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Abstract
Recent advances in medical science regarding the interaction and functional role
of fluid compartments in the central nervous system have attracted the attention of
many researchers across various disciplines. Neurotoxins are constantly cleared
from the brain parenchyma through the intramural periarterial drainage system,
glymphatic system and meningeal lymphatic system. Impairment of these systems
can potentially contribute to the onset of neurological disorders.

The goal of this thesis is to contribute to the understanding of brain fluid
dynamics and to the role of vascular pathologies in the context of neurological
disorders. To achieve this goal, we designed the first multi-scale, closed-loop
mathematical model of the murine fluid system, incorporating: heart dynamics,
major arteries and veins, microcirculation, pulmonary circulation, venous valves,
cerebrospinal fluid (CSF), brain interstitial fluid (ISF), Starling resistors, Monro-
Kellie hypothesis, brain lymphatic drainage and the modern concept of CSF/ISF
drainage and absorption based on the Bulat-Klarica-Orešković hypothesis. The
mathematical model relies on one-dimensional Partial Differential Equations
(PDEs) for blood vessels and on Ordinary Differential Equations (ODEs) for
lumped parameter models. The systems of PDEs and ODEs are solved through
a high-order finite volume ADER method and through an implicit Euler method.
The computational results are validated against literature values and magnetic
resonance flow measurements. Furthermore, the model is validated against in-
vivo intracranial pressure waveforms acquired in healthy mice and in mice with
impairment of the intracranial venous outflow. Through a systematic use of our
computational model in healthy and pathological cases, we provide a complete
and holistic neurovascular view of the main murine fluid dynamics. We propose
a hypothesis on the working principles of the glymphatic system, opening a
new door towards a comprehensive understanding of the mechanisms which link
vascular and neurological disorders. In particular, we show how impairment of
the cerebral venous outflow might potentially lead to accumulation of solutes in
the parenchyma, by altering CSF and ISF dynamics.

This thesis also concerns the development of a high-order ADER-type nu-
merical method for systems of hyperbolic balance laws in networks, based on a
new implicit solver for the junction-generalized Riemann problem. The resulting
ADER scheme can deal with stiff source terms and can be applied to non-linear
systems of hyperbolic balance laws in domains consisting of networks of one-
dimensional sub-domains. Also, we design a novel one-dimensional mathemat-
ical model for collecting lymphatics coupled with a Electro-Fluid-Mechanical
Contraction (EFMC) model for dynamical contractions. The resulting mathemat-
ical model gives each lymphangion the autonomous capability to trigger action
potentials based on local fluid-dynamical factors.
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Chapter 1

Introduction

1.1 Motivation and goals

In recent years, there have been several fundamental discoveries that have brought a lot of excite-
ment in the field of neurological disorders. The meningeal lymphatic system is a complex network
of lymphatic vessels which mainly drains immune cells and cerebrospinal fluid and is a key compo-
nent of brain homeostasis [Louveau 2015, Louveau 2017, Absinta 2017]. Brain interstitial fluid and
amyloid β drain from the parenchyma along the basement membranes of capillaries and arteries
through intramural periarterial drainage pathways [Carare 2008]. Also, it has been shown that the
brain is constantly cleared from neurotoxins through the so-called glymphatic system [Iliff 2012].
The glymphatic system consists of a trans-parenchymal cerebrospinal fluid (CSF) movement through
glial cells from para-arterial CSF spaces to para-venous CSF spaces. Intracranial solutes and waste
products are transported through the trans-parenchymal water movement towards para-venous CSF
spaces and are drained into the venous system through arachnoid villi or meningeal lymphatics
[Louveau 2017]. Thanks to this pseudolymphatic function of waste removal and to the trans-glial
water movement, this system has been termed "glymphatic system". Impairment of the glymphatic
system seems to correlate with amyloid β accumulation, a characteristic hallmark of Alzheimer’s
disease [Iliff 2012, Iliff 2014], with migraine [Schain 2017], and idiopathic intracranial hypertension
[Bezerra 2018].

Despite the importance of the glymphatic system, it is not yet clear what are its driving forces.
Originally, it was proposed that the glymphatic system was driven by bulk flow [Iliff 2012] and
arterial pulsations [Iliff 2013]. In general, three possible mechanisms have been proposed: diffu-
sion, advection (or bulk flow), and convection defined as a combination of diffusion and advection
[Plog 2018]. In contrast with the original idea of Iliff et al. [Iliff 2013], Asgari et al. [Asgari 2016]
showed through computational simulations that arterial pulsation is probably not the driving force
of the glymphatic system. Also, Smith et al. [Smith 2017] showed that the glymphatic system is
unlikely driven by bulk flows. Their results suggest that water movement in the cranial subarach-
noid space is driven by convection, while that within the parenchyma is driven by diffusion. To date,
however, there is not yet a conclusive explanation of the mechanisms which drive the glymphatic
system.

Neurological disorders have been shown to correlate with vascular diseases. Zamboni et al.

1
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[Zamboni 2008] described the so-called Chronic Cerebro-Spinal Venous Insufficiency (CCSVI) and
suggested that it is associated with multiple sclerosis. The CCSVI is a condition characterized
by obstructed blood flow in the major veins that drain the central nervous system and by iron
accumulation [Singh 2009]. Although the relationship between CCSVI and multiple sclerosis is
still debated [Kotsikoris 2013, Zamboni 2017], from the pioneering work of Zamboni there are a
number of studies that have attempted to find possible connections between vascular pathologies
and neurological disorders, as idiopathic Parkinson’s disease [Liu 2014], idiopathic intracranial
hypertension [Bateman 2008, Farb 2003], Ménière’s disease [Toro 2018, Bruno 2014] and sudden
sensorineural hearing loss [Alpini 2013]. It remains an open question whether there is a relationship
between vascular pathologies and impairment of the glymphatic system, intramural periarterial
system or meningeal lymphatic system.

Our goal is to provide some insights into the brain fluid dynamics through a computational
model of the main murine extracellular fluid systems and attempt to answer the following question:
can impairment of the vascular system provoke significant changes in the glymphatic system and
potentially lead to accumulation of neurotoxins in the brain parenchyma?

1.2 State of the art

The human body has several interactive fluid systems [Levick 2009]. It includes the heart function,
a network of arteries and veins connected through the microcirculation, the pulmonary circulation,
the peripheral and brain interstitial fluid and the lymphatic system. In the following, we briefly
review the mathematical models employed for the vascular, lymphatic and brain fluid systems and
the numerical methodologies to solve the resulting set of differential equations.

1.2.1 The vascular system

Mathematical modelling has been widely used to understand the physiology and the pathophysi-
ology of the human body. Several three-dimensional, zero-dimensional, one-dimensional and even
multi-scale mathematical models have been proposed [Formaggia 1999, Olufsen 2000, Liang 2009a,
Matthys 2007a, Müller 2013b, Müller 2014, Mynard 2015, Levitt 2016]. For a comprehensive re-
view on the state of the art, refer to [Quarteroni 2017, Formaggia 2009, Shi 2011]. Liang et al.
[Liang 2009b] constructed a multi-scale mathematical model of the cardiovascular system to un-
derstand the effect of arterial stenoses in the arterial tree. Müller et al. [Müller 2013b] built the
first multi-scale, closed-loop mathematical model of the cardiovascular system which incorporated
major arteries, major veins, microcirculation, pulmonary circulation and heart dynamics. The model
was subsequently refined [Müller 2014] to include Starling resistors and a model of the intracranial
dynamics based on the work of Ursino et al. [Ursino 1988]. The authors studied the impact of neck
vein strictures on cerebral venous hemodynamics. Blanco et al. [Blanco 2015] built a mathematical
model of the arterial tree with over 2000 vessels. Strocchi et al. [Strocchi 2017] studied the haemo-
dynamical effect of stenoses and bypass placements. Regarding mathematical models of the murine
cardiovascular system, the literature is quite scarce. Cuomo et al. [Cuomo 2015] modelled the main
murine arterial tree using a validated fluid-solid interaction code. Aslanidou et al. [Aslanidou 2015]
proposed a mathematical model of the murine arterial tree based on a network of one-dimensional
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arterial vessels and validated it against in-vivo measurements performed on a cohort of mice.

1.2.2 The brain fluid systems

Brain fluid dynamics is a challenging issue for modellers. Brain fluids comprise arterial and venous
blood, cerebrospinal fluid, interstitial fluid. Brain parenchyma has been modelled through three-
dimensional poroelastic models [Chou 2016, Guo 2018, Chou 2014]. Brain fluid systems have been
modelled through lumped parameter models [Ursino 1988, Gadda 2015, Gehlen 2017] and through
multi-scale models [Müller 2014]. Ursino [Ursino 1988] proposed a mathematical model of the
human intracranial hydrodynamics. The group of Linninger proposed a mathematical model of
blood, cerebrospinal fluid and brain dynamics, including the Monro-Kellie doctrine [Linninger 2009].
The same group proposed a mathematical model of the intracranial fluid dynamics based on the
Bulat-Klarica-Orešković hypothesis [Orešković 2017, Linninger 2017]. Gehlen et al. [Gehlen 2017]
studied the effect of postural changes in the CSF dynamics through a lumped-parameter model of
the CSF system and major compartments of the cardiovascular system.

1.2.3 The lymphatic system

The lymphatic system consists of a complex network of initial lymphatics, collecting lymphatics,
trunks, lymph nodes, junctions and lymphatic valves. The lymphatic system functions in conjunction
with other body fluid systems and with the immune system and carries excess interstitial fluid (ISF),
excess proteins, metabolic waste and immune cells, facilitating immune responses. There is a sub-
stantial gap between mathematical models of the lymphatic system [Margaris 2012, Moore 2018]
compared to those of the arterial system [Quarteroni 2017]. This gap relies on the range of scales
of the lymphatic system and on the paucity of experimental data caused by the poor resolution and
sensitivity of non-invasive imaging techniques of lymphatics [Munn 2014]. From the initial work
of Reddy et al. [Reddy 1974], several mathematical models of the dynamics of collecting lymphat-
ics [Venugopal 2007, Bertram 2011, Gajani 2015, Jamalian 2016, Caulk 2016, Kunert 2015], initial
lymphatics [Roose 2012a, Roose 2012b] and lymph nodes [Cooper 2016, Jafarnejad 2015] have been
proposed. MacDonald et al. [Macdonald 2008] performed experimental and in-silico computations
of a single lymphangion in bovine collecting lymphatics. Bertram et al. [Bertram 2011] posed the
basis for several other works and included at each step particular dynamics of lymphatics through
experimental measurements [Bertram 2014b]. Jamalian et al. [Jamalian 2016] constructed a lumped-
parameter model to simulate lymph transport in a network of rat lymphangions. Then, Jamalian and
collaborators [Jamalian 2017] proved the existence of suction pressures in collecting lymphatics
through computational modelling and experimental measurements. Caulk et al. [Caulk 2016] com-
bined the lumped-parameter model described by Bertram et al. [Bertram 2014b] with their four-fibre
family constitutive law proposed in [Caulk 2015] and studied the variation of muscle contractility in
response to a sustained elevation in afterload [Caulk 2016]. To the best of our knowledge, to date
there is yet no mathematical model of intracranial lymphatics. Also, a mathematical model of the
interaction between arterial, venous interstitial fluid and lymphatic dynamics is still missing.
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1.2.4 High-order numerical methods for partial differential equations
Many multi-scale mathematical models of the animal fluid system consist of sets of Partial Differen-
tial Equations (PDEs) and Ordinary Differential Equations (ODEs). Proper numerical schemes need
to be employed for solving these equations. From the pioneering work of Toro et al. [Toro 2001],
there have been several works on high-order ADER methods for both linear and non-linear systems
of PDEs in one, two and three space dimensions using either Cartesian or unstructured meshes
[Toro 2001, Schwartzkopff 2004, Titarev 2002, Dumbser 2007a, Dumbser 2014]. The ADER method
is based on the solution of the generalized Riemann problem, for which several solvers have been
proposed in the literature [Toro 2002, Castro 2008, Dumbser 2008, Montecinos 2014b, Toro 2015a].
The extension of the generalized Riemann problem for junctions has been proposed and used in the
context of high-order numerical schemes [Borsche 2014a, Borsche 2016, Müller 2015a]. In a recent
work, we extended the MT-TT and MT-HEOC solvers for junctions [Contarino 2016].

1.3 Contributions of this thesis
The main contributions of this thesis regard: 1) the development of a new high-order numerical
method for junctions, 2) the design of a new mathematical model of one-dimensional collecting
lymphatics and 3) the development of a holistic, multi-scale, closed-loop mathematical model of
cerebral and peripheral murine extracellular fluid systems. In the present thesis, these topics are
divided as listed below:

• In Chapter 2, we develop a high-order ADER-type numerical method for systems of hyper-
bolic balance laws in networks, based on a new implicit solver for the Junction-Generalized
Riemann Problem (J-GRP). The resulting ADER scheme can deal with stiff source terms and
can be applied to non-linear systems of hyperbolic balance laws in domains consisting of
networks of one-dimensional sub-domains.

• In Chapter 3, we develop a novel one-dimensional mathematical model of collecting lymphatics
coupled with a novel Electro-Fluid-Mechanical Contraction (EFMC) model for dynamical
contractions and valve dynamics. The resulting mathematical model gives each lymphangion
the autonomous capability to trigger action potentials based on local fluid-dynamical factors,
such as circumferential stretch and wall-shear stress.

• In Chapter 4, based on a novel holistic, multi-scale, closed-loop mathematical model of the
main murine fluid systems, we analyse the vascular blood dynamics of major vessels and the
intracranial interaction of heart dynamics, arteries, veins, interstitial fluid and cerebrospinal
fluid in healthy and pathological cases. We validate the mathematical model through MR-
flow measurements and in-vivo intracranial pressure measurements acquired in healthy mice
and in mice with an impairment of the cerebral venous outflow. Based on the computational
results, we suggest a hypothesis on the working principles of the glymphatic system. Also, we
show how impairment of the cerebral venous outflow might potentially lead to accumulation
of solutes in the parenchyma, by altering CSF and ISF dynamics.

The goal of this thesis is reached in Chapter 4, which is based on the numerical methodologies
explained in Chapter 2 and on existing literature of mathematical model of the human extracellular
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fluid systems. One could have employed the mathematical model of Chapter 3 to construct a multi-
scale mathematical model of the entire lymphatic system, coupled with the murine extracellular fluid
system mathematical model presented in Chapter 4. However, there is still substantial work to be
done to achieve such a subgoal. Chapter 3 is one of the bricks on which future work can build on
to design a complete and physiologically based model of the lymphatic system.
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Chapter 2

Junction-generalized Riemann
problem for stiff hyperbolic balance
laws in networks: An implicit solver
and ADER schemes

2.1 Introduction

In recent years, suitable computational methods for non-linear systems of hyperbolic balance laws
in domains consisting on networks of one-dimensional sub-domains, have been the subject of
many publications. Related applications include gas flow in pipes [Banda 2006, Brouwer 2011,
Bales 2009], traffic flow [Coclite 2002, Borsche 2014c, Bretti 2007], water flow [Borsche 2014b,
Kesserwani 2008] and blood flow in the human circulation system [Müller 2013b, Müller 2014,
Matthys 2007a, Formaggia 1999, Liang 2009b, Liang 2009a, Liang 2014, Mynard 2015, Olufsen 2000].
For a review of the subject see [Bressan 2014]. In all of these, the crucial point is the coupling
of the information of the various one-dimensional sub-domains converging into a single junction.
There exists a class of multi-scale methods that are based on the coupling between two or three-
dimensional and one-dimensional equations. For the Euler equations, Hong and Kim [Hong 2011]
described a strategy to simulate a network of pipes where the junction interfaces are modeled
through the three-dimensional equations and normal averaged fluxes are used as boundary condi-
tion for the one-dimensional equations. Formaggia et al. [Formaggia 2001] proposed an approach
to couple the three-dimensional and one-dimensional Navier-Stokes equations for flow problems
in compliant vessels. Miglio et al. [Miglio 2005a, Miglio 2005b] coupled the two-dimensional and
the one-dimensional Saint-Venant equations for water flow. With a multi-scale approach, one can
maintain the information of the geometry such as angles and secondary flows, but as the number of
junctions increases and the geometry becomes more complex, the computational cost can become too
large, making a real simulation difficult or unfeasible. An example of a simpler model was described
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by Fullana et al. [Fullana 2009] for blood flow that consists of ingoing and outgoing flows in a
tank with a time-variable volume V , with a tube law analogous to the vessel tube law that relates
pressure and volume. In this case, the choice of the tube law and parameters causes the numerical
simulation to be parameter-dependent.

The coupling of different one-dimensional sub-domains at a junction has been formulated as an
extended Riemann problem, see [Colombo 2008a, Colombo 2008b, Garavello 2006]. This formulation
has several advantages. Firstly, it allows for a rigorous study of existence and uniqueness of solu-
tions. Secondly, it can be used to numerically connect different tubes or channels, and can be com-
bined with a numerical scheme for the interior part without additional computational costs compared
to a multi-scale approach. Thirdly, it does not depend on additional parameters and the coupling
conditions with no energy losses arise naturally from the PDEs themselves. The main disadvantage
of this approach is the lack of geometrical information such as angles. For a rigorous mathematical
study of existence and uniqueness of the Riemann problem solution at a junction under the assump-
tion of subcritical flows, see Colombo et al. [Colombo 2008a, Colombo 2008b, Garavello 2006]. For
the solution of the Riemann problem at a junction for arteries see [Sherwin 2003b], for arteries and
veins refer to [Müller 2013b] and for gas pipes see [Banda 2006, Reigstad 2015].

A lot of research has been carried out in recent years in high-order ADER methods for both linear
and non-linear systems in one, two and three space dimensions using either Cartesian or unstruc-
tured meshes, see for instance [Toro 2001, Schwartzkopff 2004, Schwartzkopff 2002, Titarev 2002,
Titarev 2005, Dumbser 2007a, Dumbser 2014]. The building block of the ADER methodology is
the solution of the Generalized Riemann Problem (GRP). Several solvers for the GRP have been
proposed in the literature. The first one was proposed by Toro and Titarev [Toro 2002], called here
the Toro-Titarev (TT) solver. Then, Castro and Toro [Castro 2008] reinterpreted, in the context of
the GRP, the numerical scheme suggested by Harten et al. [Harten 1987] and proposed the HEOC
solver. In the same study, the authors also proposed a different way to solve the GRP, which is
analogous to the TT solver, and called it the Castro-Toro (CT) solver. Since all of these mentioned
solvers are based on the explicit Taylor expansion combined with the Cauchy-Kowalewskaya pro-
cedure, they do not deal with stiff source terms. The first GRP solver that has allowed the proper
treatment of stiff source terms was put forward by Dumbser, Enaux and Toro [Dumbser 2008], called
here the DET solver. Subsequently, Montecinos and Toro [Montecinos 2014b] proposed an implicit
solver, which is based on the implicit Taylor expansion combined with the Cauchy-Kowalewskaya
procedure and is able to handle stiff source terms. The authors called it the MT-TT solver. More
recently, they have formulated in [Toro 2015a] the implicit version of the HEOC solver and called
it the MT-HEOC solver.

The extension of the Classical Riemann Problem (CRP) for junctions, which we call throughout
this chapter the Junction-Classical Riemann Problem (J-CRP), has been studied and used in the
context of low and high-order numerical schemes. A low order numerical treatment of junctions spoils
the accuracy in space and time achieved by a high-order numerical scheme used within each sub-
domain of the network. Examples of this, in the context of human blood circulation simulated through
a mathematical model, can be seen for instance in Müller and Toro [Müller 2013b, Müller 2014],
Liang et al. [Liang 2009b, Liang 2009a, Liang 2014] and Mynard et al. [Mynard 2015]. First-
order errors travel through the network of vessels with a damping effect for the pressure pulse-
waves. Moreover, Borsche and Kall [Borsche 2014a] observed that the combination of schemes and
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coupling conditions of different orders may modify the speed at which shocks pass the junction. To
date, few studies have been done on the solution of the Junction-Generalized Riemann Problem
(J-GRP), namely the extension of the GRP for junctions connecting one-dimensional sub-domains.
The first high-order solvers of the J-GRP was put forward by Borsche and Kall [Borsche 2014a].
They generalized the TT and the CT solvers for the J-GRP. Then, Müller and Blanco [Müller 2015a]
proposed an extension of the DET solver, which is able to deal with stiff source terms. In addition,
Borsche and Kall [Borsche 2016] extended the HEOC solver for junctions.

The aim of this chapter is to extend the MT-HEOC solver for the GRP and construct a new
implicit, semi-analytical solution of the J-GRP. Using the new MT-HEOC solver for the J-GRP, we
design an ADER scheme that is globally explicit, locally implicit, free of any theoretical accuracy
barrier in space and time, able to deal with stiff source terms and can be applied to non-linear
systems of hyperbolic balance laws in domains consisting on networks of one-dimensional sub-
domains. To validate the numerical methodology, we carry out a convergence rate study for a network
of three vessels, propose a numerical experiment that assesses the ability of the numerical scheme to
deal with stiff source terms and junctions, and implement the method for the physical model presented
by Matthys et al. [Matthys 2007b] and further studied by Alastruey et al. [Matthys 2007a].

The rest of this chapter is structured as follows: in Section 2.2 we review the one-dimensional
blood flow equations and explain the ADER finite volume scheme with different solvers for the GRP.
We then describe a new methodology for solving the J-GRP. In Section 2.3 we propose two test
problems in a network to verify the order of accuracy and the ability of the solver to deal with
stiff source terms. We then show an application for a more complex network of 37 vessels and 21
junctions for which experimental results are available in the literature. Section 2.4 gives a summary
and conclusions.

2.2 Methods

In this section we review the one-dimensional blood flow equations, briefly describe the ADER
scheme with two different solvers for the GRP, formulate the J-GRP and propose a new methodology
to accurately solve it.

2.2.1 One-dimensional blood flow equations

The one-dimensional blood flow equations for a compliant vessel are the following
{

∂tA+∂xq = 0 ,

∂tq+∂x
(
α

q2

A

)
+ A

ρ
∂x p =− f

ρ
,

(2.1)

where x is the space variable, t is time, α is the Coriolis coefficient assumed to be α = 1, A(x, t) is
the cross-sectional area of the vessel, q(x, t) = A(x, t)u(x, t) is the flow, u(x, t) is the velocity, p(x, t)
is the pressure, ρ is the blood density (set to 1050 kg/m3 ), f (x, t) = γπµ

q
A is the friction force per

unit length of the tube with parameter γ chosen depending on the velocity profile and µ is the
kinematic viscosity. There are two governing partial differential equations and three unknowns,
namely A(x, t), q(x, t) and p(x, t). For this reason, an extra relation is required to close the system,
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the tube law, which relates pressure p(x, t) and cross-sectional area A(x, t). A purely elastic tube
law reads

p(x, t) = K(x)ψ(A(x, t);A0(x))+ pe(x, t) , (2.2)

with
ψ(A(x, t);A0(x)) =

[(
A(x, t)
A0(x)

)m

−
(

A(x, t)
A0(x)

)n]
, (2.3)

where pe(x, t) is the external pressure, A0(x) is vessel cross-sectional area at equilibrium, K(x) is
the bending stiffness of the vessel wall, m ≥ 0 and n ≤ 0 are real numbers to be specified. For
hyperbolicity m and n must satisfy additional constraints, see [Toro 2013]. For more information
about the mathematical structure of the equations, see [Formaggia 2009, Toro 2013]. Relation
(2.2) models a purely elastic behavior of the vessel wall. Other tube laws may also account for
visco-elasticity, elastin and collagen, see [Matthys 2007a, Blanco 2014]. Practical choices for the
parameters m, n and K are

K(x) =





Ka =
E

1−ν2

(
h0

r0

)
, m =

1
2
, n = 0 for arteries,

Kv =
E

12(1−ν2)

(
h0

r0

)3

, m≈ 10 , n =−3/2 for veins,

(2.4)

where ν , h0, r0 are the Poisson ratio (set to ν = 0.5), the wall-thickness at equilibrium and the
cross-sectional radius at equilibrium. It is possible to write the blood flow equations in conservative
form as follows:

∂tQ+∂xF(Q,x) = S(Q,x) , (2.5)

where

Q =

[
A
Au

]
, F(Q,x) =

[
Au

Au2− K
ρ

A0∂A0Ψ

]
, (2.6)

S(Q,x) =




0

− 1
ρ

(
f +A∂x pe +Ψ∂xK +K∂xA0∂A0Ψ

)

 , (2.7)

with

Ψ = Ψ(A;A0) =
∫

A
ψ(A;A0)dA = A0

(
1

m+1

(
A
A0

)m+1

− 1
n+1

(
A
A0

)n+1
)

, (2.8)

and

∂A0Ψ = ∂A0Ψ(A;A0) = ∂A0

∫

A
ψ(A;A0)dA =−

(
m

m+1

(
A
A0

)m+1

− n
n+1

(
A
A0

)n+1
)

. (2.9)

The constants arising from the integrals (2.8) and (2.9) are set to zero for consistency with (2.1) and
(2.2), see [Elad 1991, Brook 1999, Toro 2016]. For a complete view of the mathematical analysis
and derivation of the one-dimensional blood flow equations, refer to [Toro 2013, Formaggia 2009,
Toro 2016].
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2.2.2 ADER finite volume scheme
Consider the system of m hyperbolic balance laws

∂tQ+∂xF(Q) = S(Q) . (2.10)

By integrating (2.10) over the control volume V = [xi− 1
2
,xi+ 1

2
]× [tn, tn+1] we obtain the exact formula

Qn+1
i = Qn

i −
∆t
∆x

(
Fi+ 1

2
−Fi− 1

2

)
+∆tSi , (2.11)

with definitions
Qn

i =
1

∆x

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn)dx , (2.12)

Fi+ 1
2
=

1
∆t

∫ tn+1

tn
F(Q(xi+ 1

2
,τ))dτ , Si =

1
∆t∆x

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

S(Q(x,τ))dxdτ . (2.13)

Eq. (2.12) gives the spatial-integral average at time t = tn of the conserved variable Q, (2.13) the
time-integral average at interface x = xi+ 1

2
of the physical flux F and the volume-integral average

in V of the source term S respectively. Spatial mesh size and time step are ∆x = xi+ 1
2
− xi− 1

2
and

∆t = tn+1− tn respectively. Finite volume methods depart from (2.10) to (2.13), where integrals are
approximated, and then formula (2.11) becomes a finite volume method, where the approximated
integrals (2.13) are called numerical flux and numerical source, respectively. The ADER finite
volume schemes are one-step, fully discrete schemes, based on (2.11) with three main ingredients:
a high-order spatial reconstruction (once per time step), the solution of the GRP at the cell interface
to find the numerical flux and computation of the numerical source. The numerical flux is evaluated
as time-integral average of the physical flux evaluated at the solution of the local GRP at the cell
interface xi+ 1

2
and the numerical source is computed as a high-order space-time integral of the

source term within control volume V . See Toro et al. [Toro 2001], Chapter 19 and 20 of [Toro 2009]
and references therein.

Generalized Riemann problem (GRP)

The Generalized Riemann Problem (GRP) is the following initial value problem

PDE: ∂tQ+∂xF(Q) = S(Q) , x ∈ (−∞,+∞) , t > 0 ,

IC: Q(x,0) =

{
QL(x) x < 0 ,

QR(x) x > 0 ,





(2.14)

where QL(x) and QR(x) are smooth vector-valued functions (e.g. polynomials of degree M) given
by a reconstruction procedure. The particular case in which QL(x) and QR(x) are constant and
S(Q) = 0 is called the Classical Riemann Problem (CRP).

We are interested in finding the solution in time of problem (2.14) at the interface x = 0, which
we denote with QLR(τ), to evaluate the numerical flux Fi+ 1

2
, namely

Fi+ 1
2
=

1
∆t

∫ tn+1

tn
F(QLR(τ))dτ . (2.15)



12
2. Junction-generalized Riemann problem for stiff hyperbolic balance laws in networks: An

implicit solver and ADER schemes

Several approaches have been proposed in the literature. There are two categories of GRP
solvers: explicit and implicit. The first explicit solver for the GRP is the TT solver, proposed
by Toro and Titarev [Toro 2002]. Then, Castro and Toro proposed both the CT and the HEOC
solvers [Castro 2008]. The first implicit solver is the DET solver, proposed by Dumbser et al.
[Dumbser 2008]. Then, implicit versions of TT and HEOC resulted in the MT-TT and the MT-HEOC
solvers, both proposed by Montecinos and Toro [Montecinos 2014b, Toro 2015a]. For a comparison
between different GRP solvers see [Montecinos 2012a]. For a study of analytical properties of the
TT solver see Goetz and Iske [Goetz 2013]. Here we briefly present the HEOC approach in the
explicit and implicit forms.

The Harten-Engquist-Osher-Chakravarthy (HEOC) solver

Castro and Toro [Castro 2008] reinterpreted the methodology proposed by Harten et al. [Harten 1987]
in terms of a local GRP. The idea is to first evolve in time, independently, the left and right extrap-
olated values at the interface of the left and right reconstructed polynomials, up to a time τ and
then solve a CRP with the resulting piece-wise constant data. Then the sought GRP solution at
time τ is the Godunov state of the CRP solution, that is, the solution along the t-axis of the CRP.
In what follows we describe the full procedure.

The GRP solution along the t-axis QLR(τ) of (2.14) is found by solving the following CRP

PDE: ∂tQ+∂xF(Q) = 0 , x ∈ (−∞,+∞) , t > 0 ,

IC: Q(x,0) =

{
Q̂L(τ) x < 0 ,

Q̂R(τ) x > 0 ,





(2.16)

where the evolved vectors Q̂L(τ) and Q̂R(τ) are constant and given by applying a Taylor expan-
sion around the initial points QL(0−) = limx→0−QL(x) and QR(0+) = limx→0+ QR(x), respectively,
evaluated at τ , that is

Q̂L(τ) = QL(0−)+
M

∑
j=1

τ j

j!
∂
( j)
t QL(0−) ,

Q̂R(τ) = QR(0+)+
M

∑
j=1

τ j

j!
∂
( j)
t QR(0+) .





(2.17)

The Cauchy-Kowalewskaya procedure allows us to use the PDEs in (2.14) to express all time
derivatives in (2.17) as functionals of space derivatives and of the source term S(Q), namely

∂
( j)
t Q(x, t) = G( j)

(
Q(x, t), . . . ,∂ ( j)

x Q(x, t)
)
. (2.18)

The polynomials QL(x) and QR(x) are defined on the left and right sides of the interface and are
smooth away from 0 (locally the interface). This allows us to define limiting values from the left
and right, at t = 0, of the spatial derivatives of the initial conditions, namely

∂
( j)
x QL(0−) := lim

x→0−
∂
( j)
x QL(x) , j = 1, . . . ,M ,

∂
( j)
x QR(0+) := lim

x→0+
∂
( j)
x QR(x) , j = 1, . . . ,M .





(2.19)
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Thus, time derivatives can be replaced by their respective Cauchy-Kowalewskaya functional G( j),
leading to

Q̂L(τ) = QL(0−)+
M

∑
j=1

τ j

j!
G( j)

(
QL(0−), . . . ,∂

( j)
x QL(0−)

)
,

Q̂R(τ) = QR(0+)+
M

∑
j=1

τ j

j!
G( j)

(
QR(0+), . . . ,∂

( j)
x QR(0+)

)
.





(2.20)

Eqs. (2.20) are final product of the evolution stage. The sought GRP solution along the t-axis
at time t = τ is the Godunov state of the CRP with initial data given by (2.20) and self-similar
solution D(x/t), that is

QLR(τ) = D(0) . (2.21)
Note that when solving the CRP (2.16) at time t = τ , we change to local coordinates x̂ = x and
t̂ = t− τ , and then for convenience we omit the "hats". This numerical solver for the GRP is called
the Harten-Engquist-Osher-Chakravarthy (HEOC). To evaluate the numerical flux Fi+ 1

2
, one has

to calculate the solution of the GRP at the interface xi+ 1
2

at different time-integration points,
within the time step 0 ≤ τ ≤ ∆t . In the HEOC solver, for each time-integration point, one has
to apply two Taylor expansions and solve a CRP. Moreover, the HEOC solver requires a robust
and generally non-linear Riemann solver, which can be time-consuming; whereas the TT solver
needs a single expansion right at the interface and uses a non-linear Riemann solver only once
to compute the leading term. To solve the CRP we recommend the use of a non-linear complete
approximate Riemann solver. Here for the two equation model, we use the Harten-Lax-van Leer
(HLL) [Harten 1983]. For background on classical Riemann solvers, see [Toro 2009].

We now describe the implicit version of the HEOC solver, which uses the implicit Taylor series
expansion instead of the explicit version.

The MT implicit Taylor series expansion

Toro and Montecinos proposed in [Toro 2015a, Montecinos 2014b] two methodologies for solving
the GRP: the MT-TT and the MT-HEOC solvers. These solvers are the implicit versions of the TT
and the HEOC solvers respectively, and are able to deal with stiff source terms. They are based on
an implicit Taylor expansion in the evolution stage, which generates non-linear algebraic problems
to be solved. For the MT-HEOC approach there are two possible schemes, namely Reduced Implicit
Taylor expansion Approach (RITA) and Complete Implicit Taylor expansion Approach (CITA). See
[Toro 2015a] for details. Here we describe the RITA approach, insofar as it is simpler and there are
less operations to be performed, when compared to CITA.

First of all, we apply an implicit Taylor expansion at position x = 0 and time t = τ ,

Q(0,τ) = Q(0,0+)−
M

∑
j=1

(−τ) j

j!
∂
( j)
t Q(0,τ) , (2.22)

where the evolved vectors Q(0,τ), . . . ,∂ (M)
t Q(0,τ) are unknown. Then we use the Cauchy-Kowalewskaya

procedure to convert time derivatives into functionals of space derivatives

Q(0,τ) = Q(0,0+)−
M

∑
j=1

(−τ) j

j!
G( j)

(
Q(0,τ), . . . ,∂ ( j)

x Q(0,τ)
)
. (2.23)
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Note that the Cauchy-Kowalewskaya functionals G( j) are evaluated at the unknown evolved vectors
Q(0,τ), . . . ,∂ ( j)

x Q(0,τ). In Eqs. (2.23) there are M+1 vector unknowns and each one has m entries,
thus the total number of unknowns is m(M + 1). Since we only have m equations in (2.23), we
still need mM equations, which can be obtained by appling a time implicit Taylor expansion for the
spatial derivatives ∂

(h)
x Q(0,τ), with h = 1, . . . ,M, leading to

∂
(h)
x Q(0,τ) = ∂

(h)
x Q(0,0+)−

M−h

∑
j=1

(−τ) j

j!
∂
( j)
t ∂

(h)
x Q(0,τ) , h = 1, . . . ,M . (2.24)

Exchanging temporal and spatial derivatives and using the Cauchy-Kowalewskaya procedure, we
obtain

∂
(h)
x Q(0,τ) = ∂

(h)
x Q(0,0+)−

M−h

∑
j=1

(−τ) j

j!
∂
(h)
x G( j)

(
Q(0,τ), . . . ,∂ ( j)

x Q(0,τ)
)
, h = 1, . . . ,M . (2.25)

The Mm and m equations obtained respectively by Eqs. (2.25) and (2.23) allow us to have the
required number of equations, that is, m(M+1). We introduce the notation

U = [U0, . . . ,UM] , U j = ∂
( j)
x Q(0,τ) , j = 0, . . . ,M ,

U0 = [U0
0, . . . ,U

M
0 ] , U j

0 = ∂
( j)
x Q(0,0+) , j = 0, . . . ,M ,

}
(2.26)

where U is the vector of unknown and U0 is a known vector of the leading terms. Hence, rewriting
Eqs. (2.23) and (2.25), we end up with the following problem: given U0, find Û such that

L(Û;U0,τ) = Û−H(Û;U0,τ) = 0 , (2.27)

where

H(U;U0,τ) =




U0
0−

M

∑
j=1

(−τ) j

j!
G( j)(U0, . . . ,U j)

...

Uh
0−

M−h

∑
j=1

(−τ) j

j!
∂
(h)
x G( j)(U0, . . . ,U j)

...
UM

0




(2.28)

Once problem (2.27) is solved, evolved values Q(0,τ), . . . ,∂ (M)
x Q(0,τ) are known. Functionals G( j)

and their spatial derivatives can be found using symbolic manipulators in a preprocessing step. To
find the root of L, one can apply, for instance, a Newton or a Newton reduced-step method, see
[Toro 2015a]. A possible guess value for a numerical method to find the solution of (2.27) is the
vector of the leading terms, namely U0. The operator L(Û;U0,τ) depends on the time τ and on the
choice of U0, which will be different depending on the solver being used.
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The implicit Montecinos-Toro HEOC (MT-HEOC) solver

The GRP solution along the t-axis QLR(τ) of (2.14) is found by solving the following CRP

PDE: ∂tQ+∂xF(Q) = 0 , x ∈ (−∞,+∞) , t > 0 ,

IC: Q(x,0) =

{
Q̂L(τ) x < 0 ,

Q̂R(τ) x > 0 ,





(2.29)

where the evolved vectors Q̂L(τ) and Q̂R(τ) are constant and found by solving the following non-
linear problems: find ÛL and ÛR such that

L(ÛL;UL,τ) = 0 , L(ÛR;UR,τ) = 0 , (2.30)

where the leading terms UL and UR are respectively

UL = [U0
L, . . . ,U

M
L ] , U j

L = ∂
( j)
x QL(0−) = lim

x→0−
∂
( j)
x QL(x) , j = 0, . . . ,M ,

UR = [U0
R, . . . ,U

M
R ] , U j

R = ∂
( j)
x QR(0+) = lim

x→0+
∂
( j)
x QR(x) , j = 0, . . . ,M .





(2.31)

The solution procedure of the non-linear problems (2.30) is termed here the evolution stage. Possible
guess values for a numerical method to find the solutions of non-linear problems (2.30) are the
reconstructed polynomials and their derivatives, namely UL and UR. Once problems (2.30) are
solved, then the evolved values Q̂L(τ) and Q̂R(τ) will be the first entries of ÛL and ÛR respectively,
namely Û0

L and Û0
R. The sought GRP solution along the t-axis at time t = τ is the Godunov state

of the CRP (2.29) with initial data Q̂L(τ) and Q̂R(τ) and self-similar solution D(x/t), namely

QLR(τ) = D(0) . (2.32)

The MT-HEOC solver uses the implicit Taylor series expansion (2.30) in the evolution stage,
instead of an explicit one (2.20). The use of the implicit approach in the evolution stage requires
the solution of non-linear algebraic problem with m(M+1) unknowns for each side of the interface
and then the solution of a non-linear CRP. As for the HEOC solver, we can also use an approximate
Riemann solver to find the solution of the CRP (2.29), such as the two-rarefaction [Toro 2009] or
the HLL Riemann solvers [Harten 1983].

The PDEs of the CRP in (2.29) do not contain the source term S(Q). However, the influence of
the source term is accounted for via the Cauchy-Kowalewskaya procedure through the functional
H(U;U0,τ). The non-linear problems, which have to be solved in order to find the initial condition
for the CRP, allow us to deal with stiff source terms, see [Montecinos 2014b, Toro 2015a] and
[Montecinos 2012b].

2.2.3 The Junction-Generalized Riemann Problem (J-GRP)
We are concerned with the design of high-order numerical methods for solving hyperbolic balance
laws in simplified domains consisting of networks of one-dimensional sub-domains that can be, for
example, blood vessels, water channels or gas tubes. In our application we formulate the J-GRP in
the context of one-dimensional blood flow equations. For this reason, we formulate the mathematical
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V




q1(0)(0−)
∂xq

1
(0)(0−)
...

∂
(M)
x q1(0)(0−)







q2(0)(0+)

∂xq
2
(0)(0+)
...

∂
(M)
x q2(0)(0+)







q3(0)(0+)

∂xq
3
(0)(0+)
...

∂
(M)
x q3(0)(0+)




q

x

q1(0)(x)

q2(0)(x)

q3(0)(x)

Figure 2.1: Illustration of an initial condition for a J-GRP with N = 3 vessels and vertex V for a single
component q(0)(x, t) of the vector of unknowns Q(0)(x, t). The data q1

(0), q2
(0) and q3

(0) are smooth away from
vertex V and have one-sided spatial derivatives at V .

problem in terms of vessels. First, we define the J-GRP, then we explain how to solve the J-CRP
for one-dimensional blood flow equations and propose a new solver for the J-GRP.

Consider a set of N vessels with the common vertex V . For the k-th vessel, variable xk is the
local coordinate and the vertex V is located in 0 without loss of generality. In each k-th vessel,
consider the following initial value problem

PDEs: ∂tQk +∂xF(Qk) = S(Qk) , xk ∈ Ik =
(
ak,bk) , t > 0 ,

ICs: Qk(xk,0) = Qk
(0)(x

k) ,

}
(2.33)

where either ak or bk is the local coordinate of vertex V , spatial domain Ik has length Lk = |bk−ak|
and the initial condition Qk

(0)(x
k) is a smooth vector-valued function of the local coordinate xk (e.g.

polynomials of order M). Note that the material and geometrical properties can be different for each
k-th vessel. The set of solutions Qk(xk, t), with k = 1, . . . ,N, has to satisfy the following coupling
conditions at the common vertex V

φ(Q1(0, t), . . . ,QN(0, t)) = 0 , t > 0 , (2.34)

where the vector φ defines coupling conditions. We define as Junction-Generalized Riemann Prob-
lem (J-GRP) at the vertex V with N vessels, the set initial value problems (2.33), with k = 1 . . . ,N,
with constraints (2.34). Figure 2.1 illustrates a simple representation of a J-GRP. For the particular
case in which N = 2, b1 = 0 and a2 = 0, we end up with a GRP with the jump discontinuity at the
initial time located in x = 0. Therefore, the J-GRP is an extension of the GRP. In order to easy the
notation in the following, we shall consider the local coordinate xk without index.



2.2 Methods 17

We are interested in finding the solutions in time of problem (2.33) at the vertex V , which we
denote with Qk

V (τ), for k = 1, . . . ,N, to evaluate the numerical flux Fk
V of the k-th vessel at the vertex

V , namely

Fk
V =

1
∆t

∫ tn+1

tn
F(Qk

V (τ))dτ . (2.35)

In the following we shall refer to these numerical fluxes at the vertex V as the junction-numerical
fluxes. The main ingredient we require to solve the J-GRP is the related classical version with
piece-wise constant data and no source terms.

The Junction-Classical Riemann Problem (J-CRP)

Consider the following set of initial value problems

PDEs: ∂tQk +∂xF(Qk) = 0 , x ∈ Ik =
(
ak,bk) , t > 0 ,

ICs: Qk(x,0) = Qk
(0) ,

}
k = 1, . . . ,N , (2.36)

with coupling conditions φ

φ(Q1(0, t), . . . ,QN(0, t)) = 0 , t > 0 , (2.37)

where Qk
(0), with k = 1, . . . ,N, are constant vectors. We define as Junction-Classical Riemann Prob-

lem (J-CRP) at the vertex V with N vessels, the set initial value problems (2.36), with k = 1 . . . ,N,
with constraints (2.37).

The solution of a J-CRP is a set of self-similar functions Dk(x/t) defined for each k-th vessel.
For a 2× 2 hyperbolic balance law system in subcritical regime, we have a total number of 2N
states. These 2N states arise from the N initial conditions Qk

(0), with k = 1, . . . ,N, and N states
Qk
∗, with k = 1, . . . ,N, which are connected to the initial conditions through non-linear waves and

among themselves by the coupling conditions φ . To completely solve the J-CRP, one has to find
values Qk

∗, with k = 1, . . . ,N, using both the structure of the waves (i.e. rarefactions or shocks) and
the coupling conditions φ . The solutions along the t-axis Dk(0), with k = 1, . . . ,N, of the J-CRP, are
termed here the Godunov states.

Here we present the solution of the J-CRP for the one-dimensional blood flow equations as-
suming subcritical flow. To the authors’ knowledge, the complete solution of the J-CRP considering
all possible wave-patterns is not available. This implies that we cannot handle supercritical and
transcritical flows at junctions, which might be present in physiological situations due to vein col-
lapse with discontinuous parameters in the human body, see [Siviglia 2013]. For the solution of
the CRP for subcritical flows with discontinuous material properties for blood flow with n = 0 and
m > 0 refer to [Toro 2011], and to [Toro 2013] with n < 0 and m > 0. For arteries, [Han 2014]
solved in complete detail the CRP with discontinuous material properties. For the solution of the
J-CRP in blood flow for subcritical flows with n < 0 and m > 0, see also [Müller 2015a]. See
[Colombo 2008a, Colombo 2008b, Garavello 2006, Borsche 2014a] for the solution of the J-CRP
using a more geometrical approach and for general conservation laws.
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a1 0 = b1

a2 = 0

a3 = 0

b2

b3

Q1
(0)

Q2
(0)

Q3
(0)

Q1
∗

Q2
∗

Q3
∗

f1

f2

f3

f4

f5

f6

t

x

Figure 2.2: Representation of a J-CRP for a typical 2× 2 non-linear system with N = 3 vessels, where
b1 = 0, a2 = 0 and a3 = 0 are the local coordinates of vertex V for the first, second and third vessel respectively.
The non-linear function fk connects the initial condition Qk

(0) and unknown Qk
∗ for k = 1 . . . ,3, f4 connects all

the unknowns Q1
∗,Q2

∗,Q3
∗, while f5 and f6 connect the unknown Q1

∗ to Q2
∗ and Q3

∗, respectively.

The coupling conditions that connect states Qk
∗, with k = 1, . . . ,N, among themselves are

φ(Q1
∗, . . . ,Q

N
∗ ) =




N

∑
k=1

gkAk
∗u

k
∗

pt(A1
∗,u

1
∗;K1,A1

0)− pt(A2
∗,u

2
∗;K2,A2

0)
...

pt(A1
∗,u

1
∗;K1,A1

0)− pt(AN
∗ ,u

N
∗ ;KN ,AN

0 )



= 0 , (2.38)

where the vector of conserved variables Q is defined in (2.6), while Kk and Ak
0 are the material

properties of the k-th vessel. The auxiliary function gk indicates whether the k-th vessel has vertex
V at ak or bk, and reads

gk =

{
−1 ak = 0 ,

1 bk = 0 ,
(2.39)

pt denotes total pressure

pt(A,u;K,A0) =
1
2

ρu2 + p(A;K,A0) , (2.40)

and p is the pressure given in (2.2). The first component of φ assures conservation of mass, whereas
all the remaining components, from the second to the N-th, guarantee equality of total pressure in
all the vessels meeting at vertex V . Since the number of vectors Qk

∗ is N and each vector has two



2.2 Methods 19

(a)

(b)

Figure 2.3: Example of a J-CRP. Piece-wise constant data are given for each vessel. Frames (a) and (b)
depict the solution at initial and output time for a simple J-CRP respectively. A rarefaction wave propagates
backward in the left sub-domain, whereas two shocks move forward in the others.

components Ak
∗ and qk

∗ = Ak
∗u

k
∗, the total number of unknowns is 2N. This means that we need a

total number of 2N equations to close the system. The coupling conditions φ contain N equations,
while the other N equations are obtained by connecting each state Qk

∗ to the initial condition Qk
(0)

through non-linear waves for k = 1, . . . ,N. The total number of equations are 2N and therefore the
system is closed.

The non-linear relationship between Qk
∗ and Qk

(0), with k = 1, . . . ,N, reads

uk
∗−uk

(0)+gk
β (Ak

∗;Ak
(0),K

k,Ak
0) = 0 , k = 1, . . . ,N , (2.41)
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where the non-linear function β is

β (A∗;A,K,A0) =





∫ A∗

A

c(τ;K,A0)

τ
dτ if A∗ ≤ A , rarefaction wave,

√
B(A∗;A,K,A0)

A∗−A
A∗A

if A∗ > A , shock wave.
(2.42)

The wave speed is

c(A;K,A0) =

√√√√K
ρ

(
m
(

A
A0

)m

−n
(

A
A0

)n
)

, (2.43)

and the function B is

B(A∗;A,K,A0) =
K
ρ

(
m

m+1
Am+1
∗ −Am+1

Am
0

− n
n+1

An+1
∗ −An+1

An
0

)
. (2.44)

Gathering the information coming from Eqs. (2.38) and (2.41) we end up with the following

Proposition 2.2.1. The solution of the J-CRP with N vessels for subcritical flow is found by solving
the following non-linear system

f1(x1,y1;A1
(0),u

1
(0)) = y1−u1

(0)+g1
β (x1;A1

(0),K
1,A1

0) = 0 ,

...
fN(xN ,yN ;AN

(0),u
N
(0)) = yN−uN

(0)+gN
β (xN ;AN

(0),K
N ,AN

0 ) = 0 ,

fN+1(x1, . . . ,xN ,y1, . . . ,yN) = g1x1y1 +g2x2y2 + · · ·+gNxNyN = 0 ,

fN+2(x1,y1,x2,y2) = pt(x1,y1;K1,A1
0)− pt(x2,y2;K2,A2

0) = 0 ,

...
f2N(x1,y1,xN ,yN) = pt(x1,y1;K1,A1

0)− pt(xN ,yN ;KN ,AN
0 ) = 0 ,





(2.45)

where the unknowns of the problem are

X = [x1, . . . ,xN ] = [A1
∗, . . . ,A

N
∗ ] , Y = [y1, . . . ,yN ] = [u1

∗, . . . ,u
N
∗ ] , (2.46)

with β and pt defined in (2.42) and (2.40), respectively.

The k-th non-linear function fk connects the initial condition Qk
(0) to the unknown Qk

∗ for
k = 1, . . . ,N, fN+1 connects all the unknowns Q1

∗ . . . ,QN
∗ , and fk+N connects the unknown Q1

∗ to
the unknown Qk

∗ for k = 2, . . . ,N. We note that Proposition 2.2.1 is a generalization of Proposition
4.6 of [Toro 2011]. A J-CRP solver for 2 vessels with different parameters K, A0 corresponds to
the CRP solver with piece-wise constant parameters K,A0 for a single vessel. As we have assumed
subcritical flow, then the Godunov states of problem of the J-CRP will be Dk(0) =Qk

∗ for k = 1, . . . ,N.
Sherwin et al. [Sherwin 2003a] solved the above system for blood flow assuming a two-

rarefaction wave-pattern for the function β defined in (2.42), namely they assumed A∗ ≤ A. This
hypothesis can be seen as an approximate J-CRP solver, through which numerical simulations show
acceptable numerical results, see [Sherwin 2003a]. See also [Müller 2015a] for the first complete
description of the solution of the J-CRP for blood flow, where both shocks and rarefaction waves
are admitted for the genuinely non-linear characteristic fields.
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Figure 2.4: Illustration of the MT-HEOC solver for the J-GRP with N = 3 vessels. The limiting values at
vertex V are evolved separately up to time t = τ . The sought solutions along the t-axis are the Godunov states
of the J-CRP with these evolved states as initial data.

2.2.4 A new implicit J-GRP solver
Here we propose a new implicit solver for the J-GRP. Following the idea of the explicit HEOC
solver for the J-GRP proposed in [Borsche 2016] and the implicit MT-HEOC solver for the GRP in
[Toro 2015a], we propose to combine them and construct the MT-HEOC solver for the J-GRP.

The J-GRP solutions along the t-axis Qk
V (τ), with k = 1, . . . ,N, of (2.33) with coupling conditions

φ are found by solving the following J-CRP at the vertex V with N vessels and coupling conditions
φ

PDEs: ∂tQk +∂xF(Qk) = 0 , x ∈ Ik =
(
ak,bk) , t > 0 ,

ICs: Qk(x,0) = Q̂k
(0)(τ) .

}
k = 1, . . . ,N , (2.47)

where Q̂k
(0)(τ), with k = 1, . . . ,N, are constant vectors. The evolved values Q̂k

(0)(τ) are found by
applying for each k-th vessel the implicit Taylor expansion at the vertex V up to time τ , that is, by
solving the following non-linear problem: find Ûk

(0) such that

L(Ûk
(0);Uk

(0),τ) = 0 , (2.48)

where the leading term Uk
(0) is

Uk
(0) = [Uk,0

(0) , . . . ,U
k,M
(0) ] , Uk, j

(0) =





∂
( j)
x Qk

(0)(0+) = lim
x→0+

∂
( j)
x Qk

(0)(x) , if ak = 0 ,

∂
( j)
x Qk

(0)(0−) = lim
x→0−

∂
( j)
x Qk

(0)(x) , if bk = 0 ,
j = 0, . . . ,M .

(2.49)
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The solution procedure of the non-linear problems (2.48) is termed here the evolution stage. As in
the MT-HEOC solver for the GRP, a possible initial guess for a numerical method to find solution
of the non-linear problem (2.48) is Uk

(0). Once we solve problem (2.48), then the evolved vector
Q̂k

(0)(τ) will be the first entry of Ûk
(0), namely Ûk,0

(0). The sought J-GRP solutions along the t-axis at
time t = τ are the Godunov states of the J-CRP (2.47) with initial data Q̂k

(0)(τ), with k = 1, . . . ,N,
and self-similar solutions Dk(x/t), namely

Qk
V (τ) = Dk(0) , k = 1, . . . ,N . (2.50)

Assuming subcritical flow, the values Qk
V (τ) are the N states Qk

∗ described in Section 2.2.3, namely

Qk
V (τ) = Qk

∗ , k = 1, . . . ,N . (2.51)

We call the present method the MT-HEOC solver for the J-GRP, which extends the MT-HEOC
solver for the GRP to the J-GRP. In the evolution stage of the MT-HEOC solver for the GRP, one
applies an implicit Taylor series expansion to the left and right boundary extrapolated values, up to
time t = τ ; this part gives left and right evolved values that are the initial conditions for a CRP. The
solution along the t-axis of the GRP at time t = τ is then the Godunov state of the CRP. The natural
generalization of the evolution stage of the MT-HEOC solver for the J-GRP is to apply an implicit
Taylor series expansion on each vessel at the vertex V up to time t = τ ; this part gives evolved
values that are the initial conditions for a J-CRP. The solutions along the t-axis of the J-GRP at
time t = τ are then the Godunov states of a J-CRP.

See Figure 2.4 for an illustration of the MT-HEOC solver for the J-GRP where we have N = 3
vessels. We use the implicit Taylor expansion to evolve the extrapolated values and find the evolved
values Q̂1

(0)(τ),Q̂
2
(0)(τ) and Q̂3

(0)(τ). We then solve a J-CRP and find the solutions along the t-axis
Q1

V (τ),Q2
V (τ) and Q3

V (τ).
We point out that our new method requires the solution of a non-linear problem for each k-th

vessel with a total number of N non-linear problems of m(M + 1) unknowns, where N, m and M
are respectively the total number of vessels, the number of components of the conserved variable Q
and the order of the polynomials obtained by a reconstruction procedure. We remark that implicit
solvers for the GRP and J-GRP are more costly than explicit ones and should only be used for
problems that are known or suspected to be stiff.

Spatial Reconstruction

The spatial reconstruction is a crucial ingredient of the ADER finite volume methods. In the presence
of boundaries, one has to take into account the lack of information given by the limited space. For
instance, for a junction of three vessels, we do not have enough data to apply a classical three
stencils WENO reconstruction [Dumbser 2007a] near the boundaries.

Borsche and Kall in [Borsche 2014a] described a method that permits to fill the corresponding
ghost cells using the information gained from the time derivatives of the Godunov states using either
the Castro-Toro or the Toro-Titarev solver for the J-GRP. The same authors in [Borsche 2016] pointed
out that in the explicit HEOC solver it is not possible to apply the same procedure as for the CT
or the TT since we do not calculate the time derivatives of the Godunov states but rather directly
evaluate the solutions of the J-GRP at time t = τ . In the DET solver for the J-GRP, Müller and
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(0)(x)

Q2
(0)(x)

Q3
(0)(x)

Q̂1
(0)(τ1)
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Q̂3
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Figure 2.5: Three-vessel J-GRP using the MT-HEOC solver. In this illustration we use NGauss = 2 Gaussian
quadrature points. We evolve the limiting value at vertex V up to time τ1 for each vessel, and then solve a
J-CRP. The solutions along the t-axis are used to approximate the junction-numerical flux in (2.52) for each
vessel. We repeat the procedure for time τ2.

Blanco [Müller 2015a] proposed to fill the ghost cells using the spatial derivatives obtained from
the implicit Discontinuous Galerkin prediction for solving the GRP. In this way, the inverse Cauchy-
Kowalewskaya functionals used by Borsche and Kall [Borsche 2014a] are avoided, and therefore
the methodology can be applied to hyperbolic systems with non-invertible Jacobian matrices.

The MT-HEOC solver for the J-GRP gives more spatial information than its explicit version. In
fact, by applying an implicit Taylor expansion, we evolve up to a certain time t = τ the extrapolated
value of the reconstructed polynomial and its derivatives. Therefore, we should be able to apply the
methodology proposed by Müller and Blanco [Müller 2015a]. As a matter of fact, the MT-HEOC
solver replaces the numerical prediction of the DET solver with an implicit Taylor series expansion
[Toro 2015a]. However, here we use a one-sided WENO reconstruction approach [Tan 2010], follow-
ing the HEOC solver in [Borsche 2016]. The drawback of using a one-sided WENO reconstruction,
compared to the use of filled ghost cells, is the requirement of a minimum number of cells for each
sub-domain. Indeed, to apply a k−th order scheme, we require at least k computational cells for
each sub-domain.

Algorithm for evolving the solution in the complete network

Here we provide an algorithm to evolve the solution in the complete network, from time tn to tn+1,
using a high-order ADER scheme with the MT-HEOC solver for both the J-GRP and the GRP.
To approximate the time integrals of the junction-numerical fluxes in (2.35), we use the classical
Gaussian quadrature rule with NGauss time quadrature points.

1. For each vertex V with N connected vessels, compute the junction-numerical fluxes located
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at the vertex V

Fk
V =

1
∆t

∫ tn+1

tn
F(Qk

V (τ))dτ ≈
NGauss

∑
h=1

ωhF(Qk
V (τh)) , k = 1, . . . ,N , (2.52)

applying the following procedure:

(a) for k = 1, . . . ,N use a WENO one sided reconstruction procedure to obtain polynomials
Qk

(0)(x) at the junction interface;
(b) for h = 1, . . . ,NGauss

i. for k = 1, . . . ,N, apply an implicit Taylor expansion for each extrapolated value at
the junction and find the evolved values Q̂k

(0)(τh), as explained in Section 2.2.2;
ii. solve J-CRP (2.36) with initial data given by Q̂k

(0)(τh) with k = 1, . . . ,N, as explained
in Section 2.2.3 and find Qk

V (τh);
iii. for k = 1, . . . ,N evaluate the quantity F(Qk

V (τh));
(c) For k = 1, . . . ,N evaluate junction-numerical flux Fk

V in (2.52).

2. Apply a high-order ADER scheme to compute the numerical fluxes across interior cell inter-
faces and the numerical sources within the cells for each k-th vessel.

3. Update the solution from time tn to tn+1 according with finite volume formula (2.11) for each
k-th vessel.

See Figure 2.5 for an illustration of step 1(b) of the proposed algorithm, which has advantages
and disadvantages. As pointed out in Section 2.2.4, the main disadvantage is the lack of information
needed to assign to the ghost cells outside the computational domain of each vessel. This can be
overcome using a one-sided WENO reconstruction [Tan 2010]. The main advantage in a HEOC-
type scheme is having to solve just two types of non-linear problems: one for the evolution stage
and another for the interaction of the evolved states through the J-CRP. As noted by Borsche and
Kall [Borsche 2016], a HEOC-type solver is easier to implement, as compared to one proposed
earlier [Borsche 2014a]. It is worth noting that the ability of the present J-GRP solver to handle
supercritical flows depends on that of its underlying J-CRP solver. Therefore, as long as we use a
J-CRP that assumes subcritical flows, we will be unable to deal with trans and supercritical flows
in networks.

2.3 Results
In this section we thoroughly assess the performance of the proposed methods. First, we perform
an empirical convergence rate study of the proposed methods for a network of vessels with a sin-
gle junction. Then, we assess the performance for a problem with stiff a source term. As a final
test, we apply our mathematical model and described numerical method to the physical model of
[Matthys 2007b] that consists of a network of 37 compliant silicon tubes (arteries) and 21 junc-
tions. In the following, we shall refer to the solver of the J-GRP proposed by Borsche and Kall
[Borsche 2014a] as the Borsche-Kall (BK) solver. Throughout this section, we shall also consider
fully or partially high-order ADER methods. By fully high order we mean applying a high-order
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Figure 2.6: Efficiency plot: L∞ errors against computational times. Comparison between first, third and
fifth-order ADER schemes with TT-BK, HEOC and MT-HEOC solvers for GRP and J-GRP is shown. Results
for the fifth-order ADER scheme in the interior of the domain with a first-order scheme at the junction are
also shown. Numerical results were obtained with meshes of 10,20,40,80 cells. The intersections between
the horizontal line E = 2×10−12 (prescribed error) and the fifth-order ADER schemes give the computational
times and number of cells required to attain the prescribed error E .

ADER method within the domain coupled to a high-order numerical approximation at junctions. By
partially high order we mean applying a high-order ADER method within the domain coupled to a
first-order numerical approximation at junctions.

2.3.1 Empirical convergence rate studies
To assess the order of convergence of the ADER scheme with the MT-HEOC solver for both the
J-GRP and the GRP when solving balance laws in networks of vessels, we designed a test which
is highly sensitive to the numerical treatment of the J-GRP. From this test, we expect the order
of the method to depend on the order of the approximation of the junction-numerical fluxes. For
instance, using a fifth-order solver within the domain, that is, a fifth-order solver for the numerical
fluxes across interior cell interfaces and for the numerical sources within each cell, and a first-order
solver for the junction-numerical fluxes, we expect the global error of the method to be of order one.

Here we manufactured a problem with exact solution by prescribing the following smooth vector-
valued function

Q̃(x, t) =
[

A(x, t)
A(x, t)u(x, t)

]
=

[
Ã+ ãsin( 2π

L x+φ)cos( 2π

T0
t)

0

]
. (2.53)

Then, inserting it in (2.5), we obtained a modified non-linear system

∂tQ̃+∂xF(Q̃,x)−S(Q̃,x) = S̃(Q̃,x, t) , (2.54)

for which Q̃(x, t) is the exact smooth solution, and the explicit formula for S̃(Q,x, t) can be calculated
by using a symbolic manipulator. The prescribed function A(x, t) in (2.53) is product of trigonometric
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TT-BK HEOC MT-HEOC
Scheme Cells E∞ O∞ tCPU [s] E∞ O∞ tCPU [s] E∞ O∞ tCPU [s]

ADER1 - J1 10 5.1069e-06 0.004 5.1069e-06 0.004 5.1069e-06 0.006
20 3.2013e-06 0.6738 0.007 3.2013e-06 0.6738 0.009 3.2013e-06 0.6738 0.012
40 1.7717e-06 0.8535 0.021 1.7717e-06 0.8535 0.020 1.7717e-06 0.8535 0.020
80 9.2545e-07 0.9369 0.071 9.2545e-07 0.9369 0.072 9.2545e-07 0.9369 0.074

ADER2 - J2 10 5.4495e-07 0.011 5.0373e-07 0.010 5.1298e-07 0.019
20 1.6146e-07 1.7549 0.015 1.6387e-07 1.6201 0.016 1.6506e-07 1.6359 0.038
40 4.3208e-08 1.9018 0.039 4.3361e-08 1.9181 0.047 4.3429e-08 1.9263 0.134
80 1.1546e-08 1.9039 0.143 1.1558e-08 1.9075 0.172 1.1544e-08 1.9116 0.521

ADER3 - J3 10 1.5862e-07 0.017 1.5711e-07 0.017 1.5346e-07 0.103
20 1.5786e-08 3.3289 0.029 1.5482e-08 3.3431 0.034 1.4565e-08 3.3973 0.285
40 1.7507e-09 3.1727 0.095 1.7299e-09 3.1618 0.122 1.6508e-09 3.1413 0.926
80 2.2162e-10 2.9817 0.362 2.2288e-10 2.9564 0.464 2.1449e-10 2.9442 3.117

ADER4 - J4 10 5.8856e-08 0.017 5.5043e-08 0.017 6.7511e-08 0.416
20 5.8862e-09 3.3218 0.044 5.8208e-09 3.2413 0.051 5.9532e-09 3.5034 1.343
40 3.1375e-10 4.2296 0.154 3.1273e-10 4.2182 0.187 3.1478e-10 4.2413 4.209
80 2.6169e-11 3.5837 0.585 2.6156e-11 3.5797 0.725 2.6347e-11 3.5786 14.342

ADER5 - J5 10 5.4857e-08 0.085 5.0963e-08 0.105 3.5734e-08 5.872
20 1.2590e-09 5.4453 0.281 1.2550e-09 5.3437 0.349 1.2410e-09 4.8477 19.642
40 2.0719e-11 5.9252 1.083 2.0704e-11 5.9217 1.340 2.0814e-11 5.8978 65.940
80 5.7770e-13 5.1645 4.242 5.7776e-13 5.1633 5.261 5.0423e-13 5.3673 243.375

ADER2 - J1 10 3.5206e-06 0.009 3.4324e-06 0.011 3.4821e-06 0.021
20 1.6697e-06 1.0762 0.014 1.6639e-06 1.0447 0.020 1.6657e-06 1.0638 0.035
40 8.0363e-07 1.0550 0.037 8.0313e-07 1.0509 0.045 8.0332e-07 1.0521 0.132
80 3.9097e-07 1.0395 0.142 3.9092e-07 1.0388 0.166 3.9081e-07 1.0395 0.519

ADER3 - J1 10 2.7055e-06 0.014 2.6961e-06 0.018 2.9330e-06 0.104
20 1.5264e-06 0.8257 0.025 1.5261e-06 0.8210 0.032 1.5561e-06 0.9145 0.287
40 7.7481e-07 0.9782 0.093 7.7475e-07 0.9781 0.120 7.7862e-07 0.9989 0.947
80 3.8670e-07 1.0026 0.360 3.8668e-07 1.0026 0.467 3.8719e-07 1.0079 3.140

ADER4 - J1 10 2.5458e-06 0.020 2.5457e-06 0.018 2.5619e-06 0.400
20 1.5196e-06 0.7444 0.041 1.5195e-06 0.7444 0.050 1.5187e-06 0.7544 1.365
40 7.8148e-07 0.9595 0.146 7.8144e-07 0.9594 0.186 7.8118e-07 0.9591 4.385
80 3.9079e-07 0.9998 0.575 3.9079e-07 0.9998 0.727 3.9072e-07 0.9995 15.030

ADER5 - J1 10 2.5562e-06 0.085 2.5544e-06 0.102 2.5320e-06 6.151
20 1.5317e-06 0.7389 0.278 1.5315e-06 0.7381 0.359 1.5322e-06 0.7247 20.685
40 7.8625e-07 0.9620 1.076 7.8618e-07 0.9620 1.341 7.8642e-07 0.9622 72.496
80 3.9326e-07 0.9995 4.214 3.9324e-07 0.9995 5.249 3.9330e-07 0.9996 259.115

Table 2.1: Convergence rates study. The left column shows the various combinations of schemes used, the
second column shows the meshes defined by the number of cells, the third to fifth columns show different GRP
and J-GRP. For column TT-BK we show the L∞ errors, the L∞ order and the correspondent computational
times in seconds; likewise for HEOC and the MT-HEOC. All numerical simulations were performed in an Intel
Core i7-2600 with 4 cores (3.40 GHz clock speed). The code was not parallelized for these simulations. The
order is spoiled when we use a first-order method at the junction.

functions, periodic in time and space with period T0 and L respectively, and smooth at the junction,
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(a)

(b)

Figure 2.7: Illustration of the empirical convergence rate study. The normalized cross-sectional area A
A0

is depicted in the z variable. The dotted and the shaded plot depict the numerical and the exact solution
respectively. We used 10 cells for each vessel and we stopped the simulation after 100.5 s. The ADER
scheme with the MT-HEOC solver was used. Frame (a): numerical solution obtained by the fully third-order
scheme. Frame (b): numerical solution obtained by the partially third-order scheme.

namely it satisfies ∂
( j)
x A(0, t) = ∂

( j)
x A(L, t) with j = 0, . . . ,M for any time. Moreover, as A(0, t) =

A(L, t) = Ã and u(0, t) = u(L, t) = 0, the prescribed functions A(x, t) and u(x, t) satisfy the coupling
conditions φ for blood flow (2.38) for t ≥ 0.

The empirical convergence rate test was performed on a network of N = 3 vessels with one
junction. We considered the three vessels with local coordinate [a1,b1] = [−1,0], and [a2,b2] =

[a3,b3] = [0,1], and vertex V located in 0. The initial condition for the numerical test was given
by the described function Q̃(x, t) at time t = 0. We considered constant parameters K, A0, external
pressure pe = 0 and friction resistance f = 0, so that the source term S(Q,x) was set to zero.
Since the prescribed function A(x, t) in (2.53) is periodic in space, we used periodic boundary
conditions away from the junction. Vessel parameters are: m = 1/2, n = 0, cross-sectional radius at
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equilibrium r0 = 10 mm, cross-sectional area at equilibrium A0 = πr2
0 , Young modulus E = 0.4 MPa,

wall-thickness at equilibrium h0 = 1.1 mm, length L = 1 m. Computation parameters are: T0 = 1 s,
Ã = A0, ã = 0.1A0, φ = π

2 , output time tend = 0.5 s, Courant number coefficient CFL = 0.9. Since the
three vessels have the same material properties and computation parameters, the smoothness at the
junction of the prescribed function A(x, t) is assured. We compared results given by the TT and the
BK solver for the GRP and the J-GRP respectively, the HEOC and the MT-HEOC solver for both
the GRP and the J-GRP. We used the HLL [Harten 1983] method to compute the numerical fluxes
within each vessels, instead of solving exactly the CRP.

Table 2.1 shows empirical convergence rates for schemes of first to fifth accuracy in space and
time. The first column of Table 2.1 shows the various combinations of schemes used, the second
column shows the meshes defined by the number of cells, the third to fifth columns show different
GRP and J-GRP. For column TT-BK, we show the L∞ errors, the L∞ order and the computational
times in seconds; likewise for HEOC and the MT-HEOC. Orders from one to five are attained as
desired. It is worth noting two points. First, the order of accuracy in space and time is spoiled
whenever we use a first-order approximation of the junction-numerical fluxes. For instance, when
we use the combination ADER5 - J1 with any of the solvers presented in Table 2.1, the accuracy
decreases from five to one; likewise with other combinations. Therefore, even though we use a high-
order scheme within each sub-domain but a first-order approximation of the junction-numerical
fluxes, the overall accuracy in space-time is ruined. This means that low-order errors travel through
the network when low-order schemes are used at junctions. Second, the implicit Taylor series
expansion plays an important role in the computational cost. Indeed, there is a difference in the
computational times between the numerical results obtained by using the explicit solvers TT-BK
and HEOC, and the implicit solver MT-HEOC.

Figure 2.6 depicts L∞ errors against computational times. Comparison between first, third
and fifth-order ADER schemes with TT-BK, HEOC and MT-HEOC solvers for GRP and J-GRP
are shown. Also shown are results for the fifth-order ADER scheme in the interior of the domain
with a first-order scheme at the junction. For the computation we used meshes of 10,20,40,80
cells. The point of this figure is to assess the performance of the schemes by relating the error to
the computational cost. For example, prescribing the error E = 2×10−12, the computational times
needed for the ADER scheme to attain that specific error are 2.6419 s, 3.2735 s and 150.0495 s
using respectively the TT-BK, HEOC and the MT-HEOC solvers. Note that a first-order method
would have attained that error at the computational time of ∼ 130 years; such figure is obtained by
extrapolation, which is probably an underestimate. These observations support the use of high-order
methods for hyperbolic balance laws, when small errors are aimed for. The results also show that
the combination ADER5 - J1 completely ruins the accuracy while maintaining the computational
cost given by a fifth-order method. This suggests that the time to attain the above-mentioned error
with a partially high-order method is even larger than that of a first-order method throughout. For
instance, ADER5 - J1 with the implicit MT-HEOC solver would have attained that error at the
computational time of ∼ 98 centuries.

Figure 2.7 depicts the normalized cross-sectional area A
A0

for the exact solutions (shaded plot)
and the numerical solutions (dotted line) for the three vessels at the output time. Frames 2.7a
and 2.7b depict the numerical solutions from the fully and partially third-order ADER scheme with
the MT-HEOC solver, respectively. The results show that a first order at the junction spoils the
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accuracy throughout the space-time domain.
From the empirical convergence rate studies, we conclude that it is imperative to use high-order

numerical schemes at junctions, in order to preserve the desired high-order of accuracy in the full
computational domain.

2.3.2 A stiff problem for a junction
Following the work of Müller et al. [Müller 2012], we say that a source term is stiff when

∆x
maxi

(
|βi|
)

maxi
(
|λi|
) > 1 , (2.55)

where ∆x, βi and λi are the spatial mesh size, the i-th eigenvalue of the Jacobian of the source term
∂S(Q)

∂Q and of the physical flux ∂F(Q)
∂Q respectively, see also [Dumbser 2008]. In the one-dimensional

blood flow equations, assuming constant parameters and zero external pressure, source term (2.7)
reads

S(Q) =

[
0
−R q

A

]
, (2.56)

where R = γπ
µ

ρ
. The eigenvalues of (2.56) are β1 = 0 and β2 =−R

A . Condition (2.55) can be written
as

∆x
R

Amaxi(|λi|)
> 1 . (2.57)

As pointed out by Müller et al. [Müller 2012], source term (2.56) may become stiff under physiolog-
ical conditions. If the cross-sectional area A approaches zero, then ratio (2.57) increases arbitrarily
leading to a stiff problem. This happens routinely in veins: they are highly compliant and collapse
easily under physiological situations.

To test the capability of the ADER scheme with the MT-HEOC solver for both the GRP and
the J-GRP to deal with stiff source terms, we considered a network of N = 3 arteries with one
junction. Although arteries do not collapse under physiological conditions because they are stiffer
and designed to endure high pressure from the pumping action of the heart, we could still simulate a
problem in the stiff regime assuming condition (2.57) and appropriately adjusting the cross-sectional
area of the initial condition.

We considered three vessels with local coordinate [a1,b1] = [−1,0], and [a2,b2] = [a3,b3] = [0,1],
and vertex V located in 0. The initial condition for the cross-sectional area A for the first vessel
was

A(x,0) = 0.1A0 +A0e−100
(

x−0.5
)2

, (2.58)

while for the other vessels was A(x,0) = 0.1A0. See Frame 2.8b shows A(x,0) in the three vessels at
the initial time. For each vessel we set u(x,0) = 0. Vessels parameters are: m = 1/2, n = 0, length
L = 1 m, cross-sectional radius at equilibrium r0 = 0.1 mm, cross-sectional area at equilibrium
A0 = πr2

0 , Young modulus E = 0.4 MPa, wall-thickness at equilibrium h0 = 1.1 mm, resistance defined
in (2.56) R = 8π

µ

ρ
and dynamic viscosity µ = 2.5 mPas. Computation parameters are: output time

tend = 2 s, 100 cells, Courant number coefficient CFL = 0.9. Transmissive boundary conditions was
used away from the junction. With the given parameters, ratio (2.57) at the junction varies in time
from 3 to 7 and results in a stiff problem.
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Figure 2.8: A stiff problem connecting three vessels at a single junction. The fourth-order ADER scheme
with the MT-HEOC solver for both the GRP and J-GRP was used. Frame (a): the normalized cross-sectional
area A

A0
at the fixed time tend = 2 s as a function of axial distance is depicted for each vessel. Note that the

vertical line at x = 0 represents the junction position. The normalized cross-sectional area of one vessel is
depicted in [−1,0], while the remaining two are coincident and are depicted in [0,1]. The numerical solutions
with 100 cells for each vessel is shown by , while a reference solution computed with a first-order method
using 2000 cells for each vessel is shown by . Frame (b): illustration of the initial condition and computed
results. The initial condition is depicted by the shaded graph, while the solution at the output time is shown
by the single lines.

Frame 2.8a shows computed results for a fourth-order ADER scheme with the MT-HEOC solver
for both the GRP and J-GRP. Satisfactory agreement is seen between the computed solution and
a reference solution obtained with a first-order method with a fine grid of 2000 cells . See
legend of 2.8a for further information. It is worth remarking that for this test problem, if one uses an
explicit solver for the J-GRP, the simulation fails after few time steps. This observation emphasizes
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Figure 2.9: Computed flow q(x, t) at midpoint of left renal artery. The ADER scheme with the MT-HEOC
solver for both the GRP and J-GRP was used. Frame (a): comparison between fully and partially second-order
methods with different mesh sizes. Frame (b): comparison between fully and partially fourth-order methods
with different mesh sizes.

that in the stiff regime the use of a locally implicit solver is mandatory. See Frame 2.8b for an
illustration of the initial condition and the computed results.
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Figure 2.10: Computed flow q(x, t) at midpoint of left renal artery. Frame (a): the ADER scheme with the
MT-HEOC solver for both the GRP and J-GRP was used. Comparison between fully and partially third-order
methods with different mesh sizes. Frame (b): comparison between fully second-order schemes with different
solvers, with a fixed mesh size. A reference solution is also shown (ADER5 - J5 TT-BK : 0.25 cm).

2.3.3 Application to a network of arteries

In this section, we consider the model network of major arteries presented by Matthys et al.
[Matthys 2007b], composed of 37 tubes that represent arteries, a pump that resembles the outflow
of blood from the heart and terminal resistances. Mechanical properties of each vessel, terminal
resistances, network geometry, and inflow measured at the root of ascending aorta are given in
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Figure 2.11: Computed pressure along the aorta and part of the right iliac femoral (vessel no. 1, 8, 10, 15,
17, 23, 25, 27, 28 of model in [Matthys 2007b]). The fully and partially second-order ADER schemes with the
MT-HEOC solver were used. Mesh size runs from 0.25 cm to 4 cm. A reference solution from a fully fifth-order
ADER scheme with a mesh size of 0.125 cm is depicted. Frame (a): numerical results with a fully second-order
method are shown. Frame (b): numerical results with a partially second-order method are shown.

[Matthys 2007b, Matthys 2007a].
In the physical model of Matthys et al. [Matthys 2007b], the cross-sectional area at equilibrium

A0 varies along the vessel length and this requires the use of well-balanced schemes. Non well-
balanced schemes may give wrong numerical results as pointed out in [Müller 2013c]. The current
version of our scheme is not strictly well-balanced. Therefore, we have slightly modified the physical
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Figure 2.12: Computed pressure along the aorta and part of the right iliac femoral (vessel no. 1, 8, 10,
15, 17, 23, 25, 27, 28 of model in [Matthys 2007b]). The fully and partially third-order ADER schemes with
the MT-HEOC solver were used. Mesh size runs from 0.25 cm to 4 cm. A reference solution from a fully
fifth-order ADER scheme with a mesh size of 0.125 cm is also depicted. Frame (a): numerical results with
a fully third-order method are shown. Frame (b): numerical results with a partially third-order method are
shown.

model of Matthys et al. [Matthys 2007b] by neglecting the taper of tubes and taking mean values
for parameters, for each vessel.

Computations were performed using CFL = 0.9, the inflow boundary condition and terminal
resistances was treated as in [Matthys 2007a], and the tube law was purely elastic. The number of
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Figure 2.13: Computed pressure along the aorta and part of the right iliac femoral (vessel no. 1, 8, 10,
15, 17, 23, 25, 27, 28 of model in [Matthys 2007b]). The fully and partially fourth-order ADER schemes with
the MT-HEOC solver were used. Mesh size runs from 0.25 cm to 4 cm. A reference solution from a fully
fifth-order ADER scheme with a mesh size of 0.125 cm is also depicted. Frame (a): numerical results with a
fully fourth-order method are shown. Frame (b): numerical results with a partially fourth-order method are
shown.

cells Mcells for each vessel was chosen according to

Mcells = max( f loor(L/∆xmax),ord) , (2.59)

where L is the length of the vessel, ∆xmax is the maximal space size (e.g. 0.02 m) and ord is the order



36
2. Junction-generalized Riemann problem for stiff hyperbolic balance laws in networks: An

implicit solver and ADER schemes

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

x [m]

79

79.5

80

80.5

81

81.5

82

P
[m

m
H
g
]

Reference solution

ADER2 - J1 : 4.00 cm

ADER2 - J1 : 2.00 cm

ADER2 - J1 : 1.00 cm

ADER2 - J1 : 0.50 cm

ADER2 - J1 : 0.25 cm

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

x [m]

79

79.5

80

80.5

81

81.5

82

P
[m

m
H
g
]

Reference solution

ADER2 - J2 : 4.00 cm

ADER2 - J2 : 2.00 cm

ADER2 - J2 : 1.00 cm

ADER2 - J2 : 0.50 cm

ADER2 - J2 : 0.25 cm

(b)

Figure 2.14: Computed pressure along the aorta and part of the right iliac femoral (vessel no. 1, 8, 10, 15,
17, 23, 25, 27, 28 of model in [Matthys 2007b]). The fully and partially second-order ADER schemes with the
MT-HEOC solver were used. Mesh size runs from 0.25 cm to 4 cm. The minimum number of cells was 5. A
reference solution from a fully fifth-order ADER scheme with a mesh size of 0.125 cm is depicted. Frame (a):
numerical results with a fully second-order method are shown. Frame (b): numerical results with a partially
second-order method are shown.

of the numerical method. Throughout the results we only refer, for instance, to 2 cm to indicate
∆xmax = 0.02 m. Numerical results obtained with fully and partially high-order methods with
the same order of accuracy, have the same spatial mesh size. Accordingly to the above-mentioned
criterion, the mesh is different for each order of accuracy. Therefore, caution is required in assessing
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the numerical results obtained with different orders.
Another way to proceed with the assessment of results from high-order methods, in our case

from one to five, is to impose a minimum number of cells which is common for all orders; in the
present case the minimum is five. To do so we utilize the following procedure

Mcells = max( f loor(L/∆xmax),5) . (2.60)

However there is a drawback with this approach. As the mesh is already fine enough, the differences
between fully and partially high-order approximations are not clearly manifested in the results. In
other words, the fine mesh has masked the high-order effect of the methods. Such phenomena is
more evident for the schemes in the high-order range. Throughout this chapter, the default criterion
is given by (2.59), unless specified.

Figures 2.9 and 2.10 show the computed flow q(x, t) of the left renal artery after 20 cardiac cycles
and the maximum flow peak at cardiac reference time 0.4 s. For Figure 2.9 and Frame 2.10a, we
used ADER methods of different orders, with the MT-HEOC solver. Frame 2.9a compares fully and
partially second-order methods. A first-order method at junctions spoils the accuracy in space and
time with a damping effect for extrema. The fully second-order method with 2 cm is comparable
with the partially second-order method with 0.5 cm . Similar results can be found for fully and
partially fourth-order ADER methods in Frame 2.9b. Fully and partially third-order methods with
different mesh sizes can be found in 2.10a. The partially third-order method requires a mesh size
of 0.5 cm to match the solution obtained with the fully third-order method with a mesh size
of 2 cm , and the computational times per cardiac cycle are respectively 29.859 s and 9.556
s, see Table 2.2. The computational time of the partially third-order method is three times larger
than the one of the fully third-order method. This observation emphasizes the better efficiency of
high-order methods used at junctions. Frame 2.10b shows a comparison between different solvers.
We compare the numerical results given by the TT-BK, the HEOC and the MT-HEOC solvers for
the GRP and the J-GRP for a fixed mesh size of 2 cm. A reference solution given by the fifth-order
ADER scheme with the TT-BK solver for the GRP and the J-GRP using a fine mesh size of 0.25
cm is also shown. All solvers give similar numerical results.

Figures 2.11 to 2.14 depict computed pressure in the aorta and part of the right iliac femoral,
at the output time. Numerical results were obtained using ADER schemes of different orders, with
the MT-HEOC solver. In Figure 2.14 the minimum number of cells was chosen accordingly to
(2.60). A reference solution obtained using a fully fifth-order method with a fine mesh size of 0.125
cm is also shown. A first-order method at junctions spoils the accuracy of the numerical schemes
insofar as first-order errors travel throughout the network of vessels with a damping effect for the
pressure pulse-wave. Frames 2.11a and 2.11b show numerical results using fully and partially
second-order methods, respectively. The second-order method at junctions improves the accuracy
for pressure. A similar pattern is also seen with fully and partially third and fourth-order schemes;
the numerical results are shown in Figures 2.12 and 2.13, respectively. The fully second and the
partially fourth-order solvers using a mesh size of 2 cm are comparable. Computational times per
cardiac cycle are respectively 1.621 s and 33.373 s, see Table 2.2. The computational time of the
partially fourth-order method is 20 times larger than that for the fully second-order method. This
suggests that accurate numerical results with less computational effort can be achieved by using
high-order numerical methods at junctions. Frames 2.14a and 2.14b show numerical results using
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TT-BK TT HEOC MT-HEOC
cm L1 tCPU [s] L1 tCPU [s] L1 tCPU [s] L1 tCPU [s] L1 tCPU [s] L1 tCPU [s]

ADER2 - J2 ADER2 - J1 ADER2 - J2 ADER2 - J1 ADER2 - J2 ADER2 - J1

4.00 1.9259e-06 13.62 2.7016e-06 8.13 2.3375e-06 13.28 2.7015e-06 8.94 2.3385e-06 22.47 2.7011e-06 17.24
2.00 8.4894e-07 18.18 2.0112e-06 11.21 9.3598e-07 15.48 2.0112e-06 12.26 9.3386e-07 32.42 2.0115e-06 26.47
1.00 2.5310e-07 21.33 1.2044e-06 15.89 2.6439e-07 22.52 1.2044e-06 18.49 2.6125e-07 49.84 1.2023e-06 44.85
0.50 6.4895e-08 33.37 2.6798e-07 27.30 6.6194e-08 37.56 2.6797e-07 33.73 6.9441e-08 91.83 2.6526e-07 86.72
0.25 1.6004e-08 145.51 8.3692e-08 125.89 1.6343e-08 156.73 8.3690e-08 149.62 4.8067e-08 415.60 9.7928e-08 400.10

ADER3 - J3 ADER3 - J1 ADER3 - J3 ADER3 - J1 ADER3 - J3 ADER3 - J1

4.00 1.1156e-06 29.80 2.4775e-06 20.35 9.0297e-07 35.73 2.4775e-06 22.22 9.0297e-07 121.02 2.4775e-06 102.87
2.00 3.8831e-07 41.32 1.8020e-06 30.23 3.2900e-07 45.01 1.8020e-06 34.55 3.2899e-07 191.12 1.8020e-06 174.09
1.00 1.7415e-07 58.48 8.7341e-07 48.69 1.8747e-07 70.16 8.7339e-07 58.08 1.8744e-07 333.59 8.7336e-07 313.27
0.50 4.3286e-08 99.71 2.4397e-07 90.38 4.3579e-08 119.12 2.4396e-07 107.56 4.3567e-08 624.63 2.4394e-07 597.18
0.25 1.4918e-08 305.94 6.1851e-08 291.07 1.5206e-08 348.90 6.1850e-08 335.37 1.5195e-08 1953.85 6.1819e-08 1942.40

ADER4 - J4 ADER4 - J1 ADER4 - J4 ADER4 - J1 ADER4 - J4 ADER4 - J1

4.00 8.4933e-07 50.16 2.1885e-06 33.67 1.1062e-06 56.95 2.1885e-06 39.30 1.1062e-06 442.74 2.1885e-06 433.08
2.00 2.8120e-07 69.17 1.4788e-06 54.67 2.1396e-07 73.79 1.4788e-06 57.55 2.1396e-07 687.75 1.4788e-06 667.46
1.00 1.0004e-07 99.75 7.0308e-07 83.25 6.5577e-08 113.54 7.0306e-07 97.97 6.5577e-08 1194.90 7.0306e-07 1194.90
0.50 3.3719e-08 170.22 2.3124e-07 154.05 2.5942e-08 203.87 2.3123e-07 189.50 2.5942e-08 2315.43 2.3123e-07 2348.78
0.25 1.4633e-08 398.09 5.4277e-08 389.10 1.4077e-08 459.91 5.4276e-08 439.69 1.4077e-08 5399.23 5.4276e-08 5431.68

ADER5 - J5 ADER5 - J1 ADER5 - J5 ADER5 - J1 ADER5 - J5 ADER5 - J1

4.00 4.1746e-07 119.61 1.8771e-06 88.18 7.6933e-07 143.58 1.8770e-06 106.82 7.6933e-07 3834.08 1.8770e-06 3693.50
2.00 2.7524e-07 162.53 1.3384e-06 121.84 2.3790e-07 179.39 1.3384e-06 153.56 2.3790e-07 5064.60 1.3384e-06 5161.99
1.00 9.4003e-08 241.21 6.6951e-07 211.75 9.5565e-08 283.49 6.6950e-07 255.51 9.5565e-08 8564.96 6.6950e-07 9097.09
0.50 3.1106e-08 439.28 2.2883e-07 412.24 2.9227e-08 520.58 2.2882e-07 492.50 2.9227e-08 15949.96 2.2882e-07 16603.64
0.25 1.4652e-08 862.57 5.3384e-08 778.46 1.4200e-08 953.31 5.3383e-08 927.03 1.4200e-08 29192.95 5.3383e-08 29246.10

Table 2.2: Errors and computational times for a network of arteries. Left column shows the meshes defined
by the maximum spatial mesh size ∆xmax. Second to fourth columns show results different combinations of
GRP and J-GRP solvers. Within every column we show L1 errors and corresponding computational times for
two combination of schemes. L1 errors were evaluated considering the flows q = Au in the whole arterial
system; for a reference solution we used the fully fifth-order ADER scheme with a mesh size of 0.125 cm. All
numerical simulations were performed in an Intel Core i7-2600 with 4 cores (3.40 GHz clock speed). The code
was paralellized by means of openMP. Simulations were stopped after twenty cardiac cycles.

fully and partially second-order methods, respectively, where the minimum number of cells was 5.
The numerical results are improved throughout. A second order method at junctions improves the
accuracy for pressure, even though the differences are less significant than that depicted in Frames
2.11a and 2.11b.

Table 2.2 shows L1 errors and computational times for schemes of order up to five in space
and time using different combination of solvers. First-order methods at junctions coupled with high-
order methods in the interior of the domain have larger errors compared to fully high-order methods.
Computational times for the implicit solver MT-HEOC are larger compared to the explicit ones.

Figure 2.15 depicts L1 errors against computational times. We compare ADER schemes of
different orders, in all cases using the MT-HEOC solver. Errors of fully high-order methods (red-
shaded colors) are always below to partially high-order methods (blue-shaded colors). It is worth
noting that we formally do not preserve fully high-order accuracy in the whole arterial network
due to our simple, low order, treatment of inflow boundary condition and terminal resistances.
Consequently, the decreased rate of the fully fifth-order method is nearly equivalent to the fully
second-order scheme. Nevertheless, the benefit of using high-order methods at junctions remains
visible, but quite clearly, for a real application one must incorporate appropriate treatment of the
inflow boundary and terminal resistances.
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Figure 2.15: Efficiency plot for a network of arteries: L1 errors against computational times. Comparison
is shown between ADER schemes of different orders, used in conjunction with the MT-HEOC solver. L1 errors
were evaluated considering the flows q = Au in the whole arterial system; for a reference solution we used
the fully fifth-order ADER scheme with a mesh size of 0.125 cm. Blue-shaded and red-shaded colors refer to
partial and fully high orders, respectively.

2.4 Summary and conclusions
Here we have proposed a new implicit solver for the Junction-Generalized Riemann Problem (J-
GRP). This solver is an extension of the recently proposed Montecinos-Toro implicit solver for the
GRP. We have then put together the two building blocks in the ADER framework to construct
schemes of arbitrary accuracy in space and time for system of hyperbolic balance laws in networks.
Specifically, we have applied the resulting methods to networks of blood vessels. To systematically
assess convergence rates we have proposed a test problem with exact solution, consisting of three
vessels connected at a single junction. Schemes of up to fifth order in space and time have been
tested. The numerical experiments have shown that it is imperative to match the accuracy of the
schemes at junctions to that in the interior of the domain. Otherwise the overall accuracy is lost. In
addition, we have proposed a test problem for blood vessel networks in which there is a stiff source
term. Our implicit method performed as expected, it endures the proposed test problem, while an
explicit solver fails after few time steps. We have also deployed the present numerical techniques
to simulate the physical model of 37 compliant silicon tubes (arteries) and 21 junctions proposed by
Matthys et al. [Matthys 2007b]. Again, in this application it is clearly seen that the accuracy of the
scheme at junctions is crucial to maintain the overall accuracy. Otherwise, low-order errors travel
through the network of vessels with a damping effect, for example, for the pressure pulse-waves. The
proposed methodology can be applied to more general network problems if high order of accuracy
is desired.
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Chapter 3

A one-dimensional mathematical
model of collecting lymphatics coupled
with an electro-fluid-mechanical
contraction model and valve dynamics

3.1 Introduction

The lymphatic system is an intricate network of vessels and nodes which connect tissues to the
bloodstream. The main functions of the lymphatic system comprise maintenance of tissue fluid
balance through drainage of excess interstitial fluid, the transport of proteins and waste prod-
ucts, as well as the transport of immune cells [Swartz 2001]. The building block of collecting
lymphatic vessels is the lymphangion: a mini-heart like, deformable vessel, which contracts and
propels lymph into the next lymphangion, and has several mechanobiological auto-regulatory sys-
tems to provide optimal flow in various scenarios [Kunert 2015, Munn 2015]. The lymphangion
is enclosed between valves which promote unidirectional flow. The frequency of lymphatic con-
tractions depends on the circumferential stretch of the vessel wall and on the wall shear stress
[Munn 2015, Telinius 2015, Gashev 2002]. For complete reviews of the mechanics of lymphangions
and collectors, see [Munn 2015, Breslin 2014, Margaris 2012].

The lymphatic system has two different types of valves called primary and secondary valves.
The former is located at the initial lymphatics at the level of the endothelium, while the latter is
located between lymphangions in collectors [Schmid-Schönbein 2003, Bazigou 2013]. Primary and
secondary lymphoedema, a lymphatic disease that leads to tissue swelling, is linked to lymphatic
valve deficits [Kinmonth 1954, Mellor 2011, Herrick 2008, Noel 2001, Mihara 2012]. For instance,
the lack of valves in lymphoedema distichiasis impairs lymphatic flow due to the inability to properly
pump lymph forward [Mellor 2011, Petrova 2004, Sabine 2015, Bazigou 2013]. Also, chronic venous
insufficiency leads to fibrotic lymph vessels due to hypertension, it compromises the functionality of
lymphatic valves, and results in accumulation of fluid in tissues [Mortimer 2004, Rasmussen 2016].
Despite the connection between lymphatic valve deficits and lymphoedema, to the authors’ knowl-
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edge, the effect of non-functional valves in the lymphatic system has not been investigated and
quantified. This is probably due to the difficulties in performing experiments on animal lymphatic
valves, though the effects of genes mutations in engineered mice can be studied.

There is a substantial gap in the literature between mathematical models for the circulatory
[Strocchi 2017, Liang 2009a, Müller 2014, Quarteroni 2016b], and lymphatic systems. The first re-
ported attempt to construct a mathematical model for the lymphatic system is attributed to Reddy
et al. [Reddy 1974]. In this work, the one-dimensional equations were written but the actual model
implemented was zero dimensional. MacDonald et al. [Macdonald 2008] did further work based
on this model. Extensive research has been carried out on the bases of lumped-parameter mod-
els [Venugopal 2007, Bertram 2011, Bertram 2014a, Bertram 2014b, Gajani 2015, Bertram 2016a,
Jamalian 2016, Caulk 2016]. Jamalian et al. [Jamalian 2016] constructed a lumped-parameter model
to simulate lymph transport in a network of rat lymphangions. Caulk et al. [Caulk 2016] combined
the lumped-parameter model described by Bertram et al. [Bertram 2014b] with their four-fibre fam-
ily constitutive law proposed in [Caulk 2015] and studied the variation of muscle contractility in
response to a sustained elevation in afterload [Caulk 2016]. The Authors also included in their
model the dependence of contraction frequency on transmural pressure and wall shear stress. A
mechanobiological oscillatory model for the lymphatic contraction has been proposed by Kunert
et al. [Kunert 2015]. Their contribution included a dynamical model for the contractibility of the
vessel wall. The resulting model was able to control lymphatic transport via mechanobiological
feedback loops, given by stretch-activated contractions and flow-induced relaxations. Recently,
the relevance of this work has been questioned, see [Davis 2016]. With the aim of construct-
ing a mathematical model of the entire lymphatic system, the previously mentioned mathematical
models for lymphangions, except for [Kunert 2015, Baish 2016], are based on a relatively simple
time-dependent contraction dynamics. These models 1) prescribe contraction dynamics by using
trigonometric functions, and 2) prescribe time delays between adjacent lymphangions. It is no doubt
highly desirable to model all mechanisms associated with lymphatic contractions by resorting to
basic principles from electro-fluid mechanics. In particular, one would expect that the occurrence of
a lymphatic contraction should be dependent on physical quantities, such as transmural pressure
and local shear forces.

There is an extensive body of literature on cardiac contractions [Quarteroni 2016a, Colli Franzone 2014].
All these works have been greatly influenced by the pioneering work of Hodgkin and Huxley
[Hodgkin 1952] on action potentials in neurons. The FitzHugh-Nagumo model [Nagumo 1962] is
an example of a simplified, two-parameter formulation of the original Hodgkin-Huxley model, con-
sisting of a system of two ODEs with a fast and a slow variable. The former represents the action
potential, while the latter phenomenologically summarises all the effects of all ionic currents. Many
studies have been done to couple modified versions of the FitzHugh-Nagumo model to the heart
contractions [Colli Franzone 2014]. However, to date no studies have attempted to model contrac-
tions of lymphangions with the previously mentioned dynamical and phenomenological set of ODEs
for action potentials.

In the present Chapter, we propose a one-dimensional model for lymph flow in collecting lym-
phatics coupled with an Electro-Fluid-Mechanical Contraction (EFMC) model for lymphatic vessel
wall contractions based on a modified FitzHugh-Nagumo model. The current work presents the first
attempt to couple the electrical activity of the lymphatic wall with the dynamics of the lymphatic
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Figure 3.1: Illustration of a collecting lymphatic. A lymphangion is a lymphatic vessel delimited by
upstream and downstream valves. A lymphatic vessel composed of two or more lymphangions is called a
collecting lymphatic or collector. The natural lymph flow direction is from the upstream side to the downstream
one and the lymphatic valves prevent backflow throughout the collecting lymphatic. The figure also shows a
general cross-sectional area.

fluid modelled in a one-dimensional manner. In particular, in this work we incorporate some of the
mechanobiological mechanisms which regulate the lymphatic contractions, such as (1) the positive
dependency of frequency on the transmural pressure and (2) the inhibition of lymphatic contraction
due to wall-shear stresses.

3.2 Methods
We aim to model the dynamics of flowing lymph inside a collecting lymphatic propelled by lymphatic
contractions and pressure gradients, and the dynamics of lymphatic valves. Fig. 3.1 illustrates a
collecting lymphatic, a single lymphangion and two lymphatic valves.

3.2.1 A one-dimensional model for lymph flow
Here we assume the lymph to be an incompressible Newtonian fluid. To derive the one-dimensional
flow equations for a deformable lymphatic vessel, one can follow the procedure done for arteries
and veins, where Reynolds’ transport theorem is used to obtain the equations for the conservation of
mass and momentum in a deformable tube, see [Formaggia 2009, Toro 2016]. The one-dimensional
flow equations for a deformable vessel, and for a lymphatic vessel in particular, are





∂tA+∂xq = 0 ,

∂tq+∂x

(
q2

A

)
+

A
ρ

∂x p =− f
ρ
,

(3.1)

where x is the space variable, t is time, A(x, t) is cross-sectional luminal area of the vessel,
q(x, t) = A(x, t)u(x, t) is flow, u(x, t) is velocity, p(x, t) is pressure, ρ is lymph density, f (x, t) =
2(γ + 2)πµu(x, t) is friction force per unit length of the tube, with the parameter γ dependent on
the chosen velocity profile [Alastruey 2006], and µ is the dynamic viscosity. To close the system
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of equations, an additional relation between pressure p(x, t) and cross-sectional area A(x, t) is
required and is called tube law. The lymphatic wall is characterized by an intimal layer of
endothelial cells surrounded by a discontinuous basement membrane, a media composed of layers
of smooth muscle cells intermixed with collagen and elastin, and an adventitia layer that consists of
fibrous tissue [Caulk 2015, Zawieja 2008]. Elastin fibres give lymphatic vessels a compliant, elastic
behaviour, while collagen prevents vessels from stretching beyond their physiological limits. The
overall dynamics of elastin and collagen is reflected in highly non-linear tube laws. Here we
propose the following general tube law:

p(x, t) = K(x, t)ψ (A(x, t);A0(x))+ pe(x, t) , (3.2)

with
ψ(A(x, t);A0(x)) =

(
A(x, t)
A0(x)

)m

−
(

A(x, t)
A0(x)

)n

+C
[(

A(x, t)
A0(x)

)z

−1
]
, (3.3)

where p(x, t) is the internal pressure, pe(x, t) is the external pressure, A0(x) is the vessel cross-
sectional area at zero transmural pressure (equilibrium or stress-free), K(x, t) is a time-dependent
coefficient, m≥ 0, n≤ 0, z≥ 0, and C≥ 0 are real numbers to be specified. The transmural pressure
is defined as

ptransm(x, t) := p(x, t)− pe(x, t) . (3.4)

Inspired by [Macdonald 2008], we take the simplified approach to model lymphatic contractions
by varying the coefficient K(x, t) from a minimal value Kmin(x) to a maximum value Kmax(x) as follows

K(x, t) = Kmin(x)+ s(x, t)
(
Kmax(x)−Kmin(x)

)
, (3.5)

where s(x, t) ∈ [0,1] is the state of contraction. The lymphangion is contracted when s(x, t) = 1 and
is relaxed when s(x, t) = 0.

The tube law can be recasted in terms of the active and passive components as follows:

p = fp

(
A
A0

)
+ fa

(
A
A0

,s
)
+ pe , (3.6)

where
fp

(
A
A0

)
= Kminψ (A;A0) (3.7)

is the passive pressure-area relationship and

fa

(
A
A0

,s
)
= s(Kmax−Kmin)ψ (A;A0) (3.8)

is the active tension contribution. The passive pressure-area relationship mirrors the passive rela-
tionship proposed by others [Bertram 2011, Jamalian 2016]. The active tension contribution does
not rely on a physiologically based model of muscle contractions, but rather emulates the contraction
phenomena in terms of pressure-area curves.

Here we model lymphatic vessels from the mesentery of rats, whose parameters are found in
Table 3.1. The parameters of the tube law and the minimum coefficient Kmin were tuned to fit the
experimental measurements shown in Bertram et al. [Bertram 2014a] and performed by Davis et
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Figure 3.2: Pressure-diameter relation (tube law). Here we show the tube law used for the lymphatic wall.
The parameters were tuned to fit the experimental measurements of Davis et al. [Davis 2011] and are found
in Table 3.1. The figure also shows the tube laws at relaxed and contracted states. The external pressure was
set to zero here.

al. [Davis 2011], while the maximum coefficient Kmax was estimated following [Caulk 2016] and
[Scallan 2012]. As can be seen in Fig. 3.2, the relationship between pressure and diameter is
highly non-linear.

The Wall Shear Stress (WSS) is fundamental in the auto-regulatory homeostatic mechanisms
of lymphatic contractions. Following [Alastruey 2006], the WSS in our formulation is

τ(x, t) = u(x, t)µ
γ +2
r(x, t)

, (3.9)

where r(x, t) is the inner radius of the lymphatic vessel.

Conservative formulation of the one-dimensional lymph flow equations

It is possible to write the lymph flow equations in conservative form as follows:

∂tQ(x, t)+∂xF(Q(x, t),x, t) = S(Q(x, t),x, t) , (3.10)
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Parameter Description Value Units Reference
Unknowns

A Lymphatic cross-sectional luminal (inner) area A(x, t) µm2 -
q Lymphatic flow q(x, t) µL min−1 -
v Excitation variable v(t) - -
w Recovery variable w(t) - -
s State of contraction (0≤ s≤ 1) s(t) - -
I Stimulus I(t) - -
ξ State of the lymphatic valve (0≤ ξ ≤ 1) ξ (t) - -
qv Flow across the lymphatic valve qv(t) µL min−1 -

Material parameters
γ Parameter for velocity profile 2 − Alastruey 2006 [Alastruey 2006]
µ Lymph dynamic viscosity 1 cP Bertram et al. 2011 [Bertram 2011]
ρ Lymph density 998 kg m−3 Macdonald et al. 2008 [Macdonald 2008]

Kmax Maximum coefficient 405 Pa Estimated
Kmin Minimum coefficient 105 Pa Fitted from Bertram et al. 2014 [Bertram 2014a]
r0 Inner radius at zero transmural pressure 47.7 µm Bertram et al. 2014 [Bertram 2014a]
A0 Cross-sectional area at zero transmural pressure πr2

0 µm2 -
L Lymphangion length 3.0 mm Jamalian et al. 2016 [Jamalian 2016]
pe External pressure 2 cmH2O Jamalian et al. 2016 [Jamalian 2016]

Tube law
m Parameter 0.5 - Fitted from Bertram et al. 2014 [Bertram 2014a]
n Parameter -5.0 - Fitted from Bertram et al. 2014 [Bertram 2014a]
z Parameter 19.0 - Fitted from Bertram et al. 2014 [Bertram 2014a]
C Parameter 1.0e-16 - Fitted from Bertram et al. 2014 [Bertram 2014a]

Electro-Fluid-Mechanical Contraction (EFMC) model
texcited Required time to perform an action potential ≈ 2 s Estimated

tactivation Time required to activate an action potential Eq. (3.38) s -
fmin Minimum frequency at circumferential stretch λ̄θ = 1 3.0 min−1 Gashev et al. 2004 [Gashev 2004]
fCa Maximum frequency at circumferential stretch λ̄θ = λCa 20.0 min−1 Gashev et al. 2004 [Gashev 2004]
RI Radius of the activation region 0.1 - Estimated
nCa Stretch-activation parameter 20 - Estimated
λCa Circumferential stretch at which the contraction frequency is fCa 2.784 - Estimated
k(1)Ca Baseline increasing rate of stimulus I Eq. (3.41) s−1 -
k(2)Ca Stretch-activated increasing rate of stimulus I Eq. (3.41) s−1 -
krel Decreasing rate of the stimulus I 10 s−1 Estimated
a1 Parameter 100 s−1 Estimated
a2 Parameter 0.5 - Estimated
a3 Parameter 25.0 - Estimated
b1 Parameter 3.0 s−1 Estimated
b2 Parameter 0.0 s−1 Assumed
c1 Increasing rate of contraction state s 10 s−1 Estimated
c2 Decreasing rate of contraction state s 3 s−1 Estimated
Ĩ Approximated stimulus required to trigger an action potential Eq. (3.42) - -

kNO Contraction inhibition parameter (0≤ kNO ≤ 1) 0.8 - Estimated
τNO Reference wall shear stress 6.0 dyne cm−2 Estimated
nNO Wall shear stress inhibition parameter 1.2 - Estimated

Valve model
∆popen Valve opening threshold pressure difference 0 cmH2O Assumed
∆pclose Valve closure threshold pressure difference 0 cmH2O Assumed

Kvo Rate coefficient valve opening 1.0 Pa−1 s−1 Estimated
Kvo Rate coefficient valve closure 1.0 Pa−1 s−1 Estimated
B Bernoulli resistance Eq. (3.48) cmH2O s2 µL−2 -
L Lymphatic inertia Eq. (3.48) cmH2O s2 µL−1 -
R Viscous resistance to flow Eq. (3.48) cmH2O s µL−1 -

Mst Maximum valve opening (0≤Mst ≤ 1) 1.0 - Mynard et al. [Mynard 2012]
Mrg Minimum valve closure (0≤Mrg ≤ 1) 0.0 - Mynard et al. [Mynard 2012]
Le f f Effective length 0.5 mm Estimated

Table 3.1: Parameters used for the one-dimensional EFMC model for lymph flow. We adopted the
geometrical structure of collecting lymphatics from rat mesentery. Since the parameters of the mathematical
model for the electrical activity were not directly available, we fitted the EFMC model parameter to qualitatively
reproduce the experimental measurement shown in [Telinius 2015].

where

Q(x, t) =
[

A(x, t)
A(x, t)u(x, t)

]
, (3.11)

F(Q,x, t) =




Au

Au2− K
ρ

A0∂A0 Ψ


 , (3.12)

S(Q,x, t) =




0

− 1
ρ

(
f +A∂x pe +Ψ∂xK +K∂xA0∂A0Ψ

)

 , (3.13)
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with
Ψ =

∫

A
ψ(A;A0)dA

= A0

(
1

m+1

(
A
A0

)m+1

− 1
n+1

(
A
A0

)n+1

+C
1

z+1

(
A
A0

)z+1
)

,
(3.14)

and

∂A0Ψ =−
(

m
m+1

(
A
A0

)m+1

− n
n+1

(
A
A0

)n+1

+C
z

z+1

(
A
A0

)z+1
)

. (3.15)

Q is the vector of the conserved variables, F is the physical flux and S is the source term. The
constants arising from the integrals (3.14) and (3.15) are set to zero for consistency with (3.1) and
(3.2), see [Toro 2016].

The present formulation allows for a space-time coefficient K (x, t) in the equations. This
enables us to simulate travelling contraction-waves through the lymphatic wall by prescribing a
space-time varying contraction state s(x, t). However, in the present work, we consider the simpler
case in which the contraction state is constant throughout the lymphangion, namely s = s(t), and
we also neglect the interaction between adjacent lymphangions. Then, instead of prescribing a
trigonometric function for s, here we propose a set of governing ODEs given in Section 3.2.2. We
also assume parameters Kmin (x), Kmax (x) and pe (x) to be constant. As a result, the source term
simplifies in

S(Q,x, t) = S(Q) =

[
0

−2(γ +2)π
µ

ρ
u

]
. (3.16)

The general case of variable material properties poses mathematical [Toro 2013] and numerical
challenges, and requires the use of well-balanced schemes [Müller 2013a].

Mathematical analysis of the one-dimensional lymph flow equations

Here we study the mathematical properties of (3.10) assuming constant parameters along the lym-
phatic vessel. The equations in (3.10) are a generalization of the one-dimensional blood flow
equations [Toro 2016]. As a matter of fact, the main difference is an additional term in the tube
law (3.3). For this reason, here we summarize the main mathematical structure of the lymph flow
equations without proofs. System (3.10) can be written in quasi-linear form as

∂tQ+A(Q, t)∂xQ = S(Q) , (3.17)

where

A(Q, t) =




0 1
A
ρ

K∂Aψ−u2 2u


 , S(Q) =




0

− f
ρ


 . (3.18)

The eigenvalues of matrix A are

λ1 = u− c , λ2 = u+ c , (3.19)

where c is the wave speed

c =

√
A
ρ

K∂Aψ =

√
K
ρ

[
m
(

A
A0

)m

−n
(

A
A0

)n

+Cz
(

A
A0

)z]
. (3.20)
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We assume parameters m≥ 0, n≤ 0, z≥ 0, and C ≥ 0 for the tube law. Thus, the wave speed c is
always real. The wave speed increases actively during contraction as it depends on the coefficient
K. This means that during lymphatic contraction, the lymphatic wall becomes stiffer and waves
propagate at a faster rate. The eigenvectors of A are

R1 = γ1

[
1

u− c

]
, R2 = γ2

[
1

u+ c

]
, (3.21)

where γ1 and γ2 are arbitrary scaling factors. It can be shown that system (3.10) is hyperbolic,
as the eigenvalues are real and distinct and the eigenvectors R1 and R2 are linearly independent.
Following proofs in [Toro 2016] and references therein, the λ1 and λ2 characteristic fields are
genuinely non-linear outside the locus of the following function

G
(

A
A0

)
= m(m+2)

(
A
A0

)m

−n(n+2)
(

A
A0

)n

+Cz(z+2)
(

A
A0

)z

. (3.22)

With the choice of parameters m, n, z and C in Table 3.1, there exist at least one solution of
G
(

A
A0

)
= 0. This means that the two characteristic fields are neither genuinely non-linear nor

linearly degenerate. The consequences of this are unclear to the authors, and might require further
investigations. See [LeFloch 2002] for details. The Generalized Riemann Invariants (GRIs) for λ1

and λ2 characteristic fields are respectively

λ1−GRI : u+
∫ c(A)

A
dA = constant ,

λ2−GRI : u−
∫ c(A)

A
dA = constant .





(3.23)

In the present work, the generalized Riemann invariants are used to couple valves with lymphangions
and to impose the pressure at the terminal interfaces of the collector.

3.2.2 The Electro-Fluid-Mechanical Contraction (EFMC) model
Here we propose an Electro-Fluid-Mechanical Contraction (EFMC) model for lymphatics, based on
the FitzHugh-Nagumo model for action potentials. Here we assumed that lymphatic smooth muscle
cells act as pacemaker cells [Zawieja 2009] and model the ion dynamics through the FitzHugh-
Nagumo model [Nagumo 1962].

The modelling system of ODEs is

d
dt

Y = L(Y) , (3.24)

where

Y(t) =




v(t)
w(t)
I (t)
s(t)


 , L(Y) =




a1
[
v
(
v−a2

)(
1−a3v

)
−w+ vI

]

b1v(1− v)2−b2w
fI(λ̄θ , τ̄,v,w, I)

fs(v,s)


 , (3.25)

and

fI(λ̄θ , τ̄,v,w, I) =





(
k(1)Ca + k(2)Ca

(
λ̄θ

λCa

)nCa
)

fNO
(
τ̄
)
,
√

v2 +w2 ≤ RI ,

−Ikrel ,
√

v2 +w2 > RI ,

(3.26)
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Figure 3.3: Stability analysis of the stationary point (0,0) of the modified FitzHugh-Nagumo model.
The nature of the stationary point depends on the stimulus I. For I < a2− 2

√
b1
a1
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√

b1
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eigenvalues of the modified FHN model are real while for a2− 2
√

b1
a1

< I < a2 + 2
√

b1
a1

, the eigenvalues are
imaginary. Action potentials can be periodically triggered when I > a2.

fNO
(
τ̄
)
= 1− kNO


 2

1+ exp
(
−
∣∣∣ τ̄

τNO

∣∣∣
nNO
) −1


 , (3.27)

and

fs(v,s) =

{
+c1v(1− s) , v > 0 ,

−c2s , v≤ 0 .
(3.28)

The unknowns of the above system are: the excitation variable v(t) (membrane potential), the
recovery variable w(t), the stimulus I(t), and the contraction state s(t) introduced in Eq. (3.5). The
first two equations in (3.24) and (3.25) are based on the FitzHugh-Nagumo (FHN) model. In the
classical formulation of the FHN model, the stimulus I is constant. In the present work, I varies
in time and multiplies the excitation variable v. The second equation in (3.24) has the additional
factor (1− v)2 which increases the rate at which the recovery variable returns to the equilibrium
state, reducing the refractory period.

Lymphangions have the capability to change the contraction frequency depending on local
fluid dynamic quantities, such as transmural pressure and wall shear stress [Munn 2015]. Such
capability is phenomenologically modelled by a time evolution of I which is controlled by the
function fI . Three mechanisms are here taken into account: (1) environmental calcium influx, (2)
stretch-activated calcium influx, and (3) contraction inhibitions induced by WSS. The environmental
baseline influx is regulated by the parameter k(1)Ca . The stretch-activated calcium influx is regulated
by the parameters k(2)Ca , λCa and nCa. The contraction inhibitions induced by WSS are regulated
by the function fNO, which depends on parameters kNO, τNO and nNO. The function fNO is bounded
by 1− kNO and 1, namely

lim
|τ|→+∞

fNO(τ) = 1− kNO ≤ fNO ≤ 1 = fNO(0) . (3.29)

The contraction state s is controlled by the function fs, which ensures that s lies between 0 and
1. Following [Telinius 2015], we assume: (1) that the contraction state s increases to 1 during the
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depolarization phase and (2) decreases to 0 during the repolarization phase. Maximum tension is
then attained at the end of the plateau of the action potential of the FHN model [Nagumo 1962].
The rate of change of s is controlled by parameters c1 and c2. Functions fI and fNO are evaluated
at the space-averaged circumferential stretch of the vessel [Caulk 2016] and at the space-averaged
WSS, respectively, at the current time

λ̄θ (t) =
1
L

∫ L

0

r(x, t)
r0

dx , τ̄(t) =
1
L

∫ L

0
τ(x, t)dx , (3.30)

where L is the length of the lymphangion.
Concerning the choice of parameters for the EFMC model, Table 3.1 gives values used in the

present chapter. Most of these parameters could not be obtained by fitting the experiments and
therefore we have estimated such values so as to reproduce the shape of the action potential shown
in [Telinius 2015].

Mathematical analysis of the modified FitzHugh-Nagumo model

Here we analyse the modified FitzHugh-Nagumo model on which the EFMC model is based. First,
we find the stationary state solution, and then we study its nature depending on the stimulus I.
The stationary points are found by solving the following system

FFHN (v,w) =
[

a1
[
v
(
v−a2

)(
1−a3v

)
−w+ vI

]

b1v(1− v)2−b2w

]
=

[
0
0

]
. (3.31)

Assuming b2 = 0, there are two stationary points: v = w = 0 and v = 1, w = (1−a2)(1−a3)− I. In
our setting, v and w will always be far from v = 1, w = (1−a2)(1−a3)− I. Therefore, we study the
case in which v = w = 0. The case in which b2 6= 0 leads to multiple stationary points and is here
neglected. To study the nature of the stationary point, one has to evaluate the Jacobian of FFHN at
the stationary state and study the sign of its eigenvalues. The resulting eigenvalues are

λ1,2 =
−a1(a2− I)±

√
a2

1(a2− I)2−4a1b1

2
. (3.32)

One can show that: when I < a2, the stationary solution is stable, and therefore action potentials
are not automatically triggered; when I > a2 the stationary solution is unstable, and therefore action
potentials can be triggered (see Fig. 3.3).

For a time-varying stimulus I, we assume that the needed stimulus Ĩ to trigger an action
potential lies between a minimum Ĩmin and a maximum value Ĩmax, defined as follows:

Ĩmin := a2 , Ĩmax := a2 +2

√
b1

a1
. (3.33)

These two values will be useful to estimate the frequency of contractions of the EFMC model.

Qualitative analysis of the EFMC model

As shown in Fig. 3.4, when the excitation variable v and the recovery variable w are near the
stationary state (

√
v2 +w2 < RI), the stimulus I increases as given by (3.26). When a certain value
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Figure 3.4: Illustration of the EFMC model in the time domain of two representative lymphatic cycles.
Results show the excitation variable, recovery variable, contraction state and the stimulus for two reference
lymphatic cycles. Minimum and maximum triggering values Ĩmin and Ĩmax are also shown. The horizontal blue
and red shaded areas illustrate the unstable spiral-node and the unstable node regions, respectively. The
excited and activation regions can be determined by the different shaded colors (blue and yellow). Here we
solved the system of ODEs (3.24) with initial condition v(0) = 0.001, w(0) = I(0) = s(0) = 0. The parameters
of the EFMC model were taken from Table 3.1, but here we set fmin = 5 min−1, and we assumed ᾱ = 2.8165
and τ̄ = 0. The colour gradient of the stimulus I is the same as in Fig. 3.5.

Ĩ is reached (in this case Ĩmin < Ĩ < Ĩmax), an action potential is triggered: variables v and w perform
a cycle, increase in absolute value and move far from the stationary state (

√
v2 +w2 > RI) and

consequently the stimulus I decreases exponentially to zero. The state of contraction s increases
until v > 0, and then decreases to zero, see Eq. (3.28). When the action potential ends, variables
v and w return to the equilibrium point. From there on, the stimulus I restarts to increase and
possibly triggers a new contraction.

As shown in Fig. 3.5, the circle of radius RI centred at v = w = 0 divides the phase space into
two regions. The space within the circle of radius RI is called activation region, while the one
outside is called excited region. In the excited region the numerical solution quickly performs a
cycle and the stimulus I decreases exponentially to zero. In the activation region, the solution tends
to the equilibrium state and the stimulus I increases. The time required for the solution to perform
a cycle within the excited region can be numerically quantified and is denoted by texcited . The time
required to activate an action potential is denoted by tactivation.

Analysis of the EFMC frequency

Lymphangions contract differently according to the location of the vessel, the stretch of the lymphatic
wall and wall shear stress feedback [Gashev 2004]. Here we aim to analyse the frequency of
contraction of the EFMC model and to estimate parameters k(1)Ca and k(2)Ca in order to prescribe a
baseline frequency fmin and a frequency fCa at circumferential stretch λ̄θ = λCa. The time ttotal

between two cycles can be written as follows:

ttotal = texcited + tactivation , (3.34)
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Figure 3.5: Illustration of the EFMC model in phase space of a representative lymphatic cycle. The
circle of radius RI centred in the stationary point (0,0) divides the phase space into two regions: the activation
region (yellow) and the excited region (blue). Three nullclines are shown: the nullcline for the recovery variable
∂tw = 0, and two representative nullclines with I = 0 and I = Ĩ for the excitation variable ∂tv = 0. As soon as
a contraction occurs, the stimulus I decreases and the third nullcline tends to the second one. Results in the
time domain can be seen in Fig. 3.4.

and the related frequency is

f =
1

ttotal
=

1
texcited + tactivation

. (3.35)

The excited time texcited can be assumed to be constant and can be evaluated numerically from the
FHN model. The activation time, on the other hand, depends strongly on the rate of increase of I
given by (3.26). We now estimate the activation time, namely the time required for the stimulus I
to attain a certain triggering value Ĩ. Near the stationary solution v = w = 0, it is reasonable to
assume

√
v2 +w2 < RI . Let us solve the following initial value problem

ODE: d
dt

I(t) =

(
k(1)Ca + k(2)Ca

(
λ̄θ (t)
λCa

)nCa
)

fNO
(
τ̄ (t)

)
, t ≥ texcited ,

IC: I(texcited) = 0 .





(3.36)

We assume that during the activation time, λ̄θ and τ̄ are constant in time because the lymphangion
is already at the end of the diastolic phase. Thus, the above initial value problem can be solved
exactly as

I(t) = t
(

k(1)Ca + k(2)Ca

(
λ̄θ

λCa

)nCa
)

fNO (τ̄) . (3.37)

Consequently, under the previous assumption, the activation time tactivation required to attain a
triggering value Ĩ is

tactivation =
Ĩ(

k(1)Ca + k(2)Ca

(
λ̄θ

λCa

)nCa
)

fNO (τ̄)

. (3.38)
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Figure 3.6: Effects of EFMC model parameters on the pressure-frequency and WSS-frequency rela-
tionships. In the top row, we show theoretical results for transmural pressure against frequency varying fCa,
fmin, λCa and nCa. In the bottom row, we show theoretical results for WSS againts the frequency varying nNO,
τNO and kNO. Results are based on expression (3.43) and assuming a baseline value of λ̄θ = 2.6458. The
parameters were taken from Table 3.1.

The maximum activation time (when
(

λ̄θ/λCa

)nCa ≈ 0) and the activation time at λ̄θ = λCa, both at
zero WSS (τ̄ = 0), are

tmax
activation =

Ĩ

k(1)Ca

, tCa
activation =

Ĩ

k(1)Ca + k(2)Ca

. (3.39)

The maximum activation time, corresponding to the minimum frequency, depends on parameter
k(1)Ca . In our model, the parameter k(1)Ca phenomenologically represents the environmental calcium
influxes. Indeed, in the particular case in which there is no environmental calcium influxes (k(1)Ca = 0),
the activation time becomes infinite, which means that the lymphangion does not autonomously
contract. Parameter k(2)Ca , on the other hand, phenomenologically regulates the stretch-induced
calcium influxes.

Assuming the frequencies fmin and fCa, corresponding to tmax
activation and tCa

activation respectively, to
be known, we have:

1
fmin

= texcited + tmax
activation ,

1
fCa

= texcited + tCa
activation . (3.40)

Using (3.39) and (3.40), we can explicitly find parameters k(1)Ca and k(2)Ca :

k(1)Ca =
Ĩ

1
fmin
− texcited

, k(2)Ca =
Ĩ

1
fCa
− texcited

− Ĩ
1

fmin
− texcited

. (3.41)
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Here we assume the triggering value Ĩ to be the mean value of Imax and Imin defined in Eq. (3.33),
namely

Ĩmean =
Ĩmax + Ĩmin

2
= a2 +

√
b1

a1
. (3.42)

Numerical results confirmed that this is a good choice, even though Ĩmin and Ĩmax can be used as
triggering values too.

Substituting k(1)Ca and k(2)Ca and the activation time tactivation defined in (3.38) into (3.35), one
obtains a frequency function as

f
(
λ̄θ , τ̄, Ĩ

)
=

1
texcited + tactivation

(
λ̄θ , τ̄, Ĩ

) . (3.43)

Then, one can easily prove the following inequalities

f
(
λ̄θ ,0, Ĩ

)
> f

(
λ̄θ , τ̄1, Ĩ

)
> f

(
λ̄θ , τ̄2, Ĩ

)
, |τ̄1|< |τ̄2| , (3.44)

and
f
(
λ̄θ 1, τ̄, Ĩ

)
< f

(
λ̄θ 2, τ̄, Ĩ

)
, λ̄θ 1 < λ̄θ 2 . (3.45)

The first property (3.44) says that the frequency decreases as WSS increases, and maximum con-
traction frequency are attained at zero WSS. The second property (3.45) says that the frequency
increases as the circumferential stretch increases.

The influence of the EFMC parameters on frequency-pressure and frequency-WSS relationships
is shown in Fig. 3.6. At the transmural pressure pCa ≈ 11 cmH2O corresponding to λ̄θ = 2.6458, the
frequency attains value fCa. From the Fig. 3.6, we see that an increment of λCa lowers the frequency-
pressure curve and shifts rightward the transmural pressure at which fCa is attained. Parameter nCa

changes the shape of the pressure-frequency curve, while nNO and τNO affect the WSS-frequency
curve. Fig. 3.6 shows that it is possible to emulate pressure-frequency and pressure-WSS curves
from experimental measurements of a specific lymphangion by adjusting the EFMC parameters.

3.2.3 A lumped-parameter model for lymphatic valves
To model valves in lymphatic vessels, we adopt the work of Mynard et al. [Mynard 2012], an
improvement of [Sun 1995]. Such model has already been applied to the venous system [Toro 2015b].
The time variation of the flow across the valve qv (t) is modelled as

d
dt

qv =
1

L(ξ )
(∆p(t)−R(ξ )qv−B(ξ )qv|qv|) , (3.46)

where
∆p(t) = pu (t)− pd (t) . (3.47)

Here pu and pd are the upstream and downstream pressures, respectively. The above formula can be
regarded as the lumped-version of a lymphatic vessel of a given length. Coefficients B, L and R are
the Bernoulli resistance, the lymphatic inertia and the viscous resistance to flow, given respectively
as

B(ξ ) =
ρ

2A2
e f f (ξ )

, L(ξ ) = ρ
Le f f

Ae f f (ξ )
, R(ξ ) =

2(γ +2)πµ

A2
e f f (ξ )

Le f f , (3.48)
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where Le f f is the effective length and Ae f f is the effective area, which varies from a minimum value
to a maximum value as

Ae f f (ξ ) = Ae f f ,min +ξ (t)
(
Ae f f ,max−Ae f f ,min

)
, (3.49)

with ξ ∈ [0,1]. Compared to the work of Mynard et al. [Mynard 2012], we have added the Poiseuille-
type viscous losses insofar as the Reynolds number for lymphatics is low [Rahbar 2011] and therefore
this term plays a dominant role. Although the Bernoulli resistance might not contribute significantly
for lymphatic flow, in the current work we chose to keep it to maintain a general framework of both
high and low Reynolds numbers. The minimum and the maximum effective areas are evaluated as
follow

Ae f f ,min = MrgA0 , Ae f f ,max = MstA0 , (3.50)

where Mrg is a parameter that controls the minimum closure, while Mst controls the maximum
opening. A0 is taken as the mean value between the cross-sectional areas at equilibrium of the
adjacent lymphangions. The valve state ξ (t) is governed by the following ODE

d
dt

ξ = fξ (ξ , t) =

{
Kvo(1−ξ )

(
∆p(t)−∆popen

)
, ∆p(t)> ∆popen ,

Kvcξ
(
∆p(t)−∆pclose

)
, ∆p(t)< ∆pclose ,

(3.51)

where Kvo and Kvc are the valve opening/closure rates, and ∆popen and ∆pclose are the open-
ing/closure threshold pressures. For further details, see also [Mynard 2012].

Here we simplify the valve dynamics by assuming both the opening and closure thresholds to
be zero, although it is widely accepted that lymphatic valves are biased to stay open [Davis 2011].
The resulting system of ODEs is

d
dt

Y = L(Y, t) , (3.52)

where

Y(t) =
[

qv (t)
ξ (t)

]
, L(Y, t) =

[
1

L(ξ ) (∆p(t)−R(ξ )qv−B(ξ )qv|qv|)
fξ (ξ , t)

]
. (3.53)

3.2.4 Numerical methods
Here we briefly describe the finite volume schemes used for the one-dimensional lymph flow equa-
tions, explain how lymphatic valves and lymphangions are coupled, and illustrate the treatment of
the boundary conditions at the terminal interfaces of the lymphangion. Then, we summarize the
numerical methods used for the valves and the EFMC models.

A finite volume method for the one-dimensional model

Consider the system of m hyperbolic balance laws

∂tQ+∂xF(Q) = S(Q) . (3.54)

By integrating (3.54) over the control volume V = [xi− 1
2
,xi+ 1

2
]× [tn, tn+1] we obtain the exact formula

Qn+1
i = Qn

i −
∆t
∆x

(
Fi+ 1

2
−Fi− 1

2

)
+∆tSi , (3.55)
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Figure 3.7: Framework for a finite volume scheme. Top: illustratation of a computational volume for a
lymphangion. Bottom: illustratation of the space-time control volume.

with definitions
Qn

i =
1

∆x

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn)dx , (3.56)

Fi+ 1
2
=

1
∆t

∫ tn+1

tn
F(Q(xi+ 1

2
, t))dt ,

Si =
1

∆t∆x

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

S(Q(x, t))dxdt .





(3.57)

Eq. (3.56) gives the spatial-integral average at time t = tn of the conserved variable Q while Eqs.
(3.57) give the time-integral average at interface x = xi+ 1

2
of the physical flux F and the volume-

integral average in V of the source term S. Spatial mesh size and time step are ∆x = xi+ 1
2
− xi− 1

2

and ∆t = tn+1− tn respectively. Finite volume methods for (3.54) depart from (3.55) to (3.57), where
integrals are approximated, and then formula (3.55) becomes a finite volume method, where the
approximated integrals in (3.57) are called numerical flux and numerical source, respectively. Here
index i runs from 1 to M, where the cell i = 1 is the leftmost cell with x 1

2
being the first interface, and

the cell i=M is the rightmost cell with xM+ 1
2

being the last interface. See Fig. 3.7 for an illustration
of the finite volume framework. To compute the time step ∆t , the Courant-Friedrichs-Lewy condition
is applied for each lymphangion

∆t j =CFL
∆x j

max
i=1,...,M j

(
|u j

i |+ c j
i

) , (3.58)

with CFL = 0.9. Superindex j indicates the j-th lymphangion. Then, the time step ∆t to be used is
the minimum of all the time steps, namely ∆t = min

j

(
∆t j
)
.

In the present chapter we used the SLIC method to evaluate the numerical fluxes within the
domain (F 3

2
, . . . ,FM− 1

2
) [Toro 2000]. This method is second-order accurate in space and time and is
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Figure 3.8: Illustration of the coupling method between two lymphangions and one valve. Riemann
invariants are used to couple the flow through the valve and the two lymphangions.

based on the MUSCL-Hancock scheme where the Godunov upwind flux is replaced by the FORCE
flux, see Section 14.5.3 of [Toro 2009] and references therein. The numerical source was approx-
imated using a second order in space and time method, see Chapter 19 of [Toro 2009]. For the
numerical fluxes at the boundaries (F 1

2
and FM+ 1

2
) we used a first-order Godunov-type method

based on the solution of a classical Riemann problem at the interface.

Coupling between valves and lymphangions

Here we aim to couple valves and lymphangions. For each lymphangion, we need to calculate
the numerical flux at the interface in which the valve is located, which can be either F 1

2
or FM+ 1

2
according to Fig. 3.7. There are three possible modelling configurations for a lymphatic valve. It can
be the leftmost or rightmost valve of a collector, or it can be interposed between two lymphangions.
In every case, the flow across the lymphatic valve is calculated from (3.52), where the pressure
difference ∆p in (3.46) is evaluated at the current time tn using either the two lymphangions, or one
of the lymphangions and a prescribed time-varying pressure. Specifically, at t = tn the pressure
difference ∆p(tn) is

∆p(tn) = pu(tn)− pd(tn) , (3.59)
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where values pu(tn) and pd(tn) are

pu(tn) :=

{
pn

M , lymphatic pressure at i = M, t = tn,

Pin(tn) , prescribed upstream pressure at t = tn,
(3.60)

and

pd(tn) :=

{
pn

1 , lymphatic pressure at i = 1, t = tn,

Pout(tn) , prescribed downstream pressure at t = tn,
(3.61)

where pressures pn
M and pn

1 refers to the upstream and downstream lymphangions, respectively, and
Pin and Pout are prescribed functions of time. The three possible configurations are summarized here

∆p(tn) :=





Pin(tn)− pn
1 , leftmost valve,

pn
M− pn

1 , valve between two lymphangions,
pn

M−Pout(tn) , rightmost valve.
(3.62)

Once we numerically solve system (3.52), the flow across the valve at the future time qn+1
v is

determined.
In the present chapter, to find A∗ and calculate the numerical flux at the boundary we follow

the numerical methodology proposed by Alastruey et al. [Alastruey 2008]. This method has already
been used in [Müller 2014, Contarino 2016]. To find A∗, we solve the following non-linear algebraic
equation based on the Riemann invariant

F (A∗) := qn+1
v +A∗

(
−un +β

∫ A∗

An

c(τ)
τ

dτ

)
= 0 , (3.63)

using the Newton-Raphson iterative method. An and un are the cross-sectional area and the velocity
at the cell adjacent to the boundary at current time t = tn, qn+1

v is the known flow rate across the
valve and

β =

{
−1 downstream lymphangion ,

1 upstream lymphangion .
(3.64)

Then the numerical flux at the boundary is

F 1
2 or M+ 1

2
= F(Q∗) , (3.65)

where
Q∗ =

[
A∗

qn+1
v

]
. (3.66)

As shown in Fig. 3.8, when a valve is interposed between two lymphangions, then the non-linear
problem (3.63) has to be solved twice: one for the upstream lymphangion (β = 1) and one for the
downstream lymphangion (β =−1).

Imposed pressure at boundaries

The numerical procedure to impose a pressure in one of the extremities of a lymphatic vessel is
similar to the coupling method for valves and lymphangions. Consider a time-varying pressure pI (t)
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at a terminal interface. From pressure pI (t), cross-sectional area AI (t) can be calculated by using
the inverse of the tube law (3.2). The flow rate q∗ can be found by applying the Riemann invariants
as described in 3.2.4, and in this case it can be explicitly calculated as

q∗ = AI (tn)

(
un−β

∫ AI(tn)

An

c(τ)
τ

dτ

)
, (3.67)

where An, un and β are the cross-sectional area and the velocity at the cell adjacent to the boundary
at current time t = tn and β is given by Eq. (3.64). As before, the numerical flux at the boundary
is given by (3.65) with

Q∗ =
[

AI (tn)
q∗

]
. (3.68)

Numerical method for the systems of ODEs

The systems of ODEs (3.52) and (3.24) were numerically solved with a second-order implicit Runge-
Kutta method using the Lobatto IIIC method. The Butcher tableau is

0 1/2 -1/2
1 1/2 1/2

1/2 1/2

In the next section, we present the coupling of the systems of PDEs and ODEs, through an algorithm
description.

Complete algorithm

Here we provide the complete algorithm to update the solution from time tn to time tn+1 = tn +∆t .
When not specified, the initial conditions are: p(x,0) = Pin(0), u(x,0) = 0, v(0) = 0.1, w(0) = s(0) =
I(0) = 0 and qv(0) = ξ (0) = 0.

1. Assume data for all variables at t = tn.

2. Calculate the time step ∆t as explained in Section 3.2.4.

3. Evolve the valve flow q and valve state ξ of each lymphatic valve from time tn to tn+1 by
applying a second-order implicit Runge-Kutta method to the system of ODEs (3.52) and
assuming the pressure difference ∆p at time tn.

4. Calculate the numerical fluxes at the boundaries F 1
2

and FM+ 1
2

of each lymphangion, as
described in Sections 3.2.4 and 3.2.4, using the lymphatic valve flow rates at time tn+1.

5. Using the contraction state s at the current time tn, calculate the numerical fluxes Fi+ 1
2

within
each domain of the lymphangions using the SLIC method (Section 14.5.3 of [Toro 2009]).

6. Using the contraction state s at the current time tn, calculate the numerical sources Si within
each domain of the lymphangions using a second-order method in space and time (Chapter
19 of [Toro 2009]).
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7. Update the conserved variables Q of the PDEs of each lymphangion from time tn to tn+1

according with finite volume formula (3.55).

8. Evolve the variables of the EFMC model of each lymphangion from time tn to tn+1 by applying
a second-order implicit Runge-Kutta method to the system of ODEs (3.24) and using the
space-time averaged cross-sectional area and WSS at time tn+1.

The EFMC model and the system of PDEs are coupled through the contraction state s. The variable
s gives the actual value of the coefficient K(t) in Eq. (3.5) to be used to calculate the physical
flux in Eq. (3.12). Observe that even though we use second-order methods for every model, the
accuracy of the global algorithm is formally of order one. This is caused by the coupling methods.
As a matter of fact, we couple the set of ODEs and PDEs using only a first-order method. There are
more sophisticated high-order coupling methods in the literature, see for instance [Borsche 2016].

3.2.5 Sensitivity Analysis
The method is divided into a local and global analysis. In the local analysis we calculated N local
sensitivity matrices Sk

i, j , for k = 1, . . . ,N, as follows: starting from the reference value in Table 3.1,
we randomly varied each parameter from 70% to 130% and obtained a new set of parameters. Here,
the baseline value for kNO was set to 0.5. With this varied set of parameters, we calculated the
local sensitivity matrix as follows

Sk
i, j =

∣∣∣∣
xi

Pj(X)

∣∣∣∣
∂Pj (X)

∂xi
×100 , (3.69)

where X=(x1,x2, . . . ,xm) is the vector of the varied model parameters, P=(P1,P2, . . . ,Pn) is the vector
of the lymphatic indices and Sk =

(
Sk

i, j

)
i, j

is local sensitivity matrix. The value Sk
i, j represents

the non-dimensional relative change in Pj to the relative change in parameter x j , expressed as a
percentage. If the model parameter xi does not influence index Pj , then Sk

i, j will be almost zero.
Viceversa, if there is a significant influence of xi on Pj , then the absolute value of Sk

i, j will be greater
than zero. For instance, if 1% change in xi leads to 1% change in Pj , then Sk

i, j is 100%. A positive
sign of Sk

i, j indicates that an increase of parameter xi induces an increase of index Pj . Viceversa, a
negative sign of Sk

i, j indicates that an increase of parameter xi induces a decrease of index Pj .
Subsequently, in the global analysis we performed a statistical analysis of Sk

i, j by calculating
its mean S̄i, j and its standard deviation σi, j . A large standard deviation σi, j indicates a strong
correlation of the studied parameter with the remaining parameters in determining the sensitivity
index. To calculate S̄i, j and σi, j , we removed possible outliers by discarding the data below the 3rd
percentile and above the 97th percentile.

The partial derivative in Eq. (3.69) was approximated using a second-order finite difference
method based on a percentage change of the parameter as follows:

Sk
i, j ≈

sgn(xi)∣∣Pj(X)
∣∣

Pj
(
Xi,ε+

)
−Pj

(
Xi,ε−

)

2ε
×100 , (3.70)

where Xi,ε± = (x1, . . . ,xi (1± ε) , . . . ,xm) . The parameter ε was chosen as ε = 0.05. Compared to
[van Griensven 2006], we did not constructed a stratified sampling space, but rather a simple random
variation in the considered range.
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Figure 3.9: Riemann problem for a single lymphangion without contractions. Top and bottom frames
show the following: normalised cross-sectional area and velocity at a fixed prescribed time. We compare the
numerical results with the exact solution. The initial conditions are given in Section 3.3.1 and the output time
is tout put = 0.003 s. Here we used M = 40 and M = 1000 computational cells to discretize the lymphangion.

3.3 Results

In this section, we assemble all components of the model and show three selected test problems.
Table 3.1 gives parameters used in the numerical simulations. The numerical methods to solve the
coupled system of PDEs and ODEs are described in Section 3.2.4.

3.3.1 Test problem with piecewise initial condition: a Riemann problem

Here we consider a Riemann problem for the set of PDEs for a single lymphangion without valves.
The Riemann problem is a particular Cauchy problem where the initial conditions are piecewise
constant with a single discontinuity. The exact solution in subcritical regime is available for this
PDE system but is not reported here. For the exact solution of the Riemann problem for arteries
and veins see [Toro 2011, Toro 2013, Spiller 2017]. Here, the chosen initial condition for A and u
is

A(x,0) =

{
AL = 4A0 , x < L

2 ,

AR = 3A0 , x > L
2 ,

(3.71)
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where L is the lymphangion length and A0 is the cross-sectional area at equilibrium, and u(x,0) = 0.
We assumed no contractions, dynamic viscosity µ = 0 and transmissive boundary conditions. Fig.
3.9 shows the numerical results using M = 40 and M = 1000 cells and the exact solution at the
output time tout put = 0.003 s. The numerical solution with M = 40 is comparable with the exact
solution, which is composed of a left rarefaction and a right shock. The numerical solution with
M = 1000 confirms that the numerical solution converges to the exact solution. This result is typical
of a 2×2 non-linear system of hyperbolic differential equations and is comparable with the Riemann
problem for the Euler equations, shallow water equations and the blood flow equations [Toro 2009].

3.3.2 Representative test problems for lymphatic vessels

Here we show results for three representative test problems. In the first test, we show a numer-
ical example of a lymphatic cycle. The second test highlights the frequency-transmural pressure
relationship. The third test shows the negative chronotropic effect given by the WSS.

Test 1: representative case of a single lymphangion

Here we show a representative test of a single lymphangion, see top of Fig. 3.10, where the EFMC
model, the valve model and the one-dimensional model for lymph flow are coupled. As shown in
Fig. 3.10, as soon as the stimulus I goes beyond the unstable spiral-node region and falls into the
unstable node region, an action potential occurs. The fast depolarization at 0.5 s is followed by a
plateau period of ≈ 1.2 s, during which the following phenomena occur in sequence: 1) stimulus
I exponentially decreases to zero; 2) the contraction state s increases and reaches its maximum
value at the end of the plateau; 3) the internal pressure increases and induces 4) the closure of
the upstream valve with a short transient period of backflow caused by the valve closure; 5) the
downstream valve opens; 6) the downstream transvalve flow rate increases; 7) the diameter of the
lymphangion decreases. After the hyperpolarization at ≈ 1.6 s and during the repolarization phase
of ≈ 1.4 s, the contraction state exponentially decreases to zero. This causes the following chain of
events: 1) the internal pressure decreases below the downstream pressure Pout ; 2) the downstream
valve closes; 3) there is a short period of reflux from the downstream valve determined by the valve
closure which causes 4) the diameter to increase somewhat at ≈ 1.5 s; 5) the internal pressure
decreases below the upstream pressure Pin; 6) the upstream valve opens; 7) the transvalve flow from
the upstream valve increases; 8) the diameter of the lymphangion increases. From here on, the
stimulus starts to increase until the next action potential is triggered.

Diameter decreases almost uniformly throughout the lymphangion, as shown in the space-time
representation in Fig. 3.11. During the systolic phase, flow rate reaches its maximum at the
downstream side, while it reaches its minimum at the upstream one. The red and blue lines in
the flow rate are similar to the valve flow rates shown in Fig. 3.10. The diameter is practically
independent of the space variable. This is due to the approximation K =K(t) throughout the domain.
The results shown in Fig. 3.11 highlight that the mathematical model gives quantitative information
throughout the domain of the lymphangion.
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Figure 3.10: Test 1: representative case of a single lymphangion. From the top to the bottom frames we
show the following: illustration of the lymphangion, time-varying valve states (open ξ = 1 and closed ξ = 0),
flow rates across the valves, internal pressure, diameter, contraction state, excitation variable and stimulus.
Pressure and diameter were calculated at the centre of the lymphangion. The colors shown from the second
to the last panels refer the colour configuration shown in the top panel. In the bottom panel, blue and red
shaded areas illustrate the unstable spiral-node and the unstable node regions, respectively. In this test, we
used M = 100 computational cells to discretize the lymphangion. Boundary pressures: Pin = 5 cmH2O and
Pout = 7 cmH2O. Results are shown over a representative lymphatic cycle.

Test 2: contraction frequency increases as the intraluminal pressure increases

The test shown here was inspired by the experiments performed in several works [Davis 2011,
Davis 2012, Scallan 2012] where time-varying pressures were imposed at the boundaries of the
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Figure 3.11: Test 1: representative case of a single lymphangion (space-time). Here we show numerical
results in space and time for diameter, flow and pressure. We applied the boundary conditions explained
in 3.2.4. Blue and red lines represent the numerical solutions close to the upstream and downstream valves,
respectively. The green line depicts the numerical solution at the centre of the lymphangion. In this test, we
used M = 501 computational cells to discretize the lymphangion. Boundary pressures: Pin = 5 cmH2O and
Pout = 7 cmH2O. Results are shown over a representative lymphatic cycle.
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Figure 3.12: Test 2: contraction frequency increases as the intraluminal pressure increases. Time-
varying boundary pressures can be found in Eq. (3.72). See caption of Fig. 3.10 for explanation of traces.
The lymphangion (green lines) tries to overcome the time-varying downstream pressure. The frequency
of contraction of the downstream part-lymphangion (red lines) increases with the increase of the imposed
boundary pressure. At a certain output pressure (≈ 14 cmH2O), the lymphangion cannot open the downstream
valve, forcing the flow through the valves to become zero.

collector. More specifically, this test emulates the ramp-wise Pout elevation shown in [Davis 2012].
We simulated a collector composed of one complete lymphangion and two part-lymphangions with
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an overall number of two valves, and we imposed the following time-varying pressures

Pout(t) =

{
p2−p1

t1
(t− t1)+ p2 , t < t1 ,

p2 , t1 < t < tout put ,
(3.72)

Pin(t) = pin , (3.73)

where p1 = 7 cmH2O, p2 = 15 cmH2O, pin = 5 cmH2O, t1 = 60 s, tout put = t1 +10 s. Applying the
boundary conditions explained in 3.2.4, the inlet pressure Pin was imposed at the leftmost interface
of the upstream part-lymphangion, while the output pressure was imposed at the rightmost interface
of the downstream part-lymphangion. Only an adverse transaxial-pressure difference is taken into
account.

Even though the upstream and downstream part-lymphangions contract, their pressures are
controlled, as shown in Fig. 3.12. The downstream pressure (red line) follows the behaviour of the
imposed output pressure Pout , while the upstream pressure (blue line) is almost constantly Pin. The
lymphangion responds to these changes in boundary pressures (green line). Initially, both valves
close and open, but when the downstream pressure Pout reaches a certain value (≈ 14 cmH2O), the
lymphangion cannot open the downstream valve anymore. In the space-time representation, our
model predicts sudden diameter changes at valve locations (result not shown), which is motivated
by our simplified valve dynamics.

Since the pressure of the downstream part-lymphangion increases during the numerical simula-
tion, its frequency of contraction rises as well. The contraction frequency of the lymphangion is not
affected by the increase in the frequency of the downstream part-lymphangion. This comes from
having neglected the interaction between adjacent lymphatic vessels in the EFMC model. In real-
ity, the electrical signal in the lymphatic wall would travel through gap-junctional communications.
The only interaction which would alter the frequency of contractions in the current mathematical
model comes from changes in the intraluminal pressure and WSS. Therefore, this computational
result highlights that the current EFMC model can only model cases in which lymphangions are
electrically decoupled.

In our computational model, lymphatic valves prevent retrograde flow at any transvalve-pressure
difference, apart from a short transient period determined by the valve closure. This is particularly
evident at ≈ 50 s, where the lymphangion cannot entirely eject the lymphatic fluid into the down-
stream part-lymphangion and the diameter increases as the upstream part-lymphangion contracts.
These coupled events induce the frequency of contraction of the lymphangion to increase somewhat,
shortening the preceding diastole of the very last contraction.

This numerical result shows that: 1) the frequency of contractions depends on the intraluminal
pressure and 2) the lymphangion tries to overcome the downstream time-varying pressure by increas-
ing the end-systolic pressure, but this is possible up to a certain threshold. These findings confirm
that the mathematical model partially mimics experimentally observed behaviours [Davis 2012].

Test 3: contraction frequency decreases with increasing WSS

The test proposed here simulates a collector composed of a one complete lymphangion and two
part-lymphangions and highlights the effect of the WSS on the frequency of contractions. As done
for the test 2, we imposed the following time-varying pressures at the terminal interfaces of the
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Figure 3.13: Test 3: contraction frequency decreases with increasing WSS. Time-varying boundary
pressures can be found in Eq. (3.74). See caption of Fig. 3.10 for explanation of traces. When a favourable
pressure gradient occurs, flow increases for all lymphatic vessels, reducing the rate at which the stimulus
I increases and decreasing the frequency of contractions, even in the upstream part-lymphangion where the
transmural pressure increases. For this test, we set τNO = 3 dyne cm−2 and kNO = 0.9.

collector

Pout(t) =





p1 , t < t1 ,
pout

2 −p1
t2−t1

(t− t2)+ pout
2 , t1 < t < t2 ,

pout
2 , t2 < t < tout put ,

(3.74)

Pin(t) =





p1 , t < t1 ,
pin

2 −p1
t2−t1

(t− t2)+ pin
2 , t1 < t < t2 ,

pin
2 , t2 < t < tout put ,

(3.75)
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where p1 = 10 cmH2O, pout
2 = 5 cmH2O, pin

2 = 15 cmH2O, t1 = 10 s, t2 = t1 +40 s and tout put = t2 +20
s. This test emulates the experimental setup of Gashev et al. [Gashev 2002]: we imposed a range of
transaxial pressure differences maintaining an almost constant average transmural pressure of the
lymphangion.

Initially, all lymphatic vessels contract at the same frequency and share the same internal
pressure ≈ 10 cmH2O (see Fig. 3.13). When the upstream pressure Pin rises and the downstream
pressure Pout decreases, the lymphatic valves open, the transvalve flows increase while the trans-
mural pressure of the lymphangion does not change greatly. The increment on the WSS gives a
negative chronotropic effect on all lymphatic vessels, decreasing the frequencies of contractions.
The lymphangion contracts at slower rates as lymph flow increases. Since the upstream part-
lymphangion has a greater internal pressure (≈ 15 cmH2O at the centre), its rate of contraction
is greater than the remaining vessels. The downstream part-lymphangion has a lower contraction
frequency since its internal pressure is lower. These variations come from changes in the rate of
increase in time of stimulus I within the activation region. For instance, the downstream part-
lymphangion (red lines) has substantial changes on the dynamics of stimulus I after 27 s and 41
s, leading the contraction frequency to decrease to almost ≈ 2 min−1. This result confirms that the
mathematical model emulates the experimentally observed effect of the WSS on the frequency of
contraction [Gashev 2002].

3.3.3 Pressure versus normalised cross-sectional area (PA) plots for a single
lymphangion

The aim of this exercise is to show that the numerical results of the mathematical model mimic the ex-
perimental measurements of the pressure-volume relationship [Davis 2012]. As shown in Fig. 3.14,
the computational results show a qualitatively good agreement with [Davis 2012, Scallan 2012]. As
the downstream pressure Pout increases, the PA plots shrink and the systolic pressure increases.
The systolic pressure can increase up to a certain level, depending on the baseline pressure. In
the current case the maximum systolic transmural pressure is ≈ 11 cmH2O and decreases as Pin de-
creases. For instance, for A/A0 = 4 and Pin ≈ 4 cmH2O, the maximum systolic reachable transmural
pressure is ≈ 8 cmH2O.

3.3.4 Analysis of lymphatic indices by varying Pin and Pout

The aim of this study is to quantify lymphatic indices shown in Table 3.2 for several combinations
of Pin and Pout , both in the range 1 to 14 cmH2O. To describe the computational results shown in Fig.
3.15, we divide the Pin-Pout space into two regions: 1) the adverse transaxial-pressure difference
∆P = Pin−Pout < 0 region (lower triangle) and 2) the favourable transaxial-pressure difference
∆P = Pin−Pout > 0 region (upper triangle).

Adverse pressure difference ∆P = Pin−Pout < 0. Here the upstream and downstream valves
open and close during the lymphatic cycle. The frequency increases as Pin rises, and this is in
agreement with Fig. 3.6. This comes from muscle-stretch feedback from the EFMC model in Eq.
(3.26). The frequency does not increase when Pout rises. This might be surprising because it is
well-known that contraction-waves propagate between lymphangions through gap-junctional com-
munications [Zawieja 1993]. However, for the sake of simplicity, the gap-junctional communications
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Figure 3.14: Transmural pressure against normalised cross-sectional area (PA) plots during lymphatic
contractions. Here we simulated a single lymphangion with different downstream pressures Pout from 5 to 12
cmH2O, while keeping fixed the upstream pressure Pin to 5 cmH2O. The figure also shows the tube laws at
relaxed and contracted states. Pressures and diameters were calculated at the centre of the lymphangion. In
this test, we used M = 20 computational cells to discretize the lymphangion.

between lymphangions have not been modelled in this chapter. EF tends to decrease as Pout in-
creases, while increases when Pin increases. FPF combines both frequency and EF: it increases
when Pin rises, and it decreases when Pout increases. The maximum of FPF is when Pin ≈ Pout ≈ 8
cmH2O. For larger pressures, FPF decreases. The results for FPF are not comparable with those
shown by Davis et al. [Davis 2012], as in our results the frequency remains constant when Pout

rises. The SV and PD follow the same behaviour of EF. ESD increases only when Pout rises,
and it remains constant when Pin increases. On the contrary, EDD remains constant when Pout

increases, and this is in agreement with [Davis 2012]. SW is maximum for Pout ≈ 8.5 cmH2O and
Pin ≈ 5 cmH2O, and it tends to decrease elsewhere. Mean flow and CPF are comparable almost
everywhere.

Favourable pressure difference ∆P = Pin−Pout > 0. Here the upstream and downstream valves
remain open for most of the time during the lymphatic cycle (results not shown). Averaged flow
exhibits a highly non-linear behaviour when ∆P changes sign. Lymph flow is generated only by
muscle contractions when ∆P is negative, with values < 1 µL min−1. However, for positive sign
of ∆P, lymph flow is dominated by pressure forces with permanently opened valves, with values
over hundreds of µL min−1. Mean flow increases as Pin rises, and it decreases as Pout increases.
Subsequently, the WSS rises when Pin increases, and this gives a negative chronotropic effect on
the frequency; this comes from the function fNO in (3.26). CPF differs from the mean flow insofar
as the CPF only takes into account the flow given by contractions. ESD and EDD increase when
Pin and Pout rise. EF, SV and PD share a similar behaviour and reach their maximum values at
Pin = Pout ≈ 6 cmH2O.
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Figure 3.15: Counterplots of lymphatic indices in the Pin−Pout plane. The indices shown are: frequency
of contraction, FPF, CPF, WSS, EF, SV, mean flow, PD, ESD, SW, PP and EDD. See table 3.2 for the
definition of the indices. We constructed a grid of points (Pout ,Pin) with all possible combinations of Pin =
(1,1.1, . . . ,13.9,14) and Pout = (1,1.1, . . . ,13.9,14). For each combination of Pin and Pout , we simulated a
single lymphangion with two terminal valves, tout put = 160 s and M = 20 computational cells to discretize the
lymphangion. The indices were calculated based on last cycle or the last two cycles, as appropriate, and using
the values at the centre of the lymphangion. The total number of simulations was 131×131 = 17161. We
applied the boundary conditions as explained in 3.2.4.
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3.3.5 Sensitivity analyses of the mathematical model

The mathematical model for lymphatic collectors proposed here depends on several parameters
which strongly influence the indices shown in Section 3.3.4. To investigate the influence of each
parameter on the indices, we performed two sensitivity analyses based on [van Griensven 2006].
The methodology is described in the Section 3.2.5. Based on the results shown in Section 3.3.4,
we performed two sensitivity analyses: one for an adverse pressure difference ∆P = Pin−Pout < 0
(Table 3.3) and one for a favourable pressure difference ∆P = Pin−Pout > 0 (Table 3.4).

Adverse pressure difference ∆P = Pin−Pout < 0. The radius at equilibrium r0 positively influ-
ences indices SV, CPF, ESD, EDD, WSS and mean flow. Among the parameters of the EFMC
model, a2 is the most influential one, followed by a3 and b1. Indeed, a2 is the threshold to change
the nature of the stationary point described in Section 3.2.2 from stable to unstable. Parameters
RI and krel do not significantly influence the studied output parameters. The frequency, and thus
FPF and CPF, is strongly influenced by λCa and nCa, and this is in agreement with Frames 3.6c
and 3.6d, respectively, of Fig. 3.6. Parameters kNO, τNO, nNO, which are related to WSS and flows,
do not affect the lymphatic indices since ∆P < 0. The parameter of the valve model Kvo, Kvc and
Le f f do not affect the indices. µ and γ only affect the WSS, while the density ρ does not affect
the indices. The maximum and minimum coefficients Kmax and Kmin affect the ESD and EDD,
respectively, and also influence most of the parameters, such as the frequency, EF, SV, FPF, CPF
and mean flow.

Favourable pressure difference ∆P=Pin−Pout > 0. Compared to the adverse pressure difference
case, there are significant changes. The most influential parameters are: r0, a2, b1 and Kmin. The
effects of parameters kNO, τNO and nNO are more evident than in the case of an adverse pressure
difference. An increase of parameter kNO decreases the frequency, indeed the greater this parameter,
the greater the influence of the contraction inhibition given by the WSS. On the contrary, an
increment of parameter τNO increases the frequency. Results for kNO and τNO are in agreement
with Frames 3.6g and 3.6f, respectively, of Fig. 3.6. An increase of parameters Le f f , ρ , µ and γ

causes the mean flow to decrease. Between the Kmin and Kmax, the most influential one is Kmin, as
it affects the frequency, SV, FPF and CPF.

3.3.6 A quantitative study on the effect of stenotic and regurgitant lymphatic
valves

The mathematical model for collectors proposed in the present chapter includes a well-established
model for valves proposed by Mynard et al. [Mynard 2012]. It has already been used for the heart
valve modelling [Mynard 2015], as well as for the venous valves [Toro 2015b]. More interestingly, the
model allows for a quantitative study of the effect of stenotic and regurgitant valves. For instance,
the model was already used to study the impact on brain haemodynamics of bilateral stenotic and
regurgitant valves of the internal jugular veins [Toro 2015b, Cristini 2014]. In the lymphatic system,
stenotic and regurgitant valves have not been reported. This is probably due to the different load
regimes that lymphatic valves experience. As suggested by [Sabine 2015], mutations in FOXC2 is
associated with valve incompetence and possibly leads to backflow. In this section, we speculate
what would be the consequences on regurgitant valves leading to backflow or stenotic valves leading
to obstructions in the collecting lymphatic.
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Figure 3.16: Effect of stenotic and regurgitant lymphatic valves. From the top to the bottom lines we show:
PA loops and lymphatic pressure at the centre of the lymphangion. The first two columns show results for the
left and right stenotic valves, while the remaining two columns show results for the left and right regurgitant
valves. Parameters ML/R

st and ML/R
rg were varied from 0 to 1. Here we set the boundary pressures Pin = 5

cmH2O and Pout = 8 cmH2O.

We modelled a single collector with one complete lymphangion and two incomplete lymphan-
gions, with an overall number of two valves. Here we used M = 20 computational cells to discretize
the one-dimensional lymph vessel. We simulated a collector cannulated at each end, that is, we
imposed a fixed pressure at the leftmost and rightmost interfaces of the collector, as described in
3.2.4. The imposed pressures were Pin = 5 cmH2O and Pout = 8 cmH2O.

We consider four possible situations: a left stenotic valve, a right stenotic valve, a left regurgitant
valve and a right regurgitant valve. The numerical results of the middle lymphangion are shown in
Fig. 3.16.

A left stenotic valve diminishes the inflow from the upstream valve. This results in the follow-
ing: the greater the severity of the left stenosis, the greater the time required to fill the middle
lymphangion after a contraction. For the tests considered here, contractions occur at a frequency of
≈ 7 min−1, which means approximately every ≈ 8.6 s. For a severe left stenosis (ML

st = 0.05), the
time required to fill the lymphangion is ≈ 23 s. A severe reduction of the EDD can happen when
the lymphangion does not have enough time to fill itself, and this may happen when the contraction
period is less than 8.6 s. To verify this hypothesis, we performed additional simulations with a left
stenotic valve, varying the frequency and for different severities of the stenosis. We set fmin = fCa

from 4 to 24 min−1 and calculated the resulting frequency, CPF and the efficiency, defined as the
ratio between the CPF in the stenotic case and the CPF in the healthy case. The numerical results
are shown in Fig. 3.17. For a mildly stenosis (ML

st > 0.1) and low frequencies, the CPF does not
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suffer any changes, but as soon as the frequency increases (e.g. above approximately 8 min−1 for
ML

st = 0.25), the CPF decreases depending on the severity of the stenoses. At the frequency of
f = 21 min−1 and ML

st = 0.25, the CPF reduces from ≈ 56.4 µL h−1 to ≈ 19.7 µL h−1, that is it
reduces of the 65 %. For even more severe left stenoses (ML

st < 0.25), the CPF drastically decreases
and the lymphangion becomes unable to eject the lymph forward. At the frequency of f = 21 min−1

and ML
st = 0.05, the CPF reduces of the 96 %, namely it reduces to ≈ 1.9 µL h−1. This comes from

a decrease of the EDD for high frequencies. The PA loops for different frequencies and a severe
left stenosis are also shown. The higher the frequencies, the greater the shrinkage of the PA loops.
Overall, a left stenosis causes a decrease of the CPF for high frequencies of contractions.

Figure 3.17: High frequencies of contractions with a left stenotic valve diminish the CPF. We simulated
one collector with one complete lymphangion and two incomplete lymphangions with an overall number of
two valves. We imposed boundary pressures at the ending interfaces Pin = 5 cmH2O and Pout = 8 cmH2O.
The left valve is assumed stenotic. Results for the middle lymphangion are shown. Here we show frequency
against CPF (top frame) and Efficiency (centre frame) for different severity of the stenosis, and pressure against
normalised area (bottom frame) for different frequencies and with a severe stenosis. The efficiency is defined
here as the ratio between the CPF in the stenotic case and the CPF in the healthy case. The higher the
frequency, the greater the negative effect on the CPF caused by a severe left stenotic valve.

A right stenotic valve drastically increases the ESP and the ESD. This comes from the diffi-
culties for the lymph to be pushed downstream through a stenotic passage. As a matter of fact, the
outflow greatly decreases (result not shown).
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Stenotic valve Regurgitant valve Healthy valves
Left Right Left Right

ML
st = 0.5 ML

st= 0.1 MR
st = 0.5 MR

st = 0.1 ML
rg = 0.1 ML

rg = 0.8 MR
rg = 0.1 MR

rg = 0.8 Mst = 1 Mrg = 0

Frequency [min−1] 6.97 ≈ 2.64 ↓ 6.98 ≈ 7.06 ≈ 6.98 ≈ 6.96 ≈ 10.19 ↑ 15.48 ↑ 6.98
SW [nL cmH2O] 400.28 ≈ 310.05 ↓ 449.58 ↑ 131.83 ↓ 393.75 ≈ 320.65 ↓ 403.55 ≈ 204.84 ↓ 384.98
EF [-] 0.67 ≈ 0.49 ↓ 0.65 ≈ 0.09 ↓ 0.69 ≈ 0.81 ↑ 0.69 ≈ 0.70 ≈ 0.66
SV [nL] 95.40 ≈ 45.93 ↓ 90.47 ≈ 12.92 ↓ 96.04 ≈ 112.77 ↑ 104.50 ≈ 110.59 ↑ 91.88

FPF [min−1] 4.66 ≈ 1.30 ↓ 4.55 ≈ 0.66 ↓ 4.83 ≈ 5.66 ↑ 7.03 ↑ 10.87 ↑ 4.62
CPF [µL h−1] 39.87 ≈ 7.27 ↓ 37.87 ≈ 5.47 ↓ 40.20 ≈ 47.12 ↑ 63.92 ↑ 102.74 ↑ 38.46

Mean Flow [µL h−1] 39.12 ≈ 10.55 ↓ 39.30 ≈ 7.82 ↓ 34.57 ≈ 0.49 ↓ 44.91 ≈ 0.19 ↓ 39.43
WSS [mdyne cm−2] 157.76 ≈ 49.71 ↓ 158.58 ≈ 16.17 ↓ 132.23 ↓ -6.13 ↓ 178.83 ≈ 4.21 ↓ 160.03

Peak Velocity [mm s−1] 4.83 ≈ 4.56 ≈ 2.66 ↓ 1.32 ↓ 4.45 ≈ 2.71 ↓ 4.79 ≈ 4.00 ↓ 4.83
ESD [µm] 141.43 ≈ 141.83 ≈ 143.22 ≈ 231.14 ↑ 134.72 ≈ 105.12 ↓ 141.40 ≈ 141.11 ≈ 141.12
EDD [µm] 245.94 ≈ 199.02 ↓ 242.71 ≈ 242.71 ≈ 242.71 ≈ 242.71 ≈ 253.66 ≈ 258.55 ≈ 242.71
ESP [cmH2O] 9.01 ≈ 8.92 ≈ 9.94 ≈ 12.74 ↑ 8.99 ≈ 8.27 ≈ 9.05 ≈ 9.20 ≈ 9.02
EDP [cmH2O] 5.19 ≈ 4.23 ↓ 5.00 ≈ 5.00 ≈ 5.00 ≈ 5.00 ≈ 6.31 ↑ 8.00 ↑ 5.00

Table 3.5: Analysis of the effect of lymphatic valve deficits. Here we compare indexes for healthy and
defective valves. In the first column, we show indexes, while in the second and third we show results for
the stenotic and regurgitant valve, respectively. In the last column results for healthy valves are shown. A
green-coloured result indicates a normalised, percentage change in absolute compared to the healthy case
value between 15 and 50 %. Likewise, a blue-coloured result indicates a change between 50 and 100 % and
a red-coloured result indicates a change above 100 %. The arrows indicate a positive or a negative change.

The mathematical results suggest that a stenotic valve causes an increase of the systolic peaks
in the upstream lymphangions and maintains almost unchanged the downstream pressures. More-
over, it causes a reduction of the CPF for high frequencies of contractions in the downstream
lymphangions. These results suggest a great reduction of the CPF may occur when the collecting
lymphatics are blocked where the frequency of lymphatic contraction is high.

A left regurgitant valve has a significant impact on the effective pump flow, namely the real
amount of flow ejected from the lymphangion. As the severity of the left regurgitant valve increases,
backflows increase. This means that during contractions, the lymph is ejected backwards into the
upstream lymphangion, and not forward into the downstream one. Moreover, the ESD diameter
decreases and for a severe left regurgitant valve the downstream valve stays closed most of the time
(result not shown) insofar as the ESP decreases.

To conclude, a right regurgitant valve increases the leakage from the downstream valve, even
for small values of MR

st . This results in increasing the EDP from 5 cmH2O to 8 cmH2O, which
corresponds to the downstream boundary pressures Pout . For severe right regurgitant valves, the
upstream valve does not open during the lymphatic cycle (results not shown).

The effects of regurgitant and stenotic valves are summarised in the indexes shown in Table 3.5.
For a left stenotic case, there are almost no variations in any of the indexes. As discussed before,
problems arise for high frequencies of contractions. For a right stenotic valve, EF, SV, FPF and CPF
decrease almost fourfold, while the ESP increases. The cases of regurgitant valves show interesting
properties on some of the indexes. As a matter of fact, EF, SV, FPF and CPF indexes do not indicate
any reduction in the pumping performance. Instead, based on the results in Table 3.5, it seems that
the pumping action of the lymphangion has undergone improvements with the incompetence of the
valves. For instance, with a left regurgitant valve case, EF, SV, FPF and CPF increase. The same
happens for the right regurgitant valve case for indexes SV, FPF and CPF, though FPF and CPF
might have increased because the frequency was increased. This is obviously misleading: since a
significant amount of lymph is flowing retrograde due to the deficit, the effective time-averaged flow
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is approximately zero. Thus, we would expect CPF to be zero. As it was pointed out by Scallan et
al. [Scallan 2016], indexes EF, SV, FPF and CPF are usually assumed to represent forward lymph
flow and fail to account passive flow or non-ideal valves.

3.4 Discussion

The main contribution of this chapter is the construction of a one-dimensional model for lymph flow
in deformable lymphatic vessels coupled to a model for muscle contraction with fluid-mechanically
dependent frequency, and the numerical implementation of the full model involving the deployment
of modern numerical methods for solving the coupled systems of equations.

3.4.1 Comparison between zero and one-dimensional models

Most of the computational results shown here are qualitatively comparable to those from 0D models
for lymph flow. For instance, the simulation of a lymphatic cycle shown in Fig. 3.10 resembles the
results shown in Fig. 10 of Bertram et al. [Bertram 2014a]. This is indeed not surprising as
0D models are special cases of 1D models; the latter, however, exhibit the additional ability of
accurately capturing wave propagation and transport features, which are badly smeared by zero-
dimensional models, as demonstrated in [Borsche 2016]. Under resting conditions and average
values, 0D models are an optimal choice in terms of resolution, simplicity and computational times.
However, such models would be of limited accuracy for spatial resolution of flow quantities and
especially under postural changes as the non-linear terms could play a significant role. In this
regard, pathological cases and abnormal pressure wave propagation can be studied through the
one-dimensional approach at a higher but still acceptable computational cost.

3.4.2 Characterization of the lymphatic wall electrical activity

There are so far just a few works on computational modelling of the lymphatic electrical activity
[Baish 2016, Kunert 2015] in the open literature. Here, building upon existing works, we propose
a model for the electrical activity of the lymphatic wall, based on the FitzHugh-Nagumo model,
coupled to the vessel wall mechanics. As shown in Fig. 3.6, the action potential of the EFMC model
is divided into four phases: (1) fast depolarization, (2) plateau period, (3) hyperpolarization and (4)
repolarization. The profile of the action potential, for the rat in the present case, resembles well that
described by Telinius et al. [Telinius 2015] for human mesenteric vessels. There are however some
differences, namely: (1) the plateau duration here is 1.2 s compared to 1.7±0.2 s and (2) there are
no spikes preceding and following the plateau phase. The overall agreement is encouraging even
though the works are for different species. The shape of the pressure variation during a lymphatic
contraction mimics the pressure measurements by Davis et al. [Davis 2012], where a fast increase
of the internal pressure is followed by an exponential-like pressure decay. Compare the internal
pressure of the lymphangion of Fig. 3.12 at t ≈ 60 s with Fig. 6 of Davis et al. [Davis 2012].
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3.4.3 Frequency of contractions of the EFMC depend on local fluid dynamics
Lymphatic contractions are a complex phenomenon. The activation of an action potential and the
subsequent lymphatic contraction depend on local fluid dynamic quantities, such as transmural
pressure and wall shear stress [Munn 2015]. The dynamics of frequencies in bovine mesenteric
vessels were described by McHale and Roddie [McHale 1975] by varying the intraluminal pressure.
The authors showed that the frequency of contractions increases as the circumferential stretch
increases. Gashev et al. [Gashev 2002] studied rat mesenteric lymphatics in response to imposed
flow and showed that the frequency dropped from 9.0± 1.6 min−1 to 3.1± 1.4 min−1 when flow
changed from zero to a positive value given by a transaxial-pressure difference of 7 cmH2O. Both
features are incorporated by our computational model. The frequency of contraction in the EFMC
model strongly depends on both circumferential stress and wall shear stress, as illustrated in Figs.
3.12, 3.13 and 3.14, and the frequency-pressure and frequency-WSS curves can be modified so as
to fit experimental measurements and regional variability, as demonstrated in Fig. 3.6.

3.4.4 The advantage of the EFMC model in networks of collecting lymphatics
The occurrence of lymphatic contractions in a network of lymphangions is challenging to model.
Jamalian et al. [Jamalian 2016] studied the effect on the time-averaged flow of the temporal coor-
dination of contractions in different vessels in a branched network. Bertram et al. [Bertram 2017]
proposed a formula of the transmural pressure-frequency dependence through experimental mea-
surements, for a single lymphangion. However, for a network of lymphangions, the following problem
arises: how can we prescribe refractory periods and time delays, including both transmural pres-
sure and wall-shear-stress regulatory mechanisms? The EFMC model of this chapter represents
an attempt to solve this problem. The governing laws of the EFMC model naturally trigger action
potentials by local fluid dynamic quantities and provide the contraction state s. This gives each
lymphangion the autonomous capability to trigger a lymphatic contraction, which is desirable for
a network of lymphangions.

3.4.5 Extension of the Mynard’s valve model to the lymphatic framework
Lymphatic valves perform an important function for lymphatic homeostasis, as their primary role is
to prevent backflow. The forward flow resistance associated with an open valve state has been the
subject of studies, as it is extremely complicated to acquire measurements on these microvessels
at low-pressure differences [Bertram 2014a]. The computational model proposed here builds on
the previous work of Mynard et al. [Mynard 2012], is based on a lumped parameter model of a
deformable vessel and provides the resistance value for flow dynamics. Our valve model depends on
the geometrical parameters of the vessel and on the fluid dynamic properties, including the dynamic
viscosity, the length of the lymphatic valve and the cross-sectional area of the lymphangion, and has
the ability to model flow at both high and low Reynolds numbers. The flow resistance predicted by
our mathematical model agrees with reported literature values. At maximal valve opening (ξ = 1),
the flow resistance is R = 2.4594× 106 g cm−4 s−1, which is comparable with 2× 106 g cm−4

s−1 used in run 2 of Bertram et al. [Bertram 2014a] and is 4-fold greater than 0.6× 106 g cm−4

s−1, estimated through experimental measurements by [Bertram 2014a]. Using the geometrical
parameters of [Wilson 2015] (valve length to Le f f = 240 µm and radius at equilibrium to r0 = 50
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µm), the resistance value is R = 0.98×106 g cm−4 s−1, which closely agrees with 0.95×106 g cm−4

s−1 predicted by Wilson et al. [Wilson 2015]. This agreement gives us a degree of confidence on
the results obtained through the valve model and suggests that valves in larger vessels, such as in
human lymphatic vessels, can be modeled by our modelling framework.

3.4.6 A theoretical study of lymphatic valve impairments

The mathematical model for valve dynamics gives the possibility to study the effect of two patho-
logical cases: stenotic and regurgitant valves. As calcification, a fundamental factor of stenotic and
regurgitant valves development, has not been reported in the literature, the computational results
shown here are only speculative. However, as suggested by [Sabine 2015], mutations in FOXC2
is associated with valve incompetence and possibly leads to backflow. In this regard, modelling of
regurgitant valves can give some insightful results. As expected, our computations showed that a
regurgitant valve was unable to prevent backflow at any transvalvular pressure gradients, leading
to an entirely inefficient lymphatic pump with an adverse pressure gradient. In a stenotic valve, we
noticed an unexpected, strong relationship between the frequency of contraction and the ejected
lymph flow; see Fig. 3.17. For a mildly stenotic valve, the efficiency of the downstream lymphangion
decreased as the contraction rate increased. This suggests that a blockage in a lymphatic district
may have a high flow impact in locations with a high frequency of contraction.

3.5 Limitations and future development

Regarding limitations of the present model, there are several issues that need to be addressed.
Lymphatic contraction modelling poses several challenges. Muscle contractions add tensile stress
and result from internally generated forces, initiated at the cellular level, which depend on calcium
dynamics as well as the length-tension relationship. Previous contraction models [Caulk 2016,
Bertram 2016b] could not be used in our one-dimensional setting because the resulting systems of
equations turned out to be mixed elliptic-hyperbolic and thus ill-posed. Our current model is based
on the previous work of MacDonald et al. [Macdonald 2008], is hyperbolic and mimics the contrac-
tion phenomena in terms of pressure-diameter curves. Although the computational results shown in
the current work are encouraging, they need to be considered with caution. The model has several
drawbacks, as seen from the active component in Eq. (3.8): 1) it neglects the length-tension relation-
ship; 2) the tensile active stress increases as the circumferential stress increases; 3) the estimation
of the range of variation of coefficients Kmin and Kmax comes only through the external manifestation
of the pressure-diameter relationship. Our work could be improved by implementing the contraction
model based on the work of others but in a hyperbolic setting [Caulk 2016, Bertram 2016b].

The mathematical model for the excitability of the lymphatic wall is based on the FitzHugh-
Nagumo model, which might not adequately represent the lymphatic electrical dynamics. We as-
sumed that the lymphatic wall exhibits an electrical behaviour similar to that of cardiac cells.
In addition, we assumed lymphatic contractions to be homogeneous throughout the lymphangion.
Experimental observations have shown that contractions propagate at a certain speed (4 ∼ 8 mm
s−1) [Ohhashi 1980], and there can be dephasing between parts of the same lymphangion. There-
fore, we might not have taken full advantage of the one-dimensional model to describe lymphatic
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contractions; the spatial variation contained in the PDEs is not operational. Moreover, adjacent
lymphangions do not communicate through a lymphatic valve, in our model. This caused unrealistic
behaviours in the computational results, where adjacent lymphangions are regarded as electrically
decoupled, see Fig. 3.12. There are approaches to overcome this problem, used in other contexts,
such as for example adding an ad hoc diffusion term in the FitzHugh-Nagumo [Colli Franzone 2014].

Another important characteristic of lymphatic valves is that they display hysteresis and are
biased to stay open even when facing small negative pressure drop. The opening and closure
thresholds are assumed to be zero for lymphatic valves in the current work, but experimental mea-
surements have shown that the thresholds depend on transmural pressure. Our assumption might
affect the computational results. For instance, the indices shown in Section 3.3.4 might display a
higher non-linear behaviour for different combinations of upstream and downstream pressures. Also,
the behaviour of the pressure-ramp test shown in Fig. 3.12 might not be comprised in the behaviours
described by Bertram et al. [Bertram 2017]. However, one of our primary goal of this work was
to propose in the lymphatic framework a preliminary extension of the valve model [Mynard 2012],
leaving room for possible future improvements, such as the incorporation of the formula for the valve
threshold proposed by Bertram et al. [Bertram 2014b].

3.6 Conclusion
In this chapter, we have proposed a one-dimensional model for collecting lymphatics coupled to a
novel Electro-Fluid-Mechanical Contraction (EFMC) model for dynamical contractions based on a
modified FitzHugh-Nagumo model for action potentials, and to a lumped parameter model for valve
dynamics. The full model has been implemented in a practical computational setup. By using the
computational model, we quantified several lymphatic indices for a wide range of upstream and
downstream pressure combinations. Our theoretical analysis, together with numerical experiments,
showed that the contraction frequency strongly depends on both circumferential stretch and wall
shear stress. Inspired by reported experiments on cannulated collectors, we carried out numerical
computations, the results of which showed good agreement with the observed experimental trend.

The modelling framework proposed here has some distinctive advantages, such as the ability
to model flow in deformable vessels at both high and low Reynolds numbers, and in the longer
term, could provide the basis for more general models that include networks of arteries, veins,
lymphatics, lymph nodes and other relevant fluid districts. Furthermore, the current mathematical
model of collecting lymphatics can be coupled to multi-scale, closed-loop mathematical model of the
cardiovascular system and can give quantitative information in healthy and pathological cases. The
success of the proposed research directions is strongly limited by the existence of many parameters
in models which are difficult to measure or estimate.
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Chapter 4

Working principles of the glymphatic
system: A hypothesis based on a
holistic multi-scale mathematical
model of the murine extracellular fluid
systems

4.1 Introduction

Recent advances in medical science regarding the dynamics of brain fluids and solutes has created
a lot of excitement, particularly regarding the potential for explaining the development of neurolog-
ical disorders. Neurotoxic materials are constantly cleared from the brain parenchyma through the
so-called glymphatic system [Iliff 2012]. The glymphatic system is defined as the intraparenchymal
cerebrospinal fluid (CSF) movement from para-arterial CSF spaces to para-venous CSF spaces.
Intracranial solutes and waste products are carried by the continuous water movement of the inter-
stitial fluid (ISF) towards para-venous CSF spaces and are drained into the venous system through
arachnoid villi or the lymphatic system [Louveau 2017]. The ISF-CSF water movement through glial
cells is regulated by aquaporin-4 (AQP4) channels which are highly expressed at the astrocytic
endfeet membranes [Nakada 2017]. Thanks to the AQP4 channels and the pseudolymphatic func-
tion of waste removal, this system of ISF-CSF movement and clearance of solutes has been termed
"glymphatic system".

Dysfunctions of the glymphatic system can result in possible accumulation of neurotoxins in the
brain and have been implicated in many disease states, including Alzheimer’s disease [Iliff 2012,
Iliff 2014], migraine [Schain 2017], and Idiopathic Intracranial Hypertension [Bezerra 2018]. There
have been several discussions on the possible mechanisms and forces by which the glymphatic
system works. It has been shown through a mathematical model that arterial pulsation is an unlikely
origin of the driving force through astrocyte networks [Asgari 2016]. Three possible mechanisms
have been suggested: 1) diffusion, a size-dependent random molecular walk, 2) advection or bulk
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flow, a molecular size-independent force produced by chemical or hydrostatic or electrical gradient,
or 3) convection, defined as a combination of diffusion and advection [Plog 2018]. Also, Smith et
al. [Smith 2017] showed that the glymphatic system is unlikely driven by bulk flow. Their results
suggest that water movement in the cranial subarachnoid space is driven by convection, while that
within the parenchyma is driven by diffusion. However, to date to the Authors’ knowledge, there is
no satisfactory explanation of the mechanisms which drive the glymphatic system.

It is not surprising that the working principles of the glymphatic system have not yet been
elucidated, as there are still uncertainties regarding how CSF and ISF interact and are produced.
The classical understanding of the CSF dynamics is that CSF is produced by the choroids plexus
in the ventricles, moves into the cerebral subarachnoid space and is drained into arachnoid villi
[Brinker 2014]. However, this old concept of CSF production and drainage has been questioned for
a long time. Cserr proposed in 1988 [Cserr 1988] a model of the ISF-CSF dynamics which has not
yet been entirely accepted by the scientific community. The author proposed that ISF is secreted
in the blood-brain barrier and drains into CSF space. These principles have been further studied
and summarized in the Bulat-Klarica-Orešković hypothesis [Orešković 2017, Linninger 2017]. The
Authors proposed that the CSF dynamics is regulated by Starling forces, and their theory explains
why the injection of mannitol can increase or reduce the CSF volume [Linninger 2016].

Building on the previous mathematical models of the entire human vasculature system [Müller 2013b,
Müller 2014, Mynard 2015, Strocchi 2017, Liang 2009a] and of the murine circulation [Aslanidou 2015,
Cuomo 2015], in this chapter we build for the first time a mathematical model of all the main
the murine fluid systems with a particular emphasis on the cerebral fluids. This mathematical
model includes the dynamics of the heart, major arteries and veins, microcirculation, lungs, cere-
brospinal fluid, intracranial Starling forces, Starling resistors, venous valves, Monro-Kellie hy-
pothesis and brain lymphatics. The mathematical model is validated against literature values and
MR-flow measurements. Furthermore, the model is validated against in-vivo intracranial pressures
taken in healthy mice and in mice with impairment of the intracranial venous drainage. Follow-
ing [Linninger 2016], we assumed the hypothesis of Bulat-Klarica-Orešković [Orešković 2017] and
modelled the ISF production/absorption by Starling forces through the blood-brain barrier, together
with the CSF production by the choroid plexus and by the ISF compartment, and the CSF absorp-
tion through arachnoid villi and lymphatics. Our mathematical model has the advantage of taking
into account most of the fluid phenomena, from the heart dynamics to the CSF and ISF production,
in a closed circuit. This globality of interactive phenomena gives us the capability to study the
interaction of all relevant fluid systems, in both healthy and pathological cases. Through a system-
atic use of the computational model in healthy and pathological cases, in this chapter, we propose
a hypothesis of the possible working principles of the glymphatic system.

4.2 Methods
Our multi-scale mathematical model of the murine fluid system is composed of a network of major
arteries, see Figs. 4.1, 4.2, major veins, see Figs. 4.3, 4.4, and lumped parameter models for the
heart, pulmonary circulation, arterioles, capillaries, venules, cerebrospinal fluid, brain interstitial
fluid and lymphatics. In the following sections, we describe the mathematical models used for each
one of these compartments.
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Figure 4.1: Modelling network of the murine arterial tree. Numbers refer to table 4.1, where geometrical
and mechanical parameters for each vessel are reported.
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Figure 4.2: Modelling network of the murine arterial tree (head and neck). Numbers refer to table 4.1,
where geometrical and mechanical parameters for each vessel are reported.
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Figure 4.3: Modelling network of the murine venous tree. Numbers refer to table 4.1, where geometrical
and mechanical parameters for each vessel are reported. The green triangle shows location of venous valves.
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4.2.1 One-dimensional blood flow equations
The one-dimensional blood flow equations for a compliant vessel are the following





∂tA+∂xq = 0 ,

∂tq+∂x

(
q2

A

)
+

A
ρ

∂x p =− f ,
(4.1)

where x is the space variable, t is time, A(x, t) is the cross-sectional area of the vessel, q(x, t) =
A(x, t)u(x, t) is the flow, u(x, t) is the velocity, p(x, t) is the pressure, ρ is the blood density,
f (x, t) = f f riction (x, t)+ fstenosis (x, t), with f f riction (x, t) =

2(γ+2)πµ

ρ
u(x, t) being the friction force, with

the parameter γ dependent on the chosen velocity profile [Alastruey 2006], µ is the dynamic viscos-
ity, and fstenosis accounts for additional energy loss due to strictures/stenosis and will be discussed
later within this section.

Tube law for arteries and veins

In system (4.1), there are two governing partial differential equations and three unknowns, namely
A(x, t), q(x, t) and p(x, t). For this reason, an extra relation is required to close the system, the tube
law, which relates pressure p(x, t) and cross-sectional area A(x, t). A purely elastic tube law reads

p(x, t) = K(x)ψ(A(x, t);A0(x))+ pe(x, t) , (4.2)
with

ψ(A(x, t);A0(x)) =
[(

A(x, t)
A0(x)

)m

−
(

A(x, t)
A0(x)

)n]
, (4.3)

where pe(x, t) is the external pressure, A0(x) is vessel cross-sectional area at equilibrium and might
be modified in the presence of strictures (see 4.2.1 for details), K(x) is the bending stiffness of the
vessel wall, m≥ 0 and n≤ 0 are real numbers to be specified. For hyperbolicity m and n must satisfy
additional constraints, see [Toro 2013]. For more information about the mathematical structure of
the equations, see [Formaggia 2009, Toro 2013]. Relation (4.2) models a purely elastic behavior of
the vessel wall. Other tube laws may also account for visco-elasticity, elastin and collagen, see
[Matthys 2007a, Blanco 2014, Montecinos 2014a]. Practical choices for the parameters m, n and K
are

K(x) =





Ka =
E (x)

1−ν2

(
h0 (x)
r0 (x)

)
, m =

1
2
, n = 0 for arteries / dural sinuses,

Kv =
E (x)

12(1−ν2)

(
h0 (x)
r0 (x)

)3

, m≈ 10 , n =−3/2 for veins,

(4.4)

where ν , h0, r0 are the Poisson ratio (set to ν = 0.5), the wall-thickness at equilibrium and the
cross-sectional radius at equilibrium.

Since h0 and the E are unknown for most of the murine vessels, we followed [Müller 2013b] and
estimated parameter K based on the wave speed at equilibrium c0 =

√
K
ρ
(m−n). The wave speed

was estimated based on the formula proposed by [Aslanidou 2015] for arteries, while for veins we
used the formula proposed by [Müller 2013b] with cmax

0 = 3 m/s and cmin
0 = 1 m/s. For dural sinuses,

we set c0 = 3 m/s.
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Incorporation of blood rheological properties

Secomb and Pries [Secomb 2013] studied the rheological properties of blood and showed that there
is highly non-linear dependence between the apparent blood viscosity with the vessel diameter.
For blood vessels smaller than 300 µm in diameter, the apparent blood viscosity decreases. This
phenomenon is called the Fåhræus-Lindqvist effect. This decrement continuous up to ≈ 10 µm,
and inverts for smaller values at which the apparent blood viscosity increases. Following the work
of Aslanidou et al. [Aslanidou 2015] we incorporated the rheological properties of blood viscosity
proposed by [Secomb 2013]

µrel =

[
1+(µ∗0.45−1)

(1−Hd)
C−1

(1−0.45)C−1

(
d

d−1.1

)2
](

d
d−1.1

)2

, (4.5)

with

C =
(

0.8+ e−0.075d
)(
−1+

1
1+10−11d12

)
+1+

1
1+10−11d12 , (4.6)

µ
∗
0.45 =6e−0.085d +3.2−2.44e−0.06d0.645

, (4.7)

where µrel is the relative viscosity, Hd is the discharge hematocrit, C describe the dependence
of viscosity on hematocrit, d is the diameter of the vessel and is here approximated as d ≈ d0.
The dynamic viscosity can be calculated from the relative viscosity and the plasma viscosity as
µ = µrel µplasma.

Energy loss due to strictures/stenosis

Strictures in blood vessel cause additional energy loss in the momentum equation. Based on
[Seeley 1976] and [Müller 2015b], this is accounted in the one-dimensional momentum equation by
the additional term f f riction which has the following form

fstenosis (x, t) = A(x, t)u(x, t)2 1
Ls

(
Kv

Re0 (x, t)
+

Kt

2

(
S0

S1
−1
)2
)(

S1

S0

)2

, (4.8)

where Ls is the length of the stenosis, S0/S1 is the unobstructed/obstructed cross-sectional area,
d0/d1 is the unobstructed/obstructed cross-sectional diameter and Re0 (x, t)=

ρd0
µ

u(x, t) is the Reynolds
number in the unobstructed section. Kt = 1.52 is related to turbulent effects, Kv represents the vis-
cous losses and has the following form:

Kv = 32
La

d0

(
S0

S1

)
, (4.9)

with
La = 0.83Ls +1.64d1 . (4.10)

An obstruction of percentage degree 0≤ pob < 100 defines the unobstructed and obstructed cross-
sectional areas as

S0 =Ā0 , (4.11)

S1 =Ā0

(
1− pob

100

)
, (4.12)
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where Ā0 is the input cross-sectional area at equilibrium of Table 4.1. The cross-sectional area at
equilibrium for the stenotic vessel is set to A0 = S1: it remains unaltered from the starting value Ā0

when pob = 0, or decreases to A0 = Ā0
(
1− pob

100

)
when pob > 0.

Conservative formulation of the one-dimensional equations

It is possible to write the blood flow equations in conservative form as follows:

∂tQ+∂xF(Q,x) = S(Q,x) , (4.13)

where

Q =

[
A
Au

]
, F(Q,x) =

[
Au

Au2− K
ρ

A0∂A0Ψ

]
, (4.14)

S(Q,x) =
[

0
− f f riction− fstenosis− 1

ρ

(
A∂x pe +Ψ∂xK +K∂xA0∂A0Ψ

)
]
, (4.15)

with

Ψ = Ψ(A;A0) =
∫

A
ψ(A;A0)dA = A0

(
1

m+1

(
A
A0

)m+1

− 1
n+1

(
A
A0

)n+1
)

, (4.16)

and

∂A0Ψ = ∂A0Ψ(A;A0) = ∂A0

∫

A
ψ(A;A0)dA =−

(
m

m+1

(
A
A0

)m+1

− n
n+1

(
A
A0

)n+1
)

. (4.17)

The constants arising from the integrals (4.16) and (4.17) are set to zero for consistency with (4.1)
and (4.2), see [Elad 1991, Brook 1999, Toro 2016].

We also assume parameters K (x) and pe (x) to be constant. As a result, the source term
simplifies to

S(Q,x, t) = S(Q) =

[
0

− f f riction− fstenosis

]
. (4.18)

The general case of variable material properties poses mathematical [Toro 2013] and numerical
challenges, and requires the use of well-balanced schemes [Müller 2013a]. For a complete view
of the mathematical analysis and derivation of the one-dimensional blood flow equations, refer to
[Toro 2013, Formaggia 2009, Toro 2016].

4.2.2 Zero-dimensional mathematical models

Based on [Müller 2014, Linninger 2017], we model heart dynamics, microcirculation, cerebrospinal
fluid compartments and lymphatic system through a set of Ordinary Differential Equations (ODEs)
based on mass and momentum conservation.

A compartment of volume V is governed by the following ODE:

d
dt

V (t) = ∑
in

qin (t)−∑
out

qout (t) , (4.19)
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where qin and qout are inflow and outflow, respectively. We associate to each compartment a
pressure-volume relationship

P(V ) =





V−V0
C +Pext , microcirculation, CSF, ISF, lymphatics

(Eae(t)+Eb)(V −V0)+P(V )S d
dt V +Pext , heart chambers

P0e
V−V0

φ , pericardium, brain
φE0e

V
φ +S d

dt V +Pext . lung microcirculation
(4.20)

V0 is dead volume; C is compliance; Ea and Eb are the elastances of the heart model; e(t) is a
prescribed normalized function and differs for ventricles and atria; S is the viscoelasticity coefficient;
P0 is the pressure at V =V0; φ is a parameter related to the compliance of the compartment; E0 is
the elastance of the lung microcirculation. For atria we use

e(t) =





1
2

(
1+ cos

(
π

t +T − tar

Tarp

))
0≤ t ≤ tar +Tarp−T ,

0 tar +Tarp−T < t ≤ tac ,

1
2

(
1− cos

(
π

t− tac

Tacp

))
tac < t ≤ tac +Tacp ,

1
2

(
1+ cos

(
π

t− tar

Tarp

))
tac +Tacp < t ≤ T ,

(4.21)

while for ventricles, we use

e(t) =





1
2

(
1− cos

(
π

t
Tvcp

))
0≤ t ≤ Tvcp ,

1
2

(
1+ cos

(
π

t−Tvcp

Tvrp

))
Tvcp ≤ t ≤ Tvcp +Tvrp ,

0 Tvcp +Tvrp < t ≤ T .

(4.22)

T represents the duration of the cardiac cycle; Tacp, Tvcp, Tarp, Tvrp represent the duration of
atrial/ventricular contraction/relaxation, respectively; tac and tar are the times within the cardiac
cycle at which atrial contraction and relaxation begin.

The pericardium volume is the sum of the heart chambers and pericardial fluid volume

Vpericardium =Vleft ventricle +Vright ventricle +Vleft atrium +Vright ventricle +Vpericardial fluid . (4.23)

The intracranial volume is the sum of the intracranial volumes within the skull

Vintracranium =Vintracranial blood +Vintracranial CSF +Vbrain ISF +Vbrain solid matrix , (4.24)

where the Vintracranial blood is the sum of all intracranial vessel V1D intracranial blood and microcirculation
volumes V0D intracranial blood, and Vintracranial CSF is the sum of all CSF volumes with the exception
of the spinal subarachnoid space volume. The external pressure of the compartments are set as
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follows:

Pext =





Ppericardium +Pintrathoracic , heart chamber
Pintrathoracic , lung microcirculation, intrathoracic vessels
Pintracranium , intracranial: microcirculation, vessels, CSF and brain ISF
0 , otherwise.

(4.25)

The framework proposed here is based on [Liang 2009b, Linninger 2017, Müller 2014] and [Sun 1997].
Here we assumed a relaxed version of the Monro-Kellie doctrine. The external pressure Pintracranium

acts uniformly on every one- or zero-dimensional model within the skull (see the discussion for
details).

The flow rate between two compartments, say from V1 to V2, is modelled in a general framework
as

d
dt

q(t) =
1
L
(P1 (t)−P2 (t)−σ (π1−π2)−Rq(t)−B|q(t) |q(t)) , (4.26)

where L is inertia, R is viscous resistance to flow, B is Bernoulli coefficient, σ is the reflection coeffi-
cient, P1,2 and π1,2 are the hydrostatic and oncotic pressure of compartment V1,2. This formulation is
general and has to be adapted to each specific dynamics. For instance, for the heart dynamics, the
contribution of the oncotic forces is zero as ∆π = π1−π2 = 0. Analogously, the fluid exchange at the
microvasculature between arterioles, venules and veins is governed only by hydrostatic forces with
zero Bernoulli resistance contribution. The Starling equation for fluid filtration can be recovered
the stationary solution of (4.26) assuming zero Bernoulli coefficient, and has the following form:

q(t) =
1
R
(P1 (t)−P2 (t)−σ (π1−π2)) . (4.27)

The resulting system of ODEs may be written as

d
dt

Y = L(Y, t,V1D intracranial blood) , (4.28)

where Y(t) = (V1,V2, . . . ,Vn1 ,q1,q2, . . . ,qn2) is the vector of unknowns.

A mathematical model of the Monro-Kellie hypothesis

The Monro-Kellie hypothesis describes the principle of homeostatic intracranial volume regulation
and states that the sum of all intracranial fluid compartments (parenchyma, cerebrospinal fluid and
blood) remains strictly constant. In the current work, we relax this doctrine. We assume that the
sum of all intracranial fluid compartments is almost constant. This is achieved by setting a very low
compliance of whole intracranial volume

C =
dPintracranium

dV
=

φ

Pintracranium
. (4.29)

For instance, at the average intracranial murine pressure Pintracranium ≈ 3 mmH2O and φ ≈ 1.4 µL,
the intracranial compliance is C = 0.46 mmHg µL−1. This means that the intracranial pressure
approximately increases by 1 mmHg when the intracranial volume increases by 0.46 µL, which
corresponds to the ≈ 0.1% of the averaged intracranial murine volume [Chuang 2011].
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The mathematical model of the relaxed version of the Monro-Kellie doctrine allows for the
interaction of all four-fluid brain compartments. At each cardiac contraction, the following chain of
events occurs: 1) during the systolic phase, the cerebral arterial inflow transiently increases the
intracranial volume; 2) the external pressure of all intracranial compartments increases; 2) CSF is
displaced from the cerebral subarachnoid space into the spinal subarachnoid space; 3) intracranial
veins are squeezed and displace venous blood out of the brain towards to right atrium; 4) during
the diastolic phase, venous blood decreases; 5) the transient reduction of the intracranial pressure
causes suction of CSF from the spinal subarachnoid space back to the cerebral subarachnoid space.
During each cardiac cycle, this chain of fluid-dynamical events regulates the intracranial fluid
volumes.
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r0 c0 L RterminalNo. Name Tube law pext [mm] [m s−1] [mm] [mmHg mL s−1] Mothers Daugthers Reference

1 Ascending aorta Artery Pintrath 0.74 3.30 2.60 - Left ventricle 2, 3 [Aslanidou 2015]
2 Aortic arch I Artery Pintrath 0.67 3.42 0.70 - 1 10, 11 [Aslanidou 2015]
3 Brachiocephalic Artery Pintrath 0.38 4.13 2.10 - 1 4, 5 [Aslanidou 2015]
4 Right subclavian I Artery - 0.27 4.62 1.90 - 3 6, 7 [Aslanidou 2015]
5 Right carotid Artery - 0.25 4.73 10.20 - 3 39, 47 [Aslanidou 2015]
6 Right vertebral Artery - 0.17 5.43 13.30 - 4 56 [Aslanidou 2015]
7 Right subclavian II Artery - 0.15 5.63 9.10 - 4 8, 9 [Aslanidou 2015]
8 Right radial Artery - 0.23 4.91 3.70 7755.99 7 Arteriole 8 [Müller 2014] + AS
9 Right ulnar I Artery - 0.28 4.58 1.10 - 7 43, 44 [Müller 2014] + AS
10 Aortic arch II Artery Pintrath 0.59 3.55 1.20 - 2 12, 15 [Aslanidou 2015]
11 Left carotid Artery - 0.29 4.53 13.30 - 2 40, 48 [Aslanidou 2015]
12 Thoracic aorta I Artery Pintrath 0.57 3.60 12.20 - 10 13, 14 [Aslanidou 2015]
13 Thoracic aorta II Artery Pintrath 0.54 3.66 14.50 - 12 20, 25 [Aslanidou 2015]
14 Intercoastals Artery Pintrath 0.26 4.71 1.60 3435.81 12 Arteriole 14 [Aslanidou 2015]
15 Left subclavian I Artery - 0.29 4.51 1.80 - 10 16, 17 [Aslanidou 2015]
16 Left vertebral Artery - 0.15 5.63 13.20 - 15 56 [Aslanidou 2015]
17 Left subclavian II Artery - 0.15 5.63 9.10 - 15 18, 19 [Aslanidou 2015]
18 Left ulnar I Artery - 0.28 4.58 1.10 - 17 45, 46 [Müller 2014] + AS
19 Left radial Artery - 0.23 4.91 3.70 7755.99 17 Arteriole 19 [Müller 2014] + AS
20 Celiac I Artery - 0.22 4.92 2.17 - 13 21, 22 [Aslanidou 2015]
21 Celiac II Artery - 0.21 4.99 0.93 - 20 23, 24 [Aslanidou 2015]
22 Hepatic Artery - 0.12 6.07 3.40 7301.10 20 Arteriole 22 [Aslanidou 2015]
23 Splenic Artery - 0.14 5.76 6.90 6258.09 21 Arteriole 23 [Aslanidou 2015]
24 Gastric Artery - 0.15 5.70 5.10 6042.29 21 Arteriole 24 [Aslanidou 2015]
25 Abdomainal aorta I Artery - 0.49 3.78 2.90 - 13 26, 27 [Aslanidou 2015]
26 Superior mesenteric Artery - 0.29 4.51 4.70 3021.15 25 Arteriole 26 [Aslanidou 2015]
27 Abdominal aorta II Artery - 0.44 3.93 0.80 - 25 29, 31 [Aslanidou 2015]
28 Right renal Artery - 0.20 5.11 2.90 4380.66 29 Arteriole 28 [Ruan 1999]
29 Abdominal aorta III Artery - 0.44 3.93 0.80 - 27 28, 30 [Aslanidou 2015]
30 Left renal Artery - 0.20 5.11 1.50 4380.66 29 Arteriole 30 [Ruan 1999]
31 Abdominal aorta IV Artery - 0.41 4.03 6.90 - 27 32, 33 [Aslanidou 2015]
32 Inferior mesenteric Artery - 0.26 4.69 0.63 3393.25 31 Arteriole 32 [Müller 2014] + AS
33 Abdominal aorta V Artery - 0.36 4.19 2.10 - 31 34, 49, 82 [Aslanidou 2015]
34 Right common Iliac Artery - 0.24 4.78 3.40 - 33 35, 36 [Aslanidou 2015]
35 Right external Iliac Artery - 0.22 4.92 1.01 - 34 37, 38 [Aslanidou 2015]
36 Right internal Iliac Artery - 0.10 6.40 4.00 170952.70 34 Arteriole 36 [Aslanidou 2015]
37 Right deep femoral Artery - 0.26 4.69 1.88 3393.25 35 Arteriole 37 [Müller 2014] + AS
38 Right femoral Artery - 0.21 4.99 3.09 - 35 41, 42 [Aslanidou 2015]
39 Right external carotid Artery - 0.26 4.69 0.68 - 5 70, 73 [Müller 2014] + AS
40 Left internal carotid Artery - 0.18 5.35 6.60 - 11 66 [Aslanidou 2015]
41 Right posterior tibial Artery - 0.13 5.87 4.30 132246.43 38 Arteriole 41 [Aslanidou 2015]
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42 Right anterior tibial Artery - 0.15 5.60 3.00 114902.64 38 Arteriole 42 [Aslanidou 2015]
43 Right interosseous artery Artery - 0.13 5.92 1.17 13572.99 9 Arteriole 43 [Müller 2014] + AS
44 Right ulnar II Artery - 0.26 4.67 2.83 6686.20 9 Arteriole 44 [Müller 2014] + AS
45 Left ulnar II Artery - 0.26 4.67 2.83 6686.20 18 Arteriole 45 [Müller 2014] + AS
46 Left interosseous Artery - 0.13 5.92 1.17 13572.99 18 Arteriole 46 [Müller 2014] + AS
47 Right internal carotid Artery - 0.18 5.35 6.60 - 5 61, 62 [Aslanidou 2015]
48 Left external carotid Artery - 0.26 4.69 0.68 - 11 71, 72 [Müller 2014] + AS
49 Left common Iliac Artery - 0.24 4.78 3.40 - 33 50, 51 [Aslanidou 2015]
50 Left external Iliac Artery - 0.22 4.92 1.01 - 49 52, 53 [Aslanidou 2015]
51 Left internal Iliac Artery - 0.10 6.40 4.00 170952.70 49 Arteriole 51 [Aslanidou 2015]
52 Left deep femoral Artery - 0.26 4.69 1.88 3393.25 50 Arteriole 52 [Müller 2014] + AS
53 Left femoral Artery - 0.21 4.99 3.09 - 50 54, 55 [Aslanidou 2015]
54 Left posterior tibial Artery - 0.13 5.87 4.30 132246.43 53 Arteriole 54 [Aslanidou 2015]
55 Left anterior tibial Artery - 0.15 5.60 3.00 114902.64 53 Arteriole 55 [Aslanidou 2015]
56 Basilar artery Artery Pintracranium 0.12 6.11 4.80 - 6, 16 57, 69 [Aslanidou 2015]
57 Right posterior cerebral artery I Artery Pintracranium 0.09 6.69 2.56 - 56 58, 59 [Aslanidou 2015]
58 Right posterior cerebral artery II Artery Pintracranium 0.10 6.45 3.50 14512.51 57 Arteriole 58 [Aslanidou 2015]
59 Right posterior communicating artery Artery Pintracranium 0.11 6.35 2.67 - 57 60 [Aslanidou 2015]
60 Right internal carotid artery II Artery Pintracranium 0.13 5.87 1.50 - 59 61, 62 [Aslanidou 2015]
61 Right middle cerebral artery Artery Pintracranium 0.09 6.75 2.20 6096.22 47, 60 Arteriole 61 [Aslanidou 2015]
62 Right anterior cerebral artery I Artery Pintracranium 0.11 6.19 2.60 - 47, 60 63 [Aslanidou 2015]
63 Right anterior cerebral artery II Artery Pintracranium 0.11 6.19 2.10 4980.13 62, 64 Arteriole 63 [Aslanidou 2015]
64 Left anterior cerebral artery I Artery Pintracranium 0.11 6.19 2.60 - 66 63 [Aslanidou 2015]
65 Left middle cerebral artery Artery Pintracranium 0.09 6.75 2.20 6096.22 66 Arteriole 65 [Aslanidou 2015]
66 Left internal carotid artery II Artery Pintracranium 0.13 5.87 1.50 - 40, 67 64, 65 [Aslanidou 2015]
67 Left posterior communicating artery Artery Pintracranium 0.11 6.35 2.67 - 69 66 [Aslanidou 2015]
68 Left posterior cerebral artery II Artery Pintracranium 0.10 6.45 3.50 14512.51 69 Arteriole 68 [Aslanidou 2015]
69 Left posterior cerebral artery I Artery Pintracranium 0.09 6.69 2.56 - 56 67, 68 [Aslanidou 2015]
70 Right facial artery Artery - 0.09 6.75 3.20 15000.00 39 Arteriole 70 [Aslanidou 2015]
71 Left facial artery Artery - 0.09 6.75 3.20 15000.00 48 Arteriole 71 [Aslanidou 2015]
72 Left superficial temporal artery I Artery - 0.14 5.80 4.83 - 48 74 MRI
73 Right superficial temporal artery I Artery - 0.14 5.80 4.83 - 39 75 MRI
74 Left superficial temporal artery II Artery - 0.11 6.20 2.00 6428.57 72 Arteriole 74 MRI
75 Right superficial temporal artery II Artery - 0.11 6.20 2.00 6428.57 73 Arteriole 75 MRI
82 Middle caudal artery Artery - 0.14 5.76 28.10 6258.09 33 Arteriole 82 [Aslanidou 2015]
83 Middle caudal vein Vein - 0.14 2.26 28.10 - Venules 83 93 -
84 Right cranial vena cava Vein Pintrath 0.60 1.16 7.00 40.42 143, 147, 148, 402 Right atrium [Müller 2014] + AS
85 Inferior vena cava I Vein Pintrath 0.70 1.00 5.04 15.00 86, 87 Right atrium [Müller 2014] + AS
86 Hepatic vein Vein Pintrath 0.44 1.44 2.24 - Venules 86 85 [Müller 2014] + AS
87 Inferior vena cava II Vein Pintrath 0.70 1.00 0.49 - 88, 89 85 [Müller 2014] + AS
88 Left renal vein Vein - 0.23 1.95 1.05 - Venules 88 87 [Müller 2014] + AS
89 Inferior vena cava III Vein - 0.70 1.00 0.49 - 90, 91 87 [Müller 2014] + AS
90 Right renal vein Vein - 0.23 1.95 1.05 - Venules 90 89 [Müller 2014] + AS
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91 Inferior vena cava IV Vein - 0.70 1.00 4.12 - 92, 93 89 [Müller 2014] + AS
92 Inferior mesenteric vein Vein - 0.41 1.51 1.98 - Venules 92 91 [Müller 2014] + AS
93 Inferior vena cava V Vein - 0.70 1.00 2.64 - 83, 94, 95 91 [Müller 2014] + AS
94 Left common Iliac vein I Vein - 0.53 1.28 1.25 - 96, 98 93 [Müller 2014] + AS
95 Right common Iliac vein I Vein - 0.53 1.28 1.25 - 97, 111 93 [Müller 2014] + AS
96 Right lumbar vein Vein - 0.09 2.49 1.25 - 126 94, 124 [Müller 2014] + AS
97 Left lumbar vein Vein - 0.09 2.49 1.25 - 126 95, 125 [Müller 2014] + AS
98 Right common Iliac vein II Vein - 0.53 1.28 0.66 - 99, 100 94, 124 [Müller 2014] + AS
99 Right internal Iliac vein Vein - 0.14 2.26 1.65 - Venules 99 98 [Müller 2014] + AS
100 Right external Iliac vein Vein - 0.46 1.41 4.75 - 101, 102, 103 98 [Müller 2014] + AS
101 Right deep femoral vein Vein - 0.32 1.71 4.15 - Venules 101 100 [Müller 2014] + AS
102 Right femoral vein Vein - 0.32 1.71 8.38 - 106 100 [Müller 2014] + AS
103 Right great saphenous vein I Vein - 0.21 2.00 2.47 - 104 100 [Müller 2014] + AS
104 Right great saphenous vein III Vein - 0.20 2.03 9.89 - 105 103 [Müller 2014] + AS
105 Right great saphenous vein II Vein - 0.17 2.13 12.37 - Venules right leg 104 [Müller 2014] + AS
106 Right popliteal vein Vein - 0.31 1.73 6.27 - 107, 109 102 [Müller 2014] + AS
107 Right posterior tibial vein I Vein - 0.14 2.26 5.71 - 108 106 [Müller 2014] + AS
108 Right posterior tibial vein II Vein - 0.14 2.26 5.71 - Venules 108 107 [Müller 2014] + AS
109 Right anterior tibial vein I Vein - 0.14 2.26 5.28 - 110 106 [Müller 2014] + AS
110 Right anterior tibial vein II Vein - 0.14 2.26 5.94 - Venules right leg 109 [Müller 2014] + AS
111 Left common Iliac vein II Vein - 0.53 1.28 0.66 - 112, 113 95, 125 [Müller 2014] + AS
112 Left internal Iliac vein Vein - 0.14 2.26 1.65 - Venules 112 111 [Müller 2014] + AS
113 Left external Iliac vein Vein - 0.46 1.41 4.75 - 114, 115, 116 111 [Müller 2014] + AS
114 Left deep femoral vein Vein - 0.32 1.71 4.15 - Venules 114 113 [Müller 2014] + AS
115 Left femoral vein Vein - 0.32 1.71 8.38 - 119 113 [Müller 2014] + AS
116 Left great saphenous vein I Vein - 0.21 2.00 2.47 - 117 113 [Müller 2014] + AS
117 Left great saphenous vein III Vein - 0.20 2.03 9.89 - 118 116 [Müller 2014] + AS
118 Left great saphenous vein II Vein - 0.17 2.13 12.37 - Venules left leg 117 [Müller 2014] + AS
119 Left popliteal vein Vein - 0.31 1.73 6.27 - 120, 122 115 [Müller 2014] + AS
120 Left posterior tibial vein I Vein - 0.14 2.26 5.71 - 121 119 [Müller 2014] + AS
121 Left posterior tibial vein I Vein - 0.14 2.26 5.71 - Venules 121 120 [Müller 2014] + AS
122 Left anterior tibial vein I Vein - 0.14 2.26 5.28 - 123 119 [Müller 2014] + AS
123 Left anterior tibial vein II Vein - 0.14 2.26 5.94 - Venules left leg 122 [Müller 2014] + AS
124 Ascending lumbar vein Vein - 0.18 2.09 7.58 - 96, 98 128 [Müller 2014] + AS
125 Hemiazygos vein Vein - 0.26 1.87 7.58 - 97, 111 128 [Müller 2014] + AS
126 Vertebral venous plexus Vein - 0.15 2.22 23.41 - 257 96, 97 [Müller 2014] + AS
127 Intercostal vein Vein Pintrath 0.37 1.60 0.66 - Venules 127 128 [Müller 2014] + AS
128 Azygos vein II Vein Pintrath 0.39 1.55 9.23 - 124, 125, 127 129 [Müller 2014] + AS
129 Azygos vein I Vein Pintrath 0.39 1.55 0.66 - 128 142 [Müller 2014] + AS
130 Right subclavian vein II Vein - 0.48 1.38 0.99 - 131 143 [Müller 2014] + AS
131 Right subclavian vein III Vein - 0.48 1.38 8.90 - 132, 133 130 [Müller 2014] + AS
132 Right radial vein Vein - 0.18 2.09 13.39 - Venules 132 131 [Müller 2014] + AS
133 Right ulnar vein I Vein - 0.18 2.09 3.30 - 134, 135 131 [Müller 2014] + AS
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134 Right interosseous vein Vein - 0.09 2.49 2.31 - Venules 134 133 [Müller 2014] + AS
135 Right ulnar vein II Vein - 0.18 2.09 10.09 - Venules 135 133 [Müller 2014] + AS
136 Left subclavian vein II Vein - 0.48 1.38 0.99 - 137 145 [Müller 2014] + AS
137 Left subclavian vein III Vein - 0.48 1.38 8.90 - 138, 139 136 [Müller 2014] + AS
138 Left radial vein Vein - 0.18 2.09 13.39 - Venules 138 137 [Müller 2014] + AS
139 Left ulnar vein I Vein - 0.18 2.09 3.30 - 140, 141 137 [Müller 2014] + AS
140 Left interosseous vein Vein - 0.09 2.49 2.31 - Venules 140 139 [Müller 2014] + AS
141 Left ulnar vein II Vein - 0.18 2.09 10.09 - Venules 141 139 [Müller 2014] + AS
142 Left cranial vena cava II Vein Pintrath 0.60 1.16 3.00 40.42 129, 144 Right atrium [Müller 2014] + AS
143 Right subclavian vein I Vein - 0.52 1.30 0.99 - 130, 146 84 [Müller 2014] + AS
144 Left cranial vena cava I Vein Pintrath 0.60 1.16 4.00 - 145, 149, 150, 401 142 [Müller 2014] + AS
145 Left subclavian vein I Vein - 0.52 1.30 0.99 - 136, 151 144 [Müller 2014] + AS
146 Right external jugular vein II Vein - 0.61 1.14 5.00 - 152 143 MRI
147 Right internal jugular vein III Vein - 0.10 2.45 1.00 - 153 84 [Müller 2014, Mancini 2015] + AS
148 Right vertebral vein Vein - 0.07 2.65 6.00 - 164, 250 84 [Müller 2014] + AS
149 Left vertebral vein Vein - 0.07 2.65 6.00 - 165, 251 144 [Müller 2014] + AS
150 Left internal jugular vein III Vein - 0.10 2.45 1.00 - 154 144 [Müller 2014, Mancini 2015] + AS
151 Left external jugular vein II Vein - 0.61 1.14 5.00 - 155 145 MRI
152 Right external jugular vein I Vein - 0.54 1.27 5.00 - 158, 159 146 MRI
153 Right internal jugular vein II Vein - 0.10 2.45 1.00 - 156 147 [Müller 2014, Mancini 2015] + AS
154 Left internal jugular vein II Vein - 0.10 2.45 1.00 - 157 150 [Müller 2014, Mancini 2015] + AS
155 Left external jugular vein I Vein - 0.54 1.27 5.00 - 160, 161 151 MRI
156 Right internal jugular vein I Vein - 0.10 2.45 1.00 - 162, 163, 168, 169 153 [Müller 2014, Mancini 2015] + AS
157 Left internal jugular vein I Vein - 0.10 2.45 1.00 - 166, 167, 170, 171 154 [Müller 2014, Mancini 2015] + AS
158 Right anterior facial vein II Vein - 0.33 1.70 9.00 - 247 152 MRI
159 Right posterior facial vein Vein - 0.45 1.43 5.07 - 172, 173 152 MRI
160 Left posterior facial vein Vein - 0.45 1.43 5.07 - 179, 180 155 MRI
161 Left anterior facial vein II Vein - 0.33 1.70 9.00 - 248 155 MRI
162 Anastomosis Vein - 0.05 3.00 0.50 - 172, 173 156 -
163 Right lateral anterior condylar vein Vein - 0.10 2.45 0.99 - 164, 250 156 [Müller 2014] + AS
164 Right anastomotic vein Vein - 0.10 2.45 0.66 - 257 148, 163 [Müller 2014] + AS
165 Left anastomotic vein Vein - 0.10 2.45 0.66 - 257 149, 166 [Müller 2014] + AS
166 Left lateral anterior condylar vein Vein - 0.10 2.45 0.99 - 165, 251 157 [Müller 2014] + AS
167 Anastomosis Vein - 0.05 3.00 0.50 - 179, 180 157 -
168 Right sigmoid sinus Dural sinus Pintracranium 0.10 3.00 1.65 - 185 156 [Müller 2014] + AS
169 Right inferior petrosal sinus Dural sinus Pintracranium 0.09 3.00 1.05 - 175 156 [Müller 2014] + AS
170 Left inferior petrosal sinus Dural sinus Pintracranium 0.09 3.00 1.05 - 177 157 [Müller 2014] + AS
171 Left sigmoid sinus Dural sinus Pintracranium 0.10 3.00 1.65 - 178, 186 157 [Müller 2014] + AS
172 Right superficial temporal vein Vein - 0.38 1.59 4.50 - 181, 243 159, 162 MRI
173 Right interpterygoid emissary vein II Vein - 0.05 3.00 0.30 - 182, 184 159, 162 -
174 Right superior petrosal sinus Dural sinus Pintracranium 0.10 3.00 1.88 - 185 175, 176, 184 [Müller 2014] + AS
175 Right cavernous sinus Dural sinus Pintracranium 0.09 3.00 0.49 - 174 169 [Müller 2014] + AS
176 Intracavernous sinus Dural sinus Pintracranium 0.12 3.00 0.66 - 174 177, 178, 187 [Müller 2014] + AS
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177 Left cavernous sinus Dural sinus Pintracranium 0.09 3.00 0.49 - 176 170 [Müller 2014] + AS
178 Left superior petrosal sinus Dural sinus Pintracranium 0.10 3.00 1.88 - 176 171, 188, 255 [Müller 2014] + AS
179 Left interpterygoid emissary vein II Vein - 0.05 3.00 0.30 - 187, 189 160, 167 -
180 Left superficial temporal vein Vein - 0.38 1.59 4.50 - 190, 246 160, 167 MRI
181 Right petrosquamosus sinus II Vein - 0.38 1.59 2.50 - 183 172 MRI
182 Anastomosis Vein - 0.05 3.00 2.50 - 183 173 -
183 Right petrosquamosus sinus I Vein - 0.35 1.64 2.50 - 185 181, 182 MRI
184 Right interpterygoid emissary vein I Vein - 0.05 3.00 0.40 - 174 173 MRI
185 Right transverse sinus I Dural sinus Pintracranium 0.30 3.00 2.90 - 192, 193 168, 174, 183, 254 MRI
186 Left transverse sinus I Dural sinus Pintracranium 0.30 3.00 2.90 - 194, 195 171, 188, 255 MRI
187 Left interpterygoid emissary vein I Vein - 0.05 3.00 0.40 - 176 179 MRI
188 Left petrosquamosus sinus I Vein - 0.35 1.64 2.50 - 178, 186 189, 190 MRI
189 Anastomosis Vein - 0.05 3.00 2.50 - 188 179 -
190 Left petrosquamosus sinus II Vein - 0.38 1.59 2.50 - 188 180 MRI
191 Right Labbé vein Vein Pintracranium 0.14 2.26 1.65 - Venules 191 Starling 191 → 192 [Müller 2014] + AS
192 Terminal cerebral vein Vein Pintracranium 0.14 2.26 0.33 - Starling 191 → 192 185 [Müller 2014] + AS
193 Right transverse sinus II Dural sinus Pintracranium 0.30 3.00 2.90 - 221, 249 185 MRI
194 Left transverse sinus II Dural sinus Pintracranium 0.30 3.00 2.90 - 221, 249 186 MRI
195 Terminal cerebral vein Vein Pintracranium 0.14 2.26 0.33 - Starling 194 → 195 186 [Müller 2014] + AS
196 Left Labbé vein Vein Pintracranium 0.14 2.26 1.65 - Venules 196 Starling 196 → 197 [Müller 2014] + AS
197 Right basal vein of Rosenthal I Vein Pintracranium 0.12 2.36 0.33 - Venules 197 198 [Müller 2014] + AS
198 Right basal vein of Rosenthal II Vein Pintracranium 0.12 2.36 2.31 - 197 203 [Müller 2014] + AS
199 Right internal cerebral vein Vein Pintracranium 0.12 2.36 1.65 - Venules 199 203 [Müller 2014] + AS
200 Left internal cerebral vein Vein Pintracranium 0.12 2.36 1.65 - Venules 200 203 [Müller 2014] + AS
201 Left basal vein of Rosenthal I Vein Pintracranium 0.12 2.36 0.33 - Venules 201 202 [Müller 2014] + AS
202 Left basal vein of Rosenthal II Vein Pintracranium 0.12 2.36 2.31 - 201 203 [Müller 2014] + AS
203 Terminal cerebral vein Vein Pintracranium 0.34 1.67 0.33 - 198, 199, 200, 202 Starling 203 → 204 [Müller 2014] + AS
204 Vein of Galen Vein Pintracranium 0.37 1.60 0.30 - Starling 203 → 204 249 [Müller 2014] + AS
205 Inferior sagittal sinus Dural sinus Pintracranium 0.15 3.00 1.21 - 209 206 [Müller 2014] + AS
206 Inferior sagittal sinus Dural sinus Pintracranium 0.15 3.00 1.21 - 205, 211 207 [Müller 2014] + AS
207 Inferior sagittal sinus Dural sinus Pintracranium 0.15 3.00 1.21 - 206, 213 249 [Müller 2014] + AS
208 Cerebral vein Vein Pintracranium 0.14 2.26 0.99 - Venules 208 Starling 208 → 209 [Müller 2014] + AS
209 Terminal cerebral vein Vein Pintracranium 0.14 2.26 0.33 - Starling 208 → 209 205 [Müller 2014] + AS
210 Cerebral vein Vein Pintracranium 0.14 2.26 0.99 - Venules 210 Starling 210 → 211 [Müller 2014] + AS
211 Terminal cerebral vein Vein Pintracranium 0.14 2.26 0.33 - Starling 210 → 211 206 [Müller 2014] + AS
212 Cerebral vein Vein Pintracranium 0.14 2.26 0.99 - Venules 212 Starling 212 → 213 [Müller 2014] + AS
213 Terminal cerebral vein Vein Pintracranium 0.14 2.26 0.33 - Starling 212 → 213 207 [Müller 2014] + AS
214 Superior sagittal sinus I Dural sinus Pintracranium 0.15 3.00 0.99 - 240 215 MRI
215 Superior sagittal sinus II Dural sinus Pintracranium 0.15 3.00 0.99 - 214, 235 216 MRI
216 Superior sagittal sinus III Dural sinus Pintracranium 0.20 3.00 0.99 - 215, 233 217 MRI
217 Superior sagittal sinus IV Dural sinus Pintracranium 0.20 3.00 0.99 - 216, 231, 236 218 MRI
218 Superior sagittal sinus V Dural sinus Pintracranium 0.20 3.00 0.66 - 217, 229, 237 219 MRI
219 Superior sagittal sinus VI Dural sinus Pintracranium 0.20 3.00 1.65 - 218, 227, 238 220 MRI
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220 Superior sagittal sinus VII Dural sinus Pintracranium 0.20 3.00 0.82 - 219, 225 221 MRI
221 Superior sagittal sinus VIII Dural sinus Pintracranium 0.20 3.00 0.82 - 220, 223 193, 194, 256, 257 MRI
222 Cerebral vein Vein Pintracranium 0.14 2.26 1.65 - Venules 222 Starling 222 → 223 [Müller 2014] + AS
223 Terminal cerebral vein Vein Pintracranium 0.14 2.26 0.33 - Starling 222 → 223 221 [Müller 2014] + AS
224 Cerebral vein Vein Pintracranium 0.14 2.26 1.65 - Venules 224 Starling 224 → 225 [Müller 2014] + AS
225 Terminal cerebral vein Vein Pintracranium 0.14 2.26 0.33 - Starling 224 → 225 220 [Müller 2014] + AS
226 Cerebral vein Vein Pintracranium 0.14 2.26 1.65 - Venules 226 Starling 226 → 227 [Müller 2014] + AS
227 Terminal cerebral vein Vein Pintracranium 0.14 2.26 0.33 - Starling 226 → 227 219 [Müller 2014] + AS
228 Cerebral vein Vein Pintracranium 0.14 2.26 1.65 - Venules 228 Starling 228 → 229 [Müller 2014] + AS
229 Terminal cerebral vein Vein Pintracranium 0.14 2.26 0.33 - Starling 228 → 229 218 [Müller 2014] + AS
230 Cerebral vein Vein Pintracranium 0.14 2.26 1.65 - Venules 230 Starling 230 → 231 [Müller 2014] + AS
231 Terminal cerebral vein Vein Pintracranium 0.14 2.26 0.33 - Starling 230 → 231 217 [Müller 2014] + AS
232 Cerebral vein Vein Pintracranium 0.14 2.26 1.65 - Venules 232 Starling 232 → 233 [Müller 2014] + AS
233 Terminal cerebral vein Vein Pintracranium 0.14 2.26 0.33 - Starling 232 → 233 216 [Müller 2014] + AS
234 Cerebral vein Vein Pintracranium 0.14 2.26 1.65 - Venules 234 Starling 234 → 235 [Müller 2014] + AS
235 Terminal cerebral vein Vein Pintracranium 0.14 2.26 0.33 - Starling 234 → 235 215 [Müller 2014] + AS
236 Arachnoid villi Vein Pintracranium 0.14 2.26 0.33 - Cranial SAS 217 -
237 Arachnoid villi Vein Pintracranium 0.14 2.26 0.33 - Cranial SAS 218 -
238 Arachnoid villi Vein Pintracranium 0.14 2.26 0.33 - Cranial SAS 219 -
239 Left rostral vein Vein - 0.30 1.76 2.78 - 240 242 MRI
240 Right rostral vein Vein - 0.30 1.76 2.78 - 244 214, 239 MRI
241 Right supraorbital Vein - 0.20 2.04 0.55 - Venules 241 242 MRI
242 Right superficial temporal vein Vein - 0.30 1.76 5.77 - 239, 241 243 MRI
243 Right superficial temporal vein Vein - 0.33 1.70 5.77 - 242 172 MRI
244 Left supraorbital Vein - 0.20 2.04 0.55 - Venules 244 240, 245 MRI
245 Left superficial temporal vein Vein - 0.30 1.76 5.77 - 244 246 MRI
246 Left superficial temporal vein Vein - 0.33 1.70 5.77 - 245 180 MRI
247 Right anterior facial vein I Vein - 0.28 1.82 9.00 - Venules 247 158 MRI
248 Left anterior facial vein I Vein - 0.28 1.82 9.00 - Venules 248 161 MRI
249 Straight sinus Dural sinus Pintracranium 0.23 3.00 1.32 - 204, 207 193, 194, 256, 257 [Müller 2014] + AS
250 Right suboccipital sinus Vein - 0.09 2.49 0.33 - 252, 254 148, 163 [Müller 2014] + AS
251 Left suboccipital sinus Vein - 0.09 2.49 0.33 - 253, 255 149, 166 [Müller 2014] + AS
252 Right marginal sinus Dural sinus Pintracranium 0.09 3.00 1.32 - 256 250 [Müller 2014] + AS
253 Left marginal sinus Dural sinus Pintracranium 0.09 3.00 1.32 - 256 251 [Müller 2014] + AS
254 Right mastoid emissary vein Vein - 0.09 2.49 2.37 - 185 250 [Müller 2014] + AS
255 Left mastoid emissary vein Vein - 0.09 2.49 2.37 - 178, 186 251 [Müller 2014] + AS
256 Occipital sinus Dural sinus Pintracranium 0.10 3.00 1.15 - 221, 249 252, 253 [Müller 2014] + AS
257 Occipital vein Vein - 0.12 2.36 1.65 - 221, 249 126, 164, 165 [Müller 2014] + AS
401 Left Jugular trunk Vein - 0.12 2.36 2.31 - Lymphatics 144 -
402 Right Jugular trunk Vein - 0.12 2.36 2.31 - Lymphatics 84 -
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Table 4.1: Geometrical and mechanical parameters for the modelled venous and arterial systems. No: vessel number, tube law: identify the type of tube law according to Eq. (4.4), pext :
External pressure in the tube law of Eq. (4.2), r0: radius of the vessel at equilibrium, c0: wave speed for A = A0, L: length of the vessel, Rterminal terminal resistance to couple one-dimensional
vessels with zero-dimensional model, Mothers: inlet boundary condition (lumped model or a junction with the shown vessel numbers), Daughters: outlet boundary condition (lumped model of a
junction with the shown vessel numbers), Reference: bibliographic source or MRI imaging segmented geometry. AS, allometric scaling.

Oncotic pressure C V0 S E0 φ P0Name Pext [mmHg] [102×µL mmHg−1] [µL] [mmHg s mL−1] [mmHg s mL−1] [µL] [mmHg]
Right atrium Pintrath + Ppericardium - - 0.011 0.23 - - -
Right ventricle Pintrath + Ppericardium - - 0.333 0.23 - - -
Pulmonary arteries Pintrath - - - 4.65 72.00 5.556 -
Pulmonsary capillaries Pintrath - - - 4.65 72.00 16.667 -
Pulmonary veins Pintrath - - - 4.65 72.00 55.556 -
Left atrium Pintrath + Ppericardium - - 0.019 0.23 - - -
Left ventricle Pintrath + Ppericardium - - 7.222 0.23 - - -
Intrathoracic (Pintrath =−3.5 mmHg) - - - - - - - -
Pericardium (Ppericardium) - - - 111.111 - - 27.778 1.0
Pericardial fluid Ppericardium - - 8.333 - - - -
Brain solid matrix Pintracranium - - 272.222 - - - -
Brain interstitial fluid (ISF) Pintracranium 6.0 15.12 116.667 - - - -
Left ventricle (CSF) Pintracranium 6.0 343.31 2.000 - - - -
Right ventricle (CSF) Pintracranium 6.0 343.31 2.000 - - - -
Third ventricle (CSF) Pintracranium 6.0 214.57 1.250 - - - -
Aqueduct of Sylvius (CSF) Pintracranium 6.0 1.25 0.007 - - - -
Fourth ventricle (CSF) Pintracranium 6.0 119.21 0.472 - - - -
Cerebral subarachnoid space (CSF) Pintracranium 6.0 134.92 13.889 - - - -
Spinal subarachnoid space (CSF) - 6.0 290.25 18.056 - - - -
Intracranium (Pintracranium) - - - 421.528 - - 0.139 10.0
Arteriole 8 - 25.0 5.04 - - - - -
Arteriole 14 - 25.0 50.04 - - - - -
Arteriole 19 - 25.0 5.04 - - - - -
Arteriole 22 - 25.0 7.56 - - - - -
Arteriole 23 - 25.0 5.04 - - - - -
Arteriole 24 - 25.0 11.88 - - - - -
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Arteriole 26 - 25.0 29.16 - - - - -
Arteriole 28 - 25.0 24.48 - - - - -
Arteriole 30 - 25.0 24.48 - - - - -
Arteriole 32 - 25.0 6.41 - - - - -
Arteriole 36 - 25.0 6.55 - - - - -
Arteriole 37 - 25.0 41.40 - - - - -
Arteriole 41 - 25.0 18.00 - - - - -
Arteriole 42 - 25.0 41.40 - - - - -
Arteriole 43 - 25.0 1.55 - - - - -
Arteriole 44 - 25.0 5.04 - - - - -
Arteriole 45 - 25.0 5.04 - - - - -
Arteriole 46 - 25.0 1.55 - - - - -
Arteriole 51 - 25.0 6.55 - - - - -
Arteriole 52 - 25.0 41.40 - - - - -
Arteriole 54 - 25.0 18.00 - - - - -
Arteriole 55 - 25.0 41.40 - - - - -
Arteriole 58 Pintracranium 25.0 5.04 0.556 - - - -
Arteriole 61 Pintracranium 25.0 5.04 0.556 - - - -
Arteriole 63 Pintracranium 25.0 5.04 0.556 - - - -
Arteriole 65 Pintracranium 25.0 5.04 0.556 - - - -
Arteriole 68 Pintracranium 25.0 5.04 0.556 - - - -
Arteriole 70 - 25.0 1.33 - - - - -
Arteriole 71 - 25.0 2.00 - - - - -
Arteriole 74 - 25.0 2.00 - - - - -
Arteriole 75 - 25.0 2.00 - - - - -
Arteriole 82 - 25.0 2.00 - - - - -
Capillaries 8 - 25.0 0.50 - - - - -
Capillaries 14 - 25.0 5.00 - - - - -
Capillaries 19 - 25.0 0.50 - - - - -
Capillaries 22 - 25.0 0.76 - - - - -
Capillaries 23 - 25.0 0.50 - - - - -
Capillaries 24 - 25.0 1.19 - - - - -
Capillaries 26 - 25.0 2.92 - - - - -
Capillaries 28 - 25.0 2.45 - - - - -
Capillaries 30 - 25.0 2.45 - - - - -
Capillaries 32 - 25.0 0.64 - - - - -
Capillaries 36 - 25.0 0.66 - - - - -
Capillaries 37 - 25.0 4.14 - - - - -
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Capillaries 41 - 25.0 1.80 - - - - -
Capillaries 42 - 25.0 4.14 - - - - -
Capillaries 43 - 25.0 0.15 - - - - -
Capillaries 44 - 25.0 0.50 - - - - -
Capillaries 45 - 25.0 0.50 - - - - -
Capillaries 46 - 25.0 0.15 - - - - -
Capillaries 51 - 25.0 0.66 - - - - -
Capillaries 52 - 25.0 4.14 - - - - -
Capillaries 54 - 25.0 1.80 - - - - -
Capillaries 55 - 25.0 4.14 - - - - -
Capillaries 58 Pintracranium 25.0 0.50 0.056 - - - -
Capillaries 61 Pintracranium 25.0 0.50 0.056 - - - -
Capillaries 63 Pintracranium 25.0 0.50 0.056 - - - -
Capillaries 65 Pintracranium 25.0 0.50 0.056 - - - -
Capillaries 68 Pintracranium 25.0 0.50 0.056 - - - -
Capillaries 70 - 25.0 0.13 - - - - -
Capillaries 71 - 25.0 0.20 - - - - -
Capillaries 74 - 25.0 0.20 - - - - -
Capillaries 75 - 25.0 0.20 - - - - -
Capillaries 82 - 25.0 0.20 - - - - -
Venules E Pintracranium 25.0 0.65 - - - - -
Venules F Pintracranium 25.0 0.65 - - - - -
Venules ISS Pintracranium 25.0 7.56 - - - - -
Venules SSS Pintracranium 25.0 7.56 - - - - -
Venules C - 25.0 12.13 - - - - -
Venules D - 25.0 12.13 - - - - -
Venules right leg - 25.0 24.48 - - - - -
Venules left leg - 25.0 24.48 - - - - -
Venules 83 - 25.0 5.58 - - - - -
Venules 86 - 25.0 189.72 - - - - -
Venules 88 - 25.0 72.00 - - - - -
Venules 90 - 25.0 72.00 - - - - -
Venules 92 - 25.0 24.48 - - - - -
Venules 99 - 25.0 38.88 - - - - -
Venules 101 - 25.0 24.48 - - - - -
Venules 108 - 25.0 5.58 - - - - -
Venules 112 - 25.0 38.88 - - - - -
Venules 114 - 25.0 24.48 - - - - -
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Venules 121 - 25.0 5.58 - - - - -
Venules 127 - 25.0 11.16 - - - - -
Venules 132 - 25.0 15.48 - - - - -
Venules 134 - 25.0 4.64 - - - - -
Venules 135 - 25.0 15.48 - - - - -
Venules 138 - 25.0 15.48 - - - - -
Venules 140 - 25.0 4.64 - - - - -
Venules 141 - 25.0 15.48 - - - - -
Lymphatics Pintracranium - 0.18 0.008 - - - -

Table 4.2: Parameters for zero-dimensional models. Pext : External pressure in the tube law of Eq. (4.20), Oncotic pressure: fixed value of the oncotic pressure, C: compliance of
the compartment, V0: dead volume, S: viscoelastic coefficient, E0 elastance, φ : constant volume, P0: pressure at V = V0. Parameters were derived from applying allometric scaling to
[Müller 2014, Liang 2009b, Linninger 2009, Linninger 2017] and modified when necessary to fit the output of the computational model with physiological values reported in the literature.

Name R [mmHg s µL−1] L [mmHg s2 mL−1] B [mmHg s2 mL−2] σ [-] Directionality [-]
Heart and pulmonary circulation
Tricuspid valve 0.465 × 10−3 0.012 0.883 - Unidirectional
Pulmonary valve 0.465 × 10−3 0.030 1.379 - Unidirectional
Pulmonary arteries → Pulmonary capillaries 4.648 × 10−3 0.030 - - -
Pulmonary capillaries → Pulmonary veins 4.648 × 10−3 0.030 - - -
Pulmonary veins → Left atrium 0.465 × 10−3 0.030 - - -
Mitral valve 0.465 × 10−3 0.012 0.883 - Unidirectional
Aortic valve 0.046 × 10−3 0.003 1.379 - Unidirectional
Blood interstitial and cerebrospinal fluids
Capillaries 58 → Brain interstitial fluid (ISF) 907.530 - - 1.0 -
Capillaries 61 → Brain interstitial fluid (ISF) 907.530 - - 1.0 -
Capillaries 63 → Brain interstitial fluid (ISF) 907.530 - - 1.0 -
Capillaries 65 → Brain interstitial fluid (ISF) 907.530 - - 1.0 -
Capillaries 68 → Brain interstitial fluid (ISF) 907.530 - - 1.0 -
Capillaries 61 → Right ventricle (CSF) 30896.671 - - 1.0 -
Capillaries 63 → Right ventricle (CSF) 26482.861 - - 1.0 -
Capillaries 63 → Left ventricle (CSF) 26482.861 - - 1.0 -
Capillaries 65 → Left ventricle (CSF) 30896.671 - - 1.0 -
Capillaries 58 → Third ventricle (CSF) 18538.003 - - 1.0 -
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Capillaries 68 → Third ventricle (CSF) 18538.003 - - 1.0 -
Capillaries 58 → Fourth ventricle (CSF) 18538.003 - - 1.0 -
Capillaries 68 → Fourth ventricle (CSF) 18538.003 - - 1.0 -
Brain interstitial fluid (ISF) → Left ventricle (CSF) 1.892 - - 1.0 -
Brain interstitial fluid (ISF) → Right ventricle (CSF) 1.892 - - 1.0 -
Brain interstitial fluid (ISF) → Third ventricle (CSF) 3.110 - - 1.0 -
Brain interstitial fluid (ISF) → Fourth ventricle (CSF) 2.628 - - 1.0 -
Brain interstitial fluid (ISF) → Cranial sub. space (CSF) 0.729 - - 1.0 -
Brain interstitial fluid (ISF) → Venules E 586.263 - - 1.0 -
Brain interstitial fluid (ISF) → Venules F 586.263 - - 1.0 -
Brain interstitial fluid (ISF) → Venules ISS 586.263 - - 1.0 -
Brain interstitial fluid (ISF) → Venules SSS 586.263 - - 1.0 -
Cranial sub. space (CSF) → Arachnoid 238 232.379 - - - Unidirectional
Cranial sub. space (CSF) → Arachnoid 237 232.379 - - - Unidirectional
Cranial sub. space (CSF) → Arachnoid 236 232.379 - - - Unidirectional
Cranial sub. space (CSF) → Lymphatics 2788.548 - - - Unidirectional
Lymphatics → Left jugular trunk 4182.822 - - - Unidirectional
Lymphatics → Right jugular trunk 4182.822 - - - Unidirectional
Left ventricle (CSF) → Third ventricle (CSF) 0.093 0.480 - - -
Right ventricle (CSF) → Third ventricle (CSF) 0.093 0.480 - - -
Third ventricle (CSF) → Aqueduct of Sylvius (CSF) 1.859 0.480 - - -
Aqueduct of Sylvius (CSF) → Fourth ventricle (CSF) 0.093 0.480 - - -
Fourth ventricle (CSF) → Cranial sub. space (CSF) 0.093 0.480 - - -
Cranial sub. space (CSF) → Spinal sub. space (CSF) 0.046 0.900 - - -
Peripheral microcirculation
Arteriole 08 → Capillaries 08 3.878 1.080 - - -
Arteriole 14 → Capillaries 14 1.718 0.540 - - -
Arteriole 19 → Capillaries 19 3.878 1.080 - - -
Arteriole 22 → Capillaries 22 3.651 0.900 - - -
Arteriole 23 → Capillaries 23 3.129 1.080 - - -
Arteriole 24 → Capillaries 24 3.021 0.720 - - -
Arteriole 26 → Capillaries 26 1.511 0.420 - - -
Arteriole 28 → Capillaries 28 2.190 0.480 - - -
Arteriole 30 → Capillaries 30 2.190 0.480 - - -
Arteriole 32 → Capillaries 32 1.697 1.200 - - -
Arteriole 36 → Capillaries 36 85.476 1.080 - - -
Arteriole 37 → Capillaries 37 1.697 0.840 - - -



106 4.W
orking

principles
ofthe

glym
phatic

system
:

A
hypothesis

based
on

a
holistic

m
ulti-scale

m
athem

aticalm
odelofthe

m
urine

extracellularfluid
system

s

Arteriole 41 → Capillaries 41 66.123 1.260 - - -
Arteriole 42 → Capillaries 42 57.451 0.840 - - -
Arteriole 43 → Capillaries 43 6.786 4.200 - - -
Arteriole 44 → Capillaries 44 3.343 1.080 - - -
Arteriole 45 → Capillaries 45 3.343 1.080 - - -
Arteriole 46 → Capillaries 46 6.786 4.200 - - -
Arteriole 51 → Capillaries 51 85.476 1.080 - - -
Arteriole 52 → Capillaries 52 1.697 0.840 - - -
Arteriole 54 → Capillaries 54 66.123 1.260 - - -
Arteriole 55 → Capillaries 55 57.451 0.840 - - -
Arteriole 82 → Capillaries 82 3.129 0.480 - - -
Capillaries 08 → Venules 132 3.878 0.174 - - -
Capillaries 14 → Venules 127 1.718 0.090 - - -
Capillaries 19 → Venules 138 3.878 0.174 - - -
Capillaries 22 → Venules 86 3.651 0.144 - - -
Capillaries 23 → Venules 86 3.129 0.180 - - -
Capillaries 24 → Venules 86 3.021 0.114 - - -
Capillaries 26 → Venules 86 1.511 0.072 - - -
Capillaries 28 → Venules 90 2.190 0.084 - - -
Capillaries 30 → Venules 88 2.190 0.084 - - -
Capillaries 32 → Venules 92 1.697 0.198 - - -
Capillaries 36 → Venules 99 85.476 0.180 - - -
Capillaries 37 → Venules 101 1.697 0.138 - - -
Capillaries 41 → Venules 108 66.123 0.210 - - -
Capillaries 42 → Venules right leg 57.451 0.138 - - -
Capillaries 43 → Venules 134 6.786 0.702 - - -
Capillaries 44 → Venules 135 3.343 0.174 - - -
Capillaries 45 → Venules 141 3.343 0.174 - - -
Capillaries 46 → Venules 140 6.786 0.702 - - -
Capillaries 51 → Venules 112 85.476 0.180 - - -
Capillaries 52 → Venules 114 1.697 0.138 - - -
Capillaries 54 → Venules 121 66.123 0.210 - - -
Capillaries 55 → Venules left leg 57.451 0.702 - - -
Capillaries 82 → Venules 83 3.129 0.084 - - -
Venules right leg → Vein 110 114.903 0.252 - - -
Venules left leg → Vein 123 114.903 0.252 - - -
Venules 83 → Vein 83 3.129 0.372 - - -
Venules 86 → Vein 86 0.630 0.078 - - -
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Venules 88 → Vein 88 2.190 0.144 - - -
Venules 90 → Vein 90 2.190 0.144 - - -
Venules 92 → Vein 92 1.697 0.360 - - -
Venules 99 → Vein 99 85.476 0.324 - - -
Venules 101 → Vein 101 1.697 0.252 - - -
Venules 108 → Vein 108 66.123 0.372 - - -
Venules 112 → Vein 112 85.476 0.324 - - -
Venules 114 → Vein 114 1.697 0.252 - - -
Venules 121 → Vein 121 66.123 0.372 - - -
Venules 127 → Vein 127 1.718 0.162 - - -
Venules 132 → Vein 132 3.878 0.312 - - -
Venules 134 → Vein 134 6.786 1.254 - - -
Venules 135 → Vein 135 3.343 0.312 - - -
Venules 138 → Vein 138 3.878 0.312 - - -
Venules 140 → Vein 140 6.786 1.254 - - -
Venules 141 → Vein 141 3.343 0.312 - - -
Venules right leg → Vein 105 114.903 0.252 - - -
Venules left leg → Vein 118 114.903 0.252 - - -
Intracranial microcirculation
Arteriole 58 → Capillaries 58 4.837 0.244 - - -
Arteriole 61 → Capillaries 61 2.032 0.102 - - -
Arteriole 63 → Capillaries 63 1.660 0.166 - - -
Arteriole 65 → Capillaries 65 2.032 0.102 - - -
Arteriole 68 → Capillaries 68 4.837 0.244 - - -
Arteriole 70 → Capillaries 70 5.000 0.119 - - -
Arteriole 71 → Capillaries 71 5.000 0.119 - - -
Arteriole 74 → Capillaries 74 2.143 1.146 - - -
Arteriole 75 → Capillaries 75 2.143 1.146 - - -
Capillaries 58 → Venules F 4.837 0.067 - - -
Capillaries 61 → Venules SSS 2.032 0.030 - - -
Capillaries 63 → Venules ISS 3.320 0.095 - - -
Capillaries 63 → Venules SSS 3.320 0.095 - - -
Capillaries 65 → Venules SSS 2.032 0.030 - - -
Capillaries 68 → Venules E 4.837 0.067 - - -
Capillaries 70 → Venules C 5.000 0.454 - - -
Capillaries 71 → Venules D 5.000 0.454 - - -
Capillaries 74 → Venules D 2.143 0.454 - - -
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Capillaries 75 → Venules C 2.143 0.454 - - -
Venules E → Vein 201 14.512 1.859 - - -
Venules E → Vein 200 14.512 1.859 - - -
Venules E → Vein 196 14.512 1.861 - - -
Venules F → Vein 199 14.512 1.859 - - -
Venules F → Vein 197 14.512 1.859 - - -
Venules F → Vein 191 14.512 1.861 - - -
Venules iSS → Vein 208 9.960 1.035 - - -
Venules iSS → Vein 210 9.960 1.035 - - -
Venules iSS → Vein 212 9.960 1.035 - - -
Venules SSS → Vein 234 5.446 0.728 - - -
Venules SSS → Vein 232 5.446 0.728 - - -
Venules SSS → Vein 230 5.446 0.728 - - -
Venules SSS → Vein 228 5.446 0.728 - - -
Venules SSS → Vein 226 5.446 0.728 - - -
Venules SSS → Vein 224 5.446 0.728 - - -
Venules SSS → Vein 222 5.446 0.728 - - -
Venules C → Vein 247 1.579 0.742 - - -
Venules C → Vein 241 30.000 0.742 - - -
Venules D → Vein 248 1.579 0.742 - - -
Venules D → Vein 244 30.000 0.742 - - -
Starling resistors
Starling 191 → 192 0.232 0.306 - - -
Starling 196 → 195 0.232 0.306 - - -
Starling 203 → 204 0.232 0.306 - - -
Starling 208 → 209 0.232 0.306 - - -
Starling 210 → 211 0.232 0.306 - - -
Starling 212 → 213 0.232 0.306 - - -
Starling 222 → 223 0.232 0.306 - - -
Starling 224 → 225 0.232 0.306 - - -
Starling 226 → 227 0.232 0.306 - - -
Starling 228 → 229 0.232 0.306 - - -
Starling 230 → 231 0.232 0.306 - - -
Starling 232 → 233 0.232 0.306 - - -
Starling 234 → 235 0.232 0.306 - - -
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Table 4.3: Parameters for zero-dimensional flow dynamics. R: viscous resistance to flow, B: Bernoulli coefficient, σ : reflection coefficient, Directionality: the equation behaves as a valve
and strictly prevents backflows if unidirectional is written. Parameters were derived from applying allometric scaling to [Müller 2014, Liang 2009b, Linninger 2009, Linninger 2017] and modified
when necessary to fit the output of the computational model with physiological values reported in the literature.

Parameter Description Value Units Reference
γ Parameter for velocity profile 2 − [Alastruey 2006]

Hd Hematocrit 0.45 − [Windberger 2003]
µ Plasma dynamic viscosity 1.20 cP [Windberger 2003]

Cardiac model
Era

a Right atrial elastance amplitude 0.216 mmHg µL−1 [Müller 2013b] + AS
Erv

a Right ventricular elastance amplitude 1.980 mmHg µL−1 [Müller 2013b] + AS
Era

b Right atrial elastance baseline 0.180 mmHg µL−1 [Müller 2013b] + AS
Erv

b Right ventricular elastance baseline 0.180 mmHg µL−1 [Müller 2013b] + AS
E la

a Left atrial elastance amplitude 0.252 mmHg µL−1 [Müller 2013b] + AS
E la

b Left atrial elastance baseline 0.324 mmHg µL−1 [Müller 2013b] + AS
E lv

a Left ventricular elastance amplitude 13.212 mmHg µL−1 [Müller 2013b] + AS
E lv

b Left ventricular elastance baseline 0.180 mmHg µL−1 [Müller 2013b] + AS
T a

acp Duration of atrial contraction 32.275 ms [Müller 2013b, Liang 2009b] + AS
T a

arp Duration of atrial relaxation 38.730 ms [Müller 2013b, Liang 2009b] + AS
ta
ac Time at which atrial contraction starts 92.952 ms [Müller 2013b, Liang 2009b] + AS

ta
ac Time at which atrial relaxation starts 125.226 ms [Müller 2013b, Liang 2009b] + AS

T a
vcp Duration of ventricular contraction 45.185 ms [Müller 2013b, Liang 2009b] + AS

T a
vrp Duration of ventricular relaxation 21.947 ms [Müller 2013b, Liang 2009b] + AS
ta
vc Time at which ventricular contraction starts 0.000 ms [Müller 2013b, Liang 2009b] + AS

ta
vc Time at which ventricular relaxation starts 38.730 ms [Müller 2013b, Liang 2009b] + AS

Valve model
∆popen Valve opening threshold pressure difference 0 mmHg [Müller 2013b]
∆pclose Valve closure threshold pressure difference 0 mmHg [Müller 2013b]

Kvo Rate coefficient valve opening 7.7 Pa−1 s−1 [Müller 2013b] + AS
Kvo Rate coefficient valve closure 7.7 Pa−1 s−1 [Müller 2013b] + AS
Mst Maximum valve opening (0≤Mst ≤ 1) 1.0 - [Mynard 2012]
Mrg Minimum valve closure (0≤Mrg ≤ 1) 0.0 - [Mynard 2012]
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Le f f Effective length: Le f f = 0.5
(
dup

0 +ddown
0

)
mm Estimated

dup,down
0 Diameter at rest of upstream/downstream vessel - mm -

Table 4.4: Parameters for cardiac model, venous valve dynamics and blood rheology. AS, allometric scaling.
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Figure 4.5: Framework for a finite volume scheme. Top: illustratation of a computational volume for a
vessel. Bottom: illustratation of the space-time control volume.

4.2.3 Numerical methods for the solution of the system of equations
One- and zero-dimensional models

Consider the system of m hyperbolic balance laws

∂tQ+∂xF(Q) = S(Q) . (4.30)

By integrating (4.30) over the control volume V = [xi− 1
2
,xi+ 1

2
]× [tn, tn+1] we obtain the exact formula

Qn+1
i = Qn

i −
∆t
∆x

(
Fi+ 1

2
−Fi− 1

2

)
+∆tSi , (4.31)

with definitions
Qn

i =
1

∆x

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn)dx , (4.32)

Fi+ 1
2
=

1
∆t

∫ tn+1

tn
F(Q(xi+ 1

2
, t))dt ,

Si =
1

∆t∆x

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

S(Q(x, t))dxdt .





(4.33)

Eq. (4.32) gives the spatial-integral average at time t = tn of the conserved variable Q while Eqs.
(4.33) give the time-integral average at interface x = xi+ 1

2
of the physical flux F and the volume-

integral average in V of the source term S. Spatial mesh size and time step are ∆x = xi+ 1
2
− xi− 1

2

and ∆t = tn+1− tn respectively. Finite volume methods for (4.30) depart from (4.31) to (4.33), where
integrals are approximated, and then formula (4.31) becomes a finite volume method, where the
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approximated integrals in (4.33) are called numerical flux and numerical source, respectively. Here
index i runs from 1 to M, where the cell i = 1 is the leftmost cell with x 1

2
being the first interface, and

the cell i=M is the rightmost cell with xM+ 1
2

being the last interface. See Fig. 4.5 for an illustration
of the finite volume framework. To compute the time step ∆t , the Courant-Friedrichs-Lewy condition
is applied for each vessel at each time step

∆t j =CFL
∆x j

max
i=1,...,M j

(
|u j

i |+ c j
i

) , (4.34)

with CFL = 0.9. Superindex j indicates the j-th vessel. Then, the time step ∆t to be used is the
minimum of all the time steps, namely ∆t =min

j

(
∆t j
)
. More advanced techniques for the choice of the

time stepping have been proposed in the literature [Dumbser 2007b, Müller 2016, Dumbser 2014].
In the present chapter we used the SLIC method to evaluate the numerical fluxes within the

domain (F 3
2
, . . . ,FM− 1

2
) [Toro 2000]. This method is second-order accurate in space and time and is

based on the MUSCL-Hancock scheme where the Godunov upwind flux is replaced by the FORCE
flux, see Section 14.5.3 of [Toro 2009] and references therein. The numerical source was approx-
imated using a second order in space and time method, see Chapter 19 of [Toro 2009]. For the
numerical fluxes at the boundaries (F 1

2
and FM+ 1

2
), we used a first-order Godunov-type method

based on the solution of a classical Riemann problem at the interface.
The system of ODEs in (4.28) were solved numerically with an implicit Euler method.

Boundary conditions

We modelled five types of boundary conditions: junctions, imposed flow, Poiseuille’s law, star-
ling mechanism and venous valves. Junctions between vessels were treated as explained in 2.
Poiseuille’s law q = ∆P

R was applied at each terminal vessel of the arterial and venous network
and couples vessels to 0D models. The numerical treatment can be derived from 3.2.4 and is
explained in details in [Alastruey 2008]. The flow rate through the aortic valve was imposed
at the first interface of the ascending aorta and the numerical treatment can be extended from
[Alastruey 2008, Strocchi 2017, Müller 2013b]. Starling resistors were implemented in the mathe-
matical model based on [Müller 2014] by setting P2 = max(Pintracranium,P2) and by setting R = ∞ if
P1 < Pintracranium in Eq. (4.26). Venous valves were treated as explained in Section 3.2.4.

4.2.4 In-vivo magnetic resonance imaging in mice: angiography, venography
and blood flow quantification

Wild-type mice (C57BL6, Jackson Laboratory) aged 10 to 12 weeks (weight 24–29 g) were imaged.
All measurements were performed with a 7T small animal magnetic resonance scanner (ClinScan,
Bruker BioSpin, Ettlingen, Germany) using a 30 mm diameter cylindrical birdcage radiofrequency
coil and an MR-compatible physiological monitoring and gating system for mice (SA Instruments,
Inc., Stony Brook, NY). Maximum gradient strength of the system was 500 mT/m and the peak slew
rate achievable was 6667 mT/m/ms. Mice were anaesthetized using 1.25% isoflurane in oxygen and
body temperature was maintained at 37◦ using thermostated circulating water. All animals were
used in accordance with a protocol approved by the animal care and use committee at Department
of Radiology, University of Virginia (USA).
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Structural analysis of arterial and venous murine intracranial network: Angiography and
venography

Structural imaging data of intracranial arteries were acquired with a high-resolution 3D isotropic
Spiral Cine Phase Contrast (SCPC) technique [repetition time (TR) = 15 milliseconds, echo time
(TE) = 0.63 milliseconds, field of view (FOV) = 25x25 mm, slice thickness = 0.01 mm, number of
averages (NEX) = 1, flip angle (FA) = 20◦, number of sagittal slices = 160, total imaging time
= 15 minutes]. Structural imaging data of intracranial veins were acquired with a high-resolution
3D isotropic SCPC technique with a saturation band positioned caudal to the slices, in order to
saturate the arterial signal [TR = 17 milliseconds, TE = 4.54 milliseconds, FOV = 17x26 mm, slice
thickness = 0.3 mm, NEX = 2, FA = 90◦, total imaging time = 13 minutes]. Diameters and lengths
were quantified using semi-automatic segmentation tools provided in the OsiriX software.

Structural analysis of the murine brain ventricular system

Structural imaging data of the brain ventricular system (lateral ventricles, third ventricles, aqueduct
of Sylvius and fourth ventricle) were acquired with a high-resolution 3D isotropic T2-Weighted
SPACE technique [TR = 3000 milliseconds, TE = 139 milliseconds, FOV = 26x20.5 mm, slice
thickness = 0.13 mm, NEX = 3, FA = 120◦, number of slices = 160, total imaging time = 16
minutes]. Ventricle volumes were quantified using semi-automatic segmentation tools provided in
the OsiriX software.

Flow measurements through a spiral-MRI technique

Flow measurements were performed with a 2D SCPC MRI technique [TR = 3.3 milliseconds, TE
= 0.91 milliseconds, FOV = 30x30 mm, slice thickness = 0.186 mm, NEX = 2, FA = 20◦, total
imaging time = 10 minutes]. The 2D slice of the SCPC sequence was positioned orthogonal to
the direction of flow at both the external jugular veins (EJVs) and common carotid arteries (CCAs)
and at the aortic root (AR) with a VENC of 70/25 cm/s (EJVs-CCAs/AR). Flow measurements were
performed in the same MRI session when TOF and 3D SCPC sequences were acquired, so that
morphological and flow quantification data are mouse-specific. Blood flow quantifications were
performed using SPIN (Signal Processing in NMR, Detroit, MI) by a single trained examiner. See
[Janiczek 2011, Naresh 2016] for an example of flow measurements of the mouse aortic arch using
a 3D/2D SCPC technique.

4.2.5 In-vivo intracranial pressure measurements
Mice were anaesthetized (ketamine/xylazine, i.p.) and the skin was incised to expose the skull. A
0.5 mm diameter hole was drilled in the skull above the right parietal lobe. A pressure sensor (model
SPR100; Millar) was inserted perpendicularly into the cortex at a depth of 1 mm. The pressure
sensor was connected to the PCU-2000 pressure control unit (Millar) and recorded for 5 min after
stabilization of the signal (around a minute after insertion of the probe). The average pressure was
calculated over the last 2 minutes of recording (between minute 4 and 6 of the recording). Animals
were sacrificed at the conclusion of the measurement. The measurements were filtered through a
low-pass Gaussian mask in a post-processing phase.
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4.2.6 Allometric scaling: from humans to mice
The study of the relationship of body size to anatomy and physiology is known as allometry.
Most of the parameters needed for our computational model could not be derived from litera-
ture. This motivated us to take advantage of previously existing work for humans [Müller 2013b,
Mynard 2015, Blanco 2015] and use allometric scaling to derive reasonable values for the zero-
and one-dimensional mathematical models. Any physiological parameter X is considered to be
dependent on the body weight W through the following allometric scaling

X = gW α , (4.35)

where g is an empirical constant and α is the allometric scaling power which determines the rate
of growth (α > 0) or decline (α < 0). If one knows the physiological parameter at one body weight
(X1,W1) the value of another body weight (X2,W2) can be predicted as

X2 = X1

(
W2

W1

)α

. (4.36)

The allometric scaling power α can be derived from a dimensional analysis of parameter X .
Starting from reported values of multi-scale mathematical models of the human fluid systems
[Müller 2013b, Liang 2009b, Sun 1997] and assuming a human body weight of Whuman = 90 kg, we
obtained most of the computational parameters for a mouse of body weight Wmice = 0.025 kg using
the following allometric scaling powers: volume αv = 0, resistance αR = −3/4, inertia αL = −3/4,
Bernoulli coefficient αB =−4/3, compliance αC = 0, time αT = 1/4, arterial radius αr0,artery = 3/8,
arterial length αL,artery = 1/4, venous radius αr0,vein = 5/12, venous length αL,vein = 7/24, rate of
closure/opening coefficient αKvc,vo = −1/4. For instance, for a human cardiac cycle duration of
Thuman = 1 s, the duration of the murine cardiac cycle becomes Tmouse = (0.025/90)1/4 = 0.1291 s,
which is in agreement with the averaged murine heart rate (464.8 beats/min vs 470–620 beats/min
[Cingolani 2011]). Although the allometric scaling gave satisfactory results, we adjusted the model
parameters in order to 1) adopt intracranial geometrical information derived from MRI results of
a cohort of mice, 2) use the diameters and lengths of the main mouse vessels reported in the
literature, 3) fit the central venous pressure to that of mice, 4) fit the heart parameters with val-
ues reported in the literature. For complete references and reviews of allometric scaling, see
[Li 2000, Dawson 2014, Dawson 2005, Dawson 2001, Holt 1981].

4.3 Results
Here we show the computational results. Parameters used for the network of the one-dimensional
vessels and the system of ODES are reported in Tables 4.1, 4.2 and 4.3. Other used parameters in
the computational model can be found in Table 4.4. The number of cells for each vessel was chosen
according to Mcells = ceiling(L/∆), where L is the length of the vessel, ∆ is the specified space size
and is set here to be ∆ = 1 mm. Each simulation was run on an Intel Core i7-2600 with 4 cores
(3.40 GHz clock speed). Throughout the chapter, we refer to the intracerebral CSF compartment as
the set of lateral and third ventricles, while to the extracerebral CSF compartment as the set of the
fourth ventricle and the cranial subarachnoid space.
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Parameter Units Numerical prediction Normal range Reference
Heart dynamics
Heart rate beats/min 464.58 442 ± 15 [Wiesmann 2000]
Cardiac output (CO) mL/min 9.70 8 - 16 [Cingolani 2011]
Cardiac index mL/min/g 0.39 0.35 - 0.58 [Wiesmann 2000]
End-diastolic volume µL 36.23 25 - 53 [Cingolani 2011]
End-systolic volume µL 15.35 7 - 21 [Cingolani 2011]
Stroke volume µL 20.88 17 - 36 [Cingolani 2011]
Stroke work mmHg µL 2012.02 1200 - 2700 [Pacher 2008]
Ejection fraction % 57.63 55 - 72 [Wiesmann 2000]
End-diastolic pressure mmHg 3.74 1 - 6 [Cingolani 2011]
End-systolic pressure mmHg 105.22 92 - 118 [Cingolani 2011]
Pressure rate dP/dtmax mmHg/s 10038.00 8200 - 14200 [Cingolani 2011]
Pressure rate −dP/dtmin mmHg/s 7486.69 6700 - 10500 [Cingolani 2011]
ESPVR mmHg/µL 12.95 7 - 14 [Cingolani 2011]
EDPVR mmHg/µL 0.13 0.04 - 0.12 [Cingolani 2011]
Peripheral blood flow results
Mean arterial pressure (MAP) mmHg 93.71 81 - 105 [Cingolani 2011]
Central venous pressure mmHg 1.03 0.80 ± 0.50 [Scheuermann-Freestone 2001]
Total peripheral resistance MAP/CO mmHg min/mL 9.66 6 - 12 [Cingolani 2011]
Blood fluid dynamics and properties: median (min - max)
Average Reynolds number - 1.44 (0.00 - 13.70) - -
Peak Reynolds number - 4.54 (0.04 - 195.55) - -
Average Womersley number - 0.33 (0.10 - 2.11) - -
Peak Womersley number - 0.68 (0.21 - 4.39) - -
Plasma dynamic viscosity cP 1.20 1.29 - 1.34 [Windberger 2003]
Apparent dynamic viscosity cP 3.62 (3.04 - 3.85) 3.5 [Feintuch 2006]
Haemodynamical results of selected one-dimensional vessels
Ascending aorta (1) mL/min 9.69 9.31 ± 2.57 MR-flow measurements
Left common carotid artery (5) mL/min 1.29 2.00 ± 0.89 MR-flow measurements
Right common carotid artery (11) mL/min 1.23 1.79 ± 1.10 MR-flow measurements
Left external jugular vein (152) mL/min 1.35 1.04 ± 0.65 MR-flow measurements
Right external jugular vein (155) mL/min 1.20 1.11 ± 0.80 MR-flow measurements
Innominate artery (3) %CO 21.32 16.9 [Feintuch 2006]

14.7 ± 3.2 [Barakat 1997] (rabbit)
Right common carotid artery (5) %CO 13.29 8.86 [Cuomo 2015]
Left common carotid artery (11) %CO 12.69 10.00 [Cuomo 2015]
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10.4 [Feintuch 2006]
Right subclavian artery (7) %CO 7.10 8.53 [Cuomo 2015]
Left subclavian artery (17) %CO 7.10 11.43 [Cuomo 2015]

7.1 ± 2.5 [Barakat 1997] (rabbit)
Celiac I (20) %CO 10.12 5.33 [Cuomo 2015]

23.3 ± 5.8 [Barakat 1997] (rabbit)
Right renal (28) %CO 5.12 6.10 [Cuomo 2015]

6.2 ± 2.6 [Barakat 1997] (rabbit)
Left renal (30) %CO 5.03 2.84 [Cuomo 2015]

5.1 ± 2.2 [Barakat 1997] (rabbit)
Right commmon Iliac artery (34) %CO 7.12 7.12 [Cuomo 2015]

6.0 ± 2.5 [Barakat 1997] (rabbit)
Left commmon Iliac artery (49) %CO 7.12 6.95 [Cuomo 2015]

6.0 ± 2.5 [Barakat 1997] (rabbit)
Middle caudal artery - tail (82) %CO 2.57 2.54 [Cuomo 2015]
Ascending aorta (1) m/s 0.04 0.17 ± 0.24 [Aslanidou 2015]
Descending aorta (12) m/s 0.04 0.09 ± 0.12 [Aslanidou 2015]
Infrarenal aortic region (33) m/s 0.04 0.06 ± 0.06 [Aslanidou 2015]
Left renal artery (30) m/s 0.04 0.10 ± 0.04 [Aslanidou 2015]
Right renal artery (28) m/s 0.04 0.11 ± 0.04 [Aslanidou 2015]
Descending aorta (12) mmHg 93.57 96.5 ± 18.6 [Aslanidou 2015]
Thoracic aorta (25) mmHg 93.27 99.6 ± 17.4 [Aslanidou 2015]
Pararenal region (31) mmHg 93.12 107.2 ± 31.4 [Aslanidou 2015]
Peripheral microcirculation: mean (min - max)
Arterioles mmHg 55.20 (53.35 - 56.61) 35 - 80 -
Capillaries mmHg 37.55 (36.62 - 38.20) 18 - 35 -
Venules mmHg 20.07 (19.08 - 21.58) 5 - 18 -
Intracranial microcirculation: mean (min - max)
Arterioles mmHg 43.48 (42.19 - 44.84) 35 - 80 -
Capillaries mmHg 30.45 (29.64 - 31.39) 18 - 35 -
Venules mmHg 17.21 (16.47 - 18.00) 5 - 18 -
Volumes of intracranial compartments
Intracranial volume µL 421.39 415 ± 24 [Kovačević 2005]
Cerebral blood volume µL/g 33.89 30 - 40 [Owman 1975]
Brain ISF µL 116.67 - -
Brain solid matrix µL 272.22 - -
Porosity ISF / (ISF+brain solid matrix) - 0.30 - -
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Left ventricle µL 2.05 2.0 ± 0.83 [Dorr 2008]
Right ventricle µL 2.05 2.1 ± 0.5 [Dorr 2008]
Third ventricle µL 1.28 1.3 ± 0.23 [Dorr 2008]
Aqueduct of Sylvius nL 7.498 - -
Fourth ventricle µL 0.49 0.5 ± 0.1 [Dorr 2008]
Cerebral subarachnoid space µL 13.91 - -
Spinal subarachnoid space µL 18.91 - -
Total CSF µL 38.71 ∼ 37 [Barten 2017]
Pressures of intracranial compartments: mean (min - max)
Brain ISF mmHg 3.82 (3.37 - 4.29) 4.11 ± 0.83 [Moazen 2016]

3.73 ± 0.39 Intracathecal in-vivo measurements
Intracranium mmHg 3.62 (3.04 - 4.17) - -
Left ventricle mmHg 3.82 (3.24 - 4.38) - -
Right ventricle mmHg 3.82 (3.24 - 4.38) - -
Third ventricle mmHg 3.82 (3.25 - 4.37) - -
Aqueduct of Sylvius mmHg 3.82 (3.46 - 4.38) - -
Fourth ventricle mmHg 3.82 (3.47 - 4.39) - -
Cerebral subarachnoid space mmHg 3.82 (3.49 - 4.36) - -
Spinal subarachnoid space mmHg 3.82 (3.57 - 4.08) - -
Cerebrospinal fluid production and absorption
ISF production by capillaries µL/min 2.52 - -
ISF absorption by venules µL/min 2.17 - -
CSF production by choroid plexus µL/min 0.17 - -
CSF production by ISF space µL/min 0.36 - -
net CSF production µL/min 0.53 0.33 [Barten 2017]
CSF absorption through arachnoid villi µL/min 0.50 - -
CSF absorption by lymphatics µL/min 0.03 - -
Phase lag of the four fluid dynamics
Arterio-venous delay %CC 12.01 12 - 13 [Kim 2007] (humans)

12.5 ± 8.06 [Ambarki 2007] (humans)
13 [Linninger 2009] (humans)

Arterio-spinal CSF delay %CC 9.50 5.35 ± 2.36 [Ambarki 2007] (humans)
Arterio-aqueduct CSF delay %CC 32.48 22.17 ± 4.66 [Ambarki 2007] (humans)
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Table 4.5: Validation of the computational results. From left to right columns we show: parameter, units, computational result, reference value and reference. Parameters shown in the
computational results for the heart dynamics refers to the dynamics of the left ventricle. Arterio-venous delay was estimated as the lag in time between arterial and venous systolic flow peaks
in the neck. Arterio-aqueduct CSF and arterio-spinal CSF delays were estimated as the lag in time between arterial systolic peak and CSF systolic peak in the aqueduct of Sylvius and in
flow dynamics connecting cerebral and spinal subarachnoid space. CO, Cardiac output; ESPVR, end systolic pressure-volume relationship; EDPVR, end diastolic pressure-volume relationship;
MAP, mean arterial pressure; ISF, interstitial fluid; CSF, cerebrospinal fluid.
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4.3.1 Validation of the computational results against in-vivo measurements

f

b c
a

e

d

Figure 4.6: MRI segmentation of murine arterial and venous systems. a), b), c): Representative images
of 3D segmentation of brain arterial a), venous b) and c) co-localization of a) and b). d), e), f ): Representative
images of 3D segmentation of c) in the axial d), coronal e) and sagittal f) view.

The MRI acquisition of the intracranial arterial, venous and ventricular systems are shown in
Figs. 4.6, 4.7, 4.8. Major arteries and veins are visible through the MRI sequence. The geometrical
parameters of the venous and arterial networks were estimated based on the MRI data.

The computational model gave satisfactory results as shown by the comparison with MR-flow
measurements in Fig. 4.9. Computed flow rates of the ascending aorta, left/right common carotid
arteries and left/right external jugular veins have the same order of magnitude of the MRI measure-
ments. The computed flow rates of the left and right common carotid arteries are more oscillatory
compared to those of the MRI acquisitions. This might be due to our assumption of purely elastic
vessels [Matthys 2007a]. The computed waveform of the intracranial pressure is comparable to that
of the range of in-vivo measurements.

The dynamics of the fluid systems are summarized in Table 4.5. The computed parameters of
the heart dynamics agree with values reported in the literature. The order of magnitude of the
peak Reynolds number (≈ 195) agrees with 175 reported by Aslanidou et al. [Aslanidou 2015]
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Figure 4.7: MRI segmentation of murine brain ventricular, arterial and venous systems. a), b), c), d):
Representative images of 3D segmentation of brain ventricles a), arterial b) and venous c) systems and d)
co-localization of a), b), c) with Maximum-Intensity-Projection (MIP) images of the murine brain parenchyma.
e), f ), g): Representative images of 3D segmentation of d) in the axial e), coronal f) and sagittal g) view.

and is reached at the ascending aorta. Throughout the network, the averaged Reynolds number
is ≈ 1.4. The range of Womersley numbers confirms that the parabolic velocity profile (γ = 2,
[Alastruey 2008]) is a good choice in our computational model. The apparent dynamic viscosity
is in agreement with the value reported by Feintuch et al. [Feintuch 2006] of 3.5 cP and varies
from ≈ 3.04 to ≈ 3.85 cP. The computed blood flow rates agree with our MRI measurements. The
distribution of arterial blood agrees with the values reported by [Barakat 1997] for rabbits and by
[Cuomo 2015], [Feintuch 2006] for mice. There are however some differences. The innominate artery
has greater flow percentage compared to those of [Barakat 1997] and [Feintuch 2006]. Also, the
percentage of flow in the right/left common carotid artery is slightly greater than the reference
value. The flow distribution at the Celiac artery is ≈ 10 %CO and lies between the values reported
by [Cuomo 2015] and [Barakat 1997]. According to Jacobson [Jacobson 1982], the averaged flow in
humans through the celiac artery is 700 mL min−1, which corresponds to ≈ 8.75%− 17.5% flow
of the cardiac output in adults and agrees with our computational results. Blood velocities are
slightly lower than those measured by Aslanidou et al. [Aslanidou 2015]. Our cardiac-averaged
pressures agree in the measurements performed by the authors. However, the pressures slightly
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a
b

c

e

d
f

Figure 4.8: MRI segmentation of murine brain ventricular structure. a), b), c): Representative images of 3D
segmentation of a) MIP image, b) brain ventricles and c) co-localization of a) and b). d), e), f ) Representative
images of 3D segmentation of the murine brain ventricles co-localized with MIP images in the axial d), coronal
e) and sagittal f) view.

decrease towards the peripheral arterial vessels instead of increase as seen in the measurements.
Although the reference cross-sectional area reduces towards the periphery arterial network, the
geometrical source term of the tapering effect was neglected and might explain the decrement of
the cardiac-averaged pressure. The computed intracranial volume agrees with the results reported
by Kovacevic et al. [Kovačević 2005]. Also, the volumes of the ventricles agree with those reported
by Dorr et al. [Dorr 2008]. The intracranial pressure agrees with our in-vivo measurements and
with those reported by Moazen et al. [Moazen 2016]. The computed pulse pressure is ≈ 0.9 mmHg
for each compartment and agrees with our in-vivo measurements (0.80 ± 0.17 mmHg). The CSF is
produced by the imbalance of the ISF production/absorption and by the choroid plexus. The net
CSF production is 0.53 µL min−1, matches the CSF absorption by lymphatics and through arachnoid
villi and is of the same order magnitude of 0.33. µL min−1 reported by Barten et al. [Barten 2017].
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4.3.2 Dynamics of heart and peripheral vascular system

The computed heart and lung dynamics are illustrated at the top of Fig. 4.10. During systole,
the left and right ventricles contract and cause the following chain of events: 1) the pulmonary
and aortic valves open, causing the trans-valvular flow to increase; 2) the volumes of the left and
right ventricles decrease and in the meanwhile the ejected blood into the ascending aorta spreads
throughout the arterial network; 3) the pressures and volumes of the pulmonary arteries, capillaries
and veins increase; 4) the right and left atria receive blood and increase in volume. During diastole,
the right and left atria contract, leading the following events: 1) the tricuspid and mitral valves open,
causing the trans-valvular flow to increase; 2) the volume of both right and left ventricle increase; 3)
the pressure wave generated by the right atrial contraction propagates backwards into the venous
network in the opposite direction of the bloodstream, contributing to the venous pressure waveform.

The computed dynamics of major arteries and veins are shown at the bottom of Fig. 4.10. The
heart contractions determine the pressure waves which spread throughout the vascular system. The
arterial pressure waveforms propagate in the arterial tree and change shape from the ascending
aorta to peripheral arteries as there are reflected waves generated at the boundaries of the arterial
network. The venous pressure waveform is generated by the right atrial contraction which propagates
in the opposite direction to the bloodstream. The average arterial pressure is ≈ 93 mmHg and
slightly decreases at distal ends, while the average venous pressure ranges from 1.0 mmHg in
the right superior vena cava to 1.1 mmHg in the right external Iliac vein. These results show
that venous and arterial systems are strictly coupled by the heart, the microcirculation and the
pulmonary dynamics.

4.3.3 Dynamics of intracranial blood vessels

The computed intracranial pressure and flow dynamics for the main arteries and veins are shown in
Fig. 4.11. The venous pressure waveforms change shape from the right atrium up to the superior
sagittal sinus. The venous profile generated by the atrial contraction fades away moving towards
the brain and is replaced by an arterial-like shape generated by the Monro-Kellie coupling. At
≈ 0.2 s, the arterial systolic blood enters the cranial cavity, slightly increases the intracranial
volume and consequently the intracranial pressure, the external pressure of the dural sinuses. This
sudden increase in the intracranial venous pressure causes the venous blood to be pushed back to
the right atrium, contributing to the homeostasis of the intracranial fluids. The cardiac-averaged
venous pressure decreases craniocaudally from ≈ 3.2 mmHg in the superior sagittal sinus to 1.0
mmHg in the right superior vena cava.

The space-time representation of two selected venous and arterial pathways are shown at the
bottom of Fig. 4.11. At the beginning of the cardiac cycle, the waveform of the venous pressure shows
an interesting characteristic: the pressure increases from the right atrium to a certain location on
the distal side of the superior sagittal sinus (≈ 3 cm from the right atrium) and it decreases distally.
This is in agreement with the suggestion of Mancini et al. [Mancini 2015] that blood flow might be
bidirectional in the superior sagittal sinus of mice, in contrast with the unidirectional flow in the
same venous location in humans. At the distance of ≈ 3 cm from the right atrium, the three venous
peaks originated by the Monro-Kellie coupling can be appreciated. The space-time waveform of
the arterial pressure is maintained from left ventricle up to intracranial cavity. These computational



4.3 Results 123

results highlight that the intracranial fluids are coupled and that the arterial systolic wave greatly
affects the intracranial dynamics.

4.3.4 Cerebrospinal fluid dynamics and its interaction with intracranial blood

The CSF dynamics is shown in Fig. 4.12. The pressure waveforms of all CSF compartments are
strongly influenced by the arterial blood entrance in the cranial cavity. Except for the pressure
dynamics of the spinal subarachnoid space, all CSF waveforms are characterized by three peaks:
the percussion wave P1, the tidal wave P2 and the dicrotic wave P3. P1 is generated by the systolic
arterial peak, while P2 and P3 come from the reflected waves generated at the periphery of the
arterial tree. Classically, P3 correlates with the dicrotic notch. However, in our computational
results, P2 occurs at the aortic valve closure time at ≈ 0.035 s (27 %CC).

The bottom panel of Fig. 4.12 shows the volumetric and flow interaction of CSF, arterial and
venous blood. The intracranial fluid homeostasis is greatly maintained thanks to the dynamics of
venous blood and intra/extra-cranial CSF. The venous and the CSF fluid act as a buffer when the
arterial blood enters the cranial cavity. Indeed, during each systole, the inflow of arterial blood
into the cranium is balanced by a craniocaudal movement of both CSF and venous blood. This is
particularly evident at 0.019 s (16.0 %CC), where both volumes of CSF and venous blood decrease
in correspondence of the peak aortic flow. The intracranial CSF volume reaches its minimum peak
at ≈ 0.02 s (14.5 %CC) and is followed by the intracranial arterial and venous maximum volume
peaks (0.051 s or 39.5 %CC and 0.062 s or 48.0 %CC). The peak flow of the aqueduct of Sylvius
(1 = systolic peak = craniocaudal movement) occurs at 0.06 s (46.5 %CC), namely between the
minimum CSF volume peak and the maximum venous volume peak, and is almost synchronous with
the local minimum in the intracranial pressure between P2 and P3. During diastole, CSF from the
spinal cavity returns back into the cranial subarachnoid space due to the decrement in the whole
intracranial blood and occurs synchronously with the decrease in aqueduct CSF flow.

4.3.5 Interaction of heart, brain interstitial fluid and cerebrospinal fluid and the
regulation of brain fluids

As illustrated in Fig. 4.13, during the cardiac cycle, the brain interstitial fluid compartment ex-
changes water with the CSF spaces. In particular, during systole, water moves from the intracerebral
CSF compartments (lateral and third ventricles) into the ISF space, and at the same time, the ISF
space ejects water into the extracerebral CSF compartments (fourth ventricle and cranial subarach-
noid space). On the contrary, during diastole, the direction of water flow changes: the ISF space
receives water from the extracerebral CSF compartments and releases water into the intracere-
bral CSF ones. Interestingly, the aqueduct of Sylvius divides the intracerebral CSF compartments
from the extracerebral ones. The greatest water exchange occurs between the cranial subarachnoid
space and the ISF, with a flow amplitude of ≈ 25 µL min−1. Overall, there is a bidirectional water
movement from the ISF space to the intracranial CSF compartments with a duration of about ≈ 61
%CC. Also, the brain ISF compartment exchanges water in both capillaries and venules through
Starling forces. The capillary production and venous absorption of ISF are always positive during
the cardiac cycle. However, water entrance from the capillary bed into the ISF compartment is
only partially absorbed by venules during the cycle. This imbalance of ISF production and ISF
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Figure 4.9: Validation of computational results against in-vivo flow and pressure measurements. Top:
computational results (orange) compared with MR-flow measurements (green) for the right/left external jugular
vein, right/left common carotid artery and the ascending aorta. The green slices illustrate the location at
which the 2D slice of the MRI sequence was positioned. The SPCP MRI acquisition is shown at the centre
(n = 5 animals). Bottom: computational results of the ISF pressure compared with in-vivo intracranial pressure
measurements (n = 4 animals).
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Figure 4.10: Computational results for heart, pulmonary circulation, major arteries and veins. Top: the
computational results of volume and flow dynamics are shown for the left/right atrium and for the left/right
ventricle. Pressure and volume dynamics for pulmonary circulation are shown at the centre. Bottom left and
right: pressure and flow dynamics of major veins and arteries are shown. Cardiac-averages of pressure and
flow are shown in the legends.
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Figure 4.11: Computational results of brain blood fluid dynamics. Top left and right: results of the pressure
and flow dynamics of major veins and arteries are shown. Bottom left and right: space-time representation of
pressure waveform from the right atrium (left side) and left ventricle (right side) to intracranial vessels. The two
selected paths are illustrated. The red curves in the space-time representation illustrate the non-dimensional
flow profiles of the vessels adjacent to the right atrium (venous side) and to the left ventricle (arterial side).
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Figure 4.12: Interactive dynamics of cerebrospinal fluid, of arterial and of venous blood. Top: pressure
and volume dynamics of cerebrospinal fluid compartments. Bottom right: cerebrospinal flow dynamics. Bottom
left: CSF and blood normalized flow and volume analysis over a cardiac cycle. Cranial arterial inflow and
venous outflow were calculated in the neck level (arteries No. 5, 11, 6, 16; veins No. 152, 155, 156, 157, 148,
149). Each flow profile was normalized between 0 and 1 such that all four systolic peaks correspond to 1.
CSF, cerebrospinal fluid; ISF, interstitial fluid; LV, left ventricle; RV, right ventricle; 3V, third ventricle; AoS,
aqueduct of Sylvius; CSAS, cranial subarachnoid space; SSAS, spinal subarachnoid space; SAS, subarachnoid
space.
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Figure 4.13: Dynamics of cerebrospinal fluid and brain interstitial fluid. Top: bidirectional CSF-ISF flow
movement during systole and diastole. The intracerebral CSF compartment is formed by the lateral ventricles
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and venous level. Bottom: CSF production by the choroid plexus and by the ISF compartment, and CSF
absorption, by lymphatics and through arachnoid villi. CSF, cerebrospinal fluid; ISF, interstitial fluid; SAS,
subarachnoid space; BBB, blood-brain barrier.
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absorption represents the net production of ISF during the cardiac cycle. Finally, the CSF com-
partment receives water from the ISF space and by the choroid plexus. This amount of volume is
then absorbed through arachnoid villi and by lymphatics.

4.3.6 Alteration of CSF absorption, Starling forces, ISF-CSF permeability and
the Monro-Kellie coupling: a mathematical study of the intracranial effect

Water movement in and out of the parenchyma is strictly connected with CSF absorption, with
intracranial Starling forces, ISF-CSF permeability and the Monro-Kellie hypothesis. Through our
computational model, we simulated various scenarios in which these dynamics have been altered.
The effect in the intracranial fluid dynamics have been quantified and compared to the healthy
control described in Sections 4.3.4, 4.3.5, 4.3.3, 4.3.2 and 4.3.1. The computational results are
shown in Fig. 4.14.

When the CSF absorption was completely abolished, there were three major effects (Fig. 4.14a):
1) the ISF pressure increased by 54%, 2) the net ISF-CSF movement inverted its direction, lead-
ing to net water movement from the CSF space into the ISF one, and 3) the ISF absorption by
venules increased, to compensate the increment in the ISF production from the CSF space. These
results suggest that when the CSF absorption is abolished, solutes might not be attracted into the
CSF space, but remain stuck in the parenchyma. The decrement in the ISF-CSF permeability did
not greatly modify the CSF and ISF production/absorption (Fig. 4.14b). However, it remarkably
decreased the flow amplitude of water entrance between the intra and extracerebral CSF com-
partments and the ISF space. The Monro-Kellie hypothesis is fundamental in the bidirectional
CSF-ISF water movement. In our computational model, the Monro-Kellie coupling strictly depends
on the compliance of the intracranial compartment. When the intracranial compliance has been
increased by 100 times, the entrance of arterial volume in the cranium did not affect the remaining
fluid systems (Fig. 4.14c). In particular, the intracranial arterial inflow did not induce a displace-
ment of the CSF into the spinal subarachnoid space and consequently, the ISF was not subjected
to a suction force, leading to a reduction of the flow amplitude (≈ -96%) between the ISF and the
CSF compartments. The main contribution of the intraparenchymal Starling forces is to create a
continuous intraparenchymal water movement towards venules (Fig. 4.14d). The absence of the
Starling forces completely abolished the net water movement from the ISF compartment into the
CSF space, leading the CSF production to decrease by ≈ 63%.



130 4.W
orking

principles
ofthe

glym
phatic

system
:

A
hypothesis

based
on

a
holistic

m
ulti-scale

m
athem

aticalm
odelofthe

m
urine

extracellularfluid
system

s

-9
6.

15
 %

-9
6.

13
 %

24
.3

29
.2

Intracerebral CSF-ISF

Extracerebral CSF-ISF
0

5

10

15

20

25

30

35

Fl
ow

 a
m

pl
itu

de
 [

L/
m

in
]

-9
6.

40
 %

-8
1.

87
 %

24
.3

29
.2

Intracerebral CSF-ISF

Extracerebral CSF-ISF
0

5

10

15

20

25

30

35

Fl
ow

 a
m

pl
itu

de
 [

L/
m

in
]

-2
.2

9 
%

-0
.0

1 
%

-1
.5

6 
%

21
.5

10
.2

31
.7

CSF prod. by ISF space

 CSF prod. by choroid plexuses

  Net CSF prod.
0

5

10

15

20

25

30

35

40

Fl
ow

 [
L/

h]

15
1.

5

13
0.

0

ISF prod. by capillaries

  ISF abs. by venules
125

130

135

140

145

150

155

160

Fl
ow

 [
L/

h]

-9
9.

96
 %

+2
.9

8 
%

-6
6.

82
 %

21
.5

10
.2

31
.7

CSF prod. by ISF space

 CSF prod. by choroid plexuses

  Net CSF prod.
0

5

10

15

20

25

30

35

40

Fl
ow

 [
L/

h]-4
.6

3 
%

+8
.6

0 
%

15
1.

5

13
0.

0

ISF prod. by capillaries

  ISF abs. by venules
125

130

135

140

145

150

155

160

Fl
ow

 [
L/

h]

Alteration of intracranial �uid homeostasis: a mathematical study
Computational results 

CS
F ISF

Decreased ISF-CSF 
permeability by 10-fold 

Interstitial �uid

ISF production 

Blocked Starling forces

Superior 
sagittal sinus

Lymphatics

Cerebral  subarachnoidspace

LV RV

3V

Ao
S

4V

Cerebral  subarachnoidspace

ISF

ISF

CSF

Blocked CSF absorption 

Intracranial compliance 
increased by 100-fold

Solid

ISF

CSFBlood

-1
0.

92
 %

+1
0.

86
 %

15
1.

5

13
0.

0

ISF prod. by capillaries

  ISF abs. by venules
125

130

135

140

145

150

155

160

Fl
ow

 [
L/

h]

+5
.7

6 
%

+5
4.

15
 %

17
.2

 3
.8

Venules  ISF
2

4

6

8

10

12

14

16

18

20

Pr
es

su
re

 [m
m

H
g]

-1
42

.3
8 

%

-1
0.

53
 %

-7
1.

20
 %

21
.5

10
.2

31
.7

CSF prod. by ISF space

 CSF prod. by choroid plexuses

  Net CSF prod.
-10

-5

0

5

10

15

20

25

30

35

40

Fl
ow

 [
L/

h]

-8
4.

37
 %

-5
.6

4 
%

-5
9.

03
 %

21
.5

10
.2

31
.7

CSF prod. by ISF space

 CSF prod. by choroid plexuses

  Net CSF prod.
0

5

10

15

20

25

30

35

40

Fl
ow

 [
L/

h]

Alterations of CSF absorption, ISF-CSF permeability, Monroe-Kellie coupling, Starling forces 
a�ect the glymphatic function 

-2
.2

9 
%

-0
.0

1 
%

-1
.5

6 
%

21
.5

10
.2

31
.7

  CSF prod. by ISF space

  CSF prod. by choroid plexuses

  Net CSF prod.
-10

-5

0

5

10

15

20

25

30

35

40

Fl
ow

 [
L/

h]

Healthy
Decreased ISF-CSF permeability by 10-fold

a

c

b

d

-8
4.

37
 %

-5
.6

4 
% -5

9.
03

 %

21
.5

10
.2

31
.7

  CSF prod. by ISF space

  CSF prod. by choroid plexuses

  Net CSF prod.
-10

-5

0

5

10

15

20

25

30

35

40

Fl
ow

 [
L/

h]

Healthy
Intracranial compliance increased by 100-fold

-1
42

.3
8 

%

-1
0.

53
 %

-9
9.

93
 %

21
.5

10
.2

31
.7

  CSF prod. by ISF space

  CSF prod. by choroid plexuses

  Net CSF prod.
-10

-5

0

5

10

15

20

25

30

35

40

Fl
ow

 [
L/

h]

Healthy
Blocked CSF absorption

-9
9.

96
 %

+2
.9

8 
%

-6
6.

82
 %

21
.5

10
.2

31
.7

  CSF prod. by ISF space

  CSF prod. by choroid plexuses

  Net CSF prod.
-10

-5

0

5

10

15

20

25

30

35

40

Fl
ow

 [
L/

h]

Healthy
Blocked Starling forces

Figure 4.14: Alterations of CSF absorption, Starling forces, ISF-CSF permeability and the Monro-Kellie coupling affect the glymphatic function. Four different
scenarios are presented. We completely blocked the CSF absorption by lymphatics and through arachnoid villi (a, top left), decreased by a factor of 10 the ISF-CSF water
permeability (b, top right), increased by 100 times the compliance of the intracranial compartment Pintracranium in Table 4.2 (c, bottom left) and blocked ISF production by
intracranial capillaries and venules through Starling forces (d, bottom right). Bar plots show cardiac-averaged values.
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4.3.7 Idiopathic intracranial hypertension and CSF-ISF alterations
Mice (C57BL/6J) with impairment of the intracranial venous outflow were modelled in vivo through a
bilateral ligation of both petrosquamosus sinuses and in silico through a double stenosis of the 98%
at the same locations. The location of the bilateral ligation is shown in Fig. 4.15. These in-vivo
and in-silico mouse model aims to reproduce idiopathic intracranial hypertension, a neurological
disorder characterized by an abnormal increase in intracranial pressure, related with intracranial
venous drainage malfunctioning [Farb 2003] and which causes headache, tinnitus, papilledema with
potentially progressive vision loss [Szewka 2012]. The intracranial pressure resulting from the
mathematical model agrees well with that of the in-vivo intracranial pressure measurements (Fig.
4.15a), although the pulse pressure of the computational results is slightly higher (1.76 mmHg vs
0.58 ± 0.21 mmHg). The intracranial pressure waveform of the in-silico model is more oscillatory
than that of the measurements. A possible explanation for this discrepancy could derive from the
assumption of purely elastic pressure-volume relationships that we have made for each intracranial
lumped model. The cardiac-averaged venous pressure increases greatly in the pathological case in
the superior sagittal sinus compared to the healthy control (3.16 mmHg vs 5.47 mmHg), while there
are no significant changes on venous cardiac-averaged pressures from the right atrium up to the
location of the ligation (Fig. 4.15b). The intracranial blood volume is greater in the pathological
case than in the healthy control (14.1 µL vs 14.18 µL) (Fig. 4.15c). This is consistent with the
hypothesis in Agarwal et al. [Agarwal 2018] in which the additional blood stored in the cranium can
be regarded as a pseudo-tumour which occupies volume in the cranium and permanently increases
the ICP. Although the maximum CSF volumes in the healthy and pathological cases during the
cardiac cycles do not differ significantly (≈ 19.85 µL), the minimum CSF volume in the pathological
case is lower than that of the healthy control (19.74 µL v 19.71 µL) and the amplitude of the volume
variation during the cardiac cycle is larger (0.1 µL vs 0.14 µL). Likewise, the ISF volume has a
lower minimum peak (116.667 µL vs 116.666 µL) and a larger amplitude of the volume variation
during the cardiac cycle (3.48 nL vs 4.62 nL).

There are several changes in the ISF and CSF dynamics (Figs. 4.15d, 4.15e). As the ISF pres-
sure increases by almost 50%, the ISF production is reduced by almost 45%. Although there is no
significant change in the CSF production by choroids, the CSF production by the ISF compartment
decreases by ≈ 45%. As the pressure in the superior sagittal sinus is greater, the drainage of
CSF through arachnoid granulations decreases by 39%, while that through lymphatics increases
by 74%. The total amount of CSF volume does not increase significantly (39.21 µL vs 39.63 µL),
is redistributed between intra, extracerebral CSF spaces and the spinal subarachnoid space. These
rearrangements of CSF lead the amount of CSF volume in the spinal subarachnoid space to increase
by ≈ 2% (18.92 µL 19.35 µL). The bidirectional ISF-CSF flow amplitude increases in the patho-
logical case (intracerebral CSF-ISF 24.32 µL min−1 vs 32.34 µL min−1, extracerebral CSF-ISF
29.20 µL min−1 vs 40.05 µL min−1).
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Figure 4.15: Cranial venous outflow impairment alters the intracranial fluid dynamics. Top, a): validation
of the computational results against in-vivo measurements of a mouse model submitted to a bilateral ligation
of both petrosquamosus sinuses. The bilateral ligation was modelled through a double stenosis of 98% at the
same location of the ligation. Computational results of the ISF pressure compared with in-vivo intracranial
pressure measurements (n = 4 animals). Middle top, b): cardiac-averaged venous pressure in the healthy (left)
and in the bilateral ligation (right) cases. The bar plots show the cardiac-averaged venous pressure at chosen
locations of the network. Middle bottom, c): Intracranial blood, intracranial CSF and ISF volume dynamics in
the healthy and pathological cases. Bottom, d), e): Bar plots of ISF and CSF flow balance, of the pressure
and volume in intracranial locations and the amplitude of flow variation the cardiac cycle.
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4.4 Discussion

4.4.1 Mathematical models of the main murine fluid systems and comparison
with the body of literature

The mathematical model presented here represents to the authors’ knowledge the first attempt
to theoretically describe and quantify the murine dynamics of the arterial, venous, CSF, ISF and
lymphatic systems in a holistic, multi-scale framework. We built on previous works of the human
circulation [Müller 2013b, Müller 2014, Mynard 2015, Strocchi 2017, Liang 2009a], of the murine
circulation [Aslanidou 2015, Cuomo 2015] and took advantage of allometric scalings to estimate
most of the murine parameters [Dawson 2014, Dawson 2005, Dawson 2001]. Our mathematical
model incorporates a novel Monro-Kellie mathematical coupling, Starling resistors in cerebral veins,
Starling forces through the blood-brain barrier and choroid plexus [Linninger 2017], and a simple
model of lymphatic drainage of CSF.

Our computational results agree well with reported literature values for the murine fluid dynam-
ics, as shown in Table 4.5. The validity of our results is also supported by our in-vivo intracranial
pressure and MR-flow measurements. Previous mathematical models of the murine fluid systems
have focused just on the arterial system using a one-dimensional approach [Aslanidou 2015] or a
three-dimensional mathematical model [Cuomo 2015]. Cuomo et al. [Cuomo 2015] modelled the
main murine arterial tree using a validated fluid-solid interaction code. The blood distribution of
our computational results agrees well with the results of Cuomo et al., although some discrepancy
has been observed in the level of the celiac artery. Aslanidou et al. [Aslanidou 2015] have pro-
posed a one-dimensional model for the arterial tree, included the rheological properties of blood,
modelled the visco-elastic nature of the arterial wall and used a three-element Windkessel model
for the terminal segments. We incorporated the geometrical data of the arterial tree of Aslanidou et
al. [Aslanidou 2015] collected through micro-CT on male C57BL/6J mice as well as the wave speed
formula proposed by the authors.

Humans and mice are remarkably similar regarding the body fluid dynamics, as shown by our
computational results. For instance the venous-heart-arterial interaction in mice is similar to that
in humans. There are obviously some differences between mice and humans. Even though the
arterial pressure does not differ between mice and humans, the murine intracranial pressure is
somewhat lower than that of humans (mice: 3 - 5 mmHg vs humans: 7 - 18 mmHg [Steiner 2006]).
Accordingly, the central venous pressure is lower in mice than in humans (mice: 0.3 - 1.5 mmHg
[Scheuermann-Freestone 2001] vs humans: 3 – 8 mmHg [Klingensmith 2008]), allowing for CSF
uptake into the venous system. There are also some discrepancies in terms of venous network
geometry. In humans, the superior sagittal sinus drains proximally into the transverse sinuses and
the majority of the venous drainage pathways is in most cases through the internal jugular veins.
As described for mice by [Mancini 2015, Xiong 2017] and shown for rats in [Scremin 2015], in mice
the superior sagittal sinus drains proximally into the transverse sinuses and distally through the
rostral rhinal veins into the superficial temporal veins. Also, the principal venous drainage pathways
in mice are the external jugular veins. Apart from possible differences between humans and mice,
our computational results suggest that mathematical models together with allometric scaling can in
principle be employed to model the dynamics of fluid systems of mammalians.
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4.4.2 Intraparenchymal bidirectional water movement: the heart influence

How much do we know about the complex ISF-CSF dynamics induced by the pumping action of the
heart during each cardiac cycle? The Monro-Kellie states that the increment of the intracranial arte-
rial volume during systole must be balanced by a decrement of the venous and CSF intracranial vol-
umes in order to maintain the homeostasis of intracranial fluid volume [Wilson 2016, Linninger 2016].
In fact, at each cardiac cycle, CSF moves towards the spinal subarachnoid space and venous blood
is displaced into the right atrium. The natural question is: what happens to the brain interstitial
fluid at every cardiac cycle? To the authors’ knowledge, the CSF-ISF movement has not yet been
evaluated through MRI measurements in neither human nor mice. Our computational results sug-
gest that water continuously enters and exits the parenchyma during the cardiac cycle, creating
a continuous mixing effect between ISF and CSF. In particular, during systole the intracerebral
CSF compartments (lateral and third ventricles) release water into the parenchyma and at the same
time, the parenchyma releases water into the extracerebral CSF compartment (fourth and cerebral
subarachnoid space), while during diastole, the water direction inverts. The brain parenchyma ef-
fectively behaves like a sponge and allows for a continuous water movement [Penn 1984]. In this
regard, intracerebral CSF compartments are fundamental to allow transparenchymal water move-
ments. Alteration of the flow dynamics in the aqueduct of Sylvius or in the internal ventricles might
affect this continuous bidirectional water movement. We speculate that a similar mechanism might
occur in the spinal cord. The extracerebral CSF compartment would be the spinal subarachnoid
space, while the spinal canal would represent the intracerebral CSF compartment. It would be inter-
esting to understand if there is any correlation with alterations of our hypothesized dynamics of the
spinal cord bidirectional CSF-ISF movement in relation to syringomyelia and Chiari malformation
[Leung 2016].

4.4.3 Brain fluid homeostasis: modern view of CSF drainage

In the last couple of decades, CSF movement, production and absorption have been the sub-
ject of discussions [Brinker 2014, Miyajima 2015]. The old understanding of the CSF physi-
ology sees the majority of the CSF production by the choroid plexus in the cerebral ventri-
cles and the absorption at the level of the arachnoid villi [Brinker 2014]. However, this old
but still traditional concept of CSF drainage must change in light of new knowledge regard-
ing the brain lymphatic drainage [Louveau 2015, Zawieja 2008, Absinta 2017], glymphatic system
[Iliff 2012, Jessen 2015], intramural peri-vascular ISF drainage within the basement membrane of
arteries [Carare 2008, Weller 2008, Engelhardt 2016] and MR-flow measurements of CSF dynamics
in humans [Beggs 2013, Kelly 2016].

A recent work of the group of Linninger [Linninger 2017] proposed a mathematical model which
incorporates the main fluid components of the brain with water and species flux dynamics governed
by the Hagen-Poiseuille flow (blood), Darcy flow (interstitial fluid transport), and Starling’s law
(transmembrane fluid exchange). The authors reviewed and reproduced some historical experiments
on the dynamic changes of the intracranial pressure after intravenous or intracisternal infusion of
mannitol, validating the Bulat-Klarica-Orešković hypothesis through their computational results.
The Bulat-Klarica-Orešković hypothesis affirms that CSF exchange is present everywhere in the
CSF system and is a consequence of water filtration between capillaries and ISF [Orešković 2017,
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Linninger 2017].
In our computational model, we followed the mathematical model of Linninger [Linninger 2017]

and adopted the Bulat-Klarica-Orešković hypothesis by incorporating Starling forces in the water
dynamics through the blood-brain barrier and by the choroid plexus. However, we have assumed
time-independent changes on solute concentrations. In summary, we are modelling the following
fluid dynamics phenomena:

1. ISF production in capillaries through the blood-brain barrier (Starling forces).

2. Partial ISF absorption (≈ 85%) by venules through the blood-brain barrier (Starling forces).

3. CSF production by the choroid plexus in cerebral ventricles (Starling forces).

4. CSF absorption by lymphatics and drainage towards subclavian veins.

5. CSF absorption through arachnoid villi into the superior sagittal sinus.

6. CSF and ISF exchange determined by hydraulic pressure forces without concentration gra-
dients of small or large solutes.

In line with CSF human absorption knowledge, we assumed the presence of arachnoid villi,
although existence has not yet been proved in mice [Ma 2017]. The zero osmotic pressure difference
between the ISF and CSF compartments is motivated by the presence of large gap junctions in
the pia and ependyma, providing a permeable molecular structure for CSF-ISF diffusion exchange
[Spector 2015, Whish 2015].

Building on the work of Linninger [Linninger 2017], our mathematical model gives further in-
sights into the heart-CSF-ISF dynamics, since all fluid systems are tightly coupled. Equipped with
the previous hypotheses, our computational model gives the following results:

1. There is net production of ISF given by the imbalance of ISF production (capillaries) and
ISF absorption (venules).

2. The Monro-Kellie coupling induces a bidirectional movement of CSF into the ISF compart-
ment during each cardiac cycle.

3. There is net production of CSF from the ISF compartment during the bidirectional CSF-ISF
cycles.

4. There is active production of CSF in the choroid plexus in cerebral ventricles.

5. CSF is absorbed through the arachnoid villi and through lymphatics.

These outputs gave us some hints on the possible mechanisms by which the so-called glymphatic
system works.

4.4.4 A hypothesis on the working principles of the glymphatic system
Our results suggest that the glymphatic system depends on four mechanisms: 1) the Monro-Kellie
coupling, 2) Starling forces governing the fluid exchange at the blood-brain barrier, 3) ISF-CSF
bidirectional movement and 4) drainage of CSF through arachnoid villi and by lymphatics.

Fig. 4.16 summarizes our hypothesis on the working principles of the glymphatic system. During
diastole, as ISF volume increases and recalls for fluids, the extracerebral CSF (cranial subarachnoid
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space, fourth ventricle) enters into the ISF compartment. This causes solutes to be dragged from
the para-arterial CSF compartment into the ISF space (Monro-Kellie coupling). The continuous
water suction effect created by the Starling forces at the blood-brain barrier continuously attracts
ISF towards blood-brain barrier of venules, transporting solutes through a slow water-current effect
(Starling forces). Solutes likely move into the para-venous CSF compartment since 1) during the
cardiac cycle there is net production of CSF from the ISF space and 2) during systole, the ISF
rapidly moves into the extracerebral CSF compartments. Solutes remain into the para-venous CSF
compartment since they cannot cross the blood-brain barrier (provided the integrity of the BBB).
The low-venular pressure induces a continuous movement of water into venules and contrasts the
suction ISF force during diastole, trapping solutes into the para-venous CSF compartments and
preventing them to return back into the ISF compartment (Starling forces). The absorption of water
through arachnoid granulations and by the lymphatic system and the continuous CSF movement
generated by the Monro-Kellie coupling leads macromolecules to be transported into the cerebral
subarachnoid space and finally drained by meningeal lymphatics.

Although our hypothesis is based on water movement and has yet to be validated experimentally,
it suggests a possible explanation of the glymphatic system proposed by Iliff et al. [Iliff 2012] and
consider the interactive effect of arteries, veins, CSF, ISF, lymph and heart.

4.4.5 Alterations of CSF absorption, ISF-CSF permeability, Monro-Kellie cou-
pling and Starling forces affect the glymphatic system

Our hypothesis is based on water movement and suggests that the glymphatic system results from
the combination of CSF absorption, ISF-CSF exchange and ISF-blood exchange. Our computational
results suggest that alteration of these dynamics might affect the glymphatic system.

The CSF drainage is a key regulatory mechanism of the glymphatic system. As shown in
Fig. 4.14, when the CSF uptake from both veins and lymphatics is completely blocked, the CSF
production by the choroid plexus is balanced by a CSF absorption from the ISF compartment, which
means that the net CSF-ISF movement changed direction compared to the healthy control. Also,
the increase in ISF production is compensated by an increase in ISF absorption by venules. These
results suggest that solutes can still be attracted towards venules. However, since there is no net
force towards the para-venous CSF compartment, solutes might accumulate in the parenchyma.

The ISF-CSF communication is also a key regulatory mechanism. Nakata et al. [Nakada 2017]
reviewed the water dynamics and the regulatory mechanisms of AQP-1 and AQP-4. In our model,
we showed that a decrement in the permeability at the glial level decreases the amplitude of the
CSF-ISF bidirectional flow, suggesting 1) an alteration of the mixing-diffusion properties of solutes
and 2) a decrement in solutes uptake by para-venous spaces. This qualitatively agrees with the
results shown by Iliff et al. [Iliff 2012], who showed a net reduction of CSF tracer influx into the
parenchyma in AQP4-null compared to wild-type control mice.

The lack of the Monro-Kellie coupling leads to 1) a greatly reduced CSF flow dynamics in all
compartments and 2) a greatly reduced bidirectional CSF-ISF movement. The lack of this cyclic
water movement might affect the transport movement of solutes between the ISF compartment and
both para-arterial and para-venous CSF spaces. Also, the absence of cyclic water movement might
decrease the diffusion of solutes throughout the parenchyma. This suggests that the entrance of
water from para-arterial and para-venous spaces and the ISF compartments strictly depends on
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the intracranial blood entrance. Moreover, it suggests that impairments of the arterio-venous-CSF
temporal dynamics might affect the glymphatic system by reducing bidirectional CSF-ISF exchange
driven by the heart.

Osmotic and hydraulic pressures are key factors in the glymphatic mechanism. When we re-
moved the Starling forces in the blood-ISF dynamics there were two main effects: 1) blocking of
the continuous water movement from the arterial to the venous compartment and 2) the absence
of a positive net water flow from the ISF to the CSF compartments. The bidirectional CSF-ISF
movement was not greatly modified, suggesting that the diffusion capabilities of solutes driven by
convection forces (advection and diffusion) are not modified and that injection of tracers in the CSF
space with non-operating Starling forces can still penetrate in the parenchyma. However, the ab-
sence of the net CSF production from the ISF space might not lead solutes to be transported into
the para-venous spaces but rather accumulate in the parenchyma. These results suggest that the
Starling forces are fundamental in regulating the uptake of solutes from the parenchyma into the
para-venous CSF spaces. Moreover, these results suggest that the bulk flow which leads solutes
into the para-venous CSF space is the CSF production from the ISF compartment.

4.4.6 Impairment of intracranial venous outflow affects the glymphatic system
There have been several discussion on whether impairment of the intracranial vascular system can
lead to accumulation of solutes in the brain [Di Marco 2015, Rivera-Rivera 2016, Simka 2015]. Our
computational results, together with the hypothesized working principles of the glymphatic system,
might explain the mechanisms by which solutes accumulate in the parenchyma when the intracranial
vascular system is impaired. As shown in Fig. 4.15, the impairment of the venous outflow not only
increases the intracranial pressure but also dramatically decreases the net motion of water from the
ISF space into the CSF space. This comes from changes in the Starling forces at the capillary level,
as the increased ISF pressure reduces the ISF production and leads to less CSF production from the
ISF compartment. A reduction of the rate of CSF turnover might decrease the amyloid β clearance
via arachnoid villi and lymphatics, as suggested by Simon et al. [Simon 2016]. More importantly,
depending on the location of the venous stenosis (internal jugular veins, transverse sinus, torcula),
only some portion of the parenchyma might suffer from alteration of Starling forces. Liu et al.
[Liu 2014] concluded that a major fraction of patients with idiopathic Parkinson’s disease appears
to have abnormal venous anatomy on the left side of the brain and neck. Han et al. [Han 2015]
observed that venous drainage obstruction of the transverse sinus, of the left brachiocephalic vein or
of the bilateral internal jugular vein plays a significant role in the pathogenesis of transient global
amnesia. Qualitatively, our results agree with these observations, suggesting that a local reduction
of ISF production and CSF turnover caused by the increase in venous pressure might contribute to
local accumulation of neurotoxins in the brain.
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Figure 4.16: Schematic representation of our hypothesized working principles of the glymphatic system.
Solutes are transported towards the venules by Starling forces. The imbalance between capillary production
and venules absorption determines the net production of ISF. The net ISF movement into the CSF system
transports solutes into the para-venous CSF spaces during the cardiac cycle. The cardiac contraction induces
a trans-parenchymal and bidirectional CSF-ISF movement which helps solutes to diffuse in the brain tissue.
The CSF absorption by lymphatics and through arachnoid villi contributes to the clearance of solutes by
creating a low-pressure sink.
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4.5 Conclusions

The mathematical model presented here represents to the authors’ knowledge the first holistic,
multi-scale mathematical model of the murine fluid systems, and includes: heart dynamics, ma-
jor arteries and veins, microcirculation, pulmonary circulation, venous valves, CSF, brain intersti-
tial fluid, intracranial Starling forces, Starling resistors, Monro-Kellie coupling, brain lymphatic
drainage. Based on the recent works of Linninger et al. [Linninger 2017], Starling forces gov-
erned the Blood-ISF-CSF fluid exchange in the blood-brain barrier (Blood-ISF) and choroid plexus
(Blood-CSF). Our computational results are validated against MR-flow measurements, literature
values, and in-vivo pressure measurements acquired in healthy mice and in mice with impairment
of the intracranial venous outflow.

Our computational results show that during the cardiac cycle there is an intraparenchymal
bidirectional CSF-ISF movement which potentially helps to avoid localizations of stagnant water
inside the brain. Based on the computational results, we propose that glymphatic system results
from the following dynamics: 1) intraparenchymal bidirectional ISF-CSF movement induced by the
Monro-Kellie hypothesis, 2) CSF drainage into the venous and lymphatic systems, 3) intracranial
Starling forces. We also show that cerebral venous outflow decreases the ISF production and
CSF turnover, potentially decreasing the brain-waste clearance and leading to accumulation of
neurotoxins in the parenchyma.

Although our hypothesis has to be demonstrated through experimental measurements, it pro-
vides a possible explanation of the working principles of the glymphatic system and the mechanisms
by which neurotoxins and waste products are removed. Also, it provides insights into the possible
link between vascular and CSF pathologies with brain-waste clearance of parenchyma, help under-
standing the onset of neurological disorders [Louveau 2015, Bezerra 2018, Dissing-Olesen 2015,
Tarasoff-Conway 2015, Zamboni 2015, Raper 2016, Engelhardt 2016] and possibly suggests new
therapeutic treatments for enhancing the removal of macromolecules in the central nervous system
[Louveau 2016].

4.6 Limitations and future development

Our mathematical model has several limitations. Some of the adopted computational parameters are
based on allometric scaling and should be considered with caution. However, the validation of our
computational results against in-vivo MR-flow measurements, intracranial pressures measurements
and literature values gave us a degree of confidence on both output of the mathematical model
and estimations of the computational parameters. We did not implement autoregulation, a key
component of peripheral resistance and cerebral perfusion. Also, we did not take into account
the viscoelastic behaviour of arteries and veins, which is known to greatly affect pressure waves
[Matthys 2007a]. To the authors’ knowledge, there are no available estimations of compliance
and volume of intracranial lymphatic compartments. We estimated these values based on those of
intracranial capillaries. Also, we assumed that CSF is mostly absorbed through arachnoid villi,
and only a small percentage of it is absorbed by lymphatics (≈ 15%). This was motivated by the
experimental observation that brain lymphatics seem to regulate the solute homeostasis, rather
than CSF volume, though some experimental observations have shown that obstruction of nasal
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lymphatics might increase the intracranial pressure [Zawieja 2008, Mollanji 2002]. Classically, the
brain is thought as a sponge [Linninger 2016]. To the authors’ knowledge, there are no experimental
measurements of the amount of CSF-ISF exchange during the cardiac cycle. Therefore, our results
are more relevant to qualitatively understand the interactive dynamics of fluids, while the values
of our computational results should be considered with caution. We did not model the transport of
solutes in our model and consequently, oncotic pressures were assumed to be constant. Also, we
assumed the Bulat-Klarica-Orešković hypothesis and supposed that both hydrostatic and oncotic
pressure forces drive ISF production. This hypothesis has not yet been experimentally verified
[Miyajima 2015]. Ultimately, our hypothesized working principles of the glymphatic system are
based on water movement, which provides indications of the transport of solutes.



Chapter 5

Conclusions

5.1 Achievements
5.1.1 Insights into the glymphatic system and murine fluid dynamics
The mathematical model presented in this thesis represents, to the author’s knowledge, the first
multi-scale, closed-loop mathematical description of the main murine extracellular fluid systems. It
includes: heart dynamics, arterial and venous circulation, microcirculation, pulmonary circulation,
brain interstitial fluid (ISF), Starling resistors, venous valves and cerebrospinal fluid (CSF). We also
incorporated the hypothesis of Bulat-Klarica-Orešković which states that blood-CSF and blood-ISF
dynamics are regulated by Starling forces. Moreover, intracranial fluids are tightly coupled by a
relaxed version of the Monro-Kellie hypothesis, which originally states that the sum of all fluid
volumes in the cranial cavity is constant.

Our mathematical model represents a step forward in the understanding of brain fluid dynamics.
Thanks to the capabilities of mathematical modelling, we have simulated healthy and pathological
scenarios to understand the interactions of intracranial fluids and the consequences of abnormalities
in a fluid compartment into the remaining compartments. Our computational results suggest that
the glymphatic system depends on 1) a continuous bidirectional CSF-ISF movement induced by the
Monro-Kellie hypothesis, 2) intraparenchymal Starling forces and 3) CSF turnover, which depends
on both venous and lymphatic drainage. Although our hypothesis has to be experimentally demon-
strated, it widens the understanding of brain fluid interactions, coupling arteries, veins, CSF, ISF,
lymphatic drainage and heart pumping. Based on our hypothesis, intracranial vascular pathologies
are closely coupled to neurological disorders. We show that impairment of cerebral venous drainage
decreases the ISF production and CSF turnover, potentially decreasing the clearance of brain waste
and leading to accumulation of neurotoxins in the parenchyma. Further studies are required in order
to understand the intracranial ISF/CSF dynamics in both healthy and pathological situations.

5.1.2 Towards a multi-scale mathematical model for the human lymphatic sys-
tem

Although a number of pathologies are known to be associated with malfunction of the lymphatic
system, there is a considerable disparity in the understanding of the mechanisms that regulate the
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lymphatic system compared to those of the cardiovascular system. Compared to arteries and veins,
one of the driving forces that pushes lymph towards the venous system is the active contraction
of lymphangions. Experimental observations have shown that occurrence of lymphatic contractions
depends strongly on local fluid dynamics. One achievement of this thesis is the development of a
mathematical model for collecting lymphatics in a one-dimensional framework coupled to a novel
model for lymphatic contractions, which provides each lymphangion with the autonomous capability
to trigger action potentials based on the local fluid-dynamical factors. This represents a desirable
feature that a mathematical model for networks of collecting lymphatics should incorporate. In the
longer term, our mathematical model could provide the basis for a more general holistic, multi-scale
closed-loop mathematical model which includes networks of arteries, veins, lymphatics, lymph nodes
and other relevant fluid districts.

5.1.3 High-order methods for networks of one-dimensional subdomains

High-order numerical methods are a fundamental tool for long-time evolution simulations because
of their outstanding dissipation and dispersion properties and because they are more efficient
compared to low-order methods when small errors are aimed for. One achievement of this thesis
was the design a new implicit solver for the Junction-Generalized Riemann Problem (J-GRP), which
is based on a recently proposed implicit method for solving the generalized Riemann problem for
systems of hyperbolic balance laws. We use the new J-GRP solver to construct an ADER scheme
that is globally explicit, locally implicit and with no theoretical accuracy barrier, in both space and
time. The resulting ADER scheme is able to deal with stiff source terms and can be applied to
non-linear systems of hyperbolic balance laws in domains consisting of networks of one-dimensional
sub-domains. An application to a physical test problem consisting of a network of 37 compliant
silicon tubes (arteries) and 21 junctions, reveals that in addition to high order in the interior of the
one-dimensional subdomains, it is imperative to use high-order methods at junctions, in order to
preserve the desired high order of accuracy in the full computational domain.

5.2 Future work

Mathematical models are a fundamental tool to understand the mechanisms and interactive dynamics
of the body fluid systems. Our mathematical model of the murine extracellular fluid system was
mainly used as a predictive tool to understand 1) the interaction of cardiac dynamics and cerebral
fluids, 2) the effect of impairment of cerebral venous outflow on brain fluid dynamics. However,
in principle, our mathematical framework could also be used to study pathologies of the central
nervous system and the effect of treatment of the pathologies. For instance, one could employ our
modelling framework to investigate CSF flow and pressure in hydrocephalus and analyse the effect
of lumboperitoneal or ventriculoatrial shunt placements. Also, one could understand the effect of
heart malfunctions in the dynamics of intracranial fluids.

There is a number of possible improvements that would significantly contribute to the math-
ematical framework of the murine extracellular fluid systems presented in this thesis. One of the
primary goals of the vascular system is to provide nutrients, oxygen, carbon dioxide and blood cells
to the body. A great improvement would be the incorporation of a model for the transport system in
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a multi-scale framework. Other possible improvements include: autoregulation, baroreflex control
of heart rate, a mathematical model for the spinal canal, spinal cord, spinal subarachnoid space and
spinal microcirculation, a complete model of the lymphatic system and peripheral interstitial fluid
and a respiratory model.
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