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ABSTRACT 
 

Spinal and bulbar muscular atrophy (SBMA) is an X-linked neuromuscular disorder 

characterized by the progressive dysfunction and loss of lower motor neurons. SBMA is 

caused by the expansion of a CAG tandem repeat encoding a polyglutamine (polyQ) tract in 

the androgen receptor (AR) gene. SBMA belongs to the family of polyQ diseases, which 

includes eight other neurological diseases caused by the same mutation in unrelated genes. 

PolyQ diseases share common features, such as that polyQ proteins are typically expressed 

throughout the body, yet they cause specific neuronal loss. It remains to be clarified why 

specific sub-populations of neurons degenerate in each polyQ disease. The well-known 

structure and function of AR make SBMA a good model to investigate polyQ disease 

pathogenesis. Androgen binding to AR results in its nuclear translocation and binding to 

androgen-responsive elements (AREs) to regulate gene expression. Moreover, AR is highly 

phosphorylated. Recently, we obtained evidence that phosphorylation of polyQ-AR by 

cyclin-dependent kinase 2 (CDK2) at serine 96 increases toxicity. This post-translational 

modification was enriched in neurons. Therefore, we hypothesized that phosphorylation of 

polyQ-AR at serine 96 modulates its function in response to activation of neuronal activity, 

a level of regulation altered in SBMA. We carried out a microarray analysis in resting and 

stimulated neurons in which AR was activated by androgens. Our preliminary results suggest 

that AR activation drives a differential gene expression program in stimulated neurons. In 

order to analyze the role of CDK2 and serine 96 phosphorylation in vivo, we deleted one or 

both CDK2 alleles in SBMA mice. Modulation of CDK2 expression reduced polyQ-AR 

phosphorylation at serine 96, decreased polyQ-AR accumulation in neurons, and attenuated 

disease manifestations in SBMA mice. Finally, we carried out an unbiased high-throughput 

screening of phosphatase and kinase inhibitors. As read-out, we analyzed polyQ-AR nuclear 

translocation induced by testosterone, in order to identify compounds to lower polyQ-AR 

toxicity. We isolated 6 phosphatase and 17 kinase inhibitors as modifiers of polyQ-AR 

nuclear shuttling. Among them, we found two compounds targeting Cdc25, a known 

activator of CDK2. Cdc25 modulation altered serine 96 phosphorylation, toxicity and 

transcriptional activity of polyQ-AR in cells. Our results support the idea that Cdc25 

represents a potential candidate to develop new therapeutic strategies for SBMA. In 

summary, our findings show that serine 96 phosphorylation modifies AR physiological 

functions in neurons and polyQ-AR toxicity in SBMA. 
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1. INTRODUCTION 

 

1.1.  The motor neuron 

The motor neuron is the basic unit of the motor system. A motor neuron is composed of cell 

body, dendrites, axons and presynaptic terminals. Each part of the neuron has a specific role 

in the generation and propagation of nervous signal. The cell body, called also soma, is the 

metabolic center of the cell, and contains the nucleus and the endoplasmic reticulum. 

Dendrites are short tree-shaped processes that originate from the soma. They receive 

numerous incoming signals from other neurons, which are integrated and processed to exert 

the specific neuronal function. The motor neuron axon is a long tubular projection that 

originates from the soma and carry electrical signals to its target tissue, the muscle. The 

electrical signal, named action potential, starts from the initial segment of the axon and 

propagates along its extension, due to the presence of a myelin sheath. This envelopment 

serves as insulating material for the immediate propagation of electric signal. Myelin is a 

lipid substance, which enwraps the axons with regular interruption, called nodes of Ranvier, 

that permit saltatory conduction to speed up the electric signal propagation. 

The classification of motor neurons is based on their anatomical origin or their neuronal 

targets. The anatomical classification distinguishes between two classes of motor neurons, 

called upper motor neurons and lower motor neurons. Upper motor neurons (UMNs) are 

responsible for carrying the signal for voluntary movements through descending motor tracts. 

UMNs project to the lower motor neurons (LMNs) of the cranial and spinal nerves. LMNs 

directly innervate skeletal muscles. UMNs localize in the primary motor cortex and in the 

premotor areas and are responsible for the initiation and control of skeletal muscle 

contraction. The LMNs are located in the cranial nerve nuclei of the brainstem and the 

anterior nerve roots of the spinal cord. 

As mentioned above, motor neurons can also be classified based on their neuronal targets, in 

somatic and visceral motor neurons. Somatic motor neurons have cell bodies in the central 

nervous system (CNS) and project their axons to skeletal muscles. The signal that triggers 
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skeletal muscle contraction is monosynaptic, as it involves only one somatic motor neuron 

that synapses the muscle. Visceral motor neurons synapse with other neurons located in the 

ganglia of the sympathetic and parasympathetic nervous system (or autonomic nervous 

system) located in the peripheral nervous system (PNS). They indirectly innervate 

involuntary muscles, such as cardiac muscle and smooth muscles of the arteries. The function 

of involuntary muscles results from non-conscious brain activity. In this case, the signal is 

disynaptic, as the visceral motor neuron that originate from the CNS synapses onto a 

ganglionic neuron located in the parasympathetic or sympathetic component of PNS, which 

projects to the muscle. Somatic motor neurons are further subdivided into three types: alpha, 

beta and gamma efferent motor neurons and information come out from the CNS to end in 

the periphery. The cell bodies of the alpha motor neurons are located in the ventral horn of 

the spinal cord (SC) and innervate extrafusal muscle fibers. On the contrary the cell body of 

the gamma MNs innervate intrafusal muscle fibers within the muscle spindle. 

1.1.1. The motor unit 

In 1925, Dr. Charles Sherrington proposed that movement is controlled by the basic 

functional unit composed of a motor neuron and the innervated muscle fibers. This unit is 

known as the “motor unit”. This specific unit consists of a large anterior horn cell, its axons 

and the skeletal muscle fibers innervated by the axon (Fig. 1). In particular, the cell body of 

a motor neuron located in the central nervous system (CNS) projects its axon outside the 

CNS to directly control muscle fibers, carrying the signal from the spinal cord to the muscles 

to produce movement. Motor neurons form synapses with one or more fibers that are 

typically distributed over a relatively wide area within the muscle. There are three categories 

of motor units: slow (S), fast fatiguing (FF) and fast fatigue-resistant (FR) motor units.  

The slow motor units are used to sustain muscular contraction and are important for keeping 

upright posture. They are composed of small, “red” muscle fibers that contract slowly to 

generate a small amount of energy, and, because they have high content of myoglobin, 

mitochondria and rich capillary beds, these fibers are resistant to fatigue.  

The fast fatiguing motor units are important to stimulate larger muscle groups, applying large 

amounts of force, but they fatigue quickly. They are required for tasks that need brief burst 

of energy (e.g. jumping or running).  
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The third type of motor units, the fast fatigue-resistant types, has properties that lie between 

the other two types of motor units: they stimulate moderate sized muscle groups similar to 

the fast fatiguing type, but they are able to sustain much longer effort and provide more 

energy than the S motor units.  

 

Figure 1. Motor unit. A motor unit is composed by the motor neuron and the skeletal muscle fibers 

innervate directly by it. Image from ©Pearson education, Ink, 2011. 

In most muscles, slow motor units have lower thresholds for activation than the larger units 

(fast fatiguing or fast-fatigue resistant) and are tonically active during motor actions that 

require sustained effort (standing, for instance). The threshold for the fast motor units is 

reached only when movements that require high energy are made, such as fast jumping. This 

functional distinction between the different categories of motor units is also important 

because it explains some structural differences among muscle groups. For instance, a motor 

http://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2255/
http://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2924/
http://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2644/


14 
 

unit in the soleus (a muscle important for posture that comprises mostly small units) has an 

average innervation ratio of 180 muscle fibers for each motor neuron. In contrast, 

gastrocnemius, a muscle that comprises both small and large units, has an innervation ratio 

of 1000–2000 muscle fibers per motor neuron and can generate the force needed for sudden 

changes in body position.  

1.1.2. Motor neuron recruitment  

The progressive activation of additional motor units with increasing strength of voluntary 

muscle contraction is known as motor neuron recruitment. The central nervous system can 

increase the strength of muscle contraction by increasing the number of active motor units (i. 

e., spatial recruitment) or increasing the firing rate (firing frequency) at which individual 

motor units fire to optimize the summated tension generated (i. e., temporal recruitment). 

Both mechanisms occur concurrently. The primary mechanism at lower levels of muscle 

contraction strength is the addition of more motor units, but the firing rate of the initially 

recruited motor units also increases. When nearly all motor units are recruited, increase in 

firing frequency becomes the predominant mechanism to increase motor strength. 

The activation of one motor neuron leads to the activation of the innervated muscle fibers. 

This process results in a weak, but distributed muscle contraction. On the other hand, the 

activation of more motor neurons results in more muscle fibers being activated, and therefore 

a stronger muscle contraction. Motor unit recruitment is a measure of how many motor 

neurons are activated in a particular muscle, and therefore it is a measure of how many muscle 

fibers of that muscle are activated. The higher the recruitment, the stronger the muscle 

contraction will be.  

"A particular voluntary movement appears to begin with discharge of the same motor unit. 

More intense contraction is secured by the addition of more and more units added in a 

particular sequence. This ‘recruitment’ of motor units into willed contraction is identical to 

that occurring in certain reflexes. The early motor units in normal gradual voluntary 

contraction are always in our experience small ones. The larger and more powerful units, 

each controlling many more muscle fibers, enter contraction late”. This principle was 

enunciated by Denny-Brown and Pennybacker in 1934 and establishes that the orderly 

recruitment of motoneurons is based on size, with the smaller neurons activated first (Denny-

Brown and Pennybacker 1934). It is known, commonly, as Henneman’s Size Principle, from 

http://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2644/
http://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2545/
http://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2641/
http://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2380/
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the name of the first scientist who elaborate these observations in a principle. A single motor 

unit produces a force that results not only from the number of the innervated fibers in the 

unit, but also from the frequency with which the innervating axon stimulates the muscle 

fibers. The motor unit firing rate is the percentage at which the nerve impulses arrive, and it 

can change from low frequencies able to produce a series of single twitch contractions (or 

fiber contraction), to frequencies high enough to realize a fused titanic contraction. In 

general, the motor unit firing rate of each individual motor unit increases with increasing 

muscular effort until a maximum rate is reached. Once a motor unit is activated and 

stimulates muscles fibers, muscle receives a signal for contraction.  

1.1.3. Neuromuscular junction 

The electrical information that the axon carries and transmits to muscle is converted to a 

chemical stimulus inside the nerve-muscle synapse, which is the junction between the motor 

neuron and the skeletal muscle fiber. This type of synapse is known as the neuromuscular 

junction. The endplate is the region of the muscle where the motor neuron loses its myelin 

sheath to become branched, forming expansions named synaptic boutons. Motor neurons 

release the neurotransmitter, acetylcholine, from the synaptic boutons in the synaptic cleft, 

which is a tight region between the presynaptic and postsynaptic membranes. Acetylcholine 

is released over a specialized region of the muscle membrane that contains depressions 

(junctional folds), in which a specific class of neurotransmitter receptor, the nicotinic type of 

acetylcholine receptors, are located. Synaptic boutons contain highly specialized structures, 

known as active zones, which are the sites of acetylcholine release (Fig. 2). At the active 

zones, there is high accumulation of the synaptic vesicles, which contain the neurotransmitter 

and voltage-gated Ca2+ channels that allow calcium to enter the terminal at the arrival of the 

action potential. Calcium influx leads to fusion of synaptic vesicles with the plasma 

membrane, thus releasing the transmitter in the synaptic cleft through a process known as 

regulated exocytotic. Exocytosis is the process by which a neuron releases neurotransmitters, 

contained in secretory vesicles, out of the cell membrane into the extracellular space.  

http://en.wikipedia.org/wiki/Vesicle_(biology)
http://en.wikipedia.org/wiki/Cell_membrane
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Figure 2. Neuromuscular junction organization. The neuromuscular junction is a chemical 

synapse composed by the motor neuron and a muscle fiber. The signal is transmitted through the 

motor neuron axon and cause the release of the neurotransmitter acetylcholine into the synaptic cleft. 

©Pearson education, Ink, 2011. 

The basal lamina is the basement membrane within the cleft which is composed of collagen 

and other extracellular matrix components. Acetylcholine, which is anchored to the collagen 

fibrils of the basal laminae, is rapidly hydrolyzed by acetylcholinesterase upon arrival of the 

neuronal stimulus. The membrane of the junctional fold on the muscle is enriched in voltage-

gated Na+ channels. The nicotinic acetylcholine receptor is a ligand-dependent channel: once 

the neurotransmitter binds the receptor, an inward current is generated due to the influx of 

voltage-gated Na+ channels triggering the depolarization of the membrane and initiating the 

action potential in the muscle necessary for fiber contraction.  
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1.1.4. Signal transmission and muscle contraction 

Contraction of voluntary muscles (or skeletal muscles) is controlled by efferent signals that 

come from the brain in the form of action potentials through the motor unit. The sliding 

filament model describe skeletal muscle contraction and, in particular, how the action 

potential generated in the CNS reaches the muscle fibers, originating the tension necessary 

to change the well-organized pattern of A band and I band, that give to skeletal and cardiac 

muscle the striated aspect. An action potential originating in the CNS reaches an alpha motor 

neuron, which then transmits an action potential down its own axon (Fig. 3). The action 

potential propagation leads to the activation of voltage-gated sodium channels along the axon 

toward the neuromuscular junction. The presynaptic tract of the motor axons is demyelinated 

and stops 30 nanometers from the cell membrane of a muscle cell (sarcolemma), at the level 

of the synaptic cleft where neurotransmitters are released.  

When the action potential reaches the junction, it results in a calcium ion influx 

through voltage-gated calcium channels. The calcium influx causes acetylcholine release into 

the extracellular space between the motor neuron terminal and the neuromuscular junction 

of the muscle fiber.  The surface of the sarcolemma has invaginations called post-junctional 

folds that increase the area of the membrane exposed to the synaptic cleft and increase the 

density of acetylcholine receptors present in the synaptic cleft. Once the neurotransmitter 

diffuses across the synapse, it binds the nicotinic receptors on the neuromuscular junction 

leading to the activation of intrinsic sodium/potassium channel and generating the influx of 

sodium and the efflux of potassium. Due to a different membrane permeability of the two 

ions, the charge between internal and external surfaces of the membrane becomes less 

negative, triggering an action potential.  

Skeletal muscles are composed of clusters of muscle cells which are long and spindle shaped. 

A muscle consists of packages of muscle cells called fascicles. A muscle cell contains many 

nuclei, the cytoplasm (sarcoplasm) and the plasma membrane, named sarcolemma. Each 

muscle cell is organized in myofibrils, which are aligned in parallel arrangements and extend 

full length of the cell.  

http://en.wikipedia.org/wiki/Action_potential
http://en.wikipedia.org/wiki/Alpha_motor_neuron
http://en.wikipedia.org/wiki/Alpha_motor_neuron
http://en.wikipedia.org/wiki/Axon
http://en.wikipedia.org/wiki/Neuromuscular_junction
http://en.wikipedia.org/wiki/Calcium_channel
http://en.wikipedia.org/wiki/Invagination
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Figure 3. Signal transmission. Acetylcholine released in the synaptic cleft binds to acetylcholine 

receptors on muscle fibers. Inside the muscle, calcium is released from sarcoplasmic reticulum 

triggering the cross-bridge binding between actin and myosin, initiating the contraction process. 

Image from ©Lumen Learning, 2017. 

Myofibrils consist of protein chains called myofilaments, showing a symmetrical, alternating 

pattern of thick and thin elements. The thick myofilament consists of a large number of 

bundled myosin molecules aligned in overlapping arrays (Fig. 4). Myosin is a hexameric 

protein with two identical heavy chains and two pairs of different light chains: the regulatory 

chain (RLC) and the essential light chain (ELC). The thin myofilament is made of two 
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helically intertwined chains of G-actin (globular actin) units. Actin is associated with other 

proteins, such as tropomyosin and the troponin complex. The thick and thin myofilaments, 

with their associated proteins, are responsible for muscle contraction. Together, these fibers 

form the basic unit of muscle, the sarcomere.  

  

Figure 4. Actin and myosin filaments. During contraction, the myosin thick filaments grab on the 

actin thin filaments, forming crossbridges. The thick filament pulls the thin filament past them, 

making the sarcomere shorter.  Image from ©Pearson education, Ink, 2011. 

A sarcomere is defined as the segment between two neighboring Z-lines, which is the region 

where actin molecules are bound (Fig. 5). Surrounding the Z-line is the region of the I-

band which is the zone of thin filaments that is not superimposed by thick filaments. 

Following the I-band, there is the A-band which contains the entire length of a single thick 

filament. Within the A-band is a paler region called the H-zone, which is the zone of the 

thick filaments that is not superimposed by the thin filaments. Finally, inside the H-zone is 

a thin M-line formed of cross-connecting elements of the cytoskeleton.  
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Figure 5. Sarcomere organization. The thick myosin filaments account for the darker A-bands, the 

thin actin filaments for the light I-bands. The I-band is divided by a dark Z-line, where the actin 

filaments are anchored. The sarcomere region is between two Z-lines, therefore it consists of two I-

band halves and an A-band. ©Pearson education, Ink, 2011.  

The action potential diffuses depolarizing the inner portion of the muscle fiber by the 

activation of the L-type voltage-dependent calcium channels (dihydropyridine receptors) in 

the T tubule membrane. Consequently, the sarcoplasmic reticulum starts to release calcium 

from ryanodine receptors that physically interact with the L-type voltage-dependent calcium 

channel of the T-tubules.  

http://en.wikipedia.org/wiki/Dihydropyridine_receptor


21 
 

Normally, tropomyosin blocks the binding region for myosin on the thin filament of muscles. 

When calcium is released from the sarcoplasmic reticulum, it binds to the troponin C, which 

belongs to the troponin complex and contains four calcium-binding hands. Troponin C is 

present on the actin-containing thin filaments of the myofibrils and calcium binding leads to 

an allosteric change. Upon calcium binding, troponin protein changes to troponin T, and this 

allows tropomyosin to move, triggering to open up the myosin binding sites. Myosin is in a 

ready state due to the presence of ADP and inorganic phosphate bound to its nucleotide 

binding pocket. Consequently, myosin is able to cover the unblocked binding sites on the 

thin filament and actin is able to act as a co-factor and sustain the release of inorganic 

phosphate from myosin (Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Actin and myosin interaction. The contraction of skeletal muscle is possible to the action 

of two accessory proteins bound to the actin filaments: tropomyosin and troponin. In striated muscles, 

each tropomyosin molecule is bond to troponin, which is composed by three polypeptides: troponin 

C (Ca2+ binding), troponin I (inhibitory) and troponin T (tropomyosin binding). Calcium binding to 

troponin C shifts the position of the complex, relieving inhibition and allowing contraction. ©Pearson 

education, Ink, 2011. 
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Once they are bound, the Z-bands are pulled towards each other and the sarcomere and the 

I-band start to shorten. Once ATP binds again to myosin, it dissociates from actin and returns 

to a weak binding state. ATP is then hydrolyzed from myosin and the energy of this process 

is necessary for myosin to assume the “cocked back” conformation. When calcium is no 

longer present on the thin filament, the tropomyosin changes conformation back to its 

previous state and it blocks again the binding sites. The myosin stops binding to the thin 

filament, and the contractions cease. 
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1.2. Spinal and Bulbar Muscular Atrophy (SBMA) 

 

Motor neuron diseases (MNDs) are a particular class of disorders characterized by the 

selective dysfunction and death of the upper and/or lower motor neurons innervating the 

voluntary muscles of bulbar, respiratory, and limbs regions. This results in muscle weakness 

and progressive atrophy. 

Spinal and bulbar muscular atrophy (SBMA, also known as Kennedy’s disease) is an 

example of MND. SBMA was first documented by Hiroshi Kawahara in the 19th century, 

who described the clinical outcome and hereditary characteristics of two Japanese brothers 

with progressive bulbar palsy. Later, Kennedy and colleagues in 1968 described a disorder 

with progressive weakness and atrophy of muscle (Kennedy et al. 1968). In 1991, the cause 

of spinal and bulbar muscular atrophy was identified as the expansion of a trinucleotide CAG 

repeat in the AR gene (La Spada et al. 1991). SBMA is a rare X-linked MND characterized 

by the selective loss of lower motor neurons in the brainstem and spinal cord, leading to 

atrophy affecting the face, bulbar musculature and proximal limbs. SBMA patients show a 

well-defined muscle pathology with weakness, fasciculation and atrophy. Moreover, they 

show difficulty to swallow, speak and severe cramps. In addition, SBMA progression is 

associated with endocrine abnormalities, such as diabetes mellitus, and signs of mild 

androgen insensitivity, including gynecomastia, testicular atrophy and reduced fertility 

(Parodi and Pennuto 2011; Rocchi and Pennuto 2013). The age of onset usually is between 

the third and fifth decade of life, with some reported cases of juvenile forms (Parodi and 

Pennuto 2011; Sambataro and Pennuto 2012). SBMA is a sex specific disease, with 

manifestations of symptoms occurring only in males. Females present only subclinical 

manifestations, even if homozygous for the mutation (Schmidt et al., 2002). 

SBMA is caused by the expansion of CAG trinucleotide repeat in the first exon of AR gene, 

which encodes a polyglutamine (polyQ) tract leading to polyQ expanded AR protein (polyQ-

AR). PolyQ expansion is the cause of at least eight other neurodegenerative diseases, 

including Huntington’s disease (HD), six types of spinocerebellar ataxia (SCA1, SCA2, 

SCA3, SCA6, SCA7, SCA17), and dentatorubral-pallidoluysian atrophy. The proteins 

involved are huntingtin, ataxin-1, ataxin-2, ataxin-3, CACNA1A, ataxin-7, TATA binding 
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protein (TBP) and atrophin-1, respectively (David et al. 1997; Imbert et al. 1996; Koide et 

al. 1994; MacDonald et al. 1993; Orr et al. 1993) (Fig. 7).  

 

Figure 7. Polyglutamine disease family. CAG trinucleotide repeats expansion in at least nine 

proteins is the cause of polyglutamine diseases. This family is composed by SBMA, in which AR 

gene possesses a CAG expanded tract, Huntington’s disease due to expansion in huntingtin (Htt), six 

types of spinocerebellar ataxia (SCA1, SCA2, SCA3, SCA6, SCA7, SCA17), in which the mutated 

genes are ataxin-1, ataxin-2, ataxin-3, CACNA1A, ataxin-7, TATA-binding protein (TBP), 

respectively, and dentatorubral-pallidoluysian atrophy (DRPLA) due to atrophin-1 CAG expansion. 

 

PolyQ diseases share several features, such as late-onset manifestations of symptoms and the 

degeneration of specific neuronal subpopulations in each disease, thereby leading to different 

clinical manifestations. Moreover, there is an inverse relationship between the length of CAG 

expansion and the age of disease onset. This phenomenon is known as “genetic anticipation”. 

There is another common pathological sign among these disorders, which is the presence of 

insoluble material accumulation in forms of micro-aggregates/oligomers and inclusions. 
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Indeed, in vitro studies revealed that the misfolded protein conformation is due to formations 

of hydrogen bonds between the main chain of one strand and the side chain of the adjacent 

strand, thus forming anti-parallel beta strands (Perutz et al. 1994). The polyQ proteins acquire 

a non-native beta-sheet conformation, leading to aggregation, which triggers cellular stress 

response and finally neuronal death (Perutz et al. 1994; Poletti 2004; La Spada et al. 1991; 

Williams et al. 2009; Williams and Paulson 2008). 

AR is a nuclear transcription factor and a member of the steroid hormone receptor 

superfamily, which includes the estrogen receptor, glucocorticoid receptor, progesterone 

receptor, and mineralocorticoid receptor. AR activation is ligand-dependent, and it is due to 

the presence of androgens such as testosterone and its more potent derivative 

dihydrotestosterone (DHT). The AR gene is located on the X chromosome (Xq11-12) and is 

composed of eight exons. Exon 1 encodes the intrinsically disordered amino-terminal domain 

of the protein, which contains the polyQ tract. Normally, the expansion ranges between 9 

and 36 residues, and expansion over 37 residues causes disease. Exon 2 and exon 3 encode 

for the DNA binding domain (DBD) and the hinge region of the protein, in which is contained 

a specific nuclear localization signal (NLS) necessary for protein translocation to the nucleus. 

The remaining exons codify for the carboxy-terminal region, formed by the ligand binding 

domain (LBD) (Fig.8).  

 

Figure 8. Scheme of AR gene and protein. The AR gene is composed of eight exons. The first exon 

encodes the amino-terminal domain, which contains three polyQ tracts (polyQ), a poly-proline tract 

(polyP) and a poly-glycine tract (poly-G). The first polyQ tract (red) is expanded in SBMA. Exons 2 

and 3 encode the DNA-binding domain, which is formed by two zinc fingers, and the hinge region, 

which contains the PEST sequence and the nuclear localization signal (NLS). Exon 4 through 8 

encode the ligand-binding domain (Parodi and Pennuto 2011). 
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1.2.1. Molecular mechanism of SBMA pathogenesis 

In normal conditions, AR is sequestered in the cytosol by heat shock proteins (Hsps). These 

proteins contribute to maintain normal protein level, targeting AR for degradation through 

the help of ubiquitin-proteasome system. Upon binding to its natural ligands, testosterone 

and its more potent derivative dihydrotestosterone (DHT), AR dissociates from Hsps and 

translocates to the nucleus (Fig.9). It has been shown that the overexpression of Hsps in 

SBMA animal models reduce toxicity of expanded polyQ-AR, reducing nuclear-localized 

mutant AR and enhancing its degradation (Ishihara et al. 2003; M. Katsuno et al. 2003). 

Figure 9. AR biology. Testosterone may be reduced by 5α-reductase to dihydrotestosterone (DHT). 

When in the cytosol, DHT binds to inactive AR. Ligand binding triggers a series of sequential events: 

dissociation from Hsps, dimerization and translocation into the nucleus. Nuclear AR binds androgen-

responsive elements (ARE) in the DNA, interacting with transcriptional cofactors to activate or 

repress specific genes. 

Once testosterone or the reduced molecule DHT enter the cell and binds AR, the receptor is 

activated, Hsps dissociate and AR translocate to the nucleus, where it works like a 

transcription factor. The ability to move into the nucleus is due to its nuclear localization 

signal (NLS), in the hinge region. This event is necessary but not sufficient to establish the 

toxicity, as it has been reported in different studies. Indeed, mutation or deletion of this signal 

blocks protein translocation without abolishing ligand binding and preventing neurotoxicity, 

whereas polyQ-NLS fusion results in its nuclear localization but absence of toxicity because 
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of lack of ligand binding (Montie et al. 2009; Nedelsky et al. 2010). Inside the hinge region 

is situated a putative PEST sequence, which probably targets AR for proteasomal 

degradation. 

After the binding to the ligand, the LBD undergoes to a conformational change inducing a 

N/C-terminal interaction which could be intramolecular (in the cytosol) or intermolecular 

(upon nuclear transport), and result in the exposure of two coregulator interaction surfaces, 

named activation function-1 (AF-1) and 2 (AF-2) (Fig. 10). This interaction occurs between 

the FxxLF motif in the N-terminal of the protein and the AF-2, located in LBD. Inside AF-

2, two opposing charged residues are present (K720 and E897), which flank the hydrophobic 

surface of the domain, forming a binding cleft for co-factors. N/C interaction allows protein 

stabilization and the disruption leads to attenuation of mutant protein toxicity, as 

demonstrated in cell and fly models of SBMA (Zboray et al. 2015, Orr et al. 2010, He et al. 

2000). 

Once in the nucleus, AR binds specific regions of the genome, called androgen-responsive 

element (ARE), leading to the transcription activation or repression of specific androgen 

responsive genes. It was published that in a fly model of SBMA in which AR binding to 

DNA is impeded by the substitution of alanine 574 with an aspartate, the toxicity of polyQ-

AR is importantly decreased (Nedelsky et al. 2010). AR transcriptional activity is modulated 

by subsequent recruitment of several transcriptional co-regulators, which has been 

demonstrated both in vivo and in vitro to be a necessary and sufficient event for toxicity 

(Nedelsky et al. 2010). 

 

Figure 10. AR functional domains. AR protein is composed by four domains which differ for 

structure and function: an intrinsically disordered N-terminal domain (NTD) in which resides the 

polyQ, a DNA binding domain (DBD), a small hinge region (H) in which there is the nuclear 

localization signal and a C-terminal domain for ligand binding (LBD). 

. 
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1.2.2. Post-translational modifications of AR 

Commonly, AR can be post-translationally modified through the covalent enzymatic addition 

of acetyl, methyl and phosphate groups, or SUMO and ubiquitin protein (Fig. 11). These 

modifications lead to the regulation of AR transcriptional activity, subcellular localization, 

protein stability and cell growth, altering the binding with corepressors, coactivators, other 

regulatory factors and ligand.  

 

Figure 11. Post-translational modifications of AR. The major known site of phosphorylation 

(black), acetylation (blue), Sumoylation (red), Ubiquitination (green) and methylation (orange) of AR 

are indicated (Gioeli and Paschal 2012). 

AR is acetylated at lysine (K) 630, 632 and 633, inside the hinge region, which are targeted 

by p300, p300/CBP associated factor (PCAF) and Tip60 (Fu et al. 2000; Gaughan et al. 

2002). AR acetylation is induced by androgen stimulation (Fu et al. 2000). The deacetylation 

of these lysines is exerted by HDAC1 and SIRT1. AR deacetylation leads to decreased 

transcriptional activity (Fu et al. 2006). Mutations at acetyl acceptor sites provoke an increase 

binding to co-repressors, such as NCoR and SMAD3 (Fu et al. 2003). Conversely, a mutation 

that mimic acetylation at K630 increases AR activity on reporter promoters of PSA and 

MMTV (Zhou et al. 1995). Another report showed that differentially acetylated lysines on 

AR could have different effects on its transactivation. The mutants K630A, K632/633A and 

K630/632/633A increased AR activity in PSA and MMTV promoters, but the Pem promoter 
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was unaffected (Faus and Haendler 2008). Another stimulus that enhance AR transactivation 

is bombesin, a neuroactive peptide. This compound is reported to activate p300 in a Src and 

PKC-dependent manner, inducing AR activity (Gong et al. 2006). It was shown that the 

overexpression of SIRT1 was protective for motor neurons, due to a decrease in polyQ-AR 

aggregation (Montie et al. 2011). This protection was abrogated by lysine to glutamine 

substitutions at K630/632/633, which mimic acetylated sites, demonstrating that SIRT1 

protection is dependent on these intact lysines (Montie et al. 2011). In addition, it was shown 

that polyQ-AR is hyperacetylated in a SBMA cell model and a pharmacologic intervention 

aimed to reduce this aberrant post-translational modification was effective in decreasing 

DHT-induced cell death (Montie et al. 2011). These observations suggest that the modulation 

of polyQ-AR acetylation is a potential approach for SBMA therapy and reveal a novel 

protective role of SIRT1-mediated deacetylation (Montie et al. 2011). 

An AR methylation site is in the hinge region between DNA binding domain and the ligand 

binding domain. SET9 was found to methylate AR, but the site of modification is 

controversial. Ko and colleagues reported AR methylation at K630 with experiments of 

immunoprecipitations with mutant protein fragments (Ko et al. 2011). Another group 

identified the methylation site at K632, using mass spectrometry and immunoprecipitation 

with short peptides (Gaughan et al. 2011). Anyway, the SET9-mediated AR methylation 

induces N-C interdomain interactions, which are known to be transactivation enhancer 

(Langley et al. 1998). Recently, it was characterized AR methylation by a protein arginine 

methyltransferase, PRMT6, through mass spectrometry, which reveals that AR is methylated 

at arginine (R) 210, 212, 629, 787, and 789 (Scaramuzzino et al. 2015). R210-R212 and 

R787-R789 reside in the Akt consensus site of AR, RXRXXS (where X is any amino acid) 

(Scaramuzzino et al. 2015). Importantly PRMT6 was identified as an AR coactivator and 

enhancer of polyQ-AR toxity. The phosphorylation at the two serines in the Akt consensus 

sites, S215 and S792, induce AR repression impeding testosterone binding and preventing 

AR nuclear translocation, leading to neuroprotection (Palazzolo et al. 2007, 2009).  
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1.2.2.1. Phosphorylation 

The most studied post-translational modification of AR is phosphorylation. AR is a 

phosphoprotein modified at serines (S), threonines(T) and tyrosines (Y), according to the 

activated intracellular transduction pathways. Phosphorylation modifies specific domains, 

affecting AR function. The principal phosphorylation sites of AR are reported in Table 1. 

AR phosphorylation occurs 15 minutes after synthesis to allow ligand binding and protein 

folding and other phosphorylation events occur upon ligand binding (Blok et al. 1998; Van 

Laar et al. 1991). The ligand-induced phosphorylation events are S16, S81, S256, S308, S424 

and S650 (nomenclature taken from NCB accession number AAA51729) (Gioeli and Paschal 

2012). Other sites, such as S94 (hereby indicated as S96, according to NCBI Reference 

Sequence: NP_000035.2), are known to be constitutively phosphorylated (Gioeli and Paschal 

2012).  

Table 1. List of the known kinases that phosphorylates AR at the indicated sites with the indicated 

outcome on AR biology (Koryakina et al. 2014). 

 

In the inactive state AR is predominantly cytosolic, while nuclear in the presence of 

androgen. Without hormone, AR protein can be found both in the cytosol and nucleus of 

transfected cell lines (Palazzolo et al. 2010, Palazzolo et al. 2007). Nuclear localization 
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causes AR phosphorylation at S81, S256 and S308, instead cytoplasmic localization 

increases S96 phosphorylation. This implies that the kinases responsible for the described 

phosphorylations are localized in the nucleus and cytosol, respectively (Gioeli et al. 2006). 

 

1.2.2.1.1. AR phosphorylation by cyclin-dependent kinases (CDKs) 

AR possesses 9 minimal S/TP (where P is proline) consensus sites for cyclin-dependent 

kinases (Fig. 12). S81 can be phosphorylated by CDK1, CDK5 and CDK9, and it is most 

abundant phosphorylation that occurs after androgen treatment. Analysis of phosphorylation 

during cell cycle progression revealed that AR is highly phosphorylation during mitosis, 

when CDK1 activity is increased. S81 is linked to AR subcellular localization. When CDK5 

is overexpressed AR localized more in the nucleus, on the contrary when it is downregulated 

AR stays more in the cytoplasm (Hsu et al. 2011). S81 is involved also in the regulation of 

AR transcriptional activity, indeed S81A was observed to change the transcription of several 

gene reporter constructs (Gordon et al. 2010). CDK11 phosphorylates AR on S308. This 

phosphorylation modifies the growth rate of LNCaP and AR transactivation. CDK11 

silencing leads to the decrease of AR transcriptional activity, while its overexpression results 

in increased AR response. CDK7, protein of the TFIIF complex, can phosphorylate AR on 

S515. S515A AR mutant was associated with decreased transcriptional activation in reporter 

assays. This phosphorylation is linked also to decreased protein turnover, which is associated 

with decreased recruitment of the ubiquitin-proteasome machinery (Chymkowitch et al. 

2011).  

 

Figure 12. AR protein has 9 S/TP consensus sites for phosphorylation by cyclin-dependent 

kinases along its sequence. The pathological polyQ tract of AR (in the figure reported as Qn) is very 

close to S83 and S96. The majority of the phosphorylation sites reside in the N-terminal domain. 

S651 is inside the hinge region and T800 in the ligand binding domain (adapted from Polanco et al. 

2016). 
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1.2.2.1.2. AR phosphorylation of serine 96 by CDK2 (Polanco et al. 2016) 

Recently, we discovered that CDK2 is the kinase responsible for the phosphorylation of AR 

at S96 (Polanco et al. 2016). In this paragraph, I summarize the experimental workflow we 

adopted to discover CDK2 as the kinase of S96, and its pathological relevance. 

AR protein is resolved in a 7% SDS-PAGE as a doublet of about 110 and 112 kDa (Fig. 13A, 

lane 1). The incubation of cell lysate with lambda phosphatase for 24 hours revealed that the 

upper isoform is composed essentially by phosphorylated androgen receptor. Indeed, the 112 

kDa isoform completely disappeared after the treatment. The only remaining isoform after 

lamba phosphatase treatment was the one at 110 kDa, meaning that it is composed mainly by 

unphosphorylated AR (Fig. 13A, lane 2). The analysis of the expression in HEK293T cells 

of different phosphorylation mutants of AR shows that only the mutation at serine 96 

abrogates the formation of the upper isoform of AR. The phosphodefective alanine mutant 

(S96A) runs as the lower 110 kDa band, instead the phosphomimetic aspartic acid mutant 

(S96D) runs as the upper 112 kDa band of both normal and polyQ-AR (Fig. 13B). Various 

mutants of phosphorylation sites were created in order to analyze whether the formation of 

the doublet was impaired. In particular, serine 16, 83, 258, 282, 310, 426, 516, 651, 800 were 

mutated to alanine, either individually or in combination (nomenclature according to NCBI 

Reference Sequence: NP_000035.2). None of the tested mutations were found to change the 

migration of AR (Fig. 13C-D, -PACAP/Forskolin treatment lines). This means that 

phosphorylation at serine 96 of AR specifically forms the upper isoform of about 112 kDa 

detectable by SDS-Page electrophoresis. An important characteristic of AR doublet is that 

the accumulation of the upper phosphorylated isoform was decreased by the activation of 

PKA/AC pathway through pituitary adenylyl cyclase activating polypeptide (PACAP) and 

forskolin treatment (Fig. 13C-D, +PACAP/Forskolin treatment lines). 
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Figure 13. Phosphorylation state at serine 96 is influenced by PACAP/Forskolin treatment and 

changes the migration of normal and polyQ-AR in SDS-PAGE. A) Western blotting analysis of 

HEK293T cells transfected with expanded polyQ-AR, whose cell lysate was treated with or without 

λ phosphatase (λ phosph) for 24 hours. N=3 independent experiments. B) Western blotting analysis 

in Motor neuron-derived cells-1 (MN1) stably expressing AR24Q and AR100Q, normal and polyQ 

AR respectively, with and without S96A and S96D substitutions. N=3 independent experiments. C) 

and D) Western blotting analysis of the indicated serine-to-alanine phospho-resistant polyQ-AR 

variants in HEK293T cells treated with vehicle, forskolin (10 µM), and PACAP (100 nM) for 5h. N 

= 3 independent experiments (Figure adapted from Polanco et al. 2016). 

We used an unbiased approach, screening kinase and phosphatase inhibitors and looking for 

variation in the phosphorylation of S96. We found that a nonspecific inhibitor of CDK1/2 

decreases S96 phosphorylation. We manipulate CDK1 and 2 expression levels with 

overexpressing constructs with WT or dominant negative mutants (DN) of the proteins. We 

found that CDK2 WT overexpression increases S96 phosphorylation, instead CDK2 DN 

abolishes the specific post-translational modification. Then, we performed an in vitro 

phosphorylation assay in which CDK2 coupled with cyclin E succeeded to phosphorylates 

S96, but not S96A AR mutant (Fig. 14). Importantly, we mutated all the consensus sites for 

A B C 

D 
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CDKs in AR amino acid sequence, except S96, and CDK2 was still able to phosphorylate 

the AR mutant isoform. These observations prove that serine 96 is phosphorylated by CDK2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. CDK2 is the kinase of serine 96 AR. In vitro phosphorylation assay of AR55Q, AR55Q-

S96A, and AR55Q-8A with all the (S/T)P sites substituted with alanine except for S96. They were 

immunopurified from HEK293T cells and incubated with recombinant CDK2 and cyclin E. Top: 

Autoradiography. Bottom: Western blotting analysis of AR levels. Graph,means ± SD. n = 2 

independent experiments. a.u., arbitrary units (Figure adapted from Polanco et al. 2016). 

Phosphorylation of S96 by CDK2 was found to be toxic in SBMA cell and mouse models 

(Polanco et al. 2016). We found that CDK2 was inhibited by PKA/AC pathway activation 

through forskolin or pituitary adenylate cyclase-activating peptide (PACAP) administration. 

The phosphorylation of S96 was reduced by forskolin/PACAP treatment in vitro, leading to 

the possibility to use this strategy also in vivo. Indeed, when we treated knock-in mice with 

a PACAP analog, peptide 7, we found that S96 phosphorylation and AR aggregation were 

reduced, leading to a rescue of the motor phenotype and survival in this mouse model 

(Polanco et al. 2016). The proposed model for the modulation of S96 phosphorylation is 

reported in figure 15. 
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Figure 15. Working model of modulation of serine 96 phosphorylation through PKA pathway. 

PACAP/peptide 7/forskolin treatment causes the activation of the PKA pathway which lead to 

inhibition of CDK2. The inhibition of CDK2 kinase activity impedes serine 96 phosphorylation, 

causing neuroprotection (figure adapted from Polanco et al. 2016).  

1.2.2.2. AR dephosphorylation 

Protein function is regulated through phosphorylation/dephosphorylation cycles which are 

exerted by the integrating actions of kinases and phosphatases. Phosphatases are hydrolases 

that remove the phosphate group from amino acid residues previously phosphorylated by 

kinases. Phosphatases have been categorized as promiscuous enzymes in the past, in the 

sense that they have poor intrinsic substrate specificity in vitro. Instead, in vivo studies show 

that they preferentially target specific substrates (Sacco et al. 2012).  



36 
 

Protein phosphatase 1 and 2A (PP1 and PP2A) bind AR (Chen et al. 2009; Yang et al. 2007). 

Tautomycin, a selective inhibitor of PP1, increases S650 phosphorylation levels and 

increases AR degradation (Chen et al. 2009). In a report of Yang and colleagues, PP2A was 

shown to be loaded to AR protein by simian virus 40 small t antigen, suggesting that this 

mechanism occurs only in transformed cells. PP2A inhibitors increases AR transcriptional 

activity and protein levels, proving that AR is regulated by direct or indirect PP2A action 

even in absence of small t antigen (Yang et al. 2007). 

An extensive work to identify AR phosphatases at specific sites needs to be done, in order to 

regulate mutant AR toxicity in SBMA, but also in prostate cancer fields. 

1.2.3. Therapeutic Approaches for SBMA 

SBMA is characterized by motor neuron death partially due to a toxic gain of function of the 

polyQ-AR. In the last years, cell and animal models were created to dissect important features 

of the pathogenic mechanism of SBMA. Starting from these models, a number of different 

therapeutic strategies have been developed. 

1.2.3.1. Disruption of the ligand-AR interaction 

As previously described, ligand binding to the AR induces dissociation from heat shock 

proteins and nuclear translocation. In male mice, the SBMA phenotype is rescued by 

castration, while testosterone administration triggers the disease in females (Chevalier-

Larsen 2004; Katsuno et al. 2002). The link between androgen binding and toxicity in SBMA 

indicates that this step of mutant AR toxicity could be a target for therapeutic intervention. 

Leuprorelin, a lutenizing hormone-releasing hormone agonist that reduces testosterone 

release from the testis, was successful in treating SBMA mice, leading to beneficial effects 

and preventing disease onset (M Katsuno et al. 2003b). Several randomized, placebo-

controlled clinical trials have been developed in SBMA patients to reduce androgen levels. 

The agents used in these studies are leuprorelin and dutasteride, a 5-alpha-reductase inhibitor, 

which blocks the conversion of testosterone into the more potent androgen 

dihydrotestosterone (DHT). Even if no one of the two androgen-reducing agents significantly 

improved primary clinical outcome (Fernández-Rhodes et al. 2011; Katsuno et al. 2010), 

leuprorelin improves swallowing parameters and decreases nuclear accumulation of mutant 

AR in scrotal skin cells. These results suggest that androgen reduction therapy reduces 
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mutant AR accumulation and may modify the progression of SBMA specially at early disease 

stages. 

1.2.3.2. PolyQ-AR silencing 

Toxic gain of function contribution to neuronal dysfunction in SBMA and other polyQ 

diseases prompted the begin of clinical trials to reduce the levels of expression of the disease-

causing proteins. Conditional mouse models of Huntington’s disease and SCA1 have shown 

that abrogation of the expression of the polyQ-expanded proteins correlates with reduced 

disease progression and even reverses the pathology (Yamamoto et al. 2000; Zu 2004). These 

findings suggest that gene silencing approaches using RNA interference (RNAi) and 

antisense oligonucleotide (ASO) technology in polyQ diseases may be a successful 

treatment. A recently study described that the peripheral administration of AR-specific ASOs 

suppress mutant AR expression both in vitro and in vivo, attenuating the disease phenotype 

in two different mouse models of SBMA (Lieberman et al. 2014). Moreover, it has been 

described that a microRNA, miR-196a, enhances AR mRNA decay by silencing CELF2, an 

RNA-binding protein known to bind and stabilize CUG-rich 3’-UTR of mRNAs. miR-196a 

viral delivery reduces mutant AR accumulation and ameliorates the disease phenotype in 

SBMA mice (Miyazaki et al. 2012). These studies show that the decreased AR expression 

through antisense approaches can modify SBMA manifestations in animal models. 

1.2.3.3. Degradation of polyQ-AR protein 

An alternative strategy for reducing the levels of mutant AR is to accelerate the clearance of 

the protein. Ubiquitin-proteasome system (UPS) is the main degradation pathway of AR 

protein (Lieberman et al. 2002). In addition, there are several evidences in both cell and 

animal models, suggesting that enhancing UPS-mediated clearance of mutant AR has a 

protective effect on SBMA pathogenesis (Palazzolo et al. 2009; Tokui et al. 2009; Waza et 

al. 2005). Current pharmacological approaches for enhancing mutant AR degradation target 

primarily the protein quality control machinery. AR function and stability are controlled by 

the Hsp90/Hsp70-based chaperone complex. In this complex, association with Hsp90 

stabilizes AR, while Hsp70 regulates the degradation of client proteins through the 

recruitment of chaperone-dependent ubiquitin ligases, such as C-terminus of Hsp70-

interacting protein (CHIP) (Pratt et al. 2015). More specifically, activation of Hsp70 or 

inhibition of Hsp90 promotes UPS-mediated clearance of the mutant AR (Thomas et al. 
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2006; Wang et al. 2013). A recent study reported that a small molecule, YM-1, able to 

stabilize Hsp70 in its ADP-bound state and to promote binding to unfolded proteins, 

accelerates the degradation of mutant AR and rescues its toxicity in a Drosophila model 

(Wang et al. 2013). Association with co-regulators also influences the stability of AR. For 

example, AR is stabilized by interaction with the nuclear receptor coactivator 4 (NCOA4) 

(Hu et al. 2004). ASC-J9 and genistein promote the dissociation of AR and NCOA4 (Ohtsu 

et al. 2002; Qiang et al. 2013). Interestingly, both compounds decrease levels of mutant AR 

and attenuate disease manifestations in mouse models of SBMA (Qiang et al. 2013; Yang et 

al. 2007). 

Recently, our study demonstrates that serine 96 dephosphorylation through PKA pathway 

activation increases polyQ-AR protein turnover, destabilizing the formation of aggregates 

and decreasing toxicity both in in vitro and in vivo SBMA models (Polanco et al. 2016). This 

non-invasive potential treatment for SBMA proved that the modulation of crucial post-

translational modifications of polyQ proteins can be a valid strategy to undertake in next 

clinical trials. 

1.2.3.4. Modulation of polyQ-AR toxic transactivation 

Transcriptional dysregulation is an important downstream effect implicated in mutant AR 

toxicity in SBMA (Lieberman et al. 2002). Aberrant interactions between expanded 

polyglutamine proteins and transcription factors and coregulators have been well-described 

(McCampbell et al. 2000). Sodium butyrate, an inhibitor of histone deacetylases, improves 

SBMA motor phenotype, delays disease progression, and leads to an overall increase in 

histone acetylation in SBMA mice (Minamiyama et al. 2004). It has been published that 

transcriptional dysregulation in SBMA can also be counteracted by triptans (Minamiyama et 

al. 2012). Moreover, mutant AR expression is associated with upregulation of calcitonin 

gene-related peptide 1 (CGRP1), which leads to neuronal damage through stress kinase 

activation. The serotonin 1B/1D receptor agonist naratriptan was shown to prevent 

transcriptional induction of CGRP1 and to ameliorate the disease phenotype in SBMA mice. 

These results highlighted that the AR native function is dysregulated in SBMA and this could 

be exploited as target to develop new therapeutic strategies for SBMA and other polyQ 

diseases. 
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1.3. Physiological functions of neuronal AR 

 

AR plays a fundamental role in neuroendocrine regulation of reproductive behavior and it is 

responsible of the masculinization of the brain. Early studies report that during rat 

development, testes secrete testosterone (T) with two waves, one in late gestation, around 

embryonic days 18-19, and one on the day of birth (Motelica-Heino et al. 1988; Weisz and 

Ward 1980), suggesting that this hormone plays a crucial role in the physiological 

development. Moreover, the analysis of gender disease prevalence, symptoms and specific 

mechanisms of neurological disorders and mental illnesses, including neurodegenerative 

diseases, reveal a strict relationship with sex steroids (Cahill and Larry 2006). For instance, 

Alzheimer’s disease (AD) progression and development are different in males and females 

(Pike 2017). Women show a decrease in estrogen levels during aging, and the premature 

reduction of this steroid hormone is a risk factor for AD. Conversely, men possess very low 

concentration of estrogens throughout life, but T deprivation due to aging is predicted to 

increase AD incidence (Pike 2017). Males and females respond differently to stress cues, 

leading to distinct incidence of psychiatric illnesses, such as depression, schizophrenia and 

attention deficit hyperactivity disorder (Klein and Corwin 2002). Therefore, the molecular 

mechanisms involved in the gender-specific susceptibility to diseases and physiological 

changes in brain development need to be investigated.  

There are sexually dimorphic regions in the brain of adult mammals that form thanks to 

steroid hormones, T and estrogen, and the action of both AR and estrogen receptor (ER) 

(Coumailleau et al. 2015; Shah et al. 2004). The aromatization of T leads to the production 

of estradiol, the female steroid hormone, which binds specifically to ER. Dihydrotestosterone 

(DHT) is a non aromatizable hormone, that binds exclusively to AR. For this reason, in the 

next paragraphs all the work presented to prove the role of AR function in neurons involve 

DHT treatments, or similar, in addition to the use of specific AR antagonists, such as 

flutamide. 

1.3.1. Sexually dimorphic brain regions 

The cognitive regions that are sexually dimorphic are part of the limbic system, responsible 

for the behavior, long-term memory and motivation, and cerebral cortex (Fig. 16) (Juraska 
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1991). There are two types of sexual dimorphism: structural and functional. The first one 

comprises all the differences at architectural level, the second one describes brain regions 

which differ for the neurotransmitter composition or the activated response to stimuli. An 

example of structural dimorphism is the observation that female cortical mantle results to be 

thicker compared to males when normalized for the brain total size, suggesting a dimorphic 

organization of the brain and in particular of the architecture of the cortex (Luders et al. 

2006). MRI scans reveal also a gender-specific difference in the dimension of the grey and 

white matter, leading to evidences of the sexual dimorphism in various regions of the 

cerebrum (Allen et al. 2003). An example of functional dimorphism is the biochemical 

characteristics of hippocampus, which suggest differential response to activation of several 

neurotransmitter pathways (Madeira and Lieberman 1995).  

 

Figure 16. Sexual dimorphism in the human brain. Through a magnetic resonance imaging (MRI) 

study, the volume of brain regions in adult men and women was measured. The volume of the regions 

was normalized to the cerebrum size. Many regions display sex differences, including some areas of 

the cortex implied in cognitive functions (Kandel et al. 2013). 

The hippocampus is the brain region which belongs to the limbic system. Its major functions 

comprise long, short-term and general spatial memory (Rueckemann and Buffalo 2017), but 
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also it is involved in the regulation of reproductive, sexual and maternal behaviors (Meaney 

and Michael 2001). Indeed, its structure and function are sexually dimorphic (Cahill and 

Larry 2006). Hippocampus size and the number of pyramidal cells in the CA1 region are 

larger in females than in males (Madeira and Lieberman 1995). The major functional sexual 

dimorphisms are the number of benzodiazepine, alpha-adrenergic and high-affinity 

corticosterone receptors (Dulce Madeira and Lieberman 1995). Other gender-dependent 

aspects are hippocampal long-term potentiation (LTP), excitability of hippocampal neurons 

with the shaping of their dendrites and the increase of NMDA receptor binding (Cahill and 

Larry 2006). A region of the brain which is responsible for reproductive behaviors is the 

amygdala (Kim et al. 2012). Male amygdala is bigger than the one in females and there are 

substantial body of evidence for its functional sexual dimorphism. Indeed, the amygdala is 

also involved in the memory of emotional events, in particular stressful events (Ressler 

2011). When an emotional cue is induced in humans, male individuals activate preferentially 

the right amygdala circuitry, in opposition to the female preference to use the left hemisphere 

(Canli et al. 2002). Many sexual differences arouse from the study of neurotransmitter 

pathways. Sexual dimorphism involves serotonin, GABA, acetylcholine, vasopressin, 

opioids and monoamines. Male rats have a lower serotonin concentration than females in the 

whole brain and hypothalamic homogenates, and it was shown that this hormone promotes 

the feminization of the preoptic area (POA) of the hypothalamus, another sexually dimorphic 

region of the brain (Madden et al. 2016). The enzyme responsible of the oxidation of 

monoamines is more expressed in several brain regions of women respect to men. Stress-

induced response of the monoamine-rich neurons of the locus coeruleus was 30-times greater 

in females than in males (Curtis et al. 2006). GABA-induced stimulation of rat neurons has 

different effect in male and female substantia nigra, causing male neuronal depolarization 

and female neuronal hyperpolarization (Galanopoulou 2006). Recently, the sexually 

dimorphic gene expression pattern was unraveled, identifying four major players in sex 

typical behaviors, bombesin receptor subtype 3, cholecystokin A receptor, insulin receptor 

substrate 4 and synaptotagmin like 4 (Xu et al. 2012). This finding demonstrates the existence 

of differential gene expression programs in sexual dimorphic brain regions, that probably 

shape and influence specific gender-dependent brain traits. Serrano-Saiz and colleagues used 

the nematode Caenorhabditis elegans to map the gender-specific usage of neurotransmitters, 

revealing a generalized sexually dimorphic system. This simplified model could be a starting 

point for functional and developmental analysis of the male nervous system (Serrano-Saiz et 

al. 2017).  
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1.3.2. AR expression in the central nervous system 

AR is a ubiquitous protein, with highly expression in reproductive tissues, including testes, 

prostate, ovaries and uterus, and non-reproductive tissues such as liver, adipose and muscle 

(Bookout et al. 2006). AR is also expressed in the CNS, even if in a lesser extent, and at 

different levels during development and according to neuronal subtypes (Fig. 17) (Camacho-

Arroyo et al. 2018; Mhaouty-Kodja 2017; Tsai et al. 2015).  

AR mRNA and protein expression are present in the POA and ventromedial hypothalamus, 

amygdala and bed nucleus of the stria terminalis (BNST) (Mhaouty-Kodja 2017). In the 

mouse hypothalamus, AR mRNA is detected in increasing concentrations from embryonic 

day 19 (E19) to postnatal day 7 (P7), whereupon it decreases in both sexes, but with a higher 

expression in males (Mogi et al. 2015). Juntti and colleagues analyzed a mouse model in 

which β-galactosidase (β-gal) was expressed under an AR-specific promoter, in order to 

follow during mouse development AR expression especially in the CNS (Juntti et al. 2010). 

They analyzed transgenic embryos and they detected AR expression at E15.5 and E17.5 in 

neurons of the arcuate and ventromedial nuclei of the hypothalamus, but not in BNST, POA 

and medial amygdala (MA). At postnatal day 1, when the first surge of testosterone occurs, 

they found only a slight AR expression in the previously described sexually dimorphic brain 

regions. At P4, when the testosterone level is returned to stable concentration, β-gal reactivity 

was more evident. Anyway, the higher AR expression was found in adult mice (Junnti et al. 

2010).  

AR was detected also in cerebellum, recently found to be part of the sexual behavior circuit 

in men (Perez-Pouchoulen et al. 2016). In this report, through immunohistochemistry 

method, they found the expression of AR in Purkinji neurons of adult rats, and the expression 

level differs according to the location and lobule.  

The spinal nucleus of the bulbocavernosus (SNB) is composed of lumbar motoneurons which 

innervate the bulbocavernosus and levator ani muscles in the perineal zone of males. This 

apparatus is testosterone and AR-dependent. Smith and colleagues showed that AR 

expression in the SBN motoneurons started at PND 4, after the appearance of AR 

immunoreactivity in the muscles of this area, at E15 (Smith et al. 2012).  
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Figure 17. AR expression in the adult mouse brain. The upper panel represents Nissl staining of 

the left part of the coronal section of the brain, and the reference area in the right part. The lower 

image reports in situ hybridization of androgen receptor. (Allen Brain Atlas, 2018). 
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AR expression also occurs in the hippocampus, principally in cornu ammonis (CA) 1 and 

CA2/3 regions (Moghadami et al. 2016). Hippocampal AR mRNA in the developing male 

rat increases from PDN1 to PDN14, after which remains stable in the adulthood (Kimoto et 

al. 2010). In the mouse male hippocampus, AR mRNA is similarly expressed, with increased 

detection from PND 5 to PND 7 (Mogi et al. 2015). AR immunoreactivity can also be 

detected in the cerebral cortex. Mogi and colleagues showed AR mRNA expression in the 

cortex starting from E19 and increasing until PND7 in both sexes (Mogi et al. 2015). Another 

study detected the transcript from PND0 to PND21 in the mouse cortex and hippocampus 

(Tsai et al. 2015).  

Taking together, these anatomical observations during developmental stages seem to suggest 

that AR may play an important role in adult brain response to specific sexual stimuli and in 

the maintenance of sexually dimorphic circuitries, but it is unlikely to be a major contributor 

of the masculinization of the brain at early stages in the studied models. However, specific 

functional and behavioral studies on AR function in sexual brain are discussed in detail in 

the next paragraph (1.3.3.). 

Not only neurons express AR in the brain structures. AR expression was also detected in 

astrocytes of rat brain, but only in specific locations and at specific ages (Lorenz et al. 2005). 

There are evidences that astrocytes in the posterodorsal portion of the MA are sexually 

dimorphic in adult rats (Jonhson et al. 2013). Indeed, male rats have a higher number of 

astrocytes than females, and the masculinization of MA astrocytes is AR-dependent in its 

long-lasting effects (Jonhson et al. 2013). Recently, AR was implicated in CNS re-

myelination exerted by oligodendrocytes (Bielecki et al. 2016). In this study, a mouse model 

in which AR was deleted from neurons, astrocytes and oligodendrocytes was applied. This 

ablation disrupted the capacity of myelin regeneration, suggesting an important role in this 

process for testosterone-AR signaling, even if the cell-autonomous component was not 

elucidated. 

1.3.3. AR function in sexual behavior 

Sexual behavior in rodents comprises two phases, the pre-copulatory and the copulatory 

phases. The pre-copulatory phase is characterized by olfactory cues exerted by feminine 

pheromones, which are detected by the male olfactory bulb, starting a signal cascade of 

transmission addressed to the medial amygdala, BNST and POA. The signal is also 
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transmitted from the hypothalamus to the spinal cord, in the SNB, area involved in erectile 

function. Then, the copulatory phase occurs, in which male rodents exhibit sexual arousal, 

thrusting, mounting and intromitting behaviors. Neural AR manipulation in rats reveals no 

difference in olfactory preference, normal anogenital investigation and normal Fos-activation 

pattern following exposure to bedding of female with estrus (Marie-Luce et al. 2013; Raskin 

et al. 2009; Swift-Gallant et al. 2016). In contrast, male sexual arousal is altered by AR 

activity. One of the brain structure involved in male sexual arousal is the medial amygdala. 

Flutamide injection directly targeting the medial amygdala was sufficient to lower the non-

contact erections and the time spent in genital grooming (Bialy et al. 2011). Moreover, neural 

AR knock-out mice spend more time to initiate copulatory behavior (Raskin et al. 2009). AR-

null male mutant mice display complete loss of male sexual behavior and severely impaired 

male aggressive behaviors. This phenotype was not rescued by DHT or estradiol treatments 

(Sato et al. 2004). In addition, also estrogen receptor α (ERα) -/- mice display impaired male-

typical behaviors. To exclude a role of ER in male brain masculinization, mice were treated 

with DHT, leading to the rescue of the impaired male sexual behavior (Sato et al. 2004). 

Perinatal DHT treatment of female WT mice led to the DHT-dependent induction of typical 

male sexual behaviors in adultness. This female brain masculinization was repressed by AR 

inactivation. These observations confirm that AR function is critical for male-typical 

behaviors and brain masculinization (Sato et al. 2004). 

1.3.4. AR function in cognition 

As described above, AR is expressed in brain structures related to cognition. In order to 

evaluate the impact of AR function in learning and memory, male rats subjected to 

gonadectomy were treated with intra-hippocampal infusions of DHT (Edinger and Frye 

2004). DHT treatment ameliorated learning and memory, assessed through behavioral tasks, 

such as the inhibitory avoidance task and the Morris water maze. Another proof of the 

importance of AR in cognition was demonstrated by the fact that the administration in the 

dorsal hippocampus of flutamide, provoked poorer performance in behavioral cognitive tasks 

(Edinger and Frye 2007). Recently, Picot and colleagues explored the role of AR in the 

temporal processing of information, revealing that the abrogation of AR function in the brain 

impaired this ability through the alteration of glutamatergic transmission in CA1 area of the 

hippocampus (Picot et al. 2016). 
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At the cellular level, AR stimulation through DHT leads to the expression of sarco and 

endoplasmic reticulum calcium ATPase 2 (SERCA2) in rat primary hippocampal neurons, 

which increases the Ca2+ stores in response to glutamate (Foradori et al. 2007). Moreover, 

the androgen-induced maintenance of spine synapse density in the CA1 and prefrontal cortex 

is mediated by AR action (Hajszan et al. 2007; Hatanaka et al. 2015). AR function was also 

implicated in activity-dependent long-term potentiation and long-term depression plasticity 

in CA1 area (Pettorossi et al. 2013). Another phenomenon in which AR is involved is the 

neurogenesis of the dentate gyrus, which is induced by DHT treatment. The DHT-dependent 

increase of hippocampal neurogenesis was blocked by flutamide administration (Hamson et 

al. 2013). 

1.3.5. AR-mediated neuronal protection 

Steroid hormones exert neuroprotective effects in acute neuronal injury and in 

neurodegeneration. In particular, starting from 2002, estrogen is the most studied hormone 

with neuroprotective effect (Simpkins et al. 2012). Estradiol is the principal estrogen 

hormone with very high affinity for ER (Kuiper et al. 1997). The binding of estradiol to ER 

is the principal mechanism involved in estrogen neuroprotection (Simpkins et al. 2012). 

Testosterone is extensively involved in neuroprotective mechanisms. The aromatization of 

testosterone through the action of aromatase leads to the production of 17β-estradiol. 

Aromatase is expressed in ovaries, adipose tissue, skin, testis, muscle, liver and also in the 

central nervous system (Moraga-Amaro et al. 2017). Hence, testosterone neuroprotective 

effect may arise from aromatase activity and binding to ER. To assess the specific AR 

involvement in neuroprotection activating pathways, the role of non-aromatizable androgens 

has to be addressed. For example, DHT is a non-aromatizable androgen that exclusively 

binds to AR with the higher affinity among androgen hormones. Another strategy is the use 

of selective AR antagonist, which block hormone binding. In human primary neurons 

insulted with serum deprivation, another non-aromatizable androgen, mibolerone, succeeded 

in the inducement of neuroprotection (Hammond et al. 2001). This effect was reverted by 

flutamide treatment. In an in vitro model of Alzheimer’s disease, amyloid β peptide toxicity 

was prevented by androgen and estrogen treatments (Zhang et al. 2004). In this study, the 

selective inhibitions of both AR and ER, separately, blocked hormone-dependent 

neuroprotection. The same toxicity paradigm was used also by Nguyen and colleagues in 

which they observed that the AR-mediated neuroprotection induced by testosterone and DHT 
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treatments is exerted by MAPK/ERK signaling activation, probably via non-genomic AR 

actions (Nguyen et al. 2005). The AR-mediated neuroprotection was also proved in 

hippocampal slice cultures insulted with oxygen-glucose deprivation (Ishihara et al. 2016). 
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1.4. Molecular mechanisms of activity-regulated 

transcription 

Neurons are excitable cells which undergo activity-dependent synaptic plasticity. A 

persistent experience-driven stimulus modifies neuronal synaptic strength causing the 

reinforcement or the elimination of synapsis during life. The idea that sensory input triggers 

gene expression to transduce sensory experience into long-lasting changes in the brain is 

supported by several works (West and Greenberg 2011). The mechanism through which 

brain plasticity is achieved starts with neuronal activity-regulated gene expression. 

The first report of a fast-induced transcription in quiescent cells was the discovery of the 

regulation of c-Fos gene expression by external stimuli (Cochran et al. 1984; Greenberg and 

Ziff 1984). They discovered that mitogen-treated 3T3 fibroblasts rapidly activate robust c-

Fos transcription within minutes. Several proto-oncogenes were linked to the immediate 

transcription, suggesting an essential role for this process in mitogenesis (Lamph et al. 1988; 

Ryder et al. 1988). The genes induced by rapid transcription were named immediate-early 

genes (IEGs). PC12 pheochromocytoma cells treated with nerve growth factor (NGF) and 

epidermal growth factor (EGF) were shown to rapidly activate transcription of several proto-

oncogenes, including Myc, Fos, Raf and Fgr (Greenberg et al. 1985; Milbrandt 1986). In 

1986, it was shown that the rapid gene expression of IEGs in differentiated PC12 treated with 

a nicotinic acetylcholine receptor agonist was dependent on calcium release after membrane 

depolarization (Greenberg et al. 1986). This mechanism required L-type voltage-sensitive 

calcium channels (L-VSCCs) activation. Additional experiments came in the following 

years, linking immediate transcription with stimuli inducing activation of post-mitotic cells. 

For example, in vivo treatment with a seizure-inducing stimulus caused a rapid increase of c-

Fos expression in neurons of the cortex, hippocampus and limbic system (Morgan et al. 

1987). This new concept led to the hypothesis that external stimuli may cause long-lasting 

effects on the gene expression, changing neuronal function and metabolism.  

Differential cloning experiments revealed the list of upregulated IEGs in stimulated neurons. 

Nedivi et al. used subtractive and differential cloning strategy of cDNA derived from non-

treated rat brains and kainate-activated dentate gyrus, in order to identify the activity-induced 

gene transcription (Nedivi et al. 1993). In the same year, another group performed a similar 

screening using metrazol-induced seizure paradigm in mice and discovering an 
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unprecedented regulation for known neuronal-specific genes by long-term potentiation 

(LTP) (Qian et al. 1993). These results reveal that stimuli that trigger neuronal activity induce 

a plethora of genes which are neuronal-specific and involved in synaptic function. Recently, 

new methods were developed to analyze gene expression profiles, such as microarray and 

RNA-seq techniques. These studies reveal that different stimuli activate specific subsets of 

genes which are down- or upregulated.  

1.4.1. Models of transcriptional control of immediate early genes 

The pattern of gene expression induced by changes of the activity state of a neuron varies 

depending on cell type and treatment (Flavell et al. 2008; Guan et al. 2005; Spiegel et al. 

2014; Xiang et al. 2007). Although these evidences lead to the concept of spatial-, time- and 

developmental stage-specific regulation of transcriptional program, the IEGs induced after 

neuronal stimulation can be classified in two classes: i) the classical IEGs that are 

transcriptional factors activated in a broad range of cells generally upon external stimuli, 

such as growth factors, hormones and stress, and, ii) neuronally-enriched genes that regulate 

synapse development and function (Fig. 18). As I show in the next paragraphs, the first class 

is composed by genes such as Fos, Jun, NPAS4 and more, the second class comprises, among 

the others, Homer, a family of scaffold proteins that binds to metabotropic glutamate 

receptors and has a function in synaptogenesis (Xiao et al. 2000), neuronal activity-regulated 

pentraxin (Narp), responsible for the clustering of AMPA receptors (O’Brien et al. 1999). 

IEGs share some common features. IEGs expression is fast and transient. For example, Fos 

gene expression after stimulation reaches the maximum level of transcript production around 

15 minutes and after 90 minutes it returns to normal threshold, in the absence of persistent 

stimulus (Greenberg and Ziff 1984). The quick expression of IEGs is protein synthesis-

independent, thus inhibitors of translation are not effective in blocking IEGs transcription 

(Greenberg et al. 1986). The induction of their transcription is initiated by extracellular 

signals: growth factors, mitogens, signals triggering immune response, neural depolarization 

and stress (Herschman 1991). Fos protein family is eliminated partially by a ubiquitin-

independent degradation through proteasome. This fact remarks their instability and the 

transient nature of IEGs. This characteristic is possible thanks to the action of an important 

regulator of IEG transcript degradation, Zfp36. It is an IEG demonstrated to be essential for 

the downregulation of Fos gene expression (Amit et al. 2007). Zpf36 is a zinc-finger protein 

that binds to AU-rich elements (AREs) in the 3’-UTR of mRNA, that induces deadenylation 



51 
 

and degradation of target mRNAs (Carballo et al. 1998). Another common feature is the 

presence of specific binding sites for common transcription factors which are over-

represented in IEGs promoter regions. These transcription factors are serum-response factor 

(SRF), nuclear factor-kB (NF-kB) and cyclic AMP response element-binding (CREB) 

protein. In addition, the IEG promoters are enriched with TATA boxes, underlying a solid 

and redundant mechanism of gene expression (Tullai et al. 2007).  

 

Figure 18. Signaling pathways initiated by neuronal activity which result in gene expression of 

activity-dependent transcription factors and synaptic proteins. Calcium influx through 

neurotransmitter receptors or voltage-gated calcium channels activates calcium-regulated signaling 

enzymes. These factors activate pre-exiting transcription factors in the nucleus through post-

translational modifications which trigger the expression of additional activity-regulated transcription 

factors and synaptic proteins (Adapted from Flavell and Greenberg 2008). 

Rapid activation of IEGs expression is elicited by a characteristic chromatin structure, named 

bivalent chromatin, at the transcription starting sites (TSSs). It means that they have both 

active and repressive histone marks. For example, tri-methylation of lysine 4 on histone H3 

(H3K4me3), an active chromatin marks, coexists in the same site with tri-methylation of 
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lysine 27 on histone 3, a repressive signature. This type of promoter was discovered as 

enriched in pluripotent embryonic stem cells (ESCs) (Bernstein et al. 2006). The IEGs TSSs 

are essentially repressed but occupied by RNA polymerase II (RNA pol II) poised for quick 

transcription (Rye et al. 2014). The promoter regions of IEGs are dynamically regulated by 

histone modifiers, such as the “writers” histone acetyl transferases (HATs) and the “erasers” 

histone deacetylases (HDACs). A specific HAT, named p300/CREB-binding protein (CBP), 

mediates this dynamic process (Crump et al. 2011). 

In the next paragraphs, I describe the specific mechanisms of transcription of some IEGs. 

1.4.1.1. Fos 

The first gene that was characterized in its immediate expression after extrinsic stimuli was 

Fos gene, whose product is the oncogenic transcription factor Fos. This protein was firstly 

described in early ‘80s as v-FOS, the viral omolog of cellular Fos (c-Fos), isolated from 

Finkel-Biskis-Jinkins virus (Curran et al. 1982). Fos alone is not a functional transcription 

factor, but it dimerizes with members of the Jun family, forming the transcription factor 

activator protein 1 (AP-1) (Curran et al. 1985). The interaction between the two proteins 

occurs through a basic leucine zipper motif (Kouzatides and Ziff 1988). Jun can 

homodimerize to form AP-1, instead Fos forms an active heterodimer only in association 

with Jun. The homodimer Jun/Jun is less prone to bind DNA respect to the heterodimer 

Fos/Jun (Halazonetis et al. 1988). Fos/Jun heterodimer recognizes the consensus sequence 

TGACTCA, that is the TPA responsive element (TRE) binding site(Angel et al. 1987).  

As Fos was the first IEG to be identified, its transcriptional regulation is extensively 

characterized, and provides a model for activity-dependent gene expression (Fig. 19). Fos 

transcription depends on transcription factors which are activated upon stimuli and bind to 

stimulus-response elements located in the proximal promoter. One of these sites was named 

serum response element (SRE), which is 300 bp upstream of the Fos TSS and it is required 

for induction of Fos upon serum and growth stimuli (Treisman 1985). The transcription 

factor which binds to SRE was named serum response factor (SRF). Another element was 

named calcium/cAMP-response element (CRE) and it is 60 bp upstream of the TSS (Hyman 

et al. 1988; Sheng et al. 1988). This site is required for stimulation of Fos transcription upon 

calcium and cAMP-releasing stimuli. Proteins which bind to CRE were named calcium-

response element binding protein (CREB) family. A third element is present near CRE and 
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it was defined as retinoblastoma control element (RCE) (Udvadia et al. 1992). As the name 

suggests, this element is required for transcription activation of Fos by retinoblastoma tumor 

suppressor (rb) stimulated pathways. The transcription factor which binds to RCE was named 

Sp1 (Udvadia et al. 1992). Fos proximal promoter is primed by these elements, as well as by 

the pre-initiation complex formed by RNA pol II (Kim et al. 2010; Sheng et al. 1988). This 

characteristic is of primary importance for the very quick activation of Fos transcription.  

To prevent the constituvely transcription of Fos, the promoter needs to be kept in a repressive 

state through specific histone modification of the chromatin. Indeed, silencing of the 

promoter is achieved via RCE, where the complex composed by Sp1, the transcriptional co-

repressor Rb, the Brahma-related gene 1 (BRG1) which remodels the chromatin, and the 

scaffold protein calcium-responsive transactivator (CREST), binds. When the neuron is 

quiescent, HDACs bind to Rb and deacetylate the histones that surround the Fos TSS, 

keeping the promoter repressed (Qiu and Ghosh 2008). HDACs can also be recruited through 

its binding to ETS domain containing protein Elk1, which in turn binds to SRE (Yang et al. 

2002). Another trait which may underlie an additional regulatory step for Fos orchestrated 

transcription is the presence of intragenic polymerase pause sites inside the gene (Lamb et 

al. 1990), common trait to several IEGs. Upon neuronal stimulation, HDACs dissociate from 

Rb thanks to its calcineurin-dependent dephosphorylation, leaving the promoter site. The 

neuronal depolarization also induces phosphorylation of HDACs, which causes the active 

export of HDAC4 and HDAC5 from the nucleus (Chawla et al. 1988; Qiu and Ghosh 2008). 

Alternative signaling pathways activate the recruitment of the histone acetyltransferase CBP 

by binding to CREB and CREST, acetylating histones at the promoter and triggering 

transcription (Impey et al. 2002; Qiu and Ghosh 2008). CREB phosphorylation at Ser133 by 

PKA elicits the binding of CBP to CREB (Sheng et al. 1991).  
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Figure 19. Fos transcription activation after neuronal stimulation. The upper panel represents 

Fos promoter in the absence of neuronal activity, the lower panel shows the Fos promoter architecture 

and protein composition upon neuronal activity (West and Greenberg 2011). 

Upon stimulation of neuronal activity, there is also the recruitment at the enhancer elements 

of both CBP and RNA pol II (Kim et al. 2010). These regions have a similar occupancy as 

the promoter region, pre-bound by activity-regulated transcription factors, including SRF, 

CREB and myocyte enhancer factor 2 (MEF2) (Flavell et al. 2008). Recently, Kim and 

colleagues discovered that RNA pol II produces short, non-coding enhancer RNA transcripts, 

called enhancer RNAs (eRNAs), starting from these intergenic non-coding elements (Kim et 

al. 2010). This new class of molecules is described in detail in paragraph 2.1.2.3.2.. 
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1.4.1.2. Brain-derived neurotrophic factor (BDNF) 

BDNF is a protein of the neurotrophin family, together with nerve growth factor (NGF). It is 

highly expressed in the nervous system and it has a fundamental role in the development of 

the CNS and in modulating plasticity (Poo 2001). BDNF mRNA level is rapidly increased 

after several environmental stimuli in specific activated brain areas. In particular, in vivo 

seizure activity induces the increase of BDNF mRNA level in the cerebral cortex and 

hippocampus (Zafra et al. 1990). This increase is induced also by normal physiological 

activity which generates hippocampal long-term potentiation (LTP) (Patterson et al. 1992). 

Another aspect which is regulated by neural stimulation is the trafficking to the plasma 

membrane of TrkB, the BDNF receptor (Meyer-Franke et al. 1998). In this way, BDNF-TrkB 

signaling is strictly tuned by neuronal activity. Specific mutations in the Bdnf gene leading 

to the decrease of BDNF protein levels and secretion, provokes deficits in brain development 

and plasticity (Genoud 2004; Laudes et al. 2012). These data suggest that the fine tuning of 

Bdnf gene expression is a requirement for its function. 

In 1993, Timmusk and colleagues described the Bdnf gene, identifying four short 5’ exons 

and one coding 3’ exon, recognizing eight different Bdnf mRNAs with four different 5' ends 

and two alternative polyadenylation sites (Timmusk et al. 1993). They also identified five 

TSS at the beginning of these exons, proving the presence of at least five different promoters 

(Timmusk et al. 1993). More recently, the same group identified three more 5’ exons (Aid et 

al. 2007). This lead to the modern definition of the Bdnf gene, composed by nine exons and 

regulated by at least eight distinct alternative promoters (Fig. 20). This promoter complexity 

allows Bdnf expression in a time- and spatial-specific manner, depending on the 

developmental stage, the brain region and the cell type (Liu et al. 2006). All the promoters 

result to be active in the CNS, but the more reactive transcript to neuronal activity is exon 

IV-containing Bdnf mRNA regulating by promoter IV (promoter III in the old nomenclature, 

(Tao et al. 1998)). 
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Figure 20. Mechanism of activity-induced Bdnf promoter IV. The lower box shows spliced 

mRNAs (blue) from the eight alternative promoters of Bdnf mouse gene (black). Black boxes 

represent the nine exons and thicker region of exon IX indicates the coding sequence. The upper panel 

represents the structure of promoter IV and the transcription factors which bind to the different motifs 

(Lyons and West 2011). 

Promoter IV of the Bdnf gene comprises the 170 bp upstream of the exon IV. Within this 

regulatory region, there are three calcium responsive elements, CaRE1, 2 and 3. These 

CaREs are regulated by calcium response factor (CaRF), the upstream stimulatory factor 1/2 

(USF1/2) and proteins of the CREB family (Chen et al. 2003; Shieh et al. 1998; Tao et al. 

2002). Recently, it was added another player in Bdnf gene regulation, the activity-inducible 

transcription factor neuronal PAS domain protein 4 (NPAS4) (see next paragraph, (Pruunsild 

et al. 2011)). Nuclear factor kB (NF-kB) and basic helix-loop-helix protein B2 (bHLHB2) 

bind to an alternative TSS 100 bp downstream of the 5’ end of exon IV (Jiang et al. 2008; 

Lipsky et al. 2001). Another factor which is implicated in the regulation of Bdnf gene 

expression upon N-methyl-D-aspartate (NMDA) treatment is the nuclear factor of activated 

T-cells (NFAT), which binds to an intergenic element 3’ to the alternative TSS (Vashishta et 

al. 2009). ChIP experiments reveal the binding to Bdnf promoter IV of myocyte enhancer 

factor-2 (MEF2), but the precise binding site remains elusive (Hong et al. 2008). The function 

of the Bdnf-regulating transcriptional factors at promoter IV has been investigated through 

loss-of-function mouse models. CaRF-/- transgenic mice show brain region-specific 
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downregulation of Bdnf transcription (McDowell et al. 2010). Indeed, Bdnf exon IV-

containing transcript and BDNF protein levels are specifically reduced in the frontal cortex 

of CaRF-/- mice compared to WT littermates and is completely unaffected in the hippocampus 

and striatum (McDowell et al. 2010). Anyway, the analysis of this knock-out mice reveals 

that CaRF is not required for activity-dependent Bdnf promoter IV transcriptional induction 

(McDowell et al. 2010). On the other side, the introduction of point mutations at CaRE3 site, 

which is required for CREB binding to Bdnf promoter IV, produce a mouse model in which 

neurons have normal basal BDNF protein level, but lack activity-dependent transcription 

from Bdnf promoter IV (Hong et al. 2008). Additionally, CaRE3 mutants fail to recruit to 

promoter IV the transcriptional factor MEF2, which binds to a different site from CaRE3. 

These experiments provide evidences for a model in which a multifactor transcriptional 

complex is recruited at Bdnf promoter IV and CREB mediates its nucleation.   

1.4.1.3. Neural PAS domain protein 4 (NPAS4) 

Neural PAS domain protein 4 (NPAS4), previously called NFX, belongs to the family of the 

basic helix-loop-helix-Per-Arnt-Sim (bHLH-PAS) proteins. It is a transcriptional factor 

which was identified by similarity to Sim2 protein, a transcriptional repressor involved in 

Down’s Syndrome (Ooe et al. 2004). In the same period, another group identified NFX as a 

seizure-induced gene through an unbiased microarray analysis of mice treated with the 

convulsant pentylenetetrazol (Flood et al. 2004). NPAS4 forms heterodimers with another 

subfamily of bHLH-PAS proteins, Arnt-type proteins (Ooe et al. 2004). It is a transcriptional 

activator and it was shown that NPAS4 and SIM2 compete for the same target promoters 

(Ooe et al. 2004). It is an IEG selectively express in neuronal tissues and its expression is 

selectively induced by neuronal stimuli which trigger the release of calcium ions (Zhang et 

al. 2009). NPAS4 is essential for the regulation of GABAergic synapse development. Indeed, 

the overexpression of NPAS4 increases the number of GABAergic synapses in primary 

hippocampal neurons, instead the silencing through RNAi leads to the selective decrease of 

this type of synapse. Interestingly, in this model, the glutamatergic synapse number is 

unaltered, indicating a selective role of NPAS4 in inhibitory synapse development (Lin et al. 

2008). Recently, it was shown that NPAS4 stimulation after the increase of intracellular 

calcium concentration causes the redistribution of inhibitory synapse on neurons, regulating 

the balance between inhibitory synapses on the cell body and on apical dendrites (Bloodgood 

et al. 2013). Experiments of ChIP-sequencing for NPAS4 revealed that this protein is 
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recruited not only to promoters, but also at enhancer regions (Kim et al. 2010). The specific 

role of NPAS4 at enhancers is not understood, but it was speculated by Greer and Greenberg, 

that NPAS4 may be act as a claw to prolong transcription and to permit the achievement of 

the critical threshold of expression to exert specific processes (Greer and Greenberg 2008). 

In 2014, it was discovered that NPAS4 has differential functions in excitatory and inhibitory 

neurons. Through genome-wide analysis of gene expression in activated inhibitory and 

excitatory neurons, they found that NPAS4 was induced as IEG in both neurons, but it 

selectively induces two different transcriptional programs of late-response genes to induce 

specific outcomes (Spiegel et al. 2014). These results prove that the induction of the same 

pool of IEGs regulate cell-specific outputs through the differential gene expression of cell-

specific late-response genes. 

1.4.2. New concepts in neuronal immediate early gene expression 

The concept of immediate induction of neuronal activity-stimulated transcription 

revolutionized neurobiology of the last century. Incredibly advances have been done during 

the last years, adding little pieces to approach the answer to essential questions regarding 

neuronal plasticity. 

1.4.2.1. Enhancer RNA (eRNA) in the regulation of neuronal-activity regulated 

transcription 

As I show in the previous paragraph, in the past, the neuronal activity-dependent transcription 

was deeply characterized at promoter level. The discovery of enhancer-regulating gene 

expression of neuronal activity IEGs occurred at the very beginning, firstly in Fos gene 

(Deschamps et al. 1985), but the precise regulation kinetics and the functional meaning of 

the induction by enhancer elements was not elucidated.  

Enhancers are fundamental cis-acting elements which regulate gene expression 

spatiotemporally. They were first described in the β-globin gene in cultured cells, as a 

sequence that cause an increase of 200-fold in β-globin expression (Banerji et al. 1981). From 

this discovery, almost every gene started to be linked to enhancer-regulated transcription. 

Recently, with the genome-wide analysis era, the precise mapping of these elements became 

easily detectable. The enhancer regions are characterized by the presence of differential 

variants of nucleosomes with particular histone modifications in the flanking areas. Indeed, 

enhancers are associated with the presence of the histone variants H3.3 and H2A.Z, which 
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are highly mobile, and this feature facilitates the access of transcription factors and other 

regulatory proteins in promoters, enhancers and insulator regions (Jin et al. 2009). The 

histone modifications that characterize active enhancers are histone 3 lysine 4 mono-di-

trimethylation (H3K4me1-me2-me3) and histone 3 lysine 27 acetylation (H3K27ac) 

(Creyghton et al. 2010). This last histone modification is deposited by CBP/p300, which 

contains a catalytic histone acetyltransferase (HAT) domain (Kim and Shiekhattar 2015). 

H3K4me1 is the unique feature specific to enhancers, instead dimethylation of lysine 4 of 

histone 3 is found both in enhancers and promoters, the trimethylation is found to be enriched 

at active promoters (Bernstein et al. 2002; Santos-Rosa et al. 2002). 

The genome-wide analysis through chromatin immunoprecipitation followed by high-

throughput sequencing (ChIP-seq) techniques provide an overview of promoter and enhancer 

locations. The profiling of the chromatin occupancies of epigenetic marks H3K4me1 and 

H3K4me3, in addition to CBP, permitted the identification of numerous activity-regulated 

enhancers (Kim et al. 2010). In this pioneering study, it was shown that RNA Pol II was 

recruited to enhancers upon neuronal stimulation. From these sites, transcription occurred 

bidirectionally, leading to the production of short non-coding RNA, called enhancer RNAs 

(eRNAs) (Kim et al. 2010). In the same year, another group showed widespread transcription 

at enhancers using macrophages stimulated with lipopolysaccharide (de Santa et al. 2010). 

In the last years, several groups proved the existence of eRNAs (Andersson et al. 2014; 

Djebali et al. 2012; Hah et al. 2011; Wang et al. 2011). The role of eRNAs remains elusive, 

but it was proposed the notion that eRNAs may be a mere signature of functional enhancers 

(Andersson et al. 2014). This view is counteracted by the idea of a specific function for 

eRNAs, that was postulated from several studies. Kim and colleagues reported a specific 

pattern of eRNA expression from a subset of enhancers and a correlation between the 

abundance of eRNAs and transcription level of target mRNAs, suggesting a sub-

classification of eRNA-producing enhancers at a certain time and with a certain stimulus 

(Kim et al. 2010). The study of TSSs reveals that enhancers and promoters share several 

features, such as the bidirectionality of transcription and similar composition of the canonical 

core transcriptional elements (Core et al. 2014). Experiments on the kinetics of promoter and 

enhancer transcription prove that eRNA precedes target mRNA expression (Arner et al. 

2015). Lam and colleagues demonstrate that the inducement of full enhancer activity to target 

promoter requires eRNAs transcription, dictating a specific role of this non-coding RNA sub-

class to conventional transcription machinery (Lam et al. 2013). Finally, Fos promoter is 
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regulated by multiple enhancers which are activated upon different stimuli to confer 

stimulus-specificity and robust expression of the protein (Joo et al. 2015). This mechanism 

is likely to be regulated by combinatorial eRNA interaction with the Fos promoter. These 

data indicate that eRNAs have fundamental functions in regulating time- and cell-specific 

programs of gene transcription.  

1.4.2.2. Neuronal activity-induced double strand breaks 

In the light of these discoveries, the transcription of neuronal activity-stimulated genes may 

require fast interaction between promoter and enhancer elements. The trigger for this 

mechanism could be the recent observation of activity-induced DNA breaks in the promoter 

of IEGs (Madabhushi et al. 2015). Several studies reported that different stimuli which 

trigger neuronal depolarization both in vivo and in vitro stimulate DNA double strand breaks 

(DSBs) (Crowe et al. 2006; Suberbielle et al. 2013). In the past, DNA DBSs were associated 

to cytotoxic events, such as ultraviolet light exposure, chemical agent and irradiation, and 

these damages lead to genomic instability that cause the development of cancer and 

neurodegenerative diseases (Crowe et al. 2006; Jackson and Bartek 2009; Madabhushi et al. 

2015). DNA DSBs activate the response of various cellular effectors of the DSB repair 

machinery, such as DNA-dependent protein kinase (DNA-PKcs), ataxia-telangiectasia 

mutated (ATM) kinase and ATM- and Rad3-related (ATR) kinase. ATM kinase 

phosphorylates a particular histone variant that occupies DSB loci, H2A.X, making this post-

translational modification a hallmark of DNA DSB (Burma et al. 2001). Madabhushi and 

colleagues exploit this signature to analyze whether DNA DSBs occur at particular sites in 

the DNA of stimulated neurons (Madabhushi et al. 2015). They found that NMDA-dependent 

stimulation of neurons led to DNA DSBs at specific loci, particularly to promoters of IEGs, 

including Fos, FosB, Npas4, Nr4a1, Nr4a3 and Egr1. Several studies reveal that DNA DSBs 

may be a common mechanism of rapid induction of gene transcription followed by several 

stimuli, such as insulin and glucocorticoids (Trotter, King, and Archer 2015; Wong et al. 

2009).  

Another observation that adds a detail in the mechanism of neuronal activity-induced DNA 

DSBs is that the protein responsible for this DNA morphological modification is 

topoisomerase-IIβ (Top2B) (Madabhushi et al. 2015; Suberbielle et al. 2013). 

Topoisomerases are enzymes able to resolve torsional stress into the DNA caused by 

physiological processes, such as DNA replication, transcription and recombination (Pommier 
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et al. 2016). The resolution of the supercoiled DNA occurs through the generation of a 

transient DNA DSBs, the passage of one strand to another in order to relax the tension and 

the rapid seam of the two ends by topoisomerase itself (Pommier et al. 2016). Neuronal 

activity somehow impedes the completion of this mechanism, causing the formation of long-

lasting DNA DSBs, which require the action of the DNA repair machinery to be resealed, 

through non-homologous end-joining (Madabhushi et al. 2015). Recently, it was observed 

that Top2B interacts with CCCTC-binding factor (CTCF), an architectural protein which 

mediates the interaction between enhancer and promoter regions, and Top2B-mediated DNA 

DSBs are enriched at CTCF binding sites (Canela et al. 2017). It was proposed that enhancer-

promoter interaction is impeded by DNA architectural constraints which causes RNA Pol II 

pausing inside IEG promoters, at basal conditions (described above in paragraph 1.2.1.1., 

(Lamb et al. 1990; Madabhushi and Kim 2017)). When neuronal depolarization is induced, 

Top2B-induced DSBs relax the DNA supercoiling, permitting enhancer-promoter interaction 

and transcriptional initiation (Fig. 21). 
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Figure 21. The role of DNA-strand breaks and enhancer RNA (eRNA) in IEG transcription. 

Enhancer-promoter interactions are impeded by architectural constraints imposed by CTCF protein. 

Neuronal activity stimulation triggers Top2B-mediated DNA breaks to overcome the constraint, 

allowin enhancer-promoter interactions. This interaction initiates the production of eRNA from 

enhancer regions. Several observations suggest that eRNAs play a role in orchestrating the neuronal 

activity-dependent transcription (Adapted from Madabhushi and Kim 2017). 

  



63 
 

2. AIM OF THE THESIS 

 

Phosphorylation is a fundamental mechanism of regulation of AR function. AR is extensively 

phosphorylated at several sites, with differential and combinatorial final effects. 

Phosphorylation can influence the stability, transcriptional activity, localization of the 

protein or can stimulate cell growth through the activation of additional pathways (Gioeli 

and Paschal 2012). Serine 96 was found to be a constitutive phosphorylation site (Coffey and 

Robson 2012), but we observed that neuronal cell types demonstrate an increase in the 

percentage of phosphorylated serine 96 versus total AR protein level compared to non-

neuronal cell types (Polanco et al. 2016). Moreover, we identified the kinase responsible for 

serine 96 phosphorylation, namely CDK2. In cultured cells, CDK2-mediated 

phosphorylation at serine 96 increased the toxicity of polyQ-AR and the phospho-defective 

mutant at this site (S96A, i. e. serine 96 mutated to alanine) protected motor neuron-derived 

SBMA cells from DHT-induced cell death. Surprisingly, the treatment of SBMA mice with 

a compound that decreased serine 96 phosphorylation through the increase of p21CIP1, a well-

known CDK2 inhibitor, was efficient in rescuing motor phenotypes and increasing mouse 

lifespan (Polanco et al. 2016). The specific molecular mechanisms involved in 

dephosphorylated serine 96-induced protection in SBMA is unknown. In addition, the role 

of serine 96 phosphorylation/dephosphorylation events of neuronal AR in normal conditions 

is totally uncharacterized. 

Taken together, these preliminary observations suggest that serine 96 has a pivotal 

importance in SBMA pathogenesis, but also a potential unexplored physiological role in 

neurons. For these reasons, the central hypothesis of this thesis is that AR function is 

controlled by CDK2-mediated serine 96 phosphorylation, which is finely tuned by neuronal 

activation, a level of regulation altered by polyQ expansion. 

In order to test the central hypothesis, I pursued these three specific aims: 

▪ Specific Aim 1: To identify AR as a neuronal activity-regulated transcription factor.  

We will test the hypothesis that AR transcriptional activity is regulated by neuronal 

stimulation through serine 96 phosphorylation. Using luciferase assays and genome-
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wide analysis of gene expression through microarray, we will uncover AR-regulating 

gene patterns in activated neurons. 

▪ Specific aim 2: To assess the role of CDK2-mediated polyQ-AR phosphorylation in 

vivo.  

We will test the hypothesis that genetic deletion of CDK2 reduces the polyQ-AR 

toxicity by decreasing phosphorylation at serine 96. By genetic modification of 

CDK2 expression in SBMA transgenic and knock-in mice, we will assess the effect 

of loss of CDK2 function in SBMA with measures of survival, motor function and 

biochemistry. 

▪ Specific aim 3: To identify molecular pathways which alter polyQ-AR 

phosphorylation at serine 96. 

We will test the hypothesis that genetic and pharmacological inhibition of Cdc25 

attenuates polyQ-AR toxicity. We will test overexpression of WT and catalytically 

dead form of Cdc25 and a compound identified by screening a library of kinase and 

phosphatase inhibitors, for its ability to attenuate polyQ-AR nuclear shuttling. 

From Aim 1, I expect to link specific properties of vulnerable cells, i.e. neuronal excitability, 

to modification of the native structure through phosphorylation, which modifies function of 

the disease protein. With respect to Aim 2, I will provide proof-of-principle that CDK2 is a 

novel modifier of SBMA pathogenesis. From Aim 3, I expect to prove the therapeutic 

potential of novel genetic and pharmacologic inhibitors of CDK2-mediated serine 96 

phosphorylation of polyQ-AR by targeting Cdc25. 
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3. MATERIALS AND METHODS 

 

3.1. Plasmids 

EGFP-N1 vector (Clontech, kindly provided by prof. Massimo Pizzato, CIBIO, University 

of Trento) was used to insert AR24Q at the N-terminal of EGFP by cloning through 

NheI/XhoI digestion. Mutagenesis for AR (S96A) were obtained by site-directed 

mutagenesis (QuikChange Lightning Site-Directed Mutagenesis Kit, Agilent) using primers 

S96A-F: 5′-GCAGGGTGAGGATGGTGCTCCCCAAGCC CATCGTAGAGG-3′; S96A-

R: 5′-CCTCTACGATGGGCTTGGGGAGCACCATCCTCACCCTGC-3′ (Polanco et al. 

2016, mutagenesis made by Sara Parodi). CMV-Cdc25 vector was obtained by PCR cloning 

(Sara Parodi). 

3.2. Cell culture and transfection 

HEK293T (ATCC), and HeLa (ATCC) cells were cultured in Dulbecco’s modified Eagles’s 

medium (DMEM) with 10% of heat inactivated fetal bovine serum (FBS), 

penicillin/streptomycin (100 U/ml) and L-glutamine (2 mM) at 37°C in a humidified 

atmosphere containing 5% CO2. MN-1 stably expressing AR24Q and AR100Q with and 

without S96A mutation (Sara Parodi) were cultured in Dulbecco’s modified Eagles’s 

medium (DMEM) with 10% of heat inactivated fetal bovine serum (FBS), geneticin G418 

(140 ug/ml), penicillin/streptomycin (100 U/ml) and L-glutamine (2 mM) at 37°C in a 

humidified atmosphere containing 5% CO2. HEK293T were transfected with 

polyethylenimine (PEI) linear MW 25,000 Da (Sigma-Aldrich) according to well dimension. 

DNA:PEI ratio was 1:1. MN-1 cells were transfected with Lipofectamine 2000, according to 

manufacturer’s instructions (Thermo Fisher Scientific). 

3.2.1. Generation of HeLa cells stably expressing AR65Q-EGFP 

HeLa cells stably expressing AR65Q-EGFP were generated after transfection with 

Lipofectamine 2000 (Invitrogen) with CMV-AR65Q-EGFP construct, conferring neomycin 

resistance. Cells were selected with 1.6 µg/µl of G418 (Sigma-Aldrich). Total cell population 

were analyzed through FACS CantoTM A analyzer (BD Bioscience) and EGFP+ cell 

population were sorted through FACS AriaTM II cell sorter (BD Bioscience) (in collaboration 
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with Cell Analysis and Separation Facility, CIBIO, University of Trento). EGFP+ cells were 

expanded and analyzed for transgene expression by western blot and for protein nuclear 

shuttling through fluorescent microscopy after dihydrotestosterone (DHT) or EtOH (vehicle) 

treatments.  

3.3. Transcriptional assay 

HEK293T cells were transfected with AR vectors together with pARE-Luciferase and TK-

Renilla. The day of the assay, cells were washed in PBS at room temperature (RT), then they 

were lysed in passive lysis buffer (PLB) coming from Dual-Luciferase assay kit (Promega) 

and rocked for 15 minutes at RT. Each sample (10ul) was transferred to a 96-well plate and 

luciferase substrate from the kit was added in each well. The plate was analyzed with Infinite 

200Pro (Tecan instruments). After the acquisition, Renilla substrate from the kit was added 

and a second reading was carried out. 

3.4. Mtt assay for cell viability 

Cells were seeded at a concentration of 5000-200000 cells/well, according to the well format. 

Cells were incubated and treated for the described timing. The day of the assay, 1:10 MTT 

was added to the cell culture medium and incubated for 30’-1h, according to cell types. 

DMSO was added to solubilize the formed formazan crystals. The absorbance was recorded 

at 570 nm with Infinite 200Pro (Tecan instruments). 

3.5. High-throughput screening of phosphatase and kinase inhibitors 

HeLa AR65Q-GFP cells were plated into 384-well plates. The day after, cells were treated 

with 10 µM of phosphatase and kinase inhibitors, taken from SCREEN-WELL® 

Phosphatase inhibitor library (Enzo Life Sciences) and Kinase inhibitor library (Selleck 

Chemicals), respectively, for 5 hours. 1 hour later DHT was added. Then, cells were fixed 

with 4% paraformaldehyde (PFA) for 10 minutes, stained for DAPI (Thermo Fisher 

Scientific) and CellTracker™ (Thermo Fisher Scientific), to visualize nucleus and cytosol of 

the cells, respectively. Images were taken with High Content Imaging System Operetta 

(Perkin Elmer) and analyzed through Columbus Image Data Storage and Analysis system 

(Perkin Elmer). 
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3.6. Western blot  

For biochemical analysis in vivo, brainstem, spinal cord, and quadriceps were pulverized 

using pestle and mortar. For Western blotting analysis, proteins were extracted from 

pulverized tissues using a lysis buffer containing 2% SDS, 150 mM NaCl, 2 mM EDTA, and 

10 mM Hepes (pH 7.4) supplemented with protease inhibitor cocktail (Roche) and 

phosphatase inhibitor cocktail (Sigma-Aldrich). Lysates from brainstem and spinal cord were 

sonicated and centrifuged at 15,000 rpm for 15 min at room temperature. Lysates from 

quadriceps were homogenized (homogenizer RZR 2052 control, Heidolph) at 600 rpm (20 

times); passed through syringes of 18-, 22-, and 25-gauge needles; and centrifuged at 15,000 

rpm for 15 min at room temperature. 

For biochemical analysis in vitro, cells were lysed in ice-cold PBS and scraped in 100 µl of 

RIPA lysis buffer (25 mM Tris pH 7.5, 150 mM NaCl, 0.1% SDS, 0,5% sodium 

deoxycholate, 1% NP-40), supplemented with protease inhibitor cocktail (Roche) and 

phosphatase inhibitor cocktail (Sigma-Aldrich). The lysate was sonicated and centrifugated 

at 15000 rpm for 15 minutes at 4°C.  

Protein concentration was measured using the bicinchoninic acid assay method. Equal 

amounts of protein were subjected to 7-10% SDS-polyacrylamide gel electrophoresis (SDS-

PAGE) and electro-transferred to nitrocellulose membrane (BioRad). Immunoblotting was 

done in 5% non-fat dry milk in Tris-buffered saline for all antibodies as follows: AR (1:1000, 

sc-13062, Santa Cruz), phospho-Serine 96 AR (1:500, Biomatik), β-tubulin (1:5000, 

ab21057, Abcam) and CDK2 (1:1000, ab32147, Abcam). Immunoreactivity was detected 

using IRDye secondary antibodies for Odyssey Imaging system (LI-COR Biosciences), 

following manufacturer’s instructions. 

Quantifications were done using ImageJ 1.51j8 software (National Institutes of Health). 

3.7. Animals 

Animal care and experimental procedures were conducted in accordance with the University 

of Trento ethics committee and were approved by the Italian Ministry of Health. Mice were 

housed in filtered cages in a temperature-controlled room with a 12-hour light/12-hour dark 

cycle with ad libitum access to water and food and were fed a standard diet (Mucedola 
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4RF21). All the mice used in this study have been previously genotyped or derived from 

C57BL/6J mates. 

3.7.1. Generation of transgenic mice 

By random insertion, we generated transgenic mice to express high levels of full length 

human AR with pathogenic (AR100Q) polyQ tract in a ubiquitous manner. Transgene 

expression was driven by the cytomegalovirus (CMV) promoter and the chicken beta-actin 

(pCAGGS) promoter. These transgenic lines were then backcrossed to the C57Bl6J 

background for more than 10 generations before subsequent analysis of phenotype and 

pathology. The pronuclear injection involves collecting fertilized eggs at the single cell stage. 

For a short window of time the pronuclei containing the genetic material from the sperm head 

and the egg are visible within the cytoplasm. At this stage, a linearized DNA construct is 

injected into the male pronuclei. The injected eggs are then transferred into the oviducts of 

0,5 day post coitum (dpc) pseudo-pregnant CD1 foster mice. The injection background strain 

we used was C57Bl6/NCrl (Charles River). 

3.7.2. Genotyping 

The genotype of the mice was determined according to the following protocols. Genomic 

DNA was extracted from a small piece of mice’s tails or ears and amplified using RED 

Extract-N-Amp™ Tissue PCR Kit (Sigma-Aldrich). Briefly, genomic DNA was extracted 

by adding to the tails the Extraction and Tissue Preparation Solutions in a ratio of 4:1. The 

samples were incubated 10’ at room temperature and 3’ at 95°C to allow tissue digestion. 

After, an equal volume of Neutralization Solution B was added to the mix and the samples 

were mixed by vortexing. An aliquot of the neutralized extract is then combined with the 

RED Extract-N-Amp PCR Reaction Mix, already containing all the PCR reagents needed for 

a proper amplification. To identify the different mouse genotypes, we used the following 

combinations of primers: 

1. TG AR100Q mice: two primers TG Forward (5’-CTTCTGGCGTGTGACCGGCG-3’) 

and TG Reverse (5’-TGAGCTTGGCTGAATCTTCC-3’) was added to the PCR 

reaction. PCR conditions were set at 94°C for 30’’ for denaturation step, at 60°C for 1’ 

30’’ for annealing step and at 72°C for 1’ 30’’ for extension step, all steps repeated for 

30 cycles. The PCR products were run on a 1% agarose gel. 

2. CDK2 mice: CDK2+/+, +/- and -/- mice were distinguished by PCR product amplifications 

with the following primers: 5’-CAAGTTGACGGGAGAAGTTG-3’ (CDK2a), 5’-
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ACGAACAGCCCTGGACCCCTC-3’ (CDK2b) and 5’-

GCGATAAGCTTCGAGGGACC-3’ (CDK2c). CDK2a in combination with CDK2b 

were used to detect the WT CDK2 allele (WT PCR). CDK2a in combination with CDK2c 

were used to detect the knock-out allele (KO PCR). PCR conditions were set at 94°C for 

30’’ for denaturation step, at 60°C for 30’’ for annealing step and at 72°C for 1’ 30’’ for 

extension step, all steps repeated for 35 cycles. The PCR products were run on a 1% 

agarose gel for KO PCR and 2% agarose gel for WT PCR. 

3. SBMA knock-in mice: two primers AR113Q Forward (5’-

CCACGTTGTCCCTGCTGGGCCCCAC-3’) and AR113Q Reverse (5’-

GACACTGCTTTACAACTCCTTGGC-3’) were added to the mix to allow the 

discrimination between human and murine AR. PCR conditions were set at 94°C for 25’’ 

for denaturation step, at 67°C for 30’’ for annealing step and at 72°C for 30’’ for 

extension step, all steps repeated for 27 cycles. The PCR products were run on a 2% 

agarose gel.  

3.7.3. Rotarod test 

Motor coordination was measured by rotarod analysis (Ugo Basile Instruments). TG 

AR100Q, TG AR100Q/CDK2+/-, TG AR100Q/CDK2-/- mice received a weekly session 

which included three test trials at 15-30 rpm progressive speed for a maximum period of 300 

seconds. A recovery time of 300 seconds was added between each test. Mice were trained 

the week before starting the test. The highest of recordings for each mouse was used to 

analyze rotarod performance. SBMA knock-in mice performed the same test but with 

different protocol: 15-40 rpm progressive speed for a maximum period of 300 seconds. 

3.7.4. Hanging wire test 

For hanging wire muscle force assessment, a simple grid was used, in which mice were 

allowed to grasp and immediately gently reversed. The test lasts maximum 60 seconds and 

we counted the seconds the mice lasted hanging on the grid. Three test trials were performed 

every week and the average of the recordings for each mouse was used to analyze muscle 

force. 

3.7.5. Grip strength test 

For grip strength muscle force, a grip strength meter (Ugo Basile Instruments) was used to 

measure forelimb grip strength. The grip strength meter was positioned horizontally, and the 
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mice were held by the tail and lowered toward the apparatus. Mice were allowed to grasp the 

smooth metal triangular pull bar with their forelimbs only and then were pulled backward. 

The force applied to the bar at the moment the grasp was released and recorded as the peak 

tension. Mice received a weekly session which included three test trials, the highest of 

recordings for each mouse was used to analyze muscle force production.  

3.7.6. Tissue collection 

For tissue collection, 3 TG AR100Q, 3 TG AR100Q/CDK2+/- and mice 3 TG 

AR100Q/CDK2-/- mice were sacrificed at 8 weeks of age. Mice were euthanized by CO2 

inhalation. After euthanasia, tissues were flash-frozen in precooled isopentane in liquid 

nitrogen, then stored at -80°C until further processing. 

3.8. Primary cortical cell culture and transfection 

Primary cortical neurons were cultured from embryonic E15.5 C57BL/6J mice as previously 

described (9). In brief, the cortices were dissected out, digested in Papain solution (20 U 

Papain, 5mM EDTA and 30 mM Cysteine in 1x Eagles’ Balanced Salt Solution (EBSS)) for 

20 min at 37°C. This was followed by a DNase I treatment for 3 min. The dissociated cells 

were centrifuged at 1000 x g for 5 min. Supernatant was discarded and the digestion was 

blocked with a solution containing Soybean Trypsin inhibitor and bovine serum albumin in 

EBSS. Following a centrifugation of 1000 x g for 10 min the cells were plated in Neurobasal 

medium supplemented with B27, PenStrep (100 units), L-Glutamine (2mM) and AraC (100 

µM). Half of the media was replaced with fresh media every three days. Primary cortical 

neurons were transfected with Lipofectamine 2000 (Thermo Fisher Scientific), according to 

manufacturer’s protocol. 

3.9. Microarray 

Total RNA was extracted with TRIzol (Invitrogen). 

RNA quality was analyzed by microfluidic gel electrophoresis on RNA 6000 Nano chip 

using the Agilent 2100 Bioanalyzer (Agilent Technologies Inc., USA). RIN values ranged 

from 7 to 9.50, indicating high quality total RNA. 

Cyanine-3 (Cy3) labeled cRNA was prepared from 0.2 µg RNA using the One-Color Low 

Input Quick Amp Labeling Kit (p/n 5190-2331, Agilent Technologies) according to 
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manufacturer's instructions (Agilent Technologies, USA), followed by RNeasy column 

purification (QIAGEN, Valencia, CA). Dye incorporation and cRNA yield were checked 

with the NanoDrop ND-1000 Spectrophotometer (Nano-Drop Technologies, USA). 1.65 µg 

of Cy3-labeled cRNA (specific activity: 14.3±3.1 pmol Cy3 per µg cRNA) was fragmented 

at 60°C for 30 minutes in a reaction volume of 55 µl containing 1x Fragmentation Buffer and 

2x GE (Gene Expression) Blocking Agent (Gene Expression Hybridization Kit, p/n 5188-

5242, Agilent Technologies) following manufacturer’s instructions. On completion of the 

fragmentation reaction, 55 µl of 2x Hi-RPM Hybridization Buffer were added to the 

fragmentation mixture and hybridized to Agilent Mouse GE 4x44K V2 Microarray kit 

(G4846A, Agilent Technologies) for 17 hours at 65°C in a rotating hybridization oven. After 

hybridization, microarrays were washed 1 minute at room temperature with GE Wash Buffer 

1 and 1 minute at 37°C with GE Wash buffer 2 (Gene Expression Wash Buffer Kit, p/n 5188-

5327 Agilent Technologies). 

Slides were scanned immediately after washing on the Agilent DNA Microarray Scanner 

(G2505C, Agilent Technologies) using the AgilentHD_GX_1Color Profile (Scan Area: 

61x21.6 mm; Scan resolution: 5 µm, dye channel set to 100% Green PMT) of Agilent 

ScanControl software 8.1.3 (Agilent Technologies). The scanned images were analyzed with 

Feature Extraction Software 10.7.3.1 (Agilent Technologies) using default parameters 

(protocol GE1_107_Sep09). 

Statistical analysis of the genome-wide expression data was done by Erik Dassi (CIBIO, 

University of Trento). 

3.10. Statistical analysis 

All experiments were done at least 2-3 times. The statistical analysis was performed through 

GraphPad Prism 7 software or Statistica 10.0 software. 
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4. RESULTS 

 

4.1 AR is a transcription factor regulated by 

neuronal activity through serine 96 modulation 

 

4.1.1. Stimulation of neuronal activity modifies AR phosphorylation of 

serine 96 

AR function is a mechanism highly regulated by phosphorylation events. As described in the 

introduction (paragraph 1.2.2.1.2.), AR protein is resolved in a 7% SDS-PAGE as a doublet 

of about 110 and 112 kDa (Blok et al. 1998). The upper isoform corresponds to 

phosphorylated AR, while the lower isoform is the unphosphorylated AR (Polanco et al. 

2016). The analysis of the expression in HEK293T cells of different phosphorylation mutants 

of AR shows that only the mutation at serine 96 abrogates the formation of the upper isoform 

of AR. The phosphodefective alanine mutant (S96A) runs as the lower 110 kDa band, instead 

the phosphomimetic aspartic acid mutant (S96D) runs as the upper 112 kDa band of both 

normal and polyQ-AR (Polanco et al. 2016). This means that phosphorylation at serine 96 of 

AR is necessary to form the upper isoform of about 112 kDa detectable by SDS-Page 

electrophoresis. Moreover, pituitary adenylyl cyclase activating polypeptide (PACAP) and 

forskolin treatment decreased the accumulation of the upper phosphorylated isoform through 

the activation of PKA/AC pathway (Polanco et al. 2016). 
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Figure 22. Phosphorylation of serine 96 is altered by different stimuli that trigger neuronal 

activation. A) Western blotting analysis in HEK293T cells expressing polyQ-AR and treated with 

the calcium chelator BAPTA. B) C) and D) Western blot analysis of primary cortical neurons 

overexpressing polyQ-AR and treated for 1 hour with increasing concentrations of KCl, 100 µM of 

4-amynopyridine, 15 µM of bicuculline or 10 µM of forskolin. In A) t-test was performed and asterisk 

represents p<0.05 with respect to control condition. In B) C) and D) One-way ANOVA test with 

Tukey’s post-hoc test was performed, and asterisks represent: *, p<0.05; **, p<0.01, ***, p<0.001 

with respect to control condition. Graphs, mean ± SEM, N=2-3. 
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I noticed that treatment of HEK293T cells overexpressing polyQ-AR with 55 glutamines 

with 1, 2 – Bis (2-aminophenoxy) ethane - N, N, N′, N′-tetraacetic acid tetrakis 

(acetoxymethyl ester) (BAPTA-AM) increased the accumulation of the upper 

phosphorylated isoform of AR (Fig. 22A). This experiment suggested that 

dephosphorylation of AR at serine 96 is calcium-dependent. Neuronal activity is a process 

that involves the release of calcium ions in the cytosol of neurons. Thus, I hypothesized that 

neuronal depolarization modifies AR phosphorylation at serine 96. 

To address this hypothesis, I produced primary cortical neurons from transgenic mice 

overexpressing AR with 24Q and 100Q. Neuronal activity was triggered in DIV8 cultures 

with different stimuli. To induce membrane depolarization of all the neurons in culture I used 

potassium chloride (KCl) stimulation. A gradient of KCl concentrations was applied, and I 

checked the migration of the AR. 5-30 mM of KCl exposition for 1h was sufficient to trigger 

the dephosphorylation of serine 96 of expanded AR (Fig. 22B). I stimulated neuronal activity 

through the treatment of neurons with 4-aminopyridine, a non-selective voltage-dependent 

K+ channel blocker, which causes an increase in neuronal conduction (Smith et al. 2009). I 

treated the primary cultures also with bicuculline, a competitive antagonist of GABAA 

receptors, known to induce seizure-like phenotype in in vitro models (Chang et al. 2015). 

These stimuli were used in order to recapitulate a more physiological trigger of neuronal 

activity. These treatments led to the decrease of the accumulation of the upper 

phosphorylated isoform of non-expanded and expanded polyQ-AR (Fig. 22C-D, 

respectively). I used forskolin treatment as positive control for the dephosphorylation of AR 

at serine 96 (Polanco et al. 2016). These data suggest that neuronal activity trigger the 

dephosphorylation of non-expanded and expanded serine 96 AR. 

4.1.2. Neuronal activity-stimulated dephosphorylation of serine 96 requires 

active PKA 

We showed that cAMP release elicits the dephosphorylation of AR at serine 96 (Polanco et 

al. 2016). Then, I asked whether the stimuli used to trigger neuronal activity increased the 

release of cAMP in our system. To test this, in collaboration with Dr. Stefano Espinoza, we 

used a bioluminescence resonance energy transfer (BRET) cAMP biosensor (Barak et al. 

2008). The sensor is composed by a N-terminal truncated variant of the exchange protein 

activated by cAMP (EPAC), a Rotylenchulus reniformis luciferase at the N-terminus and a 
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yellow fluorescent protein (YFP) at the C-terminus. EPAC binds to cAMP inducing a 

conformational change that increase the distance between the luciferase donor protein and 

the YFP acceptor, resulting in a decrease in bioluminescent signal (Fig. 23A). We used as 

positive control of cAMP release 10   µM  forskolin  (Polanco et al. 2016).  We  transfected 

primary cortical neurons with the sensor and we treated them with KCl, 4-AP and bicuculline 

to induce neuronal activity and monitor the following cAMP fluctuations in real time. The 

applied stimuli decreased the BRET signal, thereby providing a quantitative measure of 

increased release of cAMP (Fig. 23B). Next, I tested whether PKA activation is essential for 

serine 96 dephosphorylation. I treated primary cortical neurons expressing AR with 24 or 

100Q with 20 mM KCl, with or without 10 µM H89, a selective inhibitor of PKA. Treatment 

with PKA inhibitor for 1 hour blocked KCl-induced dephosphorylation of serine 96, 

indicating that PKA activity is downstream in the pathway involved (Fig. 23C-D). 

 

Caption in the next page (p. 75). 
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Figure 23. Neuronal activity-dependent dephosphorylation of serine 96 is blocked by PKA 

inhibition. A) Schematic representation of the bioluminescence resonance energy transfer (BRET) 

cAMP biosensor used in B). B) Primary cortical neurons were transfected with the BRET cAMP 

biosensor and treated with the indicated compounds. C) and D) Western blotting analysis of primary 

cortical neurons overexpressing normal and polyQ-AR, respectively, treated for 1 hour with 20 mM 

KCl and 10 µM H89. One-way ANOVA test with Tukey’s post-hoc test was performed and asterisks 

represents p<0.05. Graphs, mean ± SEM, N=3. 

 

4.1.3. AR transactivation is altered by stimulation of neuronal activity 

AR transcriptional activity is known to be modified by several post-translational 

modifications, the most abundant of which is phosphorylation (Gioeli and Paschal 2012). I 

asked whether modulation of serine 96 phosphorylation regulates AR transactivation. To 

address this question, I used in vitro luciferase assays. I transfected primary cortical neurons 

with non-expanded and expanded polyQ-AR, together with a reporter construct, in which 

transcription of the firefly luciferase reporter gene is controlled by a promoter recognized by 

AR (androgen-responsive element, ARE). In addition, I transfected primary cultures with a 

renilla-expressing vector, in order to normalize the firefly luciferase signal on transfection 

efficiency.  

Transfected mouse primary cortical neurons were treated with forskolin, in order to check 

the transcriptional activity of AR when serine 96 was dephosphorylated (Polanco et al. 2016). 

Treatment with this cAMP release-activating compound decreased luciferase signal by 2,3-

fold, which indicates diminished binding to ARE promoter by normal AR. PolyQ-AR 

responded similarly to forskolin treatment compared to normal AR, but the difference with 

respect to vehicle-treated cells was not significant (Fig. 24A). 

Next, I treated neurons with and without 20 mM KCl for 6 hours, in order to appreciate 

differences in luciferase signal after dephosphorylation of AR at serine 96 (protocol adapted 

from Spiegel et al. 2014). The cultures were treated with 10 nM DHT for 24h prior to 

depolarization, in order to trigger AR translocation into the nucleus and AR binding to 

specific regions of chromatin. Indeed, AR transactivation signal was induced by 32-fold upon 

DHT treatment compared to the vehicle-treated neurons (data not shown). Moreover, 

expanded polyQ-AR transactivation was reduced by 2-fold compared to non-expanded AR 
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(Fig. 24B), as expected (Scaramuzzino et al. 2015). Stimulation of neuronal activity 

decreased significantly non-expanded and expanded AR transactivation (Fig. 24B). The 

results collected showed that stimuli which trigger the dephosphorylation of serine 96 are 

involved in non-expanded and expanded AR transcriptional activity. This level of regulation 

is present in depolarizing neurons overexpressing non-expanded and expanded AR. 
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Figure 24. Forskolin and KCl reduce normal AR transactivation. A) and B) Primary cortical 

neurons were transfected with normal and polyQ-AR and treated with 10 µM forskolin, 20 mM KCl 

or vehicle for 6 hours. C) and D) Western blot analysis of AR protein levels in the same conditions 

as in A) and B). One-way ANOVA with Tukey’s post-hoc test was performed in A) and B); unpaired 

two-tailed t-test was performed in C) and D): *=p<0.05, **=p<0.01, ***=p<0.001 and 

****=p<0.0001. Graphs, mean ± SEM, N=3. 

4.1.4. Transcriptional activation of AR is modulated by serine 96 

phosphorylation 

Taking into consideration the data obtained so far, I hypothesized that serine 96 

phosphorylation and dephosphorylation change AR transcriptional activity. In order to target 

the question in neurons, I exploited a motor neuron-derived cell culture (MN-1 cells) 

previously established in our laboratory (Polanco et al. 2016; Scaramuzzino et al. 2015). 

These cells were transduced with viral vectors expressing AR24Q and AR100Q in which 

serine 96 was mutated into phospho-defective alanine (S96A). I checked AR transactivation 

capacity through luciferase assay. The cells were transfected with the reporter vectors, as 

previously described. Then, I treated the cells with 10nM DHT for 24 hours, after which 

luciferase assay was performed. AR transactivation was decreased by expansion of polyQ 

tract, as expected, but the difference compared to normal AR was not significant. The S96A 

AR variant exhibited decreased AR transactivation compared to WT AR24Q. AR100Q S96A 

showed decreased activity as well, but the difference between the mutant and the WT isoform 

was not significant (Fig. 25A). These results add confidence to the hypothesis that serine 96 

phosphorylation is implicated in the regulation of AR transactivation in physiological and 

disease conditions. 

In order to test the role of serine 96 phosphorylation in a more physiological context and to 

link this modulation to neuronal activity, I exploited excitable mouse primary cortical 

neurons. Primary cortical neurons were transfected with non-expanded and expanded polyQ-

AR with S96 mutated into alanine. Then, neurons were treated with 10nM DHT for 24h, the 

last 6 hours with or without 20mM KCl. The substitution of serine 96 into alanine in neurons 

provoked AR transactivation decrease, even if the effect was less evident, confirming the 

previous data obtained in MN-1 cell culture (Fig. 25B). PolyQ-expanded AR with S96A 

mutation seemed to lose this level of regulation (Fig. 25B). The treatment with KCl reduced 

non-expanded AR transactivation, as previously shown. Substitution of serine 96 into alanine 
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prevented this effect (Fig. 25C). These results suggest that serine 96 phosphorylation plays 

a pivotal role in AR transactivation in neurons and it is influenced by neuronal activity. 

Caption in the next page (p. 80). 
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Figure 25. Phospho-defective mutation at serine 96 alters AR transactivation and is resistant to 

KCl treatment. A) Transcriptional assay in MN-1 cells expressing stably AR24Q and 100Q with 

and without S96A mutation, treated with 10 nM DHT for 24 hours. B) and C) Transcriptional assay 

in primary cortical neurons transfected with AR12Q and 55Q with or without S96A mutant, treated 

with 10 nM DHT for 24 hours and 20 mM KCl for 6 hours, where indicated. In A) and B) One-way 

ANOVA with Tukey’s post-hoc test was performed, *=p<0.05 and **=p<0.01. In C) two-way 

ANOVA test with Sidak’s test for multiple comparisons were performed. Graphs, mean ± SEM, N=3-

4. The reported experiments are representative of two-three independent experiments. 

4.1.5. Microarray analysis of stimulated AR-expressing neurons reveals an 

androgen-regulated gene expression program 

The results described above show that AR transactivation is influenced by serine 96 

phosphorylation, which is modified by neuronal activity. I hypothesized that this has an 

important regulatory role in mature neurons. To address this hypothesis, I analyzed the 

transcriptional profile of stimulated mature neurons expressing AR and treated with either 

vehicle or DHT, to compare gene expression profile in cells in which AR is inactive to cells 

in which AR activity is induced by androgens. I cultured primary cortical neurons derived 

from a transgenic mouse model in which AR with 24 glutamines was overexpressed. I used 

non-expanded AR to mimic the physiological activity of AR in cultured neurons. At DIV8, 

mature neurons were treated for 6 hours with and without 10 nM DHT, and for 1 or 6 hours 

with or without 20 mM KCl and we performed microarray analysis. The final conditions 

were: vehicle, DHT, KCl 1h, DHT-KCl 1h, KCl 6h and DHT-KCl 6h (Fig. 26A). 

Analysis is represented by the visualization of the number of differentially expressed genes 

(DEGs) derived from the comparison between the conditions (Fig. 26B). DHT treatment, 

compared to vehicle, altered the expression of 5 genes, i.e.  neural epidermal growth factor-

like like protein 2 (NELL2), chromosome transmission fidelity factor 8 (CHTF8), calcium 

binding protein 5 (Cbp5), phosphatidylinositol glycan anchor biosynthesis class T (Pigt) and 

prolin-rich 7 (Prr7). Treatment with KCl for 1 hour induced the downregulation of 80 genes 

and the upregulation of 168 genes. As expected, KCl treatment was sufficient to stimulate 

the expression of several immediate early genes (IEGs), including Fos, Fosb, Egr4, Jun, Klf4, 

Myc, Npas4, NR4A1, NR4A2, NR4A3, which were previously shown to be transcribed upon 

neuronal activation (Ataman et al. 2016). Upon 6 hours of KCl treatment, IEGs induced the 

transcription of late responsive genes (LRGs), which are specific for neuronal subtypes (Hill 
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and Treisman 1999). First, I conducted an unbiased analysis looking at gene ontology 

enrichment using GOrilla tool (Gene Ontology enRIchment anaLysis and visuaLizAtion tool, 

Eden et al. 2009). The complete gene ontology terms enrichments for the described list of 

genes are reported in Table 2 (Appendix). I took into consideration the lists of both up- and 

down-regulated genes in the different compared conditions. After 6 hours of KCl treatment 

the terms which resulted to be more enriched were related to the “activation of transcription 

by RNA polymerase II” and the positive regulation of cellular processes in general, including 

RNA biosynthetic process, macromolecule biosynthetic process and nitrogen compound 

metabolic process. Among the list, we noticed the presence of “signal transduction” 

processes with “regulation of protein phosphorylation”, in which the most specific terms 

were “regulation of MAPK cascade” and “regulation of ERK1 and ERK2 cascade”, a typical 

signaling pathway activated by neuronal stimulation (Bading et al. 1993; Ghosh and 

Greenberg 1995). Indeed, the gene ontology analysis of cell components revealed the 

enrichment of the term “nucleus”. 

An unexpected result is the absence of DEGs derived from the comparison between DHT-

KCl treatments, at both 1 and 6 hours, and KCl alone. I noticed that the lists of DEGs results 

from the comparison between KCl versus vehicle and DHT-KCl versus DHT-treated neurons 

at 1 and 6 hours were different, and I decided to take into consideration these lists in order to 

decipher the role of AR activation in stimulated neurons. I excluded all the DEGs which were 

present in both lists, and I selected as DHT-induced genes only the DEGs that were present 

exclusively in the DHT-KCl versus DHT-treated neurons DEG list. Summary Venn diagrams 

of the comparisons between the described conditions above are reported in Figure 27. Gene 

ontology enrichment analysis was carried out on both up- and down-regulated genes, derived 

from the described selection process. As expected, AR activation induced the “regulation of 

transcription from RNA polymerase II promoter” term enrichment, which is the global 

regulation of transcriptional activity in cells. I noticed the enrichment of “regulation of 

cyclin-dependent protein serine/threonine kinase activity” term. The genes related to this 

enrichment are Cdkn1a (cyclin-dependent kinase inhibitor 1a, also known as p21CIP1), 

Cdkn1b (cyclin-dependent kinase inhibitor 1b, or p27KIP1), Ccnd3 (cyclin d3), and Ccnd2 

(cyclin d2). The presence of the two CDK inhibitors and Cdc14b (cell division cycle 14b) 

gene led to the enrichment of “mitotic cell cycle arrest”. Surprisingly, AR activation 

provokes the “regulation of nervous system development”, in which the subordinate enriched 

classes are “regulation of neurogenesis” and “regulation of neuron differentiation”. Another 
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specific enrichment term in stimulated neurons in which AR was active was “negative 

regulation of neuron death”, in accordance with the protective neuronal effect of androgens 

(see introduction, paragraph 1.3.3.) (Pike et al. 2008)(Pike et al. 2008)(Pike et al. 2008)(Pike 

et al. 2008)(Pike et al. 2008)(Pike et al. 2008)(Pike et al. 2008)(Pike et al. 2008). 

Taken together, these observations suggest that AR may play an unprecedented role in 

regulating long lasting outcomes in AR-expressing neurons due to neuronal firing. 
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Figure 26. Microarray analysis of stimulated mature neurons. A) Heatmap representing the up- 

(red) and down-regulated (blue) genes in mature neurons treated with 10 nM DHT for 6 hours and 20 

mM KCl for 1 and 6 hours. B) Schematic representation of the differentially expressed genes (DEGs) 

derived from the comparisons between the indicated conditions. 
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Figure 27. Venn diagrams representing the number of DEG resulted between the 

comparisons of the indicated conditions. The comparisons between DEGs derived from DHT-

treated with vehicle-treated neurons at different time points revealed that only a fraction of genes 

is specifically regulated by AR activation. Upregulated genes are representing in red Venn 

diagrams, downregulated genes in blue. Numbers represent the cohorts of genes inside the 

different groups. 
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4.2. CDK2 is a novel modifier of SBMA pathogenesis 

 

4.2.1. Both deletion and haploinsufficiency of CDK2 decrease mutant 

polyQ-AR level and serine 96 phosphorylation in an SBMA mouse model 

CDK2 was recently characterized by our group as a novel kinase for non-expanded and 

expanded AR at serine 96 (Polanco et al. 2016). Serine 96 phosphorylation in SBMA knock-

in mice was decreased by the administration of an analog of pituitary adenylate cyclase 

activating polypeptide (PACAP). This decrease correlated with an amelioration of motor 

phenotype and increment of lifespan (Polanco et al. 2016). 

In order to decipher the role of CDK2 in vivo in SBMA pathogenesis, I crossed a mouse 

model in which one allele of CDK2 gene was deleted (CDK2+/-, Ortega et al. 2003) with 

SBMA transgenic mice, a model generated and analyzed in the last years in our laboratory 

(TG AR100Q mice, Chivet et al., manuscript in preparation). CDK2-/- mice are generated by 

crossing heterozygous CDK2 mice. They are viable, but the frequency was slightly below 

the Mendelian ratio, suggesting prenatal lethality at low penetrance (Berthet et al. 2003).  

CDK2-/- mice do not demonstrate any sign of neurodegeneration or muscular defects. 

I generated SBMA transgenic mice with haploinsuffiency and deletion of CDK2, in order to 

determine whether CDK2 plays a major role in SBMA pathogenesis, monitoring the effect 

on phenotype. I crossed TG AR100Q mice with the heterozygous CDK2 mouse model, 

obtaining SBMA mice with haploinsufficiency of CDK2 (TG AR100Q/CDK2+/-). Then, I 

crossed the positive F1 generation with heterozygous CDK2 mice to obtain SBMA mice with 

CDK2 knockout (TG AR100Q/CDK2-/-).  

First of all, I validated the haploinsufficiency and the deletion of CDK2 in spinal cord. CDK2 

levels correlated with the number of alleles containing CDK2 gene (Fig. 28A). Next, I 

assessed the impact of CDK2 on AR levels in disease-related tissues, i. e. brainstem and 

spinal cord. I noticed that the CDK2 deletion reduces AR protein levels by 1,36- and 1,25-

fold in these two tissues, respectively (Fig. 28B-C, spinal cord and brainstem, respectively). 
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Figure 28. CDK2 heterozygosity or deletion in SBMA transgenic mice decrease AR levels and 

phosphorylation of serine 96. A) Western blotting analysis of CDK2 protein levels in the spinal 

cord of CDK2+/- and -/- mice. B-C) Western blotting analysis of polyQ-AR in spinal cord and 

brainstem, respectively, of TG AR100Q mice with CDK2 heterozygosity and deletion. D) Western 

blotting analysis of poly-Q AR monomer and aggregates in quadriceps of the indicated mouse 

genotypes. E) Western blotting analysis of phosphorylated serine 96 AR and total AR of MN-1 cells 

stably expressing AR24Q and AR100Q with and without alanine substitution at serine 96. F) Western 

blot analysis of serine 96 phosphorylation of polyQ-AR in brainstem of the indicated mouse 

genotypes. One-way ANOVA test with Tukey’s post-hoc test was performed, and asterisks 

correspond to p<0.05. Graphs, mean ± SEM, N=2-3. 

Additionally, I assessed AR levels in skeletal muscle, i. e. quadriceps. This tissue is a primary 

target of the disease (Sambataro and Pennuto 2012). Indeed, it is characterized by atrophy, 

related to the deposition of polyQ-AR aggregates. Aggregates are easily detectable in the 

stacking part of SDS-PAGE gel, yet they are insoluble in 2% SDS lysis buffer. I analyzed 

polyQ-AR monomeric and aggregated species, and I found that CDK2 haploinsufficiency 

and deletion did not alter polyQ-AR aggregation and total protein levels in this tissue (Fig. 

28D).  

Next, I asked whether reduced CDK2 modifies serine 96 phosphorylation. I performed 

western blotting analysis with a specific phosphorylated serine 96 polyclonal antibody. To 

test the specificity of the phosphorylation antibody, I performed western blot analysis of 

motor neuron-derived cells (MN1) that stably express AR24Q and AR100Q, with and 

without alanine substitution of serine 96. The phospho-specific antibody against serine 96 

AR recognized the non-mutated AR, but not the phospho-defective serine 96 AR (Fig. 28E). 

The haploinsufficiency and deletion of CDK2 decreased the level of phosphorylated serine 

96 compared to TG AR100Q mice with physiological CDK2 levels in brainstem (Fig. 28F). 

These results are consistent with the model whereby AR turnover is regulated by CDK2-

dependent serine 96 phosphorylation, with decreased protein stability upon serine 96 

dephosphorylation (Polanco et al. 2016). 
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4.2.2. Loss of CDK2 function ameliorates the phenotype of SBMA 

transgenic mice 

Based on the results described above, I hypothesized that a decrease in polyQ-AR levels 

could have an impact on phenotype of SBMA mice. Therefore, I challenged the mice with 

three behavioral tasks for motor phenotype. First, I assessed motor coordination with rotarod 

test. The mice were monitored starting from 6 weeks of age through the death of the animals. 

The loss of motor coordination of TG AR100Q mice starts at 8 weeks of age. CDK2 

haploinsufficiency in SBMA mice delayed this deficit, at 8 weeks, 9 weeks and 10 weeks of 

age (Fig. 29A).  

Starting from the eleventh week of age, the difference between WT and TG 

AR100Q/CDK2+/- mice becomes significant. CDK2 deletion in SBMA mice resulted in an 

additional amelioration of loss of motor coordination. TG AR100Q/CDK2-/- mice 

performance is similar to that of WT mice in rotarod test until 11 weeks of age. From 12 

weeks of age, the motor coordination of TG AR100Q/CDK2-/- degenerates (Fig. 29A). In 

summary, rotarod deficits were delayed by CDK2 haploinsufficiency and deletion in SBMA 

mice, with a greater improvement decreasing CDK2 levels. 

I assessed muscle strength by hanging wire test. TG AR100Q mice demonstrate muscle 

deficits starting from 10 weeks of age. The muscle phenotype was ameliorated by CDK2 

haploinsufficiency and deletion. TG AR100Q/CDK2+/- and -/- mice started the muscle force 

decline at week 12 (Fig. 29B). I applied another behavior paradigm for muscle force 

assessment, the grip strength test. The muscle force of TG AR100Q at 6 weeks of age was 

decreased compared to WT. This muscular impairment was rescued by haploinsufficiency 

and deletion of CDK2 in SBMA mice (Fig. 29C).  
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Figure 29. CDK2 heterozygosity and knock-out ameliorate SBMA phenotype in mice. A) 

Rotarod analysis of motor coordination of TG AR100Q mice with haploinsufficiency and deletion of 

CDK2. WT, N=7; TG AR100Q, N=13; TG AR100Q x CDK2+/-, N=13; TG AR100Q x CDK2-/-, N=7. 

B) Hanging wire analysis of muscle force of the indicated mouse genotypes. N as in B) except for 

TG AR100Q, N=24. C) Grip strength analysis of muscle force of the indicated mouse genotypes. 

N=3 for all the genotypes. In A) and B) One-way ANOVA test with Tukey’s post hoc test was 

performed. One symbol, p<0.05; two symbols, p<0.01; three symbols, p<0.001; four symbols 

p<0.0001. * TG AR100Q vs WT, # TG AR100Q x CDK2+/- vs WT and + TG AR100Q x CDK2-/- vs 

WT. 

4.2.3. CDK2 deletion in SBMA mice modifies body weight but not weight 

increase compared to SBMA mice 

TG AR100Q mice are characterized by a lower body weight compared to WT, starting from 

6 weeks of age (Fig. 30A). I analyzed the weight increase of TG AR100Q mice compared to 

WT, fixing as reference value the body weight at 6 weeks of age. TG AR100Q mice gain 

weight slowly compared to WT. They gain weight until week 9, then they gradually lose 

weight until their death (Fig. 30B). I monitored the body weight of TG AR100Q/CDK2+/- 

and -/-. TG AR100Q/CDK2+/- weigh comparably to TG100Q during time. TG 

AR100Q/CDK2-/- mice appear smaller than TG AR100Q and TG AR100Q/CDK2+/- mice, 

from 6 weeks of age onwards (Fig. 31A). We noticed that all the three transgenic genotypes 

followed the same curve of gain and loss of body weight. Interestingly, the weight increase 

of TG AR100Q was different compared to WT mice from 9 weeks of age onwards. Instead, 

the weight increase of TG AR100Q/CDK2+/- and -/- was significantly different compared to 

WT mice from 10 weeks of age onwards (Fig. 31B). 

4.2.4. Haploinsufficiency or deletion of CDK2 did not extend the lifespan 

of SBMA mice 

I monitored the lifespan of transgenic mice with CDK2 haploinsufficiency and deletion. 

TG100Q mice have a severe phenotype characterized by loss of body weight, muscle 

weakness, which appear around two months of age, with kyphosis and partial paralysis in the 

late stage of disease. The loss of 20% of total body weight was set as criterion for humane 
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endpoint. The median survival of TG100Q was 13 weeks. CDK2 haploinsufficiency and 

deletion did not alter the median survival of SBMA mice (Fig. 32A). 

Figure 30. Body weight and body weight increase of TG AR100Q is lower compared to WT. A) 

and B) Body weight and weight increase analysis of WT versus TG AR100Q mice. Two-way 

ANOVA test with Sidak’s test for multiple comparisons was performed. **, p<0.01; ***, p<0.001; 

**** p<0.0001. WT, N=7; TG AR100Q, N=13. Graphs, mean ± SD. 
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Figure 31. Body weight of TG AR100Q, but not the weight increase, is altered by CDK2 

haploinsufficiency and deletion. A) Body weight analysis of the three transgenic mouse lines. Two-

way ANOVA test was performed. B) Body weight increase analysis of the three transgenic mouse 

lines versus WT mice. Two-way ANOVA with Sidak’s test for multiple comparisons test was 

performed. One symbol, p<0.05; two symbols, p<0.01; three symbols, p<0.001; four symbols 

p<0.0001. * TG AR100Q vs WT, # TG AR100Q x CDK2+/- vs WT and + TG AR100Q x CDK2-/- vs 

WT, in B). In A), * TG AR100Q/CDK2-/- vs TG100Q, # TG AR100Q/CDK2-/- vs TG 

AR100Q/CDK2+/-. WT, N=7; TG AR100Q, N=13; TG AR100Q x CDK2+/-, N=13; TG AR100Q x 

CDK2-/-, N=7. Graphs, mean ± SD. 
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Figure 32. Survival of SBMA x CDK2+/- and -/- mice is not improved compared to SBMA mice. 

Kaplan-Meier analysis of survival of TG AR100Q with haploinsufficiency and deletion of CDK2. 

WT, N=7; TG AR100Q, N=24; TG AR100Q x CDK2+/-, N=13; TG AR100Q x CDK2-/-, N=7. 

Gehan-Breslow-Wilcoxon test was performed. 

4.2.5. CDK2 haploinsufficiency and deletion in knock-in SBMA mouse 

model do not alter survival and rotarod performance 

In addition to transgenic mice, we crossed knock-in SBMA mouse model (AR113Q, Yu et 

al. 2006) with CDK2+/- mice, as previously described, in order to obtain AR113Q/CDK2+/- 

and -/- mice. The original colony of AR113Q mice had a median survival of around 4 months. 

In Polanco et al. 2016, we used AR113Q mice for the preclinical trial and the median survival 

increased by about 10 weeks, reaching 6 months. This phenomenon is probably due to the 

gradual restriction of polyQ tract seen in these mice. I monitored the survival of AR113Q 

line for this experiment and I found that the median survival reached 41 weeks, i. e. more 

than 10 months (Fig. 33A). AR113Q/CDK2+/- and -/- showed a median survival of 45 weeks, 

but the difference between AR113Q and AR113Q/CDK2 mice survival curves did not reach 

statistical significance (Fig. 33B).  

We monitored motor coordination through rotarod behavioral test. CDK2 haploinsufficiency 

and deletion did not alter AR113Q mouse performance starting from 20 weeks until 1 year 

of age (Fig. 33C). 
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Figure 33. Lifespan and motor coordination of knock-in SBMA mouse model are not perturbed 

by CDK2 heterozygosity and deletion. A) Kaplan-Meier analysis of survival of AR113Q versus 

WT mice. WT=12 and AR113Q=32. B) Kaplan-Meier analysis of survival of the three knock-in 

mouse lines. AR113Q=32, AR113Q/CDK2+/-=28, AR113Q/CDK2-/-=14. C) Rotarod analysis of 

motor coordination of WT and the three knock-in mouse lines. WT=6-11, AR113Q=13-27, 

AR113Q/CDK2+/-=9-28 and AR113Q/CDK2-/-=2-9. Gehan-Breslow-Wilcoxon test was performed 

in A) and B), and *** is p<0.001. Two-way ANOVA test was performed in C).  
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4.3. CDC25 modulation modifies polyQ-AR toxicity, 

serine 96 phosphorylation and transcriptional 

activity 

 

4.3.1. High-throughput screening of phosphatase and kinase inhibitors 

reveals CDC25 as a modifier of AR shuttling 

Toxicity of mutant polyQ-AR is elicited by its nuclear translocation (Montie et al. 

2009)(Nedelsky et al. 2010). AR shuttling is regulated by several molecular pathways that 

involve modulation of AR phosphorylation state (Gioeli and Paschal 2012). For this reason, 

I performed a high-throughput (HT) screening of phosphatase and kinase inhibitors, 

monitoring AR shuttling in order to find compounds that are potentially protective. I 

generated a HeLa cell line sub-clone that stably expresses poly-Q AR fused with GFP 

(AR65Q-GFP cells, Fig. 34A). Positive AR-GFP expressing cells were selected after 

imaging via the Operetta® High Content Imaging System software (Fig. 34B). We validated 

the robustness and reproducibility of the assay treating cells plated in a 384-well plate with 

DHT (Fig. 34A and C). AR shuttling index was expressed as the average ratio between GFP 

intensity in the nucleus versus GFP intensity in the cytosol of the positive cell. DHT treatment 

increased AR nuclear translocation by two-fold compared to vehicle-treated cells (Fig. 34D). 

The most representative tool to evaluate the quality of a HT screening is Z-factor. A value 

between 0.5 and 1 is considered as excellent assay (Zhang 1999). The HT assay I performed 

resulted in a Z-factor of 0.502. Another parameter designed to assess robustness of HT assays 

is the strictly standardized mean difference (SSMD) (Zhang et al. 2007). An excellent assay 

with an extremely strong positive control has a SSMD>7. The presented HT assay resulted 

in a SSMD equal to 7,144. These parameters based on the preliminary set-up prove that the 

assay presents a signal window between positive and negative controls which is large enough 

to detect significant differences derived from inhibitor treatments (Fig. 34E). 
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Figure 34. High-throughput screening set-up for the identification of phosphatases and kinases 

that alter AR nuclear shuttling. A) HeLa cell line stably expressing GFP-tagged polyQ-AR treated 

for 4 hours with vehicle or 10 nM DHT. Scale bar, 25 µm. B) Operetta® High Content Imaging 

System software analysis of the described cells: identification of nuclei, identification of cytosol and 

selection of polyQ-AR positive cells. Scale bar, 40 µm. C) Preliminary high-throughput screening 

set-up. Cells were treated with vehicle and 10 nM DHT for 4 hours. D) Normalized quantification of 

nuclear versus cytosolic (N/C) GFP intensity of positive polyQ-AR subpopulation in the preliminary 

high-throughput screening. Two-tail t-test was performed and asterisks represent p<0.0001. E) N/C 

ratio of the average population of single wells. 

Next, I screened a library of 33 phosphatase and 273 kinase inhibitors on polyQ-AR nuclear 

translocation (Table 3, list of compounds). I treated the cells with 10 µM kinase and 

phosphatase inhibitors for 5 hours. One hour later, I added 10 nM of DHT or EtOH to the 

cells for 4 hours in total. From the evaluation of the standard deviations which separates the 

mean of the positive control from the mean of the different treatments, I selected as potential 

hits of the screening 6 phosphatase and 17 kinase inhibitors. These compounds decreased or 

increased the nuclear localization of polyQ-AR. We focused our attention on phosphatase 

inhibitors. 

The phosphatase inhibitors that decreased nuclear localization of polyQ-AR with DHT 

treatment were NSC-95397, sanguinarine chloride, 9,10-phenanthrenequinone, NSC-

663284, and shikonin (Fig. 35A). The target phosphatases of these compounds are cell 

division cycle 25 (Cdc25), protein phosphatase 2C (PP2C), CD45 tyrosine phosphatase, 

Cdc25 and PTEN, respectively. Importantly, the compound which increased nuclear 

localization of polyQ-AR was gossypol, a new selective inhibitor of calcineurin (Fig. 35B). 

The images which recapitulate the effect of the treatments are reported in figure 35C. 

I noticed that two phosphatase inhibitors out of 6 target Cdc25, a known activator of CDKs. 

These inhibitors are NSC-663284 and NSC-95397. Considering these facts, I decided to 

analyze further effects of these two compounds on AR biology.  

Moreover, calcineurin could be a possible player in neuronal activity-dependent 

dephosphorylation of AR at serine 96, because its regulation by calcium signaling. In this 

dissertation, I focused on the straightforward effect of Cdc25 on the already characterized 

pathway involving CDK2. 
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Figure 35. 6 phosphatase inhibitors modify the nucleus versus cytoplasm localization of polyQ-

AR after DHT treatment. A) and B) analysis of N/C localization of polyQ-AR expressing cells after 

5 hours of the indicated phosphatase inhibitors at a concentration of 10 µM, followed by 4 hours 

DHT treatment at 10 nM. One-way ANOVA test with Tukey’s post-hoc test was performed in A), 

unpaired two-tailed t-test was performed in B). * is p<0.05, ** is p<0.01, *** is p<0.001. C) 

Representative images of the indicated treatments. Scale bar, 25 µm. 
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4.3.2. NSC-663284 treatment increases the viability of polyQ-AR 

expressing cells 

In order to test whether Cdc25 inhibition modifies cell viability, I treated cells with NSC-

663284 and NSC-95397 inhibitors. I pre-treated cells overexpressing normal and polyQ-AR 

with 10 µM of DHT for 48 hours and 0 and 1 µM of NSC-663284 for the last 18 hours. This 

treatment led to the increase of cell viability in both overexpressing AR cell lines (Fig. 36A). 

Noteworthy, DHT treatment decreased the viability of polyQ-AR overexpressing HEK293T 

cells compared to control cells. I confirmed with three independent experiments the 

protection derived from 1 µM NSC-663284 treatment on polyQ-AR expressing cells (Fig. 

36B). I treated the cells with 0 and 1 µM of NSC-95397. This compound did not induce any 

difference in cell survival of both non-expanded and expanded AR-overexpressing cells (Fig. 

36C). NSC-95397 treatment did not alter cell viability of HEK293T overexpressing AR with 

65 glutamines in three independent experiments (Fig. 36D). 
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Caption in the next page (p. 102). 
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Figure 36. NSC-663284 inhibition of Cdc25 increases polyQ-AR expressing cell viability. A) and 

B) MTT assay of HEK293T cells transfected with AR24Q and AR65Q, treated 48 hours with 10 µM 

DHT and 18 hours with NSC-663284 or NSC-953897. Two-tailed unpaired t-test was applied, and 

asterisks represent: *, p<0.05; ***, p<0.001. B) and D) MTT assay of HEK293T cells transfected 

with AR65Q, treated 48 hours with 10 µM DHT and 18 hours with 1 µM NSC-663284 or NSC-

95397. Two-tailed unpaired t-test was applied, and asterisks represent: ****, p<0.0001. E) MTT 

assay of MN1- cells stably expressing AR24Q and AR100Q, treated 72 hours with 50 µM DHT and 

18 hours with 1 µM NSC-663284. One-way ANOVA test with Tukey’s post-hoc test was performed, 

and asterisks represent: *, p<0.05; **, p<0.01. F) MTT assay performed on MN-1 cells 

overexpression AR100Q and AR100Q S96A mutant, treated as previously described. Graphs, mean 

± SEM, N=3. 

Then, I conducted the same experiment with different cell lines. I exploited a cell line created 

in our lab in which motor neuron-derived cells (MN-1) were transduced with viruses 

expressing either AR with 24Q or 100Q (Scaramuzzino et al. 2015). I used this cell type in 

order to evaluate the effect of Cdc25 inhibition in a setting more similar to the disease. I pre-

treated the cells with 50 µM DHT for 72 hours. I applied 0 or 1 µM NSC-663284 for the last 

18 hours in AR24Q and AR100Q expressing cells. The inhibition of Cdc25 induced an 

increase of MN1- cell viability specifically in AR100Q-expressing cells, which resulted to 

be sensitive to DHT-induced toxicity (Fig. 36E).  

Finally, I used MN-1 stably overexpressing AR100Q with serine 96 mutated into alanine 

(S96A), in order to prevent the phosphorylation at this site. I pre-treated the cells with 50 µM 

DHT for 72 hours in order to induce toxicity. Then for the last 18 hours, I treated the cells 

with and without mutation at serine 96, with 1µM NSC-663284. As expected, AR100Q S96A 

expressing cells displayed a higher cell viability compared to AR100Q cells (Polanco et al. 

2016). NSC-663284 treatment was protective against DHT-induced cell death but did not 

increase the viability of the S96A mutant cells (Fig. 36F). These results suggest that NSC-

663284-induced protection is achieved only with a phosphorylable AR at S96. 
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4.3.3. Cdc25 inhibition alters phosphorylation of AR at serine 96 

The phosphatase inhibitor screening showed that NSC-663284 treatment decreases polyQ-

AR nuclear localization, a phenomenon that correlated with increased cell viability. I asked 

which post-translational modifications are involved in this effect. NSC-663284 inhibits 

specifically Cdc25 but could have an indirect effect on AR biology through different 

pathways. The site which is more likely to be altered by NSC-663284 is serine 96. Indeed, 

this site is targeted by CDK2, and inhibition of Cdc25 and the subsequent inhibition of the 

activating dephosphorylation of CDK2 at threonine 14 and tyrosine 15 could diminish the 

accumulation of the upper phosphorylated isoform of AR (Lammer et al. 1998). 

 

 

 

 

 

Figure 37. NSC-663284 treatment decreases the accumulation of phosphorylated upper isoform 

of AR. A) Western blotting analysis of phosphorylated and unphosphorylated AR at serine 96 of 

HEK293T cells transfected with polyQ-AR and treated with 10 µM forskolin (Forsk) or indicated 

concentrations of NSC-663284 for 5 hours. Loading control: β-Tubulin (β-Tub). 

To test this hypothesis, I overexpressed polyQ-AR in HEK293T cells and I treated them with 

increasing concentration of NSC-663284 for 5 hours. I used forskolin as positive control for 

the dephosphorylation of AR at serine 96 (Polanco et al 2016). I performed a western blot 

analysis to separate 110 and 112 kDa AR isoforms. Treatment with 0.1 µM of NSC-663284 

for 5 hours decreases the accumulation of the upper phosphorylated isoform at serine 96 of 

AR, similarly to forskolin treatment (Fig. 37). The other concentrations have minor effects 

on serine 96 phosphorylation. 

 

 

 

Veh Forsk 0,1 µM 1 µM 10 µM 

AR 

Β-Tub 
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4.3.4. Cdc25 inhibition modifies polyQ-AR transactivation activity 

Phosphorylation is one the best characterized post-translational modifications that modulates 

AR transactivation (Gioeli and Paschal 2012; Palazzolo et al. 2007). For this reason, I asked 

whether the inhibition of Cdc25 through NSC-663284 changes AR transcriptional activity.  
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Figure 38. Cdc25 inhibition through NSC-663284 alters polyQ-AR transactivation. Luciferase 

assay of HEK293T cells transfected with AR24Q and AR65Q, treated with 10 nM DHT for 24 hours, 

10µM forskolin for 6 hours or with the indicated concentrations of NSC-663284. One-way ANOVA 

test with Tukey’s post-hoc test was performed and asterisks represent: *, p<0.05; **, p<0.01; ***, 

p<0.001; **** p<0.0001. Graphs, mean ± SEM. The reported experiment is representative of three 

independent experiments. 

I transfected HEK293T cells with vector expressing either AR24Q or 65Q, together with the 

reporter constructs. I treated the cells for 24 hours with 10 nM of DHT, and with 0.1 and 10 

µM of NSC-663284 for the last 6 hours. I selected these concentrations to mirror the 

conditions found to be protective for cell viability (1 µM) and found to alter AR cell 

localization (10 µM). Normal AR transactivation was not affected by NSC-663284 treatment. 

PolyQ-AR transcriptional activity was significantly decreased with 1 and 10 µM NSC-

663284, with a reduction of 30% and 40%, respectively (Fig. 38). A similar decrease in AR 

transactivation was obtained in this experimental set-up from treatment with forskolin, as 

previously shown in mouse cortical primary neurons (Fig. 24A). These observations are in 
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accordance with a model in which AR is dephosphorylated at serine 96 by NSC-663284-

induced Cdc25 inhibition, and this post-translational modification alters its transcriptional 

activity. 

4.3.5. Cdc25C overexpression increases the accumulation of the upper 

isoform of AR and increases AR transactivation 

The results described above show that inhibition of Cdc25 activity leads to decreased 

toxicity, dephosphorylation of serine 96 and a decrease of polyQ-AR transcriptional activity. 

Based on these observations, I asked whether overexpression of Cdc25 reverses these effects. 

Cdc25 isoform A and B were reported to be a corepressor and a coactivator of AR, 

respectively (Chiu et al. 2009, Ngan et al. 2003). To date, there are no evidences that Cdc25 

isoform C is involved in AR biology. For these reasons, I decided to test the role of Cdc25C 

in regulating AR. Henceforth, Cdc25C is abbreviated as Cdc25. 

 To analyze AR phosphorylation at serine 96, I transfected polyQ-AR with mock or Cdc25 

overexpressing vector in HEK293T cells. Overexpression of Cdc25 increased the 

accumulation of the upper phosphorylated isoform of polyQ-AR compared to mock-

transfected cells (Fig. 39A). 

In order to check whether Cdc25 modifies AR transcriptional activity, I performed luciferase 

assays. I transfected normal and polyQ-AR in HEK293T together with mock, Cdc25 or 

Cdc25 catalytically dead (mut) expressing vectors. The overexpression of Cdc25, but not 

Cdc25 mut, led to an increase in the luciferase activity driven by AR transactivation (Fig. 

39B). 

Taken together these observations suggest that Cdc25 modifies AR biology, altering serine 

96 phosphorylation state, probably via CDK2 activation. 
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Figure 39. Cdc25 overexpression increases serine 96 phosphorylation and alters AR 

transcriptional activity. A) Western blotting analysis of HEK293T cells transfected with AR55Q 

and with either mock or Cdc25 overexpressing vectors. Quantification is resulted from two 

independent experiments. Two-tailed t-test was performed and asterisks represent: **, p<0.01. B) 

Luciferase assay of HEK293T cells transfected with the indicated vectors and treated 6 hours with 

either vehicle or 10 µM forskolin. The reported experiment is representative of three independent 

experiments. One-way ANOVA test with Tukey’s post-hoc test was performed, and asterisks 

represent: *, p<0.05; **, p<0.01; ***, p<0.001. Graphs, mean ± SEM. 
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5. DISCUSSION 
 

Here, I showed that serine 96 phosphorylation has a central role in the modulation of polyQ-

AR toxicity. In addition, it is a regulatory post-translational modification of AR physiological 

function. I showed that neuronal activity regulates AR transcriptional capacity through the 

dephosphorylation of serine 96. At the same time, I investigated the impact of serine 96 

phosphorylation exerted by CDK2. I discovered that loss of CDK2 function results in a delay 

of SBMA motor phenotype onset in vivo, providing evidence that CDK2 is a novel modifier 

of SBMA. In addition, through a high-throughput screening of phosphatase inhibitors, I 

identified a Cdc25 inhibitor that diminished serine 96 phosphorylation, regulating 

transcriptional activity and decreasing polyQ-AR toxicity. Moreover, I identified a 

compound, gossypol, an inhibitor of calcineurin, that modifies polyQ-AR nuclear 

translocation. This last observation suggests a role in the regulation of this pathway also by 

the calcium-regulated phosphatase calcineurin. In the future, I will test the hypothesis that 

calcineurin dephosphorylates non-expanded AR upon neuronal activity. 

Taken together these observations led to the proposed working model (Fig. 40). 

5.1. AR transcriptional activity is regulated by neuronal activation 

AR is expressed ubiquitously throughout the body, yet to a different extent among tissues. 

AR plays essential roles in the development of sexual glands and the maintenance of male 

fertility (Smith and Walker 2014). Moreover, AR has a central function in muscle 

development, remodeling and metabolism, increasing muscle mass and strength and 

provoking exercise-induced muscle hypertrophy (Inoue et al. 1994). From late 50s, AR was 

suggested to have a role in the central nervous system. AR mRNA is present in the forebrain, 

midbrain and spinal cord (Simerly et al. 1990). The protein is highly expressed in cortex and 

hippocampus, normally found in the nucleus, but in amygdala and cerebral cortex it was also 

detected in the axons and dendrites (DonCarlos et al. 2003). AR was involved in 

neuroprotective mechanisms. Indeed, androgens exert beneficial effects on neuronal trophic 

sustenance by acting directly through the AR. In hippocampal neurons, neuroprotection was 

observed against several apoptosis-inducing insults, such as β-amyloid, staurosporine and 

apoptosis activator II. This effect was seen both with testosterone and DHT treatment 

(Nguyen et al. 2010). DHT is a non-aromatizable androgen, exclusively bound to AR, and 
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this selectivity excludes an estrogen receptor-dependent effect. AR activity is also 

neuroprotective in motor neurons. It causes sexually-specific decrease of motor neuron cell 

death to model structural specialization during development and promotes protection from 

cell death after injury (Pike et al. 2008). In 2001, it was demonstrated that toxicity induced 

by serum deprivation in human primary neurons was rescued by treatment with the androgens 

and this treatment was not effective with a selective antagonist of AR (Hammond et al. 2001).  

 

Figure 40. Working model. Neuronal activity through the activation of PKA trigger the 

dephosphorylation of AR (polyQ-AR) at serine 96. The hypothesis is that this dephosphorylation is 

triggered both by calcineurin activation due to calcium influx into the neuron, and inhibition of CDK2 

(Polanco et al. 2016). I found one compound, NSC-663284, which counteracts the toxic 

phosphorylation of polyQ-AR at serine 96. I identified also another compound, gossypol, an inhibitor 

of calcineurin, which is potentially involved in the pathway, but further analyses have to be 

performed. 
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AR was also seen as a key factor in neurons and glial cells in myelin repair after cuprizone 

injury (Hussain et al. 2013). Moreover, androgens act through AR to induce spinogenesis in 

the hippocampus, inducing specific serine/threonine kinases, such as MAPK, PKA and PKC 

(Hatanaka et al. 2015). Little is known about the specific molecular mechanisms that underlie 

the qualitative effects triggered by androgens in an AR-dependent manner. For example, 

androgens are responsible for the masculinization of the brain: there are brain areas, including 

the nucleus of the preoptic area and ventromedial nucleus of the hypothalamus, that are 

sexually dimorphic (Ciofi et al. 2007). This evidence implies that AR plays primary roles in 

different subpopulations of neurons, whose specific molecular mechanisms involved are not 

yet well-defined. Neurons are excitable cells in which depolarization of the neuronal plasma 

membrane triggers an action potential. Key events in this process are intracellular calcium 

release and subsequent synaptic exocytosis. The discovery that AR is a transcription factor 

regulated by neuronal depolarization opens a new scenario for AR functional regulation in 

neurons. Additionally, a similar regulation of AR functions may occur in tissues other than 

the nervous system where calcium is a fundamental secondary messenger, such as skeletal 

muscle (Tu et al. 2016). AR was already shown to be implicated in calcium signaling. Gong 

and colleagues used prostate cancer cells to prove that calcium influences AR expression 

(Gong et al. 1995). They showed that both intracellular calcium increase or decrease diminish 

AR mRNA and protein levels, but the pathways involved remain elusive. AR was also shown 

to regulate the expression of sarco/endoplasmic reticulum calcium ATPase 2 (SERCA2), a 

calcium pump found to be localized in the endoplasmic reticulum (Foradori et al. 2007). 

SERCA2 catalyzes the transport of calcium ions from the cytosol into the endoplasmic 

reticulum, regulating basal calcium gradient (Guerrero-Hernandez et al. 2010). 

In a model of excitability using primary neuronal cultures, I discovered that AR is regulated 

by neuronal depolarization through the dephosphorylation of serine 96. Surprisingly, I 

highlighted a link between neuronal depolarization, calcium release, dephosphorylation of 

serine 96 and AR transcriptional activity. This discovery could be the start for new insights 

into the molecular mechanisms regulating AR function in neurons. Given the activity-

induced regulation of AR transactivation capacity, I hypothesized that AR activation through 

DHT treatment in AR-expressing neurons led to different gene induction and repression with 

respect to neurons in which AR is not activated. To analyze genome-wide differences in gene 

expression, I performed microarray analysis. I wanted to probe the immediate early gene 

expression machinery and the late-response gene induction due to early changes in gene 
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expression. For this reason, I treated excitable AR-expressing neurons with two time-points, 

one hour and six hours of depolarization (Spiegel et al. 2014). I am validating the obtained 

results, but a first analysis suggests the involvement of AR in the activation of a gene 

expression program that regulates important neuronal pathways. 

I found that AR in neurons activates consistently five genes: neural epidermal growth factor-

like like protein 2 (NELL2), chromosome transmission fidelity factor 8 (CHTF8), calcium 

binding protein 5 (Cbp5), phosphatidylinositol glycan anchor biosynthesis class T (Pigt) and 

proline-rich 7 (Prr7). NELL2 is a protein that is highly expressed in neural tissues and is 

composed of sex epidermal growth factor (EGF)-like domains (Watanabe et al. 1996). This 

domain is characterized by 40-50 amino acids and contains residues for Ca2+ binding 

(Handford et al. 1991). It was demonstrated that NELL2 interacts with an isoform of protein 

kinase C activated by calcium, phospholipid and diacylglycerol, proving that NELL2 is a 

cytosolic protein (Kuroda and Tanizawa 1999). NELL2 has protein motif similarities with 

trombospondin-1, a membrane protein partially secreted into the extracellular compartment 

(Chen et al. 2000). Indeed, an isoform of NELL2 was shown to be a secreted protein, 

suggesting a trophic role in neurons (Aihara et al. 2003). Interestingly, NELL2 drives motor 

neuron differentiation and the secreted isoform stimulates proliferation of the adjacent cells 

(Nelson et al. 2004). CHTF8 is part of the Ctf18 replication factor C (RCF) complex, 

important for sister chromatid cohesion and loading of the DNA replication processivity 

factor PCNA (Mayer et al. 2001). This gene was shown to be reduced in prostate and renal 

tumors (Sun et al. 2002). Cbp5 binds calcium and it has similarities with calmodulin protein 

(Haeseleer et al. 2002). Its expression was shown to be retina-specific (Haeseleer et al. 2000). 

Pigt is a subunit of the glycosylphosphatidylinositol (GPI) transamidase complex, 

responsible of GPI transfer to target proteins (Ohishi et al. 2001). Mutations in Pigt have 

been linked to an autosomal recessive intellectual disability (Kvarnung et al. 2013). Prr7 is a 

synaptic protein found to interact with the postsynaptic density-95 (PSD95) and NMDA 

receptor (Murata et al. 2005). Recently, it was associated with NMDAR-dependent 

excitotoxicity. Indeed, Prr7 blocks the ubiquitination of c-Jun, impeding its degradation, and 

this mechanism mediates excitotoxic neuronal death (Kravchick et al. 2016). Although AR-

mediated transcriptional upregulation of these genes has to be characterized in detail, a first 

functional analysis suggests that AR induces gene expression alterations linked to important 

pathways for neuronal survival and differentiation. 
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5.2. CDK2 is a novel modifier of SBMA 

AR is regulated mostly by phosphorylation (Koryakina et al. 2014). AR has several 

phosphorylation sites which are consensus site motifs for CDKs. These sites are serine or 

threonine, followed by proline (Kennelly and Krebs 1991). We showed that CDK2 is the 

kinase that specifically targets serine 96, and that phosphorylation at this site increases 

polyQ-AR toxicity (Polanco et al. 2016). In SBMA cells, PKA activation induced protected 

cells from the toxicity of polyQ-AR mainly through dephosphorylation of AR at serine 96. 

We exploited this information to develop a new strategy to pharmacologically decrease serine 

96 phosphorylation in vivo. We used PACAP analogs to activate PKA and ultimately modify 

polyQ-AR phosphorylation and toxicity. This treatment was successful in ameliorating the 

motor phenotype and increasing lifespan of SBMA knock-in mice. In this work, the specific 

role of CDK2 in the disease pathogenesis was not elucidated. We analyzed the effect of 

PACAP analog on the canonical CDK inhibitors, p21CIP1, p27KIP1 and p57KIP2 (Sherr and 

Roberts 1999). We discovered a correlation between PKA pathway activation and increase 

of p21CIP1 protein levels. Accordingly, we concluded that the inhibition of CDK2 through 

p21CIP1 was downstream of PACAP treatment. 

Our results demonstrate a key role of CDK2 in SBMA. I generated transgenic SBMA mice 

with deletion of one or both CDK2 alleles. The deletion of CDK2 in transgenic SBMA mice 

resulted in a delay of the motor phenotype. This mouse line begins to show disease 

manifestations at 8 weeks of age, when the mice start to lose motor coordination and muscle 

strength. Deletion and, importantly, haploinsufficiency of CDK2 improved the overall motor 

ability throughout lifespan. I observed an amelioration of rotarod and hanging wire 

performance, thereby proving that CDK2 is a novel modifier of SBMA pathogenesis. CDK2 

deletion in all tissues is likely to have secondary effects that are not linked to AR biology. 

On the other hand, CDK2 heterozygosity preserves the biological function of the protein, still 

maintaining the rescue of TG AR100Q mice phenotype. A limitation of our experimental 

paradigm is the impossibility to decipher which specific tissues are the major player in the 

rescue. The targeted deletion of the protein in cell type- and time-specific manner could 

unravel the question. I did not observe any difference in survival of SBMA mice by knocking 

down CDK2. Nevertheless, an intervention on CDK2 activity to modulate serine 96 

phosphorylation could lead to an amelioration of the quality of life of SBMA patients, 

although without an extension of lifespan. Importantly, I showed that the rescue in the 
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phenotype correlates with the phosphorylation state of serine 96, confirming the results that 

we have previously obtained (Polanco et al. 2016). In addition, I used SBMA knock-in mice, 

in which mouse AR was replaced by the human sequence of AR with a polyQ expansion of 

113 glutamines (AR113Q mice) (Yu et al. 2006). Yu and colleagues showed that AR113Q 

mice have decreased body weight and weaker muscles compared to WT littermates and a 

median survival of 15 weeks. In the present study, the colony changed its characteristics, 

probably due to AR polyQ tract shortening. Indeed, the median survival was increased by 26 

weeks, reaching 41 weeks, and the grip strength and rotarod performance was comparable to 

that of WT littermates during 1 year of monitoring. For these reasons, I could not use the 

SBMA knock in mice to test the effect of CDK2 deletion. 

CDK2 has previously been implicated in neurodegenerative diseases. It was shown that tau, 

a protein implicated in Alzheimer’s disease and other neurodegenerative diseases called 

tauopathies (Kovacs 2015), is phosphorylated by CDK2 (Baumann et al. 1993). Another 

pathway regulated by CDK2 is the accumulation of RNA regulatory element (TAR) DNA 

binding protein 43 (TDP-43) into stress granules (Moujalled et al. 2015). CDK2 

phosphorylates a heterogenous nuclear ribonucleoprotein, hnRNP K, that is involved in TDP-

43 subcellular localization. CDK2 inhibition decreases TDP-43 localization into stress 

granules, acting on hnRNP K (Moujalled et al. 2015). These observations suggest that CDK2 

has important roles in neurons. CDK2 function in cell cycle progression is well-established, 

but its role in post-mitotic neuronal cells remains to be investigated. The evidence described 

above suggests a role for CDK2 not only in physiological processes, but also in pathological 

conditions, such as neurodegenerative diseases. 

5.3. Cdc25 is a potential target for SBMA therapy development  

Cell division cycle 25 (Cdc25) is another well-established player in cell cycle regulation. 

CDK2 and other CDKs have two conserved regulatory phosphorylation sites, tyrosine 15 

(Tyr15) and threonine 14 (Thr14) (Pines 1999). Wee1/Mik1/Myt1 complex phosphorylates 

these residues, keeping the CDKs in an inactive state. To permit cell cycle progression, 

Cdc25 phosphatase dephosphorylates Tyr15 and Thr14, releasing CDKs inhibition (Pines 

1999). Considering that CDK2 phosphorylation is toxic in SBMA, the inhibition of a CDK2 

activator, such as Cdc25, should have protective effect. 
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Mammalian cells express three Cdc25 genes, namely Cdc25A, B, and C (Galaktionov and 

Beach 1991). Although all the three isoforms are able to dephosphorylate Tyr15 and Thr14, 

they have specific roles in the cell cycle progression. Cdc25A regulates early and late cell 

cycle transitions. Indeed, microinjection with antibodies against Cdc25A arrests cells in G1 

phase, blocking their entry in S-phase (Hoffmann et al. 1994). The overexpression of Cdc25A 

induces mitosis, suggesting a role for this protein in S phase progression (Molinari et al. 

2000). Its basal protein level increases from G1 to S phase and from S to G2/M phase, 

suggesting a broad role throughout the cell cycle (Hayes and Harper 2010). Cdc25B and C 

have limited roles in cell cycle progression. The microinjection with antibodies against 

Cdc25B and C causes G2 phase arrest, indicating that these proteins are essential for the 

transition from G2 to M phase (Lammer et al. 1998). AR has been the subject of thousands 

of studies because of its important role in the pathogenesis of prostate cancer (Heinlein and 

Chang 2004). Recently, it was shown that AR activity, phosphorylation and localization are 

regulated in a cell cycle-dependent manner (Koryakina et al. 2015). Indeed, it was already 

shown that AR transactivation is regulated by Cdc25, suggesting a mechanism of cell cycle-

dependent regulation (Chiu et al. 2009; Ngan et al. 2003). It was demonstrated that Cdc25B 

acts as a coactivator of AR in prostate cancer cell line LNCaP (Ngan et al. 2003). Conversely, 

Cdc25A was shown to be a corepressor of AR in prostate cancer cells (Chiu et al. 2009). In 

both cases, the regulation of AR function by Cdc25 isoforms was independent from their 

phosphatase activity. Moreover, they proved the direct interaction between AR and Cdc25A 

and B. Only Cdc25A possesses the AR-interaction consensus site FXXLF, where F is 

phenylalanine, L is leucine, and X any amino acid (He et al. 2002). In this study, I employed 

Cdc25C genetic manipulations. Cdc25C has not been implicated in AR biology before and 

its amino acidic sequence comprises one LXXLL site, a motif that may mediate the direct 

interaction between AR and Cdc25C. The reported evidences support a more intriguing 

scenario in which Cdc25C-mediated inhibition of CDK2 prevent serine 96 phosphorylation, 

decreasing DHT-mediated toxicity in polyQ-AR cells. 

NSC-663284 is a non-selective inhibitor of Cdc25 phosphatase activity. It inhibits all the 

three Cdc25 proteins with different half maximal inhibitory concentration values (IC50) 

(Brisson et al. 2005). According to biochemical studies, NSC-663284 inhibits Cdc25A and 

C with a similar IC50, slightly more specific for Cdc25C. The observations that NSC-663284 

treatment led to the opposite effects exerted by Cdc25C overexpression suggest that the 

phosphatase activity of this protein is required. NSC-663284 was proposed as anticancer 
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drug, even if its rapid metabolism has limited its application (Guo et al. 2007). More 

experiments need to be performed, but in the light of our discoveries, I will propose in the 

future to repurpose anticancer drugs, such as NSC-663284 analogs, for the treatment of 

SBMA. 
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6. CONCLUSION AND FUTURE 

PERSPECTIVES 
 

In this thesis, I explored the role of serine 96 phosphorylation of AR in non-pathological and 

disease conditions.  

Neuronal activity is a process involved in long-lasting experience-dependent plasticity of the 

brain, which permits adaptation of an individual according to the incoming environmental 

cues. I identified AR as a neuronal activity-regulated transcription factor, which acts through 

the dephosphorylation of serine 96. Using genome-wide analysis of neuronal transcriptome, 

I highlighted neuronal-stimulated gene targets that are regulated specifically upon AR 

activation. These genes are putative effectors of AR-mediated response in stimulated AR-

expressing neurons. These results open up the scenario in which AR influences the functional 

outcome in neurons in response to sexual and behavioral stimuli.  

Serine 96 is phosphorylated by CDK2, a kinase classically involved in the regulation of the 

cell cycle, with emerging roles also in post-mitotic cells, such as neurons, as shown here. I 

showed that the genetic manipulation of CDK2 is protective for SBMA mice. The delay of 

the motor phenotype correlated with a decrease in the phosphorylation at serine 96. Although 

these encouraging results, the tissue-specific contributions to the phenotype amelioration is 

precluded in such model. The generation of conditional CDK2 null mice for tissue-specific 

knock down of CDK2 will help to unravel the cell-autonomous effects on the physio-

pathological role of AR phosphorylation at serine 96 in neurons. 

Through an unbiased high-throughput screening of phosphatase and kinase inhibitors on 

polyQ-AR-expressing cells, I identified a compound, NSC-663284, with protective 

properties and targeting serine 96. NSC-663284 is a selective inhibitor of Cdc25, a 

phosphatase responsible for the activation of CDK2. In mammalian cells, there are three 

different Cdc25 genes, and NSC-663284 is a non-specific inhibitor of all the three isoforms. 

In my study, I reported for the first time that the isoform C is implicated in AR biology, with 

an impact on polyQ-AR toxic effect. In the near future, the aim is to identify analogues of 

NSC-663284 with higher selectivity for Cdc25C.  



118 
 

 

  



119 
 

7. APPENDIX 

6.1. Table 2. Gene ontology of the DEGs derived from the indicated comparisons of 

conditions. 

KCl 1h vs Vehicle 

Processes 

GO term Description Corrected p-value 

none none none 
 

Functions 

GO term Description Corrected p-value 

GO:0043565 sequence-specific DNA binding 3.23E-1 
 

Components 

GO term Description Corrected p-value 

none none none 
 

KCl 6h vs Vehicle 

Processes 

GO term Description Corrected p-value 

GO:0006357 
regulation of transcription from RNA polymerase II 

promoter 
2.31E-6 

GO:0045944 
positive regulation of transcription from RNA 

polymerase II promoter 
1.27E-4 

GO:1902680 positive regulation of RNA biosynthetic process 1.28E-4 

GO:0045893 positive regulation of transcription, DNA-templated 9.62E-5 

GO:1903508 
positive regulation of nucleic acid-templated 

transcription 
7.69E-5 

GO:0010628 positive regulation of gene expression 1.49E-4 

GO:0010557 
positive regulation of macromolecule biosynthetic 

process 
1.61E-4 

GO:0009891 positive regulation of biosynthetic process 1.41E-4 

GO:0031328 positive regulation of cellular biosynthetic process 1.25E-4 

GO:0051254 positive regulation of RNA metabolic process 1.4E-4 

GO:0010604 
positive regulation of macromolecule metabolic 

process 
1.38E-4 

GO:0009893 positive regulation of metabolic process 2.75E-4 

GO:0051173 
positive regulation of nitrogen compound metabolic 

process 
4.49E-4 

GO:0031325 positive regulation of cellular metabolic process 5.92E-4 
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GO term Description Corrected p-value 

GO:0051172 
negative regulation of nitrogen compound metabolic 

process 
1.96E-3 

GO:0000122 
negative regulation of transcription from RNA 

polymerase II promoter 
2.78E-3 

GO:0045935 
positive regulation of nucleobase-containing 

compound metabolic process 
2.92E-3 

GO:0051253 negative regulation of RNA metabolic process 4.04E-3 

GO:0030154 cell differentiation 6.43E-3 

GO:0045934 
negative regulation of nucleobase-containing 

compound metabolic process 
6.24E-3 

GO:1902679 negative regulation of RNA biosynthetic process 6.84E-3 

GO:0045892 negative regulation of transcription, DNA-templated 6.53E-3 

GO:1903507 
negative regulation of nucleic acid-templated 

transcription 
6.24E-3 

GO:0048522 positive regulation of cellular process 6.69E-3 

GO:0010558 
negative regulation of macromolecule biosynthetic 

process 
7.58E-3 

GO:0009966 regulation of signal transduction 7.37E-3 

GO:0060255 regulation of macromolecule metabolic process 7.71E-3 

GO:0070887 cellular response to chemical stimulus 8.32E-3 

GO:0048518 positive regulation of biological process 8.35E-3 

GO:0031324 negative regulation of cellular metabolic process 8.09E-3 

GO:0045595 regulation of cell differentiation 8.12E-3 

GO:0032502 developmental process 8.96E-3 

GO:0010646 regulation of cell communication 9.95E-3 

GO:0023051 regulation of signaling 9.65E-3 

GO:0048519 negative regulation of biological process 9.67E-3 

GO:0031401 positive regulation of protein modification process 9.91E-3 

GO:0009890 negative regulation of biosynthetic process 1.11E-2 

GO:0031327 negative regulation of cellular biosynthetic process 1.08E-2 

GO:0043408 regulation of MAPK cascade 1.17E-2 

GO:0051247 positive regulation of protein metabolic process 1.17E-2 

GO:0080090 regulation of primary metabolic process 1.15E-2 

GO:0051171 regulation of nitrogen compound metabolic process 1.12E-2 

GO:0048523 negative regulation of cellular process 1.41E-2 

GO:0051241 negative regulation of multicellular organismal process 1.4E-2 

GO:0010605 

negative regulation of macromolecule metabolic 

process 
1.51E-2 

GO:0051246 regulation of protein metabolic process 1.48E-2 

GO:2000113 

negative regulation of cellular macromolecule 

biosynthetic process 
1.5E-2 

GO:0070372 regulation of ERK1 and ERK2 cascade 1.55E-2 

GO:0019220 regulation of phosphate metabolic process 1.88E-2 

GO:0051174 regulation of phosphorus metabolic process 1.85E-2 

GO:0031323 regulation of cellular metabolic process 2,00E-02 
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GO term Description Corrected p-value 

GO:0019222 regulation of metabolic process 2,00E-02 

GO:0032270 

positive regulation of cellular protein metabolic 

process 
2.05E-2 

GO:1902531 regulation of intracellular signal transduction 2.22E-2 

GO:0048856 anatomical structure development 2.21E-2 

GO:0001932 regulation of protein phosphorylation 2.22E-2 

GO:0042325 regulation of phosphorylation 2.18E-2 

GO:0031399 regulation of protein modification process 2.16E-2 

GO:0007165 signal transduction 2.25E-2 

GO:0010468 regulation of gene expression 2.87E-2 

GO:0032268 regulation of cellular protein metabolic process 3.55E-2 

GO:0043207 response to external biotic stimulus 3.55E-2 

GO:1901362 organic cyclic compound biosynthetic process 3.68E-2 

GO:0006351 transcription, DNA-templated 3.75E-2 

GO:0097659 nucleic acid-templated transcription 3.69E-2 

GO:0035914 skeletal muscle cell differentiation 3.64E-2 

GO:0048869 cellular developmental process 3.8E-2 

GO:0032496 response to lipopolysaccharide 3.93E-2 

GO:0002237 response to molecule of bacterial origin 3.87E-2 

GO:0048511 rhythmic process 3.92E-2 

GO:0071310 cellular response to organic substance 4.07E-2 

GO:0002682 regulation of immune system process 4.04E-2 

GO:0032501 multicellular organismal process 4.11E-2 

GO:0051252 regulation of RNA metabolic process 4.07E-2 

GO:2000177 regulation of neural precursor cell proliferation 4.29E-2 

GO:1901700 response to oxygen-containing compound 4.5E-2 

GO:0034654 nucleobase-containing compound biosynthetic process 4.83E-2 

GO:0018130 heterocycle biosynthetic process 4.77E-2 

GO:0019438 aromatic compound biosynthetic process 4.71E-2 

GO:0048583 regulation of response to stimulus 4.71E-2 

 

Functions 

GO term Description Corrected p-value 

GO:0043565 sequence-specific DNA binding 1.41E-4 

GO:0000982 
transcription factor activity, RNA polymerase II 

proximal promoter sequence-specific DNA binding 
1.69E-4 

GO:0005515 protein binding 1.96E-4 

GO:1990837 sequence-specific double-stranded DNA binding 1.76E-4 

GO:0000976 
transcription regulatory region sequence-specific 

DNA binding 
1.41E-4 

GO:0001067 regulatory region nucleic acid binding 3.08E-4 

GO:0044212 transcription regulatory region DNA binding 2.64E-4 
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GO term Description Corrected p-value 

GO:0001228 

transcriptional activator activity, RNA polymerase 

II transcription regulatory region sequence-specific 

DNA binding 

4.93E-4 

GO:0001077 

transcriptional activator activity, RNA polymerase 

II proximal promoter sequence-specific DNA 

binding 

4.88E-4 

GO:0000977 
RNA polymerase II regulatory region sequence-

specific DNA binding 
4.51E-4 

GO:0001012 
RNA polymerase II regulatory region DNA 

binding 
4.1E-4 

GO:0000987 proximal promoter sequence-specific DNA binding 5.27E-4 

GO:0003690 double-stranded DNA binding 8.07E-4 

GO:0019904 protein domain specific binding 1.15E-3 

GO:0000981 
RNA polymerase II transcription factor activity, 

sequence-specific DNA binding 
2.27E-3 

GO:0000978 
RNA polymerase II proximal promoter sequence-

specific DNA binding 
2.63E-3 

GO:0008134 transcription factor binding 1.07E-2 

GO:0005488 binding 1.59E-2 

GO:0046982 protein heterodimerization activity 2.93E-2 

 

Components 

GO term Description Corrected p-value 

GO:0005634 nucleus 3.38E-3 

GO:0044422 organelle part 3.57E-3 

GO:0044446 intracellular organelle part 4.19E-3 
 

 

DHT-KCl 6h vs Vehicle-KCl 6h 

Processes 

GO term Description Corrected p-value 

GO:0042221 response to chemical 1.68E-3 

GO:0031323 regulation of cellular metabolic process 2.02E-3 

GO:0060255 regulation of macromolecule metabolic process 1.38E-3 

GO:0048519 negative regulation of biological process 2.05E-3 

GO:0048523 negative regulation of cellular process 1.65E-3 

GO:0051128 regulation of cellular component organization 2.05E-3 

GO:0006357 

regulation of transcription from RNA polymerase II 

promoter 
1.93E-3 

GO:0051171 regulation of nitrogen compound metabolic process 1.77E-3 
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GO term Description Corrected p-value 

GO:0032501 multicellular organismal process 1.87E-3 

GO:0031326 regulation of cellular biosynthetic process 2.52E-3 

GO:0080090 regulation of primary metabolic process 2.37E-3 

GO:0044093 positive regulation of molecular function 3.1E-3 

GO:0007610 behavior 2.89E-3 

GO:0010468 regulation of gene expression 2.94E-3 

GO:0019222 regulation of metabolic process 2.92E-3 

GO:0043085 positive regulation of catalytic activity 2.94E-3 

GO:0032268 regulation of cellular protein metabolic process 2.79E-3 

GO:0009893 positive regulation of metabolic process 2.63E-3 

GO:0009889 regulation of biosynthetic process 2.72E-3 

GO:0019219 

regulation of nucleobase-containing compound 

metabolic process 
3.06E-3 

GO:0070887 cellular response to chemical stimulus 3.31E-3 

GO:0010556 regulation of macromolecule biosynthetic process 3.36E-3 

GO:0008284 positive regulation of cell proliferation 3.52E-3 

GO:0010604 

positive regulation of macromolecule metabolic 

process 
3.95E-3 

GO:0051254 positive regulation of RNA metabolic process 4.53E-3 

GO:0006355 regulation of transcription, DNA-templated 4.88E-3 

GO:2001141 regulation of RNA biosynthetic process 4.7E-3 

GO:1903506 regulation of nucleic acid-templated transcription 4.54E-3 

GO:2000112 

regulation of cellular macromolecule biosynthetic 

process 
4.42E-3 

GO:0031325 positive regulation of cellular metabolic process 4.31E-3 

GO:1901362 organic cyclic compound biosynthetic process 7.38E-3 

GO:0031399 regulation of protein modification process 7.15E-3 

GO:0051246 regulation of protein metabolic process 7.15E-3 

GO:0051173 

positive regulation of nitrogen compound metabolic 

process 
7.16E-3 

GO:0048518 positive regulation of biological process 7.48E-3 

GO:0001932 regulation of protein phosphorylation 8.51E-3 

GO:0009991 response to extracellular stimulus 8.38E-3 

GO:0031667 response to nutrient levels 8.16E-3 

GO:1902680 positive regulation of RNA biosynthetic process 8.14E-3 

GO:0045893 positive regulation of transcription, DNA-templated 7.93E-3 

GO:1903508 

positive regulation of nucleic acid-templated 

transcription 
7.74E-3 

GO:0034645 cellular macromolecule biosynthetic process 7.76E-3 

GO:0032502 developmental process 7.59E-3 

GO:0051960 regulation of nervous system development 7.58E-3 

GO:0051252 regulation of RNA metabolic process 7.91E-3 

GO:0009059 macromolecule biosynthetic process 7.91E-3 

GO:0045944 

positive regulation of transcription from RNA 

polymerase II promoter 
7.82E-3 
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GO term Description Corrected p-value 

GO:0050794 regulation of cellular process 8.39E-3 

GO:0048856 anatomical structure development 8.42E-3 

GO:0000079 

regulation of cyclin-dependent protein 

serine/threonine kinase activity 
8.65E-3 

GO:0031324 negative regulation of cellular metabolic process 9,00E-03 

GO:0007626 locomotory behavior 9.39E-3 

GO:1902679 negative regulation of RNA biosynthetic process 9.3E-3 

GO:0045892 negative regulation of transcription, DNA-templated 9.13E-3 

GO:1903507 

negative regulation of nucleic acid-templated 

transcription 
8.96E-3 

GO:0065009 regulation of molecular function 8.86E-3 

GO:0050767 regulation of neurogenesis 9.21E-3 

GO:0060284 regulation of cell development 9.05E-3 

GO:0009892 negative regulation of metabolic process 9.54E-3 

GO:0019220 regulation of phosphate metabolic process 9.7E-3 

GO:0051174 regulation of phosphorus metabolic process 9.54E-3 

GO:0042325 regulation of phosphorylation 1,00E-02 

GO:0050789 regulation of biological process 1.08E-2 

GO:0042127 regulation of cell proliferation 1.07E-2 

GO:0045935 
positive regulation of nucleobase-containing 

compound metabolic process 
1.09E-2 

GO:0071900 regulation of protein serine/threonine kinase activity 1.09E-2 

GO:0045859 regulation of protein kinase activity 1.1E-2 

GO:0045595 regulation of cell differentiation 1.09E-2 

GO:0006928 movement of cell or subcellular component 1.15E-2 

GO:0010562 positive regulation of phosphorus metabolic process 1.15E-2 

GO:0045937 positive regulation of phosphate metabolic process 1.13E-2 

GO:0010033 response to organic substance 1.19E-2 

GO:0010629 negative regulation of gene expression 1.27E-2 

GO:0010038 response to metal ion 1.26E-2 

GO:0071310 cellular response to organic substance 1.28E-2 

GO:0043069 negative regulation of programmed cell death 1.3E-2 

GO:0043066 negative regulation of apoptotic process 1.29E-2 

GO:0001934 positive regulation of protein phosphorylation 1.27E-2 

GO:0042327 positive regulation of phosphorylation 1.25E-2 

GO:0009653 anatomical structure morphogenesis 1.36E-2 

GO:0051172 

negative regulation of nitrogen compound metabolic 

process 
1.37E-2 

GO:0051253 negative regulation of RNA metabolic process 1.38E-2 

GO:0007154 cell communication 1.49E-2 

GO:0048511 rhythmic process 1.49E-2 

GO:0071496 cellular response to external stimulus 1.47E-2 

GO:0042594 response to starvation 1.45E-2 

GO:0009267 cellular response to starvation 1.44E-2 
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GO term Description Corrected p-value 

GO:0031668 cellular response to extracellular stimulus 1.42E-2 

GO:0031669 cellular response to nutrient levels 1.4E-2 

GO:0071850 mitotic cell cycle arrest 1.53E-2 

GO:0060548 negative regulation of cell death 1.53E-2 

GO:0010605 

negative regulation of macromolecule metabolic 

process 
1.52E-2 

GO:0045664 regulation of neuron differentiation 1.57E-2 

GO:0050793 regulation of developmental process 1.6E-2 

GO:0019438 aromatic compound biosynthetic process 1.66E-2 

GO:0050790 regulation of catalytic activity 1.69E-2 

GO:0043408 regulation of MAPK cascade 1.69E-2 

GO:0071248 cellular response to metal ion 1.68E-2 

GO:0065007 biological regulation 1.69E-2 

GO:1904029 regulation of cyclin-dependent protein kinase activity 1.69E-2 

GO:1901215 negative regulation of neuron death 1.87E-2 

GO:0009890 negative regulation of biosynthetic process 2.01E-2 

GO:0051239 regulation of multicellular organismal process 1.99E-2 

GO:0043549 regulation of kinase activity 2.07E-2 

GO:0051347 positive regulation of transferase activity 2.06E-2 

GO:0051271 negative regulation of cellular component movement 2.22E-2 

GO:0044249 cellular biosynthetic process 2.23E-2 

GO:0051338 regulation of transferase activity 2.22E-2 

GO:0009891 positive regulation of biosynthetic process 2.3E-2 

GO:0031328 positive regulation of cellular biosynthetic process 2.28E-2 

GO:0010628 positive regulation of gene expression 2.43E-2 

GO:1901576 organic substance biosynthetic process 2.43E-2 

GO:0009058 biosynthetic process 2.64E-2 

GO:0010224 response to UV-B 2.82E-2 

GO:0048522 positive regulation of cellular process 2.81E-2 

GO:0051353 positive regulation of oxidoreductase activity 2.79E-2 

GO:0051341 regulation of oxidoreductase activity 2.77E-2 

GO:0043523 regulation of neuron apoptotic process 2.81E-2 

GO:0031401 positive regulation of protein modification process 2.83E-2 

GO:0043271 negative regulation of ion transport 2.89E-2 

GO:0032270 

positive regulation of cellular protein metabolic 

process 
3,00E-02 

GO:0051247 positive regulation of protein metabolic process 2.97E-2 

GO:0010035 response to inorganic substance 3.03E-2 
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Functions 

GO term Description Corrected p-value 

GO:0005515 protein binding 1.72E-3 

GO:0043565 sequence-specific DNA binding 1.56E-2 

GO:1990837 sequence-specific double-stranded DNA binding 3.49E-2 

GO:0001067 regulatory region nucleic acid binding 3.79E-2 

GO:0044212 transcription regulatory region DNA binding 3.03E-2 

GO:0000976 

transcription regulatory region sequence-specific DNA 

binding 
4.51E-2 

GO:0003690 double-stranded DNA binding 5.54E-2 

GO:0000977 

RNA polymerase II regulatory region sequence-specific 

DNA binding 
5.08E-2 

GO:0001012 RNA polymerase II regulatory region DNA binding 4.51E-2 

GO:0008134 transcription factor binding 4.55E-2 

GO:0030332 cyclin binding 5.53E-2 

GO:0000982 
transcription factor activity, RNA polymerase II 

proximal promoter sequence-specific DNA binding 
5.49E-2 

 

Components 

GO term Description Corrected p-value 

GO:0044459 plasma membrane part 2.03E-1 

GO:0005886 plasma membrane 1.27E-1 

GO:0005667 transcription factor complex 1.33E-1 

GO:0120025 plasma membrane bounded cell projection 1.18E-1 
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6.2. Table 3. List of the phosphatase and kinase inhibitors used in the high-throughput 

screening. 

PHOSPHATASE 

INHIBITORS KINASE INHIBITORS 

Cantharidic acid Linifanib (ABT-869) 

Cantharidin Axitinib 

Endothall Saracatinib (AZD0530) 

Benzylphosphonic acid AZD6244 (Selumetinib) 

L-p-Bromotetramisole oxalate BEZ235 (NVP-BEZ235) 

RK-682 BIBF1120 (Vargatef) 

RWJ-60475 Afatinib (BIBW2992) 

RWJ-60475 (AM)3 Bosutinib (SKI-606) 

Levamisole HCl Cediranib (AZD2171) 

Tetramisole HCl Dovitinib (TKI-258) 

Cypermethrin CI-1033 (Canertinib) 

Deltamethrin CI-1040 (PD184352) 

Fenvalerate Dasatinib (BMS-354825) 

Tyrphostin 8 Deforolimus (Ridaforolimus) 

CinnGel Erlotinib HCl 

NSC-95397 Gefitinib (Iressa) 

BN-82002 Imatinib Mesylate 

Shikonin Lapatinib Ditosylate (Tykerb) 

NSC-663284 Motesanib Diphosphate 

Cyclosporin A Nilotinib (AMN-107) 

Pentamidine Pazopanib HCl 

BVT-948 PD0325901 

B4-Rhodanine PI-103 

Alexidine·2HCl Rapamycin (Sirolimus) 

9,10-Phenanthrenequinone Sorafenib (Nexavar) 

BML-260 Sunitinib Malate (Sutent) 

Sanguinarine chloride Tandutinib (MLN518) 

BML-267 Temsirolimus (Torisel) 

BML-267 Ester Vandetanib (Zactima) 

OBA VX-680 (MK-0457, Tozasertib) 

OBA Ester Y-27632 2HCl 

Gossypol Enzastaurin (LY317615) 

Alendronate BMS-599626 (AC480) 

  Masitinib (AB1010) 

  GDC-0941 

  SB 431542 

  Crizotinib (PF-02341066) 

  PHA-665752 

  ZSTK474 

  SB 216763 
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  SB 203580 

  SB 202190 

  MK-2206 dihydrochloride 

  PD153035 HCl 

  SU11274 

  Brivanib (BMS-540215) 

  NVP-ADW742 

  Linsitinib (OSI-906) 

  KU-55933 

  GSK1904529A 

  PF-04217903 

  MLN8054 

  Vatalanib dihydrochloride (PTK787) 

  U0126-EtOH 

  ZM-447439 

  GDC-0879 

  LY294002 

  OSU-03012 

  Danusertib (PHA-739358) 

  TAE684 (NVP-TAE684) 

  BI 2536 

  Foretinib (GSK1363089, XL880) 

  SGX-523 

  GSK690693 

  JNJ-38877605 

  PD 0332991 (Palbociclib) HCl 

  Triciribine (Triciribine phosphate) 

  XL147 

  XL-184 free base (Cabozantinib) 

  Everolimus (RAD001) 

  MLN8237 (Alisertib) 

  AT9283 

  Brivanib alaninate (BMS-582664) 

  AG-490 

  SNS-032 (BMS-387032) 

  Barasertib (AZD1152-HQPA) 

  PLX-4720 

  Roscovitine (Seliciclib, CYC202) 

  SNS-314 

  E7080 (Lenvatinib) 

  CP-724714 

  TGX-221 

  WZ3146 

  CYC116 

  WZ4002 
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  PD98059 

  Regorafenib (BAY 73-4506) 

  WZ8040 

  ENMD-2076 

  PIK-90 

  PIK-75 

  Tivozanib (AV-951) 

  YM201636 

  OSI-930 

  Ku-0063794 

  AG-1024  

  Amuvatinib (MP-470) 

  JNJ-7706621 

  PD173074 

  WYE-354 

  Vemurafenib (PLX4032) 

  IC-87114 

  BX-795 

  BX-912 

  AMG-208 

  TG100-115 

  GSK1059615 

  MGCD-265 

  ON-01910 

  Ki8751 

  Ruxolitinib (INCB018424) 

  Pelitinib (EKB-569) 

  AS-605240 

  Staurosporine 

  Aurora A Inhibitor I 

  PHA-680632 

  Thiazovivin 

  SP600125 

  TSU-68 

  AS703026 

  SB 525334 

  HMN-214 

  AEE788 (NVP-AEE788) 

  PHA-793887 

  PIK-93 

  Ponatinib (AP24534) 

  LY2228820 

  CCT129202 

  XL765 

  AT7519 
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  Quizartinib (AC220) 

  Hesperadin 

  BIX 02188 

  BIX 02189 

  AZD7762 

  R406(free base) 

  CP 673451 

  AZD8055 

  PHT-427 

  KRN 633 

  AT7867 

  BMS 777607 

  PD318088 

  KU-60019 

  BS-181 HCl 

  BIRB 796 (Doramapimod) 

  Tie2 kinase inhibitor 

  TWS119 

  BMS-265246 

  AZD8330 

  Neratinib (HKI-272) 

  KW 2449 

  LY2784544 

  BGJ398 (NVP-BGJ398) 

  AST-1306 

  AZD8931 

  GSK461364 

  R406 

  Raf265 derivative 

  BMS 794833 

  NVP-BHG712 

  OSI-420 (Desmethyl Erlotinib) 

  R935788 (Fostamatinib disodium, R788 disodium) 

  PIK-293 

  AZ 960 

  Mubritinib (TAK 165) 

  PP242 

  Cyt387 

  SB590885 

  Apatinib (YN968D1) 

  CAL-101 (GS-1101) 

  PIK-294 

  Telatinib (BAY 57-9352) 

  BI6727 (Volasertib) 

  Palomid 529 
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  WP1130 

  BKM120 (NVP-BKM120) 

  cx-4945 (Silmitasertib) 

  Indirubin 

  Quercetin (Sophoretin) 

  Imatinib (Gleevec) 

  Phenformin hydrochloride 

  TAK-733 

  LDN193189 

  AZD5438 

  PP-121 

  OSI-027 

  R788 (Fostamatinib) 

  LY2603618 (IC-83) 

  PF-05212384 (PKI-587) 

  DCC-2036 (Rebastinib) 

  CCT128930 

  A66 

  NU7441(KU-57788) 

  GSK2126458 

  WYE-125132 

  WYE-687 

  A-674563 

  AS-252424 

  PF-00562271 

  GSK1120212 (Trametinib) 

  Flavopiridol hydrochloride 

  PCI-32765 (Ibrutinib) 

  AS-604850 

  CAY10505 

  CHIR-124 

  NVP-BSK805 

  WAY-600 

  TG101209 

  GDC-0980 (RG7422) 

  A-769662 

  KX2-391 

  GSK1838705A 

  TAK-901 

  AMG 900 

  ZM 336372 

  PF-03814735 

  PH-797804 

  Dacomitinib (PF299804,PF-00299804) 

  AG-1478 (Tyrphostin AG-1478) 
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  SB 415286 

  Crenolanib (CP-868596) 

  TG101348 (SAR302503) 

  PKI-402 

  GSK1070916 

  PHA-767491 

  PF-04691502 

  CCT137690 

  CHIR-98014 

  AZ628 

  AMG458 

  NVP-BGT226 

  PHA-848125 

  Arry-380 

  ARQ 197 (Tivantinib) 

  ARRY334543 

  Wortmannin 

  NVP-BVU972 

  CH5424802 

  3-Methyladenine 

  Dinaciclib (SCH727965) 

  Dovitinib Dilactic acid (TKI258 Dilactic acid)  

  MK-5108 (VX-689) 

  MK-2461 

  AZD2014 

  TAK-285 

  INCB28060 

  Tofacitinib (CP-690550, Tasocitinib) 

  Sotrastaurin (AEB071) 

  WP1066 

  AZD4547 

  CEP33779 

  Dabrafenib (GSK2118436) 

  GDC-0068 

  INK 128 

  BYL719 

  Tyrphostin AG 879 (AG 879) 

  Torin 2 

  NVP-TAE226 

  Tideglusib 

  TPCA-1 

  Desmethyl Erlotinib (CP-473420) 

  Torin 1 

  SAR131675 

  Semaxanib (SU5416) 
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  Baricitinib (LY3009104) 

  Golvatinib (E7050) 

  IMD 0354 

  WHI-P154 

   TG 100713 

  Piceatannol 

  Tofacitinib citrate (CP-690550 citrate) 

  VX-702 
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