. In other words, we try to find the essential mapping function between the reference and

the target images using the AE.

Concerning the question of chemometrics analyses from spectroscopic data, we propose to profit

from the advantages of CNNs in extracting high discriminative features from images to apply them on

spectroscopic data. Since the concerning data is of one-dimensional nature, the architecture of the CNN

is modified and adapted to fulfill spectroscopic data requirements. In particular, filtering and pooling

operations as well as equations for training are revisited. Furthermore, we propose to use the particle

swarm optimization (PSO) method to train the 1D-CNN.

As per the last concern of this thesis, we propose a new method to calculate the weights of the CNN

kernels. The method consists in training an SVM for each kernel in the CNN. The advantage of this new

way of training is the possibility to use small training dataset while retaining a satisfactory performance

of the network. Furthermore, the training is applied in one pass i.e., just one iteration, which renders it

so fast compared to conventional CNNs.

The remainder of this dissertation is outlined as follows. Chapter 2 describes the multilabeling

method using the AEs to describe the indoor environment for VI persons. In chapter 3, we give details

about the proposed method to reconstruct a missing area covered by clouds in multispectral images using

AEs. Chapter 4 details the developed 1D-CNN for chemometric data analysis. In Chapter 5, we present

the developed SVM_CNN for multilabel classification. Finally, Chapter 6 concludes the thesis and gives

suggestions for possible future improvements.

Finally, we would like to mention that, although deep learning constitutes a denominator of all the

addressed topics in this thesis, the applications remain conceptually distinct. Thus, the following chapters

were conducted independently. That is, each chapter is self-contained, which eases access to the reader

and removes the need of keeping track of the chapters in a sequential order. Nevertheless, we suppose

that the reader is familiar with typical concepts related to computer vision and machine learning.

Otherwise, the reader is recommended to consult the references provided in each chapter.

 Chapter 1: Introduction and Thesis Overview

7

1.4. References

[1] G. E. Hinton, S. Osindero and Y. W. Teh, "A Fast Learning Algorithm for Deep Belief Nets," in Neural

Computation, vol. 18, no. 7, pp. 1527-1554, July 2006.

[2] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep networks,” in

Proc. Neural Inf. Process. Syst., Cambridge, MA, USA, , pp. 153–160, 2007.

[3] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition,"

in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov 1998.

[4] I. Mariolis, G. Peleka, A. Kargakos and S. Malassiotis, "Pose and category recognition of highly deformable

objects using deep learning," 2015 International Conference on Advanced Robotics (ICAR), Istanbul, 2015,

pp. 655-662.

[5] E. Martinson and V. Yalla, "Real-time human detection for robots using CNN with a feature-based layered

pre-filter," 2016 25th IEEE International Symposium on Robot and Human Interactive Communication

(RO-MAN), New York, NY, 2016, pp. 1120-1125.

[6] Y. Kondo and Y. Takahashi, "Real-time whole body imitation by humanoic robot based on particle filter

and dimension reduction by autoencoder," 2017 Joint 17th World Congress of International Fuzzy Systems

Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS),

Otsu, 2017, pp. 1-6.

[7] W. Huang, L. Xiao, Z. Wei, H. Liu and S. Tang, "A New Pan-Sharpening Method With Deep Neural

Networks," in IEEE Geoscience and Remote Sensing Letters, vol. 12, no. 5, pp. 1037-1041, May 2015.

[8] J. Tang, C. Deng, G. B. Huang and B. Zhao, "Compressed-Domain Ship Detection on Spaceborne Optical

Image Using Deep Neural Network and Extreme Learning Machine," in IEEE Transactions on Geoscience

and Remote Sensing, vol. 53, no. 3, pp. 1174-1185, March 2015.

[9] Y. Chen, Z. Lin, X. Zhao, G. Wang and Y. Gu, "Deep Learning-Based Classification of Hyperspectral

Data," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no.

6, pp. 2094-2107, June 2014.

[10] Z. Fang, W. Li, J. Zou and Q. Du, "Using CNN-based high-level features for remote sensing scene

classification," 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing,

2016, pp. 2610-2613.

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, and R. Girshick, ''Caffe: Convolutional architecture

for fast feature embedding," arXiv preprint arXiv:1408.5093,2014.

[12] M. Cai, Y. Shi and J. Liu, "Deep maxout neural networks for speech recognition," 2013 IEEE Workshop on

Automatic Speech Recognition and Understanding, Olomouc, 2013, pp. 291-296.

[13] S. Kundu, G. Mantena, Y. Qian, T. Tan, M. Delcroix and K. C. Sim, "Joint acoustic factor learning for

robust deep neural network based automatic speech recognition," 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016, pp. 5025-5029.

[14] P. Harár, R. Burget and M. K. Dutta, "Speech emotion recognition with deep learning," 2017 4th

International Conference on Signal Processing and Integrated Networks (SPIN), Noida, 2017, pp. 137-140.

[15] D. Menotti et al., "Deep Representations for Iris, Face, and Fingerprint Spoofing Detection," in IEEE

Transactions on Information Forensics and Security, vol. 10, no. 4, pp. 864-879, April 2015.

[16] S. Gao, Y. Zhang, K. Jia, J. Lu and Y. Zhang, "Single Sample Face Recognition via Learning Deep

Supervised Autoencoders," in IEEE Transactions on Information Forensics and Security, vol. 10, no. 10,

pp. 2108-2118, Oct. 2015.

[17] T. Y. Fan, Z. C. Mu and R. Y. Yang, "Multi-modality recognition of human face and ear based on deep

learning," 2017 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), Ningbo,

China, 2017, pp. 38-42.

 Chapter 1: Introduction and Thesis Overview

8

[18] X. Peng, N. Ratha and S. Pankanti, "Learning face recognition from limited training data using deep neural

networks," 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, 2016, pp. 1442-

1447.

[19] C. Li and C. Yang, "The research on traffic sign recognition based on deep learning," 2016 16th

International Symposium on Communications and Information Technologies (ISCIT), Qingdao, 2016, pp.

156-161.

[20] R. Q. Qian, Y. Yue, F. Coenen and B. L. Zhang, "Traffic sign recognition using visual attribute learning

and convolutional neural network," 2016 International Conference on Machine Learning and Cybernetics

(ICMLC), Jeju, 2016, pp. 386-391.

[21] F. Lin, Y. Lai, L. Lin and Y. Yuan, "A traffic sign recognition method based on deep visual feature," 2016

Progress in Electromagnetic Research Symposium (PIERS), Shanghai, 2016, pp. 2247-2250.

[22] B. Peralta, L. Parra and L. Caro, "Evaluation of stacked autoencoders for pedestrian detection," 2016 35th

International Conference of the Chilean Computer Science Society (SCCC), Valparaiso, 2016, pp. 1-7.

[23] D. O. Pop, A. Rogozan, F. Nashashibi and A. Bensrhair, "Incremental Cross-Modality deep learning for

pedestrian recognition," 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, 2017, pp. 523-

528.

[24] A. Dominguez-Sanchez, M. Cazorla and S. Orts-Escolano, "Pedestrian Movement Direction Recognition

Using Convolutional Neural Networks," in IEEE Transactions on Intelligent Transportation Systems, vol.

PP, no. 99, pp. 1-9, 2017.

[25] X. Wang, M. Yang, S. Zhu and Y. Lin, "Regionlets for Generic Object Detection," in IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 37, no. 10, pp. 2071-2084, Oct. 1 2015.

[26] F. Deng, X. Zhu and J. Ren, "Object detection on panoramic images based on deep learning," 2017 3rd

International Conference on Control, Automation and Robotics (ICCAR), Nagoya, 2017, pp. 375-380.

[27] B. Tian, L. Li, Y. Qu and L. Yan, "Video Object Detection for Tractability with Deep Learning

Method," 2017 Fifth International Conference on Advanced Cloud and Big Data (CBD), Shanghai, 2017,

pp. 397-401.

[28] F. A. Chang, C. C. Tsai, C. K. Tseng and J. I. Guo, "Embedded multiple object detection based on deep

learning technique for advanced driver assistance system," 2017 IEEE 60th International Midwest

Symposium on Circuits and Systems (MWSCAS), Boston, MA, 2017, pp. 172-175.

[29] M. A. Rahhal, Y. Bazi, H. AlHichri, N. Alajlan, F. Melgani and R. R Yager, “Deep learning approach for

active classification of electrocardiogram signals,” Information Sciences 345, 340–354, 2016.

[30] P. R. Muduli, R. R. Gunukula and A. Mukherjee, "A deep learning approach to fetal-ECG signal

reconstruction," 2016 Twenty Second National Conference on Communication (NCC), Guwahati, 2016, pp.

1-6.

[31] Z. Wu et al., "A Novel Features Learning Method for ECG Arrhythmias Using Deep Belief Networks," 2016

6th International Conference on Digital Home (ICDH), Guangzhou, 2016, pp. 192-196.

[32] Lin Zhou, Yan Yan, Xingbin Qin, Chan Yuan, Dashun Que and Lei Wang, "Deep learning-based

classification of massive electrocardiography data," 2016 IEEE Advanced Information Management,

Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, 2016, pp. 780-785.

[33] Z. Yin and J. Zhang, "Recognition of Cognitive Task Load levels using single channel EEG and Stacked

Denoising Autoencoder," 2016 35th Chinese Control Conference (CCC), Chengdu, 2016, pp. 3907-3912.

[34] L. Fraiwan and K. Lweesy, "Neonatal sleep state identification using deep learning autoencoders," 2017

IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA), Penang, Malaysia,

2017, pp. 228-231.

[35] H. Xu and K. N. Plataniotis, "Affective states classification using EEG and semi-supervised deep learning

approaches," 2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP), Montreal,

QC, 2016, pp. 1-6.

 Chapter 1: Introduction and Thesis Overview

9

[36] L. H. Du, W. Liu, W. L. Zheng and B. L. Lu, "Detecting driving fatigue with multimodal deep

learning," 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, 2017,

pp. 74-77.

[37] Bin Xia et al., "Electrooculogram based sleep stage classification using deep belief network," 2015

International Joint Conference on Neural Networks (IJCNN), Killarney, 2015, pp. 1-5.

[38] A. Ben Said, A. Mohamed, T. Elfouly, K. Harras and Z. J. Wang, "Multimodal Deep Learning Approach

for Joint EEG-EMG Data Compression and Classification," 2017 IEEE Wireless Communications and

Networking Conference (WCNC), San Francisco, CA, 2017, pp. 1-6.

[39] T. Grigorios, and K. Ioannis, "Multi-label classification: an overview," International Journal of Data

Warehousing & Mining. Vol. 3, no. 3, 2007, pp. 1–13.

[40] Z. Min-Ling, Z. Zhi-Hua, "A review on multi-label learning algorithms", IEEE Trans. Knowl. Data Eng.,

vol. 26, no. 8, pp. 1819-1837, Aug. 2014

[41] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier Chains for Multi-label Classification,” Machine

Learning Journal. Springer. Vol. 85, no. 3, 2011.

[42] W. W. Cheng, E. Hullermeier, "Combining instance-based learning and logistic regression for multilabel

classification", Mach. Learn., vol. 76, no. 2/3, pp. 211-225, Sep. 2009.

[43] R. E. Schapire, Y. Singer, "Improved boosting algorithms using confidence-rated predictions", Mach.

Learn., vol. 37, no. 3, pp. 297-336, Dec. 1999.

[44] A. Elisseeff, J. Weston, "A kernel method for multi-labelled classification", Adv. Neural Inf. Process. Syst.

14, vol. 14, pp. 681-687, 2002.

[45] F. Xie, M. Shi, Z. Shi, J. Yin and D. Zhao, "Multilevel Cloud Detection in Remote Sensing Images Based

on Deep Learning," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

vol. 10, no. 8, pp. 3631-3640, Aug. 2017.

[46] Z. Shao, J. Deng, L. Wang, Y. Fan, N. S. Sumari, and Q. Cheng, "Fuzzy AutoEncode Based Cloud Detection

for Remote Sensing Imagery," remote sensing, vol. 9, Mar. 2017.

10

Chapter 2

Real-Time Indoor Scene Description for the

Visually Impaired Using AutoEncoder

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

11

2.1. Introduction

Strolling around, adjusting the walking pace and bodily balance, perceiving nearby or remote

objects and estimating their depth, are all effortless acts for a well-sighted person. That is, however,

hardly doable for other portions in society, such as individuals with certain cases of handicap, or visual

impairment, which may require different forms of substantial training, and in many situations external

physical and/or verbal intervention as to ease their mobility. In dealing with that, numerous attempts at

different governmental, institutional, as well as societal spheres have been taking place.

One assistive line, ought to be undertaken by various research institutions, is the providence of

either technological designs or end-user products that can help bridging the gap between the conditions

being experienced by such disabled people and their expectations. As per the physically handicapped

category, a well-established amount of rehabilitation (particularly robotic-based) layouts has been

developed so far. However, when it comes to blindness rehabilitation technologies, relatively fewer

attentions have been drawn in the relevant literature. As a side note, depending upon the severity of sight

loss, vision disability is an umbrella term that encompasses a wide range of progressively inclusive cases,

since it could be diagnosed as a: (i) mild impairment, (ii) middle-range impairment, (iii) severe

impairment, and ends up to the unfortunate (iv) full blindness. Full sight loss is therefore a serious

disability that entails far-reaching ramifications, as it blocks in many cases, the affected individual from

conducting his/her daily routines smoothly.

In order to enable the visually disabled persons to move around more easily, several contributions

have been proposed in the literature, which are commonly referred to as Electronic Travel Aids (ETAs).

By and large, the current ETA methodologies can be identified according to two distinct but

complementary aspects, namely: (i) mobility and navigation assistance, that undertakes as a goal assisting

visually disabled people to autonomously walk around with the possibility to sense nearby obstacles, and

avoid potential collisions thereby, and (ii) object recognition, whose underlying motive is to aid them

recognize objects.

Regarding the mobility and obstacle avoidance part, a reasonable amount of works has been put

forth thus far. Pundlik et al. [1], for instance, developed a collision detection approach based on a body-

mounted camera for visually impaired (VI) people. They proceed by computing the sparse optical flow

in the acquired videos and make use of a gyroscopic sensor to estimate the camera rotation. The collision

risk is then estimated from the motion estimates. In another work, Balakrishnan et al. [2], presented a

system to detect obstacles. The blind individual carries two small cameras mounted on sunglasses. From

the captured pair of images, the disparity map is generated and the distances of the objects to the cameras

are estimated, which allow for a further decision whether the objects lying ahead of the user make a

potential threat. Another navigation aid, named the guide cane, was introduced in [3], which comprises

a wheeled housing supplied with a set of ultrasonic sensors, a handle to guide the cane through, and a

processing core that processes the ultrasonic signals emitted by the sensors as to infer whether an object

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

12

is present along the walking path. The concept of the ultrasonic sensors is that they simultaneously emit

beams of signals, which in case of obstacles if any, are reflected back. The distance to the obstacles is

then deduced based on the time lapse between emission and reflection (commonly termed as time of

flight − TOF). The same concept was adopted in [4], where the sensors are placed on a wearable belt

instead. Another similar work was put forth in [5]. In this work, the sensors were placed on the shoulders

of the user as well as on a guide cane. Another unique contribution proposes exploiting electromagnetic

signals instead of ultrasonic ones by using a widespread antenna [6]. However, the capacity of the

proposed prototype is limited to 3 m ahead of the user. Having a close look at the literature, it emerges

clearly that TOF-based concepts have often been employed and exhibited promising outcomes. The

apparent downsides of such methodologies, however, are mainly confined to the dimensions as well as

weight of the developed prototypes on the one hand, which may compromise the user’s convenience, and

the demanding power consumption (i.e., constant emission/reception of ultrasonic signals) on the other

hand.

Regarding the object recognition aspect, introspectively far less contributions can be observed.

This might be traced back to the reason that object recognition for the blind might be a harder task to

fulfil as compared to navigation and object avoidance. In other words, mobility and object avoidance

does not pay attention to the kind of potential objects but to their presence instead, whilst object

recognition emphasises on the nature of the nearby objects (i.e., not only their existence). Furthermore,

recognizing objects, in camera-shot images, might come at the cost of several challenges such as rotation,

scale, and illumination variations, notwithstanding the necessity to carry out such task in a brief time

lapse. Nevertheless, different computer-vision techniques have been tailored to tackle this issue. In [7],

for instance, a food product recognition system in shopping spaces was proposed. It relies on detecting

and recognizing the QR codes of food items by means of a portable camera. Another work considers

detecting and recognizing bus line numbers for the VI [8]. Banknote recognition has also been addressed

in [9]. Staircases, doors, and indoor signage detection/ recognition have been considered in [10–12]. In

[13], the authors developed a prototype composed of ultrasonic sensors and a video camera, which is

embedded in a smartphone for a real-time obstacle detection and classification. They first extract FAST

feature points from the image and track them with a multiscale Lucas-Kanade algorithm. Then, in the

classification phase, a Support Vector Machine was used to detect one of the four objects defined a priori.

Consequently, it can be observed that the scarce amount of works that have been devoted to assisted

object recognition for the VI so far, emphasize on detecting/recognizing single classes of objects. On this

point, it is believed that extending the process into a multiobject recognition is prone to provide a richer

description for the VI people.

Subsequently, posing the case of multiobject recognition in general, the mainstream research line

suggests designing as many models as the number of objects of interest and then run those learned models

on a given query image as to discern its potential object list. Such paradigm could be of notable

efficiency, but it is achievable at the cost of prohibitively large processing overheads, which is not a wise

choice if undertaken in the context of assistive recognition for the VI people. Departing from this

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

13

limitation, Mekhalfi et al. [14] introduced a novel approach called coarse description, which operates on

portable camera-grabbed images by listing the objects existing in a given nearby indoor spot, irrespective

of their location in the indoor space. Precisely, they proposed Scale Invariant Feature Transform (SIFT),

Bag of Words (BOW), and Principal Component Analysis (PCA) strategies as a means of image

representation. For the sake of furthering the performance of their coarse image description, they

suggested another scheme, which exploits Compressive Sensing (CS) theory for image representation

and a semantic similarity metric for image likelihood estimation through a bunch of learned Gaussian

Process Regression (GPR) models, and concluded that a trade-off between reasonable recognition rates

and low processing times can be maintained [15].

In this Chapter, we propose a new method to describe the surrounding environment for a VI person

in real-time. We use Local Binary Pattern (LBP) technique, Histogram of Oriented Gradient (HOG) and

BOW to describe coarsely the content of the image acquired via an optical camera. In order to improve

the state of the art results and deal properly with runtime, we propose to use a deep learning approach, in

particular an Auto Encoder Neural Network (AE), to create a new high-level feature representation from

the previous low-level features (HOG, BoW and LBP). Once generated, the new feature vectors are fed

into a logistic regression layer using a multilabeling strategy as to draw the objects present in the image

of concern. This work is a part of a project to guide a VI person in an indoor environment. As validated

by the experimental setup, tangible recognition gains and significant speedups have been scored with

respect to recent works.

In what follows, Section 2.2 recalls the coarse scene description in brief. Section 2.3 provides short

but self-contained conceptual backgrounds of the different methodologies employed for image

representation. Section 2.4 outlines the image multilabeling pipeline, which is meant for coarse

description. In Section 2.5, we quantify the recognition rates and the processing time and discuss the

different pros and cons of the proposed method in the context of indoor scene description. Finally,

conclusions are given in Section 2.6.

2.2. Coarse Description

As mentioned earlier, the key idea is to sacrifice the objects’ coordinates across the indoor space

with the processing requirements, so as to render the recognition process faster yet more convenient for

(at least near) real-time scenarios. In this respect, a coarse description of images captured in an indoor

environment is adopted. The principle of this approach consists in checking the presence/absence of

different objects, which were determined a priori, and turns out to convey the list of the objects that are

most likely present in the scene. This approach is based on the multilabeling strategy by creating a binary

vector (vector of labels). This vector, as shown in Figure 2-1, indicates which objects are present/absent

in its corresponding image. In the training phase, a set of images are captured from the indoor

environment and stored with their binary vector. In the classification phase, the proposed method gives

in output a multilabel vector referring to the list of existing objects in the scene. This new representation

aims to enhance the perception of the VI individual regarding the surrounding environment.

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

14

Figure 2-1: Binary descriptor construction for a training image.

2.3. Tools and Concepts

Let us consider a colour image X acquired by a portable digital camera in an indoor environment.

Due to several inherent properties of the images, such as illumination, rotation and scale changes, the

images cannot be used in their raw form but need to be transformed into an adequate feature space that

is able to capture the spatial as well as the spectral variations. Such objective can normally be addressed

from three perspectives, namely: (i) shape information, (ii) colour information, and (iii) textural changes.

On this point, adopting one feature modality while omitting the others may drop the robustness of the

classification algorithm being developed. We therefore resort to a more efficient representation, by

making use of all three feature modalities. Precisely, we opt for reputed feature extractors. The first one

is the HOG [16] to feature the different shapes distributed over the images. The second one is the BOW

[17] based on colour information of the different chromatic channels (BOW_RGB). Finally, the LBP

technique in order to express the textural behaviour of the images. As a matter of fact, all the mentioned

features can yield interesting results, and this has been documented by previous works, mainly related to

object, texture recognition, biometrics as well as remote sensing. In order to further boost their

representativeness, we also put forth a feature learning scheme that maps the original feature vectors

(derived by means of either feature type mentioned above) onto another lower/higher feature space that

offers a better feature representation capability. A well-established feature learning model is the Stacked

AutoEncoder (SAE) neural network, or simply AutoEncoder (AE), which constructs a model learned on

features pertaining to training images, and then applies it on a given image in order to produce a final

image representation.

The final step of the proposed image multilabeling method is the classification of the generated

features. This step is performed by appending a logistic regression layer (LRL) to the top of the network.

The general diagram of the multilabeling procedure is depicted in Figure 2-2. The following subsections

are dedicated to provide basic elaborations of the feature extraction and learning methodologies.

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

15

Figure 2-2: Pipeline of the feature learning-based image multilabeling scheme.

2.3.1 Histogram of Oriented Gradient

The HOG was initially aimed at pedestrian detection [16]. Soon later, it was utilized in other

applications ranging from object recognition and tracking to remote sensing [18,19]. The basic idea of

the HOG is to gather the gradient variations across a given image. Basically, this can be done by dividing

the image into adjacent small-sized areas, called cells, and calculating the histograms of the

magnitudes/directions of the gradient for the pixels within the cell. Each pixel of the cell is then assigned

to one of the bins of the histogram, according to the orientation of the gradient at this point. This

assignment is weighted by the gradient of the intensity at that point. Histograms are uniform from either

0 to 180° (unsigned case) or from 0 to 360° (signed case). Dalal and Triggs [16] point out that a fine

quantization of the histogram is needed, and they get their best results with a 9-bin histogram. The

combination of the computed histograms then forms the final HOG descriptor.

2.3.2 Bag of Visual Words

The BOW is a very popular model in the general computer vision literature. It is usually adopted

for its notable property of promoting a concise but rich representation of a generic image. BOW

signatures are generally reproduced from a certain feature space of the images, it can be the spectral

intensities or alternatively keypoint-based descriptors derived from the images. The BOW is opted for in

our work in order to produce a compact representation of the colour attributes of an image. We therefore

depart from the chromatic (Red, Green, and Blue channels) values of the images. At first, a basis

commonly referred to as codebook is established by gathering all the spectral features of the training

images into a matrix. Afterwards, we apply a clustering technique i.e., the K-means clustering, on the

built matrix to narrow down its size, which points out a small-sized basis (codebook). Next, the

occurrences of the elements (words) of the codebook are observed in the chromatic space of a given

image, which turns out to generate a compact histogram whose length equals to the number of the

codebook’s words. For a more detailed explanation, the reader is referred to [14,17].

2.3.3 Local Binary Pattern (LBP)

Texture is a very important information that can play a key-role in characterizing images and their

objects. One of the most popular techniques in this regard is the Local Binary Pattern (LBP) which is a

multiresolution, gray-scale, and rotation invariant texture representation. It was first proposed by Ojala

et al. [20] and then improved by Guo et al. [21] who introduced a variant called Completed Local Binary

Pattern (CLBP), followed by many other variants. The following part gives a brief review about the basic

Feature extraction
(Gradient, colour,

and texture)

Feature learning

(Auto-Encoder)

Classification layer

(Logistic regression)

Input image

Stairs
Heater
Corridor
Board
………..

Object list

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

16

LBP operator. Given a pixel in the image z(u, v) its LBP code is computed by comparing its intensity

value to the values of its local neighbours:

𝐿𝐵𝑃𝑃,𝑅(𝑢, 𝑣) = ∑ 𝐻(z(𝑢, 𝑣) − z(𝑢𝑝, 𝑣𝑝))2𝑝𝑃−1
𝑝=0 (2.1)

where z(𝑢𝑝, 𝑣𝑝) is the grey value of its pth neighbouring pixel, P is the total number of neighbours, R is

the radius of the neighbourhood and H(∙) is the Heaviside step function.

The coordinates of the neighbour z(𝑢𝑝, 𝑣𝑝) are: 𝑢𝑝 = 𝑢 + 𝑅cos (
2π𝑝

𝑃
) and 𝑣𝑝 = 𝑣 − 𝑅sin (

2π𝑝

𝑃
). If

the neighbors do not fall at integer coordinates, the pixel value is estimated by interpolation. Once the

LBP label is constructed for every pixel z(𝑢, 𝑣) ∈ ℛi, a histogram is generated to represent the texture

region as follows:

𝐻𝑖𝑠𝑡(𝑘) = ∑ ∑ 𝛿(𝐿𝐵𝑃𝑃,𝑅(𝑢, 𝑣), 𝑘)𝑣 , 𝑘 ∈ [0, 𝑁𝑏𝑖𝑛𝑠]𝑢 (2.2)

where 𝑁𝑏𝑖𝑛𝑠 is the number of bins and δ is the delta function.

In order to give more robustness for LBP and make it more discriminative, a similar strategy to the

HOG method is applied. First, the image is divided into cells and the LBP is calculated for each cell.

Then, the computed LBPs are combined to form the final LBP descriptor.

2.3.4 AutoEncoder Networks (AE)

The AE is at the basis a neural network architecture characterized by one hidden layer. It has then

three layers, one visible layer of size n, one hidden layer of d nodes and one reconstruction layer with n

nodes. Let 𝐱 ∈ ℛ𝑛 be the input vector, 𝐡 ∈ ℛ𝑛 the output of the hidden layer and �̂� ∈ ℛ𝑛 the output of

the AE (reconstruction of 𝐱). d can be inferior or superior to n. In the former case (i.e., d < n), the AE

performs feature reduction. In the latter case, however, it performs an over-complete representation [22].

As can be shown in Figure 2-3, the output of the hidden and reconstruction layers can be calculated

using the following equations:

𝐡 = 𝑓(𝐖𝐱 + 𝐛) (2.3)

�̂� = 𝑓(𝐖′𝐡 + 𝐛′) (2.4)

Where f(.) is a non-linear activation function, 𝐖 and 𝐛 are the d × n weight matrix and the bias vector of

dimension d of the encoding, and 𝐖′ and 𝐛′ are the n × d weight matrix and the bias vector of dimension

n of the decoding part.

The parameters (𝐖, 𝐖′, 𝐛 and 𝐛′) can be estimated by minimizing a cost function through a back-

propagation algorithm [23]:

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

17

argmin
𝐖,𝐖′,𝐛,𝐛′

[𝐿(𝐱, �̂�)] (2.5)

The loss function 𝐿(𝐱, �̂�) adopted in this work is the squared error i.e., ‖𝐱 − �̂�‖2. After finding the

optimal values of weights and biases, we proceed by removing the last layer (i.e., reconstruction) with

its corresponding parameters (𝐖′ and 𝐛′). The layer ‘h’ therefore contains a new feature representation,

which can be directly used as inputs into a classifier, or alternatively fed into another higher layer to

generate deeper features.

In our case, we add a multinomial logistic regression layer (LRL), known also as softmax classifier,

at the end of the encoding part to classify the produced feature representations. The choice of using a

LRL is justified by its simplicity and the fact that it does not require any parameter tuning. The LRL is

trained by adopting the output of the encoding part (the new feature representation) as input, and the

corresponding binary vector as target output.

Figure 2-3: One layer architecture of an AE.

2.4. Feature Fusion

As described so far, three types of features are made use of in this work (HOG, BOW_RGB, and

LBP). In order to further improve the classification efficiency, we propose three distinct feature fusion

schemes. The first one is a stacked fusion, which consists of extracting the three feature vectors from a

given image and then stack them up to form a global feature vector. This latter is injected as an input to

an AE topped by a logistic regression layer (LRL). The general diagram of the stacked fusion is observed

in Figure 2-4.

h

x

W′W

Reconstruction

Decoding Feed-backwardEncoding Feed-forward

Input

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

18

Figure 2-4: Diagram of the first fusion strategy (Fusion 1) based on a low-level feature

aggregation.

The second technique is a parallel fusion, as shown in Figure 2-5, which proceeds by feeding each

type of feature into an individual AE model, followed by concatenating the learned features to form a

single vector. This latter is set as input to another AE model that is connected to a LRL that outputs the

final classification results. It is worth to mention that the two blocks composing the autoencoders are

trained separately.

Figure 2-5: Diagram of the second fusion strategy (Fusion 2) based on a AE induced-level

aggregation.

The third method is based on a linear sum of the individual decisions of the three types of features.

In other words, each feature vector is fed into a separate AE model topped by a LRL. The outputs of each

LRL are then averaged to come down to a single real-valued output, which is subsequently thresholded

to force its values to either one or zero. Figure 2-6 gives an illustration of the fusion procedure.

Figure 2-6: Diagram of the third fusion strategy (Fusion 3) based on a decision-level

aggregation.

Image

BOW_RGB

HOG

LBP

AE+LRL

Image

BOW_RGB

HOG

LBP

AE

AE

AE

AE+LRL

Image

BOW_RGB

HOG

LBP

AE+LRL

AE+LRL

AE+LRL

Σ/3

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

19

2.5. Experimental Results

2.5.1 Description of the Wearable System

The developed method is part of a complete prototype which is composed of two parts. The first

part is the guidance system, which is responsible of guiding a visually impaired person across an indoor

environment from an initial point to a desired destination taking into account the avoidance of the

different static and/or dynamic obstacles. The second part is the recognition system, which is meant to

describe the indoor site for the blind individual to give him better ability to sense the nearby surrounding

environment by providing him with a list of existing objects. Regarding the hardware, the wearable

system is composed of a laser range finder for detecting and determining objects distance to the user, a

portable CMOS camera model UI-1240LE-C-HQ (IDS Imaging Development Systems, Germany)

equipped with a LM4NCL lens (KOWA, Japan), a portable processing unit which can be a laptop, a

tablet or a smartphone and a headset for voice input and audio output. The user controls the system by

giving vocal instructions (i.e., specific keywords) via a microphone and receives information (e.g., list

of objects) vocally synthesized through the earphone. All the hardware is mounted on a wearable jacket

as can be seen on Figure 2-7. The design of the entire prototype was performed by taking into

consideration the feedbacks we received from VI persons, in particular regarding interfacing and

exploitation.

Figure 2-7: View of the wearable prototype with its main components.

2.5.2 Dataset Description

The set of images used in this work was acquired by means the CMOS UI-1240LE-C-HQ camera,

with KOWA LM4NCL lens, which is carried by a wearable lightweight shield. The images were shot at

two different indoor spaces within the faculty of science at the University of Trento (Italy). The size of

each image is 640 × 480. The first ensemble amounts to a total of 130 images, which was divided into

58 training and 72 testing images. The second set accounts for 131 images, split up into 61 training

images, and 70 for testing purposes. It is noteworthy that the training images for both datasets were

selected in such a way to cover all the predefined objects in the considered indoor environments. To this

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

20

end, we have selected the objects deemed to be the most important ones in the considered indoor spaces.

Regarding the first dataset, 15 objects were considered as follows: ‘External Window’, ‘Board’, ‘Table’,

‘External Door’, ‘Stair Door’, ‘Access Control Reader’, ‘Office’, ‘Pillar’, ‘Display Screen’, ‘People’,

‘ATM’, ‘Chairs’, ‘Bins’, ‘Internal Door’, and ‘Elevator’. Whereas, for the second dataset, the list was

the following: ‘Stairs’, ‘Heater’, ‘Corridor’, ‘Board’, ‘Laboratories’, ‘Bins’, ‘Office’, ‘People’, ‘Pillar’,

‘Elevator’, ‘Reception’, ‘Chairs’, ‘Self Service’, ‘External Door’, and ‘Display Screen’.

2.5.3 Evaluation Metrics and Parameter Setting

For evaluation purposes, we use the well-known sensitivity (SEN) and specificity (SPE) measures:

SEN =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2.6)

SPE =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2.7)

The sensitivity expresses the classification rate of real positive cases i.e., the efficiency of the

algorithm towards detecting existing objects. The specificity, on the other hand, underlines the tendency

of the algorithm to detect the true negatives i.e., the non-existing objects. In general, those two quantities

reflect opposite measures. In other words, the more the method tends to detect existing objects (high

True-Positive which entails higher sensitivity) the more is exposed to make wrong detections (high False-

Positive which implies low specificity). In order to make a trade-off between the two measures and to

make an adequate comparison of results with respect to the state-of-the-art methods, we propose to

further include the average of both:

AVG =
SEN+SPE

2
 (2.8)

We set the parameters of the three feature extractors as follows.

 For HOG features, we set the number of bins to 9 and the size of the cells to 80, which gives a

HOG feature vector of size 1260 (recall that the size of the image is 640 × 480).

 Regarding the BOW_RGB, the number of centroids i.e., ‘K’ of the K-means clustering is set to

200, which was observed as the best choice among other options.

 For the LBP, we set R = 1, P = 8, and size of the cells = 80, which produces a LBP feature

vector of length 480 bins.

In input layer, all values are normalised between 0 and 1. Regarding output, In fact, the LRLs point

out real values. In order to force them to ones or zeroes, a thresholding must take place. Therefore, to

determine the most convenient threshold, we applied a 5-folds cross validation technique on the training

dataset, with 4 folds chosen randomly as training and the last one as test. The threshold values range

from 0.1 to 0.9 with a step of 0.1. We repeated the experiments 5 times, each time with different random

permutation. The results presented in Figure 2-8, refer to the average of the sensitivity and the specificity

(along with their average) by means of the first fusion method. By observing those figures, SEN and SPE

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

21

exhibit opposite behaviours as the threshold value increases. On average between SEN and SPE, a

threshold of 0.3 stands out as the best option, which will be adopted in the remaining experiments.

Figure 2-8: Impact of the threshold value on the classification rates using the three feature

types. Upper row for Dataset 1, bottom row for Dataset 2.

2.5.4 Results

We first report the results pointed out by using the three types of features individually. We tried

many configuration by changing the size of the hidden layer from 100 to 1000 nodes by a step of 100.

Ultimately, 300 nodes turned out to be the best choice for all the features. It can be observed from

Table 2-1 that on Dataset 1, the three features perform closely, with a slight improvement being noticed

with BoW_RGB. On dataset 2, however, the BoW_RGB outperforms, by far, the remaining two, which

was expected beforehand as this dataset particularly manifests richer colour information than the former

one. Nevertheless, the yielded rates are quite reasonable taking into account the relatively large number

of objects considered in this work, besides other challenges such as scale and orientation changes.

Table 2-1: Obtained recognition results using single features.

Dataset Dataset 1 Dataset 2

Method HOG BoW_RGB LBP HOG BoW_RGB LBP

SEN (%) 76.77 79.77 76.77 72.73 88.64 81.82

SPE (%) 82.16 82.9 80.07 88.67 90.24 86.27

AVG (%) 79.46 81.33 78.42 80.7 89.44 84.04

Coming to the fusion scenarios, an interesting point to initiate with is the determination of the

optimal size of the hidden layer (i.e., number of hidden units). Different architectures have been explored.

Precisely, we tried out values within the range of 100–1000 with a step of 100. Ultimately, the first fusion

technique ended up having 900 neurons as an optimal choice, whilst the remaining two strategies pointed

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

22

out their best at 500 and 300, respectively. It is to note that all the values within 100–1000 have pointed

out nearby performances. The earlier optimal parameters will therefore be adopted in what follows.

The classification results of the fusion schemes are summarized in Table 2-2 and examples of results

obtained for some query images are provided in Figure 2-9 for both datasets. As a first remark, it can be

spotted that significant gains have been introduced with respect to using individual features (Table 2-1),

which strengthens the assumption that fusing multiple features is likely to be advantageous over

individual feature classification scenarios.

Table 2-2: Classification outcomes of all the fusion schemes.

Dataset Dataset 1 Dataset 2

Method SEN (%) SPE (%) AVG (%) SEN (%) SPE (%) AVG (%)

Fusion 1 79.40 87.45 83.42 85.00 91.80 88.40

Fusion 2 80.89 87.69 84.29 87.27 91.56 89.41

Fusion 3 89.51 81.30 85.40 90.00 90.12 90.06

Figure 2-9: Example of results obtained by the proposed multilabeling fusion approach for

both datasets. Upper row for Dataset 1, and lower one for Dataset 2.

Another observation is that the average classification rate gradually increases from Fusion 1 all the

way to Fusion 3, with minor disparities. Moreover, the first two strategies seem to favour the SPE over

the SEN on both datasets, while Fusion 3, which performs fusion at decision level, favours SEN on

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

23

Dataset 1 and exhibits a better SEN-SPE balance on Dataset 2. As a matter of fact, choosing between

SEN or SPE depends upon the application being addressed. In our case, we will privilege SEN as we

think it is more important to provide information on the presence of objects (even if it generates some

false positives) rather than on the absence of objects. For such purpose, late fusion of individual decisions

(i.e., Fusion 3) has proved to be a more efficient option than feature-level fusion (i.e., the first two

schemes), with a tendency to score higher or equal SEN rates with respect to SPE.

For the sake of comparison of Fusion 3 strategy with state-of-the-art methods, we considered the

contribution made in [15], namely the Semantic Similarity-based Compressed Sensing (SSCS) and the

Euclidean Distance-based Compressed Sensing (EDCS) techniques, and also three different pretrained

Convolutional Neural Networks (CNNs) which are ResNet [24], GoogLeNet [25] and VDCNs [26]. As

shown in Table 2-3, for Dataset 1, our strategy outperforms largely the reference work in [15] with at

least 10% of improvement and between 2% to 5% compared to the three pretrained CNNs. Moreover,

our method offers the advantage of yielding far higher SEN. Both observations can be traced back to two

considerations. On the one hand, the work put forth in [15] makes use of a small-sized dictionary of

learning images to represent a given image by means of a compressive sensing-based approach, which

might succeed in representing an image that has good matches in the dictionary but may fail when it

comes to an (outlier) image that has no match in the dictionary. On the other hand, the proposed approach

proceeds by extracting robust features capable to capture different variations across the images, followed

by a customized feature learning step that furthers their discrimination capacity, which is ultimately

reflected on higher classification rates as the results tell. The same observations apply for Dataset 2 as

seen in Table 2-4.

Table 2-3: Comparison of classification rates on Dataset 1.

Method SEN (%) SPE (%) AVG (%)

SSCS 79.77 66.54 73.15

EDCS 69.66 80.19 74.92

ResNet 66.29 94.46 80.38

GoogLeNet 67.04 94.22 80.63

VDCNs 71.91 94.46 83.19

Ours 89.51 81.3 85.40

Table 2-4: Comparison of classification rates on Dataset 2.

Method SEN (%) SPE (%) AVG (%)

SSCS 75 74.09 74.54

EDCS 70 90.12 80.06

ResNet 68.18 96.75 82.46

GoogLeNet 72.27 97.11 84.69

VDCNs 81.82 96.39 89.10

Ours 90.00 90.12 90.06

An interesting fact to point out is that the size of the images has a direct influence on the processing

time. Therefore, an option was to scale down the image resolution from full size (640 × 480), to its half

(320 × 240), then (128 × 96), and finally (64 × 48), which respectively define a 100%, 50%, 20%, and

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

24

10% of the original size. The classification results in terms of AVG accuracy are shown in Table 2-5 and

Table 2-6 for both datasets, respectively. It can be observed that the accuracy does not manifest drastic

changes as the image size drops. In fact, there are instances where the smallest resolutions introduce

slight improvements, which we believe can be interpreted by the fact that, in many images, there are

large background surfaces (e.g., walls) that have usually uniform colours and textures, which may not be

really useful as salient visual properties by which the images can be discriminated, reducing the image

size thereby reduces the size occupied by those backgrounds, which may either maintain or even raise

the classification performance.

Table 2-5: Comparison of classification rates on Dataset 1 under different resolutions.

Method 100% 50% 20% 10%

SSCS 73.15 73.34 74.52 74.51

EDCS 74.92 74.74 75.11 75.43

ResNet 80.38 79.88 79.32 78.76

GoogLeNet 80.63 81.63 82.52 79.02

VDCNs 83.19 83.37 84.50 84.57

Ours 85.40 86.02 86.14 86.63

Table 2-6: Comparison of classification rates on Dataset 2 under different resolutions.

Method 100% 50% 20% 10%

SSCS 74.54 74.54 73.91 74.48

EDCS 80.06 80.06 79.30 78.60

ResNet 82.46 82.40 84.69 87.13

GoogLeNet 84.69 84.69 84.74 84.12

VDCNs 89.10 88.71 87.80 88.13

Ours 90.06 90.34 90.03 90.69

Besides the classification rates, another important performance parameter is the runtime. For the

proposed method, the runtime includes the feature extraction, the prediction and the fusion times. We

provide the average processing time per image for both datasets in Table 2-7 and Table 2-8, from which

it can be seen that, as expected, the runtime decreases with the image size, with our method being at least

four times faster than the best runtime (GoogLeNet) provided by methods of reference. Particularly, 22

milliseconds per image is a very promising time span provided that fifteen objects are targeted in this

work. Such processing time is based on a Matlab R2016b implementation, which is subject to be

drastically reduced under for instance a C++ implementation. It is also worth mentioning that the number

of objects in our work does not impact on the classification process.

Table 2-7: Comparison of average runtime per image on Dataset 1 under different resolutions.

Method 100% 50% 20% 10%

SSCS 2.16 1.42 1.22 1.17

EDCS 2.44 1.41 1.1 1.08

ResNet 0.136 0.132 0.131 0.131

GoogLeNet 0.100 0.098 0.096 0.093

VDCNs 0.300 0.295 0.291 0.288

Ours 1.230 0.200 0.048 0.022

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

25

Table 2-8: Comparison of average runtime per image on Dataset 2 under different resolutions.

Method 100% 50% 20% 10%

SSCS 2.66 1.53 1.21 1.17

EDCS 2.69 1.54 1.23 1.2

ResNet 0.136 0.132 0.131 0.131

GoogLeNet 0.100 0.098 0.096 0.093

VDCNs 0.300 0.295 0.291 0.288

Ours 1.230 0.200 0.048 0.022

2.6. Conclusions

This chapter presented a scene description (via image multilabeling) methodology meant to assist

visually impaired people to conceive a more accurate perception about their surrounding objects in indoor

spaces. The idea of the proposed method is promoted around detecting multiple objects at once within a

possible short runtime. A key-determinant of our image multilabeling scheme is that the number objects

is independent of the classification system, which entails the property of detecting as many objects as

desired (depending on the offline setup to be customized by the user) within the same amount of time

which amounts for much less than a second in our work.

The multilabeling algorithm exploits feature learning concept by means of an AutoEncoder neural

network, which amply demonstrated a significant potential in generating discriminative image

representations.

Pros: In the literature, there exist several multi-object recognition methods (but not in the context of

visually impaired rehabilitation). Those methods, may show interesting recognition efficiency, but they

are dependent on the number of objects considered. By contrast, our method as hinted earlier, does not,

which renders it much faster yet more reliable if considered in real-time scenarios. The earlier two points

are technically verified in [15], where it was concluded that coarse image description is more adequate

in this sense.

Cons: While the aim of the conducted coarse description is to roughly list the present objects as to

bridge the gap between the real indoor setup and the image conceived in the visually disabled person’s

imagination, inferring further information pertaining to the detected object’s location in the indoor space

remains a vivid endeavour in our future considerations. This, however, may come at the cost of a heavier

processing but it is not out of question. To complement this missing component, we suggest to find a

way to introduce the depth information (e.g., through Kinect sensors for instance) as a post-operation.

Another issue is related to the scalability of the system since it will need to be completely retrained in

case the set of predefined objects requires to be modified quantitatively or qualitatively.

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

26

2.7. References

[1] S. Pundlik, M. Tomasi, and G. Luo, “Collision Detection for Visually Impaired from a Body-Mounted

Camera,” in 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2013, pp. 41–

47.

[2] G. Balakrishnan, G. Sainarayanan, R. Nagarajan, and S. Yaacob, “Stereopsis method for visually impaired

to identify obstacles based on distance,” in Third International Conference on Image and Graphics

(ICIG’04), 2004, pp. 580–583.

[3] I. Ulrich and J. Borenstein, “The GuideCane-applying mobile robot technologies to assist the visually

impaired,” IEEE Trans. Syst. Man Cybern. - Part Syst. Hum., vol. 31, no. 2, pp. 131–136, Mar. 2001.

[4] S. Shoval, J. Borenstein, and Y. Koren, “Auditory guidance with the Navbelt-a computerized travel aid for

the blind,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 28, no. 3, pp. 459–467, Aug. 1998.

[5] M. Bousbia-Salah, M. Bettayeb, and A. Larbi, “A Navigation Aid for Blind People,” J. Intell. Robot. Syst.,

vol. 64, no. 3–4, pp. 387–400, Dec. 2011.

[6] L. Scalise et al., “Experimental Investigation of Electromagnetic Obstacle Detection for Visually Impaired

Users: A Comparison With Ultrasonic Sensing,” IEEE Trans. Instrum. Meas., vol. 61, no. 11, pp. 3047–

3057, Nov. 2012.

[7] D. López-de-Ipiña, T. Lorido, and U. López, “BlindShopping: Enabling Accessible Shopping for Visually

Impaired People through Mobile Technologies,” in Toward Useful Services for Elderly and People with

Disabilities, 2011, pp. 266–270.

[8] H. Pan, C. Yi, and Y. Tian, “A primary travelling assistant system of bus detection and recognition for

visually impaired people,” in 2013 IEEE International Conference on Multimedia and Expo Workshops

(ICMEW), 2013, pp. 1–6.

[9] F. M. Hasanuzzaman, X. Yang, and Y. Tian, “Robust and Effective Component-Based Banknote

Recognition for the Blind,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 42, no. 6, pp. 1021–1030,

Nov. 2012.

[10] T. J. J. Tang, W. L. D. Lui, and W. H. Li, “Plane-based detection of staircases using inverse depth,” pp. 1–

10, Jan. 2012.

[11] X. Yang and Y. Tian, “Robust door detection in unfamiliar environments by combining edge and corner

features,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition -

Workshops, 2010, pp. 57–64.

[12] S. Wang and Y. Tian, “Camera-Based Signage Detection and Recognition for Blind Persons,” in Computers

Helping People with Special Needs, 2012, pp. 17–24.

[13] B. Mocanu, R. Tapu, and T. Zaharia, “When Ultrasonic Sensors and Computer Vision Join Forces for

Efficient Obstacle Detection and Recognition,” Sensors, vol. 16, no. 11, Oct. 2016.

[14] M. L. Mekhalfi, F. Melgani, Y. Bazi, and N. Alajlan, “Toward an assisted indoor scene perception for blind

people with image multilabeling strategies,” Expert Syst. Appl., vol. 42, no. 6, pp. 2907–2918, Apr. 2015.

[15] M. L. Mekhalfi, F. Melgani, Y. Bazi, and N. Alajlan, “A Compressive Sensing Approach to Describe Indoor

Scenes for Blind People,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 7, pp. 1246–1257, Jul.

2015.

[16] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005, vol. 1, pp. 886–893 vol.

1.

[17] Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding bag-of-words model: a statistical framework,” Int. J.

Mach. Learn. Cybern., vol. 1, no. 1–4, pp. 43–52, Dec. 2010.

[18] S. Zhang, X. Yu, Y. Sui, S. Zhao, and L. Zhang, “Object Tracking With Multi-View Support Vector

Machines,” IEEE Trans. Multimed., vol. 17, no. 3, pp. 265–278, Mar. 2015.

[19] T. Moranduzzo and F. Melgani, “Detecting Cars in UAV Images With a Catalog-Based Approach,” IEEE

Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6356–6367, Oct. 2014.

[20] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture

classification with local binary patterns,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–

987, Jul. 2002.

Chapter 2: Real-Time Indoor Scene Description for the Visually Impaired with Using AutoEncoder

27

[21] Z. Guo, L. Zhang, and D. Zhang, “A Completed Modeling of Local Binary Pattern Operator for Texture

Classification,” IEEE Trans. Image Process., vol. 19, no. 6, pp. 1657–1663, Jun. 2010.

[22] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked Denoising Autoencoders:

Learning Useful Representations in a Deep Network with a Local Denoising Criterion,” J Mach Learn Res,

vol. 11, pp. 3371–3408, Dec. 2010.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,”

Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1986.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[25] C. Szegedy et al., “Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015, pp. 1–9.

[26] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,”

ArXiv14091556 Cs, Sep. 2014.

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

28

Chapter 3

Reconstructing Cloud-Contaminated

Multispectral Images with Contextualized

AutoEncoder

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

29

3.1. Introduction

Depending on the application, clouds in remotely sensed imagery can be seen as a source of

information or noise. In the latter case, which represents the focus of this work, clouds are considered as

a serious problem because they can cover partially or completely a region of interest, and thereby reduce

the exploitability of the images. Detecting clouds in the images is often performed as a pre-processing

step in order to remove them and recover the missing areas. In this work, we focus on reconstructing the

missing areas supposing that the cloudy areas in the images are already identified.

In the literature, some contributions start from the hypothesis that clouds are thin and do not obscure

completely the reflected signal from Earth. They generally use either monotemporal methods that exploit

the different spectral bands of the single image to reconstruct the affected areas or multitemporal ones

which deal with a temporal sequence of images acquired over the same location ([1]-[4]).

In order to address the case of opaque clouds, which is the scope of this chapter, Maalouf et al. [5]

proposed an inpainting technique based on the Bandelet transform and the multiscale geometrical

grouping. They presented interesting results but such techniques showed their limits compared to those

based on multitemporal prediction [6]. Moreover, since satellite multitemporal imagery over a given area

can be regularly acquired, most methods in the literature rely on the exploitation of the temporal

dimension. Among the first related contributions, one can cite the work of Liew et al. [7]. They generate

an ensemble of cloud-free image mosaics by composing several cloudy SPOT and IKONOS satellite

images acquired from the same area. In [8], two unsupervised contextual reconstruction methods were

proposed. The first method is a linear prediction based on the expectation-maximization (EM) algorithm

and the second one is a nonlinear prediction based on a support vector machine (SVM). Tseng et al. [9]

proposed a method to generate cloud-free mosaic images from multitemporal SPOT images based on a

multiscale wavelet-based fusion method in order to ameliorate the transition between two mosaic parts.

In [10], Lin et al. proposed to clone cloud-free information from a set of multitemporal images by

adopting a batch-based reconstruction method formulated as a Poisson equation and solved using a global

optimization process. Lorenzi et al. [11] proposed to rely on the compressive sensing (CS) theory to

reconstruct the area covered by clouds. They developed two common CS solutions, namely, the basis

pursuit (BP) and the orthogonal matching pursuit (OMP). A third CS solution based on exploiting the

search capabilities of genetic algorithms (GAs) is also introduced.

In this chapter, we describe a new method to recover missing data in multispectral images due to

presence of clouds. Specifically, we propose to exploit the strength of the AE networks in the

reconstruction phase to restore the missing data. It is worth mentioning that AE networks have been used

for general image restoration problems. For example, the authors in [12] combine them with sparse

coding for image denoising and blind inpainting. In another work [13], the authors exploit them for the

enhancement of natural low-light images. In [14], it is proposed a non-local AE with collaborative

stabilization for natural image denoising and super-resolution. In the remote sensing literature, they were

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

30

successfully applied to image pansharpening [15], object detection [16] and hyperspectral data

classification [17]. In the present work, AEs are exploited to address the issue of missing data

reconstruction in multispectral images. Given a cloud-free image (source or reference image) and a

cloud-contaminated image (target image), the AE learning will be slightly modified in such a way that

rather than supposing that the output layer (the reconstruction layer) is equal to the input layer, we

consider here that the output is constituted of pixels from the target image and their corresponding pixels

on the reference image are used as input. In other words, we try to find the essential mapping function

between the source and the target image using the AE [18]. In the training phase, cloud-free pixels from

both source and target images are exploited. After that, in the prediction phase, pixels from the reference

image corresponding to contaminated pixels in the target image are used in order to reconstruct the

missing areas in the second image. Moreover, in order to fix the problem of the empirical tuning of the

hidden layer size (which is still an open issue in the definition of an AE architecture), the minimum

descriptive length (MDL) criterion [19] in combination with a Pareto front selection method is applied

to infer the best AE architecture. It is noteworthy that the trained neural network is contextualized, in the

sense that it exploits contextual information of a given missing region to recover only that specific region.

Accordingly, it is not intended to generalize to other missing regions for which other (fine-tuned) neural

networks will be needed. Compared to [12], our method is different from various points of view: 1) [12]

deals with the image denoising and inpainting problems while we focus on multitemporal image

reconstruction; 2) [12] makes use of a fixed Stacked AutoEncoder (SAE) architecture (with 3 hidden

layers, each of them composed of the same number of hidden nodes set to 5 times the number of input

nodes) while our architecture is not stacked (more compact) and the number of hidden nodes is estimated

automatically (thanks to MDL criterion); 3) our method is contextualized while [12] is not; and 4) our

method is specifically developed for cloud-contaminated remote sensing image reconstruction.

The rest of this chapter is organized as follows. Section 3.2 formulates the problem of the

reconstruction of a cloud-contaminated image and describes the two developed methods based on a

modified learning of the AE network. The experimental results are presented in Section 3.3. Finally,

conclusions are reported in Section 3.4.

3.2. Methodology

Let us consider two multitemporal multispectral images I(1) and I(2) with nb bands acquired by an

optical sensor and registered over the same geographical area. The two images are acquired at two

different dates, which are supposed to be sufficiently close to each other in order to keep similarity

concerning the spatial structure. I(1) refers to the cloud-free image (source/reference image) and I(2) refers

to the cloudy image (target image). The objective of the proposed method is to reconstruct any area of

the target image which is contaminated by clouds. We note that the problem of the detection of clouds is

out of scope of this work. We will call the cloudy area in the contaminated image I(2) as target region

Ts(2) and its corresponding area in the cloud-free image I(1) as source region Ts(1). The areas surrounding

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

31

the cloudy region (cloud-free area) in I(2) and I(1) are referred as target training region Tr(2) and source

training region Tr(1), respectively.

The underlying idea of the proposed method is to find the transformation 𝑠(∙) which captures the

relationship between the source and the target images. For such purpose, the training regions are used to

estimate 𝑠(∙) and a model is learned such that:

Tr(2)=s(Tr(1)) (3.1)

Once the mapping model is learned, one can reconstruct the cloudy region in the target image (Ts(2))

by applying the estimated transformation 𝑠(∙) on the reference test region Ts(1).

Ts(2)=s(Ts(1)) (3.2)

The transformation function 𝑠(∙) can be learnt using linear or nonlinear models. In multispectral

images, the distributions of data are typically complex (multimodal) which makes the simple linear model

not the most suitable choice to perform the transformation. As mentioned earlier, various ways have been

proposed in the literature for solving this mapping problem. In this work, we propose an alternative

solution based on AutoEncoder (AE) neural networks because of their promising capability to reconstruct

data in a nonlinear way. More details are given in the next sections.

3.2.1 Pixel-based Reconstruction with AutoEncoder

The AE is basically an artificial neural network architecture that is characterized by one hidden

layer. Stacking many AEs (many hidden layers) forms a so-called stacked AE (SAE) which is considered

as a deep architecture.

A simple AE has three layers, one visible layer of size n (input layer), one hidden layer of d nodes

and one reconstruction layer (output layer) with n nodes. Let 𝒙 ∈ ℛ𝑛 be the input vector, 𝒉 ∈ ℛ𝑑 the

outcome of the hidden layer and �̂� ∈ ℛ𝑛 the output of the AE (the reconstruction of x).

In our case, since we are not interested in an auto-reconstruction operation of the AE

(encoding/decoding) but in a mapping between two correlated spaces (source and target images), the

training of the AE will be slightly modified in order to find the mapping function between the two images

(I(1) and I(2)).

Let us consider a input vector 𝒙(1) = [𝑥1
(1)

, 𝑥2
(1)

, … , 𝑥𝑛
(1)

]
T

 which represents a generic pixel from

the region Tr(1) and 𝒙(2) = [𝑥1
(2)

, 𝑥2
(2)

, … , 𝑥𝑛
(2)

]
T

 is its corresponding pixel in Tr(2) (our target), �̂� =

[�̂�1, �̂�2, … , �̂�𝑛] T is the reconstruction vector (the output of the AE), 𝐖 = [𝒘𝟏, … , 𝒘𝒅]T and 𝒃 are the d

× n weight matrix and the bias vector of dimension d of the encoding part, and 𝐖′ = [𝒘′𝟏, … , 𝒘′𝒏]T and

𝒃′ are the n × d weight matrix and the bias vector of dimension n of the decoding part. The parameter n

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

32

represents the number of nodes of the input and the reconstruction layers and it equals here to the number

of bands of the images, namely nb.

Figure 3-1: Proposed pixel-based AutoEncoding reconstruction method.

As can be shown in Figure 3-1, the output of the hidden and reconstruction layers can be calculated

using the following equations.

ℎi = 𝑓(𝒘𝐢𝒙
(1) + 𝑏i) (i=1...d) (3.3)

�̂�i = 𝑓(𝒘′𝐢𝒉 + 𝑏′i) (i=1...n) (3.4)

where 𝒘𝐢 and 𝒘′𝐢 are the ith rows of the weight matrices 𝐖 and 𝐖′ respectively, 𝑏i and 𝑏′i are the ith

elements of the bias vectors 𝒃 and 𝒃′ respectively, and 𝑓(∙) is a nonlinear activation function. Typically,

a sigmoid activation function is used, which is expressed by the equation below:

𝑓(𝑧) =
1

1+𝑒−𝑧 (3.5)

The parameters (𝐖, 𝐖′, 𝒃 and 𝒃′) can be estimated by minimizing a cost function 𝐿(∙) which

quantifies the error between the target 𝒙(2) and the output �̂� of the AE.

argmin
𝐖,𝐖′,𝒃,𝒃′

[𝐿(𝒙(2), �̂�)] (3.6)

In this work, we adopt the squared error function, i.e. 𝐿(𝒙, �̂�) =‖𝒙 − �̂�‖2. Therefore, the

minimization problem in (3.6) becomes:

argmin
𝐖,𝐖′,𝒃,𝒃′

[‖𝒙 − 𝒇[𝐖′𝒇(𝐖𝒙 + 𝒃) + 𝒃′]‖2] (3.7)

where 𝒇(∙) is the vector representation of the activation function 𝑓(∙) defined in (3.5).

The computation of this objective function is performed on the available training samples and

optimized according to a backpropagation method which relies on its gradient calculation. In particularly,

Multispectral image

Input Reconstruction

W W’

h

Multispectral image Pixel vector Autoencoder Pixel vector

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

33

we use the stochastic gradient descent method to optimize the cost function in (3.7) [20]. Since the

weights are updated for each training sample, this method has proved faster, more reliable, and less prone

to reach bad local minima than standard gradient descent.

3.2.2 Patch-based reconstruction strategy

In remote sensing images, it can be reasonably expected that neighbor pixels are highly correlated

and present spectral similarities. To benefit from spatial correlation, we propose a second method which

consists to reconstruct by patch rather than by single pixel, and then apply an opportune fusion to infer

the estimation of each missed image pixel.

Figure 3-2: Proposed patch-based AutoEncoding reconstruction method.

In this method, we keep the same principle like the previous method, but the size of the input layer

(same for the reconstruction layer) is increased. As illustrated in Figure 3-2, the input vector x(1) (similar

reasoning for the target vector x(2)) is formed by flattering the patch which is composed by the current

pixel of interest (the central pixel) and its spatial neighboring pixels. If a window of size sz × sz is chosen,

then the size of the input layer n is equal to sz × sz × nb. Therefore, rather than mapping just one pixel at

a time, a region of size of sz × sz is mapped.

With such a reconstruction scheme, the problem which arises is that instead of getting an estimation

for each target pixel, we obtain (sz × sz) estimations (excluding the cases of pixels lying close to the

image borders). This is due to the fact that we pass from a pixel-based to a patch-based reconstruction.

In order to get an estimation for each pixel from the generated patches, we propose to apply a simple

weighted average of all the (sz × sz) cases as follows:

𝒙𝑇𝑠(2) = ∑ 𝛼𝑖�̂�𝑖
𝑠𝑧×𝑠𝑧
𝑖=1 (3.8)

where 𝛼𝑖 are weights such that:

∑ 𝛼𝑖 = 1 and 0 ≤ 𝛼𝑖 ≤ 1 𝑠𝑧×𝑠𝑧
𝑖=1 (3.9)

and �̂�𝑖 is the mapping of the pixel x(1) obtained from the ith patch containing the pixel of interest.

Multispectral image

Input Reconstruction

W W’

h

Multispectral image Autoencoder

Neighbor
region

Neighbor
region

Flattening Unflattening

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

34

Regarding the selection of the weight values, we will opt for a simple strategy in which a weight

of 0.5 is assigned to the central pixel while all remaining neighboring pixels will have a weight equal to
0.5

(𝑠𝑧×𝑠𝑧−1)
 (which means that 50% of the weighting is assigned to the central pixel and 50% is equally

distributed over all remaining pixels of the patch). It is noteworthy that other strategies (i.e., equal weights

and Gaussian function weights) were implemented as well but performed worse or did not provide any

significant improvement compared to the above strategy.

Figure 3-3 shows an example of a 3 × 3 neighborhood. Case 1 is the case when the pixel of interest

coincides with the center of the window. The other cases refer to situations when the pixel is still inside

the window (but not at its center).

Figure 3-3: Illustration of the fusion of the patch-based results related to a given pixel of interest (in

black) for a 3×3 neighborhood system. In this case, 𝛼1 =
1

2
 and all other weights 𝛼2 = … = 𝛼9 =

1

16
.

3.2.3 Estimation of the size of the hidden layer

As the size of the hidden layer d is unknown a priori, it needs to be estimated. Typically, this is

done empirically by trying various configurations and picking up the one with highest accuracy. In this

proposed method, for solving this issue, we propose a new method which is inspired from the minimum

description length (MDL) principle [21]. If we take for instance the problem of the selection of the

number of components in a mixture, MDL permits to search for a tradeoff since, on the one hand the

Case 2
.
.
.

case 9

case 1

AE

.

.

.

.

.

.

Σ

Final
estimation

Patch-based
reconstruction

Fusion
weights

AE

AE

Concerned Pixel Central pixel of the window

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

35

higher the number of components, the higher the risk of overfitting, while on the other, the smaller the

number of components, the lower the model flexibility [8]. In such a case (mixture density problem),

MDL is defined as [19]:

MDL(𝑑) = −ℓ̃(ψ|Θ) + 𝛾. 𝑘. log(𝐿) (3.10)

where ℓ̃(ψ|Θ) represents the log-likelihood function value found with a maximum likelihood estimation

algorithm, 𝑘 is the number of free parameters to be estimated (in our case it will be equal to the number

of weights and biases), 𝛾 is a constant and L is the number of data sample. Therefore, the MDL principle

aims at achieving a balance between accuracy and complexity of the model so that to provide a good

generalization capability. Applying a simple grid-search procedure guided by empirical risk

minimization can instead lead to overfitting issues.

In order to adapt MDL to our problem, ψ = {𝜀1, 𝜀2, … , 𝜀𝐿} will represent the set of

multidimensional errors incurred by the AE (dimensionality = number of output nodes) for each of the L

input data. For the sake of tractability, we assume the multidimensional errors are drawn from a

multivariate normal distribution, namely p(ε) = N(𝝁, 𝚺) where the mean vector µ is supposed to be null

and the covariance matrix 𝚺 is supposed to be a diagonal matrix with values equal to 𝜎2 where 𝜎 is the

standard deviation. Then, the distribution function can be written as follows:

𝑝(𝜀) =
1

√(2𝜋)𝑛|𝚺|
exp (−

1

2
𝜀T𝚺−𝟏𝜀) (3.11)

The negative log-likelihood function will be represented as follows:

−ℓ̃(ψ|Θ) = −𝑙𝑜𝑔 ∏ 𝑝(𝜀𝑖)
𝐿
𝑖=1 = − ∑ log (𝑝(𝜀𝑖))𝐿

𝑖=1

 =
1

2
∑ ((2𝜋)𝑛|𝚺|)𝐿

𝑖=1 +
1

2
∑ (𝜀𝑖

T𝚺−𝟏𝜀𝑖)
𝐿
𝑖=1 (3.12)

The optimal size of hidden layer �̂� is estimated by minimizing the MDL criterion, i.e.,

�̂� = arg min
𝑑 = 1..𝑑𝑚𝑎𝑥

{MDL(𝑑)} (3.13)

where 𝑑𝑚𝑎𝑥 is a predefined maximum size of the hidden layer.

During simulations, we noticed that the second term of the MDL criterion, which depends on the

number of weights and biases involved in the considered AE architecture, increases rapidly compared to

the first term (the log-likelihood function) which decreases very slowly. The observed best �̂� value

corresponds always to a hidden layer size of one or two units (i.e., 𝑑 = 1 or 𝑑 = 2). In order to get a

better balance between the two terms of the MDL criterion, the parameter 𝛾 need to be as smaller as

possible to keep under control the rapid increase of the second part. However, there is no guarantee that

the best choice of 𝛾 for one dataset will give also good results for other datasets and in this case the

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

36

developed method will be highly dependent on the value of the parameter 𝛾. To overcome this issue, we

propose to opt for a Pareto-like optimization, inspired from the multi-objective optimization literature

(MO optimization) and the nondominated sorting concept.

3.2.4 Multi-objective Optimization

In the cases when there are multiple measures of competing objectives (criteria) to be

simultaneously estimated like in ours, MO optimization can be solved by combining linearly the

objectives into a single function (like previous MDL formulation) with opportune weights or by finding

a set of optimal solutions rather than a single one. The selection of a solution from this set is not trivial

and is usually user-dependent. From a mathematical viewpoint, a general MO optimization problem can

be formulated as follows:

Find the vector 𝒑∗ which minimizes the ensemble of 𝑄 objective functions:

𝒇(𝒑) = [𝑓𝑖(𝒑), 𝑖 = 1, … , 𝑄] (3.14)

subject to the J equality constraints

𝑔𝒋(𝒑) = 0 j=1,2,…,J (3.15)

and the K inequality constraints

ℎ𝑘(𝒑) ≤ 0 k=1,2,…,K (3.16)

where p is a candidate solution to the considered optimization problem. In our case, it consists of finding

the solution that minimize the two criteria 𝑓1 = −ℓ̃(ψ|Θ) and 𝑓2 = 𝑘. log(𝐿) (𝑄 = 2) without any

constraints.

The solving of a MO optimization problem is based on the concept of dominance. A solution 𝒑i is

said to dominate another solution 𝒑j if and only if 𝒇(𝒑i) is partially less than 𝒇(𝒑j), i.e.,

∀ 𝑘 ∈ {1,2, … , 𝑄}, 𝑓𝑘(𝒑i) ≤ 𝑓𝑘(𝒑j) ∧ ∃𝑘 ∈ {1,2, … , 𝑄}: 𝑓𝑘(𝒑i) < 𝑓𝑘(𝒑j) (3.17)

This concept leads to the definition of Pareto optimality: a solution 𝒑𝑖
∗ ∈ Ω (Ω is the solution space)

is said to be Pareto optimal if and only if there exists no other solution 𝒑𝑗
∗ ∈ Ω that dominates 𝒑𝑖

∗. The

latter is said to be nondominated and the set of all nondominated solutions forms the so-called Pareto

front of optimal solutions.

Once the Pareto front is identified, a solution has to be selected from the set of nondominated

solutions. Although different strategies can be found in the literature, in our method we used the simple

median solution to maintain a tradeoff between the two different criteria.

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

37

An example of nondominated sorting is shown in Figure 3-4, in which a joint optimization of the

two criteria 𝑓1 and 𝑓2 is involved. The nondominated samples (in red) constitute the Pareto front, which

represents the set of optimal solutions. From this set, the selected solution is given by the median one (in

green). Dominated solutions are drawn with black crosses.

Figure 3-4: Illustration of a front of nondominated solutions.

3.3. Experimental Validation

3.3.1 Dataset description

In our simulations, we use two different datasets, each containing two images. We assume that one

of the two images contains the cloudy regions. The first dataset was acquired by the Taiwanese optical

high resolution FORMOSAT-2 satellite [22], which permits the acquisition of an area of interest every

day, from the same viewpoint and under the same light conditions. These images represent part of the

Arcachon basin in the south region of Aquitaine, in France. The images are composed of 400×400 pixels

and four spectral bands (blue, green, red, and near infrared) with a pixel spacing of 8 m. They were

acquired on the 24th of June and 16th of July, 2009, respectively (see Figure 3-5). The second dataset was

acquired by the French satellite SPOT-5, whose images represent part of the Réunion island [23]. The

images are characterized by a size of 450×450 pixels, four spectral bands (blue, green, red, and near

infrared), and a pixel spacing of 10 m and were taken on May 2 and June 18, 2008, respectively (see

Figure 3-6). The two datasets exhibit several disparities, which are (i) sensor-wise, and/or (ii) inter-pixel

spacing, and importantly (iii) the land covers. In fact, the former dataset displays more vegetation than

urban areas, whereas the latter shows otherwise.

front of

nondominated solutions

dominated solutions

median solution

f1

f2

Utopia point

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

38

(a) (b)

Figure 3-5: Color composite of first dataset acquired by FORMOSAT-2 over the Arcachon basin on (a)

24th June and (b) 16th June, 2009.

(a) (b)

Figure 3-6: Color composite of second dataset acquired by SPOT-5 over the Réunion island on (a) May

2nd and (b) June 18th, 2008.

In order to evaluate the two developed methods, the rocedure adopted in our experiments consists:

1) to consider a cloud-free image, e.g., 𝐼(1); 2) to simulate the presence of clouds by partly obscuring the

other image, e.g., 𝐼(2); and 3) to compare the reconstructed image with the original cloud-free image.

This study aims at understanding the sensitivity of the two investigated methods regarding two aspects,

which are: 1) the kind of ground covers obscured; and 2) the size of the contaminated area. In order to

obtain a detailed assessment of the reconstruction quality, we adopt the popular peak signal-to-noise ratio

(PSNR) measure [24], as well as the correlation coefficient.

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

39

3.3.2 Results

In the experiments, the size of the hidden layer d in the autoencoder is varied over a predefined

range and the two objective functions f1 and f2 are calculated at convergence for each case. In the first

method, the size n of the input feature vector is equal to four (number of image bands). For the second

method, a neighborhood of 3×3 is chosen, the value of n in this case is equal to 4×3×3. The value of d

for both cases is chosen to be within the range [1, 100]. The other parameters of the autoencoder are fixed

as follows: momentum = 0.5, initial learning rate = 1, iterative decay factor for learning rate = 0.95, and

number of epochs = 150. Regarding the multivariate normal distribution N(𝝁, 𝚺), we used zero mean and

𝜎 = 0.04.

1) Contamination of Different Ground Covers: Figure 3-7 shows different masks whose positions were

selected in such a way as to simulate the obscuration of different kinds of ground cover. In particular, for

the first dataset, in Figure 3-7(a), mask A is over a completely urban area, mask B covers a region that

includes mainly industrial zone, and mask C obscures a vegetation area. For the second dataset,

Figure 3-7(b) shows mask A covering mainly a rural area, and mask B a vegetation region. The

experiments were carried out by considering each mask at a time, where each mask is composed by

around 2000 pixels, and the training set Tr is composed by around 4000 pixels from the surrounding

region of each mask.

(a) (b)

Figure 3-7: Masks adopted to simulate the different ground cover contaminations.

In the experiments, mask A is used for training an autoencoder AEA, which on its turn is considered

as pretrained autoencoder exploited to fine-tune the other models, i.e., AEB for mask B and AEC for mask

C. In these cases (masks B and C), the number of epochs is reduced to half.

Figure 3-8 shows an example of the Pareto fronts obtained at convergence for the first dataset using

mask A and for both developed methods of reconstruction where the nondominated solutions lie along a

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

40

red curve and the selected solution is highlighted with a green circle. The different best solutions for both

datasets are reported in Table 3.1.

(a) (b)

Figure 3-8: Pareto fronts obtained at convergence for the first dataset and mask A simulation by (a)

pixel-based autoencoding reconstruction, and (b) patch-based autoencoding reconstruction.

Table 3.1: Best size of hidden layer found for the different cases.

 Dataset 1 Dataset 2

Method Pixel-AE Patch-AE Pixel-AE Patch-AE

Best d value 19 29 14 29

In order to evaluate our methods, we compare the obtained results in our experiments with results

found by state-of-the-art methods based on compressive sensing theory, namely the Orthogonal Matching

Pursuit (OMP), Basis Pursuit (BP) and Genetic Algorithm (GA) reconstruction techniques [11].

Compressed sensing in signal processing is considered as an efficient approach for reconstructing a signal

by finding solutions of an underdetermined linear system under constraint of sparsity. BP convexifies

the problem by solving it under L1 norm instead of L0 norm [25], [26]. OMP is a faster alternative of the

MP method and is based on finding the atom that has the highest correlation with the signal and then

subtracts off the correlated part from the signal and iterates the procedure on the resulting residual signal

[27], [28]. Regarding GAs, they are considered as part of evolutionary computation methods which

solves optimization problems by performing a search by regenerating a population of candidate solutions

represented by chromosomes [29], [30]. The Non-Dominated Sorting Genetic Algorithm-II (NSGA-II)

[31] is adopted in order to find the optimal solution.

The results are reported in Table 3.2, from which we can see that our methods perform better with

exception of the case of mask B on dataset 2 where BP outperforms our method by 0.24 dB but provides

a similar correlation coefficient (0.91). Regarding the other cases, the improvement is between 3.69 dB

(mask B on dataset 1) and 11.49 dB for the case of mask C on dataset 1. Such improvements can be

justified by the fact that methods based on compressive sensing approach are based on a linear

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

41

reconstruction paradigm contrary to the AE which involves a nonlinear transformation. Moreover, in the

method developed in [11], a dictionary is created by grid-sampling over all the image and with a limited

number of atoms in order to reduce the processing complexity. By contrast in our methods, we select the

training patterns from pixels of the surrounding region of the masks, which are potentially more

correlated to those obscured. Finally, it can be seen that using patch-based reconstruction improves

significantly the result compared to using pixel-based information for reconstruction, since it opportunely

exploits the spatial correlation between neighboring pixels.

Table 3.2: (a) PSNR values and (b) correlation coefficients obtained by the different methods in the

first simulation experiments.

(a)

Method Dataset 1 Dataset 2

Mask A Mask B Mask C Mask A Mask B

OMP [11] 23.96 20.60 31.97 26.36 30.43

BP [11] 22.22 24.74 30.67 26.45 31.63

GA [11] 23.78 23.15 32.01 26.72 31.28

Pixel-AE 29.71 27.73 39.42 28.62 31.25

Patch-AE 32.95 28.47 43.94 30.77 32.23

(b)

Method Dataset 1 Dataset 2

Mask A Mask B Mask C Mask A Mask B

OMP [11] 0.81 0.94 0.89 0.77 0.88

BP [11] 0.86 0.96 0.90 0.76 0.91

GA [11] 0.84 0.95 0.90 0.78 0.90

Pixel-AE 0.93 0.98 0.98 0.90 0.91

Patch-AE 0.97 0.98 0.99 0.91 0.93

Finally, we analyzed the sensitivity of the patch-based strategy to the size of the patch, by

increasing it from 3×3 to 7×7. The results which are provided in Table 3.3 suggest that the accuracy

decreases as the size increases. This can be explained by the fact that an increasing size of the patch

involves a quadratic increase in the dimensionality of both the input and output spaces and thus a potential

risk of curse of dimensionality. Moreover, increasing the size leads to a decrease of correlation between

the central pixel and the neighboring ones adding noise in the reconstruction process.

Table 3.3: Analysis of the sensitivity to the patch size in terms of PSNR for the first simulation

experiments. 1×1 size refers to the pixel-based strategy.

Patch size Dataset 1 Dataset 2

Mask A Mask B Mask C Mask A Mask B

1x1 29.71 27.23 39.71 28.62 31.25

3x3 32.95 28.47 43.94 30.77 32.23

5x5 30.74 25.57 43.53 29.86 31.1

7x7 23.61 16.83 32.12 27.93 31.25

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

42

2) Contamination with Different Sizes: the second simulation experiments consist of increasing the size

of the obscured area. Figure 3-9 illustrates the three different masks adopted to simulate the different

sizes of the clouds. Mask 1 is fixed with the same size as the masks A adopted in the previous

experiments, i.e., it covers about 2000 pixels. Masks 2 and 3 are built by multiplying the previous size,

by 3 and by 6, and the resulting masks cover around 6000 and 12000 pixels, respectively. Also in these

experiments, we selected pixels for training from the surrounding regions of the obscured areas. The size

of the training is chosen to be around double the size of the corresponding mask. Similarly to previous

experiment, mask 1 is used to build the pretrained autoencoder AE1. A fine tuning is applied by using

AE1 on the two other cases (mask 2 and mask 3) in order to build their corresponding models AE2 and

AE3, respectively. Table 3.4 reports for the two datasets the results achieved by the two reconstruction

techniques and by varying the amount of missing data.

(a) (b)

Figure 3-9: Masks adopted to simulate the different sizes of contamination.

From a quantitative viewpoint, in terms of PSNR and correlation coefficient, we have similar

results as in the previous experiments. The two developed methods outperform by more than 3 dB for all

cases compared to the other methods. Also, we can notice that by increasing the size of the contaminated

region, the PSNR increases very slightly which shows that the developed strategy maintains the

reconstruction quality of the cloudy regions almost independently from the size of the clouds. The

correlation coefficients are much higher in most of the cases (around 0.95 on an average).

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

43

Table 3.4: (a) PSNR values and (b) correlation coefficients obtained by the different methods in the

second simulation experiments.

(a)

Method Dataset 1 Dataset 2

Mask 1 Mask 2 Mask 3 Mask 1 Mask 2 Mask 3

OMP [11] 23.96 23.21 25.01 26.36 26.42 27.39

BP [11] 22.22 22.89 21.47 26.45 26.82 28.25

GA [11] 23.78 23.85 23.03 26.72 27.10 28.15

Pixel-AE 29.71 30.05 29.68 28.92 28.53 29.18

Patch-AE 32.95 33.15 32.37 30.77 30.85 30.91

(b)

Method Dataset 1 Dataset 2

Mask 1 Mask 2 Mask 3 Mask 1 Mask 2 Mask 3

OMP [11] 0.81 0.75 0.92 0.77 0.78 0.80

BP [11] 0.86 0.87 0.87 0.76 0.77 0.81

GA [11] 0.84 0.82 0.89 0.78 0.78 0.80

Pixel-AE 0.93 0.95 0.95 0.90 0.84 0.84

Patch-AE 0.97 0.98 0.98 0.91 0.92 0.90

From a qualitative viewpoint, Figure 3-10 and Figure 3-11 show the reconstruction results in color

composites obtained for dataset 1 (with mask C) and for dataset 2 (with mask 2), respectively. In

particular, OMP and Patch-AE reconstruction methods are considered for comparison since: 1) OMP

represents the best compromise between accuracy and computation time compared to BP and GA

strategies; and 2) Patch-AE outperforms Pixel-AE in all simulations with insignificant extra computation

cost. From Figure 3-10.b and Figure 3-10.c, it can be observed that OMP generates a salt-and-pepper

noise in the reconstruction while the Patch-AE result appears perfect visually (which confirms the 43.60

dB of reconstruction accuracy, see Table 3.2). In Figure 3-11.b and Figure 3-11.c, due to the complex

structure of the urban area, the reconstruction task is a priori harder. The OMP result exhibits a noise

under the form of dark spots spread along the urban structures, it loses some urban morphologies and

introduces a bias which makes the reconstruction appear a bit brighter than it should. All these problems

can be explained by the fact that the OMP is a very sparse strategy as mentioned in [11], which makes it

less robust in particular when complex structures are contaminated. The Patch-AE result is definitely

better as most of the structures appear correctly reconstructed but with a problem of blurring. This can

be explained by the fact that the Patch-AE method reconstructs the single pixels by averaging the

outcomes from all patches involving each single pixel (see Figure 3-3). Such a weighted averaging

operation acts thus as a post-processing filter incurring in a blurring effect.

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

44

(a) (b) (c)

Figure 3-10: Examples of qualitative results for Dataset 1. (a) Original image. Image reconstructed

(after contamination with mask C) by the (b) OMP and (c) patch-based reconstruction methods.

(a) (b) (c)

Figure 3-11: Examples of qualitative results for Dataset 2. (a) Original image. Image reconstructed

(after contamination with mask 2) by the (b) OMP and (c) patch-based reconstruction methods.

As performed for the first set of experiments, we analyzed again the sensitivity of the patch-based

strategy to the patch size (see Table 3.5). Similar observations can be drawn, leading to the conclusion

that a 33 patch size is the best compromise in terms of accuracy and computation load.

Table 3.5: Analysis of the sensitivity to the patch size in terms of PSNR for the second simulation

experiments. 1×1 size refers to the pixel-based strategy.

Patch size Dataset 1 Dataset 2

Mask 1 Mask 2 Mask 3 Mask 1 Mask 2 Mask 3

1x1 29.71 30.05 29.68 28.62 28.53 29.18

3x3 32.95 33.15 32.37 30.77 30.85 30.91

5x5 30.74 31.26 30.99 29.86 29.9 30.22

7x7 23.61 23.78 23.16 27.93 27.91 28.68

3.3.3 Results on real clouds

In addition, we applied our method on a data set with real clouds (see Figure 3-12). In particular,

this data set, useful for qualitative evaluation, is composed of three images. It was acquired by the

European optical high resolution Sentinel-2 satellite. The images represent part of the Washington region

in USA. They contain 800×700 pixels and four spectral bands (blue, green, red, and near infrared) with

a pixel spacing of 10 m on the ground. They were acquired on September 14th 2015, August 5th 2015,

and July 20th, 2016, respectively. The first image is used as reference image (cloud free image) and the

two others as target images (cloudy images). Between the first and second images (Figure 3-12.a and

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

45

Figure 3-12.b), a first autoencoder AE1 was trained and exploited as a pretrained model to fine-tune

another autoencoder AE2 for the third image (Figure 3-12.c). The clouds and their shadows on both

cloudy images were masked manually (Figure 3-13). The obtained results on the two target images are

provided in Figure 3-14. Figure 3-15 presents zooms of contaminated regions after reconstruction. The

images show the good capability of the developed method in reconstructing areas contaminated by clouds

(and their shadow). Indeed, the differences between the reconstructed areas and the surrounding regions

are very small and can hardly be seen visually. On its side, the reference OMP method exhibits a slight

spectral mismatch when compared to the surrounding uncontaminated area (see Figure 3-15.c and

Figure 3-15.f) as well as some artifacts (see Figure 3-15.c).

(a) (b) (c)

Figure 3-12: Color composite of the third dataset acquired by Sentinel-2 over Washington on (a)

September 14th, 2015 (source image); (b) August 5th, 2015 (target image 1); and (c) July 20th, 2016

(target image 2).

Figure 3-13: Masked clouds and shadows of the third dataset.

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

46

(a) (b)

Figure 3-14: Reconstructed images obtained for dataset 3. (a) second image (August 5th, 2015), (b)

third image (July 20th, 2016).

(a) (b) (c)

Figure 3-15: Zooms of reconstruction results obtained for third image (July 20th, 2016) from source

image (September 14th, 2015) of dataset 3, over (a)-(b) urban and (d)-(e) green areas. For comparison,

results generated by the OMP method are provided in (c) and (f).

As a last experiment, we tested our method on an image characterized by the presence of

phenological changes. This image was acquired in the region of Bejaia, Algeria, with the Landsat-8

satellite. The first (source) image was acquired on July 31st, 2016 (Figure 3-16.a), while the second

(target) image was taken on March 28th, 2016 (Figure 3-16.b). The latter conveys healthy vegetation

while the former reports dry vegetation due to high temperatures at that period of the year. Figure 3-16.c

reveals that, despite the presence of significant spectral changes in the land covers, the proposed method

is capable to capture them and provide a visually sound reconstruction result.

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

47

(a) (b)

(c)

Figure 3-16: Results achieved for dataset 4. (a) first image (July 31st, 2016), (b) second image (March

28th, 2016), (c) reconstruction of second image.

3.4. Conclusion

We have proposed in this chapter a new approach to recover missing data in multispectral images

due to the presence of clouds. In particular, the reconstruction problem is formulated under an

autoencoding perspective, based on an AE neural network. Given a cloud-free image (source image) and

a cloud-contaminated image (target image), the standard AE process is slightly modified so as to estimate

the mapping function between the source and the target images. For this purpose, we have developed two

strategies; the first relies on simple pixel-based information to calculate the transformation function

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

48

whereas the second strategy performs a patch-to-patch mapping followed by a simple fusion step to

reconstruct the single pixels of the missing areas in the target image. Moreover, in order to fix the problem

of the hidden layer size, a new solution combining the minimum descriptive length (MDL) criterion and

a Pareto-like selection method has been introduced.

The experimental results reveal that the two proposed methods (Pixel-AE and Patch-AE) show

good results in reconstructing the missing areas and can significantly outperform state-of-the-arts

methods. Compared to Pixel-AE, Patch-AE yields better accuracies thanks to the feeding of contextual,

and thus richer information, in the reconstruction model. In general, it is noteworthy that the size of the

contaminated region does not affect the performance of the methods. Nevertheless, since the training is

performed over the neighborhood of the missing area it is important that the neighborhood be enough

representative. Otherwise, the risk to get unsatisfactory results can sharply increase.

3.5. References

[1] C. Ji, “Haze reduction from the visible bands of LANDSAT TM and ETM+ images over a shallow water

reef environment,” Remote Sens. Environ., vol. 112, no. 4, pp. 1773–1783, Apr. 2008.

[2] M. Xu, X. Jia, and M. Pickering, “Automatic cloud removal for Landsat 8 OLI images using cirrus band,”

in Proc. IEEE IGARSS, 2014, pp. 2511–2514.

[3] M. Xu, X. Jia M. Pickering, and A. J. Plaza, "Cloud Removal Based on Sparse Representation via

Multitemporal Dictionary Learning," IEEE Trans. Geosci. Remote Sens., Vol. 54, No. 5, pp. 2998–3006,

Mars 2016.

[4] M. Xu, M. Pickering, A. J. Plaza, and X. Jia, "Thin cloud removal based on signal transmission principles

and spectral mixture analysis,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1659–1669, 2016.

[5] A. Maalouf, P. Carré, B. Augereau, and C.F. Maloigne, "A Bandelet-Based Inpainting Technique for Clouds

Removal From Remotely Sensed Images," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2363–

2371, Jul. 2009.

[6] L. Lorenzi, F. Melgani, and G. Mercier, “A support vector regression with kernel combination for missing

data reconstruction,” IEEE Geosci. Remote Sens. Lett. S, vol. 10, no. 2, pp. 367-371, Mar. 2013.

[7] S. C. Liew, M. Li, and L. K. Kwoh, “Automated production of cloud-free and cloud-shadow image mosaics

from cloudy satellite imagery,” in Proc. 20th ISPRS Congr., Istanbul, Turkey, Jul. 2004, pp. 523–530.

[8] F. Melgani, “Contextual reconstruction of cloud-contaminated multitemporal multispectral images,” IEEE

Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 442–455, Feb. 2006.

[9] D. C. Tseng, H. T. Tseng, and C. L. Chien, “Automatic cloud removal from multi-temporal SPOT images,”

Appl. Math. Comput., vol. 205, no. 2, pp. 584–600, Nov. 2008.

[10] C. H. Lin, P. H. Tsai, K. H. Lai, and J. Y. Chen, “Cloud removal from multitemporal satellite images using

information cloning,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 232–241, Jan. 2013.

[11] L. Lorenzi, F. Melgani, and G. Mercier, "Missing-Area Reconstruction in Multispectral Images Under a

Compressive Sensing Perspective," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 7, pp. 3998–4008, Jul.

2013.

[12] J. Xie, L. Xu, and E. Chen, “Image Denoising and Inpainting with Deep Neural Networks,” NIPS, pp. 1–9,

2012.

[13] K. G. Lore, A. Akintayo, and S. Sarkar, “LLNet: A deep autoencoder approach to natural low-light image

enhancement,” Pattern Recognit., vol. 61, pp. 650–662, 2017.

Chapter 3: Reconstructing Cloud-Contaminated Multispectral Images with Contextualized AutoEncoder

49

[14] R. Wang and D. Tao, “Non-Local Auto-Encoder with Collaborative Stabilization for Image Restoration,”

IEEE Trans. Image Process., vol. 25, no. 5, pp. 2117–2129, 2016.

[15] W. Huang, L. Xiao, Z. Wei, H. Liu, and S. Tang, “A New Pan-Sharpening Method With Deep Neural

Networks,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 5, May 2015.

[16] J. Tang, C. Deng, G. B. Huang, and B. Zhao, “Compressed-Domain Ship Detection on Spaceborne optical

image using deep neural network and extreme learning machine,” IEEE Trans. Geosci. Remote Sens., vol.

53, no. 3, Mar. 2015.

[17] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep Learning-Based Classification of Hyperspectral

Data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, Jun. 2014.

[18] Y. Liang, J. Wang, S. Zhang, and Y. Cong, "Learning Visual Co-Occurrence with Auto-Encoder for Image

Super-Resolution," in Proc. APSIPA, 2014, pp. 1–4.

[19] J. Rissanen, Stochastic Complexity in Statistical Enquiry. Singapore: World Scientific, 1989.

[20] L. Bottou, “Stochastic gradient learning in neural networks”, in Proc. Neuro-Nimes 91, 1991.

[21] J. Rissanen, “Modeling by shortest data description, “ Automatica, vol. 14, no. 5, pp. 465–471, Sep. 1978.

[22] C. C. Liu, “Processing of FORMOSAT-2 daily revisit imagery for site surveillance,” IEEE Trans. Geosci.

Remote Sens., vol. 44, no. 11, pp. 3206–3215, Nov. 2006.

[23] A. Baudoin, “Mission Analysis for SPOT 5”, in IEEE IGARSS, 1993, vol. 3, pp. 1084.

[24] A. K. Jain, Fundamentals of Digital Image Processing. New York: Prentice Hall, 1988.

[25] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci.

Comput., vol. 20, no. 1, pp. 33–61, Aug. 1998.

[26] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse

modelling of signals and images,” SIAM Rev., vol. 51, no. 1, pp. 34–81, Feb. 2009.

[27] N. Wang and Y. Wang, “An image reconstruction algorithm based on compressive sensing using conjugate

gradient,” in Proc. IUCS, Oct. 2010, pp. 374–377.

[28] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit: Recursive function

approximation with applications to wavelet decompositions,” in Proc. 27th Asilomar Conf. Signals., Syst.

Comput., 1993, pp. 40–44.

[29] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA:

Addison-Wesley, 1989.

[30] L. Chambers, The Practical Handbook of Genetic Algorithms. New York: Chapman & Hall, 2001.

[31] N. Srinivas, and K. Deb, “Multiobjective function optimization using nondominated sorting genetic

algorithms,” Evol. Comput., vol. 2, no. 3, pp. 221–248, 1995.

50

Chapter 4

1D-Convolutional Neural Networks for

Spectroscopic Signal Regression

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

51

4.1. Introduction

Chemometrics is the application of mathematical and statistical tools to mostly retrieve chemical

information, but may include also physical, biological, and other quantitative and/or qualitative data in

order to address problems in chemistry, biology, medicine, and chemical engineering. Associated with

chemometrics, spectroscopy allows simultaneous analysis of several parameters and gives possibility to

replace many devices, thereby providing analysis solutions merged into a single platform. Spectroscopy

has become nowadays a powerful tool for quality control and product analysis in different chemical fields

[1]–[5]. However, estimating the concentration of chemical components of interest in a given product is

difficult and challenging due to the collinearity between the spectral variables, and the large number of

variables to be treated. To address this issue, machine learning can represent an attractive approach since

it may exhibit various advantages compared to traditional methods such: 1) as nonlinear modeling

capability; 2) good generalization capability thanks to an adequate handling of the overfitting risk; 3)

little or no knowledge is required on the problem; 4) limited number of hyperparameters to be tuned; and

5) good results even with limited number of training samples. In this context, many solutions have been

proposed in the literature, using predominantly machine learning estimation methods, such as partial

least squares regression (PLS regression) [6]–[8], multiple linear regression (MLR) [9], artificial neural

networks (ANNs) [10], support vector machines for regression (SVR) [11]–[13], Gaussian process

regression (GPR) [14], extreme learning machines (ELM) [15] and fusion approach based on induced

ordered weighted averaging operators (IOWA) applied on an ensemble generated by GPR and ELM

estimators associated with different kernels [16].

Convolutional Neural Networks (CNNs) are considered as machine learning tools based on

learning data models. They were developed by Y. LeCun et al. in 1998 [17] as a class of deep feed-

forward artificial neural networks. They are now one of the most important deep learning architectures,

and they have been applied for numerous tasks in different research fields which deal with images such

as remote sensing [18], [19], biomedical imaging [20], [21] and biometrics [22], [23]. However, it can

be interesting to explore the effectiveness of CNNs to other applications that do not deal with image data,

such as biosignals and chemometric signals. To the best of our knowledge, the works developed by

Acquarelli et al. [24], Chen et al. [25] and Kiranyaz et al. [26] are the only works where CNNs are used

over 1D input signals. In particular, they were applied for spectroscopic data classification, hyperspectral

images classification (pixel-based method) and ECG real time classification, respectively.

In this work, we propose a novel approach for chemometric data analysis by using 1-D

convolutional neural networks (1D-CNNs). Conventional CNNs are hierarchical architectures based on

an alternation of convolutional layers with subsampling layers and followed by a fully connected layer

(or many layers similar to a multilayer perceptron MLP). Regarding 1D-CNNs, the basis of the

architecture is similar to that of conventional CNNs. The difference is the use of 1D input data that

requires the application of 1D filters on the convolution layers and consequently the modification of the

equations of the forward propagation and back propagation during the training phase. Furthermore, in

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

52

order to deal with the problem of limited data, we propose to optimize the 1D-CNN and estimate the

weights of the filters by using an evolutionary method. We use for this purpose the particle swarm

optimization (PSO) method. The 1D-CNN and the PSO-1DCNN methods are used here as feature

extractor and the extracted features are fed to advanced regression methods such as GPR and SVR (see

Figure 4-1).

To the best of our knowledge, the contribution of this work is twofold. First, it explores 1D-CNNs for

regression issues, with application to spectroscopic signal regression. Secondly, it is also the first work

proposing PSO to train a 1D-CNN for signal regression.

Figure 4-1: General scheme of the proposed method for chemometric data analysis.

The rest of this Chapter is organized as follows. Section II presents the architecture of the proposed

1D-CNN method. The developed PSO-1DCNN is described in Section III. In Section IV, we give brief

details about the two methods of regression used in the prediction phase (GPR and SVR). The

experimental results are presented in Section V. Finally, conclusions and future developments are

reported in Section VI. Mathematical symbols adopted in this chapter are summarized in the Appendix.

4.2. 1D-CNNs

As stated before, 1D-CNNs are used in this work for feature extraction. The last fully connected

layer (logistic regression layer) is added for the purpose of adjusting the different parameters just during

the back propagation training.

Let us consider a matrix of training samples X = [x1, x2, …, xN]′, where N is the number of training

samples and each vector xi is represented in the d-dimensional measurement space. Let us also denote as

y = [y1, y2, …, yN]′ the real output target vector associated with X. A 1D-CNN is constituted of a number

L of layers, each layer l (l=1..L) is composed of ml feature signals and performs both convolution and

subsampling operations. We assume that the factor of subsampling (ss) is always equal to 2 (ss = 2).

Figure 4-2 illustrates a general 1D-CNN architecture.

1D-CNNs
Regressors
(GPR/SVR)

Input data

x

Extracted

features

z

output

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

53

Figure 4-2: 1D-CNN general architecture.

4.2.1 Forward propagation

Assuming the current layer l, during the forward propagation, the input of each feature signal of

the layer l is the result of the accumulation of the final output (after the subsampling) of the previous

feature signal (l - 1) convolved with their proper filters and passed through an nonlinear activation

function as follows:

𝒂𝑖
𝑙 = 𝑏𝑖

𝑙 + ∑ conv1D(𝒘𝑖,𝑗
𝑙𝑚𝑙−1

𝑗=1 , 𝒔𝑗
𝑙−1) (i=1, …,𝑚𝑙) (4.1)

𝒔𝑖
𝑙 = 𝑓(𝒂𝑖

𝑙) (4.2)

where 𝒂𝑖
𝑙 is the input of the i-th feature signal of the layer l, 𝑏𝑖

𝑙 is the bias of this feature signal and 𝒔𝑖
𝑙 is

its output, 𝒔𝑗
𝑙−1 is the output of the j-th feature signal on the previous layer (l-1), 𝒘𝑖,𝑗

𝑙 is the filter (kernel)

weights vector between the j-th feature signal on the l-1 layer and the i-th feature signal on the l-th layer,

and 𝑓(∙) is a nonlinear activation function. Typically, a sigmoid activation function is used, which is

expressed by the equation below:

𝑓(𝑥) =
1

1+𝑒−𝑥 (4.3)

Regarding the dimension of the vectors on each part of the 1D-CNN, if we suppose that dl is the

dimension of the final output of each feature signal on the layer l and rl is the length of its corresponding

kernel (filter), the final output of the feature signal of the next layer l+1 (l+1 ≤ L) is:

z

z1

z2

.

.

.

.

.

.

.

zn

…
…
.

Layer 3Layer 1

Conv-layer: Kernel: r3×1,

feat-signals:

Subsampling: ss = 2×1
Concatenation

Layer 4

Output-Layer

Fully connected layer

Input-Layer

Layer 2

Conv-layer: Kernel: r2×1,

feat-signals:

Subsampling: ss = 2×1

Convolution

Convolution
Subsampling

Subsampling

Feature vector

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

54

𝑑𝑙+1 =
𝑑𝑙– 𝑟𝑙 +1

2
 (4.4)

The outputs of feature signals of the last layer L are stacked in one vector z which is the feature

vector of the 1D-CNN with a size n equals to 𝑑𝐿 × 𝑚𝐿. Neurons of this layer are fully connected to the

output layer. In our case, since we deal with regression problems and each input x has one target value

y, the output layer is formed by just one neuron and its output y (𝒔𝐿+1) is formulated as follows:

 𝑦 = 𝒔𝐿+1 = 𝑓(𝑏𝐿+1 + ∑ (𝒘1,𝑖
𝐿+1𝑛

𝑖=1 × 𝒛)) (4.5)

4.2.2 Back propagation

In order to train the 1D-CNN, we need to compute first the error at the output layer 𝐸(𝑦) and its

gradient
𝜕𝐸

𝜕𝑦
. The objective of calculating this error is to be able to estimate the weights in order to

minimize this error during the process of learning. To this end, we need to calculate the derivative of the

error with respect to each weight
𝜕𝐸

𝜕𝒘𝑖,𝑗
𝑙 = ∆𝒘𝑖,𝑗

𝑙 .

Using the chain rule, we get the following:

𝜕𝐸

𝜕𝒘𝑖,𝑗
𝑙 =

𝜕𝐸

𝜕𝒂𝑖
𝑙

𝜕𝒂𝑖
𝑙

𝜕𝒘𝑖,𝑗
𝑙 (4.6)

From equation (4.1), we can deduce that:

𝜕𝒂𝑖
𝑙

𝜕𝒘𝑖,𝑗
𝑙 = 𝒔𝑗

𝑙−1 (4.7)

Using equation (4.7), equation (4.6) becomes:

𝜕𝐸

𝜕𝒘𝑖,𝑗
𝑙 =

𝜕𝐸

𝜕𝒂𝑖
𝑙 𝒔𝑗

𝑙−1 =
𝜕𝐸

𝜕𝒂𝑖
𝑙 𝑓(𝒂𝑗

𝑙−1) (4.8)

We already know all the values of 𝒔. In order to compute the gradient, we need to know the values
𝜕𝐸

𝜕𝒂𝑖
𝑙 . By using once more the chain rule, we can write:

𝜕𝐸

𝜕𝒂𝑖
𝑙 =

𝜕𝐸

𝜕𝒔𝑖
𝑙

𝜕𝒔𝑖
𝑙

𝜕𝒂𝑖
𝑙 =

𝜕𝐸

𝜕𝒔𝑖
𝑙

𝜕

𝜕𝒂𝑖
𝑙 𝑓(𝒂𝑖

𝑙) =
𝜕𝐸

𝜕𝒔𝑖
𝑙 𝑓′(𝒂𝑖

𝑙) (4.9)

We can compute the derivative
𝜕𝐸

𝜕𝒂𝑖
𝑙 at the current layer by just computing the derivative of the

activation function 𝑓′(𝒂𝑖
𝑙). Since we use a sigmoid function, the derivative of the activation function is

written as follows:

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

55

𝑓′(𝑥) = 𝑓(𝑥) × (1 − 𝑓(𝑥)) (4.10)

Moreover, since we already know the error at the current layer
𝜕𝐸

𝜕𝒔𝑖
𝑙, we can compute then the

gradient with respect to the weights used by the considered convolutional layer.

Next task consists of propagating the errors back to the previous layer. By using again chain rule, we can

find:

𝜕𝐸

𝜕𝒔𝑗
𝑙−1 =

𝜕𝐸

𝜕𝒂𝑖
𝑙

𝜕𝒂𝑖
𝑙

𝜕𝒔𝑗
𝑙−1 (4.11)

From equation (4.1), we can deduce that:

𝜕𝒂𝑖
𝑙

𝜕𝒔𝑗
𝑙−1 = 𝒘𝑖,𝑗

𝑙 (4.12)

Now, we have everything we need to compute ∆𝒘𝑖,𝑗
𝑙 , we just need to update weights as follows:

𝒘𝑖,𝑗
𝑙∗ = 𝒘𝑖,𝑗

𝑙 + 𝜂∆𝒘𝑖,𝑗
𝑙 (4.13)

where 𝒘𝑖,𝑗
𝑙∗ corresponds to the weights of the next iteration and 𝜂 is the learning rate.

4.2.3 Subsampling layers

The main objective of subsampling is to reduce the size of the final feature vector in order to allow

the problem remaining tractable. The subsampling can be done by different ways. In our case, in forward

propagation, each block of size ss×1 is reduced to a single value. This value equals to the average of its

corresponding block. Therefore, it acquires an error computed from backward propagation from the

previous layer. This error is then just expanded (upsampled) and forwarded to the next layer (in the

backward propagation direction).

We refer the Reader to [27] where more details can be found regarding the general concepts behind

CNNs.

4.3. PSO-1DCNN

Particle swarm optimization (PSO) [28] is a stochastic optimization technique which is inspired by

social behavior of bird flocking and fish schooling. Similar to other evolutionary computation algorithms,

PSO is a population-based search method that exploits the concept of social sharing of information. This

means that each individual (called particle) of a given population (called swarm) can profit from the

previous experiences of all other individuals from the same population. During the search process in the

d-dimensional solution space, each particle (i.e., candidate solution) will adjust its flying velocity and

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

56

position according to its own flying experience as well as the experiences of the other companion

particles of the swarm.

We propose to introduce PSO to estimate the different parameters (weights) of the 1D-CNN as an

alternative to the standard back propagation algorithm. The advantage of using PSO is to overcome the

problem of overfitting due to limited number of training samples. Furthermore, the complexity of the

network will be reduced by using a layer-wise optimization, where PSO will be applied on each layer

independently as described in the following figure.

Figure 4-3: Architecture of the PSO-1DCNN.

In the following, we will describe briefly the main concepts of the basic PSO algorithm. Let us

consider a swarm of size S. Each particle Pi (i = 1, 2,..., S) from the swarm is characterized by: 1) its

current position 𝐩𝑖(𝑡) ∈ ℜ𝑛, which refers to a candidate solution of the optimization problem at iteration

t; 2) its velocity 𝐯𝑖(𝑡) ∈ ℜ𝑛; and 3) the best position 𝐩𝑏𝑖(𝑡) ∈ ℜ𝑛 that is identified during its past

trajectory. Let 𝐩𝑔(𝑡) ∈ ℜ𝑛 be the best global position found over all trajectories that are traveled by the

particles of the swarm. Since the PSO is applied in cascade on each layer of the 1DCNN, the coordinates

of a particle will encode the values of all the weights characterizing that layer. The position optimality is

measured by means of one or more fitness functions that are defined in relation to the considered

optimization problem. During the search process, the particles move according to the following

equations:

Concatenation

Input

Convolution Subsampling

Population

of filters

Fully connected

sub-network

ith population

(i=1…S)

Input

trained sub-network Population of

filters

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

57

{

𝐯𝑖(𝑡 + 1) = 𝜔0𝐯𝑖(𝑡) + 𝑐1. 𝑟1(𝑡)(𝐩𝑏𝑖(𝑡) − 𝐩𝑖(𝑡))

 +𝑐2. 𝑟2(𝑡) (𝐩𝑔(𝑡) − 𝐩𝑖(𝑡))

𝐩𝑖(𝑡 + 1) = 𝐩𝑖(𝑡) + 𝐯𝑖(𝑡)

 (4.14)

where r1(t) and r2(t) are random variables that are drawn from a uniform distribution in the range [0, 1]

to provide a stochastic weighting of the different components participating in the particle velocity

definition. c1 and c2 are two acceleration constants regulating the relative velocities with respect to the

best local and global positions, respectively. The inertia weight 𝜔0 is used as a tradeoff between global

and local exploration capabilities of the swarm. Large values of this parameter permit better global

exploration, whereas small values lead to a fine search in the solution space. First part of the equation

(4.14) allows the computation of the velocity at iteration t + 1 for each particle in the swarm by combining

linearly its current velocity and the distances that separate the current particle position from its best

previous position and the best global position, respectively. The updating of the particle position is

performed with the second part of equation (4.14), which is iterated until convergence of the search

process is reached.

4.4. Prediction

Similarly to conventional 2DCNNs, the feature signals of the last subsampling layer are gathered

and concatenated to form the feature vector which will be considered as a new representation of the input

sample. For the prediction, we will resort to two different methods of regression, namely GPR and SVR,

which will be fed with features extracted by the 1D-CNN. The choice of these advanced machine learning

methods is motivated by their successful applications in different research fields [29]–[34], as well as in

the chemometric data analysis [16]. Such a success is mainly explained by their lower sensitivity to the

risk of overfitting, and thus their higher generalization capability with respect to traditional regression

methods. Moreover, they involve a very limited number of hyperparameters to be tuned (depending on

the adopted covariance/kernel function). A brief description of these two methods is provided in the

following.

4.4.1 GPR

Let us consider a set of N training samples Z = [z1, z2, …, zN]′, where each vector zi is the feature

vector of dimension n extracted by the 1D-CNN from the input sample xi. Let us also denote as y = [y1,

y2, …, yN]′ the corresponding target vector associated with Z. The objective of the GPR is to deduce a

relationship between the set of training samples Z and the target vector y which is considered as the sum

of a latent function f and a noise component εn, where:

f~GP(0, K(Z, Z)) (4.15)

εn~N(0, 𝜎𝑛
2I) (4.16)

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

58

The first equation implies that a Gaussian process GP(.,.) is assumed over the latent function f

which is considered as a collection of random variables which follow a joint Gaussian distribution [35].

K is the covariance matrix built by means of a kernel function K computed on all the training sample

pairs. The second equation states that the output target vector is corrupted by a noise that follows a

Gaussian distribution with zero-mean and variance equals to 𝜎𝑛
2. Since the latent function f and the noise

ε are statistically independent, the noisy observations y are also modeled with GP, that is,

y~GP(0, K(Z, Z) + 𝜎𝑛
2I) (4.17)

or equivalently

p(y|Z) = N(0, K(Z, Z) + 𝜎𝑛
2I) (4.18)

In the prediction phase, given the set of training samples, the best estimation of the output value yt

associated with an unknown sample zt is given by:

�̂�t|𝐙, 𝐲, 𝐳𝐭~𝐸{𝑦t|𝐙, 𝐲, 𝐳𝐭} = ∫ 𝑦t 𝑝(𝑦t|𝐙, 𝐲, 𝐳𝐭)d𝑦 (4.19)

It is clear from the last equation that in order to estimate the output value, the knowledge of the

predictive distribution 𝑝(𝑦t|𝐙, 𝐲, 𝐳𝐭) is required. For this purpose, the joint distribution of the known

observations y and the desired function value 𝑦t should be first derived. Thanks to the assumption of a

GP over y and to the marginalization property of GPs, this joint distribution is Gaussian. The desired

predictive distribution can be derived simply by conditioning the joint one to the noisy observations y

and takes the expression:

𝑝(𝑦t|𝐙, 𝐲, 𝐳𝐭) = N(𝜇t, 𝜎t
2) (4.20)

where:

𝜇t = [
𝑘(𝐳t, 𝐳1)

⋮
𝑘(𝐳t, 𝐳𝑁)

]

T

. [𝐊(𝐙, 𝐙) + 𝜎𝑛
2𝐈]−1. 𝐲 (4.21)

and

𝜎t
2 = 𝑘(𝐳t, 𝐳t) − [

𝑘(𝐳t, 𝐳1)
⋮

𝑘(𝐳t, 𝐳𝑁)
]

T

. [𝐊(𝐙, 𝐙) + 𝜎𝑛
2𝐈]−1. [

𝑘(𝐳t, 𝐳1)
⋮

𝑘(𝐳t, 𝐳𝑁)
] (4.22)

These are the key equation in the GPR approach. The mean 𝜇t expresses the best output value

estimate for the considered sample and the variance 𝜎t
2 represents the confidence measure associated by

the model to the output.

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

59

A central role in the GPR model is played by the kernel function k(𝐳i, 𝐳j) (covariance) as it embeds

the geometric structure of the training samples. Through it, it is possible to define the prior knowledge

about the output function we wish to learn. The parameters of the covariance function can be determined

empirically (for example by cross-validation). As an alternative, the intrinsic nature of GPs allows a

Bayesian treatment for the estimation of parameter vectors Θ. To this end, one may resort to the ML-II

estimation procedure. It consists in the maximization of the marginal likelihood with respect to Θ, that

is, the integral of the likelihood times the prior.

𝑝(𝒚|𝐙) = 𝑝(𝒚|𝐙, 𝚯) = ∫ 𝑝(𝐲|𝐟, 𝐙, 𝚯)𝑝(𝐟|𝐙, 𝚯)d𝐟 (4.23)

with the marginalization over the latent function f. Under GP modeling, both the prior and the likelihood

follow Gaussian distributions. After some manipulation, it is possible to show that

the log marginal likelihood can be written as [35]:

log𝑝(𝒚|𝐙, 𝚯) = −
1

2
𝐲T. [𝐊(𝐙, 𝐙) + 𝜎𝑛

2𝐈]−1. 𝐲 −
1

2
log|𝐊(𝐙, 𝐙) + 𝜎𝑛

2𝐈| −
𝑁

2
log(2𝜋) (4.24)

This equation is characterized by the sum of three terms. The first is the only one that involves the

target observations. It represents the capability of the model to fit the data. The second one is the model

complexity penalty, and the third term is a normalization constant. From an implementation viewpoint,

this maximization problem can easily be solved by a gradient-based search routine [35].

4.4.2 SVR

Support Vector machine Regression (SVR) performs linear regression in a feature space using an

epsilon-intensive loss (ε-SVM). This technique is based on the idea of deducing an estimate �̂�(𝐳𝑖) of the

true but unknown relationship 𝑦𝑖 = 𝑔(𝐳𝑖) (𝑖 = 1, … , 𝑁) between the vector of observations 𝐳𝑖 and the

target value 𝑦𝑖 such that: 1) �̂�(𝐳𝑖) has, at most, ε deviation from the desired targets 𝑦𝑖 and 2) it is as

smooth as possible [36], [37]. This is performed by mapping the data from the original feature space of

dimension n to a higher 𝑛′-dimensional transformed feature space (kernel space), i.e., 𝛷(𝐳𝑖) ∈

ℜ𝑛′
 (𝑛′ > 𝑛), to increase the flatness of the function and, by consequence, to approximate it in a linear

way as follows:

�̂�(𝐳𝑖) = 𝜔∗. 𝛷(𝐳𝑖) + 𝑏∗ (4.25)

Therefore, SVR is formulated as minimization of the following cost function:

ψ(𝜔, 𝜉) =
1

2
‖𝜔‖2 + 𝑐 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑁
𝑖=1 (4.26)

subject to:

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

60

{

𝑦𝑖 − (𝜔. 𝛷(𝐳𝑖) + 𝑏) ≤ ε + 𝜉𝑖

(𝜔. 𝛷(𝐳𝑖) + 𝑏) − 𝑦𝑖 ≤ ε + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

 (4.27)

where, 𝜉𝑖 and 𝜉𝑖
∗ are the slack variables that measure the deviation of the training sample 𝐳𝑖 outside the

ε-intensive zone. c is a parameter of regularization that allows tuning the tradeoff between the flatness

of the function �̂�(𝐳) and the tolerance of deviations larger than ε.

The aforementioned optimization problem can be transformed through a Lagrange functional into a dual

optimization problem expressed in the original dimensional feature space in order to lead to the following

dual prediction model:

 �̂�(𝐳) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝐳𝑖, 𝐳) + 𝑏∗

𝑖∈𝑈 (4.28)

where K is a kernel function, U is a subset of indices (i = 1, … ,N) corresponding to the nonzero Lagrange

multipliers 𝛼𝑖’s or 𝛼𝑖
∗’s. The training samples that are associated to nonzero weights are called SVs. The

kernel K(·,·) should be chosen such that it satisfies the condition imposed by the Mercer’s theorem, such

as the Gaussian kernel functions [36], [37].

4.5. Experimental results

4.5.1 Dataset description and performance evaluation

In the experiments, three different datasets are used, each has been decomposed in two sets. The

first is a training set for model learning and selection, while the second is a test set for assessment and

evaluation of the trained model.

The first dataset “Orange Juice” deals with the problem of determining the concentration of

saccharose in orange juice samples by near-infrared reflectance spectroscopy [38], [39]. The training set

contains 150 samples and the test set contains 68 samples, with 700 spectral variables (features). Those

features are the absorbance (log 1/R) at 700 wavelengths between 1100 and 2500 nm (where R is the

light reflectance on the sample surface). The saccharose concentration ranges from 0% to 95.2% by

weight. Figure 4-4 shows the spectra of the training samples.

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

61

Figure 4-4: Near-infrared spectra of orange juice training samples.

The second dataset is related to the determination of alcohol content by mid-infrared spectroscopy

in wine samples [38]–[40]. The dataset contains 124 samples: 94 as training samples (see Figure 4-5)

and 30 as test samples, with 256 spectral variables that are the absorbance (log 1/T) at 256 wave numbers

between 4000 and 400 cm-1 (where T is the light transmittance through the sample thickness).

Figure 4-5: Mid-infrared spectra of wine training samples.

The third dataset deals with the prediction of the fat content of meat samples analyzed by near-

infrared transmittance spectroscopy [40], [41]. The corresponding data were recorded on a Tecator

Infratec Food and Feed Analyzer working in the wavelength range 850-1050 nm by the Near Infrared

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

62

Transmission (NIT) principle. The spectrometer records light transmittance through the meat samples at

100 channel spectrum of absorbance in the specified range. Each sample contains finely chopped pure

meat with different moisture, fat and protein contents. Those contents, measured in percent by weight,

are determined by analytic chemistry. There are 215 samples in this dataset, 172 samples are used as

training (see Figure 4-6) and 43 samples as test.

Figure 4-6: Near-infrared spectra of Tecator training samples.

In order to evaluate the regression methods and to perform a direct comparison with state-of-the-

art results, we adopt the Normalized Mean Square Error (NMSE) metric. Since it normalizes the error

with respect to the range of variation of the output, it is usually preferred over the popular MSE metric.

It is given by:

𝑁𝑀𝑆𝐸 =
∑ (𝑦𝑖𝑡−�̂�𝑖𝑡)2𝑁𝑡

𝑖=1

(var{𝑦,𝑦𝑡})
 (4.29)

where 𝑁𝑡 is the total number of test samples, 𝑦𝑖𝑡 and �̂�𝑖𝑡 are the real and estimated output for the i-th test

sample 𝒙𝑖𝑡 and var{𝑦, 𝑦𝑡} is the variance of all output samples.

We also use a gain in accuracy measure in order to give information about how much our methods

improved those of the state-of-the-art methods [16]. This measure is given by:

𝑔𝑎𝑖𝑛 = 100 ×
(𝑁𝑀𝑆𝐸2−𝑁𝑀𝑆𝐸1)

𝑁𝑀𝑆𝐸2
 (4.30)

where 𝑁𝑀𝑆𝐸1is the NMSE of our proposed method and 𝑁𝑀𝑆𝐸2 is the NMSE of the state-of-the-art

method.

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

63

4.5.2 Parameter setting

The architecture of a 1D-CNN involves three main parameters: number of layers L, number of

feature signals ml and length of kernel rl of each layer l (l=1,..,L). To compute the best parameter values,

we use a cross-validation technique with a number of folds equal to 3. Due to the large number of

combinations and also to the limited number of training samples, we decided to limit the maximum

number of possible layers 𝐿max to 3. Moreover, the maximum number of feature signals in each layer l

(𝑚max
𝑙) is fixed to 5 with step of 1 and maximum kernel size on each layer l (𝑟max

𝑙) is fixed to 10% of the

current layer features length dl with step of 5 for the first dataset and 3 for the two other datasets. The

obtained best values of the parameters by cross-validation are listed in Table 4.1. Regarding the PSO-

1DCNN method, since the training is performed layer-by-layer, the number of possible cases in the cross-

validation is reduced compared to the previous procedure. Thus, the number of feature signals in each

layer l (𝑚max
𝑙) is fixed to 10 while keeping the other parameters similar to the previous method. The

optimal parameters found by cross-validation are presented in Table 4.2. Figure 4-7 and Figure 4-8 show

examples of the best NMSE found by cross-validation by changing the number of layers and changing

the number of feature signals (in the case of one layer), respectively. We can observe from these figures

that the best architecture needs to be neither large nor shallow in order to get the best results.

Regarding GPR and SVR, we use the Matérn covariance function for GPR and the Radial Basis

Function (RBF) for SVR as kernel functions. During the cross validation, the parameter of regularization

of SVR ‘c’ and the width of its kernel function ‘γ’ were varied in the range [1, 104] and [10-3, 5]

respectively. The ε value of the insensitive tube was fixed to 10−3.

Table 4.1: Best parameter values of the 1D-CNN for each dataset.

Dataset Layer 1 Layer 2

𝑚1 𝑟1 𝑚2 𝑟2

Orange Juice 5 9 1 19

Wine 1 17 5 9

Tecator 5 13 3 7

Table 4.2: Best parameter values of the PSO-1DCNN for each dataset.

Dataset Layer 1 Layer 2 Layer 3

𝑚1 𝑟1 𝑚2 𝑟2 𝑚3 𝑟3

Orange Juice 1 31 1 21 1 13

Wine 4 15 4 7 0 0

Tecator 5 7 1 7 5 5

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

64

Figure 4-7: Effect of number of layers on estimation error.

Figure 4-8: Effect of number of feature signals on estimation error.

4.5.3 Results

In order to evaluate our method, as already explained in the methodology part, we chose two known

and effective regression methods, namely GPR and SVR, to apply them on the features extracted from

the two proposed methods, i.e. 1D-CNN and PSO-1DCNN. It is worth recalling that, during the training

of 1D-CNN and PSO-1DCNN, just a linear regression (LR) layer is put on top of the neural network.

The accuracies achieved with LR are also analyzed. From [16], we took for comparison results achieved

by the well-known partial least square regressor (PLSR), as well as the GPR and SVR fed with all

available original features. All the results in terms of NMSE are reported in Table 4.3, Table 4.4 and

Table 4.5 for Orange Juice, Wine and Tecator datasets, respectively. The obtained gains in accuracy for

the three datasets are presented in Table 4.6.

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

65

Table 4.3: Results for the Orange Juice dataset.

Features Regression

Method

No. features NMSE

[16] PLSR 13 0.1626

[16] GPR 700 1.1350

1D-CNN LR 164 0.2869

PSO-1DCNN LR 73 0.6007

1D-CNN GPR 164 0.1661

PSO-1DCNN GPR 73 0.1569

[16] SVR 700 0.2488

1D-CNN SVR 164 0.1462

PSO-1DCNN SVR 73 0.1416

Table 4.4: Results for the Wine dataset.

Features Regression

Method

No. features NMSE

[16] PLSR 9 0.00610

[16] GPR 256 0.00287

1D-CNN LR 280 0.03150

PSO-1DCNN LR 232 0.21010

1D-CNN GPR 280 0.00261

PSO-1DCNN GPR 232 0.00226

[16] SVR 256 0.00590

1D-CNN SVR 280 0.00320

PSO-1DCNN SVR 232 0.00282

Table 4.5: Results for the Tecator dataset.

Features Regression

Method

No. features NMSE

[16] PLSR 12 0.02840

[16] GPR 100 0.00124

1D-CNN LR 57 0.00210

PSO-1DCNN LR 45 0.03770

1D-CNN GPR 57 0.00098

PSO-1DCNN GPR 45 0.00079

[16] SVR 100 0.00250

1D-CNN SVR 57 0.00076

PSO-1DCNN SVR 45 0.00088

Table 4.6: Gain in accuracy for the 3 datasets.

Dataset Gain (%)

GPR SVR

Orange Juice 86.2 43.1

Wine 21.3 52.2

Tecator 36.3 69.6

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

66

From these tables, it can be seen that using the features extracted from the two proposed methods

(1D-CNN and PSO-1DCNN) coupled with GPR and SVR techniques provide better results in term of

NMSE compared to the state-of-the-art methods [16]. Moreover, from Table 4.6, the calculated gains in

accuracy by comparing the same regression method (GPR or SVR) fed with all original features and with

best extracted features (among 1D-CNN and PSO-1DCNN) show clearly how important are the

achievable improvements with the proposed method. As for the contribution of resorting to PSO to

estimate the parameters of the CNN, it can be seen clearly on all cases (except the case of the Tecator

dataset by using SVR) that there are noticeable improvements compared to the results yielded by using

the classical back propagation algorithm. This encourages using evolutionary methods to train a CNN-

based architecture especially with limited number of training samples. Also because the training time for

both developed methods takes only few minutes and small memory space. As expected, the traditional

gradient-based method is faster as, on an average, it takes about 1 minute with respect to 3 minutes for

the PSO.

In more detail, considering the best obtained results among the two proposed methods, from

Table 4.3 (orange juice dataset), the NMSE using the PSO-1DCNN features is equal to 0.1569 with GPR

and 0.1416 with SVR. On the other hand, from [16], NMSE equals to 1.1350 and 0.2488 with GPR and

SVR, respectively. For this dataset, the PLSR method with just 13 features achieved a better result

compared to GPR and SVR with a NMSE equal to 0.1626. The gain in accuracy obtained by our method

with respect to the state-of-the-art methods is equal to 86.2% and 43.1% for GPR and SVR, respectively.

Regarding the Wine dataset (Table 4.4), the PSO-1DCNN features provide NMSE equal to 0.00226 and

0.00282 with GPR and SVR, respectively. In [16], it is equal to 0.00287 for GPR and 0.0059 for SVR.

The corresponding gains in accuracy are equal to 21.3% and 52.2%, respectively. For the Tecator dataset

(Table 4.5), GPR and SVR provide NMSE equal to 0.00079 and 0.00076 by using PSO-1DCNN and 1D-

CNN features, respectively. In [16], they are equal to 0.00124 and 0.0025, respectively. In this case, the

gain in accuracy is 36.3% for GPR and 69.6% for SVR. It is noteworthy that in most of the cases the

PSO-1DCNN worsened the results for the LR regressor. The explanation is that, in all scenarios, the

PSO-1DCNN is trained with LR, and thus the LR accuracy is used as fitness function. Accordingly, a

high risk is incurred that the obtained PSO-1DCNN (with LR) overfits the data and provides poorer

results with respect to traditional gradient descent optimization. Regarding the two other regressors (SVR

and GPR), they are not affected by this issue as they were not part of the optimization process, but they

just exploit the features provided by the 1DCNN optimized by the PSO on the LR.

Qualitatively, we can notice from Figure 4-10 and Figure 4-11 which correspond to datasets 2 and

3, respectively, that the estimated values by the proposed method are almost identical to the real ones.

By contrast, in dataset 1 (Figure 4-9), more mismatches can be observed due to the higher complexity of

this dataset. However, as the above quantitative assessments show, the estimation errors are on an average

very low for this dataset.

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

67

Figure 4-9: Sample-by-sample comparison between estimated and real output values for the test set of

the Orange Juice dataset.

Figure 4-10: Sample-by-sample comparison between estimated and real output values for the test set of

the Wine dataset.

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

68

Figure 4-11: Sample-by-sample comparison between estimated and real output values for the test set of

the Tecator dataset.

4.6. Conclusion

In this work, we propose new methods for chemometric data analysis based on convolutional neural

networks. In particular, we modify the standard CNN architecture to adapt it to 1D input data. The

proposed 1-D CNN architecture is thus based on an alternation of convolutional layers with subsampling

layers and connected at the end to a linear regression layer. The convolution is applied using 1D filters

in the convolution layers and pooling (subsampling) is applied by averaging the samples over a given

sliding 1D window. The estimation of the architecture weights is performed using two methods. The first

one consists of the standard back propagation algorithm. The second approach is based on a layerwise

particle swarm optimization. Next step consists of applying a regression method (GPR and SVR, or any

other method) using features provided by the proposed methods.

The experimental results show that results yielded by the proposed approach are very promising.

Indeed, on the three considered datasets, and for both methods of regression, CNN-like extracted features

can provide significant gains in accuracy (between 21.3% and 86.2%), suggesting that CNNs are able to

extract powerful feature for regression on 1D signals. Moreover, the contribution of the PSO in the

training of the neural network architecture appears valuable on two datasets over three, and with a very

limited additional computational overload.

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

69

4.7. Appendix: List of Mathematical Symbols

 𝜂: learning rate (1D-CNN)

 𝜔0: inertia weight (PSO)

 𝜔: weight vector (SVR)

 εn : noise component (GPR)

 ε : insensitivity parameter (SVR)

 𝛼𝑖: Lagrange multipliers (SVR)

 𝜉𝑖: slack variable (SVR)

 𝒂𝑖
𝑙: i-th input feature signal of layer l (1D-CNN)

 𝑏𝑖
𝑙: bias of the i-th feature signal of layer l (1D-CNN)

 b: bias (SVR)

 𝑐1 𝑐2 : acceleration constants (PSO)

 c: regularization parameter (SVR)

 dl : size of feature vector of layer l (1D-CNN)

 E: error criterion (1D-CNN)

 f: latent function (GPR)

 f: activation function (1D-CNN)

 𝑔(∙) : input-output relationship (SVR)

 I: identity matrix (GPR)

 K: covariance matrix (GPR)

 K: kernel function (SVR)

 K: covariance function (GPR)

 L : number of layers (1D-CNN)

 l: index of current layer (1D-CNN)

 ml : number of feature signals of layer l (1D-CNN)

 N(·,·): Normal distribution (GPR)

 N: number of training samples

 𝑁𝑡: number of test samples

 n: output size (1D-CNN)

 𝑛′: dimension of transformed feature space (SVR)

 Pi: i-th particle (PSO)

 𝐩𝑖(𝑡): position of the i-th particle Pi at iteration t (PSO)

 𝐩𝑔(𝑡): best global position (PSO)

 𝐩𝑏𝑖(𝑡): best position during past trajectory (PSO)

 rl : size of the filter of the lth layer (1D-CNN)

 r1(t) and r2(t) : random numbers generated at iteration t (PSO)

 S: number of particles (PSO)

 ss: subsampling factor (1D-CNN)

 𝒔𝑖
𝑙: output of i-th feature signal of layer l (1D-CNN)

 𝑡: iteration index (PSO)

 U : subset of indices (SVR)

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

70

 𝐯𝑖(𝑡): velocity of the i-th particle Pi at iteration t (PSO)

 𝒘𝑖,𝑗
𝑙 : filter weights between the j-th feature signal on the l-1 layer and the i-th feature signal on the

l-th layer (1D-CNN)

 X=[x1, x2, …, xN]′ : training samples in original space (1D-CNN)

 y = [y1, y2, …, yN]′ : targets of training samples

 Z = [z1, z2, …, zN]′: training samples in 1D-CNN induced space (GPR and SVR).

4.8. References

[1] R. Gente et al., “Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy,” IEEE Trans.

Terahertz Sci. Technol., vol. 6, no. 5, pp. 754–756, Sep. 2016.

[2] P. Przybylek, “A new method for indirect measurement of water content in fibrous electro-insulating

materials using near-infrared spectroscopy,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 3, pp. 1798–

1804, Jun. 2016.

[3] I. Hiroaki, N. Toyonori, and T. Eiji, “Measurement of pesticide residues in food based on diffuse reflectance

IR spectroscopy,” IEEE Trans. Instrum. Meas., vol. 51, no. 5, pp. 886–890, Oct. 2002.

[4] A. G. Mignani, L. Ciaccheri, A. A. Mencaglia, H. Ottevaere, and H. Thienpont, “Spectroscopy AS a

#x201C;green #x201D; technique for food quality and safety applications,” in Technical Digest of the

Eighteenth Microoptics Conference, 2013, pp. 1–2.

[5] S. Nishizawa, H. Morita, T. Iwamoto, M. W. Takeda, and M. Tani, “Terahertz time-domain spectroscopy

applied to nondestructive evaluation of pharmaceutical products,” in 2011 International Conference on

Infrared, Millimeter, and Terahertz Waves, 2011, pp. 1–2.

[6] S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemom. Intell.

Lab. Syst., vol. 58, no. 2, pp. 109–130, 2001.

[7] B. M. Nicolai, K. I. Theron, and J. Lammertyn, “Kernel PLS regression on wavelet transformed NIR spectra

for prediction of sugar content of apple,” Chemom. Intell. Lab. Syst., vol. 85, no. 2, pp. 243–252, 2007.

[8] B. G. Arrobas et al., “Raman spectroscopy for analyzing anthocyanins of lyophilized blueberries,” in

SENSORS, 2015 IEEE, 2015, pp. 1–4.

[9] R. K. H. Galvão et al., “Multivariate analysis of the dielectric response of materials modeled using networks

of resistors and capacitors,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 3, pp. 995–1008, 2013.

[10] A. Verikas and M. Bacauskiene, “Using artificial neural networks for process and system modelling,”

Chemom. Intell. Lab. Syst., vol. 67, no. 2, pp. 187–191, 2003.

[11] H. Li, Y. Liang, and Q. Xu, “Support vector machines and its applications in chemistry,” Chemom. Intell.

Lab. Syst., vol. 95, no. 2, pp. 188–198, 2009.

[12] O. Devos, C. Ruckebusch, A. Durand, L. Duponchel, and J.-P. Huvenne, “Support vector machines (SVM)

in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation,” Chemom.

Intell. Lab. Syst., vol. 96, no. 1, pp. 27–33, 2009.

[13] D. Porro, N. Hdez, I. Talavera, O. Núñez, Á. Dago, and R. J. Biscay, “Performance evaluation of relevance

vector machines as a nonlinear regression method in real-world chemical spectroscopic data,” in Pattern

Recognition, 2008. ICPR 2008. 19th International Conference on, 2008, pp. 1–4.

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

71

[14] T. Chen, J. Morris, and E. Martin, “Gaussian process regression for multivariate spectroscopic calibration,”

Chemom. Intell. Lab. Syst., vol. 87, no. 1, pp. 59–71, 2007.

[15] J. Peng, L. Li, and Y. Y. Tang, “Combination of activation functions in extreme learning machines for

multivariate calibration,” Chemom. Intell. Lab. Syst., vol. 120, pp. 53–58, 2013.

[16] H. AlHichri, Y. Bazi, N. Alajlan, F. Melgani, S. Malek, and R. R. Yager, “A novel fusion approach based

on induced ordered weighted averaging operators for chemometric data analysis,” J. Chemom., vol. 27, no.

12, pp. 447–456, 2013.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,”

Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[18] G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convolutional neural networks for object

detection in VHR optical remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp.

7405–7415, 2016.

[19] P. Ghamisi, Y. Chen, and X. X. Zhu, “A Self-Improving Convolution Neural Network for the Classification

of Hyperspectral Data,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 10, pp. 1537–1541, 2016.

[20] M. Srinivas, D. Roy, and C. K. Mohan, “Discriminative feature extraction from X-ray images using deep

convolutional neural networks,” in 2016 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2016, pp. 917–921.

[21] Z. Cui, J. Yang, and Y. Qiao, “Brain MRI segmentation with patch-based CNN approach,” in Control

Conference (CCC), 2016 35th Chinese, 2016, pp. 7026–7031.

[22] R. F. Nogueira, R. de Alencar Lotufo, and R. C. Machado, “Fingerprint Liveness Detection Using

Convolutional Neural Networks,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 6, pp. 1206–1213, 2016.

[23] A. Rikhtegar, M. Pooyan, and M. T. Manzuri-Shalmani, “Genetic algorithm-optimised structure of

convolutional neural network for face recognition applications,” IET Comput. Vis., 2016.

[24] J. Acquarelli, T. van Laarhoven, J. Gerretzen, T. N. Tran, L. M. C. Buydens, and E. Marchiori,

“Convolutional neural networks for vibrational spectroscopic data analysis,” Anal. Chim. Acta, vol. 954, pp.

22–31, Feb. 2017.

[25] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep Feature Extraction and Classification of

Hyperspectral Images Based on Convolutional Neural Networks,” IEEE Trans. Geosci. Remote Sens., vol.

54, no. 10, pp. 6232–6251, Oct. 2016.

[26] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-Time Patient-Specific ECG Classification by 1-D

Convolutional Neural Networks,” IEEE Trans. Biomed. Eng., vol. 63, no. 3, pp. 664–675, 2016.

[27] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, The MIT Press: London, 2016.

[28] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International Conference on Neural

Networks, 1995. Proceedings, 1995, vol. 4, pp. 1942–1948 vol.4.

[29] R. Dürichen, M. A. Pimentel, L. Clifton, A. Schweikard, and D. A. Clifton, “Multitask Gaussian processes

for multivariate physiological time-series analysis,” IEEE Trans. Biomed. Eng., vol. 62, no. 1, pp. 314–322,

2015.

[30] D. Kwon, M. H. Azarian, and M. Pecht, “Remaining-Life Prediction of Solder Joints Using RF Impedance

Analysis and Gaussian Process Regression,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 5, no. 11,

pp. 1602–1609, 2015.

[31] H.-C. Yen and C.-C. Wang, “Cross-Device Wi-Fi Map Fusion with Gaussian Processes,” IEEE Trans. Mob.

Comput., vol. 16, no. 1, pp. 44–57, 2017.

Chapter 4: 1D-Convolutional Neural Networks for Spectroscopic Signal Regression

72

[32] H. Sun et al., “Accurate Age Estimation of Bloodstains Based on Visible Reflectance Spectroscopy and

Chemometrics Methods,” IEEE Photonics J., vol. 9, no. 1, pp. 1–14, 2017.

[33] K. Y. Bae, H. S. Jang, and D. K. Sung, “Hourly Solar Irradiance Prediction Based on Support Vector

Machine and Its Error Analysis,” IEEE Trans. Power Syst., 2016.

[34] L. Garg and V. Sahula, “Macromodels for Static Virtual Ground Voltage Estimation in Power-Gated

Circuits,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 63, no. 5, pp. 468–472, 2016.

[35] C. E. Rasmussen, “Gaussian processes for machine learning,” 2006.

[36] V. N. Vapnik and V. Vapnik, Statistical learning theory, vol. 1. Wiley New York, 1998.

[37] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat. Comput., vol. 14, no. 3, pp.

199–222, 2004.

[38] “Datasets provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT,

meurens@bnut.ucl.ac.be. Wine and orange juice datasets available from: http://www.ucl.ac.be/mlg/.” .

[39] F. Rossi, A. Lendasse, D. François, V. Wertz, and M. Verleysen, “Mutual information for the selection of

relevant variables in spectrometric nonlinear modelling,” Chemom. Intell. Lab. Syst., vol. 80, no. 2, pp. 215–

226, 2006.

[40] C. Krier, F. Rossi, D. François, and M. Verleysen, “A data-driven functional projection approach for the

selection of feature ranges in spectra with ICA or cluster analysis,” Chemom. Intell. Lab. Syst., vol. 91, no.

1, pp. 43–53, 2008.

[41] “Tecator meat sample dataset. Available from: http://lib.stat.cmu.edu/datasets/tecator.” .

73

Chapter 5

Convolutional SVM

Chapter 5: Convolutional SVM

74

5.1. Introduction

Deep learning is a family of machine learning based on learning data representation. The learning

can be supervised or unsupervised depending on the adopted architecture. The most famous deep

architectures are the Stacked AutoEncoder (SAE) [1], which consists in a concatenation of many

AutoEncoders (AEs), Deep Belief Network (DBN) [2], which is based on a series of Restricted

Boltzmann Machine (RBM) and Convolutional neural networks (CNNs) [3].

Recently deep convolutional neural networks (CNNs) have achieved impressive results on a variety

of applications including image classification [4]-[8], object detection [9]-[12], and image segmentation

[13], [14]. Thanks to their sophisticated structure, they have the ability to learn powerful generic image

representations in a hierarchical way compared to state-of-the-art shallow methods based on handcrafted

features. Modern CNNs are made up of several alternating convolution and pooling layers followed by

some fully connected layers. The feature maps produced by the convolution layers are usually fed to a

nonlinear gating function such as the Rectified Linear Unit (ReLU). Then the output of this activation

function can further be subjected to normalization (i.e., local response normalization). The whole CNN

architecture is trained end-to-end using the backpropagation algorithm with dropout regularization [15]

to reduce overfitting. It is worth recalling that recent deeper CNNs (winner of the ImageNet Large-Scale

Visual Recognition ILSVRC14 and ILSVRC15 challenges) use inception modules [7] and residual

learning [6].

Usually, CNNs perform well for analysing datasets with large labeled data. However they are prone

to overfitting when dealing with datasets with limited labeled data. For these scenarios, it is has been

shown that it is more interesting to transfer knowledge from CNNs (such as AlexNet [8], VGG-VD [16],

GoogLeNet [7], and ResNet [6]) pretrained on an auxiliary recognition task with very large labeled data

instead of training a CNN from scratch [17]-[20]. While the possible transfer learning solutions include

fine-tuning the pretrained CNN on the labeled data of the target dataset or to exploit the CNN feature

representations with an external classifier. We refer the reader to [18] where the authors introduce and

investigate several factors affecting the transferability of these representations.

In this chapter, we propose an alternative strategy for training CNNs based on SVMs for handling

these scenarios in a multilabeling context. SVMs are among the most popular supervised classifiers

available in the literature. They rely on the margin maximization principle which makes them less

sensitive to overfitting problems. They have been intensively used in conjunction with handcrafted

features for solving various recognition problems. In addition, as discussed previously, they are also

commonly placed on the top of a CNN feature extractor for carrying out the classification task [18]. Here,

we use them to estimate the filters of the CNN convolutional layer. We call this network as convolutional

SVM (CSVM).

Chapter 5: Convolutional SVM

75

Each convolution layer uses a set of linear SVMs as filter banks, which are convolved with the

feature maps produced by the precedent layer to generate a new set of features maps. For the first

convolution layer, the SVM filters are convolved with the original input images. The SVM weights of

each convolution layer are computed directly in a supervised way by training on patches (extracted from

the previous layer) representing the objects of interest. The high level representations obtained by the

network are fed again to a linear SVM classifier for carrying out the classification task.

The rest of this chapter is organized as follows. In Section II, we give a description of the proposed

CSVM architecture. First sub-section will be devoted for a case of single object detection, and the second

sub-section for the general case (multi-object detection). The experimental results are presented in

Section III. Finally, conclusions and future developments are reported in section IV.

5.2. Proposed Methodology

Let us consider a set of 𝑀 training RGB images {𝐗𝑖, 𝒚𝑖}𝑖=1
𝑀 of size 𝑟 × 𝑐, where 𝐗𝑖 ∈ 𝓡𝑟×𝑐×3 and 𝑟

and 𝑐 refer the number of rows and columns of the images. Let us assume also 𝒚𝑖 = [𝑦1, 𝑦2, … , 𝑦𝐾]′ is

its corresponding label vector, where 𝐾 represents the total number of targeted classes. In a multilabel

setting, the label 𝑦𝑖 = 1 is set to 1 if the corresponding object is present, otherwise it is set to 0. Figure 5-1

shows a general view of the proposed multilabel classification system. For simplicity, we present the

method for detecting the presence of a single object than we extend it to the case of the multilabel

classification.

Figure 5-1: Estimating the weights of the convolution layer with SVM for detecting the presence of two

objects in a given input image.

Object1/
background

2

Object2/
background

P
o

o
lin

g an
d

 fu
sio

n

Chapter 5: Convolutional SVM

76

5.2.1 Monolabel classification

We recall that the application of our method to other advanced architectures such as those based

on inception and residual modules is straightforward. As mentioned in the introduction, our main

contribution is to use SVM for estimating the weights of the convolution filters in a supervised way. In

the following, we detail this method for the first convolution layer.

In a binary classification setting, the training set {𝐗𝑖, 𝑦𝑖}𝑖=1
𝑀 is supposed to be composed of 𝑀

positive and negative RGB images and the corresponding class labels are set to 𝑦𝑖 ∈ {+1, −1}. The

positive images contain the object of interest, whereas the negatives ones just represent background.

From each image 𝐗𝑖, we extract a set of patches of size ℎ × ℎ × 3 and represent them as feature vectors

𝐱𝑖 of dimension 𝑑, with 𝑑 = ℎ × ℎ × 3. After processing the 𝑀 training images, we obtain a large training

set 𝑇𝑟(1) = {𝐱𝑖, 𝑦𝑖}𝑖=1
𝑚(1)

 of size 𝑚(1) as shown in Figure 5-2.

Figure 5-2: Training set generation for the first convolution layer.

Next, we learn a set of SVM filters on different sub-training sets 𝑇𝑟𝑠𝑢𝑏
(1)

= {𝐱𝑖, 𝑦𝑖}𝑖=1
𝑙 of size 𝑙

randomly sampled from the training set 𝑇𝑟(1). The weight vector 𝒘 ∈ 𝓡𝑑 and bias 𝑏 ∈ 𝓡 of each SVM

filter are determined by optimizing the following optimization problem [21], [22].

min
𝒘,𝑏

𝒘𝑇𝒘 + 𝐶 ∑ 𝜉(𝒘, 𝑏; 𝒙𝑖, 𝑦𝑖)
𝑙
𝑖=1 (5.1)

where 𝐶 is a penalty parameter, which can be estimated through cross-validation. As loss function, we

use 𝜉(𝒘, 𝑏; 𝒙𝑖, 𝑦𝑖) = max(1 − 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏), 0) referred as the hinge loss. After training, we represent

Chapter 5: Convolutional SVM

77

the weights of the SVM filters as {𝐰𝑘
(1)

}
𝑘=1

𝒏(1)

 , where 𝐰𝑘
(1)

∈ 𝓡ℎ×ℎ×3 refers to kth-SVM filter weight

matrix, while 𝑛(1) is the number of filters. Then, the complete weights of the first CNN convolution layer

are grouped into filter bank of four dimensions 𝑾(𝟏) ∈ 𝓡ℎ×ℎ×3×𝑛(1)
 .

In order to generate the feature maps, we simply convolve each training image {𝐗𝑖}𝑖=1
𝑀 , with the

obtained filters as usually done in standard CNN to generate a set of 3D hyper-feature maps {𝐇𝑖
(1)

}𝑖=1
𝑀 .

Here 𝐇𝑖
(1)

∈ 𝓡𝑟(1)×𝑐(1)×𝑛(1)
 is the new feature representation of image 𝐗𝑖 composed of 𝑛(1) feature maps

(Figure 5-2). To obtain the kth feature map 𝐡𝑘𝑖
(1)

, we convolve the kth filter with a set of sliding windows

of size ℎ × ℎ × 3 (with a predefined stride) over the training image 𝐗𝑖 as shown in Figure 5-3:

 𝐡𝑘𝑖
(1)

= 𝑓(𝐗𝑖 ∗ 𝐰𝑘
(1)

) , 𝑘 = 1, … , 𝑛(1) (5.2)

where ∗ is the convolution operator and 𝑓 is the activation function.

Figure 5-3: Supervised feature map generation.

5.2.2 Multilabel classification

In the last sub-section, we showed how our proposed CSVM works with single class (object). When

the problem posed is a multilabel classification, many CNNs are used depending on the number of

existing classes. Each CNN apply the convolution on the current image separately using SVM as

described in the previous sub-section. After the pooling (subsampling), a fusion strategy is applied in

order to share the representation levels between the different objects. In our case we opt for the max

Chapter 5: Convolutional SVM

78

strategy in order to highlight the different objects existing and detected by the CNNs. Figure 5-4 presents

an example of the interest of this strategy with two classes (objects). The input image contains two

objects, Laboratories (object1) and Bins (object2). The first CNN try to highlight the first object while

the second CNN is devoted for the second object. The output maps after pooling of the two CNNs are

fused in order to get a new map (image) where the two concerned objects are highlighted as it can be

seen in Figure 5-4.

Figure 5-4: Example of fusion of output maps of two CNNs.

5.3. Experimental results

5.3.1 Dataset description and performance evaluation

The set of Images used in this work is divided on three groups. The first two groups of images have

been taken at two different indoor spaces of the faculty of science of University of Trento (Italy). The

size of each image is 320x240. The first ensemble amounts for a total of 130 images, which was divided

into 58 training and 72 testing images. The second set accounts for 131 images, split up into 61 training

images, and 70 for testing purposes. The third group of images represents an outdoor environment and

was acquired at different locations across the city of Trento located in the Trentino-Alto Adige region.

The locations were selected based on their importance as well as the density of people frequenting them.

This third dataset comprises two hundred (200) images, which were split up into training and testing

subsets (i.e., 100 each). The size of each image is 275x175. It is noteworthy that the training images for

all datasets were selected in such a way to cover all the predefined objects in the considered indoor and

outdoor environments. To this end, we have selected the objects deemed to be the most important ones

in the considered spaces. Regarding the first dataset, 15 objects were considered as follows: ‘External

Window’, ‘Board’, ‘Table’, ‘External Door’, ‘Stair Door’, ‘Access Control Reader’, ‘Office’, ‘Pillar’,

‘Display Screen’, ‘People’, ‘ATM’, ‘Chairs’, ‘Bins’, ‘Internal Door’, and ‘Elevator’. Whereas, for the

Fu
sio

n

Chapter 5: Convolutional SVM

79

second set, the list was the following: ‘Stairs’, ‘Heater’, ‘Corridor’, ‘Board’, ‘Laboratories’, ‘Bins’,

‘Office’, ‘People’, ‘Pillar’, ‘Elevator’, ‘Reception’, ‘Chairs’, ‘Self Service’, ‘External Door’, and

‘Display Screen’. Finally, for the last dataset, a total of 25 objects were definded as follows: ‘People’,

‘Building’, ‘Bar(s)’, ‘Monument(s)’, ‘Chairs/Benches’, ‘Green ground’, ‘Vehicle(s)’, ‘Stairs’, ‘Walk

path / Sidewalk’, ‘Fence / Wall’, ‘Tree(s) / Plant(s)’, ‘Garbage can(s)’, ‘Bus stop’, ‘Crosswalk’, ‘River’,

‘Roundabout’, ‘Pole(s) / Pillar(s)’, ‘Shop(s)’, ‘Supermarket(s)’, ‘Pound/Birds’, ‘Underpass’, ‘Bridge’,

‘Railroad’, ‘Admiration building’, ‘Church’, and ‘Traffic signs’.

Figure 5-5: Example of images of the first dataset.

Figure 5-6: Example of images of the second dataset.

Figure 5-7: Example of images of the third dataset.

Chapter 5: Convolutional SVM

80

For evaluation purposes, we use the well-known sensitivity (SEN) and specificity (SPE) measures:

SEN =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5.3)

SPE =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (5.4)

The sensitivity expresses the classification rate of real positive cases i.e., the efficiency of the

algorithm towards detecting existing objects. The specificity, on the other hand, underlines the tendency

of the algorithm to detect the true negatives i.e., the non-existing objects. We also propose to compute

the average of the two earlier measures as follows:

AVG =
SEN+SPE

2
 (5.5)

5.3.2 Parameter setting

The architecture of the proposed CSVM involves several free parameters. In our work, we will

focus on three main parameters which are: number of layers L, number of maps (kernels) ml and length

of kernel rl of each layer l (l=1,..,L). To compute the best parameter values, we use a cross-validation

technique with a number of folds equal to 3. Due to the limited number of training samples and the large

number of possible combinations, we decided to limit the maximum number of possible layers 𝐿max to

3. Moreover, the maximum number of kernels in each layer l (𝑚max
𝑙) is fixed to 512 with step of 2i

(i=0,…,9) and maximum kernel size on each layer l (𝑟max
𝑙) is fixed to 10% of the size of the current map

(we consider the minimum between the high and the width as the considered size) with step of 2. The

obtained best values of the parameters by cross-validation are listed in Table 5.1. We can deduce from

this Table that only one layer is enough for the first dataset, whereas the two other datasets need a second

layer (which is the last layer) to get the best performances. Concerning number and size of kernels

(maps), dataset3 presents the simplest architecture with just one kernel on the first layer and two kernels

on the second one with size of 3. Contrary to the other datasets where they require big number of kernels.

Regarding SVM, we use a linear SVM (with the linear kernel Function). During the cross

validation, the parameter of regularization of SVM ‘c’ was fixed randomly in the range [1, 102]. The ε

value of the insensitive tube was fixed to 10−3.

Table 5.1: Best parameter values of the CSVM for each dataset.

Dataset Layer 1 Layer 2

𝑚1 𝑟1 𝑚2 𝑟2

Dataset1 512 7 / /

Dataset2 32 7 256 3

Dataset3 1 3 2 3

Chapter 5: Convolutional SVM

81

5.3.3 Results

In order to evaluate our method, we chose to compare it with results obtained using three different

pretrained convolutional neural networks which are ResNet [6], GoogLeNet [7] and VDCNs [16]. All

the results in terms of accuracies are reported in Table 5.2, Table 5.3 and Table 5.4 for Dataset 1, Dataset

2 and Dataset 3, respectively.

Table 5.2: Comparison of classification rates on Dataset 1.

Method SEN (%) SPE (%) AVG (%)

ResNet 71.16 93.84 82.50

GoogLeNet 78.65 94.34 86.49

VDCNs 74.53 94.58 84.55

CSVM 89.14 84.26 86.70

Table 5.3: Comparison of classification rates on Dataset 2.

Methods SEN (%) SPE (%) AVG (%)

ResNet 89.54 96.38 92.96

GoogLeNet 83.63 96.86 90.25

VDCNs 81.81 96.14 88.98

CSVM 93.64 92.17 92.90

Table 5.4: Comparison of classification rates on Dataset 3.

Methods SEN (%) SPE (%) AVG (%)

ResNet 64.17 92.40 78.29

GoogLeNet 62.50 93.27 77.88

VDCNs 64.32 93.98 79.15

CSVM 80.79 82.27 81.53

From Table 5.2, Table 5.3 and Table 5.4, and in terms of average accuracy, it can be seen that in 8

cases among 9, our proposed method by far outperforms the different pretrained CNNs. In 7 cases the

improvement is clearly important (more than 2%). Only in one case for Dataset2 where ResNet method

gives slightly better results than our method (92.96% compared to 92.90%).

From qualitative point of view of the results, Figure 5-8, Figure 5-9 and Figure 5-10 present

examples of classification results for Dataset1, Dataset2 and Dataset3, respectively.

Chapter 5: Convolutional SVM

82

Existing objects: ‘External Door’, ‘Stair Door’, ‘Office, ‘Chairs’, ‘Internal Door’

 CSVM

Detected Objects: ‘External Door’, ‘Stair Door’, ‘Office,

‘Display Screen’, ‘Chairs’, ‘Internal Door’

Missed objects: ∅

GoogLeNet

Detected Objects: ‘External Door’, ‘Stair Door’, ‘Office,

‘Pillar’, ‘Chairs’,

Missed objects: ‘Internal Door’

Figure 5-8: Example of classification results with CSVM and GoogLeNet on Dataset1. In red are

highlighted false positives.

Existing objects: 'bins', 'office'

 CSVM

Detected Objects: 'bins', 'office'

Missed objects: ∅

ResNet

Detected Objects: ‘Laboratories’, 'bins', 'office'

Missed objects: ∅

Figure 5-9: Example of classification results with CSVM and ResNet on Dataset2. In red are

highlighted false positives.

Existing objects: 'building', 'green ground', 'stair(s)', 'walk path', 'Fence/Wall', 'Trees', 'pole/ Pillar', 'traffic sign'

 CSVM

Detected Objects: 'building', 'green ground', 'vehicle/bus',

'stair(s)', 'walk path', 'Fence/Wall', 'Trees', 'pole/ Pillar',

'traffic sign'

Missed objects: ∅

VDCNs

Detected Objects: 'people', 'building', 'green ground',

'vehicle/bus', 'stair(s)', 'walk path', 'Fence/Wall', 'Trees',

'pole/ Pillar',

Missed objects: 'traffic sign'

Figure 5-10: Example of classification results with CSVM and VDCNs on Dataset3. In red are

highlighted false positives.

Chapter 5: Convolutional SVM

83

Besides the classification accuracies, another important performance parameter is the runtime.

Table 5.5 which shows the consumed time for training the proposed method on the 3 datasets. It can be

seen clearly that the training of the CSVM is so fast and need just few seconds to few minutes in the

worst case. In details, Dataset 1 presents the highest runtime (76 seconds) which is due to the high number

of filters used for this dataset (512). While training of Dataset 3 is so fast with just 8 seconds which is

due to the simple network architecture that this dataset requires to get the best performance (see

Table 5.1).

Table 5.5: Training time of the proposed CSVM.

Dataset Runtime (s)

Dataset1 76

Dataset2 42

Dataset3 8

Regarding runtime of the prediction step, which includes the feature extraction and the prediction,

the CSVM method presents different runtime for the 3 datasets depending on the complexity of the

adopted architecture. For instance, and as we can see on Table 5.6, Table 5.7 and Table 5.8, the highest

runtime is with the first Dataset 1 with around 200 millisecond (ms) per image which is due to the high

number of filter adopted for it (512). Contrary to the third dataset which requires only 2ms to extract

features and estimate the classes for each image. This short time is due to the small number of kernels

and their small size for the architecture adopted for this dataset. It is also important to mention that the

runtime provided by our method outperforms the 3 pretrained CNNs on 2 datasets (Dataset 2 and 3),

especially for the dataset 3 where the difference is so significant. Only for Dataset 1 GooLeNet is slightly

faster. This is mainly due to the larger size of the first layer of CSVM (512), which typically consumes

most of the processing time as applied on the original image. Moreover, in GoogLeNet, the image is

smaller as it needs to be resized to 224×224.

Table 5.6: Comparison of average runtime per image on Dataset 1.

Method Runtime (ms)

ResNet 207

GoogLeNet 141

VDCNs 291

CSVM 206

Table 5.7: Comparison of average runtime per image on Dataset 2.

Method Runtime (ms)

ResNet 208

GoogLeNet 144

VDCNs 291

CSVM 115

Chapter 5: Convolutional SVM

84

Table 5.8: Comparison of average runtime per image on Dataset 3.

Method Runtime (ms)

ResNet 207

GoogLeNet 145

VDCNs 300

CSVM 2

5.4. Conclusion

In this chapter, we have presented a novel method for multilabel classification, which has the

following important properties: 1) it estimates the weights of CNNs based on SVMs learning

formulation; 2) it uses a forward supervised learning strategy for computing the weights of the filters; i)

the experimental results obtained on three datasets with limited training samples confirm the promising

capability of the proposed method with respect to state-of-the-art methods based on pretrained CNNs.

5.5. References

[1] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep networks,” in

Proc. Neural Inf. Process. Syst., Cambridge, MA, USA, 2007, pp. 153–160.

[2] Hinton, G. E, Osindero, S., and Teh, Y. W. “A fast learning algorithm for deep belief nets.” Neural

Computation, 18:1527-1554, 2006.

[3] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. “Gradient-based learning applied to document

recognition.” Proceedings of the IEEE, 86(11), 1998, pp. 2278–2324.

[4] Mariolis, I. ; Peleka, G. ; Kargakos, A. ; Malassiotis, S. , Pose and category recognition of highly deformable

objects using deep learning. International Conference on Advanced Robotics (ICAR), pp. 655 - 662, 27-31

July 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual

Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, 2015.

[6] K. He, X. Zhang, S. Ren, et J. Sun, « Deep Residual Learning for Image Recognition », in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016, p. 770‑778.

[7] C. Szegedy et al., « Going deeper with convolutions », in 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015, p. 1‑9.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural

Networks,” in Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.

[9] S. Ren, K. He, R. Girshick, X. Zhang, and J. Sun, “Object Detection Networks on Convolutional Feature

Maps,” vol. 8828, no. c, pp. 1–9, 2016.

[10] R. Girshick, J. Donahue, S. Member, T. Darrell, and J. Malik, “Region-Based Convolutional Networks for

Accurate Object Detection and Segmentation,” vol. 38, no. 1, pp. 142–158, 2016.

[11] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN : Towards Real-Time Object Detection with Region

Proposal Networks,” vol. 8828, no. c, pp. 1–14, 2016.

[12] W. Ouyang et al., “DeepID-Net : Object Detection with Deformable Part Based Convolutional Neural

Networks,” Pattern Anal. Mach. Intell. IEEE Trans., vol. 39, no. 7, pp. 1320–1334, 2017.

[13] C. Couprie, L. Najman, and Y. Lecun, “for Scene Labeling,” Pattern Anal. Mach. Intell. IEEE Trans., vol.

35, no. 8, pp. 1915–1929, 2013.

Chapter 5: Convolutional SVM

85

[14] E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” Pattern

Anal. Mach. Intell. IEEE Trans., vol. 39, no. 4, pp. 640–651, 2017.

[15] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout : A Simple Way

to Prevent Neural Networks from Overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[16] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,”

Int. Conf. Learn. Represent., pp. 1–14, 2015.

[17] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the Devil in the Details: Delving

Deep into Convolutional Nets,” Proc. Conf. BMVC, May 2014.

[18] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson, “Factors of Transferability for a Generic

ConvNet Representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 9, pp. 1790–1802, 2016.

[19] R. F. Nogueira, R. de Alencar Lotufo, and R. C. Machado, “Fingerprint Liveness Detection using

Convolutional Networks,” Ieee Trans. Inf. Forensics Secur., vol. 11, no. 6, pp. 1206–1213, 2016.

[20] C. Gao, P. Li, Y. Zhang, J. Liu, and L. Wang, “People counting based on head detection combining

Adaboost and CNN in crowded surveillance environment,” Neurocomputing, vol. 208, pp. 1–9, 2016.

[21] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “LIBLINEAR: A Library for Large Linear

Classification,” J. Mach. Learn. Res., vol. 9, no. 2008, pp. 1871–1874, 2008.

[22] K. Chang and C. Lin, “Coordinate Descent Method for Large-scale L2-loss Linear Support Vector

Machines,” vol. 9, pp. 1369–1398, 2008.

86

Chapter 6

Conclusion

Chapter 6: Conclusion

87

In this thesis, some deep learning methods and their applications have been covered. In particular,

interest was given to Convolutional Neural Network (CNN) and Stacked AutoEncoder (SAE). CNN is

composed of an ensemble of convolution and subsampling layers and concluded by a prediction in order

to discern the class label of the input of the network (generally an image). Whereas a SAE is a series of

many AutoEncoders (AEs), each AE is composed of three layers: one visible layer which is the input

layer, one hidden layer and one reconstruction layer. Despite the big interest that deep learning methods

are getting and their application on many research fields, they are still hardly explored in others. This

could be justified by the fact that deep learning methods are all based on a neural network architecture

which require huge training data in order to learn such networks. Furthermore, the major objective of

deep methods is to extract high level features in order to apply them for classification problems.

Departing from this fact, we have developed new deep approaches based on AEs and CNNs in order to

deal with problems of i) multilabeling classification based on coarse description, ii) reconstructing a

missing area covered by clouds in multispectral images, and iii) regression for chemometric data analysis.

In the following, we give highlights emphasizing the four (04) proposed deep methods. For further

details, we direct the reader to the respective chapters.

In Chapter 2, we provide a presentation about the scene description methodology using a

multilabeling strategy. The objective is to assist visually impaired people to conceive a more accurate

perception about their surrounding objects in indoor spaces. This method exploits feature learning

concept by means of an AE neural network, which amply demonstrated a significant potential in

generating discriminative image representations. The key-determinant of our image multilabeling

scheme is that the number of objects is independent of the classification system, which entails the

property of detecting as many objects as desired (depending on the offline setup to be customized by the

user) within the same amount of time which amounts for much less than a second in our work and makes

it possible to be applied in real time.

In Chapter 3, we present our proposed approach to reconstruct a missing area in multispectral images

due to the presence of clouds based on an AE neural network. Given a cloud-free image (source image)

and a cloud-contaminated image (target image), the standard architecture of the AE is slightly modified

in order to be able to estimate the mapping function between the source and the target images. For this

purpose, two strategies were developed. The first relies on simple pixel-based information to calculate

the transformation function whereas the second strategy performs a patch-to-patch mapping followed by

a simple fusion step to reconstruct the single pixels of the missing areas in the target image. Moreover,

in order to fix the problem of the hidden layer size, a new solution combining the minimum descriptive

length (MDL) criterion and a Pareto-like selection method has been introduced. The experimental results

reveal that the two proposed methods show good results in reconstructing the missing areas and can

significantly outperform state-of-the-arts methods. Compared to the pixel-based strategy, the patch-based

one yields better accuracies thanks to the feeding of spatial contextual, and thus richer information, in

the reconstruction model.

Chapter 6: Conclusion

88

In Chapter 4, we describe the developed methods for chemometric data analysis based on CNN. In

particular, we modify the standard CNN architecture to adapt it to 1D input data. The proposed 1D-CNN

architecture is thus based on an alternation of convolutional layers with subsampling layers and

connected at the end to a linear regression layer. The convolution is applied using 1D filters and pooling

is performed by averaging the samples over a given sliding 1D window. The estimation of the

architecture weights is performed using two methods. The first one consists of the standard back-

propagation algorithm. The second approach is based on a layerwise particle swarm optimization. GPR

and SVR are used in the regression step. The experimental results show that results yielded by the

proposed approach are very promising. Indeed, on the three considered datasets, the extracted features

can provide significant gains in accuracy, suggesting that CNNs are able to extract powerful features for

regression on 1D signals. Moreover, the contribution of the PSO in the training of the neural network

architecture appears valuable and with a very limited additional computational overload.

In Chapter 5, we introduce the proposed new method to train the CNNs. This method is based on

using Support Vector Machine (SVM) in order to estimate the parameters of the network. The

architecture of the developed network is similar to the standard CNN i.e., composed of a succession of

convolution and subsampling layers and each layer is composed of a number of maps. The novelty of the

proposed method is to estimate the weights of the kernels by means of SVM. The advantage of this

method is that the training is applied in just one pass and does not require a big training dataset. The

experimental results show that results yielded by the new developed method (CSVM) are very promising

in term of accuracies and time consumed in both training and prediction phases.

Finally, in order to improve results and accuracies of the different proposed methods, we suggest the

following hints for future developments:

 While the objective of the coarse description is to roughly list the present objects as to bridge

the gap between the real indoor setup and the image conceived in the visually disabled person’s

imagination, inferring further information pertaining to the detected object location in the indoor

space remains a vivid endeavour in our future considerations. To complement this missing

component, we suggest to find a way to introduce the depth information (e.g., through Kinect

sensors for instance) as a post-operation. Another issue is related to the scalability of the system

since it will need to be completely retrained in case the set of predefined objects requires to be

modified quantitatively or qualitatively. As last suggestion, it is worth mentioning that the

thresholding step for final decision could be made more sophisticated as proposed in [1].

 Regarding the reconstructing of missing area in multispectral images due to presence of clouds

and in order to improve the accuracy of the reconstruction process, different aspects of the

methods deserve to be investigated in future research studies. We limited our AE neural network

to a shallow architecture (just one hidden layer). Stacked and thus deep AE could be a way to

make the reconstruction even more accurate. However, this will raise the problem of the best

architecture to be set (number of hidden layers and number of hidden nodes per layer) as well

Chapter 6: Conclusion

89

as of the computational complexity which will unavoidably increase. Another aspect regards the

fact that our reconstruction is based on a one image-to-one image mapping. It would be also

interesting to probe ways to integrate further the temporal dimension in the reconstruction by

reasoning at the level of time series images (and not just on couples of images).

 Concerning the 1D-CNN, it may be interesting to explore other kinds of deep neural networks

such as SAEs and train them with evolutionary methods, given the limitation of the number of

training samples. Moreover, we can apply the 1D-CNNs for other applications where input data

are under the form of 1D signals (e.g., prediction issues for ECG signals and solar energy plants).

Another research direction regards the possibility to use the same model for different

instruments. It is noteworthy that the model obtained in this work (and in most of those based

on machine learning) is valid only for a given instrument, namely the one on which it was

trained. However, moving from an instrument to the other would not necessarily require to

change completely the model but to resort to the so-called domain adaption approach, in order

to adapt the original model trained in a source domain (instrument 1) to a target domain

(instrument 2) with hopefully little effort (by analyzing the data distributions from a domain to

the other). Another potential issue is a higher risk of overfitting, requiring some modifications

in the cost function in order to mitigate such risk. This could be the subject of another future

research direction. Finally, we believe that it would be useful to tailor the 1D-CNN to other

remote sensing applications, such us precision farming, traffic monitoring and prediction of

natural disasters, among others.

 Regarding the CSVM, it can be interesting to test our approach to other datasets. In our case we

focused in multilabeling real time problems. But it can be also used for classical classification

of single objects. Also, it will be more interesting to use nonlinear SVM to sophisticate the

CSVM network for applications where computational time is not a primordial factor.

[1] A. Zeggada, F. Melgani, and Y. Bazi, “A Deep Learning Approach to UAV Image Multilabeling,” IEEE

Geosci. Remote Sens. Lett., vol. 14, pp. 694–698, 2017.

List of Publications achieved during the PhD activity

Journal Papers:

[J1] S. Malek, F. Melgani, Y. Bazi and N. Alajlan, “Reconstructing Cloud-Contaminated Multispectral

Images with Autoencoder Neural Networks”, IEEE Trans. Geosci. Remote Sens. Vol. PP, no. 99,

pp. 1-13, Dec. 2017.

[J2] S. Malek, F. Melgani, and Y. Bazi, “One-dimensional Convolutional Neural Networks for

Spectroscopic Signal Regression”, Journal of Chemometrics. Nov. 2017. e2977.

[J3] S. Malek, F. Melgani, M. L. Mekhalfi, Y. Bazi and N. Alajlan, “Indoor Scene Description for the

Visually Impaired with Autoencoder Fusion Strategies”, Sensors. vol. 17, no. 11, Nov. 2017.

Conference Proceedings:

[C1] S. Malek, and F. Melgani "Autoencoding approach to the cloud removal problem", IEEE Int. Geosc.

Remote Sens. Symp (IGARSS 2017), pp. 4848-4850, 2017.

